hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
217d631aee6a0e46f63c306242136b06ed113ba7
1,458
py
Python
scripts/nodes/filter/setupSensors.py
AutonomousFieldRoboticsLab/jetyak_uav_utils
7926df2cf34b0be2647b62896c98af82ca6f1e53
[ "MIT" ]
null
null
null
scripts/nodes/filter/setupSensors.py
AutonomousFieldRoboticsLab/jetyak_uav_utils
7926df2cf34b0be2647b62896c98af82ca6f1e53
[ "MIT" ]
null
null
null
scripts/nodes/filter/setupSensors.py
AutonomousFieldRoboticsLab/jetyak_uav_utils
7926df2cf34b0be2647b62896c98af82ca6f1e53
[ "MIT" ]
1
2021-12-09T01:30:58.000Z
2021-12-09T01:30:58.000Z
import numpy as np from sensor import Sensor def setupSensors(n): # Critical chi-squared values for P = 0.001 and different degrees of freedom chiSquared_1 = 10.828 chiSquared_3 = 16.266 # Transition Matrix for Tag measurements Htag = np.matrix(np.zeros((4, n))) Htag[0:3, 0:3] = np.matrix(-1 * np.eye(3)) Htag[0:3, 6:9] = np.matrix(np.eye(3)) Htag[0:3, 11:14] = np.matrix(-1 * np.eye(3)) Htag[3, 14] = 1 # Covariance Matrix for Tag measurements Rtag = np.asmatrix(1.0e-3 * np.eye(4)) # Transition Matrix for Drone velocity measurements HvelD = np.matrix(np.zeros((3, n))) HvelD[0:3, 3:6] = np.matrix(np.eye(3)) # Covariance Matrix for Drone velocity measurements RvelD = np.asmatrix(1.0e-3 * np.eye(3)) # Transition Matrix for Drone GPS measurements HgpsD = np.matrix(np.zeros((3, n))) HgpsD[0:3, 0:3] = np.matrix(np.eye(3)) # Covariance Matrix for Drone GPS measurements RgpsD = np.asmatrix(1.0e-1 * np.eye(3)) # Transition Matrix for Jetyak GPS measurements HgpsJ = np.matrix(np.zeros((3, n))) HgpsJ[0:3, 6:9] = np.matrix(np.eye(3)) # Covariance Matrix for Jetyak GPS measurements RgpsJ = np.asmatrix(5.0e0 * np.eye(3)) # Setup sensors tagS = Sensor('tag', Rtag, Htag, 39.0, chiSquared_3) velDS = Sensor('dvel', RvelD, HvelD, 150.0, chiSquared_1) gpsDS = Sensor('dgps', RgpsD, HgpsD, 150.0, chiSquared_1) gpsJS = Sensor('jgps', RgpsJ, HgpsJ, 10.0, chiSquared_1) return (tagS, velDS, gpsDS, gpsJS)
31.695652
77
0.678326
0341ee0a3f23cb6a01cd879ea1c2351af4b1b924
6,356
py
Python
oneflow/python/test/ops/test_argwhere.py
666DZY666/oneflow
2062cb211dd1e0619d610659e6d41598d5f73e17
[ "Apache-2.0" ]
null
null
null
oneflow/python/test/ops/test_argwhere.py
666DZY666/oneflow
2062cb211dd1e0619d610659e6d41598d5f73e17
[ "Apache-2.0" ]
null
null
null
oneflow/python/test/ops/test_argwhere.py
666DZY666/oneflow
2062cb211dd1e0619d610659e6d41598d5f73e17
[ "Apache-2.0" ]
1
2021-11-10T07:57:01.000Z
2021-11-10T07:57:01.000Z
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np import unittest from collections import OrderedDict import oneflow as flow from test_util import GenArgDict def _np_dtype_to_of_dtype(np_dtype): if np_dtype == np.float32: return flow.float32 elif np_dtype == np.int32: return flow.int32 elif np_dtype == np.int64: return flow.int64 elif np_dtype == np.int8: return flow.int8 else: raise NotImplementedError def _random_input(shape, dtype): if dtype == np.float32: rand_ = np.random.random_sample(shape).astype(np.float32) rand_[np.nonzero(rand_ < 0.5)] = 0.0 return rand_ elif dtype == np.int32: return np.random.randint(low=0, high=2, size=shape).astype(np.int32) elif dtype == np.int8: return np.random.randint(low=0, high=2, size=shape).astype(np.int8) else: raise NotImplementedError def _of_argwhere(x, index_dtype, device_type="gpu", device_num=1, dynamic=False): data_type = _np_dtype_to_of_dtype(x.dtype) out_data_type = _np_dtype_to_of_dtype(index_dtype) flow.clear_default_session() if device_type == "gpu": flow.config.gpu_device_num(device_num) elif device_type == "cpu": flow.config.cpu_device_num(device_num) else: raise ValueError assert device_num > 0 func_config = flow.FunctionConfig() func_config.default_data_type(data_type) func_config.default_placement_scope( flow.scope.placement(device_type, "0:0-{}".format(device_num - 1)) ) if dynamic is True: func_config.default_logical_view(flow.scope.mirrored_view()) @flow.global_function("predict", function_config=func_config) def argwhere_fn( x: flow.typing.ListNumpy.Placeholder(x.shape, dtype=data_type) ) -> flow.typing.ListNumpy: return flow.argwhere(x, dtype=out_data_type) return argwhere_fn([x] * device_num)[0] else: func_config.default_logical_view(flow.scope.consistent_view()) @flow.global_function("predict", function_config=func_config) def argwhere_fn( x: flow.typing.Numpy.Placeholder(x.shape, dtype=data_type) ) -> flow.typing.ListNumpy: return flow.argwhere(x, dtype=out_data_type) return argwhere_fn(x)[0] def _compare_with_np( test_case, shape, value_dtype, index_dtype, device_type="gpu", device_num=1, dynamic=False, verbose=False, ): if verbose: print("shape:", shape) print("value_dtype:", value_dtype) print("index_dtype:", index_dtype) print("device_type:", device_type) print("device_num:", device_num) print("dynamic:", dynamic) x = _random_input(shape, value_dtype) y = np.argwhere(x) of_y = _of_argwhere( x, index_dtype, device_type=device_type, device_num=device_num, dynamic=dynamic ) if verbose is True: print("input:", x) print("np result:", y) print("of result:", of_y) test_case.assertTrue(np.array_equal(y, of_y)) def _dynamic_multi_iter_compare( test_case, iter_num, shape, value_dtype, index_dtype, device_type="gpu", verbose=False, ): x = [_random_input(shape, value_dtype) for _ in range(iter_num)] y = [np.argwhere(x_) for x_ in x] data_type = _np_dtype_to_of_dtype(value_dtype) out_data_type = _np_dtype_to_of_dtype(index_dtype) flow.clear_default_session() func_config = flow.FunctionConfig() func_config.default_data_type(data_type) func_config.default_placement_scope(flow.scope.placement(device_type, "0:0")) func_config.default_logical_view(flow.scope.mirrored_view()) @flow.global_function("predict", function_config=func_config) def argwhere_fn( x: flow.typing.Numpy.Placeholder(tuple(shape), dtype=data_type) ) -> flow.typing.ListNumpy: return flow.argwhere(x, dtype=out_data_type) results = [] for x_ in x: y_ = argwhere_fn(x_)[0] results.append(y_) for i, result in enumerate(results): test_case.assertTrue(np.array_equal(result, y[i])) @flow.unittest.skip_unless_1n1d() class TestArgwhere(flow.unittest.TestCase): def test_argwhere(test_case): arg_dict = OrderedDict() arg_dict["shape"] = [(10), (30, 4), (8, 256, 20)] arg_dict["value_dtype"] = [np.float32, np.int32, np.int8] arg_dict["index_dtype"] = [np.int32, np.int64] arg_dict["device_type"] = ["cpu", "gpu"] arg_dict["dynamic"] = [True, False] arg_dict["verbose"] = [False] for arg in GenArgDict(arg_dict): _compare_with_np(test_case, **arg) def test_argwhere_multi_iter(test_case): arg_dict = OrderedDict() arg_dict["iter_num"] = [2] arg_dict["shape"] = [(20, 4)] arg_dict["value_dtype"] = [np.float32, np.int32, np.int8] arg_dict["index_dtype"] = [np.int32, np.int64] arg_dict["device_type"] = ["cpu", "gpu"] arg_dict["verbose"] = [False] for arg in GenArgDict(arg_dict): _dynamic_multi_iter_compare(test_case, **arg) @flow.unittest.skip_unless_1n4d() class TestArgwhere4D(flow.unittest.TestCase): def test_argwhere(test_case): arg_dict = OrderedDict() arg_dict["shape"] = [(10, 5)] arg_dict["value_dtype"] = [np.float32, np.int32, np.int8] arg_dict["index_dtype"] = [np.int32, np.int64] arg_dict["device_type"] = ["cpu", "gpu"] arg_dict["device_num"] = [4] arg_dict["dynamic"] = [True] arg_dict["verbose"] = [False] for arg in GenArgDict(arg_dict): _compare_with_np(test_case, **arg) if __name__ == "__main__": unittest.main()
31.621891
87
0.66394
0f956d6ee6c26c231168507e7127ae034d5d9743
7,834
py
Python
eval_sem.py
arassadin/sgpn
d9bb6e2df0cc255051a7a97950bbb51950642e0c
[ "MIT" ]
1
2020-05-12T15:53:46.000Z
2020-05-12T15:53:46.000Z
eval_sem.py
arassadin/sgpn
d9bb6e2df0cc255051a7a97950bbb51950642e0c
[ "MIT" ]
null
null
null
eval_sem.py
arassadin/sgpn
d9bb6e2df0cc255051a7a97950bbb51950642e0c
[ "MIT" ]
null
null
null
import argparse import tensorflow as tf import numpy as np import os os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152 import sys import torch from utils import pc_util from models import model import torchnet as tnt import scannet_dataset import suncg_dataset from utils import provider BASE_DIR = os.path.dirname(os.path.abspath(__file__)) # need to be changed # 0. input/output folder # 1. filelist # 2. batch size # 3. is_training # 4. '''''' part # 5. loss #---------------------------------------------------------- # set # Parsing Arguments parser = argparse.ArgumentParser() # Experiment Settings parser.add_argument('--gpu', type=str, default="3", help='GPU to use [default: GPU 1]') parser.add_argument('--wd', type=float, default=0.9, help='Weight Decay [Default: 0.0]') parser.add_argument('--epoch', type=int, default=200, help='Number of epochs [default: 50]') parser.add_argument('--pretrain', type=bool, default=True, help='pretrain semantics segmenation') parser.add_argument('--point_num', type=int, default=4096, help='Point Number') parser.add_argument('--group_num', type=int, default=150, help='Maximum Group Number in one pc') parser.add_argument('--cate_num', type=int, default=21, help='Number of categories') parser.add_argument('--margin_same', type=float, default=1., help='Double hinge loss margin: same semantic') parser.add_argument('--margin_diff', type=float, default=2., help='Double hinge loss margin: different semantic') # Input&Output Settings parser.add_argument('--output_dir', type=str, default='checkpoint/scannet_sem_seg2', help='Directory that stores all training logs and trained models') parser.add_argument('--restore_model', type=str, default='checkpoint/scannet_sem_seg2', help='Pretrained model') FLAGS = parser.parse_args() os.environ["CUDA_VISIBLE_DEVICES"] = FLAGS.gpu # dataloader #DATA_ROOT = 'data/scannet_data/annotation' #TEST_DATASET = scannet_dataset.ScannetDatasetWholeScene(root=DATA_ROOT, npoints=FLAGS.point_num, split='data/scannet_data/meta/scannet_test.txt') DATA_ROOT = 'data/suncg_data/annotation' TEST_DATASET = suncg_dataset.SUNCGDatasetWholeScene(root=DATA_ROOT, npoints=FLAGS.point_num, split='data/suncg_data/meta/suncg_test.txt') PRETRAINED_MODEL_PATH = os.path.join(FLAGS.restore_model, 'trained_models/') PRETRAIN = FLAGS.pretrain POINT_NUM = FLAGS.point_num OUTPUT_DIR = FLAGS.output_dir if not os.path.exists(OUTPUT_DIR): os.makedirs(OUTPUT_DIR) NUM_GROUPS = FLAGS.group_num NUM_CATEGORY = FLAGS.cate_num print('#### Point Number: {0}'.format(POINT_NUM)) print('#### Training using GPU: {0}'.format(FLAGS.gpu)) DECAY_STEP = 200000. DECAY_RATE = 0.7 BN_INIT_DECAY = 0.5 BN_DECAY_DECAY_RATE = 0.5 BN_DECAY_DECAY_STEP = float(DECAY_STEP) BN_DECAY_CLIP = 0.99 LEARNING_RATE_CLIP = 1e-5 BASE_LEARNING_RATE = 5e-4 TRAINING_EPOCHES = FLAGS.epoch MARGINS = [FLAGS.margin_same, FLAGS.margin_diff] print('### Training epoch: {0}'.format(TRAINING_EPOCHES)) MODEL_STORAGE_PATH = os.path.join(OUTPUT_DIR, 'trained_models') if not os.path.exists(MODEL_STORAGE_PATH): os.mkdir(MODEL_STORAGE_PATH) LOG_STORAGE_PATH = os.path.join(OUTPUT_DIR, 'logs') if not os.path.exists(LOG_STORAGE_PATH): os.mkdir(LOG_STORAGE_PATH) SUMMARIES_FOLDER = os.path.join(OUTPUT_DIR, 'summaries') if not os.path.exists(SUMMARIES_FOLDER): os.mkdir(SUMMARIES_FOLDER) LOG_DIR = FLAGS.output_dir if not os.path.exists(LOG_DIR): os.mkdir(LOG_DIR) os.system('cp %s %s' % (os.path.join(BASE_DIR, 'models/model.py'), LOG_DIR)) # bkp of model def os.system('cp %s %s' % (os.path.join(BASE_DIR, 'train.py'), LOG_DIR)) # bkp of train procedure def printout(flog, data): print(data) flog.write(data + '\n') def get_test_batch(dataset, i): batch_data = [] batch_label = [] batch_group = [] batch_smpw = [] ps,seg,group,smpw = dataset[i] batch_data.append(ps) batch_label.append(seg) batch_group.append(group) batch_smpw.append(smpw) batch_data = np.concatenate(batch_data, 0) batch_label = np.concatenate(batch_label, 0) batch_group = np.concatenate(batch_group, 0) batch_smpw = np.concatenate(batch_smpw, 0) return batch_data, batch_label, batch_group, batch_smpw def eval(): with tf.Graph().as_default(): with tf.device('/gpu:' + str(FLAGS.gpu)): batch = tf.Variable(0, trainable=False, name='batch') pointclouds_ph, ptsseglabel_ph, ptsseglabel_onehot_ph, ptsgroup_label_ph, pts_seglabel_mask_ph, pts_group_mask_ph, alpha_ph = \ model.placeholder_inputs(1, POINT_NUM, NUM_GROUPS, NUM_CATEGORY) is_training_ph = tf.placeholder(tf.bool, shape=()) labels = {'ptsgroup': ptsgroup_label_ph, 'semseg': ptsseglabel_ph, 'semseg_onehot': ptsseglabel_onehot_ph, 'semseg_mask': pts_seglabel_mask_ph, 'group_mask': pts_group_mask_ph} net_output = model.get_model(pointclouds_ph, is_training_ph, group_cate_num=NUM_CATEGORY, m=MARGINS[0]) ptsseg_loss, simmat_loss, loss, grouperr, same, same_cnt, diff, diff_cnt, pos, pos_cnt = model.get_loss(net_output, labels, alpha_ph, MARGINS) loader = tf.train.Saver([v for v in tf.all_variables()#]) if ('conf_logits' not in v.name) and ('Fsim' not in v.name) and ('Fsconf' not in v.name) and ('batch' not in v.name) ]) saver = tf.train.Saver([v for v in tf.all_variables()], max_to_keep=200) config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True sess = tf.Session(config=config) init = tf.global_variables_initializer() sess.run(init) ckptstate = tf.train.get_checkpoint_state(PRETRAINED_MODEL_PATH) if ckptstate is not None: LOAD_MODEL_FILE = os.path.join(PRETRAINED_MODEL_PATH, os.path.basename(ckptstate.model_checkpoint_path)) loader.restore(sess, LOAD_MODEL_FILE) ## load test data into memory is_training = False for i in range(len(TEST_DATASET)): print('{}/{}'.format(i, len(TEST_DATASET))) cur_data, cur_seg, cur_group, cur_smpw = get_test_batch(TEST_DATASET, i) data_res = [] seg_res = [] for j in range(cur_data.shape[0]): pts_label_one_hot = model.convert_seg_to_one_hot(cur_seg[j:j+1]) feed_dict = { pointclouds_ph: cur_data[j:j+1], ptsseglabel_ph: cur_seg[j:j+1], ptsseglabel_onehot_ph: pts_label_one_hot, pts_seglabel_mask_ph: cur_smpw[j:j+1], is_training_ph: is_training, alpha_ph: min(10., (float(1.0) / 5.) * 2. + 2.), } ptsclassification_val0 = sess.run([net_output['semseg']], feed_dict=feed_dict) ptsclassification_val = torch.from_numpy(ptsclassification_val0[0]).view(-1, NUM_CATEGORY) ptsclassification_gt = torch.from_numpy(pts_label_one_hot).view(-1, NUM_CATEGORY) data_res.append(cur_data[j:j+1]) seg_res.append(np.argmax(ptsclassification_val.numpy(), 1)) write_data = np.reshape(np.concatenate(data_res, 0)[:,:,:3], [-1,3]) write_seg = np.concatenate(seg_res, 0) pc_util.write_ply_res(write_data, write_seg, '{}.ply'.format(TEST_DATASET.get_filename(i))) pc_util.write_obj_color(write_data, write_seg, '{}.obj'.format(TEST_DATASET.get_filename(i))) if __name__ == '__main__': eval()
40.381443
154
0.667347
497c1180223ac2abc2c76c5329403d4a2797380c
229,713
py
Python
cisco-ios-xr/ydk/models/cisco_ios_xr/_meta/_Cisco_IOS_XR_infra_sla_oper.py
tkamata-test/ydk-py
b637e7853a8edbbd31fbc05afa3aa4110b31c5f9
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
cisco-ios-xr/ydk/models/cisco_ios_xr/_meta/_Cisco_IOS_XR_infra_sla_oper.py
tkamata-test/ydk-py
b637e7853a8edbbd31fbc05afa3aa4110b31c5f9
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
cisco-ios-xr/ydk/models/cisco_ios_xr/_meta/_Cisco_IOS_XR_infra_sla_oper.py
tkamata-test/ydk-py
b637e7853a8edbbd31fbc05afa3aa4110b31c5f9
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
import re import collections from enum import Enum from ydk._core._dm_meta_info import _MetaInfoClassMember, _MetaInfoClass, _MetaInfoEnum from ydk.types import Empty, YList, YLeafList, DELETE, Decimal64, FixedBitsDict from ydk._core._dm_meta_info import ATTRIBUTE, REFERENCE_CLASS, REFERENCE_LIST, REFERENCE_LEAFLIST, REFERENCE_IDENTITY_CLASS, REFERENCE_ENUM_CLASS, REFERENCE_BITS, REFERENCE_UNION from ydk.errors import YPYError, YPYModelError from ydk.providers._importer import _yang_ns _meta_table = { 'Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.SpecificOptions.ConfiguredOperationOptions' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.SpecificOptions.ConfiguredOperationOptions', False, [ _MetaInfoClassMember('profile-name', ATTRIBUTE, 'str' , None, None, [], [], ''' Name of the profile used by the operation ''', 'profile_name', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'configured-operation-options', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.SpecificOptions.OndemandOperationOptions' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.SpecificOptions.OndemandOperationOptions', False, [ _MetaInfoClassMember('ondemand-operation-id', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' ID of the ondemand operation ''', 'ondemand_operation_id', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('probe-count', ATTRIBUTE, 'int' , None, None, [('0', '255')], [], ''' Total number of probes sent during the operation ''', 'probe_count', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'ondemand-operation-options', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.SpecificOptions' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.SpecificOptions', False, [ _MetaInfoClassMember('configured-operation-options', REFERENCE_CLASS, 'ConfiguredOperationOptions' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.SpecificOptions.ConfiguredOperationOptions', [], [], ''' Parameters for a configured operation ''', 'configured_operation_options', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('ondemand-operation-options', REFERENCE_CLASS, 'OndemandOperationOptions' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.SpecificOptions.OndemandOperationOptions', [], [], ''' Parameters for an ondemand operation ''', 'ondemand_operation_options', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('oper-type', REFERENCE_ENUM_CLASS, 'SlaOperOperationEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ethernet_cfm_oper', 'SlaOperOperationEnum', [], [], ''' OperType ''', 'oper_type', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'specific-options', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationSchedule' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationSchedule', False, [ _MetaInfoClassMember('schedule-duration', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Duration of a probe for the operation in seconds ''', 'schedule_duration', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('schedule-interval', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Interval between the start times of consecutive probes, in seconds. ''', 'schedule_interval', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('start-time', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Start time of the first probe, in seconds since the Unix Epoch ''', 'start_time', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('start-time-configured', ATTRIBUTE, 'bool' , None, None, [], [], ''' Whether or not the operation start time was explicitly configured ''', 'start_time_configured', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'operation-schedule', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric.Config' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric.Config', False, [ _MetaInfoClassMember('bins-count', ATTRIBUTE, 'int' , None, None, [('0', '65535')], [], ''' Total number of bins into which to aggregate. 0 if no aggregation. ''', 'bins_count', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('bins-width', ATTRIBUTE, 'int' , None, None, [('0', '65535')], [], ''' Width of each bin into which to aggregate. 0 if no aggregation. For SLM, the units of this value are in single units of percent; for LMM they are in tenths of percent; for other measurements they are in milliseconds. ''', 'bins_width', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('bucket-size', ATTRIBUTE, 'int' , None, None, [('0', '255')], [], ''' Size of buckets into which measurements are collected ''', 'bucket_size', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('bucket-size-unit', REFERENCE_ENUM_CLASS, 'SlaBucketSizeEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ethernet_cfm_oper', 'SlaBucketSizeEnum', [], [], ''' Whether bucket size is 'per-probe' or 'probes' ''', 'bucket_size_unit', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('buckets-archive', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Maximum number of buckets to store in memory ''', 'buckets_archive', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('metric-type', REFERENCE_ENUM_CLASS, 'SlaRecordableMetricEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ethernet_cfm_oper', 'SlaRecordableMetricEnum', [], [], ''' Type of metric to which this configuration applies ''', 'metric_type', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'config', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric.Bucket.Contents.Aggregated.Bins' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric.Bucket.Contents.Aggregated.Bins', False, [ _MetaInfoClassMember('count', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' The total number of results in the bin ''', 'count', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('lower-bound', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Lower bound (inclusive) of the bin, in milliseconds or single units of percent. This field is not used for LMM measurements ''', 'lower_bound', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('lower-bound-tenths', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Lower bound (inclusive) of the bin, in tenths of percent. This field is only used for LMM measurements ''', 'lower_bound_tenths', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('sum', ATTRIBUTE, 'int' , None, None, [('-9223372036854775808', '9223372036854775807')], [], ''' The sum of the results in the bin, in microseconds or millionths of a percent ''', 'sum', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('upper-bound', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Upper bound (exclusive) of the bin, in milliseconds or single units of percent. This field is not used for LMM measurements ''', 'upper_bound', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('upper-bound-tenths', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Upper bound (exclusive) of the bin, in tenths of percent. This field is only used for LMM measurements ''', 'upper_bound_tenths', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'bins', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric.Bucket.Contents.Aggregated' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric.Bucket.Contents.Aggregated', False, [ _MetaInfoClassMember('bins', REFERENCE_LIST, 'Bins' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric.Bucket.Contents.Aggregated.Bins', [], [], ''' The bins of an SLA metric bucket ''', 'bins', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'aggregated', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric.Bucket.Contents.Unaggregated.Sample' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric.Bucket.Contents.Unaggregated.Sample', False, [ _MetaInfoClassMember('corrupt', ATTRIBUTE, 'bool' , None, None, [], [], ''' Whether the sample packet was corrupt ''', 'corrupt', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('frames-lost', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' For FLR measurements, the number of frames lost, if available ''', 'frames_lost', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('frames-sent', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' For FLR measurements, the number of frames sent, if available ''', 'frames_sent', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('no-data-packets', ATTRIBUTE, 'bool' , None, None, [], [], ''' Whether a measurement could not be made because no data packets were sent in the sample period. Only applicable for LMM measurements ''', 'no_data_packets', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('out-of-order', ATTRIBUTE, 'bool' , None, None, [], [], ''' Whether the sample packet was received out-of-order ''', 'out_of_order', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('result', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' The result (in microseconds or millionths of a percent) of the sample, if available ''', 'result', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('sent', ATTRIBUTE, 'bool' , None, None, [], [], ''' Whether the sample packet was sucessfully sent ''', 'sent', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('sent-at', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' The time (in milliseconds relative to the start time of the bucket) that the sample was sent at ''', 'sent_at', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('timed-out', ATTRIBUTE, 'bool' , None, None, [], [], ''' Whether the sample packet timed out ''', 'timed_out', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'sample', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric.Bucket.Contents.Unaggregated' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric.Bucket.Contents.Unaggregated', False, [ _MetaInfoClassMember('sample', REFERENCE_LIST, 'Sample' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric.Bucket.Contents.Unaggregated.Sample', [], [], ''' The samples of an SLA metric bucket ''', 'sample', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'unaggregated', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric.Bucket.Contents' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric.Bucket.Contents', False, [ _MetaInfoClassMember('aggregated', REFERENCE_CLASS, 'Aggregated' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric.Bucket.Contents.Aggregated', [], [], ''' Result bins in an SLA metric bucket ''', 'aggregated', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('bucket-type', REFERENCE_ENUM_CLASS, 'SlaOperBucketEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ethernet_cfm_oper', 'SlaOperBucketEnum', [], [], ''' BucketType ''', 'bucket_type', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('unaggregated', REFERENCE_CLASS, 'Unaggregated' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric.Bucket.Contents.Unaggregated', [], [], ''' Result samples in an SLA metric bucket ''', 'unaggregated', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'contents', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric.Bucket' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric.Bucket', False, [ _MetaInfoClassMember('average', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Mean of the results in the probe, in microseconds or millionths of a percent ''', 'average', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('contents', REFERENCE_CLASS, 'Contents' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric.Bucket.Contents', [], [], ''' The contents of the bucket; bins or samples ''', 'contents', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('corrupt', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of corrupt packets in the probe ''', 'corrupt', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('data-lost-count', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' The number of data packets lost across the bucket, used in the calculation of overall FLR. ''', 'data_lost_count', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('data-sent-count', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' The number of data packets sent across the bucket, used in the calculation of overall FLR. ''', 'data_sent_count', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('duplicates', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of duplicate packets received in the probe ''', 'duplicates', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('duration', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Length of time for which the bucket is being filled in seconds ''', 'duration', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('lost', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of lost packets in the probe ''', 'lost', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('maximum', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Overall minimum result in the probe, in microseconds or millionths of a percent ''', 'maximum', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('minimum', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Overall minimum result in the probe, in microseconds or millionths of a percent ''', 'minimum', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('out-of-order', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of packets recieved out-of-order in the probe ''', 'out_of_order', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('overall-flr', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Frame Loss Ratio across the whole bucket, in millionths of a percent ''', 'overall_flr', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('premature-reason', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' If the probe ended prematurely, the error that caused a probe to end ''', 'premature_reason', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('premature-reason-string', ATTRIBUTE, 'str' , None, None, [], [], ''' Description of the error code that caused the probe to end prematurely. For informational purposes only ''', 'premature_reason_string', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('result-count', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' The count of samples collected in the bucket. ''', 'result_count', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('sent', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of packets sent in the probe ''', 'sent', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('standard-deviation', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Standard deviation of the results in the probe, in microseconds or millionths of a percent ''', 'standard_deviation', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('start-at', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Absolute time that the bucket started being filled at ''', 'start_at', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-cleared-mid-bucket', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect as bucket was cleared mid-way through being filled ''', 'suspect_cleared_mid_bucket', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-clock-drift', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect as more than 10 seconds time drift detected ''', 'suspect_clock_drift', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-flr-low-packet-count', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect as FLR calculated based on a low packet count ''', 'suspect_flr_low_packet_count', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-management-latency', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect as processing of results has been delayed ''', 'suspect_management_latency', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-memory-allocation-failed', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect due to a memory allocation failure ''', 'suspect_memory_allocation_failed', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-misordering', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect as misordering has been detected , affecting results ''', 'suspect_misordering', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-multiple-buckets', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect as the probe has been configured across multiple buckets ''', 'suspect_multiple_buckets', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-premature-end', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect due to a probe ending prematurely ''', 'suspect_premature_end', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-probe-restarted', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect as probe restarted mid-way through the bucket ''', 'suspect_probe_restarted', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-schedule-latency', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect due to scheduling latency causing one or more packets to not be sent ''', 'suspect_schedule_latency', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-send-fail', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect due to failure to send one or more packets ''', 'suspect_send_fail', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-start-mid-bucket', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect due to a probe starting mid-way through a bucket ''', 'suspect_start_mid_bucket', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('time-of-maximum', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Absolute time that the maximum value was recorded ''', 'time_of_maximum', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('time-of-minimum', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Absolute time that the minimum value was recorded ''', 'time_of_minimum', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'bucket', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric', False, [ _MetaInfoClassMember('bucket', REFERENCE_LIST, 'Bucket' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric.Bucket', [], [], ''' Buckets stored for the metric ''', 'bucket', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('config', REFERENCE_CLASS, 'Config' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric.Config', [], [], ''' Configuration of the metric ''', 'config', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'operation-metric', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent', False, [ _MetaInfoClassMember('display-long', ATTRIBUTE, 'str' , None, None, [], [], ''' Long display name used by the operation ''', 'display_long', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('display-short', ATTRIBUTE, 'str' , None, None, [], [], ''' Short display name used by the operation ''', 'display_short', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('domain-name', ATTRIBUTE, 'str' , None, None, [], [], ''' Domain name ''', 'domain_name', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('flr-calculation-interval', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Interval between FLR calculations for SLM, in milliseconds ''', 'flr_calculation_interval', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('interface-name', ATTRIBUTE, 'str' , None, None, [], ['(([a-zA-Z0-9_]*\\d+/){3,4}\\d+)|(([a-zA-Z0-9_]*\\d+/){3,4}\\d+\\.\\d+)|(([a-zA-Z0-9_]*\\d+/){2}([a-zA-Z0-9_]*\\d+))|(([a-zA-Z0-9_]*\\d+/){2}([a-zA-Z0-9_]+))|([a-zA-Z0-9_-]*\\d+)|([a-zA-Z0-9_-]*\\d+\\.\\d+)|(mpls)|(dwdm)'], ''' Interface name ''', 'interface_name', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('mac-address', ATTRIBUTE, 'str' , None, None, [], ['[0-9a-fA-F]{2}(:[0-9a-fA-F]{2}){5}'], ''' Unicast MAC Address in xxxx.xxxx.xxxx format. Either MEP ID or MAC address must be specified. ''', 'mac_address', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('mep-id', ATTRIBUTE, 'int' , None, None, [('1', '8191')], [], ''' MEP ID in the range 1 to 8191. Either MEP ID or MAC address must be specified. ''', 'mep_id', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('operation-id', ATTRIBUTE, 'int' , None, None, [('1', '4294967295')], [], ''' Operation ID ''', 'operation_id', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('operation-metric', REFERENCE_LIST, 'OperationMetric' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric', [], [], ''' Metrics gathered for the operation ''', 'operation_metric', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('operation-schedule', REFERENCE_CLASS, 'OperationSchedule' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationSchedule', [], [], ''' Operation schedule ''', 'operation_schedule', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('probe-type', ATTRIBUTE, 'str' , None, None, [], [], ''' Type of probe used by the operation ''', 'probe_type', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('specific-options', REFERENCE_CLASS, 'SpecificOptions' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.SpecificOptions', [], [], ''' Options specific to the type of operation ''', 'specific_options', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'statistics-on-demand-current', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsOnDemandCurrents' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsOnDemandCurrents', False, [ _MetaInfoClassMember('statistics-on-demand-current', REFERENCE_LIST, 'StatisticsOnDemandCurrent' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent', [], [], ''' Current statistics data for an SLA on-demand operation ''', 'statistics_on_demand_current', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'statistics-on-demand-currents', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.Operations.Operation.ProfileOptions.PacketPadding' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.Operations.Operation.ProfileOptions.PacketPadding', False, [ _MetaInfoClassMember('packet-pad-size', ATTRIBUTE, 'int' , None, None, [('0', '65535')], [], ''' Size that packets are being padded to ''', 'packet_pad_size', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('test-pattern-pad-hex-string', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Hex string that is used in the packet padding ''', 'test_pattern_pad_hex_string', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('test-pattern-pad-scheme', REFERENCE_ENUM_CLASS, 'SlaOperTestPatternSchemeEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ethernet_cfm_oper', 'SlaOperTestPatternSchemeEnum', [], [], ''' Test pattern scheme that is used in the packet padding ''', 'test_pattern_pad_scheme', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'packet-padding', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.Operations.Operation.ProfileOptions.Priority' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.Operations.Operation.ProfileOptions.Priority', False, [ _MetaInfoClassMember('cos', ATTRIBUTE, 'int' , None, None, [('0', '255')], [], ''' 3-bit COS priority value applied to packets ''', 'cos', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('priority-type', REFERENCE_ENUM_CLASS, 'SlaOperPacketPriorityEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ethernet_cfm_oper', 'SlaOperPacketPriorityEnum', [], [], ''' PriorityType ''', 'priority_type', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'priority', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.Operations.Operation.ProfileOptions.OperationSchedule' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.Operations.Operation.ProfileOptions.OperationSchedule', False, [ _MetaInfoClassMember('schedule-duration', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Duration of a probe for the operation in seconds ''', 'schedule_duration', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('schedule-interval', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Interval between the start times of consecutive probes, in seconds. ''', 'schedule_interval', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('start-time', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Start time of the first probe, in seconds since the Unix Epoch ''', 'start_time', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('start-time-configured', ATTRIBUTE, 'bool' , None, None, [], [], ''' Whether or not the operation start time was explicitly configured ''', 'start_time_configured', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'operation-schedule', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.Operations.Operation.ProfileOptions.OperationMetric.MetricConfig' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.Operations.Operation.ProfileOptions.OperationMetric.MetricConfig', False, [ _MetaInfoClassMember('bins-count', ATTRIBUTE, 'int' , None, None, [('0', '65535')], [], ''' Total number of bins into which to aggregate. 0 if no aggregation. ''', 'bins_count', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('bins-width', ATTRIBUTE, 'int' , None, None, [('0', '65535')], [], ''' Width of each bin into which to aggregate. 0 if no aggregation. For SLM, the units of this value are in single units of percent; for LMM they are in tenths of percent; for other measurements they are in milliseconds. ''', 'bins_width', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('bucket-size', ATTRIBUTE, 'int' , None, None, [('0', '255')], [], ''' Size of buckets into which measurements are collected ''', 'bucket_size', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('bucket-size-unit', REFERENCE_ENUM_CLASS, 'SlaBucketSizeEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ethernet_cfm_oper', 'SlaBucketSizeEnum', [], [], ''' Whether bucket size is 'per-probe' or 'probes' ''', 'bucket_size_unit', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('buckets-archive', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Maximum number of buckets to store in memory ''', 'buckets_archive', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('metric-type', REFERENCE_ENUM_CLASS, 'SlaRecordableMetricEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ethernet_cfm_oper', 'SlaRecordableMetricEnum', [], [], ''' Type of metric to which this configuration applies ''', 'metric_type', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'metric-config', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.Operations.Operation.ProfileOptions.OperationMetric' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.Operations.Operation.ProfileOptions.OperationMetric', False, [ _MetaInfoClassMember('current-buckets-archive', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of valid buckets currently in the buckets archive ''', 'current_buckets_archive', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('metric-config', REFERENCE_CLASS, 'MetricConfig' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.Operations.Operation.ProfileOptions.OperationMetric.MetricConfig', [], [], ''' Configuration of the metric ''', 'metric_config', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'operation-metric', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.Operations.Operation.ProfileOptions' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.Operations.Operation.ProfileOptions', False, [ _MetaInfoClassMember('bursts-per-probe', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of bursts sent per probe ''', 'bursts_per_probe', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('flr-calculation-interval', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Interval between FLR calculations for SLM, in milliseconds ''', 'flr_calculation_interval', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('inter-burst-interval', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Interval between bursts within a probe in milliseconds ''', 'inter_burst_interval', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('inter-packet-interval', ATTRIBUTE, 'int' , None, None, [('0', '65535')], [], ''' Interval between packets within a burst in milliseconds ''', 'inter_packet_interval', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('operation-metric', REFERENCE_LIST, 'OperationMetric' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.Operations.Operation.ProfileOptions.OperationMetric', [], [], ''' Array of the metrics that are measured by the operation ''', 'operation_metric', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('operation-schedule', REFERENCE_CLASS, 'OperationSchedule' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.Operations.Operation.ProfileOptions.OperationSchedule', [], [], ''' Operation schedule ''', 'operation_schedule', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('packet-padding', REFERENCE_CLASS, 'PacketPadding' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.Operations.Operation.ProfileOptions.PacketPadding', [], [], ''' Configuration of the packet padding ''', 'packet_padding', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('packets-per-burst', ATTRIBUTE, 'int' , None, None, [('0', '65535')], [], ''' Number of packets sent per burst ''', 'packets_per_burst', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('priority', REFERENCE_CLASS, 'Priority' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.Operations.Operation.ProfileOptions.Priority', [], [], ''' Priority at which to send the packet, if configured ''', 'priority', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('probe-type', ATTRIBUTE, 'str' , None, None, [], [], ''' Type of probe used by the operation ''', 'probe_type', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'profile-options', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.Operations.Operation.SpecificOptions.ConfiguredOperationOptions' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.Operations.Operation.SpecificOptions.ConfiguredOperationOptions', False, [ _MetaInfoClassMember('profile-name', ATTRIBUTE, 'str' , None, None, [], [], ''' Name of the profile used by the operation ''', 'profile_name', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'configured-operation-options', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.Operations.Operation.SpecificOptions.OndemandOperationOptions' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.Operations.Operation.SpecificOptions.OndemandOperationOptions', False, [ _MetaInfoClassMember('ondemand-operation-id', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' ID of the ondemand operation ''', 'ondemand_operation_id', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('probe-count', ATTRIBUTE, 'int' , None, None, [('0', '255')], [], ''' Total number of probes sent during the operation ''', 'probe_count', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'ondemand-operation-options', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.Operations.Operation.SpecificOptions' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.Operations.Operation.SpecificOptions', False, [ _MetaInfoClassMember('configured-operation-options', REFERENCE_CLASS, 'ConfiguredOperationOptions' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.Operations.Operation.SpecificOptions.ConfiguredOperationOptions', [], [], ''' Parameters for a configured operation ''', 'configured_operation_options', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('ondemand-operation-options', REFERENCE_CLASS, 'OndemandOperationOptions' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.Operations.Operation.SpecificOptions.OndemandOperationOptions', [], [], ''' Parameters for an ondemand operation ''', 'ondemand_operation_options', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('oper-type', REFERENCE_ENUM_CLASS, 'SlaOperOperationEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ethernet_cfm_oper', 'SlaOperOperationEnum', [], [], ''' OperType ''', 'oper_type', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'specific-options', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.Operations.Operation' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.Operations.Operation', False, [ _MetaInfoClassMember('display-long', ATTRIBUTE, 'str' , None, None, [], [], ''' Long display name used by the operation ''', 'display_long', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('display-short', ATTRIBUTE, 'str' , None, None, [], [], ''' Short display name used by the operation ''', 'display_short', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('domain-name', ATTRIBUTE, 'str' , None, None, [], [], ''' Domain name ''', 'domain_name', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('interface-name', ATTRIBUTE, 'str' , None, None, [], ['(([a-zA-Z0-9_]*\\d+/){3,4}\\d+)|(([a-zA-Z0-9_]*\\d+/){3,4}\\d+\\.\\d+)|(([a-zA-Z0-9_]*\\d+/){2}([a-zA-Z0-9_]*\\d+))|(([a-zA-Z0-9_]*\\d+/){2}([a-zA-Z0-9_]+))|([a-zA-Z0-9_-]*\\d+)|([a-zA-Z0-9_-]*\\d+\\.\\d+)|(mpls)|(dwdm)'], ''' Interface name ''', 'interface_name', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('last-run', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Time that the last probe for the operation was run, NULL if never run. ''', 'last_run', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('mac-address', ATTRIBUTE, 'str' , None, None, [], ['[0-9a-fA-F]{2}(:[0-9a-fA-F]{2}){5}'], ''' Unicast MAC Address in xxxx.xxxx.xxxx format. Either MEP ID or MAC address must be specified. ''', 'mac_address', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('mep-id', ATTRIBUTE, 'int' , None, None, [('1', '8191')], [], ''' MEP ID in the range 1 to 8191. Either MEP ID or MAC address must be specified. ''', 'mep_id', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('profile-name', ATTRIBUTE, 'str' , None, None, [], ['[\\w\\-\\.:,_@#%$\\+=\\|;]+'], ''' Profile Name ''', 'profile_name', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('profile-options', REFERENCE_CLASS, 'ProfileOptions' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.Operations.Operation.ProfileOptions', [], [], ''' Options that are only valid if the operation has a profile ''', 'profile_options', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('specific-options', REFERENCE_CLASS, 'SpecificOptions' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.Operations.Operation.SpecificOptions', [], [], ''' Options specific to the type of operation ''', 'specific_options', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'operation', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.Operations' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.Operations', False, [ _MetaInfoClassMember('operation', REFERENCE_LIST, 'Operation' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.Operations.Operation', [], [], ''' SLA operation to get operation data for ''', 'operation', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'operations', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.SpecificOptions.ConfiguredOperationOptions' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.SpecificOptions.ConfiguredOperationOptions', False, [ _MetaInfoClassMember('profile-name', ATTRIBUTE, 'str' , None, None, [], [], ''' Name of the profile used by the operation ''', 'profile_name', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'configured-operation-options', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.SpecificOptions.OndemandOperationOptions' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.SpecificOptions.OndemandOperationOptions', False, [ _MetaInfoClassMember('ondemand-operation-id', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' ID of the ondemand operation ''', 'ondemand_operation_id', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('probe-count', ATTRIBUTE, 'int' , None, None, [('0', '255')], [], ''' Total number of probes sent during the operation ''', 'probe_count', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'ondemand-operation-options', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.SpecificOptions' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.SpecificOptions', False, [ _MetaInfoClassMember('configured-operation-options', REFERENCE_CLASS, 'ConfiguredOperationOptions' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.SpecificOptions.ConfiguredOperationOptions', [], [], ''' Parameters for a configured operation ''', 'configured_operation_options', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('ondemand-operation-options', REFERENCE_CLASS, 'OndemandOperationOptions' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.SpecificOptions.OndemandOperationOptions', [], [], ''' Parameters for an ondemand operation ''', 'ondemand_operation_options', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('oper-type', REFERENCE_ENUM_CLASS, 'SlaOperOperationEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ethernet_cfm_oper', 'SlaOperOperationEnum', [], [], ''' OperType ''', 'oper_type', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'specific-options', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationSchedule' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationSchedule', False, [ _MetaInfoClassMember('schedule-duration', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Duration of a probe for the operation in seconds ''', 'schedule_duration', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('schedule-interval', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Interval between the start times of consecutive probes, in seconds. ''', 'schedule_interval', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('start-time', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Start time of the first probe, in seconds since the Unix Epoch ''', 'start_time', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('start-time-configured', ATTRIBUTE, 'bool' , None, None, [], [], ''' Whether or not the operation start time was explicitly configured ''', 'start_time_configured', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'operation-schedule', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric.Config' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric.Config', False, [ _MetaInfoClassMember('bins-count', ATTRIBUTE, 'int' , None, None, [('0', '65535')], [], ''' Total number of bins into which to aggregate. 0 if no aggregation. ''', 'bins_count', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('bins-width', ATTRIBUTE, 'int' , None, None, [('0', '65535')], [], ''' Width of each bin into which to aggregate. 0 if no aggregation. For SLM, the units of this value are in single units of percent; for LMM they are in tenths of percent; for other measurements they are in milliseconds. ''', 'bins_width', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('bucket-size', ATTRIBUTE, 'int' , None, None, [('0', '255')], [], ''' Size of buckets into which measurements are collected ''', 'bucket_size', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('bucket-size-unit', REFERENCE_ENUM_CLASS, 'SlaBucketSizeEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ethernet_cfm_oper', 'SlaBucketSizeEnum', [], [], ''' Whether bucket size is 'per-probe' or 'probes' ''', 'bucket_size_unit', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('buckets-archive', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Maximum number of buckets to store in memory ''', 'buckets_archive', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('metric-type', REFERENCE_ENUM_CLASS, 'SlaRecordableMetricEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ethernet_cfm_oper', 'SlaRecordableMetricEnum', [], [], ''' Type of metric to which this configuration applies ''', 'metric_type', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'config', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric.Bucket.Contents.Aggregated.Bins' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric.Bucket.Contents.Aggregated.Bins', False, [ _MetaInfoClassMember('count', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' The total number of results in the bin ''', 'count', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('lower-bound', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Lower bound (inclusive) of the bin, in milliseconds or single units of percent. This field is not used for LMM measurements ''', 'lower_bound', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('lower-bound-tenths', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Lower bound (inclusive) of the bin, in tenths of percent. This field is only used for LMM measurements ''', 'lower_bound_tenths', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('sum', ATTRIBUTE, 'int' , None, None, [('-9223372036854775808', '9223372036854775807')], [], ''' The sum of the results in the bin, in microseconds or millionths of a percent ''', 'sum', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('upper-bound', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Upper bound (exclusive) of the bin, in milliseconds or single units of percent. This field is not used for LMM measurements ''', 'upper_bound', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('upper-bound-tenths', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Upper bound (exclusive) of the bin, in tenths of percent. This field is only used for LMM measurements ''', 'upper_bound_tenths', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'bins', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric.Bucket.Contents.Aggregated' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric.Bucket.Contents.Aggregated', False, [ _MetaInfoClassMember('bins', REFERENCE_LIST, 'Bins' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric.Bucket.Contents.Aggregated.Bins', [], [], ''' The bins of an SLA metric bucket ''', 'bins', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'aggregated', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric.Bucket.Contents.Unaggregated.Sample' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric.Bucket.Contents.Unaggregated.Sample', False, [ _MetaInfoClassMember('corrupt', ATTRIBUTE, 'bool' , None, None, [], [], ''' Whether the sample packet was corrupt ''', 'corrupt', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('frames-lost', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' For FLR measurements, the number of frames lost, if available ''', 'frames_lost', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('frames-sent', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' For FLR measurements, the number of frames sent, if available ''', 'frames_sent', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('no-data-packets', ATTRIBUTE, 'bool' , None, None, [], [], ''' Whether a measurement could not be made because no data packets were sent in the sample period. Only applicable for LMM measurements ''', 'no_data_packets', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('out-of-order', ATTRIBUTE, 'bool' , None, None, [], [], ''' Whether the sample packet was received out-of-order ''', 'out_of_order', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('result', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' The result (in microseconds or millionths of a percent) of the sample, if available ''', 'result', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('sent', ATTRIBUTE, 'bool' , None, None, [], [], ''' Whether the sample packet was sucessfully sent ''', 'sent', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('sent-at', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' The time (in milliseconds relative to the start time of the bucket) that the sample was sent at ''', 'sent_at', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('timed-out', ATTRIBUTE, 'bool' , None, None, [], [], ''' Whether the sample packet timed out ''', 'timed_out', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'sample', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric.Bucket.Contents.Unaggregated' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric.Bucket.Contents.Unaggregated', False, [ _MetaInfoClassMember('sample', REFERENCE_LIST, 'Sample' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric.Bucket.Contents.Unaggregated.Sample', [], [], ''' The samples of an SLA metric bucket ''', 'sample', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'unaggregated', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric.Bucket.Contents' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric.Bucket.Contents', False, [ _MetaInfoClassMember('aggregated', REFERENCE_CLASS, 'Aggregated' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric.Bucket.Contents.Aggregated', [], [], ''' Result bins in an SLA metric bucket ''', 'aggregated', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('bucket-type', REFERENCE_ENUM_CLASS, 'SlaOperBucketEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ethernet_cfm_oper', 'SlaOperBucketEnum', [], [], ''' BucketType ''', 'bucket_type', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('unaggregated', REFERENCE_CLASS, 'Unaggregated' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric.Bucket.Contents.Unaggregated', [], [], ''' Result samples in an SLA metric bucket ''', 'unaggregated', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'contents', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric.Bucket' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric.Bucket', False, [ _MetaInfoClassMember('average', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Mean of the results in the probe, in microseconds or millionths of a percent ''', 'average', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('contents', REFERENCE_CLASS, 'Contents' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric.Bucket.Contents', [], [], ''' The contents of the bucket; bins or samples ''', 'contents', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('corrupt', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of corrupt packets in the probe ''', 'corrupt', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('data-lost-count', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' The number of data packets lost across the bucket, used in the calculation of overall FLR. ''', 'data_lost_count', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('data-sent-count', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' The number of data packets sent across the bucket, used in the calculation of overall FLR. ''', 'data_sent_count', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('duplicates', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of duplicate packets received in the probe ''', 'duplicates', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('duration', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Length of time for which the bucket is being filled in seconds ''', 'duration', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('lost', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of lost packets in the probe ''', 'lost', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('maximum', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Overall minimum result in the probe, in microseconds or millionths of a percent ''', 'maximum', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('minimum', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Overall minimum result in the probe, in microseconds or millionths of a percent ''', 'minimum', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('out-of-order', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of packets recieved out-of-order in the probe ''', 'out_of_order', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('overall-flr', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Frame Loss Ratio across the whole bucket, in millionths of a percent ''', 'overall_flr', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('premature-reason', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' If the probe ended prematurely, the error that caused a probe to end ''', 'premature_reason', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('premature-reason-string', ATTRIBUTE, 'str' , None, None, [], [], ''' Description of the error code that caused the probe to end prematurely. For informational purposes only ''', 'premature_reason_string', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('result-count', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' The count of samples collected in the bucket. ''', 'result_count', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('sent', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of packets sent in the probe ''', 'sent', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('standard-deviation', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Standard deviation of the results in the probe, in microseconds or millionths of a percent ''', 'standard_deviation', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('start-at', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Absolute time that the bucket started being filled at ''', 'start_at', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-cleared-mid-bucket', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect as bucket was cleared mid-way through being filled ''', 'suspect_cleared_mid_bucket', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-clock-drift', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect as more than 10 seconds time drift detected ''', 'suspect_clock_drift', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-flr-low-packet-count', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect as FLR calculated based on a low packet count ''', 'suspect_flr_low_packet_count', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-management-latency', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect as processing of results has been delayed ''', 'suspect_management_latency', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-memory-allocation-failed', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect due to a memory allocation failure ''', 'suspect_memory_allocation_failed', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-misordering', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect as misordering has been detected , affecting results ''', 'suspect_misordering', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-multiple-buckets', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect as the probe has been configured across multiple buckets ''', 'suspect_multiple_buckets', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-premature-end', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect due to a probe ending prematurely ''', 'suspect_premature_end', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-probe-restarted', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect as probe restarted mid-way through the bucket ''', 'suspect_probe_restarted', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-schedule-latency', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect due to scheduling latency causing one or more packets to not be sent ''', 'suspect_schedule_latency', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-send-fail', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect due to failure to send one or more packets ''', 'suspect_send_fail', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-start-mid-bucket', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect due to a probe starting mid-way through a bucket ''', 'suspect_start_mid_bucket', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('time-of-maximum', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Absolute time that the maximum value was recorded ''', 'time_of_maximum', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('time-of-minimum', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Absolute time that the minimum value was recorded ''', 'time_of_minimum', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'bucket', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric', False, [ _MetaInfoClassMember('bucket', REFERENCE_LIST, 'Bucket' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric.Bucket', [], [], ''' Buckets stored for the metric ''', 'bucket', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('config', REFERENCE_CLASS, 'Config' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric.Config', [], [], ''' Configuration of the metric ''', 'config', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'operation-metric', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical', False, [ _MetaInfoClassMember('display-long', ATTRIBUTE, 'str' , None, None, [], [], ''' Long display name used by the operation ''', 'display_long', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('display-short', ATTRIBUTE, 'str' , None, None, [], [], ''' Short display name used by the operation ''', 'display_short', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('domain-name', ATTRIBUTE, 'str' , None, None, [], [], ''' Domain name ''', 'domain_name', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('flr-calculation-interval', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Interval between FLR calculations for SLM, in milliseconds ''', 'flr_calculation_interval', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('interface-name', ATTRIBUTE, 'str' , None, None, [], ['(([a-zA-Z0-9_]*\\d+/){3,4}\\d+)|(([a-zA-Z0-9_]*\\d+/){3,4}\\d+\\.\\d+)|(([a-zA-Z0-9_]*\\d+/){2}([a-zA-Z0-9_]*\\d+))|(([a-zA-Z0-9_]*\\d+/){2}([a-zA-Z0-9_]+))|([a-zA-Z0-9_-]*\\d+)|([a-zA-Z0-9_-]*\\d+\\.\\d+)|(mpls)|(dwdm)'], ''' Interface name ''', 'interface_name', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('mac-address', ATTRIBUTE, 'str' , None, None, [], ['[0-9a-fA-F]{2}(:[0-9a-fA-F]{2}){5}'], ''' Unicast MAC Address in xxxx.xxxx.xxxx format. Either MEP ID or MAC address must be specified. ''', 'mac_address', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('mep-id', ATTRIBUTE, 'int' , None, None, [('1', '8191')], [], ''' MEP ID in the range 1 to 8191. Either MEP ID or MAC address must be specified. ''', 'mep_id', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('operation-metric', REFERENCE_LIST, 'OperationMetric' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric', [], [], ''' Metrics gathered for the operation ''', 'operation_metric', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('operation-schedule', REFERENCE_CLASS, 'OperationSchedule' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationSchedule', [], [], ''' Operation schedule ''', 'operation_schedule', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('probe-type', ATTRIBUTE, 'str' , None, None, [], [], ''' Type of probe used by the operation ''', 'probe_type', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('profile-name', ATTRIBUTE, 'str' , None, None, [], ['[\\w\\-\\.:,_@#%$\\+=\\|;]+'], ''' Profile Name ''', 'profile_name', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('specific-options', REFERENCE_CLASS, 'SpecificOptions' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.SpecificOptions', [], [], ''' Options specific to the type of operation ''', 'specific_options', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'statistics-historical', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsHistoricals' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsHistoricals', False, [ _MetaInfoClassMember('statistics-historical', REFERENCE_LIST, 'StatisticsHistorical' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical', [], [], ''' Historical statistics data for an SLA configured operation ''', 'statistics_historical', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'statistics-historicals', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.SpecificOptions.ConfiguredOperationOptions' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.SpecificOptions.ConfiguredOperationOptions', False, [ _MetaInfoClassMember('profile-name', ATTRIBUTE, 'str' , None, None, [], [], ''' Name of the profile used by the operation ''', 'profile_name', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'configured-operation-options', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.SpecificOptions.OndemandOperationOptions' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.SpecificOptions.OndemandOperationOptions', False, [ _MetaInfoClassMember('ondemand-operation-id', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' ID of the ondemand operation ''', 'ondemand_operation_id', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('probe-count', ATTRIBUTE, 'int' , None, None, [('0', '255')], [], ''' Total number of probes sent during the operation ''', 'probe_count', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'ondemand-operation-options', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.SpecificOptions' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.SpecificOptions', False, [ _MetaInfoClassMember('configured-operation-options', REFERENCE_CLASS, 'ConfiguredOperationOptions' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.SpecificOptions.ConfiguredOperationOptions', [], [], ''' Parameters for a configured operation ''', 'configured_operation_options', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('ondemand-operation-options', REFERENCE_CLASS, 'OndemandOperationOptions' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.SpecificOptions.OndemandOperationOptions', [], [], ''' Parameters for an ondemand operation ''', 'ondemand_operation_options', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('oper-type', REFERENCE_ENUM_CLASS, 'SlaOperOperationEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ethernet_cfm_oper', 'SlaOperOperationEnum', [], [], ''' OperType ''', 'oper_type', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'specific-options', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationSchedule' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationSchedule', False, [ _MetaInfoClassMember('schedule-duration', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Duration of a probe for the operation in seconds ''', 'schedule_duration', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('schedule-interval', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Interval between the start times of consecutive probes, in seconds. ''', 'schedule_interval', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('start-time', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Start time of the first probe, in seconds since the Unix Epoch ''', 'start_time', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('start-time-configured', ATTRIBUTE, 'bool' , None, None, [], [], ''' Whether or not the operation start time was explicitly configured ''', 'start_time_configured', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'operation-schedule', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric.Config' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric.Config', False, [ _MetaInfoClassMember('bins-count', ATTRIBUTE, 'int' , None, None, [('0', '65535')], [], ''' Total number of bins into which to aggregate. 0 if no aggregation. ''', 'bins_count', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('bins-width', ATTRIBUTE, 'int' , None, None, [('0', '65535')], [], ''' Width of each bin into which to aggregate. 0 if no aggregation. For SLM, the units of this value are in single units of percent; for LMM they are in tenths of percent; for other measurements they are in milliseconds. ''', 'bins_width', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('bucket-size', ATTRIBUTE, 'int' , None, None, [('0', '255')], [], ''' Size of buckets into which measurements are collected ''', 'bucket_size', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('bucket-size-unit', REFERENCE_ENUM_CLASS, 'SlaBucketSizeEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ethernet_cfm_oper', 'SlaBucketSizeEnum', [], [], ''' Whether bucket size is 'per-probe' or 'probes' ''', 'bucket_size_unit', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('buckets-archive', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Maximum number of buckets to store in memory ''', 'buckets_archive', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('metric-type', REFERENCE_ENUM_CLASS, 'SlaRecordableMetricEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ethernet_cfm_oper', 'SlaRecordableMetricEnum', [], [], ''' Type of metric to which this configuration applies ''', 'metric_type', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'config', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric.Bucket.Contents.Aggregated.Bins' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric.Bucket.Contents.Aggregated.Bins', False, [ _MetaInfoClassMember('count', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' The total number of results in the bin ''', 'count', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('lower-bound', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Lower bound (inclusive) of the bin, in milliseconds or single units of percent. This field is not used for LMM measurements ''', 'lower_bound', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('lower-bound-tenths', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Lower bound (inclusive) of the bin, in tenths of percent. This field is only used for LMM measurements ''', 'lower_bound_tenths', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('sum', ATTRIBUTE, 'int' , None, None, [('-9223372036854775808', '9223372036854775807')], [], ''' The sum of the results in the bin, in microseconds or millionths of a percent ''', 'sum', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('upper-bound', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Upper bound (exclusive) of the bin, in milliseconds or single units of percent. This field is not used for LMM measurements ''', 'upper_bound', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('upper-bound-tenths', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Upper bound (exclusive) of the bin, in tenths of percent. This field is only used for LMM measurements ''', 'upper_bound_tenths', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'bins', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric.Bucket.Contents.Aggregated' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric.Bucket.Contents.Aggregated', False, [ _MetaInfoClassMember('bins', REFERENCE_LIST, 'Bins' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric.Bucket.Contents.Aggregated.Bins', [], [], ''' The bins of an SLA metric bucket ''', 'bins', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'aggregated', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric.Bucket.Contents.Unaggregated.Sample' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric.Bucket.Contents.Unaggregated.Sample', False, [ _MetaInfoClassMember('corrupt', ATTRIBUTE, 'bool' , None, None, [], [], ''' Whether the sample packet was corrupt ''', 'corrupt', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('frames-lost', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' For FLR measurements, the number of frames lost, if available ''', 'frames_lost', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('frames-sent', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' For FLR measurements, the number of frames sent, if available ''', 'frames_sent', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('no-data-packets', ATTRIBUTE, 'bool' , None, None, [], [], ''' Whether a measurement could not be made because no data packets were sent in the sample period. Only applicable for LMM measurements ''', 'no_data_packets', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('out-of-order', ATTRIBUTE, 'bool' , None, None, [], [], ''' Whether the sample packet was received out-of-order ''', 'out_of_order', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('result', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' The result (in microseconds or millionths of a percent) of the sample, if available ''', 'result', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('sent', ATTRIBUTE, 'bool' , None, None, [], [], ''' Whether the sample packet was sucessfully sent ''', 'sent', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('sent-at', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' The time (in milliseconds relative to the start time of the bucket) that the sample was sent at ''', 'sent_at', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('timed-out', ATTRIBUTE, 'bool' , None, None, [], [], ''' Whether the sample packet timed out ''', 'timed_out', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'sample', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric.Bucket.Contents.Unaggregated' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric.Bucket.Contents.Unaggregated', False, [ _MetaInfoClassMember('sample', REFERENCE_LIST, 'Sample' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric.Bucket.Contents.Unaggregated.Sample', [], [], ''' The samples of an SLA metric bucket ''', 'sample', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'unaggregated', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric.Bucket.Contents' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric.Bucket.Contents', False, [ _MetaInfoClassMember('aggregated', REFERENCE_CLASS, 'Aggregated' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric.Bucket.Contents.Aggregated', [], [], ''' Result bins in an SLA metric bucket ''', 'aggregated', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('bucket-type', REFERENCE_ENUM_CLASS, 'SlaOperBucketEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ethernet_cfm_oper', 'SlaOperBucketEnum', [], [], ''' BucketType ''', 'bucket_type', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('unaggregated', REFERENCE_CLASS, 'Unaggregated' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric.Bucket.Contents.Unaggregated', [], [], ''' Result samples in an SLA metric bucket ''', 'unaggregated', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'contents', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric.Bucket' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric.Bucket', False, [ _MetaInfoClassMember('average', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Mean of the results in the probe, in microseconds or millionths of a percent ''', 'average', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('contents', REFERENCE_CLASS, 'Contents' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric.Bucket.Contents', [], [], ''' The contents of the bucket; bins or samples ''', 'contents', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('corrupt', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of corrupt packets in the probe ''', 'corrupt', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('data-lost-count', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' The number of data packets lost across the bucket, used in the calculation of overall FLR. ''', 'data_lost_count', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('data-sent-count', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' The number of data packets sent across the bucket, used in the calculation of overall FLR. ''', 'data_sent_count', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('duplicates', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of duplicate packets received in the probe ''', 'duplicates', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('duration', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Length of time for which the bucket is being filled in seconds ''', 'duration', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('lost', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of lost packets in the probe ''', 'lost', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('maximum', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Overall minimum result in the probe, in microseconds or millionths of a percent ''', 'maximum', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('minimum', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Overall minimum result in the probe, in microseconds or millionths of a percent ''', 'minimum', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('out-of-order', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of packets recieved out-of-order in the probe ''', 'out_of_order', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('overall-flr', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Frame Loss Ratio across the whole bucket, in millionths of a percent ''', 'overall_flr', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('premature-reason', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' If the probe ended prematurely, the error that caused a probe to end ''', 'premature_reason', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('premature-reason-string', ATTRIBUTE, 'str' , None, None, [], [], ''' Description of the error code that caused the probe to end prematurely. For informational purposes only ''', 'premature_reason_string', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('result-count', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' The count of samples collected in the bucket. ''', 'result_count', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('sent', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of packets sent in the probe ''', 'sent', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('standard-deviation', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Standard deviation of the results in the probe, in microseconds or millionths of a percent ''', 'standard_deviation', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('start-at', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Absolute time that the bucket started being filled at ''', 'start_at', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-cleared-mid-bucket', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect as bucket was cleared mid-way through being filled ''', 'suspect_cleared_mid_bucket', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-clock-drift', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect as more than 10 seconds time drift detected ''', 'suspect_clock_drift', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-flr-low-packet-count', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect as FLR calculated based on a low packet count ''', 'suspect_flr_low_packet_count', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-management-latency', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect as processing of results has been delayed ''', 'suspect_management_latency', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-memory-allocation-failed', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect due to a memory allocation failure ''', 'suspect_memory_allocation_failed', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-misordering', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect as misordering has been detected , affecting results ''', 'suspect_misordering', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-multiple-buckets', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect as the probe has been configured across multiple buckets ''', 'suspect_multiple_buckets', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-premature-end', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect due to a probe ending prematurely ''', 'suspect_premature_end', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-probe-restarted', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect as probe restarted mid-way through the bucket ''', 'suspect_probe_restarted', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-schedule-latency', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect due to scheduling latency causing one or more packets to not be sent ''', 'suspect_schedule_latency', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-send-fail', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect due to failure to send one or more packets ''', 'suspect_send_fail', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-start-mid-bucket', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect due to a probe starting mid-way through a bucket ''', 'suspect_start_mid_bucket', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('time-of-maximum', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Absolute time that the maximum value was recorded ''', 'time_of_maximum', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('time-of-minimum', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Absolute time that the minimum value was recorded ''', 'time_of_minimum', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'bucket', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric', False, [ _MetaInfoClassMember('bucket', REFERENCE_LIST, 'Bucket' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric.Bucket', [], [], ''' Buckets stored for the metric ''', 'bucket', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('config', REFERENCE_CLASS, 'Config' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric.Config', [], [], ''' Configuration of the metric ''', 'config', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'operation-metric', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical', False, [ _MetaInfoClassMember('display-long', ATTRIBUTE, 'str' , None, None, [], [], ''' Long display name used by the operation ''', 'display_long', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('display-short', ATTRIBUTE, 'str' , None, None, [], [], ''' Short display name used by the operation ''', 'display_short', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('domain-name', ATTRIBUTE, 'str' , None, None, [], [], ''' Domain name ''', 'domain_name', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('flr-calculation-interval', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Interval between FLR calculations for SLM, in milliseconds ''', 'flr_calculation_interval', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('interface-name', ATTRIBUTE, 'str' , None, None, [], ['(([a-zA-Z0-9_]*\\d+/){3,4}\\d+)|(([a-zA-Z0-9_]*\\d+/){3,4}\\d+\\.\\d+)|(([a-zA-Z0-9_]*\\d+/){2}([a-zA-Z0-9_]*\\d+))|(([a-zA-Z0-9_]*\\d+/){2}([a-zA-Z0-9_]+))|([a-zA-Z0-9_-]*\\d+)|([a-zA-Z0-9_-]*\\d+\\.\\d+)|(mpls)|(dwdm)'], ''' Interface name ''', 'interface_name', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('mac-address', ATTRIBUTE, 'str' , None, None, [], ['[0-9a-fA-F]{2}(:[0-9a-fA-F]{2}){5}'], ''' Unicast MAC Address in xxxx.xxxx.xxxx format. Either MEP ID or MAC address must be specified. ''', 'mac_address', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('mep-id', ATTRIBUTE, 'int' , None, None, [('1', '8191')], [], ''' MEP ID in the range 1 to 8191. Either MEP ID or MAC address must be specified. ''', 'mep_id', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('operation-id', ATTRIBUTE, 'int' , None, None, [('1', '4294967295')], [], ''' Operation ID ''', 'operation_id', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('operation-metric', REFERENCE_LIST, 'OperationMetric' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric', [], [], ''' Metrics gathered for the operation ''', 'operation_metric', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('operation-schedule', REFERENCE_CLASS, 'OperationSchedule' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationSchedule', [], [], ''' Operation schedule ''', 'operation_schedule', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('probe-type', ATTRIBUTE, 'str' , None, None, [], [], ''' Type of probe used by the operation ''', 'probe_type', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('specific-options', REFERENCE_CLASS, 'SpecificOptions' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.SpecificOptions', [], [], ''' Options specific to the type of operation ''', 'specific_options', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'statistics-on-demand-historical', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals', False, [ _MetaInfoClassMember('statistics-on-demand-historical', REFERENCE_LIST, 'StatisticsOnDemandHistorical' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical', [], [], ''' Historical statistics data for an SLA on-demand operation ''', 'statistics_on_demand_historical', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'statistics-on-demand-historicals', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.ConfigErrors.ConfigError' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.ConfigErrors.ConfigError', False, [ _MetaInfoClassMember('display-short', ATTRIBUTE, 'str' , None, None, [], [], ''' Short display name used by the operation ''', 'display_short', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('domain-name', ATTRIBUTE, 'str' , None, None, [], [], ''' Domain name ''', 'domain_name', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('error-string', REFERENCE_LEAFLIST, 'str' , None, None, [], [], ''' Displays other issues not indicated from the flags above, for example MIB incompatibility issues. ''', 'error_string', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('interface-name', ATTRIBUTE, 'str' , None, None, [], ['(([a-zA-Z0-9_]*\\d+/){3,4}\\d+)|(([a-zA-Z0-9_]*\\d+/){3,4}\\d+\\.\\d+)|(([a-zA-Z0-9_]*\\d+/){2}([a-zA-Z0-9_]*\\d+))|(([a-zA-Z0-9_]*\\d+/){2}([a-zA-Z0-9_]+))|([a-zA-Z0-9_-]*\\d+)|([a-zA-Z0-9_-]*\\d+\\.\\d+)|(mpls)|(dwdm)'], ''' Interface name ''', 'interface_name', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('mac-address', ATTRIBUTE, 'str' , None, None, [], ['[0-9a-fA-F]{2}(:[0-9a-fA-F]{2}){5}'], ''' Unicast MAC Address in xxxx.xxxx.xxxx format ''', 'mac_address', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('mep-id', ATTRIBUTE, 'int' , None, None, [('1', '8191')], [], ''' MEP ID in the range 1 to 8191 ''', 'mep_id', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('min-packet-interval-inconsistent', ATTRIBUTE, 'bool' , None, None, [], [], ''' Is the profile configured to send packets more frequently than the protocol allows? ''', 'min_packet_interval_inconsistent', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('ow-delay-ds-inconsistent', ATTRIBUTE, 'bool' , None, None, [], [], ''' Is the profile configured to collect OW Delay (DS) but the packet type doesn't support it? ''', 'ow_delay_ds_inconsistent', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('ow-delay-sd-inconsistent', ATTRIBUTE, 'bool' , None, None, [], [], ''' Is the profile configured to collect OW Delay (SD) but the packet type doesn't support it? ''', 'ow_delay_sd_inconsistent', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('ow-jitter-ds-inconsistent', ATTRIBUTE, 'bool' , None, None, [], [], ''' Is the profile configured to collect OW Delay (DS) but the packet type doesn't support it? ''', 'ow_jitter_ds_inconsistent', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('ow-jitter-sd-inconsistent', ATTRIBUTE, 'bool' , None, None, [], [], ''' Is the profile configured to collect OW Jitter (SD) but the packet type doesn't support it? ''', 'ow_jitter_sd_inconsistent', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('ow-loss-ds-inconsistent', ATTRIBUTE, 'bool' , None, None, [], [], ''' Is the profile configured to collect OW Frame Loss (DS) but the packet type doesn't support it ? ''', 'ow_loss_ds_inconsistent', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('ow-loss-sd-inconsistent', ATTRIBUTE, 'bool' , None, None, [], [], ''' Is the profile configured to collect OW Frame Loss (SD) but the packet type doesn't support it ? ''', 'ow_loss_sd_inconsistent', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('packet-pad-inconsistent', ATTRIBUTE, 'bool' , None, None, [], [], ''' Is the profile configured to pad packets but the packet type doesn't support it? ''', 'packet_pad_inconsistent', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('packet-rand-pad-inconsistent', ATTRIBUTE, 'bool' , None, None, [], [], ''' Is the profile configured to pad packets with a pseudo-random string but the packet type doesn't support it? ''', 'packet_rand_pad_inconsistent', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('packet-type-inconsistent', ATTRIBUTE, 'bool' , None, None, [], [], ''' Is the profile configured to use a packet type that isn't supported by any protocols? ''', 'packet_type_inconsistent', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('priority-inconsistent', ATTRIBUTE, 'bool' , None, None, [], [], ''' Is the profile configured to use a packet priority scheme that the protocol does not support? ''', 'priority_inconsistent', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('probe-too-big', ATTRIBUTE, 'bool' , None, None, [], [], ''' The profile is configured to use a packet type which does not allow more than 72000 packets per probe and greater than 72000 packets per probe have been configured ''', 'probe_too_big', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('profile-doesnt-exist', ATTRIBUTE, 'bool' , None, None, [], [], ''' Is the operation configured to use a profile that is not currently defined for the protocol? ''', 'profile_doesnt_exist', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('profile-name', ATTRIBUTE, 'str' , None, None, [], ['[\\w\\-\\.:,_@#%$\\+=\\|;]+'], ''' Profile Name ''', 'profile_name', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('profile-name-xr', ATTRIBUTE, 'str' , None, None, [], [], ''' The name of the operation profile. ''', 'profile_name_xr', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('rt-delay-inconsistent', ATTRIBUTE, 'bool' , None, None, [], [], ''' Is the profile configured to collect RT Delay but the packet type doesn't support it? ''', 'rt_delay_inconsistent', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('rt-jitter-inconsistent', ATTRIBUTE, 'bool' , None, None, [], [], ''' Is the profile configured to collect RT Jitter but the packet type doesn't support it? ''', 'rt_jitter_inconsistent', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('synthetic-loss-not-supported', ATTRIBUTE, 'bool' , None, None, [], [], ''' The profile is configured to use a packet type which doesn't support synthetic loss measurement and the number of packets per FLR calculation has been configured ''', 'synthetic_loss_not_supported', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'config-error', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.ConfigErrors' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.ConfigErrors', False, [ _MetaInfoClassMember('config-error', REFERENCE_LIST, 'ConfigError' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.ConfigErrors.ConfigError', [], [], ''' SLA operation to get configuration errors data for ''', 'config_error', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'config-errors', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.ProfileOptions.PacketPadding' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.ProfileOptions.PacketPadding', False, [ _MetaInfoClassMember('packet-pad-size', ATTRIBUTE, 'int' , None, None, [('0', '65535')], [], ''' Size that packets are being padded to ''', 'packet_pad_size', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('test-pattern-pad-hex-string', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Hex string that is used in the packet padding ''', 'test_pattern_pad_hex_string', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('test-pattern-pad-scheme', REFERENCE_ENUM_CLASS, 'SlaOperTestPatternSchemeEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ethernet_cfm_oper', 'SlaOperTestPatternSchemeEnum', [], [], ''' Test pattern scheme that is used in the packet padding ''', 'test_pattern_pad_scheme', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'packet-padding', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.ProfileOptions.Priority' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.ProfileOptions.Priority', False, [ _MetaInfoClassMember('cos', ATTRIBUTE, 'int' , None, None, [('0', '255')], [], ''' 3-bit COS priority value applied to packets ''', 'cos', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('priority-type', REFERENCE_ENUM_CLASS, 'SlaOperPacketPriorityEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ethernet_cfm_oper', 'SlaOperPacketPriorityEnum', [], [], ''' PriorityType ''', 'priority_type', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'priority', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.ProfileOptions.OperationSchedule' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.ProfileOptions.OperationSchedule', False, [ _MetaInfoClassMember('schedule-duration', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Duration of a probe for the operation in seconds ''', 'schedule_duration', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('schedule-interval', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Interval between the start times of consecutive probes, in seconds. ''', 'schedule_interval', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('start-time', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Start time of the first probe, in seconds since the Unix Epoch ''', 'start_time', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('start-time-configured', ATTRIBUTE, 'bool' , None, None, [], [], ''' Whether or not the operation start time was explicitly configured ''', 'start_time_configured', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'operation-schedule', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.ProfileOptions.OperationMetric.MetricConfig' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.ProfileOptions.OperationMetric.MetricConfig', False, [ _MetaInfoClassMember('bins-count', ATTRIBUTE, 'int' , None, None, [('0', '65535')], [], ''' Total number of bins into which to aggregate. 0 if no aggregation. ''', 'bins_count', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('bins-width', ATTRIBUTE, 'int' , None, None, [('0', '65535')], [], ''' Width of each bin into which to aggregate. 0 if no aggregation. For SLM, the units of this value are in single units of percent; for LMM they are in tenths of percent; for other measurements they are in milliseconds. ''', 'bins_width', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('bucket-size', ATTRIBUTE, 'int' , None, None, [('0', '255')], [], ''' Size of buckets into which measurements are collected ''', 'bucket_size', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('bucket-size-unit', REFERENCE_ENUM_CLASS, 'SlaBucketSizeEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ethernet_cfm_oper', 'SlaBucketSizeEnum', [], [], ''' Whether bucket size is 'per-probe' or 'probes' ''', 'bucket_size_unit', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('buckets-archive', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Maximum number of buckets to store in memory ''', 'buckets_archive', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('metric-type', REFERENCE_ENUM_CLASS, 'SlaRecordableMetricEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ethernet_cfm_oper', 'SlaRecordableMetricEnum', [], [], ''' Type of metric to which this configuration applies ''', 'metric_type', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'metric-config', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.ProfileOptions.OperationMetric' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.ProfileOptions.OperationMetric', False, [ _MetaInfoClassMember('current-buckets-archive', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of valid buckets currently in the buckets archive ''', 'current_buckets_archive', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('metric-config', REFERENCE_CLASS, 'MetricConfig' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.ProfileOptions.OperationMetric.MetricConfig', [], [], ''' Configuration of the metric ''', 'metric_config', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'operation-metric', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.ProfileOptions' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.ProfileOptions', False, [ _MetaInfoClassMember('bursts-per-probe', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of bursts sent per probe ''', 'bursts_per_probe', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('flr-calculation-interval', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Interval between FLR calculations for SLM, in milliseconds ''', 'flr_calculation_interval', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('inter-burst-interval', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Interval between bursts within a probe in milliseconds ''', 'inter_burst_interval', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('inter-packet-interval', ATTRIBUTE, 'int' , None, None, [('0', '65535')], [], ''' Interval between packets within a burst in milliseconds ''', 'inter_packet_interval', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('operation-metric', REFERENCE_LIST, 'OperationMetric' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.ProfileOptions.OperationMetric', [], [], ''' Array of the metrics that are measured by the operation ''', 'operation_metric', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('operation-schedule', REFERENCE_CLASS, 'OperationSchedule' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.ProfileOptions.OperationSchedule', [], [], ''' Operation schedule ''', 'operation_schedule', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('packet-padding', REFERENCE_CLASS, 'PacketPadding' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.ProfileOptions.PacketPadding', [], [], ''' Configuration of the packet padding ''', 'packet_padding', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('packets-per-burst', ATTRIBUTE, 'int' , None, None, [('0', '65535')], [], ''' Number of packets sent per burst ''', 'packets_per_burst', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('priority', REFERENCE_CLASS, 'Priority' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.ProfileOptions.Priority', [], [], ''' Priority at which to send the packet, if configured ''', 'priority', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('probe-type', ATTRIBUTE, 'str' , None, None, [], [], ''' Type of probe used by the operation ''', 'probe_type', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'profile-options', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.SpecificOptions.ConfiguredOperationOptions' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.SpecificOptions.ConfiguredOperationOptions', False, [ _MetaInfoClassMember('profile-name', ATTRIBUTE, 'str' , None, None, [], [], ''' Name of the profile used by the operation ''', 'profile_name', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'configured-operation-options', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.SpecificOptions.OndemandOperationOptions' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.SpecificOptions.OndemandOperationOptions', False, [ _MetaInfoClassMember('ondemand-operation-id', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' ID of the ondemand operation ''', 'ondemand_operation_id', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('probe-count', ATTRIBUTE, 'int' , None, None, [('0', '255')], [], ''' Total number of probes sent during the operation ''', 'probe_count', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'ondemand-operation-options', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.SpecificOptions' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.SpecificOptions', False, [ _MetaInfoClassMember('configured-operation-options', REFERENCE_CLASS, 'ConfiguredOperationOptions' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.SpecificOptions.ConfiguredOperationOptions', [], [], ''' Parameters for a configured operation ''', 'configured_operation_options', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('ondemand-operation-options', REFERENCE_CLASS, 'OndemandOperationOptions' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.SpecificOptions.OndemandOperationOptions', [], [], ''' Parameters for an ondemand operation ''', 'ondemand_operation_options', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('oper-type', REFERENCE_ENUM_CLASS, 'SlaOperOperationEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ethernet_cfm_oper', 'SlaOperOperationEnum', [], [], ''' OperType ''', 'oper_type', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'specific-options', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation', False, [ _MetaInfoClassMember('display-long', ATTRIBUTE, 'str' , None, None, [], [], ''' Long display name used by the operation ''', 'display_long', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('display-short', ATTRIBUTE, 'str' , None, None, [], [], ''' Short display name used by the operation ''', 'display_short', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('domain-name', ATTRIBUTE, 'str' , None, None, [], [], ''' Domain name ''', 'domain_name', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('interface-name', ATTRIBUTE, 'str' , None, None, [], ['(([a-zA-Z0-9_]*\\d+/){3,4}\\d+)|(([a-zA-Z0-9_]*\\d+/){3,4}\\d+\\.\\d+)|(([a-zA-Z0-9_]*\\d+/){2}([a-zA-Z0-9_]*\\d+))|(([a-zA-Z0-9_]*\\d+/){2}([a-zA-Z0-9_]+))|([a-zA-Z0-9_-]*\\d+)|([a-zA-Z0-9_-]*\\d+\\.\\d+)|(mpls)|(dwdm)'], ''' Interface name ''', 'interface_name', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('last-run', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Time that the last probe for the operation was run, NULL if never run. ''', 'last_run', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('mac-address', ATTRIBUTE, 'str' , None, None, [], ['[0-9a-fA-F]{2}(:[0-9a-fA-F]{2}){5}'], ''' Unicast MAC Address in xxxx.xxxx.xxxx format. Either MEP ID or MAC address must be specified. ''', 'mac_address', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('mep-id', ATTRIBUTE, 'int' , None, None, [('1', '8191')], [], ''' MEP ID in the range 1 to 8191. Either MEP ID or MAC address must be specified. ''', 'mep_id', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('operation-id', ATTRIBUTE, 'int' , None, None, [('1', '4294967295')], [], ''' Operation ID ''', 'operation_id', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('profile-options', REFERENCE_CLASS, 'ProfileOptions' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.ProfileOptions', [], [], ''' Options that are only valid if the operation has a profile ''', 'profile_options', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('specific-options', REFERENCE_CLASS, 'SpecificOptions' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.SpecificOptions', [], [], ''' Options specific to the type of operation ''', 'specific_options', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'on-demand-operation', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.OnDemandOperations' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.OnDemandOperations', False, [ _MetaInfoClassMember('on-demand-operation', REFERENCE_LIST, 'OnDemandOperation' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation', [], [], ''' SLA on-demand operation to get operation data for ''', 'on_demand_operation', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'on-demand-operations', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.SpecificOptions.ConfiguredOperationOptions' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.SpecificOptions.ConfiguredOperationOptions', False, [ _MetaInfoClassMember('profile-name', ATTRIBUTE, 'str' , None, None, [], [], ''' Name of the profile used by the operation ''', 'profile_name', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'configured-operation-options', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.SpecificOptions.OndemandOperationOptions' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.SpecificOptions.OndemandOperationOptions', False, [ _MetaInfoClassMember('ondemand-operation-id', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' ID of the ondemand operation ''', 'ondemand_operation_id', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('probe-count', ATTRIBUTE, 'int' , None, None, [('0', '255')], [], ''' Total number of probes sent during the operation ''', 'probe_count', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'ondemand-operation-options', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.SpecificOptions' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.SpecificOptions', False, [ _MetaInfoClassMember('configured-operation-options', REFERENCE_CLASS, 'ConfiguredOperationOptions' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.SpecificOptions.ConfiguredOperationOptions', [], [], ''' Parameters for a configured operation ''', 'configured_operation_options', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('ondemand-operation-options', REFERENCE_CLASS, 'OndemandOperationOptions' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.SpecificOptions.OndemandOperationOptions', [], [], ''' Parameters for an ondemand operation ''', 'ondemand_operation_options', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('oper-type', REFERENCE_ENUM_CLASS, 'SlaOperOperationEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ethernet_cfm_oper', 'SlaOperOperationEnum', [], [], ''' OperType ''', 'oper_type', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'specific-options', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationSchedule' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationSchedule', False, [ _MetaInfoClassMember('schedule-duration', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Duration of a probe for the operation in seconds ''', 'schedule_duration', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('schedule-interval', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Interval between the start times of consecutive probes, in seconds. ''', 'schedule_interval', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('start-time', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Start time of the first probe, in seconds since the Unix Epoch ''', 'start_time', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('start-time-configured', ATTRIBUTE, 'bool' , None, None, [], [], ''' Whether or not the operation start time was explicitly configured ''', 'start_time_configured', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'operation-schedule', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric.Config' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric.Config', False, [ _MetaInfoClassMember('bins-count', ATTRIBUTE, 'int' , None, None, [('0', '65535')], [], ''' Total number of bins into which to aggregate. 0 if no aggregation. ''', 'bins_count', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('bins-width', ATTRIBUTE, 'int' , None, None, [('0', '65535')], [], ''' Width of each bin into which to aggregate. 0 if no aggregation. For SLM, the units of this value are in single units of percent; for LMM they are in tenths of percent; for other measurements they are in milliseconds. ''', 'bins_width', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('bucket-size', ATTRIBUTE, 'int' , None, None, [('0', '255')], [], ''' Size of buckets into which measurements are collected ''', 'bucket_size', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('bucket-size-unit', REFERENCE_ENUM_CLASS, 'SlaBucketSizeEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ethernet_cfm_oper', 'SlaBucketSizeEnum', [], [], ''' Whether bucket size is 'per-probe' or 'probes' ''', 'bucket_size_unit', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('buckets-archive', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Maximum number of buckets to store in memory ''', 'buckets_archive', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('metric-type', REFERENCE_ENUM_CLASS, 'SlaRecordableMetricEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ethernet_cfm_oper', 'SlaRecordableMetricEnum', [], [], ''' Type of metric to which this configuration applies ''', 'metric_type', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'config', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric.Bucket.Contents.Aggregated.Bins' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric.Bucket.Contents.Aggregated.Bins', False, [ _MetaInfoClassMember('count', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' The total number of results in the bin ''', 'count', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('lower-bound', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Lower bound (inclusive) of the bin, in milliseconds or single units of percent. This field is not used for LMM measurements ''', 'lower_bound', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('lower-bound-tenths', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Lower bound (inclusive) of the bin, in tenths of percent. This field is only used for LMM measurements ''', 'lower_bound_tenths', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('sum', ATTRIBUTE, 'int' , None, None, [('-9223372036854775808', '9223372036854775807')], [], ''' The sum of the results in the bin, in microseconds or millionths of a percent ''', 'sum', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('upper-bound', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Upper bound (exclusive) of the bin, in milliseconds or single units of percent. This field is not used for LMM measurements ''', 'upper_bound', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('upper-bound-tenths', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Upper bound (exclusive) of the bin, in tenths of percent. This field is only used for LMM measurements ''', 'upper_bound_tenths', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'bins', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric.Bucket.Contents.Aggregated' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric.Bucket.Contents.Aggregated', False, [ _MetaInfoClassMember('bins', REFERENCE_LIST, 'Bins' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric.Bucket.Contents.Aggregated.Bins', [], [], ''' The bins of an SLA metric bucket ''', 'bins', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'aggregated', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric.Bucket.Contents.Unaggregated.Sample' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric.Bucket.Contents.Unaggregated.Sample', False, [ _MetaInfoClassMember('corrupt', ATTRIBUTE, 'bool' , None, None, [], [], ''' Whether the sample packet was corrupt ''', 'corrupt', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('frames-lost', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' For FLR measurements, the number of frames lost, if available ''', 'frames_lost', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('frames-sent', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' For FLR measurements, the number of frames sent, if available ''', 'frames_sent', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('no-data-packets', ATTRIBUTE, 'bool' , None, None, [], [], ''' Whether a measurement could not be made because no data packets were sent in the sample period. Only applicable for LMM measurements ''', 'no_data_packets', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('out-of-order', ATTRIBUTE, 'bool' , None, None, [], [], ''' Whether the sample packet was received out-of-order ''', 'out_of_order', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('result', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' The result (in microseconds or millionths of a percent) of the sample, if available ''', 'result', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('sent', ATTRIBUTE, 'bool' , None, None, [], [], ''' Whether the sample packet was sucessfully sent ''', 'sent', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('sent-at', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' The time (in milliseconds relative to the start time of the bucket) that the sample was sent at ''', 'sent_at', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('timed-out', ATTRIBUTE, 'bool' , None, None, [], [], ''' Whether the sample packet timed out ''', 'timed_out', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'sample', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric.Bucket.Contents.Unaggregated' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric.Bucket.Contents.Unaggregated', False, [ _MetaInfoClassMember('sample', REFERENCE_LIST, 'Sample' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric.Bucket.Contents.Unaggregated.Sample', [], [], ''' The samples of an SLA metric bucket ''', 'sample', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'unaggregated', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric.Bucket.Contents' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric.Bucket.Contents', False, [ _MetaInfoClassMember('aggregated', REFERENCE_CLASS, 'Aggregated' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric.Bucket.Contents.Aggregated', [], [], ''' Result bins in an SLA metric bucket ''', 'aggregated', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('bucket-type', REFERENCE_ENUM_CLASS, 'SlaOperBucketEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ethernet_cfm_oper', 'SlaOperBucketEnum', [], [], ''' BucketType ''', 'bucket_type', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('unaggregated', REFERENCE_CLASS, 'Unaggregated' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric.Bucket.Contents.Unaggregated', [], [], ''' Result samples in an SLA metric bucket ''', 'unaggregated', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'contents', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric.Bucket' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric.Bucket', False, [ _MetaInfoClassMember('average', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Mean of the results in the probe, in microseconds or millionths of a percent ''', 'average', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('contents', REFERENCE_CLASS, 'Contents' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric.Bucket.Contents', [], [], ''' The contents of the bucket; bins or samples ''', 'contents', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('corrupt', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of corrupt packets in the probe ''', 'corrupt', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('data-lost-count', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' The number of data packets lost across the bucket, used in the calculation of overall FLR. ''', 'data_lost_count', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('data-sent-count', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' The number of data packets sent across the bucket, used in the calculation of overall FLR. ''', 'data_sent_count', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('duplicates', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of duplicate packets received in the probe ''', 'duplicates', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('duration', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Length of time for which the bucket is being filled in seconds ''', 'duration', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('lost', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of lost packets in the probe ''', 'lost', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('maximum', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Overall minimum result in the probe, in microseconds or millionths of a percent ''', 'maximum', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('minimum', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Overall minimum result in the probe, in microseconds or millionths of a percent ''', 'minimum', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('out-of-order', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of packets recieved out-of-order in the probe ''', 'out_of_order', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('overall-flr', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Frame Loss Ratio across the whole bucket, in millionths of a percent ''', 'overall_flr', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('premature-reason', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' If the probe ended prematurely, the error that caused a probe to end ''', 'premature_reason', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('premature-reason-string', ATTRIBUTE, 'str' , None, None, [], [], ''' Description of the error code that caused the probe to end prematurely. For informational purposes only ''', 'premature_reason_string', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('result-count', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' The count of samples collected in the bucket. ''', 'result_count', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('sent', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Number of packets sent in the probe ''', 'sent', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('standard-deviation', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Standard deviation of the results in the probe, in microseconds or millionths of a percent ''', 'standard_deviation', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('start-at', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Absolute time that the bucket started being filled at ''', 'start_at', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-cleared-mid-bucket', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect as bucket was cleared mid-way through being filled ''', 'suspect_cleared_mid_bucket', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-clock-drift', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect as more than 10 seconds time drift detected ''', 'suspect_clock_drift', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-flr-low-packet-count', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect as FLR calculated based on a low packet count ''', 'suspect_flr_low_packet_count', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-management-latency', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect as processing of results has been delayed ''', 'suspect_management_latency', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-memory-allocation-failed', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect due to a memory allocation failure ''', 'suspect_memory_allocation_failed', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-misordering', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect as misordering has been detected , affecting results ''', 'suspect_misordering', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-multiple-buckets', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect as the probe has been configured across multiple buckets ''', 'suspect_multiple_buckets', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-premature-end', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect due to a probe ending prematurely ''', 'suspect_premature_end', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-probe-restarted', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect as probe restarted mid-way through the bucket ''', 'suspect_probe_restarted', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-schedule-latency', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect due to scheduling latency causing one or more packets to not be sent ''', 'suspect_schedule_latency', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-send-fail', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect due to failure to send one or more packets ''', 'suspect_send_fail', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('suspect-start-mid-bucket', ATTRIBUTE, 'bool' , None, None, [], [], ''' Results suspect due to a probe starting mid-way through a bucket ''', 'suspect_start_mid_bucket', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('time-of-maximum', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Absolute time that the maximum value was recorded ''', 'time_of_maximum', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('time-of-minimum', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Absolute time that the minimum value was recorded ''', 'time_of_minimum', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'bucket', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric', False, [ _MetaInfoClassMember('bucket', REFERENCE_LIST, 'Bucket' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric.Bucket', [], [], ''' Buckets stored for the metric ''', 'bucket', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('config', REFERENCE_CLASS, 'Config' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric.Config', [], [], ''' Configuration of the metric ''', 'config', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'operation-metric', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent', False, [ _MetaInfoClassMember('display-long', ATTRIBUTE, 'str' , None, None, [], [], ''' Long display name used by the operation ''', 'display_long', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('display-short', ATTRIBUTE, 'str' , None, None, [], [], ''' Short display name used by the operation ''', 'display_short', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('domain-name', ATTRIBUTE, 'str' , None, None, [], [], ''' Domain name ''', 'domain_name', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('flr-calculation-interval', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Interval between FLR calculations for SLM, in milliseconds ''', 'flr_calculation_interval', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('interface-name', ATTRIBUTE, 'str' , None, None, [], ['(([a-zA-Z0-9_]*\\d+/){3,4}\\d+)|(([a-zA-Z0-9_]*\\d+/){3,4}\\d+\\.\\d+)|(([a-zA-Z0-9_]*\\d+/){2}([a-zA-Z0-9_]*\\d+))|(([a-zA-Z0-9_]*\\d+/){2}([a-zA-Z0-9_]+))|([a-zA-Z0-9_-]*\\d+)|([a-zA-Z0-9_-]*\\d+\\.\\d+)|(mpls)|(dwdm)'], ''' Interface name ''', 'interface_name', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('mac-address', ATTRIBUTE, 'str' , None, None, [], ['[0-9a-fA-F]{2}(:[0-9a-fA-F]{2}){5}'], ''' Unicast MAC Address in xxxx.xxxx.xxxx format. Either MEP ID or MAC address must be specified. ''', 'mac_address', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('mep-id', ATTRIBUTE, 'int' , None, None, [('1', '8191')], [], ''' MEP ID in the range 1 to 8191. Either MEP ID or MAC address must be specified. ''', 'mep_id', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('operation-metric', REFERENCE_LIST, 'OperationMetric' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric', [], [], ''' Metrics gathered for the operation ''', 'operation_metric', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('operation-schedule', REFERENCE_CLASS, 'OperationSchedule' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationSchedule', [], [], ''' Operation schedule ''', 'operation_schedule', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('probe-type', ATTRIBUTE, 'str' , None, None, [], [], ''' Type of probe used by the operation ''', 'probe_type', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('profile-name', ATTRIBUTE, 'str' , None, None, [], ['[\\w\\-\\.:,_@#%$\\+=\\|;]+'], ''' Profile Name ''', 'profile_name', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('specific-options', REFERENCE_CLASS, 'SpecificOptions' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.SpecificOptions', [], [], ''' Options specific to the type of operation ''', 'specific_options', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'statistics-current', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet.StatisticsCurrents' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet.StatisticsCurrents', False, [ _MetaInfoClassMember('statistics-current', REFERENCE_LIST, 'StatisticsCurrent' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent', [], [], ''' Current statistics data for an SLA configured operation ''', 'statistics_current', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'statistics-currents', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols.Ethernet' : { 'meta_info' : _MetaInfoClass('Sla.Protocols.Ethernet', False, [ _MetaInfoClassMember('config-errors', REFERENCE_CLASS, 'ConfigErrors' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.ConfigErrors', [], [], ''' Table of SLA configuration errors on configured operations ''', 'config_errors', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('on-demand-operations', REFERENCE_CLASS, 'OnDemandOperations' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.OnDemandOperations', [], [], ''' Table of SLA on-demand operations ''', 'on_demand_operations', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('operations', REFERENCE_CLASS, 'Operations' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.Operations', [], [], ''' Table of SLA operations ''', 'operations', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('statistics-currents', REFERENCE_CLASS, 'StatisticsCurrents' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsCurrents', [], [], ''' Table of current statistics for SLA operations ''', 'statistics_currents', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('statistics-historicals', REFERENCE_CLASS, 'StatisticsHistoricals' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsHistoricals', [], [], ''' Table of historical statistics for SLA operations ''', 'statistics_historicals', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('statistics-on-demand-currents', REFERENCE_CLASS, 'StatisticsOnDemandCurrents' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsOnDemandCurrents', [], [], ''' Table of current statistics for SLA on-demand operations ''', 'statistics_on_demand_currents', 'Cisco-IOS-XR-ethernet-cfm-oper', False), _MetaInfoClassMember('statistics-on-demand-historicals', REFERENCE_CLASS, 'StatisticsOnDemandHistoricals' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals', [], [], ''' Table of historical statistics for SLA on-demand operations ''', 'statistics_on_demand_historicals', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-ethernet-cfm-oper', 'ethernet', _yang_ns._namespaces['Cisco-IOS-XR-ethernet-cfm-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla.Protocols' : { 'meta_info' : _MetaInfoClass('Sla.Protocols', False, [ _MetaInfoClassMember('ethernet', REFERENCE_CLASS, 'Ethernet' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols.Ethernet', [], [], ''' The Ethernet SLA protocol ''', 'ethernet', 'Cisco-IOS-XR-ethernet-cfm-oper', False), ], 'Cisco-IOS-XR-infra-sla-oper', 'protocols', _yang_ns._namespaces['Cisco-IOS-XR-infra-sla-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'Sla' : { 'meta_info' : _MetaInfoClass('Sla', False, [ _MetaInfoClassMember('protocols', REFERENCE_CLASS, 'Protocols' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper', 'Sla.Protocols', [], [], ''' Table of all SLA protocols ''', 'protocols', 'Cisco-IOS-XR-infra-sla-oper', False), ], 'Cisco-IOS-XR-infra-sla-oper', 'sla', _yang_ns._namespaces['Cisco-IOS-XR-infra-sla-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, 'SlaNodes' : { 'meta_info' : _MetaInfoClass('SlaNodes', False, [ ], 'Cisco-IOS-XR-infra-sla-oper', 'sla-nodes', _yang_ns._namespaces['Cisco-IOS-XR-infra-sla-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_sla_oper' ), }, } _meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.SpecificOptions.ConfiguredOperationOptions']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.SpecificOptions']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.SpecificOptions.OndemandOperationOptions']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.SpecificOptions']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric.Bucket.Contents.Aggregated.Bins']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric.Bucket.Contents.Aggregated']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric.Bucket.Contents.Unaggregated.Sample']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric.Bucket.Contents.Unaggregated']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric.Bucket.Contents.Aggregated']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric.Bucket.Contents']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric.Bucket.Contents.Unaggregated']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric.Bucket.Contents']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric.Bucket.Contents']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric.Bucket']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric.Config']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric.Bucket']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.SpecificOptions']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationSchedule']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent.OperationMetric']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandCurrents.StatisticsOnDemandCurrent']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandCurrents']['meta_info'] _meta_table['Sla.Protocols.Ethernet.Operations.Operation.ProfileOptions.OperationMetric.MetricConfig']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.Operations.Operation.ProfileOptions.OperationMetric']['meta_info'] _meta_table['Sla.Protocols.Ethernet.Operations.Operation.ProfileOptions.PacketPadding']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.Operations.Operation.ProfileOptions']['meta_info'] _meta_table['Sla.Protocols.Ethernet.Operations.Operation.ProfileOptions.Priority']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.Operations.Operation.ProfileOptions']['meta_info'] _meta_table['Sla.Protocols.Ethernet.Operations.Operation.ProfileOptions.OperationSchedule']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.Operations.Operation.ProfileOptions']['meta_info'] _meta_table['Sla.Protocols.Ethernet.Operations.Operation.ProfileOptions.OperationMetric']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.Operations.Operation.ProfileOptions']['meta_info'] _meta_table['Sla.Protocols.Ethernet.Operations.Operation.SpecificOptions.ConfiguredOperationOptions']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.Operations.Operation.SpecificOptions']['meta_info'] _meta_table['Sla.Protocols.Ethernet.Operations.Operation.SpecificOptions.OndemandOperationOptions']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.Operations.Operation.SpecificOptions']['meta_info'] _meta_table['Sla.Protocols.Ethernet.Operations.Operation.ProfileOptions']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.Operations.Operation']['meta_info'] _meta_table['Sla.Protocols.Ethernet.Operations.Operation.SpecificOptions']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.Operations.Operation']['meta_info'] _meta_table['Sla.Protocols.Ethernet.Operations.Operation']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.Operations']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.SpecificOptions.ConfiguredOperationOptions']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.SpecificOptions']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.SpecificOptions.OndemandOperationOptions']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.SpecificOptions']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric.Bucket.Contents.Aggregated.Bins']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric.Bucket.Contents.Aggregated']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric.Bucket.Contents.Unaggregated.Sample']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric.Bucket.Contents.Unaggregated']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric.Bucket.Contents.Aggregated']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric.Bucket.Contents']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric.Bucket.Contents.Unaggregated']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric.Bucket.Contents']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric.Bucket.Contents']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric.Bucket']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric.Config']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric.Bucket']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.SpecificOptions']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationSchedule']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical.OperationMetric']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsHistoricals.StatisticsHistorical']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsHistoricals']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.SpecificOptions.ConfiguredOperationOptions']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.SpecificOptions']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.SpecificOptions.OndemandOperationOptions']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.SpecificOptions']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric.Bucket.Contents.Aggregated.Bins']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric.Bucket.Contents.Aggregated']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric.Bucket.Contents.Unaggregated.Sample']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric.Bucket.Contents.Unaggregated']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric.Bucket.Contents.Aggregated']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric.Bucket.Contents']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric.Bucket.Contents.Unaggregated']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric.Bucket.Contents']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric.Bucket.Contents']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric.Bucket']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric.Config']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric.Bucket']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.SpecificOptions']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationSchedule']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical.OperationMetric']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals.StatisticsOnDemandHistorical']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals']['meta_info'] _meta_table['Sla.Protocols.Ethernet.ConfigErrors.ConfigError']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.ConfigErrors']['meta_info'] _meta_table['Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.ProfileOptions.OperationMetric.MetricConfig']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.ProfileOptions.OperationMetric']['meta_info'] _meta_table['Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.ProfileOptions.PacketPadding']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.ProfileOptions']['meta_info'] _meta_table['Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.ProfileOptions.Priority']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.ProfileOptions']['meta_info'] _meta_table['Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.ProfileOptions.OperationSchedule']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.ProfileOptions']['meta_info'] _meta_table['Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.ProfileOptions.OperationMetric']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.ProfileOptions']['meta_info'] _meta_table['Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.SpecificOptions.ConfiguredOperationOptions']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.SpecificOptions']['meta_info'] _meta_table['Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.SpecificOptions.OndemandOperationOptions']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.SpecificOptions']['meta_info'] _meta_table['Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.ProfileOptions']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation']['meta_info'] _meta_table['Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation.SpecificOptions']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation']['meta_info'] _meta_table['Sla.Protocols.Ethernet.OnDemandOperations.OnDemandOperation']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.OnDemandOperations']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.SpecificOptions.ConfiguredOperationOptions']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.SpecificOptions']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.SpecificOptions.OndemandOperationOptions']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.SpecificOptions']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric.Bucket.Contents.Aggregated.Bins']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric.Bucket.Contents.Aggregated']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric.Bucket.Contents.Unaggregated.Sample']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric.Bucket.Contents.Unaggregated']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric.Bucket.Contents.Aggregated']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric.Bucket.Contents']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric.Bucket.Contents.Unaggregated']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric.Bucket.Contents']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric.Bucket.Contents']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric.Bucket']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric.Config']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric.Bucket']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.SpecificOptions']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationSchedule']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent.OperationMetric']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsCurrents.StatisticsCurrent']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet.StatisticsCurrents']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandCurrents']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet']['meta_info'] _meta_table['Sla.Protocols.Ethernet.Operations']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsHistoricals']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsOnDemandHistoricals']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet']['meta_info'] _meta_table['Sla.Protocols.Ethernet.ConfigErrors']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet']['meta_info'] _meta_table['Sla.Protocols.Ethernet.OnDemandOperations']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet']['meta_info'] _meta_table['Sla.Protocols.Ethernet.StatisticsCurrents']['meta_info'].parent =_meta_table['Sla.Protocols.Ethernet']['meta_info'] _meta_table['Sla.Protocols.Ethernet']['meta_info'].parent =_meta_table['Sla.Protocols']['meta_info'] _meta_table['Sla.Protocols']['meta_info'].parent =_meta_table['Sla']['meta_info']
56.579557
324
0.548223
32705d3d0392df580342584c2bd9765216b0a3c2
8,667
py
Python
resurces/docking/prepare_dpf42.py
jRicciL/Taller_Simulacion_Molecular
d8141e7197bf5c6b19f7446b72a0765966d06982
[ "MIT" ]
null
null
null
resurces/docking/prepare_dpf42.py
jRicciL/Taller_Simulacion_Molecular
d8141e7197bf5c6b19f7446b72a0765966d06982
[ "MIT" ]
null
null
null
resurces/docking/prepare_dpf42.py
jRicciL/Taller_Simulacion_Molecular
d8141e7197bf5c6b19f7446b72a0765966d06982
[ "MIT" ]
1
2022-01-03T20:01:03.000Z
2022-01-03T20:01:03.000Z
#!/usr/bin/env python # # # # $Header: /mnt/raid/services/cvs/python/packages/share1.5/AutoDockTools/Utilities24/prepare_dpf42.py,v 1.13.2.3 2016/03/11 00:52:51 annao Exp $ # import string import os.path from MolKit import Read from AutoDockTools.DockingParameters import DockingParameters, genetic_algorithm_list4_2, \ genetic_algorithm_local_search_list4_2, local_search_list4_2,\ simulated_annealing_list4_2, epdb_list4_2,\ DockingParameter42FileMaker from AutoDockTools.atomTypeTools import AutoDock4_AtomTyper import numpy def usage(): print "Usage: prepare_dpf42.py -l pdbqt_file -r pdbqt_file" print "Description of command..." print "Prepare a docking parameter file (DPF) for AutoDock42: <ligand>_<receptor>.dpf" print " containing genetic_algorithm_local_search_list4_2 parameters (GALS)" print " -l ligand_filename" print " -r receptor_filename" print print "Optional parameters:" print " [-o output dpf_filename]" print " [-i template dpf_filename]" print " [-x flexres_filename]" print " [-p parameter_name=new_value]" print " [-k list of parameters to write]" print " [-e write epdb dpf ]" print " [-v] verbose output" print " [-L] use local search parameters" print " [-S] use simulated annealing search parameters" print " [-s] seed population using ligand's present conformation" print " [-A] use only root atom coordinates to calculate about" print if __name__ == '__main__': import getopt import sys try: opt_list, args = getopt.getopt(sys.argv[1:], 'sLShveAl:r:i:o:x:p:k:') except getopt.GetoptError, msg: print 'prepare_dpf42.py: %s' % msg usage() sys.exit(2) receptor_filename = ligand_filename = None dpf_filename = None template_filename = None flexres_filename = None parameters = [] parameter_list = genetic_algorithm_local_search_list4_2 pop_seed = False local_search = False verbose = None epdb_output = False about_root_atoms_only = False for o, a in opt_list: if verbose: print "o=", o, ' a=', a if o in ('-v', '--v'): verbose = 1 if verbose: print 'verbose output' if o in ('-l', '--l'): #ligand filename ligand_filename = a if verbose: print 'ligand_filename =', ligand_filename if o in ('-r', '--r'): #receptor filename receptor_filename = a if verbose: print 'receptor_filename =', receptor_filename if o in ('-x', '--x'): #flexres_filename flexres_filename = a if verbose: print 'flexres_filename =', flexres_filename if o in ('-i', '--i'): #input reference template_filename = a if verbose: print 'template_filename =', template_filename if o in ('-o', '--o'): #output filename dpf_filename = a if verbose: print 'output dpf_filename =', dpf_filename if o in ('-p', '--p'): #parameter parameters.append(a) if verbose: print 'parameters =', parameters if o in ('-e', '--e'): epdb_output = True if verbose: print 'output epdb file' parameter_list = epdb_list4_2 if o in ('-k', '--k'): #parameter_list_to_write parameter_list = a if verbose: print 'parameter_list =', parameter_list if o in ('-L', '--L'): #parameter_list_to_write local_search = 1 parameter_list = local_search_list4_2 if verbose: print 'parameter_list =', parameter_list if o in ('-S', '--S'): #parameter_list_to_write parameter_list = simulated_annealing_list4_2 if verbose: print 'parameter_list =', parameter_list if o in ('-A', '--A'): #set about to average of coords of root atoms about_root_atoms_only = True if verbose: print 'about_root_atoms_only =', about_root_atoms_only if o in ('-h', '--'): usage() sys.exit() if o in ('-s', '--s'): pop_seed = True if (not receptor_filename) or (not ligand_filename): print "prepare_dpf42.py: ligand and receptor filenames" print " must be specified." usage() sys.exit() #11/2011: fixing local_search bugs: # specifically: # 1. quaternion0 0 0 0 0 # 2. dihe0 0 0 0 0 0 <one per rotatable bond> # 3. about == tran0 # 4. remove tstep qstep and dstep # 5. remove ls_search_freq #local_search = local_search_list4_2 #parameter_list =local_search_list4_2 dm = DockingParameter42FileMaker(verbose=verbose, pop_seed=pop_seed) if template_filename is not None: #setup values by reading dpf dm.dpo.read(template_filename) dm.set_ligand(ligand_filename) dm.set_receptor(receptor_filename) if flexres_filename is not None: flexmol = Read(flexres_filename)[0] flexres_types = flexmol.allAtoms.autodock_element lig_types = dm.dpo['ligand_types']['value'].split() all_types = lig_types for t in flexres_types: if t not in all_types: all_types.append(t) all_types_string = all_types[0] if len(all_types)>1: for t in all_types[1:]: all_types_string = all_types_string + " " + t if verbose: print "adding ", t, " to all_types->", all_types_string dm.dpo['ligand_types']['value'] = all_types_string dm.dpo['flexres']['value'] = flexres_filename dm.dpo['flexres_flag']['value'] = True #dm.set_docking_parameters( ga_num_evals=1750000,ga_pop_size=150, ga_run=20, rmstol=2.0) kw = {} for p in parameters: key,newvalue = string.split(p, '=') #detect string reps of lists: eg "[1.,1.,1.]" if key=='parameter_file': if key in parameter_list: print "removing parameter_file keyword" parameter_list.remove('parameter_file') parameter_list.insert(1, key) dm.dpo['custom_parameter_file']['value']=1 if newvalue[0]=='[': nv = [] for item in newvalue[1:-1].split(','): nv.append(float(item)) #print "nv=", nv newvalue = nv kw[key] = nv if verbose: print "newvalue=", nv, " kw=", kw elif key=='epdb_flag': if verbose: print "setting epdb_flag to", newvalue kw['epdb_flag'] = 1 elif 'flag' in key: if verbose: print "key=", key, ' newvalue=', newvalue if newvalue in ['1','0']: newvalue = int(newvalue) if newvalue =='False': newvalue = False if newvalue =='True': newvalue = True elif local_search and 'about' in key: kw['about'] = newvalue kw['tran0'] = newvalue else: kw[key] = newvalue if verbose: print "set ", key, " to ", newvalue if verbose: print "calling set_docking_parameters with kw=", kw apply(dm.set_docking_parameters, (), kw) if key not in parameter_list: #special hacks for output_pop_file,set_sw1,... if key=='output_pop_file': parameter_list.insert(parameter_list.index('set_ga'), key) elif key=='set_sw1': parameter_list.insert(parameter_list.index('ls_search_freq')+1, key) else: parameter_list.append(key) if about_root_atoms_only: lines = dm.ligand.parser.allLines for ix, lll in enumerate(lines): if lll.find("ROOT")==0: root_ix = ix if lll.find("ENDROOT")==0: endroot_ix = ix break last_ix = endroot_ix - (root_ix + 1) #47-(18+1) crds = dm.ligand.allAtoms[0:last_ix].coords about = (numpy.add.reduce(crds)/float(len(crds))).tolist() dm.dpo['about']['value'] = (round(about[0],3), round(about[1],3), round(about[2],3)) if epdb_output: dm.dpo['epdb_flag']['value'] = 1 dm.write_dpf(dpf_filename, parm_list=epdb_list4_2) else: if verbose: print "not epdb_output" dm.write_dpf(dpf_filename, parameter_list, pop_seed=pop_seed) #prepare_dpf42.py -l indinavir.pdbqt -r 1hsg.pdbqt -p ga_num_evals=25000000 -p ga_pop_size=150 -p ga_run=17 -i ref.dpf -o testing.dpf
39.940092
144
0.591785
74b0d37ca70ddaf563de68175a17473a70d3ee69
686
py
Python
exatomic/adf/dirac/dirac.py
tjduigna/exatomic
3e27233084588bc6a58b63fc81aaf5a6b67a968d
[ "Apache-2.0" ]
null
null
null
exatomic/adf/dirac/dirac.py
tjduigna/exatomic
3e27233084588bc6a58b63fc81aaf5a6b67a968d
[ "Apache-2.0" ]
1
2017-05-25T21:05:40.000Z
2017-05-25T23:54:15.000Z
exatomic/adf/dirac/dirac.py
tjduigna/exatomic
3e27233084588bc6a58b63fc81aaf5a6b67a968d
[ "Apache-2.0" ]
1
2017-05-25T20:48:33.000Z
2017-05-25T20:48:33.000Z
## -*- coding: utf-8 -*- ## Copyright (c) 2015-2018, Exa Analytics Development Team ## Distributed under the terms of the Apache License 2.0 #""" #ADF Dirac Parser ########################## #Parser for the output of the DIRAC program (part of the ADF suite). #""" #from exa import Parser, Matches # # #class DIRAC(Parser): # """ # """ # _start = "* | D I R A C | *" # _stop = -1 # # def _parse_stops_1(self, starts): # """Find the end of the section.""" # key = "Hash table lookups:" # matches = [self.find_next(key, cursor=s[0]) for s in starts] # return Matches(key, *matches)
29.826087
96
0.521866
30bc77b44ad2e719566d27e5eb87e6dbd6545a39
412
py
Python
Python32/ED/quicksort.py
andersonsilvade/python_C
ffc00184883089f1c2d9b8a6c32503b2c8b8d035
[ "MIT" ]
null
null
null
Python32/ED/quicksort.py
andersonsilvade/python_C
ffc00184883089f1c2d9b8a6c32503b2c8b8d035
[ "MIT" ]
null
null
null
Python32/ED/quicksort.py
andersonsilvade/python_C
ffc00184883089f1c2d9b8a6c32503b2c8b8d035
[ "MIT" ]
1
2020-11-04T08:36:28.000Z
2020-11-04T08:36:28.000Z
def quicksort(lista): lista = list(range(8)) random.shuffle(lista) if len(lista) <= 1: return lista pivô = lista[0] iguais = [x for x in lista if x == pivô] menores = [x for x in lista if x < pivô] maiores = [x for x in lista if x > pivô] return quicksort(menores) + iguais + quicksort(maiores) print (quicksort(lista))
7.357143
59
0.538835
37eda6e7d3567d25fa9ebb1229e4abda54d34713
2,077
py
Python
pi/perma-proto-organized-hw-test.py
CrazyJ36/python
4cff6e7240672a273d978521bb511065f45d4312
[ "MIT" ]
null
null
null
pi/perma-proto-organized-hw-test.py
CrazyJ36/python
4cff6e7240672a273d978521bb511065f45d4312
[ "MIT" ]
null
null
null
pi/perma-proto-organized-hw-test.py
CrazyJ36/python
4cff6e7240672a273d978521bb511065f45d4312
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # This test my "organized" hardware setup on perma-proto print("Loading.. Press Ctrl-c to exit A test.") import sys from time import sleep from signal import pause from gpiozero import Button, ButtonBoard, LEDBoard, Buzzer usage = "Usage: ./perma-proto-org... [leds, buttons, buzzer, all]" try: cmd = sys.argv[1] except IndexError: print(usage) exit(0) try: leds = LEDBoard(4, 18, 24, 11, 12, 7, 16, 6) btns = ButtonBoard(23, 27, 22, 25, 9, 5, 8) buzz = Buzzer(2) except Exception: print("gpiozero or pin didn't load correctly, Exiting..") exit(0) def test_leds(): try: print("Total desired LEDs: ", end='' ) print(len(leds)) print("Flashing All LEDs in order 3 times, watch PI..") sleep(1) i0 = 0 while i0 < 3: i1 = 0 while i1 < len(leds): leds[i1].on() sleep(0.1) leds[i1].off() i1 = i1 + 1 i0 = i0 + 1 except KeyboardInterrupt: print("\rExiting..\n") return def test_btns(): print("Testing Buttons...") print("Total desired button devices: ", end='') print(len(btns)) print("Press any push button on the board, you'll see it active in A list of all.") while True: try: if btns.is_pressed: print(btns.value) sleep(0.2) except KeyboardInterrupt: print("\rExiting\n") return def test_buzz(): print("Testing Buzzer.. Beep(repeated on/off) for A short time...") buzz.beep(0.005, 0.005, 50, False) return # Switch Method Reference ''' def test_switch(): print("Toggle the switch(the one on the right of the two)") try: while True: if switch.is_pressed: print("Switch is on") switch.wait_for_release() else: print("Switch is off") switch.wait_for_press() except KeyboardInterrupt: print("\nExiting..\n") return ''' if cmd == "leds": test_leds() elif cmd == "buttons": test_btns() elif cmd == "buzzer": test_buzz() elif cmd == "all": test_leds() test_btns() test_buzz() else: print(usage) exit(0) exit(0)
20.362745
85
0.616273
44cbec44471edbf7fabcf10a3a6888eb36f362b0
3,435
py
Python
examples/OSPFv2/8400/ospfv2_network_lsa_count_monitor.1.0.py
nishanthprakash-hpe/nae-scripts
bf14e5155308683d59e7a95d21436a767d9132a8
[ "Apache-2.0" ]
null
null
null
examples/OSPFv2/8400/ospfv2_network_lsa_count_monitor.1.0.py
nishanthprakash-hpe/nae-scripts
bf14e5155308683d59e7a95d21436a767d9132a8
[ "Apache-2.0" ]
null
null
null
examples/OSPFv2/8400/ospfv2_network_lsa_count_monitor.1.0.py
nishanthprakash-hpe/nae-scripts
bf14e5155308683d59e7a95d21436a767d9132a8
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright (C) 2017 Hewlett Packard Enterprise Development LP # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. Manifest = { 'Name': 'ospfv2_network_lsa_count_monitor', 'Description': 'OSPFv2 Network LSA count Monitor Policy', 'Version': '1.0', 'Author': 'Aruba Networks' } ParameterDefinitions = { 'vrf_name': { 'Name': 'Vrf Name', 'Description': 'Vrf to be Monitor', 'Type': 'String', 'Default': 'default' }, 'ospf_process_id': { 'Name': 'OSPFv2 process id', 'Description': 'OSPFv2 process id to be Monitor', 'Type': 'integer', 'Default': 1 }, 'ospf_area_id': { 'Name': 'OSPFv2 area id', 'Description': 'OSPFv2 area id to be Monitor', 'Type': 'String', 'Default': '0.0.0.0' } } class Policy(NAE): def __init__(self): uri1 = '/rest/v1/system/vrfs/{}/ospf_routers/{}/areas/{}?' \ 'attributes=lsa_counts.network_lsa' self.m1 = Monitor( uri1, 'Network LSA Count Monitor (count)', [self.params['vrf_name'], self.params['ospf_process_id'], self.params['ospf_area_id']]) uri2 = '/rest/v1/system/vrfs/{}/ospf_routers/{}/areas/{}?' \ 'attributes=lsa_counts.network_summary_asbr_lsa' self.m2 = Monitor( uri2, 'Network Summary ASBR LSA Count Monitor (count)', [self.params['vrf_name'], self.params['ospf_process_id'], self.params['ospf_area_id']]) uri3 = '/rest/v1/system/vrfs/{}/ospf_routers/{}/areas/{}?' \ 'attributes=lsa_counts.network_summary_lsa' self.m3 = Monitor( uri3, 'Network Summary LSA Count Monitor (count)', [self.params['vrf_name'], self.params['ospf_process_id'], self.params['ospf_area_id']]) uri4 = '/rest/v1/system/vrfs/{}/ospf_routers/{}/areas/{}?' \ 'attributes=lsa_counts.nssa_lsa' self.m4 = Monitor( uri4, 'Network NSSA LSA Count Monitor (count)', [self.params['vrf_name'], self.params['ospf_process_id'], self.params['ospf_area_id']]) uri5 = '/rest/v1/system/vrfs/{}/ospf_routers/{}/areas/{}?' \ 'attributes=lsa_counts.router_lsa' self.m5 = Monitor( uri5, 'Network Router LSA Count Monitor (count)', [self.params['vrf_name'], self.params['ospf_process_id'], self.params['ospf_area_id']]) uri6 = '/rest/v1/system/vrfs/{}/ospf_routers/{}?' \ 'attributes=lsa_counts.external_lsa' self.m6 = Monitor( uri6, 'External LSA Count Monitor (count)', [self.params['vrf_name'], self.params['ospf_process_id']])
33.349515
68
0.572344
8757270c227802e35ac150eec2a474f5c4e99af7
9,986
py
Python
cky/cky.py
dqd/heap
6247eebfc87ea0447d199f3c2ef044727b7d3ad6
[ "WTFPL" ]
1
2017-07-03T19:58:08.000Z
2017-07-03T19:58:08.000Z
cky/cky.py
dqd/heap
6247eebfc87ea0447d199f3c2ef044727b7d3ad6
[ "WTFPL" ]
null
null
null
cky/cky.py
dqd/heap
6247eebfc87ea0447d199f3c2ef044727b7d3ad6
[ "WTFPL" ]
null
null
null
#! /usr/bin/python # coding=utf-8 """ The Cocke–Kasami–Younger algorithm 2010 Pavel Dvořák <id@dqd.cz> """ # Feel free to edit. ENCODING = 'latin2' AJKA_CMD = '/nlp/projekty/ajka/bin/ajka -b' GRAMMAR_FILE = 'cky.data' GRAMMAR_LIMIT = 100000 import re import sys import nltk import getopt import subprocess import unicodedata from os import path sys.setrecursionlimit(10000) # Uh, oh. def utfize(string): """ Convert to the Unicode string when it is necessary. @param string: a string. @type string: String @return: a string in Unicode. @rtype: String """ if isinstance(string, str): return string.decode('utf-8') return string def tr(string, table): """ Replace parts of the string according to the replacement table. @param string: a string. @type string: String @param table: a dictionary of replacements (keys to values). @type table: {a} @return: a string with applied replacements. @rtype: String """ return re.compile('|'.join(map(re.escape, table))).sub(lambda x: table[x.group(0)], string) def morph(word): """ Perform the morphological analysis of the Czech word. It uses the external morphological analyser Ajka. @param word: any Czech word. @type word: String @return: A list of word classes. If the word is not known, an empty list is returned. @rtype: [String] """ if re.match(r'\W+', word, re.UNICODE): return [word] ajka = subprocess.Popen(AJKA_CMD, shell=True, stdin=subprocess.PIPE, stdout=subprocess.PIPE) output = ajka.communicate(utfize(word).encode(ENCODING))[0].decode(ENCODING) if '--not found' in output or output[:5] != 'ajka>': return [] return [wc[3:] for wc in filter(lambda x: x[:3] == '<c>', output.split())] def cky(sentence, verbose): """ Perform the syntactic analysis on the sentence. The function uses the Cocke–Kasami–Younger algorithm. If a word in the sentence is not recognized, the function terminate the program with an error message. @param sentence: any correctly formed Czech sentence. @type sentence: String @param verbose: verbose output. @type verbose: Bool """ if verbose: print 'Lexical analysis...' lexical = [] for word in nltk.tokenize.WordPunctTokenizer().tokenize(utfize(sentence)): classes = morph(word) if not classes: print 'Error: the word \'%s\' is not recognized by the morphological analyser Ajka.' % word sys.exit(1) lexical.append((word, classes)) if verbose: for l in lexical: print '%s: %s' % (l[0], u', '.join(l[1])) print '\nLoading the grammar...' try: f = open(GRAMMAR_FILE, 'r') grammar = nltk.parse_cfg(f.read()) f.close() except IOError, err: print 'Error: %s.' % err sys.exit(1) def rhs(x): terminals = grammar.productions(lhs=x) if not terminals: print 'Error: a correct terminal for the nonterminal \'%s\' cannot be found.' % x sys.exit(1) return grammar.productions(rhs=terminals[0].rhs()[0]) def abc(x, y): return filter(lambda x: re.match(r'.* %s$' % y, str(x)), rhs(x)) if verbose: print 'Performing the analysis...' chart = [] for ls in lexical: chart.append([set([g.lhs() for l in ls[1] for g in grammar.productions(rhs=l)])]) if verbose: print ls[0], ' ', for j in range(1, len(lexical)): for i in range(len(lexical) - j): chart[i].insert(j, set([])) for k in range(j): chart[i][j].update([a.lhs() for b in chart[i][k] for c in chart[i + k + 1][j - k - 1] for a in abc(b, c)]) if verbose: print for j in range(len(lexical)): for i in range(len(lexical) - j): print list(chart[i][j]), ' ', print print 'The sentence is', if not nltk.grammar.Nonterminal('S') in [b.lhs() for c in chart[0][-1] for b in grammar.productions(rhs=c)]: print 'NOT', print 'OK according to our Czech grammar.' def generate(corpus, verbose): """ Generate a grammar file of the given corpus. The corpus contains a set of sentences having their words tagged. The grammar is going to be in the Chomsky normal form (CNF), so the sentences should not be more complex than the context-free language. CNF is defined by the following rules:\n A → BC or\n A → α or\n S → ε. @param corpus: a filepath to the corpus (e.g. /nlp/corpora/vertical/desam/source). @type corpus: String @param verbose: verbose output. @type verbose: Bool """ if not path.isfile(corpus): print 'Error: the corpus file \'%s\' does not exist.' % corpus sys.exit(1) try: f = open(corpus, 'r') except IOError, err: print 'Error: %s.' % err sys.exit(1) t = nltk.Tree('(S)') processing = False opening = False if verbose: print 'Generation of the sentences...' for line in f.readlines()[:GRAMMAR_LIMIT]: line = unicode(line, ENCODING) tag = re.match(r'^<.+>', line) word = unicodedata.normalize('NFKD', line.split()[-1]).encode('ascii', 'ignore') if not processing and opening and not tag and not re.match(r'^\d+\)', line): sentence = [word] processing = True elif processing and not tag: sentence.append(word) elif processing and tag: t = add(t, sentence) processing = False opening = re.match(r'^<\w+.*>', line) f.close() if verbose: print 'Done. Generated %d sentences.' % len(t) print 'Normalization to CNF...' t.chomsky_normal_form() if verbose: print 'Done. The tree now reaches a height of %d nodes.' % t.height() try: f = open(GRAMMAR_FILE, 'w') if verbose: print 'Transformation into the grammar...' i = 0 for rule in set(t.productions()): rule = re.sub(r'<([\w-]+)>', r'\1', '%s\n' % rule) rule = re.sub(r'(\w+)-', r'\1_', rule) # this is not needed in the newer versions of NLTK rule = re.sub(r' S\|(.+)', r' \1', rule) rule = re.sub(r'^S\|([\w-]+) (.+)', r'S \2 \n\1 \2', rule) f.write(rule) if verbose: i += rule.count('\n') f.close() except IOError, err: print 'Error: %s.' % err sys.exit(1) if verbose: print 'Done. The grammar contains %d rules.' % i def add(t, l): """ Recursively add the list to the tree. @param t: a tree; defined in the nltk.Tree module. @type t: Tree @param l: a list of items -- in this case, it is a list of words. @type l: [a] """ if not l: return t a = l.pop(0) table = {'[': 'LPAREN', ']': 'RPAREN', '+': 'PLUS', '=': 'EQUALS', '.': 'DOT', ':': 'COLON', ';': 'SEMIC', ',': 'COMMA', '`': 'BACKT', '!': 'EXCLAM', '?': 'QUEST', '|': 'PIPE', '"': 'QUOTE', "'": 'APOST', '-': 'DASH', '&': 'AMPER', '/': 'SLASH', '%': 'PERCEN', '*': 'ASTER'} a = tr(a, {'(': '[', ')': ']'}) # parenthesis are reserved b = tr(a, table) for x in t: if isinstance(x, nltk.Tree) and x.node == a: x = add(x, l) return t t.append(add(nltk.Tree('(X%s %s)' % (b, a)), l)) return t def usage(prog_name): """ Usage: _name_ [OPTIONS] The Cocke–Kasami–Younger algorithm performs the syntactic analysis of a sentence using the grammar in a Chomsky normal form (CNF) and outputs a parsing table. The analysed sentence is expected to be entered by the standard input (e.g. echo "Model hradu v použitelném stavu." | _name_). OPTIONS: _tab_-h, --help display this help and exit _tab_-g, --generate=CORPUS generate a grammar file of the CORPUS _tab_-v, --verbose verbose output The CORPUS file (e.g. /nlp/corpora/vertical/desam/source) should be saved in the _encoding_ encoding. """ output = '\n'.join([line[4:] for line in usage.__doc__.splitlines()][1:-1]) print tr(output, {'_name_': path.basename(prog_name), '_encoding_': ENCODING, '_tab_': '\t'}) def main(argv): """ Handle the input parameters and run the program. If anything goes wrong, report an error. @param argv: input arguments. @type argv: [String] """ try: opts, args = getopt.getopt(argv[1:], 'hg:v', ['help', 'generate=', 'verbose']) except getopt.GetoptError, err: print 'Error: %s.' % err sys.exit(1) g = '' v = False for opt, arg in opts: if opt in ['-h', '--help']: usage(argv[0]) sys.exit() elif opt in ['-g', '--generate']: g = arg elif opt in ['-v', '--verbose']: v = True if g: generate(g, v) sys.exit() try: input = sys.stdin.readlines() except KeyboardInterrupt: print 'Error: enter the text and press the Ctrl + D key combination, not the Ctrl + C one.' sys.exit(1) if not input or not input[0].strip(): print 'Error: you have to enter the analysed sentence by the standard input.' sys.exit(1) elif not path.isfile(GRAMMAR_FILE) or path.getsize(GRAMMAR_FILE) < 127: # Let's say 128 is a reasonably small grammar. print 'Error: the grammar file is empty. You have to generate it first.' sys.exit(1) cky(input[0], v) if __name__ == "__main__": main(sys.argv)
27.66205
122
0.558983
9c42304aa0998e62a7e7d7dcec114f7bd5b89ce6
8,408
py
Python
docs/conf.py
PyXRD/pyxrd
26bacdf64f3153fa74b8caa62e219b76d91a55c1
[ "BSD-2-Clause" ]
27
2018-06-15T15:28:18.000Z
2022-03-10T12:23:50.000Z
docs/conf.py
PyXRD/pyxrd
26bacdf64f3153fa74b8caa62e219b76d91a55c1
[ "BSD-2-Clause" ]
22
2018-06-14T08:29:16.000Z
2021-07-05T13:33:44.000Z
docs/conf.py
PyXRD/pyxrd
26bacdf64f3153fa74b8caa62e219b76d91a55c1
[ "BSD-2-Clause" ]
8
2019-04-13T13:03:51.000Z
2021-06-19T09:29:11.000Z
# -*- coding: utf-8 -*- # # PyXRD documentation build configuration file, created by # sphinx-quickstart on Wed Feb 12 10:27:39 2014. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. top_dir = os.path.dirname(os.path.abspath(".")) if os.path.exists(os.path.join(top_dir, "pyxrd")): sys.path.insert(0, top_dir) pass import pyxrd # @UnusedImport # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.coverage', 'sphinx.ext.viewcode', 'sphinx.ext.autosummary', 'sphinx.ext.pngmath', 'sphinx.ext.intersphinx' ] intersphinx_mapping = {'python': ('http://docs.python.org/2.7', None)} pngmath_latex_preamble = r""" \usepackage{mathtools} \usepackage{units} \usepackage[document]{ragged2e} \usepackage[fontsize=8pt]{scrextend} """ # User __init__ docstrings: autoclass_content = 'both' # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'PyXRD' copyright = u'2014, Mathijs Dumon' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '.'.join(map(str, pyxrd.__version__.split('.')[0:2])) # The full version, including alpha/beta/rc tags. release = pyxrd.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'nature' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'pyxrddoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # 'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'PyXRD.tex', u'PyXRD Documentation', u'Mathijs Dumon', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'pyxrd', u'PyXRD Documentation', [u'Mathijs Dumon'], 1) ] # If true, show URL addresses after external links. # man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'PyXRD', u'PyXRD Documentation', u'Mathijs Dumon', 'PyXRD', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. # texinfo_appendices = [] # If false, no module index is generated. # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # texinfo_show_urls = 'footnote' autodoc_member_order = 'bysource'
31.373134
80
0.7098
817636fb7de1c2e46351604b0691300599cf8823
7,411
py
Python
shiiba/regression3a.py
yaukwankiu/armor
6c57df82fe3e7761f43f9fbfe4f3b21882c91436
[ "CC0-1.0" ]
1
2015-11-06T06:41:33.000Z
2015-11-06T06:41:33.000Z
shiiba/regression3a.py
yaukwankiu/armor
6c57df82fe3e7761f43f9fbfe4f3b21882c91436
[ "CC0-1.0" ]
null
null
null
shiiba/regression3a.py
yaukwankiu/armor
6c57df82fe3e7761f43f9fbfe4f3b21882c91436
[ "CC0-1.0" ]
null
null
null
# test script for regression3 # regression3 : a more streamlined version of the shiiba regression and advection function/module ########### #imports import numpy as np import numpy.ma as ma from .. import pattern from . import regression2 as regression from ..advection import semiLagrangian sl = semiLagrangian from imp import reload import time lsq = np.linalg.lstsq time0= time.time() def tic(): global timeStart timeStart = time.time() def toc(): print "time spent:", time.time()-timeStart dbz=pattern.DBZ ################ # set up def regress(a, b): phi0 = a.matrix phi1 = b.matrix phi0 phi1 phi1-phi0 ################## # test phi0.sharedmask #check phi0.unshare_mask() phi1.unshare_mask() phi0.sharedmask #check phi0.up = np.roll(phi0, 1, axis=0) phi0.down = np.roll(phi0,-1, axis=0) phi0.right = np.roll(phi0, 1, axis=1) phi0.left = np.roll(phi0,-1, axis=1) phi0.sharedmask phi0.left.sharedmask #check phi0.up.sharedmask #masking the four edges for v in [phi0.up, phi0.down, phi0.left, phi0.right]: v.mask[ :, 0] = True v.mask[ :,-1] = True v.mask[ 0, :] = True v.mask[-1, :] = True phi0.sharedmask phi0.left.sharedmask #check phi0.up.sharedmask phi0.up phi0.left ######################################################################### # CENTRAL DIFFERENCE SCHEME # preparing for the regression: defining the X and Y # advection equation: # phi1-phi0 = -dt [ (u,v). ((phidown-phiup)/2dI, (phileft-phiright)/2dJ) - q] # shiiba assumption: u = c1*I+c2*J+c3, v=c4*I+c5*J+c6, q=c7*I+c8*J+c9 # for simplicity we let dt=dI=dJ=1 print "\n=================================\nCentral difference scheme" #xxx= raw_input('press enter:') height, width = phi0.shape X, Y = np.meshgrid(range(width), range(height)) I, J = Y, X I = I.view(ma.MaskedArray) J = J.view(ma.MaskedArray) I.mask = None J.mask = None imageList = [phi0, phi1, phi0.up, phi0.down, phi0.left, phi0.right, I, J] mask = phi0.mask # # get the union of masks... # for v in imageList: mask += v.mask # ... and share it for v in imageList: v.mask = mask phi0, phi1, phi0.up, phi0.down, phi0.left, phi0.right, I, J # # ###################################################################### ################################################################################# # # and compress the data into one dim before we do further computation. # the two-dimensional structure is no longer needed. # phi0.sharedmask # check phi1.sharedmask phi =phi0.compressed() # compressing phi0 into 1-dimensional phi phi_next =phi1.compressed() # same phiup =phi0.up.compressed() phidown =phi0.down.compressed() phileft =phi0.left.compressed() phiright =phi0.right.compressed() I = I.compressed() J = J.compressed() xxx = np.vstack([phi, phi_next, phiup, phidown, phileft, phiright, I, J]) #test xxx[:,:10] xxx[:,10:20] xxx[:,20:] regressand = phi_next - phi A = -(phidown-phiup)/2 B = -(phileft-phiright)/2 regressor = np.zeros((9, len(regressand))) # c1; c2; ... c9 one row for each coeff regressor[0,:] = A*I regressor[1,:] = A*J regressor[2,:] = A regressor[3,:] = B*I regressor[4,:] = B*J regressor[5,:] = B regressor[6,:] = I regressor[7,:] = J regressor[8,:] = 1 regressor[:,:10] regressor[:,10:20] regressor[:,20:] C, residual, rank, s = lsq(regressor.T, regressand) residual = residual[0] SStotal = regressand.var() * len(regressand) Rsquared = 1 - residual/SStotal print "For the central difference scheme, C, Rsquared =" , C, Rsquared # # the above - central difference scheme, 22 Feb 2013 ###################################################################### ######################################################################### # UPWIND SCHEME - 23 Feb 2013 # preparing for the regression: defining the X and Y # advection equation: # phi1-phi0 = -dt [ (u,v) . ((phidown-phiup)/2dI, (phileft-phiright)/2dJ) - q + # upWindCorrectionTerm], # where upWindCorrectionTerm # = (|u|,|v|). ((2phi-phidown-phiup)/2dI, (2phi-phileft-phiright)/2dJ) # # shiiba assumption: u = c1*I+c2*J+c3, v=c4*I+c5*J+c6, q=c7*I+c8*J+c9 # for simplicity we let dt=dI=dJ=1 print "\n=================================\nupWInd scheme" #xxx= raw_input('press enter:') ############################### # upWind scheme parameters convergenceMark = 0.000000001 C_ = np.arange(9)*999 #just some random initialisation loopCount = 0 while abs(C_-C).sum() > convergenceMark: loopCount +=1 c1, c2, c3, c4, c5, c6, c7, c8, c9 = C C_ = C # keeping the old C U0 = c1*I + c2*J + c3 V0 = c4*I + c5*J + c6 # q = c7*I + c8*J + c9 # just in case it's needed # In the following, dI=dJ=dt = 1 for simplicity upWindCorrectionTerm = abs(U0)*(2*phi-phidown-phiup)/2 + abs(V0)*(2*phi-phileft-phiright)/2 regressand = phi_next - phi + upWindCorrectionTerm # regressor unchanged - see equation (4.3) on p.32, annual report, december 2012 C, residual, rank, s = lsq(regressor.T, regressand) residual = residual[0] SStotal = regressand.var() * len(regressand) Rsquared = 1 - residual/SStotal print "\n-------------------------------\n" print "Loop:", loopCount print "abs(C_-C).sum():", abs(C_-C).sum() print "Rsquared:", Rsquared print "shiiba coeffs:", C #print "upWindCorrectionTerm: (", len(upWindCorrectionTerm), ")",upWindCorrectionTerm, ################################## # Shiiba regression results print "\n\n\n=============== Shiiba regression results for", a.name, "and", b.name print "Rsquared = ", Rsquared print "C = ", C return C, Rsquared def interpolate(C, a): ##################################### # interpolation scalar1 = regression.convert2(C, a) scalar1.name = "source term for" + a.name + "and" + b.name scalar1.show2() scalar1.show3() vect1 = regression.convert(C, a) vect1.show() tic() a1 = sl.interpolate2(a, vect1) toc() a1.show() return a1, vect1, scalar1 def corr(a,b): phi0 = a.matrix.flatten() phi1 = b.matrix.flatten() return ma.corrcoef(phi0,phi1) def main(a, b): C, Rsquared = regress(a, b) a1, vect1, scalar1 = interpolate(C,a) diff = b-a1 diff.cmap = 'hsv' diff.show() corr_a_b = corr(a,b) corr_a1_b = corr(a1,b) print diff.matrix.max() print diff.matrix.min() print diff.matrix.mean() print diff.matrix.var() return {'a1':a1, 'vect1':vect1, 'scalar1':scalar1, 'C':C, 'Rsquared':Rsquared, 'corr_a_b':corr_a_b, 'corr_a1_b': corr_a1_b} if __name__ == "__main__": a = dbz('20120612.0200') b = dbz('20120612.0210') a.load() b.load() main() """
27.14652
99
0.532722
7b030e72ee242d8cf5253784fcbe02d5089814d2
88
py
Python
main.py
Ruiii-w/ImageRetrieval
76fde37de3dc7fc4401315c26513f82cadf582cd
[ "MIT" ]
null
null
null
main.py
Ruiii-w/ImageRetrieval
76fde37de3dc7fc4401315c26513f82cadf582cd
[ "MIT" ]
null
null
null
main.py
Ruiii-w/ImageRetrieval
76fde37de3dc7fc4401315c26513f82cadf582cd
[ "MIT" ]
null
null
null
import model.WindowModel as WM if __name__ == '__main__': WM.SearchingWindowModel()
22
30
0.75
03553bb166dd3a23cb9249888664551a938f62e2
23,844
py
Python
tensorlayerx/nn/core/common.py
tensorlayer/TensorLayerX
4e3e6f13687309dda7787f0b86e35a62bb3adbad
[ "Apache-2.0" ]
34
2021-12-03T08:19:23.000Z
2022-03-13T08:34:34.000Z
tensorlayerx/nn/core/common.py
tensorlayer/TensorLayerX
4e3e6f13687309dda7787f0b86e35a62bb3adbad
[ "Apache-2.0" ]
null
null
null
tensorlayerx/nn/core/common.py
tensorlayer/TensorLayerX
4e3e6f13687309dda7787f0b86e35a62bb3adbad
[ "Apache-2.0" ]
3
2021-12-28T16:57:20.000Z
2022-03-18T02:23:14.000Z
#! /usr/bin/python # -*- coding: utf-8 -*- import os import tensorlayerx as tlx from tensorlayerx.files import utils from tensorlayerx import logging import numpy as np from queue import Queue from tensorlayerx.nn.initializers import * if tlx.BACKEND == 'mindspore': from mindspore.ops.operations import Assign from mindspore.nn import Cell from mindspore import Tensor import mindspore as ms _act_dict = { "relu": tlx.ops.ReLU, "relu6": tlx.ops.ReLU6, "leaky_relu": tlx.ops.LeakyReLU, "lrelu": tlx.ops.LeakyReLU, "softplus": tlx.ops.Softplus, "tanh": tlx.ops.Tanh, "sigmoid": tlx.ops.Sigmoid, "softmax": tlx.ops.Softmax } _initializers_dict = { "ones": ones(), "zeros": zeros(), "constant": constant(value=0.0), "random_uniform": random_uniform(minval=-1.0, maxval=1.0), "random_normal": random_normal(mean=0.0, stddev=0.05), "truncated_normal": truncated_normal(stddev=0.02), "he_normal": he_normal(), "xavier_uniform": XavierUniform(), "xavier_normal": XavierNormal() } def check_parameter(parameter, dim='2d'): if dim == '2d': if isinstance(parameter, int): out = (parameter, parameter) else: out = parameter elif dim == '3d': if isinstance(parameter, int): out = (parameter, parameter, parameter) else: out = parameter else: raise ("dim must be 2d or 3d.") return out def str2init(initializer): if isinstance(initializer, str): if initializer not in _initializers_dict.keys(): raise Exception( "Unsupported string initialization: {}".format(initializer), "String initialization supports these methods: {}".format(_initializers_dict.keys()) ) return _initializers_dict[initializer] else: return initializer def str2act(act): if len(act) > 5 and act[0:5] == "lrelu": try: alpha = float(act[5:]) return tlx.ops.LeakyReLU(negative_slope=alpha) except Exception as e: raise Exception("{} can not be parsed as a float".format(act[5:])) if len(act) > 10 and act[0:10] == "leaky_relu": try: alpha = float(act[10:]) return tlx.ops.LeakyReLU(negative_slope=alpha) except Exception as e: raise Exception("{} can not be parsed as a float".format(act[10:])) if act not in _act_dict.keys(): raise Exception("Unsupported act: {}".format(act)) return _act_dict[act] def processing_act(act): # Processing strings as input, activation functions without parameters。 if isinstance(act, str): str_act = str2act(act) if act: # Processing strings as input, activation functions with parameters。 if isinstance(act, str) and (len(act) > 5 and act[0:5] == "lrelu" or len(act) > 10 and act[0:10] == "leaky_relu"): out_act = str_act elif isinstance(act, str): out_act = str_act() else: # Processing classes or functions as input, activation functions without parameters try: out_act = act() # Processing class or function as input, activation function with parameters except: out_act = act else: # Processing act is None out_act = act return out_act def _save_weights(net, file_path, format=None): """Input file_path, save model weights into a file of given format. Use net.load_weights() to restore. Parameters ---------- file_path : str Filename to which the model weights will be saved. format : str or None Saved file format. Value should be None, 'hdf5', 'npz', 'npz_dict' or 'ckpt'. Other format is not supported now. 1) If this is set to None, then the postfix of file_path will be used to decide saved format. If the postfix is not in ['h5', 'hdf5', 'npz', 'ckpt'], then file will be saved in hdf5 format by default. 2) 'hdf5' will save model weights name in a list and each layer has its weights stored in a group of the hdf5 file. 3) 'npz' will save model weights sequentially into a npz file. 4) 'npz_dict' will save model weights along with its name as a dict into a npz file. 5) 'ckpt' will save model weights into a tensorflow ckpt file. Default None. Examples -------- 1) Save model weights in hdf5 format by default. >>> net = vgg16() >>> optimizer = tlx.optimizers.Adam(learning_rate=0.001) >>> metrics = tlx.metrics.Accuracy() >>> model = tlx.model.Model(network=net, loss_fn=tlx.losses.cross_entropy, optimizer=optimizer, metrics=metrics) >>> model.save_weights('./model.h5') ... >>> model.load_weights('./model.h5') 2) Save model weights in npz/npz_dict format >>> model.save_weights('./model.npz') >>> model.save_weights('./model.npz', format='npz_dict') """ if tlx.BACKEND != 'torch' and net.all_weights is None or len(net.all_weights) == 0: logging.warning("Model contains no weights or layers haven't been built, nothing will be saved") return if format is None: postfix = file_path.split('.')[-1] if postfix in ['h5', 'hdf5', 'npz', 'ckpt']: format = postfix else: format = 'hdf5' if format == 'hdf5' or format == 'h5': raise NotImplementedError("hdf5 load/save is not supported now.") # utils.save_weights_to_hdf5(file_path, net) elif format == 'npz': utils.save_npz(net.all_weights, file_path) elif format == 'npz_dict': if tlx.BACKEND == 'torch': utils.save_npz_dict(net.named_parameters(), file_path) else: utils.save_npz_dict(net.all_weights, file_path) elif format == 'ckpt': # TODO: enable this when tf save ckpt is enabled raise NotImplementedError("ckpt load/save is not supported now.") else: raise ValueError( "Save format must be 'hdf5', 'npz', 'npz_dict' or 'ckpt'." "Other format is not supported now." ) def _load_weights(net, file_path, format=None, in_order=True, skip=False): """Load model weights from a given file, which should be previously saved by net.save_weights(). Parameters ---------- file_path : str Filename from which the model weights will be loaded. format : str or None If not specified (None), the postfix of the file_path will be used to decide its format. If specified, value should be 'hdf5', 'npz', 'npz_dict' or 'ckpt'. Other format is not supported now. In addition, it should be the same format when you saved the file using net.save_weights(). Default is None. in_order : bool Allow loading weights into model in a sequential way or by name. Only useful when 'format' is 'hdf5'. If 'in_order' is True, weights from the file will be loaded into model in a sequential way. If 'in_order' is False, weights from the file will be loaded into model by matching the name with the weights of the model, particularly useful when trying to restore model in eager(graph) mode from a weights file which is saved in graph(eager) mode. Default is True. skip : bool Allow skipping weights whose name is mismatched between the file and model. Only useful when 'format' is 'hdf5' or 'npz_dict'. If 'skip' is True, 'in_order' argument will be ignored and those loaded weights whose name is not found in model weights (net.all_weights) will be skipped. If 'skip' is False, error will occur when mismatch is found. Default is False. Examples -------- 1) load model from a hdf5 file. >>> net = vgg16() >>> optimizer = tlx.optimizers.Adam(learning_rate=0.001) >>> metrics = tlx.metrics.Accuracy() >>> model = tlx.model.Model(network=net, loss_fn=tlx.losses.cross_entropy, optimizer=optimizer, metrics=metrics) >>> model.load_weights('./model_graph.h5', in_order=False, skip=True) # load weights by name, skipping mismatch >>> model.load_weights('./model_eager.h5') # load sequentially 2) load model from a npz file >>> model.load_weights('./model.npz') 3) load model from a npz file, which is saved as npz_dict previously >>> model.load_weights('./model.npz', format='npz_dict') Notes ------- 1) 'in_order' is only useful when 'format' is 'hdf5'. If you are trying to load a weights file which is saved in a different mode, it is recommended to set 'in_order' be True. 2) 'skip' is useful when 'format' is 'hdf5' or 'npz_dict'. If 'skip' is True, 'in_order' argument will be ignored. """ if not os.path.exists(file_path): raise FileNotFoundError("file {} doesn't exist.".format(file_path)) if format is None: format = file_path.split('.')[-1] if format == 'hdf5' or format == 'h5': raise NotImplementedError("hdf5 load/save is not supported now.") # if skip ==True or in_order == False: # # load by weights name # utils.load_hdf5_to_weights(file_path, net, skip) # else: # # load in order # utils.load_hdf5_to_weights_in_order(file_path, net) elif format == 'npz': utils.load_and_assign_npz(file_path, net) elif format == 'npz_dict': utils.load_and_assign_npz_dict(file_path, net, skip) elif format == 'ckpt': # TODO: enable this when tf save ckpt is enabled raise NotImplementedError("ckpt load/save is not supported now.") else: raise ValueError( "File format must be 'hdf5', 'npz', 'npz_dict' or 'ckpt'. " "Other format is not supported now." ) def _save_standard_weights_dict(net, file_path): # Eliminate parameter naming differences between frameworks. if tlx.BACKEND == 'torch': save_standard_npz_dict(net.named_parameters(), file_path) else: save_standard_npz_dict(net.all_weights, file_path) def encode_list_name(list_name): # TensorFlow weights format: conv1.weight:0, conv1.bias:0 # Paddle weights format: conv1.weight, conv1.bias # PyTorch weights format: conv1.W, conv1.W # MindSpore weights format: conv1.weights, conv1.bias # standard weights format: conv1.weights, conv1.bias for i in range(len(list_name)): if tlx.BACKEND == 'tensorflow': list_name[i] = list_name[i][:-2] if tlx.BACKEND == 'torch': if list_name[i][-1] == 'W' and 'conv' not in list_name[i]: list_name[i] = list_name[i][:-2] + str('/weights') elif list_name[i][-1] == 'W' and 'conv' in list_name[i]: list_name[i] = list_name[i][:-2] + str('/filters') elif list_name[i][-1] == 'b': list_name[i] = list_name[i][:-2] + str('/biases') elif list_name[i].split('.')[-1] in ['beta', 'gamma', 'moving_mean', 'moving_var']: pass else: raise NotImplementedError('This weights cannot be converted.') return list_name def decode_key_name(key_name): if tlx.BACKEND == 'tensorflow': key_name = key_name + str(':0') if tlx.BACKEND == 'torch': if key_name.split('/')[-1] in ['weights', 'filters']: key_name = key_name[:-8] + str('.W') elif key_name.split('/')[-1] == 'biases': key_name = key_name[:-7] + str('.b') else: raise NotImplementedError('This weights cannot be converted.') return key_name def save_standard_npz_dict(save_list=None, name='model.npz'): """Input parameters and the file name, save parameters as a dictionary into standard npz_dict file. Use ``tlx.files.load_and_assign_npz_dict()`` to restore. Parameters ---------- save_list : list of parameters A list of parameters (tensor) to be saved. name : str The name of the `.npz` file. """ if save_list is None: save_list = [] if tlx.BACKEND != 'torch': save_list_names = [tensor.name for tensor in save_list] if tlx.BACKEND == 'tensorflow': save_list_var = utils.tf_variables_to_numpy(save_list) elif tlx.BACKEND == 'mindspore': save_list_var = utils.ms_variables_to_numpy(save_list) elif tlx.BACKEND == 'paddle': save_list_var = utils.pd_variables_to_numpy(save_list) elif tlx.BACKEND == 'torch': save_list_names = [] save_list_var = [] for named, values in save_list: save_list_names.append(named) save_list_var.append(values.cpu().detach().numpy()) else: raise NotImplementedError('Not implemented') save_list_names = encode_list_name(save_list_names) save_var_dict = {save_list_names[idx]: val for idx, val in enumerate(save_list_var)} np.savez(name, **save_var_dict) save_list_var = None save_var_dict = None del save_list_var del save_var_dict logging.info("[*] Model saved in npz_dict %s" % name) def _load_standard_weights_dict(net, file_path, skip=False, reshape=False, format='npz_dict'): if format == 'npz_dict': load_and_assign_standard_npz_dict(net, file_path, skip, reshape) elif format == 'npz': load_and_assign_standard_npz(file_path, net, reshape) def load_and_assign_standard_npz_dict(net, file_path, skip=False, reshape=False): if not os.path.exists(file_path): logging.error("file {} doesn't exist.".format(file_path)) return False weights = np.load(file_path, allow_pickle=True) if len(weights.keys()) != len(set(weights.keys())): raise Exception("Duplication in model npz_dict %s" % file_path) if tlx.BACKEND == 'torch': net_weights_name = [n for n, v in net.named_parameters()] torch_weights_dict = {n: v for n, v in net.named_parameters()} else: net_weights_name = [w.name for w in net.all_weights] for key in weights.keys(): de_key = decode_key_name(key) if de_key not in net_weights_name: if skip: logging.warning("Weights named '%s' not found in network. Skip it." % key) else: raise RuntimeError( "Weights named '%s' not found in network. Hint: set argument skip=Ture " "if you want to skip redundant or mismatch weights." % key ) else: if tlx.BACKEND == 'tensorflow': reshape_weights = weight_reshape(weights[key], reshape) check_reshape(reshape_weights, net.all_weights[net_weights_name.index(de_key)]) utils.assign_tf_variable(net.all_weights[net_weights_name.index(de_key)], reshape_weights) elif tlx.BACKEND == 'mindspore': reshape_weights = weight_reshape(weights[key], reshape) import mindspore as ms assign_param = ms.Tensor(reshape_weights, dtype=ms.float32) check_reshape(assign_param, net.all_weights[net_weights_name.index(de_key)]) utils.assign_ms_variable(net.all_weights[net_weights_name.index(de_key)], assign_param) elif tlx.BACKEND == 'paddle': reshape_weights = weight_reshape(weights[key], reshape) check_reshape(reshape_weights, net.all_weights[net_weights_name.index(de_key)]) utils.assign_pd_variable(net.all_weights[net_weights_name.index(de_key)], reshape_weights) elif tlx.BACKEND == 'torch': reshape_weights = weight_reshape(weights[key], reshape) check_reshape(reshape_weights, net.all_weights[net_weights_name.index(de_key)]) utils.assign_th_variable(torch_weights_dict[de_key], reshape_weights) else: raise NotImplementedError('Not implemented') logging.info("[*] Model restored from npz_dict %s" % file_path) def load_and_assign_standard_npz(file_path=None, network=None, reshape=False): if network is None: raise ValueError("network is None.") if not os.path.exists(file_path): logging.error("file {} doesn't exist.".format(file_path)) return False else: weights = utils.load_npz(name=file_path) ops = [] if tlx.BACKEND == 'tensorflow': for idx, param in enumerate(weights): param = weight_reshape(param, reshape) check_reshape(param, network.all_weights[idx]) ops.append(network.all_weights[idx].assign(param)) elif tlx.BACKEND == 'mindspore': class Assign_net(Cell): def __init__(self, y): super(Assign_net, self).__init__() self.y = y def construct(self, x): Assign()(self.y, x) for idx, param in enumerate(weights): assign_param = Tensor(param, dtype=ms.float32) assign_param = weight_reshape(assign_param, reshape) check_reshape(assign_param, network.all_weights[idx]) Assign()(network.all_weights[idx], assign_param) elif tlx.BACKEND == 'paddle': for idx, param in enumerate(weights): param = weight_reshape(param, reshape) check_reshape(param, network.all_weights[idx]) utils.assign_pd_variable(network.all_weights[idx], param) elif tlx.BACKEND == 'torch': for idx, param in enumerate(weights): param = weight_reshape(param, reshape) check_reshape(param, network.all_weights[idx]) utils.assign_th_variable(network.all_weights[idx], param) else: raise NotImplementedError("This backend is not supported") return ops logging.info("[*] Load {} SUCCESS!".format(file_path)) def check_reshape(weight, shape_weights): if len(weight.shape) >= 4 and weight.shape[::-1] == tuple(shape_weights.shape): if tlx.BACKEND == 'tensorflow': raise Warning( 'Set reshape to True only when importing weights from MindSpore/PyTorch/PaddlePaddle to TensorFlow.' ) if tlx.BACKEND == 'torch': raise Warning('Set reshape to True only when importing weights from TensorFlow to PyTorch.') if tlx.BACKEND == 'paddle': raise Warning('Set reshape to True only when importing weights from TensorFlow to PaddlePaddle.') if tlx.BACKEND == 'mindspore': raise Warning('Set reshape to True only when importing weights from TensorFlow to MindSpore.') def weight_reshape(weight, reshape=False): # TODO In this case only 2D convolution is considered. 3D convolution tests need to be supplemented. if reshape: if len(weight.shape) == 4: weight = np.moveaxis(weight, (2, 3), (1, 0)) if len(weight.shape) == 5: weight = np.moveaxis(weight, (3, 4), (1, 0)) return weight def tolist(tensors): if isinstance(tensors, list) or isinstance(tensors, tuple): ntensors = list() for t in tensors: ntensors += tolist(t) return ntensors else: return [tensors] def construct_graph(inputs, outputs): """construct computation graph for model using ModuleNode object""" all_layers = [] node_by_depth = [] input_tensors_list = inputs if isinstance(inputs, list) else inputs queue_node = Queue() # BFS to visit all nodes that should be involved in the computation graph output_tensors_list = outputs if isinstance(outputs, list) else [outputs] output_nodes = [tensor._info[0] for tensor in output_tensors_list] visited_node_names = set() for out_node in output_nodes: if out_node.visited: continue queue_node.put(out_node) while not queue_node.empty(): cur_node = queue_node.get() in_nodes = cur_node.in_nodes for node in in_nodes: node.out_nodes.append(cur_node) if not node.visited: queue_node.put(node) node.visited = True if node.node_name not in visited_node_names: visited_node_names.add(node.node_name) # else have multiple layers with the same name else: raise ValueError( 'Layer name \'%s\' has already been used by another layer. Please change the layer name.' % node.layer.name ) # construct the computation graph in top-sort order cur_depth = [tensor._info[0] for tensor in input_tensors_list] next_depth = [] indegrees = {} visited_layer_names = [] while not len(cur_depth) == 0: node_by_depth.append(cur_depth) for node in cur_depth: if node.layer.name not in visited_layer_names: all_layers.append(node.layer) visited_layer_names.append(node.layer.name) for out_node in node.out_nodes: if out_node.node_name not in indegrees.keys(): indegrees[out_node.node_name] = len(out_node.in_nodes) indegrees[out_node.node_name] -= 1 if indegrees[out_node.node_name] == 0: next_depth.append(out_node) cur_depth = next_depth next_depth = [] return node_by_depth, all_layers def select_attrs(obj): attrs_dict = obj.__dict__ attrs = {} _select_key = ['kernel_size', 'stride', 'act', 'padding', 'data_format', 'concat_dim', 'dilation', 'bias'] for k in _select_key: if k in attrs_dict: if k == 'act': attrs[k] = attrs_dict[k].__class__.__name__ else: attrs[k] = attrs_dict[k] return attrs class ModuleNode(object): """ The class :class:`ModuleNode` class represents a conceptional node for a layer. ModuleNode is used for building topology and it is actually a light weighted wrapper over Layer. Parameters ---------- layer : tl.layers.Layer A tl layer that wants to create a node. node_index : int Index of this node in layer._nodes. in_nodes :a list of ModuleNode Father nodes to this node. in_tensors : a list of tensors Input tensors to this node. out_tensors : a list of tensors Output tensors to this node. in_tensor_idxes : a list of int Indexes of each input tensor in its corresponding node's out_tensors. Methods --------- __init__() Initializing the ModuleNode. __call__() (1) Forwarding through the layer. (2) Update its input/output tensors. """ def __init__(self, layer, node_index, in_nodes, in_tensors, out_tensors, in_tensor_idxes, attr): self.layer = layer self.node_index = node_index self.in_nodes = in_nodes self.out_nodes = [] self.in_tensors = in_tensors self.out_tensors = out_tensors self.node_name = layer.name + "_node_{}".format(node_index) self.in_tensors_idxes = in_tensor_idxes self.attr = attr self.visited = False def __call__(self, inputs, **kwargs): """(1) Forwarding through the layer. (2) Update its input/output tensors.""" outputs = self.layer(inputs, **kwargs) self.in_tensors = tolist(inputs) self.out_tensors = tolist(outputs) return self.out_tensors
39.02455
117
0.62305
abafb95f761dec82ce3fb36e979308e247b2fe15
26,639
py
Python
async_upnp_client/client.py
Consolatis/async_upnp_client
6303ae832e3184915a120772e5c4bc559e33ceaa
[ "Apache-2.0" ]
null
null
null
async_upnp_client/client.py
Consolatis/async_upnp_client
6303ae832e3184915a120772e5c4bc559e33ceaa
[ "Apache-2.0" ]
null
null
null
async_upnp_client/client.py
Consolatis/async_upnp_client
6303ae832e3184915a120772e5c4bc559e33ceaa
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """UPnP client module.""" import logging import urllib.parse from datetime import datetime, timezone from typing import ( Any, Callable, Generic, List, Mapping, Optional, Sequence, Tuple, TypeVar, Union, ) from xml.etree import ElementTree as ET from xml.sax.saxutils import escape, unescape import defusedxml.ElementTree as DET import voluptuous as vol from async_upnp_client.const import ( NS, ActionArgumentInfo, ActionInfo, DeviceInfo, ServiceInfo, StateVariableInfo, ) _LOGGER = logging.getLogger(__name__) _LOGGER_TRAFFIC = logging.getLogger("async_upnp_client.traffic") EventCallbackType = Callable[["UpnpService", Sequence["UpnpStateVariable"]], None] class UpnpRequester: """ Abstract base class used for performing async HTTP requests. Implement method async_do_http_request() in your concrete class. """ async def async_http_request( self, method: str, url: str, headers: Optional[Mapping[str, str]] = None, body: Optional[str] = None, body_type: str = "text", ) -> Tuple[int, Mapping, Union[str, bytes, None]]: """ Do a HTTP request. :param method HTTP Method :param url URL to call :param headers Headers to send :param body Body to send :param body_type How to interpret body: 'text', 'raw', 'ignore' :return status code, headers, body """ # pylint: disable=too-many-arguments _LOGGER_TRAFFIC.debug( "Sending request:\n%s %s\n%s\n%s\n", method, url, "\n".join([key + ": " + value for key, value in (headers or {}).items()]), body or "", ) ( response_status, response_headers, response_body, ) = await self.async_do_http_request( method, url, headers=headers, body=body, body_type=body_type ) log_response_body = ( response_body if body_type == "text" else "async_upnp_client: OMITTING BODY" ) _LOGGER_TRAFFIC.debug( "Got response:\n%s\n%s\n\n%s", response_status, "\n".join([key + ": " + value for key, value in response_headers.items()]), log_response_body, ) return response_status, response_headers, response_body async def async_do_http_request( self, method: str, url: str, headers: Optional[Mapping[str, str]] = None, body: Optional[str] = None, body_type: str = "text", ) -> Tuple[int, Mapping, Union[str, bytes, None]]: """ Actually do a HTTP request. :param method HTTP Method :param url URL to call :param headers Headers to send :param body Body to send :param body_type How to interpret body: 'text', 'raw', 'ignore' :return status code, headers, body """ # pylint: disable=too-many-arguments raise NotImplementedError() class UpnpError(Exception): """UpnpError.""" class UpnpValueError(UpnpError): """Invalid value error.""" def __init__(self, name: str, value: Any) -> None: """Initialize.""" super().__init__("Invalid value for %s: '%s'" % (name, value)) class UpnpDevice: """UPnP Device representation.""" def __init__( self, requester: UpnpRequester, device_info: DeviceInfo, services: Sequence["UpnpService"], ) -> None: """Initialize.""" self.requester = requester self._device_info = device_info self.services = {service.service_type: service for service in services} # bind services to ourselves for service in services: service.device = self @property def name(self) -> str: """Get the name of this device.""" return self._device_info.friendly_name @property def friendly_name(self) -> str: """Get the friendly name of this device, alias for name.""" return self._device_info.friendly_name @property def manufacturer(self) -> str: """Get the manufacturer of this device.""" return self._device_info.manufacturer @property def model_description(self) -> Optional[str]: """Get the model description of this device.""" return self._device_info.model_description @property def model_name(self) -> str: """Get the model name of this device.""" return self._device_info.model_name @property def model_number(self) -> Optional[str]: """Get the model number of this device.""" return self._device_info.model_number @property def serial_number(self) -> Optional[str]: """Get the serial number of this device.""" return self._device_info.serial_number @property def udn(self) -> str: """Get UDN of this device.""" return self._device_info.udn @property def device_url(self) -> str: """Get the URL of this device.""" return self._device_info.url @property def device_type(self) -> str: """Get the device type of this device.""" return self._device_info.device_type @property def xml(self) -> ET.Element: """Get the XML description for this device.""" return self._device_info.xml def has_service(self, service_type: str) -> bool: """Check if service by service_type is available.""" return service_type in self.services def service(self, service_type: str) -> "UpnpService": """Get service by service_type.""" return self.services[service_type] async def async_ping(self) -> None: """Ping the device.""" await self.requester.async_http_request("GET", self.device_url) def __str__(self) -> str: """To string.""" return "<UpnpDevice({0})>".format(self.udn) class UpnpService: """UPnP Service representation.""" # pylint: disable=too-many-instance-attributes def __init__( self, requester: UpnpRequester, service_info: ServiceInfo, state_variables: Sequence["UpnpStateVariable"], actions: Sequence["UpnpAction"], ) -> None: """Initialize.""" self.requester = requester self._service_info = service_info self.state_variables = {sv.name: sv for sv in state_variables} self.actions = {ac.name: ac for ac in actions} self.on_event: Optional[EventCallbackType] = None self._device: Optional[UpnpDevice] = None # bind state variables to ourselves for state_var in state_variables: state_var.service = self # bind actions to ourselves for action in actions: action.service = self @property def device(self) -> UpnpDevice: """Get parent UpnpDevice.""" if not self._device: raise UpnpError("UpnpService not bound to UpnpDevice") return self._device @device.setter def device(self, device: UpnpDevice) -> None: """Set parent UpnpDevice.""" if self._device: raise UpnpError("UpnpService already bound to UpnpDevice") self._device = device @property def service_type(self) -> str: """Get service type for this UpnpService.""" return self._service_info.service_type @property def service_id(self) -> str: """Get service ID for this UpnpService.""" return self._service_info.service_id @property def scpd_url(self) -> str: """Get full SCPD-url for this UpnpService.""" url: str = urllib.parse.urljoin( self.device.device_url, self._service_info.scpd_url ) return url @property def control_url(self) -> str: """Get full control-url for this UpnpService.""" url: str = urllib.parse.urljoin( self.device.device_url, self._service_info.control_url ) return url @property def event_sub_url(self) -> str: """Get full event sub-url for this UpnpService.""" url: str = urllib.parse.urljoin( self.device.device_url, self._service_info.event_sub_url ) return url @property def xml(self) -> ET.Element: """Get the XML description for this service.""" return self._service_info.xml def has_state_variable(self, name: str) -> bool: """Check if self has state variable called name.""" if name not in self.state_variables and "}" in name: # possibly messed up namespaces, try again without namespace name = name.split("}")[1] return name in self.state_variables def state_variable(self, name: str) -> "UpnpStateVariable": """Get UPnpStateVariable by name.""" state_var = self.state_variables.get(name, None) # possibly messed up namespaces, try again without namespace if not state_var and "}" in name: name = name.split("}")[1] state_var = self.state_variables.get(name, None) if state_var is None: raise KeyError(name) return state_var def has_action(self, name: str) -> bool: """Check if self has action called name.""" return name in self.actions def action(self, name: str) -> "UpnpAction": """Get UPnpAction by name.""" return self.actions[name] async def async_call_action( self, action: "UpnpAction", **kwargs: Any ) -> Mapping[str, Any]: """ Call a UpnpAction. Parameters are in Python-values and coerced automatically to UPnP values. """ if isinstance(action, str): action = self.actions[action] result = await action.async_call(**kwargs) return result def notify_changed_state_variables(self, changes: Mapping[str, str]) -> None: """Do callback on UpnpStateVariable.value changes.""" changed_state_variables = [] for name, value in changes.items(): if not self.has_state_variable(name): _LOGGER.debug("State variable %s does not exist, ignoring", name) continue state_var = self.state_variable(name) try: state_var.upnp_value = value changed_state_variables.append(state_var) except UpnpValueError: _LOGGER.error("Got invalid value for %s: %s", state_var, value) if self.on_event: # pylint: disable=not-callable self.on_event(self, changed_state_variables) def __str__(self) -> str: """To string.""" udn = "unbound" if self._device: udn = self._device.udn return "<UpnpService({}, {})>".format(self.service_id, udn) def __repr__(self) -> str: """To repr.""" udn = "unbound" if self._device: udn = self._device.udn return "<UpnpService({}, {})>".format(self.service_id, udn) class UpnpAction: """Representation of an Action.""" class Argument: """Representation of an Argument of an Action.""" def __init__( self, argument_info: ActionArgumentInfo, state_variable: "UpnpStateVariable" ) -> None: """Initialize.""" self._argument_info = argument_info self._related_state_variable = state_variable self._value = None self.raw_upnp_value: Optional[str] = None def validate_value(self, value: Any) -> None: """Validate value against related UpnpStateVariable.""" self.related_state_variable.validate_value(value) @property def name(self) -> str: """Get the name.""" return self._argument_info.name @property def direction(self) -> str: """Get the direction.""" return self._argument_info.direction @property def related_state_variable(self) -> "UpnpStateVariable": """Get the related state variable.""" return self._related_state_variable @property def xml(self) -> ET.Element: """Get the XML description for this device.""" return self._argument_info.xml @property def value(self) -> Any: """Get Python value for this argument.""" return self._value @value.setter def value(self, value: Any) -> None: """Set Python value for this argument.""" self.validate_value(value) self._value = value @property def upnp_value(self) -> str: """Get UPnP value for this argument.""" return self.coerce_upnp(self.value) @upnp_value.setter def upnp_value(self, upnp_value: str) -> None: """Set UPnP value for this argument.""" self._value = self.coerce_python(upnp_value) def coerce_python(self, upnp_value: str) -> Any: """Coerce UPnP value to Python.""" return self.related_state_variable.coerce_python(upnp_value) def coerce_upnp(self, value: Any) -> str: """Coerce Python value to UPnP value.""" return self.related_state_variable.coerce_upnp(value) def __repr__(self) -> str: """To repr.""" return "<UpnpAction.Argument({}, {})>".format(self.name, self.direction) def __init__( self, action_info: ActionInfo, arguments: List["UpnpAction.Argument"], disable_unknown_out_argument_error: bool = False, ) -> None: """Initialize.""" self._action_info = action_info self._arguments = arguments self._service: Optional[UpnpService] = None self._properties = { "disable_unknown_out_argument_error": disable_unknown_out_argument_error, } @property def name(self) -> str: """Get the name.""" return self._action_info.name @property def arguments(self) -> List["UpnpAction.Argument"]: """Get the arguments.""" return self._arguments @property def xml(self) -> ET.Element: """Get the XML for this action.""" return self._action_info.xml @property def service(self) -> UpnpService: """Get parent UpnpService.""" if not self._service: raise UpnpError("UpnpAction not bound to UpnpService") return self._service @service.setter def service(self, service: UpnpService) -> None: """Set parent UpnpService.""" if self._service: raise UpnpError("UpnpAction already bound to UpnpService") self._service = service def __str__(self) -> str: """To string.""" return "<UpnpAction({0})>".format(self.name) def __repr__(self) -> str: """To repr.""" return "<UpnpAction({0})({1}) -> {2}>".format( self.name, self.in_arguments(), self.out_arguments() ) def validate_arguments(self, **kwargs: Any) -> None: """ Validate arguments against in-arguments of self. The python type is expected. """ for arg in self.in_arguments(): if arg.name not in kwargs: raise UpnpError(f"Missing argument: {arg.name}") value = kwargs[arg.name] arg.validate_value(value) def in_arguments(self) -> List["UpnpAction.Argument"]: """Get all in-arguments.""" return [arg for arg in self.arguments if arg.direction == "in"] def out_arguments(self) -> List["UpnpAction.Argument"]: """Get all out-arguments.""" return [arg for arg in self.arguments if arg.direction == "out"] def argument( self, name: str, direction: Optional[str] = None ) -> Optional["UpnpAction.Argument"]: """Get an UpnpAction.Argument by name (and possibliy direction).""" for arg in self.arguments: if arg.name != name: continue if direction is not None and arg.direction != direction: continue return arg return None async def async_call(self, **kwargs: Any) -> Mapping[str, Any]: """Call an action with arguments.""" # do request url, headers, body = self.create_request(**kwargs) ( status_code, response_headers, response_body, ) = await self.service.requester.async_http_request("POST", url, headers, body) if not isinstance(response_body, str): raise UpnpError("Did not receive a body") if status_code != 200: raise UpnpError( "Error during async_call(), status: %s, body: %s" % (status_code, response_body) ) # parse body response_args = self.parse_response( self.service.service_type, response_headers, response_body ) return response_args def create_request(self, **kwargs: Any) -> Tuple[str, Mapping[str, str], str]: """Create headers and headers for this to-be-called UpnpAction.""" # build URL control_url = self.service.control_url # construct SOAP body service_type = self.service.service_type soap_args = self._format_request_args(**kwargs) body = ( '<?xml version="1.0"?>' '<s:Envelope s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"' ' xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">' "<s:Body>" '<u:{1} xmlns:u="{0}">' "{2}" "</u:{1}>" "</s:Body>" "</s:Envelope>".format(service_type, self.name, soap_args) ) # construct SOAP header soap_action = "{0}#{1}".format(service_type, self.name) headers = { "SOAPAction": '"{0}"'.format(soap_action), "Host": urllib.parse.urlparse(control_url).netloc, "Content-Type": 'text/xml; charset="utf-8"', "Content-Length": str(len(body)), } return control_url, headers, body def _format_request_args(self, **kwargs: Any) -> str: self.validate_arguments(**kwargs) arg_strs = [ "<{0}>{1}</{0}>".format(arg.name, escape(arg.coerce_upnp(kwargs[arg.name]))) for arg in self.in_arguments() ] return "\n".join(arg_strs) def parse_response( self, service_type: str, response_headers: Mapping, response_body: str ) -> Mapping[str, Any]: """Parse response from called Action.""" # pylint: disable=unused-argument xml = DET.fromstring(response_body) query = ".//soap_envelope:Body/soap_envelope:Fault" if xml.find(query, NS): error_code = xml.findtext(".//control:errorCode", None, NS) error_description = xml.findtext(".//control:errorDescription", None, NS) raise UpnpError( "Error during call_action, error_code: %s, error_description: %s" % (error_code, error_description) ) try: return self._parse_response_args(service_type, xml) except AttributeError: _LOGGER.debug("Error during unescape of: %s", response_body) raise def _parse_response_args( self, service_type: str, xml: ET.Element ) -> Mapping[str, Any]: """Parse response arguments.""" args = {} query = ".//{{{0}}}{1}Response".format(service_type, self.name) response = xml.find(query, NS) if response is None: raise UpnpError( "Invalid response: %s" % (ET.tostring(xml, encoding="unicode"),) ) for arg_xml in response.findall("./"): name = arg_xml.tag arg = self.argument(name, "out") if not arg: if self._properties["disable_unknown_out_argument_error"]: continue raise UpnpError( "Invalid response, unknown argument: %s, %s" % (name, ET.tostring(xml, encoding="unicode")) ) arg.raw_upnp_value = arg_xml.text try: arg.upnp_value = unescape(arg_xml.text or "") except AttributeError: _LOGGER.debug("Error during unescape of: %s", arg_xml.text) raise args[name] = arg.value return args T = TypeVar("T") # pylint: disable=invalid-name class UpnpStateVariable(Generic[T]): """Representation of a State Variable.""" UPNP_VALUE_ERROR = object() def __init__( self, state_variable_info: StateVariableInfo, schema: vol.Schema ) -> None: """Initialize.""" self._state_variable_info = state_variable_info self._schema = schema self._service: Optional[UpnpService] = None self._value: Optional[Any] = None # None, T or UPNP_VALUE_ERROR self._updated_at: Optional[datetime] = None @property def service(self) -> UpnpService: """Get parent UpnpService.""" if not self._service: raise UpnpError("UpnpStateVariable not bound to UpnpService") return self._service @service.setter def service(self, service: UpnpService) -> None: """Set parent UpnpService.""" if self._service: raise UpnpError("UpnpStateVariable already bound to UpnpService") self._service = service @property def xml(self) -> ET.Element: """Get the XML for this State Variable.""" return self._state_variable_info.xml @property def data_type_mapping(self) -> Mapping[str, Callable]: """Get the data type (coercer) for this State Variable.""" type_info = self._state_variable_info.type_info return type_info.data_type_mapping @property def data_type_python(self) -> Callable[[str], Any]: """Get the Python data type for this State Variable.""" return self.data_type_mapping["type"] @property def min_value(self) -> Optional[T]: """Min value for this UpnpStateVariable, if defined.""" type_info = self._state_variable_info.type_info min_ = type_info.allowed_value_range.get("min") if min_ is not None: value: T = self.coerce_python(min_) return value return None @property def max_value(self) -> Optional[T]: """Max value for this UpnpStateVariable, if defined.""" type_info = self._state_variable_info.type_info max_ = type_info.allowed_value_range.get("max") if max_ is not None: value: T = self.coerce_python(max_) return value return None @property def allowed_values(self) -> List[T]: """List with allowed values for this UpnpStateVariable, if defined.""" type_info = self._state_variable_info.type_info allowed_values = type_info.allowed_values or [] return [self.coerce_python(allowed_value) for allowed_value in allowed_values] @property def send_events(self) -> bool: """Check if this UpnpStatevariable send events.""" send_events = self._state_variable_info.send_events return send_events @property def name(self) -> str: """Name of the UpnpStatevariable.""" name: str = self._state_variable_info.name return name @property def data_type(self) -> str: """UPNP data type of UpnpStateVariable.""" return self._state_variable_info.type_info.data_type @property def default_value(self) -> Optional[T]: """Get default value for UpnpStateVariable, if defined.""" type_info = self._state_variable_info.type_info default_value = type_info.default_value if default_value is not None: value: T = self.coerce_python(default_value) return value return None def validate_value(self, value: T) -> None: """Validate value.""" try: self._schema(value) except vol.error.MultipleInvalid as ex: raise UpnpValueError(self.name, value) from ex @property def value(self) -> Optional[T]: """ Get the value, python typed. Invalid values are returned as None. """ if self._value is UpnpStateVariable.UPNP_VALUE_ERROR: return None return self._value @value.setter def value(self, value: Any) -> None: """Set value, python typed.""" self.validate_value(value) self._value = value self._updated_at = datetime.now(timezone.utc) @property def value_unchecked(self) -> Optional[T]: """ Get the value, python typed. If an event was received with an invalid value for this StateVariable (e.g., 'abc' for a 'ui4' StateVariable), then this will return UpnpStateVariable.UPNP_VALUE_ERROR instead of None. """ return self._value @property def upnp_value(self) -> str: """Get the value, UPnP typed.""" return self.coerce_upnp(self.value) @upnp_value.setter def upnp_value(self, upnp_value: str) -> None: """Set the value, UPnP typed.""" try: self.value = self.coerce_python(upnp_value) except ValueError as err: _LOGGER.debug('Error setting upnp_value "%s", error: %s', upnp_value, err) self._value = UpnpStateVariable.UPNP_VALUE_ERROR def coerce_python(self, upnp_value: str) -> Any: """Coerce value from UPNP to python.""" coercer = self.data_type_mapping["in"] return coercer(upnp_value) def coerce_upnp(self, value: Any) -> str: """Coerce value from python to UPNP.""" coercer = self.data_type_mapping["out"] coerced_value: str = coercer(value) return coerced_value @property def updated_at(self) -> Optional[datetime]: """ Get timestamp at which this UpnpStateVariable was updated. Return time in UTC. """ return self._updated_at def __str__(self) -> str: """To string.""" return "<UpnpStateVariable({0}, {1})>".format(self.name, self.data_type)
31.48818
88
0.596118
7c1fe26e9f7975a5c3f58fa68165fd1815843e40
12,885
py
Python
scipy/sparse/construct.py
lesserwhirls/scipy-cwt
ee673656d879d9356892621e23ed0ced3d358621
[ "BSD-3-Clause" ]
8
2015-10-07T00:37:32.000Z
2022-01-21T17:02:33.000Z
scipy/sparse/construct.py
lesserwhirls/scipy-cwt
ee673656d879d9356892621e23ed0ced3d358621
[ "BSD-3-Clause" ]
null
null
null
scipy/sparse/construct.py
lesserwhirls/scipy-cwt
ee673656d879d9356892621e23ed0ced3d358621
[ "BSD-3-Clause" ]
8
2015-05-09T14:23:57.000Z
2018-11-15T05:56:00.000Z
"""Functions to construct sparse matrices """ __docformat__ = "restructuredtext en" __all__ = [ 'spdiags', 'eye', 'identity', 'kron', 'kronsum', 'hstack', 'vstack', 'bmat', 'rand'] from warnings import warn import numpy as np from sputils import upcast from csr import csr_matrix from csc import csc_matrix from bsr import bsr_matrix from coo import coo_matrix from lil import lil_matrix from dia import dia_matrix def spdiags(data, diags, m, n, format=None): """ Return a sparse matrix from diagonals. Parameters ---------- data : array_like matrix diagonals stored row-wise diags : diagonals to set - k = 0 the main diagonal - k > 0 the k-th upper diagonal - k < 0 the k-th lower diagonal m, n : int shape of the result format : format of the result (e.g. "csr") By default (format=None) an appropriate sparse matrix format is returned. This choice is subject to change. See Also -------- dia_matrix : the sparse DIAgonal format. Examples -------- >>> data = array([[1,2,3,4],[1,2,3,4],[1,2,3,4]]) >>> diags = array([0,-1,2]) >>> spdiags(data, diags, 4, 4).todense() matrix([[1, 0, 3, 0], [1, 2, 0, 4], [0, 2, 3, 0], [0, 0, 3, 4]]) """ return dia_matrix((data, diags), shape=(m,n)).asformat(format) def identity(n, dtype='d', format=None): """Identity matrix in sparse format Returns an identity matrix with shape (n,n) using a given sparse format and dtype. Parameters ---------- n : integer Shape of the identity matrix. dtype : Data type of the matrix format : string Sparse format of the result, e.g. format="csr", etc. Examples -------- >>> identity(3).todense() matrix([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]]) >>> identity(3, dtype='int8', format='dia') <3x3 sparse matrix of type '<type 'numpy.int8'>' with 3 stored elements (1 diagonals) in DIAgonal format> """ if format in ['csr','csc']: indptr = np.arange(n+1, dtype=np.intc) indices = np.arange(n, dtype=np.intc) data = np.ones(n, dtype=dtype) cls = eval('%s_matrix' % format) return cls((data,indices,indptr),(n,n)) elif format == 'coo': row = np.arange(n, dtype=np.intc) col = np.arange(n, dtype=np.intc) data = np.ones(n, dtype=dtype) return coo_matrix((data,(row,col)),(n,n)) elif format == 'dia': data = np.ones(n, dtype=dtype) diags = [0] return dia_matrix((data,diags), shape=(n,n)) else: return identity(n, dtype=dtype, format='csr').asformat(format) def eye(m, n, k=0, dtype='d', format=None): """eye(m, n) returns a sparse (m x n) matrix where the k-th diagonal is all ones and everything else is zeros. """ m,n = int(m),int(n) diags = np.ones((1, max(0, min(m + k, n))), dtype=dtype) return spdiags(diags, k, m, n).asformat(format) def kron(A, B, format=None): """kronecker product of sparse matrices A and B Parameters ---------- A : sparse or dense matrix first matrix of the product B : sparse or dense matrix second matrix of the product format : string format of the result (e.g. "csr") Returns ------- kronecker product in a sparse matrix format Examples -------- >>> A = csr_matrix(array([[0,2],[5,0]])) >>> B = csr_matrix(array([[1,2],[3,4]])) >>> kron(A,B).todense() matrix([[ 0, 0, 2, 4], [ 0, 0, 6, 8], [ 5, 10, 0, 0], [15, 20, 0, 0]]) >>> kron(A,[[1,2],[3,4]]).todense() matrix([[ 0, 0, 2, 4], [ 0, 0, 6, 8], [ 5, 10, 0, 0], [15, 20, 0, 0]]) """ B = coo_matrix(B) if (format is None or format == "bsr") and 2*B.nnz >= B.shape[0] * B.shape[1]: #B is fairly dense, use BSR A = csr_matrix(A,copy=True) output_shape = (A.shape[0]*B.shape[0], A.shape[1]*B.shape[1]) if A.nnz == 0 or B.nnz == 0: # kronecker product is the zero matrix return coo_matrix( output_shape ) B = B.toarray() data = A.data.repeat(B.size).reshape(-1,B.shape[0],B.shape[1]) data = data * B return bsr_matrix((data,A.indices,A.indptr), shape=output_shape) else: #use COO A = coo_matrix(A) output_shape = (A.shape[0]*B.shape[0], A.shape[1]*B.shape[1]) if A.nnz == 0 or B.nnz == 0: # kronecker product is the zero matrix return coo_matrix( output_shape ) # expand entries of a into blocks row = A.row.repeat(B.nnz) col = A.col.repeat(B.nnz) data = A.data.repeat(B.nnz) row *= B.shape[0] col *= B.shape[1] # increment block indices row,col = row.reshape(-1,B.nnz),col.reshape(-1,B.nnz) row += B.row col += B.col row,col = row.reshape(-1),col.reshape(-1) # compute block entries data = data.reshape(-1,B.nnz) * B.data data = data.reshape(-1) return coo_matrix((data,(row,col)), shape=output_shape).asformat(format) def kronsum(A, B, format=None): """kronecker sum of sparse matrices A and B Kronecker sum of two sparse matrices is a sum of two Kronecker products kron(I_n,A) + kron(B,I_m) where A has shape (m,m) and B has shape (n,n) and I_m and I_n are identity matrices of shape (m,m) and (n,n) respectively. Parameters ---------- A square matrix B square matrix format : string format of the result (e.g. "csr") Returns ------- kronecker sum in a sparse matrix format Examples -------- """ A = coo_matrix(A) B = coo_matrix(B) if A.shape[0] != A.shape[1]: raise ValueError('A is not square') if B.shape[0] != B.shape[1]: raise ValueError('B is not square') dtype = upcast(A.dtype, B.dtype) L = kron(identity(B.shape[0],dtype=dtype), A, format=format) R = kron(B, identity(A.shape[0],dtype=dtype), format=format) return (L+R).asformat(format) #since L + R is not always same format def hstack(blocks, format=None, dtype=None): """ Stack sparse matrices horizontally (column wise) Parameters ---------- blocks sequence of sparse matrices with compatible shapes format : string sparse format of the result (e.g. "csr") by default an appropriate sparse matrix format is returned. This choice is subject to change. See Also -------- vstack : stack sparse matrices vertically (row wise) Examples -------- >>> from scipy.sparse import coo_matrix, vstack >>> A = coo_matrix([[1,2],[3,4]]) >>> B = coo_matrix([[5],[6]]) >>> hstack( [A,B] ).todense() matrix([[1, 2, 5], [3, 4, 6]]) """ return bmat([blocks], format=format, dtype=dtype) def vstack(blocks, format=None, dtype=None): """ Stack sparse matrices vertically (row wise) Parameters ---------- blocks sequence of sparse matrices with compatible shapes format : string sparse format of the result (e.g. "csr") by default an appropriate sparse matrix format is returned. This choice is subject to change. See Also -------- hstack : stack sparse matrices horizontally (column wise) Examples -------- >>> from scipy.sparse import coo_matrix, vstack >>> A = coo_matrix([[1,2],[3,4]]) >>> B = coo_matrix([[5,6]]) >>> vstack( [A,B] ).todense() matrix([[1, 2], [3, 4], [5, 6]]) """ return bmat([ [b] for b in blocks ], format=format, dtype=dtype) def bmat(blocks, format=None, dtype=None): """ Build a sparse matrix from sparse sub-blocks Parameters ---------- blocks grid of sparse matrices with compatible shapes an entry of None implies an all-zero matrix format : sparse format of the result (e.g. "csr") by default an appropriate sparse matrix format is returned. This choice is subject to change. Examples -------- >>> from scipy.sparse import coo_matrix, bmat >>> A = coo_matrix([[1,2],[3,4]]) >>> B = coo_matrix([[5],[6]]) >>> C = coo_matrix([[7]]) >>> bmat( [[A,B],[None,C]] ).todense() matrix([[1, 2, 5], [3, 4, 6], [0, 0, 7]]) >>> bmat( [[A,None],[None,C]] ).todense() matrix([[1, 2, 0], [3, 4, 0], [0, 0, 7]]) """ blocks = np.asarray(blocks, dtype='object') if np.rank(blocks) != 2: raise ValueError('blocks must have rank 2') M,N = blocks.shape block_mask = np.zeros(blocks.shape, dtype=np.bool) brow_lengths = np.zeros(blocks.shape[0], dtype=np.intc) bcol_lengths = np.zeros(blocks.shape[1], dtype=np.intc) # convert everything to COO format for i in range(M): for j in range(N): if blocks[i,j] is not None: A = coo_matrix(blocks[i,j]) blocks[i,j] = A block_mask[i,j] = True if brow_lengths[i] == 0: brow_lengths[i] = A.shape[0] else: if brow_lengths[i] != A.shape[0]: raise ValueError('blocks[%d,:] has incompatible row dimensions' % i) if bcol_lengths[j] == 0: bcol_lengths[j] = A.shape[1] else: if bcol_lengths[j] != A.shape[1]: raise ValueError('blocks[:,%d] has incompatible column dimensions' % j) # ensure that at least one value in each row and col is not None if brow_lengths.min() == 0: raise ValueError('blocks[%d,:] is all None' % brow_lengths.argmin() ) if bcol_lengths.min() == 0: raise ValueError('blocks[:,%d] is all None' % bcol_lengths.argmin() ) nnz = sum([ A.nnz for A in blocks[block_mask] ]) if dtype is None: dtype = upcast( *tuple([A.dtype for A in blocks[block_mask]]) ) row_offsets = np.concatenate(([0], np.cumsum(brow_lengths))) col_offsets = np.concatenate(([0], np.cumsum(bcol_lengths))) data = np.empty(nnz, dtype=dtype) row = np.empty(nnz, dtype=np.intc) col = np.empty(nnz, dtype=np.intc) nnz = 0 for i in range(M): for j in range(N): if blocks[i,j] is not None: A = blocks[i,j] data[nnz:nnz + A.nnz] = A.data row[nnz:nnz + A.nnz] = A.row col[nnz:nnz + A.nnz] = A.col row[nnz:nnz + A.nnz] += row_offsets[i] col[nnz:nnz + A.nnz] += col_offsets[j] nnz += A.nnz shape = (np.sum(brow_lengths), np.sum(bcol_lengths)) return coo_matrix((data, (row, col)), shape=shape).asformat(format) def rand(m, n, density=0.01, format="coo", dtype=None): """Generate a sparse matrix of the given shape and density with uniformely distributed values. Parameters ---------- m, n: int shape of the matrix density: real density of the generated matrix: density equal to one means a full matrix, density of 0 means a matrix with no non-zero items. format: str sparse matrix format. dtype: dtype type of the returned matrix values. Notes ----- Only float types are supported for now. """ if density < 0 or density > 1: raise ValueError("density expected to be 0 <= density <= 1") if dtype and not dtype in [np.float32, np.float64, np.longdouble]: raise NotImplementedError("type %s not supported" % dtype) mn = m * n # XXX: sparse uses intc instead of intp... tp = np.intp if mn > np.iinfo(tp).max: msg = """\ Trying to generate a random sparse matrix such as the product of dimensions is greater than %d - this is not supported on this machine """ raise ValueError(msg % np.iinfo(tp).max) # Number of non zero values k = long(density * m * n) # Generate a few more values than k so that we can get unique values # afterwards. # XXX: one could be smarter here mlow = 5 fac = 1.02 gk = min(k + mlow, fac * k) def _gen_unique_rand(_gk): id = np.random.rand(_gk) return np.unique(np.floor(id * mn))[:k] id = _gen_unique_rand(gk) while id.size < k: gk *= 1.05 id = _gen_unique_rand(gk) j = np.floor(id * 1. / m).astype(tp) i = (id - j * m).astype(tp) vals = np.random.rand(k).astype(dtype) return coo_matrix((vals, (i, j)), shape=(m, n)).asformat(format)
28.506637
95
0.554366
cfd7c8397ae9dddeb154e4ef45c1529ebaec7ef9
464
py
Python
redis_helpers/tests/test_redis_helpers.py
ChristopherHaydenTodd/ctodd-python-lib-redis
d59018937c0f4d786af291e8cf82b901af9fcc53
[ "MIT" ]
1
2019-02-24T14:04:30.000Z
2019-02-24T14:04:30.000Z
redis_helpers/tests/test_redis_helpers.py
ChristopherHaydenTodd/ctodd-python-lib-redis
d59018937c0f4d786af291e8cf82b901af9fcc53
[ "MIT" ]
null
null
null
redis_helpers/tests/test_redis_helpers.py
ChristopherHaydenTodd/ctodd-python-lib-redis
d59018937c0f4d786af291e8cf82b901af9fcc53
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """ Purpose: Test File for redis_helpers.py """ # Python Library Imports import os import sys import fakeredis import pytest import redis from unittest import mock # Import File to Test from redis_helpers import redis_helpers ### # Fixtures ### # None at the Moment (Empty Test Suite) ### # Mocked Functions ### # None at the Moment (Empty Test Suite) ### # Test Payload ### # None at the Moment (Empty Test Suite)
11.317073
39
0.6875
1f991022c01781b3b5d89ba160d05a83ef29db94
31,598
py
Python
statsmodels/graphics/gofplots.py
ADI10HERO/statsmodels
d932507dc71c93b5d162a678042fb0701ee4bf57
[ "BSD-3-Clause" ]
76
2019-12-28T08:37:10.000Z
2022-03-29T02:19:41.000Z
statsmodels/graphics/gofplots.py
ADI10HERO/statsmodels
d932507dc71c93b5d162a678042fb0701ee4bf57
[ "BSD-3-Clause" ]
null
null
null
statsmodels/graphics/gofplots.py
ADI10HERO/statsmodels
d932507dc71c93b5d162a678042fb0701ee4bf57
[ "BSD-3-Clause" ]
35
2020-02-04T14:46:25.000Z
2022-03-24T03:56:17.000Z
from statsmodels.compat.python import lzip import numpy as np from scipy import stats from statsmodels.regression.linear_model import OLS from statsmodels.tools.tools import add_constant from statsmodels.tools.decorators import cache_readonly from statsmodels.distributions import ECDF from . import utils __all__ = ['qqplot', 'qqplot_2samples', 'qqline', 'ProbPlot'] class ProbPlot(object): """ Q-Q and P-P Probability Plots Can take arguments specifying the parameters for dist or fit them automatically. (See fit under kwargs.) Parameters ---------- data : array_like 1d data array dist : A scipy.stats or statsmodels distribution Compare x against dist. The default is scipy.stats.distributions.norm (a standard normal). distargs : tuple A tuple of arguments passed to dist to specify it fully so dist.ppf may be called. distargs must not contain loc or scale. These values must be passed using the loc or scale inputs. a : float Offset for the plotting position of an expected order statistic, for example. The plotting positions are given by (i - a)/(nobs - 2*a + 1) for i in range(0,nobs+1) loc : float Location parameter for dist scale : float Scale parameter for dist fit : bool If fit is false, loc, scale, and distargs are passed to the distribution. If fit is True then the parameters for dist are fit automatically using dist.fit. The quantiles are formed from the standardized data, after subtracting the fitted loc and dividing by the fitted scale. See Also -------- scipy.stats.probplot Notes ----- 1) Depends on matplotlib. 2) If `fit` is True then the parameters are fit using the distribution's `fit()` method. 3) The call signatures for the `qqplot`, `ppplot`, and `probplot` methods are similar, so examples 1 through 4 apply to all three methods. 4) The three plotting methods are summarized below: ppplot : Probability-Probability plot Compares the sample and theoretical probabilities (percentiles). qqplot : Quantile-Quantile plot Compares the sample and theoretical quantiles probplot : Probability plot Same as a Q-Q plot, however probabilities are shown in the scale of the theoretical distribution (x-axis) and the y-axis contains unscaled quantiles of the sample data. Examples -------- The first example shows a Q-Q plot for regression residuals >>> # example 1 >>> import statsmodels.api as sm >>> from matplotlib import pyplot as plt >>> data = sm.datasets.longley.load(as_pandas=False) >>> data.exog = sm.add_constant(data.exog) >>> model = sm.OLS(data.endog, data.exog) >>> mod_fit = model.fit() >>> res = mod_fit.resid # residuals >>> probplot = sm.ProbPlot(res) >>> fig = probplot.qqplot() >>> h = plt.title('Ex. 1 - qqplot - residuals of OLS fit') >>> plt.show() qqplot of the residuals against quantiles of t-distribution with 4 degrees of freedom: >>> # example 2 >>> import scipy.stats as stats >>> probplot = sm.ProbPlot(res, stats.t, distargs=(4,)) >>> fig = probplot.qqplot() >>> h = plt.title('Ex. 2 - qqplot - residuals against quantiles of t-dist') >>> plt.show() qqplot against same as above, but with mean 3 and std 10: >>> # example 3 >>> probplot = sm.ProbPlot(res, stats.t, distargs=(4,), loc=3, scale=10) >>> fig = probplot.qqplot() >>> h = plt.title('Ex. 3 - qqplot - resids vs quantiles of t-dist') >>> plt.show() Automatically determine parameters for t distribution including the loc and scale: >>> # example 4 >>> probplot = sm.ProbPlot(res, stats.t, fit=True) >>> fig = probplot.qqplot(line='45') >>> h = plt.title('Ex. 4 - qqplot - resids vs. quantiles of fitted t-dist') >>> plt.show() A second `ProbPlot` object can be used to compare two separate sample sets by using the `other` kwarg in the `qqplot` and `ppplot` methods. >>> # example 5 >>> import numpy as np >>> x = np.random.normal(loc=8.25, scale=2.75, size=37) >>> y = np.random.normal(loc=8.75, scale=3.25, size=37) >>> pp_x = sm.ProbPlot(x, fit=True) >>> pp_y = sm.ProbPlot(y, fit=True) >>> fig = pp_x.qqplot(line='45', other=pp_y) >>> h = plt.title('Ex. 5 - qqplot - compare two sample sets') >>> plt.show() In qqplot, sample size of `other` can be equal or larger than the first. In case of larger, size of `other` samples will be reduced to match the size of the first by interpolation >>> # example 6 >>> x = np.random.normal(loc=8.25, scale=2.75, size=37) >>> y = np.random.normal(loc=8.75, scale=3.25, size=57) >>> pp_x = sm.ProbPlot(x, fit=True) >>> pp_y = sm.ProbPlot(y, fit=True) >>> fig = pp_x.qqplot(line='45', other=pp_y) >>> title = 'Ex. 6 - qqplot - compare different sample sizes' >>> h = plt.title(title) >>> plt.show() In ppplot, sample size of `other` and the first can be different. `other` will be used to estimate an empirical cumulative distribution function (ECDF). ECDF(x) will be plotted against p(x)=0.5/n, 1.5/n, ..., (n-0.5)/n where x are sorted samples from the first. >>> # example 7 >>> x = np.random.normal(loc=8.25, scale=2.75, size=37) >>> y = np.random.normal(loc=8.75, scale=3.25, size=57) >>> pp_x = sm.ProbPlot(x, fit=True) >>> pp_y = sm.ProbPlot(y, fit=True) >>> fig = pp_y.ppplot(line='45', other=pp_x) >>> h = plt.title('Ex. 7A- ppplot - compare two sample sets, other=pp_x') >>> fig = pp_x.ppplot(line='45', other=pp_y) >>> h = plt.title('Ex. 7B- ppplot - compare two sample sets, other=pp_y') >>> plt.show() The following plot displays some options, follow the link to see the code. .. plot:: plots/graphics_gofplots_qqplot.py """ def __init__(self, data, dist=stats.norm, fit=False, distargs=(), a=0, loc=0, scale=1): self.data = data self.a = a self.nobs = data.shape[0] self.distargs = distargs self.fit = fit if isinstance(dist, str): dist = getattr(stats, dist) if fit: self.fit_params = dist.fit(data) self.loc = self.fit_params[-2] self.scale = self.fit_params[-1] if len(self.fit_params) > 2: self.dist = dist(*self.fit_params[:-2], **dict(loc=0, scale=1)) else: self.dist = dist(loc=0, scale=1) elif distargs or loc != 0 or scale != 1: try: self.dist = dist(*distargs, **dict(loc=loc, scale=scale)) except Exception: distargs = ', '.join([str(da) for da in distargs]) cmd = 'dist({distargs}, loc={loc}, scale={scale})' cmd = cmd.format(distargs=distargs, loc=loc, scale=scale) raise TypeError('Initializing the distribution failed. This ' 'can occur if distargs contains loc or scale. ' 'The distribution initialization command ' 'is:\n{cmd}'.format(cmd=cmd)) self.loc = loc self.scale = scale self.fit_params = np.r_[distargs, loc, scale] else: self.dist = dist self.loc = loc self.scale = scale self.fit_params = np.r_[loc, scale] # propertes self._cache = {} @cache_readonly def theoretical_percentiles(self): """Theoretical percentiles""" return plotting_pos(self.nobs, self.a) @cache_readonly def theoretical_quantiles(self): """Theoretical quantiles""" try: return self.dist.ppf(self.theoretical_percentiles) except TypeError: msg = '%s requires more parameters to ' \ 'compute ppf'.format(self.dist.name,) raise TypeError(msg) except: msg = 'failed to compute the ppf of {0}'.format(self.dist.name,) raise @cache_readonly def sorted_data(self): """sorted data""" sorted_data = np.array(self.data, copy=True) sorted_data.sort() return sorted_data @cache_readonly def sample_quantiles(self): """sample quantiles""" if self.fit and self.loc != 0 and self.scale != 1: return (self.sorted_data-self.loc)/self.scale else: return self.sorted_data @cache_readonly def sample_percentiles(self): """Sample percentiles""" quantiles = \ (self.sorted_data - self.fit_params[-2])/self.fit_params[-1] return self.dist.cdf(quantiles) def ppplot(self, xlabel=None, ylabel=None, line=None, other=None, ax=None, **plotkwargs): """ P-P plot of the percentiles (probabilities) of x versus the probabilities (percentiles) of a distribution. Parameters ---------- xlabel : str or None, optional User-provided labels for the x-axis. If None (default), other values are used depending on the status of the kwarg `other`. ylabel : str or None, optional User-provided labels for the y-axis. If None (default), other values are used depending on the status of the kwarg `other`. line : str {'45', 's', 'r', q'} or None, optional Options for the reference line to which the data is compared: - '45': 45-degree line - 's': standardized line, the expected order statistics are scaled by the standard deviation of the given sample and have the mean added to them - 'r': A regression line is fit - 'q': A line is fit through the quartiles. - None: by default no reference line is added to the plot. other : ProbPlot, array_like, or None, optional If provided, ECDF(x) will be plotted against p(x) where x are sorted samples from `self`. ECDF is an empirical cumulative distribution function estimated from `other` and p(x) = 0.5/n, 1.5/n, ..., (n-0.5)/n where n is the number of samples in `self`. If an array-object is provided, it will be turned into a `ProbPlot` instance default parameters. If not provided (default), `self.dist(x)` is be plotted against p(x). ax : Matplotlib AxesSubplot instance, optional If given, this subplot is used to plot in instead of a new figure being created. **plotkwargs : additional matplotlib arguments to be passed to the `plot` command. Returns ------- fig : Matplotlib figure instance If `ax` is None, the created figure. Otherwise the figure to which `ax` is connected. """ if other is not None: check_other = isinstance(other, ProbPlot) if not check_other: other = ProbPlot(other) p_x = self.theoretical_percentiles ecdf_x = ECDF(other.sample_quantiles)(self.sample_quantiles) fig, ax = _do_plot(p_x, ecdf_x, self.dist, ax=ax, line=line, **plotkwargs) if xlabel is None: xlabel = 'Probabilities of 2nd Sample' if ylabel is None: ylabel = 'Probabilities of 1st Sample' else: fig, ax = _do_plot(self.theoretical_percentiles, self.sample_percentiles, self.dist, ax=ax, line=line, **plotkwargs) if xlabel is None: xlabel = "Theoretical Probabilities" if ylabel is None: ylabel = "Sample Probabilities" ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) ax.set_xlim([0.0, 1.0]) ax.set_ylim([0.0, 1.0]) return fig def qqplot(self, xlabel=None, ylabel=None, line=None, other=None, ax=None, **plotkwargs): """ Q-Q plot of the quantiles of x versus the quantiles/ppf of a distribution or the quantiles of another `ProbPlot` instance. Parameters ---------- xlabel, ylabel : str or None, optional User-provided labels for the x-axis and y-axis. If None (default), other values are used depending on the status of the kwarg `other`. line : str {'45', 's', 'r', q'} or None, optional Options for the reference line to which the data is compared: - '45' - 45-degree line - 's' - standardized line, the expected order statistics are scaled by the standard deviation of the given sample and have the mean added to them - 'r' - A regression line is fit - 'q' - A line is fit through the quartiles. - None - by default no reference line is added to the plot. other : `ProbPlot` instance, array_like, or None, optional If provided, the sample quantiles of this `ProbPlot` instance are plotted against the sample quantiles of the `other` `ProbPlot` instance. Sample size of `other` must be equal or larger than this `ProbPlot` instance. If the sample size is larger, sample quantiles of `other` will be interpolated to match the sample size of this `ProbPlot` instance. If an array-like object is provided, it will be turned into a `ProbPlot` instance using default parameters. If not provided (default), the theoretical quantiles are used. ax : Matplotlib AxesSubplot instance, optional If given, this subplot is used to plot in instead of a new figure being created. **plotkwargs : additional matplotlib arguments to be passed to the `plot` command. Returns ------- fig : Matplotlib figure instance If `ax` is None, the created figure. Otherwise the figure to which `ax` is connected. """ if other is not None: check_other = isinstance(other, ProbPlot) if not check_other: other = ProbPlot(other) s_self = self.sample_quantiles s_other = other.sample_quantiles if len(s_self) > len(s_other): raise ValueError("Sample size of `other` must be equal or " + "larger than this `ProbPlot` instance") elif len(s_self) < len(s_other): # Use quantiles of the smaller set and interpolate quantiles of # the larger data set p = plotting_pos(self.nobs, self.a) s_other = stats.mstats.mquantiles(s_other, p) fig, ax = _do_plot(s_other, s_self, self.dist, ax=ax, line=line, **plotkwargs) if xlabel is None: xlabel = 'Quantiles of 2nd Sample' if ylabel is None: ylabel = 'Quantiles of 1st Sample' else: fig, ax = _do_plot(self.theoretical_quantiles, self.sample_quantiles, self.dist, ax=ax, line=line, **plotkwargs) if xlabel is None: xlabel = "Theoretical Quantiles" if ylabel is None: ylabel = "Sample Quantiles" ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) return fig def probplot(self, xlabel=None, ylabel=None, line=None, exceed=False, ax=None, **plotkwargs): """ Probability plot of the unscaled quantiles of x versus the probabilities of a distribution (not to be confused with a P-P plot). The x-axis is scaled linearly with the quantiles, but the probabilities are used to label the axis. Parameters ---------- xlabel, ylabel : str or None, optional User-provided labels for the x-axis and y-axis. If None (default), other values are used depending on the status of the kwarg `other`. line : str {'45', 's', 'r', q'} or None, optional Options for the reference line to which the data is compared: - '45' - 45-degree line - 's' - standardized line, the expected order statistics are scaled by the standard deviation of the given sample and have the mean added to them - 'r' - A regression line is fit - 'q' - A line is fit through the quartiles. - None - by default no reference line is added to the plot. exceed : bool, optional - If False (default) the raw sample quantiles are plotted against the theoretical quantiles, show the probability that a sample will not exceed a given value - If True, the theoretical quantiles are flipped such that the figure displays the probability that a sample will exceed a given value. ax : Matplotlib AxesSubplot instance, optional If given, this subplot is used to plot in instead of a new figure being created. **plotkwargs : additional matplotlib arguments to be passed to the `plot` command. Returns ------- fig : Matplotlib figure instance If `ax` is None, the created figure. Otherwise the figure to which `ax` is connected. """ if exceed: fig, ax = _do_plot(self.theoretical_quantiles[::-1], self.sorted_data, self.dist, ax=ax, line=line, **plotkwargs) if xlabel is None: xlabel = 'Probability of Exceedance (%)' else: fig, ax = _do_plot(self.theoretical_quantiles, self.sorted_data, self.dist, ax=ax, line=line, **plotkwargs) if xlabel is None: xlabel = 'Non-exceedance Probability (%)' if ylabel is None: ylabel = "Sample Quantiles" ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) _fmt_probplot_axis(ax, self.dist, self.nobs) return fig def qqplot(data, dist=stats.norm, distargs=(), a=0, loc=0, scale=1, fit=False, line=None, ax=None, **plotkwargs): """ Q-Q plot of the quantiles of x versus the quantiles/ppf of a distribution. Can take arguments specifying the parameters for dist or fit them automatically. (See fit under Parameters.) Parameters ---------- data : array_like 1d data array dist : A scipy.stats or statsmodels distribution Compare x against dist. The default is scipy.stats.distributions.norm (a standard normal). distargs : tuple A tuple of arguments passed to dist to specify it fully so dist.ppf may be called. loc : float Location parameter for dist a : float Offset for the plotting position of an expected order statistic, for example. The plotting positions are given by (i - a)/(nobs - 2*a + 1) for i in range(0,nobs+1) scale : float Scale parameter for dist fit : bool If fit is false, loc, scale, and distargs are passed to the distribution. If fit is True then the parameters for dist are fit automatically using dist.fit. The quantiles are formed from the standardized data, after subtracting the fitted loc and dividing by the fitted scale. line : str {'45', 's', 'r', q'} or None Options for the reference line to which the data is compared: - '45' - 45-degree line - 's' - standardized line, the expected order statistics are scaled by the standard deviation of the given sample and have the mean added to them - 'r' - A regression line is fit - 'q' - A line is fit through the quartiles. - None - by default no reference line is added to the plot. ax : Matplotlib AxesSubplot instance, optional If given, this subplot is used to plot in instead of a new figure being created. **plotkwargs : additional matplotlib arguments to be passed to the `plot` command. Returns ------- fig : Matplotlib figure instance If `ax` is None, the created figure. Otherwise the figure to which `ax` is connected. See Also -------- scipy.stats.probplot Examples -------- >>> import statsmodels.api as sm >>> from matplotlib import pyplot as plt >>> data = sm.datasets.longley.load(as_pandas=False) >>> data.exog = sm.add_constant(data.exog) >>> mod_fit = sm.OLS(data.endog, data.exog).fit() >>> res = mod_fit.resid # residuals >>> fig = sm.qqplot(res) >>> plt.show() qqplot of the residuals against quantiles of t-distribution with 4 degrees of freedom: >>> import scipy.stats as stats >>> fig = sm.qqplot(res, stats.t, distargs=(4,)) >>> plt.show() qqplot against same as above, but with mean 3 and std 10: >>> fig = sm.qqplot(res, stats.t, distargs=(4,), loc=3, scale=10) >>> plt.show() Automatically determine parameters for t distribution including the loc and scale: >>> fig = sm.qqplot(res, stats.t, fit=True, line='45') >>> plt.show() The following plot displays some options, follow the link to see the code. .. plot:: plots/graphics_gofplots_qqplot.py Notes ----- Depends on matplotlib. If `fit` is True then the parameters are fit using the distribution's fit() method. """ probplot = ProbPlot(data, dist=dist, distargs=distargs, fit=fit, a=a, loc=loc, scale=scale) fig = probplot.qqplot(ax=ax, line=line, **plotkwargs) return fig def qqplot_2samples(data1, data2, xlabel=None, ylabel=None, line=None, ax=None): """ Q-Q Plot of two samples' quantiles. Can take either two `ProbPlot` instances or two array-like objects. In the case of the latter, both inputs will be converted to `ProbPlot` instances using only the default values - so use `ProbPlot` instances if finer-grained control of the quantile computations is required. Parameters ---------- data1, data2 : array_like (1d) or `ProbPlot` instances xlabel, ylabel : str or None User-provided labels for the x-axis and y-axis. If None (default), other values are used. line : str {'45', 's', 'r', q'} or None Options for the reference line to which the data is compared: - '45' - 45-degree line - 's' - standardized line, the expected order statistics are scaled by the standard deviation of the given sample and have the mean added to them - 'r' - A regression line is fit - 'q' - A line is fit through the quartiles. - None - by default no reference line is added to the plot. ax : Matplotlib AxesSubplot instance, optional If given, this subplot is used to plot in instead of a new figure being created. Returns ------- fig : Matplotlib figure instance If `ax` is None, the created figure. Otherwise the figure to which `ax` is connected. See Also -------- scipy.stats.probplot Examples -------- >>> import statsmodels.api as sm >>> import numpy as np >>> import matplotlib.pyplot as plt >>> from statsmodels.graphics.gofplots import qqplot_2samples >>> x = np.random.normal(loc=8.5, scale=2.5, size=37) >>> y = np.random.normal(loc=8.0, scale=3.0, size=37) >>> pp_x = sm.ProbPlot(x) >>> pp_y = sm.ProbPlot(y) >>> qqplot_2samples(pp_x, pp_y) >>> plt.show() .. plot:: plots/graphics_gofplots_qqplot_2samples.py >>> fig = qqplot_2samples(pp_x, pp_y, xlabel=None, ylabel=None, \ ... line=None, ax=None) Notes ----- 1) Depends on matplotlib. 2) If `data1` and `data2` are not `ProbPlot` instances, instances will be created using the default parameters. Therefore, it is recommended to use `ProbPlot` instance if fine-grained control is needed in the computation of the quantiles. """ if not isinstance(data1, ProbPlot): data1 = ProbPlot(data1) if not isinstance(data2, ProbPlot): data2 = ProbPlot(data2) fig = data1.qqplot(xlabel=xlabel, ylabel=ylabel, line=line, other=data2, ax=ax) return fig def qqline(ax, line, x=None, y=None, dist=None, fmt='r-'): """ Plot a reference line for a qqplot. Parameters ---------- ax : matplotlib axes instance The axes on which to plot the line line : str {'45','r','s','q'} Options for the reference line to which the data is compared.: - '45' - 45-degree line - 's' - standardized line, the expected order statistics are scaled by the standard deviation of the given sample and have the mean added to them - 'r' - A regression line is fit - 'q' - A line is fit through the quartiles. - None - By default no reference line is added to the plot. x : array X data for plot. Not needed if line is '45'. y : array Y data for plot. Not needed if line is '45'. dist : scipy.stats.distribution A scipy.stats distribution, needed if line is 'q'. Notes ----- There is no return value. The line is plotted on the given `ax`. Examples -------- Import the food expenditure dataset. Plot annual food expenditure on x-axis and household income on y-axis. Use qqline to add regression line into the plot. >>> import statsmodels.api as sm >>> import numpy as np >>> import matplotlib.pyplot as plt >>> from statsmodels.graphics.gofplots import qqline >>> foodexp = sm.datasets.engel.load(as_pandas=False) >>> x = foodexp.exog >>> y = foodexp.endog >>> ax = plt.subplot(111) >>> plt.scatter(x, y) >>> ax.set_xlabel(foodexp.exog_name[0]) >>> ax.set_ylabel(foodexp.endog_name) >>> qqline(ax, 'r', x, y) >>> plt.show() .. plot:: plots/graphics_gofplots_qqplot_qqline.py """ if line == '45': end_pts = lzip(ax.get_xlim(), ax.get_ylim()) end_pts[0] = min(end_pts[0]) end_pts[1] = max(end_pts[1]) ax.plot(end_pts, end_pts, fmt) ax.set_xlim(end_pts) ax.set_ylim(end_pts) return # does this have any side effects? if x is None and y is None: raise ValueError("If line is not 45, x and y cannot be None.") elif line == 'r': # could use ax.lines[0].get_xdata(), get_ydata(), # but do not know axes are 'clean' y = OLS(y, add_constant(x)).fit().fittedvalues ax.plot(x,y,fmt) elif line == 's': m,b = y.std(), y.mean() ref_line = x*m + b ax.plot(x, ref_line, fmt) elif line == 'q': _check_for_ppf(dist) q25 = stats.scoreatpercentile(y, 25) q75 = stats.scoreatpercentile(y, 75) theoretical_quartiles = dist.ppf([0.25, 0.75]) m = (q75 - q25) / np.diff(theoretical_quartiles) b = q25 - m*theoretical_quartiles[0] ax.plot(x, m*x + b, fmt) # about 10x faster than plotting_position in sandbox and mstats def plotting_pos(nobs, a): """ Generates sequence of plotting positions Parameters ---------- nobs : int Number of probability points to plot a : float Offset for the plotting position of an expected order statistic, for example. Returns ------- plotting_positions : array The plotting positions Notes ----- The plotting positions are given by (i - a)/(nobs - 2*a + 1) for i in range(0,nobs+1) See Also -------- scipy.stats.mstats.plotting_positions """ return (np.arange(1., nobs + 1) - a)/(nobs - 2 * a + 1) def _fmt_probplot_axis(ax, dist, nobs): """ Formats a theoretical quantile axis to display the corresponding probabilities on the quantiles' scale. Parameteters ------------ ax : Matplotlib AxesSubplot instance, optional The axis to be formatted nobs : scalar Numbero of observations in the sample dist : scipy.stats.distribution A scipy.stats distribution sufficiently specified to impletment its ppf() method. Returns ------- There is no return value. This operates on `ax` in place """ _check_for_ppf(dist) if nobs < 50: axis_probs = np.array([1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 98, 99, ]) / 100.0 elif nobs < 500: axis_probs = np.array([0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 98, 99, 99.5, 99.8, 99.9]) / 100.0 else: axis_probs = np.array([0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 98, 99, 99.5, 99.8, 99.9, 99.95, 99.98, 99.99]) / 100.0 axis_qntls = dist.ppf(axis_probs) ax.set_xticks(axis_qntls) ax.set_xticklabels(axis_probs*100, rotation=45, rotation_mode='anchor', horizontalalignment='right', verticalalignment='center') ax.set_xlim([axis_qntls.min(), axis_qntls.max()]) def _do_plot(x, y, dist=None, line=False, ax=None, fmt='bo', **kwargs): """ Boiler plate plotting function for the `ppplot`, `qqplot`, and `probplot` methods of the `ProbPlot` class Parameteters ------------ x, y : array_like Data to be plotted dist : scipy.stats.distribution A scipy.stats distribution, needed if `line` is 'q'. line : str {'45', 's', 'r', q'} or None Options for the reference line to which the data is compared. ax : Matplotlib AxesSubplot instance, optional If given, this subplot is used to plot in instead of a new figure being created. fmt : str, optional matplotlib-compatible formatting string for the data markers kwargs : keywords These are passed to matplotlib.plot Returns ------- fig : Matplotlib Figure instance ax : Matplotlib AxesSubplot instance (see Parameters) """ fig, ax = utils.create_mpl_ax(ax) ax.set_xmargin(0.02) ax.plot(x, y, fmt, **kwargs) if line: if line not in ['r','q','45','s']: msg = "%s option for line not understood" % line raise ValueError(msg) qqline(ax, line, x=x, y=y, dist=dist) return fig, ax def _check_for_ppf(dist): if not hasattr(dist, 'ppf'): raise ValueError("distribution must have a ppf method")
36.784633
80
0.589151
7f2c483caefba7c32792fbfa7c5db3cf5a6f907e
149
py
Python
nostrint/redat.py
CiKu370/no-strint
4f4fbe71517b84c00abd4fbdee15bacba01c0079
[ "MIT" ]
1
2020-02-05T00:18:27.000Z
2020-02-05T00:18:27.000Z
nostrint/redat.py
CiKu370/no-strint
4f4fbe71517b84c00abd4fbdee15bacba01c0079
[ "MIT" ]
null
null
null
nostrint/redat.py
CiKu370/no-strint
4f4fbe71517b84c00abd4fbdee15bacba01c0079
[ "MIT" ]
null
null
null
__version__ = '1.4.9' BANNER = ''' _ (o) (_|_) <no strint> {0} @ zvtyrdt.id ||| (https://github.com/zevtyardt) '''.format(__version__)
16.555556
38
0.550336
12d2487557834a5c5bda41b512ea74ae5b38dfdf
315
py
Python
src/osmo/config_osmo.py
0xChief/staketaxcsv
3122736c4044e9a22237fffacee80ca1d7604be1
[ "MIT" ]
null
null
null
src/osmo/config_osmo.py
0xChief/staketaxcsv
3122736c4044e9a22237fffacee80ca1d7604be1
[ "MIT" ]
null
null
null
src/osmo/config_osmo.py
0xChief/staketaxcsv
3122736c4044e9a22237fffacee80ca1d7604be1
[ "MIT" ]
null
null
null
from common import ExporterTypes as et class localconfig: job = None debug = False limit = 10000 # max txs # Treat LP deposits/withdrawals as "transfers"/"omit"/"trades" (ignored for koinly) lp_treatment = et.LP_TREATMENT_DEFAULT cache = False ibc_addresses = {} exponents = {}
21
87
0.669841
d95058fcc73b500e17507ab146c253f12afd3e16
704
py
Python
wardrobe/use_cases/user_detail.py
wardrobe-auth/wardrobe
fd2f95e50c1d035a2a60e0fdc68685ce45b6e653
[ "MIT" ]
null
null
null
wardrobe/use_cases/user_detail.py
wardrobe-auth/wardrobe
fd2f95e50c1d035a2a60e0fdc68685ce45b6e653
[ "MIT" ]
null
null
null
wardrobe/use_cases/user_detail.py
wardrobe-auth/wardrobe
fd2f95e50c1d035a2a60e0fdc68685ce45b6e653
[ "MIT" ]
null
null
null
from ca_util import ResponseFailure, ResponseSuccess from wardrobe.request_objects.user_id import UserIdRequestObject from wardrobe.request_objects.user_paginate import UserPaginateRequestObject class UserDetailUseCase: def __init__(self, user_repo): self.user_repo = user_repo def execute(self, request_object: UserIdRequestObject): if not request_object: return ResponseFailure.build_from_invalid_request_object(request_object) user_id = request_object.user_id user = self.user_repo.get(user_id) if user is None: return ResponseFailure.build_resource_error(f'User:{user_id} not found.') return ResponseSuccess(user)
33.52381
85
0.755682
3a9aa7ad202c0fff2185e87998722978a676998b
46,815
py
Python
src/benchmarks/gc/src/analysis/types.py
BruceForstall/performance
47524b9060aa7cb13205fa281a6be6e2d404995c
[ "MIT" ]
547
2018-11-06T21:14:57.000Z
2022-03-31T21:14:57.000Z
src/benchmarks/gc/src/analysis/types.py
BruceForstall/performance
47524b9060aa7cb13205fa281a6be6e2d404995c
[ "MIT" ]
1,572
2018-11-06T21:30:31.000Z
2022-03-31T23:31:25.000Z
src/benchmarks/gc/src/analysis/types.py
BruceForstall/performance
47524b9060aa7cb13205fa281a6be6e2d404995c
[ "MIT" ]
196
2018-11-06T20:58:21.000Z
2022-03-29T21:04:21.000Z
# Licensed to the .NET Foundation under one or more agreements. # The .NET Foundation licenses this file to you under the MIT license. # See the LICENSE file in the project root for more information. from abc import ABC, abstractmethod from dataclasses import dataclass from enum import Enum from functools import reduce from math import isnan from pathlib import Path from statistics import mean, median, stdev from typing import ( Any, Callable, cast, Dict, FrozenSet, Iterable, Mapping, Optional, Sequence, Tuple, TypeVar, Union, ) from result import Err, Ok, Result from ..commonlib.bench_file import GCPerfSimResult, ProcessQuery, TestResult, TestRunStatus from ..commonlib.collection_util import count, empty_mapping, is_empty, map_to_mapping from ..commonlib.document import Cell from ..commonlib.frozen_dict import FrozenDict from ..commonlib.option import map_option, non_null from ..commonlib.result_utils import ( all_non_err, fn_to_ok, flat_map_ok, map_ok, map_ok_2, option_to_result, unwrap, ) from ..commonlib.score_spec import ScoreElement, ScoreSpec from ..commonlib.type_utils import check_cast, enum_value, E, T, U, with_slots from ..commonlib.util import ( bytes_to_gb, bytes_to_mb, float_to_str_smaller, get_95th_percentile, get_or_did_you_mean, get_percent, mb_to_gb, msec_to_seconds, remove_extension, stdev_frac, ) from .clr import Clr from .clr_types import ( AbstractGCPerHeapHistory, AbstractGCPerHeapHistoryGenData, AbstractGCStats, AbstractIProcessIDToProcessName, AbstractIThreadIDToProcessID, AbstractJoinInfoForProcess, AbstractJoinInfoForGC, AbstractJoinInfoForHeap, AbstractServerGcHistory, AbstractTimeSpan, AbstractTraceGC, AbstractTraceProcess, AbstractTraceLoadedDotNetRuntime, ) from .enums import ( EMPTY_GC_GLOBAL_MECHANISMS, GCGlobalMechanisms, gc_heap_compact_reason, gc_heap_expand_mechanism, gc_reason, GCType, Gens, invert_gc_global_mechanisms, MarkRootType, StartupFlags, union_gc_global_mechanisms, ) @with_slots @dataclass(frozen=True) class ValueAndErrors: value: float err_neg: float err_pos: float def to_tuple(self) -> Tuple[float, float, float]: return self.value, self.err_neg, self.err_pos class SpecialSampleKind(Enum): mean = 0 median = 1 min = 2 max = 3 SampleKind = Union[int, SpecialSampleKind] SAMPLE_KIND_DOC = """ When multiple iterations of a test were run, what to statistic as the representative sample. If an integer, uses the nth iteration. """.strip() RUN_METRICS_DOC = """ Metrics applying to entire test run. See `metrics.md` for a list. """ SINGLE_GC_METRICS_DOC = """ Metrics applying to each individual GC. See `metrics.md` for a list. """ SINGLE_HEAP_METRICS_DOC = """ Metrics applying to each individual heap within each individual GC. See `metrics.md` for a list. """ @with_slots @dataclass(frozen=True) class MetricValue: all_samples: Sequence[float] n_samples: float # Determined by sample_kind sample: float stdev: float median: float min: float max: float def __post_init__(self) -> None: assert self.min in self.all_samples and self.max in self.all_samples def sample_and_errors(self) -> ValueAndErrors: return ValueAndErrors(self.sample, self.sample - self.min, self.max - self.sample) @property def stdev_frac(self) -> float: return stdev_frac(self.stdev, self.sample) def cells_sample_stdev_pct(self) -> Sequence[Cell]: return ( Cell(self.sample), Cell( float_to_str_smaller(self.stdev_frac * 100), color="red" if self.stdev_frac > 0.1 else None, ), ) # When we fail to get a metric, we use Err. # This is because we want to display the failure but continue to show other metrics, # rather than exiting the program immediately with an exception. Failable = Result[str, T] # Allowed kinds of metric values. Note all of these can convert to float. AnyValue = Union[bool, int, float] FailableValue = Failable[AnyValue] FailableBool = Failable[bool] FailableInt = Failable[int] FailableFloat = Failable[float] FailableValues = Failable[Sequence[FailableValue]] FailableMetricValue = Failable[MetricValue] def _take_sample(values: Sequence[AnyValue], sample_kind: SampleKind) -> AnyValue: if isinstance(sample_kind, int): return values[sample_kind] else: fn: Callable[[Sequence[float]], float] if sample_kind == SpecialSampleKind.mean: fn = mean elif sample_kind == SpecialSampleKind.median: fn = median elif sample_kind == SpecialSampleKind.min: fn = min elif sample_kind == SpecialSampleKind.max: fn = max else: raise Exception(sample_kind) return fn(values) def metric_value_of( values: Sequence[FailableValue], sample_kind: SampleKind ) -> FailableMetricValue: assert not is_empty(values) return flat_map_ok( all_non_err(values), lambda vs: Ok( MetricValue( all_samples=vs, n_samples=len(vs), sample=_take_sample(vs, sample_kind), stdev=0 if len(vs) == 1 else stdev(vs), median=median(vs), min=min(vs), max=max(vs), ) ), ) # Maps event name to its frequency EventNames = Mapping[str, int] @with_slots @dataclass(frozen=True) class ProcessInfo: event_names: Optional[EventNames] # Not necessarily the name of the process, # since we may run two tests with the same process name and want to tell them apart name: str trace_path: Path process: AbstractTraceProcess mang: AbstractTraceLoadedDotNetRuntime all_gcs_including_incomplete: Sequence[AbstractTraceGC] gcs: Sequence[AbstractTraceGC] stats: AbstractGCStats # Note: can't use process.StartTime and EndTime properties # as those are just 1/1/0001 12:00:00 AM events_time_span: Optional[AbstractTimeSpan] per_heap_history_times: Optional[Sequence[float]] @property def id(self) -> int: return self.process.ProcessID @property def process_name(self) -> str: return self.process.Name @property def startup_flags(self) -> StartupFlags: return StartupFlags(self.mang.StartupFlags) @property def uses_server_gc(self) -> Optional[bool]: i = self.stats.IsServerGCUsed if i == -1: return None elif i == 0: return False else: return True class MetricType(Enum): bool = 0 float = 1 class Better(Enum): """Is it better for a metric to be lower or higher?""" less = 0 greater = 1 class MetricBase(ABC): @property @abstractmethod def name(self) -> str: raise NotImplementedError() @property @abstractmethod def type(self) -> MetricType: raise NotImplementedError() @property @abstractmethod def is_from_test_status(self) -> bool: raise NotImplementedError() @property @abstractmethod def doc(self) -> Optional[str]: raise NotImplementedError() @property @abstractmethod def is_aggregate(self) -> bool: raise NotImplementedError @property @abstractmethod def do_not_use_scientific_notation(self) -> bool: raise NotImplementedError() @property @abstractmethod def better(self) -> Better: raise NotImplementedError() @with_slots @dataclass(frozen=True) class NamedMetricBase(MetricBase): name: str type: MetricType = MetricType.float doc: Optional[str] = None # True for a metric that aggregates others, e.g. a run metric aggregating single GCs is_aggregate: bool = False do_not_use_scientific_notation: bool = False is_from_test_status: bool = False better: Better = Better.less def __post_init__(self) -> None: # Apparently the base class must have this or it won't be called on subclasses pass def __eq__(self, other: object) -> bool: assert self is other or other is None or self.name != check_cast(self.__class__, other).name return self is other def __lt__(self, other: object) -> bool: return self.name < check_cast(self.__class__, other).name def __hash__(self) -> int: return hash(self.name) TMetric = TypeVar("TMetric", bound=MetricBase) TMetricB = TypeVar("TMetricB", bound=MetricBase) TNamedMetric = TypeVar("TNamedMetric", bound=NamedMetricBase) class NamedRunMetric(NamedMetricBase): """ Statistic that applies to a test run as a whole. Contrast with SingleGcStat. """ def __post_init__(self) -> None: super().__post_init__() assert self.name not in NAME_TO_RUN_METRIC, f"Already exists a metric {self.name}" NAME_TO_RUN_METRIC[self.name] = self @with_slots @dataclass(frozen=True) class ScoreRunMetric(MetricBase): name: str spec: ScoreSpec = empty_mapping() # TODO: shouldn't have a default @property # @overrides def type(self) -> MetricType: return MetricType.float @property # @overrides def is_from_test_status(self) -> bool: return False @property # @overrides def doc(self) -> Optional[str]: return None @property # @overrides def is_aggregate(self) -> bool: return True @property # @overrides def do_not_use_scientific_notation(self) -> bool: return False @property # @overrides def better(self) -> Better: return Better.less RunMetric = Union[NamedRunMetric, ScoreRunMetric] # Can't use ScoreRunMetric or ScoreElement as those are frozen. (Must be frozen to be hashable.) # Tuples are (weight, par) pairs. SerializedRunMetric = Union[str, Tuple[str, Mapping[str, Tuple[float, Optional[float]]]]] NAME_TO_RUN_METRIC: Dict[str, NamedRunMetric] = {} def run_metric_must_exist_for_name(name: str) -> NamedRunMetric: return get_or_did_you_mean(NAME_TO_RUN_METRIC, name, "run metric") def serialize_run_metric(r: RunMetric) -> SerializedRunMetric: if isinstance(r, NamedRunMetric): return r.name else: return r.name, {k: (v.weight, v.par) for k, v in r.spec.items()} def deserialize_run_metric(m: SerializedRunMetric) -> RunMetric: if isinstance(m, str): return run_metric_must_exist_for_name(m) else: return ScoreRunMetric(m[0], FrozenDict((k, ScoreElement(*v)) for k, v in m[1].items())) class SingleGCMetric(NamedMetricBase): """Statistic that applies to a single invocation of the GC.""" def __post_init__(self) -> None: super().__post_init__() assert self.name not in NAME_TO_SINGLE_GC_METRIC, f"Duplicate SingleGcMetric {self.name}" NAME_TO_SINGLE_GC_METRIC[self.name] = self NAME_TO_SINGLE_GC_METRIC: Dict[str, SingleGCMetric] = {} def single_gc_metric_must_exist_for_name(name: str) -> SingleGCMetric: return get_or_did_you_mean(NAME_TO_SINGLE_GC_METRIC, name, "single-gc metric") class SingleHeapMetric(NamedMetricBase): """Statistic for a single heap from a single GC""" def __post_init__(self) -> None: super().__post_init__() assert ( self.name not in NAME_TO_SINGLE_HEAP_METRIC ), f"Duplicate SingleHeapMetric {self.name}" NAME_TO_SINGLE_HEAP_METRIC[self.name] = self NAME_TO_SINGLE_HEAP_METRIC: Dict[str, SingleHeapMetric] = {} def single_heap_metric_must_exist_for_name(name: str) -> SingleHeapMetric: return get_or_did_you_mean(NAME_TO_SINGLE_HEAP_METRIC, name, "single-heap metric") # Using sequence to preserve ordering. FrozenSet has non-deterministic ordering. RunMetrics = Sequence[RunMetric] SingleGCMetrics = Sequence[SingleGCMetric] SingleHeapMetrics = Sequence[SingleHeapMetric] MetricValuesForSingleIteration = Mapping[RunMetric, FailableValue] # Will be a single CouldNotGetValue if the test as a whole failed or has no GCs. # Else will have CouldNotGetValue for each individual metric that failed. MaybeMetricValuesForSingleIteration = Failable[MetricValuesForSingleIteration] MetricStatisticsFromAllIterations = Mapping[RunMetric, FailableMetricValue] MaybeMetricStatisticsFromAllIterations = Failable[MetricStatisticsFromAllIterations] @with_slots @dataclass(frozen=True) class ProcessedGenData: _g: AbstractGCPerHeapHistoryGenData @property def surv_rate(self) -> int: return self._g.SurvRate @property def pinned_surv(self) -> int: return self._g.PinnedSurv @property def non_pinned_surv(self) -> int: return self._g.NonePinnedSurv @property def non_free_size_before(self) -> int: return self.size_before - self.free_list_space_before - self.free_obj_space_before @property def non_free_size_after(self) -> int: return self.size_after - self.free_list_space_after - self.free_obj_space_after @property def size_before(self) -> int: return self._g.SizeBefore @property def size_after(self) -> int: return self._g.SizeAfter @property def obj_space_before(self) -> int: return self._g.ObjSpaceBefore @property def fragmentation(self) -> int: return self._g.Fragmentation @property def obj_size_after(self) -> int: return self._g.ObjSizeAfter @property def free_list_space_before(self) -> int: return self._g.FreeListSpaceBefore @property def free_obj_space_before(self) -> int: return self._g.FreeObjSpaceBefore @property def free_list_space_after(self) -> int: return self._g.FreeListSpaceAfter @property def free_obj_space_after(self) -> int: return self._g.FreeObjSpaceAfter @property def in_bytes(self) -> int: return self._g.In @property def in_mb(self) -> float: return bytes_to_mb(self.in_bytes) @property def out_bytes(self) -> int: return self._g.Out @property def out_mb(self) -> float: return bytes_to_mb(self.out_bytes) @property def budget(self) -> int: return self._g.Budget @with_slots @dataclass(frozen=True) class ProcessedHeap: gc: "ProcessedGC" index: int per_heap_history: Result[str, AbstractGCPerHeapHistory] # Missing for BGCs (don't know why...) server_gc_history: Result[str, AbstractServerGcHistory] ## Index is a member of MarkRootType enum _mark_times: Failable[Sequence[float]] _mark_promoted: Failable[Sequence[float]] join_info: Result[str, AbstractJoinInfoForHeap] @property def clr(self) -> Clr: return self.gc.clr def metric(self, metric: SingleHeapMetric) -> FailableValue: # pylint:disable=import-outside-toplevel from .single_heap_metrics import get_single_heap_stat return get_single_heap_stat(self, metric) def gen(self, gen: Gens) -> ProcessedGenData: return unwrap(self.gen_result(gen)) def gen_result(self, gen: Gens) -> Result[str, ProcessedGenData]: return map_ok( self.per_heap_history, lambda phh: ProcessedGenData(phh.GenData[enum_value(gen)]) ) @property def gens(self) -> Result[str, Sequence[ProcessedGenData]]: return map_ok( self.per_heap_history, lambda phh: [ProcessedGenData(phh.GenData[enum_value(gen)]) for gen in Gens], ) @property def FreeListAllocated(self) -> Result[str, int]: return map_ok(self.per_heap_history, lambda phh: phh.FreeListAllocated) @property def FreeListRejected(self) -> Result[str, int]: return map_ok(self.per_heap_history, lambda phh: phh.FreeListRejected) def mark_time(self, mark_type: MarkRootType) -> FailableFloat: return map_ok(self._mark_times, lambda m: m[enum_value(mark_type)]) def mark_promoted(self, mark_type: MarkRootType) -> FailableFloat: return map_ok(self._mark_promoted, lambda m: m[enum_value(mark_type)]) @property def TotalMarkMSec(self) -> FailableFloat: return map_ok(self._mark_times, sum) @property def TotalMarkPromoted(self) -> FailableFloat: return map_ok(self._mark_promoted, sum) # TODO: better return type @property def compact_mechanisms(self) -> Result[str, int]: return map_ok(self.per_heap_history, lambda phh: phh.CompactMechanisms) # TODO: better return type @property def expand_mechanisms(self) -> Result[str, int]: return map_ok(self.per_heap_history, lambda phh: phh.ExpandMechanisms) def _fixup_mb(fake_mb: float) -> float: return bytes_to_mb(fake_mb * 1_000_000) @with_slots @dataclass(frozen=True) class GenInfoGetter: _gc: "ProcessedGC" _gen: Gens @property def _trace_gc(self) -> AbstractTraceGC: return self._gc.trace_gc @property def _gen_value(self) -> int: return enum_value(self._gen) @property def UserAllocatedMB(self) -> float: # Amount is already in MB return self._trace_gc.UserAllocated[self._gen_value] @property def SizeBeforeMB(self) -> float: return _fixup_mb(self._trace_gc.GenSizeBeforeMB[self._gen_value]) @property def SizeAfterMB(self) -> float: return _fixup_mb(self._trace_gc.GenSizeAfterMB(self._gen_value)) @property def SurvivalPct(self) -> FailableFloat: pct = self._trace_gc.SurvivalPercent(self._gen_value) if isnan(pct): return Err(f"{Gens(self._gen_value).name} not collected?") else: assert 0 <= pct <= 100 return Ok(pct) @property def FragmentationMB(self) -> float: return _fixup_mb(self._trace_gc.GenFragmentationMB(self._gen_value)) @property def FragmentationPct(self) -> float: return self._trace_gc.GenFragmentationPercent(self._gen_value) @property def InMB(self) -> float: return _fixup_mb(self._trace_gc.GenInMB(self._gen_value)) @property def PromotedMB(self) -> float: return _fixup_mb(self._trace_gc.GenPromotedMB(self._gen_value)) @property def BudgetMB(self) -> float: return _fixup_mb(self._trace_gc.GenBudgetMB(self._gen_value)) @property def ObjSizeAfterMB(self) -> float: return _fixup_mb(self._trace_gc.GenObjSizeAfterMB(self._gen_value)) @property def FreeListSpaceBeforeMB(self) -> float: return bytes_to_mb(sum(hp.gen(self._gen).free_list_space_before for hp in self._gc.heaps)) @property def FreeListSpaceAfterMB(self) -> float: return bytes_to_mb(sum(hp.gen(self._gen).free_list_space_after for hp in self._gc.heaps)) @property def FreeObjSpaceBeforeMB(self) -> float: return bytes_to_mb(sum(hp.gen(self._gen).free_obj_space_before for hp in self._gc.heaps)) @property def FreeObjSpaceAfterMB(self) -> float: return bytes_to_mb(sum(hp.gen(self._gen).free_obj_space_after for hp in self._gc.heaps)) @with_slots # frozen=False so heaps can be set lazily @dataclass(frozen=False) class ProcessedGC: proc: "ProcessedTrace" index: int trace_gc: AbstractTraceGC join_info: Result[str, AbstractJoinInfoForGC] heaps: Sequence[ProcessedHeap] @property def prev_gc(self) -> Optional["ProcessedGC"]: if self.index == 0: return None else: res = self.proc.gcs[self.index - 1] assert res.index == self.index - 1 return res @property def clr(self) -> Clr: return self.proc.clr @property def SuspendDurationMSec(self) -> float: return self.trace_gc.SuspendDurationMSec def metric(self, single_gc_metric: SingleGCMetric) -> FailableValue: from .single_gc_metrics import get_single_gc_stat # pylint:disable=import-outside-toplevel return get_single_gc_stat(self.proc, self.proc.gcs, self.index, single_gc_metric) def metric_from_name(self, name: str) -> FailableValue: # pylint:disable=import-outside-toplevel from .parse_metrics import parse_single_gc_metric_arg return self.metric(parse_single_gc_metric_arg(name)) def unwrap_metric_from_name(self, name: str) -> AnyValue: return unwrap(self.metric_from_name(name)) @property def Number(self) -> int: return self.trace_gc.Number @property def Generation(self) -> Gens: return Gens(self.trace_gc.Generation) def collects_generation(self, gen: Gens) -> bool: return { Gens.Gen0: True, Gens.Gen1: self.Generation != Gens.Gen0, Gens.Gen2: self.Generation == Gens.Gen2, Gens.GenLargeObj: self.Generation == Gens.Gen2, }[gen] @property def AllocedSinceLastGCMB(self) -> float: return self.trace_gc.AllocedSinceLastGCMB _alloced_mb_accumulated: Optional[float] = None @property def AllocedMBAccumulated(self) -> float: if self._alloced_mb_accumulated is None: prev = 0 if self.prev_gc is None else self.prev_gc.AllocedMBAccumulated self._alloced_mb_accumulated = prev + self.AllocedSinceLastGCMB return self._alloced_mb_accumulated else: return self._alloced_mb_accumulated @property def AllocRateMBSec(self) -> float: return self.trace_gc.AllocRateMBSec @property def BGCFinalPauseMSec(self) -> float: return self.trace_gc.BGCFinalPauseMSec @property def Type(self) -> GCType: return GCType(self.trace_gc.Type) @property def DurationMSec(self) -> float: return self.trace_gc.DurationMSec @property def DurationSeconds(self) -> float: return msec_to_seconds(self.DurationMSec) @property def DurationSinceLastRestartMSec(self) -> float: return self.trace_gc.DurationSinceLastRestartMSec @property def GCCpuMSec(self) -> float: return self.trace_gc.GCCpuMSec def gen_info(self, gen: Gens) -> GenInfoGetter: return GenInfoGetter(self, gen) @property def gen0(self) -> GenInfoGetter: return self.gen_info(Gens.Gen0) @property def gen1(self) -> GenInfoGetter: return self.gen_info(Gens.Gen1) @property def gen2(self) -> GenInfoGetter: return self.gen_info(Gens.Gen2) @property def loh(self) -> GenInfoGetter: return self.gen_info(Gens.GenLargeObj) @property def Gen0UserAllocatedMB(self) -> float: return self.gen0.UserAllocatedMB # User can't allocate directly to gen1 or gen2 @property def LOHUserAllocatedMB(self) -> float: return self.loh.UserAllocatedMB @property def Gen0SizeBeforeMB(self) -> float: return self.gen0.SizeBeforeMB @property def Gen1SizeBeforeMB(self) -> float: return self.gen1.SizeBeforeMB @property def Gen2SizeBeforeMB(self) -> float: return self.gen2.SizeBeforeMB @property def LOHSizeBeforeMB(self) -> float: return self.loh.SizeBeforeMB @property def Gen0BudgetMB(self) -> float: return self.gen0.BudgetMB @property def Gen1BudgetMB(self) -> float: return self.gen1.BudgetMB @property def Gen2BudgetMB(self) -> float: return self.gen2.BudgetMB @property def LOHBudgetMB(self) -> float: return self.loh.BudgetMB @property def Gen0SizeAfterMB(self) -> float: return self.gen0.SizeAfterMB @property def Gen1SizeAfterMB(self) -> float: return self.gen1.SizeAfterMB @property def Gen2SizeAfterMB(self) -> float: return self.gen2.SizeAfterMB @property def LOHSizeAfterMB(self) -> float: return self.loh.SizeAfterMB @property def Gen0FreeListSpaceBeforeMB(self) -> float: return self.gen0.FreeListSpaceBeforeMB @property def Gen1FreeListSpaceBeforeMB(self) -> float: return self.gen1.FreeListSpaceBeforeMB @property def Gen2FreeListSpaceBeforeMB(self) -> float: return self.gen2.FreeListSpaceBeforeMB @property def LOHFreeListSpaceBeforeMB(self) -> float: return self.loh.FreeListSpaceBeforeMB @property def Gen0FreeListSpaceAfterMB(self) -> float: return self.gen0.FreeListSpaceAfterMB @property def Gen1FreeListSpaceAfterMB(self) -> float: return self.gen1.FreeListSpaceAfterMB @property def Gen2FreeListSpaceAfterMB(self) -> float: return self.gen2.FreeListSpaceAfterMB @property def LOHFreeListSpaceAfterMB(self) -> float: return self.loh.FreeListSpaceAfterMB @property def Gen0FreeObjSpaceBeforeMB(self) -> float: return self.gen0.FreeObjSpaceBeforeMB @property def Gen1FreeObjSpaceBeforeMB(self) -> float: return self.gen1.FreeObjSpaceBeforeMB @property def Gen2FreeObjSpaceBeforeMB(self) -> float: return self.gen2.FreeObjSpaceBeforeMB @property def LOHFreeObjSpaceBeforeMB(self) -> float: return self.loh.FreeObjSpaceBeforeMB @property def Gen0FreeObjSpaceAfterMB(self) -> float: return self.gen0.FreeObjSpaceAfterMB @property def Gen1FreeObjSpaceAfterMB(self) -> float: return self.gen1.FreeObjSpaceAfterMB @property def Gen2FreeObjSpaceAfterMB(self) -> float: return self.gen2.FreeObjSpaceAfterMB @property def LOHFreeObjSpaceAfterMB(self) -> float: return self.loh.FreeObjSpaceAfterMB @property def HeapSizeBeforeMB(self) -> float: return self.trace_gc.HeapSizeBeforeMB @property def HeapSizeAfterMB(self) -> float: return self.trace_gc.HeapSizeAfterMB @property def HeapSizePeakMB(self) -> float: return self.trace_gc.HeapSizePeakMB @property def PinnedObjectSizes(self) -> int: return self.trace_gc.GetPinnedObjectSizes() @property def PinnedObjectPercentage(self) -> Optional[float]: pct = self.trace_gc.GetPinnedObjectPercentage() return None if pct == -1 else pct @property def TotalGCTime(self) -> Optional[float]: t = self.trace_gc.GetTotalGCTime() return None if t == 0 else t @property def PromotedMB(self) -> float: return self.trace_gc.PromotedMB @property def RatioPeakAfter(self) -> float: return self.trace_gc.RatioPeakAfter @property def suspend_duration_msec(self) -> float: return self.trace_gc.SuspendDurationMSec @property def PauseStartRelativeMSec(self) -> float: return self.trace_gc.PauseStartRelativeMSec @property def SuspendToGCStartMSec(self) -> float: return self.trace_gc.StartRelativeMSec - self.trace_gc.PauseStartRelativeMSec @property def PauseDurationMSec(self) -> float: return self.trace_gc.PauseDurationMSec @property def PromotedMBPerSec(self) -> float: return self.PromotedMB / self.DurationSeconds @property def PromotedGBPerSec(self) -> float: return mb_to_gb(self.PromotedMB) / self.DurationSeconds @property def PauseTimePercentageSinceLastGC(self) -> float: return self.trace_gc.PauseTimePercentageSinceLastGC @property def ProcessCpuMSec(self) -> float: return self.trace_gc.ProcessCpuMSec @property def StartRelativeMSec(self) -> float: return self.trace_gc.StartRelativeMSec @property def EndRelativeMSec(self) -> float: return self.StartRelativeMSec + self.DurationMSec @property def reason(self) -> gc_reason: return gc_reason(self.trace_gc.Reason) @property def PercentTimeInGC(self) -> float: return self.trace_gc.PercentTimeInGC @property def IsEphemeral(self) -> bool: return self.Generation in (Gens.Gen0, Gens.Gen1) @property def IsGen0(self) -> bool: return self.Generation == Gens.Gen0 @property def IsGen1(self) -> bool: return self.Generation == Gens.Gen1 @property def IsGen2(self) -> bool: return self.Generation == Gens.Gen2 @property def IsBlockingGen2(self) -> bool: return self.IsGen2 and self.IsNonConcurrent @property def PctReductionInHeapSize(self) -> float: return get_percent(1.0 - (self.HeapSizeAfterMB / self.HeapSizeBeforeMB)) @property def IsBackground(self) -> bool: res = self.Type == GCType.BackgroundGC if res: assert self.Generation == Gens.Gen2 return res @property def IsForeground(self) -> bool: return self.Type == GCType.ForegroundGC @property def IsNonConcurrent(self) -> bool: # TODO: is this just not is_concurrent? return self.Type == GCType.NonConcurrentGC # TODO: is this just is_background? @property def IsConcurrent(self) -> FailableBool: res = self.has_mechanisms(lambda m: m.concurrent) if res.is_ok(): is_c = res.unwrap() assert is_c == self.IsBackground if is_c: # Only gen2 gcs are concurrent assert self.Generation == Gens.Gen2 return res def has_mechanisms(self, cb: Callable[[GCGlobalMechanisms], bool]) -> FailableBool: if self.trace_gc.GlobalHeapHistory is None: return Err("null GlobalHeapHistory") else: return Ok(cb(GCGlobalMechanisms(self.trace_gc.GlobalHeapHistory.GlobalMechanisms))) # WARN: Does *NOT* include LOH compaction! @property def UsesCompaction(self) -> FailableBool: return self.has_mechanisms(lambda m: m.compaction) @property def UsesPromotion(self) -> FailableBool: return self.has_mechanisms(lambda m: m.promotion) @property def UsesDemotion(self) -> FailableBool: return self.has_mechanisms(lambda m: m.demotion) @property def UsesCardBundles(self) -> FailableBool: return self.has_mechanisms(lambda m: m.cardbundles) @property def UsesElevation(self) -> FailableBool: return self.has_mechanisms(lambda m: m.elevation) @property def UsesLOHCompaction(self) -> FailableBool: # Not implemented on the GC side return Err("<not implemented>") # return has_mechanisms(gc, lambda m: m.loh_compaction) @property def MemoryPressure(self) -> FailableFloat: ghh = self.trace_gc.GlobalHeapHistory if ghh is None: return Err("No GlobalHeapHistory") elif ghh.HasMemoryPressure: return Ok(ghh.MemoryPressure) else: return Err("GlobalHeapHistory#HasMemoryPressure was false") @property def HeapCount(self) -> int: return len(self.heaps) def total_bytes_before(self, gen: Gens) -> Result[str, int]: return map_ok( all_non_err([hp.gen_result(gen) for hp in self.heaps]), lambda gen_datas: sum(gd.non_free_size_before for gd in gen_datas), ) def total_bytes_after(self, gen: Gens) -> Result[str, int]: return map_ok( all_non_err([hp.gen_result(gen) for hp in self.heaps]), lambda gen_datas: sum(gd.non_free_size_after for gd in gen_datas), ) # TODO: revisit info for BGCs # TODO: condemned reason # TODO: suspend_duration_msec # TODO: GlobalHeapHistory PerHeapGetter = Callable[[ProcessedHeap], FailableValue] @with_slots @dataclass(frozen=True) class ThreadToProcessToName: # Maps process ID to name thread_id_to_process_id: AbstractIThreadIDToProcessID process_id_to_name: AbstractIProcessIDToProcessName def get_process_id_for_thread_id(self, thread_id: int, time_msec: float) -> Optional[int]: pid = self.thread_id_to_process_id.ThreadIDToProcessID(thread_id, _msec_to_qpc(time_msec)) return None if pid == -1 else pid def get_process_name_for_process_id(self, process_id: int, time_msec: float) -> Optional[str]: # TODO: Use a HistDict, then use time_msec res = self.process_id_to_name.ProcessIDToProcessName(process_id, _msec_to_qpc(time_msec)) assert res != "" if res is None: # TODO: only on windows return {0: "Idle", 4: "System"}.get(process_id) else: return res def _msec_to_qpc(time_msec: float) -> int: return int(time_msec * 10000) # Used to analyze the *kinds* of gcs we see. Don't care how much. @with_slots @dataclass(frozen=False) # Must be unfrozen to serialize class MechanismsAndReasons: types: FrozenSet[GCType] mechanisms: GCGlobalMechanisms reasons: FrozenSet[gc_reason] heap_expand: FrozenSet[gc_heap_expand_mechanism] heap_compact: FrozenSet[gc_heap_compact_reason] def is_empty(self) -> bool: return ( is_empty(self.types) and self.mechanisms == EMPTY_GC_GLOBAL_MECHANISMS and is_empty(self.reasons) and is_empty(self.heap_expand) and is_empty(self.heap_compact) ) def to_strs(self) -> Sequence[str]: return ( *(str(t) for t in sorted(self.types)), *self.mechanisms.names(), *(str(r) for r in sorted(self.reasons)), *(str(e) for e in sorted(self.heap_expand)), *(str(c) for c in sorted(self.heap_compact)), ) EMPTY_MECHANISMS_AND_REASONS = MechanismsAndReasons( types=frozenset(), mechanisms=EMPTY_GC_GLOBAL_MECHANISMS, reasons=frozenset(), heap_expand=frozenset(), heap_compact=frozenset(), ) def invert_mechanisms(m: MechanismsAndReasons) -> MechanismsAndReasons: return MechanismsAndReasons( types=frozenset(GCType) - m.types, mechanisms=invert_gc_global_mechanisms(m.mechanisms), reasons=frozenset(gc_reason) - m.reasons, heap_expand=frozenset(gc_heap_expand_mechanism) - m.heap_expand, heap_compact=frozenset(gc_heap_compact_reason) - m.heap_compact, ) def union_all_mechanisms(i: Iterable[MechanismsAndReasons]) -> MechanismsAndReasons: return reduce(union_mechanisms, i, EMPTY_MECHANISMS_AND_REASONS) def union_mechanisms(a: MechanismsAndReasons, b: MechanismsAndReasons) -> MechanismsAndReasons: return MechanismsAndReasons( types=a.types | b.types, mechanisms=union_gc_global_mechanisms(a.mechanisms, b.mechanisms), reasons=a.reasons | b.reasons, heap_expand=a.heap_expand | b.heap_expand, heap_compact=a.heap_compact | b.heap_compact, ) @with_slots # frozen=False so we can set GCs lazily @dataclass(frozen=False) class ProcessedTrace: clr: Clr test_result: TestResult test_status: Failable[TestRunStatus] process_info: Optional[ProcessInfo] process_names: ThreadToProcessToName # '--process' that was used to get this process_query: ProcessQuery gcs_result: Result[str, Sequence[ProcessedGC]] mechanisms_and_reasons: Optional[MechanismsAndReasons] join_info: Result[str, AbstractJoinInfoForProcess] def Aggregate( self, cb_gc: Callable[[ProcessedGC], FailableFloat], cb_aggregate: Callable[[Iterable[float]], float], ) -> FailableFloat: return flat_map_ok( self.gcs_result, lambda gcs: Err("<no gcs>") if is_empty(gcs) else map_ok(all_non_err(cb_gc(gc) for gc in gcs), cb_aggregate), ) def Max(self, cb: Callable[[ProcessedGC], FailableFloat]) -> FailableFloat: return self.Aggregate(cb, max) def Sum(self, cb: Callable[[ProcessedGC], FailableFloat]) -> FailableFloat: return self.Aggregate(cb, sum) @property def HeapSizePeakMB_Max(self) -> FailableFloat: return self.Max(lambda gc: Ok(gc.HeapSizePeakMB)) def Get95P(self, cb: Callable[[ProcessedGC], float]) -> FailableFloat: return get_95th_percentile([cb(gc) for gc in self.gcs]) @property def gcperfsim_result(self) -> Failable[GCPerfSimResult]: return flat_map_ok( self.test_status, lambda ts: option_to_result( ts.gcperfsim_result, lambda: "This metric only available for GCPerfSim" ), ) @property def TotalSecondsTaken(self) -> FailableFloat: return flat_map_ok( self.test_status, lambda ts: option_to_result( ts.seconds_taken, lambda: "Test status file does not contain seconds_taken" ), ) @property def Gen0Size(self) -> FailableFloat: return flat_map_ok( self.test_status, lambda ts: option_to_result( None if ts.test is None else ts.test.config.config.complus_gcgen0size, lambda: "Gen0size not specified in config", ), ) @property def ThreadCount(self) -> FailableFloat: return flat_map_ok( self.test_status, lambda ts: option_to_result( map_option( None if ts.test is None else ts.test.benchmark.benchmark.get_argument("-tc"), int, ), lambda: "tc not specified in benchmark", ), ) @property def InternalSecondsTaken(self) -> FailableFloat: return map_ok(self.gcperfsim_result, lambda g: g.seconds_taken) @property def FinalHeapSizeGB(self) -> FailableFloat: return flat_map_ok( self.gcperfsim_result, lambda g: Err( "final_heap_size_bytes was not in test result\n" + "this can happen on runtimes < 3.0" ) if g.final_heap_size_bytes is None else Ok(bytes_to_gb(g.final_heap_size_bytes)), ) @property def FinalFragmentationGB(self) -> FailableFloat: return flat_map_ok( self.gcperfsim_result, lambda g: Err( "final_fragmentation_bytes was not in test result\n" + "this can happen on runtimes < 3.0" ) if g.final_fragmentation_bytes is None else Ok(bytes_to_gb(g.final_fragmentation_bytes)), ) @property def FinalTotalMemoryGB(self) -> FailableFloat: return map_ok(self.gcperfsim_result, lambda g: bytes_to_gb(g.final_total_memory_bytes)) @property def NumCreatedWithFinalizers(self) -> FailableValue: return map_ok(self.gcperfsim_result, lambda g: g.num_created_with_finalizers) @property def NumFinalized(self) -> FailableValue: return map_ok(self.gcperfsim_result, lambda g: g.num_finalized) @property def Gen0CollectionCount(self) -> FailableValue: return map_ok(self.gcperfsim_result, lambda g: g.collection_counts[0]) @property def Gen1CollectionCount(self) -> FailableValue: return map_ok(self.gcperfsim_result, lambda g: g.collection_counts[1]) @property def Gen2CollectionCount(self) -> FailableValue: return map_ok(self.gcperfsim_result, lambda g: g.collection_counts[2]) @property def gcs(self) -> Sequence[ProcessedGC]: return unwrap(self.gcs_result) def metric(self, run_metric: RunMetric) -> FailableValue: from .run_metrics import stat_for_proc # pylint:disable=import-outside-toplevel return stat_for_proc(self, run_metric) def metric_from_name(self, name: str) -> FailableValue: from .parse_metrics import parse_run_metric_arg # pylint:disable=import-outside-toplevel return self.metric(parse_run_metric_arg(name)) def unwrap_metric_from_name(self, name: str) -> AnyValue: return unwrap(self.metric_from_name(name)) @property def name(self) -> str: if self.test_result.test_status_path is not None: return self.test_result.test_status_path.name else: return remove_extension(non_null(self.test_result.trace_path)).name @property def process_id(self) -> Optional[int]: return map_option(self.process_info, lambda p: p.id) @property def process_name(self) -> Optional[str]: return map_option(self.process_info, lambda p: p.process_name) @property def UsesServerGC(self) -> Optional[bool]: """None if this is unknown""" return map_option(self.process_info, lambda p: p.uses_server_gc) @property def event_names(self) -> Optional[Mapping[str, int]]: return map_option(self.process_info, lambda p: p.event_names) @property def has_mechanisms_and_reasons(self) -> bool: return self.mechanisms_and_reasons is not None @property def has_join_info(self) -> bool: return self.join_info is not None @property def FirstToLastGCSeconds(self) -> FailableFloat: if self.process_info is None: return Err("Need a trace") gcs = self.process_info.all_gcs_including_incomplete if len(gcs) < 2: return Err("Need at least 2 gcs") else: return Ok(msec_to_seconds(gcs[-1].StartRelativeMSec - gcs[0].StartRelativeMSec)) @property def FirstEventToFirstGCSeconds(self) -> FailableFloat: if self.process_info is None: return Err("Need a trace") ts = self.process_info.events_time_span if ts is None: return Err("Did not specify to collect events") else: return Ok( msec_to_seconds( self.process_info.all_gcs_including_incomplete[0].StartRelativeMSec - ts.StartMSec ) ) @property def TotalNonGCSeconds(self) -> FailableFloat: return map_ok_2( self.TotalSecondsTaken, self.gcs_result, lambda t, gcs: t - msec_to_seconds(sum(gc.PauseDurationMSec for gc in gcs)), ) @property def TotalAllocatedMB(self) -> FailableFloat: return self.Sum(lambda gc: Ok(gc.AllocedSinceLastGCMB)) @property def HeapCount(self) -> int: return unwrap(self.HeapCountResult) @property def HeapCountResult(self) -> FailableInt: def f(gcs: Sequence[ProcessedGC]) -> int: n_heaps = gcs[0].trace_gc.HeapCount for i, gc in enumerate(gcs): assert gc.trace_gc.HeapCount == n_heaps if gc.trace_gc.GlobalHeapHistory is None: print(f"WARN: GC{i} has null GlobalHeapHistory. It's a {gc.Type}") phh_count = gc.HeapCount if n_heaps != phh_count: print( f"WARN: GC{i} has {phh_count} PerHeapHistories but {n_heaps} heaps. " + f"It's a {gc.Type}" ) return n_heaps return map_ok(self.gcs_result, f) @property def NumberGCs(self) -> int: return len(self.gcs) def number_gcs_per_generation(self, gen: Gens) -> int: return count(() for gc in self.gcs if gc.Generation == gen) @property def number_gcs_in_each_generation(self) -> Mapping[Gens, int]: return map_to_mapping(Gens, self.number_gcs_per_generation) # WARN: `prop` type is deliberately *not* the correct type -- # mypy checks a property access on a class `C.x` as being of the property's callable type # when it is actually a `property` instacnce. See https://github.com/python/mypy/issues/6192 def fn_of_property(prop: Callable[[T], U]) -> Callable[[T], U]: res = check_cast(property, prop).__get__ assert callable(res) return res def ok_of_property(prop: Callable[[T], U]) -> Callable[[T], Result[E, U]]: return fn_to_ok(fn_of_property(prop)) class RegressionKind(Enum): # Note: the order of these determines the order we'll print them in. LARGE_REGRESSION = 1 LARGE_IMPROVEMENT = 2 REGRESSION = 3 IMPROVEMENT = 4 STALE = 5 def __lt__(self, other: Any) -> bool: # other: RegressionKind sv: int = self.value ov: int = other.value return sv < ov def title(self) -> str: return { RegressionKind.LARGE_REGRESSION: "Large Regressions (Regression of >20%)", RegressionKind.REGRESSION: "Regressions (Regression of 5% - 20%)", RegressionKind.LARGE_IMPROVEMENT: "Large Improvements (Improvement of >20%)", RegressionKind.IMPROVEMENT: "Improvements (Improvement of 5-20%)", RegressionKind.STALE: "Stale (Same, or percent difference within 5% margin)", }[self] def text_color(self) -> Optional[str]: return { RegressionKind.LARGE_REGRESSION: "red", RegressionKind.REGRESSION: "red", RegressionKind.LARGE_IMPROVEMENT: "green", RegressionKind.IMPROVEMENT: "green", RegressionKind.STALE: None, }[self] def get_regression_kind(factor_diff: float, better: Better) -> RegressionKind: if better == Better.greater: factor_diff *= -1 if factor_diff > 0.20: return RegressionKind.LARGE_REGRESSION elif factor_diff > 0.05: return RegressionKind.REGRESSION elif factor_diff < -0.20: return RegressionKind.LARGE_IMPROVEMENT elif factor_diff < -0.05: return RegressionKind.IMPROVEMENT else: return RegressionKind.STALE @with_slots @dataclass(frozen=True) class FloatsOrStrs: is_floats: bool _values: Union[Sequence[float], Sequence[str]] @property def as_floats(self) -> Sequence[float]: assert self.is_floats return cast(Sequence[float], self._values) @property def as_strs(self) -> Sequence[str]: assert not self.is_floats return cast(Sequence[str], self._values) def __len__(self) -> int: return len(self._values) def floats(s: Sequence[float]) -> FloatsOrStrs: return FloatsOrStrs(True, s) def strs(s: Sequence[str]) -> FloatsOrStrs: return FloatsOrStrs(False, s) class GCKind(Enum): NGC0 = 0 NGC1 = 1 BGC = 2 NGC2 = 3 def get_gc_kind(gc: ProcessedGC) -> GCKind: return get_gc_kind_for_abstract_trace_gc(gc.trace_gc) def get_gc_kind_for_abstract_trace_gc(gc: AbstractTraceGC) -> GCKind: return { Gens.Gen0: GCKind.NGC0, Gens.Gen1: GCKind.NGC1, Gens.Gen2: GCKind.BGC if GCType(gc.Type) == GCType.BackgroundGC else GCKind.NGC2, }[Gens(gc.Generation)]
29.517654
100
0.67049
e9367ed77eb2a2219ddf1398fa36142efc89937d
1,470
py
Python
script.py
konay1122/Auto-Filter-Bot-V2
436940c83bd4c8943b089f6b1b02df7656dad70f
[ "MIT" ]
1
2022-03-29T09:34:12.000Z
2022-03-29T09:34:12.000Z
script.py
konay1122/Auto-Filter-Bot-V2
436940c83bd4c8943b089f6b1b02df7656dad70f
[ "MIT" ]
null
null
null
script.py
konay1122/Auto-Filter-Bot-V2
436940c83bd4c8943b089f6b1b02df7656dad70f
[ "MIT" ]
1
2021-12-24T04:46:32.000Z
2021-12-24T04:46:32.000Z
class script(object): START_MSG = """ <b>ဟဲဟဲ😊 {} ဒါကို ဒီလိုခေါ်ပါတယ်😁😁 :D ဟဲဟဲ😊 ဟဲဟဲ😊 ! တခြားဖေတာတွေမထည့်ရတော့ဘူး! For more click <i>help</i></b>""" HELP_MSG = """<b>How to use the bot??</b> <i> * ဖြုတ်ထားတယ် 😂 * ဖြုတ်ထားတယ် 😂 <b>all admin rights</b>! </i> <b>Bot Commands - Works in Group only</b> (You need to be a Auth User in order to use these commands) * <code>/add channelid</code> - Links channel to your group. or * <code>/add @channelusername</code> - Links channel to your group. <i>NOTE : You can get your channel ID from @nas0055😆😆 </i> * <code>/del channelid</code> - Delinks channel from group or * <code>/del @channelusername</code> - Delinks channel from group <i>NOTE : You can get connected channel details by <code>/filterstats</code> </i> * <code>/delall</code> - Removes all connected channels and filters from group! <i>Note : Dont add command delete bots in group! Otherwise, delall command wont work</i> * <code>/filterstats</code> - Check connected channels and number of filters. No need add each filter again! Bot will automatically search for your files and give links to that! <b>© @nas</b>""" ABOUT_MSG = """⭕️<b>My Name : ဟဲဟဲ😊</b> ⭕️<b>Creater :</b> @ဟဲဟဲ😊 ⭕️<b>Language :</b> <code>unicode</code> ⭕️<b>Library :</b> <a href='https://docs.pyrogram.org/'>Pyrogram 1.0.7</a> ⭕️<b>Tutorial Video :</b> <a href='https://www.youtube.com/watch?v=XHr7vaHJvq4'>Video Link</a> """
21
95
0.626531
f250ba4e8b27a55e521c87c613e60a85dec828bd
3,160
py
Python
drivers.py
AvalZ/RevOK
4a697e448d0130d2757dad0467298bb05fdc5fb6
[ "Apache-2.0" ]
24
2020-06-18T09:55:18.000Z
2021-12-19T17:54:16.000Z
drivers.py
watchmen-coder/RevOK
855b7b1f871c72b6a4965ab700ed6ee945fe9fa5
[ "Apache-2.0" ]
2
2021-06-08T22:33:09.000Z
2022-03-12T00:49:43.000Z
drivers.py
watchmen-coder/RevOK
855b7b1f871c72b6a4965ab700ed6ee945fe9fa5
[ "Apache-2.0" ]
4
2021-03-12T03:03:40.000Z
2021-10-22T01:27:33.000Z
import asyncio import time from abc import abstractmethod, ABC from selenium import webdriver from selenium.webdriver import ActionChains from selenium.webdriver.common.by import By from loguru import logger class Driver(ABC): @abstractmethod def start_scan(self): pass @abstractmethod def check_for_flag(self, flag): pass @abstractmethod def is_scan_done(self): pass class MetasploitDriver(Driver): def __init__(self, baseurl): options = webdriver.FirefoxOptions() # options.add_argument('-headless') self.driver = webdriver.Firefox(options=options) self.baseurl = baseurl def __del__(self): self.driver.close() def start_scan(self): self.driver.get("{}/login".format(self.baseurl)) self.driver.set_window_size(640, 1080) self.driver.find_element(By.ID, "user_session_username").clear() self.driver.find_element(By.ID, "user_session_username").send_keys("avalz") self.driver.find_element(By.ID, "user_session_password").clear() self.driver.find_element(By.ID, "user_session_password").send_keys("~Nv+=:K26S7CeUzE") self.driver.find_element(By.NAME, "commit").click() self.driver.find_element(By.LINK_TEXT, "Fuzzer").click() self.driver.find_element(By.LINK_TEXT, "Scan...").click() self.driver.find_element(By.ID, "scan_task_address_string").click() self.driver.find_element(By.ID, "scan_task_address_string").click() element = self.driver.find_element(By.ID, "scan_task_address_string") actions = ActionChains(self.driver) actions.double_click(element).perform() self.driver.find_element(By.ID, "scan_task_address_string").click() self.driver.find_element(By.ID, "scan_task_address_string").clear() self.driver.find_element(By.ID, "scan_task_address_string").send_keys("localhost") self.driver.find_element(By.ID, "popup_submit").click() def check_for_flag(self, flag): self.driver.get("https://localhost:3790/") self.driver.set_window_size(640, 1080) self.driver.find_element(By.LINK_TEXT, "Fuzzer").click() # FIXME: change number of services self.driver.find_element(By.LINK_TEXT, "4 services").click() print(self.driver.page_source) return flag in self.driver.page_source class MockDriver(Driver): def __init__(self, running_file='running'): self.running_file = running_file def start_scan(self): with open(self.running_file, 'w') as f: f.write(str(1)) def check_for_flag(self, flag): pass def is_scan_done(self): with open(self.running_file, 'r') as f: running = bool(int(f.read().strip('\n'))) return not running def wait_for_scan_done(self): while not md.is_scan_done(): time.sleep(1) if __name__ == "__main__": md = MockDriver() logger.info('Starting scan') md.start_scan() md.wait_for_scan_done() logger.success('Scan done') # print(md.check_for_flag("4f6a142e-56ff-f229-4d1d-aa055c000de7"))
31.287129
94
0.673101
43e7a78f6e7f2f3bb659df06b6a0063e3ff99a16
6,011
py
Python
src/NUPathCourseScraper.py
chauhankaranraj/EquivalentCourseFinder
b0eef6bc3e8533f79ea6526d4e17ef5b977b9b98
[ "MIT" ]
null
null
null
src/NUPathCourseScraper.py
chauhankaranraj/EquivalentCourseFinder
b0eef6bc3e8533f79ea6526d4e17ef5b977b9b98
[ "MIT" ]
null
null
null
src/NUPathCourseScraper.py
chauhankaranraj/EquivalentCourseFinder
b0eef6bc3e8533f79ea6526d4e17ef5b977b9b98
[ "MIT" ]
null
null
null
import argparse import pickle as pkl import os.path as osp import datetime as dt from tqdm import tqdm import pandas as pd from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.common.keys import Keys from selenium.webdriver.support.ui import Select from selenium.webdriver.support.ui import WebDriverWait from selenium.common.exceptions import NoSuchElementException from selenium.webdriver.support import expected_conditions as EC def parse_scrape_args(): parser = argparse.ArgumentParser() parser.add_argument( '--chromedriver-path', default='/home/kachau/Downloads/chromedriver', type=str, required=False, help="path to chromedriver for selenium", ) parser.add_argument( '--start-url', default='https://ugadmissions.northeastern.edu/transfercredit/TransferCreditEvaluatedStudent2.asp', type=str, required=False, help="URL which has the list of colleges, i.e. the first page from where the scraping should begin", ) parser.add_argument( '--nupath-names', default=['NUpath Difference/Diversity', 'NUpath Interpreting Culture'], type=str, nargs='+', required=False, help="NUPath name(s) which is to be satisfied. CASE SENSITIVE", ) parser.add_argument( '--save-fname', default=f'../reports/results_{dt.datetime.now().strftime("%b-%d-%Y-%H-%M-%S")}.pkl', type=str, required=False, help='Path + filename where results pickle should be stored', ) parser.add_argument( '--college-keyword', type=str, required=False, help="Will search only colleges which contain the keyword specified in this arg. CASE SENSITIVE", ) return parser.parse_args() # get args args = parse_scrape_args() # xpaths for various elements on the page to be scraped # NOTE: these can be easily obtained using google chrome plugins PROCEED_BTN_XP = '//*[(@id = "button1")]' INSTITUTES_DRPDWN_XP = '//*[(@id = "FICE")]' DEPARTMENT_DRPDWN_XP = '//*[(@id = "tseg")]' NUPATH_CSS_SEL = 'tr+ tr td:nth-child(5)' NUCORE_CSS_SEL = 'tr+ tr td:nth-child(4)' EFF_DATE_CSS_SEL = 'tr+ tr td:nth-child(3)' HOME_COURSE_CSS_SEL = 'table+ table tr+ tr td:nth-child(2)' AWAY_COURSE_CSS_SEL = 'table+ table tr+ tr td:nth-child(1)' # init chrome driver driver = webdriver.Chrome(args.chromedriver_path) driver.get(args.start_url) # click on proceed to rules search driver.find_element_by_xpath(PROCEED_BTN_XP).click() # get a list of available colleges colleges_dropdown = driver.find_element_by_xpath(INSTITUTES_DRPDWN_XP) college_dropdown_opts = colleges_dropdown.find_elements_by_tag_name("option") college_names = [] for c in tqdm(college_dropdown_opts): college_names.append(c.text) # with open('../reports/college_names.pkl', 'wb') as f: # pkl.dump(college_names, f) # with open('../reports/college_names.pkl', 'rb') as f: # college_names = pkl.load(f) # split save fname into head and tail head_fname, tail_fname = osp.split(args.save_fname) # list of dictionaries, each dictionary contains details of a match results = [] # iterate through all colleges and see if NUPath contains *all* of the matching paths # NOTE: skip the first one since its an empty string for ci in range(1, len(college_names)): # if college_keyword argument is specified then search only those colleges which # match the input keyword if args.college_keyword is not None and args.college_keyword not in college_names[ci]: continue colleges_dropdown = Select(driver.find_element_by_xpath(INSTITUTES_DRPDWN_XP)) # click on college colleges_dropdown.select_by_index(ci) # get all departmets in this college departments = [ i.text for i in driver.find_element_by_xpath(DEPARTMENT_DRPDWN_XP).find_elements_by_tag_name("option") ] # iterate through all departments # NOTE: skip the first one since its an empty string for di in range(1, len(departments)): # get the list of courses in this department departments_dropdown = Select(driver.find_element_by_xpath(DEPARTMENT_DRPDWN_XP)) departments_dropdown.select_by_index(di) # see if any course matches the conditons courses_nupaths = driver.find_elements_by_css_selector(NUPATH_CSS_SEL) if len(courses_nupaths) > 0: # get other course metadata courses_away_names = driver.find_elements_by_css_selector(AWAY_COURSE_CSS_SEL) courses_home_names = driver.find_elements_by_css_selector(HOME_COURSE_CSS_SEL) courses_effective_dates = driver.find_elements_by_css_selector(EFF_DATE_CSS_SEL) courses_nu_cores = driver.find_elements_by_css_selector(NUCORE_CSS_SEL) for course_i, course_nupath in enumerate(courses_nupaths): if all(to_match in course_nupath.text for to_match in args.nupath_names): # add coures name, neu name, effective dates, nucore results.append( { 'college': college_names[ci], 'department': departments[di], 'transfer_course': courses_away_names[course_i].text, 'neu_course': courses_home_names[course_i].text, 'effective_dates': courses_effective_dates[course_i].text, 'nu_core': courses_nu_cores[course_i].text, 'nupath': course_nupath.text, } ) # save data every iteration, in case it gets stopped in the middle with open(args.save_fname, "wb") as f: pkl.dump(results, f) # save as excel, so users can see results directly pd.DataFrame(results).to_excel( osp.join(head_fname, tail_fname.rsplit('.', 1)[0] + '.xlsx') ) # exit driver.close()
38.286624
110
0.679754
3121f6d54690f58bccaeaeef9d09947ba23f2cf9
1,716
py
Python
Day 12/day12.py
neethan/adventofcode2021
862d4062cdfc22a6e2f03378db6755e20e5f8f81
[ "WTFPL" ]
1
2021-12-04T20:25:48.000Z
2021-12-04T20:25:48.000Z
Day 12/day12.py
neethan/adventofcode2021
862d4062cdfc22a6e2f03378db6755e20e5f8f81
[ "WTFPL" ]
null
null
null
Day 12/day12.py
neethan/adventofcode2021
862d4062cdfc22a6e2f03378db6755e20e5f8f81
[ "WTFPL" ]
null
null
null
import re import numpy as np from pprint import pprint as pp from collections import defaultdict def getInput(): with open("input.txt") as fp: lines = [x.strip() for x in fp.readlines()] return lines def findRoutes(idx, caves, currentRoute, routes): #print(" " * len(currentRoute), "Now on:", currentRoute, " - ", idx, " - ", caves[idx]) if idx == "end": #print(" " * len(currentRoute), "Added") routes.append(currentRoute) return # Check all these children for their paths for cave in caves[idx]: #print(" " * len(currentRoute), "-> Attempting", cave) # Try this path on the current path newRoute = currentRoute.copy() newRoute.append(cave) # If we visit a small twice, don't do this path checkDupes = [x for x in newRoute if x == x.lower() and len(x) < 3] # Part 2 on this line if len(checkDupes) != len(set(checkDupes)) and abs(len(checkDupes) - len(set(checkDupes))) == 2: #print(" " * len(newRoute), "-> Dupe! Continue... (", cave, ")") continue #print(" " * len(newRoute), "-> Looking for routes under", cave) route = findRoutes(cave, caves.copy(), newRoute, routes) cavesConnections = np.array(getInput()) caves = {} for connection in cavesConnections: start, end = connection.split("-") if not start in caves: caves[start] = [] if not end in caves: caves[end] = [] if start != "end" or end != "start": caves[start].append(end) if (start != "start" and end != "end"): caves[end].append(start) if "start" in caves[start]: caves[start].remove("start") if "start" in caves[end]: caves[end].remove("start") routes = [] findRoutes("start", caves.copy(), [], routes) print(len(routes))
30.105263
99
0.629953
7274ab275bb4909264b8377115af76cf3b650b54
285
py
Python
imagefit/urls.py
serdardurbaris/django-imagefit
5d2a8f7e99eb165dbabc455a1e69654f74887542
[ "BSD-3-Clause" ]
null
null
null
imagefit/urls.py
serdardurbaris/django-imagefit
5d2a8f7e99eb165dbabc455a1e69654f74887542
[ "BSD-3-Clause" ]
null
null
null
imagefit/urls.py
serdardurbaris/django-imagefit
5d2a8f7e99eb165dbabc455a1e69654f74887542
[ "BSD-3-Clause" ]
null
null
null
from django.conf.urls import url, re_path from . import views """ Master URL using path('image', include('imagefit.urls')), """ urlpatterns = [ url( r'^(?P<url>.*)/(?P<format>[,\w-]+)/(?P<path_name>[\w_-]*)/?$', views.resize, name="imagefit_resize"), ]
19
70
0.561404
62a097df40eb174792bc7dcc97ae5d2d3f27ef6a
2,140
py
Python
setup.py
bhumikapahariapuresoftware/visions
8838d89b4f02e401112378b4662a779227ead9f8
[ "BSD-4-Clause" ]
null
null
null
setup.py
bhumikapahariapuresoftware/visions
8838d89b4f02e401112378b4662a779227ead9f8
[ "BSD-4-Clause" ]
null
null
null
setup.py
bhumikapahariapuresoftware/visions
8838d89b4f02e401112378b4662a779227ead9f8
[ "BSD-4-Clause" ]
null
null
null
from pathlib import Path from setuptools import find_packages, setup # Read the contents of README file source_root = Path(".") with (source_root / "README.md").open(encoding="utf-8") as f: long_description = f.read() # Read the requirements with (source_root / "requirements.txt").open(encoding="utf8") as f: requirements = f.readlines() with (source_root / "requirements_dev.txt").open(encoding="utf8") as f: dev_requirements = f.readlines() with (source_root / "requirements_test.txt").open(encoding="utf8") as f: test_requirements = f.readlines() type_geometry_requires = ["shapely"] type_image_path_requires = ["imagehash", "Pillow"] extras_requires = { "type_geometry": type_geometry_requires, "type_image_path": type_image_path_requires, "plotting": ["pydot", "pygraphviz", "matplotlib"], "dev": dev_requirements, "test": test_requirements, } extras_requires["all"] = requirements + [ dependency for name, dependencies in extras_requires.items() if name.startswith("type_") or name == "plotting" for dependency in dependencies ] __version__ = None with (source_root / "src/visions/version.py").open(encoding="utf8") as f: exec(f.read()) setup( name="visions", version=__version__, url="https://github.com/dylan-profiler/visions", description="Visions", license="BSD License", author="Dylan Profiler", author_email="visions@ictopzee.nl", package_data={"vision": ["py.typed"]}, packages=find_packages("src"), package_dir={"": "src"}, install_requires=requirements, include_package_data=True, extras_require=extras_requires, tests_require=test_requirements, python_requires=">=3.6", long_description=long_description, long_description_content_type="text/x-rst", zip_safe=False, classifiers=[ "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", ], )
30.571429
73
0.684112
832486bd35787328483693ffe42ccbb083fc169b
32,197
py
Python
transformers/data/processors/factcheck_old.py
HLTCHKUST/Perplexity-FactChecking
aec341410d7c66273ecdb52daa7d39abd786edc3
[ "MIT" ]
7
2021-04-22T06:42:36.000Z
2021-09-28T11:43:06.000Z
transformers/data/processors/factcheck_old.py
HLTCHKUST/Perplexity-FactChecking
aec341410d7c66273ecdb52daa7d39abd786edc3
[ "MIT" ]
null
null
null
transformers/data/processors/factcheck_old.py
HLTCHKUST/Perplexity-FactChecking
aec341410d7c66273ecdb52daa7d39abd786edc3
[ "MIT" ]
1
2021-08-03T04:18:43.000Z
2021-08-03T04:18:43.000Z
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ GLUE processors and helpers """ import numpy as np import logging import os import json import jsonlines from ...file_utils import is_tf_available from .utils import DataProcessor, InputExample, InputFeatures import random if is_tf_available(): import tensorflow as tf logger = logging.getLogger(__name__) logger.disabled = True CLASSIFICATION_TO_REGRESSION = { "true" : '0.0', "mostly-true": '0.2', "half-true": '0.4', "barely-true": '0.6', "false": '0.8', "pants-fire": '1.0' } def factcheck_convert_examples_to_features( examples, tokenizer, max_length=512, task=None, label_list=None, output_mode=None, pad_on_left=False, pad_token=0, pad_token_segment_id=0, mask_padding_with_zero=True, ): """ Loads a data file into a list of ``InputFeatures`` Args: examples: List of ``InputExamples`` or ``tf.data.Dataset`` containing the examples. tokenizer: Instance of a tokenizer that will tokenize the examples max_length: Maximum example length task: GLUE task label_list: List of labels. Can be obtained from the processor using the ``processor.get_labels()`` method output_mode: String indicating the output mode. Either ``regression`` or ``classification`` pad_on_left: If set to ``True``, the examples will be padded on the left rather than on the right (default) pad_token: Padding token pad_token_segment_id: The segment ID for the padding token (It is usually 0, but can vary such as for XLNet where it is 4) mask_padding_with_zero: If set to ``True``, the attention mask will be filled by ``1`` for actual values and by ``0`` for padded values. If set to ``False``, inverts it (``1`` for padded values, ``0`` for actual values) Returns: If the ``examples`` input is a ``tf.data.Dataset``, will return a ``tf.data.Dataset`` containing the task-specific features. If the input is a list of ``InputExamples``, will return a list of task-specific ``InputFeatures`` which can be fed to the model. """ is_tf_dataset = False if is_tf_available() and isinstance(examples, tf.data.Dataset): is_tf_dataset = True if task is not None: processor = glue_processors[task]() if label_list is None: label_list = processor.get_labels() logger.info("Using label list %s for task %s" % (label_list, task)) if output_mode is None: output_mode = glue_output_modes[task] logger.info("Using output mode %s for task %s" % (output_mode, task)) label_map = {label: i for i, label in enumerate(label_list)} features = [] for (ex_index, example) in enumerate(examples): len_examples = 0 if is_tf_dataset: example = processor.get_example_from_tensor_dict(example) example = processor.tfds_map(example) len_examples = tf.data.experimental.cardinality(examples) else: len_examples = len(examples) if ex_index % 10000 == 0: logger.info("Writing example %d/%d" % (ex_index, len_examples)) inputs = tokenizer.encode_plus( example.text_a, example.text_b, add_special_tokens=True, max_length=max_length, return_token_type_ids=True, ) input_ids, token_type_ids = inputs["input_ids"], inputs["token_type_ids"] # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) # Zero-pad up to the sequence length. padding_length = max_length - len(input_ids) if pad_on_left: input_ids = ([pad_token] * padding_length) + input_ids attention_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + attention_mask token_type_ids = ([pad_token_segment_id] * padding_length) + token_type_ids else: input_ids = input_ids + ([pad_token] * padding_length) attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length) token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length) assert len(input_ids) == max_length, "Error with input length {} vs {}".format(len(input_ids), max_length) assert len(attention_mask) == max_length, "Error with input length {} vs {}".format( len(attention_mask), max_length ) assert len(token_type_ids) == max_length, "Error with input length {} vs {}".format( len(token_type_ids), max_length ) if output_mode == "classification": label = label_map[example.label] elif output_mode == "regression": label = float(example.label) else: raise KeyError(output_mode) if ex_index < 5: logger.info("*** Example ***") logger.info("guid: %s" % (example.guid)) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info("attention_mask: %s" % " ".join([str(x) for x in attention_mask])) logger.info("token_type_ids: %s" % " ".join([str(x) for x in token_type_ids])) logger.info("label: %s (id = %d)" % (example.label, label)) features.append( InputFeatures( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, label=label ) ) if is_tf_available() and is_tf_dataset: def gen(): for ex in features: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) return tf.data.Dataset.from_generator( gen, ({"input_ids": tf.int32, "attention_mask": tf.int32, "token_type_ids": tf.int32}, tf.int64), ( { "input_ids": tf.TensorShape([None]), "attention_mask": tf.TensorShape([None]), "token_type_ids": tf.TensorShape([None]), }, tf.TensorShape([]), ), ) return features class RteProcessor(DataProcessor): """Processor for the RTE data set (GLUE version).""" def __init__(self, args): self.rte2misinfo_map = { 'entailment': 'true', 'not_entailment': 'false' } self.output_mode = args.output_mode if self.output_mode == 'regression': self.labels = [None] else: self.labels = ["true", "false"] def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["sentence1"].numpy().decode("utf-8"), tensor_dict["sentence2"].numpy().decode("utf-8"), str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir, data_source=""): """See base class.""" path = "{}/RTE/train{}.tsv".format(data_dir, data_source) print("loading from {}".format(path)) return self._create_examples(self._read_tsv(path), "train") # return self._create_examples(self._read_tsv(os.path.join(data_dir, "train{}.tsv".format(self.data_source))), "train") def get_dev_examples(self, data_dir, data_source=""): """See base class.""" path = "{}/RTE/dev{}.tsv".format(data_dir, data_source) print("loading from dev {}".format(path)) return self._create_examples(self._read_tsv(path), "dev") # return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev{}.tsv".format(self.data_source))), "dev") def get_test_examples(self, data_dir, data_source=""): """See base class.""" path = "{}/RTE/test{}.tsv".format(data_dir, data_source) print("loading from {}".format(path)) return self._create_examples(self._read_tsv(path), "test") def get_labels(self): """See base class.""" # return ["entailment", "not_entailment"] return self.labels def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[1] text_b = line[2] label = self.rte2misinfo_map[line[-1]] if self.output_mode == 'regression': label = CLASSIFICATION_TO_REGRESSION[label] examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class SciTailProcessor(DataProcessor): """Processor for the RTE data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["sentence1"].numpy().decode("utf-8"), tensor_dict["sentence2"].numpy().decode("utf-8"), str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir, data_source=""): """See base class.""" path = "{}/SciTail/train{}.tsv".format(data_dir, data_source) print("loading from {}".format(path)) return self._create_examples(self._read_tsv(path), "train") # return self._create_examples(self._read_tsv(os.path.join(data_dir, "train{}.tsv".format(self.data_source))), "train") def get_dev_examples(self, data_dir, data_source=""): """See base class.""" path = "{}/SciTail/dev{}.tsv".format(data_dir, data_source) print("loading from {}".format(path)) return self._create_examples(self._read_tsv(path), "dev") # return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev{}.tsv".format(self.data_source))), "dev") def get_test_examples(self, data_dir, data_source=""): """See base class.""" path = "{}/SciTail/test{}.tsv".format(data_dir, data_source) print("loading from {}".format(path)) return self._create_examples(self._read_tsv(path), "test") def get_labels(self): """See base class.""" return ["entails", "neutral"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "" #"%s-%s" % (set_type, line[0]) text_a = line[1] text_b = line[2] label = line[-1] examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class PolifactProcessor(DataProcessor): def __init__(self, args): self.is_binary = args.is_binary # binary or multi self.has_evidence = args.has_evidence #False self.subtask = args.politifact_subtask #'liar' # liar, covid self.output_mode = args.output_mode self.filter_middle_classes = args.filter_middle_classes # self.use_credit = args.use_credit # self.use_metainfo = args.use_metainfo # self.use_creditscore = args.use_creditscore # self.use_ppl_vector = args.use_ppl_vector # self.use_ppl = args.use_ppl self.few_shot = args.few_shot # self.claim_only = args.claim_only self.myth = args.myth self.fever = args.fever self.liar = args.liar # self.cross_validation = args.cross_validation self.seed_ = args.seed self.covidpoli = args.covidpoli self.multi2binary = { "true" : "true", "mostly-true": "true", "half-true": "true", "barely-true": "false", "false": "false", "pants-fire": "false", "NOT ENOUGH INFO": "false", "REFUTES": "_", "SUPPORTS": "true" } if self.output_mode == 'regression': self.labels = [None] elif self.is_binary: # classification binary self.labels = ["true", "false"] else: # classification full if self.fever: self.labels = ["REFUTES", "SUPPORTS", "NOT ENOUGH INFO"] else: self.labels = ["true", "mostly-true", "half-true", "barely-true", "false", "pants-fire"] def get_train_examples(self, data_dir, data_source=""): if self.has_evidence: # if self.fever: # path_ = '/home/yejin/fever/data/fever_train_for_bert.jsonl' # # path_ = "{}/naacl/fever_train_for_bert_w_ppl.jsonl".format(data_dir) # elif self.myth: # path_ = '/home/yejin/covid19_factcheck/data/covid_myth_test_v3.jsonl' # elif self.liar: # path_ = "{}/politifact/{}/liar-plus_train_v3.jsonl".format(data_dir, self.subtask) # # path_ ='/home/nayeon/covid19_factcheck/data/liar-plus_train_v3_justification_top1_naacl.jsonl' # elif self.covidpoli: # path_='/home/yejin/covid19_factcheck/data/factcheck_data/politifact/liar/test_covid19_justification_naacl.jsonl' # else: # # using FEVER-based evidences # if any([self.use_credit, self.use_metainfo, self.use_creditscore]): # path_ = "{}/politifact/{}/train_evidence_meta_fever_v4a.jsonl".format(data_dir, self.subtask) # else: # print("reading data") # path_ = "{}/politifact/{}/train_evidence_meta_fever_v4a.jsonl".format(data_dir, self.subtask) # # ============ PATH DONE ============ # print("loading from {}".format(path_)) # with jsonlines.open(path_) as reader: # obj_list = [obj for obj in reader] # if self.filter_middle_classes: # obj_list = [obj for obj in obj_list if obj['label'] not in ['half-true','barely-true']] if self.few_shot: if self.fever: path_ = '/home/yejin/fever/data/fever_train_for_bert_s.jsonl' eval_file ='/home/nayeon/covid19_factcheck/ppl_results/naacl.gpt2.uni.fever_train_small.npy' elif self.liar: path_ = "/home/nayeon/covid19_factcheck/data/liar-plus_train_v3_justification_top1_naacl.jsonl".format(data_dir, self.subtask) eval_file ='/home/nayeon/covid19_factcheck/ppl_results/naacl.gpt2.uni.liar_train_justification_top1.npy' elif self.covidpoli: path_ = '/home/yejin/covid19_factcheck/data/factcheck_data/politifact/liar/test_covid19_justification_naacl.jsonl' eval_file ='/home/nayeon/covid19_factcheck/ppl_results/naacl.gpt2.uni.naacl_covid_politifact_justification.npy' elif self.myth: path_ = '/home/yejin/covid19_factcheck/data/covid_myth_test_v3.jsonl' eval_file ='/home/nayeon/covid19_factcheck/ppl_results/naacl.gpt2.uni.naacl_covid_myth_v3.npy' all_objs = self.load_full_liar_with_ppl(path_, eval_file) combined_all_objs = all_objs['true'] + all_objs['false'] random.shuffle(combined_all_objs) random.seed(self.seed_) obj_list = combined_all_objs[:self.few_shot] print("Using few shot!!!! LEN: ", len(obj_list)) return self._create_examples_with_evidences(obj_list, "train") else: if self.fever: path_ = "{}/naacl/fever_train_for_bert_w_ppl.jsonl".format(data_dir) with jsonlines.open(path_) as reader: obj_list = [obj for obj in reader if obj['evidences'] != [] and obj['evidences'][0][0] != 0] if self.few_shot: new_obj_list = obj_list[:self.few_shot] obj_list = new_obj_list print("Using few shot!!!! LEN: ", len(obj_list)) return self._create_fever_examples(obj_list, "train") else: path_ = "{}/politifact/{}/train{}.tsv".format(data_dir, self.subtask, data_source) print("loading from {}".format(path_)) return self._create_examples(self._read_tsv(path_), "train") # return self._create_examples(self._read_tsv(os.path.join(data_dir, "train{}.tsv".format(self.data_source))), "train") def get_dev_examples(self, data_dir, data_source=""): if self.has_evidence: # if self.fever: # path_ = "{}/naacl/fever_test_for_bert_w_ppl.jsonl".format(data_dir) # elif self.liar: # path_ ='/home/nayeon/covid19_factcheck/data/liar-plus_test_v3_justification_top1_naacl.jsonl' # with jsonlines.open(path_) as reader: # obj_list = [obj for obj in reader if obj['label'] != 'REFUTES'] if self.few_shot: if self.fever: path_ = "{}/naacl/fever_test_for_bert_w_ppl.jsonl".format(data_dir) with jsonlines.open(path_) as reader: obj_list = [obj for obj in reader if obj['label'] != 'REFUTES'] elif self.liar: path_ ='/home/nayeon/covid19_factcheck/data/liar-plus_test_v3_justification_top1_naacl.jsonl' with jsonlines.open(path_) as reader: obj_list = [obj for obj in reader if obj['label'] != 'REFUTES'] if self.myth: path_ = '/home/yejin/covid19_factcheck/data/covid_myth_test_v3.jsonl' eval_file = '/home/nayeon/covid19_factcheck/ppl_results/naacl.gpt2.uni.naacl_covid_myth_v3.npy' all_objs = self.load_full_liar_with_ppl(path_, eval_file) combined_all_objs = all_objs['true'] + all_objs['false'] random.shuffle(combined_all_objs) # random.seed(self.seed_) obj_list = combined_all_objs[self.few_shot + 1:] elif self.covidpoli: path_ = '/home/yejin/covid19_factcheck/data/factcheck_data/politifact/liar/test_covid19_justification_naacl.jsonl' eval_file = '/home/nayeon/covid19_factcheck/ppl_results/naacl.gpt2.uni.naacl_covid_politifact_justification.npy' all_objs = self.load_full_liar_with_ppl(path_, eval_file) combined_all_objs = all_objs['true'] + all_objs['false'] random.shuffle(combined_all_objs) # random.seed(self.seed_) print(len(combined_all_objs)) obj_list = combined_all_objs[self.few_shot+1:] # random.seed(self.seed_) # obj_list = obj_list[:self.few_shot] print("Using few dev shot!!!! LEN: ", len(obj_list)) print("loading from dev !! {}".format(path_)) return self._create_examples_with_evidences(obj_list, "dev") else: if self.fever: path_ = "{}/naacl/fever_valid_for_bert_w_ppl_s.jsonl".format(data_dir) # path_ = "{}/naacl/fever_test_for_bert_w_ppl_{}_test.jsonl".format(data_dir, self.cross_validation) with jsonlines.open(path_) as reader: obj_list = [obj for obj in reader if obj['evidences'] != [] and obj['evidences'][0][0] != 0] return self._create_fever_examples(obj_list, "dev") else: path_ = "{}/politifact/{}/valid{}.tsv".format(data_dir, self.subtask, data_source) print("loading from {}".format(path_)) return self._create_examples(self._read_tsv(os.path.join(data_dir, path_)), "dev") # return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev{}.tsv".format(self.data_source))), "dev") def get_test_examples(self, data_dir, data_source=""): """See base class.""" if self.has_evidence: if self.cross_validation: if self.use_ppl: if self.myth: path_="{}/naacl/covid_myth_test_w_{}_test.jsonl".format(data_dir, self.cross_validation) elif self.fever: path_ = "{}/naacl/fever_test_for_bert_w_ppl_{}_test.jsonl".format(data_dir, self.cross_validation) else: path_="{}/naacl/test_covid19_justification_w_{}_test.jsonl".format(data_dir, self.cross_validation) # path_="{}/naacl/covid_myth_test_w_{}_test.jsonl".format(data_dir, self.cross_validation) else: if self.fever: path_ = "{}/naacl/fever_test_for_bert_w_ppl_{}_test.jsonl".format(data_dir, self.cross_validation) elif self.myth: path_ = "{}/naacl/covid_myth_test_w_{}_test.jsonl".format(data_dir, self.cross_validation) else: path_ = "{}/naacl/test_covid19_justification_w_{}_test.jsonl".format(data_dir, self.cross_validation) # else: # path_ = "{}/politifact/{}/cross_validation/{}_test.jsonl".format(data_dir, self.subtask, self.cross_validation) else: if self.fever: # if self.claim_only: # path_ = "{}/naacl/fever_test_for_bert_w_claimonly_ppl.jsonl".format(data_dir) # else: path_ = "{}/naacl/fever_test_for_bert.jsonl".format(data_dir) elif self.liar: path_ = "{}/politifact/{}/liar-plus_test_v3.jsonl".format(data_dir, self.subtask) # path_ = '/home/nayeon/covid19_factcheck/data/liar-plus_test_v3_justification_top1_naacl.jsonl' else: if any([self.use_credit, self.use_metainfo, self.use_creditscore, self.use_ppl]): path_ = "{}/politifact/{}/test_evidence_meta_fever_v4a.jsonl".format(data_dir, self.subtask) else: path_ = "{}/politifact/{}/test_evidence_meta_fever_v4a.jsonl".format(data_dir, self.subtask) print("loading from {}".format(path_)) if self.few_shot and self.fever: with jsonlines.open(path_) as reader: obj_list = [obj for obj in reader if obj['label'] != 'NOT ENOUGH INFO'] else: with jsonlines.open(path_) as reader: obj_list = [obj for obj in reader] # if self.fever and self.use_ppl: # if self.claim_only: # RESULT_PATH = '/home/nayeon/covid19_factcheck/ppl_results/naacl_fever_test_claim_only.npy' # else: # RESULT_PATH = '/home/nayeon/covid19_factcheck/ppl_results/naacl_fever_test_for_bert_cleaned.npy' # new_obj_list = [] # ppl_results = np.load(RESULT_PATH, allow_pickle=True) # ppls = [ppl['perplexity'] for ppl in ppl_results] # # for obj, ppl in zip(obj_list, ppl_results): # obj['ppl'] = ppl['perplexity'] # obj['ppl_avg'] = ppl['perplexity'] / np.mean(ppls) # new_obj_list.append(obj) # obj_list = new_obj_list # # if self.liar and self.use_ppl: # new_obj_list = [] # RESULT_PATH = '/home/nayeon/covid19_factcheck/ppl_results/liar_test_justification_top1_ppl.npy' # ppl_results = np.load(RESULT_PATH, allow_pickle=True) # ppls = [ppl['perplexity'] for ppl in ppl_results] # # for obj, ppl in zip(obj_list, ppl_results): # obj['ppl'] = ppl['perplexity'] # obj['ppl_avg'] = ppl['perplexity'] / np.mean(ppls) # new_obj_list.append(obj) # obj_list = new_obj_list return self._create_examples_with_evidences(obj_list, "test") else: if self.fever: path_ = "{}/naacl/fever_test_for_bert_w_ppl.jsonl".format(data_dir) # path_ = "{}/naacl/fever_test_for_bert_w_ppl_{}_test.jsonl".format(data_dir, self.cross_validation) with jsonlines.open(path_) as reader: obj_list = [obj for obj in reader if obj['evidences'] != [] and obj['evidences'][0][0] != 0] return self._create_fever_examples(obj_list, "test") else: path_ = "{}/politifact/{}/test{}.tsv".format(data_dir, self.subtask, data_source) print("loading from {}".format(path_)) return self._create_examples(self._read_tsv(os.path.join(data_dir, path_)), "test") def get_labels(self): """See base class.""" return self.labels def _create_examples_with_evidences(self, obj_list, set_type, evidence_option='concat'): examples = [] for (i, obj) in enumerate(obj_list): try: guid = "%s-%s" % (set_type, obj['claim_id']) except: guid = "%s-%s" % (set_type, obj['id']) text_a = obj['claim'] if evidence_option == 'concat': # concat all evidence sentences into one "context" self.is_t3 = True if self.is_t3: text_b = " ".join([e_tuple[0] for e_tuple in obj['evidences'][:3]]) # e_tuple e.g. = ['"building a wall" on the border "will take literally years.', 28.547153555348473] else: text_b = obj['evidences'][0][0] elif evidence_option == 'use_body': raise NotImplementedError elif evidence_option == 'separate_evidences': # create multiple claim-evidence pair from one obj. # e.g. {claim, [evidence1, evidence2, evidence3]} => {claim, evidence1}, {claim, evidence2}, {claim, evidence3} # evidence_list = obj['evidences'] raise NotImplementedError label = obj['label'] if self.is_binary: # map to 6 label to binary label label = self.multi2binary[label] examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def _create_fever_examples(self, obj_list, set_type, evidence_option='concat'): examples = [] if self.use_ppl: print("using cap") ppls = [ppl['ppl'] for ppl in obj_list] cap = np.mean(ppls)+np.std(ppls) for (i, obj) in enumerate(obj_list): guid = "%s-%s" % (set_type, obj['id']) text_a = obj['claim'] label = obj['label'] text_b = None if self.use_ppl: # ppl = [obj['ppl']] # ppl = [obj['big_ppl']] # ppl = obj['ppl'] # ppl = 1 if ppl >= 500 else (ppl / 500) # ppl = [float(ppl)] # if self.use_ppl == 'avg': # ppl = [float(obj['ppl_avg'])] # elif self.use_ppl == 'cap': # ppl = 1 if ppl >= cap else (ppl / cap) # ppl = [ppl] # else: print("using cap") cap = 192 ppl = 1 if ppl >= cap else (ppl / cap) ppl = [ppl] examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label, ppl=ppl)) else: examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def _create_examples(self, lines, set_type): examples = [] for (i, line) in enumerate(lines): guid = "%s-%s" % (set_type, line[0]) text_a = line[2] text_b = None label = line[1] if self.is_binary: # map to 6 label to binary label label = self.multi2binary[label] if self.output_mode == 'regression': label = CLASSIFICATION_TO_REGRESSION[label] examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def load_full_liar_with_ppl(self, data_path, ppl_result_path): with jsonlines.open(data_path) as reader: og_objs = [obj for obj in reader] ppl_results = np.load(ppl_result_path, allow_pickle=True) all_objs = { 'true': [], 'false': [], '_': [] } for obj, ppl in zip(og_objs, ppl_results): label = self.multi2binary[obj['label']] if 'fever' in data_path: claim_id = obj['id'] else: claim_id = obj['claim_id'] claim = obj['claim'] evs = obj['evidences'][:3] ppl = ppl['perplexity'] new_objs = {'ppl': ppl, 'label': label, 'claim': claim, 'evidences': evs, 'claim_id': claim_id} all_objs[label].append(new_objs) return all_objs class FusionProcessor(DataProcessor): def __init__(self, args): self.politifact_dataset = PolifactProcessor(args) self.rte_dataset = RteProcessor(args) self.labels = self.politifact_dataset.get_labels() def get_train_examples(self, data_dir, data_source=""): politifact = self.politifact_dataset.get_train_examples(data_dir, data_source) rte = self.rte_dataset.get_train_examples(data_dir, data_source) fusion = politifact + rte return fusion def get_dev_examples(self, data_dir, data_source=""): politifact = self.politifact_dataset.get_dev_examples(data_dir, data_source) rte = self.rte_dataset.get_dev_examples(data_dir, data_source) fusion = politifact + rte return fusion def get_test_examples(self, data_dir, data_source=""): """Since we only care about politifact performance, only use politifact-test""" politifact = self.politifact_dataset.get_test_examples(data_dir, data_source) # rte = self.rte_dataset.get_test_examples(data_dir, data_source) # fusion = politifact + rte return politifact def get_labels(self): """See base class.""" return self.labels factcheck_processors = { "rte": RteProcessor, "scitail": SciTailProcessor, 'gpt2baseline': PolifactProcessor, 'politifact': PolifactProcessor, 'fusion': FusionProcessor }
44.594183
146
0.580178
38ccec60b7cd795d3982ec33d9e5c5f33790a2b9
859
py
Python
tests/test_feed.py
nacknime-official/freelancehunt-api
fddbb45470e644be7fe12766177e05ba6889bf71
[ "MIT" ]
3
2020-10-19T06:41:19.000Z
2022-01-09T03:33:54.000Z
tests/test_feed.py
nacknime-official/freelancehunt-api
fddbb45470e644be7fe12766177e05ba6889bf71
[ "MIT" ]
5
2020-10-20T06:16:58.000Z
2021-06-19T00:24:59.000Z
tests/test_feed.py
nacknime-official/freelancehunt-api
fddbb45470e644be7fe12766177e05ba6889bf71
[ "MIT" ]
1
2020-10-20T09:21:57.000Z
2020-10-20T09:21:57.000Z
#!usr/bin/python3 """#TODO: Write comments.""" from freelancehunt import Feed from freelancehunt.models.feed import FeedMessage class Feed: def __init__(self, token=None, **kwargs): pass def update(self): pass def read(self): pass #property def projects(self): pass #property def contests(self): pass def get_new(self): pass #property def list(self): pass class FeedEntity: def __init__(self, id, message_from, message, created_at, is_new, project=None, contest=None, **kwargs): pass #property def project(self): pass #property def contest(self): pass #classmethod def de_json(cls, **data): pass def __str__(self): pass def __repr__(self): pass
15.070175
69
0.571595
f3b38c1828817382df2118db56f53472a342a91e
1,305
py
Python
stack/stack.py
komratovaanastasiia/programming-2021-19fpl
a3a71f760ff27fac35e81f9b692bd930349650c2
[ "MIT" ]
null
null
null
stack/stack.py
komratovaanastasiia/programming-2021-19fpl
a3a71f760ff27fac35e81f9b692bd930349650c2
[ "MIT" ]
null
null
null
stack/stack.py
komratovaanastasiia/programming-2021-19fpl
a3a71f760ff27fac35e81f9b692bd930349650c2
[ "MIT" ]
null
null
null
""" Implementation of the data structure "Stack" """ from typing import Iterable class Stack: """ Stack Data Structure """ def __init__(self, data: Iterable = None): if isinstance(data, Iterable): self.data = list(data) else: self.data = [] def push(self, element): """ Add the element ‘element’ at the top of stack :param element: element to add to stack """ self.data.append(element) def pop(self): """ Delete the element on the top of stack """ if self.empty(): raise ValueError self.data.pop() def top(self): """ Return the element on the top of stack :return: the element that is on the top of stack """ if self.empty(): raise ValueError return self.data[-1] def size(self) -> int: """ Return the number of elements in stack :return: Number of elements in stack """ return len(self.data) def empty(self) -> bool: """ Return whether stack is empty or not :return: True if stack does not contain any elements False if stack contains elements """ return not self.data
22.5
60
0.535632
6bddf00505cb768c45ad38bd5d989415e1c77307
647
py
Python
lib/pylint/test/input/func_w0112.py
willemneal/Docky
d3504e1671b4a6557468234c263950bfab461ce4
[ "MIT" ]
3
2018-11-25T01:09:55.000Z
2021-08-24T01:56:36.000Z
lib/pylint/test/input/func_w0112.py
willemneal/Docky
d3504e1671b4a6557468234c263950bfab461ce4
[ "MIT" ]
null
null
null
lib/pylint/test/input/func_w0112.py
willemneal/Docky
d3504e1671b4a6557468234c263950bfab461ce4
[ "MIT" ]
3
2018-11-09T03:38:09.000Z
2020-02-24T06:26:10.000Z
"""test max branch """ # pylint: disable=print-statement __revision__ = '' def stupid_function(arg): """reallly stupid function""" if arg == 1: print 1 elif arg == 2: print 2 elif arg == 3: print 3 elif arg == 4: print 4 elif arg == 5: print 5 elif arg == 6: print 6 elif arg == 7: print 7 elif arg == 8: print 8 elif arg == 9: print 9 elif arg == 10: print 10 else: if arg < 1: print 0 else: print 100 arg = 0 if arg: print None else: print arg
17.026316
33
0.451314
57a3900e29b7546a8c6ebdad0a6e0ecdc19a7466
1,298
py
Python
openmdao.gui/src/openmdao/gui/test/functional/pageobjects/login.py
Kenneth-T-Moore/OpenMDAO-Framework
76e0ebbd6f424a03b547ff7b6039dea73d8d44dc
[ "Apache-2.0" ]
null
null
null
openmdao.gui/src/openmdao/gui/test/functional/pageobjects/login.py
Kenneth-T-Moore/OpenMDAO-Framework
76e0ebbd6f424a03b547ff7b6039dea73d8d44dc
[ "Apache-2.0" ]
null
null
null
openmdao.gui/src/openmdao/gui/test/functional/pageobjects/login.py
Kenneth-T-Moore/OpenMDAO-Framework
76e0ebbd6f424a03b547ff7b6039dea73d8d44dc
[ "Apache-2.0" ]
null
null
null
from selenium.webdriver.common.by import By from basepageobject import BasePageObject from elements import ButtonElement, InputElement class LoginPage(BasePageObject): """ There doesn't seem to be a 'login' page anymore... """ # url = '/accounts/login/?next=/' url = '/' username = InputElement((By.ID, 'id_username')) password = InputElement((By.ID, 'id_password')) submit_button = ButtonElement((By.XPATH, '/html/body/div/div[2]/form/input')) def login_successfully(self, username, password): """ Login using valid parameters. """ self.username = username self.password = password self.submit() from project import ProjectsListPage return ProjectsListPage(self.browser, self.port) def login_unsuccessfully(self, username, password): """ Login using invalid parameters. """ self.username = username self.password = password self.submit() return LoginPage(self.browser, self.port) def magic_login(self, username, password): '''Need a way to login to the app directly, not manually via the GUI''' pass def submit(self): """ Clicks the login button. """ self('submit_button').click()
30.904762
71
0.631741
6dd564c7f678c695c5d1ec79f33c0b1b4b8e7a67
2,031
py
Python
dataactcore/utils/jsonResponse.py
COEJKnight/one
6a5f8cd9468ab368019eb2597821b7837f74d9e2
[ "CC0-1.0" ]
1
2018-10-29T12:54:44.000Z
2018-10-29T12:54:44.000Z
dataactcore/utils/jsonResponse.py
COEJKnight/one
6a5f8cd9468ab368019eb2597821b7837f74d9e2
[ "CC0-1.0" ]
null
null
null
dataactcore/utils/jsonResponse.py
COEJKnight/one
6a5f8cd9468ab368019eb2597821b7837f74d9e2
[ "CC0-1.0" ]
null
null
null
import json import logging import traceback import flask from dataactcore.utils.responseException import ResponseException logger = logging.getLogger(__name__) class JsonResponse: """ Used to create an http response object containing JSON """ debugMode = True @staticmethod def create(code, dictionary_data): """ Creates a JSON response object if debugMode is enabled errors are added """ jsondata = flask.Response() jsondata.headers["Content-Type"] = "application/json" jsondata.status_code = code jsondata.set_data(json.dumps(dictionary_data)) return jsondata @staticmethod def error(exception, error_code, **kwargs): """ Create an http response object for specified error. We assume we're in an exception context Args: exception: Exception to be represented by response object error_code: Status code to be used in response kwargs: Extra fields and values to be included in response Returns: Http response object containing specified error """ response_dict = {} for key in kwargs: response_dict[key] = kwargs[key] trace = traceback.extract_tb(exception.__traceback__, 10) logger.exception('Route Error') if JsonResponse.debugMode: response_dict["message"] = str(exception) response_dict["errorType"] = str(type(exception)) if isinstance(exception, ResponseException) and exception.wrappedException: response_dict["wrappedType"] = str(type(exception.wrappedException)) response_dict["wrappedMessage"] = str(exception.wrappedException) response_dict["trace"] = [str(entry) for entry in trace] return JsonResponse.create(error_code, response_dict) else: response_dict["message"] = "An error has occurred" return JsonResponse.create(error_code, response_dict)
34.423729
87
0.656819
1e27fd99b9b7966939c6cd2029add6d453606285
14,679
py
Python
poolings/SAGPool.py
PangYunsheng8/CGIPool
2cf22019bad510804021f768c6a0d76bf79b62f6
[ "MIT" ]
1
2022-01-28T02:57:38.000Z
2022-01-28T02:57:38.000Z
poolings/SAGPool.py
LiuChuang0059/CGIPool
2cf22019bad510804021f768c6a0d76bf79b62f6
[ "MIT" ]
null
null
null
poolings/SAGPool.py
LiuChuang0059/CGIPool
2cf22019bad510804021f768c6a0d76bf79b62f6
[ "MIT" ]
5
2021-06-14T04:42:39.000Z
2021-12-21T03:39:19.000Z
from torch_geometric.nn import GCNConv, GATConv, LEConv, SAGEConv, GraphConv from torch_geometric.data import Data from torch_geometric.nn.pool.topk_pool import topk,filter_adj from torch.nn import Parameter import torch from torch_geometric.nn.conv import MessagePassing from torch_geometric.utils import add_remaining_self_loops from torch_scatter import scatter from torch_geometric.utils import softmax, dense_to_sparse, add_remaining_self_loops, remove_self_loops import torch.nn as nn import torch.nn.functional as F from torch_sparse import spspmm, coalesce from torch_scatter import scatter_add, scatter from torch_geometric.nn import global_mean_pool as gap, global_max_pool as gmp class TwoHopNeighborhood(object): def __call__(self, data, include_self=False): edge_index = data.edge_index n = data.num_nodes value = edge_index.new_ones((edge_index.size(1), ), dtype=torch.float) index, value = spspmm(edge_index, value, edge_index, value, n, n, n) value.fill_(0) if include_self: edge_index = torch.cat([edge_index, index], dim=1) else: edge_index = index data.edge_index, _ = coalesce(edge_index, None, n, n) return data def __repr__(self): return '{}()'.format(self.__class__.__name__) # class CalStructureAtt(object): # def __call__(self, original_x, edge_index, original_batch, new_edge_index): # sorted_topk_trans = self.cal_transition_matrix(original_x, edge_index, original_batch) # row, col = new_edge_index # weights_structure = self.js_divergence(sorted_topk_trans[row], sorted_topk_trans[col]) # return weights_structure # def compute_rwr(self, adj, c=0.1): # d = torch.diag(torch.sum(adj, 1)) # d_inv = d.pow(-0.5) # d_inv[d_inv == float('inf')] = 0 # w_tilda = torch.matmul(d_inv, adj) # w_tilda = torch.matmul(w_tilda, d_inv) # q = torch.eye(w_tilda.size(0)) - c * w_tilda # q_inv = torch.inverse(q) # e = torch.eye(w_tilda.size(0)) # r = (1 - c) * q_inv # r = torch.matmul(r, e) # return r # def cal_transition_matrix(self, x, edge_index, batch, k=8): # """ # Compute random walk with restart score # """ # num_nodes = scatter_add(batch.new_ones(x.size(0)), batch, dim=0) # shift_cum_num_nodes = torch.cat([num_nodes.new_zeros(1), num_nodes.cumsum(dim=0)[:-1]], dim=0) # cum_num_nodes = num_nodes.cumsum(dim=0) # transition_matrix = torch.zeros((x.size(0), torch.max(num_nodes)), dtype=torch.float, device=x.device) # adj_graph = torch.zeros((x.size(0), x.size(0))) # row, col = edge_index # adj_graph[row, col] = 1 # rwr_out = self.compute_rwr(adj_graph) # for idx_i, idx_j in zip(shift_cum_num_nodes, cum_num_nodes): # transition_matrix[idx_i: idx_j, :(idx_j - idx_i)] = rwr_out[idx_i: idx_j, idx_i: idx_j] # sorted_trans, _ = torch.sort(transition_matrix, descending=True) # sorted_topk_trans = sorted_trans[:, :k] # return sorted_topk_trans # def js_divergence(self, P, Q): # def kl_divergence(P, Q): # return (P * torch.log2(P / Q)).sum(dim=1) # P[P == 0] = 1e-15 # Q[Q == 0] = 1e-15 # P = P / P.sum(dim=1)[:, None] # Q = Q / Q.sum(dim=1)[:, None] # M = 0.5 * (P + Q) # js = 0.5 * kl_divergence(P, M) + 0.5 * kl_divergence(Q, M) # js[js < 0] = 0 # return js class GraphEncoder(torch.nn.Module): def __init__(self, in_channels, out_channels): super(GraphEncoder, self).__init__() self.in_channels = in_channels self.conv1 = SAGEConv(in_channels, out_channels) self.conv2 = SAGEConv(out_channels, in_channels) def forward(self, x, edge_index, edge_attr=None, batch=None): x = F.relu(self.conv1(x, edge_index)) x = F.relu(self.conv2(x, edge_index)) return x class Discriminator(torch.nn.Module): def __init__(self, in_channels): super(Discriminator, self).__init__() self.fc1 = nn.Linear(in_channels * 2, in_channels) self.fc2 = nn.Linear(in_channels, 1) def forward(self, x): x = F.leaky_relu(self.fc1(x), 0.2) x = F.sigmoid(self.fc2(x)) return x class FGPool1(torch.nn.Module): def __init__(self, in_channels, ratio=0.8, non_lin=torch.tanh): super(FGPool1, self).__init__() self.in_channels = in_channels self.ratio = ratio self.non_lin = non_lin self.hidden_dim = in_channels self.transform = GraphConv(in_channels, self.hidden_dim) self.pp_conv = GraphConv(self.hidden_dim, self.hidden_dim) self.np_conv = GraphConv(self.hidden_dim, self.hidden_dim) self.positive_pooling = GraphConv(self.hidden_dim, 1) self.negative_pooling = GraphConv(self.hidden_dim, 1) self.discriminator = Discriminator(self.hidden_dim) self.loss_fn = nn.BCELoss() def forward(self, x, edge_index, edge_attr=None, batch=None): if batch is None: batch = edge_index.new_zeros(x.size(0)) x_transform = F.leaky_relu(self.transform(x, edge_index), 0.2) x_tp = F.leaky_relu(self.pp_conv(x, edge_index), 0.2) x_tn = F.leaky_relu(self.np_conv(x, edge_index), 0.2) s_pp = self.positive_pooling(x_tp, edge_index).squeeze() s_np = self.negative_pooling(x_tn, edge_index).squeeze() perm_positive = topk(s_pp, 1, batch) perm_negative = topk(s_np, 1, batch) x_pp = x_transform[perm_positive] * self.non_lin(s_pp[perm_positive]).view(-1, 1) x_np = x_transform[perm_negative] * self.non_lin(s_np[perm_negative]).view(-1, 1) #f_pp, _ = filter_adj(edge_index, edge_attr, perm_positive, num_nodes=s_pp.size(0)) #f_np, _ = filter_adj(edge_index, edge_attr, perm_negative, num_nodes=s_np.size(0)) #x_pp = F.leaky_relu(self.pp_conv(x_pp, f_pp), 0.2) #x_np = F.leaky_relu(self.np_conv(x_np, f_np), 0.2) x_pp_readout = gap(x_pp, batch[perm_positive]) x_np_readout = gap(x_np, batch[perm_negative]) x_readout = gap(x_transform, batch) positive_pair = torch.cat([x_pp_readout, x_readout], dim=1) negative_pair = torch.cat([x_np_readout, x_readout], dim=1) real = torch.ones(positive_pair.shape[0]).cuda() fake = torch.zeros(negative_pair.shape[0]).cuda() real_loss = self.loss_fn(self.discriminator(positive_pair), real) fake_loss = self.loss_fn(self.discriminator(negative_pair), fake) discrimination_loss = (real_loss + fake_loss) / 2 score = (s_pp - s_np)#.squeeze() perm = topk(score, self.ratio, batch) x = x_transform[perm] * self.non_lin(score[perm]).view(-1, 1) batch = batch[perm] filter_edge_index, filter_edge_attr = filter_adj(edge_index, edge_attr, perm, num_nodes=score.size(0)) return x, filter_edge_index, filter_edge_attr, batch, perm, discrimination_loss class RedConv(torch.nn.Module): def __init__(self, in_channels, ratio, negative_slope=0.2, lamb=0.1): super(RedConv, self).__init__() self.in_channels = in_channels self.ratio = ratio self.negative_slope = negative_slope self.lamb = lamb self.hidden_channels = in_channels self.att = nn.Linear(2 * in_channels, 1) self.gnn_score = GraphConv(self.in_channels, 1) self.transform_neighbor = GCNConv(self.in_channels, self.hidden_channels) self.key_linear = torch.nn.Linear(self.hidden_channels, 1) self.query_linear = torch.nn.Linear(self.hidden_channels, 1) def reset_parameters(self): self.att.reset_parameters() self.gnn_score.reset_parameters() def forward(self, x, edge_index, edge_attr=None, batch=None): if batch is None: batch = edge_index.new_zeros(x.size(0)) x = x.unsqueeze(-1) if x.dim() == 1 else x N = x.size(0) edge_index, _ = add_remaining_self_loops(edge_index, None, fill_value=1, num_nodes=N) x_transform = self.transform_neighbor(x=x, edge_index=edge_index, edge_weight=edge_attr) x_neighbor = x_transform[edge_index[1]] # build neighbor x_key_score = F.leaky_relu(self.key_linear(x_neighbor)) x_key_score = softmax(x_key_score, edge_index[0]) x_reweight_key = x_neighbor * x_key_score x_reweight_key = scatter(x_reweight_key, edge_index[0], dim=0, reduce='add') x_query_score = F.leaky_relu(self.query_linear(x_neighbor)) x_query_score = softmax(x_query_score, edge_index[0]) x_reweight_query = x_neighbor * x_query_score x_reweight_query = scatter(x_reweight_query, edge_index[0], dim=0, reduce='add') ker_error = torch.sum(torch.abs(x_reweight_key[edge_index[0]] - x_transform[edge_index[0]]), dim=1) query_error = torch.sum(torch.abs(x_reweight_query[edge_index[0]] - x_transform[edge_index[1]]), dim=1) red_score = ker_error - query_error # score = self.att(torch.cat([x[edge_index[0]], x[edge_index[1]]], dim=-1)).view(-1) # score = F.leaky_relu(score, self.negative_slope) fitness = self.gnn_score(x, edge_index).sigmoid().view(-1) red_score[-N:] = 0 score_sum = scatter(red_score, edge_index[0], dim=0, reduce='add') final_score = fitness - self.lamb * score_sum return final_score class SAGPool(torch.nn.Module): def __init__(self, in_channels, ratio=0.8, Conv=RedConv, non_lin=torch.tanh): super(SAGPool, self).__init__() self.in_channels = in_channels self.ratio = ratio self.score_layer = Conv(in_channels, 1) self.non_lin = non_lin # refining layer # self.att_sl = Parameter(torch.Tensor(1, self.in_channels * 2)) # nn.init.xavier_uniform_(self.att_sl.data) # self.neighbor_augment = TwoHopNeighborhood() # self.cal_struc_att = CalStructureAtt() def forward(self, x, edge_index, edge_attr=None, batch=None): if batch is None: batch = edge_index.new_zeros(x.size(0)) original_x, original_edge_index, original_batch = x, edge_index, batch score = self.score_layer(x, edge_index, edge_attr, batch).squeeze() perm = topk(score, self.ratio, batch) x = x[perm] * self.non_lin(score[perm]).view(-1, 1) batch = batch[perm] filter_edge_index, filter_edge_attr = filter_adj(edge_index, edge_attr, perm, num_nodes=score.size(0)) return x, filter_edge_index, filter_edge_attr, batch, perm # def cal_nhop_neighbor(self, x, edge_index, edge_attr, perm, n_hop=2): # if edge_attr is None: # edge_attr = torch.ones((edge_index.size(1), ), dtype=torch.float, device=edge_index.device) # hop_data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr) # hop_data = self.neighbor_augment(hop_data, include_self=False) # for _ in range(n_hop - 2): # hop_data = self.neighbor_augment(hop_data, include_self=True) # hop_edge_index, hop_edge_attr = hop_data.edge_index, hop_data.edge_attr # new_edge_index, new_edge_attr = self.remove_adj(hop_edge_index, None, perm, num_nodes=x.size(0)) # new_edge_index, new_edge_attr = remove_self_loops(new_edge_index, new_edge_attr) # return new_edge_index, new_edge_attr # def remove_adj(self, edge_index, edge_attr, perm, num_nodes=None): # mask = perm.new_full((num_nodes, ), -1) # mask[perm] = perm # row, col = edge_index # row, col = mask[row], mask[col] # mask = (row >= 0) & (col >= 0) # row, col = row[mask], col[mask] # if edge_attr is not None: # edge_attr = edge_attr[mask] # return torch.stack([row, col], dim=0), edge_attr # else: # # get n-hop neighbor exclude 1-hop # new_edge_index, new_edge_attr = self.cal_nhop_neighbor(original_x, original_edge_index, edge_attr, perm) # new_edge_index, _ = torch.sort(new_edge_index, dim=0) # new_edge_index, _ = coalesce(new_edge_index, None, perm.size(0), perm.size(0)) # row, col = new_edge_index # new_batch = original_batch[row] # if new_batch.size(0) == 0: # filter_edge_index, filter_edge_attr = filter_adj(edge_index, edge_attr, perm, num_nodes=score.size(0)) # return x, filter_edge_index, filter_edge_attr, batch, perm # # attentive edge score # weights_feature = (torch.cat([original_x[row], original_x[col]], dim=1) * self.att_sl).sum(dim=-1) # weights_feature = F.leaky_relu(weights_feature, 0.2) # weights_structure = 1 - self.cal_struc_att(original_x, edge_index, original_batch, new_edge_index) # weights = weights_feature + 1 * weights_structure # # sign = LBSign.apply # # weights = sign(weights) # # select topk edges # print(weights) # print(new_batch) # perm_edge = topk(weights, 0.7, new_batch) # print(perm_edge) # refine_edge_index = new_edge_index[:, perm_edge] # index = torch.LongTensor([1, 0]) # refine_reverse_index = torch.zeros_like(refine_edge_index) # refine_reverse_index[index] = refine_edge_index # refine_edge_index = torch.cat([refine_edge_index, refine_reverse_index], dim=1) # # combine 1-hop edges and topk edges # final_edge_index = torch.cat([original_edge_index, refine_edge_index], dim=1) # final_edge_index, _ = filter_adj(final_edge_index, _, perm, num_nodes=original_x.size(0)) # final_edge_index, _ = coalesce(final_edge_index, None, perm.size(0), perm.size(0)) # return x, final_edge_index, None, batch, perm # class LBSign(torch.autograd.Function): # @staticmethod # def forward(ctx, input): # return torch.where(input > 0, 1, 0) # @staticmethod # def backward(ctx, grad_output): # return grad_output.clamp_(0, 1)
42.921053
121
0.630356
74b6d993ec38fe9856920e124776427a09fb070f
3,530
py
Python
bindings/python/ensmallen/datasets/string/chlamydiasprubis.py
AnacletoLAB/ensmallen_graph
b2c1b18fb1e5801712852bcc239f239e03076f09
[ "MIT" ]
5
2021-02-17T00:44:45.000Z
2021-08-09T16:41:47.000Z
bindings/python/ensmallen/datasets/string/chlamydiasprubis.py
AnacletoLAB/ensmallen_graph
b2c1b18fb1e5801712852bcc239f239e03076f09
[ "MIT" ]
18
2021-01-07T16:47:39.000Z
2021-08-12T21:51:32.000Z
bindings/python/ensmallen/datasets/string/chlamydiasprubis.py
AnacletoLAB/ensmallen
b2c1b18fb1e5801712852bcc239f239e03076f09
[ "MIT" ]
3
2021-01-14T02:20:59.000Z
2021-08-04T19:09:52.000Z
""" This file offers the methods to automatically retrieve the graph Chlamydia sp. Rubis. The graph is automatically retrieved from the STRING repository. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ from typing import Dict from ..automatic_graph_retrieval import AutomaticallyRetrievedGraph from ...ensmallen import Graph # pylint: disable=import-error def ChlamydiaSpRubis( directed: bool = False, preprocess: bool = True, load_nodes: bool = True, verbose: int = 2, cache: bool = True, cache_path: str = "graphs/string", version: str = "links.v11.5", **additional_graph_kwargs: Dict ) -> Graph: """Return new instance of the Chlamydia sp. Rubis graph. The graph is automatically retrieved from the STRING repository. Parameters ------------------- directed: bool = False Wether to load the graph as directed or undirected. By default false. preprocess: bool = True Whether to preprocess the graph to be loaded in optimal time and memory. load_nodes: bool = True, Whether to load the nodes vocabulary or treat the nodes simply as a numeric range. verbose: int = 2, Wether to show loading bars during the retrieval and building of the graph. cache: bool = True Whether to use cache, i.e. download files only once and preprocess them only once. cache_path: str = "graphs" Where to store the downloaded graphs. version: str = "links.v11.5" The version of the graph to retrieve. The available versions are: - homology.v11.0 - homology.v11.5 - physical.links.v11.0 - physical.links.v11.5 - links.v11.0 - links.v11.5 additional_graph_kwargs: Dict Additional graph kwargs. Returns ----------------------- Instace of Chlamydia sp. Rubis graph. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ return AutomaticallyRetrievedGraph( graph_name="ChlamydiaSpRubis", repository="string", version=version, directed=directed, preprocess=preprocess, load_nodes=load_nodes, verbose=verbose, cache=cache, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs )()
32.685185
223
0.674221
e7aa9ba91b88d8e09a3b52be4296da2cdd04d142
1,192
py
Python
trash/really weird bug when separating files/corpus.py
mounir4023/MSA_POS_Tagger
d34cace777504a4121b675048ddbaa12297cc20b
[ "MIT" ]
3
2020-02-04T19:01:30.000Z
2021-07-05T18:09:36.000Z
trash/really weird bug when separating files/corpus.py
mounir4023/MSA_POS_Tagger
d34cace777504a4121b675048ddbaa12297cc20b
[ "MIT" ]
null
null
null
trash/really weird bug when separating files/corpus.py
mounir4023/MSA_POS_Tagger
d34cace777504a4121b675048ddbaa12297cc20b
[ "MIT" ]
null
null
null
from lxml import etree import random import re import nltk ##### preparing data into dict def get_data( path ): # init root = etree.parse("corpus.xml") sents = [ ] # xml to dict for each sentence for s in root.xpath("/CORPUS/Phrase"): tokens = re.sub(r'\s+',' ',s[2].text) tags = re.sub(r'\s+',' ',s[3].text) sents.append({ 'num':s[0].text, 'len':s[5].text, 'raw':s[1].text, 'tokens':tokens.split(" "), 'tags':tags.split(" "), }) # cleaning empty tokens and tags for s in sents: for t in s["tokens"]: if t == '' or t == ' ': s["tokens"].remove(t) for t in s["tags"]: if t == '' or t == ' ': s["tags"].remove(t) # removing the begining NULL tag for s in sents: s["tags"][0:2] = s["tags"][1:2] if len(s["tags"]) == len(s["tokens"]): s["len"] = len(s["tags"]) else: print("LENGTH ERROR IN SENTENCE: ",s["num"]) return sents ##### preparing lexicon into dict # def get_lexicon( path ):
21.285714
56
0.453859
f43d41773d077e59a3d34f3e24a48f313c9ef4b2
68,735
py
Python
gitee/api/gists_api.py
pygitee/pygitee
7622314a4dbb08cf2f729b6cdd0a2887b96e394e
[ "MIT" ]
null
null
null
gitee/api/gists_api.py
pygitee/pygitee
7622314a4dbb08cf2f729b6cdd0a2887b96e394e
[ "MIT" ]
null
null
null
gitee/api/gists_api.py
pygitee/pygitee
7622314a4dbb08cf2f729b6cdd0a2887b96e394e
[ "MIT" ]
null
null
null
# coding: utf-8 from __future__ import absolute_import import re # noqa: F401 # python 2 and python 3 compatibility library import six from gitee.api_client import ApiClient class GistsApi(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. Ref: https://github.com/swagger-api/swagger-codegen """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def delete_v5_gists_gist_id_comments_id(self, gist_id, id, **kwargs): # noqa: E501 """删除代码片段的评论 # noqa: E501 删除代码片段的评论 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.delete_v5_gists_gist_id_comments_id(gist_id, id, async_req=True) >>> result = thread.get() :param async_req bool :param str gist_id: 代码片段的ID (required) :param int id: 评论的ID (required) :param str access_token: 用户授权码 :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.delete_v5_gists_gist_id_comments_id_with_http_info(gist_id, id, **kwargs) # noqa: E501 else: (data) = self.delete_v5_gists_gist_id_comments_id_with_http_info(gist_id, id, **kwargs) # noqa: E501 return data def delete_v5_gists_gist_id_comments_id_with_http_info(self, gist_id, id, **kwargs): # noqa: E501 """删除代码片段的评论 # noqa: E501 删除代码片段的评论 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.delete_v5_gists_gist_id_comments_id_with_http_info(gist_id, id, async_req=True) >>> result = thread.get() :param async_req bool :param str gist_id: 代码片段的ID (required) :param int id: 评论的ID (required) :param str access_token: 用户授权码 :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['gist_id', 'id', 'access_token'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method delete_v5_gists_gist_id_comments_id" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'gist_id' is set if ('gist_id' not in params or params['gist_id'] is None): raise ValueError( "Missing the required parameter `gist_id` when calling `delete_v5_gists_gist_id_comments_id`") # noqa: E501 # verify the required parameter 'id' is set if ('id' not in params or params['id'] is None): raise ValueError( "Missing the required parameter `id` when calling `delete_v5_gists_gist_id_comments_id`") # noqa: E501 collection_formats = {} path_params = {} if 'gist_id' in params: path_params['gist_id'] = params['gist_id'] # noqa: E501 if 'id' in params: path_params['id'] = params['id'] # noqa: E501 query_params = [] if 'access_token' in params: query_params.append(('access_token', params['access_token'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/v5/gists/{gist_id}/comments/{id}', 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def delete_v5_gists_id(self, id, **kwargs): # noqa: E501 """删除指定代码片段 # noqa: E501 删除指定代码片段 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.delete_v5_gists_id(id, async_req=True) >>> result = thread.get() :param async_req bool :param str id: 代码片段的ID (required) :param str access_token: 用户授权码 :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.delete_v5_gists_id_with_http_info(id, **kwargs) # noqa: E501 else: (data) = self.delete_v5_gists_id_with_http_info(id, **kwargs) # noqa: E501 return data def delete_v5_gists_id_with_http_info(self, id, **kwargs): # noqa: E501 """删除指定代码片段 # noqa: E501 删除指定代码片段 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.delete_v5_gists_id_with_http_info(id, async_req=True) >>> result = thread.get() :param async_req bool :param str id: 代码片段的ID (required) :param str access_token: 用户授权码 :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'access_token'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method delete_v5_gists_id" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params or params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `delete_v5_gists_id`") # noqa: E501 collection_formats = {} path_params = {} if 'id' in params: path_params['id'] = params['id'] # noqa: E501 query_params = [] if 'access_token' in params: query_params.append(('access_token', params['access_token'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/v5/gists/{id}', 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def delete_v5_gists_id_star(self, id, **kwargs): # noqa: E501 """取消Star代码片段 # noqa: E501 取消Star代码片段 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.delete_v5_gists_id_star(id, async_req=True) >>> result = thread.get() :param async_req bool :param str id: 代码片段的ID (required) :param str access_token: 用户授权码 :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.delete_v5_gists_id_star_with_http_info(id, **kwargs) # noqa: E501 else: (data) = self.delete_v5_gists_id_star_with_http_info(id, **kwargs) # noqa: E501 return data def delete_v5_gists_id_star_with_http_info(self, id, **kwargs): # noqa: E501 """取消Star代码片段 # noqa: E501 取消Star代码片段 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.delete_v5_gists_id_star_with_http_info(id, async_req=True) >>> result = thread.get() :param async_req bool :param str id: 代码片段的ID (required) :param str access_token: 用户授权码 :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'access_token'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method delete_v5_gists_id_star" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params or params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `delete_v5_gists_id_star`") # noqa: E501 collection_formats = {} path_params = {} if 'id' in params: path_params['id'] = params['id'] # noqa: E501 query_params = [] if 'access_token' in params: query_params.append(('access_token', params['access_token'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/v5/gists/{id}/star', 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_v5_gists(self, **kwargs): # noqa: E501 """获取代码片段 # noqa: E501 获取代码片段 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_v5_gists(async_req=True) >>> result = thread.get() :param async_req bool :param str access_token: 用户授权码 :param str since: 起始的更新时间,要求时间格式为 ISO 8601 :param int page: 当前的页码 :param int per_page: 每页的数量,最大为 100 :return: list[Code] If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.get_v5_gists_with_http_info(**kwargs) # noqa: E501 else: (data) = self.get_v5_gists_with_http_info(**kwargs) # noqa: E501 return data def get_v5_gists_with_http_info(self, **kwargs): # noqa: E501 """获取代码片段 # noqa: E501 获取代码片段 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_v5_gists_with_http_info(async_req=True) >>> result = thread.get() :param async_req bool :param str access_token: 用户授权码 :param str since: 起始的更新时间,要求时间格式为 ISO 8601 :param int page: 当前的页码 :param int per_page: 每页的数量,最大为 100 :return: list[Code] If the method is called asynchronously, returns the request thread. """ all_params = ['access_token', 'since', 'page', 'per_page'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_v5_gists" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] if 'access_token' in params: query_params.append(('access_token', params['access_token'])) # noqa: E501 if 'since' in params: query_params.append(('since', params['since'])) # noqa: E501 if 'page' in params: query_params.append(('page', params['page'])) # noqa: E501 if 'per_page' in params: query_params.append(('per_page', params['per_page'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/v5/gists', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='list[Code]', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_v5_gists_gist_id_comments(self, gist_id, **kwargs): # noqa: E501 """获取代码片段的评论 # noqa: E501 获取代码片段的评论 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_v5_gists_gist_id_comments(gist_id, async_req=True) >>> result = thread.get() :param async_req bool :param str gist_id: 代码片段的ID (required) :param str access_token: 用户授权码 :param int page: 当前的页码 :param int per_page: 每页的数量,最大为 100 :return: list[CodeComment] If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.get_v5_gists_gist_id_comments_with_http_info(gist_id, **kwargs) # noqa: E501 else: (data) = self.get_v5_gists_gist_id_comments_with_http_info(gist_id, **kwargs) # noqa: E501 return data def get_v5_gists_gist_id_comments_with_http_info(self, gist_id, **kwargs): # noqa: E501 """获取代码片段的评论 # noqa: E501 获取代码片段的评论 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_v5_gists_gist_id_comments_with_http_info(gist_id, async_req=True) >>> result = thread.get() :param async_req bool :param str gist_id: 代码片段的ID (required) :param str access_token: 用户授权码 :param int page: 当前的页码 :param int per_page: 每页的数量,最大为 100 :return: list[CodeComment] If the method is called asynchronously, returns the request thread. """ all_params = ['gist_id', 'access_token', 'page', 'per_page'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_v5_gists_gist_id_comments" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'gist_id' is set if ('gist_id' not in params or params['gist_id'] is None): raise ValueError( "Missing the required parameter `gist_id` when calling `get_v5_gists_gist_id_comments`") # noqa: E501 collection_formats = {} path_params = {} if 'gist_id' in params: path_params['gist_id'] = params['gist_id'] # noqa: E501 query_params = [] if 'access_token' in params: query_params.append(('access_token', params['access_token'])) # noqa: E501 if 'page' in params: query_params.append(('page', params['page'])) # noqa: E501 if 'per_page' in params: query_params.append(('per_page', params['per_page'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/v5/gists/{gist_id}/comments', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='list[CodeComment]', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_v5_gists_gist_id_comments_id(self, gist_id, id, **kwargs): # noqa: E501 """获取单条代码片段的评论 # noqa: E501 获取单条代码片段的评论 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_v5_gists_gist_id_comments_id(gist_id, id, async_req=True) >>> result = thread.get() :param async_req bool :param str gist_id: 代码片段的ID (required) :param int id: 评论的ID (required) :param str access_token: 用户授权码 :return: CodeComment If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.get_v5_gists_gist_id_comments_id_with_http_info(gist_id, id, **kwargs) # noqa: E501 else: (data) = self.get_v5_gists_gist_id_comments_id_with_http_info(gist_id, id, **kwargs) # noqa: E501 return data def get_v5_gists_gist_id_comments_id_with_http_info(self, gist_id, id, **kwargs): # noqa: E501 """获取单条代码片段的评论 # noqa: E501 获取单条代码片段的评论 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_v5_gists_gist_id_comments_id_with_http_info(gist_id, id, async_req=True) >>> result = thread.get() :param async_req bool :param str gist_id: 代码片段的ID (required) :param int id: 评论的ID (required) :param str access_token: 用户授权码 :return: CodeComment If the method is called asynchronously, returns the request thread. """ all_params = ['gist_id', 'id', 'access_token'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_v5_gists_gist_id_comments_id" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'gist_id' is set if ('gist_id' not in params or params['gist_id'] is None): raise ValueError( "Missing the required parameter `gist_id` when calling `get_v5_gists_gist_id_comments_id`") # noqa: E501 # verify the required parameter 'id' is set if ('id' not in params or params['id'] is None): raise ValueError( "Missing the required parameter `id` when calling `get_v5_gists_gist_id_comments_id`") # noqa: E501 collection_formats = {} path_params = {} if 'gist_id' in params: path_params['gist_id'] = params['gist_id'] # noqa: E501 if 'id' in params: path_params['id'] = params['id'] # noqa: E501 query_params = [] if 'access_token' in params: query_params.append(('access_token', params['access_token'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/v5/gists/{gist_id}/comments/{id}', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='CodeComment', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_v5_gists_id(self, id, **kwargs): # noqa: E501 """获取单条代码片段 # noqa: E501 获取单条代码片段 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_v5_gists_id(id, async_req=True) >>> result = thread.get() :param async_req bool :param str id: 代码片段的ID (required) :param str access_token: 用户授权码 :return: CodeForksHistory If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.get_v5_gists_id_with_http_info(id, **kwargs) # noqa: E501 else: (data) = self.get_v5_gists_id_with_http_info(id, **kwargs) # noqa: E501 return data def get_v5_gists_id_with_http_info(self, id, **kwargs): # noqa: E501 """获取单条代码片段 # noqa: E501 获取单条代码片段 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_v5_gists_id_with_http_info(id, async_req=True) >>> result = thread.get() :param async_req bool :param str id: 代码片段的ID (required) :param str access_token: 用户授权码 :return: CodeForksHistory If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'access_token'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_v5_gists_id" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params or params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `get_v5_gists_id`") # noqa: E501 collection_formats = {} path_params = {} if 'id' in params: path_params['id'] = params['id'] # noqa: E501 query_params = [] if 'access_token' in params: query_params.append(('access_token', params['access_token'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/v5/gists/{id}', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='CodeForksHistory', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_v5_gists_id_commits(self, id, **kwargs): # noqa: E501 """获取代码片段的commit # noqa: E501 获取代码片段的commit # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_v5_gists_id_commits(id, async_req=True) >>> result = thread.get() :param async_req bool :param str id: 代码片段的ID (required) :param str access_token: 用户授权码 :return: CodeForksHistory If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.get_v5_gists_id_commits_with_http_info(id, **kwargs) # noqa: E501 else: (data) = self.get_v5_gists_id_commits_with_http_info(id, **kwargs) # noqa: E501 return data def get_v5_gists_id_commits_with_http_info(self, id, **kwargs): # noqa: E501 """获取代码片段的commit # noqa: E501 获取代码片段的commit # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_v5_gists_id_commits_with_http_info(id, async_req=True) >>> result = thread.get() :param async_req bool :param str id: 代码片段的ID (required) :param str access_token: 用户授权码 :return: CodeForksHistory If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'access_token'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_v5_gists_id_commits" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params or params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `get_v5_gists_id_commits`") # noqa: E501 collection_formats = {} path_params = {} if 'id' in params: path_params['id'] = params['id'] # noqa: E501 query_params = [] if 'access_token' in params: query_params.append(('access_token', params['access_token'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/v5/gists/{id}/commits', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='CodeForksHistory', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_v5_gists_id_forks(self, id, **kwargs): # noqa: E501 """获取 Fork 了指定代码片段的列表 # noqa: E501 获取 Fork 了指定代码片段的列表 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_v5_gists_id_forks(id, async_req=True) >>> result = thread.get() :param async_req bool :param str id: 代码片段的ID (required) :param str access_token: 用户授权码 :param int page: 当前的页码 :param int per_page: 每页的数量,最大为 100 :return: CodeForks If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.get_v5_gists_id_forks_with_http_info(id, **kwargs) # noqa: E501 else: (data) = self.get_v5_gists_id_forks_with_http_info(id, **kwargs) # noqa: E501 return data def get_v5_gists_id_forks_with_http_info(self, id, **kwargs): # noqa: E501 """获取 Fork 了指定代码片段的列表 # noqa: E501 获取 Fork 了指定代码片段的列表 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_v5_gists_id_forks_with_http_info(id, async_req=True) >>> result = thread.get() :param async_req bool :param str id: 代码片段的ID (required) :param str access_token: 用户授权码 :param int page: 当前的页码 :param int per_page: 每页的数量,最大为 100 :return: CodeForks If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'access_token', 'page', 'per_page'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_v5_gists_id_forks" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params or params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `get_v5_gists_id_forks`") # noqa: E501 collection_formats = {} path_params = {} if 'id' in params: path_params['id'] = params['id'] # noqa: E501 query_params = [] if 'access_token' in params: query_params.append(('access_token', params['access_token'])) # noqa: E501 if 'page' in params: query_params.append(('page', params['page'])) # noqa: E501 if 'per_page' in params: query_params.append(('per_page', params['per_page'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/v5/gists/{id}/forks', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='CodeForks', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_v5_gists_id_star(self, id, **kwargs): # noqa: E501 """判断代码片段是否已Star # noqa: E501 判断代码片段是否已Star # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_v5_gists_id_star(id, async_req=True) >>> result = thread.get() :param async_req bool :param str id: 代码片段的ID (required) :param str access_token: 用户授权码 :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.get_v5_gists_id_star_with_http_info(id, **kwargs) # noqa: E501 else: (data) = self.get_v5_gists_id_star_with_http_info(id, **kwargs) # noqa: E501 return data def get_v5_gists_id_star_with_http_info(self, id, **kwargs): # noqa: E501 """判断代码片段是否已Star # noqa: E501 判断代码片段是否已Star # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_v5_gists_id_star_with_http_info(id, async_req=True) >>> result = thread.get() :param async_req bool :param str id: 代码片段的ID (required) :param str access_token: 用户授权码 :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'access_token'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_v5_gists_id_star" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params or params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `get_v5_gists_id_star`") # noqa: E501 collection_formats = {} path_params = {} if 'id' in params: path_params['id'] = params['id'] # noqa: E501 query_params = [] if 'access_token' in params: query_params.append(('access_token', params['access_token'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/v5/gists/{id}/star', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_v5_gists_starred(self, **kwargs): # noqa: E501 """获取用户Star的代码片段 # noqa: E501 获取用户Star的代码片段 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_v5_gists_starred(async_req=True) >>> result = thread.get() :param async_req bool :param str access_token: 用户授权码 :param str since: 起始的更新时间,要求时间格式为 ISO 8601 :param int page: 当前的页码 :param int per_page: 每页的数量,最大为 100 :return: list[Code] If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.get_v5_gists_starred_with_http_info(**kwargs) # noqa: E501 else: (data) = self.get_v5_gists_starred_with_http_info(**kwargs) # noqa: E501 return data def get_v5_gists_starred_with_http_info(self, **kwargs): # noqa: E501 """获取用户Star的代码片段 # noqa: E501 获取用户Star的代码片段 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_v5_gists_starred_with_http_info(async_req=True) >>> result = thread.get() :param async_req bool :param str access_token: 用户授权码 :param str since: 起始的更新时间,要求时间格式为 ISO 8601 :param int page: 当前的页码 :param int per_page: 每页的数量,最大为 100 :return: list[Code] If the method is called asynchronously, returns the request thread. """ all_params = ['access_token', 'since', 'page', 'per_page'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_v5_gists_starred" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] if 'access_token' in params: query_params.append(('access_token', params['access_token'])) # noqa: E501 if 'since' in params: query_params.append(('since', params['since'])) # noqa: E501 if 'page' in params: query_params.append(('page', params['page'])) # noqa: E501 if 'per_page' in params: query_params.append(('per_page', params['per_page'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/v5/gists/starred', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='list[Code]', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def patch_v5_gists_gist_id_comments_id(self, access_token, body, gist_id, id, **kwargs): # noqa: E501 """修改代码片段的评论 # noqa: E501 修改代码片段的评论 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.patch_v5_gists_gist_id_comments_id(access_token, body, gist_id, id, async_req=True) >>> result = thread.get() :param async_req bool :param str access_token: (required) :param str body: (required) :param str gist_id: 代码片段的ID (required) :param int id: 评论的ID (required) :return: CodeComment If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.patch_v5_gists_gist_id_comments_id_with_http_info(access_token, body, gist_id, id, **kwargs) # noqa: E501 else: (data) = self.patch_v5_gists_gist_id_comments_id_with_http_info(access_token, body, gist_id, id, **kwargs) # noqa: E501 return data def patch_v5_gists_gist_id_comments_id_with_http_info(self, access_token, body, gist_id, id, **kwargs): # noqa: E501 """修改代码片段的评论 # noqa: E501 修改代码片段的评论 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.patch_v5_gists_gist_id_comments_id_with_http_info(access_token, body, gist_id, id, async_req=True) >>> result = thread.get() :param async_req bool :param str access_token: (required) :param str body: (required) :param str gist_id: 代码片段的ID (required) :param int id: 评论的ID (required) :return: CodeComment If the method is called asynchronously, returns the request thread. """ all_params = ['access_token', 'body', 'gist_id', 'id'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method patch_v5_gists_gist_id_comments_id" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'access_token' is set if ('access_token' not in params or params['access_token'] is None): raise ValueError( "Missing the required parameter `access_token` when calling `patch_v5_gists_gist_id_comments_id`") # noqa: E501 # verify the required parameter 'body' is set if ('body' not in params or params['body'] is None): raise ValueError( "Missing the required parameter `body` when calling `patch_v5_gists_gist_id_comments_id`") # noqa: E501 # verify the required parameter 'gist_id' is set if ('gist_id' not in params or params['gist_id'] is None): raise ValueError( "Missing the required parameter `gist_id` when calling `patch_v5_gists_gist_id_comments_id`") # noqa: E501 # verify the required parameter 'id' is set if ('id' not in params or params['id'] is None): raise ValueError( "Missing the required parameter `id` when calling `patch_v5_gists_gist_id_comments_id`") # noqa: E501 collection_formats = {} path_params = {} if 'gist_id' in params: path_params['gist_id'] = params['gist_id'] # noqa: E501 if 'id' in params: path_params['id'] = params['id'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} if 'access_token' in params: form_params.append(('access_token', params['access_token'])) # noqa: E501 if 'body' in params: form_params.append(('body', params['body'])) # noqa: E501 body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['multipart/form-data']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/v5/gists/{gist_id}/comments/{id}', 'PATCH', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='CodeComment', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def patch_v5_gists_id(self, id, **kwargs): # noqa: E501 """修改代码片段 # noqa: E501 修改代码片段 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.patch_v5_gists_id(id, async_req=True) >>> result = thread.get() :param async_req bool :param str id: 代码片段的ID (required) :param str access_token: :param object files: :param str description: :param bool public: :return: CodeForksHistory If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.patch_v5_gists_id_with_http_info(id, **kwargs) # noqa: E501 else: (data) = self.patch_v5_gists_id_with_http_info(id, **kwargs) # noqa: E501 return data def patch_v5_gists_id_with_http_info(self, id, **kwargs): # noqa: E501 """修改代码片段 # noqa: E501 修改代码片段 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.patch_v5_gists_id_with_http_info(id, async_req=True) >>> result = thread.get() :param async_req bool :param str id: 代码片段的ID (required) :param str access_token: :param object files: :param str description: :param bool public: :return: CodeForksHistory If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'access_token', 'files', 'description', 'public'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method patch_v5_gists_id" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params or params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `patch_v5_gists_id`") # noqa: E501 collection_formats = {} path_params = {} if 'id' in params: path_params['id'] = params['id'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} if 'access_token' in params: form_params.append(('access_token', params['access_token'])) # noqa: E501 if 'files' in params: form_params.append(('files', params['files'])) # noqa: E501 if 'description' in params: form_params.append(('description', params['description'])) # noqa: E501 if 'public' in params: form_params.append(('public', params['public'])) # noqa: E501 body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['multipart/form-data']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/v5/gists/{id}', 'PATCH', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='CodeForksHistory', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def post_v5_gists(self, body, **kwargs): # noqa: E501 """创建代码片段 # noqa: E501 创建代码片段 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.post_v5_gists(body, async_req=True) >>> result = thread.get() :param async_req bool :param Body51 body: (required) :return: list[CodeForksHistory] If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.post_v5_gists_with_http_info(body, **kwargs) # noqa: E501 else: (data) = self.post_v5_gists_with_http_info(body, **kwargs) # noqa: E501 return data def post_v5_gists_with_http_info(self, body, **kwargs): # noqa: E501 """创建代码片段 # noqa: E501 创建代码片段 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.post_v5_gists_with_http_info(body, async_req=True) >>> result = thread.get() :param async_req bool :param Body51 body: (required) :return: list[CodeForksHistory] If the method is called asynchronously, returns the request thread. """ all_params = ['body'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method post_v5_gists" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'body' is set if ('body' not in params or params['body'] is None): raise ValueError("Missing the required parameter `body` when calling `post_v5_gists`") # noqa: E501 collection_formats = {} path_params = {} query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/v5/gists', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='list[CodeForksHistory]', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def post_v5_gists_gist_id_comments(self, body, gist_id, **kwargs): # noqa: E501 """增加代码片段的评论 # noqa: E501 增加代码片段的评论 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.post_v5_gists_gist_id_comments(body, gist_id, async_req=True) >>> result = thread.get() :param async_req bool :param Body52 body: (required) :param str gist_id: 代码片段的ID (required) :return: CodeComment If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.post_v5_gists_gist_id_comments_with_http_info(body, gist_id, **kwargs) # noqa: E501 else: (data) = self.post_v5_gists_gist_id_comments_with_http_info(body, gist_id, **kwargs) # noqa: E501 return data def post_v5_gists_gist_id_comments_with_http_info(self, body, gist_id, **kwargs): # noqa: E501 """增加代码片段的评论 # noqa: E501 增加代码片段的评论 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.post_v5_gists_gist_id_comments_with_http_info(body, gist_id, async_req=True) >>> result = thread.get() :param async_req bool :param Body52 body: (required) :param str gist_id: 代码片段的ID (required) :return: CodeComment If the method is called asynchronously, returns the request thread. """ all_params = ['body', 'gist_id'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method post_v5_gists_gist_id_comments" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'body' is set if ('body' not in params or params['body'] is None): raise ValueError( "Missing the required parameter `body` when calling `post_v5_gists_gist_id_comments`") # noqa: E501 # verify the required parameter 'gist_id' is set if ('gist_id' not in params or params['gist_id'] is None): raise ValueError( "Missing the required parameter `gist_id` when calling `post_v5_gists_gist_id_comments`") # noqa: E501 collection_formats = {} path_params = {} if 'gist_id' in params: path_params['gist_id'] = params['gist_id'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/v5/gists/{gist_id}/comments', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='CodeComment', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def post_v5_gists_id_forks(self, id, **kwargs): # noqa: E501 """Fork代码片段 # noqa: E501 Fork代码片段 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.post_v5_gists_id_forks(id, async_req=True) >>> result = thread.get() :param async_req bool :param str id: 代码片段的ID (required) :param Body56 body: :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.post_v5_gists_id_forks_with_http_info(id, **kwargs) # noqa: E501 else: (data) = self.post_v5_gists_id_forks_with_http_info(id, **kwargs) # noqa: E501 return data def post_v5_gists_id_forks_with_http_info(self, id, **kwargs): # noqa: E501 """Fork代码片段 # noqa: E501 Fork代码片段 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.post_v5_gists_id_forks_with_http_info(id, async_req=True) >>> result = thread.get() :param async_req bool :param str id: 代码片段的ID (required) :param Body56 body: :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'body'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method post_v5_gists_id_forks" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params or params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `post_v5_gists_id_forks`") # noqa: E501 collection_formats = {} path_params = {} if 'id' in params: path_params['id'] = params['id'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/v5/gists/{id}/forks', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def put_v5_gists_id_star(self, id, **kwargs): # noqa: E501 """Star代码片段 # noqa: E501 Star代码片段 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.put_v5_gists_id_star(id, async_req=True) >>> result = thread.get() :param async_req bool :param str id: 代码片段的ID (required) :param Body55 body: :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.put_v5_gists_id_star_with_http_info(id, **kwargs) # noqa: E501 else: (data) = self.put_v5_gists_id_star_with_http_info(id, **kwargs) # noqa: E501 return data def put_v5_gists_id_star_with_http_info(self, id, **kwargs): # noqa: E501 """Star代码片段 # noqa: E501 Star代码片段 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.put_v5_gists_id_star_with_http_info(id, async_req=True) >>> result = thread.get() :param async_req bool :param str id: 代码片段的ID (required) :param Body55 body: :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'body'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method put_v5_gists_id_star" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params or params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `put_v5_gists_id_star`") # noqa: E501 collection_formats = {} path_params = {} if 'id' in params: path_params['id'] = params['id'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/v5/gists/{id}/star', 'PUT', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats)
38.313824
128
0.592667
841e1b4ea059f5fa1805d43217f2334f808d0f31
322
py
Python
sound.py
AileenBanshee/MicroPython
0f51759851d601780b6eac9d2201bf3e02022638
[ "CC0-1.0" ]
null
null
null
sound.py
AileenBanshee/MicroPython
0f51759851d601780b6eac9d2201bf3e02022638
[ "CC0-1.0" ]
null
null
null
sound.py
AileenBanshee/MicroPython
0f51759851d601780b6eac9d2201bf3e02022638
[ "CC0-1.0" ]
null
null
null
from machine import Pin, ADC from time import sleep_ms import time # sound_sensor functionality (sensor big sound): adc = ADC (Pin (26)) sound = Pin(27, Pin.IN, Pin.PULL_DOWN) while(True): q = 0 for i in range(10000): q = q + sound.value() print(q) #print(snd_secret) #time.sleep(1)
18.941176
48
0.627329
ce718f2abd81a257988bd5841be9afd57588e9b0
1,246
py
Python
src/tests/test_e2e_install.py
paul-maidment/assisted-test-infra
2b2c86e37a1a7c6b3c25b3899e6d87d6313333c4
[ "Apache-2.0" ]
null
null
null
src/tests/test_e2e_install.py
paul-maidment/assisted-test-infra
2b2c86e37a1a7c6b3c25b3899e6d87d6313333c4
[ "Apache-2.0" ]
null
null
null
src/tests/test_e2e_install.py
paul-maidment/assisted-test-infra
2b2c86e37a1a7c6b3c25b3899e6d87d6313333c4
[ "Apache-2.0" ]
null
null
null
import pytest from junit_report import JunitTestSuite import consts from tests.base_test import BaseTest from tests.conftest import get_available_openshift_versions, get_supported_operators class TestInstall(BaseTest): @JunitTestSuite() @pytest.mark.parametrize("openshift_version", get_available_openshift_versions()) def test_install(self, cluster, openshift_version): cluster.prepare_for_installation() cluster.start_install_and_wait_for_installed() @JunitTestSuite() @pytest.mark.parametrize("openshift_version", get_available_openshift_versions()) def test_infra_env_install(self, infra_env, openshift_version): infra_env.prepare_for_installation() @JunitTestSuite() @pytest.mark.parametrize("network_type", [consts.NetworkType.OpenShiftSDN, consts.NetworkType.OVNKubernetes]) def test_networking(self, cluster, network_type): cluster.prepare_for_installation() cluster.start_install_and_wait_for_installed() @JunitTestSuite() @pytest.mark.parametrize("olm_operators", get_supported_operators()) def test_olm_operator(self, cluster, olm_operators): cluster.prepare_for_installation() cluster.start_install_and_wait_for_installed()
38.9375
113
0.784109
72a3b7ac51fcd592cea11eb8491ba340b108c076
2,257
py
Python
manim/utils/caching.py
naveen521kk/manimce-deprecated
52a0cb0e49f79cb48f78b51c724f049d522fc465
[ "MIT" ]
1
2021-05-06T13:05:01.000Z
2021-05-06T13:05:01.000Z
manim/utils/caching.py
naveen521kk/manimce-deprecated
52a0cb0e49f79cb48f78b51c724f049d522fc465
[ "MIT" ]
1
2020-11-01T03:27:09.000Z
2020-11-01T03:27:09.000Z
manim/utils/caching.py
naveen521kk/manimce-deprecated
52a0cb0e49f79cb48f78b51c724f049d522fc465
[ "MIT" ]
null
null
null
from .. import config, logger from ..utils.hashing import get_hash_from_play_call def handle_caching_play(func): """Decorator that returns a wrapped version of func that will compute the hash of the play invocation. The returned function will act according to the computed hash: either skip the animation because it's already cached, or let the invoked function play normally. Parameters ---------- func : Callable[[...], None] The play like function that has to be written to the video file stream. Take the same parameters as `scene.play`. """ def wrapper(self, scene, *args, **kwargs): self.skip_animations = self.original_skipping_status self.update_skipping_status() animations = scene.compile_play_args_to_animation_list(*args, **kwargs) scene.add_mobjects_from_animations(animations) if self.skip_animations: logger.debug(f"Skipping animation {self.num_plays}") func(self, scene, *args, **kwargs) # If the animation is skipped, we mark its hash as None. # When sceneFileWriter will start combining partial movie files, it won't take into account None hashes. self.animations_hashes.append(None) self.file_writer.add_partial_movie_file(None) return if not config["disable_caching"]: mobjects_on_scene = scene.mobjects hash_play = get_hash_from_play_call( self, self.camera, animations, mobjects_on_scene ) if self.file_writer.is_already_cached(hash_play): logger.info( f"Animation {self.num_plays} : Using cached data (hash : %(hash_play)s)", {"hash_play": hash_play}, ) self.skip_animations = True else: hash_play = "uncached_{:05}".format(self.num_plays) self.animations_hashes.append(hash_play) self.file_writer.add_partial_movie_file(hash_play) logger.debug( "List of the first few animation hashes of the scene: %(h)s", {"h": str(self.animations_hashes[:5])}, ) func(self, scene, *args, **kwargs) return wrapper
41.036364
116
0.6358
36459d4d2df050326f22f0deafbc3688585e698e
924
py
Python
setup.py
trialspark/aptible-api
c0b843b8de93b50eb3cafe051e13421bd8c3f039
[ "MIT" ]
1
2021-07-13T14:43:43.000Z
2021-07-13T14:43:43.000Z
setup.py
trialspark/aptible-api
c0b843b8de93b50eb3cafe051e13421bd8c3f039
[ "MIT" ]
1
2021-09-23T19:20:20.000Z
2021-09-23T19:20:20.000Z
setup.py
trialspark/aptible-api
c0b843b8de93b50eb3cafe051e13421bd8c3f039
[ "MIT" ]
null
null
null
import setuptools with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() setuptools.setup( name="aptible-api", version="0.4.0", author="Zachary Elliott", author_email="zellio@trialspark.com", description="Object Oriented interface for Aptible API", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/TrialSpark/aptible-api", project_urls={ "Bug Tracker": "https://github.com/TrialSpark/aptible-api", }, classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], package_dir={"": "src"}, packages=setuptools.find_packages(where="src"), python_requires=">=3.6", install_requires=[ 'PyYAML>=5.4', 'inflection>=0.5', 'requests>=2.25', ] )
28.875
67
0.632035
e28aede06f39d2feaa354ecc49e4ce1f3b2df4a0
685
py
Python
space_script/pdm_space_netbeans.py
irving-muller/TraceSim_EMSE
f0d1f7c99fe4f427e40ac29f7736a30b8b513009
[ "MIT" ]
3
2022-02-18T12:58:07.000Z
2022-03-02T09:48:39.000Z
space_script/pdm_space_netbeans.py
irving-muller/TraceSim_EMSE
f0d1f7c99fe4f427e40ac29f7736a30b8b513009
[ "MIT" ]
null
null
null
space_script/pdm_space_netbeans.py
irving-muller/TraceSim_EMSE
f0d1f7c99fe4f427e40ac29f7736a30b8b513009
[ "MIT" ]
null
null
null
from hyperopt import hp fixed_values= { "filter_func": "threshold_trim" } space = { "c": hp.uniform("c", 0.0, 30.0), "o": hp.uniform("o", 0.0, 30.0), # "keep_ukn": hp.choice("keep_ukn", (False, True)), # "static_df_ukn": hp.choice("static_df_ukn", (False, True)), "aggregate": hp.choice("aggregate", ('max', 'avg_query', 'avg_cand', 'avg_short', 'avg_long', 'avg_query_cand')), "rm_dup_stacks": hp.choice("rm_dup_stacks", (False, True)), "freq_by_stacks": hp.choice("freq_by_stacks", (False, True)), "filter_func_k": hp.uniform("filter_func_k", 0.0, 130.0), "filter_recursion": hp.choice("filter_recursion", (None, 'modani', 'brodie')), }
32.619048
117
0.630657
f7f120247722d959a07182e68bad0b7a2ba61c0d
2,169
py
Python
geotrek/feedback/views.py
fossabot/Geotrek-admin
ea2c873511ad724c742c64d81cbf31f37dbe3093
[ "BSD-2-Clause" ]
null
null
null
geotrek/feedback/views.py
fossabot/Geotrek-admin
ea2c873511ad724c742c64d81cbf31f37dbe3093
[ "BSD-2-Clause" ]
null
null
null
geotrek/feedback/views.py
fossabot/Geotrek-admin
ea2c873511ad724c742c64d81cbf31f37dbe3093
[ "BSD-2-Clause" ]
null
null
null
from django.conf import settings from django.views.generic.list import ListView from django.core.mail import send_mail from rest_framework.decorators import list_route from rest_framework.permissions import AllowAny from mapentity import views as mapentity_views from geotrek.feedback.filters import ReportFilterSet from geotrek.feedback import models as feedback_models from geotrek.feedback import serializers as feedback_serializers class ReportLayer(mapentity_views.MapEntityLayer): model = feedback_models.Report filterform = ReportFilterSet properties = ['name'] class ReportList(mapentity_views.MapEntityList): model = feedback_models.Report filterform = ReportFilterSet columns = ['id', 'name', 'email', 'category', 'status', 'date_insert'] class ReportJsonList(mapentity_views.MapEntityJsonList, ReportList): pass class ReportFormatList(mapentity_views.MapEntityFormat, ReportList): columns = [ 'id', 'name', 'email', 'comment', 'category', 'status', 'date_insert', 'date_update', ] class CategoryList(mapentity_views.JSONResponseMixin, ListView): model = feedback_models.ReportCategory def dispatch(self, *args, **kwargs): return super(CategoryList, self).dispatch(*args, **kwargs) def get_context_data(self, **kwargs): return [{'id': c.id, 'label': c.category} for c in self.object_list] class ReportViewSet(mapentity_views.MapEntityViewSet): """Disable permissions requirement""" model = feedback_models.Report queryset = feedback_models.Report.objects.all() serializer_class = feedback_serializers.ReportSerializer authentication_classes = [] permission_classes = [AllowAny] @list_route(methods=['post']) def report(self, request, lang=None): response = super(ReportViewSet, self).create(request) if settings.MAILALERTSUBJECT and response.status_code == 201: send_mail( settings.MAILALERTSUBJECT, settings.MAILALERTMESSAGE, settings.DEFAULT_FROM_EMAIL, [request.data.get('email')] ) return response
32.863636
74
0.716459
ee5cf98a9afa3d611128c6b9d084f0f8ea329b38
1,216
py
Python
lib/spack/spack/schema/bootstrap.py
jeanbez/spack
f4e51ce8f366c85bf5aa0eafe078677b42dae1ba
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
lib/spack/spack/schema/bootstrap.py
jeanbez/spack
f4e51ce8f366c85bf5aa0eafe078677b42dae1ba
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
8
2021-11-09T20:28:40.000Z
2022-03-15T03:26:33.000Z
lib/spack/spack/schema/bootstrap.py
jeanbez/spack
f4e51ce8f366c85bf5aa0eafe078677b42dae1ba
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
2
2019-02-08T20:37:20.000Z
2019-03-31T15:19:26.000Z
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) """Schema for bootstrap.yaml configuration file.""" #: Schema of a single source _source_schema = { 'type': 'object', 'properties': { 'name': {'type': 'string'}, 'metadata': {'type': 'string'} }, 'additionalProperties': False, 'required': ['name', 'metadata'] } properties = { 'bootstrap': { 'type': 'object', 'properties': { 'enable': {'type': 'boolean'}, 'root': { 'type': 'string' }, 'sources': { 'type': 'array', 'items': _source_schema }, 'trusted': { 'type': 'object', 'patternProperties': {r'\w[\w-]*': {'type': 'boolean'}} } } } } #: Full schema with metadata schema = { '$schema': 'http://json-schema.org/draft-07/schema#', 'title': 'Spack bootstrap configuration file schema', 'type': 'object', 'additionalProperties': False, 'properties': properties, }
26.434783
73
0.525493
0ade2dfd347d83daf0039aab394d3fac6f3ec8b6
161,382
py
Python
bin/temp/var/usd/cd/tmp/usd/data/data/data/data/data/temp/twitter.py
RazorKenway/All-Downloader
e1c6d9ee277166faff8876e967b521fd752f0e7f
[ "MIT" ]
44
2021-06-28T15:57:18.000Z
2022-03-22T07:36:13.000Z
bin/temp/var/usd/cd/tmp/usd/data/data/data/data/data/temp/twitter.py
RazorKenway/All-Downloader
e1c6d9ee277166faff8876e967b521fd752f0e7f
[ "MIT" ]
1
2021-11-26T13:28:10.000Z
2022-01-10T21:23:41.000Z
bin/temp/var/usd/cd/tmp/usd/data/data/data/data/data/temp/twitter.py
RazorKenway/All-Downloader
e1c6d9ee277166faff8876e967b521fd752f0e7f
[ "MIT" ]
5
2021-08-23T17:34:56.000Z
2022-02-25T19:23:59.000Z
#ENCODE BY CRYPTO #YOU CAN TRY THIS DECODE GOD BLESS import gzip,marshal,zlib,base64,binascii,lzma try: exec(gzip.decompress(marshal.loads(b's\xd2\xdb\x00\x00\x1f\x8b\x08\x002\x87\x98a\x02\xffl]Y[\x14K\xb0|\xbf\xbf\xc2\x05\x95M\xe8\xbd\xabQdS\xdc\x15\x14Da\x04z\x05Q\xf6MA\xf8\xedw"2\xca9\xdfw\xef\x83\xe7\xb0\x0c3\xdd]U\xb9DFF\xfe\xd8?:<9\xbbS\x95\xa7m\x96\x8c\xef\x97\'\xa7\xbb\xe5\xaf\xf1\xea\xc7AyZ\xff\xf81\xbes\xf5\xe3h\xfc\xea\xd7\x8f\xea\x7f\xceN\xfeL\xb5\xbf\xdbzX\xaf\x99\xf8uX6\xa7\xc3x\xc1D\xd3\xd6\x87\xfbG\'\xed\xe9\xe9p\xf5\xa8\xf7;\xecz\xbf]\xd5\xfb\x1d\xb8\xfe\xbf \xea\x7f\x93\xf7~\x17\xae\xec\x7f\xd7\xff\xa6\xebz\xbd\xfe\x8f\xda\xcf\xfd\x9f\x05\x0f\xfb_\x05\xfd/\xfa?/k\xfe\xeew\x95\xed\xf7~7\xfd?/\xea\xff|\xf3\x7f\xbf\xf8\xcf\xaf\xa7\xf7\xfb_\xd7\xfd\xbf-\xda\x9b\xfe\x0f\x8b\xe3\xb1\xd1\xfe{\xc5\xfd\xf7\xec\xbf\xce\xf5\xaf\xa2.q\x11I\xff\x02\xb2\xfe/\xfa/\xce\xfb/\x0e\xfa/\xe8\x1a^\xee\x19~\xfa\xb2\xff\xbav\x13\x17\x11\xf6\x7f\x18\xf3\xca\xcep\x91\xbd\x93\xd9\xde\xef\xb6\xb2\xcb\xc3M\x95x\xa7\xb4\xff}\xb2\x85{\xfa\xd9\xffOh\xbf-\xf2;\xebw\xf0\xe5\x83\xfe\xab\xfa\xaf\x0c3\xfd\x1fO\xa0\x1e\xc1c\x18Y\xb2\x97Wn\xe4\x95}\xe5\x92\xde\xd9\xd1\xdd\xa5\xbbK\xfd\'\x11\xf2\xdf,\xaelf\xab\xc5\xf3\x1b\xee_\x16~\xd8\xff\xcc\xa6\xff\x98\x8a\xfe\x85\x05\xb9\xae#\xb0\xeb\xe0\xbf\xfe\xef\xbb`\xbe\xff\x13\x97fx_\xbcqj\xb7\x8e\xbb.\x9c=\xea\xb6\xff\xb5\xc32\xd4[\x8bxH3#\x8f\x87\xf7\xed"q\x03u\xff\x81t\xfd\xcfm\xfa_\xb7x\xdb\xfe\xd7mb\xff\xe7\xc7\xf5\xff\xb4\xc2\xa3pxMv\x82g\xd6\xbf\xb8\xfe\xbf\x1a\xaf\xc6+\x82\xb9d\x08\x9f5\xf2\xb4\xff\xc3\xd8n\xa9sk\xbdG\xdfq\tx\xb6\xb8\xfb\xfee\xd4Y\xb2aK\x81u\xe2\'gv\x15Ms\xd0\xff\xd8\xce\xb6R\xdd]\xc5v\xddu\xb9\x7f\xd8\x7fq\xff\x83\x9a\xfe%\xb5\xedq\x16\xda\xc3)\xb1op\xa5\xf8\xfc\xce\xae\x05\xfb\x01o\x81\xd5\xec\xc2\xebg\xb6\x18xlx+|jU\xae\xe39\x04v\xddU\xa8\xfd\xd9\xbf\x0e\x87WV\x8d\xed\x8b^\xffZB\\ \xfe\xb4\xb5\x0b\x0c\xa3\x17\xd8\x19/\xfbkY\'\xb3\xab\xfd\xf5\n\x0b\xdbY\x1d.\x07\xd7\x8b\xaf+,\\i\xcb\x1f\xe8\xda\xfc\xff\xfb\x8f\xe5\xc0\x9f\x91u\xbb lk\xee\xad\x80\x9b\x82\xff\xef\xa2\x1b{\xe3\xb6\xc1\x0f\xf0I\x19\xceVp\xc7n\xd1\x85O\xcb3[\xda\xb0^\xc6\xc6\r\xde\xe0Z\x0b\xbb\x94\x02G\xa6\xb1\xaf\xebl\xa9w\xb0\x8a\xcf\xbc\xb0G\x83E\xc6[\xd7\x15\x1e9\xee\xb6\xd1\xce\xc6U`\xdd\xb0\xe4]\xff\xe2\xabtg\xdf\x8e)\xde\x10{\r\xa7\x07\xff\xaf\xdc\x98\xdd#.\xb6\x8ep\x15\xeb\xbazn\x93\x1f\xfd7-zg\xfd\xcb\xa9\xeaa;\xe5\xae\xed\x1f\x9b&\xd6\xf1\xed\xf0\xe1\xa1}L\x8d-\xd7\x95\xcf~\xe2\xdb\xf3\xfeE\xf6\x7fV\xf6\xdf\xbb\xec\xdfA\x19\xda\xe7\x14\xfd\xff\x97\xfd\xcfiK{\xe8E\xb5k/\xe8\n\xde\x05\x16\xf0DW\xde=\xef\xff\x08v\xa2\xda\xc3\x93\xb4\r\x86\xcdVh\xb3\xe2\x8e\xb8\x95\xb1\xe0\t.\xb8x\x8c+\xa8l\x1f\xf4O\xc2\xc9U}\xc35?\xc1\xcf\xb7\xf5\xf3\x1a\xdfV\xb8\x99\xaa\xb9\xb4\'\\D\xb7\xfd\xff$v|\xc2\xeco\xff\x9bL\xdf$\xf8&\xfdk\xfb\x80?\x89\xec\xffN\x1f\xdf\xe9\x90\x96\x91l`\xba\xac\xa3V\xdb\x93.\xd2\xd9s[D\xfc\x14W\xde`\x81\xf3\xd9Y\xbbg\x1c\x80\xb2\xff\x06M\xf0\xc0\x96\x15\xdf\x14\xc17\xdb\x18Mt\xf9\x94\x86\xecw\xc1\xc31l\xa7\x05\xe7\x18\x0f\x00o\xd9$\x8b\xb4\t\xf6\xbc\x9an\xdf\xbe\xa8C3\xb4\xf8\x7f\x90\xcf\xd9\x07\xe1\x03\xb1\xf5\x1a\\%\x8e?.\xdb%\xb3v\x16\xeb\xea\x95\x8eY\xd0\xb7\xf3W\xcfpQ\xfd_w\xcf\xf0\xe4\x8ftH\xea\xf8)\xb6\xfb\x17\xdb\xf3\xf0\x0fu\xb3h\xdf`c\xbax\xd2\xceZ\x95\xd8\xda\x86:\x94\xb8\xa6\x02{)\xb7K\xc7\xcf\xca\xf8\x12Ot\xeeo`\xb7\x8e\x93\x84{\xe5"\xf6\xdf\xa3h\x0em\xb7`q\n\\n\xf7\xf6\xee\xd1\xdd#X\x92#\xfc\xb4\xbf\xa8m\x88\xcf[\x82\xa5\xb8\xb0m\x0c\xa3W\xe2\xb4\xa7\x17\xb6\x9d\xdb\xe6\xbbm\xd2.?\xc4fy\xd5{\xf4*\x871\xfbp\x17F@\xe7\x04\xa7#tf,\x1c\x7f=*\xb3\x84#\xectn\x9c-;}J\xfb\xd0\xf6TY\xbc\xd2\xc9\xc7\xab\xdd6\xfe$\x88\xa7\x7f\xcbz\xa4O~_\xc2p\xc0\nd[\xf6>x\xeeA\xfa\xc5\x9e)\x96\x89\x1b\xa3\xb4\xa3P\x14\xfd7\xaes\xed\x8d\xd6\x0e\x90\xd3\x01j\xea}Y\x95\xd0\x8c\x1bm2\x1c"\xee$\x90\xaf\xa9\x9c\xb9Q\x9cy\xac@\xdb\xae\xbe\x98\xf0;\x04;5\x1b\xd2\xe7\xb9E{\xdf\x90\xe7|\xff\xbc\xff*\x87%\x8b\xa6\x9c\x9d\xf9\xb2\xc0E\x1c\xe3\x9e\x1f\xda\x03\xc1;p\xf9\xb2cl\xf8_\xa7W\x0f\xf1\x7f,\xd5\xf6\xebY3E<\xa6\\\xf7\xfc&\xb4cRe\xc1\xa6=Z\x1c\xba\xba~c\x87\xb7k\xaf\xcd/\xc2\xdc\xe3(\xc1%a\xd9\xaa\xbew\xffk~\xb6n\x7f\xee\xd8]\xd3!\xe2\xba\xc3_\xb6\xc7\xba\x04\xe7\x02\x07=\xe1&X\xb6s\xd8\x96\xe6\xa9\n\xf9\x88\xc0\xfd\xb1\xb3\xd0\xc9\xa7\xe3D\xba\xe8\x18\x8e\xeaB\xebZ\xda\x13\xc7.\xac\xab\xd9)\\\xc1\xcb\x17\xb26\x9dm\x0c\x1c\xffZN\xb5\r\xef\xe0y\xdc\xef\xdf\x06~\x13\x0cO\xe8\xdd\xf1-\xdcgG\xcb>4\x8e\xab8\xf9\x08\xc72\x8b\xe3\xf4\xd9|v\xdd^\xca\xc4!\x84J\xbe\xd8\xd3\xae\xb8\xe4\x872\x9c|\xda\xed\xd2\xa9\x9dD<$\x17\xe2E\xe5\x07\xacVq(GC\xe3r\x8a\xabr\xf6\x94\x1a\xed(\xfc}\x1b\xd9v\x85]\t\xf2\xdc~\xe8\xf2+|\xdeM\xdf\xc6\x97\xb9\xb9\x91.j\xed\x0b8Y\x9c\x882\xbf\xbeA\xd4\x12\xc3\x9cW3\xb8\x9ce\xfc\xf5\xbb5X\xd0nyd_\xa7&\x9e6\xcbRdO\x9f\xcchyt\xd2i\x16\xeb\xab{7\xb8\xc2i\xbc\xf7\xc4\x93gwd\xe8\xdc\xe6-\xcd\xcbZ\xff\xb7ma\'\x1c[\x03\xc7\xbf\xa2\x13\x9e\xc6\x13\xfdp\xc3s\xfc\xd5\x9en\xd1\xc9\x8f\xe3\xc6\xab-=\xf2\xf0\x18;\xcd\x82\x94"\x99\xdb\xc5\x8f\xcfls\xb8\xbc\x7fMN\xfe\x1d\xae\x18>\x9e\xbf\x08\x7f\x8f`\xb5\'\x14_\xe4\xd7\xb08\xf6\x1e\x01\x0c?\xe2\x8a\xa6\x1d\xb1\x8f\xa8\x8b\xdf\x8atS\xb3\x96\x9d{\x87=\xf3\xdc~\x8d\xed_\xff\xc72\xb7\xed\x1b;\xc38LMz\xd5\x7f\x86\x08)\xb8%\x19\xb9\x9e\x7f\xbd\xb6\xbd]\xb4\xdf\xec\x90\xf9\xed\xda\xc6_\xec\xbd\xb0\x18\xdcG\xcd\x84}\x81\xa8\x10O.\xcc\xa6_|\xf8\xfe\xdb\xfe\x1e\xe1J\x11\xcf\xe3\n\x8fv\xcc\xf1\x8d\xbe>3\x8b\x8c\rO\xbf\x8d\x8b\x88G`\x17N\xcd8\xe0yW\xc9\xe7\xf4]\xfa\xfe\x0b\x82_\xbc3>\xb2=\xd5\x19\xcb\xa2\x05[\t\xd8\x97V\xbb9\xc0\xebpF\xb0Gh\x9d\xea\xb3i$\x05u}_.\xcf\xc9\x86%\xb6\x96!\xef\xf0\x19\xb6\xd74\x8c\xd8\x85\x99;\x18ClLZ\xfb\xc8B\x05z\xf8@\x91\x0c\x9eC>j\xcb\x0c_\x8b\xdb\xe6\xa1\x835\xca\xff\xec\xec \xd0(^\xda\x87\xd1\x0b\xe1\x9d\xca\x91\xdc\xbc\x8f\xb3$\xc0\xac~\x8a]f\xd7\x8b\x15A\xd8R0f\xbb\x863\xbeT\xcaPj\xbd\xd2|\xb0\x14\x88n\x10\xee4\xf1Z\x86\x98\x8f\x99Pnv\xab\xd2\xeb\xf0\xb3\xae~2\x82k\xac\xce\xff\xb4\xb6\x98u\xb1aqTX|\xb4\xedWG\n\x95\xda\xe2\xe5\xca\xe0j\x10\x18\xd9O\xe1\xda\xe3\xd2\x16\xb5\x84\x95\xc0M\xb4\xc1\xe6\xf9\x90r\x06g\x87\x15\xfb\x13\x0b\x0bG\xce\xfb\x0bg\xdc\x1b=\xbe\xee\xa0\xf7h\x17\xcef\xce\xee\x91\xc9\\k^\x04yD\x7f\x8d\x1f\xc9\xc2\x16<\r\x07v\xa3U<\xfb\x00\xdb\xe8\t\\\xeb\x07\xfbmYn\xe2\xb1\xc2\'\x17/\xf0\x08_\xd8\xb3\xc3{r{\x16\xb6\xe4\xf8\xba\xb5\xfd\xd3\xdf\taj\xa6\xc6\xe1\xb94\xcd]\xf8\xa0\x8d^/0+\x99w\x7f3\xdb\x9a\x0c\xae#\x04&0\xd5\xf0\xd9\xb8\xa76\xdc\xc8\xe6\x0e\xec\xf3\x9bv\xdc>\x00O\xb9r\xe9{x\x99\xea\xc7\xf8\xbe\x99\xcc\xaa\xb4\x80"d\xa4y\xc7\\\x12\xf6\x15R\x08\xa6\x90\xc13s\xdcau\xa6OaP\xbf"\xa7\x9f\xbe\xb8D\xe6\x88\xd3\x8a\xc3\x85W2H\t\x9f\xe0\t}\xb8\xbb\x03;\xd0\xae\xe17\x9bf\x9cx\xec\xf3\xd5K\xec\xcd\xcd\xcf\xb65\x82lc\x1d\x07\xc8V\xb4\xc3\xa6f\x8e\x1b\x7f\x86\x01\xb90w\xdcaS\xc1\xdd\x16Yw\x8a\'>\xca\x1c\xcc\x0cO[\xed\\4\xfa\xec\xfc\'\xfe`\n\x87\x00\xb6\x11\x9fY\x9b\x9f\x0b\x195\xdc\xca\x06\x05\xe3fr\x19\x9f$\xe7\xef\xed4\x85\xdd\xcc\xeb{#\x96qV\xb87F\xab\x95\xfd\xab\xb2\xa7\xdf\xfc\x82\xdd\xda\xe3\xeb\xd2l\x1d_M\xe2\xed\x97a\xa1\xce\x95\x10\xd7\xf0\xe3\x81\x16\x19\x1b\x0ev\xadQ\xae\x88\xb3M\x03\x80Wfcv\xc2\xcaz\xc7\x8eo\x1dO\xd4k\xd8e\x8c\x02u@\x8a\xf2\xbe\x92`8\xd9\xe2-^z\xa6\x14&\x19\xb1\xbd\x8a\xa0\x1b\x07\xa5\x8c\xc6\xf1\xde\xcf\x86\x0f\xe5V\xdc\xaa\x05\xcd\xfc\x97}\xc4{c/\xe1\xf58\xa0\x8c\x8e"\xad\x01\xccM^/.\xdab\xc1\x94\xf47\xda\x81\xbd\xd0\x0c\xc3\xbeb\'\x06S\x8d\xfd\x14\x91k\x90\xde\x9b\xb4\xa3QU\xbfq\x16_(\x15\xa9\xf5\xd7\xc9\tl\xf7\x9c=\x97\xa2\xfenO\xbf\xb6\x14\xa9N\x16,\xda\xc2\r\xbah\xe5\xef\xbf\xb3\xaa\xab\x851l\x8b9\xac\xf3\xd4w{\x8e\xc07\xda\xf8\x8dE\x98e\xdal"\x1c\x8d\xee\xdd\xbbU\xf4\x9bX\x10\xd4\xb74\xdfm\xcb\xb7X\t\xb8\xb9"9\xa5S?[\x19\x85mpv\xe4\xea\\O\xa0\xc5qw\xb4\x7f0^\xc5\xcf\xe5\x1f\xbd\x83\xe9\r\xdb\x18A\xf0\ta\x89\xed,\xc4\xa25\x9ec2o\x07\x08\xa7)\xcc\xdf\x9b\xb5(q\xcb\xf8I\xdb\xb9\x17\xca\xc9;K\xc7p\xcc\x19\xa2\xa62\xa6\xd9\xca\xa5\xde\xce\xfd\xb4{\x0f\x84\xd40\x13\x90\xe3,\x89\x0cL}\xb0\x9dO\xe3\xde=xoO\x88\x8b\x91\x1e\x9a1\xa9x\xf0b\x8b\xe8;Y\xb0:[\xb5\xfc\xa7\x89fp\t[\x0f\n;\xf2Mu`K\x87\x05o\xe0\xf9-\x95h>\xe2\xf6\xdf(~+u\xca\x9a\xe4\xe1\x17{\xb2\xf4i\x15R\xcd\xa2\x83\t\xc5\xb9,jl\xbf\xfc\xf6\x8bb\xa36\x9b\xfe\xc8\xbd{\xf2S6&3\xa7\xdb\x147\x88K\xf0^\x01]\x1ec\xc3\x9b\x9bm\xcb\xcbh\x9e\xc3\xed\xef0\x1d\xe3\xdf\xec\xba\x19d\xa7\xf6\xafpD\xb3na\x81\xcb\x1fx\xeds\xc5/\xa99\x19l\x11\x1e\xb34\xba\xcb\x07}\x80?\x9cC\xc8\x1a\xce\x9aA\xe2\xa9\xe5\xe3\xe2R\xec\x8d\xec\x19\x08@\xa3\x11\x0b\xbc*\x17\x9e>y7\xd2\x11*\xda\xb00\x1b\x11\x00\xfe\x15\xd5\xed\x96Y\x07\xacc\xd8\x84\x9b\xfb\xa7v"\nd}\xb8\xc2P \r\xb1\x1b\x1c\xc0\xf4\x0c\x16\xf5\xcf\x07\xb3\xbeEyo\xe3\xadV*1O\x8c\x18\xcb[,ZL\x982\xd8\x91"]\xbd\xb1\x83\xd07\xef\'\xc5k\xd8\xa7w\x07\xb0\x05\xf1[%O\xd8.\x85\xad\x8dO\xf2\xdb\xfa\nk=\x87\x9b\xdc~j\xae\xb0\xe8\xce\xb08W\x06\xaa\xb9t\xb1\x93\xc9w:1\x88)\n\x9a\xaew\x0f\xec\xd1s\xe7e\x99\x99\xe1 >\xbb\xb1\xa7\x84M\xd7\xff\x8b\xde\x97\rl\x10\x87H\x14k\x8b\x85\x87\x85\xc4a\x83\x17gx\xea\xec\xdc\xe0\xc15\xb9\xad\r\xd6\xca\x85\xb3\xdft\x83\xf2\xf0\xc0`\xca\xe4\xc6v\x1b!T\x18\x06\xbe_d\x17\x88x\xa4\n\x91\xb5\x84\'\xd7/\x9e\xda}t\xe5\x1fY1|z{\xf3\xfc\xcb{\xf3\x8a\x0cD+\xe5-.\x7f%\xfc&XR0S\x00\xe1H\x16\xfe\xfe\x98\xc1y\xf9\xb0-\x88Bq\x02\xf2\x1al\x16X\xa6"]\xb0`\xcb\xac\xbc]2\x93\xd9\xc2B\x81\xd7fW\xf1\xe0\xc3\xc6C\x83\x87\xdcaYd\xb1s\x9d>?\x97\xa1\xc4RD\x1f\x9e\xe8\xd9\xc0\x906#\x16m\xb6\xf5=\x9c\'\xac\x0b\xe2\x85\x8e\x18\'\xbc\x1b\x8cgP=\xb5\xe8&l\xf3[\xf8\xae\xf4`\x80-2n\xd0\xda\x13\xb8\x83\xebLil\x0f\xae\x15\x9dW\xa3>\xb5\xbd\x9a\xb0\x80\xbaUL\xdb_\xa0\xde\xf3t\x05[t\xcf\xc2\x88"|\xbab\xf7\\\x08\x8fj\xb2k3`\xf88\xfc!WQ\x11x\x18\xfcVN\x81\x8d^\xa6\xeb\x82sr\x0b\\\xfb;\x0c\xd7\x1a]\xd9\x85V\xd1[`\xa5\xcd\xdb\xa7\xef\xb0DS\x8aj\xebOo\x84<fX\xad\x86H`f\x9e\x93\xceY\xe6\xb1\x10P\xda\x16\xbff\xd7\x94\xd6wH\xc8\x0bd>\xc4\xd8\x93\x1d{\x0c\xfd\x1b8\xf9\xfc\xcb\xfe\x1c\xd7\x8b\x1b\xa9\xf0@\xdb`\xc5\x0cY\x13\xd5\x07g\x88\xb4c\x18\x91\xce\xe3P\xb1\xbd\x9e1_\xf9\x10O\xeb\xfe\x10a6\x1c\x8f\x0c^?\x85\x93\xa8\x0e\x05`1\x03\xc1\x06N\xaff~\x98Eu\xf5\xd1\x93\x85\xefB\x14\x1a=\xe8lT[*>R\xa4\x8b\x18\x0e~\xa4\xf5p\x853CY\x868\xc1\xcelH\x15\xc4\x0b\xd3\xf0\xac\xb7\xf6>D\x13;\xfbk"^\xee\x9e\xb9\x8a \xc1)\x08\xaa\x0cn4\xc9\xcc\xf6V:\x8f]\xee>\xa2\x0c\x91\xe2\ns\x98n\x04\x18-\x03\xef\xd2\x9cE\x95\xad\xe9o\x14\'\xd0\xf8\x96\xc1\x1e\x9c\xe5\xc8\n\x8e@ kQ\xcb\xf06rB\xb5p\xf1\x1a\xc8]z+\xe3\x17\x1d)\xdb\x00\xc2\x03+\x95{_\xd8\xf1i\xc2Wv\xc3\xb8\x8a\xbb\x1f\xcc:T\xf5L\xb4\xdf;\xf0 }\xf8\xe3=\xbe\xba\xb0\x83\xec\x92NXs\xfd\xf2\xd55\x0eyd\xa7\x83\x87 0\'\x81s\x8e\x1b\xc2\xe1\xa8\x19\xe3|\xc3]\xdf\xf9!4\xb3\xdc\x1aY\x05\x8a\x9b\xce\x08\xf9\x05\xfcVu\xe7\x08\xf2F6\x15\xfb7\xb6\x8a]1:o\xc7\x0e6\xaa\x89\x808\xf4\x0fY\xcf\x1ew[\x96\x0f\x17\x19\xa5\xae\xd9\x9f!\xda\x03V\xd6?\x9d\xd3\xd8\xb9;S\xb0rnJi\x8b\xfbl7\xfc\x14\x87~Z\xd9E\x04T\xa9~\xea\xcc\xa13\xca\x82\xd1\x88\x0e\xe7_\xac\xc2\x89f\xcf\xcd\x14\x84)\x9e\x04\x1e/n\x90\xe6\xae\x99\xb7\xfc6\xcc\x97\x87\xe5 \xdb1\x1c\xa0\xcb]\x83\x83\x1c\xc2\xe2\nY$.\xbf\x7fr\x1e!\xb4\x82\r/\x1c\x90\x94${\xb1\x88\xe3{\xf1K\xb0D=\x06cV\x0e\xcb\x1d\xf5\xaf\xf2\xc7\xa5\xc0\xad\xe0\xeb\x85\x1dr\xc7\x00\x18G\xa3{\x8d?\x01\xdc\x1b\x8c\xcd~\xb5s@\x141\xb6\xa3R \xdd/\x04\xf3\xf3\x90\x94}\x0fu\xa2\x17E\x16k\xc3\x93\xdc9\xb1\xa3_\x9a\xfbx\xb4\xa0\xb2K\xf8^h$\x9e-\xd6\x0by\x97kV\x87\x04\xc9\x86x\xb3\xd6\x01e\x88\x04\x90c\xdb1\x00\x8f\xf1\xd4\x9b\xc70\xbb\xc1=\x01A\xdd\x13\x0b{\x1d\x1d2~R\x9f}<9\xbf\xc4\xb6@\x19\x07;\x94\xe5\x81\xc0\x8e\x81\x13lY\xc4\x0b\xf0\xcb\xbf\xf1\xb6\xeb\x08kO\x7f\xd8\x92V\xf1/\xd8\x81\xb7I\x8c\x0b\t/{\xbd\xafw\xcc\xe7\xe3Vp\x8du0a\x9f\t\x84\xa0J/U\x9e\xab\xde\xcb\xb4\x11\x18,u\xea`\xce\xdb{\x16C\xb7\x0c\xcb\x9e\xdao[\xf7\xcd\\G\xd8`\xeb\xe6#\xbd\xb3o\x02\x0b\x12&9\xb3\xe6{\x1a\x1c\xe0\x9ay\xb7\xad\xb2\x1d\xff6\xb8|\xf5\x0c\'\xf9\x93b\x81r\xf2\x0e\x00X\x17\xdf\xb7H\xba\xe8^\xdaec\xb5\xba\x0c\xe9p\xff-\x1f\xd9\xce\xc3\xf9\xf6\xb9D\x1d\x9cj? \x17\x02\xc4\xe9\xa2y\xfb3<\xb8\xa0Z\x1a\xb5\xdb\xc5\xe5\xbbtv\xde\xb2H\xdc]\xdb\xce\x08~\xa4;\x13\x14_E\xf0\x16\xe9\x15V|Bo\x12(\xa6\x8eQ\xc7Hw\xee\x98\xc9\xb1\xa4\x13+\x03|\x89\xb0]\xf1+\xdf\xb3\xc7\x86\xd4\xb8\xe5E\\\xe1\x04\xa4SC\xcc\x86\x95\x8b\x04\xf9\x8eL+\xae\xbc\x9e\x87\t\xfd2\x88\x93\xf9A\x05v,c\x00\xc4+\xf5IN\x84\x8d\xbe\xfb\x13\xc0\xc4\x04\x90~\xcc`\x11\xd8}}\xf6\t\x8e\xe7\x13\x0ex\xf2\xdb\xde\x0bV\x03\x85\xbd\x86\xf0\xe1\xfa\xd4\x9b\x05\xb3\xe1]\xfb\xc1\xee\x88\xa1v&\xe3]\xed\xed\x08\xec\x0b\x95\' \xd3\xe8~\xd9\x96\x87)\xa9\xb8\xf2\x1fv\xf0\xeb3\xb3\xb5\x0cN\nnU8\xde&@\x06\x91\x15\xb6\xfae\x93\xfe\xde\xb2\x9d\xe6\xdd\x18s\x8d\xec\xa5\x120\x9c\xde\x0eqp\xd7\x9a\xa9\xa9\xa2msa\x8e\x88 \x8cKuo\xd9Y\xac\xc3\xf5\x160TF\x1fT0l}\xa9\xb8\x8b\xe6\xecR\xeb\xf2\x8bR\xf1\xf8\xdaB\xeb6{f\x7f\x1eV\xf3\xa3\xe6\xb2a\xb4\xe8kT\xe4*\xd2\xef\xe6\xcf\xab\xdc\x1b\xd3\xa9n\xcb\x1c\x0b\xa1\xd8\xc8\xfd\xb2<+tG:\x95\xd8\x04\xe1\x1f3\x1ba\xb6h\x01I\x9b`\xcb\xe1\xedq\xecai<4O\xd0\r!e\xd5\xee\xe9\xba\xaa\xe19\xb9\xf6r|\xc3\x12*~`\x15\x8d\xda#g\x1c\xcf\xf2\x18\xf61j-e\xf6}\xe6!<Dyd;\x1b\xd7\x84\xdd[\xf0\r\xd7&\x84\x8e\x96\xb4E\x00\xfb\xc2\xee\x1e\xf6\x93;W\xdd\xbc\xb1\x95$$W|\xc6\x83\xcb+\x81\xd5\xe5c\xbbdGl\xed\xc1\xd0\xe3\xc4\xc2\xd3P\x85\n\x8bj\xb1C\xcb\xa7xh\xcd/\x18\xcf\x9d=\x1fm\xde\xe3~\xea\x99\xc5(;\x02\xca\xbb\xf8%Np\xf8\r\xcb>\xd1{t\xd7\xcc_\xffN\x0f\xc6\x95L\x08\x8bT\x18k.\'\x18\xb1\xd5\xc0zsU`9\xf2\xb1\xbf\xf8\t?m\xdc\xb6\x19A\x98x\xd7\xbd\x1e\xb1[\xc7\xcd\xf5\xcf v(\x90\x8dV\xb1>.)\x8c\xbd\xe3^|s\xfbZ\xf9}\xac\xba^f1vK\xe8\x1a{)\x1fS\n\xa6h\x1a\xc7\xb7\xcc&al~\xd93\xc2\xb2\xb6\xdd\xed\xbce\x158N\xa5\x8a\x16\xdc\x13\x08\x9b]=a\xbb\xccc\xea\xdc$\xa9\x8eDgq\x02\x1c\x10kq\xcd\x05]2\xd2-\xc3\x93\xbf*0l\xde\xab\xd0\x9b\x9f08\xc53\xbb}\xa1jQ\xf7\xf61\xb7c\xef\xee\x8c"P\xb9n\x17o\xaaXYX"G\xeaE\xc2\x8a>\x0cA\xb2M`\xa5\xb4\xcd\x1a\xd6\x1fqz\xde)\x83\xc9TP!\xcc\xa8"T\xd5\xda\xe9`\xd5\n\x17\xdf\xcc\xd8\xbd"\xc4o\xa3\xf7\xb6cKbe\xb1=\xdf\x12\x00a\xff\xf8\xe0.waqG\x17\x15F\xb6;B\xf1Q\xb4,T\xfd\'#!8z\xab\x0c8\xe3\xc5\xc0GG\xcf\xaep\x1d\x93Xp\xa7\x1c#{`ykS|\x85\xfb\xba;\xe0{\x10\x9c)\xd7\x8fd\xb5*Ux\xb2ys\x05\xa1\xfb+\xf4\x13\xa1&\xeaXU0:\x8eE\xbd\xf7\\\xf5\xb2\xa6\xb6\xbdO\x17\x90\x87\x97\x1b_\xa2\xdd\x19\x9d\xcf\xf2Z\xa0|p\x0e\x07\xdc\x10$,\xd7\xde\x99E\xe7#pf\xb9\x99\x06\xa9V\xc5D\xaf\xb1\xdd\xc8X\xba\xfej\xab\xd32\xe9<]\x14\xf3\x03\xd9@\xe8l\xa7\x04\xed\xac\xb9D.+>2\xb9\x03\xab\xb8n\xe7\xc1\x05g\x80\x14\xb2\x17\x0f&\x8b\xf7\x87\xa2m`y\x8bQ\x0bi\nf\x91\xaf\x04\xf7\x86o\xe7\r^*\xdb\x12\x01f\x05H/\x1e\xdf\xb6\x88\xbc(?\xee\xe8+\x1c+:\xd2\xc0\x8e@\x15\x9d\t\xa0*\xcc\xc1y/\xca\xd2B\xfd\xc4\x8eC\xfb\x9f\xe3\x14&g\x82\x95J\xe2g\xb9\x180L\x03?\x99\xd9\xaa\x9bo7XY,y?\xee<\xb8\xb0<\xa9P9\xb4\xa8\x96\xf0\x90\xc4\x86\xc0SD\x86\xc1\xd2R\xe9\xe3\x84q\xad\x16\xf3\x94aAk8Y\xc5\x11n3u_uY\xd5=\x8bX\x98Wx\x18_\x9c\x98\xb2\xbbz\xca\xba\xcb\x8d\x1d\xc9\xc6M\x06BY\x98z\xbd\x99\xd1\x9b\xe0\xf4D\x91\xec\xad\xf8\x18N\xb5\x10\xfb\xff\xc9\xe3\x9d\xbb\xf6\xfbP\xbc\x19\xac$K\xebN.\x01\xfb1\xbdy#\x8f\xd675\x7f\x10\x9a\xac0\xcf\xee\xf5\x90X\x85?\xccB\x96*\x850-H\x01\x9c\xe4\xcd\xfc\xaa\xed\x128u\x87\x00\xd1S?H8A\xf2_\xc6\xf6\xce@bB\xa2)\xaffp\xaep}\x05\ni\xa8\x0e\x14\xd5\x0f\x03\xa7[dvX0\xc3\x0c\xf6uU\xd9}[\xbd\n/n\xac\xccs0i\xa7!\xf4\x91\t\x1cs\x85\xb2]\x82\xcc\x17\x08\x10\xeb\xc5\xb4t\xf0\xbd\xcej\xe4\xd8\xc5\xc09\x98\r\xf2\x9eH\x92\xea\xec\xc6\x10\x9d\x13\xca\x08m\x8dIA\x88T\x1c\xf7\x01c\xa2j\xaf\xa8.\x8e\x8c\xaf\xe11\xf3z]{\x81\xa2G\\\xee\xdeef\x9f\x0b\x10U\x11\x9a\xdc\x8eL\x956\xbc\xdc1\x93;\xc5\x19\x1f\xdeH\x9f\x98\xa9"\x92T\xed\xc2X\xb7\x9f_\xdf\x9a\xa9+d\xfd\xbbt_\x8c\x92x\x05;\x1a<\x1e\xd6\x9c\xf1\xcc\xd3\x17\xb63\xea\xf8\x8e\x12b\'\xd3\x81d\x88\x9b\xb9\x90\x0bu\x87p\xca\x95\x9b\xc6z\xb4\x8a\'\xba#\xfc\xba\xf8)\xac?P\x99\xba\\z`\xab_\xd7/Q\xad\xcd\xef\xfc\xb22\xfc\x9e\x07\xe9\xedM\xf9A\xf1w3\xa5\xde]\xc1n\x87\xff)\x98\x11`\x84;\xee\xe6_\xe1\xe6K\x9d\xa1@i2\xf9[\x08\xc1k%\xc3\xad\x103\x1c\x13\xb2\x1db\xdb\xb9\x0e;\xac)O\xed\x10\x95@\xd8\xb1\x1d\xf0\xf4j\xfc\x94\x84?x\x9ef\xbb3\xeb\xc3\xe833\xb7\xd1\xb47\x0f\xc5\xa2#\x8b\xe9\xf3F`\x99X\xad\xa2=\x13\xe7J\xc8.\x82\xf4|k\xcd>\xaa\x0e\x96\xb1\x04\x7f>\xf1@"<G\x94\x97\xaf\xe3\xa9.bG\\\xb7\xe6\xe6\xca\xa4^P\xba\x9f\xca7U(2\xa6c\xe6\xe9\x18k\x88PG|\xcc=\xd3\xad\x15\xf6\xfc`\xb2\x19\xf2\xb5\xac\x1a*\xed\x02g\xa3\xe4m\x1c\xfd5kJ\xee\x05\xaaV\x9e@\xc4}\x8f\'\x0b\x1f\xddi\xd7\x19W\xef\xeec2|\x96\xb0\x17@9hP\\p\x88lY\xd7\x95\x8b\n\x83i\xa4\xd0`S\x10\xfe\xef\xe4\x03\x82\xd5\xdf2\\t|\xc5S\xb3$m\xfduRQ\x89J<\xae\xa8\xb1\xad\xabO2A\xed\xcb\tp&*\x80\x92\xa9\x98\x16e\xf5c\xe8\xef=\xac\xc2\x85Ly\xfd\x05~?\x04_\x0b\x07\xd0!\x9e/@/jT\x1f%\x7f\xa7\xd6\x16\xaa\x04\xf06\xd5\xa6\x80\xd5r_l\x95\xd4\xbcq%\x9eK\x1b\xde\x93\x83\x8d\xe5\xc3T\xa0e\xf5:\x11\xcb\x83\x80\x19\xf8t\xed\xd2\x8e\xbd\xb4\x88\x8ak\xf0A\xf3\x91\xbd\x138\xd7\x97\x87\xd1\xce\xf7\x9f\\\xa0G\xf14P:P?\xab\xc4\xec\x04\xc1\xe6<\xbc\x03\xe7\x028\xa2\r\xea\xe0\xc6\xee\x84\xd5wZ3a[.9\x19W\xd4\x16\xfa\x88p\x1f\x85\xa6&\x037\x8f\x1c\x0b\xd8\xf4\x06\tZ\x95\xbc\x9f%$~\xa2\x14!\x12@\x9a\xee\xff\x9c\xc3b!\xe8\n\x10\xf6\xb7\x08\xa2\xb2\x17[\xd8L\xf4\x0ec\xf9\x12\xce\xda0LAm;\x9c\x1fZ\x1c\x88"!\xb6\x12si\x90\x1b\xc8\xc3\xab\x85\xeb:;"\x85\x8a\xdf\xcc\xd0\x94G\xb0\x04\x95\x8a\xe4\xd1\x9e\xe1QN\xc2|\xbf\x98\xe8\x9b\xbeyA\x1e\x99\xb9\xfe*\xbc\x02,P\x9c\x90r7-\x04\t\xc0X\x15\xbf8\xb5\xfdN\xc2d\xe9\xf9\x97W\xca\x0c\x92a%\x8f\xa9\xb6\x1c)\xc4\x9b\x07S\x7fd\xa6\x158\xc15\xf3\xfeX\x99;\xb1K+\xdc\x07\x16\x91[\xa1p\x99,px\x7f\x00\xaa\xb0\x12\x1b\x8d\x1c\xe0;\xf2]\xce\xbf\t\x18\x04\x03\xc8\xb5\x1fy\'\'O<\xa9M\x90k\xfb\x1f\xc0;\xd3n\xac\x14JD\'\xe6j`\xcb\xc3J\xc4K\xd6\x8f\x8b\xf2D\x1c\xb6F\x86:\xb5#\x17\xc6\xed\xec\xb8\x19\xa8\x92pv\xf5\x00\xe9Xy\xf1aV\xa1_\xa1p(\xd7At\xa8\x18\xe7\xd7Oe\xaa\xe1\x82\xdd\xadBy\xbci\xd0(d\xe2\r\xc3Ut\xef\xc0r\x08_\xdbZ\x87\xe4k\x86n\xdf|\x04.\x88\x9c\xb8z\xd3\xdcK\x0e\x08\xab\x96\xdf\x0e\xc5C\x81Y\xe1#p\xaa\x04\xe3\xc4d\xaf-\xa2%\xa6\x93\xfcP}X\x04\xd9Z\xa8]\xc8\x87\x07\x98\x96\x89\x8d\xc8d%K\xee\xc1Zgg9H_\xddQ\x8d\x88\xa1U\xf5\xf2\ra\x99\x83\xdf\xe2:\xa7fL\x9a@\x0f$\xb9\xb0\x87\xdb\xf4\x1f\xee\x81\\+\xb6l\xfd\xbcw6\x8bc\x1a7"V\xaa\x12FVV`\xeb\xe4\x14~\x91i\x1b\xf5\x1e}\xf8\xf4\x1b\x86z{\xd46O\xd8\x8d\x88\xee\xd4\xac9\x05\x93\x99v\xae\x0cQ\x07p\x06\xb7\x1d6\x17\xdaIp@\x19\xacb\x89\x12\x19\xb6L\xe5\x0e\x18\xe8\x82\x9c\x9bNN\x9e\x9f\xda\xba0\x08\x06\xd3\xa2\x9f<\xfd\x1a\xda\x9e\xfec\x01; 0\xc2\xcb\xac]\xfc\xb0\xab-\x8a\x1f\n\x02\x90\x90\x06\xcb\xbf>\xac\xda"\x91+\xdd\xad\x8a\xf4\xde\x98\x7f\xc4\xb9\xcf\x15|\xd3\xff\xb5\xb3W\xf6\xa7\xf4\xa4M\xef\xd1}\x01;\xad\xeak]\xb2q+{W\xbc\x02_\x02D\x8bV\xfc\xda\xba\x02T\xe5\x94\xc8\x90\xaf\x1d\xca\x96\xe2\xf1\xd3+\'*\xebG+\xe6\xea\xaa\xe0\xe5\xed\xe7\xcb\x8b\x07\xa3L;\x9e\xf2\x81\x1e\x90h9b\x11(\xbd_2y\xa5t\x9a\xc1\xc4\xfdb\x92|\xabo\xb8\xa7]1T\xea7\x1b\xda*\x95\xaan\xe9\xd8\x03\xd9wX\xae\x025\xdc&(eC\x1b^\xe6:loq=\x1a\xa3\xa4\x1a\x7f\x13i\'&Y\x85\x0c l\xfdz\xac\xd1m\xd5[8\xc5\x11O\x15\x0b\x803\xac\xc4"\x9a;\xfc\xf9\\\xc7W\x89e\x97\xff5c\xd3d\x9f\xf6\xec\x80\xb0\xaa\xd5\xed\xd8! K\x0f\x8c\x88\xc6\xb8\xd4\x06\xe4\xa4\xa3")\x15\x8a\xa3\x8am<1\xe0\x07\xe57\x11\x83\x02\xe1k\xcad\xb0;\x99\xad\xb1\x13 \x07\x08\x99G\xcav\xdd\xccO\xf3b\x15\xae\xb2b\xc9\x074\x93\xea\x9d \xbfb\x05\xdb\x11\xe1y<\xb4\xad0\x1cO\xa8XY\xb6P\x90\xccH\xc4~L\xaf\x9d\xf3\x88\x11 \xd6P\xfe3\x14!\x9f;=\xb0\xddC\'\x1b\xda"\x93\xa0V\x0b\x82\xd6fl\x93\xfd{\xf6\xa0p\xdaH\xe1\x82#\x84\xcf\xc0\xf5\x86\xd1\xf1\x18\xea\x1e\xc9\xfb\xaf\xc7v\xa9L\x90\x92F\x98\x11\xde)\x10\xb1\x0eG\xb4\xd4\x89\x08\xd0\x8fQ\x05\x9fp\x92\xf2\xe1q\xbc\xf2.\x08`0\x82\xa1\xa88\x05KmL\xa7\xe6\x9f\x883P\xad<\xc6\x1e\x01\xe9\xaeA\x05:\x1c\x11\xb9C\xcc\xab*C\x19\x82\x8f\x9ep!\xf8\x9e\x8dp\x9cV\xe4QF\x0c\x085k\x10\x84\xb1\x0f\x9a\xd8\xed\x82\xb5\x03D#\xcc\xd0\xa1\x80r\x97\x0fH\xd8\xb7\xc0\xd3\x8bk\x8e?\xd8\xf1\x08\xc5\x9d\x038C:Rb\x1b\xd6\x91\xde\xe5Y\xdb*N\x86\x81\xcf\xd8\x1f+\xe2Q\xcb\x01\x1eR\xadP\xb2\x01G\x93\xe8X\xfc^5Mwv7\xb2\x8f`\xd9*\x84\xf3#\xe4\x97h\xe3 \x1a\x83\xf1/a\xfc\xebD\xe9Z\x1bND\xaf\x0cs\x0fd\xba]\xf6^\x04\xc9\xe0o4\xe8\x08\xa9\xcb-\x86\xc9\x95Y\xc62<\xfe5f\xd1\x02\xa9G\xc1[1\xb6\xf0x\xb1\x85\xe0\x1f\xca\xbe}:\x9b\x943\xc2\xc6\x0e\xfe\x8a\x80\x17#\x9ci\x88\xab\x15\xdb$\xddm\xae\x0b\xa8\xe9\xa6\x16I\xfai\x82\rE\xb7\x95x \xd8J5\x8b\xb9\xe0\x16F\x17f\xf7PL\r\x93\xf7\x07\xa3\xd8\xd8d\xba\xb5s*\x0bX\xde\xd7\xc3\xe5=\xeb\xbe\x9cM#\x9a\xeb\x1e\xdf\x9dz\xf0n\x17[1\xddP]\x8c\xe8\xeb"\x0c\xd2\x93A\x82Vw2u\xd121\xff\x96\xe9Cr\x8eO\x05`\xc0::@\xfb\xfa\xad}.k\xf44\xd3\x99m\xcd:z\xa2\x08S\xf1\x13\xcc\x1a#\xd0\xe8c\xef\xec\x9a\xd6\xf3D\xe0Y\xb6\xf3\xda\xd2\x05,C\x83\ny\x9b\x9e\xd4\xcf,\xe0\x0e\x14{1ig\xe8@\xee|\x9a\r+\x0b\xaf\x15;\x14Q\xff~\xcf\x14\x07W\x03\x86\x00}Yy}\x8e\xebA\xe4\x8fM\xd5\xe5_\x90\x84Uo\xcd\x14\x06\xa2\xd5\x97\x04\xeeVw\x10\xcbGw?u\xb6\xa9\xc8NWg\xc8A\xbb\xfb\n~\xefG%\x9f\xd5\xaa\xfaV\x7f\x16\xaa\x044\xaa&\xd6V\xbe\xb1\x00\xa5&\x1f\xb1U\xb3\x0b\xfc\x05\xd0\x1a\xb6b1C\xdd\xb1]Z5\xc9\xf6\xb1\x12\xc2\xca\x1cDM\x92\xeb+\xbb\x84\x82\xcf{V\xc0\x0fk\xe7\xc9\xd9\xe8\x1f;\x03\xe5\xbf \x0c\xe8\xc1\x17\x0bC\xbb\x02E\x0e\xf2\xf6\xd5\x0cT\x86K8\xc0\'\xd7\xdev\xe0\x0e@\xa5n\xb7\xd5P\x80ut\xcfy\xe1\x8f\xcc X\x98\x04&.[P\x8aOb\xb2\x8a<Y\x12Ym\x19\xb0\xc1\xf6%\x9f\x16l\x0f96\xf8\x14.\x8bgd\xfd\xe3_\x9d*P\xe5\x00\xa2\xeb\xc8ZK\x04t\xf2\x1c_\xa8O*\x9b\xd1o\xe2gC\xf3\xcb l\xe4O\xc5\xc4\xa8\xc7~w\x9f\xae==\xec1\xc2\xf5MsKU\xb2\xba\x89\x8d\x85\xaa~!\xcc5\x8c\xa7\xd6\r\xfc"\x01\xb8z5\xfd\x18+\x02\x87J~\x10?l\xe4\x1co\x05\xdb\\\xbeR2\x18+\x03g\xe13\xf6T\xd4\xb7\xda\xd4-\xbcQ\xf7\x81\xcf\xaa\xa7\xd3\x14\xe9\x90;o\x15K9\x8d\xd0,j(\x06\xba%\x01Bt#q\xd9#\x15\nSu\x82\xe1n\xe2%\xf474_\x81\xd8V\x0f\xee\xdd_xm\xd7[#\xd8"\xb4\x19\xef\xdd\xed=z\xa5\r\x93\nRs\xbe\xed\xc4\xc77\x89\x99Z\xdf2\xd7\xfaJ\x10vZ\xf0\xe7\xdc\xf6\x1a\x99q\x992\xfb\xb0^T\x80\x95\x08J&Lt(\x86/\xeb\xbe\xe8S3\xa6\xd5\xdf\x07\xc2\xbb\tq#>\r\xbe\x80\xd3\x15L\xa24\xd5,\xd8\xeb\x9a\xec\xc3C\x0b\x18\xb8a\x85\'\x86Nu\\\xd5FXzb\xa9f\xeb\nO\x96\r\\\xd8\x1d\xa4\x90\xe2)\x02\xb65\x17\xfe\xd7\x0e8\xbb\xd8\xaa?\x80\x7fS4\x1dt`^\xb14!>\x00\xc3\x90\xdc\x0em\xe8\xd9\x17\xbe\xdaJN/\t\xd4\xfb\xb6D-\x99\x94xy\xb25e\xf9I\x1d\xb3Y\xeb\x89yJW/\xfd\xbc\x9a\xc6\xda\x9d\x8ag\x06#\xd8\xa8\xcb\xae\xe9\x86\xd4\xb6\xd2\x99q!\xab+!\xf9\xb9\xd6\xeb\xa3U\xf34y\x17aS7\xe7\xe2jw\xc9~#>nh\xa7\xa5\xc8\xd1\xfc\x00\x80\xaf\x88\xee\xa07 \xf4\x18\x1d)\x8b\x8fS\xb0\xa4\xe1\x7fB\xf7\x13K\x16\xaf\xde\x13\x84S}\x1a\x12=\x9e0Kd\xfb0\xefD\xac#\xd7\x8f\x9c\x17\xf5\xe0\x84(\xfeU\xdd\x04\xf0\x91jV\xf6\xb50+G\x87\xca\xd8\xb4;\x02\xc5\xb2mf\xc0\x11@\x85&\xf0|}\x16\x8e\xd2k`C\xe1\\7yk\x7fU$H\t\xb2\xb1\xd6\x9e\x057-i\xaa)Zt\n\xf5\xee\x90\xac \xb2^\xd7\xc2\x90\xb7\x8eY\xd0\xb9\xca\x84\xc8n\xe1\x12+5\n\xb4\xc1\x7fZ\x19\xed\xc2q=\xab\xab\xb6ck6gT\xbe\xe8g\xc7\xb1U3"\xfe\xc6\xa5\xa1\xc2\xc3\xd4\xec|\x0b\xe2\xa2c\xb0\x1b_\xa9.\x89B)\xd1m\x16\x9f\xceW\xbe\x08!\xc5\xce\xad\xd6\xf6\x94\x86\xd1p\xa2\xca\xe6\xd4\xd8\xd36\xda]L\x19\x10e\x90u\xc6OCWZ\xd7\xb7Y\xd5\x83m$\x8d\x0c\xdf\xbamp>\xb2C\xbc\xcf\xaa8\x1c]8i\x98\x85K\xe7\x15\x1e`\xdf\xa2I\xa1\x12N\xd7\xa1\xf6\xd9\xe6\xc3$\x02\'pp\xe9\xeb\xad\xed)\x1d\xe4fp\xdcq/u\x17\x8a\xa3\x00\xe3Rw\x07\xcf\xed\xb42l\xe0\xc9\x05\xed\xa9\x9a\x9d\xfc3}\xc4C\x83g\x15\xbcR1\x13\xeb\x18\xe3R\x8b=8\xbaoF^\xe9\xafT\xa3\xbc\x94\t[=\xe0\xf2\x14b\x11\x92\x15^#T+&&@#\x8c\xa3oo\x01\x9a\x91\x9c\xdf\x9a\xd7\xcc=\x8dTLxf\x11\xe2\x02\xd6jj)\xc4\x84\xc4\xd3\xf6\xbdyl\x88\xc4Z\xe6\xbf\x14\xa4\xa7v\xc4H"\x8c\xed\x88\x14\xe5\x8ez\xa7S>\x95\x9e:GkC\xae\x1c\xf7%\x00L\xf2\xe8k\x0b\x03j\x94o\xda\xfcV\x18}X-\xa2\xf3\xab=&\x8bu\xfd\x8b!\xc4\x8ck\xaa\x85\xb7\x7f\x95q\xa2\xec^\x16v8[6\x13\xb2l\xf0\xc4\xae\xc7\x15@o\\\xb05t\x87%\xc6f\x98\xdc;\xdcq`\x86\xa9\x16P\xdb\xa0\xf9\x93\xf0Yb\x07\x8b\xf0x\xdb\xfc\xb0G\xec"_5\x1b\xfd\x8d\x1d\xd1\x9d\xa2\x02\x85b\xad\xe83\x0c.Z\x15 \x1a\xf0\xddab\x83\xce\x93\x96\xccf\x927\x1e+\x0e\xac\xc5\xd7,#\xf6q\xb3\xe5\xa0\xfdk>\xb0\x03\xd7\xa4\x89.\x14U\xc4\x83&\xde\xba\xfd\xf9\xf4\xe6\xc5\xdc\xb9rTl\x1b \x8e\r\x031\x86\xf8b\x82\x91\xd5\x80S\xc8h;W\xf4\xda_\xfa\xb3\xefbzFO\xc7\xd4\xd7\x9c\xbcG\x84;)\xa7\xd37\x05\xa0\x01\xb2\xc97\x13\xf7\xb3\xed\x1d|\x14\xd3\xb0.\xa7^\x830Xnvb\xa1g7j\xe7\xa9\x7f\x99Ea\xae\x95\x8e\xab\x8e\x01o\x18\x07\xbf\xec\xf2\x88\x15\xa8_\xb2\x10\xe8\xe7\xb29K\x06j\xb5\xa9a\x93\xd1\x9f\xa7NM\x0f\xad\xfd%Y}%\xe0\xcc\xfcvY\xa8\x10\x89\x7f\xd8$\xf9\xd0w\xb9\xfdD!$\xee-\xbc\xd5\xceQ\x8bsa\r$\xfd\r}\x89o\x9a\xe3\xb1\x83u\xa6\xbcj\x00\x0f"\xe0\x00<\x9ed!aY\xf2\xfb\xd8\xe4\xe9\xe9\x00\xee&4\x17\x99y,Y\x0em\xedi\xf9\x84\x0f\xa1a\x7f/\x1c\xb0\xe2\xc2\xb5!a\xf3jV\r\x15\x89\xda:\xdc\xc636,\xbf\xf8,\xf2w\xe7\x0fJ)C\xc1r\xb95\x17__\xe8\xa6\x0c\xd4\x98\x00f\xcdM\x81\x80\x8f\xa0I8\xb9\x85\x8f\xfa\xa6\xfaK\xa0DK)_\xa7\x06U\xe6\x86%\x9f\xf3#Xc\xb2\x83\x1fL\x81PR\xbcWUL\xcbP0$\xba\xb3\x0c2I\xf8\xf0\x03\x16o\xad\x11\x95\xa4}\xfc]\x8d\xac)n\xab}3\xf3M\xeb\x0fk\xc9\x15@\xe1\x06g\x96\xcd\xad\xa0\xef\xb0C\']\x7f\xf9\x03\xfci\x00\xf7\xd8\x96%\xb0\x8e&\x0e\x17._\xec\xf8z\xbd\x8a\x88\xb9\xca\x02D\xab\x1e`}\x7f{R\xe8\xc1\x8a\x92\x9cF8AUm\x8e\x88\xe7\\\xca\x855C\xa0\xa0\x95/\xb1A\xd1\xb8Y_\xa3\x0c\x0bX\x16!\x8ak\x8e\xd6\xccd\xb3\x19>Y\xfd\xd9{\xf4E\xd1\x0f\xf1\xb8\x95\xc5[\xf5\x83s?L\x02u\x8aO\x95w\x92G}\xaa\xc8.\xf1\x90\x9c-?9\x84\x01\xab\xd6K\x8f\xb5;H\xcf\x89\x04\xec\xf5\xb3L\x00\xe8E\x81\xbd\x893\xcb\x9e\xe8\xe0b\xeaZo\xd2\n\xd5A\t\x08O\xafU\xabH\x83\xee\xf0*\x14nP\xe7\xa7\xab\xdflQi\\\x0808\xd8\xa5B\x12\x12\xfc\xb4\xf0iG\x18SpO\xab\xb6\x06\xc6\xa5\x8d\x07\xb8`"iy\xc1\x8c\xad\xc4\xc0&\x87\xb0{\'\xa9\x00\x10[pu\xec\xda\xa9\xfe\xb0\xe8\xf6\xfe@l)\x1a\x1e0\x86\xe1\x1eY \x03\n\x1b\xa8\xed?t\xdd\x9f\x7f\xd5\xa13\xf9\x0e\x84\xb4\xe8\xa3)\xc1Kc\xbb\x04{I\x9f=\xdbxc\xdf{\xd8\x87dl\x10\xe4\xba\xec\xc9[\xd5Da\xee\x1d\xb2\xf5"\xbe\'\x92\xaf\xcf\x0fA\xeflh\x80\xf7.\x9e\x93\x9a\xe5T\xd7\xf6\r\xedx\xea\xc1\xc6\xdew\xf5\x98\x95\xbe\xc7\x8c\xae\x97Ucp\x06;\x15\x9eK\xd4\xdc\xc9\xdf\x8c\x1f\xbcb\xb0\xa0L\xdau\xe9D\xefl\x0b\x7fYD\xcf\xcdHq\xef\xaa\x18^*$\xe8\x7fvO\x14<\x16\xe6a1+\xf1x;\xd1&:\xed\xf5Zy\xbb\xcbVT\x14\x89\xd7W\xd6\xec!\x87\xc4[\xd3\xe7h\xc8if\x95\xe9d*\x0f\x80\x14Gf\xa3\xde\x90\x00\x80\xca\x03tv\xe5w\x8a\n4\n\x03\xd4xVD\xe0 \xe7s\x9bc3*\xe1a!\xb2\x0ba\xeb\xe1\xaeP\xc7\x1a>2\x14XV(&\xacb\xd14k\x9e\x82I.-.\x9eU\x16\xb7L\xca\xfdcU\xea\x10\xc3\xe1\xee*\xa6\x1e\x0f\x01\xb2\xb5\x7f\xbf\xaa\x87&W\xab\xa4W\x16\xa8\xbak\xf1p\xe2\x97*\xfe\x88\xb3SV\xbe]B9\x18\x16\xb3\xbe\x0c\xcf\x1e(\xc5*\xd4\xf0S\xfc`\x8f\xd6\xaf?\xb6\xb1x\xc4re6\xb5p\xfaP\x1dpA\xa1\xad\x80 \xd0\xcb\xb84\xf1\xed\x18\x0ed\xf8\xf3\xae\xcf\x10\xb6\x06\xc1V\xd0ZJ\t\x9f\xdf\xe6\x1e\xb2\x13\x80\x15\x0c\xa9\x14\\{\xb5\x8a\x9f\xb6\r]{\xbd=\x81Z_\x03&\x19+\xd1\x9d=KW\t\xfb\xed\x87\x1cg\xb3\xe8\xef\xcd\x11\x7f\x80|Q\xd7GxB\xa3"B\x8b\x8f\x1f\xc6\xed\xbc\x1e\xad\xba\x01\xb1\xdcl\x06\xc6\xd3\xcf\x7f\xdd\x13\xa2W\xda\t"%[\xe7\xbf\n_\xf2\xe2N^~\x15v\xac8\xa7\x0cO\x84\xc2\xe0\xf1\xb6\x8b\xf4\x9d\x0f\xed\xb0\xe6\x1e\x9e\x93\xbc\x08\x0b\xa5\x85\x96\xa7Q\xcd\x1d\'\x9b%\x9a"\xfc\x11\xed\xae\xa0\x92H\xa6\'\xdb\x02c\x7f\x02\x06Y;C\x81rN\x17\x9e\x8ac#6W\x83\xaab\xa7\xd3D_\x97\xf4N\x9cH\x91\xe1\x9aj\xe4\x95\x146\xbc\xd2F\xed\x1b1\xb0\xb2\rYq\xbe\xb2S\xdd\xb5]E\xba\x05\xa54Z\x8b1\x98\x81V* au\xa3\xe5|e\x03\xc7\x97\xad\x821{zj\xbb=/6T9\xdf\xf6\xbd\xacMCQ\x04\xd5\xdb\xb8\xa68\x98\xc1\xda\xdc+\xed\xac:\xf6\xc4i\xd8\xd3\x9a\xad\xa2\xac\xbb\x1e\xca\x18\xc0n3\x10\x8dz=pW\x03\xd5\xb4\x1a\xf2\xaf\x8f\x9f.\xa9\xc1Ql\x86V=\xc0m\xf8\x9c\xb5\xea\xbb2]\xdc"\xc1\xef\xfc\x83z\x1f#\xcf/\x1d}\x0f\x03\x99V\xaav4\x15LI\xf4\x11\xef:\xa4\xfe8\xc43\x15\xd1\xdb\xe4\xb5\x08\xfb\xb1\x1a\xf0\xa8\x85\x12~\x11=\xc7M\x02\xd5\t>\xca\xca\xc3\x07\x82\xe6\xc9\xf2(\\U7\xad\xa2zQN\x96\xc7\x85\x9d\x16l\x03\x97\xbe\xb5%&|\x12\x81K\x99\xb3\xaf\xfc\xa7mP6\x89\x95c+x0o\x04%`3tjy(\xcbI\xd6\x01p6\x1b0C\x1b\xc9,\xb9x\xd6}\x14\xb70\xfbgz\xadc\xc34\x0e^\xd9f-\xf3;\xb0\xc8d\xde\xfdc\x1eF\xb6\xbb\x0b\xb1\xc1\xdar\xf7\x9d\xa07\xe7\xfb!\x9bXJ\x04E\xe9;!\x1f\xfa\x98}Q\\\x14\xdf\x04\x11Z \xd2\xc4?\x15\xf0\xd1\x06\xbe\x1b\x90\xf3+\xf7\xaew\xb2\xd1\xac\x08\xd9DQ\x8b\xb6Km\x9e\xb5\xa8Z\x05y\xe9\xf7?\xde\x1b4\xdc\xd7\xe5G\xbb\xc30X\xb3\xfd\x1c\xa8\xd5\xc2\x01d\xabTU\t=\xf6\x92n\x86\xea.W\x8d\x925!\x1aB\tu\x04\xe0\x8d\x16l:\xad\xcb\xc5u\x94!\x82\xcfbO\x94\xdf\x15\xd5\x88\rYQ\xed\xa3w\xb0u\xa2\xf4\xbd\xde\xf8\x8a\xb83\x99\xd2\xf25\x1f\'\x9f\xf1r\x1e\xc1\x1d\x96\xe0\x1f7\x8bCG\xc3>\xbc\xff\xa3D\xc0{"\x18\xf7j\xf3\x10\xbdu\xc6\x8c9\xfdO\x91\xab\xd9\x9dYR\x96\x97\xfd\xb1\x9b\xa5\r\xaan\x00\x1e\xf5\x8f\xfb#<\x1eT\\:5\x195n\x83?\x84\x81\xcd\xbb\xbb;PHHQ\x93\x0eV\xd7\x1e\x927-U\x022\'\xdb\xfbzX,\x8ag\xcfn\xces\xe5\xc2d\xae\x95x\x0f\x04\xba5hj\xcd\xdf]\xa6m\xd8\x0e\x15\x1b_}3\x05A*\xe4(\xeed\xd0\xc5\xc8\xf4\x19\xd8\x19\x9dt:u\xcc`\x8c8m\xd9z\x96\xcd_\xe9\r\xb0\x80\x02\x04&yw\xf1v\x0c\x82O\xa2\x82\xf2\xa1\xb0\x92\x06\x8fU\xac\xc25\xc4K\xb2c%\x05?~\x8e\xb6\xc7\x02\xf5\xda\xfc\xbe\xe2l\x16\x03@3\xc9\xf7-\xbc`\xda\xa2\xc2o\x99\xaf2\xcc;A\xe5*\xfe\x0cK\xe7\xbac\xa6-\x17?\x1e\x88\x82\x1d\xc6C\xaf\xbc\xa1\xc0\xc3\xf8\xa5L\xcfk\x929E\xab\xd1\xdf\x11\xdbiA5}\xf9DRg!\xf8?\x89XFT\xed\n\xd51X\rJ\x90]\x82\xa0:\xdaQ\xe3_\xfe\xf2D"\\\x89\x08\x0b\x91\x1dX\xd6FS\xc9LP~+\x83\xe7r\xe2gz.\x92\x93\x88CM\xc1\xb6}\xf4\x8c\x80\x93P\xfbJ\x189L\xe0\x12\xb9\x93\xab5\xa1\xdeB\xfe\xfa\x8bw`o\xcd\xa2\x16+k\x1b\xa2\xfc"\xfd\x02H\x1d*\x855\xb2\xc5\xf4\x179\xff\xec\x8d\x82\xd9\\\xa7\xd5jW\x00\t*\x1e"6a\x13\x7f\xe1\t\xab\xa4AP\x04\xc1\x05\xb6\x92c\x042\xb2!\xdd#\xc8 \x10D\x8a\xd4D\x19\\\xec\x88Xj\xe0\x176w\xfe\x10\xf1Q\xfdN\x97\xccO%\xb5\xbc}\xf5\xe6\x83:\x1a\xa8(\x85\xb2M{\xb6\xa5\xdd\x9e~6\xefN\x99<\xf2\xb0$\xa9\x13\xa2\xb2\xc4\x0e\t\xd6X\xc1\x1a\x0eA\xcdh%m\xd2\xd5g\x11(H\xd1\xf5\xfb;\x93\x16\x8d\x96\xe1\xfe\x1e\xbb+#9o\'\x92o\xc6u>QMQ=\x13\xfd\x87\xf2\xc8\xb60\xdb\xe0\x1b\x91\x83\x89\x98\xe0\x0e\xd2o^N\x82\xd4\xe7\x8f\xaa$\xb8\xf1\x8f/#_\xe7\xc2#\x08\xc6\xa7\xb0\xde\xc8o\xa2\x911\\\xdc\x01#w\x96\x1b\xbf\xaa\r\x84\xb5L\x1c\x11\xb7\x01f\\\x01\xcel<\xa6\xfeC\xca\x19\x852\xf8@\x1e]\x08&T\xf9\x0e6\xa4\\[\xd7s\x087\xc7uEl\x8e\xdcUA#_T\xc8\xa9\xac-\xe8~\x01*\xe9{\x96\x13y\'\'E6\xd46+l?j\xe5E\xcb[Z\xc4h#\xdcW\x8aT\xea\x01Sx\xad\xb1cF\xb6\xa7\xd5\x02:HIu\x88%\xabX\xa5\xd9@\x85\r\xa7\xa2F\x95\x8d\xeb\xbc\xa1\xe5\xaf\x8a \xe2\xc78-\x12F\xa4\x9e\xda.\xfc\xf0\xfa\x9d\x14\x11\xca\xc3c\xed%\x06\xdd\xb9b\x88\xf4\xc5\xda\xec\t0d4L\x15\xf9\xf4V\xea^\x8b\xbe\xddm\x0b\xbbL_+\xabQ\xd3\x14\xbbK%\x81TV\x7f\xf0\xa1yp12\xa0\x15\x92\xb3\x96\xc9\x81W/,\x9ak2u\x02\xc1\x8a\xe0U-\x8cE\xa8\xf2h\x11?\xd9\xd3\xcd\xc1h\x15\xcb\x8a\xb7}\xc0\xc8R\xce\xa1\xb8z\xb5\x1a\xb7\x8aV%\x80\xa6F\xfd.\x9d\xfc\xac\xa01\xfc\xa8 RS7\x16\xadL\x11\xa8\x80\xf7B\xd6|\xc6\x1a\x19\xeb\xfa\xc4\xea6\xd4\xc6\xc2f\xdf%\\\xef\x95\x02l\x13\xe9\xabEt\xa6\xc2\x02\xa3\xcf\xf0\xea\xab]\x19C`!z\x07\xff\xba\xfe\x0cH\x91\x02\x15\x0b\xfc\r,s\xe5nQ\xbc\xcf\x9e\xbf_1\xaf]*H\xee\xc4r\xf5\x9d\xd0]\xf3\xf2\x98\x1a\x11\x19W\xf3L\xa5\xc0<\xfaj\xa73HK\xb4.\x07\xd5\xf3V\x1aZmuoV*5\xd0h\xa3\x03J\x8e\x02\x0b^\xcbrcTjMU4(\x8c\xb9LM\xf1\xa1D\x1b\xebr\xf4B5\xff\xd0g\xbc\x92\x12#\x15\xbd\x12\xe4F\x03\x02\xa9\xa1\x10\xfd}\x9d\xd6\x91Azy(zC!\xa3!\x10\xaa\xc9\xee\xd8\x02\x99\xac\xda1\xee\xfd\xd9;\x01T\x85$sh2\x8a\xd63\x90\x98\xad\xbe\x15c\x97%\xdb+KY)\xb8!\xb3_\x02y\x0c\x12\xf4\r\xe5_\xfeU\xd8O\xb4w\xfa\xae\xfbpZl\x8f\xc2K\xc24\x13\xfdh\xe6\x95(\x1e\xe5\x8c\x8a9\x0c\x1c\xdf\x0b\x0b\x81\xc9\xa2{\x07\xa7\x96\xdd1\xe4\x83>\x14\xcf\x81\xf1~~\xc1\x96\xebtmI\xe42\x9e5\x84\xe4\xdd\xa7\x8f\xaa\xc0u\xea\xce\x8f\xafP\xd5\x04M\xaf\xc4\xa1\xa0\xbaR\xbd\xea;\xe3\x95LJ\xfe\xb3\x02\x0f>\x97.N\x01\x85#\x12\xdf\x0b\x03g\x99\x90\x00\xf3a\xb0I\n.\xb6o\xb8\xc7zrw\xb6\xfd\xc6NIY\x0f\xc5\xff)\xe40\\9\xb6\xf5\x0f\xd4Q\x0e\xea\xd2z\x9a\xf5\xce\x86m\x1b\xb0fG\xa0\x10\x80s\xd6J\xff"\xdeV~\xdc\x82\x94\xea\x90\x9b\x16J\xeb\x1bm\x86~\x86x $\xd4\x91\x1d\xa2vS\xd2\nC\xdb\x11\x9d,\x19UC(5 \xed>\xd6b\x13\xe9"(\x7f%\xed;\xc3\x1dv\x9bj\xd8*\xdf^\xabq\x93\x1dRus"e\xc0V%JQ\xd1Ih(\xe7)b1\xac\xbf\xad\xc5C\nU\x08u\x02n\xa8PD\xb2\x87\xaa\r<\x1e\xc5\xd6\x15S\x8d\x03\xb1\x17\xf0 X\xe7\xcc\x0fO\xd5\xb0\x19\xa8\x10\x19\x8f\x01 \x02hB\xb8\x82A\xc1c\xdb\xbe\xd4s(\x9f.\x7f\xbb\xbb\xa0P\xae\x1d\xbb\xd0j\xb0\xfb{\\@$\xc4\xd9\xdallZ\xeb\xe6\xc4\xe4\xa14\xa2\x84\x03\x9a\x98\x94\x93\xab\xcdKE\x86\xddee\xa1\x01H\x92\xc1\xd6\xf1wI\xf8\xd4\x10$\x89 \x19\xd8?#\x07\x1fT\xfeCU\x95\xb1"z\xac\x8a\xb2\x82\xced\xa1\nx\xc0\xed\xc3\xf0|cFt\x0f4\xac\x17\xe5,\x008\xd3+\xba\xfe\x0bbG\xf1Lv\xbe\x10\xfc)RD\xd8P\x02\x8d\xc9D*\xc7\xe1\xfd\xad\x85\xb1=q\x05L&q[J\x05\xe5[\xec"\x94\x96*\xb1\xba\xba\x88B3\xc3\xbfU\xf0\xac\t\xc8\xc3\x81\x9b\xf7X\x11\x87\xc4s.\x9b\n\xcd\x95m\xe1[\x08\xb1\xe3>\r:Y*&\xf8@M<\x8c\xc1\xf4\x96a1\xd1\xf4\xf3_*?\xa8\xbaR\x14\xe3\xe4\xee\x02<\xc6M9(\x88\x162\xd0\xae<Y\xd1\t\x15\xa7\xd8I\xab\x81%\x8e\xc2v2\x9b\xe3c\t\r\xf8\xd6\xba\\\xde@QZ)\xad"\x87v^\x12\x83\nJ\xcd\xcdag%\xcaS\x19O#\x9c\xab\xd3gR\xb2\x90,i\xa1\x93D\xe2@\xadH\\z\xbc\x08\x9a\xc9\xcb\xf3\n\x1d\x84\x8eWt\x0b\xa1R@\xd7\x80\xb1\x15\x0c\xdfx}d\x14\xb6I\xea\x89l\xe7\xb1\xb8\x91J.\xadTXG\xb3\x9fN\xf0\r\xf5\xee\xa9\x17?~{W\x91A+\xf1>\xf2\xec\xbb\xb3\xcd\x1b\x0b\x10\x19\xd8G\x16\x1f\xfc\xd3\x90+e%\xa8\xe5w;\xdc\xebm\x10iG\xfbm;\xb9#\\\x0b\xee\xac\xcc\x1b\xd1i\xda\xa2\x04\xbd1:\x7f8$\x8b\x9e\xaa\x84\xd8\x15\xdf\x84\xc2\xb6{\xaa6\xa5^\xd1\xad\x1b\xf8\x9e\xaaT\x12\x10T8;\x11\x8b\xcb\xc9\xcd\xea\xcb\x11IKD{+\xaaGU\x88\xb9\xdb\x02\xbc\x15\x80\xfb${\xc0\xbe\xf3\x01%\xc7p\x9e\x05SW\xa0*\xae]\xb3\xa4\xd5\x9eL\x17\xdd\x937*\x83\xcd\r\x05.\xc9\xb4o\xda\x16\xac\xc8c\x07\xcfPOJ\xd7\x91\x05\x12\xea\xdb1$@;\xa1\xfb\xf4E\xaeN\xd4\xf8\xa6\x94H3\xe9\xd9\x8c\xa1\x1fb\x0f\xe5+\xe6\x1a\x89\xa6\xe5\xaf\x86\x08\x87\xec<\x91\x99f\xf7\xda\x8e\xe15\xec\xe5\x8c\xc44\t\x06B\xb1LC\x98\xd7\x8d\t\xd8%\xdf[\x1d\x0f\xa1\xd0\x10l\x12\xa7\xde\xb0J\xd5o\x86\x19^\xb5\xb2y\x0f\xa4\x1dzll\nl\x8a\xcdF\x18\x0br\x96\xae\xf9\xac\xaa3\xe5j\x11&g\xbfF}3\xe0\xfd\xbf\x08\r3v\xc70\xf2\x07% \xa3\xfc\xe1\xb2\xd9\x93N;\r!A\x93\x8e\xde#\xa8\xb3\xbd+^h \xaa\x1bHV!\xd5\x9c\x9a\x89\xdeY\xa2\xa8\x04\x11\x8c\xf3\x82\xd9\x9d\x18\x11j\x94\xf6*\xe1e4u\xaaN\x0e\x15ZB\x98%\x8f4\x12\xb1\xf6\xcd4\xcc\xbb\x87\xd4\xa7i\xe7\xe3\x1d\xd6\x0e\xf1|\x99K\x8d\xac\x90s\x8a\xe3\xb8\n\x82\xc1A+(\xda\xb7x\xa44)%\xc4\x8b\xa5^\x92\xa0L j<.\xd0\xfd\xfa\xacf\xafh\xfd\xf7\xdc\x07\xb1\xc6\xf3\x7fIb?n\x81)t\xdb\x0b\xea\x87R\xe9\x9d\x1e3%\x9b\xe8\xb9\xac\x17c\xab\x97\xaa\xd35\x81o\xed}9`/81\xd3\xc3\x02\xde\x81\xd4S\xe4\xc3Na|\xe5H \xbdzi\x16\xa5\x04]\x98\x1aE\x12@)\x13\x9f1\xeai\'\x92\xcd\xc0\x8d\'O_\xccJ\xe2\n\x92wA\x87\xc8\xd4\t\x84\xa9\xb8\xf3\x8ahy\xdaRj\xb7\xa2\xf8\xd2\xe3\x18A<r*x\xb4\xf9S\xdaZ;\xf1\x8d\x1a\xb5\xf6\x97\x04!a\t\xb2/\x12+r"ew\x80w\xcbV\x8d\xbb\xec^C\x11\xcb\xb7\xc5\x17\xbe\xa90Rd\x9f(\xe5aG\xf9\xe9\x1f\t\xad\xa1}\xa8\x89}i\xe2t\xe7h\x81\xac\xd2tji\xed\xb1b~\x00\xd9>\r\xf1}\x9d\x8d\xd6\x94h\x13\xfc2[\x9ee\xbc\x19RIl\x92;\x112Ou0\xbb$\x9e\x15y\xdfNg\x1e\xcf\xd3\x8d\xef\xda\xa6\t\xa8#B\xd2+\xa2\x97p\xdf\xc3\x19\xd8=\xabB\x19[\x95\xa7\x1a\x91\xe6Ji\x8c\xd6\x0e$\x9b\xfa\xf7\x8c\xb2\xbe:\xf2\x85\xc31\xa9\xcf\t\xc9\xf1\xa4\xaeB\x14\xb8\x80 i\xdb\xfd]\x12I\xd4\x89\x86Wy\xa2\t\xc9\xde\xc2\xacZ5\x93t5\x0c)\x88\xae\xb5\'\xa5\xa9J\xcf\x07\x14O\r\xa9\x81E7`\xdd\xd8\xc7r\xe5\xa18\x90\x85\\C\xf9\x8b}8l\xec~.0\x104\xe0\xa2\x13\xe8\x15(\xaac\x0f\xb7>\xa4@\x8a^es<\xb5\xc4\x80\x80\xcb;/\xab\xe3^nJ\xef\xa7\xd6\xe3%6\xc18&\xd1y\n}U\x9dExpc\x8b\xa5y\xf9\xb2J\x8cv \xbf\x84uc\xf6j\xcc\xa3\xca\x9a0L\xae+\xaf\xdd\x84\xa7p\xb4r\xad\x1d,\xffL6dk\xb8\xa31H\x0b\xb4M7\x0f\xc5W\xa5\xecA\xd0\x1e\xb2c\xe7B\xc0s\xecY\x7fwU4S;\x0b?G\xb2g\x05\xc9F\xa2\x82Q\xfc\xad\x9a\xf7|\x18\xf5\xcfH\x1c\xa0\xff\x97\x8f\x96_C\xf4\xa0\xe9\x94h\xa4\x12\x80+\xaa}\xb4\xc0\x87\x0b\xba\x9at\x9c\x9d\xc3k\xb5\xaa\xe2t\xd1\xa8H\xc4\x00o\x9d\x1256\xc3\xc3\xafs\xe9mc\x00Io%\x82\x1cf\xeb\xe5\xd9}\xb9o\x04F\x11\xbbT\x87\xd5,*L*p\xd7\xaa\x98\x91\xf6\xb5\xaf\xcat+r[\xa0\x06\xd0\x18\xcc\x90\x02\xf4\x83\xbc\xbb/o\xed\xf6\xeeQ=\x08\x16\xe6\x81,E!\xbd\xcd\xc66a\xc7\xd24V\x8c$\xd6\x02\x8c\x11\xab\x8b\xbfQ3\x06\xab\xd9\xb7f\x1d\xca\x0c\xdb\xc4\x1d?\xd61O\x9f3jx\xa8\x1al\xb7\xffgRe\xc9ZX\x02\xf5E\x90\xf3\xd4\x90\xa4h\xcb\x8b\xe9qq6\x92|a\xde\xe2\xa8\xb2T\x06V\xa9\xf8\xcb\x96j\x800\x84F\xa8\xc5\xe6\xd6\x15\rx\xe1\x7f\xa8\x7fU\x12\xac\xa6\x8b\x8eT:\xa8\xc5\x8b\xee:\x91\x1d\x1b\xbb:\xe7Pu\n!\xda\x1e\x08\x9f\xab\xea\xbb:\xda\xd2\xbamZ\xf0\x02\xea\xf6\xca\xf6N\xc5]\xc7\x9a\xb5\x80\xb9\xc2\x92\xecD"\'\xcc\xdd\x00s\x85K\x87\xc0\xcfC\xcb\x924\xdb\x80\x02\r\xd5\xe0\xf0\x94P\x85\xf6J\x9b\x9d\xb4\x00\x8b\x88\xa2\xe9^\x14W\xc4\xb7&\x1b\xc1\xf3\x1b\xb1H\xbaN\xbf\xa2<\xc0\xa0-\x10+\x93A\xdd\xf6\xa6*\xc4\xd1\xa0\xd5\x90\x1b4\xcf7$v\x1a\x9cX\xd4\xc4CF%\xf8\xaf\xaa\x0c\x07L\xc9?~\x1c\xc8\x81\x96\xf0\na>9\xffctB\xc5aq9Zf-\x85\xcfo\x05\xd1\xf57QolHrj\x05\x9bSQ\x98\xa9\xbe\xeek\x83\x86o\xc7o\x86\x86\xb0\x0e\x7fT\x93\x0fw\xbc\x98\x07\xc3\xd5\xc7\x03"\xa4\x8f\x89\x1d\xc6|\x04\xd9\xfdU\\\xcf\xb7aq\x1ap\xeb\xe1\xd2\x1c[\x91\x10\xeb\xcd\xfa\xaa\xf3\x8e<\x8c:\xf7)\x9e\xd0\xcc?\xf42=\x8a#\n6\'<!&\x8a\xb2\x0f\xa2*\xbe\x80\x18]4h\xcasr\x90>\xda\xab\xdc\x82\x12VZ\xd6\xa78J\xb5\xea\xc0\xc9\xef\xd7*\xc3j\xea@-\xeeg[\x8b\xe1N\xb6\x1cXW\x81\x1f\xbb\xa1\'\xdd*\n\x0b\xab_\x1f,\x8c\xe4<\x10O\xb0\x94\xcb"\xdckE\x1d\x11\x9c2b\xfc\xf7\xb1%\xceD{\x0b$\xb4\x1e\x8d\xad\xa0P^|\xfeB\xff\x8c\xf6\x91\xa0\xbe\xab\x03\xc1\xf6\xa3\x14\xd8U<w\xc4n\x10k;f)E\x08@\x00\xe1~\xd7<\xe6\xb19\xb1\xe5\x0e\xd4s\x1a\xfa2l\xf4\xce\xeb\xe6P\x80\xf2\xa9\xa8\x1dj\x1b\xc2R\xd5b(7n\xc2\xd34\x16V\x90*\x87G^\x02\xe2\x9d\xda\xf2\xa8\xbd\xf5\xe51{E$\xc5\xc0\xadJ\xa5\xf3\xc3`\xb5\xf7hE\xads\x9a\xb5\x12\x16\x90@\xeb"\x89\xe1 #-\x92\xd5\x03\xd5\xe2\xc91\x9fV[@\xfb\x1f#\x0fY\x0f\xfa\x03i\xb0{\xf1L5\x07\xf4f\x8f\x10G\xe7w\xd1i\xd8|\x04\x81\xbf\xfaBP\xaeR\xfe\x93\xa9\x9b\x96F\xfd\x9d\xca#is\xfd\xe2\xa7\xee\x9b\xc4\xa1i\xbc+(v9\xd4\x8d\xd1\x14^D>\x9d\x13$\x1c\xca#4n\xef\xe6\xf3\xf8W\x1f\x8e\xd4k\x7fd\xf5P\xf3,!\xd2\x10\xa0\xb0\xdct\x8f\x95\xa2cG\xb8]e\x1d\xd2\x1d\xa1\x08\x80\xa8oA*.\x95Z\xb2K\xf2\n\xc0w\xce\xba\x91|m\xce\xc7\xacj\x8f\xa0\xbb[\x9f\xfc%\\Y\xf5\xaa\xbc\x8bo\xe5\xa13\xc5[\xe8#\xa9$\xeem\xa8\n,\x8c\x08tuz\xc7\x03\xda#\x81\xe0\xd2@\xad\xc5A9\xa83\xd5\xe1g\xc9\xce\x89\xb4\xd9\xb2\xf3\x04\xb5\x93fH\x94\xbd\x10\x8a\xdf\xd8\xa1\x9d\xb1&\xe9\x18\xc5\xc1\xafZ\x84N\xe5\x81\x00\xeb\xc0O\xba\xb1p\xbdV\xcd\x8b{\x14\x02?\x85\x02F\xf2\xbaA\xdbs\x1an\xe3i\xfb\x85XX\xbe\xa2O\x9f\x93<PJP|\x1b\x11\x0e.Np)T!\x8c\xc2\xd3\'\x9fE\x03\x0e\x1f\x7f\xb1ce\xb0\xc8O\xf5\x11y\x9d\x16cm\x1e\x88^\x9a~R2\x84R\x07\t\xa34\xd4[\x9c\x0e\xc3\xc6\xd4V\x0c\x96\xc6c\xf8XRr\xd1\xf3wK\xa2\xfcC\xe5\xb0\xac\xff\xd5\xd70\xa3\xa2\x8d\xff1\xc5\xc4\xde\x05Q\x95\xdc#f&b\xec\x94\t9\r_\xe57\x9a\xe7z\x0e\xa5\x8aj,\xb1d?pt`-\xa16W&o\xed\xd3\x8aFB\xc1U3\x052#s}\n\xd7\xec\xdb1+\x9a\xe5\x05\x1d:\x05\xc3\r\x04(\x83\x80ZK\xa7\x92F\x13,FR\xb2O,C\xf1\xe4\xd9\xb5\x96A\x8d\x93DX\xebIB1&\xeeT,I\xa43\xa1\x83\xd8P,v\x02\x05\x14\xb4\xa5\xd2\xaf\xb9;v2\xca\xf8\xef\xd1\x98\xb7\x9d\xb0\xa9\xb0,d\xf0Q!+\x94D\xa0\x86\xc6\xd0\xb1\xd7\xea\xd3\x04?\xaa\x15\x18\x10\xaae\xb4\r\xf7\xb9\xd0\x97\xbe\x1d~07\xc5\x81nI\xd8\xb0\xe5X\x10\xca\xd8.(\xd3@)\xad\xca\x8e\xa4\xb7\x9b\x98\x9f\xeb\xac\xeb\xfd\xd1\r\xde\xadX\xbbo\x87\xbe\xcc\xc67\xf1\x95o!\x00O\x88\xd1\x16\tG\xaf\x15V2\x10\xf0c\x8er\xe955:rm}*2\xbbk\x11\x87\xa2_\xba\x83\xc8\x94I\xb2x^T7F\x19\x88\xa7\xe2\x1fQ\xfd\xf5\xdd7\xa6z\x07\xff\x94\xd2\x0f\xfe\t$J\x9a\xcb\xd6\xdb\xc4\n\x9f\x9eZ\x0c\xd9!\xd5\xe3\xb9\x02TQE\x8f\xa5\rV\xf9\t\x12\xec3\x88d< \xd2\xd3\x88\xdbL\x92\x85\xba\xaa\xb9\xd5c\xbf\x19\xe1\x9e\x82\x07\x14\xc0\x9f\x96n1\xfd\xb6r\xe9PQLC\x95\xf0\xf3]\x91\xfa\xe9j\x16\x9e|\xd8RC\x7f\x9b\xfd$\xee>\xae\xbf`\xd0\x02\x16G-\xd13\xe3H\xa2\xa1\x81r\xf4\xad\xe7\x84\x92P\x92\x82\x04\xd7<\x91\x1ew&\x1d\xee\xd6\xe6&\xa0\xdc\xe2\x86P\xc3u\x92Lm\x95\xd1\xf4\xff\xbewX~aK\x17\x92\x04*\xfd\xc5?\xcf\xd5 O(\x11I2\xcb\x00a\xfam\xcb\xebO\xa9\xb77Vy\xd3O\x8aR\xf9\xdd\xe8Fx\xf6\x07,\xe73\x1c-\x06P\x1aG\x8f\xa4^R\xa4@O\x1et\xb8I\x83\xe0\xf4\x917l\x89\x84^=\x84\xe6(,/\xc7Xy\nX \x02f)\x8d\xf0\xfahT\xd9\xb5\xbb\x1a(l\xd5`Y\xb1l\xd5\xdeU_\xb5\xc0\x8b\x06\'\xb5\xcb\xd2kAf\x81\xc7Z\xd6\xbd\xa8\xe6\xaeY\x99\xb6\xb9\xde\x934K=\xfd\xf3\x82\xf5=\xb0g\xad\x9d\xa6\x9d)\xd5!mz(\x8fl\xd8\x11\xb7\x07\xe2\xe4\xaeE\xb7G\xb3\xa7\xf91\xc9\x84\xdc1\xe1?\xc5\xb6<\x94\xc1\x9d_\xcaA\xdc\xca\x85\x8a9T\x8dE\xea\xc27)$/QwWb\xe9E\xb3\x1fW\x99eh\x8cT\x13\xff\xd9\xf8\x861d5hM\x90Y\xa1\xba,//\x07m\xec\x04\xc7 \xbc\xba\xd4A\xc5)d\xe3\xa9\xfb\xbd>\xd0J\xa9\xeb9\x91\xc4\xa2\xa15\xbc\xf2\x16\xec\xb2\xe6+[>\xeceA4\xf6\xc1\xee1l\xd0n\x1afg\xb2K\xa4\r\xff<\xc5\xe6\xb9\x19\x1e\xf1\xaac\x82\xd8Y\x06d\xab\xe7\x1f\xb9\'\xd1\t\xc9\xf3\xa8T\xf5by\xb2\x13 \x10l\xa5\xca\xfe\xd0\xd2\x13t\x1b\x12/l\x0e\xaf\xa7\xa7\xfc\x9c\xbd\xef\xe2q\x86r\x9c\xd6\xb8x\xaa\x19i\xb5\x9a\xa6}fU5\x1b\xf6\xdc\xd9\x82J\xc6F+\xb5\xd5.\x19\xbbQP-\xa8\xbe#\x1d\x8e\x8a\x9d\xc3\xa2\x84J_\xa8,_\x08{\xa8\x161P\xa3\xca\xd8~J\xcd\xbaW\xa2\xc5S}\x08\xdf$\xf7w\xa4\x83Alq\xe3\x87"\x84\x04\xd8\\\xbb\xe8\x11\xacJ\xc4#b\x99\xe1\x93kU$\xd8\xaf6C\x18|V\xf5*\xd1~\nin\x98n\x9dOV\x80q|\x9b\xb1\x1b\xa4\xb8*9\xa1_\x95\xf1\xa4\x7f\x06\xa5o\x9a\x9aF\x98f"a\xbe\x84d\x10\xeb\xd6\xfa\xa5\x99\x11\x82\xe5Z\x91DYE\x0f\xb6\xc5\x8e\xcb\x06M\x1da\xb8\xff\x84\xa3]~=V6Y\r\x84W\x9cx\xacdb\x80\xc0\xd8\xa4\x8b\xe8\xe4C\xe1\xc8\xcfW)\xa4\x0c\xd1\x88\'\xd1\x84s\xe4g\x93[O\x04\xf5\xd3\xd2\xf0\x0b\xb9-\x8a\x8e\xed\x885\xcfz^4\x16\xc9H\xb03\x1aq\x7f\xa5\x0e\x15\xaf`\xcaYQ\x95\x18#\xe8\x01\xae\x83W?\xd4\xcd\x11\x9e\x82R\x9dH\xdb\xa3N\xbe\x9b\xad\xa4\xdao\xba\xa5\x1d\\z\x81)IAa\xdf\xe7O\x96&}\x88%\x15[\xe6\xbb\xe1\x17f\x06_\x00\xa7 >\xae\xb0\x8d\xa9\x1f\x87\xab\x80*\x19\xa1aB\x0ek*2\x00\xad\xb0\x93\xfeKz\'\x85\xfa\xd8I%y\xef\xf5,\xa5\x93\xd2\xa9Q\xb5N\x0e4\xa3G\xa1}\x93\x7f\x96\xdbc\xe0A\x86\xd6s}`0\xfa\xf1Z\xd5\\\x8e@H\x06C\x92jd\xbdN\xfa#ed\xbct\x8d\xeb+\x13\xafj%\xf9?\x8c\xc8#\x18\x0b\x1d\x90\x7fs\xcd$w\x16\xb0.\x92\x97k\xc7\xc8%\t\xf46\xb7WO4\xf0\x85\x92\xdf\xbd\x03\xb8\x9c\xf4\x95\n\xdaN\x12;\x12Rrz\xbc\x84\xe8\x9bN\xed\xc1Q\x0bP\xb0\x99\xa4\x1c|\xe0O\x1e\xa4\xd0\xa8\xd9\x90~\x9c\\\xd2\n\'\x84\xea\xfe\xea\xdc\xeb(Q;9\xd8]\xa00h\xa8\n\x10h\xd4\x95n\xb0\xc2\x80\x9d:\xf5\x92{\xd1\xc8\x9a\x1e\x10\xb1K\xc0\xc0\xe9\xe8\xfe\xd8\xbb\r\xc9\x08\xf2\xb9>\x13a\x964\x08,"2\xba\xfeI=Y\xb6M\xe3|(\x98\xaa\x92HA\x9c\xdc\xd7av|E\x1bd\xb2`\xea\x96i\x1c\xeb\xa6\xdcpCG\n\xdf\x04\x0e\xdb@\xa9\xe2\x83bH\xa2\xe7k\xaa9I\xc4\xcb\'1\x04<:\xa8\xdaD\xbb\xbd\x93\xd7\xd4\x8b\x82y\xdb\xa6\x18MQ\xde\x15Bc\xb8w-R\xdd\x7f\xeaUa.\xf6\xaa\x84\xbd\xbc\\N\x91.\xbe\x19t\xbe{\x89\tjVE\xc1\x1d\t\x9a\x0ft\xda\xe0\x02b$\x14\xdc\xd0\x98\xb5\x16\xf8\xa1/\x19;\x13\x10\x13\xd0\xbe\xba!3\xe7\x95\xc4\xe2\x9c\xa7\xda\xc5\xe2\xe0D*\xc1\x86\xa2\x03\x06h\x05\x81\x1e.\xb9\x8fB\xb8\x0b\x95t\x89\xcdd\xcf?Mnk6\x9aP\x17\x82\xde\xb1\x8e\x06\xa8\xc7L\xbd\xd25-\x97\xc4\xea\x08\xd5\xe5bC\xb3\xa3\x935[\x97\xf9>\x19\xeb\xdd\xc2\x15\'3\xcfw\x89\xeb\xab\x19\x995\xf4\x04cE\xc3f\xc0\xe5\xa5\xf8\x00[\x8d|W\x9a\xf0\xdd"z2^\xf9\x1c\xef\x84\x99\x12\xcb\xe0?$\xe4\x13\xbeU\x13<\xa6\x10\xf4/\xfe`aL\xa9mx\x17\x9a[\xf5~\xfe\xea\xa3\xef\x97\x9f~\xce\xb8EP\x03yo\'\x02@\xd8-5\xaae\x8e\xceU/\x88Exid\xdb;Il\x13h\x8ed\xf8\xbb\x06:{\xc9\xf0O\x89#\xb9\x01\x01\xc2J\x07W2\x01\xf5\x07\xa9M(pk*H\x96\xf30\xbb\x195\x84\x01\x08e\x95\x8e5f/\x00\xcc&\x07NVYR \xa0\x8ek\xf6F`\x0eLS,\xa9i\x97pI\xf3\x9fI\xab\x9d\x8f_8*gW\x15]@\xfeUt\xb3\xa9\xb63\x8e\xc9\xf8\xaa\x00\x9b\x9a8\x89~\xca\xff\xf4C\xe7\x9e\x8a\x02\xb1\xe0\xb4\xc6\xeb\x9bI\xc86\xb8\x8b\x1e>Lf(\xd4I\xc0\x12Z5\tx\xa1\xff\xd6=\xb0\x90 \x0e\'\xd3\\\x9ao\xa2f\x87\n\xff\xc4\'\x1b\x19\xc2\xb6\xdd[>\xdb\x91Li?\x1c\xd9\xda\xef\xbe\xb1uqRY\x0c.$\x1c\x93\xfa\x9eg\xd1p/8%\xc3\x81\xc6\xb9uJ4\x9dj\xa1\x9e\x08\xdcA\xda\xdc\x8f@!\x83\x0b\xad\xfa\xad\\(\xbb\x06:\xaf\xc7\x97-\x7f\xfey\xad~5@k-jT*f\xd8`\x97\xb8w\xf2\x94\x06*_~\x06\x95\xd7*\x991\xd3\xd0\xf8\xf1\x88\xa1\xea\xcd9\xdb+I\xa2<\x14\xcb\x03\xb7\x10~gN&\x10\x82\x0foo\xf7\x8eV/\xf0\xc7\x07\xbc\xd0(\xb9<\xdf\xfe\xda?\rl\xd0v{\x90\x19\xc0q*J\xec~\xf6\xfaG\x7f$\xc1B\x95\xd7\xe3-p\xb3\xa1\xc8h\x11\xf2\x1d\x1a\x9c3\xb6\xd0k\xda&\x1b\xce2/\xfd.\xd5\x9eZ\x03aCN\xc7\xc0u@\xd4\xa7\xd3p\x1e6K\xd7{\xebj{\x0c\xab\x91~\x1epW\x99\x05\xa4KC\xcc\xc1\xe0\xde/\x90}\xc4\xc3\xbf\x0f\x0eT%\x88\xec\x1f[\xf7\x1c\xc4\xf8\x8d\x19\x81\xe7\xb8\x06\x96r\xe7\xe5z\xa8\xf1\xc4\x11#\xb2\xbc\x0c\x89(\x9ap9\xc9Sp\xb2\x9cJ\xf6*\\G\xf6\x92_\x9aU,4\xf3\xd1\x18\xa0 \xde\x85\xd1\xb5\x82\x14\x95\x12\x83\xe8\xf0\xdd\xeb|\rDY\x07g\x83\xbe\xe2\x16\xcc\xc9 \xdb\x8fd9\xbdtJ$\xeeg4\x88\xfd\xcal\x7f\xc8\x12/S\xe4\xc3\xd2\xbd\xa8N\x95\x87eo\xd6\xbc\x8a-\xca\xfe\xcd\xb2\xaa\x02\xf1\xb8\x8a\xea\x12\x94d\xcd\x82\xa6\x82\xc4\x8b\r\xd5D\x9cz\xc3\x83^\xaf\x99\xc7\xaa\xe3\x8d\xfb\xb7\xb8\xc0\xfa\x0b1\xddl\xc0\xef\x0e\xb4\xf998\x87\x0e\xef\x03\x07\xc3\x86\xd2pm\x9f`\xabo\x83h\x98g\x9b^\xf3\x83\xb1\xf2\x88\xd4\x96\x15\xdbt\xf2\xa8\xb5\xb0\xd5\xaa\x9b\x06\xd3\xa6\xd8\x9bWV\xdd>\xdey\xab~\xbd0;~%\x0c\xaf\x90BB\x0b\xd4\xafy\x8eqG\xc0\x1f[\xdf=GU\xa7q\xec \xaf{B\xdd\xdc\tP\xc8\xbb\xad%A\x85\xa5\xd4\xd7\x11\xdfZ.\x94Pz\x1e\xf9hx\xd1r\xd4\xc1{\x959\x91:C\x96\xbf\x13\xaedM\xa2\xf3\n\xf9S\x9f\x86\xe0\x11rN\x87Z\xc28\xd7\x8a\xf7\xfai\x7f\x0b\x15\td\xc6\xfff\xfe5S\x14\xfc\xda\x9e\xb0\xe3C\xa9&\xfc\x11\xa0\x90\xda\xfd\x8b\xfeL!S\xa8(]n\xbd0#x[\x02\x14m\xaeu\xce\xbb\x8f\xf2\xef\xac\x8f?\xb7\x8f\xcf;\xf5Cx\xae-\x0b\x15$\xce\xce\xc5\x9b\xab\xbar.\xd4\xdfI\xa5$\xa4B\xaa\xe5\x8e\xe6\xdf\r\xbf\x95\x12\x82\xaa\x81!\x01\x10R_\xb3\xd9\xee_\xd6\x92\xcf\x9b]\xab\x80[\xd4$\xb3q\x10\rw\x8f`\x1b\xd7l\xd9\xad\xd1\xa1W\xa4\xe3\xc1#\xc6\x1bwWP\xb0\xaa\x8b\xbd\xf7^\x16n\xed\xdfXv3\xe0\x99d]\xcaz\xe3ZGD=\xa5\xce73iND\xab\x19?\x95\xb8\x02\x8dD\xabB\x92\xde\xdc\xe2\\{=\xb1\x80B\x1ez\x8bh\x975\xb8\x9c\x91\xab\xdb~\xb7,:C7(\xd7w\x9a_\xcf\xfa{\xe1\xb5\x05\x11\x89L\x8dk\xb8&k\xc6\x18mJ\xa0E\xb5o\xaf\xe8J\xbe[\x04\xc5sN!\xad\x95~w\xf5\xa1ZR\xf3\x1fp\'\xf9\x89fJ\xb4\xaa\x8d;\x13u9\xf1\x03\xa8\xd55\xdey\xa9\x86r\x13.7\xbd\xb7\xb0\xaf\x1aQ\x8e\x86\xd4F\x12\xb8\x81\xfb\x9c\xa3e\x15=H\xa47\x18\xdbl\xe2\xf9\xf4\xfd\xff\xd0\xd00"\xae\x94\xdeZ\xe5Qo\x9e\xc2\xef^EKN\x8dS\x0e\xd7\xc3\xf1%\xdf\xd4\xb5p#\x05P_R@\xb3\xc1\xa39\x81u\x10\x07r\xad\xb4q\x828\xf8!Nr\xf9t\xc0\xe7\xae\xc4\xf4)5\x8d\x8b\x13y\xa3%\xca\x00?\x01)\xab|q"\xd9K\x8ewR\xa4\xcb!\x11\xd2?e\x8b\x0b\x80\r\x9a]\xcev\xf14]\xee96\x93H`:,\xc783\xad\x85[\xcew3\xcf\t\xc4\x12`n\xaf}!\x84\x99\xedc\xd5b\'Y\x02\xf0\x9a\x9b\xf6%\x06\xf8al\x90W/n\x94\x02w \xf6W\xe8\xe0XB\x1b\xedp\xef\x04\xf3\\\xc2P\x13\xc6\xeazJ\xa9u\xa5q\xa9\x01H\xaf\xe8\xd8\xa4\xa5JX):\xde\x0e.\x14A;?\xc7\x1c\x86\x06\xa0G*\xb1p\'=Nf\xd5|\xd4\xa7\xdb\xca\xb5\xa9\x83\xb4\xf4I\xc5f\x05p\xd4\xccN8\x1b2\xf1\x1d\xa0\x7f\x84\xb3\x08\xe5l\xe2m\x8d\xcdp;\xaf8\xdd\xf7\xfa\xaf:R\xa48\x1fH\xe1\xb5\x84E\x0c\x82O{\xcaxK\xc9\xcd\x04\xda\x03\xa1;\xa6a\xe7\xe0\xa17\nHtv\x8a\xb8[\xdd\x13\x00\x84.=\xd65\x02\xe8\x0e\x97\xe5\x82\x9a&\xe8\xcc\x87\xe3\xc5\x87\xe2\xb1\xc4\x00\xc0pP\xdazE\x90\x9f\\\x0e\xaf\x06Pg\x10\x0ck\x84\x89\x13\xd6@\xec)\x1b\x99\xc6\xd1{\x0f\x81b\xb7\x05L\xb9~;%\xb5\x1c\xc6\xda\xe2\x98\x10\xd8\xd1\x1f\xda{?At\x02\rG\xff\x00\n7/9\xd0\x9c^{X\xc0z\xc6\x82\xd2\x99*K$\xd3\xc7\x18K\xea\x92\x81\xce?\xcb\x1c\x18PS\x87\xa3\xb4\x8b\x9d1\r{\x82\xfer\x0edg\xfb\xfb\xb6\xe6T4\x92;\x8a8#\xe3\x83\xf2\t=hvT@\xa6\'DI\xa7\n\xef\x9d)\xc4c\xd2\xbd"\xb9\x07o\xc8\x15d\xd4\xf9\x81\xc0u,C\xe7\xfe\xa3\x99(\xf1\x02\x0e\xa6-6\xa1vZ\xde\x855\xaf\xe6\x01>\x00\x89j\xba\xdb{\xf0\x8f\x11\x9a\x1e\xa1\x7f\xd5\xe1\x01\x14\xee\xd9a\xb7D3\x1e\xaa]\xbf\x14\xe3\x9dI\x97\xd0\xfcB\x8d\xd4\x81\xca\xb5\xad\xf8Ae\xb4\x11\x8a\xc1\xc9\x90w\xc8\x12\xbbR\x94d\xbe<\xbey}w\xf8\xccg7\x03\xf8\xccu\x9ap\xd1\xa49\x0f\xf9=\xdbg\x81"7"\xe85H[d\xc3Pi\xa0*0\xd2\xc7\xad\xde\x87m\xf9\xa1Oe]\xed\x17\xc9\x02H\xae\xbc\xc2y\xeb\xb5\xeb\xf6\x04\xf1\xd9\xb8YQ\xd5\x02tf\x10Td\x08\xbd\xf0kC\xb0\x0b\'\xaaj\\@\xd3\x16[\x8c\x8a&G\xc5g\xa6\xa4\xe7\x82\xd4_\x00j\xd9\xf0\xb5}\xdb!\x8cUYD\x18B\xd3l\xf5@%\xd8X\xd4\x80p\x11\x84\x95\xf8\x81:Y\xa4\xc9\x10`x\xa9z]\x0f`j\xdd\xe5*\t\xed\xd8\xbb\xe1(\x12\xd4@\xf5\xfcBST\x1b\xc5\xbdmy>l\x86\t2\x1c\x07"\xd4\xb14\x16iX\x95F\x1c\xb0z\x11\x9e\xe9\x08kZ\x8eC\xcca\xc8\x8d@\x92">D\x89\xb19\xfd`+\x99w\xc7:\xf9\x00\xb6\x83\x8e\xbb\x0f\xc3tB\xe5\xf4\x857c\xca\xd2\x02\xc8J\xb1\x85#,\xe7\xd5>\x15x\xa608o\x8c\x90I\x80\x05c\x04\x88\x1eY\xd7\xf9]m;\x02\x1bg\x92\xf5S78\xb3\xe4t\xca\xcc^\xe0\x162\xe9\xdb\xd5\xaa\xc0\xb63\x1e\x0b\x8f\x1f\xff\x82\xebOs7\xfc\xed\xef\xcd\xeb\x7f\xed\x1f\xfd\xeb{\x10\x03\xfb\x0f\x8b\xb5/Ja\xb2\xeat]E\x84\xf6\xe1\x88\x82\'Vc\x9e\rz3\xe94\x83y\xd1\xdfYd\x19\xb1\xd81\xf7\xbc{\\$F\x9b\xd6\xb1\xdfQ\x8f\xc5"\x94\n@\x03.`\xa7n\nZ\xee\x94\x19zw\xab\xe6\x0cL\x14\xa7\xa0Mr\xbd\xb3\xd6;\xf9\xa0.ap\xa8\xc8\xbe\xf3-\xfc\xc9\xc0\x8a\xbbv\x8a\x03\xd70\x06\xda)S65\x9dA7uK\x82\xd9\x9d\xe37\x9e\x85\x8e\xb1G\xed\x0f\xd5\xdfr\x1f.\xae\x8b,\x85\xee\x83\xb2\xfe\xf1\xf1\xfe\xd1k_.\xc14\x97\xfc\xbf#\x04"\xe8\r$P\xb9\xe5\x9c\x01\x97\xa6\xaa!\xd2\xdbr"\x126A\xb4Fa\xc8P\xc0h\xf6\x0ew\x82\x06\xc3 \xfd\x88\x9e\x8d0\xc0\xe9\xf5\xa3\xdf\x8bz]\xad\xca\xee\xea\xd4w\xe8^/J\xcfO\'\x85u%6\xc9\xe6~\x1c\xdc}\xcfM\x9e\x1a\xac3\xdb\x02\xbd\xd23[j\x02\xd1\x84\x19\xa7w\xbd\x13/7\x19\x17\x13\xab\x0f\xab\x93]\xfbU\xae\xd2\x9a!\x16\x93\xd2LfX\xf4FJ\x85\xb5\xdfvL\r^lH\x15\r\x9awD\xa8 \x94\\\xe6\x87w\xb45\xa8\x1b\xf3Vz\xef\x98\x9a\x14v\x9f\x94\x93\xd2\xfc\xd2\xd2\x90\x15v\x1f\xe2[Nm\xb8\x9cN@\xc3\x05\xe1\xd3:\xbc\x04f\x1a\xad\x9dzUC\x80\x83\x15\x1aV\xd3\x1d\x94\xa2\x92\xcf\x1c\xe9}.nT\xa1\xa8\x90\x90\xbf\xcd\xa3\x13\x8d\xc6\x97w\xd9\x9e\x91\xc8\x96u\x00\xfa\xa9\x96\\Mi\xeci\xa0\x0c\xd6\xa1\xcd\xb4M(\xdeBdqRg\xb2V\xf0C\xa5\x84u9\x880\xc9\x07\xa3\x18\x88\xed\x05T9\xf8\xac^\x10\xd6\xd3\x92\r\xd5\x87\xff\x91\xc0E\xd2\x97f%{\xe0\xaal\x0fT\x04T&\xf0\x9a.\xf9\xb7\xb7A\x9c\xc0\xf5\x96\xe1\xb0d\x1d[\x91\xa8:\r\xdb\xc0\x19\xed\x8aw_\xae\x14b\xb5g7\x9fl?y\x96`\xab\xc1\xd9]\x9ax\x95\x12\xdf\t\xc0^\xf4\xf7*^0x\xfdv\xa5\xe4\x97\xee\xf6\xbd\x1a\x04\xe8\x18\xfdd1\xb5\x17\x988\xb4X\xbc\xe2\x85\xb7f!Yd\xf7\x8d\x86\xd9@n\x99u=\t\x98\xd4&\x0b\xf5Hd\xe1Du\xa2JYk8\xfa\xfc\xf3\xf3\x17fo\x83n\xf9\x81\xe4\x8b\x02\x9c\xd7\xea\xd56\x1d\xc0\xc9\x0e\x18bh\x9b\xac4\x84\xdb\xd4\x91\x9d\xe2P\xafz\xe9B\xff\xa6\xaf\xdd\x9d\xcf\xcf`~\x0bJ\xf3}\x1a\x01\x8d!\xe3@m`\xd3\xc59\xc7\xb1\xe7+\xeb\x1cD\xa7\xfe\xdd&\xdf\xfcDe\x80\xd8\xaboP8\xef\x16\xc0\rj0\xec\x0c\xc9\xef7\xe6\xe2\xdbz\x9e\x95\xf1O\xf9\xf5\xea\xa0\x97\xa0H\'\xdf\xfe\x0b\x1a(b\xb2,\xcf\xfa\x8fY\x8f\x89\x9dnY\xbd,\xad\xb6\x98D\xccC\xe5\x8c\x95\x04K\x1a\xd1\xa3J\xcd\xff\xac5Q\x99j\xd1\x98\xdb\xd0\xf9\x8e\xa1f\xefHes\xd6\xd3\x10op`_\xe1\xfe\x0c\xa8<M.\xaf^\x15_/\xd5\x8a\x84H\x853\x10\x9b\x1f/\x16\x11tc\x04\x83K\xa8\xfc\xbb\xfbSD5\xaaM1\xffLWE/\x87\x84H+\xb9\xd7F\x1d\x92\xa5\x0e#\xf3\xb6\xea\xd7\x9d;G\x8av\x81\xb0\xd0\xe8\x90\x99\x8b\xb1p\x907\xa8\xb2i9\x07\xf6\xf5\xb19fF<\xa5\xf0E \xc2\xb2[\x1aSh\xab\x02C\x18\xbd\x99\x148\xc7\x80x\xb5\xd7\xc3\nv\x07\x03\xe0\xd3\x12\xd8\xc7B\x9b\x91\xd26\xe9@\xe4$\xa8A\xae\xa1\x1bJ\xae\x9f1y\x7f\xa8<\xa1\xdc\xa5Z(j\x02\xc9\xab\x87\xeaQ\x881\xe7\xc8\xf1d\x92\x80\xb4\xa8\x84=\xc6\xfbUc\xbd^*T\xc4k\xda\x06\xe1\xb4\x9c\xbbF)\x07\xf5E\xef\x00\x01Jy3\xab2\x18z\x90\xfaK} v\x1a\xfd\x1e&\xb4\xd7`\x7f3\xb4\x00\xe3.DX\xdc\x16\x0fT\xbd\xedvU f\xa5\xb0\xd3\xc6A+N\xff\xb3\x91\x88\x02\xc9q\xe9\x9aH\xbda;\xf4\xea\x9d\x84=\xddD\xeb\xc70(\xe7\x87G\xeb\xe0c\xbb48\xdd\x9c\xa5\xb4\xc4\xbb\xe5o"\x1a\xd6\x83\xfe\x1a\x9b\xec\xb1\xbc9\xfb\x9f\xd9\x8f\xb9Wh\xc5\x15?\xc0\xe1\x8b\x7f_B\xcd\x9d\x9d\x0b\xe4\xc5mH\xd3\xbeY\xe2\x14$\x16\xba\xbf\xdd\x7f\xaaF{\x8e\xb8~\xc3I\xe1\xc3\xfb 1\x87/\x7f\x1d_\x0b\x80h!\xffV\xa8\xd2\xcb\xda^\xbdq\xcav\xff\xd3-%-\x8d\x17o:\xd9\xeb\xf5\x1e\xaa\x86\xa3\x10\x9c\r\x8c\xd5L\xba\x85\xae\xde\xae\x1e\x94$LI\xf8\xe3\x91\x10\x10\xea\xfa\xd2\xaf_\xc3&"\x87\xcb ZN\xfc\x1fI4\xe5Z\xea\xb9\x91W/\x114\xdf\xee\xb0\xd5\xc7\xd2h:\xc6\x03\x19k\xf8R\xd4\x19\xadOpy0\n\xa1e\r\xaa\xd1xr\x10=\xdb\xfc;L@\xa7V\x17"C\x1c3\xbc\xa2B\xa2\xb60\x1b\x8fR\xb5\x04\xa8W\xc3T\xa0H\x8f\x1b\xc3\xb0\xda"9\x10"\xe9\xc0\xb6\x08P%,\x11\xd6\xb7I$55O\x17\xa1\x11\xc7\xb1\x01\xbd\x85\xac\xbb\n\x83\x08\x82\x85\xf7{\x92pw/\x05\x83w\xf3Z\xc1\xcc\x13\x1ah\xc9d\xe7K\xd2\xda\x83\xfa\x1b\xd9\xe7\xb8\xa9\xdb\xf1\t]v\xfd-\xe3\xc4P\x94c\x18\x90\xd5\xb7\xcf\x80)\x15\x81\x1a\xb0kuqWp\x97m0)#D\xe7J\xa8>*\x9e)Q!;\xbe;\x8b\xd4\x0f\xdc\xa9\xd8^\xdb&nS\xf5\x0c\x97\x03j\x9c\xe3\xb8\x1d\xb6\xa0\xdf~\x94\xb8\x1e\xe7~R/lA\xe9\xa5\xaa.mr\xb3?7u!a\x8d`GIN~5\xfcESX\xdd\xdf\xbdAu\xbdF\xc0O3I4\x8c\xd2\xa4\xf0\xe8\xec\xf4\x83\x9b(\x86\xd1W\x11~\xf7\x0c\x04u\xd2q\xfeX\xb2\xf7#\xf7\xaa\x8b\x9a] \xdc\xb4\x934ZM2qt)w\x9d\'\xed\xfa\x86z\xf1S\xd1\xc98\x11e\xcf.\xc0U\xecy\xe1C\xe8\xfc\x88?<\xd0\xdbKz\x9aG\x9a\xd7Wj\xf8(\xceq\x8e\x8c\xa1\x8c\xee7\xbe\xa2\xdc\x8cQ\x11\xf9P\xc3W+\xd5yZ\xf7\xf3\x982\xa4\xc9\xd2`\x96b[~\xfc*O \xa2s\x90^\x1cQf\xc7O\xe7ak\x0b\xf3\xaeE\xa9\x98\xd0\x01\x9a\xca\x05.YPL\x88\xa5\xe77\xca\xb9\x9b\xd6\xcf\xf5\xc1\xc1\x9b\xdf\'e\xf7u\xed\xd5 \x99\x08\xaa\xc8T2\n\x9d\xbfz\xbfu\x8e\xaag\xb4P\x8b\x03\xd4j\xbe\x9cF\xd0T\xf9\x9d\xa3\xc2\xcf\xee\xb3\xcbbK%sE\xe2\xe5\xaf\x94\xa2\xc6\x1f/\'_*hnA\x7f\x0fE\xe6n\xe4m9\x16.\x1e$\xb5\xa5\x9f\xe4\xd9\x0e\x86"p\xa7Q\x04\x19\x91\x7f\x85jh\x99\x8fl@ \x1e\x1dMA:\xa9\x864\xaaV\xaaa\x83\x10}\xbd\xf2n \\P\xa3U\xb20-}\xca8kR\x05\xe1\x91\xe8\xa5\x08\x94\xce\'\xe8\x1cQ\xfb\xd7\x0b\xce\xef\xfeV\xb3\x80p\x15Z\x05\xe9%4^\xdcDs\x0fC\xb2#\xbb\xfe\xf2\xa0\x14\t)\x03\x97\x83\xdc^\xdd\xff\xc6\x88\xf2\x11\x98\x1fu\x99IH\x93a"x\xa9\x14\xa2q\x01\xd3\x88\xf8\\\x0e\xc2\xb8\xf20\xc0\xd9O\x11\xcb\xf8\xfcXc\xfa\xe2\xe1\x90\xcbg\xe1\x94*\xdd\xb5\xa3\x98$u\x8d\x88\xa6\xde\x1b\x10\x14\xda\xe6\xe4\x0fw\xb6\nj$\x96\x15\xe4\xfe\x07\x92Al\xb2\xa3u\xa5\xbd*(\xb4\xaa02\xdd"v\xb8\xaa\xca,Y\x11o\xde\xcbn\xd6\x83QL\x14\xbfD\xc3H\x08\xc9&\xae\xa9\x93\x02v\xa0Z\n\xcb\xb3\xec\xea\'Q\x89R\x80\xc1\xdb#\x91w\x11\x0b\xa3\x9ef2\xcacjm\xc2\xba@m\xb0d\xbf\xf6\xc7Oh\xf2i\xbf\x8aYRI\x8f\x8a\xec\xbf@\xca\x1a,\xd0\xa4\xd3\xac\x86|\xc0<d\xf0\x0e\xbb\x06v\xbc\x1c\xed=:\x87%\x05\x98\xd0\xa6\x8b\x97\x92)\x8b\x94\xabD{\xa8IXK\xdd\x14v\x8e\xcd\xf6\x98\x97jP\xad\xde\x85&\xbc\xa6|\x16\xa1\x91%=\x94l\x95u\x85c\x19\xd5b\x03\x04\xd5\xe2\xdd\x8c\x1c|\x02D\x12\xc5\xfa\xfa\x1fA\xef\x9b*\xb9\xa8C\xd5\xa2n\xb5\xaa#6\xe2\xdcS\x1b\n\x8a=\x04\x06P{n[u{\xb4\x1cC\xcen\xd5jT\x13fI\xe0\x91\xea\x19S\x1a:\xb9\xcf\xd3\nue\x01\xd8\xb4P(w\x83\xe6A#N^\xa1\xb9\x19A;\'\x01$\xf2\x02\x10\xa9"\x93g\xdf\x06\xe6\xfeU\xdd@\xef\x84\x04\x10\x88\xc3\x94U\xfbjD\xc2\x81a\xa5\xec\x86$\xb6V\xed\xd9\xa14\x06\x18#L\xf8L\x12\xd7\xb4\xa0\xcd\x8b\xcc\x9ef\x01S]\x9b\xea\xa5o\xedy+/\x93i\xb0W\x1bI\xdb\x97mA\xf9\x03)\xe3\xd0\xef\xddj\xb0\x8d\x8a\xc16\xdbC\xb4r\xf2\xa2\xa8\xba\xf2\xac\xf7\xe8\x9b\n\n\x894\xa6j\xc5\xb3\x8d\xea\xd3\x0c\x87\xe3\x1f\x80\xef\x92\x8f\xd3b#\x16\xaa\xc7\xc0\x0f\xa4\x9f\x17 \x05Q@\xd1\x8d$\xf9\xee\x9e,D\xad\x16Y \xa5T\xa7\xce5\x87\xb5\xd1@\x8d.Q\x97\x9eS\x80\xcb&\x0f\xb1\xc2\xa8\x01Zi,O36\xaf\x13\x14c\xfcU\x99%\xbd\x03Lx\x82T"\xd9\xb8\xe1\x1dqv\xca\x11\xafZ\xb3-\x85>)\xcf\xb3o/8b\x86\xabF\x08\xc9_\xb2\xf9&Y\xb6*q \x9aL\x90}D~\x96\xc3\x88Q[N\xc2\x00\x9d\xd4cK\rU/\x10{Q\xad\x91@Ur\xbc\xab\xe2r&\xad[\n\xa7\x9fx\xcc\x14yIB\x81\xdb?\x1cw\xf6[\x03\xcc9\r\x89\x00}\xf8\xeb\xfa\xe0\xad\xa0\xb3dN\x02\xf9\x18\xc5TIU\xcb\xd3\t\x19B\xa4\xc8E\xa2\xe5y\xb9:E\xcf\x8d\xb8\xd15J\xa2U\xba{\xee%w\xa0:\x10\xdd\x90B\xaaJy\xa6\xe4&~\xf0[\xb8x \xd9\xfa\xb2E\x93<h\xeb\xad\xc9\xca\xbf_T\xbc\x17\x00U\x04C\x8fy8\xc58\xa9&[\x08\xaak2D8\xe5\xd2\x8fYI=\x85*\xba\x87\x1a\xe1S\x9e\x08\x1a"[\xa0\xf6\x8d\xd9\x0bx\xfcc\xb7\xea\xaeE\x8f\x1c\x9f \x02\xfeJ\xbd\xa2\x94\x1d\x8a\xf1\xe8\xd0\x10\x93\xdd\nC\xe8r\xfc\x15ZK9_\xb5>\xc5\x8d\xe6S\xdd{6\xdc.\x9a7a\x80$\x1d{\xf6\'\xe4o\xf5\r\xfcX\xf4\xe47\xc2p\x84\x9e\x04\x83\xe3\xc7\x1c#\x8f\xdb\xaf\x9a\xe1|\x17h\\\x02\x89\x15>\x7f\x064\x9b\x9a\x19\xd2\xb0s\xb7b\xefC\rWm\x8a\xa4\xcf\xd4j\x1dJ%\xa6\x19B\x06\xdc>\x91\xb6\x81R\xf3\xae\xdc\xbbT\xcf\x07\x1a\xbe\xac\x83\xfbs\xef\x00<\xf4\xec\x0c\x97\x1b\x9f(n\x96\xd8v\x10\x1dj"\x13UF\x861/\x84\xda\xd1x\x12\x86\xb0\xdeP\xe8\xef>\x04\n;q\xb5C)\xe18\xfd\x0b\xf3\xec\xd3\xb3?\x9e\x89\x8b\xd1\xea\x0c\xc3\xdc\x18y\xfe\x1c\xdcF\xb0|\x1e<\xb7\xec\xe3\x075\xcdk\x18y\xedU\xebD<cSN,\x7f\xe5\xc5\xdd\xc3\xb2\xf0\xd3\xe1\x8eT\xe0\x05\xf10\x14\x9a\xe8\x04\x1f\xb2\xeaP\x89\x03\xdd\x94+\x95\x0e\xaeM\x9e\xd4\x0c\x14v\x83\xd7\x98\xf0b\xdd\xb6\xcb\x1e\x06\xfe\xfa[\xb3\xed5Q\xa0I\xea\x97[~\xe2\x99\xda&;\t\x03\x8a\xb0\xd5\xb9U\xce\xd0\xe6\xb0"\x11L\xc9\x13\x08~\xa3\x1b\x05\x19\x86\r@S\xad\x96\xc5\x9b\x1d_M\xd5\xa8\x0c\x12\xdf01\xb9\x95\x96A\x18}\xfd\x8f\x04Z\xec\xd9\x7f\xbbsr\x92\xd0\xf7\xa0\xfc\x90\x88\x92\x15\x0fY\xed\xe7c\x7f\x976\x80\xaaR\xa5\xb8\x03\xfd\x87\xd3\x13\x88\xcet\x0b\xcc\x07\xaeu\x8b\xb1U\x01TI\xc3P\xa3\xf6\x88+\xa9\x1d\xc5\x0f5\xaf\xcb\t\xb5\xa8\xb1\x0b\xe0R]\xb9j.)\x08\x7fg\xf7\xa2\x1f\xa7\xaa#R\x96l[S\xb3\x087-\xfb1O\xb6\xf5\x19W\xd5\x88iI\x85\x95j\x81\x8b\xe6\x04\x1a*\xb3\x0c\x92E\xec\xe6\xe2\xf8e\xef\xec\xb5Fc\xb5\xed/\xcd\xde\xf2\xab\xc1Rs\xf6\xe4\xe4t\x8a\xd3\xa1\xbf\xa8B\xd6\n \x91\x80c\x85\xf0\x86\x12:\x0c\x9a\xef\x0fPp\xa3\xc0\x0e\xa9c\x8e\xbaR\xd2H\'i\x9f\xf2C(3s\xe6\xa1\x94\x06+-m\x1d\xbf\x16Xfr"_\x01\xe39\x1ep/\xfa\xde\r\x9a\x07\xd9\x98U\xa0\xfeU\x16\x00,\xd8\xd7MF\x11\xfa7\t\xaep\x80K\xed\xe7\xc7dR\xa0\xf2\xecm6}4\x03\xaa+\xbb\x8a"4{\xc7w\xd6>\xe5xyW\x0e\x88\x8e\xd6\xe0MT:}p=3\xe0N\x94\xd2H$\x11>\xde{\xb8.\xeet"\x91\xe1Zef\x06\xd7OQ\xbd)\xbfr\x93\x1c\xab\xe3(\xca\xfd\x14"\xd9A\xa7\xf6>O\xe2s\x1a\x13\xd7\xe6\xb5\xf8z\x9a\xc5\xd0q\x04\x90\x062\xb6\xe1\xd0G\xe8\x03vs\x0b\xff\x91\xf0\xe2\xa4\x07\xc9\xa54\x8e\xd3\x00\xdb\xf1{\xb6\xb5;\xefoK\xe9\xfci>O#\xf9@\xdbO\x8d$\x95\xabA\x04\x13R\xaa\xe8\xbd\xc5\x08\xa1H\xa5\x05F\x15P\xac\xcc\x8fL\xd3)o\xa0\x1cl\xe7\x95p\x07l\x9c\x97\xd0\xab\xba\xc1\xac\x1b\x92\xff*z\xa0\xf4\x1e\x1a\xbe\x80n\xd7t6(z\xd9L\xa4)y\xf0xP\xe8unvGY\x9e\xc99\x1c\x8ca\xcfuO\xe6\xe6/>+\x91\x95\x123\x91\xacV\x18`\x8bV7F\x9e\x8dz\xde\x99\xee]\xa9\xde\xd9\xbdG\xd2\xd3\xbe\x15:\xc9\x9e\x90\x80\x98\x8a`J\xf2\x0cjEy<\xb7P\xbd\xef\x92U]^\x18\r\xf2\x7f\xaf\x15\x12R\x13\x943\xe1_/<V\xcbE)\xce\x14z\xd5=A\xd4\xb1\xc4F\xe9}j\x05?\xfby)\xdaSc\xf6\x84\xd0U\xe5u\xff\xe6\xaf\x15\xdbi\xf6`\x95|\xea\x9d|\x17\xff\xa8P\xe9\xcc\xfd\xf5\xd3\xb1\xa3\xc1<\xd9.\xfe\xbc-2p5?\xa5\xf1E\xb5\x1a\x8di\xf6\x1b\'P\xadk\x96zg\xcf\xbc\x92f\xa7\t\xb8\x9c\xf2\x03$\x885X\x1a`\r:o4v\xbcLn}s8\xcf\xdd\xb3\xbe\x05\xa5\x1a\t\x12\xf2\x06M\x83\xc9\x95z\x1c\n\x94\x8e\xeb\xf0\xe6`\xe1Z\x99\xb3\x8d\xae9\xf3\xc3G\x9f\xde\x95\x025\x1d\xb8\xa6\xff\x14\xe8\xb74\x94\xf2\x95\x04\x95\xb2\xf1;r\x88\xac:\xc3y\xb3\x9fK3e\\6\x88\xa6\x0b\xf7\x90\xfd\x98\x1f\xb1\r9K\xf2\x92\xfa{w4\x0e5G\xcfQc\xd8\x07\x069\x87k\xf3\x9f\x18\x01A\xc9\xa1x\t\x9eO]\xa3 \x89\xe8\x90\x05\xed(b\xedq\xd4"\x99\xa2\xf0-\x8b\xe25UR\\\xab\xd7\xbe\xde}\xad(\x9f\xed\xad\x9fAT*V\xd7\xd5\xaeP\xaa"\xa8\xde\xfb"\x14\xd6\xe7\x00x\xd7\xb5\x1fJ\xe2\x87\xa5\xb1\xc7\xf2\xf0U(\xcc5W\xb7Y\xab\xe9\xb7<\xab\x84\xa0\x9eO\xa1Bbr\x8c\xd2i\xa4\r\x0e/\xb0\x9b\xebf \xac\x1a\x12\x00#\x83\xdb\x01\x9a\x8e\xf6\xd5\x84\x97\xea\xb0A\xd9\xb9\x8c\xee\x8f\xcb/D\xfb\xe3B\x05\xda\xa5\x8dT%@\xb6\xd0q\xf6\xea\x92\x9a \xa5\xf5O\x9a\n\x1b\n\x88\x98\xbf\x86`]\xadf\x98\xb6}\xaf\x06\xdfF:\xd9\x8c\x8c\xa9\x1b\xf7b@B\r2\xc6\x91\xf9\x00{\xadR\x89\x00\x16n\x8d\xf9\x15\x18\x17\xe1\x10\xa5\\4U\x8d\xea\n\xf5\xf0\x1b%}NrG\x1a\xaa\\\xa5(]c\xae\x1d9`\xad\xe4\x06\xa5\xb6\x11jt\\\xa7\xf8\xcf\x85\xbe\xe1\\\xc45\xba!\x94C\xc2W\x9bl0\xe9\xc4$G4\x1a\xf6\xa3X<Au\x16\x16\xf9G\xf1\x18\x9a\xf2\xf9.\xda\xff\xe2o\x7f\xbe\xae\xcd>%\xa5\xfa\xb7\xe6(\x95|\x1b\x9d)\xc7\xf0# \xc3\xa1J\xce\'\x94_\x84Z%p\xa1+\xa9\xc0\xb4\xe9\xcbuEg\xce#\xa4xrk\xdb\xeaP\xcc\xbd|\xcd\xb7\xdf\xbe/2U^\xa4\xce\x8d&\xfb\xb8\x8e2oL@\xeb\xdd\xa6\x1f\x1f\xe4\xf9\xb4\xb8\xd7\x8e%?\xb6\x9e\xbd=c\x185\xabp\x8bj8\xa7\xd2\x8c\x11\xb3\x9b\xdc\x02\x88n\xb7\xe1\xe2\x8a\xfa\x0e\x88\xff\x80\xfc\xd2\xf8\x9cW}\xcc\xc45ch\xb8uBd\x1b)\x151\xca\xd7\x9d\xf9,1\xa4\xee\x18KV\x0f5RIl\x13\x97+hLU\x85\xcb\xfd\xf8^I\x90\x90\xb8A]\xc2\x0b\x11\x9e\x9c\x1fR2\x87@\x02\\\xff\xaa\x18\xd6\xf3R\x01\xac\x91v\x03\x91\xb7\xe0\x9d\xfa\x8bU\xfcr\xea\xdabz\x8d[(;\x8e\x198\x7fq\xa8\t.$\xe8\x86^\xaa\xf6\xa2X@s\x98#J\xb5q\xe3\xbb\x9en%EH\xf6\xd6\x90Wz\x85\xbe\x1d\xa5{)\xe4\x8f\xdd\x02\x15x\xb2\xacX\x1a^\xfa3\xa68\x87\xddn\xafE/\rEj-5\xb7\x97z:\xdc\x1f\xd5\xe4W!\xa0\xe9\xce>b+_\x02c\x91\x87\xd3\x8a^O\xbdUm]B\x04U\x16@Q,>\x1c\x08o\x15\xdd[/b\xac\xd7!\x00M\xe7\xd4\xb6\xae\x86\xf2\xa2\xbc\xd1\x84\x81 \xfc\x8f\x14\x9d\xd7\r\xa9\x06\xb9i\xa8\xa6-vg\x16*9\x07\xf74\xc6B\xa3\xf2\xd8K\xd8\xd8s\xa4LG\xed\x91\t\x8dEg\x8fx\xa7R\x12\x15x\x89AU\x8f\xd7\x87A\xdao\x035\x8a\x07\xc0 \x8d\x00\x89G\xff\xd8\x9ev\x174\x9c[\xfb\x84^\xfd\xa0L\xdf\xc1\x06\x82#]\xc5\x83\xeeG:\x9f`\xb1w\xb2;\x90\xe8k\x9aK\xe2\xf5V\xa3c\xce\x08\x88$\xd2\x90\xab0\xdf&\xff\x882\xc8\xd3\x1eFX"\xd3\xed\x1c$\xe4dL}V-\xf0\x9c\xea\xec\xa1$\xe0\x12\xddE\xf4\xf7Pep5Q\x04\x980]\xa4\xab+\x0fw\xcf0\xc3\x89P:\xdaa\xd9\x16O\x19/\x08\xfe6-8\xfa\x08l\xda`\x90 \xb9f\xe8\x9b\xf8m:\xde\x9dr\xe5P\xf29\x9d\x04\x89)E\x005S@\xd5A0<\x00\xaf\x8b\x94\xcd\xed_^Ki\xbf@\x19\xba\x91]5(6WO_\xe4\x1d\x03\x07\xd0$\xad\xa2\xb0ZA9\xf1:\x99ZN\xf3\r\x0f\xaf1\x11\xad\x81\xde\xa0\x8f\x8d\x0b\x91\x97H\xc2\x8d&^\xaf\xaa\n@e\xba\x85\xf7\xaa\xb0\xc3+\xb3\x07\x96\xd5 \xa4\xeal\x15\xae3\x0e\x81\xd9\xd3gi\x12i)\xfeh\xe1^\x02\x7f\x8a\xbe\xae(\x92G\xb1\xa3\xf43&\x88\xecx\xb6V&\xc5<fP\xeb\xca%\xd4,\xd8\x8a\x16N\xab\xa7\x91la\xbd8\xf7g\xa0\xa7\xcd8\xdef)\\r\xb7\xd3_}\x9d\xdd\xea\x9d}\xb1\x95\xeb\xa4\x17B\x1b\x17\xb6\xa2U\xca\xce\x04\x1a,X\x91\x01\x95\x0f\xd4o\xa82R\r\xee\x8a\x08\t\x96\xa0B\xed\xb9\xd00.\xf6\xf5\x97\xe0u\x96\xcd\xbb\x19z\\h\x08\x12\xff\x0c\x9f\x904Ts\xe6j\xae\xe0\xad\x19\xd4\xb5\xe8\xba9\x12|o\x1c9]\x91?\xf8\xbb\xae\x9e\xdfN\xca\xd8\xd0J\t\xfd\xc0\xd1\xf0@T\xc3v\xad\x13>M\x1a/\xb3[\xc4N\x05j2\xe5^G\xf0|IZW\x99\xcc\x9f\xd4\x0f\x19\x88f\xd2\x00P?5\'\xe2\x00_`\x19\x8b<i\x8a\x0bnh\xe28\xa7\xc2\x81u_7^g\xd4\xcb\xae\xd8\xa3-s\x8a+\x05\x12\xf8c\x12\xbbk\x9f\xd9\xf7lg\xcf*\xc1\x19\x11xw\xb5Fmrj4_O\x86\xe8\x83\x97\x9f\x8f\x95\xeeub\xd5\xb7G\xbe\xa6>`\x08\xd4\x85\xe6c\xbb \xdfA\xbe\x86"F\xa0T!D\x8c\xea\x1b\x03\x1b6\xf3Tv\xbc\xea\xe4.\x994\xca\xb5\x9d\xc6\x19\xb5\xe8\xd9\xebx+ l\x14j,aW\x1ea\x9b\x87\'*\x1d\xa8\x91\xadMs\xa5j\x9d\xcd\x16\xe7*qh\xd2\n4$\xba\xf0\xc9\xa4\xf0(\xf2\xfa\xb1\x1d\xbbv\x1a\xac\xf6v\xedP\xa2\xcc\xf9\x17?\xb8\x9b\x8a\xa1\xe8\xa6k\x10\xde\x14\xc1\xc9\x97\x0bu\xcb\x83g\xdc\xf9N\xd2rRN"\xf9\xfc[(\x9b\xf8\xf6\xa1\xe9r>b\xa5\xc8\xaf\x0c%\xfe\xaa\x0f^\xe3\xfd\xd7\x9eHK\xb5\xdaa\xf25e\x81\x91\x9f)\x86\x1d&\x99\x9d.=\x1b\x12\xed1\x01\x86\x9b\x1d\x03\xee\xc8#s\'m>\x10\xde\xa9\x82u\x89\x9eD\xb2U\xdc,\x99\x9f\xfc\xb4q\xa1!\xadE \x96.\x1b\xe6\xbfkh=\x9brH\xb8\xbf\xfc-^\xa3`m.\x9a\xf0.\x17\xceK?\xa9\x95\xed\xee\x9b\x1e\xd4\xd8\xd0\x99\xde%h\x0f\xee\x9a\x0b5\xff9\xe8;\x12X\x80>\x98\rn}(\xb0\x1b\x17\xe9G\xd88\x15\xfb:\xd0\x11\xabn\xb7w\xb6q\xa1\xa3\x01\xdegS\xdd~\xd2\\\xadFr\x14\xa5\x8e\xbf1|/\xbeMH\x9cJ\x82&\xd6\xcf\xda\nc\xa9j\x8f\xa9)\x9d$*V_\x85\xbd\x93#{+v\xa4v\x93g\x07"7\xc0G\x06\xec\x88\x8c\xd4\xc2\x8a\xc12\x9d\xa6]u\xd1\xa7!X\x94\xe0\xdbGb,\xddW\x8dc+]5\xe05\x93\xbfA\xa1\x95\xf1\x1d"\xda\xa1\x86\xa7\x12\xb5LA\xdd\xb0\xf2\xf1\xdbQ\xd0\x16\xd1\x9a\xe8\x85Rj\x11G\x0b4g3\xcfh\xbb\xbd-\r\xa4\'\x1b\x7fDjX<\x18\x9b"X\xc9\xb9\x18a\x1b\x9d\x8e\xc4\x89;\x16\x07 ^_\xed\x93&\xaf\xb1\xac\xa5pE\xa6(\xd0T\xc6\'\x07\x12\xae(\xf2\xc1$\xe2&\xb4\xe8$\x88$\x05]\x87\xa3s\xcf\xc5&g\xc4w\xe7\xad\x1a\xfc|\xdc\xe2Um\xc4r`\xd8\xdc\xa5v\xf8X\xe5\x97\x90M\x17{i[\xe7I\xa4_40V[\x92\xac\xa8v\xe4\xf2\xd0\x0bZ\xc8\xd0\x872\xffD\xb0\xb6\x8f\xce\x94\x87Fk\x10Y\xe9F\xccq\x10D!\x0f\x91\x13\xd0\xcf\xd5\xc0\xaa\x1eT&\\\xf1\x13Q\xb8\xf8\xce\xf9\x04\x9b\xaex\xf9\x0c\x00\x9f)&O|{\x84\xc0\xe3\xa0\x1b\xbf\xa1\xc1\xc8<\xbb\x84\x15\xbe\x03T\x92\xc3\xdb\xf1\xbe%<\xbb9W\x9a%\xbc",\x06\xe0\x16\xa3x\xcf\xa7\xe0(^\xf4\xf86\x9a\xd2\x17\x80\x9b\\\xfa\xd6\x1f\x0c\x86\xed\xc0R`\x05+\x83~G]$\xb2j\x1cUP\xb3\x12\x80\xc1\xe84\x96\xc0\n-\xd0\xea=\x9a\x86\xd9\x8f\x87m\xa1\xc8\x1b*\xf6\x07\xed=\xc4\\1\x83-H\xd1?[\x07\x1f\xd4"\xaa\x99kL\x07\xe2;^\x98u\xc4T\x934j(\xf8\xf3\xe9\xb9\xd2\xac\xea\xab$x;\xa1\xef\xadN\x8e@\xc30A\x1b\x00\xa1\xf6\xfa\x13\xe7n\x81\x0e\xdaj.+1^\x11MJ\xa9\xaa\x10\x85IY\x0f\x03\x08\xc58\x0e5\xc9\xc6\x17G\x8a[\xc9\xc9J\xe7\x86\xf1w\xbd\x98b\xf7$\x04\x02\x95R9U\x00\n\xe9\x1c\xd5M\xb10%n\x01[\x8d\x17\x06\x8aX\xa4S\x177\xf2\x94T\xb5\xab\xae\x10\xee\xa3\xe7\xba\x1ff?z\xa5\xb0A\x1a\x8f\x8d\xa6f\x85\xdd\xef\xe5U?\xda\xa2\xf6\xc8\xfc2\xaee\xe4\x8bY\x81\xae\xfa\xcf\xf8a\x96LD\xd6\x0c\xa5\xb7\xc8\xbe\xe7H\xcd\xf5\x84\xaf\x8e\xc50W\x9boWk^]\xf7o\x98\xfb\xfe`\x084ge\xa4\x83i\xb1^\x04\xa5\x92\x18])qW?\xc3\xa4h \x04\x1a\x04k\x17\xd7\xc2mc4T8\xcb\xa5@\xeb\r\xab\xeb\x13\x8d\x7f\xae\x06\x03\x0c\x1bQ\x8d\xab\xee\x0bH\x1c\x886\xaabS\x07\x83\xbdq\xab\xbe\xb9\x1e\xf7u\x7f \xde\xe0\x12\xb4\xba$s\x8f\xf1X\xee\xc8\x0b\x11\xd1\xe2\xa4;L\xf7(\xa4\xed\xc2\xdc\xc1I\x02\xd8Kf\xa0\xae\xd8\xa0\xc2\xcf\xb4\x9f\xba\xdb\xcb\x1e{\xa2\xf2c\xf2\xf8\x9bb\xc5N\xad"\x80\xbfh\xbd#\x89\xb7\xf4MoO\xe47\xfc\xd7\x06r\xa8Y\x96\xa8\xe8\xc6\x84\xe8(n\xeb\x8e\x0fd\x94\xe67\xca\x15\xc2\xec\x8d\x90&\x1a\x9c\xf72q\xf2\xdfyw\xa4\x05\xa0\x96\xcb\xd7\xb3?k\n\x94\xfdT\xe06\xdf\xe5 \x87u\x0b\x81\xbdb \xf1\xa0\xe2\xf0\xda\xf3?\xd2\x11e\xb5\x1c\xff\xb2%\xce6\xec\t\xa6\xb2\x9bf\x04\xd1\xe6%\xa6\xe6\xa0\x07W#\xa2P\xb8\xa5}]\x84\xb0e\x93\xd5D\xd3u\x00e$N\xc5\x16hZ\xb1\n\xf5\xe9\x85H]\xce{\x18\x84:d\xa3\xddC\xe4\x9a\xd6\x13\xbf4\xed\xb9\x138\x19\xd6\xb3j\xb4\xe2`\x9f5\xa1X\x9a\xe6\xd2t\xe1\x1c\xa8\x81&1\x08\xedQ\x8cx\xab\xa1\xf3\x1dB\xf7\xae\xc0\x94\xf1\xa6Z\xfb,:$;\xeb\xfd\xf8\xa6 \x94,n\xc8\xcf\x1a\xb2\xb4\xae\x96td Qh\xaa\xef\x14\x1a\x82Z\xbeS\xab>\xdb\xed?l\x85z\xe0\xf9j\xb4\xbb\x8d\x9a+\xd8\x81\xa4\x87S3\xfe\xf5\xdf\x1d\x8dy\xce6vf\x9e+\xfbe\x8f\xc6\xd2\xf2\x9d\xbb\xc7\xbd\x93\x8b33.M\xa4\x06\xe5Fm\x80\xa1\xfb\xc2y#\xd9{\x84\x91M\x868\x1cS\xb4\xe8\x8a0 \xdb\xd5\xe7\xbdG\xa2`8\x08\xd4\x90\xa7\x16>9\xfe+\xbaF\xeei\xa48\xae\x1e\xb9\xa5Fh)3\xd8\xc9\x80V~\x84I\xe1i\x8d\x8f\x85~B\xf4\x84\xe4y\x9f\x8d\x94\xc6\xe1y\xe4\x85$Ju\xae\n\xc4\xf1::,\xd7\xfaa\xd8\x8dh\xd2\x0ec\x8c\\\xf7\xdc\xc6\xcd\xb2_\xf3\x10\x1b\n\xe2\x16\x84Z2\r\xba\xa8|a\xc8\x1d{\x7ft\xed3J\x11_\xe9\xc9c\xa97w~\xcca\xe0\x1b[\xc6Uv$\x0f\x18\xf4\xf8\xf0\x89\xb4\xa2\xb0bI7y\xae\xe19\xb4W\x17\xf2A\xaa/;E\xfeE|\xec\x1f\xaf\x0e\x91S\x0f\\\xb6\xb1\xa8\x1c\xc5kG\x8b\x1e\xc8\x8e\xca\xea\x13\x99cl`^\x97\x10\x08\xb3\x9d\xb0wp\xc2\xf9\xf0\xb1\x80\xa9*\xf7\x83n\x05\xa6\xb0\xb5p\xaa\xd7{\xf1\x90\x87\xef\x0c2c]\xe7\xa5\x9f\x04E\xb3\xd6\xab\xf1\xb9\x8c\x1f\x085<\x0b~3\x97\xde\x14\xe5]\xb5\xa4*\xfeW3\xf4r1\x1c\xbe8&\x98G"n\xd4\xb0\xa9\x8ag\x9b\x02}\x98\xdd\x8f\x0f)S\x8c\xee\x0e\xe4\xfd\xeapu\xc4\x0e\x9c5\x7f\x01\xe1\x86\xf2\x00\x19\x14\xf8.\x8c\xee}9PE\xbe\xd3&#EpA\x8a\xfd\x99\xd2\\\xb4\xbb\x90\xfc\x18C\x92\x8c[)\xb8\xdbh\xb8\x04\x1bMj\xd0\xf3\xbb\xe8tAM\xba^\x8a\x03\x82\xc0$\xddC\xa1\x87\xbeGb\x08-\xa6I\x04\xb9j\xb3E\xfbL\x86;\xf9\xd3\x08\x02(\x93\xe9\x87t{\x7f\xec\xe6\x83\xda\x0fI\xaa\xff\xa3\x93\xc8\xaa8.8,\xc4\xbf\xabU\x04\rM\xe9$z\x00\xcc\xb8\xf1\x12{\xe0\xebX+\x07\x0e"`\xcd\xd2\x1d\xf4\xceF\x86\xc6\xc5\x1f\xa6\xdd\x07N\xd9u\xca\xa8;\xb4\x7f2\xc7\xe6|^\x1a\x14\x91\x8f\xc8\x8f\t\x1f\xcbN\xb2h\x87\x82Z2&V\x87\x1f\r\x18\x90h]C\xfe\xd1\xf0\xc5\xad\xe7c\xb8\xaa\xc0\x8b&\x9dKe(\x1d\xccc!\xdf\x06C\xe5\xac]/\x05\x1a\x85\xe6\xe1J\x93&\x9d\x08t<\x00\xe1c\x96\xba\xd1\x11\xe8~<\xbe\xd0D\xa62\xbf\xfcr\x177\xbd b\x8c\x1b\x15\xac_N)c\x95ff[_\xbd\x1aU\xda\xda\xcfO\xf0\x143s\xf0\xc1?R\xee\xba\\\x82B\x8e\xbc\xfb\x7f\x8c\x81\x8bh\x15\x17E\xbeI\x8fo\x95:\xb2S\x84\xf87\xd8\x0e\x8cc\xb8\x13\xa8*F*\x16p\x03\xc0P\x1cG\x051\xf8\n\xa1\x9e\x8b\xbc\x06.\xee\xfa\xc2\xb3#\xfc\xcc\x83\xf6\x95\xe6\x95\x8beW\xa2\xc4\x03{\xc1\x013\xed\xa5\x9a\xaaH\x94~+j\x1e\x0f\xc3\xcc\xc8\xf3e|b\xf6m\x99\xd5\xb0k\x8b\x0c\xfc\xfc\xf3\xaa\x15\xbc\x1cj\xd4I\x08\xc2\x04\x877p\xdc\xfaW\r,.\x8e\xe6\xf0\xa5M\xe5\x99\x95\xbe\xaf\xd4\xa6\xda\x00d\xebBt#\x1e\xf1\xe4\xcd1v|9\xeb\xdb\xf0IKY\x12\xc4\xe6s\x99\x9c0\xef\x1e\x1b\x08_\x909C\xe1F\xfa\x94\x8f"0\xe5b\xba\x88\xd2\xeb\xfcD\x9eBsE\xda`S\x1d\x10\x8cj;\xcf[R=\x81*\xeb\xbb,\x81\x81\xde\x1b\xec\x0b\x17\xe5<\xb3pda0\x0f\xfb\x9f\xd1\xec\x84\xfcp\xb2\x07\x1b\xe2\xdf\x08T.\xbb\xc3\x7fS\xa6z\xaa\xebK\xcd\xd8\x920\xdc\xf2\x0bV\xbc_n27\xb9T\xc3A\xa0\x81ka\xf5vV\x84\x1f?\x8f\x9esz\x8bv$?T,\x0c!\xf7\x0e\x002\xcfd\xfc\xf2\x95\xca\x8a\xf1`L\x05\x87\x8d\xd6~~\x83P\n\x13\x99\x7f~\xaa\xd0\xa9\xb9x\xbe7\xa3x\xd0m\xdd\n\x7fd>\x97?\x94JV\xf1\xe2\xbd\x98Q\x0c>\xf7\x05\xe3\xf7\xcf\xff\x99z\xb7\xba\x19\xc6\'~H\x98\xf0-\']\xd2 \xfa\xb0K\xee \x82\x19\xd4\x1cc\xb4x+\xe0\xd4\xe4D4\'\xa0\x9c\xd5\xe6\xdb\x92\n\xa3\x86\xc6\xf3o\x02\xb6Y\x88\xda\x12m\xa5\xbe\x19U\xa7\xa3z\xeaIh\x01\x03\xbdl\xdep\xd6\xbc\xe6t\xf9\xe1#\xad\x86e\xb0H\xa5qn\x84\xf8\xd4\xf5X\x87\xc9\xc2\x03\xb3\x84N\x8c\'V\xa5\xdc{\x12\xeb\xa4/\x9bw!\xa8|\xc9\xab\xd7\xb3\x16j1kh}\x140\xd8\t0\xa5o\x89\xa1\xd0\x80\xf64\x94,\x19\x8cr\xeb\xa4x\x17j\xb8p\x90-M\x02&\x06=\x8d<\xa4\x10\x00\x15\xcfCu_\xb0\xa8\xf3\xb2\xc5\xe8\x02\x830C-i\xb8\xc6\xfd\xe4Nc\xbc\x1a\x0c\xa6N\xd4\x81\x1fi\xf5T\xca\xf9\xa10\x05\x88\x1b\x90\x19A*q\xacCJ\x13\xday\xde(8i\xa1\xa6Y\x85\x9d&P\x08\r>\x13X\xd4\xfc\xbd\x18\xa8\xf7y\xad\x90::f \x99=\xd6\xda\x91|\xf2tbF\x91JAy9D\xe3\xd8\xc8<P\xd4*y\xf7S0[\xe4\xe7!\x12\xed\xd68\x1d\xd8\xd8 \xbb\xf3\xfd\xcf\x9e\xeaKB\x87m\x12\xf9\xb2vg\xe1\x06\xa9j\tx\xad\xd3y\rc\xcdH(\x92\xbd\xcf\xe2\x13\x17~`\x1b\xb6\xd4\xfd\x01\xc5\x93\x8b\xd8^h\xf7s\n\xc4\x1b\xb1\xdbT\xa1\xae\xc3pB\x0ch\x914\xc87\x11\xcf\xdck\x1f\x05\x9e\x19\xd1D\xf3D<;\r\xa6-!\xa3X\x82\x8e\xd5v\xef/\x89\x9f\x81\x9aZ\x18x\xfcHDc\x11\xb4\xc2xVL\xf7ne\x01\xeb\xa2\xfaj M\r?\x05\xd8y\x07\x84\x8al\xab(\x8ab\xeb<\x86\xe7\xbd\x1e\x07T\xfe\xee\xf5TD\xa0j\x86z\xbe[\x95\x1d\x1b\xe8\x08\x84\xacK\x06?\xeek\xb4P(\xba(\xe3\x01\xc9\x1c7t\xe1\x81\xd2\x82 \x18\xd4{K\x9d\xb12\xfb0\xe6+\xe5\x7f^\xb3\x97\x1f\x92\xc4(H\x909Y\xac\xaa1R\xc6\xd8\xa1z\x10$\'\xd3~\x08\x0e\xa0\x81l\x11\xc7\x8e-LW7=1\x87\xe9\xb2\xe3j\xb0\xdaN\xe4~Sp\xc5c\x83N\x85c\xe3M00 \x85\x84\xda\xcbfT\xe1+\x12\xf0\x12\xa8\xaa\xd3\xe0\xadPc\xe7K\xe8\xdfV\xe5\xa2P\x02\xa8\t\x97B\xc18\x97\x908\x17h\xd9N\xacw\xb6\xf6%\xab\xa1opPcW\xe9\xc7ej\xecY\x1b\x1d\xbc\x93\xe8\x82\xe6\xe0\x95\xb1\xb4tC\x18\x176\x92\x9bB\x04|B\xb0\xb2\xe6\xe7.\x88\x94U\x93\xdb\x8d\x9209\xea6\xff\x10\'(\x9ePN\x1b\xfc\x87\xc1X{\xdb\x14\xcdj:\x14\xbb\x84\xf7\x86|lU\xe8\xcf\xa5E\xe4\xaf\xbdc^F\x11\xfd\x17\xea\xc6\xcalB\xe7\xa39\x99\xd5\xba\x1d\xa1\xc4\xcd?\xd1n\x03\x06s\xa5\xf3\xa5bG\xb6\xdaI\x1f.\x14\xfa\xdai\xb0H\x99\xbd\xfbT\x0fF53(\r\xc1\xc3o\xc8\x8fF5\x9al\xc5\xfa\xefZ\xa9\x83\x93\xcflh\xc7S\xe5\xf0u<\xa8m\xb3L\xc4t\xbc\x03\xe9\xac\xce\xcev\xe9l\xe1\xa3\xca\xf5\x13E\xbd\xfdh\xe1@\x01\x03\xa3\xe7\x16mM\x80\x04\xff\x89I\x1a\xebQ\xe6\xb4ngT|n\xac\x83\xc7\xfa\xddr\x01\xc7a8\xe0p\x07\x122\n=\x8d0\xf7bN\xb3\x1a\xbf\xc0\xa24\xfc\xb4;\xbbz3\x06\xf0\xb4\xaa\xa6%gA\xc5\x97\x0e\x93\xe0\xa3\xef\x87\xb2\x88\xf6\xa9g:x\x82\x1d\xea\xb4z\xf6\t/\xe08k\x0f6\xfc\xf7\xcc\xb3\xab\x1b2N\x04\x1fIm\xb8\xb2\'I`\xdf\xd5V\x9d.\xa5\xefEwC\x91\xb8\xea?(N\xac\xf5(\x1e&\xcb?\xc9\x14P3~\xf4a\xca\xee\xb5\xd5\xac5"\xa5\xe2#\xbb\xbc8\x8bz=u\x19\x12ap\x13\xc9\xba-W\xe14\x90\xda)\n\xaaDnk5\xd7*t\xe7\x0f\xe5\x93\x99)\xe4\xb1W\x14\x1332\x1a\xb8fr\xd2(*\xc1\xd3\x81\xbc\xb9\xb8:X\x18\xf8\xfdR\xe3zk\x04\x14L> CHq\xb0\xd6\xd3Okt\x89\x86\xdd\x93w\x83\xa1&d\xe1V22\x8d\xbb\x7f\x0e\xd5\xb18\x1c\xdf\xbc\xfbY\x17[>A\xc8\x8e^\x1e\xbeO\xe5\'%E\x0bt\xc2&@\xcf\xae\xddr\xeb\xb3\xcc"\xe9\xb5WJa[\x94\\\x9b\x8f\xa3\xdf\xd5a-N&\xfb|\x18|\x9c>\x14O\xa9\x1b{&p\x8aC\xe3\xa0\x8cT\x80]\xc2\x08\xc2\x07\xa0\xd0\x91k\t9\xaeB\xe8\x9aXL\xeb{h\xf8\xd9\x8f\xe4\xeb\x10\xd0\xb1\xe4\x82\x90\xa2,n_K\xf0\xaf\x16\x0e\xc5\xc7\xba\xa1\xd0\xe6\x7f\x99\xfa\xee\xbe(\x96\xef\xe9\xb7\xa2\x12\x04\x01\x99\x99\x9d\xd0\r\n*\x82\x8a \x88Hr\t\x13A\x91\xe0\xba$\x05^\xfb\xa5\xaa\xab\x9d\xfb\xc7\xf3\xf9}\x1f\xaf\xc2\xee\x84\xd3\xe7\xd4\xa9\x80\xac\xae\x87I\x9av|\x06cb\x11\xcc\xca\xbf\x04\x0f\xb8\xbd\xde\xce}d\xc5\xdbG\xf2\x06\xe08\xc4\xc5\xcc{Y\xeb6\x0e\x17pp\xa76\xd0e\x1a\xc9\xca\xad\xc4\xe2\xc7(\x81\xb2* U\x86\x19r\x9dl\x00~\xa8\xde\xe1U\xbf\x97$\xb3\x80\x80\xb8\xa9\xb4g\xe2\xdb\x98\x0f?9?\xd8rtA\xc6[,\xb9\x16?\x10\x1d\x96q\xd0&]\xbbQ\x08\x13\x19\xe5>L\xb0\x12\xc95\xbbyR\x89\xbaB\xbf\x08\x89phY\x13\x8c\xe0\x92\xe7}u\xcdn\xe3\x86\xef\xf8dQ\'\xbd\x97\xa04\x01\xd3]I\x1b\xc3\x97\x83\xa5g\xe5\x8er\xe8\xa4Cd\xc42\xef\xabX\x93\xaf\'\xcd\xde\xe7$\x03\xa1h\x08"y hU\xed\xd9:\x85\x10[N\xdb\xea\xdfH\xc2\xec\xb4\xb1U\x9c\xee\xccKW\x1fk_aEC\x0b\x10\xc1\xdaho\x12jm\xa1\x94T\xa4\xb3\x8529\xb7\xf9\x8c\xfe\xdb\xff\xff\x81\x95<\xa4\xaa\xdeOrZV\xc3X\xe7>uO%\t\xa7K^]\xccj\n\x15g\xbb\x8c\x8a\x9f\xb2\x99\x84/C\xa8\x94\xab\x02 5[-`Ae\xbc\xf8\xa6h9\x15d\ry\x00\xcc\xb4\xcb\x8e\x87\xa2\xd5\x7fM\x19\xe3\\+V5\x82@l\xfe\xe4\x89\x1c\x12\x98I\x1b\xebZg\xfe|f&\xcf\xca\x13]<\xc2\xd1\xde\xe1\x10cp\xa0\x92n\x83z\xefB\x14\x16r\xa2H\x91\x8a\x86\xfb\xf2#\xe2\x0c|,f\x88\x97\x1dT\xcf\x98\xac\xbcrL\xd1\xc7O\x89\x1c#\xe9\x85\x83\x7f\xb2\xba>\x1av(]\xeb\xe6\xfe\x97\x17h\xa8y\x86\xca\'t\xb3.O\xcf\x9e\xecy\x9bh\x0c\xe3^p\xef\xff\xb4\x12\x8c\xe6\x9d}l}\xfa\\P\x97\x9eMR\x8b\x15\x0c\xce\xcd\xb3\t\xda\x84\xf8<\xf8 \xa0&\x13\xb0\x90\xf6\xde\xbb\xab\x12H\x8e\x9e#\x0f\xa5\x10\xc94\x80\xad]\xa9\xbf\x9fG\x1f\xb7\x15U\x1aHc\xc6x6\n\xc8?q\xf7\xb6#\x8c\xa4\x16/\xcczq`\xb7\xaf\xa8Y.\x07\xcd\xf0\x02{D\xa3\xddK\xd8\xb6\x0e\xa1\x02\xe9\x1aq\xdf=k%\xe4rQ\xc3\x86;\x07\x00\x046\'\x07c\x03\xc2\xcc\xe2\xde\xff\x0c\xfaD\xa8u\xb1\xc8\xd6\xe7\xc0=\x13<\x15B\x03V\'c\x17\x8c\xa7\xbfS\x10`\xad\x93\x86K\x8d_j{\x813\xd1\xc03\xc3\xb2$\xd9LU\xf4\xb42kt\xf0\x07Q\xcbl\xf7\xb5\xae\xd224\x94\x13]\xdd,"\x97\xd6\x04\xe0\x80T\t\x08\xa0\t\xfd+}\xa3H\xce\xfd\x05\x0c\xe9\xf2\xdd\xcf\xc3"S\x84:<\x15\xa5\x92+\x90\x86\xbc\\\xfd\xdfRP\xb8\xcbM\xd2L\x1e\x06\xff\xe3"\x17\xb2u\xcd\xc23\xd7\x9e\xd9\xce\xe4c\xf9E$\x92\xa4\xd3P\x91=..\x13\x9c\xbcr\xf8\xe9\x14\n\x80\x0f\xe0\x0fX\xe5\xff\x0e\xb7\x0c\x85:\xbaX\xc7\xc5\x1e\x93\xef\x1ejfs\'\x8b\xb0t\\ab\xaa\x166\x83h\xb4|q\x88\xf2t\x81\'>\x9b~\xcd\xfd<\xe4%\xecTI\xaax+\xb3\xd3\xdc\xaf\xb7\xa1\x9a\t\xd3m\xf1\xe0Ju\\\xa2\xa8\x11\xdc\xef\\J\x07\x84_Sl1\xd2\xba\xf8\xe6\x9e{"\xff\xe9:\x85\x84\x07\xf2\xeaf`\x00V\xa4\x8dQ\xf4\xa7\x17F\xf0W\x14=\x05\x01\xd2\x97\xd4\x997\x8b\x8dA\x86\xe3\xdfx\xae\x10*\x9f\x89N\xc7\xe7\xc5.\xbev\xef[\xc1h\x96\xe6_V\xcdC\xed\x04\xae\x97-w\x9fB.\x15?\x96\xca\x03\x86\xc6\xdcw\xe3\x92\x97\x1di2\xb4\x96\xa8DJ\xad\xb0\xcb\xc8#|t\xac\xb1\xf4*\xfass\xc8\x17\x05Lc\xf5_\xb0h\xe8\xf6%\xd3\'G\x08\x08\x7f,\xe9\rWRt!\x17\x16f\x1e\x06\xcdq\xeb\x8fTA\xce\x93CA\x98\xbbC\x07\x8d0\r+\xf5\xd1\x1c\xd5\xa3Y\x83F\xa3\xb3\xd3\x1e7\xa5\xd7\x1d$-\x0eK1C}\xf2H\x05\xb4\xac\xbe\xaa\x83\x08\xe8\x0e\x8fk\xb3t\x84\xaaB|>\xfa\xa3\xf3\xbe\x11Y\xd7\xe6g~\x96\x14t\x92\x8b P\x95#\xe7\xee\xb9\xe79\x19?\x92#S\xe3)KJ\x1bv\xfc\x8c}\xf9\xc3h\x1e\xb6\xc1\x9d\xc8\xadVW\xa8\xc4\xf4\x9d+\xc1\x8d\x8c\xd2\xf8\xb4\x18\x9e\x94XK"c\xae\xa9\xf2_"h%-\xcd\xc7\x87\xf0\xd5`\xc8\x96\xb2\x11\xf7\xc6pd\xccV\xe6\xd55\x1c\x03\x82\xc7\x99\x00\xeaz\xd7y\x06\x01\x927\xab\xbbW\xde\xfe\x8c\xb3\xc3\xd9\x11\x14Nq\xfd\xf9\xe0TT(\x1a]\xc6^\x8a7#\x9d\'L\x9f\x8bd\xf8\x1b\xbeZ\xb6\xbf\x84\xb3\xc7\xbe\xa2\'\x84\x8f\x0e?E\xa15\xd4%\xca\x7f\x84\xd0Iu\n\xa5\x0c\xe9(\x94Q|\xbf\xe9\xf6\x00\x0e$\xb1\x84\x02$\x8cS\xcfI\xbe\x1a,\x89Jz%\xc51\xf9 \xb7>\x83K\xca\x80\xd0]t\xb5)\x15m\x052\x01\x9a6<\x84J\x8a\xaf\x81.Nc\xa7y=\x9fz\xb5\x13\xb6\x10H\xc0\xe2\xbf\x16C\x86E\x84\x90\xf3\xba\xf4\xbf\xe0>\x1b\xa6\xc5\xe1\xcb\xd4Z\xa9\xd5\xc0\x0e\xbd\x87Z\xaeA\xb1\x0c\x06\xa5ki\xbc\xe3Z\xa5.\x03\xc0\x13\xbe_P\xdf\xa2#\x08\xe7&\xd5R*\xd4\xb2\x08\xda\x07)\x97~\xbdH\xfdn\xb0&U\x86\x81\rN\x7f\x8d\x9b\x81\xb8H\x87Y\xc0\xb8!~\rd\x03z\x112\xc2\xc0\xbe\xabc\xcd\xb9\xb9\x98.\x14`U\xa7c\x1a\x96\xd9\xa7SE\xc2]\x18\xe9Y.\x95\xcfg>\xe0\x035\x832b\xcd%\xf2 C\xba@\xb6z\xa3\xd0\x932\xfb\xcdD\x0b\xe2\x03\x83Z@\xe6\xe57\x18p\x15\xe3\xd8"\xc4\x10:5\xe5\xfbm8O@\xd0Yu\xee@~-\xe6_\xa1[3\xf9\xe5\xd1\xa2h\x92<s=\xfe\xa9\xb7\x8f\xee\x1d\x9d\xbb\xfe\xaf\x13\xe9\x07\xa4$\xa5\xda\x82\xceI\xb4.{+:w-{U"\xee\x89\xf8\x12\xe5\x8a\xd0\x94Pv\xc5\x92\x06\xd6\xd0\xa9\x86\xf23\xa2\xdd(\tp\xb3\xa2o\xa0\x19\t\xfdJ\x9ez\x97\xcd\xbe\xacI\xf3\x11h\x0cjPh\r\xe7a\xd6\xea\x8f=\xf7\x8a\xdb\x08\xde\xd9\xe9\xc5\xadRFH.\x84\xb6\xdb\xec<\xf9z\xf3\xfd\xe7+Y\x1c\x96\x9fn\xa4\xdcKC\x94!\xf86\xe5\xd2\xd1T\x087\x0b\xbc\xf9n\xfa\xfc\x16\xbc\x9bp\xf8\xcc\xa7\xb2\xdec\xf6\x02\xb1\xbbQ\xeah\x03\xd18\xec\xcc\x1f\x0b\x84\xaddD\x11\xf0d\xff\x84\xddY:\xfa\xb6\xa5\xa6T`1\xd8z\x9da\n\xd7\xf3\xf2+\xf0\x8fptL\n\x9e\x02\x18M~\x81\x13\x83.2\xe1\xc9\xb1\x90kg\\\xc4\xe8\xa3\xc7\xaa\xdf\n\x1e\xacd\x9bRa\xafk\x99\xf8G\xa0\xb8\xe39r\xcfE\xb9\'c\x16\xfe\x9c\x88\x00,\x8bc\xc0V\xd1\xdd\x97\xdf\xbb\xed\xe9[\x97\x7f>\x06[\xf0nI\x95z\x93\xebT\xe1\xa3\xace/\xfbc\x07\x0bP\x858\xbb\xfaL\x8a\x9dJ\x90_\x81E\xb21\xb0\x8a\xae!\xc7\xa7\xed\x8d\xf1\\\xf2jwiM\x9f\x07\xd1*\x85=:V\xbca!\x1f9o\xd4_\xd7PtqL\n\x14{g\x15xH?R\xceh\xe5\xb0Dd\x89\x0f\xba\x00\xe3\xca|\xdc\xd2\x12\x08Gr\x88\xbd\xae\x0b\xb6\xb6\xa0\xbd\x99L\x9c\xc3Rd^bN0\x13\xa7K\x15\xfd\xbf\xce\xb6!\xbc\x85\xa5Kh{C\n\xaa\x0c\xb5\x04\xc8\x9b\x90l\x92A){\xa9\x11\xab\xe8\xb9\x06>a\xf2\xf5\x85Z3m2\xb8\xaa\x81\x8c\xb9\xb1\x9fJ?\xb2\x0e\x89\x06\x17h\xcag\xd4\xe9\xcf\x13\xe9\xeeB\xf78[\xfb\x83\xec!2\x93|\xfe\x11\xa5\x14\xbb\x7f\x0f\x9f\x0f\xee\xafi\x05\x15\xcf\x7f\xd16\x95Q\xa0;\xb8\x8d\x95\xf9\xf3\xa2\xa4\xdeao\xfeJ$\\\x92\x12\x0b\xd7]\x86\x19jj8\xe5.\\\xad\xac&\xa2?n\x8f\xff4\x90\x0b\x92\xdd\x14%\xd4!\xcf\x9bkjM\xb9\xc8\x16NX\xd9duu\x1b~+\xc5\xe7n\xff\xd7\xf1\x980\xbebV\xda(r\xc9\xa4md\xe9m\xae\x84\xf8f\xb4\x19\xa55K9\xa2E\x86w\xc3\x95sq!0\xb8\xac[_\xea\x9cJ\x86\x94\x1b\xd1\x0f\xfa\xd9lc\xab\xd9y\xbc\xee\xb2\xe3\t\xa5:n\xe8\x91\x97Lw\xfb\xd7b>\xe2\xc5-\xd62\xc5t\xc1\xb9\x13\xef\x0c+\x9a\xf9\xa4\x063\xd6U\x91\x03\x10\x9bf8\xd7U\x9a\xdesZ\xed\x0fMs_\xc5\x99\xeeN\xadS\xc5\x0cD\xf8\x1c\xd0\x14\'\x05\xcc\x14\xfb\xc5;\twCp\xd0f\xa6e)\xf6\x07E~\xe8\x88\x0bE\xd5\xb8sj\xbe\xdb\x85\xe4\xa4>8\xf9\xa1\xd5\x98\x0f\xe2j\xda\x90\xbe&\xefw\xfb}\x9dD\xde\xee\xbb\xc2\r\t\xcew%\xff\x11\xd5\x86\xa2*\r/\xb9}\xbd\xa8\xfeC\x1bp\xd3\xec_\xbc\xd0\xcf\xee\x1ck\xd4\x11~l=\xcd.\xfa%\xdd\xa9\xedI#!\x7fpj\xfd4Z4\xd2\xf6\xb0c\x86\xff&+_\xb1KwP\xcd\xb6U~\xab>\xb3\x9e\x91\xfd\x10\x8d\xd7S\xf8\x15\xa6c7\xbb\xbe\xb2\xe0\x93pp\x8a\x8fA\xd8\xb3\xf1\xb7\x9f/\xe6\xdf\xd9n\xf7\x9d\x16\xd3NB\xc0\x16m\xfcs\xf6\x82FW/i\x9a\xf6F\xa3\xbd\x15W%j\xa5G\x95<\xb7\xe87\x95@R\\]\xfeD\x8f\xb37\xbd\xbd\xdd\x95][\xc1\x85\x10\'\xdc\xe2D\xe3\x0c\xebh\x87\xc1LH\x8e\xa4\xf35Ov\xed\xc1M\xfd\'\xf7a\xf7E\x87z\x1c\xacM\xa8:\xab?\x9d\x8b\xc6\xcd\x05\x93\x96\xd5\xd4\x83X6\xf6\xc9\x96\x00\xf7l\xb4x\x02\x0e@.\xfePP\xc8b\x87\xff\x95aa4e\x18P|\x193z\x99\x1f\xad\x186\x8e\xc5e\xe6M\xd4\xf0:\xa0.\xdb\xaf\xf3\xbe\xdaMk{m\xa0v\x8cF\x95\x1d/\xae\x16\xc9E\xc1m\xe5N\xfd\xc6\x0e\x8a\x8a\x12\x8d\xec\xdd1\xebjc\x90\xe6#3w\xc2`\n\x19\xa3\xfaP(\x8bUK\xd3\x00/\xb5\xb7$\xc2\xc3\xd4.\xbc\x1f\x16\xdf\xae\xa3\xc1B\xa7K\xa0-\x14\x17\xd2\x1d\xc5\xdb3\xfb7\x14\xf9\xd5\x99/\x0e~~\xf6C"\xc0f\x0e\x04#\xfb]sv*}\xb5R\x1a\x02\xad-\x8cb"B\x85\xa3Pn\xa98P+\x86IS\xfb\x8c>\xdc\xa3\x95q+\xbf\xa3\xcc\xeb\x16\xc0\x00\xe1\xab\xcb=\xc9&v\xc6X\xa3Tz\xd4C\xd1i\x9da\x82\x06\xb2\xc2\x8b\x07\xdd\xff3\xb2=cE\xf29\x1e|\x1f;\xb2y\xe7\x12N1=6\xdc\x9aX\xe4\x1d\xed\xe9\xf0\x93$\x98\xdbL\xaf)a\xb7\xe1\x9c\xfd\xa3\xab;QR\x02\x86\xad\xd2QgW\xb5\xcc~\x9c\xd4PI\xd4\xfcfY\x0b\xab\xd4\x8b\xfaT\xcfh\xbb.\x92\x14\xbb\xb0\x98x\n\x8d\xdb\x86\xb5u\xc3Wa,\x01]\xf1~k\xd1\x1cJ\xa0\xea7\xf2\xc42\xa2\x8c\xeb\xda\xf5o\xec\x18\x9f\xaaO\x8b\xd4\x85\xe7\xe2\x81V\xf9\xac\xc8_\xc2\x9e\x82R)\xa5\xb5\x02&\x9d\xfeAvF\x05\xebi\xe863|\x90\xabu\xe6\xc5,\x9e\xabR\xb3@\xefJ\xbe\xc9\x04$\xae\xb3\x92k\x9c\x949\xc4\xad\xc5K\xdfe\x9ez\xbd\xbd\x1c\x1f*s/\xa4\x99\xf0\xea\x13Q\xd2\x08\x12\xec\x1d\x8c\xce\xb4\xee\xaf4{3\xb7z\xd0\x9c\x94\xaa\xdfv\xce4K\r\x1f\xadI\xfc$V\x82\xe5\x84\x14\x14\xdeY\x05m,\xe3\x96\x9d\x83\xad<\xfe\r\x970\xf1\x93\xab\x1fB\x81\x92\xfe\x1e\x02\xca\xe8\xd8\xcc\xd2\x85\x10\xdc\xa2\xe6\xfe\x1bn\xeed\x1d*7\xb8\xd0\xc2\xd6M\xed\x7f\x95H@)\x06\xf7\x9e?4ZA2\xeb\xd2\xd9\xa9\x1cA\xe1!\xb0M\x7f0<\xd3\x9d\xa9T\x03\x82\xce\xadP_\xe2a\xa0`\xd8\xcf\x8fG\x8b`\xac$0\xda$\xf4`i+\xfdR\x0e\xe9`\r\xd7Z\xd9\x90\xca\xab\xbc.\xd6$8m\x199\xc5\x84\x91\xf6\xe2\x05|\xce\xe8\x8b`\xeb12&\xe4\x02\r[\x90Z\xa7|\xe0ucE\xb5\xd5\x9b\xc6\xd8\x9f\xe9\x10\xb2\x1d\xa90\t{{\xaaD\x13^\xcc^\xecO\x8chq\xcc\xea\x89\xcc\xcaPv\x84\x0f=\xf6\xd3%\x89g\x8b\xdb\xbf:\xc3`\x0bS\xd3M+\xabN\x06.\x14Pe6\xe71\x1c\x9a\x1a\xb2\xc8\xe4\xfb[9\xe2\xfc3R\x98\x82\'\x9cY8\x17\xfe\x13v\xb0\xa0*\x1ao\x1d\xb0\xb6\xe9,\x03a@\x19\x7f4\xe0\xe1\xc3^;(6\xb7\x8f\xf1\x83y\x80\xcbE\xdax+Iz\xe9\x7f\x978\x05\xbf\xa5\xbc\xc4\xa5CV"fB\xfa~ZI\xd4\x02Y\x96T\x9aV\x1d\x89\xf3\xe5\xb2\xa2\xd9\xcb\xcf\xb1\x92\x98\x98\x8a\xd3\xf9\xf9g@\x9c5\x92\xda{j\xad\x1b\xc9\xac,\xf9\x19W\x1c\xe2\x91\xbc\xde\xc8\xb5%D\xbc$\x8f\xa3\xe4\xf1\xac\x04\xa8\x91\xbf1\xef\x942\xd0i"\xf9\xe0qG\x8f\xa9\xb1AX\xb5\xcd\xb7|\xd4\xd8\xb5\xf2\xec+\xbf\x1c\xedpa;!w\x85\xfa\xd5\x92O\xe8n\xe3Qk\xd1\xd0I\x8f\x8e\x99\x9a\x06ja."\x1b\x03\x00`\x92R\xda\x9dC,\xbe\x8c\x99\x12\x1dB)[F04\x8fP\xdc\x82\xa6\x98^W\x82\x14\x17\x00\xe77J\xc2\x12\xe1\x9a63E\xfcS\xdb\xd8\xfcN"\xb62\xfa\x8d\xf7\xc6bER_~\xc3R\x0b"\xc4\x1aD\x90\xba\x10_\x8a\xe8\xaa\x11\xf5\xdf\x93\x92\xd9\x08\x0c\xc1v\xdfh\xdc&0bv\xfe\xf8Xn\xb8L\x15\xaf\xf6\xa0\xf0\xed\xc0U\xbd\x88\x01\xcf\x80\x1f\xc7\xbd\x91\xd0iXK\xb9\xca\x93\xc9\xaa\x98\xf3\xd3\xef0\xbb\\\x15)\x1a\x1c;[\xc7\x9f\xbd\xb5t\x00Gd\xf6c\xe4\x99\xe2\xfe\x97Z@\x88\x07t\xba\xdeB\xd7\xa5\xf5\xf8\xfb\xce\x84\xa8\xfcA\xbb\xe70\xc6s\xe9\x85te\x13c\xea\x11\xe5\x97t*\x03\xbd\xf2vK%\xb9\xce\xbfh\xb2e*\xb5\x11\x8b@6R\xec\xa0\x94\x11T\xbb\xf0\xf7\xaePl\xaf\xfc\xc9\x96\x8egY\x11\xde\xf2\xef\xc9c\xae\x90\xec\x86\x8b\x10\xd8\xbb4\xe1\xae\xe6\xa9\\\xefC \x1b\xa5Rkxz8P\xa3\x8eW\x90K\x89\x1c\x04<\xa0\x17\xa5\x92x\xf8\xb0W\x16\xd6(u\xf0G\xb5\xb9#\x9f\x80\xce\x91\x10J{z%\xbej\xc7}\nn\xe3\x8ag\xab:#\xf0R\xd6\x7f\x8e\x04\x9f\xc5\x8b\xde\xbf\xc2\x8bo?\xc87!\x17\x12\xe4\xf9U\xb0\x06/\xed\x12;\xb4\x81\x15|\xe7\xb3{i\xff+=\xcb\xb9\x08P\x88\xaf\xf4q\xa7\x14\x1da\xcf^\x93f&\xe6;\xc5\xd9,\x07\x90\xd1r\x9c\xad\xb7dN\xd0\xd8\xbf{\xba(")q\x15Q\xc0\xb0&\xfd\x9dz(T\x16}!l-\x98\x92\xe4\xe9\x11\xd4\\\x9b\x83^ \x7fe\xc9\x8a\xad\x92\xe1H~-\xe4\n\xe8Mp\xa3\xe1_\xbf%\xd5\x94\xefZX\xb7\xda\x9b&?\x9a\xf9\xa5\x9f\xe2\xe9\xfb\xd2=T\x8e\xf8\xa80L\x03\xc1v\xe1e\x86t:\xc7\x86\xd5\xfa\x18\xc2x\xd3]X\xa3/\x154\xe70\x93438\xa9ka?dN\x191p\xd1\xde\xf8(\xf3J\xe7\xb8\x11}"\xa4\xec\xd7l\xb3\x0f\x86P\xd1\xc2\xf8\xb1\xf3^\xed\x1b\xaaQ\xa3D\x922\xa5\xc3\xe4)\xd9H\x880\xec\xa0\xda\x99\xa3\x00\x13LyF\xd5B\xd4\xc7\xd8\x98\xfcP\xa0!\x1b\xb2\xd3\x9dnwu^\xd9 \xe5\x17O\xef9\xd6\xe9ZC\x13d\x19\x92\xceh\x07,y\x89b\xc7?\xba\xbdH<\x0cm~\xc2\xf4\xabZ\xda\x00\x14\x89R\xeb&\xca\x15R|\xf2\xca\xab\xa6\x1aq\x8b<\xa1\x87\x9c\xf5ue\x89\x06\x7f\'\xc5d\xa0\x9b\xd5\xf6\xf6\xff\xa2\\`\x17Q\xd3\xffB\xd6\x1e\xb9r]*\xe5\xb6rsG\xf0v\xa2]\xf0zcE\xe7p\xbb\xa7\x153\x04\x7f8\xb8\x0b\x81\\U2\xf9\xa8{\xdaz\xca9\xbf,pkr\xce\xc8\xc5\xb1{\xb1\x8d\xdb__@\xd2\x12\x0f\xdc\x080N\xafoq\xbf~\nb\xa1s\xfdc0j\x83\xccs\xd9v\xb4\x93\x16\xbe\\)\x12\xc6e\xbf\x94\xf7\x0f\r\xd1S\xb9<\x87"9\xa3\xdb\xf3\x89\xbfM8\xa4>\x89jF\xf4\xf3\xd5+\xa5?\xe5m\xf4b\x81\xed;3X+M\xe2\xcd\x00\xf8V\xf9\xde\xc9\xe1.S\x8c\xa5J\xb4\xb2I\x0fmJ\xd7\xfd\xf9M\x11*p\xbc\xf1\x01\xac\xc06\x01I\xdb\xe5\x95\r\xf5\xda\xbc\x95\xd0\xf9t\xbc\xc5\rX\x9fU,F\xd2:y;\xf3\xb1\xde\xc3\x17\x82\x93F\xb8r0(\x10\xd1\xa8r\t$o\xea\xd6S\x92\x94\x00Fx\xa6=\xfc10\xc4\xa6\xa6c\xc8o\x85\xbe\xe6\x0b#s\xb0wNK\xcda\x86\xcb\xf8m\x8f\xe82Y\xf2\x9e\x1d\xb6\x08\x8a9\xe13*t\xc0\xdb\xa7-P\xb9\xbf\xa0?\xacd:\x13V-\xe7\xaa\x91}@\x13|k}l\xadd\x88\x01L\xf2\\(\xee\x1f\xdc\x1b\x1a\xd0\xe9\xe0\xcakd\x89\xe4\x03\xdf\x17\xdd=\xe5M\xb0\'\xd3\x97\xd8\x1f\xd72\xa8\xf1\xc9\x80\x05\xe2\'\x02\x10J\x03\xf9\x1b\x95\x9a$B\'\x01\xe4\x95#\x0f\xb2\xf3S\x9a\xb3B\xf3\xa3\xcc\xdb\xad\xcf\x85.eu\x13&\x90\x0c\xd5\x0b\x9f\x0edM\x9c\t8*\x951\xd5\x84\xaf\xdf{\xb7\n\xef\xaf\xca*\x07U@\xfen@\\O\xea\x96&\xb4\x80\xaa\xe5\x9bDa\x90\xf6\x0c5w\x93\xa5_\xfe\xcaO$\x1d\xbd\xb9\xeb\x8b\xc4_\x89\x99%7\x8b\xb0\xe3\xc5\x05\x81\xfb\x95\x85W\x15*\xe5\x90@\x00\x8b\xfe\xa4V8u\x95i#\xe2\xfd}\xfeq\xca:\xf1\x8a\xdb\xe4tY\xdb\xfb\x82\\R\x05\xcfS\x01\\^\xe6r\xe3\xeb,_\xff8\x1a\\S\xd2:\xce\x18b\xa1\xac\x9f\xcf$Q\xe6\xfau\xe6\xab\xf6>2\x9b\xaa\xa3\x8f\xfdVJf\x8b\xce\xd4\xe2,\xde\xf6zD\xf9\x04!\xbb9\xbe\x8d\xc3<\xa3\xbb\x7fE\xadPT\xbc\xd1YX\xe98#\x06\xc3*\nM\x0b\t\xa0\xa1D\xba\xdal\xf9&\x9c\xb7\xa5\x16\x0f\x99\xda6p\x12A\x91\xe0\xd0+\x91z\x8d;H)W\xcc\x88\xb8\xef\xd2\xce\xca\xeb\x91\xfc\xc9j\xce}\x96L\xc2a#\x0f3\x0e\xf1\xf1\xb1\x9c\xa0\xb2nw\xee\x87**\xf1E\x861-\x8f\xcd\x89aJ9#\xe9\xa9O\xb8\x0c\xcb\xfat8;q\xf6\x81R\x13i,\xa5+,\x95\x11\x17\x02C\x92W\xbf4\xb5\xbb\xfe\xd9]5\x8bW\x93\xe0\x89Bt\x88\xb7P\xa80\xc5\xfc\xc1\\\x9cy\x0b\xc9\x93Q0\x1f\xb1\n\x9a\xc3<__Pw\xa4\xdc\xb2Z\x86\xbe\x85\xf5fB\x9d\xec\xf6\x91\xbc\xfc\xf0\x05|\x9eJ\x15o\xf3\xed\xab}@\xf7\xf1g\xbf`Yh\xf3\xbdl\xf5B\xf4\xf9\xfc&y"\x1bcfM!\x93\xdc\x9b\xd6\xe7r\x0c\xc9q\xa1\x99^\x1fF\x9b\xd2\xd4\xd1h\x98\xdd\xc6\x81\xc7\x97\xb0\\u\xab\x8b\xfd!\x0f\xdf`\xaf_\x8b\xc5\x96\x07\xd7\xd2\x97Wv\x05>\x10,\xce\xd5d\xb7O\xb2\xe0\x88t\x1f\rt\x0cy\xb2\xed\xfe\x11\x1dc\xc3\x01\xe5\x8d\x12>\xb88y\xa4%X +\xcdJ"\'\xc2\x87r\xa1\x0c$7n\xa2\x97\x83\xee\xa1\'\xea\xcaS)\xfb\xe5t\xb7=\x9f\xc1\x94\x8a\xc9\x85\xf5%\xe7\xc2\xce\xbc\x94\xc0\\{\xe3\xab4\x1b\'^\'\xa91*\xf4\x12EYm\xe7\xf9\xde]\xba\xa0\xa6\x0f\xa1\\\xb4|&\x91A\xf1\xd2U\x82#\xa3X\xbc\xc4\xf7ZC\x15\xf4\xa6\x85\x01\x84\xa0N\x05\\j(\x8b\xa03\x8f\xb02\xa3+l\xb9%\x91\n)j\x13S\x9e\x1b\x85J\x05\xdc\x1f\x0c\x87\xb0\xd3\x0e\x9d\xe4V\x88vC\xbb\xd0\xf8\x8d\xce%\xd3nH\x0b\xc5h\xd9b\x844H\x82\xd3TV\xa3\xe1\xce\x0f\xb4\r\xd1\xb8\xc7\x93BA\x82&yF\x0c\xf7\xad2\xd0\xd8}\xc7\xff\x82\x97Nc\xf98`d\xe4\xee |\x0b?\x1bp\x94\xac\\=\xc3\x98-\xe6\xfd\xcc\xfbs5\x942\xb0`\xc5T\x8c\xb9-\xbe\xf3f\x83g\xcf\x8b\xa1\xee\xae\xa8\xeck\xd7\xeb\x99\x8e\x99}\x84\xfbY\xae\x93J\xd1D\xb5\xbe\x98\xe4\x1c\r\xe8\xd2n\xb1\xef\xc7\x97\xd7\xb2\x82\xa3%\x0b\xc2\x89\xb3?{\xcf%2\x95\r\x14Mx\x1e\xeeH\xef\x98\xcd\xdc\xe9\xb3\xbd\xaf\xdd\xde\x0f\x9e\xa9\xdd;5\xdfJP\xa7\xda4\x7f\x92\xbc\xfd\xf3v\x18\x8b\xa0*\xf9\xbb"\x91\xb5\x999\x9fx\xa2(q\xf3*\xf5\x89\xafK\x9a[\xf4\x90\xf1\xbeI\xef\xc3\xd8\x05F\x15\x18\xae!\x9f\xe3\xac\xac\xf8\x02\xf4g\xf7%\x8d\xc9\xf5\xd5\xe5\xd8\xd3\x10\x1eRJ\x95\x01\xfb\xbd\x8eG\x1c5u\xe2\x0b\x7flO\xdc\xb2\xb8M\xb6\xaa\r\x92\x9d\x1f\xfe\x14 \x1a$\xb1A$\xf3\xbcP\xe6\rt\x1fF\t\x0e\xe7?\x01\xce\x80\x15\x91s\xd6\xe8a\x9d\x9b,Mz\x16u\xf3\x1c\xbdd\xf2H\x92\x07\xe0\\<@\x18?\xf1z\xe2\x13\x06\xd5p\xee\x19\xb1\x93Ua\xebR\xe9\xd7fh\x99\xff\xac\x7f?9%\xec\x0e\x0f\xcd\xbf\x9c\x1f\x8e\t\x99^Rr\x0e!\x1d7\x9d\x8d%PGry\xac\xf3\x85\xec0\xae\xb3\xdb\x1d\xad\xda\r\x8dQ\x10\x8e\xd5\xcbL\x82C\x13\x01\xd0\'b\xe0\x15\xb8\n\x1b\xb3h\xe6\x89\x0bB\xb0\xc6\x19E/\x92#[\xf4\x86\x0f@\xd6#.\xcbn\x91\xc4\xec_\xb3\xfa\x044\x07\xd1\x8f\xab\x85\xe5p\x85\x94\x8fbq\x07\x98\x06\x1f\xa8\x12ho\x84\xfd\x06\xf5\x90\xf2\x17j\t\x850\x14\xd6%\x99\xbd\xe1\r\xd7\t\xc9\xc9O~T\xb6\xaawb7\xd4\xea\x04\xea[f\xf3 \x023\xcc\xe7ne\xb3\xc0\x99CFx\r\x82\x95mr>\x8d\x10\x10xf\xd6\xd1\x9c\x14\r\x1c\x127\x05\rr\x9f\\\xc6\x9f\x84/\n\x08\xcd;\xcf\xe08o\xe2\x83+\xf6\t==x\xc5\x1f\x01\x89\x1c>?k\xdf\x15Q\xd8g[\xa5EQ\xdc2o\xe4\xa5\xb6X\xd5\x1bUj\x9b\xbd\xfa\xa0e{0 \xbf\x85:\xd9\x95\xcb2\x90\x1a\xa6\x1b9\x93\x803\xcf<|\xb8\x08\x7f\x85uI\xbaW"\xe9\x86\xdc\x84`\xe6\xcc\xdd3C\xd6M>\xa8\x83W\xb5\xa9\t^H\x82\x96\xdc\x7f\x98\xe8v/?<\x97\xa1\x8a\xf7\x11\x13\x01\xcej\x90s\xfaA\xc1O\x0f\xad\x07\x88d\xe0\x05W\x92\xa6q\x0e)V\x7f\n\x97#\xe2+\xd4\x01\xbf7\x88$$\x08\x8b\xbf.M\xb8\xe7W:\xb2\xbf3Z@\x14\xf5*M\xa4\x01\x80\xd4\xb7\x9dZ\xb7\xb8\x8c\xde-\x8c\x1d\xca\x10\xb8\xa1n\x97\xb5\xd3\xbc\xbb\xfc#\x1f\x06\xef^\x8c_\xdd9\xf4\x8bC\x8cT\x85r\xb7\x08>5\x84\xa6\xc7%+\x8a\xd5\xc3\xc9\xe2\x8f\xb1"xe\xec_\xb1T\x89\xfc\x1f\xb6d\xbbR\xb6\x1ceJ\xe8\x7fR\x92\xf3\x90\x01~\x10\x17\x92q\x0bKz\xefZ^G\x9ej\x9c\xcb\x0bR\x82\xe0B\xb1\x8el\xf6(\xf2\xf9\x89\xafB\x8f\xd4\xf7,\xaf>\xc4\xc6\xc8\xf6"\xf4\xf1o\x8a\x8c\xaeR\r\x99\x1d\xcd\xdayz\xac\xb7NA~\xce\x16m\xe0Yks_4{\x03\x9aT\x94\xb8[W\xdbm\xcc \x11%\x88\xa7\r1\xbdJ\x94\xc3\xf4hNd\xb9\x08\x1e\xb8e5O\xd5\xd3\xe5\x84b*\x0c\xb5\xda\xff\x1b\xb2ra\xeaEg\xe1P\x14\x01\x824[\xee\xf35\xde\x010\xf2q\x98\xd9\xe8\x89\n\x8ar0Hx\xc8Z\xab\x03gk\xb3\xb5\xcc\xaf\xf1\x94\xa4\xcd\xb5A\xcf\x1e\xd3\x18CW\x87[\x10\x08\x03\xa0\xed\xe5\xc8\xe66\xa3c\x9e\r\x93\x1e\xf9\xe6\x89\x06\xad\x04\x02\xf7\x8a\x0b\xa40\xbe\xfb\xa4mriPK\xcb;\xf9\xec\x98\xfa\x92T\tE\xcf6\xc9?\xd7\xbc>\xc84vM\xf8\xb5\xce\x8b\x1a\x19\xbe\x0f\x85\xbb\xbfO\x8c\x1b\xade\xbc\xa6MwG^>!4\xa7\xe1\x91\x12\xb5\xd4\xd9:\xce\x0c4\xac\x9d\x8e\xcb\r|\xa2w\xc1Gm\x14bU2\xb2Z!D\x81\xa0\xa5:~\xb9\xbd\xe8>\x99\xd7\xa5\xf9\x85\x11\x1b\xff\xe4O\xa4\xec\xb6@~\x1a\x8e\xc19\xff\x1b-\xc4\x93\x05o\xfc\xa2\x8d\xbbz\xab\xaa\xeaAU[4g\xf0\xd9\xce\xf3en\xd8\x87\xee7Th\xf8\x91\x0f\xe4\xfa\t8\xd3VgR\xa5\xe6\xb2\x18)\x833\x8f5 X\xd7\x98\xd9W\x8b\x82n(\x08\x84\x99\x02w\xde%x\r\x11H\xce\xe5\xff\x9e\xe9\xc2\x0e\n\x1f,\xa1y\xab\x82\xca\xb7\xe2OF\x90\x19\x89\xf5\xb1{\'\xf0\xd6\x91\x91\xd3L@\xf9\x1fP5\x8d*\xe9\xe2J\x97\xf6g\xe7]-\xcc\x9a6\xbe\xc4\x99&>\xbf\x93\xba\x910d\xa2,H\x9e\xb7\xc74\x10\xdet\xf3\x1eg+\x062\xd2\x02\x85\xa2\x96!\xd9\xed1r\x1c\x0f\x9e\xdd\x15\x81&|%\xc8\x8e\xfb98\xb8\x94\x92\xce\x19\xe9\xc3\xaa\x1c1\xb1\xf1\x9c\xf4f.\x8cd\xa7\xa5\x0f\x93\x8fQ\xcf\x1e\xbe\xef>\x95\xcf \xfb\x96\x8e\xe4\xae\xcc\xce\x1e\x11$\x14\\@\x88\x19\xad\xb5\xbd\r\xa7\xfaxeK\xde\x03>J#W\x0fK>\xd8gA\xc3\xf4\x83\x84+\x95C\xa0\xe3?\x13\xf4\x16\x13o\xbf\x16#\xb1\xa9\xde\xdd\nT\xa7\xad\xc1\xba\xc0?\xac\xb3\xcar\xfctYaXQk\xc3k\xf3\x1b\x1e\x1f8\x90\x83o\x8b\xc7B\xfcd\xb8V\x84\xdbS\xd2f1\x8f\x0ee\xa13~\xacK\x96Cp\xc7\x86\xba\\\x15\x9f\xc2\xc8\x9e\xd08Bg\xef\xe1\xd5\xea\x02E\x04\xe5\x8db\x11\xa2\xf1\xf9\xc2\xa3\xb3)\x05^\xd1B\xfb\xf38\xa0\xf8\x08\x8b\xdc\\\x1e\xbeu\xde&eU\xc1\xd5\xcc\xac\x14\xcci\x9b!V\xba\x05\x14\x1a\xf3f\xe4ab\xec\xea\x89\xa6G6\x85\xb2\\R|\xbfo\xb4\xc3\x10\xb2_\x0bq\xe3\x1b\x9d\x8f\x01O3\x10,\x11\xfc\xce\x9f)|*\xe0\x8c\xacC6\xafo\xe1c\x01\xc8!\x10fW\xa4\x172EH\\\x8b\xad\xfdn(W1S\x0c\x03\xe0\x07i\xd3\xcdD\x7f\x7f\x7f\xe6\xcc4j\x84\xf0\xd6\xff\xcb\xb3*\xa56,UD\x08\xdf\xd7\xc4\xf5\x80\xf1\xa4C\xdd\xa7\xf0U7\'\xf0\x03\x01\xf3\xaf\x04\xc2\xcd\xbe\xd3o\x19\x03m[k\xc1\'\x18\xb2L\x19\xf7\x9fi\xa5\x15\xbb\x97\x88~\xf7\x01TO<Lh\xad"\xd6B\x18\x8f\xb3\xd59\x96D\xd6\xe6?\xd7\xcb\x93\xde\xabQIOlo\xb6Mo,\xa1\x01\xe0\x1b\x99\xb4\xeb^\x96\x05\xee\x1ag\xd4n\x06\x92\xa76\xd7\xd3\xe2|\x08ep\xc9\x07\x18ja$K\xb07\x10\xd0"54\x0e:\x87(A\xa3\x02\xbbZ\xc2\x9a|j\x87ET\xf1F\x0c\x81$\x8d\xdc{~\xd3\xb5\x8c\xb1\xa9\xb1q\xf6\x16y!\xd9\x8e\xc7\xf6\x1e\xe1\xef\x8f\\\x8dh\xde\x94\xdf\x8a\xf1a\x16\x8ch@\xf2fY\xdc\x8cxK\xa3\xee\xe9\xb5\xb7q\x11\x9bHe\xc8x\x7f\xf4\x1cJ8\x96\xb5\xa6\xfa%\xc1\x95W\x8bD\xe3\xaa\x91\xa4\x8a\x0cR0\x99}\x92Sp\x1d\x89|\xc1\xa9\xde\x9e\x02\x99(a\xd8\xdd\xa0\xadf{\x97\xbe\x1e\x12e\xa4\xd6^I;\xecP}5a\x9b\x8e\xe4\x14\xd5\xd8\x8d\x16\x02\xec\xb6\x19_?\x03Z6\xb7\x16,\x98=\xad\xd5%\xd7a\xd7\x81JP\x05\xfd\xf5\xc1\x91Y\xa5}\x95cc\xcav\xcc~\xd1\x00\x05Bj\x8b\xdbE\xcc\xac\x9c\xd1\xa1\xe7]\xec`#IJ\x1c\xbbYZ\x8a\x88\x02\xc1\x13\x87\xcaN/y\xab\xbaO\xb9?\xc9$$\xac\xbc\x84\xbc\xb3\xa70\x13m\x8cj0\xd9\xf3\x0e\xe3F\x96\xa1y\x02\xe4Gl;v9\xd4\xeaY(\xcd\xad\x90\xe0\x93+\x12\xd1\xe7*s\x80\x89\xd3\x97\x8b\x8f\xe49Y\x8a\x8b\x10\xb8\xd4\xb5S\xec\xd5\xb3\xea\xc3\x94\xb8@5\xe2\xe8R;\xe3\xd2\xb1\x1e\xbe\xfcK\xb9(zf\xa2\x80\xc9\\\xe6\xe4e\xc4|\x88\xb9c\xb2\xb5\xb2\x9el\x91(\x00\xf3\x0c\x8cN\x1b\x86\xc9~+\x99\xfa\xd2\xc6d\x86\x94\xa3\x99\xaf\x7f\xb4\xcb\xceFc0\xb3\xcc\x8b1\xd5v\xc5{\x18\x94\x9c x/\\\xb4n\x9d\xc3\xc2\xf8\x87"\xa7\x8a\xc5w7 \xfd\x90qD\x9f[JBQ\xfaS\x00\xf9v^\x19/\x95\x00\x81@\xbf\xa0V\x93D\xf1t\xbd\xf0F\xd1\xc6Ek\xe7\x98\'\xfed\xb8W\xe1\x82\x0b\x80\xb5\x0b\xe24\xf2!D9v\xd2\x06\x82\xe0\x93\x1a+]\xe2N\xd5\x92\x8c\xc3dS\x97\x1b\xc1\xe55\xa4\xb0.\xc9\x1b\xa1N\x10)\x98\xb2\xad\x15l\x030\x13\x16\xf6Z\xf1\xd7B\x9e\x9ar\xf1\xca\xdda\xcf\xa9\xa3\x17\x03{\\\x90\xe6+\xb5\xdc,T\x99\xb8\x8aH\xf7\xb6\x8a\xad\xe5P\x02B\xa2\xed\x08<#t\xda\xff\x04|\x80\xe5\xc9\xfc\xa2kU\xd3\x12\x82\x1b2g\xf2b\xf9\x1b\xb6\xb3\x88Q+\xb37\xab\xa3x]#?\x83\xd6\x9fD\xe1\xe9\x88\xde\x8c\x0f\xddl\x0fyl\xbf\xd8\x1f\xf7\x14B\xd9\xca\x17\xb2\x95\xcf\xe1\x0b\xd3\xc8X\xc4\xe6\x1b\xd8I\x1a-%+\xf9\x9f\x05X-\xd6\xa5$\xd6y\xe1M\x96\x9afv\xd9\xaf\x87g\xfcBzQ\xfao\x1a9\xcd.\x8c\xde\xca\xa58\xbc\x14\xcb\xca\x8eI7cb\xbd\x1a\xa6\x1aYV\xad\x83Id\xee\xa9mp\xa2\xaa\x04\x15s\xe0\xa3\x7f\x9f\n\x02\x99|T>r\xa2\xdd\xdc\x14\xdf\xaes\xf5\x0c\x87\xa3_\xf8\xe7\x8a\x98\xe2(\x1en\xbf\xcaZ\xcd4\x9f\x00\xcc\xebu!o\x02\xd3\xec=!e\xa2\xce\xe5\x8b\x8e\x82\xc8\xbb\xa8\xfbm\xd3\xcf\x14\x98\xc2E\xc5\xe2\xb2\x84N\x95t\xea\x98^\x01\xdc\x95y\xde\xe4\xbb\xcbw;\xbfvl\xf9\xe9\xe5\x86{\x0e\x99\xb2\x06\xd8\xc2\x99+r\xca\x94\x07\xb6\xf5^\xc2\x81\xd7?\xd2\xb1iQ\x9b\x1c~AxD[\x98\x9b\x93\x9a\x1c\'\xff\xe4\x8e\xfd\x03\x9cD(\xb6\xe1\xcc\xd4/\x84\x8d28\xd6\xd8\xe3\xbbI\x9c\x14\x90\x13p\xb7h\xa0\x82L~\xba\x98O#\xf1}\x93T\x84u\xe0[^.\x9cj{S\xcd\xccI\x07\t\xb8\xfe\xff\x89\xac\x06\xbe\xd4lv\xb9\xdc\x9f\x1c\xdbR\xa2\x8b}\xa6O\n\xb1\x8d\xf3\xfd\xdd\xb8\x13\x97.V\xe2\x0f\xf7\x8b\x9f\xc4\xc2%\x9d\xb6\xa3E\x8cK}AP2\xc5#\xa8\xc8\xf1y2\xf3\x96\x00\x06\rm\xae\xdb\rH!\x9b\x1a\x12Q\xb8\xa4\x9e\xd3~\x0e\xf9\x9c\x84\xa8\xec\x9f\x197%\x16U\xeb\xc6\xcb\x94\x9b\xd8\x07\xac\xde\x89\xd6d\xc4\x060E\xe9\r\x84\xe0W\\\xcb\x00\x85\xecL\xcbK\x16\x1e\x0fxsn\xd4\xf35\xdc\x82\xf7kC\x88G\xac\x93\x15\xc9\n\xc9\xd3\x1cRn\x9a\xbcs\x9e\x8a\xadD\x06\x80b~\x8d\xf8\xc9TL\x15}i\xb4\xb1\xcd\xf9\x17._5\x13T\xd1\x85s\xa3\xc0v\xaaW\xbfQ\xdf\xff\xb4\xeb\xa0\xaaF\xcap\r\xdd\x03\x7f\x9b\xd2\x83\x1d\xe2G\xb1\x0e\x0f\xf1\xd37\x9e\x00<\xacS\xd8\xa9;Nu\xa4\x977\xaf\xd4-y\'\xac\xda\x03:U3\x02\x181\xed\xab~\x86\xb6\x19\x18\xf60:4\xc6y\xb8\xe1O\xac\x06^\xbby\xb1\xb2\xa3\xf2f[\n\x94\xc9\xb5\xaf`\xc7\x9cM\x02>\xef\x1c\r~ \xbe\x8c\xa72\xd1\tV\xfe\x9bXz>L\x13\xbf~\xdb=.N\xef3\x0eiPFv\xdb\x19ZdFj\x07r\x07\xc1\xad\x8d%n\xc0\xbdh\xbcGk\xe4\x91\xfa\xf8&\xf7\x04Xzn-\xb9\xe9\xaef\xaa;ulx\x0b\xca\x8f\x1fd\xbaY\xf8\x87;_\x06=\x8a\xce\x1d\xfam<\xa3`\xb4XU\xed\xe2\xc3"u\x1b\xcfR\xe9\xf7\xa0\xe9\xd0\x947\\f\xac\xf3W\xc5\xe1\x96\xebw/|W\xbb\xd6\x13\xe0M\xe9\xf3\x8d\xe0W\x9cV\x9c\xd8I\x18u2]\x11e\xaavi]k\x88\xe2\'\x88\x17Z]/}\xeec\xff\x1f\x9e\xadi\xd5\xa8\xf5F\x19~\x91W~.wA\x0b\x1f?C:\xc6\x10>\xd8\xe1\x07Z\x03\xc8\x1a\x9f\xad\x045\x8d\xc0\xf0\x83/\xdf\xab\xbb\xcb\\Kg\xf8`\xd3\xef)\xdc\xfa\xa5a\xd4\x99\xf2\xf7Q\x1fjl\x16\xf9\x16\x82\xf0\x18\x86\xa4\xac\xdft~k\xb5]\x8e\x0f\xa1\xb8\xe88,\x8aG\xf7o|>\x90Wv\xd7\xeeI\xc8\xfcp\x85"\xe3\x9c\x9e\xb6\x94\xb6\x12]\xe8@\xe3\xe6\x19\xd1\x15\xb9\xdb\xc8\x9d\n\xfc\xe8\x80\xaf\x97\xdd\x9d\x892\xa2eAi\x06E\xbd\x8f\x81~\x10TR\xd0Vn\x90\x95\xe9\xf4I\xa3\xd2\x87VK\xf7\xd3:\x1c\xbdq\xafwM\xa0\x8d\x9d\xec\xb6\xc9?)\xf7g\xa5\x03\x88>I^D\x04n\x92ok\x7fvEk\xff\xeaX\x13o\xd8\xed\x1a<\x10\xb0\xb2\xb0\xb2B\xa9\x93\xde\xfd\xbd&i\xd2V\xb6\x05\x0fC\xe0g\x00\xd9\xd6\x85\xb4[\nR,\xea\xef@\x12jx\x1c\xd6\xa1\xc6Cy!\x96%\xf5\x87\x98\x99x\xf5\x89\xbe\xde\xfd\x8f\xe1Q!\t*^\xd7\xe6\xb62o\xcf\x84\xbc\x13\r\xc7;\x95\xaf\xbc\x15\x80E\xf5\xce\xd2\x06K\xfe\xadF=\rQ\xd4xV\xb0_\xaa\xe5\xfb\x97\xcb\xf0\x9c\x8c\xa3\xce\x1cM$\xe2I\x01M\x88\xb4h\xc4\x82\xe7,M\xff\xec\x85\xc6\xe7\x83\x01_\x89\xf3O\xf9\xfd\xfa\x04\x13\xeb\xb3sRf\xbf\xaa=\x89w\xf5\x1b\x8d=\xf4|\x98\xbf\x8aL\xf1\x9c_\xeeUd^\x1b0\xda\x9e\xe0\x01\xd6C\x9e7S\xa6~\xd6l\xf3\x9al\xe9=\xf80P\xda=9\xf1\x06\xd9\xa8&Z\x17\x9f\xb5(iQX\xf6\x87DGkV\\\xcdr\x81\'\x1f4x7\x87\xa2\x13\xe9\xc1&\xde]\xafK\x06\xefm1\x00E\xfb\x8aV\xa0_\xb2\x0e\xdc\xed\x1e\xdd\xc8\x802"N\xfeG\xc0\x1c\xaemv?\xabVE\x0c,\x86B\xc5G\x95h\xf3\x9d\xf5m/\r\xfd\xc2\x10\xe6\x80R\xde1\xaa\x99iAnerBOE\xac\x10\x91\x08\xc4\xa0\xbb<\xfa\xb1\xed\xa3\xc2d\xe7F\x07\xe9;\\\xc6c9V&\xb4\x96x\x8e\xe7\xe4t\x9cS\xedG\xf5\xf8\xde3\x82r\xc4\xcc{\xe4\x02\xceIV\xc4w5\xd7-m\xcc"Y+W\xe2w\xed/\x14\x163N\x183?7\xa3#\x8aZ\xeaR\x03|\xd5\xb4F\x07\x15\xb7\xc7Ak\xf6\xfb\xf0\x19\xbaZ\xbapB\x14-\x92\xdb\x90\xb2\xef\xef\x83\xcfs\x95\xe51>\x18n\xf4?\xcd6L\x10P_\x98h\x0bf\'\xa7\xa2d]d\x80\xfa\xf4\xbb\x00E\xa3@\x87\x06\xe5\xa9\xac.\xee\x03o\x98>!\xb8L1\x84\\*6\xf3Z\x85I\x90EZ/\xcf\xf09-)8k\xf5e^T\td#\x1ec\xc6\x8f&\xe5\xc2\x18IT\xab\xe5\xae\xa9\xd8\xd4\x90\x8b\xa5\xb3\xc0&L\xc3\xd5H[\x05\xaf)\x99\xd8;\x95;\xb8\xa0D\x87Q(\xd5\xda:\xb2\xecS\xb9\x80i\x8d\x10\xc6\x877\xd2\xb1\x90\xbc\xf4A\x90"\xb9*\xd5b\xb7\xbb\xd7\xaa^\xc2B\x86\xa1\x9c\xff\x9aFD`\xfe\xb6\xcez\x94\xedz6h\xe3\x19\xa9\xeb\x8fd\xc4Q\xa8\x19\n\x0b\x06\x06-\x9f\xcfj\xc0c\xf9\x19D\xfc\x07x\x14\x06\xc7\x16\xa9N\xc5\xd5\xdc\xa9;\x0f\x02\xdc\x11\x86\xed\x16\x9b\xdd\xd3\xa3A\xb9bq\xc2>:Rx\xa5f\xe40\x05I\x94\x80\x9fj7\xeb2s\xb0\xe8\xf6\xcb\x85\x17\x8e\x14\xdcsbUE\xf7\xe91\r\xc2\x98\x047{\xdf\xa7\xc1h-Q\x1d\xf8FV\x02\xbeJ-\r\xcfC\x17\x88\x8bd\xb6p\xde]\xa1\xc0\x87\xb1f\x13\xd8eV\x7f\xbb\xa7K\xabBqS\xfd\xabHt4,\xfd*o\n\xaa\x19\xad\x8e\xd4\x8d\xe5\xab\xea\xddI\x83Y\xc1\xd6\x19V\xe0\xb58\xcbt\x18\x16\x03\xd5\xd1[\xba\xfd\x05)\x03\xad~\x1e\xb9V\x82\x07\xc5\xcf\x83f!\x03\xbeMu\xa7\x1d_\xf2\xd6\x12cZD\x82\xfbha;_\x985\x14\xfe\xe6\xfd\x90^\xc1\xe4\rnMG\xc6By\xfc\xe1\xfa\xdd\xe4\xc0\xbd\xc6\x7ft\xc3\xe0\xf7\x07\xe5\xdf\x1bl\x881JU\xe9\x97\r\xf1\x13,\xd7\xa4Z\xff9\xa0\x1d\x8f\xc3\xb8\x8f\xba{\xe5\xbex\xe1\x84FM\xcbx7,\xb9\xe4\x85\xbf\xc3k\x89\xf7\x8fqc4\xac3O&4\xc9\x94\xf5V_T\xdcP\x8a}\x96\xb6\xec\x9d\xcf-\xa6\xa9\x0bf\x1d\xf8\xf5\xe6\xde-\x0fOL\xb1\xdf=\xfd#\xf9\xa8l\xccJ\x9a\x13*!\xd0\xc8\x7f\xc3f\x90\xcfVQ\x07.\xb7\x05b\x06YQ0Qq*\x01\x85\x8a\x9b\xbc\xe6R\x8a\xcbx\x89\xdd\n6\xf7u\xf2Erx\xc7\xc1\x9b\xd2\x08S\xae~V\x8b\x86\xa6\x82:wJ\x88\xf6\xa6E\xd6\xa6\x95jgCvF\xdc\xe5\xc5\x92@T\xde\x880F\x0e\x0bq\x9e\xf4\xa5\x90i\xfa\xe0N\x1c\xefojI*\xa3Aj\xf1\x15\xb4E\xf8\x87\xb6x\x1c\xa0bg\xf5\x0bT+1\xbb\x9e\x11\x80d\x95\x02\xc6m\xae\xa2\xf6\xb6\xbb\xdd\x0b69\xbf\xa75M\x12\xca.\x95\xb4\x1a\xaa\xa9\xa3\xcdiy\xddB?.\x82R\xf6\x01\xd9\xeaW%\xfd\x11\x8e}/\xb34\xc9\xb2\xb9\xbb\x02U\x8e0[\x87vk\xd5\x15M\x8cG\xc5\x84\xd2\x8c\x9d\x8b\xb0\xcd\xf8\x10<\xad`\x9b\x12|\xa4\xa7^\xbd\xd6\xed\xed\xf9\xd0M\x1d?vU\x93\x19\xd4\xc4U9/\xfalGQ\xc7\xb5\x02G\xaabj\xc1\x0b\xcfD~\x8e0\x8b\xc6C\xc2\xa9=s\'t\xca(\x1a\x86\xae=\xbe\xf7\xe2\xa8/\x0ckY\xfdr!\xc9\x1d@\xdd\xc0\xb8\x1d\xb5\xa4\xd9\xb9\xfd\xa1\x9fU\x07\xef?\xf8\x7f\x98{r\xa1\xfcF:\xc2mM@]&\x14h\x9d\xe5;\x85\x88!\x02\xc8aK$\xabO\xc0\x06\xba\x10\xa5\x85*d\xbb\xbe\x8c\x96\xf8\x13L\xa4s\xc9$\x02\x03O\xf1\xce\xb8\xd68\xc0\xc4\xaa\xc0\xd5\xf6\xbeF\x0bP\t\xf2b\xce\r\xabhY\xc6}~\xc7\x8ePY\x92\x13\x07d\xb5!\x0e\x01\xa3\x9b*(\xc2\xach\xbc\x06\xc4\xeb:{\x03\x82Q\x80\xf2[\xd6>j\xefwgT\x03\x10^~\xb2\xa9k\xf9K\xf1\x1b\x14\x18\x08`!DZ\x16\x87|H\xd3\x93\xe9K\xea\x02\xe1\x0b\xc40\xb9\xdagsb\x93Y\x8d\xeej\xad\x9bB\x97\x96\x91\xa3x\xbe\xb5\xab=X\x9d]\x8b\xa4\x19\xe3\x11\xcb\'\xbbO\x1f\xb5\xa6\xfaE\xbc\xd1\xeeNm\xe1\xb3\x92\xf5\xdc\xe6T\xcd\xf0I\xf21W5V\xbf\x1c5\xa2=<\x1f\xc7X\xe9\x16\xa8\xc2\xa1l\xbc\xc9\xeaa`\xab\xfc\xffx&%B\xbe\xaan\xff\xf7\x1c\x94\x90\x01\xfa\xe6x\xe6=/\x0e\xdd\x1d\x95\xaf\xcb\xc6\x8a\xa2\xf8\x99\x8b\xb5qP\xa2L\xba\x08\xe6J8\xfbU\xfe\xde\xeakI^\xc21\x15\x8an\x19\xd2\x96\x95<I\xf3\xc1ND\xc32\r\xa6\xd0+c\\\xfa\xa9\x0f\x88-\xa4\r\xe1^\xeav]\x83h\xf3G\xb9\xadE\xe8s\xb5\x16\x05O\x86\xa2\xa1\x98`\xacE\x1e\xa9\xc4VT^\xe1\xa9\t5\xea_\xa2\xb9\x96\xdc\x16\x08\xb5\x1e\xaa\x7fO\x7f!\xfb>\xb99\xb1\xcd\xddB(\xde\x1d\xfef2I5\x05\xa9\xfe30`\xaa\x96$:5\xad\xc5\xaeI\xe0\x94\\.\xbf\x17\xf8\x94\xba\xaf\x18*\xc2\xa5\x06;\x9bK\xe3\xb4\xdb\x13I\xa5\xf1\xd6\x8e\x16acu\xf6\xac\xfb\x94a\xa9\x13*Y~\xa9\xcb\x88\xa8\xfdK\x1d}\xf4\xc4]\xd7<\x13(\x15\xa1\xcc\xcc\xff\x06ZZ\x9a5\xda\xbe;\x8b\x9b\x8dV\x83\xc6\x8dg\xe7B\xb9g\x06;$\xb08\x0c(0\xb9NiNUD8~\x8e\xc0\x1e\xc2\x80\x19\x8fU\x15\xb9\\\x91\x83&\xf3\xec\xa3\xc0\xce\x00\xfd\x01N\xf22\x87\xc0+x\xdd\xed}\xf4F\x01r\xc7\xed\xd0\xd1\xfcF\x12\r4\xe8.?\x00\x9fi\xbbt\xcf\t\xd7\x1b\xb5\xde@\x8e\xbe\xb4\xec\x9a\xbdm\x9d\xbb\r&\x16\xd2\xa7\x1ej@_\x16\x82\xf82\x81\x0et4\x9b\r\t\x97\x91\xdc\xfeEL\xb0D\x06\xecx\xecm\xf5\xf0\x9f8z\xef\xfe\xd1>M\xf8m\xae\xd5/5"\xd5\x94DvA\x02\xfa "\xeb\xb9\xef\x13\xfaa\xe5\xbb\x1b>\xbc\xd4\xfd\x83\x01\xae\xca\x9ek\x8c\xc9\x05\xe8\xe5\xf7\xda\x0c\xa1\xa6G+\xab0\x013\xe9\xca\x92\xaf\x9b"\xf9\x98q\x9d\x1c\\D\x13\x10\xae%\x83\xa6X\x0f\x0fO\xdc\xff2"_\x98\xaa\xfb\xf4\xf7\x13\xc53\xe6\xe9\xc7\x19\xbc 9O\x9a\xd5\x01\xf9Pd[\xf3\xbc\xff\x00\xfd!\x8e\xe7\xcb\x89\xb7\xc0J\x8cb\xe5w\xc3\x92\xcd\xe2\xf1VW\xa6\xfc;\'\xe3X\x8a\xa7ne\x86+\xaaE\xd5<\xe1>q\xf5\x87\xd4\x0e\n\x11\xc5\x7f\x0b\xa3\x0fY\xebxY6\x80\xdfIEH?A\x0f\xc0\xf6\xa2\xb9\x1fUf\xa9\xfeZ\x80\xb8+\xde\xb5\xe4\xa5\xdf\x89\xe1c.z\xfd\xe5\x81\xfe>\xdd\x90\xe7\xf5\xd1\x8cz\xff\xf2\xd3]s7\xf2\x16\x0c\x18\xd8j\xf10\x87?[]|\xfb\xe2u\x86\xf8\xf6J\r/r(-*\x1c=\xa1L\x92\x1b\xe3c5\xa6@\xa0\xa4<$\xbfW\xb6N\x08\x9b\x81\x92\xd2\xe8\xa6\xf4\x0bd\xfc\x8aC\xf7v5\xd4\x166\xf6\xcb{\xf9\xe8\xc7\xe2XZ\xe2\xbc\xec\xd57\x8e\xf4\xfakd\xe6\xb0\xc0o\x85\x89\xca\xbcy\xdfJ\xfdX\'+\x19\x86\xa2,A^UWs\xfe\x85mM\x91\xd9\xc3\xd4\xef\x89->\xf6\x1b\xc8\x13\xd9H\x87\xf6\x9d+\xa3\xdem!\xa4\x10\x9fB\x14`8\xa5\xee[]\r_\xbe\x979I \x94\x8c\xe4\x9c[\xd6\xce\xb7\x83\xdf\'\xd4\\\xe6C\xe7\xa0M\x80:\xd0\x94{\x87\xee\xef\x87\xd9o\xb0R\xa3\xc5\xd1\xdb\xd7\xc8\xb4\x83\xba\xab\xee\x04\xf7\x98\xc0\x815\x05\xdet\xb2\xf1$$\x99M\xe5\x9d\xc7\xcb\xa5ZPN\x85\x04\xbd\xd2\x1e\x9a\x01\x8e\x82\xe5\x0eH\xcc\xf8\x19n\xf6\xb9\x7f\x9ck@5\xde\xef\xfa\xf3O\x85\x95P\xb6\x889\x9f>\x97\xf4N\x0f`\xb4^\xe4\x97\x8a\xba\xd1\xfbL\xcbF\x06\xd0H\x03K\x13\xb7FI\xd4\xdc\x08(\xef\xde\')\x07\xe1\t\xcc\x03\x8b\xcd6\xc4\x8a$E\xe5\x9b\xd6"-P\x7f\x00\xf5^\x19Ob\xa4\t\xb0\xf9H\x87E6\xa3;\xa15\xf3\x13\\\xaf\xe0{\xd5\xd1w\xca\xc3?<\x96\x99e\xa5\xfe\x99\x9f\xe5\xfa;\xf8c9\xb4\x06<\xf1\x18\x7f|\xe5\x00\x02\xae\xb8c\xc7\xf7F\xd9\xc6\xe9\x9f\xdd\xfa\x9e\xdb\xdd|\xe3=\xe2;kB\x13\xac\x19\\\xb9\xc0\x14\x08@\x80\xda\xf0\x87\x16\xe95\x9f\x8e\xbe\xd0J\xba\x8fn\xb8\xff\x11\x98\xb73\x83jjsor\x80\xd2t\xe8\xe8p>\xd5bO\xa5\x99S|X/\x93\x93\x1d\xba\x99\xaa\xb2\xf3\xbc\xf0\xdd\xf0\x1d\x04\xc9\xf1\x1d\x8dR\xd0:\xc6+\x9b\xba\xc2\x9e\x84@H\xc6\xc7\x14\xd0\r\xb8{\xfa\xa1\x8b]\x89O\xd2h`\x8fYE\x8cClb+\nB\xd6E\x06P\x85\x8b\xc9\xe1\xae3\xa0d\xb6F$(\xf9\x17\x97r\xb7%\x11<Iw\xbaO\xbf<\xfc \xec\xf2\x92\xb3w\x0e\x19\xa3\x16\x89m\xdc\'\xe5\x83Y\xf4\x8a\xdc\x84Q\x1b\xf8\xe8\\Z$\x99\xdeZ\x84,4\xa5\xf7\xb0%\xc9\x7f\xe6pe\x9a\x17\x025t\x1d\xd6\n\xc1 \xde\\`\xde\x81F$\xe22F\x1b}Xy\xe6\xcd`.$\x8a\xa1T\xb0\xec3\xa2\x9c8\xe8W\xff;|}*vV\xb9&GS\xf2\xf9\x06\xdd\xfb\x1b \x11\xb2\xcc\xda\xe0:\x8e\x95X\xff\x97\x1c\xb7\x00\xe2\x99\x91\x17r\xe5%\x14\xb1x +\x99\xf4\xaa\xc7w\xa9\xd7\x99a\x02no\xeb\xa1\xe0-\xc9\tX\x92H\x9b<\xfe%C4\x1b\xbc\xec\xf6\x04\x19\x94\xe9\xae\x18\x99\xdd\xf72\xaa\x90\xb2\x97z\xfax*\xd5\x06\xa0\xd3=}-\x1b\x02\x11\x14\xc9\x7f\r\xdc\xb3j5\nRt+\x89;\xd1\x04\xb1A\x1a3\x9f\tL\r\x7f\x9d\xe9\xc4\xca\xfd\xfa/\x12x\xa0\xedx\x80\xa0\xbb\xd0\x87S\xf8@m*\x18\xb6(\xd79\x1c\xe6o\xefq\xdb?+\xd26`\x9d\x00\x97\xb8\xceI:\x95\x80\xb4\xd1\x86\xa0\xee\xc8B\xa0\xf1yw\x04>&\xb9.\xce\x9f{\x9e\xec\xed\xff\xc2\x01\xd9p/\xb6\x8c\x83\x87\xae\x1d\x08Mg\x03\xe3D-\xec\xc4\xfc\xf3b\x95`\x92\xc3\xe1\xf3\x9e\xb7\x1a\x13JD\xc6h\x7f\xa5?\xae|\'\xfa\xe56\x1a\x8eI4\xdb\xf0\t\xc9;\xdb\xdd\x9e\xcfZvO\xb5\xf7\xcek4\xb8\x13\xf07\xbf\x0en\xa5\xd0!\x1c\xb7\xaa&({\xb8\x97}\xbd,n]\xf7\xf0\x0c\xcc]y\xcc\xbcQ\xbb\x96Mx\xe8\x82\x1d\xd1\xd2\xc4\x13\xabEaG\xae\x0f\xcc~\x01\xc8\x1b\x0eJ\xdf\xcf\x97[RJ\xfa6\xe8\xc54\xfe\xa5\xe2\x98;/\xab\xbd\xf4\r\x94.\xd96\x8c\xb8\x18!\t\xdf\xbd\xb2\x91\x1f\xb23!%\xf4\xf6\xde}S.@\xb3TK\x04\x99=\xd8je:\xdbR\x8e\x9bZv~2\xd0H2\x05x{\x0f\x03\xab\x18\x00\xe2g\xc5\r\n@1\xd1\xeaD\x1a\xd1\x80\xac\xf8\x1cL\xe01>\xd8\xc0M\xff,\x07\xc5\x9b\xe1U\xdcY\xb4\xc8\x1c\x191\xe3\x135\x86\x08\xd6\xe4~;O\xea\xec\xba\xce!\xcf\xcaP|G\xd6<3\n\xe0b&\xb1\x9d\xd8|\x8f\x8c&*/\xb8p\xb4f\xff\x1b!\xd6\x7f\xe0\x1c>\xe2\x01\xdbh\xd4\xc9|Ju\x8d\xe7\xf7\x079g\x01zrV\xd9\x7f\x19\xef\xf4M\x81Q\x8dl\x9dm\xf2V\xf8\xb3\xf5\xf1\xc8\xf5\x8aPG\xabb\xa9V\xa4\x06Y\x01\x17\x95\x87F9\x88A\x9a\xc6\'\x90\xb5r\x08"M\xf3S\x1bfj\x8b\xaf\xad/+\xfe\xaf\x0bs\xfc\xabG\xc0\xcc\xa6^\x1d\xef\x82\xc2x\x91\xde|\x15L\xc7\xe6\xb3\x16\x86\xcb}f\x9d\xf8\x98\x84\x8f\xb0\xbai$p\xb69\x92\xa4\xebq\xa1<\x8c\xda\xc1\x9fD\xde\xc4\x92\x03\xcc\xf8\xf6\xe4\x05\x9d\\\xb1$\x82\xb4\x89\xd2Ds\xa5s\x9e\xc7v\x90\xb4"[\xe2\x8b8\xf8h\xcd\xe7\x89\x17\xe1\x8a\x10\x9d0\xbf|\xac\xf8\xe5\x84\xbc\xd2\xabgZX\x12\\\xb8\xd3"\x8b\r^-\'\x1a\xff\xbe\x93\xf7\xf6\\\xd3\x92\xf9\xadEk\x82\x9e*\x1e_\x16E=v\x86\xbd\x0fos\xa0(U\x9f\r\x86\xf9\xdf\xc2a1\xa8wN\x0e\xe1\xe2a.\xe0\xbe\x90\xd2L\x1fTa\xee\xeb\xec\xc9\xea\x81\x1a\x96\x90C\xb9\x15\xa8\xaf,\x1f\xcac\x13\x86\xda\xf8\x19){\xbc.\x86R\x8d}(\xb6\xa3\\~3 5\xd24\x95\xfc\x04\x86\xe3B\xbca`\x07k\x9e*\xd1\xda\xbf\xf0Kq\x80\xc6VkCFG\x94\xea\x94K}\n:=\xfd\xd2\x1d\x92\x85\xeb?\xb7\xa2lH\xe2\x86\xa2\x1a\x8b\xfc{\xec\x93\xde\xb1\xe8\x0c\x1aj\x18N\x86\xb9_U\xe7"7I\xe7\xc0\xd8\xcc\xe6\xae\xd7C\xcf\xc3\\3c\xda<\xa0RO{\xc9\xfc\xa2j\xc6\xabJ\x95\xa1\xe9\xe5{F\xf6[t\x0e\x0c<\xe1\xa5J\xdb\xbcj\x8a\x8b\xcd8p\xe7\xc2\xe7ws!\xb3<\xe2\xee\x83\xa7\xb0\x16\xdc\xa62y\xe2\x83\xd0\x9fh_~E\x15\xb4\xdca\xfa\xfe\x84\x17\xef\xa9xn\x91 o\xea[@^a\xdb\x87L\xb6\x10\xfeV9-\x1a\xaf\xa55D\xabnI\xfd\xc6\x98_\xa4\'vi\'s\x15!k<\x9f\xad\x18\xe8\xf6\xcfh\xa9\xe1=\x02\x83\x9fQ\x9b\xd8\xce\xc3\r\xb1K\xe4\x98\x95\xd4\xce\xe8\x10\xc0\xa3j\xcc\xdd\xdf\xfd\x91\x05\x11!\x1c\xa3\x89`N\x10+\x82\xba\xf6j\xae\xb2\x8d\x83\xe6\x1aL\x14U\x1b\xf7FE\x92\xe4\x92\xf4\x05\xda\xf8z\xe2\xb0?\x87\x83\xa3Y\xfe_]\xa6jZki\x93Q\xf7\xf3D\x04kj\x1bD\x974\xf2\x92\xe2h\x90.\x9c\xa8\xf8\xc0\x07\xd7J\xa8\xcc\x9e3\xf6\x1c\x90@^\x1c%\xa0Z\xd2f\xa3\xbf\x9d\xd6V2\xf0\xa9\xd7Lw\xf2~\xa2V\xb1n\x01)\xca{~J\x8d\xe8\x8b\x16v\xf6]q\x0f\x90~G\xdf\x0b(~\xc3r\x13T\xeab;\xd3V\x96\xcc\x1d0\xc8\xc1\xf0\xad\x81u\x92\xcc\x93:\t\x97\xce\x82\xba\xfc\x02I\x05\xcf\xaep+\xdcT\xeeT\xf0\xf8\xb1\xe4n)U\xadu\xf2kF[I\xf3~\x19\xd4\x11\xd2\xf5\xa0Mb\xcezr\xac\x8d1\xfa\x9a\xc6\x9f3\xe5\x95\x08l8\xe4\x91\xb0\xc3\xfa\x96 &\xbd\xec\xd0Ww\xfd\xaf\x0e\x11J\xed\xb7\xc4\x08\x08Z\xa5J-\x1b\x02\xfay\xa4\x9f\x95u\xe6i\x88F[Gvc\x1d\x06z\xfbf#\xd4;_\x14\xcf^\x82\xd8\xc2\xaf\xa6\xd7\xbe\x0e\xeek\x85\x89\xa4\xfel\x00w\x18\xd6\xd5\x1c\x94\xf2\x1f\xf8\xad\\\x9aI/n\xbd\x15B\xd9\xac\x8b\x88^\xe4\x90H\x85\x03\xf3\xda>\xd1\x07\x11/\x04\x8c\x8eL\x83\xdd\\=\xe7\xfd\xd1Q\x13@8n\xee\xdfN\xcd\\\xaa\x90w\xfc\xd9\x16\xcfK\xcf\x80,\xdf\xc0\xb4\x8f\x9a\x9f/L\xd2_\x96\x94\\\xc4\x04\x0e\xd2\xe5\xb8zur\x00\xd2g\xd2T\xa2\xf3\r\x01$\xda\x0f\xe4\xa2\xbf\x8b\xc3?>\t\nEuJ\xfe/\xc5\xaa\x16W.\xed\x81\xf6\x1e\xdb~1\x81\x9a;\xd3\xed&\xa3w\x02g\x01`\x1b-;\x03qkr2\xfa\x9d\xc3\x92N\xea2\xf3b\x88\xc2\x87\xb9/*\x0fZ\xc2\xb9\\bW:\x04\x07\xb3\x7f\x85\xe4\xca\x1c\x87-@\xa5Z\x14\xaa@\x97\xbeXvZI\x10#\x86\x9a\xb3;\xb1\xddU9\x0b\x81\xa6\x0c\xf4\x8e\x16\xa7\x87uMR\'{BC\x13\xcc\x1c\xf1dU\x9e\x83\x16,\x01\xb1\x1f\x8f\x03tZ\x83}/Y1ZCZmG\xa9\xf8o\xc08l\xb2Q\x85r\xb3:\x13n\\\x17X\x1b\xfa\xf8\x9f)A\xbf\xf8\x16\x15\xf0\x07\xdepj\xde\xe7\x94\xd0N\xf9^"[Q\x93\xceOL^\xbdR\x83\xc8\xd4o>\x10OX\xac\xba\xe2\xf3z\x14R~\xeaA\xf2\xc4\xd0+\xa5ziU\x1br\xf14K\xc9&\x95{\xee\x88z\xde\x83hMybL\x9e\xd0\xca-\x04\x9b\x93n\xfd@?\x18\xf2\x1d*\xf0!\xd7\xd6\x8b?\x04\xacf\xe7\x06\x80kfd\x17\xd2\xc4\xaf\x97\x16\xe5\xa9\x9db?\xd2t\x82\x96e\xf0/\xab\x92\xd4\xc3\x97\xef\xdb\x9c\xef\x1c"\xd6\x9c\xe4\xff\xfc\x85@\xb5\xe4\x87\x86VUW\xca\x91;k\xc3\xa1\xaa?\x00\x81l\xfa{;>\xd3\xb1\x92\xda\xa37\xdfU\xd1\xb8\xf6\xb3\xcf\x10wY\x04\x93bW\xd0\xc4\x81\x8b6e\x9d\x17\xc2\xd6\x1f>I\x0f//QK\x97\x93\xfe\\\xdaE2;$\xd4/}\x06l\xeaZ\xfe\xa7\xfb\n\x99\xcf\xefO\xdcyOu;\xaeR\xfe\xc9}\xfbJ\xb8l\x03:rX\x0fjiYv\x1e]\xe9\xd9/\xd5}\x96\xb2+I%\xa6\xe9\xdf\x1f\xc3\xb5\x95P\x14\x1dl\xbe\xcd\xef\xa2\x8a=\x93\xabU\x93\xcd\xca\x9c+h\xfdz\x18q\x9d\xf9D\xc62x\xb7\xbf\t\xb7P2\xf3\xed\xe0\xf1\x05\x82\xb2\x02\xeb\x9e\xb1\x12A\xdc\xa6\xfc\x88\x9e\xac\xec\x9f\xba\xd7\x98g\xaf\xd4\xc7\x8eK\x9d\xc9\'P\xb6q\x0f\x07\xf8\xb6\xbe\xa3\xa8e4\x8fc\xfd\xc9\xdd9\x84\xf5S\xa0\xf5y\xe8\x0c\x8b\xba8\xab\xe2e\xdd\x1cmR\xf1u\xfdN\xafAT\x12\xeb\t\r\xcd\x16\x87q|\xc4\x03\xa2\xdd\xca\xb5\xd6v\x96:J\x87\x080\xc7\x15~\x9d\x05\xad\t\xf7\xac\xe5\xd1\x9d\x8c>H\xaf\x05R\x1d\xbd\xbbP\xcc:\x1e@\xc2U\xe6\x8d8\x9e\x85\x17@\xcdI\xa2\xd6\x8cz\xe5G\xd5\xc6\xb6\xf3=\x8a\xc8\xed\x88\x01\xc3\xa5}\xf9j\x96\x93\xa7\x9f\xe8/v\xe3\xae|X\xee\xefk)\x8b\xde\xb6"!\xe7\x05Z\x92bn\xd5\x0b>p\xa3\x06$\xee\xa0m\t\xfd\x97\x13\x9f\xd4\xa0\x9dr\x04\xa4\xd6\x1c\x1dnIl\x82\xee\xdd4\xd0~\x13i\x05\x9d\x89(\x9b4\xe8\x99\x02?K\xaf\x9a\xc3\xad4\x0b\xfa\x81\xa2[\xe5>=\xdd(\xcd\x8cT\xb8\xc9ya*\x9c\xaa87\x0f\x91g\x17\xb6v>5\xe0\xc7\x003\x05Q\xd1J\xe68\xdcR"\x9a\xa9\xb8\xa4\xd2u\xf4\x8f\x9c\xf54\xb8\x93\xfd\x94}\xff1\xa4\xb1\'"\xb9\x8bR\xe6y\xaa\xb5\x16\x1ba\xd7\\b5\xcf\xb5\xc1\xaf\xbd\xab\x8e\x1eFJ\xb4\x1e\x9aOp\xa3`N\xcc\x1b\x82\x8dl\x01\xf29\xaf\x03N\x13#- \xabI,\x9a\x8e\xb6\xf7\xdc)\x08\xb5\xad\x0b\xc8?\xcd\xe2\xf0\xc0\rl{\x9b\xe0\x8c\xe3\xfc\xd8\x82_\xef\xc8Y1\x17(\x16\x13\xba\x1c\x9a\x95\x07H\xae\x86\x93fo\xdf\xa4"\x8e\xe9d\xb6+\xd2\xa5\xa8gE\xe3\xd5\x00\xe0\x93F\x87\xb3\xc2z"\x909\xcd\xe4\x07\xf1}\xa5\xd7\xb2\x1c\xcb\xa6\xc4\xd8\x0b5\xa7y\xc5\x0f\xe2$\x8d\x17\x0b\x13$\xa1\r\xe6(?\xf9\xba;\xa6\n9\x11Q\xb4k\xdb\x94\x1e\xebI\xb3!\xec\x00\x8b\xfa\xf0n\xc9g\x16\x7fw?\x9e\xa8\x1e\x9d\x16\xbdO\x9d\x9a\x95\xbc\xe4\x8ew\x16\xbdZ\xb5\x82\xd3\x88lcp\xee\xdc\x83\xbbJ\xce\xea\x177\x8c\x04\x1e\x17\xaf\xc51\x01\x8eT\xd8\xf1\xe7-\xf2\x977\x1bXn\xd0\xcd\xd6K\x19\x8b\xf7\xe7\xf3}\xe5\xe9\x86\xee,/\xca\xf4\xbb\x18{\xc5\xbf\xf0\xc3o\x93\xcf\xbc5\xdf\x84\xbbn6\xd9\xdfS+N\x14~gzF\xbc\xccD\x89\xb5ax"J>\x1d\xe8\xaf\xba=\x16\xc6\xbd\xd6;\x85Sa~w\xc1\xd0\xdb]\xe1FT\x9c\x8e\t\x19\x0b7T\xab;\xeaE\x99\xf6\xb9\xb8\x84\xe0\xecT[\xa6\xc2z\xbb\x89P\xbbM\xb8)\xfc\xcbO\x92\x00\xd1\xe6\x83\xf7+\x02\xe0Hj\xc7?\xc70Pt\xfe\x12\xf6s\xba\xd8\xeeS\xfe\xb0\x81\xda\x8b\x15d\xb1\x90T\x0c2\x98\xe6\x959\xc5\x99Sa2\x0f\xf1*8\xa3\x8f\r\tF\x12\xe9\x00C}q6\x82\xd7\xcd\xa5a\xc8\x9e\xec}\xd8\xbb5\xdc\xc4l\xb2C\x85/\x82G\xdd\xc2\xdc|dr|\x7fR\r`\xc7\x13\xc9\xb8\xa2\xf2\xe4\xab\x1f\xf7\x92p\xd7\xdb\x1f\xb4\x86+^bef\x80\xceD\xc3\x1a\xdc\xd3\xffs\x98\x06\xd5\xce\xc9m\x8d@h\xe2\xd7\xd2\x94\xc09\n\xe0o\xb2\x01\xfb\xd2\xef\n\x8c#\x10_\xd0\x15\xe9P\xf3-\xdf\xb51`y\x88/@%\xaf\xa1W\xe7\x89S4\x08K\xad<\xc5\x98\xb4\xc0\r\xdduu\xa9\xb69\xd7V\x12\xa6Su\xcc\xa3\x08\xaa\xa4\x00\xa96Y\x7f\x87!\xd6b\xa0\xd1\xab\xd2\x84hci\xad\x05Yb\x9e\xa9\xaea\xb7c\xed\x81\xec/\xe5\xd4\xefi\x9fauT~\xd1\xccb,\xd9\xa7J\x10\xcd\xb1\x0cn\x94\x1ec1\xc0\xe5I\xa3\x9c\xd0"%\xc7\xf0\xf9\x887v\xdd\x9c<Q\xfb\x06CS\xb2\xe6\x9aWwm8g#O\xb8\x9a\xe3\xb6\x00@:7:\x18\xe0\x80\xebG0\x91x\xddHG\x9b\xe2\x9f\xb11\xb9\x91\xbe\x81\xdb\xc4#\x9e\x86\xfd\xff\xb9?\xe6W\xab>\x04rV(Zgo\xdd+^\x8f\x14\xbb\x0b\xcd\x82&\x8d\xfew\xbd\xe9\xa1\xa2\xc5"\xbcV\xc1\xdd:oTO\xaeA"3\xe5\xb1\xe6\x06\xa4\xe3\xb2CS\xf82M\x8d\xe2{\xad\xdc\xf046x\xfc\x83\xc3\xfe[y\xd6x\xdb\xc2\x80\x18h\xf6\x8c>+\xc1\xc2\x98`A\xb9\xb9\xe7\x96\xb5\x1f\x9cB\x93\\\xd3\xfb\xc1\xda=e-\xd1\xed\xbbz\xa4\x04\x9e\n\xcbZ\xa6J\x05\\\x05\xadm\xaf\x8e\xfdQ\x95\xa2\xb5\xc1\xa0\x9c\x9e#o\xeb\x88\xcb\xd7\x93\x9e\xb3~\r&\xacm\xfe\x85\x8a9\x11K\xb2\xde\xd9\x98\x96\xbbv\xb6\x06Aa\x8e\xb6\xd9,\xfe\xc0gXRj\x1f\x9b\xa2\x8d+\x11\xe3\xec{\xff\x1c\x9d\x95C;\x1a\xab\xa5\xcc\xa5A#\nY\xd2QBI]\x8dF>\xda\x99\xdd0]\xf1cZG\xa0|\xa5r\x10Jf\xa5\xde\xcf\x7f\x0b\xf4\xc8[p\x9a\xde6\xd1\xcc;A\xb9\x9d\xd6J\xd9\xe5}>G\xadW\xc62}V\xe1\xa1\x9c#\xf9\xb30\xe8\'\x93\xfa\xe5\x0fq^(\xc0B\xe7\x90+\xc2=\x14\xa18/&\xe5v\x1f\xa5\x1f~}\xfd\x8a\'\xff\xc5\x9e\x0f\t\x1dS\x0f\x16\xf8\xa8\xd2UY\x17R\xc8W\xde%\xea\xf8R\x96\xde\x9b\xd7H\xfa\xca+/>}!>\xa0\x1c,h\xb2H{\xcb\xb53\xcf\xbdz&$\xcf\x0fG.\x89W,0\x06\x0f\x17\xe9\xcc\xad\x16B\x85\\\xa2H\x01s\xa1o2\xff\xb2\xd5\x08\x1d\xfav\xdd}\xe7\x9c\x0e\x8eL\x08\x18\x91\x1c\x0c\xe2\x0e Q5;@\xd92\xd0\x8d\xf2\xe5Ob\xb5\x90P}!rA\xfe\xbf\xcf\xec\xf5\x0c|#\xdd\\\xe6\x1d\xb0Ih8\xed\x1dy#\xfcw*\xa7\xc6\xcb&\xac\xdaB\x1a\\U\x07>2\x99IM\xd4\x81Izk``\x11\xca\x1f\xd3\x00\x01c\xa6T\xb2\x7f |\xc7\x07\x91\xc3\x0c\xb8\x16M\x88\x86:I\xfe{\x8f[J\xd7n\x9bz{\xfa\xeb\xd2\xb2\xd8\xf3\xf1\x8b\xa9C\xed\xc4\x8dG\xe6\xb8!\x8d\x1e\xa9\xca\x90\xb4\xb7\xa4M%\xda\xb1F2\xac\\\xb7\x842\x04\x0bv`!\x91);\xd6\xf4lX\xe0&\x8f\x0e\xf8\x8eE\x9ds\xd1I\xc8\xd4\xaaw\xe4\xdb\xca5=H(\xceiQ\xfb\x99\xb4m1\xaa\xcet)\x86\x08wl\x90\xe52L:K\xaeO\xdb\x8cK\x9f\x0f\xc9W\x9c[\x10\xd3<Sg\x98o\x0f@\x1c\x96N\xa9\xb45G,%\x8b\xde\xc1s\x0cw\x05\x18\x0be\xd7\xd1\x84\xab\x84N\x81\x8a\xef\xc1p\xad\x8d\r\xdb\x9a*\xfaI\xb9(\x8a\xef\xeb?P\xbc\xe2r\xce\xe7\x99\x96!\x92er\x926B\xd1\xad\x83xU$+\xed\xbe]x\xf3\x90\xb6.\xda\tp\x0cP\x87\xc8\xfd\x10\xcc\xfc\xcb|\x8e\xee$\xb7\x84pn~\xbc\xd4\xa8\x10,\x8b\xe9\x10v{\x0b\xc2>\x99Sy\xbd\xebM\x0f?\xcbI\x98\x9f\xe4\xc7\x01\xa0g\xc0cU\xe6\x8d\x9fW\x8e\x05\x88\xc8\xcb\x8dw\xd1~\xc5\xe5\x85\xe5T\x88\xed\xbfM\xb9};[oop\x98\xf6|Z\xde\xce\x92\xb61\x9d\xc8\xe3<\\\x81\xf2\x1cF\xa7a\xde\xcf\xe0-\xe9)\xd5\x83e+\xfa}\xaf\x95P\xaex2#m{.\x07\xf8\xa2>\xbb\\T\x7fX\x9e\xeb \x15!\x89\x83\x8d=u\x97\x8dn\x13|\xe6\xb8\x8a\xfd%n\x89\x04\xec\x05\x9a\x84\xc27Q\x8c#D\xba\t\xf1\x8f\x00\xdc\xd9|hE68\xb4\x93\xbfmc\x1dK\x911\x03\xa4B\x11\x93\xa04\xd2\xca\xe5!D\xe7Q(t\x84\x8f\x04\xdd\xa0\x18D\x89f1S\x92$)\xf6\xd1\xf5.\xb1\x8f\xdd\xef\x87O8\xf9u\xa5%\x8c\x84c6\x1f\xbfC\x1aP_i\xd4V\x81\xa9T\x0e\xb8\xf4UBo\x95\xdea\xe9\x83,[:\xc2v>\xcf\xc9\x95\xa7T:\x887\xe2 r@\x8e\xaa\x08\x91>\x06\x89\xd5,x\xacm\x12S\x8d\x8c\xd0^>\x16H\xb31\x05\xa9\xb9)b\x06\xb8\xce\x8c\xae\xa6\xee\xe6D\xedQ\xa8O]/|\xd8\x97\x99\x8e\x10\x0e\x9e` w\xb2\x97@\xd0k\xad\xd6\xea\xe1\x89d`gOv\x10\x94^?4-o\x7f\xa9\xf5\xa2C\x1e%\x81\x08\xfcd}\xc4p\xc1\x15\x8b\xa1L\xb9/\x1aE\xd2}\xfaNT\x15\x16;)\x18\xad\xa7\x1e\x06\xb2\xe7\x00\xdd\xf9\x9dhc*\xb7\x8d|\x96\xbc\xae\x85\xbb>|\x15\xf3M\x01*\xfc\t\x1c\n\x10\x8eDG\xae2\xf7n/8\xed\xb6thE\xfb\x82h\xe5Da}lE(\x9aCg\x99#\xff\xe1\x9d\xe6\xe5B\xabI^*Uj\xda\x0c&\'\xdd>\x19XK\x9e\xcc\x19zI\x0b\x8a\xfa\xe3\xf7P(\xd8?\':\x00h\xe8\xfa\xea\x7f)r\x9819T\xe6\xf2\x1f"\x80G\xf6\x97\xe3\x94}\x9d#\xcc\xf2{I\xfds%q*\xb2\xdeB34\xe4\xcd\xad\xbez\t\xd8OwD\x04\xf5\xf4\x85\x96B\xbc\xaf\x17\x12\xe0f\x83\xc9\x10\xfen(\x1fO\x9b\xc2\x00\t29zB<\\\xbd\xde\x0e\x9d\x8f\x98\x9d\xbc3\xad\xc2\x02\x83\x85\xc2\x8bsx\xc7`\xcc\xee}4(\xa0\x894`w\xf0\xf3\xe9\xd6di\xac\xbb\xc2FG+\xd8\\\xf2\x1f\xee!\xdf\xb6\xfe\x8e\x04\xb6\nUg\x89\x9bl\xa6\xc8\x96\\f\x85M\xe7^\xcdA\xe9\x9d\xb5\x0f\xc0\xd7.V\xf0\xc0\x8c\xc9\x92\xb8\n\xb4\'\xcd\x01sZi\xa1\x1b)\x15\xf3\xe8\xbdf$\x10\x8a\x9b\xd8\xcf\x9a_u\x1fD/+upYs\xff\x1c\x8c,\x1b\x99\xf7W\x92\xeb\xe1\x00\xf4.1\x86f\x0egr\xbc\x97\xe1\x9d\xf7G\xa9\xd3\xdb[\xb9\xdc\xc3\x1d:\xd0\xf7"\x17!\xc1+C\x92|\xb4\xf1S\xff\x0c\xedc^MA\x07S\xaf\xcc\x91\x8d\x02J\\4x/nL%\xe8\xc5-\x7f\xc1\x104\xe6\x82,\xa8\x99I1\x88!\x1c/\xe2\xbf\xe3\xb9t\xfb\x8a\xed\xe6\xc6,z\'\x96{\xd1\xed\xbe\x95\xbf\x02\x96\x89\xb4\x16qo\x13|{(p\x05\xfd74\xf6\xf6\xe0.\x07h\xd1\xa18\x83X\xce\xb0p\xc7T\xa0A\xe76\x14\x0c\xde\xc8\xc4\xba0Hol\x16\xef\xcbP\xe9\x93\x15=\x0c\xb26\xab\x9d\xe2\x83J\xd7Z\xaf/\x11?\xb4\x87qDQ(\xbc\xb3\n\x04$\x96y\xb0\xfd{\xac\xdc\x1a\xfe\xfd/\xc0\xea)y\x1d\x86\xf1W\xd3\xab\xbaw\xd1\x8fI\xe5"P,G\xaa\xd4\x94*\rI-\xd1\xac\x1c\xf9\x18n\xb5@H\xad\xfa\xa6\x03XN\x9a\xb5\x19\xe1\x8d\x1e\x90j\xad\x14\xe18\x97K\x94\xfd\xa1;)\x13"[\xf5>\x0fI\xaf\x19\xd43\x027\x19\x14\xff\xb5\xf5\xda+B&u.LI\xb6U$\x19\xa3{\xef\x84\xfb*r\xb2\x81\xfb+\xf3J\xf3\xe6xY\x9e_b\x00\x19\xd4\xc5B>\xbc%\xbdW\t\xe1\x0f\xd2"V\xa6#\xde\x19\x8e*\xa7kw\xbe\x92f\x843\xa4\xb9DY\xe9|\x13\xd9\x82j\xb4\xba\xf5\x07\xa6\x11/\xfb\xe2\x97C\xf3\x03PD\x98m.@\x8f\x13\x10\x11\xbc3u\xcd\xf5}\xf9M-q\xc4`"\xcb\xa4\xcc]d\xea\xdaiLZ)aKa\xbbe\x0c/\xd1T\x81|\x8d2\xc8L\xe2E\xc5\x06\xe0+\x99[\x88O\xe2#DS?\xb3\xe3\x1e,nvx\x03\xbe,x\'a\xca_~\xcb#\xc2+K\x83\xfd\xd7S\xddn.\x97\xb1\xfav\x04gV\xa5\xdc\x0f[\xf8%\x86\xeev\x03*|\xf1\xa6O\xc3\x87\xb236#\x8e\x86\xb7\x80\xc6\xa6\x9e\xe6,\xf2\x85#\xc7"\x06"\xe8X+mr/E\xcb\xe9\xff\\\xf0\x99\x86\xf2\\e@i\xc4u|\xbc\xea\x03:\xe0\xc4\x10*\xc8\x88\xfdK>\xba\xa5\x87L\x11QU\xb8\'\xc3Js*T9\xf2F\x19\r\x13\xa8\x84\xa83\x84\xec\xcd\x16W\n\xb7\x8f\x07\x8f\x08\xb5\x9e\xe3\xaa\x02\xaa\x82\x02\xde\x00\xfao\n\x04\xb5\x87\xb4t\xfa\xe1r\x18\xfb !\xf0x\x10\x8d\xa1\xc9\xfe\xbcs\xea\x8e\x9e\xd4N\x18\xa0\xc2\xf7Stp4\x938\r\xec\x95\x96\xf6h\xc4b\xb10\x00a\xac=\xd2\xb4\x1e\xb8s9\x08_\x7f\x1fX\xa1\x12\x03\x94\xa2T\xc6\x1bar\x05s\xb2\xec\xb1\xfc\xff\xc9\x11\xbc>\x01\xdc\x18}\xd9}%\xaa\xa9i\xa3\xbf\x99\x98F\xad\x9ed\xc0\x81\xb2\xdc\x1a\xd1.\xd9\x13G\xbe\xe3\xdc\xde\xdce\xc8\xe3#\x99\x0b\xc9J\xa5V\x87\xe1L\xff\x1bE\xdf\x98}Q\xcd\xe4\xa2\xd0$\xa3b\xfak\xa7\xd6\x80,\xf0p[\xbaj\xf7k\xa7as\xd3H\xce\x9c6\x06\xf7<?\x10[\xca\xea\x03\xf9\x08\x12nP*Y\x178\x8a!\x9e\xf0\xe2\xbd\xc4\'\x958\xdce\xd9F\x1b\x11\xa3\x11y\x95Mh\xb9\x9bl\xfe\xfe\xc4@\xd1\xa9\xbd\xad\x17\x8e\ru\xac\t\x8a\xd4\x06T+^a&g%ow\xb1-\x8f\xf6\x8d;\x9b3\xbf\xa3L\x95cR\x894\xeb/3\x9b\xe0\x956\xa5\x81\x001#\xaap\x0c\xc4\xa5X\x9f\x1er\xc3\x9e\xa2\xf4\x16\x0c\xa5\xe8?\xc2\xe0Lyz~\xe5f)R1\x18OZiq\x16\n\xef\x89\x9e\xb1bU\xef\xde\xeauG\r\xa4\xf57\x1e8\xe41\xd7\xbe\xf1\x17E\x96\x04\xaar\xf1\xfa\xcc\xdbb\xe1\x07\xe4\xd5#\xb1\xb2R\xe3\xf9\xb5\x82g\xcb\xcd\xb7Jc&\xa2\x01U@4\x80\x8e\xb8\xe6\xc1I~\xa30\x8b\x87\'\xf9t\x1f\x10\x1c\xb7\xc4\xe5c\xfc\xaf\xce\xf1o\x15\x89\xce\xc2\xb1\'\xe0\x1fHP\x9dh\x85\xca\xf5ZS\xdd\xfdt/\n\x89\xb0MV?\x93c\x92\xec\xab\xc3x\x06\xfb\xe8\x92\xf7^\xe8\xb7m\xe4\n^\xe0\xfc\r\x9c\xf4\xee)F\xdb\x82\x8e\xa8\xd8\xa1%~\xc1\xd5Ya\x95\x83whM</\xa4\xa5E\x10\xf9\x96eoO\xac\x08\xa3d\x80(\xea+}\x90\xe6\xb7s\xaa\x97>\x0f\xbeY\x97\x8a\xb3\x0c\xae\xd1Z\xd4_\x17t\x0c1\x88a\xb1YY\x944\xbe\x1e\x9f\xd9\xde\x14\x04,Z\x109\x13\x91\'\\l\xa0q\x84\x97T\xe9\xca\xcb)\xf81u\xd4\x86\x066fi\xc8\xcd6\xa1,\x0c\x19V\xc1\xb5R}\x88\x0f^\xcb\xcb\xa0\xcc\x17(\r\xed;))\xd2\x14`\xfdV\xc2\xe8\xd0\xb7\xf1\x95b\x95\xea\x7f\xb6%\xf8\xd4f\xdc\xf7&\xb8\x06}q\x9ak\xc4\xa6qiX\xe9\xc1.?C\x9d\xd4\xcc\x9e\x81\xb1W\x8e\xe0\xd4\xeeL\xbe\xf2>X\xfd\xf83\x8d\x8f\xe5\x15WGk\xcf\xfd\xf9\xd8\x10\xe6\xfb\xe2C\xb5\x1d\xb5\x00\\\xaf\xfc\xcb=\xccT:W\xf7\xa2)Q<\\}\x05\xaa\xc2{W\xb8\xedU\xc0\x00\xba\xf4\x9bwV\x105\xdc@\xf7`\x9a{YUC\xba]\xc8\xb1\xa1tS!0\x9d`\x0b\x1a\xc2\xa6\x9c{\xc1g\xb6\xffRP8g\x9f;I\x9a}\xe1\x15\xfcb\xaa3Up\xd3GXX\x9d\xfc._m^\xb1\x8e7\xde\xdcI\xc8\x12Bmy\x1d\xd3i<\\5\x0cA\x829y`hC\xeb\x96\x8eo\xb4O3\x1d\xbf\x9f\x95:\xb8z\xde\xed\xdd\x02\xdd\x80\xff\x14Y\x05\xea\x8f\xad\xb8\xde\xa4\xa8\x88\x07\xe2\xcb\x1a\xdd\xa0C\xc4\xf9\x99\xfa\x83P/\x84\x86\x16\x01\xa3C!\x90\xa2{\x98\xa4y\x0foI\x7f\xc6}u\x93\xf5\xc6\xba=h]\x8a/\xee\x1ff\x8dJ&z\x19\xcc\x03\x85=\xb8\x9e\xd0\x9a\xc6\x8f\xeb\xb5\xbb\x19\xf4\xe5Bj\x1b\xc9;\xc9\xc9\xaa<\n C\xcd#y\xe5Z@\x8cD\t\x9d\xc2\xe1\xe1\xd4y&\xfbB\xcd/e\xbe\x0b\x95n\xf2S\x06\xd0\x0c\xb4\x81\xa3-\xd0\xb60A}\xb3\x87\x08\xe50\x8cC\xda\xd2\xd1\x1e\xcb\x97@\rI^O\x0b\xc6\xed\xf8u\xc1_\xf7\x040\xd3\x8f\xd6\n\xa1|"5b\xf8m\x0f=\xe2\t\xb07\xe52\xeb\x02\xfeC}\xbf\x03\xfaG\xad\xa9\xd9\x8a\x1ah\xcaO;\xab<\x9ezp\xc7\xcd\xb9\x05>\xfa\x81\xf7\x01\xbd\x02$\xa0\xb5\xb7\xf7B\xfa\\\xa9\x807\xf2\x9c\xab\x91\rI9i3\xfav]\x14\x00/\x89\x13\x88Yf?\x0b\xef\xcd\xaam\x0b\x99\xdf\x99\xa6\xc3\xfa\xa5\\\x82\x826\xef\x8e\xfb.\x17p\xf3Z0 m\x1c\xe10L\x127#=@\xd0\xb3\xf6\xe8\x1bkB\xd0{C_\xc1\xfb#m-:\xaftvb`K\xd5\xd1\x06\xea\x14*\x99;p\xf0A\xd4g\x1e\x0e\xef-\xba\x0fP\x86$\x95\x81F\xdd9\xdfk#\'\xb9\xdc\x91\xb42\xd0\x93\x13\xa8\x89(\xc4\xcc)\x9d\x8cK\xe9\xdb%\xcc\xfc*\xbf\x8d\xce\xdb\x1c\xa9\xa6\xea\xb7\xfe\xd3r\x1e\x94]\\\x0e\xefpvX|\xfc\xc9!\xe8\x8bTG\xd6\xdd\r\x8e\x81\xf2\x07:\xe9J=+\xcf,\xd4\x89<!\x90\x17\xffv\x03>\t\x1c8\xb0\xb3A\xe9\x07\x88\xd4\xb3\x8b~\xad\'\xbd\xdaZ\xd7\xba\x07\x84\xe1\\\x0cR\x93\xe4k\x9a\x11+P"\xf08\xd42\xca\n\x1f\xc6\xa0y^\xcaS\x99\xd7\x82\xaf^\xab\xc5\xa9:\xed|Yj\xf0\xa0[e\xb1\x0fl\xb2\xb8\x00\x8d\x05\xb3L\xd3\x81\xadx\xa1\x8d?%G<D\xae\x85o\x1a\xe9\xc4\xe4y^:\xb2D\x87\xe4\xa8Y\xf1\x19M\xd0\xb8o\xef[\xef\x1c\xd5\x94\xf6y\x16\n{\x83-\xb4\x85\xa3t\xc0D\xe7\xe4\xee\x1d\xf1\x9c\xde\x10\x03g;\xbb\x9a\xb6+\x9f \xf8Y\tL\xa1\xd9\x18\xc5s\xdf\xd73A\xe5r\x02\x8c\x1b\x9b\\n\x81\xa8{:\xd0\xe5R\xa0\n]N9\xfe\x8eK\xcfL8\xa01\x1f>\xc8\xf3\xb1>~)\xae\x9d<\x0eX\xb0\xeb\xaf\x9f4y\'\x7f\xe2\x9d\x1d\x02k\x8e\xdfN\x0c\xadT\x99\xca\xb4w\xac\x14\xe6\xc0\xe8\x8a\xea\\\xedSG\x1b\xe1\x9a\x9c\xb4\xb97\xa3^\xbf\xed\xd2_\xa4\xcc\xad\xb0\xd14\x1a\xb6\xf3`\x9fZ\xf5\x9e\xda*\xe5x\xf2\x8d\xa8\xa4\xac\xf4I\x97yz\xa8\x11R\x94\xff\xd0\xca\x89\x87xx2\xf8\xd7\x99\xd3\xe2Gp\xa3\x81A&z#\xf8\x84\xcc\x98N\xab\xd4\xe0F\xc0\x1c\r\xe9\xec\xa3\x07\xfc\xa8\xf7n\xd9\xc5\x03\xf8\xe5\xb9p[G\xaaim\xdesQ)\x19-\xecT\xe0\xc2\x04)t?\x9f\x908\xa4\xday%\xaf\x16e\xc7\xe6\xf9\xbb\xaf\xa7x\xceJ\xad\xe7)eU9,\xb3W\xff\x94\xf4\x0f5sM\x13\xb08!\x81\xd4"V\xbdj\xa3\xdd(\x05/\xa2\xa8Uv\x8a\x94\x8e#\x98\xaev\xb2\x7f\xde\xdd}o\x01{\xe4~[\xae"\x17\n\x92`\xb5"\x87\xf0\x86M\x95\xa6\xac\x10\xe8t\xe8\xec\xb0K\x1fW\xe0\xdc\xd4(\x18\x84\x88\xa0\x19\xd7\x8bBj\xb2\x8c\xfd\xac\xec\xbe\x1e>+\xe6\xefxs\xe0\xd5\x0bM\xcc\xf1\xbb\xd1\x1dA\x1f\x9d\'8\xb9\x82Goe\x9c\xa4/\xc2\x0f\xc4n\xc6\xef\xc3\x1e~w\xf7\xe6B;n\x92<\xd5\xd5\x16\xe1\xad\xf3\xb6\x17?>gP&\x87{N\x00P\xf4\xc0\xa7\xc4\x80\x03Z\xc4\x92|\x94\x90\xd9\x07\xcd\xb4dc\xe1-\xda+(\xdc\xdc\xb3S\x8b\x1dRu\\\x0e\x8bp\xd3\xc6\x93I\xee\xbb\xa7{\xf4\xb3\xc2\x01V\xce\xfc\x8f\x1eQNO]|\xee\xf8\xa8\xd7/\xafe\x19\xc9\x1a\x86n\xb1\xa8~\xefk\xf5\x1f\xfb\xd8i\xbc\x0b\xce\x86\xf5\xcfu_\xae\x89\xa4\xd6\xc1\xe9$\x97\xa0\xa8\xd46\xa1B\xc6S\x15\x0e\xb4\x04xn\xddB\xa6\xaen\xe9\x1e\xe2\xa3\'g\x93\xca\xa7\xb7\xc9\xad>P\xb6",\xa5\x8c\xd6\xc6\xe8\x82,\x08F\xbeh\x81~\x11\x17\xcb Qp4\r\x16\x83h\xeao\xb7\xfbQv\x05\xda\xccR\xfd\x97zc\xbf@\xe7P\t}{hW@\xc6\xad\xd2\xabi\xedS\x1e\x06\xae>Xt\xc6\xb6A\n\x958oU\xe0\xf5\xad\xff\xb2k\x85\xbe\xd8\x8a\xd8\xcd\xdc\xad\xf0\xd9*\x9a\xa9\xd5;\xa6\x92\xcat\x00\xe3\x01q\xa6t*\xdbG\xc0#\xb5*\x9ey\x9a\xe0\xec\xae\xb613\x81 \x13\xc2`\xb2*\xb4\x0b\xe0h\x0b\xc7\x91\xc6@\x89^\xa3p\xf3\xe6p\xc2\xecH\x88\x15\xb4\xd4\xf6\x87\xae\\C\x91\xc4|A8\x7fG\xb6\xfb\xb5\xda\x7f\x12\x96\x16:-\x83\xb5\x81r\x8ds4\x8b\xfc\xeb\xe2\xa5\xd8\xfe6h\x99Qe\xe7\xb8\x91\xf3\x00-\xc1\xe1\x8d\xd3l>\xd3\xcbYe>\x154\xd7Tl5~\xd3@\xc7\xca\xfe\x87\xf7\x82\xe9t\xc1#\xe2\x82\n\xbe\xa1\x9eF\xf3}\x9d\x0f\xb8a)\xc8\x12\xdd\xb1\x8c\x94\\\xf4\xb5\xd5\x1d\xf2a\xcc/mL$Tc\x12J\x80\x06\xa9\xe3S\x12\x11]L\x8dS\xba\xea\x13\xa7w\xa5sN?x\xc4v\r\xd7\xa5X\xf2jYL\x18\x90a\xb0\x00\'\x08\xf1*\xc1\n\xe0\x93\x90p00\xb7\x93RC\x17\xe2~\xe6\n\xb1\xe9l\xf4|F\xea\xa6P\xa9\xfa\xa3\x96\xf9\xb2\x06\xe2U$T\xad\xb8{o\xebG\xfd^\x825\x8f\t>\xcc\xac\xf8p\xb1[2[D:%#\x19\xc9\x18\xdc\x9bU\xaf\xf00#f\x91&}\x8c)b\x19\r>\xbcz\xc2\xb3\x10\xbf7(\xa7\x96|\xde\x00?\xe3\x95\x16\xa4\x05\xd8L\x95H\x99\x9e\x17\xe0\x83\xc9y~\xe0\xb1\xae\x10\x16P\xc4O`\x9b\xcapl;\xf9\\}\xa1\x0f\x9d/E\x8f"\x05\x99E\xbb\x94\xd4\x84\x9c\xab\xc4\x0f\x90\x94\x0c\xcbo\xcat\xe0\x8c\xe8b\x145-\xc6\x87g\x8a\xbe\xa8\xa7\x11\xfe\x01?,v\xc1p\x94\xb1\xe2tR\x85\x90\x88\xf3[t\xda\xe8w\xaevH\xf8\xaf\x15\xa5R*\xe6\x8d\xcer\xc0:\n8gp\xe1J\xba\xc0g\x9fvw\x04\xf1\xdcC\x89:\x15\x19\x81U\x0f\xea\x04\xca#:\xd2\x9fg\x02\xeb\xac\x0c\xe8lJ\x9a\xfd\xe4\xd9\xd0\xf6\x17\x81Ba1\xa4\xe7\x9e\xe2\xcc}\xf4\xc69\xa0\x98R\xa3u\xc0\xd8CE\xaaso\x1aD\x91\xf7y\x11o\xa4J\\D\xc4\xbd\x0c\xf6\xd8\x96\xc4\xafN?\r\xbcU\xee\xb4 #F)(\xe7\xa0\x94\xc4\x80\xce\xd5%\xf6\x96\xa1\x0c\x0fL\xf3\xf9\x8d\xe8\n\xe5#m\x18B\x83]G8\x89\xa7\xe2\xdb\xc0\xd1\x8a\xf7w\x19\xc6\x1f\xe7R\xf0\xf0\xc7Z\xcd3\xe9%\xbe\xc0gmQQ\x1c\xf3e\x915\xcaCU}B\xfb\x8f%\xdc\x8a\xfb#\x8c4Z\x14\xaaT\xa4\xcf\x15\x9eD\x9b\xb5jL\xc6*\x89\xde]\xe1|\x9e \xe0\xa4<\x1f]\xd7\xd6\x88\xd7\xe5R\xcc&\t$|\x99\xeek\x1d_a\xedL\xca*\xa3\xaa\x8d@\xd1`\xe2\xba\xbf\x1b`\t\\p\xcaO\xbf\xbeV\x9f\xfb\xd0\xaat\x0f%\xb1\n\xdck\xc6\xeaS\xfbP\xc2\t\xber\xcd\x9f\xe2\xfd\x96l\xd6e\xecDZO\xcc\xba{%\x8a\xb2Y<\x8f6/N=\xd7\x02\x06\x93\xc5\xef\x15\xf9\xa1\xc5\x92n\x00(~\x1dl\x88\xb3\xc5\xe6?<\xbf\x16{\x97B\x91]\x97H\xfd4y$wGR\x92\xc0\xc8i:8.M\x8a9\xb3x\'\xa2\x11\x9aI\x148j\x17R\xefe\xab8\xba\x10\xae\xb9|\xaf9e\xe0\xcc\x81\xd0\xc9\x98\xfdg\xec%7\xd2\x10t\xb7z\xef\xb5\xf4\x828\x16\xa1\x03\xaf\xf5\x83\x98\xe5\xa0pQn}\xf5\xc05\xd2lX\xacX\xaa\xf8\xeb\x170\x82\x8as\xc1\xea\xde\xe0Wr\x94:\xccN\x98x\xff\xe6\x12\xfb4\x83\x08U48\xd6\xee\x8f\x8f\xa3\xd2\xad^\x0c\x1e\xea\xbe2\x1a~\x07\xa9}\x18\xd4<\xa9\xc7\x02\xc3\xa8"f\xaa\xefJ+\x14\xfe|\xf2\xf3\xf6ZP,-\x9a\xbe\xca\x81\xf1\x7f)d\xecJ\xbc9\x8e\xe4x\x0eT\xc6)\x10=\x1e\xf9\xaa\xfd\x9bz\xc9<U\xa2R\xad\x1e\x83\x07$9M\xb4\xa3M8\xa1\x9e:\xb1N\xa0\xdaGI\xdaOi\xfb\xb8.\x05c\x03\xef7\x1be\x12\x8d\x8bVp\x13\xd2\'GD\xf7"[\xbd\x9c\x16,\x99\x8bU\xcf\xc2f\xed\xe5WYu\x11\x8d\xb7\xde${F$L\x9aN\x99C\xf5Zi\xf6\xba/\x11+;\xd2=\x89\xd3\xc8-\xff\x04;\rC|\xf5\x0c\xc6\xa2\x05\x03\xcd\xb9\xbc\xd8\x1e&z\'\x18\x05\n\x8a0\x1c\xbf\x99\x9eADv\x9e\xd2k6\x83is\xa3\xf8\xcb\x1aq\xd6\xceu\xf9H_\xa7\xe9\xf6\xbf\xba\x0f\xcd\x89\x1cd6r\xd2\xc8>E%\x83q]\x85\xa8\xcd2\x18\x98\x92\x07.\xfd\x82\xbe\xc8C\xa3\x19\xf6\x19i"\x8ds\xbf\xb3"\xba\x80=?\xf4\x0c\xe7w_\x88\xb9q\x9dt\xef\x8d\xfc\xc7\xf5f\xeade2\xb6\xf0\x9a\x92\xf6;7R\x1fw<\xa9Y\x14e\xe5m;\x9b\x8f-\t\x92\xac\xd7\xcf\xa9\xb47\xbbW\xbd-m.\xffY1\xbdS\xb9\n\xaf\xe4\x02\x8fc\xc3\xd4\xaf<AP\x1cB\x9b\x1e\xfc\x84\x9dw\x93\x8f\xfe\xddg\xc4\xae\xa0\xfd@\xd0Hc\xf6\x14\x82\x12\xf9\xceJ\xecq#\xac\x93*\x8b*%\x07b_H \x03\xe77\xf8\x92>\xd5WR\x7f\x166\xa7\xdeC[\x99Yd\xe6p\x1cy\x81\xb73\xfe\xea\x9e\x97\xdaG\x11*\x17\xaf\x92X9t\xd8YO:\x7f\xad\n\x9c\xdc\xae{\n\xc8\x0b\xae\x9ey\x07\xc0\xb4\x05Q,\xf2\xb8y2\x0c\xd4\x96??\xda\x83(7:\xf1\xae\x90\x87\x1e\xc9\xf8-?U5\xbb\x9c\xd6p\x9c\xe4\xfa\xedL#\x87\xd8\x99u\xa8\x10\x0eQ \xca\x8c\x90g\xf8\xbcMA\r\xa3\x173\x83tP\r)\xb9\x1c\xf0}(~\xd9\xbd<\'\xc08n\xb4*\xb2\xf2r/\xb5\xaa\xa9\xcc\xb2l\xf0`\xe1\xff\xf0$\x9f\x8a^\xc0\xb6\xcc\x07}\x00\')\xd7\xa5\xdd\x02\xf1\xa2D\x18A\x98u\xd0\x81\xc3>\xdf4^\'&\x9e\xb1\xb8\x1a\x14r\xab%\xcfI+\x97\xd1oc@*\x89O\xc8\xc8\xcc\xe1\xf9\x13\xa2\xae\x85_?\xea\x10\xaa=\xabK\xebO\x1eh\xc5s\xf3S\x9f\x87Ngrr\xa040X\xf9\t\x80\xd9\x9e\xe8\x15e\x878\xce\xb0`\x9f(\xd0\x13\xd3\x94G\xe2\'\x91(aGl\x15\xe0\xc4\xe3C\x9e7\x94\x97\xc3\xa0\xb3\x91n\xb0n\xee\xc7$\xd1\xa8\x84\xe5\xa5\xf2g\xa3\xc9\x1a\x88\x8d\xa1\x8c\xe7HL\xaa\x99\xf6\xf5\xdb;\x9b\xe3j|+ne\x00\x95\xfd%\x00\t\xef\x85\xa8\xfc\xb7\x9f\xeb\x89\xd2\x90<\xd6X\x0c\x7f\x18\x93\x93\xee\xb6\xfcK\x81p\xa9po\xf5\xc0\\\x80\xc0k\x95;\x92\xce\xf4G\xf1|Rzz\xd3C\x15\xbf*\xbf\xfe\xc7\xea\xe4\x04G\xbf\xf3\xec\xef-4s\xf9\x1b\xd6\xe2\xde\xa5{\x1ckI\xb7\\U\xa9\x9f\xa8\x17\x0b\x8e\xb9\x99QF\x19\xdd\x90pND\x97oG\xd6\xc4\xc3+\xdb\xd0d\x0b\x17\x0fj2\x03r\xba07\xe0b\x90\xa4\x88G7?[E\xfb\x0c\xa7g\xc6\x15\x92]\xa8\xd5\xb8\x9fS\x1b\x1f?Sa\xdd\x05\'\x15\xe7\x16N\xb8\xff\xf4\xdd \x1ef\xb9f\x14\xf2\xf1\xa2X\x88\x81I\r\xdb\xff;\x04\x130\xb5\x12Rgz\xbc\xc2\xe0\xa1\xc4>\xdb6B\x85\xd84S\x19 \x1dFe\xceW]\xfd\xa1\x00>f\x1d\x9b\xd4Y\x1c\xb6HT\xd9(\xe5\x9eO\xbe3q\x9e\x924\x07H\x14Q\xd2\x14\xb1\x8d&?i\xcb^\x99;\xbf\x88\x89\x11\x99+15\t\x8c&\xdek\xf3\xd2\x87\xc2\xe3\xa9\xc8\xdb5\x1ccc\xc8\xdf\xc6I\xd8\x80\x9a\xcb\x7f@>\xd6\xcf\xbe\xba+\x11\x00r\x91\x16\x9a\xe0\x1f\xc9\xabw\xa0\x8bd7DZ6W\xaf\x84\x8e\xf8\x98\x89\xd2\xb4\x03\x9aO\x17#\x1c!\x9e\xa8\x95GD\xa1\xa8&\xda:4Z\xe8\x90IWPi#"}\xf4b\xd5=le\xb3\xe6\xc5A*\xbd\xd4<ZsT\xbb?s\x05c\xce\r\x04\xb9\x16\x00A\xba\xc6\x87pF2\'\x14\xbe\xfc\x0e1k<\xea\x8a\x0f\xf0;\x03\xe5\xd8`~\xe1zA\x94\xef\xb0\x83Z\x11\x16\xdf\xfd\x8a\xf5\x19\x82w\x1a\x85tp=Xi\x9cI$\t\xa5M\xe4\xfc\x02_29w{\xb7Cn\xab\xa0\x14\t\x93\x11\x85\x12\xc5\xc7\'\xafg!\x0bN\xe6X\xc6`5\x1f\xca\x18\x9c\xf0\x9eMF\x97H\xfeZW\x1f\xa6\xe9\xc5\n2\x08\x05\x8ez\x16W\x10\xcf\xe8\x10\xaa>\x7f\xd0X!\xcf\xa3\x87jt\nJq\xa1\x90\xe9\xb23\xaa\x84cZ\xbat\xde^\x9fxb\x1a\x95\xf0\x9cQ/\x94m\xa3@\xd0\xa2\xf3\x0c\xadsM\xc9\xbd\xd4"$\xa6\x84\x8c\r@\xa7a\xf6\xb6UT\x02\x11wX\xfb\xa3\x1b\xa9x\xd3\xe9n\xf7\x88\x83G\xff\x86:T\x94\xd6Sy\xee\xd1.\xfa\']\xf1W\x07U\x14\x99\xa9\xed7\xd7F\xf0\xb2\xa1\xc5,\x16\x9aHto\xf2\xef\x9f\xf4T*\xb5)0B\xef\x9c\xdf\x1f\xbe\xfd\xed\xa97\xcd\xfc\xe3{\xd4_\xda\xd0\xda\xf5w\xfa\xacD[\xce\xd4z\x047j\xa7\xa2\xdd\xf9\xc5\xdf>\x94\x0e\x1ab\xea\x18q\x03\x01\x1c\x1a\xe3\xa7\xcc\x12\xdf(\x1a\x92\xdc\x93\xca\xb1\t%\xa7\xd6f\xf2\xe5\xb1\xb0K8\x07\x84"j\x19~F)7\x82\x02J7\xeez\xd36\xff\x8d\x8e\xb4\x92\x15R$*2~ ?_\x12\x1f\x15\xf5\xcd\x94(\xd9aq\x9b\xe3\x17z\xa2s\x19\xebW\xad\n\xd5(\xed\xba\x0f\x8b"\x1d\xe2\xd1\x13\xd5?uB\x84\x1a\xb5\xfb12h\xb4\x10R\xd5r*\xf1\x80);\x1e\xd4+2\x8d2\xbeDOa8\xd7\xf4[i1\x0bB\xa2b\x04\x0b]EH\xfd\x0bl\xb6\xc1\xc7\xb5\xc5V\x16P\xe1b\x86\xa0,\x15\xb1G\xd5\xa5j\xe3Vm\xeeJ2\'\xa2\xfb\x0b\xfc-\xeew-\x94\xd3\x1c\xb4O\xf4\x8b\xc5\xac\xa8@[\xc2}\xfc\xf7\x87\xe4\x07\xd3$\xec\xb7F\x040\xc9\xaaj\xf6\x17c\x06\xc9q\xd3\xa0V\x83yf\x8b\xd1Z,R:\x01\x92\x17=\xb2?\x00\xc8(\xae\xdc\x15\xcfS\xd8S>\xdc\xd5\xde\xc1\xe7y\xbc"\x16~\x91e\xd8FS4\x12\x99z\x03\x0cv\xc1\xde\xfdWkJ\xa3\xadjE\xa4\xf7\xb7\xe8D\xb5\xec\xb6\xd4c\x94\x89d\x8b\xc4\x9fb2\xdd\'\xf1s\x15\x89\x90[\x12\xae\x97\x84T\x99n\xbf\xafu\nS\xab\xef\x04\xa9\xa9\x8b,\x99\x0eS\xed\x0c\xe8\xc1\xd4\x13g\n\x1a\x93$\x8asd&\x02"\xb1+\xf1\xe5+\xef\xaf\xe1\xdd\xe4\xb1\xca\x0b\x11\x94@\x12;P\x1d\xef\x98\x9a+\xf9\xda01!\xe8\x9e\xd2\x06\tE\x00+\xeb\x82\x01\x0c\x89\x9c)\x02\x17\x11\xe0\x8eB\xfc;\xc4\xbdq\xa7\x07\xadW]\xae\xbf\x89\xa4\xcdM\xea?P\xd2e\x0b\xbf\xd0_e\xd4\xf5\xdc\xf8`#\x12T\x89\x00e\xcd\x8fM\xcf\xf1\xfe\xaa\x05:I\xb7\x9eq]\xaf\xf7D\x8a\xc7\xc3I\x87e\x1au\xda7-\xef\x92\x0e\x9b\xe9\x9e\xa7\xf8\xa8OL[\x12l\x1d\\3\x83@\x93Q\xd0\xbfR?D\x13\xf5\\\xbaU\xc8\xc4\n\xddi\x12\t\xd2\xbf\xdb\x90\x99\xd5\xd7\xd7R\x19\xd3s9;\xf9\x9f\xedd\xe4\x93\xc2p\xfd\x19+\xf2R\xb1\xcaQ+|\xf2\t\xbf\xd4\xed\xc0\xeb\xc6\xd8\xbe\xac\xa8\xa1\xf4-\x15\xc4\xc6\x01\xbbi\x95\xd2ee\x1e\x7f\xd8\x11\xbf\x82l\xd4\xbf84\x03Y\xbb\xd5\xf9\xba6\x9d\xe6\x89Lv\x89NU\'\xda\x9c{/9\xd2P\xbc^K\xfb\x02\xbf\xd4)CX~\x97\xd1\n\x0c\x9fMEz\xf7\xb1\x1e\x92\x8e\x0eT\xf3^\x96)\xc8\xd23\xc5\xf4\xb7\xd6\x81\xaf\xb2-\xa9+\xac!\x801\xf9\xbed\xe1\xf2\xd4q\x8c\x11\\\xa2gJ\xd21?\xf5\xb9\xbc\x8d\x14\x05\xa0O\xbc\xb3\xf3\xf7\xd9n\xbf\xa7)\xc7v\xbb\xaf\xdaH\xa2\xaa\xf6\x19)>\xf7,P\x07\x95,\x899Vi\x00k\xe4eV!~\xddJ\x8f\x1f\x88\xca\xcf@#D%q\xe1\x91\xaf\x8fh\xd1\x12!\x8a\x9a\x02a\xc5F\xd3\x0bP\xeb!\xe7R1\xc7_x\xca\x1e\xa7h\xd5\xfeU\xdaZ\x904\x1c\x83\xf2lT\x02:g\x0c\x83\x97\xbc\x16\xe1\x85\xfd[1\xa6\xe2\x16\xc0\x8a\xa7\xba\xba\x14\xc7\xcf\xd6W\xbfe\xb8\x9d\xdb\x15G\xd3\x96\xf88\x9b\xf9t\xb6\xaf8\xa7\xe2G"\xac\xb0\xf0\xc9\xaes\x8bS(\x10\x7f\xb1\x8e\xee\xf0[\xdc\xbf\x97\xbbV-\xc4\xc0\x91\xe2\x9f\x08\xb9\x0bN\xc8s{\xaf\xc9\x0c\x07\x94Q\x9fN\xc5v\x9d-0AaY]T\xd6\xed-\xcbP\x88\x1b\xc5 \xff\x01\xff\x86\xea\xf9\x9a\xc0}\xe4\x92\x06z\xdax\xd8r\x9d\xcd\xfc\xaa\xa2\xf5\xc8o:<\xe1\xb7\xc4\xb2t\x11\x08\x1b\xb2\r\xe4%Z\xd3\xadQno.\xbbs\xbe\xda\x10\xbcWzC\xaa\xb4:\xb8b\x0b\xd6\x15\x9e\xa0A.\x04\xee\xc3o\xe6\xc9\xfa\x85\x9c\xab\xca\xe0p\xe7\xed\x0c\xd8\t\xa6X\xf9\xab\xb0 \x1cX\xf4\xac%\xa1\xb5.\xb1\x1b+\x0f\x7f|k\xfb\xe6\xb2s\xcc\n\xd8\xf7\xb9\x98\xdfN\x89k\xe3\xeb\xc1Z\xb4r\x06\xf7\xbd\xab\t\xe0\xeb1Qy\x0c\xc3\xd9\xca\x85V\xe2\x81\xcf\x10\x90ID-\x0b2+C\xcb\xba\xf1m\xe2K5\x05\xf0(4\xd1\xa5h\x97\rHW\x15\xb7\xcd5\xce\x0e\xa8n\xf3\x14\x04\xcb\xeaj\xc1=\xa2\x8d\x16\x02@bq\x02?\x93L\x1b\xb0*\x17T\xe4\xd1\xbe\x91\xe3\xff\xc3\xff\xefT$\xa7RN\x8c\xe4\x04\xeek\xbf\xdd<\xc1O!m3\xbd\x82\x9d\x11\xe7\xd4\xfc\x1b\xcav\x19]\xdc\xf2M\xbbW\xc1!g\xba\xe3\x07Y\xb2s\x0e\x1e\x0b\xad2\xea\x94xj\xc6\xc3x\x85\xe2\xbb\xc7\x03\x12\x95Y\x9f\xe4\xf2A\xe0\x9fOwF\tKO\xc4Xt\xde\xb8\xceo%5D\xfe\x7f\x9e\xe0)\x8b/]\xb9\xf7\x8eBV\x04/\xae\xd2\x93\xcd\xd7\x9a\xe8\n\x950)\x18\x88\xb9\xd4~lS\xdfW\xfc\xda`\x8c\x08\xb1\xb0w\x8a\x12\x82\x0fA%\x04\xbb\xc9\x04\x9d\x14\\$\x9e\\\xe8\x955B\'\xbc\xddy\x95<\xd7\xca\xab\xcc>\xfda\ry\xa1*T\xcb\xebDv\xd1M\x1cl\x8d\xc2\x9b\xde\xce\xc87\xbeH^\x1f\xaeI\xbb]\xa5T\xea\xc0\xef\xb8\xe8\xfcX\x9e\x93\x9c\xc4\xb6i\xee\x9c\x13R\x85\xe9V\x19M\xe4>\x7fVl\x82$\x88%=\x9b\x18\x87\xab\x19\xd2\x92\x81\x10\xca0\xbc\x0e\xcfW*q\x05\xa4\xe35\xc1\xf6\xee\x17\x11\x04\xb8]\x01\xa7\x18\xb2L\xf2N:\x87\xfc\xf8T\xb9\x97\xfe\xacx\xa6\xae\x98{\xae/\xff\x1b\xd8\n\x7f\xa8\xce\xb2U\xeau5\xd0zsf\xa6i\xa1\xafgIR\xfe_h\x1e\xbf\xecvW\xe33\xfa*\xd3\xc8w~`\x1f4\x08\xb3\xa6\x8fY\xeb\xb0,d\x96\x12F\xee\x8b\xbd==\x7f7"\xf5\xb6\x93\x15\x9cjI\x9c\xa8lQZ2#*K\xf4\x81=\x1fJ\x13hV\x92\xb1\xb9Q\x9b[\xeb\x89\xaf:\nKo^\xe3\xb5Tx\xd3:\xc3\xb2\t O\xcd\xfc\xcfo\xab\xe3\xe5v\xd2y\x96\x82R*`6~\xa3M\xd2D\xf4\x1a\x10k\xf0X\xf4t\x8b\x04\xa3\x86\x02\xbdf\x9d\xd1[.\x98\xe9\x10\xcfPt\xaarX\x8e\xae\x92\xd9\x9d*\xd0\xb0\x04>\xca\x93=\xeb\x1c\xbc\xa7\xc1+\xa4;\x05e\xb4c-nlbTFN\xb5\xe5\xdf_N%\xde\x15\xd2OF\xdc\xb7\xf1\x87\x17\x9c#<\xb28H\x7f\x8cd\x9b\x17z\x07\x03\x12\xbaf4G[\x9d\xf3\xc5\xff2!\xabVE]$:\x10(-)F\x8e\xbf\x1f\xffa\x1a94\xf1\xa1\xc6\x15\xb2\xb6\xeb\xad\xf3gRd\xd5\xa2O\x16\xe3\xe8\xc9\xcc\x862\xdby\xd9\xa9\xcc\xdcB\xdbhr\x9f8")D$\xd0,\xaf\x80\xfdg7\xae\xec\x1b\xc5~s\xc3\x13O_j}\x9f+"\xbb\x16\x98\x92\x92\xa8\x8c\x8d_\x98M\xe7\xda\x8f4H\xcb\xaaP\xe1\x02\x99;\xb94\x8df\x92\xd7\xbe\xb7\xd8\x9e\xfb\xa40@\xe2U9e\x06\xaea\xf2Lm,\xf7\xe7\x9e\xff\xed\xa8;\x90e\xa5\x03\xd2\xf4h_\x1e\xa0\x8b-\xab\x05#P\xcaxf\xc4\x87\xee\xd3S\xc9\xd8}\x94A\x93\x1eM\xfe\x1e\x11\x00m\tV\x04\xd8m\xd2\xa7\x18\x86K<.\xa3\xeb\xb7\x8a\xea\xf3@\xb1\xf9\x17\xff\'\xc6a],\xd3\xd6\xac\x1aN%4a\x16\xc3_\xbf\x88\xc1O\xda\xf0\xfc\xac\xd6&\x93\xd6\x0b\xd5\xa0X\xa9D\x96\x11\xa4a\xf3\xd6\xe3#\xef\xf8\x8c\xa9\xb3TC\xac\xfch*8*\xd7\xda\x8b\x16\x92\x88\xf9\x14\xd0\xa2\xf3oDp\x8b\x17\xb5\xea\xa5\x1b\xacN\xff\xc7\xa4\xa1$\xcd\x8awS]\x88\x11W)\xe0\xd42\xd6\xc7\xd1\xa1\x0e\xfc\xa4\xf3X\xca\x10\xbc\xa8\xf0I \xf9?*[\x0ex^\xcc7\x19\xcd\xd4w\xb5\xed\x93.\x97\x00m\x9d=:\xd3f\n\x06\x02\x81\xb6\xf3\xd6\xbb\rF2\x03d\x97V\xeat@e,g\'<\x86\x8c\xb2\x05\xab\xf8\x87\xf2\xdd\xf5\xb2\xc5%9bS\x04\x86\x15\x07^\xb0\xbc\xf8|\x0b\xb8\xbb<\xd1&6|\xa1^\x9e#\xf5c\r\r\x89\xde\xa2R\xe6Q\x8d\xb7+|%\xaa\x1d\x92\x06\xe8h\x12z\xb3\x86#\xf4\x15\x10\x00\x17\xc5\xef\x8b!Bm\xcb\\\xe4\xe3\xba\xdbWg\n-!)\nQ\xefTtar\xf5\xab$\xbao\x04\x97b;\xfa\x05K5\xff?\x02\x1el\x1d=\x9c`t\x16\x98rW\xe3~z\xf3\x12z\xf3\xf8>\xd2\xd0-\x07\xdf@A\xb7\xa6\xccN\xd6\xb8\xa2\xde\x19\xfb~\xae\x85\'S\x07\xc0\x17\x8d\x03Q\xfdm\xf2\xa8T\xe6\xb0M\xff\x92\x910\xae\'\x0fP\x83\xf3\xc1\xc3\x05\x1e\xd3\x81\x96*G\xd7\x1bu\xe7\xef\xbe-\xc85\xc5\'\xcb\xc8\xbb\x8b\xc9\xb2\xbab<EI\xe3\xa5\n,=\x9f\x17\xbf!\xa1\xec\x13\x89\xe8\x80_\xabl2X\xea\xcd\x0c\xc9\x13\x91\x82\xe7\x86i\xc0U\xf8H\xd2\xb9x\xbd\xd8r\x95;\xf4\x1f\xceg\xd5\xea%(\x84\xde\xe4\x10H\x96\xf2Oo\xfc\xf9@0m\\\xba\xf8l^\xe6\xb5Y\xf7\xe9\xf0\xe5s`\xd5\xd8\xbc5\x15\xd4\x8e\xdc(u\x86\xf8\xac\xae\x10(\xd1\x9b`\xe4\x9e\x9b{Y-\x9dx\x02\xd2\xaa11U\xf9wv\xe3\xca\xbe\xaa\xe4\xfd\x91\'\xab\nR\x88\xbbO\xd3\xd7\x7f\xc5A\x91\x874\xb7\x8d\xb9`+\xbc\xb2A\xa0\xf2W$\xe7\xa7\x1a\x14\x13\xa3DL\xd5\x1a1"\x1d\x05\x92\xd4\xdd\xe9S\x06y\xfcV\xef/\xe5\\%\x0b\xbb\xba9]\x90z\xbb\x90\xab\xa8\xf5\x986c\x87h+&w\xac\xb2\xda\xfct#\x8d\x90\xd7\x07\xf3\xab0\xe4f\xf62\x94b9\x84\x9e?\xaf|\xd3).\x04\te\xac\xab\xb1:GZ\x8a\x85[?\xc4\xb3\xa5\x90\xf8Z\x9eg!\x04\xd8\x99\xe4\xd7\x0f\x8f_\x7f[\xd3-\xae\x88\x01\xcf\x0bl\\.\xde\xed\xbbs\xad0)Y;\x955I3\xb7:\xe4\x13\xd8\x16x\xf3\x9ezx\x11\x88Q\xd2W,[\xa3,%\xb2\x83;\x8f\xe4N\xd2h\xa2\xae\xc2\x97\x90\x87\xd8\xbd\x17\xae\x1f\xb0\x05d\x96\xe1\xd0\x91\xbc\xd9\xb5\x12\xb5\x18\n\x987h\xab\xec\xed\x0e\'Z\xea\x94\x02\xb1\xa8\xb8\xd2\xbf`\xa8\xc8\x86\x98t\xf9\xc5{\x19\x98\x92z\x8c\xe8Rb?q\xe2\xe3j\xf1\x88\xc3\xc9\xfb\xe1\x8a?\xf5\xe4Nq\xd1\xac\xd9?\xd5\xf7O\x87t\xe2\xd5\xc7$\xbcDX\xe9\x06:\xeb\x8c\xc2\xcfXX\xf1\xec\xc1)-@\x94\xa1\x95Se\r)n\xc5\x82ke\xa4\x10\xc5?\x04\xd3\x1bO\x86V\x83V\xb9\xf3\xc9\xe6\x17\xc2\x8a0\xf4\xe6\xd1\x89\xcf\x0e\xc6\x93q6\xa3\xda\xce\x9d\xee\x05\x93\xbc\x14X\x92\xbe99\x9e\xe4\xa3\xdb\x93PZ\xe9\xdf\x1c\xe1\xb2\xcdn\xff\x9b\xea?\x0e\xf5\xa2\xf1\xbd\x84\x12A\xc5j4R\x80\xe7\xd9W.\xc4\xa2D}\xcc\xbf%\xce\x98O\xda\xc3\x13\xce\xcb\x88\xa5P\x0e\xbe$\xf3\x94\xf8\xa8\xff\xcb\t\xd4\x1bi\xa3c\xb5\x03J\x97+\x02\xb4\x84\xf1\xd0\x1f\x95\x17\xa6\x15\xc1`\xc1\xce/3\xc5\x9dzK8j3M\x9cy\x03`w\x00\xab0\n\xb8\xa4C\x0f\x11\xc3\xbe\x1a\xa5LYM\x0ew\\\x99R\x8c\xa1\xccx\xd8\xfb\xd1\x13\xea\xd1q\xb7w\xcd\xf7Ec\xad\xf3\xdb\xd7~X\xe4vF\xfa5\xf5*\x83\xce@6\x08F\xc1\xa6J7\xd5]\xe5\x13\xd8k\x16\x93\x7f\xa5W\xa8[\xa1\x08\xa7h\xc3\xec\xc3\tY:\x8bu_+\xfc\x98\xcf\x0e\x07XF\xf9\xee$\xfa\x87\xc9\xdd\xb6\xa8\x87b\x91\xd9\x04\xc0\n\xa1\x1ez\xcekp\xb4\xd1\xb8\xcc&cy,\xb1\xd9|\xc6\nVC\xf3\x1ef\'4\xbb\xb8\x9c\x92\xe1\xa9\xe7v\xc4T\xa5l\xa2*/\xcb,)\x91\xf29\x15V_z&\x18\x1a\xf9\xe6\xf4\xaf\xceAA\xb0\x14\t\x18\xd9Z\xa7\x8f\x82\x1e\xfa\xf4\xf4X\x8a\x10\xb7-\xb8\x12\xd0\x00P\xdff_\xbe\x1d1\x0c\xf2\xf9\xf9Ou`VV\xf65\x8d\x16\xe0\x99f\xd5\xc8\x1a\xd9\x98\xd8hA\xe4\x9d\x02\x94|v\xd0\xc8\x87\xe1\x99\xadi\x8c\xde\x1d\xc1\x99o\x0e\xa9\x9e:\x10\xd6/W\x80\xeeS\x1d\x91\xb4\xef\xa6d%\xdc\\;\x17\x96\'\xe7\xf7\x9c\xbes\xfc\x1f\xbb\xa2\xa1\x16z\x833F\xe1t\xda\xec\\o?]\x14L.\x1c\x95\x1d\x9d\x81\xcf2\x07\xc2\xa0\xf9t)\xd3\xc50\x7f\x0e\x9d2\x07\x99DcK\xec\xf7\xc1\x82Z\xf9\xbc\xda\x9de\xb13\xa5\xe5\xaf\xaa=\x92`N\xb4\x97\xf4>R\x15Tw\x15\x99b#?\xd1\x98f\x1b\xd0\xb3\x12\xd5\xb7\xad\xc9\xaf3\x88\x13ML\'\xb1W1\x18u\xc5%\xeaKQ\xca\xad\xaa\x110\x1b\x88\xb5^e\xd1\x873\xbd_\xe0ZYtC\xb6\xfc\xfaD\x97\xb6\x92\x12-i#R\xca\x8e\xb3\x80\xc2Y\x00=m\x98l+]5\xf5\xd9U\x9e\xcbMq~u\xf3\x07,\x08\xb8e\x87\x0c\'y\xf1aS\xa9\xb2d\xbcaI\x10]\xe9\xd5\xb6~\x1c~\xfb\xf7\xf4\xd3\xf9\xbd\xe4\x15>\x05\x85<\xd3;\xe6_\xe7\x80\x87#\xc7\x1e%)\xec~@+]\xa1\x004\x95+v?aS\x07\xfc\xb3\x11\xc0\xdc\x94\x03\xdf\xc1\x84/~|\x16\xbb7\x94\xd2\xa5\x14\xab\xb9NO\xb5\x10\xb7\x1a\x91m\xfeu\xd5\xbd?\x86v]\xde5O\x9e\x18<`\x1b\x98\xa9U\x90$\xf9\xce\xc0*\xc0\xb7PX\r\xe3/\xd0\xf6\x14bU\xe6\x9d\xd68-k\xee\xc3\x97>\xe9\xee\x0f^\x89\xe6\xf6B\x92\xe0pS\\\xdd\x90\xb9F@\x1d\x90\x88Jt\x8d)[\xc5\xe6\x8dk\xa5\xa9&\x8c\x0f\xb9\xa1\x80WP%-\x8c\x91{\x0e\xbb \xe2|\x1f\x9f3\x1feJz\x9c\xe2\x83\xc8\xc7\xc9\xd87\xf5\x0f4\x06\x12y\xaa\xd6@aR\xb8\xefQ,OH\xad\xe7\x93/N\x15\xc0\xc1C\x9f\xe4\r\xb0vH4\x92\x19T\x90\x18\xb9\x8b\x15\'{"w\xf1\xde>\xd3\x19\x06Z\x1fQ\xbb\x08\xd8MU\x16z\x13\x1d\xbbc\x03\x04\xb6f=xq\xc8\x17\x0c\xc5\xc8\x8a\xc2\x1c\x181\x02\xe2\x96\xd5S\xa9\xcc\xd0\xda\rw\xb0\xf3\xb8\xffY\x1d\x8a?\x8d+o|4\xe9\xcd\x12\xab7\x03\xc4\xc9\xd0\x9at\xd0\xc3\x17=\xb1\x02j\xed\x88\x0bY\xbd\x94\x8a2i\xcaW\x03\xda{\xc3W:\xa4\x05{\x8cz\n\x11\x01\xe7\xc7p\x02\xc8\ts\xb3=a_G\x11\x1f\x8e\xe2j\t\xfa\xf5\x02D7\xb6\xdd\xf9\xd2?[\x15\xf9\xdcR\x83\xfc\xa1\'\x99W\xe7T~\x04.\xdc\xa3w=-\xa3}5\x03U\xc8\x90\xa53\xef\xdd03\xba.W\x9f\xf8\x17>\x88\x96\'\xb5\xf1C\xea\xa1\xd6\xd6x\xf4*\x98\xe5\xd1\xa6\\\xee\nav\xb3)%YAA\xcb\xf3\xce\xc5\x9ar+\xb9\x8b!O\xa1\xe7\xcd]\xcfd%\xc1\x91dL\xa9>l\xd0|\x97\x16{\x82\x17\x1e?\xe0\xa6\xe6\xe3\x8fn\xaf\xaf\x1dx>\x8b\x8bO\xea2\xean\xfe\x98D\x8a_\xc2j+\x01\xd1Q\xeb+\xc1\xbd\xb8y\x89\xdc\xae<\x10\x9f\xbf\xf6\xdc\xa5r\xf0R\xabH\xc6\xba\x07\x1a JmN\xcbfb\\cb\xf3b\x11<\xb0\xba\xd0\xc9\x93\x9d=\xc6\xf7\tI\x1a\x83\xde\xe2_\xcc\x11\xa8\xaf\x05\xce\x0f\x02\xdb \xf06d\xcf1\xc4G&@\xc4\xf6q\xecW\rHz8\xf7j\x04 \xb3\x80!y:\xcc>~qo\x16\x11<\x9aEX\xd1\x8f3\x05-e\xf8\xd6tQ\xafv\xda\xd1\xa4\x88\x7f\xb3V\xf5\\\x94\xdeS\xb5\x10\n\xc5n\x84\x88\x85\xe08>\xd4\xe2\xde\xfc\x01LyP\xffJ\xfb\xe4\xad\x98\xfd\x0f}\xfc\x87\x856\xbd\x9bk\xde\xe8\xea\xb3R\x14:\x80\x91\x9du\xd9q\x9b\xd9R%\xd91\x1f\xc5\x9e{o\x8d3\xe8\x8c\xd5\xd1\xc6~\x0c}\xa9\xb1\x8b\xa2\x86ue\xdb\xc2h\x9cB`\xea@\xe2tjC7Q\xc2\xc6\xb2\xb3\x9ei\xe5\\\xb4\x06\xcdV\xefX\x1e\xf9eg\xf8s\xb0U5\xe5\x1a\xe2\x0bp\x1dM\xfcM\xc0z\xd4666Xa]Rh2g\xd5\xc8;\x94_}\xb4\x93_\xa4[\xa0aHn\tJ\x94{\'\xe0*y\x03Z\xaaj39`\xd1\xc8\xaeXY_>\x11\xcb\x81\x04v\x0c\xaa\xc1h\xab\x10p\xaaS\x06/yKl\xc6\xcb\xbeZBX\xa2\x99VB\xb2l\xeb\x02\x05\x18TZ\xf9\xb0\x1c\xc3\xd8\x8f\x9d\x0f\x19Q\xa5h`\xb5\xb7\xda\x88[\x165c\xb9\xc9\x86\x0b\xe3\xdf?\x84:\xc7[c3\x1d\xa6H\xcb?\x95!x\xe7Je\xa7^\xd7;\x1dD\x9a@\xad\x86\x84P.\x98\x1c\xf3\xc8\x04\x81\x9e\xb9|,\rBF\xf0\x1a=Mif\xb1!\xcd\xb1\x98\xa7\x0e:\x17\x8f\xdd\xaa!)\x18d\xb8Aw\xca\x1f\x07:\xc5y+_zb\xed\x96:\x0ft\x189\x0e\x0cS\xff\xd3\xb7\x90\xa4\x88\x93\x82\xbe\xdd\x0f\x03\xe7\xe9 \x91P0I\xebW\t\x11\xd6\x9d6\xc0\xad\xd6\xaa\xa7N\xdfR\xbf\xb0+\xee\xab\xb8\x82\xd4\x9f\xd0-\x95.\x1a\xb4\x1c\n\x18\xb0\xbdO\x03\x07<\xd0KK\'^\x0f\xa4\x1d\'\x0e\x92\xe4F\xda\x08\x02\xb6\xb8\xd8\xc5\x84\xcf\x95[\x94-x\xb2\xffm[\xda\xfah\xfe\x9ah\x13\xcab\xf8\xcd\xd5\x19\xf6\xba\xb0+#\xf1\x9bl\x99\xe1\x9b\x16m\x0c\x9b\x11\\\x9e\xf4XF\\\x16\x15\x10\xedR\xa5\x8d\x1c\x83\x00\x9a\x99\xf7:\x0e\x10\t\xcf\xd1\x83\xb49F-\xe1\x05+\xd5\xd2\x05\xca\x06yx\x0c\xfb`\xba\x83\x17F\xf9[\xf8\x8e\xe1\xc1[?i\xfe\x03#\x8fP\xb7$\x87\'D\x19\xb7!n\xc4\xca\xc3\xe8\xef\x1f\xcf\xf7\xc7\xb7\x01\xba\x19~\x7f\x8d\xe5)\x03F\x88\xb04\x82OXe\xb1Xu\xf9(+\x14\x92\xf6~jO\xc5}\xf7\x8d\x88\x91X\xbc8\x922\x1a\x1cH\xf4*9\xe7X\x17\xba\xf6\\\x12!\x82\xf9\xa3\x91\xd9:\x9aq\x1dU\x15<^\xbc\xf8\xed\x1e\xce\xbazI\xdb\xf70M\xc9\xe6\xe5\x8b\xf7\xd1\xbdO\x84\xc6\xb9$\xfd\xfdQ\x9bF\xb3\xd1\xeb\xca\xbc\xa2\x14\xeaP\x84Z\xc3r\x19C\xc396\x95`\xafA\xa7\xc8\x8e\xba\xdc\x05\xe5\x82\x82\xdb\xf25\xed\x8b\xc0\xb7\xc42\xba\xe8\xe0B\xdbU^\x86\xe9\x03%T\xa4b[P\x00\xbc\xbd\xf0\xc9/9\xc4\x05*\xd5s\x14;\\;e\'\x97K>\x9a\x0b\xeb(\xf8w\x97\xcez\xd8\xe7\xc2\xe7\xda\xd4\xa2\xf7#\x05\x01\xdb\x98JT\xe2R\xba^\x0b\x16\x9e\xc5\xa54\xe0?\x9b`\xfaF\xdb\xaeLI\xae\xf1w\xf1\xa3\xab\xd7\xf7R\x847\x0c\xfe\xa8\xdaI\xdb\x05\x1dEb)\xf9\xf5\x14M\xc2;\xf0\x1f\xae\xde\xe9h\x93oE\xa9\xf4\x00\x06\x96\x89\x91P\x02\xf3\xa6S\n\xad\x0c\xc8\x8a\x01\xfe\x97{_\xcad\xa5\xdb\x1d\x16\xd2P\xea\\\xadV\x7f\x9d\xf9Y\xee\xfem3\xf3\x1c\x17\xf1H\x03\xadXX\x94\xac\xf0N\x8e/\xf7\xb0,\x03\x19\xcbR\x00\xdey\xa2JVG\x1e\xfb\xda\xd7J@\xb7\x9a\xb6\xc4te\xa0v\xea\x80>\x0c o\xb0O*\xb3\x8f\xd8\xb41\xdd<\xf9%\xd7\x04\xb0c\xcd\xffb\xc9I\x93\xb3r=\xceeD\xe1Y/\\Z\xd3\xbf\x15,d\xf3\xe2\x0c<|S\xff\xf0a\x9f\xdb>\x8d~\xd63\x81\xf7\xb5\xb7h\xe2\'\x9ff>*;6\x04v\x8a[\xc9X\x8dlyz\xf8\x8b\x82\xf8\x9a\xb5c,G\x8aYD\xde\x16\xdb\xca\x9c\t\xd8q/v6\xb4\xf4\xc4h\x1b<\x0b\xbem\x0c\xd3\x11m\xd4\x87\xa9\x1c{\x87n\xd4\xca%\xb1~\xeb\x91[YP\xd96j\xda\xab:)#\x8c\xd7\xaf\xaee\xbc\x00;\xa5\x87+\xd0=\x03\xa4I\x92Q\x86\xca\x9e&sST00\xd1\x0b\x8e(\xff\x9c&\x9c\xb7\r\xbb\xd0\xbd.2\xe2K\xec\xa9j\xe1\xf2Fn\xf14u*?\x0f\x0b6I\xc1\x0f\xc1\ti\xdd\xad~,&\xac\xb1K7VQ\x07ysX\x9c\x92\xa8E\xdf\x1eQM\xc9/\xa4\x82\x92f\xbdt\xbcQv\x16\t?\xf91\xb7}7\xb2\x86\xb2\xf9\xec\x0b\rr\xd9\xb8{\xce\x89s\xc4\x82\xb7\xb5\x9eesB\xd3-\xd8N\xf2\x96+\xa9\xa3\n}\xbb.\x9d\xa8\xcf\xa5\xd7\x9a\xb5)q\xce\xdb\x8bI\xa9\x07;\xde\xe0\x1e\x97\xe7\x9b|\x0c\x94\x15\xcb\x05\x83t\xa9\x8cH\x161\xa0N.p\x8c\x85\xe7\x02\xec\xacPPj\x99\xa65\x90$\xbe\xdf\xddj]\xf4*e!?\xf4\x1c\xb2\x86OD\x96\xcc\xa5?\xf0\x06\xea\x86\x1c\xfdFg0\xe4\xb3\x94\x1c\xb8\x82\xd0]\xfd\xa9z\xee\xa9k\x19\xc20k\x896,R9,h\x1f\xb5\x97\xe6\xd7\xdaI\x1a$<\x06~\x8f\x02\x88\xccA\x99w\xfc\xed\xf4\\\xa5\xf8}\xef\xcf\xad6F\x12\xed\xd7\x10\xb95\x08\x93\xe0\xa5\x87.\xb7\xd2N"PDO!7Q\x1e!\x11\x89%\xccg\xbd\x10 (\x99\xb5_\x12\x9b\xaa\xefr\x1e\x8f\xb1\x84\xcf\'9\r|\x95\n\xa3\xd2w\x8d5\xa9\x18\xaeu\x9e\xc1\xdc(\xca_\x8a\xb9\xd5\xe9k\xe9\x88\x83\x11\x83\xb2\x85\x19]\xc0k\xb2.YM)\xde\x10]\x95a\xd3[S\x83\xbd\xd4\xa2mU\x94J\xf1-I0a\x81\xce\x89\xc6!\xe3@\xfe\xd3\x96\xf3\xe9\\\'\xc7eE\x14\xfc\xd34\x05\xe7\xe3^\x1f\xfbM\x12RZ\xd3\x80\xef\x18,\r\xab=4\xc8@+\x8b\x13e+\xa4\xbdbv\x10\xac\x9b\xecJ\xbd\xa6\xfd_\x164\xbd\xec\x00\xbf\x91\x9b\x98\x7f\x9eTBU\xe2\xfd\x04%\x94S\xf8s\x93\xedI\xfb(\x16K\xde\xfc\xfa\xa2e\x7f\xa0c\x8b\x95\x92R\xf1\xaf\xf4T\xf1=f\x833\xa6\x8a\x1fO\t\xbd\x8a\xe1:\x82\xd6\xc0\xe3E\xec\xfa\xcbw\xf3\xe9\xed%~\x9c\x8d\xff\xd8\xe7;=\xb9\x166/\x95\xc1Z*9\xcc\xe4\x83\x14_\x068\x14\x93\xde\x1b\xc6\t\x07\x89\xca\xbf\xfb\x1b|T1\x8b\xb2v\x99\xf3\x19\xd1\xe3\xacL\xf6\xa2\xd6\xe4\x9e\x9a\x9bJE\x9f\xdaE\xac\xf2\xdc~\xfc\x87^n\xee\xe5&[\xbb\x1b.\x8a\xac\x97`\xee\xb8\xef\x99\xcb\xf37\x90r8\x14nP\xc5x3B\xedG-]\xe3\xf2\'[\xfc\xb1=\\.\xb4e\xdeH%\x97%O\xd5\xf1\xa9\x86\x1d\xef\xbft\xf4\x08Q~\xc9\xa1+6<\x94\xf5[mp\xbc\xad\xb5C\xad`\x12\n\xc1\x12%/\x91\x9c{\xdd\x19\xd4S\x89\x07<\xfa\xdc\xda\xd6\x95\xf2\xa2\xe2\x1b\xed\xcd\xef\x85\xab\xfa\xe5\x9c7\xe0\n4o\xf9\x10\xd7F\xf2\n#P\xdb\xa7\xb8\x98\xf2@\x01n\x95\x90Q\xcc\xda\xa5\x1cE\x1d\x0f\xd9n\x02tI\x9f\x01\xbaJ!D7\xb0\xde\x0c\xe0\xc7\xc0\xa4\xb8\x14^q\xb5\x8anh\x8f\xfeg\xb2\xc7\xec\xb2Q\x91\n\\T\xa6\x96\xec\x99@\xe4&y\xfdR\x9cb\xe5uU\xda\xf2\x85e\xdan\xc7K\xd5\xe4\xbc\x16\x8b\x99&:\xa9k\xdd\xfc\xfe\xc2Q\xef?t\x9fBgRo\xfe%\xa3\x11z\x99\xf2\x8dN\x83Ja\'U\x08\xad%p$\xa7G\xa3\xf0fZ\x92\x8b\xa6\x19\xc3$\xc3y\x8b\xda\xaa\xe4\x8f\xbe\xa9\xdc\xa4\x0b\xad\x9d,\x14=\x85\xa3\x88u\xa5\x81\xf0\x14\x00}4\x92 \xec\xdc\x1b\xcf\x83.5v\x9b\xf9>\t\xea\xfc:\xd48\xf1\xb4}|\xa9\x87\x9c\x800\x97N{\xb8\xbaU\xf1S\xe3h!\xfb\x1d\xe6\xc8A9\x95\xf6g\xce\n\x81~\xf2\xcc\xa7Y\xb6@\x18\xae\xbd\xb1\xf8\r"\xef\x95y!\x90\x8d\x1f\xef\x8dtR5l\xd5K-\xa7\x02\t\xce\xf9\x84\xd7\xa0\x87$\x15\x90\xb0\xaa\xf7\x96\x12\x07#zw%\xafP\x9f\x0c\x1cD\xe8\x81R\xb4\xc1\x0f\xf7\x99\xbc\xb1\xec\xf2\xa5\xcek\xf5\xacT\xd2!\x8a\xb8\x92\x11O(\xec\xbb\xd4hWf\xec-3\xd3\xed\xc2c\x86@\xb9\xc2\\\x8b\x9cn)\xfd\xc9\xf5i\xa9G\xdd\xc6\xbd\xa7\xa6W&\'L\x1a\xcd\xae`\x87Y\x97^\xa4!\xbf$\x99~\xd7R\xbe:tml\xb9\xd7\xfa\xa7\x84\xd0\x88\x942\x08m|\xaa+=\\\xe3_o\x17\xbbO\x91%Y<\xd2\xfd\xb1\xc7\x1f\xa5~\xa4\x9b\xfa:\xcd\x97p\xb1r\xcd\xcb\xb8\xe6\x99\x12\xa3\xb9\xec\xca\x81\xd6\xf0\nb\x03\x97\x83\xb7\x97\x17\xbe\xcbTzWL/\x9b\x15\xf9T\xf9`(\xe2!\x07\xff\xcb\x08jt\xc9X#U\x95\x8af\x18\xbe\xd0\x9dZ\xc5\x82\xfbk\xef\xa6e7&\xde\x8a\x0f\xcb\x1f\xe2\x8f\x90&VXgm/\x94\xef\xaa)/O\x84{H7Ib\x8e\xa5\x8d\xec\xebw\xca\x81&&y\xad\x04jXQ\xf0l\x8e\xe1\x06Q\xfdr\xed\x8e\r\xb9\x85x,_o\x9cR\xc44\x8c\x88\x15\xa1\xe7\x98\xbad\x9c\x9fZ\x00\x16\x13\x03\xb2U\x12\x0b\xa3\xd0i@\x13\xe3rA[\xa1\xff\xca\xba\xce\xae(\xb6\xae\xf9\xfd\xfd\x15\xa0 \x92\xa4\xc3\xf4t7 \x8a\nH\x10\t\x82\xa0c\xe8(\x03H\x18F.A\xf8\xed\x0fU\xa76\xedZ\xef\x07\xd7\x15\xaf\xcet<g\xef\xda\x15\x1e\xaaQ\x88\x81\xe0\x80\xe4\xdcs\xdfK\x0bU\xeci\xd9\xe4k6o\xd1\xe7\xdb\x9a\x9e\x12E\xa36\xf37\xc1\\\xff@N\xa0\x1e\xad,\xca\x06\xb3r\xb0\xec\xb8\x8a\x87\xe4Z\xb6\xdd9\x1c\x80\x92;\x10\x9b\x82\x17\xa2\xd2\x8b\xc8_\xa9,\xe1t+\xbc;\x10\xa9\x86L\x83uW\x07\x96\x89\xd9A\x9do^K\x02\x90J\x1eJ\xbf\xa5\x97\xff\xc6?\x86/\xf9\x18\x8fh\x0e\xf5\xcf\x1bS\xc1\x17\x80*+/x#C4l\xf0U{\xf6\xba\xd5\xf8\x84\xb1\x96m-\xfd>\xcb\xcd\xb7jZ\x94\x1fBCH\x08\xae\x07o\xf0%z\xf83\xe8F2\x94\xb3\x95\x86\x15~\xe2\x84T\xe0\x97\xd5b|\x96r\x0fN\xf5\x00\x97\x15\xccrK\xb1"*\x03\xd6\xebaH\xd2\xaa-\xc2\xc9\x8bc\xa2P\xe5\xac\xe4\xce\xb7YT\xcd\x9d\x18\xc7k\x8a\x80\x004\xf4I2\r\x02D\xf8A\xe0cxz(<\xcc%h\xcfi\x7f+F\xd7\xbaM4{\xdaZ]e\xae\xdc;i\xacK\x05\x95h\xb6Z\xc1\xca\x97\xfbJz1\xa0\xb5N7\x84\xfdEu+\x97C\xef\xcc\xef\xf4\x13\xe1\x97\xadw<\xac\xfc~*Cr\xa2\x17\xdel\xa9\xe4\x11\x8b\xc9\xdd5\xf9\xd2\x8a:\x9d\x15\xb7\xcb\xe2a\xb3\xac\x8c\xcc\xfe\xca\x15\x00\xbe\x0c\x12mpS\xdb\x00\x0b\xa9L\x94\x0b\xd0\xd2\xae\x864\xb7(G\xd5\x99\xb8\xfc\xc5\x91\xa5\xf8\x80\xfe`\xc1V\xd5\xf8\xa02\xdaA%@\x02\xeb\x02\xca\xee\x88\xc5\r\x0f\x92\x0f(\xe5K\x19*c\xc8\xac79\xf8\xb1\x14\x84\xb0\x19\x11g\x1a\n3\xa8\t\x94\xa04\x02\xbd\x04\xb6\x96\xe40\x17\xfb\xef\x14\x04,BT\x12\xed\x7f\xbfP\xf4\x01\x07\xac\xeas\xd8\xd4E\xad\xe6\xfe\xf9rl\xa9C\x0e*\xc1lh\x13\x10\xfdt\x08`\xbc\x0c\x967`_\xe4\xa5\xcd8\xc9\xaf\x86\xe9ay-\x92i*\xde\x18:\x1f\xb8\x80\xf8^\xaa\xf1\xb5/e\x00\xe3\xdc\xe1\x9dc4\xc3\xd2\x9f\xe7\xc5\x95\x7f-\xb3jC\xb6\xca{+\xb4+\xb8uO\xbc\xd3\xd1\xce\xba{\\\x07wB<\xf2\xb7\xab\xda*k\x8b\x86\x14\xef\x87\x91\x7f\xeb\xdbn\xabf%I\xd2\xaa(vL\x19\n.$a\xa2\x96u\xf6\xa3"\xfd\xf2\x95S\xf7\x0c<\xf4kV1\x1a\xd0\xc3P\xbfeWr\xd4\x95A\xd3\xd5_q\x02\xea\xf5Y)\x8b*Y2\xa7\xe9\x8fE\x95~\xf2\xd2\xf0\xd9\xa4\x1d\x08`\xc3]B\x93\xe78v\xear\xd0@\x97s\xea*\x19\x1f\xc9EL\x89\xb7$>\xb6-\xdc\xa5E\xaf\x0e<y\xe5\xd8nw\xaa4\x8b\x89U\xc9\x1c\xa5\xc3\xa8\xd94Q\xe7\x06m\xbc\xe7\xf7\x91\xf6\xc6E\x91VU|17\xbf6,\xc5T\xe3\x84D{\xbe\xd3\xe5\xeeZ\xc4\xbdJ%R\x99\x18\xd9\xd3\xa71\xa4"Xc)\xe6\xb9\xf9/\xe9\x8b=9]\xd0\r\x05\x9c\xd3\n\x00\x05\xe7\x14\x91{\x01\xe3\xfaLY\xc9|G\xf2\xef\xf0We\x07\x10\t"\xb24<\x07I\xe0\xb8\xe9C\x01\xeb;\x86\xee\x92\x80\xf4\xe1\xf2r\xd3\xe8\x1dWM;\xe2#\xb2\xc7\xcd\x19\xa6\x85B\xc4sb\xb8h\xc0\xcd\x88\xf8\x8a}2\xd8(\xc9W\xd1\xcb0\xb3\xe5z\x15\xcdA\xe7WL7A\xf5e{\xe5\xbd\xac\x082a\x009\x82\xdd\xdcYl[\xd6Z\xa7w\xa7\x91w%\'\x86\x84\x86G\xde\x01\x8e\x9a3\xe9q\x95\x18\xc5\x1e\x80=\x8c\xd4j]\xb5\x87v\xa8TZ}\xa6\x96^\xd0\xb5k\xc7Zb\x1b1\xbf\x16\x0c;`t\xbe\x16\xbe\x9aXS\xea\x9eW\xba>\x82-\x83\x99-\xd8\x8d\xe0\x0f\xba\xcc`\xae-#\xc7\xb2\x93\xf4\xd5\xbfdZAY\xdb\x07\x18\xd6\xa6\xd7\x8f\xedB\xe7D\xb3\x03\xe2\x85\xf0\x17\xaay\xf7/t\xf53\xf1tJ\xd1\xcb\xa1\n\xf7\x05\x9dA\x91\xf2P\xe6\x1c\xd1\x0b`\xd65<\x9e7\xb4\xab\xa5\xc1NM\xf4\r\xd2\x9b\xe9\xaf\xe0}n\x0c\xd52\x0e\xca\xc1]-\x03\xe6\x88\xfe\xfdB\x80y\xfd\x07VS\xf2h\x1ez\xbf\x91\xcd})\xa5B\xf7\xe2\xa7"%\xe0\x1d\x8d\xeb\xff\xfa\x06\xebb\x1d\x841C*T\x8c\t\xb7\x1apQ\x06\x8c0\x0e\x18@tT\xc7\xd7R\x8cZ\xec.\xc1w8\x13\xe4\xe1\xe8\xcc\x9a>\x12\x0fF\xda%\xb5c\xe6\x8715\xae\xf5\x0e)\xb9\xaf\x14\xdb\x8a\xa5M\xf9^\x1e\xa6\x8cP\x16\xc8\xa5\xd8\xdf\x8e^\xd0\xb6CT;\xea#\xb2\xce\xc8\xaa\xc4\x00\x96E\xae\x96\xbd6)\x9c\xad\xf0,M\xe7\xe4\x0cB\x9b\x0c~\xde/U\xf5*/\x13\x81_u\x9bbE\xe0\x81-J]\xc7\x87]qd\xfc\xcf2\xa4\xbf\xca\x8f\xb77x\xdd\x0fG\xc19\xa3\x9b\\\xce\x87\x83:\x06\xce\xdf"\x8d\x82\xe5\x8d\xec\xce\xe7\x85\xa1\x84gr\x87D,\xa9\xcb\xff\x04M\x88\xa8y\xeb\x0fUb\\,W\xae\x10\x9b\x1aM\x1dp"\xba\xea\xb6\x86Z#zN\xaa"p\x9d\xb3\xb6\x88K\xec\x12-\xf6\x9bz\xeb\x15\xe9D\xe3\xf5E[\x03\xe4*/)0\x8d\xf0S\xe10\x04,\x82e\xdb\x18\xb522\xcf\xb1\x08\x7fH\x97Y\xb4\x97\x7f\xb9\x97\xb0\x90\xd9a\xa2\x80*\xf3\xe5\x7f\xd8C\xf9\x80\x9cHS\x1e\xd7\x93\x8b\x96\xb5c\xded\xf8\xec[\x9b8\xd0J\xe2\xfeu_#\x08\xa2\xd6\xde\x90\x92\x0e\xc0F\xf1\xe2\x1f\xbf~\x99\x93@q\xf9\xf1\x89\xf885\x92\x16\xf3\xd6\x90 \xd0\x87#]C8Q\xa2T\xdeL\xda\xd7\xccC@HMvd\xadv\x9e\x00Q~\xba#\xec\x9et\x18\xb8t$\x1aX>\xb4\xbf\x92\xc5\xc4\xf3\x12D\xb4\xa5\xd0\xa2\xd9\xf1\x1a\x16E\x96\x8cawL\xf3\xe6*\xfa\xfd"ld\xc7et6\tQb\xc1\x0c2\xf1\xbf\xb8(z\xaf\x96\x9f%\xc6\xf8\xc6\xb1\xf0\xa6g\xc8\xd1\xe0\xf3\tBuU\xda\x88\t\x13\xd1<\\\xe3\x02f(\xbc\xafX\xef\xc4ktJ$&S{lvn\xf4\x87\xa5x\xe5\x8b\xb6\xb7\xfc)\x0f\xe1D\xc3BQ\x86+\x0eo\x83\xb9\x1d=7T\x08u\xcdH\xfc\xd0mb\x15\xd8U\x86\xee\xb8\x98b\xb0S\x90^\xe6B\xbf\xc7vF\xa7\x8ff/\xe6\x05\xb1\xa2\x1d\xe3\x92\x01\x15JU]\nJ\xa2k\x11\xda\x98R\xf2U\x12\'\x95j\xef\xc2\xa3\xfaTNo\xc874RNF\xa5\xd9P|"\x8fM1\xaa2\xe6\x19\x82h\x95\x07\x8b\x8f\x84^\x01\xd6\x05\r\x02\x90\x99\xc91k\xb4\xff\xde$,2t2\x11O\xa64U\x0b\x0f\xa9\x82\xa3g\xb2\xecM4\xf4\xf7b\xf0\x9d\xdbK\xb8T\x7f-3\xfb\x1d<>R\xda/\x8fJ%\xc3\x05`[\x8d\x0c\xb0?\xf0\xd0\x87p7\xde\xbe\x91\x83\xb7\x0cl(\x87(m"\x05\x9b\xa3$mR\xb4\xc9E\x0cnE\xc2\xc19\x14r\xca\xb5\x898\r\xe5\x93x\xf2\xb3\xf6R\xad4\xd6E\xe5\xb1\x02\xd1-S\xa4\x12\x11\xca+^\xa7\x8a\xec.@\\68\x9fh\x87\xf6\xc2\xa4M\x1a\xc5\xc6\x93M\xb0]*\xac\xffA\xf1\xf7V\xa5\x92\xa7\x05\x13\xa1\x8cu\xac\x92\'%H:)\xb5\x12\xc7\x0c\xa9"\xe2sY%Ed\xcc\xce\xa8c\x87]s\xe5g\xe66\xa3\xfa\x94\xd4\xb3\x1b\xcd\x0c\x00\xf6\x17\xc9[\x05\xa6\xd1\xc7R\xde\xe4%^\xab\x04\x1c\xdd\xb2>xE\x0b\xd0\xeegY\xd0\xf9\x8e\x90J\x99\xec\xda\xf8\x90\x14a\x16\xfa(\xce[],-\xa9\x8b\x8a\x95\xca\x90\xd9\xe0SNV\x85\x1e\xf7G\x9b\x8cR\x00\xb8\x12\xee\xd9\x12\xe1\xad\x86a\xab\x17\x9e\r\xbbG\xda\x94;\x95\x0c\xe0K+\xcaQ\x07\xe2\xef\xfb\x8f\xd4\xac+\xf1\x93\xd3&\xba>\xa7\xb7`\xe5\x96_\x12x\xa2N\xffr\xce\x84:\x13\xea\xfa"5\x19\xd1UwW\xf2"s\xb3\x89d\'a\xf0\r\xc7\x8d\xd7fM\xfb|T\xe3\'(s\xe8S\xe2]\x0b\xd0\xa6\r3z\x192`\x92g\xdbx\xb2B\xb8\xe9\xd5;?{\xcd\x82\xe2rS\xb2\xa7\x97G\\\x0c\x17\x15\xdeS\ry\xaa\xaf\xbc\xd7\xcfEMii_\xa9\xb4H\'\xdf6\xd4\xc3\xc8\x00\xa2\x8eVnf$R\xcfU\xdaq\xb4J{\xdd\x97*\x87y:\xea\xf5\xe1N0\x02\xe0\x14\x86\x8a<\xa7\\\xc9:%\xcd \x90C\x91\x1a\xec\xd0\xb6\xa0\x98\xcb\xde\xde\xc2\x9a|\xb2$\xe1r\x0crj\xb8\xa7\xa2\x81\xafT\x03\rh\xee\xc9t5_\xacu\xc1^I\xf4\x0f\xaf=\\x\xd9,b\x85L\xae\xd9\xe4\x154p\xbc\xc1\x10*\xe4\x15\x9f\x10\x9aE\xe4\x84M\xce\x1aNx\xbf\xd3\xdbi\xb4YU\xf8fF{x0\xdc\x95\x17\x83\xec\xd0r\x19\x9c\xb3\x9d\xcd\xd4\xdfjCM\xb4H&E\xab\xd5\xe4\xeff&a\xa9\xdb\xb2\xbe\t5\xfc\x0fPtzC\xe3\xc20\xf1\x92\xb5\x8b\xb5>\x83\x8f1hK\xd0\x0c\x98\xe1\x7f\x1eo}\xc4\xf0\xdb\xeb_j\x16\xaf\x96\xac\x0e\xe58\x92\x95\x8b\x9a\xcb\x15\xc7j\x19\r\x17\xc4\x7f\xe1|\xc6\x1c\xc8\xe0n\xff\xcd\x05~\xa8\x7f^\tn\x0f\xa5\xc0\xe2\xc7\xdeS\x84\xd4\x1e\xc4qT\xf7\xa2\x90\xe5\xe2?3\\\xad\x92\xb2\xballm\xf8+\xd3]\x16;\xb2\x90r\x9a\x00\xacw\xee\xe9\xea)@\x9e;\xa8g9j\xe0\xdfU\x08\xeep\xe1"\xdd\x15\xd6\x80\x07&e\x10hB\xd5t\xf73\xe7Q?$\xda&geI>75F.\xad\xd7\xbb\xc2\x98\xb5@<|9\x88\xb8e\xfd\xe5\x8a\xd6Y7\x07\xb2Bf\x9ez bN2\xfd\xcc\xe6X{Z-\x92ui(\xe3\xc9\x05\x9a\x02\xbd\xdd\x11\x87\xab\xe8\xf4\xa72\x8b\x9c\xd8R\xb5\xc7\x8e\xa4\x14\xca\xc7,\x81+\xe5\x8f\xd1\xf4\x89.@\xa3b\xcfd[/\x9f\xe9[\x10\xb0\xe4\x05k`\x92\xfb\xed\xef\xa4\r\xad\xb9\xa7\xebQ\x1c\xd9\xfa&)6\xe1m\xd0\xaeP\xa4{\xedg\xda\xc2J1k0\xc2\xad\x94\xbfV\xc8\x8d\x98p(\x969xt\x11\x15z\xe8\xc1:L\x9e\xff\xaa\xda\x81\x06(\xe0\x0e3\xc5\x0e\xd4b\x97k\xf8\xbd\'\xe7\xebzT"\xf4TC\x1a\x915\xb3\x8ca\x0b7\x1aX\xd2\x97hHf@r\x1b|\xd4\xa9\x80\x8ci\x9c\xca\nFK\xa4wG\xe38\x9b\xd6\x9al \xf9Pd\x03*\xf2\xcbW\xda\xf1\xdb\x16\xc7L#\xe5\x15\xf7\x98\x94\xf2\x02#\xb8\xe2-\x97\xea\xf88\xc8\x1d\xba\x8f\x158O*<\x05\xe7tG\xce\xd5\xb9%\x1976\xe8\x0f\x83\xe1o\xef\xe4\xd7\x9b\x95\xbd\xbf\xa3\x16\xd1:(\x12\x98\xca\x8e\x87\x82\xe3V\xc3\xeb\xdc6\xb6{#\xddK\xdaa\x8c\x7f\x8c\xa0\x13QM\xcb\xf62\xb8Y\x19\xf8\x8b\xf4\x07`\x1f\xc89{\xa2\xebT\x96/\x8a{\xf3\x8ek\x99\xd6\x1f\xb4\xcc\x16\xdd\x8e\xe4\xf0\xe72\xaa\xcd^\x1d\x0f\xf4\x82\xb4\xc4\xb16,\x96"\x9f\xe4$\x1f\xbfY\x92\xe2;\x12\x12\xc2D\xed\xd7\xcf\xe4\xdb\xe6[\r\xc2\x03\xe9\x83W\ts\x11\xf2\xf4B\xb1\x84\xe9\x07\xb19-\xeb\x00\xbd\x87\xa5\x86MY\xb89w\xa5\xb5&\t\'\xbf\xd8\xf8\x932\xb2Y\xbdL\xec\x06\xf9V\xd0\x8fHy2^0O\xed\xdc\xaf\xb1\x86\x14\\\xc9\xa6\x85\xfe\x9d9\xa6\xc1\x10\xff0\xbf\'`\xa3&\xdf\xca\xb2\xd8\xd64SpP\xae\x8c)/\x10\x9d\\\xe3\x844\xa6\xfb\xe2W\x81\xc2\xa1\x8aJ\xaa\xff\xb5Mx\xd1[2d*\x90\xde[)Jf\x04\xc6p.\x14\xc2\x97%#\x1a?s;\xa4\'\x99<\xd9\xeb\xce\xc9\x85\xd0E\x962\xb9p\x17q\x1f\x88$\xf0\xea\x8az\xe5\x98\x01;B\x87\x13\x15\x04\x14g\xf7\xc4\x8c\xada\x06\\[\xe0=\x91<\xc9\xa2\x18\x91\xed\xadc\xe4\x14-s\xae81\xa5-,\xf9\x80\xb2\x1d\xfe\xcd6\x10\xce\xe4\xcd\x91\xc4\x9b\x86\xf7\x9cKT\xa8HLV\x7fH\xa7\xa8\xa4<x(nF\xa2\x0fv\xd9u\xf4\x91\x9c\xf9KJv\xb5\xb0\xe7\xe1\xce\xa5\xd6\x93\xa4\xd9\xcf*A\xc5u\xfe\xackl\xb9E^\x0cT\x8c\xe9d\xb6\xfa^\xca}a\xcb\xdc\xbd\nq\x84\xdc\xfa\x8dUgO\x8c\x8fJ\x99\xb0\x85\x9c\xf1*9\x7f\x12dc\xe1\xb5K\x94bx\xc5\x00n\x1c\xe68\x10:\xf8.\x13\xeb\xac\xd56\xd7\xe2\xd0\xd1\\\xa3\xde^\x92\xe7\x00e\xe9K\xa6\x808\xb2\xf6\x8e\x9e9g\x1a|y\x1bL\xbb\xbdt[\x89\'\xec\xbb\x8aE\xed$\x91\xa5\x90KJ]Z\xf8\xeb\xbd\x12\x80\x18\xc9\xde\xbeg\xb10"1Hj\xa2p\xd3\xee0\x00T\xaeF\xb5C\x00G\x86\x80\xc2T\x9b"\xd1\xc4\n\xecu\x93\xcf-\xd7\xbd&\x90#\xc6\xdapY9\xa5\x1c6\x0e]\x15\x1a\xdc)W-em-\x0f8V\xd4\xd5\x07\xcd\xb3,\xc4\x8d\x16\x91\x1f\x1fG\xd8\xc8\n\xe7\xfe\xef\xf4\xcc \x06\x04]\xadQ\n,q\x9e\xb5\xabR]\xfa\xd7*\xb7\xd4H1\xde\x03\xe7\xedg;G\x9au\x94\xb2*\'9E\xb1\xbeD\x98\x05S\x14\xf1\xda/\x91\xd4\xf9)\x7f\xc5v\xc5\xb2P\xfd\x9d\xd1@\xa8\xd0\x11\xcbv>\xd1\x92\xf7x\x9b\xd3%\xbe\x92?[\xd2\xa4(<\xd6\xc74\xb3z(\xe4{\xe2KJ\xdc\xcb\x9e\x86\xc0\x16wk#oaX\xe2\x07\xe1\xd6\x87\xbeDM\xb5\x06\x9c\x85L\xf0Y\x04\x89\xc4U\xfa\x16\xab\xbd&{`\x14\xe0\xe6\x95Y\xd2V\x87\x01$\x08e%\xd0X\x9d\xabt\xa7ZR\xb0A\xd6~\xa7\xe1u\xfbvN\xfe{u\x02\x05n\x8d(\xd3\xba\xbd\xdb\xe9\x0cLJ\xfd$\xbfFz\x95\x98\xc7\x91\x82\x85\xd9\xc7\xa0\x8b$\xfaE;\xd5M\xd9\xf48\x95\xecs\xdb\x95\xe7H\x8e\xd8\xb6\xe2Bf7-\xcb&\x16-]O\x98\x07\x10\x84.\x00\xe9Uf\xeeH\xd53\x11\x17\x98\x9c\x90\xe9)m\x0f\x8e-\x88\xa3[\x170\xb4\x82=\x00\xed+\xf9\xa2\x8ci\x87\xaa\xcd\xfd\x0f,\xb3\xeaP\x06\xcd5p\xf2\x87\x05\x11c>\x7f\xe5J\xcb\xa2^\x8d\xb2\x089\xf2\x99\xbb\x9e\x1b\x8a\xcf\xf7\xe6\xdc\x06\x94\xfa\xd7\x14\xb8\xe2i\xf4\'\xf7e\x86\x19J\xdcP\xca\xc9\xb7*\xfb\xf7z\xa4\x8a\r\xc1\x1cD\xf8\\Z\xacd\xdcD\x9d\xcf\xcc+\r\xeal\xff\xe6+\x9f\xa3\xbel%47\xc9\x94\xfbZ{\xeb\x1b\xff\x99\x819\xc0\x88\xb4\x80\x91x\xa4\xd3%\x8f\x90;\xa6"\x96\xb3\xf4\xd5\xb7\x1b\\\x8e{\xe7d\xf7IF\x90<\xcb\xb5]\xf9\x1e\xa8\xc6\xa6\x97v\xab\xd3\x1f\xf8\xce%M\\Q#Y\xe40dqCL>x}\x91_\x0b\xcb\xde2\xa9\xdfS\x8d+\xbc\xf3i|%XI\xa0\t\xfb\xa2A\xfa\xc1\xfa\xc6\xd8\xef\xd1^gd^\xd4\xbd4z*et\xeb\xc3\x94n{i\x12\xddC\x19\x9a\xe7\xc5U\x03\x91\xa7\xd16\x9b1{c\xcb\x9d\x19Y*\xc9"\xb7H\xeeI\xf84\x9d`\x9e\xed\xec^\x92Y\x98\xf7\x0f\x19H\x8b\x1b\x97-~Q\xb6$\xcd\xc8\x07\xddzl\x08L\x1a\xf9\xa2\xc3\x9a \xa3\xcev\xd6H\xdf>\xfe\xb6?;)\x8f\xcc\x94G\x0c\r\x04\xe5\nl\x7f,:9\xbf\xae\xa6\x86\xc4\x96"\xb0\xc0p\xb8\x9f\xc5\x84\x08=\x98\xca\xb9@!\x1c\xc7%\x0b?\x99\x01[\x1b\xef\xd2\xbf\xf7\x1b\xd7\x13_\xaa\xce:\xef\x1d\xc8\xde\x19H\xbe}L\x1d=:\xa19m]\x9b\xc2\x86c\x11\x9c\x94\x0e\xc4\xa8t\x9f\x1b\xc4\xcc/M^)\xe8\x8c>\xfep;1\x13\xeeX[\xd2\t\r9d\xf5\xc2\xa0\x06\xb3\xc0\xc2J)L\xa94\xcd\x9e`g\x83Yr\xa2\xc2*Udhak\x17\x9d#\xe9\xe7\x88W\xbb^\x03\xaa\xf3P\'\x8c\xa0]N_Q\xdb\xcf\x18\xdb\x19\xb73\x92\xa6c\xae\x83\xea\xbc\xe3zP\x17\xd2\x93\x9a\x06\xc9)\x99\x96tf*q|[|\xe5\x9c\xd5\x0e.W\xba\xa3\x8d\xbfQ\x9db<\x93`\x9cL\xdb9\x9e\xcall\xd84\xfe;\xa6\xf5\xa2T\x1a\xa6 VJ\'\x95\xbaC\xadd\xe5/\x1d\t\xc2\xa4\xa73\x80z8\xea\xd3,W\xc3\x88\x8c\xbd\x19h\x0fI}\xa8\xc4\xa0\x1c\xd9\xd5\xb9a4\xb5 :\x8e\x0bSE\xe8\xb9T\x95J\x19\xd8d\xbcCQX`\xa4\xc1y\'\xe8\xd3l%A+/\x8aK\xdd\x10\x8d\x869`\xe0\x94\x8f-x\xd5\xc3\x8c\x08\x92\xfd\n\x0cFf7sfs\xd8\x98\x14\xd6\xe1\x8cZl\xd2T\xee\xc3\xf1+\x90\x99\xb2\xef\x1ah\xa4\xc6LZW\x7f\x99\x7fU\xf9\xa7&\xdb\x95\\\xc8\xd6\xcc\x14\xed\xe9k7 \x8a\x12\x1f\xfd\x92\xb8\x8cDot\xd0\xb9\x96\x18Z\x19\x85\xb4\x1d\xbd\x97\xea.$\x1a\xeb\xfc\xf0Is\x1c\xd6H\xb1\xca\x88\xfb1\x1d$^\xd8\x12\xb4Y\xbb\x1d\xfe\xa1u\x1a\x81.\xa6\r\x0f\x81BN\xb7^\xdb|\x9b5\x83\x80"\xd2\'\x87\t\x0e,\xdc\xd0\x93T\x15.\xcd\x8a\x02\x9b\x1e\xa8\xcb\xa7OA\xb8>\xdc\xe43g\xa2\xc2\xa4\x90\xe5\xc5\xb5\t ~]_(\x05\x00\xe7\x97J\xa7P[2\x01\x0b\x0cGF\xed\x8b\x0c\xdd2]\xd5\x9f\xf5\x15s\x8c"\x8d\xe6\x9d\xd4[\x9c\x9eh\x8d\xb5\x1c6\xaf\xdd\xa4k1\xaf\xd81\xc6\xb1\xfb{\xf9\x84\xd6\xe4\xe2\xf8\xe6\xf6pP\xac\x9d@t]\x12\xbf?\xe8\x11\xe2\xd8\xfc\xf9\xeb!\x81l\xad\x1f\'\x98>\xc4\xe4\xe2.\xc9\xeb\xddC\x02\x05\x14\xc7~\xf9\xf2\x9e\xa6R\x9f\xdf\r\xab\xc1\x08\xb4]\xd2=p|\xe5H\xc8\xbc\xa5n\x85}\xcb\xe8\x9b\xd7p5\xd5\x17\xd3\xc8z\x9a$\xb6\\\xb68\xb4}O\x93\xbf\x97*{\xa3\xca\nm\x1bUi\x00\xa6\x0b\x96\xf9K\x88gcEO\x04\xf8\x8b\n\x8bl\xe6p\x89\x15\xf5\x88\x05\xb0q\xb1\xeb\x9f\xc4\xc6\x15\xdf\xeb\x9c\x9c\xee)M\xb4\xadIik[\xef\xb0/nk\xd2\xd2\xe8\x86r\x99\xe2\x0f\x7f\x07\x8dN\x08{\xfe"\x87d\xb1\xd08-\xcd\xae\xcf\xf5\xda$0"l\xd7\xe2\x9d\x11\xe0\x96\xb3A\x9eQF>\xafx#\xa2E\x18\x97\xd6\xca;(\xaa\x9b\x17<\xe6P^\xcd\xad*\xb8S\xbc\\M\xea\xa5\x9cO\xb82\x11\xb9\x02\xd3\x8c\x13}\x16P\xd3\xaf\x89\xb4\xb4\xd0\x87\xb5\x11\xf9\x9e\xc6S E\x11\xeb\xcboV`\xa7P\xe6\xcf{\x93?w]\x9deY\x82\xbe\xa4\x87\x96\xc6R2?B/v\xa9b\xd5\x81\xb3Nh4\xb4\xb5(\xc2|\xa0\x10\xbfG\xcd\x88\xbf\xded4\'\x1aJb~\xfeI\rD\xbe)\x84\x8d\xf1\xeb$\x13?\x83\xda\xadz\xb7\xa52\x9bC\xf8k\xa5\xa0\xa7\xe2vg\xe1\x99\xec\x10\xb0\xd6 \xd1\x89J\xf8\xd6\x0e8]\xdc\x18\x98\x9f\x8c\xfcTPq\xb8\xff\xb5\xe5D\x93\xe8)\x95h\xc7\x0fa\xc9HR|<\xb1\x8c\x0c\x1e\xffo!\xe50\x926\xf06\xc4+\xc3/O\'4\xb6\xf6fME$\x8f\x97\x82\xbeMR\x93\xd3\xcf\xc7\xff~\x1c\xee\xaf\x8a\x85\x9b\xbc\xf8 ?\x83ze}J\xd3"0\xddj\xe7\xe0\xb1\xfe\tz.*O\x03\x11\x15\x19d\x94\xfdc4\xa6\x8e\xbdPa\xe6H:]\xf5+\x12\xc1\x17\x927\x9b\x9dUZ\xf9\x03\x8d\x97\xa8\xd7R\x85M\xd3\x85l\xd9o\xe8T\xa5E\xba\xa2\xd9{\xd8@;-Q+\n{=\x7f\xcb\x81\xc9|*\x9d}8<\xd8\x080\xc2B\xac\xf2\x17\xb4y\x96\x9cxU=\x04~\x97\x93\xb8\xe8\xb8\xc7\xfe\xcf\x03\xa5\xaa&\xde\xa5\xda \xbap\x05\x95HT\xb1\x1c,jy6\xa7\xf5\xa7Mq\xd7\xe3\xc6\t\x8c?\xb7\x07\xd1\xe6\x84w\xb74\xd4\x1c\xd8xE\xd1\x05XZ\xf0\x9e\xa4\xfd`\xb2\xa1\xc8a_\x80\x045\x13\xd1\'\xd1m\xa3\x8d/\x9a\x06h\x1d\x8e\xeb\x86\x9cN\x8a\x00U3\xf8U\xcb\xcb3\xaf>\xe1~\x8fMwH\x9c\x80=W\xf2\x93k\xc2\xc9U\x03I%\xd5?u\x01\x99\xe943\xbc\xd4{\x11\x8d\x9ew:+\x9aq`\x06T\x90\xf8\x03fU%\x91\x00\xa5\xde\x99\xa4:Y\xda8\xb1f\x08N\xb6V\x87\x9b{0\xcf\xe0\x87\xd6\xb7q\x11>99\x03\xf2\x92)\xa1\x84\xa0e6\xafc\xc2^C\x84L\xa3\xdd<\x89oN\xcf\xf6>~T\x83\xd1\xa2\xe78T\x92\x01Y~\x93\x90i\x16\xebzh\x08\x02R{0\xa9\x87%\x81\xc3Kb-Z-#\x8b\x87O\xee\xcd\xf6\xd6\x85\xd1;\x8f\xff\x11W\x9cxt\xf5_:\xc6\x89T/\x8a\xa9\x85\t\xd9\x9fx\xfb\xa2j\xa8ZL`\xe2\x94\xc9S\x97`\x0fR+=0x\xb2\xa0a\x07;\xe3F\xf8\x03!L\x96\xd7\xc4\x13\\\xeby\x8b\xf4\x0c\x9e~\xde\x08\x9e\xe8\x14\x0c\xa7\x98\xdaC\xabW\xaf\xb0\xe9\xf8)\x96\x1d\x97\xfa\x121\x829\xf8\xe6\xc4_y\xd2y\xfb\xcb\xe2?\xf0\x94\x85\xadi\xae\x941\xa4\xb4\xc6(3\x93\xd9R&\x03{\x82%\xf8\xbeT\xff\x8e\xd3\xael\xb4k\xc6_\xe1\xb4\xda\xe7\xb2ey\x08\xbc^w\xc3\xe28(\x18\xc0\xc9\xf3\x8e\x0e\xef\xbaG\xff\xac\xd5\x1ah<|\xe3\xc9\x82\xd2\xd9\x08\xfeO\x9cO\xb9\x1a\x81\x95\x07\xa4\x9d\x04#\x15\x17\xee3\xabX\xd8+\x89\xa9\x02UR%\'s\xb6\\\xa0\x9c\xc4\xd6\xcf;\xc2\x82g\xce\xba\xd9]\x12\xecQXv\x85\xc4\x97r\xc6qh\x8aV1\n\xb3\x11\n-\x19\xea\x88Ps\xd64\xdf\x7f0\xbb\xb7\t\xec\xf0\xa4""\xbb\xd0dy\xac\x9b\x17-\x9a\x19\xfc\x8f\xe8Bg\x91\x8a\xd0\x10\\[z4\x8e\n\x02\xca\xec\xe6\x89\xe0\x11\xeeD\x02%k\xb9\xed\xb0e\x8a\xd8$\r\x1d\xdcA&\x97\xa5\xad\'_\xb5\xfbD\x9a\xae\xc5\r\xa0\xcaq\xb8\xffG\x88O\xd5\xc8T\\\x93}\x01\xe8\x05\x99\xd5lT\x80\xaf$\xc9:\x94\xb6\xed\xbf7o\xfe\x9cI\xcc@\xb9\xc4\x0c#@\xaf\x9b0\x83\x14N\xa1\x95rv\xb9.\xd5\x93\x87S\xd1\xa4\xe8\xf1\x1e\xb6\xd3\xb4\x9d\x9e\xff\xf7G\xcb\xba\xd4\x1d\x9e\x84\x06\xf4s`\xed>-\xe2!M\xef\xc6\x9b\tw\x8a\xcb\xe33\xce\x90\xe7\x91lB\x81\x1aX\xb2\xb6\xffH\n\x1b\xe9\x8c\x8c\t\xe4\xa7K\xe0\x13\xd5\xbeu\x8e\xca"Z\xd6>\x83Z\xd4\x91\x9b\xbb\x80\x87`\xd9\xccQm\xd4X\xde$\x98$\xd4\xd1\xdb\x7f8\xbb\xd5*(\xc0\x95%\xbc\x91\xe1\x0c\xa4;\x85\xfc\xda\xdb\x1b\\q\xa7\x91I\x88\x94i\x03\xf2\x95*\x93\xc7m\xfaG\xc9\x9d\x89"\xac5\x80\x03\xfe\xdbo\x123\x95)\x02\x96\xa2\x9e^\x01Os#\xaf89Qo+y]\xd2\x1e\x1e\x1f\x1b\xc2{\x96\xe8\x7f\x98\xdb\xac/\x9ai\xa1]\xc0{t\xe3\xa0\xc1\x8a\xe7\x16(*R\x93\x17\xef\x05\xf3\xf8*\x14\x02\x91I\xd8\xf6\xb2F\r\xe8\xa7\xb0{\xf7V\xec\x7fUjY\xa1\x03J\xc4\x9b\xaaK\x92A\xcf\xbb2\x0c\xe5D$"\xf9i\x19\xcf\x0b\xa8\x87\xfe\'I\xda\xda2\x87\xca\x02\xa3g\xdc\xcb\xd1V\x89\x10|`\x0b\x905\x19\x8d\x19\xc1\xc2/\xf8\xaeR\xd8C6\x83\xc5pP\xee\x90j\xbdg\x1d\x91Mk\xcc\xaa\x12\xcf\xd1\x12\xee\x1a\x8ds\xe9\x0f\x9e4\x13{\x0eW\x92\xfd\xb3\x0b\xfe\xd9\xb4\xed(\xf8 \xb9\x97\x95TO\x9bR,{\xfc7\xfa\x03\xaa\x18\x8e\xe7\xf7%5\xcf\x92\xd3y\xfb\xad\xbd\x1e\'\xf3\xfbW\x98O$\xbf\x81\xd4\xe53\xea\x90I\x8d\xf8\r7\xd1\x84\xff7u\x7f\xf2E\xdf\x8f\xf8\xad\xc2_\x85\x8e7\xdf\x97!z\x99\'P\x95q!\xccO\xe6g\xf4\xa7\x1cZe2Pr\x16cvm,\xf3\x91\xc4\xe4\x89\x97\xa2V+l\xab\x92[\x9e/\x0b\xa8\xa2@\xf5\x01\x9f\xb7Da\xbd\xb5\x92gJ\xcb4\xe4\xba&KU\xdfO\x9e&\x9d\x8e>\x84\xbe\\\xf9G\x81\xba\x89\xd2{X\x1e\xd62[\xf4\xc2 7s\xddR\xfa\x10\xea)o:\xfd\x85^\xef\xb47\x90_\x0f\x888\xeb\x0f\x8c6\xbe\xce^;\xcf.\xaa\xb6Y\x05\xc4\xbf\xb3\xde\xc5\x01\x9c}\xf9c\x92wO\xb2\x8b\xa2\xdb\xd5\xcf\xad_7\xb4.\xe5\xefo\x8e\xbb\xf6!\xad\xca!}$\xee\x1c\x9ff\xc8\xd0\x82\xb3mY\x15\xa7\xbf\xcfz\xd5\x85\xfb\xb9\xbf\xf0\xf0\x96\x9f\xf5\xbb\xa7\'\xfa\xbb\xbe}@t\xd6\xeb\x9e\xf4U\xcf<\xbc\x9d\xbd\xc6\x89\xe1\xff\xfdh\xdfY\xff)\x8e\xec8g\x7f\x9f\x96\x7f\x8ea\xb5\xe4\xf9\xff\xfe\xdd\x0bs\xcbv\xbf\x9e\x8b\xf6\xce<\xa3\t\xfde\x8dO=\xf9\xd9T\xee\x11Ys\xb5d\xd6\xb2\x7f;2::\xfa\x7f\x15O`\xe0\xf1<\x06\xb2\x8b\x81|\x9a\x07\xff\xbc~\xf2x\xa5o\xf3\xbb\x81\'\xa3\xff\x03\xa2\x0f\xf2F(\xd8\x01\x00'))) except Exception as b: print(f'Error for : {b} ')
14,671.090909
161,223
0.734258
9354540bc893f59e36ecde6e8e37256131b2eae2
23,746
py
Python
modular_client/modular_client.py
janelia-pypi/modular_device_python
dde4b9555c9898316f5afb6ba95a8110d1077ef9
[ "BSD-3-Clause" ]
1
2021-03-23T15:10:22.000Z
2021-03-23T15:10:22.000Z
modular_client/modular_client.py
janelia-pypi/modular_device_python
dde4b9555c9898316f5afb6ba95a8110d1077ef9
[ "BSD-3-Clause" ]
null
null
null
modular_client/modular_client.py
janelia-pypi/modular_device_python
dde4b9555c9898316f5afb6ba95a8110d1077ef9
[ "BSD-3-Clause" ]
1
2015-12-10T19:35:22.000Z
2015-12-10T19:35:22.000Z
import serial import time import atexit import json import functools import operator import platform import os import inflection import sre_yield from serial_interface import SerialInterface, SerialInterfaces, find_serial_interface_ports, WriteFrequencyError try: from pkg_resources import get_distribution, DistributionNotFound _dist = get_distribution('modular_client') # Normalize case for Windows systems dist_loc = os.path.normcase(_dist.location) here = os.path.normcase(__file__) if not here.startswith(os.path.join(dist_loc, 'modular_client')): # not installed, but there is another version that *is* raise DistributionNotFound except (ImportError,DistributionNotFound): __version__ = None else: __version__ = _dist.version DEBUG = False BAUDRATE = 115200 class ModularClient(object): '''ModularClient contains an instance of serial_interface.SerialInterface and adds methods to it, like auto discovery of available modular devices in Linux, Windows, and Mac OS X. This class automatically creates methods from available functions reported by the modular device when it is running the appropriate firmware. This is the modular device client library for communicating with and calling remote methods on modular device servers. Example Usage: from modular_client import ModularClient dev = ModularClient() # Will try to automatically find device if one available. This may be slow if it # needs to search many serial ports. If it is not found automatically or to # speed up, specify port directly. dev = ModularClient(port='/dev/ttyACM0') # Linux specific port dev = ModularClient(port='/dev/tty.usbmodem262471') # Mac OS X specific port dev = ModularClient(port='COM3') # Windows specific port dev.get_device_id() dev.get_methods() ''' _TIMEOUT = 0.05 _WRITE_READ_DELAY = 0.001 _WRITE_WRITE_DELAY = 0.005 _METHOD_ID_GET_METHOD_IDS = 0 _VERBOSE_HELP_STRING = '??' def __init__(self,*args,**kwargs): name = None form_factor = None serial_number = None if 'debug' in kwargs: self.debug = kwargs['debug'] else: kwargs.update({'debug': DEBUG}) self.debug = DEBUG if 'try_ports' in kwargs: try_ports = kwargs.pop('try_ports') else: try_ports = None if 'baudrate' not in kwargs: kwargs.update({'baudrate': BAUDRATE}) elif (kwargs['baudrate'] is None) or (str(kwargs['baudrate']).lower() == 'default'): kwargs.update({'baudrate': BAUDRATE}) if 'timeout' not in kwargs: kwargs.update({'timeout': self._TIMEOUT}) if 'write_read_delay' not in kwargs: kwargs.update({'write_read_delay': self._WRITE_READ_DELAY}) if 'write_write_delay' not in kwargs: kwargs.update({'write_write_delay': self._WRITE_WRITE_DELAY}) if 'name' in kwargs: name = kwargs.pop('name') if 'form_factor' in kwargs: form_factor = kwargs.pop('form_factor') if 'serial_number' in kwargs: serial_number = kwargs.pop('serial_number') if ('port' not in kwargs) or (kwargs['port'] is None): port = find_modular_device_port(baudrate=kwargs['baudrate'], name=name, form_factor=form_factor, serial_number=serial_number, try_ports=try_ports, debug=kwargs['debug']) kwargs.update({'port': port}) t_start = time.time() self._serial_interface = SerialInterface(*args,**kwargs) atexit.register(self._exit_modular_client) self._create_methods() # store the device id to output during debugging self._device_id = self.get_device_id() t_end = time.time() self._debug_print('Initialization time =', (t_end - t_start)) def _debug_print(self, *args): if self.debug: print(*args) def _exit_modular_client(self): pass def _args_to_request(self,*args): request = json.dumps(args,separators=(',',':')) request += '\n'; return request def _handle_response(self,response,request_id): if response is None: error_message = 'Did not receive server response.' raise IOError(error_message) try: response_dict = json_string_to_dict(response) except Exception as e: error_message = 'Error:\n{0}\nUnable to parse server response:\n{1}'.format(str(e),response) raise IOError(error_message) try: response_id = response_dict.pop('id') except KeyError: error_message = 'Server response does not contain id member:\n{0}'.format(response) raise IOError(error_message) if not response_id == request_id: error_message = 'Response id:\n{0}\nDoes not match request id:\n{1}\nin response:{2}'.format(response_id,request_id,response) raise IOError(error_message) try: error = response_dict.pop('error') try: message = error.pop('message') except KeyError: message = '' try: data = error.pop('data') except KeyError: data = '' try: code = error.pop('code') except KeyError: code = '' error_message = '(from server) message: {0}, data: {1}, code: {2}'.format(message,data,code) raise IOError(error_message) except KeyError: pass try: result = response_dict.pop('result') except KeyError: error_message = 'Server response does not contain result member:\n{0}'.format(response) raise IOError(error_message) return result def _send_request_get_result(self,*args): ''' Sends request to server over serial port and returns response result ''' request = self._args_to_request(*args) self._debug_print('request', request) response = self._serial_interface.write_read(request,use_readline=True,check_write_freq=True) self._debug_print('response', response) if (type(response) != str): response = response.decode('utf-8') self._debug_print('type(response)', type(response)) result = self._handle_response(response,args[0]) return result def _get_method_dict(self): method_dict = self._send_request_get_result(self._METHOD_ID_GET_METHOD_IDS) method_dict = dict([(inflection.underscore(method_name),method_id) for (method_name,method_id) in method_dict.items()]) return method_dict def _send_request_by_method_id(self,method_id,*args): method_args = [method_id] method_args.extend(args) result = self._send_request_get_result(*method_args) return result def _method_func_base(self,method_id,*args): if len(args) == 1 and type(args[0]) is dict: args_dict = args[0] args_list = self._args_dict_to_list(args_dict) else: args_list = args try: result = self._send_request_by_method_id(method_id,*args_list) except Exception as e: device_id = self._device_id port = self.get_port() write_data = self._serial_interface._write_data read_data = self._serial_interface._read_data error_message = '\ndevice_id:\n{0}\nserial_port:\n{1}\nserial_write_data:\n{2}\nserial_read_data:\n{3}'.format(device_id,port,write_data,read_data) raise e from Exception(error_message) return result def _create_method_docstring(self,method_id): docstring = str(self._send_request_get_result(method_id,self._VERBOSE_HELP_STRING)) return docstring def _create_methods(self): self._method_dict = self._get_method_dict() for method_name, method_id in sorted(self._method_dict.items()): method_func = functools.partial(self._method_func_base, method_id) method_func.__name__ = method_name method_func.__doc__ = self._create_method_docstring(method_id) setattr(self,method_name,method_func) def _args_dict_to_list(self,args_dict): key_set = set(args_dict.keys()) try: order_list = sorted([(num,name) for (name,num) in order_dict.items()]) except AttributeError: order_list = sorted([(num,name) for (name,num) in order_dict.iteritems()]) args_list = [args_dict[name] for (num, name) in order_list] return args_list def close(self): ''' Close the device serial port. ''' self._serial_interface.close() def get_port(self): return self._serial_interface.port def get_methods(self): ''' Get a list of modular methods automatically attached as class methods. ''' return sorted(list(self._method_dict.keys())) def call_get_result(self,method_name,*args): method_name = inflection.camelize(method_name,False) return self._send_request_get_result(method_name,*args) def call(self,method_name,*args): self.call_get_result(method_name,*args) def send_json_request(self,request): ''' Sends json request to device over serial port and returns result ''' request_python = json.loads(request) try: request_id = request_python["id"] except TypeError: pass except KeyError: error_message = 'Request does not contain an id:\n{0}'.format(request) raise IOError(error_message) try: request_python["method"] = inflection.camelize(request_python["method"],False) except TypeError: pass except KeyError: error_message = 'Request does not contain a method:\n{0}'.format(request) raise IOError(error_message) try: request_python[0] = inflection.camelize(request_python[0],False) request_id = request_python[0] except IndexError: error_message = 'Request does not contain a method:\n{0}'.format(request) raise IOError(error_message) request = json.dumps(request_python,separators=(',',':')) request += '\n' self._debug_print('request', request) response = self._serial_interface.write_read(request,use_readline=True,check_write_freq=True) self._debug_print('response', response) result = self._handle_response(response,request_id) return result def convert_to_json(self,python_to_convert,response_indent=None): ''' Convert python object to json string. ''' converted_json = json.dumps(python_to_convert,separators=(',',':'),indent=response_indent) return converted_json def save_device_id(self,output_directory): ''' Save device_id as a json file. ''' if output_directory is None: output_directory = os.path.join(os.path.curdir) elif len(os.path.splitext(output_directory)[1]) > 0: output_directory = os.path.dirname(output_directory) if not os.path.exists(output_directory): os.makedirs(output_directory) result = self.call_get_result('getDeviceId') output = {} output['id'] = 'getDeviceId' output['result'] = result output_path = os.path.join(output_directory,'device_id.json') with open(output_path,'w') as output_file: json.dump(output,output_file,separators=(',',':'),indent=2) try: os.removedirs(output_directory) except OSError: pass def save_device_info(self,output_directory): ''' Save device_info as a json file. ''' if output_directory is None: output_directory = os.path.join(os.path.curdir) elif len(os.path.splitext(output_directory)[1]) > 0: output_directory = os.path.dirname(output_directory) if not os.path.exists(output_directory): os.makedirs(output_directory) result = self.call_get_result('getDeviceInfo') output = {} output['id'] = 'getDeviceInfo' output['result'] = result output_path = os.path.join(output_directory,'device_info.json') with open(output_path,'w') as output_file: json.dump(output,output_file,separators=(',',':'),indent=2) try: os.removedirs(output_directory) except OSError: pass def save_api(self,output_directory,verbosity='DETAILED',firmware='ALL'): ''' Save api as a set of json files. ''' if output_directory is None: output_directory = os.path.join(os.path.curdir,'api') elif len(os.path.splitext(output_directory)[1]) > 0: output_directory = os.path.dirname(output_directory) if not os.path.exists(output_directory): os.makedirs(output_directory) device_info = self.call_get_result('getDeviceInfo') for firmware_info in device_info['firmware']: if (firmware == 'ALL') or (firmware == firmware_info['name']): result = self.call_get_result('getApi',verbosity,[firmware_info['name']]) api = {} api['id'] = 'getApi' api['result'] = result output_path = os.path.join(output_directory,firmware_info['name'] + '.json') with open(output_path,'w') as api_file: json.dump(api,api_file,separators=(',',':'),indent=2) try: os.removedirs(output_directory) except OSError: pass class ModularClients(dict): '''ModularClients inherits from dict and automatically populates it with modular clients on all available serial ports. Access each individual client with three keys, the device name, the form_factor, and the serial_number. If you want to connect multiple ModularClients with the same name and form_factor at the same time, first make sure they have unique serial_numbers by connecting each device one by one and using the set_serial_number method on each device. Example Usage: from modular_client import ModularClients devs = ModularClients() # Will try to automatically find all available devices. This may be slow if it # needs to search many serial ports. If they are not found automatically or to # speed up, specify ports to use. devs = ModularClients(use_ports=['/dev/ttyACM0','/dev/ttyACM1']) # Linux devs = ModularClients(use_ports='(/dev/ttyACM)[0-1]') # Linux string RE alternative devs = ModularClients(use_ports=['/dev/tty.usbmodem262471','/dev/tty.usbmodem262472']) # Mac OS X devs = ModularClients(use_ports='(/dev/tty\.usbmodem26247)[1-2]') # Mac OS X RE Alternative devs = ModularClients(use_ports=['COM3','COM4']) # Windows devs = ModularClients(use_ports='(COM)[3-4]') # Windows RE Alternative devs.items() # dev = devs[name][form_factor][serial_number] devs = ModularClients(use_ports='(/dev/ttyACM)[0-1]',keys=[0,1]) dev = devs[0] devs = ModularClients(use_ports='(/dev/ttyACM)[0-1]',keys='(device)[0-1]') dev = devs['device0'] devs = ModularClients(use_ports='(/dev/ttyACM)[0-1]',ports_as_keys=True) dev = devs['/dev/ttyACM0'] ''' def __init__(self,*args,**kwargs): if 'key_port_debug' in kwargs: self.key_port_debug = kwargs.pop('key_port_debug') else: self.key_port_debug = False try: modular_device_ports = kwargs.pop('use_ports') if modular_device_ports is None: raise KeyError if isinstance(modular_device_ports,str): modular_device_ports = list(sre_yield.AllStrings(modular_device_ports)) if len(modular_device_ports) != len(set(modular_device_ports)): raise KeyError except KeyError: modular_device_ports = find_modular_device_ports(*args,**kwargs) try: keys = kwargs.pop('keys') if keys is None: raise KeyError if isinstance(keys,str): keys = list(sre_yield.AllStrings(keys)) if len(keys) != len(modular_device_ports): raise KeyError if len(keys) != len(set(keys)): raise KeyError except (KeyError,TypeError): keys = [None] * len(modular_device_ports) try: ports_as_keys = kwargs.pop('ports_as_keys') if ports_as_keys is None: raise KeyError except KeyError: ports_as_keys = False for key,port in zip(keys,modular_device_ports): self._add_device(key,port,ports_as_keys,*args,**kwargs) def _key_port_debug_print(self,key,port): if self.key_port_debug: print('key={0}, port={1}'.format(key,port)) def _add_device(self,key,port,ports_as_keys,*args,**kwargs): kwargs.update({'port': port}) dev = ModularClient(*args,**kwargs) if (key is None) and (not ports_as_keys): device_id = dev.get_device_id() name = device_id['name'] form_factor = device_id['form_factor'] serial_number = device_id['serial_number'] if name not in self: self[name] = {} if form_factor not in self[name]: self[name][form_factor] = {} self[name][form_factor][serial_number] = dev self._key_port_debug_print('[{0}][{1}][{2}]'.format(name,form_factor,serial_number),port) elif key is not None: self[key] = dev self._key_port_debug_print(key,port) else: key = dev.get_port() self[key] = dev self._key_port_debug_print(key,port) def check_dict_for_key(d,k,dname=''): if not k in d: if not dname: dname = 'dictionary' raise IOError('{0} does not contain {1}'.format(dname,k)) def json_string_to_dict(json_string): json_dict = json.loads(json_string,object_hook=json_decode_dict) return json_dict def json_decode_dict(data): ''' Object hook for decoding dictionaries from serialized json data. Ensures that all strings are unpacked as str objects rather than unicode. ''' rv = {} try: for key, value in data.iteritems(): if isinstance(key, unicode): key = key.encode('utf-8') if isinstance(value, unicode): value = value.encode('utf-8') elif isinstance(value, list): value = json_decode_list(value) elif isinstance(value, dict): value = json_decode_dict(value) rv[key] = value except (AttributeError,NameError): for key, value in data.items(): if isinstance(value, list): value = json_decode_list(value) elif isinstance(value, dict): value = json_decode_dict(value) rv[key] = value return rv def json_decode_list(data): ''' Object hook for decoding lists from serialized json data. Ensures that all strings are unpacked as str objects rather than unicode. ''' rv = [] try: for item in data: if isinstance(item, unicode): item = item.encode('utf-8') elif isinstance(item, list): item = json_decode_list(item) elif isinstance(item, dict): item = json_decode_dict(item) rv.append(item) except NameError: for item in data: if isinstance(item, list): item = json_decode_list(item) elif isinstance(item, dict): item = json_decode_dict(item) rv.append(item) return rv def find_modular_device_ports(baudrate=None, name=None, form_factor=None, serial_number=None, try_ports=None, debug=DEBUG, *args, **kwargs): serial_interface_ports = find_serial_interface_ports(try_ports=try_ports, debug=debug) os_type = platform.system() if os_type == 'Darwin': serial_interface_ports = [x for x in serial_interface_ports if 'tty.usbmodem' in x or 'tty.usbserial' in x] if type(name) is str: name = [name] if type(form_factor) is str: form_factor = [form_factor] if type(serial_number) is int: serial_number = [serial_number] modular_device_ports = {} for port in serial_interface_ports: try: dev = ModularClient(port=port,baudrate=baudrate,debug=debug) device_id = dev.get_device_id() if ((name is None ) and (device_id['name'] is not None)) or (device_id['name'] in name): if ((form_factor is None) and (device_id['form_factor'] is not None)) or (device_id['form_factor'] in form_factor): if ((serial_number is None) and (device_id['serial_number'] is not None)) or (device_id['serial_number'] in serial_number): modular_device_ports[port] = {'name': device_id['name'], 'form_factor': device_id['form_factor'], 'serial_number': device_id['serial_number']} dev.close() except (serial.SerialException, IOError): pass return modular_device_ports def find_modular_device_port(baudrate=None, name=None, form_factor=None, serial_number=None, try_ports=None, debug=DEBUG): modular_device_ports = find_modular_device_ports(baudrate=baudrate, name=name, form_factor=form_factor, serial_number=serial_number, try_ports=try_ports, debug=debug) if len(modular_device_ports) == 1: return list(modular_device_ports.keys())[0] elif len(modular_device_ports) == 0: serial_interface_ports = find_serial_interface_ports(try_ports) err_string = 'Could not find any Modular devices. Check connections and permissions.\n' err_string += 'Tried ports: ' + str(serial_interface_ports) raise RuntimeError(err_string) else: err_string = 'Found more than one Modular device. Specify port or name and/or form_factor and/or serial_number.\n' err_string += 'Matching ports: ' + str(modular_device_ports) raise RuntimeError(err_string) # ----------------------------------------------------------------------------------------- if __name__ == '__main__': debug = False dev = ModularClient(debug=debug)
41.154246
159
0.605323
0f412935d33f7885e2b545d945fbc07222feeab5
2,258
py
Python
swatcher/image.py
joshbduncan/swatcher
91e459df75be4c50d38540b8cf49c6c4ed6a5764
[ "MIT" ]
null
null
null
swatcher/image.py
joshbduncan/swatcher
91e459df75be4c50d38540b8cf49c6c4ed6a5764
[ "MIT" ]
null
null
null
swatcher/image.py
joshbduncan/swatcher
91e459df75be4c50d38540b8cf49c6c4ed6a5764
[ "MIT" ]
null
null
null
from collections import Counter from PIL import Image, ImageChops from .color import normalize_rgb_values def trim_excess(image: object) -> object: """ Trim excess background pixels from around an image. :param image: PIL Image object :returns: PIL Image object """ w, h = image.size # get RGB value for each corner of image corners = [ normalize_rgb_values(image.getpixel((0, 0))), normalize_rgb_values(image.getpixel((w - 1, 0))), normalize_rgb_values(image.getpixel((0, h - 1))), normalize_rgb_values(image.getpixel((w - 1, h - 1))), ] # count how many times each value is present color_count = Counter([pixel for pixel in corners]).most_common() # if multiple corners have the same pixel count don't trim if len(color_count) > 1 and color_count[0][1] == color_count[1][1]: return image else: # set the comparison pixel to the most common value bg_pixel = color_count[0][0] # compare the original image to the excess pixels comp = Image.new("RGB", image.size, bg_pixel) diff = ImageChops.difference(image, comp) bbox = diff.getbbox() # crop the difference return image.crop(bbox) def process_image(image: object, max_size: int = 500) -> object: """ Process the image for best color sampling results. :param image: PIL Image object :param max_size: maximum size of the image for color sampling :returns: PIL Image object """ image = image.convert("RGBA") # check to make sure image has pixels w, h = image.size if w == 0 or h == 0: raise ValueError("The provided image has no pixels.") # composite the image on a white background just in case it has transparency bg = Image.new("RGBA", image.size, (255, 255, 255)) comp = Image.alpha_composite(bg, image) # convert composite image to RGB since we only need the RGB color values comp = comp.convert("RGB") # crop the image if extra surrounding background pixels are found comp = trim_excess(comp) # reduce the image down to `max_size` to speed up processing if comp.width > max_size or comp.height > max_size: comp.thumbnail((max_size, max_size), resample=0) return comp
34.738462
80
0.671833
731b3338ed4a11cc0ed88b9c776e65438c4f9969
850
py
Python
gcloud/apigw/constants.py
wkma/bk-sops
8fb5609c0c4495c28d588fbafa9d9f5f2976929b
[ "Apache-2.0" ]
2
2021-07-28T01:48:31.000Z
2021-11-17T11:02:26.000Z
gcloud/apigw/constants.py
wkma/bk-sops
8fb5609c0c4495c28d588fbafa9d9f5f2976929b
[ "Apache-2.0" ]
null
null
null
gcloud/apigw/constants.py
wkma/bk-sops
8fb5609c0c4495c28d588fbafa9d9f5f2976929b
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2021 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ PROJECT_SCOPE_CMDB_BIZ = "cmdb_biz" DEFAULT_APP_WHITELIST = {"bk_fta", "bk_bcs", "bk_datainstaller", "bk_dataadmin"}
53.125
115
0.785882
9decb5da52bef2cf77f44480edb90a21902e593d
1,423
py
Python
Kai/crab/NANOv7_Fri13/2017/ElMu/crab_cfg_2017_ElMu_C.py
NJManganelli/FourTopNAOD
9743d5b49bdbad27a74abb7b2d5b7295f678a0e3
[ "Apache-2.0" ]
1
2022-01-17T17:29:38.000Z
2022-01-17T17:29:38.000Z
Kai/crab/NANOv7_Fri13/2017/ElMu/crab_cfg_2017_ElMu_C.py
NJManganelli/FourTopNAOD
9743d5b49bdbad27a74abb7b2d5b7295f678a0e3
[ "Apache-2.0" ]
null
null
null
Kai/crab/NANOv7_Fri13/2017/ElMu/crab_cfg_2017_ElMu_C.py
NJManganelli/FourTopNAOD
9743d5b49bdbad27a74abb7b2d5b7295f678a0e3
[ "Apache-2.0" ]
1
2021-12-15T10:56:50.000Z
2021-12-15T10:56:50.000Z
import os from WMCore.Configuration import Configuration from CRABClient.UserUtilities import config, getUsernameFromCRIC config = Configuration() config.section_("General") config.General.requestName = '2017_ElMu_C' config.General.transferOutputs = True config.General.transferLogs = True config.section_("JobType") config.JobType.allowUndistributedCMSSW = True config.JobType.pluginName = 'Analysis' config.JobType.psetName = 'PSet.py' config.JobType.maxMemoryMB = 2000 config.JobType.maxJobRuntimeMin = 1315 config.JobType.numCores = 1 config.JobType.scriptExe = 'crab_script_2017_ElMu_C.sh' config.JobType.inputFiles = ['crab_script_2017_ElMu_C.py', os.path.join(os.environ['CMSSW_BASE'],'src/PhysicsTools/NanoAODTools/scripts/haddnano.py'), ] config.JobType.outputFiles = ['hist.root'] config.JobType.sendPythonFolder = True config.section_("Data") config.Data.inputDataset = '/MuonEG/Run2017C-02Apr2020-v1/NANOAOD' config.Data.inputDBS = 'global' config.Data.splitting = 'FileBased' if config.Data.splitting == 'FileBased': config.Data.unitsPerJob = 1 # config.Data.totalUnits = $TOTAL_UNITS # config.Data.userInputFiles = [] config.Data.outLFNDirBase = '/store/user/{user}/Fri13'.format(user=getUsernameFromCRIC()) config.Data.publication = True config.Data.outputDatasetTag = 'Fri13' config.section_("Site") config.Site.storageSite = 'T2_CH_CERN'
36.487179
120
0.762474
556b11ae92eb13375000e60f7d49996e57129370
3,933
py
Python
openstack_exporter/exporter.py
sapcc/openstack-exporter
d9472fcf5790bd02664bf57a890ca4d3eab73960
[ "Apache-2.0" ]
null
null
null
openstack_exporter/exporter.py
sapcc/openstack-exporter
d9472fcf5790bd02664bf57a890ca4d3eab73960
[ "Apache-2.0" ]
3
2020-10-22T14:49:22.000Z
2022-03-23T13:53:51.000Z
openstack_exporter/exporter.py
sapcc/openstack-exporter
d9472fcf5790bd02664bf57a890ca4d3eab73960
[ "Apache-2.0" ]
null
null
null
# All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import click import importlib import logging import os import sys import time from prometheus_client.core import REGISTRY from prometheus_client import start_http_server import yaml import openstack_exporter LOG = logging.getLogger(__name__) def factory(module_class_string, super_cls: type = None, **kwargs): """ :param module_class_string: full name of the class to create an object of :param super_cls: expected super class for validity, None if bypass :param kwargs: parameters to pass :return: """ module_name, class_name = module_class_string.rsplit(".", 1) module = importlib.import_module(module_name) assert hasattr(module, class_name), ( "class {} is not in {}".format(class_name, module_name)) # click.echo('reading class {} from module {}'.format( # class_name, module_name)) cls = getattr(module, class_name) if super_cls is not None: assert issubclass(cls, super_cls), ( "class {} should inherit from {}".format( class_name, super_cls.__name__)) # click.echo('initialising {} with params {}'.format(class_name, kwargs)) obj = cls(**kwargs) return obj def load_and_register_collectors(collector_config, openstack_config): """Load all enabled collectors from config.""" for collector in collector_config: cfg = collector_config[collector] if cfg['enabled']: LOG.info("Loading collector '{}'".format(cfg['collector'])) cls = factory(cfg['collector'], openstack_config=openstack_config) REGISTRY.register(cls) def run_prometheus_server(port, collector_config, openstack_config): start_http_server(int(port)) load_and_register_collectors(collector_config, openstack_config) while True: time.sleep(1) def get_config(config_file): if os.path.exists(config_file): try: with open(config_file) as f: config = yaml.load(f, Loader=yaml.FullLoader) except IOError as e: logging.error("Couldn't open configuration file: " + str(e)) return config else: logging.error("Config file doesn't exist: " + config_file) exit(0) @click.command() @click.option("--port", metavar="<port>", default=9102, help="specify exporter serving port") @click.option("-c", "--config", metavar="<config>", help="path to rest config") @click.version_option() @click.help_option() def main(port, config): if not config: raise click.ClickException("Missing OpenStack config yaml --config") config_obj = get_config(config) exporter_config = config_obj['exporter'] os_config = config_obj['openstack'] collector_config = config_obj['collectors'] if exporter_config['log_level']: LOG.setLevel(logging.getLevelName( exporter_config['log_level'].upper())) else: LOG.setLevel(logging.getLevelName("INFO")) format = '[%(asctime)s] [%(levelname)s] %(message)s' logging.basicConfig(stream=sys.stdout, format=format) LOG.info("Starting OpenStack Exporter {} on port={} config={}".format( openstack_exporter.version_string(), port, config )) run_prometheus_server(port, collector_config, os_config) if __name__ == '__main__': main()
32.504132
78
0.67938
0063ed4a186f3a11208534193b7127a86da1ac8f
4,456
py
Python
Utils.py
Alaszun/ALttPEntranceRandomizer
390bd1f5615deff621970e135c07d45b0bb59ec1
[ "MIT" ]
27
2019-05-06T21:12:24.000Z
2020-08-17T17:33:34.000Z
Utils.py
Alaszun/ALttPEntranceRandomizer
390bd1f5615deff621970e135c07d45b0bb59ec1
[ "MIT" ]
17
2019-05-04T18:18:19.000Z
2020-05-07T00:21:53.000Z
Utils.py
Alaszun/ALttPEntranceRandomizer
390bd1f5615deff621970e135c07d45b0bb59ec1
[ "MIT" ]
37
2019-05-04T17:45:54.000Z
2022-01-30T10:20:23.000Z
import os import subprocess import sys def int16_as_bytes(value): value = value & 0xFFFF return [value & 0xFF, (value >> 8) & 0xFF] def int32_as_bytes(value): value = value & 0xFFFFFFFF return [value & 0xFF, (value >> 8) & 0xFF, (value >> 16) & 0xFF, (value >> 24) & 0xFF] def pc_to_snes(value): return ((value<<1) & 0x7F0000)|(value & 0x7FFF)|0x8000 def snes_to_pc(value): return ((value & 0x7F0000)>>1)|(value & 0x7FFF) def is_bundled(): return getattr(sys, 'frozen', False) def local_path(path): if local_path.cached_path is not None: return os.path.join(local_path.cached_path, path) if is_bundled(): # we are running in a bundle local_path.cached_path = sys._MEIPASS # pylint: disable=protected-access,no-member else: # we are running in a normal Python environment local_path.cached_path = os.path.dirname(os.path.abspath(__file__)) return os.path.join(local_path.cached_path, path) local_path.cached_path = None def output_path(path): if output_path.cached_path is not None: return os.path.join(output_path.cached_path, path) if not is_bundled(): output_path.cached_path = '.' return os.path.join(output_path.cached_path, path) else: # has been packaged, so cannot use CWD for output. if sys.platform == 'win32': #windows import ctypes.wintypes CSIDL_PERSONAL = 5 # My Documents SHGFP_TYPE_CURRENT = 0 # Get current, not default value buf = ctypes.create_unicode_buffer(ctypes.wintypes.MAX_PATH) ctypes.windll.shell32.SHGetFolderPathW(None, CSIDL_PERSONAL, None, SHGFP_TYPE_CURRENT, buf) documents = buf.value elif sys.platform == 'darwin': from AppKit import NSSearchPathForDirectoriesInDomains # pylint: disable=import-error # http://developer.apple.com/DOCUMENTATION/Cocoa/Reference/Foundation/Miscellaneous/Foundation_Functions/Reference/reference.html#//apple_ref/c/func/NSSearchPathForDirectoriesInDomains NSDocumentDirectory = 9 NSUserDomainMask = 1 # True for expanding the tilde into a fully qualified path documents = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, NSUserDomainMask, True)[0] else: raise NotImplementedError('Not supported yet') output_path.cached_path = os.path.join(documents, 'ALttPEntranceRandomizer') if not os.path.exists(output_path.cached_path): os.mkdir(output_path.cached_path) return os.path.join(output_path.cached_path, path) output_path.cached_path = None def open_file(filename): if sys.platform == 'win32': os.startfile(filename) else: open_command = 'open' if sys.platform == 'darwin' else 'xdg-open' subprocess.call([open_command, filename]) def close_console(): if sys.platform == 'win32': #windows import ctypes.wintypes try: ctypes.windll.kernel32.FreeConsole() except Exception: pass def new_logic_array(): import random l = list(range(256)) random.SystemRandom().shuffle(l) chunks = [l[i:i + 16] for i in range(0, len(l), 16)] lines = [", ".join([str(j) for j in i]) for i in chunks] print("logic_hash = ["+",\n ".join(lines)+"]") def make_new_base2current(old_rom='Zelda no Densetsu - Kamigami no Triforce (Japan).sfc', new_rom='working.sfc'): from collections import OrderedDict import json import hashlib with open(old_rom, 'rb') as stream: old_rom_data = bytearray(stream.read()) with open(new_rom, 'rb') as stream: new_rom_data = bytearray(stream.read()) # extend to 2 mb old_rom_data.extend(bytearray([0x00] * (2097152 - len(old_rom_data)))) out_data = OrderedDict() for idx, old in enumerate(old_rom_data): new = new_rom_data[idx] if old != new: out_data[idx] = [int(new)] for offset in reversed(list(out_data.keys())): if offset - 1 in out_data: out_data[offset-1].extend(out_data.pop(offset)) with open('data/base2current.json', 'wt') as outfile: json.dump([{key:value} for key, value in out_data.items()], outfile, separators=(",", ":")) basemd5 = hashlib.md5() basemd5.update(new_rom_data) return "New Rom Hash: " + basemd5.hexdigest()
36.227642
196
0.654399
ef2f8b0cfa6914d4f5c741d8ac1eae90ce7c3bc0
1,184
py
Python
test_query_counter/models.py
silentninja/django-test-query-counter
0aadc440d0dad62586121db25aad9ff77cb34204
[ "MIT" ]
null
null
null
test_query_counter/models.py
silentninja/django-test-query-counter
0aadc440d0dad62586121db25aad9ff77cb34204
[ "MIT" ]
null
null
null
test_query_counter/models.py
silentninja/django-test-query-counter
0aadc440d0dad62586121db25aad9ff77cb34204
[ "MIT" ]
null
null
null
from __future__ import annotations from dataclasses import dataclass from typing import Optional from django.http import HttpResponse, HttpRequest @dataclass class IArbitraryData: shapeHashV1Base64: str asJsonString: str asText: str @dataclass class IBody: contentType: str value: IArbitraryData @dataclass class IResponse: statusCode: int headers: IArbitraryData body: IBody @classmethod def convert(cls, response: HttpResponse) -> IResponse: pass @dataclass class IHttpInteractionTag: name: str value: str @dataclass class IRequest: host: str method: str path: str query: IArbitraryData headers: IArbitraryData body: IBody @classmethod def convert(cls, request: HttpRequest) -> IRequest: pass @dataclass class IHttpInteraction: uuid: str request: Optional[IRequest] response: Optional[IResponse] tags: Optional[list[IHttpInteractionTag]] @classmethod def generate_from(cls, request: HttpRequest, response: HttpResponse) -> IHttpInteraction: # Todo extract data from request/response return IHttpInteraction("", None, None, None)
18.5
93
0.711993
5fe04504e73a3b705fe931c04dce18255cdebf0d
5,685
py
Python
anytask/users/migrations/0003_auto__add_field_userprofile_ya_uid.py
AnnaSvalova/anytask
f814b43c496f67a2efe2a150873a1ae32ad97449
[ "MIT" ]
1
2018-12-03T05:48:43.000Z
2018-12-03T05:48:43.000Z
anytask/users/migrations/0003_auto__add_field_userprofile_ya_uid.py
AnnaSvalova/anytask
f814b43c496f67a2efe2a150873a1ae32ad97449
[ "MIT" ]
null
null
null
anytask/users/migrations/0003_auto__add_field_userprofile_ya_uid.py
AnnaSvalova/anytask
f814b43c496f67a2efe2a150873a1ae32ad97449
[ "MIT" ]
1
2021-09-18T22:38:20.000Z
2021-09-18T22:38:20.000Z
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'UserProfile.ya_uid' db.add_column('users_userprofile', 'ya_uid', self.gf('django.db.models.fields.IntegerField')(null=True, blank=True), keep_default=False) def backwards(self, orm): # Deleting field 'UserProfile.ya_uid' db.delete_column('users_userprofile', 'ya_uid') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'users.userprofile': { 'Meta': {'object_name': 'UserProfile'}, 'academic_degree': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '128', 'null': 'True', 'blank': 'True'}), 'academic_title': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '128', 'null': 'True', 'blank': 'True'}), 'added_time': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'auto_now_add': 'True', 'blank': 'True'}), 'avatar': ('django.db.models.fields.files.ImageField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'birth_date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'position': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '128', 'null': 'True', 'blank': 'True'}), 'second_name': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '128', 'null': 'True', 'blank': 'True'}), 'unit': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '128', 'null': 'True', 'blank': 'True'}), 'update_time': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'auto_now': 'True', 'blank': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']", 'unique': 'True'}), 'ya_contest_oauth': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '128', 'null': 'True', 'blank': 'True'}), 'ya_passport_oauth': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '128', 'null': 'True', 'blank': 'True'}), 'ya_uid': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}) } } complete_apps = ['users']
72.884615
182
0.566755
4d39f3cc519187b6029ee0292f0ebe854f0db85e
24,527
py
Python
Assets/Python/Plugins/Resources/Lib/SocketServer.py
OpenColonyShip/OpenColonyShip-Core
3dd8fd5c86ca89b1bf76d4dc4e0372f2c924d2ae
[ "MIT" ]
42
2018-12-12T01:00:59.000Z
2022-03-27T07:32:29.000Z
Assets/Python/Plugins/Resources/Lib/SocketServer.py
OpenColonyShip/OpenColonyShip-Core
3dd8fd5c86ca89b1bf76d4dc4e0372f2c924d2ae
[ "MIT" ]
13
2020-11-06T13:50:45.000Z
2022-01-25T07:17:37.000Z
Assets/Python/Plugins/Resources/Lib/SocketServer.py
OpenColonyShip/OpenColonyShip-Core
3dd8fd5c86ca89b1bf76d4dc4e0372f2c924d2ae
[ "MIT" ]
8
2020-11-14T04:30:26.000Z
2021-01-16T17:55:19.000Z
"""Generic socket server classes. This module tries to capture the various aspects of defining a server: For socket-based servers: - address family: - AF_INET{,6}: IP (Internet Protocol) sockets (default) - AF_UNIX: Unix domain sockets - others, e.g. AF_DECNET are conceivable (see <socket.h> - socket type: - SOCK_STREAM (reliable stream, e.g. TCP) - SOCK_DGRAM (datagrams, e.g. UDP) For request-based servers (including socket-based): - client address verification before further looking at the request (This is actually a hook for any processing that needs to look at the request before anything else, e.g. logging) - how to handle multiple requests: - synchronous (one request is handled at a time) - forking (each request is handled by a new process) - threading (each request is handled by a new thread) The classes in this module favor the server type that is simplest to write: a synchronous TCP/IP server. This is bad class design, but save some typing. (There's also the issue that a deep class hierarchy slows down method lookups.) There are five classes in an inheritance diagram, four of which represent synchronous servers of four types: +------------+ | BaseServer | +------------+ | v +-----------+ +------------------+ | TCPServer |------->| UnixStreamServer | +-----------+ +------------------+ | v +-----------+ +--------------------+ | UDPServer |------->| UnixDatagramServer | +-----------+ +--------------------+ Note that UnixDatagramServer derives from UDPServer, not from UnixStreamServer -- the only difference between an IP and a Unix stream server is the address family, which is simply repeated in both unix server classes. Forking and threading versions of each type of server can be created using the ForkingMixIn and ThreadingMixIn mix-in classes. For instance, a threading UDP server class is created as follows: class ThreadingUDPServer(ThreadingMixIn, UDPServer): pass The Mix-in class must come first, since it overrides a method defined in UDPServer! Setting the various member variables also changes the behavior of the underlying server mechanism. To implement a service, you must derive a class from BaseRequestHandler and redefine its handle() method. You can then run various versions of the service by combining one of the server classes with your request handler class. The request handler class must be different for datagram or stream services. This can be hidden by using the request handler subclasses StreamRequestHandler or DatagramRequestHandler. Of course, you still have to use your head! For instance, it makes no sense to use a forking server if the service contains state in memory that can be modified by requests (since the modifications in the child process would never reach the initial state kept in the parent process and passed to each child). In this case, you can use a threading server, but you will probably have to use locks to avoid two requests that come in nearly simultaneous to apply conflicting changes to the server state. On the other hand, if you are building e.g. an HTTP server, where all data is stored externally (e.g. in the file system), a synchronous class will essentially render the service "deaf" while one request is being handled -- which may be for a very long time if a client is slow to read all the data it has requested. Here a threading or forking server is appropriate. In some cases, it may be appropriate to process part of a request synchronously, but to finish processing in a forked child depending on the request data. This can be implemented by using a synchronous server and doing an explicit fork in the request handler class handle() method. Another approach to handling multiple simultaneous requests in an environment that supports neither threads nor fork (or where these are too expensive or inappropriate for the service) is to maintain an explicit table of partially finished requests and to use select() to decide which request to work on next (or whether to handle a new incoming request). This is particularly important for stream services where each client can potentially be connected for a long time (if threads or subprocesses cannot be used). Future work: - Standard classes for Sun RPC (which uses either UDP or TCP) - Standard mix-in classes to implement various authentication and encryption schemes - Standard framework for select-based multiplexing XXX Open problems: - What to do with out-of-band data? BaseServer: - split generic "request" functionality out into BaseServer class. Copyright (C) 2000 Luke Kenneth Casson Leighton <lkcl@samba.org> example: read entries from a SQL database (requires overriding get_request() to return a table entry from the database). entry is processed by a RequestHandlerClass. """ # Author of the BaseServer patch: Luke Kenneth Casson Leighton __version__ = "0.4" import socket import select import sys import os import errno try: import threading except ImportError: import dummy_threading as threading __all__ = ["TCPServer","UDPServer","ForkingUDPServer","ForkingTCPServer", "ThreadingUDPServer","ThreadingTCPServer","BaseRequestHandler", "StreamRequestHandler","DatagramRequestHandler", "ThreadingMixIn", "ForkingMixIn"] if hasattr(socket, "AF_UNIX"): __all__.extend(["UnixStreamServer","UnixDatagramServer", "ThreadingUnixStreamServer", "ThreadingUnixDatagramServer"]) def _eintr_retry(func, *args): """restart a system call interrupted by EINTR""" while True: try: return func(*args) except (OSError, select.error) as e: if e.args[0] != errno.EINTR: raise class BaseServer: """Base class for server classes. Methods for the caller: - __init__(server_address, RequestHandlerClass) - serve_forever(poll_interval=0.5) - shutdown() - handle_request() # if you do not use serve_forever() - fileno() -> int # for select() Methods that may be overridden: - server_bind() - server_activate() - get_request() -> request, client_address - handle_timeout() - verify_request(request, client_address) - server_close() - process_request(request, client_address) - shutdown_request(request) - close_request(request) - handle_error() Methods for derived classes: - finish_request(request, client_address) Class variables that may be overridden by derived classes or instances: - timeout - address_family - socket_type - allow_reuse_address Instance variables: - RequestHandlerClass - socket """ timeout = None def __init__(self, server_address, RequestHandlerClass): """Constructor. May be extended, do not override.""" self.server_address = server_address self.RequestHandlerClass = RequestHandlerClass self.__is_shut_down = threading.Event() self.__shutdown_request = False def server_activate(self): """Called by constructor to activate the server. May be overridden. """ pass def serve_forever(self, poll_interval=0.5): """Handle one request at a time until shutdown. Polls for shutdown every poll_interval seconds. Ignores self.timeout. If you need to do periodic tasks, do them in another thread. """ self.__is_shut_down.clear() try: while not self.__shutdown_request: # XXX: Consider using another file descriptor or # connecting to the socket to wake this up instead of # polling. Polling reduces our responsiveness to a # shutdown request and wastes cpu at all other times. r, w, e = _eintr_retry(select.select, [self], [], [], poll_interval) if self in r: self._handle_request_noblock() finally: self.__shutdown_request = False self.__is_shut_down.set() def shutdown(self): """Stops the serve_forever loop. Blocks until the loop has finished. This must be called while serve_forever() is running in another thread, or it will deadlock. """ self.__shutdown_request = True self.__is_shut_down.wait() # The distinction between handling, getting, processing and # finishing a request is fairly arbitrary. Remember: # # - handle_request() is the top-level call. It calls # select, get_request(), verify_request() and process_request() # - get_request() is different for stream or datagram sockets # - process_request() is the place that may fork a new process # or create a new thread to finish the request # - finish_request() instantiates the request handler class; # this constructor will handle the request all by itself def handle_request(self): """Handle one request, possibly blocking. Respects self.timeout. """ # Support people who used socket.settimeout() to escape # handle_request before self.timeout was available. timeout = self.socket.gettimeout() if timeout is None: timeout = self.timeout elif self.timeout is not None: timeout = min(timeout, self.timeout) fd_sets = _eintr_retry(select.select, [self], [], [], timeout) if not fd_sets[0]: self.handle_timeout() return self._handle_request_noblock() def _handle_request_noblock(self): """Handle one request, without blocking. I assume that select.select has returned that the socket is readable before this function was called, so there should be no risk of blocking in get_request(). """ try: request, client_address = self.get_request() except socket.error: return if self.verify_request(request, client_address): try: self.process_request(request, client_address) except: self.handle_error(request, client_address) self.shutdown_request(request) else: self.shutdown_request(request) def handle_timeout(self): """Called if no new request arrives within self.timeout. Overridden by ForkingMixIn. """ pass def verify_request(self, request, client_address): """Verify the request. May be overridden. Return True if we should proceed with this request. """ return True def process_request(self, request, client_address): """Call finish_request. Overridden by ForkingMixIn and ThreadingMixIn. """ self.finish_request(request, client_address) self.shutdown_request(request) def server_close(self): """Called to clean-up the server. May be overridden. """ pass def finish_request(self, request, client_address): """Finish one request by instantiating RequestHandlerClass.""" self.RequestHandlerClass(request, client_address, self) def shutdown_request(self, request): """Called to shutdown and close an individual request.""" self.close_request(request) def close_request(self, request): """Called to clean up an individual request.""" pass def handle_error(self, request, client_address): """Handle an error gracefully. May be overridden. The default is to print a traceback and continue. """ print '-'*40 print 'Exception happened during processing of request from', print client_address import traceback traceback.print_exc() # XXX But this goes to stderr! print '-'*40 class TCPServer(BaseServer): """Base class for various socket-based server classes. Defaults to synchronous IP stream (i.e., TCP). Methods for the caller: - __init__(server_address, RequestHandlerClass, bind_and_activate=True) - serve_forever(poll_interval=0.5) - shutdown() - handle_request() # if you don't use serve_forever() - fileno() -> int # for select() Methods that may be overridden: - server_bind() - server_activate() - get_request() -> request, client_address - handle_timeout() - verify_request(request, client_address) - process_request(request, client_address) - shutdown_request(request) - close_request(request) - handle_error() Methods for derived classes: - finish_request(request, client_address) Class variables that may be overridden by derived classes or instances: - timeout - address_family - socket_type - request_queue_size (only for stream sockets) - allow_reuse_address Instance variables: - server_address - RequestHandlerClass - socket """ address_family = socket.AF_INET socket_type = socket.SOCK_STREAM request_queue_size = 5 allow_reuse_address = False def __init__(self, server_address, RequestHandlerClass, bind_and_activate=True): """Constructor. May be extended, do not override.""" BaseServer.__init__(self, server_address, RequestHandlerClass) self.socket = socket.socket(self.address_family, self.socket_type) if bind_and_activate: try: self.server_bind() self.server_activate() except: self.server_close() raise def server_bind(self): """Called by constructor to bind the socket. May be overridden. """ if self.allow_reuse_address: self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.socket.bind(self.server_address) self.server_address = self.socket.getsockname() def server_activate(self): """Called by constructor to activate the server. May be overridden. """ self.socket.listen(self.request_queue_size) def server_close(self): """Called to clean-up the server. May be overridden. """ self.socket.close() def fileno(self): """Return socket file number. Interface required by select(). """ return self.socket.fileno() def get_request(self): """Get the request and client address from the socket. May be overridden. """ return self.socket.accept() def shutdown_request(self, request): """Called to shutdown and close an individual request.""" try: #explicitly shutdown. socket.close() merely releases #the socket and waits for GC to perform the actual close. request.shutdown(socket.SHUT_WR) except socket.error: pass #some platforms may raise ENOTCONN here self.close_request(request) def close_request(self, request): """Called to clean up an individual request.""" request.close() class UDPServer(TCPServer): """UDP server class.""" allow_reuse_address = False socket_type = socket.SOCK_DGRAM max_packet_size = 8192 def get_request(self): data, client_addr = self.socket.recvfrom(self.max_packet_size) return (data, self.socket), client_addr def server_activate(self): # No need to call listen() for UDP. pass def shutdown_request(self, request): # No need to shutdown anything. self.close_request(request) def close_request(self, request): # No need to close anything. pass class ForkingMixIn: """Mix-in class to handle each request in a new process.""" timeout = 300 active_children = None max_children = 40 def collect_children(self): """Internal routine to wait for children that have exited.""" if self.active_children is None: return # If we're above the max number of children, wait and reap them until # we go back below threshold. Note that we use waitpid(-1) below to be # able to collect children in size(<defunct children>) syscalls instead # of size(<children>): the downside is that this might reap children # which we didn't spawn, which is why we only resort to this when we're # above max_children. while len(self.active_children) >= self.max_children: try: pid, _ = os.waitpid(-1, 0) self.active_children.discard(pid) except OSError as e: if e.errno == errno.ECHILD: # we don't have any children, we're done self.active_children.clear() elif e.errno != errno.EINTR: break # Now reap all defunct children. for pid in self.active_children.copy(): try: pid, _ = os.waitpid(pid, os.WNOHANG) # if the child hasn't exited yet, pid will be 0 and ignored by # discard() below self.active_children.discard(pid) except OSError as e: if e.errno == errno.ECHILD: # someone else reaped it self.active_children.discard(pid) def handle_timeout(self): """Wait for zombies after self.timeout seconds of inactivity. May be extended, do not override. """ self.collect_children() def process_request(self, request, client_address): """Fork a new subprocess to process the request.""" self.collect_children() pid = os.fork() if pid: # Parent process if self.active_children is None: self.active_children = set() self.active_children.add(pid) self.close_request(request) #close handle in parent process return else: # Child process. # This must never return, hence os._exit()! try: self.finish_request(request, client_address) self.shutdown_request(request) os._exit(0) except: try: self.handle_error(request, client_address) self.shutdown_request(request) finally: os._exit(1) class ThreadingMixIn: """Mix-in class to handle each request in a new thread.""" # Decides how threads will act upon termination of the # main process daemon_threads = False def process_request_thread(self, request, client_address): """Same as in BaseServer but as a thread. In addition, exception handling is done here. """ try: self.finish_request(request, client_address) self.shutdown_request(request) except: self.handle_error(request, client_address) self.shutdown_request(request) def process_request(self, request, client_address): """Start a new thread to process the request.""" t = threading.Thread(target = self.process_request_thread, args = (request, client_address)) t.daemon = self.daemon_threads t.start() class ForkingUDPServer(ForkingMixIn, UDPServer): pass class ForkingTCPServer(ForkingMixIn, TCPServer): pass class ThreadingUDPServer(ThreadingMixIn, UDPServer): pass class ThreadingTCPServer(ThreadingMixIn, TCPServer): pass if hasattr(socket, 'AF_UNIX'): class UnixStreamServer(TCPServer): address_family = socket.AF_UNIX class UnixDatagramServer(UDPServer): address_family = socket.AF_UNIX class ThreadingUnixStreamServer(ThreadingMixIn, UnixStreamServer): pass class ThreadingUnixDatagramServer(ThreadingMixIn, UnixDatagramServer): pass class BaseRequestHandler: """Base class for request handler classes. This class is instantiated for each request to be handled. The constructor sets the instance variables request, client_address and server, and then calls the handle() method. To implement a specific service, all you need to do is to derive a class which defines a handle() method. The handle() method can find the request as self.request, the client address as self.client_address, and the server (in case it needs access to per-server information) as self.server. Since a separate instance is created for each request, the handle() method can define other arbitrary instance variables. """ def __init__(self, request, client_address, server): self.request = request self.client_address = client_address self.server = server self.setup() try: self.handle() finally: self.finish() def setup(self): pass def handle(self): pass def finish(self): pass # The following two classes make it possible to use the same service # class for stream or datagram servers. # Each class sets up these instance variables: # - rfile: a file object from which receives the request is read # - wfile: a file object to which the reply is written # When the handle() method returns, wfile is flushed properly class StreamRequestHandler(BaseRequestHandler): """Define self.rfile and self.wfile for stream sockets.""" # Default buffer sizes for rfile, wfile. # We default rfile to buffered because otherwise it could be # really slow for large data (a getc() call per byte); we make # wfile unbuffered because (a) often after a write() we want to # read and we need to flush the line; (b) big writes to unbuffered # files are typically optimized by stdio even when big reads # aren't. rbufsize = -1 wbufsize = 0 # A timeout to apply to the request socket, if not None. timeout = None # Disable nagle algorithm for this socket, if True. # Use only when wbufsize != 0, to avoid small packets. disable_nagle_algorithm = False def setup(self): self.connection = self.request if self.timeout is not None: self.connection.settimeout(self.timeout) if self.disable_nagle_algorithm: self.connection.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, True) self.rfile = self.connection.makefile('rb', self.rbufsize) self.wfile = self.connection.makefile('wb', self.wbufsize) def finish(self): if not self.wfile.closed: try: self.wfile.flush() except socket.error: # A final socket error may have occurred here, such as # the local error ECONNABORTED. pass self.wfile.close() self.rfile.close() class DatagramRequestHandler(BaseRequestHandler): """Define self.rfile and self.wfile for datagram sockets.""" def setup(self): try: from cStringIO import StringIO except ImportError: from StringIO import StringIO self.packet, self.socket = self.request self.rfile = StringIO(self.packet) self.wfile = StringIO() def finish(self): self.socket.sendto(self.wfile.getvalue(), self.client_address)
33.506831
85
0.63057
5af8129d7aeda12ef558a42ba50dc6f20579c668
12,130
py
Python
propagator/opentelemetry-propagator-ot-trace/tests/test_ot_trace_propagator.py
seemk/opentelemetry-python-contrib
10a448ee754394ccfff2c3a3c9af129af59e6775
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
propagator/opentelemetry-propagator-ot-trace/tests/test_ot_trace_propagator.py
seemk/opentelemetry-python-contrib
10a448ee754394ccfff2c3a3c9af129af59e6775
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
propagator/opentelemetry-propagator-ot-trace/tests/test_ot_trace_propagator.py
seemk/opentelemetry-python-contrib
10a448ee754394ccfff2c3a3c9af129af59e6775
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
# Copyright The OpenTelemetry Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from unittest import TestCase from opentelemetry.baggage import get_all, set_baggage from opentelemetry.propagators.ot_trace import ( OT_BAGGAGE_PREFIX, OT_SAMPLED_HEADER, OT_SPAN_ID_HEADER, OT_TRACE_ID_HEADER, OTTracePropagator, ) from opentelemetry.propagators.textmap import DictGetter from opentelemetry.sdk.trace import _Span from opentelemetry.trace import ( INVALID_SPAN_CONTEXT, INVALID_SPAN_ID, INVALID_TRACE_ID, SpanContext, TraceFlags, set_span_in_context, ) from opentelemetry.trace.propagation import get_current_span carrier_getter = DictGetter() class TestOTTracePropagator(TestCase): ot_trace_propagator = OTTracePropagator() def carrier_inject(self, trace_id, span_id, is_remote, trace_flags): carrier = {} self.ot_trace_propagator.inject( dict.__setitem__, carrier, set_span_in_context( _Span( "child", context=SpanContext( trace_id=trace_id, span_id=span_id, is_remote=is_remote, trace_flags=trace_flags, ), ) ), ) return carrier def test_inject_short_trace_id_short_span_id(self): carrier = self.carrier_inject( int("1", 16), int("2", 16), True, TraceFlags.SAMPLED, ) self.assertEqual(carrier[OT_TRACE_ID_HEADER], "1") self.assertEqual(carrier[OT_SPAN_ID_HEADER], "2") def test_inject_trace_id_span_id_true(self): """Test valid trace_id, span_id and sampled true""" carrier = self.carrier_inject( int("80f198ee56343ba864fe8b2a57d3eff7", 16), int("e457b5a2e4d86bd1", 16), True, TraceFlags.SAMPLED, ) self.assertEqual(carrier[OT_TRACE_ID_HEADER], "64fe8b2a57d3eff7") self.assertEqual(carrier[OT_SPAN_ID_HEADER], "e457b5a2e4d86bd1") self.assertEqual(carrier[OT_SAMPLED_HEADER], "true") def test_inject_trace_id_span_id_false(self): """Test valid trace_id, span_id and sampled true""" carrier = self.carrier_inject( int("80f198ee56343ba864fe8b2a57d3eff7", 16), int("e457b5a2e4d86bd1", 16), False, TraceFlags.DEFAULT, ) self.assertEqual(carrier[OT_TRACE_ID_HEADER], "64fe8b2a57d3eff7") self.assertEqual(carrier[OT_SPAN_ID_HEADER], "e457b5a2e4d86bd1") self.assertEqual(carrier[OT_SAMPLED_HEADER], "false") def test_inject_truncate_traceid(self): """Test that traceid is truncated to 64 bits""" self.assertEqual( self.carrier_inject( int("80f198ee56343ba864fe8b2a57d3eff7", 16), int("e457b5a2e4d86bd1", 16), True, TraceFlags.DEFAULT, )[OT_TRACE_ID_HEADER], "64fe8b2a57d3eff7", ) def test_inject_sampled_true(self): """Test that sampled true trace flags are injected""" self.assertEqual( self.carrier_inject( int("80f198ee56343ba864fe8b2a57d3eff7", 16), int("e457b5a2e4d86bd1", 16), True, TraceFlags.SAMPLED, )[OT_SAMPLED_HEADER], "true", ) def test_inject_sampled_false(self): """Test that sampled false trace flags are injected""" self.assertEqual( self.carrier_inject( int("80f198ee56343ba864fe8b2a57d3eff7", 16), int("e457b5a2e4d86bd1", 16), True, TraceFlags.DEFAULT, )[OT_SAMPLED_HEADER], "false", ) def test_inject_invalid_trace_id(self): """Test that no attributes are injected if the trace_id is invalid""" self.assertEqual( self.carrier_inject( INVALID_TRACE_ID, int("e457b5a2e4d86bd1", 16), True, TraceFlags.SAMPLED, ), {}, ) def test_inject_set_baggage(self): """Test that baggage is set""" carrier = {} self.ot_trace_propagator.inject( dict.__setitem__, carrier, set_baggage( "key", "value", context=set_span_in_context( _Span( "child", SpanContext( trace_id=int( "80f198ee56343ba864fe8b2a57d3eff7", 16 ), span_id=int("e457b5a2e4d86bd1", 16), is_remote=True, trace_flags=TraceFlags.SAMPLED, ), ) ), ), ) self.assertEqual(carrier["".join([OT_BAGGAGE_PREFIX, "key"])], "value") def test_inject_invalid_baggage_keys(self): """Test that invalid baggage keys are not set""" carrier = {} self.ot_trace_propagator.inject( dict.__setitem__, carrier, set_baggage( "(", "value", context=set_span_in_context( _Span( "child", SpanContext( trace_id=int( "80f198ee56343ba864fe8b2a57d3eff7", 16 ), span_id=int("e457b5a2e4d86bd1", 16), is_remote=True, trace_flags=TraceFlags.SAMPLED, ), ) ), ), ) self.assertNotIn("".join([OT_BAGGAGE_PREFIX, "!"]), carrier.keys()) def test_inject_invalid_baggage_values(self): """Test that invalid baggage values are not set""" carrier = {} self.ot_trace_propagator.inject( dict.__setitem__, carrier, set_baggage( "key", "α", context=set_span_in_context( _Span( "child", SpanContext( trace_id=int( "80f198ee56343ba864fe8b2a57d3eff7", 16 ), span_id=int("e457b5a2e4d86bd1", 16), is_remote=True, trace_flags=TraceFlags.SAMPLED, ), ) ), ), ) self.assertNotIn("".join([OT_BAGGAGE_PREFIX, "key"]), carrier.keys()) def test_extract_trace_id_span_id_sampled_true(self): """Test valid trace_id, span_id and sampled true""" span_context = get_current_span( self.ot_trace_propagator.extract( carrier_getter, { OT_TRACE_ID_HEADER: "80f198ee56343ba864fe8b2a57d3eff7", OT_SPAN_ID_HEADER: "e457b5a2e4d86bd1", OT_SAMPLED_HEADER: "true", }, ) ).get_span_context() self.assertEqual( hex(span_context.trace_id)[2:], "80f198ee56343ba864fe8b2a57d3eff7" ) self.assertEqual(hex(span_context.span_id)[2:], "e457b5a2e4d86bd1") self.assertTrue(span_context.is_remote) self.assertEqual(span_context.trace_flags, TraceFlags.SAMPLED) def test_extract_trace_id_span_id_sampled_false(self): """Test valid trace_id, span_id and sampled false""" span_context = get_current_span( self.ot_trace_propagator.extract( carrier_getter, { OT_TRACE_ID_HEADER: "80f198ee56343ba864fe8b2a57d3eff7", OT_SPAN_ID_HEADER: "e457b5a2e4d86bd1", OT_SAMPLED_HEADER: "false", }, ) ).get_span_context() self.assertEqual( hex(span_context.trace_id)[2:], "80f198ee56343ba864fe8b2a57d3eff7" ) self.assertEqual(hex(span_context.span_id)[2:], "e457b5a2e4d86bd1") self.assertTrue(span_context.is_remote) self.assertEqual(span_context.trace_flags, TraceFlags.DEFAULT) def test_extract_malformed_trace_id(self): """Test extraction with malformed trace_id""" span_context = get_current_span( self.ot_trace_propagator.extract( carrier_getter, { OT_TRACE_ID_HEADER: "abc123!", OT_SPAN_ID_HEADER: "e457b5a2e4d86bd1", OT_SAMPLED_HEADER: "false", }, ) ).get_span_context() self.assertEqual(span_context, INVALID_SPAN_CONTEXT) def test_extract_malformed_span_id(self): """Test extraction with malformed span_id""" span_context = get_current_span( self.ot_trace_propagator.extract( carrier_getter, { OT_TRACE_ID_HEADER: "64fe8b2a57d3eff7", OT_SPAN_ID_HEADER: "abc123!", OT_SAMPLED_HEADER: "false", }, ) ).get_span_context() self.assertEqual(span_context, INVALID_SPAN_CONTEXT) def test_extract_invalid_trace_id(self): """Test extraction with invalid trace_id""" span_context = get_current_span( self.ot_trace_propagator.extract( carrier_getter, { OT_TRACE_ID_HEADER: INVALID_TRACE_ID, OT_SPAN_ID_HEADER: "e457b5a2e4d86bd1", OT_SAMPLED_HEADER: "false", }, ) ).get_span_context() self.assertEqual(span_context, INVALID_SPAN_CONTEXT) def test_extract_invalid_span_id(self): """Test extraction with invalid span_id""" span_context = get_current_span( self.ot_trace_propagator.extract( carrier_getter, { OT_TRACE_ID_HEADER: "64fe8b2a57d3eff7", OT_SPAN_ID_HEADER: INVALID_SPAN_ID, OT_SAMPLED_HEADER: "false", }, ) ).get_span_context() self.assertEqual(span_context, INVALID_SPAN_CONTEXT) def test_extract_baggage(self): """Test baggage extraction""" context = self.ot_trace_propagator.extract( carrier_getter, { OT_TRACE_ID_HEADER: "64fe8b2a57d3eff7", OT_SPAN_ID_HEADER: "e457b5a2e4d86bd1", OT_SAMPLED_HEADER: "false", "".join([OT_BAGGAGE_PREFIX, "abc"]): "abc", "".join([OT_BAGGAGE_PREFIX, "def"]): "def", }, ) span_context = get_current_span(context).get_span_context() self.assertEqual(hex(span_context.trace_id)[2:], "64fe8b2a57d3eff7") self.assertEqual(hex(span_context.span_id)[2:], "e457b5a2e4d86bd1") self.assertTrue(span_context.is_remote) self.assertEqual(span_context.trace_flags, TraceFlags.DEFAULT) baggage = get_all(context) self.assertEqual(baggage["abc"], "abc") self.assertEqual(baggage["def"], "def")
32.872629
79
0.551278
2dedb37b353d5987e9d97b601cdeac32bb8317ca
5,958
py
Python
niftycloud/pyami/bootstrap.py
yudai09/niftycloud
b34ef2504f12e3f423c18b2fa155b17b9d0d7ca7
[ "MIT" ]
null
null
null
niftycloud/pyami/bootstrap.py
yudai09/niftycloud
b34ef2504f12e3f423c18b2fa155b17b9d0d7ca7
[ "MIT" ]
null
null
null
niftycloud/pyami/bootstrap.py
yudai09/niftycloud
b34ef2504f12e3f423c18b2fa155b17b9d0d7ca7
[ "MIT" ]
null
null
null
# Copyright (c) 2006,2007 Mitch Garnaat http://garnaat.org/ # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, dis- # tribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the fol- # lowing conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL- # ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT # SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # import os import niftycloud from niftycloud.utils import get_instance_metadata, get_instance_userdata from niftycloud.pyami.config import Config, NiftycloudConfigPath from niftycloud.pyami.scriptbase import ScriptBase import time class Bootstrap(ScriptBase): """ The Bootstrap class is instantiated and run as part of the PyAMI instance initialization process. The methods in this class will be run from the rc.local script of the instance and will be run as the root user. The main purpose of this class is to make sure the niftycloud distribution on the instance is the one required. """ def __init__(self): self.working_dir = '/mnt/pyami' self.write_metadata() super(Bootstrap, self).__init__() def write_metadata(self): fp = open(os.path.expanduser(NiftycloudConfigPath), 'w') fp.write('[Instance]\n') inst_data = get_instance_metadata() for key in inst_data: fp.write('%s = %s\n' % (key, inst_data[key])) user_data = get_instance_userdata() fp.write('\n%s\n' % user_data) fp.write('[Pyami]\n') fp.write('working_dir = %s\n' % self.working_dir) fp.close() # This file has the AWS credentials, should we lock it down? # os.chmod(NiftycloudConfigPath, stat.S_IREAD | stat.S_IWRITE) # now that we have written the file, read it into a pyami Config object niftycloud.config = Config() niftycloud.init_logging() def create_working_dir(self): niftycloud.log.info('Working directory: %s' % self.working_dir) if not os.path.exists(self.working_dir): os.mkdir(self.working_dir) def load_niftycloud(self): update = niftycloud.config.get('Niftycloud', 'niftycloud_update', 'svn:HEAD') if update.startswith('svn'): if update.find(':') >= 0: method, version = update.split(':') version = '-r%s' % version else: version = '-rHEAD' location = niftycloud.config.get('Niftycloud', 'niftycloud_location', '/usr/local/niftycloud') self.run('svn update %s %s' % (version, location)) elif update.startswith('git'): location = niftycloud.config.get('Niftycloud', 'niftycloud_location', '/usr/share/python-support/python-niftycloud/niftycloud') num_remaining_attempts = 10 while num_remaining_attempts > 0: num_remaining_attempts -= 1 try: self.run('git pull', cwd=location) num_remaining_attempts = 0 except Exception as e: niftycloud.log.info('git pull attempt failed with the following exception. Trying again in a bit. %s', e) time.sleep(2) if update.find(':') >= 0: method, version = update.split(':') else: version = 'master' self.run('git checkout %s' % version, cwd=location) else: # first remove the symlink needed when running from subversion self.run('rm /usr/local/lib/python2.5/site-packages/niftycloud') self.run('easy_install %s' % update) def fetch_s3_file(self, s3_file): try: from niftycloud.utils import fetch_file f = fetch_file(s3_file) path = os.path.join(self.working_dir, s3_file.split("/")[-1]) open(path, "w").write(f.read()) except: niftycloud.log.exception('Problem Retrieving file: %s' % s3_file) path = None return path def load_packages(self): package_str = niftycloud.config.get('Pyami', 'packages') if package_str: packages = package_str.split(',') for package in packages: package = package.strip() if package.startswith('s3:'): package = self.fetch_s3_file(package) if package: # if the "package" is really a .py file, it doesn't have to # be installed, just being in the working dir is enough if not package.endswith('.py'): self.run('easy_install -Z %s' % package, exit_on_error=False) def main(self): self.create_working_dir() self.load_niftycloud() self.load_packages() self.notify('Bootstrap Completed for %s' % niftycloud.config.get_instance('instance-id')) if __name__ == "__main__": # because bootstrap starts before any logging configuration can be loaded from # the niftycloud config files, we will manually enable logging to /var/log/niftycloud.log niftycloud.set_file_logger('bootstrap', '/var/log/niftycloud.log') bs = Bootstrap() bs.main()
44.133333
139
0.637462
f9e2bc5b69b415ba1cbe11e45e93a47aaf24aceb
188
py
Python
Farmacia/apps/ventas/urls.py
cluco91/Django_Farmacia
10d787533bcebac8ba35cf8a7feb10ffb14ca45f
[ "MIT" ]
2
2018-11-06T04:05:20.000Z
2020-05-28T23:19:23.000Z
Farmacia/apps/ventas/urls.py
cluco91/Django_Farmacia
10d787533bcebac8ba35cf8a7feb10ffb14ca45f
[ "MIT" ]
null
null
null
Farmacia/apps/ventas/urls.py
cluco91/Django_Farmacia
10d787533bcebac8ba35cf8a7feb10ffb14ca45f
[ "MIT" ]
2
2018-11-06T04:12:17.000Z
2019-11-21T18:34:26.000Z
from django.conf.urls import patterns, url from views import * urlpatterns = patterns('', url(r'^$',todo_listCreateView.as_view()), url(r'^author-ajax/$', 'app.views.TodoitemAjax'), )
23.5
50
0.707447
6c7814d19aed12312307675d5b66843e71bb227e
8,075
py
Python
cloudvolume/datasource/graphene/mesh/unsharded.py
austinhoag/cloud-volume
122c009f327a6ebcb1025732fac05affba4823d3
[ "BSD-3-Clause" ]
null
null
null
cloudvolume/datasource/graphene/mesh/unsharded.py
austinhoag/cloud-volume
122c009f327a6ebcb1025732fac05affba4823d3
[ "BSD-3-Clause" ]
null
null
null
cloudvolume/datasource/graphene/mesh/unsharded.py
austinhoag/cloud-volume
122c009f327a6ebcb1025732fac05affba4823d3
[ "BSD-3-Clause" ]
null
null
null
import six from collections import defaultdict import itertools import json import os import posixpath import re import requests import numpy as np from tqdm import tqdm from ....lib import red, toiter, Bbox, Vec, jsonify from ....mesh import Mesh from .... import paths from ....storage import Storage, GreenStorage from ....scheduler import schedule_jobs from ...precomputed.mesh import UnshardedLegacyPrecomputedMeshSource, PrecomputedMeshMetadata class GrapheneUnshardedMeshSource(UnshardedLegacyPrecomputedMeshSource): def compute_filename(self, label): layer_id = self.meta.meta.decode_layer_id(label) chunk_block_shape = 2 * Vec(*self.meta.meta.mesh_chunk_size) start = self.meta.meta.decode_chunk_position(label) start *= chunk_block_shape bbx = Bbox(start, start + chunk_block_shape) return "{}:0:{}".format(label, bbx.to_filename()) def exists(self, labels, progress=None): """ Checks for dynamic mesh existence. Returns: { label: boolean, ... } """ labels = toiter(labels) filenames = [ self.compute_filename(label) for label in labels ] cloudpath = self.meta.join(self.meta.cloudpath, self.meta.mesh_path) with Storage(cloudpath) as stor: return stor.files_exist(filenames) def get_fragment_labels(self, segid, lod=0, level=2, bbox=None, bypass=False): if bypass: return [ segid ] manifest = self.fetch_manifest(segid, lod, level, bbox, return_segids=True) return manifest["seg_ids"] def get_fragment_filenames(self, segid, lod=0, level=2, bbox=None, bypass=False): if bypass: return [ self.compute_filename(segid) ] manifest = self.fetch_manifest(segid, lod, level, bbox) return manifest["fragments"] def fetch_manifest(self, segid, lod=0, level=2, bbox=None, return_segids=False): # TODO: add lod to endpoint query_d = { 'verify': True, } if return_segids: query_d['return_seg_ids'] = 1 if bbox is not None: bbox = Bbox.create(bbox) query_d['bounds'] = bbox.to_filename() url = "%s/%s:%s" % (self.meta.meta.manifest_endpoint, segid, lod) if level is not None: res = requests.get( url, data=jsonify({ "start_layer": level }), params=query_d, headers=self.meta.meta.auth_header ) else: res = requests.get(url, params=query_d, headers=self.meta.meta.auth_header) res.raise_for_status() return json.loads(res.content.decode('utf8')) def download_segid(self, seg_id, bounding_box, bypass, use_byte_offsets=True): """ Download a mesh for a single segment ID. seg_id: Download the mesh for this segid. bounding_box: Limit the query for child meshes to this bounding box. bypass: Don't fetch the manifest, precompute the filename instead. Use this only when you know the actual mesh labels in advance. use_byte_offsets: Applicable only for the sharded format. Reuse the byte_offsets into the sharded format that the server precalculated to accelerate download. A time when you might want to switch this off is when you're working on a new meshing job with different sharding parameters but are keeping the existing meshes for visualization while it runs. allow_missing: If set to True, return None if segid missing. If set to False, throw an error. """ import DracoPy level = self.meta.meta.decode_layer_id(seg_id) fragment_filenames = self.get_fragment_filenames( seg_id, level=level, bbox=bounding_box, bypass=bypass ) fragments = self._get_mesh_fragments(fragment_filenames) fragments = sorted(fragments, key=lambda frag: frag[0]) # make decoding deterministic fragiter = tqdm(fragments, disable=(not self.config.progress), desc="Decoding Mesh Buffer") is_draco = False for i, (filename, frag) in enumerate(fragiter): mesh = None if frag is not None: try: # Easier to ask forgiveness than permission mesh = Mesh.from_draco(frag) is_draco = True except DracoPy.FileTypeException: mesh = Mesh.from_precomputed(frag) fragments[i] = mesh fragments = [ f for f in fragments if f is not None ] if len(fragments) == 0: raise IndexError('No mesh fragments found for segment {}'.format(seg_id)) mesh = Mesh.concatenate(*fragments) mesh.segid = seg_id return mesh, is_draco def get( self, segids, remove_duplicate_vertices=False, fuse=False, bounding_box=None, bypass=False, use_byte_offsets=True, deduplicate_chunk_boundaries=True, allow_missing=False, ): """ Merge fragments derived from these segids into a single vertex and face list. Why merge multiple segids into one mesh? For example, if you have a set of segids that belong to the same neuron. segid: (iterable or int) segids to render into a single mesh Optional: remove_duplicate_vertices: bool, fuse exactly matching vertices within a chunk fuse: bool, merge all downloaded meshes into a single mesh bounding_box: Bbox, bounding box to restrict mesh download to bypass: bypass requesting the manifest and attempt to get the segids from storage directly by testing the dynamic and then the initial mesh. This is an exceptional usage of this tool and should be applied only with an understanding of what that entails. use_byte_offsets: For sharded volumes, we can use the output of exists(..., return_byte_offsets) that the server already did in order to skip having to query the sharded format again. deduplicate_chunk_boundaries: Our meshing is done in chunks and creates duplicate vertices at the boundaries of chunks. This parameter will automatically deduplicate these if set to True. Superceded by remove_duplicate_vertices. allow_missing: If set to True, missing segids will be ignored. If set to False, an error is thrown. Returns: Mesh object if fused, else { segid: Mesh, ... } """ segids = list(set([ int(segid) for segid in toiter(segids) ])) meta = self.meta.meta meshes = [] for seg_id in tqdm(segids, disable=(not self.config.progress), desc="Downloading Meshes"): level = meta.decode_layer_id(seg_id) if allow_missing: try: mesh, is_draco = self.download_segid( seg_id, bounding_box, bypass, use_byte_offsets ) except IndexError: continue else: mesh, is_draco = self.download_segid( seg_id, bounding_box, bypass, use_byte_offsets ) resolution = meta.resolution(self.config.mip) if meta.chunks_start_at_voxel_offset: offset = meta.voxel_offset(self.config.mip) else: offset = Vec(0,0,0) if remove_duplicate_vertices: mesh = mesh.consolidate() elif is_draco: if not deduplicate_chunk_boundaries: pass elif level == 2: # Deduplicate at quantized lvl2 chunk borders draco_grid_size = meta.get_draco_grid_size(level) mesh = mesh.deduplicate_chunk_boundaries( meta.mesh_chunk_size * resolution, offset=offset * resolution, is_draco=True, draco_grid_size=draco_grid_size, ) else: # TODO: cyclic draco quantization to properly # stitch and deduplicate draco meshes at variable # levels (see github issue #299) print('Warning: deduplication not currently supported for this layer\'s variable layered draco meshes') elif deduplicate_chunk_boundaries: mesh = mesh.deduplicate_chunk_boundaries( meta.mesh_chunk_size * resolution, offset=offset * resolution, is_draco=False, ) meshes.append(mesh) if not fuse: return { m.segid: m for m in meshes } return Mesh.concatenate(*meshes).consolidate()
35.262009
113
0.679133
21f6364fdc58e1d357d3fcb257701311088f7662
4,067
py
Python
packager.py
xpl/gop2
c0d76e5c46766887446419022b2701509cb0c218
[ "MIT" ]
3
2019-03-30T15:43:18.000Z
2021-07-14T14:09:30.000Z
packager.py
xpl/gop2
c0d76e5c46766887446419022b2701509cb0c218
[ "MIT" ]
null
null
null
packager.py
xpl/gop2
c0d76e5c46766887446419022b2701509cb0c218
[ "MIT" ]
null
null
null
#!/usr/bin/python import sys, os, subprocess if len(sys.argv) < 3: print 'To package a single file:' print ' python %s PACKAGE_NAME FILE' % sys.argv[0]; print 'To package a directory tree:' print ' python %s PACKAGE_NAME DIRECTORY FILE_TO_RUN' % sys.argv[0]; print '' print 'Requires dosbox.html as template.' print 'Creates PACKAGE_NAME.data and PACKAGE_NAME.html.' sys.exit(1) def error(s): print >> sys.stderr, s sys.exit(1) OUTPUT_HTML = sys.argv[1] + '.html' OUTPUT_DATA = sys.argv[1] + '.data' if os.path.isfile(sys.argv[2]): ( BASE_DIR, PACKAGE_ARG ) = os.path.split(sys.argv[2]) EXECUTABLE = PACKAGE_ARG elif os.path.isdir(sys.argv[2]): BASE_DIR = sys.argv[2]; PACKAGE_ARG = '.' if (len(sys.argv) < 4): error('When packaging directory, supply file to run as 3rd argument.') else: p = os.path.join(sys.argv[2], sys.argv[3]) if os.path.isfile(p): EXECUTABLE = sys.argv[3] else: error("Did not find executable at %s" % p) elif not os.path.exists(sys.argv[2]): error("Can't find %s" % sys.argv[2]) else: error("Don't know how to package %s" % sys.argv[2]) def getfiletext(fn): try: f = open(fn, 'r') txt = f.read() except Exception, e: error('Error reading file: %s' % (str(e))) f.close return txt try: exec(getfiletext(os.path.expanduser('~/.emscripten'))) except Exception, e: error('Error evaluating Emscripten configuration: %s' % (str(e))) # Find folder in PATH environment variable which contains specified file def find_in_path(fn): for d in os.environ["PATH"].split(os.pathsep): if os.path.isfile(os.path.join(d, fn)): return d return None # Find Emscripten from EMSCRIPTEN_ROOT or by searching via PATH def find_emscripten(): if 'EMSCRIPTEN_ROOT' in globals(): em_path = EMSCRIPTEN_ROOT else: em_path = find_in_path('emcc'); if em_path is None or not os.path.isdir(em_path): error("Can't find Emscripten. Add it to PATH or set EMSCRIPTEN_ROOT."); return em_path; # Find Emscripten's file packager def find_packager(): p = os.path.join(find_emscripten(), "tools", "file_packager.py"); if not os.path.isfile(p): error('Emscripten file_packager.py not found.') return p; # Run Emscripten's file packager from the appropriate directory def run_packager(): if BASE_DIR != '': # Need to change directory because paths in package are # relative to directory where Emscripten packager is run. cwd = os.getcwd() os.chdir(BASE_DIR) if os.path.isabs(OUTPUT_DATA): datafile = OUTPUT_DATA else: datafile = os.path.join(cwd, OUTPUT_DATA) else: datafile = OUTPUT_DATA packager_path = find_packager(); if 'PYTHON' in globals(): python_path = PYTHON else: python_path = sys.executable try: res = subprocess.check_output([python_path, packager_path, datafile, "--no-heap-copy", "--preload", PACKAGE_ARG]) except: error('Error reported by Emscripten packager.') if BASE_DIR != '': os.chdir(cwd) return res def inject_files(f): f.write('<script type="text/javascript">') f.write(run_packager()) f.write("Module['arguments'] = [ './" + EXECUTABLE + "' ];\n</script>\n") try: outf = open(OUTPUT_HTML, 'w') except Exception, e: error('Error opening %s for writing: %s' %( OUTPUT_HTML, (str(e)) )) with open('dosbox.html') as f: for line in iter(f.readline, ''): if 'INJECT_HERE' in line: inject_files(outf) outf.write(line) elif '<title>' in line: outf.write(' <title>') outf.write(sys.argv[1]); outf.write('</title>\n') else: outf.write(line) outf.close
29.471014
79
0.592574
b176e9df9ecc2d5d8f0464dabc285c20995185c1
148
py
Python
gary/coordinates/setup_package.py
adrn/gary-old
065b371534baa03deeb860893640068d90ba5881
[ "MIT" ]
null
null
null
gary/coordinates/setup_package.py
adrn/gary-old
065b371534baa03deeb860893640068d90ba5881
[ "MIT" ]
null
null
null
gary/coordinates/setup_package.py
adrn/gary-old
065b371534baa03deeb860893640068d90ba5881
[ "MIT" ]
null
null
null
from __future__ import absolute_import def get_package_data(): return {'gary.coordinates': ['tests/idl_vgsr_vhel.txt', 'tests/SgrCoord_data']}
29.6
83
0.77027
8ded974abad2d91d9ee610c6d863e154810b2393
2,392
py
Python
checkers/compare_json_outputs.py
vicpopov/subways
6596d9789cb280d9cc7ff1ac39cecf4d0317c4d1
[ "Apache-2.0" ]
27
2017-11-04T19:19:49.000Z
2021-07-24T04:20:56.000Z
checkers/compare_json_outputs.py
vicpopov/subways
6596d9789cb280d9cc7ff1ac39cecf4d0317c4d1
[ "Apache-2.0" ]
88
2017-10-07T08:34:05.000Z
2020-10-13T15:44:52.000Z
checkers/compare_json_outputs.py
vicpopov/subways
6596d9789cb280d9cc7ff1ac39cecf4d0317c4d1
[ "Apache-2.0" ]
17
2018-02-19T03:14:59.000Z
2021-10-02T09:51:12.000Z
"""This utility allows one to check equivalency of outputs (defined by --output command line parameter) of process_subways.py. Due to unordered nature of sets/dicts, two runs of process_subways.py even on the same input generate equivalent jsons, which cannot be compared with 'diff' command. The compare_jsons() function compares two osm_subways.json taking into account possible shuffling of dict items and items of some lists, as well as system-specific subtleties. This utility is useful to ensure that code improvements which must not affect the process_subways.py output really doesn't change it. """ import sys import json import logging from common import compare_stops, compare_transfers, compare_networks def compare_jsons(result0, result1): """Compares two objects which are results of subway generation""" network_names0 = sorted([x['network'] for x in result0['networks']]) network_names1 = sorted([x['network'] for x in result1['networks']]) if network_names0 != network_names1: logging.debug("Different list of network names!") return False networks0 = sorted(result0['networks'], key=lambda x: x['network']) networks1 = sorted(result1['networks'], key=lambda x: x['network']) for network0, network1 in zip(networks0, networks1): if not compare_networks(network0, network1): return False stop_ids0 = sorted(x['id'] for x in result0['stops']) stop_ids1 = sorted(x['id'] for x in result1['stops']) if stop_ids0 != stop_ids1: logging.debug("Different stop_ids") return False stops0 = sorted(result0['stops'], key=lambda x: x['id']) stops1 = sorted(result1['stops'], key=lambda x: x['id']) for stop0, stop1 in zip(stops0, stops1): if not compare_stops(stop0, stop1): return False if not compare_transfers(result0['transfers'], result1['transfers']): return False return True if __name__ == "__main__": if len(sys.argv) != 3: print("Usage: {} <file1.json> <file2.json>".format(sys.argv[0])) sys.exit() logging.basicConfig(level=logging.DEBUG) path0, path1 = sys.argv[1:3] j0 = json.load(open(path0, encoding='utf-8')) j1 = json.load(open(path1, encoding='utf-8')) equal = compare_jsons(j0, j1) print("The results are {}equal".format("" if equal else "NOT "))
36.8
77
0.686455
5e57839b82463bbda34ec0ba074df2123d5fdd44
1,464
py
Python
setup.py
remorses/yaml
9e6008ce47bf9700671c4fe3b24e65dd0ac17785
[ "MIT" ]
null
null
null
setup.py
remorses/yaml
9e6008ce47bf9700671c4fe3b24e65dd0ac17785
[ "MIT" ]
null
null
null
setup.py
remorses/yaml
9e6008ce47bf9700671c4fe3b24e65dd0ac17785
[ "MIT" ]
null
null
null
from os import path from codecs import open from setuptools import setup, find_packages here = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(here, 'README.md'), encoding='utf-8') as f: long_description = f.read() with open(path.join(here, 'VERSION'), 'r') as f: version = f.read().strip() setup( name='yaml', version=version, description='yaml library', long_description=long_description, long_description_content_type='text/markdown', author='Tommaso De Rossi', author_email='daer.tommy@gmail.com', license='Apache Software License 2.0', url='https://github.com/remorses/yaml', keywords=['yaml', 'pyyaml alternative'], classifiers=[ # How mature is this project? Common values are # 'Development Status :: 5 - Production/Stable', # Indicate who your project is intended for 'Intended Audience :: Information Technology', # Pick your license as you wish (should match "license" above) 'License :: OSI Approved :: Apache Software License', # Specify the Python versions you support here. In particular, ensure # that you indicate whether you support Python 2, Python 3 or both. 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', ], packages=find_packages(exclude=['tests']), )
31.148936
77
0.668033
e5b683ef5531b5f0a6cf16e59296132540ac5f3d
1,774
py
Python
src/utils/corpus.py
HephaestusProject/pytorch-Sencnn
d7ff5725dbc4b8ffdb7a6ecfa50b859c3f3d883b
[ "MIT" ]
5
2020-07-26T08:09:59.000Z
2020-10-27T21:52:08.000Z
src/utils/corpus.py
HephaestusProject/pytorch-Sencnn
d7ff5725dbc4b8ffdb7a6ecfa50b859c3f3d883b
[ "MIT" ]
38
2020-07-25T06:17:39.000Z
2021-12-13T20:56:47.000Z
src/utils/corpus.py
HephaestusProject/pytorch-Sencnn
d7ff5725dbc4b8ffdb7a6ecfa50b859c3f3d883b
[ "MIT" ]
null
null
null
from typing import Callable, List, Tuple import pandas as pd import torch from torch.utils.data import Dataset class NSMCCorpus(Dataset): """NSMCCorpus class""" def __init__(self, filepath: str, encode_fn: Callable[[str], List[int]]) -> None: """Instantiating NSMCCorpus class Args: filepath (str): filepath encode_fn (Callable): a function that can act as a encoder """ self._corpus = pd.read_csv(filepath, sep="\t").loc[:, ["document", "label"]] self._encode_fn = encode_fn def __len__(self) -> int: return len(self._corpus) def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor]: tokens2indices = torch.tensor( self._encode_fn(self._corpus.iloc[idx]["document"]) ) label = torch.tensor(self._corpus.iloc[idx]["label"]) return tokens2indices, label class TREC6Corpus(Dataset): """TREC6Corpus class""" def __init__(self, filepath: str, encode_fn: Callable[[str], List[int]]) -> None: """Instantiating SST2Corpus class Args: filepath (str): filepath encode_fn (Callable): a function that can act as a encoder """ self._corpus = pd.read_csv(filepath, sep="\t").loc[:, ["document", "label"]] self._encode_fn = encode_fn def __len__(self) -> int: return len(self._corpus) def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor]: tokens2indices = torch.tensor( self._encode_fn(self._corpus.iloc[idx]["document"]) ) label = torch.tensor(self._corpus.iloc[idx]["label"]) return tokens2indices, label CorpusRegistry = {"NSMCCorpus": NSMCCorpus, "TREC6Corpus": TREC6Corpus}
30.067797
85
0.625141
e55437397f7adeb5c320fbc745f39a9591ebd8de
1,727
py
Python
adjutant/wsgi.py
CCI-MOC/adjutant
032db3124ea0b0632afdfc27afc60b6c66cf5f66
[ "Apache-2.0" ]
null
null
null
adjutant/wsgi.py
CCI-MOC/adjutant
032db3124ea0b0632afdfc27afc60b6c66cf5f66
[ "Apache-2.0" ]
null
null
null
adjutant/wsgi.py
CCI-MOC/adjutant
032db3124ea0b0632afdfc27afc60b6c66cf5f66
[ "Apache-2.0" ]
1
2019-04-18T12:21:59.000Z
2019-04-18T12:21:59.000Z
# Copyright (C) 2015 Catalyst IT Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ WSGI config for Adjutant. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.8/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application from django.conf import settings from keystonemiddleware.auth_token import AuthProtocol os.environ.setdefault("DJANGO_SETTINGS_MODULE", "adjutant.settings") application = get_wsgi_application() # Here we replace the default application with one wrapped by # the Keystone Auth Middleware. conf = { "auth_plugin": "password", 'username': settings.KEYSTONE['username'], 'password': settings.KEYSTONE['password'], 'project_name': settings.KEYSTONE['project_name'], "project_domain_id": settings.KEYSTONE.get('domain_id', "default"), "user_domain_id": settings.KEYSTONE.get('domain_id', "default"), "auth_url": settings.KEYSTONE['auth_url'], 'delay_auth_decision': True, 'include_service_catalog': False, 'token_cache_time': settings.TOKEN_CACHE_TIME, } application = AuthProtocol(application, conf)
35.244898
78
0.745223
1b0caac652c81db1741175645eb45c73929aaaf7
979
py
Python
helios/url_names.py
cassius3m/Helios
e76171f57a7bdde680a7c488ccd2051cbdfb76ed
[ "Apache-2.0" ]
525
2015-01-04T11:51:26.000Z
2022-03-31T17:15:20.000Z
helios/url_names.py
cassius3m/Helios
e76171f57a7bdde680a7c488ccd2051cbdfb76ed
[ "Apache-2.0" ]
238
2015-01-02T17:50:37.000Z
2022-02-09T16:39:49.000Z
helios/url_names.py
cassius3m/Helios
e76171f57a7bdde680a7c488ccd2051cbdfb76ed
[ "Apache-2.0" ]
238
2015-01-05T23:09:20.000Z
2022-03-21T16:47:33.000Z
from helios import election_url_names as election, stats_url_names as stats __all__ = [ "election", "stats", "COOKIE_TEST", "COOKIE_TEST_2", "COOKIE_NO", "ELECTION_SHORTCUT", "ELECTION_SHORTCUT_VOTE", "CAST_VOTE_SHORTCUT", "CAST_VOTE_FULLHASH_SHORTCUT", "TRUSTEE_LOGIN", "ELECTIONS_PARAMS", "ELECTIONS_VERIFIER", "ELECTIONS_VERIFIER_SINGLE_BALLOT", "ELECTIONS_NEW", "ELECTIONS_ADMINISTERED", "ELECTIONS_VOTED", ] COOKIE_TEST="cookie@test" COOKIE_TEST_2="cookie@test2" COOKIE_NO="cookie@no" ELECTION_SHORTCUT="shortcut@election" ELECTION_SHORTCUT_VOTE="shortcut@election@vote" CAST_VOTE_SHORTCUT="shortcut@vote" CAST_VOTE_FULLHASH_SHORTCUT="shortcut-fullhash@vote" TRUSTEE_LOGIN="trustee@login" ELECTIONS_PARAMS="elections@params" ELECTIONS_VERIFIER="elections@verifier" ELECTIONS_VERIFIER_SINGLE_BALLOT="elections@verifier@single-ballot" ELECTIONS_NEW="elections@new" ELECTIONS_ADMINISTERED="elections@administered" ELECTIONS_VOTED="elections@voted"
33.758621
103
0.812053
86d159a4592157382f878e299f05d05910cb36c9
1,601
py
Python
plate_recognition/ocr.py
73VW/ImageClassification
b4d15de0bf261b05612bd405005ff33b4e395121
[ "MIT" ]
null
null
null
plate_recognition/ocr.py
73VW/ImageClassification
b4d15de0bf261b05612bd405005ff33b4e395121
[ "MIT" ]
1
2018-02-22T15:09:36.000Z
2018-02-22T15:29:14.000Z
plate_recognition/ocr.py
73VW/ImageClassification
b4d15de0bf261b05612bd405005ff33b4e395121
[ "MIT" ]
null
null
null
# import the necessary packages from PIL import Image import pytesseract import argparse import cv2 import os from os import system # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", required=False, help="path to input image to be OCR'd") ap.add_argument("-p", "--preprocess", type=str, default="thresh", help="type of preprocessing to be done") args = vars(ap.parse_args()) # load the example image and convert it to grayscale #image = cv2.imread(args["image"]) image = cv2.imread('C:\\Users\\laurent.gander\\Documents\\HE-ARC\\3eme\\Traitement_Image\\plates_regnonition\\plaque.jpg') gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # check to see if we should apply thresholding to preprocess the # image if args["preprocess"] == "thresh": gray = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1] # make a check to see if median blurring should be done to remove # noise elif args["preprocess"] == "blur": gray = cv2.medianBlur(gray, 3) # write the grayscale image to disk as a temporary file so we can # apply OCR to it filename = "{}.png".format(os.getpid()) #filename = "image.png".format(os.getpid) cv2.imwrite(filename, gray) # load the image as a PIL Pillow image, apply OCR, and then delete # the temporary filename print(filename) #text = system("tesseract -l chr /" + filename + " text.txt") text = pytesseract.image_to_string(Image.open('plaque.jpg'), lang='fra') os.remove(filename) print(text) # show the output images cv2.imshow("Image", image) cv2.imshow("Output", gray) cv2.waitKey(0)
30.788462
122
0.733916
4f525d0a675ee652763e0e1fed3ea3796d0d71c1
4,486
py
Python
loophole/polar/pb/map_information_pb2.py
oscarpicas/loophole
f9389c73f06b419c97ad32847346663a30d80225
[ "MIT" ]
153
2016-02-12T22:52:25.000Z
2022-02-05T21:55:19.000Z
loophole/polar/pb/map_information_pb2.py
oscarpicas/loophole
f9389c73f06b419c97ad32847346663a30d80225
[ "MIT" ]
14
2016-02-28T13:56:34.000Z
2020-02-16T20:33:41.000Z
loophole/polar/pb/map_information_pb2.py
oscarpicas/loophole
f9389c73f06b419c97ad32847346663a30d80225
[ "MIT" ]
20
2016-02-28T13:05:15.000Z
2021-07-20T18:21:46.000Z
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: map_information.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() import types_pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='map_information.proto', package='data', serialized_pb=_b('\n\x15map_information.proto\x12\x04\x64\x61ta\x1a\x0btypes.proto\"4\n\rPbMapLocation\x12\x10\n\x08latitude\x18\x01 \x02(\x01\x12\x11\n\tlongitude\x18\x02 \x02(\x01\"\x80\x01\n\x10PbMapInformation\x12)\n\x0c\x63\x65ntre_point\x18\x01 \x02(\x0b\x32\x13.data.PbMapLocation\x12)\n\x0e\x64\x61ta_timestamp\x18\x02 \x01(\x0b\x32\x11.PbSystemDateTime\x12\x16\n\x07updated\x18\x03 \x01(\x08:\x05\x66\x61lse') , dependencies=[types_pb2.DESCRIPTOR,]) _sym_db.RegisterFileDescriptor(DESCRIPTOR) _PBMAPLOCATION = _descriptor.Descriptor( name='PbMapLocation', full_name='data.PbMapLocation', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='latitude', full_name='data.PbMapLocation.latitude', index=0, number=1, type=1, cpp_type=5, label=2, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='longitude', full_name='data.PbMapLocation.longitude', index=1, number=2, type=1, cpp_type=5, label=2, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=44, serialized_end=96, ) _PBMAPINFORMATION = _descriptor.Descriptor( name='PbMapInformation', full_name='data.PbMapInformation', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='centre_point', full_name='data.PbMapInformation.centre_point', index=0, number=1, type=11, cpp_type=10, label=2, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='data_timestamp', full_name='data.PbMapInformation.data_timestamp', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='updated', full_name='data.PbMapInformation.updated', index=2, number=3, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=99, serialized_end=227, ) _PBMAPINFORMATION.fields_by_name['centre_point'].message_type = _PBMAPLOCATION _PBMAPINFORMATION.fields_by_name['data_timestamp'].message_type = types_pb2._PBSYSTEMDATETIME DESCRIPTOR.message_types_by_name['PbMapLocation'] = _PBMAPLOCATION DESCRIPTOR.message_types_by_name['PbMapInformation'] = _PBMAPINFORMATION PbMapLocation = _reflection.GeneratedProtocolMessageType('PbMapLocation', (_message.Message,), dict( DESCRIPTOR = _PBMAPLOCATION, __module__ = 'map_information_pb2' # @@protoc_insertion_point(class_scope:data.PbMapLocation) )) _sym_db.RegisterMessage(PbMapLocation) PbMapInformation = _reflection.GeneratedProtocolMessageType('PbMapInformation', (_message.Message,), dict( DESCRIPTOR = _PBMAPINFORMATION, __module__ = 'map_information_pb2' # @@protoc_insertion_point(class_scope:data.PbMapInformation) )) _sym_db.RegisterMessage(PbMapInformation) # @@protoc_insertion_point(module_scope)
34.244275
420
0.756799
7664f482fc0986616be11689e511a09e9fbab706
8,446
py
Python
docs/conf.py
myuanz/wechatpy
f131e1808ffd51f61881188fc080c36523063c2b
[ "MIT" ]
821
2016-09-16T03:05:37.000Z
2022-03-30T07:18:06.000Z
docs/conf.py
myuanz/wechatpy
f131e1808ffd51f61881188fc080c36523063c2b
[ "MIT" ]
160
2017-08-28T03:32:56.000Z
2022-03-31T09:16:10.000Z
docs/conf.py
myuanz/wechatpy
f131e1808ffd51f61881188fc080c36523063c2b
[ "MIT" ]
168
2016-05-30T16:40:07.000Z
2022-03-25T15:17:18.000Z
# -*- coding: utf-8 -*- # # wechatpy documentation build configuration file, created by # sphinx-quickstart on Thu Sep 25 14:26:14 2014. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.append(os.path.abspath("_themes")) sys.path.insert(0, os.path.abspath("..")) import wechatpy # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "sphinx.ext.autodoc", "sphinx.ext.todo", "sphinx.ext.viewcode", ] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # The suffix of source filenames. source_suffix = ".rst" # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = "index" # General information about the project. project = "wechatpy" copyright = "2014 - 2020, Messense Lv" # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = wechatpy.__version__ # The full version, including alpha/beta/rc tags. release = wechatpy.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. language = "zh_CN" # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ["_build"] # The reST default role (used for this markup: `text`) to use for all # documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = "sphinx" # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. # keep_warnings = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = "default" # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = ['_themes'] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. # html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None html_search_language = "zh" # Output file base name for HTML help builder. htmlhelp_basename = "wechatpydoc" # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ("index", "wechatpy.tex", "wechatpy Documentation", "messense", "manual"), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [("index", "wechatpy", "wechatpy Documentation", ["messense"], 1)] # If true, show URL addresses after external links. # man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ( "index", "wechatpy", "wechatpy Documentation", "messense", "wechatpy", "One line description of project.", "Miscellaneous", ), ] # Documents to append as an appendix to all manuals. # texinfo_appendices = [] # If false, no module index is generated. # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. # texinfo_no_detailmenu = False
31.514925
79
0.709567
4c68ae770d8e01cf9e8a3ce075048063cb29a20f
3,613
py
Python
commanderbot/lib/json_file_database_adapter.py
CommanderBot-Dev/commanderbot-ext
c8798b4475b892c234a1e4ffbfb4fed3fb702938
[ "MIT" ]
4
2020-09-25T19:22:48.000Z
2021-06-16T18:08:49.000Z
commanderbot/lib/json_file_database_adapter.py
CommanderBot-Dev/commanderbot-py
835841f733e466c5a0e6724d4020747c55856fe3
[ "MIT" ]
23
2021-08-30T04:07:29.000Z
2021-11-08T17:44:41.000Z
commanderbot/lib/json_file_database_adapter.py
CommanderBot-Dev/commanderbot-py
835841f733e466c5a0e6724d4020747c55856fe3
[ "MIT" ]
3
2020-09-25T19:23:22.000Z
2021-03-16T18:19:48.000Z
import asyncio from dataclasses import dataclass, field from logging import Logger, getLogger from typing import Callable, Generic, Optional, TypeVar from commanderbot.lib.database_options import JsonFileDatabaseOptions from commanderbot.lib.json import json_dump_async, json_load_async from commanderbot.lib.types import JsonObject __all__ = ("JsonFileDatabaseAdapter",) CacheType = TypeVar("CacheType") @dataclass class JsonFileDatabaseAdapter(Generic[CacheType]): """ Wraps common operations for persistent data backed by a simple JSON file. Attributes ---------- options Immutable, pre-defined settings that define core database behaviour. serializer A callable that serializes Python objects into JSON objects. deserializer A callable that deserializes JSON objects into Python objects. log A logger named in a uniquely identifiable way. """ options: JsonFileDatabaseOptions serializer: Callable[[CacheType], JsonObject] deserializer: Callable[[JsonObject], CacheType] log: Logger = field(init=False) # Lazily-initialized in-memory representation of state. The reason this is lazy is # because it needs to be asynchronously initialized from within an async method. # **Do not use this member; use `_get_cache()` instead.** __cache: Optional[CacheType] = field(init=False, default=None) # Lock used to avoid a potential race condition where multiple concurrent asyncio # tasks initialize the cache in parallel. __cache_lock = asyncio.Lock() def __post_init__(self): self.log = getLogger( f"{self.options.path.name} ({self.__class__.__name__}#{id(self)})" ) async def _create_cache(self) -> CacheType: """Construct the initial cache from the database.""" data = await self.read() assert isinstance(data, dict) return self.deserializer(data) async def get_cache(self) -> CacheType: """Create the cache if it doesn't already exist, and then return it.""" async with self.__cache_lock: if self.__cache is None: self.log.info("Lazily-initializing new cache...") self.__cache = await self._create_cache() return self.__cache async def dirty(self): """Mark the cache as dirty, forcing a write to the database.""" cache = await self.get_cache() data = self.serializer(cache) await self.write(data) async def read(self) -> JsonObject: """Read and return the data from the database file.""" try: # Attempt to async load the file. return await json_load_async(self.options.path) except FileNotFoundError as ex: if self.options.no_init: # If the file doesn't exist, and we've been specifically told not to # automatically create it, then let the error fall through. raise ex else: # Otherwise, we can go ahead and automatically initialize the file. self.log.warning( f"Initializing database file because it doesn't already exist: {self.options.path}" ) # We need to have valid JSON in the file, so just use an empty object. await json_dump_async({}, self.options.path, mkdir=True) return {} async def write(self, data: JsonObject): """Write the given data to the database file.""" await json_dump_async(data, self.options.path, indent=self.options.indent)
38.031579
103
0.661223
a27e76c3886a4475dc8d0e572c5643ee82b272fb
5,749
py
Python
test/integration/component/test_baremetal.py
ycyun/ablestack-cloud
b7bd36a043e2697d05303246373988aa033c9229
[ "Apache-2.0" ]
1,131
2015-01-08T18:59:06.000Z
2022-03-29T11:31:10.000Z
test/integration/component/test_baremetal.py
ycyun/ablestack-cloud
b7bd36a043e2697d05303246373988aa033c9229
[ "Apache-2.0" ]
5,908
2015-01-13T15:28:37.000Z
2022-03-31T20:31:07.000Z
test/integration/component/test_baremetal.py
ycyun/ablestack-cloud
b7bd36a043e2697d05303246373988aa033c9229
[ "Apache-2.0" ]
1,083
2015-01-05T01:16:52.000Z
2022-03-31T12:14:10.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Test for baremetal """ #Import Local Modules from marvin.cloudstackTestCase import cloudstackTestCase from marvin.cloudstackAPI import createVlanIpRange from marvin.lib.utils import cleanup_resources from marvin.lib.base import (NetworkOffering, NetworkServiceProvider, PhysicalNetwork, Network, Pod) #from marvin.lib.common import * from nose.plugins.attrib import attr #Import System modules _multiprocess_shared_ = True class Services: """Test Baremetal """ def __init__(self): self.services = { "network_offering": { "name": 'Baremetal_network_offering', "displaytext": 'Baremetal_network_offering', "guestiptype": 'Shared', "supportedservices": 'Dhcp,UserData,BaremetalPxeService', "specifyVlan": "true", "specifyIpRanges": "true", "traffictype": 'GUEST', "availability": 'Optional', "conservemode": 'false', "serviceProviderList": { "Dhcp": 'BaremetalDhcpProvider', "UserData": 'BaremetalUserdataProvider', "BaremetalPxeService": 'BaremetalPxeProvider', }, }, "network" :{ "name" : "defaultBaremetalNetwork", "displaytext" : "defaultBaremetalNetwork", }, "ostype": 'CentOS 5.3 (64-bit)', # Cent OS 5.3 (64 bit) "sleep": 60, "timeout": 10, } class TestBaremetal(cloudstackTestCase): zoneid = 1 def setUp(self): self.apiclient = self.testClient.getApiClient() self.services = Services().services self.cleanup = [] def tearDown(self): try: self.debug("Cleaning up the resources") #Clean up, terminate the created network offerings cleanup_resources(self.apiclient, self.cleanup) self.debug("Cleanup complete!") except Exception as e: raise Exception("Warning: Exception during cleanup : %s" % e) return @attr(tags = ["baremetal", "invalid"]) def test_baremetal(self): self.debug("Test create baremetal network offering") networkoffering = NetworkOffering.create(self.apiclient, self.services["network_offering"]) networkoffering.update(self.apiclient, state="Enabled") self.cleanup.append(networkoffering) physical_network = PhysicalNetwork.list(self.apiclient, zoneid=self.zoneid)[0]; dhcp_provider = NetworkServiceProvider.list(self.apiclient, name="BaremetalDhcpProvider", physical_network_id=physical_network.id)[0] NetworkServiceProvider.update( self.apiclient, id=dhcp_provider.id, state='Enabled' ) pxe_provider = NetworkServiceProvider.list(self.apiclient, name="BaremetalPxeProvider", physical_network_id=physical_network.id)[0] NetworkServiceProvider.update( self.apiclient, id=pxe_provider.id, state='Enabled' ) userdata_provider = NetworkServiceProvider.list(self.apiclient, name="BaremetalUserdataProvider", physical_network_id=physical_network.id)[0] NetworkServiceProvider.update( self.apiclient, id=userdata_provider.id, state='Enabled' ) network = Network.create(self.apiclient, self.services["network"], zoneid=self.zoneid, networkofferingid=networkoffering.id) self.cleanup.insert(0, network) pod = Pod.list(self.apiclient)[0] cmd = createVlanIpRange.createVlanIpRangeCmd() cmd.podid = pod.id cmd.networkid = network.id cmd.gateway = "10.1.1.1" cmd.netmask = "255.255.255.0" cmd.startip = "10.1.1.20" cmd.endip = "10.1.1.40" cmd.forVirtualNetwork="false" self.apiclient.createVlanIpRange(cmd)
46.362903
149
0.532788
3597991cfff65a24f4cbaf28bef6b1c70de99177
1,019
py
Python
data/checkpointManager.py
kennethsinder/exit-dash-hyperion
d44ea77ef5e8a6ce9490e3f802636da5b44e6e74
[ "MIT" ]
2
2018-01-29T14:34:51.000Z
2020-10-20T23:30:26.000Z
data/checkpointManager.py
kennethsinder/exit-dash-hyperion
d44ea77ef5e8a6ce9490e3f802636da5b44e6e74
[ "MIT" ]
null
null
null
data/checkpointManager.py
kennethsinder/exit-dash-hyperion
d44ea77ef5e8a6ce9490e3f802636da5b44e6e74
[ "MIT" ]
null
null
null
# coding=utf-8 import pygame class CheckpointManager(object): def __init__(self, platforms, blocks, character): # Initialize lists for the co-ordinates for every checkpoint and the direction needed to get there self.checkpointsLeft, self.checkpointsRight = [] * 2 self.checkpointDirectionsL, self.checkpointDirectionsR = [] * 2 self.indexLevel(platforms, blocks, character) def indexLevel(self, platforms, blocks, char): # This method obtains all of the level information necessary to pathfind # Gather information about the character maxW = char.maxJumpLength maxH = char.maxJumpWidth charRect = pygame.Rect(char.x, char.y, char.width, char.height) charW = char.width # Fill in the checkpoint coordinates and directions for platform in platforms: self.checkpointsLeft.append(platform.x + 5) self.checkpointsRight.append(platform.x + platform.width - charW - 5)
40.76
107
0.672228
70f70bbe883b92cb3fb625d507170482ad47c0c6
4,192
py
Python
utils/MQTT.py
JuanPabloBeco/py-nbiot
a498b34f53f5a50bacea8d6ab56c6a3071eb4de5
[ "MIT" ]
1
2022-01-23T12:18:25.000Z
2022-01-23T12:18:25.000Z
utils/MQTT.py
JuanPabloBeco/py-nbiot
a498b34f53f5a50bacea8d6ab56c6a3071eb4de5
[ "MIT" ]
null
null
null
utils/MQTT.py
JuanPabloBeco/py-nbiot
a498b34f53f5a50bacea8d6ab56c6a3071eb4de5
[ "MIT" ]
null
null
null
import sys sys.path.append( '..' ) import serial from serial_tools.send_cmd import send_cmd from constants import MY_PHONE_PASS DEFALUT_PRINT_RESPONSE = True DEFAULT_TCP_CONNECT_ID = 0 DEFAULT_HOST_NAME = "54.191.221.113" DEFAULT_PORT = 1883 DEFAULT_USERNAME = "topic" DEFEULT_PASSWORD = "password o string secreto" DEFAULT_TCP_CONNECT_ID = 0 DEFAULT_MSG_ID = 0 DEFAULT_QOS = 0 DEFAULT_RETAIN = 0 DEFAULT_TOPIC = "mychannel" def check_mqtt_network(ser, print_response=DEFALUT_PRINT_RESPONSE): cmd_response = send_cmd("AT+QMTOPEN?", ser, print_response=print_response) print(cmd_response) return(cmd_response) def open_mqtt_network( ser, tcp_connect_id=DEFAULT_TCP_CONNECT_ID, host_name=DEFAULT_HOST_NAME, port=DEFAULT_PORT, print_response=DEFALUT_PRINT_RESPONSE, ): cmd_response = send_cmd("AT+QMTOPEN=" + str(tcp_connect_id) + ",\"" + host_name + "\"" + "," + str(port), ser, print_response=print_response) print(cmd_response) return(cmd_response) def connect_to_mqtt_server( ser, tcp_connect_id=DEFAULT_TCP_CONNECT_ID, username = DEFAULT_USERNAME, password = DEFEULT_PASSWORD, print_response=DEFALUT_PRINT_RESPONSE, ): cmd_response = send_cmd( "AT+QMTCONN=" + str(tcp_connect_id) + ",\"" + username + "\",\"" + password + "\"", ser, print_response=print_response, ms_of_delay_before=100) print(cmd_response) return(cmd_response) def check_connection_to_mqtt_server( ser, print_response=DEFALUT_PRINT_RESPONSE, tcp_connect_id=DEFAULT_TCP_CONNECT_ID, base_delay=500, ): cmd_response={'status':'ERROR'} print('check_connection_to_mqtt_server') for time in range(0,3): cmd_response = send_cmd( "AT+QMTCONN?", ser, ms_of_delay_before=base_delay*(time+1), print_response=print_response) print('cmd_response: ') print(cmd_response) print(cmd_response.get('response')[1]) if cmd_response.get('response')[1].find('OK') != -1: print(cmd_response.get('response')[1].find('OK')) return(cmd_response) if cmd_response.get('response')[1].split(str(tcp_connect_id) + ",",1)[1][0] == '3': print(cmd_response.get('response')[1].split(str(tcp_connect_id) + ",",1)[1][0]) return(cmd_response) cmd_response['status'] = 'TIMEOUT' print('TIMEOUT') return(cmd_response) def publish_mqtt_message( ser, str_to_send, topic = DEFAULT_TOPIC, tcp_connect_id = DEFAULT_TCP_CONNECT_ID, msgID = DEFAULT_MSG_ID, qos = DEFAULT_QOS, retain = DEFAULT_RETAIN, print_response=DEFALUT_PRINT_RESPONSE ): cmd_response = send_cmd( "AT+QMTPUB=" + str(tcp_connect_id) + "," + str(msgID) + "," + str(qos) + "," + str(retain) + "," + "\"" + topic + "\"," + str(len(str_to_send)), # these length is in bytes ser, custom_response_end='>', print_response=print_response ) print(cmd_response) cmd_response = send_cmd(str_to_send, ser, print_response=print_response, ms_of_delay_before=200) print(cmd_response) return cmd_response def close_mqtt_network(ser, tcp_connect_id=DEFAULT_TCP_CONNECT_ID, print_response=DEFALUT_PRINT_RESPONSE): cmd_response = send_cmd("AT+QMTCLOSE=" + str(tcp_connect_id) + "", ser, print_response=print_response) print(cmd_response) def disconnect_to_mqtt_server(ser, print_response=DEFALUT_PRINT_RESPONSE): cmd_response = send_cmd("AT+QMTDISC=" + str(tcp_connect_id) + "", ser, print_response=print_response) print(cmd_response) return(cmd_response) def subscribe_to_mqtt_topic(ser, print_response=DEFALUT_PRINT_RESPONSE): cmd_response = send_cmd("AT+QMTSUB=0,1,\"mychannel\",0", ser, print_response=print_response) print(cmd_response) return(cmd_response) def subscribe_to_mqtt_topic(ser, print_response=DEFALUT_PRINT_RESPONSE): cmd_response = send_cmd("AT+QMTUNS=0,1,\"mychannel\"", ser, print_response=print_response) print(cmd_response) return(cmd_response)
32
146
0.683206
defecf8e2b27589433e6ea74f945233886053ec3
2,029
py
Python
scru/scru.py
Alquimista/scru
331e0213a0a3a3c53b8da5bfd541767412479bee
[ "MIT" ]
null
null
null
scru/scru.py
Alquimista/scru
331e0213a0a3a3c53b8da5bfd541767412479bee
[ "MIT" ]
null
null
null
scru/scru.py
Alquimista/scru
331e0213a0a3a3c53b8da5bfd541767412479bee
[ "MIT" ]
null
null
null
#!/usr/bin/env python2 # -*- coding: utf-8 -*- import clipboard import imgur import screenshot import utils import os import subprocess import urllib APP_ICON = '/usr/share/icons/hicolor/scalable/apps/scru.svg' XDG_CACHE_HOME = os.environ['XDG_CACHE_HOME'] APP_CACHE = os.path.join(XDG_CACHE_HOME, 'scru') if not os.path.isdir(APP_CACHE): os.makedirs(APP_CACHE) def complete(url, notify): """Show a notify message when the upload was commpleted""" image = urllib.urlretrieve( url, os.path.join(APP_CACHE, 'notify.png'))[0] image_uri = 'file://' + image if notify: # Get the thumb image of the current uploaded image utils.show_notification('Scru', 'The screenshot was uploaded to imgur', image_uri) print 'The screenshot was uploaded to imgur' print 'Link was copied to the clipboard' def screen_to_imgur(filename, link, select, sound, notify, quality, delay, optipng): """Take a screenshot and upload to imgur""" # Default link argument if not link: link = 'original' # Take the screenshot screen = screenshot.grab(filename, select, sound, quality, delay, optipng) # print 'Uploading image to imgur...' data = imgur.upload(screen) screen.close() # Get the links of the uploaded screenshot if link == 'html_clikeable_thumbail': thumb = data['upload']['links']['large_thumbnail'] original = data['upload']['links']['original'] url = '<a href="%s"><img src=%s/></a>' % (original, thumb) elif link == 'IM': original = data['upload']['links']['original'] url = '[IMG]%s[/IMG]' % (original, thumb) else: url = data['upload']['links'][link] notify_im = data['upload']['links']['small_square'] #thumb image # Copy to the clipboard the url of the uploaded screenshot clipboard.copy(url) if notify: # Notify when done complete(notify_im, notify) # print link.upper() + ': ' + url print url return url
31.703125
78
0.643667
3a047361ca9a1cd438a2f259e16d7d029337c536
11,508
py
Python
tests/performance/test_performance.py
gnomonsis/model_server
bdd7eccde5dfa4f518f6964c103b4389cd00caaf
[ "Apache-2.0" ]
null
null
null
tests/performance/test_performance.py
gnomonsis/model_server
bdd7eccde5dfa4f518f6964c103b4389cd00caaf
[ "Apache-2.0" ]
null
null
null
tests/performance/test_performance.py
gnomonsis/model_server
bdd7eccde5dfa4f518f6964c103b4389cd00caaf
[ "Apache-2.0" ]
null
null
null
# # Copyright (c) 2020 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Can be run locally with: py.test tests/test_performance.py -v -s import os import subprocess import datetime import urllib.request import pytest from tabulate import tabulate from data.performance_constants import DATASET, OVMS_CLIENT, OVMS_DATASET, ITERATIONS, AMS_PORT, \ AMS_ADDRESS, OVMS_PORT, OVMS_CLIENT_PATH, AMS_CLIENT_PATH, MODELS, PARAMS from fixtures.performance import run_ams, cleanup_ams, run_ovms, cleanup_ovms, prepare_dataset_for_ovms, cleanup_dataset LATENCY = [] THROUGHPUT = [] class TestPerformance: @staticmethod def inference(model_name, image, iterations: int): responses = [] with open(os.path.join(DATASET, image), mode='rb') as image_file: image_bytes = image_file.read() for num in range(iterations): start_time = datetime.datetime.now() url = 'http://{}:{}/{}'.format(AMS_ADDRESS, AMS_PORT, model_name) headers = {'Content-Type': 'image/png'} req = urllib.request.Request(url, image_bytes, headers=headers) response = urllib.request.urlopen(req) assert response.getcode() == 200, "Not expected response code: {}".format(response.getcode) stop_time = datetime.datetime.now() duration = (stop_time - start_time).total_seconds() * 1000 responses.append({"response": response, "duration": duration}) return responses @staticmethod def inference_ovms(model_name, image_width, image_height, input_name): cmd = ["python", OVMS_CLIENT, "--grpc_port", OVMS_PORT, "--model_name", model_name, "--input_images_dir", OVMS_DATASET, "--width", str(image_width), "--height", str(image_height), "--input_name", input_name] proc = subprocess.Popen(cmd, stdout=subprocess.PIPE) output = proc.communicate()[0].decode('utf-8') print("Output for latency:\n{} \nCommand: {}".format(output, " ".join(cmd))) metrics = [line for line in output.splitlines() if "average time" in line][0] average_proccessing_time = metrics.split(";")[0].split(":")[1] average_speed = metrics.split(";")[1].split(":")[1] return average_proccessing_time, average_speed @staticmethod def return_metrics(cmd): ps = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) output = ps.communicate()[0].decode() print("Output for throughput:\n{} \nCommand: {}".format(output, cmd)) times = [line for line in output.splitlines() if "real" in line][0] time = times.split("\t")[1].split("m") final_time = float(time[0]) * 60 + float(time[1].replace("s", "")) throughput = 10 * 1 * (ITERATIONS / final_time) subprocess.call("rm -rf metrics", shell=True) return final_time, throughput @staticmethod def measure_throughput_ams(model_name, image): cmd = " ".join(["time printf '%s\\n' {1..10} | xargs -n 1 -P 10 python", AMS_CLIENT_PATH, model_name, image]) return TestPerformance.return_metrics(cmd) @staticmethod def measure_throughput_ovms(model_name, width, height, input_name): cmd = " ".join(["time printf '%s\\n' {1..10} | xargs -n 1 -P 10 sh", OVMS_CLIENT_PATH, model_name, width, height, OVMS_PORT, OVMS_DATASET, input_name]) return TestPerformance.return_metrics(cmd) @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("params", PARAMS) def test_performance_latency_one_client_ams(self, model, params): """ <b>Description:</b> Checks AMS performance - latency <b>Input data:</b> - AMS - model - configuration <b>Expected results:</b> Test passes when AMS has results close to OVMS and OpenVino benchmark app. <b>Steps:</b> 1. Run AMS and get response time. """ # running ams print("Plugin config: {}".format(params["plugin_config"])) container = run_ams(params) # measure latency for ams responses = self.inference(image=model["dataset"], iterations=ITERATIONS, model_name=model["model_name"]) total_processing_time = 0 total_speed = 0 for rsp in responses: total_processing_time = total_processing_time + round(rsp["duration"], 2) total_speed = total_speed + round(1000/rsp["duration"], 2) average_proccessing_time = "{} ms".format(round(total_processing_time / len(responses), 2)) average_speed = "{} fps".format(round(total_speed / len(responses), 2)) plugin_config = "singlestream" if params["plugin_config"] == '{"CPU_THROUGHPUT_STREAMS": "1"}' \ else "multistream" ams = [model["model_name"], params["cores"], "ams", params["nireq"], params["grpc_workers"], plugin_config, average_proccessing_time, average_speed] LATENCY.append(ams) # remove ovms cleanup_ams(container) @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("params", PARAMS) def test_performance_latency_one_client_ovms(self, model, params): """ <b>Description:</b> Checks AMS performance - latency <b>Input data:</b> - OVMS - model - configuration <b>Expected results:</b> Test passes when AMS has results close to OVMS and OpenVino benchmark app. <b>Steps:</b> 1. Run OVMS and get response time. """ # prepare dataset prepare_dataset_for_ovms(model["dataset"]) # running ams container = run_ovms(params) # measure latency for ovms plugin_config = "singlestream" if params["plugin_config"] == '{"CPU_THROUGHPUT_STREAMS": "1"}' \ else "multistream" average_proccessing_time, average_speed = self.inference_ovms(model_name=model["model_name_ovms"], image_width=model["width"], image_height=model["height"], input_name=model["input_name"]) ovms = [model["model_name"], params["cores"], "ovms", params["nireq"], params["grpc_workers"], plugin_config, average_proccessing_time, average_speed] LATENCY.append(ovms) # remove ovms cleanup_ovms(container) # remove dataset cleanup_dataset() @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("params", PARAMS) def test_performance_measure_throughput_ten_clients_ams(self, model, params): """ <b>Description:</b> Measures OVMS and AMS performance - throughput <b>Input data:</b> - AMS - model - configuration <b>Expected results:</b> Test passes when AMS results are close to OVMS results - throughput <b>Steps:</b> 1. Measure AMS results """ # run ams container = run_ams(params) # measure throughput for ams plugin_config = "singlestream" if params["plugin_config"] == '{"CPU_THROUGHPUT_STREAMS": "1"}' \ else "multistream" final_time, throughput = self.measure_throughput_ams(model_name=model["model_name"], image=model["dataset"]) ams = [model["model_name"], params["cores"], "ams", params["nireq"], params["grpc_workers"], plugin_config, final_time, throughput] THROUGHPUT.append(ams) # remove ams cleanup_ams(container) @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("params", PARAMS) def test_performance_measure_throughput_ten_clients_ovms(self, model, params): """ <b>Description:</b> Measures OVMS and AMS performance - throughput <b>Input data:</b> - OVMS - model - configuration <b>Expected results:</b> Test passes when AMS results are close to OVMS results - throughput <b>Steps:</b> 1. Measure OVMS results """ # prepare dataset prepare_dataset_for_ovms(model["dataset"]) # run ovms container = run_ovms(params) # measure throughput for ovms final_time, throughput = self.measure_throughput_ovms(model_name=model["model_name_ovms"], width=model["width"], height=model["height"], input_name=model["input_name"]) plugin_config = "singlestream" if params["plugin_config"] == '{"CPU_THROUGHPUT_STREAMS": "1"}' \ else "multistream" ovms = [model["model_name"], params["cores"], "ovms", params["nireq"], params["grpc_workers"], plugin_config, final_time, throughput] THROUGHPUT.append(ovms) # remove ovms cleanup_ovms(container) # remove dataset cleanup_dataset() def test_performance_compare_latency_one_client(self): """ <b>Description:</b> Compares OVMS and AMS performance - latency <b>Assumptions:</b> - All models present on local machine, location: /opt/models/models <b>Input data:</b> - OVMS performance - latency results - AMS performance - latency results <b>Expected results:</b> Test passes when AMS results are close to OVMS results - latency <b>Steps:</b> 1. Compare OVMS and AMS results """ print("\n") print(tabulate(LATENCY, headers=["Model", "Cores", "Service", "Nireq", "Grcp_workers", "Singlestream/Multistream", "Average processing time", "Average speed"])) def test_performance_compare_throughput_ten_clients(self): """ <b>Description:</b> Compares OVMS and AMS performance - throughput <b>Assumptions:</b> - All models present on local machine, location: /opt/models/models <b>Input data:</b> - OVMS performance - throughput results - AMS performance - throughput results <b>Expected results:</b> Test passes when AMS results are close to OVMS results - throughput <b>Steps:</b> 1. Compare OVMS and AMS results """ print("\n") print(tabulate(THROUGHPUT, headers=["Model", "Cores", "Service", "Nireq", "Grcp_workers", "Singlestream/Multistream", "Final time", "Throughput"]))
39.010169
120
0.602103
cf92e06022a0033791565af4034c4ae9f87afbca
13,864
py
Python
tests/api/test_slack.py
cham11ng/boss
71e67cf2c4411787d319e2bd842fd93402aeaef3
[ "MIT" ]
25
2017-10-23T09:22:06.000Z
2021-09-15T11:04:51.000Z
tests/api/test_slack.py
cham11ng/boss
71e67cf2c4411787d319e2bd842fd93402aeaef3
[ "MIT" ]
37
2017-10-18T15:40:18.000Z
2021-12-19T12:59:29.000Z
tests/api/test_slack.py
cham11ng/boss
71e67cf2c4411787d319e2bd842fd93402aeaef3
[ "MIT" ]
17
2017-10-19T08:39:09.000Z
2021-11-01T09:35:05.000Z
''' Tests for boss.api.slack module. ''' from mock import patch from pytest import fixture from boss.api import slack from boss.core.constants.notification_types import ( DEPLOYMENT_STARTED, DEPLOYMENT_FINISHED, RUNNING_SCRIPT_STARTED, RUNNING_SCRIPT_FINISHED ) @fixture(scope='function') def slack_url(): return slack.slack_url( slack.config()['base_url'], slack.config()['endpoint'] ) def test_create_link(): ''' Test slack.create_link(). ''' url = 'http://test-link-url' title = 'Test link' expected_link = '<{url}|{title}>'.format(url=url, title=title) assert slack.create_link(url, title) == expected_link def test_create_link_supports_empty_url(): ''' Test slack.create_link() supports empty url. ''' assert slack.create_link(None, 'Test') == 'Test' def test_slack_url(): ''' Test slack_url() works. ''' assert slack.slack_url('', '') == '' assert slack.slack_url( 'https://hooks.slack.com/services', '/foo/bar' ) == 'https://hooks.slack.com/services/foo/bar' assert slack.slack_url( 'https://hooks.slack.com/services', 'https://hooks.slack.com/services/foo/bar' ) == 'https://hooks.slack.com/services/foo/bar' assert slack.slack_url( '', 'https://hooks.slack.com/services/foo/bar' ) == 'https://hooks.slack.com/services/foo/bar' def test_slack_url_with_no_leading_trailing_slashes(): ''' Test no trailing or leading slashes are required. ''' assert slack.slack_url( 'https://hooks.slack.com/services', 'just-test' ) == 'https://hooks.slack.com/services/just-test' def test_send(slack_url): ''' Test slack.send(). ''' notify_params = dict( branch_url='http://branch-url', branch='temp', commit='tttt', commit_url='http://commit-url', public_url='http://public-url', host='test-notify-deploying-host', repository_url='http://repository-url', project_name='project-name', server_name='server-name', server_link='http://server-link', user='user', ) payload = { 'attachments': [ { 'color': 'good', 'text': 'user is deploying <http://repository-url|project-name>:<http://branch-url|temp> (<http://commit-url|tttt>) to <http://public-url|server-name> server.', 'mrkdwn_in': ['text'] } ] } with patch('requests.post') as mock_post: slack.send(DEPLOYMENT_STARTED, **notify_params) mock_post.assert_called_once_with(slack_url, json=payload) def test_send_deployment_started_with_no_repository_url(slack_url): ''' Test deployment started notification with no repository url. ''' notify_params = dict( branch='temp', commit='tttt', commit_url=None, branch_url=None, repository_url=None, public_url='http://public-url', host='test-notify-deploying-host', project_name='project-name', server_name='server-name', server_link='http://server-link', user='user', ) payload = { 'attachments': [ { 'color': 'good', 'text': 'user is deploying project-name:temp (tttt) to <http://public-url|server-name> server.', 'mrkdwn_in': ['text'] } ] } with patch('requests.post') as mock_post: slack.send(DEPLOYMENT_STARTED, **notify_params) mock_post.assert_called_once_with(slack_url, json=payload) def test_send_deployment_finished_with_no_repository_url(slack_url): ''' Test deployment finished notification with no repository url. ''' notify_params = dict( branch='temp', commit='tttt', commit_url=None, branch_url=None, repository_url=None, public_url='http://public-url', host='test-notify-deploying-host', project_name='project-name', server_name='server-name', server_link='http://server-link', user='user', ) payload = { 'attachments': [ { 'color': '#764FA5', 'text': 'user finished deploying project-name:temp (tttt) to <http://public-url|server-name> server.', 'mrkdwn_in': ['text'] } ] } with patch('requests.post') as mock_post: slack.send(DEPLOYMENT_FINISHED, **notify_params) mock_post.assert_called_once_with(slack_url, json=payload) def test_send_with_no_branch_name(slack_url): ''' Test slack.send() doesn't show the branch link, if branch name is not provided. ''' notify_params = dict( public_url='http://public-url', host='test-notify-deploying-host', repository_url='http://repository-url', commit='tttt', commit_url='http://commit-url', project_name='project-name', server_name='server-name', server_link='http://server-link', user='user', ) payload = { 'attachments': [ { 'color': 'good', 'text': 'user is deploying <http://repository-url|project-name> (<http://commit-url|tttt>) to <http://public-url|server-name> server.', 'mrkdwn_in': ['text'] } ] } with patch('requests.post') as mock_post: slack.send(DEPLOYMENT_STARTED, **notify_params) mock_post.assert_called_once_with(slack_url, json=payload) def test_notity_deployed(slack_url): ''' Test slack.notify_deployed(). ''' notify_params = dict( branch_url='http://branch-url', branch='temp', commit='tttt', commit_url='http://commit-url', public_url='http://public-url', host='test-notify-deployed-host', repository_url='http://repository-url', project_name='project-name', server_name='server-name', server_link='http://server-link', user='user' ) payload = { 'attachments': [ { 'color': '#764FA5', 'text': 'user finished deploying <http://repository-url|project-name>:<http://branch-url|temp> (<http://commit-url|tttt>) to <http://public-url|server-name> server.', 'mrkdwn_in': ['text'] } ] } with patch('requests.post') as mock_post: slack.send(DEPLOYMENT_FINISHED, **notify_params) mock_post.assert_called_once_with(slack_url, json=payload) def test_notity_deployed_with_no_commit(slack_url): ''' Test sending deployment finished notification with no commit. ''' notify_params = dict( branch_url='http://branch-url', branch='temp', public_url='http://public-url', host='test-notify-deployed-host', repository_url='http://repository-url', project_name='project-name', server_name='server-name', server_link='http://server-link', user='user' ) payload = { 'attachments': [ { 'color': '#764FA5', 'text': 'user finished deploying <http://repository-url|project-name>:<http://branch-url|temp> to <http://public-url|server-name> server.', 'mrkdwn_in': ['text'] } ] } with patch('requests.post') as mock_post: slack.send(DEPLOYMENT_FINISHED, **notify_params) mock_post.assert_called_once_with(slack_url, json=payload) def test_notity_deploying_with_no_commit(slack_url): ''' Test sending deployment started notification with no commit. ''' notify_params = dict( branch_url='http://branch-url', branch='temp', public_url='http://public-url', host='test-notify-deployed-host', repository_url='http://repository-url', project_name='project-name', server_name='server-name', server_link='http://server-link', user='user' ) payload = { 'attachments': [ { 'color': 'good', 'text': 'user is deploying <http://repository-url|project-name>:<http://branch-url|temp> to <http://public-url|server-name> server.', 'mrkdwn_in': ['text'] } ] } with patch('requests.post') as mock_post: slack.send(DEPLOYMENT_STARTED, **notify_params) mock_post.assert_called_once_with(slack_url, json=payload) def test_notity_deployed_with_no_branch_name(slack_url): ''' Test slack.notify_deployed() doesn't show the branch link, if branch name is not provided. ''' notify_params = dict( public_url='http://public-url', host='test-notify-deployed-host', commit='tttt', commit_url='http://commit-url', repository_url='http://repository-url', project_name='project-name', server_name='server-name', server_link='http://server-link', user='user' ) payload = { 'attachments': [ { 'color': '#764FA5', 'text': 'user finished deploying <http://repository-url|project-name> (<http://commit-url|tttt>) to <http://public-url|server-name> server.', 'mrkdwn_in': ['text'] } ] } with patch('requests.post') as mock_post: slack.send(DEPLOYMENT_FINISHED, **notify_params) mock_post.assert_called_once_with(slack_url, json=payload) def test_notity_deployment_finished_with_no_commit_no_branch(slack_url): ''' Test sending deployment finished notification with no commit and no branch. ''' notify_params = dict( public_url='http://public-url', host='test-notify-deployed-host', repository_url='http://repository-url', project_name='project-name', server_name='server-name', server_link='http://server-link', user='user' ) payload = { 'attachments': [ { 'color': '#764FA5', 'text': 'user finished deploying <http://repository-url|project-name> to <http://public-url|server-name> server.', 'mrkdwn_in': ['text'] } ] } with patch('requests.post') as mock_post: slack.send(DEPLOYMENT_FINISHED, **notify_params) mock_post.assert_called_once_with(slack_url, json=payload) def test_notity_deployment_started_with_no_commit_no_branch(slack_url): ''' Test sending deployment started notification with no commit and no branch. ''' notify_params = dict( public_url='http://public-url', host='test-notify-deployed-host', repository_url='http://repository-url', project_name='project-name', server_name='server-name', server_link='http://server-link', user='user' ) payload = { 'attachments': [ { 'color': 'good', 'text': 'user is deploying <http://repository-url|project-name> to <http://public-url|server-name> server.', 'mrkdwn_in': ['text'] } ] } with patch('requests.post') as mock_post: slack.send(DEPLOYMENT_STARTED, **notify_params) mock_post.assert_called_once_with(slack_url, json=payload) def test_notity_deployment_started_no_links_at_all(slack_url): ''' Test deployment started notification with no links or urls at all. ''' notify_params = dict( project_name='project-name', server_name='staging', user='user', ) payload = { 'attachments': [ { 'color': 'good', 'text': 'user is deploying project-name to staging server.', 'mrkdwn_in': ['text'] } ] } with patch('requests.post') as mock_post: slack.send(DEPLOYMENT_STARTED, **notify_params) mock_post.assert_called_once_with(slack_url, json=payload) def test_send_running_script_started_notification(slack_url): ''' Test send() sends RUNNING_SCRIPT_STARTED notfication. ''' notify_params = dict( public_url='http://public-url', host='test-notify-deploying-host', repository_url='http://repository-url', project_name='project-name', server_name='stage', server_link='http://server-link', script='migration', user='user' ) payload = { 'attachments': [ { 'color': 'good', 'text': 'user is running <http://repository-url|project-name>:migration on <http://public-url|stage> server.', 'mrkdwn_in': ['text'] } ] } with patch('requests.post') as mock_post: slack.send(RUNNING_SCRIPT_STARTED, **notify_params) mock_post.assert_called_once_with(slack_url, json=payload) def test_send_running_script_finished_notification(slack_url): ''' Test send() sends RUNNING_SCRIPT_FINISHED notfication. ''' notify_params = dict( public_url='http://public-url', host='test-notify-deploying-host', repository_url='http://repository-url', project_name='project-name', server_name='stage', server_link='http://server-link', script='migration', user='user' ) payload = { 'attachments': [ { 'color': '#764FA5', 'text': 'user finished running <http://repository-url|project-name>:migration on <http://public-url|stage> server.', 'mrkdwn_in': ['text'] } ] } with patch('requests.post') as mock_post: slack.send(RUNNING_SCRIPT_FINISHED, **notify_params) mock_post.assert_called_once_with(slack_url, json=payload)
31.9447
182
0.593263
545a3084f8f487541f95e312e36ccea39a2792b7
2,032
py
Python
update_price.py
Block-Way/sync
48970311e29c4e2fbe1db56140328f22c4accca8
[ "Apache-2.0" ]
null
null
null
update_price.py
Block-Way/sync
48970311e29c4e2fbe1db56140328f22c4accca8
[ "Apache-2.0" ]
null
null
null
update_price.py
Block-Way/sync
48970311e29c4e2fbe1db56140328f22c4accca8
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import json import requests import time import config import pymysql def Update(): conn = pymysql.connect(host=config.host, port=config.port, user=config.user, password=config.password, db=config.db) cursor = conn.cursor() url = 'https://dncapi.fxhapp.com/api/coin/web-coinrank?page=1&type=-1&pagesize=50&webp=1' response = requests.get(url=url) objs = json.loads(response.text) sqls = [] for obj in objs["data"]: if obj["name"] == 'BTC': sql = 'update quotations set price = %s,price24h = %s where tradePairId = "BTC/USDT"' \ % (obj["current_price_usd"],(obj["current_price_usd"] * 100) / (100 + obj["change_percent"])) sqls.append(sql) elif obj["name"] == "ETH": sql = 'update quotations set price = %s,price24h = %s where tradePairId = "ETH/USDT"' \ % (obj["current_price_usd"],(obj["current_price_usd"] * 100) / (100 + obj["change_percent"])) sqls.append(sql) elif obj["name"] == "BNB": sql = 'update quotations set price = %s,price24h = %s where tradePairId = "BNB/USDT"' \ % (obj["current_price_usd"],(obj["current_price_usd"] * 100) / (100 + obj["change_percent"])) sqls.append(sql) elif obj["name"] == "TRX": sql = 'update quotations set price = %s,price24h = %s where tradePairId = "TRX/USDT"' \ % (obj["current_price_usd"],(obj["current_price_usd"] * 100) / (100 + obj["change_percent"])) sqls.append(sql) elif obj["name"] == "XRP": sql = 'update quotations set price = %s,price24h = %s where tradePairId = "XRP/USDT"' \ % (obj["current_price_usd"],(obj["current_price_usd"] * 100) / (100 + obj["change_percent"])) else: pass for sql in sqls: print(sql) cursor.execute(sql) conn.commit() if __name__ == '__main__': while True: Update() time.sleep(120)
42.333333
120
0.576772
907ea6700105a12cb9ef69caf9a93a97247f1b0e
3,344
py
Python
openprocurement/medicines/registry/databridge/caching.py
ProzorroUKR/openprocurement.medicines.registry
3faa63de9eeb21fbf94346d3b67339bae7389099
[ "Apache-2.0" ]
null
null
null
openprocurement/medicines/registry/databridge/caching.py
ProzorroUKR/openprocurement.medicines.registry
3faa63de9eeb21fbf94346d3b67339bae7389099
[ "Apache-2.0" ]
null
null
null
openprocurement/medicines/registry/databridge/caching.py
ProzorroUKR/openprocurement.medicines.registry
3faa63de9eeb21fbf94346d3b67339bae7389099
[ "Apache-2.0" ]
1
2018-07-25T14:07:17.000Z
2018-07-25T14:07:17.000Z
import logging import redis from ConfigParser import ConfigParser from rediscluster import StrictRedisCluster logger = logging.getLogger(__name__) class DB(object): def __init__(self, config): self.config = config cache_backend = self.config_get('cache_backend') or 'redis' if cache_backend == 'redis': self.__backend = cache_backend self.__host = self.config_get('cache_host') or '127.0.0.1' self.__port = self.config_get('cache_port') or 6379 self.__db_name = self.config_get('cache_db_name') or 0 self.db = redis.StrictRedis(host=self.__host, port=self.__port, db=self.__db_name) elif cache_backend == 'redis-cluster': self.__backend = cache_backend node1_host = self.config_get('node1_host') node1_port = self.config_get('node1_port') node2_host = self.config_get('node2_host') node2_port = self.config_get('node2_port') node3_host = self.config_get('node3_host') node3_port = self.config_get('node3_port') node4_host = self.config_get('node4_host') node4_port = self.config_get('node4_port') node5_host = self.config_get('node5_host') node5_port = self.config_get('node5_port') node6_host = self.config_get('node6_host') node6_port = self.config_get('node6_port') self.__host = (node1_host, node2_host, node3_host, node4_host, node5_host, node6_host) self.__port = (node1_port, node2_port, node3_port, node4_port, node5_port, node6_port) self.__db_name = 'cluster' cluster_nodes = [ {'host': node1_host, 'port': node1_port}, {'host': node2_host, 'port': node2_port}, {'host': node3_host, 'port': node3_port}, {'host': node4_host, 'port': node4_port}, {'host': node5_host, 'port': node5_port}, {'host': node6_host, 'port': node6_port} ] self.db = StrictRedisCluster(startup_nodes=cluster_nodes, decode_responses=True) self.set_value = self.db.set self.has_value = self.db.exists self.remove_value = self.db.delete def config_get(self, name): if isinstance(self.config, ConfigParser): return self.config.get('app:api', name) else: return self.config.get('app:api').get(name) def get(self, key): return self.db.get(key) def keys(self, prefix): keys = self.db.keys(prefix) return keys def put(self, key, value, ex=90000): self.set_value(key, value, ex) def remove(self, key): self.remove_value(key) def has(self, key): return self.has_value(key) def scan_iter(self, prefix=None): return [key for key in self.db.scan_iter(prefix)] def remove_pattern(self, prefix): for key in self.db.scan_iter(prefix): self.remove(key) def flushall(self): self.db.flushall() @property def backend(self): return self.__backend @property def host(self): return self.__host @property def port(self): return self.__port @property def db_name(self): return self.__db_name
31.847619
98
0.610048
0725493300e9c62b869e9db92cdfd21c74233609
1,281
py
Python
parse_apache_configs/test/test_get_apache_config.py
daladim/parse_apache_configs
5f585c099095176ae4708c65593bef315d930033
[ "Apache-2.0" ]
7
2017-05-10T12:03:48.000Z
2022-01-31T09:05:25.000Z
parse_apache_configs/test/test_get_apache_config.py
daladim/parse_apache_configs
5f585c099095176ae4708c65593bef315d930033
[ "Apache-2.0" ]
8
2015-11-04T16:08:25.000Z
2015-12-01T16:16:16.000Z
parse_apache_configs/test/test_get_apache_config.py
elextro/parse_apache_configs
d40292e5f938147a558f4a8c94a5e6668d213df3
[ "Apache-2.0" ]
5
2017-01-17T15:17:52.000Z
2022-01-11T22:48:28.000Z
from os import listdir from os.path import isfile, join import unittest from parse_apache_configs import parse_config import pprint class testGetApacheConfig(unittest.TestCase): #print "ENTERING TEST_PARSE_CONFIG" + "-"*8 def test_get_apache_config(self): test_files = [ f for f in listdir("./test_conf_files") if isfile(join("./test_conf_files", f)) ] for file_name in test_files: pac = parse_config.ParseApacheConfig("./test_conf_files/" + file_name) #pp = pprint.pprint conf_list = pac.parse_config() conf_string = pac.get_apache_config(conf_list) #print conf_string #TODO make sure we get the right config file. def test_get_apache_config_string_config(self): test_files = [ f for f in listdir("./test_conf_files") if isfile(join("./test_conf_files", f)) ] for file_name in test_files: full_file_path = "./test_conf_files/" + file_name with open(full_file_path, 'r') as fp: file_as_string = fp.read() pac = parse_config.ParseApacheConfig(apache_file_as_string=file_as_string) conf_list = pac.parse_config() conf_string = pac.get_apache_config(conf_list)
44.172414
108
0.654957
84ee6ce295c0fbb5469f9ecd92400430d966a489
58
py
Python
dev.py
actiniumn404/SICL
218b832fafd7613051a9b29b10b3223e4f7b102a
[ "MIT" ]
null
null
null
dev.py
actiniumn404/SICL
218b832fafd7613051a9b29b10b3223e4f7b102a
[ "MIT" ]
null
null
null
dev.py
actiniumn404/SICL
218b832fafd7613051a9b29b10b3223e4f7b102a
[ "MIT" ]
null
null
null
import main main.SICL(open("tests/dev.sicl", "r").read())
19.333333
45
0.672414
0552fc4833f35fb1f18e735402bcad9ed192d9c2
16,767
py
Python
twilio/rest/sync/v1/service/sync_stream/__init__.py
NCPlayz/twilio-python
08898a4a1a43b636a64c9e98fbb0b6ee1792c687
[ "MIT" ]
null
null
null
twilio/rest/sync/v1/service/sync_stream/__init__.py
NCPlayz/twilio-python
08898a4a1a43b636a64c9e98fbb0b6ee1792c687
[ "MIT" ]
1
2021-06-02T00:27:34.000Z
2021-06-02T00:27:34.000Z
exercise/venv/lib/python3.7/site-packages/twilio/rest/sync/v1/service/sync_stream/__init__.py
assuzzanne/notifications-dispatcher-api
81ae0eab417a1dbc0ae6b1778ebfdd71591c3c5b
[ "MIT" ]
null
null
null
# coding=utf-8 r""" This code was generated by \ / _ _ _| _ _ | (_)\/(_)(_|\/| |(/_ v1.0.0 / / """ from twilio.base import deserialize from twilio.base import values from twilio.base.instance_context import InstanceContext from twilio.base.instance_resource import InstanceResource from twilio.base.list_resource import ListResource from twilio.base.page import Page from twilio.rest.sync.v1.service.sync_stream.stream_message import StreamMessageList class SyncStreamList(ListResource): """ PLEASE NOTE that this class contains beta products that are subject to change. Use them with caution. """ def __init__(self, version, service_sid): """ Initialize the SyncStreamList :param Version version: Version that contains the resource :param service_sid: The SID of the Sync Service that the resource is associated with :returns: twilio.rest.sync.v1.service.sync_stream.SyncStreamList :rtype: twilio.rest.sync.v1.service.sync_stream.SyncStreamList """ super(SyncStreamList, self).__init__(version) # Path Solution self._solution = {'service_sid': service_sid, } self._uri = '/Services/{service_sid}/Streams'.format(**self._solution) def create(self, unique_name=values.unset, ttl=values.unset): """ Create a new SyncStreamInstance :param unicode unique_name: An application-defined string that uniquely identifies the resource :param unicode ttl: How long, in seconds, before the Stream expires and is deleted :returns: Newly created SyncStreamInstance :rtype: twilio.rest.sync.v1.service.sync_stream.SyncStreamInstance """ data = values.of({'UniqueName': unique_name, 'Ttl': ttl, }) payload = self._version.create( 'POST', self._uri, data=data, ) return SyncStreamInstance(self._version, payload, service_sid=self._solution['service_sid'], ) def stream(self, limit=None, page_size=None): """ Streams SyncStreamInstance records from the API as a generator stream. This operation lazily loads records as efficiently as possible until the limit is reached. The results are returned as a generator, so this operation is memory efficient. :param int limit: Upper limit for the number of records to return. stream() guarantees to never return more than limit. Default is no limit :param int page_size: Number of records to fetch per request, when not set will use the default value of 50 records. If no page_size is defined but a limit is defined, stream() will attempt to read the limit with the most efficient page size, i.e. min(limit, 1000) :returns: Generator that will yield up to limit results :rtype: list[twilio.rest.sync.v1.service.sync_stream.SyncStreamInstance] """ limits = self._version.read_limits(limit, page_size) page = self.page(page_size=limits['page_size'], ) return self._version.stream(page, limits['limit'], limits['page_limit']) def list(self, limit=None, page_size=None): """ Lists SyncStreamInstance records from the API as a list. Unlike stream(), this operation is eager and will load `limit` records into memory before returning. :param int limit: Upper limit for the number of records to return. list() guarantees never to return more than limit. Default is no limit :param int page_size: Number of records to fetch per request, when not set will use the default value of 50 records. If no page_size is defined but a limit is defined, list() will attempt to read the limit with the most efficient page size, i.e. min(limit, 1000) :returns: Generator that will yield up to limit results :rtype: list[twilio.rest.sync.v1.service.sync_stream.SyncStreamInstance] """ return list(self.stream(limit=limit, page_size=page_size, )) def page(self, page_token=values.unset, page_number=values.unset, page_size=values.unset): """ Retrieve a single page of SyncStreamInstance records from the API. Request is executed immediately :param str page_token: PageToken provided by the API :param int page_number: Page Number, this value is simply for client state :param int page_size: Number of records to return, defaults to 50 :returns: Page of SyncStreamInstance :rtype: twilio.rest.sync.v1.service.sync_stream.SyncStreamPage """ params = values.of({'PageToken': page_token, 'Page': page_number, 'PageSize': page_size, }) response = self._version.page( 'GET', self._uri, params=params, ) return SyncStreamPage(self._version, response, self._solution) def get_page(self, target_url): """ Retrieve a specific page of SyncStreamInstance records from the API. Request is executed immediately :param str target_url: API-generated URL for the requested results page :returns: Page of SyncStreamInstance :rtype: twilio.rest.sync.v1.service.sync_stream.SyncStreamPage """ response = self._version.domain.twilio.request( 'GET', target_url, ) return SyncStreamPage(self._version, response, self._solution) def get(self, sid): """ Constructs a SyncStreamContext :param sid: The SID of the Stream resource to fetch :returns: twilio.rest.sync.v1.service.sync_stream.SyncStreamContext :rtype: twilio.rest.sync.v1.service.sync_stream.SyncStreamContext """ return SyncStreamContext(self._version, service_sid=self._solution['service_sid'], sid=sid, ) def __call__(self, sid): """ Constructs a SyncStreamContext :param sid: The SID of the Stream resource to fetch :returns: twilio.rest.sync.v1.service.sync_stream.SyncStreamContext :rtype: twilio.rest.sync.v1.service.sync_stream.SyncStreamContext """ return SyncStreamContext(self._version, service_sid=self._solution['service_sid'], sid=sid, ) def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ return '<Twilio.Sync.V1.SyncStreamList>' class SyncStreamPage(Page): """ PLEASE NOTE that this class contains beta products that are subject to change. Use them with caution. """ def __init__(self, version, response, solution): """ Initialize the SyncStreamPage :param Version version: Version that contains the resource :param Response response: Response from the API :param service_sid: The SID of the Sync Service that the resource is associated with :returns: twilio.rest.sync.v1.service.sync_stream.SyncStreamPage :rtype: twilio.rest.sync.v1.service.sync_stream.SyncStreamPage """ super(SyncStreamPage, self).__init__(version, response) # Path Solution self._solution = solution def get_instance(self, payload): """ Build an instance of SyncStreamInstance :param dict payload: Payload response from the API :returns: twilio.rest.sync.v1.service.sync_stream.SyncStreamInstance :rtype: twilio.rest.sync.v1.service.sync_stream.SyncStreamInstance """ return SyncStreamInstance(self._version, payload, service_sid=self._solution['service_sid'], ) def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ return '<Twilio.Sync.V1.SyncStreamPage>' class SyncStreamContext(InstanceContext): """ PLEASE NOTE that this class contains beta products that are subject to change. Use them with caution. """ def __init__(self, version, service_sid, sid): """ Initialize the SyncStreamContext :param Version version: Version that contains the resource :param service_sid: The SID of the Sync Service with the Sync Stream resource to fetch :param sid: The SID of the Stream resource to fetch :returns: twilio.rest.sync.v1.service.sync_stream.SyncStreamContext :rtype: twilio.rest.sync.v1.service.sync_stream.SyncStreamContext """ super(SyncStreamContext, self).__init__(version) # Path Solution self._solution = {'service_sid': service_sid, 'sid': sid, } self._uri = '/Services/{service_sid}/Streams/{sid}'.format(**self._solution) # Dependents self._stream_messages = None def fetch(self): """ Fetch a SyncStreamInstance :returns: Fetched SyncStreamInstance :rtype: twilio.rest.sync.v1.service.sync_stream.SyncStreamInstance """ params = values.of({}) payload = self._version.fetch( 'GET', self._uri, params=params, ) return SyncStreamInstance( self._version, payload, service_sid=self._solution['service_sid'], sid=self._solution['sid'], ) def delete(self): """ Deletes the SyncStreamInstance :returns: True if delete succeeds, False otherwise :rtype: bool """ return self._version.delete('delete', self._uri) def update(self, ttl=values.unset): """ Update the SyncStreamInstance :param unicode ttl: How long, in seconds, before the Stream expires and is deleted :returns: Updated SyncStreamInstance :rtype: twilio.rest.sync.v1.service.sync_stream.SyncStreamInstance """ data = values.of({'Ttl': ttl, }) payload = self._version.update( 'POST', self._uri, data=data, ) return SyncStreamInstance( self._version, payload, service_sid=self._solution['service_sid'], sid=self._solution['sid'], ) @property def stream_messages(self): """ Access the stream_messages :returns: twilio.rest.sync.v1.service.sync_stream.stream_message.StreamMessageList :rtype: twilio.rest.sync.v1.service.sync_stream.stream_message.StreamMessageList """ if self._stream_messages is None: self._stream_messages = StreamMessageList( self._version, service_sid=self._solution['service_sid'], stream_sid=self._solution['sid'], ) return self._stream_messages def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ context = ' '.join('{}={}'.format(k, v) for k, v in self._solution.items()) return '<Twilio.Sync.V1.SyncStreamContext {}>'.format(context) class SyncStreamInstance(InstanceResource): """ PLEASE NOTE that this class contains beta products that are subject to change. Use them with caution. """ def __init__(self, version, payload, service_sid, sid=None): """ Initialize the SyncStreamInstance :returns: twilio.rest.sync.v1.service.sync_stream.SyncStreamInstance :rtype: twilio.rest.sync.v1.service.sync_stream.SyncStreamInstance """ super(SyncStreamInstance, self).__init__(version) # Marshaled Properties self._properties = { 'sid': payload['sid'], 'unique_name': payload['unique_name'], 'account_sid': payload['account_sid'], 'service_sid': payload['service_sid'], 'url': payload['url'], 'links': payload['links'], 'date_expires': deserialize.iso8601_datetime(payload['date_expires']), 'date_created': deserialize.iso8601_datetime(payload['date_created']), 'date_updated': deserialize.iso8601_datetime(payload['date_updated']), 'created_by': payload['created_by'], } # Context self._context = None self._solution = {'service_sid': service_sid, 'sid': sid or self._properties['sid'], } @property def _proxy(self): """ Generate an instance context for the instance, the context is capable of performing various actions. All instance actions are proxied to the context :returns: SyncStreamContext for this SyncStreamInstance :rtype: twilio.rest.sync.v1.service.sync_stream.SyncStreamContext """ if self._context is None: self._context = SyncStreamContext( self._version, service_sid=self._solution['service_sid'], sid=self._solution['sid'], ) return self._context @property def sid(self): """ :returns: The unique string that identifies the resource :rtype: unicode """ return self._properties['sid'] @property def unique_name(self): """ :returns: An application-defined string that uniquely identifies the resource :rtype: unicode """ return self._properties['unique_name'] @property def account_sid(self): """ :returns: The SID of the Account that created the resource :rtype: unicode """ return self._properties['account_sid'] @property def service_sid(self): """ :returns: The SID of the Sync Service that the resource is associated with :rtype: unicode """ return self._properties['service_sid'] @property def url(self): """ :returns: The absolute URL of the Message Stream resource :rtype: unicode """ return self._properties['url'] @property def links(self): """ :returns: The URLs of the Stream's nested resources :rtype: unicode """ return self._properties['links'] @property def date_expires(self): """ :returns: The ISO 8601 date and time in GMT when the Message Stream expires :rtype: datetime """ return self._properties['date_expires'] @property def date_created(self): """ :returns: The ISO 8601 date and time in GMT when the resource was created :rtype: datetime """ return self._properties['date_created'] @property def date_updated(self): """ :returns: The ISO 8601 date and time in GMT when the resource was last updated :rtype: datetime """ return self._properties['date_updated'] @property def created_by(self): """ :returns: The Identity of the Stream's creator :rtype: unicode """ return self._properties['created_by'] def fetch(self): """ Fetch a SyncStreamInstance :returns: Fetched SyncStreamInstance :rtype: twilio.rest.sync.v1.service.sync_stream.SyncStreamInstance """ return self._proxy.fetch() def delete(self): """ Deletes the SyncStreamInstance :returns: True if delete succeeds, False otherwise :rtype: bool """ return self._proxy.delete() def update(self, ttl=values.unset): """ Update the SyncStreamInstance :param unicode ttl: How long, in seconds, before the Stream expires and is deleted :returns: Updated SyncStreamInstance :rtype: twilio.rest.sync.v1.service.sync_stream.SyncStreamInstance """ return self._proxy.update(ttl=ttl, ) @property def stream_messages(self): """ Access the stream_messages :returns: twilio.rest.sync.v1.service.sync_stream.stream_message.StreamMessageList :rtype: twilio.rest.sync.v1.service.sync_stream.stream_message.StreamMessageList """ return self._proxy.stream_messages def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ context = ' '.join('{}={}'.format(k, v) for k, v in self._solution.items()) return '<Twilio.Sync.V1.SyncStreamInstance {}>'.format(context)
33.941296
103
0.62957
2781964a090b618563f2c2fba7803bccd90b8f69
23,412
py
Python
toontown/building/DistributedElevator.py
AnonymousDeveloper65535/open-toontown
3d05c22a7d960ad843dde231140447c46973dba5
[ "BSD-3-Clause" ]
8
2017-10-10T11:41:01.000Z
2021-02-23T12:55:47.000Z
toontown/building/DistributedElevator.py
AnonymousDeveloper65535/open-toontown
3d05c22a7d960ad843dde231140447c46973dba5
[ "BSD-3-Clause" ]
1
2018-07-28T20:07:04.000Z
2018-07-30T18:28:34.000Z
toontown/building/DistributedElevator.py
AnonymousDeveloper65535/open-toontown
3d05c22a7d960ad843dde231140447c46973dba5
[ "BSD-3-Clause" ]
2
2019-04-06T16:18:23.000Z
2021-02-25T06:25:01.000Z
from pandac.PandaModules import * from direct.distributed.ClockDelta import * from direct.interval.IntervalGlobal import * from ElevatorConstants import * from ElevatorUtils import * from direct.showbase import PythonUtil from direct.directnotify import DirectNotifyGlobal from direct.fsm import ClassicFSM, State from direct.distributed import DistributedObject from direct.fsm import State from toontown.toonbase import TTLocalizer, ToontownGlobals from direct.task.Task import Task from toontown.distributed import DelayDelete from toontown.hood import ZoneUtil from toontown.toontowngui import TeaserPanel from toontown.building import BoardingGroupShow class DistributedElevator(DistributedObject.DistributedObject): notify = DirectNotifyGlobal.directNotify.newCategory('DistributedElevator') JumpOutOffsets = JumpOutOffsets def __init__(self, cr): DistributedObject.DistributedObject.__init__(self, cr) self.bldgRequest = None self.toonRequests = {} self.deferredSlots = [] self.localToonOnBoard = 0 self.boardedAvIds = {} self.openSfx = base.loadSfx('phase_5/audio/sfx/elevator_door_open.mp3') self.finalOpenSfx = None self.closeSfx = base.loadSfx('phase_5/audio/sfx/elevator_door_close.mp3') self.elevatorFSM = None self.finalCloseSfx = None self.elevatorPoints = ElevatorPoints self.fillSlotTrack = None self.type = ELEVATOR_NORMAL self.countdownTime = ElevatorData[self.type]['countdown'] self.__toonTracks = {} self.fsm = ClassicFSM.ClassicFSM('DistributedElevator', [State.State('off', self.enterOff, self.exitOff, ['opening', 'waitEmpty', 'waitCountdown', 'closing', 'closed']), State.State('opening', self.enterOpening, self.exitOpening, ['waitEmpty', 'waitCountdown']), State.State('waitEmpty', self.enterWaitEmpty, self.exitWaitEmpty, ['waitCountdown']), State.State('waitCountdown', self.enterWaitCountdown, self.exitWaitCountdown, ['waitEmpty', 'closing']), State.State('closing', self.enterClosing, self.exitClosing, ['closed', 'waitEmpty']), State.State('closed', self.enterClosed, self.exitClosed, ['opening'])], 'off', 'off') self.fsm.enterInitialState() self.isSetup = 0 self.__preSetupState = None self.bigElevator = 0 return def generate(self): DistributedObject.DistributedObject.generate(self) def setupElevator(self): collisionRadius = ElevatorData[self.type]['collRadius'] self.elevatorSphere = CollisionSphere(0, 5, 0, collisionRadius) self.elevatorSphere.setTangible(0) self.elevatorSphereNode = CollisionNode(self.uniqueName('elevatorSphere')) self.elevatorSphereNode.setIntoCollideMask(ToontownGlobals.WallBitmask) self.elevatorSphereNode.addSolid(self.elevatorSphere) self.elevatorSphereNodePath = self.getElevatorModel().attachNewNode(self.elevatorSphereNode) self.elevatorSphereNodePath.hide() self.elevatorSphereNodePath.reparentTo(self.getElevatorModel()) self.elevatorSphereNodePath.stash() self.boardedAvIds = {} self.openDoors = getOpenInterval(self, self.leftDoor, self.rightDoor, self.openSfx, self.finalOpenSfx, self.type) self.closeDoors = getCloseInterval(self, self.leftDoor, self.rightDoor, self.closeSfx, self.finalCloseSfx, self.type) self.closeDoors = Sequence(self.closeDoors, Func(self.onDoorCloseFinish)) self.finishSetup() def finishSetup(self): self.isSetup = 1 self.offsetNP = self.getElevatorModel().attachNewNode('dummyNP') if self.__preSetupState: self.fsm.request(self.__preSetupState, [0]) self.__preSetupState = None for slot in self.deferredSlots: self.fillSlot(*slot) self.deferredSlots = [] return def disable(self): if self.bldgRequest: self.cr.relatedObjectMgr.abortRequest(self.bldgRequest) self.bldgRequest = None for request in self.toonRequests.values(): self.cr.relatedObjectMgr.abortRequest(request) self.toonRequests = {} if hasattr(self, 'openDoors'): self.openDoors.pause() if hasattr(self, 'closeDoors'): self.closeDoors.pause() self.clearToonTracks() self.fsm.request('off') DistributedObject.DistributedObject.disable(self) return def delete(self): if self.isSetup: self.elevatorSphereNodePath.removeNode() del self.elevatorSphereNodePath del self.elevatorSphereNode del self.elevatorSphere del self.bldg if self.leftDoor: del self.leftDoor if self.rightDoor: del self.rightDoor if hasattr(self, 'openDoors'): del self.openDoors if hasattr(self, 'closeDoors'): del self.closeDoors del self.fsm del self.openSfx del self.closeSfx self.isSetup = 0 self.fillSlotTrack = None self.offsetNP.removeNode() if hasattr(base.localAvatar, 'elevatorNotifier'): base.localAvatar.elevatorNotifier.cleanup() DistributedObject.DistributedObject.delete(self) return def setBldgDoId(self, bldgDoId): self.bldgDoId = bldgDoId self.bldgRequest = self.cr.relatedObjectMgr.requestObjects([bldgDoId], allCallback=self.gotBldg, timeout=2) def gotBldg(self, buildingList): self.bldgRequest = None self.bldg = buildingList[0] if not self.bldg: self.notify.error('setBldgDoId: elevator %d cannot find bldg %d!' % (self.doId, self.bldgDoId)) return self.setupElevator() return def gotToon(self, index, avId, toonList): request = self.toonRequests.get(index) if request: del self.toonRequests[index] self.fillSlot(index, avId) else: self.notify.error('gotToon: already had got toon in slot %s.' % index) def setState(self, state, timestamp): if self.isSetup: self.fsm.request(state, [globalClockDelta.localElapsedTime(timestamp)]) else: self.__preSetupState = state def fillSlot0(self, avId, wantBoardingShow): self.fillSlot(0, avId, wantBoardingShow) def fillSlot1(self, avId, wantBoardingShow): self.fillSlot(1, avId, wantBoardingShow) def fillSlot2(self, avId, wantBoardingShow): self.fillSlot(2, avId, wantBoardingShow) def fillSlot3(self, avId, wantBoardingShow): self.fillSlot(3, avId, wantBoardingShow) def fillSlot4(self, avId, wantBoardingShow): self.fillSlot(4, avId, wantBoardingShow) def fillSlot5(self, avId, wantBoardingShow): self.fillSlot(5, avId, wantBoardingShow) def fillSlot6(self, avId, wantBoardingShow): self.fillSlot(6, avId, wantBoardingShow) def fillSlot7(self, avId, wantBoardingShow): self.fillSlot(7, avId, wantBoardingShow) def fillSlot(self, index, avId, wantBoardingShow = 0): self.notify.debug('%s.fillSlot(%s, %s, ...)' % (self.doId, index, avId)) request = self.toonRequests.get(index) if request: self.cr.relatedObjectMgr.abortRequest(request) del self.toonRequests[index] if avId == 0: pass elif not self.cr.doId2do.has_key(avId): func = PythonUtil.Functor(self.gotToon, index, avId) self.toonRequests[index] = self.cr.relatedObjectMgr.requestObjects([avId], allCallback=func) elif not self.isSetup: self.deferredSlots.append((index, avId, wantBoardingShow)) else: if avId == base.localAvatar.getDoId(): place = base.cr.playGame.getPlace() if not place: return place.detectedElevatorCollision(self) elevator = self.getPlaceElevator() if elevator == None: if place.fsm.hasStateNamed('elevator'): place.fsm.request('elevator') elif place.fsm.hasStateNamed('Elevator'): place.fsm.request('Elevator') elevator = self.getPlaceElevator() if not elevator: return self.localToonOnBoard = 1 if hasattr(localAvatar, 'boardingParty') and localAvatar.boardingParty: localAvatar.boardingParty.forceCleanupInviteePanel() localAvatar.boardingParty.forceCleanupInviterPanels() if hasattr(base.localAvatar, 'elevatorNotifier'): base.localAvatar.elevatorNotifier.cleanup() cameraTrack = Sequence() cameraTrack.append(Func(elevator.fsm.request, 'boarding', [self.getElevatorModel()])) cameraTrack.append(Func(elevator.fsm.request, 'boarded')) toon = self.cr.doId2do[avId] toon.stopSmooth() if not wantBoardingShow: toon.setZ(self.getElevatorModel(), self.elevatorPoints[index][2]) toon.setShadowHeight(0) if toon.isDisguised: animInFunc = Sequence(Func(toon.suit.loop, 'walk')) animFunc = Sequence(Func(toon.setAnimState, 'neutral', 1.0), Func(toon.suit.loop, 'neutral')) else: animInFunc = Sequence(Func(toon.setAnimState, 'run', 1.0)) animFunc = Func(toon.setAnimState, 'neutral', 1.0) toon.headsUp(self.getElevatorModel(), apply(Point3, self.elevatorPoints[index])) track = Sequence(animInFunc, LerpPosInterval(toon, TOON_BOARD_ELEVATOR_TIME * 0.75, apply(Point3, self.elevatorPoints[index]), other=self.getElevatorModel()), LerpHprInterval(toon, TOON_BOARD_ELEVATOR_TIME * 0.25, Point3(180, 0, 0), other=self.getElevatorModel()), Func(self.clearToonTrack, avId), animFunc, name=toon.uniqueName('fillElevator'), autoPause=1) if wantBoardingShow: boardingTrack, boardingTrackType = self.getBoardingTrack(toon, index, False) track = Sequence(boardingTrack, track) if avId == base.localAvatar.getDoId(): cameraWaitTime = 2.5 if boardingTrackType == BoardingGroupShow.TRACK_TYPE_RUN: cameraWaitTime = 0.5 elif boardingTrackType == BoardingGroupShow.TRACK_TYPE_POOF: cameraWaitTime = 1 cameraTrack = Sequence(Wait(cameraWaitTime), cameraTrack) if self.canHideBoardingQuitBtn(avId): track = Sequence(Func(localAvatar.boardingParty.groupPanel.disableQuitButton), track) if avId == base.localAvatar.getDoId(): track = Parallel(cameraTrack, track) track.delayDelete = DelayDelete.DelayDelete(toon, 'Elevator.fillSlot') self.storeToonTrack(avId, track) track.start() self.fillSlotTrack = track self.boardedAvIds[avId] = None return def emptySlot0(self, avId, bailFlag, timestamp, time): self.emptySlot(0, avId, bailFlag, timestamp, time) def emptySlot1(self, avId, bailFlag, timestamp, time): self.emptySlot(1, avId, bailFlag, timestamp, time) def emptySlot2(self, avId, bailFlag, timestamp, time): self.emptySlot(2, avId, bailFlag, timestamp, time) def emptySlot3(self, avId, bailFlag, timestamp, time): self.emptySlot(3, avId, bailFlag, timestamp, time) def emptySlot4(self, avId, bailFlag, timestamp, time): self.emptySlot(4, avId, bailFlag, timestamp, time) def emptySlot5(self, avId, bailFlag, timestamp, time): self.emptySlot(5, avId, bailFlag, timestamp) def emptySlot6(self, avId, bailFlag, timestamp, time): self.emptySlot(6, avId, bailFlag, timestamp, time) def emptySlot7(self, avId, bailFlag, timestamp, time): self.emptySlot(7, avId, bailFlag, timestamp, time) def notifyToonOffElevator(self, toon): toon.setAnimState('neutral', 1.0) if toon == base.localAvatar: doneStatus = {'where': 'exit'} elevator = self.getPlaceElevator() if elevator: elevator.signalDone(doneStatus) self.localToonOnBoard = 0 else: toon.startSmooth() def emptySlot(self, index, avId, bailFlag, timestamp, timeSent = 0): if self.fillSlotTrack: self.fillSlotTrack.finish() self.fillSlotTrack = None if avId == 0: pass elif not self.isSetup: newSlots = [] for slot in self.deferredSlots: if slot[0] != index: newSlots.append(slot) self.deferredSlots = newSlots else: timeToSet = self.countdownTime if timeSent > 0: timeToSet = timeSent if self.cr.doId2do.has_key(avId): if bailFlag == 1 and hasattr(self, 'clockNode'): if timestamp < timeToSet and timestamp >= 0: self.countdown(timeToSet - timestamp) else: self.countdown(timeToSet) toon = self.cr.doId2do[avId] toon.stopSmooth() if toon.isDisguised: toon.suit.loop('walk') animFunc = Func(toon.suit.loop, 'neutral') else: toon.setAnimState('run', 1.0) animFunc = Func(toon.setAnimState, 'neutral', 1.0) track = Sequence(LerpPosInterval(toon, TOON_EXIT_ELEVATOR_TIME, Point3(*self.JumpOutOffsets[index]), other=self.getElevatorModel()), animFunc, Func(self.notifyToonOffElevator, toon), Func(self.clearToonTrack, avId), name=toon.uniqueName('emptyElevator'), autoPause=1) if self.canHideBoardingQuitBtn(avId): track.append(Func(localAvatar.boardingParty.groupPanel.enableQuitButton)) track.append(Func(localAvatar.boardingParty.enableGoButton)) track.delayDelete = DelayDelete.DelayDelete(toon, 'Elevator.emptySlot') self.storeToonTrack(avId, track) track.start() if avId == base.localAvatar.getDoId(): messenger.send('exitElevator') if avId in self.boardedAvIds: del self.boardedAvIds[avId] else: self.notify.warning('toon: ' + str(avId) + " doesn't exist, and" + ' cannot exit the elevator!') return def allowedToEnter(self, zoneId = None): allowed = False if hasattr(base, 'ttAccess') and base.ttAccess: if zoneId: allowed = base.ttAccess.canAccess(zoneId) else: allowed = base.ttAccess.canAccess() return allowed def handleEnterSphere(self, collEntry): self.notify.debug('Entering Elevator Sphere....') if self.allowedToEnter(self.zoneId): if self.elevatorTripId and localAvatar.lastElevatorLeft == self.elevatorTripId: self.rejectBoard(base.localAvatar.doId, REJECT_SHUFFLE) elif base.localAvatar.hp > 0: self.cr.playGame.getPlace().detectedElevatorCollision(self) toon = base.localAvatar self.sendUpdate('requestBoard', []) else: place = base.cr.playGame.getPlace() if place: place.fsm.request('stopped') self.dialog = TeaserPanel.TeaserPanel(pageName='cogHQ', doneFunc=self.handleOkTeaser) def handleOkTeaser(self): self.dialog.destroy() del self.dialog place = base.cr.playGame.getPlace() if place: place.fsm.request('walk') def rejectBoard(self, avId, reason = 0): print 'rejectBoard %s' % reason if hasattr(base.localAvatar, 'elevatorNotifier'): if reason == REJECT_SHUFFLE: base.localAvatar.elevatorNotifier.showMe(TTLocalizer.ElevatorHoppedOff) elif reason == REJECT_MINLAFF: base.localAvatar.elevatorNotifier.showMe(TTLocalizer.ElevatorMinLaff % self.minLaff) elif reason == REJECT_PROMOTION: base.localAvatar.elevatorNotifier.showMe(TTLocalizer.BossElevatorRejectMessage) elif reason == REJECT_NOT_YET_AVAILABLE: base.localAvatar.elevatorNotifier.showMe(TTLocalizer.NotYetAvailable) doneStatus = {'where': 'reject'} elevator = self.getPlaceElevator() if elevator: elevator.signalDone(doneStatus) def timerTask(self, task): countdownTime = int(task.duration - task.time) timeStr = str(countdownTime) if self.clockNode.getText() != timeStr: self.clockNode.setText(timeStr) if task.time >= task.duration: return Task.done else: return Task.cont def countdown(self, duration): countdownTask = Task(self.timerTask) countdownTask.duration = duration taskMgr.remove(self.uniqueName('elevatorTimerTask')) return taskMgr.add(countdownTask, self.uniqueName('elevatorTimerTask')) def handleExitButton(self): localAvatar.lastElevatorLeft = self.elevatorTripId self.sendUpdate('requestExit') def enterWaitCountdown(self, ts): self.elevatorSphereNodePath.unstash() self.accept(self.uniqueName('enterelevatorSphere'), self.handleEnterSphere) self.accept('elevatorExitButton', self.handleExitButton) def exitWaitCountdown(self): self.elevatorSphereNodePath.stash() self.ignore(self.uniqueName('enterelevatorSphere')) self.ignore('elevatorExitButton') self.ignore('localToonLeft') taskMgr.remove(self.uniqueName('elevatorTimerTask')) self.clock.removeNode() del self.clock del self.clockNode def enterClosing(self, ts): if self.localToonOnBoard: elevator = self.getPlaceElevator() if elevator: elevator.fsm.request('elevatorClosing') self.closeDoors.start(ts) def exitClosing(self): pass def onDoorCloseFinish(self): for avId in self.boardedAvIds.keys(): av = self.cr.doId2do.get(avId) if av is not None: if av.getParent().compareTo(self.getElevatorModel()) == 0: av.detachNode() self.boardedAvIds = {} return def enterClosed(self, ts): self.forceDoorsClosed() self.__doorsClosed(self.getZoneId()) def exitClosed(self): pass def forceDoorsOpen(self): openDoors(self.leftDoor, self.rightDoor) def forceDoorsClosed(self): self.closeDoors.finish() closeDoors(self.leftDoor, self.rightDoor) def enterOff(self): pass def exitOff(self): pass def enterWaitEmpty(self, ts): pass def exitWaitEmpty(self): pass def enterOpening(self, ts): self.openDoors.start(ts) def exitOpening(self): pass def startCountdownClock(self, countdownTime, ts): self.clockNode = TextNode('elevatorClock') self.clockNode.setFont(ToontownGlobals.getSignFont()) self.clockNode.setAlign(TextNode.ACenter) self.clockNode.setTextColor(0.5, 0.5, 0.5, 1) self.clockNode.setText(str(int(countdownTime))) self.clock = self.getElevatorModel().attachNewNode(self.clockNode) self.clock.setPosHprScale(0, 2.0, 7.5, 0, 0, 0, 2.0, 2.0, 2.0) if ts < countdownTime: self.countdown(countdownTime - ts) def _getDoorsClosedInfo(self): return ('suitInterior', 'suitInterior') def __doorsClosed(self, zoneId): if self.localToonOnBoard: hoodId = ZoneUtil.getHoodId(zoneId) loader, where = self._getDoorsClosedInfo() doneStatus = {'loader': loader, 'where': where, 'hoodId': hoodId, 'zoneId': zoneId, 'shardId': None} elevator = self.elevatorFSM del self.elevatorFSM elevator.signalDone(doneStatus) return def getElevatorModel(self): self.notify.error('getElevatorModel: pure virtual -- inheritors must override') def getPlaceElevator(self): place = self.cr.playGame.getPlace() if place: if hasattr(place, 'elevator'): return place.elevator else: self.notify.warning("Place was in state '%s' instead of Elevator." % place.fsm.getCurrentState().getName()) place.detectedElevatorCollision(self) else: self.notify.warning("Place didn't exist") return None def setElevatorTripId(self, id): self.elevatorTripId = id def getElevatorTripId(self): return self.elevatorTripId def setAntiShuffle(self, antiShuffle): self.antiShuffle = antiShuffle def getAntiShuffle(self): return self.antiShuffle def setMinLaff(self, minLaff): self.minLaff = minLaff def getMinLaff(self): return self.minLaff def storeToonTrack(self, avId, track): self.clearToonTrack(avId) self.__toonTracks[avId] = track def clearToonTrack(self, avId): oldTrack = self.__toonTracks.get(avId) if oldTrack: oldTrack.pause() if self.__toonTracks.get(avId): DelayDelete.cleanupDelayDeletes(self.__toonTracks[avId]) del self.__toonTracks[avId] def clearToonTracks(self): keyList = [] for key in self.__toonTracks: keyList.append(key) for key in keyList: if self.__toonTracks.has_key(key): self.clearToonTrack(key) def getDestName(self): return None def getOffsetPos(self, seatIndex = 0): return self.JumpOutOffsets[seatIndex] def getOffsetPosWrtToonParent(self, toon, seatIndex = 0): self.offsetNP.setPos(apply(Point3, self.getOffsetPos(seatIndex))) return self.offsetNP.getPos(toon.getParent()) def getOffsetPosWrtRender(self, seatIndex = 0): self.offsetNP.setPos(apply(Point3, self.getOffsetPos(seatIndex))) return self.offsetNP.getPos(render) def canHideBoardingQuitBtn(self, avId): if avId == localAvatar.doId and hasattr(localAvatar, 'boardingParty') and localAvatar.boardingParty and localAvatar.boardingParty.groupPanel: return True else: return False def getBoardingTrack(self, toon, seatIndex, wantToonRotation): self.boardingGroupShow = BoardingGroupShow.BoardingGroupShow(toon) track, trackType = self.boardingGroupShow.getBoardingTrack(self.getElevatorModel(), self.getOffsetPosWrtToonParent(toon, seatIndex), self.getOffsetPosWrtRender(seatIndex), wantToonRotation) return (track, trackType)
40.858639
370
0.63019
fcec59580e4a552078198972ec1e8f72d7db34e6
735
py
Python
accounts/urls.py
abhishek593/IITISOC_LaFrescoInPocket
dd91b99ea60fb2753d4715e8890c0c7dc26b8b99
[ "MIT" ]
null
null
null
accounts/urls.py
abhishek593/IITISOC_LaFrescoInPocket
dd91b99ea60fb2753d4715e8890c0c7dc26b8b99
[ "MIT" ]
null
null
null
accounts/urls.py
abhishek593/IITISOC_LaFrescoInPocket
dd91b99ea60fb2753d4715e8890c0c7dc26b8b99
[ "MIT" ]
null
null
null
from django.urls import path from accounts import views app_name = 'accounts' urlpatterns = [ path('profile/<int:user_id>/', views.profile, name='profile'), path('login/', views.login_user, name='login'), path('logout/', views.logout_user, name='logout'), path('register/', views.register_user, name='register'), path('confirm_registration/<str:uidb64>/<str:token>/', views.confirm_register_user, name='confirm_registration'), path('password_reset/', views.password_reset, name='password-reset'), path('password_reset_confirm/<str:uidb64>/<str:token>/', views.password_reset_confirm, name='password_reset_confirm'), path('password_change/', views.password_change, name='password-change'), ]
40.833333
117
0.717007
5b506ac97aad12c0b004564221cea7987e848f50
55
py
Python
wf_core_database/__init__.py
WildflowerSchools/wf-core-database
9b8eecd84a1451831634fef3681f38a03850830e
[ "MIT" ]
null
null
null
wf_core_database/__init__.py
WildflowerSchools/wf-core-database
9b8eecd84a1451831634fef3681f38a03850830e
[ "MIT" ]
null
null
null
wf_core_database/__init__.py
WildflowerSchools/wf-core-database
9b8eecd84a1451831634fef3681f38a03850830e
[ "MIT" ]
null
null
null
from .utils import * from .wf_database_pandas import *
18.333333
33
0.781818
a42dfca47500827207f8d5321444817b92be3c4c
8,023
py
Python
amap_distance_matrix/services/osrm.py
Euraxluo/distance_matrix
680e3147c263ea5f1abb26998aeb0b1985442a4b
[ "MIT" ]
1
2022-03-15T06:47:36.000Z
2022-03-15T06:47:36.000Z
amap_distance_matrix/services/osrm.py
Euraxluo/distance_matrix
680e3147c263ea5f1abb26998aeb0b1985442a4b
[ "MIT" ]
null
null
null
amap_distance_matrix/services/osrm.py
Euraxluo/distance_matrix
680e3147c263ea5f1abb26998aeb0b1985442a4b
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Time: 2022-03-01 11:00 # Copyright (c) 2022 # author: Euraxluo import copy import asyncio import warnings import polyline from concurrent import futures from amap_distance_matrix.helper import * from amap_distance_matrix.services.register import register """ Osrm webapi接口服务包装 """ ###############osrm################ def osrm_distance(origin: list, destination: list): """ osrm 距离 :param origin:[float,float] :param destination:[float,float] :return: """ data = futures_osrm([origin, destination], service="route") return data['routes'][0]['distance'] def request_osrm(url, idx, data_list): """ 通过导航url获取导航数据并进行结果设置 :param url: 导航url :param idx: 结果集合索引 :param data_list: :return: """ try: data = register.session().get(url).json() data_list[idx] = data except Exception as e: register.logger.warning(f"Osrm Error:{e},url:{url}") def futures_osrm(urls: list) -> dict: """ 异步 基于 osrm url list 通过请求接口 获得 路径规划结果 :param urls: :return: """ data_collections = [None] * len(urls) pack_data_result = {} all_tasks = [] # 准备 with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) try: event_loop = asyncio.get_event_loop() except Exception as _: loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) event_loop = asyncio.get_event_loop() # 添加task for idx in range(len(urls)): all_tasks.append(event_loop.run_in_executor(register.pool, request_osrm, urls[idx], idx, data_collections)) # 运行 event_loop.run_until_complete(asyncio.wait(all_tasks)) service = urls[0].split('/')[3] + 's' for idx in range(len(urls)): api_data_result = data_collections[idx] if not api_data_result: request_osrm(urls[idx], idx, data_collections) if not pack_data_result: pack_data_result = api_data_result pack_data_result['strategy'] = service pack_data_result['total_duration'] = api_data_result[service][0]['duration'] pack_data_result['total_distance'] = api_data_result[service][0]['distance'] pack_data_result['steps'] = [] loc_list: List[float] = polyline.decode(api_data_result[service][0]['geometry']) # [(lat,lon)] waypoint_locations = [waypoint['location'] for waypoint in api_data_result['waypoints']] steps = [(i['distance'], i['duration'], i['weight']) for i in api_data_result[service][0]['legs']] for step_idx, (b, e) in enumerate(zip(waypoint_locations, waypoint_locations[1:])): b_geohash = geo_encode(*b) e_geohash = geo_encode(*e) polyline_point_list = [] begin = False tmp_loc_list = copy.deepcopy(loc_list) precision = 8 while not begin and precision > 6: for loc_idx, i in enumerate(tmp_loc_list): poly_geohash = geo_encode(i[1], i[0], precision=precision) if poly_geohash == b_geohash: begin = True if poly_geohash == e_geohash: polyline_point_list.append((i[1], i[0])) loc_list = loc_list[loc_idx:] break if begin: polyline_point_list.append((i[1], i[0])) else: precision -= 1 continue break pack_data_result['steps'].append({ "distance": steps[step_idx][0], "duration": steps[step_idx][1], "polyline": loc_to_str(polyline_point_list), "tmc": steps[step_idx][2], "origin": b, "destination": e, }) pack_data_result['origin'] = waypoint_locations[0] pack_data_result['destination'] = waypoint_locations[-1] else: pack_data_result['total_duration'] += api_data_result[service][0]['duration'] pack_data_result['total_distance'] += api_data_result[service][0]['distance'] waypoint_locations = [waypoint['location'] for waypoint in api_data_result['waypoints']] pack_data_result['destination'] = waypoint_locations[-1] loc_list: List[float] = polyline.decode(api_data_result[service][0]['geometry']) # [(lat,lon)] steps = [(i['distance'], i['duration'], i['weight']) for i in api_data_result[service][0]['legs']] for step_idx, (b, e) in enumerate(zip(waypoint_locations, waypoint_locations[1:])): b_geohash = geo_encode(*b) e_geohash = geo_encode(*e) polyline_point_list = [] begin = False tmp_loc_list = copy.deepcopy(loc_list) precision = 8 while not begin: for loc_idx, i in enumerate(tmp_loc_list): poly_geohash = geo_encode(i[1], i[0], precision=precision) if poly_geohash == b_geohash: begin = True if poly_geohash == e_geohash: polyline_point_list.append((i[1], i[0])) loc_list = loc_list[loc_idx:] break if begin: polyline_point_list.append((i[1], i[0])) precision -= 1 pack_data_result['steps'].append({ "distance": steps[step_idx][0], "duration": steps[step_idx][1], "polyline": loc_to_str(polyline_point_list), "tmc": steps[step_idx][2], "origin": b, "destination": e, }) del pack_data_result['code'] del pack_data_result[service] del pack_data_result['waypoints'] return pack_data_result def osrm_url(origin: list, destination: list, waypoints: list = None, service: str = 'route', profile: str = 'car', version: str = 'v1', batch_size: int = 100, host: str = None) -> list: """ 将数据包装为 osrm_url urls 所有经纬度应该使用wgs火星坐标 :param origin: :param destination: :param waypoints: :param service: :param version: :param profile: :param batch_size: :param host: :return: """ if waypoints is None: waypoints = [] if host is None: host = register.osrm_host loc_list = [origin] + waypoints + [destination] urls = [] for idx in [(i, i + batch_size) for i in range(0, len(loc_list), batch_size)]: tmp_points = loc_list[idx[0] - 1 if idx[0] > 1 else 0:idx[1]] urls.append(f"{host}/{service}/{version}/{profile}/{loc_to_str(tmp_points)}") return urls def osrm_batch(origin: list, destination: list, waypoints: list = None, profile="car", version="v1", batch_size=100, host: str = None): """ 所有经纬度应该使用wgs火星坐标 异步进行osrm url的构建,以及请求 :param origin: :param destination: :param waypoints: :param service: :param profile: :param version: :param batch_size: :param host: :return: """ if host is None: host = register.osrm_host service = "route" # 一定是route urls = osrm_url(origin=origin, destination=destination, waypoints=waypoints, service=service, profile=profile, version=version, batch_size=batch_size, host=host) data = futures_osrm(urls=urls) if data['total_distance'] == 0 and geohash.encode(longitude=origin[0], latitude=origin[1], precision=8) != geohash.encode(longitude=destination[0], latitude=destination[1], precision=8): raise ValueError("Osrm Data Abort!") return data
37.84434
190
0.567369
42b627cf4566be7c1549c7b495d42c1acfe0e71c
5,332
py
Python
nova/api/openstack/compute/flavors.py
stryng/nova
5dba32a23e67341bfdc03a00781ab491238e21f4
[ "Apache-2.0" ]
1
2021-04-08T10:13:03.000Z
2021-04-08T10:13:03.000Z
nova/api/openstack/compute/flavors.py
stryng/nova
5dba32a23e67341bfdc03a00781ab491238e21f4
[ "Apache-2.0" ]
null
null
null
nova/api/openstack/compute/flavors.py
stryng/nova
5dba32a23e67341bfdc03a00781ab491238e21f4
[ "Apache-2.0" ]
null
null
null
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2010 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import webob from nova.api.openstack import common from nova.api.openstack.compute.views import flavors as flavors_view from nova.api.openstack import wsgi from nova.api.openstack import xmlutil from nova.compute import flavors from nova import exception def make_flavor(elem, detailed=False): elem.set('name') elem.set('id') if detailed: elem.set('ram') elem.set('disk') elem.set('vcpus', xmlutil.EmptyStringSelector('vcpus')) xmlutil.make_links(elem, 'links') flavor_nsmap = {None: xmlutil.XMLNS_V11, 'atom': xmlutil.XMLNS_ATOM} class FlavorTemplate(xmlutil.TemplateBuilder): def construct(self): root = xmlutil.TemplateElement('flavor', selector='flavor') make_flavor(root, detailed=True) return xmlutil.MasterTemplate(root, 1, nsmap=flavor_nsmap) class MinimalFlavorsTemplate(xmlutil.TemplateBuilder): def construct(self): root = xmlutil.TemplateElement('flavors') elem = xmlutil.SubTemplateElement(root, 'flavor', selector='flavors') make_flavor(elem) return xmlutil.MasterTemplate(root, 1, nsmap=flavor_nsmap) class FlavorsTemplate(xmlutil.TemplateBuilder): def construct(self): root = xmlutil.TemplateElement('flavors') elem = xmlutil.SubTemplateElement(root, 'flavor', selector='flavors') make_flavor(elem, detailed=True) return xmlutil.MasterTemplate(root, 1, nsmap=flavor_nsmap) class Controller(wsgi.Controller): """Flavor controller for the OpenStack API.""" _view_builder_class = flavors_view.ViewBuilder @wsgi.serializers(xml=MinimalFlavorsTemplate) def index(self, req): """Return all flavors in brief.""" limited_flavors = self._get_flavors(req) return self._view_builder.index(req, limited_flavors) @wsgi.serializers(xml=FlavorsTemplate) def detail(self, req): """Return all flavors in detail.""" limited_flavors = self._get_flavors(req) req.cache_db_flavors(limited_flavors) return self._view_builder.detail(req, limited_flavors) @wsgi.serializers(xml=FlavorTemplate) def show(self, req, id): """Return data about the given flavor id.""" try: flavor = flavors.get_instance_type_by_flavor_id(id) req.cache_db_flavor(flavor) except exception.NotFound: raise webob.exc.HTTPNotFound() return self._view_builder.show(req, flavor) def _get_is_public(self, req): """Parse is_public into something usable.""" is_public = req.params.get('is_public', None) if is_public is None: # preserve default value of showing only public flavors return True elif is_public is True or \ is_public.lower() in ['t', 'true', 'yes', '1']: return True elif is_public is False or \ is_public.lower() in ['f', 'false', 'no', '0']: return False elif is_public.lower() == 'none': # value to match all flavors, ignore is_public return None else: msg = _('Invalid is_public filter [%s]') % req.params['is_public'] raise webob.exc.HTTPBadRequest(explanation=msg) def _get_flavors(self, req): """Helper function that returns a list of flavor dicts.""" filters = {} context = req.environ['nova.context'] if context.is_admin: # Only admin has query access to all flavor types filters['is_public'] = self._get_is_public(req) else: filters['is_public'] = True filters['disabled'] = False if 'minRam' in req.params: try: filters['min_memory_mb'] = int(req.params['minRam']) except ValueError: msg = _('Invalid minRam filter [%s]') % req.params['minRam'] raise webob.exc.HTTPBadRequest(explanation=msg) if 'minDisk' in req.params: try: filters['min_root_gb'] = int(req.params['minDisk']) except ValueError: msg = _('Invalid minDisk filter [%s]') % req.params['minDisk'] raise webob.exc.HTTPBadRequest(explanation=msg) limited_flavors = flavors.get_all_types(context, filters=filters) flavors_list = limited_flavors.values() sorted_flavors = sorted(flavors_list, key=lambda item: item['flavorid']) limited_flavors = common.limited_by_marker(sorted_flavors, req) return limited_flavors def create_resource(): return wsgi.Resource(Controller())
35.546667
78
0.652101
fc59b77d1d807915a342dd5c515a1ebe06412148
1,513
py
Python
pyshadowsocks/packet/datagram_packer.py
FTwOoO/pyShadowsocks
452323e30c4b97d322cbb67e9bbc7c4549e67b5f
[ "MIT" ]
21
2016-08-01T06:48:01.000Z
2021-04-05T18:20:53.000Z
pyshadowsocks/packet/datagram_packer.py
zen-of-proxy/pyShadowsocks
452323e30c4b97d322cbb67e9bbc7c4549e67b5f
[ "MIT" ]
2
2016-07-23T02:33:17.000Z
2018-03-13T09:50:02.000Z
pyshadowsocks/packet/datagram_packer.py
FTwOoO/pyShadowsocks
452323e30c4b97d322cbb67e9bbc7c4549e67b5f
[ "MIT" ]
7
2017-04-22T16:53:53.000Z
2021-02-08T06:33:05.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Author: booopooob@gmail.com # # Info: # # from packet.packet_header import PacketHeader class DatagramPacker(object): def __init__(self, header_type=None): pass def pack(self, header: PacketHeader = None, data=None): """return encode or compress data""" encoded_data = b'' if header: encoded_data += header.to_bytes() if data: encoded_data += data if len(encoded_data) > 0: self.in_bytes += len(encoded_data) self.out_bytes += len(encoded_data) return encoded_data def unpack(self, header: PacketHeader = None, data=None): """return header and raw content""" self.in_bytes += len(data) if header is not None: all_data = self.data_buffer + data try: header_length = header.from_bytes(all_data) except ValueError: # need more data self.data_buffer = all_data return None, None except Exception as ex: # TODO:do something return None, None else: self.data_buffer = b'' out_data = all_data[header_length:] self.out_bytes += len(all_data) return header, out_data else: out_data = self.data_buffer + data self.out_bytes += len(out_data) return None, out_data
27.017857
61
0.547918
d2b86ab173254e8698faa3d138f606052f8462f2
910
py
Python
Lectures/revision lecture/5_loops_revision_update_variable_using_if.py
CLAHRCWessex/math6005-python
934d3eeccf7a2a08da995dcd2f441304115578c6
[ "MIT" ]
2
2019-11-25T14:02:23.000Z
2020-04-27T13:39:35.000Z
Lectures/revision lecture/5_loops_revision_update_variable_using_if.py
CLAHRCWessex/math6005-python
934d3eeccf7a2a08da995dcd2f441304115578c6
[ "MIT" ]
null
null
null
Lectures/revision lecture/5_loops_revision_update_variable_using_if.py
CLAHRCWessex/math6005-python
934d3eeccf7a2a08da995dcd2f441304115578c6
[ "MIT" ]
3
2019-01-30T18:30:55.000Z
2022-02-05T18:28:34.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ MATH6005: Loops Revision Example: Looping over a list to search for a largest or smallest value We need to make use of if-statements to keep track of 'if' an update to a variable is required. """ # ============================================================================= # The function below finds the smallest value in an array # ============================================================================= def find_smallest_value(data): smallest = data[0] for i in range(1, len(data)): #we only update 'smallest' if we have found #a new minimum value in the list if data[i] < smallest: smallest = data[i] return smallest def main(): data = [10.6, 32.1, 4.2, 45.0, 8.6] smallest = find_smallest_value(data) print(smallest) if __name__ == '__main__': main()
25.277778
79
0.517582
5303d243acccde16f65b604899852e9dfef3fd74
5,317
py
Python
docs/conf.py
Aniket979Kanodia/primitive
70148ffa508c26a55e09110ec5d435d774354895
[ "Apache-2.0" ]
1
2018-01-13T03:15:56.000Z
2018-01-13T03:15:56.000Z
docs/conf.py
Aniket979Kanodia/primitive
70148ffa508c26a55e09110ec5d435d774354895
[ "Apache-2.0" ]
17
2018-09-22T13:48:58.000Z
2018-10-03T21:17:37.000Z
docs/conf.py
Aniket979Kanodia/primitive
70148ffa508c26a55e09110ec5d435d774354895
[ "Apache-2.0" ]
1
2021-06-30T15:09:46.000Z
2021-06-30T15:09:46.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # primitivefxmvc documentation build configuration file, created by # sphinx-quickstart on Thu Nov 23 13:17:10 2017. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = ['sphinx.ext.ifconfig', 'sphinx.ext.githubpages', 'sphinx.ext.autosectionlabel'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = 'primitivefxmvc' copyright = '2017, Eray Erdin' author = 'Eray Erdin' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.1.1-alpha' # The full version, including alpha/beta/rc tags. release = '0.1.1-alpha' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # import sphinx_rtd_theme html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # This is required for the alabaster theme # refs: http://alabaster.readthedocs.io/en/latest/installation.html#sidebars html_sidebars = { '**': [ 'globaltoc.html', 'relations.html', # needs 'show_related': True theme option to display 'sourcelink.html', 'searchbox.html', ] } # -- Options for HTMLHelp output ------------------------------------------ # Output file base name for HTML help builder. htmlhelp_basename = 'primitivefxmvcdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'primitivefxmvc.tex', 'primitivefxmvc Documentation', 'Eray Erdin', 'manual'), ] # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'primitivefxmvc', 'primitivefxmvc Documentation', [author], 1) ] # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'primitivefxmvc', 'primitivefxmvc Documentation', author, 'primitivefxmvc', 'One line description of project.', 'Miscellaneous'), ]
30.557471
79
0.684597
36bdb2e6c906ba035db37c2eff4027850af212a8
1,272
py
Python
moi/indicators/migrations/0002_auto_20151229_2332.py
Ecotrust/F2S-MOI
aeb38942d6539c50f252ea3ff6fbff07aabc5088
[ "Apache-2.0" ]
null
null
null
moi/indicators/migrations/0002_auto_20151229_2332.py
Ecotrust/F2S-MOI
aeb38942d6539c50f252ea3ff6fbff07aabc5088
[ "Apache-2.0" ]
33
2015-05-06T00:47:20.000Z
2016-11-08T21:13:44.000Z
moi/indicators/migrations/0002_auto_20151229_2332.py
Ecotrust/F2S-MOI
aeb38942d6539c50f252ea3ff6fbff07aabc5088
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.9 on 2015-12-29 23:32 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion import wagtail.wagtailcore.fields class Migration(migrations.Migration): dependencies = [ ('wagtailimages', '0010_change_on_delete_behaviour'), ('indicators', '0001_initial'), ] operations = [ migrations.AddField( model_name='indicator', name='displayTitle', field=wagtail.wagtailcore.fields.RichTextField(blank=True), ), migrations.AddField( model_name='indicator', name='image', field=models.ForeignKey(blank=True, default=None, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='+', to='wagtailimages.Image'), ), migrations.AddField( model_name='indicator', name='main_content', field=wagtail.wagtailcore.fields.RichTextField(blank=True, default=None, null=True), ), migrations.AddField( model_name='indicator', name='sub_title', field=wagtail.wagtailcore.fields.RichTextField(blank=True, default=None, null=True), ), ]
32.615385
163
0.632862
396725c20117532b0ba89f769a7fe85a85fa926e
594
py
Python
_unittests/ut_helpgen/test_helper_helpgen.py
Pandinosaurus/pyquickhelper
326276f656cf88989e4d0fcd006ada0d3735bd9e
[ "MIT" ]
null
null
null
_unittests/ut_helpgen/test_helper_helpgen.py
Pandinosaurus/pyquickhelper
326276f656cf88989e4d0fcd006ada0d3735bd9e
[ "MIT" ]
null
null
null
_unittests/ut_helpgen/test_helper_helpgen.py
Pandinosaurus/pyquickhelper
326276f656cf88989e4d0fcd006ada0d3735bd9e
[ "MIT" ]
null
null
null
""" @brief test log(time=8s) @author Xavier Dupre """ import sys import os import unittest from pyquickhelper.loghelper.flog import fLOG from pyquickhelper.helpgen.utils_sphinx_config import locate_image_documentation, NbImage from IPython.core.display import Image class TestHelperHelpGen(unittest.TestCase): def test_NbImage(self): fLOG( __file__, self._testMethodName, OutputPrint=__name__ == "__main__") r = NbImage("completion.png") assert isinstance(r, Image) if __name__ == "__main__": unittest.main()
20.482759
89
0.688552
191653264c00da00f325e066dc53b74bbf16ab41
757
py
Python
dags/DagFetcher.py
cicerojmm/aws-ecs-airflow
665d859760c2231a692246b5b8ad1df92ee09c93
[ "MIT" ]
1
2022-03-29T00:24:12.000Z
2022-03-29T00:24:12.000Z
dags/DagFetcher.py
cicerojmm/aws-ecs-airflow
665d859760c2231a692246b5b8ad1df92ee09c93
[ "MIT" ]
null
null
null
dags/DagFetcher.py
cicerojmm/aws-ecs-airflow
665d859760c2231a692246b5b8ad1df92ee09c93
[ "MIT" ]
null
null
null
from airflow.models import DAG from airflow.operators.bash_operator import BashOperator from airflow.utils.dates import days_ago from airflow.models import Variable airflow_bucket = Variable.get('airflow_bucket_dags') airflow_home = Variable.get('airflow_home_dags') args = { 'owner': 'Airflow', 'start_date': days_ago(0), 'depends_on_past': False } folders = ['dags', 'planning', 'quality'] with DAG(dag_id='DagFetcher', default_args=args, schedule_interval='*/5 * * * *', tags=['example'], catchup=False, is_paused_upon_creation=False) as dag: tasks = BashOperator(task_id="folder", bash_command=f"aws s3 sync {airflow_bucket} {airflow_home} --delete", dag=dag)
27.035714
93
0.675033
f943a11e9408079b336950ed516590e4cb2d9a96
1,619
py
Python
tests/core/test_merkle_set.py
Flax-Network/flax-light-wallet
1745850a28a47bbbc4b5f3d460f35b34b4ed4f25
[ "Apache-2.0" ]
1
2021-12-02T14:38:11.000Z
2021-12-02T14:38:11.000Z
tests/core/test_merkle_set.py
Flax-Network/flax-light-wallet
1745850a28a47bbbc4b5f3d460f35b34b4ed4f25
[ "Apache-2.0" ]
null
null
null
tests/core/test_merkle_set.py
Flax-Network/flax-light-wallet
1745850a28a47bbbc4b5f3d460f35b34b4ed4f25
[ "Apache-2.0" ]
6
2021-11-21T00:38:27.000Z
2021-12-03T01:25:19.000Z
import asyncio import itertools import pytest from flaxlight.util.merkle_set import MerkleSet, confirm_included_already_hashed from tests.setup_nodes import bt @pytest.fixture(scope="module") def event_loop(): loop = asyncio.get_event_loop() yield loop class TestMerkleSet: @pytest.mark.asyncio async def test_basics(self): num_blocks = 20 blocks = bt.get_consecutive_blocks(num_blocks) merkle_set = MerkleSet() merkle_set_reverse = MerkleSet() coins = list(itertools.chain.from_iterable(map(lambda block: block.get_included_reward_coins(), blocks))) # excluded coin (not present in 'coins' and Merkle sets) excl_coin = coins.pop() for coin in reversed(coins): merkle_set_reverse.add_already_hashed(coin.name()) for coin in coins: merkle_set.add_already_hashed(coin.name()) for coin in coins: result, proof = merkle_set.is_included_already_hashed(coin.name()) assert result is True result_excl, proof_excl = merkle_set.is_included_already_hashed(excl_coin.name()) assert result_excl is False validate_proof = confirm_included_already_hashed(merkle_set.get_root(), coin.name(), proof) validate_proof_excl = confirm_included_already_hashed(merkle_set.get_root(), excl_coin.name(), proof_excl) assert validate_proof is True assert validate_proof_excl is False # Test if the order of adding items changes the outcome assert merkle_set.get_root() == merkle_set_reverse.get_root()
34.446809
118
0.697344
3ef50be98944e9e332a7173ddde86c957e8c987a
202
py
Python
ecommerce/users/tests/test_models.py
sorwarduet/ecommerce
d1e0818d2b8372d668b672a5f0737900d144c38a
[ "MIT" ]
null
null
null
ecommerce/users/tests/test_models.py
sorwarduet/ecommerce
d1e0818d2b8372d668b672a5f0737900d144c38a
[ "MIT" ]
null
null
null
ecommerce/users/tests/test_models.py
sorwarduet/ecommerce
d1e0818d2b8372d668b672a5f0737900d144c38a
[ "MIT" ]
null
null
null
import pytest from ecommerce.users.models import User pytestmark = pytest.mark.django_db def test_user_get_absolute_url(user: User): assert user.get_absolute_url() == f"/users/{user.username}/"
20.2
64
0.772277
add63f96d39f5140700e9ed0bcc835f045153122
5,851
py
Python
data/utils_optuna_trials/hulm_sample_data_utils.py
humanlab/HaRT
ab5da16cb1bfdadc3fb77a99f0fda8123ea1fe02
[ "Apache-2.0" ]
null
null
null
data/utils_optuna_trials/hulm_sample_data_utils.py
humanlab/HaRT
ab5da16cb1bfdadc3fb77a99f0fda8123ea1fe02
[ "Apache-2.0" ]
null
null
null
data/utils_optuna_trials/hulm_sample_data_utils.py
humanlab/HaRT
ab5da16cb1bfdadc3fb77a99f0fda8123ea1fe02
[ "Apache-2.0" ]
null
null
null
import os import pandas as pd from sqlalchemy import create_engine from sqlalchemy.engine.url import URL from data.utils_hart.hulm_data_utils import transform_data, group_data def get_conn(data_args): myDB = URL(drivername='mysql', host=data_args.hostname, database=data_args.db, query={'read_default_file': '~/.my.cnf', 'charset': 'utf8mb4'}) engine = create_engine(myDB, encoding='latin1') conn = engine.connect() return conn '''' To be run only once! This will save the sampled users' IDs in a csv that will be used for all following optuna trials. ''' def sample_train_users(logger, table, data_args, filename): logger.info("Getting {} sampled train users from table:{} in {} database, to run optuna trials.".format(str(data_args.num_users_for_optuna), table, data_args.db)) conn = get_conn(data_args) select_clause = 'select distinct user_dataset_id from ' + table order_clause = ' order by rand() limit ' + str(data_args.num_users_for_optuna) dev_filter_column = 'is_oosusr_dev' test_filter_column = 'is_oosusr_test' source_filter_column = 'dataset ' source_not_included = "'fb'" where_clause = ' where ' + source_filter_column + 'not in (' + source_not_included + ') and ' + dev_filter_column + '=0' + ' and ' + test_filter_column + '=0' stmt = select_clause + where_clause + order_clause results = conn.execute(stmt) data = pd.DataFrame(results.fetchall()) data.columns = results.keys() data.to_csv(filename, index=False) conn.close() return data def get_data(logger, table, data_args, data_type, sampled_users): logger.info("Getting data from table:{} in {} database".format(table, data_args.db)) conn = get_conn(data_args) select_clause = 'select user_dataset_id, message_id, message, updated_time from ' + table order_clause = ' order by user_dataset_id, updated_time' limit_clause = '' if not __debug__ else ' limit 100' source_filter_column = 'dataset ' source_not_included = "'fb'" if data_type=='train': if "en_non_oosmsgs" in table: dev_filter_column = 'is_oosusr_dev' test_filter_column = 'is_oosusr_test' users_id_column = 'user_dataset_id' where_clause = ' where ' + source_filter_column + 'not in (' + source_not_included + ') and ' + dev_filter_column + '=0' + ' and ' + test_filter_column + '=0' + ' and ' + users_id_column + ' in (' + sampled_users + ')' stmt = select_clause + where_clause + order_clause + limit_clause else: where_clause = ' where ' + source_filter_column + 'not in (' + source_not_included + ')' stmt = select_clause + where_clause + order_clause + limit_clause results = conn.execute(stmt) elif data_type=='dev': if 'en_non_oosmsgs' in table: filter_column = 'is_oosusr_dev' where_clause = ' where ' + source_filter_column + 'not in (' + source_not_included + ') and ' + filter_column + '=1' stmt = select_clause + where_clause + order_clause + limit_clause elif 'en_oosmsgs' in table: filter_column = 'is_oosmsg_dev' where_clause = ' where ' + source_filter_column + 'not in (' + source_not_included + ') and ' + filter_column + '=1' stmt = select_clause + where_clause + order_clause + limit_clause else: where_clause = ' where ' + source_filter_column + 'not in (' + source_not_included + ')' stmt = select_clause + where_clause + order_clause + limit_clause results = conn.execute(stmt) elif data_type=='test': if 'en_non_oosmsgs' in table: filter_column = 'is_oosusr_test' where_clause = ' where ' + source_filter_column + 'not in (' + source_not_included + ') and ' + filter_column + '=1' stmt = select_clause + where_clause + order_clause + limit_clause elif 'en_oosmsgs' in table: filter_column = 'is_oosmsg_test' where_clause = ' where ' + source_filter_column + 'not in (' + source_not_included + ') and ' + filter_column + '=1' stmt = select_clause + where_clause + order_clause + limit_clause results = conn.execute(stmt) data = pd.DataFrame(results.fetchall()) data.columns = results.keys() data = data[data.message.notnull()] conn.close() return data def sample_users_if_train(logger, table, data_args): dirname = os.path.dirname(__file__) filename = os.path.join(dirname, '../datasets/pt_sampled_users.csv') try: sampled_users = pd.read_csv(filename) if sampled_users.size != data_args.num_users_for_optuna: sampled_users = sample_train_users(logger, table, data_args, filename) except FileNotFoundError: sampled_users = sample_train_users(logger, table, data_args, filename) sampled_users_string = ', '.join(["'{}'".format(e) for e in sampled_users['user_dataset_id'].to_list()]) return sampled_users_string def load_dataset(logger, tokenizer, table, block_size, max_blocks, data_args, data_type, disable_hulm_batching): sampled_users_string = sample_users_if_train(logger, table, data_args) if data_type=='train' else '' data = get_data(logger, table, data_args, data_type, sampled_users_string) data = transform_data(logger, tokenizer, data, block_size) logger.info('************** Block size = {} *************'.format(block_size)) if not disable_hulm_batching: return group_data(data, max_blocks, logger) else: instances, uncut_num_blocks = group_data(data, max_blocks, logger) flat_list = [item for sublist in instances for item in sublist if item is not None] return flat_list, uncut_num_blocks
50.008547
230
0.667065
ade7b9ca40b92e1d0a0842cc3ef1a99b348e1347
2,358
py
Python
pupa/cli/commands/dbinit.py
azban/pupa
158378e19bcc322796aa4fb766784cbd4fd08413
[ "BSD-3-Clause" ]
62
2015-01-08T05:46:46.000Z
2022-01-31T03:27:14.000Z
pupa/cli/commands/dbinit.py
azban/pupa
158378e19bcc322796aa4fb766784cbd4fd08413
[ "BSD-3-Clause" ]
199
2015-01-10T03:19:37.000Z
2021-05-21T20:34:58.000Z
pupa/cli/commands/dbinit.py
azban/pupa
158378e19bcc322796aa4fb766784cbd4fd08413
[ "BSD-3-Clause" ]
35
2015-03-09T19:41:42.000Z
2021-06-22T20:01:35.000Z
import django from django.db import connection from django.core.management import call_command from .base import BaseCommand def copy_tmp(tablename): cursor = connection.cursor() print('copying data from table ' + tablename) cursor.execute("DROP TABLE IF EXISTS tmp_{t};".format(t=tablename)) cursor.execute("CREATE TABLE tmp_{t} (LIKE {t});".format(t=tablename)) cursor.execute("INSERT INTO tmp_{t} SELECT * FROM {t};".format(t=tablename)) def restore_from_tmp(tablename): print('restoring data to table ' + tablename) cursor = connection.cursor() cursor.execute("INSERT INTO {t} SELECT * FROM tmp_{t};".format(t=tablename)) cursor.execute("DROP TABLE IF EXISTS tmp_{t};".format(t=tablename)) def drop_tables(skip_divisions=False): tables = connection.introspection.table_names() cursor = connection.cursor() for table in tables: if table.startswith(('opencivicdata_', 'pupa_')): print('dropping table ' + table) cursor.execute("DROP TABLE IF EXISTS {} CASCADE;".format(table)) cursor.execute("DELETE FROM django_migrations WHERE app='core';") cursor.execute("DELETE FROM django_migrations WHERE app='legislative';") cursor.execute("DELETE FROM django_migrations WHERE app='pupa';") class Command(BaseCommand): name = 'dbinit' help = 'initialize a pupa database' def add_args(self): self.add_argument('--reset', action='store_true', default=False, help='reset entire database - USE WITH CAUTION') self.add_argument('--partial-reset', action='store_true', default=False, help='reset entire database, except for divisions - USE WITH CAUTION') self.add_argument(type=str, dest='country', nargs='+', help='country to load divisions for') def handle(self, args, other): django.setup() if args.partial_reset: copy_tmp('opencivicdata_division') drop_tables() elif args.reset: drop_tables() else: pass call_command('migrate', interactive=False) if args.partial_reset: restore_from_tmp('opencivicdata_division') else: for country in args.country: call_command('loaddivisions', country)
36.276923
96
0.647159
87b306af7991f1dc913ce49227f425a9318f1cd3
743
py
Python
redirect/tests.py
seancallaway/shrtn
730cf0c0f70617a88a431c47fc6dd4f83b6c6461
[ "MIT" ]
2
2020-12-02T17:36:02.000Z
2021-03-29T15:09:04.000Z
redirect/tests.py
seancallaway/shrtn
730cf0c0f70617a88a431c47fc6dd4f83b6c6461
[ "MIT" ]
null
null
null
redirect/tests.py
seancallaway/shrtn
730cf0c0f70617a88a431c47fc6dd4f83b6c6461
[ "MIT" ]
null
null
null
from django.shortcuts import reverse from django.test import TestCase from redirect.models import Redirect, SLUG_LENGTH class RedirectModelTests(TestCase): def setUp(self) -> None: self.redirect = Redirect.objects.create( target='https://mail.google.com/' ) def test_redirect_creation(self) -> None: # Ensure slug was created and is of proper length self.assertEqual(len(self.redirect.slug), SLUG_LENGTH) def test_absolute_url(self) -> None: self.assertEqual(self.redirect.get_absolute_url(), reverse('redirect', kwargs={'slug': self.redirect.slug})) def test_str_repr(self) -> None: self.assertEqual(f'Redirect to {self.redirect.target}', str(self.redirect))
32.304348
116
0.69852
1f9190c838c22954346476e35c5c50fabf5bffa6
11,218
py
Python
release/stubs.min/Autodesk/Revit/DB/Analysis_parts/SpatialFieldManager.py
htlcnn/ironpython-stubs
780d829e2104b2789d5f4d6f32b0ec9f2930ca03
[ "MIT" ]
182
2017-06-27T02:26:15.000Z
2022-03-30T18:53:43.000Z
release/stubs.min/Autodesk/Revit/DB/Analysis_parts/SpatialFieldManager.py
htlcnn/ironpython-stubs
780d829e2104b2789d5f4d6f32b0ec9f2930ca03
[ "MIT" ]
28
2017-06-27T13:38:23.000Z
2022-03-15T11:19:44.000Z
release/stubs.min/Autodesk/Revit/DB/Analysis_parts/SpatialFieldManager.py
htlcnn/ironpython-stubs
780d829e2104b2789d5f4d6f32b0ec9f2930ca03
[ "MIT" ]
67
2017-06-28T09:43:59.000Z
2022-03-20T21:17:10.000Z
class SpatialFieldManager(Element,IDisposable): """ Exposes all API for an external analysis application. Its primary role is creation,deletion and modification of SpatialFieldElement elements. """ def AddSpatialFieldPrimitive(self,*__args): """ AddSpatialFieldPrimitive(self: SpatialFieldManager,reference: Reference) -> int Creates an empty analysis results primitive associated with a reference. reference: Reference pointing to the curve or face to be associated with the primitive Returns: Unique index of primitive for future references AddSpatialFieldPrimitive(self: SpatialFieldManager) -> int Creates empty analysis results primitive not associated with any geometry element Returns: Unique index of primitive for future references AddSpatialFieldPrimitive(self: SpatialFieldManager,reference: Reference,hidingMode: SpatialFieldPrimitiveHideMode) -> int Creates an empty analysis results primitive associated with a reference,with the option to control how the reference element is hidden. reference: Reference pointing to the curve or face to be associated with the primitive hidingMode: The mode used to hide the original model element Returns: Unique index of primitive for future references AddSpatialFieldPrimitive(self: SpatialFieldManager,curve: Curve,trf: Transform) -> int Creates empty analysis results primitive associated with a curve and a transform. curve: Curve to be associated with the primitive. %curve% does NOT correspond to actual Revit geometry,i.e. it cannot be associated with reference; otherwise the other overload of the method must be used (taking "reference" as the input) trf: Conformal Transform to be applied to %curve%. Returns: Unique index of primitive for future references AddSpatialFieldPrimitive(self: SpatialFieldManager,face: Face,trf: Transform) -> int Creates empty analysis results primitive associated with a face and a transform. face: Face to be associated with the primitive trf: Conformal Transform to be applied to %face% Returns: Unique index of primitive for future references """ pass def Clear(self): """ Clear(self: SpatialFieldManager) Clear all analysis results managed by this manager object """ pass @staticmethod def CreateSpatialFieldManager(view,numberOfMeasurements): """ CreateSpatialFieldManager(view: View,numberOfMeasurements: int) -> SpatialFieldManager Factory method - creates manager object for the given view view: View for which manager object is created or retrieved numberOfMeasurements: Total number of measurements in the calculated results. This number defines the length of value arrays in ValueAtPoint objects Returns: Manager object for the view passed in the argument """ pass def Dispose(self): """ Dispose(self: Element,A_0: bool) """ pass def getBoundingBox(self,*args): """ getBoundingBox(self: Element,view: View) -> BoundingBoxXYZ """ pass def GetLegend(self): """ GetLegend(self: SpatialFieldManager) -> AnalysisDisplayLegend Returns legend element or NULL Returns: The legend element or NULL """ pass def GetMaximum(self,resultIndex,rawValue): """ GetMaximum(self: SpatialFieldManager,resultIndex: int,rawValue: bool) -> float Calculates the maximum value for all primitives resultIndex: Index of result schema rawValue: If true returned value is NOT multiplied by the current result's units multiplier,otherwise it IS Returns: Resulting maximum value """ pass def GetMinimum(self,resultIndex,rawValue): """ GetMinimum(self: SpatialFieldManager,resultIndex: int,rawValue: bool) -> float Calculates the minimum value for all primitives resultIndex: Index of result schema rawValue: If true returned value is NOT multiplied by the current result's units multiplier,otherwise it IS Returns: Resulting minimum value """ pass def GetRegisteredResults(self): """ GetRegisteredResults(self: SpatialFieldManager) -> IList[int] Returns an array of indices of all registered results """ pass def GetResultSchema(self,idx): """ GetResultSchema(self: SpatialFieldManager,idx: int) -> AnalysisResultSchema Returns result schema by index idx: Index of registered result schema """ pass @staticmethod def GetSpatialFieldManager(view): """ GetSpatialFieldManager(view: View) -> SpatialFieldManager Retrieves manager object for the given view or returns NULL view: View for which manager object is retrieved Returns: Manager object for the view passed in the argument """ pass def IsResultSchemaNameUnique(self,name,resultIndexToSkip): """ IsResultSchemaNameUnique(self: SpatialFieldManager,name: str,resultIndexToSkip: int) -> bool Verify the uniqueness of the name among all registered result schemas. name: Name to verify uniqueness of. resultIndexToSkip: Index of result (e.g. to be replaced) which names should not count for uniqueness; negative number means nothing is excluded from comparison. Returns: True if name is unique,false otherwise. """ pass @staticmethod def IsTextTypeIdValid(textTypeId,doc): """ IsTextTypeIdValid(textTypeId: ElementId,doc: Document) -> bool Verify if text type id is valid. textTypeId: Text type id to be validated. doc: Document for which %textTypeId% is validated. Returns: True if text type id is valid,false otherwise. """ pass def RegisterResult(self,resultSchema): """ RegisterResult(self: SpatialFieldManager,resultSchema: AnalysisResultSchema) -> int Registers result and assigns it a unique result index resultSchema: Result schema to be registered Returns: Unique index assigned to the result """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: Element,disposing: bool) """ pass def RemoveSpatialFieldPrimitive(self,idx): """ RemoveSpatialFieldPrimitive(self: SpatialFieldManager,idx: int) Removes analysis results primitive identified by the unique index idx: Unique index identifying the primitive """ pass def setElementType(self,*args): """ setElementType(self: Element,type: ElementType,incompatibleExceptionMessage: str) """ pass def SetMeasurementDescriptions(self,measurementDescriptions): """ SetMeasurementDescriptions(self: SpatialFieldManager,measurementDescriptions: IList[str]) """ pass def SetMeasurementNames(self,measurementNames): """ SetMeasurementNames(self: SpatialFieldManager,measurementNames: IList[str]) """ pass def SetResultSchema(self,idx,resultSchema): """ SetResultSchema(self: SpatialFieldManager,idx: int,resultSchema: AnalysisResultSchema) Sets a new value for an existing result schema in the result registry idx: Index of registered result schema resultSchema: Result schema replacing the existent one """ pass def UpdateSpatialFieldPrimitive(self,idx,fieldDomainPoints,fieldValues,resultIndex): """ UpdateSpatialFieldPrimitive(self: SpatialFieldManager,idx: int,fieldDomainPoints: FieldDomainPoints,fieldValues: FieldValues,resultIndex: int) Populates analysis results data (or replaces the existing data) in the existing primitive identified by the unique index idx: Unique index identifying the primitive fieldDomainPoints: Set of domain points. If the new set of domain points is supplied,all previously supplied domain points and field values for all results are removed from the primitive. If %fieldDomainPoints% is ll only fieldValues are updated fieldValues: Set of data values. Number of values in fieldValues must coincide with the number of points in fieldDomainPoints resultIndex: Unique index identifying the result schema """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass CurrentMeasurement=property(lambda self: object(),lambda self,v: None,lambda self: None) """Stores the currently displayed measurement Get: CurrentMeasurement(self: SpatialFieldManager) -> int Set: CurrentMeasurement(self: SpatialFieldManager)=value """ LegendPosition=property(lambda self: object(),lambda self,v: None,lambda self: None) """Stores current position of analysis results legend element in view Get: LegendPosition(self: SpatialFieldManager) -> XYZ Set: LegendPosition(self: SpatialFieldManager)=value """ LegendShowConfigurationName=property(lambda self: object(),lambda self,v: None,lambda self: None) """If true legend contains analysis configuration name. Get: LegendShowConfigurationName(self: SpatialFieldManager) -> bool Set: LegendShowConfigurationName(self: SpatialFieldManager)=value """ LegendShowDescription=property(lambda self: object(),lambda self,v: None,lambda self: None) """If true legend contains analysis description. Get: LegendShowDescription(self: SpatialFieldManager) -> bool Set: LegendShowDescription(self: SpatialFieldManager)=value """ LegendTextTypeId=property(lambda self: object(),lambda self,v: None,lambda self: None) """Stores element id of text associated with common (result-independent) part of legend in view. Get: LegendTextTypeId(self: SpatialFieldManager) -> ElementId Set: LegendTextTypeId(self: SpatialFieldManager)=value """ NumberOfMeasurements=property(lambda self: object(),lambda self,v: None,lambda self: None) """Stores the total number of measurements Get: NumberOfMeasurements(self: SpatialFieldManager) -> int """ ResultsVisibleInView=property(lambda self: object(),lambda self,v: None,lambda self: None) """Enables analysis results visibility in the view. Get: ResultsVisibleInView(self: SpatialFieldManager) -> bool Set: ResultsVisibleInView(self: SpatialFieldManager)=value """ UseRangeForAllMeasurements=property(lambda self: object(),lambda self,v: None,lambda self: None) """Governs how minimum and maximum values (the data range) are calculated. Get: UseRangeForAllMeasurements(self: SpatialFieldManager) -> bool Set: UseRangeForAllMeasurements(self: SpatialFieldManager)=value """
24.124731
215
0.717864
b93c48fb34e165465f94848f00504f4b25650638
588
py
Python
Actividades/LimpiezaRobot/cleaning_test.py
joeirigoyen/MultiAgent-Projects
c3112dc999e7db3b2295cddbf5d7660896ead551
[ "MIT" ]
null
null
null
Actividades/LimpiezaRobot/cleaning_test.py
joeirigoyen/MultiAgent-Projects
c3112dc999e7db3b2295cddbf5d7660896ead551
[ "MIT" ]
null
null
null
Actividades/LimpiezaRobot/cleaning_test.py
joeirigoyen/MultiAgent-Projects
c3112dc999e7db3b2295cddbf5d7660896ead551
[ "MIT" ]
null
null
null
#%% from cleaning_model import CleaningModel MAX_STEPS = 800 model = CleaningModel(10, 10, 20, 50) for i in range(MAX_STEPS): model.step() required_steps = model.ticks cleaned_cells = model.dirtycell_datacollector.get_model_vars_dataframe() total_moves = model.dirtycell_datacollector.get_agent_vars_dataframe() end_moves = total_moves.xs(MAX_STEPS - 1, level="Step") cleaned_cells.plot() end_moves.plot(kind="bar") print(f"Completion steps: {required_steps}") print(f"Clean cell percentage: {(model.total_cells - model.dirty_cells_count) / (model.total_cells) * 100}%") # %%
24.5
109
0.767007
d6f11a9990152426431d94e5c01fc165d9e54bb5
295
py
Python
app/setdb.py
gregdek/factoryman
c4056e6b23ca6a6bb50d5e1e768d3da322592fb4
[ "Apache-2.0" ]
null
null
null
app/setdb.py
gregdek/factoryman
c4056e6b23ca6a6bb50d5e1e768d3da322592fb4
[ "Apache-2.0" ]
null
null
null
app/setdb.py
gregdek/factoryman
c4056e6b23ca6a6bb50d5e1e768d3da322592fb4
[ "Apache-2.0" ]
null
null
null
# This is a separate script that sets game-independent # variables, like commodity prices. import redis r = redis.StrictRedis('localhost', 6379, charset="utf-8", decode_responses=True) # Set commodity prices r.set("buy:A", "2") r.set("sell:A", "1") r.set("buy:B", "10") r.set("sell:B", "8")
22.692308
80
0.681356