hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
ced77f9b79511fe1d0c809c0b89f8a8b9ed3ac04
832
py
Python
inference/utils.py
macarthur-lab/MyoSeq_reports
e91ed57f01fcbf2e0ea982d95741a69b16c4c2fb
[ "MIT" ]
null
null
null
inference/utils.py
macarthur-lab/MyoSeq_reports
e91ed57f01fcbf2e0ea982d95741a69b16c4c2fb
[ "MIT" ]
null
null
null
inference/utils.py
macarthur-lab/MyoSeq_reports
e91ed57f01fcbf2e0ea982d95741a69b16c4c2fb
[ "MIT" ]
null
null
null
def get_samples(sampleFile): """ Get requested sample IDs from input file (one sample per line) :param str samp: Name of file containing requested samples :return: List of sample IDs :rtype: list """ samples = [] with open(sampleFile) as s: for line in s: samples.append(line.strip()) return samples def check_missing_samples(samples, check, fname): """ Checks if any requested samples are missing from a file :param list samples: List of strings (requested sample IDs) :param list check: List of strings (sample IDs found in file) :param str fname: File name :return: None :rtype: None """ missing = set(samples) - set(check) if len(missing) > 0: logging.warning('{} not found in {} file'.format(','.join(missing), fname))
28.689655
83
0.641827
cdbfe2ade1050f220719ec43b177f5c756765332
1,712
py
Python
lib/python2.7/site-packages/twilio/rest/resources/task_router/tasks.py
Gchorba/Ask
cf68c9a522d2c67519a64927c603990c1399af57
[ "MIT" ]
null
null
null
lib/python2.7/site-packages/twilio/rest/resources/task_router/tasks.py
Gchorba/Ask
cf68c9a522d2c67519a64927c603990c1399af57
[ "MIT" ]
null
null
null
lib/python2.7/site-packages/twilio/rest/resources/task_router/tasks.py
Gchorba/Ask
cf68c9a522d2c67519a64927c603990c1399af57
[ "MIT" ]
null
null
null
from .. import NextGenInstanceResource, NextGenListResource class Task(NextGenInstanceResource): """ A Task resource """ def delete(self): """ Delete a task. """ return self.parent.delete_instance(self.name) def update(self, **kwargs): """ Update a task. """ return self.parent.update_instance(self.name, kwargs) class Tasks(NextGenListResource): """ A list of Task resources """ name = "Tasks" instance = Task def create(self, attributes, workflow_sid, **kwargs): """ Create a Task. :param attributes: Url-encoded JSON string describing the attributes of this task. This data will be passed back to the Workflow's AssignmentCallbackURL when the Task is assigned to a Worker. An example task: { 'task_type': 'call', 'twilio_call_sid': '...', 'customer_ticket_number': '12345' }. :param workflow_sid: The workflow_sid for the Workflow that you would like to handle routing for this Task. :param timeout: If provided, time-to-live for the task in seconds, before it is automatically canceled """ kwargs['attributes'] = attributes kwargs['workflow_sid'] = workflow_sid return self.create_instance(kwargs) def delete(self, sid): """ Delete the given task """ return self.delete_instance(sid) def update(self, sid, **kwargs): """ Update a :class:`Task` with the given parameters. All the parameters are describe above in :meth:`create` """ return self.update_instance(sid, kwargs)
29.016949
79
0.606893
6f6d57311d8c52083dbd257a9a4bdadd32ebd875
38,234
py
Python
src/olympia/signing/tests/test_views.py
varundey/addons-server
bdc39c4f0510a5e1c8b4e3551f5f15fcd50f10e9
[ "BSD-3-Clause" ]
null
null
null
src/olympia/signing/tests/test_views.py
varundey/addons-server
bdc39c4f0510a5e1c8b4e3551f5f15fcd50f10e9
[ "BSD-3-Clause" ]
null
null
null
src/olympia/signing/tests/test_views.py
varundey/addons-server
bdc39c4f0510a5e1c8b4e3551f5f15fcd50f10e9
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- import json import os from datetime import datetime, timedelta from django.conf import settings from django.forms import ValidationError from django.test.utils import override_settings from django.utils import translation import mock import responses from rest_framework.response import Response from waffle.testutils import override_switch from olympia import amo from olympia.access.models import Group, GroupUser from olympia.addons.models import Addon, AddonUser from olympia.amo.templatetags.jinja_helpers import absolutify from olympia.amo.tests import addon_factory, reverse_ns, TestCase from olympia.api.tests.utils import APIKeyAuthTestMixin from olympia.applications.models import AppVersion from olympia.devhub import tasks from olympia.files.models import File, FileUpload from olympia.lib.akismet.models import AkismetReport from olympia.signing.views import VersionView from olympia.users.models import UserProfile from olympia.versions.models import Version class SigningAPITestMixin(APIKeyAuthTestMixin): fixtures = ['base/addon_3615', 'base/user_4043307'] def setUp(self): self.user = UserProfile.objects.get(email='del@icio.us') self.api_key = self.create_api_key(self.user, str(self.user.pk) + ':f') class BaseUploadVersionTestMixin(SigningAPITestMixin): def setUp(self): super(BaseUploadVersionTestMixin, self).setUp() self.guid = '{2fa4ed95-0317-4c6a-a74c-5f3e3912c1f9}' self.view = VersionView.as_view() create_version_patcher = mock.patch( 'olympia.devhub.tasks.create_version_for_upload', tasks.create_version_for_upload.non_atomic) self.create_version_for_upload = create_version_patcher.start() self.addCleanup(create_version_patcher.stop) auto_sign_version_patcher = mock.patch( 'olympia.devhub.views.auto_sign_version') self.auto_sign_version = auto_sign_version_patcher.start() self.addCleanup(auto_sign_version_patcher.stop) def url(self, guid, version, pk=None): if guid is None: args = [version] else: args = [guid, version] if pk is not None: args.append(pk) return reverse_ns('signing.version', args=args) def create_version(self, version): response = self.request('PUT', self.url(self.guid, version), version) assert response.status_code in [201, 202] def xpi_filepath(self, addon, version): return os.path.join( 'src', 'olympia', 'signing', 'fixtures', '{addon}-{version}.xpi'.format(addon=addon, version=version)) def request(self, method='PUT', url=None, version='3.0', addon='@upload-version', filename=None, channel=None, extra_kwargs=None): if filename is None: filename = self.xpi_filepath(addon, version) if url is None: url = self.url(addon, version) with open(filename) as upload: data = {'upload': upload} if method == 'POST' and version: data['version'] = version if channel: data['channel'] = channel return getattr(self.client, method.lower())( url, data, HTTP_AUTHORIZATION=self.authorization(), format='multipart', **(extra_kwargs or {})) def make_admin(self, user): admin_group = Group.objects.create(name='Admin', rules='*:*') GroupUser.objects.create(group=admin_group, user=user) class TestUploadVersion(BaseUploadVersionTestMixin, TestCase): def test_not_authenticated(self): # Use self.client.put so that we don't add the authorization header. response = self.client.put(self.url(self.guid, '12.5')) assert response.status_code == 401 def test_addon_does_not_exist(self): guid = '@create-version' qs = Addon.unfiltered.filter(guid=guid) assert not qs.exists() response = self.request('PUT', addon=guid, version='1.0') assert response.status_code == 201 assert qs.exists() addon = qs.get() assert addon.guid == guid assert addon.has_author(self.user) assert addon.status == amo.STATUS_NULL latest_version = addon.find_latest_version( channel=amo.RELEASE_CHANNEL_UNLISTED) assert latest_version assert latest_version.channel == amo.RELEASE_CHANNEL_UNLISTED self.auto_sign_version.assert_called_with(latest_version) assert not addon.tags.filter(tag_text='dynamic theme').exists() def test_new_addon_random_slug_unlisted_channel(self): guid = '@create-webextension' qs = Addon.unfiltered.filter(guid=guid) assert not qs.exists() response = self.request('PUT', addon=guid, version='1.0') assert response.status_code == 201 assert qs.exists() addon = qs.get() assert len(addon.slug) == 20 assert 'create' not in addon.slug def test_user_does_not_own_addon(self): self.user = UserProfile.objects.create( read_dev_agreement=datetime.now()) self.api_key = self.create_api_key(self.user, 'bar') response = self.request('PUT', self.url(self.guid, '3.0')) assert response.status_code == 403 assert response.data['error'] == 'You do not own this addon.' def test_admin_does_not_own_addon(self): self.user = UserProfile.objects.create( read_dev_agreement=datetime.now()) self.api_key = self.create_api_key(self.user, 'bar') self.make_admin(self.user) response = self.request('PUT', self.url(self.guid, '3.0')) assert response.status_code == 403 assert response.data['error'] == 'You do not own this addon.' def test_version_does_not_match_manifest_file(self): response = self.request('PUT', self.url(self.guid, '2.5')) assert response.status_code == 400 assert response.data['error'] == ( 'Version does not match the manifest file.') def test_version_already_exists(self): response = self.request( 'PUT', self.url(self.guid, '2.1.072'), version='2.1.072') assert response.status_code == 409 assert response.data['error'] == ('Version already exists. ' 'Latest version is: 2.1.072.') @mock.patch('olympia.devhub.views.Version.from_upload') def test_no_version_yet(self, from_upload): response = self.request('PUT', self.url(self.guid, '3.0')) assert response.status_code == 202 assert 'processed' in response.data response = self.get(self.url(self.guid, '3.0')) assert response.status_code == 200 assert 'processed' in response.data def test_version_added(self): assert Addon.objects.get(guid=self.guid).status == amo.STATUS_PUBLIC qs = Version.objects.filter(addon__guid=self.guid, version='3.0') assert not qs.exists() existing = Version.objects.filter(addon__guid=self.guid) assert existing.count() == 1 assert existing[0].channel == amo.RELEASE_CHANNEL_LISTED response = self.request('PUT', self.url(self.guid, '3.0')) assert response.status_code == 202 assert 'processed' in response.data version = qs.get() assert version.addon.guid == self.guid assert version.version == '3.0' assert version.statuses[0][1] == amo.STATUS_AWAITING_REVIEW assert version.addon.status == amo.STATUS_PUBLIC assert version.channel == amo.RELEASE_CHANNEL_LISTED self.auto_sign_version.assert_called_with(version) assert not version.all_files[0].is_mozilla_signed_extension assert not version.addon.tags.filter(tag_text='dynamic theme').exists() def test_version_already_uploaded(self): response = self.request('PUT', self.url(self.guid, '3.0')) assert response.status_code == 202 assert 'processed' in response.data response = self.request('PUT', self.url(self.guid, '3.0')) assert response.status_code == 409 assert response.data['error'] == ('Version already exists. ' 'Latest version is: 3.0.') def test_version_failed_review(self): self.create_version('3.0') version = Version.objects.get(addon__guid=self.guid, version='3.0') version.update(reviewed=datetime.today()) version.files.get().update(reviewed=datetime.today(), status=amo.STATUS_DISABLED) response = self.request('PUT', self.url(self.guid, '3.0')) assert response.status_code == 409 assert response.data['error'] == ('Version already exists. ' 'Latest version is: 3.0.') # Verify that you can check the status after upload (#953). response = self.get(self.url(self.guid, '3.0')) assert response.status_code == 200 assert 'processed' in response.data def test_version_added_is_experiment(self): self.grant_permission(self.user, 'Experiments:submit') guid = 'experiment@xpi' qs = Addon.unfiltered.filter(guid=guid) assert not qs.exists() response = self.request( 'PUT', addon=guid, version='0.1', filename='src/olympia/files/fixtures/files/' 'telemetry_experiment.xpi') assert response.status_code == 201 assert qs.exists() addon = qs.get() assert addon.has_author(self.user) assert addon.status == amo.STATUS_NULL latest_version = addon.find_latest_version( channel=amo.RELEASE_CHANNEL_UNLISTED) assert latest_version assert latest_version.channel == amo.RELEASE_CHANNEL_UNLISTED self.auto_sign_version.assert_called_with(latest_version) def test_version_added_is_experiment_reject_no_perm(self): guid = 'experiment@xpi' qs = Addon.unfiltered.filter(guid=guid) assert not qs.exists() response = self.request( 'PUT', addon=guid, version='0.1', filename='src/olympia/files/fixtures/files/' 'telemetry_experiment.xpi') assert response.status_code == 400 assert response.data['error'] == ( 'You cannot submit this type of add-on') def test_mozilla_signed_allowed(self): guid = '@webextension-guid' self.user.update(email='redpanda@mozilla.com') qs = Addon.unfiltered.filter(guid=guid) assert not qs.exists() response = self.request( 'PUT', addon=guid, version='0.0.1', filename='src/olympia/files/fixtures/files/' 'webextension_signed_already.xpi') assert response.status_code == 201 assert qs.exists() addon = qs.get() assert addon.has_author(self.user) assert addon.status == amo.STATUS_NULL latest_version = addon.find_latest_version( channel=amo.RELEASE_CHANNEL_UNLISTED) assert latest_version assert latest_version.channel == amo.RELEASE_CHANNEL_UNLISTED self.auto_sign_version.assert_called_with(latest_version) assert latest_version.all_files[0].is_mozilla_signed_extension def test_mozilla_signed_not_allowed_not_mozilla(self): guid = '@webextension-guid' self.user.update(email='yellowpanda@notzilla.com') qs = Addon.unfiltered.filter(guid=guid) assert not qs.exists() response = self.request( 'PUT', addon=guid, version='0.0.1', filename='src/olympia/files/fixtures/files/' 'webextension_signed_already.xpi') assert response.status_code == 400 assert response.data['error'] == ( 'You cannot submit a Mozilla Signed Extension') def test_system_addon_allowed(self): guid = 'systemaddon@mozilla.org' self.user.update(email='redpanda@mozilla.com') qs = Addon.unfiltered.filter(guid=guid) assert not qs.exists() response = self.request( 'PUT', addon=guid, version='0.0.1', filename='src/olympia/files/fixtures/files/' 'mozilla_guid.xpi') assert response.status_code == 201 assert qs.exists() addon = qs.get() assert addon.has_author(self.user) assert addon.status == amo.STATUS_NULL latest_version = addon.find_latest_version( channel=amo.RELEASE_CHANNEL_UNLISTED) assert latest_version assert latest_version.channel == amo.RELEASE_CHANNEL_UNLISTED self.auto_sign_version.assert_called_with(latest_version) def test_system_addon_not_allowed_not_mozilla(self): guid = 'systemaddon@mozilla.com' self.user.update(email='yellowpanda@notzilla.com') qs = Addon.unfiltered.filter(guid=guid) assert not qs.exists() response = self.request( 'PUT', addon=guid, version='0.1', filename='src/olympia/files/fixtures/files/' 'mozilla_guid.xpi') assert response.status_code == 400 assert response.data['error'] == ( u'You cannot submit an add-on with a guid ending "@mozilla.org" ' u'or "@shield.mozilla.org" or "@pioneer.mozilla.org" ' u'or "@mozilla.com"') def test_system_addon_update_allowed(self): """Updates to system addons are allowed from anyone.""" guid = 'systemaddon@mozilla.org' self.user.update(email='pinkpanda@notzilla.com') orig_addon = addon_factory( guid='systemaddon@mozilla.org', version_kw={'channel': amo.RELEASE_CHANNEL_UNLISTED}) AddonUser.objects.create( addon=orig_addon, user=self.user) response = self.request( 'PUT', addon=guid, version='0.0.1', filename='src/olympia/files/fixtures/files/' 'mozilla_guid.xpi') assert response.status_code == 202 addon = Addon.unfiltered.filter(guid=guid).get() assert addon.versions.count() == 2 latest_version = addon.find_latest_version( channel=amo.RELEASE_CHANNEL_UNLISTED) self.auto_sign_version.assert_called_with(latest_version) def test_invalid_version_response_code(self): # This raises an error in parse_addon which is not covered by # an exception handler. response = self.request( 'PUT', self.url(self.guid, '1.0'), addon='@create-webextension-invalid-version', version='1.0') assert response.status_code == 400 def test_raises_response_code(self): # A check that any bare error in handle_upload will return a 400. with mock.patch('olympia.signing.views.devhub_handle_upload') as patch: patch.side_effect = ValidationError(message='some error') response = self.request('PUT', self.url(self.guid, '1.0')) assert response.status_code == 400 def test_no_version_upload_for_admin_disabled_addon(self): addon = Addon.objects.get(guid=self.guid) addon.update(status=amo.STATUS_DISABLED) response = self.request( 'PUT', self.url(self.guid, '3.0'), version='3.0') assert response.status_code == 400 error_msg = 'cannot add versions to an addon that has status: %s.' % ( amo.STATUS_CHOICES_ADDON[amo.STATUS_DISABLED]) assert error_msg in response.data['error'] def test_channel_ignored_for_new_addon(self): guid = '@create-version' qs = Addon.unfiltered.filter(guid=guid) assert not qs.exists() response = self.request('PUT', addon=guid, version='1.0', channel='listed') assert response.status_code == 201 addon = qs.get() assert addon.find_latest_version(channel=amo.RELEASE_CHANNEL_UNLISTED) def test_no_channel_selects_last_channel(self): addon = Addon.objects.get(guid=self.guid) assert addon.status == amo.STATUS_PUBLIC assert addon.versions.count() == 1 assert addon.versions.all()[0].channel == amo.RELEASE_CHANNEL_LISTED response = self.request('PUT', self.url(self.guid, '3.0')) assert response.status_code == 202, response.data['error'] assert 'processed' in response.data new_version = addon.versions.latest() assert new_version.channel == amo.RELEASE_CHANNEL_LISTED new_version.update(channel=amo.RELEASE_CHANNEL_UNLISTED) response = self.request( 'PUT', self.url(self.guid, '4.0-beta1'), version='4.0-beta1') assert response.status_code == 202, response.data['error'] assert 'processed' in response.data third_version = addon.versions.latest() assert third_version.channel == amo.RELEASE_CHANNEL_UNLISTED def test_unlisted_channel_for_listed_addon(self): addon = Addon.objects.get(guid=self.guid) assert addon.status == amo.STATUS_PUBLIC assert addon.versions.count() == 1 assert addon.versions.all()[0].channel == amo.RELEASE_CHANNEL_LISTED response = self.request('PUT', self.url(self.guid, '3.0'), channel='unlisted') assert response.status_code == 202, response.data['error'] assert 'processed' in response.data assert addon.versions.latest().channel == amo.RELEASE_CHANNEL_UNLISTED def test_listed_channel_for_complete_listed_addon(self): addon = Addon.objects.get(guid=self.guid) assert addon.status == amo.STATUS_PUBLIC assert addon.versions.count() == 1 assert addon.has_complete_metadata() response = self.request('PUT', self.url(self.guid, '3.0'), channel='listed') assert response.status_code == 202, response.data['error'] assert 'processed' in response.data assert addon.versions.latest().channel == amo.RELEASE_CHANNEL_LISTED def test_listed_channel_fails_for_incomplete_addon(self): addon = Addon.objects.get(guid=self.guid) assert addon.status == amo.STATUS_PUBLIC assert addon.versions.count() == 1 addon.current_version.update(license=None) # Make addon incomplete. addon.versions.latest().update(channel=amo.RELEASE_CHANNEL_UNLISTED) assert not addon.has_complete_metadata( has_listed_versions=True) response = self.request('PUT', self.url(self.guid, '3.0'), channel='listed') assert response.status_code == 400 error_msg = ( 'You cannot add a listed version to this addon via the API') assert error_msg in response.data['error'] @override_switch('akismet-spam-check', active=False) def test_akismet_waffle_off(self): addon = Addon.objects.get(guid=self.guid) response = self.request( 'PUT', self.url(self.guid, '3.0'), channel='listed') assert addon.versions.latest().channel == amo.RELEASE_CHANNEL_LISTED assert AkismetReport.objects.count() == 0 assert response.status_code == 202 @override_switch('akismet-spam-check', active=True) @mock.patch('olympia.lib.akismet.tasks.AkismetReport.comment_check') def test_akismet_reports_created_ham_outcome(self, comment_check_mock): comment_check_mock.return_value = AkismetReport.HAM addon = Addon.objects.get(guid=self.guid) response = self.request( 'PUT', self.url(self.guid, '3.0'), channel='listed') assert addon.versions.latest().channel == amo.RELEASE_CHANNEL_LISTED assert response.status_code == 202 comment_check_mock.assert_called_once() assert AkismetReport.objects.count() == 1 report = AkismetReport.objects.get() assert report.comment_type == 'product-name' assert report.comment == 'Upload Version Test XPI' # the addon's name validation_response = self.get(self.url(self.guid, '3.0')) assert validation_response.status_code == 200 assert 'spam' not in validation_response.content @override_switch('akismet-spam-check', active=True) @override_switch('akismet-addon-action', active=False) @override_settings(AKISMET_API_KEY=None) def test_akismet_reports_created_spam_outcome_logging_only(self): akismet_url = settings.AKISMET_API_URL.format( api_key='none', action='comment-check') responses.add(responses.POST, akismet_url, json=True) addon = Addon.objects.get(guid=self.guid) response = self.request( 'PUT', self.url(self.guid, '3.0'), channel='listed') assert addon.versions.latest().channel == amo.RELEASE_CHANNEL_LISTED assert response.status_code == 202 assert AkismetReport.objects.count() == 1 report = AkismetReport.objects.get() assert report.comment_type == 'product-name' assert report.comment == 'Upload Version Test XPI' # the addon's name assert report.result == AkismetReport.MAYBE_SPAM validation_response = self.get(self.url(self.guid, '3.0')) assert validation_response.status_code == 200 assert 'spam' not in validation_response.content @override_switch('akismet-spam-check', active=True) @override_switch('akismet-addon-action', active=True) @override_settings(AKISMET_API_KEY=None) def test_akismet_reports_created_spam_outcome_action_taken(self): akismet_url = settings.AKISMET_API_URL.format( api_key='none', action='comment-check') responses.add(responses.POST, akismet_url, json=True) addon = Addon.objects.get(guid=self.guid) response = self.request( 'PUT', self.url(self.guid, '3.0'), channel='listed') assert addon.versions.latest().channel == amo.RELEASE_CHANNEL_LISTED assert response.status_code == 202 assert AkismetReport.objects.count() == 1 report = AkismetReport.objects.get() assert report.comment_type == 'product-name' assert report.comment == 'Upload Version Test XPI' # the addon's name assert report.result == AkismetReport.MAYBE_SPAM validation_response = self.get(self.url(self.guid, '3.0')) assert validation_response.status_code == 200 assert 'spam' in validation_response.content data = json.loads(validation_response.content) assert data['validation_results']['messages'][0]['id'] == [ u'validation', u'messages', u'akismet_is_spam_name' ] class TestUploadVersionWebextension(BaseUploadVersionTestMixin, TestCase): def setUp(self): super(TestUploadVersionWebextension, self).setUp() AppVersion.objects.create(application=amo.FIREFOX.id, version='42.0') AppVersion.objects.create(application=amo.FIREFOX.id, version='*') def test_addon_does_not_exist_webextension(self): response = self.request( 'POST', url=reverse_ns('signing.version'), addon='@create-webextension', version='1.0') assert response.status_code == 201 guid = response.data['guid'] addon = Addon.unfiltered.get(guid=guid) assert addon.guid is not None assert addon.guid != self.guid version = Version.objects.get(addon__guid=guid, version='1.0') assert version.files.all()[0].is_webextension is True assert addon.has_author(self.user) assert addon.status == amo.STATUS_NULL latest_version = addon.find_latest_version( channel=amo.RELEASE_CHANNEL_UNLISTED) assert latest_version assert latest_version.channel == amo.RELEASE_CHANNEL_UNLISTED self.auto_sign_version.assert_called_with( latest_version) def test_addon_does_not_exist_webextension_with_guid_in_url(self): guid = '@custom-guid-provided' # Override the filename self.request() picks, we want that specific # file but with a custom guid. filename = self.xpi_filepath('@create-webextension', '1.0') response = self.request( 'PUT', # PUT, not POST, since we're specifying a guid in the URL. filename=filename, addon=guid, # Will end up in the url since we're not passing one. version='1.0') assert response.status_code == 201 assert response.data['guid'] == '@custom-guid-provided' addon = Addon.unfiltered.get(guid=response.data['guid']) assert addon.guid == '@custom-guid-provided' version = Version.objects.get(addon__guid=guid, version='1.0') assert version.files.all()[0].is_webextension is True assert addon.has_author(self.user) assert addon.status == amo.STATUS_NULL latest_version = addon.find_latest_version( channel=amo.RELEASE_CHANNEL_UNLISTED) assert latest_version assert latest_version.channel == amo.RELEASE_CHANNEL_UNLISTED self.auto_sign_version.assert_called_with( latest_version) def test_addon_does_not_exist_webextension_with_invalid_guid_in_url(self): guid = 'custom-invalid-guid-provided' # Override the filename self.request() picks, we want that specific # file but with a custom guid. filename = self.xpi_filepath('@create-webextension', '1.0') response = self.request( 'PUT', # PUT, not POST, since we're specifying a guid in the URL. filename=filename, addon=guid, # Will end up in the url since we're not passing one. version='1.0') assert response.status_code == 400 assert response.data['error'] == u'Invalid GUID in URL' assert not Addon.unfiltered.filter(guid=guid).exists() def test_optional_id_not_allowed_for_regular_addon(self): response = self.request( 'POST', url=reverse_ns('signing.version'), addon='@create-version-no-id', version='1.0') assert response.status_code == 400 def test_webextension_reuse_guid(self): response = self.request( 'POST', url=reverse_ns('signing.version'), addon='@create-webextension-with-guid', version='1.0') guid = response.data['guid'] assert guid == '@webextension-with-guid' addon = Addon.unfiltered.get(guid=guid) assert addon.guid == '@webextension-with-guid' def test_webextension_reuse_guid_but_only_create(self): # Uploading the same version with the same id fails. People # have to use the regular `PUT` endpoint for that. response = self.request( 'POST', url=reverse_ns('signing.version'), addon='@create-webextension-with-guid', version='1.0') assert response.status_code == 201 response = self.request( 'POST', url=reverse_ns('signing.version'), addon='@create-webextension-with-guid', version='1.0') assert response.status_code == 400 assert response.data['error'] == 'Duplicate add-on ID found.' def test_webextension_optional_version(self): # Uploading the same version with the same id fails. People # have to use the regular `PUT` endpoint for that. response = self.request( 'POST', url=reverse_ns('signing.version'), addon='@create-webextension-with-guid-and-version', version='99.0') assert response.status_code == 201 assert ( response.data['guid'] == '@create-webextension-with-guid-and-version') assert response.data['version'] == '99.0' def test_webextension_resolve_translations(self): fname = ( 'src/olympia/files/fixtures/files/notify-link-clicks-i18n.xpi') response = self.request( 'POST', url=reverse_ns('signing.version'), addon='@notify-link-clicks-i18n', version='1.0', filename=fname) assert response.status_code == 201 addon = Addon.unfiltered.get(guid=response.data['guid']) # Normalized from `en` to `en-US` assert addon.default_locale == 'en-US' assert addon.name == 'Notify link clicks i18n' assert addon.summary == ( 'Shows a notification when the user clicks on links.') translation.activate('de') addon.reload() assert addon.name == 'Meine Beispielerweiterung' assert addon.summary == u'Benachrichtigt den Benutzer über Linkklicks' def test_too_long_guid_not_in_manifest_forbidden(self): fname = ( 'src/olympia/files/fixtures/files/webextension_no_id.xpi') guid = ( 'this_guid_is_longer_than_the_limit_of_64_chars_see_bug_1201176_' 'and_should_fail@webextension-guid') response = self.request( 'PUT', url=self.url(guid, '1.0'), version='1.0', filename=fname) assert response.status_code == 400 assert response.data == { 'error': ( u'Please specify your Add-on GUID in the manifest if it\'s ' u'longer than 64 characters.') } assert not Addon.unfiltered.filter(guid=guid).exists() def test_too_long_guid_in_manifest_allowed(self): fname = ( 'src/olympia/files/fixtures/files/webextension_too_long_guid.xpi') guid = ( 'this_guid_is_longer_than_the_limit_of_64_chars_see_bug_1201176_' 'and_should_fail@webextension-guid') response = self.request( 'PUT', url=self.url(guid, '1.0'), version='1.0', filename=fname) assert response.status_code == 201 assert Addon.unfiltered.filter(guid=guid).exists() def test_dynamic_theme_tag_added(self): addon = Addon.objects.get(guid=self.guid) addon.current_version.update(version='0.9') def parse_addon_wrapper(*args, **kwargs): from olympia.files.utils import parse_addon parsed = parse_addon(*args, **kwargs) parsed['permissions'] = parsed.get('permissions', []) + ['theme'] return parsed with mock.patch('olympia.devhub.tasks.parse_addon', wraps=parse_addon_wrapper): # But unlisted should be ignored response = self.request( 'PUT', self.url(self.guid, '1.0'), version='1.0', addon='@create-webextension', channel='unlisted') assert response.status_code == 202, response.data['error'] assert not addon.tags.filter(tag_text='dynamic theme').exists() addon.versions.latest().delete(hard=True) # Only listed version get the tag response = self.request( 'PUT', self.url(self.guid, '1.0'), version='1.0', addon='@create-webextension', channel='listed') assert response.status_code == 202, response.data['error'] assert addon.tags.filter(tag_text='dynamic theme').exists() class TestCheckVersion(BaseUploadVersionTestMixin, TestCase): def test_not_authenticated(self): # Use self.client.get so that we don't add the authorization header. response = self.client.get(self.url(self.guid, '12.5')) assert response.status_code == 401 def test_addon_does_not_exist(self): response = self.get(self.url('foo', '12.5')) assert response.status_code == 404 assert response.data['error'] == ( 'Could not find add-on with guid "foo".') def test_user_does_not_own_addon(self): self.create_version('3.0') self.user = UserProfile.objects.create( read_dev_agreement=datetime.now()) self.api_key = self.create_api_key(self.user, 'bar') response = self.get(self.url(self.guid, '3.0')) assert response.status_code == 403 assert response.data['error'] == 'You do not own this addon.' def test_admin_can_view(self): self.create_version('3.0') self.user = UserProfile.objects.create( read_dev_agreement=datetime.now()) self.make_admin(self.user) self.api_key = self.create_api_key(self.user, 'bar') response = self.get(self.url(self.guid, '3.0')) assert response.status_code == 200 assert 'processed' in response.data def test_version_does_not_exist(self): response = self.get(self.url(self.guid, '2.5')) assert response.status_code == 404 assert (response.data['error'] == 'No uploaded file for that addon and version.') def test_version_exists(self): self.create_version('3.0') response = self.get(self.url(self.guid, '3.0')) assert response.status_code == 200 assert 'processed' in response.data def test_version_exists_with_pk(self): # Mock Version.from_upload so the Version won't be created. with mock.patch('olympia.devhub.tasks.Version.from_upload'): self.create_version('3.0') upload = FileUpload.objects.latest() upload.update(created=datetime.today() - timedelta(hours=1)) self.create_version('3.0') newer_upload = FileUpload.objects.latest() assert newer_upload != upload response = self.get(self.url(self.guid, '3.0', upload.uuid.hex)) assert response.status_code == 200 # For backwards-compatibility reasons, we return the uuid as "pk". assert response.data['pk'] == upload.uuid.hex assert 'processed' in response.data def test_version_exists_with_pk_not_owner(self): orig_user, orig_api_key = self.user, self.api_key # This will create a version for the add-on with guid @create-version # using a new user. self.user = UserProfile.objects.create( read_dev_agreement=datetime.now()) self.api_key = self.create_api_key(self.user, 'bar') response = self.request('PUT', addon='@create-version', version='1.0') assert response.status_code == 201 upload = FileUpload.objects.latest() # Check that the user that created the upload can access it properly. response = self.get( self.url('@create-version', '1.0', upload.uuid.hex)) assert response.status_code == 200 assert 'processed' in response.data # This will create a version for the add-on from the fixture with the # regular fixture user. self.user, self.api_key = orig_user, orig_api_key self.create_version('3.0') # Check that we can't access the FileUpload by uuid even if we pass in # an add-on and version that we own if we don't own the FileUpload. response = self.get(self.url(self.guid, '3.0', upload.uuid.hex)) assert response.status_code == 404 assert 'error' in response.data def test_version_download_url(self): version_string = '3.0' qs = File.objects.filter(version__addon__guid=self.guid, version__version=version_string) assert not qs.exists() self.create_version(version_string) response = self.get(self.url(self.guid, version_string)) assert response.status_code == 200 file_ = qs.get() assert response.data['files'][0]['download_url'] == absolutify( reverse_ns('signing.file', kwargs={'file_id': file_.id}) + '/delicious_bookmarks-3.0-fx.xpi?src=api') def test_file_hash(self): version_string = '3.0' qs = File.objects.filter(version__addon__guid=self.guid, version__version=version_string) assert not qs.exists() self.create_version(version_string) response = self.get(self.url(self.guid, version_string)) assert response.status_code == 200 file_ = qs.get() filename = self.xpi_filepath('@upload-version', version_string) assert response.data['files'][0]['hash'] == \ file_.generate_hash(filename=filename) def test_has_failed_upload(self): addon = Addon.objects.get(guid=self.guid) FileUpload.objects.create(addon=addon, version='3.0') self.create_version('3.0') response = self.get(self.url(self.guid, '3.0')) assert response.status_code == 200 assert 'processed' in response.data class TestSignedFile(SigningAPITestMixin, TestCase): def setUp(self): super(TestSignedFile, self).setUp() self.file_ = self.create_file() def url(self): return reverse_ns('signing.file', args=[self.file_.pk]) def create_file(self): addon = addon_factory( name='thing', version_kw={'channel': amo.RELEASE_CHANNEL_UNLISTED}, users=[self.user]) return addon.latest_unlisted_version.all_files[0] def test_can_download_once_authenticated(self): response = self.get(self.url()) assert response.status_code == 200 assert response[settings.XSENDFILE_HEADER] == ( self.file_.file_path) def test_cannot_download_without_authentication(self): response = self.client.get(self.url()) # no auth assert response.status_code == 401 def test_api_relies_on_version_downloader(self): with mock.patch('olympia.versions.views.download_file') as df: df.return_value = Response({}) self.get(self.url()) assert df.called is True assert df.call_args[0][0].user == self.user assert df.call_args[0][1] == str(self.file_.pk)
42.10793
79
0.640451
9681d3bdd6e6a5e379a86bee2ef0f797ee573676
3,754
py
Python
lib/services/loadbalancer/ncloud_loadbalancer/__init__.py
KidongSohn/ncloud-sdk-py
1c62471a9bd320d77164ed3193a0ebb9f64229ff
[ "MIT" ]
null
null
null
lib/services/loadbalancer/ncloud_loadbalancer/__init__.py
KidongSohn/ncloud-sdk-py
1c62471a9bd320d77164ed3193a0ebb9f64229ff
[ "MIT" ]
null
null
null
lib/services/loadbalancer/ncloud_loadbalancer/__init__.py
KidongSohn/ncloud-sdk-py
1c62471a9bd320d77164ed3193a0ebb9f64229ff
[ "MIT" ]
null
null
null
# coding: utf-8 # flake8: noqa """ loadbalancer OpenAPI spec version: 2018-06-21T02:19:18Z Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import # import apis into sdk package from ncloud_loadbalancer.api.v2_api import V2Api # import ApiClient from ncloud_loadbalancer.api_client import ApiClient from ncloud_loadbalancer.configuration import Configuration # import models into sdk package from ncloud_loadbalancer.model.access_control_group import AccessControlGroup from ncloud_loadbalancer.model.add_load_balancer_ssl_certificate_request import AddLoadBalancerSslCertificateRequest from ncloud_loadbalancer.model.add_load_balancer_ssl_certificate_response import AddLoadBalancerSslCertificateResponse from ncloud_loadbalancer.model.change_load_balanced_server_instances_request import ChangeLoadBalancedServerInstancesRequest from ncloud_loadbalancer.model.change_load_balanced_server_instances_response import ChangeLoadBalancedServerInstancesResponse from ncloud_loadbalancer.model.change_load_balancer_instance_configuration_request import ChangeLoadBalancerInstanceConfigurationRequest from ncloud_loadbalancer.model.change_load_balancer_instance_configuration_response import ChangeLoadBalancerInstanceConfigurationResponse from ncloud_loadbalancer.model.common_code import CommonCode from ncloud_loadbalancer.model.create_load_balancer_instance_request import CreateLoadBalancerInstanceRequest from ncloud_loadbalancer.model.create_load_balancer_instance_response import CreateLoadBalancerInstanceResponse from ncloud_loadbalancer.model.delete_load_balancer_instances_request import DeleteLoadBalancerInstancesRequest from ncloud_loadbalancer.model.delete_load_balancer_instances_response import DeleteLoadBalancerInstancesResponse from ncloud_loadbalancer.model.delete_load_balancer_ssl_certificate_request import DeleteLoadBalancerSslCertificateRequest from ncloud_loadbalancer.model.delete_load_balancer_ssl_certificate_response import DeleteLoadBalancerSslCertificateResponse from ncloud_loadbalancer.model.get_load_balanced_server_instance_list_request import GetLoadBalancedServerInstanceListRequest from ncloud_loadbalancer.model.get_load_balanced_server_instance_list_response import GetLoadBalancedServerInstanceListResponse from ncloud_loadbalancer.model.get_load_balancer_instance_list_request import GetLoadBalancerInstanceListRequest from ncloud_loadbalancer.model.get_load_balancer_instance_list_response import GetLoadBalancerInstanceListResponse from ncloud_loadbalancer.model.get_load_balancer_ssl_certificate_list_request import GetLoadBalancerSslCertificateListRequest from ncloud_loadbalancer.model.get_load_balancer_ssl_certificate_list_response import GetLoadBalancerSslCertificateListResponse from ncloud_loadbalancer.model.get_load_balancer_target_server_instance_list_request import GetLoadBalancerTargetServerInstanceListRequest from ncloud_loadbalancer.model.get_load_balancer_target_server_instance_list_response import GetLoadBalancerTargetServerInstanceListResponse from ncloud_loadbalancer.model.load_balanced_server_instance import LoadBalancedServerInstance from ncloud_loadbalancer.model.load_balancer_instance import LoadBalancerInstance from ncloud_loadbalancer.model.load_balancer_rule import LoadBalancerRule from ncloud_loadbalancer.model.load_balancer_rule_parameter import LoadBalancerRuleParameter from ncloud_loadbalancer.model.region import Region from ncloud_loadbalancer.model.server_health_check_status import ServerHealthCheckStatus from ncloud_loadbalancer.model.server_instance import ServerInstance from ncloud_loadbalancer.model.ssl_certificate import SslCertificate from ncloud_loadbalancer.model.zone import Zone
69.518519
140
0.922749
7224c4154fa34161e3731f41913fab8ab366d1ee
6,667
py
Python
mayan/apps/documents/links/document_version_page_links.py
atitaya1412/Mayan-EDMS
bda9302ba4b743e7d829ad118b8b836221888172
[ "Apache-2.0" ]
343
2015-01-05T14:19:35.000Z
2018-12-10T19:07:48.000Z
mayan/apps/documents/links/document_version_page_links.py
atitaya1412/Mayan-EDMS
bda9302ba4b743e7d829ad118b8b836221888172
[ "Apache-2.0" ]
191
2015-01-03T00:48:19.000Z
2018-11-30T09:10:25.000Z
mayan/apps/documents/links/document_version_page_links.py
atitaya1412/Mayan-EDMS
bda9302ba4b743e7d829ad118b8b836221888172
[ "Apache-2.0" ]
257
2019-05-14T10:26:37.000Z
2022-03-30T03:37:36.000Z
from django.utils.translation import ugettext_lazy as _ from mayan.apps.navigation.classes import Link from ..icons import ( icon_document_version_page_delete, icon_document_version_page_list, icon_document_version_page_list_append, icon_document_version_page_list_remap, icon_document_version_page_list_reset, icon_document_version_page_navigation_first, icon_document_version_page_navigation_last, icon_document_version_page_navigation_next, icon_document_version_page_navigation_previous, icon_document_version_page_return_to_document, icon_document_version_page_return_to_document_version, icon_document_version_page_return_to_document_version_page_list, icon_document_version_page_rotate_left, icon_document_version_page_rotate_right, icon_document_version_page_view, icon_document_version_page_view_reset, icon_document_version_page_zoom_in, icon_document_version_page_zoom_out ) from ..permissions import ( permission_document_version_edit, permission_document_version_view, permission_document_view ) from ..settings import setting_zoom_max_level, setting_zoom_min_level def is_first_page(context): return context['resolved_object'].siblings.first() == context['resolved_object'] def is_last_page(context): return context['resolved_object'].siblings.last() == context['resolved_object'] def is_max_zoom(context): return context['zoom'] >= setting_zoom_max_level.value def is_min_zoom(context): return context['zoom'] <= setting_zoom_min_level.value link_document_version_page_delete = Link( args='resolved_object.pk', icon=icon_document_version_page_delete, permissions=(permission_document_version_edit,), tags='dangerous', text=_('Delete'), view='documents:document_version_page_delete' ) link_document_version_page_list = Link( args='resolved_object.pk', icon=icon_document_version_page_list, permissions=(permission_document_version_view,), text=_('Pages'), view='documents:document_version_page_list' ) link_document_version_page_list_append = Link( args='resolved_object.pk', icon=icon_document_version_page_list_append, permissions=(permission_document_version_edit,), text=_('Append all pages'), view='documents:document_version_page_list_append' ) link_document_version_page_list_remap = Link( args='resolved_object.pk', icon=icon_document_version_page_list_remap, permissions=(permission_document_version_edit,), text=_('Remap pages'), view='documents:document_version_page_list_remap' ) link_document_version_page_list_reset = Link( args='resolved_object.pk', icon=icon_document_version_page_list_reset, permissions=(permission_document_version_edit,), text=_('Reset pages'), view='documents:document_version_page_list_reset' ) link_document_version_page_navigation_first = Link( args='resolved_object.pk', conditional_disable=is_first_page, icon=icon_document_version_page_navigation_first, keep_query=True, permissions=(permission_document_version_view,), text=_('First page'), view='documents:document_version_page_navigation_first' ) link_document_version_page_navigation_last = Link( args='resolved_object.pk', conditional_disable=is_last_page, icon=icon_document_version_page_navigation_last, keep_query=True, text=_('Last page'), permissions=(permission_document_version_view,), view='documents:document_version_page_navigation_last' ) link_document_version_page_navigation_previous = Link( args='resolved_object.pk', conditional_disable=is_first_page, icon=icon_document_version_page_navigation_previous, keep_query=True, permissions=(permission_document_version_view,), text=_('Previous page'), view='documents:document_version_page_navigation_previous' ) link_document_version_page_navigation_next = Link( args='resolved_object.pk', conditional_disable=is_last_page, icon=icon_document_version_page_navigation_next, keep_query=True, text=_('Next page'), permissions=(permission_document_version_view,), view='documents:document_version_page_navigation_next' ) link_document_version_page_return_to_document = Link( args='resolved_object.document_version.document.pk', icon=icon_document_version_page_return_to_document, permissions=(permission_document_view,), text=_('Document'), view='documents:document_preview' ) link_document_version_page_return_to_document_version = Link( args='resolved_object.document_version.pk', icon=icon_document_version_page_return_to_document_version, permissions=(permission_document_version_view,), text=_('Document version'), view='documents:document_version_preview' ) link_document_version_page_return_to_document_version_page_list = Link( args='resolved_object.document_version.pk', icon=icon_document_version_page_return_to_document_version_page_list, permissions=(permission_document_version_view,), text=_('Document version pages'), view='documents:document_version_page_list' ) link_document_version_page_rotate_left = Link( args='resolved_object.pk', icon=icon_document_version_page_rotate_left, keep_query=True, permissions=(permission_document_version_view,), text=_('Rotate left'), view='documents:document_version_page_rotate_left' ) link_document_version_page_rotate_right = Link( args='resolved_object.pk', icon=icon_document_version_page_rotate_right, keep_query=True, permissions=(permission_document_version_view,), text=_('Rotate right'), view='documents:document_version_page_rotate_right' ) link_document_version_page_view = Link( args='resolved_object.pk', icon=icon_document_version_page_view, permissions=(permission_document_version_view,), text=_('Page image'), view='documents:document_version_page_view' ) link_document_version_page_view_reset = Link( args='resolved_object.pk', icon=icon_document_version_page_view_reset, permissions=(permission_document_version_view,), text=_('Reset view'), view='documents:document_version_page_view_reset' ) link_document_version_page_zoom_in = Link( args='resolved_object.pk', conditional_disable=is_max_zoom, icon=icon_document_version_page_zoom_in, keep_query=True, permissions=(permission_document_version_view,), text=_('Zoom in'), view='documents:document_version_page_zoom_in' ) link_document_version_page_zoom_out = Link( args='resolved_object.pk', conditional_disable=is_min_zoom, icon=icon_document_version_page_zoom_out, keep_query=True, permissions=(permission_document_version_view,), text=_('Zoom out'), view='documents:document_version_page_zoom_out' )
44.446667
84
0.818359
fbbfa89ebe5b550006b541f5e8d75616bd047c14
1,905
py
Python
data_prep/MP2RAGE/15_cmb_all_masks.py
MSchnei/MRI_segmentation_preparation_scripts
02f65b584e09908247202fff57714b63ef44e7dd
[ "MIT" ]
1
2022-03-17T15:46:25.000Z
2022-03-17T15:46:25.000Z
data_prep/MP2RAGE/15_cmb_all_masks.py
MSchnei/MRI_segmentation_preparation_scripts
02f65b584e09908247202fff57714b63ef44e7dd
[ "MIT" ]
null
null
null
data_prep/MP2RAGE/15_cmb_all_masks.py
MSchnei/MRI_segmentation_preparation_scripts
02f65b584e09908247202fff57714b63ef44e7dd
[ "MIT" ]
null
null
null
"""Opening closing operations on MRI data (nifti).""" import os import numpy as np from nibabel import load, save, Nifti1Image # set analysis path analysispath = str(os.environ['parent_path']) + "/data/shared_data/data_mp2rage" # set list with subj names subjnames = [ 'sub-001', 'sub-013', 'sub-014', 'sub-019', ] # set list with tissue labels labellist = ['_csf', '_vessels', '_subcortical', '_sinus', '_wm', '_ventricles', '_gm'] # set array with numerical values in order corresponding to labels list aryvalues = np.array([3, 6, 5, 7, 1, 4, 2], dtype=np.int32) for subj in subjnames: print('Working on ' + subj) # create path to different labels and store paths in pathlist pathlist = [] for labelname in labellist: pathlist.append(os.path.join(analysispath, 'derivatives', subj, 'labels', subj + labelname + '.nii.gz')) # create nii object for every different label and store in niilist niilist = [] for path in pathlist: niilist.append(load(path)) # Loop over list with nii objects to get data for indNii, nii in enumerate(niilist): # load data as boolean tempbool = nii.get_data().astype(np.bool) if indNii == 0: dataOut = np.zeros((tempbool.shape), dtype=np.int32) # retrieve value that should be assigned tempval = aryvalues[indNii] # assign this value to data points indexed by boolean dataOut[tempbool] = tempval # Extract directory name dirname = os.path.dirname(niilist[0].get_filename()) niiheader = niilist[0].header niiaffine = niilist[0].affine # save as nifti out = Nifti1Image(dataOut, header=niiheader, affine=niiaffine) out.set_data_dtype(np.int32) save(out, os.path.join(dirname, subj + '_all_labels_v01.nii.gz')) print '... image composed.'
29.765625
80
0.645669
f90a1b6d424f52c929c7aeed117d3747ba6850fe
5,888
py
Python
src/pycycle/nozzle.py
OpenMDAO-Plugins/pyCycle
e55f9cbd0d596049bfbc45a9b1c4f0b560c9367d
[ "Apache-2.0" ]
3
2016-11-26T17:19:32.000Z
2020-07-07T14:50:22.000Z
src/pycycle/nozzle.py
jcchin/pyCycle
1a9807901af9d85b667588e8810d86aefde7bd9e
[ "Apache-2.0" ]
null
null
null
src/pycycle/nozzle.py
jcchin/pyCycle
1a9807901af9d85b667588e8810d86aefde7bd9e
[ "Apache-2.0" ]
5
2015-07-02T07:35:05.000Z
2016-11-26T17:18:30.000Z
from openmdao.main.api import Component from openmdao.lib.datatypes.api import Float, VarTree, Enum from pycycle.flowstation import FlowStationVar, FlowStation from pycycle.cycle_component import CycleComponent class Nozzle(CycleComponent): """Calculates the gross thrust for a convergent-divergent nozzle, assuming an ideally expanded exit condition""" Fl_ref = FlowStationVar(iotype="in", desc="Flowstation with reference exit conditions", copy=None) Fl_I = FlowStationVar(iotype="in", desc="incoming air stream to nozzle", copy=None) dPqP = Float(0, iotype="in", desc="ratio of change in total pressure to incomming total pressure") Fl_O = FlowStationVar(iotype="out", desc="outgoing air stream from nozzle", copy=None) Athroat_dmd = Float(iotype="out", desc="demand throat area for the nozzle at the operating condition.") Athroat_des = Float(iotype="out", desc="nozzle throat area at the design condition") Aexit_des = Float(iotype="out", desc="nozzle exit area at the design condition") PsSubsonic = Float(iotype="out", desc="back pressure corresponding to subsonic expansion") PsSupersonic = Float(iotype="out", desc="back pressure corresponding to supersonic expansion") PsShock = Float(iotype="out", desc="back pressure corresponding to a normal shock at the nozzle exit") Fg = Float(iotype="out", desc="gross thrust from nozzle", units="lbf") PR = Float(iotype="out", desc="ratio between total and static pressures at the nozzle exit") AR = Float(iotype="out", desc="ratio of exit area to throat area") #used for mass flow balance iterations WqAexit = Float(iotype="out", desc="mass flow per unit area at operating condition", units="lbm/(s*inch**2)") WqAexit_dmd = Float(iotype="out", desc="demand mass flow per unit area at operating condition", units="lbm/(s*inch**2)") switchRegime = Enum(('UNCHOKED', 'NORMAL_SHOCK', 'UNDEREXPANDED', 'PERFECTLY_EXPANDED' ,'OVEREXPANDED'), iotype="out", desc="nozzle operating regime") def shockPR(self, mach, gamma): """Calculates stagnation pressure ratio across a normal shock wave""" MN = mach g = gamma return (((g+1)/2*MN**2/(1+(g-1)/2*MN**2))**(g/(g-1)) * (1/ (2*g/(g+1)*MN**2 - (g-1)/(g+1)))**(1/(g-1))) def execute(self): Fl_I = self.Fl_I Fl_O = self.Fl_O Fl_ref = self.Fl_ref fs_throat = FlowStation() fs_exitIdeal = FlowStation() fs_throat.W = Fl_I.W Pt_out = (1-self.dPqP)*Fl_I.Pt fs_throat.setTotalTP( Fl_I.Tt, Pt_out ) fs_throat.Mach = 1.0 self.Athroat_dmd = fs_throat.area fs_exitIdeal.W = Fl_I.W fs_exitIdeal.setTotalTP( Fl_I.Tt, Pt_out ) fs_exitIdeal.Ps = Fl_ref.Ps Fl_O.W = Fl_I.W Fl_O.setTotalTP( Fl_I.Tt, Pt_out ) Fl_O.Mach = fs_exitIdeal.Mach if self.run_design: # Design Calculations at throat self.Athroat_des = fs_throat.area # Design calculations at exit self.Aexit_des = fs_exitIdeal.area self.switchRegime = "PERFECTLY_EXPANDED" else: # Find subsonic solution, curve 4 Fl_O.sub_or_super = "sub" Fl_O.area = self.Aexit_des MachSubsonic = Fl_O.Mach if MachSubsonic > 1: print "invalid nozzle subsonic solution" PsSubsonic = Fl_O.Ps # Find supersonic solution, curve 5 Fl_O.sub_or_super = "super" Fl_O.area = self.Aexit_des MachSupersonic = Fl_O.Mach PsSupersonic = Fl_O.Ps # normal shock at nozzle exit, curve c Fl_O.sub_or_super = "sub" Msuper = MachSupersonic PtExit = self.shockPR( Msuper, fs_throat.gams ) * fs_throat.Pt Fl_O.setTotalTP( fs_throat.Tt, PtExit ) Fl_O.area = self.Aexit_des PsShock = Fl_O.Ps # find correct operating regime # curves 1 to 4 if Fl_ref.Ps >= PsSubsonic: self.switchRegime = "UNCHOKED" fs_throat.sub_or_super = "sub" Fl_O.sub_or_super = "sub" fs_throat.area = self.Athroat_des Fl_O.setTotalTP( fs_throat.Tt, fs_throat.Pt ) Fl_O.area = self.Aexit_des # between curves 4 and c elif Fl_ref.Ps < PsSubsonic and Fl_ref.Ps >= PsShock: self.switchRegime = "NORMAL_SHOCK" Fl_O.sub_or_super = "sub" Fl_O.Ps = Fl_ref.Ps # between curves c and 5 elif Fl_ref.Ps < PsShock and Fl_ref.Ps > PsSupersonic: self.switchRegime = "OVEREXPANDED" Fl_O.sub_or_super = "super" Fl_O.setTotalTP( fs_throat.Tt, fs_throat.Pt ) Fl_O.area = self.Aexit_des # between curves 5 and e elif Fl_ref.Ps <= PsSupersonic: self.switchRegime = "UNDEREXPANDED" Fl_O.sub_or_super = "super" Fl_O.setTotalTP( fs_throat.Tt, fs_throat.Pt ) Fl_O.area = self.Aexit_des if abs(Fl_ref.Ps - PsSupersonic)/Fl_ref.Ps < .001: self.switchRegime = "PERFECTLY_EXPANDED" self.Fg = Fl_O.W*Fl_O.Vflow/32.174 + Fl_O.area*(Fl_O.Ps-Fl_ref.Ps) self.PR = fs_throat.Pt/Fl_O.Ps self.AR = Fl_O.area/fs_throat.area self.WqAexit = Fl_I.W/self.Athroat_des self.WqAexit_dmd = Fl_I.W/self.Athroat_dmd if self.switchRegime == "UNCHOKED": self.WqAexit = Fl_I.W/Fl_ref.Ps self.WqAexit_dmd = Fl_I.W/Fl_O.Ps if __name__ == "__main__": from openmdao.main.api import set_as_top c = set_as_top(Nozzle()) c.run()
38.993377
124
0.608696
3aab721326294ba8b0b7d6710684bdb1b4563719
1,674
py
Python
modules/utils.py
merlinfuchs/clancy
7c08025a47a48ae2fa90ce8916fb32fa6311db68
[ "MIT" ]
null
null
null
modules/utils.py
merlinfuchs/clancy
7c08025a47a48ae2fa90ce8916fb32fa6311db68
[ "MIT" ]
null
null
null
modules/utils.py
merlinfuchs/clancy
7c08025a47a48ae2fa90ce8916fb32fa6311db68
[ "MIT" ]
null
null
null
from dbots.cmd import * from dbots import rest from util import * class UtilsModule(Module): @Module.command() async def nopings(self, ctx, message): """ Send the message without having to worry about pings """ await send_webhook_response(ctx, message) @Module.command() async def embed(self, ctx, title, url, description): """ Create a simple embed message """ try: await send_webhook_response(ctx, embeds=[{ "title": title, "url": url, "description": description }]) except rest.HTTPBadRequest: await ctx.respond("Something went wrong :(\n" "Did you use a valid url?", ephemeral=True) @Module.command( extends=dict( expression="The expression to evaluate (e.g. 1+1)" ) ) async def calculate(self, ctx, expression): """ Evaluate a math expression """ async with ctx.bot.session.post("http://api.mathjs.org/v4/", json={"expr": expression}) as resp: data = await resp.json() if data["error"] is not None: await ctx.respond(data["error"], ephemeral=True) return await send_webhook_response(ctx, f"`{expression} = {data['result']}`") # @Module.command( # extends=dict( # message_url="The URL or ID of the message to quote", # text="Your response text" # ) # ) async def quote(self, message_url: str.strip, text): """ Use this to quote message from other channels """
28.862069
104
0.546595
bdeb6fe03c20487e7edcc878dcd2309d32e5097b
26,083
py
Python
crc/services/study_service.py
sartography/cr-connect-workflow
e0d1f63c082e9f4e6e3593c45d615afe04f42729
[ "MIT" ]
2
2019-12-02T12:39:21.000Z
2022-01-10T23:31:36.000Z
crc/services/study_service.py
sartography/cr-connect-workflow
e0d1f63c082e9f4e6e3593c45d615afe04f42729
[ "MIT" ]
341
2019-12-11T15:23:59.000Z
2022-03-22T19:36:37.000Z
crc/services/study_service.py
sartography/cr-connect-workflow
e0d1f63c082e9f4e6e3593c45d615afe04f42729
[ "MIT" ]
4
2021-03-23T19:17:14.000Z
2022-03-10T03:12:10.000Z
import urllib from copy import copy from datetime import datetime from typing import List import flask import requests from SpiffWorkflow import WorkflowException from SpiffWorkflow.bpmn.PythonScriptEngine import Box from SpiffWorkflow.exceptions import WorkflowTaskExecException from ldap3.core.exceptions import LDAPSocketOpenError from crc import db, session, app from crc.api.common import ApiError from crc.models.data_store import DataStoreModel from crc.models.email import EmailModel from crc.models.file import FileModel, File, FileSchema from crc.models.ldap import LdapSchema from crc.models.protocol_builder import ProtocolBuilderStudy, ProtocolBuilderStatus from crc.models.study import StudyModel, Study, StudyStatus, Category, WorkflowMetadata, StudyEventType, StudyEvent, \ IrbStatus, StudyAssociated, StudyAssociatedSchema from crc.models.task_event import TaskEventModel, TaskEvent from crc.models.workflow import WorkflowSpecCategoryModel, WorkflowModel, WorkflowSpecModel, WorkflowState, \ WorkflowStatus, WorkflowSpecDependencyFile from crc.services.document_service import DocumentService from crc.services.file_service import FileService from crc.services.ldap_service import LdapService from crc.services.lookup_service import LookupService from crc.services.protocol_builder import ProtocolBuilderService from crc.services.workflow_processor import WorkflowProcessor class StudyService(object): """Provides common tools for working with a Study""" INVESTIGATOR_LIST = "investigators.xlsx" # A reference document containing details about what investigators to show, and when. @staticmethod def _is_valid_study(study_id): study_info = ProtocolBuilderService().get_study_details(study_id) if 'REVIEW_TYPE' in study_info.keys() and study_info['REVIEW_TYPE'] in [2, 3, 23, 24]: return True return False def get_studies_for_user(self, user, include_invalid=False): """Returns a list of all studies for the given user.""" associated = session.query(StudyAssociated).filter_by(uid=user.uid, access=True).all() associated_studies = [x.study_id for x in associated] db_studies = session.query(StudyModel).filter((StudyModel.user_uid == user.uid) | (StudyModel.id.in_(associated_studies))).all() studies = [] for study_model in db_studies: if include_invalid or self._is_valid_study(study_model.id): studies.append(StudyService.get_study(study_model.id, study_model, do_status=False)) return studies @staticmethod def get_all_studies_with_files(): """Returns a list of all studies""" db_studies = session.query(StudyModel).all() studies = [] for s in db_studies: study = Study.from_model(s) study.files = FileService.get_files_for_study(study.id) studies.append(study) return studies @staticmethod def get_study(study_id, study_model: StudyModel = None, do_status=False): """Returns a study model that contains all the workflows organized by category. IMPORTANT: This is intended to be a lightweight call, it should never involve loading up and executing all the workflows in a study to calculate information.""" if not study_model: study_model = session.query(StudyModel).filter_by(id=study_id).first() study = Study.from_model(study_model) study.create_user_display = LdapService.user_info(study.user_uid).display_name last_event: TaskEventModel = session.query(TaskEventModel) \ .filter_by(study_id=study_id, action='COMPLETE') \ .order_by(TaskEventModel.date.desc()).first() if last_event is None: study.last_activity_user = 'Not Started' study.last_activity_date = "" else: study.last_activity_user = LdapService.user_info(last_event.user_uid).display_name study.last_activity_date = last_event.date study.categories = StudyService.get_categories() workflow_metas = StudyService._get_workflow_metas(study_id) files = FileService.get_files_for_study(study.id) files = (File.from_models(model, FileService.get_file_data(model.id), DocumentService.get_dictionary()) for model in files) study.files = list(files) # Calling this line repeatedly is very very slow. It creates the # master spec and runs it. Don't execute this for Abandoned studies, as # we don't have the information to process them. if study.status != StudyStatus.abandoned: # this line is taking 99% of the time that is used in get_study. # see ticket #196 if do_status: # __get_study_status() runs the master workflow to generate the status dictionary status = StudyService._get_study_status(study_model) study.warnings = StudyService._update_status_of_workflow_meta(workflow_metas, status) # Group the workflows into their categories. for category in study.categories: category.workflows = {w for w in workflow_metas if w.category_id == category.id} return study @staticmethod def get_study_associate(study_id=None, uid=None): """ gets details on how one uid is related to a study, returns a StudyAssociated model """ study = db.session.query(StudyModel).filter(StudyModel.id == study_id).first() if study is None: raise ApiError('study_not_found', 'No study found with id = %d' % study_id) if uid is None: raise ApiError('uid not specified', 'A valid uva uid is required for this function') if uid == study.user_uid: return StudyAssociated(uid=uid, role='owner', send_email=True, access=True) people = db.session.query(StudyAssociated).filter((StudyAssociated.study_id == study_id) & (StudyAssociated.uid == uid)).first() if people: return people else: raise ApiError('uid_not_associated_with_study', "user id %s was not associated with study number %d" % (uid, study_id)) @staticmethod def get_study_associates(study_id): """ gets all associated people for a study from the database """ study = db.session.query(StudyModel).filter(StudyModel.id == study_id).first() if study is None: raise ApiError('study_not_found', 'No study found with id = %d' % study_id) people = db.session.query(StudyAssociated).filter(StudyAssociated.study_id == study_id).all() ldap_info = LdapService.user_info(study.user_uid) owner = StudyAssociated(uid=study.user_uid, role='owner', send_email=True, access=True, ldap_info=ldap_info) people.append(owner) return people @staticmethod def update_study_associates(study_id, associates): """ updates the list of associates in the database for a study_id and a list of dicts that contains associates """ if study_id is None: raise ApiError('study_id not specified', "This function requires the study_id parameter") for person in associates: if not LdapService.user_exists(person.get('uid', 'impossible_uid')): if person.get('uid', 'impossible_uid') == 'impossible_uid': raise ApiError('associate with no uid', 'One of the associates passed as a parameter doesnt have ' 'a uid specified') raise ApiError('trying_to_grant_access_to_user_not_found_in_ldap', "You are trying to grant access to " "%s, but that user was not found in " "ldap " "- please check to ensure it is a " "valid uva uid" % person.get('uid')) study = db.session.query(StudyModel).filter(StudyModel.id == study_id).first() if study is None: raise ApiError('study_id not found', "A study with id# %d was not found" % study_id) db.session.query(StudyAssociated).filter(StudyAssociated.study_id == study_id).delete() for person in associates: newAssociate = StudyAssociated() newAssociate.study_id = study_id newAssociate.uid = person['uid'] newAssociate.role = person.get('role', None) newAssociate.send_email = person.get('send_email', False) newAssociate.access = person.get('access', False) session.add(newAssociate) session.commit() @staticmethod def update_study_associate(study_id=None, uid=None, role="", send_email=False, access=False): if study_id is None: raise ApiError('study_id not specified', "This function requires the study_id parameter") if uid is None: raise ApiError('uid not specified', "This function requires a uva uid parameter") if not LdapService.user_exists(uid): raise ApiError('trying_to_grant_access_to_user_not_found_in_ldap', "You are trying to grant access to " "%s but they were not found in ldap " "- please check to ensure it is a " "valid uva uid" % uid) study = db.session.query(StudyModel).filter(StudyModel.id == study_id).first() if study is None: raise ApiError('study_id not found', "A study with id# %d was not found" % study_id) db.session.query(StudyAssociated).filter((StudyAssociated.study_id == study_id) & (StudyAssociated.uid == uid)).delete() newAssociate = StudyAssociated() newAssociate.study_id = study_id newAssociate.uid = uid newAssociate.role = role newAssociate.send_email = send_email newAssociate.access = access session.add(newAssociate) session.commit() return True @staticmethod def delete_study(study_id): session.query(TaskEventModel).filter_by(study_id=study_id).delete() session.query(StudyAssociated).filter_by(study_id=study_id).delete() session.query(EmailModel).filter_by(study_id=study_id).delete() session.query(StudyEvent).filter_by(study_id=study_id).delete() for workflow in session.query(WorkflowModel).filter_by(study_id=study_id): StudyService.delete_workflow(workflow.id) study = session.query(StudyModel).filter_by(id=study_id).first() session.delete(study) session.commit() @staticmethod def delete_workflow(workflow_id): workflow = session.query(WorkflowModel).get(workflow_id) if not workflow: return session.query(TaskEventModel).filter_by(workflow_id=workflow.id).delete() session.query(WorkflowSpecDependencyFile).filter_by(workflow_id=workflow_id).delete(synchronize_session='fetch') session.query(FileModel).filter_by(workflow_id=workflow_id).update({'archived': True, 'workflow_id': None}) session.delete(workflow) session.commit() @staticmethod def get_categories(): """Returns a list of category objects, in the correct order.""" cat_models = db.session.query(WorkflowSpecCategoryModel) \ .order_by(WorkflowSpecCategoryModel.display_order).all() categories = [] for cat_model in cat_models: categories.append(Category(cat_model)) return categories @staticmethod def get_documents_status(study_id): """Returns a list of documents related to the study, and any file information that is available..""" # Get PB required docs, if Protocol Builder Service is enabled. if ProtocolBuilderService.is_enabled() and study_id is not None: try: pb_docs = ProtocolBuilderService.get_required_docs(study_id=study_id) except requests.exceptions.ConnectionError as ce: app.logger.error(f'Failed to connect to the Protocol Builder - {str(ce)}', exc_info=True) pb_docs = [] else: pb_docs = [] # Loop through all known document types, get the counts for those files, # and use pb_docs to mark those as required. doc_dictionary = DocumentService.get_dictionary() documents = {} for code, doc in doc_dictionary.items(): doc['required'] = False if ProtocolBuilderService.is_enabled() and doc['id']: pb_data = next((item for item in pb_docs if int(item['AUXDOCID']) == int(doc['id'])), None) if pb_data: doc['required'] = True doc['study_id'] = study_id doc['code'] = code # Make a display name out of categories name_list = [] for cat_key in ['category1', 'category2', 'category3']: if doc[cat_key] not in ['', 'NULL', None]: name_list.append(doc[cat_key]) doc['display_name'] = ' / '.join(name_list) # For each file, get associated workflow status doc_files = FileService.get_files_for_study(study_id=study_id, irb_doc_code=code) doc['count'] = len(doc_files) doc['files'] = [] # when we run tests - it doesn't look like the user is available # so we return a bogus token token = 'not_available' if hasattr(flask.g, 'user'): token = flask.g.user.encode_auth_token() for file_model in doc_files: file = File.from_models(file_model, FileService.get_file_data(file_model.id), []) file_data = FileSchema().dump(file) del file_data['document'] data = db.session.query(DataStoreModel).filter(DataStoreModel.file_id == file.id).all() data_store_data = {} for d in data: data_store_data[d.key] = d.value file_data["data_store"] = data_store_data doc['files'].append(Box(file_data)) # update the document status to match the status of the workflow it is in. if 'status' not in doc or doc['status'] is None: workflow: WorkflowModel = session.query(WorkflowModel).filter_by(id=file.workflow_id).first() doc['status'] = workflow.status.value documents[code] = doc return Box(documents) @staticmethod def get_investigator_dictionary(): """Returns a dictionary of document details keyed on the doc_code.""" file_data = FileService.get_reference_file_data(StudyService.INVESTIGATOR_LIST) lookup_model = LookupService.get_lookup_model_for_file_data(file_data, 'code', 'label') doc_dict = {} for lookup_data in lookup_model.dependencies: doc_dict[lookup_data.value] = lookup_data.data return doc_dict @staticmethod def get_investigators(study_id, all=False): """Convert array of investigators from protocol builder into a dictionary keyed on the type. """ # Loop through all known investigator types as set in the reference file inv_dictionary = StudyService.get_investigator_dictionary() # Get PB required docs pb_investigators = ProtocolBuilderService.get_investigators(study_id=study_id) # It is possible for the same type to show up more than once in some circumstances, in those events # append a counter to the name. investigators = {} for i_type in inv_dictionary: pb_data_entries = list(item for item in pb_investigators if item['INVESTIGATORTYPE'] == i_type) entry_count = 0 investigators[i_type] = copy(inv_dictionary[i_type]) investigators[i_type]['user_id'] = None for pb_data in pb_data_entries: entry_count += 1 if entry_count == 1: t = i_type else: t = i_type + "_" + str(entry_count) investigators[t] = copy(inv_dictionary[i_type]) investigators[t]['user_id'] = pb_data["NETBADGEID"] investigators[t].update(StudyService.get_ldap_dict_if_available(pb_data["NETBADGEID"])) if not all: investigators = dict(filter(lambda elem: elem[1]['user_id'] is not None, investigators.items())) return investigators @staticmethod def get_ldap_dict_if_available(user_id): try: return LdapSchema().dump(LdapService().user_info(user_id)) except ApiError as ae: app.logger.info(str(ae)) return {"error": str(ae)} except LDAPSocketOpenError: app.logger.info("Failed to connect to LDAP Server.") return {} @staticmethod def synch_with_protocol_builder_if_enabled(user): """Assures that the studies we have locally for the given user are in sync with the studies available in protocol builder. """ if ProtocolBuilderService.is_enabled(): app.logger.info("The Protocol Builder is enabled. app.config['PB_ENABLED'] = " + str(app.config['PB_ENABLED'])) # Get studies matching this user from Protocol Builder pb_studies: List[ProtocolBuilderStudy] = ProtocolBuilderService.get_studies(user.uid) # Get studies from the database db_studies = session.query(StudyModel).filter_by(user_uid=user.uid).all() # Update all studies from the protocol builder, create new studies as needed. # Further assures that every active study (that does exist in the protocol builder) # has a reference to every available workflow (though some may not have started yet) for pb_study in pb_studies: new_status = None db_study = next((s for s in db_studies if s.id == pb_study.STUDYID), None) if not db_study: db_study = StudyModel(id=pb_study.STUDYID) db_study.status = None # Force a new sa new_status = StudyStatus.in_progress session.add(db_study) db_studies.append(db_study) db_study.update_from_protocol_builder(pb_study) StudyService._add_all_workflow_specs_to_study(db_study) # If there is a new automatic status change and there isn't a manual change in place, record it. if new_status and db_study.status != StudyStatus.hold: db_study.status = new_status StudyService.add_study_update_event(db_study, status=new_status, event_type=StudyEventType.automatic) # Mark studies as inactive that are no longer in Protocol Builder for study in db_studies: pb_study = next((pbs for pbs in pb_studies if pbs.STUDYID == study.id), None) if not pb_study and study.status != StudyStatus.abandoned: study.status = StudyStatus.abandoned StudyService.add_study_update_event(study, status=StudyStatus.abandoned, event_type=StudyEventType.automatic) db.session.commit() @staticmethod def add_study_update_event(study, status, event_type, user_uid=None, comment=''): study_event = StudyEvent(study=study, status=status, event_type=event_type, user_uid=user_uid, comment=comment) db.session.add(study_event) db.session.commit() @staticmethod def _update_status_of_workflow_meta(workflow_metas, status): # Update the status on each workflow warnings = [] unused_statuses = status.copy() # A list of all the statuses that are not used. for wfm in workflow_metas: unused_statuses.pop(wfm.workflow_spec_id, None) wfm.state_message = '' # do we have a status for you if wfm.workflow_spec_id not in status.keys(): warnings.append(ApiError("missing_status", "No status information provided about workflow %s" % wfm.workflow_spec_id)) continue if not isinstance(status[wfm.workflow_spec_id], dict): warnings.append(ApiError(code='invalid_status', message=f'Status must be a dictionary with "status" and "message" keys. Name is {wfm.workflow_spec_id}. Status is {status[wfm.workflow_spec_id]}')) continue if 'message' in status[wfm.workflow_spec_id].keys(): wfm.state_message = status[wfm.workflow_spec_id]['message'] if 'status' not in status[wfm.workflow_spec_id].keys(): warnings.append(ApiError("missing_status_key", "Workflow '%s' is present in master workflow, but doesn't have a status" % wfm.workflow_spec_id)) continue if not WorkflowState.has_value(status[wfm.workflow_spec_id]['status']): warnings.append(ApiError("invalid_state", "Workflow '%s' can not be set to '%s', should be one of %s" % ( wfm.workflow_spec_id, status[wfm.workflow_spec_id]['status'], ",".join(WorkflowState.list()) ))) continue wfm.state = WorkflowState[status[wfm.workflow_spec_id]['status']] for status in unused_statuses: if isinstance(unused_statuses[status], dict) and 'status' in unused_statuses[status]: warnings.append(ApiError("unmatched_status", "The master workflow provided a status for '%s' a " "workflow that doesn't seem to exist." % status)) return warnings @staticmethod def _get_workflow_metas(study_id): # Add in the Workflows for each category workflow_models = db.session.query(WorkflowModel). \ join(WorkflowSpecModel). \ filter(WorkflowSpecModel.is_master_spec == False). \ filter((WorkflowSpecModel.library == False) | \ (WorkflowSpecModel.library == None)). \ filter(WorkflowModel.study_id == study_id). \ all() workflow_metas = [] for workflow in workflow_models: workflow_metas.append(WorkflowMetadata.from_workflow(workflow)) return workflow_metas @staticmethod def _get_study_status(study_model): """Uses the Top Level Workflow to calculate the status of the study, and it's workflow models.""" master_specs = db.session.query(WorkflowSpecModel). \ filter_by(is_master_spec=True).all() if len(master_specs) < 1: raise ApiError("missing_master_spec", "No specifications are currently marked as the master spec.") if len(master_specs) > 1: raise ApiError("multiple_master_specs", "There is more than one master specification, and I don't know what to do.") return WorkflowProcessor.run_master_spec(master_specs[0], study_model) @staticmethod def _add_all_workflow_specs_to_study(study_model: StudyModel): existing_models = session.query(WorkflowModel).filter(WorkflowModel.study == study_model).all() existing_specs = list(m.workflow_spec_id for m in existing_models) new_specs = session.query(WorkflowSpecModel). \ filter(WorkflowSpecModel.is_master_spec == False). \ filter(WorkflowSpecModel.id.notin_(existing_specs)). \ all() errors = [] for workflow_spec in new_specs: try: StudyService._create_workflow_model(study_model, workflow_spec) except WorkflowTaskExecException as wtee: errors.append(ApiError.from_task("workflow_startup_exception", str(wtee), wtee.task)) except WorkflowException as we: errors.append(ApiError.from_task_spec("workflow_startup_exception", str(we), we.sender)) return errors @staticmethod def _create_workflow_model(study: StudyModel, spec): workflow_model = WorkflowModel(status=WorkflowStatus.not_started, study=study, user_id=None, workflow_spec_id=spec.id, last_updated=datetime.utcnow()) session.add(workflow_model) session.commit() return workflow_model
49.681905
188
0.613273
9bcfa0a5ec4bfa90e04715fd6fc8793e42b2a77f
770
py
Python
subtools/subase.py
huimingz/subtools
185aff705f3730bac5e4d1725c5d24c549e8b0e4
[ "MIT" ]
4
2017-11-27T15:18:33.000Z
2018-07-27T06:30:23.000Z
subtools/subase.py
Kairu-Madigan/subtools
185aff705f3730bac5e4d1725c5d24c549e8b0e4
[ "MIT" ]
1
2021-06-01T22:06:59.000Z
2021-06-01T22:06:59.000Z
subtools/subase.py
huimingz/subtools
185aff705f3730bac5e4d1725c5d24c549e8b0e4
[ "MIT" ]
1
2017-11-27T08:37:35.000Z
2017-11-27T08:37:35.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # author: "Kairu" class Sub(object): def __init__(self): self.text = "" def from_file(self, path, encoding="utf-8", format=None, *args, **kwargs): """从文件中读取字幕内容""" pass def from_str(self, text, format=None, *args, **kwargs): """从字符串中读取字幕内容""" pass def from_bin(self, content, encoding="utf-8", format=None, *args, **kwargs): """从二进制中获取字幕内容""" pass def as_json(self): """返回json序列号数据""" pass def as_pickle(self): """返回pickle序列号数据""" pass def as_str(self): """返回str字幕内容""" pass def as_bin(self): """返回二进制字幕内容""" pass
17.906977
81
0.48961
8d0bf284a91754131c14b3756cff78aca752b622
10,071
py
Python
Lib/site-packages/rest_framework/generics.py
inging44/python3
fcd8d9d2ee54b46b757ecf34f284b4e60a43097a
[ "bzip2-1.0.6" ]
5,079
2015-01-01T03:39:46.000Z
2022-03-31T07:38:22.000Z
Lib/site-packages/rest_framework/generics.py
inging44/python3
fcd8d9d2ee54b46b757ecf34f284b4e60a43097a
[ "bzip2-1.0.6" ]
1,623
2015-01-01T08:06:24.000Z
2022-03-30T19:48:52.000Z
Lib/site-packages/rest_framework/generics.py
inging44/python3
fcd8d9d2ee54b46b757ecf34f284b4e60a43097a
[ "bzip2-1.0.6" ]
2,033
2015-01-04T07:18:02.000Z
2022-03-28T19:55:47.000Z
""" Generic views that provide commonly needed behaviour. """ from __future__ import unicode_literals from django.core.exceptions import ValidationError from django.db.models.query import QuerySet from django.http import Http404 from django.shortcuts import get_object_or_404 as _get_object_or_404 from rest_framework import mixins, views from rest_framework.settings import api_settings def get_object_or_404(queryset, *filter_args, **filter_kwargs): """ Same as Django's standard shortcut, but make sure to also raise 404 if the filter_kwargs don't match the required types. """ try: return _get_object_or_404(queryset, *filter_args, **filter_kwargs) except (TypeError, ValueError, ValidationError): raise Http404 class GenericAPIView(views.APIView): """ Base class for all other generic views. """ # You'll need to either set these attributes, # or override `get_queryset()`/`get_serializer_class()`. # If you are overriding a view method, it is important that you call # `get_queryset()` instead of accessing the `queryset` property directly, # as `queryset` will get evaluated only once, and those results are cached # for all subsequent requests. queryset = None serializer_class = None # If you want to use object lookups other than pk, set 'lookup_field'. # For more complex lookup requirements override `get_object()`. lookup_field = 'pk' lookup_url_kwarg = None # The filter backend classes to use for queryset filtering filter_backends = api_settings.DEFAULT_FILTER_BACKENDS # The style to use for queryset pagination. pagination_class = api_settings.DEFAULT_PAGINATION_CLASS def get_queryset(self): """ Get the list of items for this view. This must be an iterable, and may be a queryset. Defaults to using `self.queryset`. This method should always be used rather than accessing `self.queryset` directly, as `self.queryset` gets evaluated only once, and those results are cached for all subsequent requests. You may want to override this if you need to provide different querysets depending on the incoming request. (Eg. return a list of items that is specific to the user) """ assert self.queryset is not None, ( "'%s' should either include a `queryset` attribute, " "or override the `get_queryset()` method." % self.__class__.__name__ ) queryset = self.queryset if isinstance(queryset, QuerySet): # Ensure queryset is re-evaluated on each request. queryset = queryset.all() return queryset def get_object(self): """ Returns the object the view is displaying. You may want to override this if you need to provide non-standard queryset lookups. Eg if objects are referenced using multiple keyword arguments in the url conf. """ queryset = self.filter_queryset(self.get_queryset()) # Perform the lookup filtering. lookup_url_kwarg = self.lookup_url_kwarg or self.lookup_field assert lookup_url_kwarg in self.kwargs, ( 'Expected view %s to be called with a URL keyword argument ' 'named "%s". Fix your URL conf, or set the `.lookup_field` ' 'attribute on the view correctly.' % (self.__class__.__name__, lookup_url_kwarg) ) filter_kwargs = {self.lookup_field: self.kwargs[lookup_url_kwarg]} obj = get_object_or_404(queryset, **filter_kwargs) # May raise a permission denied self.check_object_permissions(self.request, obj) return obj def get_serializer(self, *args, **kwargs): """ Return the serializer instance that should be used for validating and deserializing input, and for serializing output. """ serializer_class = self.get_serializer_class() kwargs['context'] = self.get_serializer_context() return serializer_class(*args, **kwargs) def get_serializer_class(self): """ Return the class to use for the serializer. Defaults to using `self.serializer_class`. You may want to override this if you need to provide different serializations depending on the incoming request. (Eg. admins get full serialization, others get basic serialization) """ assert self.serializer_class is not None, ( "'%s' should either include a `serializer_class` attribute, " "or override the `get_serializer_class()` method." % self.__class__.__name__ ) return self.serializer_class def get_serializer_context(self): """ Extra context provided to the serializer class. """ return { 'request': self.request, 'format': self.format_kwarg, 'view': self } def filter_queryset(self, queryset): """ Given a queryset, filter it with whichever filter backend is in use. You are unlikely to want to override this method, although you may need to call it either from a list view, or from a custom `get_object` method if you want to apply the configured filtering backend to the default queryset. """ for backend in list(self.filter_backends): queryset = backend().filter_queryset(self.request, queryset, self) return queryset @property def paginator(self): """ The paginator instance associated with the view, or `None`. """ if not hasattr(self, '_paginator'): if self.pagination_class is None: self._paginator = None else: self._paginator = self.pagination_class() return self._paginator def paginate_queryset(self, queryset): """ Return a single page of results, or `None` if pagination is disabled. """ if self.paginator is None: return None return self.paginator.paginate_queryset(queryset, self.request, view=self) def get_paginated_response(self, data): """ Return a paginated style `Response` object for the given output data. """ assert self.paginator is not None return self.paginator.get_paginated_response(data) # Concrete view classes that provide method handlers # by composing the mixin classes with the base view. class CreateAPIView(mixins.CreateModelMixin, GenericAPIView): """ Concrete view for creating a model instance. """ def post(self, request, *args, **kwargs): return self.create(request, *args, **kwargs) class ListAPIView(mixins.ListModelMixin, GenericAPIView): """ Concrete view for listing a queryset. """ def get(self, request, *args, **kwargs): return self.list(request, *args, **kwargs) class RetrieveAPIView(mixins.RetrieveModelMixin, GenericAPIView): """ Concrete view for retrieving a model instance. """ def get(self, request, *args, **kwargs): return self.retrieve(request, *args, **kwargs) class DestroyAPIView(mixins.DestroyModelMixin, GenericAPIView): """ Concrete view for deleting a model instance. """ def delete(self, request, *args, **kwargs): return self.destroy(request, *args, **kwargs) class UpdateAPIView(mixins.UpdateModelMixin, GenericAPIView): """ Concrete view for updating a model instance. """ def put(self, request, *args, **kwargs): return self.update(request, *args, **kwargs) def patch(self, request, *args, **kwargs): return self.partial_update(request, *args, **kwargs) class ListCreateAPIView(mixins.ListModelMixin, mixins.CreateModelMixin, GenericAPIView): """ Concrete view for listing a queryset or creating a model instance. """ def get(self, request, *args, **kwargs): return self.list(request, *args, **kwargs) def post(self, request, *args, **kwargs): return self.create(request, *args, **kwargs) class RetrieveUpdateAPIView(mixins.RetrieveModelMixin, mixins.UpdateModelMixin, GenericAPIView): """ Concrete view for retrieving, updating a model instance. """ def get(self, request, *args, **kwargs): return self.retrieve(request, *args, **kwargs) def put(self, request, *args, **kwargs): return self.update(request, *args, **kwargs) def patch(self, request, *args, **kwargs): return self.partial_update(request, *args, **kwargs) class RetrieveDestroyAPIView(mixins.RetrieveModelMixin, mixins.DestroyModelMixin, GenericAPIView): """ Concrete view for retrieving or deleting a model instance. """ def get(self, request, *args, **kwargs): return self.retrieve(request, *args, **kwargs) def delete(self, request, *args, **kwargs): return self.destroy(request, *args, **kwargs) class RetrieveUpdateDestroyAPIView(mixins.RetrieveModelMixin, mixins.UpdateModelMixin, mixins.DestroyModelMixin, GenericAPIView): """ Concrete view for retrieving, updating or deleting a model instance. """ def get(self, request, *args, **kwargs): return self.retrieve(request, *args, **kwargs) def put(self, request, *args, **kwargs): return self.update(request, *args, **kwargs) def patch(self, request, *args, **kwargs): return self.partial_update(request, *args, **kwargs) def delete(self, request, *args, **kwargs): return self.destroy(request, *args, **kwargs)
34.255102
82
0.63946
73d5a65bf829a99b706a39dfc549d9803ebb4eb0
34
py
Python
02_bootstrap-scripts-python/bootstrap/__main__.py
aws-samples/eks-bootstrap-scripts
9845edf6e64ba98bbb0e1cbb61733fdb2642b126
[ "MIT-0" ]
3
2021-10-24T01:10:58.000Z
2022-01-28T16:20:32.000Z
02_bootstrap-scripts-python/bootstrap/__main__.py
aws-samples/eks-bootstrap-scripts
9845edf6e64ba98bbb0e1cbb61733fdb2642b126
[ "MIT-0" ]
null
null
null
02_bootstrap-scripts-python/bootstrap/__main__.py
aws-samples/eks-bootstrap-scripts
9845edf6e64ba98bbb0e1cbb61733fdb2642b126
[ "MIT-0" ]
1
2021-10-24T01:10:58.000Z
2021-10-24T01:10:58.000Z
from .bootstrap import main main()
17
27
0.794118
153b1db50f22ba5c025e3af9ed9a84793c78f549
708
py
Python
contrib/seeds/makeseeds.py
zahidaliayub/spec-wallet
5d09eee58fb2a87a952985de22a9b40425eb18e0
[ "MIT" ]
null
null
null
contrib/seeds/makeseeds.py
zahidaliayub/spec-wallet
5d09eee58fb2a87a952985de22a9b40425eb18e0
[ "MIT" ]
null
null
null
contrib/seeds/makeseeds.py
zahidaliayub/spec-wallet
5d09eee58fb2a87a952985de22a9b40425eb18e0
[ "MIT" ]
5
2015-08-15T20:52:25.000Z
2021-03-13T08:10:05.000Z
#!/usr/bin/env python # # Generate pnSeed[] from Pieter's DNS seeder # NSEEDS=600 import re import sys from subprocess import check_output def main(): lines = sys.stdin.readlines() ips = [] pattern = re.compile(r"^(\d{1,3})\.(\d{1,3})\.(\d{1,3})\.(\d{1,3}):4319") for line in lines: m = pattern.match(line) if m is None: continue ip = 0 for i in range(0,4): ip = ip + (int(m.group(i+1)) << (8*(i))) if ip == 0: continue ips.append(ip) for row in range(0, min(NSEEDS,len(ips)), 8): print " " + ", ".join([ "0x%08x"%i for i in ips[row:row+8] ]) + "," if __name__ == '__main__': main()
21.454545
78
0.508475
8c0a211699704036184f1e4e306caf82e49c88ef
6,357
py
Python
python/eva/__init__.py
seounghwan-oh/py_EVA_for_homomorphic_encryption
d1f2895ba54bc4a7204b6188f608e82c9edf5868
[ "MIT" ]
119
2020-11-21T04:03:31.000Z
2022-03-31T11:01:00.000Z
python/eva/__init__.py
seounghwan-oh/py_EVA_for_homomorphic_encryption
d1f2895ba54bc4a7204b6188f608e82c9edf5868
[ "MIT" ]
25
2020-11-24T21:38:09.000Z
2022-03-24T12:35:56.000Z
python/eva/__init__.py
seounghwan-oh/py_EVA_for_homomorphic_encryption
d1f2895ba54bc4a7204b6188f608e82c9edf5868
[ "MIT" ]
37
2020-11-23T13:59:49.000Z
2022-03-29T10:07:28.000Z
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT license. from ._eva import * import numbers import psutil # Find the number of CPU cores available to this process. This has to happen before Galois is initialized because it # messes with the CPU affinity of the process. _default_num_threads = len(psutil.Process().cpu_affinity()) # Initialize Galois here (trying to do it in the static initialization step of the native library hangs). _global_guard = _eva._GaloisGuard() # Set the default number of threads to use to match the cores. set_num_threads(_default_num_threads) _current_program = None def _curr(): """ Returns the EvaProgram that is currently in context """ global _current_program if _current_program == None: raise RuntimeError("No Program in context") return _current_program def _py_to_term(x, program): """ Maps supported types into EVA terms """ if isinstance(x, Expr): return x.term elif isinstance(x, list): return program._make_dense_constant(x) elif isinstance(x, numbers.Number): return program._make_uniform_constant(x) elif isinstance(x, Term): return x else: raise TypeError("No conversion to Term available for " + str(x)) def py_to_eva(x, program = None): """ Maps supported types into EVA terms. May be used in library functions to provide uniform support for Expr instances and python types that are convertible into constants in EVA programs. Parameters ---------- x : eva.Expr, EVA native Term, list or a number The value to be converted to an Expr program : EvaProgram, optional The program a new term is created in (if necessary). If None then the program currently in context is used (again if necessary). """ if isinstance(x, Expr): return x else: if program == None: program = _curr() return Expr(_py_to_term(x, program), program) class Expr(): """ Wrapper for EVA's native Term class. Provides operator overloads that create terms in the associated EvaProgram. Attributes ---------- term The EVA native term program : eva.EVAProgram The program the wrapped term is in """ def __init__(self, term, program): self.term = term self.program = program def __add__(self,other): """ Create a new addition term """ return Expr(self.program._make_term(Op.Add, [self.term, _py_to_term(other, self.program)]), self.program) def __radd__(self,other): """ Create a new addition term """ return Expr(self.program._make_term(Op.Add, [_py_to_term(other, self.program), self.term]), self.program) def __sub__(self,other): """ Create a new subtraction term """ return Expr(self.program._make_term(Op.Sub, [self.term, _py_to_term(other, self.program)]), self.program) def __rsub__(self,other): """ Create a new subtraction term """ return Expr(self.program._make_term(Op.Sub, [_py_to_term(other, self.program), self.term]), self.program) def __mul__(self,other): """ Create a new multiplication term """ return Expr(self.program._make_term(Op.Mul, [self.term, _py_to_term(other, self.program)]), self.program) def __rmul__(self,other): """ Create a new multiplication term """ return Expr(self.program._make_term(Op.Mul, [_py_to_term(other, self.program), self.term]), self.program) def __pow__(self,exponent): """ Create exponentiation as nested multiplication terms """ if exponent < 1: raise ValueError("exponent must be greater than zero, got " + exponent) result = self.term for i in range(exponent-1): result = self.program._make_term(Op.Mul, [result, self.term]) return Expr(result, self.program) def __lshift__(self,rotation): """ Create a left rotation term """ return Expr(self.program._make_left_rotation(self.term, rotation), self.program) def __rshift__(self,rotation): """ Create a right rotation term """ return Expr(self.program._make_right_rotation(self.term, rotation), self.program) def __neg__(self): """ Create a negation term """ return Expr(self.program._make_term(Op.Negate, [self.term]), self.program) class EvaProgram(Program): """ A wrapper for EVA's native Program class. Acts as a context manager to set the program the Input and Output free functions operate on. """ def __init__(self, name, vec_size): """ Create a new EvaProgram with a name and a vector size Parameters ---------- name : str The name of the program vec_size : int The number of elements in all values in the program Must be a power-of-two """ super().__init__(name, vec_size) def __enter__(self): global _current_program if _current_program != None: raise RuntimeError("There is already an EVA Program in context") _current_program = self def __exit__(self, exc_type, exc_value, exc_traceback): global _current_program if _current_program != self: raise RuntimeError("This program is not currently in context") _current_program = None def Input(name, is_encrypted=True): """ Create a new named input term in the current EvaProgram Parameters ---------- name : str The name of the input is_encrypted : bool, optional Whether this input should be encrypted or not (default: True) """ program = _curr() return Expr(program._make_input(name, Type.Cipher if is_encrypted else Type.Raw), program) def Output(name, expr): """ Create a new named output term in the current EvaProgram Parameters ---------- name : str The name of the output is_encrypted : bool, optional Whether this input should be encrypted or not (default: True) """ program = _curr() program._make_output(name, _py_to_term(expr, program))
36.959302
116
0.641655
629581506471e64bfc4802c6ae0fd3358ed1bd86
4,099
py
Python
test/functional/feature_includeconf.py
olivingcoin/olivingcoin
e34ee63da7c35c717c8045b1ed1c43562430c508
[ "MIT" ]
null
null
null
test/functional/feature_includeconf.py
olivingcoin/olivingcoin
e34ee63da7c35c717c8045b1ed1c43562430c508
[ "MIT" ]
null
null
null
test/functional/feature_includeconf.py
olivingcoin/olivingcoin
e34ee63da7c35c717c8045b1ed1c43562430c508
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2018 The Olivingcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Tests the includeconf argument Verify that: 1. adding includeconf to the configuration file causes the includeconf file to be loaded in the correct order. 2. includeconf cannot be used as a command line argument. 3. includeconf cannot be used recursively (ie includeconf can only be used from the base config file). 4. multiple includeconf arguments can be specified in the main config file. """ import os from test_framework.test_framework import OlivingcoinTestFramework class IncludeConfTest(OlivingcoinTestFramework): def set_test_params(self): self.setup_clean_chain = False self.num_nodes = 1 def setup_chain(self): super().setup_chain() # Create additional config files # - tmpdir/node0/relative.conf with open(os.path.join(self.options.tmpdir, "node0", "relative.conf"), "w", encoding="utf8") as f: f.write("uacomment=relative\n") # - tmpdir/node0/relative2.conf with open(os.path.join(self.options.tmpdir, "node0", "relative2.conf"), "w", encoding="utf8") as f: f.write("uacomment=relative2\n") with open(os.path.join(self.options.tmpdir, "node0", "olivingcoin.conf"), "a", encoding='utf8') as f: f.write("uacomment=main\nincludeconf=relative.conf\n") def run_test(self): self.log.info("-includeconf works from config file. subversion should end with 'main; relative)/'") subversion = self.nodes[0].getnetworkinfo()["subversion"] assert subversion.endswith("main; relative)/") self.log.info("-includeconf cannot be used as command-line arg") self.stop_node(0) self.nodes[0].assert_start_raises_init_error(extra_args=["-includeconf=relative2.conf"], expected_msg="Error parsing command line arguments: -includeconf cannot be used from commandline; -includeconf=relative2.conf") self.log.info("-includeconf cannot be used recursively. subversion should end with 'main; relative)/'") with open(os.path.join(self.options.tmpdir, "node0", "relative.conf"), "a", encoding="utf8") as f: f.write("includeconf=relative2.conf\n") self.start_node(0) subversion = self.nodes[0].getnetworkinfo()["subversion"] assert subversion.endswith("main; relative)/") self.stop_node(0, expected_stderr="warning: -includeconf cannot be used from included files; ignoring -includeconf=relative2.conf") self.log.info("-includeconf cannot contain invalid arg") # Commented out as long as we ignore invalid arguments in configuration files #with open(os.path.join(self.options.tmpdir, "node0", "relative.conf"), "w", encoding="utf8") as f: # f.write("foo=bar\n") #self.nodes[0].assert_start_raises_init_error(expected_msg="Error reading configuration file: Invalid configuration value foo") self.log.info("-includeconf cannot be invalid path") os.remove(os.path.join(self.options.tmpdir, "node0", "relative.conf")) self.nodes[0].assert_start_raises_init_error(expected_msg="Error reading configuration file: Failed to include configuration file relative.conf") self.log.info("multiple -includeconf args can be used from the base config file. subversion should end with 'main; relative; relative2)/'") with open(os.path.join(self.options.tmpdir, "node0", "relative.conf"), "w", encoding="utf8") as f: # Restore initial file contents f.write("uacomment=relative\n") with open(os.path.join(self.options.tmpdir, "node0", "olivingcoin.conf"), "a", encoding='utf8') as f: f.write("includeconf=relative2.conf\n") self.start_node(0) subversion = self.nodes[0].getnetworkinfo()["subversion"] assert subversion.endswith("main; relative; relative2)/") if __name__ == '__main__': IncludeConfTest().main()
49.385542
224
0.696023
c7298ae350d1549923ca935fd10489213bc869cd
23,057
py
Python
main.py
PritamKamble/ImageEditorPython
f7a5efb1177d0cc5368f6a59a72fc6155d1fc7cc
[ "MIT" ]
1
2021-01-12T10:03:12.000Z
2021-01-12T10:03:12.000Z
main.py
2727-ask/ImageEditorPython
f7a5efb1177d0cc5368f6a59a72fc6155d1fc7cc
[ "MIT" ]
null
null
null
main.py
2727-ask/ImageEditorPython
f7a5efb1177d0cc5368f6a59a72fc6155d1fc7cc
[ "MIT" ]
1
2020-10-01T08:04:15.000Z
2020-10-01T08:04:15.000Z
""" Date: 07 DEC 2018 Author: Pritam Kamble """ from UI.dialogs import UIdialog import grayscale, flip, _filter, _rotation, _enhance from tkinter import * from tkinter import ttk from PIL import Image, ImageTk import threading import copy import datetime # from multiprocessing.pool import ThreadPool from random import choice # constants FILTERS = ( "BLUR", "CONTOUR", "DETAIL", "EDGE_ENHANCE", "EDGE_ENHANCE_MORE", "EMBOSS", "FIND_EDGES", "SHARPEN", "SMOOTH", "SMOOTH_MORE") DEGREES = ("ROTATE_30", "ROTATE_45", "ROTATE_90", "ROTATE_135", "ROTATE_180", "ROTATE_225", "ROTATE_270") class KedClient: def __init__(self): self.root = Tk() # stack to store every edit so users can undo self.stack = [] # image enhancement variables self.image_enhance_min_value = 0.0 self.image_enhance_max_value = 2.0 self.image_brightness = 1.0 self.image_color_balance = 1.0 self.image_sharpness = 1.0 self.image_contrast = 1.0 self.default_image = None self.default_image_copy = None self.init_default_image() print(self.stack) # widgets textVariables self.filter_var = StringVar() self.rotation_var = StringVar() # initializing tkinter widgets self.init_widgets(self.default_image_copy) # adding widgets to grid self.add_widgets_to_frame() # setting root window title self.root.title("K Editor") # fixing root window size self.root.resizable(width=False, height=False) self.root.protocol("WM_DELETE_WINDOW", self.on_closing) self.root.mainloop() def init_default_image(self): self.setDefaultImage("./test_images/touka.png") self.default_image_copy = self.make_image_copy(self.default_image, None) # resizing image to fit picture panel self.default_image_copy = self.resize_image(self.default_image_copy, 800, 500) def setDefaultImage(self, path): """method to set default image in picture panel """ self.default_image = Image.open(path) self.stack.append(self.default_image) def make_image_copy(self, image, image_filename): """method to make image copy""" if image == None: image_copy = Image.open(image_filename).copy() else: image_copy = image.copy() return image_copy def resize_image(self, image, *args): """method to resize image param - args : (width,height) """ # print(args) resized_image = image.resize(args, Image.ANTIALIAS) return resized_image def init_widgets(self, image): """function to initialize Ked widgets""" self.content = ttk.Frame(self.root) # widgets for picture preview self.picture = ImageTk.PhotoImage(image) self.picture_container = ttk.Frame(self.content, width=850, height=500, borderwidth=2, relief="sunken") self.picture_panel = ttk.Label(self.picture_container, image=self.picture) # menu widgets self.menu_frame = ttk.Frame(self.content) self.menu_frame_right = ttk.Frame(self.content) self.grayscale_button = ttk.Button(self.menu_frame, text="Grayscale", command=lambda: self.grayscale_button_handler()) self.flip_button = ttk.Button(self.menu_frame, text="Flip", command=lambda: self.flip_button_handler()) # image enhancing buttons self.brightness_label = ttk.Label(self.menu_frame_right, text="Brightness") self.brightness_button_inc = ttk.Button(self.menu_frame_right, text="+", command=lambda: self.brightness_button_inc_handler(), width=2) self.brightness_button_dec = ttk.Button(self.menu_frame_right, text="-", command=lambda: self.brightness_button_dec_handler(), width=2) self.color_balance_label = ttk.Label(self.menu_frame_right, text="Colorbalance") self.color_balance_button_inc = ttk.Button(self.menu_frame_right, text="+", command=lambda: self.color_balance_button_inc_handler(), width=2) self.color_balance_button_dec = ttk.Button(self.menu_frame_right, text="-", command=lambda: self.color_balance_button_dec_handler(), width=2) self.sharpness_label = ttk.Label(self.menu_frame_right, text="Sharpness") self.sharpness_button_inc = ttk.Button(self.menu_frame_right, text="+", command=lambda: self.sharpness_button_inc_handler(), width=2) self.sharpness_button_dec = ttk.Button(self.menu_frame_right, text="-", command=lambda: self.sharpness_button_dec_handler(), width=2) self.contrast_label = ttk.Label(self.menu_frame_right, text="Contrast") self.contrast_button_inc = ttk.Button(self.menu_frame_right, text="+", command=lambda: self.contrast_button_inc_handler(), width=2) self.contrast_button_dec = ttk.Button(self.menu_frame_right, text="-", command=lambda: self.contrast_button_dec_handler(), width=2) # comboboxes self.filter_label = ttk.Label(self.menu_frame, text="Filters: ") self.filter_combobox = ttk.Combobox(self.menu_frame, textvariable=self.filter_var, state='readonly', width=19) self.filter_combobox.bind('<<ComboboxSelected>>', lambda e: self.filter_combobox_event_handler()) self.filter_combobox['values'] = FILTERS self.rotation_label = ttk.Label(self.menu_frame, text="Rotate: ") self.rotation_combobox = ttk.Combobox(self.menu_frame, textvariable=self.rotation_var, state='readonly', width=19) self.rotation_combobox.bind('<<ComboboxSelected>>', lambda e1: self.rotation_combobox_event_handler()) self.rotation_combobox['values'] = DEGREES self.image_info_button = ttk.Button(self.menu_frame, text="Image Info", command=lambda: self.image_info_button_handler()) self.undo_button = ttk.Button(self.menu_frame, text="Undo", command=lambda: self.undo_button_handler()) self.open_file_button = ttk.Button(self.menu_frame_right, text="Open", command=lambda: self.file_dialog_handler()) self.save_file_button = ttk.Button(self.menu_frame_right, text="Save", command=lambda: self.save_file_handler()) # message labels self.message_label = ttk.Label(self.picture_container, text="Converting...") def add_widgets_to_frame(self): """method to add widgets in grid format""" self.content.grid(column=0, row=0) self.picture_container.grid(column=0, row=0, padx=5, pady=5) self.picture_panel.grid(column=0, row=0, padx=2, pady=2, sticky="nsew") self.menu_frame.grid(column=0, row=1, padx=0, pady=5, sticky="w") self.menu_frame_right.grid(column=1, row=0, padx=0, pady=5, sticky="n") self.grayscale_button.grid(column=0, row=0, padx=5, pady=5) self.flip_button.grid(column=1, row=0, padx=5, pady=5) self.filter_label.grid(column=2, row=0, pady=5) self.filter_combobox.grid(column=3, row=0, padx=5, pady=5, columnspan=1) self.rotation_label.grid(column=4, row=0, pady=5) self.rotation_combobox.grid(column=5, row=0, padx=5, pady=5) self.image_info_button.grid(column=6, row=0, padx=5, pady=5) self.undo_button.grid(column=7, row=0, padx=5, pady=5) self.brightness_label.grid(row=0, column=1, padx=5, pady=5, sticky="w") self.brightness_button_inc.grid(row=0, column=2, padx=5, pady=5, sticky="w") self.brightness_button_dec.grid(row=0, column=3, padx=5, pady=5, sticky="w") self.color_balance_label.grid(row=1, column=1, padx=5, pady=5, sticky="w") self.color_balance_button_inc.grid(row=1, column=2, padx=5, pady=5, sticky="w") self.color_balance_button_dec.grid(row=1, column=3, padx=5, pady=5, sticky="w") self.sharpness_label.grid(row=2, column=1, padx=5, pady=5, sticky="w") self.sharpness_button_inc.grid(row=2, column=2, padx=5, pady=5, sticky="w") self.sharpness_button_dec.grid(row=2, column=3, padx=5, pady=5, sticky="w") self.contrast_label.grid(row=3, column=1, padx=5, pady=5, sticky="w") self.contrast_button_inc.grid(row=3, column=2, padx=5, pady=5, sticky="w") self.contrast_button_dec.grid(row=3, column=3, padx=5, pady=5, sticky="w") self.open_file_button.grid(row=4, column=1, padx=5, pady=20, columnspan=3) self.save_file_button.grid(row=5, column=1, padx=5, pady=20, columnspan=3) self.message_label.grid(row=0, column=0) self.message_label.grid_forget() def grayscale_button_handler(self): def callback(): self.message_label.grid() image = self.stack[len(self.stack) - 1] image_copy = self.make_image_copy(image, None) image_copy = grayscale.convert_to_grayscale(image_copy) # print(image_copy) self.stack.append(image_copy) image_copy = self.resize_image(image_copy, 800, 500) self.update_picture_panel(image_copy) self.message_label.grid_forget() print("After converting to grayscale") print(str(self.stack)) thread = threading.Thread(target=callback) thread.start() def flip_button_handler(self): image = self.stack[len(self.stack) - 1] image_copy = self.make_image_copy(image, None) image_copy = flip.flip_image(image_copy) self.stack.append(image_copy) image_copy = self.resize_image(image_copy, 800, 500) self.update_picture_panel(image_copy) print("After Flipping") print(str(self.stack)) def filter_combobox_event_handler(self): def callback(): self.message_label.grid() filter_name = str(self.filter_combobox.get()) image = self.stack[len(self.stack) - 1] image_copy = self.make_image_copy(image, None) image_copy = _filter.apply_filter(image_copy, filter_name) self.stack.append(image_copy) image_copy = self.resize_image(image_copy, 800, 500) self.update_picture_panel(image_copy) print("After applying filter") print(str(self.stack)) self.message_label.grid_forget() thread = threading.Thread(target=callback) thread.start() def rotation_combobox_event_handler(self): degrees = str(self.rotation_combobox.get()) image = self.stack[len(self.stack) - 1] image_copy = self.make_image_copy(image, None) image_copy = _rotation.apply_rotation(image_copy, degrees) self.stack.append(image_copy) image_copy = self.resize_image(image_copy, 800, 500) self.update_picture_panel(image_copy) print("After Rotating") print(str(self.stack)) def image_info_button_handler(self): UIdialog.show_image_info_dialog(self.stack[len(self.stack) - 1]) def brightness_button_inc_handler(self): if self.image_brightness < self.image_enhance_max_value: # get image from stack image = self.stack[0] # calculate current image brighness and inc it by 0.1 self.image_brightness = self.image_brightness + 0.1 self.image_brightness = round(self.image_brightness, 1) # make image copy print("Brightness: {}".format(self.image_brightness)) image_copy = self.make_image_copy(image, None) # enhance image brightness image_copy = _enhance.enhance_all(image_copy, self.image_brightness, self.image_color_balance, self.image_sharpness, self.image_contrast) # update stack self.stack.append(image_copy) image_copy = self.resize_image(image_copy, 800, 500) self.update_picture_panel(image_copy) # #for testing purposes # print("After Increasing brightness") # print(str(self.stack)) else: print("Image brightness is maximum") def brightness_button_dec_handler(self): if self.image_brightness > self.image_enhance_min_value: # get image from stack image = self.stack[0] # calculate current image brighness and dec it by 0.1 self.image_brightness = self.image_brightness - 0.1 self.image_brightness = round(self.image_brightness, 1) # make image copy print("Brightness: {}".format(self.image_brightness)) image_copy = self.make_image_copy(image, None) # enhance image brightness image_copy = _enhance.enhance_all(image_copy, self.image_brightness, self.image_color_balance, self.image_sharpness, self.image_contrast) # update stack self.stack.append(image_copy) image_copy = self.resize_image(image_copy, 800, 500) self.update_picture_panel(image_copy) # #for testing purposes # print("After decreasing brightness") # print(str(self.stack)) else: # self.can_be_dec = False print("Image brightness is minimum") def color_balance_button_inc_handler(self): if self.image_color_balance < self.image_enhance_max_value: # get image from stack image = self.stack[0] # calculate current image brighness and inc it by 0.1 self.image_color_balance = self.image_color_balance + 0.1 self.image_color_balance = round(self.image_color_balance, 1) # make image copy print("Color_balance: {}".format(self.image_color_balance)) image_copy = self.make_image_copy(image, None) # enhance image brightness image_copy = _enhance.enhance_all(image_copy, self.image_brightness, self.image_color_balance, self.image_sharpness, self.image_contrast) # update stack self.stack.append(image_copy) image_copy = self.resize_image(image_copy, 800, 500) self.update_picture_panel(image_copy) # #for testing purposes # print("After Increasing brightness") # print(str(self.stack)) else: print("Image color_balance is maximum") def color_balance_button_dec_handler(self): if self.image_color_balance > self.image_enhance_min_value: # get image from stack image = self.stack[0] # calculate current image brighness and dec it by 0.1 self.image_color_balance = self.image_color_balance - 0.1 self.image_color_balance = round(self.image_color_balance, 1) # make image copy print("Color_balance: {}".format(self.image_color_balance)) image_copy = self.make_image_copy(image, None) # enhance color balance image_copy = _enhance.enhance_all(image_copy, self.image_brightness, self.image_color_balance, self.image_sharpness, self.image_contrast) # update stack self.stack.append(image_copy) image_copy = self.resize_image(image_copy, 800, 500) self.update_picture_panel(image_copy) # #for testing purposes # print("After decreasing brightness") # print(str(self.stack)) else: # self.can_be_dec = False print("Image color_balance is minimum") def sharpness_button_inc_handler(self): if self.image_sharpness < self.image_enhance_max_value: # get image from stack image = self.stack[0] # calculate current image brighness and inc it by 0.1 self.image_sharpness = self.image_sharpness + 0.1 self.image_sharpness = round(self.image_sharpness, 1) # make image copy print("Sharpness: {}".format(self.image_sharpness)) image_copy = self.make_image_copy(image, None) # enhance image sharpness image_copy = _enhance.enhance_all(image_copy, self.image_brightness, self.image_color_balance, self.image_sharpness, self.image_contrast) # update stack self.stack.append(image_copy) image_copy = self.resize_image(image_copy, 800, 500) self.update_picture_panel(image_copy) # #for testing purposes # print("After Increasing brightness") # print(str(self.stack)) else: print("Image sharpness is maximum") def sharpness_button_dec_handler(self): if self.image_sharpness > self.image_enhance_min_value: # get image from stack image = self.stack[0] # calculate current image brighness and dec it by 0.1 self.image_sharpness = self.image_sharpness - 0.1 self.image_sharpness = round(self.image_sharpness, 1) # make image copy print("Sharpness: {}".format(self.image_sharpness)) image_copy = self.make_image_copy(image, None) # enhance image brightness image_copy = _enhance.enhance_all(image_copy, self.image_brightness, self.image_color_balance, self.image_sharpness, self.image_contrast) # update stack self.stack.append(image_copy) image_copy = self.resize_image(image_copy, 800, 500) self.update_picture_panel(image_copy) # #for testing purposes # print("After decreasing brightness") # print(str(self.stack)) else: # self.can_be_dec = False print("Image sharpness is minimum") def contrast_button_inc_handler(self): if self.image_contrast < self.image_enhance_max_value: # get image from stack image = self.stack[0] # calculate current image brighness and inc it by 0.1 self.image_contrast = self.image_contrast + 0.1 self.image_contrast = round(self.image_contrast, 1) # make image copy print("Contrast: {}".format(self.image_contrast)) image_copy = self.make_image_copy(image, None) # enhance image brightness image_copy = _enhance.enhance_all(image_copy, self.image_brightness, self.image_color_balance, self.image_sharpness, self.image_contrast) # update stack self.stack.append(image_copy) image_copy = self.resize_image(image_copy, 800, 500) self.update_picture_panel(image_copy) # #for testing purposes # print("After Increasing brightness") # print(str(self.stack)) else: print("Image contrast is maximum") def contrast_button_dec_handler(self): if self.image_contrast > self.image_enhance_min_value: # get image from stack image = self.stack[0] # calculate current image brighness and dec it by 0.1 self.image_contrast = self.image_contrast - 0.1 self.image_contrast = round(self.image_contrast, 1) # make image copy print("Contrast: {}".format(self.image_contrast)) image_copy = self.make_image_copy(image, None) # enhance image brightness image_copy = _enhance.enhance_all(image_copy, self.image_brightness, self.image_color_balance, self.image_sharpness, self.image_contrast) # update stack self.stack.append(image_copy) image_copy = self.resize_image(image_copy, 800, 500) self.update_picture_panel(image_copy) # #for testing purposes # print("After decreasing brightness") # print(str(self.stack)) else: # self.can_be_dec = False print("Image contrast is minimum") def undo_button_handler(self): """method to undo changes done to image""" if (len(self.stack) > 1): self.stack.pop() print(str(self.stack)) image = self.stack[len(self.stack) - 1] image_copy = self.make_image_copy(image, None) image_copy = self.resize_image(image_copy, 800, 500) self.update_picture_panel(image_copy) # print("After Undoing") # print(str(self.stack)) else: UIdialog.show_error_edit_image_first() # print("undo clicked") def file_dialog_handler(self): """method to handle open image dialog""" # clear stack self.stack.clear() # reset image enhance variables self.image_brightness = 1.0 self.image_color_balance = 1.0 self.image_sharpness = 1.0 self.image_contrast = 1.0 # opening image image_filename = UIdialog.open_file_dialog() # making image copy image_copy = self.make_image_copy(None, image_filename) # appending newly opened image to stack self.stack.append(image_copy) # resizing image to fit picture panel image_copy = self.resize_image(image_copy, 800, 500) # updating picture panel self.update_picture_panel(image_copy) def save_file_handler(self): """method for saving file""" def callback(): image = self.stack[len(self.stack) - 1] timestamp = str(int(datetime.datetime.now().timestamp())) file = "./test_images/IMG" + timestamp image.save(file + ".png") print("File save successfully!") thread = threading.Thread(target=callback) thread.start() def update_picture_panel(self, image): """method to update picture in picture panel""" self.picture = ImageTk.PhotoImage(image) self.picture_panel.configure(image=self.picture) self.picture_panel.photo = self.picture def on_closing(self): """method to clear stack when window is closed""" self.stack.clear() print(self.stack) del self.stack[:] self.root.destroy() if __name__ == "__main__": # thread = threading.Thread(target=KedClient()) # thread.start() client = KedClient()
46.021956
120
0.624019
1f55aff0cb9306efce1493253058b82c5aca878b
330
py
Python
Leak #5 - Lost In Translation/windows/Resources/Dsz/PyScripts/Lib/dsz/user/unix/__init__.py
bidhata/EquationGroupLeaks
1ff4bc115cb2bd5bf2ed6bf769af44392926830c
[ "Unlicense" ]
9
2019-11-22T04:58:40.000Z
2022-02-26T16:47:28.000Z
Leak #5 - Lost In Translation/windows/Resources/Dsz/PyScripts/Lib/dsz/user/unix/__init__.py
bidhata/EquationGroupLeaks
1ff4bc115cb2bd5bf2ed6bf769af44392926830c
[ "Unlicense" ]
null
null
null
Leak #5 - Lost In Translation/windows/Resources/Dsz/PyScripts/Lib/dsz/user/unix/__init__.py
bidhata/EquationGroupLeaks
1ff4bc115cb2bd5bf2ed6bf769af44392926830c
[ "Unlicense" ]
8
2017-09-27T10:31:18.000Z
2022-01-08T10:30:46.000Z
# uncompyle6 version 2.9.10 # Python bytecode 2.7 (62211) # Decompiled from: Python 3.6.0b2 (default, Oct 11 2016, 05:27:10) # [GCC 6.2.0 20161005] # Embedded file name: __init__.py import dsz def IsRoot(): try: user = dsz.process.GetCurrent() return user == 'root' except: pass return False
22
67
0.633333
9e167c64f95b7fa01e791e78ebfa5e3c26fbd0ed
3,297
py
Python
model-optimizer/extensions/ops/non_max_suppression_test.py
JOCh1958/openvino
070201feeec5550b7cf8ec5a0ffd72dc879750be
[ "Apache-2.0" ]
1
2021-04-06T03:32:12.000Z
2021-04-06T03:32:12.000Z
model-optimizer/extensions/ops/non_max_suppression_test.py
JOCh1958/openvino
070201feeec5550b7cf8ec5a0ffd72dc879750be
[ "Apache-2.0" ]
28
2021-09-24T09:29:02.000Z
2022-03-28T13:20:46.000Z
model-optimizer/extensions/ops/non_max_suppression_test.py
JOCh1958/openvino
070201feeec5550b7cf8ec5a0ffd72dc879750be
[ "Apache-2.0" ]
1
2020-08-30T11:48:03.000Z
2020-08-30T11:48:03.000Z
# Copyright (C) 2018-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import unittest import numpy as np from extensions.ops.non_max_suppression import NonMaxSuppression from mo.front.common.partial_infer.utils import int64_array from mo.graph.graph import Node from mo.utils.unittest.graph import build_graph, regular_op_with_shaped_data, valued_const_with_data, result, connect class TestNonMaxSuppressionInfer(unittest.TestCase): def setUp(self): nodes = { **regular_op_with_shaped_data('boxes', [10, 100, 4], {'type': 'Parameter'}), **regular_op_with_shaped_data('scores', [10, 5, 100], {'type': 'Parameter'}), **valued_const_with_data('max_output_per_class', int64_array(7)), **regular_op_with_shaped_data('nms', None, {'op': 'NonMaxSuppression', 'type': 'NonMaxSuppression', 'name': 'nms'}), **result('output'), } self.graph = build_graph(nodes, [ *connect('boxes', '0:nms'), *connect('scores', '1:nms'), *connect('max_output_per_class', '2:nms'), *connect('nms', 'output'), ], nodes_with_edges_only=True) def test_nms_infer_opset1(self): nms_node = Node(self.graph, 'nms') nms_node['version'] = 'opset1' NonMaxSuppression.infer(nms_node) NonMaxSuppression.type_infer(nms_node) self.assertTrue(np.array_equal(nms_node.out_port(0).data.get_shape(), [100, 3])) self.assertTrue(nms_node.out_port(0).get_data_type() == np.int64) def test_nms_infer_i64_opset3(self): nms_node = Node(self.graph, 'nms') nms_node['version'] = 'opset3' nms_node['output_type'] = np.int64 NonMaxSuppression.infer(nms_node) NonMaxSuppression.type_infer(nms_node) self.assertTrue(np.array_equal(nms_node.out_port(0).data.get_shape(), [100, 3])) self.assertTrue(nms_node.out_port(0).get_data_type() == np.int64) def test_nms_infer_i32_opset3(self): nms_node = Node(self.graph, 'nms') nms_node['version'] = 'opset3' nms_node['output_type'] = np.int32 NonMaxSuppression.infer(nms_node) NonMaxSuppression.type_infer(nms_node) self.assertTrue(np.array_equal(nms_node.out_port(0).data.get_shape(), [100, 3])) self.assertTrue(nms_node.out_port(0).get_data_type() == np.int32) def test_nms_infer_i32_opset4(self): nms_node = Node(self.graph, 'nms') nms_node['version'] = 'opset4' nms_node['output_type'] = np.int32 NonMaxSuppression.infer(nms_node) NonMaxSuppression.type_infer(nms_node) self.assertTrue(np.array_equal(nms_node.out_port(0).data.get_shape(), [10 * 5 * 7, 3])) self.assertTrue(nms_node.out_port(0).get_data_type() == np.int32) def test_nms_infer_i64_opset4(self): nms_node = Node(self.graph, 'nms') nms_node['version'] = 'opset4' nms_node['output_type'] = np.int64 NonMaxSuppression.infer(nms_node) NonMaxSuppression.type_infer(nms_node) self.assertTrue(np.array_equal(nms_node.out_port(0).data.get_shape(), [10 * 5 * 7, 3])) self.assertTrue(nms_node.out_port(0).get_data_type() == np.int64)
41.2125
117
0.651501
d6b53fe056311af867bc1dea3ddb6867a31ba770
3,015
py
Python
tensorflow_addons/models/tests/crf_wrapper_test.py
old-school-kid/addons
825f2d24a4074334bda38e4e00d6c42c0da25029
[ "Apache-2.0" ]
1,560
2018-11-26T23:57:34.000Z
2022-03-27T10:37:34.000Z
tensorflow_addons/models/tests/crf_wrapper_test.py
midsterx/addons
334cd7ca8fb944aab38164a13d7d2203d7c39605
[ "Apache-2.0" ]
2,067
2018-11-28T04:40:23.000Z
2022-03-31T11:36:50.000Z
tensorflow_addons/models/tests/crf_wrapper_test.py
midsterx/addons
334cd7ca8fb944aab38164a13d7d2203d7c39605
[ "Apache-2.0" ]
679
2018-11-27T14:39:25.000Z
2022-03-31T10:09:22.000Z
# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for CRF (Conditional Random Field) Model Wrapper.""" import os import tempfile import numpy as np import pytest import tensorflow as tf from tensorflow_addons.models.crf_wrapper import CRFModelWrapper def get_test_data(): x = np.array( [ [ # O B-X I-X B-Y I-Y [0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0, 0.0], ], [ # O B-X I-X B-Y I-Y [0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], ], ] ) y = np.array([[1, 2, 2], [1, 1, 1]]) # B-X I-X I-X # B-X B-X B-X return x, y @pytest.mark.usefixtures("run_with_mixed_precision_policy") def test_traing(): x_np, y_np = get_test_data() get_some_model(x_np, y_np) def get_some_model(x_np, y_np, sanity_check=True): x_input = tf.keras.layers.Input(shape=x_np.shape[1:]) y_outputs = tf.keras.layers.Lambda(lambda x: x)(x_input) base_model = tf.keras.Model(x_input, y_outputs) model = CRFModelWrapper(base_model, y_np.shape[-1]) model.compile("adam") if sanity_check: model.fit(x=x_np, y=y_np) model.evaluate(x_np, y_np) model.predict(x_np) return model def clone(model: CRFModelWrapper): with tempfile.TemporaryDirectory() as tmpdir: file_path = os.path.join(tmpdir, "model") model.save(file_path) new_model = tf.keras.models.load_model(file_path) return new_model def assert_all_equal(array_list1, array_list2): for arr1, arr2 in zip(array_list1, array_list2): np.testing.assert_equal(np.array(arr1), np.array(arr2)) def test_serialization(): x_np, y_np = get_test_data() model = get_some_model(x_np, y_np, sanity_check=False) new_model = clone(model) assert_all_equal(model.predict(x_np), new_model.predict(x_np)) assert_all_equal(model.get_weights(), new_model.get_weights()) original_loss = model.train_on_batch(x_np, y_np, return_dict=True)["crf_loss"] clone_loss = new_model.train_on_batch(x_np, y_np, return_dict=True)["crf_loss"] assert_all_equal(model.get_weights(), new_model.get_weights()) assert original_loss == clone_loss
31.40625
83
0.627197
3c66e0bfbd4aeafebb36df2cdce16596144639f2
1,617
py
Python
sdk/deploymentmanager/azure-mgmt-deploymentmanager/azure/mgmt/deploymentmanager/models/cloud_error_body_py3.py
tzhanl/azure-sdk-for-python
18cd03f4ab8fd76cc0498f03e80fbc99f217c96e
[ "MIT" ]
1
2021-09-07T18:36:04.000Z
2021-09-07T18:36:04.000Z
sdk/deploymentmanager/azure-mgmt-deploymentmanager/azure/mgmt/deploymentmanager/models/cloud_error_body_py3.py
tzhanl/azure-sdk-for-python
18cd03f4ab8fd76cc0498f03e80fbc99f217c96e
[ "MIT" ]
2
2019-10-02T23:37:38.000Z
2020-10-02T01:17:31.000Z
sdk/deploymentmanager/azure-mgmt-deploymentmanager/azure/mgmt/deploymentmanager/models/cloud_error_body_py3.py
tzhanl/azure-sdk-for-python
18cd03f4ab8fd76cc0498f03e80fbc99f217c96e
[ "MIT" ]
1
2019-06-17T22:18:23.000Z
2019-06-17T22:18:23.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class CloudErrorBody(Model): """Detailed error information of any failure. Variables are only populated by the server, and will be ignored when sending a request. :ivar code: Error code string. :vartype code: str :ivar message: Descriptive error information. :vartype message: str :param target: Error target :type target: str :param details: More detailed error information. :type details: list[~azure.mgmt.deploymentmanager.models.CloudErrorBody] """ _validation = { 'code': {'readonly': True}, 'message': {'readonly': True}, } _attribute_map = { 'code': {'key': 'code', 'type': 'str'}, 'message': {'key': 'message', 'type': 'str'}, 'target': {'key': 'target', 'type': 'str'}, 'details': {'key': 'details', 'type': '[CloudErrorBody]'}, } def __init__(self, *, target: str=None, details=None, **kwargs) -> None: super(CloudErrorBody, self).__init__(**kwargs) self.code = None self.message = None self.target = target self.details = details
33
76
0.584416
22fbebd974b65b34d770ba5c0f76306fef455e68
21,058
py
Python
tests/examples/minlplib/sssd18-06persp.py
ouyang-w-19/decogo
52546480e49776251d4d27856e18a46f40c824a1
[ "MIT" ]
2
2021-07-03T13:19:10.000Z
2022-02-06T10:48:13.000Z
tests/examples/minlplib/sssd18-06persp.py
ouyang-w-19/decogo
52546480e49776251d4d27856e18a46f40c824a1
[ "MIT" ]
1
2021-07-04T14:52:14.000Z
2021-07-15T10:17:11.000Z
tests/examples/minlplib/sssd18-06persp.py
ouyang-w-19/decogo
52546480e49776251d4d27856e18a46f40c824a1
[ "MIT" ]
null
null
null
# MINLP written by GAMS Convert at 04/21/18 13:54:21 # # Equation counts # Total E G L N X C B # 67 25 0 42 0 0 0 0 # # Variable counts # x b i s1s s2s sc si # Total cont binary integer sos1 sos2 scont sint # 151 25 126 0 0 0 0 0 # FX 0 0 0 0 0 0 0 0 # # Nonzero counts # Total const NL DLL # 475 421 54 0 # # Reformulation has removed 1 variable and 1 equation from pyomo.environ import * model = m = ConcreteModel() m.b1 = Var(within=Binary,bounds=(0,1),initialize=0) m.b2 = Var(within=Binary,bounds=(0,1),initialize=0) m.b3 = Var(within=Binary,bounds=(0,1),initialize=0) m.b4 = Var(within=Binary,bounds=(0,1),initialize=0) m.b5 = Var(within=Binary,bounds=(0,1),initialize=0) m.b6 = Var(within=Binary,bounds=(0,1),initialize=0) m.b7 = Var(within=Binary,bounds=(0,1),initialize=0) m.b8 = Var(within=Binary,bounds=(0,1),initialize=0) m.b9 = Var(within=Binary,bounds=(0,1),initialize=0) m.b10 = Var(within=Binary,bounds=(0,1),initialize=0) m.b11 = Var(within=Binary,bounds=(0,1),initialize=0) m.b12 = Var(within=Binary,bounds=(0,1),initialize=0) m.b13 = Var(within=Binary,bounds=(0,1),initialize=0) m.b14 = Var(within=Binary,bounds=(0,1),initialize=0) m.b15 = Var(within=Binary,bounds=(0,1),initialize=0) m.b16 = Var(within=Binary,bounds=(0,1),initialize=0) m.b17 = Var(within=Binary,bounds=(0,1),initialize=0) m.b18 = Var(within=Binary,bounds=(0,1),initialize=0) m.b19 = Var(within=Binary,bounds=(0,1),initialize=0) m.b20 = Var(within=Binary,bounds=(0,1),initialize=0) m.b21 = Var(within=Binary,bounds=(0,1),initialize=0) m.b22 = Var(within=Binary,bounds=(0,1),initialize=0) m.b23 = Var(within=Binary,bounds=(0,1),initialize=0) m.b24 = Var(within=Binary,bounds=(0,1),initialize=0) m.b25 = Var(within=Binary,bounds=(0,1),initialize=0) m.b26 = Var(within=Binary,bounds=(0,1),initialize=0) m.b27 = Var(within=Binary,bounds=(0,1),initialize=0) m.b28 = Var(within=Binary,bounds=(0,1),initialize=0) m.b29 = Var(within=Binary,bounds=(0,1),initialize=0) m.b30 = Var(within=Binary,bounds=(0,1),initialize=0) m.b31 = Var(within=Binary,bounds=(0,1),initialize=0) m.b32 = Var(within=Binary,bounds=(0,1),initialize=0) m.b33 = Var(within=Binary,bounds=(0,1),initialize=0) m.b34 = Var(within=Binary,bounds=(0,1),initialize=0) m.b35 = Var(within=Binary,bounds=(0,1),initialize=0) m.b36 = Var(within=Binary,bounds=(0,1),initialize=0) m.b37 = Var(within=Binary,bounds=(0,1),initialize=0) m.b38 = Var(within=Binary,bounds=(0,1),initialize=0) m.b39 = Var(within=Binary,bounds=(0,1),initialize=0) m.b40 = Var(within=Binary,bounds=(0,1),initialize=0) m.b41 = Var(within=Binary,bounds=(0,1),initialize=0) m.b42 = Var(within=Binary,bounds=(0,1),initialize=0) m.b43 = Var(within=Binary,bounds=(0,1),initialize=0) m.b44 = Var(within=Binary,bounds=(0,1),initialize=0) m.b45 = Var(within=Binary,bounds=(0,1),initialize=0) m.b46 = Var(within=Binary,bounds=(0,1),initialize=0) m.b47 = Var(within=Binary,bounds=(0,1),initialize=0) m.b48 = Var(within=Binary,bounds=(0,1),initialize=0) m.b49 = Var(within=Binary,bounds=(0,1),initialize=0) m.b50 = Var(within=Binary,bounds=(0,1),initialize=0) m.b51 = Var(within=Binary,bounds=(0,1),initialize=0) m.b52 = Var(within=Binary,bounds=(0,1),initialize=0) m.b53 = Var(within=Binary,bounds=(0,1),initialize=0) m.b54 = Var(within=Binary,bounds=(0,1),initialize=0) m.b55 = Var(within=Binary,bounds=(0,1),initialize=0) m.b56 = Var(within=Binary,bounds=(0,1),initialize=0) m.b57 = Var(within=Binary,bounds=(0,1),initialize=0) m.b58 = Var(within=Binary,bounds=(0,1),initialize=0) m.b59 = Var(within=Binary,bounds=(0,1),initialize=0) m.b60 = Var(within=Binary,bounds=(0,1),initialize=0) m.b61 = Var(within=Binary,bounds=(0,1),initialize=0) m.b62 = Var(within=Binary,bounds=(0,1),initialize=0) m.b63 = Var(within=Binary,bounds=(0,1),initialize=0) m.b64 = Var(within=Binary,bounds=(0,1),initialize=0) m.b65 = Var(within=Binary,bounds=(0,1),initialize=0) m.b66 = Var(within=Binary,bounds=(0,1),initialize=0) m.b67 = Var(within=Binary,bounds=(0,1),initialize=0) m.b68 = Var(within=Binary,bounds=(0,1),initialize=0) m.b69 = Var(within=Binary,bounds=(0,1),initialize=0) m.b70 = Var(within=Binary,bounds=(0,1),initialize=0) m.b71 = Var(within=Binary,bounds=(0,1),initialize=0) m.b72 = Var(within=Binary,bounds=(0,1),initialize=0) m.b73 = Var(within=Binary,bounds=(0,1),initialize=0) m.b74 = Var(within=Binary,bounds=(0,1),initialize=0) m.b75 = Var(within=Binary,bounds=(0,1),initialize=0) m.b76 = Var(within=Binary,bounds=(0,1),initialize=0) m.b77 = Var(within=Binary,bounds=(0,1),initialize=0) m.b78 = Var(within=Binary,bounds=(0,1),initialize=0) m.b79 = Var(within=Binary,bounds=(0,1),initialize=0) m.b80 = Var(within=Binary,bounds=(0,1),initialize=0) m.b81 = Var(within=Binary,bounds=(0,1),initialize=0) m.b82 = Var(within=Binary,bounds=(0,1),initialize=0) m.b83 = Var(within=Binary,bounds=(0,1),initialize=0) m.b84 = Var(within=Binary,bounds=(0,1),initialize=0) m.b85 = Var(within=Binary,bounds=(0,1),initialize=0) m.b86 = Var(within=Binary,bounds=(0,1),initialize=0) m.b87 = Var(within=Binary,bounds=(0,1),initialize=0) m.b88 = Var(within=Binary,bounds=(0,1),initialize=0) m.b89 = Var(within=Binary,bounds=(0,1),initialize=0) m.b90 = Var(within=Binary,bounds=(0,1),initialize=0) m.b91 = Var(within=Binary,bounds=(0,1),initialize=0) m.b92 = Var(within=Binary,bounds=(0,1),initialize=0) m.b93 = Var(within=Binary,bounds=(0,1),initialize=0) m.b94 = Var(within=Binary,bounds=(0,1),initialize=0) m.b95 = Var(within=Binary,bounds=(0,1),initialize=0) m.b96 = Var(within=Binary,bounds=(0,1),initialize=0) m.b97 = Var(within=Binary,bounds=(0,1),initialize=0) m.b98 = Var(within=Binary,bounds=(0,1),initialize=0) m.b99 = Var(within=Binary,bounds=(0,1),initialize=0) m.b100 = Var(within=Binary,bounds=(0,1),initialize=0) m.b101 = Var(within=Binary,bounds=(0,1),initialize=0) m.b102 = Var(within=Binary,bounds=(0,1),initialize=0) m.b103 = Var(within=Binary,bounds=(0,1),initialize=0) m.b104 = Var(within=Binary,bounds=(0,1),initialize=0) m.b105 = Var(within=Binary,bounds=(0,1),initialize=0) m.b106 = Var(within=Binary,bounds=(0,1),initialize=0) m.b107 = Var(within=Binary,bounds=(0,1),initialize=0) m.b108 = Var(within=Binary,bounds=(0,1),initialize=0) m.b109 = Var(within=Binary,bounds=(0,1),initialize=0) m.b110 = Var(within=Binary,bounds=(0,1),initialize=0) m.b111 = Var(within=Binary,bounds=(0,1),initialize=0) m.b112 = Var(within=Binary,bounds=(0,1),initialize=0) m.b113 = Var(within=Binary,bounds=(0,1),initialize=0) m.b114 = Var(within=Binary,bounds=(0,1),initialize=0) m.b115 = Var(within=Binary,bounds=(0,1),initialize=0) m.b116 = Var(within=Binary,bounds=(0,1),initialize=0) m.b117 = Var(within=Binary,bounds=(0,1),initialize=0) m.b118 = Var(within=Binary,bounds=(0,1),initialize=0) m.b119 = Var(within=Binary,bounds=(0,1),initialize=0) m.b120 = Var(within=Binary,bounds=(0,1),initialize=0) m.b121 = Var(within=Binary,bounds=(0,1),initialize=0) m.b122 = Var(within=Binary,bounds=(0,1),initialize=0) m.b123 = Var(within=Binary,bounds=(0,1),initialize=0) m.b124 = Var(within=Binary,bounds=(0,1),initialize=0) m.b125 = Var(within=Binary,bounds=(0,1),initialize=0) m.b126 = Var(within=Binary,bounds=(0,1),initialize=0) m.x127 = Var(within=Reals,bounds=(0,None),initialize=2.18693238738188) m.x128 = Var(within=Reals,bounds=(0,None),initialize=1.97796411576132) m.x129 = Var(within=Reals,bounds=(0,None),initialize=1.30935949980452) m.x130 = Var(within=Reals,bounds=(0,None),initialize=1.24466335994743) m.x131 = Var(within=Reals,bounds=(0,None),initialize=1.88552981695056) m.x132 = Var(within=Reals,bounds=(0,None),initialize=1.87818302003327) m.x133 = Var(within=Reals,bounds=(0,None),initialize=0.228739544443079) m.x134 = Var(within=Reals,bounds=(0,None),initialize=0.228739544443079) m.x135 = Var(within=Reals,bounds=(0,None),initialize=0.228739544443079) m.x136 = Var(within=Reals,bounds=(0,None),initialize=0.221400039184785) m.x137 = Var(within=Reals,bounds=(0,None),initialize=0.221400039184785) m.x138 = Var(within=Reals,bounds=(0,None),initialize=0.221400039184785) m.x139 = Var(within=Reals,bounds=(0,None),initialize=0.188993167429519) m.x140 = Var(within=Reals,bounds=(0,None),initialize=0.188993167429519) m.x141 = Var(within=Reals,bounds=(0,None),initialize=0.188993167429519) m.x142 = Var(within=Reals,bounds=(0,None),initialize=0.184832966070627) m.x143 = Var(within=Reals,bounds=(0,None),initialize=0.184832966070627) m.x144 = Var(within=Reals,bounds=(0,None),initialize=0.184832966070627) m.x145 = Var(within=Reals,bounds=(0,None),initialize=0.21781439765115) m.x146 = Var(within=Reals,bounds=(0,None),initialize=0.21781439765115) m.x147 = Var(within=Reals,bounds=(0,None),initialize=0.21781439765115) m.x148 = Var(within=Reals,bounds=(0,None),initialize=0.217519526145533) m.x149 = Var(within=Reals,bounds=(0,None),initialize=0.217519526145533) m.x150 = Var(within=Reals,bounds=(0,None),initialize=0.217519526145533) m.obj = Objective(expr= 63.4638470839033*m.b1 + 406.464924344563*m.b2 + 281.054038749709*m.b3 + 357.899009619357*m.b4 + 283.867227208487*m.b5 + 346.427860883825*m.b6 + 174.902031629248*m.b7 + 327.682040608985*m.b8 + 195.408950113586*m.b9 + 411.209540848557*m.b10 + 341.151615907997*m.b11 + 306.690501464422*m.b12 + 217.736042166853*m.b13 + 590.531921051569*m.b14 + 469.541866006763*m.b15 + 371.170896461036*m.b16 + 301.885481955089*m.b17 + 482.559449428939*m.b18 + 266.695094430501*m.b19 + 661.407332369201*m.b20 + 469.726457930889*m.b21 + 365.202026294741*m.b22 + 207.423237700342*m.b23 + 464.900263444655*m.b24 + 416.573440009268*m.b25 + 427.21293769024*m.b26 + 421.557561337466*m.b27 + 131.588490152482*m.b28 + 195.079739824454*m.b29 + 327.092772346777*m.b30 + 284.74538638165*m.b31 + 91.2881292105079*m.b32 + 151.13720061786*m.b33 + 158.491236423963*m.b34 + 174.161578418524*m.b35 + 70.9637233498753*m.b36 + 455.733220723331*m.b37 + 159.976116957465*m.b38 + 94.4221181484321*m.b39 + 501.080276859661*m.b40 + 450.105521915833*m.b41 + 218.986984440606*m.b42 + 754.787490214755*m.b43 + 145.720505553027*m.b44 + 360.826762020128*m.b45 + 512.320209445762*m.b46 + 533.899656702829*m.b47 + 217.438198555652*m.b48 + 257.356951080936*m.b49 + 469.748170208231*m.b50 + 224.941373479115*m.b51 + 574.696478620214*m.b52 + 453.651669444504*m.b53 + 396.680178831932*m.b54 + 355.480538495142*m.b55 + 455.001425048605*m.b56 + 410.327875101372*m.b57 + 107.716832660101*m.b58 + 127.140023996384*m.b59 + 331.094295675558*m.b60 + 182.462253711509*m.b61 + 460.500595074032*m.b62 + 320.358519241588*m.b63 + 267.389834464462*m.b64 + 154.515161518257*m.b65 + 322.544727498533*m.b66 + 33.1863391968753*m.b67 + 615.771638171722*m.b68 + 401.573448620245*m.b69 + 502.776036957456*m.b70 + 369.539939879878*m.b71 + 490.231458199826*m.b72 + 180.326894384108*m.b73 + 351.782220377873*m.b74 + 230.814529409496*m.b75 + 424.244156625063*m.b76 + 357.224268091235*m.b77 + 334.18273348498*m.b78 + 501.721049311591*m.b79 + 663.739169113737*m.b80 + 452.23673398428*m.b81 + 920.634818812952*m.b82 + 798.472532832495*m.b83 + 676.77410056404*m.b84 + 407.527006741593*m.b85 + 510.493559429826*m.b86 + 468.587901001095*m.b87 + 140.053665522904*m.b88 + 171.808834000698*m.b89 + 381.118854530951*m.b90 + 179.901289120497*m.b91 + 881.284249355185*m.b92 + 649.077324059404*m.b93 + 661.262090699325*m.b94 + 520.002854424345*m.b95 + 730.978694813241*m.b96 + 678.238937211925*m.b97 + 398.969088179479*m.b98 + 483.529007052756*m.b99 + 249.519882483891*m.b100 + 342.614106364254*m.b101 + 292.077181816541*m.b102 + 170.281172626711*m.b103 + 225.734424617283*m.b104 + 168.147658999551*m.b105 + 104.518622131715*m.b106 + 46.8477886786758*m.b107 + 136.089840994616*m.b108 + 310.191094*m.b109 + 117.377523177255*m.b110 + 76.582257499663*m.b111 + 439.61435975*m.b112 + 149.716022877401*m.b113 + 92.6683043463223*m.b114 + 350.33553925*m.b115 + 135.660413957549*m.b116 + 89.5371309630422*m.b117 + 261.032076*m.b118 + 112.326275197259*m.b119 + 78.152225609751*m.b120 + 473.56432275*m.b121 + 158.186763322588*m.b122 + 96.9684211447128*m.b123 + 351.54659075*m.b124 + 129.748325387621*m.b125 + 83.6038830543306*m.b126 + 92063.4818812952*m.x127 + 92063.4818812952*m.x128 + 92063.4818812952*m.x129 + 92063.4818812952*m.x130 + 92063.4818812952*m.x131 + 92063.4818812952*m.x132, sense=minimize) m.c2 = Constraint(expr= 0.669744132*m.b1 + 0.711284112*m.b7 + 0.798385084*m.b13 + 1.430176337*m.b19 + 0.706194095*m.b25 + 0.501285943*m.b31 + 1.04003433*m.b37 + 1.252787639*m.b43 + 1.278441868*m.b49 + 0.80906674*m.b55 + 1.021192966*m.b61 + 1.20737712*m.b67 + 0.657698048*m.b73 + 1.314509471*m.b79 + 0.849949545*m.b85 + 1.327992452*m.b91 + 1.118160701*m.b97 + 0.605008155*m.b103 - 2.10079896525*m.x133 - 4.2015979305*m.x134 - 6.30239689575*m.x135 == 0) m.c3 = Constraint(expr= 0.669744132*m.b2 + 0.711284112*m.b8 + 0.798385084*m.b14 + 1.430176337*m.b20 + 0.706194095*m.b26 + 0.501285943*m.b32 + 1.04003433*m.b38 + 1.252787639*m.b44 + 1.278441868*m.b50 + 0.80906674*m.b56 + 1.021192966*m.b62 + 1.20737712*m.b68 + 0.657698048*m.b74 + 1.314509471*m.b80 + 0.849949545*m.b86 + 1.327992452*m.b92 + 1.118160701*m.b98 + 0.605008155*m.b104 - 2.1704413425*m.x136 - 4.340882685*m.x137 - 6.5113240275*m.x138 == 0) m.c4 = Constraint(expr= 0.669744132*m.b3 + 0.711284112*m.b9 + 0.798385084*m.b15 + 1.430176337*m.b21 + 0.706194095*m.b27 + 0.501285943*m.b33 + 1.04003433*m.b39 + 1.252787639*m.b45 + 1.278441868*m.b51 + 0.80906674*m.b57 + 1.021192966*m.b63 + 1.20737712*m.b69 + 0.657698048*m.b75 + 1.314509471*m.b81 + 0.849949545*m.b87 + 1.327992452*m.b93 + 1.118160701*m.b99 + 0.605008155*m.b105 - 2.5426093695*m.x139 - 5.085218739*m.x140 - 7.6278281085*m.x141 == 0) m.c5 = Constraint(expr= 0.669744132*m.b4 + 0.711284112*m.b10 + 0.798385084*m.b16 + 1.430176337*m.b22 + 0.706194095*m.b28 + 0.501285943*m.b34 + 1.04003433*m.b40 + 1.252787639*m.b46 + 1.278441868*m.b52 + 0.80906674*m.b58 + 1.021192966*m.b64 + 1.20737712*m.b70 + 0.657698048*m.b76 + 1.314509471*m.b82 + 0.849949545*m.b88 + 1.327992452*m.b94 + 1.118160701*m.b100 + 0.605008155*m.b106 - 2.59983815925*m.x142 - 5.1996763185*m.x143 - 7.79951447775*m.x144 == 0) m.c6 = Constraint(expr= 0.669744132*m.b5 + 0.711284112*m.b11 + 0.798385084*m.b17 + 1.430176337*m.b23 + 0.706194095*m.b29 + 0.501285943*m.b35 + 1.04003433*m.b41 + 1.252787639*m.b47 + 1.278441868*m.b53 + 0.80906674*m.b59 + 1.021192966*m.b65 + 1.20737712*m.b71 + 0.657698048*m.b77 + 1.314509471*m.b83 + 0.849949545*m.b89 + 1.327992452*m.b95 + 1.118160701*m.b101 + 0.605008155*m.b107 - 2.20617095775*m.x145 - 4.4123419155*m.x146 - 6.61851287325*m.x147 == 0) m.c7 = Constraint(expr= 0.669744132*m.b6 + 0.711284112*m.b12 + 0.798385084*m.b18 + 1.430176337*m.b24 + 0.706194095*m.b30 + 0.501285943*m.b36 + 1.04003433*m.b42 + 1.252787639*m.b48 + 1.278441868*m.b54 + 0.80906674*m.b60 + 1.021192966*m.b66 + 1.20737712*m.b72 + 0.657698048*m.b78 + 1.314509471*m.b84 + 0.849949545*m.b90 + 1.327992452*m.b96 + 1.118160701*m.b102 + 0.605008155*m.b108 - 2.20916166375*m.x148 - 4.4183233275*m.x149 - 6.62748499125*m.x150 == 0) m.c8 = Constraint(expr= m.b1 + m.b2 + m.b3 + m.b4 + m.b5 + m.b6 == 1) m.c9 = Constraint(expr= m.b7 + m.b8 + m.b9 + m.b10 + m.b11 + m.b12 == 1) m.c10 = Constraint(expr= m.b13 + m.b14 + m.b15 + m.b16 + m.b17 + m.b18 == 1) m.c11 = Constraint(expr= m.b19 + m.b20 + m.b21 + m.b22 + m.b23 + m.b24 == 1) m.c12 = Constraint(expr= m.b25 + m.b26 + m.b27 + m.b28 + m.b29 + m.b30 == 1) m.c13 = Constraint(expr= m.b31 + m.b32 + m.b33 + m.b34 + m.b35 + m.b36 == 1) m.c14 = Constraint(expr= m.b37 + m.b38 + m.b39 + m.b40 + m.b41 + m.b42 == 1) m.c15 = Constraint(expr= m.b43 + m.b44 + m.b45 + m.b46 + m.b47 + m.b48 == 1) m.c16 = Constraint(expr= m.b49 + m.b50 + m.b51 + m.b52 + m.b53 + m.b54 == 1) m.c17 = Constraint(expr= m.b55 + m.b56 + m.b57 + m.b58 + m.b59 + m.b60 == 1) m.c18 = Constraint(expr= m.b61 + m.b62 + m.b63 + m.b64 + m.b65 + m.b66 == 1) m.c19 = Constraint(expr= m.b67 + m.b68 + m.b69 + m.b70 + m.b71 + m.b72 == 1) m.c20 = Constraint(expr= m.b73 + m.b74 + m.b75 + m.b76 + m.b77 + m.b78 == 1) m.c21 = Constraint(expr= m.b79 + m.b80 + m.b81 + m.b82 + m.b83 + m.b84 == 1) m.c22 = Constraint(expr= m.b85 + m.b86 + m.b87 + m.b88 + m.b89 + m.b90 == 1) m.c23 = Constraint(expr= m.b91 + m.b92 + m.b93 + m.b94 + m.b95 + m.b96 == 1) m.c24 = Constraint(expr= m.b97 + m.b98 + m.b99 + m.b100 + m.b101 + m.b102 == 1) m.c25 = Constraint(expr= m.b103 + m.b104 + m.b105 + m.b106 + m.b107 + m.b108 == 1) m.c26 = Constraint(expr= m.b109 + m.b110 + m.b111 <= 1) m.c27 = Constraint(expr= m.b112 + m.b113 + m.b114 <= 1) m.c28 = Constraint(expr= m.b115 + m.b116 + m.b117 <= 1) m.c29 = Constraint(expr= m.b118 + m.b119 + m.b120 <= 1) m.c30 = Constraint(expr= m.b121 + m.b122 + m.b123 <= 1) m.c31 = Constraint(expr= m.b124 + m.b125 + m.b126 <= 1) m.c32 = Constraint(expr= - m.b109 + m.x133 <= 0) m.c33 = Constraint(expr= - m.b110 + m.x134 <= 0) m.c34 = Constraint(expr= - m.b111 + m.x135 <= 0) m.c35 = Constraint(expr= - m.b112 + m.x136 <= 0) m.c36 = Constraint(expr= - m.b113 + m.x137 <= 0) m.c37 = Constraint(expr= - m.b114 + m.x138 <= 0) m.c38 = Constraint(expr= - m.b115 + m.x139 <= 0) m.c39 = Constraint(expr= - m.b116 + m.x140 <= 0) m.c40 = Constraint(expr= - m.b117 + m.x141 <= 0) m.c41 = Constraint(expr= - m.b118 + m.x142 <= 0) m.c42 = Constraint(expr= - m.b119 + m.x143 <= 0) m.c43 = Constraint(expr= - m.b120 + m.x144 <= 0) m.c44 = Constraint(expr= - m.b121 + m.x145 <= 0) m.c45 = Constraint(expr= - m.b122 + m.x146 <= 0) m.c46 = Constraint(expr= - m.b123 + m.x147 <= 0) m.c47 = Constraint(expr= - m.b124 + m.x148 <= 0) m.c48 = Constraint(expr= - m.b125 + m.x149 <= 0) m.c49 = Constraint(expr= - m.b126 + m.x150 <= 0) m.c50 = Constraint(expr=m.x133*m.b109 + m.x133*m.x127 - m.x127*m.b109 <= 0) m.c51 = Constraint(expr=m.x134*m.b110 + m.x134*m.x127 - m.x127*m.b110 <= 0) m.c52 = Constraint(expr=m.x135*m.b111 + m.x135*m.x127 - m.x127*m.b111 <= 0) m.c53 = Constraint(expr=m.x136*m.b112 + m.x136*m.x128 - m.x128*m.b112 <= 0) m.c54 = Constraint(expr=m.x137*m.b113 + m.x137*m.x128 - m.x128*m.b113 <= 0) m.c55 = Constraint(expr=m.x138*m.b114 + m.x138*m.x128 - m.x128*m.b114 <= 0) m.c56 = Constraint(expr=m.x139*m.b115 + m.x139*m.x129 - m.x129*m.b115 <= 0) m.c57 = Constraint(expr=m.x140*m.b116 + m.x140*m.x129 - m.x129*m.b116 <= 0) m.c58 = Constraint(expr=m.x141*m.b117 + m.x141*m.x129 - m.x129*m.b117 <= 0) m.c59 = Constraint(expr=m.x142*m.b118 + m.x142*m.x130 - m.x130*m.b118 <= 0) m.c60 = Constraint(expr=m.x143*m.b119 + m.x143*m.x130 - m.x130*m.b119 <= 0) m.c61 = Constraint(expr=m.x144*m.b120 + m.x144*m.x130 - m.x130*m.b120 <= 0) m.c62 = Constraint(expr=m.x145*m.b121 + m.x145*m.x131 - m.x131*m.b121 <= 0) m.c63 = Constraint(expr=m.x146*m.b122 + m.x146*m.x131 - m.x131*m.b122 <= 0) m.c64 = Constraint(expr=m.x147*m.b123 + m.x147*m.x131 - m.x131*m.b123 <= 0) m.c65 = Constraint(expr=m.x148*m.b124 + m.x148*m.x132 - m.x132*m.b124 <= 0) m.c66 = Constraint(expr=m.x149*m.b125 + m.x149*m.x132 - m.x132*m.b125 <= 0) m.c67 = Constraint(expr=m.x150*m.b126 + m.x150*m.x132 - m.x132*m.b126 <= 0)
55.270341
120
0.628265
cf058134a69f9562b79223cc73ce74fc64cd03f1
18,990
py
Python
bins/ml/predictors/predict-from-cache-iris-classifier.py
jay-johnson/datanode
0b491332f8b74478c02c9951a997702db1b79d9e
[ "Apache-2.0" ]
2
2017-02-02T09:08:25.000Z
2017-03-03T11:54:31.000Z
bins/ml/predictors/predict-from-cache-iris-classifier.py
jay-johnson/datanode
0b491332f8b74478c02c9951a997702db1b79d9e
[ "Apache-2.0" ]
null
null
null
bins/ml/predictors/predict-from-cache-iris-classifier.py
jay-johnson/datanode
0b491332f8b74478c02c9951a997702db1b79d9e
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # Load common imports and system envs to build the core object import sys, os # For running inside the docker container use: #import matplotlib #matplotlib.use('Agg') # Load the Environment: os.environ["ENV_DEPLOYMENT_TYPE"] = "JustRedis" from src.common.inits_for_python import * ##################################################################### # # Start Arg Processing: # action = "Predict ML Classifier from Cache" parser = argparse.ArgumentParser(description="Parser for Action: " + str(action)) parser.add_argument('-f', '--csvfile', help='CSV File', dest='csvfile') parser.add_argument('-n', '--dsname', help='Dataset Name', dest='ds_name') parser.add_argument('-b', '--s3bucket', help='S3 Bucket (Optional)', dest='s_bucket') parser.add_argument('-k', '--s3key', help='S3 Key (Optional)', dest='s_key') parser.add_argument('-u', '--usedate', help='Use Date', dest='usedate') parser.add_argument("-d", "--debug", help="Debug Flag", dest='debug', action='store_true') args = parser.parse_args() if args.debug: debug = True core.enable_debug() ds_name = "iris_classifier" if args.ds_name: ds_name = str(args.ds_name).strip().lstrip() now = datetime.datetime.now() cur_date = now cur_date_str = now.strftime("%Y-%m-%d") if args.usedate: cur_date_str = str(args.usedate) send_email = "1" # by default send email s3_bucket = "demodatasets" s3_key = "dataset_" + str(str(ds_name).upper().strip().lstrip()) + "_" + str(cur_date_str) + ".csv" analysis_version = 2 if args.s_bucket: s3_bucket = str(args.s_bucket) if args.s_key: s3_key = str(args.s_key) dataset_filename = "iris.csv" ml_csv = str(os.getenv("ENV_DATA_SRC_DIR", "/opt/work/data/src")) + "/" + dataset_filename if args.csvfile: ml_csv = str(args.csvfile) # # End Arg Processing # ##################################################################### import pandas as pd import numpy as np import matplotlib.pyplot as plt if os.path.exists(ml_csv) == False: if os.path.exists("/opt/work/data/examples/iris.csv"): org_path = "/opt/work/data/examples/iris.csv" os.system("cp " + str(org_path) + " " + ml_csv) elif os.path.exists(os.getenv("ENV_DATANODE_REPO", "/opt/work") + "/data/examples/iris.csv"): org_path = os.getenv("ENV_DATANODE_REPO", "/opt/work") + "/data/examples/iris.csv" os.system("cp " + str(org_path) + " " + ml_csv) else: lg("Recreating iris dataset: /opt/work/bins/ml/downloaders/download_iris.py", 6) os.system("/opt/work/bins/ml/downloaders/download_iris.py") if os.path.exists(ml_csv) == False: lg("Failed to recreate iris dataset with: /opt/work/bins/ml/downloaders/download_iris.py", 0) lg("Stopping", 6) sys.exit(1) # end of checking if the csv file is available lg("Processing ML Predictions for CSV(" + str(ml_csv) + ")", 6) max_features_to_display = 10 num_estimators = 200 show_importance_plot = True show_confusion_plot = True random_state = 0 # For forecasting: units_ahead_set = [] units_ahead = 0 now = datetime.datetime.now() title_prefix = ds_name confusion_plot_title = ds_name + " - Random Forest Confusion Matrix\nThe darker the square on the diagonal the better the predictions\n\n" featimp_plot_title = ds_name + " - Feature Importance with Estimators(" + str(num_estimators) + ")" row_names = [ "Actual" ] # CM - Y Axis col_names = [ "Predictions" ] # CM - X Axis num_jobs = 8 ranked_features = [] org_ranked_features = [] ml_type = "Predict with Filter" ml_algo_name = "xgb-regressor" ml_algo_name = "xgb-classifier" price_min = 0.10 train_test_ratio = 0.1 # What column has the labeled targets as integers? (added-manually to the dataset) target_column_name = "ResultTargetValue" # possible values in the Target Column target_column_values = [ "Iris-setosa", "Iris-versicolor", "Iris-virginica" ] # What columns can the algorithms use for training and learning? feature_column_names = [ "SepalLength", "SepalWidth", "PetalLength", "PetalWidth", "ResultTargetValue" ] label_column_name = "ResultLabel" ignore_features = [ # Prune non-int/float columns as needed: label_column_name ] algo_nodes = [] forcast_df = None ml_request = { "MLType" : ml_type, "MLAlgo" : { "Name" : ml_algo_name, "Version" : 1, "Meta" : { "UnitsAhead" : units_ahead, "DatasetName" : ds_name, "FilterMask" : None, "Source" : { "CSVFile" : ml_csv, "S3File" : "", # <Bucket Name>:<Key> "RedisKey" : "" # <App Name>:<Key> }, }, "Steps" : { "Train" :{ "LearningRate" : 0.1, "NumEstimators" : 1000, "Objective" : "reg:linear", "MaxDepth" : 6, "MaxDeltaStep" : 0, "MinChildWeight" : 1, "Gamma" : 0, "SubSample" : 0.8, "ColSampleByTree" : 0.8, "ColSampleByLevel" : 1.0, "RegAlpha" : 0, "RegLambda" : 1, "BaseScore" : 0.5, "NumThreads" : -1, # infinite = -1 "ScaledPositionWeight" : 1, "Seed" : 27, "Debug" : True } }, "Cache" : { "RLoc" : "CACHE:_MODELS_" + str(ds_name) + "_LATEST", "UseCaches" : True } }, "FeatureColumnNames": feature_column_names, "TargetColumnName" : target_column_name, "TargetColumnValues": target_column_values, "IgnoreFeatures" : ignore_features, "UnitsAheadSet" : units_ahead_set, "UnitsAheadType" : "", "PredictionType" : "Predict", "MaxFeatures" : 10, "Version" : 1, "TrackingType" : "UseTargetColAndUnits", "TrackingName" : core.to_upper(ds_name), "TrackingID" : "ML_" + ds_name + "_" + str(core.build_unique_key()), "Debug" : False } # Load dataset to build csv_res = core.ml_load_csv_dataset(ml_request, core.get_rds(), core.get_dbs(), debug) if csv_res["Status"] != "SUCCESS": lg("ERROR: Failed to Load CSV(" + str(ml_request["MLAlgo"]["Meta"]["Source"]["CSVFile"]) + ")", 0) sys.exit(1) ds_df = csv_res["Record"]["SourceDF"] # Build a Filter for pruning bad records out before creating the train/test sets samples_filter_mask = (ds_df["SepalLength"] > 0.0) \ & (ds_df["PetalWidth"] > 0.0) # For patching on the fly you can use the encoder method to replace labels with target dictionary values: #ready_df = core.ml_encode_target_column(ds_df, "ResultLabel", "Target") show_pair_plot = False if show_pair_plot: lg("Samples(" + str(len(ds_df.index)) + ") in CSV(" + str(ml_request["MLAlgo"]["Meta"]["Source"]["CSVFile"]) + ")", 6) lg("") print ds_df.describe() lg("") num_per_class = ds_df.groupby("ResultLabel").size() print num_per_class lg("") pair_plot_req = { "Title" : "Iris Dataset PairPlot", "SourceDF" : ds_df[samples_filter_mask], "Style" : "default", "DiagKind" : "hist", # "kde" or "hist" "HueColumnName" : ml_request["TargetColumnName"], "XLabel" : "", "YLabel" : "", "CompareColumns": ml_request["FeatureColumnNames"], "Size" : 3.0, "ImgFile" : str(os.getenv("ENV_DATA_SRC_DIR", "/opt/work/data/src")) + "/" + "validate_jupyter_iris_classification_pairplot.png", "ShowPlot" : True } lg("Plotting Validation Pair Plot - Please wait a moment...", 6) core.sb_pairplot(pair_plot_req) if os.path.exists(pair_plot_req["ImgFile"]): lg("Done Plotting Valiation Pair Plot - Saved(" + str(pair_plot_req["ImgFile"]) + ")", 5) else: lg("Failed to save Validation Pair Plot(" + str(pair_plot_req["ImgFile"]) + "). Please check the ENV_DATA_SRC_DIR is writeable by this user and exposed to the docker container correctly.", 0) # end of showing a pairplot for validation # Create a Prediction Column ml_request["MLAlgo"]["Meta"]["SamplesFilterMask"] = samples_filter_mask # Create a Result Column core.enable_debug() ml_images = [] train_results = core.ml_train_models_for_predictions(ml_request, core.get_rds(), core.get_dbs(), debug) if train_results["Status"] != "SUCCESS": lg("ERROR: Failed to Train Models for Predictions with Error(" + str(train_results["Error"]) + ") StoppedEarly(" + str(train_results["Record"]["StoppedEarly"]) + ")", 0) sys.exit(1) algo_nodes = train_results["Record"]["AlgoNodes"] predict_row = { "SepalLength" : 5.4, "SepalWidth" : 3.4, "PetalLength" : 1.7, "PetalWidth" : 0.2, "ResultTargetValue" : 0 } predict_row_df = pd.DataFrame(predict_row, index=[0]) predict_req = { "AlgoNodes" : algo_nodes, "PredictionMask": samples_filter_mask, "PredictionRow" : predict_row_df } predict_results = core.ml_compile_predictions_from_models(predict_req, core.get_rds(), core.get_dbs(), debug) if predict_results["Status"] != "SUCCESS": lg("ERROR: Failed to Compile Predictions from Models with Error(" + str(predict_results["Error"]) + ")", 0) sys.exit(1) lg("Done with Predictions", 6) if predict_results["Status"] == "SUCCESS": al_req = train_results["Record"] al_req["DSName"] = ml_request["TrackingName"] al_req["Version"] = 1 al_req["FeatureColumnNames"]= ml_request["FeatureColumnNames"] al_req["TargetColumnName"] = ml_request["TargetColumnName"] al_req["TargetColumnValues"]= ml_request["TargetColumnValues"] al_req["IgnoreFeatures"] = ml_request["IgnoreFeatures"] al_req["PredictionType"] = ml_request["PredictionType"] al_req["ConfMatrices"] = predict_results["Record"]["ConfMatrices"] al_req["PredictionMarkers"] = predict_results["Record"]["PredictionMarkers"] analysis_dataset = core.ml_compile_analysis_dataset(al_req, core.get_rds(), core.get_dbs(), debug) lg("Analyzed Models(" + str(len(analysis_dataset["Models"])) + ")", 6) lg("-----------------------------------------------------", 6) lg("Caching Models", 6) cache_req = { "Name" : "CACHE", "Key" : "_MODELS_" + str(al_req["Tracking"]["TrackingName"]) + "_LATEST", "TrackingID": "_MD_" + str(al_req["Tracking"]["TrackingName"]), "Analysis" : analysis_dataset } cache_results = core.ml_cache_analysis_and_models(cache_req, core.get_rds(), core.get_dbs(), debug) lg("Done Caching Models", 6) lg("-----------------------------------------------------", 6) lg("Creating Analysis Visualizations", 6) # Turn this False to prevent displaying images analysis_dataset["ShowPlot"] = True analysis_dataset["SourceDF"] = al_req["SourceDF"] lg("Plotting Feature Importance", 6) for midx,model_node in enumerate(analysis_dataset["Models"]): predict_col = model_node["Target"] if predict_col == "ResultTargetValue": plot_req = { "ImgFile" : analysis_dataset["FeatImpImgFile"], "Model" : model_node["Model"], "XLabel" : str(predict_col), "YLabel" : "Importance Amount", "Title" : str(predict_col) + " Importance Analysis", "ShowPlot" : analysis_dataset["ShowPlot"] } image_list = core.sb_model_feature_importance(plot_req, debug) for img in image_list: ml_images.append(img) # end of for all models lg("Plotting PairPlot", 6) plot_req = { "DSName" : str(analysis_dataset["DSName"]), "Title" : str(analysis_dataset["DSName"]) + " - Pair Plot", "ImgFile" : str(analysis_dataset["PairPlotImgFile"]), "SourceDF" : al_req["SourceDF"], "HueColumnName" : target_column_name, "CompareColumns": feature_column_names, "Markers" : ["o", "s", "D"], "Width" : 15.0, "Height" : 15.0, "ShowPlot" : analysis_dataset["ShowPlot"] } image_list = core.sb_pairplot(plot_req, debug) for img in image_list: ml_images.append(img) lg("Plotting Confusion Matrices", 6) plot_req = { "DSName" : str(analysis_dataset["DSName"]), "Title" : str(analysis_dataset["DSName"]) + " - Confusion Matrix", "ImgFile" : str(analysis_dataset["CMatrixImgFile"]), "SourceDF" : al_req["SourceDF"], "ConfMatrices" : al_req["ConfMatrices"], "Width" : 15.0, "Height" : 15.0, "XLabel" : "Dates", "YLabel" : "Values", "ShowPlot" : analysis_dataset["ShowPlot"] } image_list = core.sb_confusion_matrix(plot_req, debug) for img in image_list: ml_images.append(img) lg("Plotting Scatters", 6) plot_req = { "DSName" : str(analysis_dataset["DSName"]), "Title" : str(analysis_dataset["DSName"]) + " - Scatter Plot", "ImgFile" : str(analysis_dataset["ScatterImgFile"]), "SourceDF" : analysis_dataset["SourceDF"], "UnitsAheadType" : analysis_dataset["UnitsAheadType"], "FeatureColumnNames": analysis_dataset["FeatureColumnNames"], "Hue" : label_column_name, "Width" : 7.0, "Height" : 7.0, "XLabel" : "Dates", "YLabel" : "Values", "ShowPlot" : analysis_dataset["ShowPlot"] } image_list = core.sb_all_scatterplots(plot_req, debug) for img in image_list: ml_images.append(img) lg("Plotting JointPlots", 6) plot_req = { "DSName" : str(analysis_dataset["DSName"]), "Title" : str(analysis_dataset["DSName"]) + " - Joint Plot", "ImgFile" : str(analysis_dataset["JointPlotImgFile"]), "SourceDF" : analysis_dataset["SourceDF"], "UnitsAheadType" : analysis_dataset["UnitsAheadType"], "FeatureColumnNames": analysis_dataset["FeatureColumnNames"], "Hue" : label_column_name, "Width" : 15.0, "Height" : 15.0, "XLabel" : "Dates", "YLabel" : "Values", "ShowPlot" : analysis_dataset["ShowPlot"] } image_list = core.sb_all_jointplots(plot_req, debug) for img in image_list: ml_images.append(img) lg("Done Creating Analysis Visualizations", 6) lg("-----------------------------------------------------", 6) else: lg("", 6) lg("ERROR: Failed Processing Predictions for Dataset(" + str(ds_name) + ") with Error:", 6) lg(ml_results["Error"], 6) lg("", 6) sys.exit(2) # end of if success lg("", 6) lg("Analysis Complete Saved Images(" + str(len(ml_images)) + ")", 5) lg("", 6) sys.exit(0)
44.787736
199
0.47367
bf7650586cf2e0d29d53f59133030ab79083af58
6,104
py
Python
domainbed/scripts/collect_results.py
zhuwenzhen/DomainBed
e8e8ed831bf30887675e5b3a5117d9d66d0ee46f
[ "MIT" ]
null
null
null
domainbed/scripts/collect_results.py
zhuwenzhen/DomainBed
e8e8ed831bf30887675e5b3a5117d9d66d0ee46f
[ "MIT" ]
null
null
null
domainbed/scripts/collect_results.py
zhuwenzhen/DomainBed
e8e8ed831bf30887675e5b3a5117d9d66d0ee46f
[ "MIT" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import collections import argparse import functools import glob import pickle import itertools import json import os import random import sys import numpy as np import tqdm from domainbed import datasets from domainbed import algorithms from domainbed.lib import misc, reporting from domainbed import model_selection from domainbed.lib.query import Q import warnings def format_mean(data, latex): """Given a list of datapoints, return a string describing their mean and standard error""" if len(data) == 0: return None, None, "X" mean = 100 * np.mean(list(data)) err = 100 * np.std(list(data) / np.sqrt(len(data))) if latex: return mean, err, "{:.1f} $\\pm$ {:.1f}".format(mean, err) else: return mean, err, "{:.1f} +/- {:.1f}".format(mean, err) def print_table(table, header_text, row_labels, col_labels, colwidth=10, latex=True): """Pretty-print a 2D array of data, optionally with row/col labels""" print("") if latex: num_cols = len(table[0]) print("\\begin{center}") print("\\adjustbox{max width=\\textwidth}{%") print("\\begin{tabular}{l" + "c" * num_cols + "}") print("\\toprule") else: print("--------", header_text) for row, label in zip(table, row_labels): row.insert(0, label) if latex: col_labels = [ "\\textbf{" + str(col_label).replace("%", "\\%") + "}" for col_label in col_labels ] table.insert(0, col_labels) for r, row in enumerate(table): misc.print_row(row, colwidth=colwidth, latex=latex) if latex and r == 0: print("\\midrule") if latex: print("\\bottomrule") print("\\end{tabular}}") print("\\end{center}") def print_results_tables(records, selection_method, latex): """Given all records, print a results table for each dataset.""" grouped_records = ( reporting.get_grouped_records(records) .map(lambda group: {**group, "sweep_acc": selection_method.sweep_acc(group["records"])}) .filter(lambda g: g["sweep_acc"] is not None) ) # read algorithm names and sort (predefined order) alg_names = Q(records).select("args.algorithm").unique() alg_names = [n for n in algorithms.ALGORITHMS if n in alg_names] + [ n for n in alg_names if n not in algorithms.ALGORITHMS ] # read dataset names and sort (lexicographic order) dataset_names = Q(records).select("args.dataset").unique().sorted() dataset_names = [d for d in datasets.DATASETS if d in dataset_names] for dataset in dataset_names: if latex: print() print("\\subsubsection{{{}}}".format(dataset)) test_envs = range(datasets.num_environments(dataset)) table = [[None for _ in [*test_envs, "Avg"]] for _ in alg_names] for i, algorithm in enumerate(alg_names): means = [] for j, test_env in enumerate(test_envs): trial_accs = grouped_records.filter_equals( "dataset, algorithm, test_env", (dataset, algorithm, test_env) ).select("sweep_acc") mean, err, table[i][j] = format_mean(trial_accs, latex) means.append(mean) if None in means: table[i][-1] = "X" else: table[i][-1] = "{:.1f}".format(sum(means) / len(means)) col_labels = ["Algorithm", *datasets.get_dataset_class(dataset).ENVIRONMENTS, "Avg"] header_text = f"Dataset: {dataset}, " f"model selection method: {selection_method.name}" print_table(table, header_text, alg_names, list(col_labels), colwidth=20, latex=latex) # Print an "averages" table if latex: print() print("\\subsubsection{Averages}") table = [[None for _ in [*dataset_names, "Avg"]] for _ in alg_names] for i, algorithm in enumerate(alg_names): means = [] for j, dataset in enumerate(dataset_names): trial_averages = ( grouped_records.filter_equals("algorithm, dataset", (algorithm, dataset)) .group("trial_seed") .map(lambda trial_seed, group: group.select("sweep_acc").mean()) ) mean, err, table[i][j] = format_mean(trial_averages, latex) means.append(mean) if None in means: table[i][-1] = "X" else: table[i][-1] = "{:.1f}".format(sum(means) / len(means)) col_labels = ["Algorithm", *dataset_names, "Avg"] header_text = f"Averages, model selection method: {selection_method.name}" print_table(table, header_text, alg_names, col_labels, colwidth=25, latex=latex) if __name__ == "__main__": np.set_printoptions(suppress=True) parser = argparse.ArgumentParser(description="Domain generalization testbed") parser.add_argument("--input_dir", type=str, default="") parser.add_argument("--latex", action="store_true") args = parser.parse_args() results_file = "results.tex" if args.latex else "results.txt" sys.stdout = misc.Tee(os.path.join(args.input_dir, results_file), "w") records = reporting.load_records(args.input_dir) if args.latex: print("\\documentclass{article}") print("\\usepackage{booktabs}") print("\\usepackage{adjustbox}") print("\\begin{document}") print("\\section{Full DomainBed results}") print("% Total records:", len(records)) else: print("Total records:", len(records)) SELECTION_METHODS = [ model_selection.IIDAccuracySelectionMethod, model_selection.LeaveOneOutSelectionMethod, model_selection.OracleSelectionMethod, ] for selection_method in SELECTION_METHODS: if args.latex: print() print("\\subsection{{Model selection: {}}}".format(selection_method.name)) print_results_tables(records, selection_method, args.latex) if args.latex: print("\\end{document}")
34.292135
96
0.623362
baa921c72db2fd7ea7910b6444a7cdca85c62a14
7,660
py
Python
contrib/devtools/update-translations.py
defland/aither
35c7cef0aef09253bec92ce961463533cbf22fc1
[ "MIT" ]
null
null
null
contrib/devtools/update-translations.py
defland/aither
35c7cef0aef09253bec92ce961463533cbf22fc1
[ "MIT" ]
null
null
null
contrib/devtools/update-translations.py
defland/aither
35c7cef0aef09253bec92ce961463533cbf22fc1
[ "MIT" ]
null
null
null
#!/usr/bin/python # Copyright (c) 2014 Wladimir J. van der Laan # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. ''' Run this script from the root of the repository to update all translations from transifex. It will do the following automatically: - fetch all translations using the tx tool - post-process them into valid and committable format - remove invalid control characters - remove location tags (makes diffs less noisy) TODO: - auto-add new translations to the build system according to the translation process ''' from __future__ import division, print_function import subprocess import re import sys import os import io import xml.etree.ElementTree as ET # Name of transifex tool TX = 'tx' # Name of source language file SOURCE_LANG = 'aither_en.ts' # Directory with locale files LOCALE_DIR = 'src/qt/locale' # Minimum number of messages for translation to be considered at all MIN_NUM_MESSAGES = 10 def check_at_repository_root(): if not os.path.exists('.git'): print('No .git directory found') print('Execute this script at the root of the repository', file=sys.stderr) exit(1) def fetch_all_translations(): if subprocess.call([TX, 'pull', '-f', '-a']): print('Error while fetching translations', file=sys.stderr) exit(1) def find_format_specifiers(s): '''Find all format specifiers in a string.''' pos = 0 specifiers = [] while True: percent = s.find('%', pos) if percent < 0: break try: specifiers.append(s[percent+1]) except: print('Failed to get specifier') pos = percent+2 return specifiers def split_format_specifiers(specifiers): '''Split format specifiers between numeric (Qt) and others (strprintf)''' numeric = [] other = [] for s in specifiers: if s in {'1','2','3','4','5','6','7','8','9'}: numeric.append(s) else: other.append(s) # numeric (Qt) can be present in any order, others (strprintf) must be in specified order return set(numeric),other def sanitize_string(s): '''Sanitize string for printing''' return s.replace('\n',' ') def check_format_specifiers(source, translation, errors, numerus): source_f = split_format_specifiers(find_format_specifiers(source)) # assert that no source messages contain both Qt and strprintf format specifiers # if this fails, go change the source as this is hacky and confusing! #assert(not(source_f[0] and source_f[1])) try: translation_f = split_format_specifiers(find_format_specifiers(translation)) except IndexError: errors.append("Parse error in translation for '%s': '%s'" % (sanitize_string(source), sanitize_string(translation))) return False else: if source_f != translation_f: if numerus and source_f == (set(), ['n']) and translation_f == (set(), []) and translation.find('%') == -1: # Allow numerus translations to omit %n specifier (usually when it only has one possible value) return True errors.append("Mismatch between '%s' and '%s'" % (sanitize_string(source), sanitize_string(translation))) return False return True def all_ts_files(suffix=''): for filename in os.listdir(LOCALE_DIR): # process only language files, and do not process source language if not filename.endswith('.ts'+suffix) or filename == SOURCE_LANG+suffix: continue if suffix: # remove provided suffix filename = filename[0:-len(suffix)] filepath = os.path.join(LOCALE_DIR, filename) yield(filename, filepath) FIX_RE = re.compile(b'[\x00-\x09\x0b\x0c\x0e-\x1f]') def remove_invalid_characters(s): '''Remove invalid characters from translation string''' return FIX_RE.sub(b'', s) # Override cdata escape function to make our output match Qt's (optional, just for cleaner diffs for # comparison, disable by default) _orig_escape_cdata = None def escape_cdata(text): text = _orig_escape_cdata(text) text = text.replace("'", '&apos;') text = text.replace('"', '&quot;') return text def postprocess_translations(reduce_diff_hacks=False): print('Checking and postprocessing...') if reduce_diff_hacks: global _orig_escape_cdata _orig_escape_cdata = ET._escape_cdata ET._escape_cdata = escape_cdata for (filename,filepath) in all_ts_files(): os.rename(filepath, filepath+'.orig') have_errors = False for (filename,filepath) in all_ts_files('.orig'): # pre-fixups to cope with transifex output parser = ET.XMLParser(encoding='utf-8') # need to override encoding because 'utf8' is not understood only 'utf-8' with open(filepath + '.orig', 'rb') as f: data = f.read() # remove control characters; this must be done over the entire file otherwise the XML parser will fail data = remove_invalid_characters(data) tree = ET.parse(io.BytesIO(data), parser=parser) # iterate over all messages in file root = tree.getroot() for context in root.findall('context'): for message in context.findall('message'): numerus = message.get('numerus') == 'yes' source = message.find('source').text translation_node = message.find('translation') # pick all numerusforms if numerus: translations = [i.text for i in translation_node.findall('numerusform')] else: translations = [translation_node.text] for translation in translations: if translation is None: continue errors = [] valid = check_format_specifiers(source, translation, errors, numerus) for error in errors: print('%s: %s' % (filename, error)) if not valid: # set type to unfinished and clear string if invalid translation_node.clear() translation_node.set('type', 'unfinished') have_errors = True # Remove location tags for location in message.findall('location'): message.remove(location) # Remove entire message if it is an unfinished translation if translation_node.get('type') == 'unfinished': context.remove(message) # check if document is (virtually) empty, and remove it if so num_messages = 0 for context in root.findall('context'): for message in context.findall('message'): num_messages += 1 if num_messages < MIN_NUM_MESSAGES: print('Removing %s, as it contains only %i messages' % (filepath, num_messages)) continue # write fixed-up tree # if diff reduction requested, replace some XML to 'sanitize' to qt formatting if reduce_diff_hacks: out = io.BytesIO() tree.write(out, encoding='utf-8') out = out.getvalue() out = out.replace(b' />', b'/>') with open(filepath, 'wb') as f: f.write(out) else: tree.write(filepath, encoding='utf-8') return have_errors if __name__ == '__main__': check_at_repository_root() # fetch_all_translations() postprocess_translations()
37.54902
124
0.629373
5dceadc3c7d630bbdf40d22ca332a98133c8c476
1,258
py
Python
app/routes/platforms/web/__init__.py
Tingerlink/tingerwork
0e3d360bf97a62e088f12aa72277200b75e43643
[ "MIT" ]
null
null
null
app/routes/platforms/web/__init__.py
Tingerlink/tingerwork
0e3d360bf97a62e088f12aa72277200b75e43643
[ "MIT" ]
null
null
null
app/routes/platforms/web/__init__.py
Tingerlink/tingerwork
0e3d360bf97a62e088f12aa72277200b75e43643
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Module '__init__.py' of the project 'tingerwork' # :date_create: 10.12.2017.0:28 # :author: Tingerlink # :description: from flask_classy import FlaskView from flask_classy import route, request from routes.tools import response_builder from routes.tools.request_validator import RequestValidator from tools import yaml_linker as schema class ApiWeb(FlaskView): route_base = '/web/' def __init__(self, group_name): self.validator = RequestValidator() self.group_name = group_name self.group_schema = schema.get_methods()[group_name] def action(self, method_name, logic, logic_args=None): args = request.args.to_dict(flat=True) args.update({"ip": request.remote_addr}) if logic_args: args.update(logic_args) error = self.validator.check(self.group_schema[method_name], args) if error: return response_builder.create_error_response(error.get_response_data()) result = logic(args) if type(result) is response_builder.Error: return response_builder.create_error_response(result.get_response_data()) return response_builder.create_response(result)
29.952381
86
0.68442
71e77f97d87979eca0398fd98bc4ec8ee26e70ab
10,963
py
Python
pandas/core/window/indexers.py
gabriellm1/pandas
020040b3b92516b445ddd8daba3b9818340e82d4
[ "BSD-3-Clause" ]
1
2020-10-29T17:32:26.000Z
2020-10-29T17:32:26.000Z
pandas/core/window/indexers.py
gabriellm1/pandas
020040b3b92516b445ddd8daba3b9818340e82d4
[ "BSD-3-Clause" ]
null
null
null
pandas/core/window/indexers.py
gabriellm1/pandas
020040b3b92516b445ddd8daba3b9818340e82d4
[ "BSD-3-Clause" ]
1
2022-03-15T14:46:56.000Z
2022-03-15T14:46:56.000Z
"""Indexer objects for computing start/end window bounds for rolling operations""" from datetime import timedelta from typing import Dict, Optional, Tuple, Type import numpy as np from pandas._libs.window.indexers import calculate_variable_window_bounds from pandas.util._decorators import Appender from pandas.core.dtypes.common import ensure_platform_int from pandas.tseries.offsets import Nano get_window_bounds_doc = """ Computes the bounds of a window. Parameters ---------- num_values : int, default 0 number of values that will be aggregated over window_size : int, default 0 the number of rows in a window min_periods : int, default None min_periods passed from the top level rolling API center : bool, default None center passed from the top level rolling API closed : str, default None closed passed from the top level rolling API win_type : str, default None win_type passed from the top level rolling API Returns ------- A tuple of ndarray[int64]s, indicating the boundaries of each window """ class BaseIndexer: """Base class for window bounds calculations.""" def __init__( self, index_array: Optional[np.ndarray] = None, window_size: int = 0, **kwargs ): """ Parameters ---------- **kwargs : keyword arguments that will be available when get_window_bounds is called """ self.index_array = index_array self.window_size = window_size # Set user defined kwargs as attributes that can be used in get_window_bounds for key, value in kwargs.items(): setattr(self, key, value) @Appender(get_window_bounds_doc) def get_window_bounds( self, num_values: int = 0, min_periods: Optional[int] = None, center: Optional[bool] = None, closed: Optional[str] = None, ) -> Tuple[np.ndarray, np.ndarray]: raise NotImplementedError class FixedWindowIndexer(BaseIndexer): """Creates window boundaries that are of fixed length.""" @Appender(get_window_bounds_doc) def get_window_bounds( self, num_values: int = 0, min_periods: Optional[int] = None, center: Optional[bool] = None, closed: Optional[str] = None, ) -> Tuple[np.ndarray, np.ndarray]: if center: offset = (self.window_size - 1) // 2 else: offset = 0 end = np.arange(1 + offset, num_values + 1 + offset, dtype="int64") start = end - self.window_size end = np.clip(end, 0, num_values) start = np.clip(start, 0, num_values) return start, end class VariableWindowIndexer(BaseIndexer): """Creates window boundaries that are of variable length, namely for time series.""" @Appender(get_window_bounds_doc) def get_window_bounds( self, num_values: int = 0, min_periods: Optional[int] = None, center: Optional[bool] = None, closed: Optional[str] = None, ) -> Tuple[np.ndarray, np.ndarray]: return calculate_variable_window_bounds( num_values, self.window_size, min_periods, center, closed, self.index_array ) class VariableOffsetWindowIndexer(BaseIndexer): """Calculate window boundaries based on a non-fixed offset such as a BusinessDay""" def __init__( self, index_array: Optional[np.ndarray] = None, window_size: int = 0, index=None, offset=None, **kwargs, ): super().__init__(index_array, window_size, **kwargs) self.index = index self.offset = offset @Appender(get_window_bounds_doc) def get_window_bounds( self, num_values: int = 0, min_periods: Optional[int] = None, center: Optional[bool] = None, closed: Optional[str] = None, ) -> Tuple[np.ndarray, np.ndarray]: # if windows is variable, default is 'right', otherwise default is 'both' if closed is None: closed = "right" if self.index is not None else "both" right_closed = closed in ["right", "both"] left_closed = closed in ["left", "both"] if self.index[num_values - 1] < self.index[0]: index_growth_sign = -1 else: index_growth_sign = 1 start = np.empty(num_values, dtype="int64") start.fill(-1) end = np.empty(num_values, dtype="int64") end.fill(-1) start[0] = 0 # right endpoint is closed if right_closed: end[0] = 1 # right endpoint is open else: end[0] = 0 # start is start of slice interval (including) # end is end of slice interval (not including) for i in range(1, num_values): end_bound = self.index[i] start_bound = self.index[i] - index_growth_sign * self.offset # left endpoint is closed if left_closed: start_bound -= Nano(1) # advance the start bound until we are # within the constraint start[i] = i for j in range(start[i - 1], i): if (self.index[j] - start_bound) * index_growth_sign > timedelta(0): start[i] = j break # end bound is previous end # or current index if (self.index[end[i - 1]] - end_bound) * index_growth_sign <= timedelta(0): end[i] = i + 1 else: end[i] = end[i - 1] # right endpoint is open if not right_closed: end[i] -= 1 return start, end class ExpandingIndexer(BaseIndexer): """Calculate expanding window bounds, mimicking df.expanding()""" @Appender(get_window_bounds_doc) def get_window_bounds( self, num_values: int = 0, min_periods: Optional[int] = None, center: Optional[bool] = None, closed: Optional[str] = None, ) -> Tuple[np.ndarray, np.ndarray]: return ( np.zeros(num_values, dtype=np.int64), np.arange(1, num_values + 1, dtype=np.int64), ) class FixedForwardWindowIndexer(BaseIndexer): """ Creates window boundaries for fixed-length windows that include the current row. Examples -------- >>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}) >>> df B 0 0.0 1 1.0 2 2.0 3 NaN 4 4.0 >>> indexer = pd.api.indexers.FixedForwardWindowIndexer(window_size=2) >>> df.rolling(window=indexer, min_periods=1).sum() B 0 1.0 1 3.0 2 2.0 3 4.0 4 4.0 """ @Appender(get_window_bounds_doc) def get_window_bounds( self, num_values: int = 0, min_periods: Optional[int] = None, center: Optional[bool] = None, closed: Optional[str] = None, ) -> Tuple[np.ndarray, np.ndarray]: if center: raise ValueError("Forward-looking windows can't have center=True") if closed is not None: raise ValueError( "Forward-looking windows don't support setting the closed argument" ) start = np.arange(num_values, dtype="int64") end_s = start[: -self.window_size] + self.window_size end_e = np.full(self.window_size, num_values, dtype="int64") end = np.concatenate([end_s, end_e]) return start, end class GroupbyIndexer(BaseIndexer): """Calculate bounds to compute groupby rolling, mimicking df.groupby().rolling()""" def __init__( self, index_array: Optional[np.ndarray] = None, window_size: int = 0, groupby_indicies: Optional[Dict] = None, window_indexer: Type[BaseIndexer] = BaseIndexer, indexer_kwargs: Optional[Dict] = None, **kwargs, ): """ Parameters ---------- index_array : np.ndarray or None np.ndarray of the index of the original object that we are performing a chained groupby operation over. This index has been pre-sorted relative to the groups window_size : int window size during the windowing operation groupby_indicies : dict or None dict of {group label: [positional index of rows belonging to the group]} window_indexer : BaseIndexer BaseIndexer class determining the start and end bounds of each group indexer_kwargs : dict or None Custom kwargs to be passed to window_indexer **kwargs : keyword arguments that will be available when get_window_bounds is called """ self.groupby_indicies = groupby_indicies or {} self.window_indexer = window_indexer self.indexer_kwargs = indexer_kwargs or {} super().__init__( index_array, self.indexer_kwargs.pop("window_size", window_size), **kwargs ) @Appender(get_window_bounds_doc) def get_window_bounds( self, num_values: int = 0, min_periods: Optional[int] = None, center: Optional[bool] = None, closed: Optional[str] = None, ) -> Tuple[np.ndarray, np.ndarray]: # 1) For each group, get the indices that belong to the group # 2) Use the indices to calculate the start & end bounds of the window # 3) Append the window bounds in group order start_arrays = [] end_arrays = [] window_indicies_start = 0 for key, indices in self.groupby_indicies.items(): if self.index_array is not None: index_array = self.index_array.take(ensure_platform_int(indices)) else: index_array = self.index_array indexer = self.window_indexer( index_array=index_array, window_size=self.window_size, **self.indexer_kwargs, ) start, end = indexer.get_window_bounds( len(indices), min_periods, center, closed ) start = start.astype(np.int64) end = end.astype(np.int64) # Cannot use groupby_indicies as they might not be monotonic with the object # we're rolling over window_indicies = np.arange( window_indicies_start, window_indicies_start + len(indices) ) window_indicies_start += len(indices) # Extend as we'll be slicing window like [start, end) window_indicies = np.append( window_indicies, [window_indicies[-1] + 1] ).astype(np.int64) start_arrays.append(window_indicies.take(ensure_platform_int(start))) end_arrays.append(window_indicies.take(ensure_platform_int(end))) start = np.concatenate(start_arrays) end = np.concatenate(end_arrays) return start, end
31.962099
88
0.60239
0160bbe0aacf55c076f1610a38ff651247053404
629
py
Python
nba_data/data/matchup.py
jaebradley/nba_data
30d817bbc1c5474774f97f3800354492e382d206
[ "MIT" ]
8
2017-01-07T13:32:16.000Z
2019-08-08T17:36:26.000Z
nba_data/data/matchup.py
jaebradley/nba_data
30d817bbc1c5474774f97f3800354492e382d206
[ "MIT" ]
72
2016-09-01T01:21:07.000Z
2021-03-25T21:41:38.000Z
nba_data/data/matchup.py
jaebradley/nba_data
30d817bbc1c5474774f97f3800354492e382d206
[ "MIT" ]
4
2016-12-06T10:30:59.000Z
2021-09-08T21:23:43.000Z
from team import Team class MatchUp: def __init__(self, home_team, away_team): self.home_team = home_team self.away_team = away_team @staticmethod def create(home_team_id, away_team_id): return MatchUp(home_team=Team.get_team_by_id(team_id=home_team_id), away_team=Team.get_team_by_id(team_id=away_team_id)) @staticmethod def create(home_team_abbreviation, away_team_abbreviation): return MatchUp(home_team=Team.get_team_by_abbreviation(home_team_abbreviation), away_team=Team.get_team_by_abbreviation(away_team_abbreviation))
34.944444
87
0.720191
a95eae30ae55487c90056694f4aef1b03ea952c5
2,123
py
Python
telethon/tl/custom/forward.py
TgCat/Telethon
f9aabaca2049906a7e94dcab010bcc7a645a8278
[ "MIT" ]
6,709
2016-09-07T07:11:00.000Z
2022-03-31T23:22:59.000Z
telethon/tl/custom/forward.py
TgCat/Telethon
f9aabaca2049906a7e94dcab010bcc7a645a8278
[ "MIT" ]
3,211
2016-09-15T10:29:22.000Z
2022-03-31T15:51:33.000Z
telethon/tl/custom/forward.py
TgCat/Telethon
f9aabaca2049906a7e94dcab010bcc7a645a8278
[ "MIT" ]
1,403
2016-10-09T03:07:33.000Z
2022-03-31T14:09:55.000Z
from .chatgetter import ChatGetter from .sendergetter import SenderGetter from ... import utils, helpers from ...tl import types class Forward(ChatGetter, SenderGetter): """ Custom class that encapsulates a :tl:`MessageFwdHeader` providing an abstraction to easily access information like the original sender. Remember that this class implements `ChatGetter <telethon.tl.custom.chatgetter.ChatGetter>` and `SenderGetter <telethon.tl.custom.sendergetter.SenderGetter>` which means you have access to all their sender and chat properties and methods. Attributes: original_fwd (:tl:`MessageFwdHeader`): The original :tl:`MessageFwdHeader` instance. Any other attribute: Attributes not described here are the same as those available in the original :tl:`MessageFwdHeader`. """ def __init__(self, client, original, entities): # Copy all the fields, not reference! It would cause memory cycles: # self.original_fwd.original_fwd.original_fwd.original_fwd # ...would be valid if we referenced. self.__dict__.update(original.__dict__) self.original_fwd = original sender_id = sender = input_sender = peer = chat = input_chat = None if original.from_id: ty = helpers._entity_type(original.from_id) if ty == helpers._EntityType.USER: sender_id = utils.get_peer_id(original.from_id) sender, input_sender = utils._get_entity_pair( sender_id, entities, client._entity_cache) elif ty in (helpers._EntityType.CHAT, helpers._EntityType.CHANNEL): peer = original.from_id chat, input_chat = utils._get_entity_pair( utils.get_peer_id(peer), entities, client._entity_cache) # This call resets the client ChatGetter.__init__(self, peer, chat=chat, input_chat=input_chat) SenderGetter.__init__(self, sender_id, sender=sender, input_sender=input_sender) self._client = client # TODO We could reload the message
40.826923
88
0.678285
f80011c3fb0b6185eaba542690e5d2046d2693db
1,406
py
Python
server/service/users.py
hmiguellima/jogodafortuna
ad8008b551858c691db9ab63a4985cfaf45a6e8b
[ "Apache-2.0" ]
null
null
null
server/service/users.py
hmiguellima/jogodafortuna
ad8008b551858c691db9ab63a4985cfaf45a6e8b
[ "Apache-2.0" ]
null
null
null
server/service/users.py
hmiguellima/jogodafortuna
ad8008b551858c691db9ab63a4985cfaf45a6e8b
[ "Apache-2.0" ]
null
null
null
# import the Bottle framework from bottle import Bottle, request, template, redirect, abort # Run the Bottle wsgi application. We don't need to call run() since our # application is embedded within an App Engine WSGI application server. bottle = Bottle() from controllers.users import UserController users = UserController() @bottle.get('/service/v1/user/detail/<user_id>') def user_detail(user_id=''): user = users.detail(user_id) if not user: abort(404) return dict(name=user.name, email=user.email) @bottle.get('/service/v1/user/list') def users_list(): return dict(users=users.list()) @bottle.get('/service/v1/user/edit/<user_id>') def user_edit(user_id): user = users.detail(user_id) if not user: abort(404) return template('edit_user', dict(name=user.name, email=user.email)) @bottle.put('/service/v1/user/edit/<user_id>') def user_edit_put(user_id): name = request.forms.get('name') email = request.forms.get('email') users.edit(user_id, name, email) return redirect('/service/v1/user/detail/%s' % user_id) @bottle.get('/service/v1/user/create') def user_create(): return template('create_user') @bottle.post('/service/v1/user/create') def user_create_post(user_id=''): name = request.forms.get('name') email = request.forms.get('email') users.create(name, email) return redirect('/service/v1/user/list')
27.038462
72
0.701991
fe75e7471e1f95b1b8433e28c95bda6cd9ca7cf8
14,302
py
Python
core/domain/subscription_services_test.py
Himanshu1495/oppia
8a3a4d6ff633aca12bbd043648a2d45ccdd583e9
[ "Apache-2.0" ]
null
null
null
core/domain/subscription_services_test.py
Himanshu1495/oppia
8a3a4d6ff633aca12bbd043648a2d45ccdd583e9
[ "Apache-2.0" ]
null
null
null
core/domain/subscription_services_test.py
Himanshu1495/oppia
8a3a4d6ff633aca12bbd043648a2d45ccdd583e9
[ "Apache-2.0" ]
1
2021-09-22T10:37:34.000Z
2021-09-22T10:37:34.000Z
# coding: utf-8 # # Copyright 2014 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for subscription management.""" from core.domain import collection_domain from core.domain import collection_services from core.domain import exp_domain from core.domain import exp_services from core.domain import feedback_domain from core.domain import feedback_services from core.domain import rights_manager from core.domain import subscription_services from core.platform import models from core.tests import test_utils (user_models,) = models.Registry.import_models([models.NAMES.user]) COLLECTION_ID = 'col_id' COLLECTION_ID_2 = 'col_id_2' EXP_ID = 'exp_id' EXP_ID_2 = 'exp_id_2' FEEDBACK_THREAD_ID = 'fthread_id' FEEDBACK_THREAD_ID_2 = 'fthread_id_2' USER_ID = 'user_id' class SubscriptionsTest(test_utils.GenericTestBase): """Tests for subscription management.""" OWNER_2_EMAIL = 'owner2@example.com' OWNER2_USERNAME = 'owner2' def setUp(self): super(SubscriptionsTest, self).setUp() self.signup(self.OWNER_EMAIL, self.OWNER_USERNAME) self.signup(self.EDITOR_EMAIL, self.EDITOR_USERNAME) self.signup(self.VIEWER_EMAIL, self.VIEWER_USERNAME) self.signup(self.OWNER_2_EMAIL, self.OWNER2_USERNAME) self.owner_id = self.get_user_id_from_email(self.OWNER_EMAIL) self.editor_id = self.get_user_id_from_email(self.EDITOR_EMAIL) self.viewer_id = self.get_user_id_from_email(self.VIEWER_EMAIL) self.owner_2_id = self.get_user_id_from_email(self.OWNER_2_EMAIL) def _get_thread_ids_subscribed_to(self, user_id): subscriptions_model = user_models.UserSubscriptionsModel.get( user_id, strict=False) return ( subscriptions_model.feedback_thread_ids if subscriptions_model else []) def _get_exploration_ids_subscribed_to(self, user_id): subscriptions_model = user_models.UserSubscriptionsModel.get( user_id, strict=False) return ( subscriptions_model.activity_ids if subscriptions_model else []) def _get_collection_ids_subscribed_to(self, user_id): subscriptions_model = user_models.UserSubscriptionsModel.get( user_id, strict=False) return ( subscriptions_model.collection_ids if subscriptions_model else []) def test_subscribe_to_feedback_thread(self): self.assertEqual(self._get_thread_ids_subscribed_to(USER_ID), []) subscription_services.subscribe_to_thread(USER_ID, FEEDBACK_THREAD_ID) self.assertEqual( self._get_thread_ids_subscribed_to(USER_ID), [FEEDBACK_THREAD_ID]) # Repeated subscriptions to the same thread have no effect. subscription_services.subscribe_to_thread(USER_ID, FEEDBACK_THREAD_ID) self.assertEqual( self._get_thread_ids_subscribed_to(USER_ID), [FEEDBACK_THREAD_ID]) subscription_services.subscribe_to_thread( USER_ID, FEEDBACK_THREAD_ID_2) self.assertEqual( self._get_thread_ids_subscribed_to(USER_ID), [FEEDBACK_THREAD_ID, FEEDBACK_THREAD_ID_2]) def test_subscribe_to_exploration(self): self.assertEqual(self._get_exploration_ids_subscribed_to(USER_ID), []) subscription_services.subscribe_to_exploration(USER_ID, EXP_ID) self.assertEqual( self._get_exploration_ids_subscribed_to(USER_ID), [EXP_ID]) # Repeated subscriptions to the same exploration have no effect. subscription_services.subscribe_to_exploration(USER_ID, EXP_ID) self.assertEqual( self._get_exploration_ids_subscribed_to(USER_ID), [EXP_ID]) subscription_services.subscribe_to_exploration(USER_ID, EXP_ID_2) self.assertEqual( self._get_exploration_ids_subscribed_to(USER_ID), [EXP_ID, EXP_ID_2]) def test_get_exploration_ids_subscribed_to(self): self.assertEqual( subscription_services.get_exploration_ids_subscribed_to( USER_ID), []) subscription_services.subscribe_to_exploration(USER_ID, EXP_ID) self.assertEqual( subscription_services.get_exploration_ids_subscribed_to(USER_ID), [EXP_ID]) subscription_services.subscribe_to_exploration(USER_ID, EXP_ID_2) self.assertEqual( subscription_services.get_exploration_ids_subscribed_to(USER_ID), [EXP_ID, EXP_ID_2]) def test_thread_and_exp_subscriptions_are_tracked_individually(self): self.assertEqual(self._get_thread_ids_subscribed_to(USER_ID), []) subscription_services.subscribe_to_thread(USER_ID, FEEDBACK_THREAD_ID) subscription_services.subscribe_to_exploration(USER_ID, EXP_ID) self.assertEqual( self._get_thread_ids_subscribed_to(USER_ID), [FEEDBACK_THREAD_ID]) self.assertEqual( self._get_exploration_ids_subscribed_to(USER_ID), [EXP_ID]) def test_posting_to_feedback_thread_results_in_subscription(self): # The viewer posts a message to the thread. message_text = 'text' feedback_services.create_thread( 'exp_id', 'state_name', self.viewer_id, 'subject', message_text) thread_ids_subscribed_to = self._get_thread_ids_subscribed_to( self.viewer_id) self.assertEqual(len(thread_ids_subscribed_to), 1) full_thread_id = thread_ids_subscribed_to[0] thread_id = ( feedback_domain.FeedbackThread.get_thread_id_from_full_thread_id( full_thread_id)) self.assertEqual( feedback_services.get_messages('exp_id', thread_id)[0].text, message_text) # The editor posts a follow-up message to the thread. new_message_text = 'new text' feedback_services.create_message( 'exp_id', thread_id, self.editor_id, '', '', new_message_text) # The viewer and editor are now both subscribed to the thread. self.assertEqual( self._get_thread_ids_subscribed_to(self.viewer_id), [full_thread_id]) self.assertEqual( self._get_thread_ids_subscribed_to(self.editor_id), [full_thread_id]) def test_creating_exploration_results_in_subscription(self): self.assertEqual( self._get_exploration_ids_subscribed_to(USER_ID), []) exp_services.save_new_exploration( USER_ID, exp_domain.Exploration.create_default_exploration( EXP_ID, 'Title', 'Category')) self.assertEqual( self._get_exploration_ids_subscribed_to(USER_ID), [EXP_ID]) def test_adding_new_exploration_owner_or_editor_role_results_in_subscription(self): # pylint: disable=line-too-long exploration = exp_domain.Exploration.create_default_exploration( EXP_ID, 'Title', 'Category') exp_services.save_new_exploration(self.owner_id, exploration) self.assertEqual( self._get_exploration_ids_subscribed_to(self.owner_2_id), []) rights_manager.assign_role_for_exploration( self.owner_id, EXP_ID, self.owner_2_id, rights_manager.ROLE_OWNER) self.assertEqual( self._get_exploration_ids_subscribed_to(self.owner_2_id), [EXP_ID]) self.assertEqual( self._get_exploration_ids_subscribed_to(self.editor_id), []) rights_manager.assign_role_for_exploration( self.owner_id, EXP_ID, self.editor_id, rights_manager.ROLE_EDITOR) self.assertEqual( self._get_exploration_ids_subscribed_to(self.editor_id), [EXP_ID]) def test_adding_new_exploration_viewer_role_does_not_result_in_subscription(self): # pylint: disable=line-too-long exploration = exp_domain.Exploration.create_default_exploration( EXP_ID, 'Title', 'Category') exp_services.save_new_exploration(self.owner_id, exploration) self.assertEqual( self._get_exploration_ids_subscribed_to(self.viewer_id), []) rights_manager.assign_role_for_exploration( self.owner_id, EXP_ID, self.viewer_id, rights_manager.ROLE_VIEWER) self.assertEqual( self._get_exploration_ids_subscribed_to(self.viewer_id), []) def test_deleting_exploration_does_not_delete_subscription(self): exploration = exp_domain.Exploration.create_default_exploration( EXP_ID, 'Title', 'Category') exp_services.save_new_exploration(self.owner_id, exploration) self.assertEqual( self._get_exploration_ids_subscribed_to(self.owner_id), [EXP_ID]) exp_services.delete_exploration(self.owner_id, EXP_ID) self.assertEqual( self._get_exploration_ids_subscribed_to(self.owner_id), [EXP_ID]) def test_subscribe_to_collection(self): self.assertEqual(self._get_collection_ids_subscribed_to(USER_ID), []) subscription_services.subscribe_to_collection(USER_ID, COLLECTION_ID) self.assertEqual( self._get_collection_ids_subscribed_to(USER_ID), [COLLECTION_ID]) # Repeated subscriptions to the same collection have no effect. subscription_services.subscribe_to_collection(USER_ID, COLLECTION_ID) self.assertEqual( self._get_collection_ids_subscribed_to(USER_ID), [COLLECTION_ID]) subscription_services.subscribe_to_collection(USER_ID, COLLECTION_ID_2) self.assertEqual( self._get_collection_ids_subscribed_to(USER_ID), [COLLECTION_ID, COLLECTION_ID_2]) def test_get_collection_ids_subscribed_to(self): self.assertEqual( subscription_services.get_collection_ids_subscribed_to( USER_ID), []) subscription_services.subscribe_to_collection(USER_ID, COLLECTION_ID) self.assertEqual( subscription_services.get_collection_ids_subscribed_to(USER_ID), [COLLECTION_ID]) subscription_services.subscribe_to_collection(USER_ID, COLLECTION_ID_2) self.assertEqual( subscription_services.get_collection_ids_subscribed_to(USER_ID), [COLLECTION_ID, COLLECTION_ID_2]) def test_creating_collection_results_in_subscription(self): self.assertEqual( self._get_collection_ids_subscribed_to(USER_ID), []) self.save_new_default_collection(COLLECTION_ID, USER_ID) self.assertEqual( self._get_collection_ids_subscribed_to(USER_ID), [COLLECTION_ID]) def test_adding_new_collection_owner_or_editor_role_results_in_subscription( self): self.save_new_default_collection(COLLECTION_ID, self.owner_id) self.assertEqual( self._get_collection_ids_subscribed_to(self.owner_2_id), []) rights_manager.assign_role_for_collection( self.owner_id, COLLECTION_ID, self.owner_2_id, rights_manager.ROLE_OWNER) self.assertEqual( self._get_collection_ids_subscribed_to(self.owner_2_id), [COLLECTION_ID]) self.assertEqual( self._get_collection_ids_subscribed_to(self.editor_id), []) rights_manager.assign_role_for_collection( self.owner_id, COLLECTION_ID, self.editor_id, rights_manager.ROLE_EDITOR) self.assertEqual( self._get_collection_ids_subscribed_to(self.editor_id), [COLLECTION_ID]) def test_adding_new_collection_viewer_role_does_not_result_in_subscription( self): self.save_new_default_collection(COLLECTION_ID, self.owner_id) self.assertEqual( self._get_collection_ids_subscribed_to(self.viewer_id), []) rights_manager.assign_role_for_collection( self.owner_id, COLLECTION_ID, self.viewer_id, rights_manager.ROLE_VIEWER) self.assertEqual( self._get_collection_ids_subscribed_to(self.viewer_id), []) def test_deleting_collection_does_not_delete_subscription(self): self.save_new_default_collection(COLLECTION_ID, self.owner_id) self.assertEqual( self._get_collection_ids_subscribed_to(self.owner_id), [COLLECTION_ID]) collection_services.delete_collection(self.owner_id, COLLECTION_ID) self.assertEqual( self._get_collection_ids_subscribed_to(self.owner_id), [COLLECTION_ID]) def test_adding_exploration_to_collection_does_not_create_subscription( self): self.save_new_default_collection(COLLECTION_ID, self.owner_id) # The author is subscribed to the collection but to no explorations. self.assertEqual( self._get_collection_ids_subscribed_to(self.owner_id), [COLLECTION_ID]) self.assertEqual( self._get_exploration_ids_subscribed_to(self.owner_id), []) # Another author creates an exploration. self.save_new_valid_exploration(EXP_ID, self.owner_2_id) # If the collection author adds the exploration to his/her collection, # the collection author should not be subscribed to the exploration nor # should the exploration author be subscribed to the collection. collection_services.update_collection(self.owner_id, COLLECTION_ID, [{ 'cmd': collection_domain.CMD_ADD_COLLECTION_NODE, 'exploration_id': EXP_ID }], 'Add new exploration to collection.') # Ensure subscriptions are as expected. self.assertEqual( self._get_collection_ids_subscribed_to(self.owner_id), [COLLECTION_ID]) self.assertEqual( self._get_exploration_ids_subscribed_to(self.owner_2_id), [EXP_ID])
42.692537
119
0.715285
edc8f38b3d63d7a6de75168bddab830ea6e91017
5,494
py
Python
dataset/forced_alignment/audio.py
FilthyFrankTheGoanimator/Voice
0bf3570bd6b376c936ea9f04fc15f129e738b168
[ "BSD-3-Clause" ]
556
2021-03-10T19:09:47.000Z
2022-03-30T13:45:13.000Z
dataset/forced_alignment/audio.py
FilthyFrankTheGoanimator/Voice
0bf3570bd6b376c936ea9f04fc15f129e738b168
[ "BSD-3-Clause" ]
100
2021-03-14T12:35:46.000Z
2022-03-26T07:57:42.000Z
dataset/forced_alignment/audio.py
FilthyFrankTheGoanimator/Voice
0bf3570bd6b376c936ea9f04fc15f129e738b168
[ "BSD-3-Clause" ]
84
2021-03-16T21:44:06.000Z
2022-03-30T21:58:28.000Z
import wave import collections from webrtcvad import Vad DEFAULT_RATE = 16000 DEFAULT_CHANNELS = 1 DEFAULT_WIDTH = 2 DEFAULT_FORMAT = (DEFAULT_RATE, DEFAULT_CHANNELS, DEFAULT_WIDTH) def get_num_samples(pcm_buffer_size, audio_format=DEFAULT_FORMAT): """ Credit: https://github.com/mozilla/DSAlign Gets number of samples in audio file. Parameters ---------- pcm_buffer_size : int Size of audio PCM buffer audio_format : tuple Tuple containing the audio sample rate, channels & width Returns ------- int Number of samples """ _, channels, width = audio_format return pcm_buffer_size // (channels * width) def get_pcm_duration(pcm_buffer_size, audio_format=DEFAULT_FORMAT): """ Credit: https://github.com/mozilla/DSAlign Gets duration of audio file. Parameters ---------- pcm_buffer_size : int Size of audio PCM buffer audio_format : tuple Tuple containing the audio sample rate, channels & width Returns ------- float Audio duration """ return get_num_samples(pcm_buffer_size, audio_format) / audio_format[0] def read_frames(wav_file, frame_duration_ms=30, yield_remainder=False): """ Credit: https://github.com/mozilla/DSAlign Read frames of audio file. Parameters ---------- wav_file : wave Opened wav file using wave frame_duration_ms : int Frame duration in milliseconds yield_remainder : bool Whether to yield remaining audio frames Yields ------- Audio frames """ frame_size = int(DEFAULT_FORMAT[0] * (frame_duration_ms / 1000.0)) while True: try: data = wav_file.readframes(frame_size) if not yield_remainder and get_pcm_duration(len(data), DEFAULT_FORMAT) * 1000 < frame_duration_ms: break yield data except EOFError: break def read_frames_from_file(audio_path, audio_format=DEFAULT_FORMAT, frame_duration_ms=30, yield_remainder=False): """ Credit: https://github.com/mozilla/DSAlign Read frames of audio file. Parameters ---------- audio_path : str Path to audio file audio_format : tuple Tuple containing the audio sample rate, channels & width frame_duration_ms : int Frame duration in milliseconds yield_remainder : bool Whether to yield remaining audio frames Yields ------- Audio frames """ audio = wave.open(audio_path, "r") for frame in read_frames(audio, frame_duration_ms=frame_duration_ms, yield_remainder=yield_remainder): yield frame def vad_split(audio_frames, audio_format=DEFAULT_FORMAT, num_padding_frames=10, threshold=0.5, aggressiveness=3): """ Credit: https://github.com/mozilla/DSAlign Splits audio into segments using Voice Activity Detection. Parameters ---------- audio_frames : list List of audio frames audio_format : tuple Tuple containing the audio sample rate, channels & width num_padding_frames : int Number of frames to pad threshold : float Minimum threshold aggressiveness : int Aggressivess of VAD split Yields ------- Audio segments (tuples containing number of frames, start time & end time)) """ sample_rate, channels, width = audio_format if channels != 1: raise ValueError("VAD-splitting requires mono samples") if width != 2: raise ValueError("VAD-splitting requires 16 bit samples") if sample_rate not in [8000, 16000, 32000, 48000]: raise ValueError("VAD-splitting only supported for sample rates 8000, 16000, 32000, or 48000") if aggressiveness not in [0, 1, 2, 3]: raise ValueError("VAD-splitting aggressiveness mode has to be one of 0, 1, 2, or 3") ring_buffer = collections.deque(maxlen=num_padding_frames) triggered = False vad = Vad(int(aggressiveness)) voiced_frames = [] frame_duration_ms = 0 frame_index = 0 for frame_index, frame in enumerate(audio_frames): frame_duration_ms = get_pcm_duration(len(frame), audio_format) * 1000 if int(frame_duration_ms) not in [10, 20, 30]: raise ValueError("VAD-splitting only supported for frame durations 10, 20, or 30 ms") is_speech = vad.is_speech(frame, sample_rate) if not triggered: ring_buffer.append((frame, is_speech)) num_voiced = len([f for f, speech in ring_buffer if speech]) if num_voiced > threshold * ring_buffer.maxlen: triggered = True for f, s in ring_buffer: voiced_frames.append(f) ring_buffer.clear() else: voiced_frames.append(frame) ring_buffer.append((frame, is_speech)) num_unvoiced = len([f for f, speech in ring_buffer if not speech]) if num_unvoiced > threshold * ring_buffer.maxlen: triggered = False yield b"".join(voiced_frames), frame_duration_ms * max( 0, frame_index - len(voiced_frames) ), frame_duration_ms * frame_index ring_buffer.clear() voiced_frames = [] if len(voiced_frames) > 0: yield b"".join(voiced_frames), frame_duration_ms * (frame_index - len(voiced_frames)), frame_duration_ms * ( frame_index + 1 )
30.865169
116
0.644703
07584fe89dff1b627876a32eb0cf8615d2f1f4d2
976
py
Python
eventsourcing/application/django.py
scbabacus/eventsourcing
8404c5b26719ed9d9d1d257ebba774879c7243c4
[ "BSD-3-Clause" ]
null
null
null
eventsourcing/application/django.py
scbabacus/eventsourcing
8404c5b26719ed9d9d1d257ebba774879c7243c4
[ "BSD-3-Clause" ]
null
null
null
eventsourcing/application/django.py
scbabacus/eventsourcing
8404c5b26719ed9d9d1d257ebba774879c7243c4
[ "BSD-3-Clause" ]
null
null
null
from eventsourcing.application.command import CommandProcess from eventsourcing.application.process import ProcessApplication from eventsourcing.application.simple import SimpleApplication from eventsourcing.infrastructure.django.manager import DjangoRecordManager from eventsourcing.infrastructure.django.models import StoredEventRecord class ApplicationWithDjango(SimpleApplication): record_manager_class = DjangoRecordManager stored_event_record_class = StoredEventRecord class ProcessApplicationWithDjango(ApplicationWithDjango, ProcessApplication): pass class CommandProcessWithDjango(ApplicationWithDjango, CommandProcess): pass class SimpleApplication(ApplicationWithDjango): """Shorter name for ApplicationWithDjango.""" class ProcessApplication(ProcessApplicationWithDjango): """Shorter name for ProcessApplicationWithDjango.""" class CommandProcess(CommandProcessWithDjango): """Shorter name for CommandProcessWithDjango."""
30.5
78
0.846311
c5f9401efdbf30db0427243f58fa7446d4aca295
270
py
Python
data_collection_app/data_collection_app/doctype/item_specification/item_specification.py
georgreen/prototype-app
9cadbc305d07b5b8832630cb4a3368b2855be5da
[ "MIT" ]
null
null
null
data_collection_app/data_collection_app/doctype/item_specification/item_specification.py
georgreen/prototype-app
9cadbc305d07b5b8832630cb4a3368b2855be5da
[ "MIT" ]
null
null
null
data_collection_app/data_collection_app/doctype/item_specification/item_specification.py
georgreen/prototype-app
9cadbc305d07b5b8832630cb4a3368b2855be5da
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2020, Inquire.Solute and contributors # For license information, please see license.txt from __future__ import unicode_literals # import frappe from frappe.model.document import Document class ItemSpecification(Document): pass
24.545455
53
0.781481
5da366e8bc899a357691d995528c494546ca11dc
2,124
py
Python
bgc_detection/antismash/antismash_tsv_to_csv.py
prihoda/bgc-pipeline-1
3df49f1b4c25232ce3f7e622607465c8f6a88df8
[ "MIT" ]
6
2019-05-06T04:32:47.000Z
2022-01-25T03:24:10.000Z
bgc_detection/antismash/antismash_tsv_to_csv.py
prihoda/bgc-pipeline
29300da912fd1836eea8e285e2e50f5326f021f3
[ "MIT" ]
6
2019-02-15T19:02:56.000Z
2021-07-12T08:28:48.000Z
bgc_detection/antismash/antismash_tsv_to_csv.py
prihoda/bgc-pipeline
29300da912fd1836eea8e285e2e50f5326f021f3
[ "MIT" ]
4
2019-09-09T07:15:23.000Z
2021-07-12T07:25:04.000Z
#!/usr/bin/env python # David Prihoda # Convert an antiSMASH TSV file taken from 'txt/*_BGC.txt' file into a Candidate CSV file import argparse import pandas as pd import numpy as np def antismash_tsv_candidates(export): """ Convert an antiSMASH TSV file taken from 'txt/*_BGC.txt' into a Candidate DataFrame :param export: DataFrame of antiSMASH TSV file taken from 'txt/*_BGC.txt' :return: Candidate DataFrame """ candidates = pd.DataFrame() candidates['contig_id'] = export['Contig'] candidates['nucl_start'] = export['BGC_range'].apply(lambda r: r.split(';')[0]).astype(np.int) candidates['nucl_end'] = export['BGC_range'].apply(lambda r: r.split(';')[1]).astype(np.int) candidates['nucl_length'] = candidates['nucl_end'] - candidates['nucl_start'] + 1 candidates['candidate_id'] = candidates.apply(lambda row: '{}:{}-{}'.format(row['contig_id'], row['nucl_start'], row['nucl_end']), axis=1) candidates['classes'] = export['BGC type'] candidates['detection_rules'] = export['detection rules used'] candidates['genes'] = export['genes'] candidates['subclusters'] = export['subclusters'] candidates['NRPSs/PKSs'] = export['NRPSs/PKSs'] candidates['signature_genes'] = export['signature_genes'] candidates['RiPPs'] = export['RiPPs'] candidates['predicted_structure'] = export['predicted structure'] candidates['monomers'] = export['monomers'] return candidates if __name__ == "__main__": # Parse command line parser = argparse.ArgumentParser() parser.add_argument("-i", "--input", dest="input", required=True, help="Path to AntiSMASH txt result (merged into tsv) file path.", metavar="FILE") parser.add_argument("-o", "--output", dest="output", required=True, help="Output csv file path.", metavar="FILE") options = parser.parse_args() export = pd.read_csv(options.input, sep='\t') candidates = antismash_tsv_candidates(export) candidates.to_csv(options.output, index=False) print('Saved {} candidates to {}'.format(len(candidates), options.output))
44.25
142
0.677495
2300ea4d3d5851dc31be7490cc251f576b72de66
131
py
Python
landing/views.py
kabloosh1234/booking-buddy
886c77398101a60a9617fd6d0f8b6e59321c38bb
[ "MIT" ]
null
null
null
landing/views.py
kabloosh1234/booking-buddy
886c77398101a60a9617fd6d0f8b6e59321c38bb
[ "MIT" ]
5
2020-06-05T20:34:46.000Z
2021-06-10T18:18:24.000Z
landing/views.py
kabloosh1234/booking-buddy
886c77398101a60a9617fd6d0f8b6e59321c38bb
[ "MIT" ]
2
2021-12-24T17:06:01.000Z
2021-12-24T17:06:29.000Z
from django.shortcuts import render # Create your views here. def index(request): return render(request, 'landing/index.html')
26.2
48
0.763359
66809d921087f809f3021e8bc12ac24f51714489
1,436
py
Python
AI/day01/Module_NFS/submit/mini_justi_loss.py
Ersikan/Pool2021
cc64658039dee04127a3a641f891781c53647244
[ "MIT" ]
16
2021-03-09T10:25:18.000Z
2022-02-08T14:29:24.000Z
AI/day01/Module_NFS/submit/mini_justi_loss.py
Ersikan/Pool2021
cc64658039dee04127a3a641f891781c53647244
[ "MIT" ]
null
null
null
AI/day01/Module_NFS/submit/mini_justi_loss.py
Ersikan/Pool2021
cc64658039dee04127a3a641f891781c53647244
[ "MIT" ]
3
2021-02-10T09:32:21.000Z
2022-02-01T17:07:59.000Z
import numpy as np import matplotlib.pyplot as plt LR = 0.1 def f1(x, y): return #Need Some Code def d_f1_dx(x, y): return #Need Some Code def d_f1_dy(x, y): return #Need Some Code def f2(x): return #Need Some Code def d_f2_dx(x): return #Need Some Code def getData_f1() : return #Need Some Code def getData_f2(): return #Need Some Code def loss_visualisation_f1(min_x, min_y, min_z): """Visualisation de la fonction f1""" x, y = getData_f1() X, Y = np.meshgrid(x, y) Z = f1(X, Y) ax = plt.subplot(121, projection='3d') ax.contour(X, Y, Z, 100) ax.set_xlabel('input x') ax.set_ylabel('input y') ax.set_zlabel('prediction (error)') ax.view_init(30, 30) ax.set_title('f1') ax.plot(min_x, min_y, min_z, markersize=10, marker='x', markeredgecolor='r') def loss_visualisation_f2(min_x, min_y): """Visualisation de la fonction f2""" x = getData_f2() y = f2(x) ax = plt.subplot(122) ax.plot(x, y) ax.set_xlabel('input') ax.set_ylabel('prediction (error)') ax.set_title('f2') ax.plot(min_x, min_y, markersize=10, marker='x') if __name__ == '__main__': #-- minimisation de la fonction f2 --# print("Minimisation de la fonction f2") # Need Some Code loss_visualisation_f2(1, 1) #-- minimisation de la fonction f1 --# # Need Some Code loss_visualisation_f1(1, 1, 1) plt.show()
22.092308
52
0.628134
3cab4915f783d07a751ef743ff04900e0626f0e0
1,047
py
Python
pandajedi/jedicore/JediDBProxyPool.py
PanDAWMS/panda-jedi
e4c90563b3b9e9521cb73ccdedaa8ecaa38af5ed
[ "Apache-2.0" ]
2
2020-04-17T10:24:09.000Z
2020-05-12T17:59:06.000Z
pandajedi/jedicore/JediDBProxyPool.py
PanDAWMS/panda-jedi
e4c90563b3b9e9521cb73ccdedaa8ecaa38af5ed
[ "Apache-2.0" ]
20
2015-08-25T13:40:14.000Z
2022-03-29T12:50:46.000Z
pandajedi/jedicore/JediDBProxyPool.py
PanDAWMS/panda-jedi
e4c90563b3b9e9521cb73ccdedaa8ecaa38af5ed
[ "Apache-2.0" ]
10
2015-05-27T14:01:42.000Z
2021-09-20T17:38:02.000Z
from pandaserver import taskbuffer import taskbuffer.DBProxyPool from . import JediDBProxy # use customized proxy taskbuffer.DBProxyPool.DBProxy = JediDBProxy class DBProxyPool(taskbuffer.DBProxyPool.DBProxyPool): # constructor def __init__(self, dbhost, dbpasswd, nConnection, useTimeout=False): taskbuffer.DBProxyPool.DBProxyPool.__init__(self, dbhost, dbpasswd, nConnection, useTimeout) # get a DBProxyObj containing a proxy def get(self): proxy_obj = DBProxyObj(db_proxy_pool=self) return proxy_obj # object of context manager for db proxy class DBProxyObj(object): # constructor def __init__(self, db_proxy_pool): self.proxy_pool = db_proxy_pool self.proxy = None # get proxy def __enter__(self): self.proxy = self.proxy_pool.getProxy() return self.proxy # release proxy def __exit__(self, type, value, traceback): self.proxy_pool.putProxy(self.proxy) self.proxy = None
28.297297
76
0.679083
2897a833e2614669726ca50c8d86a9ae0b53120b
4,829
py
Python
tables/dump-parsers/convert-to-postfix.py
yash-srivastava19/sempre
b27c06906da33e345c645ff9470132bf6d1c26dc
[ "Apache-2.0" ]
812
2015-01-08T01:58:39.000Z
2022-03-24T02:43:05.000Z
tables/dump-parsers/convert-to-postfix.py
yash-srivastava19/sempre
b27c06906da33e345c645ff9470132bf6d1c26dc
[ "Apache-2.0" ]
181
2015-01-26T21:54:04.000Z
2022-03-09T17:52:04.000Z
tables/dump-parsers/convert-to-postfix.py
yash-srivastava19/sempre
b27c06906da33e345c645ff9470132bf6d1c26dc
[ "Apache-2.0" ]
314
2015-01-14T11:23:08.000Z
2022-03-07T02:36:47.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- """Convert LispTree formulas to Postfix. If the file is tab-separated, only process the first column. """ import sys, os, shutil, re, argparse, json, gzip from codecs import open from itertools import izip from collections import defaultdict import fileinput import lisptree NUMBER_PREFIX = 'N' DATE_PREFIX = 'D' TYPE_ROW = 'type-row' AGGREGATE = ['count', 'min', 'max', 'sum', 'avg'] MERGE_ARITH = ['and', 'or', '-'] SUPERLATIVE = ['argmin', 'argmax'] def convert(tree, args): answer = [] u_stack = [] def recurse(subtree): if isinstance(subtree, basestring): answer.append(subtree) return if isinstance(subtree[0], basestring): opr = subtree[0] if opr in AGGREGATE: assert len(subtree) == 2, str(subtree) recurse(subtree[1]) answer.append(opr) elif opr in MERGE_ARITH: assert len(subtree) == 3, str(subtree) recurse(subtree[1]) recurse(subtree[2]) answer.append(opr) elif opr in SUPERLATIVE: assert len(subtree) in (3, 5), str(subtree) if len(subtree) == 3: u, b = subtree[1], subtree[2] else: u, b = subtree[3], subtree[4] if args.implicit_superlative_lambda: assert b[0] == 'reverse' assert b[1][0] == 'lambda' u_stack.append(convert(u, args)) recurse(b[1][2]) answer.append(opr) u_stack.pop() else: recurse(u) recurse(b) answer.append(opr) elif opr == 'lambda': assert len(subtree) == 3, str(subtree) recurse(subtree[2]) answer.append(opr) elif opr == 'reverse': assert len(subtree) == 2, str(subtree) recurse(subtree[1]) answer.append(opr) elif opr == 'var': assert len(subtree) == 2, str(subtree) if args.implicit_superlative_lambda: answer.extend(u_stack[-1]) answer.append(subtree[1]) elif opr == 'number': assert len(subtree) == 2, str(subtree) answer.append(NUMBER_PREFIX + subtree[1]) elif opr == 'date': assert len(subtree) == 4, str(subtree) answer.append(DATE_PREFIX + '-'.join( 'XX' if x == '-1' else x for x in subtree[1:4])) else: # Join with a name assert len(subtree) == 2, str(subtree) if (args.collapse_type_row and 'fb:type.object.type' == opr and 'fb:type.row' == subtree[1]): answer.append(TYPE_ROW) else: recurse(subtree[1]) answer.append(opr) if not args.implicit_join: answer.append('join') else: # Join with a complex construct assert len(subtree) == 2, str(subtree) # Only allows ((reverse ...) ...) assert subtree[0][0] == 'reverse', str(subtree) assert len(subtree[0]) == 2, str(subtree) recurse(subtree[1]) answer.append('!' + subtree[0][1]) if not args.implicit_join: answer.append('join') recurse(tree) return answer def process(line, args): line = line.rstrip('\n').split('\t') line[args.field] = ' '.join(convert(lisptree.parse(line[args.field]), args)) print '\t'.join(line) def main(): parser = argparse.ArgumentParser() parser.add_argument('-j', '--implicit-join', action='store_true', help='Do not output "." for joins') parser.add_argument('-s', '--implicit-superlative-lambda', action='store_true', help='Do not output "lambda reverse" for superlatives') parser.add_argument('-t', '--collapse-type-row', action='store_true', help='Collapse "(type row)" into a single token') parser.add_argument('-f', '--field', type=int, default=0, help='Field index (tab-separated; 0-based) containing the logical form') parser.add_argument('infile') args = parser.parse_args() if args.infile != '-': opener = gzip.open if args.infile.endswith('.gz') else open with opener(args.infile, 'r', 'utf8') as fin: for line in fin: process(line, args) else: for line in sys.stdin: process(line, args) if __name__ == '__main__': main()
36.862595
84
0.512528
76a57e7d414b12bd5bb36e7c3b0b41fb5016b697
228
py
Python
programming-laboratory-I/yeku/aprovacao.py
MisaelAugusto/computer-science
d21335a2dc824b54ffe828370f0e6717fd0c7c27
[ "MIT" ]
null
null
null
programming-laboratory-I/yeku/aprovacao.py
MisaelAugusto/computer-science
d21335a2dc824b54ffe828370f0e6717fd0c7c27
[ "MIT" ]
null
null
null
programming-laboratory-I/yeku/aprovacao.py
MisaelAugusto/computer-science
d21335a2dc824b54ffe828370f0e6717fd0c7c27
[ "MIT" ]
null
null
null
# coding: utf-8 unidade = int(raw_input('Unidade? ')) media = float(raw_input('Média de aprovação na unidade? ')) proxima_unidade = unidade + 1 print '\nO aluno vai para a unidade %i com média %.1f.' % (proxima_unidade,media)
28.5
81
0.70614
4547059766800df7fd23e282c7b0029e82e5208e
103
py
Python
pyweatherflowudp/__init__.py
briis/pyweatherflowudp
5a28d674aff4aac8c5cdf6c27f71eee4b98c25e3
[ "MIT" ]
3
2021-12-22T21:53:07.000Z
2022-01-11T17:28:35.000Z
pyweatherflowudp/__init__.py
briis/pyweatherflowudp
5a28d674aff4aac8c5cdf6c27f71eee4b98c25e3
[ "MIT" ]
2
2021-12-01T06:27:58.000Z
2021-12-02T08:45:32.000Z
pyweatherflowudp/__init__.py
briis/pyweatherflowudp
5a28d674aff4aac8c5cdf6c27f71eee4b98c25e3
[ "MIT" ]
1
2021-12-26T18:24:13.000Z
2021-12-26T18:24:13.000Z
"""Asynchronous library to read UDP Packets from Weatherflow weather systems.""" __version__ = "1.3.0"
34.333333
80
0.757282
0ccd5385affc6a4183f443a246735b54fe87c0d7
15,123
py
Python
pykg2vec/core/KG2E.py
jiangnanyida/pykg2vec
0c125fe04b59286206045b9884ee10569182a2a5
[ "MIT" ]
1
2020-06-26T16:50:38.000Z
2020-06-26T16:50:38.000Z
pykg2vec/core/KG2E.py
jiangnanyida/pykg2vec
0c125fe04b59286206045b9884ee10569182a2a5
[ "MIT" ]
null
null
null
pykg2vec/core/KG2E.py
jiangnanyida/pykg2vec
0c125fe04b59286206045b9884ee10569182a2a5
[ "MIT" ]
1
2020-06-26T16:50:39.000Z
2020-06-26T16:50:39.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from pykg2vec.core.KGMeta import ModelMeta class KG2E(ModelMeta): """`Learning to Represent Knowledge Graphs with Gaussian Embedding`_ Instead of assumming entities and relations as determinstic points in the embedding vector spaces, KG2E models both entities and relations (h, r and t) using random variables derived from multivariate Gaussian distribution. KG2E then evaluates a fact using translational relation by evaluating the distance between two distributions, r and t-h. KG2E provides two distance measures (KL-divergence and estimated likelihood). Args: config (object): Model configuration parameters. Attributes: config (object): Model configuration. model_name (str): Name of the model. data_stats (object): Class object with knowlege graph statistics. Examples: >>> from pykg2vec.core.KG2E import KG2E >>> from pykg2vec.utils.trainer import Trainer >>> model = KG2E() >>> trainer = Trainer(model=model, debug=False) >>> trainer.build_model() >>> trainer.train_model() Portion of the code based on `this Source`_. .. _this Source: https://github.com/mana-ysh/gaussian-embedding/blob/master/src/models/gaussian_model.py .. _Learning to Represent Knowledge Graphs with Gaussian Embedding: https://pdfs.semanticscholar.org/0ddd/f37145689e5f2899f8081d9971882e6ff1e9.pdf """ def __init__(self, config=None): self.config = config self.data_stats = self.config.kg_meta if self.config.distance_measure == "expected_likelihood": self.model_name = 'KG2E_EL' else: self.model_name = 'KG2E_KL' def def_inputs(self): """Defines the inputs to the model. Attributes: pos_h (Tensor): Positive Head entities ids. pos_r (Tensor): Positive Relation ids of the triple. pos_t (Tensor): Positive Tail entity ids of the triple. neg_h (Tensor): Negative Head entities ids. neg_r (Tensor): Negative Relation ids of the triple. neg_t (Tensor): Negative Tail entity ids of the triple. test_h_batch (Tensor): Batch of head ids for testing. test_r_batch (Tensor): Batch of relation ids for testing test_t_batch (Tensor): Batch of tail ids for testing. """ self.pos_h = tf.placeholder(tf.int32, [None]) self.pos_t = tf.placeholder(tf.int32, [None]) self.pos_r = tf.placeholder(tf.int32, [None]) self.neg_h = tf.placeholder(tf.int32, [None]) self.neg_t = tf.placeholder(tf.int32, [None]) self.neg_r = tf.placeholder(tf.int32, [None]) self.test_h_batch = tf.placeholder(tf.int32, [None]) self.test_t_batch = tf.placeholder(tf.int32, [None]) self.test_r_batch = tf.placeholder(tf.int32, [None]) def def_parameters(self): """Defines the model parameters. Attributes: num_total_ent (int): Total number of entities. num_total_rel (int): Total number of relations. k (Tensor): Size of the latent dimesnion for entities and relations. ent_embeddings_mu (Tensor Variable): Lookup variable containing mean of embedding of the entities. rel_embeddings_mu (Tensor Variable): Lookup variable containing mean embedding of the relations. ent_embeddings_sigma (Tensor Variable): Lookup variable containing variance of embedding of the entities. rel_embeddings_sigma (Tensor Variable): Lookup variable containing variance embedding of the relations. parameter_list (list): List of Tensor parameters. """ num_total_ent = self.data_stats.tot_entity num_total_rel = self.data_stats.tot_relation k = self.config.hidden_size with tf.name_scope("embedding"): # the mean for each element in the embedding space. self.ent_embeddings_mu = tf.get_variable(name="ent_embeddings_mu", shape=[num_total_ent, k], initializer=tf.contrib.layers.xavier_initializer(uniform=True)) self.rel_embeddings_mu = tf.get_variable(name="rel_embeddings_mu", shape=[num_total_rel, k], initializer=tf.contrib.layers.xavier_initializer(uniform=True)) # as the paper suggested, sigma is simplified to be the diagonal element in the covariance matrix. self.ent_embeddings_sigma = tf.get_variable(name="ent_embeddings_sigma", shape=[num_total_ent, k], initializer=tf.contrib.layers.xavier_initializer(uniform=True)) self.rel_embeddings_sigma = tf.get_variable(name="rel_embeddings_sigma", shape=[num_total_rel, k], initializer=tf.contrib.layers.xavier_initializer(uniform=True)) self.parameter_list = [self.ent_embeddings_mu, self.ent_embeddings_sigma, self.rel_embeddings_mu, self.rel_embeddings_sigma] self.ent_embeddings_sigma = tf.maximum(self.config.cmin, tf.minimum(self.config.cmax, (self.ent_embeddings_sigma + 1.0))) self.rel_embeddings_sigma = tf.maximum(self.config.cmin, tf.minimum(self.config.cmax, (self.rel_embeddings_sigma + 1.0))) def def_loss(self): """Defines the loss function for the algorithm.""" pos_h_mu, pos_h_sigma, pos_r_mu, pos_r_sigma, pos_t_mu, pos_t_sigma = self.get_embed_guassian(self.pos_h, self.pos_r, self.pos_t) neg_h_mu, neg_h_sigma, neg_r_mu, neg_r_sigma, neg_t_mu, neg_t_sigma = self.get_embed_guassian(self.neg_h, self.neg_r, self.neg_t) if self.config.distance_measure == "expected_likelihood": score_pos = self.cal_score_expected_likelihood(pos_h_mu, pos_h_sigma, pos_r_mu, pos_r_sigma, pos_t_mu, pos_t_sigma) score_neg = self.cal_score_expected_likelihood(neg_h_mu, neg_h_sigma, neg_r_mu, neg_r_sigma, neg_t_mu, neg_t_sigma) else: score_pos = self.cal_score_kl_divergence(pos_h_mu, pos_h_sigma, pos_r_mu, pos_r_sigma, pos_t_mu, pos_t_sigma) score_neg = self.cal_score_kl_divergence(neg_h_mu, neg_h_sigma, neg_r_mu, neg_r_sigma, neg_t_mu, neg_t_sigma) self.loss = tf.reduce_sum(tf.maximum(score_pos + self.config.margin - score_neg, 0)) def cal_score_kl_divergence(self, h_mu, h_sigma, r_mu, r_sigma, t_mu, t_sigma): """ It calculates the kl_divergence as a score. trace_fac: tr(sigma_r-1 * (sigma_h + sigma_t)) mul_fac: (mu_h + mu_r - mu_t).T * sigma_r-1 * (mu_h + mu_r - mu_t) det_fac: log(det(sigma_r)/det(sigma_h + sigma_t)) Args: h_mu (Tensor): Mean of the embedding value of the head. h_sigma(Tensor): Variance of the embedding value of the head. r_mu(Tensor): Mean of the embedding value of the relation. r_sigma(Tensor): Variance of the embedding value of the relation. t_mu(Tensor): Mean of the embedding value of the tail. t_sigma(Tensor): Variance of the embedding value of the tail. Returns: Tensor: Score after calculating the KL_Divergence. """ trace_fac = tf.reduce_sum((h_sigma + t_sigma) / r_sigma, -1) mul_fac = tf.reduce_sum((- h_mu + t_mu - r_mu) ** 2 / r_sigma, -1) det_fac = tf.reduce_sum(tf.log(h_sigma + t_sigma) - tf.log(r_sigma), -1) return trace_fac + mul_fac - det_fac - self.config.hidden_size def cal_score_expected_likelihood(self, h_mu, h_sigma, r_mu, r_sigma, t_mu, t_sigma): """ It calculates the expected likelihood as a score. mul_fac: (mu_h + mu_r - mu_t).T * sigma_r-1 * (mu_h + mu_r - mu_t) det_fac: log(det(sigma_r + sigma_h + sigma_t)) Args: h_mu (Tensor): Mean of the embedding value of the head. h_sigma(Tensor): Variance of the embedding value of the head. r_mu(Tensor): Mean of the embedding value of the relation. r_sigma(Tensor): Variance of the embedding value of the relation. t_mu(Tensor): Mean of the embedding value of the tail. t_sigma(Tensor): Variance of the embedding value of the tail. Returns: Tensor: Score after calculating the expected likelihood. """ mul_fac = tf.reduce_sum((h_mu + r_mu - t_mu) ** 2 / (h_sigma + r_sigma + t_sigma), -1) det_fac = tf.reduce_sum(tf.log(h_sigma + r_sigma + t_sigma), -1) return mul_fac + det_fac - self.config.hidden_size def test_batch(self): """Function that performs batch testing for the algorithm. Returns: Tensors: Returns ranks of head and tail. """ test_h_mu, test_h_sigma, test_r_mu, test_r_sigma, test_t_mu, test_t_sigma = self.get_embed_guassian( self.test_h_batch, self.test_r_batch, self.test_t_batch) test_h_mu = tf.expand_dims(test_h_mu, axis=1) test_h_sigma = tf.expand_dims(test_h_sigma, axis=1) test_r_mu = tf.expand_dims(test_r_mu, axis=1) test_r_sigma = tf.expand_dims(test_r_sigma, axis=1) test_t_mu = tf.expand_dims(test_t_mu, axis=1) test_t_sigma = tf.expand_dims(test_t_sigma, axis=1) norm_ent_embeddings_mu = tf.nn.l2_normalize(self.ent_embeddings_mu, axis=1) norm_ent_embeddings_sigma = tf.nn.l2_normalize(self.ent_embeddings_sigma, axis=1) if self.config.distance_measure == "expected_likelihood": score_head = self.cal_score_expected_likelihood(norm_ent_embeddings_mu, norm_ent_embeddings_sigma, \ test_r_mu, test_r_sigma, \ test_t_mu, test_t_sigma) score_tail = self.cal_score_expected_likelihood(test_h_mu, test_h_sigma, \ test_r_mu, test_r_sigma, \ norm_ent_embeddings_mu, norm_ent_embeddings_sigma) else: score_head = self.cal_score_kl_divergence(norm_ent_embeddings_mu, norm_ent_embeddings_sigma, \ test_r_mu, test_r_sigma, \ test_t_mu, test_t_sigma) score_tail = self.cal_score_kl_divergence(test_h_mu, test_h_sigma, \ test_r_mu, test_r_sigma, \ norm_ent_embeddings_mu, norm_ent_embeddings_sigma) _, head_rank = tf.nn.top_k(score_head, k=self.data_stats.tot_entity) _, tail_rank = tf.nn.top_k(score_tail, k=self.data_stats.tot_entity) return head_rank, tail_rank def embed(self, h, r, t): """Function to get the embedding value. Args: h (Tensor): Head entities ids. r (Tensor): Relation ids of the triple. t (Tensor): Tail entity ids of the triple. Returns: Tensors: Returns head, relation and tail embedding Tensors. """ norm_ent_embeddings = tf.nn.l2_normalize(self.ent_embeddings, axis=1) norm_rel_embeddings = tf.nn.l2_normalize(self.rel_embeddings, axis=1) emb_h = tf.nn.embedding_lookup(norm_ent_embeddings, h) emb_r = tf.nn.embedding_lookup(norm_rel_embeddings, r) emb_t = tf.nn.embedding_lookup(norm_ent_embeddings, t) return emb_h, emb_r, emb_t def get_embed_guassian(self, h, r, t): """Function to get the embedding. Args: h (Tensor): Head entities ids. r (Tensor): Relation ids of the triple. t (Tensor): Tail entity ids of the triple. Returns: Tensors: Returns head, relation and tail embedding Tensors. """ norm_ent_embeddings_mu = tf.nn.l2_normalize(self.ent_embeddings_mu, axis=1) norm_rel_embeddings_mu = tf.nn.l2_normalize(self.rel_embeddings_mu, axis=1) norm_ent_embeddings_sigma = tf.nn.l2_normalize(self.ent_embeddings_sigma, axis=1) norm_rel_embeddings_sigma = tf.nn.l2_normalize(self.rel_embeddings_sigma, axis=1) emb_h_mu = tf.nn.embedding_lookup(norm_ent_embeddings_mu, h) emb_r_mu = tf.nn.embedding_lookup(norm_rel_embeddings_mu, r) emb_t_mu = tf.nn.embedding_lookup(norm_ent_embeddings_mu, t) emb_h_sigma = tf.nn.embedding_lookup(norm_ent_embeddings_sigma, h) emb_r_sigma = tf.nn.embedding_lookup(norm_rel_embeddings_sigma, r) emb_t_sigma = tf.nn.embedding_lookup(norm_ent_embeddings_sigma, t) return emb_h_mu, emb_h_sigma, emb_r_mu, emb_r_sigma, emb_t_mu, emb_t_sigma def get_embed(self, h, r, t, sess): """Function to get the embedding value in numpy. Args: h (Tensor): Head entities ids. r (Tensor): Relation ids of the triple. t (Tensor): Tail entity ids of the triple. sess (object): Tensorflow Session object. Returns: Tensors: Returns head, relation and tail embedding Tensors. """ emb_h, emb_r, emb_t = self.embed(h, r, t) h, r, t = sess.run([emb_h, emb_r, emb_t]) return h, r, t def get_proj_embed(self, h, r, t, sess=None): """"Function to get the projected embedding value in numpy. Args: h (Tensor): Head entities ids. r (Tensor): Relation ids of the triple. t (Tensor): Tail entity ids of the triple. sess (object): Tensorflow Session object. Returns: Tensors: Returns head, relation and tail embedding Tensors. """ return self.get_embed(h, r, t, sess)
49.421569
121
0.598823
8eb8d5af4010786f6fdbbeb678e1b007ae6dafc8
2,072
py
Python
DQMOffline/EGamma/test/PhotonAnalyzer_cfg.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
852
2015-01-11T21:03:51.000Z
2022-03-25T21:14:00.000Z
DQMOffline/EGamma/test/PhotonAnalyzer_cfg.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
30,371
2015-01-02T00:14:40.000Z
2022-03-31T23:26:05.000Z
DQMOffline/EGamma/test/PhotonAnalyzer_cfg.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
3,240
2015-01-02T05:53:18.000Z
2022-03-31T17:24:21.000Z
import FWCore.ParameterSet.Config as cms process = cms.Process("photonAnalysis") process.load("FWCore.MessageService.MessageLogger_cfi") process.load("Configuration.StandardSequences.GeometryDB_cff") process.load("DQMOffline.EGamma.photonAnalyzer_cfi") process.load("DQMOffline.EGamma.zmumugammaAnalyzer_cfi") process.load("DQMOffline.EGamma.photonOfflineClient_cfi") process.load("DQMServices.Components.MEtoEDMConverter_cff") process.load("DQMServices.Components.DQMStoreStats_cfi") process.load("FWCore.MessageLogger.MessageLogger_cfi") DQMStore = cms.Service("DQMStore") process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(10) ) #process.MessageLogger.cerr.FwkReport.reportEvery = 100 process.source = cms.Source("PoolSource", fileNames = cms.untracked.vstring( '/store/relval/CMSSW_7_0_0_pre2/RelValZEE/GEN-SIM-DIGI-RECO/PRE_ST62_V8_FastSim-v1/00000/0229B33C-E10F-E311-9C16-002618943829.root' # '/store/relval/CMSSW_7_0_0_pre2/RelValH130GGgluonfusion/GEN-SIM-DIGI-RECO/PRE_ST62_V8_FastSim-v1/00000/2EB245F1-A30F-E311-80ED-0025905938A4.root' )) from DQMOffline.EGamma.photonAnalyzer_cfi import * photonAnalysis.Verbosity = cms.untracked.int32(0) photonAnalysis.useTriggerFiltering = cms.bool(False) #photonAnalysis.standAlone = cms.bool(True) from DQMOffline.EGamma.photonOfflineClient_cfi import * photonOfflineClient.standAlone = cms.bool(True) #from DQMServices.Components.DQMStoreStats_cfi import * #dqmStoreStats.runOnEndRun = cms.untracked.bool(False) #dqmStoreStats.runOnEndJob = cms.untracked.bool(True) #process.p1 = cms.Path(process.photonAnalysis) #process.p1 = cms.Path(process.photonAnalysis*process.dqmStoreStats) process.p1 = cms.Path(process.photonAnalysis*process.zmumugammaAnalysis*process.photonOfflineClient*process.dqmStoreStats) #process.p1 = cms.Path(process.photonAnalysis*process.photonOfflineClient*process.dqmStoreStats) process.schedule = cms.Schedule(process.p1) process.options = cms.untracked.PSet( wantSummary = cms.untracked.bool(True) ) process.MessageLogger = cms.Service("MessageLogger")
37.672727
147
0.821911
b5272ac48a746c06f1094ab3cf87b436aee5d60d
4,006
py
Python
configs/ttfnext/ttfnext_r18_search_gumbel_lr5e4_3e4wd_nons_0_1x.py
mrsempress/mmdetection
cb650560c97a2fe56a9b369a1abc8ec17e06583a
[ "Apache-2.0" ]
null
null
null
configs/ttfnext/ttfnext_r18_search_gumbel_lr5e4_3e4wd_nons_0_1x.py
mrsempress/mmdetection
cb650560c97a2fe56a9b369a1abc8ec17e06583a
[ "Apache-2.0" ]
null
null
null
configs/ttfnext/ttfnext_r18_search_gumbel_lr5e4_3e4wd_nons_0_1x.py
mrsempress/mmdetection
cb650560c97a2fe56a9b369a1abc8ec17e06583a
[ "Apache-2.0" ]
null
null
null
# model settings model = dict( type='TTFNeXt', pretrained='modelzoo://resnet18', backbone=dict( type='ResNet', depth=18, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_eval=False, style='pytorch'), neck=None, bbox_head=dict( type='TTFXHead', search_k=4, search_op_gumbel_softmax=True, search_edge_gumbel_softmax=True, inplanes=(64, 128, 256, 512), planes=(64, 128, 256, 512), ops_list=('skip_connect', 'conv_1x1', 'conv_3x3', 'sep_conv_3x3', 'sep_conv_5x5', 'sep_conv_7x7', 'dil_conv_3x3', 'dil_conv_5x5', 'mdcn_3x3'), head_conv=128, wh_conv=64, hm_head_conv_num=2, wh_head_conv_num=1, num_classes=81, wh_offset_base=16, wh_gaussian=True, alpha=0.54, hm_weight=1., wh_weight=5.)) cudnn_benchmark = True # training and testing settings train_cfg = dict( vis_every_n_iters=100, debug=False) test_cfg = dict( score_thr=0.01, max_per_img=100) # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(512, 512), keep_ratio=False), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(512, 512), flip=False, transforms=[ dict(type='Resize', keep_ratio=False), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( imgs_per_gpu=12, workers_per_gpu=4, train=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', pipeline=train_pipeline), search=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline)) # optimizer optimizer = dict(type='SGD', lr=0.002, momentum=0.9, weight_decay=0.0004, paramwise_options=dict(bias_lr_mult=2., bias_decay_mult=0.)) optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) search_config = dict( tune_epoch_start=1, tune_epoch_end=8, search_optimizer=dict( type='Adam', lr=5e-4, betas=(0.5, 0.999), weight_decay=3e-4)) # learning policy lr_config = dict( policy='fixed', warmup='linear', warmup_iters=500, warmup_ratio=1.0 / 5) checkpoint_config = dict(save_every_n_steps=200, max_to_keep=1, keep_in_n_epoch=[1]) bbox_head_hist_config = dict( model_type=['ConvModule', 'DeformConvPack'], sub_modules=['bbox_head'], save_every_n_steps=200) # yapf:disable log_config = dict(interval=20) # yapf:enable # runtime settings total_epochs = 8 dist_params = dict(backend='nccl') log_level = 'INFO' work_dir = 'ttfnext18_search_gumbel_nons_wd3e4_lr5e4_1x' load_from = None resume_from = None workflow = [('train', 1)]
31.054264
84
0.6333
13664f3045b40e53dde1fc8cbce7cabbd55df01a
4,296
py
Python
chartpy_examples/vispy_demo.py
Joukahainen/chartpy
410f9e4553cb07be7d11823cad404f10da079ada
[ "Apache-2.0" ]
519
2016-08-17T10:38:58.000Z
2022-03-30T19:30:15.000Z
chartpy_examples/vispy_demo.py
Joukahainen/chartpy
410f9e4553cb07be7d11823cad404f10da079ada
[ "Apache-2.0" ]
5
2016-08-21T22:16:17.000Z
2019-12-06T06:17:13.000Z
chartpy_examples/vispy_demo.py
Joukahainen/chartpy
410f9e4553cb07be7d11823cad404f10da079ada
[ "Apache-2.0" ]
108
2016-08-21T12:01:10.000Z
2022-03-25T06:38:58.000Z
__author__ = 'saeedamen' # Saeed Amen # # Copyright 2016 Cuemacro # # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the # License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and limitations under the License. # """ This example generates several Brownian paths with millions of time steps. It then plots these using two different backends - VisPy (GPU accelerated) backend - matplotlib backend For this number of points, VisPy will tend to be much quicker when manipulating the plot and zooming. Note, the VisPy support is very limited at this stage in chartpy, and doesn't for example yet support date labels. """ from chartpy import Chart, Style import numpy import pandas from math import sqrt from scipy.stats import norm import numpy as np ## from SciPy cookbook http://scipy.github.io/old-wiki/pages/Cookbook/BrownianMotion def brownian(x0, n, dt, delta, out=None): """ Generate an instance of Brownian motion (i.e. the Wiener process): X(t) = X(0) + N(0, delta**2 * t; 0, t) where N(a,b; t0, t1) is a normally distributed random variable with mean a and variance b. The parameters t0 and t1 make explicit the statistical independence of N on different time intervals; that is, if [t0, t1) and [t2, t3) are disjoint intervals, then N(a, b; t0, t1) and N(a, b; t2, t3) are independent. Written as an iteration scheme, X(t + dt) = X(t) + N(0, delta**2 * dt; t, t+dt) If `x0` is an array (or array-like), each value in `x0` is treated as an initial condition, and the value returned is a numpy array with one more dimension than `x0`. Arguments --------- x0 : float or numpy array (or something that can be converted to a numpy array using numpy.asarray(x0)). The initial condition(s) (i.e. position(s)) of the Brownian motion. n : int The number of steps to take. dt : float The time step. delta : float delta determines the "speed" of the Brownian motion. The random variable of the position at time t, X(t), has a normal distribution whose mean is the position at time t=0 and whose variance is delta**2*t. out : numpy array or None If `out` is not None, it specifies the array in which to put the result. If `out` is None, a new numpy array is created and returned. Returns ------- A numpy array of floats with shape `x0.shape + (n,)`. Note that the initial value `x0` is not included in the returned array. """ x0 = np.asarray(x0) # For each element of x0, generate a sample of n numbers from a # normal distribution. r = norm.rvs(size=x0.shape + (n,), scale=delta * sqrt(dt)) # If `out` was not given, create an output array. if out is None: out = np.empty(r.shape) # This computes the Brownian motion by forming the cumulative sum of # the random samples. np.cumsum(r, axis=-1, out=out) # Add the initial condition. out += np.expand_dims(x0, axis=-1) return out if __name__ == '__main__': print('Generate paths') delta = 2 # The Wiener process parameter. T = 10.0 # Total time. N = 10 * 1000000 # Number of steps. dt = T/N # Time step size m = 5 # Number of realizations to generate. x = numpy.empty((m,N+1)) # Create an empty array to store the realizations. x[:, 0] = 50 # Initial values of x. brownian(x[:,0], N, dt, delta, out=x[:,1:]) t = numpy.linspace(0.0, N*dt, N+1) df = pandas.DataFrame(index=t, data=x.T) style = Style(save_fig=True) print('About to plot vispy...') # try vispy, which will work (uses GPU) Chart().plot(df, engine='vispy', style=style) print('About to plot matplotlib...') # try matplotlib, which will likely be very slow or crash... Chart().plot(df, engine='matplotlib', style=style)
33.5625
123
0.664106
3ad9916f6a11ba65ce034d0e04b889b382ec5368
1,836
py
Python
tests/app/db/test_redis.py
renovate-tests/pol
dca9aa4ce34273575d69a140dc3bb1d2ac14ecbf
[ "MIT" ]
5
2019-05-11T05:14:44.000Z
2019-09-07T10:22:53.000Z
tests/app/db/test_redis.py
renovate-tests/pol
dca9aa4ce34273575d69a140dc3bb1d2ac14ecbf
[ "MIT" ]
161
2019-09-09T07:30:25.000Z
2022-03-14T19:52:43.000Z
tests/app/db/test_redis.py
renovate-tests/pol
dca9aa4ce34273575d69a140dc3bb1d2ac14ecbf
[ "MIT" ]
3
2019-09-07T13:15:05.000Z
2020-05-06T04:30:46.000Z
import pickle import random import string import pytest from app.core import config from app.db.redis import PickleRedis, setup_redis_pool def random_str(length: int = 8): all_char = string.ascii_letters + string.digits + string.punctuation return "".join(random.choice(all_char) for i in range(length)) async def close(r: PickleRedis): r.close() await r.wait_closed() @pytest.mark.asyncio async def test_setup_redis_pool(): pool = await setup_redis_pool() assert isinstance(pool, PickleRedis) await close(pool) @pytest.mark.asyncio async def test_set_key(redis_client): pool = await setup_redis_pool() key = random_str() value = random_str() await pool.set(key, value) assert redis_client.get(key) == pickle.dumps(value), "redis value are not pickled" redis_client.delete(key) await close(pool) @pytest.mark.asyncio async def test_get_key(redis_client): pool = await setup_redis_pool() key = random_str() value = random_str() redis_client.set(key, pickle.dumps(value)) assert value == await pool.get(key), "redis value are not pickled" redis_client.delete(key) await close(pool) @pytest.mark.asyncio async def test_decode_error(redis_client): pool = await setup_redis_pool() key = "unpickle-able key" value = "23333-123s" redis_client.set(key, value) value = await pool.get(key) assert value is None, "unpickle-able key should return `None`" assert not await pool.exists(key), "unpickle-able key should be deleted" redis_client.delete(key) await close(pool) @pytest.mark.asyncio async def test_redis_script_lua_name(): pool = await setup_redis_pool() for lua_fs in (config.PROJ_ROOT / "app" / "lua").glob("*.lua"): assert lua_fs.name in pool.script_hash await close(pool)
24.157895
86
0.71024
f0b890d71402b4ebef2a654badf45c09cea48335
462
py
Python
PracticeData/PracticeScript_SB.py
everymind/SurprisingMindsOnYoutube
d6f4c5173e14ec2fa9e1e6156133ca4d9e09a562
[ "MIT" ]
null
null
null
PracticeData/PracticeScript_SB.py
everymind/SurprisingMindsOnYoutube
d6f4c5173e14ec2fa9e1e6156133ca4d9e09a562
[ "MIT" ]
null
null
null
PracticeData/PracticeScript_SB.py
everymind/SurprisingMindsOnYoutube
d6f4c5173e14ec2fa9e1e6156133ca4d9e09a562
[ "MIT" ]
null
null
null
import matplotlib.pyplot as plt from matplotlib import colors as mcolors import numpy as np x, y = np.loadtxt('2018-08-15T15_06_26-pupilproper.txt', delimiter=',', unpack=True) plt.plot(y,x, label='Trial1') x, y = np.loadtxt('pupilarea2.txt', delimiter=',', unpack=True,) plt.plot(y,x, color='green', label='Trial2') plt.xlabel('Time') plt.ylabel('Area of Pupil') plt.title('Area of Pupil Against Time') plt.legend() plt.savefig("GraphOneSB.png") plt.show()
25.666667
84
0.720779
48320d6a3d4212dbf52aa697d1635725144eefd5
8,130
py
Python
get_pulse.py
JediRhymeTrix/webcam-pulse-detector
5b00810ef637acfb4dc6d6ca011c32e53df606d7
[ "Apache-2.0" ]
null
null
null
get_pulse.py
JediRhymeTrix/webcam-pulse-detector
5b00810ef637acfb4dc6d6ca011c32e53df606d7
[ "Apache-2.0" ]
null
null
null
get_pulse.py
JediRhymeTrix/webcam-pulse-detector
5b00810ef637acfb4dc6d6ca011c32e53df606d7
[ "Apache-2.0" ]
null
null
null
from lib.device import Camera from lib.processors_noopenmdao import findFaceGetPulse from lib.interface import plotXY, imshow, waitKey, destroyWindow from cv2 import moveWindow import argparse import numpy as np import datetime #TODO: work on serial port comms, if anyone asks for it #from serial import Serial import socket import sys class getPulseApp(object): """ Python application that finds a face in a webcam stream, then isolates the forehead. Then the average green-light intensity in the forehead region is gathered over time, and the detected person's pulse is estimated. """ def __init__(self, args): # Imaging device - must be a connected camera (not an ip camera or mjpeg # stream) serial = args.serial baud = args.baud self.send_serial = False self.send_udp = False if serial: self.send_serial = True if not baud: baud = 9600 else: baud = int(baud) self.serial = Serial(port=serial, baudrate=baud) udp = args.udp if udp: self.send_udp = True if ":" not in udp: ip = udp port = 5005 else: ip, port = udp.split(":") port = int(port) self.udp = (ip, port) self.sock = socket.socket(socket.AF_INET, # Internet socket.SOCK_DGRAM) # UDP self.cameras = [] self.selected_cam = 0 for i in range(3): camera = Camera(camera=i) # first camera by default if camera.valid or not len(self.cameras): self.cameras.append(camera) else: break self.w, self.h = 0, 0 self.pressed = 0 # Containerized analysis of recieved image frames (an openMDAO assembly) # is defined next. # This assembly is designed to handle all image & signal analysis, # such as face detection, forehead isolation, time series collection, # heart-beat detection, etc. # Basically, everything that isn't communication # to the camera device or part of the GUI self.processor = findFaceGetPulse(bpm_limits=[50, 160], data_spike_limit=2500., face_detector_smoothness=10.) # Init parameters for the cardiac data plot self.bpm_plot = False self.plot_title = "Data display - raw signal (top) and PSD (bottom)" # Maps keystrokes to specified methods #(A GUI window must have focus for these to work) self.key_controls = {"s": self.toggle_search, "d": self.toggle_display_plot, "c": self.toggle_cam, "f": self.write_csv} # timing data for the main loop self.frame_count = 0 self.avg_throughput = 0.0 self.avg_latency = 0.0 def toggle_cam(self): if len(self.cameras) > 1: self.processor.find_faces = True self.bpm_plot = False destroyWindow(self.plot_title) self.selected_cam += 1 self.selected_cam = self.selected_cam % len(self.cameras) def write_csv(self): """ Writes current data to a csv file """ fn = "Webcam-pulse" + str(datetime.datetime.now()) fn = fn.replace(":", "_").replace(".", "_") data = np.vstack((self.processor.times, self.processor.samples)).T np.savetxt(fn + ".csv", data, delimiter=',') print("Writing csv") def toggle_search(self): """ Toggles a motion lock on the processor's face detection component. Locking the forehead location in place significantly improves data quality, once a forehead has been sucessfully isolated. """ #state = self.processor.find_faces.toggle() state = self.processor.find_faces_toggle() print("face detection lock =", not state) def toggle_display_plot(self): """ Toggles the data display. """ if self.bpm_plot: print("bpm plot disabled") self.bpm_plot = False destroyWindow(self.plot_title) else: print("bpm plot enabled") if self.processor.find_faces: self.toggle_search() self.bpm_plot = True self.make_bpm_plot() moveWindow(self.plot_title, self.w, 0) def make_bpm_plot(self): """ Creates and/or updates the data display """ plotXY([[self.processor.times, self.processor.samples], [self.processor.freqs, self.processor.fft]], labels=[False, True], showmax=[False, "bpm"], label_ndigits=[0, 0], showmax_digits=[0, 1], skip=[3, 3], name=self.plot_title, bg=self.processor.slices[0]) def key_handler(self): """ Handle keystrokes, as set at the bottom of __init__() A plotting or camera frame window must have focus for keypresses to be detected. """ self.pressed = waitKey(10) & 255 # wait for keypress for 10 ms if self.pressed == 27: # exit program on 'esc' print("Exiting") for cam in self.cameras: cam.cam.release() if self.send_serial: self.serial.close() sys.exit() for key in self.key_controls.keys(): if chr(self.pressed) == key: self.key_controls[key]() def main_loop(self): """ Single iteration of the application's main loop. """ # Get current image frame from the camera frame = self.cameras[self.selected_cam].get_frame() self.frame_count += 1 start_time = start = datetime.datetime.now() self.h, self.w, _c = frame.shape # display unaltered frame # imshow("Original",frame) # set current image frame to the processor's input self.processor.frame_in = frame # process the image frame to perform all needed analysis self.processor.run(self.selected_cam) # collect the output frame for display output_frame = self.processor.frame_out # show the processed/annotated output frame imshow("Processed", output_frame) end = datetime.datetime.now() time_taken = (end - start).total_seconds() self.avg_latency = ((self.avg_latency * (self.frame_count - 1) + time_taken) / self.frame_count) throughput = 1 / time_taken if time_taken else 0 self.avg_throughput = (self.avg_throughput * (self.frame_count - 1) + throughput) / self.frame_count # Check if a key was pressed self.key_handler() # create and/or update the raw data display if needed if self.bpm_plot: self.make_bpm_plot() if self.send_serial: self.serial.write(str(self.processor.bpm) + "\r\n") if self.send_udp: self.sock.sendto(str(self.processor.bpm), self.udp) # handle any key presses self.key_handler() if __name__ == "__main__": parser = argparse.ArgumentParser(description='Webcam pulse detector.') parser.add_argument('--serial', default=None, help='serial port destination for bpm data') parser.add_argument('--baud', default=None, help='Baud rate for serial transmission') parser.add_argument('--udp', default=None, help='udp address:port destination for bpm data') args = parser.parse_args() App = getPulseApp(args) try: while True: App.main_loop() finally: print('avg_throughput: ', App.avg_throughput) print('avg_latency: ', App.avg_latency)
34.303797
84
0.570726
3f073861c8bfa4bea65ff9ccb43ce4d1de4dca6b
270
py
Python
tests/artificial/transf_Quantization/trend_MovingMedian/cycle_5/ar_12/test_artificial_32_Quantization_MovingMedian_5_12_20.py
shaido987/pyaf
b9afd089557bed6b90b246d3712c481ae26a1957
[ "BSD-3-Clause" ]
377
2016-10-13T20:52:44.000Z
2022-03-29T18:04:14.000Z
tests/artificial/transf_Quantization/trend_MovingMedian/cycle_5/ar_12/test_artificial_32_Quantization_MovingMedian_5_12_20.py
ysdede/pyaf
b5541b8249d5a1cfdc01f27fdfd99b6580ed680b
[ "BSD-3-Clause" ]
160
2016-10-13T16:11:53.000Z
2022-03-28T04:21:34.000Z
tests/artificial/transf_Quantization/trend_MovingMedian/cycle_5/ar_12/test_artificial_32_Quantization_MovingMedian_5_12_20.py
ysdede/pyaf
b5541b8249d5a1cfdc01f27fdfd99b6580ed680b
[ "BSD-3-Clause" ]
63
2017-03-09T14:51:18.000Z
2022-03-27T20:52:57.000Z
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N = 32 , FREQ = 'D', seed = 0, trendtype = "MovingMedian", cycle_length = 5, transform = "Quantization", sigma = 0.0, exog_count = 20, ar_order = 12);
38.571429
170
0.737037
aee341bd88b05cb9502b7beb427a8ae9cf3f6e4a
64,244
py
Python
sklearn/decomposition/_dict_learning.py
MaiRajborirug/scikit-learn
c18d015372f7041099d19c215cd4c36ffd6fe5c5
[ "BSD-3-Clause" ]
199
2020-08-27T09:03:21.000Z
2021-11-09T11:21:07.000Z
sklearn/decomposition/_dict_learning.py
MaiRajborirug/scikit-learn
c18d015372f7041099d19c215cd4c36ffd6fe5c5
[ "BSD-3-Clause" ]
4
2021-10-07T08:40:50.000Z
2021-11-18T19:11:40.000Z
sklearn/decomposition/_dict_learning.py
MaiRajborirug/scikit-learn
c18d015372f7041099d19c215cd4c36ffd6fe5c5
[ "BSD-3-Clause" ]
2
2018-10-02T03:13:40.000Z
2020-04-27T07:29:18.000Z
""" Dictionary learning. """ # Author: Vlad Niculae, Gael Varoquaux, Alexandre Gramfort # License: BSD 3 clause import time import sys import itertools import warnings from math import ceil import numpy as np from scipy import linalg from joblib import Parallel, effective_n_jobs from ..base import BaseEstimator, TransformerMixin, _ClassNamePrefixFeaturesOutMixin from ..utils import deprecated from ..utils import check_array, check_random_state, gen_even_slices, gen_batches from ..utils.extmath import randomized_svd, row_norms, svd_flip from ..utils.validation import check_is_fitted from ..utils.fixes import delayed from ..linear_model import Lasso, orthogonal_mp_gram, LassoLars, Lars def _check_positive_coding(method, positive): if positive and method in ["omp", "lars"]: raise ValueError( "Positive constraint not supported for '{}' coding method.".format(method) ) def _sparse_encode( X, dictionary, gram, cov=None, algorithm="lasso_lars", regularization=None, copy_cov=True, init=None, max_iter=1000, check_input=True, verbose=0, positive=False, ): """Generic sparse coding. Each column of the result is the solution to a Lasso problem. Parameters ---------- X : ndarray of shape (n_samples, n_features) Data matrix. dictionary : ndarray of shape (n_components, n_features) The dictionary matrix against which to solve the sparse coding of the data. Some of the algorithms assume normalized rows. gram : ndarray of shape (n_components, n_components) or None Precomputed Gram matrix, `dictionary * dictionary'` gram can be `None` if method is 'threshold'. cov : ndarray of shape (n_components, n_samples), default=None Precomputed covariance, `dictionary * X'`. algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'}, \ default='lasso_lars' The algorithm used: * `'lars'`: uses the least angle regression method (`linear_model.lars_path`); * `'lasso_lars'`: uses Lars to compute the Lasso solution; * `'lasso_cd'`: uses the coordinate descent method to compute the Lasso solution (`linear_model.Lasso`). lasso_lars will be faster if the estimated components are sparse; * `'omp'`: uses orthogonal matching pursuit to estimate the sparse solution; * `'threshold'`: squashes to zero all coefficients less than regularization from the projection `dictionary * data'`. regularization : int or float, default=None The regularization parameter. It corresponds to alpha when algorithm is `'lasso_lars'`, `'lasso_cd'` or `'threshold'`. Otherwise it corresponds to `n_nonzero_coefs`. init : ndarray of shape (n_samples, n_components), default=None Initialization value of the sparse code. Only used if `algorithm='lasso_cd'`. max_iter : int, default=1000 Maximum number of iterations to perform if `algorithm='lasso_cd'` or `'lasso_lars'`. copy_cov : bool, default=True Whether to copy the precomputed covariance matrix; if `False`, it may be overwritten. check_input : bool, default=True If `False`, the input arrays `X` and dictionary will not be checked. verbose : int, default=0 Controls the verbosity; the higher, the more messages. positive: bool, default=False Whether to enforce a positivity constraint on the sparse code. .. versionadded:: 0.20 Returns ------- code : ndarray of shape (n_components, n_features) The sparse codes. See Also -------- sklearn.linear_model.lars_path sklearn.linear_model.orthogonal_mp sklearn.linear_model.Lasso SparseCoder """ if X.ndim == 1: X = X[:, np.newaxis] n_samples, n_features = X.shape n_components = dictionary.shape[0] if dictionary.shape[1] != X.shape[1]: raise ValueError( "Dictionary and X have different numbers of features:" "dictionary.shape: {} X.shape{}".format(dictionary.shape, X.shape) ) if cov is None and algorithm != "lasso_cd": # overwriting cov is safe copy_cov = False cov = np.dot(dictionary, X.T) _check_positive_coding(algorithm, positive) if algorithm == "lasso_lars": alpha = float(regularization) / n_features # account for scaling try: err_mgt = np.seterr(all="ignore") # Not passing in verbose=max(0, verbose-1) because Lars.fit already # corrects the verbosity level. lasso_lars = LassoLars( alpha=alpha, fit_intercept=False, verbose=verbose, normalize=False, precompute=gram, fit_path=False, positive=positive, max_iter=max_iter, ) lasso_lars.fit(dictionary.T, X.T, Xy=cov) new_code = lasso_lars.coef_ finally: np.seterr(**err_mgt) elif algorithm == "lasso_cd": alpha = float(regularization) / n_features # account for scaling # TODO: Make verbosity argument for Lasso? # sklearn.linear_model.coordinate_descent.enet_path has a verbosity # argument that we could pass in from Lasso. clf = Lasso( alpha=alpha, fit_intercept=False, normalize="deprecated", # as it was False by default precompute=gram, max_iter=max_iter, warm_start=True, positive=positive, ) if init is not None: clf.coef_ = init clf.fit(dictionary.T, X.T, check_input=check_input) new_code = clf.coef_ elif algorithm == "lars": try: err_mgt = np.seterr(all="ignore") # Not passing in verbose=max(0, verbose-1) because Lars.fit already # corrects the verbosity level. lars = Lars( fit_intercept=False, verbose=verbose, normalize=False, precompute=gram, n_nonzero_coefs=int(regularization), fit_path=False, ) lars.fit(dictionary.T, X.T, Xy=cov) new_code = lars.coef_ finally: np.seterr(**err_mgt) elif algorithm == "threshold": new_code = (np.sign(cov) * np.maximum(np.abs(cov) - regularization, 0)).T if positive: np.clip(new_code, 0, None, out=new_code) elif algorithm == "omp": new_code = orthogonal_mp_gram( Gram=gram, Xy=cov, n_nonzero_coefs=int(regularization), tol=None, norms_squared=row_norms(X, squared=True), copy_Xy=copy_cov, ).T else: raise ValueError( 'Sparse coding method must be "lasso_lars" ' '"lasso_cd", "lasso", "threshold" or "omp", got %s.' % algorithm ) if new_code.ndim != 2: return new_code.reshape(n_samples, n_components) return new_code # XXX : could be moved to the linear_model module def sparse_encode( X, dictionary, *, gram=None, cov=None, algorithm="lasso_lars", n_nonzero_coefs=None, alpha=None, copy_cov=True, init=None, max_iter=1000, n_jobs=None, check_input=True, verbose=0, positive=False, ): """Sparse coding Each row of the result is the solution to a sparse coding problem. The goal is to find a sparse array `code` such that:: X ~= code * dictionary Read more in the :ref:`User Guide <SparseCoder>`. Parameters ---------- X : ndarray of shape (n_samples, n_features) Data matrix. dictionary : ndarray of shape (n_components, n_features) The dictionary matrix against which to solve the sparse coding of the data. Some of the algorithms assume normalized rows for meaningful output. gram : ndarray of shape (n_components, n_components), default=None Precomputed Gram matrix, `dictionary * dictionary'`. cov : ndarray of shape (n_components, n_samples), default=None Precomputed covariance, `dictionary' * X`. algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'}, \ default='lasso_lars' The algorithm used: * `'lars'`: uses the least angle regression method (`linear_model.lars_path`); * `'lasso_lars'`: uses Lars to compute the Lasso solution; * `'lasso_cd'`: uses the coordinate descent method to compute the Lasso solution (`linear_model.Lasso`). lasso_lars will be faster if the estimated components are sparse; * `'omp'`: uses orthogonal matching pursuit to estimate the sparse solution; * `'threshold'`: squashes to zero all coefficients less than regularization from the projection `dictionary * data'`. n_nonzero_coefs : int, default=None Number of nonzero coefficients to target in each column of the solution. This is only used by `algorithm='lars'` and `algorithm='omp'` and is overridden by `alpha` in the `omp` case. If `None`, then `n_nonzero_coefs=int(n_features / 10)`. alpha : float, default=None If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the penalty applied to the L1 norm. If `algorithm='threshold'`, `alpha` is the absolute value of the threshold below which coefficients will be squashed to zero. If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of the reconstruction error targeted. In this case, it overrides `n_nonzero_coefs`. If `None`, default to 1. copy_cov : bool, default=True Whether to copy the precomputed covariance matrix; if `False`, it may be overwritten. init : ndarray of shape (n_samples, n_components), default=None Initialization value of the sparse codes. Only used if `algorithm='lasso_cd'`. max_iter : int, default=1000 Maximum number of iterations to perform if `algorithm='lasso_cd'` or `'lasso_lars'`. n_jobs : int, default=None Number of parallel jobs to run. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. check_input : bool, default=True If `False`, the input arrays X and dictionary will not be checked. verbose : int, default=0 Controls the verbosity; the higher, the more messages. positive : bool, default=False Whether to enforce positivity when finding the encoding. .. versionadded:: 0.20 Returns ------- code : ndarray of shape (n_samples, n_components) The sparse codes See Also -------- sklearn.linear_model.lars_path sklearn.linear_model.orthogonal_mp sklearn.linear_model.Lasso SparseCoder """ if check_input: if algorithm == "lasso_cd": dictionary = check_array(dictionary, order="C", dtype="float64") X = check_array(X, order="C", dtype="float64") else: dictionary = check_array(dictionary) X = check_array(X) n_samples, n_features = X.shape n_components = dictionary.shape[0] if gram is None and algorithm != "threshold": gram = np.dot(dictionary, dictionary.T) if cov is None and algorithm != "lasso_cd": copy_cov = False cov = np.dot(dictionary, X.T) if algorithm in ("lars", "omp"): regularization = n_nonzero_coefs if regularization is None: regularization = min(max(n_features / 10, 1), n_components) else: regularization = alpha if regularization is None: regularization = 1.0 if effective_n_jobs(n_jobs) == 1 or algorithm == "threshold": code = _sparse_encode( X, dictionary, gram, cov=cov, algorithm=algorithm, regularization=regularization, copy_cov=copy_cov, init=init, max_iter=max_iter, check_input=False, verbose=verbose, positive=positive, ) return code # Enter parallel code block code = np.empty((n_samples, n_components)) slices = list(gen_even_slices(n_samples, effective_n_jobs(n_jobs))) code_views = Parallel(n_jobs=n_jobs, verbose=verbose)( delayed(_sparse_encode)( X[this_slice], dictionary, gram, cov[:, this_slice] if cov is not None else None, algorithm, regularization=regularization, copy_cov=copy_cov, init=init[this_slice] if init is not None else None, max_iter=max_iter, check_input=False, verbose=verbose, positive=positive, ) for this_slice in slices ) for this_slice, this_view in zip(slices, code_views): code[this_slice] = this_view return code def _update_dict( dictionary, Y, code, A=None, B=None, verbose=False, random_state=None, positive=False, ): """Update the dense dictionary factor in place. Parameters ---------- dictionary : ndarray of shape (n_components, n_features) Value of the dictionary at the previous iteration. Y : ndarray of shape (n_samples, n_features) Data matrix. code : ndarray of shape (n_samples, n_components) Sparse coding of the data against which to optimize the dictionary. A : ndarray of shape (n_components, n_components), default=None Together with `B`, sufficient stats of the online model to update the dictionary. B : ndarray of shape (n_features, n_components), default=None Together with `A`, sufficient stats of the online model to update the dictionary. verbose: bool, default=False Degree of output the procedure will print. random_state : int, RandomState instance or None, default=None Used for randomly initializing the dictionary. Pass an int for reproducible results across multiple function calls. See :term:`Glossary <random_state>`. positive : bool, default=False Whether to enforce positivity when finding the dictionary. .. versionadded:: 0.20 """ n_samples, n_components = code.shape random_state = check_random_state(random_state) if A is None: A = code.T @ code if B is None: B = Y.T @ code n_unused = 0 for k in range(n_components): if A[k, k] > 1e-6: # 1e-6 is arbitrary but consistent with the spams implementation dictionary[k] += (B[:, k] - A[k] @ dictionary) / A[k, k] else: # kth atom is almost never used -> sample a new one from the data newd = Y[random_state.choice(n_samples)] # add small noise to avoid making the sparse coding ill conditioned noise_level = 0.01 * (newd.std() or 1) # avoid 0 std noise = random_state.normal(0, noise_level, size=len(newd)) dictionary[k] = newd + noise code[:, k] = 0 n_unused += 1 if positive: np.clip(dictionary[k], 0, None, out=dictionary[k]) # Projection on the constraint set ||V_k|| <= 1 dictionary[k] /= max(linalg.norm(dictionary[k]), 1) if verbose and n_unused > 0: print(f"{n_unused} unused atoms resampled.") def dict_learning( X, n_components, *, alpha, max_iter=100, tol=1e-8, method="lars", n_jobs=None, dict_init=None, code_init=None, callback=None, verbose=False, random_state=None, return_n_iter=False, positive_dict=False, positive_code=False, method_max_iter=1000, ): """Solves a dictionary learning matrix factorization problem. Finds the best dictionary and the corresponding sparse code for approximating the data matrix X by solving:: (U^*, V^*) = argmin 0.5 || X - U V ||_Fro^2 + alpha * || U ||_1,1 (U,V) with || V_k ||_2 = 1 for all 0 <= k < n_components where V is the dictionary and U is the sparse code. ||.||_Fro stands for the Frobenius norm and ||.||_1,1 stands for the entry-wise matrix norm which is the sum of the absolute values of all the entries in the matrix. Read more in the :ref:`User Guide <DictionaryLearning>`. Parameters ---------- X : ndarray of shape (n_samples, n_features) Data matrix. n_components : int Number of dictionary atoms to extract. alpha : int Sparsity controlling parameter. max_iter : int, default=100 Maximum number of iterations to perform. tol : float, default=1e-8 Tolerance for the stopping condition. method : {'lars', 'cd'}, default='lars' The method used: * `'lars'`: uses the least angle regression method to solve the lasso problem (`linear_model.lars_path`); * `'cd'`: uses the coordinate descent method to compute the Lasso solution (`linear_model.Lasso`). Lars will be faster if the estimated components are sparse. n_jobs : int, default=None Number of parallel jobs to run. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. dict_init : ndarray of shape (n_components, n_features), default=None Initial value for the dictionary for warm restart scenarios. Only used if `code_init` and `dict_init` are not None. code_init : ndarray of shape (n_samples, n_components), default=None Initial value for the sparse code for warm restart scenarios. Only used if `code_init` and `dict_init` are not None. callback : callable, default=None Callable that gets invoked every five iterations verbose : bool, default=False To control the verbosity of the procedure. random_state : int, RandomState instance or None, default=None Used for randomly initializing the dictionary. Pass an int for reproducible results across multiple function calls. See :term:`Glossary <random_state>`. return_n_iter : bool, default=False Whether or not to return the number of iterations. positive_dict : bool, default=False Whether to enforce positivity when finding the dictionary. .. versionadded:: 0.20 positive_code : bool, default=False Whether to enforce positivity when finding the code. .. versionadded:: 0.20 method_max_iter : int, default=1000 Maximum number of iterations to perform. .. versionadded:: 0.22 Returns ------- code : ndarray of shape (n_samples, n_components) The sparse code factor in the matrix factorization. dictionary : ndarray of shape (n_components, n_features), The dictionary factor in the matrix factorization. errors : array Vector of errors at each iteration. n_iter : int Number of iterations run. Returned only if `return_n_iter` is set to True. See Also -------- dict_learning_online DictionaryLearning MiniBatchDictionaryLearning SparsePCA MiniBatchSparsePCA """ if method not in ("lars", "cd"): raise ValueError("Coding method %r not supported as a fit algorithm." % method) _check_positive_coding(method, positive_code) method = "lasso_" + method t0 = time.time() # Avoid integer division problems alpha = float(alpha) random_state = check_random_state(random_state) # Init the code and the dictionary with SVD of Y if code_init is not None and dict_init is not None: code = np.array(code_init, order="F") # Don't copy V, it will happen below dictionary = dict_init else: code, S, dictionary = linalg.svd(X, full_matrices=False) # flip the initial code's sign to enforce deterministic output code, dictionary = svd_flip(code, dictionary) dictionary = S[:, np.newaxis] * dictionary r = len(dictionary) if n_components <= r: # True even if n_components=None code = code[:, :n_components] dictionary = dictionary[:n_components, :] else: code = np.c_[code, np.zeros((len(code), n_components - r))] dictionary = np.r_[ dictionary, np.zeros((n_components - r, dictionary.shape[1])) ] # Fortran-order dict better suited for the sparse coding which is the # bottleneck of this algorithm. dictionary = np.asfortranarray(dictionary) errors = [] current_cost = np.nan if verbose == 1: print("[dict_learning]", end=" ") # If max_iter is 0, number of iterations returned should be zero ii = -1 for ii in range(max_iter): dt = time.time() - t0 if verbose == 1: sys.stdout.write(".") sys.stdout.flush() elif verbose: print( "Iteration % 3i (elapsed time: % 3is, % 4.1fmn, current cost % 7.3f)" % (ii, dt, dt / 60, current_cost) ) # Update code code = sparse_encode( X, dictionary, algorithm=method, alpha=alpha, init=code, n_jobs=n_jobs, positive=positive_code, max_iter=method_max_iter, verbose=verbose, ) # Update dictionary in place _update_dict( dictionary, X, code, verbose=verbose, random_state=random_state, positive=positive_dict, ) # Cost function current_cost = 0.5 * np.sum((X - code @ dictionary) ** 2) + alpha * np.sum( np.abs(code) ) errors.append(current_cost) if ii > 0: dE = errors[-2] - errors[-1] # assert(dE >= -tol * errors[-1]) if dE < tol * errors[-1]: if verbose == 1: # A line return print("") elif verbose: print("--- Convergence reached after %d iterations" % ii) break if ii % 5 == 0 and callback is not None: callback(locals()) if return_n_iter: return code, dictionary, errors, ii + 1 else: return code, dictionary, errors def dict_learning_online( X, n_components=2, *, alpha=1, n_iter=100, return_code=True, dict_init=None, callback=None, batch_size=3, verbose=False, shuffle=True, n_jobs=None, method="lars", iter_offset=0, random_state=None, return_inner_stats=False, inner_stats=None, return_n_iter=False, positive_dict=False, positive_code=False, method_max_iter=1000, ): """Solves a dictionary learning matrix factorization problem online. Finds the best dictionary and the corresponding sparse code for approximating the data matrix X by solving:: (U^*, V^*) = argmin 0.5 || X - U V ||_Fro^2 + alpha * || U ||_1,1 (U,V) with || V_k ||_2 = 1 for all 0 <= k < n_components where V is the dictionary and U is the sparse code. ||.||_Fro stands for the Frobenius norm and ||.||_1,1 stands for the entry-wise matrix norm which is the sum of the absolute values of all the entries in the matrix. This is accomplished by repeatedly iterating over mini-batches by slicing the input data. Read more in the :ref:`User Guide <DictionaryLearning>`. Parameters ---------- X : ndarray of shape (n_samples, n_features) Data matrix. n_components : int or None, default=2 Number of dictionary atoms to extract. If None, then ``n_components`` is set to ``n_features``. alpha : float, default=1 Sparsity controlling parameter. n_iter : int, default=100 Number of mini-batch iterations to perform. return_code : bool, default=True Whether to also return the code U or just the dictionary `V`. dict_init : ndarray of shape (n_components, n_features), default=None Initial value for the dictionary for warm restart scenarios. callback : callable, default=None callable that gets invoked every five iterations. batch_size : int, default=3 The number of samples to take in each batch. verbose : bool, default=False To control the verbosity of the procedure. shuffle : bool, default=True Whether to shuffle the data before splitting it in batches. n_jobs : int, default=None Number of parallel jobs to run. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. method : {'lars', 'cd'}, default='lars' * `'lars'`: uses the least angle regression method to solve the lasso problem (`linear_model.lars_path`); * `'cd'`: uses the coordinate descent method to compute the Lasso solution (`linear_model.Lasso`). Lars will be faster if the estimated components are sparse. iter_offset : int, default=0 Number of previous iterations completed on the dictionary used for initialization. random_state : int, RandomState instance or None, default=None Used for initializing the dictionary when ``dict_init`` is not specified, randomly shuffling the data when ``shuffle`` is set to ``True``, and updating the dictionary. Pass an int for reproducible results across multiple function calls. See :term:`Glossary <random_state>`. return_inner_stats : bool, default=False Return the inner statistics A (dictionary covariance) and B (data approximation). Useful to restart the algorithm in an online setting. If `return_inner_stats` is `True`, `return_code` is ignored. inner_stats : tuple of (A, B) ndarrays, default=None Inner sufficient statistics that are kept by the algorithm. Passing them at initialization is useful in online settings, to avoid losing the history of the evolution. `A` `(n_components, n_components)` is the dictionary covariance matrix. `B` `(n_features, n_components)` is the data approximation matrix. return_n_iter : bool, default=False Whether or not to return the number of iterations. positive_dict : bool, default=False Whether to enforce positivity when finding the dictionary. .. versionadded:: 0.20 positive_code : bool, default=False Whether to enforce positivity when finding the code. .. versionadded:: 0.20 method_max_iter : int, default=1000 Maximum number of iterations to perform when solving the lasso problem. .. versionadded:: 0.22 Returns ------- code : ndarray of shape (n_samples, n_components), The sparse code (only returned if `return_code=True`). dictionary : ndarray of shape (n_components, n_features), The solutions to the dictionary learning problem. n_iter : int Number of iterations run. Returned only if `return_n_iter` is set to `True`. See Also -------- dict_learning DictionaryLearning MiniBatchDictionaryLearning SparsePCA MiniBatchSparsePCA """ if n_components is None: n_components = X.shape[1] if method not in ("lars", "cd"): raise ValueError("Coding method not supported as a fit algorithm.") _check_positive_coding(method, positive_code) method = "lasso_" + method t0 = time.time() n_samples, n_features = X.shape # Avoid integer division problems alpha = float(alpha) random_state = check_random_state(random_state) # Init V with SVD of X if dict_init is not None: dictionary = dict_init else: _, S, dictionary = randomized_svd(X, n_components, random_state=random_state) dictionary = S[:, np.newaxis] * dictionary r = len(dictionary) if n_components <= r: dictionary = dictionary[:n_components, :] else: dictionary = np.r_[ dictionary, np.zeros((n_components - r, dictionary.shape[1])) ] if verbose == 1: print("[dict_learning]", end=" ") if shuffle: X_train = X.copy() random_state.shuffle(X_train) else: X_train = X # Fortran-order dict better suited for the sparse coding which is the # bottleneck of this algorithm. dictionary = check_array(dictionary, order="F", dtype=np.float64, copy=False) dictionary = np.require(dictionary, requirements="W") X_train = check_array(X_train, order="C", dtype=np.float64, copy=False) batches = gen_batches(n_samples, batch_size) batches = itertools.cycle(batches) # The covariance of the dictionary if inner_stats is None: A = np.zeros((n_components, n_components)) # The data approximation B = np.zeros((n_features, n_components)) else: A = inner_stats[0].copy() B = inner_stats[1].copy() # If n_iter is zero, we need to return zero. ii = iter_offset - 1 for ii, batch in zip(range(iter_offset, iter_offset + n_iter), batches): this_X = X_train[batch] dt = time.time() - t0 if verbose == 1: sys.stdout.write(".") sys.stdout.flush() elif verbose: if verbose > 10 or ii % ceil(100.0 / verbose) == 0: print( "Iteration % 3i (elapsed time: % 3is, % 4.1fmn)" % (ii, dt, dt / 60) ) this_code = sparse_encode( this_X, dictionary, algorithm=method, alpha=alpha, n_jobs=n_jobs, check_input=False, positive=positive_code, max_iter=method_max_iter, verbose=verbose, ) # Update the auxiliary variables if ii < batch_size - 1: theta = float((ii + 1) * batch_size) else: theta = float(batch_size ** 2 + ii + 1 - batch_size) beta = (theta + 1 - batch_size) / (theta + 1) A *= beta A += np.dot(this_code.T, this_code) B *= beta B += np.dot(this_X.T, this_code) # Update dictionary in place _update_dict( dictionary, this_X, this_code, A, B, verbose=verbose, random_state=random_state, positive=positive_dict, ) # Maybe we need a stopping criteria based on the amount of # modification in the dictionary if callback is not None: callback(locals()) if return_inner_stats: if return_n_iter: return dictionary, (A, B), ii - iter_offset + 1 else: return dictionary, (A, B) if return_code: if verbose > 1: print("Learning code...", end=" ") elif verbose == 1: print("|", end=" ") code = sparse_encode( X, dictionary, algorithm=method, alpha=alpha, n_jobs=n_jobs, check_input=False, positive=positive_code, max_iter=method_max_iter, verbose=verbose, ) if verbose > 1: dt = time.time() - t0 print("done (total time: % 3is, % 4.1fmn)" % (dt, dt / 60)) if return_n_iter: return code, dictionary, ii - iter_offset + 1 else: return code, dictionary if return_n_iter: return dictionary, ii - iter_offset + 1 else: return dictionary class _BaseSparseCoding(_ClassNamePrefixFeaturesOutMixin, TransformerMixin): """Base class from SparseCoder and DictionaryLearning algorithms.""" def __init__( self, transform_algorithm, transform_n_nonzero_coefs, transform_alpha, split_sign, n_jobs, positive_code, transform_max_iter, ): self.transform_algorithm = transform_algorithm self.transform_n_nonzero_coefs = transform_n_nonzero_coefs self.transform_alpha = transform_alpha self.transform_max_iter = transform_max_iter self.split_sign = split_sign self.n_jobs = n_jobs self.positive_code = positive_code def _transform(self, X, dictionary): """Private method allowing to accommodate both DictionaryLearning and SparseCoder.""" X = self._validate_data(X, reset=False) # transform_alpha has to be changed in _transform # this is done for consistency with the value of alpha if ( hasattr(self, "alpha") and self.alpha != 1.0 and self.transform_alpha is None ): warnings.warn( "By default transform_alpha will be equal to" "alpha instead of 1.0 starting from version 1.2", FutureWarning, ) transform_alpha = 1.0 # TODO change to self.alpha in 1.2 else: transform_alpha = self.transform_alpha code = sparse_encode( X, dictionary, algorithm=self.transform_algorithm, n_nonzero_coefs=self.transform_n_nonzero_coefs, alpha=transform_alpha, max_iter=self.transform_max_iter, n_jobs=self.n_jobs, positive=self.positive_code, ) if self.split_sign: # feature vector is split into a positive and negative side n_samples, n_features = code.shape split_code = np.empty((n_samples, 2 * n_features)) split_code[:, :n_features] = np.maximum(code, 0) split_code[:, n_features:] = -np.minimum(code, 0) code = split_code return code def transform(self, X): """Encode the data as a sparse combination of the dictionary atoms. Coding method is determined by the object parameter `transform_algorithm`. Parameters ---------- X : ndarray of shape (n_samples, n_features) Test data to be transformed, must have the same number of features as the data used to train the model. Returns ------- X_new : ndarray of shape (n_samples, n_components) Transformed data. """ check_is_fitted(self) return self._transform(X, self.components_) class SparseCoder(_BaseSparseCoding, BaseEstimator): """Sparse coding. Finds a sparse representation of data against a fixed, precomputed dictionary. Each row of the result is the solution to a sparse coding problem. The goal is to find a sparse array `code` such that:: X ~= code * dictionary Read more in the :ref:`User Guide <SparseCoder>`. Parameters ---------- dictionary : ndarray of shape (n_components, n_features) The dictionary atoms used for sparse coding. Lines are assumed to be normalized to unit norm. transform_algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', \ 'threshold'}, default='omp' Algorithm used to transform the data: - `'lars'`: uses the least angle regression method (`linear_model.lars_path`); - `'lasso_lars'`: uses Lars to compute the Lasso solution; - `'lasso_cd'`: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). `'lasso_lars'` will be faster if the estimated components are sparse; - `'omp'`: uses orthogonal matching pursuit to estimate the sparse solution; - `'threshold'`: squashes to zero all coefficients less than alpha from the projection ``dictionary * X'``. transform_n_nonzero_coefs : int, default=None Number of nonzero coefficients to target in each column of the solution. This is only used by `algorithm='lars'` and `algorithm='omp'` and is overridden by `alpha` in the `omp` case. If `None`, then `transform_n_nonzero_coefs=int(n_features / 10)`. transform_alpha : float, default=None If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the penalty applied to the L1 norm. If `algorithm='threshold'`, `alpha` is the absolute value of the threshold below which coefficients will be squashed to zero. If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of the reconstruction error targeted. In this case, it overrides `n_nonzero_coefs`. If `None`, default to 1. split_sign : bool, default=False Whether to split the sparse feature vector into the concatenation of its negative part and its positive part. This can improve the performance of downstream classifiers. n_jobs : int, default=None Number of parallel jobs to run. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. positive_code : bool, default=False Whether to enforce positivity when finding the code. .. versionadded:: 0.20 transform_max_iter : int, default=1000 Maximum number of iterations to perform if `algorithm='lasso_cd'` or `lasso_lars`. .. versionadded:: 0.22 Attributes ---------- components_ : ndarray of shape (n_components, n_features) The unchanged dictionary atoms. .. deprecated:: 0.24 This attribute is deprecated in 0.24 and will be removed in 1.1 (renaming of 0.26). Use `dictionary` instead. n_components_ : int Number of atoms. n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 See Also -------- DictionaryLearning : Find a dictionary that sparsely encodes data. MiniBatchDictionaryLearning : A faster, less accurate, version of the dictionary learning algorithm. MiniBatchSparsePCA : Mini-batch Sparse Principal Components Analysis. SparsePCA : Mini-batch Sparse Principal Components Analysis. sparse_encode : Sparse coding where each row of the result is the solution to a sparse coding problem. Examples -------- >>> import numpy as np >>> from sklearn.decomposition import SparseCoder >>> X = np.array([[-1, -1, -1], [0, 0, 3]]) >>> dictionary = np.array( ... [[0, 1, 0], ... [-1, -1, 2], ... [1, 1, 1], ... [0, 1, 1], ... [0, 2, 1]], ... dtype=np.float64 ... ) >>> coder = SparseCoder( ... dictionary=dictionary, transform_algorithm='lasso_lars', ... transform_alpha=1e-10, ... ) >>> coder.transform(X) array([[ 0., 0., -1., 0., 0.], [ 0., 1., 1., 0., 0.]]) """ _required_parameters = ["dictionary"] def __init__( self, dictionary, *, transform_algorithm="omp", transform_n_nonzero_coefs=None, transform_alpha=None, split_sign=False, n_jobs=None, positive_code=False, transform_max_iter=1000, ): super().__init__( transform_algorithm, transform_n_nonzero_coefs, transform_alpha, split_sign, n_jobs, positive_code, transform_max_iter, ) self.dictionary = dictionary def fit(self, X, y=None): """Do nothing and return the estimator unchanged. This method is just there to implement the usual API and hence work in pipelines. Parameters ---------- X : Ignored Not used, present for API consistency by convention. y : Ignored Not used, present for API consistency by convention. Returns ------- self : object Returns the instance itself. """ return self @deprecated( # type: ignore "The attribute `components_` is deprecated " "in 0.24 and will be removed in 1.1 (renaming of 0.26). Use the " "`dictionary` instead." ) @property def components_(self): return self.dictionary def transform(self, X, y=None): """Encode the data as a sparse combination of the dictionary atoms. Coding method is determined by the object parameter `transform_algorithm`. Parameters ---------- X : ndarray of shape (n_samples, n_features) Training vector, where `n_samples` is the number of samples and `n_features` is the number of features. y : Ignored Not used, present for API consistency by convention. Returns ------- X_new : ndarray of shape (n_samples, n_components) Transformed data. """ return super()._transform(X, self.dictionary) def _more_tags(self): return {"requires_fit": False} @property def n_components_(self): """Number of atoms.""" return self.dictionary.shape[0] @property def n_features_in_(self): """Number of features seen during `fit`.""" return self.dictionary.shape[1] @property def _n_features_out(self): """Number of transformed output features.""" return self.n_components_ class DictionaryLearning(_BaseSparseCoding, BaseEstimator): """Dictionary learning. Finds a dictionary (a set of atoms) that performs well at sparsely encoding the fitted data. Solves the optimization problem:: (U^*,V^*) = argmin 0.5 || X - U V ||_Fro^2 + alpha * || U ||_1,1 (U,V) with || V_k ||_2 <= 1 for all 0 <= k < n_components ||.||_Fro stands for the Frobenius norm and ||.||_1,1 stands for the entry-wise matrix norm which is the sum of the absolute values of all the entries in the matrix. Read more in the :ref:`User Guide <DictionaryLearning>`. Parameters ---------- n_components : int, default=None Number of dictionary elements to extract. If None, then ``n_components`` is set to ``n_features``. alpha : float, default=1.0 Sparsity controlling parameter. max_iter : int, default=1000 Maximum number of iterations to perform. tol : float, default=1e-8 Tolerance for numerical error. fit_algorithm : {'lars', 'cd'}, default='lars' * `'lars'`: uses the least angle regression method to solve the lasso problem (:func:`~sklearn.linear_model.lars_path`); * `'cd'`: uses the coordinate descent method to compute the Lasso solution (:class:`~sklearn.linear_model.Lasso`). Lars will be faster if the estimated components are sparse. .. versionadded:: 0.17 *cd* coordinate descent method to improve speed. transform_algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', \ 'threshold'}, default='omp' Algorithm used to transform the data: - `'lars'`: uses the least angle regression method (:func:`~sklearn.linear_model.lars_path`); - `'lasso_lars'`: uses Lars to compute the Lasso solution. - `'lasso_cd'`: uses the coordinate descent method to compute the Lasso solution (:class:`~sklearn.linear_model.Lasso`). `'lasso_lars'` will be faster if the estimated components are sparse. - `'omp'`: uses orthogonal matching pursuit to estimate the sparse solution. - `'threshold'`: squashes to zero all coefficients less than alpha from the projection ``dictionary * X'``. .. versionadded:: 0.17 *lasso_cd* coordinate descent method to improve speed. transform_n_nonzero_coefs : int, default=None Number of nonzero coefficients to target in each column of the solution. This is only used by `algorithm='lars'` and `algorithm='omp'`. If `None`, then `transform_n_nonzero_coefs=int(n_features / 10)`. transform_alpha : float, default=None If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the penalty applied to the L1 norm. If `algorithm='threshold'`, `alpha` is the absolute value of the threshold below which coefficients will be squashed to zero. If `None`, defaults to `alpha`. n_jobs : int or None, default=None Number of parallel jobs to run. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. code_init : ndarray of shape (n_samples, n_components), default=None Initial value for the code, for warm restart. Only used if `code_init` and `dict_init` are not None. dict_init : ndarray of shape (n_components, n_features), default=None Initial values for the dictionary, for warm restart. Only used if `code_init` and `dict_init` are not None. verbose : bool, default=False To control the verbosity of the procedure. split_sign : bool, default=False Whether to split the sparse feature vector into the concatenation of its negative part and its positive part. This can improve the performance of downstream classifiers. random_state : int, RandomState instance or None, default=None Used for initializing the dictionary when ``dict_init`` is not specified, randomly shuffling the data when ``shuffle`` is set to ``True``, and updating the dictionary. Pass an int for reproducible results across multiple function calls. See :term:`Glossary <random_state>`. positive_code : bool, default=False Whether to enforce positivity when finding the code. .. versionadded:: 0.20 positive_dict : bool, default=False Whether to enforce positivity when finding the dictionary. .. versionadded:: 0.20 transform_max_iter : int, default=1000 Maximum number of iterations to perform if `algorithm='lasso_cd'` or `'lasso_lars'`. .. versionadded:: 0.22 Attributes ---------- components_ : ndarray of shape (n_components, n_features) dictionary atoms extracted from the data error_ : array vector of errors at each iteration n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 n_iter_ : int Number of iterations run. See Also -------- MiniBatchDictionaryLearning: A faster, less accurate, version of the dictionary learning algorithm. MiniBatchSparsePCA : Mini-batch Sparse Principal Components Analysis. SparseCoder : Find a sparse representation of data from a fixed, precomputed dictionary. SparsePCA : Sparse Principal Components Analysis. References ---------- J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning for sparse coding (https://www.di.ens.fr/sierra/pdfs/icml09.pdf) Examples -------- >>> import numpy as np >>> from sklearn.datasets import make_sparse_coded_signal >>> from sklearn.decomposition import DictionaryLearning >>> X, dictionary, code = make_sparse_coded_signal( ... n_samples=100, n_components=15, n_features=20, n_nonzero_coefs=10, ... random_state=42, ... ) >>> dict_learner = DictionaryLearning( ... n_components=15, transform_algorithm='lasso_lars', random_state=42, ... ) >>> X_transformed = dict_learner.fit_transform(X) We can check the level of sparsity of `X_transformed`: >>> np.mean(X_transformed == 0) 0.87... We can compare the average squared euclidean norm of the reconstruction error of the sparse coded signal relative to the squared euclidean norm of the original signal: >>> X_hat = X_transformed @ dict_learner.components_ >>> np.mean(np.sum((X_hat - X) ** 2, axis=1) / np.sum(X ** 2, axis=1)) 0.08... """ def __init__( self, n_components=None, *, alpha=1, max_iter=1000, tol=1e-8, fit_algorithm="lars", transform_algorithm="omp", transform_n_nonzero_coefs=None, transform_alpha=None, n_jobs=None, code_init=None, dict_init=None, verbose=False, split_sign=False, random_state=None, positive_code=False, positive_dict=False, transform_max_iter=1000, ): super().__init__( transform_algorithm, transform_n_nonzero_coefs, transform_alpha, split_sign, n_jobs, positive_code, transform_max_iter, ) self.n_components = n_components self.alpha = alpha self.max_iter = max_iter self.tol = tol self.fit_algorithm = fit_algorithm self.code_init = code_init self.dict_init = dict_init self.verbose = verbose self.random_state = random_state self.positive_dict = positive_dict def fit(self, X, y=None): """Fit the model from data in X. Parameters ---------- X : array-like of shape (n_samples, n_features) Training vector, where `n_samples` is the number of samples and `n_features` is the number of features. y : Ignored Not used, present for API consistency by convention. Returns ------- self : object Returns the instance itself. """ random_state = check_random_state(self.random_state) X = self._validate_data(X) if self.n_components is None: n_components = X.shape[1] else: n_components = self.n_components V, U, E, self.n_iter_ = dict_learning( X, n_components, alpha=self.alpha, tol=self.tol, max_iter=self.max_iter, method=self.fit_algorithm, method_max_iter=self.transform_max_iter, n_jobs=self.n_jobs, code_init=self.code_init, dict_init=self.dict_init, verbose=self.verbose, random_state=random_state, return_n_iter=True, positive_dict=self.positive_dict, positive_code=self.positive_code, ) self.components_ = U self.error_ = E return self @property def _n_features_out(self): """Number of transformed output features.""" return self.components_.shape[0] class MiniBatchDictionaryLearning(_BaseSparseCoding, BaseEstimator): """Mini-batch dictionary learning. Finds a dictionary (a set of atoms) that performs well at sparsely encoding the fitted data. Solves the optimization problem:: (U^*,V^*) = argmin 0.5 || X - U V ||_Fro^2 + alpha * || U ||_1,1 (U,V) with || V_k ||_2 <= 1 for all 0 <= k < n_components ||.||_Fro stands for the Frobenius norm and ||.||_1,1 stands for the entry-wise matrix norm which is the sum of the absolute values of all the entries in the matrix. Read more in the :ref:`User Guide <DictionaryLearning>`. Parameters ---------- n_components : int, default=None Number of dictionary elements to extract. alpha : float, default=1 Sparsity controlling parameter. n_iter : int, default=1000 Total number of iterations to perform. fit_algorithm : {'lars', 'cd'}, default='lars' The algorithm used: - `'lars'`: uses the least angle regression method to solve the lasso problem (`linear_model.lars_path`) - `'cd'`: uses the coordinate descent method to compute the Lasso solution (`linear_model.Lasso`). Lars will be faster if the estimated components are sparse. n_jobs : int, default=None Number of parallel jobs to run. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. batch_size : int, default=3 Number of samples in each mini-batch. shuffle : bool, default=True Whether to shuffle the samples before forming batches. dict_init : ndarray of shape (n_components, n_features), default=None Initial value of the dictionary for warm restart scenarios. transform_algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', \ 'threshold'}, default='omp' Algorithm used to transform the data: - `'lars'`: uses the least angle regression method (`linear_model.lars_path`); - `'lasso_lars'`: uses Lars to compute the Lasso solution. - `'lasso_cd'`: uses the coordinate descent method to compute the Lasso solution (`linear_model.Lasso`). `'lasso_lars'` will be faster if the estimated components are sparse. - `'omp'`: uses orthogonal matching pursuit to estimate the sparse solution. - `'threshold'`: squashes to zero all coefficients less than alpha from the projection ``dictionary * X'``. transform_n_nonzero_coefs : int, default=None Number of nonzero coefficients to target in each column of the solution. This is only used by `algorithm='lars'` and `algorithm='omp'`. If `None`, then `transform_n_nonzero_coefs=int(n_features / 10)`. transform_alpha : float, default=None If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the penalty applied to the L1 norm. If `algorithm='threshold'`, `alpha` is the absolute value of the threshold below which coefficients will be squashed to zero. If `None`, defaults to `alpha`. verbose : bool, default=False To control the verbosity of the procedure. split_sign : bool, default=False Whether to split the sparse feature vector into the concatenation of its negative part and its positive part. This can improve the performance of downstream classifiers. random_state : int, RandomState instance or None, default=None Used for initializing the dictionary when ``dict_init`` is not specified, randomly shuffling the data when ``shuffle`` is set to ``True``, and updating the dictionary. Pass an int for reproducible results across multiple function calls. See :term:`Glossary <random_state>`. positive_code : bool, default=False Whether to enforce positivity when finding the code. .. versionadded:: 0.20 positive_dict : bool, default=False Whether to enforce positivity when finding the dictionary. .. versionadded:: 0.20 transform_max_iter : int, default=1000 Maximum number of iterations to perform if `algorithm='lasso_cd'` or `'lasso_lars'`. .. versionadded:: 0.22 Attributes ---------- components_ : ndarray of shape (n_components, n_features) Components extracted from the data. inner_stats_ : tuple of (A, B) ndarrays Internal sufficient statistics that are kept by the algorithm. Keeping them is useful in online settings, to avoid losing the history of the evolution, but they shouldn't have any use for the end user. `A` `(n_components, n_components)` is the dictionary covariance matrix. `B` `(n_features, n_components)` is the data approximation matrix. n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 n_iter_ : int Number of iterations run. iter_offset_ : int The number of iteration on data batches that has been performed before. random_state_ : RandomState instance RandomState instance that is generated either from a seed, the random number generattor or by `np.random`. See Also -------- DictionaryLearning : Find a dictionary that sparsely encodes data. MiniBatchSparsePCA : Mini-batch Sparse Principal Components Analysis. SparseCoder : Find a sparse representation of data from a fixed, precomputed dictionary. SparsePCA : Sparse Principal Components Analysis. References ---------- J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning for sparse coding (https://www.di.ens.fr/sierra/pdfs/icml09.pdf) Examples -------- >>> import numpy as np >>> from sklearn.datasets import make_sparse_coded_signal >>> from sklearn.decomposition import MiniBatchDictionaryLearning >>> X, dictionary, code = make_sparse_coded_signal( ... n_samples=100, n_components=15, n_features=20, n_nonzero_coefs=10, ... random_state=42) >>> dict_learner = MiniBatchDictionaryLearning( ... n_components=15, transform_algorithm='lasso_lars', random_state=42, ... ) >>> X_transformed = dict_learner.fit_transform(X) We can check the level of sparsity of `X_transformed`: >>> np.mean(X_transformed == 0) 0.86... We can compare the average squared euclidean norm of the reconstruction error of the sparse coded signal relative to the squared euclidean norm of the original signal: >>> X_hat = X_transformed @ dict_learner.components_ >>> np.mean(np.sum((X_hat - X) ** 2, axis=1) / np.sum(X ** 2, axis=1)) 0.07... """ def __init__( self, n_components=None, *, alpha=1, n_iter=1000, fit_algorithm="lars", n_jobs=None, batch_size=3, shuffle=True, dict_init=None, transform_algorithm="omp", transform_n_nonzero_coefs=None, transform_alpha=None, verbose=False, split_sign=False, random_state=None, positive_code=False, positive_dict=False, transform_max_iter=1000, ): super().__init__( transform_algorithm, transform_n_nonzero_coefs, transform_alpha, split_sign, n_jobs, positive_code, transform_max_iter, ) self.n_components = n_components self.alpha = alpha self.n_iter = n_iter self.fit_algorithm = fit_algorithm self.dict_init = dict_init self.verbose = verbose self.shuffle = shuffle self.batch_size = batch_size self.split_sign = split_sign self.random_state = random_state self.positive_dict = positive_dict def fit(self, X, y=None): """Fit the model from data in X. Parameters ---------- X : array-like of shape (n_samples, n_features) Training vector, where `n_samples` is the number of samples and `n_features` is the number of features. y : Ignored Not used, present for API consistency by convention. Returns ------- self : object Returns the instance itself. """ random_state = check_random_state(self.random_state) X = self._validate_data(X) U, (A, B), self.n_iter_ = dict_learning_online( X, self.n_components, alpha=self.alpha, n_iter=self.n_iter, return_code=False, method=self.fit_algorithm, method_max_iter=self.transform_max_iter, n_jobs=self.n_jobs, dict_init=self.dict_init, batch_size=self.batch_size, shuffle=self.shuffle, verbose=self.verbose, random_state=random_state, return_inner_stats=True, return_n_iter=True, positive_dict=self.positive_dict, positive_code=self.positive_code, ) self.components_ = U # Keep track of the state of the algorithm to be able to do # some online fitting (partial_fit) self.inner_stats_ = (A, B) self.iter_offset_ = self.n_iter self.random_state_ = random_state return self def partial_fit(self, X, y=None, iter_offset=None): """Update the model using the data in X as a mini-batch. Parameters ---------- X : array-like of shape (n_samples, n_features) Training vector, where `n_samples` is the number of samples and `n_features` is the number of features. y : Ignored Not used, present for API consistency by convention. iter_offset : int, default=None The number of iteration on data batches that has been performed before this call to `partial_fit`. This is optional: if no number is passed, the memory of the object is used. Returns ------- self : object Returns the instance itself. """ if not hasattr(self, "random_state_"): self.random_state_ = check_random_state(self.random_state) if hasattr(self, "components_"): dict_init = self.components_ else: dict_init = self.dict_init inner_stats = getattr(self, "inner_stats_", None) if iter_offset is None: iter_offset = getattr(self, "iter_offset_", 0) X = self._validate_data(X, reset=(iter_offset == 0)) U, (A, B) = dict_learning_online( X, self.n_components, alpha=self.alpha, n_iter=1, method=self.fit_algorithm, method_max_iter=self.transform_max_iter, n_jobs=self.n_jobs, dict_init=dict_init, batch_size=len(X), shuffle=False, verbose=self.verbose, return_code=False, iter_offset=iter_offset, random_state=self.random_state_, return_inner_stats=True, inner_stats=inner_stats, positive_dict=self.positive_dict, positive_code=self.positive_code, ) self.components_ = U # Keep track of the state of the algorithm to be able to do # some online fitting (partial_fit) self.inner_stats_ = (A, B) self.iter_offset_ = iter_offset + 1 return self @property def _n_features_out(self): """Number of transformed output features.""" return self.components_.shape[0]
33.047325
88
0.617552
d9a3fca4565fc06defc14f87c3871da9cec62b50
8,338
py
Python
cdpcli/configloader.py
anuragpatro/cdpcli
fe2b78308e4f8c09aa9609a43a646f314fa20327
[ "Apache-2.0" ]
7
2020-10-01T14:03:57.000Z
2022-02-23T17:47:08.000Z
cdpcli/configloader.py
anuragpatro/cdpcli
fe2b78308e4f8c09aa9609a43a646f314fa20327
[ "Apache-2.0" ]
1
2020-11-30T08:00:50.000Z
2020-12-01T08:00:20.000Z
cdpcli/configloader.py
anuragpatro/cdpcli
fe2b78308e4f8c09aa9609a43a646f314fa20327
[ "Apache-2.0" ]
7
2020-11-07T20:55:47.000Z
2021-11-09T18:45:33.000Z
# Copyright (c) 2012-2013 Mitch Garnaat http://garnaat.org/ # Copyright 2012-2016 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Modifications made by Cloudera are: # Copyright (c) 2016 Cloudera, Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. import configparser import copy import os import shlex from cdpcli.exceptions import ConfigNotFound, ConfigParseError def multi_file_load_config(*filenames): """Load and combine multiple INI configs with profiles. This function will take a list of filesnames and return a single dictionary that represents the merging of the loaded config files. If any of the provided filenames does not exist, then that file is ignored. It is therefore ok to provide a list of filenames, some of which may not exist. Configuration files are **not** deep merged, only the top level keys are merged. The filenames should be passed in order of precedence. The first config file has precedence over the second config file, which has precedence over the third config file, etc. The only exception to this is that the "profiles" key is merged to combine profiles from multiple config files into a single profiles mapping. However, if a profile is defined in multiple config files, then the config file with the highest precedence is used. Profile values themselves are not merged. For example:: FileA FileB FileC [foo] [foo] [bar] a=1 a=2 a=3 b=2 [bar] [baz] [profile a] a=2 a=3 region=e [profile a] [profile b] [profile c] region=c region=d region=f The final result of ``multi_file_load_config(FileA, FileB, FileC)`` would be:: {"foo": {"a": 1}, "bar": {"a": 2}, "baz": {"a": 3}, "profiles": {"a": {"region": "c"}}, {"b": {"region": d"}}, {"c": {"region": "f"}}} Note that the "foo" key comes from A, even though it's defined in both FileA and FileB. Because "foo" was defined in FileA first, then the values for "foo" from FileA are used and the values for "foo" from FileB are ignored. Also note where the profiles originate from. Profile "a" comes FileA, profile "b" comes from FileB, and profile "c" comes from FileC. """ configs = [] profiles = [] for filename in filenames: try: loaded = load_config(filename) except ConfigNotFound: continue profiles.append(loaded.pop('profiles')) configs.append(loaded) merged_config = _merge_list_of_dicts(configs) merged_profiles = _merge_list_of_dicts(profiles) merged_config['profiles'] = merged_profiles return merged_config def _merge_list_of_dicts(list_of_dicts): merged_dicts = {} for single_dict in list_of_dicts: for key, value in single_dict.items(): if key not in merged_dicts: merged_dicts[key] = value return merged_dicts def load_config(config_filename): """Parse a INI config with profiles. This will parse an INI config file and map top level profiles into a top level "profile" key. If you want to parse an INI file and map all section names to top level keys, use ``raw_config_parse`` instead. """ parsed = raw_config_parse(config_filename) return build_profile_map(parsed) def raw_config_parse(config_filename): """Returns the parsed INI config contents. Each section name is a top level key. :returns: A dict with keys for each profile found in the config file and the value of each key being a dict containing name value pairs found in that profile. :raises: ConfigNotFound, ConfigParseError """ config = {} path = config_filename if path is not None: path = os.path.expandvars(path) path = os.path.expanduser(path) if not os.path.isfile(path): raise ConfigNotFound(path=path) cp = configparser.RawConfigParser() try: cp.read(path) except configparser.Error: raise ConfigParseError(path=path) else: for section in cp.sections(): config[section] = {} for option in cp.options(section): config_value = cp.get(section, option) if config_value.startswith('\n'): # Then we need to parse the inner contents as # hierarchical. We support a single level # of nesting for now. try: config_value = _parse_nested(config_value) except ValueError: raise ConfigParseError(path=path) config[section][option] = config_value return config def _parse_nested(config_value): # Given a value like this: # \n # foo = bar # bar = baz # We need to parse this into # {'foo': 'bar', 'bar': 'baz} parsed = {} for line in config_value.splitlines(): line = line.strip() if not line: continue # The caller will catch ValueError # and raise an appropriate error # if this fails. key, value = line.split('=', 1) parsed[key.strip()] = value.strip() return parsed def build_profile_map(parsed_ini_config): """Convert the parsed INI config into a profile map. The config file format requires that every profile except the default to be prepended with "profile", e.g.:: [profile test] cdp_... = foo cdp_... = bar [profile bar] cdp_... = foo cdp_... = bar # This is *not* a profile [preview] otherstuff = 1 # Neither is this [foobar] morestuff = 2 The build_profile_map will take a parsed INI config file where each top level key represents a section name, and convert into a format where all the profiles are under a single top level "profiles" key, and each key in the sub dictionary is a profile name. For example, the above config file would be converted from:: {"profile test": {"cdp_...": "foo", "cdp_...": "bar"}, "profile bar": {"cdp_...": "foo", "cdp_...": "bar"}, "preview": {"otherstuff": ...}, "foobar": {"morestuff": ...}, } into:: {"profiles": {"test": {"cdp_...": "foo", "cdp_...": "bar"}, "bar": {"cdp_...": "foo", "cdp_...": "bar"}, "preview": {"otherstuff": ...}, "foobar": {"morestuff": ...}, } If there are no profiles in the provided parsed INI contents, then an empty dict will be the value associated with the ``profiles`` key. .. note:: This will not mutate the passed in parsed_ini_config. Instead it will make a deepcopy and return that value. """ parsed_config = copy.deepcopy(parsed_ini_config) profiles = {} final_config = {} for key, values in parsed_config.items(): if key.startswith("profile"): try: parts = shlex.split(key) except ValueError: continue if len(parts) == 2: profiles[parts[1]] = values elif key == 'default': # default section is special and is considered a profile # name but we don't require you use 'profile "default"' # as a section. profiles[key] = values else: final_config[key] = values final_config['profiles'] = profiles return final_config
34.312757
79
0.600024
c744a751ac829b8df6e6ea43ded8308d051da6ea
2,783
py
Python
_unittests/ut_asv_benchmark/test_create_asv_benchmark_rf.py
henrywu2019/mlprodict
4c09dc39d5ba7a7235fa321d80c81b5bf4f078ad
[ "MIT" ]
1
2020-12-18T03:49:53.000Z
2020-12-18T03:49:53.000Z
_unittests/ut_asv_benchmark/test_create_asv_benchmark_rf.py
henrywu2019/mlprodict
4c09dc39d5ba7a7235fa321d80c81b5bf4f078ad
[ "MIT" ]
null
null
null
_unittests/ut_asv_benchmark/test_create_asv_benchmark_rf.py
henrywu2019/mlprodict
4c09dc39d5ba7a7235fa321d80c81b5bf4f078ad
[ "MIT" ]
null
null
null
""" @brief test log(time=6s) """ import os import unittest import re from pyquickhelper.loghelper import fLOG from pyquickhelper.pycode import ExtTestCase, get_temp_folder from pyquickhelper.loghelper.run_cmd import run_script from pyquickhelper.texthelper.version_helper import compare_module_version import sklearn from mlprodict.asv_benchmark import create_asv_benchmark import mlprodict class TestCreateAsvBenchmarkRF(ExtTestCase): def test_create_asv_benchmark_rf(self): fLOG(__file__, self._testMethodName, OutputPrint=__name__ == "__main__") self.assertNotEmpty(mlprodict) temp = get_temp_folder(__file__, "temp_create_asv_benchmark_rf") created = create_asv_benchmark( location=temp, verbose=1, fLOG=fLOG, runtime=('scikit-learn', 'python', 'onnxruntime1'), exc=False, execute=True, models={'RandomForestRegressor'}) self.assertNotEmpty(created) reg = re.compile("class ([a-zA-Z0-9_]+)[(]") verif = False allnames = [] for path, _, files in os.walk(os.path.join(temp, 'benches')): for zoo in files: if '__init__' in zoo: continue fLOG("process '{}'".format(zoo)) fullname = os.path.join(path, zoo) with open(fullname, 'r', encoding='utf-8') as f: content = f.read() names = reg.findall(content) name = names[0] content += "\n\ncl = %s()\ncl.setup_cache()\n" % name allnames.append(fullname) with open(fullname, 'w', encoding='utf-8') as f: f.write(content) __, err = run_script(fullname, wait=True) lines = [_ for _ in err.split('\n') if _ and _[0] != ' '] lines = [_ for _ in lines if "Warning" not in _] lines = [ _ for _ in lines if "No module named 'mlprodict'" not in _] lines = [_ for _ in lines if "Traceback " not in _] err = "\n".join(lines).strip(' \n\r') if len(err) > 0: raise RuntimeError( "Issue with '{}'\n{}".format(fullname, err)) if (zoo.endswith("bench_RandomForestReg_default_b_reg_nest100.py") and compare_module_version(sklearn.__version__, "0.21") >= 0): if "random_state=42" not in content: raise AssertionError(content) else: verif = True if not verif: raise AssertionError("Visited files\n{}".format( "\n".join(allnames))) if __name__ == "__main__": unittest.main()
40.926471
86
0.561265
d723ff88b21bebb486f6659fac645d737bcce281
22,221
py
Python
mmtbx/refinement/adp_refinement.py
rimmartin/cctbx_project
644090f9432d9afc22cfb542fc3ab78ca8e15e5d
[ "BSD-3-Clause-LBNL" ]
null
null
null
mmtbx/refinement/adp_refinement.py
rimmartin/cctbx_project
644090f9432d9afc22cfb542fc3ab78ca8e15e5d
[ "BSD-3-Clause-LBNL" ]
null
null
null
mmtbx/refinement/adp_refinement.py
rimmartin/cctbx_project
644090f9432d9afc22cfb542fc3ab78ca8e15e5d
[ "BSD-3-Clause-LBNL" ]
null
null
null
from __future__ import division import mmtbx.refinement.group from mmtbx.refinement import minimization from mmtbx.refinement import print_statistics from mmtbx import utils from mmtbx.tls import tools import iotbx.phil from cctbx import adptbx from cctbx.array_family import flex import scitbx.lbfgs from libtbx.test_utils import approx_equal from libtbx import adopt_init_args, Auto from libtbx.utils import user_plus_sys_time time_adp_refinement_py = 0.0 def show_times(out = None): if(out is None): out = sys.stdout total = time_adp_refinement_py if(total > 0.01): print >> out, "ADP refinement:" print >> out, " time spent in adp_refinement.py = %-7.2f" % time_adp_refinement_py return total group_adp_master_params = iotbx.phil.parse("""\ number_of_macro_cycles = 3 .type = int .expert_level = 1 max_number_of_iterations = 25 .type = int .expert_level = 1 convergence_test = False .type = bool .expert_level = 3 run_finite_differences_test = False .type = bool .expert_level = 3 use_restraints = True .type = bool .expert_level = 0 restraints_weight = None .type = float .expert_level = 0 """) tls_master_params = iotbx.phil.parse("""\ one_residue_one_group = None .type = bool .style = tribool refine_T = True .type = bool refine_L = True .type = bool refine_S = True .type = bool number_of_macro_cycles = 2 .type = int max_number_of_iterations = 25 .type = int start_tls_value = None .type = float run_finite_differences_test = False .type = bool .help = Test with finite differences instead of gradients. FOR \ DEVELOPMENT PURPOSES ONLY. .expert_level = 3 eps = 1.e-6 .type = float .help = Finite difference setting. .expert_level = 3 min_tls_group_size = 5 .type = int .help = min number of atoms allowed per TLS group verbose = True .type = bool """) individual_adp_master_params = iotbx.phil.parse("""\ iso { max_number_of_iterations = 25 .type = int scaling { scale_max = 3.0 .type = float scale_min = 10.0 .type = float } } """) adp_restraints_master_params = iotbx.phil.parse("""\ iso { use_u_local_only = False .type = bool sphere_radius = 5.0 .type = float distance_power = 1.69 .type = float average_power = 1.03 .type = float wilson_b_weight_auto = False .type = bool wilson_b_weight = None .type = float plain_pairs_radius = 5.0 .type = float refine_ap_and_dp = False .type = bool } """) class manager(object): def __init__( self, fmodels, model, all_params, group_adp_selections = None, group_adp_selections_h = None, group_adp_params = None, tls_selections = None, tls_params = tls_master_params.extract(), individual_adp_params = individual_adp_master_params.extract(), adp_restraints_params = adp_restraints_master_params.extract(), refine_adp_individual = None, refine_adp_group = None, refine_tls = None, tan_b_iso_max = None, restraints_manager = None, target_weights = None, macro_cycle = None, log = None, h_params = None, nproc = None): global time_adp_refinement_py if(group_adp_params is None): group_adp_params = group_adp_master_params.extract() scatterers = fmodels.fmodel_xray().xray_structure.scatterers() timer = user_plus_sys_time() if(log is None): log = sys.stdout tan_u_iso = False param = 0 if(tan_b_iso_max > 0.0): tan_u_iso = True param = int(tan_b_iso_max) if(macro_cycle == 1): offset = True else: offset = False if(refine_tls): print_statistics.make_sub_header(text = "TLS refinement", out = log) tls_sel_st = flex.size_t() for ts in tls_selections: tls_sel_st.extend(ts) tls_sel_bool = flex.bool(scatterers.size(), flex.size_t(tls_sel_st)) ### totally ad hoc fix tmp_site_t = flex.size_t() for gs in group_adp_selections: for gs_ in gs: tmp_site_t.append(gs_) ### if(macro_cycle == 1 or tmp_site_t.size() != scatterers.size()): gbr_selections = [] for s in tls_selections: gbr_selections.append(s) else: gbr_selections = [] for gs in group_adp_selections: gbr_selection = flex.size_t() for gs_ in gs: if(tls_sel_bool[gs_]): gbr_selection.append(gs_) if(gbr_selection.size() > 0): gbr_selections.append(gbr_selection) gbr_selections_one_arr = flex.size_t() for gbs in gbr_selections: gbr_selections_one_arr.extend(gbs) scatterers = fmodels.fmodel_xray().xray_structure.scatterers() for gbr_selection in gbr_selections_one_arr: scatterers[gbr_selection].flags.set_use_u_iso(True) group_b_manager = mmtbx.refinement.group.manager( fmodel = fmodels.fmodel_xray(), selections = gbr_selections, convergence_test = group_adp_params.convergence_test, max_number_of_iterations = 50, number_of_macro_cycles = 1, refine_adp = True, use_restraints = False, #XXX do not use in TLS refinement for now log = log) scatterers = fmodels.fmodel_xray().xray_structure.scatterers() for tls_selection_ in tls_selections: for tls_selection__ in tls_selection_: scatterers[tls_selection__].flags.set_use_u_aniso(True) model.show_groups(tls = True, out = log) current_target_name = fmodels.fmodel_xray().target_name fmodels.fmodel_xray().update(target_name = "ls_wunit_k1") tools.split_u(fmodels.fmodel_xray().xray_structure, tls_selections, offset) self.tls_refinement_manager = tools.tls_refinement( fmodel = fmodels.fmodel_xray(), model = model, selections = tls_selections, selections_1d = tls_sel_st, refine_T = tls_params.refine_T, refine_L = tls_params.refine_L, refine_S = tls_params.refine_S, number_of_macro_cycles = tls_params.number_of_macro_cycles, max_number_of_iterations = tls_params.max_number_of_iterations, start_tls_value = tls_params.start_tls_value, run_finite_differences_test = tls_params.run_finite_differences_test, eps = tls_params.eps, out = log, macro_cycle = macro_cycle, verbose = tls_params.verbose) fmodels.fmodel_xray().update(target_name = current_target_name) fmodels.update_xray_structure( xray_structure = self.tls_refinement_manager.fmodel.xray_structure, update_f_calc = True) model.set_xray_structure(fmodels.fmodel_xray().xray_structure) if(refine_adp_individual): refine_adp( model = model, fmodels = fmodels, target_weights = target_weights, individual_adp_params = individual_adp_params, adp_restraints_params = adp_restraints_params, h_params = h_params, log = log, all_params = all_params, nproc = nproc) if(refine_adp_group): print_statistics.make_sub_header( text= "group isotropic ADP refinement", out = log) group_b_manager = mmtbx.refinement.group.manager( fmodel = fmodels.fmodel_xray(), selections = group_adp_selections, convergence_test = group_adp_params.convergence_test, max_number_of_iterations = group_adp_params.max_number_of_iterations, number_of_macro_cycles = group_adp_params.number_of_macro_cycles, run_finite_differences_test = group_adp_params.run_finite_differences_test, use_restraints = group_adp_params.use_restraints, restraints_weight = group_adp_params.restraints_weight, refine_adp = True, log = log) time_adp_refinement_py += timer.elapsed() class refine_adp(object): def __init__( self, model, fmodels, target_weights, individual_adp_params, adp_restraints_params, h_params, log, all_params, nproc=None): adopt_init_args(self, locals()) d_min = fmodels.fmodel_xray().f_obs().d_min() # initialize with defaults... if(target_weights is not None): import mmtbx.refinement.weights_params wcp = mmtbx.refinement.weights_params.tw_customizations_params.extract() for w_s_c in wcp.weight_selection_criteria: if(d_min >= w_s_c.d_min and d_min < w_s_c.d_max): r_free_range_width = w_s_c.r_free_range_width r_free_r_work_gap = w_s_c.r_free_minus_r_work mean_diff_b_iso_bonded_fraction = w_s_c.mean_diff_b_iso_bonded_fraction min_diff_b_iso_bonded = w_s_c.min_diff_b_iso_bonded break # ...then customize wsc = all_params.target_weights.weight_selection_criteria if(wsc.r_free_minus_r_work is not None): r_free_r_work_gap = wsc.r_free_minus_r_work if(wsc.r_free_range_width is not None): r_free_range_width = wsc.r_free_range_width if(wsc.mean_diff_b_iso_bonded_fraction is not None): mean_diff_b_iso_bonded_fraction = wsc.mean_diff_b_iso_bonded_fraction if(wsc.min_diff_b_iso_bonded is not None): min_diff_b_iso_bonded = wsc.min_diff_b_iso_bonded # print_statistics.make_sub_header(text="Individual ADP refinement", out = log) assert fmodels.fmodel_xray().xray_structure is model.get_xray_structure() # fmodels.create_target_functors() assert approx_equal(self.fmodels.fmodel_xray().target_w(), self.fmodels.target_functor_result_xray( compute_gradients=False).target_work()) rw = flex.double() rf = flex.double() rfrw = flex.double() deltab = flex.double() w = flex.double() if(self.target_weights is not None): fmth =" R-FACTORS <Bi-Bj> <B> WEIGHT TARGETS" print >> self.log, fmth print >> self.log, " work free delta data restr" else: print >> self.log, "Unresrained refinement..." self.save_scatterers = self.fmodels.fmodel_xray().xray_structure.\ deep_copy_scatterers().scatterers() if(self.target_weights is not None): default_weight = self.target_weights.adp_weights_result.wx*\ self.target_weights.adp_weights_result.wx_scale if(self.target_weights.twp.optimize_adp_weight): wx_scale = [0.03,0.125,0.5,1.,1.5,2.,2.5,3.,3.5,4.,4.5,5.] trial_weights = list( flex.double(wx_scale)*self.target_weights.adp_weights_result.wx ) self.wx_scale = 1 else: trial_weights = [self.target_weights.adp_weights_result.wx] self.wx_scale = self.target_weights.adp_weights_result.wx_scale else: default_weight = 1 trial_weights = [1] self.wx_scale = 1 self.show(weight=default_weight) trial_results = [] if nproc is None: nproc = all_params.main.nproc parallel = False if (len(trial_weights) > 1) and ((nproc is Auto) or (nproc > 1)): parallel = True from libtbx import easy_mp stdout_and_results = easy_mp.pool_map( processes=nproc, fixed_func=self.try_weight, args=trial_weights, func_wrapper="buffer_stdout_stderr") # XXX safer for phenix GUI trial_results = [ r for so, r in stdout_and_results ] else : for weight in trial_weights: result = self.try_weight(weight, print_stats=True) trial_results.append(result) for result in trial_results : if(result is not None) and (result.r_work is not None): if (parallel): result.show(out=self.log) rw .append(result.r_work) rf .append(result.r_free) rfrw .append(result.r_gap) deltab .append(result.delta_b) w .append(result.weight) # if(len(trial_weights)>1): # filter by rfree-rwork rw,rf,rfrw,deltab,w = self.score(rw=rw,rf=rf,rfrw=rfrw,deltab=deltab,w=w, score_target=rfrw,score_target_value=r_free_r_work_gap, secondary_target=deltab) # filter by rfree rw,rf,rfrw,deltab,w = self.score(rw=rw,rf=rf,rfrw=rfrw,deltab=deltab,w=w, score_target=rf,score_target_value=flex.min(rf)+r_free_range_width) # filter by <Bi-Bj> delta_b_target = max(min_diff_b_iso_bonded, flex.mean(self.fmodels. fmodel_xray().xray_structure.extract_u_iso_or_u_equiv()* adptbx.u_as_b(1))*mean_diff_b_iso_bonded_fraction) print >> log, " max suggested <Bi-Bj> for this run: %7.2f"%delta_b_target print >> log, " max allowed Rfree-Rwork gap: %5.1f"%r_free_r_work_gap print >> log, " range of equivalent Rfree: %5.1f"%r_free_range_width rw,rf,rfrw,deltab,w = self.score(rw=rw,rf=rf,rfrw=rfrw,deltab=deltab,w=w, score_target=deltab,score_target_value=delta_b_target) # select the result with lowest rfree sel = flex.sort_permutation(rf) rw,rf,rfrw,deltab,w= self.select( rw=rw,rf=rf,rfrw=rfrw,deltab=deltab,w=w,sel=sel) # w_best = w[0] rw_best = rw[0] print >> self.log, "Best ADP weight: %8.3f"%w_best # self.target_weights.adp_weights_result.wx = w_best self.target_weights.adp_weights_result.wx_scale = 1 best_u_star = None best_u_iso = None for result in trial_results : if(abs(result.weight-w_best)<=1.e-8): best_u_star = result.u_star best_u_iso = result.u_iso break if(best_u_iso is None) : # XXX this probably shouldn't happen... self.fmodels.fmodel_xray().xray_structure.replace_scatterers( self.save_scatterers.deep_copy()) else : assert (best_u_star is not None) xrs = self.fmodels.fmodel_xray().xray_structure xrs.set_u_iso(values=best_u_iso) xrs.scatterers().set_u_star(best_u_star) new_u_iso = xrs.scatterers().extract_u_iso() assert (new_u_iso.all_eq(best_u_iso)) self.fmodels.update_xray_structure( xray_structure = self.fmodels.fmodel_xray().xray_structure, update_f_calc = True) print >> self.log, "Accepted refinement result:" # reset alpha/beta parameters - if this is not done, the assertion # below will fail fmodels.create_target_functors() if(self.fmodels.fmodel_neutron() is None): assert approx_equal(self.fmodels.fmodel_xray().r_work()*100, rw_best, eps=0.001) # this needs to be done again again, just in case fmodels.create_target_functors() self.show(weight=w_best) self.fmodels.fmodel_xray().xray_structure.tidy_us() self.fmodels.update_xray_structure( xray_structure = self.fmodels.fmodel_xray().xray_structure, update_f_calc = True) fmodels.create_target_functors() assert approx_equal(self.fmodels.fmodel_xray().target_w(), self.fmodels.target_functor_result_xray( compute_gradients=False).target_work()) self.model.set_xray_structure(self.fmodels.fmodel_xray().xray_structure) # XXX parallelized def try_weight(self, weight, print_stats=False): if(self.target_weights is not None): self.fmodels.fmodel_xray().xray_structure.replace_scatterers( self.save_scatterers.deep_copy()) self.fmodels.update_xray_structure( xray_structure = self.fmodels.fmodel_xray().xray_structure, update_f_calc = True) self.target_weights.adp_weights_result.wx = weight self.target_weights.adp_weights_result.wx_scale = self.wx_scale minimized = self.minimize() wt = weight*self.wx_scale result = self.show(weight=wt, print_stats=print_stats) return result def show(self, weight = None, prefix = "", show_neutron=True, print_stats=True): deltab = self.model.rms_b_iso_or_b_equiv_bonded() r_work = self.fmodels.fmodel_xray().r_work()*100. r_free = self.fmodels.fmodel_xray().r_free()*100. mean_b = flex.mean( self.model.get_xray_structure().extract_u_iso_or_u_equiv())*adptbx.u_as_b(1) if(deltab is None): print >> self.log, " r_work=%5.2f r_free=%5.2f"%(r_work, r_free) return None neutron_r_work = neutron_r_free = None if (show_neutron) and (self.fmodels.fmodel_neutron() is not None): neutron_r_work = self.fmodels.fmodel_neutron().r_work()*100. neutron_r_free = self.fmodels.fmodel_neutron().r_free()*100. xrs = self.fmodels.fmodel_xray().xray_structure result = weight_result( r_work=r_work, r_free=r_free, delta_b=deltab, mean_b=mean_b, weight=weight, xray_target=self.fmodels.fmodel_xray().target_w(), neutron_r_work=neutron_r_work, neutron_r_free=neutron_r_free, u_star=xrs.scatterers().extract_u_star(), u_iso=xrs.scatterers().extract_u_iso()) if (print_stats): result.show(out=self.log) return result def score(self, rw, rf, rfrw, deltab, w, score_target, score_target_value, secondary_target=None): sel = score_target < score_target_value sel &= score_target > 0 if(sel.count(True)>0): rw,rf,rfrw,deltab,w = self.select( rw=rw,rf=rf,rfrw=rfrw,deltab=deltab,w=w, sel=sel) else: if(secondary_target is None): sel = flex.sort_permutation(score_target) else: sel = flex.sort_permutation(secondary_target) rw,rf,rfrw,deltab,w = self.select( rw=rw,rf=rf,rfrw=rfrw,deltab=deltab,w=w, sel=sel) # rw = flex.double([rw [0]]) rf = flex.double([rf [0]]) rfrw = flex.double([rfrw [0]]) deltab = flex.double([deltab[0]]) w = flex.double([w [0]]) return rw, rf, rfrw, deltab, w def select(self, rw, rf, rfrw, deltab, w, sel): rw = rw .select(sel) rf = rf .select(sel) rfrw = rfrw .select(sel) deltab = deltab.select(sel) w = w .select(sel) return rw, rf, rfrw, deltab, w def minimize(self): utils.assert_xray_structures_equal( x1 = self.fmodels.fmodel_xray().xray_structure, x2 = self.model.get_xray_structure()) self.model.set_refine_individual_adp() self.run_lbfgs() self.model.set_xray_structure(self.fmodels.fmodel_xray().xray_structure) #assert minimized.xray_structure is self.model.get_xray_structure() #utils.assert_xray_structures_equal( # x1 = minimized.xray_structure, # x2 = self.model.get_xray_structure()) #return minimized def run_lbfgs(self): if(self.model.get_ncs_groups() is None or not self.all_params.ncs.constraints.apply_to_adp): lbfgs_termination_params = scitbx.lbfgs.termination_parameters( max_iterations = self.individual_adp_params.iso.max_number_of_iterations) is_neutron_scat_table = False if(self.all_params.main.scattering_table == "neutron"): is_neutron_scat_table = True minimized = minimization.lbfgs( restraints_manager = self.model.restraints_manager, fmodels = self.fmodels, model = self.model, refine_adp = True, is_neutron_scat_table = is_neutron_scat_table, lbfgs_termination_params = lbfgs_termination_params, iso_restraints = self.adp_restraints_params.iso, verbose = 0, target_weights = self.target_weights, h_params = self.h_params) elif(self.all_params.ncs.constraints.apply_to_coordinates): fmodel = self.fmodels.fmodel_xray() # update NCS groups import mmtbx.ncs.ncs_utils as nu nu.get_list_of_best_ncs_copy_map_correlation( ncs_groups = self.model.get_ncs_groups(), fmodel = fmodel) assert "individual_adp" in self.all_params.refine.strategy minimized = minimization.run_constrained( model = self.model, fmodel = fmodel, target_weight = self.target_weights.xyz_weights_result.wx, log = self.log, params = self.all_params, refine_u_iso = True, prefix = "NCS constrained ADP refinement").minimized self.model.set_xray_structure(fmodel.xray_structure) else: raise RuntimeError("Bad ncs options.") class weight_result(object): def __init__(self, r_work, r_free, delta_b, mean_b, weight, xray_target, neutron_r_work, neutron_r_free, u_star, u_iso): adopt_init_args(self, locals()) self.r_gap = r_free - r_work def show(self, out, prefix=""): if (out is None) : return if(len(prefix.strip())>0): prefix += " " format = prefix+"%5.2f %5.2f %6.2f %6.3f %6.3f %6.3f %6.3f" print >> out, format % (self.r_work, self.r_free, self.r_gap, self.delta_b, self.mean_b, self.weight, self.xray_target) if (self.neutron_r_work is not None): print >> out, "" print >> out, "Neutron data: r_work=%5.2f r_free=%5.2f"%( self.neutron_r_work, self.neutron_r_free)
39.751342
97
0.634895
e9b64ffc3a51400ff4d8c3b45ab360de3f969bc3
31,104
py
Python
Src/Hosts/Silverlight/Tests/pylib/unittest.py
jdhardy/dlr
dca078fbf9d103fad4dcabda76795a23d82106bc
[ "Apache-2.0" ]
null
null
null
Src/Hosts/Silverlight/Tests/pylib/unittest.py
jdhardy/dlr
dca078fbf9d103fad4dcabda76795a23d82106bc
[ "Apache-2.0" ]
null
null
null
Src/Hosts/Silverlight/Tests/pylib/unittest.py
jdhardy/dlr
dca078fbf9d103fad4dcabda76795a23d82106bc
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python ''' Python unit testing framework, based on Erich Gamma's JUnit and Kent Beck's Smalltalk testing framework. This module contains the core framework classes that form the basis of specific test cases and suites (TestCase, TestSuite etc.), and also a text-based utility class for running the tests and reporting the results (TextTestRunner). Simple usage: import unittest class IntegerArithmenticTestCase(unittest.TestCase): def testAdd(self): ## test method names begin 'test*' self.assertEquals((1 + 2), 3) self.assertEquals(0 + 1, 1) def testMultiply(self): self.assertEquals((0 * 10), 0) self.assertEquals((5 * 8), 40) if __name__ == '__main__': unittest.main() Further information is available in the bundled documentation, and from http://docs.python.org/lib/module-unittest.html Copyright (c) 1999-2003 Steve Purcell This module is free software, and you may redistribute it and/or modify it under the same terms as Python itself, so long as this copyright message and disclaimer are retained in their original form. IN NO EVENT SHALL THE AUTHOR BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF THIS CODE, EVEN IF THE AUTHOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THE AUTHOR SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE CODE PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THERE IS NO OBLIGATION WHATSOEVER TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. ''' __author__ = "Steve Purcell" __email__ = "stephen_purcell at yahoo dot com" __version__ = "#Revision: 1.63 $"[11:-2] import time import sys import traceback import os import types ############################################################################## # Exported classes and functions ############################################################################## __all__ = ['TestResult', 'TestCase', 'TestSuite', 'TextTestRunner', 'TestLoader', 'FunctionTestCase', 'main', 'defaultTestLoader'] # Expose obsolete functions for backwards compatibility __all__.extend(['getTestCaseNames', 'makeSuite', 'findTestCases']) ############################################################################## # Backward compatibility ############################################################################## if sys.version_info[:2] < (2, 2): def isinstance(obj, clsinfo): import __builtin__ if type(clsinfo) in (tuple, list): for cls in clsinfo: if cls is type: cls = types.ClassType if __builtin__.isinstance(obj, cls): return 1 return 0 else: return __builtin__.isinstance(obj, clsinfo) def _CmpToKey(mycmp): 'Convert a cmp= function into a key= function' class K(object): def __init__(self, obj): self.obj = obj def __lt__(self, other): return mycmp(self.obj, other.obj) == -1 return K ############################################################################## # Test framework core ############################################################################## # All classes defined herein are 'new-style' classes, allowing use of 'super()' __metaclass__ = type def _strclass(cls): return "%s.%s" % (cls.__module__, cls.__name__) __unittest = 1 class TestResult: """Holder for test result information. Test results are automatically managed by the TestCase and TestSuite classes, and do not need to be explicitly manipulated by writers of tests. Each instance holds the total number of tests run, and collections of failures and errors that occurred among those test runs. The collections contain tuples of (testcase, exceptioninfo), where exceptioninfo is the formatted traceback of the error that occurred. """ def __init__(self): self.failures = [] self.errors = [] self.testsRun = 0 self.shouldStop = False def startTest(self, test): "Called when the given test is about to be run" self.testsRun = self.testsRun + 1 def stopTest(self, test): "Called when the given test has been run" pass def addError(self, test, err): """Called when an error has occurred. 'err' is a tuple of values as returned by sys.exc_info(). """ self.errors.append((test, self._exc_info_to_string(err, test))) def addFailure(self, test, err): """Called when an error has occurred. 'err' is a tuple of values as returned by sys.exc_info().""" self.failures.append((test, self._exc_info_to_string(err, test))) def addSuccess(self, test): "Called when a test has completed successfully" pass def wasSuccessful(self): "Tells whether or not this result was a success" return len(self.failures) == len(self.errors) == 0 def stop(self): "Indicates that the tests should be aborted" self.shouldStop = True def _exc_info_to_string(self, err, test): """Converts a sys.exc_info()-style tuple of values into a string.""" exctype, value, tb = err # Skip test runner traceback levels while tb and self._is_relevant_tb_level(tb): tb = tb.tb_next if exctype is test.failureException: # Skip assert*() traceback levels length = self._count_relevant_tb_levels(tb) return ''.join(traceback.format_exception(exctype, value, tb, length)) return ''.join(traceback.format_exception(exctype, value, tb)) def _is_relevant_tb_level(self, tb): return '__unittest' in tb.tb_frame.f_globals def _count_relevant_tb_levels(self, tb): length = 0 while tb and not self._is_relevant_tb_level(tb): length += 1 tb = tb.tb_next return length def __repr__(self): return "<%s run=%i errors=%i failures=%i>" % \ (_strclass(self.__class__), self.testsRun, len(self.errors), len(self.failures)) class TestCase: """A class whose instances are single test cases. By default, the test code itself should be placed in a method named 'runTest'. If the fixture may be used for many test cases, create as many test methods as are needed. When instantiating such a TestCase subclass, specify in the constructor arguments the name of the test method that the instance is to execute. Test authors should subclass TestCase for their own tests. Construction and deconstruction of the test's environment ('fixture') can be implemented by overriding the 'setUp' and 'tearDown' methods respectively. If it is necessary to override the __init__ method, the base class __init__ method must always be called. It is important that subclasses should not change the signature of their __init__ method, since instances of the classes are instantiated automatically by parts of the framework in order to be run. """ # This attribute determines which exception will be raised when # the instance's assertion methods fail; test methods raising this # exception will be deemed to have 'failed' rather than 'errored' failureException = AssertionError def __init__(self, methodName='runTest'): """Create an instance of the class that will use the named test method when executed. Raises a ValueError if the instance does not have a method with the specified name. """ try: self._testMethodName = methodName testMethod = getattr(self, methodName) self._testMethodDoc = testMethod.__doc__ except AttributeError: raise ValueError, "no such test method in %s: %s" % \ (self.__class__, methodName) def setUp(self): "Hook method for setting up the test fixture before exercising it." pass def tearDown(self): "Hook method for deconstructing the test fixture after testing it." pass def countTestCases(self): return 1 def defaultTestResult(self): return TestResult() def shortDescription(self): """Returns a one-line description of the test, or None if no description has been provided. The default implementation of this method returns the first line of the specified test method's docstring. """ doc = self._testMethodDoc return doc and doc.split("\n")[0].strip() or None def id(self): return "%s.%s" % (_strclass(self.__class__), self._testMethodName) def __eq__(self, other): if type(self) is not type(other): return False return self._testMethodName == other._testMethodName def __ne__(self, other): return not self == other def __hash__(self): return hash((type(self), self._testMethodName)) def __str__(self): return "%s (%s)" % (self._testMethodName, _strclass(self.__class__)) def __repr__(self): return "<%s testMethod=%s>" % \ (_strclass(self.__class__), self._testMethodName) def run(self, result=None): if result is None: result = self.defaultTestResult() result.startTest(self) testMethod = getattr(self, self._testMethodName) try: try: self.setUp() except KeyboardInterrupt: raise except: result.addError(self, self._exc_info()) return ok = False try: testMethod() ok = True except self.failureException: result.addFailure(self, self._exc_info()) except KeyboardInterrupt: raise except: result.addError(self, self._exc_info()) try: self.tearDown() except KeyboardInterrupt: raise except: result.addError(self, self._exc_info()) ok = False if ok: result.addSuccess(self) finally: result.stopTest(self) def __call__(self, *args, **kwds): return self.run(*args, **kwds) def debug(self): """Run the test without collecting errors in a TestResult""" self.setUp() getattr(self, self._testMethodName)() self.tearDown() def _exc_info(self): """Return a version of sys.exc_info() with the traceback frame minimised; usually the top level of the traceback frame is not needed. """ return sys.exc_info() def fail(self, msg=None): """Fail immediately, with the given message.""" raise self.failureException, msg def failIf(self, expr, msg=None): "Fail the test if the expression is true." if expr: raise self.failureException, msg def failUnless(self, expr, msg=None): """Fail the test unless the expression is true.""" if not expr: raise self.failureException, msg def failUnlessRaises(self, excClass, callableObj, *args, **kwargs): """Fail unless an exception of class excClass is thrown by callableObj when invoked with arguments args and keyword arguments kwargs. If a different type of exception is thrown, it will not be caught, and the test case will be deemed to have suffered an error, exactly as for an unexpected exception. """ try: callableObj(*args, **kwargs) except excClass: return else: if hasattr(excClass,'__name__'): excName = excClass.__name__ else: excName = str(excClass) raise self.failureException, "%s not raised" % excName def failUnlessEqual(self, first, second, msg=None): """Fail if the two objects are unequal as determined by the '==' operator. """ if not first == second: raise self.failureException, \ (msg or '%r != %r' % (first, second)) def failIfEqual(self, first, second, msg=None): """Fail if the two objects are equal as determined by the '==' operator. """ if first == second: raise self.failureException, \ (msg or '%r == %r' % (first, second)) def failUnlessAlmostEqual(self, first, second, places=7, msg=None): """Fail if the two objects are unequal as determined by their difference rounded to the given number of decimal places (default 7) and comparing to zero. Note that decimal places (from zero) are usually not the same as significant digits (measured from the most signficant digit). """ if round(abs(second-first), places) != 0: raise self.failureException, \ (msg or '%r != %r within %r places' % (first, second, places)) def failIfAlmostEqual(self, first, second, places=7, msg=None): """Fail if the two objects are equal as determined by their difference rounded to the given number of decimal places (default 7) and comparing to zero. Note that decimal places (from zero) are usually not the same as significant digits (measured from the most signficant digit). """ if round(abs(second-first), places) == 0: raise self.failureException, \ (msg or '%r == %r within %r places' % (first, second, places)) # Synonyms for assertion methods assertEqual = assertEquals = failUnlessEqual assertNotEqual = assertNotEquals = failIfEqual assertAlmostEqual = assertAlmostEquals = failUnlessAlmostEqual assertNotAlmostEqual = assertNotAlmostEquals = failIfAlmostEqual assertRaises = failUnlessRaises assert_ = assertTrue = failUnless assertFalse = failIf class TestSuite: """A test suite is a composite test consisting of a number of TestCases. For use, create an instance of TestSuite, then add test case instances. When all tests have been added, the suite can be passed to a test runner, such as TextTestRunner. It will run the individual test cases in the order in which they were added, aggregating the results. When subclassing, do not forget to call the base class constructor. """ def __init__(self, tests=()): self._tests = [] self.addTests(tests) def __repr__(self): return "<%s tests=%s>" % (_strclass(self.__class__), self._tests) __str__ = __repr__ def __eq__(self, other): if type(self) is not type(other): return False return self._tests == other._tests def __ne__(self, other): return not self == other # Can't guarantee hash invariant, so flag as unhashable __hash__ = None def __iter__(self): return iter(self._tests) def countTestCases(self): cases = 0 for test in self._tests: cases += test.countTestCases() return cases def addTest(self, test): # sanity checks if not hasattr(test, '__call__'): raise TypeError("the test to add must be callable") if (isinstance(test, (type, types.ClassType)) and issubclass(test, (TestCase, TestSuite))): raise TypeError("TestCases and TestSuites must be instantiated " "before passing them to addTest()") self._tests.append(test) def addTests(self, tests): if isinstance(tests, basestring): raise TypeError("tests must be an iterable of tests, not a string") for test in tests: self.addTest(test) def run(self, result): for test in self._tests: if result.shouldStop: break test(result) return result def __call__(self, *args, **kwds): return self.run(*args, **kwds) def debug(self): """Run the tests without collecting errors in a TestResult""" for test in self._tests: test.debug() class FunctionTestCase(TestCase): """A test case that wraps a test function. This is useful for slipping pre-existing test functions into the unittest framework. Optionally, set-up and tidy-up functions can be supplied. As with TestCase, the tidy-up ('tearDown') function will always be called if the set-up ('setUp') function ran successfully. """ def __init__(self, testFunc, setUp=None, tearDown=None, description=None): TestCase.__init__(self) self.__setUpFunc = setUp self.__tearDownFunc = tearDown self.__testFunc = testFunc self.__description = description def setUp(self): if self.__setUpFunc is not None: self.__setUpFunc() def tearDown(self): if self.__tearDownFunc is not None: self.__tearDownFunc() def runTest(self): self.__testFunc() def id(self): return self.__testFunc.__name__ def __eq__(self, other): if type(self) is not type(other): return False return self.__setUpFunc == other.__setUpFunc and \ self.__tearDownFunc == other.__tearDownFunc and \ self.__testFunc == other.__testFunc and \ self.__description == other.__description def __ne__(self, other): return not self == other def __hash__(self): return hash((type(self), self.__setUpFunc, self.__tearDownFunc, self.__testFunc, self.__description)) def __str__(self): return "%s (%s)" % (_strclass(self.__class__), self.__testFunc.__name__) def __repr__(self): return "<%s testFunc=%s>" % (_strclass(self.__class__), self.__testFunc) def shortDescription(self): if self.__description is not None: return self.__description doc = self.__testFunc.__doc__ return doc and doc.split("\n")[0].strip() or None ############################################################################## # Locating and loading tests ############################################################################## class TestLoader: """This class is responsible for loading tests according to various criteria and returning them wrapped in a TestSuite """ testMethodPrefix = 'test' sortTestMethodsUsing = cmp suiteClass = TestSuite def loadTestsFromTestCase(self, testCaseClass): """Return a suite of all tests cases contained in testCaseClass""" if issubclass(testCaseClass, TestSuite): raise TypeError("Test cases should not be derived from TestSuite. Maybe you meant to derive from TestCase?") testCaseNames = self.getTestCaseNames(testCaseClass) if not testCaseNames and hasattr(testCaseClass, 'runTest'): testCaseNames = ['runTest'] return self.suiteClass(map(testCaseClass, testCaseNames)) def loadTestsFromModule(self, module): """Return a suite of all tests cases contained in the given module""" tests = [] for name in dir(module): obj = getattr(module, name) if (isinstance(obj, (type, types.ClassType)) and issubclass(obj, TestCase)): tests.append(self.loadTestsFromTestCase(obj)) return self.suiteClass(tests) def loadTestsFromName(self, name, module=None): """Return a suite of all tests cases given a string specifier. The name may resolve either to a module, a test case class, a test method within a test case class, or a callable object which returns a TestCase or TestSuite instance. The method optionally resolves the names relative to a given module. """ parts = name.split('.') if module is None: parts_copy = parts[:] while parts_copy: try: module = __import__('.'.join(parts_copy)) break except ImportError: del parts_copy[-1] if not parts_copy: raise parts = parts[1:] obj = module for part in parts: parent, obj = obj, getattr(obj, part) if type(obj) == types.ModuleType: return self.loadTestsFromModule(obj) elif (isinstance(obj, (type, types.ClassType)) and issubclass(obj, TestCase)): return self.loadTestsFromTestCase(obj) elif (type(obj) == types.UnboundMethodType and isinstance(parent, (type, types.ClassType)) and issubclass(parent, TestCase)): return TestSuite([parent(obj.__name__)]) elif isinstance(obj, TestSuite): return obj elif hasattr(obj, '__call__'): test = obj() if isinstance(test, TestSuite): return test elif isinstance(test, TestCase): return TestSuite([test]) else: raise TypeError("calling %s returned %s, not a test" % (obj, test)) else: raise TypeError("don't know how to make test from: %s" % obj) def loadTestsFromNames(self, names, module=None): """Return a suite of all tests cases found using the given sequence of string specifiers. See 'loadTestsFromName()'. """ suites = [self.loadTestsFromName(name, module) for name in names] return self.suiteClass(suites) def getTestCaseNames(self, testCaseClass): """Return a sorted sequence of method names found within testCaseClass """ def isTestMethod(attrname, testCaseClass=testCaseClass, prefix=self.testMethodPrefix): return attrname.startswith(prefix) and hasattr(getattr(testCaseClass, attrname), '__call__') testFnNames = filter(isTestMethod, dir(testCaseClass)) if self.sortTestMethodsUsing: testFnNames.sort(key=_CmpToKey(self.sortTestMethodsUsing)) return testFnNames defaultTestLoader = TestLoader() ############################################################################## # Patches for old functions: these functions should be considered obsolete ############################################################################## def _makeLoader(prefix, sortUsing, suiteClass=None): loader = TestLoader() loader.sortTestMethodsUsing = sortUsing loader.testMethodPrefix = prefix if suiteClass: loader.suiteClass = suiteClass return loader def getTestCaseNames(testCaseClass, prefix, sortUsing=cmp): return _makeLoader(prefix, sortUsing).getTestCaseNames(testCaseClass) def makeSuite(testCaseClass, prefix='test', sortUsing=cmp, suiteClass=TestSuite): return _makeLoader(prefix, sortUsing, suiteClass).loadTestsFromTestCase(testCaseClass) def findTestCases(module, prefix='test', sortUsing=cmp, suiteClass=TestSuite): return _makeLoader(prefix, sortUsing, suiteClass).loadTestsFromModule(module) ############################################################################## # Text UI ############################################################################## class _WritelnDecorator: """Used to decorate file-like objects with a handy 'writeln' method""" def __init__(self,stream): self.stream = stream def __getattr__(self, attr): return getattr(self.stream,attr) def writeln(self, arg=None): if arg: self.write(arg) self.write('\n') # text-mode streams translate to \r\n if needed class _TextTestResult(TestResult): """A test result class that can print formatted text results to a stream. Used by TextTestRunner. """ separator1 = '=' * 70 separator2 = '-' * 70 def __init__(self, stream, descriptions, verbosity): TestResult.__init__(self) self.stream = stream self.showAll = verbosity > 1 self.dots = verbosity == 1 self.descriptions = descriptions def getDescription(self, test): if self.descriptions: return test.shortDescription() or str(test) else: return str(test) def startTest(self, test): TestResult.startTest(self, test) if self.showAll: self.stream.write(self.getDescription(test)) self.stream.write(" ... ") self.stream.flush() def addSuccess(self, test): TestResult.addSuccess(self, test) if self.showAll: self.stream.writeln("ok") elif self.dots: self.stream.write('.') self.stream.flush() def addError(self, test, err): TestResult.addError(self, test, err) if self.showAll: self.stream.writeln("ERROR") elif self.dots: self.stream.write('E') self.stream.flush() def addFailure(self, test, err): TestResult.addFailure(self, test, err) if self.showAll: self.stream.writeln("FAIL") elif self.dots: self.stream.write('F') self.stream.flush() def printErrors(self): if self.dots or self.showAll: self.stream.writeln() self.printErrorList('ERROR', self.errors) self.printErrorList('FAIL', self.failures) def printErrorList(self, flavour, errors): for test, err in errors: self.stream.writeln(self.separator1) self.stream.writeln("%s: %s" % (flavour,self.getDescription(test))) self.stream.writeln(self.separator2) self.stream.writeln("%s" % err) class TextTestRunner: """A test runner class that displays results in textual form. It prints out the names of tests as they are run, errors as they occur, and a summary of the results at the end of the test run. """ def __init__(self, stream=sys.stderr, descriptions=1, verbosity=1): self.stream = _WritelnDecorator(stream) self.descriptions = descriptions self.verbosity = verbosity def _makeResult(self): return _TextTestResult(self.stream, self.descriptions, self.verbosity) def run(self, test): "Run the given test case or test suite." result = self._makeResult() startTime = time.time() test(result) stopTime = time.time() timeTaken = stopTime - startTime result.printErrors() self.stream.writeln(result.separator2) run = result.testsRun self.stream.writeln("Ran %d test%s in %.3fs" % (run, run != 1 and "s" or "", timeTaken)) self.stream.writeln() if not result.wasSuccessful(): self.stream.write("FAILED (") failed, errored = map(len, (result.failures, result.errors)) if failed: self.stream.write("failures=%d" % failed) if errored: if failed: self.stream.write(", ") self.stream.write("errors=%d" % errored) self.stream.writeln(")") else: self.stream.writeln("OK") return result ############################################################################## # Facilities for running tests from the command line ############################################################################## class TestProgram: """A command-line program that runs a set of tests; this is primarily for making test modules conveniently executable. """ USAGE = """\ Usage: %(progName)s [options] [test] [...] Options: -h, --help Show this message -v, --verbose Verbose output -q, --quiet Minimal output Examples: %(progName)s - run default set of tests %(progName)s MyTestSuite - run suite 'MyTestSuite' %(progName)s MyTestCase.testSomething - run MyTestCase.testSomething %(progName)s MyTestCase - run all 'test*' test methods in MyTestCase """ def __init__(self, module='__main__', defaultTest=None, argv=None, testRunner=TextTestRunner, testLoader=defaultTestLoader): if type(module) == type(''): self.module = __import__(module) for part in module.split('.')[1:]: self.module = getattr(self.module, part) else: self.module = module if argv is None: argv = sys.argv self.verbosity = 1 self.defaultTest = defaultTest self.testRunner = testRunner self.testLoader = testLoader self.progName = os.path.basename(argv[0]) self.parseArgs(argv) self.runTests() def usageExit(self, msg=None): if msg: print msg print self.USAGE % self.__dict__ sys.exit(2) def parseArgs(self, argv): import getopt try: options, args = getopt.getopt(argv[1:], 'hHvq', ['help','verbose','quiet']) for opt, value in options: if opt in ('-h','-H','--help'): self.usageExit() if opt in ('-q','--quiet'): self.verbosity = 0 if opt in ('-v','--verbose'): self.verbosity = 2 if len(args) == 0 and self.defaultTest is None: self.test = self.testLoader.loadTestsFromModule(self.module) return if len(args) > 0: self.testNames = args else: self.testNames = (self.defaultTest,) self.createTests() except getopt.error, msg: self.usageExit(msg) def createTests(self): self.test = self.testLoader.loadTestsFromNames(self.testNames, self.module) def runTests(self): if isinstance(self.testRunner, (type, types.ClassType)): try: testRunner = self.testRunner(verbosity=self.verbosity) except TypeError: # didn't accept the verbosity argument testRunner = self.testRunner() else: # it is assumed to be a TestRunner instance testRunner = self.testRunner result = testRunner.run(self.test) return not result.wasSuccessful() main = TestProgram ############################################################################## # Executing this module from the command line ############################################################################## if __name__ == "__main__": main(module=None)
35.628866
120
0.59539
46ae6866889e3c0f9da59c6f973da7a158d84e1f
13,257
py
Python
epydoc/markup/doctest.py
AnjaneyuluBatta505/epydoc
e074483d519912218b1fb1d4eacb492076a1ed73
[ "MIT" ]
1
2022-01-29T08:19:34.000Z
2022-01-29T08:19:34.000Z
epydoc/markup/doctest.py
AnjaneyuluBatta505/epydoc
e074483d519912218b1fb1d4eacb492076a1ed73
[ "MIT" ]
null
null
null
epydoc/markup/doctest.py
AnjaneyuluBatta505/epydoc
e074483d519912218b1fb1d4eacb492076a1ed73
[ "MIT" ]
null
null
null
# # doctest.py: Syntax Highlighting for doctest blocks # Edward Loper # # Created [06/28/03 02:52 AM] # $Id: restructuredtext.py 1210 2006-04-10 13:25:50Z edloper $ # """ Syntax highlighting for doctest blocks. This module defines two functions, L{doctest_to_html()} and L{doctest_to_latex()}, which can be used to perform syntax highlighting on doctest blocks. It also defines the more general C{colorize_doctest()}, which could be used to do syntac highlighting on doctest blocks with other output formats. (Both C{doctest_to_html()} and C{doctest_to_latex()} are defined using C{colorize_doctest()}.) """ from __future__ import absolute_import __docformat__ = 'epytext en' import re from epydoc.util import plaintext_to_html, plaintext_to_latex __all__ = ['doctest_to_html', 'doctest_to_latex', 'DoctestColorizer', 'XMLDoctestColorizer', 'HTMLDoctestColorizer', 'LaTeXDoctestColorizer'] def doctest_to_html(s): """ Perform syntax highlighting on the given doctest string, and return the resulting HTML code. This code consists of a C{<pre>} block with class=py-doctest. Syntax highlighting is performed using the following css classes: - C{py-prompt} -- the Python PS1 prompt (>>>) - C{py-more} -- the Python PS2 prompt (...) - C{py-keyword} -- a Python keyword (for, if, etc.) - C{py-builtin} -- a Python builtin name (abs, dir, etc.) - C{py-string} -- a string literal - C{py-comment} -- a comment - C{py-except} -- an exception traceback (up to the next >>>) - C{py-output} -- the output from a doctest block. - C{py-defname} -- the name of a function or class defined by a C{def} or C{class} statement. """ return HTMLDoctestColorizer().colorize_doctest(s) def doctest_to_latex(s): """ Perform syntax highlighting on the given doctest string, and return the resulting LaTeX code. This code consists of an C{alltt} environment. Syntax highlighting is performed using the following new latex commands, which must be defined externally: - C{\pysrcprompt} -- the Python PS1 prompt (>>>) - C{\pysrcmore} -- the Python PS2 prompt (...) - C{\pysrckeyword} -- a Python keyword (for, if, etc.) - C{\pysrcbuiltin} -- a Python builtin name (abs, dir, etc.) - C{\pysrcstring} -- a string literal - C{\pysrccomment} -- a comment - C{\pysrcexcept} -- an exception traceback (up to the next >>>) - C{\pysrcoutput} -- the output from a doctest block. - C{\pysrcdefname} -- the name of a function or class defined by a C{def} or C{class} statement. """ return LaTeXDoctestColorizer().colorize_doctest(s) class DoctestColorizer: """ An abstract base class for performing syntax highlighting on doctest blocks and other bits of Python code. Subclasses should provide definitions for: - The L{markup()} method, which takes a substring and a tag, and returns a colorized version of the substring. - The L{PREFIX} and L{SUFFIX} variables, which will be added to the beginning and end of the strings returned by L{colorize_codeblock} and L{colorize_doctest}. """ #: A string that is added to the beginning of the strings #: returned by L{colorize_codeblock} and L{colorize_doctest}. #: Typically, this string begins a preformatted area. PREFIX = None #: A string that is added to the end of the strings #: returned by L{colorize_codeblock} and L{colorize_doctest}. #: Typically, this string ends a preformatted area. SUFFIX = None #: The string used to divide lines NEWLINE = '\n' #: A list of the names of all Python keywords. ('as' is included #: even though it is technically not a keyword.) _KEYWORDS = ("and del for is raise" "assert elif from lambda return" "break else global not try" "class except if or while" "continue exec import pass yield" "def finally in print as").split() #: A list of all Python builtins. _BUILTINS = [_BI for _BI in dir(__builtins__) if not _BI.startswith('__')] #: A regexp group that matches keywords. _KEYWORD_GRP = '|'.join([r'\b%s\b' % _KW for _KW in _KEYWORDS]) #: A regexp group that matches Python builtins. _BUILTIN_GRP = (r'(?<!\.)(?:%s)' % '|'.join([r'\b%s\b' % _BI for _BI in _BUILTINS])) #: A regexp group that matches Python strings. _STRING_GRP = '|'.join( [r'("""("""|.*?((?!").)"""))', r'("("|.*?((?!").)"))', r"('''('''|.*?[^\\']'''))", r"('('|.*?[^\\']'))"]) #: A regexp group that matches Python comments. _COMMENT_GRP = '(#.*?$)' #: A regexp group that matches Python ">>>" prompts. _PROMPT1_GRP = r'^[ \t]*>>>(?:[ \t]|$)' #: A regexp group that matches Python "..." prompts. _PROMPT2_GRP = r'^[ \t]*\.\.\.(?:[ \t]|$)' #: A regexp group that matches function and class definitions. _DEFINE_GRP = r'\b(?:def|class)[ \t]+\w+' #: A regexp that matches Python prompts PROMPT_RE = re.compile('(%s|%s)' % (_PROMPT1_GRP, _PROMPT2_GRP), re.MULTILINE | re.DOTALL) #: A regexp that matches Python "..." prompts. PROMPT2_RE = re.compile('(%s)' % _PROMPT2_GRP, re.MULTILINE | re.DOTALL) #: A regexp that matches doctest exception blocks. EXCEPT_RE = re.compile(r'^[ \t]*Traceback \(most recent call last\):.*', re.DOTALL | re.MULTILINE) #: A regexp that matches doctest directives. DOCTEST_DIRECTIVE_RE = re.compile(r'#[ \t]*doctest:.*') #: A regexp that matches all of the regions of a doctest block #: that should be colored. DOCTEST_RE = re.compile( r'(.*?)((?P<STRING>%s)|(?P<COMMENT>%s)|(?P<DEFINE>%s)|' r'(?P<KEYWORD>%s)|(?P<BUILTIN>%s)|' r'(?P<PROMPT1>%s)|(?P<PROMPT2>%s)|(?P<EOS>\Z))' % ( _STRING_GRP, _COMMENT_GRP, _DEFINE_GRP, _KEYWORD_GRP, _BUILTIN_GRP, _PROMPT1_GRP, _PROMPT2_GRP), re.MULTILINE | re.DOTALL) #: This regular expression is used to find doctest examples in a #: string. This is copied from the standard Python doctest.py #: module (after the refactoring in Python 2.4+). DOCTEST_EXAMPLE_RE = re.compile(r''' # Source consists of a PS1 line followed by zero or more PS2 lines. (?P<source> (?:^(?P<indent> [ ]*) >>> .*) # PS1 line (?:\n [ ]* \.\.\. .*)* # PS2 lines \n?) # Want consists of any non-blank lines that do not start with PS1. (?P<want> (?:(?![ ]*$) # Not a blank line (?![ ]*>>>) # Not a line starting with PS1 .*$\n? # But any other line )*) ''', re.MULTILINE | re.VERBOSE) def colorize_inline(self, s): """ Colorize a string containing Python code. Do not add the L{PREFIX} and L{SUFFIX} strings to the returned value. This method is intended for generating syntax-highlighted strings that are appropriate for inclusion as inline expressions. """ return self.DOCTEST_RE.sub(self.subfunc, s) def colorize_codeblock(self, s): """ Colorize a string containing only Python code. This method differs from L{colorize_doctest} in that it will not search for doctest prompts when deciding how to colorize the string. """ body = self.DOCTEST_RE.sub(self.subfunc, s) return self.PREFIX + body + self.SUFFIX def colorize_doctest(self, s, strip_directives=False): """ Colorize a string containing one or more doctest examples. """ output = [] charno = 0 for m in self.DOCTEST_EXAMPLE_RE.finditer(s): # Parse the doctest example: pysrc, want = m.group('source', 'want') # Pre-example text: output.append(self.NEWLINE.join(s[charno:m.start()].split('\n'))) # Example source code: output.append(self.DOCTEST_RE.sub(self.subfunc, pysrc)) # Example output: if want: if self.EXCEPT_RE.match(want): output += self.NEWLINE.join([self.markup(line, 'except') for line in want.split('\n')]) else: output += self.NEWLINE.join([self.markup(line, 'output') for line in want.split('\n')]) # Update charno charno = m.end() # Add any remaining post-example text. output.append(self.NEWLINE.join(s[charno:].split('\n'))) return self.PREFIX + ''.join(output) + self.SUFFIX def subfunc(self, match): other, text = match.group(1, 2) #print('M %20r %20r' % (other, text)) # <- for debugging if other: other = self.NEWLINE.join([self.markup(line, 'other') for line in other.split('\n')]) if match.group('PROMPT1'): return other + self.markup(text, 'prompt') elif match.group('PROMPT2'): return other + self.markup(text, 'more') elif match.group('KEYWORD'): return other + self.markup(text, 'keyword') elif match.group('BUILTIN'): return other + self.markup(text, 'builtin') elif match.group('COMMENT'): return other + self.markup(text, 'comment') elif match.group('STRING') and '\n' not in text: return other + self.markup(text, 'string') elif match.group('STRING'): # It's a multiline string; colorize the string & prompt # portion of each line. pieces = [] for line in text.split('\n'): if self.PROMPT2_RE.match(line): if len(line) > 4: pieces.append(self.markup(line[:4], 'more') + self.markup(line[4:], 'string')) else: pieces.append(self.markup(line[:4], 'more')) elif line: pieces.append(self.markup(line, 'string')) else: pieces.append('') return other + self.NEWLINE.join(pieces) elif match.group('DEFINE'): m = re.match('(?P<def>\w+)(?P<space>\s+)(?P<name>\w+)', text) return other + (self.markup(m.group('def'), 'keyword') + self.markup(m.group('space'), 'other') + self.markup(m.group('name'), 'defname')) elif match.group('EOS') is not None: return other else: assert 0, 'Unexpected match!' def markup(self, s, tag): """ Apply syntax highlighting to a single substring from a doctest block. C{s} is the substring, and C{tag} is the tag that should be applied to the substring. C{tag} will be one of the following strings: - C{prompt} -- the Python PS1 prompt (>>>) - C{more} -- the Python PS2 prompt (...) - C{keyword} -- a Python keyword (for, if, etc.) - C{builtin} -- a Python builtin name (abs, dir, etc.) - C{string} -- a string literal - C{comment} -- a comment - C{except} -- an exception traceback (up to the next >>>) - C{output} -- the output from a doctest block. - C{defname} -- the name of a function or class defined by a C{def} or C{class} statement. - C{other} -- anything else (does *not* include output.) """ raise AssertionError("Abstract method") class XMLDoctestColorizer(DoctestColorizer): """ A subclass of DoctestColorizer that generates XML-like output. This class is mainly intended to be used for testing purposes. """ PREFIX = '<colorized>\n' SUFFIX = '</colorized>\n' def markup(self, s, tag): s = s.replace('&', '&amp;').replace('<', '&lt;').replace('>', '&gt;') if tag == 'other': return s else: return '<%s>%s</%s>' % (tag, s, tag) class HTMLDoctestColorizer(DoctestColorizer): """A subclass of DoctestColorizer that generates HTML output.""" PREFIX = '<pre class="py-doctest">\n' SUFFIX = '</pre>\n' def markup(self, s, tag): if tag == 'other': return plaintext_to_html(s) else: return ('<span class="py-%s">%s</span>' % (tag, plaintext_to_html(s))) class LaTeXDoctestColorizer(DoctestColorizer): """A subclass of DoctestColorizer that generates LaTeX output.""" PREFIX = ('\\begin{alltt}') SUFFIX = '\\end{alltt}\n' NEWLINE = '\\\\' def markup(self, s, tag): if tag == 'other': return plaintext_to_latex(s) else: return '\\pysrc%s{%s}' % (tag, plaintext_to_latex(s))
41.557994
79
0.569058
8d012bd572a9939e549404f28fab9e887e13ef51
3,766
py
Python
python/test/function/test_binary_connect_convolution.py
syoyo/nnabla
b776b68dcdffe894cac1233dfd07c301415cc0fb
[ "Apache-2.0" ]
1
2020-08-03T12:49:19.000Z
2020-08-03T12:49:19.000Z
python/test/function/test_binary_connect_convolution.py
langbin2014/nnabla
e94bac5bed65337010e2ac07a5937fb862ab2dd8
[ "Apache-2.0" ]
null
null
null
python/test/function/test_binary_connect_convolution.py
langbin2014/nnabla
e94bac5bed65337010e2ac07a5937fb862ab2dd8
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2017 Sony Corporation. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division import pytest import numpy as np import nnabla as nn import nnabla.functions as F import refs from nbla_test_utils import list_context ctxs = list_context('BinaryConnectConvolution') def binarize(x, quantize_zero_to): y = np.sign(x) y[y == 0] = quantize_zero_to return y def ref_convolution(x, w, b, base_axis, pad, stride, dilation, group, quantize_zero_to): y = [] for xx in x.reshape((-1,) + x.shape[base_axis:]): y += [refs.convolution_2d(xx, w, b, pad, stride, dilation, group)[np.newaxis]] y = np.vstack(y) return y.reshape(x.shape[:base_axis] + y.shape[1:]) def ref_binary_connect_convolution(x, w, wb, b, base_axis, pad, stride, dilation, group, quantize_zero_to): return ref_convolution(x, binarize(w, quantize_zero_to), b, base_axis, pad, stride, dilation, group, quantize_zero_to) def ref_grad_binary_connect_convolution(x, w, wb, b, dy, base_axis, pad, stride, dilation, group, quantize_zero_to): # Set variables vx = nn.Variable(x.shape, need_grad=True) vx.d = x vx.grad.zero() vw = nn.Variable(w.shape, need_grad=True) vw.d = binarize(w, quantize_zero_to) vw.grad.zero() vb = None if b is not None: vb = nn.Variable(b.shape, need_grad=True) vb.d = b vb.grad.zero() # Execute binarized forward and back prop. with nn.auto_forward(): vy = F.convolution(vx, vw, vb, base_axis, pad, stride, dilation, group) vy.backward(dy) # Return grads if b is None: return np.concatenate([vx.g.flat, vw.g.flat]) return np.concatenate([vx.g.flat, vw.g.flat, vb.g.flat]) @pytest.mark.parametrize("ctx, func_name", ctxs) @pytest.mark.parametrize("seed", [313]) @pytest.mark.parametrize("inshape, kernel, outmaps, pad, stride, dilation", [((2, 2, 10, 10), (3, 2), 4, (3, 0), (1, 2), (2, 1)), ]) @pytest.mark.parametrize("group", [1, 2]) @pytest.mark.parametrize("with_bias", [True, False]) @pytest.mark.parametrize("quantize_zero_to", [0.0, -1.0, 1.0]) def test_convolution_2d_forward_backward(inshape, kernel, outmaps, pad, stride, dilation, group, with_bias, quantize_zero_to, seed, ctx, func_name): from nbla_test_utils import function_tester rng = np.random.RandomState(seed) i = rng.randn(*inshape).astype(np.float32) inmaps = inshape[-3] kshape = (outmaps,) + (inmaps // group,) + kernel k = rng.randn(*kshape).astype(np.float32) base_axis = len(inshape) - 3 b = None if with_bias: b = rng.randn(outmaps).astype(np.float32) inputs = [i, k, np.zeros_like(k), b] function_tester(rng, F.binary_connect_convolution, ref_binary_connect_convolution, inputs, func_args=[base_axis, pad, stride, dilation, group, quantize_zero_to], atol_f=1e-4, atol_b=3e-3, atol_accum=1e-5, dstep=1e-2, backward=[True, True, False, True], ctx=ctx, func_name=func_name, ref_grad=ref_grad_binary_connect_convolution)
38.824742
122
0.656665
3be486a81cabe9c7ed16b4a19fa3609712e023ba
15,738
py
Python
mitmproxy/net/quic/tproxy.py
Meitinger/mitmproxy
f5d872d8fc96b97256f48b55aa137e9d81cb8edf
[ "MIT" ]
7
2020-11-29T11:42:44.000Z
2022-03-28T15:31:38.000Z
mitmproxy/net/quic/tproxy.py
Meitinger/mitmproxy
f5d872d8fc96b97256f48b55aa137e9d81cb8edf
[ "MIT" ]
null
null
null
mitmproxy/net/quic/tproxy.py
Meitinger/mitmproxy
f5d872d8fc96b97256f48b55aa137e9d81cb8edf
[ "MIT" ]
1
2021-08-31T05:02:59.000Z
2021-08-31T05:02:59.000Z
import asyncio import asyncio.selector_events import collections import ipaddress import socket import struct from typing import cast, Any, Callable, Dict, Optional, Tuple from aioquic.asyncio import QuicConnectionProtocol from aioquic.asyncio.protocol import QuicStreamHandler from aioquic.asyncio.server import QuicServer from aioquic.quic.configuration import QuicConfiguration from aioquic.tls import SessionTicketFetcher, SessionTicketHandler IP_PKTINFO = getattr(socket, "IP_PKTINFO", 8) IP_RECVORIGDSTADDR = getattr(socket, "IP_RECVORIGDSTADDR", 20) sockaddr = tuple def _native_sockaddr_to_python(sockaddr_in: bytes) -> sockaddr: # see makesockaddr in socketmodule.c if len(sockaddr_in) < 2: raise ValueError("sockaddr_in too short") (family,) = struct.unpack("h", sockaddr_in[:2]) if family == socket.AF_INET: if len(sockaddr_in) < 16: raise ValueError("sockaddr_in too short for IPv4") port, in_addr, _ = struct.unpack("!H4s8s", sockaddr_in[2:16]) addr = (str(ipaddress.IPv4Address(in_addr)), port) elif family == socket.AF_INET6: if len(sockaddr_in) < 28: raise ValueError("sockaddr_in too short for IPv6") port, flowinfo, in6_addr, scope_id = struct.unpack("!H16sL", sockaddr_in[2:28]) addr = ( str(ipaddress.IPv6Address(in6_addr)), port, flowinfo, scope_id, ) else: raise NotImplementedError return addr def _calculate_udp_checksum(data: bytes) -> int: size = len(data) # sum up all full words checksum = 0 for i in range(0, size - (size % 2), 2): checksum += (data[i] << 8) | data[i + 1] # pad to multiple of words if size % 2 != 0: checksum += data[size - 1] << 8 # add the word carryover while (checksum & ~0xFFFF) != 0: checksum = (checksum >> 16) + (checksum & 0xFFFF) # invert the sum and ensure zero is not returned checksum = ~checksum & 0xFFFF return checksum if checksum != 0 else 0xFFFF def _build_ipv4_udp_payload_and_pktinfo( src: sockaddr, dst: sockaddr, data: bytes ) -> bytes: src_ip = socket.inet_pton(socket.AF_INET, src[0]) dst_ip = socket.inet_pton(socket.AF_INET, dst[0]) proto = 17 # UDP udp_length = 8 + len(data) checksum = _calculate_udp_checksum( struct.pack( "!4s4s2B5H", src_ip, dst_ip, 0, proto, udp_length, src[1], dst[1], udp_length, 0, ) + data ) udp_header = struct.pack("!4H", src[1], dst[1], udp_length, checksum) return udp_header + data, struct.pack("!I4s4s", 0, src_ip, dst_ip) def _build_ipv6_udp_payload_and_pktinfo(src: sockaddr, dst: sockaddr, data: bytes): src_ip = socket.inet_pton(socket.AF_INET6, src[0]) dst_ip = socket.inet_pton(socket.AF_INET6, dst[0]) payload_length = 8 + len(data) # also upd_length next_header = 17 # UDP checksum = _calculate_udp_checksum( struct.pack( "!16s16sIH2B4H", src_ip, dst_ip, payload_length, 0, 0, next_header, src[1], dst[1], payload_length, 0, ) + data ) udp_header = struct.pack("!4H", src[1], dst[1], payload_length, checksum) return udp_header + data, struct.pack("!16sI", src_ip, 0) def _create_raw_socket(family: int, level: int) -> socket.socket: sock = None try: sock = socket.socket(family, socket.SOCK_RAW, socket.IPPROTO_UDP) sock.setblocking(False) sock.setsockopt(level, socket.IP_TRANSPARENT, 1) return sock except: if sock is not None: sock.close() raise class TProxyProtocol(asyncio.BaseProtocol): def received_from(self, data: bytes, src: sockaddr, dst: sockaddr,) -> None: pass def error_received(self, exc: OSError) -> None: pass class TProxyTransport(asyncio.BaseTransport): def send_to(self, data: bytes, src: sockaddr, dst: sockaddr,) -> None: raise NotImplementedError def abort(self) -> None: raise NotImplementedError async def create_tproxy_endpoint( loop: asyncio.SelectorEventLoop, protocol_factory: Callable[[], TProxyProtocol], local_addr: Tuple[str, int], ) -> Tuple[TProxyTransport, TProxyProtocol]: host, port = local_addr infos = await loop.getaddrinfo(host, port) if not infos: raise OSError("getaddrinfo() returned empty list") sock_family, _, _, _, sock_addr = infos[0] sock = None try: # Create a non-blocking, transparent (any IP) socket, that returns the original destination. sock = socket.socket(sock_family, socket.SOCK_DGRAM, socket.IPPROTO_UDP) sock.setblocking(False) sock.setsockopt(socket.SOL_IP, socket.IP_TRANSPARENT, 1) sock.setsockopt(socket.SOL_IP, IP_RECVORIGDSTADDR, 1) sock.bind(sock_addr) except: if sock is not None: sock.close() raise protocol = protocol_factory() waiter = loop.create_future() transport = _TProxyTransport(loop, sock, sock_addr, protocol, waiter) try: await waiter except: transport.close() raise return transport, protocol class _TProxyTransport(asyncio.selector_events._SelectorTransport, TProxyTransport): _buffer_factory = collections.deque def __init__( self, loop: asyncio.SelectorEventLoop, sock: socket.socket, sock_addr: sockaddr, protocol: TProxyProtocol, waiter: asyncio.Future, ) -> None: super().__init__(loop, sock, protocol) self._sock_addr: sockaddr = sock_addr self._send_sock_v4: socket.socket self._send_sock_v6: Optional[socket.socket] = None # we support dual stacks, so always create an IPv4 send socket if sock.family == socket.AF_INET: pass elif sock.family == socket.AF_INET6: self._send_sock_v6 = _create_raw_socket( socket.AF_INET6, socket.IPPROTO_IPV6 ) else: raise NotImplementedError(f"Address family {sock.family} not supported") self._send_sock_v4 = _create_raw_socket(socket.AF_INET, socket.IPPROTO_IP) # notify the protocol, start reading and signal complete self._loop.call_soon(self._protocol.connection_made, self) self._loop.call_soon(self._add_reader, self._sock_fd, self._read_ready) self._loop.call_soon(asyncio.futures._set_result_unless_cancelled, waiter, None) # override def _call_connection_lost(self, exc): try: super()._call_connection_lost(exc) finally: self._send_sock_v4.close() self._send_sock_v4 = None if self._send_sock_v6 is not None: self._send_sock_v6.close() self._send_sock_v6 = None def _check_and_unmap_ip_address(self, addr: sockaddr, name: str) -> sockaddr: if not isinstance(addr, tuple) or len(addr) not in [2, 4]: raise ValueError(f"{name} is not a valid socket address") try: ip = ipaddress.ip_address(addr[0]) except ValueError: raise ValueError(f"{name} contains an invalid IP address") if ip.version == 4: if len(addr) == 4: raise ValueError(f"{name} has too many components for an IPv4 address") elif ip.version == 6: if ip.ipv4_mapped is not None: addr = (str(ip.ipv4_mapped), addr[1]) else: if len(addr) == 2: addr = addr + (0, 0) if self._send_sock_v6 is None: raise ValueError( f"{name} contains an IPv6 address, but the listen socket is IPv4" ) else: raise ValueError( f"{name} contains an IPv{ip.version} address which is not supported" ) return addr def _internal_send(self, data: bytes, src: sockaddr, dst: sockaddr) -> None: assert len(src) == len(dst) and len(src) in [2, 4] # generate the UDP payload and send it if len(src) == 2: payload, in_pktinfo = _build_ipv4_udp_payload_and_pktinfo(src, dst, data) ancdata = [(socket.IPPROTO_IP, IP_PKTINFO, in_pktinfo)] self._send_sock_v4.sendmsg([payload], ancdata, 0, (dst[0], 0)) else: payload, in6_pktinfo = _build_ipv6_udp_payload_and_pktinfo(src, dst, data) ancdata = [(socket.IPPROTO_IPV6, socket.IPV6_PKTINFO, in6_pktinfo)] self._send_sock_v6.sendmsg([payload], ancdata, 0, (dst[0], 0, 0, 0)) # callback def _read_ready(self): if self._conn_lost: return try: # 50 bytes is larger than sockaddr_in or sockaddr_in6 data, ancdata, _, src = self._sock.recvmsg( self.max_size, socket.CMSG_LEN(50) ) dst = self._sock_addr for cmsg_level, cmsg_type, cmsg_data in ancdata: if cmsg_level == socket.SOL_IP and cmsg_type == IP_RECVORIGDSTADDR: dst = _native_sockaddr_to_python(cmsg_data) # on a dual stack, receive from IPv4 is possible, return mapped address like src if self._send_sock_v6 is not None and len(dst) == 2: dst = ("::ffff:" + dst[0], dst[1], 0, 0) except (BlockingIOError, InterruptedError): pass except OSError as exc: self._protocol.error_received(exc) except (SystemExit, KeyboardInterrupt): raise except BaseException as exc: self._fatal_error(exc, "Fatal read error on datagram transport") else: self._protocol.received_from(data, src, dst) # callback def _write_ready(self): while self._buffer: data, src, dst = self._buffer.popleft() try: self._internal_send(data, src, dst) except (BlockingIOError, InterruptedError): self._buffer.appendleft((data, src, dst)) # try again later break except OSError as exc: self._protocol.error_received(exc) return except (SystemExit, KeyboardInterrupt): raise except BaseException as exc: self._fatal_error(exc, "Fatal write error on datagram transport") return self._maybe_resume_protocol() if not self._buffer: self._loop._remove_writer(self._sock_fd) if self._closing: self._call_connection_lost(None) def send_to(self, data: bytes, src: sockaddr, dst: sockaddr) -> None: # check the input src = self._check_and_unmap_ip_address(src, "src") dst = self._check_and_unmap_ip_address(dst, "dst") if len(src) != len(dst): raise ValueError("src and dst are different IP versions") if not data: return if not self._buffer: try: self._internal_send(data, src, dst) return except (BlockingIOError, InterruptedError): self._loop._add_writer(self._sock_fd, self._write_ready) except OSError as exc: self._protocol.error_received(exc) return except (SystemExit, KeyboardInterrupt): raise except BaseException as exc: self._fatal_error(exc, "Fatal write error on datagram transport") return self._buffer.append((bytes(data), src, dst)) # make a copy of data self._maybe_pause_protocol() class QuicTransparentProxy(TProxyProtocol): def __init__( self, *, configuration: QuicConfiguration, create_protocol: Callable = QuicConnectionProtocol, session_ticket_fetcher: Optional[SessionTicketFetcher] = None, session_ticket_handler: Optional[SessionTicketHandler] = None, stateless_retry: bool = False, stream_handler: Optional[QuicStreamHandler] = None, ) -> None: self._configuration = configuration self._create_protocol = create_protocol self._session_ticket_fetcher = session_ticket_fetcher self._session_ticket_handler = session_ticket_handler self._stateless_retry = stateless_retry self._stream_handler = stream_handler self._transport: Optional[TProxyTransport] = None self._servers: Dict[sockaddr, QuicServer] = {} def connection_made(self, transport: asyncio.BaseTransport) -> None: self._transport = cast(TProxyTransport, transport) def received_from(self, data: bytes, src: sockaddr, dst: sockaddr,) -> None: server: QuicServer if dst not in self._servers: server = QuicServer( configuration=self._configuration, create_protocol=self._create_protocol, session_ticket_fetcher=self._session_ticket_fetcher, session_ticket_handler=self._session_ticket_handler, stateless_retry=self._stateless_retry, stream_handler=self._stream_handler, ) self._servers[dst] = server server.connection_made(QuicTransport(proxy=self, addr=dst, server=server)) else: server = self._servers[dst] server.datagram_received(data, src) class QuicTransport(asyncio.DatagramTransport): def __init__( self, *, proxy: QuicTransparentProxy, addr: sockaddr, server: QuicServer ) -> None: self._proxy = proxy self._addr = addr self._server = server def abort(self) -> None: self._transport.abort() self._proxy._servers.clear() def close(self) -> None: if not self.is_closing(): self._proxy._servers.pop(self._addr) def get_extra_info(self, name: str, default: Any = None) -> Any: return ( self._addr if name == "sockname" else self._proxy._transport.get_extra_info(name, default) ) def get_protocol(self) -> asyncio.BaseProtocol: return self._server def is_closing(self) -> bool: return self._proxy._servers.get(self._addr) is not self._server def sendto(self, data: bytes, addr: sockaddr = None) -> None: if not self.is_closing(): self._proxy._transport.send_to(data, self._addr, addr) async def transparent_serve( host: str, port: int, *, configuration: QuicConfiguration, create_protocol: Callable = QuicConnectionProtocol, session_ticket_fetcher: Optional[SessionTicketFetcher] = None, session_ticket_handler: Optional[SessionTicketHandler] = None, stateless_retry: bool = False, stream_handler: QuicStreamHandler = None, ) -> QuicTransparentProxy: loop = asyncio.get_event_loop() _, protocol = await create_tproxy_endpoint( loop=loop, protocol_factory=lambda: QuicTransparentProxy( configuration=configuration, create_protocol=create_protocol, session_ticket_fetcher=session_ticket_fetcher, session_ticket_handler=session_ticket_handler, stateless_retry=stateless_retry, stream_handler=stream_handler, ), local_addr=(host, port), ) return cast(QuicTransparentProxy, protocol)
35.606335
100
0.620536
6b3994db5445ce1a3aa29e8b918790d090e8d726
77
py
Python
frostbyte/lang/__init__.py
frostbyte-lang/frostbyte-lang
1dbc2e130abb755a1afeca6e24a3084d4f60bc3f
[ "MIT" ]
null
null
null
frostbyte/lang/__init__.py
frostbyte-lang/frostbyte-lang
1dbc2e130abb755a1afeca6e24a3084d4f60bc3f
[ "MIT" ]
null
null
null
frostbyte/lang/__init__.py
frostbyte-lang/frostbyte-lang
1dbc2e130abb755a1afeca6e24a3084d4f60bc3f
[ "MIT" ]
null
null
null
""" Reference implementation for the Frostbyte programming language. """
19.25
68
0.74026
33edb589be03e92586f7f566256c11a51ece8be1
3,931
py
Python
arch_x86.py
mytbk/r2dumpbin
151d2dc32c16c62dca024bbd1bcbab36d1e08843
[ "MIT" ]
20
2018-12-18T17:23:58.000Z
2021-12-19T09:55:28.000Z
arch_x86.py
mytbk/dumpbin
151d2dc32c16c62dca024bbd1bcbab36d1e08843
[ "MIT" ]
2
2019-10-28T06:43:55.000Z
2020-11-01T12:51:42.000Z
arch_x86.py
mytbk/dumpbin
151d2dc32c16c62dca024bbd1bcbab36d1e08843
[ "MIT" ]
5
2019-10-28T06:06:22.000Z
2022-03-27T02:19:50.000Z
# Copyright (C) 2021 Iru Cai <mytbk920423@gmail.com> # SPDX-License-Identifier: MIT import re segmem_expr = re.compile('(cs|ds|es|ss|fs|gs):\[(.*)\]') def asmfixup(dumper, insn): orig_insn = insn["opcode"] final_insn = orig_insn comment = "" # correct the r2 assembly to the NASM one if insn["type"] == "lea": # nasm doesn't like "lea r32, dword ..." final_insn = orig_insn.replace("dword ", "") elif insn["bytes"] == "f2a5": # capstone 4.0.2 gets wrong here final_insn = "repne movsd" elif ("movsb" in orig_insn or "movsw" in orig_insn or "movsd" in orig_insn \ or "lods" in orig_insn or "stos" in orig_insn) \ and "66" in [insn["bytes"][0:2], insn["bytes"][2:4]]: # capstone also seems to be wrong here comment = orig_insn ibytes = dumper.readBytes(insn["offset"], insn["size"]) final_insn = "db " + ", ".join(["0x{:02x}".format(i) for i in ibytes]) elif orig_insn[0:4] == "rep ": # rep XXXsX comment = orig_insn final_insn = orig_insn[0:9] elif orig_insn[0:5] == "repe ": # repe XXXsX comment = orig_insn final_insn = orig_insn[0:10] elif orig_insn[0:6] == "repne ": # repne XXXsX comment = orig_insn final_insn = orig_insn[0:11] elif orig_insn[0:6] in ["movsb ","movsw ","movsd ", "stosb ", "stosw ", "stosd ", "lodsb ", "lodsw ", "lodsd ", "cmpsb ", "cmpsw ", "compsd"]: comment = orig_insn final_insn = orig_insn[0:5] elif orig_insn[0:6] == "pushal": final_insn = "pushad" elif orig_insn[0:5] == "popal": final_insn = "popad" elif orig_insn[0:12] == "clflush byte": # "clflush byte" -> "clflush" final_insn = "clflush " + orig_insn[12:] elif insn["type"] in ["jmp", "cjmp", "call"]: prefix = "" if "jecxz" in orig_insn or "loop" in orig_insn: pass elif insn["type"] != "call": if insn["size"] == 2: prefix = "short " elif insn["size"] >= 5: prefix = "near " tgt = insn["jump"] if tgt in dumper.functions: prefix += "fcn_" else: prefix += "loc_" final_insn = re.sub( "0x.*", prefix + "{:08x}".format(tgt), orig_insn) comment = orig_insn elif orig_insn[0:5] in ["fcom ", "fsub ", "fxch ", "fstp ", "fdiv "] or \ orig_insn[0:6] in ["fmulp ", "fdivp ", "faddp ", "fsubp ", "fdivr "] or \ orig_insn[0:4] in ["fld "] or \ orig_insn[0:7] in ["fdivrp "]: final_insn = orig_insn.replace("xword", "tword") # 80-bit "ten word" final_insn = re.sub("st\(([0-9])\)", "st\\1", final_insn) comment = orig_insn elif orig_insn[0:7] in ["fnstsw ", "fnsave ", "frstor "]: final_insn = orig_insn.replace(" dword", "") elif insn["type"] in ["cmp", "add", "sub"] and insn["size"] >= 5 and \ '[' not in orig_insn: val = insn.get("val", 0xffffffff) ibytes = dumper.readBytes(insn["offset"], insn["size"]) if val < 0x80 and ibytes[0] != 0x66: # nasm emits short instructions when immediate can fit in one byte fixup = True if val in dumper.solved or val in dumper.non_function_labels or val in dumper.label_adjust: if not dumper.HasReloc or dumper.isRelocInsn(insn["offset"], insn["size"]): fixup = False if fixup: final_insn = "db " + ", ".join(["0x{:02x}".format(i) for i in ibytes]) comment = orig_insn # fix addressing expressions with a segment selector final_insn = segmem_expr.sub('[\\1:\\2]', final_insn) if final_insn == orig_insn: comment = "" return final_insn, comment
38.539216
103
0.532689
fd9720a79a291befe413351daf2aadd566eaa53b
97
py
Python
test/tests/list_eq_contains.py
aisk/pyston
ac69cfef0621dbc8901175e84fa2b5cb5781a646
[ "BSD-2-Clause", "Apache-2.0" ]
1
2020-02-06T14:28:45.000Z
2020-02-06T14:28:45.000Z
test/tests/list_eq_contains.py
aisk/pyston
ac69cfef0621dbc8901175e84fa2b5cb5781a646
[ "BSD-2-Clause", "Apache-2.0" ]
null
null
null
test/tests/list_eq_contains.py
aisk/pyston
ac69cfef0621dbc8901175e84fa2b5cb5781a646
[ "BSD-2-Clause", "Apache-2.0" ]
1
2020-02-06T14:29:00.000Z
2020-02-06T14:29:00.000Z
nan = float('nan') print nan == nan print nan in [nan] print [nan] == [nan] print [nan] in [nan]
16.166667
20
0.608247
a77d23e8b3d5095b37e4ec71207b31f9d1f87e1e
3,721
py
Python
mars/tensor/arithmetic/divide.py
tomzhang/mars-1
6f1d85e37eb1b383251314cb0ba13e06288af03d
[ "Apache-2.0" ]
2
2019-03-29T04:11:10.000Z
2020-07-08T10:19:54.000Z
mars/tensor/arithmetic/divide.py
JeffroMF/mars
2805241ac55b50c4f6319baa41113fbf8c723832
[ "Apache-2.0" ]
null
null
null
mars/tensor/arithmetic/divide.py
JeffroMF/mars
2805241ac55b50c4f6319baa41113fbf8c723832
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 1999-2020 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from ... import opcodes as OperandDef from ..utils import infer_dtype from .core import TensorBinOp from .utils import arithmetic_operand @arithmetic_operand class TensorDivide(TensorBinOp): _op_type_ = OperandDef.DIV _func_name = 'divide' @classmethod def _is_sparse(cls, x1, x2): if not np.isscalar(x1) and not np.isscalar(x2): return False if hasattr(x1, 'issparse') and x1.issparse(): if x2 != 0: return True else: raise ZeroDivisionError('float division by zero') @infer_dtype(np.divide) def divide(x1, x2, out=None, where=None, **kwargs): """ Divide arguments element-wise. Parameters ---------- x1 : array_like Dividend tensor. x2 : array_like Divisor tensor. out : Tensor, None, or tuple of Tensor and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs Returns ------- out : Tensor The quotient `x1/x2`, element-wise. Returns a scalar if both `x1` and `x2` are scalars. Notes ----- Equivalent to `x1` / `x2` in terms of array-broadcasting. Behavior on division by zero can be changed using `seterr`. In Python 2, when both `x1` and `x2` are of an integer type, `divide` will behave like `floor_divide`. In Python 3, it behaves like `true_divide`. Examples -------- >>> import mars.tensor as mt >>> mt.divide(2.0, 4.0).execute() 0.5 >>> x1 = mt.arange(9.0).reshape((3, 3)) >>> x2 = mt.arange(3.0) >>> mt.divide(x1, x2).execute() array([[ NaN, 1. , 1. ], [ Inf, 4. , 2.5], [ Inf, 7. , 4. ]]) Note the behavior with integer types (Python 2 only): >>> mt.divide(2, 4).execute() 0 >>> mt.divide(2, 4.).execute() 0.5 Division by zero always yields zero in integer arithmetic (again, Python 2 only), and does not raise an exception or a warning: >>> mt.divide(mt.array([0, 1], dtype=int), mt.array([0, 0], dtype=int)).execute() array([0, 0]) Division by zero can, however, be caught using seterr: >>> old_err_state = mt.seterr(divide='raise') >>> mt.divide(1, 0).execute() Traceback (most recent call last): ... FloatingPointError: divide by zero encountered in divide >>> ignored_states = mt.seterr(**old_err_state) >>> mt.divide(1, 0).execute() 0 """ op = TensorDivide(**kwargs) return op(x1, x2, out=out, where=where) @infer_dtype(np.divide, reverse=True) def rdivide(x1, x2, **kwargs): op = TensorDivide(**kwargs) return op.rcall(x1, x2)
32.356522
106
0.640688
bf4ba63c10ebe8f1b4d0dee39eed5fe6a9f728e5
3,243
py
Python
kidmondo_spider/settings.py
plar/kidmondo_export
b3719072e26f210e5951fd01aa5005332b65be5a
[ "Apache-2.0" ]
null
null
null
kidmondo_spider/settings.py
plar/kidmondo_export
b3719072e26f210e5951fd01aa5005332b65be5a
[ "Apache-2.0" ]
null
null
null
kidmondo_spider/settings.py
plar/kidmondo_export
b3719072e26f210e5951fd01aa5005332b65be5a
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Scrapy settings for amazon project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # http://doc.scrapy.org/en/latest/topics/settings.html # http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html # http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html BOT_NAME = 'kidmondo_spider' SPIDER_MODULES = ['kidmondo_spider.spiders'] NEWSPIDER_MODULE = 'kidmondo_spider.spiders' FEED_EXPORTERS = { 'json': 'kidmondo_spider.spiders.kidmondo.UnicodeJsonLinesItemExporter' } IMAGES_STORE='/home/pavel/workspace/kidmondo_export/target' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'amazon (+http://www.yourdomain.com)' # Configure maximum concurrent requests performed by Scrapy (default: 16) CONCURRENT_REQUESTS=32 # Configure a delay for requests for the same website (default: 0) # See http://scrapy.readthedocs.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs #DOWNLOAD_DELAY=3 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN=16 #CONCURRENT_REQUESTS_PER_IP=16 # Disable cookies (enabled by default) #COOKIES_ENABLED=False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED=False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable or disable spider middlewares # See http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'amazon.middlewares.MyCustomSpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html #DOWNLOADER_MIDDLEWARES = { # 'amazon.middlewares.MyCustomDownloaderMiddleware': 543, #} # Enable or disable extensions # See http://scrapy.readthedocs.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.telnet.TelnetConsole': None, #} # Configure item pipelines # See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html #ITEM_PIPELINES = { # 'amazon.pipelines.SomePipeline': 300, #} ITEM_PIPELINES = { 'scrapy.pipelines.images.ImagesPipeline': 1 } # Enable and configure the AutoThrottle extension (disabled by default) # See http://doc.scrapy.org/en/latest/topics/autothrottle.html # NOTE: AutoThrottle will honour the standard settings for concurrency and delay #AUTOTHROTTLE_ENABLED=True # The initial download delay #AUTOTHROTTLE_START_DELAY=5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY=60 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG=False # Enable and configure HTTP caching (disabled by default) # See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED=True #HTTPCACHE_EXPIRATION_SECS=0 #HTTPCACHE_DIR='httpcache' #HTTPCACHE_IGNORE_HTTP_CODES=[] #HTTPCACHE_STORAGE='scrapy.extensions.httpcache.FilesystemCacheStorage'
33.78125
109
0.785076
78cb6c6ff6db9ac0c462628a4d4d4bc10e588470
2,811
py
Python
sample_datasource/lacrime/lacrime_pub.py
rbpandya/I3-SDK
80d99b9dec25da9a2f55ababc3c814ff883e695b
[ "BSD-3-Clause" ]
2
2020-04-15T23:05:09.000Z
2020-06-09T16:58:45.000Z
sample_datasource/lacrime/lacrime_pub.py
rbpandya/I3-SDK
80d99b9dec25da9a2f55ababc3c814ff883e695b
[ "BSD-3-Clause" ]
5
2019-09-24T21:33:04.000Z
2019-10-09T21:05:48.000Z
sample_datasource/lacrime/lacrime_pub.py
rbpandya/I3-SDK
80d99b9dec25da9a2f55ababc3c814ff883e695b
[ "BSD-3-Clause" ]
5
2019-10-23T17:46:14.000Z
2020-06-09T16:58:53.000Z
#!/usr/bin/python """ test_sub.py is an example of a publisher subscribing to a topic """ import paho.mqtt.client as mqtt import datetime from datetime import timedelta import requests import json import os def on_connect(client, userdata, flags, rc): """print out result code when connecting with the broker Args: client: publisher userdata: flags: rc: result code Returns: """ m="Connected flags"+str(flags)+"result code "\ +str(rc)+"client1_id "+str(client) print(m) def on_message(client1, userdata, message): """print out recieved message Args: client1: publisher userdata: message: recieved data Returns: """ print("message received " ,str(message.payload.decode("utf-8"))) if __name__ == '__main__': #TODO: modify topic from email message # account : username created on I3 instance # pw : system generated password on the notification bell # topic : the product that is bought # clientid : this must be unique else the connection would be lost clientId = 'Default' account = 'Default' topic = ['Default'] pw = 'Default' port = 1883 host = 'Default' try: if os.path.exists('config.ini'): fread = open('config.ini', 'r') host = str(fread.read()).split("=")[1] print "Host :", host fread.close() if host == 'Default' or port == 'Default' or topic == 'Default' or account == 'Default' or clientId == 'Default': print "ERROR: Check host, topic, subscriber and password values" print "The subscriber is the username that was used to purchase the product" print "The topic is the product which is purchased from the I3 Data market place" print "The password is the system generated password when the product is purchased" raise Exception(" Default values not changed ") pub_client = mqtt.Client(clientId) pub_client.on_connect = on_connect pub_client.on_message = on_message pub_client.username_pw_set(account, pw) pub_client.connect(host, port) #connect to broker except Exception as e: print "Exception" + str(e) exit(0) #pub_client.subscribe(topic) #pub_client.loop_start() url='https://data.lacity.org/resource/7fvc-faax.json?$where=date_rptd>"' url = url + (datetime.datetime.now() - timedelta(days=7)).isoformat() + '"' json_data=requests.get(url,verify=False).json() #Gets data from SODA API count = 0 while count < 2: count += 1 pub_client.publish(topic[0], json.dumps(json_data)) ## pub_client.publish(topic[1], 'Hello World') time.sleep(2) pub_client.disconnect()
28.393939
121
0.630736
995fe8fb1860a8b9bff4cebcc81850cf275f8406
2,591
py
Python
setup.py
adriaan-vd-graaf/genome_integration
345eae53aab9a23c080ae10f2ee3d8305f75a5c6
[ "MIT" ]
13
2019-08-18T15:48:35.000Z
2022-03-28T07:48:49.000Z
setup.py
adriaan-vd-graaf/genome_integration
345eae53aab9a23c080ae10f2ee3d8305f75a5c6
[ "MIT" ]
1
2021-09-10T06:58:24.000Z
2021-09-10T07:50:45.000Z
setup.py
adriaan-vd-graaf/genome_integration
345eae53aab9a23c080ae10f2ee3d8305f75a5c6
[ "MIT" ]
null
null
null
from setuptools import setup from setuptools import find_packages # To use a consistent encoding from codecs import open from os import path here = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(here, 'README.md'), encoding='utf-8') as f: long_description = f.read() name = 'genome_integration' version = '1.0' release = '1.0' setup( name=name, # Versions should comply with PEP440. For a discussion on single-sourcing # the version across setup.py and the project code, see # https://packaging.python.org/en/latest/single_source_version.html version=version, python_requires='!=3.0.*, !=3.1.*, !=3.2.*,!=3.3.*, !=3.4.*, !=3.5.*, >=3.6.*, <4', description='Genome integration, a personal library', long_description=long_description, # The project's main homepage. url='none', # Author details author='Adriaan van der Graaf', author_email='adriaan.vd.graaf@gmail.com', # Choose your license license='Copyright 2019 Adriaan van der Graaf', # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 4 - Beta', # Indicate who your project is intended for 'Intended Audience :: Investigators interested in causal inference', 'Topic :: Genome analysis :: multiomics integration', # Pick your license as you wish (should match "license" above) 'License :: MIT licence 2020', # Specify the Python versions you support here. In particular, ensure # that you indicate whether you support Python 2, Python 3 or both. 'Programming Language :: Python :: >=3.7', 'Programming Language :: Python :: 3.7' ], # What does your project relate to? keywords='multiomics', # You can just specify the packages manually here if your project is # simple. Or you can use find_packages(). packages=find_packages(exclude=['contrib', 'docs', 'tests']), install_requires=['numpy', 'scipy', 'sklearn', 'statsmodels', 'plinkio', 'requests', 'bitarray', 'bgen_reader'], extras_require={ 'dev': ['check-manifest'], 'test': ['coverage'], }, setup_requires=['pytest-runner'], tests_require=['pytest'], entry_points={ 'console_scripts': [ 'genome_integration=genome_integration:main', ], }, include_package_data=True, )
29.443182
116
0.648398
47df330ae7f9dd82f9163f6dbc94864d34b2baa7
5,076
py
Python
setup.py
ageron/salt-cloud
2f71d170e5e6bff8aafa8459227073400e875602
[ "Apache-2.0" ]
2
2019-03-30T02:12:57.000Z
2021-03-08T18:59:52.000Z
setup.py
ageron/salt-cloud
2f71d170e5e6bff8aafa8459227073400e875602
[ "Apache-2.0" ]
null
null
null
setup.py
ageron/salt-cloud
2f71d170e5e6bff8aafa8459227073400e875602
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python ''' The setup script for salt ''' import os import urllib2 from distutils import log from distutils.core import setup from distutils.command.sdist import sdist as original_sdist setup_kwargs = {} USE_SETUPTOOLS = False SALTCLOUD_SOURCE_DIR = os.path.abspath(os.path.dirname(__file__)) BOOTSTRAP_SCRIPT_DISTRIBUTED_VERSION = os.environ.get( # The user can provide a different bootstrap-script version. # ATTENTION: A tag for that version MUST exist 'BOOTSTRAP_SCRIPT_VERSION', # If no bootstrap-script version was provided from the environment, let's # provide the one we define. 'v1.5.5' ) if 'USE_SETUPTOOLS' in os.environ: try: from setuptools import setup from setuptools.command.sdist import sdist as original_sdist USE_SETUPTOOLS = True saltcloud_reqs = os.path.join(SALTCLOUD_SOURCE_DIR, 'requirements.txt') requirements = '' with open(saltcloud_reqs) as f: requirements = f.read() setup_kwargs['install_requires'] = requirements except: USE_SETUPTOOLS = False if USE_SETUPTOOLS is False: from distutils.core import setup exec( compile( open('saltcloud/version.py').read(), 'saltcloud/version.py', 'exec' ) ) class sdist(original_sdist): user_options = original_sdist.user_options + [ ('skip-bootstrap-download', None, 'Skip downloading the bootstrap-salt.sh script. This can also be ' 'triggered by having `SKIP_BOOTSTRAP_DOWNLOAD=1` as an environment ' 'variable.') ] boolean_options = original_sdist.boolean_options + [ 'skip-bootstrap-download' ] def initialize_options(self): original_sdist.initialize_options(self) self.skip_bootstrap_download = False def finalize_options(self): original_sdist.finalize_options(self) if 'SKIP_BOOTSTRAP_DOWNLOAD' in os.environ: skip_bootstrap_download = os.environ.get( 'SKIP_BOOTSTRAP_DOWNLOAD', '0' ) self.skip_bootstrap_download = skip_bootstrap_download == '1' def run(self): if self.skip_bootstrap_download is False: # Let's update the bootstrap-script to the version defined to be # distributed. See BOOTSTRAP_SCRIPT_DISTRIBUTED_VERSION above. url = ( 'https://github.com/saltstack/salt-bootstrap/raw/{0}' '/bootstrap-salt.sh'.format( BOOTSTRAP_SCRIPT_DISTRIBUTED_VERSION ) ) req = urllib2.urlopen(url) deploy_path = os.path.join( SALTCLOUD_SOURCE_DIR, 'saltcloud', 'deploy', 'bootstrap-salt.sh' ) if req.getcode() == 200: try: log.info( 'Updating bootstrap-salt.sh.' '\n\tSource: {0}' '\n\tDestination: {1}'.format( url, deploy_path ) ) with open(deploy_path, 'w') as fp_: fp_.write(req.read()) except (OSError, IOError), err: log.error( 'Failed to write the updated script: {0}'.format(err) ) else: log.error( 'Failed to update the bootstrap-salt.sh script. HTTP ' 'Error code: {0}'.format( req.getcode() ) ) # Let's the rest of the build command original_sdist.run(self) NAME = 'salt-cloud' VER = __version__ DESC = ('Generic cloud provisioning system with build in functions ') setup(name=NAME, version=VER, description=DESC, author='Thomas S Hatch', author_email='thatch@saltstack.com', url='http://saltstack.org', classifiers=[ 'Programming Language :: Python', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Development Status :: 3 - Alpha', 'Environment :: Console', 'Intended Audience :: Developers', 'Intended Audience :: Information Technology', 'Intended Audience :: System Administrators', 'License :: OSI Approved :: Apache Software License', 'Operating System :: POSIX :: Linux', 'Topic :: System :: Distributed Computing', ], packages=['saltcloud', 'saltcloud/utils', 'saltcloud/clouds', ], package_data={ 'saltcloud': ['deploy/*.sh'], }, data_files=[('share/man/man1', ['doc/man/salt-cloud.1']), ('share/man/man7', ['doc/man/salt-cloud.7']) ], scripts=['scripts/salt-cloud'], cmdclass={ 'sdist': sdist }, **setup_kwargs )
32.33121
79
0.559693
13fae6e5f1f12d58b1595d382e946a95f7d4b28a
4,461
py
Python
custom_components/hacs/repositories/integration.py
Mofeywalker/hacs
4176b50896f0d51e260704e0aab45a6d60676213
[ "MIT" ]
null
null
null
custom_components/hacs/repositories/integration.py
Mofeywalker/hacs
4176b50896f0d51e260704e0aab45a6d60676213
[ "MIT" ]
null
null
null
custom_components/hacs/repositories/integration.py
Mofeywalker/hacs
4176b50896f0d51e260704e0aab45a6d60676213
[ "MIT" ]
null
null
null
"""Class for integrations in HACS.""" import json from homeassistant.loader import async_get_custom_components from .repository import HacsRepository, register_repository_class @register_repository_class class HacsIntegration(HacsRepository): """Integrations in HACS.""" category = "integration" def __init__(self, full_name): """Initialize.""" super().__init__() self.information.full_name = full_name self.information.category = self.category self.manifest = None self.domain = None self.content.path.local = self.localpath @property def localpath(self): """Return localpath.""" return f"{self.system.config_path}/custom_components/{self.domain}" @property def config_flow(self): """Return bool if integration has config_flow.""" if self.manifest is not None: if self.information.full_name == "custom-components/hacs": return False return self.manifest.get("config_flow", False) return False async def validate_repository(self): """Validate.""" await self.common_validate() # Attach repository if self.repository_object is None: self.repository_object = await self.github.get_repo( self.information.full_name ) # Custom step 1: Validate content. ccdir = await self.repository_object.get_contents("custom_components", self.ref) if not isinstance(ccdir, list): self.validate.errors.append("Repostitory structure not compliant") self.content.path.remote = ccdir[0].path self.content.objects = await self.repository_object.get_contents( self.content.path.remote, self.ref ) self.content.files = [] for filename in self.content.objects: self.content.files.append(filename.name) if not await self.get_manifest(): self.validate.errors.append("Missing manifest file.") # Handle potential errors if self.validate.errors: for error in self.validate.errors: if not self.system.status.startup: self.logger.error(error) return self.validate.success async def registration(self): """Registration.""" if not await self.validate_repository(): return False # Run common registration steps. await self.common_registration() # Get the content of the manifest file. await self.get_manifest() # Set local path self.content.path.local = self.localpath async def update_repository(self): """Update.""" await self.common_update() # Get integration objects. ccdir = await self.repository_object.get_contents("custom_components", self.ref) self.content.path.remote = ccdir[0].path self.content.objects = await self.repository_object.get_contents( self.content.path.remote, self.ref ) self.content.files = [] for filename in self.content.objects: self.content.files.append(filename.name) await self.get_manifest() # Set local path self.content.path.local = self.localpath async def reload_custom_components(self): """Reload custom_components (and config flows)in HA.""" self.logger.info("Reloading custom_component cache") del self.hass.data["custom_components"] await async_get_custom_components(self.hass) async def get_manifest(self): """Get info from the manifest file.""" manifest_path = f"{self.content.path.remote}/manifest.json" manifest = None if "manifest.json" not in self.content.files: return False manifest = await self.repository_object.get_contents(manifest_path, self.ref) manifest = json.loads(manifest.content) if manifest: self.manifest = manifest self.information.authors = manifest["codeowners"] self.domain = manifest["domain"] self.information.name = manifest["name"] self.information.homeassistant_version = manifest.get("homeassistant") return True else: return False
34.315385
89
0.618471
19e3c97377b2f34caf432ca51c10e95eb238b34b
4,139
py
Python
sentiment/train.py
terrifyzhao/nlp
2dd15e6b584bd0620bd09aa1408d1a956a936390
[ "Apache-2.0" ]
1
2019-08-02T05:55:10.000Z
2019-08-02T05:55:10.000Z
sentiment/train.py
terrifyzhao/nlp
2dd15e6b584bd0620bd09aa1408d1a956a936390
[ "Apache-2.0" ]
null
null
null
sentiment/train.py
terrifyzhao/nlp
2dd15e6b584bd0620bd09aa1408d1a956a936390
[ "Apache-2.0" ]
null
null
null
import os import sys sys.path.append(os.path.join(os.path.dirname(__file__), '../')) import json from tqdm import tqdm import os import pandas as pd from data_utils import * from keras.callbacks import Callback from keras_bert import Tokenizer import codecs import tensorflow as tf from sentiment.sentiment_model import sentiment_model dict_path = '../chinese_L-12_H-768_A-12/vocab.txt' max_len = 315 token_dict = {} additional_chars = set() global graph graph = tf.get_default_graph() with codecs.open(dict_path, 'r', 'utf8') as reader: for line in reader: token = line.strip() token_dict[token] = len(token_dict) class OurTokenizer(Tokenizer): def _tokenize(self, text): R = [] for c in text: if c in self._token_dict: R.append(c) elif self._is_space(c): R.append('[unused1]') # space类用未经训练的[unused1]表示 else: R.append('[UNK]') # 剩余的字符是[UNK] return R tokenizer = OurTokenizer(token_dict) length = 100 def read_data(): df_train = pd.read_csv('../data/sentiment/train.csv', header=None).values[1:] df_eval = pd.read_csv('../data/sentiment/eval.csv', header=None).values[1:] df_test = pd.read_csv('../data/sentiment/test.csv', header=None).values[1:] df_train = shuffle(df_train) df_eval = shuffle(df_eval) df_test = shuffle(df_test) return df_train[0:length][0], df_eval[0:length][0], df_test[0:length][0] def list_find(list1, list2): """在list1中寻找子串list2,如果找到,返回第一个下标; 如果找不到,返回-1。 """ n_list2 = len(list2) for i in range(len(list1)): if list1[i: i + n_list2] == list2: return i return -1 def data_generator(data, batch_size): while True: X1, X2, Y = [], [], [] for i, d in enumerate(data): x = d[0].strip() y = int(d[1]) x = tokenizer.encode(first=x) X1.append(x[0]) X2.append(x[1]) Y.append(y) if len(X1) == batch_size or i == len(data) - 1: X1 = pad_sequences(X1, maxlen=max_len) X2 = pad_sequences(X2, maxlen=max_len) Y = one_hot(Y, 4) yield [X1, X2], Y X1, X2, Y = [], [], [] def extract_entity(text_in, model): """解码函数,应自行添加更多规则,保证解码出来的是一个公司名 """ text_in = text_in[:max_len] _tokens = tokenizer.tokenize(text_in) _x1, _x2 = tokenizer.encode(first=text_in) _x1, _x2 = np.array([_x1]), np.array([_x2]) with graph.as_default(): _ps1 = model.predict([_x1, _x2]) start = _ps1.argmax() return start, _ps1 class Evaluate(Callback): def __init__(self, data, model): self.ACC = [] self.best = 0. self.dev_data = data self.model = model def on_epoch_end(self, epoch, logs=None): acc = self.evaluate() self.ACC.append(acc) if acc > self.best: self.best = acc self.model.save_weights('../output/sentiment_model.weights') print('acc: %.4f, best acc: %.4f\n' % (acc, self.best)) def evaluate(self): A = 1e-10 for d in tqdm(iter(self.dev_data)): R = extract_entity(d[0], self.model) if R == d[1]: A += 1 return A / len(self.dev_data) def test(test_data, model): """注意官方页面写着是以\t分割,实际上却是以逗号分割 """ with open('../result.txt', 'w', encoding='utf-8')as file: for d in tqdm(iter(test_data)): s = str(d[0]) + ',' + extract_entity(d[1].replace('\t', ''), model) file.write(s + '\n') if __name__ == '__main__': batch_size = 8 learning_rate = 1e-5 is_test = True train_data, dev_data, test_data = read_data() model = sentiment_model(learning_rate=learning_rate) # model.load_weights('../output/best_model2.weights') evaluator = Evaluate(dev_data, model) X = data_generator(train_data, batch_size) steps = int((len(train_data) + batch_size - 1) / batch_size) model.fit_generator(X, steps_per_epoch=steps, epochs=120, callbacks=[evaluator])
26.703226
84
0.590722
307ff989cdc20ce8ab9cc180823164458236e7cf
930
py
Python
example/dj/apps/issue_tracker/tests/factories.py
druids/django-fperms-iscore
8e919cdc70ed57e0eb6407469de9ef2441ae06ad
[ "MIT" ]
1
2019-10-07T12:40:38.000Z
2019-10-07T12:40:38.000Z
example/dj/apps/issue_tracker/tests/factories.py
druids/django-fperms-iscore
8e919cdc70ed57e0eb6407469de9ef2441ae06ad
[ "MIT" ]
3
2019-08-09T14:10:21.000Z
2022-02-01T13:48:01.000Z
example/dj/apps/issue_tracker/tests/factories.py
druids/django-fperms-iscore
8e919cdc70ed57e0eb6407469de9ef2441ae06ad
[ "MIT" ]
null
null
null
import factory from factory import fuzzy from factory.django import DjangoModelFactory from django.contrib.auth.models import User from issue_tracker.models import Issue class UserFactory(DjangoModelFactory): username = factory.Faker('user_name') password = fuzzy.FuzzyText(length=10) email = 'user@test.cz' @classmethod def _create(cls, model_class, *args, **kwargs): """Override the default ``_create`` with our custom call.""" manager = cls._get_manager(model_class) # The default would use ``manager.create(*args, **kwargs)`` return manager._create_user(*args, **kwargs) class Meta: model = User class IssueFactory(DjangoModelFactory): name = fuzzy.FuzzyText(length=10) created_by = factory.SubFactory(UserFactory) solver = factory.SubFactory(UserFactory) leader = factory.SubFactory(UserFactory) class Meta: model = Issue
25.833333
68
0.704301
7154a6174361a0e06ea3ad26e2db4b55f9ac5a26
6,146
py
Python
permanentclock/src/plugin.py
FoxyRabbit67/enigma2-plugins
f6b94012726931fdf28e80a26226aec612b350de
[ "Linux-OpenIB" ]
41
2016-01-21T17:54:44.000Z
2021-06-26T05:54:41.000Z
permanentclock/src/plugin.py
FoxyRabbit67/enigma2-plugins
f6b94012726931fdf28e80a26226aec612b350de
[ "Linux-OpenIB" ]
22
2016-11-16T11:25:26.000Z
2021-12-13T09:13:06.000Z
permanentclock/src/plugin.py
FoxyRabbit67/enigma2-plugins
f6b94012726931fdf28e80a26226aec612b350de
[ "Linux-OpenIB" ]
62
2016-02-05T22:55:48.000Z
2022-03-12T21:48:22.000Z
## ## Permanent Clock ## by AliAbdul ## from Components.ActionMap import ActionMap from Components.config import config, ConfigInteger, ConfigSubsection, ConfigYesNo from Components.MenuList import MenuList from enigma import ePoint, eTimer, getDesktop from os import environ from Plugins.Plugin import PluginDescriptor from Screens.Screen import Screen ############################################################################## config.plugins.PermanentClock = ConfigSubsection() config.plugins.PermanentClock.enabled = ConfigYesNo(default=False) config.plugins.PermanentClock.position_x = ConfigInteger(default=590) config.plugins.PermanentClock.position_y = ConfigInteger(default=35) ############################################################################## SKIN = """ <screen position="0,0" size="120,30" zPosition="10" backgroundColor="#ff000000" title="%s" flags="wfNoBorder"> <widget source="global.CurrentTime" render="Label" position="1,1" size="120,30" font="Regular;26" valign="center" halign="center" backgroundColor="#ff000000" transparent="1"> <convert type="ClockToText">Default</convert> </widget> </screen>""" % _("Permanent Clock") ############################################################################## class PermanentClockScreen(Screen): def __init__(self, session): Screen.__init__(self, session) self.skin = SKIN self.onShow.append(self.movePosition) def movePosition(self): if self.instance: self.instance.move(ePoint(config.plugins.PermanentClock.position_x.value, config.plugins.PermanentClock.position_y.value)) ############################################################################## class PermanentClock(): def __init__(self): self.dialog = None def gotSession(self, session): self.dialog = session.instantiateDialog(PermanentClockScreen, zPosition=1000) self.dialog.movePosition() self.showHide() def changeVisibility(self): if config.plugins.PermanentClock.enabled.value: config.plugins.PermanentClock.enabled.value = False else: config.plugins.PermanentClock.enabled.value = True config.plugins.PermanentClock.enabled.save() self.showHide() def showHide(self): if config.plugins.PermanentClock.enabled.value: self.dialog.show() else: self.dialog.hide() pClock = PermanentClock() ############################################################################## class PermanentClockPositioner(Screen): def __init__(self, session): Screen.__init__(self, session) self.skin = SKIN self["actions"] = ActionMap(["WizardActions"], { "left": self.left, "up": self.up, "right": self.right, "down": self.down, "ok": self.ok, "back": self.exit }, -1) desktop = getDesktop(0) self.desktopWidth = desktop.size().width() self.desktopHeight = desktop.size().height() self.moveTimer = eTimer() self.moveTimer_conn = self.moveTimer.timeout.connect(self.movePosition) self.onExecBegin.append(self.movePosition) def movePosition(self): self.instance.move(ePoint(config.plugins.PermanentClock.position_x.value, config.plugins.PermanentClock.position_y.value)) self.moveTimer.start(50, 1) def left(self): value = config.plugins.PermanentClock.position_x.value value -= 1 if value < 0: value = 0 config.plugins.PermanentClock.position_x.value = value def up(self): value = config.plugins.PermanentClock.position_y.value value -= 1 if value < 0: value = 0 config.plugins.PermanentClock.position_y.value = value def right(self): value = config.plugins.PermanentClock.position_x.value value += 1 if value > self.desktopWidth: value = self.desktopWidth config.plugins.PermanentClock.position_x.value = value def down(self): value = config.plugins.PermanentClock.position_y.value value += 1 if value > self.desktopHeight: value = self.desktopHeight config.plugins.PermanentClock.position_y.value = value def ok(self): config.plugins.PermanentClock.position_x.save() config.plugins.PermanentClock.position_y.save() self.close() def exit(self): config.plugins.PermanentClock.position_x.cancel() config.plugins.PermanentClock.position_y.cancel() self.close() ############################################################################## class PermanentClockMenu(Screen): skin = """ <screen position="center,center" size="420,105" title="%s"> <widget name="list" position="10,10" size="400,85" /> </screen>""" % _("Permanent Clock") def __init__(self, session): Screen.__init__(self, session) self.session = session self["list"] = MenuList([]) self["actions"] = ActionMap(["OkCancelActions"], {"ok": self.okClicked, "cancel": self.close}, -1) self.onLayoutFinish.append(self.showMenu) def showMenu(self): list = [] if config.plugins.PermanentClock.enabled.value: list.append(_("Deactivate permanent clock")) else: list.append(_("Activate permanent clock")) list.append(_("Change permanent clock position")) self["list"].setList(list) def okClicked(self): sel = self["list"].getCurrent() if pClock.dialog is None: pClock.gotSession(self.session) if sel == _("Deactivate permanent clock") or sel == _("Activate permanent clock"): pClock.changeVisibility() self.showMenu() else: pClock.dialog.hide() self.session.openWithCallback(self.positionerCallback, PermanentClockPositioner) def positionerCallback(self, callback=None): pClock.showHide() ############################################################################## def sessionstart(reason, **kwargs): if reason == 0: pClock.gotSession(kwargs["session"]) def startConfig(session, **kwargs): session.open(PermanentClockMenu) def main(menuid): if menuid != "system": return [ ] return [(_("Permanent Clock"), startConfig, "permanent_clock", None)] ############################################################################## def Plugins(**kwargs): return [ PluginDescriptor(where=[PluginDescriptor.WHERE_SESSIONSTART], fnc=sessionstart), PluginDescriptor(name=_("Permanent Clock"), description=_("Shows the clock permanent on the screen"), where=PluginDescriptor.WHERE_MENU, fnc=main)]
31.84456
176
0.664823
0b357bb07ada26c3ba997f3da50652cc4f841b95
2,584
py
Python
gamestonk_terminal/stocks/discovery/yahoofinance_model.py
Aerex/GamestonkTerminal
680e0cd278f0d8e45031cdc9d51f247e9aa90ce1
[ "MIT" ]
1,835
2021-05-09T02:55:06.000Z
2022-03-29T12:37:05.000Z
gamestonk_terminal/stocks/discovery/yahoofinance_model.py
Aerex/GamestonkTerminal
680e0cd278f0d8e45031cdc9d51f247e9aa90ce1
[ "MIT" ]
569
2021-05-09T15:59:41.000Z
2022-03-29T12:25:16.000Z
gamestonk_terminal/stocks/discovery/yahoofinance_model.py
Aerex/GamestonkTerminal
680e0cd278f0d8e45031cdc9d51f247e9aa90ce1
[ "MIT" ]
268
2021-05-10T21:46:50.000Z
2022-03-28T09:18:38.000Z
""" Yahoo Finance Model """ __docformat__ = "numpy" import pandas as pd import requests def get_gainers() -> pd.DataFrame: """Get top gainers. [Source: Yahoo Finance] Returns ------- pd.DataFrame Stock Gainers """ url_gainers = "https://finance.yahoo.com/screener/predefined/day_gainers" return pd.read_html(requests.get(url_gainers).text)[0] def get_losers() -> pd.DataFrame: """Get top losers. [Source: Yahoo Finance] Returns ------- pd.DataFrame Stock Losers """ url_losers = "https://finance.yahoo.com/screener/predefined/day_losers" return pd.read_html(requests.get(url_losers).text)[0] def get_ugs() -> pd.DataFrame: """Get stocks with earnings growth rates better than 25% and relatively low PE and PEG ratios. [Source: Yahoo Finance] Returns ------- pd.DataFrame Undervalued stocks """ url = "https://finance.yahoo.com/screener/predefined/undervalued_growth_stocks" data = pd.read_html(requests.get(url).text)[0] data = data.iloc[:, :-1] return data def get_gtech() -> pd.DataFrame: """Get technology stocks with revenue and earnings growth in excess of 25%. [Source: Yahoo Finance] Returns ------- pd.DataFrame Growth technology stocks """ url = "https://finance.yahoo.com/screener/predefined/growth_technology_stocks" data = pd.read_html(requests.get(url).text)[0] data = data.iloc[:, :-1] return data def get_active() -> pd.DataFrame: """Get stocks ordered in descending order by intraday trade volume. [Source: Yahoo Finance] Returns ------- pd.DataFrame Most active stocks """ url = "https://finance.yahoo.com/screener/predefined/most_actives" data = pd.read_html(requests.get(url).text)[0] return data def get_ulc() -> pd.DataFrame: """Get Yahoo Finance potentially undervalued large cap stocks. [Source: Yahoo Finance] Returns ------- pd.DataFrame Most undervalued large cap stocks """ url = "https://finance.yahoo.com/screener/predefined/undervalued_large_caps" data = pd.read_html(requests.get(url).text)[0] return data def get_asc() -> pd.DataFrame: """Get Yahoo Finance small cap stocks with earnings growth rates better than 25%. [Source: Yahoo Finance] Returns ------- pd.DataFrame Most aggressive small cap stocks """ url = "https://finance.yahoo.com/screener/predefined/aggressive_small_caps" data = pd.read_html(requests.get(url).text)[0] return data
24.846154
122
0.657121
2f90a926e7c8ae9d47cca77c84ca5477595de9d3
759
py
Python
hero_slider/tests/views_tests.py
bitlabstudio/django-hero-slider
8153b3eece76c47210a266c2edb660725c34a56e
[ "MIT" ]
3
2019-12-24T18:22:25.000Z
2021-07-21T19:37:30.000Z
hero_slider/tests/views_tests.py
bitmazk/django-hero-slider
8153b3eece76c47210a266c2edb660725c34a56e
[ "MIT" ]
5
2015-01-01T02:54:30.000Z
2016-08-08T12:48:08.000Z
hero_slider/tests/views_tests.py
bitmazk/django-hero-slider
8153b3eece76c47210a266c2edb660725c34a56e
[ "MIT" ]
3
2015-01-01T14:51:48.000Z
2016-08-05T19:46:24.000Z
"""Tests for the views of the ``hero_slider`` app.""" from django.contrib.contenttypes.models import ContentType from django.test import TestCase from django_libs.tests.mixins import ViewRequestFactoryTestMixin from ..views import GetCTypeDetails class GetCTypeDetailsTestCase(ViewRequestFactoryTestMixin, TestCase): """Tests for the ``GetCTypeDetails`` view class.""" view_class = GetCTypeDetails def test_view(self): resp = self.is_callable(data={'pk': 1, }) ctype = ContentType.objects.get(pk=1) self.assertIn(ctype.app_label, resp.content.decode('utf-8'), msg=( 'Should return a JSON string containing app_label and model')) def test_bad_pk(self): self.is_not_callable(data={'pk': 999, })
34.5
74
0.716733
a0f182b1ac469b1738f5dff68ff208a4f11047ac
215
py
Python
shortcuts/actions/calculation.py
maximejf42/python-shortcuts
addde7732e88d250aaea75c228241ed182fca850
[ "MIT" ]
1
2021-12-07T09:07:10.000Z
2021-12-07T09:07:10.000Z
shortcuts/actions/calculation.py
yy/python-shortcuts
025c54be965600fbe7ff6ec96f594efea503cbc3
[ "MIT" ]
null
null
null
shortcuts/actions/calculation.py
yy/python-shortcuts
025c54be965600fbe7ff6ec96f594efea503cbc3
[ "MIT" ]
null
null
null
from shortcuts.actions.base import BaseAction, Field class CountAction(BaseAction): '''Count''' itype = 'is.workflow.actions.count' keyword = 'count' count = Field('WFCountType', capitalize=True)
21.5
52
0.697674
061b79de324b6c5068393ad5672024bc5341a144
1,813
py
Python
src/bindings/rmr-python/examples/receive.py
cachengo/ric-plt-lib-rmr
a1575dacc478b945ea63f5d0cc3db3d66dcb5983
[ "Apache-2.0", "CC-BY-4.0" ]
null
null
null
src/bindings/rmr-python/examples/receive.py
cachengo/ric-plt-lib-rmr
a1575dacc478b945ea63f5d0cc3db3d66dcb5983
[ "Apache-2.0", "CC-BY-4.0" ]
null
null
null
src/bindings/rmr-python/examples/receive.py
cachengo/ric-plt-lib-rmr
a1575dacc478b945ea63f5d0cc3db3d66dcb5983
[ "Apache-2.0", "CC-BY-4.0" ]
null
null
null
# ================================================================================== # Copyright (c) 2019 Nokia # Copyright (c) 2018-2019 AT&T Intellectual Property. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ================================================================================== from setuptools import setup, find_packages from rmr import rmr import time import sys import signal # Demonstrate NNG cleanup def signal_handler(sig, frame): print('SIGINT received! Cleaning up rmr') rmr.rmr_close(mrc) print("Byeee") sys.exit(0) # init rmr mrc = rmr.rmr_init("4560".encode('utf-8'), rmr.RMR_MAX_RCV_BYTES, 0x00) while rmr.rmr_ready(mrc) == 0: time.sleep(1) print("not yet ready") rmr.rmr_set_stimeout(mrc, 2) # capture ctrl-c signal.signal(signal.SIGINT, signal_handler) sbuf = None while True: print("Waiting for a message, will timeout after 2000ms") sbuf = rmr.rmr_torcv_msg(mrc, sbuf, 2000) summary = rmr.message_summary(sbuf) if summary['message state'] == 12: print("Nothing received =(") else: print("Message received!: {}".format(summary)) val = b"message recieved OK yall!" rmr.set_payload_and_length(val, sbuf) sbuf = rmr.rmr_rts_msg(mrc, sbuf) time.sleep(1)
31.807018
84
0.63155
b08ada0660beee3ab49f49762bae69f432a84b0d
766
py
Python
nonbonded/tests/library/plotting/plotly/test_benchmark.py
SimonBoothroyd/nonbonded
3efbb7d943d936b47248975f9ad0d8a006ea8684
[ "MIT" ]
5
2020-05-11T18:25:00.000Z
2022-01-27T10:55:09.000Z
nonbonded/tests/library/plotting/plotly/test_benchmark.py
SimonBoothroyd/nonbonded
3efbb7d943d936b47248975f9ad0d8a006ea8684
[ "MIT" ]
88
2020-06-02T14:40:05.000Z
2022-03-02T09:20:39.000Z
nonbonded/tests/library/plotting/plotly/test_benchmark.py
SimonBoothroyd/nonbonded
3efbb7d943d936b47248975f9ad0d8a006ea8684
[ "MIT" ]
null
null
null
from nonbonded.library.plotting.plotly.benchmark import ( plot_overall_statistics, plot_scatter_results, ) from nonbonded.library.statistics.statistics import StatisticType def test_plot_overall_statistics(benchmarks_and_results, tmpdir): benchmarks, results, _ = benchmarks_and_results figure = plot_overall_statistics(benchmarks, results, StatisticType.RMSE) assert figure is not None assert figure.to_plotly() is not None def test_plot_scatter_results(benchmarks_and_results, tmpdir): benchmarks, results, data_sets = benchmarks_and_results figures = plot_scatter_results(benchmarks, results, data_sets) for figure in figures.values(): assert figure is not None assert figure.to_plotly() is not None
27.357143
77
0.778068
741cf7ff78759a87b0918152eb88caa74c40ae1c
9,940
py
Python
tensorforce/models/distribution_model.py
youlei202/tensorforce-lei
871ef7f5c41d496aa8ad674854792ebd52ce1546
[ "Apache-2.0" ]
null
null
null
tensorforce/models/distribution_model.py
youlei202/tensorforce-lei
871ef7f5c41d496aa8ad674854792ebd52ce1546
[ "Apache-2.0" ]
null
null
null
tensorforce/models/distribution_model.py
youlei202/tensorforce-lei
871ef7f5c41d496aa8ad674854792ebd52ce1546
[ "Apache-2.0" ]
null
null
null
# Copyright 2017 reinforce.io. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import print_function from __future__ import division import tensorflow as tf from tensorforce import util from tensorforce.core.networks import Network from tensorforce.core.distributions import Distribution, Bernoulli, Categorical, Gaussian, Beta from tensorforce.models import Model class DistributionModel(Model): """ Base class for models using distributions parametrized by a neural network. """ def __init__( self, states_spec, actions_spec, network_spec, device, session_config, scope, saver_spec, summary_spec, distributed_spec, optimizer, discount, variable_noise, states_preprocessing_spec, explorations_spec, reward_preprocessing_spec, distributions_spec, entropy_regularization ): self.network_spec = network_spec self.distributions_spec = distributions_spec self.distributions = None self.fn_kl_divergence = None # Entropy regularization assert entropy_regularization is None or entropy_regularization >= 0.0 self.entropy_regularization = entropy_regularization super(DistributionModel, self).__init__( states_spec=states_spec, actions_spec=actions_spec, device=device, session_config=session_config, scope=scope, saver_spec=saver_spec, summary_spec=summary_spec, distributed_spec=distributed_spec, optimizer=optimizer, discount=discount, variable_noise=variable_noise, states_preprocessing_spec=states_preprocessing_spec, explorations_spec=explorations_spec, reward_preprocessing_spec=reward_preprocessing_spec ) def initialize(self, custom_getter): super(DistributionModel, self).initialize(custom_getter) # Network self.network = Network.from_spec( spec=self.network_spec, kwargs=dict(summary_labels=self.summary_labels) ) # Distributions self.distributions = self.create_distributions() # Network internals self.internals_input.extend(self.network.internals_input()) self.internals_init.extend(self.network.internals_init()) # KL divergence function self.fn_kl_divergence = tf.make_template( name_=(self.scope + '/kl-divergence'), func_=self.tf_kl_divergence, custom_getter_=custom_getter ) def create_distributions(self): distributions = dict() for name, action in self.actions_spec.items(): if self.distributions_spec is not None and name in self.distributions_spec: kwargs = dict(action) kwargs['summary_labels'] = self.summary_labels distributions[name] = Distribution.from_spec( spec=self.distributions_spec[name], kwargs=kwargs ) elif action['type'] == 'bool': distributions[name] = Bernoulli( shape=action['shape'], summary_labels=self.summary_labels ) elif action['type'] == 'int': distributions[name] = Categorical( shape=action['shape'], num_actions=action['num_actions'], summary_labels=self.summary_labels ) elif action['type'] == 'float': if 'min_value' in action: distributions[name] = Beta( shape=action['shape'], min_value=action['min_value'], max_value=action['max_value'], summary_labels=self.summary_labels ) else: distributions[name] = Gaussian( shape=action['shape'], summary_labels=self.summary_labels ) return distributions def tf_actions_and_internals(self, states, internals, update, deterministic): embedding, internals = self.network.apply(x=states, internals=internals, update=update, return_internals=True) actions = dict() for name, distribution in self.distributions.items(): distr_params = distribution.parameterize(x=embedding) actions[name] = distribution.sample(distr_params=distr_params, deterministic=deterministic) return actions, internals def tf_kl_divergence(self, states, internals, update): embedding = self.network.apply(x=states, internals=internals, update=update) kl_divergences = list() for name, distribution in self.distributions.items(): distr_params = distribution.parameterize(x=embedding) fixed_distr_params = tuple(tf.stop_gradient(input=value) for value in distr_params) kl_divergence = distribution.kl_divergence(distr_params1=fixed_distr_params, distr_params2=distr_params) collapsed_size = util.prod(util.shape(kl_divergence)[1:]) kl_divergence = tf.reshape(tensor=kl_divergence, shape=(-1, collapsed_size)) kl_divergences.append(kl_divergence) kl_divergence_per_instance = tf.reduce_mean(input_tensor=tf.concat(values=kl_divergences, axis=1), axis=1) return tf.reduce_mean(input_tensor=kl_divergence_per_instance, axis=0) def get_optimizer_kwargs(self, states, internals, actions, terminal, reward, update): kwargs = super(DistributionModel, self).get_optimizer_kwargs( states=states, internals=internals, actions=actions, terminal=terminal, reward=reward, update=update ) kwargs['fn_kl_divergence'] = ( lambda: self.fn_kl_divergence( states=states, internals=internals, update=update ) ) return kwargs def tf_regularization_losses(self, states, internals, update): losses = super(DistributionModel, self).tf_regularization_losses( states=states, internals=internals, update=update ) network_loss = self.network.regularization_loss() if network_loss is not None: losses['network'] = network_loss for distribution in self.distributions.values(): regularization_loss = distribution.regularization_loss() if regularization_loss is not None: if 'distributions' in losses: losses['distributions'] += regularization_loss else: losses['distributions'] = regularization_loss if self.entropy_regularization is not None and self.entropy_regularization > 0.0: entropies = list() embedding = self.network.apply(x=states, internals=internals, update=update) for name, distribution in self.distributions.items(): distr_params = distribution.parameterize(x=embedding) entropy = distribution.entropy(distr_params=distr_params) collapsed_size = util.prod(util.shape(entropy)[1:]) entropy = tf.reshape(tensor=entropy, shape=(-1, collapsed_size)) entropies.append(entropy) entropy_per_instance = tf.reduce_mean(input_tensor=tf.concat(values=entropies, axis=1), axis=1) entropy = tf.reduce_mean(input_tensor=entropy_per_instance, axis=0) losses['entropy'] = -self.entropy_regularization * entropy return losses def get_variables(self, include_non_trainable=False): model_variables = super(DistributionModel, self).get_variables(include_non_trainable=include_non_trainable) network_variables = self.network.get_variables(include_non_trainable=include_non_trainable) distribution_variables = self.get_distributions_variables(self.distributions, include_non_trainable=include_non_trainable) return model_variables + network_variables + distribution_variables def get_summaries(self): model_summaries = super(DistributionModel, self).get_summaries() network_summaries = self.network.get_summaries() distribution_summaries = self.get_distributions_summaries(self.distributions) return model_summaries + network_summaries + distribution_summaries @staticmethod def get_distributions_variables(distributions, include_non_trainable=False): distribution_variables = [ variable for name in sorted(distributions) for variable in distributions[name].get_variables(include_non_trainable=include_non_trainable) ] return distribution_variables @staticmethod def get_distributions_summaries(distributions): distribution_summaries = [ summary for name in sorted(distributions) for summary in distributions[name].get_summaries() ] return distribution_summaries
39.919679
130
0.645272
d849d729c9e3c4164be9ee3af875f5f69a7f991f
1,500
py
Python
tests/test_responseparser.py
qyanu-pull-requests/python-sdk
ae27a7b680637025529e3421016d8931cbc28306
[ "MIT" ]
null
null
null
tests/test_responseparser.py
qyanu-pull-requests/python-sdk
ae27a7b680637025529e3421016d8931cbc28306
[ "MIT" ]
null
null
null
tests/test_responseparser.py
qyanu-pull-requests/python-sdk
ae27a7b680637025529e3421016d8931cbc28306
[ "MIT" ]
null
null
null
import re import hexonet.apiconnector.responseparser as RP from hexonet.apiconnector.responsetemplatemanager import ResponseTemplateManager as RTM def test_rpmethods(): rtm = RTM() rtm.addTemplate( 'OK', rtm.generateTemplate('200', 'Command completed successfully') ) # #.serialize() # [w/ PROPERTY] r = rtm.getTemplate('OK').getHash() r["PROPERTY"] = { "DOMAIN": ['mydomain1.com', 'mydomain2.com', 'mydomain3.com'], "RATING": ['1', '2', '3'], "SUM": [3] } assert RP.serialize(r) == ( '[RESPONSE]\r\nPROPERTY[DOMAIN][0]=mydomain1.com\r\nPROPERTY[DOMAIN' + '][1]=mydomain2.com\r\nPROPERTY[DOMAIN][2]=mydomain3.com\r\nPROPERT' + 'Y[RATING][0]=1\r\nPROPERTY[RATING][1]=2\r\nPROPERTY[RATING][2]=3\r' + '\nPROPERTY[SUM][0]=3\r\nCODE=200\r\nDESCRIPTION=Command completed ' + 'successfully\r\nEOF\r\n' ) # [w/o PROPERTY] tpl = rtm.getTemplate('OK') assert RP.serialize(tpl.getHash()) == tpl.getPlain() # [w/o CODE, w/o DESCRIPTION] h = rtm.getTemplate('OK').getHash() h.pop('CODE') h.pop('DESCRIPTION') assert RP.serialize(h) == '[RESPONSE]\r\nEOF\r\n' # [w/ QUEUETIME, w/ RUNTIME] h = rtm.getTemplate('OK').getHash() h["QUEUETIME"] = '0' h["RUNTIME"] = '0.12' assert RP.serialize(h) == ( '[RESPONSE]\r\nCODE=200\r\nDESCRIPTION=Command completed successful' + 'ly\r\nQUEUETIME=0\r\nRUNTIME=0.12\r\nEOF\r\n' )
31.914894
87
0.601333
4e88375f3bf62fe33ed8e2369b8de0709ad57242
777
py
Python
Python3/0658-Find-K-Closest-Elements/soln-1.py
wyaadarsh/LeetCode-Solutions
3719f5cb059eefd66b83eb8ae990652f4b7fd124
[ "MIT" ]
5
2020-07-24T17:48:59.000Z
2020-12-21T05:56:00.000Z
Python3/0658-Find-K-Closest-Elements/soln-1.py
zhangyaqi1989/LeetCode-Solutions
2655a1ffc8678ad1de6c24295071308a18c5dc6e
[ "MIT" ]
null
null
null
Python3/0658-Find-K-Closest-Elements/soln-1.py
zhangyaqi1989/LeetCode-Solutions
2655a1ffc8678ad1de6c24295071308a18c5dc6e
[ "MIT" ]
2
2020-07-24T17:49:01.000Z
2020-08-31T19:57:35.000Z
class Solution: def findClosestElements(self, arr, k, x): """ :type arr: List[int] :type k: int :type x: int :rtype: List[int] """ lefts, rights = [], [] idx = bisect.bisect_left(arr, x) l, r = idx - 1, idx # this is important count = k while count: if l < 0: rights.extend(arr[r:r+count]) break if r >= len(arr): lefts.extend(arr[l-count+1:l+1][::-1]) break if x - arr[l] <= arr[r] - x: lefts.append(arr[l]) l -= 1 else: rights.append(arr[r]) r += 1 count -= 1 return lefts[::-1] + rights
28.777778
54
0.392535
8f698edff44070d2e8a076a598cf3cbec6465680
5,153
py
Python
qmpy/data/meta_data.py
WalterjhShen/qmpy
686e18cecbb82a6bb523249ac1779a99fb865350
[ "MIT" ]
2
2019-04-25T17:49:16.000Z
2019-06-01T01:36:04.000Z
qmpy/data/meta_data.py
WalterjhShen/qmpy
686e18cecbb82a6bb523249ac1779a99fb865350
[ "MIT" ]
10
2018-07-05T03:19:58.000Z
2019-03-24T13:05:14.000Z
qmpy/data/meta_data.py
WalterjhShen/qmpy
686e18cecbb82a6bb523249ac1779a99fb865350
[ "MIT" ]
1
2020-04-30T14:08:45.000Z
2020-04-30T14:08:45.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- from django.db import models import logging logger = logging.getLogger(__name__) class MetaData(models.Model): """ Base class for variable typed model tagging. Model for arbitrary meta-data descriptors for various qmpy objects. Generally accessed by properties and methods added by the "add_label" descriptor. See "add_label" for a more detailed description of its use Relationships | :mod:`~qmpy.Calculation` via calculation_set | :mod:`~qmpy.Composition` via composition_set | :mod:`~qmpy.DOS` via dos_set | :mod:`~qmpy.Entry` via entry_set | :mod:`~qmpy.Structure` via structure_set Attributes: | id: Autoincrementing primary key | type: Label for the kind of meta data, e.g. "hold", "keyword" | value: Content of the meta data. e.g. "repeated failure", "known | anti-ferromagnetic" Examples:: >>> MetaData.get('Keyword', 'ICSD') <Keyword: ICSD> """ type = models.CharField(max_length=15) value = models.TextField() class Meta: app_label = 'qmpy' db_table = 'meta_data' def __str__(self): return self.value def __repr__(self): return '<%s: %s>' % (self.type.title(), self.value) @classmethod def get(cls, type, value): md, new = MetaData.objects.get_or_create(type=type, value=value) if new: md.save() return md class GlobalWarning(object): @staticmethod def set(warning): md = MetaData.get('global_warning', warning) md.save() return md @staticmethod def clear(warning): md = MetaData.get('global_warning', warning) md.delete() @staticmethod def list(): return list(MetaData.objects.filter(type='global_warning')) class GlobalInfo(object): @staticmethod def set(warning): md = MetaData.get('global_info', warning) md.save() return md @staticmethod def clear(warning): md = MetaData.get('global_info', warning) md.delete() @staticmethod def list(): return list(MetaData.objects.filter(type='global_info')) class DatabaseUpdate(object): @staticmethod def value(): return MetaData.objects.get(type='database_update').value @staticmethod def set(): MetaData.objects.filter(type='database_update').update( value=str(datetime.date(datetime.now()))) def add_meta_data(label, plural=None, cache=None, description=''): """ Decorator for adding managed attributes for MetaData types to other models. Requires that the class being decorated has a many_to_many field with MetaData. Example:: >>> @add_label("keywords") >>> class NewModel(models.Model): >>> meta_data = models.ManyToManyField('MetaData') >>> >>> instance = NewModel() >>> instance.keywords [] >>> instance.add_keyword('decorated!') >>> instance.keywords [<Keyword: decorated!>] >>> instance.remove_keyword('decorated!') >>> instance.keywords [] >>> instance.keywords = ['add', 'in', 'bulk'] >>> instance.keywords [<Keyword: add>, <Keyword: in>, <Keyword: bulk>] """ if plural is None: plural = '%ss' % label if cache is None: cache = '_%s' % plural label = label.lower() plural = plural.lower() cache = cache.lower() def func(cls): setattr(cls, cache, None) def getter(self): if getattr(self, cache) is None: if getattr(self, 'pk') is None: setattr(self, cache, []) else: data = self.meta_data.filter(type=label) data = data.values_list('value', flat=True) setattr(self, cache, list(data)) return getattr(self, cache) def setter(cls, values): setattr(cls, cache, values) setattr(cls, plural, property(getter, setter, None, description)) def adder(cls, value): 'Helper function to add %s to list of %s.' % (label, plural) existing = getattr(cls, plural) if not value in existing: existing.append(value) setattr(cls, 'add_%s' % label, adder) def remover(cls, value): 'Helper function to remove a %s from list of %s.' % (label, plural) existing = getattr(cls, plural) if value in existing: existing.remove(value) setattr(cls, 'remove_%s' % label, remover) doc = 'Return list of %s (MetaData objects of type %s)' % (plural, label) def obj_getter(self): return [ MetaData.get(label, v) for v in getattr(self, plural) ] setattr(cls, '%s_objects' % label, property(obj_getter, None, None, doc)) return cls return func
29.786127
81
0.571512
10b3c22ab6f568a5fcf4c18b475ef2fb3dbaa092
4,613
py
Python
reviewboard/webapi/decorators.py
vigneshsrinivasan/reviewboard
4775130c1c1022f81edc11928e02b1b6c069f6ed
[ "MIT" ]
1
2020-02-11T07:09:14.000Z
2020-02-11T07:09:14.000Z
reviewboard/webapi/decorators.py
vigneshsrinivasan/reviewboard
4775130c1c1022f81edc11928e02b1b6c069f6ed
[ "MIT" ]
null
null
null
reviewboard/webapi/decorators.py
vigneshsrinivasan/reviewboard
4775130c1c1022f81edc11928e02b1b6c069f6ed
[ "MIT" ]
null
null
null
from django.http import HttpRequest from djblets.siteconfig.models import SiteConfiguration from djblets.util.decorators import simple_decorator from djblets.webapi.core import WebAPIResponse, WebAPIResponseError from djblets.webapi.decorators import webapi_login_required, \ webapi_response_errors, \ _find_httprequest from djblets.webapi.encoders import BasicAPIEncoder from djblets.webapi.errors import DOES_NOT_EXIST, NOT_LOGGED_IN, \ PERMISSION_DENIED from reviewboard.site.models import LocalSite @webapi_response_errors(NOT_LOGGED_IN) @simple_decorator def webapi_check_login_required(view_func): """ A decorator that checks whether login is required on this installation and, if so, checks if the user is logged in. If login is required and the user is not logged in, they'll get a NOT_LOGGED_IN error. """ def _check(*args, **kwargs): siteconfig = SiteConfiguration.objects.get_current() request = _find_httprequest(args) if (siteconfig.get("auth_require_sitewide_login") or (request.user.is_anonymous() and 'HTTP_AUTHORIZATION' in request.META)): return webapi_login_required(view_func)(*args, **kwargs) else: return view_func(*args, **kwargs) view_func.checks_login_required = True return _check def webapi_deprecated(deprecated_in, force_error_http_status=None, default_api_format=None, encoders=[]): """Marks an API handler as deprecated. ``deprecated_in`` specifies the version that first deprecates this call. ``force_error_http_status`` forces errors to use the specified HTTP status code. ``default_api_format`` specifies the default api format (json or xml) if one isn't provided. """ def _dec(view_func): def _view(*args, **kwargs): if default_api_format: request = args[0] assert isinstance(request, HttpRequest) method_args = getattr(request, request.method, None) if method_args and 'api_format' not in method_args: method_args = method_args.copy() method_args['api_format'] = default_api_format setattr(request, request.method, method_args) response = view_func(*args, **kwargs) if isinstance(response, WebAPIResponse): response.encoders = encoders if isinstance(response, WebAPIResponseError): response.api_data['deprecated'] = { 'in_version': deprecated_in, } if (force_error_http_status and isinstance(response, WebAPIResponseError)): response.status_code = force_error_http_status return response return _view return _dec _deprecated_api_encoders = [] def webapi_deprecated_in_1_5(view_func): from reviewboard.webapi.encoder import DeprecatedReviewBoardAPIEncoder global _deprecated_api_encoders if not _deprecated_api_encoders: _deprecated_api_encoders = [ DeprecatedReviewBoardAPIEncoder(), BasicAPIEncoder(), ] return webapi_deprecated( deprecated_in='1.5', force_error_http_status=200, default_api_format='json', encoders=_deprecated_api_encoders)(view_func) @webapi_response_errors(DOES_NOT_EXIST, NOT_LOGGED_IN, PERMISSION_DENIED) @simple_decorator def webapi_check_local_site(view_func): """Checks whether a user has access to a local site given in the URL. This decorator can be added to get/get_list methods to check whether or not a user should be able to view them given the local site name in the URL. """ def _check(*args, **kwargs): request = _find_httprequest(args) local_site_name = kwargs.get('local_site_name', None) if local_site_name: try: local_site = LocalSite.objects.get(name=local_site_name) if not local_site.is_accessible_by(request.user): if request.user.is_authenticated(): return WebAPIResponseError(request, PERMISSION_DENIED) else: return WebAPIResponseError(request, NOT_LOGGED_IN) except LocalSite.DoesNotExist: return WebAPIResponseError(request, DOES_NOT_EXIST) return view_func(*args, **kwargs) return _check
35.484615
80
0.656189
2c6f506132ef71a1a22f72694c74270c008387fd
28,769
py
Python
tests/unit/transport/test_zeromq.py
fake-name/salt
d8f04936e4407f51946e32e8166159778f6c31a5
[ "Apache-2.0" ]
null
null
null
tests/unit/transport/test_zeromq.py
fake-name/salt
d8f04936e4407f51946e32e8166159778f6c31a5
[ "Apache-2.0" ]
null
null
null
tests/unit/transport/test_zeromq.py
fake-name/salt
d8f04936e4407f51946e32e8166159778f6c31a5
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ :codeauthor: Thomas Jackson <jacksontj.89@gmail.com> """ from __future__ import absolute_import, print_function, unicode_literals import ctypes import multiprocessing import os import threading import time from concurrent.futures.thread import ThreadPoolExecutor import salt.config import salt.exceptions import salt.ext.tornado.gen import salt.ext.tornado.ioloop import salt.log.setup import salt.transport.client import salt.transport.server import salt.utils.platform import salt.utils.process import zmq.eventloop.ioloop from salt.ext import six from salt.ext.six.moves import range from salt.ext.tornado.testing import AsyncTestCase from salt.transport.zeromq import AsyncReqMessageClientPool # Import test support libs from tests.support.runtests import RUNTIME_VARS from tests.support.unit import TestCase, skipIf from tests.support.helpers import flaky, get_unused_localhost_port from tests.support.mixins import AdaptedConfigurationTestCaseMixin from tests.support.mock import MagicMock, patch from tests.support.runtests import RUNTIME_VARS from tests.support.unit import TestCase, skipIf from tests.unit.transport.mixins import ( PubChannelMixin, ReqChannelMixin, run_loop_in_thread, ) # support pyzmq 13.0.x, TODO: remove once we force people to 14.0.x if not hasattr(zmq.eventloop.ioloop, "ZMQIOLoop"): zmq.eventloop.ioloop.ZMQIOLoop = zmq.eventloop.ioloop.IOLoop class BaseZMQReqCase(TestCase, AdaptedConfigurationTestCaseMixin): """ Test the req server/client pair """ @classmethod def setUpClass(cls): if not hasattr(cls, "_handle_payload"): return ret_port = get_unused_localhost_port() publish_port = get_unused_localhost_port() tcp_master_pub_port = get_unused_localhost_port() tcp_master_pull_port = get_unused_localhost_port() tcp_master_publish_pull = get_unused_localhost_port() tcp_master_workers = get_unused_localhost_port() cls.master_config = cls.get_temp_config( "master", **{ "transport": "zeromq", "auto_accept": True, "ret_port": ret_port, "publish_port": publish_port, "tcp_master_pub_port": tcp_master_pub_port, "tcp_master_pull_port": tcp_master_pull_port, "tcp_master_publish_pull": tcp_master_publish_pull, "tcp_master_workers": tcp_master_workers, } ) cls.minion_config = cls.get_temp_config( "minion", **{ "transport": "zeromq", "master_ip": "127.0.0.1", "master_port": ret_port, "auth_timeout": 5, "auth_tries": 1, "master_uri": "tcp://127.0.0.1:{0}".format(ret_port), } ) cls.process_manager = salt.utils.process.ProcessManager( name="ReqServer_ProcessManager" ) cls.server_channel = salt.transport.server.ReqServerChannel.factory( cls.master_config ) cls.server_channel.pre_fork(cls.process_manager) cls.io_loop = salt.ext.tornado.ioloop.IOLoop() cls.evt = threading.Event() cls.server_channel.post_fork(cls._handle_payload, io_loop=cls.io_loop) cls.server_thread = threading.Thread( target=run_loop_in_thread, args=(cls.io_loop, cls.evt) ) cls.server_thread.start() @classmethod def tearDownClass(cls): if not hasattr(cls, "_handle_payload"): return # Attempting to kill the children hangs the test suite. # Let the test suite handle this instead. cls.process_manager.stop_restarting() cls.process_manager.kill_children() cls.evt.set() cls.server_thread.join() time.sleep( 2 ) # Give the procs a chance to fully close before we stop the io_loop cls.server_channel.close() del cls.server_channel del cls.io_loop del cls.process_manager del cls.server_thread del cls.master_config del cls.minion_config @classmethod def _handle_payload(cls, payload): """ TODO: something besides echo """ return payload, {"fun": "send_clear"} class ClearReqTestCases(BaseZMQReqCase, ReqChannelMixin): """ Test all of the clear msg stuff """ def setUp(self): self.channel = salt.transport.client.ReqChannel.factory( self.minion_config, crypt="clear" ) def tearDown(self): self.channel.close() del self.channel @classmethod @salt.ext.tornado.gen.coroutine def _handle_payload(cls, payload): """ TODO: something besides echo """ raise salt.ext.tornado.gen.Return((payload, {"fun": "send_clear"})) @skipIf(True, "SLOWTEST skip") def test_master_uri_override(self): """ ensure master_uri kwarg is respected """ # minion_config should be 127.0.0.1, we want a different uri that still connects uri = "tcp://{master_ip}:{master_port}".format( master_ip="localhost", master_port=self.minion_config["master_port"] ) channel = salt.transport.Channel.factory(self.minion_config, master_uri=uri) self.assertIn("localhost", channel.master_uri) del channel @flaky @not_runs_on( kernel="linux", os_familiy="Suse", reason="Skipping until https://github.com/saltstack/salt/issues/32902 gets fixed", ) class AESReqTestCases(BaseZMQReqCase, ReqChannelMixin): def setUp(self): self.channel = salt.transport.client.ReqChannel.factory(self.minion_config) def tearDown(self): self.channel.close() del self.channel @classmethod @salt.ext.tornado.gen.coroutine def _handle_payload(cls, payload): """ TODO: something besides echo """ raise salt.ext.tornado.gen.Return((payload, {"fun": "send"})) # TODO: make failed returns have a specific framing so we can raise the same exception # on encrypted channels # #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # # WARNING: This test will fail randomly on any system with > 1 CPU core!!! # #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! @skipIf(True, "SLOWTEST skip") def test_badload(self): """ Test a variety of bad requests, make sure that we get some sort of error """ # TODO: This test should be re-enabled when Jenkins moves to C7. # Once the version of salt-testing is increased to something newer than the September # release of salt-testing, the @flaky decorator should be applied to this test. msgs = ["", [], tuple()] for msg in msgs: with self.assertRaises(salt.exceptions.AuthenticationError): ret = self.channel.send(msg, timeout=5) class BaseZMQPubCase(AsyncTestCase, AdaptedConfigurationTestCaseMixin): """ Test the req server/client pair """ @classmethod def setUpClass(cls): ret_port = get_unused_localhost_port() publish_port = get_unused_localhost_port() tcp_master_pub_port = get_unused_localhost_port() tcp_master_pull_port = get_unused_localhost_port() tcp_master_publish_pull = get_unused_localhost_port() tcp_master_workers = get_unused_localhost_port() cls.master_config = cls.get_temp_config( "master", **{ "transport": "zeromq", "auto_accept": True, "ret_port": ret_port, "publish_port": publish_port, "tcp_master_pub_port": tcp_master_pub_port, "tcp_master_pull_port": tcp_master_pull_port, "tcp_master_publish_pull": tcp_master_publish_pull, "tcp_master_workers": tcp_master_workers, } ) cls.minion_config = salt.config.minion_config(os.path.join(RUNTIME_VARS.TMP_CONF_DIR, 'minion')) cls.minion_config = cls.get_temp_config( "minion", **{ "transport": "zeromq", "master_ip": "127.0.0.1", "master_port": ret_port, "master_uri": "tcp://127.0.0.1:{0}".format(ret_port), } ) cls.process_manager = salt.utils.process.ProcessManager( name="ReqServer_ProcessManager" ) cls.server_channel = salt.transport.server.PubServerChannel.factory( cls.master_config ) cls.server_channel.pre_fork(cls.process_manager) # we also require req server for auth cls.req_server_channel = salt.transport.server.ReqServerChannel.factory( cls.master_config ) cls.req_server_channel.pre_fork(cls.process_manager) cls._server_io_loop = salt.ext.tornado.ioloop.IOLoop() cls.evt = threading.Event() cls.req_server_channel.post_fork( cls._handle_payload, io_loop=cls._server_io_loop ) cls.server_thread = threading.Thread( target=run_loop_in_thread, args=(cls._server_io_loop, cls.evt) ) cls.server_thread.start() @classmethod def tearDownClass(cls): cls.process_manager.kill_children() cls.process_manager.stop_restarting() time.sleep( 2 ) # Give the procs a chance to fully close before we stop the io_loop cls.evt.set() cls.server_thread.join() cls.req_server_channel.close() cls.server_channel.close() cls._server_io_loop.stop() del cls.server_channel del cls._server_io_loop del cls.process_manager del cls.server_thread del cls.master_config del cls.minion_config @classmethod def _handle_payload(cls, payload): """ TODO: something besides echo """ return payload, {"fun": "send_clear"} def setUp(self): super(BaseZMQPubCase, self).setUp() self._start_handlers = dict(self.io_loop._handlers) def tearDown(self): super(BaseZMQPubCase, self).tearDown() failures = [] for k, v in six.iteritems(self.io_loop._handlers): if self._start_handlers.get(k) != v: failures.append((k, v)) del self._start_handlers if failures: raise Exception('FDs still attached to the IOLoop: {0}'.format(failures)) @skipIf(True, "Skip until we can devote time to fix this test") class AsyncPubChannelTest(BaseZMQPubCase, PubChannelMixin): """ Tests around the publish system """ def get_new_ioloop(self): return salt.ext.tornado.ioloop.IOLoop() class AsyncReqMessageClientPoolTest(TestCase): def setUp(self): super(AsyncReqMessageClientPoolTest, self).setUp() sock_pool_size = 5 with patch( "salt.transport.zeromq.AsyncReqMessageClient.__init__", MagicMock(return_value=None), ): self.message_client_pool = AsyncReqMessageClientPool( {"sock_pool_size": sock_pool_size}, args=({}, "") ) self.original_message_clients = self.message_client_pool.message_clients self.message_client_pool.message_clients = [ MagicMock() for _ in range(sock_pool_size) ] def tearDown(self): with patch( "salt.transport.zeromq.AsyncReqMessageClient.destroy", MagicMock(return_value=None), ): del self.original_message_clients super(AsyncReqMessageClientPoolTest, self).tearDown() def test_send(self): for message_client_mock in self.message_client_pool.message_clients: message_client_mock.send_queue = [0, 0, 0] message_client_mock.send.return_value = [] self.assertEqual([], self.message_client_pool.send()) self.message_client_pool.message_clients[2].send_queue = [0] self.message_client_pool.message_clients[2].send.return_value = [1] self.assertEqual([1], self.message_client_pool.send()) def test_destroy(self): self.message_client_pool.destroy() self.assertEqual([], self.message_client_pool.message_clients) class ZMQConfigTest(TestCase): def test_master_uri(self): """ test _get_master_uri method """ m_ip = "127.0.0.1" m_port = 4505 s_ip = "111.1.0.1" s_port = 4058 m_ip6 = "1234:5678::9abc" s_ip6 = "1234:5678::1:9abc" with patch("salt.transport.zeromq.LIBZMQ_VERSION_INFO", (4, 1, 6)), patch( "salt.transport.zeromq.ZMQ_VERSION_INFO", (16, 0, 1) ): # pass in both source_ip and source_port assert salt.transport.zeromq._get_master_uri( master_ip=m_ip, master_port=m_port, source_ip=s_ip, source_port=s_port ) == "tcp://{0}:{1};{2}:{3}".format(s_ip, s_port, m_ip, m_port) assert salt.transport.zeromq._get_master_uri( master_ip=m_ip6, master_port=m_port, source_ip=s_ip6, source_port=s_port ) == "tcp://[{0}]:{1};[{2}]:{3}".format(s_ip6, s_port, m_ip6, m_port) # source ip and source_port empty assert salt.transport.zeromq._get_master_uri( master_ip=m_ip, master_port=m_port ) == "tcp://{0}:{1}".format(m_ip, m_port) assert salt.transport.zeromq._get_master_uri( master_ip=m_ip6, master_port=m_port ) == "tcp://[{0}]:{1}".format(m_ip6, m_port) # pass in only source_ip assert salt.transport.zeromq._get_master_uri( master_ip=m_ip, master_port=m_port, source_ip=s_ip ) == "tcp://{0}:0;{1}:{2}".format(s_ip, m_ip, m_port) assert salt.transport.zeromq._get_master_uri( master_ip=m_ip6, master_port=m_port, source_ip=s_ip6 ) == "tcp://[{0}]:0;[{1}]:{2}".format(s_ip6, m_ip6, m_port) # pass in only source_port assert salt.transport.zeromq._get_master_uri( master_ip=m_ip, master_port=m_port, source_port=s_port ) == "tcp://0.0.0.0:{0};{1}:{2}".format(s_port, m_ip, m_port) class PubServerChannel(TestCase, AdaptedConfigurationTestCaseMixin): @classmethod def setUpClass(cls): ret_port = get_unused_localhost_port() publish_port = get_unused_localhost_port() tcp_master_pub_port = get_unused_localhost_port() tcp_master_pull_port = get_unused_localhost_port() tcp_master_publish_pull = get_unused_localhost_port() tcp_master_workers = get_unused_localhost_port() cls.master_config = cls.get_temp_config( "master", **{ "transport": "zeromq", "auto_accept": True, "ret_port": ret_port, "publish_port": publish_port, "tcp_master_pub_port": tcp_master_pub_port, "tcp_master_pull_port": tcp_master_pull_port, "tcp_master_publish_pull": tcp_master_publish_pull, "tcp_master_workers": tcp_master_workers, "sign_pub_messages": False, } ) salt.master.SMaster.secrets["aes"] = { "secret": multiprocessing.Array( ctypes.c_char, six.b(salt.crypt.Crypticle.generate_key_string()), ), } cls.minion_config = cls.get_temp_config( "minion", **{ "transport": "zeromq", "master_ip": "127.0.0.1", "master_port": ret_port, "auth_timeout": 5, "auth_tries": 1, "master_uri": "tcp://127.0.0.1:{0}".format(ret_port), } ) @classmethod def tearDownClass(cls): del cls.minion_config del cls.master_config def setUp(self): # Start the event loop, even though we don't directly use this with # ZeroMQPubServerChannel, having it running seems to increase the # likely hood of dropped messages. self.io_loop = salt.ext.tornado.ioloop.IOLoop() self.io_loop.make_current() self.io_loop_thread = threading.Thread(target=self.io_loop.start) self.io_loop_thread.start() self.process_manager = salt.utils.process.ProcessManager( name="PubServer_ProcessManager" ) def tearDown(self): self.io_loop.add_callback(self.io_loop.stop) self.io_loop_thread.join() self.process_manager.stop_restarting() self.process_manager.kill_children() del self.io_loop del self.io_loop_thread del self.process_manager @staticmethod def _gather_results(opts, pub_uri, results, timeout=120, messages=None): """ Gather results until then number of seconds specified by timeout passes without reveiving a message """ ctx = zmq.Context() sock = ctx.socket(zmq.SUB) sock.setsockopt(zmq.LINGER, -1) sock.setsockopt(zmq.SUBSCRIBE, b"") sock.connect(pub_uri) last_msg = time.time() serial = salt.payload.Serial(opts) crypticle = salt.crypt.Crypticle( opts, salt.master.SMaster.secrets["aes"]["secret"].value ) while time.time() - last_msg < timeout: try: payload = sock.recv(zmq.NOBLOCK) except zmq.ZMQError: time.sleep(0.01) else: if messages: if messages != 1: messages -= 1 continue payload = crypticle.loads(serial.loads(payload)["load"]) if "stop" in payload: break last_msg = time.time() results.append(payload["jid"]) @skipIf(salt.utils.platform.is_windows(), "Skip on Windows OS") @skipIf(True, "SLOWTEST skip") def test_publish_to_pubserv_ipc(self): """ Test sending 10K messags to ZeroMQPubServerChannel using IPC transport ZMQ's ipc transport not supported on Windows """ opts = dict(self.master_config, ipc_mode="ipc", pub_hwm=0) server_channel = salt.transport.zeromq.ZeroMQPubServerChannel(opts) server_channel.pre_fork( self.process_manager, kwargs={"log_queue": salt.log.setup.get_multiprocessing_logging_queue()}, ) pub_uri = "tcp://{interface}:{publish_port}".format(**server_channel.opts) send_num = 10000 expect = [] results = [] gather = threading.Thread( target=self._gather_results, args=(self.minion_config, pub_uri, results,) ) gather.start() # Allow time for server channel to start, especially on windows time.sleep(2) for i in range(send_num): expect.append(i) load = {"tgt_type": "glob", "tgt": "*", "jid": i} server_channel.publish(load) server_channel.publish({"tgt_type": "glob", "tgt": "*", "stop": True}) gather.join() server_channel.pub_close() assert len(results) == send_num, (len(results), set(expect).difference(results)) @skipIf(True, "SLOWTEST skip") def test_zeromq_publish_port(self): """ test when connecting that we use the publish_port set in opts when its not 4506 """ opts = dict( self.master_config, ipc_mode="ipc", pub_hwm=0, recon_randomize=False, publish_port=455505, recon_default=1, recon_max=2, master_ip="127.0.0.1", acceptance_wait_time=5, acceptance_wait_time_max=5, ) opts["master_uri"] = "tcp://{interface}:{publish_port}".format(**opts) channel = salt.transport.zeromq.AsyncZeroMQPubChannel(opts) patch_socket = MagicMock(return_value=True) patch_auth = MagicMock(return_value=True) with patch.object(channel, "_socket", patch_socket), patch.object( channel, "auth", patch_auth ): channel.connect() assert str(opts["publish_port"]) in patch_socket.mock_calls[0][1][0] def test_zeromq_zeromq_filtering_decode_message_no_match(self): """ test AsyncZeroMQPubChannel _decode_messages when zmq_filtering enabled and minion does not match """ message = [ b"4f26aeafdb2367620a393c973eddbe8f8b846eb", b"\x82\xa3enc\xa3aes\xa4load\xda\x00`\xeeR\xcf" b"\x0eaI#V\x17if\xcf\xae\x05\xa7\xb3bN\xf7\xb2\xe2" b'\xd0sF\xd1\xd4\xecB\xe8\xaf"/*ml\x80Q3\xdb\xaexg' b"\x8e\x8a\x8c\xd3l\x03\\,J\xa7\x01i\xd1:]\xe3\x8d" b"\xf4\x03\x88K\x84\n`\xe8\x9a\xad\xad\xc6\x8ea\x15>" b"\x92m\x9e\xc7aM\x11?\x18;\xbd\x04c\x07\x85\x99\xa3\xea[\x00D", ] opts = dict( self.master_config, ipc_mode="ipc", pub_hwm=0, zmq_filtering=True, recon_randomize=False, recon_default=1, recon_max=2, master_ip="127.0.0.1", acceptance_wait_time=5, acceptance_wait_time_max=5, ) opts["master_uri"] = "tcp://{interface}:{publish_port}".format(**opts) server_channel = salt.transport.zeromq.AsyncZeroMQPubChannel(opts) with patch( "salt.crypt.AsyncAuth.crypticle", MagicMock(return_value={"tgt_type": "glob", "tgt": "*", "jid": 1}), ) as mock_test: res = server_channel._decode_messages(message) assert res.result() is None def test_zeromq_zeromq_filtering_decode_message(self): """ test AsyncZeroMQPubChannel _decode_messages when zmq_filtered enabled """ message = [ b"4f26aeafdb2367620a393c973eddbe8f8b846ebd", b"\x82\xa3enc\xa3aes\xa4load\xda\x00`\xeeR\xcf" b"\x0eaI#V\x17if\xcf\xae\x05\xa7\xb3bN\xf7\xb2\xe2" b'\xd0sF\xd1\xd4\xecB\xe8\xaf"/*ml\x80Q3\xdb\xaexg' b"\x8e\x8a\x8c\xd3l\x03\\,J\xa7\x01i\xd1:]\xe3\x8d" b"\xf4\x03\x88K\x84\n`\xe8\x9a\xad\xad\xc6\x8ea\x15>" b"\x92m\x9e\xc7aM\x11?\x18;\xbd\x04c\x07\x85\x99\xa3\xea[\x00D", ] opts = dict( self.master_config, ipc_mode="ipc", pub_hwm=0, zmq_filtering=True, recon_randomize=False, recon_default=1, recon_max=2, master_ip="127.0.0.1", acceptance_wait_time=5, acceptance_wait_time_max=5, ) opts["master_uri"] = "tcp://{interface}:{publish_port}".format(**opts) server_channel = salt.transport.zeromq.AsyncZeroMQPubChannel(opts) with patch( "salt.crypt.AsyncAuth.crypticle", MagicMock(return_value={"tgt_type": "glob", "tgt": "*", "jid": 1}), ) as mock_test: res = server_channel._decode_messages(message) assert res.result()["enc"] == "aes" @skipIf(salt.utils.platform.is_windows(), "Skip on Windows OS") @skipIf(True, "SLOWTEST skip") def test_zeromq_filtering(self): """ Test sending messags to publisher using UDP with zeromq_filtering enabled """ opts = dict( self.master_config, ipc_mode="ipc", pub_hwm=0, zmq_filtering=True, acceptance_wait_time=5, ) server_channel = salt.transport.zeromq.ZeroMQPubServerChannel(opts) server_channel.pre_fork( self.process_manager, kwargs={"log_queue": salt.log.setup.get_multiprocessing_logging_queue()}, ) pub_uri = "tcp://{interface}:{publish_port}".format(**server_channel.opts) send_num = 1 expect = [] results = [] gather = threading.Thread( target=self._gather_results, args=(self.minion_config, pub_uri, results,), kwargs={"messages": 2}, ) gather.start() # Allow time for server channel to start, especially on windows time.sleep(2) expect.append(send_num) load = {"tgt_type": "glob", "tgt": "*", "jid": send_num} with patch( "salt.utils.minions.CkMinions.check_minions", MagicMock( return_value={ "minions": ["minion"], "missing": [], "ssh_minions": False, } ), ): server_channel.publish(load) server_channel.publish({"tgt_type": "glob", "tgt": "*", "stop": True}) gather.join() server_channel.pub_close() assert len(results) == send_num, (len(results), set(expect).difference(results)) @skipIf(True, "SLOWTEST skip") def test_publish_to_pubserv_tcp(self): """ Test sending 10K messags to ZeroMQPubServerChannel using TCP transport """ opts = dict(self.master_config, ipc_mode="tcp", pub_hwm=0) server_channel = salt.transport.zeromq.ZeroMQPubServerChannel(opts) server_channel.pre_fork( self.process_manager, kwargs={"log_queue": salt.log.setup.get_multiprocessing_logging_queue()}, ) pub_uri = "tcp://{interface}:{publish_port}".format(**server_channel.opts) send_num = 10000 expect = [] results = [] gather = threading.Thread( target=self._gather_results, args=(self.minion_config, pub_uri, results,) ) gather.start() # Allow time for server channel to start, especially on windows time.sleep(2) for i in range(send_num): expect.append(i) load = {"tgt_type": "glob", "tgt": "*", "jid": i} server_channel.publish(load) gather.join() server_channel.pub_close() assert len(results) == send_num, (len(results), set(expect).difference(results)) @staticmethod def _send_small(opts, sid, num=10): server_channel = salt.transport.zeromq.ZeroMQPubServerChannel(opts) for i in range(num): load = {"tgt_type": "glob", "tgt": "*", "jid": "{}-{}".format(sid, i)} server_channel.publish(load) server_channel.close() @staticmethod def _send_large(opts, sid, num=10, size=250000 * 3): server_channel = salt.transport.zeromq.ZeroMQPubServerChannel(opts) for i in range(num): load = { "tgt_type": "glob", "tgt": "*", "jid": "{}-{}".format(sid, i), "xdata": "0" * size, } server_channel.publish(load) server_channel.close() @skipIf(True, "SLOWTEST skip") def test_issue_36469_tcp(self): """ Test sending both large and small messags to publisher using TCP https://github.com/saltstack/salt/issues/36469 """ opts = dict(self.master_config, ipc_mode="tcp", pub_hwm=0) server_channel = salt.transport.zeromq.ZeroMQPubServerChannel(opts) server_channel.pre_fork( self.process_manager, kwargs={"log_queue": salt.log.setup.get_multiprocessing_logging_queue()}, ) send_num = 10 * 4 expect = [] results = [] pub_uri = "tcp://{interface}:{publish_port}".format(**opts) # Allow time for server channel to start, especially on windows time.sleep(2) gather = threading.Thread( target=self._gather_results, args=(self.minion_config, pub_uri, results,) ) gather.start() with ThreadPoolExecutor(max_workers=4) as executor: executor.submit(self._send_small, opts, 1) executor.submit(self._send_small, opts, 2) executor.submit(self._send_small, opts, 3) executor.submit(self._send_large, opts, 4) expect = ["{}-{}".format(a, b) for a in range(10) for b in (1, 2, 3, 4)] time.sleep(0.1) server_channel.publish({"tgt_type": "glob", "tgt": "*", "stop": True}) gather.join() server_channel.pub_close() assert len(results) == send_num, (len(results), set(expect).difference(results))
36.416456
104
0.60155
37e95b964f4c28cb7587823696f33cc402f0d4a3
3,213
py
Python
speakeasy/smirnoff.py
jaimergp/speakeasy
aba633b0d03e2dd8e2e1712a032f587244a02350
[ "MIT" ]
1
2021-03-17T18:57:27.000Z
2021-03-17T18:57:27.000Z
speakeasy/smirnoff.py
jaimergp/speakeasy
aba633b0d03e2dd8e2e1712a032f587244a02350
[ "MIT" ]
null
null
null
speakeasy/smirnoff.py
jaimergp/speakeasy
aba633b0d03e2dd8e2e1712a032f587244a02350
[ "MIT" ]
null
null
null
import parmed as pmd from openforcefield.typing.engines.smirnoff import ForceField, unit from openeye.oechem import ( oemolistream, oemolostream, OEIFlavor_MOL2_Forcefield, OEIFlavor_Generic_Default, OEIFlavor_PDB_Default, OEIFlavor_PDB_ALL, OEFormat_MOL2, OEFormat_MOL2H, OEWriteMolecule, OETriposAtomNames, OEMol, OEFormat_PDB, OESmilesToMol, OEAddExplicitHydrogens, OEHasAtomIdx, OEAtomGetResidue) import aimtools import sys class Conversion(object): def __init__(self): self.mol2_file = None self.output_prefix = 'mol' self.mol2_topo = None self.off_system = None self.pmd_system = None self.parm = None self.molecules = [] self.labels = None def convert(self): # Set OEMol ifs = oemolistream() ifs.SetFlavor(OEFormat_MOL2, OEIFlavor_MOL2_Forcefield) ifs.open(self.mol2_file) # Read in molecules for i,mol in enumerate(ifs.GetOEMols()): if i > 0: raise Exception('Only single residue molecules are currently supported') OETriposAtomNames(mol) self.molecules.append(OEMol(mol)) # Set topology self.mol2_topo = pmd.load_file(self.mol2_file, structure=True) # Parameterize ff = ForceField('forcefield/smirnoff99Frosst.offxml') self.labels = ff.labelMolecules(self.molecules, verbose=False) self.off_system = ff.createSystem( self.mol2_topo.topology, self.molecules, nonbondedCutoff=1.1 * unit.nanometer, ewaldErrorTolerance=1e-4) # Load into Parmed self.pmd_system = pmd.openmm.topsystem.load_topology( self.mol2_topo.topology, self.off_system, self.mol2_topo.positions) # Convert to AmberParm self.parm = pmd.amber.AmberParm.from_structure(self.pmd_system) # HACKY PART!! # Amber specifies that the third atom in an improper is the central # atom, but smirnoff currently specifies the second atom. A check for # impropers was conducted during pmd.openmm.topsystem.load_topology(), # but that looked at the third atom, so we'll recheck the second atom. for i,dihedral in enumerate(cnvs.parm.dihedrals): a1 = dihedral.atom1 a2 = dihedral.atom2 a3 = dihedral.atom3 a4 = dihedral.atom4 if a1 in a2.bond_partners and a3 in a2.bond_partners and a4 in a2.bond_partners: (dihedral.atom1, dihedral.atom2, dihedral.atom3, dihedral.atom4) = (a3,a4,a2,a1) dihedral.improper = True # Create unique atom types unique_types = aimtools.unique_types.create_unique_type_list(self.parm) # Write AMBER mol2 and frcmod aimtools.unique_types.write_unique_frcmod_mol2s(self.parm,unique_types,names=self.output_prefix) if __name__ == '__main__': if len(sys.argv) < 2: raise Exception('You must provide a MOL2 file as argument') cnvs = Conversion() cnvs.mol2_file = sys.argv[1] if len(sys.argv) == 3: cnvs.output_prefix = sys.argv[2] cnvs.convert()
36.511364
104
0.654217
9c21c35cf61aa68e5ff72da845550c6b3d688bbc
6,279
py
Python
sushy/resources/system/processor.py
yrobla/sushy
74be09c798ac3422335a4e0e30b778639ff5a122
[ "Apache-2.0" ]
null
null
null
sushy/resources/system/processor.py
yrobla/sushy
74be09c798ac3422335a4e0e30b778639ff5a122
[ "Apache-2.0" ]
4
2020-07-08T10:53:30.000Z
2020-07-30T11:56:20.000Z
sushy/resources/system/processor.py
yrobla/sushy
74be09c798ac3422335a4e0e30b778639ff5a122
[ "Apache-2.0" ]
3
2020-05-19T12:24:50.000Z
2020-07-08T10:26:51.000Z
# All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # This is referred from Redfish standard schema. # https://redfish.dmtf.org/schemas/Processor.v1_3_0.json import collections import logging from sushy import exceptions from sushy.resources import base from sushy.resources import common from sushy.resources.system import mappings as sys_maps from sushy import utils # Representation of Summary of Processor information ProcessorSummary = collections.namedtuple('ProcessorSummary', ['count', 'architecture']) LOG = logging.getLogger(__name__) class ProcessorIdField(base.CompositeField): effective_family = base.Field('EffectiveFamily') """The processor effective family""" effective_model = base.Field('EffectiveModel') """The processor effective model""" identification_registers = base.Field('IdentificationRegisters') """The processor identification registers""" microcode_info = base.Field('MicrocodeInfo') """The processor microcode info""" step = base.Field('Step') """The processor stepping""" vendor_id = base.Field('VendorID') """The processor vendor id""" class Processor(base.ResourceBase): identity = base.Field('Id', required=True) """The processor identity string""" socket = base.Field('Socket') """The socket or location of the processor""" processor_type = base.MappedField( 'ProcessorType', sys_maps.PROCESSOR_TYPE_VALUE_MAP) """The type of processor""" processor_architecture = base.MappedField( 'ProcessorArchitecture', sys_maps.PROCESSOR_ARCH_VALUE_MAP) """The architecture of the processor""" instruction_set = base.MappedField( 'InstructionSet', sys_maps.PROCESSOR_INSTRUCTIONSET_VALUE_MAP) """The instruction set of the processor""" manufacturer = base.Field('Manufacturer') """The processor manufacturer""" model = base.Field('Model') """The product model number of this device""" max_speed_mhz = base.Field('MaxSpeedMHz', adapter=utils.int_or_none) """The maximum clock speed of the processor in MHz.""" processor_id = ProcessorIdField('ProcessorId') """The processor id""" status = common.StatusField('Status') """The processor status""" total_cores = base.Field('TotalCores', adapter=utils.int_or_none) """The total number of cores contained in this processor""" total_threads = base.Field('TotalThreads', adapter=utils.int_or_none) """The total number of execution threads supported by this processor""" def __init__(self, connector, identity, redfish_version=None, registries=None): """A class representing a Processor :param connector: A Connector instance :param identity: The identity of the processor :param redfish_version: The version of RedFish. Used to construct the object according to schema of the given version. :param registries: Dict of Redfish Message Registry objects to be used in any resource that needs registries to parse messages """ super(Processor, self).__init__( connector, identity, redfish_version, registries) def _get_processor_collection_path(self): """Helper function to find the ProcessorCollection path""" pro_col = self.json.get('ProcessorCollection') if not pro_col: raise exceptions.MissingAttributeError( attribute='ProcessorCollection', resource=self._path) return pro_col.get('@odata.id') @property @utils.cache_it def sub_processors(self): """A reference to the collection of Sub-Processors""" return ProcessorCollection( self.conn, self._get_processor_collection_path, redfish_version=self.redfish_version) class ProcessorCollection(base.ResourceCollectionBase): @property def _resource_type(self): return Processor @property @utils.cache_it def summary(self): """Property to provide ProcessorSummary info It is calculated once when the first time it is queried. On refresh, this property gets reset. :returns: A namedtuple containing the ``count`` of processors in regards to logical CPUs, and their ``architecture``. """ count, architecture = 0, None for proc in self.get_members(): # Note(deray): It attempts to detect the number of CPU cores. # It returns the number of logical CPUs. if proc.total_threads is not None: count += proc.total_threads # Note(deray): Bail out of checking the architecture info # if you have already got hold of any one of the processors' # architecture information. if (architecture is None and proc.processor_architecture is not None): architecture = proc.processor_architecture return ProcessorSummary(count=count, architecture=architecture) def __init__(self, connector, path, redfish_version=None, registries=None): """A class representing a ProcessorCollection :param connector: A Connector instance :param path: The canonical path to the Processor collection resource :param redfish_version: The version of RedFish. Used to construct the object according to schema of the given version. :param registries: Dict of Redfish Message Registry objects to be used in any resource that needs registries to parse messages """ super(ProcessorCollection, self).__init__( connector, path, redfish_version, registries)
36.719298
79
0.687211
3f8f802b2ef4a81bf5a9d50a62df080f94bd5e12
1,116
py
Python
chapter3/dbscan.py
DCtheTall/introduction-to-machine-learning
636ec4733a504fe6798098d28337cf2088dcfce5
[ "MIT" ]
4
2018-09-21T17:15:19.000Z
2022-03-17T23:25:18.000Z
chapter3/dbscan.py
DCtheTall/introduction-to-machine-learning
636ec4733a504fe6798098d28337cf2088dcfce5
[ "MIT" ]
null
null
null
chapter3/dbscan.py
DCtheTall/introduction-to-machine-learning
636ec4733a504fe6798098d28337cf2088dcfce5
[ "MIT" ]
null
null
null
""" DBSCAN ------ """ import numpy as np import matplotlib.pyplot as plt import pandas as pd import mglearn from IPython.display import display from sklearn.cluster import DBSCAN from sklearn.datasets import make_blobs, make_moons from sklearn.preprocessing import StandardScaler X, y = make_blobs(random_state=0, n_samples=12) dbscan = DBSCAN() clusters = dbscan.fit_predict(X) print 'Cluster memberships:\n{}'.format(clusters) # Running DBSCAN on this small dataset without modifying min_samples or eps # results in it labeling all points as noise mglearn.plots.plot_dbscan() plt.show() # Plots examples of DBSCAN # white points are noise # Core samples are the larger marks # Boundaries are smaller X, y = make_moons(n_samples=200, noise=.05, random_state=0) scaler = StandardScaler() X_scaled = scaler.fit_transform(X) dbscan = DBSCAN() clusters = dbscan.fit_predict(X_scaled) plt.scatter( X_scaled[:,0], X_scaled[:,1], c=clusters, cmap=mglearn.cm2, s=60) plt.xlabel('Feature 0') plt.ylabel('Feature 1') plt.show() # Plots how DBSCAN with default settings # perfectly classifies the two moons dataset
24.26087
75
0.767921
25acb8a2a50f4e794bf3c24f429d6871ec82acfe
7,911
py
Python
sap/cli/atc.py
gtreskas/sapcli
ff82ddb998834e1c83dff799134f026df93b3175
[ "Apache-2.0" ]
null
null
null
sap/cli/atc.py
gtreskas/sapcli
ff82ddb998834e1c83dff799134f026df93b3175
[ "Apache-2.0" ]
null
null
null
sap/cli/atc.py
gtreskas/sapcli
ff82ddb998834e1c83dff799134f026df93b3175
[ "Apache-2.0" ]
null
null
null
"""ATC proxy for ABAP Unit""" import json import os import re import sys from xml.sax.saxutils import escape, quoteattr from sap import get_logger import sap.adt import sap.adt.atc from sap.cli.core import printout from sap.errors import SAPCliError CHECKSTYLE_VERSION = '8.36' ERROR = 'error' WARNING = 'warning' INFO = 'info' SEVERITY_MAPPING = { '1': ERROR, '2': ERROR, '3': WARNING, '4': WARNING, '5': INFO } def mod_log(): """Module logger""" return get_logger() class CommandGroup(sap.cli.core.CommandGroup): """Adapter converting command line parameters to sap.adt.Class methods calls. """ def __init__(self): super().__init__('atc') def print_worklists_to_stream(all_results, stream, error_level=99): """Print results to stream""" pad = '' ret = 0 for run_results in all_results: for obj in run_results.objects: stream.write(f'{obj.object_type_id}/{obj.name}\n') finiding_pad = pad + ' ' for finding in obj.findings: if int(finding.priority) <= error_level: ret += 1 stream.write(f'*{finiding_pad}{finding.priority} :: {finding.check_title} :: {finding.message_title}\n') return 0 if ret < 1 else 1 # pylint: disable=invalid-name def print_worklists_as_html_to_stream(all_results, stream, error_level=99): """Print results as html table to stream""" ret = 0 stream.write('<table>\n') for run_results in all_results: for obj in run_results.objects: stream.write('<tr><th>Object type ID</th>\n' '<th>Name</th></tr>\n') stream.write(f'<tr><td>{escape(obj.object_type_id)}</td>\n' f'<td>{escape(obj.name)}</td></tr>\n') stream.write('<tr><th>Priority</th>\n' '<th>Check title</th>\n' '<th>Message title</th></tr>\n') for finding in obj.findings: if int(finding.priority) <= error_level: ret += 1 stream.write(f'<tr><td>{escape(str(finding.priority))}</td>\n' f'<td>{escape(finding.check_title)}</td>\n' f'<td>{escape(finding.message_title)}</td></tr>\n') stream.write('</table>\n') return 0 if ret < 1 else 1 def replace_slash(name): """Replaces slash with division slash symbol for CheckStyle Jenkins plugin""" DIVISION_SLASH = '\u2215' return (name or '').replace('/', DIVISION_SLASH) def get_line_and_column(location): """Finds line and column in location""" START_PATTERN = r'(start=)(?P<line>\d+)(,(?P<column>\d+))?' search_result = re.search(START_PATTERN, location or '') line = column = '0' if search_result: line = search_result.group('line') column = search_result.group('column') or '0' return line, column # pylint: disable=invalid-name def print_worklists_as_checkstyle_xml_to_stream(all_results, stream, error_level=99, severity_mapping=None): """Print results as checkstyle xml to stream for all worklists""" if not severity_mapping: severity_mapping = SEVERITY_MAPPING stream.write('<?xml version="1.0" encoding="UTF-8"?>\n') stream.write(f'<checkstyle version="{CHECKSTYLE_VERSION}">\n') ret = 0 for run_results in all_results: for obj in run_results.objects: package_name = replace_slash(obj.typ) name = replace_slash(f'{obj.package_name}/{obj.name}') filename = f'{package_name}/{name}' stream.write(f'<file name={quoteattr(filename)}>\n') for finding in obj.findings: if int(finding.priority) <= error_level: ret += 1 severity = severity_mapping.get(str(finding.priority), INFO) line, column = get_line_and_column(finding.location) stream.write(f'<error ' f'line={quoteattr(line)} ' f'column={quoteattr(column)} ' f'severity={quoteattr(severity)} ' f'message={quoteattr(finding.message_title)} ' f'source={quoteattr(finding.check_title)}' f'/>\n') stream.write('</file>\n') stream.write('</checkstyle>\n') return 0 if ret < 1 else 1 @CommandGroup.command() def customizing(connection, _): """Retrieves ATC customizing""" settings = sap.adt.atc.fetch_customizing(connection) printout('System Check Variant:', settings.system_check_variant) @CommandGroup.argument('-m', '--max-verdicts', default=100, type=int, help='Maximum number of findings; default == 100') @CommandGroup.argument('-r', '--variant', default=None, type=str, help='Executed Check Variant; default: the system variant') @CommandGroup.argument('-e', '--error-level', default=2, type=int, help='Exit with non zero if a finding with this or higher prio returned') @CommandGroup.argument('name', nargs='+', type=str) @CommandGroup.argument('type', choices=['program', 'class', 'package']) @CommandGroup.argument('-o', '--output', default='human', choices=['human', 'html', 'checkstyle'], help='Output format in which checks will be printed') @CommandGroup.argument('-s', '--severity-mapping', default=None, type=str, help='Severity mapping between error levels and Checkstyle severities') @CommandGroup.command() def run(connection, args): """Prints it out based on command line configuration. Exceptions: - SAPCliError: - when the given type does not belong to the type white list - when severity_maping argument has invalid format """ types = {'program': sap.adt.Program, 'class': sap.adt.Class, 'package': sap.adt.Package} try: typ = types[args.type] except KeyError as ex: raise SAPCliError(f'Unknown type: {args.type}') from ex printer_format_mapping = { 'human': print_worklists_to_stream, 'html': print_worklists_as_html_to_stream, 'checkstyle': print_worklists_as_checkstyle_xml_to_stream } try: printer = printer_format_mapping[args.output] except KeyError as ex: raise SAPCliError(f'Unknown format: {args.output}') from ex severity_mapping = None if args.output == 'checkstyle': severity_mapping = args.severity_mapping or os.environ.get('SEVERITY_MAPPING') if severity_mapping: try: severity_mapping = dict(json.loads(severity_mapping)) except (json.decoder.JSONDecodeError, TypeError) as ex: raise SAPCliError('Severity mapping has incorrect format') from ex if args.variant is None: settings = sap.adt.atc.fetch_customizing(connection) args.variant = settings.system_check_variant results = [] if args.name: arr_objects = [] # Make sure it can be used as a sequence of strings or as an array of strings for objectArr in args.name: arr_objects += objectArr.split() for objname in arr_objects: checks = sap.adt.atc.ChecksRunner(connection, args.variant) objects = sap.adt.objects.ADTObjectSets() objects.include_object(typ(connection, objname)) atcResult = checks.run_for(objects, max_verdicts=args.max_verdicts) results.append(atcResult.worklist) if args.output == 'checkstyle': result = printer(results, sys.stdout, error_level=args.error_level, severity_mapping=severity_mapping) else: result = printer(results, sys.stdout, error_level=args.error_level) return result
35.635135
120
0.61484
99d64ebd01c9a3a0c9fcbb1d55aaf05bb27bab92
9,447
py
Python
tests/helpers/runif.py
mathemusician/pytorch-lightning
15fa5389387b3a220bc044dd30eb0be1e8f64944
[ "Apache-2.0" ]
null
null
null
tests/helpers/runif.py
mathemusician/pytorch-lightning
15fa5389387b3a220bc044dd30eb0be1e8f64944
[ "Apache-2.0" ]
null
null
null
tests/helpers/runif.py
mathemusician/pytorch-lightning
15fa5389387b3a220bc044dd30eb0be1e8f64944
[ "Apache-2.0" ]
null
null
null
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys from typing import Optional import pytest import torch from packaging.version import Version from pkg_resources import get_distribution from pytorch_lightning.utilities import ( _APEX_AVAILABLE, _BAGUA_AVAILABLE, _DEEPSPEED_AVAILABLE, _FAIRSCALE_AVAILABLE, _FAIRSCALE_FULLY_SHARDED_AVAILABLE, _HIVEMIND_AVAILABLE, _HOROVOD_AVAILABLE, _HPU_AVAILABLE, _IPU_AVAILABLE, _OMEGACONF_AVAILABLE, _RICH_AVAILABLE, _TORCH_GREATER_EQUAL_1_10, _TORCH_QUANTIZE_AVAILABLE, _TPU_AVAILABLE, ) _HOROVOD_NCCL_AVAILABLE = False if _HOROVOD_AVAILABLE: import horovod try: # `nccl_built` returns an integer _HOROVOD_NCCL_AVAILABLE = bool(horovod.torch.nccl_built()) except AttributeError: # AttributeError can be raised if MPI is not available: # https://github.com/horovod/horovod/blob/v0.23.0/horovod/torch/__init__.py#L33-L34 pass class RunIf: """RunIf wrapper for simple marking specific cases, fully compatible with pytest.mark:: @RunIf(min_torch="0.0") @pytest.mark.parametrize("arg1", [1, 2.0]) def test_wrapper(arg1): assert arg1 > 0.0 """ def __new__( self, *args, min_gpus: int = 0, min_torch: Optional[str] = None, max_torch: Optional[str] = None, min_python: Optional[str] = None, quantization: bool = False, amp_apex: bool = False, bf16_cuda: bool = False, tpu: bool = False, ipu: bool = False, hpu: bool = False, horovod: bool = False, horovod_nccl: bool = False, skip_windows: bool = False, standalone: bool = False, fairscale: bool = False, fairscale_fully_sharded: bool = False, deepspeed: bool = False, rich: bool = False, skip_hanging_spawn: bool = False, omegaconf: bool = False, slow: bool = False, bagua: bool = False, hivemind: bool = False, **kwargs, ): """ Args: *args: Any :class:`pytest.mark.skipif` arguments. min_gpus: Require this number of gpus. min_torch: Require that PyTorch is greater or equal than this version. max_torch: Require that PyTorch is less than this version. min_python: Require that Python is greater or equal than this version. quantization: Require that `torch.quantization` is available. amp_apex: Require that NVIDIA/apex is installed. bf16_cuda: Require that CUDA device supports bf16. tpu: Require that TPU is available. ipu: Require that IPU is available. hpu: Require that HPU is available. horovod: Require that Horovod is installed. horovod_nccl: Require that Horovod is installed with NCCL support. skip_windows: Skip for Windows platform. standalone: Mark the test as standalone, our CI will run it in a separate process. fairscale: Require that facebookresearch/fairscale is installed. fairscale_fully_sharded: Require that `fairscale` fully sharded support is available. deepspeed: Require that microsoft/DeepSpeed is installed. rich: Require that willmcgugan/rich is installed. skip_hanging_spawn: Skip the test as it's impacted by hanging loggers on spawn. omegaconf: Require that omry/omegaconf is installed. slow: Mark the test as slow, our CI will run it in a separate job. bagua: Require that BaguaSys/bagua is installed. hivemind: Require that Hivemind is installed. **kwargs: Any :class:`pytest.mark.skipif` keyword arguments. """ conditions = [] reasons = [] if min_gpus: conditions.append(torch.cuda.device_count() < min_gpus) reasons.append(f"GPUs>={min_gpus}") if min_torch: torch_version = get_distribution("torch").version conditions.append(Version(torch_version) < Version(min_torch)) reasons.append(f"torch>={min_torch}") if max_torch: torch_version = get_distribution("torch").version conditions.append(Version(torch_version) >= Version(max_torch)) reasons.append(f"torch<{max_torch}") if min_python: py_version = f"{sys.version_info.major}.{sys.version_info.minor}.{sys.version_info.micro}" conditions.append(Version(py_version) < Version(min_python)) reasons.append(f"python>={min_python}") if quantization: _miss_default = "fbgemm" not in torch.backends.quantized.supported_engines conditions.append(not _TORCH_QUANTIZE_AVAILABLE or _miss_default) reasons.append("PyTorch quantization") if amp_apex: conditions.append(not _APEX_AVAILABLE) reasons.append("NVIDIA Apex") if bf16_cuda: try: cond = not (torch.cuda.is_available() and _TORCH_GREATER_EQUAL_1_10 and torch.cuda.is_bf16_supported()) except (AssertionError, RuntimeError) as e: # AssertionError: Torch not compiled with CUDA enabled # RuntimeError: Found no NVIDIA driver on your system. is_unrelated = "Found no NVIDIA driver" not in str(e) or "Torch not compiled with CUDA" not in str(e) if is_unrelated: raise e cond = True conditions.append(cond) reasons.append("CUDA device bf16") if skip_windows: conditions.append(sys.platform == "win32") reasons.append("unimplemented on Windows") if tpu: conditions.append(not _TPU_AVAILABLE) reasons.append("TPU") if ipu: env_flag = os.getenv("PL_RUN_IPU_TESTS", "0") conditions.append(env_flag != "1" or not _IPU_AVAILABLE) reasons.append("IPU") kwargs["ipu"] = True if hpu: conditions.append(not _HPU_AVAILABLE) reasons.append("HPU") if horovod: conditions.append(not _HOROVOD_AVAILABLE) reasons.append("Horovod") if horovod_nccl: conditions.append(not _HOROVOD_NCCL_AVAILABLE) reasons.append("Horovod with NCCL") if standalone: env_flag = os.getenv("PL_RUN_STANDALONE_TESTS", "0") conditions.append(env_flag != "1") reasons.append("Standalone execution") # used in tests/conftest.py::pytest_collection_modifyitems kwargs["standalone"] = True if fairscale: conditions.append(not _FAIRSCALE_AVAILABLE) reasons.append("Fairscale") if fairscale_fully_sharded: conditions.append(not _FAIRSCALE_FULLY_SHARDED_AVAILABLE) reasons.append("Fairscale Fully Sharded") if deepspeed: conditions.append(not _DEEPSPEED_AVAILABLE) reasons.append("Deepspeed") if rich: conditions.append(not _RICH_AVAILABLE) reasons.append("Rich") if skip_hanging_spawn: # strategy=ddp_spawn, accelerator=cpu, python>=3.8, torch<1.9 does not work py_version = f"{sys.version_info.major}.{sys.version_info.minor}.{sys.version_info.micro}" ge_3_8 = Version(py_version) >= Version("3.8") torch_version = get_distribution("torch").version old_torch = Version(torch_version) < Version("1.9") conditions.append(ge_3_8 and old_torch) reasons.append("Impacted by hanging DDP spawn") if omegaconf: conditions.append(not _OMEGACONF_AVAILABLE) reasons.append("omegaconf") if slow: env_flag = os.getenv("PL_RUN_SLOW_TESTS", "0") conditions.append(env_flag != "1") reasons.append("Slow test") # used in tests/conftest.py::pytest_collection_modifyitems kwargs["slow"] = True if bagua: conditions.append(not _BAGUA_AVAILABLE or sys.platform in ("win32", "darwin")) reasons.append("Bagua") if hivemind: conditions.append(not _HIVEMIND_AVAILABLE or sys.platform in ("win32", "darwin")) reasons.append("Hivemind") reasons = [rs for cond, rs in zip(conditions, reasons) if cond] return pytest.mark.skipif( *args, condition=any(conditions), reason=f"Requires: [{' + '.join(reasons)}]", **kwargs ) @RunIf(min_torch="99") def test_always_skip(): exit(1) @pytest.mark.parametrize("arg1", [0.5, 1.0, 2.0]) @RunIf(min_torch="0.0") def test_wrapper(arg1: float): assert arg1 > 0.0
36.902344
119
0.631523
2d08abfed8158e3cac1a151d92803c02e988bf3d
6,332
py
Python
chainer_chemistry/links/update/megnet_update.py
pfnet/chainerchem
efe323aa21f63a815130d673781e7cca1ccb72d2
[ "MIT" ]
184
2019-11-27T12:59:01.000Z
2022-03-29T19:18:54.000Z
chainer_chemistry/links/update/megnet_update.py
pfnet/chainerchem
efe323aa21f63a815130d673781e7cca1ccb72d2
[ "MIT" ]
21
2019-12-08T01:53:33.000Z
2020-10-23T01:19:56.000Z
chainer_chemistry/links/update/megnet_update.py
pfnet/chainerchem
efe323aa21f63a815130d673781e7cca1ccb72d2
[ "MIT" ]
45
2019-11-28T09:59:54.000Z
2022-02-07T02:42:46.000Z
import chainer from chainer import functions, links # NOQA from chainer_chemistry.functions import megnet_softplus class DenseLayer(chainer.Chain): def __init__(self, hidden_dim=[64, 32], activation=megnet_softplus): super(DenseLayer, self).__init__() self.n_layers = len(hidden_dim) self.activation = activation with self.init_scope(): self.update_layer = chainer.ChainList( *[links.Linear(None, hidden_dim[i]) for i in range(self.n_layers)]) def __call__(self, v): for i in range(self.n_layers): v = self.activation(self.update_layer[i](v)) return v class UpdateLayer(chainer.Chain): def __init__(self, hidden_dim=[64, 64, 32], activation=megnet_softplus): super(UpdateLayer, self).__init__() self.n_layers = len(hidden_dim) self.activation = activation with self.init_scope(): self.update_layer = chainer.ChainList( *[links.Linear(None, hidden_dim[i]) for i in range(self.n_layers)]) def __call__(self, v): for i in range(self.n_layers): v = self.update_layer[i](v) # doesn't pass the activation at the last layer if i != (self.n_layers-1): v = self.activation(v) return v def get_mean_feat(feat, idx, out_shape, xp): """Return mean node or edge feature in each graph. This method is the same as average pooling about node or edge feature in each graph. """ zero = xp.zeros(out_shape, dtype=xp.float32) sum_vec = functions.scatter_add(zero, idx, feat) one = xp.ones(feat.shape, dtype=xp.float32) degree = functions.scatter_add(zero, idx, one) return sum_vec / degree class MEGNetUpdate(chainer.Chain): """Update submodule for MEGNet Args: dim_for_dense (list): dimension list of dense layer dim_for_update (list): dimension list of update layer dropout_ratio (float): ratio of dropout activation (~chainer.Function or ~chainer.FunctionNode): activate function for megnet model `megnet_softplus` was used in original paper. skip_intermediate (bool): When `True`, intermediate feature after dense calculation is used for skip connection. When `False`, input feature is used for skip connection. It is `True` for first layer, and `False` for other layer in the original paper. """ def __init__(self, dim_for_dense=[64, 32], dim_for_update=[64, 64, 32], dropout_ratio=-1, activation=megnet_softplus, skip_intermediate=True): super(MEGNetUpdate, self).__init__() if len(dim_for_dense) != 2: raise ValueError('dim_for_dense must have 2 elements') if len(dim_for_update) != 3: raise ValueError('dim_for_update must have 3 elements') self.dropout_ratio = dropout_ratio with self.init_scope(): # for dense layer self.dense_for_atom = DenseLayer(dim_for_dense, activation) self.dense_for_pair = DenseLayer(dim_for_dense, activation) self.dense_for_global = DenseLayer(dim_for_dense, activation) # for update layer self.update_for_atom = UpdateLayer(dim_for_update, activation) self.update_for_pair = UpdateLayer(dim_for_update, activation) self.update_for_global = UpdateLayer(dim_for_update, activation) self.skip_intermediate = skip_intermediate def __call__(self, atoms_feat, pair_feat, global_feat, atom_idx, pair_idx, start_idx, end_idx): # 1) Pass the Dense layer a_f_d = self.dense_for_atom(atoms_feat) p_f_d = self.dense_for_pair(pair_feat) g_f_d = self.dense_for_global(global_feat) # 2) Update the edge vector start_node = a_f_d[start_idx] end_node = a_f_d[end_idx] g_f_extend_with_pair_idx = g_f_d[pair_idx] concat_p_v = functions.concat((p_f_d, start_node, end_node, g_f_extend_with_pair_idx)) update_p = self.update_for_pair(concat_p_v) # 3) Update the node vector # 1. get sum edge feature of all nodes using scatter_add method zero = self.xp.zeros(a_f_d.shape, dtype=self.xp.float32) sum_edeg_vec = functions.scatter_add(zero, start_idx, update_p) + \ functions.scatter_add(zero, end_idx, update_p) # 2. get degree of all nodes using scatter_add method one = self.xp.ones(p_f_d.shape, dtype=self.xp.float32) degree = functions.scatter_add(zero, start_idx, one) + \ functions.scatter_add(zero, end_idx, one) # 3. get mean edge feature of all nodes mean_edge_vec = sum_edeg_vec / degree # 4. concating g_f_extend_with_atom_idx = g_f_d[atom_idx] concat_a_v = functions.concat((a_f_d, mean_edge_vec, g_f_extend_with_atom_idx)) update_a = self.update_for_atom(concat_a_v) # 4) Update the global vector out_shape = g_f_d.shape ave_p = get_mean_feat(update_p, pair_idx, out_shape, self.xp) ave_a = get_mean_feat(update_a, atom_idx, out_shape, self.xp) concat_g_v = functions.concat((ave_a, ave_p, g_f_d), axis=1) update_g = self.update_for_global(concat_g_v) # 5) Skip connection if self.skip_intermediate: # Skip intermediate feature, used for first layer. new_a_f = update_a + a_f_d new_p_f = update_p + p_f_d new_g_f = update_g + g_f_d else: # Skip input feature, used all layer except first layer. # input feature must be same dimension with updated feature. new_a_f = update_a + atoms_feat new_p_f = update_p + pair_feat new_g_f = update_g + global_feat # 6) dropout if self.dropout_ratio > 0.0: new_a_f = functions.dropout(new_a_f, ratio=self.dropout_ratio) new_p_f = functions.dropout(new_p_f, ratio=self.dropout_ratio) new_g_f = functions.dropout(new_g_f, ratio=self.dropout_ratio) return new_a_f, new_p_f, new_g_f
41.116883
79
0.638029
72a58db347e5578c54d7cceecb497f1714327fce
731
py
Python
codeit/closest_pair.py
love-adela/algorithm
4ccd02173c96f8369962f1fd4e5166a221690fa2
[ "MIT" ]
3
2019-03-09T05:19:23.000Z
2019-04-06T09:26:36.000Z
codeit/closest_pair.py
love-adela/algorithm
4ccd02173c96f8369962f1fd4e5166a221690fa2
[ "MIT" ]
1
2020-02-23T10:38:04.000Z
2020-02-23T10:38:04.000Z
codeit/closest_pair.py
love-adela/algorithm
4ccd02173c96f8369962f1fd4e5166a221690fa2
[ "MIT" ]
1
2019-05-22T13:47:53.000Z
2019-05-22T13:47:53.000Z
#!usr/bin/python ''' Codeit-Brute Force 6. 가장 가까운 매장 찾기 ''' # 제곱근 사용을 위한 sqrt 함수 from math import sqrt # 두 매장의 직선 거리를 계산해 주는 함수 def distance(store1, store2): return sqrt((store1[0] - store2[0]) ** 2 + (store1[1] - store2[1]) ** 2) # 가장 가까운 두 매장을 찾아주는 함수 def closest_pair(coordinates): pair = [coordinates[0], coordinates[1]] for i in range(len(coordinates)): for j in range(i+1, len(coordinates)): store1, store2 = coordinates[i], coordinates[j] if distance(pair[0], pair[1]) > distance(store1, store2): pair = [store1, store2] return pair # 테스트 test_coordinates = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print(closest_pair(test_coordinates))
23.580645
76
0.604651
bd2f739973f340d52ce9112d649e76b784cf9d92
21,801
py
Python
deploy-agent/tests/unit/deploy/server/test_agent.py
aagxxi/teletraan
93af2abfd72e99258e80f978a80343656de2172f
[ "Apache-2.0" ]
null
null
null
deploy-agent/tests/unit/deploy/server/test_agent.py
aagxxi/teletraan
93af2abfd72e99258e80f978a80343656de2172f
[ "Apache-2.0" ]
null
null
null
deploy-agent/tests/unit/deploy/server/test_agent.py
aagxxi/teletraan
93af2abfd72e99258e80f978a80343656de2172f
[ "Apache-2.0" ]
null
null
null
# Copyright 2016 Pinterest, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest import mock import tests from deployd.agent import DeployAgent from deployd.common.utils import ensure_dirs from deployd.common.types import DeployReport, DeployStatus, OpCode, DeployStage, AgentStatus, PingStatus from deployd.types.deploy_goal import DeployGoal from deployd.types.ping_report import PingReport from deployd.types.ping_response import PingResponse class TestDeployAgent(tests.TestCase): @classmethod def setUpClass(cls): cls.estatus = mock.Mock() cls.estatus.load_envs = mock.Mock(return_value=None) cls.config = mock.Mock() cls.config.load_env_and_configs = mock.Mock() cls.config.get_var = mock.Mock(return_value='') cls.config.get_intvar(return_value=1) cls.config.get_target = mock.Mock(return_value='/tmp/tests') cls.config.get_config_filename = mock.Mock(return_value='/etc/deployagent.conf') cls.config.get_agent_directory = mock.Mock(return_value='/tmp/deployd/') cls.config.get_builds_directory = mock.Mock(return_value='/tmp/deployd/builds/') cls.config.get_log_directory = mock.Mock(return_value='/tmp/logs/') ensure_dirs(cls.config) cls.executor = mock.Mock() cls.executor.execute_command = \ mock.Mock(return_value=(DeployReport(AgentStatus.SUCCEEDED))) cls.executor.run_cmd = mock.Mock(return_value=(DeployReport(AgentStatus.SUCCEEDED))) cls.helper = mock.Mock() cls.helper.get_stale_builds = mock.Mock(return_value=[]) build = {} build['id'] = '123' build['name'] = 'abc' build['commitShort'] = '345' build['artifactUrl'] = 'https://test' envvar = {} envvar['id'] = 'abc' envvar['url'] = 'https://test' cls.deploy_goal1 = {} cls.deploy_goal1['deployId'] = '123' cls.deploy_goal1['envName'] = 'abc' cls.deploy_goal1['envId'] = 'def' cls.deploy_goal1['stageName'] = 'beta' cls.deploy_goal1['deployStage'] = DeployStage.PRE_DOWNLOAD cls.deploy_goal1['scriptVariables'] = envvar cls.deploy_goal2 = {} cls.deploy_goal2['deployId'] = '123' cls.deploy_goal2['envName'] = 'abc' cls.deploy_goal2['envId'] = 'def' cls.deploy_goal2['stageName'] = 'beta' cls.deploy_goal2['deployStage'] = DeployStage.DOWNLOADING cls.deploy_goal2['build'] = build cls.deploy_goal3 = {} cls.deploy_goal3['deployId'] = '123' cls.deploy_goal3['envName'] = 'abc' cls.deploy_goal3['envId'] = 'def' cls.deploy_goal3['stageName'] = 'beta' cls.deploy_goal3['deployStage'] = DeployStage.STAGING cls.deploy_goal4 = {} cls.deploy_goal4['deployId'] = '123' cls.deploy_goal4['envName'] = 'abc' cls.deploy_goal4['envId'] = 'def' cls.deploy_goal4['stageName'] = 'beta' cls.deploy_goal4['deployStage'] = DeployStage.PRE_RESTART cls.deploy_goal5 = {} cls.deploy_goal5['deployId'] = '123' cls.deploy_goal5['envName'] = 'abc' cls.deploy_goal5['envId'] = 'def' cls.deploy_goal5['stageName'] = 'beta' cls.deploy_goal5['deployId'] = '234' cls.deploy_goal5['deployStage'] = DeployStage.PRE_DOWNLOAD cls.deploy_goal5['build'] = build cls.deploy_goal6 = {} cls.deploy_goal6['deployId'] = '123' cls.deploy_goal6['envName'] = 'abc' cls.deploy_goal6['envId'] = 'def' cls.deploy_goal6['stageName'] = 'beta' cls.deploy_goal6['deployId'] = '234' cls.deploy_goal6['deployStage'] = DeployStage.SERVING_BUILD cls.ping_response1 = {'deployGoal': cls.deploy_goal1, 'opCode': OpCode.DEPLOY} cls.ping_response2 = {'deployGoal': cls.deploy_goal2, 'opCode': OpCode.DEPLOY} cls.ping_response3 = {'deployGoal': cls.deploy_goal3, 'opCode': OpCode.DEPLOY} cls.ping_response4 = {'deployGoal': cls.deploy_goal4, 'opCode': OpCode.DEPLOY} cls.ping_response5 = {'deployGoal': cls.deploy_goal5, 'opCode': OpCode.DELETE} cls.ping_response6 = {'deployGoal': cls.deploy_goal6, 'opCode': OpCode.DELETE} cls.ping_noop_response = {'deployGoal': None, 'opCode': OpCode.NOOP} def test_agent_first_run(self): # first run ping_response_list = [PingResponse(jsonValue=self.ping_response1), None, PingResponse(jsonValue=self.ping_response1)] client = mock.Mock() client.send_reports = mock.Mock(side_effect=ping_response_list) d = DeployAgent(client=client, estatus=self.estatus, conf=self.config, executor=self.executor, helper=self.helper) self.assertTrue(d.first_run) # first run stickiness d._envs = {'data': 'data'} self.assertTrue(d.first_run) # subsequent run client.send_reports = mock.Mock(side_effect=ping_response_list) d = DeployAgent(client=client, estatus=self.estatus, conf=self.config, executor=self.executor, helper=self.helper) d._envs = {'data': 'data'} self.assertFalse(d.first_run) def test_agent_status_on_ping_failure(self): ping_response_list = [PingResponse(jsonValue=self.ping_response1), None, PingResponse(jsonValue=self.ping_response1)] client = mock.Mock() client.send_reports = mock.Mock(side_effect=ping_response_list) d = DeployAgent(client=client, estatus=self.estatus, conf=self.config, executor=self.executor, helper=self.helper) self.assertEqual(PingStatus.PLAN_CHANGED, d.update_deploy_status(DeployReport(status_code=AgentStatus.SUCCEEDED))) self.assertEqual(PingStatus.PING_FAILED, d.update_deploy_status(DeployReport(status_code=AgentStatus.SUCCEEDED))) self.assertEqual(PingStatus.PLAN_NO_CHANGE, d.update_deploy_status(DeployReport(status_code=AgentStatus.SUCCEEDED))) def test_agent_with_switch_command(self): ping_response_list = [ PingResponse(jsonValue=self.ping_response1), PingResponse(jsonValue=self.ping_response2), PingResponse(jsonValue=self.ping_response3), PingResponse(jsonValue=self.ping_response4), PingResponse(jsonValue=self.ping_response5), PingResponse(jsonValue=self.ping_response6), PingResponse(jsonValue=self.ping_noop_response)] client = mock.Mock() client.send_reports = mock.Mock(side_effect=ping_response_list) d = DeployAgent(client=client, estatus=self.estatus, conf=self.config, executor=self.executor, helper=self.helper) d.serve_build() calls = [mock.call(['deploy-downloader', '-f', '/etc/deployagent.conf', '-v', '123', '-u', 'https://test', '-e', 'abc']), mock.call(['deploy-stager', '-f', '/etc/deployagent.conf', '-v', '123', '-t', '/tmp/tests', '-e', 'abc'])] self.executor.run_cmd.assert_has_calls(calls) self.assertEqual(len(d._envs), 0) def test_agent_with_switch_goal(self): build = {} build['id'] = '123' build['name'] = 'bar' build['commitShort'] = '345' build['commit'] = 'abcd' build['artifactUrl'] = 'https://test' build2 = {} build2['id'] = '123' build2['name'] = 'fool' build2['commit'] = 'abcd' build2['commitShort'] = '345' build2['artifactUrl'] = 'https://test2' envvar = {} envvar['id'] = 'abc' envvar['url'] = 'https://test' envvar2 = {} envvar2['id'] = 'bcd' envvar2['url'] = 'https://test2' ping_response1 = self.ping_response1 ping_response1['deployGoal']['scriptVariables'] = envvar ping_response2 = self.ping_response2 ping_response2['deployGoal']['build'] = build ping_response3 = self.ping_response3 ping_response4 = self.ping_response4 deploy_goal5 = {} deploy_goal5['deployId'] = '234' deploy_goal5['envName'] = 'bcd' deploy_goal5['envId'] = 'efg' deploy_goal5['stageName'] = 'prod' deploy_goal5['deployStage'] = DeployStage.PRE_DOWNLOAD deploy_goal5['scriptVariables'] = envvar2 deploy_goal6 = {} deploy_goal6['deployId'] = '234' deploy_goal6['envName'] = 'bcd' deploy_goal6['envId'] = 'efg' deploy_goal6['stageName'] = 'prod' deploy_goal6['deployStage'] = DeployStage.DOWNLOADING deploy_goal6['build'] = build2 deploy_goal7 = {} deploy_goal7['deployId'] = '234' deploy_goal7['envName'] = 'bcd' deploy_goal7['envId'] = 'efg' deploy_goal7['stageName'] = 'prod' deploy_goal7['deployStage'] = DeployStage.STAGING deploy_goal8 = {} deploy_goal8['deployId'] = '234' deploy_goal8['envName'] = 'bcd' deploy_goal8['envId'] = 'efg' deploy_goal8['stageName'] = 'prod' deploy_goal8['deployStage'] = DeployStage.RESTARTING deploy_goal9 = {} deploy_goal9['deployId'] = '234' deploy_goal9['envName'] = 'bcd' deploy_goal9['envId'] = 'efg' deploy_goal9['stageName'] = 'prod' deploy_goal9['deployStage'] = DeployStage.POST_RESTART deploy_goal10 = {} deploy_goal10['deployId'] = '234' deploy_goal10['envName'] = 'bcd' deploy_goal10['envId'] = 'efg' deploy_goal10['stageName'] = 'prod' deploy_goal10['deployStage'] = DeployStage.SERVING_BUILD ping_response5 = {'deployGoal': deploy_goal5, 'opCode': OpCode.DEPLOY} ping_response6 = {'deployGoal': deploy_goal6, 'opCode': OpCode.DEPLOY} ping_response7 = {'deployGoal': deploy_goal7, 'opCode': OpCode.DEPLOY} ping_response8 = {'deployGoal': deploy_goal8, 'opCode': OpCode.DEPLOY} ping_response9 = {'deployGoal': deploy_goal9, 'opCode': OpCode.DEPLOY} ping_response10 = {'deployGoal': deploy_goal10, 'opCode': OpCode.DEPLOY} ping_response_list = [ PingResponse(jsonValue=ping_response1), PingResponse(jsonValue=ping_response2), PingResponse(jsonValue=ping_response3), PingResponse(jsonValue=ping_response4), PingResponse(jsonValue=ping_response5), PingResponse(jsonValue=ping_response6), PingResponse(jsonValue=ping_response7), PingResponse(jsonValue=ping_response8), PingResponse(jsonValue=ping_response9), PingResponse(jsonValue=ping_response10), PingResponse(jsonValue=self.ping_noop_response) ] client = mock.Mock() client.send_reports = mock.Mock(side_effect=ping_response_list) d = DeployAgent(client=client, estatus=self.estatus, conf=self.config, executor=self.executor, helper=self.helper) d.serve_build() calls = [mock.call(['deploy-downloader', '-f', '/etc/deployagent.conf', '-v', '123', '-u', 'https://test', '-e', 'abc']), mock.call(['deploy-stager', '-f', '/etc/deployagent.conf', '-v', '123', '-t', '/tmp/tests', '-e', 'abc']), mock.call(['deploy-downloader', '-f', '/etc/deployagent.conf', '-v', '123', '-u', 'https://test2', '-e', 'bcd']), mock.call(['deploy-stager', '-f', '/etc/deployagent.conf', '-v', '123', '-t', '/tmp/tests', '-e', 'bcd'])] self.executor.run_cmd.assert_has_calls(calls) self.assertEqual(len(d._envs), 2) self.assertEqual(d._envs['abc'].report.deployStage, DeployStage.PRE_RESTART) self.assertEqual(d._envs['abc'].report.deployId, '123') self.assertEqual(d._envs['abc'].report.envId, 'def') self.assertEqual(d._envs['abc'].report.status, AgentStatus.SUCCEEDED) self.assertEqual(d._envs['abc'].build_info.build_commit, 'abcd') self.assertEqual(d._envs['abc'].build_info.build_url, 'https://test') self.assertEqual(d._envs['bcd'].report.deployStage, DeployStage.SERVING_BUILD) self.assertEqual(d._envs['bcd'].report.deployId, '234') self.assertEqual(d._envs['bcd'].report.envId, 'efg') self.assertEqual(d._envs['bcd'].report.status, AgentStatus.SUCCEEDED) self.assertEqual(d._envs['bcd'].build_info.build_commit, 'abcd') self.assertEqual(d._envs['bcd'].build_info.build_url, 'https://test2') def test_delete_report(self): status = DeployStatus() ping_report = {} ping_report['deployId'] = '123' ping_report['envId'] = '234' ping_report['envName'] = 'abc' ping_report['stageName'] = 'beta' ping_report['deployStage'] = DeployStage.SERVING_BUILD ping_report['status'] = AgentStatus.SUCCEEDED status.report = PingReport(jsonValue=ping_report) envs = {'abc': status} client = mock.Mock() estatus = mock.Mock() estatus.load_envs = mock.Mock(return_value=envs) deploy_goal = {} deploy_goal['deployId'] = '123' deploy_goal['envId'] = '234' deploy_goal['envName'] = 'abc' deploy_goal['stageName'] = 'beta' ping_response = {'deployGoal': deploy_goal, 'opCode': OpCode.DELETE} responses = [ PingResponse(jsonValue=ping_response), PingResponse(jsonValue=self.ping_noop_response) ] client.send_reports = mock.Mock(side_effect=responses) agent = DeployAgent(client=client, estatus=estatus, conf=self.config, executor=self.executor, helper=self.helper) agent.serve_build() calls = [mock.call(envs), mock.call({})] client.send_reports.assert_has_calls(calls) self.assertIsNone(agent._curr_report) self.assertEqual(agent._envs, {}) def test_init_report(self): if os.path.exists('/tmp/env_status'): os.remove('/tmp/env_status') client = mock.Mock() client.send_reports = \ mock.Mock(return_value=(PingResponse(jsonValue=self.ping_noop_response))) d = DeployAgent(client=client, estatus=self.estatus, conf=self.config, executor=self.executor, helper=self.helper) d.serve_build() client.send_reports.assert_called_once_with({}) def test_report_health(self): status = DeployStatus() ping_report = {} ping_report['deployId'] = '123' ping_report['envId'] = '234' ping_report['envName'] = 'abc' ping_report['stageName'] = 'beta' ping_report['deployStage'] = DeployStage.SERVING_BUILD ping_report['status'] = AgentStatus.SUCCEEDED status.report = PingReport(jsonValue=ping_report) envs = {'234': status} client = mock.Mock() estatus = mock.Mock() estatus.load_envs = mock.Mock(return_value=envs) client.send_reports = \ mock.Mock(return_value=PingResponse(jsonValue=self.ping_noop_response)) agent = DeployAgent(client=client, estatus=estatus, conf=self.config, executor=self.executor, helper=self.helper) agent.serve_build() client.send_reports.assert_called_once_with(envs) self.assertEqual(agent._curr_report.report.envId, '234') self.assertEqual(agent._curr_report.report.deployStage, DeployStage.SERVING_BUILD) self.assertEqual(agent._curr_report.report.status, AgentStatus.SUCCEEDED) def test_report_with_deploy_goal(self): if os.path.exists('/tmp/env_status'): os.remove('/tmp/env_status') build = {} build['id'] = '123' build['url'] = 'https://test' client = mock.Mock() deploy_goal = {} deploy_goal['deployId'] = '123' deploy_goal['envName'] = '456' deploy_goal['envId'] = '789' deploy_goal['stageName'] = 'beta' deploy_goal['deployStage'] = DeployStage.PRE_DOWNLOAD deploy_goal['scriptVariables'] = build ping_response = {'deployGoal': deploy_goal, 'opCode': OpCode.DEPLOY} responses = [ PingResponse(jsonValue=ping_response), PingResponse(jsonValue=self.ping_noop_response) ] client.send_reports = mock.Mock(side_effect=responses) agent = DeployAgent(client=client, estatus=self.estatus, conf=self.config, executor=self.executor, helper=self.helper) agent.process_deploy = mock.Mock(return_value=(DeployReport(AgentStatus.SUCCEEDED))) agent.serve_build() self.assertEqual(agent._curr_report.report.envId, '789') self.assertEqual(agent._curr_report.report.deployStage, DeployStage.PRE_DOWNLOAD) self.assertEqual(len(agent._envs), 1) def test_set_and_get_deploy_status(self): envvar = {} envvar['id'] = 'bar' envvar['url'] = 'https://abc-123.tar.gz' build = {} build['id'] = '123' build['name'] = 'bar' build['commitShort'] = '234' build['artifactUrl'] = 'https://abc-123.tar.gz' ping_response1 = self.ping_response1 ping_response1['deployGoal']['scriptVariables'] = envvar ping_response2 = self.ping_response2 ping_response2['deployGoal']['build'] = build deploy_goal5 = {} deploy_goal5['deployId'] = '123' deploy_goal5['envName'] = 'abc' deploy_goal5['envId'] = 'def' deploy_goal5['stageName'] = 'beta' deploy_goal5['deployStage'] = DeployStage.RESTARTING deploy_goal6 = {} deploy_goal6['deployId'] = '123' deploy_goal6['envName'] = 'abc' deploy_goal6['envId'] = 'def' deploy_goal6['stageName'] = 'beta' deploy_goal6['deployStage'] = DeployStage.POST_RESTART deploy_goal7 = {} deploy_goal7['deployId'] = '123' deploy_goal7['envName'] = 'abc' deploy_goal7['envId'] = 'def' deploy_goal7['stageName'] = 'beta' deploy_goal7['deployStage'] = DeployStage.SERVING_BUILD ping_response5 = {'deployGoal': deploy_goal5, 'opCode': OpCode.DEPLOY} ping_response6 = {'deployGoal': deploy_goal6, 'opCode': OpCode.DEPLOY} ping_response7 = {'deployGoal': deploy_goal7, 'opCode': OpCode.DEPLOY} ping_response_list = [ PingResponse(jsonValue=ping_response1), PingResponse(jsonValue=ping_response2), PingResponse(jsonValue=self.ping_response3), PingResponse(jsonValue=self.ping_response4), PingResponse(jsonValue=ping_response5), PingResponse(jsonValue=ping_response6), PingResponse(jsonValue=ping_response7), PingResponse(jsonValue=self.ping_noop_response) ] client = mock.Mock() client.send_reports = mock.Mock(side_effect=ping_response_list) d = DeployAgent(client=client, estatus=self.estatus, conf=self.config, executor=self.executor, helper=self.helper) d.serve_build() calls = [mock.call(stage) for stage in ['PRE_DOWNLOAD', 'PRE_RESTART', 'RESTARTING', 'POST_RESTART']] self.executor.execute_command.assert_has_calls(calls) self.assertEqual(len(d._envs), 1) self.assertEqual(d._curr_report.report.envId, 'def') self.assertEqual(d._curr_report.report.envName, 'abc') self.assertEqual(d._curr_report.report.deployId, '123') self.assertEqual(d._curr_report.report.stageName, 'beta') self.assertEqual(d._curr_report.report.deployStage, DeployStage.SERVING_BUILD) def test_plan_change(self): old_response = None new_response = None self.assertFalse(DeployAgent.plan_changed(old_response, new_response)) new_response = PingResponse() self.assertTrue(DeployAgent.plan_changed(old_response, new_response)) old_response = PingResponse() old_response.opCode = OpCode.DEPLOY new_response.opCode = OpCode.NOOP self.assertTrue(DeployAgent.plan_changed(old_response, new_response)) new_response.opCode = OpCode.DEPLOY self.assertFalse(DeployAgent.plan_changed(old_response, new_response)) deploy_goal = {} deploy_goal['deployId'] = '123' deploy_goal2 = {} deploy_goal2['deployId'] = '234' old_response.deployGoal = DeployGoal(jsonValue=deploy_goal) new_response.deployGoal = DeployGoal(jsonValue=deploy_goal2) self.assertTrue(DeployAgent.plan_changed(old_response, new_response)) new_response.deployGoal.deployId = '123' new_response.deployGoal.deployStage = DeployStage.PRE_RESTART old_response.deployGoal.deployStage = DeployStage.PRE_RESTART self.assertFalse(DeployAgent.plan_changed(old_response, new_response)) def test_switch_goal_download_variable_failed(self): pass if __name__ == '__main__': unittest.main()
43.777108
125
0.634237
9760e75d6f5f857820bc35a7d267dc6323eb9be3
2,055
py
Python
helper/refactor_command.py
Bhanditz/JavaScriptEnhancements
f87ff0ae9dba99bab69bf4fe4e73ca29d198f81e
[ "MIT" ]
null
null
null
helper/refactor_command.py
Bhanditz/JavaScriptEnhancements
f87ff0ae9dba99bab69bf4fe4e73ca29d198f81e
[ "MIT" ]
null
null
null
helper/refactor_command.py
Bhanditz/JavaScriptEnhancements
f87ff0ae9dba99bab69bf4fe4e73ca29d198f81e
[ "MIT" ]
null
null
null
# import sublime, sublime_plugin # import re # { "caption": "-" }, # { # "caption": "Refactor (Working on it ...)", # "id": "refactor", # "children": [ # { # "caption": "Extract", # "children": [ # { # "caption": "Method", # "command": "refactor", # "args": {"case": "extract_method"} # } # ] # } # ] # } # class refactorCommand(sublime_plugin.TextCommand): # def run(self, edit, **args): # view = self.view # case = args.get("case") # if not "answer" in args : # caption = "" # initial_text = "" # if case == "extract_method" : # caption = "Method:" # initial_text = "func ()" # view.window().show_input_panel(caption, initial_text, lambda answer: view.run_command('refactor', args={"case": case, "answer": answer}), None, None) # else : # answer = args.get("answer").strip() # scope = view.scope_name(view.sel()[0].begin()) # space = Util.get_whitespace_from_line_begin(view, view.sel()[0]) # if case == "extract_method" : # new_text = Util.replace_with_tab(view, view.sel()[0], "\t\n\t"+answer+" {\n\t", "\n\t}\n") # view.replace(edit, view.sel()[0], "this."+(re.sub('\s+\(', '(', answer)) ) # region_class = Util.get_region_scope_first_match(view, scope, view.sel()[0], 'meta.class.js')["region"] # view.insert(edit, region_class.end()-1, new_text) # def is_enabled(self, **args) : # view = self.view # if not Util.selection_in_js_scope(view) : # return False # selections = view.sel() # for selection in selections : # if view.substr(selection).strip() != "" : # return True # return False # def is_visible(self, **args) : # view = self.view # if not Util.selection_in_js_scope(view) : # return False # selections = view.sel() # for selection in selections : # if view.substr(selection).strip() != "" : # return True # return False
32.109375
157
0.543552
c7be26e6e05d19190651c72af1d0b82d3cb8ae56
430
py
Python
turtle-lib-tests/circle.py
actiago/estudos.py
c0aeca05dfc80b6f22e977f26bae3af9af3cbe1a
[ "MIT" ]
2
2020-10-06T12:15:39.000Z
2020-10-06T12:39:03.000Z
turtle-lib-tests/circle.py
actiago/estudos.py
c0aeca05dfc80b6f22e977f26bae3af9af3cbe1a
[ "MIT" ]
null
null
null
turtle-lib-tests/circle.py
actiago/estudos.py
c0aeca05dfc80b6f22e977f26bae3af9af3cbe1a
[ "MIT" ]
null
null
null
import Turtle ninja = Turtle.Turtle() colors = [ 'red', 'purple', 'yellow', 'blue', 'green', 'orange' ] ninja.speed(10) turtle.bgcolor('black') for i in range(180): ninja.pencolor(colors[i%6]) ninja.forward(100) ninja.right(30) ninja.forward(20) ninja.left(60) ninja.forward(50) ninja.right(30) ninja.penup() ninja.setposition(0, 0) ninja.pendown() ninja.right(2) turtle.done()
15.925926
65
0.625581
bb67fb634ce051c9b028f45b081eb2294b82db8d
4,800
py
Python
test/nonregression/iotools/test_run_converters.py
ravih18/clinica
07dfe5ba3bab5852a220dba2c88ab0c5132ef26e
[ "MIT" ]
null
null
null
test/nonregression/iotools/test_run_converters.py
ravih18/clinica
07dfe5ba3bab5852a220dba2c88ab0c5132ef26e
[ "MIT" ]
null
null
null
test/nonregression/iotools/test_run_converters.py
ravih18/clinica
07dfe5ba3bab5852a220dba2c88ab0c5132ef26e
[ "MIT" ]
null
null
null
# coding: utf8 """ This file contains a set of functional tests designed to check the correct execution of the pipeline and the different functions available in Clinica """ import warnings from os import PathLike, fspath from pathlib import Path from test.nonregression.testing_tools import ( clean_folder, compare_folders, compare_folders_structures, compare_folders_with_hashes, create_list_hashes, identical_subject_list, same_missing_modality_tsv, ) import pytest # Determine location for working_directory warnings.filterwarnings("ignore") @pytest.fixture( params=[ "Nifd2Bids", "Oasis2Bids", "Oasis3ToBids", "Adni2Bids", "Aibl2Bids", ] ) def test_name(request): return request.param def run_nifd2bids(input_dir: PathLike, output_dir: PathLike, ref_dir: PathLike) -> None: import shutil from clinica.iotools.converters.nifd_to_bids.nifd_to_bids import convert_images # Arrange shutil.copytree( input_dir / "clinical_data", output_dir / "clinical_data", copy_function=shutil.copy, ) # Arrange - Data location clinical_data_directory = output_dir / "clinical_data" # Acte - Conversion to_convert = convert_images( input_dir / "unorganized", output_dir / "bids", clinical_data_directory ) # Assert compare_folders_structures( fspath(output_dir / "bids"), fspath(ref_dir / "hashes_nifd.p") ) def run_oasis2bids( input_dir: PathLike, output_dir: PathLike, ref_dir: PathLike ) -> None: from clinica.iotools.converters.oasis_to_bids.oasis_to_bids import OasisToBids # Arrange clinical_data_directory = input_dir / "clinical_data" # Act oasis_to_bids = OasisToBids() oasis_to_bids.convert_images(input_dir / "unorganized", output_dir / "bids") oasis_to_bids.convert_clinical_data(clinical_data_directory, output_dir / "bids") # Assert compare_folders(output_dir / "bids", ref_dir / "bids", output_dir) def run_oasis3tobids( input_dir: PathLike, output_dir: PathLike, ref_dir: PathLike ) -> None: from clinica.iotools.converters.oasis3_to_bids.oasis3_to_bids import convert_images # Arrange clinical_data_directory = input_dir / "clinical_data" # Act convert_images( input_dir / "unorganized", output_dir / "bids", clinical_data_directory ) # Assert compare_folders(output_dir / "bids", ref_dir / "bids", output_dir) def run_adni2bids(input_dir: PathLike, output_dir: PathLike, ref_dir: PathLike) -> None: from clinica.iotools.converters.adni_to_bids.adni_to_bids import AdniToBids # Arrange clinical_data_directory = input_dir / "clinical_data" dataset_directory = input_dir / "unorganized_data" subjects_list = input_dir / "subjects.txt" modalities = ["T1", "PET_FDG", "PET_AMYLOID", "PET_TAU", "DWI", "FLAIR", "fMRI"] # Act adni_to_bids = AdniToBids() adni_to_bids.check_adni_dependencies() adni_to_bids.convert_images( dataset_directory, clinical_data_directory, output_dir / "bids", subjects_list, modalities, ) adni_to_bids.convert_clinical_data(clinical_data_directory, output_dir / "bids") # Assert compare_folders(output_dir / "bids", ref_dir / "bids", output_dir) def run_aibl2bids(input_dir: PathLike, output_dir: PathLike, ref_dir: PathLike) -> None: from clinica.iotools.converters.aibl_to_bids.aibl_to_bids import ( convert_clinical_data, convert_images, ) # Arrange clinical_data_directory = input_dir / "Data_extract_3.2.5" dataset_directory = input_dir / "unorganized_data" # Act convert_images( dataset_directory, clinical_data_directory, output_dir / "bids", ) convert_clinical_data(output_dir / "bids", clinical_data_directory) # Assert compare_folders(output_dir / "bids", ref_dir / "bids", output_dir) def test_run_convertors(cmdopt, tmp_path, test_name): import shutil base_dir = Path(cmdopt["input"]) input_dir = base_dir / test_name / "in" ref_dir = base_dir / test_name / "ref" tmp_out_dir = tmp_path / test_name / "out" tmp_out_dir.mkdir(parents=True) if test_name == "Nifd2Bids": run_nifd2bids(input_dir, tmp_out_dir, ref_dir) elif test_name == "Oasis2Bids": run_oasis2bids(input_dir, tmp_out_dir, ref_dir) elif test_name == "Oasis3ToBids": run_oasis3tobids(input_dir, tmp_out_dir, ref_dir) elif test_name == "Adni2Bids": run_adni2bids(input_dir, tmp_out_dir, ref_dir) elif test_name == "Aibl2Bids": run_aibl2bids(input_dir, tmp_out_dir, ref_dir) else: print(f"Test {test_name} not available.") assert 0
29.268293
108
0.704792
cfbbb1eadd4c0cb360bcc94d64424ed73967f1cd
11,593
py
Python
DESHIMA/use_desim.py
EsmeeHuijten/DESHIMAmodel
6e0e3f68276ce3802f233ee999c0a341f79fa120
[ "MIT" ]
1
2020-02-04T12:46:25.000Z
2020-02-04T12:46:25.000Z
DESHIMA/use_desim.py
EsmeeHuijten/DESHIMAmodel
6e0e3f68276ce3802f233ee999c0a341f79fa120
[ "MIT" ]
null
null
null
DESHIMA/use_desim.py
EsmeeHuijten/DESHIMAmodel
6e0e3f68276ce3802f233ee999c0a341f79fa120
[ "MIT" ]
2
2020-03-12T06:46:54.000Z
2020-09-02T09:00:49.000Z
import numpy as np import pandas as pd import time import math import matplotlib.pyplot as plt from matplotlib.ticker import ScalarFormatter from scipy import integrate import sys sys.path.append('./DESHIMA/desim/') sys.path.append('./desim/') sys.path.append('../desim/') import minidesim as dsm sys.path.append('./DESHIMA/') # cython # import pyximport; pyximport.install() # import Lorentzian class use_desim(object): h = 6.62607004 * 10**-34 k = 1.38064852 * 10**-23 e = 1.60217662 * 10**-19 # electron charge c = 299792458. Delta_Al = 188 * 10**-6 * e # gap energy of Al eta_pb = 0.4 def __init__(self): self.instrument_properties_D1 = { 'eta_M1_spill' : 0.99, 'eta_M2_spill' : 0.90, 'n_wo_mirrors' : 2., 'window_AR' : False, 'eta_co' : 0.65, # product of co spillover, qo filter 'eta_lens_antenna_rad' : 0.81, # D2_2V3.pdf, p14: front-to-back ratio 0.93 * reflection efficiency 0.9 * matching 0.98 * antenna spillover 0.993 'eta_IBF' : 0.6, 'KID_excess_noise_factor' : 1.0, 'Tb_cmb' : 2.725, 'Tp_amb' : 273., 'Tp_cabin' : 290., 'Tp_co' : 4., 'Tp_chip' : 0.12, } self.instrument_properties_D2 = { 'eta_M1_spill' : 0.99, 'eta_M2_spill' : 0.90, 'n_wo_mirrors' : 4., 'window_AR' : True, 'eta_co' : 0.65, # product of co spillover, qo filter 'eta_lens_antenna_rad' : 0.81, # D2_2V3.pdf, p14: front-to-back ratio 0.93 * reflection efficiency 0.9 * matching 0.98 * antenna spillover 0.993 'eta_IBF' : 0.6, 'KID_excess_noise_factor' : 1.1, 'Tb_cmb' : 2.725, 'Tp_amb' : 273., 'Tp_cabin' : 290., 'Tp_co' : 4., 'Tp_chip' : 0.12, } def calcLorentzian(F_bins_Lor_mesh, F_filters_mesh, R): # F_bins_Lor_mesh, F_filters_mesh = np.meshgrid(F_bins_Lor, F_filters) FWHM = F_filters_mesh/R y_array = 1/math.pi * 1/2 * FWHM / ((F_bins_Lor_mesh-F_filters_mesh)**2 + (1/2 * FWHM)**2) return y_array def D2HPBW(F): HPBW = 29.*240./(F/1e9) * np.pi / 180. / 60. / 60. return HPBW def eta_mb_ruze(self, F, LFlimit, sigma): '''F in Hz, LFlimit is the eta_mb at => 0 Hz, sigma in m''' eta_mb = LFlimit* np.exp(- (4.*np.pi* sigma * F/self.c)**2. ) return eta_mb def transmit_through_DESHIMA(self, signal_instance, pwv_value): F_min = signal_instance.F_min F_max = signal_instance.F_max num_filters = signal_instance.num_filters num_bins_Lor = signal_instance.num_bins R = signal_instance.spec_res eta_atm_df = signal_instance.eta_atm_df F_highres = signal_instance.F_highres eta_atm_func_zenith = signal_instance.eta_atm_func_zenith psd_gal = signal_instance.psd_gal EL = signal_instance.EL D1 = signal_instance.D1 pwv_values_no_gal = np.array([pwv_value[0], pwv_value[2], pwv_value[3], pwv_value[4]]) pwv_value_gal = np.array([pwv_value[0], pwv_value[1]]) F_filters = signal_instance.filters margin = 10e9 # F_bins_Lor = np.logspace(np.log10(F_min-margin), np.log10(F_max + margin), num_bins_Lor) F_bins_Lor = np.linspace(F_min-margin, F_max + margin, num_bins_Lor) if D1: instrument_properties = self.instrument_properties_D1 theta_maj = 31.4*np.pi/180./60./60. theta_min = 22.8*np.pi/180./60./60. eta_mb = 0.34 eta_filter_peak = 0.35 * 0.1 else: instrument_properties = self.instrument_properties_D2 HPBW = use_desim.D2HPBW(F_bins_Lor) eta_mb = self.eta_mb_ruze(F=F_bins_Lor,LFlimit=0.8,sigma=37e-6) * 0.9 # see specs, 0.9 is from EM, ruze is from ASTE theta_maj = HPBW theta_min = HPBW eta_filter_peak = 0.4 Desim_input_params ={ 'eta_atm_df': eta_atm_df, 'F_highres': F_highres, 'eta_atm_func_zenith': eta_atm_func_zenith, 'F' : F_bins_Lor, 'pwv':pwv_values_no_gal, 'EL':EL, # 'R' : R, 'theta_maj' : theta_maj, 'theta_min' : theta_min, 'eta_mb' : eta_mb, 'psd_gal': psd_gal, 'inclGal': 0 } Desim_input = dict(instrument_properties, **Desim_input_params) DESHIMA_transmitted_no_gal = dsm.spectrometer_sensitivity(**Desim_input) # takes a lot of time Desim_input_params['pwv'] = pwv_value_gal Desim_input_params['inclGal'] = 1 Desim_input = dict(instrument_properties, **Desim_input_params) DESHIMA_transmitted_gal = dsm.spectrometer_sensitivity(**Desim_input) # takes a lot of time psd_co_no_gal = DESHIMA_transmitted_no_gal['psd_co'] #vector because of F psd_co_gal = DESHIMA_transmitted_gal['psd_co'] psd_co = np.zeros([num_bins_Lor, 5]) for i in range(0, 4): if i == 0: psd_co[:, 0] = psd_co_no_gal[:, 0] else: psd_co[:, i + 1] = psd_co_no_gal[:, i] psd_co[:, 1] = psd_co_gal[:, 1] psd_jn_chip = DESHIMA_transmitted_no_gal['psd_jn_chip'] F_bins_Lor_mesh, F_filters_mesh = np.meshgrid(F_bins_Lor, F_filters) eta_circuit = use_desim.calcLorentzian(F_bins_Lor_mesh, F_filters_mesh, R) * math.pi * F_filters_mesh/(2 * R) * eta_filter_peak eta_chip = instrument_properties['eta_lens_antenna_rad'] * eta_circuit # calculate psd_KID with different values for pwv psd_medium = np.transpose((1-eta_chip)*np.transpose(np.array(psd_jn_chip))) psd_KID = np.zeros([psd_co.shape[1], num_filters, num_bins_Lor]) for i in range(num_bins_Lor): psd_co_i = psd_co[i, :].reshape(psd_co[i, :].shape[0], 1) eta_chip_i = eta_chip[:, i].reshape(1, eta_chip[:, i].shape[0]) psd_KID_in_i = eta_chip_i*psd_co_i result = psd_KID_in_i + psd_medium[i, :] psd_KID[:, :, i] = result return DESHIMA_transmitted_no_gal, F_bins_Lor, psd_KID, F_filters ##------------------------------------------------------------------------------ ## Everything under this is not used in the model, only for making the interpolation curves and plotting ##------------------------------------------------------------------------------ def obt_data(self, input, D1): F = input['F'] data_names = input['data_names'] # del(input['data_names']) if D1: instrument_properties = self.instrument_properties_D1 else: instrument_properties = self.instrument_properties_D2 sensitivity_input = dict(instrument_properties, **input) del(sensitivity_input['data_names']) D2goal = dsm.spectrometer_sensitivity(**sensitivity_input) # takes a lot of time data = [] for el in data_names: data.append(np.array(D2goal[el])) return data def calcT_psd_P(self, eta_atm_df, F_highres, eta_atm_func_zenith, F_filter, EL_vector, num_filters, pwv = 0.1, R = 500, num_bins = 1500, progressbar = None, D1 = 0): length_EL_vector = len(EL_vector) margin = 10e9 # F_bins = np.logspace(np.log10(F_filter[0]-margin), np.log10(F_filter[-1] + margin), num_bins) #to calculate the Lorentzian F_bins = np.linspace(F_filter[0] - margin, F_filter[-1] + margin, num_bins) if D1: instrument_properties = self.instrument_properties_D1 theta_maj = 31.4*np.pi/180./60./60. * np.ones(num_bins) theta_min = 22.8*np.pi/180./60./60. * np.ones(num_bins) eta_mb = 0.34 * np.ones(num_bins) eta_filter_peak = 0.35 * 0.1 else: instrument_properties = self.instrument_properties_D2 eta_mb = self.eta_mb_ruze(F=F_bins,LFlimit=0.8,sigma=37e-6) * 0.9 # see specs, 0.9 is from EM, ruze is from ASTE HPBW = use_desim.D2HPBW(F_bins) theta_maj = HPBW theta_min = HPBW eta_filter_peak = 0.4 # Initializing variables psd_KID = np.zeros([num_filters, num_bins, length_EL_vector]) Tb_sky = np.zeros([num_filters, length_EL_vector]) Pkid = np.zeros([num_filters, length_EL_vector]) psd_co = np.zeros([num_bins, length_EL_vector]) psd_jn_chip = np.zeros([num_bins, length_EL_vector]) eta_circuit = np.zeros(num_bins) # Obtain psd_co and psd_jn_chip from desim for j in range(0, num_bins): input = { 'F': F_bins[j], 'pwv': pwv, 'EL': EL_vector, 'data_names': ['psd_co', 'psd_jn_chip'], 'eta_atm_df': eta_atm_df, 'F_highres': F_highres, 'eta_atm_func_zenith': eta_atm_func_zenith, 'theta_maj' : theta_maj[j], 'theta_min' : theta_min[j], 'eta_mb' : eta_mb[j] } [psd_co[j, :], psd_jn_chip[j, :]] = self.obt_data(input, D1) if progressbar: progressbar.next() # Obtain psd_kid for i in range(0, num_filters): # Putting a Lorentzian curve with peak height 0.35 and center frequency F_filter[i] in eta_circuit eta_circuit = use_desim.calcLorentzian(F_bins, F_filter[i], R) * math.pi * F_filter[i]/(2 * R) * eta_filter_peak eta_chip = instrument_properties['eta_lens_antenna_rad'] * eta_circuit eta_chip_matrix = np.tile(eta_chip.reshape(len(eta_chip), 1), (1, length_EL_vector)) psd_KID[i, :, :] = dsm.rad_trans(psd_co, psd_jn_chip, eta_chip_matrix) if progressbar: progressbar.next() delta_F = F_bins[1] - F_bins[0] numerators = np.zeros([EL_vector.shape[0], num_filters]) denominators = np.zeros(num_filters) for k in range(0, num_filters): transmission = use_desim.calcLorentzian(F_bins, F_filter[k], R) transmission = transmission.reshape([transmission.shape[0], 1]) numerators[:, k] = delta_F * np.sum(transmission \ * dsm.eta_atm_func(F=F_bins, pwv=pwv, EL=EL_vector, eta_atm_df=eta_atm_df, F_highres=F_highres, eta_atm_func_zenith=eta_atm_func_zenith), axis = 0) denominators[k] = delta_F * np.sum(transmission) # delta_F taken out of sum because it is the same for each bin eta_atm_matrix = np.transpose(numerators/denominators) if D1 == 0: eta_mb = self.eta_mb_ruze(F=F_filter,LFlimit=0.8,sigma=37e-6) * 0.9 # see specs, 0.9 is from EM, ruze is from ASTE HPBW = use_desim.D2HPBW(F_filter) theta_maj = HPBW theta_min = HPBW # Obtain Tb_sky for l in range(0, num_filters): input = { 'F': F_filter[l], 'pwv': pwv, 'EL': EL_vector, 'data_names': ['Tb_sky'], 'eta_atm_df': eta_atm_df, 'F_highres': F_highres, 'eta_atm_func_zenith': eta_atm_func_zenith, 'eta_atm_smeared': eta_atm_matrix[l, :], 'theta_maj' : theta_maj[l], 'theta_min' : theta_min[l], 'eta_mb' : eta_mb[l] } Tb_sky[l, :] = self.obt_data(input, D1)[0] if progressbar: progressbar.next() return Tb_sky, psd_KID, F_bins
43.912879
169
0.590788
1f09f67f0ba06ebfb87a12348e24aff80c25be96
3,499
py
Python
concerns/dmoj.py
JunyuanChen/SonnyBot-ng
9f06b12c0985c77fb154a4c89b975948c9e4953c
[ "CC0-1.0" ]
null
null
null
concerns/dmoj.py
JunyuanChen/SonnyBot-ng
9f06b12c0985c77fb154a4c89b975948c9e4953c
[ "CC0-1.0" ]
null
null
null
concerns/dmoj.py
JunyuanChen/SonnyBot-ng
9f06b12c0985c77fb154a4c89b975948c9e4953c
[ "CC0-1.0" ]
null
null
null
# coding: utf-8 """ DMOJ web scraping. """ import json import requests import lxml.html from concerns import ( calc_exp, calc_coins ) with open("assets/ccc.json", "r", encoding="utf-8") as f: CCC_PROBLEMS = json.load(f) def ccc_difficulty(problem): if problem in CCC_PROBLEMS: return CCC_PROBLEMS[problem]["difficulty"] return 0 def api_for(username): quoted = requests.utils.quote(username) return f"https://dmoj.ca/user/{quoted}/solved" CCC_DATA_XPATH = """ //div[@class="user-problem-group"][contains(., "CCC")]/table/tbody/tr """.strip() def extract_ccc(content): result = {} rows = lxml.html.document_fromstring(content).xpath(CCC_DATA_XPATH) for row in rows: problem_url = row.xpath('td[@class="problem-name"]/a/@href')[0] score_str = row.xpath('td[@class="problem-score"]/a/text()')[0] score, total = map(float, score_str.split("/")) percentage = round(score / total * 100) result[problem_url] = percentage return result def fetch_ccc(username): with requests.get(api_for(username)) as resp: return extract_ccc(resp.content) def connect(user, username): ccc = fetch_ccc(username) if ccc: user.dmoj_username = username return update_ccc(user, ccc) return None def update(user): if user.dmoj_username is None: raise ValueError("DMOJ Account not connected") ccc = fetch_ccc(user.dmoj_username) return update_ccc(user, ccc) def reward(total_reward, percentage): """ Reward for a problem with total_reward done to percentage. Since the first a few test cases are generally very easy, a linear approach will be unfair. Thus, the reward is given in 20:80 ratio. The first 50% gives 20% of the reward, and the last 50% gives 80% of the reward. Thus, if percentage <= 0.5, then the percentage of reward given is: 0.2 * (percentage / 0.5) = 0.4 * percentage And if percentage >= 0.5, then the weighed percentage is: 0.2 + 0.8 * ((percentage - 0.5) / 0.5)) = 1.6 * percentage - 0.6 """ percentage /= 100 if percentage <= 0.5: weighed_percentage = 0.4 * percentage else: weighed_percentage = 1.6 * percentage - 0.6 return round(total_reward * weighed_percentage) def new_reward(total_reward, old_percentage, new_percentage): """ New reward eligible after completing the problem to new_percentage. The user have already received some rewards. Now they finished the problem to a higher percentage, thus they will be eligible for some new rewards. """ old = reward(total_reward, old_percentage) new = reward(total_reward, new_percentage) return new - old def update_ccc(user, ccc): exp_reward = 0 coin_reward = 0 for problem, percentage in ccc.items(): if problem in user.ccc_progress: old_percentage = user.ccc_progress[problem] else: old_percentage = 0 if old_percentage < percentage: user.ccc_progress[problem] = percentage difficulty = ccc_difficulty(problem) total_exp = calc_exp.ccc_reward(difficulty) total_coins = calc_coins.ccc_reward(difficulty) exp_reward += new_reward(total_exp, old_percentage, percentage) coin_reward += new_reward(total_coins, old_percentage, percentage) return exp_reward, coin_reward RequestException = requests.exceptions.RequestException
28.680328
78
0.66962
85cd924f705995d96e2e6733975058b4af7400a0
8,965
py
Python
plotly/validators/_heatmap.py
omridanan/plotly.py
a8d26670cba49ce15ce9b7639ae0f55a6088a825
[ "MIT" ]
null
null
null
plotly/validators/_heatmap.py
omridanan/plotly.py
a8d26670cba49ce15ce9b7639ae0f55a6088a825
[ "MIT" ]
null
null
null
plotly/validators/_heatmap.py
omridanan/plotly.py
a8d26670cba49ce15ce9b7639ae0f55a6088a825
[ "MIT" ]
1
2019-02-18T04:12:56.000Z
2019-02-18T04:12:56.000Z
import _plotly_utils.basevalidators class HeatmapValidator(_plotly_utils.basevalidators.CompoundValidator): def __init__(self, plotly_name='heatmap', parent_name='', **kwargs): super(HeatmapValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, data_class_str='Heatmap', data_docs=""" autocolorscale Determines whether the colorscale is a default palette (`autocolorscale: true`) or the palette determined by `colorscale`. In case `colorscale` is unspecified or `autocolorscale` is true, the default palette will be chosen according to whether numbers in the `color` array are all positive, all negative or mixed. colorbar plotly.graph_objs.heatmap.ColorBar instance or dict with compatible properties colorscale Sets the colorscale. The colorscale must be an array containing arrays mapping a normalized value to an rgb, rgba, hex, hsl, hsv, or named color string. At minimum, a mapping for the lowest (0) and highest (1) values are required. For example, `[[0, 'rgb(0,0,255)', [1, 'rgb(255,0,0)']]`. To control the bounds of the colorscale in color space, use`zmin` and `zmax`. Alternatively, `colorscale` may be a palette name string of the following list: Grey s,YlGnBu,Greens,YlOrRd,Bluered,RdBu,Reds,Blues, Picnic,Rainbow,Portland,Jet,Hot,Blackbody,Earth ,Electric,Viridis,Cividis. connectgaps Determines whether or not gaps (i.e. {nan} or missing values) in the `z` data are filled in. customdata Assigns extra data each datum. This may be useful when listening to hover, click and selection events. Note that, *scatter* traces also appends customdata items in the markers DOM elements customdatasrc Sets the source reference on plot.ly for customdata . dx Sets the x coordinate step. See `x0` for more info. dy Sets the y coordinate step. See `y0` for more info. hoverinfo Determines which trace information appear on hover. If `none` or `skip` are set, no information is displayed upon hovering. But, if `none` is set, click and hover events are still fired. hoverinfosrc Sets the source reference on plot.ly for hoverinfo . hoverlabel plotly.graph_objs.heatmap.Hoverlabel instance or dict with compatible properties ids Assigns id labels to each datum. These ids for object constancy of data points during animation. Should be an array of strings, not numbers or any other type. idssrc Sets the source reference on plot.ly for ids . legendgroup Sets the legend group for this trace. Traces part of the same legend group hide/show at the same time when toggling legend items. name Sets the trace name. The trace name appear as the legend item and on hover. opacity Sets the opacity of the trace. reversescale Reverses the color mapping if true. If true, `zmin` will correspond to the last color in the array and `zmax` will correspond to the first color. selectedpoints Array containing integer indices of selected points. Has an effect only for traces that support selections. Note that an empty array means an empty selection where the `unselected` are turned on for all points, whereas, any other non-array values means no selection all where the `selected` and `unselected` styles have no effect. showlegend Determines whether or not an item corresponding to this trace is shown in the legend. showscale Determines whether or not a colorbar is displayed for this trace. stream plotly.graph_objs.heatmap.Stream instance or dict with compatible properties text Sets the text elements associated with each z value. textsrc Sets the source reference on plot.ly for text . transpose Transposes the z data. uid visible Determines whether or not this trace is visible. If *legendonly*, the trace is not drawn, but can appear as a legend item (provided that the legend itself is visible). x Sets the x coordinates. x0 Alternate to `x`. Builds a linear space of x coordinates. Use with `dx` where `x0` is the starting coordinate and `dx` the step. xaxis Sets a reference between this trace's x coordinates and a 2D cartesian x axis. If *x* (the default value), the x coordinates refer to `layout.xaxis`. If *x2*, the x coordinates refer to `layout.xaxis2`, and so on. xcalendar Sets the calendar system to use with `x` date data. xgap Sets the horizontal gap (in pixels) between bricks. xsrc Sets the source reference on plot.ly for x . xtype If *array*, the heatmap's x coordinates are given by *x* (the default behavior when `x` is provided). If *scaled*, the heatmap's x coordinates are given by *x0* and *dx* (the default behavior when `x` is not provided). y Sets the y coordinates. y0 Alternate to `y`. Builds a linear space of y coordinates. Use with `dy` where `y0` is the starting coordinate and `dy` the step. yaxis Sets a reference between this trace's y coordinates and a 2D cartesian y axis. If *y* (the default value), the y coordinates refer to `layout.yaxis`. If *y2*, the y coordinates refer to `layout.yaxis2`, and so on. ycalendar Sets the calendar system to use with `y` date data. ygap Sets the vertical gap (in pixels) between bricks. ysrc Sets the source reference on plot.ly for y . ytype If *array*, the heatmap's y coordinates are given by *y* (the default behavior when `y` is provided) If *scaled*, the heatmap's y coordinates are given by *y0* and *dy* (the default behavior when `y` is not provided) z Sets the z data. zauto Determines whether or not the color domain is computed with respect to the input data (here in `z`) or the bounds set in `zmin` and `zmax` Defaults to `false` when `zmin` and `zmax` are set by the user. zhoverformat Sets the hover text formatting rule using d3 formatting mini-languages which are very similar to those in Python. See: https://github .com/d3/d3-format/blob/master/README.md#locale_ format zmax Sets the upper bound of the color domain. Value should have the same units as in `z` and if set, `zmin` must be set as well. zmin Sets the lower bound of the color domain. Value should have the same units as in `z` and if set, `zmax` must be set as well. zsmooth Picks a smoothing algorithm use to smooth `z` data. zsrc Sets the source reference on plot.ly for z .""", **kwargs )
44.381188
72
0.52783
43363f8a9082a67675bee3e0e79c5b6694a956da
13,226
py
Python
sdk/python/pulumi_azure_native/kubernetesconfiguration/get_source_control_configuration.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/kubernetesconfiguration/get_source_control_configuration.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/kubernetesconfiguration/get_source_control_configuration.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from .. import _utilities, _tables from . import outputs __all__ = [ 'GetSourceControlConfigurationResult', 'AwaitableGetSourceControlConfigurationResult', 'get_source_control_configuration', ] @pulumi.output_type class GetSourceControlConfigurationResult: """ The SourceControl Configuration object returned in Get & Put response. """ def __init__(__self__, compliance_status=None, configuration_protected_settings=None, enable_helm_operator=None, helm_operator_properties=None, id=None, name=None, operator_instance_name=None, operator_namespace=None, operator_params=None, operator_scope=None, operator_type=None, provisioning_state=None, repository_public_key=None, repository_url=None, ssh_known_hosts_contents=None, system_data=None, type=None): if compliance_status and not isinstance(compliance_status, dict): raise TypeError("Expected argument 'compliance_status' to be a dict") pulumi.set(__self__, "compliance_status", compliance_status) if configuration_protected_settings and not isinstance(configuration_protected_settings, dict): raise TypeError("Expected argument 'configuration_protected_settings' to be a dict") pulumi.set(__self__, "configuration_protected_settings", configuration_protected_settings) if enable_helm_operator and not isinstance(enable_helm_operator, bool): raise TypeError("Expected argument 'enable_helm_operator' to be a bool") pulumi.set(__self__, "enable_helm_operator", enable_helm_operator) if helm_operator_properties and not isinstance(helm_operator_properties, dict): raise TypeError("Expected argument 'helm_operator_properties' to be a dict") pulumi.set(__self__, "helm_operator_properties", helm_operator_properties) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if operator_instance_name and not isinstance(operator_instance_name, str): raise TypeError("Expected argument 'operator_instance_name' to be a str") pulumi.set(__self__, "operator_instance_name", operator_instance_name) if operator_namespace and not isinstance(operator_namespace, str): raise TypeError("Expected argument 'operator_namespace' to be a str") pulumi.set(__self__, "operator_namespace", operator_namespace) if operator_params and not isinstance(operator_params, str): raise TypeError("Expected argument 'operator_params' to be a str") pulumi.set(__self__, "operator_params", operator_params) if operator_scope and not isinstance(operator_scope, str): raise TypeError("Expected argument 'operator_scope' to be a str") pulumi.set(__self__, "operator_scope", operator_scope) if operator_type and not isinstance(operator_type, str): raise TypeError("Expected argument 'operator_type' to be a str") pulumi.set(__self__, "operator_type", operator_type) if provisioning_state and not isinstance(provisioning_state, str): raise TypeError("Expected argument 'provisioning_state' to be a str") pulumi.set(__self__, "provisioning_state", provisioning_state) if repository_public_key and not isinstance(repository_public_key, str): raise TypeError("Expected argument 'repository_public_key' to be a str") pulumi.set(__self__, "repository_public_key", repository_public_key) if repository_url and not isinstance(repository_url, str): raise TypeError("Expected argument 'repository_url' to be a str") pulumi.set(__self__, "repository_url", repository_url) if ssh_known_hosts_contents and not isinstance(ssh_known_hosts_contents, str): raise TypeError("Expected argument 'ssh_known_hosts_contents' to be a str") pulumi.set(__self__, "ssh_known_hosts_contents", ssh_known_hosts_contents) if system_data and not isinstance(system_data, dict): raise TypeError("Expected argument 'system_data' to be a dict") pulumi.set(__self__, "system_data", system_data) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter(name="complianceStatus") def compliance_status(self) -> 'outputs.ComplianceStatusResponse': """ Compliance Status of the Configuration """ return pulumi.get(self, "compliance_status") @property @pulumi.getter(name="configurationProtectedSettings") def configuration_protected_settings(self) -> Optional[Mapping[str, str]]: """ Name-value pairs of protected configuration settings for the configuration """ return pulumi.get(self, "configuration_protected_settings") @property @pulumi.getter(name="enableHelmOperator") def enable_helm_operator(self) -> Optional[bool]: """ Option to enable Helm Operator for this git configuration. """ return pulumi.get(self, "enable_helm_operator") @property @pulumi.getter(name="helmOperatorProperties") def helm_operator_properties(self) -> Optional['outputs.HelmOperatorPropertiesResponse']: """ Properties for Helm operator. """ return pulumi.get(self, "helm_operator_properties") @property @pulumi.getter def id(self) -> str: """ Fully qualified resource ID for the resource. Ex - /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName} """ return pulumi.get(self, "id") @property @pulumi.getter def name(self) -> str: """ The name of the resource """ return pulumi.get(self, "name") @property @pulumi.getter(name="operatorInstanceName") def operator_instance_name(self) -> Optional[str]: """ Instance name of the operator - identifying the specific configuration. """ return pulumi.get(self, "operator_instance_name") @property @pulumi.getter(name="operatorNamespace") def operator_namespace(self) -> Optional[str]: """ The namespace to which this operator is installed to. Maximum of 253 lower case alphanumeric characters, hyphen and period only. """ return pulumi.get(self, "operator_namespace") @property @pulumi.getter(name="operatorParams") def operator_params(self) -> Optional[str]: """ Any Parameters for the Operator instance in string format. """ return pulumi.get(self, "operator_params") @property @pulumi.getter(name="operatorScope") def operator_scope(self) -> Optional[str]: """ Scope at which the operator will be installed. """ return pulumi.get(self, "operator_scope") @property @pulumi.getter(name="operatorType") def operator_type(self) -> Optional[str]: """ Type of the operator """ return pulumi.get(self, "operator_type") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> str: """ The provisioning state of the resource provider. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="repositoryPublicKey") def repository_public_key(self) -> str: """ Public Key associated with this SourceControl configuration (either generated within the cluster or provided by the user). """ return pulumi.get(self, "repository_public_key") @property @pulumi.getter(name="repositoryUrl") def repository_url(self) -> Optional[str]: """ Url of the SourceControl Repository. """ return pulumi.get(self, "repository_url") @property @pulumi.getter(name="sshKnownHostsContents") def ssh_known_hosts_contents(self) -> Optional[str]: """ Base64-encoded known_hosts contents containing public SSH keys required to access private Git instances """ return pulumi.get(self, "ssh_known_hosts_contents") @property @pulumi.getter(name="systemData") def system_data(self) -> 'outputs.SystemDataResponse': """ Top level metadata https://github.com/Azure/azure-resource-manager-rpc/blob/master/v1.0/common-api-contracts.md#system-metadata-for-all-azure-resources """ return pulumi.get(self, "system_data") @property @pulumi.getter def type(self) -> str: """ The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts" """ return pulumi.get(self, "type") class AwaitableGetSourceControlConfigurationResult(GetSourceControlConfigurationResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetSourceControlConfigurationResult( compliance_status=self.compliance_status, configuration_protected_settings=self.configuration_protected_settings, enable_helm_operator=self.enable_helm_operator, helm_operator_properties=self.helm_operator_properties, id=self.id, name=self.name, operator_instance_name=self.operator_instance_name, operator_namespace=self.operator_namespace, operator_params=self.operator_params, operator_scope=self.operator_scope, operator_type=self.operator_type, provisioning_state=self.provisioning_state, repository_public_key=self.repository_public_key, repository_url=self.repository_url, ssh_known_hosts_contents=self.ssh_known_hosts_contents, system_data=self.system_data, type=self.type) def get_source_control_configuration(cluster_name: Optional[str] = None, cluster_resource_name: Optional[str] = None, cluster_rp: Optional[str] = None, resource_group_name: Optional[str] = None, source_control_configuration_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetSourceControlConfigurationResult: """ The SourceControl Configuration object returned in Get & Put response. API Version: 2021-03-01. :param str cluster_name: The name of the kubernetes cluster. :param str cluster_resource_name: The Kubernetes cluster resource name - either managedClusters (for AKS clusters) or connectedClusters (for OnPrem K8S clusters). :param str cluster_rp: The Kubernetes cluster RP - either Microsoft.ContainerService (for AKS clusters) or Microsoft.Kubernetes (for OnPrem K8S clusters). :param str resource_group_name: The name of the resource group. :param str source_control_configuration_name: Name of the Source Control Configuration. """ __args__ = dict() __args__['clusterName'] = cluster_name __args__['clusterResourceName'] = cluster_resource_name __args__['clusterRp'] = cluster_rp __args__['resourceGroupName'] = resource_group_name __args__['sourceControlConfigurationName'] = source_control_configuration_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:kubernetesconfiguration:getSourceControlConfiguration', __args__, opts=opts, typ=GetSourceControlConfigurationResult).value return AwaitableGetSourceControlConfigurationResult( compliance_status=__ret__.compliance_status, configuration_protected_settings=__ret__.configuration_protected_settings, enable_helm_operator=__ret__.enable_helm_operator, helm_operator_properties=__ret__.helm_operator_properties, id=__ret__.id, name=__ret__.name, operator_instance_name=__ret__.operator_instance_name, operator_namespace=__ret__.operator_namespace, operator_params=__ret__.operator_params, operator_scope=__ret__.operator_scope, operator_type=__ret__.operator_type, provisioning_state=__ret__.provisioning_state, repository_public_key=__ret__.repository_public_key, repository_url=__ret__.repository_url, ssh_known_hosts_contents=__ret__.ssh_known_hosts_contents, system_data=__ret__.system_data, type=__ret__.type)
46.407018
419
0.6987
c71e307552cce160effb2e619ccca3cfaec5443c
7,821
py
Python
core/main.py
weijianxing/APITestMaid
48649cf2199ab90708a4441d6fdc58a235cb4a28
[ "MIT" ]
1
2021-03-01T03:09:20.000Z
2021-03-01T03:09:20.000Z
core/main.py
weijianxing/APITestMaid
48649cf2199ab90708a4441d6fdc58a235cb4a28
[ "MIT" ]
null
null
null
core/main.py
weijianxing/APITestMaid
48649cf2199ab90708a4441d6fdc58a235cb4a28
[ "MIT" ]
null
null
null
#-*- coding: utf-8 -*- # ------ wuage.com testing team --------- # __author__ : weijx.cpp@gmail.com import json import os import sys import traceback from abc import ABCMeta import fire from com.wuage.testing.helper.chatbotHelper import DingtalkChatbot from core.MetaCases import MetaCases, APIRequest from util import logger from util.generatorReport.Generator import Generator from util.loadConfig import load_folder_files, load_file def log_assertFail(): _, _, tb = sys.exc_info() traceback.print_tb(tb) # Fixed format tb_info = traceback.extract_tb(tb) filename, line, func, text = tb_info[-1] return 'Assert fail on line {} in statement {}'.format(line, text) def print_exception(): import linecache linecache.checkcache() efile = sys.stderr typ, val, tb = excinfo = sys.exc_info() sys.last_type, sys.last_value, sys.last_traceback = excinfo tbe = traceback.extract_tb(tb) print(efile, '\nTraceback (most recent call last):') traceback.print_list(tbe, file=efile) lines = traceback.format_exception_only(typ, val) for line in lines: print(efile, line) class Main(metaclass = ABCMeta): def __init__(self,caseDir="/",configFileName = "/"): """ :param caseDir: execution cases dir :param configFileName: configuration file dir """ if caseDir == "/": self.metacasedir = os.getcwd() + caseDir + "/metacase" self.testcasedir = os.getcwd() + caseDir + "/testcase" self.testscenariodir = os.getcwd() + caseDir + "testscenario" else: self.metacasedir = os.getcwd() + caseDir self.testcasedir = os.getcwd() + caseDir self.testscenariodir = os.getcwd() + caseDir if configFileName == "/": self.confdir = os.getcwd()+configFileName + "/config/alter.yaml" else: self.confdir = os.getcwd() + configFileName logger.log_info("load matacases from : " + self.metacasedir) logger.log_info("load testcases from : " + self.testcasedir) logger.log_info("load testscenarios from : " + self.testscenariodir) self._metacases = {} self.resultdatafileName = 'util/Data/reportData.json' self.exec_result = list() self.htmlReportfileName = "" def __del__(self): #todo filter execution result. with open(self.resultdatafileName, 'w', encoding='utf-8') as f: json.dump(self.exec_result, f, ensure_ascii=False, indent=4) f.close() pass def load_metaCases(self): self.filelist = load_folder_files(self.metacasedir) for casefile in self.filelist: logger.log_info("begin loading matacase: " + casefile) meta = MetaCases(casefile) cases = meta.getCases() logger.log_info("meta cases : " + str(meta)) # dict key is file: value is matacases. self._metacases[casefile] = cases def execute_metacases(self): """ check and filter run testcases then execute :return: """ for filename , metacases in self._metacases.items(): logger.log_info("begin execute metacases : " + filename) for metacase in metacases: result = {} dirs = str(filename).split(os.sep) result["Application"] = dirs[-1] result["Environment"] = "" result["Id"] = metacase.caseName result["Test-Case"] = metacase.caseName result["APIType"] = metacase.apiType result["Error"] = [] try: #todo deal with type cases [skipped,] metacase.execute_verify() result["Result"] = "Passed" # except AssertionError: except Exception : # _, _, tb = sys.exc_info() # traceback.print_tb(tb) # Fixed format formatted_lines = traceback.format_exc().splitlines() # print(str(formatted_lines)) # exc_type, exc_value, exc_traceback = sys.exc_info() # print("format execption.") # print(repr(traceback.format_exception(exc_type, exc_value, # exc_traceback))) # tb_info = traceback.extract_tb(tb) # filename, line, func, text = tb_info[-1] msg = 'Assert fail : {0}'.format(str(formatted_lines)) logger.log_error("execute fail: " + msg) result["Result"] = "Failed" # msg = log_assertFail() # logger.log_error("asert fail : "+ msg) errorInfos = [] infos = {} infos["Description"] = msg infos["Assert"] = "xxx" infos["Screenshot"] = { "Name": "Screenshot-1.png", "Url": "#" } errorInfos.append(infos) result["Error"] = errorInfos finally: self.exec_result.append(result) #self._metacases.append(metacase)`` def execute_testcases(self): pass def execute_testscenarios(self): pass def genarate_testReport(self): """ 产生测试报告 :return: """ a = Generator(appName="search_report", templatePath="util/Templates/", reportPath="", dataPath=self.resultdatafileName) a.generate_html() pass def getFailInfo(self): """ check report when find fail case return model name. :return: """ for result in self.exec_result: if result["Result"] == "Failed": failmodel = result["Application"] error = str(result["Error"]) return failmodel, error logger.log_info("execute success.") return None,None def send_failMsg(self,failLink): """ 检查执行结果并发送失败信息到钉钉群 内部方法,CLI方式应该从文件读取数据 :return: """ failmodel, errorInfo = self.getFailInfo() print("send fail info: " + str(failmodel)) print("send error info : " + str(errorInfo)) if failmodel is not None: #loading sending detail. conf = load_file(self.confdir) alter = conf["sendMsgWhenFail"] if str(alter) == 'False': logger.init("user donot config send alter when script execute fail. ") return token = conf["dingToken"] ding = DingtalkChatbot(webhook=token) subTitle = "API model {0} execute fail:".format(failmodel) print(subTitle) at_mobiles = conf["atowners"] print(at_mobiles) ding.send_failInfo(title="API testing.", subTitle=subTitle , owner=conf["owner"] , at_mobiles=at_mobiles ,reporturl=failLink ,caseInfo= errorInfo) else: logger.log_info("skip sending msg.") def test_meta(caseDir = "/"): """ 执行所有独立cases : caseDir: case所存放的路径,默认当前路径,如果自定义路径 仅支持在当前目录下创建 :param caseDir: case所存放的路径,默认当前路径,如果自定义路径 仅支持在当前目录下创建 :return: """ main = Main(caseDir) main.load_metaCases() main.execute_metacases() def main2(): fire.Fire() # if __name__ == '__main__': # # fire.Fire()
34.76
86
0.540979
8926c843d46f6f5407d279062dc97b65be11c62d
11,144
py
Python
leetcode_python/Array/employee-free-time.py
yennanliu/Python_basics
6a597442d39468295946cefbfb11d08f61424dc3
[ "Unlicense" ]
null
null
null
leetcode_python/Array/employee-free-time.py
yennanliu/Python_basics
6a597442d39468295946cefbfb11d08f61424dc3
[ "Unlicense" ]
null
null
null
leetcode_python/Array/employee-free-time.py
yennanliu/Python_basics
6a597442d39468295946cefbfb11d08f61424dc3
[ "Unlicense" ]
null
null
null
""" LC 759 We are given a list schedule of employees, which represents the working time for each employee. Each employee has a list of non-overlapping Intervals, and these intervals are in sorted order. Return the list of finite intervals representing common, positive-length free time for all employees, also in sorted order. Example 1: Input: schedule = [[[1,2],[5,6]],[[1,3]],[[4,10]]] Output: [[3,4]] Explanation: There are a total of three employees, and all common free time intervals would be [-inf, 1], [3, 4], [10, inf]. We discard any intervals that contain inf as they aren't finite. Example 2: Input: schedule = [[[1,3],[6,7]],[[2,4]],[[2,5],[9,12]]] Output: [[5,6],[7,9]] (Even though we are representing Intervals in the form [x, y], the objects inside are Intervals, not lists or arrays. For example, schedule[0][0].start = 1, schedule[0][0].end = 2, and schedule[0][0][0] is not defined.) Also, we wouldn't include intervals like [5, 5] in our answer, as they have zero length. Note: schedule and schedule[i] are lists with lengths in range [1, 50]. 0 <= schedule[i].start < schedule[i].end <= 10^8. """ # V0 # V1 # IDEA : heapq # https://leetcode.com/problems/employee-free-time/discuss/1805842/Python-Solution class Solution: def employeeFreeTime(self, schedule: '[[Interval]]') -> '[Interval]': pq = [] for i, s in enumerate(schedule): heapq.heappush(pq, (s[0].start, i, 0)) prev = pq[0][0] res = [] while pq: s, i, j = heapq.heappop(pq) if s > prev: res.append(Interval(prev, s)) prev = max(prev, schedule[i][j].end) if j + 1 < len(schedule[i]): heapq.heappush(pq, (schedule[i][j + 1].start, i, j + 1)) return res # V1' # IDEA : SORT by start # https://leetcode.com/problems/employee-free-time/discuss/408522/Python-sort-by-start class Solution: def employeeFreeTime(self, schedule: 'list<list<Interval>>') -> 'list<Interval>': # sort all intervals by start time intervals = [] for timeSlots in schedule: for timeSlot in timeSlots: intervals.append(timeSlot) intervals.sort(key= lambda x: x.start) # Maintain left and right pointer pointing to the interval left = right = 0 commonFree = [] # iterate through intervals with left pointer # if left.start > right.end, append the common free time to the ans # else, assign right to the lastest-ended intervals we heve visited so far. while left < len(intervals) - 1: left += 1 if intervals[left].start > intervals[right].end: commonFree.append(Interval(intervals[right].end,intervals[left].start)) right = left else: if intervals[left].end > intervals[right].end: right = left return commonFree # V1'' # https://leetcode.com/problems/employee-free-time/discuss/877358/Python-O(N-log-K)-heap-solution # IDEA : # I merge the intervals while keeping the heap size less than or equal to K. It is only less than K when I've already popped out all the elements from a certain employee. My solution treats each employees intervals as a queue. pop(0) in python is O(n) so if you wanted you could just convert all of the intervals to deque so your pop(0) is O(1) and it functions as an actual queue but I just pretended pop(0) was O(1) for demonstration purposes. class Solution: def employeeFreeTime(self, schedule: '[[Interval]]') -> '[Interval]': k = len(schedule) intervals = [] heap = [] for i in range(k): val = schedule[i].pop(0) heappush(heap, ([val.start, val.end], i)) elem = [heap[0][0][0], heap[0][0][1]] while heap: val = heappop(heap) start, end, idx = val[0][0], val[0][1], val[1] if start > elem[1]: intervals.append(elem) elem = [start, end] else: elem = [min(elem[0], start), max(elem[1], end)] if schedule[idx]: item = schedule[idx].pop(0) heappush(heap, ([item.start, item.end], idx)) intervals.append(elem) out = [] for i in range(1, len(intervals)): out.append(Interval(intervals[i-1][1], intervals[i][0])) return out # V1''' # IDEA : SORT # https://leetcode.com/problems/employee-free-time/discuss/1039353/pythonjava-solution class Solution: def employeeFreeTime(self, schedule: '[[Interval]]') -> '[Interval]': listSchedule = [] for i in schedule: for j in i: listSchedule.append([j.start, j.end]) listSchedule.sort(key = lambda x: (x[0], x[1])) minStart = listSchedule[0][0] maxEnd = listSchedule[0][1] res = [] for curStart, curEnd in listSchedule: if curStart <= maxEnd: maxEnd = max(maxEnd, curEnd) else: res.append(Interval(maxEnd, curStart)) minStart = curStart maxEnd = curEnd return res # V1'''' # IDEA : bisect # https://leetcode.com/problems/employee-free-time/discuss/113142/Python-with-bisect from bisect import * class Solution(object): def employeeFreeTime(self, avails): time=[-float('inf'),float('inf')] for p in avails: for itv in p: s=itv.start e=itv.end l=bisect_right(time,s) r=bisect_left(time,e) if l%2: if r%2: time=time[:l]+[s,e]+time[r:] else: time=time[:l]+[s]+time[r:] else: if r%2: time=time[:l]+[e]+time[r:] else: time=time[:l]+time[r:] ans=[] for i in range(3,len(time)-2,2): if time[i-1]<time[i]: ans.append(Interval(time[i-1],time[i])) return ans # V1''''' # https://zxi.mytechroad.com/blog/geometry/leetcode-759-employee-free-time/ # https://www.youtube.com/watch?v=4XiZ-mVxvbk # C++ # // Author: Huahua # // Running time: 81 ms # class Solution { # public: # vector<Interval> employeeFreeTime(vector<vector<Interval>>& schedule) { # vector<Interval> all; # for (const auto intervals : schedule) # all.insert(all.end(), intervals.begin(), intervals.end()); # std::sort(all.begin(), all.end(), # [](const Interval& a, const Interval& b){ # return a.start < b.start; # }); # vector<Interval> ans; # int end = all.front().end; # for (const Interval& busy : all) { # if (busy.start > end) # ans.emplace_back(end, busy.start); # end = max(end, busy.end); # } # return ans; # } # }; # V1'''''' # https://www.acwing.com/file_system/file/content/whole/index/content/2808852/ class Solution: def employeeFreeTime(self, schedule: '[[Interval]]') -> '[Interval]': #TC: O(n log n) #SC: O(n) n = len(schedule) #Combine the problem of LC56 and LC986 allInterval = [] for schedule_per_em in schedule: for interval in schedule_per_em: allInterval.append(interval) allInterval.sort(key = lambda x: x.start) Start = allInterval[0].start End = allInterval[0].end res = [] for i in range(1, len(allInterval)): if End >= allInterval[i].start: End = max(End, allInterval[i].end) else: Start = allInterval[i].start res.append(Interval(End, Start)) End = allInterval[i].end return res # V1''''''' # https://github.com/xiaoningning/LeetCode-Python/blob/master/759%20Employee%20Free%20Time.py # https://github.com/DataStudySquad/LeetCode-5/blob/master/759%20Employee%20Free%20Time.py from typing import List import heapq S = 0 E = 1 class Solution: def employeeFreeTime(self, schedule: List[List[List[int]]]) -> List[List[int]]: """ Method 1 Looking at the head of each list through iterator Merge interval of heads, need to sort, then use heap After merge, find the open interval No need to merge, find the max end time, and compare to the min start time Method 2 Better algorithm to find the open interval [s, e], we can think of this as two events: balance++ when time = s, and balance-- when time = e. We want to know the regions where balance == 0. Similar to meeting rooms II """ cur_max_end = min( itv[E] for itvs in schedule for itv in itvs ) q = [] for i, itvs in enumerate(schedule): # head j = 0 itv = itvs[j] heapq.heappush(q, (itv[S], i, j)) ret = [] while q: _, i, j = heapq.heappop(q) itv = schedule[i][j] if cur_max_end < itv[S]: ret.append([cur_max_end, itv[S]]) cur_max_end = max(cur_max_end, itv[E]) # next j += 1 if j < len(schedule[i]): itv = schedule[i][j] heapq.heappush(q, (itv[S], i, j)) return ret def employeeFreeTime(self, schedule: List[List[List[int]]]) -> List[List[int]]: """ Method 2 """ # flatten the nested list lst = [] for itvs in schedule: for itv in itvs: lst.append([itv[S], S]) lst.append([itv[E], E]) lst.sort() count = 0 prev = None ret = [] for t, flag in lst: if count == 0 and prev: ret.append([prev, t]) if flag == S: count += 1 else: prev = t count -= 1 return ret def employeeFreeTime_error(self, schedule: List[List[List[int]]]) -> List[List[int]]: """ Cannot store iterator in the heap to compare use index instead """ schedules = list(map(iter, schedule)) cur_max_end = min( itv[E] for emp in schedule for itv in emp ) q = [] for emp_iter in schedules: itv = next(emp_iter, None) if itv: heapq.heappush(q, (itv[S], itv, emp_iter)) ret = [] while q: _, itv, emp_iter = heapq.heappop(q) if cur_max_end < itv[S]: ret.append([cur_max_end, itv[S]]) cur_max_end = max(cur_max_end, itv[E]) itv = next(emp_iter, None) if itv: heapq.heappush(q, (itv[S], itv, emp_iter)) return ret # V2
33.465465
445
0.541906
865b158109bac8040ef8ca6db6a55589443946b2
16,205
py
Python
code/hopenet.py
KelvinCPChiu/deep-head-pose
125c9085dd12c88fb32dba6eea874020621432c2
[ "Apache-2.0" ]
null
null
null
code/hopenet.py
KelvinCPChiu/deep-head-pose
125c9085dd12c88fb32dba6eea874020621432c2
[ "Apache-2.0" ]
null
null
null
code/hopenet.py
KelvinCPChiu/deep-head-pose
125c9085dd12c88fb32dba6eea874020621432c2
[ "Apache-2.0" ]
null
null
null
import torch import torch.nn as nn from torch.autograd import Variable import math import torch.nn.functional as F class Hopenet(nn.Module): # Hopenet with 3 output layers for yaw, pitch and roll # Predicts Euler angles by binning and regression with the expected value def __init__(self, block, layers, num_bins): self.inplanes = 64 super(Hopenet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AvgPool2d(7) self.fc_yaw = nn.Linear(512 * block.expansion, num_bins) self.fc_pitch = nn.Linear(512 * block.expansion, num_bins) self.fc_roll = nn.Linear(512 * block.expansion, num_bins) self.dropout = nn.Dropout(p=0.5) # Vestigial layer from previous experiments self.fc_finetune = nn.Linear(512 * block.expansion + 3, 3) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.dropout(x) pre_yaw = self.fc_yaw(x) pre_pitch = self.fc_pitch(x) pre_roll = self.fc_roll(x) return pre_yaw, pre_pitch, pre_roll class ResNet(nn.Module): # ResNet for regression of 3 Euler angles. def __init__(self, block, layers, num_classes=1000): self.inplanes = 64 super(ResNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AvgPool2d(7) self.fc_angles = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc_angles(x) return x class AlexNet(nn.Module): # AlexNet laid out as a Hopenet - classify Euler angles in bins and # regress the expected value. def __init__(self, num_bins): super(AlexNet, self).__init__() self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(64, 192, kernel_size=5, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(192, 384, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), ) self.classifier = nn.Sequential( nn.Dropout(), nn.Linear(256 * 6 * 6, 4096), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(inplace=True), ) self.fc_yaw = nn.Linear(4096, num_bins) self.fc_pitch = nn.Linear(4096, num_bins) self.fc_roll = nn.Linear(4096, num_bins) def forward(self, x): x = self.features(x) x = x.view(x.size(0), 256 * 6 * 6) x = self.classifier(x) yaw = self.fc_yaw(x) pitch = self.fc_pitch(x) roll = self.fc_roll(x) return yaw, pitch, roll class Hopenet_VAE(Hopenet): def __init__(self, block, layers, num_bins, alpha, beta): super(Hopenet_VAE, self).__init__(block, layers, num_bins) super(Hopenet_VAE, self) self.yaw_mean = nn.Linear(512 * block.expansion, 512) self.yaw_logvar = nn.Linear(512 * block.expansion, 512) self.roll_mean = nn.Linear(512 * block.expansion, 512) self.roll_logvar = nn.Linear(512 * block.expansion, 512) self.pitch_mean = nn.Linear(512 * block.expansion, 512) self.pitch_logvar = nn.Linear(512 * block.expansion, 512) self.dropout(p=0.5) self.fc_yaw = nn.Linear(512, num_bins) self.fc_pitch = nn.Linear(512, num_bins) self.fc_roll = nn.Linear(512, num_bins) self.CEL = nn.CrossEntropyLoss() self.MSE = nn.MSELoss() self.softmax = nn.Softmax(dim=1) self.alpha = torch.tensor(alpha, dtype=torch.float) self.beta = torch.tensor(beta, dtype=torch.float) idx_tensor = [idx for idx in xrange(66)] self.idx_tensor = torch.tensor(idx_tensor) self.register_buffer('idx_tensor', self.idx_tensor) self.register_buffer('alpha', self.alpha) self.register_buffer('beta', self.beta) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) pre_yaw_ = self.yaw_mean(x) logvar_yaw = self.yaw_logvar(x) pre_roll_ = self.roll_mean(x) logvar_roll = self.roll_logvar(x) pre_pitch_ = self.pitch_mean(x) logvar_pitch = self.pitch_logvar(x) pre_yaw = self.reparameterize(pre_yaw_, logvar_yaw) pre_pitch = self.reparameterize(pre_pitch_, logvar_pitch) pre_roll = self.reparameterize(pre_roll_, logvar_roll) pre_yaw = self.fc_yaw(pre_yaw) pre_pitch = self.fc_pitch(pre_pitch) pre_roll = self.fc_pitch(pre_roll) return (pre_yaw, pre_yaw_, logvar_yaw), (pre_pitch, pre_pitch_, logvar_pitch), (pre_roll, pre_roll_, logvar_roll) def reparameterize(self, mean, logvar): if self.training: std = torch.exp(logvar*0.5) norm = torch.randn_like(std, requires_grad=False) return mean + std*norm else: return mean def loss_function(self, mean, logvar, pre, label, label_cont): KLD = -0.5 * torch.sum(1 + logvar - mean.pow(2) - torch.exp(logvar)) pre = self.softmax(pre) CEL = self.CEL(pre, label) pre = self.softmax(pre) pre = torch.sum(pre * self.idx_tensor, 1) * 3 - 99 MSE = self.MSE(pre, label_cont) return KLD + self.alpha*CEL + self.beta*MSE class MobileNetV1(nn.Module): def __init__(self): super(MobileNetV1, self).__init__() def conv_sd(in_channels, out_channels, stride, kernel_size): return nn.Sequential( nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True) ) def conv_dw(in_channels, out_channels, stride): return nn.Sequential( nn.Conv2d(in_channels=in_channels, out_channels=in_channels, kernel_size=3, stride=stride, groups=in_channels, bias=False), nn.BatchNorm2d(in_channels), nn.ReLU(inplace=True), nn.Conv2d(in_channel=in_channels, out_channels=out_channels, kernel_size=1, stride=1, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), ) self.model = nn.Sequential( conv_sd(3, 32, 2, 3), conv_dw(32, 32, 1), conv_sd(32, 64, 1, 1), conv_dw(64, 64, 2), conv_sd(64, 128, 1, 1), conv_dw(128, 128, 1), conv_sd(128, 128, 1, 1), conv_dw(128, 128, 2), conv_sd(64, 128, 1, 1), conv_dw(128, 128, 1), conv_sd(128, 128, 1, 1), conv_dw(128, 128, 2), nn.AvgPool2d(7), ) self.fc = nn.Linear(1024, 3) def forward(self, x): x = self.model(x) x = x.view(-1, 1024) x = self.fc(x) return x def conv_bn(inp, oup, stride): return nn.Sequential( nn.Conv2d(inp, oup, 3, stride, 1, bias=False), nn.BatchNorm2d(oup), nn.ReLU6(inplace=True) ) def conv_1x1_bn(inp, oup): return nn.Sequential( nn.Conv2d(inp, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), nn.ReLU6(inplace=True) ) class InvertedResidual(nn.Module): def __init__(self, inp, oup, stride, expand_ratio): super(InvertedResidual, self).__init__() self.stride = stride assert stride in [1, 2] hidden_dim = int(round(inp * expand_ratio)) self.use_res_connect = self.stride == 1 and inp == oup if expand_ratio == 1: self.conv = nn.Sequential( # dw nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False), nn.BatchNorm2d(hidden_dim), nn.ReLU6(inplace=True), # pw-linear nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), ) else: self.conv = nn.Sequential( # pw nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False), nn.BatchNorm2d(hidden_dim), nn.ReLU6(inplace=True), # dw nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False), nn.BatchNorm2d(hidden_dim), nn.ReLU6(inplace=True), # pw-linear nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), ) def forward(self, x): if self.use_res_connect: return x + self.conv(x) else: return self.conv(x) class MobileNetV2(nn.Module): """ https://github.com/tonylins/pytorch-mobilenet-v2/blob/master/MobileNetV2.py """ def __init__(self, n_class=66, input_size=224, width_mult=1.): super(MobileNetV2, self).__init__() block = InvertedResidual input_channel = int(32) last_channel = int(1280) interverted_residual_setting = [ # t, c, n, s [1, 16, 1, 1], [6, 24, 2, 2], [6, 32, 3, 2], [6, 64, 4, 2], [6, 96, 3, 1], [6, 160, 3, 2], [6, 320, 1, 1], ] # building first layer assert input_size % 32 == 0 input_channel = int(input_channel * width_mult) self.last_channel = int(last_channel * width_mult) if width_mult > 1.0 else last_channel self.features = [conv_bn(3, input_channel, 2)] # building inverted residual blocks for t, c, n, s in interverted_residual_setting: output_channel = int(c * width_mult) for i in range(n): if i == 0: self.features.append(block(input_channel, output_channel, s, expand_ratio=t)) else: self.features.append(block(input_channel, output_channel, 1, expand_ratio=t)) input_channel = output_channel # building last several layers self.features.append(conv_1x1_bn(input_channel, self.last_channel)) # make it nn.Sequential self.features = nn.Sequential(*self.features) # building classifier self.classifier = nn.Sequential( nn.Dropout(0.2), nn.Linear(self.last_channel, n_class), ) self._initialize_weights() def forward(self, x): x = self.features(x) x = x.mean(3).mean(2) x = self.classifier(x) return x def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): n = m.weight.size(1) m.weight.data.normal_(0, 0.01) m.bias.data.zero_() class MobileNetV2_angle_header(MobileNetV2): def __init__(self, n_class=66, input_size=224, width_mult=1.): super(MobileNetV2_angle_header, self).__init__(n_class=n_class, input_size=input_size, width_mult=width_mult) super(MobileNetV2_angle_header, self) self._initialize_weights() self.dropout = nn.Dropout(p=0.5) self.fc_yaw = nn.Linear(self.last_channel, n_class) self.fc_pitch = nn.Linear(self.last_channel, n_class) self.fc_roll = nn.Linear(self.last_channel, n_class) def forward(self, x): x = self.features(x) x = x.mean(3).mean(2) x = self.dropout(x) pre_yaw = self.fc_yaw(x) pre_pitch = self.fc_pitch(x) pre_roll = self.fc_roll(x) return pre_yaw, pre_pitch, pre_roll
34.849462
121
0.567417
94835202b42f72126971db2aa12a9db8c6614234
2,515
py
Python
networkx/algorithms/tests/test_distance_regular.py
argriffing/networkx
5a3d000e605be2ca567f69a4694afcba3b8acb54
[ "BSD-3-Clause" ]
null
null
null
networkx/algorithms/tests/test_distance_regular.py
argriffing/networkx
5a3d000e605be2ca567f69a4694afcba3b8acb54
[ "BSD-3-Clause" ]
null
null
null
networkx/algorithms/tests/test_distance_regular.py
argriffing/networkx
5a3d000e605be2ca567f69a4694afcba3b8acb54
[ "BSD-3-Clause" ]
null
null
null
from nose.tools import assert_equal from nose.tools import assert_false from nose.tools import assert_true import networkx as nx from networkx import is_strongly_regular class TestDistanceRegular(object): def test_is_distance_regular(self): assert_true(nx.is_distance_regular(nx.icosahedral_graph())) assert_true(nx.is_distance_regular(nx.petersen_graph())) assert_true(nx.is_distance_regular(nx.cubical_graph())) assert_true(nx.is_distance_regular(nx.complete_bipartite_graph(3,3))) assert_true(nx.is_distance_regular(nx.tetrahedral_graph())) assert_true(nx.is_distance_regular(nx.dodecahedral_graph())) assert_true(nx.is_distance_regular(nx.pappus_graph())) assert_true(nx.is_distance_regular(nx.heawood_graph())) assert_true(nx.is_distance_regular(nx.cycle_graph(3))) # no distance regular assert_false(nx.is_distance_regular(nx.path_graph(4))) def test_not_connected(self): G=nx.cycle_graph(4) G.add_cycle([5,6,7]) assert_false(nx.is_distance_regular(G)) def test_global_parameters(self): b,c=nx.intersection_array(nx.cycle_graph(5)) g=nx.global_parameters(b,c) assert_equal(list(g),[(0, 0, 2), (1, 0, 1), (1, 1, 0)]) b,c=nx.intersection_array(nx.cycle_graph(3)) g=nx.global_parameters(b,c) assert_equal(list(g),[(0, 0, 2), (1, 1, 0)]) def test_intersection_array(self): b,c=nx.intersection_array(nx.cycle_graph(5)) assert_equal(b,[2, 1]) assert_equal(c,[1, 1]) b,c=nx.intersection_array(nx.dodecahedral_graph()) assert_equal(b,[3, 2, 1, 1, 1]) assert_equal(c,[1, 1, 1, 2, 3]) b,c=nx.intersection_array(nx.icosahedral_graph()) assert_equal(b,[5, 2, 1]) assert_equal(c,[1, 2, 5]) class TestStronglyRegular(object): """Unit tests for the :func:`~networkx.is_strongly_regular` function. """ def test_cycle_graph(self): """Tests that the cycle graph on five vertices is strongly regular. """ G = nx.cycle_graph(5) assert_true(is_strongly_regular(G)) def test_petersen_graph(self): """Tests that the Petersen graph is strongly regular.""" G = nx.petersen_graph() assert_true(is_strongly_regular(G)) def test_path_graph(self): """Tests that the path graph is not strongly regular.""" G = nx.path_graph(4) assert_false(is_strongly_regular(G))
34.452055
77
0.667197
6a1ea6963abd61deaab0a384353a6a8f29667965
6,662
py
Python
tf_privacy/optimizers/dp_optimizer_vectorized.py
frhrdr/MMD-GAN
7522093498b658026344541ddd5c248095763fb6
[ "Apache-2.0" ]
null
null
null
tf_privacy/optimizers/dp_optimizer_vectorized.py
frhrdr/MMD-GAN
7522093498b658026344541ddd5c248095763fb6
[ "Apache-2.0" ]
null
null
null
tf_privacy/optimizers/dp_optimizer_vectorized.py
frhrdr/MMD-GAN
7522093498b658026344541ddd5c248095763fb6
[ "Apache-2.0" ]
null
null
null
# Copyright 2019, The TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Vectorized differentially private optimizers for TensorFlow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from distutils.version import LooseVersion import tensorflow as tf if LooseVersion(tf.__version__) < LooseVersion('2.0.0'): nest = tf.contrib.framework.nest AdagradOptimizer = tf.compat.v1.train.AdagradOptimizer AdamOptimizer = tf.compat.v1.train.AdamOptimizer GradientDescentOptimizer = tf.compat.v1.train.GradientDescentOptimizer parent_code = tf.compat.v1.train.Optimizer.compute_gradients.__code__ GATE_OP = tf.compat.v1.train.Optimizer.GATE_OP # pylint: disable=invalid-name else: nest = tf.nest AdagradOptimizer = tf.optimizers.Adagrad AdamOptimizer = tf.optimizers.Adam GradientDescentOptimizer = tf.optimizers.SGD # pylint: disable=invalid-name parent_code = tf.optimizers.Optimizer._compute_gradients.__code__ # pylint: disable=protected-access GATE_OP = None # pylint: disable=invalid-name def make_vectorized_optimizer_class(cls): """Constructs a vectorized DP optimizer class from an existing one.""" if LooseVersion(tf.__version__) < LooseVersion('2.0.0'): child_code = cls.compute_gradients.__code__ else: child_code = cls._compute_gradients.__code__ # pylint: disable=protected-access if child_code is not parent_code: tf.logging.warning( 'WARNING: Calling make_optimizer_class() on class %s that overrides ' 'method compute_gradients(). Check to ensure that ' 'make_optimizer_class() does not interfere with overridden version.', cls.__name__) class DPOptimizerClass(cls): """Differentially private subclass of given class cls.""" def __init__( self, l2_norm_clip, noise_multiplier, num_microbatches=None, *args, # pylint: disable=keyword-arg-before-vararg, g-doc-args **kwargs): """Initialize the DPOptimizerClass. Args: l2_norm_clip: Clipping norm (max L2 norm of per microbatch gradients) noise_multiplier: Ratio of the standard deviation to the clipping norm num_microbatches: How many microbatches into which the minibatch is split. If None, will default to the size of the minibatch, and per-example gradients will be computed. """ super(DPOptimizerClass, self).__init__(*args, **kwargs) self._l2_norm_clip = l2_norm_clip self._noise_multiplier = noise_multiplier self._num_microbatches = num_microbatches def compute_gradients(self, loss, var_list, gate_gradients=GATE_OP, aggregation_method=None, colocate_gradients_with_ops=False, grad_loss=None, gradient_tape=None): if callable(loss): # TF is running in Eager mode raise NotImplementedError('Vectorized optimizer unavailable for TF2.') else: # TF is running in graph mode, check we did not receive a gradient tape. if gradient_tape: raise ValueError('When in graph mode, a tape should not be passed.') batch_size = tf.shape(loss)[0] if self._num_microbatches is None: self._num_microbatches = batch_size # Note: it would be closer to the correct i.i.d. sampling of records if # we sampled each microbatch from the appropriate binomial distribution, # although that still wouldn't be quite correct because it would be # sampling from the dataset without replacement. microbatch_losses = tf.reshape(loss, [self._num_microbatches, -1]) if var_list is None: var_list = ( tf.trainable_variables() + tf.compat.v1.get_collection( tf.compat.v1.GraphKeys.TRAINABLE_RESOURCE_VARIABLES)) def process_microbatch(microbatch_loss): """Compute clipped grads for one microbatch.""" microbatch_loss = tf.reduce_mean(microbatch_loss) grads, _ = zip(*super(DPOptimizerClass, self).compute_gradients( microbatch_loss, var_list, gate_gradients, aggregation_method, colocate_gradients_with_ops, grad_loss)) grads_list = [ g if g is not None else tf.zeros_like(v) for (g, v) in zip(list(grads), var_list) ] # Clip gradients to have L2 norm of l2_norm_clip. # Here, we use TF primitives rather than the built-in # tf.clip_by_global_norm() so that operations can be vectorized # across microbatches. grads_flat = nest.flatten(grads_list) squared_l2_norms = [tf.reduce_sum(tf.square(g)) for g in grads_flat] global_norm = tf.sqrt(tf.add_n(squared_l2_norms)) div = tf.maximum(global_norm / self._l2_norm_clip, 1.) clipped_flat = [g / div for g in grads_flat] clipped_grads = nest.pack_sequence_as(grads_list, clipped_flat) return clipped_grads clipped_grads = tf.vectorized_map(process_microbatch, microbatch_losses) def reduce_noise_normalize_batch(stacked_grads): summed_grads = tf.reduce_sum(stacked_grads, axis=0) noise_stddev = self._l2_norm_clip * self._noise_multiplier noise = tf.random.normal(tf.shape(summed_grads), stddev=noise_stddev) noised_grads = summed_grads + noise return noised_grads / tf.cast(self._num_microbatches, tf.float32) final_grads = nest.map_structure(reduce_noise_normalize_batch, clipped_grads) return list(zip(final_grads, var_list)) return DPOptimizerClass VectorizedDPAdagrad = make_vectorized_optimizer_class(AdagradOptimizer) VectorizedDPAdam = make_vectorized_optimizer_class(AdamOptimizer) VectorizedDPSGD = make_vectorized_optimizer_class(GradientDescentOptimizer)
43.25974
103
0.683278
674b1db0c1d0a94e66cf3ea228dc437ce27feec0
1,220
py
Python
catnado/testing/testcase.py
tylertrussell/gae-catnado
91a73e9108bb724fb780cc8dcfca4da579313cb9
[ "Apache-2.0" ]
null
null
null
catnado/testing/testcase.py
tylertrussell/gae-catnado
91a73e9108bb724fb780cc8dcfca4da579313cb9
[ "Apache-2.0" ]
null
null
null
catnado/testing/testcase.py
tylertrussell/gae-catnado
91a73e9108bb724fb780cc8dcfca4da579313cb9
[ "Apache-2.0" ]
null
null
null
import unittest from google.appengine.ext import testbed import mock class SimpleAppEngineTestCase(unittest.TestCase): """A very simple AppEngine test case which sets up basic stubs. By default, stubs for Datastore and Memcache are created. """ def setUp(self): """Override setUp to set up stubs.""" self.testbed = testbed.Testbed() self.testbed.activate() self.testbed.init_datastore_v3_stub() self.testbed.init_memcache_stub() self.testbed.init_urlfetch_stub() self.addCleanup(mock.patch.stopall) def tearDown(self): """Override tearDown to set up stubs.""" self.testbed.deactivate() class ServiceAPITestCase(SimpleAppEngineTestCase): """Testcase for Service APIs. Circumvents the X-AppEngine header check that verifies requests are coming from within the application. That functionality is tested in catnado.handlers.test.test_csrf_protected_handler. """ def setUp(self): """Override setUp to patch over request validation.""" super(ServiceAPITestCase, self).setUp() self._csrf_token_patch = mock.patch( 'catnado.handlers.service_api_handler.validate_api_request' ) self._csrf_token_mock = self._csrf_token_patch.start()
27.727273
76
0.745082