hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
f28123f9b50064f16e58daccff2fb43e69d6ad62
3,291
py
Python
processos/migrations/0001_initial.py
stoledo85/sistema_advocacia
81a981a5f47de8a257f547973e51537e9af3d541
[ "MIT" ]
null
null
null
processos/migrations/0001_initial.py
stoledo85/sistema_advocacia
81a981a5f47de8a257f547973e51537e9af3d541
[ "MIT" ]
null
null
null
processos/migrations/0001_initial.py
stoledo85/sistema_advocacia
81a981a5f47de8a257f547973e51537e9af3d541
[ "MIT" ]
null
null
null
# Generated by Django 3.1.1 on 2020-09-22 16:37 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('clientes', '0001_initial'), ] operations = [ migrations.CreateModel( name='Processo', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('area_atuacao', models.CharField(max_length=50, verbose_name='Area de Atuação')), ('obj_acao', models.CharField(max_length=50, verbose_name='Objetivo da Ação')), ('cnj', models.CharField(max_length=20, verbose_name='Nro do Processo(CNJ)')), ('local_tramite', models.CharField(max_length=15, verbose_name='Tramite')), ('tramite_uf', models.CharField(choices=[('AC', 'Acre'), ('AL', 'Alagoas'), ('AP', 'Amapá'), ('AM', 'Amazonas'), ('BA', 'Bahia'), ('CE', 'Ceará'), ('DF', 'Distrito Federal'), ('ES', 'Espírito Santo'), ('GO', 'Goiás'), ('MA', 'Maranhão'), ('MT', 'Mato Grosso'), ('MS', 'Mato Grosso do Sul'), ('MG', 'Minas Gerais'), ('PA', 'Pará'), ('PB', 'Paraíba'), ('PR', 'Paraná'), ('PE', 'Pernanbuco'), ('PI', 'Piauí'), ('RJ', 'Rio de Janeiro'), ('RN', 'Rio Grande do Norte'), ('RS', 'Rio Grande do Sul'), ('RO', 'Rondônia'), ('RR', 'Roraima'), ('SC', 'Santa Catarina'), ('SP', 'São Paulo'), ('SE', 'Sergipe'), ('TO', 'Tocantins')], max_length=2, verbose_name='UF')), ('nro_processo', models.CharField(max_length=20, verbose_name='Processo')), ('dt_contratacao', models.DateField(verbose_name='Data da Contratação')), ('dt_encerramento', models.DateField(verbose_name='Data de Encerramento')), ('dt_trans_julgado', models.DateField(verbose_name='Data Trânsito de Julgado')), ('dt_execucao', models.DateField(verbose_name='Data de Execução')), ('dt_sentenca', models.DateField(verbose_name='Data da Sentença')), ('vlr_causa', models.DecimalField(decimal_places=2, max_digits=5, verbose_name='Valor da Causa')), ('pedido', models.CharField(max_length=50, verbose_name='Pedido')), ('obs', models.TextField(verbose_name='Obs')), ('advogado', models.ForeignKey(on_delete=django.db.models.deletion.DO_NOTHING, to=settings.AUTH_USER_MODEL, verbose_name='Advogado Responsavel')), ('cliente', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to='clientes.cliente', verbose_name='Cliente')), ], ), migrations.CreateModel( name='faseProcesso', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('tipo_fase_processo', models.CharField(max_length=50, verbose_name='Tipo')), ('desc', models.TextField(verbose_name='Descrição')), ('processo', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to='processos.processo', verbose_name='Processo')), ], ), ]
65.82
670
0.611668
7c202a933f1ae200d9e425d8953a8a11fcf1d1d3
15,141
py
Python
Xerus/GSASII/ElementTable.py
pedrobcst/Xerus
09df088e0207176df0d20715e1c9778d09d28250
[ "MIT" ]
18
2021-12-10T03:05:49.000Z
2022-03-25T15:48:35.000Z
Xerus/GSASII/ElementTable.py
pedrobcst/Xerus
09df088e0207176df0d20715e1c9778d09d28250
[ "MIT" ]
14
2022-02-24T11:09:26.000Z
2022-03-30T07:42:17.000Z
Xerus/GSASII/ElementTable.py
pedrobcst/Xerus
09df088e0207176df0d20715e1c9778d09d28250
[ "MIT" ]
1
2022-02-25T16:26:54.000Z
2022-02-25T16:26:54.000Z
# -*- coding: utf-8 -*- ''' *ElementTable: Periodic Table Data* ----------------------------------- Element table data for building periodic table with valences & JMOL colors. Need these in case we go back to this periodic table coloring scheme. Defines list ``ElTable`` which contains all defined oxidation states for each element, the location in the table, an element name, a color, a size and a second color. ''' REcolor = (128, 128, 255) Metcolor = (192, 192, 192) Noblecolor = (255, 128, 255) Alkcolor = (255, 255, 128) AlkEcolor = (255, 128, 0) SemMetcolor = (128, 255, 0) NonMetcolor = (0, 255, 255) White = (255, 255, 255) ElTable = [ (["H","H-1","D","D-1","T","T-1"],0,0, "Hydrogen", White, 0.0000,(255,255,255)), (["D","D-1"], -1,-1, "Deuterium", White, 0.0000,(255,255,255)), (["T","T-1"], -1,-1, "Tritium", White, 0.0000,(255,255,255)), (["He",], 17,0, "Helium", Noblecolor, 0.0000,(217,255,255)), (["Li","Li+1"], 0,1, "Lithium", Alkcolor, 0.0004,(204,128,255)), (["Be","Be+2"], 1,1, "Beryllium", AlkEcolor, 0.0006,(194,255,0)), (["B",], 12,1, "Boron", NonMetcolor, 0.0012,(255,181,181)), (["C",], 13,1, "Carbon", NonMetcolor, 0.0018,(144,144,144)), (["N",], 14,1, "Nitrogen", NonMetcolor, 0.0030,(48,80,248)), (["O","O-1","O-2"], 15,1, "Oxygen", NonMetcolor, 0.0042,(255,13,13)), (["F","F-1"], 16,1, "Fluorine", NonMetcolor, 0.0054,(144,224,80)), (["Ne",], 17,1, "Neon", Noblecolor, 0.0066,(179,227,245)), (["Na","Na+1"], 0,2, "Sodium", Alkcolor, 0.0084,(171,92,242)), (["Mg","Mg+2"], 1,2, "Magnesium", AlkEcolor, 0.0110,(138,255,0)), (["Al","Al+3"], 12,2, "Aluminum", SemMetcolor, 0.0125,(191,166,166)), (["Si","Si+4"], 13,2, "Silicon", NonMetcolor, 0.0158,(240,200,160)), (["P",], 14,2, "Phosphorus", NonMetcolor, 0.0180,(255,128,0)), (["S",], 15,2, "Sulphur", NonMetcolor, 0.0210,(255,255,48)), (["Cl","Cl-1"], 16,2, "Chlorine", NonMetcolor, 0.0250,(31,240,31)), (["Ar",], 17,2, "Argon", Noblecolor, 0.0285,(128,209,227)), (["K","K+1"], 0,3, "Potassium", Alkcolor, 0.0320,(61,255,0)), (["Ca","Ca+2"], 1,3, "Calcium", AlkEcolor, 0.0362,(61,255,0)), (["Sc","Sc+3"], 2,3, "Scandium", Metcolor, 0.0410,(230,230,230)), (["Ti","Ti+2","Ti+3","Ti+4"], 3,3, "Titanium", Metcolor, 0.0460,(191,194,199)), (["V","V+2","V+3","V+5"], 4,3, "Vanadium", Metcolor, 0.0510,(166,166,171)), (["Cr","Cr+2","Cr+3"], 5,3, "Chromium", Metcolor, 0.0560,(138,153,199)), (["Mn","Mn+2","Mn+3","Mn+4"], 6,3, "Manganese", Metcolor, 0.0616,(156,122,199)), (["Fe","Fe+2","Fe+3"], 7,3, "Iron", Metcolor, 0.0680,(224,102,51)), (["Co","Co+2","Co+3"], 8,3, "Cobalt", Metcolor, 0.0740,(240,144,160)), (["Ni","Ni+2","Ni+3"], 9,3, "Nickel", Metcolor, 0.0815,(80,208,80)), (["Cu","Cu+1","Cu+2"], 10,3, "Copper", Metcolor, 0.0878,(200,128,51)), (["Zn","Zn+2"], 11,3, "Zinc", Metcolor, 0.0960,(125,128,176)), (["Ga","Ga+3"], 12,3, "Gallium", SemMetcolor, 0.104,(194,143,143)), (["Ge","Ge+4"], 13,3, "Germanium", SemMetcolor, 0.114,(102,143,143)), (["As",], 14,3, "Arsenic", NonMetcolor, 0.120,(255,0,255)), (["Se",], 15,3, "Selenium", NonMetcolor, 0.132,(255,161,0)), (["Br","Br-1"], 16,3, "Bromine", NonMetcolor, 0.141,(166,41,41)), (["Kr",], 17,3, "Krypton", Noblecolor, 0.150,(92,184,209)), (["Rb","Rb+1"], 0,4, "Rubidium", Alkcolor, 0.159,(112,46,176)), (["Sr","Sr+2"], 1,4, "Strontium", AlkEcolor, 0.171,(0,255,0)), (["Y","Y+3"], 2,4, "Yittrium", Metcolor, 0.180,(148,255,255)), (["Zr","Zr+4"], 3,4, "Zirconium", Metcolor, 0.192,(148,224,224)), (["Nb","Nb+3","Nb+5"], 4,4, "Niobium", Metcolor, 0.204,(115,194,201)), (["Mo","Mo+3","Mo+5","Mo+6"], 5,4, "Molybdenium", Metcolor, 0.216,(84,181,181)), (["Tc",], 6,4, "Technetium", Metcolor, 0.228,(59,158,158)), (["Ru","Ru+3","Ru+4"], 7,4, "Ruthenium", Metcolor, 0.246,(36,143,143)), (["Rh","Rh+3","Rh+4"], 8,4, "Rhodium", Metcolor, 0.258,(10,125,140)), (["Pd","Pd+2","Pd+4"], 9,4, "Palladium", Metcolor, 0.270,(0,105,133)), (["Ag","Ag+1","Ag+2"], 10,4, "Silver", Metcolor, 0.285,(192,192,192)), (["Cd","Cd+2"], 11,4, "Cadmium", Metcolor, 0.300,(255,217,143)), (["In","In+3"], 12,4, "Indium", SemMetcolor, 0.318,(166,117,115)), (["Sn","Sn+2","Sn+4"], 13,4, "Tin", SemMetcolor, 0.330,(102,128,128)), (["Sb","Sb+3","Sb+5"], 14,4, "Antimony", SemMetcolor, 0.348,(158,99,181)), (["Te",], 15,4, "Tellurium", NonMetcolor, 0.363,(212,122,0)), (["I","I-1"], 16,4, "Iodine", NonMetcolor, 0.384,(148,0,148)), (["Xe",], 17,4, "Xenon", Noblecolor, 0.396,(66,158,176)), (["Cs","Cs+1"], 0,5, "Caesium", Alkcolor, 0.414,(87,23,143)), (["Ba","Ba+2"], 1,5, "Barium", AlkEcolor, 0.438,(0,201,0)), (["La","La+3"], 2,5, "Lanthanium", Metcolor, 0.456,(112,212,255)), (["Ce","Ce+3","Ce+4"], 3.5,6.5, "Cerium", REcolor, 0.474,(255,255,199)), (["Pr","Pr+3","Pr+4"], 4.5,6.5, "Praseodymium",REcolor, 0.492,(217,255,199)), (["Nd","Nd+3"], 5.5,6.5, "Neodymium", REcolor, 0.516,(199,255,199)), (["Pm","Pm+3"], 6.5,6.5, "Promethium", REcolor, 0.534,(163,255,199)), (["Sm","Sm+3"], 7.5,6.5, "Samarium", REcolor, 0.558,(143,255,199)), (["Eu","Eu+2","Eu+3"], 8.5,6.5, "Europium", REcolor, 0.582,(97,255,199)), (["Gd","Gd+3"], 9.5,6.5, "Gadolinium", REcolor, 0.610,(69,255,199)), (["Tb","Tb+3"], 10.5,6.5, "Terbium", REcolor, 0.624,(48,255,199)), (["Dy","Dy+3"], 11.5,6.5, "Dysprosium", REcolor, 0.648,(31,255,199)), (["Ho","Ho+3"], 12.5,6.5, "Holmium", REcolor, 0.672,(0,255,156)), (["Er","Er+3"], 13.5,6.5, "Erbium", REcolor, 0.696,(0,230,117)), (["Tm","Tm+3"], 14.5,6.5, "Thulium", REcolor, 0.723,(0,212,82)), (["Yb","Yb+2","Yb+3"], 15.5,6.5, "Ytterbium", REcolor, 0.750,(0,191,56)), (["Lu","Lu+3"], 16.5,6.5, "Lutetium", REcolor, 0.780,(0,171,36)), (["Hf","Hf+4"], 3,5, "Hafnium", Metcolor, 0.804,(77,194,255)), (["Ta","Ta+5"], 4,5, "Tantalum", Metcolor, 0.834,(77,166,255)), (["W","W+6"], 5,5, "Tungsten", Metcolor, 0.864,(33,148,214)), (["Re",], 6,5, "Rhenium", Metcolor, 0.900,(38,125,171)), (["Os","Os+4"], 7,5, "Osmium", Metcolor, 0.919,(38,102,150)), (["Ir","Ir+3","Ir+4"], 8,5, "Iridium", Metcolor, 0.948,(23,84,135)), (["Pt","Pt+2","Pt+4"], 9,5, "Platinium", Metcolor, 0.984,(208,208,224)), (["Au","Au+1","Au+3"], 10,5, "Gold", Metcolor, 1.014,(255,209,35)), (["Hg","Hg+1","Hg+2"], 11,5, "Mercury", Metcolor, 1.046,(184,184,208)), (["Tl","Tl+1","Tl+3"], 12,5, "Thallium", SemMetcolor, 1.080,(166,84,77)), (["Pb","Pb+2","Pb+4"], 13,5, "Lead", SemMetcolor, 1.116,(87,89,97)), (["Bi","Bi+3","Bi+5"], 14,5, "Bismuth", SemMetcolor, 1.149,(158,79,181)), (["Po",], 15,5, "Polonium", SemMetcolor, 1.189,(171,92,0)), (["At",], 16,5, "Astatine", NonMetcolor, 1.224,(117,79,69)), (["Rn",], 17,5, "Radon", Noblecolor, 1.260,(66,130,150)), (["Fr",], 0,6, "Francium", Alkcolor, 1.296,(66,0,102)), (["Ra","Ra+2"], 1,6, "Radium", AlkEcolor, 1.332,(0,125,0)), (["Ac","Ac+3"], 2,6, "Actinium", Metcolor, 1.374,(112,171,250)), (["Th","Th+4"], 3.5,7.5, "Thorium", REcolor, 1.416,(0,186,255)), (["Pa",], 4.5,7.5, "Protactinium",REcolor, 1.458,(0,161,255)), (["U","U+3","U+4","U+6"], 5.5,7.5, "Uranium", REcolor, 1.470,(0,143,255)), (["Np","Np+3","Np+4","Np+6"], 6.5,7.5, "Neptunium", REcolor, 1.536,(0,128,255)), (["Pu","Pu+3","Pu+4","Pu+6"], 7.5,7.5, "Plutonium", REcolor, 1.584,(0,107,255)), (["Am",], 8.5,7.5, "Americium", REcolor, 1.626,(84,92,242)), (["Cm",], 9.5,7.5, "Curium", REcolor, 1.669,(120,92,227)), (["Bk",], 10.5,7.5, "Berkelium", REcolor, 1.716,(138,79,227)), (["Cf",], 11.5,7.5, "Californium", REcolor, 1.764,(161,54,212)), (["Va",], 13.5,7.5, "Vacancy", White, 0.000,(255,255,255)), (["Q","QA","QB","QC","QD"], 14.5,7.5, "Special form factor", REcolor, 0.000,(161,54,212)), (["None",], 15.5,7.5, "No element choice",REcolor, 0.000,(161,54,212)), ] MagElTable = [ (["Sc","Sc+1","Sc+2","Sc+3"], 2,3, "Scandium", Metcolor, 0.0410,(230,230,230)), (["Ti","Ti+2","Ti+3"], 3,3, "Titanium", Metcolor, 0.0460,(191,194,199)), (["V","V+1","V+2","V+3"], 4,3, "Vanadium", Metcolor, 0.0510,(166,166,171)), (["Cr","Cr+1","Cr+2","Cr+3","Cr+4"], 5,3, "Chromium", Metcolor, 0.0560,(138,153,199)), (["Mn","Mn+1","Mn+2","Mn+3","Mn+4"], 6,3, "Manganese", Metcolor, 0.0616,(156,122,199)), (["Fe","Fe+1","Fe+2","Fe+3","Fe+4"], 7,3, "Iron", Metcolor, 0.0680,(224,102,51)), (["Co","Co+1","Co+2","Co+3","Co+4"], 8,3, "Cobalt", Metcolor, 0.0740,(240,144,160)), (["Ni","Ni+1","Ni+2","Ni+3","Ni+4"], 9,3, "Nickel", Metcolor, 0.0815,(80,208,80)), (["Cu","Cu+1","Cu+2","Cu+3","Cu+4"], 10,3, "Copper", Metcolor, 0.0878,(200,128,51)), (["Y"], 2,4, "Yittrium", Metcolor, 0.180,(148,255,255)), (["Zr","Zr+1"], 3,4, "Zirconium", Metcolor, 0.192,(148,224,224)), (["Nb","Nb+1"], 4,4, "Niobium", Metcolor, 0.204,(115,194,201)), (["Mo","Mo+1"], 5,4, "Molybdenium", Metcolor, 0.216,(84,181,181)), (["Tc","Tc+1"], 6,4, "Technetium", Metcolor, 0.228,(59,158,158)), (["Ru","Ru+1"], 7,4, "Ruthenium", Metcolor, 0.246,(36,143,143)), (["Rh","Rh+1"], 8,4, "Rhodium", Metcolor, 0.258,(10,125,140)), (["Pd","Pd+1"], 9,4, "Palladium", Metcolor, 0.270,(0,105,133)), #NB: zero valent atoms are copied from lowest valent ion for many of these (["Ce","Ce+2"], 3.5,6.5, "Cerium", REcolor, 0.474,(255,255,199)), (["Nd","Nd+2"], 5.5,6.5, "Neodymium", REcolor, 0.516,(199,255,199)), (["Sm","Sm+2","Sm+3"], 7.5,6.5, "Samarium", REcolor, 0.558,(143,255,199)), (["Eu","Eu+2","Eu+3"], 8.5,6.5, "Europium", REcolor, 0.582,(97,255,199)), (["Gd","Gd+2","Gd+3"], 9.5,6.5, "Gadolinium", REcolor, 0.610,(69,255,199)), (["Tb","Tb+2","Tb+3"], 10.5,6.5, "Terbium", REcolor, 0.624,(48,255,199)), (["Dy","Dy+2","Dy+3"], 11.5,6.5, "Dysprosium", REcolor, 0.648,(31,255,199)), (["Ho","Ho+2","Ho+3"], 12.5,6.5, "Holmium", REcolor, 0.672,(0,255,156)), (["Er","Er+2","Er+3"], 13.5,6.5, "Erbium", REcolor, 0.696,(0,230,117)), (["Tm","Tm+2","Tm+3"], 14.5,6.5, "Thulium", REcolor, 0.723,(0,212,82)), (["Yb","Yb+2","Yb+3"], 15.5,6.5, "Ytterbium", REcolor, 0.750,(0,191,56)), (["Hf","Hf+2","Hf+3"], 3,5, "Hafnium", Metcolor, 0.804,(77,194,255)), (["Ta","Ta+2","Ta+3","Ta+4"], 4,5, "Tantalum", Metcolor, 0.834,(77,166,255)), (["W","W+1","W+2","W+3","W+4","W+5"], 5,5, "Tungsten", Metcolor, 0.864,(33,148,214)), (["Re","Re+1","Re+2","Re+3","Re+4","Re+5","Re+6"], 6,5, "Rhenium", Metcolor, 0.900,(38,125,171)), (["Os","Os+1","Os+2","Os+3","Os+4","Os+5","Os+6","Os+7"], 7,5, "Osmium", Metcolor, 0.919,(38,102,150)), (["Ir","Ir+1","Ir+2","Ir+3","Ir+4","Ir+5","Ir+6"], 8,5, "Iridium", Metcolor, 0.948,(23,84,135)), (["Pt","Pt+1","Pt+2","Pt+3","Pt+4","Pt+5","Pt+6"], 9,5, "Platinium", Metcolor, 0.984,(208,208,224)), (["Au","Au+1","Au+2","Au+3","Au+4","Au+5"], 10,5, "Gold", Metcolor, 1.014,(255,209,35)), (["U","U+3","U+4","U+5"], 5.5,7.5, "Uranium", REcolor, 1.470,(0,143,255)), (["Np","Np+3","Np+4","Np+5","Np+6"], 6.5,7.5, "Neptunium", REcolor, 1.536,(0,128,255)), (["Pu","Pu+3","Pu+4","Pu+5","Pu+6"], 7.5,7.5, "Plutonium", REcolor, 1.584,(0,107,255)), (["Am","Am+2","Am+3","Am+4","Am+5","Am+6","Am+7"], 8.5,7.5, "Americium", REcolor, 1.626,(84,92,242)), ]
89.064706
121
0.389472
d2c48a8d24ccc7a5520959fd4673b2fb05bb229f
4,378
py
Python
integration_tests/test_inventoryroles.py
chisou/cumulocity-python-api
f420b8ad2ec7735484db94b70ad6f5485585ddbb
[ "Apache-2.0" ]
9
2021-02-16T08:53:08.000Z
2022-02-15T11:58:19.000Z
integration_tests/test_inventoryroles.py
chisou/cumulocity-python-api
f420b8ad2ec7735484db94b70ad6f5485585ddbb
[ "Apache-2.0" ]
4
2021-04-20T12:26:41.000Z
2022-02-09T09:52:11.000Z
integration_tests/test_inventoryroles.py
chisou/cumulocity-python-api
f420b8ad2ec7735484db94b70ad6f5485585ddbb
[ "Apache-2.0" ]
3
2021-04-26T23:05:32.000Z
2021-12-09T14:13:58.000Z
# Copyright (c) 2020 Software AG, # Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, # and/or its subsidiaries and/or its affiliates and/or their licensors. # Use, reproduction, transfer, publication or disclosure is prohibited except # as specifically provided for in your License Agreement with Software AG. import pytest from c8y_api.model import User, InventoryRole, Permission, ReadPermission, WritePermission, AnyPermission from tests import RandomNameGenerator def test_CRUD(live_c8y): """Verify that object-oriented create, update and delete works.""" permissions = [ReadPermission(scope=Permission.Scope.ANY), WritePermission(scope=Permission.Scope.MEASUREMENT, type='c8y_Custom'), AnyPermission(scope=Permission.Scope.ALARM, type='*')] role = InventoryRole(name=RandomNameGenerator.random_name(2), description='SomeDescription', permissions=permissions) # 1) create role role.c8y = live_c8y role = role.create() # -> ids are set assert role.id assert all(p.id for p in role.permissions) # 2) update the role role.description = 'new description' del role.permissions[0] updated_role = role.update() # -> updated role has all the changed fields assert updated_role.id == role.id assert updated_role.description == role.description # -> the ID of the permissions should persist assert {p.id for p in updated_role.permissions} == {p.id for p in role.permissions} # 3) delete the role role.delete() # -> verify that the role is gone # (unfortunately this throws a SyntaxError instead of a KeyError) with pytest.raises(SyntaxError): live_c8y.inventory_roles.get(role.id) def test_CRUD2(live_c8y): """Verify that API-based create, update and delete works.""" permissions = [ReadPermission(scope=Permission.Scope.ANY), WritePermission(scope=Permission.Scope.MEASUREMENT, type='c8y_Custom'), AnyPermission(scope=Permission.Scope.ALARM, type='*')] role = InventoryRole(name=RandomNameGenerator.random_name(2), description='SomeDescription', permissions=permissions) # 1) create role live_c8y.inventory_roles.create(role) # 2) get all roles all_roles = live_c8y.inventory_roles.get_all() # -> created role can be found created_role = next(filter(lambda r: r.name == role.name, all_roles)) # 3) can be updated created_role.description = 'new description' live_c8y.inventory_roles.update(created_role) # 4) directly grab from DB updated_role = live_c8y.inventory_roles.get(created_role.id) # -> it was updated assert updated_role.description == created_role.description # 5) delete the role live_c8y.inventory_roles.delete(created_role.id) # -> verify that the role is gone # (unfortunately this throws a SyntaxError instead of a KeyError) with pytest.raises(SyntaxError): live_c8y.inventory_roles.get(created_role.id) def test_assignments(live_c8y, sample_device, factory): """Verify that inventory roles can be assigned, retrieved and unassigned.""" username = 'user_' + RandomNameGenerator.random_name(2) role1_name = 'role_' + RandomNameGenerator.random_name(2) role2_name = 'role_' + RandomNameGenerator.random_name(2) # create a user user = User(username=username, email='test@test.com') user = factory(user) # create inventory roles role1 = InventoryRole(name=role1_name, permissions=[ ReadPermission(scope=Permission.Scope.ALARM), WritePermission(scope=Permission.Scope.AUDIT)]) role1 = factory(role1) role2 = InventoryRole(name=role2_name, permissions=[ ReadPermission(scope=Permission.Scope.ANY), WritePermission(scope=Permission.Scope.MEASUREMENT)]) role2 = factory(role2) # assign inventory roles user.assign_inventory_roles(sample_device.id, role1, role2) # verify that roles are assigned assigned_roles = user.retrieve_inventory_role_assignments() assert {role1_name, role2_name} == {x.name for x in assigned_roles[0].roles} # delete the assignment user.unassign_inventory_roles(assigned_roles[0].id) # verify that the assignment is gone assert not user.retrieve_inventory_role_assignments()
38.403509
105
0.711055
b46c13f26bf8956217fc51a9b3c3de3ce8c99e85
12,018
py
Python
src/nlp_class2/glove.py
JouniVatanen/NLP-and-Deep-Learning
2fddcc2c39787713d33d17e80565de4ed073ca60
[ "MIT" ]
1
2020-05-24T06:55:31.000Z
2020-05-24T06:55:31.000Z
Machine Learning/nlp_class2/glove.py
Ashleshk/Machine-Learning-Data-Science-Deep-Learning
03357ab98155bf73b8f1d2fd53255cc16bea2333
[ "MIT" ]
null
null
null
Machine Learning/nlp_class2/glove.py
Ashleshk/Machine-Learning-Data-Science-Deep-Learning
03357ab98155bf73b8f1d2fd53255cc16bea2333
[ "MIT" ]
1
2020-03-16T13:11:14.000Z
2020-03-16T13:11:14.000Z
# Course URL: # https://deeplearningcourses.com/c/natural-language-processing-with-deep-learning-in-python # https://udemy.com/natural-language-processing-with-deep-learning-in-python from __future__ import print_function, division from builtins import range # Note: you may need to update your version of future # sudo pip install -U future import os import json import numpy as np import matplotlib.pyplot as plt from datetime import datetime from sklearn.utils import shuffle from util import find_analogies import sys sys.path.append(os.path.abspath('..')) from rnn_class.util import get_wikipedia_data from rnn_class.brown import get_sentences_with_word2idx_limit_vocab, get_sentences_with_word2idx # using ALS, what's the least # files to get correct analogies? # use this for word2vec training to make it faster # first tried 20 files --> not enough # how about 30 files --> some correct but still not enough # 40 files --> half right but 50 is better class Glove: def __init__(self, D, V, context_sz): self.D = D self.V = V self.context_sz = context_sz def fit(self, sentences, cc_matrix=None, learning_rate=1e-4, reg=0.1, xmax=100, alpha=0.75, epochs=10, gd=False): # build co-occurrence matrix # paper calls it X, so we will call it X, instead of calling # the training data X # TODO: would it be better to use a sparse matrix? t0 = datetime.now() V = self.V D = self.D if not os.path.exists(cc_matrix): X = np.zeros((V, V)) N = len(sentences) print("number of sentences to process:", N) it = 0 for sentence in sentences: it += 1 if it % 10000 == 0: print("processed", it, "/", N) n = len(sentence) for i in range(n): # i is not the word index!!! # j is not the word index!!! # i just points to which element of the sequence (sentence) we're looking at wi = sentence[i] start = max(0, i - self.context_sz) end = min(n, i + self.context_sz) # we can either choose only one side as context, or both # here we are doing both # make sure "start" and "end" tokens are part of some context # otherwise their f(X) will be 0 (denominator in bias update) if i - self.context_sz < 0: points = 1.0 / (i + 1) X[wi,0] += points X[0,wi] += points if i + self.context_sz > n: points = 1.0 / (n - i) X[wi,1] += points X[1,wi] += points # left side for j in range(start, i): wj = sentence[j] points = 1.0 / (i - j) # this is +ve X[wi,wj] += points X[wj,wi] += points # right side for j in range(i + 1, end): wj = sentence[j] points = 1.0 / (j - i) # this is +ve X[wi,wj] += points X[wj,wi] += points # save the cc matrix because it takes forever to create np.save(cc_matrix, X) else: X = np.load(cc_matrix) print("max in X:", X.max()) # weighting fX = np.zeros((V, V)) fX[X < xmax] = (X[X < xmax] / float(xmax)) ** alpha fX[X >= xmax] = 1 print("max in f(X):", fX.max()) # target logX = np.log(X + 1) print("max in log(X):", logX.max()) print("time to build co-occurrence matrix:", (datetime.now() - t0)) # initialize weights W = np.random.randn(V, D) / np.sqrt(V + D) b = np.zeros(V) U = np.random.randn(V, D) / np.sqrt(V + D) c = np.zeros(V) mu = logX.mean() costs = [] sentence_indexes = range(len(sentences)) for epoch in range(epochs): delta = W.dot(U.T) + b.reshape(V, 1) + c.reshape(1, V) + mu - logX cost = ( fX * delta * delta ).sum() costs.append(cost) print("epoch:", epoch, "cost:", cost) if gd: # gradient descent method # update W # oldW = W.copy() for i in range(V): # for j in range(V): # W[i] -= learning_rate*fX[i,j]*(W[i].dot(U[j]) + b[i] + c[j] + mu - logX[i,j])*U[j] W[i] -= learning_rate*(fX[i,:]*delta[i,:]).dot(U) W -= learning_rate*reg*W # print "updated W" # update b for i in range(V): # for j in range(V): # b[i] -= learning_rate*fX[i,j]*(W[i].dot(U[j]) + b[i] + c[j] + mu - logX[i,j]) b[i] -= learning_rate*fX[i,:].dot(delta[i,:]) # b -= learning_rate*reg*b # print "updated b" # update U for j in range(V): # for i in range(V): # U[j] -= learning_rate*fX[i,j]*(W[i].dot(U[j]) + b[i] + c[j] + mu - logX[i,j])*W[i] U[j] -= learning_rate*(fX[:,j]*delta[:,j]).dot(W) U -= learning_rate*reg*U # print "updated U" # update c for j in range(V): # for i in range(V): # c[j] -= learning_rate*fX[i,j]*(W[i].dot(U[j]) + b[i] + c[j] + mu - logX[i,j]) c[j] -= learning_rate*fX[:,j].dot(delta[:,j]) # c -= learning_rate*reg*c # print "updated c" else: # ALS method # update W # fast way # t0 = datetime.now() for i in range(V): # matrix = reg*np.eye(D) + np.sum((fX[i,j]*np.outer(U[j], U[j]) for j in range(V)), axis=0) matrix = reg*np.eye(D) + (fX[i,:]*U.T).dot(U) # assert(np.abs(matrix - matrix2).sum() < 1e-5) vector = (fX[i,:]*(logX[i,:] - b[i] - c - mu)).dot(U) W[i] = np.linalg.solve(matrix, vector) # print "fast way took:", (datetime.now() - t0) # slow way # t0 = datetime.now() # for i in range(V): # matrix2 = reg*np.eye(D) # vector2 = 0 # for j in range(V): # matrix2 += fX[i,j]*np.outer(U[j], U[j]) # vector2 += fX[i,j]*(logX[i,j] - b[i] - c[j])*U[j] # print "slow way took:", (datetime.now() - t0) # assert(np.abs(matrix - matrix2).sum() < 1e-5) # assert(np.abs(vector - vector2).sum() < 1e-5) # W[i] = np.linalg.solve(matrix, vector) # print "updated W" # update b for i in range(V): denominator = fX[i,:].sum() + reg # assert(denominator > 0) numerator = fX[i,:].dot(logX[i,:] - W[i].dot(U.T) - c - mu) # for j in range(V): # numerator += fX[i,j]*(logX[i,j] - W[i].dot(U[j]) - c[j]) b[i] = numerator / denominator # print "updated b" # update U for j in range(V): # matrix = reg*np.eye(D) + np.sum((fX[i,j]*np.outer(W[i], W[i]) for i in range(V)), axis=0) matrix = reg*np.eye(D) + (fX[:,j]*W.T).dot(W) # assert(np.abs(matrix - matrix2).sum() < 1e-8) vector = (fX[:,j]*(logX[:,j] - b - c[j] - mu)).dot(W) # matrix = reg*np.eye(D) # vector = 0 # for i in range(V): # matrix += fX[i,j]*np.outer(W[i], W[i]) # vector += fX[i,j]*(logX[i,j] - b[i] - c[j])*W[i] U[j] = np.linalg.solve(matrix, vector) # print "updated U" # update c for j in range(V): denominator = fX[:,j].sum() + reg numerator = fX[:,j].dot(logX[:,j] - W.dot(U[j]) - b - mu) # for i in range(V): # numerator += fX[i,j]*(logX[i,j] - W[i].dot(U[j]) - b[i]) c[j] = numerator / denominator # print "updated c" self.W = W self.U = U plt.plot(costs) plt.show() def save(self, fn): # function word_analogies expects a (V,D) matrx and a (D,V) matrix arrays = [self.W, self.U.T] np.savez(fn, *arrays) def main(we_file, w2i_file, use_brown=True, n_files=100): if use_brown: cc_matrix = "cc_matrix_brown.npy" else: cc_matrix = "cc_matrix_%s.npy" % n_files # hacky way of checking if we need to re-load the raw data or not # remember, only the co-occurrence matrix is needed for training if os.path.exists(cc_matrix): with open(w2i_file) as f: word2idx = json.load(f) sentences = [] # dummy - we won't actually use it else: if use_brown: keep_words = set([ 'king', 'man', 'woman', 'france', 'paris', 'london', 'rome', 'italy', 'britain', 'england', 'french', 'english', 'japan', 'japanese', 'chinese', 'italian', 'australia', 'australian', 'december', 'november', 'june', 'january', 'february', 'march', 'april', 'may', 'july', 'august', 'september', 'october', ]) sentences, word2idx = get_sentences_with_word2idx_limit_vocab(n_vocab=5000, keep_words=keep_words) else: sentences, word2idx = get_wikipedia_data(n_files=n_files, n_vocab=2000) with open(w2i_file, 'w') as f: json.dump(word2idx, f) V = len(word2idx) model = Glove(100, V, 10) # alternating least squares method model.fit(sentences, cc_matrix=cc_matrix, epochs=20) # gradient descent method # model.fit( # sentences, # cc_matrix=cc_matrix, # learning_rate=5e-4, # reg=0.1, # epochs=500, # gd=True, # ) model.save(we_file) if __name__ == '__main__': we = 'glove_model_50.npz' w2i = 'glove_word2idx_50.json' # we = 'glove_model_brown.npz' # w2i = 'glove_word2idx_brown.json' main(we, w2i, use_brown=False) # load back embeddings npz = np.load(we) W1 = npz['arr_0'] W2 = npz['arr_1'] with open(w2i) as f: word2idx = json.load(f) idx2word = {i:w for w,i in word2idx.items()} for concat in (True, False): print("** concat:", concat) if concat: We = np.hstack([W1, W2.T]) else: We = (W1 + W2.T) / 2 find_analogies('king', 'man', 'woman', We, word2idx, idx2word) find_analogies('france', 'paris', 'london', We, word2idx, idx2word) find_analogies('france', 'paris', 'rome', We, word2idx, idx2word) find_analogies('paris', 'france', 'italy', We, word2idx, idx2word) find_analogies('france', 'french', 'english', We, word2idx, idx2word) find_analogies('japan', 'japanese', 'chinese', We, word2idx, idx2word) find_analogies('japan', 'japanese', 'italian', We, word2idx, idx2word) find_analogies('japan', 'japanese', 'australian', We, word2idx, idx2word) find_analogies('december', 'november', 'june', We, word2idx, idx2word)
37.439252
117
0.473124
1524cd0617f8535fc5c9386207486ce54a8ef2f1
7,332
py
Python
tests/unit/test_cloud_networks.py
HQJaTu/pyrax
868f49527cd5e9161590eabd1144a6fcc02a7985
[ "Apache-2.0" ]
null
null
null
tests/unit/test_cloud_networks.py
HQJaTu/pyrax
868f49527cd5e9161590eabd1144a6fcc02a7985
[ "Apache-2.0" ]
null
null
null
tests/unit/test_cloud_networks.py
HQJaTu/pyrax
868f49527cd5e9161590eabd1144a6fcc02a7985
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import random import unittest from mock import patch from mock import MagicMock as Mock import pyrax.cloudnetworks from pyrax.cloudnetworks import CloudNetwork from pyrax.cloudnetworks import CloudNetworkManager from pyrax.cloudnetworks import CloudNetworkClient from pyrax.cloudnetworks import _get_server_networks import pyrax.exceptions as exc import pyrax.utils as utils from pyrax import fakes example_cidr = "1.1.1.0/8" example_uri = "http://example.com" class CloudNetworksTest(unittest.TestCase): def __init__(self, *args, **kwargs): super(CloudNetworksTest, self).__init__(*args, **kwargs) def setUp(self): self.client = fakes.FakeCloudNetworkClient() def tearDown(self): self.client = None def test_get_types(self): iso_network = fakes.FakeCloudNetwork() svc_network = fakes.FakeCloudNetwork() svc_network.id = pyrax.cloudnetworks.SERVICE_NET_ID sav_get = pyrax.resource.BaseResource.get pyrax.resource.BaseResource.get = Mock() iso_network.get() pyrax.resource.BaseResource.get.assert_called_once_with() svc_network.get() pyrax.resource.BaseResource.get.assert_called_once_with() pyrax.resource.BaseResource.get = sav_get def test_get_server_networks(self): clt = self.client iso_network = fakes.FakeCloudNetwork() iso_id = iso_network.id exp = [{"net-id": iso_id}, {"net-id": clt.PUBLIC_NET_ID}, {"net-id": clt.SERVICE_NET_ID}] ret = _get_server_networks(iso_network, public=True, private=True) self.assertEqual(ret, exp) def test_get_server_networks_by_client(self): clt = self.client iso_network = fakes.FakeCloudNetwork() iso_id = iso_network.id ret = clt.get_server_networks(iso_network) self.assertEqual(ret, [{"net-id": iso_id}]) ret = clt.get_server_networks(iso_network, private=True) self.assertEqual(ret, [{"net-id": iso_id}, {"net-id": clt.SERVICE_NET_ID}]) def test_get_server_networks_by_network(self): clt = self.client iso_network = fakes.FakeCloudNetwork() iso_id = iso_network.id ret = iso_network.get_server_networks() self.assertEqual(ret, [{"net-id": iso_id}]) ret = iso_network.get_server_networks(private=True) self.assertEqual(ret, [{"net-id": iso_id}, {"net-id": clt.SERVICE_NET_ID}]) def test_create_manager(self): clt = self.client self.assertTrue(isinstance(clt._manager, CloudNetworkManager)) def test_create_body(self): mgr = self.client._manager nm = utils.random_unicode() expected = {"network": {"label": nm, "cidr": example_cidr}} returned = mgr._create_body(name=nm, cidr=example_cidr) self.assertEqual(expected, returned) def test_create(self): clt = self.client clt._manager.create = Mock(return_value=fakes.FakeCloudNetwork()) nm = utils.random_unicode() new = clt.create(label=nm, cidr=example_cidr) clt._manager.create.assert_called_once_with(label=nm, name=None, cidr=example_cidr) def test_create_fail_count(self): clt = self.client err = exc.BadRequest(400) err.message = "Request failed: too many networks." clt._manager.create = Mock(side_effect=err) nm = utils.random_unicode() self.assertRaises(exc.NetworkCountExceeded, clt.create, label=nm, cidr=example_cidr) def test_create_fail_cidr(self): clt = self.client err = exc.BadRequest(400) err.message = "CIDR does not contain enough addresses." clt._manager.create = Mock(side_effect=err) nm = utils.random_unicode() self.assertRaises(exc.NetworkCIDRInvalid, clt.create, label=nm, cidr=example_cidr) def test_create_fail_cidr_malformed(self): clt = self.client err = exc.BadRequest(400) err.message = "CIDR is malformed." clt._manager.create = Mock(side_effect=err) nm = utils.random_unicode() self.assertRaises(exc.NetworkCIDRMalformed, clt.create, label=nm, cidr=example_cidr) def test_create_fail_other(self): clt = self.client err = exc.BadRequest(400) err.message = "Something strange happened." clt._manager.create = Mock(side_effect=err) nm = utils.random_unicode() self.assertRaises(exc.BadRequest, clt.create, label=nm, cidr=example_cidr) def test_find_network_by_label(self): clt = self.client net1 = fakes.FakeCloudNetwork(name="First") net2 = fakes.FakeCloudNetwork(name="Second") net3 = fakes.FakeCloudNetwork(name="Third") clt.list = Mock(return_value=[net1, net2, net3]) found = clt.find_network_by_label("Third") self.assertEqual(found, net3) def test_find_network_by_label_missing(self): clt = self.client net1 = fakes.FakeCloudNetwork(name="First") net2 = fakes.FakeCloudNetwork(name="Second") net3 = fakes.FakeCloudNetwork(name="Third") clt.list = Mock(return_value=[net1, net2, net3]) self.assertRaises(exc.NetworkNotFound, clt.find_network_by_label, "Fourth") def test_find_network_by_label_multiple(self): clt = self.client net1 = fakes.FakeCloudNetwork(name="First") net2 = fakes.FakeCloudNetwork(name="Third") net3 = fakes.FakeCloudNetwork(name="Third") clt.list = Mock(return_value=[net1, net2, net3]) self.assertRaises(exc.NetworkLabelNotUnique, clt.find_network_by_label, "Third") def test_network_name(self): clt = self.client nm = "fake" net = fakes.FakeCloudNetwork(name=nm) self.assertEqual(net.label, nm) self.assertEqual(net.name, nm) net.name = "faker" self.assertEqual(net.name, net.label) def test_delete_network(self): clt = self.client nm = "fake" net = fakes.FakeCloudNetwork(name=nm) net.manager = fakes.FakeManager() net.manager.delete = Mock() net.delete() net.manager.delete.assert_called_once_with(net) def test_delete_network_by_client(self): clt = self.client nm = "fake" net = fakes.FakeCloudNetwork(name=nm) clt.method_delete = Mock(return_value=(None, None)) clt.delete(net) clt.method_delete.assert_called_once_with("/os-networksv2/%s" % net.id) def test_delete_network_fail(self): clt = self.client nm = "fake" net = fakes.FakeCloudNetwork(name=nm) net.manager = fakes.FakeManager() err = exc.Forbidden(403) net.manager.delete = Mock(side_effect=err) self.assertRaises(exc.NetworkInUse, net.delete) def test_delete_network_by_client_fail(self): clt = self.client nm = "fake" net = fakes.FakeCloudNetwork(name=nm) err = exc.Forbidden(403) clt.method_delete = Mock(side_effect=err) self.assertRaises(exc.NetworkInUse, clt.delete, net) if __name__ == "__main__": unittest.main()
35.941176
79
0.653983
49e8809a3ff7f5dc3033ca8d2c4d566b13a666f1
18,265
py
Python
keras/keras_parameterized.py
winnerineast/keras
1e94c43d7ba0d7b6b629b2300e40470f495bdbe0
[ "Apache-2.0" ]
1
2021-01-01T00:16:04.000Z
2021-01-01T00:16:04.000Z
keras/keras_parameterized.py
winnerineast/keras
1e94c43d7ba0d7b6b629b2300e40470f495bdbe0
[ "Apache-2.0" ]
1
2021-01-10T15:10:05.000Z
2021-01-25T09:19:15.000Z
keras/keras_parameterized.py
winnerineast/keras
1e94c43d7ba0d7b6b629b2300e40470f495bdbe0
[ "Apache-2.0" ]
1
2021-01-10T09:06:39.000Z
2021-01-10T09:06:39.000Z
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities for unit-testing Keras.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import collections.abc as collections_abc import functools import itertools import unittest from absl.testing import parameterized import keras from keras import testing_utils try: import h5py # pylint:disable=g-import-not-at-top except ImportError: h5py = None class TestCase(tf.test.TestCase, parameterized.TestCase): def tearDown(self): keras.backend.clear_session() super(TestCase, self).tearDown() def run_with_all_saved_model_formats( test_or_class=None, exclude_formats=None): """Execute the decorated test with all Keras saved model formats). This decorator is intended to be applied either to individual test methods in a `keras_parameterized.TestCase` class, or directly to a test class that extends it. Doing so will cause the contents of the individual test method (or all test methods in the class) to be executed multiple times - once for each Keras saved model format. The Keras saved model formats include: 1. HDF5: 'h5' 2. SavedModel: 'tf' Note: if stacking this decorator with absl.testing's parameterized decorators, those should be at the bottom of the stack. Various methods in `testing_utils` to get file path for saved models will auto-generate a string of the two saved model formats. This allows unittests to confirm the equivalence between the two Keras saved model formats. For example, consider the following unittest: ```python class MyTests(testing_utils.KerasTestCase): @testing_utils.run_with_all_saved_model_formats def test_foo(self): save_format = testing_utils.get_save_format() saved_model_dir = '/tmp/saved_model/' model = keras.models.Sequential() model.add(keras.layers.Dense(2, input_shape=(3,))) model.add(keras.layers.Dense(3)) model.compile(loss='mse', optimizer='sgd', metrics=['acc']) keras.models.save_model(model, saved_model_dir, save_format=save_format) model = keras.models.load_model(saved_model_dir) if __name__ == "__main__": tf.test.main() ``` This test tries to save the model into the formats of 'hdf5', 'h5', 'keras', 'tensorflow', and 'tf'. We can also annotate the whole class if we want this to apply to all tests in the class: ```python @testing_utils.run_with_all_saved_model_formats class MyTests(testing_utils.KerasTestCase): def test_foo(self): save_format = testing_utils.get_save_format() saved_model_dir = '/tmp/saved_model/' model = keras.models.Sequential() model.add(keras.layers.Dense(2, input_shape=(3,))) model.add(keras.layers.Dense(3)) model.compile(loss='mse', optimizer='sgd', metrics=['acc']) keras.models.save_model(model, saved_model_dir, save_format=save_format) model = tf.keras.models.load_model(saved_model_dir) if __name__ == "__main__": tf.test.main() ``` Args: test_or_class: test method or class to be annotated. If None, this method returns a decorator that can be applied to a test method or test class. If it is not None this returns the decorator applied to the test or class. exclude_formats: A collection of Keras saved model formats to not run. (May also be a single format not wrapped in a collection). Defaults to None. Returns: Returns a decorator that will run the decorated test method multiple times: once for each desired Keras saved model format. Raises: ImportError: If abseil parameterized is not installed or not included as a target dependency. """ # Exclude h5 save format if H5py isn't available. if h5py is None: exclude_formats.append(['h5']) saved_model_formats = ['h5', 'tf', 'tf_no_traces'] params = [('_%s' % saved_format, saved_format) for saved_format in saved_model_formats if saved_format not in tf.nest.flatten(exclude_formats)] def single_method_decorator(f): """Decorator that constructs the test cases.""" # Use named_parameters so it can be individually run from the command line @parameterized.named_parameters(*params) @functools.wraps(f) def decorated(self, saved_format, *args, **kwargs): """A run of a single test case w/ the specified model type.""" if saved_format == 'h5': _test_h5_saved_model_format(f, self, *args, **kwargs) elif saved_format == 'tf': _test_tf_saved_model_format(f, self, *args, **kwargs) elif saved_format == 'tf_no_traces': _test_tf_saved_model_format_no_traces(f, self, *args, **kwargs) else: raise ValueError('Unknown model type: %s' % (saved_format,)) return decorated return _test_or_class_decorator(test_or_class, single_method_decorator) def _test_h5_saved_model_format(f, test_or_class, *args, **kwargs): with testing_utils.saved_model_format_scope('h5'): f(test_or_class, *args, **kwargs) def _test_tf_saved_model_format(f, test_or_class, *args, **kwargs): with testing_utils.saved_model_format_scope('tf'): f(test_or_class, *args, **kwargs) def _test_tf_saved_model_format_no_traces(f, test_or_class, *args, **kwargs): with testing_utils.saved_model_format_scope('tf', save_traces=False): f(test_or_class, *args, **kwargs) def run_with_all_weight_formats(test_or_class=None, exclude_formats=None): """Runs all tests with the supported formats for saving weights.""" exclude_formats = exclude_formats or [] exclude_formats.append('tf_no_traces') # Only applies to saving models return run_with_all_saved_model_formats(test_or_class, exclude_formats) # TODO(kaftan): Possibly enable 'subclass_custom_build' when tests begin to pass # it. Or perhaps make 'subclass' always use a custom build method. def run_with_all_model_types( test_or_class=None, exclude_models=None): """Execute the decorated test with all Keras model types. This decorator is intended to be applied either to individual test methods in a `keras_parameterized.TestCase` class, or directly to a test class that extends it. Doing so will cause the contents of the individual test method (or all test methods in the class) to be executed multiple times - once for each Keras model type. The Keras model types are: ['functional', 'subclass', 'sequential'] Note: if stacking this decorator with absl.testing's parameterized decorators, those should be at the bottom of the stack. Various methods in `testing_utils` to get models will auto-generate a model of the currently active Keras model type. This allows unittests to confirm the equivalence between different Keras models. For example, consider the following unittest: ```python class MyTests(testing_utils.KerasTestCase): @testing_utils.run_with_all_model_types( exclude_models = ['sequential']) def test_foo(self): model = testing_utils.get_small_mlp(1, 4, input_dim=3) optimizer = RMSPropOptimizer(learning_rate=0.001) loss = 'mse' metrics = ['mae'] model.compile(optimizer, loss, metrics=metrics) inputs = np.zeros((10, 3)) targets = np.zeros((10, 4)) dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets)) dataset = dataset.repeat(100) dataset = dataset.batch(10) model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=1) if __name__ == "__main__": tf.test.main() ``` This test tries building a small mlp as both a functional model and as a subclass model. We can also annotate the whole class if we want this to apply to all tests in the class: ```python @testing_utils.run_with_all_model_types(exclude_models = ['sequential']) class MyTests(testing_utils.KerasTestCase): def test_foo(self): model = testing_utils.get_small_mlp(1, 4, input_dim=3) optimizer = RMSPropOptimizer(learning_rate=0.001) loss = 'mse' metrics = ['mae'] model.compile(optimizer, loss, metrics=metrics) inputs = np.zeros((10, 3)) targets = np.zeros((10, 4)) dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets)) dataset = dataset.repeat(100) dataset = dataset.batch(10) model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=1) if __name__ == "__main__": tf.test.main() ``` Args: test_or_class: test method or class to be annotated. If None, this method returns a decorator that can be applied to a test method or test class. If it is not None this returns the decorator applied to the test or class. exclude_models: A collection of Keras model types to not run. (May also be a single model type not wrapped in a collection). Defaults to None. Returns: Returns a decorator that will run the decorated test method multiple times: once for each desired Keras model type. Raises: ImportError: If abseil parameterized is not installed or not included as a target dependency. """ model_types = ['functional', 'subclass', 'sequential'] params = [('_%s' % model, model) for model in model_types if model not in tf.nest.flatten(exclude_models)] def single_method_decorator(f): """Decorator that constructs the test cases.""" # Use named_parameters so it can be individually run from the command line @parameterized.named_parameters(*params) @functools.wraps(f) def decorated(self, model_type, *args, **kwargs): """A run of a single test case w/ the specified model type.""" if model_type == 'functional': _test_functional_model_type(f, self, *args, **kwargs) elif model_type == 'subclass': _test_subclass_model_type(f, self, *args, **kwargs) elif model_type == 'sequential': _test_sequential_model_type(f, self, *args, **kwargs) else: raise ValueError('Unknown model type: %s' % (model_type,)) return decorated return _test_or_class_decorator(test_or_class, single_method_decorator) def _test_functional_model_type(f, test_or_class, *args, **kwargs): with testing_utils.model_type_scope('functional'): f(test_or_class, *args, **kwargs) def _test_subclass_model_type(f, test_or_class, *args, **kwargs): with testing_utils.model_type_scope('subclass'): f(test_or_class, *args, **kwargs) def _test_sequential_model_type(f, test_or_class, *args, **kwargs): with testing_utils.model_type_scope('sequential'): f(test_or_class, *args, **kwargs) def run_all_keras_modes(test_or_class=None, config=None, always_skip_v1=False, always_skip_eager=False, **kwargs): """Execute the decorated test with all keras execution modes. This decorator is intended to be applied either to individual test methods in a `keras_parameterized.TestCase` class, or directly to a test class that extends it. Doing so will cause the contents of the individual test method (or all test methods in the class) to be executed multiple times - once executing in legacy graph mode, once running eagerly and with `should_run_eagerly` returning True, and once running eagerly with `should_run_eagerly` returning False. If Tensorflow v2 behavior is enabled, legacy graph mode will be skipped, and the test will only run twice. Note: if stacking this decorator with absl.testing's parameterized decorators, those should be at the bottom of the stack. For example, consider the following unittest: ```python class MyTests(testing_utils.KerasTestCase): @testing_utils.run_all_keras_modes def test_foo(self): model = testing_utils.get_small_functional_mlp(1, 4, input_dim=3) optimizer = RMSPropOptimizer(learning_rate=0.001) loss = 'mse' metrics = ['mae'] model.compile( optimizer, loss, metrics=metrics, run_eagerly=testing_utils.should_run_eagerly()) inputs = np.zeros((10, 3)) targets = np.zeros((10, 4)) dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets)) dataset = dataset.repeat(100) dataset = dataset.batch(10) model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=1) if __name__ == "__main__": tf.test.main() ``` This test will try compiling & fitting the small functional mlp using all three Keras execution modes. Args: test_or_class: test method or class to be annotated. If None, this method returns a decorator that can be applied to a test method or test class. If it is not None this returns the decorator applied to the test or class. config: An optional config_pb2.ConfigProto to use to configure the session when executing graphs. always_skip_v1: If True, does not try running the legacy graph mode even when Tensorflow v2 behavior is not enabled. always_skip_eager: If True, does not execute the decorated test with eager execution modes. **kwargs: Additional kwargs for configuring tests for in-progress Keras behaviors/ refactorings that we haven't fully rolled out yet Returns: Returns a decorator that will run the decorated test method multiple times. Raises: ImportError: If abseil parameterized is not installed or not included as a target dependency. """ skip_keras_tensors = kwargs.pop('skip_keras_tensors', False) if kwargs: raise ValueError('Unrecognized keyword args: {}'.format(kwargs)) params = [('_v2_function', 'v2_function')] if not skip_keras_tensors: params.append(('_v2_function_use_keras_tensors', 'v2_function_use_keras_tensors')) if not always_skip_eager: params.append(('_v2_eager', 'v2_eager')) if not (always_skip_v1 or tf.__internal__.tf2.enabled()): params.append(('_v1_session', 'v1_session')) def single_method_decorator(f): """Decorator that constructs the test cases.""" # Use named_parameters so it can be individually run from the command line @parameterized.named_parameters(*params) @functools.wraps(f) def decorated(self, run_mode, *args, **kwargs): """A run of a single test case w/ specified run mode.""" if run_mode == 'v1_session': _v1_session_test(f, self, config, *args, **kwargs) elif run_mode == 'v2_eager': _v2_eager_test(f, self, *args, **kwargs) elif run_mode == 'v2_function': _v2_function_test(f, self, *args, **kwargs) elif run_mode == 'v2_function_use_keras_tensors': _v2_function_and_kerastensors_test(f, self, *args, **kwargs) else: return ValueError('Unknown run mode %s' % run_mode) return decorated return _test_or_class_decorator(test_or_class, single_method_decorator) def _v1_session_test(f, test_or_class, config, *args, **kwargs): with tf.compat.v1.get_default_graph().as_default(): with testing_utils.run_eagerly_scope(False): with test_or_class.test_session(use_gpu=True, config=config): f(test_or_class, *args, **kwargs) def _v2_eager_test(f, test_or_class, *args, **kwargs): with tf.__internal__.eager_context.eager_mode(): with testing_utils.run_eagerly_scope(True): f(test_or_class, *args, **kwargs) def _v2_function_test(f, test_or_class, *args, **kwargs): with tf.__internal__.eager_context.eager_mode(): with testing_utils.run_eagerly_scope(False): f(test_or_class, *args, **kwargs) def _v2_function_and_kerastensors_test(f, test_or_class, *args, **kwargs): with tf.__internal__.eager_context.eager_mode(): with testing_utils.run_eagerly_scope(False): with testing_utils.use_keras_tensors_scope(True): f(test_or_class, *args, **kwargs) def _test_or_class_decorator(test_or_class, single_method_decorator): """Decorate a test or class with a decorator intended for one method. If the test_or_class is a class: This will apply the decorator to all test methods in the class. If the test_or_class is an iterable of already-parameterized test cases: This will apply the decorator to all the cases, and then flatten the resulting cross-product of test cases. This allows stacking the Keras parameterized decorators w/ each other, and to apply them to test methods that have already been marked with an absl parameterized decorator. Otherwise, treat the obj as a single method and apply the decorator directly. Args: test_or_class: A test method (that may have already been decorated with a parameterized decorator, or a test class that extends keras_parameterized.TestCase single_method_decorator: A parameterized decorator intended for a single test method. Returns: The decorated result. """ def _decorate_test_or_class(obj): if isinstance(obj, collections_abc.Iterable): return itertools.chain.from_iterable( single_method_decorator(method) for method in obj) if isinstance(obj, type): cls = obj for name, value in cls.__dict__.copy().items(): if callable(value) and name.startswith( unittest.TestLoader.testMethodPrefix): setattr(cls, name, single_method_decorator(value)) cls = type(cls).__new__(type(cls), cls.__name__, cls.__bases__, cls.__dict__.copy()) return cls return single_method_decorator(obj) if test_or_class is not None: return _decorate_test_or_class(test_or_class) return _decorate_test_or_class
37.048682
80
0.717054
942ea4433d99790198dab89da80356c6c82d6944
396
py
Python
DjangoApp/wsgi.py
johnnynode/Django-demo
421f4d23d2773a1338a5163605a2f29202c91396
[ "MIT" ]
2
2018-08-18T15:14:45.000Z
2019-10-16T16:14:13.000Z
DjangoApp/wsgi.py
johnnynode/Django-demo
421f4d23d2773a1338a5163605a2f29202c91396
[ "MIT" ]
null
null
null
DjangoApp/wsgi.py
johnnynode/Django-demo
421f4d23d2773a1338a5163605a2f29202c91396
[ "MIT" ]
6
2018-05-05T18:13:05.000Z
2021-05-20T11:32:48.000Z
""" WSGI config for DjangoApp project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.11/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "DjangoApp.settings") application = get_wsgi_application()
23.294118
78
0.787879
92b1f01c5dd17bdd04cec478f48a6265a0757fc4
561
py
Python
dsptools/filters/cumulative_moving_average.py
jamlamberti/dsp-tools
490bc50a497a3a7be85d48b29a8bb3d74ca7f5e8
[ "MIT" ]
null
null
null
dsptools/filters/cumulative_moving_average.py
jamlamberti/dsp-tools
490bc50a497a3a7be85d48b29a8bb3d74ca7f5e8
[ "MIT" ]
2
2019-10-11T03:54:35.000Z
2019-10-30T00:27:45.000Z
dsptools/filters/cumulative_moving_average.py
jamlamberti/dsp-tools
490bc50a497a3a7be85d48b29a8bb3d74ca7f5e8
[ "MIT" ]
null
null
null
from ..signal_generators.base_generator import BaseGenerator class CumulativeMovingAverage(BaseGenerator): def __init__(self, generator): super(CumulativeMovingAverage, self).__init__() self._generator = generator self._cntr = 0 self._cma = 0. def next_value(self): self._cntr += 1 self._cma += float(self._generator.next_value() - self._cma) self._cma /= self._cntr return self._cma def rewind(self): self._cntr = 0 self._cma = 0. self._generator.rewind()
26.714286
68
0.634581
bda9b2264d8cff2e3b2566724a3027f99b16b475
1,726
py
Python
test/torchaudio_unittest/prototype/conformer_test_impl.py
popcornell/audio
7b6b2d000023e2aa3365b769866c5f375e0d5fda
[ "BSD-2-Clause" ]
null
null
null
test/torchaudio_unittest/prototype/conformer_test_impl.py
popcornell/audio
7b6b2d000023e2aa3365b769866c5f375e0d5fda
[ "BSD-2-Clause" ]
1
2021-09-07T15:42:33.000Z
2021-09-14T21:39:04.000Z
test/torchaudio_unittest/prototype/conformer_test_impl.py
popcornell/audio
7b6b2d000023e2aa3365b769866c5f375e0d5fda
[ "BSD-2-Clause" ]
null
null
null
import torch from torchaudio.prototype.models import Conformer from torchaudio_unittest.common_utils import TestBaseMixin, torch_script class ConformerTestImpl(TestBaseMixin): def _gen_model(self): conformer = ( Conformer( num_layers=4, input_dim=80, conv_channels=64, conformer_layer_input_dim=256, conv_kernel_sizes=[5, 5], max_source_positions=6000, ffn_dim=128, num_attention_heads=4, depthwise_conv_kernel_size=31, dropout=0.1, ) .to(device=self.device, dtype=self.dtype) .eval() ) return conformer def _gen_inputs(self, input_dim, batch_size, num_frames): lengths = torch.randint(1, num_frames, (batch_size,)).to(device=self.device, dtype=self.dtype) input = torch.rand(batch_size, int(lengths.max()), input_dim).to(device=self.device, dtype=self.dtype) return input, lengths def setUp(self): super().setUp() torch.random.manual_seed(31) def test_torchscript_consistency_forward(self): r"""Verify that scripting Conformer does not change the behavior of method `forward`.""" input_dim = 80 batch_size = 10 num_frames = 400 conformer = self._gen_model() input, lengths = self._gen_inputs(input_dim, batch_size, num_frames) scripted = torch_script(conformer) ref_out, ref_len = conformer(input, lengths) scripted_out, scripted_len = scripted(input, lengths) self.assertEqual(ref_out, scripted_out) self.assertEqual(ref_len, scripted_len)
34.52
110
0.625724
813fa2010aabffb37d93f6ebd97ecc00d0c312b3
12,299
py
Python
mirage/libs/wireless.py
Cabalist/mirage
22553d22da4e87ffb99da8d19f8b552986df0965
[ "MIT" ]
null
null
null
mirage/libs/wireless.py
Cabalist/mirage
22553d22da4e87ffb99da8d19f8b552986df0965
[ "MIT" ]
null
null
null
mirage/libs/wireless.py
Cabalist/mirage
22553d22da4e87ffb99da8d19f8b552986df0965
[ "MIT" ]
null
null
null
import time from queue import Empty, Queue from scapy.packet import Packet import mirage.libs.io as io from mirage.libs.wireless_utils.callbacks import Callback from mirage.libs.wireless_utils.device import Device from mirage.libs.wireless_utils.packetQueue import PacketQueue from mirage.libs.wireless_utils.packets import WaitPacket class Emitter(PacketQueue): ''' This class allows an user to communicate with a device in order to send data. Indeed, Mirage provides no direct access to the device component from the modules : the hardware components are manipulated thanks to the Emitter class and the Receiver class. Emitters' classes for a given technology inherits from this class. The packet are manipulated as an abstract representation in Emitters and Receivers (``mirage.libs.wireless_utils.packets.Packet``) and as a raw representation in Device (e.g. bytes array or scapy frame). That's why an Emitter must implement the following method : * convert(self,packet) : this method converts a Mirage Packet into its raw representation The constructor of an Emitter needs three parameters : * `interface` : indicating the interface to use to instantiate the device, generally it will be provided by the user * `packetType` : indicating the child class of Packet for the technology implemented by the Emitter * `deviceType` : indicating the child class of Device to instanciate A `_task` method is implemented by default. It gets a Mirage Packet from the queue, calls the convert method on it and calls the send method of a Device on the result. If you want to customize this behaviour, you can overload this method. ''' def __init__(self,interface,packetType=Packet, deviceType=Device): self.interface = interface self.packetType = packetType self.deviceType = deviceType self.device = self.deviceType.get(self.interface) self.transmitting = False super().__init__(waitEmpty=False) def isTransmitting(self): ''' This method indicates if the Emitter is actually transmitting. :return: boolean indicating if the Emitter is actually transmitting :rtype: bool :Example: >>> emitter.isTransmitting() True ''' return self.transmitting def _send(self,data): if isinstance(data,bytes) and data[:5] == b"WAIT:": time.sleep(float(data[5:])) else: self.device.send(data) def convert(self,packet): ''' This method converts a Mirage Packet into a raw Packet (e.g. bytes array or scapy frame). It must be overloaded by child classes. :param packet: Mirage Packet to convert :type packet: mirage.libs.wireless_utils.packets.Packet :return: raw representation of a packet ''' if isinstance(packet,Packet): return packet.packet else: io.fail("Malformed packet") return None def convertMiragePacketToRaw(self,data): ''' This method is an alias for the convert method of an emitter. :param data: raw representation of a packet :return: Mirage packet :rtype: mirage.libs.wireless_utils.packets.Packet ''' return self.convert(data) def _task(self): if not self.isEmpty(): self.transmitting = True packet = self.queue.get() if isinstance(packet,WaitPacket): data = bytes("WAIT:"+str(packet.time),"ascii") else: data = self.convert(packet) if data is not None: self._send(data) self.transmitting = not self.isEmpty() else: time.sleep(0.005) def send(self,*packets): ''' This method allows to send a Mirage Packet. :param `*packets`: packets to send :type `*packets`: mirage.libs.wireless_utils.packets.Packet (multiple) :Example: >>> emitter.send(packet1, packet2, packet3) >>> emitter.send(packet1) ''' for packet in packets: self.queue.put(packet) def sendp(self,*packets): ''' This method is an alias for `send`. :param `*packets`: packets to send :type `*packets`: mirage.libs.wireless_utils.packets.Packet (multiple) :Example: >>> emitter.sendp(packet1, packet2, packet3) >>> emitter.sendp(packet1) ''' self.send(*packets) def stop(self): ''' Stops the Emitter and the associated device ''' super().stop() if self.isDeviceUp(): self.device.close() class Receiver(PacketQueue): ''' This class allows an user to communicate with a device in order to receive data. Indeed, Mirage provides no direct access to the device component from the modules : the hardware components are manipulated thanks to the Emitter class and the Receiver class. Receivers' classes for a given technology inherits from this class. The packet are manipulated as an abstract representation in Emitters and Receivers (``mirage.libs.wireless_utils.packets.Packet``) and as a raw representation in Device (e.g. bytes array or scapy frame). That's why a Receiver must implement the following method : * convert(self,packet) : this method converts a raw representation of a packet into a Mirage Packet The constructor of a Receiver needs three parameters : * `interface` : indicating the interface to use to instantiate the device, generally it will be provided by the user * `packetType` : indicating the child class of Packet for the technology implemented by the Emitter * `deviceType` : indicating the child class of Device to instanciate A `_task` method is implemented by default. It calls the recv method of a Device, converts the result (if it is not None) to a Mirage Packet and adds it to the queue. If you want to customize this behaviour, you can overload this method. ''' def __init__(self,interface,packetType=Packet, deviceType=Device): self.interface = interface self.packetType = packetType self.deviceType = deviceType self.device = self.deviceType.get(self.interface) self.callbacks = [] self.receiving = False self.callbacksQueue = Queue() self.callbacksActiveListening = False super().__init__(waitEmpty=False, autoStart=True) def convert(self,data): ''' This method converts a raw Packet (e.g. bytes array or scapy frame) into a Mirage Packet. It must be overloaded by child classes. :param data: raw representation of a packet :return: Mirage packet :rtype: mirage.libs.wireless_utils.packets.Packet ''' return Packet(packet=data) def convertRawToMiragePacket(self,data): ''' This method is an alias for the convert method of a receiver. :param data: raw representation of a packet :return: Mirage packet :rtype: mirage.libs.wireless_utils.packets.Packet ''' return self.convert(data) def _add(self,data): if data is not None: packet = self.convert(data) self._executeCallbacks(packet) if packet is not None: self.queue.put(packet) def isReceiving(self): ''' This method indicates if the Receiver is actually receiving. :return: boolean indicating if the Receiver is actually receiving :rtype: bool :Example: >>> receiver.isReceiving() True ''' return self.receiving def _task(self): self.receiving = True pkt = self.device.recv() self._add(pkt) self.receiving = False def clean(self): ''' This method removes every Mirage Packets stored in the queue. :Example: >>> receiver.clean() ''' while not self.isEmpty(): self.skip() def skip(self,timeout=None): ''' This method skips the next Mirage Packet stored in the queue. :param timeout: time (in seconds) before the method fails :type timeout: float :Example: >>> receiver.skip(timeout=1.0) ''' next(self.receive(timeout=timeout)) def next(self,timeout=None): ''' This method returns the next Mirage Packet stored in the queue. :param timeout: time (in seconds) before the method fails :type timeout: float :Example: >>> packet = receiver.next(timeout=1.0) ''' return next(self.receive(timeout=timeout)) def receive(self,nb=1,loop=False,timeout=None): ''' This method provide a generator allowing to iterate on the incoming Mirage Packets. :param nb: number of packets to receive in the iterator :type nb: int :param loop: boolean indicating if the packets must be continuously received :type loop: bool :param timeout: time (in seconds) before a reception fails :type timeout: float :return: generator of Mirage Packets (``mirage.libs.wireless_utils.packets.Packet``) :Example: >>> for packet in receiver.receive(nb=5): ... packet.show() << Packet >> << Packet >> << Packet >> << Packet >> << Packet >> >>> for packet in receiver.receive(loop=True, timeout=1.0): ... if packet is not None: ... packet.show() ... else: ... io.info("Timeout !") [INFO] Timeout ! << Packet >> [INFO] Timeout ! [INFO] Timeout ! << Packet >> [...] ''' def get(): try: return self.queue.get(timeout=timeout) except Empty: return None if loop: while True: yield get() else: for _ in range(nb): yield get() def onEvent(self,event="*", callback=None, args=[], kwargs={}, background=True): ''' This function allows to attach a callback, triggered when some specific Mirage Packets are received. It is linked to an *event*, which is a string indicating when should the callback be called. Three formats exists describing an event : * *\** : indicating "the callback is called every times a packet is received" * *n* : indicating "the callback is called every times n packets have been received" * *packetType* : indicating "the callback is called every times a packet of type 'packetType' is received" Some examples are represented in the following table: +----------------------+-------------------------------+ | Event | Description | +======================+===============================+ | \* | every packet | +----------------------+-------------------------------+ | 3 | every 3 packets | +----------------------+-------------------------------+ | BLEReadRequest | every BLE Read Request | +----------------------+-------------------------------+ The function *callback* is called with the following format : callback(packet,*args,**kwargs) A callback can be run in the associated background thread (by default) or in foreground by using the methods ``listenCallbacks`` and ``stopListeningCallbacks``. :param event: string describing the associated event :type event: str :param callback: function to call when the associated event is triggered :type callback: function :param args: unnamed arguments to provide to the function :type args: list :param kwargs: named arguments to provide to the function :type kwargs: dict :param background: boolean indicating if the callback is run in background or in foreground :type background: bool :Example: >>> def show(packet): ... packet.show() >>> receiver.onEvent("*", callback=show) >>> def onReadRequest(packet,username): ... io.info("Hello "+username+", I have an incoming Read Request for you : "+str(packet)) >>> receiver.onEvent("BLEReadRequest",callback=onReadRequest, args=["Romain"]) ''' self.callbacks.append(Callback(event=event, function=callback, args=args, kwargs=kwargs, background=background)) def _executeCallbacks(self,packet): for callback in self.callbacks: callback.update(packet) if callback.runnable: if callback.background: callback.run(packet) else: self.callbacksQueue.put((self.callbacks.index(callback),packet)) def stopListeningCallbacks(self): ''' Stops the foreground callbacks execution loop. :Example: >>> receiver.stopListeningCallbacks() ''' self.callbacksActiveListening = False def listenCallbacks(self): ''' Starts the foreground callbacks execution loop. :Example: >>> receiver.listenCallbacks() ''' self.callbacksActiveListening = True while self.callbacksActiveListening: if not self.callbacksQueue.empty(): index,packet = self.callbacksQueue.get() self.callbacks[index].run(packet) def removeCallbacks(self): ''' Remove the callbacks attached to the Receiver. ''' self.callbacks = [] def stop(self): ''' Stops the Receiver and the associated device ''' super().stop() if self.isDeviceUp(): self.device.close()
31.136709
325
0.694121
5ab302b636983e731ff53435c5bc2eb8e0e8f5fc
348
py
Python
CourseMatter/content/migrations/0004_alter_course_options.py
ss4328/CourseMatter
6eb7d13c178644bb300c3d7a7366e7aa290cce47
[ "MIT" ]
null
null
null
CourseMatter/content/migrations/0004_alter_course_options.py
ss4328/CourseMatter
6eb7d13c178644bb300c3d7a7366e7aa290cce47
[ "MIT" ]
null
null
null
CourseMatter/content/migrations/0004_alter_course_options.py
ss4328/CourseMatter
6eb7d13c178644bb300c3d7a7366e7aa290cce47
[ "MIT" ]
null
null
null
# Generated by Django 3.2.3 on 2021-05-20 22:12 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('content', '0003_content_course'), ] operations = [ migrations.AlterModelOptions( name='course', options={'ordering': ['-created_on']}, ), ]
19.333333
50
0.58908
68f66638b5cae9c1a1ca0bce4752cf7ae5d676f2
510
py
Python
src/kgmk/dsa/string/lcp_array/kasai/__init__.py
kagemeka/python
486ce39d97360b61029527bacf00a87fdbcf552c
[ "MIT" ]
null
null
null
src/kgmk/dsa/string/lcp_array/kasai/__init__.py
kagemeka/python
486ce39d97360b61029527bacf00a87fdbcf552c
[ "MIT" ]
null
null
null
src/kgmk/dsa/string/lcp_array/kasai/__init__.py
kagemeka/python
486ce39d97360b61029527bacf00a87fdbcf552c
[ "MIT" ]
null
null
null
import typing class LCPKasai(): def __call__( self, a: typing.List[int], sa: typing.List[int], ) -> typing.List[int]: n = len(a) assert n > 0 and len(sa) == n rank = [-1] * n for i, x in enumerate(sa): rank[x] = i h, l = [0] * (n - 1), 0 for i in range(n): if l > 0: l -= 1 r = rank[i] if r == n - 1: continue j = sa[r + 1] while i + l < n and j + l < n: if a[i + l] != a[j + l]: break l += 1 h[r] = l return h
20.4
42
0.433333
13642a4f2c28f57af31267886833f1693ef73940
83,968
py
Python
core/minecraft/hypixel/player.py
vcokltfre/Myaer
8e2a57f26635781e19716b47028f465617defa75
[ "MIT" ]
null
null
null
core/minecraft/hypixel/player.py
vcokltfre/Myaer
8e2a57f26635781e19716b47028f465617defa75
[ "MIT" ]
null
null
null
core/minecraft/hypixel/player.py
vcokltfre/Myaer
8e2a57f26635781e19716b47028f465617defa75
[ "MIT" ]
null
null
null
""" MIT License Copyright (c) 2020 MyerFire Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import time import ratelimit import core.caches.players import core.minecraft.hypixel.friends import core.minecraft.hypixel.guild import core.minecraft.hypixel.request import core.minecraft.hypixel.static.static import core.minecraft.hypixel.status async def get_player_data(uuid, *, use_cache: bool = True, get_guild: bool = False, get_friends: bool = False, get_status: bool = False): if not use_cache: valid = False else: player_cache = await core.caches.players.find_player_data(uuid) if player_cache: # returns cached data only if it contains all the requested information valid = True if ((not get_guild) and (not get_friends) or ( get_friends and player_cache["data"]["friends"]) or ( get_guild and player_cache["data"]["guild_data"])) and (time.time()) - \ player_cache["time"] < 14400 else False # cached for 5 minutes else: valid = False if valid: return player_cache["data"] else: try: player_json = await core.minecraft.hypixel.request.get_player_uuid(uuid) except NameError: raise NameError("No Hypixel stats") except ratelimit.RateLimitException: raise OverflowError # idk how to make custom exceptions so this is close enough if get_guild: # only get guild if necessary, because it's another request try: player_guild_json = await core.minecraft.hypixel.guild.get_guild_data(uuid) except NameError: player_guild_json = None except ratelimit.RateLimitException: raise ratelimit.RateLimitException else: player_guild_json = None if get_friends: # only get friends if necessary, because it's another request try: player_friends_json = await core.minecraft.hypixel.friends.get_friends(uuid) except NameError: player_friends_json = None except ratelimit.RateLimitException: raise ratelimit.RateLimitException else: player_friends_json = None if get_status: # only get status if necessary, because it's another request try: player_status_json = await core.minecraft.hypixel.status.get_status(uuid) except NameError: player_status_json = None except ratelimit.RateLimitException: raise ratelimit.RateLimitException else: player_status_json = None player = { # This thing is pretty torture "name": player_json.get("player", {}).get("displayname", ""), "level_data": (await core.minecraft.hypixel.static.static.get_network_level_data( player_json.get("player", {}).get("networkExp", 0))), "karma": player_json.get("player", {}).get("karma", 0), "achievement_points": player_json.get("player", {}).get("achievementPoints", 0), "rank_data": ( await core.minecraft.hypixel.static.static.get_rank_data((player_json.get("player", {}).get("rank", None)), (player_json.get("player", {}).get("prefix", None)), ( player_json.get("player", {}).get( "monthlyPackageRank", None)), ( player_json.get("player", {}).get( "newPackageRank", None)), (player_json.get("packageRank", None)))), "guild_data": player_guild_json, "friends": player_friends_json, "status": player_status_json, "login_times": { "first": player_json.get("player", {}).get("firstLogin", 0), "last": player_json.get("player", {}).get("lastLogin", 0) }, "social_media": { "twitter": player_json.get("player", {}).get("socialMedia", {}).get("links", {}).get("TWITTER", None), "youtube": player_json.get("player", {}).get("socialMedia", {}).get("links", {}).get("YOUTUBE", None), "instagram": player_json.get("player", {}).get("socialMedia", {}).get("links", {}).get("INSTAGRAM", None), "twitch": player_json.get("player", {}).get("socialMedia", {}).get("links", {}).get("TWITCH", None), "discord": player_json.get("player", {}).get("socialMedia", {}).get("links", {}).get("DISCORD", None), "hypixel_forums": player_json.get("player", {}).get("socialMedia", {}).get("links", {}).get("HYPIXEL", None), }, "bedwars": { "star": player_json.get("player", {}).get("achievements", {}).get("bedwars_level", 0), "coins": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get("coins_bedwars", 0), "games_played": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "games_played_bedwars", 0), "beds_broken": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get("beds_broken_bedwars", 0), "beds_lost": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get("beds_lost_bedwars", 0), "kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get("kills_bedwars", 0), "deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get("deaths_bedwars", 0), "final_kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get("final_kills_bedwars", 0), "final_deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "final_deaths_bedwars", 0), "wins": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get("wins_bedwars", 0), "losses": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get("losses_bedwars", 0), "winstreak": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get("winstreak", 0), "solo": { "games_played": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_games_played_bedwars", 0), "beds_broken": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_beds_broken_bedwars", 0), "beds_lost": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_beds_lost_bedwars", 0), "kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_kills_bedwars", 0), "deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_deaths_bedwars", 0), "final_kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_final_kills_bedwars", 0), "final_deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_final_deaths_bedwars", 0), "wins": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get("eight_one_wins_bedwars", 0), "losses": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_losses_bedwars", 0), "winstreak": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_winstreak", 0), }, "doubles": { "games_played": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_games_played_bedwars", 0), "beds_broken": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_beds_broken_bedwars", 0), "beds_lost": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_beds_lost_bedwars", 0), "kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_kills_bedwars", 0), "deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_deaths_bedwars", 0), "final_kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_final_kills_bedwars", 0), "final_deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_final_deaths_bedwars", 0), "wins": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get("eight_two_wins_bedwars", 0), "losses": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_losses_bedwars", 0), "winstreak": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_winstreak", 0), }, "threes": { "games_played": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_three_games_played_bedwars", 0), "beds_broken": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_three_beds_broken_bedwars", 0), "beds_lost": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_three_beds_lost_bedwars", 0), "kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_three_kills_bedwars", 0), "deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_three_deaths_bedwars", 0), "final_kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_three_final_kills_bedwars", 0), "final_deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_three_final_deaths_bedwars", 0), "wins": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get("four_three_wins_bedwars", 0), "losses": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_three_losses_bedwars", 0), "winstreak": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_three_winstreak", 0), }, "fours": { "games_played": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_games_played_bedwars", 0), "beds_broken": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_beds_broken_bedwars", 0), "beds_lost": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_beds_lost_bedwars", 0), "kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_kills_bedwars", 0), "deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_deaths_bedwars", 0), "final_kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_final_kills_bedwars", 0), "final_deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_final_deaths_bedwars", 0), "wins": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get("four_four_wins_bedwars", 0), "losses": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_losses_bedwars", 0), "winstreak": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_winstreak", 0), }, "four_v_four": { "games_played": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "two_four_games_played_bedwars", 0), "beds_broken": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "two_four_beds_broken_bedwars", 0), "beds_lost": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "two_four_beds_lost_bedwars", 0), "kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get("two_four_kills_bedwars", 0), "deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "two_four_deaths_bedwars", 0), "final_kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "two_four_final_kills_bedwars", 0), "final_deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "two_four_final_deaths_bedwars", 0), "wins": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get("two_four_wins_bedwars", 0), "losses": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "two_four_losses_bedwars", 0), "winstreak": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get("two_four_winstreak", 0), }, "dreams": { "armed": { "doubles": { "games_played": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_armed_games_played_bedwars", 0), "beds_broken": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_armed_beds_broken_bedwars", 0), "beds_lost": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_armed_beds_lost_bedwars", 0), "kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_armed_kills_bedwars", 0), "void_kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_armed_void_kills_bedwars", 0), "deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_armed_deaths_bedwars", 0), "void_deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_armed_void_deaths", 0), "final_kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_armed_final_kills_bedwars", 0), "final_deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_armed_final_deaths_bedwars", 0), "wins": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_armed_wins_bedwars", 0), "losses": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_armed_losses_bedwars", 0), "winstreak": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_armed_winstreak", 0), "items_purchased": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_armed__items_purchased_bedwars", 0), "resources_collected": { "all": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_armed_resources_collected_bedwars", 0), "iron": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_armed_iron_resources_collected_bedwars", 0), "gold": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_armed_gold_resources_collected_bedwars", 0), "emeralds": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_armed_emerald_resources_collected_bedwars", 0), "diamonds": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_armed_diamond_resources_collected_bedwars", 0), } }, "fours": { "games_played": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_armed_games_played_bedwars", 0), "beds_broken": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_armed_beds_broken_bedwars", 0), "beds_lost": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_armed_beds_lost_bedwars", 0), "kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_armed_kills_bedwars", 0), "void_kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_armed_void_kills_bedwars", 0), "deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_armed_deaths_bedwars", 0), "void_deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_armed_void_deaths", 0), "final_kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_armed_final_kills_bedwars", 0), "final_deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_armed_final_deaths_bedwars", 0), "wins": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_armed_wins_bedwars", 0), "losses": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_armed_losses_bedwars", 0), "winstreak": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_armed_winstreak", 0), "items_purchased": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_armed__items_purchased_bedwars", 0), "resources_collected": { "all": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_armed_resources_collected_bedwars", 0), "iron": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_armed_iron_resources_collected_bedwars", 0), "gold": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_armed_gold_resources_collected_bedwars", 0), "emeralds": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_armed_emerald_resources_collected_bedwars", 0), "diamonds": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_armed_diamond_resources_collected_bedwars", 0), } } }, "castle": { "games_played": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "castle_games_played_bedwars", 0), "beds_broken": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "castle_beds_broken_bedwars", 0), "beds_lost": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "castle_beds_lost_bedwars", 0), "kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "castle_kills_bedwars", 0), "void_kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "castle_void_kills_bedwars", 0), "deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "castle_deaths_bedwars", 0), "void_deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "castle_void_deaths", 0), "final_kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "castle_final_kills_bedwars", 0), "final_deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "castle_final_deaths_bedwars", 0), "wins": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get("castle_wins_bedwars", 0), "losses": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "castle_losses_bedwars", 0), "winstreak": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "castle_winstreak", 0), "items_purchased": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "castle__items_purchased_bedwars", 0), "resources_collected": { "all": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "castle_resources_collected_bedwars", 0), "iron": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "castle_iron_resources_collected_bedwars", 0), "gold": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "castle_gold_resources_collected_bedwars", 0), "emeralds": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "castle_emerald_resources_collected_bedwars", 0), "diamonds": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "castle_diamond_resources_collected_bedwars", 0), } }, "lucky_blocks": { "doubles": { "games_played": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_lucky_games_played_bedwars", 0), "beds_broken": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_lucky_beds_broken_bedwars", 0), "beds_lost": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_lucky_beds_lost_bedwars", 0), "kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_lucky_kills_bedwars", 0), "void_kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_lucky_void_kills_bedwars", 0), "deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_lucky_deaths_bedwars", 0), "void_deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_lucky_void_deaths", 0), "final_kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_lucky_final_kills_bedwars", 0), "final_deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_lucky_final_deaths_bedwars", 0), "wins": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_lucky_wins_bedwars", 0), "losses": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_lucky_losses_bedwars", 0), "winstreak": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_lucky_winstreak", 0), "items_purchased": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_lucky__items_purchased_bedwars", 0), "resources_collected": { "all": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_lucky_resources_collected_bedwars", 0), "iron": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_lucky_iron_resources_collected_bedwars", 0), "gold": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_lucky_gold_resources_collected_bedwars", 0), "emeralds": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_lucky_emerald_resources_collected_bedwars", 0), "diamonds": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_lucky_diamond_resources_collected_bedwars", 0), } }, "fours": { "games_played": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_lucky_games_played_bedwars", 0), "beds_broken": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_lucky_beds_broken_bedwars", 0), "beds_lost": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_lucky_beds_lost_bedwars", 0), "kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_lucky_kills_bedwars", 0), "void_kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_lucky_void_kills_bedwars", 0), "deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_lucky_deaths_bedwars", 0), "void_deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_lucky_void_deaths", 0), "final_kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_lucky_final_kills_bedwars", 0), "final_deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_lucky_final_deaths_bedwars", 0), "wins": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_lucky_wins_bedwars", 0), "losses": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_lucky_losses_bedwars", 0), "winstreak": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_lucky_winstreak", 0), "items_purchased": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_lucky__items_purchased_bedwars", 0), "resources_collected": { "all": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_lucky_resources_collected_bedwars", 0), "iron": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_lucky_iron_resources_collected_bedwars", 0), "gold": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_lucky_gold_resources_collected_bedwars", 0), "emeralds": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_lucky_emerald_resources_collected_bedwars", 0), "diamonds": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_lucky_diamond_resources_collected_bedwars", 0), } } }, "rush": { "solo": { "games_played": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_rush_games_played_bedwars", 0), "beds_broken": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_rush_beds_broken_bedwars", 0), "beds_lost": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_rush_beds_lost_bedwars", 0), "kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_rush_kills_bedwars", 0), "void_kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_rush_void_kills_bedwars", 0), "deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_rush_deaths_bedwars", 0), "final_kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_rush_final_kills_bedwars", 0), "final_deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_rush_final_deaths_bedwars", 0), "void_deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_rush_void_deaths", 0), "wins": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_rush_wins_bedwars", 0), "losses": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_rush_losses_bedwars", 0), "winstreak": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_rush_winstreak", 0), "items_purchased": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_rush__items_purchased_bedwars", 0), "resources_collected": { "all": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_rush_resources_collected_bedwars", 0), "iron": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_rush_iron_resources_collected_bedwars", 0), "gold": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_rush_gold_resources_collected_bedwars", 0), "emeralds": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_rush_emerald_resources_collected_bedwars", 0), "diamonds": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_rush_diamond_resources_collected_bedwars", 0), } }, "doubles": { "games_played": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_rush_games_played_bedwars", 0), "beds_broken": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_rush_beds_broken_bedwars", 0), "beds_lost": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_rush_beds_lost_bedwars", 0), "kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_rush_kills_bedwars", 0), "void_kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_rush_void_kills_bedwars", 0), "deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_rush_deaths_bedwars", 0), "void_deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_rush_void_deaths", 0), "final_kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_rush_final_kills_bedwars", 0), "final_deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_rush_final_deaths_bedwars", 0), "wins": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_rush_wins_bedwars", 0), "losses": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_rush_losses_bedwars", 0), "winstreak": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_rush_winstreak", 0), "items_purchased": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_rush__items_purchased_bedwars", 0), "resources_collected": { "all": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_rush_resources_collected_bedwars", 0), "iron": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_rush_iron_resources_collected_bedwars", 0), "gold": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_rush_gold_resources_collected_bedwars", 0), "emeralds": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_rush_emerald_resources_collected_bedwars", 0), "diamonds": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_rush_diamond_resources_collected_bedwars", 0), } }, "fours": { "games_played": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_rush_games_played_bedwars", 0), "beds_broken": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_rush_beds_broken_bedwars", 0), "beds_lost": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_rush_beds_lost_bedwars", 0), "kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_rush_kills_bedwars", 0), "void_kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_rush_void_kills_bedwars", 0), "deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_rush_deaths_bedwars", 0), "void_deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_rush_void_deaths", 0), "final_kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_rush_final_kills_bedwars", 0), "final_deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_rush_final_deaths_bedwars", 0), "wins": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_rush_wins_bedwars", 0), "losses": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_rush_losses_bedwars", 0), "winstreak": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_rush_winstreak", 0), "items_purchased": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_rush__items_purchased_bedwars", 0), "resources_collected": { "all": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_rush_resources_collected_bedwars", 0), "iron": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_rush_iron_resources_collected_bedwars", 0), "gold": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_rush_gold_resources_collected_bedwars", 0), "emeralds": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_rush_emerald_resources_collected_bedwars", 0), "diamonds": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_rush_diamond_resources_collected_bedwars", 0), } } }, "ultimate": { "solo": { "games_played": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_ultimate_games_played_bedwars", 0), "beds_broken": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_ultimate_beds_broken_bedwars", 0), "beds_lost": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_ultimate_beds_lost_bedwars", 0), "kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_ultimate_kills_bedwars", 0), "void_kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_ultimate_void_kills_bedwars", 0), "deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_ultimate_deaths_bedwars", 0), "void_deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_ultimate_void_deaths", 0), "final_kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_ultimate_final_kills_bedwars", 0), "final_deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_ultimate_final_deaths_bedwars", 0), "wins": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_ultimate_wins_bedwars", 0), "losses": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_ultimate_losses_bedwars", 0), "winstreak": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_ultimate_winstreak", 0), "items_purchased": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_ultimate__items_purchased_bedwars", 0), "resources_collected": { "all": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_ultimate_resources_collected_bedwars", 0), "iron": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_ultimate_iron_resources_collected_bedwars", 0), "gold": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_ultimate_gold_resources_collected_bedwars", 0), "emeralds": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_ultimate_emerald_resources_collected_bedwars", 0), "diamonds": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_one_ultimate_diamond_resources_collected_bedwars", 0), } }, "doubles": { "games_played": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_ultimate_games_played_bedwars", 0), "beds_broken": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_ultimate_beds_broken_bedwars", 0), "beds_lost": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_ultimate_beds_lost_bedwars", 0), "kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_ultimate_kills_bedwars", 0), "void_kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_ultimate_void_kills_bedwars", 0), "deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_ultimate_deaths_bedwars", 0), "void_deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_ultimate_void_deaths", 0), "final_kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_ultimate_final_kills_bedwars", 0), "final_deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_ultimate_final_deaths_bedwars", 0), "wins": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_ultimate_wins_bedwars", 0), "losses": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_ultimate_losses_bedwars", 0), "winstreak": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_ultimate_winstreak", 0), "items_purchased": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_ultimate__items_purchased_bedwars", 0), "resources_collected": { "all": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_ultimate_resources_collected_bedwars", 0), "iron": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_ultimate_iron_resources_collected_bedwars", 0), "gold": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_ultimate_gold_resources_collected_bedwars", 0), "emeralds": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_ultimate_emerald_resources_collected_bedwars", 0), "diamonds": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_ultimate_diamond_resources_collected_bedwars", 0), } }, "fours": { "games_played": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_ultimate_games_played_bedwars", 0), "beds_broken": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_ultimate_beds_broken_bedwars", 0), "beds_lost": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_ultimate_beds_lost_bedwars", 0), "kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_ultimate_kills_bedwars", 0), "void_kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_ultimate_void_kills_bedwars", 0), "deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_ultimate_deaths_bedwars", 0), "void_deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_ultimate_void_deaths", 0), "final_kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_ultimate_final_kills_bedwars", 0), "final_deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_ultimate_final_deaths_bedwars", 0), "wins": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_ultimate_wins_bedwars", 0), "losses": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_ultimate_losses_bedwars", 0), "winstreak": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_ultimate_winstreak", 0), "items_purchased": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_ultimate__items_purchased_bedwars", 0), "resources_collected": { "all": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_ultimate_resources_collected_bedwars", 0), "iron": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_ultimate_iron_resources_collected_bedwars", 0), "gold": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_ultimate_gold_resources_collected_bedwars", 0), "emeralds": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_ultimate_emerald_resources_collected_bedwars", 0), "diamonds": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_ultimate_diamond_resources_collected_bedwars", 0), } } }, "voidless": { "doubles": { "games_played": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_voidless_games_played_bedwars", 0), "beds_broken": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_voidless_beds_broken_bedwars", 0), "beds_lost": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_voidless_beds_lost_bedwars", 0), "kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_voidless_kills_bedwars", 0), "void_kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_voidless_void_kills_bedwars", 0), "deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_voidless_deaths_bedwars", 0), "void_deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_voidless_void_deaths", 0), "final_kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_voidless_final_kills_bedwars", 0), "final_deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_voidless_final_deaths_bedwars", 0), "wins": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_voidless_wins_bedwars", 0), "losses": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_voidless_losses_bedwars", 0), "winstreak": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_voidless_winstreak", 0), "items_purchased": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_voidless__items_purchased_bedwars", 0), "resources_collected": { "all": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_voidless_resources_collected_bedwars", 0), "iron": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_voidless_iron_resources_collected_bedwars", 0), "gold": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_voidless_gold_resources_collected_bedwars", 0), "emeralds": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_voidless_emerald_resources_collected_bedwars", 0), "diamonds": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "eight_two_voidless_diamond_resources_collected_bedwars", 0), } }, "fours": { "games_played": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_voidless_games_played_bedwars", 0), "beds_broken": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_voidless_beds_broken_bedwars", 0), "beds_lost": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_voidless_beds_lost_bedwars", 0), "kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_voidless_kills_bedwars", 0), "void_kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_voidless_void_kills_bedwars", 0), "deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_voidless_deaths_bedwars", 0), "void_deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_voidless_void_deaths", 0), "final_kills": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_voidless_final_kills_bedwars", 0), "final_deaths": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_voidless_final_deaths_bedwars", 0), "wins": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_voidless_wins_bedwars", 0), "losses": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_voidless_losses_bedwars", 0), "winstreak": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_voidless_winstreak", 0), "items_purchased": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_voidless__items_purchased_bedwars", 0), "resources_collected": { "all": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_voidless_resources_collected_bedwars", 0), "iron": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_voidless_iron_resources_collected_bedwars", 0), "gold": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_voidless_gold_resources_collected_bedwars", 0), "emeralds": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_voidless_emerald_resources_collected_bedwars", 0), "diamonds": player_json.get("player", {}).get("stats", {}).get("Bedwars", {}).get( "four_four_voidless_diamond_resources_collected_bedwars", 0), } } } } }, "duels": { "coins": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("coins", 0), "games_played": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("games_played_duels", 0), "wins": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("wins", 0), "losses": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("losses", 0), "kills": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("kills", 0), "deaths": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("deaths", 0), "winstreak": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("current_winstreak", 0), "bow": { "games_played": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "bow_duel_rounds_played", 0), "kills": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("bow_duel_kills", 0), "deaths": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("bow_duel_deaths", 0), "wins": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("bow_duel_wins", 0), "losses": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("bow_duel_losses", 0), "winstreak": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "current_bow_winstreak", 0), "bow_shots": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("bow_duel_bow_shots", 0), "bow_hits": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("bow_duel_bow_hits", 0), "damage_dealt": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "bow_duel_damage_dealt", 0), }, "bridge": { "solo": { "games_played": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "bridge_duel_rounds_played", 0), "kills": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("bridge_duel_kills", 0), "deaths": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("bridge_duel_deaths", 0), "wins": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("bridge_duel_wins", 0), "losses": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("bridge_duel_losses", 0), "winstreak": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "current_bridge_winstreak", 0), "melee_swings": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "bridge_duel_melee_swings", 0), "melee_hits": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "bridge_duel_melee_hits", 0), "bow_shots": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "bridge_duel_bow_shots", 0), "bow_hits": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "bridge_duel_bow_hits", 0), "damage_dealt": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "bridge_duel_damage_dealt", 0), }, "doubles": { "games_played": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "bridge_doubles_rounds_played", 0), "kills": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("bridge_doubles_kills", 0), "deaths": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "bridge_doubles_deaths", 0), "wins": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("bridge_doubles_wins", 0), "losses": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "bridge_doubles_losses", 0), "winstreak": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "current_bridge_winstreak", 0), "melee_swings": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "bridge_doubles_melee_swings", 0), "melee_hits": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "bridge_doubles_melee_hits", 0), "bow_shots": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "bridge_doubles_bow_shots", 0), "bow_hits": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "bridge_doubles_bow_hits", 0), "damage_dealt": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "bridge_doubles_damage_dealt", 0), }, "fours": { "games_played": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "bridge_four_rounds_played", 0), "kills": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("bridge_four_kills", 0), "deaths": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("bridge_four_deaths", 0), "wins": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("bridge_four_wins", 0), "losses": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("bridge_four_losses", 0), "winstreak": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "current_bridge_winstreak", 0), "melee_swings": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "bridge_four_melee_swings", 0), "melee_hits": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "bridge_four_melee_hits", 0), "bow_shots": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "bridge_four_bow_shots", 0), "bow_hits": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "bridge_four_bow_hits", 0), "damage_dealt": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "bridge_four_damage_dealt", 0), }, }, "classic": { "games_played": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "classic_duel_rounds_played", 0), "kills": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("classic_duel_kills", 0), "deaths": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("classic_duel_deaths", 0), "wins": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("classic_duel_wins", 0), "losses": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("classic_duel_losses", 0), "winstreak": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "current_classic_winstreak", 0), "melee_swings": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "classic_duel_melee_swings", 0), "melee_hits": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "classic_duel_melee_hits", 0), "bow_shots": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "classic_duel_bow_shots", 0), "bow_hits": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("classic_duel_bow_hits", 0), "damage_dealt": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "classic_duel_damage_dealt", 0), }, "skywars": { "solo": { "games_played": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "sw_duel_rounds_played", 0), "kills": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("sw_duel_kills", 0), "deaths": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("sw_duel_deaths", 0), "wins": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("sw_duel_wins", 0), "losses": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("sw_duel_losses", 0), "winstreak": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "current_sw_winstreak", 0), "melee_swings": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "sw_duel_melee_swings", 0), "melee_hits": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "sw_duel_melee_hits", 0), "bow_shots": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "sw_duel_bow_shots", 0), "bow_hits": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("sw_duel_bow_hits", 0), "damage_dealt": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "sw_duel_damage_dealt", 0), }, "doubles": { "games_played": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "sw_doubles_rounds_played", 0), "kills": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("sw_doubles_kills", 0), "deaths": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("sw_doubles_deaths", 0), "wins": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("sw_doubles_wins", 0), "losses": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("sw_doubles_losses", 0), "winstreak": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "current_sw_winstreak", 0), "melee_swings": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "sw_doubles_melee_swings", 0), "melee_hits": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "sw_doubles_melee_hits", 0), "bow_shots": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "sw_doubles_bow_shots", 0), "bow_hits": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "sw_doubles_bow_hits", 0), "damage_dealt": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "sw_doubles_damage_dealt", 0), } }, "uhc": { "solo": { "games_played": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "uhc_duel_rounds_played", 0), "kills": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("uhc_duel_kills", 0), "deaths": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("uhc_duel_deaths", 0), "wins": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("uhc_duel_wins", 0), "losses": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("uhc_duel_losses", 0), "winstreak": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "current_uhc_winstreak", 0), "melee_swings": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "uhc_duel_melee_swings", 0), "melee_hits": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "uhc_duel_melee_hits", 0), "bow_shots": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "uhc_duel_bow_shots", 0), "bow_hits": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("uhc_duel_bow_hits", 0), "damage_dealt": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "uhc_duel_damage_dealt", 0), }, "doubles": { "games_played": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "uhc_doubles_rounds_played", 0), "kills": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("uhc_doubles_kills", 0), "deaths": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("uhc_doubles_deaths", 0), "wins": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("uhc_doubles_wins", 0), "losses": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("uhc_doubles_losses", 0), "winstreak": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "current_uhc_winstreak", 0), "melee_swings": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "uhc_doubles_melee_swings", 0), "melee_hits": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "uhc_doubles_melee_hits", 0), "bow_shots": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "uhc_doubles_bow_shots", 0), "bow_hits": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "uhc_doubles_bow_hits", 0), "damage_dealt": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "uhc_doubles_damage_dealt", 0), }, "fours": { "games_played": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "uhc_four_rounds_played", 0), "kills": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("uhc_four_kills", 0), "deaths": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("uhc_four_deaths", 0), "wins": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("uhc_four_wins", 0), "losses": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("uhc_four_losses", 0), "winstreak": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "current_uhc_winstreak", 0), "melee_swings": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "uhc_four_melee_swings", 0), "melee_hits": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "uhc_four_melee_hits", 0), "bow_shots": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "uhc_four_bow_shots", 0), "bow_hits": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("uhc_four_bow_hits", 0), "damage_dealt": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "uhc_four_damage_dealt", 0), }, "deathmatch": { "games_played": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "uhc_meetup_rounds_played", 0), "kills": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("uhc_meetup_kills", 0), "deaths": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("uhc_meetup_deaths", 0), "wins": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("uhc_meetup_wins", 0), "losses": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get("uhc_meetup_losses", 0), "winstreak": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "current_uhc_winstreak", 0), "melee_swings": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "uhc_meetup_melee_swings", 0), "melee_hits": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "uhc_meetup_melee_hits", 0), "bow_shots": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "uhc_meetup_bow_shots", 0), "bow_hits": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "uhc_meetup_bow_hits", 0), "damage_dealt": player_json.get("player", {}).get("stats", {}).get("Duels", {}).get( "uhc_meetup_damage_dealt", 0), } } }, "paintball": { "coins": player_json.get("player", {}).get("stats", {}).get("Paintball", {}).get("coins", 0), "kills": player_json.get("player", {}).get("stats", {}).get("Paintball", {}).get("kills", 0), "deaths": player_json.get("player", {}).get("stats", {}).get("Paintball", {}).get("deaths", 0), "wins": player_json.get("player", {}).get("stats", {}).get("Paintball", {}).get("wins", 0), "killstreaks": player_json.get("player", {}).get("stats", {}).get("Paintball", {}).get("killstreaks", 0), "shots_fired": player_json.get("player", {}).get("stats", {}).get("Paintball", {}).get("shots_fired", 0) }, "skywars": { "level_data": (await core.minecraft.hypixel.static.static.get_skywars_level_data_from_experience( (player_json.get("player", {}).get("stats", {}).get("SkyWars", {}).get("skywars_experience", 0)))), "coins": player_json.get("player", {}).get("stats", {}).get("SkyWars", {}).get("coins", 0), "tokens": player_json.get("player", {}).get("stats", {}).get("SkyWars", {}).get("cosmetic_tokens", 0), "souls": player_json.get("player", {}).get("stats", {}).get("SkyWars", {}).get("souls", 0), "kills": player_json.get("player", {}).get("stats", {}).get("SkyWars", {}).get("kills", 0), "deaths": player_json.get("player", {}).get("stats", {}).get("SkyWars", {}).get("deaths", 0), "wins": player_json.get("player", {}).get("stats", {}).get("SkyWars", {}).get("wins", 0), "losses": player_json.get("player", {}).get("stats", {}).get("SkyWars", {}).get("losses", 0), "games_played": player_json.get("player", {}).get("stats", {}).get("SkyWars", {}).get( "games_played_skywars", 0) } } await core.caches.players.save_player_data(uuid, player) return player
79.969524
121
0.459175
9cb1e7c8f63b1956c75ff93d15cafb794c32f575
4,914
py
Python
ding/ding.py
liviu-/ding
14e49439b3898ba364921fe8519b3befd2f2ef01
[ "MIT" ]
417
2016-10-02T19:15:05.000Z
2022-02-04T11:31:27.000Z
ding/ding.py
liviu-/ding
14e49439b3898ba364921fe8519b3befd2f2ef01
[ "MIT" ]
11
2016-09-30T14:38:07.000Z
2016-10-28T21:04:02.000Z
ding/ding.py
liviu-/ding
14e49439b3898ba364921fe8519b3befd2f2ef01
[ "MIT" ]
23
2016-10-04T00:23:49.000Z
2022-02-26T00:57:43.000Z
#!/usr/bin/env python """Simple CLI beep tool""" from __future__ import unicode_literals from __future__ import print_function import re import os import sys import time import datetime import argparse VERSION = '2.1.0' N_BEEPS = 4 WAIT_BEEPS = 0.15 def relative_time(arg): """Validate user provided relative time""" if not re.match('\d+[smh]( +\d+[smh])*', arg): raise argparse.ArgumentTypeError("Invalid time format: {}".format(arg)) return arg def absolute_time(arg): """Validate user provided absolute time""" if not all([t.isdigit() for t in arg.split(':')]): raise argparse.ArgumentTypeError("Invalid time format: {}".format(arg)) # Valid time (e.g. hour must be between 0..23) try: datetime.time(*map(int, arg.split(':'))) except ValueError as e: raise argparse.ArgumentTypeError("Invalid time format: {}".format(e)) return arg def get_args(args): """Parse commandline arguments""" parent_parser = argparse.ArgumentParser( add_help=False, description='Lightweight time management CLI tool') parent_parser.add_argument( '-n', '--no-timer', action='store_true', help='Hide the countdown timer') parent_parser.add_argument( '-c', '--command', type=str, help='Use a custom command instead of the default beep') parser = argparse.ArgumentParser() parser.add_argument('-v', '--version', action='version', version=VERSION) subparsers = parser.add_subparsers(dest='mode') subparsers.required = True parser_in = subparsers.add_parser('in', parents=[parent_parser]) parser_in.add_argument('time', nargs='+', type=relative_time, help='relative time \d+[smh]( +\d+[smh])* (e.g. 1h 30m)') parser_every = subparsers.add_parser('every', parents=[parent_parser]) parser_every.add_argument('time', nargs='+', type=relative_time, help='relative time \d+[smh]( +\d+[smh])* (e.g. 2m 15s)') parser_at = subparsers.add_parser('at', parents=[parent_parser]) parser_at.add_argument('time', type=absolute_time, help='absolute time [hh:[mm[:ss]]]') return parser.parse_args(args) class TimeParser(): """Class helping with parsing user provided time into seconds""" time_map = { 's': 1, 'm': 60, 'h': 60 * 60, } def __init__(self, time, relative): self.time = time self.relative = relative def get_seconds(self): return self._get_seconds_relative() if self.relative else self._get_seconds_absolute() def _get_seconds_relative(self): return sum([self.time_map[t[-1]] * int(t[:-1]) for t in self.time]) def _get_seconds_absolute(self): now = datetime.datetime.now() user_time = (datetime.datetime.combine(datetime.date.today(), datetime.time(*map(int, self.time.split(':'))))) return ((user_time - now).seconds if user_time > now else (user_time + datetime.timedelta(days=1) - now).seconds) def countdown(seconds, notimer=False): """Countdown for `seconds`, printing values unless `notimer`""" if not notimer: os.system('cls' if os.name == 'nt' else 'clear') # initial clear while seconds > 0: start = time.time() # print the time without a newline or carriage return # this leaves the cursor at the end of the time while visible if not notimer: print(datetime.timedelta(seconds=seconds), end='') sys.stdout.flush() seconds -= 1 time.sleep(1 - time.time() + start) # emit a carriage return # this moves the cursor back to the beginning of the line # so the next time overwrites the current time if not notimer: print(end='\r') def beep(seconds, command): """Make the beep noise""" for _ in range(N_BEEPS): if command: os.system(command) else: sys.stdout.write('\a') sys.stdout.flush() time.sleep(WAIT_BEEPS) def parse_time(args): """Figure out the number of seconds to wait""" relative = args.mode == 'in' or args.mode == "every" parser = TimeParser(args.time, relative) return parser.get_seconds() def main(args=sys.argv[1:]): args = get_args(args) while True: try: seconds = parse_time(args) countdown(seconds, args.no_timer) beep(seconds, args.command) # doing `if` here so there just can't be any stack printed for an interrupt if args.mode != "every": break except KeyboardInterrupt: print() # ending current line break # without printing useless stack... if __name__ == '__main__': main()
32.979866
98
0.610297
a84b22812bab0dee55457d4b527df317da5e5897
30,108
py
Python
rally/plugins/openstack/scenarios/nova/servers.py
aforalee/rallyALi
8050ca08b0e253aeb19a1cec34f33c648f00136a
[ "Apache-2.0" ]
2
2015-02-06T11:03:12.000Z
2015-03-02T10:39:44.000Z
rally/plugins/openstack/scenarios/nova/servers.py
aforalee/rallyALi
8050ca08b0e253aeb19a1cec34f33c648f00136a
[ "Apache-2.0" ]
null
null
null
rally/plugins/openstack/scenarios/nova/servers.py
aforalee/rallyALi
8050ca08b0e253aeb19a1cec34f33c648f00136a
[ "Apache-2.0" ]
2
2016-03-16T03:52:13.000Z
2020-10-02T07:58:50.000Z
# Copyright 2013: Mirantis Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import jsonschema from rally.common import log as logging from rally import consts from rally import exceptions as rally_exceptions from rally.plugins.openstack import scenario from rally.plugins.openstack.scenarios.cinder import utils as cinder_utils from rally.plugins.openstack.scenarios.nova import utils from rally.plugins.openstack.wrappers import network as network_wrapper from rally.task import types from rally.task import utils as task_utils from rally.task import validation LOG = logging.getLogger(__name__) class NovaServers(utils.NovaScenario, cinder_utils.CinderScenario): """Benchmark scenarios for Nova servers.""" RESOURCE_NAME_PREFIX = "rally_novaserver_" RESOURCE_NAME_LENGTH = 16 @types.set(image=types.ImageResourceType, flavor=types.FlavorResourceType) @validation.image_valid_on_flavor("flavor", "image") @validation.required_services(consts.Service.NOVA) @validation.required_openstack(users=True) @scenario.configure(context={"cleanup": ["nova"]}) def boot_and_list_server(self, image, flavor, detailed=True, **kwargs): """Boot a server from an image and then list all servers. Measure the "nova list" command performance. If you have only 1 user in your context, you will add 1 server on every iteration. So you will have more and more servers and will be able to measure the performance of the "nova list" command depending on the number of servers owned by users. :param image: image to be used to boot an instance :param flavor: flavor to be used to boot an instance :param detailed: True if the server listing should contain detailed information about all of them :param kwargs: Optional additional arguments for server creation """ self._boot_server(image, flavor, **kwargs) self._list_servers(detailed) @validation.required_services(consts.Service.NOVA) @validation.required_openstack(users=True) @scenario.configure(context={"cleanup": ["nova"]}) def list_servers(self, detailed=True): """List all servers. This simple scenario test the nova list command by listing all the servers. :param detailed: True if detailed information about servers should be listed """ self._list_servers(detailed) @types.set(image=types.ImageResourceType, flavor=types.FlavorResourceType) @validation.image_valid_on_flavor("flavor", "image") @validation.required_services(consts.Service.NOVA) @validation.required_openstack(users=True) @scenario.configure(context={"cleanup": ["nova"]}) def boot_and_delete_server(self, image, flavor, min_sleep=0, max_sleep=0, force_delete=False, **kwargs): """Boot and delete a server. Optional 'min_sleep' and 'max_sleep' parameters allow the scenario to simulate a pause between volume creation and deletion (of random duration from [min_sleep, max_sleep]). :param image: image to be used to boot an instance :param flavor: flavor to be used to boot an instance :param min_sleep: Minimum sleep time in seconds (non-negative) :param max_sleep: Maximum sleep time in seconds (non-negative) :param force_delete: True if force_delete should be used :param kwargs: Optional additional arguments for server creation """ server = self._boot_server(image, flavor, **kwargs) self.sleep_between(min_sleep, max_sleep) self._delete_server(server, force=force_delete) @types.set(image=types.ImageResourceType, flavor=types.FlavorResourceType) @validation.image_valid_on_flavor("flavor", "image") @validation.required_services(consts.Service.NOVA) @validation.required_openstack(admin=True, users=True) @scenario.configure(context={"cleanup": ["nova"]}) def boot_and_delete_multiple_servers(self, image, flavor, count=2, min_sleep=0, max_sleep=0, force_delete=False, **kwargs): """Boot multiple servers in a single request and delete them. Deletion is done in parallel with one request per server, not with a single request for all servers. :param image: The image to boot from :param flavor: Flavor used to boot instance :param count: Number of instances to boot :param min_sleep: Minimum sleep time in seconds (non-negative) :param max_sleep: Maximum sleep time in seconds (non-negative) :param force_delete: True if force_delete should be used :param kwargs: Optional additional arguments for instance creation """ servers = self._boot_servers(image, flavor, 1, instances_amount=count, **kwargs) self.sleep_between(min_sleep, max_sleep) self._delete_servers(servers, force=force_delete) @types.set(image=types.ImageResourceType, flavor=types.FlavorResourceType) @validation.image_valid_on_flavor("flavor", "image") @validation.required_services(consts.Service.NOVA, consts.Service.CINDER) @validation.required_openstack(users=True) @scenario.configure(context={"cleanup": ["nova", "cinder"]}) def boot_server_from_volume_and_delete(self, image, flavor, volume_size, min_sleep=0, max_sleep=0, force_delete=False, **kwargs): """Boot a server from volume and then delete it. The scenario first creates a volume and then a server. Optional 'min_sleep' and 'max_sleep' parameters allow the scenario to simulate a pause between volume creation and deletion (of random duration from [min_sleep, max_sleep]). :param image: image to be used to boot an instance :param flavor: flavor to be used to boot an instance :param volume_size: volume size (in GB) :param min_sleep: Minimum sleep time in seconds (non-negative) :param max_sleep: Maximum sleep time in seconds (non-negative) :param force_delete: True if force_delete should be used :param kwargs: Optional additional arguments for server creation """ volume = self._create_volume(volume_size, imageRef=image) block_device_mapping = {"vda": "%s:::1" % volume.id} server = self._boot_server(image, flavor, block_device_mapping=block_device_mapping, **kwargs) self.sleep_between(min_sleep, max_sleep) self._delete_server(server, force=force_delete) @types.set(image=types.ImageResourceType, flavor=types.FlavorResourceType) @validation.image_valid_on_flavor("flavor", "image") @validation.required_services(consts.Service.NOVA) @validation.required_openstack(users=True) @scenario.configure(context={"cleanup": ["nova"]}) def boot_and_bounce_server(self, image, flavor, force_delete=False, actions=None, **kwargs): """Boot a server and run specified actions against it. Actions should be passed into the actions parameter. Available actions are 'hard_reboot', 'soft_reboot', 'stop_start' and 'rescue_unrescue'. Delete server after all actions were completed. :param image: image to be used to boot an instance :param flavor: flavor to be used to boot an instance :param force_delete: True if force_delete should be used :param actions: list of action dictionaries, where each action dictionary speicifes an action to be performed in the following format: {"action_name": <no_of_iterations>} :param kwargs: Optional additional arguments for server creation """ action_builder = self._bind_actions() actions = actions or [] try: action_builder.validate(actions) except jsonschema.exceptions.ValidationError as error: raise rally_exceptions.InvalidConfigException( "Invalid server actions configuration \'%(actions)s\' due to: " "%(error)s" % {"actions": str(actions), "error": str(error)}) server = self._boot_server(image, flavor, **kwargs) for action in action_builder.build_actions(actions, server): action() self._delete_server(server, force=force_delete) @types.set(image=types.ImageResourceType, flavor=types.FlavorResourceType) @validation.image_valid_on_flavor("flavor", "image") @validation.required_services(consts.Service.NOVA) @validation.required_openstack(users=True) @scenario.configure(context={"cleanup": ["nova"]}) def boot_lock_unlock_and_delete(self, image, flavor, min_sleep=0, max_sleep=0, force_delete=False, **kwargs): """Boot a server, lock it, then unlock and delete it. Optional 'min_sleep' and 'max_sleep' parameters allow the scenario to simulate a pause between locking and unlocking the server (of random duration from min_sleep to max_sleep). :param image: image to be used to boot an instance :param flavor: flavor to be used to boot an instance :param min_sleep: Minimum sleep time between locking and unlocking in seconds :param max_sleep: Maximum sleep time between locking and unlocking in seconds :param force_delete: True if force_delete should be used :param kwargs: Optional additional arguments for server creation """ server = self._boot_server(image, flavor, **kwargs) self._lock_server(server) self.sleep_between(min_sleep, max_sleep) self._unlock_server(server) self._delete_server(server, force=force_delete) @types.set(image=types.ImageResourceType, flavor=types.FlavorResourceType) @validation.image_valid_on_flavor("flavor", "image") @validation.required_services(consts.Service.NOVA, consts.Service.GLANCE) @validation.required_openstack(users=True) @scenario.configure(context={"cleanup": ["nova", "glance"]}) def snapshot_server(self, image, flavor, force_delete=False, **kwargs): """Boot a server, make its snapshot and delete both. :param image: image to be used to boot an instance :param flavor: flavor to be used to boot an instance :param force_delete: True if force_delete should be used :param kwargs: Optional additional arguments for server creation """ server = self._boot_server(image, flavor, **kwargs) image = self._create_image(server) self._delete_server(server, force=force_delete) server = self._boot_server(image.id, flavor, **kwargs) self._delete_server(server, force=force_delete) self._delete_image(image) @types.set(image=types.ImageResourceType, flavor=types.FlavorResourceType) @validation.image_valid_on_flavor("flavor", "image") @validation.required_services(consts.Service.NOVA) @validation.required_openstack(users=True) @scenario.configure(context={"cleanup": ["nova"]}) def boot_server(self, image, flavor, auto_assign_nic=False, **kwargs): """Boot a server. Assumes that cleanup is done elsewhere. :param image: image to be used to boot an instance :param flavor: flavor to be used to boot an instance :param auto_assign_nic: True if NICs should be assigned :param kwargs: Optional additional arguments for server creation """ self._boot_server(image, flavor, auto_assign_nic=auto_assign_nic, **kwargs) @types.set(image=types.ImageResourceType, flavor=types.FlavorResourceType) @validation.image_valid_on_flavor("flavor", "image") @validation.required_services(consts.Service.NOVA, consts.Service.CINDER) @validation.required_openstack(users=True) @scenario.configure(context={"cleanup": ["nova", "cinder"]}) def boot_server_from_volume(self, image, flavor, volume_size, auto_assign_nic=False, **kwargs): """Boot a server from volume. The scenario first creates a volume and then a server. Assumes that cleanup is done elsewhere. :param image: image to be used to boot an instance :param flavor: flavor to be used to boot an instance :param volume_size: volume size (in GB) :param auto_assign_nic: True if NICs should be assigned :param kwargs: Optional additional arguments for server creation """ volume = self._create_volume(volume_size, imageRef=image) block_device_mapping = {"vda": "%s:::1" % volume.id} self._boot_server(image, flavor, auto_assign_nic=auto_assign_nic, block_device_mapping=block_device_mapping, **kwargs) def _bind_actions(self): actions = ["hard_reboot", "soft_reboot", "stop_start", "rescue_unrescue"] action_builder = task_utils.ActionBuilder(actions) action_builder.bind_action("hard_reboot", self._reboot_server) action_builder.bind_action("soft_reboot", self._soft_reboot_server) action_builder.bind_action("stop_start", self._stop_and_start_server) action_builder.bind_action("rescue_unrescue", self._rescue_and_unrescue_server) return action_builder def _stop_and_start_server(self, server): """Stop and then start the given server. A stop will be issued on the given server upon which time this method will wait for the server to become 'SHUTOFF'. Once the server is SHUTOFF a start will be issued and this method will wait for the server to become 'ACTIVE' again. :param server: The server to stop and then start. """ self._stop_server(server) self._start_server(server) def _rescue_and_unrescue_server(self, server): """Rescue and then unrescue the given server. A rescue will be issued on the given server upon which time this method will wait for the server to become 'RESCUE'. Once the server is RESCUE a unrescue will be issued and this method will wait for the server to become 'ACTIVE' again. :param server: The server to rescue and then unrescue. """ self._rescue_server(server) self._unrescue_server(server) @types.set(image=types.ImageResourceType, flavor=types.FlavorResourceType, to_flavor=types.FlavorResourceType) @validation.image_valid_on_flavor("flavor", "image") @validation.required_services(consts.Service.NOVA) @validation.required_openstack(users=True) @scenario.configure(context={"cleanup": ["nova"]}) def resize_server(self, image, flavor, to_flavor, force_delete=False, **kwargs): """Boot a server, then resize and delete it. This test will confirm the resize by default, or revert the resize if confirm is set to false. :param image: image to be used to boot an instance :param flavor: flavor to be used to boot an instance :param to_flavor: flavor to be used to resize the booted instance :param force_delete: True if force_delete should be used :param kwargs: Optional additional arguments for server creation """ server = self._boot_server(image, flavor, **kwargs) self._resize(server, to_flavor) # by default we confirm confirm = kwargs.get("confirm", True) if confirm: self._resize_confirm(server) else: self._resize_revert(server) self._delete_server(server, force=force_delete) @types.set(image=types.ImageResourceType, flavor=types.FlavorResourceType) @validation.image_valid_on_flavor("flavor", "image") @validation.required_services(consts.Service.NOVA) @validation.required_openstack(users=True) @scenario.configure(context={"cleanup": ["nova"]}) def suspend_and_resume_server(self, image, flavor, force_delete=False, **kwargs): """Create a server, suspend, resume and then delete it :param image: image to be used to boot an instance :param flavor: flavor to be used to boot an instance :param force_delete: True if force_delete should be used :param kwargs: Optional additional arguments for server creation """ server = self._boot_server(image, flavor, **kwargs) self._suspend_server(server) self._resume_server(server) self._delete_server(server, force=force_delete) @types.set(image=types.ImageResourceType, flavor=types.FlavorResourceType) @validation.image_valid_on_flavor("flavor", "image") @validation.required_services(consts.Service.NOVA) @validation.required_openstack(users=True) @scenario.configure(context={"cleanup": ["nova"]}) def pause_and_unpause_server(self, image, flavor, force_delete=False, **kwargs): """Create a server, pause, unpause and then delete it :param image: image to be used to boot an instance :param flavor: flavor to be used to boot an instance :param force_delete: True if force_delete should be used :param kwargs: Optional additional arguments for server creation """ server = self._boot_server(image, flavor, **kwargs) self._pause_server(server) self._unpause_server(server) self._delete_server(server, force=force_delete) @types.set(image=types.ImageResourceType, flavor=types.FlavorResourceType) @validation.image_valid_on_flavor("flavor", "image") @validation.required_services(consts.Service.NOVA) @validation.required_openstack(users=True) @scenario.configure(context={"cleanup": ["nova"]}) def shelve_and_unshelve_server(self, image, flavor, force_delete=False, **kwargs): """Create a server, shelve, unshelve and then delete it :param image: image to be used to boot an instance :param flavor: flavor to be used to boot an instance :param force_delete: True if force_delete should be used :param kwargs: Optional additional arguments for server creation """ server = self._boot_server(image, flavor, **kwargs) self._shelve_server(server) self._unshelve_server(server) self._delete_server(server, force=force_delete) @types.set(image=types.ImageResourceType, flavor=types.FlavorResourceType) @validation.image_valid_on_flavor("flavor", "image") @validation.required_services(consts.Service.NOVA) @validation.required_openstack(admin=True, users=True) @scenario.configure(context={"cleanup": ["nova"]}) def boot_and_live_migrate_server(self, image, flavor, block_migration=False, disk_over_commit=False, min_sleep=0, max_sleep=0, **kwargs): """Live Migrate a server. This scenario launches a VM on a compute node available in the availability zone and then migrates the VM to another compute node on the same availability zone. Optional 'min_sleep' and 'max_sleep' parameters allow the scenario to simulate a pause between VM booting and running live migration (of random duration from range [min_sleep, max_sleep]). :param image: image to be used to boot an instance :param flavor: flavor to be used to boot an instance :param block_migration: Specifies the migration type :param disk_over_commit: Specifies whether to allow overcommit on migrated instance or not :param min_sleep: Minimum sleep time in seconds (non-negative) :param max_sleep: Maximum sleep time in seconds (non-negative) :param kwargs: Optional additional arguments for server creation """ server = self._boot_server(image, flavor, **kwargs) self.sleep_between(min_sleep, max_sleep) new_host = self._find_host_to_migrate(server) self._live_migrate(server, new_host, block_migration, disk_over_commit) self._delete_server(server) @types.set(image=types.ImageResourceType, flavor=types.FlavorResourceType) @validation.image_valid_on_flavor("flavor", "image") @validation.required_services(consts.Service.NOVA, consts.Service.CINDER) @validation.required_openstack(admin=True, users=True) @scenario.configure(context={"cleanup": ["nova", "cinder"]}) def boot_server_from_volume_and_live_migrate(self, image, flavor, volume_size, block_migration=False, disk_over_commit=False, force_delete=False, min_sleep=0, max_sleep=0, **kwargs): """Boot a server from volume and then migrate it. The scenario first creates a volume and a server booted from the volume on a compute node available in the availability zone and then migrates the VM to another compute node on the same availability zone. Optional 'min_sleep' and 'max_sleep' parameters allow the scenario to simulate a pause between VM booting and running live migration (of random duration from range [min_sleep, max_sleep]). :param image: image to be used to boot an instance :param flavor: flavor to be used to boot an instance :param volume_size: volume size (in GB) :param block_migration: Specifies the migration type :param disk_over_commit: Specifies whether to allow overcommit on migrated instance or not :param force_delete: True if force_delete should be used :param min_sleep: Minimum sleep time in seconds (non-negative) :param max_sleep: Maximum sleep time in seconds (non-negative) :param kwargs: Optional additional arguments for server creation """ volume = self._create_volume(volume_size, imageRef=image) block_device_mapping = {"vda": "%s:::1" % volume.id} server = self._boot_server(image, flavor, block_device_mapping=block_device_mapping, **kwargs) self.sleep_between(min_sleep, max_sleep) new_host = self._find_host_to_migrate(server) self._live_migrate(server, new_host, block_migration, disk_over_commit) self._delete_server(server, force=force_delete) @types.set(image=types.ImageResourceType, flavor=types.FlavorResourceType) @validation.image_valid_on_flavor("flavor", "image") @validation.required_services(consts.Service.NOVA, consts.Service.CINDER) @validation.required_openstack(admin=True, users=True) @scenario.configure(context={"cleanup": ["cinder", "nova"]}) def boot_server_attach_created_volume_and_live_migrate( self, image, flavor, size, block_migration=False, disk_over_commit=False, boot_server_kwargs=None, create_volume_kwargs=None, min_sleep=0, max_sleep=0): """Create a VM, attach a volume to it and live migrate. Simple test to create a VM and attach a volume, then migrate the VM, detach the volume and delete volume/VM. Optional 'min_sleep' and 'max_sleep' parameters allow the scenario to simulate a pause between attaching a volume and running live migration (of random duration from range [min_sleep, max_sleep]). :param image: Glance image name to use for the VM :param flavor: VM flavor name :param size: volume size (in GB) :param block_migration: Specifies the migration type :param disk_over_commit: Specifies whether to allow overcommit on migrated instance or not :param boot_server_kwargs: optional arguments for VM creation :param create_volume_kwargs: optional arguments for volume creation :param min_sleep: Minimum sleep time in seconds (non-negative) :param max_sleep: Maximum sleep time in seconds (non-negative) """ if boot_server_kwargs is None: boot_server_kwargs = {} if create_volume_kwargs is None: create_volume_kwargs = {} server = self._boot_server(image, flavor, **boot_server_kwargs) volume = self._create_volume(size, **create_volume_kwargs) self._attach_volume(server, volume) self.sleep_between(min_sleep, max_sleep) new_host = self._find_host_to_migrate(server) self._live_migrate(server, new_host, block_migration, disk_over_commit) self._detach_volume(server, volume) self._delete_volume(volume) self._delete_server(server) @types.set(image=types.ImageResourceType, flavor=types.FlavorResourceType) @validation.image_valid_on_flavor("flavor", "image") @validation.required_services(consts.Service.NOVA) @validation.required_openstack(admin=True, users=True) @scenario.configure(context={"cleanup": ["nova"]}) def boot_and_migrate_server(self, image, flavor, **kwargs): """Migrate a server. This scenario launches a VM on a compute node available in the availability zone and stops the VM, and then migrates the VM to another compute node on the same availability zone. :param image: image to be used to boot an instance :param flavor: flavor to be used to boot an instance :param kwargs: Optional additional arguments for server creation """ server = self._boot_server(image, flavor, **kwargs) self._stop_server(server) self._migrate(server) # NOTE(wtakase): This is required because cold migration and resize # share same code path. confirm = kwargs.get("confirm", True) if confirm: self._resize_confirm(server, status="SHUTOFF") else: self._resize_revert(server, status="SHUTOFF") self._delete_server(server) @types.set(from_image=types.ImageResourceType, to_image=types.ImageResourceType, flavor=types.FlavorResourceType) @validation.image_valid_on_flavor("flavor", "from_image") @validation.image_valid_on_flavor("flavor", "to_image") @validation.required_services(consts.Service.NOVA) @validation.required_openstack(admin=True, users=True) @scenario.configure(context={"cleanup": ["nova"]}) def boot_and_rebuild_server(self, from_image, to_image, flavor, **kwargs): """Rebuild a server. This scenario launches a VM, then rebuilds that VM with a different image. :param from_image: image to be used to boot an instance :param to_image: image to be used to rebuild the instance :param flavor: flavor to be used to boot an instance :param kwargs: Optional additional arguments for server creation """ server = self._boot_server(from_image, flavor, **kwargs) self._rebuild_server(server, to_image) self._delete_server(server) @types.set(image=types.ImageResourceType, flavor=types.FlavorResourceType) @validation.image_valid_on_flavor("flavor", "image") @validation.required_services(consts.Service.NOVA) @validation.required_openstack(users=True) @validation.required_contexts("network") @scenario.configure(context={"cleanup": ["nova"]}) def boot_and_associate_floating_ip(self, image, flavor, **kwargs): """Boot a server and associate a floating IP to it. :param image: image to be used to boot an instance :param flavor: flavor to be used to boot an instance :param kwargs: Optional additional arguments for server creation """ server = self._boot_server(image, flavor, **kwargs) address = network_wrapper.wrap( self.clients, self.context["task"]).create_floating_ip( tenant_id=server.tenant_id) self._associate_floating_ip(server, address["ip"])
46.462963
79
0.657201
ee7f8fa38ef4a09b9dd4c0a265a336c843e81aae
3,322
py
Python
models/simclr.py
ashwinipokle/contrastive_landscape
daec951c7a4cfc6c96464e0ef010081a642e3847
[ "MIT" ]
2
2022-03-30T07:24:07.000Z
2022-03-30T07:53:44.000Z
models/simclr.py
ashwinipokle/contrastive_landscape
daec951c7a4cfc6c96464e0ef010081a642e3847
[ "MIT" ]
null
null
null
models/simclr.py
ashwinipokle/contrastive_landscape
daec951c7a4cfc6c96464e0ef010081a642e3847
[ "MIT" ]
null
null
null
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from models.model_utils import SymReLU from models.nt_xent import NT_Xent class SimCLROrigModel(nn.Module): def __init__(self, Wo_init, m, p, d, has_online_ReLU=True, has_target_ReLU=True, device=None, batch_size=64, temperature=0.05 ) -> None: super().__init__() self.p=p self.m=m self.d=d self.Wo = nn.Linear(p, m, bias=True) self.Wp = nn.Linear(m, m, bias=True) self.srelu = SymReLU() self.has_online_ReLU = has_online_ReLU self.has_target_ReLU = has_target_ReLU self.init_weights(Wo_init) self.criterion = NT_Xent(batch_size, temperature) self.batch_size = batch_size self.temperature = temperature self.device = device self.bn1 = nn.BatchNorm1d(m) self.name = "simclr-orig" def init_weights(self, Wo_init): if self.Wo.weight.shape == Wo_init.T.shape: Wo_init = Wo_init.T assert Wo_init.shape == self.Wo.weight.shape with torch.no_grad(): self.Wo.weight.data = torch.from_numpy(Wo_init).type(torch.float) def forward(self, x1, x2): zo, zt = self.Wo(x1), self.Wo(x2) zo = self.srelu(self.bn1(zo), self.Wo.bias) zt = self.srelu(self.bn1(zt), self.Wo.bias) self.predicted_rep = zo self.target_rep = zt zo = self.Wp(zo) zt = self.Wp(zt) loss = self.criterion(zo, zt) return loss class SimCLRModel(nn.Module): def __init__(self, Wo_init, m, p, d, has_online_ReLU=True, has_target_ReLU=True, device=None, batch_size=64, temperature=0.05, use_bn=False, ) -> None: super().__init__() self.p=p self.m=m self.d=d self.Wo = nn.Linear(p, m, bias=True) self.srelu = SymReLU() self.has_online_ReLU = has_online_ReLU self.has_target_ReLU = has_target_ReLU self.use_bn = use_bn self.bn1 = nn.BatchNorm1d(m) self.init_weights(Wo_init) self.criterion = NT_Xent(batch_size, temperature) self.batch_size = batch_size self.temperature = temperature self.device = device self.name = "simclr" def init_weights(self, Wo_init): if self.Wo.weight.shape == Wo_init.T.shape: Wo_init = Wo_init.T assert Wo_init.shape == self.Wo.weight.shape with torch.no_grad(): self.Wo.weight.data = torch.from_numpy(Wo_init).type(torch.float) def forward(self, x1, x2): zo, zt = self.Wo(x1), self.Wo(x2) if self.use_bn: zo = self.bn1(zo) zt = self.bn1(zt) if self.has_online_ReLU and self.has_target_ReLU: zo = self.srelu(zo, self.Wo.bias) zt = self.srelu(zt, self.Wo.bias) self.predicted_rep = zo self.target_rep = zt loss = self.criterion(zo, zt) return loss
26.365079
77
0.54696
77123ef413546198598407553cd2c9fd43c6868f
2,515
py
Python
ProgettoLube/WebInspector/venv/Lib/site-packages/tensorflow/python/keras/api/_v2/keras/applications/__init__.py
Lube-Project/ProgettoLube
cbf33971e2c2e865783ec1a2302625539186a338
[ "MIT" ]
null
null
null
ProgettoLube/WebInspector/venv/Lib/site-packages/tensorflow/python/keras/api/_v2/keras/applications/__init__.py
Lube-Project/ProgettoLube
cbf33971e2c2e865783ec1a2302625539186a338
[ "MIT" ]
null
null
null
ProgettoLube/WebInspector/venv/Lib/site-packages/tensorflow/python/keras/api/_v2/keras/applications/__init__.py
Lube-Project/ProgettoLube
cbf33971e2c2e865783ec1a2302625539186a338
[ "MIT" ]
1
2021-01-28T01:57:41.000Z
2021-01-28T01:57:41.000Z
# This file is MACHINE GENERATED! Do not edit. # Generated by: tensorflow/python/tools/api/generator/create_python_api.py script. """Keras Applications are canned architectures with pre-trained weights. """ from __future__ import print_function as _print_function import sys as _sys from . import densenet from . import efficientnet from . import imagenet_utils from . import inception_resnet_v2 from . import inception_v3 from . import mobilenet from . import mobilenet_v2 from . import nasnet from . import resnet from . import resnet50 from . import resnet_v2 from . import vgg16 from . import vgg19 from . import xception from tensorflow.python.keras.applications.densenet import DenseNet121 from tensorflow.python.keras.applications.densenet import DenseNet169 from tensorflow.python.keras.applications.densenet import DenseNet201 from tensorflow.python.keras.applications.efficientnet import EfficientNetB0 from tensorflow.python.keras.applications.efficientnet import EfficientNetB1 from tensorflow.python.keras.applications.efficientnet import EfficientNetB2 from tensorflow.python.keras.applications.efficientnet import EfficientNetB3 from tensorflow.python.keras.applications.efficientnet import EfficientNetB4 from tensorflow.python.keras.applications.efficientnet import EfficientNetB5 from tensorflow.python.keras.applications.efficientnet import EfficientNetB6 from tensorflow.python.keras.applications.efficientnet import EfficientNetB7 from tensorflow.python.keras.applications.inception_resnet_v2 import InceptionResNetV2 from tensorflow.python.keras.applications.inception_v3 import InceptionV3 from tensorflow.python.keras.applications.mobilenet import MobileNet from tensorflow.python.keras.applications.mobilenet_v2 import MobileNetV2 from tensorflow.python.keras.applications.nasnet import NASNetLarge from tensorflow.python.keras.applications.nasnet import NASNetMobile from tensorflow.python.keras.applications.resnet import ResNet101 from tensorflow.python.keras.applications.resnet import ResNet152 from tensorflow.python.keras.applications.resnet import ResNet50 from tensorflow.python.keras.applications.resnet_v2 import ResNet101V2 from tensorflow.python.keras.applications.resnet_v2 import ResNet152V2 from tensorflow.python.keras.applications.resnet_v2 import ResNet50V2 from tensorflow.python.keras.applications.vgg16 import VGG16 from tensorflow.python.keras.applications.vgg19 import VGG19 from tensorflow.python.keras.applications.xception import Xception del _print_function
48.365385
86
0.866004
0c875de19b1e7f9622e083159d801425d1fb2aa1
572
py
Python
neuralnet_pytorch/optim/lr_scheduler/inverse_lr.py
justanhduc/neuralnet-pytorch
cbb0c5a540a0ba91cb4dd20684bb00692305d193
[ "MIT" ]
28
2019-01-07T04:07:55.000Z
2021-11-09T15:16:11.000Z
neuralnet_pytorch/optim/lr_scheduler/inverse_lr.py
justanhduc/neuralnet-pytorch
cbb0c5a540a0ba91cb4dd20684bb00692305d193
[ "MIT" ]
9
2019-12-25T08:00:33.000Z
2021-11-23T09:02:34.000Z
neuralnet_pytorch/optim/lr_scheduler/inverse_lr.py
justanhduc/neuralnet-pytorch
cbb0c5a540a0ba91cb4dd20684bb00692305d193
[ "MIT" ]
3
2020-08-07T12:49:05.000Z
2022-03-07T21:32:39.000Z
import torch.optim as optim class InverseLR(optim.lr_scheduler.LambdaLR): """Decreases lr every iteration by the inverse of gamma times iteration plus 1. :math:`\\text{lr} = \\text{lr} / (1 + \\gamma * t)`. Parameters ---------- optimizer wrapped optimizer. gamma decrease coefficient. last_epoch : int the index of last epoch. Default: -1. """ def __init__(self, optimizer, gamma, last_epoch=-1): self.gamma = gamma super().__init__(optimizer, lambda it: 1. / (1. + gamma * it), last_epoch)
27.238095
83
0.611888
640aff09c0fd42aa079023c004699bf1f88756c3
468
py
Python
scripts/run-web-server.py
tmadden/alia-html
6a1feb615028ca08de72c9e889c43d6ceb8b9cfd
[ "MIT" ]
1
2020-12-31T16:38:04.000Z
2020-12-31T16:38:04.000Z
scripts/run-web-server.py
tmadden/alia-html
6a1feb615028ca08de72c9e889c43d6ceb8b9cfd
[ "MIT" ]
15
2021-01-24T16:27:10.000Z
2021-02-17T19:43:08.000Z
scripts/run-web-server.py
tmadden/alia-html
6a1feb615028ca08de72c9e889c43d6ceb8b9cfd
[ "MIT" ]
null
null
null
#!/usr/bin/env python import BaseHTTPServer, SimpleHTTPServer port = 8002 print "Running on port %d" % port SimpleHTTPServer.SimpleHTTPRequestHandler.extensions_map[ '.wasm'] = 'application/wasm' httpd = BaseHTTPServer.HTTPServer(('localhost', port), SimpleHTTPServer.SimpleHTTPRequestHandler) print "Mapping \".wasm\" to \"%s\"" % \ SimpleHTTPServer.SimpleHTTPRequestHandler.extensions_map['.wasm'] httpd.serve_forever()
29.25
76
0.709402
4e0c1aff997716b94e6987b75f26e8944b0904da
3,553
py
Python
api_buddy/network/auth/oauth2.py
fonsecapeter/ttam-buddy
4cff7a6f61825d71ec8ebdfd324631043a0ba8c8
[ "MIT" ]
1
2020-06-27T20:00:41.000Z
2020-06-27T20:00:41.000Z
api_buddy/network/auth/oauth2.py
fonsecapeter/api-buddy
4cff7a6f61825d71ec8ebdfd324631043a0ba8c8
[ "MIT" ]
35
2019-02-11T19:52:38.000Z
2021-03-02T21:46:28.000Z
api_buddy/network/auth/oauth2.py
fonsecapeter/ttam-buddy
4cff7a6f61825d71ec8ebdfd324631043a0ba8c8
[ "MIT" ]
1
2020-06-27T20:00:47.000Z
2020-06-27T20:00:47.000Z
import webbrowser from colorama import Fore, Style from os import environ from typing import Optional from time import sleep from urllib.parse import urljoin from requests_oauthlib import OAuth2Session from api_buddy.utils.exceptions import print_exception from api_buddy.utils.typing import Options, Preferences, QueryParams from api_buddy.config.preferences import save_prefs APPLICATION_JSON = 'application/json' DRAMATIC_PAUSE = 3 # seconds HEADERS = { 'Accept': APPLICATION_JSON, 'Content-Type': APPLICATION_JSON, } def _get_authorization_response_url() -> str: return input( # pragma: no cover f'{Fore.GREEN}Enter the full url{Fore.BLACK}{Style.BRIGHT}:' f'{Style.RESET_ALL} ' ) def _authenticate( sesh: OAuth2Session, client_secret: str, api_url: str, redirect_uri: str, state: Optional[str], token_path: str, authorize_path: str, authorize_params: QueryParams, ) -> str: """Perform OAuth2 Flow and get a new token Note: Implicitly updates the OAuth2Session """ authorization_url, state = sesh.authorization_url( urljoin(api_url, authorize_path), state=state, kwargs=authorize_params, ) print( 'Opening browser to visit:\n\n' f'{Fore.BLUE}{Style.BRIGHT}{authorization_url}{Style.RESET_ALL}\n\n' 'Sign in and go through the DSA, then copy the url at the end.\n' ) sleep(DRAMATIC_PAUSE) try: webbrowser.open(authorization_url) except NotADirectoryError: # If permissions error print_exception( title='I couldn\'t open your browser', message=( 'Go ahead and copy/paste the url into your browser\n' 'Then sign in and go through the DSA.' ), ) sleep(DRAMATIC_PAUSE) authorization_response = _get_authorization_response_url() print() environ['OAUTHLIB_INSECURE_TRANSPORT'] = '1' # allow non-http redirect_uri token = sesh.fetch_token( urljoin(api_url, token_path), authorization_response=authorization_response, client_secret=client_secret, include_client_id=True, ) return str(token['access_token']) def get_oauth2_session( opts: Options, prefs: Preferences, prefs_file_name: str, ) -> OAuth2Session: """Initialize OAuth2 session""" sesh = OAuth2Session( client_id=prefs['oauth2']['client_id'], redirect_uri=prefs['oauth2']['redirect_uri'], scope=' '.join(prefs['oauth2']['scopes']), token={'access_token': prefs['oauth2']['access_token']}, ) sesh.headers.update(HEADERS) return sesh def reauthenticate_oauth2( sesh: OAuth2Session, prefs: Preferences, prefs_file: str, ) -> OAuth2Session: """Get a new oauth token for an existing session Also save it to preferences """ oauth2_prefs = prefs['oauth2'] access_token = _authenticate( sesh, client_secret=prefs['oauth2']['client_secret'], api_url=prefs['api_url'], redirect_uri=oauth2_prefs['redirect_uri'], state=oauth2_prefs['state'], token_path=oauth2_prefs['token_path'], authorize_path=oauth2_prefs['authorize_path'], authorize_params=oauth2_prefs['authorize_params'], ) prefs['oauth2']['access_token'] = access_token save_prefs(prefs, prefs_file) return sesh
30.62931
79
0.646214
ec4375f12e02142c68423b6c1ec7f68c03e47dd2
550
py
Python
material/admin.py
prabinrs/surveilance-system
1a9f118737d1043133dbb7247573b4616a680c2d
[ "BSD-3-Clause" ]
null
null
null
material/admin.py
prabinrs/surveilance-system
1a9f118737d1043133dbb7247573b4616a680c2d
[ "BSD-3-Clause" ]
2
2020-06-05T21:39:21.000Z
2021-06-10T21:40:18.000Z
material/admin.py
prabinrs/surveilance-system
1a9f118737d1043133dbb7247573b4616a680c2d
[ "BSD-3-Clause" ]
1
2020-02-26T15:06:32.000Z
2020-02-26T15:06:32.000Z
from django.contrib import admin from .models import ( Material, MaterialRelationship, MaterialLocationParticipation, MaterialResponsibility ) @admin.register(Material) class MaterialAdmin(admin.ModelAdmin): pass @admin.register(MaterialRelationship) class MaterialRelationshipAdmin(admin.ModelAdmin): pass @admin.register(MaterialLocationParticipation) class MaterialLocationParticipationAdmin(admin.ModelAdmin): pass @admin.register(MaterialResponsibility) class MaterialResponsibilityAdmin(admin.ModelAdmin): pass
20.37037
59
0.816364
a737f124742ab7bc9235b2b0ac0af298462cccb7
1,482
py
Python
clever_config/actions.py
osipov-andrey/python_smart_config
2de65d2bef54aadb5cdba1498215a93e71018b28
[ "MIT" ]
null
null
null
clever_config/actions.py
osipov-andrey/python_smart_config
2de65d2bef54aadb5cdba1498215a93e71018b28
[ "MIT" ]
null
null
null
clever_config/actions.py
osipov-andrey/python_smart_config
2de65d2bef54aadb5cdba1498215a93e71018b28
[ "MIT" ]
null
null
null
import abc from os import getenv from typing import List, Optional, Union class ActionException(Exception): pass class BaseAction(abc.ABC): def conditionally_transform(self, path_chain: List[Union[str, int]], value: str) -> str: if self.is_needed(path_chain, value): return self.transform(path_chain, value) return value @staticmethod def path_to_str(path_chain: List[Union[str, int]]) -> str: return " -> ".join(str(el) for el in path_chain) @abc.abstractmethod def is_needed(self, path_chain: List[Union[str, int]], value: str) -> bool: pass @abc.abstractmethod def transform(self, path_chain: List[Union[str, int]], value: str) -> str: pass def __pre_traversal_hook__(self, mapping: dict) -> None: pass def __post_traversal_hook__(self, mapping: dict) -> None: pass class EnvLoaderAction(BaseAction): ENV_PLACEHOLDER_PREFIX = "ENV__" def is_needed(self, path_chain: List[Union[str, int]], value: str) -> bool: return value.startswith(self.ENV_PLACEHOLDER_PREFIX) def transform(self, path_chain: List[Union[str, int]], value: str) -> str: expected_var_name: str = value.replace(self.ENV_PLACEHOLDER_PREFIX, "") value_: Optional[str] = getenv(expected_var_name) if not value_: raise ActionException(f"Broken ENV Variable: {expected_var_name}! Path: {self.path_to_str(path_chain)}") return value_
31.531915
116
0.674089
58dd6b41943e1236cdd4d34fb1ba3769596a4861
385
py
Python
data/check_movielens_data.py
sourav22899/k-sets-problem
9584c59c32a3d7ba4044a7aa41eba321dab5da48
[ "MIT" ]
null
null
null
data/check_movielens_data.py
sourav22899/k-sets-problem
9584c59c32a3d7ba4044a7aa41eba321dab5da48
[ "MIT" ]
null
null
null
data/check_movielens_data.py
sourav22899/k-sets-problem
9584c59c32a3d7ba4044a7aa41eba321dab5da48
[ "MIT" ]
null
null
null
import pandas as pd raw_data = pd.read_csv("./ml-latest-small/ratings.csv") data = pd.DataFrame({ "request": raw_data["movieId"], "timestamp": raw_data["timestamp"] }) data['request'] = pd.factorize(data["request"].tolist(), sort=True)[0] data = data.sort_values(by=["timestamp"]) data = data.drop_duplicates() data.info() data.to_csv('./movielens_cleaned.csv', index=False)
27.5
70
0.698701
5589ed1bb1728d5fcc0d5ba8fc70fd5162a7567c
5,777
py
Python
DQM/SiStripMonitorHardware/python/test/testSiStripCMMonitor_cfg.py
pasmuss/cmssw
566f40c323beef46134485a45ea53349f59ae534
[ "Apache-2.0" ]
null
null
null
DQM/SiStripMonitorHardware/python/test/testSiStripCMMonitor_cfg.py
pasmuss/cmssw
566f40c323beef46134485a45ea53349f59ae534
[ "Apache-2.0" ]
null
null
null
DQM/SiStripMonitorHardware/python/test/testSiStripCMMonitor_cfg.py
pasmuss/cmssw
566f40c323beef46134485a45ea53349f59ae534
[ "Apache-2.0" ]
null
null
null
import FWCore.ParameterSet.Config as cms process = cms.Process('DQMCMMonitor') process.load('Configuration/StandardSequences/Services_cff') process.load('FWCore/MessageService/MessageLogger_cfi') process.MessageLogger.cerr.FwkReport.reportEvery = 100 process.source = cms.Source( "PoolSource", fileNames = cms.untracked.vstring( #'file:/home/magnan/SOFTWARE/CMS/data/FED/Commissioning08/Run69750_FEED31F3-58AC-DD11-BF73-000423D99658.root' #'file:/home/magnan/SOFTWARE/CMS/data/FED/Commissioning08/Run69800_026DBE87-A5AC-DD11-9397-0030487C608C.root' #'file:/home/magnan/SOFTWARE/CMS/CMSSW_3_1_0_pre11/src/FedWorkDir/FedMonitoring/test/Digi_run69800.root' #'file:/home/magnan/SOFTWARE/CMS/data/FED/Commissioning08/Run69797_FC26431D-91AC-DD11-A0D1-001617E30CC8.root' #'file:/home/magnan/SOFTWARE/CMS/data/FED/Commissioning08/Run69874_98BB9120-E6AC-DD11-9B91-000423D99896.root' 'file:/home/magnan/SOFTWARE/CMS/data/FED/Commissioning09/Run106019_00D9F347-4D72-DE11-93F6-001D09F24399.root' #'file:/home/magnan/SOFTWARE/CMS/data/FED/Commissioning09/Run101045_A6F7D0D3-4560-DE11-A52A-001D09F2545B.root' ), skipBadFiles = cms.untracked.bool(True), #inputCommands = cms.untracked.vstring('drop *', 'keep *_source_*_*'), ) #process.load("DQM.SiStripMonitorHardware.test.source_cff") process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(1000) ) #process.service = cms.ProfilerService { # untracked int32 firstEvent = 1 # untracked int32 lastEvent = 50 # untracked vstring paths = { "p"} # } #process.load('DQM.SiStripCommon.MessageLogger_cfi') process.load('FWCore/MessageService/MessageLogger_cfi') process.MessageLogger = cms.Service( "MessageLogger", info = cms.untracked.PSet( threshold = cms.untracked.string('INFO'), #limit = cms.untracked.int32(100000), noLineBreaks = cms.untracked.bool(False) ), suppressInfo = cms.untracked.vstring(), # allows to suppress output from specific modules suppressDebug = cms.untracked.vstring(), debug = cms.untracked.PSet( threshold = cms.untracked.string('DEBUG'), #limit = cms.untracked.int32(100000), noLineBreaks = cms.untracked.bool(False) ), warning = cms.untracked.PSet( threshold = cms.untracked.string('WARNING'), #limit = cms.untracked.int32(100000), noLineBreaks = cms.untracked.bool(False) ), cerr = cms.untracked.PSet( threshold = cms.untracked.string('ERROR'), #limit = cms.untracked.int32(100000), noLineBreaks = cms.untracked.bool(False) ), error = cms.untracked.PSet( threshold = cms.untracked.string('ERROR'), #limit = cms.untracked.int32(100000), noLineBreaks = cms.untracked.bool(False) ), suppressWarning = cms.untracked.vstring(), #debugModules = cms.untracked.vstring('*'),#'siStripFEDMonitor'), destinations = cms.untracked.vstring('cerr', 'debug', 'info', 'warning', 'error') ) process.DQMStore = cms.Service("DQMStore") #needed to produce tkHistoMap process.TkDetMap = cms.Service("TkDetMap") process.SiStripDetInfoFileReader = cms.Service("SiStripDetInfoFileReader") # Conditions (Global Tag is used here): process.load("Configuration.StandardSequences.FrontierConditions_GlobalTag_cff") #process.GlobalTag.connect = "frontier://FrontierProd/CMS_COND_21X_GLOBALTAG" process.GlobalTag.globaltag = "GR09_31X_V1P::All" process.es_prefer_GlobalTag = cms.ESPrefer('PoolDBESSource','GlobalTag') process.load("CondCore.DBCommon.CondDBSetup_cfi") process.load("Configuration.StandardSequences.MagneticField_38T_cff") process.load("Configuration.StandardSequences.GeometryRecoDB_cff") # Real data raw to digi process.load("Configuration.StandardSequences.RawToDigi_Data_cff") process.load("Configuration.StandardSequences.ReconstructionCosmics_cff") process.load("DPGAnalysis.SiStripTools.apvshotsanalyzer_cfi") process.load('DQM.SiStripMonitorHardware.siStripCMMonitor_cfi') process.siStripCMMonitor.FillWithEventNumber = False process.siStripCMMonitor.FillWithLocalEventNumber = False process.siStripCMMonitor.FedIdVec = 100,200,400 process.siStripCMMonitor.PrintDebugMessages = 1 process.siStripCMMonitor.WriteDQMStore = True process.siStripCMMonitor.DQMStoreFileName = "DQMStore_CM_run106019.root" #process.siStripCMMonitor.TimeHistogramConfig.NBins = 100 #process.siStripCMMonitor.TimeHistogramConfig.Min = 0 #process.siStripCMMonitor.TimeHistogramConfig.Max = 1 process.load('PerfTools.Callgrind.callgrindSwitch_cff') process.TFileService = cms.Service("TFileService", fileName = cms.string("Shot_run106019.root"), closeFileFast = cms.untracked.bool(True) ) process.p = cms.Path( #process.profilerStart* process.siStripDigis *process.siStripZeroSuppression *process.apvshotsanalyzer *process.siStripCMMonitor #*process.profilerStop ) process.saveDigis = cms.OutputModule( "PoolOutputModule", outputCommands = cms.untracked.vstring( 'drop *_*_*_HLT', 'drop *_*_*Raw_DQMCMMonitor', 'drop *_*_ScopeMode_DQMCMMonitor', 'keep *_siStripDigis_ZeroSuppressed_*', 'keep *_source_*_*' ), fileName = cms.untracked.string('Digi_run106019.root') ) process.pout = cms.EndPath( process.saveDigis )
40.683099
118
0.691189
9026d04f8a2b56a049194654fef6c4c03c854ba1
18,339
py
Python
pbirest/core.py
AntoineDW/powerbi-rest-api-python
d836c07a048ea82e8e5404323d5e947cc979a223
[ "MIT" ]
3
2020-03-02T19:46:51.000Z
2022-03-24T03:42:31.000Z
pbirest/core.py
AntoineDW/powerbi-rest-api-python
d836c07a048ea82e8e5404323d5e947cc979a223
[ "MIT" ]
1
2022-03-15T21:25:44.000Z
2022-03-15T21:25:44.000Z
pbirest/core.py
AntoineDW/powerbi-rest-api-python
d836c07a048ea82e8e5404323d5e947cc979a223
[ "MIT" ]
1
2021-07-01T19:48:39.000Z
2021-07-01T19:48:39.000Z
import requests import datetime import logging import re token = { "bearer": None, "expiration": None } credentials = { "client_id": None, "username": None, "password": None, "tenant_id": None, "client_secret": None } log = logging.getLogger() console = logging.StreamHandler() console.setFormatter(logging.Formatter("%(asctime)s\t%(levelname)s -- %(message)s")) log.addHandler(console) log.setLevel(20) HTTP_OK = 200 HTTP_ACCEPTED = 202 def connect(client_id: str, username: str, password: str, tenant_id: str = "common", client_secret: str = None) -> None: global token global credentials if client_secret: body = { "grant_type": "password", "resource": "https://analysis.windows.net/powerbi/api", "client_id": client_id, "client_secret": client_secret, "username": username, "password": password } else: body = { "grant_type": "password", "resource": "https://analysis.windows.net/powerbi/api", "client_id": client_id, "username": username, "password": password } headers = { "Content-Type": "application/x-www-form-urlencoded" } response = requests.post("https://login.microsoftonline.com/{}/oauth2/token".format(tenant_id), headers = headers, data = body) if response.status_code == HTTP_OK: set_credentials(client_id, username, password, tenant_id, client_secret) set_token(response.json()["access_token"]) log.info("Connected to the Power BI REST API with {}".format(username)) else: set_credentials(None, None, None, None, None) set_token(None) log.error("Error {} -- Something went wrong when trying to retrieve the token from the REST API".format(response.status_code)) def verify_token() -> bool: global token if token["bearer"] == None: log.error("Error 401 -- Please connect to the Power BI REST API with the connect() function before") return False else: if token["expiration"] < datetime.datetime.now(): connect(credentials["client_id"], credentials["username"], credentials["password"], credentials["tenant_id"], credentials["client_secret"]) return True else: return True def get_token() -> dict: global token return token def set_token(bearer: str) -> None: global token token["bearer"] = "Bearer {}".format(bearer) token["expiration"] = datetime.datetime.now() + datetime.timedelta(hours = 1) def set_credentials(client_id: str, username: str, password: str, tenant_id: str, client_secret: str) -> None: global credentials credentials["client_id"] = client_id credentials["username"] = username credentials["password"] = password credentials["tenant_id"] = tenant_id credentials["client_secret"] = client_secret # Workspace def get_workspaces() -> list: global token if(not verify_token()): return None headers = { "Authorization": token["bearer"] } response = requests.get("https://api.powerbi.com/v1.0/myorg/groups", headers = headers) if response.status_code == HTTP_OK: return response.json()["value"] else: log.error("Error {} -- Something went wrong when trying to retrieve the list of workspaces you have access".format(response.status_code)) return None def get_workspace(workspace_id: str) -> list: global token if(not verify_token()): return None headers = { "Authorization": token["bearer"] } response = requests.get("https://api.powerbi.com/v1.0/myorg/groups", headers = headers) if response.status_code == HTTP_OK: ws = [result for result in response.json()["value"] if result["id"] == workspace_id] if(len(ws) > 0): return ws[0] else: return None else: log.error("Error {} -- Something went wrong when trying to retrieve the workspace {}".format(response.status_code, workspace_id)) return None def create_workspace(workspace_name: str, new: bool = False) -> dict: global token if(not verify_token()): return None headers = { "Authorization": token["bearer"] } body = { "name": workspace_name } if new: response = requests.post("https://api.powerbi.com/v1.0/myorg/groups?workspaceV2=True", headers = headers, data = body) if response.status_code == HTTP_OK: result = response.json() return { "id": result["id"], "isOnDedicatedCapacity": result["isOnDedicatedCapacity"], "name": result["name"] } else: log.error("Error {} -- Something went wrong when trying to create a new workspace V2 called {}".format(response.status_code, workspace_name)) return None else: response = requests.post("https://api.powerbi.com/v1.0/myorg/groups", headers = headers, data = body) if response.status_code == HTTP_OK: result = response.json() return { "id": result["id"], "isReadOnly": result["isReadOnly"], "isOnDedicatedCapacity": result["isOnDedicatedCapacity"], "name": result["name"] } else: log.error("Error {} -- Something went wrong when trying to create a new workspace called {}".format(response.status_code, workspace_name)) return None def delete_workspace(workspace_id: str) -> dict: global token if(not verify_token()): return None headers = { "Authorization": token["bearer"] } response = requests.delete("https://api.powerbi.com/v1.0/myorg/groups/{}".format(workspace_id), headers = headers) if response.status_code == HTTP_OK: return { "response": response.status_code } else: log.error("Error {} -- Something went wrong when trying to delete the workspace {}".format(response.status_code, workspace_id)) return None def get_users_in_workspace(workspace_id: str) -> list: global token if(not verify_token()): return None headers = { "Authorization": token["bearer"] } response = requests.get("https://api.powerbi.com/v1.0/myorg/groups/{}/users".format(workspace_id), headers = headers) if response.status_code == HTTP_OK: return response.json()["value"] else: log.error("Error {} -- Something went wrong when trying to retrieve the list of users in the workspace {}".format(response.status_code, workspace_id)) return None def add_user_to_workspace(workspace_id: str, email: str, access: str = "Member") -> dict: global token if(not verify_token()): return None if(access in ["Admin", "Contributor", "Member"]): headers = { "Authorization": token["bearer"] } body = { "userEmailAddress": email, "groupUserAccessRight": access } response = requests.post("https://api.powerbi.com/v1.0/myorg/groups/{}/users".format(workspace_id), headers = headers, data = body) if response.status_code == HTTP_OK: return { "response": response.status_code } else: log.error("Error {} -- Something went wrong when trying to add {} in the workspace {}".format(response.status_code, email, workspace_id)) return None else: log.error("Error 400 -- Please, make sure the access parameter is either \"Admin\", \"Contributor\" or \"Member\"") return None def delete_user_from_workspace(workspace_id: str, email: str) -> dict: global token if(not verify_token()): return None headers = { "Authorization": token["bearer"] } response = requests.delete("https://api.powerbi.com/v1.0/myorg/groups/{}/users/{}".format(workspace_id, email), headers = headers) if response.status_code == HTTP_OK: return { "response": response.status_code } else: log.error("Error {} -- Something went wrong when trying to delete the user {} from the workspace {}".format(response.status_code, email, workspace_id)) return None def update_user_in_workspace(workspace_id: str, email: str, access: str = "Member") -> dict: global token if(not verify_token()): return None if(access in ["Admin", "Contributor", "Member"]): headers = { "Authorization": token["bearer"] } body = { "userEmailAddress": email, "groupUserAccessRight": access } response = requests.put("https://api.powerbi.com/v1.0/myorg/groups/{}/users".format(workspace_id), headers = headers, data = body) if response.status_code == HTTP_OK: return { "response": response.status_code } else: log.error("Error {} -- Something went wrong when trying to update {} in the workspace {}".format(response.status_code, email, workspace_id)) return None else: log.error("Error 400 -- Please, make sure the access parameter is either \"Admin\", \"Contributor\" or \"Member\"") return None # Report def get_reports(workspace_id: str) -> list: global token if(not verify_token()): return None headers = { "Authorization": token["bearer"] } response = requests.get("https://api.powerbi.com/v1.0/myorg/groups/{}/reports".format(workspace_id), headers = headers) if response.status_code == HTTP_OK: return response.json()["value"] else: log.error("Error {} -- Something went wrong when trying to retrieve the list of reports in the workspace {}".format(response.status_code, workspace_id)) return None def get_report(workspace_id: str, report_id: str) -> list: global token if(not verify_token()): return None headers = { "Authorization": token["bearer"] } response = requests.get("https://api.powerbi.com/v1.0/myorg/groups/{}/reports/{}".format(workspace_id, report_id), headers = headers) if response.status_code == HTTP_OK: return response.json() else: log.error("Error {} -- Something went wrong when trying to retrieve the report {} in the workspace {}".format(response.status_code, report_id, workspace_id)) return None def delete_report(workspace_id: str, report_id: str) -> dict: global token if(not verify_token()): return None headers = { "Authorization": token["bearer"] } response = requests.delete("https://api.powerbi.com/v1.0/myorg/groups/{}/reports/{}".format(workspace_id, report_id), headers = headers) if response.status_code == HTTP_OK: return { "response": response.status_code } else: log.error("Error {} -- Something went wrong when trying to delete the report {} in the workspace {}".format(response.status_code, report_id, workspace_id)) return None def export_report(workspace_id: str, report_id: str, out_file: str) -> dict: global token if(not verify_token()): return None headers = { "Authorization": token["bearer"] } response = requests.get("https://api.powerbi.com/v1.0/myorg/groups/{}/reports/{}/export".format(workspace_id, report_id), headers = headers) if response.status_code == HTTP_OK: with open(out_file, "wb") as file: file.write(response.content) return { "response": response.status_code } else: log.error("Error {} -- Something went wrong when trying to export the report {} in the workspace {}".format(response.status_code, report_id, workspace_id)) return None def import_report(workspace_id: str, report_name: str, in_file: str, name_conflict: str = "CreateOrOverwrite") -> dict: global token if(not verify_token()): return None if(name_conflict in ["CreateOrOverwrite", "GenerateUniqueName", "Ignore", "Overwrite"]): headers = { "Authorization": token["bearer"], "Content-Type": "multipart/form-data" } file = { "file": open(in_file, "rb") } response = requests.post("https://api.powerbi.com/v1.0/myorg/groups/{}/imports?datasetDisplayName={}&nameConflict={}".format(workspace_id, report_name, name_conflict), headers = headers, files = file) if response.status_code == HTTP_ACCEPTED: return response.json() else: log.error("Error {} -- Something went wrong when trying to import the report {} in the workspace {}".format(response.status_code, in_file, workspace_id)) return None else: log.error("Error 400 -- Please, make sure the name_conflict parameter is either \"CreateOrOverwrite\", \"GenerateUniqueName\", \"Ignore\" or \"Overwrite\"") return None def clone_report(workspace_id: str, report_id: str, dest_report_name: str, dest_workspace_id: str = None) -> dict: global token if(not verify_token()): return None headers = { "Authorization": token["bearer"] } if dest_workspace_id: body = { "name": dest_report_name, "targetWorkspaceId": dest_workspace_id } else: body = { "name": dest_report_name } response = requests.post("https://api.powerbi.com/v1.0/myorg/groups/{}/reports/{}/clone".format(workspace_id, report_id), headers = headers, data = body) if response.status_code == HTTP_OK: return { "response": response.status_code } else: log.error("Error {} -- Something went wrong when trying to clone the report {} in the workspace {}".format(response.status_code, report_id, workspace_id)) return None # Dataset def get_datasets(workspace_id: str) -> list: global token if(not verify_token()): return None headers = { "Authorization": token["bearer"] } response = requests.get("https://api.powerbi.com/v1.0/myorg/groups/{}/datasets".format(workspace_id), headers = headers) if response.status_code == HTTP_OK: return response.json()["value"] else: log.error("Error {} -- Something went wrong when trying to retrieve the list of datasets in the workspace {}".format(response.status_code, workspace_id)) return None def get_dataset(workspace_id: str, dataset_id: str) -> list: global token if(not verify_token()): return None headers = { "Authorization": token["bearer"] } response = requests.get("https://api.powerbi.com/v1.0/myorg/groups/{}/datasets/{}".format(workspace_id, dataset_id), headers = headers) if response.status_code == HTTP_OK: return response.json()["value"] else: log.error("Error {} -- Something went wrong when trying to retrieve the dataset {} in the workspace {}".format(response.status_code, dataset_id, workspace_id)) return None def delete_dataset(workspace_id: str, dataset_id: str) -> dict: global token if(not verify_token()): return None headers = { "Authorization": token["bearer"] } response = requests.delete("https://api.powerbi.com/v1.0/myorg/groups/{}/datasets/{}".format(workspace_id, dataset_id), headers = headers) if response.status_code == HTTP_OK: return { "response": response.status_code } else: log.error("Error {} -- Something went wrong when trying to delete the dataset {} in the workspace {}".format(response.status_code, dataset_id, workspace_id)) return None def refresh_dataset(workspace_id: str, dataset_id: str, notify_option: str = "NoNotification") -> dict: global token if(not verify_token()): return None if(notify_option in ["MailOnCompletion", "MailOnFailure", "NoNotification"]): headers = { "Authorization": token["bearer"] } body = { "notifyOption": notify_option } response = requests.post("https://api.powerbi.com/v1.0/myorg/groups/{}/datasets/{}/refreshes".format(workspace_id, dataset_id), headers = headers, data = body) if response.status_code == HTTP_ACCEPTED: return { "response": response.status_code } else: log.error("Error {} -- Something went wrong when trying to refresh the dataset {} in the workspace {}".format(response.status_code, dataset_id, workspace_id)) return None else: log.error("Error 400 -- Please, make sure the notify_option parameter is either \"MailOnCompletion\", \"MailOnFailure\" or \"NoNotification\"") return None # Admin def get_audit_logs(start_date: str, end_date: str, activity: str = None, user_id: str = None) -> list: global token if(not verify_token()): return None date_regex = r"^\d\d\d\d-(0[1-9]|1[0-2])-(0[1-9]|[12][0-9]|3[01]) (00|1[0-9]|2[0-3]):([0-5][0-9]):([0-5][0-9])$" start_date_verification = re.search(date_regex, start_date) end_date_verification = re.search(date_regex, end_date) if(start_date_verification and end_date_verification): start_date_value = datetime.datetime.strptime(start_date, "%Y-%m-%d %H:%M:%S").strftime("%Y-%m-%dT%H:%M:%S.000Z") end_date_value = datetime.datetime.strptime(end_date, "%Y-%m-%d %H:%M:%S").strftime("%Y-%m-%dT%H:%M:%S.000Z") headers = { "Authorization": token["bearer"] } params = "" if activity: params += "Activity eq '{}'".format(activity) if user_id: if params != "": params += " and " params += "UserId eq '{}'".format(user_id) if params == "": url = "https://api.powerbi.com/v1.0/myorg/admin/activityevents?startDateTime='{}'&endDateTime='{}'".format(start_date_value, end_date_value) else: url = "https://api.powerbi.com/v1.0/myorg/admin/activityevents?startDateTime='{}'&endDateTime='{}'&$filter={}".format(start_date_value, end_date_value, params) response = requests.get(url, headers = headers) if response.status_code == HTTP_OK: logs = [] while(response.json()["continuationUri"] != None): logs += response.json()["activityEventEntities"] response = requests.get(response.json()["continuationUri"], headers = headers) if response.status_code != HTTP_OK: log.error("Error {} -- Something went wrong when trying to retrieve audit logs from {} to {}".format(response.status_code, start_date, end_date)) return None return logs else: log.error("Error {} -- Something went wrong when trying to retrieve audit logs from {} to {}".format(response.status_code, start_date, end_date)) print(response.json()) return None else: log.error("Error 400 -- Please, make sure the dates you gave match the following pattern: YYYY-MM-DD HH:MM:SS") return None
45.733167
208
0.658378
d7166501c5e7cb157a9a49fbd794284066fed44e
776
py
Python
manage.py
skazi0/car-stats
e643ed47dfb90094fcc8663bce90b879af31b546
[ "MIT" ]
null
null
null
manage.py
skazi0/car-stats
e643ed47dfb90094fcc8663bce90b879af31b546
[ "MIT" ]
null
null
null
manage.py
skazi0/car-stats
e643ed47dfb90094fcc8663bce90b879af31b546
[ "MIT" ]
null
null
null
from flask_script import Manager, Server from flask_migrate import Migrate, MigrateCommand from app import app, db from app.models import User migrate = Migrate(app, db) manager = Manager(app) manager.add_command('db', MigrateCommand) manager.add_command('runserver', Server(host='0.0.0.0', port=22778)) @manager.command def create_db(): """Creates the db tables.""" db.create_all() @manager.command def drop_db(): """Drops the db tables.""" db.drop_all() @manager.command def create_admin(): """Creates the admin user.""" db.session.add(User(email='ad@min.com', password='admin', admin=True)) db.session.commit() @manager.command def create_data(): """Creates sample data.""" pass if __name__ == '__main__': manager.run()
18.926829
74
0.69201
e956124bb37469c715e66eacdee2a51d8d21cd88
1,258
py
Python
hazelcast/protocol/codec/map_values_codec.py
murdockn/hazelcast-python-client
597d90be5414cd56340fafcff916191704dcb86d
[ "Apache-2.0" ]
null
null
null
hazelcast/protocol/codec/map_values_codec.py
murdockn/hazelcast-python-client
597d90be5414cd56340fafcff916191704dcb86d
[ "Apache-2.0" ]
null
null
null
hazelcast/protocol/codec/map_values_codec.py
murdockn/hazelcast-python-client
597d90be5414cd56340fafcff916191704dcb86d
[ "Apache-2.0" ]
null
null
null
from hazelcast.serialization.bits import * from hazelcast.protocol.client_message import ClientMessage from hazelcast.protocol.custom_codec import * from hazelcast.util import ImmutableLazyDataList from hazelcast.protocol.codec.map_message_type import * REQUEST_TYPE = MAP_VALUES RESPONSE_TYPE = 106 RETRYABLE = False def calculate_size(name): """ Calculates the request payload size""" data_size = 0 data_size += calculate_size_str(name) return data_size def encode_request(name): """ Encode request into client_message""" client_message = ClientMessage(payload_size=calculate_size(name)) client_message.set_message_type(REQUEST_TYPE) client_message.set_retryable(RETRYABLE) client_message.append_str(name) client_message.update_frame_length() return client_message def decode_response(client_message, to_object=None): """ Decode response from client message""" parameters = dict(response=None) response_size = client_message.read_int() response = [] for response_index in xrange(0, response_size): response_item = client_message.read_data() response.append(response_item) parameters['response'] = ImmutableLazyDataList(response, to_object) return parameters
29.952381
71
0.769475
439d146a52f6562d82801e660fca9e8f9cb2e101
20,447
py
Python
chemprop/args.py
anonymous20201002/chemprop
3e36f6a3bb36194366feadb31be94dfc7e98fd91
[ "MIT" ]
1
2022-02-12T06:39:32.000Z
2022-02-12T06:39:32.000Z
chemprop/args.py
anonymous20201002/chemprop
3e36f6a3bb36194366feadb31be94dfc7e98fd91
[ "MIT" ]
null
null
null
chemprop/args.py
anonymous20201002/chemprop
3e36f6a3bb36194366feadb31be94dfc7e98fd91
[ "MIT" ]
null
null
null
import json import os from tempfile import TemporaryDirectory import pickle from typing import List, Optional, Tuple from typing_extensions import Literal import torch from tap import Tap # pip install typed-argument-parser (https://github.com/swansonk14/typed-argument-parser) from chemprop.features import get_available_features_generators def get_checkpoint_paths(checkpoint_path: Optional[str] = None, checkpoint_paths: Optional[List[str]] = None, checkpoint_dir: Optional[str] = None, ext: str = '.pt') -> Optional[List[str]]: """ Gets a list of checkpoint paths either from a single checkpoint path or from a directory of checkpoints. If :code:`checkpoint_path` is provided, only collects that one checkpoint. If :code:`checkpoint_paths` is provided, collects all of the provided checkpoints. If :code:`checkpoint_dir` is provided, walks the directory and collects all checkpoints. A checkpoint is any file ending in the extension ext. :param checkpoint_path: Path to a checkpoint. :param checkpoint_paths: List of paths to checkpoints. :param checkpoint_dir: Path to a directory containing checkpoints. :param ext: The extension which defines a checkpoint file. :return: A list of paths to checkpoints or None if no checkpoint path(s)/dir are provided. """ if sum(var is not None for var in [checkpoint_dir, checkpoint_path, checkpoint_paths]) > 1: raise ValueError('Can only specify one of checkpoint_dir, checkpoint_path, and checkpoint_paths') if checkpoint_path is not None: return [checkpoint_path] if checkpoint_paths is not None: return checkpoint_paths if checkpoint_dir is not None: checkpoint_paths = [] for root, _, files in os.walk(checkpoint_dir): for fname in files: if fname.endswith(ext): checkpoint_paths.append(os.path.join(root, fname)) if len(checkpoint_paths) == 0: raise ValueError(f'Failed to find any checkpoints with extension "{ext}" in directory "{checkpoint_dir}"') return checkpoint_paths return None class CommonArgs(Tap): """:class:`CommonArgs` contains arguments that are used in both :class:`TrainArgs` and :class:`PredictArgs`.""" smiles_column: str = None """Name of the column containing SMILES strings. By default, uses the first column.""" checkpoint_dir: str = None """Directory from which to load model checkpoints (walks directory and ensembles all models that are found).""" checkpoint_path: str = None """Path to model checkpoint (:code:`.pt` file).""" checkpoint_paths: List[str] = None """List of paths to model checkpoints (:code:`.pt` files).""" no_cuda: bool = False """Turn off cuda (i.e., use CPU instead of GPU).""" gpu: int = None """Which GPU to use.""" features_generator: List[str] = None """Method(s) of generating additional features.""" features_path: List[str] = None """Path(s) to features to use in FNN (instead of features_generator).""" no_features_scaling: bool = False """Turn off scaling of features.""" max_data_size: int = None """Maximum number of data points to load.""" num_workers: int = 8 """Number of workers for the parallel data loading (0 means sequential).""" batch_size: int = 50 """Batch size.""" @property def device(self) -> torch.device: """The :code:`torch.device` on which to load and process data and models.""" if not self.cuda: return torch.device('cpu') return torch.device('cuda', self.gpu) @device.setter def device(self, device: torch.device) -> None: self.cuda = device.type == 'cuda' self.gpu = device.index @property def cuda(self) -> bool: """Whether to use CUDA (i.e., GPUs) or not.""" return not self.no_cuda and torch.cuda.is_available() @cuda.setter def cuda(self, cuda: bool) -> None: self.no_cuda = not cuda @property def features_scaling(self) -> bool: """Whether to apply normalization with a :class:`~chemprop.data.scaler.StandardScaler` to the additional molecule-level features.""" return not self.no_features_scaling def add_arguments(self) -> None: self.add_argument('--gpu', choices=list(range(torch.cuda.device_count()))) self.add_argument('--features_generator', choices=get_available_features_generators()) def process_args(self) -> None: # Load checkpoint paths self.checkpoint_paths = get_checkpoint_paths( checkpoint_path=self.checkpoint_path, checkpoint_paths=self.checkpoint_paths, checkpoint_dir=self.checkpoint_dir, ) # Validate features if self.features_generator is not None and 'rdkit_2d_normalized' in self.features_generator and self.features_scaling: raise ValueError('When using rdkit_2d_normalized features, --no_features_scaling must be specified.') class TrainArgs(CommonArgs): """:class:`TrainArgs` includes :class:`CommonArgs` along with additional arguments used for training a Chemprop model.""" # General arguments data_path: str """Path to data CSV file.""" target_columns: List[str] = None """ Name of the columns containing target values. By default, uses all columns except the SMILES column and the :code:`ignore_columns`. """ ignore_columns: List[str] = None """Name of the columns to ignore when :code:`target_columns` is not provided.""" dataset_type: Literal['regression', 'classification', 'multiclass'] """Type of dataset. This determines the loss function used during training.""" multiclass_num_classes: int = 3 """Number of classes when running multiclass classification.""" separate_val_path: str = None """Path to separate val set, optional.""" separate_test_path: str = None """Path to separate test set, optional.""" split_type: Literal['random', 'scaffold_balanced', 'predetermined', 'crossval', 'index_predetermined'] = 'random' """Method of splitting the data into train/val/test.""" split_sizes: Tuple[float, float, float] = (0.8, 0.1, 0.1) """Split proportions for train/validation/test sets.""" num_folds: int = 1 """Number of folds when performing cross validation.""" folds_file: str = None """Optional file of fold labels.""" val_fold_index: int = None """Which fold to use as val for leave-one-out cross val.""" test_fold_index: int = None """Which fold to use as test for leave-one-out cross val.""" crossval_index_dir: str = None """Directory in which to find cross validation index files.""" crossval_index_file: str = None """Indices of files to use as train/val/test. Overrides :code:`--num_folds` and :code:`--seed`.""" seed: int = 0 """ Random seed to use when splitting data into train/val/test sets. When :code`num_folds > 1`, the first fold uses this seed and all subsequent folds add 1 to the seed. """ pytorch_seed: int = 0 """Seed for PyTorch randomness (e.g., random initial weights).""" metric: Literal['auc', 'prc-auc', 'rmse', 'mae', 'mse', 'r2', 'accuracy', 'cross_entropy'] = None """Metric to use during evaluation. Defaults to "auc" for classification and "rmse" for regression.""" save_dir: str = None """Directory where model checkpoints will be saved.""" save_smiles_splits: bool = False """Save smiles for each train/val/test splits for prediction convenience later.""" test: bool = False """Whether to skip training and only test the model.""" quiet: bool = False """Skip non-essential print statements.""" log_frequency: int = 10 """The number of batches between each logging of the training loss.""" show_individual_scores: bool = False """Show all scores for individual targets, not just average, at the end.""" cache_cutoff: int = 10000 """ Maximum number of molecules in dataset to allow caching. Below this number, caching is used and data loading is sequential. Above this number, caching is not used and data loading is parallel. """ # Model arguments bias: bool = False """Whether to add bias to linear layers.""" hidden_size: int = 300 """Dimensionality of hidden layers in MPN.""" depth: int = 3 """Number of message passing steps.""" dropout: float = 0.0 """Dropout probability.""" activation: Literal['ReLU', 'LeakyReLU', 'PReLU', 'tanh', 'SELU', 'ELU'] = 'ReLU' """Activation function.""" atom_messages: bool = False """Centers messages on atoms instead of on bonds.""" undirected: bool = False """Undirected edges (always sum the two relevant bond vectors).""" ffn_hidden_size: int = None """Hidden dim for higher-capacity FFN (defaults to hidden_size).""" ffn_num_layers: int = 2 """Number of layers in FFN after MPN encoding.""" features_only: bool = False """Use only the additional features in an FFN, no graph network.""" separate_val_features_path: List[str] = None """Path to file with features for separate val set.""" separate_test_features_path: List[str] = None """Path to file with features for separate test set.""" config_path: str = None """ Path to a :code:`.json` file containing arguments. Any arguments present in the config file will override arguments specified via the command line or by the defaults. """ ensemble_size: int = 1 """Number of models in ensemble.""" # Training arguments epochs: int = 30 """Number of epochs to run.""" warmup_epochs: float = 2.0 """ Number of epochs during which learning rate increases linearly from :code:`init_lr` to :code:`max_lr`. Afterwards, learning rate decreases exponentially from :code:`max_lr` to :code:`final_lr`. """ init_lr: float = 1e-4 """Initial learning rate.""" max_lr: float = 1e-3 """Maximum learning rate.""" final_lr: float = 1e-4 """Final learning rate.""" grad_clip: float = None """Maximum magnitude of gradient during training.""" class_balance: bool = False """Trains with an equal number of positives and negatives in each batch (only for single task classification).""" def __init__(self, *args, **kwargs) -> None: super(TrainArgs, self).__init__(*args, **kwargs) self._task_names = None self._crossval_index_sets = None self._task_names = None self._num_tasks = None self._features_size = None self._train_data_size = None @property def minimize_score(self) -> bool: """Whether the model should try to minimize the score metric or maximize it.""" return self.metric in {'rmse', 'mae', 'mse', 'cross_entropy'} @property def use_input_features(self) -> bool: """Whether the model is using additional molecule-level features.""" return self.features_generator is not None or self.features_path is not None @property def num_lrs(self) -> int: """The number of learning rates to use (currently hard-coded to 1).""" return 1 @property def crossval_index_sets(self) -> List[List[List[int]]]: """Index sets used for splitting data into train/validation/test during cross-validation""" return self._crossval_index_sets @property def task_names(self) -> List[str]: """A list of names of the tasks being trained on.""" return self._task_names @task_names.setter def task_names(self, task_names: List[str]) -> None: self._task_names = task_names @property def num_tasks(self) -> int: """The number of tasks being trained on.""" return len(self.task_names) if self.task_names is not None else 0 @property def features_size(self) -> int: """The dimensionality of the additional molecule-level features.""" return self._features_size @features_size.setter def features_size(self, features_size: int) -> None: self._features_size = features_size @property def train_data_size(self) -> int: """The size of the training data set.""" return self._train_data_size @train_data_size.setter def train_data_size(self, train_data_size: int) -> None: self._train_data_size = train_data_size def process_args(self) -> None: super(TrainArgs, self).process_args() global temp_dir # Prevents the temporary directory from being deleted upon function return # Load config file if self.config_path is not None: with open(self.config_path) as f: config = json.load(f) for key, value in config.items(): setattr(self, key, value) # Create temporary directory as save directory if not provided if self.save_dir is None: temp_dir = TemporaryDirectory() self.save_dir = temp_dir.name # Fix ensemble size if loading checkpoints if self.checkpoint_paths is not None and len(self.checkpoint_paths) > 0: self.ensemble_size = len(self.checkpoint_paths) # Process and validate metric and loss function if self.metric is None: if self.dataset_type == 'classification': self.metric = 'auc' elif self.dataset_type == 'multiclass': self.metric = 'cross_entropy' else: self.metric = 'rmse' if not ((self.dataset_type == 'classification' and self.metric in ['auc', 'prc-auc', 'accuracy']) or (self.dataset_type == 'regression' and self.metric in ['rmse', 'mae', 'mse', 'r2']) or (self.dataset_type == 'multiclass' and self.metric in ['cross_entropy', 'accuracy'])): raise ValueError(f'Metric "{self.metric}" invalid for dataset type "{self.dataset_type}".') # Validate class balance if self.class_balance and self.dataset_type != 'classification': raise ValueError('Class balance can only be applied if the dataset type is classification.') # Validate features if self.features_only and not (self.features_generator or self.features_path): raise ValueError('When using features_only, a features_generator or features_path must be provided.') # Handle FFN hidden size if self.ffn_hidden_size is None: self.ffn_hidden_size = self.hidden_size # Handle MPN variants if self.atom_messages and self.undirected: raise ValueError('Undirected is unnecessary when using atom_messages ' 'since atom_messages are by their nature undirected.') # Validate split type settings if not (self.split_type == 'predetermined') == (self.folds_file is not None) == (self.test_fold_index is not None): raise ValueError('When using predetermined split type, must provide folds_file and test_fold_index.') if not (self.split_type == 'crossval') == (self.crossval_index_dir is not None): raise ValueError('When using crossval split type, must provide crossval_index_dir.') if not (self.split_type in ['crossval', 'index_predetermined']) == (self.crossval_index_file is not None): raise ValueError('When using crossval or index_predetermined split type, must provide crossval_index_file.') if self.split_type in ['crossval', 'index_predetermined']: with open(self.crossval_index_file, 'rb') as rf: self._crossval_index_sets = pickle.load(rf) self.num_folds = len(self.crossval_index_sets) self.seed = 0 # Test settings if self.test: self.epochs = 0 class PredictArgs(CommonArgs): """:class:`PredictArgs` includes :class:`CommonArgs` along with additional arguments used for predicting with a Chemprop model.""" test_path: str """Path to CSV file containing testing data for which predictions will be made.""" preds_path: str """Path to CSV file where predictions will be saved.""" @property def ensemble_size(self) -> int: """The number of models in the ensemble.""" return len(self.checkpoint_paths) def process_args(self) -> None: super(PredictArgs, self).process_args() if self.checkpoint_paths is None or len(self.checkpoint_paths) == 0: raise ValueError('Found no checkpoints. Must specify --checkpoint_path <path> or ' '--checkpoint_dir <dir> containing at least one checkpoint.') class InterpretArgs(CommonArgs): """:class:`InterpretArgs` includes :class:`CommonArgs` along with additional arguments used for interpreting a trained Chemprop model.""" data_path: str """Path to data CSV file.""" batch_size: int = 500 """Batch size.""" property_id: int = 1 """Index of the property of interest in the trained model.""" rollout: int = 20 """Number of rollout steps.""" c_puct: float = 10.0 """Constant factor in MCTS.""" max_atoms: int = 20 """Maximum number of atoms in rationale.""" min_atoms: int = 8 """Minimum number of atoms in rationale.""" prop_delta: float = 0.5 """Minimum score to count as positive.""" def process_args(self) -> None: super(InterpretArgs, self).process_args() if self.features_path is not None: raise ValueError('Cannot use --features_path <path> for interpretation since features ' 'need to be computed dynamically for molecular substructures. ' 'Please specify --features_generator <generator>.') if self.checkpoint_paths is None or len(self.checkpoint_paths) == 0: raise ValueError('Found no checkpoints. Must specify --checkpoint_path <path> or ' '--checkpoint_dir <dir> containing at least one checkpoint.') class HyperoptArgs(TrainArgs): """:class:`HyperoptArgs` includes :class:`TrainArgs` along with additional arguments used for optimizing Chemprop hyperparameters.""" num_iters: int = 20 """Number of hyperparameter choices to try.""" config_save_path: str """Path to :code:`.json` file where best hyperparameter settings will be written.""" log_dir: str = None """(Optional) Path to a directory where all results of the hyperparameter optimization will be written.""" class SklearnTrainArgs(TrainArgs): """:class:`SklearnTrainArgs` includes :class:`TrainArgs` along with additional arguments for training a scikit-learn model.""" model_type: Literal['random_forest', 'svm'] """scikit-learn model to use.""" class_weight: Literal['balanced'] = None """How to weight classes (None means no class balance).""" single_task: bool = False """Whether to run each task separately (needed when dataset has null entries).""" radius: int = 2 """Morgan fingerprint radius.""" num_bits: int = 2048 """Number of bits in morgan fingerprint.""" num_trees: int = 500 """Number of random forest trees.""" class SklearnPredictArgs(Tap): """:class:`SklearnPredictArgs` contains arguments used for predicting with a trained scikit-learn model.""" test_path: str """Path to CSV file containing testing data for which predictions will be made.""" smiles_column: str = None """Name of the column containing SMILES strings. By default, uses the first column.""" preds_path: str """Path to CSV file where predictions will be saved.""" checkpoint_dir: str = None """Path to directory containing model checkpoints (:code:`.pkl` file)""" checkpoint_path: str = None """Path to model checkpoint (:code:`.pkl` file)""" checkpoint_paths: List[str] = None """List of paths to model checkpoints (:code:`.pkl` files)""" def process_args(self) -> None: # Load checkpoint paths self.checkpoint_paths = get_checkpoint_paths( checkpoint_path=self.checkpoint_path, checkpoint_paths=self.checkpoint_paths, checkpoint_dir=self.checkpoint_dir, ext='.pkl' )
42.072016
141
0.66308
a03cd8262a69b431c9d3018ee6c8407f468f1be1
7,462
py
Python
tests/test_pack.py
hknust/cwltool
2978c8bff88be2ad357554c9291cc992d3e74a47
[ "Apache-2.0" ]
null
null
null
tests/test_pack.py
hknust/cwltool
2978c8bff88be2ad357554c9291cc992d3e74a47
[ "Apache-2.0" ]
null
null
null
tests/test_pack.py
hknust/cwltool
2978c8bff88be2ad357554c9291cc992d3e74a47
[ "Apache-2.0" ]
null
null
null
import json import os import tempfile from functools import partial from io import StringIO from tempfile import NamedTemporaryFile import pytest import cwltool.pack import cwltool.workflow from cwltool import load_tool from cwltool.context import LoadingContext from cwltool.load_tool import fetch_document, resolve_and_validate_document from cwltool.main import main, make_relative, print_pack from cwltool.pathmapper import adjustDirObjs, adjustFileObjs from cwltool.resolver import tool_resolver from ruamel import yaml from .util import get_data, needs_docker def test_pack(): loadingContext, workflowobj, uri = fetch_document(get_data("tests/wf/revsort.cwl")) with open(get_data("tests/wf/expect_packed.cwl")) as packed_file: expect_packed = yaml.safe_load(packed_file) packed = cwltool.pack.pack(loadingContext, uri) adjustFileObjs( packed, partial(make_relative, os.path.abspath(get_data("tests/wf"))) ) adjustDirObjs(packed, partial(make_relative, os.path.abspath(get_data("tests/wf")))) assert "$schemas" in packed assert len(packed["$schemas"]) == len(expect_packed["$schemas"]) del packed["$schemas"] del expect_packed["$schemas"] assert packed == expect_packed def test_pack_input_named_name(): loadingContext, workflowobj, uri = fetch_document( get_data("tests/wf/trick_revsort.cwl") ) loadingContext.do_update = False loadingContext, uri = resolve_and_validate_document( loadingContext, workflowobj, uri ) processobj = loadingContext.loader.resolve_ref(uri)[0] with open(get_data("tests/wf/expect_trick_packed.cwl")) as packed_file: expect_packed = yaml.round_trip_load(packed_file) packed = cwltool.pack.pack(loadingContext, uri) adjustFileObjs( packed, partial(make_relative, os.path.abspath(get_data("tests/wf"))) ) adjustDirObjs(packed, partial(make_relative, os.path.abspath(get_data("tests/wf")))) assert "$schemas" in packed assert len(packed["$schemas"]) == len(expect_packed["$schemas"]) del packed["$schemas"] del expect_packed["$schemas"] assert packed == expect_packed def test_pack_single_tool(): loadingContext, workflowobj, uri = fetch_document( get_data("tests/wf/formattest.cwl") ) loadingContext.do_update = False loadingContext, uri = resolve_and_validate_document( loadingContext, workflowobj, uri ) processobj = loadingContext.loader.resolve_ref(uri)[0] packed = cwltool.pack.pack(loadingContext, uri) assert "$schemas" in packed def test_pack_fragment(): with open(get_data("tests/wf/scatter2_subwf.cwl")) as packed_file: expect_packed = yaml.safe_load(packed_file) loadingContext, workflowobj, uri = fetch_document(get_data("tests/wf/scatter2.cwl")) packed = cwltool.pack.pack(loadingContext, uri + "#scatterstep/mysub") adjustFileObjs( packed, partial(make_relative, os.path.abspath(get_data("tests/wf"))) ) adjustDirObjs(packed, partial(make_relative, os.path.abspath(get_data("tests/wf")))) assert json.dumps(packed, sort_keys=True, indent=2) == json.dumps( expect_packed, sort_keys=True, indent=2 ) def test_pack_rewrites(): rewrites = {} loadingContext, workflowobj, uri = fetch_document( get_data("tests/wf/default-wf5.cwl") ) loadingContext.do_update = False loadingContext, uri = resolve_and_validate_document( loadingContext, workflowobj, uri ) processobj = loadingContext.loader.resolve_ref(uri)[0] cwltool.pack.pack( loadingContext, uri, rewrite_out=rewrites, ) assert len(rewrites) == 6 cwl_missing_version_paths = [ "tests/wf/hello_single_tool.cwl", "tests/wf/hello-workflow.cwl", ] @pytest.mark.parametrize("cwl_path", cwl_missing_version_paths) def test_pack_missing_cwlVersion(cwl_path): """Ensure the generated pack output is not missing the `cwlVersion` in case of single tool workflow and single step workflow.""" # Testing single tool workflow loadingContext, workflowobj, uri = fetch_document(get_data(cwl_path)) loadingContext.do_update = False loadingContext, uri = resolve_and_validate_document( loadingContext, workflowobj, uri ) processobj = loadingContext.loader.resolve_ref(uri)[0] # generate pack output dict packed = json.loads(print_pack(loadingContext, uri)) assert packed["cwlVersion"] == "v1.0" def test_pack_idempotence_tool(): """Ensure that pack produces exactly the same document for an already packed CommandLineTool.""" _pack_idempotently("tests/wf/hello_single_tool.cwl") def test_pack_idempotence_workflow(): """Ensure that pack produces exactly the same document for an already packed workflow.""" _pack_idempotently("tests/wf/count-lines1-wf.cwl") def _pack_idempotently(document): loadingContext, workflowobj, uri = fetch_document(get_data(document)) loadingContext.do_update = False loadingContext, uri = resolve_and_validate_document( loadingContext, workflowobj, uri ) processobj = loadingContext.loader.resolve_ref(uri)[0] # generate pack output dict packed_text = print_pack(loadingContext, uri) packed = json.loads(packed_text) tmp = NamedTemporaryFile(mode="w", delete=False) try: tmp.write(packed_text) tmp.flush() tmp.close() loadingContext, workflowobj, uri2 = fetch_document(tmp.name) loadingContext.do_update = False loadingContext, uri2 = resolve_and_validate_document( loadingContext, workflowobj, uri2 ) processobj = loadingContext.loader.resolve_ref(uri2)[0] # generate pack output dict packed_text = print_pack(loadingContext, uri2) double_packed = json.loads(packed_text) finally: os.remove(tmp.name) assert uri != uri2 assert packed == double_packed cwl_to_run = [ ("tests/wf/count-lines1-wf.cwl", "tests/wf/wc-job.json", False), ("tests/wf/formattest.cwl", "tests/wf/formattest-job.json", True), ] @needs_docker @pytest.mark.parametrize("wf_path,job_path,namespaced", cwl_to_run) def test_packed_workflow_execution(wf_path, job_path, namespaced, tmpdir): loadingContext = LoadingContext() loadingContext.resolver = tool_resolver loadingContext, workflowobj, uri = fetch_document(get_data(wf_path), loadingContext) loadingContext.do_update = False loadingContext, uri = resolve_and_validate_document( loadingContext, workflowobj, uri ) processobj = loadingContext.loader.resolve_ref(uri)[0] packed = json.loads(print_pack(loadingContext, uri)) assert not namespaced or "$namespaces" in packed wf_packed_handle, wf_packed_path = tempfile.mkstemp() with open(wf_packed_path, "w") as temp_file: json.dump(packed, temp_file) normal_output = StringIO() packed_output = StringIO() normal_params = ["--outdir", str(tmpdir), get_data(wf_path), get_data(job_path)] packed_params = [ "--outdir", str(tmpdir), "--debug", wf_packed_path, get_data(job_path), ] assert main(normal_params, stdout=normal_output) == 0 assert main(packed_params, stdout=packed_output) == 0 assert json.loads(packed_output.getvalue()) == json.loads(normal_output.getvalue()) os.close(wf_packed_handle) os.remove(wf_packed_path)
32.30303
132
0.71978
f211396a755b227da6119426ab86a5fe976977a0
4,578
py
Python
ooobuild/lo/ucb/fetch_result.py
Amourspirit/ooo_uno_tmpl
64e0c86fd68f24794acc22d63d8d32ae05dd12b8
[ "Apache-2.0" ]
null
null
null
ooobuild/lo/ucb/fetch_result.py
Amourspirit/ooo_uno_tmpl
64e0c86fd68f24794acc22d63d8d32ae05dd12b8
[ "Apache-2.0" ]
null
null
null
ooobuild/lo/ucb/fetch_result.py
Amourspirit/ooo_uno_tmpl
64e0c86fd68f24794acc22d63d8d32ae05dd12b8
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 # # Copyright 2022 :Barry-Thomas-Paul: Moss # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http: // www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Struct Class # this is a auto generated file generated by Cheetah # Namespace: com.sun.star.ucb # Libre Office Version: 7.3 from ooo.oenv.env_const import UNO_NONE import typing class FetchResult(object): """ Struct Class contains data of several rows of a ContentResultSet. This struct is returned from XFetchProvider.fetch(), for example. See Also: `API FetchResult <https://api.libreoffice.org/docs/idl/ref/structcom_1_1sun_1_1star_1_1ucb_1_1FetchResult.html>`_ """ __ooo_ns__: str = 'com.sun.star.ucb' __ooo_full_ns__: str = 'com.sun.star.ucb.FetchResult' __ooo_type_name__: str = 'struct' typeName: str = 'com.sun.star.ucb.FetchResult' """Literal Constant ``com.sun.star.ucb.FetchResult``""" def __init__(self, Rows: typing.Optional[typing.Tuple[object, ...]] = UNO_NONE, StartIndex: typing.Optional[int] = 0, Orientation: typing.Optional[bool] = False, FetchError: typing.Optional[int] = 0) -> None: """ Constructor Arguments: Rows (typing.Tuple[object, ...], optional): Rows value. StartIndex (int, optional): StartIndex value. Orientation (bool, optional): Orientation value. FetchError (int, optional): FetchError value. """ super().__init__() if isinstance(Rows, FetchResult): oth: FetchResult = Rows self.Rows = oth.Rows self.StartIndex = oth.StartIndex self.Orientation = oth.Orientation self.FetchError = oth.FetchError return kargs = { "Rows": Rows, "StartIndex": StartIndex, "Orientation": Orientation, "FetchError": FetchError, } if kargs["Rows"] is UNO_NONE: kargs["Rows"] = None self._init(**kargs) def _init(self, **kwargs) -> None: self._rows = kwargs["Rows"] self._start_index = kwargs["StartIndex"] self._orientation = kwargs["Orientation"] self._fetch_error = kwargs["FetchError"] @property def Rows(self) -> typing.Tuple[object, ...]: """ contains the demanded data. One any contains the data of one whole row. Those methods which use this struct have to specify, what the any has to contain. """ return self._rows @Rows.setter def Rows(self, value: typing.Tuple[object, ...]) -> None: self._rows = value @property def StartIndex(self) -> int: """ indicates the index of the first row contained in FetchResult.Rows in the original result set. So if FetchResult.StartIndex equals 3, the first element in the sequence FetchResult.Rows contains the data of the index 3 in the original result set. The following rows are one after the other, but the direction depends on the value of FetchResult.Direction """ return self._start_index @StartIndex.setter def StartIndex(self, value: int) -> None: self._start_index = value @property def Orientation(self) -> bool: """ indicates the orientation in which the rows are fetched and set into the sequence FetchResult.Rows. When FetchResult.Orientation equals TRUE, the rows in FetchResult.Rows are ordered in the same way as in the original result set. """ return self._orientation @Orientation.setter def Orientation(self, value: bool) -> None: self._orientation = value @property def FetchError(self) -> int: """ indicates whether and which error has occurred, while fetching. The value may contain zero or more constants of the FetchError constants group. """ return self._fetch_error @FetchError.setter def FetchError(self, value: int) -> None: self._fetch_error = value __all__ = ['FetchResult']
33.911111
212
0.643949
0f1bf4db8dc7bd6741b979c2d345c13f44c5825d
94
py
Python
road/road.py
jadnohra/daisy
105c0f37c6adbe85ce830375c5e2fc89cbcc6cc9
[ "MIT" ]
3
2021-09-26T10:50:35.000Z
2022-01-25T02:44:37.000Z
road/road.py
jadnohra/daisy
105c0f37c6adbe85ce830375c5e2fc89cbcc6cc9
[ "MIT" ]
1
2021-09-09T14:19:31.000Z
2021-09-09T14:19:31.000Z
road/road.py
jadnohra/daisy
105c0f37c6adbe85ce830375c5e2fc89cbcc6cc9
[ "MIT" ]
null
null
null
class Road(): def __init__(self): self.curves = [] self.curve_table = {}
15.666667
29
0.521277
2f95d7f49f4077545aa98069a4fa5f0216750104
462
py
Python
plotly/validators/streamtube/colorbar/_tickprefix.py
omridanan/plotly.py
a8d26670cba49ce15ce9b7639ae0f55a6088a825
[ "MIT" ]
2
2020-03-24T11:41:14.000Z
2021-01-14T07:59:43.000Z
plotly/validators/streamtube/colorbar/_tickprefix.py
omridanan/plotly.py
a8d26670cba49ce15ce9b7639ae0f55a6088a825
[ "MIT" ]
null
null
null
plotly/validators/streamtube/colorbar/_tickprefix.py
omridanan/plotly.py
a8d26670cba49ce15ce9b7639ae0f55a6088a825
[ "MIT" ]
4
2019-06-03T14:49:12.000Z
2022-01-06T01:05:12.000Z
import _plotly_utils.basevalidators class TickprefixValidator(_plotly_utils.basevalidators.StringValidator): def __init__( self, plotly_name='tickprefix', parent_name='streamtube.colorbar', **kwargs ): super(TickprefixValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type='colorbars', role='style', **kwargs )
24.315789
72
0.612554
7b06afc32f991d7af528fc9179e7ef21a5fe8cb7
15,778
py
Python
systemb/gen-py/StatServer/StatServer.py
Arnawk/statserver
2c7182870859b013f1f2b556a62667fc877ab428
[ "MIT" ]
null
null
null
systemb/gen-py/StatServer/StatServer.py
Arnawk/statserver
2c7182870859b013f1f2b556a62667fc877ab428
[ "MIT" ]
3
2020-07-17T13:08:35.000Z
2021-05-09T19:38:44.000Z
systemb/gen-py/StatServer/StatServer.py
Arnawk/statserver
2c7182870859b013f1f2b556a62667fc877ab428
[ "MIT" ]
null
null
null
# # Autogenerated by Thrift Compiler (0.9.1) # # DO NOT EDIT UNLESS YOU ARE SURE THAT YOU KNOW WHAT YOU ARE DOING # # options string: py # from thrift.Thrift import TType, TMessageType, TException, TApplicationException from ttypes import * from thrift.Thrift import TProcessor from thrift.transport import TTransport from thrift.protocol import TBinaryProtocol, TProtocol try: from thrift.protocol import fastbinary except: fastbinary = None class Iface: def ping(self): pass def calculateStat(self, allNumbers): """ Parameters: - allNumbers """ pass def generateNums(self): pass class Client(Iface): def __init__(self, iprot, oprot=None): self._iprot = self._oprot = iprot if oprot is not None: self._oprot = oprot self._seqid = 0 def ping(self): self.send_ping() return self.recv_ping() def send_ping(self): self._oprot.writeMessageBegin('ping', TMessageType.CALL, self._seqid) args = ping_args() args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_ping(self): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = ping_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success raise TApplicationException(TApplicationException.MISSING_RESULT, "ping failed: unknown result"); def calculateStat(self, allNumbers): """ Parameters: - allNumbers """ self.send_calculateStat(allNumbers) return self.recv_calculateStat() def send_calculateStat(self, allNumbers): self._oprot.writeMessageBegin('calculateStat', TMessageType.CALL, self._seqid) args = calculateStat_args() args.allNumbers = allNumbers args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_calculateStat(self): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = calculateStat_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success raise TApplicationException(TApplicationException.MISSING_RESULT, "calculateStat failed: unknown result"); def generateNums(self): self.send_generateNums() return self.recv_generateNums() def send_generateNums(self): self._oprot.writeMessageBegin('generateNums', TMessageType.CALL, self._seqid) args = generateNums_args() args.write(self._oprot) self._oprot.writeMessageEnd() self._oprot.trans.flush() def recv_generateNums(self): (fname, mtype, rseqid) = self._iprot.readMessageBegin() if mtype == TMessageType.EXCEPTION: x = TApplicationException() x.read(self._iprot) self._iprot.readMessageEnd() raise x result = generateNums_result() result.read(self._iprot) self._iprot.readMessageEnd() if result.success is not None: return result.success raise TApplicationException(TApplicationException.MISSING_RESULT, "generateNums failed: unknown result"); class Processor(Iface, TProcessor): def __init__(self, handler): self._handler = handler self._processMap = {} self._processMap["ping"] = Processor.process_ping self._processMap["calculateStat"] = Processor.process_calculateStat self._processMap["generateNums"] = Processor.process_generateNums def process(self, iprot, oprot): (name, type, seqid) = iprot.readMessageBegin() if name not in self._processMap: iprot.skip(TType.STRUCT) iprot.readMessageEnd() x = TApplicationException(TApplicationException.UNKNOWN_METHOD, 'Unknown function %s' % (name)) oprot.writeMessageBegin(name, TMessageType.EXCEPTION, seqid) x.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() return else: self._processMap[name](self, seqid, iprot, oprot) return True def process_ping(self, seqid, iprot, oprot): args = ping_args() args.read(iprot) iprot.readMessageEnd() result = ping_result() result.success = self._handler.ping() oprot.writeMessageBegin("ping", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_calculateStat(self, seqid, iprot, oprot): args = calculateStat_args() args.read(iprot) iprot.readMessageEnd() result = calculateStat_result() result.success = self._handler.calculateStat(args.allNumbers) oprot.writeMessageBegin("calculateStat", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() def process_generateNums(self, seqid, iprot, oprot): args = generateNums_args() args.read(iprot) iprot.readMessageEnd() result = generateNums_result() result.success = self._handler.generateNums() oprot.writeMessageBegin("generateNums", TMessageType.REPLY, seqid) result.write(oprot) oprot.writeMessageEnd() oprot.trans.flush() # HELPER FUNCTIONS AND STRUCTURES class ping_args: thrift_spec = ( ) def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('ping_args') oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class ping_result: """ Attributes: - success """ thrift_spec = ( (0, TType.BOOL, 'success', None, None, ), # 0 ) def __init__(self, success=None,): self.success = success def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.BOOL: self.success = iprot.readBool(); else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('ping_result') if self.success is not None: oprot.writeFieldBegin('success', TType.BOOL, 0) oprot.writeBool(self.success) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class calculateStat_args: """ Attributes: - allNumbers """ thrift_spec = ( None, # 0 (1, TType.LIST, 'allNumbers', (TType.I32,None), None, ), # 1 ) def __init__(self, allNumbers=None,): self.allNumbers = allNumbers def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.LIST: self.allNumbers = [] (_etype3, _size0) = iprot.readListBegin() for _i4 in xrange(_size0): _elem5 = iprot.readI32(); self.allNumbers.append(_elem5) iprot.readListEnd() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('calculateStat_args') if self.allNumbers is not None: oprot.writeFieldBegin('allNumbers', TType.LIST, 1) oprot.writeListBegin(TType.I32, len(self.allNumbers)) for iter6 in self.allNumbers: oprot.writeI32(iter6) oprot.writeListEnd() oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class calculateStat_result: """ Attributes: - success """ thrift_spec = ( (0, TType.STRUCT, 'success', (StatStruct, StatStruct.thrift_spec), None, ), # 0 ) def __init__(self, success=None,): self.success = success def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.STRUCT: self.success = StatStruct() self.success.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('calculateStat_result') if self.success is not None: oprot.writeFieldBegin('success', TType.STRUCT, 0) self.success.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class generateNums_args: thrift_spec = ( ) def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('generateNums_args') oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class generateNums_result: """ Attributes: - success """ thrift_spec = ( (0, TType.LIST, 'success', (TType.I32,None), None, ), # 0 ) def __init__(self, success=None,): self.success = success def read(self, iprot): if iprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None and fastbinary is not None: fastbinary.decode_binary(self, iprot.trans, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 0: if ftype == TType.LIST: self.success = [] (_etype10, _size7) = iprot.readListBegin() for _i11 in xrange(_size7): _elem12 = iprot.readI32(); self.success.append(_elem12) iprot.readListEnd() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot.__class__ == TBinaryProtocol.TBinaryProtocolAccelerated and self.thrift_spec is not None and fastbinary is not None: oprot.trans.write(fastbinary.encode_binary(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('generateNums_result') if self.success is not None: oprot.writeFieldBegin('success', TType.LIST, 0) oprot.writeListBegin(TType.I32, len(self.success)) for iter13 in self.success: oprot.writeI32(iter13) oprot.writeListEnd() oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.iteritems()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other)
30.400771
188
0.680504
6129d236a97b8cfe5c00e78aa8feb6d900ec6278
3,978
py
Python
adwords_python3_examples_10.1.0/v201710/remarketing/add_conversion_trackers.py
xyla-io/hazel
260ce906761d8b808c21ca61b44cc71ca3329e8c
[ "MIT" ]
null
null
null
adwords_python3_examples_10.1.0/v201710/remarketing/add_conversion_trackers.py
xyla-io/hazel
260ce906761d8b808c21ca61b44cc71ca3329e8c
[ "MIT" ]
null
null
null
adwords_python3_examples_10.1.0/v201710/remarketing/add_conversion_trackers.py
xyla-io/hazel
260ce906761d8b808c21ca61b44cc71ca3329e8c
[ "MIT" ]
null
null
null
#!/usr/bin/env python # # Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This example adds AdWords conversion trackers. Adds an AdWords conversion tracker and an upload conversion tracker. The LoadFromStorage method is pulling credentials and properties from a "googleads.yaml" file. By default, it looks for this file in your home directory. For more information, see the "Caching authentication information" section of our README. """ import uuid from googleads import adwords def main(client): # Initialize appropriate service. conversion_tracker_service = client.GetService( 'ConversionTrackerService', version='v201710') # Create an AdWords conversion tracker. adwords_conversion_tracker = { 'xsi_type': 'AdWordsConversionTracker', 'name': 'Earth to Mars Cruises Conversion #%s' % uuid.uuid4(), 'category': 'DEFAULT', # Optional fields. 'status': 'ENABLED', 'viewthroughLookbackWindow': '15', 'defaultRevenueValue': '23.41', 'alwaysUseDefaultRevenueValue': 'true' } upload_conversion = { 'xsi_type': 'UploadConversion', 'name': 'Upload Conversion #%s' % uuid.uuid4(), # Optional fields. # Set an appropriate category. This will be set to DEFAULT if not # specified. 'category': 'LEAD', 'viewthroughLookbackWindow': '30', 'ctcLookbackWindow': '90', # Set the default currency code to use for conversions that do # not specify a conversion currency. This must be an ISO 4217 3-character # code such as "EUR" or "USD". # If this field is not set, AdWords will use the account's currency. 'defaultRevenueCurrencyCode': 'EUR', # Set the default revenue value to use for conversions that do not specify # a converison value. Note that this value should NOT be in micros. 'defaultRevenueValue': '2.50', # To upload fractional conversion credits, mark the upload conversion as # externally attributed. To learn more about importing externally # attributed conversions, see: # https://developers.google.com/adwords/api/docs/guides/conversion-tracking#importing_externally_attributed_conversions # 'isExternallyAttributed': 'true' } # Construct operations. operations = [{ 'operator': 'ADD', 'operand': conversion_tracker } for conversion_tracker in [adwords_conversion_tracker, upload_conversion]] # Add the conversions. conversion_trackers = conversion_tracker_service.mutate(operations) # Display results. for conversion_tracker in conversion_trackers['value']: if (conversion_tracker['ConversionTracker.Type'] is 'AdWordsConversionTracker'): print(('Conversion tracker with ID "%d", name "%s", status "%s" ' 'and category "%s" and snippet \n"%s"\n was added.' % (conversion_tracker['id'], conversion_tracker['name'], conversion_tracker['status'], conversion_tracker['category'], conversion_tracker['snippet']))) else: print(('Conversion with ID "%d", name "%s", status "%s", and category ' '"%s" was added.' % (conversion_tracker['id'], conversion_tracker['name'], conversion_tracker['status'], conversion_tracker['category']))) if __name__ == '__main__': # Initialize client object. adwords_client = adwords.AdWordsClient.LoadFromStorage() main(adwords_client)
38.25
125
0.698592
7711f21861b0dedaf44da997db3f6d28b89038ea
857
py
Python
setup.py
potatolondon/django-hashbrown
bb78243b649ddc7a8acb66bbbd5c2643ba7bfca0
[ "BSD-2-Clause" ]
13
2015-02-06T12:07:23.000Z
2022-03-18T23:20:22.000Z
setup.py
potatolondon/django-hashbrown
bb78243b649ddc7a8acb66bbbd5c2643ba7bfca0
[ "BSD-2-Clause" ]
3
2015-03-09T10:23:55.000Z
2018-08-29T09:42:32.000Z
setup.py
potatolondon/django-hashbrown
bb78243b649ddc7a8acb66bbbd5c2643ba7bfca0
[ "BSD-2-Clause" ]
4
2016-07-20T14:08:06.000Z
2019-07-18T09:30:07.000Z
import os from setuptools import setup, find_packages def read(*rnames): return open(os.path.join(os.path.dirname(__file__), *rnames)).read() setup( name="django-hashbrown", version="0.7.0", author="Pablo Recio", author_email="pablo@potatolondon.com", description="Yet another dead simple feature switching library for Django.", long_description=(read('README.md')), classifiers=[ 'Development Status :: 4 - Beta', 'Framework :: Django', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', ], license="BSD", keywords="django feature switching potato", url='https://github.com/potatolondon/django-hashbrown', packages=find_packages(), zip_safe=False, )
28.566667
80
0.655776
23939bac8e429b28aff1a06e4660864b270551bd
164
py
Python
bin/iamonds/one-sided-hexiamonds-trefoil-1.py
tiwo/puzzler
7ad3d9a792f0635f7ec59ffa85fb46b54fd77a7e
[ "Intel" ]
null
null
null
bin/iamonds/one-sided-hexiamonds-trefoil-1.py
tiwo/puzzler
7ad3d9a792f0635f7ec59ffa85fb46b54fd77a7e
[ "Intel" ]
null
null
null
bin/iamonds/one-sided-hexiamonds-trefoil-1.py
tiwo/puzzler
7ad3d9a792f0635f7ec59ffa85fb46b54fd77a7e
[ "Intel" ]
1
2022-01-02T16:54:14.000Z
2022-01-02T16:54:14.000Z
#!/usr/bin/env python # $Id$ """many solutions""" import puzzler from puzzler.puzzles.hexiamonds import OneSidedHexiamondsTrefoil1 as puzzle puzzler.run(puzzle)
16.4
75
0.77439
38fff84b4c52b40c0ff62e54125f0dddad1080ce
1,625
py
Python
lightkurve/time.py
burke86/lightkurve
fda3e92544ccc3c6b38d003b2980a232fbcbbd0b
[ "MIT" ]
1
2021-05-07T10:42:01.000Z
2021-05-07T10:42:01.000Z
lightkurve/time.py
burke86/lightkurve
fda3e92544ccc3c6b38d003b2980a232fbcbbd0b
[ "MIT" ]
7
2018-07-14T17:49:36.000Z
2020-09-24T19:58:13.000Z
lightkurve/time.py
barentsen/lightkurve
5b1693832bc509e42742d1b6f20224d131e62d8c
[ "MIT" ]
null
null
null
"""Adds the BKJD and BTJD time format for use by Astropy's `Time` object.""" from astropy.time.formats import TimeNumeric, day_frac class TimeBKJD(TimeNumeric): """ Barycentric Kepler Julian Date time format. This represents the number of days since January 1, 2009 12:00:00 UTC. BKJD is the format in which times are recorded in Kepler data products. See Section 2.3.2 in the Kepler Archive Manual for details. """ name = 'bkjd' BKJDREF = 2454833 # Barycentric Kepler Julian Date offset def set_jds(self, val1, val2): self._check_scale(self._scale) # Validate scale. jd1, jd2 = day_frac(val1, val2) jd1 += self.BKJDREF self.jd1, self.jd2 = day_frac(jd1, jd2) def to_value(self, **kwargs): jd1 = self.jd1 - self.BKJDREF jd2 = self.jd2 return super().to_value(jd1=jd1, jd2=jd2, **kwargs) value = property(to_value) class TimeBTJD(TimeNumeric): """ Barycentric TESS Julian Date time format. This represents the number of days since JD 2457000.0. BTJD is the format in which times are recorded in TESS data products. """ name = 'btjd' BTJDREF = 2457000 # Barycentric TESS Julian Date offset def set_jds(self, val1, val2): self._check_scale(self._scale) # Validate scale. jd1, jd2 = day_frac(val1, val2) jd1 += self.BTJDREF self.jd1, self.jd2 = day_frac(jd1, jd2) def to_value(self, **kwargs): jd1 = self.jd1 - self.BTJDREF jd2 = self.jd2 return super().to_value(jd1=jd1, jd2=jd2, **kwargs) value = property(to_value)
32.5
76
0.651692
0ed31141ab23336ce9ccc2e9894808f8c6023279
1,503
py
Python
profiles_api/views.py
bertcanoiii/Django_RestAPI_Course
4bac42aee77187240c0628360ce43af62c8f4839
[ "MIT" ]
null
null
null
profiles_api/views.py
bertcanoiii/Django_RestAPI_Course
4bac42aee77187240c0628360ce43af62c8f4839
[ "MIT" ]
null
null
null
profiles_api/views.py
bertcanoiii/Django_RestAPI_Course
4bac42aee77187240c0628360ce43af62c8f4839
[ "MIT" ]
null
null
null
from rest_framework.views import APIView from rest_framework.response import Response from rest_framework import status from profiles_api import serializers class HelloApiView(APIView): """Test API view!""" serializer_class = serializers.HelloSerializer def get(self, response, format=None): """Returns list of API features""" an_apiview = [ "Uses HTTP Methods as functions", "Similar to traditional Django views", "Give the most control over your application logic", "Is mapped manually to urls" ] return Response({"message": "Hello!", "an_apiview": an_apiview}) def post(self, request): """Create a hello message with our name""" serializer = self.serializer_class(data=request.data) if serializer.is_valid(): name = serializer.validated_data.get("name") message = f"Hello {name}!" return Response({"message": message}) else: return Response( serializer.errors, status=status.HTTP_400_BAD_REQUEST ) def put(self, request, pk=None): """Handle updating an object""" return Response({"method": "PUT"}) def patch(self, request, pk=None): """Handle a partial update of an object""" return Response({"method": "PATCH"}) def delete(self, request, pk=None): """Delete and object""" return Response({"method": "DELETE"})
31.978723
72
0.611444
a0a62eebf1c173551ea4b944d6ecad5d17c0a636
2,765
py
Python
fmridenoise/utils/entities.py
brain-net-cog/fMRIDenoise
22de3251573bd87ffb4cf5097bd5a8bfefb6f47f
[ "Apache-2.0" ]
22
2019-06-23T14:40:02.000Z
2020-01-10T15:05:13.000Z
fmridenoise/utils/entities.py
brain-net-cog/fMRIDenoise
22de3251573bd87ffb4cf5097bd5a8bfefb6f47f
[ "Apache-2.0" ]
35
2020-01-22T16:15:16.000Z
2022-01-24T17:40:29.000Z
fmridenoise/utils/entities.py
brain-net-cog/fMRIDenoise
22de3251573bd87ffb4cf5097bd5a8bfefb6f47f
[ "Apache-2.0" ]
11
2020-04-01T21:18:41.000Z
2021-12-14T10:55:09.000Z
import typing as t from bids.layout import parse_file_entities, writing from fmridenoise.pipelines import extract_pipeline_from_path def parse_file_entities_with_pipelines(filename, entities=None, config=None, include_unmatched=False) -> t.Dict[str, str]: """ bids.extract_pipelines_from_path extended with ability to """ et_dict = parse_file_entities(filename, entities, config, include_unmatched) pipeline = extract_pipeline_from_path(filename) if pipeline: et_dict['pipeline'] = pipeline return et_dict def is_entity_subset(entity_superset: t.Dict[str, str], entity_subset: t.Dict[str, str]) -> bool: """ Checks if all key values in subset are in superset Args: entity_superset: bigger dict entity_subset: smaller dict Returns: true if all key-values pairs from entity_subset are in entity_superset """ return all(entity_superset.get(entity_key) == entity_value for entity_key, entity_value in entity_subset.items()) def build_path(entities, path_patterns, strict=False): """ Extension of bids.build_path that throws exception instead of returning None Args: entities: A dictionary mapping entity names to entity values. Entities with ``None`` or empty-string value will be removed. Otherwise, entities will be cast to string values, therefore if any format is expected (e.g., zero-padded integers), the value should be formatted. path_patterns: A dictionary mapping entity names to entity values. Entities with ``None`` or empty-string value will be removed. Otherwise, entities will be cast to string values, therefore if any format is expected (e.g., zero-padded integers), the value should be formatted. strict: If True, all passed entities must be matched inside a pattern in order to be a valid match. If False, extra entities will be ignored so long as all mandatory entities are found. Returns: built path """ path = writing.build_path(entities, path_patterns, strict) if path is not None: return path else: raise ValueError(f"Unable to build path with given entities: {entities}\n and path pattern {path_patterns}") def assert_all_entities_equal(entities: t.List[t.Dict[str, str]], *entities_names: str) -> None: if len(entities) == 0: return for name in entities_names: first = entities[0].get(name) if any(entity.get(name) != first for entity in entities): raise AssertionError(f"Not all entities equal for key: {name}\n" f"{[entitie.get(name) for entitie in entities]}")
40.072464
117
0.682821
baeb61c93d41b2a20bd8906339a7dacf6ed5c1ea
3,633
py
Python
journal/modules/api/__init__.py
Pandentia/journal
7b0d84346a5dab05de2ddc60a5c0dd40bd95d27d
[ "MIT" ]
1
2018-09-24T22:14:46.000Z
2018-09-24T22:14:46.000Z
journal/modules/api/__init__.py
Pandentia/journal
7b0d84346a5dab05de2ddc60a5c0dd40bd95d27d
[ "MIT" ]
10
2018-09-24T22:15:46.000Z
2018-10-06T19:06:36.000Z
journal/modules/api/__init__.py
Pandentia/journal
7b0d84346a5dab05de2ddc60a5c0dd40bd95d27d
[ "MIT" ]
null
null
null
import typing import functools import ujson from flask import Blueprint, Response, current_app, abort, request from werkzeug.exceptions import HTTPException from journal.helpers import recaptcha bp = Blueprint(name='api', import_name=__name__, url_prefix='/api') class UserException(Exception): def __init__(self, msg): super().__init__(msg) def verify_fields(data, check: typing.Dict[str, typing.Any], *ignore: str) -> dict: verified = {} if not isinstance(data, dict): raise UserException('Data payload is invalid.') for k, v in check.items(): if k not in data: raise UserException('Required field "{}" missing.'.format(k)) if not isinstance(data[k], v): raise UserException('Field "{}" was of type "{}", "{}" expected.' .format(k, type(data[k]).__name__, v.__name__)) verified[k] = data[k] for k in ignore: if k in data: verified[k] = data[k] return verified def respond(data: typing.Optional[typing.Union[dict, list]] = None, *, status: int = 200): resp = Response() if not data: status = 204 resp.status_code = status if data: if not isinstance(data, list) and not isinstance(data, dict): data['response'] = data resp.data = ujson.dumps(data) resp.headers = {'Content-Type': 'application/json'} return resp @bp.before_request def setup(): auth = request.headers.get('Authorization') if auth: request.user = current_app.db.get_user(token=auth) else: request.user = None def auth_required(f): @functools.wraps(f) def decorated(*args, **kwargs): if not request.user: return abort(401) return f(*args, **kwargs) return decorated def error(e): return respond({'error': {'code': e.code, 'name': e.name}}, status=e.code) @bp.errorhandler(HTTPException) def errorhandler(e): return error(e) @bp.errorhandler(UserException) def user_exception(e): return respond({'error': {'code': 400, 'name': 'Bad Request', 'info': str(e)}}, status=400) @bp.route('/login', methods=['POST']) def login(): data = verify_fields(request.json, {'username': str, 'password': str}, 'recaptcha_response') if recaptcha.is_enabled(): data = verify_fields(data, {'recaptcha_response': str}, 'username', 'password') if not recaptcha.validate(data['recaptcha_response']): raise UserException('reCAPTCHA was invalid.') user = current_app.db.get_user(username=data['username']) if user is None: raise UserException('Username or password invalid.') if not user.check_pw(data['password']): raise UserException('Username or password invalid.') return respond({'token': user.create_token()}) @bp.route('/users/@me', methods=['GET']) @auth_required def me(): return respond(request.user.to_json()) @bp.route('/entries', methods=['GET']) @auth_required def entries(): return respond([ {'id': x.id, 'author_id': x.id, 'title': x.title, 'tags': x.tags, 'timestamp': x.timestamp.isoformat()} for x in request.user.entries() ]) # noinspection PyShadowingBuiltins @bp.route('/entries/<id>', methods=['GET']) @auth_required def entry(id): try: id = int(id) if id < 0: raise ValueError() except ValueError: raise UserException('ID given is not an integer.') entry = current_app.db.get_entry(id) if not entry or not entry.can_access(request.user): return abort(404) return respond(entry.to_json())
26.911111
111
0.633911
8cb4d04d051b18ef633f5cf32a659096b1dbfd52
3,614
py
Python
InfrastructureManager/tests/test_ec2_agent_w_spot.py
UCSB-CS-RACELab/eager-appscale
d58fe64bb867ef58af19c1d84a5e1ec68ecddd3d
[ "Apache-2.0" ]
3
2016-06-12T01:18:49.000Z
2018-07-16T18:20:23.000Z
InfrastructureManager/tests/test_ec2_agent_w_spot.py
nlake44/appscale
6944af660ca4cb772c9b6c2332ab28e5ef4d849f
[ "Apache-2.0" ]
null
null
null
InfrastructureManager/tests/test_ec2_agent_w_spot.py
nlake44/appscale
6944af660ca4cb772c9b6c2332ab28e5ef4d849f
[ "Apache-2.0" ]
1
2020-05-25T02:59:15.000Z
2020-05-25T02:59:15.000Z
from agents.factory import InfrastructureAgentFactory import boto import boto.ec2 from boto.ec2.connection import EC2Connection from boto.ec2.instance import Reservation, Instance from boto.ec2.keypair import KeyPair from boto.ec2.securitygroup import SecurityGroup from boto.exception import EC2ResponseError from flexmock import flexmock from infrastructure_manager import InfrastructureManager import time from utils import utils try: from unittest import TestCase except ImportError: from unittest.case import TestCase __author__ = 'hiranya' __email__ = 'hiranya@appscale.com' class TestEC2Agent(TestCase): def test_ec2_run_instances(self): i = InfrastructureManager(blocking=True) # first, validate that the run_instances call goes through successfully # and gives the user a reservation id full_params = { 'credentials': {'a': 'b', 'EC2_URL': 'http://testing.appscale.com:8773/foo/bar', 'EC2_ACCESS_KEY': 'access_key', 'EC2_SECRET_KEY': 'secret_key'}, 'group': 'boogroup', 'image_id': 'booid', 'infrastructure': 'ec2', 'instance_type': 'booinstance_type', 'keyname': 'bookeyname', 'num_vms': '1', 'use_spot_instances': 'True', 'max_spot_price' : '1.23', 'region' : 'my-zone-1', 'zone' : 'my-zone-1b' } id = '0000000000' # no longer randomly generated full_result = { 'success': True, 'reservation_id': id, 'reason': 'none' } self.assertEquals(full_result, i.run_instances(full_params, 'secret')) # next, look at run_instances internally to make sure it actually is # updating its reservation info self.assertEquals(InfrastructureManager.STATE_RUNNING, i.reservations.get(id)['state']) vm_info = i.reservations.get(id)['vm_info'] self.assertEquals(['public-ip'], vm_info['public_ips']) self.assertEquals(['private-ip'], vm_info['private_ips']) self.assertEquals(['i-id'], vm_info['instance_ids']) def setUp(self): fake_ec2 = flexmock(name='fake_ec2') fake_ec2.should_receive('get_key_pair') fake_ec2.should_receive('create_key_pair').with_args('bookeyname') \ .and_return(KeyPair()) fake_ec2.should_receive('get_all_security_groups').and_return([]) fake_ec2.should_receive('create_security_group') \ .with_args('boogroup', 'AppScale security group') \ .and_return(SecurityGroup()) fake_ec2.should_receive('authorize_security_group') reservation = Reservation() instance = flexmock(name='instance', private_dns_name='private-ip', public_dns_name='public-ip', id='i-id', state='running', key_name='bookeyname') reservation.instances = [instance] fake_ec2.should_receive('get_all_instances').and_return([]) \ .and_return([reservation]) fake_ec2.should_receive('terminate_instances').and_return([instance]) fake_ec2.should_receive('request_spot_instances') flexmock(boto.ec2) boto.ec2.should_receive('connect_to_region').and_return(fake_ec2) (flexmock(utils) .should_receive('get_secret') .and_return('secret')) (flexmock(utils) .should_receive('sleep') .and_return()) (flexmock(utils) .should_receive('get_random_alphanumeric') .and_return('0000000000')) (flexmock(utils) .should_receive('write_key_file') .and_return()) def tearDown(self): (flexmock(utils) .should_receive('get_secret') .reset()) (flexmock(utils) .should_receive('sleep') .reset()) (flexmock(utils) .should_receive('get_random_alphanumeric') .reset())
33.462963
91
0.697288
e2102eb2c87ded066f41a8b58223ee1b2fdee9c5
4,402
py
Python
polling_stations/apps/data_importers/management/commands/import_solihull.py
danielgriffin48/UK-Polling-Stations
0e5273357a4fdc00c2af794c71558b6f8f2a0a49
[ "BSD-3-Clause" ]
null
null
null
polling_stations/apps/data_importers/management/commands/import_solihull.py
danielgriffin48/UK-Polling-Stations
0e5273357a4fdc00c2af794c71558b6f8f2a0a49
[ "BSD-3-Clause" ]
364
2020-10-19T07:16:41.000Z
2022-03-31T06:10:55.000Z
polling_stations/apps/data_importers/management/commands/import_solihull.py
danielgriffin48/UK-Polling-Stations
0e5273357a4fdc00c2af794c71558b6f8f2a0a49
[ "BSD-3-Clause" ]
null
null
null
from django.contrib.gis.geos import Point from data_importers.management.commands import BaseXpressDemocracyClubCsvImporter class Command(BaseXpressDemocracyClubCsvImporter): council_id = "E08000029" addresses_name = "parl.2019-12-12/Version 1/Democracy_Club__12December2019.CSV" stations_name = "parl.2019-12-12/Version 1/Democracy_Club__12December2019.CSV" elections = ["parl.2019-12-12"] allow_station_point_from_postcode = False def station_record_to_dict(self, record): # These polling places have a UPRN, and the addressbase postcode doesn't match # the postcode from the council. In these cases the addressbase postcode matches # the postcode used on the venue's website. # Online references toStation ID 7680 (Whar Hall Road Community Centre) don't # align with addressbase, but the postcodes are adjacent. So leaving postcode # as is in the CSV. if record.polling_place_id == "7518": # Barston Memorial Institute record = record._replace(polling_place_postcode="B92 0JU") if record.polling_place_id == "7550": # St Clements Church record = record._replace(polling_place_postcode="B36 0BA") if record.polling_place_id == "7561": # Kingshurst Evangelical Church record = record._replace(polling_place_postcode="B37 6NP") if ( record.polling_place_id == "7626" ): # The Royal British Legion (Knowle) Club Limited record = record._replace(polling_place_postcode="B93 9LU") if record.polling_place_id == "7660": # Woodlands Campus record = record._replace(polling_place_postcode="B36 0NF") # Fixes carried forward # Three Trees Community Centre if record.polling_place_id == "7571": record = record._replace(polling_place_uprn="100071461342") # Dorridge Methodist Church if record.polling_place_id == "7586": record = record._replace(polling_place_uprn="100071001475") rec = super().station_record_to_dict(record) # Tudor Grange Leisure Centre if record.polling_place_id == "7726": rec["location"] = Point(-1.7881577, 52.4124167, srid=4326) # Catherine de Barnes Village Hall if record.polling_place_id == "7515": rec["location"] = Point(-1.7382134, 52.4203089, srid=4326) return rec def address_record_to_dict(self, record): rec = super().address_record_to_dict(record) uprn = record.property_urn.strip().lstrip("0") if uprn == "10090949380": rec["postcode"] = "B93 0FH" if (record.addressline1, record.addressline2) == ( "101 Noble Way", "Cheswick Green", ): rec["uprn"] = "10090950327" rec["accept_suggestion"] = True if uprn in [ "10090945527", # B377RN -> B376RL : 3C Woodlands Way, Chelmsley Wood "10090945525", # B377RN -> B376RL : 3A Woodlands Way, Chelmsley Wood ]: rec["accept_suggestion"] = True if record.addressline6 in [ "B90 4AY", # stray odd-looking property "CV7 7HL", # single property with spurious-looking station ]: return None if uprn in [ "100071001341", # B911DA -> B911JW : 90 Grange Road, Solihull "10090946742", # B901FT -> B930EJ : Apartment 16, Leasowes House, 3 Main Street, Dickens Heath, Solihull "10090948318", # B901GL -> B913AB : Apartment 5, Market Court, 61 Old Dickens Heath Road, Shirley, Solihull "10090947804", # CV49BN -> B901FT : 12 Eagle Drive, Solihull "200003834455", # B927AW -> B927AH : St Michaels Residential Home, 251 Warwick Road, Solihull "10090946771", # B920JP -> B930FD : Caravan Firs Farm, Barston Lane, Solihull "10090948319", # B912AW -> B913AB : Flat 2, 58 Lode Lane, Solihull "100070965323", # B376ES -> B376EU : 77 Overgreen Drive, Kingshurst "100070965320", # B376ES -> B376EU : 77A Overgreen Drive, Kingshurst "100070965321", # B376ES -> B376EU : 77B Overgreen Drive, Kingshurst "100070965322", # B376ES -> B376EU : 77C Overgreen Drive, Kingshurst ]: rec["accept_suggestion"] = False return rec
46.829787
120
0.637438
a9aefe76b63591df69e485f31359a5e8e36a478c
1,301
py
Python
15/tests.py
remihuguet/aoc2020
c313c5b425dda92d949fd9ca4f18ff66f452794f
[ "MIT" ]
null
null
null
15/tests.py
remihuguet/aoc2020
c313c5b425dda92d949fd9ca4f18ff66f452794f
[ "MIT" ]
null
null
null
15/tests.py
remihuguet/aoc2020
c313c5b425dda92d949fd9ca4f18ff66f452794f
[ "MIT" ]
null
null
null
import pytest import memory inputs = [ (0, 3, 6, 436), (1, 3, 2, 1), (2, 1, 3, 10), (1, 2, 3, 27), (2, 3, 1, 78), (3, 2, 1, 438), (3, 1, 2, 1836) ] @pytest.fixture(params=inputs) def starting(request): return list(request.param[:3]), request.param[-1] def test_apply_rule_for_one_turn(): starting = list(inputs[0][:3]) assert 0 == memory.next(starting) assert 3 == memory.next(starting + [0]) assert 3 == memory.next(starting + [0, 3]) assert 1 == memory.next(starting + [0, 3, 3]) assert 0 == memory.next(starting + [0, 3, 3, 1]) assert 4 == memory.next(starting + [0, 3, 3, 1, 0]) assert 0 == memory.next(starting + [0, 3, 3, 1, 0, 4]) def test_find_2020_number(starting): numbers, expec = starting assert expec == memory.compute_number_at_turn(turn=2020, starting=numbers) inputs_high = [ (0, 3, 6, 175594), (1, 3, 2, 2578), (2, 1, 3, 3544142), (1, 2, 3, 261214), (2, 3, 1, 6895259), (3, 2, 1, 18), (3, 1, 2, 362) ] @pytest.fixture(params=inputs_high) def starting_h(request): return list(request.param[:3]), request.param[-1] def test_find_high_number(starting_h): numbers, expec = starting_h assert expec == memory.compute_number_at_turn(turn=30000000, starting=numbers)
23.654545
82
0.601845
7ad45585d373b05738f33a228a114bffd168c7de
3,165
py
Python
ranking_baselines/DUET/test.py
dileep1996/mnsrf_ranking_suggestion
5bd241fb49f08fa4937539991e12e5a502d5a072
[ "MIT" ]
1
2020-02-04T18:27:25.000Z
2020-02-04T18:27:25.000Z
ranking_baselines/DUET/test.py
dileep1996/mnsrf_ranking_suggestion
5bd241fb49f08fa4937539991e12e5a502d5a072
[ "MIT" ]
null
null
null
ranking_baselines/DUET/test.py
dileep1996/mnsrf_ranking_suggestion
5bd241fb49f08fa4937539991e12e5a502d5a072
[ "MIT" ]
null
null
null
############################################################################### # Author: Wasi Ahmad # Project: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/10/wwwfp0192-mitra.pdf # Date Created: 7/23/2017 # # File Description: This script evaluates test ranking performance. ############################################################################### import torch, helper, util, data, os, numpy from model import DUET from rank_metrics import mean_average_precision, NDCG, MRR args = util.get_args() # Set the random seed manually for reproducibility. numpy.random.seed(args.seed) torch.manual_seed(args.seed) def test_ranking(model, test_batches): num_batches = len(test_batches) map, mrr, ndcg_1, ndcg_3, ndcg_5, ndcg_10 = 0, 0, 0, 0, 0, 0 for batch_no in range(1, num_batches + 1): test_queries, test_docs, test_labels = helper.batch_to_tensor(test_batches[batch_no - 1], model.dictionary, model.config.max_query_length, model.config.max_doc_length) if model.config.cuda: test_queries = test_queries.cuda() test_docs = test_docs.cuda() test_labels = test_labels.cuda() softmax_prob = model(test_queries, test_docs) map += mean_average_precision(softmax_prob, test_labels) mrr += MRR(softmax_prob, test_labels) ndcg_1 += NDCG(softmax_prob, test_labels, 1) ndcg_3 += NDCG(softmax_prob, test_labels, 3) ndcg_5 += NDCG(softmax_prob, test_labels, 5) ndcg_10 += NDCG(softmax_prob, test_labels, 10) map = map / num_batches mrr = mrr / num_batches ndcg_1 = ndcg_1 / num_batches ndcg_3 = ndcg_3 / num_batches ndcg_5 = ndcg_5 / num_batches ndcg_10 = ndcg_10 / num_batches print('MAP - ', map) print('MRR - ', mrr) print('NDCG@1 - ', ndcg_1) print('NDCG@3 - ', ndcg_3) print('NDCG@5 - ', ndcg_5) print('NDCG@10 - ', ndcg_10) if __name__ == "__main__": dictionary = data.Dictionary(5) dictionary.load_dictionary(args.save_path, 'vocab.csv', 5000) model = DUET(dictionary, args) if 'CUDA_VISIBLE_DEVICES' in os.environ: cuda_visible_devices = [int(x) for x in os.environ['CUDA_VISIBLE_DEVICES'].split(',')] if len(cuda_visible_devices) > 1: model = torch.nn.DataParallel(model, device_ids=cuda_visible_devices) if args.cuda: model = model.cuda() checkpoint = helper.load_from_checkpoint(os.path.join(args.save_path, 'model_best.pth.tar'), args.cuda) model.load_state_dict(checkpoint['state_dict']) model.eval() test_corpus = data.Corpus(args.tokenize, args.max_query_length, args.max_doc_length) test_corpus.parse(args.data + 'test.txt', args.max_example) print('test set size = ', len(test_corpus.data)) test_batches = helper.batchify(test_corpus.data, args.batch_size) print('number of test batches = ', len(test_batches)) test_ranking(model, test_batches)
40.576923
116
0.610111
0494b20c832dcb8ce3a9cf4f51be82889baaaf7d
3,785
py
Python
ProjetoMercado/mercado/migrations/0009_categoria_cliente_compra_fornecedor_funcionario_produto_setor.py
LucasRodriguesDaPaixao/ProjetoMercado
7a086ab0af800b15ef090520c9c81a0cd83dd650
[ "MIT" ]
null
null
null
ProjetoMercado/mercado/migrations/0009_categoria_cliente_compra_fornecedor_funcionario_produto_setor.py
LucasRodriguesDaPaixao/ProjetoMercado
7a086ab0af800b15ef090520c9c81a0cd83dd650
[ "MIT" ]
null
null
null
ProjetoMercado/mercado/migrations/0009_categoria_cliente_compra_fornecedor_funcionario_produto_setor.py
LucasRodriguesDaPaixao/ProjetoMercado
7a086ab0af800b15ef090520c9c81a0cd83dd650
[ "MIT" ]
null
null
null
# Generated by Django 3.0.7 on 2020-07-20 03:56 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('mercado', '0008_auto_20200720_0056'), ] operations = [ migrations.CreateModel( name='Categoria', fields=[ ('ID_categoria', models.AutoField(primary_key=True, serialize=False)), ('nome_categoria', models.CharField(max_length=45, verbose_name='Nome Categoria:')), ], ), migrations.CreateModel( name='Cliente', fields=[ ('ID_cliente', models.AutoField(primary_key=True, serialize=False)), ('nome_cliente', models.CharField(max_length=100, verbose_name='Nome:')), ('cpf', models.CharField(max_length=15, verbose_name='CPF:')), ], ), migrations.CreateModel( name='Fornecedor', fields=[ ('ID_fornecedor', models.AutoField(primary_key=True, serialize=False)), ('nome_fornecedor', models.CharField(max_length=100, verbose_name='Nome:')), ('email_fornecedor', models.CharField(max_length=100, verbose_name='Email:')), ('cnpj', models.CharField(max_length=20, verbose_name='CNPJ:')), ('telefone', models.CharField(max_length=11, verbose_name='Telefone:')), ], ), migrations.CreateModel( name='Setor', fields=[ ('ID_setor', models.AutoField(primary_key=True, serialize=False)), ('nome_setor', models.CharField(max_length=45, verbose_name='Setor:')), ('FK_categoria', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='mercado.Categoria')), ], ), migrations.CreateModel( name='Produto', fields=[ ('ID_produto', models.AutoField(primary_key=True, serialize=False)), ('nome_produto', models.CharField(max_length=100, verbose_name='Nome:')), ('data_validade', models.DateField(verbose_name='Data de validade:')), ('preco', models.DecimalField(decimal_places=2, max_digits=5, verbose_name='Preço:')), ('quantidade_produto', models.IntegerField(verbose_name='Quantidade de produtos:')), ('FK_categoria', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='mercado.Categoria')), ('FK_fornecedor', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='mercado.Fornecedor')), ], ), migrations.CreateModel( name='Funcionario', fields=[ ('ID_funcionario', models.AutoField(primary_key=True, serialize=False)), ('nome_funcionario', models.CharField(max_length=45, verbose_name='Nome:')), ('rg', models.CharField(max_length=15, verbose_name='RG:')), ('cpf', models.CharField(max_length=15, verbose_name='CPF:')), ('FK_setor', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='mercado.Setor')), ], ), migrations.CreateModel( name='Compra', fields=[ ('ID_compra', models.AutoField(primary_key=True, serialize=False)), ('valor_total', models.DecimalField(decimal_places=2, max_digits=5, verbose_name='Valor total:')), ('FK_cliente', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='mercado.Cliente')), ('compra_produto', models.ManyToManyField(to='mercado.Produto')), ], ), ]
46.728395
123
0.586526
c92fe0a2d25d872fa12d88c6134dd6759ab24310
1,457
py
Python
Bugscan_exploits-master/exp_list/exp-2469.py
csadsl/poc_exp
e3146262e7403f19f49ee2db56338fa3f8e119c9
[ "MIT" ]
11
2020-05-30T13:53:49.000Z
2021-03-17T03:20:59.000Z
Bugscan_exploits-master/exp_list/exp-2469.py
csadsl/poc_exp
e3146262e7403f19f49ee2db56338fa3f8e119c9
[ "MIT" ]
6
2020-05-13T03:25:18.000Z
2020-07-21T06:24:16.000Z
Bugscan_exploits-master/exp_list/exp-2469.py
csadsl/poc_exp
e3146262e7403f19f49ee2db56338fa3f8e119c9
[ "MIT" ]
6
2020-05-30T13:53:51.000Z
2020-12-01T21:44:26.000Z
#!/usr/bin/evn python #--coding:utf-8--*-- #Name:天睿电子图书管理系统系统10处注入打包 避免重复 #Refer:http://www.wooyun.org/bugs/wooyun-2015-0120852/ #Author:xq17 def assign(service,arg): if service=="tianrui_lib": return True,arg def audit(arg): urls = [ arg + 'gl_tj_0.asp?id=1', arg + 'gl_tuijian_1.asp', arg + 'gl_tz_she.asp?zt=1&id=1', arg + 'gl_us_shan.asp?id=1', arg + 'gl_xiu.asp?id=1', arg + 'mafen.asp?shuxing=1', arg + 'ping_cha.asp?mingcheng=1', arg + 'ping_hao.asp?mingcheng=1', arg + 'pl_add.asp?id=1', arg + 'search.asp?keywords=1&shuxing=1', ] for url in urls: url += '%20and%201=convert(int,CHAR(87)%2BCHAR(116)%2BCHAR(70)%2BCHAR(97)%2BCHAR(66)%2BCHAR(99)%2B@@version)' code, head, res, err, _ = curl.curl2(url) if((code == 200) or (code == 500)) and ('WtFaBcMicrosoft SQL Server' in res): security_hole("SQL Injection: " + url) url = arg + 'gl_tz_she.asp?zt=11%20WHERE%201=1%20AND%201=convert(int,CHAR(87)%2BCHAR(116)%2BCHAR(70)%2BCHAR(97)%2BCHAR(66)%2BCHAR(99)%2B@@version)--' code, head, res, err, _ = curl.curl2(url) if ((code == 200) or (code == 500)) and ('WtFaBcMicrosoft SQL Server' in res): security_hole("SQL Injection: " + url) if __name__ == '__main__': from dummy import * audit(assign('tianrui_lib','http://218.92.71.5:1085/trebook/')[1])
41.628571
154
0.587509
2caf4546b83e6c4a23926892eeadc71f9025be02
14,907
py
Python
a2c_ppo_acktr/model.py
fgolemo/pytorch-a2c-ppo-acktr-gail
366d22b7e6a049fb3de804619050cc6e61af86e2
[ "MIT" ]
1
2019-07-05T19:57:26.000Z
2019-07-05T19:57:26.000Z
a2c_ppo_acktr/model.py
fgolemo/pytorch-a2c-ppo-acktr-gail
366d22b7e6a049fb3de804619050cc6e61af86e2
[ "MIT" ]
1
2020-09-16T13:00:16.000Z
2020-09-16T13:00:16.000Z
a2c_ppo_acktr/model.py
fgolemo/pytorch-a2c-ppo-acktr-gail
366d22b7e6a049fb3de804619050cc6e61af86e2
[ "MIT" ]
3
2019-07-07T20:16:27.000Z
2020-12-23T20:18:18.000Z
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from efficientnet_pytorch import EfficientNet from torchvision.models import vgg16, mobilenet_v2 from a2c_ppo_acktr.distributions import Bernoulli, Categorical, DiagGaussian from a2c_ppo_acktr.utils import init class Flatten(nn.Module): def forward(self, x): return x.view(x.size(0), -1) class Policy(nn.Module): def __init__(self, obs_shape, action_space, base=None, base_kwargs=None, navi=False, hidden_size=64): super(Policy, self).__init__() print("====", obs_shape, len(obs_shape)) if base_kwargs is None: base_kwargs = {} if base is None: if len(obs_shape) == 3 or len(obs_shape) == 2: # TODO(add hidden size) base = CNNBase elif len(obs_shape) == 1: base = MLPBase else: raise NotImplementedError print("DEV: PPO using base:", type(base).__name__) self.base = base(obs_shape[0], hidden_size=hidden_size, **base_kwargs) # print(self.base.state_dict().keys()) if action_space.__class__.__name__ == "Discrete": num_outputs = action_space.n net_outputs = self.base.output_size if navi: net_outputs = 256 * 10 self.dist = Categorical(net_outputs, num_outputs) elif action_space.__class__.__name__ == "Box": num_outputs = action_space.shape[0] self.dist = DiagGaussian(self.base.output_size, num_outputs) elif action_space.__class__.__name__ == "MultiBinary": num_outputs = action_space.shape[0] self.dist = Bernoulli(self.base.output_size, num_outputs) else: raise NotImplementedError @property def is_recurrent(self): return self.base.is_recurrent @property def recurrent_hidden_state_size(self): """Size of rnn_hx.""" return self.base.recurrent_hidden_state_size def forward(self, inputs, rnn_hxs, masks): raise NotImplementedError def act(self, inputs, rnn_hxs, masks, deterministic=False): value, actor_features, rnn_hxs = self.base(inputs, rnn_hxs, masks) dist = self.dist(actor_features) if deterministic: action = dist.mode() else: action = dist.sample() action_log_probs = dist.log_probs(action) dist_entropy = dist.entropy().mean() return value, action, action_log_probs, rnn_hxs def get_value(self, inputs, rnn_hxs, masks): value, _, _ = self.base(inputs, rnn_hxs, masks) return value def evaluate_actions(self, inputs, rnn_hxs, masks, action): value, actor_features, rnn_hxs = self.base(inputs, rnn_hxs, masks) dist = self.dist(actor_features) action_log_probs = dist.log_probs(action) dist_entropy = dist.entropy().mean() return value, action_log_probs, dist_entropy, rnn_hxs class RandomPolicy(Policy): def __init__(self, obs_shape, action_space, base=None, base_kwargs=None, navi=False): super(RandomPolicy, self).__init__(obs_shape, action_space, base, base_kwargs, navi) self.action_space = action_space @property def is_recurrent(self): pass @property def recurrent_hidden_state_size(self): return torch.tensor(10) def forward(self, inputs, rnn_hxs, masks): pass def act(self, inputs, rnn_hxs, masks, deterministic=False): return ( torch.tensor([10]), torch.tensor([[np.random.choice(self.action_space.n)]]), torch.tensor([1]), torch.tensor([range(10)]), ) def get_value(self, inputs, rnn_hxs, masks): return torch.tensor(-1) def evaluate_actions(self, inputs, rnn_hxs, masks, action): return None class NNBase(nn.Module): def __init__(self, recurrent, recurrent_input_size, hidden_size, n_layers): super(NNBase, self).__init__() self._hidden_size = hidden_size self._recurrent = recurrent if recurrent: self.gru = nn.GRU(recurrent_input_size, hidden_size) for name, param in self.gru.named_parameters(): if "bias" in name: nn.init.constant_(param, 0) elif "weight" in name: nn.init.orthogonal_(param) @property def is_recurrent(self): return self._recurrent @property def recurrent_hidden_state_size(self): if self._recurrent: return self._hidden_size return 1 @property def output_size(self): return self._hidden_size def _forward_gru(self, x, hxs, masks): if x.size(0) == hxs.size(0): x, hxs = self.gru(x.unsqueeze(0), (hxs * masks).unsqueeze(0)) x = x.squeeze(0) hxs = hxs.squeeze(0) else: # x is a (T, N, -1) tensor that has been flatten to (T * N, -1) N = hxs.size(0) T = int(x.size(0) / N) # unflatten x = x.view(T, N, x.size(1)) # Same deal with masks masks = masks.view(T, N) # Let's figure out which steps in the sequence have a zero for any agent # We will always assume t=0 has a zero in it as that makes the logic cleaner has_zeros = (masks[1:] == 0.0).any(dim=-1).nonzero().squeeze().cpu() # +1 to correct the masks[1:] if has_zeros.dim() == 0: # Deal with scalar has_zeros = [has_zeros.item() + 1] else: has_zeros = (has_zeros + 1).numpy().tolist() # add t=0 and t=T to the list has_zeros = [0] + has_zeros + [T] hxs = hxs.unsqueeze(0) outputs = [] for i in range(len(has_zeros) - 1): # We can now process steps that don't have any zeros in masks together! # This is much faster start_idx = has_zeros[i] end_idx = has_zeros[i + 1] rnn_scores, hxs = self.gru(x[start_idx:end_idx], hxs * masks[start_idx].view(1, -1, 1)) outputs.append(rnn_scores) # assert len(outputs) == T # x is a (T, N, -1) tensor x = torch.cat(outputs, dim=0) # flatten x = x.view(T * N, -1) hxs = hxs.squeeze(0) return x, hxs class CNNBase(NNBase): def __init__(self, num_inputs, recurrent=False, hidden_size=512): super(CNNBase, self).__init__(recurrent, hidden_size, hidden_size, 0) init_ = lambda m: init( m, nn.init.orthogonal_, lambda x: nn.init.constant_(x, 0), nn.init.calculate_gain("relu") ) self.main = nn.Sequential( init_(nn.Conv2d(num_inputs, 32, 8, stride=4)), nn.ReLU(), init_(nn.Conv2d(32, 64, 4, stride=2)), nn.ReLU(), init_(nn.Conv2d(64, 32, 3, stride=1)), nn.ReLU(), Flatten(), init_(nn.Linear(32 * 7 * 7, hidden_size)), nn.ReLU(), ) init_ = lambda m: init(m, nn.init.orthogonal_, lambda x: nn.init.constant_(x, 0)) self.critic_linear = init_(nn.Linear(hidden_size, 1)) self.train() def forward(self, inputs, rnn_hxs, masks): # show(make_grid((inputs/255.0).view(4,3,84,84))) if torch.max(inputs) > 1: inputs /= 255.0 x = self.main(inputs) # print (x.size()) # 1,512 if self.is_recurrent: x, rnn_hxs = self._forward_gru(x, rnn_hxs, masks) return self.critic_linear(x), x, rnn_hxs class VGGBase(NNBase): def __init__(self, num_inputs, recurrent=False, hidden_size=4096): super(VGGBase, self).__init__(recurrent, hidden_size, hidden_size) self.main = vgg16(pretrained=True, progress=True) self.main.classifier = nn.Sequential(*list(self.main.classifier.children())[:-3]) init_ = lambda m: init(m, nn.init.orthogonal_, lambda x: nn.init.constant_(x, 0)) self.critic_linear = init_(nn.Linear(hidden_size, 1)) self.train() def forward(self, inputs, rnn_hxs, masks): x = self.main(inputs / 255.0) if self.is_recurrent: x, rnn_hxs = self._forward_gru(x, rnn_hxs, masks) return self.critic_linear(x), x, rnn_hxs class MobilenetBase(NNBase): def __init__(self, num_inputs, recurrent=False, hidden_size=1280): super(MobilenetBase, self).__init__(recurrent, hidden_size, hidden_size) self.main = mobilenet_v2(pretrained=True, progress=True) self.main.classifier = nn.Identity() init_ = lambda m: init(m, nn.init.orthogonal_, lambda x: nn.init.constant_(x, 0)) self.critic_linear = init_(nn.Linear(hidden_size, 1)) self.train() def forward(self, inputs, rnn_hxs, masks): x = self.main(inputs / 255.0) if self.is_recurrent: x, rnn_hxs = self._forward_gru(x, rnn_hxs, masks) return self.critic_linear(x), x, rnn_hxs class EfficientnetBase(NNBase): def __init__(self, num_inputs, recurrent=False, hidden_size=5120): super(EfficientnetBase, self).__init__(recurrent, hidden_size, hidden_size) self.main = EfficientNet.from_pretrained("efficientnet-b0", advprop=False) init_ = lambda m: init(m, nn.init.orthogonal_, lambda x: nn.init.constant_(x, 0)) self.critic_linear = init_(nn.Linear(hidden_size, 1)) self.train() def forward(self, inputs, rnn_hxs, masks): x = self.main.extract_features(inputs / 255.0).view(-1, 1280 * 4) if self.is_recurrent: x, rnn_hxs = self._forward_gru(x, rnn_hxs, masks) return self.critic_linear(x), x, rnn_hxs class MLPBase(NNBase): def __init__(self, num_inputs, recurrent=False, hidden_size=64, n_layers=2): super(MLPBase, self).__init__(recurrent, num_inputs, hidden_size, n_layers) if recurrent: num_inputs = hidden_size init_ = lambda m: init(m, nn.init.orthogonal_, lambda x: nn.init.constant_(x, 0), np.sqrt(2)) # self.actor = nn.Sequential(init_( # nn.Linear(num_inputs, hidden_size)), # nn.Tanh(), # init_(nn.Linear(hidden_size, hidden_size)), # nn.Tanh() # ) self.actor = [init_(nn.Linear(num_inputs, hidden_size)), nn.Tanh()] for _ in range(n_layers - 1): self.actor += [init_(nn.Linear(hidden_size, hidden_size)), nn.Tanh()] self.actor = nn.Sequential(*self.actor) # self.critic = nn.Sequential(init_( # nn.Linear(num_inputs, hidden_size)), # nn.Tanh(), # init_(nn.Linear(hidden_size, hidden_size)), # nn.Tanh() # ) self.critic = [init_(nn.Linear(num_inputs, hidden_size)), nn.Tanh()] for _ in range(n_layers - 1): self.critic += [init_(nn.Linear(hidden_size, hidden_size)), nn.Tanh()] self.critic = nn.Sequential(*self.critic) self.critic_linear = init_(nn.Linear(hidden_size, 1)) self.train() def forward(self, inputs, rnn_hxs, masks): x = inputs if self.is_recurrent: x, rnn_hxs = self._forward_gru(x, rnn_hxs, masks) hidden_critic = self.critic(x) hidden_actor = self.actor(x) return self.critic_linear(hidden_critic), hidden_actor, rnn_hxs class NaviBase(NNBase): def __init__(self, num_inputs, recurrent=False, num_streets=4, hidden_size=256, total_hidden_size=(256 * 10)): if recurrent: raise NotImplementedError("recurrent policy not done yet") super(NaviBase, self).__init__(recurrent, hidden_size, hidden_size) self.num_streets = num_streets init_cnn = lambda m: init( m, nn.init.orthogonal_, lambda x: nn.init.constant_(x, 0), nn.init.calculate_gain("relu") ) init_dense = lambda m: init(m, nn.init.orthogonal_, lambda x: nn.init.constant_(x, 0), np.sqrt(2)) self.img_embed = nn.Sequential( init_cnn(nn.Conv2d(3, 32, 3, stride=2)), nn.ReLU(), init_cnn(nn.Conv2d(32, 64, 5, stride=2)), nn.ReLU(), init_cnn(nn.Conv2d(64, 32, 5, stride=2)), nn.ReLU(), Flatten(), init_cnn(nn.Linear(32 * 8 * 8, hidden_size)), nn.ReLU(), ) # NeED to look if different activation functions self.coord_embed = nn.Sequential( init_dense(nn.Linear(2, 64)), nn.Tanh(), init_dense(nn.Linear(64, hidden_size)), nn.Tanh() ) self.number_embed = nn.Sequential(init_dense(nn.Linear(10, 64)), nn.Tanh()) self.street_embed = nn.Sequential(init_dense(nn.Linear(self.num_streets, hidden_size)), nn.Tanh()) init_ = lambda m: init(m, nn.init.orthogonal_, lambda x: nn.init.constant_(x, 0)) self.critic_linear = init_(nn.Linear(total_hidden_size, 1)) self.train() def forward(self, inputs, rnn_hxs, masks): image = inputs[:, :3, :, :] rel_gps = inputs[:, 3, 0, :2] abs_gps = inputs[:, 3, 0, 2:4] vis_street_names = inputs[:, 3, 1, : 2 * self.num_streets] vis_house_numbers = torch.cat([inputs[:, 3, 2, :84], inputs[:, 3, 3, :36]], dim=1) goal_house_numbers = inputs[:, 3, 4, :40] goal_street_name = inputs[:, 3, 4, 40 : 40 + self.num_streets] img_e = self.img_embed(image) rel_gps_e = self.coord_embed(rel_gps) abs_gps_e = self.coord_embed(abs_gps) goal_hn_e = torch.tensor([]) vis_hn_e = torch.tensor([]) vis_sn_e = torch.tensor([]) if torch.cuda.is_available(): goal_hn_e = goal_hn_e.cuda() vis_hn_e = vis_hn_e.cuda() vis_sn_e = vis_sn_e.cuda() for i in range(4): goal_hn_embed = self.number_embed(goal_house_numbers[:, i * 10 : (i + 1) * 10]) goal_hn_e = torch.cat((goal_hn_e, goal_hn_embed), dim=1) goal_sn_e = self.street_embed(goal_street_name) for j in range(3): offset = j * 40 for i in range(4): vis_hn_embed = self.number_embed(vis_house_numbers[:, offset + (i * 10) : offset + ((i + 1) * 10)]) vis_hn_e = torch.cat((vis_hn_e, vis_hn_embed), dim=1) for i in range(2): vis_sn_embed = self.street_embed(vis_street_names[:, i * self.num_streets : (i + 1) * self.num_streets]) vis_sn_e = torch.cat((vis_sn_e, vis_sn_embed), dim=1) x = torch.cat((img_e, rel_gps_e, abs_gps_e, goal_hn_e, goal_sn_e, vis_hn_e, vis_sn_e), dim=1) return self.critic_linear(x), x, rnn_hxs
34.427252
116
0.59576
22553da8402761e1da2d467b554fcb89de63b5fb
2,049
py
Python
code/sklearn_comparison.py
pcwright1/my_linear_svm
c3e97fd4ad62b11a0e3fa97e311e214f4d55f649
[ "MIT" ]
1
2019-04-23T13:48:17.000Z
2019-04-23T13:48:17.000Z
code/sklearn_comparison.py
pcwright1/my_linear_svm
c3e97fd4ad62b11a0e3fa97e311e214f4d55f649
[ "MIT" ]
null
null
null
code/sklearn_comparison.py
pcwright1/my_linear_svm
c3e97fd4ad62b11a0e3fa97e311e214f4d55f649
[ "MIT" ]
null
null
null
import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn import preprocessing #import matplotlib.pyplot as plt import os import time from multiprocessing.dummy import Pool as ThreadPool import svm from sklearn.model_selection import train_test_split from sklearn import svm as sklearnsvm import matplotlib.pyplot as plt from sklearn import datasets if __name__ == '__main__': #import data digits = datasets.load_digits() # To apply a classifier on this data, we need to flatten the images, to # turn the data in a (samples, feature) matrix: n_samples = len(digits.images) data = digits.images.reshape((n_samples, -1)) # Create training and test sets X_train = data[:int(n_samples / 2)] val_features = data[int(n_samples / 2):] y_train = digits.target[:int(n_samples / 2)] val_labels = digits.target[int(n_samples / 2):] # Standardize the data scaler = preprocessing.StandardScaler() X_train = scaler.fit_transform(X_train) val_features = scaler.fit_transform(val_features) # Run classifier classifier_betas, i_vals, j_vals, objs = svm.one_v_one_classifiers(x=X_train, y=y_train, lambd=-1, max_iters=100) # Misclassification error linSVM_misclassification = np.mean(svm.predict_label(val_features, classifier_betas, i_vals,j_vals) != val_labels) print("Misclassification rate:",np.mean(linSVM_misclassification)) clf = sklearnsvm.SVC() clf.fit(X_train, y_train) #print(clf.predict(val_features)) #print(val_labels) print("misclassification skl:",np.mean(clf.predict(val_features) != val_labels))
37.254545
81
0.599805
c0e5fd4cafd3bd82d5cfbea860fbfac72ff86ee5
177
py
Python
newspaperdemo/controllers/article.py
easy-quest/demo-news
33807b1c0e7663ca902530d52ab863a815c79649
[ "MIT" ]
29
2015-08-08T13:51:03.000Z
2021-12-26T14:42:28.000Z
newspaperdemo/controllers/article.py
easy-quest/demo-news
33807b1c0e7663ca902530d52ab863a815c79649
[ "MIT" ]
1
2017-08-04T01:12:54.000Z
2017-08-04T01:13:52.000Z
newspaperdemo/controllers/article.py
easy-quest/demo-news
33807b1c0e7663ca902530d52ab863a815c79649
[ "MIT" ]
20
2016-01-17T19:14:56.000Z
2021-12-01T22:01:47.000Z
from flask import Blueprint, render_template, request mod = Blueprint('article', __name__) @mod.route('/article') def index(): return render_template('article/index.html')
25.285714
53
0.751412
e1b76edef2ebb94338bfb094954331e2da7cb207
2,655
py
Python
src/blockchain.py
kiran94/blockchain-tutorial
b561e1d9bf08ca5b5fa41a54720806376e68b4bf
[ "MIT" ]
null
null
null
src/blockchain.py
kiran94/blockchain-tutorial
b561e1d9bf08ca5b5fa41a54720806376e68b4bf
[ "MIT" ]
null
null
null
src/blockchain.py
kiran94/blockchain-tutorial
b561e1d9bf08ca5b5fa41a54720806376e68b4bf
[ "MIT" ]
null
null
null
''' This module provides a Simple Blockchain implementation for learning. Block Structure: https://gist.github.com/dvf/79633bf97e2a831f066f699d41c2b9d5#file-blockchain-py ''' from time import time from hash import Hash class Blockchain: ''' Blockchain implementation Responsible for managing the chain and will store transactions and have some helper functions for interacting with the chain. ''' def __init__(self): ''' Creates an Empty Blockchain instance. ''' # Create an empty chain and no transactions on start. self.chain = [] self.current_transactions = [] # Create the Genesis Block. self.new_block(proof=100, previous_hash=1) def new_block(self, proof, previous_hash=None): ''' Creates a new Block in the Blockchain. :param proof: <int> The Proof given by the proof of work algorithm :param previous_hash: (Optional) <str> Hash of the previous block :return <dict> New Block. ''' # Create the new block with the current transactions # and linked to the previous hash or latest in the chain. block = { 'index' : len(self.chain) + 1, 'timestamp' : time(), 'transactions' : self.current_transactions, 'proof' : proof, # New block stores the has of the previous block. 'previous_hash' : previous_hash or Hash.hash(self.chain[-1]) } # Reset the current list of transactions # as they have been mined into the above block. self.current_transactions = [] # Add the block to the chain. self.chain.append(block) return block def new_transaction(self, sender, recipient, amount): ''' Creates a new transaction to go to the next mined block. :param sender: <str> Address of the sender :param recipient: <str> Address of the recipient :param amount: <int> Amount to send :return: <int> The index of the block that will hold this transaction. ''' # Add the new transaction to the current transactions, # to be mined in the next block. self.current_transactions.append( { 'sender' : sender, 'recipient' : recipient, 'amount' : amount }) return self.last_block["index"] + 1 @property def last_block(self): ''' Returns the last block in the chain. ''' return self.chain[-1]
29.831461
100
0.588324
d1bc5f4bfaf3e634bf2637d7dc50e160d19b033b
3,803
py
Python
poll_project/settings.py
waregagbagbo/Social_App
a6cc83b09de613fb1b51f8a5596366cc8c5c6806
[ "MIT" ]
null
null
null
poll_project/settings.py
waregagbagbo/Social_App
a6cc83b09de613fb1b51f8a5596366cc8c5c6806
[ "MIT" ]
null
null
null
poll_project/settings.py
waregagbagbo/Social_App
a6cc83b09de613fb1b51f8a5596366cc8c5c6806
[ "MIT" ]
null
null
null
""" Django settings for poll_project project. Generated by 'django-admin startproject' using Django 4.0. For more information on this file, see https://docs.djangoproject.com/en/4.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/4.0/ref/settings/ """ import os from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/4.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-qfby32a^ik_@=7dx2@6()&y=hs3(u0=kh2bi@_vm0)2=%-v+e=' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'accounts', 'polls', 'socials', 'bulma', #"social_django", ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'poll_project.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS':[os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'poll_project.wsgi.application' # Database # https://docs.djangoproject.com/en/4.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/4.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/4.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/4.0/howto/static-files/ STATIC_URL = 'static/' STATIC_ROOT = os.path.join(BASE_DIR,'/static/') MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR,'/media/') STATICFILES_DIR = BASE_DIR/'static' # Default primary key field type # https://docs.djangoproject.com/en/4.0/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField' LOGOUT_REDIRECT_URL = '/' from django.contrib.messages import constants as messages MESSAGE_TAGS ={ messages.DEBUG: 'debug', messages.INFO: 'info', messages.SUCCESS: 'success', messages.WARNING: 'warning', messages.ERROR: 'error' }
25.52349
91
0.692348
aedcf66269f2d205a5f0b45b573103b9527fbae4
2,933
py
Python
python/misc/whos_the_oldest.py
christopher-burke/warmups
140c96ada87ec5e9faa4622504ddee18840dce4a
[ "MIT" ]
null
null
null
python/misc/whos_the_oldest.py
christopher-burke/warmups
140c96ada87ec5e9faa4622504ddee18840dce4a
[ "MIT" ]
2
2022-03-10T03:49:14.000Z
2022-03-14T00:49:54.000Z
python/misc/whos_the_oldest.py
christopher-burke/warmups
140c96ada87ec5e9faa4622504ddee18840dce4a
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """Find the oldest. Who's The Oldest? Given a dictionary containing the names and ages of a group of people, return the name of the oldest person. Source: https://edabit.com/challenge/3A6x5GjWmT4t8pssL""" def oldest(people: dict) -> str: """Find the oldest person in people dict.""" oldest_age = max(people.values()) oldest_person = [person for person, age in people.items() if age == oldest_age][0] return oldest_person def main(): """Run sample oldest functions. Do not import.""" assert oldest({'Charlotte': 53, 'Oliver': 15, 'Henry': 18, 'Gabriel': 46, 'Violet': 13}) == "Charlotte" assert oldest({'Grayson': 50, 'Imogen': 63, 'Logan': 21, 'Daniel': 64, 'Rory': 19}) == "Daniel" assert oldest({'Josh': 78, 'Adam': 63, 'Aria': 65, 'Grace': 51, 'Bella': 37}) == "Josh" assert oldest({'Alex': 9, 'Jayden': 18, 'Julia': 43, 'Penelope': 32, 'Ella': 34}) == "Julia" assert oldest({'Sam': 65, 'Joseph': 60, 'Mia': 41, 'Thomas': 31, 'Rebecca': 5}) == "Sam" assert oldest({'Eden': 64, 'Archie': 18, 'Olivia': 32, 'Kai': 84, 'Harry': 14}) == "Kai" assert oldest({'Anna': 67, 'Elijah': 10, 'Cole': 31, 'Andrew': 24, 'Elliot': 77}) == "Elliot" assert oldest({'Innes': 77, 'Lilly': 11, 'Hallie': 41, 'Nina': 66, 'Ryan': 9}) == "Innes" assert oldest({'Isla': 73, 'Elsie': 6, 'Frankie': 36, 'Robbie': 75, 'Kayla': 9}) == "Robbie" assert oldest({'Jack': 64, 'Jacob': 33, 'Tommy': 17, 'Finn': 5, 'Isaac': 13}) == "Jack" assert oldest({'Carson': 81, 'Charlie': 33, 'Riley': 28, 'Maria': 39, 'Sadie': 67}) == "Carson" assert oldest({'Amy': 70, 'Owen': 11, 'Matilda': 64, 'Lexi': 37, 'Lena': 26}) == "Amy" assert oldest({'Lola': 45, 'Tyler': 23, 'Hope': 4, 'Phoebe': 86, 'Freya': 44}) == "Phoebe" assert oldest({'Hollie': 48, 'Harris': 24, 'Ava': 72, 'Alfie': 9, 'Louis': 47}) == "Ava" assert oldest({'Erica': 32, 'Eve': 82, 'Harper': 74, 'Summer': 38, 'Ben': 72}) == "Eve" assert oldest({'Michael': 63, 'Jessica': 65, 'Reuben': 25, 'Aiden': 82, 'Emily': 18}) == "Aiden" assert oldest({'Brooke': 8, 'Lucy': 44, 'Cooper': 33, 'Ellie': 82, 'Millie': 7}) == "Ellie" assert oldest({'Piper': 10, 'Quinn': 62, 'David': 20, 'John': 61, 'Noah': 17}) == "Quinn" assert oldest({'Cara': 5, 'Max': 81, 'Lucas': 62, 'Sophie': 71, 'Amelia': 79}) == "Max" assert oldest({'Leo': 29, 'Clara': 8, 'Florence': 69, 'Lewis': 38, 'James': 47}) == "Florence" print('Passed.') if __name__ == "__main__": main()
43.132353
70
0.492329
e05a8f197347fe4ce02b71f8a88eb3115ceb99a5
1,932
py
Python
dotmatrix/visualization/layout.py
alvinlao/dot-matrix-map
32925d5ede38c634ab53b966d779786366a1855c
[ "MIT" ]
null
null
null
dotmatrix/visualization/layout.py
alvinlao/dot-matrix-map
32925d5ede38c634ab53b966d779786366a1855c
[ "MIT" ]
null
null
null
dotmatrix/visualization/layout.py
alvinlao/dot-matrix-map
32925d5ede38c634ab53b966d779786366a1855c
[ "MIT" ]
null
null
null
from enum import Enum class Dimension(Enum): WIDTH = 1 HEIGHT = 2 config_key = { Dimension.WIDTH: { 'size': lambda c: c['width'], 'padding-ratio': lambda c: c['padding-horizontal'], 'num_dots': lambda c: len(c['dots'][0]), }, Dimension.HEIGHT: { 'size': lambda c: c['height'], 'padding-ratio': lambda c: c['padding-vertical'], 'num_dots': lambda c: len(c['dots']), }, } def get(config, dimension, attribute): return config_key[dimension][attribute](config) def padding(config, dimension): if fixed_dimension(config) == dimension: return fixed_padding(config, dimension) else: return free_padding(config, dimension) def fixed_padding(config, dimension): size = get(config, dimension, 'size') padding_ratio = get(config, dimension, 'padding-ratio') return size * padding_ratio def free_padding(config, dimension): size = get(config, dimension, 'size') return (size - used_space(config, dimension)) / 2 def used_space(config, dimension): num_dots = get(config, dimension, 'num_dots') return num_dots * dot_slot_size(config) def allocated_space(config, dimension): size = get(config, dimension, 'size') return size - (2 * fixed_padding(config, dimension)) def dot_slot_size(config): return min( fixed_dot_slot_size(config, Dimension.WIDTH), fixed_dot_slot_size(config, Dimension.HEIGHT)) def fixed_dot_slot_size(config, dimension): space = allocated_space(config, dimension) num_dots = get(config, dimension, 'num_dots') return space / num_dots def fixed_dimension(config): return min( Dimension.WIDTH, Dimension.HEIGHT, key=lambda d: fixed_dot_slot_size(config, d)) def free_dimension(config): return max( Dimension.WIDTH, Dimension.HEIGHT, key=lambda d: fixed_dot_slot_size(config, d))
24.455696
59
0.661491
7c991e5dc9febaf878ecae6dda5890e5e085f918
1,844
py
Python
python/updater.py
nattyan-tv/ark-server-utility
32eb9b4b5100630b13ce017d46b7ba635b61a915
[ "MIT" ]
null
null
null
python/updater.py
nattyan-tv/ark-server-utility
32eb9b4b5100630b13ce017d46b7ba635b61a915
[ "MIT" ]
2
2021-12-20T01:39:05.000Z
2022-01-19T15:06:52.000Z
python/updater.py
nattyan-tv/ark-server-utility
32eb9b4b5100630b13ce017d46b7ba635b61a915
[ "MIT" ]
null
null
null
import sys import requests import zipfile import shutil import os from tkinter import messagebox url='https://github.com/nattyan-tv/ark-server-utility/releases/latest/download/ark-server-utility.zip' filename='ark-server-utility.zip' path = "./update" def main(): print(sys.argv) if len(sys.argv) >= 2 and sys.argv[1] == "true": try: urlData = requests.get(url).content with open(filename ,mode='wb') as f: f.write(urlData) if not os.path.exists(path): with zipfile.ZipFile(filename) as zip: zip.extractall(path) else: shutil.rmtree(path) with zipfile.ZipFile(filename) as zip: zip.extractall(path) for i in range(len(os.listdir(path))): print([os.listdir(path)[i],os.path.isfile(f"{path}/{os.listdir(path)[i]}")]) if os.path.isfile(f"{path}/{os.listdir(path)[i]}"): shutil.copy2(f"{path}/{os.listdir(path)[i]}", "./") elif os.path.isdir(f"{path}/{os.listdir(path)[i]}"): shutil.rmtree(f"./{os.listdir(path)[i]}") shutil.copytree(f"{path}/{os.listdir(path)[i]}", f"./{os.listdir(path)[i]}") os.remove(f"./{filename}") messagebox.showinfo("アップデート成功", "アップデートに成功しました。") return except BaseException as err: messagebox.showerror("アップデート失敗", f"アップデート操作中にエラーが発生しました。\n{err}") rt = messagebox.askretrycancel("アップデート失敗", "再試行しますか?") if rt == True: main() return else: return else: messagebox.showerror("アップデーター", "アップデートはARK: Server Utilityから行えます。") return if __name__ == "__main__": main()
35.461538
102
0.541757
2f79c4b3137a75c5f6533dd6dbc228a470031e1d
9,680
py
Python
tools/screen_manager.py
PDillis/coiltraine
a682aa62af5f6ecb95a837d33b70d893d3d261f6
[ "MIT" ]
1
2021-03-01T19:43:12.000Z
2021-03-01T19:43:12.000Z
tools/screen_manager.py
PDillis/coiltraine
a682aa62af5f6ecb95a837d33b70d893d3d261f6
[ "MIT" ]
null
null
null
tools/screen_manager.py
PDillis/coiltraine
a682aa62af5f6ecb95a837d33b70d893d3d261f6
[ "MIT" ]
null
null
null
import colorsys import pygame import numpy as np from random import randint from skimage import transform as trans import scipy import cv2 clock = pygame.time.Clock() rsrc = \ [[43.45456230828867, 118.00743250075844], [104.5055617352614, 69.46865203761757], [114.86050156739812, 60.83953551083698], [129.74572757609468, 50.48459567870026], [132.98164627363735, 46.38576532847949], [301.0336906326895, 98.16046448916306], [238.25686790036065, 62.56535881619311], [227.2547443287154, 56.30924933427718], [209.13359962247614, 46.817221154818526], [203.9561297064078, 43.5813024572758]] rdst = \ [[10.822125594094452, 1.42189132706374], [21.177065426231174, 1.5297552836484982], [25.275895776451954, 1.42189132706374], [36.062291434927694, 1.6376192402332563], [40.376849698318004, 1.42189132706374], [11.900765159942026, -2.1376192402332563], [22.25570499207874, -2.1376192402332563], [26.785991168638553, -2.029755283648498], [37.033067044190524, -2.029755283648498], [41.67121717733509, -2.029755283648498]] tform3_img = trans.ProjectiveTransform() tform3_img.estimate(np.array(rdst), np.array(rsrc)) def draw_vbar_on(img,bar_intensity,x_pos,color=(0,0,255)): bar_size = int(img.shape[1]/6 * bar_intensity) initial_y_pos = img.shape[0] - img.shape[0]/6 #print bar_intensity for i in range(bar_size): if bar_intensity > 0.0: y = initial_y_pos - i for j in range(20): img[y , x_pos +j] = color def generate_ncolors(num_colors): color_pallet = [] for i in range(0, 360, 360 / num_colors): hue = i saturation = 90 + float(randint(0, 1000)) / 1000 * 10 lightness = 50 + float(randint(0, 1000)) / 1000 * 10 color = colorsys.hsv_to_rgb(float(hue) / 360.0, saturation / 100, lightness / 100) color_pallet.append(color) # addColor(c); return color_pallet def get_average_over_interval(vector, interval): avg_vector = [] for i in range(0, len(vector), interval): initial_train = i final_train = i + interval avg_point = sum(vector[initial_train:final_train]) / interval avg_vector.append(avg_point) return avg_vector def get_average_over_interval_stride(vector, interval, stride): avg_vector = [] for i in range(0, len(vector) - interval, stride): initial_train = i final_train = i + interval avg_point = sum(vector[initial_train:final_train]) / interval avg_vector.append(avg_point) return avg_vector def perspective_tform(x, y): p1, p2 = tform3_img((x, y))[0] return p2, p1 # ***** functions to draw lines ***** def draw_pt(img, x, y, color, sz=1): row, col = perspective_tform(x, y) if 0 <= row < img.shape[0] and 0 <= col < img.shape[1]: img[int(row - sz):int(row + sz), int(col - sz - 65):int(col + sz - 65)] = color def draw_path(img, path_x, path_y, color): for x, y in zip(path_x, path_y): draw_pt(img, x, y, color) # ***** functions to draw predicted path ***** def calc_curvature(v_ego, angle_steers, angle_offset=0): deg_to_rad = np.pi / 180. slip_fator = 0.0014 # slip factor obtained from real data steer_ratio = 15.3 wheel_base = 2.67 angle_steers_rad = (angle_steers - angle_offset) * deg_to_rad curvature = angle_steers_rad / (steer_ratio * wheel_base * (1. + slip_fator * v_ego ** 2)) return curvature def calc_lookahead_offset(v_ego, angle_steers, d_lookahead, angle_offset=0): # *** this function return teh lateral offset given the steering angle, speed and the lookahead distance curvature = calc_curvature(v_ego, angle_steers, angle_offset) # clip is to avoid arcsin NaNs due to too sharp turns y_actual = d_lookahead * np.tan(np.arcsin(np.clip(d_lookahead * curvature, -0.999, 0.999)) / 2.) return y_actual, curvature def draw_path_on(img, speed_ms, angle_steers, color=(0, 0, 255)): path_x = np.arange(0., 50.1, 0.5) path_y, _ = calc_lookahead_offset(speed_ms, angle_steers, path_x) draw_path(img, path_x, path_y, color) class ScreenManager(object): def __init__(self, load_steer=False): pygame.init() # Put some general parameterss self._render_iter = 2000 self._speed_limit = 50.0 if load_steer: self._wheel = cv2.imread('./drive_interfaces/wheel.png') # ,cv2.IMREAD_UNCHANGED) self._wheel = cv2.resize(self._wheel, (int(0.08 * self._wheel.shape[0]), int(0.08 * self._wheel.shape[1]))) # If we were to load the steering wheel load it # take into consideration the resolution when ploting # TODO: Resize properly to fit the screen ( MAYBE THIS COULD BE DONE DIRECTLY RESIZING screen and keeping SURFACES) def start_screen(self, resolution, aspect_ratio, scale=1): self._resolution = resolution self._aspect_ratio = aspect_ratio self._scale = scale size = (resolution[0] * aspect_ratio[0], resolution[1] * aspect_ratio[1]) self._screen = pygame.display.set_mode((size[0] * scale, size[1] * scale), pygame.DOUBLEBUF) # self._screen.set_alpha(None) pygame.display.set_caption("Human/Machine - Driving Software") self._camera_surfaces = [] for i in range(aspect_ratio[0] * aspect_ratio[1]): camera_surface = pygame.surface.Surface(resolution, 0, 24).convert() self._camera_surfaces.append(camera_surface) def paint_on_screen(self, size, content, color, position, screen_position): myfont = pygame.font.SysFont("monospace", size * self._scale, bold=True) position = (position[0] * self._scale, position[1] * self._scale) final_position = (position[0] + self._resolution[0] * (self._scale * (screen_position[0])), \ position[1] + (self._resolution[1] * (self._scale * (screen_position[1])))) content_to_write = myfont.render(content, 1, color) self._screen.blit(content_to_write, final_position) def set_array(self, array, screen_position, position=(0, 0), scale=None): if scale is None: scale = self._scale if array.shape[0] != self._resolution[1] or array.shape[1] != self._resolution[0]: array = scipy.misc.imresize(array, [self._resolution[1], self._resolution[0]]) # print array.shape, self._resolution final_position = (position[0] + self._resolution[0] * (scale * (screen_position[0])), \ position[1] + (self._resolution[1] * (scale * (screen_position[1])))) # pygame.surfarray.array_colorkey(self._camera_surfaces[screen_number]) self._camera_surfaces[screen_position[0] * screen_position[1]].set_colorkey((255, 0, 255)) pygame.surfarray.blit_array(self._camera_surfaces[screen_position[0] * screen_position[1]], array.swapaxes(0, 1)) camera_scale = pygame.transform.scale(self._camera_surfaces[screen_position[0] * screen_position[1]], (int(self._resolution[0] * scale), int(self._resolution[1] * scale))) self._screen.blit(camera_scale, final_position) def draw_wheel_on(self, steer, screen_position): cols, rows, c = self._wheel.shape M = cv2.getRotationMatrix2D((cols / 2, rows / 2), -90 * steer, 1) rot_wheel = cv2.warpAffine(self._wheel, M, (cols, rows), borderMode=cv2.BORDER_CONSTANT, borderValue=(0, 0, 0)) # scale = 0.5 position = (self._resolution[0] / 2 - cols / 2, int(self._resolution[1] / 1.5) - rows / 2) # print position wheel_surface = pygame.surface.Surface((rot_wheel.shape[1], rot_wheel.shape[0]), 0, 24).convert() # print array.shape, self._resolution # final_position = (position[0] + self._resolution[0]*(scale*(screen_number%3)),\ # position[1] + (self._resolution[1]*(scale*(screen_number/3)))) # pygame.surfarray.array_colorkey(self._camera_surfaces[screen_number]) wheel_surface.set_colorkey((0, 0, 0)) pygame.surfarray.blit_array(wheel_surface, rot_wheel.swapaxes(0, 1)) self._screen.blit(wheel_surface, position) # This one plot the nice wheel def plot_camera(self, sensor_data, screen_position=[0, 0]): if sensor_data.shape[2] < 3: sensor_data = np.stack((sensor_data,) * 3, axis=2) sensor_data = np.squeeze(sensor_data) # print sensor_data.shape self.set_array(sensor_data, screen_position) pygame.display.flip() def plot_camera_steer(self, sensor_data, steer, screen_position=[0, 0]): if sensor_data.shape[2] < 3: sensor_data = np.stack((sensor_data,) * 3, axis=2) sensor_data = np.squeeze(sensor_data) draw_path_on(sensor_data, 20, -steer * 10.0, (0, 255, 0)) self.set_array(sensor_data, screen_position) pygame.display.flip() def plot3camrcnoise(self, sensor_data, \ steer, noise, difference, \ screen_number=0): # Define our fonts # draw_path_on(img, 10, -angle_steers*40.0) draw_path_on(sensor_data, 20, -steer * 20.0, (255, 0, 0)) draw_path_on(sensor_data, 20, -noise * 20.0, (0, 255, 0)) draw_path_on(sensor_data, 20, -difference * 20.0, (0, 0, 255)) #pygame.image.save(self._screen, "footage_offline/imgcamera" + str(self._render_iter) +".png") self.set_array(sensor_data, screen_number) self._render_iter += 1 pygame.display.flip()
34.204947
119
0.651343
462ba589dc818c120ac20739ea710091f3063832
1,486
py
Python
test/demo/feature_overview/test_missing_embeddings.py
tum-db/mlinspect4sql
863f1a98baff92341722b4fb180008cf9b518b80
[ "Apache-2.0" ]
40
2020-10-20T15:56:35.000Z
2022-02-22T14:48:09.000Z
test/demo/feature_overview/test_missing_embeddings.py
tum-db/mlinspect4sql
863f1a98baff92341722b4fb180008cf9b518b80
[ "Apache-2.0" ]
55
2020-10-21T15:37:44.000Z
2022-02-10T02:44:18.000Z
test/demo/feature_overview/test_missing_embeddings.py
tum-db/mlinspect4sql
863f1a98baff92341722b4fb180008cf9b518b80
[ "Apache-2.0" ]
9
2021-01-15T15:53:25.000Z
2022-03-31T23:42:12.000Z
""" Tests whether MissingEmbeddings works """ from inspect import cleandoc from testfixtures import compare from demo.feature_overview.missing_embeddings import MissingEmbeddings, MissingEmbeddingsInfo from example_pipelines.healthcare import custom_monkeypatching from mlinspect._pipeline_inspector import PipelineInspector def test_missing_embeddings(): """ Tests whether MissingEmbeddings works for joins """ test_code = cleandoc(""" import pandas as pd from example_pipelines.healthcare.healthcare_utils import MyW2VTransformer df = pd.DataFrame({'A': ['cat_a', 'cat_b', 'cat_a', 'cat_c']}) word_to_vec = MyW2VTransformer(min_count=2, size=2, workers=1) encoded_data = word_to_vec.fit_transform(df) """) inspector_result = PipelineInspector \ .on_pipeline_from_string(test_code) \ .add_required_inspection(MissingEmbeddings(10)) \ .add_custom_monkey_patching_module(custom_monkeypatching) \ .execute() inspection_results = list(inspector_result.dag_node_to_inspection_results.values()) missing_embeddings_output = inspection_results[0][MissingEmbeddings(10)] expected_result = None compare(missing_embeddings_output, expected_result) missing_embeddings_output = inspection_results[1][MissingEmbeddings(10)] expected_result = MissingEmbeddingsInfo(2, ['cat_b', 'cat_c']) compare(missing_embeddings_output, expected_result)
37.15
93
0.744953
887d12d7ef6f50acf936b685948f73adca051000
4,590
py
Python
ceilometer/storage/sqlalchemy/migrate_repo/versions/021_add_event_types.py
NeCTAR-RC/ceilometer
25cb8740b83bfbf5c526be816fa3ae10f936bff5
[ "Apache-2.0" ]
1
2015-02-26T03:23:09.000Z
2015-02-26T03:23:09.000Z
ceilometer/storage/sqlalchemy/migrate_repo/versions/021_add_event_types.py
NeCTAR-RC/ceilometer
25cb8740b83bfbf5c526be816fa3ae10f936bff5
[ "Apache-2.0" ]
null
null
null
ceilometer/storage/sqlalchemy/migrate_repo/versions/021_add_event_types.py
NeCTAR-RC/ceilometer
25cb8740b83bfbf5c526be816fa3ae10f936bff5
[ "Apache-2.0" ]
null
null
null
# -*- encoding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from migrate import ForeignKeyConstraint from sqlalchemy import Column from sqlalchemy import Integer from sqlalchemy import MetaData from sqlalchemy import select from sqlalchemy import String from sqlalchemy import Table from ceilometer.storage.sqlalchemy import migration def upgrade(migrate_engine): meta = MetaData(bind=migrate_engine) event_type = Table( 'event_type', meta, Column('id', Integer, primary_key=True), Column('desc', String(255), unique=True), mysql_engine='InnoDB', mysql_charset='utf8', ) event_type.create() event = Table('event', meta, autoload=True) unique_name = Table('unique_name', meta, autoload=True) # Event type is a specialization of Unique name, so # we insert into the event_type table all the distinct # unique names from the event.unique_name field along # with the key from the unique_name table, and # then rename the event.unique_name field to event.event_type conn = migrate_engine.connect() sql = ("INSERT INTO event_type " "SELECT unique_name.id, unique_name.key FROM event " "INNER JOIN unique_name " "ON event.unique_name_id = unique_name.id " "GROUP BY unique_name.id") conn.execute(sql) conn.close() # Now we need to drop the foreign key constraint, rename # the event.unique_name column, and re-add a new foreign # key constraint params = {'columns': [event.c.unique_name_id], 'refcolumns': [unique_name.c.id]} if migrate_engine.name == 'mysql': params['name'] = "event_ibfk_1" fkey = ForeignKeyConstraint(**params) fkey.drop() Column('event_type_id', Integer).create(event) # Move data from unique_name_id column into event_type_id column # and delete the entry from the unique_name table query = select([event.c.id, event.c.unique_name_id]) for key, value in migration.paged(query): event.update().where(event.c.id == key)\ .values({"event_type_id": value}).execute() unique_name.delete()\ .where(unique_name.c.id == key).execute() params = {'columns': [event.c.event_type_id], 'refcolumns': [event_type.c.id]} if migrate_engine.name == 'mysql': params['name'] = "_".join(('fk', 'event_type', 'id')) fkey = ForeignKeyConstraint(**params) fkey.create() event.c.unique_name_id.drop() def downgrade(migrate_engine): meta = MetaData(bind=migrate_engine) event_type = Table('event_type', meta, autoload=True) event = Table('event', meta, autoload=True) unique_name = Table('unique_name', meta, autoload=True) # Re-insert the event type table records into the old # unique_name table. conn = migrate_engine.connect() sql = ("INSERT INTO unique_name " "SELECT event_type.id, event_type.desc FROM event_type") conn.execute(sql) conn.close() # Drop the foreign key constraint to event_type, drop the # event_type table, rename the event.event_type column to # event.unique_name, and re-add the old foreign # key constraint params = {'columns': [event.c.event_type_id], 'refcolumns': [event_type.c.id]} if migrate_engine.name == 'mysql': params['name'] = "_".join(('fk', 'event_type', 'id')) fkey = ForeignKeyConstraint(**params) fkey.drop() event_type.drop() Column('unique_name_id', Integer).create(event) # Move data from event_type_id column to unique_name_id column query = select([event.c.id, event.c.event_type_id]) for key, value in migration.paged(query): event.update().where(event.c.id == key)\ .values({"unique_name_id": value}).execute() event.c.event_type_id.drop() params = {'columns': [event.c.unique_name_id], 'refcolumns': [unique_name.c.id]} if migrate_engine.name == 'mysql': params['name'] = 'event_ibfk_1' fkey = ForeignKeyConstraint(**params) fkey.create()
37.622951
75
0.675163
fed90976c491e9644672fdf0ac0a9124a9ae4257
5,383
py
Python
dns/dnspod.py
gary-jiao/DDNS
99ffdf020cb4310a94bbcac5a48ead59a9f5539f
[ "MIT" ]
1
2018-12-02T13:56:03.000Z
2018-12-02T13:56:03.000Z
dns/dnspod.py
gary-jiao/DDNS
99ffdf020cb4310a94bbcac5a48ead59a9f5539f
[ "MIT" ]
null
null
null
dns/dnspod.py
gary-jiao/DDNS
99ffdf020cb4310a94bbcac5a48ead59a9f5539f
[ "MIT" ]
null
null
null
# coding=utf-8 """ DNSPOD API DNSPOD 接口解析操作库 http://www.dnspod.cn/docs/domains.html @author: New Future """ import json import logging as log try: # python 2 from httplib import HTTPSConnection import urllib except ImportError: # python 3 from http.client import HTTPSConnection import urllib.parse as urllib __author__ = 'New Future' ID = "token id" TOKEN = "token key" PROXY = None # 代理设置 API_SITE = "dnsapi.cn" API_METHOD = "POST" def request(action, param=None, **params): """ 发送请求数据 """ if param: params.update(param) params.update({'login_token': "%s,%s" % (ID, TOKEN), 'format': 'json'}) log.debug("%s : params:%s", action, params) if PROXY: conn = HTTPSConnection(PROXY) conn.set_tunnel(API_SITE, 443) else: conn = HTTPSConnection(API_SITE) conn.request(API_METHOD, '/' + action, urllib.urlencode(params), {"Content-type": "application/x-www-form-urlencoded"}) response = conn.getresponse() res = response.read() conn.close() if response.status < 200 or response.status >= 300: raise Exception(res) else: data = json.loads(res.decode('utf8')) if not data: raise Exception("empty response") elif data.get("status", {}).get("code") == "1": return data else: raise Exception(data.get('status', {})) def get_domain_info(domain): """ 切割域名获取主域名和对应ID """ domain_split = domain.split('.') if len(domain_split) == 3: # 长度为3 sub, main = domain_split[0], domain_split[1] + '.' + domain_split[2] did = get_domain_id(main) else: # 长度大于三通过API判断,最后两个,三个递增 main = domain_split.pop() while domain_split: main = domain_split.pop() + '.' + main did = get_domain_id(main) if did: sub = ".".join(domain_split) break else: return None, None if not sub: # root domain根域名https://github.com/NewFuture/DDNS/issues/9 sub = '@' return did, sub def get_domain_id(domain): """ 获取域名ID http://www.dnspod.cn/docs/domains.html#domain-info """ if not hasattr(get_domain_id, "domain_list"): get_domain_id.domain_list = {} # "静态变量"存储已查询过的id if domain in get_domain_id.domain_list: # 如果已经存在直接返回防止再次请求 return get_domain_id.domain_list[domain] else: info = request('Domain.Info', domain=domain) if info and info.get('status', {}).get('code') == "1": did = info.get("domain", {}).get("id") if did: get_domain_id.domain_list[domain] = did return did def get_records(did, **conditions): """ 获取记录ID 返回满足条件的所有记录[] TODO 大于3000翻页 http://www.dnspod.cn/docs/records.html#record-list """ if not hasattr(get_records, "records"): get_records.records = {} # "静态变量"存储已查询过的id get_records.keys = ("id", "name", "type", "line", "line_id", "enabled", "mx", "value") if not did in get_records.records: get_records.records[did] = {} data = request('Record.List', domain_id=did) if data: for record in data.get('records'): get_records.records[did][record["id"]] = { k: v for (k, v) in record.items() if k in get_records.keys} records = {} for (did, record) in get_records.records[did].items(): for (k, value) in conditions.items(): if record.get(k) != value: break else: # for else push records[did] = record return records def update_record(domain, value, record_type="A"): """ 更新记录 """ log.debug(">>>>>%s(%s)", domain, record_type) domainid, sub = get_domain_info(domain) if not domainid: raise Exception("invalid domain: [ %s ] " % domain) records = get_records(domainid, name=sub, type=record_type) result = {} if records: # update # http://www.dnspod.cn/docs/records.html#record-modify for (did, record) in records.items(): if record["value"] != value: log.debug(sub, record) res = request('Record.Modify', record_id=did, record_line=record["line"].encode( "utf-8"), value=value, sub_domain=sub, domain_id=domainid, record_type=record_type) if res: get_records.records[domainid][did]["value"] = value result[did] = res.get("record") else: result[did] = "update fail!\n" + str(res) else: result[did] = domain else: # create # http://www.dnspod.cn/docs/records.html#record-create res = request("Record.Create", domain_id=domainid, value=value, sub_domain=sub, record_type=record_type, record_line="默认", ttl=600) if res: did = res.get("record")["id"] get_records.records[domainid][did] = res.get("record") get_records.records[domainid][did].update( value=value, sub_domain=sub, record_type=record_type) result = res.get("record") else: result = domain + " created fail!" return result
30.76
103
0.565298
dfbca10a1b7b3c043fbd9c7dc873e0c7144eb64a
25,601
py
Python
parlai/scripts/train_model.py
christiancosgrove/cs767hw3
7c906d7b92394cc30ed94a714b199467c269cadf
[ "MIT" ]
null
null
null
parlai/scripts/train_model.py
christiancosgrove/cs767hw3
7c906d7b92394cc30ed94a714b199467c269cadf
[ "MIT" ]
null
null
null
parlai/scripts/train_model.py
christiancosgrove/cs767hw3
7c906d7b92394cc30ed94a714b199467c269cadf
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Training script for ParlAI. The standard way to train a model. After training, also computes validation and test error. The user must provide a model (with ``--model``) and a task (with ``--task``). Examples -------- .. code-block:: shell python -m parlai.scripts.train_model -m ir_baseline -t dialog_babi:Task:1 -mf /tmp/model python -m parlai.scripts.train_model -m seq2seq -t babi:Task10k:1 -mf '/tmp/model' -bs 32 -lr 0.5 -hs 128 python -m parlai.scripts.train_model -m drqa -t babi:Task10k:1 -mf /tmp/model -bs 10 """ # noqa: E501 # TODO List: # * More logging (e.g. to files), make things prettier. import json import numpy as np import os import signal from parlai.core.metrics import Metric from parlai.core.agents import create_agent, create_agent_from_shared from parlai.core.exceptions import StopTrainException from parlai.core.logs import TensorboardLogger from parlai.core.metrics import aggregate_named_reports, aggregate_unnamed_reports from parlai.core.params import ParlaiParser, print_announcements from parlai.core.worlds import create_task from parlai.scripts.build_dict import build_dict, setup_args as setup_dict_args from parlai.utils.distributed import ( sync_object, is_primary_worker, all_gather_list, is_distributed, num_workers, ) from parlai.utils.misc import Timer, nice_report def setup_args(parser=None) -> ParlaiParser: """ Build the ParlAI parser, adding command line args if necessary. :param ParlaiParser parser: Preexisting parser to append options to. Will be created if needed. :returns: the ParlaiParser with CLI options added. """ if parser is None: parser = ParlaiParser(True, True, 'Train a model') train = parser.add_argument_group('Training Loop Arguments') train.add_argument( '-et', '--evaltask', help='task to use for valid/test (defaults to the one used for training)', ) train.add_argument( '--eval-batchsize', type=int, hidden=True, help='Eval time batch size (defaults to same as -bs)', ) train.add_argument('--display-examples', type='bool', default=False, hidden=True) train.add_argument('-eps', '--num-epochs', type=float, default=-1) train.add_argument('-ttim', '--max-train-time', type=float, default=-1) train.add_argument('-ltim', '--log-every-n-secs', type=float, default=2) train.add_argument( '-vtim', '--validation-every-n-secs', type=float, default=-1, help='Validate every n seconds. Saves model to model_file ' '(if set) whenever best val metric is found', ) train.add_argument( '-stim', '--save-every-n-secs', type=float, default=-1, help='Saves the model to model_file.checkpoint after ' 'every n seconds (default -1, never).', ) train.add_argument( '-sval', '--save-after-valid', type='bool', default=False, help='Saves the model to model_file.checkpoint after ' 'every validation (default %(default)s).', ) train.add_argument( '-veps', '--validation-every-n-epochs', type=float, default=-1, help='Validate every n epochs. Saves model to model_file ' '(if set) whenever best val metric is found', ) train.add_argument( '-vme', '--validation-max-exs', type=int, default=-1, hidden=True, help='max examples to use during validation (default -1 uses all)', ) train.add_argument( '--short-final-eval', default=False, hidden=True, type='bool', help='If true, obeys --validation-max-exs in the final ' 'validation and test evaluations.', ) train.add_argument( '-vp', '--validation-patience', type=int, default=10, help=( 'number of iterations of validation where result' ' does not improve before we stop training' ), ) train.add_argument( '-vmt', '--validation-metric', default='accuracy', help='key into report table for selecting best validation', ) train.add_argument( '-vmm', '--validation-metric-mode', type=str, choices=['max', 'min'], help='how to optimize validation metric (max or min)', ) train.add_argument( '-vcut', '--validation-cutoff', type=float, default=1.0, hidden=True, help='value at which training will stop if exceeded by metric', ) train.add_argument( '-lfc', '--load-from-checkpoint', type='bool', default=False, hidden=True, help='load model from checkpoint if available', ) train.add_argument( '-vshare', '--validation-share-agent', default=False, hidden=True, help='use a shared copy of the agent for validation. ' 'this will eventually default to True, but ' 'currently defaults to False.', ) train.add_argument( '-mcs', '--metrics', type=str, default='default', help='list of metrics to show/compute, e.g. all, default,' 'or give a list split by , like ' 'ppl,f1,accuracy,hits@1,rouge,bleu' 'the rouge metrics will be computed as rouge-1, rouge-2 and rouge-l', ) TensorboardLogger.add_cmdline_args(parser) parser = setup_dict_args(parser) return parser def load_eval_worlds(agent, opt, datatype): """ Create a new eval world for the agent and the given opt. Overrides the datatype options for doing this. Handles some magic overrides of other special options for the training script. :param Agent agent: The model being trained. :param Opt opt: The global CLI opts. :param string datatype: The new datatype. """ if not is_primary_worker(): # don't load worlds in workers # TODO(MW): this block will need to be removed return None if 'stream' in opt['datatype']: datatype += ':stream' opt = opt.copy() opt['datatype'] = datatype if opt.get('evaltask'): # if a different eval task is specified, use it. opt['task'] = opt['evaltask'] if opt.get('eval_batchsize'): # override eval time batchsize opt['batchsize'] = opt['eval_batchsize'] tasks = opt['task'].split(',') worlds = [] # possibly load agent if opt.get('validation_share_agent', False): valid_agent = create_agent_from_shared(agent.share()) else: valid_agent = agent # create worlds for task in tasks: task_opt = opt.copy() # copy opt since we edit the task task_opt['task'] = task valid_world = create_task(task_opt, valid_agent) worlds.append(valid_world) return worlds def _run_single_eval(opt, valid_world, max_exs): # run evaluation on a single world valid_world.reset() cnt = 0 max_cnt = max_exs if max_exs > 0 else float('inf') while not valid_world.epoch_done() and cnt < max_cnt: valid_world.parley() if cnt == 0 and opt['display_examples']: print(valid_world.display() + '\n~~') print(valid_world.report()) cnt = valid_world.report().get('exs') or 0 valid_report = valid_world.report() valid_world.reset() # make sure world doesn't remember valid data return valid_report def run_eval(valid_worlds, opt, datatype, max_exs=-1, write_log=False): """ Eval on validation/test data. :param valid_world: list of the pre-created validation worlds. :param opt: the options that specific the task, eval_task, etc :param datatype: the datatype to use, such as "valid" or "test" :param bool write_log: specifies to write metrics to file if the model_file is set :param int max_exs: limits the number of examples if max_exs > 0 """ if valid_worlds is None: # This isn't the primary worker, so we can just skip evaluation return sync_object(None) print('[ running eval: ' + datatype + ' ]') timer = Timer() reports = [] for v_world in valid_worlds: task_report = _run_single_eval(opt, v_world, max_exs / len(valid_worlds)) reports.append(task_report) tasks = [world.getID() for world in valid_worlds] named_reports = dict(zip(tasks, reports)) report = aggregate_named_reports(named_reports) metrics = f'{datatype}:{nice_report(report)}' print(f'[ eval completed in {timer.time():.2f}s ]') print(metrics) # write to file if write_log and opt.get('model_file'): # Write out metrics f = open(opt['model_file'] + '.' + datatype, 'a+') f.write(f'{metrics}\n') f.close() return sync_object(report) class TrainLoop: """ TrainLoop contains the core training loop logic. """ def __init__(self, opt): # if python is called from a non-interactive shell, like a bash script, # it will by-default ignore SIGINTs, and KeyboardInterrupt exceptions are # not produced. This line brings them back signal.signal(signal.SIGINT, signal.default_int_handler) if isinstance(opt, ParlaiParser): print('[ Deprecated Warning: TrainLoop should be passed opt not Parser ]') opt = opt.parse_args() # Possibly load from checkpoint trainstats_suffix = '.trainstats' # we might load training statistics from here if ( opt['load_from_checkpoint'] and opt.get('model_file') and os.path.isfile(opt['model_file'] + '.checkpoint') ): opt['init_model'] = opt['model_file'] + '.checkpoint' trainstats_suffix = '.checkpoint.trainstats' # Possibly build a dictionary (not all models do this). if not (opt.get('dict_file') or opt.get('model_file')): raise RuntimeError( 'WARNING: For train_model, please specify either a ' 'model_file or dict_file.' ) if 'dict_file' in opt: if opt['dict_file'] is None and opt.get('model_file'): opt['dict_file'] = opt['model_file'] + '.dict' print("[ building dictionary first... ]") build_dict(opt, skip_if_built=True) # Create model and assign it to the specified task self.agent = create_agent(opt) self.world = create_task(opt, self.agent) # set up timers self.train_time = Timer() self.validate_time = Timer() self.log_time = Timer() self.save_time = Timer() print('[ training... ]') self.parleys = 0 self.max_num_epochs = ( opt['num_epochs'] if opt['num_epochs'] > 0 else float('inf') ) self.max_train_time = ( opt['max_train_time'] if opt['max_train_time'] > 0 else float('inf') ) self.log_every_n_secs = ( opt['log_every_n_secs'] if opt['log_every_n_secs'] > 0 else float('inf') ) self.val_every_n_secs = ( opt['validation_every_n_secs'] if opt['validation_every_n_secs'] > 0 else float('inf') ) self.save_every_n_secs = ( opt['save_every_n_secs'] if opt['save_every_n_secs'] > 0 else float('inf') ) self.val_every_n_epochs = ( opt['validation_every_n_epochs'] if opt['validation_every_n_epochs'] > 0 else float('inf') ) # smart defaults for --validation-metric-mode if opt['validation_metric'] in {'loss', 'ppl', 'mean_rank'}: opt['validation_metric_mode'] = 'min' elif opt['validation_metric'] in {'accuracy', 'hits@1', 'hits@5', 'f1', 'bleu'}: opt['validation_metric_mode'] = 'max' if opt.get('validation_metric_mode') is None: opt['validation_metric_mode'] = 'max' self.last_valid_epoch = 0 self.valid_optim = 1 if opt['validation_metric_mode'] == 'max' else -1 self.valid_reports = [] self.best_valid = None self.impatience = 0 self.saved = False self.valid_worlds = None self.opt = opt # we may have been preempted, make sure we note that amount self._preempted_epochs = 0.0 if opt.get('model_file') and os.path.isfile( opt['model_file'] + trainstats_suffix ): # looks like we were preempted. make sure we load up our total # training stats, etc with open(opt['model_file'] + trainstats_suffix) as ts: obj = json.load(ts) self.parleys = obj.get('parleys', 0) self._preempted_epochs = obj.get('total_epochs', 0) self.train_time.total = obj.get('train_time', 0) self.impatience = obj.get('impatience', 0) self.valid_reports = obj.get('valid_reports', []) if 'best_valid' in obj: self.best_valid = obj['best_valid'] else: # old method if opt.get('model_file') and os.path.isfile( opt['model_file'] + '.best_valid' ): with open(opt['model_file'] + ".best_valid", 'r') as f: x = f.readline() self.best_valid = float(x) f.close() if opt['tensorboard_log'] and is_primary_worker(): self.tb_logger = TensorboardLogger(opt) def save_model(self, suffix=None): """ Save the model to disk, possibly with a suffix. """ if not is_primary_worker(): # never do IO as a non-primary worker return if not self.opt.get('model_file'): # nothing to save to, just exit return fn = self.opt['model_file'] if suffix: fn += suffix while True: # don't ever let a ctrl-c interrupt saving try: self.agent.save(fn) self._save_train_stats(suffix) break except KeyboardInterrupt: pass def _safe_report(self, report): return {k: v.value() if isinstance(v, Metric) else v for k, v in report.items()} def _save_train_stats(self, suffix=None): fn = self.opt['model_file'] if suffix: fn += suffix fn += '.trainstats' with open(fn, 'w') as f: json.dump( { 'parleys': self.parleys, 'train_time': self.train_time.time(), 'total_epochs': ( self._preempted_epochs + num_workers() * self.world.get_total_epochs() ), 'impatience': self.impatience, 'valid_reports': [self._safe_report(v) for v in self.valid_reports], 'best_valid': self.best_valid, }, f, ) def validate(self): """ Perform a validation run, checking whether we should stop training. :return: boolean indicating whether training should stop :rtype: bool """ opt = self.opt if self.valid_worlds is None: # we need to load the world now self.valid_worlds = load_eval_worlds(self.agent, opt, 'valid') # run evaluation on valid set # TODO(MW): replace sync_object with self._sync_metrics. You'll need some # logic to handle 'validation_max_exs' properly valid_report = run_eval( self.valid_worlds, opt, 'valid', opt['validation_max_exs'] ) v = valid_report.copy() v['train_time'] = self.train_time.time() self.valid_reports.append(v) # logging if opt['tensorboard_log'] and is_primary_worker(): self.tb_logger.log_metrics('valid', self.parleys, valid_report) # flush on a validation self.tb_logger.flush() # saving if ( opt.get('model_file') and opt.get('save_after_valid') and is_primary_worker() ): print("[ saving model checkpoint: " + opt['model_file'] + ".checkpoint ]") self.save_model('.checkpoint') # send valid metrics to agent if the agent wants them if hasattr(self.agent, 'receive_metrics'): self.agent.receive_metrics(valid_report) # check which metric to look at print('Valid report ', valid_report) new_valid = valid_report[opt['validation_metric']] if isinstance(new_valid, Metric): new_valid = new_valid.value() # check if this is the best validation so far if ( self.best_valid is None or self.valid_optim * new_valid > self.valid_optim * self.best_valid ): print( '[ new best {}: {}{} ]'.format( opt['validation_metric'], new_valid, ' (previous best was {})'.format(self.best_valid) if self.best_valid is not None else '', ) ) self.best_valid = new_valid self.impatience = 0 if opt.get('model_file') and is_primary_worker(): print("[ saving best valid model: " + opt['model_file'] + " ]") self.save_model() self.saved = True if ( opt['validation_metric'] == 'accuracy' and self.best_valid >= opt['validation_cutoff'] ): print('[ task solved! stopping. ]') return True else: self.impatience += 1 print( '[ did not beat best {}: {} impatience: {} ]'.format( opt['validation_metric'], round(self.best_valid, 4), self.impatience ) ) self.validate_time.reset() # check if we are out of patience if ( opt['validation_patience'] > 0 and self.impatience >= opt['validation_patience'] ): print('[ ran out of patience! stopping training. ]') return True return False def _sync_metrics(self, metrics): """ Sync training metrics across workers. A handful of special cases are handled as exceptions, and the remaining metrics are simply averaged across workers. """ if not is_distributed(): # nothing special needed return metrics all_versions = all_gather_list(metrics) return aggregate_unnamed_reports(all_versions) def _compute_eta(self, epochs_completed, time_elapsed): """ Compute the estimated seconds remaining in training. :param float epochs_completed: number of epochs already completed. :param float time_elapsed: total time spent already, in seconds. :return: ETA in seconds, or None if not computable """ # start off with no estimate eta = None # Determine time_left and num_epochs max_epochs = self.opt.get('num_epochs', 0) if max_epochs > 0 and epochs_completed > 0: epoch_progress = epochs_completed / max_epochs eta = (1 - epoch_progress) * time_elapsed / epoch_progress max_training_time = self.opt.get('max_training_time', -1) if max_training_time > 0: time_left = max_training_time - time_elapsed if eta is None or time_left < eta: eta = time_left return eta def log(self): """ Output a training log entry. """ opt = self.opt if opt['display_examples']: print(self.world.display() + '\n~~') logs = [] # get report train_report = self.world.report() train_report = self._sync_metrics(train_report) self.world.reset_metrics() # time elapsed logs.append('time:{}s'.format(np.floor(self.train_time.time()))) logs.append('total_exs:{}'.format(self._total_exs)) if self._total_epochs >= 0: # only if it's unbounded logs.append('epochs:{}'.format(round(self._total_epochs, 2))) time_left = self._compute_eta(self._total_epochs, self.train_time.time()) if time_left is not None: logs.append('time_left:{}s'.format(max(0, np.ceil(time_left)))) log = '[ {} ] {}'.format(' '.join(logs), nice_report(train_report)) print(log) self.log_time.reset() if opt['tensorboard_log'] and is_primary_worker(): self.tb_logger.log_metrics('train', self.parleys, train_report) def train(self): """ Perform a training run. :return: tuple of reports (validation_report, test_report) """ opt = self.opt world = self.world with world: while True: # do one example / batch of examples try: world.parley() except StopTrainException: if is_distributed(): raise RuntimeError( "StopTrainException not supported for " "distributed mode" ) break self.parleys += 1 # get the total training examples done, compute epochs self._total_epochs = ( self._preempted_epochs + num_workers() * self.world.get_total_epochs() ) exs_per_epoch = self.world.num_examples() self._total_exs = int(np.round(self._total_epochs * exs_per_epoch)) # and use the primary worker's timings for everything train_time, log_time, validate_time = sync_object( ( self.train_time.time(), self.log_time.time(), self.validate_time.time(), ) ) # check counters and timers if self._total_epochs >= self.max_num_epochs: self.log() print( '[ num_epochs completed:{} time elapsed:{}s ]'.format( self.max_num_epochs, train_time ) ) break if train_time > self.max_train_time: print('[ max_train_time elapsed:{}s ]'.format(train_time)) break if log_time > self.log_every_n_secs: self.log() if ( validate_time > self.val_every_n_secs or self._total_epochs - self.last_valid_epoch >= self.val_every_n_epochs ): try: stop_training = self.validate() except StopTrainException: if is_distributed(): raise RuntimeError( "StopTrainException not " "supported for distributed mode" ) break self.last_valid_epoch = self._total_epochs if stop_training: break if ( self.save_time.time() > self.save_every_n_secs and opt.get('model_file') and is_primary_worker() ): print( "[ saving model checkpoint: {}.checkpoint".format( opt['model_file'] ) ) self.save_model('.checkpoint') self.save_time.reset() if not self.saved and is_primary_worker(): # save agent self.save_model() elif opt.get('model_file'): # reload best validation model self.agent = create_agent(opt) valid_worlds = load_eval_worlds(self.agent, opt, 'valid') max_exs = opt['validation_max_exs'] if opt.get('short_final_eval') else -1 v_report = run_eval(valid_worlds, opt, 'valid', max_exs, write_log=True) test_worlds = load_eval_worlds(self.agent, opt, 'test') t_report = run_eval(test_worlds, opt, 'test', max_exs, write_log=True) if valid_worlds: for valid_world in valid_worlds: valid_world.shutdown() if test_worlds: for test_world in test_worlds: test_world.shutdown() print_announcements(opt) return v_report, t_report if __name__ == '__main__': TrainLoop(setup_args().parse_args()).train() print()
34.92633
107
0.563494
a98ac5b8d1ef3b14240afa65683e706a885714f5
4,485
py
Python
tests/test_nativetypes.py
cav71/jinja
7cf6ffc4f11b5380865fd31a45572fcf1759c4e5
[ "BSD-3-Clause" ]
null
null
null
tests/test_nativetypes.py
cav71/jinja
7cf6ffc4f11b5380865fd31a45572fcf1759c4e5
[ "BSD-3-Clause" ]
null
null
null
tests/test_nativetypes.py
cav71/jinja
7cf6ffc4f11b5380865fd31a45572fcf1759c4e5
[ "BSD-3-Clause" ]
null
null
null
import pytest from jinja2._compat import text_type from jinja2.exceptions import UndefinedError from jinja2.nativetypes import NativeEnvironment from jinja2.runtime import Undefined @pytest.fixture def env(): return NativeEnvironment() class TestNativeEnvironment(object): def test_is_defined_native_return(self, env): t = env.from_string('{{ missing is defined }}') assert not t.render() def test_undefined_native_return(self, env): t = env.from_string('{{ missing }}') assert isinstance(t.render(), Undefined) def test_adding_undefined_native_return(self, env): t = env.from_string('{{ 3 + missing }}') with pytest.raises(UndefinedError): t.render() def test_cast_int(self, env): t = env.from_string("{{ anumber|int }}") result = t.render(anumber='3') assert isinstance(result, int) assert result == 3 def test_list_add(self, env): t = env.from_string("{{ listone + listtwo }}") result = t.render(listone=['a', 'b'], listtwo=['c', 'd']) assert isinstance(result, list) assert result == ['a', 'b', 'c', 'd'] def test_multi_expression_add(self, env): t = env.from_string("{{ listone }} + {{ listtwo }}") result = t.render(listone=['a', 'b'], listtwo=['c', 'd']) assert not isinstance(result, list) assert result == "['a', 'b'] + ['c', 'd']" def test_loops(self, env): t = env.from_string("{% for x in listone %}{{ x }}{% endfor %}") result = t.render(listone=['a', 'b', 'c', 'd']) assert isinstance(result, text_type) assert result == 'abcd' def test_loops_with_ints(self, env): t = env.from_string("{% for x in listone %}{{ x }}{% endfor %}") result = t.render(listone=[1, 2, 3, 4]) assert isinstance(result, int) assert result == 1234 def test_loop_look_alike(self, env): t = env.from_string("{% for x in listone %}{{ x }}{% endfor %}") result = t.render(listone=[1]) assert isinstance(result, int) assert result == 1 def test_booleans(self, env): t = env.from_string("{{ boolval }}") result = t.render(boolval=True) assert isinstance(result, bool) assert result is True t = env.from_string("{{ boolval }}") result = t.render(boolval=False) assert isinstance(result, bool) assert result is False t = env.from_string("{{ 1 == 1 }}") result = t.render() assert isinstance(result, bool) assert result is True t = env.from_string("{{ 2 + 2 == 5 }}") result = t.render() assert isinstance(result, bool) assert result is False t = env.from_string("{{ None == None }}") result = t.render() assert isinstance(result, bool) assert result is True t = env.from_string("{{ '' == None }}") result = t.render() assert isinstance(result, bool) assert result is False def test_variable_dunder(self, env): t = env.from_string("{{ x.__class__ }}") result = t.render(x=True) assert isinstance(result, type) def test_constant_dunder(self, env): t = env.from_string("{{ true.__class__ }}") result = t.render() assert isinstance(result, type) def test_constant_dunder_to_string(self, env): t = env.from_string("{{ true.__class__|string }}") result = t.render() assert not isinstance(result, type) assert result in ["<type 'bool'>", "<class 'bool'>"] def test_string_literal_var(self, env): t = env.from_string("[{{ 'all' }}]") result = t.render() assert isinstance(result, text_type) assert result == "[all]" def test_string_top_level(self, env): t = env.from_string("'Jinja'") result = t.render() assert result == 'Jinja' def test_tuple_of_variable_strings(self, env): t = env.from_string("'{{ a }}', 'data', '{{ b }}', b'{{ c }}'") result = t.render(a=1, b=2, c="bytes") assert isinstance(result, tuple) assert result == ("1", "data", "2", b"bytes") def test_concat_strings_with_quotes(self, env): t = env.from_string("--host='{{ host }}' --user \"{{ user }}\"") result = t.render(host="localhost", user="Jinja") assert result == "--host='localhost' --user \"Jinja\""
33.721805
72
0.578149
2eabfa96a53cbbab64745aa500f8cdab3988405e
1,573
py
Python
django/map/hurricane/views.py
hammad93/hurricane-viz
2578e846e32527281d9870eb8258e00d12489a82
[ "MIT" ]
null
null
null
django/map/hurricane/views.py
hammad93/hurricane-viz
2578e846e32527281d9870eb8258e00d12489a82
[ "MIT" ]
null
null
null
django/map/hurricane/views.py
hammad93/hurricane-viz
2578e846e32527281d9870eb8258e00d12489a82
[ "MIT" ]
null
null
null
from django.http import HttpResponse from django.db import connection from django.shortcuts import render import json def index(request): # see if we have a get request if request.GET.get('type', False) : type = request.GET['type'] if type == 'plot' : return HttpResponse(json.dumps(plot(request))) else : return None with connection.cursor() as cursor: cursor.execute("SELECT SID,SEASON,NUMBER, BASIN, SUBBASIN, NAME, ISO_TIME, NATURE,LAT, LON, WMO_WIND, WMO_PRES, WMO_AGENCY, TRACK_TYPE, DIST2LAND,LANDFALL from hurricanes limit 10") results = cursor.fetchall() with connection.cursor() as cursor: cursor.execute("select distinct SID, NAME, SUBBASIN, YEAR(CAST(ISO_TIME as date)) as YEAR from hurricanes where NAME not in ('', 'NOT_NAMED') order by NAME") names = cursor.fetchall() return render(request, 'index.html', { 'hurricanes': results, 'names': names, }) def plot(request): with connection.cursor() as cursor: cursor.execute(f"select SID, NAME, ISO_TIME, LAT, LON, WMO_WIND, WMO_PRES from hurricanes where SID = '{request.GET['SID']}' order by ISO_TIME") entries = cursor.fetchall() results = { 'lat' : [], 'lon' : [], 'wind' : [], 'pressure' : [] } for entry in entries : results['lat'].append(entry[3]) results['lon'].append(entry[4]) results['wind'].append(entry[5]) results['pressure'].append(entry[6]) return results
35.75
189
0.619835
f859010d4531a7765a2d15b263d7fbae29d300d9
4,195
py
Python
test/banana/test_api.py
daisuke-fujita/monsaca-analytics_20181107
5809e66874d76bd9f102e7694197bd849210fa3b
[ "Apache-2.0" ]
1
2021-03-19T04:09:04.000Z
2021-03-19T04:09:04.000Z
test/banana/test_api.py
daisuke-fujita/monsaca-analytics_20181107
5809e66874d76bd9f102e7694197bd849210fa3b
[ "Apache-2.0" ]
1
2019-01-21T09:44:29.000Z
2019-01-21T09:44:29.000Z
test/banana/test_api.py
daisuke-fujita/monsaca-analytics_20181107
5809e66874d76bd9f102e7694197bd849210fa3b
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # Copyright (c) 2016 Hewlett Packard Enterprise Development Company, L.P. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from monasca_analytics.exception.banana import BananaEnvironmentError from monasca_analytics.exception.banana import BananaInvalidExpression from monasca_analytics.parsing.api import create_fn_with_config from monasca_analytics.parsing.api import validate_environment from monasca_analytics.parsing.api import validate_expression from monasca_analytics.parsing.api import validate_name_binding from test.util_for_testing import MonanasTestCase class TestBananaAPI(MonanasTestCase): def setUp(self): super(TestBananaAPI, self).setUp() def tearDown(self): super(TestBananaAPI, self).tearDown() def test_validate_expression_is_valid(self): validate_expression("a + b") validate_expression("a * b") validate_expression("a - b") validate_expression("a / b") validate_expression("a / b + 12 * (1 - a)") def test_validate_expression_is_invalid(self): self.assertRaises(BananaInvalidExpression, validate_expression, "a123") self.assertRaises(BananaInvalidExpression, validate_expression, "a n + 15") self.assertRaises(BananaInvalidExpression, validate_expression, "a * exp(b)") self.assertRaises(BananaInvalidExpression, validate_expression, "-a") self.assertRaises(BananaInvalidExpression, validate_expression, "- a") self.assertRaises(BananaInvalidExpression, validate_expression, "+ b") def test_validate_name_binding_is_valid(self): validate_name_binding( validate_expression("a + b * c"), {"a": "foo", "b": "foo", "c": "bar"} ) def test_validate_name_binding_is_invalid(self): self.assertRaises(BananaInvalidExpression, validate_name_binding, validate_expression("a + b * c"), {"a": "foo", "c": "bar"}) def test_validate_environment_is_valid(self): validate_environment({"a": "foo", "c": "bar"}) def test_validate_environment_is_invalid(self): self.assertRaises(BananaEnvironmentError, validate_environment, {"a": 0}) def test_generated_fn_is_valid(self): fn = create_fn_with_config({"a": "foo", "b": "bar", "c": "toto"}, "a * b + c") result = fn({"foo": 12, "bar": 2, "toto": -12}) self.assertEqual(result, 12) result = fn({"foo": 0, "bar": 42, "toto": 13}) self.assertEqual(result, 13) result = fn({"foo": 2, "bar": 3, "toto": 5}) self.assertEqual(result, 11) def test_generated_fn_with_parentheses_in_expr1(self): fn = create_fn_with_config({"a": "foo", "b": "bar", "c": "toto"}, "(a - b) + c") result = fn({"foo": 12, "bar": 2, "toto": -12}) self.assertEqual(result, -2) def test_generated_fn_with_parentheses_in_expr2(self): fn = create_fn_with_config({"a": "foo", "b": "bar", "c": "toto"}, "a - (b + c)") result = fn({"foo": 12, "bar": 2, "toto": -12}) self.assertEqual(result, 22) def test_generated_fn_with_no_parentheses_in_expr(self): fn = create_fn_with_config({"a": "foo", "b": "bar", "c": "toto"}, "a - b + c") result = fn({"foo": 12, "bar": 2, "toto": 12}) self.assertEqual(result, 22)
41.534653
75
0.615256
6679e0edac31c48c41de8f24cc25cb7374ced788
3,943
py
Python
tests/models/data/horovod/train_default_model.py
pbsds/pytorch-lightning
1eff3b53c1ff9d362fc24a1e4fea6c0cfe78696b
[ "Apache-2.0" ]
null
null
null
tests/models/data/horovod/train_default_model.py
pbsds/pytorch-lightning
1eff3b53c1ff9d362fc24a1e4fea6c0cfe78696b
[ "Apache-2.0" ]
null
null
null
tests/models/data/horovod/train_default_model.py
pbsds/pytorch-lightning
1eff3b53c1ff9d362fc24a1e4fea6c0cfe78696b
[ "Apache-2.0" ]
null
null
null
"""This script is meant to be executed from `../../test_horovod.py`. Because Horovod uses a parallel programming model similar to MPI, unit tests for collective ops like allreduce need to be run in parallel. The most common approach for running parallel Horovod workers is to launch multiple replicas of the training script via the `horovodrun` command-line tool: .. code-block:: bash horovodrun -np 2 python train_default_model.py ... Individual test parameters are configured by the serialized `--trainer-options` JSON object. An non-zero exit code from this script on any rank will indicate failure, while a zero exit code across all ranks indicates success. """ import argparse import json import os import sys import torch # this is needed because Conda does not use `PYTHONPATH` env var while pip and virtualenv do PYTHONPATH = os.getenv("PYTHONPATH", "") if ":" in PYTHONPATH: sys.path = PYTHONPATH.split(":") + sys.path from pytorch_lightning import Trainer # noqa: E402 from pytorch_lightning.callbacks import ModelCheckpoint # noqa: E402 from pytorch_lightning.utilities import _HOROVOD_AVAILABLE # noqa: E402 if _HOROVOD_AVAILABLE: import horovod.torch as hvd else: print("You requested to import Horovod which is missing or not supported for your OS.") from tests.helpers import BoringModel # noqa: E402 from tests.helpers.utils import reset_seed, set_random_main_port # noqa: E402 parser = argparse.ArgumentParser() parser.add_argument("--trainer-options", required=True) parser.add_argument("--on-gpu", action="store_true", default=False) def run_test_from_config(trainer_options, on_gpu, check_size=True): """Trains the default model with the given config.""" set_random_main_port() reset_seed() ckpt_path = trainer_options["default_root_dir"] trainer_options.update(callbacks=[ModelCheckpoint(dirpath=ckpt_path)]) class TestModel(BoringModel): def on_train_start(self) -> None: expected_device = torch.device("cuda", self.trainer.local_rank) if on_gpu else torch.device("cpu") assert self.device == expected_device def training_epoch_end(self, outputs) -> None: res = self.trainer.strategy.reduce(torch.tensor(1.0, device=self.device), reduce_op="sum") assert res.sum() == self.trainer.strategy.world_size model = TestModel() trainer = Trainer(**trainer_options) trainer.fit(model) assert trainer.state.finished, f"Training failed with {trainer.state}" trainer.test(model) assert model.device == torch.device("cpu") # Horovod should be initialized following training. If not, this will raise an exception. if check_size: assert hvd.size() == 2 if trainer.global_rank > 0: return # test model loading pretrained_model = BoringModel.load_from_checkpoint(trainer.checkpoint_callback.best_model_path) # test new model accuracy test_loaders = model.test_dataloader() if not isinstance(test_loaders, list): test_loaders = [test_loaders] for dataloader in test_loaders: batch = next(iter(dataloader)) pretrained_model(batch) # test HPC saving # save logger to make sure we get all the metrics if trainer.logger: trainer.logger.finalize("finished") hpc_save_path = trainer._checkpoint_connector.hpc_save_path(ckpt_path) trainer.save_checkpoint(hpc_save_path) # test HPC loading checkpoint_path = trainer._checkpoint_connector._CheckpointConnector__get_max_ckpt_path_from_folder(ckpt_path) trainer._checkpoint_connector.restore(checkpoint_path) if on_gpu: trainer = Trainer(gpus=1, strategy="horovod", max_epochs=1) # test root gpu index assert trainer.strategy.root_device.index == hvd.local_rank() if __name__ == "__main__": args = parser.parse_args() run_test_from_config(json.loads(args.trainer_options), args.on_gpu)
35.522523
114
0.737002
6786335852c5aa3b95336c148e16ca62444fd15a
909
py
Python
tests/twitter_learning_journal/controllers/test_login.py
DEV3L/twitter-learning-journal
a51d22a60a3d1249add352d8357975a7f2db585c
[ "Beerware" ]
1
2021-01-12T17:06:57.000Z
2021-01-12T17:06:57.000Z
tests/twitter_learning_journal/controllers/test_login.py
DEV3L/twitter-learning-journal
a51d22a60a3d1249add352d8357975a7f2db585c
[ "Beerware" ]
null
null
null
tests/twitter_learning_journal/controllers/test_login.py
DEV3L/twitter-learning-journal
a51d22a60a3d1249add352d8357975a7f2db585c
[ "Beerware" ]
1
2018-07-31T21:16:33.000Z
2018-07-31T21:16:33.000Z
import os import tempfile import unittest from app.twitter_learning_journal.database.sqlalchemy_database import build_tables, Database from server import app class FlaskrTestCase(unittest.TestCase): def setUp(self): self.db_fd, app.config['DATABASE'] = tempfile.mkstemp() app.testing = True self.app = app.test_client() self.database = Database() with app.app_context(): build_tables(self.database) def tearDown(self): os.close(self.db_fd) os.unlink(app.config['DATABASE']) def test_login_endpoint_exists(self): expected_response_code = 200 username = 'username' password = 'password' response = self.app.post('/login', data=dict( username=username, password=password ), follow_redirects=True) assert expected_response_code == response.status_code
25.971429
92
0.661166
89ecb8693e5ab8de91f2491f159adaaf3609b92e
3,379
py
Python
services/cntk-image-recon/service/image_recon.py
arturgontijo/dnn-model-services
b5b1453a1e933bdc79451f172873f31fb7fd9842
[ "MIT" ]
26
2018-12-14T20:02:07.000Z
2021-10-07T19:39:16.000Z
services/cntk-image-recon/service/image_recon.py
arturgontijo/dnn-model-services
b5b1453a1e933bdc79451f172873f31fb7fd9842
[ "MIT" ]
73
2018-08-09T17:13:21.000Z
2022-03-12T00:03:16.000Z
services/cntk-image-recon/service/image_recon.py
arturgontijo/dnn-model-services
b5b1453a1e933bdc79451f172873f31fb7fd9842
[ "MIT" ]
33
2018-10-24T10:45:48.000Z
2022-03-19T05:39:48.000Z
# Import CNTK import cntk import numpy as np from PIL import Image import os import time import requests import base64 import logging import datetime import hashlib import traceback logging.basicConfig(level=10, format="%(asctime)s - [%(levelname)8s] - %(name)s - %(message)s") log = logging.getLogger("cntk_image_recon") resources_root = os.path.join("..", "..", "utils", "Resources") # Evaluates a single image using the re-trained model def eval_single_image(loaded_model, image_path, image_dims): # Load and format image (resize, RGB -> BGR, CHW -> HWC) try: img = Image.open(image_path) if image_path.endswith("png"): temp = Image.new("RGB", img.size, (255, 255, 255)) temp.paste(img, img) img = temp resized = img.resize((image_dims[2], image_dims[1]), Image.ANTIALIAS) bgr_image = np.asarray(resized, dtype=np.float32)[..., [2, 1, 0]] hwc_format = np.ascontiguousarray(np.rollaxis(bgr_image, 2)) # Compute model output arguments = {loaded_model.arguments[0]: [hwc_format]} output = loaded_model.eval(arguments) # Return softmax probabilities sm = cntk.softmax(output[0]) return sm.eval() except FileNotFoundError: log.error("Could not open (skipping file): ", image_path) return ["None"] def image_recognition(method, model, map_names, img_path, image_dims): try: tmp_img_file = generate_uid() + ".jpg" # Link if "http://" in img_path or "https://" in img_path: header = {'User-Agent': 'Mozilla/5.0 (Windows NT x.y; Win64; x64; rv:9.0) Gecko/20100101 Firefox/10.0'} r = requests.get(img_path, headers=header, allow_redirects=True) with open(tmp_img_file, "wb") as my_f: my_f.write(r.content) img_path = tmp_img_file # Base64 elif len(img_path) > 500: img_data = base64.b64decode(img_path) with open(tmp_img_file, "wb") as f: f.write(img_data) img_path = tmp_img_file model_file = os.path.join(resources_root, "Models", "{}_{}_20.model".format(method, model)) if model == "AlexNet": image_dims = (3, 227, 227) elif model == "InceptionV3": image_dims = (3, 299, 299) start_time = time.time() trained_model = cntk.load_model(model_file) probs = eval_single_image(trained_model, img_path, image_dims) top_5_dict = {} p_array = probs.argsort()[-5:][::-1] for i, prob in enumerate(p_array): perc = probs[prob] * 100 top_5_dict[i + 1] = "{0:05.2f}%: {1}".format(perc, map_names[int(prob)]) delta_time = time.time() - start_time if os.path.exists(tmp_img_file): os.remove(tmp_img_file) return {"delta_time": "{:.4f}".format(delta_time), "top_5": top_5_dict} except Exception as e: log.error(e) traceback.print_exc() return {"delta_time": "Fail", "top_5": "Fail", "error": str(e)} def generate_uid(): # Setting a hash accordingly to the timestamp seed = "{}".format(datetime.datetime.now()) m = hashlib.sha256() m.update(seed.encode("utf-8")) m = m.hexdigest() # Returns only the first and the last 10 hex return m[:10] + m[-10:]
33.455446
115
0.606688
116cca3ce2b1986ccd53e66a94d371828412c04a
2,526
py
Python
application/models/environment.py
opengovt/openroads-geostore
336bdc352252ae34a66746e632ae0b8df66c04c0
[ "MIT" ]
1
2019-10-11T14:43:53.000Z
2019-10-11T14:43:53.000Z
application/models/environment.py
opengovt/openroads-geostore
336bdc352252ae34a66746e632ae0b8df66c04c0
[ "MIT" ]
null
null
null
application/models/environment.py
opengovt/openroads-geostore
336bdc352252ae34a66746e632ae0b8df66c04c0
[ "MIT" ]
null
null
null
import time import datetime from google.appengine.ext import ndb from application.models.syslog import SysLog class Environment(SysLog): created = ndb.DateTimeProperty(auto_now_add=True) updated = ndb.DateTimeProperty(auto_now=True) owner = ndb.KeyProperty(kind='User') users = ndb.KeyProperty(repeated=True) description = ndb.TextProperty() title = ndb.StringProperty() invited_users = ndb.StringProperty(repeated=True) user_groups = ndb.KeyProperty(repeated=True) users_email = ndb.StringProperty(repeated=True) private = ndb.BooleanProperty(default=True) def to_object(self): data = {} created = self.created created += datetime.timedelta(hours=8) data["created_time"] = created.strftime("%b %d, %Y %I:%M:%S %p") data['created'] = time.mktime(created.timetuple()) data['updated'] = time.mktime(self.updated.timetuple()) data['users'] = [user.urlsafe() for user in self.users] data['title'] = self.title data['description'] = self.description data['key'] = self.key.urlsafe() data['id'] = str(self.key.id()) data['members'] = [] data['invited_users'] = self.invited_users data['users_email'] = self.users_email data['user_groups'] = [] data['user_groups_list'] = [] data['private_setting'] = self.private data['owner'] = self.owner.get().to_object() if self.user_groups: for g in self.user_groups: if g: data['user_groups'].append(g.id()) group = g.get() if group: data['user_groups_list'].append(group.to_object()) if self.users: for u in self.users: user = u.get() if user: data['members'].append(user.to_object()) return data def to_api_object(self): data = {} created = self.created created += datetime.timedelta(hours=8) data["created_time"] = created.strftime("%b %d, %Y %I:%M:%S %p") data['created'] = time.mktime(created.timetuple()) data['updated'] = time.mktime(self.updated.timetuple()) data['title'] = self.title data['description'] = self.description data['key'] = self.key.urlsafe() data['id'] = str(self.key.id()) data['users_email'] = self.users_email data['private_setting'] = self.private return data
35.577465
74
0.586698
5443ce4263178c8f1f5c0edd13533237274c35a8
5,295
py
Python
data/p3BR/R1/benchmark/startQiskit_QC32.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
data/p3BR/R1/benchmark/startQiskit_QC32.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
data/p3BR/R1/benchmark/startQiskit_QC32.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
# qubit number=3 # total number=6 import numpy as np from qiskit import QuantumCircuit, execute, Aer, QuantumRegister, ClassicalRegister, transpile, BasicAer, IBMQ from qiskit.visualization import plot_histogram from typing import * from pprint import pprint from math import log2 from collections import Counter from qiskit.test.mock import FakeVigo, FakeYorktown kernel = 'circuit/bernstein' def bitwise_xor(s: str, t: str) -> str: length = len(s) res = [] for i in range(length): res.append(str(int(s[i]) ^ int(t[i]))) return ''.join(res[::-1]) def bitwise_dot(s: str, t: str) -> str: length = len(s) res = 0 for i in range(length): res += int(s[i]) * int(t[i]) return str(res % 2) def build_oracle(n: int, f: Callable[[str], str]) -> QuantumCircuit: # implement the oracle O_f # NOTE: use multi_control_toffoli_gate ('noancilla' mode) # https://qiskit.org/documentation/_modules/qiskit/aqua/circuits/gates/multi_control_toffoli_gate.html # https://quantumcomputing.stackexchange.com/questions/3943/how-do-you-implement-the-toffoli-gate-using-only-single-qubit-and-cnot-gates # https://quantumcomputing.stackexchange.com/questions/2177/how-can-i-implement-an-n-bit-toffoli-gate controls = QuantumRegister(n, "ofc") target = QuantumRegister(1, "oft") oracle = QuantumCircuit(controls, target, name="Of") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) oracle.mct(controls, target[0], None, mode='noancilla') for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() # oracle.draw('mpl', filename=(kernel + '-oracle.png')) return oracle def build_circuit(n: int, f: Callable[[str], str]) -> QuantumCircuit: # implement the Bernstein-Vazirani circuit zero = np.binary_repr(0, n) b = f(zero) # initial n + 1 bits input_qubit = QuantumRegister(n+1, "qc") classicals = ClassicalRegister(n, "qm") prog = QuantumCircuit(input_qubit, classicals) # inverse last one (can be omitted if using O_f^\pm) prog.x(input_qubit[n]) # circuit begin prog.h(input_qubit[1]) # number=1 prog.rx(-0.09738937226128368,input_qubit[2]) # number=2 prog.h(input_qubit[1]) # number=3 # apply H to get superposition for i in range(n): prog.h(input_qubit[i]) prog.h(input_qubit[n]) prog.barrier() # apply oracle O_f oracle = build_oracle(n, f) prog.append( oracle.to_gate(), [input_qubit[i] for i in range(n)] + [input_qubit[n]]) # apply H back (QFT on Z_2^n) for i in range(n): prog.h(input_qubit[i]) prog.barrier() # measure return prog def get_statevector(prog: QuantumCircuit) -> Any: state_backend = Aer.get_backend('statevector_simulator') statevec = execute(prog, state_backend).result() quantum_state = statevec.get_statevector() qubits = round(log2(len(quantum_state))) quantum_state = { "|" + np.binary_repr(i, qubits) + ">": quantum_state[i] for i in range(2 ** qubits) } return quantum_state def evaluate(backend_str: str, prog: QuantumCircuit, shots: int, b: str) -> Any: # Q: which backend should we use? # get state vector quantum_state = get_statevector(prog) # get simulate results # provider = IBMQ.load_account() # backend = provider.get_backend(backend_str) # qobj = compile(prog, backend, shots) # job = backend.run(qobj) # job.result() backend = Aer.get_backend(backend_str) # transpile/schedule -> assemble -> backend.run results = execute(prog, backend, shots=shots).result() counts = results.get_counts() a = Counter(counts).most_common(1)[0][0][::-1] return { "measurements": counts, # "state": statevec, "quantum_state": quantum_state, "a": a, "b": b } def bernstein_test_1(rep: str): """011 . x + 1""" a = "011" b = "1" return bitwise_xor(bitwise_dot(a, rep), b) def bernstein_test_2(rep: str): """000 . x + 0""" a = "000" b = "0" return bitwise_xor(bitwise_dot(a, rep), b) def bernstein_test_3(rep: str): """111 . x + 1""" a = "111" b = "1" return bitwise_xor(bitwise_dot(a, rep), b) if __name__ == "__main__": n = 2 a = "11" b = "1" f = lambda rep: \ bitwise_xor(bitwise_dot(a, rep), b) prog = build_circuit(n, f) sample_shot =4000 writefile = open("../data/startQiskit_QC32.csv", "w") # prog.draw('mpl', filename=(kernel + '.png')) IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') provider.backends() backend = provider.get_backend("ibmq_belem") circuit1 = transpile(prog, FakeYorktown()) circuit1.h(qubit=2) circuit1.x(qubit=3) circuit1.measure_all() info = execute(circuit1,backend=backend, shots=sample_shot).result().get_counts() print(info, file=writefile) print("results end", file=writefile) print(circuit1.depth(), file=writefile) print(circuit1, file=writefile) writefile.close()
28.777174
140
0.628329
0161d3f232849a90f7a436dc669557498fa64e44
648
py
Python
data-structures-implementation/linked-list/remove-kth-last-element-from-linked-list.py
ardakkk/Algorithms-and-Data-Structures
c428bb0bd7eeb6c34448630f88f13e1329b54636
[ "MIT" ]
null
null
null
data-structures-implementation/linked-list/remove-kth-last-element-from-linked-list.py
ardakkk/Algorithms-and-Data-Structures
c428bb0bd7eeb6c34448630f88f13e1329b54636
[ "MIT" ]
null
null
null
data-structures-implementation/linked-list/remove-kth-last-element-from-linked-list.py
ardakkk/Algorithms-and-Data-Structures
c428bb0bd7eeb6c34448630f88f13e1329b54636
[ "MIT" ]
null
null
null
class Node: def __init__(self, val, next): self.val = val self.next = next def __str__(self): n = self answer = '' while n: answer += str(n.val) n = n.next return answer # Time: O(n) # Space: O(n) def remove_kth_from_linked_list(node, k): slow, fast = node, node for i in range(k): fast = fast.next prev = None while fast: prev = slow fast = fast.next slow = slow.next prev.next = slow.next return node head = Node(1, Node(2, Node(3, Node(4, Node(5, None))))) remove_kth_from_linked_list(head, 3) print(head)
20.903226
56
0.54321
43c2adaeeac5ca89807769188cbd811e3a11dbc2
12,499
py
Python
federatedml/optim/gradient/hetero_linear_model_gradient.py
peiyong86/FATE
efae2b1add20d9f98ac05a669298e36369f91497
[ "Apache-2.0" ]
1
2019-10-16T12:18:06.000Z
2019-10-16T12:18:06.000Z
federatedml/optim/gradient/hetero_linear_model_gradient.py
peiyong86/FATE
efae2b1add20d9f98ac05a669298e36369f91497
[ "Apache-2.0" ]
9
2020-01-28T23:05:25.000Z
2022-02-10T00:31:01.000Z
federatedml/optim/gradient/hetero_linear_model_gradient.py
peiyong86/FATE
efae2b1add20d9f98ac05a669298e36369f91497
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools import numpy as np from arch.api.utils import log_utils from federatedml.util import consts from federatedml.util import fate_operator LOGGER = log_utils.getLogger() def __compute_partition_gradient(data, fit_intercept=True): """ Compute hetero regression gradient for: gradient = ∑d*x, where d is fore_gradient which differ from different algorithm Parameters ---------- data: DTable, include fore_gradient and features fit_intercept: bool, if model has interception or not. Default True Returns ---------- numpy.ndarray hetero regression model gradient """ feature = [] fore_gradient = [] for key, value in data: feature.append(value[0]) fore_gradient.append(value[1]) feature = np.array(feature) fore_gradient = np.array(fore_gradient) gradient = [] if feature.shape[0] <= 0: return 0 for j in range(feature.shape[1]): feature_col = feature[:, j] gradient_j = fate_operator.dot(feature_col, fore_gradient) gradient.append(gradient_j) if fit_intercept: bias_grad = np.sum(fore_gradient) gradient.append(bias_grad) return np.array(gradient) def compute_gradient(data_instances, fore_gradient, fit_intercept): """ Compute hetero-regression gradient Parameters ---------- data_instances: DTable, input data fore_gradient: DTable, fore_gradient fit_intercept: bool, if model has intercept or not Returns ---------- DTable the hetero regression model's gradient """ feat_join_grad = data_instances.join(fore_gradient, lambda d, g: (d.features, g)) f = functools.partial(__compute_partition_gradient, fit_intercept=fit_intercept) gradient_partition = feat_join_grad.mapPartitions(f).reduce(lambda x, y: x + y) gradient = gradient_partition / data_instances.count() return gradient class Guest(object): def __init__(self): self.host_forwards = None self.forwards = None self.aggregated_forwards = None def _register_gradient_sync(self, host_forward_transfer, fore_gradient_transfer, guest_gradient_transfer, guest_optim_gradient_transfer): self.host_forward_transfer = host_forward_transfer self.fore_gradient_transfer = fore_gradient_transfer self.unilateral_gradient_transfer = guest_gradient_transfer self.unilateral_optim_gradient_transfer = guest_optim_gradient_transfer def compute_and_aggregate_forwards(self, data_instances, model_weights, encrypted_calculator, batch_index, offset=None): raise NotImplementedError("Function should not be called here") def compute_gradient_procedure(self, data_instances, encrypted_calculator, model_weights, optimizer, n_iter_, batch_index, offset=None): """ Linear model gradient procedure Step 1: get host forwards which differ from different algorithm For Logistic Regression and Linear Regression: forwards = wx For Poisson Regression, forwards = exp(wx) Step 2: Compute self forwards and aggregate host forwards and get d = fore_gradient Step 3: Compute unilateral gradient = ∑d*x, Step 4: Send unilateral gradients to arbiter and received the optimized and decrypted gradient. """ current_suffix = (n_iter_, batch_index) self.host_forwards = self.get_host_forward(suffix=current_suffix) fore_gradient = self.compute_and_aggregate_forwards(data_instances, model_weights, encrypted_calculator, batch_index, offset) self.remote_fore_gradient(fore_gradient, suffix=current_suffix) unilateral_gradient = compute_gradient(data_instances, fore_gradient, model_weights.fit_intercept) if optimizer is not None: unilateral_gradient = optimizer.add_regular_to_grad(unilateral_gradient, model_weights) optimized_gradient = self.update_gradient(unilateral_gradient, suffix=current_suffix) return optimized_gradient, fore_gradient, self.host_forwards def get_host_forward(self, suffix=tuple()): host_forward = self.host_forward_transfer.get(idx=-1, suffix=suffix) return host_forward def remote_fore_gradient(self, fore_gradient, suffix=tuple()): self.fore_gradient_transfer.remote(obj=fore_gradient, role=consts.HOST, idx=-1, suffix=suffix) def update_gradient(self, unilateral_gradient, suffix=tuple()): self.unilateral_gradient_transfer.remote(unilateral_gradient, role=consts.ARBITER, idx=0, suffix=suffix) optimized_gradient = self.unilateral_optim_gradient_transfer.get(idx=0, suffix=suffix) return optimized_gradient class Host(object): def __init__(self): self.forwards = None self.fore_gradient = None def _register_gradient_sync(self, host_forward_transfer, fore_gradient_transfer, host_gradient_transfer, host_optim_gradient_transfer): self.host_forward_transfer = host_forward_transfer self.fore_gradient_transfer = fore_gradient_transfer self.unilateral_gradient_transfer = host_gradient_transfer self.unilateral_optim_gradient_transfer = host_optim_gradient_transfer def compute_forwards(self, data_instances, model_weights): raise NotImplementedError("Function should not be called here") def compute_unilateral_gradient(self, data_instances, fore_gradient, model_weights, optimizer): raise NotImplementedError("Function should not be called here") def compute_gradient_procedure(self, data_instances, model_weights, encrypted_calculator, optimizer, n_iter_, batch_index): """ Linear model gradient procedure Step 1: get host forwards which differ from different algorithm For Logistic Regression: forwards = wx """ current_suffix = (n_iter_, batch_index) self.forwards = self.compute_forwards(data_instances, model_weights) encrypted_forward = encrypted_calculator[batch_index].encrypt(self.forwards) self.remote_host_forward(encrypted_forward, suffix=current_suffix) fore_gradient = self.get_fore_gradient(suffix=current_suffix) unilateral_gradient = compute_gradient(data_instances, fore_gradient, model_weights.fit_intercept) if optimizer is not None: unilateral_gradient = optimizer.add_regular_to_grad(unilateral_gradient, model_weights) optimized_gradient = self.update_gradient(unilateral_gradient, suffix=current_suffix) return optimized_gradient, fore_gradient def remote_host_forward(self, host_forward, suffix=tuple()): self.host_forward_transfer.remote(obj=host_forward, role=consts.GUEST, idx=0, suffix=suffix) def get_fore_gradient(self, suffix=tuple()): host_forward = self.fore_gradient_transfer.get(idx=0, suffix=suffix) return host_forward def update_gradient(self, unilateral_gradient, suffix=tuple()): self.unilateral_gradient_transfer.remote(unilateral_gradient, role=consts.ARBITER, idx=0, suffix=suffix) optimized_gradient = self.unilateral_optim_gradient_transfer.get(idx=0, suffix=suffix) return optimized_gradient class Arbiter(object): def __init__(self): self.has_multiple_hosts = False def _register_gradient_sync(self, guest_gradient_transfer, host_gradient_transfer, guest_optim_gradient_transfer, host_optim_gradient_transfer): self.guest_gradient_transfer = guest_gradient_transfer self.host_gradient_transfer = host_gradient_transfer self.guest_optim_gradient_transfer = guest_optim_gradient_transfer self.host_optim_gradient_transfer = host_optim_gradient_transfer def compute_gradient_procedure(self, cipher_operator, optimizer, n_iter_, batch_index): """ Compute gradients. Received local_gradients from guest and hosts. Merge and optimize, then separate and remote back. Parameters ---------- cipher_operator: Use for encryption optimizer: optimizer that get delta gradient of this iter n_iter_: int, current iter nums batch_index: int, use to obtain current encrypted_calculator """ current_suffix = (n_iter_, batch_index) host_gradients, guest_gradient = self.get_local_gradient(current_suffix) if len(host_gradients) > 1: self.has_multiple_hosts = True host_gradients = [np.array(h) for h in host_gradients] guest_gradient = np.array(guest_gradient) size_list = [h_g.shape[0] for h_g in host_gradients] size_list.append(guest_gradient.shape[0]) gradient = np.hstack((h for h in host_gradients)) gradient = np.hstack((gradient, guest_gradient)) grad = np.array(cipher_operator.decrypt_list(gradient)) LOGGER.debug("In arbiter compute_gradient_procedure, before apply grad: {}, size_list: {}".format( grad, size_list )) delta_grad = optimizer.apply_gradients(grad) LOGGER.debug("In arbiter compute_gradient_procedure, delta_grad: {}".format( delta_grad )) separate_optim_gradient = self.separate(delta_grad, size_list) LOGGER.debug("In arbiter compute_gradient_procedure, separated gradient: {}".format( separate_optim_gradient )) host_optim_gradients = separate_optim_gradient[: -1] guest_optim_gradient = separate_optim_gradient[-1] self.remote_local_gradient(host_optim_gradients, guest_optim_gradient, current_suffix) return delta_grad @staticmethod def separate(value, size_list): """ Separate value in order to several set according size_list Parameters ---------- value: list or ndarray, input data size_list: list, each set size Returns ---------- list set after separate """ separate_res = [] cur = 0 for size in size_list: separate_res.append(value[cur:cur + size]) cur += size return separate_res def get_local_gradient(self, suffix=tuple()): host_gradients = self.host_gradient_transfer.get(idx=-1, suffix=suffix) LOGGER.info("Get host_gradient from Host") guest_gradient = self.guest_gradient_transfer.get(idx=0, suffix=suffix) LOGGER.info("Get guest_gradient from Guest") return host_gradients, guest_gradient def remote_local_gradient(self, host_optim_gradients, guest_optim_gradient, suffix=tuple()): for idx, host_optim_gradient in enumerate(host_optim_gradients): self.host_optim_gradient_transfer.remote(host_optim_gradient, role=consts.HOST, idx=idx, suffix=suffix) self.guest_optim_gradient_transfer.remote(guest_optim_gradient, role=consts.GUEST, idx=0, suffix=suffix)
39.805732
112
0.669334
70377993b318752d16fe8a9ea915272beedae22d
4,222
py
Python
talha12.py
talha123444e441/talha12
0d1ae324d297d1382966adaec874aa09f083bb34
[ "Apache-2.0" ]
null
null
null
talha12.py
talha123444e441/talha12
0d1ae324d297d1382966adaec874aa09f083bb34
[ "Apache-2.0" ]
null
null
null
talha12.py
talha123444e441/talha12
0d1ae324d297d1382966adaec874aa09f083bb34
[ "Apache-2.0" ]
null
null
null
#!/system/bin/python #TOOL OWNER Cayber solution bd #Coded By Talha #Date & Time 24/12/2021 [06:09] #TDF import urllib2 import urllib import sys import time import random import re import os os.system("clear") #Warna B = '\033[1m' #Bold R = '\033[31m' #Red G = '\033[32m' #Green Y = '\033[33m' #Yellow BL = '\033[34m' #Blue P = '\033[35m' #Purple W = '\033[37m' #White U = '\033[2m' #Underline N = '\033[0m' #Normal #Pastikan Proxy List 1 Dir Dengan Script Python Ini proxy_list = "proxylist.txt" bacod = ['Mozilla/4.0 (compatible; MSIE 5.0; SunOS 5.10 sun4u; X11)', 'Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.2.2pre) Gecko/20100207 Ubuntu/9.04 (jaunty) Namoroka/3.6.2pre', 'Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Avant Browser;', 'Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)', 'Mozilla/4.0 (compatible; MSIE 7.0b; Windows NT 5.1)', 'Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US; rv:1.9.0.6)', 'Microsoft Internet Explorer/4.0b1 (Windows 95)', 'Opera/8.00 (Windows NT 5.1; U; en)', 'amaya/9.51 libwww/5.4.0', 'Mozilla/4.0 (compatible; MSIE 5.0; AOL 4.0; Windows 95; c_athome)', 'Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)', 'Mozilla/5.0 (compatible; Konqueror/3.5; Linux) KHTML/3.5.5 (like Gecko) (Kubuntu)', 'Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; ZoomSpider.net bot; .NET CLR 1.1.4322)', 'Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; QihooBot 1.0 qihoobot@qihoo.net)', 'Mozilla/4.0 (compatible; MSIE 5.0; Windows ME) Opera 5.11 [en]'] #Hargai Pembuat!.. Coding Ga Gampang!.. gblk = ['http://google.com','http://bing.com','http://facebook.com','http://twitter.com','http://yahoo.com'] print B+G+"" print " _____ __ ___ " print " CYBER SOLUTION BD " print " CYBER SOLUTION BD " print " CYBER SOLUTION BD" print "_" print "-" print C+T+A+L+H+A+"" print " _______________ _______________ ____ " print " Abu Talha " print " Abu Talha " print " Abu Talha " print " Abu Talha " print " Abu Talha " time.sleep(2) print '' print B+BL+'#-----------------------------------------#' print B+R+' TAKE LOVE FROM CSB FAMILY' print B+BL+'#-----------------------------------------#' print B+W+' 1.YOU CAN GET UNLIMITED VIEW FROM THIS TOOL' print B+W+'2.THIS TOOL OWNER :CYBER SOLUTION BD' print B+W+'3.CODED BY MD Abu Talha ' print B+W+'4.WE ARE SYSTEM MAKERS' print B+W+'5.CYBER SOLUTION BD ' print B+BL+'#-----------------------------------------#' print B+R+' \!/WARNING\!/' print B+BL+'#-----------------------------------------#' ini_url = raw_input (B+Y+"[+] WEBPAGE URL : ") print '' print B+Y+'[+] STARTING => '+B+BL+'|'+B+W,ini_url print B+BL+'#-----------------------------------------#' def Autoclicker(proxy1): try: proxy = proxy1.split(":") print B+BL+"#-----------------------------------------#\n"+B+W+'[-]',proxy1, ""+B+P+"=> Process"+N time.sleep(2) proxy_set = urllib2.ProxyHandler({"http" : "%s:%d" % (proxy[0], int(proxy[1]))}) opener = urllib2.build_opener(proxy_set, urllib2.HTTPHandler) opener.addheaders = [('User-agent', random.choice(bacod)), ('Refferer', random.choice(gblk))] urllib2.install_opener(opener) f = urllib2.urlopen(ini_url) #187034 if "google.com" in f.read(): print B+G+"[*] 200 OK"+"\n"+B+BL+"#-----------------------------------------#\n"+N else: print B+R+"[*] Link Gagal Di Kunjungi !\n"+B+BL+"#-----------------------------------------#\n"+N print B+R+"[!] Proxy / Connection Failed\n"+B+BL+"#-----------------------------------------#\n"+N except: print B+R+"[!] Proxy Error\n"+B+BL+"#-----------------------------------------#\n"+N time.sleep(5) pass def loadproxy(): try: get_file = open(proxy_list, "r") proxylist = get_file.readlines() count = 0 proxy = [] while count < len(proxylist): proxy.append(proxylist[count].strip()) count += 1 for i in proxy: Autoclicker(i) except IOError: print B+W+"\n[-] Error : Proxy List Tidak Ditemukan / Belum Dibuat\n"+N sys.exit(1) def main(): print """ """+N loadproxy() if __name__ == '__main__': main()
36.08547
116
0.553529
541a5fbf78ae5d8016a0a7af7c01bc13f761637e
19,351
py
Python
sublime_plugin.py
koery/win-sublime
1b16cbe9858eced52567971286109250df787d36
[ "MIT" ]
null
null
null
sublime_plugin.py
koery/win-sublime
1b16cbe9858eced52567971286109250df787d36
[ "MIT" ]
null
null
null
sublime_plugin.py
koery/win-sublime
1b16cbe9858eced52567971286109250df787d36
[ "MIT" ]
null
null
null
import sublime import threading import imp import importlib import os import sys import zipfile import sublime_api import traceback api_ready = False application_command_classes = [] window_command_classes = [] text_command_classes = [] all_command_classes = [application_command_classes, window_command_classes, text_command_classes] all_callbacks = {'on_new': [], 'on_clone': [], 'on_load': [], 'on_pre_close': [], 'on_close': [], 'on_pre_save': [], 'on_post_save': [], 'on_modified': [], 'on_selection_modified': [],'on_activated': [], 'on_deactivated': [], 'on_query_context': [], 'on_query_completions': [], 'on_text_command': [], 'on_window_command': [], 'on_post_text_command': [], 'on_post_window_command': [], 'on_modified_async': [], 'on_selection_modified_async': [], 'on_pre_save_async': [], 'on_post_save_async': [], 'on_activated_async': [], 'on_deactivated_async': [], 'on_new_async': [], 'on_load_async': [], 'on_clone_async': []} def unload_module(module): if "plugin_unloaded" in module.__dict__: module.plugin_unloaded() # Check unload_handler too, for backwards compat if "unload_handler" in module.__dict__: module.unload_handler() # Unload the old plugins if "plugins" in module.__dict__: for p in module.plugins: for cmd_cls_list in all_command_classes: try: cmd_cls_list.remove(p) except ValueError: pass for c in all_callbacks.values(): try: c.remove(p) except ValueError: pass def unload_plugin(modulename): print("unloading plugin", modulename) was_loaded = modulename in sys.modules if was_loaded: m = sys.modules[modulename] unload_module(m) del sys.modules[modulename] def reload_plugin(modulename): print("reloading plugin", modulename) if modulename in sys.modules: m = sys.modules[modulename] unload_module(m) m = imp.reload(m) else: m = importlib.import_module(modulename) module_plugins = [] on_activated_targets = [] for type_name in dir(m): try: t = m.__dict__[type_name] if t.__bases__: is_plugin = False if issubclass(t, ApplicationCommand): application_command_classes.append(t) is_plugin = True if issubclass(t, WindowCommand): window_command_classes.append(t) is_plugin = True if issubclass(t, TextCommand): text_command_classes.append(t) is_plugin = True if is_plugin: module_plugins.append(t) if issubclass(t, EventListener): obj = t() for p in all_callbacks.items(): if p[0] in dir(obj): p[1].append(obj) if "on_activated" in dir(obj): on_activated_targets.append(obj) module_plugins.append(obj) except AttributeError: pass if len(module_plugins) > 0: m.plugins = module_plugins if api_ready: if "plugin_loaded" in m.__dict__: try: m.plugin_loaded() except: traceback.print_exc() # Synthesize any required on_activated calls for el in on_activated_targets: w = sublime.active_window() if w: v = w.active_view() if v: try: el.on_activated(v) except: traceback.print_exc() def create_application_commands(): cmds = [] for class_ in application_command_classes: cmds.append(class_()) sublime_api.notify_application_commands(cmds) def create_window_commands(window_id): window = sublime.Window(window_id) cmds = [] for class_ in window_command_classes: cmds.append(class_(window)) return cmds def create_text_commands(view_id): view = sublime.View(view_id) cmds = [] for class_ in text_command_classes: cmds.append(class_(view)) return cmds def on_api_ready(): global api_ready api_ready = True for m in list(sys.modules.values()): if "plugin_loaded" in m.__dict__: try: m.plugin_loaded() except: traceback.print_exc() # Synthesize an on_activated call w = sublime.active_window() if w: view_id = sublime_api.window_active_view(w.window_id) if view_id != 0: try: on_activated(view_id) except: traceback.print_exc() def on_new(view_id): v = sublime.View(view_id) for callback in all_callbacks['on_new']: try: callback.on_new(v) except: traceback.print_exc() def on_new_async(view_id): v = sublime.View(view_id) for callback in all_callbacks['on_new_async']: try: callback.on_new_async(v) except: traceback.print_exc() def on_clone(view_id): v = sublime.View(view_id) for callback in all_callbacks['on_clone']: try: callback.on_clone(v) except: traceback.print_exc() def on_clone_async(view_id): v = sublime.View(view_id) for callback in all_callbacks['on_clone_async']: try: callback.on_clone_async(v) except: traceback.print_exc() def on_load(view_id): v = sublime.View(view_id) for callback in all_callbacks['on_load']: try: callback.on_load(v) except: traceback.print_exc() def on_load_async(view_id): v = sublime.View(view_id) for callback in all_callbacks['on_load_async']: try: callback.on_load_async(v) except: traceback.print_exc() def on_pre_close(view_id): v = sublime.View(view_id) for callback in all_callbacks['on_pre_close']: try: callback.on_pre_close(v) except: traceback.print_exc() def on_close(view_id): v = sublime.View(view_id) for callback in all_callbacks['on_close']: try: callback.on_close(v) except: traceback.print_exc() def on_pre_save(view_id): v = sublime.View(view_id) for callback in all_callbacks['on_pre_save']: try: callback.on_pre_save(v) except: traceback.print_exc() def on_pre_save_async(view_id): v = sublime.View(view_id) for callback in all_callbacks['on_pre_save_async']: try: callback.on_pre_save_async(v) except: traceback.print_exc() def on_post_save(view_id): v = sublime.View(view_id) for callback in all_callbacks['on_post_save']: try: callback.on_post_save(v) except: traceback.print_exc() def on_post_save_async(view_id): v = sublime.View(view_id) for callback in all_callbacks['on_post_save_async']: try: callback.on_post_save_async(v) except: traceback.print_exc() def on_modified(view_id): v = sublime.View(view_id) for callback in all_callbacks['on_modified']: try: callback.on_modified(v) except: traceback.print_exc() def on_modified_async(view_id): v = sublime.View(view_id) for callback in all_callbacks['on_modified_async']: try: callback.on_modified_async(v) except: traceback.print_exc() def on_selection_modified(view_id): v = sublime.View(view_id) for callback in all_callbacks['on_selection_modified']: try: callback.on_selection_modified(v) except: traceback.print_exc() def on_selection_modified_async(view_id): v = sublime.View(view_id) for callback in all_callbacks['on_selection_modified_async']: try: callback.on_selection_modified_async(v) except: traceback.print_exc() def on_activated(view_id): v = sublime.View(view_id) for callback in all_callbacks['on_activated']: try: callback.on_activated(v) except: traceback.print_exc() def on_activated_async(view_id): v = sublime.View(view_id) for callback in all_callbacks['on_activated_async']: try: callback.on_activated_async(v) except: traceback.print_exc() def on_deactivated(view_id): v = sublime.View(view_id) for callback in all_callbacks['on_deactivated']: try: callback.on_deactivated(v) except: traceback.print_exc() def on_deactivated_async(view_id): v = sublime.View(view_id) for callback in all_callbacks['on_deactivated_async']: try: callback.on_deactivated_async(v) except: traceback.print_exc() def on_query_context(view_id, key, operator, operand, match_all): v = sublime.View(view_id) for callback in all_callbacks['on_query_context']: try: val = callback.on_query_context(v, key, operator, operand, match_all) if val: return True except: traceback.print_exc() return False def normalise_completion(c): if len(c) == 1: return (c[0], "", "") elif len(c) == 2: return (c[0], "", c[1]) else: return c def on_query_completions(view_id, prefix, locations): v = sublime.View(view_id) completions = [] flags = 0 for callback in all_callbacks['on_query_completions']: try: res = callback.on_query_completions(v, prefix, locations) if isinstance(res, tuple): completions += [normalise_completion(c) for c in res[0]] flags |= res[1] elif isinstance(res, list): completions += [normalise_completion(c) for c in res] except: traceback.print_exc() return (completions,flags) def on_text_command(view_id, name, args): v = sublime.View(view_id) for callback in all_callbacks['on_text_command']: try: res = callback.on_text_command(v, name, args) if isinstance(res, tuple): return res elif res: return (res, None) except: traceback.print_exc() return ("", None) def on_window_command(window_id, name, args): window = sublime.Window(window_id) for callback in all_callbacks['on_window_command']: try: res = callback.on_window_command(window, name, args) if isinstance(res, tuple): return res elif res: return (res, None) except: traceback.print_exc() return ("", None) def on_post_text_command(view_id, name, args): v = sublime.View(view_id) for callback in all_callbacks['on_post_text_command']: try: callback.on_post_text_command(v, name, args) except: traceback.print_exc() def on_post_window_command(window_id, name, args): window = sublime.Window(window_id) for callback in all_callbacks['on_post_window_command']: try: callback.on_post_window_command(window, name, args) except: traceback.print_exc() class Command(object): def name(self): clsname = self.__class__.__name__ name = clsname[0].lower() last_upper = False for c in clsname[1:]: if c.isupper() and not last_upper: name += '_' name += c.lower() else: name += c last_upper = c.isupper() if name.endswith("_command"): name = name[0:-8] return name def is_enabled_(self, args): ret = None try: args = self.filter_args(args) if args: ret = self.is_enabled(**args) else: ret = self.is_enabled() except TypeError: ret = self.is_enabled() if not isinstance(ret, bool): raise ValueError("is_enabled must return a bool", self) return ret def is_enabled(self): return True def is_visible_(self, args): ret = None try: args = self.filter_args(args) if args: ret = self.is_visible(**args) else: ret = self.is_visible() except TypeError: ret = self.is_visible() if not isinstance(ret, bool): raise ValueError("is_visible must return a bool", self) return ret def is_visible(self): return True def is_checked_(self, args): ret = None try: args = self.filter_args(args) if args: ret = self.is_checked(**args) else: ret = self.is_checked() except TypeError: ret = self.is_checked() if not isinstance(ret, bool): raise ValueError("is_checked must return a bool", self) return ret def is_checked(self): return False def description_(self, args): try: args = self.filter_args(args) if args != None: return self.description(**args) else: return self.description() except TypeError as e: return "" def description(self): return "" def filter_args(self, args): if args: if 'event' in args and not self.want_event(): args = args.copy() del args['event'] return args def want_event(self): return False class ApplicationCommand(Command): def run_(self, edit_token, args): args = self.filter_args(args) if args: return self.run(**args) else: return self.run() def run(self): pass class WindowCommand(Command): def __init__(self, window): self.window = window def run_(self, edit_token, args): args = self.filter_args(args) if args: return self.run(**args) else: return self.run() def run(self): pass class TextCommand(Command): def __init__(self, view): self.view = view def run_(self, edit_token, args): args = self.filter_args(args) if args: edit = self.view.begin_edit(edit_token, self.name(), args) try: return self.run(edit, **args) finally: self.view.end_edit(edit) else: edit = self.view.begin_edit(edit_token, self.name()) try: return self.run(edit) finally: self.view.end_edit(edit) def run(self, edit): pass class EventListener(object): pass class MultizipImporter(object): def __init__(self): self.loaders = [] self.file_loaders = [] def find_module(self, fullname, path = None): if not path: for l in self.loaders: if l.name == fullname: return l for l in self.loaders: if path == [l.zippath]: if l.has(fullname): return l return None class ZipLoader(object): def __init__(self, zippath): self.zippath = zippath self.name = os.path.splitext(os.path.basename(zippath))[0] self.contents = {"":""} self.packages = {""} z = zipfile.ZipFile(zippath, 'r') files = [i.filename for i in z.infolist()] for f in files: base, ext = os.path.splitext(f) if ext != ".py": continue paths = base.split('/') if len(paths) > 0 and paths[len(paths) - 1] == "__init__": paths.pop() self.packages.add('.'.join(paths)) try: self.contents['.'.join(paths)] = z.read(f).decode('utf-8') except UnicodeDecodeError: print(f, "in", zippath, "is not utf-8 encoded, unable to load plugin") continue while len(paths) > 1: paths.pop() parent = '.'.join(paths) if parent not in self.contents: self.contents[parent] = "" self.packages.add(parent) z.close() def has(self, fullname): key = '.'.join(fullname.split('.')[1:]) if key in self.contents: return True override_file = os.path.join(override_path, os.sep.join(fullname.split('.')) + '.py') if os.path.isfile(override_file): return True override_package = os.path.join(override_path, os.sep.join(fullname.split('.'))) if os.path.isdir(override_package): return True return False def load_module(self, fullname): if fullname in sys.modules: mod = sys.modules[fullname] else: mod = sys.modules.setdefault(fullname, imp.new_module(fullname)) mod.__file__ = self.zippath + "/" + fullname mod.__name__ = fullname mod.__path__ = [self.zippath] mod.__loader__ = self key = '.'.join(fullname.split('.')[1:]) if key in self.contents: source = self.contents[key] source_path = key + " in " + self.zippath is_pkg = key in self.packages try: override_file = os.path.join(override_path, os.sep.join(fullname.split('.')) + '.py') override_package_init = os.path.join(os.path.join(override_path, os.sep.join(fullname.split('.'))), '__init__.py') if os.path.isfile(override_file): with open(override_file, 'r') as f: source = f.read() source_path = override_file elif os.path.isfile(override_package_init): with open(override_package_init, 'r') as f: source = f.read() source_path = override_package_init is_pkg = True except: pass if is_pkg: mod.__package__ = mod.__name__ else: mod.__package__ = fullname.rpartition('.')[0] exec(compile(source, source_path, 'exec'), mod.__dict__) return mod override_path = None multi_importer = MultizipImporter() sys.meta_path.insert(0, multi_importer) def update_compressed_packages(pkgs): multi_importer.loaders = [] for p in pkgs: try: multi_importer.loaders.append(ZipLoader(p)) except (FileNotFoundError, zipfile.BadZipFile) as e: print("error loading " + p + ": " + str(e)) def set_override_path(path): global override_path override_path = path
27.763271
126
0.564467
57fabcd66a3d0abffdc0048e294218199e90ac29
8,874
py
Python
irods_capability_automated_ingest/irods_sync.py
trel/irods_capability_automated_ingest
38175f5f9788645777a42abca85379f77438941a
[ "BSD-3-Clause" ]
null
null
null
irods_capability_automated_ingest/irods_sync.py
trel/irods_capability_automated_ingest
38175f5f9788645777a42abca85379f77438941a
[ "BSD-3-Clause" ]
null
null
null
irods_capability_automated_ingest/irods_sync.py
trel/irods_capability_automated_ingest
38175f5f9788645777a42abca85379f77438941a
[ "BSD-3-Clause" ]
null
null
null
from .sync_task import start_synchronization, stop_synchronization, list_synchronization, monitor_synchronization import argparse from uuid import uuid1 import json import sys def get_config(args): return { "log": { "filename": getattr(args, "log_filename", None), "when": getattr(args, "log_when", None), "interval": getattr(args, "log_interval", None), "level": getattr(args, "log_level", None) }, "profile": { "filename": getattr(args, "profile_filename", None), "when": getattr(args, "profile_when", None), "interval": getattr(args, "profile_interval", None), "level": getattr(args, "profile_level", None) }, "redis": { "host": args.redis_host, "port": args.redis_port, "db": args.redis_db } } def add_arguments(parser): parser.add_argument('--log_filename', action="store", type=str, default=None, help="Specify name of log file.") parser.add_argument('--log_when', action="store", type=str, default=None, help="Specify the type of log_interval (see TimedRotatingFileHandler).") parser.add_argument('--log_interval', action="store", type=int, default=None, help="Specify the interval with which to rollover the ingest log file.") parser.add_argument('--log_level', action="store", type=str, default=None, help="Specify minimum level of message to log (DEBUG, INFO, WARNING, ERROR).") parser.add_argument('--profile_filename', action="store", type=str, default=None, help="Specify name of profile filename.") parser.add_argument('--profile_when', action="store", type=str, default=None, help="Specify the type of profile_interval (see TimedRotatingFileHandler).") parser.add_argument('--profile_interval', action="store", type=int, default=None, help="Specify the interval with which to rollover the ingest profile log file.") parser.add_argument('--profile_level', action="store", type=str, default=None, help="Specify minimum level of message to log for profiling (DEBUG, INFO, WARNING, ERROR).") parser.add_argument('--redis_host', action="store", type=str, default="localhost", help="Domain or IP address of Redis host.") parser.add_argument('--redis_port', action="store", type=int, default=6379, help="Port number for Redis.") parser.add_argument('--redis_db', action="store", type=int, default=0, help="Redis DB number to use for ingest.") def handle_start(args): ex_file_arg = args.exclude_file_type if ex_file_arg != None: ex_arg_list = [x.strip() for x in ex_file_arg[0].split(',')] data = {} data["restart_queue"] = args.restart_queue data["path_queue"] = args.path_queue data["file_queue"] = args.file_queue data["target"] = args.target data["root"] = args.root data["interval"] = args.interval data["job_name"] = args.job_name if args.job_name else str(uuid1()) data["append_json"] = args.append_json data["ignore_cache"] = args.ignore_cache data["initial_ingest"] = args.initial_ingest data["event_handler"] = args.event_handler data["config"] = get_config(args) data["synchronous"] = args.synchronous data["progress"] = args.progress data["profile"] = args.profile data["files_per_task"] = args.files_per_task data["s3_endpoint_domain"] = args.s3_endpoint_domain data["s3_region_name"] = args.s3_region_name data["s3_keypair"] = args.s3_keypair data["s3_proxy_url"] = args.s3_proxy_url data["exclude_file_type"] = ex_arg_list data['exclude_file_name'] = [ ''.join(r) for r in args.exclude_file_name ] data['exclude_directory_name'] = [ ''.join(r) for r in args.exclude_directory_name ] data['idle_disconnect_seconds'] = args.irods_idle_disconnect_seconds return start_synchronization(data) def handle_stop(args): stop_synchronization(args.job_name, get_config(args)) return 0 def handle_watch(args): return monitor_synchronization(args.job_name, True, get_config(args)) def handle_list(args): jobs = list_synchronization(get_config(args)) print(json.dumps(jobs)) return 0 def main(): parser = argparse.ArgumentParser(description='continuous synchronization utility') subparsers = parser.add_subparsers(help="subcommand help") parser_start = subparsers.add_parser("start", formatter_class=argparse.ArgumentDefaultsHelpFormatter, help="start help") parser_start.add_argument('root', metavar='SOURCE_DIRECTORY', type=str, help='Source directory or S3 folder to scan.') parser_start.add_argument('target', metavar='TARGET_COLLECTION', type=str, help='Target iRODS collection for data objects (created if non-existent).') parser_start.add_argument('-i', '--interval', action="store", type=int, default=None, help='Restart interval (in seconds). If absent, will only sync once.') parser_start.add_argument('--file_queue', action="store", type=str, default="file", help='Name for the file queue.') parser_start.add_argument('--path_queue', action="store", type=str, default="path", help='Name for the path queue.') parser_start.add_argument('--restart_queue', action="store", type=str, default="restart", help='Name for the restart queue.') parser_start.add_argument('--event_handler', action="store", type=str, default=None, help='Path to event handler file') parser_start.add_argument('--job_name', action="store", type=str, default=None, help='Reference name for ingest job (defaults to generated uuid)') parser_start.add_argument('--append_json', action="store", type=json.loads, default=None, help='Append json output') parser_start.add_argument("--ignore_cache", action="store_true", default=False, help='Ignore last sync time in cache - like starting a new sync') parser_start.add_argument("--initial_ingest", action="store_true", default=False, help='Use this flag on initial ingest to avoid check for data object paths already in iRODS.') parser_start.add_argument('--synchronous', action="store_true", default=False, help='Block until sync job is completed.') parser_start.add_argument('--progress', action="store_true", default=False, help='Show progress bar and task counts (must have --synchronous flag).') parser_start.add_argument('--profile', action="store_true", default=False, help='Generate JSON file of system activity profile during ingest.') parser_start.add_argument('--files_per_task', action="store", type=int, default='50', help='Number of paths to process in a given task on the queue.') parser_start.add_argument('--s3_endpoint_domain', action="store", type=str, default='s3.amazonaws.com', help='S3 endpoint domain') parser_start.add_argument('--s3_region_name', action="store", type=str, default='us-east-1', help='S3 region name') parser_start.add_argument('--s3_keypair', action="store", type=str, default=None, help='Path to S3 keypair file') parser_start.add_argument('--s3_proxy_url', action="store", type=str, default=None, help='URL to proxy for S3 access') parser_start.add_argument('--exclude_file_type', nargs=1, action="store", default='none', help='types of files to exclude: regular, directory, character, block, socket, pipe, link') parser_start.add_argument('--exclude_file_name', type=list, nargs='+', action="store", default='none', help='a list of space-separated python regular expressions defining the file names to exclude such as "(\S+)exclude" "(\S+)\.hidden"') parser_start.add_argument('--exclude_directory_name', type=list, nargs='+', action="store", default='none', help='a list of space-separated python regular expressions defining the directory names to exclude such as "(\S+)exclude" "(\S+)\.hidden"') parser_start.add_argument('--irods_idle_disconnect_seconds', action="store", type=int, default=60, help='irods disconnect time in seconds') add_arguments(parser_start) parser_start.set_defaults(func=handle_start) parser_stop = subparsers.add_parser("stop", formatter_class=argparse.ArgumentDefaultsHelpFormatter, help="stop help") parser_stop.add_argument('job_name', action="store", type=str, help='job name') add_arguments(parser_stop) parser_stop.set_defaults(func=handle_stop) parser_watch = subparsers.add_parser("watch", formatter_class=argparse.ArgumentDefaultsHelpFormatter, help="watch help") parser_watch.add_argument('job_name', action="store", type=str, help='job name') add_arguments(parser_watch) parser_watch.set_defaults(func=handle_watch) parser_list = subparsers.add_parser("list", formatter_class=argparse.ArgumentDefaultsHelpFormatter, help="list help") add_arguments(parser_list) parser_list.set_defaults(func=handle_list) args = parser.parse_args() sys.exit(args.func(args)) if __name__ == "__main__": main()
61.2
251
0.720645
fa5461f002f70e4fc45c7500d7c2d5b8d56d83d2
12,639
py
Python
python/oneflow/framework/env_util.py
mosout/oneflow
afbb221d900f1a340568ae2462b2022f8fcc4b3d
[ "Apache-2.0" ]
null
null
null
python/oneflow/framework/env_util.py
mosout/oneflow
afbb221d900f1a340568ae2462b2022f8fcc4b3d
[ "Apache-2.0" ]
null
null
null
python/oneflow/framework/env_util.py
mosout/oneflow
afbb221d900f1a340568ae2462b2022f8fcc4b3d
[ "Apache-2.0" ]
null
null
null
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os import socket import traceback from contextlib import closing import oneflow._oneflow_internal import oneflow.core.control.ctrl_bootstrap_pb2 as ctrl_bootstrap_pb import oneflow.core.job.env_pb2 as env_pb import oneflow.core.job.resource_pb2 as resource_util import oneflow.framework.c_api_util as c_api_util import oneflow.framework.hob as hob import oneflow.framework.scope_util as scope_util import oneflow.framework.session_context as session_ctx import oneflow.support.enable_if as enable_if from oneflow import oneflow_deprecate def api_all_device_placement(device_type: str) -> oneflow._oneflow_internal.placement: r""" Return a placement containing all devices of all machines under env. Args: device_type (str): cuda or cpu For examples: .. code-block:: python # world_size = 4, node_size = 1 import oneflow as flow p = flow.env.all_device_placement("cuda") # oneflow.placement(device_type="cuda", machine_device_ids={0 : [0, 1, 2, 3]}, hierarchy=(4,)) p = flow.env.all_device_placement("cpu") # oneflow.placement(device_type="cpu", machine_device_ids={0 : [0, 1, 2, 3]}, hierarchy=(4,)) """ return oneflow._oneflow_internal.AllDevicePlacement(device_type) def api_enable_eager_execution(val: bool = True) -> None: """If True, job will execute in eager mode, else use lazy mode(static graph). Args: val (bool, optional): Whether eager execution or not. Defaults to True. """ return enable_if.unique([enable_eager_environment])(val) @enable_if.condition(hob.in_normal_mode & ~hob.any_global_function_defined) def enable_eager_environment(val=True): return oneflow._oneflow_internal.EnableEagerEnvironment(val) def api_env_init() -> bool: """Init environment for job Returns: bool: [description] """ return enable_if.unique([env_init, do_nothing])() @enable_if.condition(hob.in_normal_mode & ~hob.env_initialized) def env_init(): global default_env_proto is_multi_client = oneflow._oneflow_internal.IsMultiClient() assert len(default_env_proto.machine) > 0 CompleteEnvProto(default_env_proto, is_multi_client) c_api_util.InitEnv(default_env_proto, is_multi_client) if not is_multi_client: if oneflow._oneflow_internal.CurrentMachineId() == 0: scope_util.InitScopeStack() else: exit(0) return True def api_machine(*val: list) -> None: """Set machines' hostnames. For instance: oneflow.env.machine([{"addr": "192.168.1.1"}, {"addr": "192.168.1.2"}]) Args: val: `list`, `tuple` or multiple arguments of `dict`. First in the list is the master machine. """ return enable_if.unique([machine, do_nothing])(*val) @enable_if.condition(hob.in_normal_mode & ~hob.env_initialized) def machine(*val): del default_env_proto.machine[:] if len(val) == 1 and isinstance(val[0], (list, tuple)): val = val[0] default_env_proto.ClearField("machine") default_env_proto.machine.extend(_MakeMachine(val)) def api_ctrl_port(val: int) -> None: """Set port number used to control the execution across multiple machines. Same on every machine. Args: val: a port number accessible to peer machines """ return enable_if.unique([ctrl_port, do_nothing])(val) @enable_if.condition(hob.in_normal_mode & ~hob.env_initialized) def ctrl_port(val): assert type(val) is int default_env_proto.ctrl_port = val def api_data_port(val: int) -> None: """Set port number used to data transfer among multiple machines. Same on every machine. Args: val: a port number accessible to peer machines """ return enable_if.unique([data_port, do_nothing])(val) @enable_if.condition(hob.in_normal_mode & ~hob.env_initialized) def data_port(val): assert type(val) is int default_env_proto.data_port = val from oneflow import oneflow_deprecate @oneflow_deprecate() def api_grpc_use_no_signal(val: bool = True) -> None: """Set rpc use signal or not (deprecate) Args: val (bool, optional): True or False. Defaults to True. """ print( "WARNING:", "oneflow.env.grpc_use_no_signal is deprecated, users no longer need to set rpc use signal or not. \n", traceback.format_stack()[-2], ) return None def api_log_dir(val: str) -> None: """Specify a dir to store OneFlow's logging files. If not specified, it is `./log` by default. Args: val (str): string , log file path """ return enable_if.unique([log_dir, do_nothing])(val) @enable_if.condition(hob.in_normal_mode & ~hob.env_initialized) def log_dir(val): assert type(val) is str default_env_proto.cpp_logging_conf.log_dir = val def api_logtostderr(val: int) -> None: """Set whether log messages go to stderr instead of logfiles Args: val (int): [description] """ return enable_if.unique([logtostderr, do_nothing])(val) @enable_if.condition(hob.in_normal_mode & ~hob.env_initialized) def logtostderr(val): assert type(val) is int default_env_proto.cpp_logging_conf.logtostderr = val def api_logbuflevel(val: int) -> None: """Log messages at a level <= this flag are buffered. Log messages at a higher level are flushed immediately. Args: val (int): int, number of level """ return enable_if.unique([logbuflevel, do_nothing])(val) @enable_if.condition(hob.in_normal_mode & ~hob.env_initialized) def logbuflevel(val): assert type(val) is int default_env_proto.cpp_logging_conf.logbuflevel = val @enable_if.condition(hob.in_normal_mode & hob.env_initialized) def do_nothing(*args, **kwargs): print("Environment has been initialized, this env init will do nothing.") return False def CompleteEnvProto(env_proto, is_multi_client): if is_multi_client: _UpdateDefaultEnvProtoByMultiClientEnvVars(env_proto) if env_proto.HasField("ctrl_port") == False: if len(env_proto.machine) == 1: env_proto.ctrl_port = _FindFreePort() else: raise ValueError( "a ctrl_port is required if running multi-node, set it with 'oneflow.env.ctrl_port([YOUR PORT])'" ) def _MakeMachine(machines): if isinstance(machines, str): machines = [machines] rp_machine = env_pb.EnvProto().machine for m_data in machines: m = rp_machine.add() if isinstance(m_data, str): m.addr = m_data elif isinstance(m_data, dict): if "addr" in m_data: m.addr = m_data["addr"] if "ctrl_port_agent" in m_data: m.ctrl_port_agent = m_data["ctrl_port_agent"] if "data_port_agent" in m_data: m.data_port_agent = m_data["data_port_agent"] else: raise NotImplementedError id = 0 addrs_for_check = set() for m in rp_machine: m.id = id id += 1 assert m.addr not in addrs_for_check addrs_for_check.add(m.addr) return rp_machine def api_init_bootstrap_confs(*val: list, **kargs) -> None: return enable_if.unique([MakeBootstrapConfs, do_nothing])(*val, **kargs) def _MakeBootstrapConf(bootstrap_info: dict): global config_master_addr assert config_master_addr.HasField("host"), "must config master host first" assert config_master_addr.HasField("port"), "must config master port first" assert config_world_size != 0, "must config world size first" bootstrap_conf = ctrl_bootstrap_pb.BootstrapConf() bootstrap_conf.master_addr.CopyFrom(config_master_addr) bootstrap_conf.world_size = config_world_size assert "rank" in bootstrap_info bootstrap_conf.rank = bootstrap_info["rank"] if "host" in bootstrap_info: bootstrap_conf.host = bootstrap_info["host"] global config_bootstrap_ctrl_port if config_bootstrap_ctrl_port != 0: bootstrap_conf.ctrl_port = config_bootstrap_ctrl_port global config_node_size if config_node_size != 0: bootstrap_conf.node_size = config_node_size return bootstrap_conf @enable_if.condition(hob.in_normal_mode & ~hob.env_initialized) def MakeBootstrapConfs( node_list, master_port, world_size=0, ctrl_port=-1, node_size=-1 ): """Set ctrl_bootstrap_conf' info. For instance: ONEFLOW_TEST_NODE_LIST=192.168.1.16,192.168.1.15 ONEFLOW_TEST_MASTER_PORT=43256 ONEFLOW_TEST_WORLD_SIZE=2 ONEFLOW_TEST_RANK_CTRL_PORT=34527 Args: val: `list`, First in the list is the master machine. """ if isinstance(node_list, str): node_list = [node_list] global global_ctrl_bootstrap_confs assert len(global_ctrl_bootstrap_confs) == 0, "ctrl_bootstrap_conf has been inited" global config_master_addr config_master_addr.host = node_list[0] config_master_addr.port = master_port global config_world_size if world_size == 0: config_world_size = len(node_list) else: assert world_size % len(node_list) == 0 config_world_size = world_size global config_bootstrap_ctrl_port if ctrl_port != -1: config_bootstrap_ctrl_port = ctrl_port global config_node_size if node_size != -1: config_node_size = node_size rank = 0 for rank_host in node_list: assert isinstance(rank_host, str) bootstrap_conf = _MakeBootstrapConf({"rank": rank, "host": rank_host}) if rank == 0: global default_env_proto default_env_proto.ctrl_bootstrap_conf.CopyFrom(bootstrap_conf) global_ctrl_bootstrap_confs.append(bootstrap_conf) rank += 1 return global_ctrl_bootstrap_confs def _DefaultEnvProto(): env_proto = env_pb.EnvProto() machine = env_proto.machine.add() machine.id = 0 machine.addr = "127.0.0.1" return env_proto def _FindFreePort(): with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s: s.bind(("localhost", 0)) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) return s.getsockname()[1] def HasAllMultiClientEnvVars(): env_var_names = ["MASTER_ADDR", "MASTER_PORT", "WORLD_SIZE", "RANK", "LOCAL_RANK"] env_var_values = [os.getenv(x) for x in env_var_names] has_no_env_vars = not any(env_var_values) has_all_env_vars = all(env_var_values) assert has_no_env_vars or has_all_env_vars, list(zip(env_var_names, env_var_values)) return has_all_env_vars def SetDefaultMultiClientEnvVars(): os.environ["MASTER_ADDR"] = "127.0.0.1" os.environ["MASTER_PORT"] = str(_FindFreePort()) os.environ["WORLD_SIZE"] = "1" os.environ["RANK"] = "0" os.environ["LOCAL_RANK"] = "0" def _UpdateDefaultEnvProtoByMultiClientEnvVars(env_proto): assert HasAllMultiClientEnvVars() def str2int(env_config): assert env_config.isdigit() return int(env_config) bootstrap_conf = ctrl_bootstrap_pb.BootstrapConf() master_addr = ctrl_bootstrap_pb.Address() master_addr.host = os.getenv("MASTER_ADDR") master_addr.port = str2int(os.getenv("MASTER_PORT")) bootstrap_conf.master_addr.CopyFrom(master_addr) bootstrap_conf.world_size = str2int(os.getenv("WORLD_SIZE")) bootstrap_conf.rank = str2int(os.getenv("RANK")) env_proto.ctrl_bootstrap_conf.CopyFrom(bootstrap_conf) cpp_logging_conf = env_pb.CppLoggingConf() if os.getenv("GLOG_log_dir"): cpp_logging_conf.log_dir = os.getenv("GLOG_log_dir") if os.getenv("GLOG_logtostderr"): cpp_logging_conf.logtostderr = int(os.getenv("GLOG_logtostderr")) if os.getenv("GLOG_logbuflevel"): cpp_logging_conf.logbuflevel = os.getenv("GLOG_logbuflevel") env_proto.cpp_logging_conf.CopyFrom(cpp_logging_conf) device_tag2default_parallel_conf = {} default_env_proto = _DefaultEnvProto() config_master_addr = ctrl_bootstrap_pb.Address() config_world_size = 0 config_bootstrap_ctrl_port = 0 config_node_size = 0 global_ctrl_bootstrap_confs = []
32.658915
144
0.708205
3a0f3fa52e98156407557cebe9bd163c630c5e3c
3,851
py
Python
exabel_data_sdk/client/api/data_classes/relationship_type.py
burk/python-sdk
83fb81d09e0d6a407c8907a75bebb895decc7edc
[ "MIT" ]
null
null
null
exabel_data_sdk/client/api/data_classes/relationship_type.py
burk/python-sdk
83fb81d09e0d6a407c8907a75bebb895decc7edc
[ "MIT" ]
null
null
null
exabel_data_sdk/client/api/data_classes/relationship_type.py
burk/python-sdk
83fb81d09e0d6a407c8907a75bebb895decc7edc
[ "MIT" ]
null
null
null
from typing import Mapping, Union from exabel_data_sdk.client.api.proto_utils import from_struct, to_struct from exabel_data_sdk.stubs.exabel.api.data.v1.all_pb2 import ( RelationshipType as ProtoRelationshipType, ) class RelationshipType: """ A relationship type resource in the Data API. Attributes: name (str): The resource name of the relationship type, for example "relationshipTypes/namespace.relationshipTypeIdentifier". The namespace must be empty (being global) or one of the predetermined namespaces the customer has access to. The relationship type identifier must match the regex [A-Z][A-Z0-9_]{0,63}. description (str): One or more paragraphs of text description. properties (dict): The properties of this entity. read_only (bool): Whether this resource is read only. is_ownership (bool): Whether this relationship type is a data set ownership. """ def __init__( self, name: str, description: str = "", properties: Mapping[str, Union[str, bool, int, float]] = None, read_only: bool = False, is_ownership: bool = False, ): """ Create a relationship type resource in the Data API. Args: name: The resource name of the relationship type, for example "relationshipTypes/namespace.relationshipTypeIdentifier". The namespace must be empty (being global) or one of the predetermined namespaces the customer has access to. The relationship type identifier must match the regex [A-Z][A-Z0-9_]{0,63}. description: One or more paragraphs of text description. properties: The properties of this entity. read_only: Whether this resource is read only. read_only: Whether this relationship type is a data set ownership. """ self.name = name self.description = description self.properties = {} if properties is None else properties self.read_only = read_only self.is_ownership = is_ownership @staticmethod def from_proto(relationship_type: ProtoRelationshipType) -> "RelationshipType": """Create a RelationshipType from the given protobuf RelationshipType.""" return RelationshipType( name=relationship_type.name, description=relationship_type.description, properties=from_struct(relationship_type.properties), read_only=relationship_type.read_only, is_ownership=relationship_type.is_ownership, ) def to_proto(self) -> ProtoRelationshipType: """Create a protobuf RelationshipType from this RelationshipType.""" return ProtoRelationshipType( name=self.name, description=self.description, properties=to_struct(self.properties), is_ownership=self.is_ownership, ) def __eq__(self, other: object) -> bool: if not isinstance(other, RelationshipType): return False return ( self.name == other.name and self.description == other.description and self.properties == other.properties and self.read_only == other.read_only and self.is_ownership == other.is_ownership ) def __repr__(self) -> str: return ( f"RelationshipType(name='{self.name}', description='{self.description}', " f"properties={self.properties}, read_only={self.read_only}, " f"is_ownership={self.is_ownership})" )
42.318681
96
0.614646
a938a75f14c79bb2bf288e3f86f0e49bad42fd67
270
py
Python
run.py
robot-lab/PetProject
377ff1dc18db9d2db3471cece7f8289d782b0db7
[ "Apache-2.0" ]
1
2019-07-16T16:16:45.000Z
2019-07-16T16:16:45.000Z
run.py
robot-lab/PetProject
377ff1dc18db9d2db3471cece7f8289d782b0db7
[ "Apache-2.0" ]
2
2019-07-12T20:57:12.000Z
2021-06-01T23:58:04.000Z
run.py
robot-lab/PetProject
377ff1dc18db9d2db3471cece7f8289d782b0db7
[ "Apache-2.0" ]
null
null
null
import os from backend import create_app os.environ.setdefault('FLASK_ENV', 'development') if __name__ == '__main__': env_name = os.getenv('FLASK_ENV') port = int(os.getenv('PORT', 8080)) app = create_app(env_name) app.run(host='0.0.0.0', port=port)
20.769231
49
0.677778
9a2adac758499c02456cbf5236c618e24e954505
8,327
py
Python
src/genie/libs/parser/nxos/tests/ShowIpRoute/cli/equal/golden_output14_expected.py
balmasea/genieparser
d1e71a96dfb081e0a8591707b9d4872decd5d9d3
[ "Apache-2.0" ]
204
2018-06-27T00:55:27.000Z
2022-03-06T21:12:18.000Z
src/genie/libs/parser/nxos/tests/ShowIpRoute/cli/equal/golden_output14_expected.py
balmasea/genieparser
d1e71a96dfb081e0a8591707b9d4872decd5d9d3
[ "Apache-2.0" ]
468
2018-06-19T00:33:18.000Z
2022-03-31T23:23:35.000Z
src/genie/libs/parser/nxos/tests/ShowIpRoute/cli/equal/golden_output14_expected.py
balmasea/genieparser
d1e71a96dfb081e0a8591707b9d4872decd5d9d3
[ "Apache-2.0" ]
309
2019-01-16T20:21:07.000Z
2022-03-30T12:56:41.000Z
expected_output ={ "vrf": { "tn-L2-PBR:vrf-L2-PBR": { "address_family": { "ipv4": { "routes": { "192.168.1.0/24": { "route": "192.168.1.0/24", "active": True, "ubest": 1, "mbest": 0, "attached": True, "direct": True, "pervasive": True, "metric": 0, "route_preference": 1, "tag": 4294967294, "next_hop": { "next_hop_list": { 1: { "index": 1, "next_hop": "10.11.200.98", "source_protocol": "static", "best_ucast_nexthop": True, "updated": "02w00d", "next_hop_vrf": "overlay-1", "metric": 0, "route_preference": 1, } } }, "source_protocol": "static", }, "192.168.1.1/32": { "route": "192.168.1.1/32", "active": True, "ubest": 1, "mbest": 0, "attached": True, "pervasive": True, "metric": 0, "route_preference": 0, "next_hop": { "next_hop_list": { 1: { "index": 1, "next_hop": "192.168.1.1", "source_protocol": "local", "source_protocol_status": "local", "best_ucast_nexthop": True, "updated": "02w00d", "outgoing_interface": "Vlan60", "metric": 0, "route_preference": 0, } } }, "source_protocol": "local", "source_protocol_status": "local", }, "192.168.100.0/24": { "route": "192.168.100.0/24", "active": True, "ubest": 1, "mbest": 0, "attached": True, "direct": True, "pervasive": True, "metric": 0, "route_preference": 1, "tag": 4294967294, "next_hop": { "next_hop_list": { 1: { "index": 1, "next_hop": "10.11.200.98", "source_protocol": "static", "best_ucast_nexthop": True, "updated": "02w00d", "next_hop_vrf": "overlay-1", "metric": 0, "route_preference": 1, } } }, "source_protocol": "static", }, "192.168.100.1/32": { "route": "192.168.100.1/32", "active": True, "ubest": 1, "mbest": 0, "attached": True, "pervasive": True, "metric": 0, "route_preference": 0, "next_hop": { "next_hop_list": { 1: { "index": 1, "next_hop": "192.168.100.1", "source_protocol": "local", "source_protocol_status": "local", "best_ucast_nexthop": True, "updated": "02w00d", "outgoing_interface": "Vlan14", "metric": 0, "route_preference": 0, } } }, "source_protocol": "local", "source_protocol_status": "local", }, "192.168.254.0/24": { "route": "192.168.254.0/24", "active": True, "ubest": 1, "mbest": 0, "attached": True, "direct": True, "pervasive": True, "metric": 0, "route_preference": 1, "tag": 4294967294, "next_hop": { "next_hop_list": { 1: { "index": 1, "next_hop": "10.11.200.98", "source_protocol": "static", "best_ucast_nexthop": True, "updated": "02w00d", "next_hop_vrf": "overlay-1", "metric": 0, "route_preference": 1, } } }, "source_protocol": "static", }, "192.168.254.1/32": { "route": "192.168.254.1/32", "active": True, "ubest": 1, "mbest": 0, "attached": True, "pervasive": True, "metric": 0, "route_preference": 0, "next_hop": { "next_hop_list": { 1: { "index": 1, "next_hop": "192.168.254.1", "source_protocol": "local", "source_protocol_status": "local", "best_ucast_nexthop": True, "updated": "02w00d", "outgoing_interface": "Vlan39", "metric": 0, "route_preference": 0, } } }, "source_protocol": "local", "source_protocol_status": "local", }, } } } } } }
47.582857
74
0.226132
7912cba6a5481b4ca966f6cf0ef34473aca18003
13,683
py
Python
tests/test_reporters.py
kannaiah/pycobertura
b5126f2dd4d425f2b83eaa4edf256485b0544559
[ "MIT" ]
null
null
null
tests/test_reporters.py
kannaiah/pycobertura
b5126f2dd4d425f2b83eaa4edf256485b0544559
[ "MIT" ]
1
2021-06-07T13:11:59.000Z
2021-06-08T09:54:08.000Z
tests/test_reporters.py
nilleb/pycobertura
25ce699cfb9410d24f8a995b11dce75f64468e75
[ "MIT" ]
null
null
null
from .utils import make_cobertura def remove_style_tag(html): style_pattern_start = '\n <style>' style_pattern_stop = '\n </style>' style_starts = html.find(style_pattern_start) style_stops = html.find(style_pattern_stop) + len(style_pattern_stop) html_nostyle = html[:style_starts] + html[style_stops:] return html_nostyle def test_text_report(): from pycobertura.reporters import TextReporter cobertura = make_cobertura() report = TextReporter(cobertura) assert report.generate() == """\ Filename Stmts Miss Cover Missing ------------------------------ ------- ------ ------- --------- Main.java 11 0 100.00% search/BinarySearch.java 12 1 91.67% 24 search/ISortedArraySearch.java 0 0 100.00% search/LinearSearch.java 7 2 71.43% 19-24 TOTAL 30 3 90.00%""" def test_text_report__with_missing_range(): from pycobertura.reporters import TextReporter cobertura = make_cobertura('tests/dummy.with-dummy2-no-cov.xml') report = TextReporter(cobertura) assert report.generate() == """\ Filename Stmts Miss Cover Missing ----------------- ------- ------ ------- --------- dummy/__init__.py 0 0 0.00% dummy/dummy.py 4 0 100.00% dummy/dummy2.py 2 2 0.00% 1-2 TOTAL 6 2 66.67%""" def test_text_report_delta__no_diff(): from pycobertura.reporters import TextReporterDelta cobertura1 = make_cobertura('tests/dummy.source1/coverage.xml') cobertura2 = make_cobertura('tests/dummy.source1/coverage.xml') report_delta = TextReporterDelta(cobertura1, cobertura2) assert report_delta.generate() == """\ Filename Stmts Miss Cover Missing ---------- ------- ------ ------- --------- TOTAL - - -""" def test_text_report_delta__colorize_True(): from pycobertura.reporters import TextReporterDelta cobertura1 = make_cobertura('tests/dummy.source1/coverage.xml') cobertura2 = make_cobertura('tests/dummy.source2/coverage.xml') report_delta = TextReporterDelta(cobertura1, cobertura2, color=True) assert report_delta.generate() == """\ Filename Stmts Miss Cover Missing --------------- ------- ------ ------- ---------- dummy/dummy.py - \x1b[32m-2\x1b[39m +40.00% \x1b[32m-5\x1b[39m, \x1b[32m-6\x1b[39m dummy/dummy2.py +2 \x1b[31m+1\x1b[39m -25.00% \x1b[32m-2\x1b[39m, \x1b[32m-4\x1b[39m, \x1b[31m+5\x1b[39m dummy/dummy3.py +2 \x1b[31m+2\x1b[39m - \x1b[31m+1\x1b[39m, \x1b[31m+2\x1b[39m TOTAL +4 \x1b[31m+1\x1b[39m +31.06%""" def test_text_report_delta__colorize_True__with_missing_range(): from pycobertura.reporters import TextReporterDelta cobertura1 = make_cobertura('tests/dummy.source1/coverage.xml') cobertura2 = make_cobertura('tests/dummy.source2/coverage.xml') report_delta = TextReporterDelta(cobertura1, cobertura2, color=True) assert report_delta.generate() == """\ Filename Stmts Miss Cover Missing --------------- ------- ------ ------- ---------- dummy/dummy.py - \x1b[32m-2\x1b[39m +40.00% \x1b[32m-5\x1b[39m, \x1b[32m-6\x1b[39m dummy/dummy2.py +2 \x1b[31m+1\x1b[39m -25.00% \x1b[32m-2\x1b[39m, \x1b[32m-4\x1b[39m, \x1b[31m+5\x1b[39m dummy/dummy3.py +2 \x1b[31m+2\x1b[39m - \x1b[31m+1\x1b[39m, \x1b[31m+2\x1b[39m TOTAL +4 \x1b[31m+1\x1b[39m +31.06%""" def test_text_report_delta__colorize_False(): from pycobertura.reporters import TextReporterDelta cobertura1 = make_cobertura('tests/dummy.source1/coverage.xml') cobertura2 = make_cobertura('tests/dummy.source2/coverage.xml') report_delta = TextReporterDelta(cobertura1, cobertura2, color=False) assert report_delta.generate() == """\ Filename Stmts Miss Cover Missing --------------- ------- ------ ------- ---------- dummy/dummy.py - -2 +40.00% -5, -6 dummy/dummy2.py +2 +1 -25.00% -2, -4, +5 dummy/dummy3.py +2 +2 - +1, +2 TOTAL +4 +1 +31.06%""" def test_html_report(): from pycobertura.reporters import HtmlReporter cobertura = make_cobertura() report = HtmlReporter(cobertura) html_output = report.generate() assert "normalize.css" in html_output assert "Skeleton V2.0" in html_output assert remove_style_tag(html_output) == """\ <html> <head> <title>pycobertura report</title> <meta charset="UTF-8"> </head> <body> <div class="container"> <table class="u-full-width"> <thead> <tr> <th>Filename</th> <th>Stmts</th> <th>Miss</th> <th>Cover</th> <th>Missing</th> </tr> </thead> <tbody> <tr> <td><a href="#Main.java">Main.java</a></td> <td>11</td> <td>0</td> <td>100.00%</td> <td></td> </tr> <tr> <td><a href="#search/BinarySearch.java">search/BinarySearch.java</a></td> <td>12</td> <td>1</td> <td>91.67%</td> <td>24</td> </tr> <tr> <td><a href="#search/ISortedArraySearch.java">search/ISortedArraySearch.java</a></td> <td>0</td> <td>0</td> <td>100.00%</td> <td></td> </tr> <tr> <td><a href="#search/LinearSearch.java">search/LinearSearch.java</a></td> <td>7</td> <td>2</td> <td>71.43%</td> <td>19-24</td> </tr> </tbody> <tfoot> <tr> <td>TOTAL</td> <td>30</td> <td>3</td> <td>90.00%</td> <td></td> </tr> </tfoot> </table> <h4 id="Main.java">Main.java</h4> <table class="code u-max-full-width"> <tbody> <tr> <td class="lineno"> <pre>0 &nbsp; </pre> </td> <td class="source"> <pre><span class="noop">tests/Main.java not found</span></pre> </td> </tr> </tbody> </table> <h4 id="search/BinarySearch.java">search/BinarySearch.java</h4> <table class="code u-max-full-width"> <tbody> <tr> <td class="lineno"> <pre>0 &nbsp; </pre> </td> <td class="source"> <pre><span class="noop">tests/search/BinarySearch.java not found</span></pre> </td> </tr> </tbody> </table> <h4 id="search/ISortedArraySearch.java">search/ISortedArraySearch.java</h4> <table class="code u-max-full-width"> <tbody> <tr> <td class="lineno"> <pre>0 &nbsp; </pre> </td> <td class="source"> <pre><span class="noop">tests/search/ISortedArraySearch.java not found</span></pre> </td> </tr> </tbody> </table> <h4 id="search/LinearSearch.java">search/LinearSearch.java</h4> <table class="code u-max-full-width"> <tbody> <tr> <td class="lineno"> <pre>0 &nbsp; </pre> </td> <td class="source"> <pre><span class="noop">tests/search/LinearSearch.java not found</span></pre> </td> </tr> </tbody> </table> </div> </body> </html>""" def test_text_report_delta__no_source(): from pycobertura.reporters import TextReporterDelta cobertura1 = make_cobertura('tests/dummy.source1/coverage.xml') cobertura2 = make_cobertura('tests/dummy.source2/coverage.xml') report_delta = TextReporterDelta(cobertura1, cobertura2, show_source=False) output = report_delta.generate() assert output == """\ Filename Stmts Miss Cover --------------- ------- ------ ------- dummy/dummy.py - -2 +40.00% dummy/dummy2.py +2 +1 -25.00% dummy/dummy3.py +2 +2 - TOTAL +4 +1 +31.06%""" def test_html_report_delta__no_source(): from pycobertura.reporters import HtmlReporterDelta cobertura1 = make_cobertura('tests/dummy.source1/coverage.xml') cobertura2 = make_cobertura('tests/dummy.source2/coverage.xml') report_delta = HtmlReporterDelta(cobertura1, cobertura2, show_source=False) html_output = report_delta.generate() assert 'Missing' not in html_output assert '<h4 id=' not in html_output assert remove_style_tag(html_output) == """\ <html> <head> <title>pycobertura report</title> <meta charset="UTF-8"> </head> <body> <div class="container"> <table class="u-full-width"> <thead> <tr> <th>Filename</th> <th>Stmts</th> <th>Miss</th> <th>Cover</th> </tr> </thead> <tbody> <tr> <td><a href="#dummy/dummy.py">dummy/dummy.py</a></td> <td>-</td> <td><span class="green">-2</span></td> <td>+40.00%</td> </tr> <tr> <td><a href="#dummy/dummy2.py">dummy/dummy2.py</a></td> <td>+2</td> <td><span class="red">+1</span></td> <td>-25.00%</td> </tr> <tr> <td><a href="#dummy/dummy3.py">dummy/dummy3.py</a></td> <td>+2</td> <td><span class="red">+2</span></td> <td>-</td> </tr> </tbody> <tfoot> <tr> <td>TOTAL</td> <td>+4</td> <td><span class="red">+1</span></td> <td>+31.06%</td> </tr> </tfoot> </table> </div> </body> </html>""" def test_html_report_delta(): from pycobertura.reporters import HtmlReporterDelta cobertura1 = make_cobertura('tests/dummy.source1/coverage.xml') cobertura2 = make_cobertura('tests/dummy.source2/coverage.xml') report_delta = HtmlReporterDelta(cobertura1, cobertura2) html_output = report_delta.generate() assert '.red {color: red}' in html_output assert '.green {color: green}' in html_output assert "normalize.css" in html_output assert "Skeleton V2.0" in html_output assert remove_style_tag(html_output) == u"""\ <html> <head> <title>pycobertura report</title> <meta charset="UTF-8"> </head> <body> <div class="container"> <table class="u-full-width"> <thead> <tr> <th>Filename</th> <th>Stmts</th> <th>Miss</th> <th>Cover</th> <th>Missing</th> </tr> </thead> <tbody> <tr> <td><a href="#dummy/dummy.py">dummy/dummy.py</a></td> <td>-</td> <td><span class="green">-2</span></td> <td>+40.00%</td> <td><span class="green">-5</span>, <span class="green">-6</span> </td> </tr> <tr> <td><a href="#dummy/dummy2.py">dummy/dummy2.py</a></td> <td>+2</td> <td><span class="red">+1</span></td> <td>-25.00%</td> <td><span class="green">-2</span>, <span class="green">-4</span>, <span class="red">+5</span> </td> </tr> <tr> <td><a href="#dummy/dummy3.py">dummy/dummy3.py</a></td> <td>+2</td> <td><span class="red">+2</span></td> <td>-</td> <td><span class="red">+1</span>, <span class="red">+2</span> </td> </tr> </tbody> <tfoot> <tr> <td>TOTAL</td> <td>+4</td> <td><span class="red">+1</span></td> <td>+31.06%</td> <td></td> </tr> </tfoot> </table><div class="legend"> <dl> <dt><code>code</code></dt><dd>coverage unchanged</dd> <dt class="hit"><code>code</code></dt><dd>coverage increased</dd> <dt class="miss"><code>code</code></dt><dd>coverage decreased</dd> <dt><code>+</code></dt><dd>line added or modified</dd> </dl> </div> <h4 id="dummy/dummy.py">dummy/dummy.py</h4> <table class="code u-max-full-width"> <tbody> <tr> <td class="lineno"> <pre>2 &nbsp; 3 &nbsp; 4 &nbsp; 5 &nbsp; 6 + </pre> </td> <td class="source"> <pre><span class="noop"> pass </span><span class="noop"> </span><span class="noop">def bar(): </span><span class="hit"> a = &#39;a&#39; </span><span class="hit"> d = &#39;d&#39; </span></pre> </td> </tr> </tbody> </table> <h4 id="dummy/dummy2.py">dummy/dummy2.py</h4> <table class="code u-max-full-width"> <tbody> <tr> <td class="lineno"> <pre>1 &nbsp; 2 + 3 &nbsp; 4 + 5 &nbsp; </pre> </td> <td class="source"> <pre><span class="noop">def baz(): </span><span class="hit"> c = &#39;c&#39; </span><span class="noop"> </span><span class="hit">def bat(): </span><span class="miss"> pass </span></pre> </td> </tr> </tbody> </table> <h4 id="dummy/dummy3.py">dummy/dummy3.py</h4> <table class="code u-max-full-width"> <tbody> <tr> <td class="lineno"> <pre>1 + 2 + </pre> </td> <td class="source"> <pre><span class="miss">def foobar(): </span><span class="miss"> pass # This is a very long comment that was purposefully written so we could test how HTML rendering looks like when the boundaries of the page are reached. And here is a non-ascii char: \u015e </span></pre> </td> </tr> </tbody> </table> </div> </body> </html>"""
29.940919
224
0.529708
2ccbbecdbdb095ac205d5fbf45454e716ad32e5d
540
py
Python
cride/circles/urls.py
EduuardoPerez/comparte-ride
e657e2397a9c8cc3104a716f13cc7547245015e4
[ "MIT" ]
null
null
null
cride/circles/urls.py
EduuardoPerez/comparte-ride
e657e2397a9c8cc3104a716f13cc7547245015e4
[ "MIT" ]
null
null
null
cride/circles/urls.py
EduuardoPerez/comparte-ride
e657e2397a9c8cc3104a716f13cc7547245015e4
[ "MIT" ]
null
null
null
"""Circles URLs.""" # Django from django.urls import include, path # Django REST Framework from rest_framework.routers import DefaultRouter # Views from .views import circles as circle_views from .views import memberships as membership_views router = DefaultRouter() router.register(r'circles', circle_views.CircleViewSet, basename='circle') router.register( r'circles/(?P<slug_name>[-a-zA-Z0-9_-]+)/members', membership_views.MembershipViewSet, basename='membership' ) urlpatterns = [ path('', include(router.urls)) ]
22.5
74
0.75
e7ab25e820084701fbfcebea9260921b3086d449
484
py
Python
ExamenDeFundamentosDeP/Examen1.py
Sharnol-Tec/Examen
fc859c5a56cf9e550e903296eecdb53b42ec9b2f
[ "Apache-2.0" ]
null
null
null
ExamenDeFundamentosDeP/Examen1.py
Sharnol-Tec/Examen
fc859c5a56cf9e550e903296eecdb53b42ec9b2f
[ "Apache-2.0" ]
null
null
null
ExamenDeFundamentosDeP/Examen1.py
Sharnol-Tec/Examen
fc859c5a56cf9e550e903296eecdb53b42ec9b2f
[ "Apache-2.0" ]
null
null
null
#datos de entrada PrimeraUnidadSLLB=float(input("Ingrese la nota de la PrimeraUnidadSLLB: ")) SegundaUnidadSLLB=float(input("Ingrese la nota de la SegundaUnidadSLLB: ")) TerceraUnidadSLLB=float(input("Ingrese la nota de la TerceraUnidadSLLB: ")) TrabajoFinalSLLB=float(input("Ingrese la nota del TrabajoFinalSLLB: ")) #proceso nota=PrimeraUnidadSLLB*0.2 + SegundaUnidadSLLB*0.15 + TerceraUnidadSLLB*0.15 + TrabajoFinalSLLB*0.5 #salida print("nota final del estudiante es:",nota)
53.777778
99
0.789256
62b99b8da2aecb88766819c7135ff9c55eef6434
1,808
py
Python
src/users/actions.py
josue0ghost/Python-and-MySQL-console-application
c82641c5ccaae3eb526decd2c96baa4457613a2a
[ "MIT" ]
null
null
null
src/users/actions.py
josue0ghost/Python-and-MySQL-console-application
c82641c5ccaae3eb526decd2c96baa4457613a2a
[ "MIT" ]
null
null
null
src/users/actions.py
josue0ghost/Python-and-MySQL-console-application
c82641c5ccaae3eb526decd2c96baa4457613a2a
[ "MIT" ]
null
null
null
import users.user as user import grades.actions as grade class Actions: def signup(self): print("Selected item: signup") name = input("Your name: ") lastname = input("Your last name: ") email = input("Your email: ") password = input("Choose a password: ") newUser = user.User(name, lastname, email, password) reg = newUser.register() if reg[0] >= 1: print(f"{reg[1].name}, you've been registered with email {reg[1].email}") else: print("Registration failed") def signin(self): try: email = input("Email: ") password = input("Password: ") existingUser = user.User('', '', email, password) login = existingUser.identify() # id | name | lastname | email | password | date if email == login[3]: print(f"Welcome, {login[1]}") self.mainMenu(login) except Exception as e: print(type(e)) print(type(e).__name__) print("Login failed") def mainMenu(self, user): print(""" Available options: - Create grade (create) - Show grades (show) - Delete grade (delete) - Log out (exit) """) action = input("What do you want to do?: ") gradeActions = grade.Actions() if action == "create": gradeActions.create(user) self.mainMenu(user) elif action == "show": gradeActions.show(user) self.mainMenu(user) elif action == "delete": gradeActions.delete(user) self.mainMenu(user) elif action == "exit": exit()
28.25
85
0.499447
36cc56a3d75181b864d339aa3b5b0b437e605cf8
654
py
Python
mojo/system/PRESUBMIT.py
Fusion-Rom/android_external_chromium_org
d8b126911c6ea9753e9f526bee5654419e1d0ebd
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
1
2015-08-13T21:04:58.000Z
2015-08-13T21:04:58.000Z
mojo/system/PRESUBMIT.py
Fusion-Rom/android_external_chromium_org
d8b126911c6ea9753e9f526bee5654419e1d0ebd
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
null
null
null
mojo/system/PRESUBMIT.py
Fusion-Rom/android_external_chromium_org
d8b126911c6ea9753e9f526bee5654419e1d0ebd
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
1
2020-11-04T06:34:36.000Z
2020-11-04T06:34:36.000Z
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Presubmit script for mojo/system. See http://dev.chromium.org/developers/how-tos/depottools/presubmit-scripts for more details about the presubmit API built into depot_tools. """ def CheckChangeOnUpload(input_api, output_api): results = [] results += input_api.canned_checks.CheckChangeHasOnlyOneEol(input_api, output_api) results += input_api.canned_checks.CheckPatchFormatted(input_api, output_api) return results
38.470588
79
0.718654
12934dffdf93d2ba8c4aaff60d85e2a3fd0b25e0
839
py
Python
homomorphic_encryption/secret_key_swhe.py
binary-signal/some-what-homomorphic-encryption
861c752416e2669a4b9e1824f93b5593a8b4abd6
[ "BSD-3-Clause" ]
1
2019-02-09T06:36:54.000Z
2019-02-09T06:36:54.000Z
homomorphic_encryption/secret_key_swhe.py
binary-signal/some-what-homomorphic-encryption
861c752416e2669a4b9e1824f93b5593a8b4abd6
[ "BSD-3-Clause" ]
null
null
null
homomorphic_encryption/secret_key_swhe.py
binary-signal/some-what-homomorphic-encryption
861c752416e2669a4b9e1824f93b5593a8b4abd6
[ "BSD-3-Clause" ]
1
2018-07-06T10:03:53.000Z
2018-07-06T10:03:53.000Z
# -*- coding: utf-8 -*- from keys.secret_key import SecretKey from random import randint from math import sqrt class secret_swhe: def __init__(self, lambda_, secret_key=None, eta=10): self.lambda_ = lambda_ self.eta = eta if secret_key is None: self.p = self._key_gen(eta) else: self.p = secret_key def _key_gen(self, eta): k = SecretKey(eta) return k.key_gen() def encrypt(self, m): while True: r = randint(round(2 ** (sqrt(self.eta) - 1)), round(2 ** sqrt(self.eta)) + 1) if abs(2 * r) < self.p / 2: # this must hold to find q break q = randint(2 ** ((self.eta ** 3) - 1), 2 ** (self.eta ** 3)) return self.p * q + 2 * r + m def decrypt(self, c): return (c % self.p) % 2
27.966667
89
0.531585
d3e4f155aef63c0aa0f2d540868c2ca27cec90e9
1,622
py
Python
day-15/part-1/th-ch.py
lypnol/adventofcode-2021
8ba277d698e8c59ca9cd554acc135473f5964b87
[ "MIT" ]
6
2021-11-29T15:32:27.000Z
2021-12-10T12:24:26.000Z
day-15/part-1/th-ch.py
lypnol/adventofcode-2021
8ba277d698e8c59ca9cd554acc135473f5964b87
[ "MIT" ]
9
2021-11-29T15:38:04.000Z
2021-12-13T14:54:16.000Z
day-15/part-1/th-ch.py
lypnol/adventofcode-2021
8ba277d698e8c59ca9cd554acc135473f5964b87
[ "MIT" ]
3
2021-12-02T19:11:44.000Z
2021-12-22T20:52:47.000Z
from tool.runners.python import SubmissionPy from queue import PriorityQueue class ThChSubmission(SubmissionPy): def run(self, s): """ :param s: input in string format :return: solution flag """ # Your code goes here m = [[int(i) for i in line] for line in s.splitlines()] # Dijkstra with priority queue D = {(x, y): float("inf") for x in range(len(m)) for y in range(len(m))} D[(0, 0)] = 0 pq = PriorityQueue() visited = set() pq.put((0, (0, 0))) while not pq.empty(): (dist, (x, y)) = pq.get() visited.add((x, y)) for (dx, dy) in [(-1, 0), (0, -1), (1, 0), (0, 1)]: if 0 <= x + dx < len(m) and 0 <= y + dy < len(m): distance = m[y + dy][x + dx] if (x + dx, y + dy) not in visited: old_cost = D[(x + dx, y + dy)] new_cost = D[(x, y)] + distance if new_cost < old_cost: pq.put((new_cost, (x + dx, y + dy))) D[(x + dx, y + dy)] = new_cost if x + dx == len(m) - 1 and y + dy == len(m) - 1: return new_cost def test_th_ch(): """ Run `python -m pytest ./day-15/part-1/th-ch.py` to test the submission. """ assert ( ThChSubmission().run( """ 1163751742 1381373672 2136511328 3694931569 7463417111 1319128137 1359912421 3125421639 1293138521 2311944581 """.strip() ) == 40 )
26.590164
80
0.451295
e62b5080bbeda124023abebade836b7ac8272b64
2,421
py
Python
src/lto/crypto.py
mustafa-travisci/lto-api.python
0493a46b69575e94d09a038dadf472b46f88d036
[ "MIT" ]
null
null
null
src/lto/crypto.py
mustafa-travisci/lto-api.python
0493a46b69575e94d09a038dadf472b46f88d036
[ "MIT" ]
null
null
null
src/lto/crypto.py
mustafa-travisci/lto-api.python
0493a46b69575e94d09a038dadf472b46f88d036
[ "MIT" ]
null
null
null
import base64 import hashlib import pyblake2 import base58 import inflection import struct str2bytes = lambda s: s.encode('latin-1') bytes2str = lambda b: ''.join(map(chr, b)) str2list = lambda s: [c for c in s] def sha256(s): return hashlib.sha256(str2bytes(s)).digest() def hash_chain(s): a = pyblake2.blake2b(s, digest_size=32).digest() b = hashlib.sha256(a).digest() return ''.join(map(chr, b)) def get_network(address): decoded_address = base58.b58decode(address) return str(decoded_address)[6] def recode(string, from_encoding, to_encoding): binary = decode(string, from_encoding) return encode(binary, to_encoding) def decode(string, encoding: str): if encoding == 'base58': return base58.b58decode(string) elif encoding == 'base64': return base64.b64decode(string) elif encoding == 'hex': return bytes.fromhex(string) else: raise Exception('Failed to decode') def encode(string, encoding: str): if encoding == 'base58': return base58.b58encode(string) elif encoding == 'base64': return base64.b64encode(string) elif encoding == 'hex': return string.hex() else: raise Exception('Failed to encode') def validate_address(address): ADDRESS_VERSION = 1 ADDRESS_CHECKSUM_LENGTH = 4 ADDRESS_HASH_LENGTH = 20 ADDRESS_LENGTH = 1 + 1 + ADDRESS_CHECKSUM_LENGTH + ADDRESS_HASH_LENGTH addr = bytes2str(base58.b58decode(address)) if addr[0] != chr(ADDRESS_VERSION): raise Exception('Wrong address version') elif len(addr) != ADDRESS_LENGTH: raise Exception('Wrong address length') elif addr[-ADDRESS_CHECKSUM_LENGTH:] != hash_chain( str2bytes(addr[:-ADDRESS_CHECKSUM_LENGTH]))[:ADDRESS_CHECKSUM_LENGTH]: raise Exception('Wrong address checksum') else: return True def key_type_id(key_type): if key_type == 'ed25519': return b'\1' elif key_type == 'secp256k1': return b'\2' elif key_type == 'secp256r1': return b'\3' elif key_type == 'rsa': return b'\4' else: raise Exception('Key Type not supported') def merge_dicts(x, y): z = x.copy() z.update(y) return z def compare_data_transaction(data, transaction): for key in data: key2 = inflection.underscore(key) assert data[key] == getattr(transaction, key2)
25.21875
82
0.658819
ddd5d99ac97893870538a5f6e8dcc23210f2ce51
4,845
py
Python
homeassistant/components/simulated/sensor.py
MrDelik/core
93a66cc357b226389967668441000498a10453bb
[ "Apache-2.0" ]
30,023
2016-04-13T10:17:53.000Z
2020-03-02T12:56:31.000Z
homeassistant/components/simulated/sensor.py
MrDelik/core
93a66cc357b226389967668441000498a10453bb
[ "Apache-2.0" ]
24,710
2016-04-13T08:27:26.000Z
2020-03-02T12:59:13.000Z
homeassistant/components/simulated/sensor.py
MrDelik/core
93a66cc357b226389967668441000498a10453bb
[ "Apache-2.0" ]
11,956
2016-04-13T18:42:31.000Z
2020-03-02T09:32:12.000Z
"""Adds a simulated sensor.""" from __future__ import annotations from datetime import datetime import math from random import Random import voluptuous as vol from homeassistant.components.sensor import PLATFORM_SCHEMA, SensorEntity from homeassistant.const import CONF_NAME from homeassistant.core import HomeAssistant import homeassistant.helpers.config_validation as cv from homeassistant.helpers.entity_platform import AddEntitiesCallback from homeassistant.helpers.typing import ConfigType, DiscoveryInfoType import homeassistant.util.dt as dt_util CONF_AMP = "amplitude" CONF_FWHM = "spread" CONF_MEAN = "mean" CONF_PERIOD = "period" CONF_PHASE = "phase" CONF_SEED = "seed" CONF_UNIT = "unit" CONF_RELATIVE_TO_EPOCH = "relative_to_epoch" DEFAULT_AMP = 1 DEFAULT_FWHM = 0 DEFAULT_MEAN = 0 DEFAULT_NAME = "simulated" DEFAULT_PERIOD = 60 DEFAULT_PHASE = 0 DEFAULT_SEED = 999 DEFAULT_UNIT = "value" DEFAULT_RELATIVE_TO_EPOCH = True ICON = "mdi:chart-line" PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Optional(CONF_AMP, default=DEFAULT_AMP): vol.Coerce(float), vol.Optional(CONF_FWHM, default=DEFAULT_FWHM): vol.Coerce(float), vol.Optional(CONF_MEAN, default=DEFAULT_MEAN): vol.Coerce(float), vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, vol.Optional(CONF_PERIOD, default=DEFAULT_PERIOD): cv.positive_int, vol.Optional(CONF_PHASE, default=DEFAULT_PHASE): vol.Coerce(float), vol.Optional(CONF_SEED, default=DEFAULT_SEED): cv.positive_int, vol.Optional(CONF_UNIT, default=DEFAULT_UNIT): cv.string, vol.Optional( CONF_RELATIVE_TO_EPOCH, default=DEFAULT_RELATIVE_TO_EPOCH ): cv.boolean, } ) def setup_platform( hass: HomeAssistant, config: ConfigType, add_entities: AddEntitiesCallback, discovery_info: DiscoveryInfoType | None = None, ) -> None: """Set up the simulated sensor.""" name = config.get(CONF_NAME) unit = config.get(CONF_UNIT) amp = config.get(CONF_AMP) mean = config.get(CONF_MEAN) period = config.get(CONF_PERIOD) phase = config.get(CONF_PHASE) fwhm = config.get(CONF_FWHM) seed = config.get(CONF_SEED) relative_to_epoch = config.get(CONF_RELATIVE_TO_EPOCH) sensor = SimulatedSensor( name, unit, amp, mean, period, phase, fwhm, seed, relative_to_epoch ) add_entities([sensor], True) class SimulatedSensor(SensorEntity): """Class for simulated sensor.""" def __init__( self, name, unit, amp, mean, period, phase, fwhm, seed, relative_to_epoch ): """Init the class.""" self._name = name self._unit = unit self._amp = amp self._mean = mean self._period = period self._phase = phase # phase in degrees self._fwhm = fwhm self._seed = seed self._random = Random(seed) # A local seeded Random self._start_time = ( datetime(1970, 1, 1, tzinfo=dt_util.UTC) if relative_to_epoch else dt_util.utcnow() ) self._relative_to_epoch = relative_to_epoch self._state = None def time_delta(self): """Return the time delta.""" dt0 = self._start_time dt1 = dt_util.utcnow() return dt1 - dt0 def signal_calc(self): """Calculate the signal.""" mean = self._mean amp = self._amp time_delta = self.time_delta().total_seconds() * 1e6 # to milliseconds period = self._period * 1e6 # to milliseconds fwhm = self._fwhm / 2 phase = math.radians(self._phase) if period == 0: periodic = 0 else: periodic = amp * (math.sin((2 * math.pi * time_delta / period) + phase)) noise = self._random.gauss(mu=0, sigma=fwhm) return round(mean + periodic + noise, 3) async def async_update(self): """Update the sensor.""" self._state = self.signal_calc() @property def name(self): """Return the name of the sensor.""" return self._name @property def native_value(self): """Return the state of the sensor.""" return self._state @property def icon(self): """Icon to use in the frontend, if any.""" return ICON @property def native_unit_of_measurement(self): """Return the unit this state is expressed in.""" return self._unit @property def extra_state_attributes(self): """Return other details about the sensor state.""" return { "amplitude": self._amp, "mean": self._mean, "period": self._period, "phase": self._phase, "spread": self._fwhm, "seed": self._seed, "relative_to_epoch": self._relative_to_epoch, }
30.28125
84
0.6516
8200064181b798609c4bfc5d935b29af3aa9ae47
4,641
py
Python
haigha/classes/channel_class.py
ask/haigha
1f87bbb37371f5ae6212c5af32ab4e8c5cebe34c
[ "BSD-3-Clause" ]
1
2022-02-18T05:41:30.000Z
2022-02-18T05:41:30.000Z
haigha/classes/channel_class.py
ask/haigha
1f87bbb37371f5ae6212c5af32ab4e8c5cebe34c
[ "BSD-3-Clause" ]
null
null
null
haigha/classes/channel_class.py
ask/haigha
1f87bbb37371f5ae6212c5af32ab4e8c5cebe34c
[ "BSD-3-Clause" ]
null
null
null
from haigha.classes import ProtocolClass from haigha.frames import MethodFrame from haigha.writer import Writer class ChannelClass(ProtocolClass): ''' Implements the AMQP Channel class ''' def __init__(self, *args, **kwargs): super(ChannelClass, self).__init__(*args, **kwargs) self.dispatch_map = { 11 : self._recv_open_ok, 20 : self._recv_flow, 21 : self._recv_flow_ok, 40 : self._recv_close, 41 : self._recv_close_ok, } self._closed = False self._close_info = { 'reply_code' : 0, 'reply_text' : 'first connect', 'class_id' : 0, 'method_id' : 0 } self._active = True self._flow_control_cb = None @property def closed(self): '''Return whether this channel has been closed.''' return self._closed @property def close_info(self): '''Return dict with information on why this channel is closed. Will return None if the channel is open.''' return self._close_info if self._closed else None @property def active(self): ''' Return True if flow control turned off, False if flow control is on. ''' return self._active def set_flow_cb(self, cb): ''' Set a callback that will be called when the state of flow control has changed. The caller should use closures if they need to receive a handle to the channel on which flow control changes. ''' self._flow_control_cb = cb def open(self): ''' Open the channel for communication. ''' args = Writer() args.write_shortstr('') self.send_frame( MethodFrame(self.channel_id, 20, 10, args) ) self.channel.add_synchronous_cb( self._recv_open_ok ) def _recv_open_ok(self, method_frame): pass def activate(self): ''' Activate this channel (disable flow control). ''' if not self._active: self._send_flow( True ) def deactivate(self): ''' Deactivate this channel (enable flow control). ''' if self._active: self._send_flow( False ) def _send_flow(self, active): ''' Send a flow control command. ''' args = Writer() args.write_bit( active ) self.send_frame( MethodFrame(self.channel_id, 20, 20, args) ) self.channel.add_synchronous_cb( self._recv_flow_ok ) def _recv_flow(self, method_frame): ''' Receive a flow control command from the broker ''' self._active = method_frame.args.read_bit() args = Writer() args.write_bit( self._active ) self.send_frame( MethodFrame(self.channel_id, 20, 21, args) ) if self._flow_control_cb is not None: self._flow_control_cb() def _recv_flow_ok(self, method_frame): ''' Receive a flow control ack from the broker. ''' self._active = method_frame.args.read_bit() if self._flow_control_cb is not None: self._flow_control_cb() def close(self, reply_code=0, reply_text='', class_id=0, method_id=0): ''' Close this channel. Caller has the option of specifying the reason for closure and the class and method ids of the current frame in which an error occurred. If in the event of an exception, the channel will be marked as immediately closed. If channel is already closed, call is ignored. ''' if self._closed: return self._close_info = { 'reply_code' : reply_code, 'reply_text' : reply_text, 'class_id' : class_id, 'method_id' : method_id } try: args = Writer() args.write_short( reply_code ) args.write_shortstr( reply_text ) args.write_short( class_id ) args.write_short( method_id ) self.send_frame( MethodFrame(self.channel_id, 20, 40, args) ) self.channel.add_synchronous_cb( self._recv_close_ok ) except: self.logger.error("Failed to close channel %d", self.channel_id, exc_info=True) # Immediately set the closed flag so that no more frames can be sent self._closed = True def _recv_close(self, method_frame): ''' Receive a close command from the broker. ''' self._close_info = { 'reply_code' : method_frame.args.read_short(), 'reply_text' : method_frame.args.read_shortstr(), 'class_id' : method_frame.args.read_short(), 'method_id' : method_frame.args.read_short() } self.send_frame( MethodFrame(self.channel_id, 20, 41) ) # Must set this *after* send_frame so that it doesn't throw an exception self._closed = True def _recv_close_ok(self, method_frame): ''' Receive a close ack from the broker. ''' self._closed = True
27.790419
82
0.653307
318e662b8b2eebe70758232791dfea2c111ea320
20,470
py
Python
FusionIIIT/applications/office_module/models.py
pTidke/Fusion
7a0da7239bd97df7a9849163c5438c0c917c2e55
[ "bzip2-1.0.6" ]
1
2020-01-16T17:06:22.000Z
2020-01-16T17:06:22.000Z
FusionIIIT/applications/office_module/models.py
rishi2907/Fusion
7a0da7239bd97df7a9849163c5438c0c917c2e55
[ "bzip2-1.0.6" ]
null
null
null
FusionIIIT/applications/office_module/models.py
rishi2907/Fusion
7a0da7239bd97df7a9849163c5438c0c917c2e55
[ "bzip2-1.0.6" ]
null
null
null
import datetime from django.db import models from applications.academic_information.models import (Course, Grades, Instructor, Meeting, Spi, Student) from applications.academic_procedures.models import Thesis from applications.filetracking.models import Tracking from applications.globals.models import (DepartmentInfo, Designation, ExtraInfo, Faculty, HoldsDesignation, Staff) from applications.leave.models import Leave from .models_office_students import * from applications.filetracking.models import File class Constants: DAY_CHOICES = ( ('Monday', 'Monday'), ('Tuesday', 'Tuesday'), ('Wednesday', 'Wednesday'), ('Thursday', 'Thursday'), ('Friday', 'Friday'), ) ACTION = ( ('forward', 'forwarded'), ('revert', 'revert'), ('accept', 'accept'), ('reject', 'reject') ) STATUS = ( ('0', 'unseen'), ('1', 'seen') ) APPROVAL = ( ('0', 'reject'), ('1', 'accept') ) APPROVAL_TYPE = ( ('APPROVED', 'Approved'), ('PENDING', 'Pending'), ) HALL_NO = ( ('HALL-1','hall-1'), ('HALL-3','hall-3'), ('HALL-4','hall-4'), ) DEPARTMENT=( ('civil','civil'), ('electrical','electrical') ) BUILDING=( ('corelab','corelab'), ('computer center','computer center'), ('hostel','hostel'), ('mess','mess'), ('library','library'), ('cc','cc') ) STATUS_CHOICES = ( ('Forward', 'FORWARD'), ('Accept', 'ACCEPT') ) PROJECT_TYPE = ( ('SRes', 'Sponsored Research'), ('Consultancy', 'Consultancy'), ('Testing', 'Testing') ) RESPONSE_TYPE = ( ('Approve', 'Approve'), ('Disapprove', 'Disapprove'), ('Pending' , 'Pending') ) RESPONSE_TYPE1 = ( ('Forwarded', 'Forwarded'), ('Pending' , 'Pending') ) TICK_TYPE = ( ('NO', 'YES'), ('NO', 'NO') ) PROJECT_OPERATED = ( ('PI', 'Only by PI'), ('any', 'Either PI or CO-PI') ) TRAVEL_CHOICES = ( ('road', 'ROAD'), ('rail', 'RAIL') ) TICK_TYPE = ( ('Computer Graphics', 'Computer Graphics'), ('Machine Learning', 'Machine Learning'), ('Image Processing','Image Processing'), ('Data Structure','Data Structure') ) APPROVAL_TYPE = ( ('APPROVED', 'Approved'), ('PENDING', 'Pending'), ) PURCHASE_STATUS = ( ('0', "Pending"), ('1', "Approve"), ('2', "Items Ordered"), ('3', "Items Puchased"), ('4', "Items Delivered"), ) APPROVE_TAG = ( ('0', "Pending"), ('1', "Approve"), ('-1',"Rejected"), ) PURCHASE_TYPE = ( ('0', "Amount < 25000"), ('1', "25000<Amount<250000"), ('2', "250000<Amount < 2500000"), ('3', "Amount>2500000"), ) NATURE_OF_ITEM1 = ( ('0', "Non-consumable"), ('1', "Consumable"), ) NATURE_OF_ITEM2 = ( ('0', "Equipment"), ('1', "Machinery"), ('2', "Furniture"), ('3', "Fixture"), ) ITEM_TYPE = ( ('0', "Non-consumable"), ('1', "Consumable"), ) class Assistantship(models.Model): student_id = models.ForeignKey(Student, on_delete=models.CASCADE) instructor_id = models.ForeignKey(Instructor, on_delete=models.CASCADE) file = models.FileField(upload_to='documents/',blank=True,null=True) action = models.IntegerField(default=0) comments = models.CharField(null=True,blank=True,max_length=150); class Meta: db_table = 'Assistantship' unique_together = ('student_id','instructor_id') def __str__(self): return '{} - {}'.format(self.student_id, self.instructor_id) # Dean RSPC Begins .................................................................................................... """ DEAN RSPC BEGINS Table for Project Registration """ class Project_Registration(models.Model): PI_id = models.ForeignKey(ExtraInfo, on_delete=models.CASCADE) project_title = models.CharField(max_length=200) sponsored_agency = models.CharField(max_length=100) CO_PI = models.CharField(max_length=100, null=True) start_date = models.DateField(null=True, blank=True) duration = models.IntegerField(default=0) agreement = models.CharField(choices=Constants.TICK_TYPE, max_length=10, default='NO') amount_sanctioned = models.IntegerField(default=0) project_type = models.CharField(choices=Constants.PROJECT_TYPE, max_length=25) project_operated = models.CharField(choices=Constants.PROJECT_OPERATED, max_length=50, default='me') remarks = models.CharField(max_length=200) fund_recieved_date = models.DateField(null=True, blank=True) HOD_response = models.CharField(choices=Constants.RESPONSE_TYPE1, max_length=10, default='Pending') DRSPC_response = models.CharField(choices=Constants.RESPONSE_TYPE, max_length=10, default='Pending') applied_date = models.DateField(null=True, blank=True) description = models.CharField(max_length=200, null=True) file = models.FileField(upload_to='documents/', blank=True, null=True) def __str__(self): return self.project_title """ DEAN RSPC Table for Project Extension """ class Project_Extension(models.Model): project_id = models.ForeignKey(Project_Registration, on_delete=models.CASCADE) date = models.DateField(null=True, blank=True) extended_duration = models.IntegerField(default=0) extension_details = models.CharField(max_length=300) HOD_response = models.CharField(choices=Constants.RESPONSE_TYPE1, max_length=10, default='Pending') DRSPC_response = models.CharField(choices=Constants.RESPONSE_TYPE, max_length=10, default='Pending') file = models.FileField(upload_to='documents/', blank=True, null=True) def __str__(self): return str(self.project_id) """ DEAN RSPC Table for Project Closure """ class Project_Closure(models.Model): project_id = models.ForeignKey(Project_Registration, on_delete=models.CASCADE) completion_date = models.DateField(null=True, blank=True) # extended_duration = models.CharField(max_length=200, blank=True, null=True) date = models.DateField(null=True, blank=True) expenses_dues = models.CharField(choices=Constants.TICK_TYPE, max_length=10, default='Pending') expenses_dues_description = models.CharField(max_length=200, blank=True, null=True) payment_dues = models.CharField(choices=Constants.TICK_TYPE, max_length=10, default='Pending') payment_dues_description = models.CharField(max_length=200, blank=True, null=True) salary_dues = models.CharField(choices=Constants.TICK_TYPE, max_length=10, default='Pending') salary_dues_description = models.CharField(max_length=200, blank=True, null=True) advances_dues = models.CharField(choices=Constants.TICK_TYPE, max_length=10, default='Pending') advances_description = models.CharField(max_length=200, blank=True, null=True) others_dues = models.CharField(choices=Constants.TICK_TYPE, max_length=10, default='Pending') other_dues_description = models.CharField(max_length=200, blank=True, null=True) overhead_deducted = models.CharField(choices=Constants.TICK_TYPE, max_length=10, default='Pending') overhead_description = models.CharField(max_length=200, blank=True, null=True) HOD_response = models.CharField(choices=Constants.RESPONSE_TYPE1, max_length=10, default='Pending') DRSPC_response = models.CharField(choices=Constants.RESPONSE_TYPE, max_length=10, default='Pending') remarks = models.CharField(max_length=300, null=True) extended_duration = models.CharField(default='0', max_length=100, null=True) def __str__(self): return str(self.project_id) """ DEAN RSPC Table for Project Reallocation """ class Project_Reallocation(models.Model): project_id = models.ForeignKey(Project_Registration, on_delete=models.CASCADE) date = models.DateField(null=True, blank=True) previous_budget_head = models.CharField(max_length=300) previous_amount = models.IntegerField(default=0) pf_no = models.CharField(max_length=100, null=True) new_budget_head = models.CharField(max_length=300) new_amount = models.IntegerField(default=0) transfer_reason = models.CharField(max_length=300) HOD_response = models.CharField(choices=Constants.RESPONSE_TYPE1, max_length=10, default='Pending') DRSPC_response = models.CharField(choices=Constants.RESPONSE_TYPE, max_length=10, default='Pending') def __str__(self): return str(self.project_id) # Dean RSPC ends .................................................................................................... class Member(models.Model): member_id = models.ForeignKey(Faculty) meeting_id = models.ForeignKey(Meeting) class Meta: db_table = 'Member' unique_together = (('member_id', 'meeting_id')) def __str__(self): return str(self.member_id) class Registrar(models.Model): file_name = models.CharField(max_length=50) date = models.DateField() purpose = models.CharField(max_length=100) status = models.CharField(max_length=1, choices=Constants.STATUS, default=0) file = models.FileField() class Requisitions(models.Model): userid=models.ForeignKey(ExtraInfo,on_delete=models.CASCADE) req_date=models.DateTimeField(auto_now_add=True) title=models.CharField(max_length=50) department=models.CharField(max_length=50,choices=Constants.DEPARTMENT) building=models.CharField(max_length=50,choices=Constants.BUILDING) description=models.CharField(max_length=200) assign_file=models.ForeignKey(File, on_delete=models.CASCADE, null=True) tag=models.IntegerField(default=0) # 0: accepted 1: rejected def __str__(self): return str(self.id) class Filemovement(models.Model): rid=models.ForeignKey(Requisitions,on_delete=models.CASCADE) sentby=models.ForeignKey(HoldsDesignation,on_delete=models.CASCADE,related_name='sent_by') receivedby=models.ForeignKey(HoldsDesignation,on_delete=models.CASCADE,related_name='received_by') date=models.DateTimeField(auto_now_add=True) remarks=models.CharField(max_length=200,null=True) actionby_receiver=models.CharField(max_length=50,choices=Constants.ACTION) class vendor(models.Model): vendor_name = models.CharField(max_length=100) vendor_address = models.CharField(max_length=200) vendor_item = models.CharField(max_length=200) class Meta: db_table = 'vendor' class apply_for_purchase(models.Model): indentor_name = models.ForeignKey(ExtraInfo, on_delete=models.CASCADE,related_name='indentor_name') # designation = models.ForeignKey(Designation, on_delete=models.CASCADE) inspecting_authority = models.CharField(max_length=200, default='0') expected_purchase_date = models.DateField() order_date = models.DateField(default=datetime.date.today) purchase_status = models.IntegerField(choices=PURCHASE_STATUS, default=0) # purchase_officer = models.ForeignKey(Staff, on_delete=models.CASCADE, default='0') amount = models.IntegerField(default='0') purchase_date = models.DateField(default='2018-06-01') registrar_approve_tag = models.IntegerField(choices=APPROVE_TAG, default=0) director_approve_tag = models.IntegerField(choices=APPROVE_TAG,default=0) HOD_approve_tag = models.IntegerField(choices=APPROVE_TAG, default=0) accounts_approve_tag = models.IntegerField(choices=APPROVE_TAG, default=0) gem_tag = models.IntegerField(choices=APPROVE_TAG, default=0) purchase_type = models.IntegerField(choices=PURCHASE_TYPE, default=0) purpose = models.CharField(max_length=200, default=0) budgetary_head = models.CharField(max_length=200, default=0) invoice = models.FileField(default=0) nature_of_item1 = models.IntegerField(choices=NATURE_OF_ITEM1, default=0) nature_of_item2 = models.IntegerField(choices=NATURE_OF_ITEM2, default=0) item_name = models.CharField(max_length=100, default=0) expected_cost = models.IntegerField(default=0) quantity = models.IntegerField(default=0) class Meta: db_table = 'apply_for_purchase' class stock(models.Model): item_name = models.CharField(max_length=100) quantity = models.IntegerField(default='0') item_type = models.IntegerField(choices=ITEM_TYPE, default='0') class Meta: db_table = 'stock' class purchase_commitee(models.Model) : local_comm_mem1 = models.ForeignKey(ExtraInfo, on_delete=models.CASCADE,related_name='local_comm_mem1') local_comm_mem2 = models.ForeignKey(ExtraInfo, on_delete=models.CASCADE,related_name='local_comm_mem2') local_comm_mem3 = models.ForeignKey(ExtraInfo, on_delete=models.CASCADE,related_name='local_comm_mem3') approve_mem1 = models.IntegerField(choices=APPROVE_TAG, default ='0') approve_mem2 = models.IntegerField(choices=APPROVE_TAG, default ='0') approve_mem3 = models.IntegerField(choices=APPROVE_TAG, default ='0') class Meta: db_table = 'purchase_commitee' class quotations(models.Model) : quotation1 = models.FileField() quotation2 = models.FileField() quotation3 = models.FileField() class Meta: db_table = 'quotations' class Registrar_File(models.Model): file_id = models.ForeignKey(Tracking, on_delete=models.CASCADE) status = models.IntegerField(choices=Constants.STATUS, default=0) approval = models.IntegerField(choices=Constants.APPROVAL, default=0) section_name = models.CharField(max_length=50) section_type = models.CharField(max_length=20) class registrar_create_doc(models.Model): file_name = models.CharField(max_length=50) purpose = models.CharField(max_length=100) Description = models.CharField(max_length=200) file=models.FileField() class registrar_director_section(models.Model): file_name = models.CharField(max_length=50) date = models.DateField() purpose = models.CharField(max_length=100) status = models.CharField(max_length=1,choices=Constants.STATUS, default=0) class registrar_purchase_sales_section(models.Model): file_name = models.CharField(max_length=50) member1 = models.CharField(max_length=50) member2 = models.CharField(max_length=50) member3 = models.CharField(max_length=50) date = models.DateField() purpose = models.CharField(max_length=100) status = models.IntegerField(choices=Constants.STATUS, default=0) file = models.FileField() class registrar_finance_section(models.Model): file_name = models.CharField(max_length=50) date = models.DateField() purpose = models.CharField(max_length=100) status = models.IntegerField(choices=Constants.STATUS) file = models.FileField() class registrar_establishment_section(models.Model): person_name = models.CharField(max_length=50) person_mail_id = models.CharField(max_length=50,default="xyz") date = models.DateField() duration = models.IntegerField() post = models.CharField(max_length=100) file = models.FileField() class registrar_general_section(models.Model): file_name = models.CharField(max_length=50) date = models.DateField() amount = models.IntegerField() status = models.IntegerField(choices=Constants.STATUS, default=0) file = models.ForeignKey(registrar_create_doc, on_delete=models.CASCADE) class LTC(models.Model): name = models.ForeignKey(ExtraInfo, on_delete=models.CASCADE) designation = models.ForeignKey(Designation, on_delete=models.CASCADE) department = models.ForeignKey(DepartmentInfo, on_delete=models.CASCADE) date_request = models.DateField() leave = models.ForeignKey(Leave, on_delete=models.CASCADE) travel_mode = models.CharField(max_length=10, choices=Constants.TRAVEL_CHOICES, default='ROAD') advance = models.IntegerField(default=0) family_details = models.TextField(max_length=500) class Meta: db_table = 'LTC' def __str__(self): return str(self.id) class CPDA(models.Model): name = models.ForeignKey(ExtraInfo, on_delete=models.CASCADE) designation = models.ForeignKey(Designation, on_delete=models.CASCADE) PF_no = models.CharField(max_length=100) purpose = models.CharField(max_length=100) amoutn = models.IntegerField(default=0) class Meta: db_table = 'CPDA' def __str__(self): return str(self.id) class Auto_fair_claim(models.Model): name = models.ForeignKey(ExtraInfo, on_delete=models.CASCADE) purpose = models.CharField(max_length=100) amount = models.IntegerField(default=0) auto_reg_no = models.CharField(max_length=50) auto_contact = models.IntegerField(default=0) bill = models.FileField(upload_to='hod/') date = models.DateField(); class Meta: db_table = 'auto_fair_claim' class Teaching_credits1(models.Model): roll_no = models.CharField(max_length=100,primary_key=True) name = models.CharField(max_length=100) programme = models.CharField(max_length=100) branch = models.CharField(max_length=100) course1 = models.CharField(choices=Constants.TICK_TYPE, max_length=100, default='NO') course2 = models.CharField(choices=Constants.TICK_TYPE, max_length=100, default='NO') course3 = models.CharField(choices=Constants.TICK_TYPE, max_length=100, default='NO') tag = models.IntegerField(default=0) class Meta: db_table = 'Teaching_credits1' def __str__(self): return str(self.roll_no) class Assigned_Teaching_credits(models.Model): roll_no = models.ForeignKey(Teaching_credits1, on_delete=models.CASCADE) assigned_course = models.CharField(max_length=100,default='NO') class Meta: db_table = 'Assigned_Teaching_credits' class Lab(models.Model): lab = models.CharField(max_length=10) lab_instructor = models.CharField(max_length=30) day = models.CharField(max_length=10,choices=Constants.DAY_CHOICES, default='Monday') s_time = models.CharField(max_length=6, default='0:00') e_time = models.CharField(max_length=6, default='0:00') class Meta: db_table = 'Lab' def __str__(self): return str(self.lab) class TA_assign(models.Model): roll_no = models.ForeignKey(ExtraInfo, on_delete=models.CASCADE, related_name='TA_id') lab = models.ForeignKey(Lab, on_delete=models.CASCADE) balance = models.IntegerField(default=2) class Meta: db_table = 'TA_assign' def __str__(self): return str(self.id) class Registrar_response(models.Model): track_id = models.ForeignKey(Tracking, on_delete=models.CASCADE, related_name='t_id') remark = models.CharField(max_length=50, default='') status = models.CharField(max_length=20, default='') class Meta: db_table = 'Registrar_response' def __str__(self): return str(self.id)+" "+str(track_id)+status
35.476603
120
0.650464
eaf88d293845dfd34442f77f6bc9214d7f6c1903
242
py
Python
gira_homeserver_api/devices/normalized_device.py
leoyn/gira-homeserver-api
7d642413a56078f694518d9189b4b7cc9776482d
[ "MIT" ]
5
2020-03-17T12:45:50.000Z
2022-03-07T10:55:50.000Z
gira_homeserver_api/devices/normalized_device.py
leoyn/gira-homeserver-api
7d642413a56078f694518d9189b4b7cc9776482d
[ "MIT" ]
3
2020-04-17T09:53:45.000Z
2021-01-25T22:14:14.000Z
gira_homeserver_api/devices/normalized_device.py
leoyn/gira-homeserver-api
7d642413a56078f694518d9189b4b7cc9776482d
[ "MIT" ]
1
2020-04-17T06:51:50.000Z
2020-04-17T06:51:50.000Z
from .device import Device class NormalizedDevice(Device): def setValue(self, value): if value >= 0 and value <= 1: super().setValue(round(value * 100)) def getValue(self): return super().getValue() / 100
26.888889
48
0.615702
15fc56151c00c72905359ab7d19b9e49e51d2941
28
py
Python
__init__.py
enyert/openacademy-project
76fb4fa9cd885d0b63f1091a67cc91bc1a3498c0
[ "Apache-2.0" ]
null
null
null
__init__.py
enyert/openacademy-project
76fb4fa9cd885d0b63f1091a67cc91bc1a3498c0
[ "Apache-2.0" ]
null
null
null
__init__.py
enyert/openacademy-project
76fb4fa9cd885d0b63f1091a67cc91bc1a3498c0
[ "Apache-2.0" ]
null
null
null
from . import model,wizard
9.333333
26
0.75
9b5411e2ff42b727eedb384bc37d81d8dcdfcd48
664
py
Python
src/features/build_features.py
jonhilgart22/data-science-is-software
675e945a53ef595c729dc13c338439e42572e1f5
[ "MIT" ]
22
2016-03-18T19:34:23.000Z
2021-01-03T14:32:38.000Z
src/features/build_features.py
jonhilgart22/data-science-is-software
675e945a53ef595c729dc13c338439e42572e1f5
[ "MIT" ]
1
2016-03-18T19:48:12.000Z
2016-03-19T20:25:11.000Z
src/features/build_features.py
jonhilgart22/data-science-is-software
675e945a53ef595c729dc13c338439e42572e1f5
[ "MIT" ]
18
2016-03-18T19:34:47.000Z
2020-08-06T07:47:24.000Z
import numpy as np import pandas as pd def remove_invalid_data(path): """ Takes a path to a water pumps csv, loads in pandas, removes invalid columns and returns the dataframe. """ df = pd.read_csv(path, index_col=0) invalid_values = { 'amount_tsh': {0: np.nan}, 'longitude': {0: np.nan}, 'installer': {0: np.nan}, 'construction_year': {0: np.nan}, } # drop rows with invalid values df.replace(invalid_values, inplace=True) df.dropna(how="any", inplace=True) return df def gimme_the_mean(series): if isinstance(series, float): return series return np.mean(series)
22.133333
67
0.626506
9a129db8cbfa3311895dc1efa6fba4fb9f94edda
1,016
py
Python
finance_ml/features/orth.py
xaviergoby/finance_ml
c348556fa3e13417e8fcf02999f42d5e72f0501b
[ "MIT" ]
1
2018-12-14T18:51:29.000Z
2018-12-14T18:51:29.000Z
finance_ml/features/orth.py
xaviergoby/finance_ml
c348556fa3e13417e8fcf02999f42d5e72f0501b
[ "MIT" ]
null
null
null
finance_ml/features/orth.py
xaviergoby/finance_ml
c348556fa3e13417e8fcf02999f42d5e72f0501b
[ "MIT" ]
null
null
null
import numpy as np import pandas as pd def get_e_vec(dot, var_thres): e_val, e_vec = np.linalg.eigh(dot) # Descending order idx = e_val.argsort()[::-1] e_val = e_val[idx] e_vec = e_vec[:, idx] # Use only positive ones e_val = pd.Series(e_val, index=['PC_' + str(i + 1) for i in range(e_val.shape[0])]) e_vec = pd.DataFrame(e_vec, index=dot.index, columns=e_val.index) e_vec = e_vec.loc[:, e_val > 0] e_val = e_val.loc[e_val > 0] # Reduce dimension with threashold cum_var = e_val.cumsum() / e_val.sum() dim = cum_var.values.searchsorted(var_thres) e_val = e_val.iloc[:dim+1] e_vec = e_vec.iloc[:, :dim+1] return e_val, e_vec def orth_feats(dfX, var_thres=.95): dfZ = dfX.sub(dfX.mean(), axis=1).div(dfX.std(), axis=1) dot = pd.DataFrame(np.dot(dfZ.T, dfZ), index=dfX.columns, columns=dfX.columns) e_val, e_vec = get_e_vec(dot, var_thres) dfP = pd.DataFrame(np.dot(dfZ, e_vec), index=dfZ.index, columns=e_vec.columns) return dfP
33.866667
87
0.650591
8eb85e64d669cc985bd58fb02c8540c7914c4e70
6,371
py
Python
rob_kovach/puzzle_21.py
techartorg/Advent_of_Code_2020
ae21164bc126352e7a2e9c9c6a0017ccb9d946cc
[ "MIT" ]
3
2020-11-16T15:20:11.000Z
2020-12-11T17:01:42.000Z
rob_kovach/puzzle_21.py
techartorg/Advent_of_Code_2020
ae21164bc126352e7a2e9c9c6a0017ccb9d946cc
[ "MIT" ]
null
null
null
rob_kovach/puzzle_21.py
techartorg/Advent_of_Code_2020
ae21164bc126352e7a2e9c9c6a0017ccb9d946cc
[ "MIT" ]
1
2020-12-13T04:42:44.000Z
2020-12-13T04:42:44.000Z
""" Advent of Code: Day 21 - Allergen Assessment --- Part 1 --- You reach the train's last stop and the closest you can get to your vacation island without getting wet. There aren't even any boats here, but nothing can stop you now: you build a raft. You just need a few days' worth of food for your journey. You don't speak the local language, so you can't read any ingredients lists. However, sometimes, allergens are listed in a language you do understand. You should be able to use this information to determine which ingredient contains which allergen and work out which foods are safe to take with you on your trip. You start by compiling a list of foods (your puzzle input), one food per line. Each line includes that food's ingredients list followed by some or all of the allergens the food contains. Each allergen is found in exactly one ingredient. Each ingredient contains zero or one allergen. Allergens aren't always marked; when they're listed (as in (contains nuts, shellfish) after an ingredients list), the ingredient that contains each listed allergen will be somewhere in the corresponding ingredients list. However, even if an allergen isn't listed, the ingredient that contains that allergen could still be present: maybe they forgot to label it, or maybe it was labeled in a language you don't know. For example, consider the following list of foods: mxmxvkd kfcds sqjhc nhms (contains dairy, fish) trh fvjkl sbzzf mxmxvkd (contains dairy) sqjhc fvjkl (contains soy) sqjhc mxmxvkd sbzzf (contains fish) The first food in the list has four ingredients (written in a language you don't understand): mxmxvkd, kfcds, sqjhc, and nhms. While the food might contain other allergens, a few allergens the food definitely contains are listed afterward: dairy and fish. The first step is to determine which ingredients can't possibly contain any of the allergens in any food in your list. In the above example, none of the ingredients kfcds, nhms, sbzzf, or trh can contain an allergen. Counting the number of times any of these ingredients appear in any ingredients list produces 5: they all appear once each except sbzzf, which appears twice. Determine which ingredients cannot possibly contain any of the allergens in your list. How many times do any of those ingredients appear? --- Part 2 --- Now that you've isolated the inert ingredients, you should have enough information to figure out which ingredient contains which allergen. In the above example: mxmxvkd contains dairy. sqjhc contains fish. fvjkl contains soy. Arrange the ingredients alphabetically by their allergen and separate them by commas to produce your canonical dangerous ingredient list. (There should not be any spaces in your canonical dangerous ingredient list.) In the above example, this would be mxmxvkd,sqjhc,fvjkl. Time to stock your raft with supplies. What is your canonical dangerous ingredient list? """ from collections import defaultdict from functools import reduce LOCATION = __file__ INPUT_ = open(LOCATION.replace('.py', '_input.txt')).read() # Create a Dictionary that stores the possible ingredients that # may contain the allergen. POSSIBILITIES = defaultdict(list) # Store a master list of all ingredients (for Part 1). # Don't remove duplicate entries! ALL_INGREDIENTS = [] # Parse the input. for x in INPUT_.splitlines(): ingredients, allergens = x.split('(') ingredients = ingredients.strip() ingredients = ingredients.split(' ') ALL_INGREDIENTS.extend(ingredients) allergens = allergens.replace(')', '') allergens = allergens.replace('contains', '') allergens = allergens.split(',') allergens = [x.strip() for x in allergens] for a in allergens: POSSIBILITIES[a].append(ingredients) # For each allergen, we know the possible list of ingredients per food. # Find the common ingredients from each food for each allergen to exclude # ingredients that are not common to all the foods. REDUCED_POSSIBILITIES = {} for allergen, ingredients in POSSIBILITIES.items(): # Find the common set of possibilities amoung all foods. reduced = list(reduce(lambda i, j: i & j, (set(x) for x in ingredients))) REDUCED_POSSIBILITIES[allergen] = reduced #print(REDUCED_POSSIBILITIES) # Now that we have excluded all ingredients that couldn't contain # the allergens, we know which ingredients to remove the list of # all ingredients (for Part 1). ALLERGENS = [] for x in REDUCED_POSSIBILITIES.values(): ALLERGENS.extend(x) ALLERGENS = list(set(ALLERGENS)) #print(ALLERGENS) # Remove all the allergens from the master list of ingredients. # Count the remaining ingredient for the answer to Part 1. for item in ALL_INGREDIENTS[:]: if item in ALLERGENS: ALL_INGREDIENTS.remove(item) print(f'Part 1 Answer: {len(ALL_INGREDIENTS)}') # --- Part 2 --- # Now that we know the possible ingredient that each allergen could be, # we have to use a process of elimination to match each allergen to a # specific ingredient. # Keep track of which allergens have been translated. TRANSLATED = [] # Keep track of the allergen and its matched ingredient. TRANSLATION = {} while len(TRANSLATED) < len(REDUCED_POSSIBILITIES.keys()): # Loop over the dictionary of allergens, if they match just # one ingredient, remove that possibility from every other # allergen's list of potential ingredients. for allergen, ingredients in REDUCED_POSSIBILITIES.items(): if allergen in TRANSLATED: continue if len(ingredients) == 1: match = ingredients[0] #print(f'{allergen} translates to {match}.') TRANSLATION[allergen] = match if not allergen in TRANSLATED: TRANSLATED.append(match) for allergen, ingredients in REDUCED_POSSIBILITIES.items(): if allergen in TRANSLATED: continue for matched in TRANSLATION.values(): if matched in ingredients: ingredients.remove(matched) #print(TRANSLATED) #print(TRANSLATION) # To get the answer for Part 2 we have to sort the allergen # alphabetically, then joined the translated values together. sorted_keys = sorted(TRANSLATION.keys()) answer = ','.join([TRANSLATION[x] for x in sorted_keys]) print(f'Part 2 Answer: {answer}')
37.476471
77
0.740857
d3f626ee37d5fd4a1ebea5f8d6abba2d6a52594d
22,001
py
Python
astropy/modeling/tests/test_parameters.py
adivijaykumar/astropy
0fd7ae818fed3abe4c468170a507d52ef91dc7e8
[ "BSD-3-Clause" ]
4
2021-03-25T15:49:56.000Z
2021-12-15T09:10:04.000Z
astropy/modeling/tests/test_parameters.py
adivijaykumar/astropy
0fd7ae818fed3abe4c468170a507d52ef91dc7e8
[ "BSD-3-Clause" ]
20
2021-05-03T18:02:23.000Z
2022-03-12T12:01:04.000Z
astropy/modeling/tests/test_parameters.py
adivijaykumar/astropy
0fd7ae818fed3abe4c468170a507d52ef91dc7e8
[ "BSD-3-Clause" ]
3
2021-03-28T16:13:00.000Z
2021-07-16T10:27:25.000Z
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Tests models.parameters """ # pylint: disable=invalid-name import itertools import pytest import numpy as np from astropy.modeling import models, fitting from astropy.modeling.core import Model, FittableModel from astropy.modeling.parameters import Parameter, InputParameterError from astropy.utils.data import get_pkg_data_filename from . import irafutil def setter1(val): return val def setter2(val, model): model.do_something(val) return val * model.p class SetterModel(FittableModel): n_inputs = 2 n_outputs = 1 xc = Parameter(default=1, setter=setter1) yc = Parameter(default=1, setter=setter2) def do_something(self, v): pass def __init__(self, xc, yc, p): self.p = p # p is a value intended to be used by the setter super().__init__() self.xc = xc self.yc = yc def evaluate(self, x, y, xc, yc): return (x - xc)**2 + (y - yc)**2 def do_something(self, v): pass class TParModel(Model): """ A toy model to test parameters machinery """ coeff = Parameter() e = Parameter() def __init__(self, coeff, e, **kwargs): super().__init__(coeff=coeff, e=e, **kwargs) @staticmethod def evaluate(coeff, e): pass class MockModel(FittableModel): alpha = Parameter(name='alpha', default=42) @staticmethod def evaluate(*args): pass def test_parameter_properties(): """Test if getting / setting of Parameter properties works.""" p = Parameter('alpha', default=1) assert p.name == 'alpha' # Parameter names are immutable with pytest.raises(AttributeError): p.name = 'beta' assert p.fixed is False p.fixed = True assert p.fixed is True assert p.tied is False p.tied = lambda _: 0 p.tied = False assert p.tied is False assert p.min is None p.min = 42 assert p.min == 42 p.min = None assert p.min is None assert p.max is None p.max = 41 assert p.max == 41 def test_parameter_operators(): """Test if the parameter arithmetic operators work.""" par = Parameter('alpha', default=42) num = 42. val = 3 assert par - val == num - val assert val - par == val - num assert par / val == num / val assert val / par == val / num assert par ** val == num ** val assert val ** par == val ** num assert par < 45 assert par > 41 assert par <= par assert par >= par assert par == par assert -par == -num assert abs(par) == abs(num) # Test inherited models class M1(Model): m1a = Parameter(default=1.) m1b = Parameter(default=5.) def evaluate(): pass class M2(M1): m2c = Parameter(default=11.) class M3(M2): m3d = Parameter(default=20.) def test_parameter_inheritance(): mod = M3() assert mod.m1a == 1. assert mod.m1b == 5. assert mod.m2c == 11. assert mod.m3d == 20. for key in ['m1a', 'm1b', 'm2c', 'm3d']: assert key in mod.__dict__ assert mod.param_names == ('m1a', 'm1b', 'm2c', 'm3d') def test_param_metric(): mod = M3() assert mod._param_metrics['m1a']['slice'] == slice(0, 1) assert mod._param_metrics['m1b']['slice'] == slice(1, 2) assert mod._param_metrics['m2c']['slice'] == slice(2, 3) assert mod._param_metrics['m3d']['slice'] == slice(3, 4) mod._parameters_to_array() assert (mod._parameters == np.array([1., 5., 11., 20], dtype=np.float64)).all() class TestParameters: def setup_class(self): """ Unit tests for parameters Read an iraf database file created by onedspec.identify. Use the information to create a 1D Chebyshev model and perform the same fit. Create also a gausian model. """ test_file = get_pkg_data_filename('data/idcompspec.fits') f = open(test_file) lines = f.read() reclist = lines.split("begin") f.close() record = irafutil.IdentifyRecord(reclist[1]) self.icoeff = record.coeff order = int(record.fields['order']) self.model = models.Chebyshev1D(order - 1) self.gmodel = models.Gaussian1D(2, mean=3, stddev=4) self.linear_fitter = fitting.LinearLSQFitter() self.x = record.x self.y = record.z self.yy = np.array([record.z, record.z]) def test_set_parameters_as_list(self): """Tests updating parameters using a list.""" self.model.parameters = [30, 40, 50, 60, 70] assert (self.model.parameters == [30., 40., 50., 60, 70]).all() def test_set_parameters_as_array(self): """Tests updating parameters using an array.""" self.model.parameters = np.array([3, 4, 5, 6, 7]) assert (self.model.parameters == [3., 4., 5., 6., 7.]).all() def test_set_as_tuple(self): """Tests updating parameters using a tuple.""" self.model.parameters = (1, 2, 3, 4, 5) assert (self.model.parameters == [1, 2, 3, 4, 5]).all() def test_set_model_attr_seq(self): """ Tests updating the parameters attribute when a model's parameter (in this case coeff) is updated. """ self.model.parameters = [0, 0., 0., 0, 0] self.model.c0 = 7 assert (self.model.parameters == [7, 0., 0., 0, 0]).all() def test_set_model_attr_num(self): """Update the parameter list when a model's parameter is updated.""" self.gmodel.amplitude = 7 assert (self.gmodel.parameters == [7, 3, 4]).all() def test_set_item(self): """Update the parameters using indexing.""" self.model.parameters = [1, 2, 3, 4, 5] tpar = self.model.parameters tpar[0] = 10. self.model.parameters = tpar assert (self.model.parameters == [10, 2, 3, 4, 5]).all() assert self.model.c0 == 10 def test_wrong_size1(self): """ Tests raising an error when attempting to reset the parameters using a list of a different size. """ with pytest.raises(InputParameterError): self.model.parameters = [1, 2, 3] def test_wrong_size2(self): """ Tests raising an exception when attempting to update a model's parameter (in this case coeff) with a sequence of the wrong size. """ with pytest.raises(InputParameterError): self.model.c0 = [1, 2, 3] def test_wrong_shape(self): """ Tests raising an exception when attempting to update a model's parameter and the new value has the wrong shape. """ with pytest.raises(InputParameterError): self.gmodel.amplitude = [1, 2] def test_par_against_iraf(self): """ Test the fitter modifies model.parameters. Uses an iraf example. """ new_model = self.linear_fitter(self.model, self.x, self.y) np.testing.assert_allclose( new_model.parameters, np.array([4826.1066602783685, 952.8943813407858, 12.641236013982386, -1.7910672553339604, 0.90252884366711317]), rtol=10 ** (-2)) def testPolynomial1D(self): d = {'c0': 11, 'c1': 12, 'c2': 13, 'c3': 14} p1 = models.Polynomial1D(3, **d) np.testing.assert_equal(p1.parameters, [11, 12, 13, 14]) def test_poly1d_multiple_sets(self): p1 = models.Polynomial1D(3, n_models=3) np.testing.assert_equal(p1.parameters, [0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) np.testing.assert_array_equal(p1.c0, [0, 0, 0]) p1.c0 = [10, 10, 10] np.testing.assert_equal(p1.parameters, [10.0, 10.0, 10.0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) def test_par_slicing(self): """ Test assigning to a parameter slice """ p1 = models.Polynomial1D(3, n_models=3) p1.c0[:2] = [10, 10] np.testing.assert_equal(p1.parameters, [10.0, 10.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) def test_poly2d(self): p2 = models.Polynomial2D(degree=3) p2.c0_0 = 5 np.testing.assert_equal(p2.parameters, [5, 0, 0, 0, 0, 0, 0, 0, 0, 0]) def test_poly2d_multiple_sets(self): kw = {'c0_0': [2, 3], 'c1_0': [1, 2], 'c2_0': [4, 5], 'c0_1': [1, 1], 'c0_2': [2, 2], 'c1_1': [5, 5]} p2 = models.Polynomial2D(2, **kw) np.testing.assert_equal(p2.parameters, [2, 3, 1, 2, 4, 5, 1, 1, 2, 2, 5, 5]) def test_shift_model_parameters1d(self): sh1 = models.Shift(2) sh1.offset = 3 assert sh1.offset == 3 assert sh1.offset.value == 3 def test_scale_model_parametersnd(self): sc1 = models.Scale([2, 2]) sc1.factor = [3, 3] assert np.all(sc1.factor == [3, 3]) np.testing.assert_array_equal(sc1.factor.value, [3, 3]) class TestMultipleParameterSets: def setup_class(self): self.x1 = np.arange(1, 10, .1) self.y, self.x = np.mgrid[:10, :7] self.x11 = np.array([self.x1, self.x1]).T self.gmodel = models.Gaussian1D([12, 10], [3.5, 5.2], stddev=[.4, .7], n_models=2) def test_change_par(self): """ Test that a change to one parameter as a set propagates to param_sets. """ self.gmodel.amplitude = [1, 10] np.testing.assert_almost_equal( self.gmodel.param_sets, np.array([[1., 10], [3.5, 5.2], [0.4, 0.7]])) np.all(self.gmodel.parameters == [1.0, 10.0, 3.5, 5.2, 0.4, 0.7]) def test_change_par2(self): """ Test that a change to one single parameter in a set propagates to param_sets. """ self.gmodel.amplitude[0] = 11 np.testing.assert_almost_equal( self.gmodel.param_sets, np.array([[11., 10], [3.5, 5.2], [0.4, 0.7]])) np.all(self.gmodel.parameters == [11.0, 10.0, 3.5, 5.2, 0.4, 0.7]) def test_change_parameters(self): self.gmodel.parameters = [13, 10, 9, 5.2, 0.4, 0.7] np.testing.assert_almost_equal(self.gmodel.amplitude.value, [13., 10.]) np.testing.assert_almost_equal(self.gmodel.mean.value, [9., 5.2]) class TestParameterInitialization: """ This suite of tests checks most if not all cases if instantiating a model with parameters of different shapes/sizes and with different numbers of parameter sets. """ def test_single_model_scalar_parameters(self): t = TParModel(10, 1) assert len(t) == 1 assert t.model_set_axis is False assert np.all(t.param_sets == [[10], [1]]) assert np.all(t.parameters == [10, 1]) assert t.coeff.shape == () assert t.e.shape == () def test_single_model_scalar_and_array_parameters(self): t = TParModel(10, [1, 2]) assert len(t) == 1 assert t.model_set_axis is False assert np.issubdtype(t.param_sets.dtype, np.object_) assert len(t.param_sets) == 2 assert np.all(t.param_sets[0] == [10]) assert np.all(t.param_sets[1] == [[1, 2]]) assert np.all(t.parameters == [10, 1, 2]) assert t.coeff.shape == () assert t.e.shape == (2,) def test_single_model_1d_array_parameters(self): t = TParModel([10, 20], [1, 2]) assert len(t) == 1 assert t.model_set_axis is False assert np.all(t.param_sets == [[[10, 20]], [[1, 2]]]) assert np.all(t.parameters == [10, 20, 1, 2]) assert t.coeff.shape == (2,) assert t.e.shape == (2,) def test_single_model_1d_array_different_length_parameters(self): with pytest.raises(InputParameterError): # Not broadcastable t = TParModel([1, 2], [3, 4, 5]) def test_single_model_2d_array_parameters(self): t = TParModel([[10, 20], [30, 40]], [[1, 2], [3, 4]]) assert len(t) == 1 assert t.model_set_axis is False assert np.all(t.param_sets == [[[[10, 20], [30, 40]]], [[[1, 2], [3, 4]]]]) assert np.all(t.parameters == [10, 20, 30, 40, 1, 2, 3, 4]) assert t.coeff.shape == (2, 2) assert t.e.shape == (2, 2) def test_single_model_2d_non_square_parameters(self): coeff = np.array([[10, 20], [30, 40], [50, 60]]) e = np.array([[1, 2], [3, 4], [5, 6]]) t = TParModel(coeff, e) assert len(t) == 1 assert t.model_set_axis is False assert np.all(t.param_sets == [[[[10, 20], [30, 40], [50, 60]]], [[[1, 2], [3, 4], [5, 6]]]]) assert np.all(t.parameters == [10, 20, 30, 40, 50, 60, 1, 2, 3, 4, 5, 6]) assert t.coeff.shape == (3, 2) assert t.e.shape == (3, 2) t2 = TParModel(coeff.T, e.T) assert len(t2) == 1 assert t2.model_set_axis is False assert np.all(t2.param_sets == [[[[10, 30, 50], [20, 40, 60]]], [[[1, 3, 5], [2, 4, 6]]]]) assert np.all(t2.parameters == [10, 30, 50, 20, 40, 60, 1, 3, 5, 2, 4, 6]) assert t2.coeff.shape == (2, 3) assert t2.e.shape == (2, 3) # Not broadcastable with pytest.raises(InputParameterError): TParModel(coeff, e.T) with pytest.raises(InputParameterError): TParModel(coeff.T, e) def test_single_model_2d_broadcastable_parameters(self): t = TParModel([[10, 20, 30], [40, 50, 60]], [1, 2, 3]) assert len(t) == 1 assert t.model_set_axis is False assert len(t.param_sets) == 2 assert np.issubdtype(t.param_sets.dtype, np.object_) assert np.all(t.param_sets[0] == [[[10, 20, 30], [40, 50, 60]]]) assert np.all(t.param_sets[1] == [[1, 2, 3]]) assert np.all(t.parameters == [10, 20, 30, 40, 50, 60, 1, 2, 3]) @pytest.mark.parametrize(('p1', 'p2'), [ (1, 2), (1, [2, 3]), ([1, 2], 3), ([1, 2, 3], [4, 5]), ([1, 2], [3, 4, 5])]) def test_two_model_incorrect_scalar_parameters(self, p1, p2): with pytest.raises(InputParameterError): TParModel(p1, p2, n_models=2) @pytest.mark.parametrize('kwargs', [ {'n_models': 2}, {'model_set_axis': 0}, {'n_models': 2, 'model_set_axis': 0}]) def test_two_model_scalar_parameters(self, kwargs): t = TParModel([10, 20], [1, 2], **kwargs) assert len(t) == 2 assert t.model_set_axis == 0 assert np.all(t.param_sets == [[10, 20], [1, 2]]) assert np.all(t.parameters == [10, 20, 1, 2]) assert t.coeff.shape == (2,) assert t.e.shape == (2,) @pytest.mark.parametrize('kwargs', [ {'n_models': 2}, {'model_set_axis': 0}, {'n_models': 2, 'model_set_axis': 0}]) def test_two_model_scalar_and_array_parameters(self, kwargs): t = TParModel([10, 20], [[1, 2], [3, 4]], **kwargs) assert len(t) == 2 assert t.model_set_axis == 0 assert len(t.param_sets) == 2 assert np.issubdtype(t.param_sets.dtype, np.object_) assert np.all(t.param_sets[0] == [[10], [20]]) assert np.all(t.param_sets[1] == [[1, 2], [3, 4]]) assert np.all(t.parameters == [10, 20, 1, 2, 3, 4]) assert t.coeff.shape == (2,) assert t.e.shape == (2, 2) def test_two_model_1d_array_parameters(self): t = TParModel([[10, 20], [30, 40]], [[1, 2], [3, 4]], n_models=2) assert len(t) == 2 assert t.model_set_axis == 0 assert np.all(t.param_sets == [[[10, 20], [30, 40]], [[1, 2], [3, 4]]]) assert np.all(t.parameters == [10, 20, 30, 40, 1, 2, 3, 4]) assert t.coeff.shape == (2, 2) assert t.e.shape == (2, 2) t2 = TParModel([[10, 20, 30], [40, 50, 60]], [[1, 2, 3], [4, 5, 6]], n_models=2) assert len(t2) == 2 assert t2.model_set_axis == 0 assert np.all(t2.param_sets == [[[10, 20, 30], [40, 50, 60]], [[1, 2, 3], [4, 5, 6]]]) assert np.all(t2.parameters == [10, 20, 30, 40, 50, 60, 1, 2, 3, 4, 5, 6]) assert t2.coeff.shape == (2, 3) assert t2.e.shape == (2, 3) def test_two_model_mixed_dimension_array_parameters(self): with pytest.raises(InputParameterError): # Can't broadcast different array shapes TParModel([[[1, 2], [3, 4]], [[5, 6], [7, 8]]], [[9, 10, 11], [12, 13, 14]], n_models=2) t = TParModel([[[10, 20], [30, 40]], [[50, 60], [70, 80]]], [[1, 2], [3, 4]], n_models=2) assert len(t) == 2 assert t.model_set_axis == 0 assert len(t.param_sets) == 2 assert np.issubdtype(t.param_sets.dtype, np.object_) assert np.all(t.param_sets[0] == [[[10, 20], [30, 40]], [[50, 60], [70, 80]]]) assert np.all(t.param_sets[1] == [[[1, 2]], [[3, 4]]]) assert np.all(t.parameters == [10, 20, 30, 40, 50, 60, 70, 80, 1, 2, 3, 4]) assert t.coeff.shape == (2, 2, 2) assert t.e.shape == (2, 2) def test_two_model_2d_array_parameters(self): t = TParModel([[[10, 20], [30, 40]], [[50, 60], [70, 80]]], [[[1, 2], [3, 4]], [[5, 6], [7, 8]]], n_models=2) assert len(t) == 2 assert t.model_set_axis == 0 assert np.all(t.param_sets == [[[[10, 20], [30, 40]], [[50, 60], [70, 80]]], [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]]) assert np.all(t.parameters == [10, 20, 30, 40, 50, 60, 70, 80, 1, 2, 3, 4, 5, 6, 7, 8]) assert t.coeff.shape == (2, 2, 2) assert t.e.shape == (2, 2, 2) def test_two_model_nonzero_model_set_axis(self): # An example where the model set axis is the *last* axis of the # parameter arrays coeff = np.array([[[10, 20, 30], [30, 40, 50]], [[50, 60, 70], [70, 80, 90]]]) coeff = np.rollaxis(coeff, 0, 3) e = np.array([[1, 2, 3], [3, 4, 5]]) e = np.rollaxis(e, 0, 2) t = TParModel(coeff, e, n_models=2, model_set_axis=-1) assert len(t) == 2 assert t.model_set_axis == -1 assert len(t.param_sets) == 2 assert np.issubdtype(t.param_sets.dtype, np.object_) assert np.all(t.param_sets[0] == [[[10, 50], [20, 60], [30, 70]], [[30, 70], [40, 80], [50, 90]]]) assert np.all(t.param_sets[1] == [[[1, 3], [2, 4], [3, 5]]]) assert np.all(t.parameters == [10, 50, 20, 60, 30, 70, 30, 70, 40, 80, 50, 90, 1, 3, 2, 4, 3, 5]) assert t.coeff.shape == (2, 3, 2) # note change in api assert t.e.shape == (3, 2) # note change in api def test_wrong_number_of_params(self): with pytest.raises(InputParameterError): TParModel(coeff=[[1, 2], [3, 4]], e=(2, 3, 4), n_models=2) with pytest.raises(InputParameterError): TParModel(coeff=[[1, 2], [3, 4]], e=(2, 3, 4), model_set_axis=0) def test_wrong_number_of_params2(self): with pytest.raises(InputParameterError): m = TParModel(coeff=[[1, 2], [3, 4]], e=4, n_models=2) with pytest.raises(InputParameterError): m = TParModel(coeff=[[1, 2], [3, 4]], e=4, model_set_axis=0) def test_array_parameter1(self): with pytest.raises(InputParameterError): t = TParModel(np.array([[1, 2], [3, 4]]), 1, model_set_axis=0) def test_array_parameter2(self): with pytest.raises(InputParameterError): m = TParModel(np.array([[1, 2], [3, 4]]), (1, 1, 11), model_set_axis=0) def test_array_parameter4(self): """ Test multiple parameter model with array-valued parameters of the same size as the number of parameter sets. """ t4 = TParModel([[1, 2], [3, 4]], [5, 6], model_set_axis=False) assert len(t4) == 1 assert t4.coeff.shape == (2, 2) assert t4.e.shape == (2,) assert np.issubdtype(t4.param_sets.dtype, np.object_) assert np.all(t4.param_sets[0] == [[1, 2], [3, 4]]) assert np.all(t4.param_sets[1] == [5, 6]) def test_non_broadcasting_parameters(): """ Tests that in a model with 3 parameters that do not all mutually broadcast, this is determined correctly regardless of what order the parameters are in. """ a = 3 b = np.array([[1, 2, 3], [4, 5, 6]]) c = np.array([[1, 2, 3, 4], [1, 2, 3, 4]]) class TestModel(Model): p1 = Parameter() p2 = Parameter() p3 = Parameter() def evaluate(self, *args): return # a broadcasts with both b and c, but b does not broadcast with c for args in itertools.permutations((a, b, c)): with pytest.raises(InputParameterError): TestModel(*args) def test_setter(): pars = np.random.rand(20).reshape((10, 2)) model = SetterModel(xc=-1, yc=3, p=np.pi) for x, y in pars: np.testing.assert_almost_equal( model(x, y), (x + 1)**2 + (y - np.pi * 3)**2)
34.004637
86
0.534703
26c2ef38f291c70bc50935053ca012609ea81e03
748
py
Python
setup.py
davidkirwan/duffy
c15e5897ce643799c5baae2b29f77db2c96e59ad
[ "Apache-2.0" ]
null
null
null
setup.py
davidkirwan/duffy
c15e5897ce643799c5baae2b29f77db2c96e59ad
[ "Apache-2.0" ]
null
null
null
setup.py
davidkirwan/duffy
c15e5897ce643799c5baae2b29f77db2c96e59ad
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import setuptools setuptools.setup( name='duffy', description='', version='2.0.2', packages=setuptools.find_packages(), include_package_data=True, license='Apache 2.0', install_requires=[ 'beanstalkc', 'flask', 'flask-marshmallow', 'flask-migrate', 'flask-sqlalchemy', 'marshmallow-sqlalchemy', 'marshmallow==3.0.0b6', 'pymysql', 'paramiko', ], classifiers=[ "Development Status :: 4 - Beta", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python :: 2", "Programming Language :: Python :: 3", "Topic :: Utilities", ], scripts=[], )
22
61
0.550802
2b25d6c6a75c1b4e1c3f8966eece8260ed764f29
3,300
py
Python
04.adventure/17.ui_panel_reactif/scene.py
Gaetz/python-training
542f658883c66aaa932fb9e385225cfd573bb6de
[ "MIT" ]
1
2021-10-05T11:45:28.000Z
2021-10-05T11:45:28.000Z
04.adventure/17.ui_panel_reactif/scene.py
Gaetz/python-training
542f658883c66aaa932fb9e385225cfd573bb6de
[ "MIT" ]
null
null
null
04.adventure/17.ui_panel_reactif/scene.py
Gaetz/python-training
542f658883c66aaa932fb9e385225cfd573bb6de
[ "MIT" ]
null
null
null
import pygame from sprite_controlled import SpriteControlled from sprite import Sprite from warp import Warp from ui_panel import UiPanel class Scene: path = 'D:\\Code\\ArtFx\\Python\\python-training\\01.adventure\\17.ui_panel_reactif\\' def __init__(self, filename): self.filename = filename self.load(filename) def load(self, filename): file = open(Scene.path + filename) data = file.read().splitlines() ground_height = 0 self.cursor = Sprite(0, 0, 'cursor.png', False) self.sprites = [] self.warps = [] self.panel = UiPanel(0, 0, 800, 100) for line in data: cell = line.split(";") # Ground if(cell[0] == "ground"): self.ground = Sprite(0, 0, cell[1]+".png", False) _, screen_h = pygame.display.get_surface().get_size() ground_height = screen_h - self.ground.surface.get_height() self.ground.y = ground_height # Background elif(cell[0] == "background"): self.background = Sprite(0, 0, cell[1]+".png", False) # Player elif(cell[0] == "player"): height = 0 if cell[3] == "ground": height = -1 self.player = SpriteControlled(int(cell[2]), height, cell[1]+".png", True, int(cell[4])) # Sprites elif(cell[0] == "sprite"): height = 0 if cell[3] == "ground": height = -1 sprite = Sprite(int(cell[2]), height, cell[1]+".png", True) self.sprites.append(sprite) # Warps elif(cell[0] == "warp"): height = 0 if cell[3] == "ground": height = -1 warp = Warp(int(cell[2]), height, cell[1]+".png", False, eval(cell[4])) self.warps.append(warp) # Set heights if(self.player.y == -1): self.player.y = ground_height for s in self.sprites: if(s.y == -1): s.y = ground_height for w in self.warps: if(w.y == -1): w.y = ground_height - w.surface.get_height() / 2 def inputs(self, events): for event in events: if event.type == pygame.MOUSEBUTTONDOWN: mouse_click = pygame.mouse.get_pos() self.player.move_to(mouse_click[0]) if event.type == pygame.KEYDOWN: keys = pygame.key.get_pressed() if keys[pygame.K_F5]: self.load(self.filename) def update(self, change_scene): self.cursor.set_position(pygame.mouse.get_pos()) self.player.update() for w in self.warps: if(self.player.intersects(w)): change_scene(w.to_scene, w.to_scene_x) self.panel.update() def draw(self, screen): self.background.draw(screen) self.ground.draw(screen) for w in self.warps: w.draw(screen) for s in self.sprites: s.draw(screen) self.player.draw(screen) self.panel.draw(screen) self.cursor.draw(screen)
33.333333
104
0.507576
a6f7b895afa00a413b36794dccc08a03cc8328c5
2,009
py
Python
aztk/spark/client/job/helpers/get_application_log.py
atg-abhishek/aztk
e3d060e58373c316fddbc0907f08b1430e1b2691
[ "MIT" ]
null
null
null
aztk/spark/client/job/helpers/get_application_log.py
atg-abhishek/aztk
e3d060e58373c316fddbc0907f08b1430e1b2691
[ "MIT" ]
null
null
null
aztk/spark/client/job/helpers/get_application_log.py
atg-abhishek/aztk
e3d060e58373c316fddbc0907f08b1430e1b2691
[ "MIT" ]
null
null
null
import azure.batch.models as batch_models import azure.batch.models.batch_error as batch_error from aztk import error from aztk.spark import models from aztk.utils import helpers from .get_recent_job import get_recent_job def _get_application_log(core_job_operations, spark_job_operations, job_id, application_name): # TODO: change where the logs are uploaded so they aren't overwritten on scheduled runs # current: job_id, application_name/output.log # new: job_id, recent_run_job.id/application_name/output.log recent_run_job = get_recent_job(core_job_operations, job_id) try: task = core_job_operations.batch_client.task.get(job_id=recent_run_job.id, task_id=application_name) except batch_models.batch_error.BatchErrorException as e: # see if the application is written to metadata of pool applications = spark_job_operations.list_applications(job_id) for application in applications: if applications[application] is None and application == application_name: raise error.AztkError("The application {0} has not yet been created.".format(application)) raise error.AztkError("The application {0} does not exist".format(application_name)) else: if task.state in ( batch_models.TaskState.active, batch_models.TaskState.running, batch_models.TaskState.preparing, ): raise error.AztkError("The application {0} has not yet finished executing.".format(application_name)) return core_job_operations.get_application_log(job_id, application_name) def get_job_application_log(core_job_operations, spark_job_operations, job_id, application_name): try: return models.ApplicationLog( _get_application_log(core_job_operations, spark_job_operations, job_id, application_name)) except batch_error.BatchErrorException as e: raise error.AztkError(helpers.format_batch_exception(e))
46.72093
113
0.740667
65fe6abc5430330438a2a7f3c6edd5953879ed8c
46
py
Python
refactorings/__init__.py
Amin-MAG/CodART
a964a506d031f6eea505df081b9ba946f490d021
[ "MIT" ]
18
2020-11-26T08:31:27.000Z
2022-03-28T07:35:41.000Z
refactorings/__init__.py
Amin-MAG/CodART
a964a506d031f6eea505df081b9ba946f490d021
[ "MIT" ]
82
2020-12-25T08:26:27.000Z
2022-03-25T06:11:36.000Z
refactorings/__init__.py
Amin-MAG/CodART
a964a506d031f6eea505df081b9ba946f490d021
[ "MIT" ]
59
2020-11-26T08:31:42.000Z
2022-02-04T11:09:03.000Z
# from refactorings import collapse_hierarchy
23
45
0.869565
1cb89ad30caffc8b395fbf467e19582cbf2bd775
644
py
Python
testing/scripts/rust/exe_util_unittests.py
chromium/chromium
df46e572c3449a4b108d6e02fbe4f6d24cf98381
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
14,668
2015-01-01T01:57:10.000Z
2022-03-31T23:33:32.000Z
testing/scripts/rust/exe_util_unittests.py
chromium/chromium
df46e572c3449a4b108d6e02fbe4f6d24cf98381
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
86
2015-10-21T13:02:42.000Z
2022-03-14T07:50:50.000Z
testing/scripts/rust/exe_util_unittests.py
chromium/chromium
df46e572c3449a4b108d6e02fbe4f6d24cf98381
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
5,941
2015-01-02T11:32:21.000Z
2022-03-31T16:35:46.000Z
#!/usr/bin/env vpython3 # Copyright 2021 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import argparse import json import os from pyfakefs import fake_filesystem_unittest import sys import tempfile import unittest import exe_util class ExeUtilTests(fake_filesystem_unittest.TestCase): def test_run_and_tee_output(self): # Test wrapping Python as it echos a '.' character back. args = [sys.executable, '-c', 'print(\'.\')'] output = exe_util.run_and_tee_output(args) self.assertEqual('.', output.strip())
26.833333
72
0.732919
21b1fb6c015ae3edebc36006c0e1067abd2a9a14
575
py
Python
core/migrations/0017_auto_20210119_1217.py
Nephrolog-lt/nephrolog-api
ccd2162aff02b2abfab0f285779e5d8457be1788
[ "Apache-2.0" ]
2
2020-12-17T13:50:42.000Z
2021-01-09T07:01:07.000Z
core/migrations/0017_auto_20210119_1217.py
Nephrolog-lt/nephrolog-api
ccd2162aff02b2abfab0f285779e5d8457be1788
[ "Apache-2.0" ]
2
2021-08-25T05:02:56.000Z
2022-01-16T18:29:49.000Z
core/migrations/0017_auto_20210119_1217.py
Nephrolog-lt/nephrolog-api
ccd2162aff02b2abfab0f285779e5d8457be1788
[ "Apache-2.0" ]
1
2020-11-16T01:40:15.000Z
2020-11-16T01:40:15.000Z
# Generated by Django 3.1.5 on 2021-01-19 12:17 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0016_auto_20210119_0848'), ] operations = [ migrations.AlterField( model_name='product', name='name_lt', field=models.CharField(max_length=128, unique=True), ), migrations.AlterField( model_name='product', name='name_search_lt', field=models.CharField(max_length=128, unique=True), ), ]
23.958333
64
0.589565
54a9b93ba1e6ab4f62d6ef94b5e504c220eda5d7
622
py
Python
services/python-images/src/master/helpers/io.py
hpi-epic/mpcsl
05361acb0c8da68ddfa21f9fc9cd32a59255dc5c
[ "MIT" ]
1
2021-11-21T13:52:36.000Z
2021-11-21T13:52:36.000Z
services/python-images/src/master/helpers/io.py
hpi-epic/mpcsl
05361acb0c8da68ddfa21f9fc9cd32a59255dc5c
[ "MIT" ]
3
2021-10-06T13:23:43.000Z
2022-01-07T13:48:41.000Z
services/python-images/src/master/helpers/io.py
hpi-epic/mpcsl
05361acb0c8da68ddfa21f9fc9cd32a59255dc5c
[ "MIT" ]
null
null
null
from flask import request from werkzeug.exceptions import BadRequest class InvalidInputData(BadRequest): def __init__(self, message='Invalid input data.', payload=None): self.payload = payload BadRequest.__init__(self, description=payload or message) def load_data(schema, location='json', *args, **kwargs): vals = getattr(request, location, None) data, errors = schema().load(vals, *args, **kwargs) if len(errors) > 0: raise InvalidInputData(payload=errors) return data def marshal(schema, object, *args, **kwargs): return schema().dump(object, *args, **kwargs).data
29.619048
68
0.699357