hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
2b2d2083b281f2bcf3550d8a5d3bef8394173ada
2,877
py
Python
examples/atrous_conv_example.py
miaecle/PNet
981ce26cf5358fbd9af128501640d453043eb6f7
[ "MIT" ]
3
2017-05-17T01:19:18.000Z
2017-07-19T21:41:15.000Z
examples/atrous_conv_example.py
miaecle/PNet
981ce26cf5358fbd9af128501640d453043eb6f7
[ "MIT" ]
null
null
null
examples/atrous_conv_example.py
miaecle/PNet
981ce26cf5358fbd9af128501640d453043eb6f7
[ "MIT" ]
1
2021-06-19T09:32:26.000Z
2021-06-19T09:32:26.000Z
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Tue Jun 27 19:43:49 2017 @author: zqwu Example script using saved atrous-conv model to predict targets in CASP11, CASP12, CAMEO. To run this code, please download the feature files(or generating features by HHblits, CCMpred and RaptorX): CASP: https://s3-us-west-1.amazonaws.com/deepchem.io/featurized_datasets/CASPALL.tar.gz CAMEO: https://s3-us-west-1.amazonaws.com/deepchem.io/featurized_datasets/CAMEO.tar.gz PDB50cut: https://s3-us-west-1.amazonaws.com/deepchem.io/featurized_datasets/PDB50cut.tar.gz Please decompress into the datasets folder, as defined by the environmental variable: PNET_DATA_DIR """ import deepchem as dc import numpy as np import pnet import os train = pnet.utils.load_PDB50_cut() data_dir_train = os.path.join(os.environ['PNET_DATA_DIR'], 'PDB50cut') train.build_features(['raw', 'MSA', 'SS', 'SA'], path=data_dir_train) train.build_2D_features(feat_list=['CCMpred', 'MI_MCP'], path=data_dir_train) train.build_labels(path=data_dir_train, weight_base=50., weight_adjust=0.1, binary=True) CASPALL = pnet.utils.load_CASP_all() data_dir_valid = os.path.join(os.environ['PNET_DATA_DIR'], 'CASPALL') CASPALL.build_features(['raw', 'MSA', 'SS', 'SA'], path=data_dir_valid) CASPALL.build_2D_features(feat_list=['CCMpred', 'MI_MCP'], path=data_dir_valid) CASPALL.build_labels(path=data_dir_valid, weight_base=50., weight_adjust=0.1, binary=True) CAMEO = pnet.utils.load_CAMEO() data_dir_cameo = os.path.join(os.environ['PNET_DATA_DIR'], 'CAMEO') CAMEO.build_features(['raw', 'MSA', 'SS', 'SA'], path=data_dir_cameo) CAMEO.build_2D_features(feat_list=['CCMpred', 'MI_MCP'], path=data_dir_cameo) CAMEO.build_labels(path=data_dir_cameo, weight_base=50., weight_adjust=0.1, binary=True) CASP11 = pnet.utils.load_CASP(11) CASP11 = CASPALL.select_by_ID(CASP11._IDs) CASP12 = pnet.utils.load_CASP(12) CASP12 = CASPALL.select_by_ID(CASP12._IDs) batch_size = 1 n_features = CASPALL.n_features metrics = [pnet.utils.Metric(pnet.utils.top_k_accuracy(5), mode='classification')] metrics2 = [pnet.utils.Metric(pnet.utils.top_k_accuracy(10), mode='classification')] model_dir = os.path.join(os.environ['PNET_DATA_DIR'], '../saved_models/AtrousConv/') model = pnet.models.AtrousConvContactMap( n_res_feat=n_features, learning_rate=1e-3, learning_rate_decay=0.99, batch_size=batch_size, use_queue=False, uppertri=True, mode='classification', n_batches=None, oneD_loss=None, model_dir=model_dir) model.build() model.restore(os.path.join(model_dir, 'model-1')) #model.fit(train, nb_epoch=25, checkpoint_interval=11498) print(model.evaluate(CASP11, metrics)) print(model.evaluate(CASP12, metrics)) print(model.evaluate(CAMEO, metrics)) print(model.evaluate(CASP11, metrics2)) print(model.evaluate(CASP12, metrics2)) print(model.evaluate(CAMEO, metrics2))
39.410959
108
0.765728
f6c821ef42f4f0f7bb6f76406f0de309f8c8e511
20,758
py
Python
tensorflow/python/eager/def_function_xla_jit_test.py
pukhlyakova/tensorflow
573b838b131b4229179dcc86d675ecd2b09b2c52
[ "Apache-2.0" ]
1
2020-09-21T04:52:36.000Z
2020-09-21T04:52:36.000Z
tensorflow/python/eager/def_function_xla_jit_test.py
lonelyagegeek/tensorflow
830b72bc81f99de1ab26dc186dcc8c8fb6b9c8bc
[ "Apache-2.0" ]
2
2021-08-25T16:14:02.000Z
2022-02-10T04:14:26.000Z
tensorflow/python/eager/def_function_xla_jit_test.py
lonelyagegeek/tensorflow
830b72bc81f99de1ab26dc186dcc8c8fb6b9c8bc
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.compiler.tests import xla_test from tensorflow.python.eager import backprop from tensorflow.python.eager import context from tensorflow.python.eager import def_function from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import control_flow_util from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import tensor_array_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test class DefFunctionTest(xla_test.XLATestCase): def testAutoclusteringWithTfFunction(self): if 'tpu' in self.device.lower(): self.skipTest('Autoclustering does not run on TPU') with ops.device('device:{}:0'.format(self.device)): @def_function.function(experimental_compile=False) def outer(a, b, c): return a * inner(b, c) + c @def_function.function(experimental_compile=True) def inner(b, c): return b + c * b i1 = constant_op.constant([1.0, 2.0, 3.0, 4.0, 5.0]) i2 = constant_op.constant([1.0, 2.0, 3.0, 4.0, 5.0]) i3 = constant_op.constant([1.0, 2.0, 3.0, 4.0, 5.0]) with context.collect_graphs(optimized=True) as graphs: outer(i1, i2, i3) if test_util.is_xla_enabled(): self.assertIn('_XlaRun', [n.op for n in graphs[0].node]) else: self.assertNotIn('_XlaRun', [n.op for n in graphs[0].node]) def testBasic(self): with ops.device('device:{}:0'.format(self.device)): def fn(x, a): return x + a func = def_function.function(fn, experimental_compile=False) xla_func = def_function.function(fn, experimental_compile=True) inputs = constant_op.constant([1, 2, 2, 3, 3]) self.assertAllClose([2, 3, 3, 4, 4], func(inputs, 1)) self.assertAllClose([2, 3, 3, 4, 4], xla_func(inputs, 1)) def testBasicInt32(self): with ops.device('device:{}:0'.format(self.device)): @def_function.function(experimental_compile=True) def fn(x, a): return x + a inputs = constant_op.constant([1, 2, 2, 3, 3], dtype=dtypes.int32) self.assertAllClose([2, 3, 3, 4, 4], fn(inputs, 1)) def testDerivative(self): with ops.device('device:{}:0'.format(self.device)): def fn(x, a): return 2 * x + a xla_func = def_function.function(fn, experimental_compile=True) with backprop.GradientTape() as tape: inputs = constant_op.constant([1., 2., 2., 3., 3.]) tape.watch(inputs) outputs = xla_func(inputs, 1) self.assertAllClose([2, 2, 2, 2, 2], tape.gradient(outputs, inputs)) # pylint: disable=protected-access (forward, backward) = xla_func.get_concrete_function( inputs, 1)._delayed_rewrite_functions.forward_backward() # Check that the must-compile attribute gets correctly propagated to the # created derivatives. self.assertTrue(backward.function_def.attr['_XlaMustCompile']) self.assertTrue(forward.definition.attr['_XlaMustCompile']) # Calling function with experimental_compile=True from # experimental_compile=False should compile the inner func. def testNestedCall(self): if 'tpu' in self.device.lower(): self.skipTest('b/162800687: Inner function runs on host') with ops.device('device:{}:0'.format(self.device)): @def_function.function(experimental_compile=True) def fn(x, a): return x + a @def_function.function(experimental_compile=False) def fn2(x, a): return fn(x, a) inputs = constant_op.constant([1, 2, 2, 3, 3]) self.assertAllClose([2, 3, 3, 4, 4], fn2(inputs, 1)) @test_util.disable_mlir_bridge('TODO(b/162272821): MLIR bridge returns' ' wrong status type') def testNestedCallUnsupportedOps(self): with ops.device('device:{}:0'.format(self.device)): def fn(x): return array_ops.unique(x).y xla_func = def_function.function(fn, experimental_compile=True) def fn2(x): return xla_func(x) func = def_function.function(fn2, experimental_compile=False) inputs = constant_op.constant([1, 2, 2, 3, 3]) with self.assertRaisesRegex(errors.InvalidArgumentError, 'not compilable'): func(inputs) @test_util.disable_mlir_bridge('TODO(b/162272821): MLIR bridge returns' ' wrong status type') def testUnsupportedOps(self): with ops.device('device:{}:0'.format(self.device)): def fn(x): return array_ops.unique(x).y # Unique is not supported by XLA func = def_function.function(fn, experimental_compile=False) xla_func = def_function.function(fn, experimental_compile=True) inputs = constant_op.constant([1, 2, 2, 3, 3]) self.assertAllClose([1, 2, 3], func(inputs)) with self.assertRaisesRegex(errors.InvalidArgumentError, 'not compilable'): xla_func(inputs) def testFunctionGradient(self): with ops.device('device:{}:0'.format(self.device)): v = resource_variable_ops.ResourceVariable(2.0) def fn(x): return v * x func = def_function.function(fn, experimental_compile=False) xla_func = def_function.function(fn, experimental_compile=True) def run_and_check(test_func): x = constant_op.constant(3.0) with backprop.GradientTape() as tape: y = test_func(x) dy = tape.gradient(y, v) self.assertAllClose(6.0, y) self.assertAllClose(3.0, dy) run_and_check(func) run_and_check(xla_func) @test_util.disable_mlir_bridge('TODO(b/162521846): MLIR bridge fails' ' msan, function library not found') def testControlFlow(self): with ops.device('device:{}:0'.format(self.device)): @def_function.function(experimental_compile=True) def f(x): assert control_flow_util.GraphOrParentsInXlaContext( ops.get_default_graph()) x = ops.convert_to_tensor(x) def body(i, a): return i + 1, control_flow_ops.cond(i > 2, lambda: a + (x**2), lambda: a + 3) return control_flow_ops.while_loop( lambda i, *_: i < 10, body, (constant_op.constant(0), constant_op.constant(3.)), maximum_iterations=10)[1] @def_function.function(experimental_compile=True) def g(x): x = ops.convert_to_tensor(x) with backprop.GradientTape() as tape: tape.watch(x) y = f(x) return y, tape.gradient(y, x) # Test that XLA context gets correctly propagated. g._get_concrete_function_garbage_collected(2.0)(2.0) self.assertAllClose(40.0, f(2.0)) self.assertAllClose([40.0, 28.0], g(2.0)) self.assertAllClose(40.0, f.get_concrete_function(2.0)(2.0)) self.assertAllClose([40.0, 28.0], g.get_concrete_function(2.0)(2.0)) def testMethodCompilation(self): with ops.device('device:{}:0'.format(self.device)): class C(object): @def_function.function(experimental_compile=True) def f1(self, x, a): return x + a inputs = constant_op.constant([1, 2, 2, 3, 3]) c = C() self.assertAllClose([2, 3, 3, 4, 4], c.f1(inputs, 1)) @test_util.disable_mlir_bridge('TODO(b/162272821): MLIR bridge returns ' ' wrong status type') def testMethodCompilationUnsupportedFunc(self): with ops.device('device:{}:0'.format(self.device)): class C(object): @def_function.function(experimental_compile=True) def f1(self, x): return array_ops.unique(x).y inputs = constant_op.constant([1, 2, 2, 3, 3]) c = C() with self.assertRaisesRegex(errors.InvalidArgumentError, 'not compilable'): c.f1(inputs) def testMustBeConstantPropagation(self): if 'tpu' in self.device.lower(): self.skipTest('b/162799319: Cannot resolve constant on TPU') with ops.device('device:{}:0'.format(self.device)): @def_function.function(experimental_compile=True) def f(): return constant_op.constant([0, 2, 1], dtype=dtypes.int32) @def_function.function(experimental_compile=True) def g(a, b): return array_ops.transpose(a, b) @def_function.function def z(): return g(array_ops.ones([3, 4, 3], dtype=dtypes.float32), f()) z() @test_util.disable_mlir_bridge('TODO(b/162271237): argmax gives different' ' results in MLIR-based bridge') def testArgMinMax(self): with ops.device('device:{}:0'.format(self.device)): @def_function.function(experimental_compile=True) def argmax(x): return math_ops.argmax(x) @def_function.function(experimental_compile=True) def argmin(x): return math_ops.argmin(x) self.assertAllClose(0, argmax(array_ops.ones([10], dtype=dtypes.float32))) self.assertAllClose(0, argmax(array_ops.ones([10]))) self.assertAllClose(0, argmin(array_ops.ones([10], dtype=dtypes.float32))) self.assertAllClose(0, argmin(array_ops.ones([10]))) @test_util.disable_mlir_bridge('TensorArray support not implemented') def testErrorMessagePassingTensorArray(self): with ops.device('device:{}:0'.format(self.device)): @def_function.function(experimental_compile=True) def f(x): ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, size=1, element_shape=[]) ta = ta.write(0, 2 * x) y = ta.read(0) return y x = constant_op.constant(3.14) with backprop.GradientTape() as tape: tape.watch(x) with self.assertRaisesRegex(errors.UnimplementedError, 'TensorList crossing the XLA/TF boundary'): y = f(x) tape.gradient(y, x) @test_util.disable_mlir_bridge('TODO(b/162281863): MLIR bridge errors out' ' lowering TensorListConcatV2') def testTensorListConcatV2(self): with ops.device('device:{}:0'.format(self.device)): def f(x): ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, size=2, element_shape=[3]) ta = ta.write(0, 2 * x) ta = ta.write(1, 3 * x) return ta.concat() compiled_f = def_function.function(experimental_compile=True)(f) inputs = constant_op.constant([3.14, 2.68, 7.69]) self.assertAllClose([6.28, 5.36, 15.38, 9.42, 8.04, 23.07], f(inputs)) self.assertAllClose(compiled_f(inputs), f(inputs)) @test_util.disable_mlir_bridge('TODO(b/162281863): MLIR bridge errors out' ' lowering TensorListConcatV2') def testTensorListConcatV2Multidim(self): with ops.device('device:{}:0'.format(self.device)): def f(x): ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, size=2, element_shape=[3, 2]) ta = ta.write(0, 2 * x) ta = ta.write(1, 3 * x) return ta.concat() compiled_f = def_function.function(experimental_compile=True)(f) inputs = constant_op.constant([[3.14, 21.1], [2.68, 22.2], [7.69, 23.3]]) self.assertAllClose(f(inputs), compiled_f(inputs)) @test_util.disable_mlir_bridge('TODO(b/162281863): MLIR bridge errors out' ' lowering TensorListConcatV2') def testTensorListConcatV2Scalars(self): with ops.device('device:{}:0'.format(self.device)): def f(x): ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, size=2, element_shape=[1]) ta = ta.write(0, 2 * x) ta = ta.write(1, 3 * x) return ta.concat() compiled_f = def_function.function(experimental_compile=True)(f) inputs = constant_op.constant([3.14]) self.assertAllClose(f(inputs), compiled_f(inputs)) @test_util.disable_mlir_bridge('TODO(b/162281863): MLIR bridge errors out' ' lowering TensorListConcatV2') def testTensorListConcatGrad(self): with ops.device('device:{}:0'.format(self.device)): def f(x): ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, size=2, element_shape=[3]) ta = ta.write(0, 2 * x) ta = ta.write(1, 3 * x) return ta.concat() def g(): x = constant_op.constant([3.14, 2.68, 7.69]) with backprop.GradientTape() as tape: tape.watch(x) y = f(x) return tape.gradient(y, x) compiled_g = def_function.function(experimental_compile=True)(g) self.assertAllClose([5.0, 5.0, 5.0], g()) self.assertAllClose(compiled_g(), g()) @test_util.disable_mlir_bridge('TODO(b/162281863): MLIR bridge errors out' ' lowering TensorListConcatV2') def testTensorListConcatGradNestedCompile(self): with ops.device('device:{}:0'.format(self.device)): @def_function.function(experimental_compile=True) def f(x): ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, size=2, element_shape=[3]) ta = ta.write(0, 2 * x) ta = ta.write(1, 3 * x) return ta.concat() @def_function.function(experimental_compile=True) def g(): x = constant_op.constant([3.14, 2.68, 7.69]) with backprop.GradientTape() as tape: tape.watch(x) y = f(x) out = tape.gradient(y, x) return out self.assertAllClose([5.0, 5.0, 5.0], g()) def testCumsum(self): if 'tpu' in self.device.lower(): self.skipTest('b/162771302: 64bit rewrite of cumsum not supported') with ops.device('device:{}:0'.format(self.device)): @def_function.function(experimental_compile=True) def f(x): return math_ops.cumsum(x) f64_input = constant_op.constant([1.1, 2.2, 3.3], dtype=dtypes.float64) self.assertAllClose([1.1, 3.3, 6.6], f(f64_input)) def testNoExcessiveRetracing(self): with ops.device('device:{}:0'.format(self.device)): inner_retracings = 0 @def_function.function(experimental_compile=True) def inner(a, b): nonlocal inner_retracings inner_retracings += 1 return a * b + a def outer(a, b): return inner(a, b) func_input = random_ops.random_normal([10, 10]) for _ in range(2): def_function.function(outer)(func_input, func_input) self.assertEqual(inner_retracings, 1) def testUpdateVariable(self): with ops.device('device:{}:0'.format(self.device)): on_gpu = 'gpu' in self.device.lower() v = variables.Variable([3.1, 3.2]) @def_function.function(experimental_compile=True) def update_var(a, b): v.assign_add(a * b) arg1 = random_ops.random_normal([2]) arg2 = random_ops.random_normal([2]) initial_usage = context.context().get_total_memory_usage( v.device) if on_gpu else 0 update_var(arg1, arg2) final_usage = context.context().get_total_memory_usage( v.device) if on_gpu else 0 self.assertEqual(initial_usage, final_usage) @test_util.disable_mlir_bridge('TODO(b/162381930): MLIR bridge renames ' ' functions') def testUpdateVariableInClass(self): with ops.device('device:{}:0'.format(self.device)): class C(object): @def_function.function(experimental_compile=True) def update_var(self, a, b): if not hasattr(self, 'v'): self.v = variables.Variable(3.1) self.v.assign_add(a * b) c = C() @def_function.function def outer(): c.update_var(constant_op.constant(0.7), constant_op.constant(0.6)) outer() self.assertAllClose(c.v, 3.52) @test_util.disable_mlir_bridge('TODO(b/162801728): MLIR bridge causes ' ' invalid free on TPUs') def testUpdateVariableMultipleOutputs(self): with ops.device('device:{}:0'.format(self.device)): v = variables.Variable(3.1) @def_function.function(experimental_compile=True) def update_var(a, b): v.assign_add(a * b) return a * b + v out = update_var(constant_op.constant(0.7), constant_op.constant(0.6)) self.assertAllClose(v, 3.52) self.assertAllClose(out, 3.94) def testReturnIdentity(self): with ops.device('device:{}:0'.format(self.device)): @def_function.function(experimental_compile=True) def f(a, b): return (a, b) a = random_ops.random_normal([10, 10]) b = random_ops.random_normal([10, 10]) on_gpu = 'gpu' in self.device.lower() initial_usage = context.context().get_total_memory_usage( b.backing_device) if on_gpu else 0 f(a, b) final_usage = context.context().get_total_memory_usage( b.backing_device) if on_gpu else 0 self.assertEqual(initial_usage, final_usage) def testGetCompilerIrConstants(self): if 'tpu' in self.device.lower(): self.skipTest('TPU generates different HLO') with ops.device('device:{}:0'.format(self.device)): @def_function.function(experimental_compile=True) def f(a, b): return array_ops.transpose(a, b) a = array_ops.ones([3, 4, 3], dtype=dtypes.float32) b = constant_op.constant([0, 2, 1], dtype=dtypes.int32) self.assertIn('{1,2,0}', f.experimental_get_compiler_ir(a, b)(stage='optimized_hlo')) @test_util.disable_mlir_bridge('TODO(b/168732524): MLIR bridge does not ' ' optimize single-element tuples to scalars') def testGetCompilerIrResourceVars(self): with ops.device('device:{}:0'.format(self.device)): v = variables.Variable([3.1, 3.2]) @def_function.function(experimental_compile=True) def f(a, b): v.assign_add(a * b) a = random_ops.random_normal([2]) b = random_ops.random_normal([2]) self.assertIn('input_output_alias={ {}: (2, {}, may-alias) }', f.experimental_get_compiler_ir(a, b)('optimized_hlo')) def testGetCompilerIrNotCompiled(self): with ops.device('device:{}:0'.format(self.device)): @def_function.function def f(x): return x + 1 a = random_ops.random_normal([10, 10]) with self.assertRaisesRegex(ValueError, 'marked with experimental_compile'): f.experimental_get_compiler_ir(a)() def testGetCompilerIrNested(self): with ops.device('device:{}:0'.format(self.device)): @def_function.function(experimental_compile=True) def fn(x, a): return x + a @def_function.function(experimental_compile=False) def fn2(x, a): fn.experimental_get_compiler_ir(x, a)() return fn(x, a) inputs = constant_op.constant([1, 2, 2, 3, 3]) with self.assertRaisesRegex(TypeError, '"Graph" tensor'): fn2(inputs, 1) def testGetCompilerIrKwargs(self): with ops.device('device:{}:0'.format(self.device)): v = variables.Variable([0.1, 0.1]) @def_function.function(experimental_compile=True) def f(a, b): return (a + b) * v a = constant_op.constant([1.1, 1.1]) b = constant_op.constant([2.2, 2.2]) self.assertIn('multiply', f.experimental_get_compiler_ir(b=a, a=b)(stage='hlo')) if __name__ == '__main__': ops.enable_eager_execution() test.main()
34.085386
80
0.635321
9ad9fff758d4652d40fd5bbe41f1d7f8e1b2a4a4
390
py
Python
client/src/__init__.py
Sheerabth/blob-system
808f1591247fecace4cbd121053d79205096ced3
[ "MIT" ]
null
null
null
client/src/__init__.py
Sheerabth/blob-system
808f1591247fecace4cbd121053d79205096ced3
[ "MIT" ]
null
null
null
client/src/__init__.py
Sheerabth/blob-system
808f1591247fecace4cbd121053d79205096ced3
[ "MIT" ]
null
null
null
__app_name__ = "blob-system" __version__ = "0.1.0" ( SUCCESS, DIR_ERROR, FILE_ERROR, DB_READ_ERROR, DB_WRITE_ERROR, JSON_ERROR, ID_ERROR, ) = range(7) ERRORS = { DIR_ERROR: "config directory error", FILE_ERROR: "config file error", DB_READ_ERROR: "database read error", DB_WRITE_ERROR: "database write error", ID_ERROR: "to-do id error", }
18.571429
43
0.651282
98d97aaae3157752e08a29559abeeaadcb9073a2
287
py
Python
love/lover/urls.py
woshinib/text
ad40b5992d0006c95b39e6f449e0cae16deb256d
[ "MIT" ]
null
null
null
love/lover/urls.py
woshinib/text
ad40b5992d0006c95b39e6f449e0cae16deb256d
[ "MIT" ]
null
null
null
love/lover/urls.py
woshinib/text
ad40b5992d0006c95b39e6f449e0cae16deb256d
[ "MIT" ]
null
null
null
from django.urls import path from . import views app_name = 'lover' urlpatterns = [ path('lover_index',views.lover_index,name = 'lover_index'), path('lover_movie', views.lover_movie,name = 'lover_movie'), path('lover_cake', views.lover_cake,name = 'lover_cake'), ]
28.7
65
0.689895
cbed60ae0203d4a04dcd2e465c594ac34522dfa9
637
py
Python
boatsandjoy_api/core/validators.py
bertini36/boatsandjoy-api
b22d82eb02947218d924b381160d622ded9e1d98
[ "MIT" ]
null
null
null
boatsandjoy_api/core/validators.py
bertini36/boatsandjoy-api
b22d82eb02947218d924b381160d622ded9e1d98
[ "MIT" ]
12
2021-04-08T21:18:37.000Z
2022-03-12T00:39:39.000Z
boatsandjoy_api/core/validators.py
bertini36/boatsandjoy-api
b22d82eb02947218d924b381160d622ded9e1d98
[ "MIT" ]
null
null
null
from abc import ABC, abstractmethod from dataclasses import asdict, dataclass from .exceptions import InvalidDataError class RequestValidatorInterface(ABC): """ This validators are used to validate api requests types and if are required """ @classmethod @abstractmethod def validate(cls, params: any): pass class DjangoRequestValidator(RequestValidatorInterface): FORM = None @classmethod def validate(cls, request: dataclass): form = cls.FORM(data=asdict(request)) if not form.is_valid(): raise InvalidDataError(f'Validation error {form.errors.as_text()}')
24.5
79
0.706436
207757132cb2743016b90f04432db7b9479a9b59
23,109
py
Python
meutils/besttable.py
Jie-Yuan/MeUtils
2bb191b0d35b809af037c0f65b37570b8828bea3
[ "Apache-2.0" ]
3
2020-12-03T07:30:02.000Z
2021-02-07T13:37:33.000Z
meutils/besttable.py
Jie-Yuan/MeUtils
2bb191b0d35b809af037c0f65b37570b8828bea3
[ "Apache-2.0" ]
null
null
null
meutils/besttable.py
Jie-Yuan/MeUtils
2bb191b0d35b809af037c0f65b37570b8828bea3
[ "Apache-2.0" ]
1
2021-02-07T13:37:38.000Z
2021-02-07T13:37:38.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Project : MeUtils. # @File : besttable # @Time : 2021/1/28 8:01 下午 # @Author : yuanjie # @Email : yuanjie@xiaomi.com # @Software : PyCharm # @Description : https://github.com/foutaise/texttable/blob/master/texttable.py # TODO: 设置df输出精度 """module for creating simple ASCII tables Example: table = Besttable() table.set_cols_align(["l", "r", "c"]) table.set_cols_valign(["t", "m", "b"]) table.add_rows([["Name", "Age", "Nickname"], ["Mr\\nXavier\\nHuon", 32, "Xav'"], ["Mr\\nBaptiste\\nClement", 1, "Baby"], ["Mme\\nLouise\\nBourgeau", 28, "Lou\\n\\nLoue"]]) print table.draw() + "\\n" table = Besttable() table.set_deco(Besttable.HEADER) table.set_cols_dtype(['t', # text 'f', # float (decimal) 'e', # float (exponent) 'i', # integer 'a']) # automatic table.set_cols_align(["l", "r", "r", "r", "l"]) table.add_rows([["text", "float", "exp", "int", "auto"], ["abcd", "67", 654, 89, 128.001], ["efghijk", 67.5434, .654, 89.6, 12800000000000000000000.00023], ["lmn", 5e-78, 5e-78, 89.4, .000000000000128], ["opqrstu", .023, 5e+78, 92., 12800000000000000000000]]) print table.draw() Result: +----------+-----+----------+ | Name | Age | Nickname | +==========+=====+==========+ | Mr | | | | Xavier | 32 | | | Huon | | Xav' | +----------+-----+----------+ | Mr | | | | Baptiste | 1 | | | Clement | | Baby | +----------+-----+----------+ | Mme | | Lou | | Louise | 28 | | | Bourgeau | | Loue | +----------+-----+----------+ text float exp int auto =========================================== abcd 67.000 6.540e+02 89 128.001 efgh 67.543 6.540e-01 90 1.280e+22 ijkl 0.000 5.000e-78 89 0.000 mnop 0.023 5.000e+78 92 1.280e+22 """ from __future__ import division __all__ = ["Besttable", "ArraySizeError"] __author__ = 'Gerome Fournier <jef(at)foutaise.org>' __license__ = 'MIT' __version__ = '1.6.3' __credits__ = """\ Jeff Kowalczyk: - textwrap improved import - comment concerning header output Anonymous: - add_rows method, for adding rows in one go Sergey Simonenko: - redefined len() function to deal with non-ASCII characters Roger Lew: - columns datatype specifications Brian Peterson: - better handling of unicode errors Frank Sachsenheim: - add Python 2/3-compatibility Maximilian Hils: - fix minor bug for Python 3 compatibility frinkelpi: - preserve empty lines """ import sys import unicodedata from functools import reduce unicode_type = str bytes_type = bytes # define a text wrapping function to wrap some text # to a specific width: # - use cjkwrap if available (better CJK support) # - fallback to textwrap otherwise try: import cjkwrap def textwrapper(txt, width): return cjkwrap.wrap(txt, width) except ImportError: try: import textwrap def textwrapper(txt, width): return textwrap.wrap(txt, width) except ImportError: sys.stderr.write("Can't import textwrap module!\n") raise # define a function to calculate the rendering width of a unicode character # - use wcwidth if available # - fallback to unicodedata information otherwise try: import wcwidth def uchar_width(c): """Return the rendering width of a unicode character """ return max(0, wcwidth.wcwidth(c)) except ImportError: def uchar_width(c): """Return the rendering width of a unicode character """ if unicodedata.east_asian_width(c) in 'WF': return 2 elif unicodedata.combining(c): return 0 else: return 1 def obj2unicode(obj): """Return a unicode representation of a python object """ if isinstance(obj, unicode_type): return obj elif isinstance(obj, bytes_type): try: return unicode_type(obj, 'utf-8') except UnicodeDecodeError as strerror: sys.stderr.write("UnicodeDecodeError exception for string '%s': %s\n" % (obj, strerror)) return unicode_type(obj, 'utf-8', 'replace') else: return unicode_type(obj) def len(iterable): """Redefining len here so it will be able to work with non-ASCII characters """ if isinstance(iterable, bytes_type) or isinstance(iterable, unicode_type): return sum([uchar_width(c) for c in obj2unicode(iterable)]) else: return iterable.__len__() class ArraySizeError(Exception): """Exception raised when specified rows don't fit the required size """ def __init__(self, msg): self.msg = msg Exception.__init__(self, msg, '') def __str__(self): return self.msg class FallbackToText(Exception): """Used for failed conversion to float""" pass class Besttable: BORDER = 1 HEADER = 1 << 1 HLINES = 1 << 2 VLINES = 1 << 3 def __init__(self, max_width=80): """Constructor - max_width is an integer, specifying the maximum width of the table - if set to 0, size is unlimited, therefore cells won't be wrapped """ self.set_max_width(max_width) self._precision = 3 self._deco = Besttable.VLINES | Besttable.HLINES | Besttable.BORDER | \ Besttable.HEADER self.set_chars(['-', '|', '+', '=']) self.reset() def reset(self): """Reset the instance - reset rows and header """ self._hline_string = None self._row_size = None self._header = [] self._rows = [] return self def set_max_width(self, max_width): """Set the maximum width of the table - max_width is an integer, specifying the maximum width of the table - if set to 0, size is unlimited, therefore cells won't be wrapped """ self._max_width = max_width if max_width > 0 else False return self def set_chars(self, array): """Set the characters used to draw lines between rows and columns - the array should contain 4 fields: [horizontal, vertical, corner, header] - default is set to: ['-', '|', '+', '='] """ if len(array) != 4: raise ArraySizeError("array should contain 4 characters") array = [x[:1] for x in [str(s) for s in array]] (self._char_horiz, self._char_vert, self._char_corner, self._char_header) = array return self def set_deco(self, deco): """Set the table decoration - 'deco' can be a combinaison of: Besttable.BORDER: Border around the table Besttable.HEADER: Horizontal line below the header Besttable.HLINES: Horizontal lines between rows Besttable.VLINES: Vertical lines between columns All of them are enabled by default - example: Besttable.BORDER | Besttable.HEADER """ self._deco = deco return self def set_header_align(self, array): """Set the desired header alignment - the elements of the array should be either "l", "c" or "r": * "l": column flushed left * "c": column centered * "r": column flushed right """ self._check_row_size(array) self._header_align = array return self def set_cols_align(self, array): """Set the desired columns alignment - the elements of the array should be either "l", "c" or "r": * "l": column flushed left * "c": column centered * "r": column flushed right """ self._check_row_size(array) self._align = array return self def set_cols_valign(self, array): """Set the desired columns vertical alignment - the elements of the array should be either "t", "m" or "b": * "t": column aligned on the top of the cell * "m": column aligned on the middle of the cell * "b": column aligned on the bottom of the cell """ self._check_row_size(array) self._valign = array return self def set_cols_dtype(self, array): """Set the desired columns datatype for the cols. - the elements of the array should be either a callable or any of "a", "t", "f", "e" or "i": * "a": automatic (try to use the most appropriate datatype) * "t": treat as text * "f": treat as float in decimal format * "e": treat as float in exponential format * "i": treat as int * a callable: should return formatted string for any value given - by default, automatic datatyping is used for each column """ self._check_row_size(array) self._dtype = array return self def set_cols_width(self, array): """Set the desired columns width - the elements of the array should be integers, specifying the width of each column. For example: [10, 20, 5] """ self._check_row_size(array) try: array = list(map(int, array)) if reduce(min, array) <= 0: raise ValueError except ValueError: sys.stderr.write("Wrong argument in column width specification\n") raise self._width = array return self def set_precision(self, width): """Set the desired precision for float/exponential formats - width must be an integer >= 0 - default value is set to 3 """ if not type(width) is int or width < 0: raise ValueError('width must be an integer greater then 0') self._precision = width return self def header(self, array): """Specify the header of the table """ self._check_row_size(array) self._header = list(map(obj2unicode, array)) return self def add_row(self, array): """Add a row in the rows stack - cells can contain newlines and tabs """ self._check_row_size(array) if not hasattr(self, "_dtype"): self._dtype = ["a"] * self._row_size cells = [] for i, x in enumerate(array): cells.append(self._str(i, x)) self._rows.append(cells) return self def add_rows(self, rows, header=True): """Add several rows in the rows stack - The 'rows' argument can be either an iterator returning arrays, or a by-dimensional array - 'header' specifies if the first row should be used as the header of the table """ # nb: don't use 'iter' on by-dimensional arrays, to get a # usable code for python 2.1 if header: if hasattr(rows, '__iter__') and hasattr(rows, 'next'): self.header(rows.next()) else: self.header(rows[0]) rows = rows[1:] for row in rows: self.add_row(row) return self def draw(self): """Draw the table - the table is returned as a whole string """ if not self._header and not self._rows: return self._compute_cols_width() self._check_align() out = "" if self._has_border(): out += self._hline() if self._header: out += self._draw_line(self._header, isheader=True) if self._has_header(): out += self._hline_header() length = 0 for row in self._rows: length += 1 out += self._draw_line(row) if self._has_hlines() and length < len(self._rows): out += self._hline() if self._has_border(): out += self._hline() return out[:-1] @classmethod def draw_env(cls): import os return cls.draw_dict(os.environ) @classmethod def draw_df(cls, df): tb = cls() tb.header(df.columns) tb.add_rows(df.values, header=False) return tb.draw() @classmethod def draw_dict(cls, dic): tb = cls() tb.add_rows(list(dic.items()), header=False) return tb.draw() @classmethod def _to_float(cls, x): if x is None: raise FallbackToText() try: return float(x) except (TypeError, ValueError): raise FallbackToText() @classmethod def _fmt_int(cls, x, **kw): """Integer formatting class-method. """ if type(x) == int: return str(x) else: return str(int(round(cls._to_float(x)))) @classmethod def _fmt_float(cls, x, **kw): """Float formatting class-method. - x parameter is ignored. Instead kw-argument f being x float-converted will be used. - precision will be taken from `n` kw-argument. """ n = kw.get('n') return '%.*f' % (n, cls._to_float(x)) @classmethod def _fmt_exp(cls, x, **kw): """Exponential formatting class-method. - x parameter is ignored. Instead kw-argument f being x float-converted will be used. - precision will be taken from `n` kw-argument. """ n = kw.get('n') return '%.*e' % (n, cls._to_float(x)) @classmethod def _fmt_text(cls, x, **kw): """String formatting class-method.""" return obj2unicode(x) @classmethod def _fmt_auto(cls, x, **kw): """auto formatting class-method.""" f = cls._to_float(x) if abs(f) > 1e8: fn = cls._fmt_exp elif f != f: # NaN fn = cls._fmt_text elif f - round(f) == 0: fn = cls._fmt_int else: fn = cls._fmt_float return fn(x, **kw) def _str(self, i, x): """Handles string formatting of cell data i - index of the cell datatype in self._dtype x - cell data to format """ FMT = { 'a': self._fmt_auto, 'i': self._fmt_int, 'f': self._fmt_float, 'e': self._fmt_exp, 't': self._fmt_text, } n = self._precision dtype = self._dtype[i] try: if callable(dtype): return dtype(x) else: return FMT[dtype](x, n=n) except FallbackToText: return self._fmt_text(x) def _check_row_size(self, array): """Check that the specified array fits the previous rows size """ if not self._row_size: self._row_size = len(array) elif self._row_size != len(array): raise ArraySizeError("array should contain %d elements" \ % self._row_size) def _has_vlines(self): """Return a boolean, if vlines are required or not """ return self._deco & Besttable.VLINES > 0 def _has_hlines(self): """Return a boolean, if hlines are required or not """ return self._deco & Besttable.HLINES > 0 def _has_border(self): """Return a boolean, if border is required or not """ return self._deco & Besttable.BORDER > 0 def _has_header(self): """Return a boolean, if header line is required or not """ return self._deco & Besttable.HEADER > 0 def _hline_header(self): """Print header's horizontal line """ return self._build_hline(True) def _hline(self): """Print an horizontal line """ if not self._hline_string: self._hline_string = self._build_hline() return self._hline_string def _build_hline(self, is_header=False): """Return a string used to separated rows or separate header from rows """ horiz = self._char_horiz if (is_header): horiz = self._char_header # compute cell separator s = "%s%s%s" % (horiz, [horiz, self._char_corner][self._has_vlines()], horiz) # build the line l = s.join([horiz * n for n in self._width]) # add border if needed if self._has_border(): l = "%s%s%s%s%s\n" % (self._char_corner, horiz, l, horiz, self._char_corner) else: l += "\n" return l def _len_cell(self, cell): """Return the width of the cell Special characters are taken into account to return the width of the cell, such like newlines and tabs """ cell_lines = cell.split('\n') maxi = 0 for line in cell_lines: length = 0 parts = line.split('\t') for part, i in zip(parts, list(range(1, len(parts) + 1))): length = length + len(part) if i < len(parts): length = (length // 8 + 1) * 8 maxi = max(maxi, length) return maxi def _compute_cols_width(self): """Return an array with the width of each column If a specific width has been specified, exit. If the total of the columns width exceed the table desired width, another width will be computed to fit, and cells will be wrapped. """ if hasattr(self, "_width"): return maxi = [] if self._header: maxi = [self._len_cell(x) for x in self._header] for row in self._rows: for cell, i in zip(row, list(range(len(row)))): try: maxi[i] = max(maxi[i], self._len_cell(cell)) except (TypeError, IndexError): maxi.append(self._len_cell(cell)) ncols = len(maxi) content_width = sum(maxi) deco_width = 3 * (ncols - 1) + [0, 4][self._has_border()] if self._max_width and (content_width + deco_width) > self._max_width: """ content too wide to fit the expected max_width let's recompute maximum cell width for each cell """ if self._max_width < (ncols + deco_width): raise ValueError('max_width too low to render data') available_width = self._max_width - deco_width newmaxi = [0] * ncols i = 0 while available_width > 0: if newmaxi[i] < maxi[i]: newmaxi[i] += 1 available_width -= 1 i = (i + 1) % ncols maxi = newmaxi self._width = maxi def _check_align(self): """Check if alignment has been specified, set default one if not """ if not hasattr(self, "_header_align"): self._header_align = ["c"] * self._row_size if not hasattr(self, "_align"): self._align = ["l"] * self._row_size if not hasattr(self, "_valign"): self._valign = ["t"] * self._row_size def _draw_line(self, line, isheader=False): """Draw a line Loop over a single cell length, over all the cells """ line = self._splitit(line, isheader) space = " " out = "" for i in range(len(line[0])): if self._has_border(): out += "%s " % self._char_vert length = 0 for cell, width, align in zip(line, self._width, self._align): length += 1 cell_line = cell[i] fill = width - len(cell_line) if isheader: align = self._header_align[length - 1] if align == "r": out += fill * space + cell_line elif align == "c": out += (int(fill / 2) * space + cell_line \ + int(fill / 2 + fill % 2) * space) else: out += cell_line + fill * space if length < len(line): out += " %s " % [space, self._char_vert][self._has_vlines()] out += "%s\n" % ['', space + self._char_vert][self._has_border()] return out def _splitit(self, line, isheader): """Split each element of line to fit the column width Each element is turned into a list, result of the wrapping of the string to the desired width """ line_wrapped = [] for cell, width in zip(line, self._width): array = [] for c in cell.split('\n'): if c.strip() == "": array.append("") else: array.extend(textwrapper(c, width)) line_wrapped.append(array) max_cell_lines = reduce(max, list(map(len, line_wrapped))) for cell, valign in zip(line_wrapped, self._valign): if isheader: valign = "t" if valign == "m": missing = max_cell_lines - len(cell) cell[:0] = [""] * int(missing / 2) cell.extend([""] * int(missing / 2 + missing % 2)) elif valign == "b": cell[:0] = [""] * (max_cell_lines - len(cell)) else: cell.extend([""] * (max_cell_lines - len(cell))) return line_wrapped if __name__ == '__main__': table = Besttable() table.set_cols_align(["l", "r", "c"]) table.set_cols_valign(["t", "m", "b"]) table.add_rows([["Name", "Age", "Nickname"], ["Mr\nXavier\nHuon", 32, "Xav'"], ["Mr\nBaptiste\nClement", 1, "Baby"], ["Mme\nLouise\nBourgeau", 28, "Lou\n \nLoue"]]) print(table.draw() + "\n") table = Besttable() table.set_deco(Besttable.HEADER) table.set_cols_dtype(['t', # text 'f', # float (decimal) 'e', # float (exponent) 'i', # integer 'a']) # automatic table.set_cols_align(["l", "r", "r", "r", "l"]) table.add_rows([["text", "float", "exp", "int", "auto"], ["abcd", "67", 654, 89, 128.001], ["efghijk", 67.5434, .654, 89.6, 12800000000000000000000.00023], ["lmn", 5e-78, 5e-78, 89.4, .000000000000128], ["opqrstu", .023, 5e+78, 92., 12800000000000000000000]]) print(table.draw()) print(table.draw_env())
32.095833
100
0.532087
e9b2c7b572ccb9b525f4bf3b767aed35c1d4ea25
4,011
py
Python
config/settings.py
FrankCasanova/FrankyNews
527e8fbf0a4c09e5a34e88a2106a0af376b8b6c0
[ "MIT" ]
null
null
null
config/settings.py
FrankCasanova/FrankyNews
527e8fbf0a4c09e5a34e88a2106a0af376b8b6c0
[ "MIT" ]
null
null
null
config/settings.py
FrankCasanova/FrankyNews
527e8fbf0a4c09e5a34e88a2106a0af376b8b6c0
[ "MIT" ]
null
null
null
""" Django settings for config project. Generated by 'django-admin startproject' using Django 3.2.5. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from environs import Env from pathlib import Path env = Env() env.read_env() # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = env.str('SECRET_KEY') # SECURITY WARNING: don't run with debug turned on in production! DEBUG = env.bool('DEBUG', default=False) ALLOWED_HOSTS = ['.herokuapp.com', 'localhost', '127.0.0.1'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'whitenoise.runserver_nostatic', 'django.contrib.staticfiles', # 3rd 'crispy_forms', # local 'accounts', 'pages', 'articles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'whitenoise.middleware.WhiteNoiseMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'config.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', # django search in this directory 'DIRS': [str(BASE_DIR.joinpath('templates'))], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'config.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': env.dj_db_url('DATABASE_URL') } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' STATIC_URL = '/static/' STATICFILES_DIRS = [str(BASE_DIR.joinpath('static'))] STATIC_ROOT = str(BASE_DIR.joinpath('staticfiles')) # new # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField' # my User model AUTH_USER_MODEL = 'accounts.CustomUser' # user redirect LOGIN_REDIRECT_URL = 'home' LOGOUT_REDIRECT_URL = 'home' # settings for crispy_forms CRISPY_TEMPLATE_PACK = 'bootstrap4' # setting to implement the reset password with email. EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'
25.877419
91
0.714784
4ea68884bfd2ec5ee0afaa5b76cc43ae8c2d4ade
2,180
py
Python
wallet/serializers.py
iesteban/bitcoin_bazaar_backend
2aa7c61d8727dae3a9be4b19c4b2aa49ec7ecaa0
[ "MIT" ]
18
2017-03-08T06:30:55.000Z
2020-05-08T17:30:20.000Z
wallet/serializers.py
iesteban/bitcoin_bazaar_backend
2aa7c61d8727dae3a9be4b19c4b2aa49ec7ecaa0
[ "MIT" ]
871
2017-03-06T21:03:59.000Z
2022-03-28T19:46:44.000Z
wallet/serializers.py
iesteban/bitcoin_bazaar_backend
2aa7c61d8727dae3a9be4b19c4b2aa49ec7ecaa0
[ "MIT" ]
5
2017-07-07T12:10:47.000Z
2020-05-13T15:57:56.000Z
from rest_framework import serializers from semillas_backend.users.serializers import UserSerializer from .models import Wallet, Transaction class CreateTransactionSerializer(serializers.Serializer): user_source = serializers.UUIDField() user_dest = serializers.UUIDField() value = serializers.DecimalField(max_digits=6, decimal_places=2) class Meta: model = Transaction fields = ('user_source', 'user_dest', 'value') class TransactionSerializer(serializers.ModelSerializer): user = serializers.SerializerMethodField() balance = serializers.SerializerMethodField() trans_value = serializers.SerializerMethodField() created_at = serializers.DateTimeField(format='%d %b %Y') user_uuid = serializers.SerializerMethodField() class Meta: model = Transaction fields = ('id', 'trans_value', 'balance', 'user', 'created_at', 'user_uuid') def get_user_uuid(self, obj): if ( 'owner_uuid' in self.context and self.context['owner_uuid'] == str(obj.wallet_source.owner.uuid) ): return obj.wallet_dest.owner.uuid return obj.wallet_source.owner.uuid def get_user(self, obj): if ( 'owner_uuid' in self.context and self.context['owner_uuid'] == str(obj.wallet_source.owner.uuid) ): return obj.wallet_dest.owner.name return obj.wallet_source.owner.name def get_balance(self, obj): if ( 'owner_uuid' in self.context and self.context['owner_uuid'] == str(obj.wallet_source.owner.uuid) ): return obj.balance_source return obj.balance_dest def get_trans_value(self, obj): if ( 'owner_uuid' in self.context and self.context['owner_uuid'] == str(obj.wallet_source.owner.uuid) ): return -obj.value return obj.value class WalletSerializer(serializers.ModelSerializer): transactions = TransactionSerializer(many=True) owner = UserSerializer() class Meta: model = Wallet fields = ('uuid', 'owner', 'balance', 'last_updated', 'transactions')
33.538462
84
0.658257
63eec7be2c5cbbfe0e3f32e22c5edcc9303efea5
3,899
py
Python
tools/c7n_azure/tests_azure/tests_resources/test_storage_container.py
al3pht/cloud-custodian
ce6613d1b716f336384c5e308eee300389e6bf50
[ "Apache-2.0" ]
2,415
2018-12-04T00:37:58.000Z
2022-03-31T12:28:56.000Z
tools/c7n_azure/tests_azure/tests_resources/test_storage_container.py
al3pht/cloud-custodian
ce6613d1b716f336384c5e308eee300389e6bf50
[ "Apache-2.0" ]
3,272
2018-12-03T23:58:17.000Z
2022-03-31T21:15:32.000Z
tools/c7n_azure/tests_azure/tests_resources/test_storage_container.py
al3pht/cloud-custodian
ce6613d1b716f336384c5e308eee300389e6bf50
[ "Apache-2.0" ]
773
2018-12-06T09:43:23.000Z
2022-03-30T20:44:43.000Z
# Copyright The Cloud Custodian Authors. # SPDX-License-Identifier: Apache-2.0 from ..azure_common import BaseTest, arm_template, cassette_name, DEFAULT_SUBSCRIPTION_ID from c7n_azure.storage_utils import StorageUtilities from mock import patch from c7n_azure.constants import CONTAINER_EVENT_TRIGGER_MODE from c7n_azure.session import Session from c7n_azure.utils import local_session class StorageContainerTest(BaseTest): def setUp(self): super(StorageContainerTest, self).setUp() StorageUtilities.get_storage_primary_key.cache_clear() def test_storage_schema_validate(self): p = self.load_policy({ 'name': 'test-storage-container', 'resource': 'azure.storage-container' }, validate=True) self.assertTrue(p) @arm_template('storage.json') @cassette_name('containers') def test_value_filter(self): p = self.load_policy({ 'name': 'test-azure-storage-container-enum', 'resource': 'azure.storage-container', 'filters': [ {'type': 'value', 'key': 'name', 'op': 'glob', 'value': 'container*'}, {'type': 'parent', 'filter': {'type': 'value', 'key': 'name', 'op': 'glob', 'value_type': 'normalize', 'value': 'cctstorage*'}}], }) resources = p.run() self.assertEqual(2, len(resources)) self.assertEqual({'containerone', 'containertwo'}, {c['name'] for c in resources}) @arm_template('storage.json') @cassette_name('containers') def test_set_public_access(self): with patch('azure.mgmt.storage.v%s.operations.' 'BlobContainersOperations.update' % self._get_storage_management_client_api_string()) as update_container_mock: p = self.load_policy({ 'name': 'test-azure-storage-container-enum', 'resource': 'azure.storage-container', 'filters': [ { 'type': 'value', 'key': 'name', 'value': 'containerone' } ], 'actions': [ { 'type': 'set-public-access', 'value': 'None' } ] }, validate=True) p.run() args, kwargs = update_container_mock.call_args_list[0] self.assertEqual('test_storage', args[0]) self.assertTrue(args[1].startswith('cctstorage')) self.assertEqual('None', kwargs['public_access']) @arm_template('storage.json') def test_event(self): p = self.load_policy({ 'name': 'test-azure-container-event', 'mode': {'type': CONTAINER_EVENT_TRIGGER_MODE, 'events': ['StorageContainerWrite']}, 'resource': 'azure.storage-container'}) account = self.setup_account() event = {"subject": "/subscriptions/" + DEFAULT_SUBSCRIPTION_ID + "/resourceGroups/" "test_storage/providers/Microsoft.Storage/storageAccounts" "/" + account.name + "/blobServices/default/containers/containerone", "eventTime": "2019-07-16T18:30:43.3595255Z", "id": "619d2674-b396-4356-9619-6c5a52fe4e88"} resources = p.push(event, None) self.assertEqual(len(resources), 1) self.assertEqual(resources[0]['name'], 'containerone') def _get_storage_management_client_api_string(self): return local_session(Session)\ .client('azure.mgmt.storage.StorageManagementClient')\ .DEFAULT_API_VERSION.replace("-", "_")
38.60396
97
0.553732
f864b788f318ea618925ef504d1957e35486b91e
12,270
py
Python
weatherlight-server/lib/flask_jwt/__init__.py
svanscho/weatherlight
14ce4114381af53cf040cee7c04b5b5670bbb95c
[ "MIT" ]
581
2015-01-06T03:34:55.000Z
2022-03-27T17:16:29.000Z
weatherlight-server/lib/flask_jwt/__init__.py
svanscho/weatherlight
14ce4114381af53cf040cee7c04b5b5670bbb95c
[ "MIT" ]
104
2015-01-18T23:25:19.000Z
2022-02-16T15:44:43.000Z
weatherlight-server/lib/flask_jwt/__init__.py
svanscho/weatherlight
14ce4114381af53cf040cee7c04b5b5670bbb95c
[ "MIT" ]
212
2015-02-02T18:55:17.000Z
2022-03-30T11:13:38.000Z
# -*- coding: utf-8 -*- """ flask_jwt ~~~~~~~~~ Flask-JWT module """ import logging import warnings from collections import OrderedDict from datetime import datetime, timedelta from functools import wraps import jwt from flask import current_app, request, jsonify, _request_ctx_stack from werkzeug.local import LocalProxy __version__ = '0.3.2' logger = logging.getLogger(__name__) current_identity = LocalProxy(lambda: getattr(_request_ctx_stack.top, 'current_identity', None)) _jwt = LocalProxy(lambda: current_app.extensions['jwt']) CONFIG_DEFAULTS = { 'JWT_DEFAULT_REALM': 'Login Required', 'JWT_AUTH_URL_RULE': '/auth', 'JWT_AUTH_ENDPOINT': 'jwt', 'JWT_AUTH_USERNAME_KEY': 'username', 'JWT_AUTH_PASSWORD_KEY': 'password', 'JWT_ALGORITHM': 'HS256', 'JWT_LEEWAY': timedelta(seconds=10), 'JWT_AUTH_HEADER_PREFIX': 'JWT', 'JWT_EXPIRATION_DELTA': timedelta(seconds=300), 'JWT_NOT_BEFORE_DELTA': timedelta(seconds=0), 'JWT_VERIFY_CLAIMS': ['signature', 'exp', 'nbf', 'iat'], 'JWT_REQUIRED_CLAIMS': ['exp', 'iat', 'nbf'] } def _default_jwt_headers_handler(identity): return None def _default_jwt_payload_handler(identity): iat = datetime.utcnow() exp = iat + current_app.config.get('JWT_EXPIRATION_DELTA') nbf = iat + current_app.config.get('JWT_NOT_BEFORE_DELTA') identity = getattr(identity, 'id') or identity['id'] return {'exp': exp, 'iat': iat, 'nbf': nbf, 'identity': identity} def _default_jwt_encode_handler(identity): secret = current_app.config['JWT_SECRET_KEY'] algorithm = current_app.config['JWT_ALGORITHM'] required_claims = current_app.config['JWT_REQUIRED_CLAIMS'] payload = _jwt.jwt_payload_callback(identity) missing_claims = list(set(required_claims) - set(payload.keys())) if missing_claims: raise RuntimeError('Payload is missing required claims: %s' % ', '.join(missing_claims)) headers = _jwt.jwt_headers_callback(identity) return jwt.encode(payload, secret, algorithm=algorithm, headers=headers) def _default_jwt_decode_handler(token): secret = current_app.config['JWT_SECRET_KEY'] algorithm = current_app.config['JWT_ALGORITHM'] leeway = current_app.config['JWT_LEEWAY'] verify_claims = current_app.config['JWT_VERIFY_CLAIMS'] required_claims = current_app.config['JWT_REQUIRED_CLAIMS'] options = { 'verify_' + claim: True for claim in verify_claims } options.update({ 'require_' + claim: True for claim in required_claims }) return jwt.decode(token, secret, options=options, algorithms=[algorithm], leeway=leeway) def _default_request_handler(): auth_header_value = request.headers.get('Authorization', None) auth_header_prefix = current_app.config['JWT_AUTH_HEADER_PREFIX'] if not auth_header_value: return parts = auth_header_value.split() if parts[0].lower() != auth_header_prefix.lower(): raise JWTError('Invalid JWT header', 'Unsupported authorization type') elif len(parts) == 1: raise JWTError('Invalid JWT header', 'Token missing') elif len(parts) > 2: raise JWTError('Invalid JWT header', 'Token contains spaces') return parts[1] def _default_auth_request_handler(): data = request.get_json() username = data.get(current_app.config.get('JWT_AUTH_USERNAME_KEY'), None) password = data.get(current_app.config.get('JWT_AUTH_PASSWORD_KEY'), None) criterion = [username, password, len(data) == 2] if not all(criterion): raise JWTError('Bad Request', 'Invalid credentials') identity = _jwt.authentication_callback(username, password) if identity: access_token = _jwt.jwt_encode_callback(identity) return _jwt.auth_response_callback(access_token, identity) else: raise JWTError('Bad Request', 'Invalid credentials') def _default_auth_response_handler(access_token, identity): return jsonify({'access_token': access_token.decode('utf-8')}) def _default_jwt_error_handler(error): logger.error(error) return jsonify(OrderedDict([ ('status_code', error.status_code), ('error', error.error), ('description', error.description), ])), error.status_code, error.headers def _jwt_required(realm): """Does the actual work of verifying the JWT data in the current request. This is done automatically for you by `jwt_required()` but you could call it manually. Doing so would be useful in the context of optional JWT access in your APIs. :param realm: an optional realm """ token = _jwt.request_callback() if token is None: raise JWTError('Authorization Required', 'Request does not contain an access token', headers={'WWW-Authenticate': 'JWT realm="%s"' % realm}) try: payload = _jwt.jwt_decode_callback(token) except jwt.InvalidTokenError as e: raise JWTError('Invalid token', str(e)) _request_ctx_stack.top.current_identity = identity = _jwt.identity_callback(payload) if identity is None: raise JWTError('Invalid JWT', 'User does not exist') def jwt_required(realm=None): """View decorator that requires a valid JWT token to be present in the request :param realm: an optional realm """ def wrapper(fn): @wraps(fn) def decorator(*args, **kwargs): _jwt_required(realm or current_app.config['JWT_DEFAULT_REALM']) return fn(*args, **kwargs) return decorator return wrapper class JWTError(Exception): def __init__(self, error, description, status_code=401, headers=None): self.error = error self.description = description self.status_code = status_code self.headers = headers def __repr__(self): return 'JWTError: %s' % self.error def __str__(self): return '%s. %s' % (self.error, self.description) def encode_token(): return _jwt.encode_callback(_jwt.header_callback(), _jwt.payload_callback()) class JWT(object): def __init__(self, app=None, authentication_handler=None, identity_handler=None): self.authentication_callback = authentication_handler self.identity_callback = identity_handler self.auth_response_callback = _default_auth_response_handler self.auth_request_callback = _default_auth_request_handler self.jwt_encode_callback = _default_jwt_encode_handler self.jwt_decode_callback = _default_jwt_decode_handler self.jwt_headers_callback = _default_jwt_headers_handler self.jwt_payload_callback = _default_jwt_payload_handler self.jwt_error_callback = _default_jwt_error_handler self.request_callback = _default_request_handler if app is not None: self.init_app(app) def init_app(self, app): for k, v in CONFIG_DEFAULTS.items(): app.config.setdefault(k, v) app.config.setdefault('JWT_SECRET_KEY', app.config['SECRET_KEY']) auth_url_rule = app.config.get('JWT_AUTH_URL_RULE', None) if auth_url_rule: if self.auth_request_callback == _default_auth_request_handler: assert self.authentication_callback is not None, ( 'an authentication_handler function must be defined when using the built in ' 'authentication resource') auth_url_options = app.config.get('JWT_AUTH_URL_OPTIONS', {'methods': ['POST']}) auth_url_options.setdefault('view_func', self.auth_request_callback) app.add_url_rule(auth_url_rule, **auth_url_options) app.errorhandler(JWTError)(self._jwt_error_callback) if not hasattr(app, 'extensions'): # pragma: no cover app.extensions = {} app.extensions['jwt'] = self def _jwt_error_callback(self, error): return self.jwt_error_callback(error) def authentication_handler(self, callback): """Specifies the identity handler function. This function receives two positional arguments. The first being the username the second being the password. It should return an object representing an authenticated identity. Example:: @jwt.authentication_handler def authenticate(username, password): user = User.query.filter(User.username == username).scalar() if bcrypt.check_password_hash(user.password, password): return user :param callback: the identity handler function """ self.authentication_callback = callback return callback def identity_handler(self, callback): """Specifies the identity handler function. This function receives one positional argument being the JWT payload. For example:: @jwt.identity_handler def identify(payload): return User.query.filter(User.id == payload['identity']).scalar() :param callback: the identity handler function """ self.identity_callback = callback return callback def jwt_error_handler(self, callback): """Specifies the error handler function. Example:: @jwt.error_handler def error_handler(e): return "Something bad happened", 400 :param callback: the error handler function """ self.jwt_error_callback = callback return callback def auth_response_handler(self, callback): """Specifies the authentication response handler function. :param callable callback: the auth response handler function """ self.auth_response_callback = callback return callback def auth_request_handler(self, callback): """Specifies the authentication response handler function. :param callable callback: the auth request handler function .. deprecated """ warnings.warn("This handler is deprecated. The recommended approach to have control over " "the authentication resource is to disable the built-in resource by " "setting JWT_AUTH_URL_RULE=None and registering your own authentication " "resource directly on your application.", DeprecationWarning, stacklevel=2) self.auth_request_callback = callback return callback def request_handler(self, callback): """Specifieds the request handler function. This function returns a JWT from the current request. :param callable callback: the request handler function """ self.request_callback = callback return callback def jwt_encode_handler(self, callback): """Specifies the encoding handler function. This function receives a payload and signs it. :param callable callback: the encoding handler function """ self.jwt_encode_callback = callback return callback def jwt_decode_handler(self, callback): """Specifies the decoding handler function. This function receives a signed payload and decodes it. :param callable callback: the decoding handler function """ self.jwt_decode_callback = callback return callback def jwt_payload_handler(self, callback): """Specifies the JWT payload handler function. This function receives the return value from the ``identity_handler`` function Example:: @jwt.payload_handler def make_payload(identity): return {'user_id': identity.id} :param callable callback: the payload handler function """ self.jwt_payload_callback = callback return callback def jwt_headers_handler(self, callback): """Specifies the JWT header handler function. This function receives the return value from the ``identity_handler`` function. Example:: @jwt.payload_handler def make_payload(identity): return {'user_id': identity.id} :param callable callback: the payload handler function """ self.jwt_headers_callback = callback return callback
33.801653
99
0.67987
44c8e43072a0de4809d496ec7e65bbe9fb1cfae0
5,098
py
Python
doc/conf.py
Infinidat/mitba
f4a38d1dbf5241b53251d6fffa0aab4257147d29
[ "BSD-3-Clause" ]
null
null
null
doc/conf.py
Infinidat/mitba
f4a38d1dbf5241b53251d6fffa0aab4257147d29
[ "BSD-3-Clause" ]
2
2019-08-08T06:49:10.000Z
2019-08-13T12:04:16.000Z
doc/conf.py
Infinidat/mitba
f4a38d1dbf5241b53251d6fffa0aab4257147d29
[ "BSD-3-Clause" ]
1
2016-05-22T15:11:00.000Z
2016-05-22T15:11:00.000Z
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. import os import sys import pkg_resources sys.path.insert(0, os.path.dirname(__file__)) # -- Project information ----------------------------------------------------- project = 'mitba' copyright = '2019, Infinidat Ltd.' # pylint: disable=redefined-builtin author = 'Infinidat Ltd.' # The short X.Y version # The full version, including alpha/beta/rc tags version = release = pkg_resources.get_distribution('mitba').version # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'releases', 'alabaster', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path . exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = { 'github_user': 'Infinidat', 'github_repo': 'mitba', 'github_button': True, 'github_banner': True, 'travis_button': 'Infinidat/mitba', } # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'mitbadoc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'mitba.tex', 'mitba Documentation', 'Infinidat Ltd.', 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'mitba', 'mitba Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'mitba', 'mitba Documentation', author, 'mitba', 'One line description of project.', 'Miscellaneous'), ] # -- Extension configuration -------------------------------------------------
30.526946
79
0.650843
f5379887eee97f5f3469bef9f5b624293b9f63a4
691
py
Python
examples/shared.py
ucbrise/jarvis
f40ccb1708a44e4392f26ed217b69df44abca824
[ "Apache-2.0" ]
14
2017-12-13T01:52:46.000Z
2022-01-12T11:31:20.000Z
examples/shared.py
ucbrise/jarvis
f40ccb1708a44e4392f26ed217b69df44abca824
[ "Apache-2.0" ]
9
2018-01-18T02:53:16.000Z
2018-04-07T18:36:12.000Z
examples/shared.py
ucbrise/jarvis
f40ccb1708a44e4392f26ed217b69df44abca824
[ "Apache-2.0" ]
8
2018-01-12T21:49:39.000Z
2021-09-03T06:27:05.000Z
#!/usr/bin/env python3 import numpy as np # Define the names of each column in the tweets file attribute_names = [] attribute_names.append('id') attribute_names.append('tweet') attribute_names.append('place') attribute_names.append('city') attribute_names.append('country') attribute_names.append('code') # Define the data type of every element in a column attribute_types = { 'id': np.int32, 'tweet': str, 'place': str, 'city': str, 'country': str, 'code': str } # Read the twitter data into a pandas dataframe params = dict(header=None, names=attribute_names, dtype=attribute_types) # Select a relevant subset of features relevant_attributes = ["tweet", "code"]
25.592593
72
0.725036
6f47a4758f775526a78c5878d10d9d94772bafae
3,638
py
Python
pyntel4004/src/hardware/suboperations/ram.py
alshapton/Pyntel4004
865a7fc5264d24f1281bee44c40a51e7e42598a0
[ "MIT" ]
6
2021-02-12T21:37:53.000Z
2022-02-24T23:09:37.000Z
pyntel4004/src/hardware/suboperations/ram.py
alshapton/Pyntel4004
865a7fc5264d24f1281bee44c40a51e7e42598a0
[ "MIT" ]
43
2021-04-23T09:32:24.000Z
2022-02-01T15:17:09.000Z
pyntel4004/src/hardware/suboperations/ram.py
alshapton/Pyntel4004
865a7fc5264d24f1281bee44c40a51e7e42598a0
[ "MIT" ]
2
2021-06-11T01:12:44.000Z
2021-09-14T22:44:11.000Z
"""RAM methods.""" # Import system modules import os import sys sys.path.insert(1, '..' + os.sep + 'src') from hardware.suboperations.other import decode_command_register # noqa def rdx(self, character) -> int: """ Read RAM status character X. Parameters ---------- self : Processor, mandatory The instance of the Processor containing the registers, accumulator etc character: RAM STATUS CHARACTER to read Returns ------- self.ACCUMULATOR The value read from the specified RAM STATUS CHARACTER """ crb = self.read_current_ram_bank() chip, register, _none = \ decode_command_register(self.COMMAND_REGISTER, 'DATA_RAM_STATUS_CHAR') self.ACCUMULATOR = self.STATUS_CHARACTERS[crb][chip][register][character] self.increment_pc(1) return self.ACCUMULATOR def read_all_ram(self) -> list: """ Return the values of all the locations of RAM. Parameters ---------- self : Processor, mandatory The instance of the processor containing the registers, accumulator etc Returns ------- RAM The values of all the locations of RAM """ return self.RAM def read_all_ram_ports(self) -> list: """ Return the values of all the RAM ports. Parameters ---------- self : Processor, mandatory The instance of the processor containing the registers, accumulator etc Returns ------- RAM_PORT The values of all the RAM ports """ return self.RAM_PORT def read_all_pram(self) -> list: """ Return the values of all the locations of PRAM. Parameters ---------- self : Processor, mandatory The instance of the processor containing the registers, accumulator etc Returns ------- PRAM The values of all the locations of PRAM """ return self.PRAM def read_all_status_characters(self) -> list: """ Return the values of all the RAM status characters. Parameters ---------- self : Processor, mandatory The instance of the processor containing the registers, accumulator etc Returns ------- STATUS_CHARACTERS The values of all the RAM status characters """ return self.STATUS_CHARACTERS def read_current_ram_bank(self) -> int: """ Return the current RAM bank i.e. the one selected by the SRC. Parameters ---------- self : Processor, mandatory The instance of the processor containing the registers, accumulator etc Returns ------- CURRENT_RAM_BANK The current RAM bank value """ return self.CURRENT_RAM_BANK def write_ram_status(self, char: int) -> bool: """ Write to a RAM status character. Parameters ---------- self: Processor, mandatory The instance of the processor containing the registers, accumulator etc char: int, mandatory specified status character Returns ------- True if the value is set successfully Raises ------ N/A Notes ----- No error checking is done in this function All parameters cannot be out of range, since the functions to place them in various registers etc all have range checking built in . Eventually - there will be error checking here """ value = self.read_accumulator() crb = self.read_current_ram_bank() chip, register, _none = \ decode_command_register(self.COMMAND_REGISTER, 'DATA_RAM_STATUS_CHAR') self.STATUS_CHARACTERS[crb][chip][register][char] = value return True
22.182927
79
0.637438
d95464afeb553cf139e32d4310ff38c1355f877c
1,940
py
Python
google/appengine/_internal/antlr3/extras.py
MiCHiLU/google_appengine_sdk
3da9f20d7e65e26c4938d2c4054bc4f39cbc5522
[ "Apache-2.0" ]
790
2015-01-03T02:13:39.000Z
2020-05-10T19:53:57.000Z
AppServer/google/appengine/_internal/antlr3/extras.py
nlake44/appscale
6944af660ca4cb772c9b6c2332ab28e5ef4d849f
[ "Apache-2.0" ]
1,361
2015-01-08T23:09:40.000Z
2020-04-14T00:03:04.000Z
AppServer/google/appengine/_internal/antlr3/extras.py
nlake44/appscale
6944af660ca4cb772c9b6c2332ab28e5ef4d849f
[ "Apache-2.0" ]
155
2015-01-08T22:59:31.000Z
2020-04-08T08:01:53.000Z
""" @package antlr3.dottreegenerator @brief ANTLR3 runtime package, tree module This module contains all support classes for AST construction and tree parsers. """ # begin[licence] # # [The "BSD licence"] # Copyright (c) 2005-2008 Terence Parr # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. The name of the author may not be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR # IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES # OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT # NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF # THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # end[licence] # lot's of docstrings are missing, don't complain for now... # pylint: disable-msg=C0111 from treewizard import TreeWizard try: from google.appengine._internal.antlr3.dottreegen import toDOT except ImportError, exc: def toDOT(*args, **kwargs): raise exc
40.416667
79
0.769072
12fdeef5d26bbb94352e8d3eab0790bd1137b9c1
14,709
py
Python
util.py
Koen-Git/ColorSymDetect
5d6bb6734063f4a09c9a153527a446ce5c02a5b0
[ "MIT" ]
1
2022-03-07T20:08:32.000Z
2022-03-07T20:08:32.000Z
util.py
Koen-Git/ColorSymDetect
5d6bb6734063f4a09c9a153527a446ce5c02a5b0
[ "MIT" ]
null
null
null
util.py
Koen-Git/ColorSymDetect
5d6bb6734063f4a09c9a153527a446ce5c02a5b0
[ "MIT" ]
null
null
null
import os import cv2 import numpy as np import pandas as pd from matplotlib import pyplot as plt import preprocess # Return a list of all image names with a given extension in a given folder def listImages(dir, extension): res = [] for img in os.listdir(dir): if img.endswith(extension): res.append(img) return res # Return a list of all image names in subfolders with a given extension in a given folder def listImagesSub(dir, extension): res = [] for subdir in os.listdir(dir): for img in os.listdir(dir + subdir): if img.endswith(extension): res.append(subdir + "/" + img) return res # Compute the slope of a given line # Infite slopes (vertical lines) are set to the height of the image def getSlope(line, height): # line is [x1, y1, x2, y2] if (line[2] - line[0]) == 0: slope = height else: slope = ((line[3]-line[1]) / (line[2]-line[0])) return slope # Calculate perpendicular slope # Return true if two slopes are perpendicular # Will also return true is slopes are close to perpendicular (within a range of 0-1) def isPerpendicular(slope1, slope2): if slope1 != 0: if (abs((-1 * (1 / slope1)) - slope2) < 1): return True elif slope2 != 0: if (abs((-1 * (1 / slope2)) - slope1) < 1): return True return False # Calculate intersection between two lines, return None if no intersection # from https://rosettacode.org/wiki/Find_the_intersection_of_two_lines#Python def line_intersect(Ax1, Ay1, Ax2, Ay2, Bx1, By1, Bx2, By2): """ returns a (x, y) tuple or None if there is no intersection """ d = (By2 - By1) * (Ax2 - Ax1) - (Bx2 - Bx1) * (Ay2 - Ay1) if d: uA = ((Bx2 - Bx1) * (Ay1 - By1) - (By2 - By1) * (Ax1 - Bx1)) / d uB = ((Ax2 - Ax1) * (Ay1 - By1) - (Ay2 - Ay1) * (Ax1 - Bx1)) / d else: return if not(0 <= uA <= 1 and 0 <= uB <= 1): return x = Ax1 + uA * (Ax2 - Ax1) y = Ay1 + uA * (Ay2 - Ay1) return x, y # Calculate the distance of a point to all endpoints of two lines # returns minimum of these distances # Used to calculate radius of rotaional symmetry # Minimum distance from intersection to any endpoint = radius def minDistance(intersect, line1, line2): dist1 = np.sqrt( (line1[0] - intersect[0])**2 + (line1[1] - intersect[1])**2 ) dist2 = np.sqrt( (line1[2] - intersect[0])**2 + (line1[3] - intersect[1])**2 ) dist3 = np.sqrt( (line2[0] - intersect[0])**2 + (line2[1] - intersect[1])**2 ) dist4 = np.sqrt( (line2[2] - intersect[0])**2 + (line2[3] - intersect[1])**2 ) return (min(dist1, dist2, dist3, dist4)) # Used to reorder symmetries for ease of processing # from: # [[[[[line], slope, score, normScore, depth], ...], depth] ... ] # To: # [[[line], slope, score, normScore, depth], ...] def placeInOrder(symmetries): newSymmetries = [] for syms in symmetries: newSymmetries += syms[0] return newSymmetries # Only required when cuts are made before knowing symThreshold (Ipynb kernel) # Will also reorder the symmetries as placeInOrder does # Will remove all smaller parts of an image where the cut was made on a reflection # symmetry line with a low score. Will also remove all parts based on that recursive loop. def removeBadCuts(symmetries, symThreshold): newSymmetries = [] deleteDepth = 99999 for syms in symmetries: if syms[1] == 0: newSymmetries += syms[0] continue if syms[1] >= deleteDepth: symmetries.remove(syms) continue else: deleteDepth = 99999 mainSym = syms[0][0] if mainSym[2] < symThreshold: deleteDepth = syms[1] + 1 symmetries.remove(syms) continue else: newSymmetries += syms[0] return newSymmetries # Remove symmetries if they have a normalized score under normThreshold # or if they have a normalized score of 1.0 and a score under symThreshold, i.e. are the main symmetry in their recursive loop (sub image) # If a main symmetry is removed, all other symmetries in that recursive loop are also removed, # by removing next symmetries untill they have a different depth, meaning they belong to a different loop def removeBadSymmetries(symmetries, symThreshold, normThreshold): copySym = symmetries[:] # Start from one, always keep first symmetry for i in range(1, len(symmetries)): if symmetries[i] not in copySym: continue if symmetries[i][3] < normThreshold: copySym.remove(symmetries[i]) elif symmetries[i][3] == 1.0: if symmetries[i][2] < symThreshold: copySym.remove(symmetries[i]) j = i + 1 if j >= len(symmetries): break while (symmetries[i][4] == symmetries[j][4]): if symmetries[j] not in copySym: j = j + 1 if j >= len(symmetries): break continue copySym.remove(symmetries[j]) j = j + 1 if j >= len(symmetries): break return copySym # Loop over each line and compare to other lines # If slope is similar and the distance between endpoints is small enough, remove line with lower symmetry score # maxDistX and maxDistY set based on width and height of image # Both dictate the maximum distance between endpoints of lines # If line1-endpoint1 is within maxDist to line2-endpoint1 # line1-endpoint2 only has to lie within (maxDist*0,66) line2-endpoint2 to be flagged as similar def removeSimilarLines(symmetries, image, lineSimilarity): height, width, _ = image.shape maxDistX = width / lineSimilarity maxDistY = height / lineSimilarity maxDist = (maxDistX + maxDistY) / 2 maxSlopeDiff = maxDistY copySym = symmetries[:] def lowerScore(sym1, sym2): if sym1[2] < sym2[2]: return sym1 return sym2 for i in range(0, len(copySym)): for j in range(i + 1, len(copySym)): if copySym[i] not in symmetries: break if copySym[j] not in symmetries: continue if abs(copySym[i][1] - copySym[j][1]) < maxSlopeDiff or (abs(copySym[i][1]) > height / 3 and abs(copySym[j][1]) > height / 3): center1 = (((copySym[i][0][0] + copySym[i][0][2]) / 2), ((copySym[i][0][1] + copySym[i][0][3]) / 2)) center2 = (((copySym[j][0][0] + copySym[j][0][2]) / 2), ((copySym[j][0][1] + copySym[j][0][3]) / 2)) dist = np.sqrt( (center1[0] - center2[0])**2 + (center1[1] - center2[1])**2 ) if dist < maxDist: if i == 0: symmetries.remove(copySym[j]) else: symmetries.remove(lowerScore(copySym[i], copySym[j])) return symmetries # Remove similar rotational symmetries # Remove if centerpoint is within maxDistX and maxDistY and the radius is within max(maxDistX, maxDistY) # Rotation symmetry which has the highest avarage depth is removed # Average depth is calculated based on the depth of the two reflection lines that form the rotational symmetry def removeSimilarRotational(rotations, image, rotationSimilarity): height, width, _ = image.shape maxDistX = width / rotationSimilarity maxDistY = height / rotationSimilarity copyRot = rotations[:] def removeRot(rot1, rot2): # i=1 -> Remove rotaional with smaller radius # i=2 -> Remove rotational with lower average scores of reflection symmetries that made the rotation: i = 1 if rot1[i] < rot2[i]: return rot1 return rot2 for i in range(0, len(copyRot)): for j in range(i + 1, len(copyRot)): if copyRot[i] not in rotations: break if copyRot[j] not in rotations: continue if abs(copyRot[i][0][0] - copyRot[j][0][0]) < maxDistX: if abs(copyRot[i][0][1] - copyRot[j][0][1]) < maxDistY: if abs(copyRot[i][1] - copyRot[j][1]) < max(maxDistX, maxDistY): rotations.remove(removeRot(copyRot[i], copyRot[j])) # Checks if distance between intersection point and endpoints of reflection lines is similar enough # Used to calculate rotational symmetries with a non ML approach def checkDistance(intersect, line1, line2, distDifference): dist1 = np.sqrt( (line1[0] - intersect[0])**2 + (line1[1] - intersect[1])**2 ) dist2 = np.sqrt( (line1[2] - intersect[0])**2 + (line1[3] - intersect[1])**2 ) dist3 = np.sqrt( (line2[0] - intersect[0])**2 + (line2[1] - intersect[1])**2 ) dist4 = np.sqrt( (line2[2] - intersect[0])**2 + (line2[3] - intersect[1])**2 ) if abs(dist1 - dist2) > distDifference: return False elif abs(dist1 - dist3) > distDifference: return False elif abs(dist1 - dist4) > distDifference: return False elif abs(dist2 - dist3) > distDifference: return False elif abs(dist2 - dist4) > distDifference: return False elif abs(dist3 - dist4) > distDifference: return False return True # Find rotaional symmetries with a given machine learning model # Will loop over each reflection symmetry in a double loop and check if any have intersections # Pairs with intersections will be pre-processed and subsequently predicted by the model # Positive results will create a rotational symmetry in their centerpoint # The radius is determined by the minDistance function # Reflection symmetries which create a rotational symmetrie are removed afterwards # Will not be executed in 'fast' mode def rotationalSymmetriesML(symmetries, model, data): h, w, _ = data.shape rotations = [] data = pd.DataFrame() for i in range(0, len(symmetries)): for j in range(i + 1, len(symmetries)): intersect = line_intersect(symmetries[i][0][0], symmetries[i][0][1], symmetries[i][0][2], symmetries[i][0][3], symmetries[j][0][0], symmetries[j][0][1], symmetries[j][0][2], symmetries[j][0][3]) if intersect == None: continue s = pd.Series(data={ "line1x1": symmetries[i][0][0], "line1y1": symmetries[i][0][1], "line1x2": symmetries[i][0][2], "line1y2": symmetries[i][0][3], "line1Score": symmetries[i][2], "line2x1": symmetries[j][0][0], "line2y1": symmetries[j][0][1], "line2x2": symmetries[j][0][2], "line2y2": symmetries[j][0][3], "line2Score": symmetries[j][2], "height": h, "width": w }, name="rotation") data = data.append(s, ignore_index=False) if len(data) > 0: cpyData = data.copy() data = preprocess.preproccesData(data) pred = model.predict(data) for i in range(0, len(data)): if pred[i] == True: intersect = line_intersect(cpyData["line1x1"][i], cpyData["line1y1"][i], cpyData["line1x2"][i], cpyData["line1y2"][i], cpyData["line2x1"][i], cpyData["line2y1"][i], cpyData["line2x2"][i], cpyData["line2y2"][i]) rad = minDistance(intersect, [cpyData["line1x1"][i], cpyData["line1y1"][i], cpyData["line1x2"][i], cpyData["line1y2"][i]], [cpyData["line2x1"][i], cpyData["line2y1"][i], cpyData["line2x2"][i], cpyData["line2y2"][i]]) meanScore = (cpyData["line1Score"][i] + cpyData["line2Score"][i]) / 2 rot = [intersect, rad, meanScore] rotations.append(rot) return rotations # Find rotaional symmetries given reflection symmetries and a threshold # Will loop over each reflection symmetry in a double loop and check if any pairs: # - have similar symmetry score, their relative score must be inside the circleSymThreshold # - have intersections, # - are (close to) perpendicular # - have distances from their endpoints to the intersection not too different from one another # Positive results will create a rotational symmetry in their centerpoint # The radius is determined by the minDistance function # Reflection symmetries which create a rotational symmetrie are removed afterwards # Will not be executed in 'slow' mode def rotationalSymmetries(symmetries, image, circleSymThreshold): rotations = [] tmp = [] copySym = symmetries[:] height, width, _ = image.shape distDifference = min(height / 5, width / 5) for sym in symmetries: for subsym in copySym: # First check if lines have similar symmetry scores if max(sym[2], subsym[2]) * circleSymThreshold > min(sym[2], subsym[2]): continue # Check if lines are perpendicular if isPerpendicular(sym[1], subsym[1]) == False: continue intersect = line_intersect(sym[0][0], sym[0][1], sym[0][2], sym[0][3], subsym[0][0], subsym[0][1], subsym[0][2], subsym[0][3]) if intersect != None: if checkDistance(intersect, sym[0], subsym[0], distDifference) == False: continue rad = minDistance(intersect, sym[0], subsym[0]) meanScore = (sym[2] + subsym[2]) / 2 rot = [intersect, rad, meanScore] rotations.append(rot) return rotations # Plot all given reflection symmetry lines def plotLines(symmetries): n = 0 for sym in symmetries: if sym[4] > n: n = sym[4] linewidth = 3 # Colors dicated by colormap (default: viridis) colors = plt.cm.jet(np.linspace(0,1,n + 1)) for i, sym in enumerate(symmetries): color = colors[sym[4]] x = [sym[0][0], sym[0][2]] y = [sym[0][1], sym[0][3]] plt.plot(x, y, color=color, linewidth=linewidth) # Plot all given rotational symmetries def plotRotations(rotations): for rot in rotations: circleSym = plt.Circle(rot[0], linewidth=2.5, radius=rot[1], color="yellow", fill=False) fig = plt.gcf() axs = fig.gca() axs.add_patch(circleSym) # Used to resize an image by a given fraction def resize_image(image, fraction): h, w, _ = image.shape desiredW = int(w / fraction) desiredH = int(h / fraction) dimensions = (desiredW, desiredH) resizedImage = cv2.resize(image, dimensions, interpolation = cv2.INTER_AREA) return resizedImage
42.025714
232
0.607451
4635be3de31410935a1facb10a74d414b76dcdca
666
py
Python
comportamentais/chain_of_responsibility/descontos.py
jgabriellima/design-patterns-python
e955d570265c154863fbfc65564dd4781f549042
[ "Apache-2.0" ]
363
2018-07-30T18:52:55.000Z
2022-03-29T23:04:26.000Z
comportamentais/chain_of_responsibility/descontos.py
sou-rafael/design-patterns-python
e955d570265c154863fbfc65564dd4781f549042
[ "Apache-2.0" ]
7
2018-07-14T20:19:23.000Z
2020-04-17T00:24:30.000Z
comportamentais/chain_of_responsibility/descontos.py
sou-rafael/design-patterns-python
e955d570265c154863fbfc65564dd4781f549042
[ "Apache-2.0" ]
99
2018-09-06T18:11:43.000Z
2022-03-27T13:32:45.000Z
class DescontoCincoItens: def __init__(self, proximo_desconto): self.__proximo_desconto = proximo_desconto def calcula(self, orcamento): if orcamento.total_itens > 5: return orcamento.valor * 0.1 return self.__proximo_desconto.calcula(orcamento) class DescontoMaisDeQuinhentosReais: def __init__(self, proximo_desconto): self.__proximo_desconto = proximo_desconto def calcula(self, orcamento): if orcamento.valor > 500.0: return orcamento.valor * 0.07 return self.__proximo_desconto.calcula(orcamento) class SemDesconto: def calcula(self, orcamento): return 0
27.75
57
0.695195
869c606a1ac8a16958bbcc35f3a62a65f9d833ea
1,501
py
Python
other/day21b.py
p88h/aoc2021
b42a12ce7ca786b2b5061fdcb46bd850ed54b82c
[ "Apache-2.0" ]
15
2021-12-01T16:50:40.000Z
2022-01-04T02:44:00.000Z
other/day21b.py
p88h/aoc2021
b42a12ce7ca786b2b5061fdcb46bd850ed54b82c
[ "Apache-2.0" ]
null
null
null
other/day21b.py
p88h/aoc2021
b42a12ce7ca786b2b5061fdcb46bd850ed54b82c
[ "Apache-2.0" ]
6
2021-12-08T01:33:56.000Z
2021-12-29T11:45:52.000Z
from collections import defaultdict import time lines = open("input/day21.txt").readlines() p1 = int(lines[0].split(": ")[1]) p2 = int(lines[1].split(": ")[1]) def run1(p1, p2): s1 = s2 = ofs = cnt = 0 while True: p1 = (p1+(ofs % 100)+((ofs+1) % 100)+((ofs+2) % 100)+2) % 10+1 ofs = (ofs+3) % 100 cnt = cnt + 3 s1 = s1 + p1 if s1 >= 1000: return s2*cnt (p1, p2, s1, s2) = (p2, p1, s2, s1) def produce3(multiverse, p, s, c, w): for (d, f) in [(6, 7), (5, 6), (7, 6), (4, 3), (8, 3), (3, 1), (9, 1)]: np = ((p + d - 1) % 10) + 1 ns = s + np if ns < 21: multiverse[(np, ns)] += c*f else: w[-1] += c*f def run2(p): multiverse = defaultdict(int) multiverse[(p, 0)] = 1 wins = [] while multiverse: wins.append(0) temp = defaultdict(int) for (p, s) in multiverse: produce3(temp, p, s, multiverse[(p, s)], wins) multiverse = temp return wins def run3(p1, p2): wins1 = run2(p1) wins2 = run2(p2) size1 = size2 = 1 w1 = w2 = 0 for step in range(len(wins1)): size1 = size1 * 27 - wins1[step] w1 += wins1[step]*size2 size2 = size2 * 27 - wins2[step] w2 += wins2[step]*size1 return max(w1, w2) start = time.time() ret1 = run1(p1, p2) end = time.time() print(ret1, end-start) start = time.time() ret2 = run3(p1, p2) end = time.time() print(ret2, end-start)
23.092308
75
0.493671
3034d54c52c453cb06e1825ddb59a806a4c4a59b
59,992
py
Python
pandas/tests/io/parser/test_common.py
sayanmondal2098/pandas
2f6b90aaaab6814c102eb160c5a9c11bc04a092e
[ "BSD-3-Clause" ]
2
2021-04-07T13:56:06.000Z
2021-04-12T13:45:23.000Z
pandas/tests/io/parser/test_common.py
sanjusci/pandas
a1fee9199eba7ebf423880243936b9f1501d3d3a
[ "BSD-3-Clause" ]
null
null
null
pandas/tests/io/parser/test_common.py
sanjusci/pandas
a1fee9199eba7ebf423880243936b9f1501d3d3a
[ "BSD-3-Clause" ]
3
2018-01-08T08:40:55.000Z
2019-10-07T02:02:40.000Z
# -*- coding: utf-8 -*- """ Tests that work on both the Python and C engines but do not have a specific classification into the other test modules. """ import codecs from collections import OrderedDict import csv from datetime import datetime from io import BytesIO, StringIO import os import platform from tempfile import TemporaryFile import numpy as np import pytest from pandas._libs.tslib import Timestamp from pandas.compat import lrange from pandas.errors import DtypeWarning, EmptyDataError, ParserError from pandas import DataFrame, Index, MultiIndex, Series, compat, concat import pandas.util.testing as tm from pandas.io.common import URLError from pandas.io.parsers import CParserWrapper, TextFileReader, TextParser def test_override_set_noconvert_columns(): # see gh-17351 # # Usecols needs to be sorted in _set_noconvert_columns based # on the test_usecols_with_parse_dates test from test_usecols.py class MyTextFileReader(TextFileReader): def __init__(self): self._currow = 0 self.squeeze = False class MyCParserWrapper(CParserWrapper): def _set_noconvert_columns(self): if self.usecols_dtype == "integer": # self.usecols is a set, which is documented as unordered # but in practice, a CPython set of integers is sorted. # In other implementations this assumption does not hold. # The following code simulates a different order, which # before GH 17351 would cause the wrong columns to be # converted via the parse_dates parameter self.usecols = list(self.usecols) self.usecols.reverse() return CParserWrapper._set_noconvert_columns(self) data = """a,b,c,d,e 0,1,20140101,0900,4 0,1,20140102,1000,4""" parse_dates = [[1, 2]] cols = { "a": [0, 0], "c_d": [ Timestamp("2014-01-01 09:00:00"), Timestamp("2014-01-02 10:00:00") ] } expected = DataFrame(cols, columns=["c_d", "a"]) parser = MyTextFileReader() parser.options = {"usecols": [0, 2, 3], "parse_dates": parse_dates, "delimiter": ","} parser._engine = MyCParserWrapper(StringIO(data), **parser.options) result = parser.read() tm.assert_frame_equal(result, expected) def test_bytes_io_input(all_parsers): encoding = "cp1255" parser = all_parsers data = BytesIO("שלום:1234\n562:123".encode(encoding)) result = parser.read_csv(data, sep=":", encoding=encoding) expected = DataFrame([[562, 123]], columns=["שלום", "1234"]) tm.assert_frame_equal(result, expected) def test_empty_decimal_marker(all_parsers): data = """A|B|C 1|2,334|5 10|13|10. """ # Parsers support only length-1 decimals msg = "Only length-1 decimal markers supported" parser = all_parsers with pytest.raises(ValueError, match=msg): parser.read_csv(StringIO(data), decimal="") def test_bad_stream_exception(all_parsers, csv_dir_path): # see gh-13652 # # This test validates that both the Python engine and C engine will # raise UnicodeDecodeError instead of C engine raising ParserError # and swallowing the exception that caused read to fail. path = os.path.join(csv_dir_path, "sauron.SHIFT_JIS.csv") codec = codecs.lookup("utf-8") utf8 = codecs.lookup('utf-8') parser = all_parsers msg = "'utf-8' codec can't decode byte" # Stream must be binary UTF8. with open(path, "rb") as handle, codecs.StreamRecoder( handle, utf8.encode, utf8.decode, codec.streamreader, codec.streamwriter) as stream: with pytest.raises(UnicodeDecodeError, match=msg): parser.read_csv(stream) def test_read_csv_local(all_parsers, csv1): prefix = "file:///" if compat.is_platform_windows() else "file://" parser = all_parsers fname = prefix + str(os.path.abspath(csv1)) result = parser.read_csv(fname, index_col=0, parse_dates=True) expected = DataFrame([[0.980269, 3.685731, -0.364216805298, -1.159738], [1.047916, -0.041232, -0.16181208307, 0.212549], [0.498581, 0.731168, -0.537677223318, 1.346270], [1.120202, 1.567621, 0.00364077397681, 0.675253], [-0.487094, 0.571455, -1.6116394093, 0.103469], [0.836649, 0.246462, 0.588542635376, 1.062782], [-0.157161, 1.340307, 1.1957779562, -1.097007]], columns=["A", "B", "C", "D"], index=Index([datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 5), datetime(2000, 1, 6), datetime(2000, 1, 7), datetime(2000, 1, 10), datetime(2000, 1, 11)], name="index")) tm.assert_frame_equal(result, expected) def test_1000_sep(all_parsers): parser = all_parsers data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({ "A": [1, 10], "B": [2334, 13], "C": [5, 10.] }) result = parser.read_csv(StringIO(data), sep="|", thousands=",") tm.assert_frame_equal(result, expected) def test_squeeze(all_parsers): data = """\ a,1 b,2 c,3 """ parser = all_parsers index = Index(["a", "b", "c"], name=0) expected = Series([1, 2, 3], name=1, index=index) result = parser.read_csv(StringIO(data), index_col=0, header=None, squeeze=True) tm.assert_series_equal(result, expected) # see gh-8217 # # Series should not be a view. assert not result._is_view def test_malformed(all_parsers): # see gh-6607 parser = all_parsers data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ msg = "Expected 3 fields in line 4, saw 5" with pytest.raises(ParserError, match=msg): parser.read_csv(StringIO(data), header=1, comment="#") @pytest.mark.parametrize("nrows", [5, 3, None]) def test_malformed_chunks(all_parsers, nrows): data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ parser = all_parsers msg = 'Expected 3 fields in line 6, saw 5' reader = parser.read_csv(StringIO(data), header=1, comment="#", iterator=True, chunksize=1, skiprows=[2]) with pytest.raises(ParserError, match=msg): reader.read(nrows) def test_unnamed_columns(all_parsers): data = """A,B,C,, 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ parser = all_parsers expected = DataFrame([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]], dtype=np.int64, columns=["A", "B", "C", "Unnamed: 3", "Unnamed: 4"]) result = parser.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) def test_csv_mixed_type(all_parsers): data = """A,B,C a,1,2 b,3,4 c,4,5 """ parser = all_parsers expected = DataFrame({"A": ["a", "b", "c"], "B": [1, 3, 4], "C": [2, 4, 5]}) result = parser.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) def test_read_csv_low_memory_no_rows_with_index(all_parsers): # see gh-21141 parser = all_parsers if not parser.low_memory: pytest.skip("This is a low-memory specific test") data = """A,B,C 1,1,1,2 2,2,3,4 3,3,4,5 """ result = parser.read_csv(StringIO(data), low_memory=True, index_col=0, nrows=0) expected = DataFrame(columns=["A", "B", "C"]) tm.assert_frame_equal(result, expected) def test_read_csv_dataframe(all_parsers, csv1): parser = all_parsers result = parser.read_csv(csv1, index_col=0, parse_dates=True) expected = DataFrame([[0.980269, 3.685731, -0.364216805298, -1.159738], [1.047916, -0.041232, -0.16181208307, 0.212549], [0.498581, 0.731168, -0.537677223318, 1.346270], [1.120202, 1.567621, 0.00364077397681, 0.675253], [-0.487094, 0.571455, -1.6116394093, 0.103469], [0.836649, 0.246462, 0.588542635376, 1.062782], [-0.157161, 1.340307, 1.1957779562, -1.097007]], columns=["A", "B", "C", "D"], index=Index([datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 5), datetime(2000, 1, 6), datetime(2000, 1, 7), datetime(2000, 1, 10), datetime(2000, 1, 11)], name="index")) tm.assert_frame_equal(result, expected) def test_read_csv_no_index_name(all_parsers, csv_dir_path): parser = all_parsers csv2 = os.path.join(csv_dir_path, "test2.csv") result = parser.read_csv(csv2, index_col=0, parse_dates=True) expected = DataFrame([[0.980269, 3.685731, -0.364216805298, -1.159738, "foo"], [1.047916, -0.041232, -0.16181208307, 0.212549, "bar"], [0.498581, 0.731168, -0.537677223318, 1.346270, "baz"], [1.120202, 1.567621, 0.00364077397681, 0.675253, "qux"], [-0.487094, 0.571455, -1.6116394093, 0.103469, "foo2"]], columns=["A", "B", "C", "D", "E"], index=Index([datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 5), datetime(2000, 1, 6), datetime(2000, 1, 7)])) tm.assert_frame_equal(result, expected) def test_read_csv_unicode(all_parsers): parser = all_parsers data = BytesIO("\u0141aski, Jan;1".encode("utf-8")) result = parser.read_csv(data, sep=";", encoding="utf-8", header=None) expected = DataFrame([["\u0141aski, Jan", 1]]) tm.assert_frame_equal(result, expected) def test_read_csv_wrong_num_columns(all_parsers): # Too few columns. data = """A,B,C,D,E,F 1,2,3,4,5,6 6,7,8,9,10,11,12 11,12,13,14,15,16 """ parser = all_parsers msg = "Expected 6 fields in line 3, saw 7" with pytest.raises(ParserError, match=msg): parser.read_csv(StringIO(data)) def test_read_duplicate_index_explicit(all_parsers): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ parser = all_parsers result = parser.read_csv(StringIO(data), index_col=0) expected = DataFrame([[2, 3, 4, 5], [7, 8, 9, 10], [12, 13, 14, 15], [12, 13, 14, 15], [12, 13, 14, 15], [12, 13, 14, 15]], columns=["A", "B", "C", "D"], index=Index(["foo", "bar", "baz", "qux", "foo", "bar"], name="index")) tm.assert_frame_equal(result, expected) def test_read_duplicate_index_implicit(all_parsers): data = """A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ parser = all_parsers result = parser.read_csv(StringIO(data)) expected = DataFrame([[2, 3, 4, 5], [7, 8, 9, 10], [12, 13, 14, 15], [12, 13, 14, 15], [12, 13, 14, 15], [12, 13, 14, 15]], columns=["A", "B", "C", "D"], index=Index(["foo", "bar", "baz", "qux", "foo", "bar"])) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("data,kwargs,expected", [ ("A,B\nTrue,1\nFalse,2\nTrue,3", dict(), DataFrame([[True, 1], [False, 2], [True, 3]], columns=["A", "B"])), ("A,B\nYES,1\nno,2\nyes,3\nNo,3\nYes,3", dict(true_values=["yes", "Yes", "YES"], false_values=["no", "NO", "No"]), DataFrame([[True, 1], [False, 2], [True, 3], [False, 3], [True, 3]], columns=["A", "B"])), ("A,B\nTRUE,1\nFALSE,2\nTRUE,3", dict(), DataFrame([[True, 1], [False, 2], [True, 3]], columns=["A", "B"])), ("A,B\nfoo,bar\nbar,foo", dict(true_values=["foo"], false_values=["bar"]), DataFrame([[True, False], [False, True]], columns=["A", "B"])) ]) def test_parse_bool(all_parsers, data, kwargs, expected): parser = all_parsers result = parser.read_csv(StringIO(data), **kwargs) tm.assert_frame_equal(result, expected) def test_int_conversion(all_parsers): data = """A,B 1.0,1 2.0,2 3.0,3 """ parser = all_parsers result = parser.read_csv(StringIO(data)) expected = DataFrame([[1.0, 1], [2.0, 2], [3.0, 3]], columns=["A", "B"]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("nrows", [3, 3.0]) def test_read_nrows(all_parsers, nrows): # see gh-10476 data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ expected = DataFrame([["foo", 2, 3, 4, 5], ["bar", 7, 8, 9, 10], ["baz", 12, 13, 14, 15]], columns=["index", "A", "B", "C", "D"]) parser = all_parsers result = parser.read_csv(StringIO(data), nrows=nrows) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("nrows", [1.2, "foo", -1]) def test_read_nrows_bad(all_parsers, nrows): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ msg = r"'nrows' must be an integer >=0" parser = all_parsers with pytest.raises(ValueError, match=msg): parser.read_csv(StringIO(data), nrows=nrows) @pytest.mark.parametrize("index_col", [0, "index"]) def test_read_chunksize_with_index(all_parsers, index_col): parser = all_parsers data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ reader = parser.read_csv(StringIO(data), index_col=0, chunksize=2) expected = DataFrame([["foo", 2, 3, 4, 5], ["bar", 7, 8, 9, 10], ["baz", 12, 13, 14, 15], ["qux", 12, 13, 14, 15], ["foo2", 12, 13, 14, 15], ["bar2", 12, 13, 14, 15]], columns=["index", "A", "B", "C", "D"]) expected = expected.set_index("index") chunks = list(reader) tm.assert_frame_equal(chunks[0], expected[:2]) tm.assert_frame_equal(chunks[1], expected[2:4]) tm.assert_frame_equal(chunks[2], expected[4:]) @pytest.mark.parametrize("chunksize", [1.3, "foo", 0]) def test_read_chunksize_bad(all_parsers, chunksize): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ parser = all_parsers msg = r"'chunksize' must be an integer >=1" with pytest.raises(ValueError, match=msg): parser.read_csv(StringIO(data), chunksize=chunksize) @pytest.mark.parametrize("chunksize", [2, 8]) def test_read_chunksize_and_nrows(all_parsers, chunksize): # see gh-15755 data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ parser = all_parsers kwargs = dict(index_col=0, nrows=5) reader = parser.read_csv(StringIO(data), chunksize=chunksize, **kwargs) expected = parser.read_csv(StringIO(data), **kwargs) tm.assert_frame_equal(concat(reader), expected) def test_read_chunksize_and_nrows_changing_size(all_parsers): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ parser = all_parsers kwargs = dict(index_col=0, nrows=5) reader = parser.read_csv(StringIO(data), chunksize=8, **kwargs) expected = parser.read_csv(StringIO(data), **kwargs) tm.assert_frame_equal(reader.get_chunk(size=2), expected.iloc[:2]) tm.assert_frame_equal(reader.get_chunk(size=4), expected.iloc[2:5]) with pytest.raises(StopIteration, match=""): reader.get_chunk(size=3) def test_get_chunk_passed_chunksize(all_parsers): parser = all_parsers data = """A,B,C 1,2,3 4,5,6 7,8,9 1,2,3""" reader = parser.read_csv(StringIO(data), chunksize=2) result = reader.get_chunk() expected = DataFrame([[1, 2, 3], [4, 5, 6]], columns=["A", "B", "C"]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("kwargs", [dict(), dict(index_col=0)]) def test_read_chunksize_compat(all_parsers, kwargs): # see gh-12185 data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ parser = all_parsers reader = parser.read_csv(StringIO(data), chunksize=2, **kwargs) result = parser.read_csv(StringIO(data), **kwargs) tm.assert_frame_equal(concat(reader), result) def test_read_chunksize_jagged_names(all_parsers): # see gh-23509 parser = all_parsers data = "\n".join(["0"] * 7 + [",".join(["0"] * 10)]) expected = DataFrame([[0] + [np.nan] * 9] * 7 + [[0] * 10]) reader = parser.read_csv(StringIO(data), names=range(10), chunksize=4) result = concat(reader) tm.assert_frame_equal(result, expected) def test_read_data_list(all_parsers): parser = all_parsers kwargs = dict(index_col=0) data = "A,B,C\nfoo,1,2,3\nbar,4,5,6" data_list = [["A", "B", "C"], ["foo", "1", "2", "3"], ["bar", "4", "5", "6"]] expected = parser.read_csv(StringIO(data), **kwargs) parser = TextParser(data_list, chunksize=2, **kwargs) result = parser.read() tm.assert_frame_equal(result, expected) def test_iterator(all_parsers): # see gh-6607 data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ parser = all_parsers kwargs = dict(index_col=0) expected = parser.read_csv(StringIO(data), **kwargs) reader = parser.read_csv(StringIO(data), iterator=True, **kwargs) first_chunk = reader.read(3) tm.assert_frame_equal(first_chunk, expected[:3]) last_chunk = reader.read(5) tm.assert_frame_equal(last_chunk, expected[3:]) def test_iterator2(all_parsers): parser = all_parsers data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ reader = parser.read_csv(StringIO(data), iterator=True) result = list(reader) expected = DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=["foo", "bar", "baz"], columns=["A", "B", "C"]) tm.assert_frame_equal(result[0], expected) def test_reader_list(all_parsers): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ parser = all_parsers kwargs = dict(index_col=0) lines = list(csv.reader(StringIO(data))) reader = TextParser(lines, chunksize=2, **kwargs) expected = parser.read_csv(StringIO(data), **kwargs) chunks = list(reader) tm.assert_frame_equal(chunks[0], expected[:2]) tm.assert_frame_equal(chunks[1], expected[2:4]) tm.assert_frame_equal(chunks[2], expected[4:]) def test_reader_list_skiprows(all_parsers): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ parser = all_parsers kwargs = dict(index_col=0) lines = list(csv.reader(StringIO(data))) reader = TextParser(lines, chunksize=2, skiprows=[1], **kwargs) expected = parser.read_csv(StringIO(data), **kwargs) chunks = list(reader) tm.assert_frame_equal(chunks[0], expected[1:3]) def test_iterator_stop_on_chunksize(all_parsers): # gh-3967: stopping iteration when chunksize is specified parser = all_parsers data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ reader = parser.read_csv(StringIO(data), chunksize=1) result = list(reader) assert len(result) == 3 expected = DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=["foo", "bar", "baz"], columns=["A", "B", "C"]) tm.assert_frame_equal(concat(result), expected) @pytest.mark.parametrize("kwargs", [ dict(iterator=True, chunksize=1), dict(iterator=True), dict(chunksize=1) ]) def test_iterator_skipfooter_errors(all_parsers, kwargs): msg = "'skipfooter' not supported for 'iteration'" parser = all_parsers data = "a\n1\n2" with pytest.raises(ValueError, match=msg): parser.read_csv(StringIO(data), skipfooter=1, **kwargs) def test_nrows_skipfooter_errors(all_parsers): msg = "'skipfooter' not supported with 'nrows'" data = "a\n1\n2\n3\n4\n5\n6" parser = all_parsers with pytest.raises(ValueError, match=msg): parser.read_csv(StringIO(data), skipfooter=1, nrows=5) @pytest.mark.parametrize("data,kwargs,expected", [ ("""foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """, dict(index_col=0, names=["index", "A", "B", "C", "D"]), DataFrame([[2, 3, 4, 5], [7, 8, 9, 10], [12, 13, 14, 15], [12, 13, 14, 15], [12, 13, 14, 15], [12, 13, 14, 15]], index=Index(["foo", "bar", "baz", "qux", "foo2", "bar2"], name="index"), columns=["A", "B", "C", "D"])), ("""foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """, dict(index_col=[0, 1], names=["index1", "index2", "A", "B", "C", "D"]), DataFrame([[2, 3, 4, 5], [7, 8, 9, 10], [12, 13, 14, 15], [12, 13, 14, 15], [12, 13, 14, 15]], index=MultiIndex.from_tuples([ ("foo", "one"), ("foo", "two"), ("foo", "three"), ("bar", "one"), ("bar", "two")], names=["index1", "index2"]), columns=["A", "B", "C", "D"])), ]) def test_pass_names_with_index(all_parsers, data, kwargs, expected): parser = all_parsers result = parser.read_csv(StringIO(data), **kwargs) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("index_col", [[0, 1], [1, 0]]) def test_multi_index_no_level_names(all_parsers, index_col): data = """index1,index2,A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ headless_data = '\n'.join(data.split("\n")[1:]) names = ["A", "B", "C", "D"] parser = all_parsers result = parser.read_csv(StringIO(headless_data), index_col=index_col, header=None, names=names) expected = parser.read_csv(StringIO(data), index_col=index_col) # No index names in headless data. expected.index.names = [None] * 2 tm.assert_frame_equal(result, expected) def test_multi_index_no_level_names_implicit(all_parsers): parser = all_parsers data = """A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ result = parser.read_csv(StringIO(data)) expected = DataFrame([[2, 3, 4, 5], [7, 8, 9, 10], [12, 13, 14, 15], [12, 13, 14, 15], [12, 13, 14, 15]], columns=["A", "B", "C", "D"], index=MultiIndex.from_tuples([ ("foo", "one"), ("foo", "two"), ("foo", "three"), ("bar", "one"), ("bar", "two")])) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("data,expected,header", [ ("a,b", DataFrame(columns=["a", "b"]), [0]), ("a,b\nc,d", DataFrame(columns=MultiIndex.from_tuples( [("a", "c"), ("b", "d")])), [0, 1]), ]) @pytest.mark.parametrize("round_trip", [True, False]) def test_multi_index_blank_df(all_parsers, data, expected, header, round_trip): # see gh-14545 parser = all_parsers data = expected.to_csv(index=False) if round_trip else data result = parser.read_csv(StringIO(data), header=header) tm.assert_frame_equal(result, expected) def test_no_unnamed_index(all_parsers): parser = all_parsers data = """ id c0 c1 c2 0 1 0 a b 1 2 0 c d 2 2 2 e f """ result = parser.read_csv(StringIO(data), sep=" ") expected = DataFrame([[0, 1, 0, "a", "b"], [1, 2, 0, "c", "d"], [2, 2, 2, "e", "f"]], columns=["Unnamed: 0", "id", "c0", "c1", "c2"]) tm.assert_frame_equal(result, expected) def test_read_csv_parse_simple_list(all_parsers): parser = all_parsers data = """foo bar baz qux foo foo bar""" result = parser.read_csv(StringIO(data), header=None) expected = DataFrame(["foo", "bar baz", "qux foo", "foo", "bar"]) tm.assert_frame_equal(result, expected) @tm.network def test_url(all_parsers, csv_dir_path): # TODO: FTP testing parser = all_parsers kwargs = dict(sep="\t") url = ("https://raw.github.com/pandas-dev/pandas/master/" "pandas/tests/io/parser/data/salaries.csv") url_result = parser.read_csv(url, **kwargs) local_path = os.path.join(csv_dir_path, "salaries.csv") local_result = parser.read_csv(local_path, **kwargs) tm.assert_frame_equal(url_result, local_result) @pytest.mark.slow def test_local_file(all_parsers, csv_dir_path): parser = all_parsers kwargs = dict(sep="\t") local_path = os.path.join(csv_dir_path, "salaries.csv") local_result = parser.read_csv(local_path, **kwargs) url = "file://localhost/" + local_path try: url_result = parser.read_csv(url, **kwargs) tm.assert_frame_equal(url_result, local_result) except URLError: # Fails on some systems. pytest.skip("Failing on: " + " ".join(platform.uname())) def test_path_path_lib(all_parsers): parser = all_parsers df = tm.makeDataFrame() result = tm.round_trip_pathlib( df.to_csv, lambda p: parser.read_csv(p, index_col=0)) tm.assert_frame_equal(df, result) def test_path_local_path(all_parsers): parser = all_parsers df = tm.makeDataFrame() result = tm.round_trip_localpath( df.to_csv, lambda p: parser.read_csv(p, index_col=0)) tm.assert_frame_equal(df, result) def test_nonexistent_path(all_parsers): # gh-2428: pls no segfault # gh-14086: raise more helpful FileNotFoundError parser = all_parsers path = "%s.csv" % tm.rands(10) msg = ("does not exist" if parser.engine == "c" else r"\[Errno 2\]") with pytest.raises(FileNotFoundError, match=msg) as e: parser.read_csv(path) filename = e.value.filename filename = filename.decode() if isinstance( filename, bytes) else filename assert path == filename def test_missing_trailing_delimiters(all_parsers): parser = all_parsers data = """A,B,C,D 1,2,3,4 1,3,3, 1,4,5""" result = parser.read_csv(StringIO(data)) expected = DataFrame([[1, 2, 3, 4], [1, 3, 3, np.nan], [1, 4, 5, np.nan]], columns=["A", "B", "C", "D"]) tm.assert_frame_equal(result, expected) def test_skip_initial_space(all_parsers): data = ('"09-Apr-2012", "01:10:18.300", 2456026.548822908, 12849, ' '1.00361, 1.12551, 330.65659, 0355626618.16711, 73.48821, ' '314.11625, 1917.09447, 179.71425, 80.000, 240.000, -350, ' '70.06056, 344.98370, 1, 1, -0.689265, -0.692787, ' '0.212036, 14.7674, 41.605, -9999.0, -9999.0, ' '-9999.0, -9999.0, -9999.0, -9999.0, 000, 012, 128') parser = all_parsers result = parser.read_csv(StringIO(data), names=lrange(33), header=None, na_values=["-9999.0"], skipinitialspace=True) expected = DataFrame([["09-Apr-2012", "01:10:18.300", 2456026.548822908, 12849, 1.00361, 1.12551, 330.65659, 355626618.16711, 73.48821, 314.11625, 1917.09447, 179.71425, 80.0, 240.0, -350, 70.06056, 344.9837, 1, 1, -0.689265, -0.692787, 0.212036, 14.7674, 41.605, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 0, 12, 128]]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("sep", [",", "\t"]) @pytest.mark.parametrize("encoding", ["utf-16", "utf-16le", "utf-16be"]) def test_utf16_bom_skiprows(all_parsers, sep, encoding): # see gh-2298 parser = all_parsers data = """skip this skip this too A,B,C 1,2,3 4,5,6""".replace(",", sep) path = "__%s__.csv" % tm.rands(10) kwargs = dict(sep=sep, skiprows=2) utf8 = "utf-8" with tm.ensure_clean(path) as path: from io import TextIOWrapper bytes_data = data.encode(encoding) with open(path, "wb") as f: f.write(bytes_data) bytes_buffer = BytesIO(data.encode(utf8)) bytes_buffer = TextIOWrapper(bytes_buffer, encoding=utf8) result = parser.read_csv(path, encoding=encoding, **kwargs) expected = parser.read_csv(bytes_buffer, encoding=utf8, **kwargs) bytes_buffer.close() tm.assert_frame_equal(result, expected) def test_utf16_example(all_parsers, csv_dir_path): path = os.path.join(csv_dir_path, "utf16_ex.txt") parser = all_parsers result = parser.read_csv(path, encoding="utf-16", sep="\t") assert len(result) == 50 def test_unicode_encoding(all_parsers, csv_dir_path): path = os.path.join(csv_dir_path, "unicode_series.csv") parser = all_parsers result = parser.read_csv(path, header=None, encoding="latin-1") result = result.set_index(0) got = result[1][1632] expected = '\xc1 k\xf6ldum klaka (Cold Fever) (1994)' assert got == expected def test_trailing_delimiters(all_parsers): # see gh-2442 data = """A,B,C 1,2,3, 4,5,6, 7,8,9,""" parser = all_parsers result = parser.read_csv(StringIO(data), index_col=False) expected = DataFrame({"A": [1, 4, 7], "B": [2, 5, 8], "C": [3, 6, 9]}) tm.assert_frame_equal(result, expected) def test_escapechar(all_parsers): # http://stackoverflow.com/questions/13824840/feature-request-for- # pandas-read-csv data = '''SEARCH_TERM,ACTUAL_URL "bra tv bord","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "tv p\xc3\xa5 hjul","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "SLAGBORD, \\"Bergslagen\\", IKEA:s 1700-tals serie","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord"''' # noqa parser = all_parsers result = parser.read_csv(StringIO(data), escapechar='\\', quotechar='"', encoding='utf-8') assert result['SEARCH_TERM'][2] == ('SLAGBORD, "Bergslagen", ' 'IKEA:s 1700-tals serie') tm.assert_index_equal(result.columns, Index(['SEARCH_TERM', 'ACTUAL_URL'])) def test_int64_min_issues(all_parsers): # see gh-2599 parser = all_parsers data = "A,B\n0,0\n0," result = parser.read_csv(StringIO(data)) expected = DataFrame({"A": [0, 0], "B": [0, np.nan]}) tm.assert_frame_equal(result, expected) def test_parse_integers_above_fp_precision(all_parsers): data = """Numbers 17007000002000191 17007000002000191 17007000002000191 17007000002000191 17007000002000192 17007000002000192 17007000002000192 17007000002000192 17007000002000192 17007000002000194""" parser = all_parsers result = parser.read_csv(StringIO(data)) expected = DataFrame({"Numbers": [17007000002000191, 17007000002000191, 17007000002000191, 17007000002000191, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000194]}) tm.assert_frame_equal(result, expected) def test_chunks_have_consistent_numerical_type(all_parsers): parser = all_parsers integers = [str(i) for i in range(499999)] data = "a\n" + "\n".join(integers + ["1.0", "2.0"] + integers) # Coercions should work without warnings. with tm.assert_produces_warning(None): result = parser.read_csv(StringIO(data)) assert type(result.a[0]) is np.float64 assert result.a.dtype == np.float def test_warn_if_chunks_have_mismatched_type(all_parsers): warning_type = None parser = all_parsers integers = [str(i) for i in range(499999)] data = "a\n" + "\n".join(integers + ["a", "b"] + integers) # see gh-3866: if chunks are different types and can't # be coerced using numerical types, then issue warning. if parser.engine == "c" and parser.low_memory: warning_type = DtypeWarning with tm.assert_produces_warning(warning_type): df = parser.read_csv(StringIO(data)) assert df.a.dtype == np.object @pytest.mark.parametrize("sep", [" ", r"\s+"]) def test_integer_overflow_bug(all_parsers, sep): # see gh-2601 data = "65248E10 11\n55555E55 22\n" parser = all_parsers result = parser.read_csv(StringIO(data), header=None, sep=sep) expected = DataFrame([[6.5248e14, 11], [5.5555e59, 22]]) tm.assert_frame_equal(result, expected) def test_catch_too_many_names(all_parsers): # see gh-5156 data = """\ 1,2,3 4,,6 7,8,9 10,11,12\n""" parser = all_parsers msg = ("Too many columns specified: " "expected 4 and found 3" if parser.engine == "c" else "Number of passed names did not match " "number of header fields in the file") with pytest.raises(ValueError, match=msg): parser.read_csv(StringIO(data), header=0, names=["a", "b", "c", "d"]) def test_ignore_leading_whitespace(all_parsers): # see gh-3374, gh-6607 parser = all_parsers data = " a b c\n 1 2 3\n 4 5 6\n 7 8 9" result = parser.read_csv(StringIO(data), sep=r"\s+") expected = DataFrame({"a": [1, 4, 7], "b": [2, 5, 8], "c": [3, 6, 9]}) tm.assert_frame_equal(result, expected) def test_chunk_begins_with_newline_whitespace(all_parsers): # see gh-10022 parser = all_parsers data = "\n hello\nworld\n" result = parser.read_csv(StringIO(data), header=None) expected = DataFrame([" hello", "world"]) tm.assert_frame_equal(result, expected) def test_empty_with_index(all_parsers): # see gh-10184 data = "x,y" parser = all_parsers result = parser.read_csv(StringIO(data), index_col=0) expected = DataFrame(columns=["y"], index=Index([], name="x")) tm.assert_frame_equal(result, expected) def test_empty_with_multi_index(all_parsers): # see gh-10467 data = "x,y,z" parser = all_parsers result = parser.read_csv(StringIO(data), index_col=["x", "y"]) expected = DataFrame(columns=["z"], index=MultiIndex.from_arrays( [[]] * 2, names=["x", "y"])) tm.assert_frame_equal(result, expected) def test_empty_with_reversed_multi_index(all_parsers): data = "x,y,z" parser = all_parsers result = parser.read_csv(StringIO(data), index_col=[1, 0]) expected = DataFrame(columns=["z"], index=MultiIndex.from_arrays( [[]] * 2, names=["y", "x"])) tm.assert_frame_equal(result, expected) def test_float_parser(all_parsers): # see gh-9565 parser = all_parsers data = "45e-1,4.5,45.,inf,-inf" result = parser.read_csv(StringIO(data), header=None) expected = DataFrame([[float(s) for s in data.split(",")]]) tm.assert_frame_equal(result, expected) def test_scientific_no_exponent(all_parsers): # see gh-12215 df = DataFrame.from_dict(OrderedDict([("w", ["2e"]), ("x", ["3E"]), ("y", ["42e"]), ("z", ["632E"])])) data = df.to_csv(index=False) parser = all_parsers for precision in parser.float_precision_choices: df_roundtrip = parser.read_csv(StringIO(data), float_precision=precision) tm.assert_frame_equal(df_roundtrip, df) @pytest.mark.parametrize("conv", [None, np.int64, np.uint64]) def test_int64_overflow(all_parsers, conv): data = """ID 00013007854817840016671868 00013007854817840016749251 00013007854817840016754630 00013007854817840016781876 00013007854817840017028824 00013007854817840017963235 00013007854817840018860166""" parser = all_parsers if conv is None: # 13007854817840016671868 > UINT64_MAX, so this # will overflow and return object as the dtype. result = parser.read_csv(StringIO(data)) expected = DataFrame(["00013007854817840016671868", "00013007854817840016749251", "00013007854817840016754630", "00013007854817840016781876", "00013007854817840017028824", "00013007854817840017963235", "00013007854817840018860166"], columns=["ID"]) tm.assert_frame_equal(result, expected) else: # 13007854817840016671868 > UINT64_MAX, so attempts # to cast to either int64 or uint64 will result in # an OverflowError being raised. msg = ("(Python int too large to convert to C long)|" "(long too big to convert)|" "(int too big to convert)") with pytest.raises(OverflowError, match=msg): parser.read_csv(StringIO(data), converters={"ID": conv}) @pytest.mark.parametrize("val", [ np.iinfo(np.uint64).max, np.iinfo(np.int64).max, np.iinfo(np.int64).min ]) def test_int64_uint64_range(all_parsers, val): # These numbers fall right inside the int64-uint64 # range, so they should be parsed as string. parser = all_parsers result = parser.read_csv(StringIO(str(val)), header=None) expected = DataFrame([val]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("val", [ np.iinfo(np.uint64).max + 1, np.iinfo(np.int64).min - 1 ]) def test_outside_int64_uint64_range(all_parsers, val): # These numbers fall just outside the int64-uint64 # range, so they should be parsed as string. parser = all_parsers result = parser.read_csv(StringIO(str(val)), header=None) expected = DataFrame([str(val)]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("exp_data", [[str(-1), str(2**63)], [str(2**63), str(-1)]]) def test_numeric_range_too_wide(all_parsers, exp_data): # No numerical dtype can hold both negative and uint64 # values, so they should be cast as string. parser = all_parsers data = "\n".join(exp_data) expected = DataFrame(exp_data) result = parser.read_csv(StringIO(data), header=None) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("iterator", [True, False]) def test_empty_with_nrows_chunksize(all_parsers, iterator): # see gh-9535 parser = all_parsers expected = DataFrame(columns=["foo", "bar"]) nrows = 10 data = StringIO("foo,bar\n") if iterator: result = next(iter(parser.read_csv(data, chunksize=nrows))) else: result = parser.read_csv(data, nrows=nrows) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("data,kwargs,expected,msg", [ # gh-10728: WHITESPACE_LINE ("a,b,c\n4,5,6\n ", dict(), DataFrame([[4, 5, 6]], columns=["a", "b", "c"]), None), # gh-10548: EAT_LINE_COMMENT ("a,b,c\n4,5,6\n#comment", dict(comment="#"), DataFrame([[4, 5, 6]], columns=["a", "b", "c"]), None), # EAT_CRNL_NOP ("a,b,c\n4,5,6\n\r", dict(), DataFrame([[4, 5, 6]], columns=["a", "b", "c"]), None), # EAT_COMMENT ("a,b,c\n4,5,6#comment", dict(comment="#"), DataFrame([[4, 5, 6]], columns=["a", "b", "c"]), None), # SKIP_LINE ("a,b,c\n4,5,6\nskipme", dict(skiprows=[2]), DataFrame([[4, 5, 6]], columns=["a", "b", "c"]), None), # EAT_LINE_COMMENT ("a,b,c\n4,5,6\n#comment", dict(comment="#", skip_blank_lines=False), DataFrame([[4, 5, 6]], columns=["a", "b", "c"]), None), # IN_FIELD ("a,b,c\n4,5,6\n ", dict(skip_blank_lines=False), DataFrame([["4", 5, 6], [" ", None, None]], columns=["a", "b", "c"]), None), # EAT_CRNL ("a,b,c\n4,5,6\n\r", dict(skip_blank_lines=False), DataFrame([[4, 5, 6], [None, None, None]], columns=["a", "b", "c"]), None), # ESCAPED_CHAR ("a,b,c\n4,5,6\n\\", dict(escapechar="\\"), None, "(EOF following escape character)|(unexpected end of data)"), # ESCAPE_IN_QUOTED_FIELD ('a,b,c\n4,5,6\n"\\', dict(escapechar="\\"), None, "(EOF inside string starting at row 2)|(unexpected end of data)"), # IN_QUOTED_FIELD ('a,b,c\n4,5,6\n"', dict(escapechar="\\"), None, "(EOF inside string starting at row 2)|(unexpected end of data)"), ], ids=["whitespace-line", "eat-line-comment", "eat-crnl-nop", "eat-comment", "skip-line", "eat-line-comment", "in-field", "eat-crnl", "escaped-char", "escape-in-quoted-field", "in-quoted-field"]) def test_eof_states(all_parsers, data, kwargs, expected, msg): # see gh-10728, gh-10548 parser = all_parsers if expected is None: with pytest.raises(ParserError, match=msg): parser.read_csv(StringIO(data), **kwargs) else: result = parser.read_csv(StringIO(data), **kwargs) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("usecols", [None, [0, 1], ["a", "b"]]) def test_uneven_lines_with_usecols(all_parsers, usecols): # see gh-12203 parser = all_parsers data = r"""a,b,c 0,1,2 3,4,5,6,7 8,9,10""" if usecols is None: # Make sure that an error is still raised # when the "usecols" parameter is not provided. msg = r"Expected \d+ fields in line \d+, saw \d+" with pytest.raises(ParserError, match=msg): parser.read_csv(StringIO(data)) else: expected = DataFrame({ "a": [0, 3, 8], "b": [1, 4, 9] }) result = parser.read_csv(StringIO(data), usecols=usecols) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("data,kwargs,expected", [ # First, check to see that the response of parser when faced with no # provided columns raises the correct error, with or without usecols. ("", dict(), None), ("", dict(usecols=["X"]), None), (",,", dict(names=["Dummy", "X", "Dummy_2"], usecols=["X"]), DataFrame(columns=["X"], index=[0], dtype=np.float64)), ("", dict(names=["Dummy", "X", "Dummy_2"], usecols=["X"]), DataFrame(columns=["X"])), ]) def test_read_empty_with_usecols(all_parsers, data, kwargs, expected): # see gh-12493 parser = all_parsers if expected is None: msg = "No columns to parse from file" with pytest.raises(EmptyDataError, match=msg): parser.read_csv(StringIO(data), **kwargs) else: result = parser.read_csv(StringIO(data), **kwargs) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("kwargs,expected", [ # gh-8661, gh-8679: this should ignore six lines, including # lines with trailing whitespace and blank lines. (dict(header=None, delim_whitespace=True, skiprows=[0, 1, 2, 3, 5, 6], skip_blank_lines=True), DataFrame([[1., 2., 4.], [5.1, np.nan, 10.]])), # gh-8983: test skipping set of rows after a row with trailing spaces. (dict(delim_whitespace=True, skiprows=[1, 2, 3, 5, 6], skip_blank_lines=True), DataFrame({"A": [1., 5.1], "B": [2., np.nan], "C": [4., 10]})), ]) def test_trailing_spaces(all_parsers, kwargs, expected): data = "A B C \nrandom line with trailing spaces \nskip\n1,2,3\n1,2.,4.\nrandom line with trailing tabs\t\t\t\n \n5.1,NaN,10.0\n" # noqa parser = all_parsers result = parser.read_csv(StringIO(data.replace(",", " ")), **kwargs) tm.assert_frame_equal(result, expected) def test_raise_on_sep_with_delim_whitespace(all_parsers): # see gh-6607 data = "a b c\n1 2 3" parser = all_parsers with pytest.raises(ValueError, match="you can only specify one"): parser.read_csv(StringIO(data), sep=r"\s", delim_whitespace=True) @pytest.mark.parametrize("delim_whitespace", [True, False]) def test_single_char_leading_whitespace(all_parsers, delim_whitespace): # see gh-9710 parser = all_parsers data = """\ MyColumn a b a b\n""" expected = DataFrame({"MyColumn": list("abab")}) result = parser.read_csv(StringIO(data), skipinitialspace=True, delim_whitespace=delim_whitespace) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("sep,skip_blank_lines,exp_data", [ (",", True, [[1., 2., 4.], [5., np.nan, 10.], [-70., .4, 1.]]), (r"\s+", True, [[1., 2., 4.], [5., np.nan, 10.], [-70., .4, 1.]]), (",", False, [[1., 2., 4.], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [5., np.nan, 10.], [np.nan, np.nan, np.nan], [-70., .4, 1.]]), ]) def test_empty_lines(all_parsers, sep, skip_blank_lines, exp_data): parser = all_parsers data = """\ A,B,C 1,2.,4. 5.,NaN,10.0 -70,.4,1 """ if sep == r"\s+": data = data.replace(",", " ") result = parser.read_csv(StringIO(data), sep=sep, skip_blank_lines=skip_blank_lines) expected = DataFrame(exp_data, columns=["A", "B", "C"]) tm.assert_frame_equal(result, expected) def test_whitespace_lines(all_parsers): parser = all_parsers data = """ \t \t\t \t A,B,C \t 1,2.,4. 5.,NaN,10.0 """ expected = DataFrame([[1, 2., 4.], [5., np.nan, 10.]], columns=["A", "B", "C"]) result = parser.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("data,expected", [ (""" A B C D a 1 2 3 4 b 1 2 3 4 c 1 2 3 4 """, DataFrame([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]], columns=["A", "B", "C", "D"], index=["a", "b", "c"])), (" a b c\n1 2 3 \n4 5 6\n 7 8 9", DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], columns=["a", "b", "c"])), ]) def test_whitespace_regex_separator(all_parsers, data, expected): # see gh-6607 parser = all_parsers result = parser.read_csv(StringIO(data), sep=r"\s+") tm.assert_frame_equal(result, expected) def test_verbose_read(all_parsers, capsys): parser = all_parsers data = """a,b,c,d one,1,2,3 one,1,2,3 ,1,2,3 one,1,2,3 ,1,2,3 ,1,2,3 one,1,2,3 two,1,2,3""" # Engines are verbose in different ways. parser.read_csv(StringIO(data), verbose=True) captured = capsys.readouterr() if parser.engine == "c": assert "Tokenization took:" in captured.out assert "Parser memory cleanup took:" in captured.out else: # Python engine assert captured.out == "Filled 3 NA values in column a\n" def test_verbose_read2(all_parsers, capsys): parser = all_parsers data = """a,b,c,d one,1,2,3 two,1,2,3 three,1,2,3 four,1,2,3 five,1,2,3 ,1,2,3 seven,1,2,3 eight,1,2,3""" parser.read_csv(StringIO(data), verbose=True, index_col=0) captured = capsys.readouterr() # Engines are verbose in different ways. if parser.engine == "c": assert "Tokenization took:" in captured.out assert "Parser memory cleanup took:" in captured.out else: # Python engine assert captured.out == "Filled 1 NA values in column a\n" def test_iteration_open_handle(all_parsers): parser = all_parsers kwargs = dict(squeeze=True, header=None) with tm.ensure_clean() as path: with open(path, "w") as f: f.write("AAA\nBBB\nCCC\nDDD\nEEE\nFFF\nGGG") with open(path, "r") as f: for line in f: if "CCC" in line: break result = parser.read_csv(f, **kwargs) expected = Series(["DDD", "EEE", "FFF", "GGG"], name=0) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("data,thousands,decimal", [ ("""A|B|C 1|2,334.01|5 10|13|10. """, ",", "."), ("""A|B|C 1|2.334,01|5 10|13|10, """, ".", ","), ]) def test_1000_sep_with_decimal(all_parsers, data, thousands, decimal): parser = all_parsers expected = DataFrame({ "A": [1, 10], "B": [2334.01, 13], "C": [5, 10.] }) result = parser.read_csv(StringIO(data), sep="|", thousands=thousands, decimal=decimal) tm.assert_frame_equal(result, expected) def test_euro_decimal_format(all_parsers): parser = all_parsers data = """Id;Number1;Number2;Text1;Text2;Number3 1;1521,1541;187101,9543;ABC;poi;4,738797819 2;121,12;14897,76;DEF;uyt;0,377320872 3;878,158;108013,434;GHI;rez;2,735694704""" result = parser.read_csv(StringIO(data), sep=";", decimal=",") expected = DataFrame([ [1, 1521.1541, 187101.9543, "ABC", "poi", 4.738797819], [2, 121.12, 14897.76, "DEF", "uyt", 0.377320872], [3, 878.158, 108013.434, "GHI", "rez", 2.735694704] ], columns=["Id", "Number1", "Number2", "Text1", "Text2", "Number3"]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("na_filter", [True, False]) def test_inf_parsing(all_parsers, na_filter): parser = all_parsers data = """\ ,A a,inf b,-inf c,+Inf d,-Inf e,INF f,-INF g,+INf h,-INf i,inF j,-inF""" expected = DataFrame({"A": [float("inf"), float("-inf")] * 5}, index=["a", "b", "c", "d", "e", "f", "g", "h", "i", "j"]) result = parser.read_csv(StringIO(data), index_col=0, na_filter=na_filter) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("nrows", [0, 1, 2, 3, 4, 5]) def test_raise_on_no_columns(all_parsers, nrows): parser = all_parsers data = "\n" * nrows msg = "No columns to parse from file" with pytest.raises(EmptyDataError, match=msg): parser.read_csv(StringIO(data)) def test_memory_map(all_parsers, csv_dir_path): mmap_file = os.path.join(csv_dir_path, "test_mmap.csv") parser = all_parsers expected = DataFrame({ "a": [1, 2, 3], "b": ["one", "two", "three"], "c": ["I", "II", "III"] }) result = parser.read_csv(mmap_file, memory_map=True) tm.assert_frame_equal(result, expected) def test_null_byte_char(all_parsers): # see gh-2741 data = "\x00,foo" names = ["a", "b"] parser = all_parsers if parser.engine == "c": expected = DataFrame([[np.nan, "foo"]], columns=names) out = parser.read_csv(StringIO(data), names=names) tm.assert_frame_equal(out, expected) else: msg = "NULL byte detected" with pytest.raises(ParserError, match=msg): parser.read_csv(StringIO(data), names=names) @pytest.mark.parametrize("data,kwargs,expected", [ # Basic test ("a\n1", dict(), DataFrame({"a": [1]})), # "Regular" quoting ('"a"\n1', dict(quotechar='"'), DataFrame({"a": [1]})), # Test in a data row instead of header ("b\n1", dict(names=["a"]), DataFrame({"a": ["b", "1"]})), # Test in empty data row with skipping ("\n1", dict(names=["a"], skip_blank_lines=True), DataFrame({"a": [1]})), # Test in empty data row without skipping ("\n1", dict(names=["a"], skip_blank_lines=False), DataFrame({"a": [np.nan, 1]})), ]) def test_utf8_bom(all_parsers, data, kwargs, expected): # see gh-4793 parser = all_parsers bom = "\ufeff" utf8 = "utf-8" def _encode_data_with_bom(_data): bom_data = (bom + _data).encode(utf8) return BytesIO(bom_data) result = parser.read_csv(_encode_data_with_bom(data), encoding=utf8, **kwargs) tm.assert_frame_equal(result, expected) def test_temporary_file(all_parsers): # see gh-13398 parser = all_parsers data = "0 0" new_file = TemporaryFile("w+") new_file.write(data) new_file.flush() new_file.seek(0) result = parser.read_csv(new_file, sep=r"\s+", header=None) new_file.close() expected = DataFrame([[0, 0]]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("byte", [8, 16]) @pytest.mark.parametrize("fmt", ["utf-{0}", "utf_{0}", "UTF-{0}", "UTF_{0}"]) def test_read_csv_utf_aliases(all_parsers, byte, fmt): # see gh-13549 expected = DataFrame({"mb_num": [4.8], "multibyte": ["test"]}) parser = all_parsers encoding = fmt.format(byte) data = "mb_num,multibyte\n4.8,test".encode(encoding) result = parser.read_csv(BytesIO(data), encoding=encoding) tm.assert_frame_equal(result, expected) def test_internal_eof_byte(all_parsers): # see gh-5500 parser = all_parsers data = "a,b\n1\x1a,2" expected = DataFrame([["1\x1a", 2]], columns=["a", "b"]) result = parser.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) def test_internal_eof_byte_to_file(all_parsers): # see gh-16559 parser = all_parsers data = b'c1,c2\r\n"test \x1a test", test\r\n' expected = DataFrame([["test \x1a test", " test"]], columns=["c1", "c2"]) path = "__%s__.csv" % tm.rands(10) with tm.ensure_clean(path) as path: with open(path, "wb") as f: f.write(data) result = parser.read_csv(path) tm.assert_frame_equal(result, expected) def test_sub_character(all_parsers, csv_dir_path): # see gh-16893 filename = os.path.join(csv_dir_path, "sub_char.csv") expected = DataFrame([[1, 2, 3]], columns=["a", "\x1ab", "c"]) parser = all_parsers result = parser.read_csv(filename) tm.assert_frame_equal(result, expected) def test_file_handle_string_io(all_parsers): # gh-14418 # # Don't close user provided file handles. parser = all_parsers data = "a,b\n1,2" fh = StringIO(data) parser.read_csv(fh) assert not fh.closed def test_file_handles_with_open(all_parsers, csv1): # gh-14418 # # Don't close user provided file handles. parser = all_parsers with open(csv1, "r") as f: parser.read_csv(f) assert not f.closed def test_invalid_file_buffer_class(all_parsers): # see gh-15337 class InvalidBuffer(object): pass parser = all_parsers msg = "Invalid file path or buffer object type" with pytest.raises(ValueError, match=msg): parser.read_csv(InvalidBuffer()) def test_invalid_file_buffer_mock(all_parsers): # see gh-15337 parser = all_parsers msg = "Invalid file path or buffer object type" class Foo(): pass with pytest.raises(ValueError, match=msg): parser.read_csv(Foo()) def test_valid_file_buffer_seems_invalid(all_parsers): # gh-16135: we want to ensure that "tell" and "seek" # aren't actually being used when we call `read_csv` # # Thus, while the object may look "invalid" (these # methods are attributes of the `StringIO` class), # it is still a valid file-object for our purposes. class NoSeekTellBuffer(StringIO): def tell(self): raise AttributeError("No tell method") def seek(self, pos, whence=0): raise AttributeError("No seek method") data = "a\n1" parser = all_parsers expected = DataFrame({"a": [1]}) result = parser.read_csv(NoSeekTellBuffer(data)) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("kwargs", [ dict(), # Default is True. dict(error_bad_lines=True), # Explicitly pass in. ]) @pytest.mark.parametrize("warn_kwargs", [ dict(), dict(warn_bad_lines=True), dict(warn_bad_lines=False) ]) def test_error_bad_lines(all_parsers, kwargs, warn_kwargs): # see gh-15925 parser = all_parsers kwargs.update(**warn_kwargs) data = "a\n1\n1,2,3\n4\n5,6,7" msg = "Expected 1 fields in line 3, saw 3" with pytest.raises(ParserError, match=msg): parser.read_csv(StringIO(data), **kwargs) def test_warn_bad_lines(all_parsers, capsys): # see gh-15925 parser = all_parsers data = "a\n1\n1,2,3\n4\n5,6,7" expected = DataFrame({"a": [1, 4]}) result = parser.read_csv(StringIO(data), error_bad_lines=False, warn_bad_lines=True) tm.assert_frame_equal(result, expected) captured = capsys.readouterr() assert "Skipping line 3" in captured.err assert "Skipping line 5" in captured.err def test_suppress_error_output(all_parsers, capsys): # see gh-15925 parser = all_parsers data = "a\n1\n1,2,3\n4\n5,6,7" expected = DataFrame({"a": [1, 4]}) result = parser.read_csv(StringIO(data), error_bad_lines=False, warn_bad_lines=False) tm.assert_frame_equal(result, expected) captured = capsys.readouterr() assert captured.err == "" @pytest.mark.skipif(compat.is_platform_windows() and not compat.PY36, reason="On Python < 3.6 won't pass on Windows") @pytest.mark.parametrize("filename", ["sé-es-vé.csv", "ru-sй.csv"]) def test_filename_with_special_chars(all_parsers, filename): # see gh-15086. parser = all_parsers df = DataFrame({"a": [1, 2, 3]}) with tm.ensure_clean(filename) as path: df.to_csv(path, index=False) result = parser.read_csv(path) tm.assert_frame_equal(result, df) def test_read_csv_memory_growth_chunksize(all_parsers): # see gh-24805 # # Let's just make sure that we don't crash # as we iteratively process all chunks. parser = all_parsers with tm.ensure_clean() as path: with open(path, "w") as f: for i in range(1000): f.write(str(i) + "\n") result = parser.read_csv(path, chunksize=20) for _ in result: pass def test_read_table_deprecated(all_parsers): # see gh-21948 parser = all_parsers data = "a\tb\n1\t2\n3\t4" expected = parser.read_csv(StringIO(data), sep="\t") with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = parser.read_table(StringIO(data)) tm.assert_frame_equal(result, expected)
31.05176
194
0.594996
a4d8388933c1181b096b272546f4684bd8a9b0a6
11,709
py
Python
veles/tests/test_workflow.py
AkshayJainG/veles
21106f41a8e7e7e74453cd16a5059a0e6b1c315e
[ "Apache-2.0" ]
1,007
2015-07-20T12:01:41.000Z
2022-03-30T23:08:35.000Z
veles/tests/test_workflow.py
AkshayJainG/veles
21106f41a8e7e7e74453cd16a5059a0e6b1c315e
[ "Apache-2.0" ]
52
2015-07-21T10:26:24.000Z
2019-01-24T05:46:43.000Z
veles/tests/test_workflow.py
AkshayJainG/veles
21106f41a8e7e7e74453cd16a5059a0e6b1c315e
[ "Apache-2.0" ]
235
2015-07-20T09:42:42.000Z
2021-12-06T18:12:26.000Z
# -*- coding: utf-8 -*- """ .. invisible: _ _ _____ _ _____ _____ | | | | ___| | | ___/ ___| | | | | |__ | | | |__ \ `--. | | | | __|| | | __| `--. \ \ \_/ / |___| |___| |___/\__/ / \___/\____/\_____|____/\____/ Created on Jun 16, 2014 ███████████████████████████████████████████████████████████████████████████████ Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ███████████████████████████████████████████████████████████████████████████████ """ import gc import six import unittest import weakref from zope.interface.verify import verifyObject from veles.snapshotter import SnapshotterBase from veles.workflow import Workflow from veles.distributable import IDistributable from veles.units import TrivialUnit from veles.tests import DummyLauncher from veles.workflow import StartPoint from veles.tests import DummyWorkflow from veles.pickle2 import pickle class Test(unittest.TestCase): def add_units(self, wf): u1 = TrivialUnit(wf, name="unit1") u1.tag = 0 u1.link_from(wf.start_point) u2 = TrivialUnit(wf, name="unit1") u2.tag = 1 u2.link_from(u1) u3 = TrivialUnit(wf, name="unit1") u3.tag = 2 u3.link_from(u2) u4 = TrivialUnit(wf, name="unit2") u4.link_from(u3) u5 = TrivialUnit(wf, name="aaa") u5.link_from(u4) wf.end_point.link_from(u5) def testIterator(self): wf = Workflow(DummyLauncher()) self.add_units(wf) self.assertEqual(7, len(wf)) units = list(wf) self.assertEqual(7, len(units)) self.assertEqual("Start of Workflow", units[0].name) self.assertEqual("End of Workflow", units[1].name) self.assertEqual("unit1", units[2].name) self.assertEqual("unit1", units[3].name) self.assertEqual("unit1", units[4].name) self.assertEqual("unit2", units[5].name) self.assertEqual("aaa", units[6].name) self.assertEqual(0, units[2].tag) self.assertEqual(1, units[3].tag) self.assertEqual(2, units[4].tag) def testIndex(self): wf = Workflow(DummyLauncher()) self.add_units(wf) unit1 = wf["unit1"] self.assertTrue(isinstance(unit1, list)) self.assertEqual(3, len(unit1)) self.assertEqual(0, unit1[0].tag) self.assertEqual("unit1", unit1[0].name) self.assertEqual(1, unit1[1].tag) self.assertEqual("unit1", unit1[1].name) self.assertEqual(2, unit1[2].tag) self.assertEqual("unit1", unit1[2].name) unit2 = wf["unit2"] self.assertTrue(isinstance(unit2, TrivialUnit)) self.assertEqual("unit2", unit2.name) raises = False try: wf["fail"] except KeyError: raises = True self.assertTrue(raises) unit = wf[0] self.assertEqual("Start of Workflow", unit.name) unit = wf[1] self.assertEqual("End of Workflow", unit.name) unit = wf[2] self.assertEqual(0, unit.tag) self.assertEqual("unit1", unit.name) unit = wf[3] self.assertEqual(1, unit.tag) self.assertEqual("unit1", unit.name) unit = wf[4] self.assertEqual(2, unit.tag) self.assertEqual("unit1", unit.name) unit = wf[5] self.assertEqual("unit2", unit.name) unit = wf[6] self.assertEqual("aaa", unit.name) raises = False try: wf[7] except IndexError: raises = True self.assertTrue(raises) def testUnits(self): wf = Workflow(DummyLauncher()) self.add_units(wf) units = wf.units self.assertTrue(isinstance(units, list)) self.assertEqual(7, len(units)) self.assertEqual("Start of Workflow", units[0].name) self.assertEqual("End of Workflow", units[1].name) self.assertEqual("unit1", units[2].name) self.assertEqual("unit1", units[3].name) self.assertEqual("unit1", units[4].name) self.assertEqual("unit2", units[5].name) self.assertEqual("aaa", units[6].name) units = wf.units_in_dependency_order self.assertTrue(hasattr(units, "__iter__")) units = list(units) self.assertEqual(7, len(units)) self.assertEqual("Start of Workflow", units[0].name) self.assertEqual("unit1", units[1].name) self.assertEqual("unit1", units[2].name) self.assertEqual("unit1", units[3].name) self.assertEqual("unit2", units[4].name) self.assertEqual("aaa", units[5].name) self.assertEqual("End of Workflow", units[6].name) def testGraph(self): wf = Workflow(DummyLauncher()) self.add_units(wf) dot, _ = wf.generate_graph(write_on_disk=False) ids = [] for unit in wf: ids.append(hex(id(unit))) ids.append(ids[-1]) ids.append(ids[-1]) # Move EndPoint to the tail backup = ids[3:6] ids[3:-3] = ids[6:] ids[-3:] = backup ids = ids[1:-1] valid = ('digraph Workflow {\n' 'bgcolor=transparent;\n' 'mindist=0.5;\n' 'outputorder=edgesfirst;\n' 'overlap=false;\n' '"%s" [fillcolor=lightgrey, gradientangle=90, ' 'label=<<b><font point-size="18">Start of Workflow</font>' '</b><br/><font point-size="14">' 'plumbing.py</font>>, shape=rect, ' 'style="rounded,filled"];\n' '"%s" -> "%s" [penwidth=3, weight=100];\n' '"%s" [fillcolor=white, gradientangle=90, ' 'label=<<b><font point-size="18">unit1</font></b><br/>' '<font point-size="14">units.py' '</font>>, shape=rect, style="rounded,filled"];\n' '"%s" -> "%s" [penwidth=3, weight=100];\n' '"%s" [fillcolor=white, gradientangle=90, ' 'label=<<b><font point-size="18">unit1</font></b><br/>' '<font point-size="14">units.py' '</font>>, shape=rect, style="rounded,filled"];\n' '"%s" -> "%s" [penwidth=3, weight=100];\n' '"%s" [fillcolor=white, gradientangle=90, ' 'label=<<b><font point-size="18">unit1</font></b><br/>' '<font point-size="14">units.py' '</font>>, shape=rect, style="rounded,filled"];\n' '"%s" -> "%s" [penwidth=3, weight=100];\n' '"%s" [fillcolor=white, gradientangle=90, ' 'label=<<b><font point-size="18">unit2</font></b><br/>' '<font point-size="14">units.py' '</font>>, shape=rect, style="rounded,filled"];\n' '"%s" -> "%s" [penwidth=3, weight=100];\n' '"%s" [fillcolor=white, gradientangle=90, ' 'label=<<b><font point-size="18">aaa</font></b><br/>' '<font point-size="14">units.py' '</font>>, shape=rect, style="rounded,filled"];\n' '"%s" -> "%s" [penwidth=3, weight=100];\n' '"%s" [fillcolor=lightgrey, gradientangle=90, ' 'label=<<b><font point-size="18">End of Workflow</font>' '</b><br/><font point-size="14">plumbing.py' '</font>>, shape=rect, style="rounded,filled"];\n' '}') % tuple(ids) self.maxDiff = None self.assertEqual(valid, dot) def testStartPoint(self): dwf = DummyWorkflow() sp = StartPoint(dwf) verifyObject(IDistributable, sp) sp = pickle.loads(pickle.dumps(sp)) verifyObject(IDistributable, sp) self.assertEqual(sp.workflow, None) del dwf if six.PY3: def testWithDestruction(self): flag = [False, False] class MyUnit(TrivialUnit): def __del__(self): flag[0] = True class MyWorkflow(Workflow): def __del__(self): flag[1] = True with MyWorkflow(DummyLauncher()) as wf: u = MyUnit(wf) self.assertEqual(len(wf), 3) self.assertEqual(u.workflow, wf) self.assertEqual(len(wf), 2) self.assertEqual(u.workflow, wf) self.assertIsInstance(u._workflow_, weakref.ReferenceType) del wf gc.collect() self.assertTrue(flag[1]) del u gc.collect() self.assertTrue(flag[0]) def testDestruction(self): flag = [False, False] class MyUnit(TrivialUnit): def __del__(self): flag[0] = True class MyWorkflow(Workflow): def __del__(self): flag[1] = True wf = MyWorkflow(DummyLauncher()) u = MyUnit(wf) self.assertEqual(len(wf), 3) self.assertEqual(u.workflow, wf) del u del wf gc.collect() self.assertTrue(flag[0]) self.assertTrue(flag[1]) def testPickling(self): dl = DummyLauncher() wf = Workflow(dl) TrivialUnit(wf) w2 = pickle.loads(pickle.dumps(wf)) self.assertEqual(len(w2), len(wf)) def testRestoredFromSnapshot(self): dl = DummyLauncher() wf = Workflow(dl) self.assertFalse(wf.restored_from_snapshot) self.assertFalse(wf.start_point.restored_from_snapshot) self.assertIsNone(wf._restored_from_snapshot_) wf._restored_from_snapshot_ = True self.assertTrue(wf.restored_from_snapshot) self.assertTrue(wf.start_point.restored_from_snapshot) wf._restored_from_snapshot_ = False self.assertFalse(wf.restored_from_snapshot) self.assertFalse(wf.start_point.restored_from_snapshot) w2 = SnapshotterBase._import_fobj(six.BytesIO(pickle.dumps(wf))) self.assertTrue(w2.restored_from_snapshot) self.assertTrue(w2.start_point.restored_from_snapshot) self.assertTrue(w2._restored_from_snapshot_) w2.end_point.link_from(w2.start_point) w2.workflow = dl w2.initialize() self.assertFalse(w2.restored_from_snapshot) self.assertFalse(w2.start_point.restored_from_snapshot) self.assertIsNone(w2._restored_from_snapshot_) w2.link_from(wf) wf.end_point.link_from(w2) w2.workflow = wf self.assertFalse(w2.restored_from_snapshot) self.assertFalse(wf.restored_from_snapshot) wf._restored_from_snapshot_ = True self.assertTrue(w2.restored_from_snapshot) self.assertTrue(w2.start_point.restored_from_snapshot) if __name__ == "__main__": # import sys;sys.argv = ['', 'Test.testItarator'] unittest.main()
37.408946
79
0.564352
b5d77fd3c49b625eae746b86b2e3a401d1e46618
18,949
py
Python
python/pyarrow/tests/test_feather.py
prutskov/arrow
e570db9c45ca97f77c5633e5525c02f55dbb6c4b
[ "Apache-2.0" ]
null
null
null
python/pyarrow/tests/test_feather.py
prutskov/arrow
e570db9c45ca97f77c5633e5525c02f55dbb6c4b
[ "Apache-2.0" ]
8
2020-04-10T19:03:51.000Z
2021-01-21T01:06:28.000Z
python/pyarrow/tests/test_feather.py
signavio/arrow
866e6a82e2794b151235c19b8c5cbf1fcaf780ef
[ "CC-BY-3.0", "Apache-2.0", "CC0-1.0" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import io import os import sys import tempfile import pytest import numpy as np import pyarrow as pa from pyarrow.feather import (read_feather, write_feather, read_table, FeatherDataset) try: from pandas.testing import assert_frame_equal import pandas as pd import pyarrow.pandas_compat except ImportError: pass def random_path(prefix='feather_'): return tempfile.mktemp(prefix=prefix) @pytest.fixture(scope="module", params=[1, 2]) def version(request): yield request.param TEST_FILES = None def setup_module(module): global TEST_FILES TEST_FILES = [] def teardown_module(module): for path in TEST_FILES: try: os.remove(path) except os.error: pass @pytest.mark.pandas def test_file_not_exist(): with pytest.raises(pa.ArrowIOError): read_feather('test_invalid_file') def _check_pandas_roundtrip(df, expected=None, path=None, columns=None, use_threads=False, version=None, compression=None, compression_level=None): if path is None: path = random_path() TEST_FILES.append(path) write_feather(df, path, compression=compression, compression_level=compression_level, version=version) if not os.path.exists(path): raise Exception('file not written') result = read_feather(path, columns, use_threads=use_threads) if expected is None: expected = df assert_frame_equal(result, expected) def _assert_error_on_write(df, exc, path=None): # check that we are raising the exception # on writing if path is None: path = random_path() TEST_FILES.append(path) def f(): write_feather(df, path) pytest.raises(exc, f) @pytest.mark.pandas def test_dataset(version): num_values = (100, 100) num_files = 5 paths = [random_path() for i in range(num_files)] df = pd.DataFrame(np.random.randn(*num_values), columns=['col_' + str(i) for i in range(num_values[1])]) TEST_FILES.extend(paths) for index, path in enumerate(paths): rows = (index * (num_values[0] // num_files), (index + 1) * (num_values[0] // num_files)) write_feather(df.iloc[rows[0]:rows[1]], path, version=version) data = FeatherDataset(paths).read_pandas() assert_frame_equal(data, df) @pytest.mark.pandas def test_float_no_nulls(version): data = {} numpy_dtypes = ['f4', 'f8'] num_values = 100 for dtype in numpy_dtypes: values = np.random.randn(num_values) data[dtype] = values.astype(dtype) df = pd.DataFrame(data) _check_pandas_roundtrip(df, version=version) @pytest.mark.pandas def test_read_table(version): num_values = (100, 100) path = random_path() TEST_FILES.append(path) values = np.random.randint(0, 100, size=num_values) df = pd.DataFrame(values, columns=['col_' + str(i) for i in range(100)]) write_feather(df, path, version=version) data = pd.DataFrame(values, columns=['col_' + str(i) for i in range(100)]) table = pa.Table.from_pandas(data) result = read_table(path) assert_frame_equal(table.to_pandas(), result.to_pandas()) # Test without memory mapping result = read_table(path, memory_map=False) assert_frame_equal(table.to_pandas(), result.to_pandas()) @pytest.mark.pandas def test_float_nulls(version): num_values = 100 path = random_path() TEST_FILES.append(path) null_mask = np.random.randint(0, 10, size=num_values) < 3 dtypes = ['f4', 'f8'] expected_cols = [] arrays = [] for name in dtypes: values = np.random.randn(num_values).astype(name) arrays.append(pa.array(values, mask=null_mask)) values[null_mask] = np.nan expected_cols.append(values) table = pa.table(arrays, names=dtypes) write_feather(table, path, version=version) ex_frame = pd.DataFrame(dict(zip(dtypes, expected_cols)), columns=dtypes) result = read_feather(path) assert_frame_equal(result, ex_frame) @pytest.mark.pandas def test_integer_no_nulls(version): data = {} numpy_dtypes = ['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8'] num_values = 100 for dtype in numpy_dtypes: values = np.random.randint(0, 100, size=num_values) data[dtype] = values.astype(dtype) df = pd.DataFrame(data) _check_pandas_roundtrip(df, version=version) @pytest.mark.pandas def test_platform_numpy_integers(version): data = {} numpy_dtypes = ['longlong'] num_values = 100 for dtype in numpy_dtypes: values = np.random.randint(0, 100, size=num_values) data[dtype] = values.astype(dtype) df = pd.DataFrame(data) _check_pandas_roundtrip(df, version=version) @pytest.mark.pandas def test_integer_with_nulls(version): # pandas requires upcast to float dtype path = random_path() TEST_FILES.append(path) int_dtypes = ['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8'] num_values = 100 arrays = [] null_mask = np.random.randint(0, 10, size=num_values) < 3 expected_cols = [] for name in int_dtypes: values = np.random.randint(0, 100, size=num_values) arrays.append(pa.array(values, mask=null_mask)) expected = values.astype('f8') expected[null_mask] = np.nan expected_cols.append(expected) table = pa.table(arrays, names=int_dtypes) write_feather(table, path, version=version) ex_frame = pd.DataFrame(dict(zip(int_dtypes, expected_cols)), columns=int_dtypes) result = read_feather(path) assert_frame_equal(result, ex_frame) @pytest.mark.pandas def test_boolean_no_nulls(version): num_values = 100 np.random.seed(0) df = pd.DataFrame({'bools': np.random.randn(num_values) > 0}) _check_pandas_roundtrip(df, version=version) @pytest.mark.pandas def test_boolean_nulls(version): # pandas requires upcast to object dtype path = random_path() TEST_FILES.append(path) num_values = 100 np.random.seed(0) mask = np.random.randint(0, 10, size=num_values) < 3 values = np.random.randint(0, 10, size=num_values) < 5 table = pa.table([pa.array(values, mask=mask)], names=['bools']) write_feather(table, path, version=version) expected = values.astype(object) expected[mask] = None ex_frame = pd.DataFrame({'bools': expected}) result = read_feather(path) assert_frame_equal(result, ex_frame) @pytest.mark.pandas def test_buffer_bounds_error(version): # ARROW-1676 path = random_path() TEST_FILES.append(path) for i in range(16, 256): values = pa.array([None] + list(range(i)), type=pa.float64()) write_feather(pa.table([values], names=['arr']), path, version=version) result = read_feather(path) expected = pd.DataFrame({'arr': values.to_pandas()}) assert_frame_equal(result, expected) _check_pandas_roundtrip(expected, version=version) @pytest.mark.pandas def test_boolean_object_nulls(version): repeats = 100 arr = np.array([False, None, True] * repeats, dtype=object) df = pd.DataFrame({'bools': arr}) _check_pandas_roundtrip(df, version=version) @pytest.mark.pandas def test_delete_partial_file_on_error(version): if sys.platform == 'win32': pytest.skip('Windows hangs on to file handle for some reason') class CustomClass: pass # strings will fail df = pd.DataFrame( { 'numbers': range(5), 'strings': [b'foo', None, 'bar', CustomClass(), np.nan]}, columns=['numbers', 'strings']) path = random_path() try: write_feather(df, path, version=version) except Exception: pass assert not os.path.exists(path) @pytest.mark.pandas def test_strings(version): repeats = 1000 # Mixed bytes, unicode, strings coerced to binary values = [b'foo', None, 'bar', 'qux', np.nan] df = pd.DataFrame({'strings': values * repeats}) ex_values = [b'foo', None, b'bar', b'qux', np.nan] expected = pd.DataFrame({'strings': ex_values * repeats}) _check_pandas_roundtrip(df, expected, version=version) # embedded nulls are ok values = ['foo', None, 'bar', 'qux', None] df = pd.DataFrame({'strings': values * repeats}) expected = pd.DataFrame({'strings': values * repeats}) _check_pandas_roundtrip(df, expected, version=version) values = ['foo', None, 'bar', 'qux', np.nan] df = pd.DataFrame({'strings': values * repeats}) expected = pd.DataFrame({'strings': values * repeats}) _check_pandas_roundtrip(df, expected, version=version) @pytest.mark.pandas def test_empty_strings(version): df = pd.DataFrame({'strings': [''] * 10}) _check_pandas_roundtrip(df, version=version) @pytest.mark.pandas def test_all_none(version): df = pd.DataFrame({'all_none': [None] * 10}) _check_pandas_roundtrip(df, version=version) @pytest.mark.pandas def test_all_null_category(version): # ARROW-1188 df = pd.DataFrame({"A": (1, 2, 3), "B": (None, None, None)}) df = df.assign(B=df.B.astype("category")) _check_pandas_roundtrip(df, version=version) @pytest.mark.pandas def test_multithreaded_read(version): data = {'c{}'.format(i): [''] * 10 for i in range(100)} df = pd.DataFrame(data) _check_pandas_roundtrip(df, use_threads=True, version=version) @pytest.mark.pandas def test_nan_as_null(version): # Create a nan that is not numpy.nan values = np.array(['foo', np.nan, np.nan * 2, 'bar'] * 10) df = pd.DataFrame({'strings': values}) _check_pandas_roundtrip(df, version=version) @pytest.mark.pandas def test_category(version): repeats = 1000 values = ['foo', None, 'bar', 'qux', np.nan] df = pd.DataFrame({'strings': values * repeats}) df['strings'] = df['strings'].astype('category') values = ['foo', None, 'bar', 'qux', None] expected = pd.DataFrame({'strings': pd.Categorical(values * repeats)}) _check_pandas_roundtrip(df, expected, version=version) @pytest.mark.pandas def test_timestamp(version): df = pd.DataFrame({'naive': pd.date_range('2016-03-28', periods=10)}) df['with_tz'] = (df.naive.dt.tz_localize('utc') .dt.tz_convert('America/Los_Angeles')) _check_pandas_roundtrip(df, version=version) @pytest.mark.pandas def test_timestamp_with_nulls(version): df = pd.DataFrame({'test': [pd.Timestamp(2016, 1, 1), None, pd.Timestamp(2016, 1, 3)]}) df['with_tz'] = df.test.dt.tz_localize('utc') _check_pandas_roundtrip(df, version=version) @pytest.mark.pandas @pytest.mark.xfail(reason="not supported", raises=TypeError) def test_timedelta_with_nulls_v1(): df = pd.DataFrame({'test': [pd.Timedelta('1 day'), None, pd.Timedelta('3 day')]}) _check_pandas_roundtrip(df, version=1) @pytest.mark.pandas def test_timedelta_with_nulls(): df = pd.DataFrame({'test': [pd.Timedelta('1 day'), None, pd.Timedelta('3 day')]}) _check_pandas_roundtrip(df, version=2) @pytest.mark.pandas def test_out_of_float64_timestamp_with_nulls(version): df = pd.DataFrame( {'test': pd.DatetimeIndex([1451606400000000001, None, 14516064000030405])}) df['with_tz'] = df.test.dt.tz_localize('utc') _check_pandas_roundtrip(df, version=version) @pytest.mark.pandas def test_non_string_columns(version): df = pd.DataFrame({0: [1, 2, 3, 4], 1: [True, False, True, False]}) expected = df.rename(columns=str) _check_pandas_roundtrip(df, expected, version=version) @pytest.mark.pandas @pytest.mark.skipif(not os.path.supports_unicode_filenames, reason='unicode filenames not supported') def test_unicode_filename(version): # GH #209 name = (b'Besa_Kavaj\xc3\xab.feather').decode('utf-8') df = pd.DataFrame({'foo': [1, 2, 3, 4]}) _check_pandas_roundtrip(df, path=random_path(prefix=name), version=version) @pytest.mark.pandas def test_read_columns(version): df = pd.DataFrame({ 'foo': [1, 2, 3, 4], 'boo': [5, 6, 7, 8], 'woo': [1, 3, 5, 7] }) expected = df[['boo', 'woo']] _check_pandas_roundtrip(df, expected, version=version, columns=['boo', 'woo']) @pytest.mark.pandas def test_overwritten_file(version): path = random_path() TEST_FILES.append(path) num_values = 100 np.random.seed(0) values = np.random.randint(0, 10, size=num_values) write_feather(pd.DataFrame({'ints': values}), path, version=version) df = pd.DataFrame({'ints': values[0: num_values//2]}) _check_pandas_roundtrip(df, path=path, version=version) @pytest.mark.pandas def test_filelike_objects(version): buf = io.BytesIO() # the copy makes it non-strided df = pd.DataFrame(np.arange(12).reshape(4, 3), columns=['a', 'b', 'c']).copy() write_feather(df, buf, version=version) buf.seek(0) result = read_feather(buf) assert_frame_equal(result, df) @pytest.mark.pandas @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning") @pytest.mark.filterwarnings("ignore:DataFrame.to_sparse:FutureWarning") def test_sparse_dataframe(version): if not pa.pandas_compat._pandas_api.has_sparse: pytest.skip("version of pandas does not support SparseDataFrame") # GH #221 data = {'A': [0, 1, 2], 'B': [1, 0, 1]} df = pd.DataFrame(data).to_sparse(fill_value=1) expected = df.to_dense() _check_pandas_roundtrip(df, expected, version=version) @pytest.mark.pandas def test_duplicate_columns(): # https://github.com/wesm/feather/issues/53 # not currently able to handle duplicate columns df = pd.DataFrame(np.arange(12).reshape(4, 3), columns=list('aaa')).copy() _assert_error_on_write(df, ValueError) @pytest.mark.pandas def test_unsupported(): # https://github.com/wesm/feather/issues/240 # serializing actual python objects # custom python objects class A: pass df = pd.DataFrame({'a': [A(), A()]}) _assert_error_on_write(df, ValueError) # non-strings df = pd.DataFrame({'a': ['a', 1, 2.0]}) _assert_error_on_write(df, TypeError) @pytest.mark.pandas def test_v2_set_chunksize(): df = pd.DataFrame({'A': np.arange(1000)}) table = pa.table(df) buf = io.BytesIO() write_feather(table, buf, chunksize=250, version=2) result = buf.getvalue() ipc_file = pa.ipc.open_file(pa.BufferReader(result)) assert ipc_file.num_record_batches == 4 assert len(ipc_file.get_batch(0)) == 250 @pytest.mark.pandas def test_v2_compression_options(): df = pd.DataFrame({'A': np.arange(1000)}) cases = [ # compression, compression_level ('uncompressed', None), ('lz4', None), ('zstd', 1), ('zstd', 10) ] for compression, compression_level in cases: _check_pandas_roundtrip(df, compression=compression, compression_level=compression_level) buf = io.BytesIO() # LZ4 doesn't support compression_level with pytest.raises(pa.ArrowInvalid, match="doesn't support setting a compression level"): write_feather(df, buf, compression='lz4', compression_level=10) # Trying to compress with V1 with pytest.raises( ValueError, match="Feather V1 files do not support compression option"): write_feather(df, buf, compression='lz4', version=1) # Trying to set chunksize with V1 with pytest.raises( ValueError, match="Feather V1 files do not support chunksize option"): write_feather(df, buf, chunksize=4096, version=1) # Unsupported compressor with pytest.raises(ValueError, match='compression="snappy" not supported'): write_feather(df, buf, compression='snappy') def test_v1_unsupported_types(): table = pa.table([pa.array([[1, 2, 3], [], None])], names=['f0']) buf = io.BytesIO() with pytest.raises(TypeError, match=("Unsupported Feather V1 type: " "list<item: int64>. " "Use V2 format to serialize all Arrow types.")): write_feather(table, buf, version=1) @pytest.mark.slow @pytest.mark.pandas def test_large_dataframe(version): df = pd.DataFrame({'A': np.arange(400000000)}) _check_pandas_roundtrip(df, version=version) @pytest.mark.large_memory @pytest.mark.pandas def test_chunked_binary_error_message(): # ARROW-3058: As Feather does not yet support chunked columns, we at least # make sure it's clear to the user what is going on # 2^31 + 1 bytes values = [b'x'] + [ b'x' * (1 << 20) ] * 2 * (1 << 10) df = pd.DataFrame({'byte_col': values}) # Works fine with version 2 buf = io.BytesIO() write_feather(df, buf, version=2) result = read_feather(pa.BufferReader(buf.getvalue())) assert_frame_equal(result, df) with pytest.raises(ValueError, match="'byte_col' exceeds 2GB maximum " "capacity of a Feather binary column. This restriction " "may be lifted in the future"): write_feather(df, io.BytesIO(), version=1) def test_feather_without_pandas(tempdir, version): # ARROW-8345 table = pa.table([pa.array([1, 2, 3])], names=['f0']) write_feather(table, str(tempdir / "data.feather"), version=version) result = read_table(str(tempdir / "data.feather")) assert result.equals(table)
28.494737
79
0.641723
10a43d048b73ac7bf087e644cd52843ffbfa7c51
6,807
py
Python
alipay/aop/api/domain/AlipayEcoCplifeCommunityModifyModel.py
snowxmas/alipay-sdk-python-all
96870ced60facd96c5bce18d19371720cbda3317
[ "Apache-2.0" ]
213
2018-08-27T16:49:32.000Z
2021-12-29T04:34:12.000Z
alipay/aop/api/domain/AlipayEcoCplifeCommunityModifyModel.py
snowxmas/alipay-sdk-python-all
96870ced60facd96c5bce18d19371720cbda3317
[ "Apache-2.0" ]
29
2018-09-29T06:43:00.000Z
2021-09-02T03:27:32.000Z
alipay/aop/api/domain/AlipayEcoCplifeCommunityModifyModel.py
snowxmas/alipay-sdk-python-all
96870ced60facd96c5bce18d19371720cbda3317
[ "Apache-2.0" ]
59
2018-08-27T16:59:26.000Z
2022-03-25T10:08:15.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class AlipayEcoCplifeCommunityModifyModel(object): def __init__(self): self._associated_pois = None self._city_code = None self._community_address = None self._community_id = None self._community_locations = None self._community_name = None self._district_code = None self._hotline = None self._out_community_id = None self._province_code = None @property def associated_pois(self): return self._associated_pois @associated_pois.setter def associated_pois(self, value): if isinstance(value, list): self._associated_pois = list() for i in value: self._associated_pois.append(i) @property def city_code(self): return self._city_code @city_code.setter def city_code(self, value): self._city_code = value @property def community_address(self): return self._community_address @community_address.setter def community_address(self, value): self._community_address = value @property def community_id(self): return self._community_id @community_id.setter def community_id(self, value): self._community_id = value @property def community_locations(self): return self._community_locations @community_locations.setter def community_locations(self, value): if isinstance(value, list): self._community_locations = list() for i in value: self._community_locations.append(i) @property def community_name(self): return self._community_name @community_name.setter def community_name(self, value): self._community_name = value @property def district_code(self): return self._district_code @district_code.setter def district_code(self, value): self._district_code = value @property def hotline(self): return self._hotline @hotline.setter def hotline(self, value): self._hotline = value @property def out_community_id(self): return self._out_community_id @out_community_id.setter def out_community_id(self, value): self._out_community_id = value @property def province_code(self): return self._province_code @province_code.setter def province_code(self, value): self._province_code = value def to_alipay_dict(self): params = dict() if self.associated_pois: if isinstance(self.associated_pois, list): for i in range(0, len(self.associated_pois)): element = self.associated_pois[i] if hasattr(element, 'to_alipay_dict'): self.associated_pois[i] = element.to_alipay_dict() if hasattr(self.associated_pois, 'to_alipay_dict'): params['associated_pois'] = self.associated_pois.to_alipay_dict() else: params['associated_pois'] = self.associated_pois if self.city_code: if hasattr(self.city_code, 'to_alipay_dict'): params['city_code'] = self.city_code.to_alipay_dict() else: params['city_code'] = self.city_code if self.community_address: if hasattr(self.community_address, 'to_alipay_dict'): params['community_address'] = self.community_address.to_alipay_dict() else: params['community_address'] = self.community_address if self.community_id: if hasattr(self.community_id, 'to_alipay_dict'): params['community_id'] = self.community_id.to_alipay_dict() else: params['community_id'] = self.community_id if self.community_locations: if isinstance(self.community_locations, list): for i in range(0, len(self.community_locations)): element = self.community_locations[i] if hasattr(element, 'to_alipay_dict'): self.community_locations[i] = element.to_alipay_dict() if hasattr(self.community_locations, 'to_alipay_dict'): params['community_locations'] = self.community_locations.to_alipay_dict() else: params['community_locations'] = self.community_locations if self.community_name: if hasattr(self.community_name, 'to_alipay_dict'): params['community_name'] = self.community_name.to_alipay_dict() else: params['community_name'] = self.community_name if self.district_code: if hasattr(self.district_code, 'to_alipay_dict'): params['district_code'] = self.district_code.to_alipay_dict() else: params['district_code'] = self.district_code if self.hotline: if hasattr(self.hotline, 'to_alipay_dict'): params['hotline'] = self.hotline.to_alipay_dict() else: params['hotline'] = self.hotline if self.out_community_id: if hasattr(self.out_community_id, 'to_alipay_dict'): params['out_community_id'] = self.out_community_id.to_alipay_dict() else: params['out_community_id'] = self.out_community_id if self.province_code: if hasattr(self.province_code, 'to_alipay_dict'): params['province_code'] = self.province_code.to_alipay_dict() else: params['province_code'] = self.province_code return params @staticmethod def from_alipay_dict(d): if not d: return None o = AlipayEcoCplifeCommunityModifyModel() if 'associated_pois' in d: o.associated_pois = d['associated_pois'] if 'city_code' in d: o.city_code = d['city_code'] if 'community_address' in d: o.community_address = d['community_address'] if 'community_id' in d: o.community_id = d['community_id'] if 'community_locations' in d: o.community_locations = d['community_locations'] if 'community_name' in d: o.community_name = d['community_name'] if 'district_code' in d: o.district_code = d['district_code'] if 'hotline' in d: o.hotline = d['hotline'] if 'out_community_id' in d: o.out_community_id = d['out_community_id'] if 'province_code' in d: o.province_code = d['province_code'] return o
35.453125
89
0.613927
110758d9046ea080af14a37ef3f557a653821683
8,406
py
Python
scripts/vs2012.py
liak-git/oneos
e28482c0bbcea1fcff4b815533486db9fa51d57f
[ "Apache-2.0" ]
2
2021-10-05T02:34:18.000Z
2022-01-18T15:22:41.000Z
scripts/vs2012.py
liak-git/oneos
e28482c0bbcea1fcff4b815533486db9fa51d57f
[ "Apache-2.0" ]
null
null
null
scripts/vs2012.py
liak-git/oneos
e28482c0bbcea1fcff4b815533486db9fa51d57f
[ "Apache-2.0" ]
2
2021-10-05T02:28:50.000Z
2022-03-23T06:39:39.000Z
# # File : vs2012.py # This file is part of CMCC IOT OS # COPYRIGHT (C) 2012-2020, CMCC IOT # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # # import os import sys import string import build_tools import uuid import xml.etree.ElementTree as etree from xml.etree.ElementTree import SubElement from utils import _make_path_relative from utils import xml_indent import utils fs_encoding = sys.getfilesystemencoding() #reference # http://woodpecker.org.cn/diveintopython3/xml.html # https://pycoders-weekly-chinese.readthedocs.org/en/latest/issue6/processing-xml-in-python-with-element-tree.html # http://www.cnblogs.com/ifantastic/archive/2013/04/12/3017110.html filter_project = etree.Element('Project', attrib={'ToolsVersion':'4.0'}) def get_uuid(): id = uuid.uuid1() # UUID('3e5526c0-2841-11e3-a376-20cf3048bcb3') idstr = id.get_urn()[9:] #'urn:uuid:3e5526c0-2841-11e3-a376-20cf3048bcb3'[9:] return '{'+idstr+'}' def VS2012_AddGroup(parent, group_name, files, project_path): for f in files: fn = f.rfile() name = fn.name path = os.path.dirname(fn.abspath) path = _make_path_relative(project_path, path) path = os.path.join(path, name) ClCompile = SubElement(parent, 'ClCompile') ClCompile.set('Include', path.decode(fs_encoding)) Filter = SubElement(ClCompile, 'Filter') Filter.text='Source Files\\'+group_name def VS2012_CreateFilter(script, project_path): c_ItemGroup = SubElement(filter_project, 'ItemGroup') filter_ItemGroup = SubElement(filter_project, 'ItemGroup') Filter = SubElement(filter_ItemGroup, 'Filter') Filter.set('Include', 'Source Files') UniqueIdentifier = SubElement(Filter, 'UniqueIdentifier') UniqueIdentifier.text = get_uuid() Extensions = SubElement(Filter, 'Extensions') Extensions.text = 'cpp;c;cc;cxx;def;odl;idl;hpj;bat;asm;asmx' Filter = SubElement(filter_ItemGroup, 'Filter') Filter.set('Include', 'Header Files') UniqueIdentifier = SubElement(Filter, 'UniqueIdentifier') UniqueIdentifier.text = get_uuid() Extensions = SubElement(Filter, 'Extensions') Extensions.text = 'h;hpp;hxx;hm;inl;inc;xsd' for group in script: VS2012_AddGroup(c_ItemGroup, group['name'], group['src'], project_path) Filter = SubElement(filter_ItemGroup, 'Filter') Filter.set('Include', 'Source Files\\'+group['name']) UniqueIdentifier = SubElement(Filter, 'UniqueIdentifier') UniqueIdentifier.text = get_uuid() #program: object from scons # parent: xml node # file_type: C or H # files: c/h list # project_path def VS_add_ItemGroup(parent, file_type, files, project_path): from build_tools import Os_Root OS_ROOT = os.path.normpath(Os_Root) file_dict = {'C':"ClCompile", 'H':'ClInclude'} item_tag = file_dict[file_type] ItemGroup = SubElement(parent, 'ItemGroup') for f in files: fn = f.rfile() name = fn.name path = os.path.dirname(fn.abspath) objpath = path.lower() if len(project_path) >= len(OS_ROOT) : if objpath.startswith(project_path.lower()) : objpath = ''.join('bsp'+objpath[len(project_path):]) else : objpath = ''.join('kernel'+objpath[len(OS_ROOT):]) else : if objpath.startswith(OS_ROOT.lower()) : objpath = ''.join('kernel'+objpath[len(OS_ROOT):]) else : objpath = ''.join('bsp'+objpath[len(project_path):]) path = _make_path_relative(project_path, path) path = os.path.join(path, name) File = SubElement(ItemGroup, item_tag) File.set('Include', path.decode(fs_encoding)) if file_type == 'C' : ObjName = SubElement(File, 'ObjectFileName') ObjName.text = ''.join('$(IntDir)'+objpath+'\\') def VS_add_HeadFiles(program, elem, project_path): utils.source_ext = [] utils.source_ext = ["h"] for item in program: utils.walk_children(item) utils.source_list.sort() # print utils.source_list ItemGroup = SubElement(elem, 'ItemGroup') filter_h_ItemGroup = SubElement(filter_project, 'ItemGroup') for f in utils.source_list: path = _make_path_relative(project_path, f) File = SubElement(ItemGroup, 'ClInclude') File.set('Include', path.decode(fs_encoding)) # add project.vcxproj.filter ClInclude = SubElement(filter_h_ItemGroup, 'ClInclude') ClInclude.set('Include', path.decode(fs_encoding)) Filter = SubElement(ClInclude, 'Filter') Filter.text='Header Files' def VS2012Project(target, script, program): project_path = os.path.dirname(os.path.abspath(target)) tree = etree.parse('template_vs2012.vcxproj') root = tree.getroot() elem = root out = file(target, 'wb') out.write('<?xml version="1.0" encoding="UTF-8"?>\r\n') ProjectFiles = [] # add "*.c or *.h" files VS2012_CreateFilter(script, project_path) # add "*.c" files for group in script: VS_add_ItemGroup(elem, 'C', group['src'], project_path) # add "*.h" files VS_add_HeadFiles(program, elem, project_path) # write head include path if 'CPPPATH' in build_tools.Env: cpp_path = build_tools.Env['CPPPATH'] paths = set() for path in cpp_path: inc = _make_path_relative(project_path, os.path.normpath(path)) paths.add(inc) #.replace('\\', '/') paths = [i for i in paths] paths.sort() cpp_path = ';'.join(paths) + ';%(AdditionalIncludeDirectories)' # write include path for elem in tree.iter(tag='AdditionalIncludeDirectories'): elem.text = cpp_path break # write cppdefinitons flags if 'CPPDEFINES' in build_tools.Env: for elem in tree.iter(tag='PreprocessorDefinitions'): definitions = ';'.join(build_tools.Env['CPPDEFINES']) + ';%(PreprocessorDefinitions)' elem.text = definitions break # write link flags # write lib dependence (Link) if 'LIBS' in build_tools.Env: for elem in tree.iter(tag='AdditionalDependencies'): libs_with_extention = [i+'.lib' for i in build_tools.Env['LIBS']] libs = ';'.join(libs_with_extention) + ';%(AdditionalDependencies)' elem.text = libs break # write lib include path if 'LIBPATH' in build_tools.Env: lib_path = build_tools.Env['LIBPATH'] paths = set() for path in lib_path: inc = _make_path_relative(project_path, os.path.normpath(path)) paths.add(inc) paths = [i for i in paths] paths.sort() lib_paths = ';'.join(paths) + ';%(AdditionalLibraryDirectories)' for elem in tree.iter(tag='AdditionalLibraryDirectories'): elem.text = lib_paths break xml_indent(root) vcxproj_string = etree.tostring(root, encoding='utf-8') root_node=r'<Project DefaultTargets="Build" ToolsVersion="4.0">' out.write(r'<Project DefaultTargets="Build" ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">') out.write(vcxproj_string[len(root_node):]) out.close() xml_indent(filter_project) filter_string = etree.tostring(filter_project, encoding='utf-8') out = file('project.vcxproj.filters', 'wb') out.write('<?xml version="1.0" encoding="UTF-8"?>\r\n') root_node=r'<Project ToolsVersion="4.0">' out.write(r'<Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">') out.write(filter_string[len(root_node):]) out.close()
36.38961
129
0.657269
fb3c7fe4e7b761e25613198575d94a94557139a3
2,859
py
Python
src/python/WMCore/WMBS/MySQL/Jobs/GetNumberOfJobsPerSite.py
khurtado/WMCore
f74e252412e49189a92962945a94f93bec81cd1e
[ "Apache-2.0" ]
21
2015-11-19T16:18:45.000Z
2021-12-02T18:20:39.000Z
src/python/WMCore/WMBS/MySQL/Jobs/GetNumberOfJobsPerSite.py
khurtado/WMCore
f74e252412e49189a92962945a94f93bec81cd1e
[ "Apache-2.0" ]
5,671
2015-01-06T14:38:52.000Z
2022-03-31T22:11:14.000Z
src/python/WMCore/WMBS/MySQL/Jobs/GetNumberOfJobsPerSite.py
khurtado/WMCore
f74e252412e49189a92962945a94f93bec81cd1e
[ "Apache-2.0" ]
67
2015-01-21T15:55:38.000Z
2022-02-03T19:53:13.000Z
#!/usr/bin/env python """ _GetNumberOfJobsPerSite_ MySQL implementation of Jobs.GetNumberOfJobsPerSite """ __all__ = [] import logging from WMCore.Database.DBFormatter import DBFormatter class GetNumberOfJobsPerSite(DBFormatter): """ _GetLocation_ Retrieve all files that are associated with the given job from the database. """ def buildSQL(self, states, type): """ _buildSQL_ builds the sql statements; necessary for lists """ baseSQL = """SELECT count(*) FROM wmbs_job WHERE location = (SELECT ID FROM wmbs_location WHERE site_name = :location) AND state IN (SELECT ID FROM wmbs_job_state js WHERE js.name IN ( """ typeSQL = """SELECT count(*) FROM wmbs_job INNER JOIN wmbs_jobgroup ON wmbs_job.jobgroup = wmbs_jobgroup.id INNER JOIN wmbs_subscription ON wmbs_jobgroup.subscription = wmbs_subscription.id INNER JOIN wmbs_job_state ON wmbs_job.state = wmbs_job_state.id INNER JOIN wmbs_location ON wmbs_job.location = wmbs_location.id INNER JOIN wmbs_sub_types ON wmbs_subscription.subtype = wmbs_sub_types.id WHERE wmbs_location.site_name = :location AND wmbs_sub_types.name = :type AND wmbs_job_state.name IN (""" if type: sql = typeSQL else: sql = baseSQL states = list(states) count = 0 for state in states: if not count == 0: sql += ", " sql += ":state%i" %(count) count += 1 sql += ")" return sql def format(self, results): """ _format_ """ if len(results) == 0: return False else: return results[0].fetchall()[0] def buildBinds(self, location, states, type): """ _buildBinds_ Build a list of binds """ binds = {} binds['location'] = location count = 0 for state in states: binds["state%i" %(count)] = state count += 1 if type: binds['type'] = type return binds def execute(self, location, states, type = None, conn = None, transaction = False): """ _execute_ Execute the SQL for the given job ID and then format and return the result. """ sql = self.buildSQL(states, type) binds = self.buildBinds(location, states, type) #print "In Jobs.GetNumberOfJobsPerSite" #print sql #print binds result = self.dbi.processData(sql, binds, conn = conn, transaction = transaction) return self.format(result)
23.628099
104
0.55369
5a0b832993835c9c8c192c54e9188426c47cf2a0
1,338
py
Python
examples/rmsd.py
carbonscott/pyrotein
4c41eade0d014e70aadf9f9c475cbc4255a0a32e
[ "MIT" ]
1
2021-11-05T21:09:23.000Z
2021-11-05T21:09:23.000Z
examples/rmsd.py
carbonscott/pyrotein
4c41eade0d014e70aadf9f9c475cbc4255a0a32e
[ "MIT" ]
null
null
null
examples/rmsd.py
carbonscott/pyrotein
4c41eade0d014e70aadf9f9c475cbc4255a0a32e
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ## import sys ## sys.path.insert(0, "/home/scott/Dropbox/codes/pyrotein") ## sys.path.insert(0, "/Users/scott/Dropbox/codes/pyrotein") import os import numpy as np import pyrotein as pr from loaddata import load_xlsx, label_TMs from display import plot_dmat # Specify chains to process... fl_chain = "chains.comp.xlsx" lines = load_xlsx(fl_chain) drc = "pdb" # Define atoms used for distance matrix analysis... peptide = ["N", "CA", "C", "O"] # Specify the range of residues to analyze... nterm = 1 cterm = 322 len_peptide = (cterm - nterm + 1) * len(peptide) dmats = np.zeros((len(lines), len_peptide, len_peptide)) for i_fl, line in enumerate(lines): # Unpack parameters _, pdb, chain, species = line[:4] # Read coordinates from a PDB file... fl_pdb = f"{pdb}.pdb" pdb_path = os.path.join(drc, fl_pdb) atoms_pdb = pr.atom.read(pdb_path) # Create a lookup table for this pdb... atom_dict = pr.atom.create_lookup_table(atoms_pdb) # Obtain coordinates... xyzs = pr.atom.extract_xyz_by_atom(peptide, atom_dict, chain, nterm, cterm) # Calculate distance matrix... dmat = pr.distance.calc_dmat(xyzs, xyzs) dmats[i_fl, :, :] = dmat[:, :] rmsd_dmat = pr.distance.calc_rmsd_mats(dmats) np.save("rmsd_dmat.npy", rmsd_dmat)
26.76
79
0.679372
7ea6915d932610686f690851dfb2d5cbdbb56e75
507
py
Python
thresholding.py
kigane/opencv-tutorial
90f21e0a82a6db00b1c3b3982891eeac477beb3c
[ "MIT" ]
null
null
null
thresholding.py
kigane/opencv-tutorial
90f21e0a82a6db00b1c3b3982891eeac477beb3c
[ "MIT" ]
null
null
null
thresholding.py
kigane/opencv-tutorial
90f21e0a82a6db00b1c3b3982891eeac477beb3c
[ "MIT" ]
null
null
null
import cv2 as cv import numpy as np img = cv.imread('images/cat2.jpg') resized = cv.resize(img, (800, 600), interpolation=cv.INTER_AREA) cv.imshow('Cat', resized) gray = cv.cvtColor(resized, cv.COLOR_BGR2GRAY) ret, thresh = cv.threshold(gray, 125, 255, type=cv.THRESH_BINARY) cv.imshow('Thresh', thresh) for i in range(10): adp_thresh = cv.adaptiveThreshold(gray, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY, 11, i+1) cv.imshow(f'AdaptiveThreshold C={i+1}', adp_thresh) cv.waitKey(0)
26.684211
102
0.721893
50f821ead11ed4fb1c70de916b85aaad0f4f5af8
538
py
Python
Algorithms/Hard/60. Permutation Sequence/answer.py
KenWoo/Algorithm
4012a2f0a099a502df1e5df2e39faa75fe6463e8
[ "Apache-2.0" ]
null
null
null
Algorithms/Hard/60. Permutation Sequence/answer.py
KenWoo/Algorithm
4012a2f0a099a502df1e5df2e39faa75fe6463e8
[ "Apache-2.0" ]
null
null
null
Algorithms/Hard/60. Permutation Sequence/answer.py
KenWoo/Algorithm
4012a2f0a099a502df1e5df2e39faa75fe6463e8
[ "Apache-2.0" ]
null
null
null
from typing import List class Solution: def getPermutation(self, n: int, k: int) -> str: res = '' fact = [1] * n num = [str(i) for i in range(1, 10)] for i in range(1, n): fact[i] = fact[i - 1] * i k -= 1 for i in range(n, 0, -1): first = k // fact[i - 1] k %= fact[i - 1] res += num[first] num.pop(first) return res if __name__ == "__main__": s = Solution() result = s.getPermutation(3, 3) print(result)
25.619048
52
0.459108
3f4bdebf7e29b388d3beac3d4e878081295d727f
90
py
Python
adlibre_tms/apps/reporting/context_processors.py
adlibre/Adlibre-TMS
4c8de1e4448203fb267d38ec0f4ec9e64d58a21d
[ "BSD-3-Clause" ]
26
2015-01-06T11:09:18.000Z
2022-03-16T06:20:53.000Z
adlibre_tms/apps/reporting/context_processors.py
adlibre/Adlibre-TMS
4c8de1e4448203fb267d38ec0f4ec9e64d58a21d
[ "BSD-3-Clause" ]
4
2015-02-26T11:00:35.000Z
2020-06-05T18:02:02.000Z
adlibre_tms/apps/reporting/context_processors.py
adlibre/Adlibre-TMS
4c8de1e4448203fb267d38ec0f4ec9e64d58a21d
[ "BSD-3-Clause" ]
16
2015-02-08T05:24:38.000Z
2021-06-13T14:45:30.000Z
import reporting def reports(request): return {'reports': reporting.all_reports(), }
18
49
0.722222
79a21b048cebb396d3a5629d64220496b6c399f1
824
py
Python
FNet/Model/Layers/Inceptions/ThirdInception/secondBlock.py
ren-dishen/fnet
460c3177ee1c8b7aa37d0dc0c8deae577dc79222
[ "MIT" ]
null
null
null
FNet/Model/Layers/Inceptions/ThirdInception/secondBlock.py
ren-dishen/fnet
460c3177ee1c8b7aa37d0dc0c8deae577dc79222
[ "MIT" ]
null
null
null
FNet/Model/Layers/Inceptions/ThirdInception/secondBlock.py
ren-dishen/fnet
460c3177ee1c8b7aa37d0dc0c8deae577dc79222
[ "MIT" ]
null
null
null
import Model.blockFactory as factory def block1x1(input): tensor = factory.convolutionBlock(input, 'inception_5b_1x1_', '', 256, (1,1)) return tensor def block3x3(input): tensor = factory.convolutionBlock(input, 'inception_5b_3x3_', '1', 96, (1,1)) tensor = factory.zeroPadding(tensor) tensor = factory.convolutionBlock(tensor, 'inception_5b_3x3_', '2', 384, (3,3)) return tensor def blockPool(input): tensor = factory.maxPooling(input, (3,3), (2,2)) tensor = factory.convolutionBlock(tensor, 'inception_5b_pool_', '', 96, (1,1)) tensor = factory.zeroPadding(tensor, (1,1)) return tensor def inceptionConstructor(input): _3x3 = block3x3(input) _pool = blockPool(input) _1x1 = block1x1(input) tensor = factory.merge([_3x3, _pool, _1x1]) return tensor
26.580645
83
0.682039
ea04b55f878b7a7c15e3ad1532f001987f64640f
2,774
py
Python
UTILS/image_read.py
emersonrafaels/ocr_tables
11e696422f6fd8508fdc92ffe9a7d14be319e51f
[ "MIT" ]
null
null
null
UTILS/image_read.py
emersonrafaels/ocr_tables
11e696422f6fd8508fdc92ffe9a7d14be319e51f
[ "MIT" ]
null
null
null
UTILS/image_read.py
emersonrafaels/ocr_tables
11e696422f6fd8508fdc92ffe9a7d14be319e51f
[ "MIT" ]
null
null
null
""" FUNÇÕES PARA LEITURA DA IMAGEM. # Arguments object - Required : Imagem para leitura/visualização (String | Object) # Returns """ __version__ = "1.0" __author__ = """Emerson V. Rafael (EMERVIN)""" __data_atualizacao__ = "15/10/2021" from inspect import stack import cv2 from PIL import Image def read_image_gray(image_path): """ FUNÇÃO PARA LEITURA DE UMA IMAGEM. # Arguments caminho_imagem - Required : Caminho da imagem a ser lida (String) # Returns img - Required : Imagem após leitura (Array) """ # INICIANDO O OBJETO DA IMAGEM img = None try: # A LEITURA É FEITA EM FORMATO RGB image = cv2.imread(str(image_path)) image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) except Exception as ex: print("ERRO NA FUNÇÃO: {} - {}".format(stack()[0][3], ex)) return image def read_image_rgb(image_path): """ FUNÇÃO PARA LEITURA DE UMA IMAGEM. # Arguments caminho_imagem - Required : Caminho da imagem a ser lida (String) # Returns img - Required : Imagem após leitura (Array) """ # INICIANDO O OBJETO DA IMAGEM img = None try: # A LEITURA É FEITA EM FORMATO RGB image = cv2.imread(str(image_path)) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) except Exception as ex: print("ERRO NA FUNÇÃO: {} - {}".format(stack()[0][3], ex)) return image def realiza_leitura_imagem(caminho_imagem): """ FUNÇÃO PARA LEITURA DE UMA IMAGEM. # Arguments caminho_imagem - Required : Caminho da imagem a ser lida (String) # Returns img - Required : Imagem após leitura (Object) """ # INICIANDO O OBJETO DA IMAGEM img = None try: # UTILIZANDO O OPENCV PARA LEITURA DA IMAGEM # A LEITURA É FEITA EM FORMATO BGR img = cv2.imread(caminho_imagem) except Exception as ex: print(ex) return img def realiza_leitura_imagem_pillow(caminho_imagem): """ FUNÇÃO PARA LEITURA DE UMA IMAGEM. UTILIZA PIL - IMAGE # Arguments caminho_imagem - Required : Caminho da imagem a ser lida (String) # Returns img - Required : Imagem após leitura (Object) """ # INICIANDO O OBJETO DA IMAGEM img = None try: # UTILIZANDO O PILLOW PARA LEITURA DA IMAGEM # A LEITURA É FEITA EM FORMATO RGB img = Image.open(caminho_imagem) except Exception as ex: print("ERRO NA FUNÇÃO: {} - {}".format(stack()[0][3], ex)) return img
22.370968
95
0.576424
c5f84d6c6c787a83da1986df21908308c934a159
12,784
py
Python
cryptoapis/model/list_transactions_by_block_hash_ribsb_script_pub_key.py
Crypto-APIs/Crypto_APIs_2.0_SDK_Python
c59ebd914850622b2c6500c4c30af31fb9cecf0e
[ "MIT" ]
5
2021-05-17T04:45:03.000Z
2022-03-23T12:51:46.000Z
cryptoapis/model/list_transactions_by_block_hash_ribsb_script_pub_key.py
Crypto-APIs/Crypto_APIs_2.0_SDK_Python
c59ebd914850622b2c6500c4c30af31fb9cecf0e
[ "MIT" ]
null
null
null
cryptoapis/model/list_transactions_by_block_hash_ribsb_script_pub_key.py
Crypto-APIs/Crypto_APIs_2.0_SDK_Python
c59ebd914850622b2c6500c4c30af31fb9cecf0e
[ "MIT" ]
2
2021-06-02T07:32:26.000Z
2022-02-12T02:36:23.000Z
""" CryptoAPIs Crypto APIs 2.0 is a complex and innovative infrastructure layer that radically simplifies the development of any Blockchain and Crypto related applications. Organized around REST, Crypto APIs 2.0 can assist both novice Bitcoin/Ethereum enthusiasts and crypto experts with the development of their blockchain applications. Crypto APIs 2.0 provides unified endpoints and data, raw data, automatic tokens and coins forwardings, callback functionalities, and much more. # noqa: E501 The version of the OpenAPI document: 2.0.0 Contact: developers@cryptoapis.io Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from cryptoapis.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, OpenApiModel ) from cryptoapis.exceptions import ApiAttributeError class ListTransactionsByBlockHashRIBSBScriptPubKey(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ return { 'addresses': ([str],), # noqa: E501 'asm': (str,), # noqa: E501 'hex': (str,), # noqa: E501 'req_sigs': (int,), # noqa: E501 'type': (str,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'addresses': 'addresses', # noqa: E501 'asm': 'asm', # noqa: E501 'hex': 'hex', # noqa: E501 'req_sigs': 'reqSigs', # noqa: E501 'type': 'type', # noqa: E501 } read_only_vars = { } _composed_schemas = {} @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, addresses, asm, hex, req_sigs, type, *args, **kwargs): # noqa: E501 """ListTransactionsByBlockHashRIBSBScriptPubKey - a model defined in OpenAPI Args: addresses ([str]): asm (str): Represents the assembly of the script public key of the address. hex (str): Represents the hex of the script public key of the address. req_sigs (int): Represents the required signatures. type (str): Represents the script type. Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) self = super(OpenApiModel, cls).__new__(cls) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.addresses = addresses self.asm = asm self.hex = hex self.req_sigs = req_sigs self.type = type for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) return self required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, addresses, asm, hex, req_sigs, type, *args, **kwargs): # noqa: E501 """ListTransactionsByBlockHashRIBSBScriptPubKey - a model defined in OpenAPI Args: addresses ([str]): asm (str): Represents the assembly of the script public key of the address. hex (str): Represents the hex of the script public key of the address. req_sigs (int): Represents the required signatures. type (str): Represents the script type. Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.addresses = addresses self.asm = asm self.hex = hex self.req_sigs = req_sigs self.type = type for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) if var_name in self.read_only_vars: raise ApiAttributeError(f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate " f"class with read only attributes.")
44.543554
484
0.579005
c8dd2f7012dea69fc678d6c69f0b4cf5203fe3b9
1,787
py
Python
meshnet/routing.py
vladzaharia/meshnet
87a48c678094870cc273f4940f122e899eb1f5e1
[ "MIT" ]
1
2021-02-16T05:29:03.000Z
2021-02-16T05:29:03.000Z
meshnet/routing.py
vladzaharia/meshnet
87a48c678094870cc273f4940f122e899eb1f5e1
[ "MIT" ]
1
2021-02-16T06:23:08.000Z
2021-02-16T06:23:08.000Z
meshnet/routing.py
vladzaharia/meshnet
87a48c678094870cc273f4940f122e899eb1f5e1
[ "MIT" ]
null
null
null
from datetime import datetime, timedelta from constants.nodetype import TYPE_PROVISIONING from util.nodetype import NodeType TIMEOUT_NODE = 5 TIMEOUT_GATEWAY = 15 class RoutingEntry: node_id: bytes node_type: NodeType expiry: datetime def __init__(self, node_id: bytes, node_type: NodeType) -> None: self.node_id = node_id self.node_type = node_type if (node_type.is_non_routed()): raise Exception("Cannot create RoutingEntry for non-routed node") elif (self.node_type.is_node()): self.expiry = datetime.now() + timedelta(minutes = TIMEOUT_NODE) elif (self.node_type.is_gateway()): self.expiry = datetime.now() + timedelta(minutes = TIMEOUT_GATEWAY) else: self.expiry = datetime.now() + timedelta(seconds = 5) class Routing: # Singleton instance _instance = None neighbors: list[RoutingEntry] = list[RoutingEntry] def __new__(cls): if cls._instance is None: cls._instance = super(Routing, cls).__new__(cls) cls.neighbors = list() return cls._instance def add(self, entry: RoutingEntry): self.neighbors.append(entry) def node_neighbors(self): return list(filter(lambda n: n.node_type.is_node(), self.neighbors)) def gateway_neighbors(self): return list(filter(lambda n: n.node_type.is_gateway(), self.neighbors)) def clean(self): neighbors_to_clean = list() for neighbor in self.neighbors: if (neighbor.expiry < datetime.now()): neighbors_to_clean.append(neighbor) for neighbor in neighbors_to_clean: self.neighbors.remove(neighbor) def reset(self): self.neighbors = list()
30.288136
79
0.647454
122053e28aa01cb297db8271c994bab8f8cf39c1
426
py
Python
rest/migrations/0022_course_level.py
narcotis/Welbot-V2
7525216b61036f62d0be0b5ebb6d3476b73323c8
[ "MIT" ]
1
2021-06-04T03:28:06.000Z
2021-06-04T03:28:06.000Z
rest/migrations/0022_course_level.py
narcotis/Welbot-V2
7525216b61036f62d0be0b5ebb6d3476b73323c8
[ "MIT" ]
2
2020-09-09T14:19:10.000Z
2020-09-09T14:20:21.000Z
rest/migrations/0022_course_level.py
narcotis/Welbot-V2
7525216b61036f62d0be0b5ebb6d3476b73323c8
[ "MIT" ]
null
null
null
# Generated by Django 3.0.8 on 2020-08-19 06:40 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('rest', '0021_auto_20200819_1513'), ] operations = [ migrations.AddField( model_name='course', name='level', field=models.CharField(default=0, max_length=5), preserve_default=False, ), ]
21.3
60
0.593897
22b76ca8813f7b272af7d96dea2d68d17ee88025
7,351
py
Python
xml_models/xpath_twister.py
macropin/xml-models-redux
6297f89b0c17ab1858df12fadc4415dd1696620b
[ "BSD-2-Clause-FreeBSD" ]
1
2016-05-05T08:36:24.000Z
2016-05-05T08:36:24.000Z
xml_models/xpath_twister.py
macropin/xml-models-redux
6297f89b0c17ab1858df12fadc4415dd1696620b
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
xml_models/xpath_twister.py
macropin/xml-models-redux
6297f89b0c17ab1858df12fadc4415dd1696620b
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
""" Copyright 2009 Chris Tarttelin and Point2 Technologies Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE FREEBSD PROJECT ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FREEBSD PROJECT OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of the FreeBSD Project. """ import unittest from xml.dom import minidom import xpath class MultipleNodesReturnedException(Exception): pass lxml_available = False try: from lxml import etree, objectify lxml_available = True except: pass def find_unique(xml, expression, namespace=None): if lxml_available: return _lxml_xpath(xml, expression, namespace) else: return _pydom_xpath(xml, expression, namespace) def find_all(xml, expression, namespace=None): if lxml_available: return _lxml_xpath_all(xml, expression, namespace) else: return _pydom_xpath_all(xml, expression, namespace) def _lxml_xpath(xml_doc, expression, namespace): if namespace: find = etree.XPath(get_xpath(expression, namespace), namespaces={'x': namespace}) else: find = etree.XPath(get_xpath(expression, namespace)) matches = find(xml_doc) if len(matches) == 1: matched = matches[0] if type(matched) == type(''): return unicode(matched).strip() if isinstance(matched, etree._ElementStringResult): return str(matched) if isinstance(matched, etree._ElementUnicodeResult): return unicode(matched) if matched is None or matched == False: return unicode(matched.text).strip() if isinstance(matched, etree._Element): if matched.text is not None: return unicode(matched.text) if len(matches) > 1: raise MultipleNodesReturnedException def _lxml_xpath_all(xml, expression, namespace): if namespace: find = etree.XPath(get_xpath(expression, namespace), namespaces={'x': namespace}) else: find = etree.XPath(get_xpath(expression,namespace)) matches = find(xml) return [etree.tostring(match) for match in matches] def domify(xml): if lxml_available: return objectify.fromstring(xml) else: return minidom.parseString(xml) def _pydom_xpath_all(xml, expression, namespace): nodelist = xpath.find(expression, xml, default_namespace=namespace) return [fragment.toxml() for fragment in nodelist] def _pydom_xpath(xml, expression, namespace): nodelist = xpath.find(expression, xml, default_namespace=namespace) if len(nodelist) > 1: raise MultipleNodesReturnedException if len(nodelist) == 0: return None if nodelist[0].nodeType == minidom.Node.DOCUMENT_NODE: node = nodelist[0].firstChild.firstChild else: node = nodelist[0].firstChild if node == None: return None if node.nodeType == minidom.Node.TEXT_NODE: return node.nodeValue else: return None def get_xpath(xpath, namespace): if namespace: xpath_list = xpath.split('/') xpath_with_ns = "" for element in xpath_list: if not element.startswith('@') and not element == '' : xpath_with_ns += "/x:" + element elif element == '': pass else: xpath_with_ns += "/" + element return xpath_with_ns else: return xpath class XPathTest(unittest.TestCase): def test_xpath_returns_expected_element_value(self): #setup xml = minidom.parseString("<foo><baz>dcba</baz><bar>abcd</bar></foo>") #execute val = _pydom_xpath(xml, "/foo/bar", None) #assert self.assertEquals("abcd", val) def test_xpath_returns_expected_element_value_from_unicode_xml_fragment(self): #setup xml = minidom.parseString(u"<foo><baz>dcba</baz><bar>abcd\xe9</bar></foo>".encode('utf-8')) #execute val = _pydom_xpath(xml, "/foo/bar", None) #assert self.assertEquals(u"abcd\xe9", val) def test_xpath_returns_expected_attribute_value(self): #setup xml = minidom.parseString('<foo><baz name="Arthur">dcba</baz><bar>abcd</bar></foo>') #execute val = _pydom_xpath(xml, "/foo/baz/@name", None) #assert self.assertEquals("Arthur", val) def test_xpath_returns_expected_attribute_value_from_unicode_xml_fragment(self): #setup xml = minidom.parseString(u'<foo><baz name="Arthur\xe9">dcba</baz><bar>abcd</bar></foo>'.encode('utf-8')) #execute val = _pydom_xpath(xml, "/foo/baz/@name", None) #assert self.assertEquals(u"Arthur\xe9", val) def test_lxml_returns_expected_element_value(self): #setup xml = objectify.fromstring('<foo><baz name="Arthur">dcba</baz><bar>abcd</bar></foo>') #execute val = _lxml_xpath(xml, "/foo/bar", None) #assert self.assertEquals("abcd", val) def test_lxml_returns_expected_element_value_from_unicode_xml_fragment(self): #setup xml = objectify.fromstring(u'<foo><baz name="Arthur">dcba</baz><bar>abcd\xe9</bar></foo>'.encode('utf-8')) #execute val = _lxml_xpath(xml, "/foo/bar", None) #assert self.assertEquals(u"abcd\xe9", val) def test_lxml_returns_expected_attribute_value(self): #setup xml = objectify.fromstring('<foo><baz name="Arthur">dcba</baz><bar>abcd</bar></foo>') #execute val = _lxml_xpath(xml, "/foo/baz/@name", None) #assert self.assertEquals("Arthur", val) def test_lxml_returns_expected_attribute_value_from_unicode_xml_fragment(self): #setup xml = objectify.fromstring(u'<foo><baz name="Arthur\xe9">dcba</baz><bar>abcd</bar></foo>'.encode('utf-8')) #execute val = _lxml_xpath(xml, "/foo/baz/@name", None) #assert self.assertEquals(u"Arthur\xe9", val) if __name__=='__main__': unittest.main()
37.891753
114
0.664127
c013b377711a0e125b8b5830a4f6b2ca9431e839
1,520
py
Python
setup.py
Peking-Epoch/pyfmt
34513c1de219d16aa5f3de68b0f908aa10869890
[ "MIT" ]
1
2020-07-02T08:23:53.000Z
2020-07-02T08:23:53.000Z
setup.py
Peking-Epoch/pyfmt
34513c1de219d16aa5f3de68b0f908aa10869890
[ "MIT" ]
null
null
null
setup.py
Peking-Epoch/pyfmt
34513c1de219d16aa5f3de68b0f908aa10869890
[ "MIT" ]
null
null
null
#!/usr/bin/env python """The setup script.""" from setuptools import setup, find_packages with open('README.rst') as readme_file: readme = readme_file.read() with open('HISTORY.rst') as history_file: history = history_file.read() requirements = ['Click>=7.0', 'black', 'isort>=4.0', 'autoflake'] setup_requirements = ['pytest-runner', ] test_requirements = ['pytest>=3', ] setup( author="svtter", author_email='svtter@qq.com', python_requires='>=3.5', classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', ], description="Format code use black, autoflake, isort", entry_points={ 'console_scripts': [ 'pyfmt=pyfmt.cli:main', ], }, install_requires=requirements, license="MIT license", long_description=readme + '\n\n' + history, include_package_data=True, keywords='pyfmt', name='pyfmt-svtter', packages=find_packages(include=['pyfmt', 'pyfmt.*']), setup_requires=setup_requirements, test_suite='tests', tests_require=test_requirements, url='https://github.com/svtter/pyfmt', version='0.1.0', zip_safe=False, )
28.148148
65
0.626316
e2791ce5e7ec888a75b54c1be4af3318b8640674
1,859
py
Python
patterns/table_data_gateway/gateways/person_gateway.py
xstrengthofonex/enterprise-application-patterns
5c9054ec5fc5e05ce53d3fc4190c040d2fedb59b
[ "MIT" ]
null
null
null
patterns/table_data_gateway/gateways/person_gateway.py
xstrengthofonex/enterprise-application-patterns
5c9054ec5fc5e05ce53d3fc4190c040d2fedb59b
[ "MIT" ]
null
null
null
patterns/table_data_gateway/gateways/person_gateway.py
xstrengthofonex/enterprise-application-patterns
5c9054ec5fc5e05ce53d3fc4190c040d2fedb59b
[ "MIT" ]
null
null
null
from patterns.table_data_gateway.db import db class PersonGateway(object): @staticmethod def find_all(): sql = "SELECT * FROM person" with db.connect() as conn: return conn.execute(sql).fetchall() @staticmethod def find_with_lastname(lastname): sql = "SELECT * FROM person WHERE lastname=:lastname" with db.connect() as conn: return conn.execute(sql, {'lastname':lastname}).fetchall() @staticmethod def find_where(condition, **params): sql = "SELECT * FROM person WHERE {}".format(condition) with db.connect() as conn: return conn.execute(sql, params).fetchall() @staticmethod def find_row(id): sql = "SELECT 1 FROM person WHERE id=:id" with db.connect() as conn: return conn.execute(sql, {'id':id}).fetchone() @staticmethod def update(id, firstname, lastname, numberOfDependents): sql = "UPDATE person "\ "SET firstname=:firstname, lastname=:lastname, " \ "numberOfDependents=:numberOfDependents "\ "WHERE id=:id" with db.connect() as conn: conn.execute(sql, {'firstname':firstname, 'lastname':lastname, 'numberOfDependents':numberOfDependents, 'id':id}) @staticmethod def insert(id, firstname, lastname, numberOfDependents): sql = "INSERT INTO person "\ "VALUES (:id, :firstname, :lastname, :numberOfDependents)" with db.connect() as conn: conn.execute(sql, {'id':id, 'firstname':firstname, 'lastname':lastname, 'numberOfDependents':numberOfDependents}) @staticmethod def delete(id): sql = "DELETE FROM person WHERE id=:id" with db.connect() as conn: conn.execute(sql, {'id': id})
37.18
83
0.597633
99d9edacaff23812ddebbce5e37d899b33ae8988
4,895
py
Python
sdk/python/pulumi_azure/mixedreality/spatial_anchors_account.py
davidobrien1985/pulumi-azure
811beeea473bd798d77354521266a87a2fac5888
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure/mixedreality/spatial_anchors_account.py
davidobrien1985/pulumi-azure
811beeea473bd798d77354521266a87a2fac5888
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure/mixedreality/spatial_anchors_account.py
davidobrien1985/pulumi-azure
811beeea473bd798d77354521266a87a2fac5888
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class SpatialAnchorsAccount(pulumi.CustomResource): location: pulumi.Output[str] """ Specifies the supported Azure location where the resource exists. Changing this forces a new resource to be created. """ name: pulumi.Output[str] """ Specifies the name of the Spatial Anchors Account. Changing this forces a new resource to be created. Must be globally unique. """ resource_group_name: pulumi.Output[str] """ The name of the resource group in which to create the Spatial Anchors Account. """ tags: pulumi.Output[dict] """ A mapping of tags to assign to the resource. """ def __init__(__self__, resource_name, opts=None, location=None, name=None, resource_group_name=None, tags=None, __props__=None, __name__=None, __opts__=None): """ Manages an Azure Spatial Anchors Account. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] location: Specifies the supported Azure location where the resource exists. Changing this forces a new resource to be created. :param pulumi.Input[str] name: Specifies the name of the Spatial Anchors Account. Changing this forces a new resource to be created. Must be globally unique. :param pulumi.Input[str] resource_group_name: The name of the resource group in which to create the Spatial Anchors Account. :param pulumi.Input[dict] tags: A mapping of tags to assign to the resource. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['location'] = location __props__['name'] = name if resource_group_name is None: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name __props__['tags'] = tags super(SpatialAnchorsAccount, __self__).__init__( 'azure:mixedreality/spatialAnchorsAccount:SpatialAnchorsAccount', resource_name, __props__, opts) @staticmethod def get(resource_name, id, opts=None, location=None, name=None, resource_group_name=None, tags=None): """ Get an existing SpatialAnchorsAccount resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param str id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] location: Specifies the supported Azure location where the resource exists. Changing this forces a new resource to be created. :param pulumi.Input[str] name: Specifies the name of the Spatial Anchors Account. Changing this forces a new resource to be created. Must be globally unique. :param pulumi.Input[str] resource_group_name: The name of the resource group in which to create the Spatial Anchors Account. :param pulumi.Input[dict] tags: A mapping of tags to assign to the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["location"] = location __props__["name"] = name __props__["resource_group_name"] = resource_group_name __props__["tags"] = tags return SpatialAnchorsAccount(resource_name, opts=opts, __props__=__props__) def translate_output_property(self, prop): return tables._CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return tables._SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
48.95
165
0.692135
74faaf8e12618b202f7f24feee5e18d168a47271
11,343
py
Python
redash/query_runner/mongodb.py
mozilla/redash
3e76946a4182d30ddb8a6f80fdfef8d550a2359e
[ "BSD-2-Clause" ]
24
2017-05-10T20:36:55.000Z
2020-11-26T14:20:01.000Z
redash/query_runner/mongodb.py
MaxMood96/redash
3e76946a4182d30ddb8a6f80fdfef8d550a2359e
[ "BSD-2-Clause" ]
742
2016-09-28T00:38:58.000Z
2021-07-29T17:48:45.000Z
redash/query_runner/mongodb.py
MaxMood96/redash
3e76946a4182d30ddb8a6f80fdfef8d550a2359e
[ "BSD-2-Clause" ]
21
2016-10-19T18:29:24.000Z
2021-07-24T11:47:36.000Z
import datetime import logging import re from dateutil.parser import parse from redash.query_runner import * from redash.utils import JSONEncoder, json_dumps, json_loads, parse_human_time logger = logging.getLogger(__name__) try: import pymongo from bson.objectid import ObjectId from bson.timestamp import Timestamp from bson.decimal128 import Decimal128 from bson.son import SON from bson.json_util import object_hook as bson_object_hook enabled = True except ImportError: enabled = False TYPES_MAP = { str: TYPE_STRING, bytes: TYPE_STRING, int: TYPE_INTEGER, float: TYPE_FLOAT, bool: TYPE_BOOLEAN, datetime.datetime: TYPE_DATETIME, } class MongoDBJSONEncoder(JSONEncoder): def default(self, o): if isinstance(o, ObjectId): return str(o) elif isinstance(o, Timestamp): return super(MongoDBJSONEncoder, self).default(o.as_datetime()) elif isinstance(o, Decimal128): return o.to_decimal() return super(MongoDBJSONEncoder, self).default(o) date_regex = re.compile('ISODate\("(.*)"\)', re.IGNORECASE) def parse_oids(oids): if not isinstance(oids, list): raise Exception("$oids takes an array as input.") return [bson_object_hook({"$oid": oid}) for oid in oids] def datetime_parser(dct): for k, v in dct.items(): if isinstance(v, str): m = date_regex.findall(v) if len(m) > 0: dct[k] = parse(m[0], yearfirst=True) if "$humanTime" in dct: return parse_human_time(dct["$humanTime"]) if "$oids" in dct: return parse_oids(dct["$oids"]) return bson_object_hook(dct) def parse_query_json(query): query_data = json_loads(query, object_hook=datetime_parser) return query_data def _get_column_by_name(columns, column_name): for c in columns: if "name" in c and c["name"] == column_name: return c return None def parse_results(results): rows = [] columns = [] for row in results: parsed_row = {} for key in row: if isinstance(row[key], dict): for inner_key in row[key]: column_name = "{}.{}".format(key, inner_key) if _get_column_by_name(columns, column_name) is None: columns.append( { "name": column_name, "friendly_name": column_name, "type": TYPES_MAP.get( type(row[key][inner_key]), TYPE_STRING ), } ) parsed_row[column_name] = row[key][inner_key] else: if _get_column_by_name(columns, key) is None: columns.append( { "name": key, "friendly_name": key, "type": TYPES_MAP.get(type(row[key]), TYPE_STRING), } ) parsed_row[key] = row[key] rows.append(parsed_row) return rows, columns class MongoDB(BaseQueryRunner): should_annotate_query = False @classmethod def configuration_schema(cls): return { "type": "object", "properties": { "connectionString": {"type": "string", "title": "Connection String"}, "dbName": {"type": "string", "title": "Database Name"}, "replicaSetName": {"type": "string", "title": "Replica Set Name"}, "readPreference": { "type": "string", "extendedEnum": [ {"value": "primaryPreferred", "name": "Primary Preferred"}, {"value": "primary", "name": "Primary"}, {"value": "secondary", "name": "Secondary"}, {"value": "secondaryPreferred", "name": "Secondary Preferred"}, {"value": "nearest", "name": "Nearest"}, ], "title": "Replica Set Read Preference", }, "toggle_table_string": { "type": "string", "title": "Toggle Table String", "default": "_v", "info": "This string will be used to toggle visibility of tables in the schema browser when editing a query in order to remove non-useful tables from sight.", }, }, "required": ["connectionString", "dbName"], } @classmethod def enabled(cls): return enabled def __init__(self, configuration): super(MongoDB, self).__init__(configuration) self.syntax = "json" self.db_name = self.configuration["dbName"] self.is_replica_set = ( True if "replicaSetName" in self.configuration and self.configuration["replicaSetName"] else False ) def _get_db(self): kwargs = {} if self.is_replica_set: kwargs["replicaSet"] = self.configuration["replicaSetName"] readPreference = self.configuration.get("readPreference") if readPreference: kwargs["readPreference"] = readPreference db_connection = pymongo.MongoClient( self.configuration["connectionString"], **kwargs ) return db_connection[self.db_name] def test_connection(self): db = self._get_db() if not db.command("connectionStatus")["ok"]: raise Exception("MongoDB connection error") return db def _merge_property_names(self, columns, document): for property in document: if property not in columns: columns.append(property) def _is_collection_a_view(self, db, collection_name): if "viewOn" in db[collection_name].options(): return True else: return False def _get_collection_fields(self, db, collection_name): # Since MongoDB is a document based database and each document doesn't have # to have the same fields as another documet in the collection its a bit hard to # show these attributes as fields in the schema. # # For now, the logic is to take the first and last documents (last is determined # by the Natural Order (http://www.mongodb.org/display/DOCS/Sorting+and+Natural+Order) # as we don't know the correct order. In most single server installations it would be # fine. In replicaset when reading from non master it might not return the really last # document written. collection_is_a_view = self._is_collection_a_view(db, collection_name) documents_sample = [] if collection_is_a_view: for d in db[collection_name].find().limit(2): documents_sample.append(d) else: for d in db[collection_name].find().sort([("$natural", 1)]).limit(1): documents_sample.append(d) for d in db[collection_name].find().sort([("$natural", -1)]).limit(1): documents_sample.append(d) columns = [] for d in documents_sample: self._merge_property_names(columns, d) return columns def get_schema(self, get_stats=False): schema = {} db = self._get_db() for collection_name in db.collection_names(): if collection_name.startswith("system."): continue columns = self._get_collection_fields(db, collection_name) schema[collection_name] = { "name": collection_name, "columns": sorted(columns), } return list(schema.values()) def run_query(self, query, user): db = self._get_db() logger.debug( "mongodb connection string: %s", self.configuration["connectionString"] ) logger.debug("mongodb got query: %s", query) try: query_data = parse_query_json(query) except ValueError: return None, "Invalid query format. The query is not a valid JSON." if "collection" not in query_data: return None, "'collection' must have a value to run a query" else: collection = query_data["collection"] q = query_data.get("query", None) f = None aggregate = query_data.get("aggregate", None) if aggregate: for step in aggregate: if "$sort" in step: sort_list = [] for sort_item in step["$sort"]: sort_list.append((sort_item["name"], sort_item["direction"])) step["$sort"] = SON(sort_list) if "fields" in query_data: f = query_data["fields"] s = None if "sort" in query_data and query_data["sort"]: s = [] for field_data in query_data["sort"]: s.append((field_data["name"], field_data["direction"])) columns = [] rows = [] cursor = None if q or (not q and not aggregate): if s: cursor = db[collection].find(q, f).sort(s) else: cursor = db[collection].find(q, f) if "skip" in query_data: cursor = cursor.skip(query_data["skip"]) if "limit" in query_data: cursor = cursor.limit(query_data["limit"]) if "count" in query_data: cursor = cursor.count() elif aggregate: allow_disk_use = query_data.get("allowDiskUse", False) r = db[collection].aggregate(aggregate, allowDiskUse=allow_disk_use) # Backwards compatibility with older pymongo versions. # # Older pymongo version would return a dictionary from an aggregate command. # The dict would contain a "result" key which would hold the cursor. # Newer ones return pymongo.command_cursor.CommandCursor. if isinstance(r, dict): cursor = r["result"] else: cursor = r if "count" in query_data: columns.append( {"name": "count", "friendly_name": "count", "type": TYPE_INTEGER} ) rows.append({"count": cursor}) else: rows, columns = parse_results(cursor) if f: ordered_columns = [] for k in sorted(f, key=f.get): column = _get_column_by_name(columns, k) if column: ordered_columns.append(column) columns = ordered_columns if query_data.get("sortColumns"): reverse = query_data["sortColumns"] == "desc" columns = sorted(columns, key=lambda col: col["name"], reverse=reverse) data = {"columns": columns, "rows": rows} error = None json_data = json_dumps(data, cls=MongoDBJSONEncoder) return json_data, error register(MongoDB)
32.224432
178
0.550736
b8fc6dd2b5384140a2ba92a3a9ba6af348b0b35b
8,597
py
Python
tensorflow/python/keras/layers/preprocessing/category_crossing.py
ghaiyur-musubi/tensorflow
821bd0d4ea30b91dda6f24238aa49de55de20527
[ "Apache-2.0" ]
11
2018-01-03T15:11:09.000Z
2021-04-13T05:47:27.000Z
tensorflow/python/keras/layers/preprocessing/category_crossing.py
ghaiyur-musubi/tensorflow
821bd0d4ea30b91dda6f24238aa49de55de20527
[ "Apache-2.0" ]
2
2020-08-20T18:08:19.000Z
2020-10-02T18:35:21.000Z
tensorflow/python/keras/layers/preprocessing/category_crossing.py
ghaiyur-musubi/tensorflow
821bd0d4ea30b91dda6f24238aa49de55de20527
[ "Apache-2.0" ]
10
2018-07-31T10:56:21.000Z
2019-10-07T08:05:21.000Z
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Keras category crossing preprocessing layers.""" # pylint: disable=g-classes-have-attributes from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools import numpy as np from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_spec from tensorflow.python.keras.engine import base_preprocessing_layer from tensorflow.python.keras.utils import tf_utils from tensorflow.python.ops import array_ops from tensorflow.python.ops import sparse_ops from tensorflow.python.ops.ragged import ragged_array_ops from tensorflow.python.ops.ragged import ragged_tensor from tensorflow.python.util.tf_export import keras_export @keras_export('keras.layers.experimental.preprocessing.CategoryCrossing') class CategoryCrossing(base_preprocessing_layer.PreprocessingLayer): """Category crossing layer. This layer concatenates multiple categorical inputs into a single categorical output (similar to Cartesian product). The output dtype is string. Usage: >>> inp_1 = ['a', 'b', 'c'] >>> inp_2 = ['d', 'e', 'f'] >>> layer = tf.keras.layers.experimental.preprocessing.CategoryCrossing() >>> layer([inp_1, inp_2]) <tf.Tensor: shape=(3, 1), dtype=string, numpy= array([[b'a_X_d'], [b'b_X_e'], [b'c_X_f']], dtype=object)> >>> inp_1 = ['a', 'b', 'c'] >>> inp_2 = ['d', 'e', 'f'] >>> layer = tf.keras.layers.experimental.preprocessing.CategoryCrossing( ... separator='-') >>> layer([inp_1, inp_2]) <tf.Tensor: shape=(3, 1), dtype=string, numpy= array([[b'a-d'], [b'b-e'], [b'c-f']], dtype=object)> Arguments: depth: depth of input crossing. By default None, all inputs are crossed into one output. It can also be an int or tuple/list of ints. Passing an integer will create combinations of crossed outputs with depth up to that integer, i.e., [1, 2, ..., `depth`), and passing a tuple of integers will create crossed outputs with depth for the specified values in the tuple, i.e., `depth`=(N1, N2) will create all possible crossed outputs with depth equal to N1 or N2. Passing `None` means a single crossed output with all inputs. For example, with inputs `a`, `b` and `c`, `depth=2` means the output will be [a;b;c;cross(a, b);cross(bc);cross(ca)]. separator: A string added between each input being joined. Defaults to '_X_'. name: Name to give to the layer. **kwargs: Keyword arguments to construct a layer. Input shape: a list of string or int tensors or sparse tensors of shape `[batch_size, d1, ..., dm]` Output shape: a single string or int tensor or sparse tensor of shape `[batch_size, d1, ..., dm]` Returns: If any input is `RaggedTensor`, the output is `RaggedTensor`. Else, if any input is `SparseTensor`, the output is `SparseTensor`. Otherwise, the output is `Tensor`. Example: (`depth`=None) If the layer receives three inputs: `a=[[1], [4]]`, `b=[[2], [5]]`, `c=[[3], [6]]` the output will be a string tensor: `[[b'1_X_2_X_3'], [b'4_X_5_X_6']]` Example: (`depth` is an integer) With the same input above, and if `depth`=2, the output will be a list of 6 string tensors: `[[b'1'], [b'4']]` `[[b'2'], [b'5']]` `[[b'3'], [b'6']]` `[[b'1_X_2'], [b'4_X_5']]`, `[[b'2_X_3'], [b'5_X_6']]`, `[[b'3_X_1'], [b'6_X_4']]` Example: (`depth` is a tuple/list of integers) With the same input above, and if `depth`=(2, 3) the output will be a list of 4 string tensors: `[[b'1_X_2'], [b'4_X_5']]`, `[[b'2_X_3'], [b'5_X_6']]`, `[[b'3_X_1'], [b'6_X_4']]`, `[[b'1_X_2_X_3'], [b'4_X_5_X_6']]` """ def __init__(self, depth=None, name=None, separator=None, **kwargs): super(CategoryCrossing, self).__init__(name=name, **kwargs) base_preprocessing_layer.keras_kpl_gauge.get_cell( 'CategoryCrossing').set(True) self.depth = depth if separator is None: separator = '_X_' self.separator = separator if isinstance(depth, (tuple, list)): self._depth_tuple = depth elif depth is not None: self._depth_tuple = tuple([i for i in range(1, depth + 1)]) def partial_crossing(self, partial_inputs, ragged_out, sparse_out): """Gets the crossed output from a partial list/tuple of inputs.""" # If ragged_out=True, convert output from sparse to ragged. if ragged_out: # TODO(momernick): Support separator with ragged_cross. if self.separator != '_X_': raise ValueError('Non-default separator with ragged input is not ' 'supported yet, given {}'.format(self.separator)) return ragged_array_ops.cross(partial_inputs) elif sparse_out: return sparse_ops.sparse_cross(partial_inputs, separator=self.separator) else: return sparse_ops.sparse_tensor_to_dense( sparse_ops.sparse_cross(partial_inputs, separator=self.separator)) def _preprocess_input(self, inp): if isinstance(inp, (list, tuple, np.ndarray)): inp = ops.convert_to_tensor_v2_with_dispatch(inp) if inp.shape.rank == 1: inp = array_ops.expand_dims(inp, axis=-1) return inp def call(self, inputs): inputs = [self._preprocess_input(inp) for inp in inputs] depth_tuple = self._depth_tuple if self.depth else (len(inputs),) ragged_out = sparse_out = False if any(tf_utils.is_ragged(inp) for inp in inputs): ragged_out = True elif any(isinstance(inp, sparse_tensor.SparseTensor) for inp in inputs): sparse_out = True outputs = [] for depth in depth_tuple: if len(inputs) < depth: raise ValueError( 'Number of inputs cannot be less than depth, got {} input tensors, ' 'and depth {}'.format(len(inputs), depth)) for partial_inps in itertools.combinations(inputs, depth): partial_out = self.partial_crossing( partial_inps, ragged_out, sparse_out) outputs.append(partial_out) if sparse_out: return sparse_ops.sparse_concat_v2(axis=1, sp_inputs=outputs) return array_ops.concat(outputs, axis=1) def compute_output_shape(self, input_shape): if not isinstance(input_shape, (tuple, list)): raise ValueError('A `CategoryCrossing` layer should be called ' 'on a list of inputs.') input_shapes = input_shape batch_size = None for inp_shape in input_shapes: inp_tensor_shape = tensor_shape.TensorShape(inp_shape).as_list() if len(inp_tensor_shape) != 2: raise ValueError('Inputs must be rank 2, get {}'.format(input_shapes)) if batch_size is None: batch_size = inp_tensor_shape[0] # The second dimension is dynamic based on inputs. output_shape = [batch_size, None] return tensor_shape.TensorShape(output_shape) def compute_output_signature(self, input_spec): input_shapes = [x.shape for x in input_spec] output_shape = self.compute_output_shape(input_shapes) if any( isinstance(inp_spec, ragged_tensor.RaggedTensorSpec) for inp_spec in input_spec): return tensor_spec.TensorSpec(shape=output_shape, dtype=dtypes.string) elif any( isinstance(inp_spec, sparse_tensor.SparseTensorSpec) for inp_spec in input_spec): return sparse_tensor.SparseTensorSpec( shape=output_shape, dtype=dtypes.string) return tensor_spec.TensorSpec(shape=output_shape, dtype=dtypes.string) def get_config(self): config = { 'depth': self.depth, 'separator': self.separator, } base_config = super(CategoryCrossing, self).get_config() return dict(list(base_config.items()) + list(config.items()))
40.551887
80
0.680354
dd3a18427dccc4f5ce39a65a1740982d6f6d0c3e
422
py
Python
URI Online Judge/Mathematics/1161 - Factorial Sum.py
wgarcia1309/competitive-programming
a1788c8a7cbddaa753c2f468859581c1bac9e322
[ "MIT" ]
null
null
null
URI Online Judge/Mathematics/1161 - Factorial Sum.py
wgarcia1309/competitive-programming
a1788c8a7cbddaa753c2f468859581c1bac9e322
[ "MIT" ]
null
null
null
URI Online Judge/Mathematics/1161 - Factorial Sum.py
wgarcia1309/competitive-programming
a1788c8a7cbddaa753c2f468859581c1bac9e322
[ "MIT" ]
null
null
null
#1161 - Factorial Sum while(True): try: s=str(input()) n=s.split(" ") v1=int(n[0]) v2=int(n[1]) if(v1>v2): mx=v1+1 else: mx=v2+1 r1=r2=p=1; for x in range (2,mx): p*=x; if(x==v1): r1=p; if(x==v2): r2=p; print(r1+r2) except Exception: break
18.347826
30
0.343602
e7267d09cd4f212b15e39e433ea5a7a1423859f1
241
py
Python
test_botnet_dataset.py
ailabteam/clone_test_botnet-detection
95f02d4967186440f60d83db04f139c197e178b7
[ "MIT" ]
112
2020-03-12T17:59:13.000Z
2022-03-17T00:26:58.000Z
test_botnet_dataset.py
ailabteam/clone_test_botnet-detection
95f02d4967186440f60d83db04f139c197e178b7
[ "MIT" ]
14
2020-05-19T07:14:10.000Z
2022-02-23T17:11:43.000Z
test_botnet_dataset.py
ailabteam/clone_test_botnet-detection
95f02d4967186440f60d83db04f139c197e178b7
[ "MIT" ]
35
2020-03-12T15:14:23.000Z
2022-03-10T05:56:03.000Z
from botdet.data.dataset_botnet import BotnetDataset if __name__ == '__main__': dataset = BotnetDataset(name='chord', split='train', graph_format='pyg') print(dataset) print(len(dataset)) print(dataset[0]) breakpoint()
24.1
76
0.701245
0074628ed951e6dcb0df11ee6d7a73b152d6844a
21,745
py
Python
server/.vim/bundle/YouCompleteMe/third_party/ycmd/ycmd/tests/clangd/signature_help_test.py
hkdb/sysconf
99d334f7309657647059c4b37f25e33dffc81fc3
[ "MIT" ]
10
2020-07-21T21:59:54.000Z
2021-07-19T11:01:47.000Z
server/.vim/bundle/YouCompleteMe/third_party/ycmd/ycmd/tests/clangd/signature_help_test.py
hkdb/sysconf
99d334f7309657647059c4b37f25e33dffc81fc3
[ "MIT" ]
null
null
null
server/.vim/bundle/YouCompleteMe/third_party/ycmd/ycmd/tests/clangd/signature_help_test.py
hkdb/sysconf
99d334f7309657647059c4b37f25e33dffc81fc3
[ "MIT" ]
1
2021-01-30T18:17:01.000Z
2021-01-30T18:17:01.000Z
# Copyright (C) 2020 ycmd contributors # # This file is part of ycmd. # # ycmd is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # ycmd is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with ycmd. If not, see <http://www.gnu.org/licenses/>. import json import requests from unittest.mock import patch from hamcrest import assert_that, contains_exactly, empty, equal_to, has_entries from ycmd import handlers from ycmd.tests.clangd import PathToTestFile, SharedYcmd, IsolatedYcmd from ycmd.tests.test_utils import ( EMPTY_SIGNATURE_HELP, BuildRequest, CombineRequest, ParameterMatcher, SignatureMatcher, SignatureAvailableMatcher, WaitUntilCompleterServerReady ) from ycmd.utils import ReadFile def RunTest( app, test ): """ Method to run a simple completion test and verify the result Note: Compile commands are extracted from a compile_flags.txt file by clangd by iteratively looking at the directory containing the source file and its ancestors. test is a dictionary containing: 'request': kwargs for BuildRequest 'expect': { 'response': server response code (e.g. requests.codes.ok) 'data': matcher for the server response json } """ request = test[ 'request' ] filetype = request.get( 'filetype', 'cpp' ) if 'contents' not in request: contents = ReadFile( request[ 'filepath' ] ) request[ 'contents' ] = contents request[ 'filetype' ] = filetype # Because we aren't testing this command, we *always* ignore errors. This # is mainly because we (may) want to test scenarios where the completer # throws an exception and the easiest way to do that is to throw from # within the Settings function. app.post_json( '/event_notification', CombineRequest( request, { 'event_name': 'FileReadyToParse', 'filetype': filetype } ), expect_errors = True ) WaitUntilCompleterServerReady( app, filetype ) # We also ignore errors here, but then we check the response code ourself. # This is to allow testing of requests returning errors. response = app.post_json( '/signature_help', BuildRequest( **request ), expect_errors = True ) assert_that( response.status_code, equal_to( test[ 'expect' ][ 'response' ] ) ) print( 'Completer response: {}'.format( json.dumps( response.json, indent = 2 ) ) ) assert_that( response.json, test[ 'expect' ][ 'data' ] ) @SharedYcmd def Signature_Help_Trigger_test( app ): RunTest( app, { 'description': 'trigger after (', 'request': { 'filetype' : 'cpp', 'filepath' : PathToTestFile( 'general_fallback', 'make_drink.cc' ), 'line_num' : 7, 'column_num': 14, 'signature_help_state': 'INACTIVE', }, 'expect': { 'response': requests.codes.ok, 'data': has_entries( { 'errors': empty(), 'signature_help': has_entries( { 'activeSignature': 0, 'activeParameter': 0, 'signatures': contains_exactly( SignatureMatcher( 'make_drink(TypeOfDrink type, ' 'Temperature temp, ' 'int sugargs) -> Drink &', [ ParameterMatcher( 11, 27 ), ParameterMatcher( 29, 45 ), ParameterMatcher( 47, 58 ), ] ), SignatureMatcher( 'make_drink(TypeOfDrink type, ' 'double fizziness, ' 'Flavour Flavour) -> Drink &', [ ParameterMatcher( 11, 27 ), ParameterMatcher( 29, 45 ), ParameterMatcher( 47, 62 ), ] ), ) } ), } ) }, } ) @IsolatedYcmd( { 'disable_signature_help': 1 } ) def Signature_Help_Disabled_test( app ): RunTest( app, { 'description': 'trigger after (', 'request': { 'filetype' : 'cpp', 'filepath' : PathToTestFile( 'general_fallback', 'make_drink.cc' ), 'line_num' : 7, 'column_num': 14, 'signature_help_state': 'INACTIVE', }, 'expect': { 'response': requests.codes.ok, 'data': has_entries( { 'errors': empty(), 'signature_help': EMPTY_SIGNATURE_HELP, } ) }, } ) @SharedYcmd def Signature_Help_NoTrigger_test( app ): RunTest( app, { 'description': 'do not trigger before (', 'request': { 'filetype' : 'cpp', 'filepath' : PathToTestFile( 'general_fallback', 'make_drink.cc' ), 'line_num' : 7, 'column_num': 13, 'signature_help_state': 'INACTIVE', }, 'expect': { 'response': requests.codes.ok, 'data': has_entries( { 'errors': empty(), 'signature_help': EMPTY_SIGNATURE_HELP, } ), }, } ) @SharedYcmd def Signature_Help_NoTrigger_After_Trigger_test( app ): RunTest( app, { 'description': 'do not trigger too far after (', 'request': { 'filetype' : 'cpp', 'filepath' : PathToTestFile( 'general_fallback', 'make_drink.cc' ), 'line_num' : 7, 'column_num': 15, 'signature_help_state': 'INACTIVE', }, 'expect': { 'response': requests.codes.ok, 'data': has_entries( { 'errors': empty(), 'signature_help': EMPTY_SIGNATURE_HELP, } ), }, } ) @SharedYcmd def Signature_Help_Trigger_After_Trigger_test( app ): RunTest( app, { 'description': 'Auto trigger due to state of existing request', 'request': { 'filetype' : 'cpp', 'filepath' : PathToTestFile( 'general_fallback', 'make_drink.cc' ), 'line_num' : 7, 'column_num': 15, 'signature_help_state': 'ACTIVE', }, 'expect': { 'response': requests.codes.ok, 'data': has_entries( { 'errors': empty(), 'signature_help': has_entries( { 'activeSignature': 0, 'activeParameter': 0, 'signatures': contains_exactly( SignatureMatcher( 'make_drink(TypeOfDrink type, ' 'Temperature temp, ' 'int sugargs) -> Drink &', [ ParameterMatcher( 11, 27 ), ParameterMatcher( 29, 45 ), ParameterMatcher( 47, 58 ), ] ), SignatureMatcher( 'make_drink(TypeOfDrink type, ' 'double fizziness, ' 'Flavour Flavour) -> Drink &', [ ParameterMatcher( 11, 27 ), ParameterMatcher( 29, 45 ), ParameterMatcher( 47, 62 ), ] ), ) } ), } ), }, } ) @IsolatedYcmd( { 'disable_signature_help': 1 } ) def Signature_Help_Trigger_After_Trigger_Disabled_test( app ): RunTest( app, { 'description': 'Auto trigger due to state of existing request', 'request': { 'filetype' : 'cpp', 'filepath' : PathToTestFile( 'general_fallback', 'make_drink.cc' ), 'line_num' : 7, 'column_num': 15, 'signature_help_state': 'ACTIVE', }, 'expect': { 'response': requests.codes.ok, 'data': has_entries( { 'errors': empty(), 'signature_help': EMPTY_SIGNATURE_HELP, } ), }, } ) @SharedYcmd def Signature_Help_Trigger_After_Trigger_PlusText_test( app ): RunTest( app, { 'description': 'Triggering after additional text beyond (', 'request': { 'filetype' : 'cpp', 'filepath' : PathToTestFile( 'general_fallback', 'make_drink.cc' ), 'line_num' : 7, 'column_num': 17, 'signature_help_state': 'ACTIVE', }, 'expect': { 'response': requests.codes.ok, 'data': has_entries( { 'errors': empty(), 'signature_help': has_entries( { 'activeSignature': 0, 'activeParameter': 0, 'signatures': contains_exactly( SignatureMatcher( 'make_drink(TypeOfDrink type, ' 'Temperature temp, ' 'int sugargs) -> Drink &', [ ParameterMatcher( 11, 27 ), ParameterMatcher( 29, 45 ), ParameterMatcher( 47, 58 ), ] ), SignatureMatcher( 'make_drink(TypeOfDrink type, ' 'double fizziness, ' 'Flavour Flavour) -> Drink &', [ ParameterMatcher( 11, 27 ), ParameterMatcher( 29, 45 ), ParameterMatcher( 47, 62 ), ] ), ) } ), } ), }, } ) @SharedYcmd def Signature_Help_Trigger_After_Trigger_PlusCompletion_test( app ): RunTest( app, { 'description': 'Triggering after semantic trigger after (', 'request': { 'filetype' : 'cpp', 'filepath' : PathToTestFile( 'general_fallback', 'make_drink.cc' ), 'line_num' : 7, 'column_num': 28, 'signature_help_state': 'ACTIVE', }, 'expect': { 'response': requests.codes.ok, 'data': has_entries( { 'errors': empty(), 'signature_help': has_entries( { 'activeSignature': 0, 'activeParameter': 0, 'signatures': contains_exactly( SignatureMatcher( 'make_drink(TypeOfDrink type, ' 'Temperature temp, ' 'int sugargs) -> Drink &', [ ParameterMatcher( 11, 27 ), ParameterMatcher( 29, 45 ), ParameterMatcher( 47, 58 ), ] ), SignatureMatcher( 'make_drink(TypeOfDrink type, ' 'double fizziness, ' 'Flavour Flavour) -> Drink &', [ ParameterMatcher( 11, 27 ), ParameterMatcher( 29, 45 ), ParameterMatcher( 47, 62 ), ] ), ) } ), } ), }, } ) @SharedYcmd def Signature_Help_Trigger_After_OtherTrigger_test( app ): RunTest( app, { 'description': 'Triggering after ,', 'request': { 'filetype' : 'cpp', 'filepath' : PathToTestFile( 'general_fallback', 'make_drink.cc' ), 'line_num' : 7, 'column_num': 35, 'signature_help_state': 'INACTIVE', }, 'expect': { 'response': requests.codes.ok, 'data': has_entries( { 'errors': empty(), 'signature_help': has_entries( { 'activeSignature': 0, 'activeParameter': 1, 'signatures': contains_exactly( SignatureMatcher( 'make_drink(TypeOfDrink type, ' 'Temperature temp, ' 'int sugargs) -> Drink &', [ ParameterMatcher( 11, 27 ), ParameterMatcher( 29, 45 ), ParameterMatcher( 47, 58 ), ] ), SignatureMatcher( 'make_drink(TypeOfDrink type, ' 'double fizziness, ' 'Flavour Flavour) -> Drink &', [ ParameterMatcher( 11, 27 ), ParameterMatcher( 29, 45 ), ParameterMatcher( 47, 62 ), ] ), ) } ), } ), }, } ) @SharedYcmd def Signature_Help_Trigger_After_Arguments_Narrow_test( app ): RunTest( app, { 'description': 'After resolution of overload', 'request': { 'filetype' : 'cpp', 'filepath' : PathToTestFile( 'general_fallback', 'make_drink.cc' ), 'line_num' : 7, 'column_num': 41, 'signature_help_state': 'ACTIVE', }, 'expect': { 'response': requests.codes.ok, 'data': has_entries( { 'errors': empty(), 'signature_help': has_entries( { 'activeSignature': 0, 'activeParameter': 2, 'signatures': contains_exactly( SignatureMatcher( 'make_drink(TypeOfDrink type, ' 'double fizziness, ' 'Flavour Flavour) -> Drink &', [ ParameterMatcher( 11, 27 ), ParameterMatcher( 29, 45 ), ParameterMatcher( 47, 62 ), ] ) ) } ), } ), }, } ) @SharedYcmd def Signature_Help_Trigger_After_Arguments_Narrow2_test( app ): RunTest( app, { 'description': 'After resolution of overload not the first one', 'request': { 'filetype' : 'cpp', 'filepath' : PathToTestFile( 'general_fallback', 'make_drink.cc' ), 'line_num' : 8, 'column_num': 53, 'signature_help_state': 'ACTIVE', }, 'expect': { 'response': requests.codes.ok, 'data': has_entries( { 'errors': empty(), 'signature_help': has_entries( { 'activeSignature': 0, 'activeParameter': 2, 'signatures': contains_exactly( SignatureMatcher( 'make_drink(TypeOfDrink type, ' 'Temperature temp, ' 'int sugargs) -> Drink &', [ ParameterMatcher( 11, 27 ), ParameterMatcher( 29, 45 ), ParameterMatcher( 47, 58 ), ] ) ) } ), } ), }, } ) @SharedYcmd def Signature_Help_Trigger_After_OtherTrigger_ReTrigger_test( app ): RunTest( app, { 'description': 'Triggering after , but already ACTIVE', 'request': { 'filetype' : 'cpp', 'filepath' : PathToTestFile( 'general_fallback', 'make_drink.cc' ), 'line_num' : 7, 'column_num': 35, 'signature_help_state': 'ACTIVE', }, 'expect': { 'response': requests.codes.ok, 'data': has_entries( { 'errors': empty(), 'signature_help': has_entries( { 'activeSignature': 0, 'activeParameter': 1, 'signatures': contains_exactly( SignatureMatcher( 'make_drink(TypeOfDrink type, ' 'Temperature temp, ' 'int sugargs) -> Drink &', [ ParameterMatcher( 11, 27 ), ParameterMatcher( 29, 45 ), ParameterMatcher( 47, 58 ), ] ), SignatureMatcher( 'make_drink(TypeOfDrink type, ' 'double fizziness, ' 'Flavour Flavour) -> Drink &', [ ParameterMatcher( 11, 27 ), ParameterMatcher( 29, 45 ), ParameterMatcher( 47, 62 ), ] ), ) } ), } ), }, } ) @SharedYcmd def Signature_Help_Trigger_JustBeforeClose_test( app ): RunTest( app, { 'description': 'Last argument, before )', 'request': { 'filetype' : 'cpp', 'filepath' : PathToTestFile( 'general_fallback', 'make_drink.cc' ), 'line_num' : 8, 'column_num': 33, 'signature_help_state': 'ACTIVE', }, 'expect': { 'response': requests.codes.ok, 'data': has_entries( { 'errors': empty(), 'signature_help': has_entries( { 'activeSignature': 0, 'activeParameter': 0, 'signatures': contains_exactly( SignatureMatcher( 'make_drink(TypeOfDrink type, ' 'Temperature temp, ' 'int sugargs) -> Drink &', [ ParameterMatcher( 11, 27 ), ParameterMatcher( 29, 45 ), ParameterMatcher( 47, 58 ), ] ), SignatureMatcher( 'make_drink(TypeOfDrink type, ' 'double fizziness, ' 'Flavour Flavour) -> Drink &', [ ParameterMatcher( 11, 27 ), ParameterMatcher( 29, 45 ), ParameterMatcher( 47, 62 ), ] ), ) } ), } ), }, } ) @SharedYcmd def Signature_Help_Clears_After_EndFunction_test( app ): RunTest( app, { 'description': 'Empty response on )', 'request': { 'filetype' : 'cpp', 'filepath' : PathToTestFile( 'general_fallback', 'make_drink.cc' ), 'line_num' : 7, 'column_num': 70, 'signature_help_state': 'ACTIVE', }, 'expect': { 'response': requests.codes.ok, 'data': has_entries( { 'errors': empty(), 'signature_help': EMPTY_SIGNATURE_HELP, } ), }, } ) @SharedYcmd def Signature_Help_Clears_After_Function_Call_test( app ): RunTest( app, { 'description': 'Empty response after )', 'request': { 'filetype' : 'cpp', 'filepath' : PathToTestFile( 'general_fallback', 'make_drink.cc' ), 'line_num' : 7, 'column_num': 71, 'signature_help_state': 'ACTIVE', }, 'expect': { 'response': requests.codes.ok, 'data': has_entries( { 'errors': empty(), 'signature_help': EMPTY_SIGNATURE_HELP, } ), }, } ) @patch( 'ycmd.completers.completer.Completer.ShouldUseSignatureHelpNow', return_value = True ) @patch( 'ycmd.completers.language_server.language_server_completer.' 'LanguageServerCompleter._ServerIsInitialized', return_value = False ) @IsolatedYcmd() def Signature_Help_Server_Not_Initialized_test( should_use_sig, server_init, app ): filepath = PathToTestFile( 'general_fallback', 'make_drink.cc' ) request = { 'filetype' : 'cpp', 'filepath' : filepath, 'line_num' : 7, 'column_num': 71, 'signature_help_state': 'INACTIVE', 'contents': ReadFile( filepath ) } response = app.post_json( '/signature_help', BuildRequest( **request ), expect_errors = True ) assert_that( response.json, has_entries( { 'errors': empty(), 'signature_help': EMPTY_SIGNATURE_HELP, } ) ) def Signature_Help_Available_Server_Not_Initialized_test(): completer = handlers._server_state.GetFiletypeCompleter( [ 'cpp' ] ) @SharedYcmd @patch.object( completer, '_ServerIsInitialized', return_value = False ) def Test( app ): response = app.get( '/signature_help_available', { 'subserver': 'cpp' } ).json assert_that( response, SignatureAvailableMatcher( 'PENDING' ) ) @SharedYcmd def Signature_Help_Supported_test( app ): request = { 'filepath' : PathToTestFile( 'goto.cc' ) } app.post_json( '/event_notification', CombineRequest( request, { 'event_name': 'FileReadyToParse', 'filetype': 'cpp' } ), expect_errors = True ) WaitUntilCompleterServerReady( app, 'cpp' ) response = app.get( '/signature_help_available', { 'subserver': 'cpp' } ).json assert_that( response, SignatureAvailableMatcher( 'YES' ) ) @IsolatedYcmd( { 'disable_signature_help': 1 } ) def Signature_Help_Available_Disabled_By_User_test( app, *args ): request = { 'filepath' : PathToTestFile( 'goto.cc' ) } app.post_json( '/event_notification', CombineRequest( request, { 'event_name': 'FileReadyToParse', 'filetype': 'cpp' } ), expect_errors = True ) WaitUntilCompleterServerReady( app, 'cpp' ) response = app.get( '/signature_help_available', { 'subserver': 'cpp' } ).json assert_that( response, SignatureAvailableMatcher( 'NO' ) )
34.029734
80
0.501173
fad78eab3bf3ce972584a9e70c8115709ed068fd
28,150
py
Python
virt_env/virt1/lib/python2.7/site-packages/WebTest-2.0.17-py2.7.egg/webtest/app.py
grepme/CMPUT410Lab01
810e565d347718334edd89114647d0264259cc3d
[ "Apache-2.0" ]
null
null
null
virt_env/virt1/lib/python2.7/site-packages/WebTest-2.0.17-py2.7.egg/webtest/app.py
grepme/CMPUT410Lab01
810e565d347718334edd89114647d0264259cc3d
[ "Apache-2.0" ]
3
2015-02-15T18:31:10.000Z
2015-02-22T19:56:05.000Z
virt_env/virt1/lib/python2.7/site-packages/WebTest-2.0.17-py2.7.egg/webtest/app.py
grepme/CMPUT410Lab01
810e565d347718334edd89114647d0264259cc3d
[ "Apache-2.0" ]
null
null
null
# (c) 2005 Ian Bicking and contributors; written for Paste # (http://pythonpaste.org) # Licensed under the MIT license: # http://www.opensource.org/licenses/mit-license.php """ Routines for testing WSGI applications. Most interesting is TestApp """ from __future__ import unicode_literals import os import re import json import random import fnmatch import mimetypes from base64 import b64encode from six import StringIO from six import BytesIO from six import string_types from six import binary_type from six import text_type from six.moves import http_cookiejar from webtest.compat import urlparse from webtest.compat import urlencode from webtest.compat import to_bytes from webtest.compat import escape_cookie_value from webtest.response import TestResponse from webtest import forms from webtest import lint from webtest import utils import webob __all__ = ['TestApp', 'TestRequest'] class AppError(Exception): def __init__(self, message, *args): if isinstance(message, binary_type): message = message.decode('utf8') str_args = () for arg in args: if isinstance(arg, webob.Response): body = arg.body if isinstance(body, binary_type): if arg.charset: arg = body.decode(arg.charset) else: arg = repr(body) elif isinstance(arg, binary_type): try: arg = arg.decode('utf8') except UnicodeDecodeError: arg = repr(arg) str_args += (arg,) message = message % str_args Exception.__init__(self, message) class CookiePolicy(http_cookiejar.DefaultCookiePolicy): """A subclass of DefaultCookiePolicy to allow cookie set for Domain=localhost.""" def return_ok_domain(self, cookie, request): if cookie.domain == '.localhost': return True return http_cookiejar.DefaultCookiePolicy.return_ok_domain( self, cookie, request) def set_ok_domain(self, cookie, request): if cookie.domain == '.localhost': return True return http_cookiejar.DefaultCookiePolicy.set_ok_domain( self, cookie, request) class TestRequest(webob.BaseRequest): """A subclass of webob.Request""" ResponseClass = TestResponse class TestApp(object): """ Wraps a WSGI application in a more convenient interface for testing. It uses extended version of :class:`webob.BaseRequest` and :class:`webob.Response`. :param app: May be an WSGI application or Paste Deploy app, like ``'config:filename.ini#test'``. .. versionadded:: 2.0 It can also be an actual full URL to an http server and webtest will proxy requests with `wsgiproxy`. :type app: WSGI application :param extra_environ: A dictionary of values that should go into the environment for each request. These can provide a communication channel with the application. :type extra_environ: dict :param relative_to: A directory used for file uploads are calculated relative to this. Also ``config:`` URIs that aren't absolute. :type relative_to: string :param cookiejar: :class:`cookielib.CookieJar` alike API that keeps cookies across requets. :type cookiejar: CookieJar instance .. attribute:: cookies A convenient shortcut for a dict of all cookies in ``cookiejar``. :param parser_features: Passed to BeautifulSoup when parsing responses. :type parser_features: string or list :param json_encoder: Passed to json.dumps when encoding json :type json_encoder: A subclass of json.JSONEncoder :param lint: If True (default) then check that the application is WSGI compliant :type lint: A boolean """ RequestClass = TestRequest def __init__(self, app, extra_environ=None, relative_to=None, use_unicode=True, cookiejar=None, parser_features=None, json_encoder=None, lint=True): if 'WEBTEST_TARGET_URL' in os.environ: app = os.environ['WEBTEST_TARGET_URL'] if isinstance(app, string_types): if app.startswith('http'): try: from wsgiproxy import HostProxy except ImportError: # pragma: no cover raise ImportError(( 'Using webtest with a real url requires WSGIProxy2. ' 'Please install it with: ' 'pip install WSGIProxy2')) if '#' not in app: app += '#httplib' url, client = app.split('#', 1) app = HostProxy(url, client=client) else: from paste.deploy import loadapp # @@: Should pick up relative_to from calling module's # __file__ app = loadapp(app, relative_to=relative_to) self.app = app self.lint = lint self.relative_to = relative_to if extra_environ is None: extra_environ = {} self.extra_environ = extra_environ self.use_unicode = use_unicode if cookiejar is None: cookiejar = http_cookiejar.CookieJar(policy=CookiePolicy()) self.cookiejar = cookiejar if parser_features is None: parser_features = 'html.parser' self.RequestClass.ResponseClass.parser_features = parser_features if json_encoder is None: json_encoder = json.JSONEncoder self.JSONEncoder = json_encoder def get_authorization(self): """Allow to set the HTTP_AUTHORIZATION environ key. Value should looks like ``('Basic', ('user', 'password'))`` If value is None the the HTTP_AUTHORIZATION is removed """ return self.authorization_value def set_authorization(self, value): self.authorization_value = value if value is not None: invalid_value = ( "You should use a value like ('Basic', ('user', 'password'))" ) if isinstance(value, (list, tuple)) and len(value) == 2: authtype, val = value if authtype == 'Basic' and val and \ isinstance(val, (list, tuple)): val = ':'.join(list(val)) val = b64encode(to_bytes(val)).strip() val = val.decode('latin1') else: raise ValueError(invalid_value) value = str('%s %s' % (authtype, val)) else: raise ValueError(invalid_value) self.extra_environ.update({ 'HTTP_AUTHORIZATION': value, }) else: if 'HTTP_AUTHORIZATION' in self.extra_environ: del self.extra_environ['HTTP_AUTHORIZATION'] authorization = property(get_authorization, set_authorization) @property def cookies(self): return dict([(cookie.name, cookie.value) for cookie in self.cookiejar]) def set_cookie(self, name, value): """ Sets a cookie to be passed through with requests. """ value = escape_cookie_value(value) cookie = http_cookiejar.Cookie( version=0, name=name, value=value, port=None, port_specified=False, domain='.localhost', domain_specified=True, domain_initial_dot=False, path='/', path_specified=True, secure=False, expires=None, discard=False, comment=None, comment_url=None, rest=None ) self.cookiejar.set_cookie(cookie) def reset(self): """ Resets the state of the application; currently just clears saved cookies. """ self.cookiejar.clear() def set_parser_features(self, parser_features): """ Changes the parser used by BeautifulSoup. See its documentation to know the supported parsers. """ self.RequestClass.ResponseClass.parser_features = parser_features def get(self, url, params=None, headers=None, extra_environ=None, status=None, expect_errors=False, xhr=False): """ Do a GET request given the url path. :param params: A query string, or a dictionary that will be encoded into a query string. You may also include a URL query string on the ``url``. :param headers: Extra headers to send. :type headers: dictionary :param extra_environ: Environmental variables that should be added to the request. :type extra_environ: dictionary :param status: The HTTP status code you expect in response (if not 200 or 3xx). You can also use a wildcard, like ``'3*'`` or ``'*'``. :type status: integer or string :param expect_errors: If this is False, then if anything is written to environ ``wsgi.errors`` it will be an error. If it is True, then non-200/3xx responses are also okay. :type expect_errors: boolean :param xhr: If this is true, then marks response as ajax. The same as headers={'X-REQUESTED-WITH': 'XMLHttpRequest', } :type xhr: boolean :returns: :class:`webtest.TestResponse` instance. """ environ = self._make_environ(extra_environ) url = str(url) url = self._remove_fragment(url) if params: if not isinstance(params, string_types): params = urlencode(params, doseq=True) if str('?') in url: url += str('&') else: url += str('?') url += params if str('?') in url: url, environ['QUERY_STRING'] = url.split(str('?'), 1) else: environ['QUERY_STRING'] = str('') req = self.RequestClass.blank(url, environ) if xhr: headers = self._add_xhr_header(headers) if headers: req.headers.update(headers) return self.do_request(req, status=status, expect_errors=expect_errors) def post(self, url, params='', headers=None, extra_environ=None, status=None, upload_files=None, expect_errors=False, content_type=None, xhr=False): """ Do a POST request. Similar to :meth:`~webtest.TestApp.get`. :param params: Are put in the body of the request. If params is a iterator it will be urlencoded, if it is string it will not be encoded, but placed in the body directly. Can be a collections.OrderedDict with :class:`webtest.forms.Upload` fields included:: app.post('/myurl', collections.OrderedDict([ ('textfield1', 'value1'), ('uploadfield', webapp.Upload('filename.txt', 'contents'), ('textfield2', 'value2')]))) :param upload_files: It should be a list of ``(fieldname, filename, file_content)``. You can also use just ``(fieldname, filename)`` and the file contents will be read from disk. :type upload_files: list :param content_type: HTTP content type, for example `application/json`. :type content_type: string :param xhr: If this is true, then marks response as ajax. The same as headers={'X-REQUESTED-WITH': 'XMLHttpRequest', } :type xhr: boolean :returns: :class:`webtest.TestResponse` instance. """ if xhr: headers = self._add_xhr_header(headers) return self._gen_request('POST', url, params=params, headers=headers, extra_environ=extra_environ, status=status, upload_files=upload_files, expect_errors=expect_errors, content_type=content_type) def put(self, url, params='', headers=None, extra_environ=None, status=None, upload_files=None, expect_errors=False, content_type=None, xhr=False): """ Do a PUT request. Similar to :meth:`~webtest.TestApp.post`. :returns: :class:`webtest.TestResponse` instance. """ if xhr: headers = self._add_xhr_header(headers) return self._gen_request('PUT', url, params=params, headers=headers, extra_environ=extra_environ, status=status, upload_files=upload_files, expect_errors=expect_errors, content_type=content_type, ) def patch(self, url, params='', headers=None, extra_environ=None, status=None, upload_files=None, expect_errors=False, content_type=None, xhr=False): """ Do a PATCH request. Similar to :meth:`~webtest.TestApp.post`. :returns: :class:`webtest.TestResponse` instance. """ if xhr: headers = self._add_xhr_header(headers) return self._gen_request('PATCH', url, params=params, headers=headers, extra_environ=extra_environ, status=status, upload_files=upload_files, expect_errors=expect_errors, content_type=content_type) def delete(self, url, params='', headers=None, extra_environ=None, status=None, expect_errors=False, content_type=None, xhr=False): """ Do a DELETE request. Similar to :meth:`~webtest.TestApp.get`. :returns: :class:`webtest.TestResponse` instance. """ if xhr: headers = self._add_xhr_header(headers) return self._gen_request('DELETE', url, params=params, headers=headers, extra_environ=extra_environ, status=status, upload_files=None, expect_errors=expect_errors, content_type=content_type) def options(self, url, headers=None, extra_environ=None, status=None, expect_errors=False, xhr=False): """ Do a OPTIONS request. Similar to :meth:`~webtest.TestApp.get`. :returns: :class:`webtest.TestResponse` instance. """ if xhr: headers = self._add_xhr_header(headers) return self._gen_request('OPTIONS', url, headers=headers, extra_environ=extra_environ, status=status, upload_files=None, expect_errors=expect_errors) def head(self, url, headers=None, extra_environ=None, status=None, expect_errors=False, xhr=False): """ Do a HEAD request. Similar to :meth:`~webtest.TestApp.get`. :returns: :class:`webtest.TestResponse` instance. """ if xhr: headers = self._add_xhr_header(headers) return self._gen_request('HEAD', url, headers=headers, extra_environ=extra_environ, status=status, upload_files=None, expect_errors=expect_errors) post_json = utils.json_method('POST') put_json = utils.json_method('PUT') patch_json = utils.json_method('PATCH') delete_json = utils.json_method('DELETE') def encode_multipart(self, params, files): """ Encodes a set of parameters (typically a name/value list) and a set of files (a list of (name, filename, file_body, mimetype)) into a typical POST body, returning the (content_type, body). """ boundary = to_bytes(str(random.random()))[2:] boundary = b'----------a_BoUnDaRy' + boundary + b'$' lines = [] def _append_file(file_info): key, filename, value, fcontent = self._get_file_info(file_info) if isinstance(key, text_type): try: key = key.encode('ascii') except: # pragma: no cover raise # file name must be ascii if isinstance(filename, text_type): try: filename = filename.encode('utf8') except: # pragma: no cover raise # file name must be ascii or utf8 if not fcontent: fcontent = mimetypes.guess_type(filename.decode('utf8'))[0] fcontent = to_bytes(fcontent) fcontent = fcontent or b'application/octet-stream' lines.extend([ b'--' + boundary, b'Content-Disposition: form-data; ' + b'name="' + key + b'"; filename="' + filename + b'"', b'Content-Type: ' + fcontent, b'', value]) for key, value in params: if isinstance(key, text_type): try: key = key.encode('ascii') except: # pragma: no cover raise # field name are always ascii if isinstance(value, forms.File): if value.value: _append_file([key] + list(value.value)) elif isinstance(value, forms.Upload): file_info = [key, value.filename] if value.content is not None: file_info.append(value.content) if value.content_type is not None: file_info.append(value.content_type) _append_file(file_info) else: if isinstance(value, text_type): value = value.encode('utf8') lines.extend([ b'--' + boundary, b'Content-Disposition: form-data; name="' + key + b'"', b'', value]) for file_info in files: _append_file(file_info) lines.extend([b'--' + boundary + b'--', b'']) body = b'\r\n'.join(lines) boundary = boundary.decode('ascii') content_type = 'multipart/form-data; boundary=%s' % boundary return content_type, body def request(self, url_or_req, status=None, expect_errors=False, **req_params): """ Creates and executes a request. You may either pass in an instantiated :class:`TestRequest` object, or you may pass in a URL and keyword arguments to be passed to :meth:`TestRequest.blank`. You can use this to run a request without the intermediary functioning of :meth:`TestApp.get` etc. For instance, to test a WebDAV method:: resp = app.request('/new-col', method='MKCOL') Note that the request won't have a body unless you specify it, like:: resp = app.request('/test.txt', method='PUT', body='test') You can use :class:`webtest.TestRequest`:: req = webtest.TestRequest.blank('/url/', method='GET') resp = app.do_request(req) """ if isinstance(url_or_req, text_type): url_or_req = str(url_or_req) for (k, v) in req_params.items(): if isinstance(v, text_type): req_params[k] = str(v) if isinstance(url_or_req, string_types): req = self.RequestClass.blank(url_or_req, **req_params) else: req = url_or_req.copy() for name, value in req_params.items(): setattr(req, name, value) req.environ['paste.throw_errors'] = True for name, value in self.extra_environ.items(): req.environ.setdefault(name, value) return self.do_request(req, status=status, expect_errors=expect_errors, ) def do_request(self, req, status=None, expect_errors=None): """ Executes the given webob Request (``req``), with the expected ``status``. Generally :meth:`~webtest.TestApp.get` and :meth:`~webtest.TestApp.post` are used instead. To use this:: req = webtest.TestRequest.blank('url', ...args...) resp = app.do_request(req) .. note:: You can pass any keyword arguments to ``TestRequest.blank()``, which will be set on the request. These can be arguments like ``content_type``, ``accept``, etc. """ errors = StringIO() req.environ['wsgi.errors'] = errors script_name = req.environ.get('SCRIPT_NAME', '') if script_name and req.path_info.startswith(script_name): req.path_info = req.path_info[len(script_name):] # set framework hooks req.environ['paste.testing'] = True req.environ['paste.testing_variables'] = {} # set request cookies self.cookiejar.add_cookie_header(utils._RequestCookieAdapter(req)) # verify wsgi compatibility app = lint.middleware(self.app) if self.lint else self.app ## FIXME: should it be an option to not catch exc_info? res = req.get_response(app, catch_exc_info=True) # be sure to decode the content res.decode_content() # set a few handy attributes res._use_unicode = self.use_unicode res.request = req res.app = app res.test_app = self # We do this to make sure the app_iter is exausted: try: res.body except TypeError: # pragma: no cover pass res.errors = errors.getvalue() for name, value in req.environ['paste.testing_variables'].items(): if hasattr(res, name): raise ValueError( "paste.testing_variables contains the variable %r, but " "the response object already has an attribute by that " "name" % name) setattr(res, name, value) if not expect_errors: self._check_status(status, res) self._check_errors(res) # merge cookies back in self.cookiejar.extract_cookies(utils._ResponseCookieAdapter(res), utils._RequestCookieAdapter(req)) return res def _check_status(self, status, res): if status == '*': return res_status = res.status if (isinstance(status, string_types) and '*' in status): if re.match(fnmatch.translate(status), res_status, re.I): return if isinstance(status, string_types): if status == res_status: return if isinstance(status, (list, tuple)): if res.status_int not in status: raise AppError( "Bad response: %s (not one of %s for %s)\n%s", res_status, ', '.join(map(str, status)), res.request.url, res) return if status is None: if res.status_int >= 200 and res.status_int < 400: return raise AppError( "Bad response: %s (not 200 OK or 3xx redirect for %s)\n%s", res_status, res.request.url, res) if status != res.status_int: raise AppError( "Bad response: %s (not %s)", res_status, status) def _check_errors(self, res): errors = res.errors if errors: raise AppError( "Application had errors logged:\n%s", errors) def _make_environ(self, extra_environ=None): environ = self.extra_environ.copy() environ['paste.throw_errors'] = True if extra_environ: environ.update(extra_environ) return environ def _remove_fragment(self, url): scheme, netloc, path, query, fragment = urlparse.urlsplit(url) return urlparse.urlunsplit((scheme, netloc, path, query, "")) def _gen_request(self, method, url, params=utils.NoDefault, headers=None, extra_environ=None, status=None, upload_files=None, expect_errors=False, content_type=None): """ Do a generic request. """ environ = self._make_environ(extra_environ) inline_uploads = [] # this supports OrderedDict if isinstance(params, dict) or hasattr(params, 'items'): params = list(params.items()) if isinstance(params, (list, tuple)): inline_uploads = [v for (k, v) in params if isinstance(v, (forms.File, forms.Upload))] if len(inline_uploads) > 0: content_type, params = self.encode_multipart( params, upload_files or ()) environ['CONTENT_TYPE'] = content_type else: params = utils.encode_params(params, content_type) if upload_files or \ (content_type and to_bytes(content_type).startswith(b'multipart')): params = urlparse.parse_qsl(params, keep_blank_values=True) content_type, params = self.encode_multipart( params, upload_files or ()) environ['CONTENT_TYPE'] = content_type elif params: environ.setdefault('CONTENT_TYPE', str('application/x-www-form-urlencoded')) if content_type is not None: environ['CONTENT_TYPE'] = content_type environ['REQUEST_METHOD'] = str(method) url = str(url) url = self._remove_fragment(url) req = self.RequestClass.blank(url, environ) if isinstance(params, text_type): params = params.encode(req.charset or 'utf8') req.environ['wsgi.input'] = BytesIO(params) req.content_length = len(params) if headers: req.headers.update(headers) return self.do_request(req, status=status, expect_errors=expect_errors) def _get_file_info(self, file_info): if len(file_info) == 2: # It only has a filename filename = file_info[1] if self.relative_to: filename = os.path.join(self.relative_to, filename) f = open(filename, 'rb') content = f.read() f.close() return (file_info[0], filename, content, None) elif 3 <= len(file_info) <= 4: content = file_info[2] if not isinstance(content, binary_type): raise ValueError('File content must be %s not %s' % (binary_type, type(content))) if len(file_info) == 3: return tuple(file_info) + (None,) else: return file_info else: raise ValueError( "upload_files need to be a list of tuples of (fieldname, " "filename, filecontent, mimetype) or (fieldname, " "filename, filecontent) or (fieldname, filename); " "you gave: %r" % repr(file_info)[:100]) @staticmethod def _add_xhr_header(headers): headers = headers or {} # if remove str we will be have an error in lint.middleware headers.update({'X-REQUESTED-WITH': str('XMLHttpRequest')}) return headers
36.558442
79
0.561456
a756296c512c1fc7bcb7c81df835739631884656
6,082
py
Python
tests/python/gpu/test_kvstore_gpu.py
NathanYyc/incubator-mxnet
5eeb25995eaf702b3bdaa84c4f0e378f27d5839c
[ "Apache-2.0" ]
1
2019-12-20T11:25:06.000Z
2019-12-20T11:25:06.000Z
tests/python/gpu/test_kvstore_gpu.py
NathanYyc/incubator-mxnet
5eeb25995eaf702b3bdaa84c4f0e378f27d5839c
[ "Apache-2.0" ]
4
2021-03-30T13:16:50.000Z
2021-10-04T08:49:33.000Z
tests/python/gpu/test_kvstore_gpu.py
NathanYyc/incubator-mxnet
5eeb25995eaf702b3bdaa84c4f0e378f27d5839c
[ "Apache-2.0" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: skip-file import sys import os import mxnet as mx import numpy as np import pytest from mxnet.test_utils import assert_almost_equal, default_context, environment curr_path = os.path.dirname(os.path.abspath(os.path.expanduser(__file__))) sys.path.insert(0, os.path.join(curr_path, '../unittest')) shape = (4, 4) keys = [5, 7, 11] str_keys = ['b', 'c', 'd'] def init_kv_with_str(stype='default', kv_type='local'): """init kv """ kv = mx.kv.create(kv_type) # single kv.init('a', mx.nd.zeros(shape, stype=stype)) # list kv.init(str_keys, [mx.nd.zeros(shape=shape, stype=stype)] * len(keys)) return kv # 1. Test seed 89411477 (module seed 1829754103) resulted in a py3-gpu CI runner core dump. # 2. Test seed 1155716252 (module seed 1032824746) resulted in py3-mkldnn-gpu have error # src/operator/nn/mkldnn/mkldnn_base.cc:567: Check failed: similar # Both of them are not reproducible, so this test is back on random seeds. @pytest.mark.skipif(mx.context.num_gpus() < 2, reason="test_rsp_push_pull needs more than 1 GPU") @pytest.mark.skip("Flaky test https://github.com/apache/incubator-mxnet/issues/14189") @pytest.mark.serial def test_rsp_push_pull(): def check_rsp_push_pull(kv_type, sparse_pull, is_push_cpu=True): kv = init_kv_with_str('row_sparse', kv_type) kv.init('e', mx.nd.ones(shape).tostype('row_sparse')) push_ctxs = [mx.cpu(i) if is_push_cpu else mx.gpu(i) for i in range(2)] kv.push('e', [mx.nd.ones(shape, ctx=context).tostype('row_sparse') for context in push_ctxs]) def check_rsp_pull(kv, ctxs, sparse_pull, is_same_rowid=False, use_slice=False): count = len(ctxs) num_rows = shape[0] row_ids = [] all_row_ids = np.arange(num_rows) vals = [mx.nd.sparse.zeros(shape=shape, ctx=ctxs[i], stype='row_sparse') for i in range(count)] if is_same_rowid: row_id = np.random.randint(num_rows, size=num_rows) row_ids = [mx.nd.array(row_id)] * count elif use_slice: total_row_ids = mx.nd.array(np.random.randint(num_rows, size=count*num_rows)) row_ids = [total_row_ids[i*num_rows : (i+1)*num_rows] for i in range(count)] else: for _ in range(count): row_id = np.random.randint(num_rows, size=num_rows) row_ids.append(mx.nd.array(row_id)) row_ids_to_pull = row_ids[0] if (len(row_ids) == 1 or is_same_rowid) else row_ids vals_to_pull = vals[0] if len(vals) == 1 else vals kv.row_sparse_pull('e', out=vals_to_pull, row_ids=row_ids_to_pull) for val, row_id in zip(vals, row_ids): retained = val.asnumpy() excluded_row_ids = np.setdiff1d(all_row_ids, row_id.asnumpy()) for row in range(num_rows): expected_val = np.zeros_like(retained[row]) expected_val += 0 if row in excluded_row_ids else 2 assert_almost_equal(retained[row], expected_val) if sparse_pull is True: kv.pull('e', out=vals_to_pull, ignore_sparse=False) for val in vals: retained = val.asnumpy() expected_val = np.zeros_like(retained) expected_val[:] = 2 assert_almost_equal(retained, expected_val) check_rsp_pull(kv, [mx.gpu(0)], sparse_pull) check_rsp_pull(kv, [mx.cpu(0)], sparse_pull) check_rsp_pull(kv, [mx.gpu(i//2) for i in range(4)], sparse_pull) check_rsp_pull(kv, [mx.gpu(i//2) for i in range(4)], sparse_pull, is_same_rowid=True) check_rsp_pull(kv, [mx.cpu(i) for i in range(4)], sparse_pull) check_rsp_pull(kv, [mx.cpu(i) for i in range(4)], sparse_pull, is_same_rowid=True) check_rsp_pull(kv, [mx.gpu(i//2) for i in range(4)], sparse_pull, use_slice=True) check_rsp_pull(kv, [mx.cpu(i) for i in range(4)], sparse_pull, use_slice=True) envs = [None, '1'] key = 'MXNET_KVSTORE_USETREE' for val in envs: with environment(key, val): if val is '1': sparse_pull = False else: sparse_pull = True check_rsp_push_pull('local', sparse_pull) check_rsp_push_pull('device', sparse_pull) check_rsp_push_pull('device', sparse_pull, is_push_cpu=False) def test_row_sparse_pull_single_device(): kvstore = mx.kv.create('device') copy = mx.nd.random_normal(shape=(4,4), ctx=mx.gpu(0)) grad = copy.tostype("row_sparse") key = 0 kvstore.init(key, grad) idx = grad.indices kvstore.push(key, grad) kvstore.row_sparse_pull(key, out=grad, row_ids=idx) assert_almost_equal(grad.asnumpy(), copy.asnumpy()) @pytest.mark.serial def test_rsp_push_pull_large_rowid(): num_rows = 793470 val = mx.nd.ones((num_rows, 1)).tostype('row_sparse').copyto(mx.gpu()) kv = mx.kv.create('device') kv.init('a', val) out = mx.nd.zeros((num_rows,1), stype='row_sparse').copyto(mx.gpu()) kv.push('a', val) kv.row_sparse_pull('a', out=out, row_ids=mx.nd.arange(0, num_rows, dtype='int64')) assert(out.indices.shape[0] == num_rows)
44.394161
107
0.649622
086bb46cdc0ebfd47f7eea3e66c1e61280174ffb
465
py
Python
moonleap/verbs.py
mnieber/gen
65f8aa4fb671c4f90d5cbcb1a0e10290647a31d9
[ "MIT" ]
null
null
null
moonleap/verbs.py
mnieber/gen
65f8aa4fb671c4f90d5cbcb1a0e10290647a31d9
[ "MIT" ]
null
null
null
moonleap/verbs.py
mnieber/gen
65f8aa4fb671c4f90d5cbcb1a0e10290647a31d9
[ "MIT" ]
null
null
null
configured_by = ("configured",) uses = ("use", "uses") contains = ("has", "have", "contain", "contains") stores = ("stores",) has = contains + uses is_created_as = "is-created-as" runs = ("run", "runs", "running") with_ = ("with",) wraps = ("wraps",) connects = ("connects",) loads = ("loads",) posts = ("posts",) returns = ("returns",) deletes = ("deletes",) shows = ("shows", "displays") supports = ("supports",) provides = ("provides",) receives = ("receives",)
24.473684
49
0.606452
ea45d23053a3c6a7277d5f4726af58285791b93f
703
py
Python
talk.py
j-potter/ConditionOne
2f7e8598f64029fde4000bc4dc3f646aedaf56d3
[ "MIT" ]
4
2018-10-31T05:35:36.000Z
2021-11-08T10:28:34.000Z
talk.py
j-potter/ConditionOne
2f7e8598f64029fde4000bc4dc3f646aedaf56d3
[ "MIT" ]
null
null
null
talk.py
j-potter/ConditionOne
2f7e8598f64029fde4000bc4dc3f646aedaf56d3
[ "MIT" ]
1
2021-06-24T19:48:41.000Z
2021-06-24T19:48:41.000Z
class talk: def __init__(self, GivenDay, GivenTime, GivenTrack, GivenTitle, GivenSpeakers, GivenDescription, GivenIDNum): self.day = GivenDay self.time = GivenTime self.track = GivenTrack self.title = GivenTitle self.speakers = GivenSpeakers self.description = GivenDescription self.idNum = GivenIDNum def ShowInfo(self): print "Talk " + str(self.idNum) + " On " + self.day + " at " + self.time + " in track " + str(self.track) + ": " + self.title def ShowDescription(self): print "" print "Title: " + self.title + "\n" print "Speaker(s): " + self.speakers + "\n" print self.description + "\n"
39.055556
133
0.600284
2fa6ad8c608b6a2e05661acea9380f2c525ef378
214
py
Python
tests/test_ssm.py
MITLibraries/alma-scripts
c312692a71a83dc0b5e60761bc3e7b37d7d42099
[ "Apache-2.0" ]
null
null
null
tests/test_ssm.py
MITLibraries/alma-scripts
c312692a71a83dc0b5e60761bc3e7b37d7d42099
[ "Apache-2.0" ]
16
2021-07-23T20:46:29.000Z
2022-03-10T19:34:10.000Z
tests/test_ssm.py
MITLibraries/alma-scripts
c312692a71a83dc0b5e60761bc3e7b37d7d42099
[ "Apache-2.0" ]
null
null
null
from llama.ssm import SSM def test_ssm_get_parameter_value(mocked_ssm): ssm = SSM() parameter_value = ssm.get_parameter_value("/test/example/ALMA_API_ACQ_READ_KEY") assert parameter_value == "abc123"
26.75
84
0.766355
815511bdef274be6d1e1e47a34a646719dd2e0b8
814
py
Python
SimPEG/potential_fields/magnetics/sources.py
jcapriot/simpeg
e88e653673c6b818592b6c075f76ee9215fe82b7
[ "MIT" ]
1
2020-06-04T21:57:47.000Z
2020-06-04T21:57:47.000Z
SimPEG/potential_fields/magnetics/sources.py
jcapriot/simpeg
e88e653673c6b818592b6c075f76ee9215fe82b7
[ "MIT" ]
null
null
null
SimPEG/potential_fields/magnetics/sources.py
jcapriot/simpeg
e88e653673c6b818592b6c075f76ee9215fe82b7
[ "MIT" ]
1
2021-01-05T18:16:54.000Z
2021-01-05T18:16:54.000Z
import properties import numpy as np from scipy.constants import mu_0 from ...survey import BaseSrc from .analytics import IDTtoxyz from ...utils.code_utils import deprecate_class class SourceField(BaseSrc): """ Define the inducing field """ def __init__(self, receiver_list=None, parameters=[50000, 90, 0], **kwargs): assert ( len(parameters) == 3 ), "Inducing field 'parameters' must be a list or tuple of length 3 (amplitude, inclination, declination" self.parameters = parameters self.b0 = IDTtoxyz(-parameters[1], parameters[2], parameters[0]) super(SourceField, self).__init__( receiver_list=receiver_list, parameters=parameters, **kwargs ) @deprecate_class(removal_version="0.15.0") class SrcField(SourceField): pass
30.148148
113
0.692875
675032299b2c9826ea3e048e7012c901b05d25f1
17,113
py
Python
Python/update_installed_firmware_with_dup.py
jzcmyz/OpenManage-Enterprise
8c8724d71b62992c2bb94ecf385edf7467990344
[ "Apache-2.0" ]
61
2019-01-28T17:47:38.000Z
2022-03-07T21:04:44.000Z
Python/update_installed_firmware_with_dup.py
jzcmyz/OpenManage-Enterprise
8c8724d71b62992c2bb94ecf385edf7467990344
[ "Apache-2.0" ]
126
2019-07-31T15:46:44.000Z
2021-10-21T13:22:06.000Z
Python/update_installed_firmware_with_dup.py
jzcmyz/OpenManage-Enterprise
8c8724d71b62992c2bb94ecf385edf7467990344
[ "Apache-2.0" ]
47
2019-05-05T23:10:38.000Z
2021-10-19T21:29:06.000Z
# # _author_ = Raajeev Kalyanaraman <Raajeev.Kalyanaraman@Dell.com> # # Copyright (c) 2021 Dell EMC Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ #### Synopsis Script to update firmware for a device or applicable devices within a group using a DUP #### Description This script uses the OME REST API to allow updating a device or a group of devices by using a single DUP file. Note that the credentials entered are not stored to disk. #### Python Example python update_installed_firmware_with_dup.py --ip <ip addr> --user admin --password <passwd> --groupid 25315 --dupfile iDRAC-with-Lifecycle-Controller_Firmware_387FW_WN64_3.21.21.21_A00.EXE #### API workflow: 1. POST on SessionService/Sessions 2. If new session is created (201) parse headers for x-auth token and update headers with token 3. All subsequent requests use X-auth token and not user name and password entered by user 4. Upload the DUP file to OME and retrieve a file token to use in subsequent requests POST on UpdateService.UploadFile 5. Determine device or groups that DUP file applies to using a POST on UpdateService.GetSingleDupReport 6. Create a firmware update task with the required targets using a POST on /api/JobService/Jobs 7. Parse returned job id and monitor it to completion 8. If job fails then GET Job Execution History Details and print info to screen """ import argparse import copy import json import os import sys import time from argparse import RawTextHelpFormatter from getpass import getpass import requests import urllib3 def authenticate_with_ome(ip_address, user_name, password): """ X-auth session creation """ auth_success = False session_url = "https://%s/api/SessionService/Sessions" % ip_address user_details = {'UserName': user_name, 'Password': password, 'SessionType': 'API'} headers = {'content-type': 'application/json'} session_info = requests.post(session_url, verify=False, data=json.dumps(user_details), headers=headers) if session_info.status_code == 201: headers['X-Auth-Token'] = session_info.headers['X-Auth-Token'] auth_success = True else: error_msg = "Failed create of session with {0} - Status code = {1}" print(error_msg.format(ip_address, session_info.status_code)) return auth_success, headers def get_group_list(ip_address, headers): """ Get list of groups from OME """ group_list = None group_url = 'https://%s/api/GroupService/Groups' % ip_address response = requests.get(group_url, headers=headers, verify=False) if response.status_code == 200: group_response = response.json() if group_response['@odata.count'] > 0: group_list = [x['Id'] for x in group_response['value']] else: print("No groups found at ", ip_address) else: print("No groups found at ", ip_address) return group_list def get_device_list(ip_address, headers): """ Get list of devices from OME """ ome_device_list = [] next_link_url = 'https://%s/api/DeviceService/Devices' % ip_address while next_link_url is not None: device_response = requests.get(next_link_url, headers=headers, verify=False) next_link_url = None if device_response.status_code == 200: dev_json_response = device_response.json() if dev_json_response['@odata.count'] <= 0: print("No devices found at ", ip_address) return if '@odata.nextLink' in dev_json_response: next_link_url = 'https://%s/' % ip_address + dev_json_response['@odata.nextLink'] if dev_json_response['@odata.count'] > 0: ome_device_list = ome_device_list + [x['Id'] for x in dev_json_response['value']] else: print("No devices found at ", ip_address) return ome_device_list def upload_dup_file(ip_address, headers, file_path): """ Upload DUP file to OME and get a file token in return """ token = None upload_success = False url = 'https://%s/api/UpdateService/Actions/UpdateService.UploadFile' % ip_address curr_headers = copy.deepcopy(headers) curr_headers['content-type'] = 'application/octet-stream' if os.path.isfile(file_path): if os.path.getsize(file_path) > 0: with open(file_path, 'rb') as payload: print("Uploading %s .. This may take a while" % file_path) response = requests.post(url, data=payload, verify=False, headers=curr_headers) if response.status_code == 200: upload_success = True token = str(response.text) print("Successfully uploaded ", file_path) else: print("Unable to upload %s to %s" % (file_path, ip_address)) print("Request Status Code = %s" % response.status_code) else: print("File %s seems to be empty ... Exiting" % file_path) else: print("File not found ... Retry") return upload_success, token def get_dup_applicability_payload(file_token, param_map): """ Returns the DUP applicability JSON payload """ dup_applicability_payload = {'SingleUpdateReportBaseline': [], 'SingleUpdateReportGroup': [], 'SingleUpdateReportTargets': [], 'SingleUpdateReportFileToken': file_token } if param_map['group_id']: dup_applicability_payload['SingleUpdateReportGroup'].append(param_map['group_id']) elif param_map['device_id']: dup_applicability_payload['SingleUpdateReportTargets'].append(param_map['device_id']) else: pass return dup_applicability_payload def get_applicable_components(ip_address, headers, dup_payload): """ Get the target array to be used in spawning jobs for update """ # Parse the single dup update report and print out versions needing # an update. In addition add them to the target_data as needed for # the job payload target_data = [] dup_url = 'https://%s/api/UpdateService/Actions/UpdateService.GetSingleDupReport' % ip_address dup_resp = requests.post(dup_url, headers=headers, data=json.dumps(dup_payload), verify=False) if dup_resp.status_code == 200: dup_data = dup_resp.json() file_token = str(dup_payload['SingleUpdateReportFileToken']) for device in dup_data: device_name = str(device['DeviceReport']['DeviceServiceTag']) device_ip = str(device['DeviceReport']['DeviceIPAddress']) for component in device['DeviceReport']['Components']: curr_ver = str(component['ComponentCurrentVersion']) avail_ver = str(component['ComponentVersion']) upd_action = str(component['ComponentUpdateAction']) update_crit = str(component['ComponentCriticality']) reboot_req = str(component['ComponentRebootRequired']) comp_name = str(component['ComponentName']) print("\n---------------------------------------------------") print("Device =", device_name) print("IPAddress =", device_ip) print("Current Ver =", curr_ver) print("Avail Ver =", avail_ver) print("Action =", upd_action) print("Criticality =", update_crit) print("Reboot Req =", reboot_req) print("Component Name =", comp_name) if avail_ver > curr_ver: temp_map = {'Id': device['DeviceId'], 'Data': str(component['ComponentSourceName']) + "=" + file_token, 'TargetType': {}} temp_map['TargetType']['Id'] = int(device['DeviceReport']['DeviceTypeId']) temp_map['TargetType']['Name'] = str(device['DeviceReport']['DeviceTypeName']) target_data.append(temp_map) else: print("Unable to get components DUP applies to .. Exiting") return target_data def form_job_payload_for_update(target_data): """ Formulate the payload to initiate a firmware update job """ payload = { "Id": 0, "JobName": "Firmware Update Task", "JobDescription": "dup test", "Schedule": "startnow", "State": "Enabled", "CreatedBy": "admin", "JobType": { "Id": 5, "Name": "Update_Task" }, "Targets": target_data, "Params": [ { "JobId": 0, "Key": "operationName", "Value": "INSTALL_FIRMWARE" }, { "JobId": 0, "Key": "complianceUpdate", "Value": "false" }, { "JobId": 0, "Key": "stagingValue", "Value": "false" }, { "JobId": 0, "Key": "signVerify", "Value": "true" } ] } return payload def spawn_update_job(ip_address, headers, job_payload): """ Spawns an update job and tracks it to completion """ job_id = -1 job_url = 'https://%s/api/JobService/Jobs' % ip_address job_resp = requests.post(job_url, headers=headers, json=job_payload, verify=False) if job_resp.status_code == 201: job_id = (job_resp.json())['Id'] print("Successfully spawned update job", job_id) else: print("Unable to spawn update job .. Exiting") return job_id def track_job_to_completion(ip_address, headers, job_id): """ Tracks the update job to completion / error """ job_status_map = { "2020": "Scheduled", "2030": "Queued", "2040": "Starting", "2050": "Running", "2060": "Completed", "2070": "Failed", "2090": "Warning", "2080": "New", "2100": "Aborted", "2101": "Paused", "2102": "Stopped", "2103": "Canceled" } max_retries = 20 sleep_interval = 60 failed_job_status = [2070, 2090, 2100, 2101, 2102, 2103] job_url = 'https://%s/api/JobService/Jobs(%s)' % (ip_address, job_id) loop_ctr = 0 job_incomplete = True print("Polling %s to completion ..." % job_id) while loop_ctr < max_retries: loop_ctr += 1 time.sleep(sleep_interval) job_resp = requests.get(job_url, headers=headers, verify=False) if job_resp.status_code == 200: job_status = str((job_resp.json())['LastRunStatus']['Id']) print("Iteration %s: Status of %s is %s" % (loop_ctr, job_id, job_status_map[job_status])) if int(job_status) == 2060: job_incomplete = False print("Completed updating firmware successfully ... Exiting") break elif int(job_status) in failed_job_status: job_incomplete = False print("Update job failed ... ") job_hist_url = str(job_url) + "/ExecutionHistories" job_hist_resp = requests.get(job_hist_url, headers=headers, verify=False) if job_hist_resp.status_code == 200: job_history_id = str((job_hist_resp.json())['value'][0]['Id']) job_hist_det_url = str(job_hist_url) + "(" + job_history_id + ")/ExecutionHistoryDetails" job_hist_det_resp = requests.get(job_hist_det_url, headers=headers, verify=False) if job_hist_det_resp.status_code == 200: print(job_hist_det_resp.text) else: print("Unable to parse job execution history .. Exiting") break else: print("Unable to poll status of %s - Iteration %s " % (job_id, loop_ctr)) if job_incomplete: print("Job %s incomplete after polling %s times...Check status" % (job_id, max_retries)) if __name__ == '__main__': urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) parser = argparse.ArgumentParser(description=__doc__, formatter_class=RawTextHelpFormatter) parser.add_argument("--ip", required=True, help="OME Appliance IP") parser.add_argument("--user", required=False, help="Username for OME Appliance", default="admin") parser.add_argument("--password", required=False, help="Password for OME Appliance") parser.add_argument("--dupfile", required=True, help="Path to DUP file that will be flashed") mutex_group = parser.add_mutually_exclusive_group(required=True) mutex_group.add_argument("--groupid", type=int, help="Id of the group to update") mutex_group.add_argument("--deviceid", type=int, help="Id of the device to update") args = parser.parse_args() ip_address = args.ip user_name = args.user if not args.password: if not sys.stdin.isatty(): # notify user that they have a bad terminal # perhaps if os.name == 'nt': , prompt them to use winpty? print("Your terminal is not compatible with Python's getpass module. You will need to provide the" " --password argument instead. See https://stackoverflow.com/a/58277159/4427375") sys.exit(0) else: password = getpass() else: password = args.password dup_file = args.dupfile param_map = {} target_data = [] try: auth_success, headers = authenticate_with_ome(ip_address, user_name, password) if auth_success: if args.groupid: group_id = args.groupid param_map['group_id'] = group_id param_map['device_id'] = None group_list = get_group_list(ip_address, headers) if group_list: if group_id in group_list: pass else: raise ValueError("Group %s not found on %s ... Exiting" % (group_id, ip_address)) else: device_id = args.deviceid param_map['device_id'] = device_id param_map['group_id'] = None device_list = get_device_list(ip_address, headers) if device_list: if device_id in device_list: pass else: raise ValueError("Device %s not found on %s ... Exiting" % (device_id, ip_address)) upload_success, file_token = upload_dup_file(ip_address, headers, dup_file) if upload_success: report_payload = get_dup_applicability_payload(file_token, param_map) if report_payload: print("Determining which components the DUP file applies to ... ") target_data = get_applicable_components(ip_address, headers, report_payload) if target_data: print("Forming job payload for update ... ") job_payload = form_job_payload_for_update(target_data) job_id = spawn_update_job(ip_address, headers, job_payload) if job_id != -1: track_job_to_completion(ip_address, headers, job_id) else: print("No components available for update ... Exiting") else: print("Unable to authenticate with OME .. Check IP/Username/Pwd") except Exception as error: print("Unexpected error:", str(error))
41.536408
115
0.576988
a1e63556e813d011a2b71b116a345f8427cb53c3
106,746
py
Python
src/opserver/opserver.py
sagarc-contrail/contrail-controller
834302367f3ff81f1ce93f4036b6b3788dfd6994
[ "Apache-2.0" ]
null
null
null
src/opserver/opserver.py
sagarc-contrail/contrail-controller
834302367f3ff81f1ce93f4036b6b3788dfd6994
[ "Apache-2.0" ]
null
null
null
src/opserver/opserver.py
sagarc-contrail/contrail-controller
834302367f3ff81f1ce93f4036b6b3788dfd6994
[ "Apache-2.0" ]
null
null
null
# # Copyright (c) 2013 Juniper Networks, Inc. All rights reserved. # # # Opserver # # Operational State Server for VNC # from gevent import monkey monkey.patch_all() try: from collections import OrderedDict except ImportError: # python 2.6 or earlier, use backport from ordereddict import OrderedDict from collections import namedtuple TableSchema = namedtuple("TableSchema", ("name", "datatype", "index", "suffixes")) from uveserver import UVEServer import math import sys import ConfigParser import bottle import json import uuid import argparse import time import redis import base64 import socket import struct import signal import random import hashlib import errno import copy import datetime import pycassa import platform from analytics_db import AnalyticsDb from pycassa.pool import ConnectionPool from pycassa.columnfamily import ColumnFamily from pysandesh.util import UTCTimestampUsec from pysandesh.sandesh_base import * from pysandesh.sandesh_session import SandeshWriter from pysandesh.gen_py.sandesh_trace.ttypes import SandeshTraceRequest from pysandesh.connection_info import ConnectionState from sandesh_common.vns.ttypes import Module, NodeType from sandesh_common.vns.constants import ModuleNames, CategoryNames,\ ModuleCategoryMap, Module2NodeType, NodeTypeNames, ModuleIds,\ INSTANCE_ID_DEFAULT, \ ANALYTICS_API_SERVER_DISCOVERY_SERVICE_NAME, ALARM_GENERATOR_SERVICE_NAME, \ OpServerAdminPort, CLOUD_ADMIN_ROLE, APIAAAModes, \ AAA_MODE_CLOUD_ADMIN, AAA_MODE_NO_AUTH, \ ServicesDefaultConfigurationFiles, SERVICE_OPSERVER from sandesh.viz.constants import _TABLES, _OBJECT_TABLES,\ _OBJECT_TABLE_SCHEMA, _OBJECT_TABLE_COLUMN_VALUES, \ _STAT_TABLES, STAT_OBJECTID_FIELD, STAT_VT_PREFIX, \ STAT_TIME_FIELD, STAT_TIMEBIN_FIELD, STAT_UUID_FIELD, \ STAT_SOURCE_FIELD, SOURCE, MODULE from sandesh.viz.constants import * from sandesh.analytics.ttypes import * from sandesh.nodeinfo.ttypes import NodeStatusUVE, NodeStatus from sandesh.nodeinfo.cpuinfo.ttypes import * from sandesh.nodeinfo.process_info.ttypes import * from opserver_util import OpServerUtils from opserver_util import AnalyticsDiscovery from sandesh_req_impl import OpserverSandeshReqImpl from sandesh.analytics_database.ttypes import * from sandesh.analytics_database.constants import PurgeStatusString from sandesh.analytics.ttypes import DbInfoSetRequest, \ DbInfoGetRequest, DbInfoResponse from overlay_to_underlay_mapper import OverlayToUnderlayMapper, \ OverlayToUnderlayMapperError from generator_introspect_util import GeneratorIntrospectUtil from stevedore import hook, extension from partition_handler import PartInfo, UveStreamer, UveCacheProcessor from functools import wraps from vnc_cfg_api_client import VncCfgApiClient from opserver_local import LocalApp from opserver_util import AnalyticsDiscovery _ERRORS = { errno.EBADMSG: 400, errno.ENOBUFS: 403, errno.EINVAL: 404, errno.ENOENT: 410, errno.EIO: 500, errno.EBUSY: 503 } @bottle.error(400) @bottle.error(403) @bottle.error(404) @bottle.error(410) @bottle.error(500) @bottle.error(503) def opserver_error(err): return err.body #end opserver_error class LinkObject(object): def __init__(self, name, href): self.name = name self.href = href # end __init__ # end class LinkObject class ContrailGeventServer(bottle.GeventServer): def run(self, handler): from gevent import wsgi as wsgi_fast, pywsgi, monkey, local if self.options.get('monkey', True): import threading if not threading.local is local.local: monkey.patch_all() wsgi = wsgi_fast if self.options.get('fast') else pywsgi self.srv = wsgi.WSGIServer((self.host, self.port), handler) self.srv.serve_forever() def stop(self): if hasattr(self, 'srv'): self.srv.stop() gevent.sleep(0) def obj_to_dict(obj): # Non-null fields in object get converted to json fields return dict((k, v) for k, v in obj.__dict__.iteritems()) # end obj_to_dict def redis_query_start(host, port, redis_password, qid, inp, columns): redish = redis.StrictRedis(db=0, host=host, port=port, password=redis_password) for key, value in inp.items(): redish.hset("QUERY:" + qid, key, json.dumps(value)) col_list = [] if columns is not None: for col in columns: m = TableSchema(name = col.name, datatype = col.datatype, index = col.index, suffixes = col.suffixes) col_list.append(m._asdict()) query_metadata = {} query_metadata['enqueue_time'] = OpServerUtils.utc_timestamp_usec() redish.hset("QUERY:" + qid, 'query_metadata', json.dumps(query_metadata)) redish.hset("QUERY:" + qid, 'enqueue_time', OpServerUtils.utc_timestamp_usec()) redish.hset("QUERY:" + qid, 'table_schema', json.dumps(col_list)) redish.lpush("QUERYQ", qid) res = redish.blpop("REPLY:" + qid, 10) if res is None: return None # Put the status back on the queue for the use of the status URI redish.lpush("REPLY:" + qid, res[1]) resp = json.loads(res[1]) return int(resp["progress"]) # end redis_query_start def redis_query_status(host, port, redis_password, qid): redish = redis.StrictRedis(db=0, host=host, port=port, password=redis_password) resp = {"progress": 0} chunks = [] # For now, the number of chunks will be always 1 res = redish.lrange("REPLY:" + qid, -1, -1) if not res: return None chunk_resp = json.loads(res[0]) ttl = redish.ttl("REPLY:" + qid) if int(ttl) != -1: chunk_resp["ttl"] = int(ttl) query_time = redish.hmget("QUERY:" + qid, ["start_time", "end_time"]) chunk_resp["start_time"] = query_time[0] chunk_resp["end_time"] = query_time[1] if chunk_resp["progress"] == 100: chunk_resp["href"] = "/analytics/query/%s/chunk-final/%d" % (qid, 0) chunks.append(chunk_resp) resp["progress"] = chunk_resp["progress"] resp["chunks"] = chunks return resp # end redis_query_status def redis_query_chunk_iter(host, port, redis_password, qid, chunk_id): redish = redis.StrictRedis(db=0, host=host, port=port, password=redis_password) iters = 0 fin = False while not fin: #import pdb; pdb.set_trace() # Keep the result line valid while it is being read redish.persist("RESULT:" + qid + ":" + str(iters)) elems = redish.lrange("RESULT:" + qid + ":" + str(iters), 0, -1) yield elems if elems == []: fin = True else: redish.delete("RESULT:" + qid + ":" + str(iters), 0, -1) iters += 1 return # end redis_query_chunk_iter def redis_query_chunk(host, port, redis_password, qid, chunk_id): res_iter = redis_query_chunk_iter(host, port, redis_password, qid, chunk_id) dli = u'' starter = True fin = False yield u'{"value": [' outcount = 0 while not fin: #import pdb; pdb.set_trace() # Keep the result line valid while it is being read elems = res_iter.next() fin = True for elem in elems: fin = False outcount += 1 if starter: dli += '\n' + elem starter = False else: dli += ', ' + elem if not fin: yield dli + '\n' dli = u'' if outcount == 0: yield '\n' + u']}' else: yield u']}' return # end redis_query_chunk def redis_query_result(host, port, redis_password, qid): try: status = redis_query_status(host, port, redis_password, qid) except redis.exceptions.ConnectionError: yield bottle.HTTPError(_ERRORS[errno.EIO], 'Failure in connection to the query DB') except Exception as e: self._logger.error("Exception: %s" % e) yield bottle.HTTPError(_ERRORS[errno.EIO], 'Error: %s' % e) else: if status is None: yield bottle.HTTPError(_ERRORS[errno.ENOENT], 'Invalid query id (or) query result purged from DB') if status['progress'] == 100: for chunk in status['chunks']: chunk_id = int(chunk['href'].rsplit('/', 1)[1]) for gen in redis_query_chunk(host, port, redis_password, qid, chunk_id): yield gen else: yield {} return # end redis_query_result def redis_query_result_dict(host, port, redis_password, qid): stat = redis_query_status(host, port, redis_password, qid) prg = int(stat["progress"]) res = [] if (prg < 0) or (prg == 100): done = False gen = redis_query_result(host, port, redis_password, qid) result = u'' while not done: try: result += gen.next() #import pdb; pdb.set_trace() except StopIteration: done = True res = (json.loads(result))['value'] return prg, res # end redis_query_result_dict def redis_query_info(redish, qid): query_data = {} query_dict = redish.hgetall('QUERY:' + qid) query_metadata = json.loads(query_dict['query_metadata']) del query_dict['query_metadata'] query_data['query_id'] = qid query_data['query'] = str(query_dict) query_data['enqueue_time'] = query_metadata['enqueue_time'] return query_data # end redis_query_info class OpStateServer(object): def __init__(self, logger, redis_password=None): self._logger = logger self._redis_list = [] self._redis_password= redis_password # end __init__ def update_redis_list(self, redis_list): self._redis_list = redis_list # end update_redis_list def redis_publish(self, msg_type, destination, msg): # Get the sandesh encoded in XML format sandesh = SandeshWriter.encode_sandesh(msg) msg_encode = base64.b64encode(sandesh) redis_msg = '{"type":"%s","destination":"%s","message":"%s"}' \ % (msg_type, destination, msg_encode) # Publish message in the Redis bus for redis_server in self._redis_list: redis_inst = redis.StrictRedis(redis_server[0], redis_server[1], db=0, password=self._redis_password) try: redis_inst.publish('analytics', redis_msg) except redis.exceptions.ConnectionError: self._logger.error('No Connection to Redis [%s:%d].' 'Failed to publish message.' \ % (redis_server[0], redis_server[1])) return True # end redis_publish # end class OpStateServer class AnalyticsApiStatistics(object): def __init__(self, sandesh, obj_type): self.obj_type = obj_type self.time_start = UTCTimestampUsec() self.api_stats = None self.sandesh = sandesh def collect(self, resp_size, resp_size_bytes): time_finish = UTCTimestampUsec() useragent = bottle.request.headers.get('X-Contrail-Useragent') if not useragent: useragent = bottle.request.headers.get('User-Agent') # Create api stats object self.api_stats = AnalyticsApiSample( operation_type=bottle.request.method, remote_ip=bottle.request.environ.get('REMOTE_ADDR'), request_url=bottle.request.url, object_type=self.obj_type, response_time_in_usec=(time_finish - self.time_start), response_size_objects=resp_size, response_size_bytes=resp_size_bytes, resp_code='200', useragent=useragent, node=self.sandesh.source_id()) def sendwith(self): stats_log = AnalyticsApiStats(api_stats=self.api_stats, sandesh=self.sandesh) stats_log.send(sandesh=self.sandesh) class OpServer(object): """ This class provides ReST API to get operational state of Contrail VNS system. The supported **GET** APIs are: * ``/analytics/virtual-network/<name>`` * ``/analytics/virtual-machine/<name>`` * ``/analytics/vrouter/<name>``: * ``/analytics/bgp-router/<name>`` * ``/analytics/bgp-peer/<name>`` * ``/analytics/xmpp-peer/<name>`` * ``/analytics/collector/<name>`` * ``/analytics/tables``: * ``/analytics/table/<table>``: * ``/analytics/table/<table>/schema``: * ``/analytics/table/<table>/column-values``: * ``/analytics/table/<table>/column-values/<column>``: * ``/analytics/query/<queryId>`` * ``/analytics/query/<queryId>/chunk-final/<chunkId>`` * ``/analytics/send-tracebuffer/<source>/<module>/<name>`` * ``/analytics/operation/analytics-data-start-time`` The supported **POST** APIs are: * ``/analytics/query``: * ``/analytics/operation/database-purge``: """ def validate_user_token(func): @wraps(func) def _impl(self, *f_args, **f_kwargs): if self._args.auth_conf_info.get('cloud_admin_access_only') and \ bottle.request.app == bottle.app(): user_token = bottle.request.headers.get('X-Auth-Token') if not user_token or not \ self._vnc_api_client.is_role_cloud_admin(user_token): raise bottle.HTTPResponse(status = 401, body = 'Authentication required', headers = self._reject_auth_headers()) return func(self, *f_args, **f_kwargs) return _impl # end validate_user_token def _reject_auth_headers(self): header_val = 'Keystone uri=\'%s\'' % \ self._args.auth_conf_info.get('auth_uri') return { "WWW-Authenticate" : header_val } def __init__(self, args_str=' '.join(sys.argv[1:])): self.gevs = [] self._args = None self._parse_args(args_str) print args_str self._homepage_links = [] self._homepage_links.append( LinkObject('documentation', '/documentation/index.html')) self._homepage_links.append( LinkObject('Message documentation', '/documentation/messages/index.html')) self._homepage_links.append(LinkObject('analytics', '/analytics')) super(OpServer, self).__init__() self._webserver = None module = Module.OPSERVER self._moduleid = ModuleNames[module] node_type = Module2NodeType[module] self._node_type_name = NodeTypeNames[node_type] if self._args.worker_id: self._instance_id = self._args.worker_id else: self._instance_id = INSTANCE_ID_DEFAULT self.table = "ObjectCollectorInfo" self._hostname = socket.gethostname() if self._args.dup: self._hostname += 'dup' self._sandesh = Sandesh() self.disk_usage_percentage = 0 self.pending_compaction_tasks = 0 opserver_sandesh_req_impl = OpserverSandeshReqImpl(self) # Reset the sandesh send rate limit value if self._args.sandesh_send_rate_limit is not None: SandeshSystem.set_sandesh_send_rate_limit( \ self._args.sandesh_send_rate_limit) self.random_collectors = self._args.collectors if self._args.collectors: self._chksum = hashlib.md5("".join(self._args.collectors)).hexdigest() self.random_collectors = random.sample(self._args.collectors, \ len(self._args.collectors)) self._sandesh.init_generator( self._moduleid, self._hostname, self._node_type_name, self._instance_id, self.random_collectors, 'opserver_context', int(self._args.http_server_port), ['opserver.sandesh'], logger_class=self._args.logger_class, logger_config_file=self._args.logging_conf, config=self._args.sandesh_config) self._sandesh.set_logging_params( enable_local_log=self._args.log_local, category=self._args.log_category, level=self._args.log_level, file=self._args.log_file, enable_syslog=self._args.use_syslog, syslog_facility=self._args.syslog_facility) ConnectionState.init(self._sandesh, self._hostname, self._moduleid, self._instance_id, staticmethod(ConnectionState.get_process_state_cb), NodeStatusUVE, NodeStatus, self.table) self._uvepartitions_state = None # Trace buffer list self.trace_buf = [ {'name':'DiscoveryMsg', 'size':1000} ] # Create trace buffers for buf in self.trace_buf: self._sandesh.trace_buffer_create(name=buf['name'], size=buf['size']) self._logger = self._sandesh._logger self._get_common = self._http_get_common self._put_common = self._http_put_common self._delete_common = self._http_delete_common self._post_common = self._http_post_common self._collector_pool = None self._state_server = OpStateServer(self._logger, self._args.redis_password) body = gevent.queue.Queue() self._vnc_api_client = None if self._args.auth_conf_info.get('cloud_admin_access_only'): self._vnc_api_client = VncCfgApiClient(self._args.auth_conf_info, self._sandesh, self._logger) self._uvedbstream = UveStreamer(self._logger, None, None, self.get_agp, self._args.redis_password) # On olders version of linux, kafka cannot be # relied upon. DO NOT use it to serve UVEs self._usecache = True (PLATFORM, VERSION, EXTRA) = platform.linux_distribution() if PLATFORM.lower() == 'ubuntu': if VERSION.find('12.') == 0: self._usecache = False if PLATFORM.lower() == 'centos': if VERSION.find('6.') == 0: self._usecache = False if self._args.partitions == 0: self._usecache = False if not self._usecache: self._logger.error("NOT using UVE Cache") else: self._logger.error("Initializing UVE Cache") self._LEVEL_LIST = [] for k in SandeshLevel._VALUES_TO_NAMES: if (k < SandeshLevel.UT_START): d = {} d[k] = SandeshLevel._VALUES_TO_NAMES[k] self._LEVEL_LIST.append(d) self._CATEGORY_MAP =\ dict((ModuleNames[k], [CategoryNames[ce] for ce in v]) for k, v in ModuleCategoryMap.iteritems()) self.agp = {} if self._usecache: ConnectionState.update(conn_type = ConnectionType.UVEPARTITIONS, name = 'UVE-Aggregation', status = ConnectionStatus.INIT) self._uvepartitions_state = ConnectionStatus.INIT else: ConnectionState.update(conn_type = ConnectionType.UVEPARTITIONS, name = 'UVE-Aggregation', status = ConnectionStatus.UP) self._uvepartitions_state = ConnectionStatus.UP self.redis_uve_list = [] if type(self._args.redis_uve_list) is str: self._args.redis_uve_list = self._args.redis_uve_list.split() ad_freq = 10 us_freq = 5 is_local = True for redis_uve in self._args.redis_uve_list: redis_ip_port = redis_uve.split(':') if redis_ip_port[0] != "127.0.0.1": is_local = False redis_elem = (redis_ip_port[0], int(redis_ip_port[1])) self.redis_uve_list.append(redis_elem) if is_local: ad_freq = 2 us_freq = 2 if self._args.zk_list: self._ad = AnalyticsDiscovery(self._logger, ','.join(self._args.zk_list), ANALYTICS_API_SERVER_DISCOVERY_SERVICE_NAME, self._hostname + "-" + self._instance_id, {ALARM_GENERATOR_SERVICE_NAME:self.disc_agp}, self._args.zk_prefix, ad_freq) else: self._ad = None if self._args.partitions != 0: # Assume all partitions are on the 1st redis server # and there is only one redis server redis_ip_port = self._args.redis_uve_list[0].split(':') assert(len(self._args.redis_uve_list) == 1) for part in range(0,self._args.partitions): pi = PartInfo(ip_address = redis_ip_port[0], acq_time = UTCTimestampUsec(), instance_id = "0", port = int(redis_ip_port[1])) self.agp[part] = pi self._uve_server = UVEServer(self.redis_uve_list, self._logger, self._args.redis_password, self._uvedbstream, self._usecache, freq = us_freq) self._state_server.update_redis_list(self.redis_uve_list) self._analytics_links = ['uves', 'uve-types', 'tables', 'queries', 'alarms', 'uve-stream', 'alarm-stream'] self._VIRTUAL_TABLES = copy.deepcopy(_TABLES) listmgrs = extension.ExtensionManager('contrail.analytics.alarms') for elem in listmgrs: self._logger.info('Loaded extensions for %s: %s doc %s' % \ (elem.name , elem.entry_point, elem.plugin.__doc__)) for t in _OBJECT_TABLES: obj = query_table( name=t, display_name=_OBJECT_TABLES[t].objtable_display_name, schema=_OBJECT_TABLE_SCHEMA, columnvalues=_OBJECT_TABLE_COLUMN_VALUES) self._VIRTUAL_TABLES.append(obj) stat_tables = [] # read the stat table schemas from vizd first for t in _STAT_TABLES: attributes = [] for attr in t.attributes: suffixes = [] if attr.suffixes: for suffix in attr.suffixes: suffixes.append(suffix) attributes.append({"name":attr.name,"datatype":attr.datatype,"index":attr.index,"suffixes":suffixes}) new_table = {"stat_type":t.stat_type, "stat_attr":t.stat_attr, "display_name":t.display_name, "obj_table":t.obj_table, "attributes":attributes} stat_tables.append(new_table) # read all the _stats_tables.json files for remaining stat table schema topdir = os.path.dirname(__file__) + "/stats_schema/" extn = '_stats_tables.json' stat_schema_files = [] for dirpath, dirnames, files in os.walk(topdir): for name in files: if name.lower().endswith(extn): stat_schema_files.append(os.path.join(dirpath, name)) for schema_file in stat_schema_files: with open(schema_file) as data_file: data = json.load(data_file) for _, tables in data.iteritems(): for table in tables: if table not in stat_tables: stat_tables.append(table) for table in stat_tables: stat_id = table["stat_type"] + "." + table["stat_attr"] scols = [] keyln = stat_query_column(name=STAT_SOURCE_FIELD, datatype='string', index=True) scols.append(keyln) tln = stat_query_column(name=STAT_TIME_FIELD, datatype='int', index=False) scols.append(tln) tcln = stat_query_column(name="CLASS(" + STAT_TIME_FIELD + ")", datatype='int', index=False) scols.append(tcln) teln = stat_query_column(name=STAT_TIMEBIN_FIELD, datatype='int', index=False) scols.append(teln) tecln = stat_query_column(name="CLASS(" + STAT_TIMEBIN_FIELD+ ")", datatype='int', index=False) scols.append(tecln) uln = stat_query_column(name=STAT_UUID_FIELD, datatype='uuid', index=False) scols.append(uln) cln = stat_query_column(name="COUNT(" + table["stat_attr"] + ")", datatype='int', index=False) scols.append(cln) isname = False for aln in table["attributes"]: if aln["name"]==STAT_OBJECTID_FIELD: isname = True if "suffixes" in aln.keys(): aln_col = stat_query_column(name=aln["name"], datatype=aln["datatype"], index=aln["index"], suffixes=aln["suffixes"]); else: aln_col = stat_query_column(name=aln["name"], datatype=aln["datatype"], index=aln["index"]); scols.append(aln_col) if aln["datatype"] in ['int','double']: sln = stat_query_column(name= "SUM(" + aln["name"] + ")", datatype=aln["datatype"], index=False) scols.append(sln) scln = stat_query_column(name= "CLASS(" + aln["name"] + ")", datatype=aln["datatype"], index=False) scols.append(scln) sln = stat_query_column(name= "MAX(" + aln["name"] + ")", datatype=aln["datatype"], index=False) scols.append(sln) scln = stat_query_column(name= "MIN(" + aln["name"] + ")", datatype=aln["datatype"], index=False) scols.append(scln) scln = stat_query_column(name= "PERCENTILES(" + aln["name"] + ")", datatype='percentiles', index=False) scols.append(scln) scln = stat_query_column(name= "AVG(" + aln["name"] + ")", datatype='avg', index=False) scols.append(scln) if not isname: keyln = stat_query_column(name=STAT_OBJECTID_FIELD, datatype='string', index=True) scols.append(keyln) sch = query_schema_type(type='STAT', columns=scols) stt = query_table( name = STAT_VT_PREFIX + "." + stat_id, display_name = table["display_name"], schema = sch, columnvalues = [STAT_OBJECTID_FIELD, SOURCE]) self._VIRTUAL_TABLES.append(stt) self._analytics_db = AnalyticsDb(self._logger, self._args.cassandra_server_list, self._args.redis_query_port, self._args.redis_password, self._args.cassandra_user, self._args.cassandra_password, self._args.cluster_id) bottle.route('/', 'GET', self.homepage_http_get) bottle.route('/analytics', 'GET', self.analytics_http_get) bottle.route('/analytics/uves', 'GET', self.uves_http_get) bottle.route('/analytics/uve-types', 'GET', self.uve_types_http_get) bottle.route('/analytics/alarms/acknowledge', 'POST', self.alarms_ack_http_post) bottle.route('/analytics/query', 'POST', self.query_process) bottle.route( '/analytics/query/<queryId>', 'GET', self.query_status_get) bottle.route('/analytics/query/<queryId>/chunk-final/<chunkId>', 'GET', self.query_chunk_get) bottle.route('/analytics/queries', 'GET', self.show_queries) bottle.route('/analytics/tables', 'GET', self.tables_process) bottle.route('/analytics/operation/database-purge', 'POST', self.process_purge_request) bottle.route('/analytics/operation/analytics-data-start-time', 'GET', self._get_analytics_data_start_time) bottle.route('/analytics/table/<table>', 'GET', self.table_process) bottle.route('/analytics/table/<table>/schema', 'GET', self.table_schema_process) for i in range(0, len(self._VIRTUAL_TABLES)): if len(self._VIRTUAL_TABLES[i].columnvalues) > 0: bottle.route('/analytics/table/<table>/column-values', 'GET', self.column_values_process) bottle.route('/analytics/table/<table>/column-values/<column>', 'GET', self.column_process) bottle.route('/analytics/send-tracebuffer/<source>/<module>/<instance_id>/<name>', 'GET', self.send_trace_buffer) bottle.route('/doc-style.css', 'GET', self.documentation_messages_css_get) bottle.route('/documentation/messages/<module>', 'GET', self.documentation_messages_http_get) bottle.route('/documentation/messages/<module>/<sfilename>', 'GET', self.documentation_messages_http_get) bottle.route('/documentation/<filename:path>', 'GET', self.documentation_http_get) bottle.route('/analytics/uve-stream', 'GET', self.uve_stream) bottle.route('/analytics/alarm-stream', 'GET', self.alarm_stream) bottle.route('/analytics/uves/<tables>', 'GET', self.dyn_list_http_get) bottle.route('/analytics/uves/<table>/<name:path>', 'GET', self.dyn_http_get) bottle.route('/analytics/uves/<tables>', 'POST', self.dyn_http_post) bottle.route('/analytics/alarms', 'GET', self.alarms_http_get) # start gevent to monitor disk usage and automatically purge if (self._args.auto_db_purge): self.gevs.append(gevent.spawn(self._auto_purge)) # end __init__ def _parse_args(self, args_str=' '.join(sys.argv[1:])): ''' Eg. python opserver.py --host_ip 127.0.0.1 --redis_query_port 6379 --redis_password --collectors 127.0.0.1:8086 --cassandra_server_list 127.0.0.1:9160 --http_server_port 8090 --rest_api_port 8081 --rest_api_ip 0.0.0.0 --log_local --log_level SYS_DEBUG --log_category test --log_file <stdout> --use_syslog --syslog_facility LOG_USER --worker_id 0 --partitions 15 --zk_list 127.0.0.1:2181 --redis_uve_list 127.0.0.1:6379 --auto_db_purge --zk_list 127.0.0.1:2181 ''' # Source any specified config/ini file # Turn off help, so we print all options in response to -h conf_parser = argparse.ArgumentParser(add_help=False) conf_parser.add_argument("-c", "--conf_file", action='append', help="Specify config file", metavar="FILE", default=ServicesDefaultConfigurationFiles.get( SERVICE_OPSERVER, None)) args, remaining_argv = conf_parser.parse_known_args(args_str.split()) defaults = { 'host_ip' : "127.0.0.1", 'collectors' : None, 'cassandra_server_list' : ['127.0.0.1:9160'], 'http_server_port' : 8090, 'rest_api_port' : 8081, 'rest_api_ip' : '0.0.0.0', 'log_local' : False, 'log_level' : 'SYS_DEBUG', 'log_category' : '', 'log_file' : Sandesh._DEFAULT_LOG_FILE, 'use_syslog' : False, 'syslog_facility' : Sandesh._DEFAULT_SYSLOG_FACILITY, 'dup' : False, 'auto_db_purge' : True, 'db_purge_threshold' : 70, 'db_purge_level' : 40, 'analytics_data_ttl' : 48, 'analytics_config_audit_ttl' : -1, 'analytics_statistics_ttl' : -1, 'analytics_flow_ttl' : -1, 'logging_conf': '', 'logger_class': None, 'partitions' : 15, 'zk_list' : None, 'zk_prefix' : '', 'sandesh_send_rate_limit': SandeshSystem. \ get_sandesh_send_rate_limit(), 'aaa_mode' : AAA_MODE_CLOUD_ADMIN, 'api_server' : '127.0.0.1:8082', 'admin_port' : OpServerAdminPort, 'cloud_admin_role' : CLOUD_ADMIN_ROLE, 'api_server_use_ssl': False, } redis_opts = { 'redis_query_port' : 6379, 'redis_password' : None, 'redis_uve_list' : ['127.0.0.1:6379'], } database_opts = { 'cluster_id' : '', } cassandra_opts = { 'cassandra_user' : None, 'cassandra_password' : None, } keystone_opts = { 'auth_host': '127.0.0.1', 'auth_protocol': 'http', 'auth_port': 35357, 'admin_user': 'admin', 'admin_password': 'contrail123', 'admin_tenant_name': 'default-domain' } sandesh_opts = { 'sandesh_keyfile': '/etc/contrail/ssl/private/server-privkey.pem', 'sandesh_certfile': '/etc/contrail/ssl/certs/server.pem', 'sandesh_ca_cert': '/etc/contrail/ssl/certs/ca-cert.pem', 'sandesh_ssl_enable': False, 'introspect_ssl_enable': False } # read contrail-analytics-api own conf file config = None if args.conf_file: config = ConfigParser.SafeConfigParser() config.read(args.conf_file) if 'DEFAULTS' in config.sections(): defaults.update(dict(config.items("DEFAULTS"))) if 'REDIS' in config.sections(): redis_opts.update(dict(config.items('REDIS'))) if 'CASSANDRA' in config.sections(): cassandra_opts.update(dict(config.items('CASSANDRA'))) if 'KEYSTONE' in config.sections(): keystone_opts.update(dict(config.items('KEYSTONE'))) if 'SANDESH' in config.sections(): sandesh_opts.update(dict(config.items('SANDESH'))) if 'sandesh_ssl_enable' in config.options('SANDESH'): sandesh_opts['sandesh_ssl_enable'] = config.getboolean( 'SANDESH', 'sandesh_ssl_enable') if 'introspect_ssl_enable' in config.options('SANDESH'): sandesh_opts['introspect_ssl_enable'] = config.getboolean( 'SANDESH', 'introspect_ssl_enable') if 'DATABASE' in config.sections(): database_opts.update(dict(config.items('DATABASE'))) # Override with CLI options # Don't surpress add_help here so it will handle -h parser = argparse.ArgumentParser( # Inherit options from config_parser parents=[conf_parser], # print script description with -h/--help description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter) defaults.update(redis_opts) defaults.update(cassandra_opts) defaults.update(database_opts) defaults.update(keystone_opts) defaults.update(sandesh_opts) parser.set_defaults(**defaults) parser.add_argument("--host_ip", help="Host IP address") parser.add_argument("--redis_server_port", type=int, help="Redis server port") parser.add_argument("--redis_query_port", type=int, help="Redis query port") parser.add_argument("--redis_password", help="Redis server password") parser.add_argument("--collectors", help="List of Collector IP addresses in ip:port format", nargs="+") parser.add_argument("--http_server_port", type=int, help="HTTP server port") parser.add_argument("--rest_api_port", type=int, help="REST API port") parser.add_argument("--rest_api_ip", help="REST API IP address") parser.add_argument("--log_local", action="store_true", help="Enable local logging of sandesh messages") parser.add_argument( "--log_level", help="Severity level for local logging of sandesh messages") parser.add_argument( "--log_category", help="Category filter for local logging of sandesh messages") parser.add_argument("--log_file", help="Filename for the logs to be written to") parser.add_argument("--use_syslog", action="store_true", help="Use syslog for logging") parser.add_argument("--syslog_facility", help="Syslog facility to receive log lines") parser.add_argument("--dup", action="store_true", help="Internal use") parser.add_argument("--redis_uve_list", help="List of redis-uve in ip:port format. For internal use only", nargs="+") parser.add_argument( "--worker_id", help="Worker Id") parser.add_argument("--cassandra_server_list", help="List of cassandra_server_ip in ip:port format", nargs="+") parser.add_argument("--auto_db_purge", action="store_true", help="Automatically purge database if disk usage cross threshold") parser.add_argument( "--logging_conf", help=("Optional logging configuration file, default: None")) parser.add_argument( "--logger_class", help=("Optional external logger class, default: None")) parser.add_argument("--cluster_id", help="Analytics Cluster Id") parser.add_argument("--cassandra_user", help="Cassandra user name") parser.add_argument("--cassandra_password", help="Cassandra password") parser.add_argument("--partitions", type=int, help="Number of partitions for hashing UVE keys") parser.add_argument("--zk_list", help="List of zookeepers in ip:port format", nargs="+") parser.add_argument("--zk_prefix", help="System Prefix for zookeeper") parser.add_argument("--sandesh_send_rate_limit", type=int, help="Sandesh send rate limit in messages/sec") parser.add_argument("--cloud_admin_role", help="Name of cloud-admin role") parser.add_argument("--aaa_mode", choices=APIAAAModes, help="AAA mode") parser.add_argument("--auth_host", help="IP address of keystone server") parser.add_argument("--auth_protocol", help="Keystone authentication protocol") parser.add_argument("--auth_port", type=int, help="Keystone server port") parser.add_argument("--admin_user", help="Name of keystone admin user") parser.add_argument("--admin_password", help="Password of keystone admin user") parser.add_argument("--admin_tenant_name", help="Tenant name for keystone admin user") parser.add_argument("--api_server", help="Address of VNC API server in ip:port format") parser.add_argument("--admin_port", help="Port with local auth for admin access") parser.add_argument("--api_server_use_ssl", help="Use SSL to connect with API server") parser.add_argument("--sandesh_keyfile", help="Sandesh ssl private key") parser.add_argument("--sandesh_certfile", help="Sandesh ssl certificate") parser.add_argument("--sandesh_ca_cert", help="Sandesh CA ssl certificate") parser.add_argument("--sandesh_ssl_enable", action="store_true", help="Enable ssl for sandesh connection") parser.add_argument("--introspect_ssl_enable", action="store_true", help="Enable ssl for introspect connection") self._args = parser.parse_args(remaining_argv) if type(self._args.collectors) is str: self._args.collectors = self._args.collectors.split() if type(self._args.redis_uve_list) is str: self._args.redis_uve_list = self._args.redis_uve_list.split() if type(self._args.cassandra_server_list) is str: self._args.cassandra_server_list = self._args.cassandra_server_list.split() if type(self._args.zk_list) is str: self._args.zk_list= self._args.zk_list.split() auth_conf_info = {} auth_conf_info['admin_user'] = self._args.admin_user auth_conf_info['admin_password'] = self._args.admin_password auth_conf_info['admin_tenant_name'] = self._args.admin_tenant_name auth_conf_info['auth_protocol'] = self._args.auth_protocol auth_conf_info['auth_host'] = self._args.auth_host auth_conf_info['auth_port'] = self._args.auth_port auth_conf_info['auth_uri'] = '%s://%s:%d' % (self._args.auth_protocol, self._args.auth_host, self._args.auth_port) auth_conf_info['api_server_use_ssl'] = self._args.api_server_use_ssl auth_conf_info['cloud_admin_access_only'] = \ False if self._args.aaa_mode == AAA_MODE_NO_AUTH else True auth_conf_info['cloud_admin_role'] = self._args.cloud_admin_role auth_conf_info['admin_port'] = self._args.admin_port api_server_info = self._args.api_server.split(':') auth_conf_info['api_server_ip'] = api_server_info[0] auth_conf_info['api_server_port'] = int(api_server_info[1]) self._args.auth_conf_info = auth_conf_info self._args.conf_file = args.conf_file self._args.sandesh_config = SandeshConfig(self._args.sandesh_keyfile, self._args.sandesh_certfile, self._args.sandesh_ca_cert, self._args.sandesh_ssl_enable, self._args.introspect_ssl_enable) # end _parse_args def get_args(self): return self._args # end get_args def get_http_server_port(self): return int(self._args.http_server_port) # end get_http_server_port def get_uve_server(self): return self._uve_server # end get_uve_server def homepage_http_get(self): json_body = {} json_links = [] base_url = bottle.request.urlparts.scheme + \ '://' + bottle.request.urlparts.netloc for link in self._homepage_links: json_links.append( {'link': obj_to_dict( LinkObject(link.name, base_url + link.href))}) json_body = \ {"href": base_url, "links": json_links } return json_body # end homepage_http_get def cleanup_uve_streamer(self, gv): self.gevs.remove(gv) def _serve_streams(self, alarmsonly): req = bottle.request.query try: filters = OpServer._uve_filter_set(req) except Exception as e: return bottle.HTTPError(_ERRORS[errno.EBADMSG], e) if alarmsonly: filters['cfilt'] = {'UVEAlarms':set()} kfilter = filters.get('kfilt') patterns = None if kfilter is not None: patterns = set() for filt in kfilter: patterns.add(self._uve_server.get_uve_regex(filt)) bottle.response.set_header('Content-Type', 'text/event-stream') bottle.response.set_header('Cache-Control', 'no-cache') # This is needed to detect when the client hangs up rfile = bottle.request.environ['wsgi.input'].rfile body = gevent.queue.Queue() ph = UveStreamer(self._logger, body, rfile, self.get_agp, self._args.redis_password, filters['tablefilt'], filters['cfilt'], patterns) ph.set_cleanup_callback(self.cleanup_uve_streamer) self.gevs.append(ph) ph.start() return body @validate_user_token def uve_stream(self): return self._serve_streams(False) @validate_user_token def alarm_stream(self): return self._serve_streams(True) def documentation_http_get(self, filename): return bottle.static_file( filename, root='/usr/share/doc/contrail-analytics-api/html') # end documentation_http_get def documentation_messages_http_get(self, module, sfilename=None): filename = module if sfilename: filename = module + '/' + sfilename return bottle.static_file( filename, root='/usr/share/doc/contrail-docs/html/messages') # end documentation_messages_http_get def documentation_messages_css_get(self): return bottle.static_file('/doc-style.css', root='/usr/share/doc/contrail-docs/html/messages') # end documentation_messages_css_get def _http_get_common(self, request): return (True, '') # end _http_get_common def _http_put_common(self, request, obj_dict): return (True, '') # end _http_put_common def _http_delete_common(self, request, id): return (True, '') # end _http_delete_common def _http_post_common(self, request, obj_dict): return (True, '') # end _http_post_common @staticmethod def _get_redis_query_ip_from_qid(qid): try: ip = qid.rsplit('-', 1)[1] redis_ip = socket.inet_ntop(socket.AF_INET, struct.pack('>I', int(ip, 16))) except Exception as err: return None return redis_ip # end _get_redis_query_ip_from_qid def _query_status(self, request, qid): resp = {} redis_query_ip = OpServer._get_redis_query_ip_from_qid(qid) if redis_query_ip is None: return bottle.HTTPError(_ERRORS[errno.EINVAL], 'Invalid query id') try: resp = redis_query_status(host=redis_query_ip, port=int(self._args.redis_query_port), redis_password=self._args.redis_password, qid=qid) except redis.exceptions.ConnectionError: return bottle.HTTPError(_ERRORS[errno.EIO], 'Failure in connection to the query DB') except Exception as e: self._logger.error("Exception: %s" % e) return bottle.HTTPError(_ERRORS[errno.EIO], 'Error: %s' % e) else: if resp is None: return bottle.HTTPError(_ERRORS[errno.ENOENT], 'Invalid query id or Abandoned query id') resp_header = {'Content-Type': 'application/json'} resp_code = 200 self._logger.debug("query [%s] status: %s" % (qid, resp)) return bottle.HTTPResponse( json.dumps(resp), resp_code, resp_header) # end _query_status def _query_chunk(self, request, qid, chunk_id): redis_query_ip = OpServer._get_redis_query_ip_from_qid(qid) if redis_query_ip is None: yield bottle.HTTPError(_ERRORS[errno.EINVAL], 'Invalid query id') try: done = False gen = redis_query_chunk(host=redis_query_ip, port=int(self._args.redis_query_port), redis_password=self._args.redis_password, qid=qid, chunk_id=chunk_id) bottle.response.set_header('Content-Type', 'application/json') while not done: try: yield gen.next() except StopIteration: done = True except redis.exceptions.ConnectionError: yield bottle.HTTPError(_ERRORS[errno.EIO], 'Failure in connection to the query DB') except Exception as e: self._logger.error("Exception: %s" % str(e)) yield bottle.HTTPError(_ERRORS[errno.ENOENT], 'Error: %s' % e) else: self._logger.info( "Query [%s] chunk #%d read at time %d" % (qid, chunk_id, time.time())) # end _query_chunk def _is_valid_stats_table_query(self, request, tabn): isT_ = False isT = False for key, value in request.iteritems(): if key == "select_fields": for select_field in value: if select_field == STAT_TIME_FIELD: isT = True elif select_field.find(STAT_TIMEBIN_FIELD) == 0: isT_ = True else: agg_field = select_field.split('(') if len(agg_field) == 2: oper = agg_field[0] field = agg_field[1].split(')')[0] if oper != "COUNT": if field == STAT_TIME_FIELD: isT = True elif field == STAT_TIMEBIN_FIELD: isT_ = True else: field_found = False for column in self._VIRTUAL_TABLES[tabn].schema.columns: if column.name == field: if column.datatype != "": field_found = True if field_found == False: reply = bottle.HTTPError(_ERRORS[errno.EINVAL], \ 'Unknown field %s' %field) return reply elif field.split('.')[-1] != \ self._VIRTUAL_TABLES[tabn].name.split('.')[-1]: reply = bottle.HTTPError(_ERRORS[errno.EINVAL], \ 'Invalid COUNT field %s' %field) return reply elif len(agg_field) == 1: field_found = False for column in self._VIRTUAL_TABLES[tabn].schema.columns: if column.name == select_field: if column.datatype != "": field_found = True if field_found == False: reply = bottle.HTTPError(_ERRORS[errno.EINVAL], \ 'Invalid field %s' %select_field) return reply if isT and isT_: reply = bottle.HTTPError(_ERRORS[errno.EINVAL], \ "Stats query cannot have both T and T=") return reply return None # end _is_valid_stats_table_query def _query(self, request): reply = {} try: redis_query_ip, = struct.unpack('>I', socket.inet_pton( socket.AF_INET, self._args.host_ip)) qid = str(uuid.uuid1(redis_query_ip)) self._logger.info('Received Query: %s' % (str(request.json))) self._logger.info("Starting Query %s" % qid) tabl = "" for key, value in request.json.iteritems(): if key == "table": tabl = value self._logger.info("Table is " + tabl) tabn = None for i in range(0, len(self._VIRTUAL_TABLES)): if self._VIRTUAL_TABLES[i].name == tabl: tabn = i if (tabn is not None) and (tabl.find("StatTable") == 0): query_err = self._is_valid_stats_table_query(request.json, tabn) if query_err is not None: yield query_err return if (tabn is not None): tabtypes = {} for cols in self._VIRTUAL_TABLES[tabn].schema.columns: if cols.datatype in ['long', 'int']: tabtypes[cols.name] = 'int' elif cols.datatype in ['ipv4']: tabtypes[cols.name] = 'ipv4' else: tabtypes[cols.name] = 'string' self._logger.info(str(tabtypes)) if (tabn is None): if not tabl.startswith("StatTable."): tables = self._uve_server.get_tables() if not tabl in tables: reply = bottle.HTTPError(_ERRORS[errno.ENOENT], 'Table %s not found' % tabl) yield reply return else: self._logger.info("Schema not known for dynamic table %s" % tabl) if tabl == OVERLAY_TO_UNDERLAY_FLOW_MAP: overlay_to_underlay_map = OverlayToUnderlayMapper( request.json, 'localhost', self._args.auth_conf_info['admin_port'], self._args.auth_conf_info['admin_user'], self._args.auth_conf_info['admin_password'], self._logger) try: yield overlay_to_underlay_map.process_query() except OverlayToUnderlayMapperError as e: yield bottle.HTTPError(_ERRORS[errno.EIO], str(e)) return prg = redis_query_start('127.0.0.1', int(self._args.redis_query_port), self._args.redis_password, qid, request.json, self._VIRTUAL_TABLES[tabn].schema.columns if tabn else None) if prg is None: self._logger.error('QE Not Responding') yield bottle.HTTPError(_ERRORS[errno.EBUSY], 'Query Engine is not responding') return except redis.exceptions.ConnectionError: yield bottle.HTTPError(_ERRORS[errno.EIO], 'Failure in connection to the query DB') except Exception as e: self._logger.error("Exception: %s" % str(e)) yield bottle.HTTPError(_ERRORS[errno.EIO], 'Error: %s' % e) else: redish = None if prg < 0: cod = -prg self._logger.error( "Query Failed. Found Error %s" % errno.errorcode[cod]) reply = bottle.HTTPError(_ERRORS[cod], errno.errorcode[cod]) yield reply else: self._logger.info( "Query Accepted at time %d , Progress %d" % (time.time(), prg)) # In Async mode, we should return with "202 Accepted" here # and also give back the status URI "/analytic/query/<qid>" # OpServers's client will poll the status URI if request.get_header('Expect') == '202-accepted' or\ request.get_header('Postman-Expect') == '202-accepted': href = '/analytics/query/%s' % (qid) resp_data = json.dumps({'href': href}) yield bottle.HTTPResponse( resp_data, 202, {'Content-type': 'application/json'}) else: for gen in self._sync_query(request, qid): yield gen # end _query def _sync_query(self, request, qid): # In Sync mode, Keep polling query status until final result is # available try: self._logger.info("Polling %s for query result" % ("REPLY:" + qid)) prg = 0 done = False while not done: gevent.sleep(1) resp = redis_query_status(host='127.0.0.1', port=int( self._args.redis_query_port), redis_password=self._args.redis_password, qid=qid) # We want to print progress only if it has changed if int(resp["progress"]) == prg: continue self._logger.info( "Query Progress is %s time %d" % (str(resp), time.time())) prg = int(resp["progress"]) # Either there was an error, or the query is complete if (prg < 0) or (prg == 100): done = True if prg < 0: cod = -prg self._logger.error("Found Error %s" % errno.errorcode[cod]) reply = bottle.HTTPError(_ERRORS[cod], errno.errorcode[cod]) yield reply return # In Sync mode, its time to read the final result. Status is in # "resp" done = False gen = redis_query_result(host='127.0.0.1', port=int(self._args.redis_query_port), redis_password=self._args.redis_password, qid=qid) bottle.response.set_header('Content-Type', 'application/json') while not done: try: yield gen.next() except StopIteration: done = True ''' final_res = {} prg, final_res['value'] =\ redis_query_result_dict(host=self._args.redis_server_ip, port=int(self._args.redis_query_port), qid=qid) yield json.dumps(final_res) ''' except redis.exceptions.ConnectionError: yield bottle.HTTPError(_ERRORS[errno.EIO], 'Failure in connection to the query DB') except Exception as e: self._logger.error("Exception: %s" % str(e)) yield bottle.HTTPError(_ERRORS[errno.EIO], 'Error: %s' % e) else: self._logger.info( "Query Result available at time %d" % time.time()) return # end _sync_query @validate_user_token def query_process(self): self._post_common(bottle.request, None) result = self._query(bottle.request) return result # end query_process @validate_user_token def query_status_get(self, queryId): (ok, result) = self._get_common(bottle.request) if not ok: (code, msg) = result bottle.abort(code, msg) return self._query_status(bottle.request, queryId) # end query_status_get def query_chunk_get(self, queryId, chunkId): (ok, result) = self._get_common(bottle.request) if not ok: (code, msg) = result bottle.abort(code, msg) return self._query_chunk(bottle.request, queryId, int(chunkId)) # end query_chunk_get @validate_user_token def show_queries(self): (ok, result) = self._get_common(bottle.request) if not ok: (code, msg) = result bottle.abort(code, msg) queries = {} try: redish = redis.StrictRedis(db=0, host='127.0.0.1', port=int(self._args.redis_query_port), password=self._args.redis_password) pending_queries = redish.lrange('QUERYQ', 0, -1) pending_queries_info = [] for query_id in pending_queries: query_data = redis_query_info(redish, query_id) pending_queries_info.append(query_data) queries['pending_queries'] = pending_queries_info processing_queries = redish.lrange( 'ENGINE:' + socket.gethostname(), 0, -1) processing_queries_info = [] abandoned_queries_info = [] error_queries_info = [] for query_id in processing_queries: status = redis_query_status(host='127.0.0.1', port=int( self._args.redis_query_port), redis_password=self._args.redis_password, qid=query_id) query_data = redis_query_info(redish, query_id) if status is None: abandoned_queries_info.append(query_data) elif status['progress'] < 0: query_data['error_code'] = status['progress'] error_queries_info.append(query_data) else: query_data['progress'] = status['progress'] processing_queries_info.append(query_data) queries['queries_being_processed'] = processing_queries_info queries['abandoned_queries'] = abandoned_queries_info queries['error_queries'] = error_queries_info except redis.exceptions.ConnectionError: return bottle.HTTPError(_ERRORS[errno.EIO], 'Failure in connection to the query DB') except Exception as err: self._logger.error("Exception in show queries: %s" % str(err)) return bottle.HTTPError(_ERRORS[errno.EIO], 'Error: %s' % err) else: bottle.response.set_header('Content-Type', 'application/json') return json.dumps(queries) # end show_queries @staticmethod def _get_tfilter(cfilt): tfilter = {} for tfilt in cfilt: afilt = tfilt.split(':') try: attr_list = tfilter[afilt[0]] except KeyError: tfilter[afilt[0]] = set() attr_list = tfilter[afilt[0]] finally: if len(afilt) > 1: attr_list.add(afilt[1]) tfilter[afilt[0]] = attr_list return tfilter # end _get_tfilter @staticmethod def _uve_filter_set(req): filters = {} filters['sfilt'] = req.get('sfilt') filters['mfilt'] = req.get('mfilt') if req.get('tablefilt'): infos = req['tablefilt'].split(',') filters['tablefilt'] = [] for tf in infos: if tf and tf in UVE_MAP: filters['tablefilt'].append(UVE_MAP[tf]) else: filters['tablefilt'].append(tf) else: filters['tablefilt'] = None if req.get('cfilt'): infos = req['cfilt'].split(',') filters['cfilt'] = OpServer._get_tfilter(infos) else: filters['cfilt'] = None if req.get('kfilt'): filters['kfilt'] = req['kfilt'].split(',') else: filters['kfilt'] = None filters['ackfilt'] = req.get('ackfilt') if filters['ackfilt'] is not None: if filters['ackfilt'] != 'true' and filters['ackfilt'] != 'false': raise ValueError('Invalid ackfilt. ackfilt must be true|false') return filters # end _uve_filter_set @staticmethod def _uve_http_post_filter_set(req): filters = {} try: filters['kfilt'] = req['kfilt'] if not isinstance(filters['kfilt'], list): raise ValueError('Invalid kfilt') except KeyError: filters['kfilt'] = ['*'] filters['sfilt'] = req.get('sfilt') filters['mfilt'] = req.get('mfilt') try: cfilt = req['cfilt'] if not isinstance(cfilt, list): raise ValueError('Invalid cfilt') except KeyError: filters['cfilt'] = None else: filters['cfilt'] = OpServer._get_tfilter(cfilt) try: ackfilt = req['ackfilt'] except KeyError: filters['ackfilt'] = None else: if not isinstance(ackfilt, bool): raise ValueError('Invalid ackfilt. ackfilt must be bool') filters['ackfilt'] = 'true' if ackfilt else 'false' return filters # end _uve_http_post_filter_set @validate_user_token def dyn_http_post(self, tables): (ok, result) = self._post_common(bottle.request, None) base_url = bottle.request.urlparts.scheme + \ '://' + bottle.request.urlparts.netloc if not ok: (code, msg) = result bottle.abort(code, msg) uve_type = tables uve_tbl = uve_type if uve_type in UVE_MAP: uve_tbl = UVE_MAP[uve_type] try: req = bottle.request.json filters = OpServer._uve_http_post_filter_set(req) except Exception as err: yield bottle.HTTPError(_ERRORS[errno.EBADMSG], err) else: stats = AnalyticsApiStatistics(self._sandesh, uve_type) bottle.response.set_header('Content-Type', 'application/json') yield u'{"value": [' first = True num = 0 byt = 0 for key in filters['kfilt']: if key.find('*') != -1: for gen in self._uve_server.multi_uve_get(uve_tbl, True, filters, base_url): dp = json.dumps(gen) byt += len(dp) if first: yield u'' + dp first = False else: yield u', ' + dp num += 1 stats.collect(num,byt) stats.sendwith() yield u']}' return first = True for key in filters['kfilt']: uve_name = uve_tbl + ':' + key _, rsp = self._uve_server.get_uve(uve_name, True, filters, base_url=base_url) num += 1 if rsp != {}: data = {'name': key, 'value': rsp} dp = json.dumps(data) byt += len(dp) if first: yield u'' + dp first = False else: yield u', ' + dp stats.collect(num,byt) stats.sendwith() yield u']}' # end _uve_alarm_http_post @validate_user_token def dyn_http_get(self, table, name): # common handling for all resource get (ok, result) = self._get_common(bottle.request) base_url = bottle.request.urlparts.scheme + \ '://' + bottle.request.urlparts.netloc if not ok: (code, msg) = result bottle.abort(code, msg) uve_tbl = table if table in UVE_MAP: uve_tbl = UVE_MAP[table] bottle.response.set_header('Content-Type', 'application/json') uve_name = uve_tbl + ':' + name req = bottle.request.query try: filters = OpServer._uve_filter_set(req) except Exception as e: yield bottle.HTTPError(_ERRORS[errno.EBADMSG], e) flat = False if 'flat' in req.keys() or any(filters.values()): flat = True stats = AnalyticsApiStatistics(self._sandesh, table) uve_name = uve_tbl + ':' + name if name.find('*') != -1: flat = True yield u'{"value": [' first = True if filters['kfilt'] is None: filters['kfilt'] = [name] num = 0 byt = 0 for gen in self._uve_server.multi_uve_get(uve_tbl, flat, filters, base_url): dp = json.dumps(gen) byt += len(dp) if first: yield u'' + dp first = False else: yield u', ' + dp num += 1 stats.collect(num,byt) stats.sendwith() yield u']}' else: _, rsp = self._uve_server.get_uve(uve_name, flat, filters, base_url=base_url) dp = json.dumps(rsp) stats.collect(1, len(dp)) stats.sendwith() yield dp # end dyn_http_get @validate_user_token def alarms_http_get(self): # common handling for all resource get (ok, result) = self._get_common(bottle.request) if not ok: (code, msg) = result bottle.abort(code, msg) bottle.response.set_header('Content-Type', 'application/json') req = bottle.request.query try: filters = OpServer._uve_filter_set(req) except Exception as e: return bottle.HTTPError(_ERRORS[errno.EBADMSG], e) else: filters['cfilt'] = { 'UVEAlarms':set() } alarm_list = self._uve_server.get_alarms(filters) alms = {} for ak,av in alarm_list.iteritems(): alm_type = ak if ak in _OBJECT_TABLES: alm_type = _OBJECT_TABLES[ak].log_query_name ulist = [] for uk, uv in av.iteritems(): ulist.append({'name':uk, 'value':uv}) alms[alm_type ] = ulist if self._uvepartitions_state == ConnectionStatus.UP: return json.dumps(alms) else: return bottle.HTTPError(_ERRORS[errno.EIO],json.dumps(alms)) # end alarms_http_get @validate_user_token def dyn_list_http_get(self, tables): # common handling for all resource get (ok, result) = self._get_common(bottle.request) if not ok: (code, msg) = result bottle.abort(code, msg) arg_line = bottle.request.url.rsplit('/', 1)[1] uve_args = arg_line.split('?') uve_type = tables[:-1] if len(uve_args) != 1: uve_filters = '' filters = uve_args[1].split('&') filters = \ [filt for filt in filters if filt[:len('kfilt')] != 'kfilt'] if len(filters): uve_filters = '&'.join(filters) else: uve_filters = 'flat' else: uve_filters = 'flat' bottle.response.set_header('Content-Type', 'application/json') uve_tbl = uve_type if uve_type in UVE_MAP: uve_tbl = UVE_MAP[uve_type] req = bottle.request.query try: filters = OpServer._uve_filter_set(req) except Exception as e: return bottle.HTTPError(_ERRORS[errno.EBADMSG], e) else: uve_list = self._uve_server.get_uve_list( uve_tbl, filters, True) base_url = bottle.request.urlparts.scheme + '://' + \ bottle.request.urlparts.netloc + \ '/analytics/uves/%s/' % (uve_type) uve_links =\ [obj_to_dict(LinkObject(uve, base_url + uve + "?" + uve_filters)) for uve in uve_list] return json.dumps(uve_links) # end dyn_list_http_get @validate_user_token def analytics_http_get(self): # common handling for all resource get (ok, result) = self._get_common(bottle.request) if not ok: (code, msg) = result bottle.abort(code, msg) base_url = bottle.request.urlparts.scheme + '://' + \ bottle.request.urlparts.netloc + '/analytics/' analytics_links = [obj_to_dict(LinkObject(link, base_url + link)) for link in self._analytics_links] bottle.response.set_header('Content-Type', 'application/json') return json.dumps(analytics_links) # end analytics_http_get @validate_user_token def uves_http_get(self): # common handling for all resource get (ok, result) = self._get_common(bottle.request) if not ok: (code, msg) = result bottle.abort(code, msg) base_url = bottle.request.urlparts.scheme + '://' + \ bottle.request.urlparts.netloc + '/analytics/uves/' uvetype_links = [] # Show the list of UVE table-types based on actual raw UVE contents tables = self._uve_server.get_tables() known = set() for apiname,rawname in UVE_MAP.iteritems(): known.add(rawname) entry = obj_to_dict(LinkObject(apiname + 's', base_url + apiname + 's')) uvetype_links.append(entry) for rawname in tables: if not rawname in known: entry = obj_to_dict(LinkObject(rawname + 's', base_url + rawname + 's')) uvetype_links.append(entry) bottle.response.set_header('Content-Type', 'application/json') if self._uvepartitions_state == ConnectionStatus.UP: return json.dumps(uvetype_links) else: return bottle.HTTPError(_ERRORS[errno.EIO],json.dumps(uvetype_links)) # end _uves_http_get @validate_user_token def uve_types_http_get(self): # common handling for all resource get (ok, result) = self._get_common(bottle.request) if not ok: (code, msg) = result bottle.abort(code, msg) uve_types = {} for name, info in _OBJECT_TABLES.iteritems(): if info.is_uve: uve_types[info.log_query_name] = { 'global_system_object': info.global_system_object} bottle.response.set_header('Content-Type', 'application/json') return json.dumps(uve_types) # end uve_types_http_get @validate_user_token def alarms_ack_http_post(self): self._post_common(bottle.request, None) if ('application/json' not in bottle.request.headers['Content-Type']): self._logger.error('Content-type is not JSON') return bottle.HTTPError(_ERRORS[errno.EBADMSG], 'Content-Type must be JSON') self._logger.info('Alarm Acknowledge request: %s' % (bottle.request.json)) alarm_ack_fields = set(['table', 'name', 'type', 'token']) bottle_req_fields = set(bottle.request.json.keys()) if len(alarm_ack_fields - bottle_req_fields): return bottle.HTTPError(_ERRORS[errno.EINVAL], 'Alarm acknowledge request does not contain the fields ' '{%s}' % (', '.join(alarm_ack_fields - bottle_req_fields))) try: table = UVE_MAP[bottle.request.json['table']] except KeyError: # If the table name is not present in the UVE_MAP, then # send the raw table name to the generator. table = bottle.request.json['table'] # Decode generator ip, introspect port and timestamp from the # the token field. try: token = json.loads(base64.b64decode(bottle.request.json['token'])) except (TypeError, ValueError): self._logger.error('Alarm Ack Request: Failed to decode "token"') return bottle.HTTPError(_ERRORS[errno.EINVAL], 'Failed to decode "token"') exp_token_fields = set(['host_ip', 'http_port', 'timestamp']) actual_token_fields = set(token.keys()) if len(exp_token_fields - actual_token_fields): self._logger.error('Alarm Ack Request: Invalid token value') return bottle.HTTPError(_ERRORS[errno.EINVAL], 'Invalid token value') generator_introspect = GeneratorIntrospectUtil(token['host_ip'], token['http_port'], self._args.sandesh_config) try: res = generator_introspect.send_alarm_ack_request( table, bottle.request.json['name'], bottle.request.json['type'], token['timestamp']) except Exception as e: self._logger.error('Alarm Ack Request: Introspect request failed') return bottle.HTTPError(_ERRORS[errno.EBUSY], 'Failed to process the Alarm Ack Request') self._logger.debug('Alarm Ack Response: %s' % (res)) if res['status'] == 'false': return bottle.HTTPError(_ERRORS[errno.EIO], res['error_msg']) self._logger.info('Alarm Ack Request successfully processed') return bottle.HTTPResponse(status=200) # end alarms_ack_http_post @validate_user_token def send_trace_buffer(self, source, module, instance_id, name): response = {} trace_req = SandeshTraceRequest(name) if module not in ModuleIds: response['status'] = 'fail' response['error'] = 'Invalid module' return json.dumps(response) module_id = ModuleIds[module] node_type = Module2NodeType[module_id] node_type_name = NodeTypeNames[node_type] if self._state_server.redis_publish(msg_type='send-tracebuffer', destination=source + ':' + node_type_name + ':' + module + ':' + instance_id, msg=trace_req): response['status'] = 'pass' else: response['status'] = 'fail' response['error'] = 'No connection to Redis' return json.dumps(response) # end send_trace_buffer @validate_user_token def tables_process(self): (ok, result) = self._get_common(bottle.request) if not ok: (code, msg) = result bottle.abort(code, msg) base_url = bottle.request.urlparts.scheme + '://' + \ bottle.request.urlparts.netloc + '/analytics/table/' json_links = [] known = set() for i in range(0, len(self._VIRTUAL_TABLES)): known.add(self._VIRTUAL_TABLES[i].name) link = LinkObject(self._VIRTUAL_TABLES[ i].name, base_url + self._VIRTUAL_TABLES[i].name) tbl_info = obj_to_dict(link) tbl_info['type'] = self._VIRTUAL_TABLES[i].schema.type if (self._VIRTUAL_TABLES[i].display_name is not None): tbl_info['display_name'] =\ self._VIRTUAL_TABLES[i].display_name json_links.append(tbl_info) # Show the list of UVE table-types based on actual raw UVE contents tables = self._uve_server.get_tables() for rawname in tables: if not rawname in known: link = LinkObject(rawname, base_url + rawname) tbl_info = obj_to_dict(link) tbl_info['type'] = 'OBJECT' tbl_info['display_name'] = rawname json_links.append(tbl_info) bottle.response.set_header('Content-Type', 'application/json') return json.dumps(json_links) # end tables_process def get_purge_cutoff(self, purge_input, start_times): # currently not use analytics start time # purge_input is assumed to be percent of time since # TTL for which data has to be purged purge_cutoff = {} current_time = UTCTimestampUsec() self._logger.error("start times:" + str(start_times)) analytics_ttls = self._analytics_db.get_analytics_ttls() analytics_time_range = min( (current_time - start_times[SYSTEM_OBJECT_START_TIME]), 60*60*1000000*analytics_ttls[SYSTEM_OBJECT_GLOBAL_DATA_TTL]) flow_time_range = min( (current_time - start_times[SYSTEM_OBJECT_FLOW_START_TIME]), 60*60*1000000*analytics_ttls[SYSTEM_OBJECT_FLOW_DATA_TTL]) stat_time_range = min( (current_time - start_times[SYSTEM_OBJECT_STAT_START_TIME]), 60*60*1000000*analytics_ttls[SYSTEM_OBJECT_STATS_DATA_TTL]) # currently using config audit TTL for message table (to be changed) msg_time_range = min( (current_time - start_times[SYSTEM_OBJECT_MSG_START_TIME]), 60*60*1000000*analytics_ttls[SYSTEM_OBJECT_CONFIG_AUDIT_TTL]) purge_cutoff['flow_cutoff'] = int(current_time - (float(100 - purge_input)* float(flow_time_range)/100.0)) purge_cutoff['stats_cutoff'] = int(current_time - (float(100 - purge_input)* float(stat_time_range)/100.0)) purge_cutoff['msg_cutoff'] = int(current_time - (float(100 - purge_input)* float(msg_time_range)/100.0)) purge_cutoff['other_cutoff'] = int(current_time - (float(100 - purge_input)* float(analytics_time_range)/100.0)) return purge_cutoff #end get_purge_cutoff @validate_user_token def process_purge_request(self): self._post_common(bottle.request, None) if ("application/json" not in bottle.request.headers['Content-Type']): self._logger.error('Content-type is not JSON') response = { 'status': 'failed', 'reason': 'Content-type is not JSON'} return bottle.HTTPResponse( json.dumps(response), _ERRORS[errno.EBADMSG], {'Content-type': 'application/json'}) start_times = self._analytics_db.get_analytics_start_time() if (start_times == None): self._logger.info("Failed to get the analytics start time") response = {'status': 'failed', 'reason': 'Failed to get the analytics start time'} return bottle.HTTPResponse( json.dumps(response), _ERRORS[errno.EIO], {'Content-type': 'application/json'}) analytics_start_time = start_times[SYSTEM_OBJECT_START_TIME] purge_cutoff = {} if ("purge_input" in bottle.request.json.keys()): value = bottle.request.json["purge_input"] if (type(value) is int): if ((value <= 100) and (value > 0)): purge_cutoff = self.get_purge_cutoff(float(value), start_times) else: response = {'status': 'failed', 'reason': 'Valid % range is [1, 100]'} return bottle.HTTPResponse( json.dumps(response), _ERRORS[errno.EBADMSG], {'Content-type': 'application/json'}) elif (type(value) is unicode): try: purge_input = OpServerUtils.convert_to_utc_timestamp_usec(value) if (purge_input <= analytics_start_time): response = {'status': 'failed', 'reason': 'purge input is less than analytics start time'} return bottle.HTTPResponse( json.dumps(response), _ERRORS[errno.EIO], {'Content-type': 'application/json'}) # cutoff time for purging flow data purge_cutoff['flow_cutoff'] = purge_input # cutoff time for purging stats data purge_cutoff['stats_cutoff'] = purge_input # cutoff time for purging message tables purge_cutoff['msg_cutoff'] = purge_input # cutoff time for purging other tables purge_cutoff['other_cutoff'] = purge_input except: response = {'status': 'failed', 'reason': 'Valid time formats are: \'%Y %b %d %H:%M:%S.%f\', ' '\'now\', \'now-h/m/s\', \'-/h/m/s\' in purge_input'} return bottle.HTTPResponse( json.dumps(response), _ERRORS[errno.EBADMSG], {'Content-type': 'application/json'}) else: response = {'status': 'failed', 'reason': 'Valid purge_input format is % or time'} return bottle.HTTPResponse( json.dumps(response), _ERRORS[errno.EBADMSG], {'Content-type': 'application/json'}) else: response = {'status': 'failed', 'reason': 'purge_input not specified'} return bottle.HTTPResponse( json.dumps(response), _ERRORS[errno.EBADMSG], {'Content-type': 'application/json'}) res = self._analytics_db.get_analytics_db_purge_status( self._state_server._redis_list) if (res == None): purge_request_ip, = struct.unpack('>I', socket.inet_pton( socket.AF_INET, self._args.host_ip)) purge_id = str(uuid.uuid1(purge_request_ip)) resp = self._analytics_db.set_analytics_db_purge_status(purge_id, purge_cutoff) if (resp == None): self.gevs.append(gevent.spawn(self.db_purge_operation, purge_cutoff, purge_id)) response = {'status': 'started', 'purge_id': purge_id} return bottle.HTTPResponse(json.dumps(response), 200, {'Content-type': 'application/json'}) elif (resp['status'] == 'failed'): return bottle.HTTPResponse(json.dumps(resp), _ERRORS[errno.EBUSY], {'Content-type': 'application/json'}) elif (res['status'] == 'running'): return bottle.HTTPResponse(json.dumps(res), 200, {'Content-type': 'application/json'}) elif (res['status'] == 'failed'): return bottle.HTTPResponse(json.dumps(res), _ERRORS[errno.EBUSY], {'Content-type': 'application/json'}) # end process_purge_request def db_purge_operation(self, purge_cutoff, purge_id): self._logger.info("purge_id %s START Purging!" % str(purge_id)) purge_stat = DatabasePurgeStats() purge_stat.request_time = UTCTimestampUsec() purge_info = DatabasePurgeInfo(sandesh=self._sandesh) self._analytics_db.number_of_purge_requests += 1 total_rows_deleted, purge_status_details = \ self._analytics_db.db_purge(purge_cutoff, purge_id) self._analytics_db.delete_db_purge_status() if (total_rows_deleted > 0): # update start times in cassandra start_times = {} start_times[SYSTEM_OBJECT_START_TIME] = purge_cutoff['other_cutoff'] start_times[SYSTEM_OBJECT_FLOW_START_TIME] = purge_cutoff['flow_cutoff'] start_times[SYSTEM_OBJECT_STAT_START_TIME] = purge_cutoff['stats_cutoff'] start_times[SYSTEM_OBJECT_MSG_START_TIME] = purge_cutoff['msg_cutoff'] self._analytics_db._update_analytics_start_time(start_times) end_time = UTCTimestampUsec() duration = end_time - purge_stat.request_time purge_stat.purge_id = purge_id if (total_rows_deleted < 0): purge_stat.purge_status = PurgeStatusString[PurgeStatus.FAILURE] self._logger.error("purge_id %s purging Failed" % str(purge_id)) else: purge_stat.purge_status = PurgeStatusString[PurgeStatus.SUCCESS] self._logger.info("purge_id %s purging DONE" % str(purge_id)) purge_stat.purge_status_details = ', '.join(purge_status_details) purge_stat.rows_deleted = total_rows_deleted purge_stat.duration = duration purge_info.name = self._hostname purge_info.stats = purge_stat purge_info.send(sandesh=self._sandesh) #end db_purge_operation def handle_db_info(self, disk_usage_percentage = None, pending_compaction_tasks = None): if (disk_usage_percentage != None): self.disk_usage_percentage = disk_usage_percentage if (pending_compaction_tasks != None): self.pending_compaction_tasks = pending_compaction_tasks source = self._hostname module_id = Module.COLLECTOR module = ModuleNames[module_id] node_type = Module2NodeType[module_id] node_type_name = NodeTypeNames[node_type] instance_id_str = INSTANCE_ID_DEFAULT destination = source + ':' + node_type_name + ':' \ + module + ':' + instance_id_str req = DbInfoSetRequest(disk_usage_percentage, pending_compaction_tasks) if (disk_usage_percentage != None): req.disk_usage_percentage = disk_usage_percentage if (pending_compaction_tasks != None): req.pending_compaction_tasks = pending_compaction_tasks if self._state_server.redis_publish(msg_type='db-info', destination=destination, msg=req): self._logger.info("redis-publish success for db_info usage(%u)" " pending_compaction_tasks(%u)", req.disk_usage_percentage, req.pending_compaction_tasks); else: self._logger.error("redis-publish failure for db_info usage(%u)" " pending_compaction_tasks(%u)", req.disk_usage_percentage, req.pending_compaction_tasks); # end handle_db_info def _auto_purge(self): """ monitor dbusage continuously and purge the db accordingly """ # wait for 10 minutes before starting to monitor gevent.sleep(10*60) # continuously monitor and purge while True: trigger_purge = False db_node_usage = self._analytics_db.get_dbusage_info( 'localhost', self._args.auth_conf_info['admin_port'], self._args.auth_conf_info['admin_user'], self._args.auth_conf_info['admin_password']) self._logger.info("node usage:" + str(db_node_usage) ) self._logger.info("threshold:" + str(self._args.db_purge_threshold)) # check database disk usage on each node for node in db_node_usage: if (int(db_node_usage[node]) > int(self._args.db_purge_threshold)): self._logger.error("Database usage of %d on %s" " exceeds threshold", db_node_usage[node], node) trigger_purge = True break else: self._logger.info("Database usage of %d on %s does not" " exceed threshold", db_node_usage[node], node) # get max disk-usage-percentage value from dict disk_usage_percentage = None if (len(db_node_usage)): disk_usage_percentage = \ int(math.ceil(max(db_node_usage.values()))) pending_compaction_tasks_info = \ self._analytics_db.get_pending_compaction_tasks( 'localhost', self._args.auth_conf_info['admin_port'], self._args.auth_conf_info['admin_user'], self._args.auth_conf_info['admin_password']) self._logger.info("node pending-compaction-tasks:" + str(pending_compaction_tasks_info) ) # get max pending-compaction-tasks value from dict pending_compaction_tasks = None if (len(pending_compaction_tasks_info)): pending_compaction_tasks = \ max(pending_compaction_tasks_info.values()) if ((disk_usage_percentage != None) or (pending_compaction_tasks != None)): self.handle_db_info(disk_usage_percentage, pending_compaction_tasks) # check if there is a purge already going on purge_id = str(uuid.uuid1()) resp = self._analytics_db.get_analytics_db_purge_status( self._state_server._redis_list) if (resp != None): trigger_purge = False if (trigger_purge): # trigger purge start_times = self._analytics_db.get_analytics_start_time() purge_cutoff = self.get_purge_cutoff( (100.0 - float(self._args.db_purge_level)), start_times) self._logger.info("Starting purge") self.db_purge_operation(purge_cutoff, purge_id) self._logger.info("Ending purge") gevent.sleep(60*30) # sleep for 30 minutes # end _auto_purge @validate_user_token def _get_analytics_data_start_time(self): analytics_start_time = (self._analytics_db.get_analytics_start_time())[SYSTEM_OBJECT_START_TIME] response = {'analytics_data_start_time': analytics_start_time} return bottle.HTTPResponse( json.dumps(response), 200, {'Content-type': 'application/json'}) # end _get_analytics_data_start_time def table_process(self, table): (ok, result) = self._get_common(bottle.request) if not ok: (code, msg) = result bottle.abort(code, msg) base_url = bottle.request.urlparts.scheme + '://' + \ bottle.request.urlparts.netloc + '/analytics/table/' + table + '/' json_links = [] for i in range(0, len(self._VIRTUAL_TABLES)): if (self._VIRTUAL_TABLES[i].name == table): link = LinkObject('schema', base_url + 'schema') json_links.append(obj_to_dict(link)) if len(self._VIRTUAL_TABLES[i].columnvalues) > 0: link = LinkObject( 'column-values', base_url + 'column-values') json_links.append(obj_to_dict(link)) break if(len(json_links) == 0): # search the UVE table in raw UVE content tables = self._uve_server.get_tables() if table in tables: link = LinkObject('schema', base_url + 'schema') json_links.append(obj_to_dict(link)) link = LinkObject('column-values', base_url + 'column-values') json_links.append(obj_to_dict(link)) bottle.response.set_header('Content-Type', 'application/json') return json.dumps(json_links) # end table_process @validate_user_token def table_schema_process(self, table): (ok, result) = self._get_common(bottle.request) if not ok: (code, msg) = result bottle.abort(code, msg) bottle.response.set_header('Content-Type', 'application/json') for i in range(0, len(self._VIRTUAL_TABLES)): if (self._VIRTUAL_TABLES[i].name == table): return json.dumps(self._VIRTUAL_TABLES[i].schema, default=lambda obj: obj.__dict__) # Also check for the table in actual raw UVE contents tables = self._uve_server.get_tables() if table in tables: return json.dumps(_OBJECT_TABLE_SCHEMA, default=lambda obj: obj.__dict__) return (json.dumps({})) # end table_schema_process @validate_user_token def column_values_process(self, table): (ok, result) = self._get_common(bottle.request) if not ok: (code, msg) = result bottle.abort(code, msg) base_url = bottle.request.urlparts.scheme + '://' + \ bottle.request.urlparts.netloc + \ '/analytics/table/' + table + '/column-values/' bottle.response.set_header('Content-Type', 'application/json') json_links = [] found_table = False for i in range(0, len(self._VIRTUAL_TABLES)): if (self._VIRTUAL_TABLES[i].name == table): found_table = True for col in self._VIRTUAL_TABLES[i].columnvalues: link = LinkObject(col, base_url + col) json_links.append(obj_to_dict(link)) break if (found_table == False): # Also check for the table in actual raw UVE contents tables = self._uve_server.get_tables() if table in tables: for col in _OBJECT_TABLE_COLUMN_VALUES: link = LinkObject(col, base_url + col) json_links.append(obj_to_dict(link)) return (json.dumps(json_links)) # end column_values_process def generator_info(self, table, column): if ((column == MODULE) or (column == SOURCE)): sources = [] moduleids = [] ulist = self.redis_uve_list for redis_uve in ulist: redish = redis.StrictRedis( db=1, host=redis_uve[0], port=redis_uve[1], password=self._args.redis_password) try: for key in redish.smembers("NGENERATORS"): source = key.split(':')[0] module = key.split(':')[2] if (sources.count(source) == 0): sources.append(source) if (moduleids.count(module) == 0): moduleids.append(module) except Exception as e: self._logger.error('Exception: %s' % e) if column == MODULE: return moduleids elif column == SOURCE: return sources elif (column == 'Category'): return self._CATEGORY_MAP elif (column == 'Level'): return self._LEVEL_LIST elif (column == STAT_OBJECTID_FIELD): objtab = None for t in self._VIRTUAL_TABLES: if t.schema.type == 'STAT': self._logger.error("found stat table %s" % t) stat_table = STAT_VT_PREFIX + "." + \ t.stat_type + "." + t.stat_attr if (table == stat_table): objtab = t.obj_table break if (objtab != None) and (objtab != "None"): return list(self._uve_server.get_uve_list(objtab)) return [] # end generator_info @validate_user_token def column_process(self, table, column): (ok, result) = self._get_common(bottle.request) if not ok: (code, msg) = result bottle.abort(code, msg) bottle.response.set_header('Content-Type', 'application/json') for i in range(0, len(self._VIRTUAL_TABLES)): if (self._VIRTUAL_TABLES[i].name == table): if self._VIRTUAL_TABLES[i].columnvalues.count(column) > 0: return (json.dumps(self.generator_info(table, column))) # Also check for the table in actual raw UVE contents tables = self._uve_server.get_tables() if table in tables: return (json.dumps(self.generator_info(table, column))) return (json.dumps([])) # end column_process def start_uve_server(self): self._uve_server.run() #end start_uve_server def stop_webserver(self): if self._webserver: self._webserver.stop() self._webserver = None def start_webserver(self): pipe_start_app = bottle.app() try: self._webserver = ContrailGeventServer( host=self._args.rest_api_ip, port=self._args.rest_api_port) bottle.run(app=pipe_start_app, server=self._webserver) except Exception as e: self._logger.error("Exception: %s" % e) sys.exit() # end start_webserver def disc_agp(self, clist): new_agp = {} for elem in clist: instance_id = elem['instance-id'] port = int(elem['redis-port']) ip_address = elem['ip-address'] # If AlarmGenerator sends partitions as NULL, its # unable to provide service if not elem['partitions']: continue parts = json.loads(elem['partitions']) for partstr,acq_time in parts.iteritems(): partno = int(partstr) pi = PartInfo(instance_id = instance_id, ip_address = ip_address, acq_time = acq_time, port = port) if partno not in new_agp: new_agp[partno] = pi else: if pi.acq_time > new_agp[partno].acq_time: new_agp[partno] = pi if len(new_agp) == self._args.partitions and \ len(self.agp) != self._args.partitions: ConnectionState.update(conn_type = ConnectionType.UVEPARTITIONS, name = 'UVE-Aggregation', status = ConnectionStatus.UP, message = 'Partitions:%d' % len(new_agp)) self._uvepartitions_state = ConnectionStatus.UP if self._usecache and len(new_agp) != self._args.partitions: ConnectionState.update(conn_type = ConnectionType.UVEPARTITIONS, name = 'UVE-Aggregation', status = ConnectionStatus.DOWN, message = 'Partitions:%d' % len(new_agp)) self._uvepartitions_state = ConnectionStatus.DOWN self.agp = new_agp def get_agp(self): return self.agp def run(self): self._uvedbstream.start() self.gevs += [ self._uvedbstream, gevent.spawn(self.start_webserver), gevent.spawn(self.start_uve_server), ] if self._ad is not None: self._ad.start() if self._vnc_api_client: self.gevs.append(gevent.spawn(self._vnc_api_client.connect)) self._local_app = LocalApp(bottle.app(), self._args.auth_conf_info) self.gevs.append(gevent.spawn(self._local_app.start_http_server)) try: gevent.joinall(self.gevs) except KeyboardInterrupt: self._logger.error('Exiting on ^C') except gevent.GreenletExit: self._logger.error('Exiting on gevent-kill') except: raise finally: self._logger.error('stopping everything') self.stop() def stop(self): self._sandesh._client._connection.set_admin_state(down=True) self._sandesh.uninit() self.stop_webserver() if self._ad is not None: self._ad.kill() l = len(self.gevs) for idx in range(0,l): self._logger.error('killing %d of %d' % (idx+1, l)) self.gevs[0].kill() self._logger.error('joining %d of %d' % (idx+1, l)) self.gevs[0].join() self._logger.error('stopped %d of %d' % (idx+1, l)) self.gevs.pop(0) def sigterm_handler(self): self.stop() exit() def sighup_handler(self): if self._args.conf_file: config = ConfigParser.SafeConfigParser() config.read(self._args.conf_file) if 'DEFAULTS' in config.sections(): try: collectors = config.get('DEFAULTS', 'collectors') if type(collectors) is str: collectors = collectors.split() new_chksum = hashlib.md5("".join(collectors)).hexdigest() if new_chksum != self._chksum: self._chksum = new_chksum random_collectors = random.sample(collectors, len(collectors)) self._sandesh.reconfig_collectors(random_collectors) except ConfigParser.NoOptionError as e: pass # end sighup_handler def main(args_str=' '.join(sys.argv[1:])): opserver = OpServer(args_str) gevent.hub.signal(signal.SIGTERM, opserver.sigterm_handler) """ @sighup SIGHUP handler to indicate configuration changes """ gevent.hub.signal(signal.SIGHUP, opserver.sighup_handler) gv = gevent.getcurrent() gv._main_obj = opserver opserver.run() if __name__ == '__main__': main()
41.762911
138
0.557417
9161d825f7864bca2a01a9e6e0a4719000a879f7
1,462
py
Python
scripts/create-ecs-task.py
094459/blogpost-airflow-hybrid
3ed53c75049e0ab7e9ea364d9b069bab9e3f5806
[ "MIT" ]
1
2022-03-24T13:19:44.000Z
2022-03-24T13:19:44.000Z
scripts/create-ecs-task.py
094459/blogpost-airflow-hybrid
3ed53c75049e0ab7e9ea364d9b069bab9e3f5806
[ "MIT" ]
null
null
null
scripts/create-ecs-task.py
094459/blogpost-airflow-hybrid
3ed53c75049e0ab7e9ea364d9b069bab9e3f5806
[ "MIT" ]
null
null
null
#Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. #SPDX-License-Identifier: Apache-2.0 import boto3 import json client = boto3.client("ecs", region_name="eu-west-2") def create_task(): response = client.register_task_definition( containerDefinitions=[ { "name": "airflow-hybrid-boto3", "image": "public.ecr.aws/a4b5h6u6/beachgeek:latest", "cpu": 0, "portMappings": [], "essential": True, "environment": [], "mountPoints": [], "volumesFrom": [], "command": ["ricsue-airflow-hybrid","period1/temp.csv", "select * from customers WHERE location = \"Spain\"", "rds-airflow-hybrid","eu-west-2"], "logConfiguration": { "logDriver": "awslogs", "options": { "awslogs-group": "/ecs/test-external", "awslogs-region": "eu-west-2", "awslogs-stream-prefix": "ecs" } } } ], taskRoleArn="arn:aws:iam::704533066374:role/ecsTaskExecutionRole", executionRoleArn="arn:aws:iam::704533066374:role/ecsTaskExecutionRole", family= "test-external", networkMode="HOST", requiresCompatibilities= [ "EXTERNAL" ], cpu= "256", memory= "512")
34.809524
160
0.50684
2d806bd41964a2615435282dfb901c55dca336b7
1,563
py
Python
qishibaikecrawler/crawler.py
solodom/crawler
fcaf8570b85452194bac18a49f5a61d88ca16a60
[ "MIT" ]
null
null
null
qishibaikecrawler/crawler.py
solodom/crawler
fcaf8570b85452194bac18a49f5a61d88ca16a60
[ "MIT" ]
null
null
null
qishibaikecrawler/crawler.py
solodom/crawler
fcaf8570b85452194bac18a49f5a61d88ca16a60
[ "MIT" ]
null
null
null
from urllib import request import re from bs4 import BeautifulSoup def getcontent(url): # 模拟浏览器 headers=('User-Agent','Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36') opener=request.build_opener() opener.addheaders=[headers] # 安装全局opener request.install_opener(opener) # 爬取回的源代码是二进制代码,需要字符串化 data=request.urlopen(url).read().decode('utf-8') # 设置beautifulsoup对象,参数为文件与解析器 soup=BeautifulSoup(data,'html.parser') # return a list of h2 tags usertag_list=soup.find_all('h2') user_list=[] # .string return the according tag's contents for user in usertag_list: # string属性只能返回单节点的字符串,如果内容中含有<br/>,需要用get_text() user_str=user.string # 去点字符串前后的‘\n’,strip返回新字符串,字符串不能更改,所有字符串方法都要返回新的字符串 user_str=user_str.strip('\n') user_list.append(user_str) # return a list of span tags with class attribute being 'content' contenttag_list=soup.find_all('div',class_='content') content_list=[] for content in contenttag_list: # 内容中含有<br/>,不能用string属性,需要用get_text() # 用.来获取子节点 content_str=content.span.get_text() content_str=content_str.strip('\n') content_list.append(content_str) for i in range(1,len(user_list)+1): print('用户{}{}发表的内容是:\n{}'.format(str(i),user_list[i-1],content_list[i-1])) base_url='https://www.qiushibaike.com/text/page/' for i in range (1,3): url=base_url+str(i) print('第{}页:'.format(str(i))) getcontent(url)
33.255319
139
0.674984
15f3c4ec655c515a901c01c9a526baa6138e508c
170
py
Python
fwtheme_django_jasmin/__init__.py
cedadev/fwtheme-django-jasmin
bd1ab7a52244ca4d73a3a9d4c502132c955e8771
[ "MIT" ]
1
2019-09-08T05:39:31.000Z
2019-09-08T05:39:31.000Z
fwtheme_django_jasmin/__init__.py
cedadev/fwtheme-django-jasmin
bd1ab7a52244ca4d73a3a9d4c502132c955e8771
[ "MIT" ]
1
2021-09-01T12:59:41.000Z
2021-09-01T12:59:41.000Z
fwtheme_django_jasmin/__init__.py
cedadev/fwtheme-django-jasmin
bd1ab7a52244ca4d73a3a9d4c502132c955e8771
[ "MIT" ]
null
null
null
""" Main module for the Django app. """ __author__ = "Matt Pritchard" __copyright__ = "Copyright 2018 UK Science and Technology Facilities Council" __version__ = "0.5"
18.888889
77
0.741176
4bc9ef3ca2b805444eda7e48953ff65a1b61daf7
466
py
Python
dsmr_parser/value_types.py
Aeroid/dsmr_parser
dc2f4937391a0b5fdc2699979e679248571916f9
[ "MIT" ]
82
2016-11-07T13:59:38.000Z
2022-03-21T14:48:45.000Z
dsmr_parser/value_types.py
Aeroid/dsmr_parser
dc2f4937391a0b5fdc2699979e679248571916f9
[ "MIT" ]
91
2016-09-10T20:13:18.000Z
2022-03-07T20:51:35.000Z
dsmr_parser/value_types.py
Aeroid/dsmr_parser
dc2f4937391a0b5fdc2699979e679248571916f9
[ "MIT" ]
52
2016-11-06T19:38:32.000Z
2022-03-19T23:16:34.000Z
import datetime import pytz def timestamp(value): naive_datetime = datetime.datetime.strptime(value[:-1], '%y%m%d%H%M%S') # TODO comment on this exception if len(value) == 13: is_dst = value[12] == 'S' # assume format 160322150000W else: is_dst = False local_tz = pytz.timezone('Europe/Amsterdam') localized_datetime = local_tz.localize(naive_datetime, is_dst=is_dst) return localized_datetime.astimezone(pytz.utc)
24.526316
75
0.684549
b9fc9f3c7ea6f3c2aa7406ba6b1db69c8c191a2d
15,011
py
Python
scholarly/scholarly.py
gerardcanal/scholarly
76b7a20f0ae4c1f6c69c3898ea47caa0bbaeb74d
[ "Unlicense" ]
null
null
null
scholarly/scholarly.py
gerardcanal/scholarly
76b7a20f0ae4c1f6c69c3898ea47caa0bbaeb74d
[ "Unlicense" ]
null
null
null
scholarly/scholarly.py
gerardcanal/scholarly
76b7a20f0ae4c1f6c69c3898ea47caa0bbaeb74d
[ "Unlicense" ]
null
null
null
"""scholarly.py""" from __future__ import absolute_import, division, print_function, unicode_literals from bs4 import BeautifulSoup import arrow import bibtexparser import codecs import hashlib import pprint import random import re import requests import sys import time _GOOGLEID = hashlib.md5(str(random.random()).encode('utf-8')).hexdigest()[:16] _COOKIES = {'GSP': 'ID={0}:CF=4'.format(_GOOGLEID)} _HEADERS = { 'accept-language': 'en-US,en', 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Ubuntu Chromium/41.0.2272.76 Chrome/41.0.2272.76 Safari/537.36', 'accept': 'text/html,application/xhtml+xml,application/xml' } _HOST = 'https://scholar.google.com' _AUTHSEARCH = '/citations?view_op=search_authors&hl=en&mauthors={0}' _CITATIONAUTH = '/citations?user={0}&hl=en' _CITATIONPUB = '/citations?view_op=view_citation&citation_for_view={0}' _KEYWORDSEARCH = '/citations?view_op=search_authors&hl=en&mauthors=label:{0}' _PUBSEARCH = '/scholar?q={0}' _SCHOLARPUB = '/scholar?oi=bibs&hl=en&cites={0}' _CITATIONAUTHRE = r'user=([\w-]*)' _CITATIONPUBRE = r'citation_for_view=([\w-]*:[\w-]*)' _SCHOLARCITERE = r'gs_ocit\(event,\'([\w-]*)\'' _SCHOLARPUBRE = r'cites=([\w-]*)' _EMAILAUTHORRE = r'Verified email at ' _SESSION = requests.Session() _PAGESIZE = 100 def use_proxy(http='socks5://127.0.0.1:9050', https='socks5://127.0.0.1:9050'): """ Routes scholarly through a proxy (e.g. tor). Requires pysocks Proxy must be running.""" _SESSION.proxies ={ 'http': http, 'https': https } def _handle_captcha(url): # TODO: PROBLEMS HERE! NEEDS ATTENTION # Get the captcha image captcha_url = _HOST + '/sorry/image?id={0}'.format(g_id) captcha = _SESSION.get(captcha_url, headers=_HEADERS) # Upload to remote host and display to user for human verification img_upload = requests.post('http://postimage.org/', files={'upload[]': ('scholarly_captcha.jpg', captcha.text)}) print(img_upload.text) img_url_soup = BeautifulSoup(img_upload.text, 'html.parser') img_url = img_url_soup.find_all(alt='scholarly_captcha')[0].get('src') print('CAPTCHA image URL: {0}'.format(img_url)) # Need to check Python version for input if sys.version[0]=="3": g_response = input('Enter CAPTCHA: ') else: g_response = raw_input('Enter CAPTCHA: ') # Once we get a response, follow through and load the new page. url_response = _HOST+'/sorry/CaptchaRedirect?continue={0}&id={1}&captcha={2}&submit=Submit'.format(dest_url, g_id, g_response) resp_captcha = _SESSION.get(url_response, headers=_HEADERS, cookies=_COOKIES) print('Forwarded to {0}'.format(resp_captcha.url)) return resp_captcha.url def _get_page(pagerequest): """Return the data for a page on scholar.google.com""" # Note that we include a sleep to avoid overloading the scholar server time.sleep(5+random.uniform(0, 5)) resp = _SESSION.get(pagerequest, headers=_HEADERS, cookies=_COOKIES) if resp.status_code == 200: return resp.text if resp.status_code == 503: # Inelegant way of dealing with the G captcha raise Exception('Error: {0} {1}'.format(resp.status_code, resp.reason)) # TODO: Need to fix captcha handling # dest_url = requests.utils.quote(_SCHOLARHOST+pagerequest) # soup = BeautifulSoup(resp.text, 'html.parser') # captcha_url = soup.find('img').get('src') # resp = _handle_captcha(captcha_url) # return _get_page(re.findall(r'https:\/\/(?:.*?)(\/.*)', resp)[0]) else: raise Exception('Error: {0} {1}'.format(resp.status_code, resp.reason)) def _get_soup(pagerequest): """Return the BeautifulSoup for a page on scholar.google.com""" html = _get_page(pagerequest) html = html.replace(u'\xa0', u' ') return BeautifulSoup(html, 'html.parser') def _search_scholar_soup(soup): """Generator that returns Publication objects from the search page""" while True: for row in soup.find_all('div', 'gs_or'): yield Publication(row, 'scholar') if soup.find(class_='gs_ico gs_ico_nav_next'): url = soup.find(class_='gs_ico gs_ico_nav_next').parent['href'] soup = _get_soup(_HOST+url) else: break def _search_citation_soup(soup): """Generator that returns Author objects from the author search page""" while True: for row in soup.find_all('div', 'gsc_1usr'): yield Author(row) next_button = soup.find(class_='gs_btnPR gs_in_ib gs_btn_half gs_btn_lsb gs_btn_srt gsc_pgn_pnx') if next_button and 'disabled' not in next_button.attrs: url = next_button['onclick'][17:-1] url = codecs.getdecoder("unicode_escape")(url)[0] soup = _get_soup(_HOST+url) else: break def _find_tag_class_name(__data, tag, text): elements = __data.find_all(tag) for element in elements: if 'class' in element.attrs and text in element.attrs['class'][0]: return element.attrs['class'][0] class Publication(object): """Returns an object for a single publication""" def __init__(self, __data, pubtype=None): self.bib = dict() self.source = pubtype if self.source == 'citations': self.bib['title'] = __data.find('a', class_='gsc_a_at').text self.id_citations = re.findall(_CITATIONPUBRE, __data.find('a', class_='gsc_a_at')['data-href'])[0] citedby = __data.find(class_='gsc_a_ac') if citedby and not (citedby.text.isspace() or citedby.text == ''): self.citedby = int(citedby.text) year = __data.find(class_='gsc_a_h') if year and year.text and not year.text.isspace() and len(year.text)>0: self.bib['year'] = int(year.text) elif self.source == 'scholar': databox = __data.find('div', class_='gs_ri') title = databox.find('h3', class_='gs_rt') if title.find('span', class_='gs_ctu'): # A citation title.span.extract() elif title.find('span', class_='gs_ctc'): # A book or PDF title.span.extract() self.bib['title'] = title.text.strip() if title.find('a'): self.bib['url'] = title.find('a')['href'] authorinfo = databox.find('div', class_='gs_a') self.bib['author'] = ' and '.join([i.strip() for i in authorinfo.text.split(' - ')[0].split(',')]) if databox.find('div', class_='gs_rs'): self.bib['abstract'] = databox.find('div', class_='gs_rs').text if self.bib['abstract'][0:8].lower() == 'abstract': self.bib['abstract'] = self.bib['abstract'][9:].strip() lowerlinks = databox.find('div', class_='gs_fl').find_all('a') for link in lowerlinks: if 'Import into BibTeX' in link.text: self.url_scholarbib = link['href'] if 'Cited by' in link.text: self.citedby = int(re.findall(r'\d+', link.text)[0]) self.id_scholarcitedby = re.findall(_SCHOLARPUBRE, link['href'])[0] if __data.find('div', class_='gs_ggs gs_fl'): self.bib['eprint'] = __data.find('div', class_='gs_ggs gs_fl').a['href'] self._filled = False def fill(self): """Populate the Publication with information from its profile""" if self.source == 'citations': url = _CITATIONPUB.format(self.id_citations) soup = _get_soup(_HOST+url) self.bib['title'] = soup.find('div', id='gsc_vcd_title').text if soup.find('a', class_='gsc_vcd_title_link'): self.bib['url'] = soup.find('a', class_='gsc_vcd_title_link')['href'] for item in soup.find_all('div', class_='gs_scl'): key = item.find(class_='gsc_vcd_field').text val = item.find(class_='gsc_vcd_value') if key == 'Authors': self.bib['author'] = ' and '.join([i.strip() for i in val.text.split(',')]) elif key == 'Journal': self.bib['journal'] = val.text elif key == 'Volume': self.bib['volume'] = val.text elif key == 'Issue': self.bib['number'] = val.text elif key == 'Pages': self.bib['pages'] = val.text elif key == 'Publisher': self.bib['publisher'] = val.text elif key == 'Publication date': self.bib['year'] = arrow.get(val.text).year elif key == 'Description': if val.text[0:8].lower() == 'abstract': val = val.text[9:].strip() self.bib['abstract'] = val elif key == 'Total citations': self.id_scholarcitedby = re.findall(_SCHOLARPUBRE, val.a['href'])[0] # number of citation per year years = [int(y.text) for y in soup.find_all(class_='gsc_vcd_g_t')] cites = [int(c.text) for c in soup.find_all(class_='gsc_vcd_g_al')] self.cites_per_year = dict(zip(years, cites)) if soup.find('div', class_='gsc_vcd_title_ggi'): self.bib['eprint'] = soup.find('div', class_='gsc_vcd_title_ggi').a['href'] self._filled = True elif self.source == 'scholar': bibtex = _get_page(self.url_scholarbib) self.bib.update(bibtexparser.loads(bibtex).entries[0]) self._filled = True return self def get_citedby(self): """Searches GScholar for other articles that cite this Publication and returns a Publication generator. """ if not hasattr(self, 'id_scholarcitedby'): self.fill() if hasattr(self, 'id_scholarcitedby'): url = _SCHOLARPUB.format(requests.utils.quote(self.id_scholarcitedby)) soup = _get_soup(_HOST+url) return _search_scholar_soup(soup) else: return [] def __str__(self): return pprint.pformat(self.__dict__) class Author(object): """Returns an object for a single author""" def __init__(self, __data): if isinstance(__data, str) or isinstance(__data, unicode): self.id = __data else: self.id = re.findall(_CITATIONAUTHRE, __data('a')[0]['href'])[0] self.url_picture = _HOST+'/citations?view_op=medium_photo&user={}'.format(self.id) self.name = __data.find('h3', class_=_find_tag_class_name(__data, 'h3', 'name')).text affiliation = __data.find('div', class_=_find_tag_class_name(__data, 'div', 'aff')) if affiliation: self.affiliation = affiliation.text email = __data.find('div', class_=_find_tag_class_name(__data, 'div', 'eml')) if email: self.email = re.sub(_EMAILAUTHORRE, r'@', email.text) self.interests = [i.text.strip() for i in __data.find_all('a', class_=_find_tag_class_name(__data, 'a', 'one_int'))] citedby = __data.find('div', class_=_find_tag_class_name(__data, 'div', 'cby')) if citedby and citedby.text != '': self.citedby = int(citedby.text[9:]) self._filled = False def fill(self): """Populate the Author with information from their profile""" url_citations = _CITATIONAUTH.format(self.id) url = '{0}&pagesize={1}'.format(url_citations, _PAGESIZE) soup = _get_soup(_HOST+url) self.name = soup.find('div', id='gsc_prf_in').text self.affiliation = soup.find('div', class_='gsc_prf_il').text self.interests = [i.text.strip() for i in soup.find_all('a', class_='gsc_prf_inta')] # h-index, i10-index and h-index, i10-index in the last 5 years index = soup.find_all('td', class_='gsc_rsb_std') if index: self.citedby = int(index[0].text) self.citedby5y = int(index[1].text) self.hindex = int(index[2].text) self.hindex5y = int(index[3].text) self.i10index = int(index[4].text) self.i10index5y = int(index[5].text) else: self.hindex = self.hindex5y = self.i10index = self.i10index5y = 0 # number of citations per year years = [int(y.text) for y in soup.find_all('span', class_='gsc_g_t')] cites = [int(c.text) for c in soup.find_all('span', class_='gsc_g_al')] self.cites_per_year = dict(zip(years, cites)) # co-authors self.coauthors = [] for row in soup.find_all('span', class_='gsc_rsb_a_desc'): new_coauthor = Author(re.findall(_CITATIONAUTHRE, row('a')[0]['href'])[0]) new_coauthor.name = row.find(tabindex="-1").text new_coauthor.affiliation = row.find(class_="gsc_rsb_a_ext").text self.coauthors.append(new_coauthor) self.publications = list() pubstart = 0 while True: for row in soup.find_all('tr', class_='gsc_a_tr'): new_pub = Publication(row, 'citations') self.publications.append(new_pub) if 'disabled' not in soup.find('button', id='gsc_bpf_more').attrs: pubstart += _PAGESIZE url = '{0}&cstart={1}&pagesize={2}'.format(url_citations, pubstart, _PAGESIZE) soup = _get_soup(_HOST+url) else: break self._filled = True return self def __str__(self): return pprint.pformat(self.__dict__) def search_pubs_query(query): """Search by scholar query and return a generator of Publication objects""" url = _PUBSEARCH.format(requests.utils.quote(query)) soup = _get_soup(_HOST+url) return _search_scholar_soup(soup) def search_author(name): """Search by author name and return a generator of Author objects""" url = _AUTHSEARCH.format(requests.utils.quote(name)) soup = _get_soup(_HOST+url) return _search_citation_soup(soup) def search_keyword(keyword): """Search by keyword and return a generator of Author objects""" url = _KEYWORDSEARCH.format(requests.utils.quote(keyword)) soup = _get_soup(_HOST+url) return _search_citation_soup(soup) def search_pubs_custom_url(url): """Search by custom URL and return a generator of Publication objects URL should be of the form '/scholar?q=...'""" soup = _get_soup(_HOST+url) return _search_scholar_soup(soup) def search_author_custom_url(url): """Search by custom URL and return a generator of Publication objects URL should be of the form '/citation?q=...'""" soup = _get_soup(_HOST+url) return _search_citation_soup(soup)
42.888571
154
0.607155
d3668c2cfc7b553c1d185bf3cc06da4900313da1
692
py
Python
ejercicios_basicos/funciones/funcion_closure.py
JuanDuran85/ejemplos_python
47aa49c65384ab89654f362f3da6cd2b0ef386e5
[ "Apache-2.0" ]
null
null
null
ejercicios_basicos/funciones/funcion_closure.py
JuanDuran85/ejemplos_python
47aa49c65384ab89654f362f3da6cd2b0ef386e5
[ "Apache-2.0" ]
null
null
null
ejercicios_basicos/funciones/funcion_closure.py
JuanDuran85/ejemplos_python
47aa49c65384ab89654f362f3da6cd2b0ef386e5
[ "Apache-2.0" ]
null
null
null
# concepto de closure en python: es una funcion que define a otra y ademas la puede regresar # la funcion anidada puede acceder a las variables locales definidas en la funcion principal o externa # funcion principal o externa def operacion(a,b): #definimos una funcion interna o anidada def sumar(): return a + b # retornar la funcion anidada return sumar mi_funcion_closure = operacion(10,20) print(mi_funcion_closure()) # llamando la funcion al vuelo print(operacion(10,20)()) # funcion principal o externa y uso de lambda def opracion_dos(a,b): #definimos una funcion interna o anidada con lambda return lambda: a + b print(opracion_dos(10,20)())
27.68
102
0.734104
a2af0b3eedba5a972d5f2d014d037b3dc8348ebe
985
py
Python
server/exercises/models.py
ni4ka7a/gym-track
71ad75f47849ccc6a5198c59fe2261796f705122
[ "MIT" ]
null
null
null
server/exercises/models.py
ni4ka7a/gym-track
71ad75f47849ccc6a5198c59fe2261796f705122
[ "MIT" ]
null
null
null
server/exercises/models.py
ni4ka7a/gym-track
71ad75f47849ccc6a5198c59fe2261796f705122
[ "MIT" ]
null
null
null
from django.db import models from django.contrib.auth.models import User CATEGORY_CHOICES = ( ("BR", "Barbel"), ("DM", "Dumbbell"), ("MA", "Machine"), ("CA", "Cardio"), ("WB", "Weighted Bodyweight") ) BODY_PART_CHOICES = ( ("CO", "Core"), ("AR", "Arms"), ("BA", "Back"), ("CH", "Chest"), ("LE", "Legs"), ("SH", "Shoulders"), ("OT", "Other"), ("FB", "Full Body"), ("CA", "Cardio"), ) class Exercise(models.Model): name = models.CharField(max_length=100) description = models.CharField(max_length=500, blank=True) category = models.CharField( max_length=2, choices=CATEGORY_CHOICES, default="BR") # TODO: rename to bodyPart and add migration bodypart = models.CharField( max_length=2, choices=BODY_PART_CHOICES, default="CO") created_at = models.DateTimeField(auto_now_add=True) author = models.ForeignKey( User, related_name="exercises", on_delete=models.CASCADE, null=True)
28.142857
76
0.619289
b577405fb8be3e59f2bc199de7068accd2ec3bbb
2,547
py
Python
ramsey/RamseyGame.py
bzhaocaltech/alpha-zero-ramsey-numbers
dfd10b577c1bc26c4f445bcc2fafa8c1bcf9cb6c
[ "MIT" ]
null
null
null
ramsey/RamseyGame.py
bzhaocaltech/alpha-zero-ramsey-numbers
dfd10b577c1bc26c4f445bcc2fafa8c1bcf9cb6c
[ "MIT" ]
null
null
null
ramsey/RamseyGame.py
bzhaocaltech/alpha-zero-ramsey-numbers
dfd10b577c1bc26c4f445bcc2fafa8c1bcf9cb6c
[ "MIT" ]
1
2018-10-29T23:29:29.000Z
2018-10-29T23:29:29.000Z
from copy import deepcopy import sys sys.path.append('..') from Game import Game from Graph import Graph class RamseyGame(Game): def __init__(self, n, p, q): assert p >= 2 and q >= 2 self.n = n # For indexing purposes colors keys must be [1, 2, ...] self.colors = {1: p, 2: q} # Maps index to action self.index_to_action = [] for c in self.colors: for i in range(n): for j in range(i + 1, n): self.index_to_action.append((i, j, c)) # Maps action to index in action vector def action_to_index(self, i, j, c): assert i != j if i > j: i, j = j, i return self.n * i + j + ((c-1) * self.n * (self.n-1) - (i+1) * (i+2)) // 2 # Return a graph representing the initial board state def getInitGraph(self): # return initial graph (numpy graph) return Graph(self.n) # Get the graph size def getGraphSize(self): return self.n def getActionSize(self): return len(self.index_to_action) def getNextStateFromAction(self, graph, action): i, j, c = action new_graph = deepcopy(graph) new_graph.colorEdge(i, j, c, self.colors) return new_graph # Given a graph and an action, returns a new graph after that action has # been made def getNextState(self, graph, index): return self.getNextStateFromAction(graph, self.index_to_action[index]) # Get all valid actions one-hot encoded def getValidMoves(self, graph): # return a fixed size binary vector valid = [0] * self.getActionSize() for i, j in graph.edgeIter(): if not graph.hasEdge(i, j): for c in self.colors: valid[self.action_to_index(i, j, c)] = 1 return valid # Check if state is terminal by checking for monochromatic cliques of given size and color # and if there are uncolored edges remaining def getGameEnded(self, graph): if graph.has_clique: return True return graph.num_edges == graph.total_edges def stringRepresentation(self, graph): return str(graph) # Get the score of a graph. Equivalent to number of edges in the graph # minus an additional 1 if the graph has a clique def getScore(self, graph): reward = graph.num_edges return reward - 1 if graph.has_clique else reward def getCanonicalForm(self, graph): return graph.adj_mat
29.964706
94
0.601099
419fa5034c825621a948594d34fa8d00e03a0a13
2,890
py
Python
app/forms.py
TomCallR/ProjetNLP_jury
19919551051e9de9fd5fe263200a7da8405f51de
[ "BSD-3-Clause" ]
null
null
null
app/forms.py
TomCallR/ProjetNLP_jury
19919551051e9de9fd5fe263200a7da8405f51de
[ "BSD-3-Clause" ]
null
null
null
app/forms.py
TomCallR/ProjetNLP_jury
19919551051e9de9fd5fe263200a7da8405f51de
[ "BSD-3-Clause" ]
null
null
null
from flask_wtf import FlaskForm from wtforms import StringField, DateField, SubmitField, SelectField, IntegerField, SelectMultipleField from wtforms.validators import DataRequired, Email class InitForm(FlaskForm): submit = SubmitField("Initialiser la base") class CourseCreateForm(FlaskForm): label = StringField( label="Intitulé", validators=[DataRequired(message="Saisissez un intitulé")] ) startdate = DateField( label="Date de début (Y-m-d)", # format='%d/%m/%Y', does not work validators=[DataRequired(message="Saisissez une date de début")] ) enddate = DateField( label="Date de fin (Y-m-d)", # format='%d/%m/%Y', does not work validators=[DataRequired(message="Saisissez une date de fin")] ) fileid = StringField( label="Id du fichier associé (réponses aux questionnaires)", validators=[DataRequired(message="Saisissez l'id' du fichier")] ) submit = SubmitField("Ajouter") class CourseDeleteForm(FlaskForm): course = SelectField( label="Formation", # coerce=int, validators=[DataRequired(message="Sélectionnez une formation")] ) submit = SubmitField("Supprimer") class StudentCreateForm(FlaskForm): lastname = StringField( label="Nom de famille", validators=[DataRequired(message="Saisissez un nom de famille")] ) firstname = StringField( label="Prénom", validators=[DataRequired(message="Saisissez un prénom")] ) email = StringField( label="Email", validators=[DataRequired(message="Saisissez un email"), Email(message="Email incorrect")] ) course = SelectField( label="Formation", validators=[DataRequired(message="Sélectionnez une formation")] ) submit = SubmitField("Ajouter") class StudentDeleteForm(FlaskForm): student = SelectField( label="Etudiant", # coerce=int, validators=[DataRequired(message="Sélectionnez un étudiant")] ) submit = SubmitField("Supprimer") class SpreadsheetSelect(FlaskForm): enddate = DateField( label="Fin de formation postérieure au", validators=[DataRequired(message="Saisissez une date")] ) submit = SubmitField("Sélectionner") class SheetsSelect(FlaskForm): daysnochange = IntegerField( label="Nombre de jours sans modification", validators=[DataRequired(message="Saisissez un nombre de jours")] ) submit = SubmitField("Mettre à jour") class DashboardForm(FlaskForm): courses = SelectMultipleField( label="Formations" ) startdate = DateField( label="Date de début" ) enddate = DateField( label="Date de fin" ) students = SelectMultipleField( label="Etudiants" ) submit = SubmitField("Analyser")
28.613861
103
0.653979
ec1e1152cf6e4fb30689e771231ccfa1dcd4d24b
14,137
py
Python
src/Building.py
ketsonroberto/PBDO
cdc1c5275bc17753be5c06a216f92391b6f1f1ab
[ "MIT" ]
null
null
null
src/Building.py
ketsonroberto/PBDO
cdc1c5275bc17753be5c06a216f92391b6f1f1ab
[ "MIT" ]
null
null
null
src/Building.py
ketsonroberto/PBDO
cdc1c5275bc17753be5c06a216f92391b6f1f1ab
[ "MIT" ]
null
null
null
import numpy as np import copy import sys # from BuildingProperties import * class Structure: # Class to perform the sturctural analysis of a building whose properties are provided. def __init__(self, building=None, columns=None, slabs=None, core=None, concrete=None, steel=None, cost=None): self.building = building self.columns = columns self.slabs = slabs self.core = core self.concrete = concrete self.steel = steel self.cost = cost def stiffness_story(self): # Compute the stiffness for each story of the building. # Read the information of the columns geometry and mechanical properties of the materials. area_col = self.columns["area"] moment_inertia_col = self.columns["Iy"] height_col = self.columns["height"] k_col = self.stiffness(area=area_col, moment_inertia=moment_inertia_col, height=height_col) area_core = self.core["area"] moment_inertia_core = self.core["Iy"] height_core = self.core["height"] k_core = self.stiffness(area=area_core, moment_inertia=moment_inertia_core, height=height_core) num_col = self.columns["quantity"] num_core = self.core["quantity"] k_story = num_col * k_col + num_core * k_core # Return the stiffness of the story. return k_story def stiffness(self, area=None, moment_inertia=None, height=None): # Compute the stiffness given the mechanical and geometrical properties. Gc = self.concrete["Gc"] # Shear modulus. Ec = self.concrete["Ec"] # Concrete Young's module. Es = self.steel["Es"] # Steel Young's module. As = self.columns["v_steel"] * area # Area of steel. Ac = area - As # Area of concrete. E = (As * Es + Ac * Ec) / (area) # Effective Young's module. ks = Gc * area / height kf = 3 * E * moment_inertia / (height ** 3) kt = 1 / ((1 / kf) + (1 / ks)) # Total stiffness. return kt def mass_storey(self, top_story=False): # Compute the equivalent mass corresponding to each story. num_col = self.columns["quantity"] mslab = self.mass_slab() mcol = self.mass_column() if top_story: # Do not consider the weight of the columns above the top floor. mass_st = 0.5 * (num_col * mcol) + mslab else: mass_st = num_col * mcol + mslab return mass_st def mass_slab(self): # Compute the mass of each slab. ros = self.steel["density"] ro = self.concrete["density"] thickness = self.slabs["thickness"] width = self.slabs["width"] depth = self.slabs["depth"] Vs = self.slabs["steel_rate"] * thickness * width * depth Vc = thickness * width * depth - Vs mass_s = ro * Vc + ros * Vs return mass_s def mass_column(self): # Compute the mass of each column. ros = self.steel["density"] ro = self.concrete["density"] height = self.columns["height"] area = self.columns["area"] As = self.columns["v_steel"] * area Ac = area - As mass_col = ro * Ac * height + ros * As * height # +stirups return mass_col def compression(self, col_size=None, L=None): # Construct the Moment-Rotation diagram. # For a single column PA_ksi = 1.4503773800722e-7 fc_prime = self.concrete["fck"] Ec = self.concrete["Ec"] fy = self.steel["fy"] Es = self.steel["Es"] fc_prime = fc_prime * PA_ksi ecu = 0.003 fy = fy * PA_ksi Es = Es * PA_ksi Ec = Ec * PA_ksi ros = 0.08 b = col_size b = b / 0.0254 # m to inch h = copy.copy(b) As = ros*b*h/2 As_prime = ros*b*h/2 d_prime = 2.5 d = b - d_prime # Centroid yc = h/2 n = Es / Ec y_bar = (b * h * yc + (n - 1) * As_prime * d_prime + (n - 1) * As * d) / ( b * h + (n - 1) * As_prime + (n - 1) * As) # uncracked moment of inertia. Iun = (b * h ** 3 / 12) + b * h * (y_bar - yc) ** 2 + (n - 1) * As_prime * (y_bar - d_prime) ** 2 +\ (n - 1) * As * (d - y_bar) ** 2 # tensile strenght concrete ft = 7.5 * np.sqrt(1000 * fc_prime) / 1000 # yb is the distance of y_bar to the bottom of the section yd = h - y_bar Mcr = ft * Iun / yd phi_cr = Mcr / (Ec * Iun) # rad / in M = np.zeros(4) phi = np.zeros(4) M[0] = 0 phi[0] = 0 M[1] = Mcr phi[1] = phi_cr # 2 - cracked transformed section. # kd is the height of the compression section of the cracked section # (b/2)*kd^2 + ((n-1)*As_prime + n*As)*kd - ((n-1)*As_prime*d_prime + n*As*d); aa = b / 2 bb = (n - 1) * As_prime + n * As cc = - ((n - 1) * As_prime * d_prime + n * As * d) #depth of the neutral axis from the top of the section. kd = (-bb + np.sqrt(bb ** 2 - 4 * aa * cc)) / (2 * aa) Icr = (b * kd ** 3 / 12) + b * kd * (kd / 2) ** 2 + (n - 1) * As_prime * (kd - d_prime) ** 2 + (n) * As * ( d - kd) ** 2 phi_acr = Mcr / (Ec * Icr) #M[2] = Mcr #phi[2] = phi_acr # 3 - Yield of steel or concrete non-linear # cracked transformed section valid until fs=fy or fc = 0.7fc_prime # steel yields es = ey = fy/Es if d<=kd: # No yielding phi_y = sys.float_info.max My = sys.float_info.max else: es = fy / Es phi_y = es / (d - kd) My = phi_y * Ec * Icr # concrete nonlinear. phi_con = 0.7 * (fc_prime / Ec) / kd Mcon = phi_con * Ec * Icr #kip-in # check which one occur first (yielding or nonlinear concrete) if My < Mcon: Mnl = My phi_nl = phi_y else: Mnl = Mcon phi_nl = phi_con M[2] = Mnl phi[2] = phi_nl # Find nominal strength (ACI) from strain-stress diagram. if fc_prime <= 4: b1 = 0.85 elif 4 < fc_prime <= 8: b1 = 0.85 - 0.05 * (fc_prime - 4) else: b1 = 0.65 # Find c and fs_prime cont = 1 c = 1 ct = 0.01 fs_prime = copy.copy(fy) while abs(c / ct - 1) > 0.0002 and cont < 100: c = (As * fy - As_prime * fs_prime) / (0.85 * fc_prime * b * b1) if c==0: c=0.00000000001 c=abs(c) fs_prime = 0.003 * Es * ((c - d_prime) / c) cont = cont + 1 phi_r = ecu / c As2 = As_prime * fs_prime / fy Mr = As2 * fy * (d - d_prime) + (As - As2) * fy * (d - b1 * c / 2) M[3] = Mr phi[3] = phi_r return M, phi def deformation_damage_index(self, B=None, stiffness=None, Mom=None, phi=None): # Compute the Deformation Damage Index (DDI). k = stiffness Lc = self.columns["height"] # Height of each column. EI = (k * Lc ** 3) / 12 # Young's module X Moment of inertia. M = 6 * EI * B / (Lc ** 2) NM_kipin = 112.9848004306 # Convert N x m to kip x in M = M/NM_kipin My = Mom[1] phiy = phi[1] Mu = Mom[2] phiu = phi[2] phim = phiu # interpolate rotation. if M <= Mom[1]: phim = M * phi[1] / Mom[1] elif Mom[1] < M <= Mom[2]: phim = ((M - Mom[1]) / (Mom[2] - Mom[1])) * (phi[2] - phi[1]) + phi[1] elif Mom[2] < M <= Mom[3]: phim = ((M - Mom[2]) / (Mom[3] - Mom[2])) * (phi[3] - phi[2]) + phi[2] else: phim = phi[3] # Compute DDI given the rotation (phi). if phim < phi[1]: ddi = 0 elif phi[1] <= phim < phi[2]: ddi = (phim - phi[1]) / (phi[2] - phi[1]) elif phi[2] <= phim < phi[3]: ddi = (phim - phi[2]) / (phi[3] - phi[2]) else: ddi = 1.0 return ddi class Costs(Structure): # Estimate costs. Costs is a subclass of structure. def __init__(self, building=None, columns=None, slabs=None, core=None, concrete=None, steel=None, cost=None): self.building = building self.columns = columns self.slabs = slabs self.core = core self.concrete = concrete self.steel = steel self.cost = cost Structure.__init__(self, building=building, columns=columns, slabs=slabs, core=core, concrete=concrete, steel=steel, cost=cost) def initial_cost_stiffness(self, col_size=None, par0=None, par1=None): # initial cost is in fact the construction cost. num_col = self.columns["quantity"] # Number of columns. height_col = self.columns["height"] # Height of columns. pslabs = self.slabs["cost_m2"] # costs of slabs. area_col = col_size**2 moment_inertia_col = (col_size**4)/12 k_col = self.stiffness(area=area_col, moment_inertia=moment_inertia_col, height=height_col) stiffness_kN_cm = 0.00001 * k_col cost_initial = (par0 * (stiffness_kN_cm) ** par1) * num_col * height_col cost_initial = cost_initial + pslabs * self.slabs["width"] * self.slabs["depth"] # price_slabs_m2*A cost_initial = 1.6*cost_initial # include 60% of additional costs. return cost_initial def cost_damage(self, b=None, col_size=None, L=None, ncolumns=None, dry_wall_area=None): # Cost of failures for a given level of interstory drift ratio (b). # Glazing A_glazing = 1.5 * L A_bulding = 2 * L * (self.building["width"] + self.building["depth"]) Adry = 5.95 IDRd = self.cost["IDRd"] IDRu = self.cost["IDRu"] cIDRd = self.cost["cost_IDRd"] cIDRu = self.cost["cost_IDRu"] IDRd_eg = self.cost["IDRd_eg"] IDRu_eg = self.cost["IDRu_eg"] cIDRd_eg = self.cost["cost_IDRd_eg"] cIDRu_eg = self.cost["cost_IDRu_eg"] IDRd_dp = self.cost["IDRd_dp"] IDRu_dp = self.cost["IDRu_dp"] cIDRd_dp = self.cost["cost_IDRd_dp"] cIDRu_dp = self.cost["cost_IDRu_dp"] IDRd_df = self.cost["IDRd_df"] IDRu_df = self.cost["IDRu_df"] cIDRd_df = self.cost["cost_IDRd_df"] cIDRu_df = self.cost["cost_IDRu_df"] # COLUMNS - SLAB CONECTIONS bsf = IDRd * L bcol = IDRu * L csf = ncolumns * cIDRd ccol = ncolumns * cIDRu # bar(1) = datad % cost_par % bcol(i) # EXTERIOR GLAZING bsf_eg = IDRd_eg * L bcol_eg = IDRu_eg * L csf_eg = cIDRd_eg * (A_bulding / A_glazing) ccol_eg = cIDRu_eg * (A_bulding / A_glazing) # bar(2) = datad % cost_par % bcol_eg(i) # DRYWALL PARTITIONS bsf_dp = IDRd_dp * L bcol_dp = IDRu_dp * L csf_dp = cIDRd_dp * (dry_wall_area / Adry) ccol_dp = cIDRu_dp * (dry_wall_area / Adry) # bar(3) = datad % cost_par % bcol_dp(i) # DRYWALL FINISH bsf_df = IDRd_df * L bcol_df = IDRu_df * L csf_df = cIDRd_df * (dry_wall_area / Adry) ccol_df = cIDRu_df * (dry_wall_area / Adry) # bar(4) = datad % cost_par % bcol_df(i) # Next: costs associated to the interstory drift ratio. # COLUMN-SLAB CONNECTIONS. if b < bsf: cf_cs = 0 elif bcol > b >= bsf: cf_cs = ((ccol - csf) / (bcol - bsf)) * (b - bsf) + csf else: cf_cs = ccol # EXTERIOR GLAZING. if b < bsf_eg: cf_eg = 0 elif bcol_eg > b >= bsf_eg: cf_eg = ((ccol_eg - csf_eg) / (bcol_eg - bsf_eg)) * (b - bsf_eg) + csf_eg else: cf_eg = ccol_eg # DYRWALL PARTITIONS. if b < bsf_dp: cf_dp = 0 elif bcol_dp > b >= bsf_dp: cf_dp = ((ccol_dp - csf_dp) / (bcol_dp - bsf_dp)) * (b - bsf_dp) + csf_dp else: cf_dp = ccol_dp # DRYWALL FINISH if b < bsf_df: cf_df = 0 elif bcol_df > b >= bsf_df: cf_df = ((ccol_df - csf_df) / (bcol_df - bsf_df)) * (b - bsf_df) + csf_df else: cf_df = ccol_df # Next: costs associated to the deformation damage indexes. area_col = col_size**2 moment_inertia_col = col_size**4/12 k_col = Structure.stiffness(self, area=area_col, moment_inertia=moment_inertia_col, height=L) Mom, phi = Costs.compression(self, col_size=col_size, L=L) ddi = Costs.deformation_damage_index(self, B=b, stiffness=k_col, Mom=Mom, phi=phi) DDI1 = self.cost["DDI_1"] DDI2 = self.cost["DDI_2"] DDI3 = self.cost["DDI_3"] DDI4 = self.cost["DDI_4"] cDDI1 = self.cost["cost_DDI_1"] cDDI2 = self.cost["cost_DDI_2"] cDDI3 = self.cost["cost_DDI_3"] cDDI4 = self.cost["cost_DDI_4"] if ddi < DDI1: cf_duc = 0 elif DDI1 <= ddi < DDI2: bsf = DDI1 bcol = DDI2 csf = cDDI1 ccol = cDDI2 cf_duc = ((ccol - csf) / (bcol - bsf)) * (ddi - bsf) + csf elif DDI2 <= ddi < DDI3: bsf = DDI2 bcol = DDI3 csf = cDDI2 ccol = cDDI3 cf_duc = ((ccol - csf) / (bcol - bsf)) * (ddi - bsf) + csf elif DDI3 <= ddi < DDI4: bsf = DDI3 bcol = DDI4 csf = cDDI3 ccol = cDDI4 cf_duc = ((ccol - csf) / (bcol - bsf)) * (ddi - bsf) + csf else: cf_duc = cDDI4 f_duc = cf_duc * ncolumns # Total cost. cf = cf_cs + cf_duc + (cf_eg + cf_dp + cf_df)*0 #Only considering the structural damage return cf
32.056689
115
0.523025
1818bc108ff15fc017dc522e727161e1d7496f15
8,857
py
Python
src/server/bos/controllers/v1/sessiontemplate.py
Cray-HPE/bos
a4a7fc58c884d951b6051093e1a4e2aeaba6740f
[ "MIT" ]
1
2022-03-15T18:17:11.000Z
2022-03-15T18:17:11.000Z
src/server/bos/controllers/v1/sessiontemplate.py
Cray-HPE/bos
a4a7fc58c884d951b6051093e1a4e2aeaba6740f
[ "MIT" ]
null
null
null
src/server/bos/controllers/v1/sessiontemplate.py
Cray-HPE/bos
a4a7fc58c884d951b6051093e1a4e2aeaba6740f
[ "MIT" ]
1
2022-03-06T12:47:06.000Z
2022-03-06T12:47:06.000Z
# Cray-provided controllers for the Boot Orchestration Service # Copyright 2019-2021 Hewlett Packard Enterprise Development LP # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, # ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. # # (MIT License) import logging import connexion import json import wget import os from connexion.lifecycle import ConnexionResponse from bos.models.session_template import SessionTemplate # noqa: E501 from bos.dbclient import BosEtcdClient from bos.utils import _canonize_xname LOGGER = logging.getLogger('bos.controllers.sessiontemplate') BASEKEY = "/sessionTemplate" EXAMPLE_BOOT_SET = { "type": "your-boot-type", "boot_ordinal": 1, "etag": "your_boot_image_etag", "kernel_parameters": "your-kernel-parameters", "network": "nmn", "node_list": [ "xname1", "xname2", "xname3"], "path": "your-boot-path", "rootfs_provider": "your-rootfs-provider", "rootfs_provider_passthrough": "your-rootfs-provider-passthrough"} EXAMPLE_SESSION_TEMPLATE = { "boot_sets": { "name_your_boot_set": EXAMPLE_BOOT_SET}, "cfs": { "configuration": "desired-cfs-config"}, "enable_cfs": True, "name": "name-your-template"} def sanitize_xnames(st_json): """ Sanitize xnames - Canonize the xnames N.B. Because python passes object references by value you need to use the return value. It will have no impact on the inputted object. Args: st_json (string): The Session Template as a JSON object Returns: The Session Template with all of the xnames sanitized """ if 'boot_sets' in st_json: for boot_set in st_json['boot_sets']: if 'node_list' in st_json['boot_sets'][boot_set]: clean_nl = [_canonize_xname(node) for node in st_json['boot_sets'][boot_set]['node_list']] st_json['boot_sets'][boot_set]['node_list'] = clean_nl return st_json def create_v1_sessiontemplate(): # noqa: E501 """POST /v1/sessiontemplate Creates a new session template. # noqa: E501 """ LOGGER.debug("POST /v1/sessiontemplate invoked create_v1_sessiontemplate") if connexion.request.is_json: LOGGER.debug("connexion.request.is_json") LOGGER.debug("type=%s", type(connexion.request.get_json())) LOGGER.debug("Received: %s", connexion.request.get_json()) else: return "Post must be in JSON format", 400 sessiontemplate = None try: """Convert the JSON request data into a SessionTemplate object. Any exceptions caught here would be generated from the model (i.e. bos.models.session_template). An example is an exception for a session template name that does not confirm to Kubernetes naming convention. In this case return 400 with a description of the specific error. """ sessiontemplate = SessionTemplate.from_dict(connexion.request.get_json()) except Exception as err: return connexion.problem( status=400, title="The session template could not be created.", detail=str(err)) if sessiontemplate.template_url: """If a template URL was provided in the body treat this as a reference to a JSON session template structure which needs to be read and stored. """ LOGGER.debug("create_v1_sessiontemplate template_url: %s", sessiontemplate.template_url) """Downloads the content locally into a file named after the uri. An optional 'out' parameter can be specified as the base dir for the file """ sessionTemplateFile = "" try: sessionTemplateFile = wget.download(sessiontemplate.template_url) LOGGER.debug("Downloaded: %s", sessionTemplateFile) except Exception as err: return connexion.problem( status=400, title="Error while getting content from '{}'".format( sessiontemplate.template_url), detail=str(err)) # Read in the session template file with open(sessionTemplateFile, 'r') as f: st_json = json.load(f) if 'name' not in st_json.keys() or st_json['name'] == "": return connexion.problem( status=400, title="Bad request", detail="The Session Template '{}' " "is missing the required \'name\' attribute." .format(sessiontemplate.template_url)) json_st_str = json.dumps(sanitize_xnames(st_json)) LOGGER.debug("Removing temporary local file: '%s'", sessionTemplateFile) os.remove(sessionTemplateFile) # Create a Session Template from the content. """Store the Session Template content. For now overwrite any existing template by name w/o warning. Later this can be changed (detected and blocked) when we support patching operations. This could also be changed to result in an HTTP 409 Conflict. TBD. """ with BosEtcdClient() as bec: key = "{}/{}".format(BASEKEY, st_json['name']) bec.put(key, value=json_st_str) return key, 201 if sessiontemplate.name: """If a template name has been provided in the body, treat this as a complete JSON session template record and store it. For now overwrite any existing template by name w/o warning. Later this can be changed when we support patching operations. This could also be changed to result in an HTTP 409 Conflict. TBD. """ LOGGER.debug("create_v1_sessiontemplate name: %s", sessiontemplate.name) st_json = connexion.request.get_json() json_st_str = json.dumps(sanitize_xnames(st_json)) with BosEtcdClient() as bec: key = "/sessionTemplate/{}".format(sessiontemplate.name) bec.put(key, value=json_st_str) return key, 201 def get_v1_sessiontemplates(): # noqa: E501 """ GET /v1/sessiontemplates List all sessiontemplates """ LOGGER.debug("get_v1_sessiontemplates: Fetching sessions.") with BosEtcdClient() as bec: results = [] for st, _meta in bec.get_prefix('{}/'.format(BASEKEY)): json_st = json.loads(st.decode('utf-8')) results.append(json_st) return results, 200 def get_v1_sessiontemplate(session_template_id): """ GET /v1/sessiontemplate Get the session template by session template ID """ LOGGER.debug("get_v1_sessiontemplate by ID: %s", session_template_id) # noqa: E501 with BosEtcdClient() as bec: key = "{}/{}".format(BASEKEY, session_template_id) st, _meta = bec.get(key) if st: json_st = json.loads(st.decode('utf-8')) return json_st, 200 else: return connexion.problem(status=404, title="The Session Template was not found", detail="The Session Template '{}' was not found.".format(session_template_id)) # noqa: E501 def get_v1_sessiontemplatetemplate(): """ GET /v1/sessiontemplatetemplate Get the example session template """ return EXAMPLE_SESSION_TEMPLATE, 200 def delete_v1_sessiontemplate(session_template_id): """ DELETE /v1/sessiontemplate Delete the session template by session template ID """ LOGGER.debug("delete_v1_sessiontemplate by ID: %s", session_template_id) result = get_v1_sessiontemplate(session_template_id) if isinstance(result, ConnexionResponse): return result with BosEtcdClient() as bec: key = "/sessionTemplate/{}".format(session_template_id) bec.delete(key) return '', 204
38.846491
129
0.658124
7dba8428969d5f922e172175362e7010eaf049fe
8,202
py
Python
salt/modules/mdadm.py
wikimedia/operations-debs-salt
be6342abc7401ff92f67ed59f7834f1359f35314
[ "Apache-2.0" ]
null
null
null
salt/modules/mdadm.py
wikimedia/operations-debs-salt
be6342abc7401ff92f67ed59f7834f1359f35314
[ "Apache-2.0" ]
null
null
null
salt/modules/mdadm.py
wikimedia/operations-debs-salt
be6342abc7401ff92f67ed59f7834f1359f35314
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- ''' Salt module to manage RAID arrays with mdadm ''' # Import python libs import os import logging # Import salt libs import salt.utils from salt.exceptions import CommandExecutionError, SaltInvocationError # Set up logger log = logging.getLogger(__name__) # Define a function alias in order not to shadow built-in's __func_alias__ = { 'list_': 'list' } # Define the module's virtual name __virtualname__ = 'raid' def __virtual__(): ''' mdadm provides raid functions for Linux ''' if __grains__['kernel'] != 'Linux': return False if not salt.utils.which('mdadm'): return False return __virtualname__ def list_(): ''' List the RAID devices. CLI Example: .. code-block:: bash salt '*' raid.list ''' ret = {} for line in (__salt__['cmd.run_stdout'] (['mdadm', '--detail', '--scan'], python_shell=False).splitlines()): if ' ' not in line: continue comps = line.split() device = comps[1] ret[device] = {"device": device} for comp in comps[2:]: key = comp.split('=')[0].lower() value = comp.split('=')[1] ret[device][key] = value return ret def detail(device='/dev/md0'): ''' Show detail for a specified RAID device CLI Example: .. code-block:: bash salt '*' raid.detail '/dev/md0' ''' ret = {} ret['members'] = {} # Lets make sure the device exists before running mdadm if not os.path.exists(device): msg = "Device {0} doesn't exist!" raise CommandExecutionError(msg.format(device)) cmd = ['mdadm', '--detail', device] for line in __salt__['cmd.run_stdout'](cmd, python_shell=False).splitlines(): if line.startswith(device): continue if ' ' not in line: continue if ':' not in line: if '/dev/' in line: comps = line.split() state = comps[4:-1] ret['members'][comps[0]] = { 'device': comps[-1], 'major': comps[1], 'minor': comps[2], 'number': comps[0], 'raiddevice': comps[3], 'state': ' '.join(state), } continue comps = line.split(' : ') comps[0] = comps[0].lower() comps[0] = comps[0].strip() comps[0] = comps[0].replace(' ', '_') ret[comps[0]] = comps[1].strip() return ret def destroy(device): ''' Destroy a RAID device. WARNING This will zero the superblock of all members of the RAID array.. CLI Example: .. code-block:: bash salt '*' raid.destroy /dev/md0 ''' try: details = detail(device) except CommandExecutionError: return False stop_cmd = ['mdadm', '--stop', device] zero_cmd = ['mdadm', '--zero-superblock'] if __salt__['cmd.retcode'](stop_cmd, python_shell=False): for number in details['members']: zero_cmd.append(details['members'][number]['device']) __salt__['cmd.retcode'](zero_cmd, python_shell=False) # Remove entry from config file: if __grains__.get('os_family') == 'Debian': cfg_file = '/etc/mdadm/mdadm.conf' else: cfg_file = '/etc/mdadm.conf' try: __salt__['file.replace'](cfg_file, 'ARRAY {0} .*'.format(device), '') except SaltInvocationError: pass if __salt__['raid.list']().get(device) is None: return True else: return False def create(name, level, devices, metadata='default', test_mode=False, **kwargs): ''' Create a RAID device. .. versionchanged:: 2014.7.0 .. warning:: Use with CAUTION, as this function can be very destructive if not used properly! CLI Examples: .. code-block:: bash salt '*' raid.create /dev/md0 level=1 chunk=256 devices="['/dev/xvdd', '/dev/xvde']" test_mode=True .. note:: Adding ``test_mode=True`` as an argument will print out the mdadm command that would have been run. name The name of the array to create. level The RAID level to use when creating the raid. devices A list of devices used to build the array. kwargs Optional arguments to be passed to mdadm. returns test_mode=True: Prints out the full command. test_mode=False (Default): Executes command on remote the host(s) and Prints out the mdadm output. .. note:: It takes time to create a RAID array. You can check the progress in "resync_status:" field of the results from the following command: .. code-block:: bash salt '*' raid.detail /dev/md0 For more info, read the ``mdadm(8)`` manpage ''' opts = [] raid_devices = len(devices) for key in kwargs: if not key.startswith('__'): opts.append('--{0}'.format(key)) if kwargs[key] is not True: opts.append(str(kwargs[key])) if key == 'spare-devices': raid_devices -= int(kwargs[key]) cmd = ['mdadm', '-C', name, '-R', '-v'] + opts + [ '-l', str(level), '-e', metadata, '-n', str(raid_devices)] + devices cmd_str = ' '.join(cmd) if test_mode is True: return cmd_str elif test_mode is False: return __salt__['cmd.run'](cmd, python_shell=False) def save_config(): ''' Save RAID configuration to config file. Same as: mdadm --detail --scan >> /etc/mdadm/mdadm.conf Fixes this issue with Ubuntu REF: http://askubuntu.com/questions/209702/why-is-my-raid-dev-md1-showing-up-as-dev-md126-is-mdadm-conf-being-ignored CLI Example: .. code-block:: bash salt '*' raid.save_config ''' scan = __salt__['cmd.run']('mdadm --detail --scan', python_shell=False).split() # Issue with mdadm and ubuntu # REF: http://askubuntu.com/questions/209702/why-is-my-raid-dev-md1-showing-up-as-dev-md126-is-mdadm-conf-being-ignored if __grains__['os'] == 'Ubuntu': buggy_ubuntu_tags = ['name', 'metadata'] for bad_tag in buggy_ubuntu_tags: for i, elem in enumerate(scan): if not elem.find(bad_tag): del scan[i] scan = ' '.join(scan) if __grains__.get('os_family') == 'Debian': cfg_file = '/etc/mdadm/mdadm.conf' else: cfg_file = '/etc/mdadm.conf' if not __salt__['file.search'](cfg_file, scan): __salt__['file.append'](cfg_file, scan) return __salt__['cmd.run']('update-initramfs -u') def assemble(name, devices, test_mode=False, **kwargs): ''' Assemble a RAID device. CLI Examples: .. code-block:: bash salt '*' raid.assemble /dev/md0 ['/dev/xvdd', '/dev/xvde'] .. note:: Adding ``test_mode=True`` as an argument will print out the mdadm command that would have been run. name The name of the array to assemble. devices The list of devices comprising the array to assemble. kwargs Optional arguments to be passed to mdadm. returns test_mode=True: Prints out the full command. test_mode=False (Default): Executes command on the host(s) and prints out the mdadm output. For more info, read the ``mdadm`` manpage. ''' opts = [] for key in kwargs: if not key.startswith('__'): opts.append('--{0}'.format(key)) if kwargs[key] is not True: opts.append(kwargs[key]) # Devices may have been written with a blob: if type(devices) is str: devices = devices.split(',') cmd = ['mdadm', '-A', name, '-v', opts] + devices if test_mode is True: return cmd elif test_mode is False: return __salt__['cmd.run'](cmd, python_shell=False)
25.236923
123
0.560351
838c18bfe76cc35f5a07d12d31699dd724c16c5f
401
py
Python
boutique_ado/wsgi.py
hartnetl/boutique-ado-walkthrough
ef04eb4dae443d2df1bce7fbef9de8f628b58a0b
[ "MTLL" ]
null
null
null
boutique_ado/wsgi.py
hartnetl/boutique-ado-walkthrough
ef04eb4dae443d2df1bce7fbef9de8f628b58a0b
[ "MTLL" ]
null
null
null
boutique_ado/wsgi.py
hartnetl/boutique-ado-walkthrough
ef04eb4dae443d2df1bce7fbef9de8f628b58a0b
[ "MTLL" ]
null
null
null
""" WSGI config for boutique_ado project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'boutique_ado.settings') application = get_wsgi_application()
23.588235
78
0.790524
ee21bc6e6fd2da8342cd778b8e5411bafe8c05dd
32,857
py
Python
scripts/cloud-check-control/cloudAtlasCheckControl.py
Amon-Cyn/atlas-checks
ffe3d213a866b3fa5bba9d0950378d3aa818f646
[ "BSD-3-Clause" ]
null
null
null
scripts/cloud-check-control/cloudAtlasCheckControl.py
Amon-Cyn/atlas-checks
ffe3d213a866b3fa5bba9d0950378d3aa818f646
[ "BSD-3-Clause" ]
9
2018-09-05T16:06:10.000Z
2019-07-29T22:49:38.000Z
scripts/cloud-check-control/cloudAtlasCheckControl.py
Amon-Cyn/atlas-checks
ffe3d213a866b3fa5bba9d0950378d3aa818f646
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ execute atlas-checks on an EC2 instance """ import argparse import logging import os import sys import time import boto3 import paramiko import scp from botocore.exceptions import ClientError from paramiko.auth_handler import AuthenticationException VERSION = "1.0.0" AWS_REGION = 'us-west-1' def setup_logging(default_level=logging.INFO): """ Setup logging configuration """ logging.basicConfig( format="%(asctime)s %(levelname)-8s %(message)s", level=default_level, datefmt="%Y-%m-%d %H:%M:%S", ) return logging.getLogger("CloudAtlasChecksControl") def finish(error_message=None, status=0): """exit the process Method to exit the Python script. It will log the given message and then exit(). :param error_message: Error message to log upon exiting the process :param status: return code to exit the process with """ if error_message: logger.error(error_message) else: logger.info("Done") exit(status) class CloudAtlasChecksControl: """Main Class to control atlas checks spark job on EC2""" def __init__( self, timeoutMinutes=6000, key=None, instanceId="", processes=32, memory=256, formats="flags", countries="", s3InFolder=None, s3fsMount=False, s3OutFolder=None, terminate=False, templateName="atlas_checks-ec2-template", atlasConfig="https://raw.githubusercontent.com/osmlab/atlas-checks/dev/config/configuration.json", checks="", mrkey="", mrProject="", mrURL="https://maproulette.org:443", jar="atlas-checks/build/libs/atlas-checks-*-SNAPSHOT-shadow.jar", awsRegion=AWS_REGION, ): self.timeoutMinutes = timeoutMinutes self.key = key self.instanceId = instanceId self.s3InFolder = s3InFolder self.s3fsMount = s3fsMount self.processes = processes self.memory = memory self.formats = formats self.countries = countries self.s3OutFolder = s3OutFolder self.terminate = terminate self.templateName = templateName self.homeDir = "/home/ubuntu/" self.atlasCheckDir = os.path.join(self.homeDir, "atlas-checks/") self.atlasOutDir = os.path.join(self.homeDir, "output/") self.atlasInDir = os.path.join(self.homeDir, "input/") self.atlasLogDir = os.path.join(self.homeDir, "log/") self.atlasCheckLogName = "atlasCheck.log" self.atlasCheckLog = os.path.join(self.atlasLogDir, self.atlasCheckLogName) self.atlasCheckMRPushLogName = "mrPush.log" self.atlasCheckMRPushLog = os.path.join( self.atlasLogDir, self.atlasCheckMRPushLogName ) self.atlasConfig = atlasConfig self.checks = checks self.mrkey = mrkey self.mrProject = mrProject self.mrURL = mrURL self.jar = jar self.instanceName = "AtlasChecks" self.localJar = '/tmp/atlas-checks.jar' self.localConfig = '/tmp/configuration.json' self.sshClient = None self.scpClient = None self.ec2 = boto3.client( 'ec2', region_name = awsRegion, ) self.ssmClient = boto3.client( 'ssm', region_name = awsRegion, ) def setup_config(self, file_preface="file://"): if self.atlasConfig.find("s3:") >= 0: if self.ssh_cmd( "aws s3 cp {} {}".format(self.atlasConfig, self.localConfig) ): finish("Failed to copy config S3://{}".format(self.atlasConfig), -1) return file_preface + self.localConfig elif self.atlasConfig.find("http:") >= 0: return self.atlasConfig else: # if configuration.json is a file then copy it to the EC2 instance self.put_files(self.atlasConfig, self.localConfig) return file_preface + self.localConfig def setup_jar(self): if self.jar.find("s3:") >= 0: if self.ssh_cmd( "aws s3 cp {} {}".format(self.jar, self.localJar) ): finish("Failed to copy jar S3://{}".format(self.jar), -1) return self.localJar else: # if configuration.json is a file then copy it to the EC2 instance self.put_files(self.jar, self.localJar) return self.localJar def atlasCheck(self): """Submit an spark job to perform atlas checks on an EC2 instance. If the CloudAtlasChecksControl includes an instance ID then atlas checks will be executed on that instance. If no instance ID is defined then it will create a new instance. Dependencies: - self.instanceId - indicates a running instance or "" to create one - self.S3Atlas - indicates the S3 bucket and path that contains atlas files """ if self.instanceId == "": self.create_instance() self.get_instance_info() if not self.is_process_running("SparkSubmit"): cmd = "mkdir -p {} {}".format(self.atlasLogDir, self.atlasOutDir) if self.ssh_cmd(cmd): finish("Unable to create directory {}".format(cmd), -1) # remove the success or failure files from any last run. if self.ssh_cmd("rm -f {}/_*".format(self.atlasOutDir)): finish("Unable to clean up old status files", -1) # sync the country folders to the local directory for c in list(self.countries.split(",")): logger.info("syncing {}".format(c)) if self.ssh_cmd( "aws s3 sync --only-show-errors {0}{1} {2}{1}".format( self.s3InFolder, c, self.atlasInDir ) ): finish( "Failed to sync {}/{}".format(self.s3InFolder, c), -1 ) if self.ssh_cmd( "aws s3 cp {}sharding.txt {}sharding.txt".format( self.s3InFolder, self.atlasInDir ) ): finish("Failed to copy sharding.txt", -1) if self.info is not None: cmd = ("echo '{{\n{},\n\"cmd\":\"{}\"\n}}' > {}INFO " .format(self.info, " ".join(sys.argv), self.atlasOutDir)) else: cmd = ("echo '{{\n\"cmd\":\"{}\"\n}}' > {}INFO " .format(" ".join(sys.argv), self.atlasOutDir)) if self.ssh_cmd(cmd): finish("Unable to write info file", -1) atlasConfig = self.setup_config() jarFile = self.setup_jar() cmd = ( "/opt/spark/bin/spark-submit" + " --class=org.openstreetmap.atlas.checks.distributed.ShardedIntegrityChecksSparkJob" + " --master=local[{}]".format(self.processes) + " --conf='spark.driver.memory={}g'".format(self.memory) + " --conf='spark.rdd.compress=true'" + " {}".format(jarFile) + " -maxPoolMinutes=2880" + " -input='{}'".format(self.atlasInDir) + " -output='{}'".format(self.atlasOutDir) + " -outputFormats='{}'".format(self.formats) + " -countries='{}'".format(self.countries) + " -configFiles='{}'".format(atlasConfig) + " > {} 2>&1 &".format(self.atlasCheckLog) ) logger.info("Submitting spark job: {}".format(cmd)) if self.ssh_cmd(cmd): finish("Unable to execute spark job", -1) # make sure spark job has started before checking for completion time.sleep(5) else: logger.info("Detected a running atlas check spark job.") logger.info("About to wait for remote script to complete. If " "disconnected before the script completes then execute the " "following command to continue waiting:\n {} --id={}" .format(" ".join(sys.argv), self.instanceId)) # wait for script to complete if self.wait_for_process_to_complete(): finish( "Timeout waiting for script to complete. TODO - instructions to reconnect.", -1, ) self.sync() def sync(self): """Sync an existing instance containing already generated atlas output with s3 Dependencies: - self.instanceId - indicates a running instance or "" to create one - self.s3OutFolder - the S3 bucket and folder path to push the output - self.terminate - indicates if the EC2 instance should be terminated """ if self.s3OutFolder is None: logger.warning( "No S3 output folder specified, skipping s3 sync. Use -o 's3folder/path' to sync to s3" ) return logger.info( "Syncing EC2 instance atlas-checks output with S3 bucket {}.".format( self.s3OutFolder ) ) # push output to s3 cmd = "aws s3 sync --only-show-errors --exclude *.crc {} {} ".format( self.atlasOutDir, self.s3OutFolder ) if self.ssh_cmd(cmd): finish("Unable to sync with S3", -1) # terminate instance if self.terminate: self.terminate_instance() def challenge(self): if self.instanceId == "": self.create_instance() self.get_instance_info() logger.info("Creating map roulette challenge.") # sync the country folders to the local directory for c in list(self.countries.split(",")): logger.info( "syncing {}/flag/{} to {}flag/{}".format( self.s3InFolder, c, self.atlasOutDir, c ) ) if self.ssh_cmd( "aws s3 sync --only-show-errors {0}/flag/{1} {2}flag/{1}".format( self.s3InFolder, c, self.atlasOutDir ) ): finish("Failed to sync {}/{}".format(self.s3InFolder, c), -1) atlasConfig = self.setup_config(file_preface="") jarFile = self.setup_jar() cmd = ( "java -cp {}".format(jarFile) + " org.openstreetmap.atlas.checks.maproulette.MapRouletteUploadCommand" + " -maproulette='{}:{}:{}'".format(self.mrURL, self.mrProject, self.mrkey) + " -logfiles='{}flag'".format(self.atlasOutDir) + " -outputPath='{}'".format(self.atlasOutDir) + " -config='{}'".format(atlasConfig) + " -checkinComment='#AtlasChecks'" + " -countries='{}'".format(self.countries) + " -checks='{}'".format(self.checks) + " -includeFixSuggestions=true" + " > {} 2>&1".format(self.atlasCheckLog) ) logger.info("Starting mr upload: {}".format(cmd)) if self.ssh_cmd(cmd, verbose=True): finish("Unable to execute spark job", -1) def clean(self): """Clean a running Instance of all produced folders and files This readies the instance for a clean atlas check run or terminates an EC2 instance completely. Dependencies: - self.instanceId - indicates a running instance or "" to create one - self.terminate - indicates if the EC2 instance should be terminated """ if self.terminate: logger.info("Terminating EC2 instance.") self.terminate_instance() else: logger.info("Cleaning up EC2 instance.") cmd = "rm -rf {}/* {}/* ".format(self.atlasOutDir, self.atlasLogDir) if self.ssh_cmd(cmd): finish("Unable to clean", -1) def create_instance(self): """Create Instance from atlas_checks-ec2-template template Dependencies: - self.templateId - self.instanceName :return: """ logger.info("Creating EC2 instance from {} template.".format(self.templateName)) try: logger.info("Create instance...") response = self.ec2.run_instances( LaunchTemplate={"LaunchTemplateName": self.templateName}, TagSpecifications=[ { "ResourceType": "instance", "Tags": [{"Key": "Name", "Value": self.instanceName}], } ], MaxCount=1, MinCount=1, KeyName=self.key, ) self.instanceId = response["Instances"][0]["InstanceId"] logger.info("Instance {} was created".format(self.instanceId)) except ClientError as e: finish(e, -1) def terminate_instance(self): """Terminate Instance Dependencies: - self.templateId """ logger.info("Terminating EC2 instance {}".format(self.instanceId)) try: response = self.ec2.terminate_instances(InstanceIds=[self.instanceId]) logger.info("Instance {} was terminated".format(self.instanceId)) except ClientError as e: finish(e, -1) def ssh_connect(self): """Connect to an EC2 instance""" for _timeout in range(16): try: keyFile = "{}/.ssh/{}.pem".format(os.environ.get("HOME"), self.key) key = paramiko.RSAKey.from_private_key_file(keyFile) self.sshClient = paramiko.SSHClient() self.sshClient.set_missing_host_key_policy(paramiko.AutoAddPolicy()) logger.debug( "Connecting to {} ... ".format(self.instance["PublicDnsName"]) ) self.sshClient.connect( self.instance["PublicDnsName"], username="ubuntu", pkey=key ) logger.info( "Connected to {} ... ".format(self.instance["PublicDnsName"]) ) self.scpClient = scp.SCPClient(self.sshClient.get_transport()) break except AuthenticationException as error: logger.error( "Authentication failed: did you remember to create an SSH key? {error}" ) raise error except paramiko.ssh_exception.NoValidConnectionsError: time.sleep(15) continue def put_files(self, localFiles, remoteDirectory): """Put files from local system onto running EC2 instance""" if self.scpClient is None: self.ssh_connect() try: self.scpClient.put(localFiles, remoteDirectory) except scp.IOException as error: logger.error("Unable to copy files. {error}") raise error logger.debug("Files: " + localFiles + " uploaded to: " + remoteDirectory) def get_files(self, remoteFiles, localDirectory): """Get files from running ec2 instance to local system""" if self.scpClient is None: self.ssh_connect() try: self.scpClient.get(remoteFiles, localDirectory) except scp.SCPException as error: logger.error("Unable to copy files. {error}") raise error logger.debug("Files: " + remoteFiles + " downloaded to: " + localDirectory) def ssh_cmd(self, cmd, quiet=False, verbose=False): """Issue an ssh command on the remote EC2 instance :param cmd: the command string to execute on the remote system :param quiet: If true, don't display errors on failures :returns: Returns the status of the completed ssh command. """ if self.key is not None: if self.sshClient is None: self.ssh_connect() logger.debug("Issuing remote command: {} ... ".format(cmd)) ssh_stdin, ssh_stdout, ssh_stderr = self.sshClient.exec_command(cmd) if ssh_stdout.channel.recv_exit_status() and not quiet: logger.error(" Remote command stderr:") logger.error("\t".join(map(str, ssh_stderr.readlines()))) if verbose: logger.info(" Remote command stdout:") logger.info("\t".join(map(str, ssh_stdout.readlines()))) return ssh_stdout.channel.recv_exit_status() # if key was not specified then try to use ssm logger.debug("Issuing remote command: {} ... ".format(cmd)) while True: try: response = self.ssmClient.send_command( InstanceIds=[self.instanceId], DocumentName='AWS-RunShellScript', Parameters={'commands': [cmd]} ) break except ClientError as e: logger.debug(f'{e}') time.sleep(5) time.sleep(1) command_id = response['Command']['CommandId'] for _timeout in range(self.timeoutMinutes * 60): feedback = self.ssmClient.get_command_invocation(CommandId=command_id, InstanceId=self.instanceId) if feedback['StatusDetails'] != 'InProgress': break time.sleep(1) if feedback['StatusDetails'] != 'Success': if not quiet: logger.error("feedback: " + feedback['StatusDetails']) logger.error(" Remote command stderr:") logger.error(feedback['StandardErrorContent']) return -1 if verbose: logger.info(" Remote command stdout:") logger.info(feedback['StandardOutputContent']) return 0 def wait_for_process_to_complete(self): """Wait for process to complete Will block execution while waiting for the completion of the spark submit on the EC2 instance. Upon completion of the script it will look at the log file produced to see if it completed successfully. If the Atlas Checks spark job failed then this function will exit. :returns: 0 - if Atlas check spark job completed successfully :returns: 1 - if Atlas check spark job timed out """ logger.info("Waiting for Spark Submit process to complete...") # wait for up to TIMEOUT minutes for the VM to be up and ready for _timeout in range(self.timeoutMinutes): if not self.is_process_running("SparkSubmit"): logger.info("Atlas Check spark job has completed.") if self.ssh_cmd( "grep 'Success!' {}/_*".format(self.atlasOutDir), quiet=True ): logger.error("Atlas Check spark job Failed.") logger.error( "---tail of Atlas Checks Spark job log output ({})--- \n".format( self.atlasCheckLogName + " ".join( map( str, open(self.atlasCheckLogName, "r").readlines()[-50:], ) ) ) ) finish(status=-1) return 0 time.sleep(60) return 1 def is_process_running(self, process): """Indicate if process is actively running Uses pgrep on the EC2 instance to detect if the process is actively running. :returns: 0 - if process is NOT running :returns: 1 - if process is running """ if self.ssh_cmd("pgrep -P1 -f {}".format(process), quiet=True): return 0 logger.debug("{} is still running ... ".format(process)) return 1 def start_ec2(self): """Start EC2 Instance.""" logger.info("Starting the EC2 instance.") try: logger.info("Start instance") response = self.ec2.start_instances(InstanceIds=[self.instanceId]) logger.debug(response) except ClientError as e: logger.error(e) def stop_ec2(self): """Stop EC2 Instance.""" logger.info("Stopping the EC2 instance.") try: response = self.ec2.stop_instances(InstanceIds=[self.instanceId]) logger.debug(response) except ClientError as e: logger.error(e) def get_instance_info(self): """Get the info for an EC2 instance. Given an EC2 instance ID this function will retrieve the instance info for the instance and save it in self.instance. """ logger.info("Getting EC2 Instance {} Info...".format(self.instanceId)) # wait for up to TIMEOUT seconds for the VM to be up and ready for _timeout in range(10): response = self.ec2.describe_instances(InstanceIds=[self.instanceId]) if not response["Reservations"]: finish("Instance {} not found".format(self.instanceId), -1) if ( response["Reservations"][0]["Instances"][0].get("PublicIpAddress") is None ): logger.info( "Waiting for EC2 instance {} to boot...".format(self.instanceId) ) time.sleep(6) continue self.instance = response["Reservations"][0]["Instances"][0] logger.info( "EC2 instance: {} booted with name: {}".format( self.instanceId, self.instance["PublicDnsName"] ) ) break for _timeout in range(100): if self.ssh_cmd("systemctl is-system-running", quiet=True): logger.debug( "Waiting for systemd on EC2 instance to complete initialization..." ) time.sleep(6) continue return finish("Timeout while waiting for EC2 instance to be ready", -1) def parse_args(): """Parse user parameters :returns: args """ parser = argparse.ArgumentParser( description="This script automates the use of EC2 instance to execute " "an atlas-checks spark job. It is meant to be executed on a laptop with " "access to the EC2 instance" ) parser.add_argument( '--zone', default=AWS_REGION, type=str, help=f"The AWS region to use. e.g. {AWS_REGION}", ) parser.add_argument( "--name", help="Set EC2 instance name.", ) parser.add_argument( "--template", help="Set EC2 template name to create instance from.", ) parser.add_argument( "--minutes", type=int, help="Set process timeout to number of minutes.", ) parser.add_argument( "--version", help="Display the current version", action="store_true" ) parser.add_argument( "--terminate", default=False, help="Terminate EC2 instance after successful execution", action="store_true", ) subparsers = parser.add_subparsers( title="commands", description="One of the following commands must be specified when executed. " "To see more information about each command and the parameters that " "are used for each command then specify the command and " "the --help parameter.", ) parser_check = subparsers.add_parser( "check", help="Execute Atlas Checks and, if '--output' is set, then push atlas check results to S3 folder", ) parser_check.add_argument( "--id", help="ID - Indicates the ID of an existing EC2 instance to use" ) parser_check.add_argument( "--key", required=True, help="KEY - Instance key name to use to login to instance. This key " "is expected to be the same name as the key as defined by AWS and the " "corresponding pem file must be located in your local '~/.ssh/' " "directory and should be a pem file. See the following URL for " "instructions on creating a key: " "https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html. " "(e.g. `--key=aws-key`)", ) parser_check.add_argument( "--output", help="Out - The S3 Output directory. (e.g. '--out=s3://atlas-bucket/atlas-checks/output')", ) parser_check.add_argument( "--mount", default=False, help="Flag to indicate if s3fs should be used to mount input directory. (Default: False)", ) parser_check.add_argument( "--input", required=True, help="IN - The S3 Input directory that contains atlas file directories and sharding.txt. " "(e.g. s3://bucket/path/to/atlas/file/dir/)", ) parser_check.add_argument( "--countries", required=True, help="COUNTRIES - A comma separated list of ISO3 codes. (e.g. --countries=GBR)", ) parser_check.add_argument( "--memory", type=int, help="MEMORY - Gigs of memory for spark job.", ) parser_check.add_argument( "--formats", help="FORMATS - Output format", ) parser_check.add_argument( "--config", required=True, help="CONFIG - s3://path/to/configuration.json, http://path/to/configuration.json, " " or /local/path/to/configuration.json to use as configuration.json for atlas-checks ", ) parser_check.add_argument( "--processes", type=int, help="PROCESSES - Number of parallel jobs to start.", ) parser_check.add_argument( "--jar", required=True, help="JAR - s3://path/to/atlas_checks.jar or /local/path/to/atlas_checks.jar to execute", ) parser_check.add_argument( "--info", help="INFO - Json string to add to the 'INFO' file in the output folder " "(e.g. --tag='{\"version\":\"1.6.3\"}')", ) parser_check.set_defaults(func=CloudAtlasChecksControl.atlasCheck) parser_sync = subparsers.add_parser( "sync", help="Sync Atlas Check output files from instance to S3 folder" ) parser_sync.add_argument( "--id", required=True, help="ID - Indicates the ID of an existing EC2 instance to use", ) parser_sync.add_argument( "--key", required=True, help="KEY - Instance key name to use to login to instance. This key " "is expected to be the same name as the key as defined by AWS and the " "corresponding pem file must be located in your local '~/.ssh/' " "directory and should be a pem file. See the following URL for " "instructions on creating a key: " "https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html. " "(e.g. `--key=aws-key`)", ) parser_sync.add_argument( "--output", required=True, help="Out - The S3 Output directory" ) parser_sync.set_defaults(func=CloudAtlasChecksControl.sync) parser_mr = subparsers.add_parser( "challenge", help="Create a Map Roulette Challenge" ) parser_mr.add_argument( "--id", help="ID - Indicates the ID of an existing EC2 instance to use", ) parser_mr.add_argument( "--project", required=True, help="PROJECT - Indicates the name to use to create the map roulette project", ) parser_mr.add_argument( "--mrkey", required=True, help="MRKEY - The api|key to use to connect to Map Roulette", ) parser_mr.add_argument( "--countries", required=True, help="COUNTRIES - A comma separated list of ISO3 codes. (e.g. --countries=GBR)", ) parser_mr.add_argument( "--checks", required=True, help="CHECKS - A comma separated list of checks names to include in project. " "(e.g. --checks='EdgeCrossingEdgeCheck,SinkIslandCheck')", ) parser_mr.add_argument( "--key", required=True, help="KEY - Instance key name to use to login to instance. This key " "is expected to be the same name as the key as defined by AWS and the " "corresponding pem file must be located in your local '~/.ssh/' " "directory and should be a pem file. See the following URL for " "instructions on creating a key: " "https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html. " "(e.g. `--key=aws-key`)", ) parser_mr.add_argument( "--config", required=True, help="CONFIG - Path within the S2 Input bucket or a URL to a json file to " "use as configuration.json for atlas-checks (Default: Latest from atlas-config repo)", ) parser_mr.add_argument( "--input", required=True, help="INPUT - The s3 Atlas Files Output directory to use as input for challenge. " "(e.g. '--input=s3://atlas-bucket/atlas-checks/output')", ) parser_mr.add_argument( "--jar", help="JAR - The full path to the jar file to execute.", ) parser_mr.set_defaults(func=CloudAtlasChecksControl.challenge) parser_clean = subparsers.add_parser("clean", help="Clean up instance") parser_clean.add_argument( "--id", required=True, help="ID - Indicates the ID of an existing EC2 instance to use", ) parser_clean.add_argument( "--key", required=True, help="KEY - Instance key name to use to login to instance. This key " "is expected to be the same name as the key as defined by AWS and the " "corresponding pem file must be located in your local '~/.ssh/' " "directory and should be a pem file. See the following URL for " "instructions on creating a key: " "https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html. " "(e.g. `--key=aws-key`)", ) parser_clean.set_defaults(func=CloudAtlasChecksControl.clean) args = parser.parse_args() return args def evaluate(args, cloudctl): """Evaluate the given arguments. :param args: The user's input. :param cloudctl: An instance of CloudAtlasChecksControl to use. """ if args.version is True: logger.critical("This is version {0}.".format(VERSION)) finish() if args.name is not None: cloudctl.instanceName = args.name if args.template is not None: cloudctl.templateName = args.templateName if args.minutes is not None: cloudctl.timeoutMinutes = args.minutes if hasattr(args, "input") and args.input is not None: cloudctl.s3InFolder = args.input if hasattr(args, "mount") and args.mount is not None: cloudctl.s3fsMount = args.mount if hasattr(args, "processes") and args.processes is not None: cloudctl.processes = args.processes if hasattr(args, "key") and args.key is not None: cloudctl.key = args.key if hasattr(args, "output") and args.output is not None: cloudctl.s3OutFolder = args.output if hasattr(args, "countries") and args.countries is not None: cloudctl.countries = args.countries if hasattr(args, "formats") and args.formats is not None: cloudctl.formats = args.formats if hasattr(args, "memory") and args.memory is not None: cloudctl.memory = args.memory if hasattr(args, "config") and args.config is not None: cloudctl.atlasConfig = args.config if hasattr(args, "checks") and args.checks is not None: cloudctl.checks = args.checks if hasattr(args, "mrkey") and args.mrkey is not None: cloudctl.mrkey = args.mrkey if hasattr(args, "project") and args.project is not None: cloudctl.mrProject = args.project if hasattr(args, "jar") and args.jar is not None: cloudctl.jar = args.jar if hasattr(args, "info") and args.jar is not None: cloudctl.info = args.info if hasattr(args, "id") and args.id is not None: cloudctl.instanceId = args.id cloudctl.get_instance_info() if hasattr(args, "func") and args.func is not None: args.func(cloudctl) else: finish("A command must be specified. Try '-h' for help.") logger = setup_logging() if __name__ == "__main__": args = parse_args() cloudctl = CloudAtlasChecksControl( terminate=args.terminate, awsRegion=args.zone, ) evaluate(args, cloudctl) finish()
38.028935
110
0.575829
d68dd7c0448dc9a77e633b6c109fa88cc2883068
9,211
py
Python
src/azure-cli/azure/cli/command_modules/appservice/_validators.py
nexxai/azure-cli
3f24ada49f3323d9310d46ccc1025dc99fc4cf8e
[ "MIT" ]
2
2020-08-08T11:00:25.000Z
2020-08-08T11:00:30.000Z
src/azure-cli/azure/cli/command_modules/appservice/_validators.py
nexxai/azure-cli
3f24ada49f3323d9310d46ccc1025dc99fc4cf8e
[ "MIT" ]
1
2021-06-02T02:47:28.000Z
2021-06-02T02:47:29.000Z
src/azure-cli/azure/cli/command_modules/appservice/_validators.py
nexxai/azure-cli
3f24ada49f3323d9310d46ccc1025dc99fc4cf8e
[ "MIT" ]
1
2020-09-07T18:44:14.000Z
2020-09-07T18:44:14.000Z
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from knack.util import CLIError from msrestazure.tools import is_valid_resource_id, parse_resource_id from azure.cli.core.commands.client_factory import get_mgmt_service_client from ._client_factory import web_client_factory from .utils import _normalize_sku def validate_timeout_value(namespace): """Validates that zip deployment timeout is set to a reasonable min value""" if isinstance(namespace.timeout, int): if namespace.timeout <= 29: raise CLIError('--timeout value should be a positive value in seconds and should be at least 30') def validate_site_create(cmd, namespace): """Validate the SiteName that is being used to create is available This API requires that the RG is already created""" client = web_client_factory(cmd.cli_ctx) if isinstance(namespace.name, str) and isinstance(namespace.resource_group_name, str) \ and isinstance(namespace.plan, str): resource_group_name = namespace.resource_group_name plan = namespace.plan if is_valid_resource_id(plan): parsed_result = parse_resource_id(plan) plan_info = client.app_service_plans.get(parsed_result['resource_group'], parsed_result['name']) else: plan_info = client.app_service_plans.get(resource_group_name, plan) if not plan_info: raise CLIError("The plan '{}' doesn't exist in the resource group '{}'".format(plan, resource_group_name)) # verify that the name is available for create validation_payload = { "name": namespace.name, "type": "Microsoft.Web/sites", "location": plan_info.location, "properties": { "serverfarmId": plan_info.id } } validation = client.validate(resource_group_name, validation_payload) if validation.status.lower() == "failure" and validation.error.code != 'SiteAlreadyExists': raise CLIError(validation.error.message) def validate_ase_create(cmd, namespace): # Validate the ASE Name availability client = web_client_factory(cmd.cli_ctx) resource_type = 'Microsoft.Web/hostingEnvironments' if isinstance(namespace.name, str): name_validation = client.check_name_availability(namespace.name, resource_type) if not name_validation.name_available: raise CLIError(name_validation.message) def validate_asp_create(cmd, namespace): """Validate the SiteName that is being used to create is available This API requires that the RG is already created""" client = web_client_factory(cmd.cli_ctx) if isinstance(namespace.name, str) and isinstance(namespace.resource_group_name, str): resource_group_name = namespace.resource_group_name if isinstance(namespace.location, str): location = namespace.location else: from azure.cli.core.profiles import ResourceType rg_client = get_mgmt_service_client(cmd.cli_ctx, ResourceType.MGMT_RESOURCE_RESOURCES) group = rg_client.resource_groups.get(resource_group_name) location = group.location validation_payload = { "name": namespace.name, "type": "Microsoft.Web/serverfarms", "location": location, "properties": { "skuName": _normalize_sku(namespace.sku) or 'B1', "capacity": namespace.number_of_workers or 1, "needLinuxWorkers": namespace.is_linux, "isXenon": namespace.hyper_v } } validation = client.validate(resource_group_name, validation_payload) if validation.status.lower() == "failure" and validation.error.code != 'ServerFarmAlreadyExists': raise CLIError(validation.error.message) def validate_app_or_slot_exists_in_rg(cmd, namespace): """Validate that the App/slot exists in the RG provided""" client = web_client_factory(cmd.cli_ctx) webapp = namespace.name resource_group_name = namespace.resource_group_name if isinstance(namespace.slot, str): app = client.web_apps.get_slot(resource_group_name, webapp, namespace.slot, raw=True) else: app = client.web_apps.get(resource_group_name, webapp, None, raw=True) if app.response.status_code != 200: raise CLIError(app.response.text) def validate_app_exists_in_rg(cmd, namespace): client = web_client_factory(cmd.cli_ctx) webapp = namespace.name resource_group_name = namespace.resource_group_name app = client.web_apps.get(resource_group_name, webapp, None, raw=True) if app.response.status_code != 200: raise CLIError(app.response.text) def validate_add_vnet(cmd, namespace): resource_group_name = namespace.resource_group_name from azure.cli.command_modules.network._client_factory import network_client_factory vnet_client = network_client_factory(cmd.cli_ctx) list_all_vnets = vnet_client.virtual_networks.list_all() vnet = namespace.vnet name = namespace.name slot = namespace.slot vnet_loc = '' for v in list_all_vnets: if vnet in (v.name, v.id): vnet_loc = v.location break from ._appservice_utils import _generic_site_operation webapp = _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'get', slot) # converting geo region to geo location webapp_loc = webapp.location.lower().replace(" ", "") if vnet_loc != webapp_loc: raise CLIError("The app and the vnet resources are in different locations. \ Cannot integrate a regional VNET to an app in a different region") def validate_front_end_scale_factor(namespace): if namespace.front_end_scale_factor: min_scale_factor = 5 max_scale_factor = 15 scale_error_text = "Frontend Scale Factor '{}' is invalid. Must be between {} and {}" scale_factor = namespace.front_end_scale_factor if scale_factor < min_scale_factor or scale_factor > max_scale_factor: raise CLIError(scale_error_text.format(scale_factor, min_scale_factor, max_scale_factor)) def validate_asp_sku(cmd, namespace): import json client = web_client_factory(cmd.cli_ctx) serverfarm = namespace.name resource_group_name = namespace.resource_group_name asp = client.app_service_plans.get(resource_group_name, serverfarm, None, raw=True) if asp.response.status_code != 200: raise CLIError(asp.response.text) # convert byte array to json output_str = asp.response.content.decode('utf8') res = json.loads(output_str) # Isolated SKU is supported only for ASE if namespace.sku in ['I1', 'I2', 'I3']: if res.get('properties').get('hostingEnvironment') is None: raise CLIError("The pricing tier 'Isolated' is not allowed for this app service plan. Use this link to " "learn more: https://docs.microsoft.com/en-us/azure/app-service/overview-hosting-plans") else: if res.get('properties').get('hostingEnvironment') is not None: raise CLIError("Only pricing tier 'Isolated' is allowed in this app service plan. Use this link to " "learn more: https://docs.microsoft.com/en-us/azure/app-service/overview-hosting-plans") def validate_ip_address(cmd, namespace): if namespace.ip_address is not None: _validate_ip_address_format(namespace) _validate_ip_address_existance(cmd, namespace) def _validate_ip_address_format(namespace): if namespace.ip_address is not None: # IPv6 if ':' in namespace.ip_address: if namespace.ip_address.count(':') > 1: if '/' not in namespace.ip_address: namespace.ip_address = namespace.ip_address + '/128' return return # IPv4 elif '.' in namespace.ip_address: if namespace.ip_address.count('.') == 3: if '/' not in namespace.ip_address: namespace.ip_address = namespace.ip_address + '/32' return return raise CLIError('Invalid IP address') def _validate_ip_address_existance(cmd, namespace): resource_group_name = namespace.resource_group_name name = namespace.name slot = namespace.slot from ._appservice_utils import _generic_site_operation configs = _generic_site_operation(cmd.cli_ctx, resource_group_name, name, 'get_configuration', slot) access_rules = configs.ip_security_restrictions is_exists = [(lambda x: x.ip_address == namespace.ip_address)(x) for x in access_rules] if True in is_exists: raise CLIError('IP address ' + namespace.ip_address + ' already exists.' 'Cannot add duplicate IP address values.')
44.713592
118
0.674194
fd96619a22323a6b64a70520c8c12ee482ceb87c
4,396
py
Python
tensortrade/oms/orders/broker.py
alexis-rodriguez/tensortrade
b9008c9becac3b46eb91796b4950d2fe5aa97cdf
[ "Apache-2.0" ]
null
null
null
tensortrade/oms/orders/broker.py
alexis-rodriguez/tensortrade
b9008c9becac3b46eb91796b4950d2fe5aa97cdf
[ "Apache-2.0" ]
null
null
null
tensortrade/oms/orders/broker.py
alexis-rodriguez/tensortrade
b9008c9becac3b46eb91796b4950d2fe5aa97cdf
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 The TensorTrade Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License from typing import List, Dict from collections import OrderedDict from tensortrade.core.base import TimeIndexed from tensortrade.oms.orders.order import Order, OrderStatus from tensortrade.oms.orders.order_listener import OrderListener class Broker(OrderListener, TimeIndexed): """A broker for handling the execution of orders on multiple exchanges. Orders are kept in a virtual order book until they are ready to be executed. Attributes ---------- unexecuted : `List[Order]` The list of orders the broker is waiting to execute, when their criteria is satisfied. executed : `Dict[str, Order]` The dictionary of orders the broker has executed since resetting, organized by order id. trades : `Dict[str, Trade]` The dictionary of trades the broker has executed since resetting, organized by order id. """ def __init__(self): self.unexecuted = [] self.executed = {} self.trades = OrderedDict() def submit(self, order: "Order") -> None: """Submits an order to the broker. Adds `order` to the queue of orders waiting to be executed. Parameters ---------- order : `Order` The order to be submitted. """ self.unexecuted += [order] def cancel(self, order: "Order") -> None: """Cancels an order. Parameters ---------- order : `Order` The order to be canceled. """ if order.status == OrderStatus.CANCELLED: raise Warning(f"Order {order.id} has already been cancelled.") if order in self.unexecuted: self.unexecuted.remove(order) order.cancel() def update(self) -> None: """Updates the brokers order management system. The broker will look through the unexecuted orders and if an order is ready to be executed the broker will submit it to the executed list and execute the order. Then the broker will find any orders that are active, but expired, and proceed to cancel them. """ executed_ids = [] for order in self.unexecuted: if order.is_executable: executed_ids.append(order.id) self.executed[order.id] = order order.attach(self) order.execute() for order_id in executed_ids: self.unexecuted.remove(self.executed[order_id]) for order in remove: self.unexecuted.remove(order) for order in self.unexecuted + list(self.executed.values()): if order.is_active and order.is_expired: self.cancel(order) def on_fill(self, order: "Order", trade: "Trade") -> None: """Updates the broker after an order has been filled. Parameters ---------- order : `Order` The order that is being filled. trade : `Trade` The trade that is being made to fill the order. """ if trade.order_id in self.executed and trade not in self.trades: self.trades[trade.order_id] = self.trades.get(trade.order_id, []) self.trades[trade.order_id] += [trade] if order.is_complete: next_order = order.complete() if next_order: if next_order.is_executable: self.executed[next_order.id] = next_order next_order.attach(self) next_order.execute() else: self.submit(next_order) def reset(self) -> None: """Resets the broker.""" self.unexecuted = [] self.executed = {} self.trades = OrderedDict()
33.052632
80
0.608508
e3887f019edc48b64c8a799e0cde890e95a2a1b1
4,238
py
Python
files/default/hopsworks_auth/hopsworks_jwt_auth.py
tkakantousis/airflow-chef
18b869b5b1b5a9323a605403923ce6bf1a26ff7a
[ "Apache-2.0" ]
null
null
null
files/default/hopsworks_auth/hopsworks_jwt_auth.py
tkakantousis/airflow-chef
18b869b5b1b5a9323a605403923ce6bf1a26ff7a
[ "Apache-2.0" ]
null
null
null
files/default/hopsworks_auth/hopsworks_jwt_auth.py
tkakantousis/airflow-chef
18b869b5b1b5a9323a605403923ce6bf1a26ff7a
[ "Apache-2.0" ]
null
null
null
import sys import requests import flask_login from requests.auth import AuthBase from flask_login import login_required, logout_user, current_user, UserMixin from flask import flash, url_for, redirect, request, current_app from airflow import models from airflow import configuration from airflow.configuration import AirflowConfigException from airflow.utils.log.logging_mixin import LoggingMixin PY3 = sys.version_info[0] == 3 if PY3: from urllib import parse as urlparse from jwt import JWT jwt = JWT() else: import urlparse import jwt log = LoggingMixin().log login_manager = flask_login.LoginManager() login_manager.login_view = 'airflow.login' login_manager.session_protection = "Strong" JWT_SUBJECT_KEY = 'sub' class AuthenticationError(Exception): pass class JWTUser(models.User): def __init__(self, user): self.user = user log.debug("User is: {}".format(user)) if configuration.conf.getboolean("webserver", "filter_by_owner"): superuser_username = configuration.conf.get("webserver", "superuser") if user.username == superuser_username: self.superuser = True else: self.superuser = False else: self.superuser = True @property def is_active(self): """Required by flask_login""" return True @property def is_authenticated(self): """Required by flask_login""" return True @property def is_anonymous(self): """Required by flask_login""" return False def data_profiling(self): """Provides access to data profiling tools""" return self.superuser def is_superuser(self): """Access all things""" return self.superuser def get_id(self): return self.user.get_id() @login_manager.user_loader def load_user(user_id): log.debug("Loading user with id: {0}".format(user_id)) user = models.User(id=user_id, username=user_id, is_superuser=False) return JWTUser(user) def authenticate(jwt): hopsworks_host = configuration.conf.get("webserver", "hopsworks_host") hopsworks_port = configuration.conf.get("webserver", "hopsworks_port") if not hopsworks_port: hopsworks_port = 443 url = "https://{host}:{port}/hopsworks-api/api/auth/jwt/session".format( host = parse_host(hopsworks_host), port = hopsworks_port) auth = AuthorizationToken(jwt) response = requests.get(url, auth=auth, verify=False) response.raise_for_status() if response.status_code != requests.codes.ok: raise AuthenticationError() def parse_host(host): """ Host should be just the hostname or ip address Remove protocol or any endpoints from the host """ parsed_host = urlparse.urlparse(host).hostname if parsed_host: # Host contains protocol return parsed_host return host def login(self, request): if current_user.is_authenticated: flash("You are already logged in") return redirect(url_for('index')) if 'Authorization' not in request.headers: flash("Missing authorization header") return redirect(url_for('airflow.noaccess')) jwt_bearer = request.headers.get('Authorization') try: authenticate(jwt_bearer) encoded_jwt = jwt_bearer.split(' ')[1].strip() decoded_jwt = decode_jwt(encoded_jwt) username = decoded_jwt[JWT_SUBJECT_KEY] log.debug("Subject is: {}".format(username)) user = models.User(id=username, username=username, is_superuser=False) flask_login.login_user(JWTUser(user), force=True) return redirect(request.args.get("next") or url_for("admin.index")) except AuthenticationError: flash("Invalid JWT") return redirect(url_for('airflow.noaccess')) def decode_jwt(encoded_jwt): if PY3: return jwt.decode(encoded_jwt, do_verify=False) return jwt.decode(encoded_jwt, verify=False) class AuthorizationToken(AuthBase): def __init__(self, token): self.token = token def __call__(self, request): request.headers['Authorization'] = self.token return request
28.829932
81
0.677206
e6f4cdcb557272ca18b82c29953abf569bbcc10f
9,711
py
Python
source/conf.py
AENCO-Global/Chain-Docs
baa8f6328acb983e10749af56d6d54065ac60347
[ "Apache-2.0" ]
null
null
null
source/conf.py
AENCO-Global/Chain-Docs
baa8f6328acb983e10749af56d6d54065ac60347
[ "Apache-2.0" ]
null
null
null
source/conf.py
AENCO-Global/Chain-Docs
baa8f6328acb983e10749af56d6d54065ac60347
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # # AEN-docs documentation build configuration file, created by # sphinx-quickstart on Mon Dec 18 16:39:26 2017. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath('_ext')) import sphinx_bootstrap_theme # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.imgmath', 'sphinx.ext.ifconfig', 'sphinx.ext.viewcode', 'sphinx.ext.githubpages', 'sphinxcontrib.examplecode', 'sphinxcontrib.fulltoc', 'sphinxcontrib.ghcontributors', 'edit-on-github', 'ablog' ] # Add any paths that contain templates here, relative to this directory. import ablog templates_path = ['_templates'] templates_path.append(ablog.get_html_templates_path()) # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = u'AEN-docs' copyright = u'2018, AEN' author = u'AEN' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = u'0.12' # The full version, including alpha/beta/rc tags. release = u'Master' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = [] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'bootstrap' html_theme_path = sphinx_bootstrap_theme.get_html_theme_path() # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = { 'navbar_title': "developer center", # Tab name for entire site. (Default: "Site") 'navbar_site_name': "Site", 'navbar_links': [ ("Getting Started", "getting-started/what-is-aen"), ("Guides", "guides/overview"), ("References", "references"), ], # Render the next and previous page links in navbar. (Default: true) 'navbar_sidebarrel': False, # Render the current pages TOC in the navbar. (Default: true) 'navbar_pagenav': False, # Tab name for the current pages TOC. (Default: "Page") 'navbar_pagenav_name': "Page", # Global TOC depth for "site" navbar tab. (Default: 1) # Switching to -1 shows all levels. 'globaltoc_depth': 2, # Include hidden TOCs in Site navbar? # # Note: If this is "false", you cannot have mixed ``:hidden:`` and # non-hidden ``toctree`` directives in the same page, or else the build # will break. # # Values: "true" (default) or "false" 'globaltoc_includehidden': "true", # HTML navbar class (Default: "navbar") to attach to <div> element. # For black navbar, do "navbar navbar-inverse" 'navbar_class': "navbar", # Fix navigation bar to top of page? # Values: "true" (default) or "false" 'navbar_fixed_top': "true", # Location of link to source. # Options are "nav" (default), "footer" or anything else to exclude. 'source_link_position': "exclude", # Bootswatch (http://bootswatch.com/) theme. # # Options are nothing (default) or the name of a valid theme # such as "cosmo" or "sandstone". # # The set of valid themes depend on the version of Bootstrap # that's used (the next config option). # # Currently, the supported themes are: # - Bootstrap 2: https://bootswatch.com/2 # - Bootstrap 3: https://bootswatch.com/3 'bootswatch_theme': "cosmo", # Choose Bootstrap version. # Values: "3" (default) or "2" (in quotes) 'bootstrap_version': "3", } # The name of an image file (relative to this directory) to place at the top # of the sidebar. html_logo = "_static/logo-aen.svg" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] ## Custom style overrides def setup(app): app.add_stylesheet("https://use.fontawesome.com/releases/v5.0.13/css/all.css") app.add_stylesheet("css/custom.css") # may also be an URL app.add_javascript("js/custom.js") # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # This is required for the alabaster theme # refs: http://alabaster.readthedocs.io/en/latest/installation.html#sidebars html_sidebars = { 'api/requests': ['localtoc.html'], 'api/endpoints': [], 'api/tools': ['localtoc.html'], 'api/websockets': ['localtoc.html'], 'api/status-errors': ['localtoc.html'], 'cli/**': ['localtoc.html'], 'concepts/**': ['localtoc.html'], 'getting-started/**': ['localtoc.html'], 'guides/overview': ['localtoc.html'], 'guides/account': ['localtoc.html'], 'guides/blockchain': ['localtoc.html'], 'guides/mosaic': ['localtoc.html'], 'guides/namespace': ['localtoc.html'], 'guides/mosaic': ['localtoc.html'], 'guides/running-a-node': ['localtoc.html'], 'guides/transaction': ['localtoc.html'], 'guides/workshops': ['localtoc.html'], 'guides/workshops/creating-a-new-workshop': ['localtoc.html'], 'guides/writing-a-guide': ['localtoc.html'], 'libraries/**': ['localtoc.html'], 'prototyping-tool/**': ['localtoc.html'], 'sdk/**': ['localtoc.html'], 'wallet/**': ['localtoc.html'], 'support/**': ['localtoc.html'], 'index': [], } # -- Options for HTMLHelp output ------------------------------------------ # Output file base name for HTML help builder. htmlhelp_basename = 'AEN-docsdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'AEN-docs.tex', u'AEN-docs Documentation', u'AEN', 'manual'), ] # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'AEN-docs', u'AEN-docs Documentation', [author], 1) ] # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'AEN-docs', u'AEN-docs Documentation', author, 'AEN-docs', 'One line description of project.', 'Miscellaneous'), ] # -- Options for Epub output ---------------------------------------------- # Bibliographic Dublin Core info. epub_title = project epub_author = author epub_publisher = author epub_copyright = copyright # The unique identifier of the text. This can be a ISBN number # or the project homepage. # # epub_identifier = '' # A unique identification for the text. # # epub_uid = '' # A list of files that should not be packed into the epub file. epub_exclude_files = ['search.html'] # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'https://docs.python.org/': None} html_favicon = 'favicon-32x32.png' # -- Options for edit on github ---------------------------------------------- edit_on_github_project = 'AENCo-Global/Chain-Docs' edit_on_github_branch = 'master' # -- Options for edit scaled images ---------------------------------------------- html_scaled_image_link = False # base blog url blog_baseurl = ''
29.972222
82
0.664092
7d7a7567f81bc66381cb3461c3fb99277a3059d5
6,253
py
Python
cogs/amongUs.py
ovandermeer/Pixels-bot
2d0cf8617aa5b189168dcb6cf8ea0e3e3461e158
[ "MIT" ]
1
2021-04-30T04:32:08.000Z
2021-04-30T04:32:08.000Z
cogs/amongUs.py
ovandermeer/Pixels-bot
2d0cf8617aa5b189168dcb6cf8ea0e3e3461e158
[ "MIT" ]
null
null
null
cogs/amongUs.py
ovandermeer/Pixels-bot
2d0cf8617aa5b189168dcb6cf8ea0e3e3461e158
[ "MIT" ]
1
2021-06-26T13:13:19.000Z
2021-06-26T13:13:19.000Z
import discord from discord.ext import commands import configparser import sys import logging import PixelBotData.supportingFunctions as supportingFunctions logging.basicConfig( level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s", handlers=[ logging.FileHandler(f"debug-{supportingFunctions.getDate()}.log")] ) from time import sleep class amongUs(commands.Cog): def __init__(self, client): self.client = client self.client = client self.config = configparser.ConfigParser() self.config.read('config.ini') self.amongUsRequiresRole = self.config["pixelBotConfig"]["amongUsRequiresRole"] self.amongUsRequiresRole = self.amongUsRequiresRole.lower() if self.amongUsRequiresRole != "true" and self.amongUsRequiresRole != "false": logging.warning('Please enter either true or false under the "amongUsRequiresRole" field in config.ini') print(f'[{supportingFunctions.getTime()}] Please enter either true or false under the "amongUsRequiresRole" field in config.ini') sys.exit() @commands.command(aliases=['kill', 'die', 'k', 'K']) async def killPlayer(self, ctx, *, members=None): runCommand = False if self.amongUsRequiresRole == "false": runCommand = True else: for role in ctx.author.roles: role = str(role) if role == "Among Us permission": runCommand = True if runCommand is True: if members is None: await ctx.send('Please mention at least one valid user!') return members = members.split(" ") for member in members: member = member[3:] member = member[:-1] member = int(member) memberObject = ctx.guild.get_member(member) deadRole = discord.utils.get(ctx.guild.roles, name="Among Us - Dead") await memberObject.add_roles(deadRole) await memberObject.edit(mute=True) await ctx.send("Player(s) killed!") else: await ctx.send("This command requires the 'Among Us permission' role to run. Please make sure you have this role, and try again.") @commands.command(aliases=['reset', 'restart', 'r', 'R']) async def resetGame(self, ctx): runCommand = False if self.amongUsRequiresRole == "false": runCommand = True else: for role in ctx.author.roles: role = str(role) if role == "Among Us permission": runCommand = True if runCommand is True: deadRole = discord.utils.get(ctx.guild.roles, name="Among Us - Dead") deadMembers = deadRole.members for member in deadMembers: await member.remove_roles(deadRole) await self.unmuteAllUsers(ctx) await ctx.send("Game reset!") else: await ctx.send("This command requires the 'Among Us permission' role to run. Please make sure you have this role, and try again.") @commands.command(aliases=["mute", "mutea", 'm', 'M']) async def muteAll(self, ctx): runCommand = False if self.amongUsRequiresRole == "false": runCommand = True else: for role in ctx.author.roles: role = str(role) if role == "Among Us permission": runCommand = True if runCommand is True: channel = discord.utils.get(ctx.guild.voice_channels, name='Among Us', bitrate=64000) members = channel.members for member in members: await member.edit(mute=True) await ctx.send("Muted channel!") else: await ctx.send("This command requires the 'Among Us permission' role to run. Please make sure you have this role, and try again.") @commands.command(aliases=["umute", "unmute", 'u', 'um', 'U', 'UM']) async def unmuteAll(self, ctx): runCommand = False if self.amongUsRequiresRole == "false": runCommand = True else: for role in ctx.author.roles: role = str(role) if role == "Among Us permission": runCommand = True if runCommand is True: await self.unmuteAllUsers(ctx) await ctx.send("Unmuted all players!") else: await ctx.send("This command requires the 'Among Us permission' role to run. Please make sure you have this role, and try again.") @commands.command(aliases=["umutea", "unmutea", 'ua', 'UA']) async def unmuteAlive(self, ctx): runCommand = False if self.amongUsRequiresRole == "false": runCommand = True else: for role in ctx.author.roles: role = str(role) if role == "Among Us permission": runCommand = True if runCommand is True: channel = discord.utils.get(ctx.guild.voice_channels, name='Among Us', bitrate=64000) members = channel.members for member in members: dead = False for role in member.roles: role = str(role) if role == "Among Us - Dead": dead = True if not dead: await member.edit(mute=False) await ctx.send("Unmuted alive players!") else: await ctx.send("This command requires the 'Among Us permission' role to run. Please make sure you have this role, and try again.") async def unmuteAllUsers(self, ctx): channel = discord.utils.get(ctx.guild.voice_channels, name='Among Us', bitrate=64000) members = channel.members for member in members: await member.edit(mute=False) def setup(client): client.add_cog(amongUs(client))
37.443114
142
0.56245
a36f64c2e4638e2a3f62d4b0db9467ee224ffdc4
2,988
py
Python
tests/telephony/test_lowlevel.py
JesseVermeulen123/conducthotline.com
4e854b94e62c64a89fb631afbcc56d07dcfb0828
[ "Apache-2.0" ]
23
2019-03-19T05:26:09.000Z
2021-07-21T20:36:02.000Z
tests/telephony/test_lowlevel.py
JesseVermeulen123/conducthotline.com
4e854b94e62c64a89fb631afbcc56d07dcfb0828
[ "Apache-2.0" ]
23
2019-03-29T02:41:11.000Z
2021-04-30T20:45:47.000Z
tests/telephony/test_lowlevel.py
JesseVermeulen123/conducthotline.com
4e854b94e62c64a89fb631afbcc56d07dcfb0828
[ "Apache-2.0" ]
10
2019-03-19T14:01:57.000Z
2020-11-28T12:44:45.000Z
# Copyright 2019 Alethea Katherine Flowers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from unittest import mock import nexmo import pytest from hotline.telephony import lowlevel @pytest.mark.parametrize( ["country", "expected"], [(None, "11234567890"), ("US", "11234567890"), ("GB", "441234567890")], ) def test_rent_number(country, expected): client = mock.create_autospec(nexmo.Client) client.application_id = "appid" client.get_available_numbers.return_value = { "numbers": [ # Should always grab the first one. {"country": country, "msisdn": expected}, {"country": "US", "msisdn": "19876543210"}, ] } result = lowlevel.rent_number( sms_callback_url="example.com/sms", country_code=country, client=client ) assert result == {"country": country, "msisdn": f"+{expected}"} client.get_available_numbers.assert_called_once_with(country, mock.ANY) client.buy_number.assert_called_once_with({"country": country, "msisdn": expected}) def test_rent_number_none_available(): client = mock.create_autospec(nexmo.Client) client.application_id = "appid" client.get_available_numbers.return_value = {"numbers": []} with pytest.raises(RuntimeError, match="No numbers available"): lowlevel.rent_number(sms_callback_url="example.com/sms", client=client) def test_rent_number_buy_error_is_okay(): client = mock.create_autospec(nexmo.Client) client.application_id = "appid" client.get_available_numbers.return_value = { "numbers": [ {"country": "US", "msisdn": "+1123456789"}, {"country": "US", "msisdn": "+1987654321"}, ] } # Return an error when trying to buy the first number, so that the method # ends up buying the second number. client.buy_number.side_effect = [nexmo.Error(), None] result = lowlevel.rent_number(sms_callback_url="example.com/sms", client=client) assert result == {"country": "US", "msisdn": "+1987654321"} assert client.buy_number.call_count == 2 @mock.patch("time.sleep", autospec=True) def test_send_sms(sleep): client = mock.create_autospec(nexmo.Client) client.application_id = "appid" client.send_message.return_value = {"messages": [{}]} lowlevel.send_sms(to="1234", sender="5678", message="meep", client=client) client.send_message.assert_called_once_with( {"from": "5678", "to": "1234", "text": "meep"} )
32.835165
87
0.690428
06638660481cdb3f0eda2019b3c76781dafcf423
2,204
py
Python
TechTry/paramikoTest/paramiko-test1.py
yangdaodao92/common-tools
a1d90c7666b50306646ce24ec2c87115876079cb
[ "Apache-2.0" ]
null
null
null
TechTry/paramikoTest/paramiko-test1.py
yangdaodao92/common-tools
a1d90c7666b50306646ce24ec2c87115876079cb
[ "Apache-2.0" ]
null
null
null
TechTry/paramikoTest/paramiko-test1.py
yangdaodao92/common-tools
a1d90c7666b50306646ce24ec2c87115876079cb
[ "Apache-2.0" ]
null
null
null
import paramiko import select import re import sys import io # interesting_line_pattern = re.compile('xxx') sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8') def do_tail(): client = paramiko.SSHClient() client.load_system_host_keys() client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) from os.path import expanduser home = expanduser("~") # client.connect('xxx', username='xxx', key_filename='%s/.ssh/id_rsa' % home) # client.connect('192.168.133.177', username='root', password='123qwe!@#') # client.connect('10.126.15.196', username='paas', password='123qwe!@#') client.connect('10.126.15.182', username='paas', password='123qwe!@#') # log_file = '/opt/tomcats/apache-tomcat-member-center-api/logs/catalina.out' log_file = '/opt/apache-tomcat-7.0.47_8080/logs/catalina.out' # grep_pattern = "grep_filter" remote_command = 'tail -f %s' % log_file print(remote_command) transport = client.get_transport() channel = transport.open_session() channel.exec_command(remote_command) BUF_SIZE = 1024 LeftOver = b'' while transport.is_active(): # print('transport is active') try: rl, wl, xl = select.select([channel], [], [], 0.0) if len(rl) > 0: buf = channel.recv(BUF_SIZE) if len(buf) > 0: lines_to_process = LeftOver + buf EOL = lines_to_process.rfind(b'\n') if EOL != len(lines_to_process) - 1: LeftOver = lines_to_process[EOL + 2:] lines_to_process = lines_to_process[:EOL+1] else: LeftOver = b'' if lines_to_process.rfind(b'\n') == len(lines_to_process) - 1: for line in lines_to_process.splitlines(): print(str(line, 'utf-8')) else: print(len(lines_to_process)) except (KeyboardInterrupt, SystemExit): print('got ctrl+c') break client.close() print('client closed') if __name__ == '__main__': do_tail()
34.984127
82
0.579855
55b87b4bcf07ebc66a001cd15474932ea3e22975
14,651
py
Python
qpython3/qconnection.py
gusutabopb/qPython3
d194f742d5a8fd69e32c895435db595fc9e15a15
[ "Apache-2.0" ]
null
null
null
qpython3/qconnection.py
gusutabopb/qPython3
d194f742d5a8fd69e32c895435db595fc9e15a15
[ "Apache-2.0" ]
null
null
null
qpython3/qconnection.py
gusutabopb/qPython3
d194f742d5a8fd69e32c895435db595fc9e15a15
[ "Apache-2.0" ]
null
null
null
# # Copyright (c) 2011-2014 Exxeleron GmbH # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import socket import struct from . import MetaData, CONVERSION_OPTIONS from .qtype import QException from .qreader import QReader, QReaderException from .qwriter import QWriter, QWriterException class QConnectionException(Exception): '''Raised when a connection to the q service cannot be established.''' pass class QAuthenticationException(QConnectionException): '''Raised when a connection to the q service is denied.''' pass class MessageType(object): '''Enumeration defining IPC protocol message types.''' ASYNC = 0 SYNC = 1 RESPONSE = 2 class QConnection(object): '''Connector class for interfacing with the q service. Provides methods for synchronous and asynchronous interaction. The :class:`.QConnection` class provides a context manager API and can be used with a ``with`` statement:: with qconnection.QConnection(host = 'localhost', port = 5000) as q: print(q) print(q('{`int$ til x}', 10)) :Parameters: - `host` (`string`) - q service hostname - `port` (`integer`) - q service port - `username` (`string` or `None`) - username for q authentication/authorization - `password` (`string` or `None`) - password for q authentication/authorization - `timeout` (`nonnegative float` or `None`) - set a timeout on blocking socket operations - `encoding` (`string`) - string encoding for data deserialization - `reader_class` (subclass of `QReader`) - data deserializer - `writer_class` (subclass of `QWriter`) - data serializer :Options: - `raw` (`boolean`) - if ``True`` returns raw data chunk instead of parsed data, **Default**: ``False`` - `numpy_temporals` (`boolean`) - if ``False`` temporal vectors are backed by raw q representation (:class:`.QTemporalList`, :class:`.QTemporal`) instances, otherwise are represented as `numpy datetime64`/`timedelta64` arrays and atoms, **Default**: ``False`` - `single_char_strings` (`boolean`) - if ``True`` single char Python strings are encoded as q strings instead of chars, **Default**: ``False`` ''' def __init__(self, host, port, username=None, password=None, timeout=None, encoding='latin-1', reader_class=None, writer_class=None, **options): self.host = host self.port = port self.username = username self.password = password self._connection = None self._connection_file = None self._protocol_version = None self.timeout = timeout self._encoding = encoding self._options = MetaData(**CONVERSION_OPTIONS.union_dict(**options)) try: from qpython3._pandas import PandasQReader, PandasQWriter self._reader_class = PandasQReader self._writer_class = PandasQWriter except ImportError: self._reader_class = QReader self._writer_class = QWriter if reader_class: self._reader_class = reader_class if writer_class: self._writer_class = writer_class def __enter__(self): self.open() return self def __exit__(self, exc_type, exc_val, exc_tb): self.close() @property def protocol_version(self): '''Retrieves established version of the IPC protocol. :returns: `integer` -- version of the IPC protocol ''' return self._protocol_version def open(self): '''Initialises connection to q service. If the connection hasn't been initialised yet, invoking the :func:`.open` creates a new socket and performs a handshake with a q service. :raises: :class:`.QConnectionException`, :class:`.QAuthenticationException` ''' if not self._connection: if not self.host: raise QConnectionException('Host cannot be None') self._init_socket() self._initialize() self._writer = self._writer_class(self._connection, protocol_version=self._protocol_version, encoding=self._encoding) self._reader = self._reader_class(self._connection_file, encoding=self._encoding) def _init_socket(self): '''Initialises the socket used for communicating with a q service,''' try: self._connection = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self._connection.connect((self.host, self.port)) self._connection.settimeout(self.timeout) self._connection_file = self._connection.makefile('b') except: self._connection = None self._connection_file = None raise def close(self): '''Closes connection with the q service.''' if self._connection: self._connection_file.close() self._connection_file = None self._connection.close() self._connection = None def is_connected(self): '''Checks whether connection with a q service has been established. Connection is considered inactive when: - it has not been initialised, - it has been closed. :returns: `boolean` -- ``True`` if connection has been established, ``False`` otherwise ''' return True if self._connection else False def _initialize(self): '''Performs a IPC protocol handshake.''' credentials = (f'{self.username if self.username else ""}:' f'{self.password if self.password else ""}') credentials = credentials.encode(self._encoding) self._connection.send(credentials + b'\3\0') response = self._connection.recv(1) if len(response) != 1: self.close() self._init_socket() self._connection.send(credentials + b'\0') response = self._connection.recv(1) if len(response) != 1: self.close() raise QAuthenticationException('Connection denied.') self._protocol_version = min(struct.unpack('B', response)[0], 3) def __str__(self): if self.username: return f'{self.username}@:{self.host}:{self.port}' else: return f':{self.host}:{self.port}' def query(self, msg_type, query, *parameters, **options): '''Performs a query against a q service. In typical use case, `query` is the name of the function to call and `parameters` are its parameters. When `parameters` list is empty, the query can be an arbitrary q expression (e.g. ``0 +/ til 100``). Calls a anonymous function with a single parameter: >>> q.query(qconnection.MessageType.SYNC,'{til x}', 10) Executes a q expression: >>> q.query(qconnection.MessageType.SYNC,'til 10') :Parameters: - `msg_type` (one of the constants defined in :class:`.MessageType`) - type of the query to be executed - `query` (`string`) - query to be executed - `parameters` (`list` or `None`) - parameters for the query :Options: - `single_char_strings` (`boolean`) - if ``True`` single char Python strings are encoded as q strings instead of chars, **Default**: ``False`` :raises: :class:`.QConnectionException`, :class:`.QWriterException` ''' if not self._connection: raise QConnectionException('Connection is not established.') if parameters and len(parameters) > 8: raise QWriterException('Too many parameters.') if not parameters or len(parameters) == 0: self._writer.write(query, msg_type, **self._options.union_dict(**options)) else: self._writer.write([query] + list(parameters), msg_type, **self._options.union_dict(**options)) def sync(self, query, *parameters, **options): '''Performs a synchronous query against a q service and returns parsed data. In typical use case, `query` is the name of the function to call and `parameters` are its parameters. When `parameters` list is empty, the query can be an arbitrary q expression (e.g. ``0 +/ til 100``). Executes a q expression: >>> print(q.sync('til 10')) [0 1 2 3 4 5 6 7 8 9] Executes an anonymous q function with a single parameter: >>> print(q.sync('{til x}', 10)) [0 1 2 3 4 5 6 7 8 9] Executes an anonymous q function with two parameters: >>> print(q.sync('{y + til x}', 10, 1)) [ 1 2 3 4 5 6 7 8 9 10] >>> print(q.sync('{y + til x}', *[10, 1])) [ 1 2 3 4 5 6 7 8 9 10] The :func:`.sync` is called from the overloaded :func:`.__call__` function. This allows :class:`.QConnection` instance to be called as a function: >>> print(q('{y + til x}', 10, 1)) [ 1 2 3 4 5 6 7 8 9 10] :Parameters: - `query` (`string`) - query to be executed - `parameters` (`list` or `None`) - parameters for the query :Options: - `raw` (`boolean`) - if ``True`` returns raw data chunk instead of parsed data, **Default**: ``False`` - `numpy_temporals` (`boolean`) - if ``False`` temporal vectors are backed by raw q representation (:class:`.QTemporalList`, :class:`.QTemporal`) instances, otherwise are represented as `numpy datetime64`/`timedelta64` arrays and atoms, **Default**: ``False`` - `single_char_strings` (`boolean`) - if ``True`` single char Python strings are encoded as q strings instead of chars, **Default**: ``False`` :returns: query result parsed to Python data structures :raises: :class:`.QConnectionException`, :class:`.QWriterException`, :class:`.QReaderException` ''' self.query(MessageType.SYNC, query, *parameters, **options) response = self.receive(data_only=False, **options) if response.type == MessageType.RESPONSE: return response.data else: self._writer.write(QException('nyi: qPython expected response message'), MessageType.ASYNC if response.type == MessageType.ASYNC else MessageType.RESPONSE) raise QReaderException('Received message of type: %s where response was expected') def async_(self, query, *parameters, **options): '''Performs an asynchronous query and returns **without** retrieving of the response. In typical use case, `query` is the name of the function to call and `parameters` are its parameters. When `parameters` list is empty, the query can be an arbitrary q expression (e.g. ``0 +/ til 100``). Calls a anonymous function with a single parameter: >>> q.async_('{til x}', 10) Executes a q expression: >>> q.async_('til 10') :Parameters: - `query` (`string`) - query to be executed - `parameters` (`list` or `None`) - parameters for the query :Options: - `single_char_strings` (`boolean`) - if ``True`` single char Python strings are encoded as q strings instead of chars, **Default**: ``False`` :raises: :class:`.QConnectionException`, :class:`.QWriterException` ''' self.query(MessageType.ASYNC, query, *parameters, **options) def receive(self, data_only=True, **options): '''Reads and (optionally) parses the response from a q service. Retrieves query result along with meta-information: >>> q.query(qconnection.MessageType.SYNC,'{x}', 10) >>> print(q.receive(data_only = False, raw = False)) QMessage: message type: 2, data size: 13, is_compressed: False, data: 10 Retrieves parsed query result: >>> q.query(qconnection.MessageType.SYNC,'{x}', 10) >>> print(q.receive(data_only = True, raw = False)) 10 Retrieves not-parsed (raw) query result: >>> from binascii import hexlify >>> q.query(qconnection.MessageType.SYNC,'{x}', 10) >>> print(hexlify(q.receive(data_only = True, raw = True))) fa0a000000 :Parameters: - `data_only` (`boolean`) - if ``True`` returns only data part of the message, otherwise returns data and message meta-information encapsulated in :class:`.QMessage` instance :Options: - `raw` (`boolean`) - if ``True`` returns raw data chunk instead of parsed data, **Default**: ``False`` - `numpy_temporals` (`boolean`) - if ``False`` temporal vectors are backed by raw q representation (:class:`.QTemporalList`, :class:`.QTemporal`) instances, otherwise are represented as `numpy datetime64`/`timedelta64` arrays and atoms, **Default**: ``False`` :returns: depending on parameter flags: :class:`.QMessage` instance, parsed message, raw data :raises: :class:`.QReaderException` ''' result = self._reader.read(**self._options.union_dict(**options)) return result.data if data_only else result def __call__(self, *parameters, **options): return self.sync(parameters[0], *parameters[1:], **options)
38.965426
113
0.592315
e7f0bc80c971961477cb3f7a6bbc6474b04b6ffd
51,379
py
Python
tensorflow_datasets/core/dataset_builder.py
Rishabh-Choudhry/datasets
2bad427bba6cdcab717698a70c96339733c5d42c
[ "Apache-2.0" ]
2
2022-02-14T09:51:39.000Z
2022-02-14T13:27:49.000Z
tensorflow_datasets/core/dataset_builder.py
Rishabh-Choudhry/datasets
2bad427bba6cdcab717698a70c96339733c5d42c
[ "Apache-2.0" ]
null
null
null
tensorflow_datasets/core/dataset_builder.py
Rishabh-Choudhry/datasets
2bad427bba6cdcab717698a70c96339733c5d42c
[ "Apache-2.0" ]
1
2020-12-13T22:11:33.000Z
2020-12-13T22:11:33.000Z
# coding=utf-8 # Copyright 2022 The TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DatasetBuilder base class.""" import abc import dataclasses import functools import inspect import json import os import sys from typing import Any, ClassVar, Dict, Iterable, List, Optional, Tuple, Type, Union from absl import logging import six import tensorflow as tf from tensorflow_datasets.core import constants from tensorflow_datasets.core import dataset_info from tensorflow_datasets.core import decode from tensorflow_datasets.core import download from tensorflow_datasets.core import file_adapters from tensorflow_datasets.core import logging as tfds_logging from tensorflow_datasets.core import naming from tensorflow_datasets.core import registered from tensorflow_datasets.core import split_builder as split_builder_lib from tensorflow_datasets.core import splits as splits_lib from tensorflow_datasets.core import tf_compat from tensorflow_datasets.core import tfrecords_reader from tensorflow_datasets.core import units from tensorflow_datasets.core import utils from tensorflow_datasets.core.proto import dataset_info_pb2 from tensorflow_datasets.core.utils import file_utils from tensorflow_datasets.core.utils import gcs_utils from tensorflow_datasets.core.utils import read_config as read_config_lib from tensorflow_datasets.core.utils import type_utils import termcolor ReadOnlyPath = type_utils.ReadOnlyPath ReadWritePath = type_utils.ReadWritePath Tree = type_utils.Tree TreeDict = type_utils.TreeDict VersionOrStr = Union[utils.Version, str] FORCE_REDOWNLOAD = download.GenerateMode.FORCE_REDOWNLOAD REUSE_CACHE_IF_EXISTS = download.GenerateMode.REUSE_CACHE_IF_EXISTS REUSE_DATASET_IF_EXISTS = download.GenerateMode.REUSE_DATASET_IF_EXISTS GCS_HOSTED_MSG = """\ Dataset %s is hosted on GCS. It will automatically be downloaded to your local data directory. If you'd instead prefer to read directly from our public GCS bucket (recommended if you're running on GCP), you can instead pass `try_gcs=True` to `tfds.load` or set `data_dir=gs://tfds-data/datasets`. """ @dataclasses.dataclass(eq=False) class BuilderConfig: """Base class for `DatasetBuilder` data configuration. DatasetBuilder subclasses with data configuration options should subclass `BuilderConfig` and add their own properties. """ # TODO(py3.10): Should update dataclass to be: # * Frozen (https://bugs.python.org/issue32953) # * Kwargs-only (https://bugs.python.org/issue33129) name: str version: Optional[VersionOrStr] = None release_notes: Optional[Dict[str, str]] = None supported_versions: List[VersionOrStr] = dataclasses.field( default_factory=list) description: Optional[str] = None @classmethod def from_dataset_info( cls, info_proto: dataset_info_pb2.DatasetInfo) -> Optional["BuilderConfig"]: if not info_proto.config_name: return None return BuilderConfig( name=info_proto.config_name, description=info_proto.config_description, version=info_proto.version, release_notes=info_proto.release_notes or {}, ) class DatasetBuilder(registered.RegisteredDataset): """Abstract base class for all datasets. `DatasetBuilder` has 3 key methods: * `DatasetBuilder.info`: documents the dataset, including feature names, types, and shapes, version, splits, citation, etc. * `DatasetBuilder.download_and_prepare`: downloads the source data and writes it to disk. * `DatasetBuilder.as_dataset`: builds an input pipeline using `tf.data.Dataset`s. **Configuration**: Some `DatasetBuilder`s expose multiple variants of the dataset by defining a `tfds.core.BuilderConfig` subclass and accepting a config object (or name) on construction. Configurable datasets expose a pre-defined set of configurations in `DatasetBuilder.builder_configs`. Typical `DatasetBuilder` usage: ```python mnist_builder = tfds.builder("mnist") mnist_info = mnist_builder.info mnist_builder.download_and_prepare() datasets = mnist_builder.as_dataset() train_dataset, test_dataset = datasets["train"], datasets["test"] assert isinstance(train_dataset, tf.data.Dataset) # And then the rest of your input pipeline train_dataset = train_dataset.repeat().shuffle(1024).batch(128) train_dataset = train_dataset.prefetch(2) features = tf.compat.v1.data.make_one_shot_iterator(train_dataset).get_next() image, label = features['image'], features['label'] ``` """ # Semantic version of the dataset (ex: tfds.core.Version('1.2.0')) VERSION = None # Release notes # Metadata only used for documentation. Should be a dict[version,description] # Multi-lines are automatically dedent RELEASE_NOTES: ClassVar[Dict[str, str]] = {} # List dataset versions which can be loaded using current code. # Data can only be prepared with canonical VERSION or above. SUPPORTED_VERSIONS = [] # Named configurations that modify the data generated by download_and_prepare. BUILDER_CONFIGS = [] # Must be set for datasets that use 'manual_dir' functionality - the ones # that require users to do additional steps to download the data # (this is usually due to some external regulations / rules). # # This field should contain a string with user instructions, including # the list of files that should be present. It will be # displayed in the dataset documentation. MANUAL_DOWNLOAD_INSTRUCTIONS = None def __init__( self, *, data_dir: Optional[utils.PathLike] = None, config: Union[None, str, BuilderConfig] = None, version: Union[None, str, utils.Version] = None, ): """Constructs a DatasetBuilder. Callers must pass arguments as keyword arguments. Args: data_dir: directory to read/write data. Defaults to the value of the environment variable TFDS_DATA_DIR, if set, otherwise falls back to "~/tensorflow_datasets". config: `tfds.core.BuilderConfig` or `str` name, optional configuration for the dataset that affects the data generated on disk. Different `builder_config`s will have their own subdirectories and versions. version: Optional version at which to load the dataset. An error is raised if specified version cannot be satisfied. Eg: '1.2.3', '1.2.*'. The special value "experimental_latest" will use the highest version, even if not default. This is not recommended unless you know what you are doing, as the version could be broken. """ if data_dir: data_dir = os.fspath(data_dir) # Pathlib -> str # For pickling: self._original_state = dict( data_dir=data_dir, config=config, version=version) # To do the work: self._builder_config = self._create_builder_config(config) # Extract code version (VERSION or config) self._version = self._pick_version(version) # Compute the base directory (for download) and dataset/version directory. self._data_dir_root, self._data_dir = self._build_data_dir(data_dir) if tf.io.gfile.exists(self._data_dir): self.info.read_from_directory(self._data_dir) else: # Use the code version (do not restore data) self.info.initialize_from_bucket() @utils.classproperty @classmethod @utils.memoize() def code_path(cls) -> ReadOnlyPath: """Returns the path to the file where the Dataset class is located. Note: As the code can be run inside zip file. The returned value is a `ReadOnlyPath` by default. Use `tfds.core.utils.to_write_path()` to cast the path into `ReadWritePath`. Returns: path: pathlib.Path like abstraction """ modules = cls.__module__.split(".") if len(modules) >= 2: # Filter `__main__`, `python my_dataset.py`,... # If the dataset can be loaded from a module, use this to support zipapp. # Note: `utils.resource_path` will return either `zipfile.Path` (for # zipapp) or `pathlib.Path`. try: path = utils.resource_path(modules[0]) except TypeError: # Module is not a package pass else: # For dynamically added modules, `importlib.resources` returns # `pathlib.Path('.')` rather than the real path, so filter those by # checking for `parts`. # Check for `zipfile.Path` (`ResourcePath`) as it does not have `.parts` if isinstance(path, utils.ResourcePath) or path.parts: modules[-1] += ".py" return path.joinpath(*modules[1:]) # Otherwise, fallback to `pathlib.Path`. For non-zipapp, it should be # equivalent to the above return. return utils.as_path(inspect.getfile(cls)) def __getstate__(self): return self._original_state def __setstate__(self, state): self.__init__(**state) @utils.memoized_property def canonical_version(self) -> utils.Version: return cannonical_version_for_config(self, self._builder_config) @utils.memoized_property def supported_versions(self): if self._builder_config and self._builder_config.supported_versions: return self._builder_config.supported_versions else: return self.SUPPORTED_VERSIONS @utils.memoized_property def versions(self) -> List[utils.Version]: """Versions (canonical + availables), in preference order.""" return [ utils.Version(v) if isinstance(v, six.string_types) else v for v in [self.canonical_version] + self.supported_versions ] def _pick_version(self, requested_version): """Returns utils.Version instance, or raise AssertionError.""" # Validate that `canonical_version` is correctly defined assert self.canonical_version if requested_version == "experimental_latest": return max(self.versions) for version in self.versions: if requested_version is None or version.match(requested_version): return version available_versions = [str(v) for v in self.versions] msg = "Dataset {} cannot be loaded at version {}, only: {}.".format( self.name, requested_version, ", ".join(available_versions)) raise AssertionError(msg) @property def version(self): return self._version @property def release_notes(self) -> Dict[str, str]: if self.builder_config and self.builder_config.release_notes: return self.builder_config.release_notes else: return self.RELEASE_NOTES @property def data_dir(self): return self._data_dir @property def data_path(self) -> type_utils.ReadWritePath: # Instead, should make `_data_dir` be Path everywhere return utils.as_path(self._data_dir) @utils.classproperty @classmethod def _checksums_path(cls) -> ReadOnlyPath: """Returns the checksums path.""" # Used: # * To load the checksums (in url_infos) # * To save the checksums (in DownloadManager) new_path = cls.code_path.parent / "checksums.tsv" # Checksums of legacy datasets are located in a separate dir. legacy_path = utils.tfds_path() / "url_checksums" / f"{cls.name}.txt" if ( # zipfile.Path does not have `.parts`. Additionally, `os.fspath` # will extract the file, so use `str`. "tensorflow_datasets" in str(new_path) and legacy_path.exists() and not new_path.exists()): return legacy_path else: return new_path @utils.classproperty @classmethod @functools.lru_cache(maxsize=None) def url_infos(cls) -> Optional[Dict[str, download.checksums.UrlInfo]]: """Load `UrlInfo` from the given path.""" # Note: If the dataset is downloaded with `record_checksums=True`, urls # might be updated but `url_infos` won't as it is memoized. # Search for the url_info file. checksums_path = cls._checksums_path # If url_info file is found, load the urls if checksums_path.exists(): return download.checksums.load_url_infos(checksums_path) else: return None @utils.memoized_property def info(self) -> dataset_info.DatasetInfo: """`tfds.core.DatasetInfo` for this builder.""" # Ensure .info hasn't been called before versioning is set-up # Otherwise, backward compatibility cannot be guaranteed as some code will # depend on the code version instead of the restored data version if not getattr(self, "_version", None): # Message for developers creating new dataset. Will trigger if they are # using .info in the constructor before calling super().__init__ raise AssertionError( "Info should not been called before version has been defined. " "Otherwise, the created .info may not match the info version from " "the restored dataset.") info = self._info() if not isinstance(info, dataset_info.DatasetInfo): raise TypeError( "DatasetBuilder._info should returns `tfds.core.DatasetInfo`, not " f" {type(info)}.") return info def download_and_prepare(self, *, download_dir=None, download_config=None): """Downloads and prepares dataset for reading. Args: download_dir: `str`, directory where downloaded files are stored. Defaults to "~/tensorflow-datasets/downloads". download_config: `tfds.download.DownloadConfig`, further configuration for downloading and preparing dataset. Raises: IOError: if there is not enough disk space available. """ download_config = download_config or download.DownloadConfig() data_exists = tf.io.gfile.exists(self._data_dir) if data_exists and download_config.download_mode == REUSE_DATASET_IF_EXISTS: logging.info("Reusing dataset %s (%s)", self.name, self._data_dir) return elif data_exists and download_config.download_mode == REUSE_CACHE_IF_EXISTS: logging.info("Deleting pre-existing dataset %s (%s)", self.name, self._data_dir) utils.as_path(self._data_dir).rmtree() # Delete pre-existing data. data_exists = tf.io.gfile.exists(self._data_dir) if self.version.tfds_version_to_prepare: available_to_prepare = ", ".join( str(v) for v in self.versions if not v.tfds_version_to_prepare) raise AssertionError( "The version of the dataset you are trying to use ({}:{}) can only " "be generated using TFDS code synced @ {} or earlier. Either sync to " "that version of TFDS to first prepare the data or use another " "version of the dataset (available for `download_and_prepare`: " "{}).".format(self.name, self.version, self.version.tfds_version_to_prepare, available_to_prepare)) # Only `cls.VERSION` or `experimental_latest` versions can be generated. # Otherwise, users may accidentally generate an old version using the # code from newer versions. installable_versions = { str(v) for v in (self.canonical_version, max(self.versions)) } if str(self.version) not in installable_versions: msg = ("The version of the dataset you are trying to use ({}) is too " "old for this version of TFDS so cannot be generated.").format( self.info.full_name) if self.version.tfds_version_to_prepare: msg += ( "{} can only be generated using TFDS code synced @ {} or earlier " "Either sync to that version of TFDS to first prepare the data or " "use another version of the dataset. ").format( self.version, self.version.tfds_version_to_prepare) else: msg += ( "Either sync to a previous version of TFDS to first prepare the " "data or use another version of the dataset. ") msg += "Available for `download_and_prepare`: {}".format( list(sorted(installable_versions))) raise ValueError(msg) # Currently it's not possible to overwrite the data because it would # conflict with versioning: If the last version has already been generated, # it will always be reloaded and data_dir will be set at construction. if data_exists: raise ValueError( "Trying to overwrite an existing dataset {} at {}. A dataset with " "the same version {} already exists. If the dataset has changed, " "please update the version number.".format(self.name, self._data_dir, self.version)) logging.info("Generating dataset %s (%s)", self.name, self._data_dir) if not utils.has_sufficient_disk_space( self.info.dataset_size + self.info.download_size, directory=self._data_dir_root): raise IOError( "Not enough disk space. Needed: {} (download: {}, generated: {})" .format( self.info.dataset_size + self.info.download_size, self.info.download_size, self.info.dataset_size, )) self._log_download_bytes() dl_manager = self._make_download_manager( download_dir=download_dir, download_config=download_config, ) # Maybe save the `builder_cls` metadata common to all builder configs. if self.BUILDER_CONFIGS: _save_default_config_name( # `data_dir/ds_name/config/version/` -> `data_dir/ds_name/` common_dir=self.data_path.parent.parent, default_config_name=self.BUILDER_CONFIGS[0].name, ) # Create a tmp dir and rename to self._data_dir on successful exit. with utils.incomplete_dir(self._data_dir) as tmp_data_dir: # Temporarily assign _data_dir to tmp_data_dir to avoid having to forward # it to every sub function. with utils.temporary_assignment(self, "_data_dir", tmp_data_dir): if (download_config.try_download_gcs and gcs_utils.is_dataset_on_gcs(self.info.full_name)): logging.info(GCS_HOSTED_MSG, self.name) gcs_utils.download_gcs_dataset(self.info.full_name, self._data_dir) self.info.read_from_directory(self._data_dir) else: # Old version of TF are not os.PathLike compatible with tf_compat.mock_gfile_pathlike(): self._download_and_prepare( dl_manager=dl_manager, download_config=download_config, ) # NOTE: If modifying the lines below to put additional information in # DatasetInfo, you'll likely also want to update # DatasetInfo.read_from_directory to possibly restore these attributes # when reading from package data. self.info.download_size = dl_manager.downloaded_size # Write DatasetInfo to disk, even if we haven't computed statistics. self.info.write_to_directory(self._data_dir) # The generated DatasetInfo contains references to `tmp_data_dir` self.info.update_data_dir(self._data_dir) self._log_download_done() @tfds_logging.as_dataset() def as_dataset( self, split: Optional[Tree[splits_lib.SplitArg]] = None, *, batch_size: Optional[int] = None, shuffle_files: bool = False, decoders: Optional[TreeDict[decode.partial_decode.DecoderArg]] = None, read_config: Optional[read_config_lib.ReadConfig] = None, as_supervised: bool = False, ): # pylint: disable=line-too-long """Constructs a `tf.data.Dataset`. Callers must pass arguments as keyword arguments. The output types vary depending on the parameters. Examples: ```python builder = tfds.builder('imdb_reviews') builder.download_and_prepare() # Default parameters: Returns the dict of tf.data.Dataset ds_all_dict = builder.as_dataset() assert isinstance(ds_all_dict, dict) print(ds_all_dict.keys()) # ==> ['test', 'train', 'unsupervised'] assert isinstance(ds_all_dict['test'], tf.data.Dataset) # Each dataset (test, train, unsup.) consists of dictionaries # {'label': <tf.Tensor: .. dtype=int64, numpy=1>, # 'text': <tf.Tensor: .. dtype=string, numpy=b"I've watched the movie ..">} # {'label': <tf.Tensor: .. dtype=int64, numpy=1>, # 'text': <tf.Tensor: .. dtype=string, numpy=b'If you love Japanese ..'>} # With as_supervised: tf.data.Dataset only contains (feature, label) tuples ds_all_supervised = builder.as_dataset(as_supervised=True) assert isinstance(ds_all_supervised, dict) print(ds_all_supervised.keys()) # ==> ['test', 'train', 'unsupervised'] assert isinstance(ds_all_supervised['test'], tf.data.Dataset) # Each dataset (test, train, unsup.) consists of tuples (text, label) # (<tf.Tensor: ... dtype=string, numpy=b"I've watched the movie ..">, # <tf.Tensor: ... dtype=int64, numpy=1>) # (<tf.Tensor: ... dtype=string, numpy=b"If you love Japanese ..">, # <tf.Tensor: ... dtype=int64, numpy=1>) # Same as above plus requesting a particular split ds_test_supervised = builder.as_dataset(as_supervised=True, split='test') assert isinstance(ds_test_supervised, tf.data.Dataset) # The dataset consists of tuples (text, label) # (<tf.Tensor: ... dtype=string, numpy=b"I've watched the movie ..">, # <tf.Tensor: ... dtype=int64, numpy=1>) # (<tf.Tensor: ... dtype=string, numpy=b"If you love Japanese ..">, # <tf.Tensor: ... dtype=int64, numpy=1>) ``` Args: split: Which split of the data to load (e.g. `'train'`, `'test'`, `['train', 'test']`, `'train[80%:]'`,...). See our [split API guide](https://www.tensorflow.org/datasets/splits). If `None`, will return all splits in a `Dict[Split, tf.data.Dataset]`. batch_size: `int`, batch size. Note that variable-length features will be 0-padded if `batch_size` is set. Users that want more custom behavior should use `batch_size=None` and use the `tf.data` API to construct a custom pipeline. If `batch_size == -1`, will return feature dictionaries of the whole dataset with `tf.Tensor`s instead of a `tf.data.Dataset`. shuffle_files: `bool`, whether to shuffle the input files. Defaults to `False`. decoders: Nested dict of `Decoder` objects which allow to customize the decoding. The structure should match the feature structure, but only customized feature keys need to be present. See [the guide](https://github.com/tensorflow/datasets/tree/master/docs/decode.md) for more info. read_config: `tfds.ReadConfig`, Additional options to configure the input pipeline (e.g. seed, num parallel reads,...). as_supervised: `bool`, if `True`, the returned `tf.data.Dataset` will have a 2-tuple structure `(input, label)` according to `builder.info.supervised_keys`. If `False`, the default, the returned `tf.data.Dataset` will have a dictionary with all the features. Returns: `tf.data.Dataset`, or if `split=None`, `dict<key: tfds.Split, value: tfds.data.Dataset>`. If `batch_size` is -1, will return feature dictionaries containing the entire dataset in `tf.Tensor`s instead of a `tf.data.Dataset`. """ # pylint: enable=line-too-long if not tf.io.gfile.exists(self._data_dir): raise AssertionError( ("Dataset %s: could not find data in %s. Please make sure to call " "dataset_builder.download_and_prepare(), or pass download=True to " "tfds.load() before trying to access the tf.data.Dataset object.") % (self.name, self._data_dir_root)) # By default, return all splits if split is None: split = {s: s for s in self.info.splits} read_config = read_config or read_config_lib.ReadConfig() # Create a dataset for each of the given splits build_single_dataset = functools.partial( self._build_single_dataset, shuffle_files=shuffle_files, batch_size=batch_size, decoders=decoders, read_config=read_config, as_supervised=as_supervised, ) all_ds = tf.nest.map_structure(build_single_dataset, split) return all_ds def _build_single_dataset( self, split, shuffle_files, batch_size, decoders: Optional[TreeDict[decode.partial_decode.DecoderArg]], read_config: read_config_lib.ReadConfig, as_supervised, ): """as_dataset for a single split.""" wants_full_dataset = batch_size == -1 if wants_full_dataset: batch_size = self.info.splits.total_num_examples or sys.maxsize # Build base dataset ds = self._as_dataset( split=split, shuffle_files=shuffle_files, decoders=decoders, read_config=read_config, ) # Auto-cache small datasets which are small enough to fit in memory. if self._should_cache_ds( split=split, shuffle_files=shuffle_files, read_config=read_config): ds = ds.cache() if batch_size: # Use padded_batch so that features with unknown shape are supported. ds = ds.padded_batch(batch_size, tf.compat.v1.data.get_output_shapes(ds)) if as_supervised: if not self.info.supervised_keys: raise ValueError( f"as_supervised=True but {self.name} does not support a supervised " "structure.") def lookup_nest(features: Dict[str, Any]) -> Tuple[Any, ...]: """Converts `features` to the structure described by `supervised_keys`. Note that there is currently no way to access features in nested feature dictionaries. Args: features: dictionary of features Returns: A tuple with elements structured according to `supervised_keys` """ return tf.nest.map_structure(lambda key: features[key], self.info.supervised_keys) ds = ds.map(lookup_nest) # Add prefetch by default if not read_config.skip_prefetch: ds = ds.prefetch(tf.data.experimental.AUTOTUNE) # If shuffling is True and seeds not set, allow pipeline to be # non-deterministic # This code should probably be moved inside tfreader, such as # all the tf.data.Options are centralized in a single place. if (shuffle_files and read_config.shuffle_seed is None and tf_compat.get_option_deterministic(read_config.options) is None): options = tf.data.Options() tf_compat.set_option_deterministic(options, False) ds = ds.with_options(options) # If shuffle is False, keep the default value (deterministic), which # allow the user to overwritte it. if wants_full_dataset: return tf_compat.get_single_element(ds) return ds def _should_cache_ds(self, split, shuffle_files, read_config): """Returns True if TFDS should auto-cache the dataset.""" # The user can explicitly opt-out from auto-caching if not read_config.try_autocache: return False # Skip datasets with unknown size. # Even by using heuristic with `download_size` and # `MANUAL_DOWNLOAD_INSTRUCTIONS`, it wouldn't catch datasets which hardcode # the non-processed data-dir, nor DatasetBuilder not based on tf-record. if not self.info.dataset_size: return False # Do not cache big datasets # Instead of using the global size, we could infer the requested bytes: # `self.info.splits[split].num_bytes` # The info is available for full splits, and could be approximated # for subsplits `train[:50%]`. # However if the user is creating multiple small splits from a big # dataset, those could adds up and fill up the entire RAM. # 250 MiB is arbitrary picked. For comparison, Cifar10 is about 150 MiB. if self.info.dataset_size > 250 * units.MiB: return False # We do not want to cache data which has more than one shards when # shuffling is enabled, as this would effectively disable shuffling. # An exception is for single shard (as shuffling is a no-op). # Another exception is if reshuffle is disabled (shuffling already cached) num_shards = len(self.info.splits[split].file_instructions) if (shuffle_files and # Shuffling only matter when reshuffle is True or None (default) read_config.shuffle_reshuffle_each_iteration is not False and # pylint: disable=g-bool-id-comparison num_shards > 1): return False # If the dataset satisfy all the right conditions, activate autocaching. return True def _relative_data_dir(self, with_version=True): """Relative path of this dataset in data_dir.""" builder_data_dir = self.name builder_config = self._builder_config if builder_config: builder_data_dir = os.path.join(builder_data_dir, builder_config.name) if not with_version: return builder_data_dir version_data_dir = os.path.join(builder_data_dir, str(self._version)) return version_data_dir def _build_data_dir(self, given_data_dir): """Return the data directory for the current version. Args: given_data_dir: `Optional[str]`, root `data_dir` passed as `__init__` argument. Returns: data_dir_root: `str`, The root dir containing all datasets, downloads,... data_dir: `str`, The version data_dir (e.g. `<data_dir_root>/<ds_name>/<config>/<version>`) """ builder_dir = self._relative_data_dir(with_version=False) version_dir = self._relative_data_dir(with_version=True) default_data_dir = file_utils.get_default_data_dir( given_data_dir=given_data_dir) all_data_dirs = file_utils.list_data_dirs(given_data_dir=given_data_dir) all_versions = set() requested_version_dirs = {} for data_dir_root in all_data_dirs: # List all existing versions full_builder_dir = os.path.join(data_dir_root, builder_dir) data_dir_versions = set(utils.version.list_all_versions(full_builder_dir)) # Check for existance of the requested version if self.version in data_dir_versions: requested_version_dirs[data_dir_root] = os.path.join( data_dir_root, version_dir) all_versions.update(data_dir_versions) if len(requested_version_dirs) > 1: raise ValueError( "Dataset was found in more than one directory: {}. Please resolve " "the ambiguity by explicitly specifying `data_dir=`." "".format(requested_version_dirs.values())) elif len(requested_version_dirs) == 1: # The dataset is found once return next(iter(requested_version_dirs.items())) # No dataset found, use default directory data_dir = os.path.join(default_data_dir, version_dir) if all_versions: logging.warning( "Found a different version of the requested dataset:\n" "%s\n" "Using %s instead.", "\n".join(str(v) for v in sorted(all_versions)), data_dir) return default_data_dir, data_dir def _log_download_done(self): msg = (f"Dataset {self.name} downloaded and prepared to {self._data_dir}. " "Subsequent calls will reuse this data.") termcolor.cprint(msg, attrs=["bold"]) def _log_download_bytes(self): # Print is intentional: we want this to always go to stdout so user has # information needed to cancel download/preparation if needed. # This comes right before the progress bar. termcolor.cprint( f"Downloading and preparing dataset {self.info.download_size} " f"(download: {self.info.download_size}, " f"generated: {self.info.dataset_size}, " f"total: {self.info.download_size + self.info.dataset_size}) " f"to {self._data_dir}...", attrs=["bold"], ) @abc.abstractmethod @utils.docs.doc_private def _info(self): """Returns the `tfds.core.DatasetInfo` object. This function is called once and the result is cached for all following calls. Returns: dataset_info: The dataset metadata. """ raise NotImplementedError @abc.abstractmethod def _download_and_prepare(self, dl_manager, download_config=None): """Downloads and prepares dataset for reading. Internal implementation to overwrite when inheriting from DatasetBuilder. Called when `builder.download_and_prepare` is called. It should download all required data and generate the pre-processed datasets files. Args: dl_manager: `tfds.download.DownloadManager` used to download and cache data. download_config: `DownloadConfig`, Additional options. """ raise NotImplementedError @abc.abstractmethod def _as_dataset( self, split: splits_lib.Split, decoders: Optional[TreeDict[decode.partial_decode.DecoderArg]] = None, read_config: Optional[read_config_lib.ReadConfig] = None, shuffle_files: bool = False, ) -> tf.data.Dataset: """Constructs a `tf.data.Dataset`. Internal implementation to overwrite when inheriting from DatasetBuilder. Called when `builder.as_dataset` is called. It should read the pre-processed datasets files and generate the `tf.data.Dataset` object. Args: split: `tfds.Split` which subset of the data to read. decoders: Nested structure of `Decoder` object to customize the dataset decoding. read_config: `tfds.ReadConfig` shuffle_files: `bool`, whether to shuffle the input files. Optional, defaults to `False`. Returns: `tf.data.Dataset` """ raise NotImplementedError def _make_download_manager(self, download_dir, download_config): """Creates a new download manager object.""" download_dir = ( download_dir or os.path.join(self._data_dir_root, "downloads")) extract_dir = ( download_config.extract_dir or os.path.join(download_dir, "extracted")) manual_dir = ( download_config.manual_dir or os.path.join(download_dir, "manual")) if download_config.register_checksums: # Note: Error will be raised here if user try to record checksums # from a `zipapp` register_checksums_path = utils.to_write_path(self._checksums_path) else: register_checksums_path = None return download.DownloadManager( download_dir=download_dir, extract_dir=extract_dir, manual_dir=manual_dir, url_infos=self.url_infos, manual_dir_instructions=self.MANUAL_DOWNLOAD_INSTRUCTIONS, force_download=(download_config.download_mode == FORCE_REDOWNLOAD), force_extraction=(download_config.download_mode == FORCE_REDOWNLOAD), force_checksums_validation=download_config.force_checksums_validation, register_checksums=download_config.register_checksums, register_checksums_path=register_checksums_path, verify_ssl=download_config.verify_ssl, dataset_name=self.name, ) @property def builder_config(self): """`tfds.core.BuilderConfig` for this builder.""" return self._builder_config def _create_builder_config(self, builder_config): """Create and validate BuilderConfig object.""" if builder_config is None and self.BUILDER_CONFIGS: builder_config = self.BUILDER_CONFIGS[0] logging.info("No config specified, defaulting to first: %s/%s", self.name, builder_config.name) if not builder_config: return None if isinstance(builder_config, six.string_types): name = builder_config builder_config = self.builder_configs.get(name) if builder_config is None: raise ValueError("BuilderConfig %s not found. Available: %s" % (name, list(self.builder_configs.keys()))) name = builder_config.name if not name: raise ValueError("BuilderConfig must have a name, got %s" % name) is_custom = name not in self.builder_configs if is_custom: logging.warning("Using custom data configuration %s", name) else: if builder_config is not self.builder_configs[name]: raise ValueError( "Cannot name a custom BuilderConfig the same as an available " "BuilderConfig. Change the name. Available BuilderConfigs: %s" % (list(self.builder_configs.keys()))) return builder_config @utils.classproperty @classmethod @utils.memoize() def builder_configs(cls): """Pre-defined list of configurations for this builder class.""" config_dict = {config.name: config for config in cls.BUILDER_CONFIGS} if len(config_dict) != len(cls.BUILDER_CONFIGS): names = [config.name for config in cls.BUILDER_CONFIGS] raise ValueError( "Names in BUILDER_CONFIGS must not be duplicated. Got %s" % names) return config_dict class FileReaderBuilder(DatasetBuilder): """Base class for datasets reading files. Subclasses are: * `GeneratorBasedBuilder`: Can both generate and read generated dataset. * `ReadOnlyBuilder`: Can only read pre-generated datasets. A user can generate a dataset with `GeneratorBasedBuilder`, and read them with `ReadOnlyBuilder` without requiring the original generation code. """ def __init__( self, *, file_format: Union[None, str, file_adapters.FileFormat] = None, **kwargs: Any, ): """Initializes an instance of FileReaderBuilder. Callers must pass arguments as keyword arguments. Args: file_format: EXPERIMENTAL, may change at any time; Format of the record files in which dataset will be read/written to. If `None`, defaults to `tfrecord`. **kwargs: Arguments passed to `DatasetBuilder`. """ super().__init__(**kwargs) self.info.set_file_format(file_format) @utils.memoized_property def _example_specs(self): return self.info.features.get_serialized_info() def _as_dataset( self, split: splits_lib.Split, decoders: Optional[TreeDict[decode.partial_decode.DecoderArg]], read_config: read_config_lib.ReadConfig, shuffle_files: bool, ) -> tf.data.Dataset: # Partial decoding # TODO(epot): Should be moved inside `features.decode_example` if isinstance(decoders, decode.PartialDecoding): features = decoders.extract_features(self.info.features) example_specs = features.get_serialized_info() decoders = decoders.decoders # Full decoding (all features decoded) else: features = self.info.features example_specs = self._example_specs decoders = decoders # pylint: disable=self-assigning-variable reader = tfrecords_reader.Reader( self._data_dir, example_specs=example_specs, file_format=self.info.file_format, ) decode_fn = functools.partial(features.decode_example, decoders=decoders) return reader.read( instructions=split, split_infos=self.info.splits.values(), decode_fn=decode_fn, read_config=read_config, shuffle_files=shuffle_files, disable_shuffling=self.info.disable_shuffling, ) class GeneratorBasedBuilder(FileReaderBuilder): """Base class for datasets with data generation based on file adapter. `GeneratorBasedBuilder` is a convenience class that abstracts away much of the data writing and reading of `DatasetBuilder`. It expects subclasses to overwrite `_split_generators` to return a dict of splits, generators. See the method docstrings for details. """ @abc.abstractmethod @utils.docs.do_not_doc_in_subclasses @utils.docs.doc_private def _split_generators( self, dl_manager: download.DownloadManager, ) -> Dict[splits_lib.Split, split_builder_lib.SplitGenerator]: """Downloads the data and returns dataset splits with associated examples. Example: ```python def _split_generators(self, dl_manager): path = dl_manager.download_and_extract('http://dataset.org/my_data.zip') return { 'train': self._generate_examples(path=path / 'train_imgs'), 'test': self._generate_examples(path=path / 'test_imgs'), } ``` * If the original dataset do not have predefined `train`, `test`,... splits, this function should only returns a single `train` split here. Users can use the [subsplit API](https://www.tensorflow.org/datasets/splits) to create subsplits (e.g. `tfds.load(..., split=['train[:75%]', 'train[75%:]'])`). * `tfds.download.DownloadManager` caches downloads, so calling `download` on the same url multiple times only download it once. * A good practice is to download all data in this function, and have all the computation inside `_generate_examples`. * Splits are generated in the order defined here. `builder.info.splits` keep the same order. * This function can have an extra `pipeline` kwarg only if some beam preprocessing should be shared across splits. In this case, a dict of `beam.PCollection` should be returned. See `_generate_example` for details. Args: dl_manager: `tfds.download.DownloadManager` used to download/extract the data Returns: The dict of split name, generators. See `_generate_examples` for details about the generator format. """ raise NotImplementedError() @abc.abstractmethod @utils.docs.do_not_doc_in_subclasses @utils.docs.doc_private def _generate_examples(self, **kwargs: Any) -> split_builder_lib.SplitGenerator: """Default function to generate examples for each split. The function should return a collection of `(key, examples)`. Examples will be encoded are written to disk. See `yields` section for details. The function can return/yield: * A python generator: ```python def _generate_examples(self, path): for filepath in path.iterdir(): yield filepath.name, {'image': ..., 'label': ...} ``` * A `beam.PTransform` of (input_types: [] -> output_types: `KeyExample`): For big datasets and distributed generation. See our Apache Beam [datasets guide](https://www.tensorflow.org/datasets/beam_datasets) for more info. ```python def _generate_examples(self, path): return ( beam.Create(path.iterdir()) | beam.Map(lambda filepath: filepath.name, {'image': ..., ...}) ) ``` * A `beam.PCollection`: This should only be used if you need to share some distributed processing accross splits. In this case, you can use the following pattern: ```python def _split_generators(self, dl_manager, pipeline): ... # Distributed processing shared across splits pipeline |= beam.Create(path.iterdir()) pipeline |= 'SharedPreprocessing' >> beam.Map(_common_processing) ... # Wrap the pipeline inside a ptransform_fn to add `'label' >> ` and avoid # duplicated PTransform nodes names. generate_examples = beam.ptransform_fn(self._generate_examples) return { 'train': pipeline | 'train' >> generate_examples(is_train=True) 'test': pipeline | 'test' >> generate_examples(is_train=False) } def _generate_examples(self, pipeline, is_train: bool): return pipeline | beam.Map(_split_specific_processing, is_train=is_train) ``` Note: Each split should uses a different tag name (e.g. `'train' >> generate_examples(path)`). Otherwise Beam will raise duplicated name error. Args: **kwargs: Arguments from the `_split_generators` Yields: key: `str` or `int`, a unique deterministic example identification key. * Unique: An error will be raised if two examples are yield with the same key. * Deterministic: When generating the dataset twice, the same example should have the same key. * Comparable: If shuffling is disabled the key will be used to sort the dataset. Good keys can be the image id, or line number if examples are extracted from a text file. The example will be sorted by `hash(key)` if shuffling is enabled, and otherwise by `key`. Generating the dataset multiple times will keep examples in the same order. example: `dict<str feature_name, feature_value>`, a feature dictionary ready to be encoded and written to disk. The example will be encoded with `self.info.features.encode_example({...})`. """ raise NotImplementedError() def _download_and_prepare( self, dl_manager: download.DownloadManager, download_config: download.DownloadConfig, ) -> None: """Generate all splits and returns the computed split infos.""" split_builder = split_builder_lib.SplitBuilder( split_dict=self.info.splits, features=self.info.features, max_examples_per_split=download_config.max_examples_per_split, beam_options=download_config.beam_options, beam_runner=download_config.beam_runner, file_format=self.info.file_format, ) # Wrap the generation inside a context manager. # If `beam` is used during generation (when a pipeline gets created), # the context manager is equivalent to `with beam.Pipeline()`. # Otherwise, this is a no-op. # By auto-detecting Beam, the user only has to change `_generate_examples` # to go from non-beam to beam dataset: # https://www.tensorflow.org/datasets/beam_datasets#instructions with split_builder.maybe_beam_pipeline(): # If the signature has a `pipeline` kwargs, create the pipeline now and # forward it to `self._split_generators` # We add this magic because the pipeline kwargs is only used by c4 and # we do not want to make the API more verbose for a single advanced case. # See also the documentation at the end here: # https://www.tensorflow.org/datasets/api_docs/python/tfds/core/GeneratorBasedBuilder?version=nightly#_generate_examples signature = inspect.signature(self._split_generators) if "pipeline" in signature.parameters.keys(): optional_pipeline_kwargs = dict(pipeline=split_builder.beam_pipeline) else: optional_pipeline_kwargs = {} split_generators = self._split_generators( # pylint: disable=unexpected-keyword-arg dl_manager, **optional_pipeline_kwargs) # TODO(tfds): Could be removed once all datasets are migrated. # https://github.com/tensorflow/datasets/issues/2537 # Legacy mode (eventually convert list[SplitGeneratorLegacy] -> dict) split_generators = split_builder.normalize_legacy_split_generators( split_generators=split_generators, generator_fn=self._generate_examples, is_beam=isinstance(self, BeamBasedBuilder), ) # Ensure `all` isn't used as key. _check_split_names(split_generators.keys()) # Writer fail if the number of example yield is `0`, so we return here. if download_config.max_examples_per_split == 0: return # Start generating data for all splits path_suffix = file_adapters.ADAPTER_FOR_FORMAT[ self.info.file_format].FILE_SUFFIX split_info_futures = [] for split_name, generator in utils.tqdm( split_generators.items(), desc="Generating splits...", unit=" splits", leave=False, ): filename_template = naming.ShardedFileTemplate( split=split_name, dataset_name=self.name, data_dir=self.data_path, filetype_suffix=path_suffix) future = split_builder.submit_split_generation( split_name=split_name, generator=generator, filename_template=filename_template, disable_shuffling=self.info.disable_shuffling, ) split_info_futures.append(future) # Finalize the splits (after apache beam completed, if it was used) split_infos = [future.result() for future in split_info_futures] # Update the info object with the splits. split_dict = splits_lib.SplitDict(split_infos) self.info.set_splits(split_dict) @utils.docs.deprecated class BeamBasedBuilder(GeneratorBasedBuilder): """Beam based Builder. DEPRECATED: Please use `tfds.core.GeneratorBasedBuilder` instead. """ def _generate_examples(self, *args: Any, **kwargs: Any) -> split_builder_lib.SplitGenerator: return self._build_pcollection(*args, **kwargs) def _check_split_names(split_names: Iterable[str]) -> None: """Check that split names are valid.""" if "all" in set(str(s).lower() for s in split_names): raise ValueError( "`all` is a reserved keyword. Split cannot be named like this.") def _save_default_config_name( common_dir: ReadWritePath, *, default_config_name: str, ) -> None: """Saves `builder_cls` metadata (common to all builder configs).""" data = { "default_config_name": default_config_name, } # `data_dir/ds_name/config/version/` -> `data_dir/ds_name/.config` config_dir = common_dir / ".config" config_dir.mkdir(parents=True, exist_ok=True) # Note: # * Save inside a dir to support some replicated filesystem # * Write inside a `.incomplete` file and rename to avoid multiple configs # writing concurently the same file # * Config file is overwritten each time a config is generated. If the # default config is changed, this will be updated. config_path = config_dir / "metadata.json" with utils.incomplete_file(config_path) as tmp_config_path: tmp_config_path.write_text(json.dumps(data)) def load_default_config_name(common_dir: ReadOnlyPath,) -> Optional[str]: """Load `builder_cls` metadata (common to all builder configs).""" config_path = utils.as_path(common_dir) / ".config/metadata.json" if not config_path.exists(): return None data = json.loads(config_path.read_text()) return data.get("default_config_name") def cannonical_version_for_config( instance_or_cls: Union[DatasetBuilder, Type[DatasetBuilder]], config: Optional[BuilderConfig] = None, ) -> utils.Version: """Get the cannonical version for the given config. This allow to get the version without instanciating the class. The version can be stored either at the class or in the config object. Args: instance_or_cls: The instance or class on which get the version config: The config which might contain the version, or None if the dataset do not have config. Returns: version: The extracted version. """ if instance_or_cls.BUILDER_CONFIGS and config is None: raise ValueError( f"Cannot infer version on {instance_or_cls.name}. Unknown config.") if config and config.version: return utils.Version(config.version) elif instance_or_cls.VERSION: return utils.Version(instance_or_cls.VERSION) else: raise ValueError( f"DatasetBuilder {instance_or_cls.name} does not have a defined " "version. Please add a `VERSION = tfds.core.Version('x.y.z')` to the " "class.")
39.859581
126
0.697503
09ed425547e12c87429922399edc602039d22ce9
11,428
py
Python
airflow/executors/celery_executor.py
ltxhxpdd123/gateway-airflow
b839509d21a985c7a46fb5c6d54a4b77f1bbc4ae
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
1
2021-07-07T13:42:38.000Z
2021-07-07T13:42:38.000Z
airflow/executors/celery_executor.py
eilifm/airflow
781a82f6389e10f1ad3845d820d36515644e79a9
[ "Apache-2.0" ]
6
2020-07-07T20:21:26.000Z
2021-09-29T17:29:29.000Z
airflow/executors/celery_executor.py
eilifm/airflow
781a82f6389e10f1ad3845d820d36515644e79a9
[ "Apache-2.0" ]
1
2020-01-24T00:20:15.000Z
2020-01-24T00:20:15.000Z
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import math import os import subprocess import time import traceback from multiprocessing import Pool, cpu_count from celery import Celery from celery import states as celery_states from airflow import configuration from airflow.config_templates.default_celery import DEFAULT_CELERY_CONFIG from airflow.exceptions import AirflowException from airflow.executors.base_executor import BaseExecutor from airflow.utils.log.logging_mixin import LoggingMixin from airflow.utils.module_loading import import_string from airflow.utils.timeout import timeout # Make it constant for unit test. CELERY_FETCH_ERR_MSG_HEADER = 'Error fetching Celery task state' CELERY_SEND_ERR_MSG_HEADER = 'Error sending Celery task' ''' To start the celery worker, run the command: airflow worker ''' if configuration.conf.has_option('celery', 'celery_config_options'): celery_configuration = import_string( configuration.conf.get('celery', 'celery_config_options') ) else: celery_configuration = DEFAULT_CELERY_CONFIG app = Celery( configuration.conf.get('celery', 'CELERY_APP_NAME'), config_source=celery_configuration) @app.task def execute_command(command_to_exec): log = LoggingMixin().log log.info("Executing command in Celery: %s", command_to_exec) env = os.environ.copy() try: subprocess.check_call(command_to_exec, stderr=subprocess.STDOUT, close_fds=True, env=env) except subprocess.CalledProcessError as e: log.exception('execute_command encountered a CalledProcessError') log.error(e.output) raise AirflowException('Celery command failed') class ExceptionWithTraceback(object): """ Wrapper class used to propagate exceptions to parent processes from subprocesses. :param exception: The exception to wrap :type exception: Exception :param exception_traceback: The stacktrace to wrap :type exception_traceback: str """ def __init__(self, exception, exception_traceback): self.exception = exception self.traceback = exception_traceback def fetch_celery_task_state(celery_task): """ Fetch and return the state of the given celery task. The scope of this function is global so that it can be called by subprocesses in the pool. :param celery_task: a tuple of the Celery task key and the async Celery object used to fetch the task's state :type celery_task: tuple(str, celery.result.AsyncResult) :return: a tuple of the Celery task key and the Celery state of the task :rtype: tuple[str, str] """ try: with timeout(seconds=2): # Accessing state property of celery task will make actual network request # to get the current state of the task. res = (celery_task[0], celery_task[1].state) except Exception as e: exception_traceback = "Celery Task ID: {}\n{}".format(celery_task[0], traceback.format_exc()) res = ExceptionWithTraceback(e, exception_traceback) return res def send_task_to_executor(task_tuple): key, simple_ti, command, queue, task = task_tuple try: with timeout(seconds=2): result = task.apply_async(args=[command], queue=queue) except Exception as e: exception_traceback = "Celery Task ID: {}\n{}".format(key, traceback.format_exc()) result = ExceptionWithTraceback(e, exception_traceback) return key, command, result class CeleryExecutor(BaseExecutor): """ CeleryExecutor is recommended for production use of Airflow. It allows distributing the execution of task instances to multiple worker nodes. Celery is a simple, flexible and reliable distributed system to process vast amounts of messages, while providing operations with the tools required to maintain such a system. """ def __init__(self): super(CeleryExecutor, self).__init__() # Celery doesn't support querying the state of multiple tasks in parallel # (which can become a bottleneck on bigger clusters) so we use # a multiprocessing pool to speed this up. # How many worker processes are created for checking celery task state. self._sync_parallelism = configuration.getint('celery', 'SYNC_PARALLELISM') if self._sync_parallelism == 0: self._sync_parallelism = max(1, cpu_count() - 1) self._sync_pool = None self.tasks = {} self.last_state = {} def start(self): self.log.debug( 'Starting Celery Executor using %s processes for syncing', self._sync_parallelism ) def _num_tasks_per_send_process(self, to_send_count): """ How many Celery tasks should each worker process send. :return: Number of tasks that should be sent per process :rtype: int """ return max(1, int(math.ceil(1.0 * to_send_count / self._sync_parallelism))) def _num_tasks_per_fetch_process(self): """ How many Celery tasks should be sent to each worker process. :return: Number of tasks that should be used per process :rtype: int """ return max(1, int(math.ceil(1.0 * len(self.tasks) / self._sync_parallelism))) def heartbeat(self): # Triggering new jobs if not self.parallelism: open_slots = len(self.queued_tasks) else: open_slots = self.parallelism - len(self.running) self.log.debug("%s running task instances", len(self.running)) self.log.debug("%s in queue", len(self.queued_tasks)) self.log.debug("%s open slots", open_slots) sorted_queue = sorted( [(k, v) for k, v in self.queued_tasks.items()], key=lambda x: x[1][1], reverse=True) task_tuples_to_send = [] for i in range(min((open_slots, len(self.queued_tasks)))): key, (command, _, queue, simple_ti) = sorted_queue.pop(0) task_tuples_to_send.append((key, simple_ti, command, queue, execute_command)) cached_celery_backend = None if task_tuples_to_send: tasks = [t[4] for t in task_tuples_to_send] # Celery state queries will stuck if we do not use one same backend # for all tasks. cached_celery_backend = tasks[0].backend if task_tuples_to_send: # Use chunking instead of a work queue to reduce context switching # since tasks are roughly uniform in size chunksize = self._num_tasks_per_send_process(len(task_tuples_to_send)) num_processes = min(len(task_tuples_to_send), self._sync_parallelism) send_pool = Pool(processes=num_processes) key_and_async_results = send_pool.map( send_task_to_executor, task_tuples_to_send, chunksize=chunksize) send_pool.close() send_pool.join() self.log.debug('Sent all tasks.') for key, command, result in key_and_async_results: if isinstance(result, ExceptionWithTraceback): self.log.error( CELERY_SEND_ERR_MSG_HEADER + ":%s\n%s\n", result.exception, result.traceback ) elif result is not None: # Only pops when enqueued successfully, otherwise keep it # and expect scheduler loop to deal with it. self.queued_tasks.pop(key) result.backend = cached_celery_backend self.running[key] = command self.tasks[key] = result self.last_state[key] = celery_states.PENDING # Calling child class sync method self.log.debug("Calling the %s sync method", self.__class__) self.sync() def sync(self): num_processes = min(len(self.tasks), self._sync_parallelism) if num_processes == 0: self.log.debug("No task to query celery, skipping sync") return self.log.debug("Inquiring about %s celery task(s) using %s processes", len(self.tasks), num_processes) # Recreate the process pool each sync in case processes in the pool die self._sync_pool = Pool(processes=num_processes) # Use chunking instead of a work queue to reduce context switching since tasks are # roughly uniform in size chunksize = self._num_tasks_per_fetch_process() self.log.debug("Waiting for inquiries to complete...") task_keys_to_states = self._sync_pool.map( fetch_celery_task_state, self.tasks.items(), chunksize=chunksize) self._sync_pool.close() self._sync_pool.join() self.log.debug("Inquiries completed.") for key_and_state in task_keys_to_states: if isinstance(key_and_state, ExceptionWithTraceback): self.log.error( CELERY_FETCH_ERR_MSG_HEADER + ", ignoring it:%s\n%s\n", repr(key_and_state.exception), key_and_state.traceback ) continue key, state = key_and_state try: if self.last_state[key] != state: if state == celery_states.SUCCESS: self.success(key) del self.tasks[key] del self.last_state[key] elif state == celery_states.FAILURE: self.fail(key) del self.tasks[key] del self.last_state[key] elif state == celery_states.REVOKED: self.fail(key) del self.tasks[key] del self.last_state[key] else: self.log.info("Unexpected state: %s", state) self.last_state[key] = state except Exception: self.log.exception("Error syncing the Celery executor, ignoring it.") def end(self, synchronous=False): if synchronous: while any([ task.state not in celery_states.READY_STATES for task in self.tasks.values()]): time.sleep(5) self.sync()
37.716172
100
0.630907
f1081412fbcd987368fbf35f6a71afe7c8596b03
4,363
py
Python
unit_test/daemonconfig_test.py
AYCS/bigitr
6beefbe79fab887c4ef60e0dd7fa39bca61a22cc
[ "Apache-2.0" ]
3
2016-07-19T07:54:27.000Z
2021-09-13T08:25:20.000Z
unit_test/daemonconfig_test.py
AYCS/bigitr
6beefbe79fab887c4ef60e0dd7fa39bca61a22cc
[ "Apache-2.0" ]
1
2016-02-03T14:17:47.000Z
2016-02-03T15:22:20.000Z
unit_test/daemonconfig_test.py
mikjo/bigitr
6beefbe79fab887c4ef60e0dd7fa39bca61a22cc
[ "Apache-2.0" ]
4
2015-05-04T10:03:06.000Z
2020-10-22T04:46:38.000Z
# # Copyright 2012 SAS Institute # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os from cStringIO import StringIO import tempfile import testutils from bigitr import daemonconfig class TestDaemonConfig(testutils.TestCase): def setUp(self): self.dir = tempfile.mkdtemp(suffix='.bigitr') os.environ['DDIR'] = self.dir daemonConfig = self.dir + '/daemon' file(daemonConfig, 'w').write(''' [GLOBAL] appconfig = ${DDIR}/app [foo] repoconfig = ${DDIR}/foo1.* ${DDIR}/foo2.* [bar] appconfig = ${DDIR}/app2 repoconfig = ${DDIR}/bar email = other@other blah@blah ''') self.cfg = daemonconfig.DaemonConfig(daemonConfig) def tearDown(self): self.removeRecursive(self.dir) os.unsetenv('DDIR') def test_parallelConversions(self): self.assertEqual(1, self.cfg.parallelConversions()) self.cfg.set('GLOBAL', 'parallel', '8') self.assertEqual(8, self.cfg.parallelConversions()) def test_getPollFrequency(self): self.assertEqual(300, self.cfg.getPollFrequency()) self.cfg.set('GLOBAL', 'pollfrequency', '1h') self.assertEqual(3600, self.cfg.getPollFrequency()) def test_getFullSyncFrequency(self): self.assertEqual(86000, self.cfg.getFullSyncFrequency()) self.cfg.set('GLOBAL', 'syncfrequency', '1h') self.assertEqual(3600, self.cfg.getFullSyncFrequency()) def test_getEmail(self): self.assertEqual(None, self.cfg.getEmail()) self.cfg.set('GLOBAL', 'email', 'here@here') self.assertEqual(['here@here'], self.cfg.getEmail()) def test_getMailFrom(self): self.assertEqual(None, self.cfg.getMailFrom()) self.cfg.set('GLOBAL', 'mailfrom', 'noreply@here') self.assertEqual('noreply@here', self.cfg.getMailFrom()) def test_getMailAll(self): self.assertFalse(self.cfg.getMailAll()) self.cfg.set('GLOBAL', 'mailall', 'true') self.assertTrue(self.cfg.getMailAll()) def test_getSmartHost(self): self.assertEqual('localhost', self.cfg.getSmartHost()) self.cfg.set('GLOBAL', 'smarthost', 'foo') self.assertEqual('foo', self.cfg.getSmartHost()) def test_getApplicationContexts(self): self.assertEqual(set(('foo', 'bar')), self.cfg.getApplicationContexts()) def test_getAppConfig(self): self.assertEqual(self.dir + '/app', self.cfg.getAppConfig('foo')) self.assertEqual(self.dir + '/app2', self.cfg.getAppConfig('bar')) def test_getRepoConfigs(self): # files have to exist to be globbed file(self.dir + '/foo1.1', 'w') file(self.dir + '/foo1.2', 'w') file(self.dir + '/foo2.1', 'w') file(self.dir + '/bar', 'w') self.assertEqual([self.dir + '/foo1.1', self.dir + '/foo1.2', self.dir + '/foo2.1'], self.cfg.getRepoConfigs('foo')) self.assertEqual([self.dir + '/bar'], self.cfg.getRepoConfigs('bar')) def test_parseTimeSpec(self): self.assertEqual(3600, self.cfg._parseTimeSpec('1h')) self.assertEqual(3600, self.cfg._parseTimeSpec('1H')) self.assertEqual(60, self.cfg._parseTimeSpec('1m')) self.assertEqual(60, self.cfg._parseTimeSpec('1M')) self.assertEqual(1, self.cfg._parseTimeSpec('1s')) self.assertEqual(1, self.cfg._parseTimeSpec('1S')) self.assertEqual(1, self.cfg._parseTimeSpec('1')) self.assertEqual(3661, self.cfg._parseTimeSpec('1h1m1')) self.assertEqual(3612, self.cfg._parseTimeSpec('1h12')) self.assertEqual(3661, self.cfg._parseTimeSpec('1h1m1s')) self.assertEqual(3661, self.cfg._parseTimeSpec('1h 1m 1s')) self.assertEqual(3661, self.cfg._parseTimeSpec('1h 1m 1s ')) self.assertEqual(3661, self.cfg._parseTimeSpec(' 1h 1m 1s '))
38.27193
80
0.655971
232565ab439d430cd40b5047c41845c7c15fd88c
1,626
py
Python
funcao4.py
lucaspompeun/metodos-matematicos-aplicados-nas-engenharias-via-sistemas-computacionais
008d397f76a935af1aba530cc0134b9dd326d3ac
[ "MIT" ]
16
2019-09-27T03:08:44.000Z
2020-10-16T18:43:45.000Z
primeira-edicao/funcao4.py
gm2sc-ifpa/metodos-matematicos-aplicados-nas-engenharias-via-sistemas-computacionais-master
f435c366e08dc14b0557f2172ad3b841ddb7ef2e
[ "MIT" ]
null
null
null
primeira-edicao/funcao4.py
gm2sc-ifpa/metodos-matematicos-aplicados-nas-engenharias-via-sistemas-computacionais-master
f435c366e08dc14b0557f2172ad3b841ddb7ef2e
[ "MIT" ]
5
2019-09-13T20:00:38.000Z
2020-09-19T03:04:00.000Z
# -*- coding: utf-8 -*- """ Created on Wed Mar 20 15:50:09 2019 INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO PÁRA - IFPA ANANINDEUA @author: Prof. Dr. Denis C. L. Costa Discentes: Heictor Alves de Oliveira Costa Lucas Pompeu Neves Grupo de Pesquisa: Gradiente de Modelagem Matemática e Simulação Computacional - GM²SC Assunto: Função Polinomial do 4º grau em Python Nome do sript: funcao4 Disponível em: """ # Importando Bibliotecas # Biblioteca numpy: Operações matemáticas import numpy as np # Biblioteca matplotlib: Represntação Gráfica import matplotlib.pyplot as plt # Função do 4º grau : f4 = ax**4 + bx**3 + cx**2 + dx + e print('Coeficientes da Função do 4º grau') # Coeficientes: a (a ≠ 0), b, c, d, e a = 1 b = 2 c = -13 d = -14 e = 24 print('Coeficiente: a =', a) print('Coeficiente: b =', b) print('Coeficiente: c =', c) print('Coeficiente: d =', d) print('Coeficiente: e =', e) # Variável independente: x # Domínio da Função: (início, fim, número de pontos) x = np.linspace(-5,4,30) f4 = a*x**4 + b*x**3 + c*x**2 + d*x + e input("Pressione <enter> para representar graficamente") print('') # Representação Gráfica de f4 # Comando plot: (variável, função, 'cor da linha') plt.plot(x,f4,'k') plt.xlabel('Valores de x') plt.ylabel('Valores de y') plt.title('Função do 4º grau') plt.grid(True) plt.show() print('=== Fim do Programa funcao4 ===') print('') input("Acione <Ctrl + l> para limpar o console")
23.911765
78
0.608856
73616bf84357d9fe1135967af4ca8fbbb8360dfb
4,075
py
Python
pywps/inout/storage/file.py
janpisl/pywps
73a1835359f0503e08fb007d75de699bf3cf29ed
[ "MIT" ]
null
null
null
pywps/inout/storage/file.py
janpisl/pywps
73a1835359f0503e08fb007d75de699bf3cf29ed
[ "MIT" ]
null
null
null
pywps/inout/storage/file.py
janpisl/pywps
73a1835359f0503e08fb007d75de699bf3cf29ed
[ "MIT" ]
null
null
null
################################################################## # Copyright 2018 Open Source Geospatial Foundation and others # # licensed under MIT, Please consult LICENSE.txt for details # ################################################################## import logging import os from pywps._compat import urljoin from pywps.exceptions import NotEnoughStorage from pywps import configuration as config from . import StorageAbstract, STORE_TYPE LOGGER = logging.getLogger('PYWPS') class FileStorage(StorageAbstract): """File storage implementation, stores data to file system >>> import ConfigParser >>> config = ConfigParser.RawConfigParser() >>> config.add_section('FileStorage') >>> config.set('FileStorage', 'target', './') >>> config.add_section('server') >>> config.set('server', 'outputurl', 'http://foo/bar/filestorage') >>> >>> store = FileStorage() >>> >>> class FakeOutput(object): ... def __init__(self): ... self.file = self._get_file() ... def _get_file(self): ... tiff_file = open('file.tiff', 'w') ... tiff_file.close() ... return 'file.tiff' >>> fake_out = FakeOutput() >>> (type, path, url) = store.store(fake_out) >>> type == STORE_TYPE.PATH True """ def __init__(self): """ """ self.target = config.get_config_value('server', 'outputpath') self.output_url = config.get_config_value('server', 'outputurl') def store(self, output): import math import shutil import tempfile import uuid file_name = output.file request_uuid = output.uuid or uuid.uuid1() file_block_size = os.stat(file_name).st_blksize # get_free_space delivers the numer of free blocks, not the available size! avail_size = get_free_space(self.target) * file_block_size file_size = os.stat(file_name).st_size # calculate space used according to block size actual_file_size = math.ceil(file_size / float(file_block_size)) * file_block_size if avail_size < actual_file_size: raise NotEnoughStorage('Not enough space in {} to store {}'.format(self.target, file_name)) # create a target folder for each request target = os.path.join(self.target, str(request_uuid)) if not os.path.exists(target): os.makedirs(target) # build output name (prefix, suffix) = os.path.splitext(file_name) if not suffix: suffix = output.data_format.extension (file_dir, file_name) = os.path.split(prefix) output_name = file_name + suffix # build tempfile in case of duplicates if os.path.exists(os.path.join(target, output_name)): output_name = tempfile.mkstemp(suffix=suffix, prefix=file_name + '_', dir=target)[1] full_output_name = os.path.join(target, output_name) LOGGER.info('Storing file output to %s', full_output_name) shutil.copy2(output.file, full_output_name) just_file_name = os.path.basename(output_name) # make sure base url ends with '/' baseurl = self.output_url.rstrip('/') + '/' baseurl += str(request_uuid) + '/' url = urljoin(baseurl, just_file_name) LOGGER.info('File output URI: %s', url) return (STORE_TYPE.PATH, output_name, url) def get_free_space(folder): """ Return folder/drive free space (in bytes) """ import platform if platform.system() == 'Windows': import ctypes free_bytes = ctypes.c_ulonglong(0) ctypes.windll.kernel32.GetDiskFreeSpaceExW(ctypes.c_wchar_p(folder), None, None, ctypes.pointer(free_bytes)) free_space = free_bytes.value else: free_space = os.statvfs(folder).f_bfree LOGGER.debug('Free space: %s', free_space) return free_space
35.745614
117
0.595337
1b3aadc177e6447d47512565e56410028b799647
18,087
py
Python
data/rainbow/script1/20210221-142149/script1.py
lbaiao/sys-simulator-2
94f00d43309fe7b56dac5099bd4024695ba317b6
[ "MIT" ]
1
2020-06-14T13:50:28.000Z
2020-06-14T13:50:28.000Z
data/rainbow/script1/20210221-142149/script1.py
lbaiao/sys-simulator-2
94f00d43309fe7b56dac5099bd4024695ba317b6
[ "MIT" ]
null
null
null
data/rainbow/script1/20210221-142149/script1.py
lbaiao/sys-simulator-2
94f00d43309fe7b56dac5099bd4024695ba317b6
[ "MIT" ]
null
null
null
# Similar to script . # Uses CompleteEnvironment10dB # Centralized Learning-Distributed Execution # Simulates many times, for different number of agents, and take the averages. # There are different channels to the BS and to the devices. # Multiple episodes convergence. Everything is in dB. # One NN is trained and copied to each agent. from shutil import copyfile from sys_simulator.general import make_dir_timestamp, save_with_pickle import matplotlib.pyplot as plt from sys_simulator.plots import plot_positions_actions_pie from time import time from sys_simulator.general import db_to_power, power_to_db from sys_simulator.channels import BANChannel, UrbanMacroNLOSWinnerChannel from sys_simulator import general as gen from sys_simulator.q_learning.environments.completeEnvironment10dB \ import CompleteEnvironment10dB from sys_simulator.dqn.agents.dqnAgent import ExternalDQNAgent from sys_simulator.dqn.externalDQNFramework \ import ExternalDQNFramework, RainbowFramework from sys_simulator.parameters.parameters import \ EnvironmentParameters, TrainingParameters, DQNAgentParameters from sys_simulator.q_learning.rewards import dis_reward_tensor_db from copy import deepcopy import torch import numpy as np import pickle n_mues = 1 # number of mues n_d2d = 2 # number of d2d pairs n_rb = n_mues # number of RBs carrier_frequency = 2.4 # carrier frequency in GHz bs_radius = 500 # bs radius in m rb_bandwidth = 180*1e3 # rb bandwidth in Hz d2d_pair_distance = 50 # d2d pair distance in m device_height = 1.5 # mobile devices height in m bs_height = 25 # BS antenna height in m p_max = 40 # max tx power in dBm noise_power = -116 # noise power per RB in dBm bs_gain = 17 # macro bs antenna gain in dBi user_gain = 4 # user antenna gain in dBi sinr_threshold_train = 6 # mue sinr threshold in dB for training mue_margin = 200 # mue margin in dB # conversions from dBm to dB p_max = p_max - 30 noise_power = noise_power - 30 # channel parameters CHANNEL_RND = True # q-learning parameters # training NUMBER = 1 REWARD_FUNCTION = 'classic' # exec params STEPS_PER_EPISODE = 25 TEST_STEPS_PER_EPISODE = 25 MAX_NUM_EPISODES = 960 # medium training ITERATIONS_PER_NUM_AGENTS = 100 EVAL_EVERY = 40 EVAL_NUM_EPISODES = 20 EVAL_STEPS_PER_EPISODE = 5 # debug params # STEPS_PER_EPISODE = 2 # TEST_STEPS_PER_EPISODE = 2 # MAX_NUM_EPISODES = 10 # ITERATIONS_PER_NUM_AGENTS = 10 # EVAL_EVERY = 1000 # EVAL_NUM_EPISODES = 2 # EVAL_STEPS_PER_EPISODE = 2 # common EPSILON_INITIAL = 1 EPSILON_MIN = .05 # EPSILON_DECAY = .9*1e-4 # medium training EPSILON_DECAY = 1.3/(MAX_NUM_EPISODES*STEPS_PER_EPISODE) # medium training PRIO_BETA_ITS = int(.8*MAX_NUM_EPISODES*STEPS_PER_EPISODE) GAMMA = 0.9 # Discount factor C = 8 # C constant for the improved reward function TARGET_UPDATE = 24 REPLAY_MEMORY_SIZE = 100000 BATCH_SIZE = 64 HIDDEN_SIZE = 256 NUM_HIDDEN_LAYERS = 1 LEARNING_RATE = 1e-2 REWARD_PENALTY = 1.5 ENVIRONMENT_MEMORY = 2 MAX_NUMBER_OF_AGENTS = 5 max_d2d = MAX_NUMBER_OF_AGENTS range_n_d2d = range(1, max_d2d + 1, 1) # more parameters # linear discretization # actions = power_to_db(np.linspace( # db_to_power(p_max-20), db_to_power(p_max-10), 10 # )) # db discretization actions = power_to_db( np.linspace( 1e-6, db_to_power(p_max-10), 10 ) ) env_params = EnvironmentParameters( rb_bandwidth, d2d_pair_distance, p_max, noise_power, bs_gain, user_gain, sinr_threshold_train, n_mues, n_d2d, n_rb, bs_radius, c_param=C, mue_margin=mue_margin ) params = TrainingParameters(MAX_NUM_EPISODES, STEPS_PER_EPISODE) agent_params = DQNAgentParameters( EPSILON_MIN, EPSILON_DECAY, EPSILON_INITIAL, REPLAY_MEMORY_SIZE, BATCH_SIZE, GAMMA ) reward_function = dis_reward_tensor_db channel_to_devices = BANChannel(rnd=CHANNEL_RND) channel_to_bs = UrbanMacroNLOSWinnerChannel( rnd=CHANNEL_RND, f_c=carrier_frequency, h_bs=bs_height, h_ms=device_height ) ref_env = CompleteEnvironment10dB( env_params, channel_to_bs, channel_to_devices, reward_penalty=REWARD_PENALTY, memory=ENVIRONMENT_MEMORY, bs_height=bs_height, reward_function=REWARD_FUNCTION ) # foo env and foo agents stuff foo_env = deepcopy(ref_env) foo_agents = [ExternalDQNAgent(agent_params, [1]) for _ in range(4)] foo_env.build_scenario(foo_agents) _, _ = foo_env.step(foo_agents) env_state_size = foo_env.get_state_size(foo_agents[0]) def train(start): global actions framework = RainbowFramework( agent_params, env_state_size, len(actions), HIDDEN_SIZE, PRIO_BETA_ITS, NUM_HIDDEN_LAYERS, LEARNING_RATE, ) best_reward = float('-inf') device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') mue_spectral_eff_bag = list() d2d_spectral_eff_bag = list() rewards_bag = list() # aux_range = range(max_d2d+1)[1:] epsilon = agent_params.start_epsilon for episode in range(MAX_NUM_EPISODES): env = deepcopy(ref_env) n_agents = np.random.choice(range_n_d2d) now = (time() - start) / 60 print( 'Training. ' + f'Number of agents: {n_agents}. ' + f'Episode: {episode}/{MAX_NUM_EPISODES-1}. ' + f'Epsilon: {epsilon}. ' + f'Prio_Beta: {framework.replay_memory._beta}. ' + f'Elapsed time: {now} minutes.' ) agents = [ExternalDQNAgent(agent_params, actions) for _ in range(n_agents)] # 1 agent per d2d tx for a in agents: a.set_epsilon(epsilon) env.build_scenario(agents) obs, _ = env.step(agents) total_reward = 0.0 i = 0 bag = list() while True: if i >= params.steps_per_episode: break else: past_actions = torch.zeros([len(agents)], device=device) for j, agent in enumerate(agents): agent.get_action(framework, obs[j].float()) past_actions[j] = agent.action_index # # debugging # if len(agents) == 2: # print('debugging') # aux1 = agents[0].action_index == 9 # aux2 = agents[1].action_index == 5 # aux = [aux1, aux2] # if np.mean(aux) == 1: # print('debugging') next_obs, rewards = env.step(agents) i += 1 for j, agent in enumerate(agents): framework.replay_memory.push( obs[j].cpu(), past_actions[j].cpu(), rewards[j], next_obs[j].cpu(), 0 ) framework.learn() total_reward = np.sum(rewards) bag.append(total_reward.item()) obs = next_obs if i % TARGET_UPDATE == 0: framework.target_net.load_state_dict( framework.policy_net.state_dict() ) if total_reward > best_reward: best_reward = total_reward epsilon = agents[0].epsilon if episode % EVAL_EVERY == 0: r, d_speff, m_speff = in_training_test(framework) rewards_bag.append(r) # average d2d spectral eff d2d_spectral_eff_bag.append(d_speff) # mue spectral eff mue_spectral_eff_bag.append(m_speff) # save stuff filename = gen.path_leaf(__file__) filename = filename.split('.')[0] data_path = f'models/dql/{filename}.pt' torch.save(framework.policy_net.state_dict(), data_path) # Return the trained policy return framework, rewards_bag, d2d_spectral_eff_bag, mue_spectral_eff_bag, epsilon # noqa def test(n_agents, test_env, framework): framework.policy_net.eval() mue_spectral_effs = [] d2d_spectral_effs = [] rewards_bag = [] # jain_index = [list() for _ in range(max_d2d+1)] bag = list() agents = [ExternalDQNAgent(agent_params, actions) for i in range(n_agents)] # 1 agent per d2d tx test_env.build_scenario(agents) obs, _ = test_env.step(agents) total_reward = 0.0 i = 0 while True: actions_index = list() for j, agent in enumerate(agents): aux = agent.act(framework, obs[j].float()).max(1) agent.set_action(aux[1].long(), agent.actions[aux[1].item()]) bag.append(aux[1].item()) actions_index.append(aux[1].item()) next_obs, rewards = test_env.step(agents) obs = next_obs total_reward = sum(rewards) # saving stuff rewards_bag.append(total_reward) mue_spectral_effs.append(test_env.mue_spectral_eff.item()) d2d_spectral_effs.append(test_env.d2d_spectral_eff.item()) i += 1 if i >= TEST_STEPS_PER_EPISODE: break mue_success_rate = np.mean( np.array(mue_spectral_effs) > np.log2( 1 + db_to_power(sinr_threshold_train) ) ) # jain_index_avg = list() # for i, j in enumerate(jain_index): # jain_index_avg.append(np.average(j)) # save data return mue_success_rate, mue_spectral_effs, d2d_spectral_effs, rewards def in_training_test(framework: ExternalDQNFramework): mue_spectral_eff_bag = list() d2d_spectral_eff_bag = list() rewards_bag = list() for _ in range(EVAL_NUM_EPISODES): env = deepcopy(ref_env) n_agents = np.random.choice(range_n_d2d) agents = [ExternalDQNAgent(agent_params, actions) for _ in range(n_agents)] # 1 agent per d2d tx env.build_scenario(agents) obs, _ = env.step(agents) for _ in range(EVAL_STEPS_PER_EPISODE): for j, agent in enumerate(agents): aux = agent.act(framework, obs[j].float()).max(1) agent.set_action(aux[1].long(), agent.actions[aux[1].item()]) next_obs, _ = env.step(agents) obs = next_obs # mue spectral eff mue_spectral_eff_bag.append(env.mue_spectral_eff) # average d2d spectral eff d2d_spectral_eff_bag.append(env.d2d_spectral_eff) rewards_bag.append(env.reward) mean_mue_speff = np.mean(mue_spectral_eff_bag) mean_d2d_speff = np.mean(d2d_spectral_eff_bag) mean_reward = np.mean(rewards_bag) return mean_reward, mean_d2d_speff, mean_mue_speff def run(framework=None): mue_sucess_rate_total = [] mue_spectral_effs_total = [] d2d_spectral_effs_total = [] rewards_total = [] start = time() r, d_speffs, m_speffs, epsilon = 0, 0, 0, 1 if framework is None: framework, r, d_speffs, m_speffs, epsilon = train(start) for n in range(1, MAX_NUMBER_OF_AGENTS+1, 1): mue_suc_rates = [] mue_speff_rates = [] d2d_speff_rates = [] rews = [] for it in range(ITERATIONS_PER_NUM_AGENTS): now = (time() - start) / 60 print( 'Testing. ' + f'Number of agents: {n}/{MAX_NUMBER_OF_AGENTS}. ' + f'Iteration: {it}/{ITERATIONS_PER_NUM_AGENTS-1}. ' + f'Elapsed time: {now} minutes.' ) test_env = deepcopy(ref_env) mue_success_rate, mue_spectral_effs, d2d_spectral_effs, rewards = \ test(n, test_env, framework) mue_suc_rates.append(mue_success_rate) mue_speff_rates.append(mue_spectral_effs) d2d_speff_rates.append(d2d_spectral_effs) rews.append(rewards) mue_sucess_rate_total.append(mue_suc_rates) mue_spectral_effs_total.append(mue_speff_rates) d2d_spectral_effs_total.append(d2d_speff_rates) rewards_total.append(rews) # save stuff now = (time() - start) / 60 filename = gen.path_leaf(__file__) filename = filename.split('.')[0] dir_path = f'data/rainbow/{filename}' data_path = make_dir_timestamp(dir_path) data_file_path = f'{data_path}/log.pickle' data = { 'mue_success_rate': mue_sucess_rate_total, 'd2d_speffs': d2d_spectral_effs_total, 'mue_speffs': mue_spectral_effs_total, 'rewards': rewards_total, 'mue_sinr_threshold': sinr_threshold_train, 'elapsed_time': now, 'training_rewards': r, 'training_d2d_speffs': d_speffs, 'training_mue_speffs': m_speffs, 'eval_every': EVAL_EVERY, 'final_epsilon': epsilon, } save_with_pickle(data, data_file_path) copyfile(__file__, f'{data_path}/{filename}.py') print(f'done. Elapsed time: {now} minutes.') def run_test(): filename = gen.path_leaf(__file__) filename = filename.split('.')[0] data_path = f'models/dql/{filename}.pt' framework = torch.load(data_path) run(framework) def test_exec(): # environment test_env = deepcopy(ref_env) # load framework framework = ExternalDQNFramework( agent_params, env_state_size, len(actions), HIDDEN_SIZE, NUM_HIDDEN_LAYERS, LEARNING_RATE ) filename = gen.path_leaf(__file__) filename = filename.split('.')[0] data_path = f'models/dql/{filename}.pt' state_dict = torch.load(data_path) framework.policy_net.load_state_dict(state_dict) framework.policy_net.eval() # simulation stuff mue_spectral_effs = [] d2d_spectral_effs = [] rewards_bag = [] # devices positions pairs_positions = [ ((-400, 0, device_height), (-450, 0, device_height)), ((100, 0, device_height), (150, 0, device_height)), ((225, 225, device_height), (275, 225, device_height)), ((55, -55, device_height), (55, -5, device_height)), ] mue_position = (0, 200, device_height) # jain_index = [list() for _ in range(max_d2d+1)] n_agents = len(pairs_positions) bag = list() agents = [ExternalDQNAgent(agent_params, actions) for i in range(n_agents)] # 1 agent per d2d tx test_env.set_scenario(pairs_positions, mue_position, agents) obs, _ = test_env.step(agents) total_reward = 0.0 i = 0 while True: actions_index = list() for j, agent in enumerate(agents): aux = agent.act(framework, obs[j].float()).max(1) agent.set_action(aux[1].long(), agent.actions[aux[1].item()]) bag.append(aux[1].item()) actions_index.append(aux[1].item()) next_obs, rewards = test_env.step(agents) obs = next_obs total_reward = sum(rewards) # saving stuff rewards_bag.append(total_reward) mue_spectral_effs.append(test_env.mue_spectral_eff.item()) d2d_spectral_effs.append(test_env.d2d_spectral_eff.item()) i += 1 if i >= TEST_STEPS_PER_EPISODE: break d2d_txs, d2d_rxs = zip(*test_env.d2d_pairs) # D2D interference on the MUE, in dB d2d_interferences = np.array([ d.caused_mue_interference for d in d2d_txs ]) d2d_interferences_mag = db_to_power(d2d_interferences) d2d_total_interference = np.sum(d2d_interferences_mag) percentage_interferences = d2d_interferences_mag / d2d_total_interference interferences, tx_labels, rx_labels = calculate_interferences(test_env) if d2d_total_interference != 0: plot_positions_actions_pie( test_env.bs, test_env.mue, d2d_txs, d2d_rxs, actions_index, percentage_interferences, test_env.mue.sinr > sinr_threshold_train, sinr_threshold_train, test_env.reward, interferences, tx_labels, rx_labels ) # jain_index[n_agents].append(gen.jain_index(test_env.sinr_d2ds)) mue_success_rate = np.mean( np.array(mue_spectral_effs) > np.log2( 1 + db_to_power(sinr_threshold_train) ) ) # jain_index_avg = list() # for i, j in enumerate(jain_index): # jain_index_avg.append(np.average(j)) # save data filename = gen.path_leaf(__file__) filename = filename.split('.')[0] data_path = f'data/rainbow/{filename}_exec.pickle' data = { 'd2d_speffs_avg_total': d2d_spectral_effs, 'mue_success_rate': mue_success_rate, 'chosen_actions': bag, 'd2d_speffs': d2d_spectral_effs, 'mue_speffs': mue_spectral_effs, 'rewards': rewards_bag, 'mue_sinr_threshold': sinr_threshold_train, } with open(data_path, 'wb') as file: pickle.dump(data, file) # plot print_stuff(actions, test_env) plt.show() def calculate_interferences(env: CompleteEnvironment10dB): bs = env.bs mue = env.mue d2d_pairs = env.d2d_pairs txs = [mue] txs += [p[0] for p in d2d_pairs] rxs = [bs] rxs += [p[1] for p in d2d_pairs] interferences = np.zeros((len(txs), len(rxs))) for i, tx in enumerate(txs): for j, (rx, interfered) in enumerate(zip(rxs, txs)): if tx == interfered: interf = tx.power_at_receiver elif tx == mue: interf = interfered.received_mue_interference elif rx == bs: interf = tx.caused_mue_interference else: interf = [ power_to_db(i[1]) for i in interfered.interferences if i[0] == tx.id ][0] interferences[i][j] = interf tx_labels = [d.id for d in txs] rx_labels = [d.id for d in rxs] return interferences, tx_labels, rx_labels def print_stuff(actions, env: CompleteEnvironment10dB): actions = [f'{i:.2f}' for i in actions] sinr_d2ds = [f'{d[0].sinr:.2f}' for d in env.d2d_pairs] print(f'MUE Tx Power [dBW]: {env.mue.tx_power:.2f}') print(f'D2D Power levels [dBW]: {actions}') print(f'D2D SINR [dB]: {sinr_d2ds}') print(f'D2D Spectral Efficiencies: {env.d2d_spectral_eff}') if __name__ == '__main__': run()
36.174
94
0.643998
71a75f01512cc0dafd36637b8e11efc3cbc99b29
283
py
Python
preprocess_web/code/ravens_metadata_apps/dataverse_connect/dv_constants.py
TwoRavens/raven-metadata-service
9461522219f5ef0f4877f24c8f5923e462bd9557
[ "Apache-2.0" ]
null
null
null
preprocess_web/code/ravens_metadata_apps/dataverse_connect/dv_constants.py
TwoRavens/raven-metadata-service
9461522219f5ef0f4877f24c8f5923e462bd9557
[ "Apache-2.0" ]
103
2018-03-13T20:43:59.000Z
2021-02-06T19:27:16.000Z
preprocess_web/code/ravens_metadata_apps/dataverse_connect/dv_constants.py
TwoRavens/raven-metadata-service
9461522219f5ef0f4877f24c8f5923e462bd9557
[ "Apache-2.0" ]
1
2019-09-11T22:36:14.000Z
2019-09-11T22:36:14.000Z
"""Used when working with Dataverse""" # https://dataverse.harvard.edu/file.xhtml?fileId=3135445&version=RELEASED&version=.0 # KEY_DATAVERSE_FILE_ID = 'fileId' KEY_DATAVERSE_FILE_VERSION = 'version' PATH_DATAFILE_ACCESS = '/api/access/datafile/' PATH_DATAFILE_PAGE = '/file.xhtml'
28.3
85
0.780919
96b803a4952e98b85ece87bccc66c4f444d42cd3
880
py
Python
poseidon/dags/sde/gp_land_use_dags.py
panda-tech/poseidon-airflow
bce5bc02b55f15330635a436056d99acb93488ef
[ "Apache-2.0" ]
null
null
null
poseidon/dags/sde/gp_land_use_dags.py
panda-tech/poseidon-airflow
bce5bc02b55f15330635a436056d99acb93488ef
[ "Apache-2.0" ]
null
null
null
poseidon/dags/sde/gp_land_use_dags.py
panda-tech/poseidon-airflow
bce5bc02b55f15330635a436056d99acb93488ef
[ "Apache-2.0" ]
null
null
null
"""_dags file for 'general plan land use' sde extraction.""" from airflow.models import DAG from trident.util import general from dags.sde.gp_land_use_jobs import sde_to_shp from trident.util.sde_extract_tasks import create_sde_tasks args = general.args conf = general.config schedule = general.schedule['gis_weekly'] start_date = general.start_date['gis_weekly'] folder = 'gp_land_use' layer = 'gp_land_use' datasd_name = 'gp_land_use_datasd' md = 'general-plan-land-use' path_to_file = conf['prod_data_dir'] + '/' + datasd_name dag = DAG(dag_id='gis_{layer}'.format(layer=layer), default_args=args, start_date=start_date, schedule_interval=schedule) #: Create tasks dynamically create_sde_tasks( dag=dag, folder=folder, layer=layer, datasd_name=datasd_name, md=md, path_to_file=path_to_file, sde_to_shp=sde_to_shp)
26.666667
60
0.740909
ee86a589602346dd5e084c255b576cf0d16438c9
2,020
py
Python
azure-batch/azure/batch/models/output_file_blob_container_destination.py
NMijat1024/azure-sdk-for-python
c49e1d6d797dceaca81813cafb1a486d67185182
[ "MIT" ]
null
null
null
azure-batch/azure/batch/models/output_file_blob_container_destination.py
NMijat1024/azure-sdk-for-python
c49e1d6d797dceaca81813cafb1a486d67185182
[ "MIT" ]
1
2018-11-29T14:46:42.000Z
2018-11-29T14:46:42.000Z
azure-batch/azure/batch/models/output_file_blob_container_destination.py
NMijat1024/azure-sdk-for-python
c49e1d6d797dceaca81813cafb1a486d67185182
[ "MIT" ]
1
2018-08-28T14:36:47.000Z
2018-08-28T14:36:47.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class OutputFileBlobContainerDestination(Model): """Specifies a file upload destination within an Azure blob storage container. All required parameters must be populated in order to send to Azure. :param path: The destination blob or virtual directory within the Azure Storage container. If filePattern refers to a specific file (i.e. contains no wildcards), then path is the name of the blob to which to upload that file. If filePattern contains one or more wildcards (and therefore may match multiple files), then path is the name of the blob virtual directory (which is prepended to each blob name) to which to upload the file(s). If omitted, file(s) are uploaded to the root of the container with a blob name matching their file name. :type path: str :param container_url: Required. The URL of the container within Azure Blob Storage to which to upload the file(s). The URL must include a Shared Access Signature (SAS) granting write permissions to the container. :type container_url: str """ _validation = { 'container_url': {'required': True}, } _attribute_map = { 'path': {'key': 'path', 'type': 'str'}, 'container_url': {'key': 'containerUrl', 'type': 'str'}, } def __init__(self, **kwargs): super(OutputFileBlobContainerDestination, self).__init__(**kwargs) self.path = kwargs.get('path', None) self.container_url = kwargs.get('container_url', None)
42.083333
82
0.65495
8b21bd43e2d9ae30ea9d5e0c9bc4db366bd9adca
8,458
py
Python
kubernetes/client/models/io_xk8s_cluster_controlplane_v1alpha3_aws_managed_control_plane_spec_addons.py
mariusgheorghies/python
68ac7e168963d8b5a81dc493b1973d29e903a15b
[ "Apache-2.0" ]
null
null
null
kubernetes/client/models/io_xk8s_cluster_controlplane_v1alpha3_aws_managed_control_plane_spec_addons.py
mariusgheorghies/python
68ac7e168963d8b5a81dc493b1973d29e903a15b
[ "Apache-2.0" ]
null
null
null
kubernetes/client/models/io_xk8s_cluster_controlplane_v1alpha3_aws_managed_control_plane_spec_addons.py
mariusgheorghies/python
68ac7e168963d8b5a81dc493b1973d29e903a15b
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Kubernetes No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: v1.20.7 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from kubernetes.client.configuration import Configuration class IoXK8sClusterControlplaneV1alpha3AWSManagedControlPlaneSpecAddons(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'conflict_resolution': 'str', 'name': 'str', 'service_account_role_arn': 'str', 'version': 'str' } attribute_map = { 'conflict_resolution': 'conflictResolution', 'name': 'name', 'service_account_role_arn': 'serviceAccountRoleARN', 'version': 'version' } def __init__(self, conflict_resolution=None, name=None, service_account_role_arn=None, version=None, local_vars_configuration=None): # noqa: E501 """IoXK8sClusterControlplaneV1alpha3AWSManagedControlPlaneSpecAddons - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._conflict_resolution = None self._name = None self._service_account_role_arn = None self._version = None self.discriminator = None if conflict_resolution is not None: self.conflict_resolution = conflict_resolution self.name = name if service_account_role_arn is not None: self.service_account_role_arn = service_account_role_arn self.version = version @property def conflict_resolution(self): """Gets the conflict_resolution of this IoXK8sClusterControlplaneV1alpha3AWSManagedControlPlaneSpecAddons. # noqa: E501 ConflictResolution is used to declare what should happen if there are parameter conflicts. Defaults to none # noqa: E501 :return: The conflict_resolution of this IoXK8sClusterControlplaneV1alpha3AWSManagedControlPlaneSpecAddons. # noqa: E501 :rtype: str """ return self._conflict_resolution @conflict_resolution.setter def conflict_resolution(self, conflict_resolution): """Sets the conflict_resolution of this IoXK8sClusterControlplaneV1alpha3AWSManagedControlPlaneSpecAddons. ConflictResolution is used to declare what should happen if there are parameter conflicts. Defaults to none # noqa: E501 :param conflict_resolution: The conflict_resolution of this IoXK8sClusterControlplaneV1alpha3AWSManagedControlPlaneSpecAddons. # noqa: E501 :type: str """ allowed_values = ["overwrite", "none"] # noqa: E501 if self.local_vars_configuration.client_side_validation and conflict_resolution not in allowed_values: # noqa: E501 raise ValueError( "Invalid value for `conflict_resolution` ({0}), must be one of {1}" # noqa: E501 .format(conflict_resolution, allowed_values) ) self._conflict_resolution = conflict_resolution @property def name(self): """Gets the name of this IoXK8sClusterControlplaneV1alpha3AWSManagedControlPlaneSpecAddons. # noqa: E501 Name is the name of the addon # noqa: E501 :return: The name of this IoXK8sClusterControlplaneV1alpha3AWSManagedControlPlaneSpecAddons. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this IoXK8sClusterControlplaneV1alpha3AWSManagedControlPlaneSpecAddons. Name is the name of the addon # noqa: E501 :param name: The name of this IoXK8sClusterControlplaneV1alpha3AWSManagedControlPlaneSpecAddons. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and name is None: # noqa: E501 raise ValueError("Invalid value for `name`, must not be `None`") # noqa: E501 if (self.local_vars_configuration.client_side_validation and name is not None and len(name) < 2): raise ValueError("Invalid value for `name`, length must be greater than or equal to `2`") # noqa: E501 self._name = name @property def service_account_role_arn(self): """Gets the service_account_role_arn of this IoXK8sClusterControlplaneV1alpha3AWSManagedControlPlaneSpecAddons. # noqa: E501 ServiceAccountRoleArn is the ARN of an IAM role to bind to the addons service account # noqa: E501 :return: The service_account_role_arn of this IoXK8sClusterControlplaneV1alpha3AWSManagedControlPlaneSpecAddons. # noqa: E501 :rtype: str """ return self._service_account_role_arn @service_account_role_arn.setter def service_account_role_arn(self, service_account_role_arn): """Sets the service_account_role_arn of this IoXK8sClusterControlplaneV1alpha3AWSManagedControlPlaneSpecAddons. ServiceAccountRoleArn is the ARN of an IAM role to bind to the addons service account # noqa: E501 :param service_account_role_arn: The service_account_role_arn of this IoXK8sClusterControlplaneV1alpha3AWSManagedControlPlaneSpecAddons. # noqa: E501 :type: str """ self._service_account_role_arn = service_account_role_arn @property def version(self): """Gets the version of this IoXK8sClusterControlplaneV1alpha3AWSManagedControlPlaneSpecAddons. # noqa: E501 Version is the version of the addon to use # noqa: E501 :return: The version of this IoXK8sClusterControlplaneV1alpha3AWSManagedControlPlaneSpecAddons. # noqa: E501 :rtype: str """ return self._version @version.setter def version(self, version): """Sets the version of this IoXK8sClusterControlplaneV1alpha3AWSManagedControlPlaneSpecAddons. Version is the version of the addon to use # noqa: E501 :param version: The version of this IoXK8sClusterControlplaneV1alpha3AWSManagedControlPlaneSpecAddons. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and version is None: # noqa: E501 raise ValueError("Invalid value for `version`, must not be `None`") # noqa: E501 self._version = version def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, IoXK8sClusterControlplaneV1alpha3AWSManagedControlPlaneSpecAddons): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, IoXK8sClusterControlplaneV1alpha3AWSManagedControlPlaneSpecAddons): return True return self.to_dict() != other.to_dict()
38.798165
158
0.672618
c1d6b2a8b00321caeba3fde4d6203444cd4fe282
582
py
Python
code/pgms/reverse-int.py
souradeepta/PythonPractice
fa956ca4b87a0eb92fee21fa78e59757ce665770
[ "MIT" ]
null
null
null
code/pgms/reverse-int.py
souradeepta/PythonPractice
fa956ca4b87a0eb92fee21fa78e59757ce665770
[ "MIT" ]
4
2021-03-19T02:04:20.000Z
2021-09-22T18:54:16.000Z
code/pgms/reverse-int.py
souradeepta/PythonPractice
fa956ca4b87a0eb92fee21fa78e59757ce665770
[ "MIT" ]
null
null
null
def reverse(x: int) -> int: INT_MAX = 2**32-1 INT_MIN = -2**32 ans = 0 neg_sign = False if x < 0: neg_sign = True x_abs = abs(x) while x_abs > 0: rem = x_abs % 10 quo = x_abs //10 ans = ans*10 + rem x_abs = quo if neg_sign == True: ans = ans*-1 if ans >= INT_MIN and ans <= INT_MAX: return ans else: return 0 result = reverse(123) print(result) result = reverse(-1235) print(result) result = reverse(-12351408304981940241892834) print(result)
19.4
45
0.517182
0ee7f27a64c013a0f6c76e6a0ca83c6fb4a68725
141
py
Python
PythonCode/1096.py
CrystianPrintes20/ProjetoUri
92a88ae2671a556f4d418c3605e9a2c6933dc9d8
[ "MIT" ]
null
null
null
PythonCode/1096.py
CrystianPrintes20/ProjetoUri
92a88ae2671a556f4d418c3605e9a2c6933dc9d8
[ "MIT" ]
null
null
null
PythonCode/1096.py
CrystianPrintes20/ProjetoUri
92a88ae2671a556f4d418c3605e9a2c6933dc9d8
[ "MIT" ]
null
null
null
j = 5 for i in range(1,10,2): print('I={} J={}'.format(i, j+2)) print('I={} J={}'.format(i, j+1)) print('I={} J={}'.format(i, j))
28.2
37
0.453901
2336258913cdae3881e4328795163527fd883de2
2,734
py
Python
06/LaborSupplyModel.py
AskerNC/lectures-2021
d152450b2fee7be775892dde1a467639aa5e35ea
[ "MIT" ]
9
2020-11-30T22:25:38.000Z
2021-10-05T12:17:11.000Z
06/LaborSupplyModel.py
AskerNC/lectures-2021
d152450b2fee7be775892dde1a467639aa5e35ea
[ "MIT" ]
1
2021-04-12T14:15:49.000Z
2021-04-12T15:03:55.000Z
06/LaborSupplyModel.py
AskerNC/lectures-2021
d152450b2fee7be775892dde1a467639aa5e35ea
[ "MIT" ]
30
2021-02-08T16:18:01.000Z
2022-02-05T17:02:35.000Z
import numpy as np from scipy import optimize def implied_tax(l,w,tau0,tau1,kappa): """ calculate implied tax of labor supply choice Args: l (float): labor supply w (float): wage tau0 (float): standard labor tax tau1 (float): top bracket labor income tax kappa (float): cut-off for the top labor income bracket Returns: (float): total tax bill """ return tau0*w*l + tau1*np.fmax(w*l-kappa,0) def implied_c(l,m,w,tau0,tau1,kappa): """ calculate implied optimal consumption of labor supply choice Args: l (float): labor supply m (float): cash-on-hand w (float): wage tau0 (float): standard labor tax tau1 (float): top bracket labor income tax kappa (float): cut-off for the top labor income bracket Returns: (float): consumption """ return m + w*l - implied_tax(l,w,tau0,tau1,kappa) def utility(c,l,nu,frisch): """ utility of consumption and labor supply decision Args: c (float): consumption l (float): labor supply nu (float): disutility of labor supply frisch (float): frisch elasticity of labor supply Returns: (float): utility """ return np.log(c) - nu*l**(1+1/frisch)/(1+1/frisch) def value_of_choice(l,nu,frisch,m,w,tau0,tau1,kappa): """ calculate implied utlity of consumption and labor supply choice Args: l (float): labor supply nu (float): disutility of labor supply frisch (float): frisch elasticity of labor supply m (float): cash-on-hand w (float): wage tau0 (float): standard labor tax tau1 (float): top bracket labor income tax kappa (float): cut-off for the top labor income bracket Returns: (float): utility """ c = implied_c(l,m,w,tau0,tau1,kappa) return utility(c,l,nu,frisch) def find_optimal_labor_supply(nu,frisch,m,w,tau0,tau1,kappa): """ find optimal labor supply choice Args: nu (float): disutility of labor supply frisch (float): frisch elasticity of labor supply m (float): cash-on-hand w (float): wage tau0 (float): standard labor tax tau1 (float): top bracket labor income tax kappa (float): cut-off for the top labor income bracket Returns: (float): utility """ obj = lambda l: -value_of_choice(l,nu,frisch,m,w,tau0,tau1,kappa) res = optimize.minimize_scalar(obj,bounds=(1e-8,1),method='bounded') return res.x
25.792453
72
0.581931
f802c4f1eaa3b7681922ca206ccdc6f84fbdb934
1,483
py
Python
azure-mgmt-alertsmanagement/azure/mgmt/alertsmanagement/models/alerts_summary_group_item_py3.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
1
2021-09-07T18:36:04.000Z
2021-09-07T18:36:04.000Z
azure-mgmt-alertsmanagement/azure/mgmt/alertsmanagement/models/alerts_summary_group_item_py3.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
2
2019-10-02T23:37:38.000Z
2020-10-02T01:17:31.000Z
azure-mgmt-alertsmanagement/azure/mgmt/alertsmanagement/models/alerts_summary_group_item_py3.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
1
2019-06-17T22:18:23.000Z
2019-06-17T22:18:23.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class AlertsSummaryGroupItem(Model): """Alerts summary group item. :param name: Value of the aggregated field :type name: str :param count: Count of the aggregated field :type count: int :param groupedby: Name of the field aggregated :type groupedby: str :param values: List of the items :type values: list[~azure.mgmt.alertsmanagement.models.AlertsSummaryGroupItem] """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'count': {'key': 'count', 'type': 'int'}, 'groupedby': {'key': 'groupedby', 'type': 'str'}, 'values': {'key': 'values', 'type': '[AlertsSummaryGroupItem]'}, } def __init__(self, *, name: str=None, count: int=None, groupedby: str=None, values=None, **kwargs) -> None: super(AlertsSummaryGroupItem, self).__init__(**kwargs) self.name = name self.count = count self.groupedby = groupedby self.values = values
35.309524
111
0.590695
b8b019d929441b29cf4500e6739b09e722793f0c
58
py
Python
ncbitax2lin/__init__.py
zyxue/ncbitax2lin
95dc13f6a8ef9a18b5569b877f7f2c2cce068412
[ "MIT" ]
103
2016-11-05T19:47:03.000Z
2022-01-13T00:47:16.000Z
ncbitax2lin/__init__.py
zyxue/ncbitax2lin
95dc13f6a8ef9a18b5569b877f7f2c2cce068412
[ "MIT" ]
14
2017-02-28T20:56:41.000Z
2022-03-20T18:58:05.000Z
ncbitax2lin/__init__.py
zyxue/ncbitax2lin
95dc13f6a8ef9a18b5569b877f7f2c2cce068412
[ "MIT" ]
21
2017-05-16T08:44:47.000Z
2021-11-12T03:31:19.000Z
"""__init__.py for this project""" __version__ = "2.0.2"
14.5
34
0.655172
c39cdbb652276c4758a41495a383938f6ae233f9
15,432
py
Python
ceilometer/tests/api/v2/test_post_samples_scenarios.py
orbitfp7/ceilometer
9905da14bbdf06f95e1e056c9ca0e18087214d0f
[ "Apache-2.0" ]
2
2015-09-07T09:15:26.000Z
2015-09-30T02:13:23.000Z
ceilometer/tests/api/v2/test_post_samples_scenarios.py
orbitfp7/ceilometer
9905da14bbdf06f95e1e056c9ca0e18087214d0f
[ "Apache-2.0" ]
null
null
null
ceilometer/tests/api/v2/test_post_samples_scenarios.py
orbitfp7/ceilometer
9905da14bbdf06f95e1e056c9ca0e18087214d0f
[ "Apache-2.0" ]
1
2019-09-16T02:11:41.000Z
2019-09-16T02:11:41.000Z
# # Copyright 2013 Red Hat, Inc # # Author: Angus Salkeld <asalkeld@redhat.com> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Test listing raw events. """ import copy import datetime import mock from oslo.utils import timeutils from oslotest import mockpatch from ceilometer.tests.api import v2 from ceilometer.tests import db as tests_db class TestPostSamples(v2.FunctionalTest, tests_db.MixinTestsWithBackendScenarios): def fake_notifier_sample(self, ctxt, event_type, payload): for m in payload: del m['message_signature'] self.published.append(payload) def setUp(self): self.published = [] notifier = mock.Mock() notifier.sample.side_effect = self.fake_notifier_sample self.useFixture(mockpatch.Patch('oslo.messaging.Notifier', return_value=notifier)) super(TestPostSamples, self).setUp() def test_one(self): s1 = [{'counter_name': 'apples', 'counter_type': 'gauge', 'counter_unit': 'instance', 'counter_volume': 1, 'resource_id': 'bd9431c1-8d69-4ad3-803a-8d4a6b89fd36', 'project_id': '35b17138-b364-4e6a-a131-8f3099c5be68', 'user_id': 'efd87807-12d2-4b38-9c70-5f5c2ac427ff', 'resource_metadata': {'name1': 'value1', 'name2': 'value2'}}] data = self.post_json('/meters/apples/', s1) # timestamp not given so it is generated. s1[0]['timestamp'] = data.json[0]['timestamp'] # Ignore message id that is randomly generated s1[0]['message_id'] = data.json[0]['message_id'] # source is generated if not provided. s1[0]['source'] = '%s:openstack' % s1[0]['project_id'] self.assertEqual(s1, data.json) self.assertEqual(s1[0], self.published[0][0]) def test_nested_metadata(self): s1 = [{'counter_name': 'apples', 'counter_type': 'gauge', 'counter_unit': 'instance', 'counter_volume': 1, 'resource_id': 'bd9431c1-8d69-4ad3-803a-8d4a6b89fd36', 'project_id': '35b17138-b364-4e6a-a131-8f3099c5be68', 'user_id': 'efd87807-12d2-4b38-9c70-5f5c2ac427ff', 'resource_metadata': {'nest.name1': 'value1', 'name2': 'value2', 'nest.name2': 'value3'}}] data = self.post_json('/meters/apples/', s1) # timestamp not given so it is generated. s1[0]['timestamp'] = data.json[0]['timestamp'] # Ignore message id that is randomly generated s1[0]['message_id'] = data.json[0]['message_id'] # source is generated if not provided. s1[0]['source'] = '%s:openstack' % s1[0]['project_id'] unwound = copy.copy(s1[0]) unwound['resource_metadata'] = {'nest': {'name1': 'value1', 'name2': 'value3'}, 'name2': 'value2'} # only the published sample should be unwound, not the representation # in the API response self.assertEqual(s1[0], data.json[0]) self.assertEqual(unwound, self.published[0][0]) def test_invalid_counter_type(self): s1 = [{'counter_name': 'my_counter_name', 'counter_type': 'INVALID_TYPE', 'counter_unit': 'instance', 'counter_volume': 1, 'source': 'closedstack', 'resource_id': 'bd9431c1-8d69-4ad3-803a-8d4a6b89fd36', 'project_id': '35b17138-b364-4e6a-a131-8f3099c5be68', 'user_id': 'efd87807-12d2-4b38-9c70-5f5c2ac427ff', 'resource_metadata': {'name1': 'value1', 'name2': 'value2'}}] data = self.post_json('/meters/my_counter_name/', s1, expect_errors=True) self.assertEqual(400, data.status_int) self.assertEqual(0, len(self.published)) def test_messsage_id_provided(self): """Do not accept sample with message_id.""" s1 = [{'counter_name': 'my_counter_name', 'counter_type': 'gauge', 'counter_unit': 'instance', 'counter_volume': 1, 'message_id': 'evil', 'source': 'closedstack', 'resource_id': 'bd9431c1-8d69-4ad3-803a-8d4a6b89fd36', 'project_id': '35b17138-b364-4e6a-a131-8f3099c5be68', 'user_id': 'efd87807-12d2-4b38-9c70-5f5c2ac427ff', 'resource_metadata': {'name1': 'value1', 'name2': 'value2'}}] data = self.post_json('/meters/my_counter_name/', s1, expect_errors=True) self.assertEqual(400, data.status_int) self.assertEqual(0, len(self.published)) def test_wrong_project_id(self): """Do not accept cross posting samples to different projects.""" s1 = [{'counter_name': 'my_counter_name', 'counter_type': 'gauge', 'counter_unit': 'instance', 'counter_volume': 1, 'source': 'closedstack', 'resource_id': 'bd9431c1-8d69-4ad3-803a-8d4a6b89fd36', 'project_id': '35b17138-b364-4e6a-a131-8f3099c5be68', 'user_id': 'efd87807-12d2-4b38-9c70-5f5c2ac427ff', 'resource_metadata': {'name1': 'value1', 'name2': 'value2'}}] data = self.post_json('/meters/my_counter_name/', s1, expect_errors=True, headers={ "X-Roles": "Member", "X-Tenant-Name": "lu-tenant", "X-Project-Id": "bc23a9d531064583ace8f67dad60f6bb", }) self.assertEqual(400, data.status_int) self.assertEqual(0, len(self.published)) def test_multiple_samples(self): """Send multiple samples. The usecase here is to reduce the chatter and send the counters at a slower cadence. """ samples = [] for x in range(6): dt = datetime.datetime(2012, 8, 27, x, 0, tzinfo=None) s = {'counter_name': 'apples', 'counter_type': 'gauge', 'counter_unit': 'instance', 'counter_volume': float(x * 3), 'source': 'evil', 'timestamp': dt.isoformat(), 'resource_id': 'bd9431c1-8d69-4ad3-803a-8d4a6b89fd36', 'project_id': '35b17138-b364-4e6a-a131-8f3099c5be68', 'user_id': 'efd87807-12d2-4b38-9c70-5f5c2ac427ff', 'resource_metadata': {'name1': str(x), 'name2': str(x + 4)}} samples.append(s) data = self.post_json('/meters/apples/', samples) for x, s in enumerate(samples): # source is modified to include the project_id. s['source'] = '%s:%s' % (s['project_id'], s['source']) # Ignore message id that is randomly generated s['message_id'] = data.json[x]['message_id'] # remove tzinfo to compare generated timestamp # with the provided one c = data.json[x] timestamp = timeutils.parse_isotime(c['timestamp']) c['timestamp'] = timestamp.replace(tzinfo=None).isoformat() # do the same on the pipeline msg = self.published[0][x] timestamp = timeutils.parse_isotime(msg['timestamp']) msg['timestamp'] = timestamp.replace(tzinfo=None).isoformat() self.assertEqual(s, c) self.assertEqual(s, self.published[0][x]) def test_missing_mandatory_fields(self): """Do not accept posting samples with missing mandatory fields.""" s1 = [{'counter_name': 'my_counter_name', 'counter_type': 'gauge', 'counter_unit': 'instance', 'counter_volume': 1, 'source': 'closedstack', 'resource_id': 'bd9431c1-8d69-4ad3-803a-8d4a6b89fd36', 'project_id': '35b17138-b364-4e6a-a131-8f3099c5be68', 'user_id': 'efd87807-12d2-4b38-9c70-5f5c2ac427ff', 'resource_metadata': {'name1': 'value1', 'name2': 'value2'}}] # one by one try posting without a mandatory field. for m in ['counter_volume', 'counter_unit', 'counter_type', 'resource_id', 'counter_name']: s_broke = copy.copy(s1) del s_broke[0][m] print('posting without %s' % m) data = self.post_json('/meters/my_counter_name', s_broke, expect_errors=True) self.assertEqual(400, data.status_int) def test_multiple_project_id_and_admin(self): """Allow admin is allowed to set multiple project_id.""" s1 = [{'counter_name': 'my_counter_name', 'counter_type': 'gauge', 'counter_unit': 'instance', 'counter_volume': 1, 'source': 'closedstack', 'project_id': '35b17138-b364-4e6a-a131-8f3099c5be68', 'user_id': 'efd87807-12d2-4b38-9c70-5f5c2ac427ff', 'resource_id': 'bd9431c1-8d69-4ad3-803a-8d4a6b89fd36', }, {'counter_name': 'my_counter_name', 'counter_type': 'gauge', 'counter_unit': 'instance', 'counter_volume': 2, 'source': 'closedstack', 'project_id': '4af38dca-f6fc-11e2-94f5-14dae9283f29', 'user_id': 'efd87807-12d2-4b38-9c70-5f5c2ac427ff', 'resource_id': 'bd9431c1-8d69-4ad3-803a-8d4a6b89fd36', 'resource_metadata': {'name1': 'value1', 'name2': 'value2'}}] data = self.post_json('/meters/my_counter_name/', s1, headers={"X-Roles": "admin"}) self.assertEqual(200, data.status_int) for x, s in enumerate(s1): # source is modified to include the project_id. s['source'] = '%s:%s' % (s['project_id'], 'closedstack') # Ignore message id that is randomly generated s['message_id'] = data.json[x]['message_id'] # timestamp not given so it is generated. s['timestamp'] = data.json[x]['timestamp'] s.setdefault('resource_metadata', dict()) self.assertEqual(s, data.json[x]) self.assertEqual(s, self.published[0][x]) def test_multiple_samples_multiple_sources(self): """Test posting with special conditions. Do accept a single post with some multiples sources with some of them null. """ s1 = [{'counter_name': 'my_counter_name', 'counter_type': 'gauge', 'counter_unit': 'instance', 'counter_volume': 1, 'source': 'paperstack', 'project_id': '35b17138-b364-4e6a-a131-8f3099c5be68', 'user_id': 'efd87807-12d2-4b38-9c70-5f5c2ac427ff', 'resource_id': 'bd9431c1-8d69-4ad3-803a-8d4a6b89fd36', }, {'counter_name': 'my_counter_name', 'counter_type': 'gauge', 'counter_unit': 'instance', 'counter_volume': 5, 'source': 'waterstack', 'project_id': '35b17138-b364-4e6a-a131-8f3099c5be68', 'user_id': 'efd87807-12d2-4b38-9c70-5f5c2ac427ff', 'resource_id': 'bd9431c1-8d69-4ad3-803a-8d4a6b89fd36', }, {'counter_name': 'my_counter_name', 'counter_type': 'gauge', 'counter_unit': 'instance', 'counter_volume': 2, 'project_id': '35b17138-b364-4e6a-a131-8f3099c5be68', 'user_id': 'efd87807-12d2-4b38-9c70-5f5c2ac427ff', 'resource_id': 'bd9431c1-8d69-4ad3-803a-8d4a6b89fd36', 'resource_metadata': {'name1': 'value1', 'name2': 'value2'}}] data = self.post_json('/meters/my_counter_name/', s1, expect_errors=True) self.assertEqual(200, data.status_int) for x, s in enumerate(s1): # source is modified to include the project_id. s['source'] = '%s:%s' % ( s['project_id'], s.get('source', self.CONF.sample_source) ) # Ignore message id that is randomly generated s['message_id'] = data.json[x]['message_id'] # timestamp not given so it is generated. s['timestamp'] = data.json[x]['timestamp'] s.setdefault('resource_metadata', dict()) self.assertEqual(s, data.json[x]) self.assertEqual(s, self.published[0][x]) def test_missing_project_user_id(self): """Ensure missing project & user IDs are defaulted appropriately.""" s1 = [{'counter_name': 'my_counter_name', 'counter_type': 'gauge', 'counter_unit': 'instance', 'counter_volume': 1, 'source': 'closedstack', 'resource_id': 'bd9431c1-8d69-4ad3-803a-8d4a6b89fd36', 'resource_metadata': {'name1': 'value1', 'name2': 'value2'}}] project_id = 'bc23a9d531064583ace8f67dad60f6bb' user_id = 'fd87807-12d2-4b38-9c70-5f5c2ac427ff' data = self.post_json('/meters/my_counter_name/', s1, expect_errors=True, headers={ 'X-Roles': 'chief-bottle-washer', 'X-Project-Id': project_id, 'X-User-Id': user_id, }) self.assertEqual(200, data.status_int) for x, s in enumerate(s1): # source is modified to include the project_id. s['source'] = '%s:%s' % (project_id, s['source']) # Ignore message id that is randomly generated s['message_id'] = data.json[x]['message_id'] # timestamp not given so it is generated. s['timestamp'] = data.json[x]['timestamp'] s['user_id'] = user_id s['project_id'] = project_id self.assertEqual(s, data.json[x]) self.assertEqual(s, self.published[0][x])
43.965812
77
0.535122
15fcd117778f71c5751ce72b2574af9e2850a778
3,309
py
Python
unit/api/spellcheck/test_spell_checker.py
flaxandteal/dp-conceptual-search
16c6383a61ba5b7069337c2626a0dc243bfe9d35
[ "MIT" ]
3
2018-05-10T16:49:27.000Z
2022-03-29T15:23:04.000Z
unit/api/spellcheck/test_spell_checker.py
flaxandteal/dp-conceptual-search
16c6383a61ba5b7069337c2626a0dc243bfe9d35
[ "MIT" ]
2
2018-09-20T06:37:27.000Z
2018-11-12T12:05:08.000Z
unit/api/spellcheck/test_spell_checker.py
flaxandteal/dp-conceptual-search
16c6383a61ba5b7069337c2626a0dc243bfe9d35
[ "MIT" ]
3
2018-06-25T10:48:43.000Z
2021-04-11T08:01:27.000Z
""" Tests the spellcheck spell checker API """ from unit.utils.search_test_app import SearchTestApp class SpellCheckTestCase(SearchTestApp): @property def sample_words(self) -> dict: """ Returns a set of words to be used for testing, with their corrections :return: """ return { "rpo": "rpi", "roi": "rpi", "cpl": "cpi", "infltion": "inflation", "economi": "economic" } def test_spell_check(self): """ Mimics the unit test in the ml package, but directs requests through the API :return: """ expected_keys = ["input_token", "correction", "probability"] sample_words = self.sample_words for sample_word in sample_words: params = { "q": sample_word, } url_encoded_params = self.url_encode(params) target = "/spellcheck?{0}".format(url_encoded_params) # Make the request request, response = self.get(target, 200) # Check the response self.assertTrue(hasattr(response, "json"), "response should have json data") data = response.json self.assertIsNotNone(data, "json data should not be none") self.assertIsInstance(data, list, "expected list, got {0}".format(type(data))) self.assertEqual(len(data), 1, "expected one result, got {0}".format(len(data))) suggestion = data[0] self.assertIsInstance(suggestion, dict, "expected dict, got {0}".format(type(suggestion))) for key in expected_keys: self.assertIn(key, suggestion, "suggestion should contain key '{0}'".format(key)) self.assertEqual(suggestion['input_token'], sample_word, "expected input token {expected}, got {actual}" .format(expected=sample_words, actual=suggestion['input_token'])) self.assertEqual(suggestion['correction'], sample_words[sample_word], "expected input token {expected}, got {actual}" .format(expected=sample_words[sample_word], actual=suggestion['correction'])) self.assertGreater(suggestion['probability'], 0.0, "expected probability > 0, got {0}" .format(suggestion['probability'])) def test_spell_check_empty_query(self): """ Tests that a 400 BAD_REQUEST is raised for an empty query :return: """ params = { "q": "", } url_encoded_params = self.url_encode(params) target = "/spellcheck?{0}".format(url_encoded_params) # Make the request and assert a 400 BAD_REQUEST response request, response = self.get(target, 400) def test_spell_check_no_tokens(self): """ Tests that a 400 BAD_REQUEST is raised for a query with no input tokens (i.e whitespace) :return: """ params = { "q": " ", } url_encoded_params = self.url_encode(params) target = "/spellcheck?{0}".format(url_encoded_params) # Make the request and assert a 400 BAD_REQUEST response request, response = self.get(target, 400)
35.967391
116
0.581142
c76e92cb66ff615baf6fa93f979987cb9cb2e371
6,932
py
Python
netbox_loadtest.py
jjmanzer/netbox-loadtest
a32eb7953dfd9936dfbddd9705127d1d9b69805a
[ "MIT" ]
null
null
null
netbox_loadtest.py
jjmanzer/netbox-loadtest
a32eb7953dfd9936dfbddd9705127d1d9b69805a
[ "MIT" ]
null
null
null
netbox_loadtest.py
jjmanzer/netbox-loadtest
a32eb7953dfd9936dfbddd9705127d1d9b69805a
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """ Test the netbox API by running a set of scenarios at it designed to show how netbox responds to heavy load. 1. Allocate addresses using get next free logic, then deallocate those addresses. 2. Randomly grab addresses, then deallocate them in that order. 3. Use get next free address logic in a heavily fragmented prefix, then deallocate only those addresses. After running each of these 3 tests, results are combined and a more general report is generated. """ import argparse import ipaddress import queue import random import threading import time import requests from openpyxl import Workbook from helpers import netbox from helpers.excel import add_worker_data_to_sheet parser = argparse.ArgumentParser(description="Test the Netbox API.") parser.add_argument( "parent_prefix", type=str, help="the prefix the worker should pull the child prefix from", ) parser.add_argument( "prefix_length", type=int, help="the size of the prefix to carve out" ) parser.add_argument("workers", type=int, help="number of workers concurrenting working") parser.add_argument("fqdn", type=str, help="FQDN of netbox") parser.add_argument("token", type=str, help="Auth token for netbox API") args = parser.parse_args() report_queue = queue.Queue() session = requests.Session() session.headers = { "accept": "application/json", "Content-Type": "application/json", "Authorization": f"Token { args.token }", } def test_get_next_free_address(prefix: dict) -> dict: """Use the get next free logic to allocate every address in prefix then deallocate.""" report = { "prefix": prefix["prefix"], "allocate": {"data": {}}, "deallocate": {"data": {}}, } addresses_assigned = [] while True: try: start = time.time() address = netbox.get_and_reserve_next_free_address( prefix, session, args.fqdn ) _address = address["address"].split("/", 1)[0] report["allocate"]["data"][_address] = time.time() - start addresses_assigned.append(address) except RuntimeError: break for address in addresses_assigned: _address = address["address"].split("/", 1)[0] start = time.time() if netbox.deallocate_address(address, session, args.fqdn): report["deallocate"]["data"][_address] = time.time() - start return report def test_get_next_free_address_fragmented(prefix: dict) -> dict: """Use the get next free logic to allocate every other address in prefix then deallocate them.""" report = { "prefix": prefix["prefix"], "allocate": {"data": {}}, "deallocate": {"data": {}}, } addresses_assigned = [] prefix_obj = ipaddress.IPv4Network(prefix["prefix"]) fragmentated_addresses = [] # create the fragmentation for address_obj in prefix_obj.hosts(): if int(address_obj) % 2: address = netbox.reserve_address( str(address_obj), session, args.fqdn, "fragmentation for a test" ) fragmentated_addresses.append((address_obj, address)) while True: try: start = time.time() address = netbox.get_and_reserve_next_free_address( prefix, session, args.fqdn ) _address = address["address"].split("/", 1)[0] report["allocate"]["data"][_address] = time.time() - start addresses_assigned.append(address) except RuntimeError: break for address in addresses_assigned: _address = address["address"].split("/", 1)[0] start = time.time() netbox.deallocate_address(address, session, args.fqdn) report["deallocate"]["data"][_address] = time.time() - start # clean up fragmentation for address_obj, address in fragmentated_addresses: if int(address_obj) % 2: netbox.deallocate_address(address, session, args.fqdn) return report def test_scattered_assignments(prefix: dict) -> dict: """Execute a non-linear pattern of allocating addresses and then deallocating them.""" addresses_to_unassign = [] report = { "prefix": prefix["prefix"], "allocate": {"data": {}}, "deallocate": {"data": {}}, } addresses_to_assign = [ str(address) for address in ipaddress.ip_network(prefix["prefix"]).hosts() ] random.shuffle(addresses_to_assign) for address in addresses_to_assign: start = time.time() _address = netbox.reserve_address(address, session, args.fqdn) if _address: addresses_to_unassign.append(_address) report["allocate"]["data"][address] = time.time() - start for address in addresses_to_unassign: start = time.time() _address = address["address"].split("/", 1)[0] if netbox.deallocate_address(address, session, args.fqdn): report["deallocate"]["data"][_address] = time.time() - start return report def worker(prefix: dict): """Execute all 3 scenarios against prefix then save the report.""" print(" testing with {}".format(prefix["prefix"])) report = {} start = time.time() report["test_get_next_free_address"] = test_get_next_free_address(prefix) report[ "test_get_next_free_address_fragmented" ] = test_get_next_free_address_fragmented(prefix) report["test_scattered_assignments"] = test_scattered_assignments(prefix) report["total_duration"] = time.time() - start report_queue.put(report) print(" finished with {}".format(prefix["prefix"])) def start(): """ Spawn some worker threads and load test the NetBox API and then make an excel spreadsheet about it.""" workbook = Workbook() worker_data = {} for worker_max in range(1, args.workers + 1): threads = [] print(f"starting the { worker_max } worker scenario") for worker_id in range(1, worker_max + 1): prefix = netbox.carve_new_prefix( args.parent_prefix, args.prefix_length, session, args.fqdn ) _prefix = prefix["prefix"] print( f" starting worker thread { worker_id } of { worker_max } with { _prefix }" ) thread = threading.Thread(target=worker, args=(prefix,)) thread.start() threads.append((thread, prefix)) for thread, prefix in threads: thread.join() netbox.delete_prefix(prefix, session, args.fqdn) worker_data[prefix["prefix"]] = report_queue.get() sheet = workbook.create_sheet(f"{ worker_max } workers") add_worker_data_to_sheet(worker_data, sheet) workbook.save( filename="netbox_load_test_report_{}.xlsx".format( args.parent_prefix.replace("/", "_") ) )
33.167464
110
0.641085
cebbc235f7e121066802d55952bc32c0962500fc
2,024
py
Python
pbx_gs_python_utils/utils/Save_To_ELK.py
owasp-sbot/pbx-gs-python-utils
f448aa36c4448fc04d30c3a5b25640ea4d44a267
[ "Apache-2.0" ]
3
2018-12-14T15:43:46.000Z
2019-04-25T07:44:58.000Z
pbx_gs_python_utils/utils/Save_To_ELK.py
owasp-sbot/pbx-gs-python-utils
f448aa36c4448fc04d30c3a5b25640ea4d44a267
[ "Apache-2.0" ]
1
2019-05-11T14:19:37.000Z
2019-05-11T14:51:04.000Z
pbx_gs_python_utils/utils/Save_To_ELK.py
owasp-sbot/pbx-gs-python-utils
f448aa36c4448fc04d30c3a5b25640ea4d44a267
[ "Apache-2.0" ]
4
2018-12-27T04:54:14.000Z
2019-05-11T14:07:47.000Z
import datetime from pbx_gs_python_utils.utils.Elastic_Search import Elastic_Search class Save_To_ELK(): def __init__(self, index = None): if index is None: index = 'save_to_elk' self.secret_id = 'elastic-logs-server-1' self.elastic = self.setup(index) def add_document(self, doc_type, doc_data): return self.add_document_with_id(doc_type, None, doc_data) def add_document_with_id(self, doc_type, doc_id, doc_data): if isinstance(doc_data, str): doc_data = { "str" : doc_data } # data doc_data to be an object and not a string (since once there is a string in the data field in ELK , string values will throw an exception) item = { 'doc_type' : doc_type , 'doc_data' : doc_data , 'date' : datetime.datetime.utcnow()} return self.elastic.add(item, doc_id) def get_most_recent_version_of_document(self, lucene_query): values = self.elastic.search_using_lucene_index_by_id(lucene_query, 1, "date:desc").values() if values and len(values) == 1: return list(values).pop().get('doc_data') return None def find_documents(self, lucene_query): return self.elastic.search_using_lucene_index_by_id(lucene_query) def find_documents_of_type(self, dock_type): return self.find_documents("doc_type:{0}".format(dock_type)) def delete_documents_with_id(self, doc_id): return self.elastic.delete_data_by_id(doc_id) def delete_documents_with_type(self, doc_type): keys = self.find_documents_of_type(doc_type).keys() for key in keys: self.elastic.delete_data_by_id(key) def create(self): if self.elastic.exists() is False: self.elastic.create_index().create_index_pattern() return self.elastic.exists() def setup(self, index): return Elastic_Search()._setup_Elastic_on_cloud_via_AWS_Secret(index, self.secret_id)
38.188679
200
0.666996
bce3c004c49ce78496a716705c106be8f2c98a68
729
py
Python
pelote/classes/incremental_id_register.py
medialab/pelote
cef80daeb19ef2fef73f8a1fcfc8477aa11bfb9a
[ "MIT" ]
2
2022-03-07T20:00:10.000Z
2022-03-21T12:36:58.000Z
pelote/classes/incremental_id_register.py
medialab/pelote
cef80daeb19ef2fef73f8a1fcfc8477aa11bfb9a
[ "MIT" ]
55
2022-03-02T16:19:30.000Z
2022-03-31T12:44:05.000Z
pelote/classes/incremental_id_register.py
medialab/pelote
cef80daeb19ef2fef73f8a1fcfc8477aa11bfb9a
[ "MIT" ]
null
null
null
# ============================================================================= # Pelote Incremental Id Register Class # ============================================================================= # from typing import Generic, TypeVar, Dict K = TypeVar("K") class IncrementalIdRegister(Generic[K]): """ Helper class mapping incremental ids to arbitrary hashable keys. """ def __init__(self): self.__counter = 0 self.__index: Dict[K, int] = {} def __getitem__(self, item: K) -> int: item_id = self.__index.get(item) if item_id is None: item_id = self.__counter self.__counter += 1 self.__index[item] = item_id return item_id
26.035714
79
0.475995
981799ed2c4a40961e9219ea4a833b390bc4b730
10,391
py
Python
trdg/data_generator.py
Kankroc/TextRecognitionDataGenerator
da8a40f6f0995975dd416f3e761cf5e8c48df1cb
[ "MIT" ]
1
2017-07-17T03:57:06.000Z
2017-07-17T03:57:06.000Z
trdg/data_generator.py
Kankroc/TextRecognitionDataGenerator
da8a40f6f0995975dd416f3e761cf5e8c48df1cb
[ "MIT" ]
null
null
null
trdg/data_generator.py
Kankroc/TextRecognitionDataGenerator
da8a40f6f0995975dd416f3e761cf5e8c48df1cb
[ "MIT" ]
null
null
null
import os import random as rnd from PIL import Image, ImageFilter, ImageStat from trdg import computer_text_generator, background_generator, distorsion_generator from trdg.utils import mask_to_bboxes try: from trdg import handwritten_text_generator except ImportError as e: print("Missing modules for handwritten text generation.") class FakeTextDataGenerator(object): @classmethod def generate_from_tuple(cls, t): """ Same as generate, but takes all parameters as one tuple """ cls.generate(*t) @classmethod def generate( cls, index, text, font, out_dir, size, extension, skewing_angle, random_skew, blur, random_blur, background_type, distorsion_type, distorsion_orientation, is_handwritten, name_format, width, alignment, text_color, orientation, space_width, character_spacing, margins, fit, output_mask, word_split, image_dir, stroke_width=0, stroke_fill="#282828", image_mode="RGB", output_bboxes=0, ): image = None margin_top, margin_left, margin_bottom, margin_right = margins horizontal_margin = margin_left + margin_right vertical_margin = margin_top + margin_bottom ########################## # Create picture of text # ########################## if is_handwritten: if orientation == 1: raise ValueError("Vertical handwritten text is unavailable") image, mask = handwritten_text_generator.generate(text, text_color) else: image, mask = computer_text_generator.generate( text, font, text_color, size, orientation, space_width, character_spacing, fit, word_split, stroke_width, stroke_fill, ) random_angle = rnd.randint(0 - skewing_angle, skewing_angle) rotated_img = image.rotate( skewing_angle if not random_skew else random_angle, expand=1 ) rotated_mask = mask.rotate( skewing_angle if not random_skew else random_angle, expand=1 ) ############################# # Apply distorsion to image # ############################# if distorsion_type == 0: distorted_img = rotated_img # Mind = blown distorted_mask = rotated_mask elif distorsion_type == 1: distorted_img, distorted_mask = distorsion_generator.sin( rotated_img, rotated_mask, vertical=(distorsion_orientation == 0 or distorsion_orientation == 2), horizontal=(distorsion_orientation == 1 or distorsion_orientation == 2), ) elif distorsion_type == 2: distorted_img, distorted_mask = distorsion_generator.cos( rotated_img, rotated_mask, vertical=(distorsion_orientation == 0 or distorsion_orientation == 2), horizontal=(distorsion_orientation == 1 or distorsion_orientation == 2), ) else: distorted_img, distorted_mask = distorsion_generator.random( rotated_img, rotated_mask, vertical=(distorsion_orientation == 0 or distorsion_orientation == 2), horizontal=(distorsion_orientation == 1 or distorsion_orientation == 2), ) ################################## # Resize image to desired format # ################################## # Horizontal text if orientation == 0: new_width = int( distorted_img.size[0] * (float(size - vertical_margin) / float(distorted_img.size[1])) ) resized_img = distorted_img.resize( (new_width, size - vertical_margin), Image.ANTIALIAS ) resized_mask = distorted_mask.resize((new_width, size - vertical_margin), Image.NEAREST) background_width = width if width > 0 else new_width + horizontal_margin background_height = size # Vertical text elif orientation == 1: new_height = int( float(distorted_img.size[1]) * (float(size - horizontal_margin) / float(distorted_img.size[0])) ) resized_img = distorted_img.resize( (size - horizontal_margin, new_height), Image.ANTIALIAS ) resized_mask = distorted_mask.resize( (size - horizontal_margin, new_height), Image.NEAREST ) background_width = size background_height = new_height + vertical_margin else: raise ValueError("Invalid orientation") ############################# # Generate background image # ############################# if background_type == 0: background_img = background_generator.gaussian_noise( background_height, background_width ) elif background_type == 1: background_img = background_generator.plain_white( background_height, background_width ) elif background_type == 2: background_img = background_generator.quasicrystal( background_height, background_width ) else: background_img = background_generator.image( background_height, background_width, image_dir ) background_mask = Image.new( "RGB", (background_width, background_height), (0, 0, 0) ) ############################################################## # Comparing average pixel value of text and background image # ############################################################## try: resized_img_st = ImageStat.Stat(resized_img, resized_mask.split()[2]) background_img_st = ImageStat.Stat(background_img) resized_img_px_mean = sum(resized_img_st.mean[:2]) / 3 background_img_px_mean = sum(background_img_st.mean) / 3 if abs(resized_img_px_mean - background_img_px_mean) < 15: print("value of mean pixel is too similar. Ignore this image") print("resized_img_st \n {}".format(resized_img_st.mean)) print("background_img_st \n {}".format(background_img_st.mean)) return except Exception as err: return ############################# # Place text with alignment # ############################# new_text_width, _ = resized_img.size if alignment == 0 or width == -1: background_img.paste(resized_img, (margin_left, margin_top), resized_img) background_mask.paste(resized_mask, (margin_left, margin_top)) elif alignment == 1: background_img.paste( resized_img, (int(background_width / 2 - new_text_width / 2), margin_top), resized_img, ) background_mask.paste( resized_mask, (int(background_width / 2 - new_text_width / 2), margin_top), ) else: background_img.paste( resized_img, (background_width - new_text_width - margin_right, margin_top), resized_img, ) background_mask.paste( resized_mask, (background_width - new_text_width - margin_right, margin_top), ) ############################################ # Change image mode (RGB, grayscale, etc.) # ############################################ background_img = background_img.convert(image_mode) background_mask = background_mask.convert(image_mode) ####################### # Apply gaussian blur # ####################### gaussian_filter = ImageFilter.GaussianBlur( radius=blur if not random_blur else rnd.randint(0, blur) ) final_image = background_img.filter(gaussian_filter) final_mask = background_mask.filter(gaussian_filter) ##################################### # Generate name for resulting image # ##################################### # We remove spaces if space_width == 0 if space_width == 0: text = text.replace(" ", "") if name_format == 0: name = "{}_{}".format(text, str(index)) elif name_format == 1: name = "{}_{}".format(str(index), text) elif name_format == 2: name = str(index) else: print("{} is not a valid name format. Using default.".format(name_format)) name = "{}_{}".format(text, str(index)) image_name = "{}.{}".format(name, extension) mask_name = "{}_mask.png".format(name) box_name = "{}_boxes.txt".format(name) tess_box_name = "{}.box".format(name) # Save the image if out_dir is not None: final_image.save(os.path.join(out_dir, image_name)) if output_mask == 1: final_mask.save(os.path.join(out_dir, mask_name)) if output_bboxes == 1: bboxes = mask_to_bboxes(final_mask) with open(os.path.join(out_dir, box_name), "w") as f: for bbox in bboxes: f.write(" ".join([str(v) for v in bbox]) + "\n") if output_bboxes == 2: bboxes = mask_to_bboxes(final_mask, tess=True) with open(os.path.join(out_dir, tess_box_name), "w") as f: for bbox, char in zip(bboxes, text): f.write(" ".join([char] + [str(v) for v in bbox] + ['0']) + "\n") else: if output_mask == 1: return final_image, final_mask return final_image
36.205575
100
0.523049
137f062e1360399bf7af091125db3d9e31a34170
1,219
py
Python
tests/molecular/writers/mdl_mol/conftest.py
stevenbennett96/stk
6e5af87625b83e0bfc7243bc42d8c7a860cbeb76
[ "MIT" ]
null
null
null
tests/molecular/writers/mdl_mol/conftest.py
stevenbennett96/stk
6e5af87625b83e0bfc7243bc42d8c7a860cbeb76
[ "MIT" ]
null
null
null
tests/molecular/writers/mdl_mol/conftest.py
stevenbennett96/stk
6e5af87625b83e0bfc7243bc42d8c7a860cbeb76
[ "MIT" ]
null
null
null
import pytest import stk from .case_data import CaseData @pytest.fixture( scope='session', params=( lambda: CaseData( molecule=stk.BuildingBlock('BrCCBr', [stk.BromoFactory()]), writer=stk.MolWriter(), string=( '\n RDKit 3D\n\n 0 0 0 0 0 0 0 0 ' ' 0 0999 V3000\nM V30 BEGIN CTAB\nM V30 COUNTS 8 7 ' '0 0 0\nM V30 BEGIN ATOM\nM V30 1 Br -1.4238 1.5615 ' '0.3223 0\nM V30 2 C -0.7405 -0.2573 0.1280 0\nM V30' ' 3 C 0.7148 -0.1157 -0.3383 0\nM V30 4 Br 1.6267 0.8' '896 1.0687 0\nM V30 5 H -1.3518 -0.8075 -0.5939 0\nM' ' V30 6 H -0.7769 -0.6964 1.1440 0\nM V30 7 H 0.7695' ' 0.5280 -1.2387 0\nM V30 8 H 1.1821 -1.1022 -0.4922 ' '0\nM V30 END ATOM\nM V30 BEGIN BOND\nM V30 1 1 1 2' '\nM V30 2 1 2 3\nM V30 3 1 3 4\nM V30 4 1 2 5\nM ' 'V30 5 1 2 6\nM V30 6 1 3 7\nM V30 7 1 3 8\nM V30 E' 'ND BOND\nM V30 END CTAB\nM END\n\n$$$$\n' ), ), ), ) def case_data(request) -> CaseData: return request.param()
35.852941
71
0.480722
ce241199e6818046b152b476b14447abddbab28a
1,431
py
Python
eutils/xmlfacades/esearchresult.py
pmartin23/eutils
9cd8f30a628b6d7a12b8b2a7b99c2a3e7531dd89
[ "Apache-2.0" ]
null
null
null
eutils/xmlfacades/esearchresult.py
pmartin23/eutils
9cd8f30a628b6d7a12b8b2a7b99c2a3e7531dd89
[ "Apache-2.0" ]
null
null
null
eutils/xmlfacades/esearchresult.py
pmartin23/eutils
9cd8f30a628b6d7a12b8b2a7b99c2a3e7531dd89
[ "Apache-2.0" ]
1
2018-10-08T16:34:55.000Z
2018-10-08T16:34:55.000Z
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function, unicode_literals import lxml.etree from eutils.exceptions import * from eutils.xmlfacades.base import Base class ESearchResult(Base): _root_tag = 'eSearchResult' @property def count(self): return int(self._xml_root.find('Count').text) @property def retmax(self): return int(self._xml_root.find('RetMax').text) @property def retstart(self): return int(self._xml_root.find('RetStart').text) @property def ids(self): return [int(id) for id in self._xml_root.xpath('/eSearchResult/IdList/Id/text()')] @property def webenv(self): try: return self._xml_root.find('WebEnv').text except AttributeError: return None # <LICENSE> # Copyright 2015 eutils Committers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express # or implied. See the License for the specific language governing # permissions and limitations under the License. # </LICENSE>
26.5
90
0.698812
7b37b9d0a70d7f7f924c4ed6459835fe0afb2fee
14,856
py
Python
Assignment3_regularization.py
Eni-H/Udacity-DeepLearning
e384ecae234ef7488adeb2b814a709a1bc22595f
[ "MIT" ]
null
null
null
Assignment3_regularization.py
Eni-H/Udacity-DeepLearning
e384ecae234ef7488adeb2b814a709a1bc22595f
[ "MIT" ]
null
null
null
Assignment3_regularization.py
Eni-H/Udacity-DeepLearning
e384ecae234ef7488adeb2b814a709a1bc22595f
[ "MIT" ]
null
null
null
# These are all the modules we'll be using later. Make sure you can import them # before proceeding further. from __future__ import print_function import numpy as np import tensorflow.compat.v1 as tf from six.moves import cPickle as pickle # Some personnal imports import matplotlib.pyplot as plt tf.disable_eager_execution() pickle_file = 'notMNIST.pickle' with open(pickle_file, 'rb') as f: save = pickle.load(f) train_dataset = save['train_dataset'] train_labels = save['train_labels'] valid_dataset = save['valid_dataset'] valid_labels = save['valid_labels'] test_dataset = save['test_dataset'] test_labels = save['test_labels'] del save # hint to help gc free up memory print('Training set', train_dataset.shape, train_labels.shape) print('Validation set', valid_dataset.shape, valid_labels.shape) print('Test set', test_dataset.shape, test_labels.shape) image_size = 28 num_labels = 10 batch_size = 128 graph = tf.Graph() def reformat(dataset, labels): dataset = dataset.reshape((-1, image_size * image_size)).astype(np.float32) # Map 2 to [0.0, 1.0, 0.0 ...], 3 to [0.0, 0.0, 1.0 ...] labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32) return dataset, labels train_dataset, train_labels = reformat(train_dataset, train_labels) valid_dataset, valid_labels = reformat(valid_dataset, valid_labels) test_dataset, test_labels = reformat(test_dataset, test_labels) print('Training set', train_dataset.shape, train_labels.shape) print('Validation set', valid_dataset.shape, valid_labels.shape) print('Test set', test_dataset.shape, test_labels.shape) def accuracy(predictions, labels): return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1)) / predictions.shape[0]) # Problem 1 # Introduce and tune L2 regularization for both logistic and neural network models. # Remember that L2 amounts to adding a penalty on the norm of the weights to the loss. # In TensorFlow, you can compute the L2 loss for a tensor t using nn.l2_loss(t). # The right amount of regularization should improve your validation / test accuracy. with graph.as_default(): # Input data. For the training data, we use a placeholder that will be fed # at run time with a training minibatch. tf_train_dataset = tf.placeholder(tf.float32, shape=(batch_size, image_size * image_size)) tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels)) tf_valid_dataset = tf.constant(valid_dataset) tf_test_dataset = tf.constant(test_dataset) l2_reg = tf.placeholder(tf.float32) # Variables. weights = tf.Variable( tf.truncated_normal([image_size * image_size, num_labels])) biases = tf.Variable(tf.zeros([num_labels])) # Training computation. logits = tf.matmul(tf_train_dataset, weights) + biases loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=tf_train_labels))+l2_reg*tf.nn.l2_loss(weights) # Optimizer. optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss) # Predictions for the training, validation, and test data. train_prediction = tf.nn.softmax(logits) valid_prediction = tf.nn.softmax(tf.matmul(tf_valid_dataset, weights) + biases) test_prediction = tf.nn.softmax(tf.matmul(tf_test_dataset, weights) + biases) num_steps = 3001 with tf.Session(graph=graph) as session: tf.initialize_all_variables().run() print("Initialized") for step in range(num_steps): # Pick an offset within the training data, which has been randomized. # Note: we could use better randomization across epochs. offset = (step * batch_size) % (train_labels.shape[0] - batch_size) # Generate a minibatch. batch_data = train_dataset[offset:(offset + batch_size), :] batch_labels = train_labels[offset:(offset + batch_size), :] # Prepare a dictionary telling the session where to feed the minibatch. # The key of the dictionary is the placeholder node of the graph to be fed, # and the value is the numpy array to feed to it. feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels, l2_reg : 0.0025} _, l, predictions = session.run([optimizer, loss, train_prediction], feed_dict=feed_dict) if (step % 500 == 0): print("Minibatch loss at step %d: %f" % (step, l)) print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels)) print("Validation accuracy: %.1f%%" % accuracy( valid_prediction.eval(), valid_labels)) print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels)) batch_size = 128 num_hidden_nodes = 1024 graph = tf.Graph() with graph.as_default(): # Input data. For the training data, we use a placeholder that will be fed # at run time with a training minibatch. tf_train_dataset = tf.placeholder(tf.float32, shape=(batch_size, image_size * image_size)) tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels)) tf_valid_dataset = tf.constant(valid_dataset) tf_test_dataset = tf.constant(test_dataset) l2_reg = tf.placeholder(tf.float32) # Variables. weights1 = tf.Variable( tf.truncated_normal([image_size * image_size, num_hidden_nodes])) biases1 = tf.Variable(tf.zeros([num_hidden_nodes])) weights2 = tf.Variable( tf.truncated_normal([num_hidden_nodes, num_labels])) biases2 = tf.Variable(tf.zeros([num_labels])) # Training computation. layer1_train = tf.nn.relu(tf.matmul(tf_train_dataset, weights1) + biases1) logits = tf.matmul(layer1_train, weights2) + biases2 loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=tf_train_labels)) + l2_reg * (tf.nn.l2_loss(weights1) + tf.nn.l2_loss(weights2)) # Optimizer. optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss) # Predictions for the training, validation, and test data. train_prediction = tf.nn.softmax(logits) layer1_valid = tf.nn.relu(tf.matmul(tf_valid_dataset,weights1) + biases1) valid_prediction = tf.nn.softmax(tf.matmul(layer1_valid, weights2) + biases2) layer1_test = tf.nn.relu(tf.matmul(tf_test_dataset,weights1) + biases1) test_prediction = tf.nn.softmax(tf.matmul(layer1_test, weights2) + biases2) num_steps = 3001 with tf.Session(graph=graph) as session: tf.initialize_all_variables().run() print("Initialized") for step in range(num_steps): # Pick an offset within the training data, which has been randomized. # Note: we could use better randomization across epochs. offset = (step * batch_size) % (train_labels.shape[0] - batch_size) # Generate a minibatch. batch_data = train_dataset[offset:(offset + batch_size), :] batch_labels = train_labels[offset:(offset + batch_size), :] # Prepare a dictionary telling the session where to feed the minibatch. # The key of the dictionary is the placeholder node of the graph to be fed, # and the value is the numpy array to feed to it. feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels, l2_reg : 0.0025} _, l, predictions = session.run( [optimizer, loss, train_prediction], feed_dict=feed_dict) if (step % 500 == 0): print("Minibatch loss at step %d: %f" % (step, l)) print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels)) print("Validation accuracy: %.1f%%" % accuracy( valid_prediction.eval(), valid_labels)) print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels)) l2_reg_val = [pow(10, i) for i in np.arange(-4, -2, 0.1)] accuracy_val = [] for regul in l2_reg_val: with tf.Session(graph=graph) as session: tf.initialize_all_variables().run() for step in range(num_steps): # Pick an offset within the training data, which has been randomized. # Note: we could use better randomization across epochs. offset = (step * batch_size) % (train_labels.shape[0] - batch_size) # Generate a minibatch. batch_data = train_dataset[offset:(offset + batch_size), :] batch_labels = train_labels[offset:(offset + batch_size), :] # Prepare a dictionary telling the session where to feed the minibatch. # The key of the dictionary is the placeholder node of the graph to be fed, # and the value is the numpy array to feed to it. feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels, l2_reg : regul} _, l, predictions = session.run( [optimizer, loss, train_prediction], feed_dict=feed_dict) accuracy_val.append(accuracy(test_prediction.eval(), test_labels)) plt.semilogx(l2_reg_val, accuracy_val) plt.grid(True) plt.title('Test accuracy by regularization (logistic)') plt.show() # Problem 2 # Let's demonstrate an extreme case of overfitting. Restrict your training data to just a few batches. What happens? with graph.as_default(): # Input data. For the training data, we use a placeholder that will be fed # at run time with a training minibatch. tf_train_dataset = tf.placeholder(tf.float32, shape=(batch_size, image_size * image_size)) tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels)) tf_valid_dataset = tf.constant(valid_dataset) tf_test_dataset = tf.constant(test_dataset) l2_reg = tf.placeholder(tf.float32) # Variables. weights = tf.Variable( tf.truncated_normal([image_size * image_size, num_labels])) biases = tf.Variable(tf.zeros([num_labels])) # Training computation. logits = tf.matmul(tf_train_dataset, weights) + biases loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=tf_train_labels))+l2_reg*tf.nn.l2_loss(weights) # Optimizer. optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss) # Predictions for the training, validation, and test data. train_prediction = tf.nn.softmax(logits) valid_prediction = tf.nn.softmax(tf.matmul(tf_valid_dataset, weights) + biases) test_prediction = tf.nn.softmax(tf.matmul(tf_test_dataset, weights) + biases) num_steps = 101 with tf.Session(graph=graph) as session: tf.initialize_all_variables().run() print("Initialized") for step in range(num_steps): # Pick an offset within the training data, which has been randomized. # Note: we could use better randomization across epochs. offset = ((step%3) * batch_size) % (train_labels.shape[0] - batch_size) # Generate a minibatch. batch_data = train_dataset[offset:(offset + batch_size), :] batch_labels = train_labels[offset:(offset + batch_size), :] # Prepare a dictionary telling the session where to feed the minibatch. # The key of the dictionary is the placeholder node of the graph to be fed, # and the value is the numpy array to feed to it. feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels, l2_reg : 0.0025} _, l, predictions = session.run([optimizer, loss, train_prediction], feed_dict=feed_dict) if (step % 500 == 0): print("Minibatch loss at step %d: %f" % (step, l)) print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels)) print("Validation accuracy: %.1f%%" % accuracy( valid_prediction.eval(), valid_labels)) print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels)) # Problem 3 # Introduce Dropout on the hidden layer of the neural network. # Remember: Dropout should only be introduced during training, not evaluation, # otherwise your evaluation results would be stochastic as well. # TensorFlow provides nn.dropout() for that, but you have to make sure it's only inserted # during training. # What happens to our extreme overfitting case? batch_size = 128 num_hidden_nodes = 1024 graph = tf.Graph() with graph.as_default(): # Input data. For the training data, we use a placeholder that will be fed # at run time with a training minibatch. tf_train_dataset = tf.placeholder(tf.float32, shape=(batch_size, image_size * image_size)) tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels)) tf_valid_dataset = tf.constant(valid_dataset) tf_test_dataset = tf.constant(test_dataset) # Variables. weights1 = tf.Variable( tf.truncated_normal([image_size * image_size, num_hidden_nodes])) biases1 = tf.Variable(tf.zeros([num_hidden_nodes])) weights2 = tf.Variable( tf.truncated_normal([num_hidden_nodes, num_labels])) biases2 = tf.Variable(tf.zeros([num_labels])) # Training computation. layer1_train = tf.nn.relu(tf.matmul(tf_train_dataset, weights1) + biases1) layer_dropout = tf.nn.dropout(layer1_train,0.5) logits = tf.matmul(layer1_train, weights2) + biases2 loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=tf_train_labels)) # Optimizer. optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss) # Predictions for the training, validation, and test data. train_prediction = tf.nn.softmax(logits) layer1_valid = tf.nn.relu(tf.matmul(tf_valid_dataset,weights1) + biases1) valid_prediction = tf.nn.softmax(tf.matmul(layer1_valid, weights2) + biases2) layer1_test = tf.nn.relu(tf.matmul(tf_test_dataset,weights1) + biases1) test_prediction = tf.nn.softmax(tf.matmul(layer1_test, weights2) + biases2) num_steps = 101 with tf.Session(graph=graph) as session: tf.initialize_all_variables().run() print("Initialized") for step in range(num_steps): # Pick an offset within the training data, which has been randomized. # Note: we could use better randomization across epochs. # offset = (step * batch_size) % (train_labels.shape[0] - batch_size) offset = (step%3) # Generate a minibatch. batch_data = train_dataset[offset:(offset + batch_size), :] batch_labels = train_labels[offset:(offset + batch_size), :] # Prepare a dictionary telling the session where to feed the minibatch. # The key of the dictionary is the placeholder node of the graph to be fed, # and the value is the numpy array to feed to it. feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels} _, l, predictions = session.run( [optimizer, loss, train_prediction], feed_dict=feed_dict) if (step % 500 == 0): print("Minibatch loss at step %d: %f" % (step, l)) print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels)) print("Validation accuracy: %.1f%%" % accuracy( valid_prediction.eval(), valid_labels)) print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels))
46.425
147
0.713314
90e961770ff07c1af97730101c9faa1d692818f8
5,624
py
Python
tests/test_pass_defunctionalization.py
anonymousWork000/TVMfuzz
0ccbb33af89758b8ead59a8c686645246ccd0545
[ "Apache-2.0" ]
16
2021-05-22T07:39:53.000Z
2022-02-23T14:50:38.000Z
tests/test_pass_defunctionalization.py
anonymousWork000/TVMfuzz
0ccbb33af89758b8ead59a8c686645246ccd0545
[ "Apache-2.0" ]
null
null
null
tests/test_pass_defunctionalization.py
anonymousWork000/TVMfuzz
0ccbb33af89758b8ead59a8c686645246ccd0545
[ "Apache-2.0" ]
3
2021-05-28T07:12:14.000Z
2021-11-28T02:10:48.000Z
import pytest import numpy as np import tvm from tvm import relay from tvm.relay.backend.interpreter import ConstructorValue from tvm.relay import transform, ExprVisitor, TypeVisitor from tvm.relay.testing import Prelude # determine if type t is a FuncType or has a nested FuncType def has_func_type(t): class FuncTypeVisitor(TypeVisitor): def __init__(self): super().__init__() self.has_func = False def visit_func_type(self, ftt): self.has_func = True ftvisitor = FuncTypeVisitor() ftvisitor.visit(t) return ftvisitor.has_func # determine whether a program has any higher order functions # a higher order function is defined as one that: # - has function type arguments # - returns a function def assert_no_higher_order_functions(expr, mod): class CheckFirstOrderVisitor(ExprVisitor): def __init__(self, mod): super().__init__() self.mod = mod self.hof = [] self.visited_gv = set() def visit_call(self, call): is_higher_order = False # check return type if has_func_type(call.checked_type): is_higher_order = True # check argument types for a in call.args: if has_func_type(a.checked_type): is_higher_order = True # if it is higher order, save it for debugging later if is_higher_order: self.hof.append(call) super().visit_call(call) def visit_global_var(self, gv): # visit global vars to visit entire program if gv not in self.visited_gv: self.visited_gv.add(gv) self.visit(self.mod[gv]) mod = transform.InferType()(mod) check_fo_visitor = CheckFirstOrderVisitor(mod) check_fo_visitor.visit(expr) nl = "\n--------\n" errmsg = f"""found {len(check_fo_visitor.hof)} higher order functions: {nl.join(expr.astext() for expr in check_fo_visitor.hof)}""" assert len(check_fo_visitor.hof) == 0, errmsg # assert that a program is defunctionalized and returns # defunctionalized module # assumes program starts from mod['main'] def defunctionalized(mod): mod = transform.InferType()(mod) mod["main"] = transform.Defunctionalization(mod["main"], mod) mod = transform.InferType()(mod) assert_no_higher_order_functions(mod["main"], mod) return mod # adt list to python list def to_list(mod, l): list = mod.get_global_type_var("List") list_adt = mod[list] cons = list_adt.constructors[0] nil = list_adt.constructors[1] assert isinstance(l, ConstructorValue) val = l ret = [] while True: if val.tag == cons.tag: ret.append(val.fields[0].asnumpy()) val = val.fields[1] else: assert val.tag == nil.tag break return ret # list to adt list def to_adt_list(mod, arr): expr = mod["main"] l = mod.get_global_type_var("List") list_adt = mod[l] cons = list_adt.constructors[0] nil = list_adt.constructors[1] li = nil() for a in arr: li = cons(relay.const(a), li) ex = relay.create_executor(mod=mod) adt = ex.evaluate(li) mod["main"] = expr return adt def test_simple(): code = """ #[version = "0.0.5"] def @simple[A, B](%f: fn(A) -> B, %xs: A) -> B { %f(%xs) } def @main(%l: Tensor[(5, 5), float32]) -> Tensor[(5, 5), float32] { %0 = fn[A](%x: A) -> A { %x }; @simple(%0, %l) } """ mod = tvm.parser.fromtext(code) defunc_mod = defunctionalized(mod) input = np.random.rand(5, 5).astype("float32") ex = relay.create_executor("debug", mod=mod) defunc_ex = relay.create_executor("debug", mod=defunc_mod) out = ex.evaluate()(input) defunc_out = defunc_ex.evaluate()(input) np.testing.assert_equal(out.asnumpy(), defunc_out.asnumpy()) def test_global_recursion(): code = """ #[version = "0.0.5"] type List[A] { Cons(A, List[A]), Nil, } def @id[A](%x: A) -> A { %x } def @map[A, B](%f: fn(A) -> B, %xs: List[A]) -> List[B] { match (%xs) { Cons(%x, %rest) => Cons(%f(%x), @map(%f, %rest)), Nil => Nil, } } def @main(%l: List[float32]) -> List[float32] { @map(@id, %l) } """ mod = tvm.parser.fromtext(code) defunc_mod = defunctionalized(mod) input = np.random.rand(10).astype("float32") ex = relay.create_executor("debug", mod=mod) defunc_ex = relay.create_executor("debug", mod=defunc_mod) out = ex.evaluate(mod["main"])(to_adt_list(mod, input)) defunc_out = defunc_ex.evaluate()(to_adt_list(defunc_mod, input)) np.testing.assert_array_equal(to_list(mod, out), to_list(defunc_mod, defunc_out)) def test_recursive_datatype(): # CPS will create recursive datatype code = """ #[version = "0.0.5"] type List[A] { Cons(A, List[A]), Nil, } def @sum(%f: fn(int32) -> int32, %k: List[int32]) -> int32 { match (%k) { Cons(%x, %rest) => %0 = fn(%n) { %x + %f(%n) }; @sum(%0, %rest), Nil => %f(0), } } def @id[A](%x: A) -> A { %x } def @main(%l: List[int32]) -> int32 { @sum(@id, %l) } """ mod = tvm.parser.fromtext(code) defunc_mod = defunctionalized(mod) input = np.random.randint(1, 100, 10) ex = relay.create_executor("debug", mod=mod) defunc_ex = relay.create_executor("debug", mod=defunc_mod) out = ex.evaluate(mod["main"])(to_adt_list(mod, input)) defunc_out = defunc_ex.evaluate()(to_adt_list(defunc_mod, input)) tvm.testing.assert_allclose(out.asnumpy(), defunc_out.asnumpy())
26.403756
85
0.613087
fdef4e9e812f7db547f3f6942d0735f7f7aec774
1,134
py
Python
setup.py
radimsuckr/django-is-core
72edb572c24baef5049d29b99bafacf124bfccbe
[ "BSD-3-Clause" ]
null
null
null
setup.py
radimsuckr/django-is-core
72edb572c24baef5049d29b99bafacf124bfccbe
[ "BSD-3-Clause" ]
null
null
null
setup.py
radimsuckr/django-is-core
72edb572c24baef5049d29b99bafacf124bfccbe
[ "BSD-3-Clause" ]
null
null
null
from setuptools import setup, find_packages from is_core.version import get_version setup( name='django-is-core', version=get_version(), description="Information systems core.", keywords='django, admin, information systems, REST', author='Lubos Matl', author_email='matllubos@gmail.com', url='https://github.com/matllubos/django-is-core', license='BSD', package_dir={'is_core': 'is_core'}, include_package_data=True, packages=find_packages(), classifiers=[ 'Development Status :: 3 - Alpha', 'Framework :: Django', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Internet :: WWW/HTTP', ], install_requires=[ 'django>=1.10', 'django-pyston~=2.9.5', 'django-block-snippets==2.0.1', 'django-chamber~=0.4.6', 'python-dateutil~=2.2', 'pytz', 'Unidecode>=0.04.16', 'python-mimeparse==0.1.4', 'django-ipware~=1.0.0' ], zip_safe=False )
29.076923
56
0.601411
f2d7c528b8daaa56c0375a39f2056d9accd50398
2,953
py
Python
tests/integration/test_vagrant.py
Nightfurex/build-magic
ed6c5e36cd98a760a9cc1939589833722126e088
[ "MIT" ]
10
2020-12-11T07:33:32.000Z
2022-03-27T20:48:12.000Z
tests/integration/test_vagrant.py
Nightfurex/build-magic
ed6c5e36cd98a760a9cc1939589833722126e088
[ "MIT" ]
89
2021-03-31T06:48:11.000Z
2022-03-23T02:17:17.000Z
tests/integration/test_vagrant.py
Nightfurex/build-magic
ed6c5e36cd98a760a9cc1939589833722126e088
[ "MIT" ]
3
2021-06-14T20:15:04.000Z
2022-02-10T18:20:28.000Z
"""Integration tests for the Vagrant CommandRunner.""" from pathlib import Path import shutil import subprocess import pytest from build_magic.reference import ExitCode @pytest.mark.vagrant def test_wd(cli): """Verify setting the working directory works correctly.""" path = Path(__file__).parent res = subprocess.run( "python -m build_magic --verbose --plain " "--runner vagrant " f"--environment {path.parent}/files/Vagrantfile " "--wd /app " "-c execute 'pwd'", stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True, ) output = res.stdout.decode('utf-8') assert res.returncode == ExitCode.PASSED assert '[ INFO ] Starting Stage 1' in output assert '[ DONE ] ( 1/1 ) EXECUTE : pwd' in output assert '[ INFO ] OUTPUT: /app' in output assert '[ INFO ] Stage 1 complete with result DONE' in output @pytest.mark.vagrant def test_isolation(cli, tmp_path_factory): """Verify copying files to a working directory in the vm works correctly.""" source = tmp_path_factory.mktemp('source') target = tmp_path_factory.mktemp('target') main = source / 'main.cpp' plugins = source / 'plugins.cpp' audio = source / 'audio.cpp' main.touch() plugins.touch() audio.touch() vagrantfile = Path(__file__).parent.parent / 'files' / 'Vagrantfile' shutil.copy2(vagrantfile, target) res = subprocess.run( "python -m build_magic --verbose --plain " "--runner vagrant " f"--environment {target.resolve()}/Vagrantfile " f"--copy {source} " "--wd /app " "-c execute 'pwd' " "-c execute 'ls /app' " "-c execute 'cat Vagrantfile' " "audio.cpp main.cpp plugins.cpp", stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True, ) output = res.stdout.decode('utf-8') assert res.returncode == ExitCode.PASSED assert '[ INFO ] Starting Stage 1' in output assert '[ DONE ] ( 1/3 ) EXECUTE : pwd' in output assert '[ INFO ] OUTPUT: /app' in output assert '[ INFO ] OUTPUT: audio.cpp' in output assert 'main.cpp' in output assert 'plugins.cpp' in output assert '[ INFO ] Stage 1 complete with result DONE' in output @pytest.mark.skip def test_cleanup(cli, tmp_path): """Verify cleanup is working correctly.""" # TODO: As of 0.1, cleanup isn't implemented for the Vagrant runner. path = Path(__file__).parent res = subprocess.run( "python -m build_magic --verbose --plain " "--runner vagrant " f"--environment {path.parent}/files/Vagrantfile " "--action cleanup " "--wd /vagrant " "-c execute 'touch file1.txt file2.txt' " "-c execute 'ls'", stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True, ) output = res.stdout.decode('utf-8') print(output) assert False
32.097826
80
0.623434
2f85a7bc112dbe465c144c44b4fab52fdfbee543
302
py
Python
301-400/390.elimination-game.py
guangxu-li/leetcode-in-python
8a5a373b32351500342705c141591a1a8f5f1cb1
[ "MIT" ]
null
null
null
301-400/390.elimination-game.py
guangxu-li/leetcode-in-python
8a5a373b32351500342705c141591a1a8f5f1cb1
[ "MIT" ]
null
null
null
301-400/390.elimination-game.py
guangxu-li/leetcode-in-python
8a5a373b32351500342705c141591a1a8f5f1cb1
[ "MIT" ]
null
null
null
# # @lc app=leetcode id=390 lang=python3 # # [390] Elimination Game # # @lc code=start class Solution: def lastRemaining(self, n: int) -> int: # 1 + n // 2 for rem of reverse order delete return 1 if n == 1 else 2 * (1 + n // 2 - self.lastRemaining(n // 2)) # @lc code=end
23.230769
85
0.576159
d56002dae3474e5ce5ba22cb1b443933f806b422
5,485
py
Python
control/base.py
ligulfzhou/PyBaseProject
47924bc35e23857f0d577809f433e4ac1ce3252d
[ "MIT" ]
2
2018-12-31T06:07:48.000Z
2019-02-19T09:00:38.000Z
control/base.py
ligulfzhou/PyBaseProject
47924bc35e23857f0d577809f433e4ac1ce3252d
[ "MIT" ]
null
null
null
control/base.py
ligulfzhou/PyBaseProject
47924bc35e23857f0d577809f433e4ac1ce3252d
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import pdb import json import random import pickle import datetime import logging import hashlib from copy import deepcopy from decimal import Decimal from tornado import gen from lib import utils from settings import A_DAY from tornado.gen import coroutine from tornado.options import options from tornado import httputil from functools import partial class BaseCtrl(object): def __init__(self, ctrl): self.ctrl = ctrl self.api = ctrl.pdb.api def __getattr__(self, name): return getattr(self.api, name) def get_model_key(self, model, model_id): return '%s_%s' % (model.lower(), model_id) def get_all_model_key(self, model): return 'all_%ss' % model.lower() def _put_ids_to_key(self, key, ids): if not ids: return pl = self.ctrl.rs.pipeline(transaction=True) pl.delete(key) pl.rpush(key, *ids) pl.execute() def refactor_page(self, page, page_size=20): mpage = page // 5 + 1 ipage = page % 5 offset, limit = (ipage - 1) * page_size, page_size return mpage, ipage, offset, limit # put multi items to redis def _put_multi_items_to_redis(self, tb_name, items=[], get_item_key_func=None): if not items: return if not get_item_key_func: get_item_key_func = partial(self.get_model_key_ctl, model=tb_name.lower()) k_v_dict = {get_item_key_func(model_id=item['id']): pickle.dumps(item) for item in items} pl = self.ctrl.rs.pipeline(transaction=True) pl.mset(k_v_dict) for k in k_v_dict: pl.expire(k, A_DAY) pl.execute() # 🌰 merge more fields to items def tpl_merge_more_fields(self, tpls): [tpl.update({ 'sentences': tpl.get('sentences', '').split(';') }) for tpl in tpls if isinstance(tpl.get('sentences', ''), str)] return tpls def effi_merge_more_fields(self, effis): if not effis: return effi_ids = [i['id'] for i in effis] id_hot_dict = self.ctrl.api.get_effi_hot_cnts_ctl(effi_ids) print("===============returned id_hot_dict================") print(id_hot_dict) [effi.update({ 'hot': id_hot_dict.get(effi['id'], 0) }) for effi in effis] return effis def company_merge_more_fields(self, companies): cids = [c['id'] for c in companies] refs = self.api.get_models('Ref', [{ 'company_id': cids }]) [company.update({'refs': []}) for company in companies] id_company_dict = {c['id']: c for c in companies} res = [] for ref in refs: # company.setdefault('refs', []).append() company = id_company_dict.get(ref['company_id'], {}) company.get('refs', []).append(ref) return companies def post_merge_more_fields(self, posts): post_ids = [p['id'] for p in posts] post_images = self.api.get_models('PostImage', [{'post_id': post_ids}]) pid_images_dict = {} [pid_images_dict.setdefault(i['post_id'], []).append(i) for i in post_images] for post in posts: images = pid_images_dict.get(post['id'], []) post.update({ 'post_images': images }) return posts def _get_multi_items(self, tb_name, ids, get_item_key_func=None, merge_item_func=None, put_items_to_rs=None): if not ids: return [] if not get_item_key_func: get_item_key_func = partial(self.get_model_key_ctl, model=tb_name.lower()) if not merge_item_func: if hasattr(self, '%s_merge_more_fields_ctl' % tb_name.lower()): merge_item_func = getattr(self, '%s_merge_more_fields_ctl' % tb_name.lower()) if not put_items_to_rs: put_items_to_rs = partial(self._put_multi_items_to_redis_ctl, tb_name=tb_name.lower()) multi_key = [get_item_key_func(model_id=i) for i in ids] cached = [pickle.loads(item) if item else None for item in self.ctrl.rs.mget(multi_key)] multi_items = dict(zip(multi_key, cached)) miss_ids = [i for i in ids if not multi_items[get_item_key_func(model_id=i)]] # if not miss_ids: # return [multi_items[get_item_key_func(model_id=i)] for i in ids] if miss_ids: miss_items = self.api.get_models(tb_name.capitalize(), [{'id': miss_ids}]) miss_ids = [i['id'] for i in miss_items] miss_multi_key = [get_item_key_func(model_id=i) for i in miss_ids] miss_items = dict(zip(miss_multi_key, miss_items)) if miss_items and put_items_to_rs: put_items_to_rs(items=list(miss_items.values())) multi_items.update(miss_items) items = [multi_items[get_item_key_func(model_id=i)] for i in ids if get_item_key_func(model_id=i) in multi_items] if merge_item_func: items = merge_item_func(items) return items def _rpush_multi_ids_to_key(self, key, ids): pl = self.ctrl.rs.pipeline(transaction=True) pl.delete(key) pl.rpush(key, *ids) pl.expire(key, A_DAY) pl.execute() def update_model(self, tb_name, pk, data): self.api.update_model(tb_name, pk, data) key = self.get_model_key_ctl(tb_name, pk) self.ctrl.rs.delete(key)
33.858025
121
0.616591