hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
069f2df5fd11d359a16791fa25f850a8150ff903
1,394
py
Python
src/manage.py
MelvinYin/Defined_Proteins
75da20be82a47d85d27176db29580ab87d52b670
[ "BSD-3-Clause" ]
2
2021-01-05T02:55:57.000Z
2021-04-16T15:49:08.000Z
src/manage.py
MelvinYin/Defined_Proteins
75da20be82a47d85d27176db29580ab87d52b670
[ "BSD-3-Clause" ]
null
null
null
src/manage.py
MelvinYin/Defined_Proteins
75da20be82a47d85d27176db29580ab87d52b670
[ "BSD-3-Clause" ]
1
2021-01-05T08:12:38.000Z
2021-01-05T08:12:38.000Z
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys from config import paths def main(*args, **kwargs): paths.initialise(os.path.join(os.path.dirname(os.path.realpath(__file__)), "__main__")) assert os.path.isfile(paths.SEARCH_EXEC), paths.SEARCH_EXEC # import subprocess # from config import paths # search_input = os.path.join(paths.SEARCH_DIR, "extracted.matrix") # search_output = os.path.join(paths.SEARCH_DIR, "output.txt") # pdb_seq_file = paths.RCSB_SEQS_FASTA # # assert os.path.isfile(desired) # assert os.path.isfile(search_input) # assert os.path.isfile(pdb_seq_file) # command = f"{desired} {search_input} {pdb_seq_file} " \ # f"{search_output} 30" # ret_code = subprocess.run(command, shell=True) # print(ret_code) # import sys # sys.exit() os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'site_main.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
35.74359
91
0.683644
6ad093ece279fae4e396df89e6b940c68ddf0642
14,249
py
Python
tensorflow_probability/python/sts/dynamic_regression.py
SiegeLordEx/probability
1a12ee773199bec0ad6d49333e268f98e4b731be
[ "Apache-2.0" ]
1
2021-08-23T17:17:52.000Z
2021-08-23T17:17:52.000Z
tensorflow_probability/python/sts/dynamic_regression.py
SiegeLordEx/probability
1a12ee773199bec0ad6d49333e268f98e4b731be
[ "Apache-2.0" ]
null
null
null
tensorflow_probability/python/sts/dynamic_regression.py
SiegeLordEx/probability
1a12ee773199bec0ad6d49333e268f98e4b731be
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Dynamic Linear Regression model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports import tensorflow.compat.v2 as tf from tensorflow_probability.python import bijectors as tfb from tensorflow_probability.python import distributions as tfd from tensorflow_probability.python.internal import distribution_util from tensorflow_probability.python.internal import dtype_util from tensorflow_probability.python.internal import prefer_static from tensorflow_probability.python.sts.internal import util as sts_util from tensorflow_probability.python.sts.structural_time_series import Parameter from tensorflow_probability.python.sts.structural_time_series import StructuralTimeSeries class DynamicLinearRegressionStateSpaceModel(tfd.LinearGaussianStateSpaceModel): """State space model for a dynamic linear regression from provided covariates. A state space model (SSM) posits a set of latent (unobserved) variables that evolve over time with dynamics specified by a probabilistic transition model `p(z[t+1] | z[t])`. At each timestep, we observe a value sampled from an observation model conditioned on the current state, `p(x[t] | z[t])`. The special case where both the transition and observation models are Gaussians with mean specified as a linear function of the inputs, is known as a linear Gaussian state space model and supports tractable exact probabilistic calculations; see `tfp.distributions.LinearGaussianStateSpaceModel` for details. The dynamic linear regression model is a special case of a linear Gaussian SSM and a generalization of typical (static) linear regression. The model represents regression `weights` with a latent state which evolves via a Gaussian random walk: ``` weights[t] ~ Normal(weights[t-1], drift_scale) ``` The latent state (the weights) has dimension `num_features`, while the parameters `drift_scale` and `observation_noise_scale` are each (a batch of) scalars. The batch shape of this `Distribution` is the broadcast batch shape of these parameters, the `initial_state_prior`, and the `design_matrix`. `num_features` is determined from the last dimension of `design_matrix` (equivalent to the number of columns in the design matrix in linear regression). #### Mathematical Details The dynamic linear regression model implements a `tfp.distributions.LinearGaussianStateSpaceModel` with `latent_size = num_features` and `observation_size = 1` following the transition model: ``` transition_matrix = eye(num_features) transition_noise ~ Normal(0, diag([drift_scale])) ``` which implements the evolution of `weights` described above. The observation model is: ``` observation_matrix[t] = design_matrix[t] observation_noise ~ Normal(0, observation_noise_scale) ``` #### Examples Given `series1`, `series2` as `Tensors` each of shape `[num_timesteps]` representing covariate time series, we create a dynamic regression model which conditions on these via the following: ```python dynamic_regression_ssm = DynamicLinearRegressionStateSpaceModel( num_timesteps=42, design_matrix=tf.stack([series1, series2], axis=-1), drift_scale=3.14, initial_state_prior=tfd.MultivariateNormalDiag(scale_diag=[1., 2.]), observation_noise_scale=1.) y = dynamic_regression_ssm.sample() # shape [42, 1] lp = dynamic_regression_ssm.log_prob(y) # scalar ``` Passing additional parameter and `initial_state_prior` dimensions constructs a batch of models, consider the following: ```python dynamic_regression_ssm = DynamicLinearRegressionStateSpaceModel( num_timesteps=42, design_matrix=tf.stack([series1, series2], axis=-1), drift_scale=[3.14, 1.], initial_state_prior=tfd.MultivariateNormalDiag(scale_diag=[1., 2.]), observation_noise_scale=[1., 2.]) y = dynamic_regression_ssm.sample(3) # shape [3, 2, 42, 1] lp = dynamic_regression_ssm.log_prob(y) # shape [3, 2] ``` Which (effectively) constructs two independent state space models; the first with `drift_scale = 3.14` and `observation_noise_scale = 1.`, the second with `drift_scale = 1.` and `observation_noise_scale = 2.`. We then sample from each of the models three times and calculate the log probability of each of the samples under each of the models. Similarly, it is also possible to add batch dimensions via the `design_matrix`. """ def __init__(self, num_timesteps, design_matrix, drift_scale, initial_state_prior, observation_noise_scale=0., initial_step=0, validate_args=False, allow_nan_stats=True, name=None): """State space model for a dynamic linear regression. Args: num_timesteps: Scalar `int` `Tensor` number of timesteps to model with this distribution. design_matrix: float `Tensor` of shape `concat([batch_shape, [num_timesteps, num_features]])`. drift_scale: Scalar (any additional dimensions are treated as batch dimensions) `float` `Tensor` indicating the standard deviation of the latent state transitions. initial_state_prior: instance of `tfd.MultivariateNormal` representing the prior distribution on latent states. Must have event shape `[num_features]`. observation_noise_scale: Scalar (any additional dimensions are treated as batch dimensions) `float` `Tensor` indicating the standard deviation of the observation noise. Default value: `0.`. initial_step: scalar `int` `Tensor` specifying the starting timestep. Default value: `0`. validate_args: Python `bool`. Whether to validate input with asserts. If `validate_args` is `False`, and the inputs are invalid, correct behavior is not guaranteed. Default value: `False`. allow_nan_stats: Python `bool`. If `False`, raise an exception if a statistic (e.g. mean/mode/etc...) is undefined for any batch member. If `True`, batch members with valid parameters leading to undefined statistics will return NaN for this statistic. Default value: `True`. name: Python `str` name prefixed to ops created by this class. Default value: 'DynamicLinearRegressionStateSpaceModel'. """ parameters = dict(locals()) with tf.name_scope( name or 'DynamicLinearRegressionStateSpaceModel') as name: dtype = dtype_util.common_dtype( [design_matrix, drift_scale, initial_state_prior]) design_matrix = tf.convert_to_tensor( value=design_matrix, name='design_matrix', dtype=dtype) design_matrix_with_time_in_first_dim = distribution_util.move_dimension( design_matrix, -2, 0) drift_scale = tf.convert_to_tensor( value=drift_scale, name='drift_scale', dtype=dtype) observation_noise_scale = tf.convert_to_tensor( value=observation_noise_scale, name='observation_noise_scale', dtype=dtype) num_features = prefer_static.shape(design_matrix)[-1] def observation_matrix_fn(t): observation_matrix = tf.linalg.LinearOperatorFullMatrix( tf.gather(design_matrix_with_time_in_first_dim, t)[..., tf.newaxis, :], name='observation_matrix') return observation_matrix self._drift_scale = drift_scale self._observation_noise_scale = observation_noise_scale super(DynamicLinearRegressionStateSpaceModel, self).__init__( num_timesteps=num_timesteps, transition_matrix=tf.linalg.LinearOperatorIdentity( num_rows=num_features, dtype=dtype, name='transition_matrix'), transition_noise=tfd.MultivariateNormalDiag( scale_diag=(drift_scale[..., tf.newaxis] * tf.ones([num_features], dtype=dtype)), name='transition_noise'), observation_matrix=observation_matrix_fn, observation_noise=tfd.MultivariateNormalDiag( scale_diag=observation_noise_scale[..., tf.newaxis], name='observation_noise'), initial_state_prior=initial_state_prior, initial_step=initial_step, allow_nan_stats=allow_nan_stats, validate_args=validate_args, name=name) self._parameters = parameters @property def drift_scale(self): """Standard deviation of the drift in weights at each timestep.""" return self._drift_scale @property def observation_noise_scale(self): """Standard deviation of the observation noise.""" return self._observation_noise_scale class DynamicLinearRegression(StructuralTimeSeries): """Formal representation of a dynamic linear regresson model. The dynamic linear regression model is a special case of a linear Gaussian SSM and a generalization of typical (static) linear regression. The model represents regression `weights` with a latent state which evolves via a Gaussian random walk: ``` weights[t] ~ Normal(weights[t-1], drift_scale) ``` The latent state has dimension `num_features`, while the parameters `drift_scale` and `observation_noise_scale` are each (a batch of) scalars. The batch shape of this `Distribution` is the broadcast batch shape of these parameters, the `initial_state_prior`, and the `design_matrix`. `num_features` is determined from the last dimension of `design_matrix` (equivalent to the number of columns in the design matrix in linear regression). """ def __init__(self, design_matrix, drift_scale_prior=None, initial_weights_prior=None, observed_time_series=None, name=None): """Specify a dynamic linear regression. Args: design_matrix: float `Tensor` of shape `concat([batch_shape, [num_timesteps, num_features]])`. drift_scale_prior: instance of `tfd.Distribution` specifying a prior on the `drift_scale` parameter. If `None`, a heuristic default prior is constructed based on the provided `observed_time_series`. Default value: `None`. initial_weights_prior: instance of `tfd.MultivariateNormal` representing the prior distribution on the latent states (the regression weights). Must have event shape `[num_features]`. If `None`, a weakly-informative Normal(0., 10.) prior is used. Default value: `None`. observed_time_series: `float` `Tensor` of shape `batch_shape + [T, 1]` (omitting the trailing unit dimension is also supported when `T > 1`), specifying an observed time series. Any priors not explicitly set will be given default values according to the scale of the observed time series (or batch of time series). May optionally be an instance of `tfp.sts.MaskedTimeSeries`, which includes a mask `Tensor` to specify timesteps with missing observations. Default value: `None`. name: Python `str` for the name of this component. Default value: 'DynamicLinearRegression'. """ with tf.name_scope(name or 'DynamicLinearRegression') as name: dtype = dtype_util.common_dtype( [design_matrix, drift_scale_prior, initial_weights_prior]) num_features = prefer_static.shape(design_matrix)[-1] # Default to a weakly-informative Normal(0., 10.) for the initital state if initial_weights_prior is None: initial_weights_prior = tfd.MultivariateNormalDiag( scale_diag=10. * tf.ones([num_features], dtype=dtype)) # Heuristic default priors. Overriding these may dramatically # change inference performance and results. if drift_scale_prior is None: if observed_time_series is None: observed_stddev = tf.constant(1.0, dtype=dtype) else: _, observed_stddev, _ = sts_util.empirical_statistics( observed_time_series) drift_scale_prior = tfd.LogNormal( loc=tf.math.log(.05 * observed_stddev), scale=3., name='drift_scale_prior') self._initial_state_prior = initial_weights_prior self._design_matrix = design_matrix super(DynamicLinearRegression, self).__init__( parameters=[ Parameter('drift_scale', drift_scale_prior, tfb.Chain([tfb.AffineScalar(scale=observed_stddev), tfb.Softplus()])) ], latent_size=num_features, name=name) @property def initial_state_prior(self): """Prior distribution on the initial latent state (level and scale).""" return self._initial_state_prior @property def design_matrix(self): """Tensor representing the design matrix.""" return self._design_matrix def _make_state_space_model(self, num_timesteps, param_map, initial_state_prior=None, initial_step=0): if initial_state_prior is None: initial_state_prior = self.initial_state_prior return DynamicLinearRegressionStateSpaceModel( num_timesteps=num_timesteps, design_matrix=self.design_matrix, initial_state_prior=initial_state_prior, initial_step=initial_step, **param_map)
40.945402
89
0.701312
7ad747de729f09460990896765f7421acaed8f22
23,813
py
Python
abs_templates_ec/laygo/tech.py
aalto-ele/BAG2_TEMPLATES_EC
f04c4367234eb2261397b58fac11a79bdf5bee04
[ "BSD-3-Clause" ]
null
null
null
abs_templates_ec/laygo/tech.py
aalto-ele/BAG2_TEMPLATES_EC
f04c4367234eb2261397b58fac11a79bdf5bee04
[ "BSD-3-Clause" ]
1
2021-03-11T12:07:32.000Z
2021-03-15T07:42:03.000Z
abs_templates_ec/laygo/tech.py
aalto-ele/BAG2_TEMPLATES_EC
f04c4367234eb2261397b58fac11a79bdf5bee04
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """This module defines abstract analog mosfet template classes. """ from typing import Dict, Any, Tuple, List, TYPE_CHECKING from bag.layout.util import BBox from bag.layout.template import TemplateBase from bag.layout.routing import WireArray import abc from ..analog_mos.core import MOSTech from ..analog_mos.mos import AnalogMOSExt from ..analog_mos.edge import AnalogEdge if TYPE_CHECKING: from bag.layout.tech import TechInfoConfig from .base import LaygoEndRow from .core import LaygoBaseInfo class LaygoTech(MOSTech, metaclass=abc.ABCMeta): """An abstract class for drawing transistor related layout for custom digital circuits. This class defines various methods use to draw layouts used by LaygoBase. Parameters ---------- config : Dict[str, Any] the technology configuration dictionary. tech_info : TechInfo the TechInfo object. mos_entry_name : str name of the entry that contains technology parameters for transistors in the given configuration dictionary. """ def __init__(self, config, tech_info, mos_entry_name='mos'): # type: (Dict[str, Any], TechInfoConfig, str) -> None MOSTech.__init__(self, config, tech_info, mos_entry_name=mos_entry_name) @abc.abstractmethod def get_default_end_info(self): # type: () -> Any """Returns the default end_info object.""" return 0 @abc.abstractmethod def get_laygo_mos_row_info(self, # type: LaygoTech lch_unit, # type: int w_max, # type: int w_sub, # type: int mos_type, # type: str threshold, # type: str bot_row_type, # type: str top_row_type, # type: str **kwargs): # type: (...) -> Dict[str, Any] """Returns the information dictionary for laygo transistor row. Parameters ---------- lch_unit : int the channel length in resolution units. w_max : int the maximum transistor width in number of fins/resolution units. Must be greater than or equal to w_sub. w_sub : int the substrate width in number of fins/resolution units. mos_type : str the transistor/substrate type. One of 'pch', 'nch', 'ptap', or 'ntap'. threshold : str the transistor threshold flavor. bot_row_type : str the bottom (next to gate) laygo row type. top_row_type: str the top (next to drain/source) laygo row type. **kwargs optional keyword arguments. Returns ------- row_info : Dict[str, Any] the row information dictionary. Must have the following entries: w_max : int maximum transistor width in this row. w_sub : int substrate width in this row. lch_unit : int the channel length. row_type : str the row transistor/substrate type. sub_type : str the row substrate type. threshold : str the threshold flavor. arr_y : Tuple[int, int] the array box Y interval. od_y : Tuple[int, int] the worst case OD Y interval. po_y : Tuple[int, int] the PO Y interval. md_y : Tuple[int, int] the worst case MD Y interval. ext_top_info : Any an object used to compute extension layout above this row. ext_bot_info : Any an object used to compute extension layout below this row. lay_info_list : List[Any] the default layer information list. imp_params : Any the defeault implant parameters of this row. fill_info_list : List[Any] the fill information list. g_conn_y : Tuple[int, int] the gate connection Y coordinates. gb_conn_y : Tuple[int, int] the gate-bar connection Y coordinates. ds_conn_y : Tuple[int, int] the drain-source connection Y coordinates. row_name_id : str the name ID for this row. """ return {} @abc.abstractmethod def get_laygo_sub_row_info(self, lch_unit, w, mos_type, threshold, **kwargs): # type: (int, int, str, str, **kwargs) -> Dict[str, Any] """Returns the information dictionary for laygo substrate row. Parameters ---------- lch_unit : int the channel length in resolution units. w : int the substrate width in number of fins/resolution units. mos_type : str the transistor/substrate type. One of 'pch', 'nch', 'ptap', or 'ntap'. threshold : str the transistor threshold flavor. **kwargs optional keyword arguments Returns ------- row_info : Dict[str, Any] the row information dictionary. Must have the following entries: w_max : int maximum transistor width in this row. w_sub : int substrate width in this row. lch_unit : int the channel length. row_type : str the row transistor/substrate type. sub_type : str the row substrate type. threshold : str the threshold flavor. arr_y : Tuple[int, int] the array box Y interval. od_y : Tuple[int, int] the worst case OD Y interval. po_y : Tuple[int, int] the PO Y interval. md_y : Tuple[int, int] the worst case MD Y interval. ext_top_info : Any an object used to compute extension layout above this row. ext_bot_info : Any an object used to compute extension layout below this row. lay_info_list : List[Any] the default layer information list. imp_params : Any the defeault implant parameters of this row. fill_info_list : List[Any] the fill information list. g_conn_y : Tuple[int, int] the gate connection Y coordinates. gb_conn_y : Tuple[int, int] the gate-bar connection Y coordinates. ds_conn_y : Tuple[int, int] the drain-source connection Y coordinates. row_name_id : str the name ID for this row. """ return {} @abc.abstractmethod def get_laygo_blk_info(self, blk_type, w, row_info, **kwargs): # type: (str, int, Dict[str, Any], **kwargs) -> Dict[str, Any] """Returns the layout information dictionary for the given laygo block. Parameters ---------- blk_type : str the laygo block type. w : int the transistor width. row_info : Dict[str, Any] the row layout information object. **kwargs optional keyword arguments. Returns ------- blk_info : Dict[str, Any] the block information dictionary. Contains the following entries: layout_info : Dict[str, Any] the block layout information dictionary. ext_top_info : Any an object used to compute extension layout above this block. ext_bot_info : Any an object used to compute extension layout below this block. left_edge_info : Any an object used to compute layout on the left of this block. right_edge_info : Any an object used to compute layout on the right of this block. """ return {} @abc.abstractmethod def get_laygo_end_info(self, lch_unit, mos_type, threshold, fg, is_end, blk_pitch, **kwargs): # type: (int, str, str, int, bool, int, **kwargs) -> Dict[str, Any] """Returns the LaygoBase end row layout information dictionary. Parameters ---------- lch_unit : int the channel length in resolution units. mos_type : str the transistor type, one of 'pch', 'nch', 'ptap', or 'ntap'. threshold : str the substrate threshold type. fg : int total number of fingers. is_end : bool True if there are no block abutting the bottom. blk_pitch : int height quantization pitch, in resolution units. **kwargs : optional parameters. Returns ------- end_info : Dict[str, Any] the laygo end row information dictionary. """ return {} @abc.abstractmethod def get_laygo_space_info(self, row_info, num_blk, left_blk_info, right_blk_info): # type: (Dict[str, Any], int, Any, Any) -> Dict[str, Any] """Returns a new layout information dictionary for drawing LaygoBase space blocks. Parameters ---------- row_info : Dict[str, Any] the Laygo row information dictionary. num_blk : int number of space blocks. left_blk_info : Any left block information. right_blk_info : Any right block information. Returns ------- space_info : Dict[str, Any] the space layout information dictionary. """ pass @abc.abstractmethod def get_row_extension_info(self, bot_ext_list, top_ext_list): # type: (List[Any], List[Any]) -> List[Tuple[int, int, Any, Any]] """Compute the list of bottom/top extension information pair to create Laygo extension row. Parameters ---------- bot_ext_list : List[Any] list of bottom extension information objects. top_ext_list : List[Any] list of top extension information objects. Returns ------- ext_combo_list : List[Tuple[int, int, Any, Any]] list of number of fingers and bottom/top extension information objects for each extension primitive. """ return [] @abc.abstractmethod def draw_laygo_space_connection(self, template, space_info, left_blk_info, right_blk_info): # type: (TemplateBase, Dict[str, Any], Any, Any) -> None """Draw any space geometries necessary in the given template. Parameters ---------- template : TemplateBase the TemplateBase object to draw layout in. space_info : Dict[str, Any] the laygo space block information dictionary. left_blk_info : Any left block information. right_blk_info : Any right block information. """ pass @abc.abstractmethod def draw_laygo_connection(self, template, blk_info, blk_type, options): # type: (TemplateBase, Dict[str, Any], str, Dict[str, Any]) -> None """Draw digital transistor connection in the given template. Parameters ---------- template : TemplateBase the TemplateBase object to draw layout in. blk_info : Dict[str, Any] the laygo block information dictionary. blk_type : str the digital block type. options : Dict[str, Any] any additional connection options. """ pass def get_laygo_fg2d_s_short(self): # type: () -> bool """Returns True if the two source wires of fg2d is shorted together in the primitive. Returns ------- s_short : bool True if the two source wires of fg2d is shorted together """ return self.mos_config['laygo_fg2d_s_short'] def can_short_ds_conn_layer(self): # type: () -> bool """ Returns True if the drain and source ports on dig_conn_layer of adjacent rows with gate connection in the middle, can be shorted without violating spacing to gate connections """ return self.mos_config.get('laygo_short_ds_conn_layer', True) def get_sub_columns(self, lch_unit): # type: (int) -> int """Returns the number of columns per substrate block. Parameters ---------- lch_unit : int the channel length in resolution units. Returns ------- num_cols : int number of columns per substrate block. """ return self.get_mos_tech_constants(lch_unit)['laygo_sub_ncol'] def get_sub_port_columns(self, lch_unit): # type: (int) -> List[int] """Returns the columns indices that have ports in substrate block. Parameters ---------- lch_unit : int the channel length in resolution units. Returns ------- port_cols : List[int] the columns indices that have ports in substrate block. """ return self.get_mos_tech_constants(lch_unit)['laygo_sub_port_cols'] def get_min_sub_space_columns(self, lch_unit): # type: (int) -> int """Returns the minimum number of space columns needed around substrate blocks. Parameters ---------- lch_unit : int the channel length in resolution units. Returns ------- num_cols : int minimum number of space columns. """ return self.get_mos_tech_constants(lch_unit)['laygo_sub_spx'] def get_laygo_conn_track_info(self, lch_unit): # type: (int) -> Tuple[int, int] """Returns dummy connection layer space and width. Parameters ---------- lch_unit : int channel length in resolution units. Returns ------- dum_sp : int space between dummy tracks in resolution units. dum_w : int width of dummy tracks in resolution units. """ mos_constants = self.get_mos_tech_constants(lch_unit) sd_pitch = mos_constants['sd_pitch'] laygo_conn_w = mos_constants['laygo_conn_w'] laygo_num_sd_per_track = mos_constants['laygo_num_sd_per_track'] return sd_pitch * laygo_num_sd_per_track - laygo_conn_w, laygo_conn_w def draw_extensions(self, # type: LaygoTech template, # type: TemplateBase laygo_info, # type: LaygoBaseInfo num_cols, # type: int w, # type: int yext, # type: int bot_ext_list, # type: List[Tuple[int, Any]] top_ext_list, # type: List[Tuple[int, Any]] ): # type: (...) -> Tuple[Any, Any] """Draw extension rows in the given LaygoBase/DigitalBase template. Parameters ---------- template : TemplateBase the LaygoBase/DigitalBase object to draw layout in. laygo_info : LaygoBaseInfo the LaygoBaseInfo object. num_cols : int number of columns. w : int extension width in number of mos pitches. yext : int Y coordinate of the extension block. bot_ext_list : List[Tuple[int, Any]] list of tuples of end finger index and bottom extension information top_ext_list : List[Tuple[int, Any]] list of tuples of end finger index and top extension information Returns ------- edgesl : Optional[Tuple[int, str, Dict[str, Any]]] a tuple of Y coordinate, orientation, and parameters for left edge. edgesr : Optional[Tuple[int, str, Dict[str, Any]]] a tuple of Y coordinate, orientation, and parameters for right edge. """ lch = laygo_info.lch top_layer = laygo_info.top_layer guard_ring_nf = laygo_info.guard_ring_nf ext_groups = self.get_row_extension_info(bot_ext_list, top_ext_list) edgesl, edgesr = None, None if w > 0 or self.draw_zero_extension(): for idx, (fg_off, fg, bot_info, top_info) in enumerate(ext_groups): ext_params = dict( lch=lch, w=w, fg=fg, top_ext_info=top_info, bot_ext_info=bot_info, is_laygo=True, ) curx = laygo_info.col_to_coord(fg_off, unit_mode=True) ext_master = template.new_template(params=ext_params, temp_cls=AnalogMOSExt) template.add_instance(ext_master, loc=(curx, yext), unit_mode=True) if fg_off == 0: adj_blk_info = ext_master.get_left_edge_info() # compute edge parameters cur_ext_edge_params = dict( top_layer=top_layer, guard_ring_nf=guard_ring_nf, name_id=ext_master.get_layout_basename(), layout_info=ext_master.get_edge_layout_info(), adj_blk_info=adj_blk_info, is_laygo=True, ) edgesl = (yext, cur_ext_edge_params) if fg_off + fg == num_cols: adj_blk_info = ext_master.get_right_edge_info() # compute edge parameters cur_ext_edge_params = dict( top_layer=top_layer, guard_ring_nf=guard_ring_nf, name_id=ext_master.get_layout_basename(), layout_info=ext_master.get_edge_layout_info(), adj_blk_info=adj_blk_info, is_laygo=True, ) edgesr = (yext, cur_ext_edge_params) return edgesl, edgesr def draw_boundaries(self, # type: LaygoTech template, # type: TemplateBase laygo_info, # type: LaygoBaseInfo num_col, # type: int yt, # type: int bot_end_master, # type: LaygoEndRow top_end_master, # type: LaygoEndRow edgel_infos, # type: List[Tuple[int, str, Dict[str, Any]]] edger_infos, # type: List[Tuple[int, str, Dict[str, Any]]] ): # type: (...) -> Tuple[BBox, List[WireArray], List[WireArray]] """Draw boundaries for LaygoBase/DigitalBase. Parameters ---------- template : TemplateBase the LaygoBase/DigitalBase object to draw layout in. laygo_info : LaygoBaseInfo the LaygoBaseInfo object. num_col : int number of primitive columns in the template. yt : int the top Y coordinate of the template. Used to determine top end row placement. bot_end_master: LaygoEndRow the bottom LaygoEndRow master. top_end_master : LaygoEndRow the top LaygoEndRow master. edgel_infos: List[Tuple[int, str, Dict[str, Any]]] a list of Y coordinate, orientation, and parameters for left edge blocks. edger_infos: List[Tuple[int, str, Dict[str, Any]]] a list of Y coordinate, orientation, and parameters for right edge blocks. Returns ------- arr_box : BBox the array box. vdd_warrs : List[WireArray] any VDD wires in the edge block due to guard ring. vss_warrs : List[WireArray] any VSS wires in the edge block due to guard ring. """ end_mode = laygo_info.end_mode guard_ring_nf = laygo_info.guard_ring_nf col_width = laygo_info.col_width nx = num_col spx = col_width emargin_l, emargin_r = laygo_info.edge_margins ewidth_l, ewidth_r = laygo_info.edge_widths xoffset = emargin_l + ewidth_l # draw top and bottom end row inst = template.add_instance(bot_end_master, inst_name='XRBOT', loc=(xoffset, 0), nx=nx, spx=spx, unit_mode=True) arr_box = inst.array_box inst = template.add_instance(top_end_master, inst_name='XRBOT', loc=(xoffset, yt), orient='MX', nx=nx, spx=spx, unit_mode=True) arr_box = arr_box.merge(inst.array_box) # draw corners left_end = (end_mode & 4) != 0 right_end = (end_mode & 8) != 0 edge_inst_list = [] xr = laygo_info.tot_width for orient, y, master in (('R0', 0, bot_end_master), ('MX', yt, top_end_master)): for x, is_end, flip_lr in ((emargin_l, left_end, False), (xr - emargin_r, right_end, True)): edge_params = dict( is_end=is_end, guard_ring_nf=guard_ring_nf, adj_blk_info=master.get_left_edge_info(), name_id=master.get_layout_basename(), layout_info=master.get_edge_layout_info(), is_laygo=True, ) edge_master = template.new_template(params=edge_params, temp_cls=AnalogEdge) if flip_lr: eorient = 'MY' if orient == 'R0' else 'R180' else: eorient = orient edge_inst_list.append(template.add_instance(edge_master, orient=eorient, loc=(x, y), unit_mode=True)) # draw edge blocks for y, flip_ud, edge_params in edgel_infos: orient = 'MX' if flip_ud else 'R0' edge_master = template.new_template(params=edge_params, temp_cls=AnalogEdge) edge_inst_list.append(template.add_instance(edge_master, orient=orient, loc=(emargin_l, y), unit_mode=True)) for y, flip_ud, edge_params in edger_infos: orient = 'R180' if flip_ud else 'MY' edge_master = template.new_template(params=edge_params, temp_cls=AnalogEdge) edge_inst_list.append(template.add_instance(edge_master, orient=orient, loc=(xr - emargin_r, y), unit_mode=True)) gr_vss_warrs = [] gr_vdd_warrs = [] conn_layer = self.get_dig_conn_layer() for inst in edge_inst_list: if inst.has_port('VDD'): gr_vdd_warrs.extend(inst.get_all_port_pins('VDD', layer=conn_layer)) elif inst.has_port('VSS'): gr_vss_warrs.extend(inst.get_all_port_pins('VSS', layer=conn_layer)) arr_box = arr_box.merge(inst.array_box) # connect body guard rings together gr_vdd_warrs = template.connect_wires(gr_vdd_warrs) gr_vss_warrs = template.connect_wires(gr_vss_warrs) arr_box_x = laygo_info.get_placement_info(num_col).arr_box_x arr_box = BBox(arr_box_x[0], arr_box.bottom_unit, arr_box_x[1], arr_box.top_unit, arr_box.resolution, unit_mode=True) return arr_box, gr_vdd_warrs, gr_vss_warrs
38.284566
113
0.56003
63cc1f2b8c5a1407ab0f09d67528271867f53190
1,915
py
Python
utils/process_log.py
AnastaciaVolkova/SFND_2D_Feature_Tracking
9e7c343eeb78950c69e8067c9e6d37843805c8b5
[ "MIT" ]
null
null
null
utils/process_log.py
AnastaciaVolkova/SFND_2D_Feature_Tracking
9e7c343eeb78950c69e8067c9e6d37843805c8b5
[ "MIT" ]
null
null
null
utils/process_log.py
AnastaciaVolkova/SFND_2D_Feature_Tracking
9e7c343eeb78950c69e8067c9e6d37843805c8b5
[ "MIT" ]
null
null
null
import pickle import pandas as pd import numpy as np def key_points_info(data): data_x = dict() detectors = list() for record in data: if record[1] is not None: det, des = record[0].split("_") if det not in detectors: for metric, column in record[1]["detector"].items(): data_x[(det, metric)] = column data_det = pd.DataFrame.from_dict(data_x) data_det.to_csv("detectors.csv", index=False) def matchers_info(data): data_x = list() for record in data: if record[1] is not None: det, des = record[0].split("_") for metric, column in record[1]["matcher"].items(): data_x.append(((det, des, metric), column)) data_x.sort(key=lambda x: x[0][0]) data_x = dict((x, y) for x, y in data_x) data_det = pd.DataFrame.from_dict(data_x) data_det.to_csv("matchers.csv", index=False) def det_des_time_info(data): data_x = dict() for record in data: if record[1] is not None: det, des = record[0].split("_") data_x[(record[0], f"detector {det}, ms")] = record[1]["detector"]["t"] data_x[(record[0], f"descriptor {des}, ms")] = record[1]["descriptor"]["t"] data_tms = pd.DataFrame.from_dict(data_x) print(data_tms) data_tms.to_csv("timing.csv", index=False) det_des_timing = list() data_tms_cols = list(set(x[0] for x in data_tms.columns)) for det_des in data_tms_cols: mx = data_tms[det_des].to_numpy() det_des_timing.append((det_des, np.mean(mx.sum(axis=1)))) det_des_timing.sort(key=lambda x: x[1]) for comb, t in det_des_timing: print(f"{comb},{t}") def main(): with open("logs.pk", "rb") as fid: data = pickle.load(fid) key_points_info(data) matchers_info(data) det_des_time_info(data) if __name__ == "__main__": main()
29.921875
87
0.601044
eaad4856eb0883dea9d5d2a29769337d6b9c9f12
7,325
py
Python
tests/integration/suite/test_node.py
fizzyduck/rancher
d8099d85f22a6e46fd93f8fc406df8cf91ccb12f
[ "Apache-2.0" ]
1
2019-10-10T06:50:35.000Z
2019-10-10T06:50:35.000Z
tests/integration/suite/test_node.py
fizzyduck/rancher
d8099d85f22a6e46fd93f8fc406df8cf91ccb12f
[ "Apache-2.0" ]
null
null
null
tests/integration/suite/test_node.py
fizzyduck/rancher
d8099d85f22a6e46fd93f8fc406df8cf91ccb12f
[ "Apache-2.0" ]
null
null
null
import base64 import hashlib import os import tempfile import pytest from rancher import ApiError from .common import auth_check from .conftest import wait_for import time def test_node_fields(admin_mc): cclient = admin_mc.client fields = { 'annotations': 'cru', 'labels': 'cru', 'nodeTaints': 'r', 'namespaceId': 'cr', 'conditions': 'r', 'allocatable': 'r', 'capacity': 'r', 'hostname': 'r', 'info': 'r', 'ipAddress': 'r', 'externalIpAddress': 'r', 'limits': 'r', 'publicEndpoints': 'r', 'nodePoolId': 'r', 'nodeName': 'r', 'requested': 'r', 'clusterId': 'cr', 'etcd': 'cr', 'controlPlane': 'cr', 'worker': 'cr', 'requestedHostname': 'cr', 'volumesAttached': 'r', 'nodeTemplateId': 'cr', 'volumesInUse': 'r', 'podCidr': 'r', 'podCidrs': 'r', 'name': 'cru', 'taints': 'ru', 'unschedulable': 'r', 'providerId': 'r', 'sshUser': 'r', 'imported': 'cru', 'dockerInfo': 'r', } for name in cclient.schema.types['node'].resourceFields.keys(): if name.endswith("Config"): fields[name] = 'cr' fields['customConfig'] = 'cru' auth_check(cclient.schema, 'node', 'crud', fields) def test_node_template_delete(admin_mc, remove_resource): """Test deleting a nodeTemplate that is in use by a nodePool. The nodeTemplate should not be deleted while in use, after the nodePool is removed it should delete. """ client = admin_mc.client node_template, cloud_credential = create_node_template(client) node_pool = client.create_node_pool( nodeTemplateId=node_template.id, hostnamePrefix="test1", clusterId="local") # node_pool needs to come first or the API will stop the delete if the # template still exists remove_resource(node_pool) remove_resource(node_template) assert node_pool.nodeTemplateId == node_template.id # Attempting to delete the template should raise an ApiError with pytest.raises(ApiError) as e: client.delete(node_template) assert e.value.error.status == 405 # remove link should not be available node_template = client.reload(node_template) assert 'remove' not in node_template.links client.delete(node_pool) def _node_pool_reload(): np = client.reload(node_pool) return np is None wait_for(_node_pool_reload) node_template = client.reload(node_template) assert 'remove' in node_template.links # NodePool is gone, template should delete client.delete(node_template) node_template = client.reload(node_template) assert node_template is None def test_cloud_credential_delete(admin_mc, remove_resource): """Test deleting a cloud credential that is referenced by nodeTemplate, which is in use by nodePool """ client = admin_mc.client node_template, cloud_credential = create_node_template(client) node_pool = client.create_node_pool( nodeTemplateId=node_template.id, hostnamePrefix="test1", clusterId="local") assert node_pool.nodeTemplateId == node_template.id wait_for_node_template(client, node_template.id) # Attempting to delete the template should raise an ApiError with pytest.raises(ApiError) as e: client.delete(cloud_credential) assert e.value.error.status == 405 def test_writing_config_to_disk(admin_mc, wait_remove_resource): """Test that userdata and other fields from node driver configs are being writting to disk as expected. """ client = admin_mc.client tempdir = tempfile.gettempdir() cloud_credential = client.create_cloud_credential( digitaloceancredentialConfig={"accessToken": "test"}) wait_remove_resource(cloud_credential) userdata = "do cool stuff" def _node_template(): try: return client.create_node_template( digitaloceanConfig={'userdata': userdata}, name='danssweetassthing', cloudCredentialId=cloud_credential.id) except ApiError: return False node_template = wait_for(_node_template, fail_handler=lambda: 'failed to create node template') wait_remove_resource(node_template) node_pool = client.create_node_pool( nodeTemplateId=node_template.id, hostnamePrefix="test1", clusterId="local") wait_remove_resource(node_pool) dir_name = string_to_encoding(userdata) full_path = os.path.join(tempdir, dir_name, 'userdata') def file_exists(): try: os.stat(full_path) return True except FileNotFoundError: return False wait_for(file_exists) with open(full_path, 'r') as f: contents = f.read() assert contents == userdata def test_node_driver_schema(admin_mc): """Test node driver schemas have path fields removed.""" drivers = ['amazonec2config', 'digitaloceanconfig', 'azureconfig'] bad_fields = ['sshKeypath', 'sshKeyPath', 'existingKeyPath'] client = admin_mc.client for driver in drivers: schema = client.schema.types[driver] for field in bad_fields: assert field not in schema.resourceFields, \ 'Driver {} has field {}'.format(driver, field) def create_node_template(client): cloud_credential = client.create_cloud_credential( azurecredentialConfig={"clientId": "test", "subscriptionId": "test", "clientSecret": "test"}) wait_for_cloud_credential(client, cloud_credential.id) node_template = client.create_node_template( azureConfig={}, cloudCredentialId=cloud_credential.id) assert node_template.cloudCredentialId == cloud_credential.id return node_template, cloud_credential def wait_for_cloud_credential(client, cloud_credential_id, timeout=60): start = time.time() interval = 0.5 creds = client.list_cloud_credential() cred = None for val in creds: if val["id"] == cloud_credential_id: cred = val while cred is None: if time.time() - start > timeout: print(cred) raise Exception('Timeout waiting for cloud credential') time.sleep(interval) interval *= 2 for val in creds: if val["id"] == cloud_credential_id: cred = val return cred def string_to_encoding(input): m = hashlib.sha256() m.update(bytes(input, 'utf-8')) return base64.b32encode(m.digest())[:10].decode('utf-8') def wait_for_node_template(client, node_template_id, timeout=60): start = time.time() interval = 0.5 template = None while template is None: if time.time() - start > timeout: raise Exception('Timeout waiting for node template lister') time.sleep(interval) interval *= 2 nodeTemplates = client.list_node_template() for each_template in nodeTemplates: if each_template["id"] == node_template_id: template = each_template
30.648536
81
0.640137
8da703c93ef18d2c6d5f0c19883a87eb208d0a24
15,920
py
Python
vee/database.py
immersionroom/vee
2c6f781dc96e9028f2446777b906ca37dc2f4299
[ "BSD-3-Clause" ]
6
2017-11-05T02:44:10.000Z
2021-07-14T19:10:56.000Z
vee/database.py
immersionroom/vee
2c6f781dc96e9028f2446777b906ca37dc2f4299
[ "BSD-3-Clause" ]
null
null
null
vee/database.py
immersionroom/vee
2c6f781dc96e9028f2446777b906ca37dc2f4299
[ "BSD-3-Clause" ]
1
2017-01-31T23:10:09.000Z
2017-01-31T23:10:09.000Z
import datetime import os import sqlite3 import shutil import re import six from vee.utils import makedirs from vee import log _migrations = [] @_migrations.append def _create_initial_tables(con): con.execute('''CREATE TABLE repositories ( id INTEGER PRIMARY KEY, created_at TIMESTAMP NOT NULL DEFAULT (datetime('now')), fetched_at TIMESTAMP, name TEXT UNIQUE NOT NULL, path TEXT, remote TEXT NOT NULL DEFAULT 'origin', branch TEXT NOT NULL DEFAULT 'master', is_default INTEGER NOT NULL DEFAULT 0 )''') con.execute('''CREATE TRIGGER insert_default_repository AFTER INSERT ON repositories WHEN NEW.is_default BEGIN UPDATE repositories SET is_default = 0 WHERE id != NEW.id; END ''') con.execute('''CREATE TRIGGER update_default_repository AFTER UPDATE OF is_default ON repositories WHEN NEW.is_default != 0 BEGIN UPDATE repositories SET is_default = 0 WHERE id != NEW.id; END ''') con.execute('''CREATE TABLE packages ( id INTEGER PRIMARY KEY, created_at TIMESTAMP NOT NULL DEFAULT (datetime('now')), url TEXT NOT NULL, name TEXT, provides TEXT, requires TEXT, -- Names, either from the user or discovered. package_name TEXT, build_name TEXT, install_name TEXT, -- Paths for direct lookup. package_path TEXT, build_path TEXT, install_path TEXT, scanned_for_libraries INTEGER NOT NULL DEFAULT 0 )''') con.execute('''CREATE TABLE environments ( id INTEGER PRIMARY KEY, created_at TIMESTAMP NOT NULL DEFAULT (datetime('now')), modified_at TIMESTAMP NOT NULL DEFAULT (datetime('now')), repository_id INTEGER REFERENCES repositories(id), repository_commit TEXT, name TEXT NOT NULL, path TEXT NOT NULL, -- Attributes parsed from original file. version TEXT, revision TEXT )''') con.execute('''CREATE TABLE links ( id INTEGER PRIMARY KEY, created_at TIMESTAMP NOT NULL DEFAULT (datetime('now')), environment_id INTEGER REFERENCES environments(id) NOT NULL, package_id INTEGER REFERENCES packages(id) NOT NULL )''') con.execute('''CREATE TRIGGER on_insert_links AFTER INSERT ON links BEGIN UPDATE environments SET modified_at = datetime('now') WHERE id = NEW.environment_id; END ''') con.execute('''CREATE TABLE development_packages ( id INTEGER PRIMARY KEY, created_at TIMESTAMP NOT NULL DEFAULT (datetime('now')), name TEXT NOT NULL, path TEXT NOT NULL, environ TEXT NOT NULL DEFAULT "{}" )''') con.execute('''CREATE TABLE config ( id INTEGER PRIMARY KEY, created_at TIMESTAMP NOT NULL DEFAULT (datetime('now')), name TEXT UNIQUE NOT NULL, value TEXT NOT NULL )''') @_migrations.append def _create_repos_path_column(con): if 'path' not in con.columns('repositories'): con.execute('''ALTER TABLE repositories ADD COLUMN path TEXT''') @_migrations.append def _create_packages_etag_column(con): if 'etag' not in con.columns('packages'): con.execute('''ALTER TABLE packages ADD COLUMN etag TEXT''') @_migrations.append def _created_shared_libraries(con): if 'scanned_for_libraries' not in con.columns('packages'): con.execute('''ALTER TABLE packages ADD COLUMN scanned_for_libraries INTEGER NOT NULL DEFAULT 0''') con.execute('''CREATE TABLE shared_libraries ( id INTEGER PRIMARY KEY, created_at TIMESTAMP NOT NULL DEFAULT (datetime('now')), package_id INTEGER REFERENCES packages(id) NOT NULL, name TEXT NOT NULL, -- Mainly for searching. path TEXT NOT NULL )''') @_migrations.append def _rename_dev_packages(con): if 'dev_packages' in con.tables(): con.execute('''ALTER TABLE dev_packages RENAME TO development_packages''') @_migrations.append def _drop_type_columns(con): if 'package_type' in con.columns('packages'): con.drop_column('packages', 'package_type') if 'build_type' in con.columns('packages'): con.drop_column('packages', 'build_type') @_migrations.append def _create_dependency_table(con): con.execute('''CREATE TABLE package_dependencies ( id INTEGER PRIMARY KEY, created_at TIMESTAMP NOT NULL DEFAULT (datetime('now')), depender_id INTEGER REFERENCES packages(id) NOT NULL, dependee_id INTEGER REFERENCES packages(id) NOT NULL )''') @_migrations.append def _drop_dev_packages(con): if 'development_packages' in con.tables(): con.execute('''DROP TABLE development_packages''') class _Row(sqlite3.Row): def get(self, key, default=None): try: return self[key] except KeyError: return default def __getitem__(self, key): try: return super(_Row, self).__getitem__(key) except IndexError: if isinstance(key, str): raise KeyError(key) else: raise def __contains__(self, key): try: self[key] return True except (IndexError, KeyError): return False class _Connection(sqlite3.Connection): def __init__(self, *args, **kwargs): super(_Connection, self).__init__(*args, **kwargs) self.row_factory = _Row # We wish we could use unicode everywhere, but there are too many # unknown codepaths for us to evaluate its safety. Python 3 would # definitely help us here... self.text_factory = str self.isolation_level = None self._context_depth = 0 def __enter__(self): if not self._context_depth: self.execute('BEGIN') else: self.execute('SAVEPOINT pycontext%d' % self._context_depth) self._context_depth += 1 return self def __exit__(self, type_, value, tb): self._context_depth -= 1 if type_: if not self._context_depth: self.execute('ROLLBACK') else: self.execute('ROLLBACK TO pycontext%d' % self._context_depth) else: if not self._context_depth: self.execute('COMMIT') else: self.execute('RELEASE pycontext%d' % self._context_depth) def cursor(self): return super(_Connection, self).cursor(_Cursor) def insert(self, *args, **kwargs): return self.cursor().insert(*args, **kwargs) def update(self, *args, **kwargs): return self.cursor().update(*args, **kwargs) def tables(self): return [row['name'] for row in self.execute("SELECT name FROM sqlite_master WHERE type='table'")] def schema(self, table_name): return self.execute('SELECT sql FROM sqlite_master WHERE name = ?', [table_name]).fetchone()['sql'] def columns(self, table_name): return [row['name'] for row in self.execute('PRAGMA table_info(%s)' % table_name)] def drop_column(self, table_name, column_name): old_columns = self.columns(table_name) new_columns = [x for x in old_columns if x != column_name] if new_columns == old_columns: raise ValueError(column_name) old_schema = self.schema(table_name) new_schema = re.sub(r'\)\s*$', ',', old_schema) new_schema = re.sub('%s[^,]+,' % column_name, '', new_schema) new_schema = re.sub(r',$', ')', new_schema) if new_schema == old_schema: raise ValueError('no change in schema: %s' % new_schema) self.execute('ALTER TABLE %s RENAME TO old_%s' % (table_name, table_name)) self.execute(new_schema) self.execute('INSERT INTO %s (%s) SELECT %s FROM old_%s' % ( table_name, ','.join(new_columns), ','.join(new_columns), table_name )) self.execute('DROP TABLE old_%s' % table_name) def escape_identifier(x): return '"%s"' % x.replace('"', '""') class _Cursor(sqlite3.Cursor): def insert(self, table, data, on_conflict=None): pairs = sorted(data.items()) query = 'INSERT %s INTO %s (%s) VALUES (%s)' % ( 'OR ' + on_conflict if on_conflict else '', escape_identifier(table), ','.join(escape_identifier(k) for k, v in pairs), ','.join('?' for _ in pairs), ) params = [v for k, v in pairs] log.debug('%s %r' % (query, params)) self.execute(query, params) return self.lastrowid def update(self, table, data, where=None): columns, params = zip(*sorted(data.items())) if where: where = sorted(where.items()) params = list(params) params.extend(v for k, v in where) where = 'WHERE %s' % ' AND '.join('%s = ?' % escape_identifier(k) for k, v in where) self.execute('UPDATE %s SET %s %s' % ( escape_identifier(table), ', '.join('%s = ?' % escape_identifier(c) for c in columns), where or '', ), params) return self class Database(object): def __init__(self, path): self.path = path if self.exists: self._migrate() def _migrate(self, con=None): did_backup = False con = con or self.connect() with con: # We try to select without creating the table, so that we don't # force the database to lock every time (which will fail if # something else has an exclusive lock). try: cur = con.execute('SELECT name FROM migrations') except sqlite3.OperationalError as e: if e.args[0] != 'no such table: migrations': raise con.execute('''CREATE TABLE IF NOT EXISTS migrations ( name TEXT NOT NULL, applied_at TIMESTAMP NOT NULL DEFAULT (datetime('now')) )''') existing = set() else: existing = set(row[0] for row in cur) for f in _migrations: name = f.__name__.strip('_') if name not in existing: if not did_backup: self._backup() did_backup = True with con: f(con) con.execute('INSERT INTO migrations (name) VALUES (?)', [name]) def _backup(self): backup_dir = os.path.join(os.path.dirname(self.path), 'backups') backup_path = os.path.join(backup_dir, os.path.basename(self.path) + '.' + datetime.datetime.utcnow().isoformat('T')) makedirs(backup_dir) shutil.copyfile(self.path, backup_path) @property def exists(self): return os.path.exists(self.path) def create(self): if self.exists: raise ValueError('database already exists') con = self.connect(create=True) self._migrate(con) def connect(self, create=False): if not create and not self.exists: raise ValueError('database does not exist; run `vee init`') con = sqlite3.connect(self.path, factory=_Connection) con.execute('PRAGMA foreign_keys = ON') return con def cursor(self): return self.connect().cursor() def execute(self, *args): return self.connect().execute(*args) def insert(self, *args, **kwargs): return self.cursor().insert(*args, **kwargs) def update(self, *args, **kwargs): return self.cursor().update(*args, **kwargs) class Column(object): def __init__(self, name=None): self.name = name self._getter = self._setter = self._deleter = None self._persist = self._restore = None def copy(self): copy = Column(self.name) copy._getter = self._getter copy._persist = self._persist copy._restore = self._restore return copy def getter(self, func): self._getter = func return self def persist(self, func): self._persist = func return self def restore(self, func): self._restore = func return self def __get__(self, obj, cls): if self._getter: return self._getter(obj) try: return obj.__dict__[self.name] except KeyError: raise AttributeError(self.name) def __set__(self, obj, value): obj.__dict__[self.name] = value obj.is_dirty = True def __delete__(self, obj): raise RuntimeError("cannot delete DB columns") class DBMetaclass(type): def __new__(cls, name, bases, attrs): table_name = attrs.get('__tablename__') # Collect existing columns from bases. columns = {} for base in reversed(bases): table_name = table_name or getattr(base, '__tablename__', None) for col in getattr(base, '__columns__', []): columns[col.name] = col.copy() # Collect new columns. for k, v in attrs.items(): # If this is now a property, but it was once a column, upgrade it # to a column. if isinstance(v, property): col = columns.get(k) if col: col._getter = v.fget if v.fset or v.fdel: raise ValueError('cannot wrap properties with setters or deleters') attrs[k] = col v = col if isinstance(v, Column): v.name = v.name or k columns[v.name] = v attrs['__columns__'] = [v for _, v in sorted(columns.items())] return super(DBMetaclass, cls).__new__(cls, name, bases, attrs) @six.add_metaclass(DBMetaclass) class DBObject(object): def __init__(self, *args, **kwargs): self.id = None self.is_dirty = True def _connect(self): return self.home.db.connect() def id_or_persist(self, *args, **kwargs): return self.id or self.persist_in_db(*args, **kwargs) def persist_in_db(self, con=None, force=False): if not self.is_dirty and not force: return self.id data = {} for col in self.__columns__: try: if col._persist: data[col.name] = col._persist(self) elif col._getter: data[col.name] = col._getter(self) else: data[col.name] = self.__dict__[col.name] except KeyError: pass con = con or self._connect() if self.id: con.update(self.__tablename__, data, {'id': self.id}) else: self.id = con.insert(self.__tablename__, data) log.debug('%s added to %s with ID %d' % (self.__class__.__name__, self.__tablename__, self.id)) self.is_dirty = False return self.id def restore_from_row(self, row, ignore=None): try: if self.id and self.id != row['id']: log.warning('Restoring from a mismatched ID; %s %d != %d' % (self.__tablename__, self.id, row['id'])) self.id = row['id'] except KeyError: pass for col in self.__columns__: try: val = row[col.name] except KeyError: continue if ignore and col.name in ignore: continue if col._restore: col._restore(self, val) else: self.__dict__[col.name] = val
28.377897
125
0.58191
404bad75969548a67643665b744d9c3a386e3a2f
1,451
py
Python
analysis/mixed/plot_cloud_all_storm.py
coryschwartz/nebula-crawler
34ebe1109a5117949b4f285891a065adcc0bae08
[ "Apache-2.0" ]
66
2021-07-05T21:55:27.000Z
2022-03-20T20:44:38.000Z
analysis/mixed/plot_cloud_all_storm.py
coryschwartz/nebula-crawler
34ebe1109a5117949b4f285891a065adcc0bae08
[ "Apache-2.0" ]
8
2021-07-18T09:00:12.000Z
2022-03-15T17:44:11.000Z
analysis/mixed/plot_cloud_all_storm.py
coryschwartz/nebula-crawler
34ebe1109a5117949b4f285891a065adcc0bae08
[ "Apache-2.0" ]
6
2021-07-11T12:25:05.000Z
2022-01-04T21:14:50.000Z
import psycopg2 import toml import matplotlib.pyplot as plt from lib import node_time, node_classification, node_agent, node_cloud # Helper function to trim agent version def trim_agent(agent): if agent.startswith("/"): version = agent[1:] if agent.startswith("go-ipfs"): return "go-ipfs" elif agent.startswith("hydra-booster"): return "hydra-booster" elif agent.startswith("storm"): return "storm" elif agent.startswith("ioi"): return "ioi" else: return "others" config = toml.load("./db.toml")['psql'] conn = psycopg2.connect( host=config['host'], port=config['port'], database=config['database'], user=config['user'], password=config['password'], ) start, end = node_time.get_time_range(conn) # Get storm node ids all = node_classification.get_all_nodes(conn, start, end) agents = node_agent.get_agent_version(conn, all) storm = set() for id, agent in agents.items(): agent = trim_agent(agent) if agent == "storm": storm.add(id) clouds = node_cloud.get_cloud(conn, storm) counts = dict() sum = 0 for _, cloud in clouds.items(): if cloud in counts: counts[cloud] += 1 else: counts[cloud] = 1 # Plot plt.rc('font', size=8) plt.pie(counts.values(), labels=counts.keys(), autopct="%.1f%%") plt.title("Storm nodes cloud info from %s to %s" % (start.replace(microsecond=0), end.replace(microsecond=0))) plt.show()
25.45614
110
0.660924
e369556799923a5bb8759c482c0e7c915b90e690
4,757
py
Python
ACME/model/model.py
mauriziokovacic/ACME
2615b66dd4addfd5c03d9d91a24c7da414294308
[ "MIT" ]
3
2019-10-23T23:10:55.000Z
2021-09-01T07:30:14.000Z
ACME/model/model.py
mauriziokovacic/ACME-Python
2615b66dd4addfd5c03d9d91a24c7da414294308
[ "MIT" ]
null
null
null
ACME/model/model.py
mauriziokovacic/ACME-Python
2615b66dd4addfd5c03d9d91a24c7da414294308
[ "MIT" ]
1
2020-07-11T11:35:43.000Z
2020-07-11T11:35:43.000Z
import warnings import torch from ..fileio.fileparts import * from .freeze import * from .unfreeze import * class Model(torch.nn.Module): """ A class representing a generic model architecture Attributes ---------- name : str the name of the model device : str or torch.device the device to store the tensors to Methods ------- freeze() freezes all the model parameters unfreeze() unfreezes all the model parameters save_model(path) stores the model state in the given path load_model(path) loads a model from the given path save_checkpoint(path) stores the model checkpoint in the given path load_checkpoint(path) loads the model checkpoint from the given path """ def __init__(self, name='Model', device='cuda:0', **kwargs): """ Parameters ---------- name : str (optional) the name of the model (default is 'Model') device : str or torch.device (optional) the device to store the tensors to (default is 'cuda:0') """ super(Model, self).__init__() self.name = name self.__device = device def freeze(self): """ Freezes all the model parameters Returns ------- Model the model itself """ freeze(self) return self def unfreeze(self): """ Unfreezes all the model parameters Returns ------- Model the model itself """ unfreeze(self) return self def save_model(self, filename): """ Stores the model state in the given filename. The file extension will be forced to '.pth' Parameters ---------- filename : str the filename to store the model to Returns ------- Model the model itself """ path, file = fileparts(filename)[:2] torch.save(self, path + file + '.pth') return self def load_model(self, filename, strict=True): """ Loads a model from the given filename The file extension will be forced to '.pth' Parameters ---------- filename : str the filename to load the model from strict : bool (optional) if True loaded model must completely match with this. If False only compatible parameters will be loaded Returns ------- Model the model itself """ path, file = fileparts(filename)[:2] other = torch.load(path + file + '.pth', map_location=self.device) if strict and (not isinstance(other, self.__class__)): warnings.warn('Class type mismatch. Loading model failed', category=RuntimeWarning) return self self.load_state_dict(other.state_dict(), map_location=self.device, strict=strict) self.eval() return self def save_checkpoint(self, filename): """ Stores the model checkpoint in the given filename The file extension will be forced to '.tar' Parameters ---------- filename : str the filename to store the model checkpoint to Returns ------- Model the model itself """ path, file = fileparts(filename)[:2] torch.save({'model_state_dict': self.state_dict()}, path + file + '.tar') return self def load_checkpoint(self, filename, strict=True): """ Loads the model checkpoint from the given filename The file extension will be forced to '.tar' Parameters ---------- filename : str the filename to load the model checkpoint from strict : bool (optional) if True loaded checkpoint must completely match with the model parameters. If False only compatible parameters will be loaded Returns ------- Model the model itself """ path, file = fileparts(filename)[:2] checkpoint = torch.load(path + file + '.tar') self.load_state_dict(checkpoint['model_state_dict'], map_location=self.device, strict=strict) self.to(device=self.device) self.train() return self @property def device(self): return self.__device @device.setter def device(self, value): self.to(device=value) def to(self, **kwargs): if 'device' in kwargs: self.__device = kwargs['device'] self = super(Model, self).to(**kwargs) return self
25.713514
116
0.559596
9f395608eaed2d63e107c7cb5f81fa82744ffd89
32,733
py
Python
DetVisGUI_test.py
carranza96/DetVisGUI
84554abf938e2b22380f2cbb14afe11a76b4b1af
[ "MIT" ]
127
2020-05-20T06:14:13.000Z
2022-03-31T08:13:06.000Z
DetVisGUI_test.py
carranza96/DetVisGUI
84554abf938e2b22380f2cbb14afe11a76b4b1af
[ "MIT" ]
12
2020-10-12T17:36:51.000Z
2022-03-31T07:50:23.000Z
DetVisGUI_test.py
carranza96/DetVisGUI
84554abf938e2b22380f2cbb14afe11a76b4b1af
[ "MIT" ]
18
2020-07-29T08:23:12.000Z
2022-02-26T02:40:11.000Z
# __author__ = 'ChienHung Chen in Academia Sinica IIS' import argparse import itertools import json import os import pickle import xml.etree.ElementTree as ET from tkinter import (END, Button, Checkbutton, E, Entry, IntVar, Label, Listbox, Menu, N, S, Scrollbar, StringVar, Tk, W, ttk) import cv2 import matplotlib import mmcv from mmdet.apis import init_detector, inference_detector import numpy as np import platform import pycocotools.mask as maskUtils from PIL import Image, ImageTk matplotlib.use('TkAgg') def parse_args(): parser = argparse.ArgumentParser(description='DetVisGUI') parser.add_argument('config', default='./config/mask_rcnn_r50_fpn_1x_coco.py', help='config file path') parser.add_argument('ckpt', default='./checkpoints/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth', help='checkpoint file path') parser.add_argument('img_root', default='./data/test_images', help='test image path') parser.add_argument('--device', default='cuda', help='inference device') parser.add_argument( '--no_gt', default=True, help='test images without groundtruth') parser.add_argument( '--det_box_color', default=(255, 255, 0), help='detection box color') parser.add_argument( '--gt_box_color', default=(255, 255, 255), help='groundtruth box color') parser.add_argument('--output', default='output', help='image save folder') args = parser.parse_args() return args class COCO_dataset: def __init__(self, cfg, args): self.dataset = 'COCO' self.img_root = args.img_root self.config_file = args.config self.checkpoint_file = args.ckpt self.mask = False self.device = args.device # according json to get category, image list, and annotations. self.img_list = self.get_img_list() # coco categories self.aug_category = aug_category([ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush' ]) def get_img_list(self): img_list = list() for image in sorted(os.listdir(self.img_root)): img_list.append(image) return img_list def get_img_by_name(self, name): img = Image.open(os.path.join(self.img_root, name)).convert('RGB') return img def get_img_by_index(self, idx): img = Image.open(os.path.join(self.img_root, self.img_list[idx])).convert('RGB') return img # main GUI class vis_tool: def __init__(self): self.args = parse_args() cfg = mmcv.Config.fromfile(self.args.config) self.window = Tk() self.menubar = Menu(self.window) self.info = StringVar() self.info_label = Label( self.window, bg='yellow', width=4, textvariable=self.info) self.listBox_img = Listbox( self.window, width=50, height=25, font=('Times New Roman', 10)) self.listBox_obj = Listbox( self.window, width=50, height=12, font=('Times New Roman', 10)) self.scrollbar_img = Scrollbar( self.window, width=15, orient='vertical') self.scrollbar_obj = Scrollbar( self.window, width=15, orient='vertical') self.listBox_img_info = StringVar() self.listBox_img_label = Label( self.window, font=('Arial', 11), bg='yellow', width=4, height=1, textvariable=self.listBox_img_info) self.listBox_obj_info = StringVar() self.listBox_obj_label1 = Label( self.window, font=('Arial', 11), bg='yellow', width=4, height=1, textvariable=self.listBox_obj_info) self.listBox_obj_label2 = Label( self.window, font=('Arial', 11), bg='yellow', width=4, height=1, text='Object Class : Score') self.data_info = COCO_dataset(cfg, self.args) self.info.set('DATASET: {}'.format(self.data_info.dataset)) # load image and show it on the window self.img = self.data_info.get_img_by_index(0) self.photo = ImageTk.PhotoImage(self.img) self.label_img = Label(self.window, image=self.photo) self.show_det_txt = IntVar(value=1) self.checkbn_det_txt = Checkbutton( self.window, text='Text', font=('Arial', 10, 'bold'), variable=self.show_det_txt, command=self.change_img, fg='#0000FF') self.show_dets = IntVar(value=1) self.checkbn_det = Checkbutton( self.window, text='Detections', font=('Arial', 10, 'bold'), variable=self.show_dets, command=self.change_img, fg='#0000FF') self.combo_label = Label( self.window, bg='yellow', width=10, height=1, text='Show Category', font=('Arial', 11)) self.combo_category = ttk.Combobox( self.window, font=('Arial', 11), values=self.data_info.aug_category.combo_list) self.combo_category.current(0) self.th_label = Label( self.window, font=('Arial', 11), bg='yellow', width=10, height=1, text='Score Threshold') self.threshold = np.float32(0.5) self.th_entry = Entry( self.window, font=('Arial', 11), width=10, textvariable=StringVar(self.window, value=str(self.threshold))) self.th_button = Button( self.window, text='Enter', height=1, command=self.change_threshold) self.find_label = Label( self.window, font=('Arial', 11), bg='yellow', width=10, height=1, text='find') self.find_name = '' self.find_entry = Entry( self.window, font=('Arial', 11), width=10, textvariable=StringVar(self.window, value=str(self.find_name))) self.find_button = Button( self.window, text='Enter', height=1, command=self.findname) self.listBox_img_idx = 0 # ====== ohter attribute ====== self.img_name = '' self.show_img = None self.output = self.args.output self.model = init_detector( self.data_info.config_file, self.data_info.checkpoint_file, device=self.data_info.device) if not os.path.isdir(self.output): os.makedirs(self.output) self.img_list = self.data_info.img_list # flag for find/threshold button switch focused element self.button_clicked = False def change_threshold(self, event=None): try: self.threshold = np.float32(self.th_entry.get()) self.change_img() # after changing threshold, focus on listBox for easy control if self.window.focus_get() == self.listBox_obj: self.listBox_obj.focus() else: self.listBox_img.focus() self.button_clicked = True except ValueError: self.window.title('Please enter a number as score threshold.') # draw groundtruth def draw_gt_boxes(self, img, objs): for obj in objs: cls_name = obj[0] # according combobox to decide whether to plot this category if self.combo_category.get() == 'All': show_category = self.data_info.aug_category.category else: show_category = [self.combo_category.get()] if cls_name not in show_category: continue box = obj[1:] xmin = max(box[0], 0) ymin = max(box[1], 0) xmax = min(box[0] + box[2], self.img_width) ymax = min(box[1] + box[3], self.img_height) font = cv2.FONT_HERSHEY_SIMPLEX if self.show_gt_txt.get(): if ymax + 30 >= self.img_height: cv2.rectangle(img, (xmin, ymin), (xmin + len(cls_name) * 10, int(ymin - 20)), (255, 140, 0), cv2.FILLED) cv2.putText(img, cls_name, (xmin, int(ymin - 5)), font, 0.5, (255, 255, 255), 1) else: cv2.rectangle(img, (xmin, ymax), (xmin + len(cls_name) * 10, int(ymax + 20)), (255, 140, 0), cv2.FILLED) cv2.putText(img, cls_name, (xmin, int(ymax + 15)), font, 0.5, (255, 255, 255), 1) cv2.rectangle(img, (xmin, ymin), (xmax, ymax), self.args.gt_box_color, 1) return img def draw_all_det_boxes(self, img, single_detection): for idx, cls_objs in enumerate(single_detection): category = self.data_info.aug_category.category[idx] if self.combo_category.get() == 'All': show_category = self.data_info.aug_category.category else: show_category = [self.combo_category.get()] if category not in show_category: continue for obj_idx, obj in enumerate(cls_objs): [score, box] = [round(obj[4], 2), obj[:4]] if score >= self.threshold: box = list(map(int, list(map(round, box)))) xmin = max(box[0], 0) ymin = max(box[1], 0) xmax = min(box[2], self.img_width) ymax = min(box[3], self.img_height) if self.show_det_txt.get(): font = cv2.FONT_HERSHEY_SIMPLEX text = category + ' : ' + str(score) if ymax + 30 >= self.img_height: cv2.rectangle( img, (xmin, ymin), (xmin + len(text) * 9, int(ymin - 20)), (0, 0, 255), cv2.FILLED) cv2.putText(img, text, (xmin, int(ymin - 5)), font, 0.5, (255, 255, 255), 1) else: cv2.rectangle( img, (xmin, ymax), (xmin + len(text) * 9, int(ymax + 20)), (0, 0, 255), cv2.FILLED) cv2.putText(img, text, (xmin, int(ymax + 15)), font, 0.5, (255, 255, 255), 1) cv2.rectangle( img, (xmin, ymin), (xmax, ymax), self.args.det_box_color, 2) return img def draw_all_det_boxes_masks(self, img, single_detection): img = np.require(img, requirements=['W']) boxes, masks = single_detection # draw segmentation masks # reference mmdetection/mmdet/models/detectors/base.py if self.combo_category.get() != 'All': show_idx = self.data_info.aug_category.category.index( self.combo_category.get()) masks = np.asarray([masks[show_idx]]) boxes = np.asarray([boxes[show_idx]]) category = self.data_info.aug_category.category[show_idx] segms = list(itertools.chain(*masks)) bboxes = np.vstack(boxes) inds = np.where(np.round(bboxes[:, -1], 2) >= self.threshold)[0] self.color_list = [] for i in inds: color_mask = np.random.randint(0, 256, (1, 3), dtype=np.uint8) if type(segms[0]) == np.ndarray: mask = segms[i] elif type(segms[0]) == dict: mask = maskUtils.decode(segms[i]).astype(np.bool) img[mask] = img[mask] * 0.5 + color_mask * 0.5 self.color_list.append('#%02x%02x%02x' % tuple(color_mask[0])) # draw bounding box for idx, cls_objs in enumerate(boxes): if self.combo_category.get() == 'All': category = self.data_info.aug_category.category[idx] for obj_idx, obj in enumerate(cls_objs): [score, box] = [round(obj[4], 2), obj[:4]] if score >= self.threshold: box = list(map(int, list(map(round, box)))) xmin = max(box[0], 0) ymin = max(box[1], 0) xmax = min(box[2], self.img_width) ymax = min(box[3], self.img_height) if self.show_det_txt.get(): font = cv2.FONT_HERSHEY_SIMPLEX text = category + ' : ' + str(score) if ymax + 30 >= self.img_height: cv2.rectangle( img, (xmin, ymin), (xmin + len(text) * 9, int(ymin - 20)), (0, 0, 255), cv2.FILLED) cv2.putText(img, text, (xmin, int(ymin - 5)), font, 0.5, (255, 255, 255), 1) else: cv2.rectangle( img, (xmin, ymax), (xmin + len(text) * 9, int(ymax + 20)), (0, 0, 255), cv2.FILLED) cv2.putText(img, text, (xmin, int(ymax + 15)), font, 0.5, (255, 255, 255), 1) cv2.rectangle( img, (xmin, ymin), (xmax, ymax), self.args.det_box_color, 2) return img def get_dets(self, det_results): # [(bg + cls), images] det_results = np.asarray(det_results, dtype=object) # dim should be (class, image), mmdetection format: (image, class) if len(det_results.shape) == 2: self.data_info.mask = True return det_results def change_img(self, event=None): if len(self.listBox_img.curselection()) != 0: self.listBox_img_idx = self.listBox_img.curselection()[0] self.listBox_img_info.set('Image {:6} / {:6}'.format( self.listBox_img_idx + 1, self.listBox_img.size())) name = self.listBox_img.get(self.listBox_img_idx) self.window.title('DATASET : ' + self.data_info.dataset + ' ' + name) img = self.data_info.get_img_by_name(name) self.img_width, self.img_height = img.width, img.height img = np.asarray(img) self.img_name = name self.img = img result = inference_detector(self.model, img) self.dets = self.get_dets(result) if self.show_dets.get(): if self.data_info.mask is False: img = self.draw_all_det_boxes(img, self.dets) else: img = self.draw_all_det_boxes_masks(img, self.dets) self.clear_add_listBox_obj() self.show_img = img img = Image.fromarray(img) img = self.scale_img(img) self.photo = ImageTk.PhotoImage(img) self.label_img.config(image=self.photo) self.window.update_idletasks() if self.img_name in os.listdir(self.output): self.listBox_img_label.config(bg='#CCFF99') else: self.listBox_img_label.config(bg='yellow') def draw_one_det_boxes(self, img, single_detection, selected_idx=-1): idx_counter = 0 for idx, cls_objs in enumerate(single_detection): category = self.data_info.aug_category.category[idx] if self.combo_category.get() == 'All': show_category = self.data_info.aug_category.category else: show_category = [self.combo_category.get()] if category not in show_category: continue for obj_idx, obj in enumerate(cls_objs): [score, box] = [round(obj[4], 2), obj[:4]] if score >= self.threshold: if idx_counter == selected_idx: box = list(map(int, list(map(round, box)))) xmin = max(box[0], 0) ymin = max(box[1], 0) xmax = min(box[2], self.img_width) ymax = min(box[3], self.img_height) if self.show_det_txt.get(): font = cv2.FONT_HERSHEY_SIMPLEX text = category + ' : ' + str(score) if ymax + 30 >= self.img_height: cv2.rectangle( img, (xmin, ymin), (xmin + len(text) * 9, int(ymin - 20)), (0, 0, 255), cv2.FILLED) cv2.putText(img, text, (xmin, int(ymin - 5)), font, 0.5, (255, 255, 255), 1) else: cv2.rectangle( img, (xmin, ymax), (xmin + len(text) * 9, int(ymax + 20)), (0, 0, 255), cv2.FILLED) cv2.putText(img, text, (xmin, int(ymax + 15)), font, 0.5, (255, 255, 255), 1) cv2.rectangle( img, (xmin, ymin), (xmax, ymax), self.args.det_box_color, 2) return img else: idx_counter += 1 def draw_one_det_boxes_masks(self, img, single_detection, selected_idx=-1): img = np.require(img, requirements=['W']) boxes, masks = single_detection # draw segmentation masks # reference mmdetection/mmdet/models/detectors/base.py if self.combo_category.get() != 'All': show_idx = self.data_info.aug_category.category.index( self.combo_category.get()) category = self.data_info.aug_category.category[ show_idx] # fixed category masks = np.asarray([masks[show_idx]]) boxes = np.asarray([boxes[show_idx]]) segms = list(itertools.chain(*masks)) bboxes = np.vstack(boxes) inds = np.where(np.round(bboxes[:, -1], 2) >= self.threshold)[0] self.color_list = [] for inds_idx, i in enumerate(inds): if inds_idx == selected_idx: color_mask = np.random.randint(0, 256, (1, 3), dtype=np.uint8) if type(segms[0]) == np.ndarray: mask = segms[i] elif type(segms[0]) == dict: mask = maskUtils.decode(segms[i]).astype(np.bool) img[mask] = img[mask] * 0.5 + color_mask * 0.5 self.color_list.append('#%02x%02x%02x' % tuple(color_mask[0])) # draw bounding box idx_counter = 0 for idx, cls_objs in enumerate(boxes): if self.combo_category.get() == 'All': category = self.data_info.aug_category.category[idx] for obj_idx, obj in enumerate(cls_objs): [score, box] = [round(obj[4], 2), obj[:4]] if score >= self.threshold: if idx_counter == selected_idx: box = list(map(int, list(map(round, box)))) xmin = max(box[0], 0) ymin = max(box[1], 0) xmax = min(box[2], self.img_width) ymax = min(box[3], self.img_height) if self.show_det_txt.get(): font = cv2.FONT_HERSHEY_SIMPLEX text = category + ' : ' + str(score) if ymax + 30 >= self.img_height: cv2.rectangle( img, (xmin, ymin), (xmin + len(text) * 9, int(ymin - 20)), (0, 0, 255), cv2.FILLED) cv2.putText(img, text, (xmin, int(ymin - 5)), font, 0.5, (255, 255, 255), 1) else: cv2.rectangle( img, (xmin, ymax), (xmin + len(text) * 9, int(ymax + 20)), (0, 0, 255), cv2.FILLED) cv2.putText(img, text, (xmin, int(ymax + 15)), font, 0.5, (255, 255, 255), 1) cv2.rectangle(img, (xmin, ymin), (xmax, ymax), self.args.det_box_color, 2) return img else: idx_counter += 1 # plot only one object def change_obj(self, event=None): if len(self.listBox_obj.curselection()) == 0: self.listBox_img.focus() return else: listBox_obj_idx = self.listBox_obj.curselection()[0] self.listBox_obj_info.set('Detected Object : {:4} / {:4}'.format( listBox_obj_idx + 1, self.listBox_obj.size())) name = self.listBox_img.get(self.listBox_img_idx) img = self.data_info.get_img_by_name(name) self.img_width, self.img_height = img.width, img.height img = np.asarray(img) self.img_name = name self.img = img if self.show_dets.get(): if self.data_info.mask is False: img = self.draw_one_det_boxes(img, self.dets, listBox_obj_idx) else: img = self.draw_one_det_boxes_masks(img, self.dets, listBox_obj_idx) self.show_img = img img = Image.fromarray(img) img = self.scale_img(img) self.photo = ImageTk.PhotoImage(img) self.label_img.config(image=self.photo) self.window.update_idletasks() if self.img_name in os.listdir(self.output): self.listBox_img_label.config(bg='#CCFF99') else: self.listBox_img_label.config(bg='yellow') # ============================================ def scale_img(self, img): [s_w, s_h] = [1, 1] # if window size is (1920, 1080), # the default max image size is (1440, 810) (fix_width, fix_height) = (1440, 810) # change image size according to window size if self.window.winfo_width() != 1: fix_width = ( self.window.winfo_width() - self.listBox_img.winfo_width() - self.scrollbar_img.winfo_width() - 5) # fix_height = int(fix_width * 9 / 16) fix_height = 750 # handle image size is too big if img.width > fix_width: s_w = fix_width / img.width if img.height > fix_height: s_h = fix_height / img.height scale = min(s_w, s_h) img = img.resize((int(img.width * scale), int(img.height * scale)), Image.ANTIALIAS) return img def clear_add_listBox_obj(self): self.listBox_obj.delete(0, 'end') if self.data_info.mask is False: single_detection = self.dets else: single_detection, single_mask = self.dets if self.combo_category.get() == 'All': show_category = self.data_info.aug_category.category else: show_category = [self.combo_category.get()] num = 0 for idx, cls_objs in enumerate(single_detection): category = self.data_info.aug_category.category[idx] if category not in show_category: continue for obj_idx, obj in enumerate(cls_objs): score = np.round(obj[4], 2) if score >= self.threshold: self.listBox_obj.insert('end', category + " : " + str(score)) num += 1 self.listBox_obj_info.set('Detected Object : {:3}'.format(num)) def change_threshold_button(self, v): self.threshold += v if self.threshold <= 0: self.threshold = 0 elif self.threshold >= 1: self.threshold = 1 self.th_entry.delete(0, END) self.th_entry.insert(0, str(round(self.threshold, 2))) self.change_threshold() def save_img(self): print('Save image to ' + os.path.join(self.output, self.img_name)) cv2.imwrite( os.path.join(self.output, self.img_name), cv2.cvtColor(self.show_img, cv2.COLOR_BGR2RGB)) self.listBox_img_label.config(bg='#CCFF99') def eventhandler(self, event): entry_list = [self.find_entry, self.th_entry] if self.window.focus_get() not in entry_list: if platform.system() == 'Windows': state_1key = 8 state_2key = 12 else: # 'Linux' state_1key = 16 state_2key = 20 if event.state == state_1key and event.keysym == 'Left': self.change_threshold_button(-0.1) elif event.state == state_1key and event.keysym == 'Right': self.change_threshold_button(0.1) elif event.keysym == 'q': self.window.quit() elif event.keysym == 's': self.save_img() if self.button_clicked: self.button_clicked = False else: if event.keysym in ['KP_Enter', 'Return']: self.listBox_obj.focus() self.listBox_obj.select_set(0) elif event.keysym == 'Escape': self.change_img() self.listBox_img.focus() def combobox_change(self, event=None): self.listBox_img.focus() self.change_img() def clear_add_listBox_img(self): self.listBox_img.delete(0, 'end') # delete listBox_img 0 ~ end items # add image name to listBox_img for item in self.img_list: self.listBox_img.insert('end', item) self.listBox_img.select_set(0) self.listBox_img.focus() self.change_img() def findname(self, event=None): self.find_name = self.find_entry.get() new_list = [] if self.find_name == '': new_list = self.data_info.img_list else: for img_name in self.data_info.img_list: if self.find_name[0] == '!': if self.find_name[1:] not in img_name: new_list.append(img_name) else: if self.find_name in img_name: new_list.append(img_name) if len(new_list) != 0: self.img_list = new_list self.clear_add_listBox_img() self.clear_add_listBox_obj() self.button_clicked = True else: self.window.title("Can't find any image about '{}'".format( self.find_name)) def run(self): self.window.title('DATASET : ' + self.data_info.dataset) self.window.geometry('1280x800+350+100') # self.menubar.add_command(label='QUIT', command=self.window.quit) self.window.config(menu=self.menubar) # display the menu self.scrollbar_img.config(command=self.listBox_img.yview) self.listBox_img.config(yscrollcommand=self.scrollbar_img.set) self.scrollbar_obj.config(command=self.listBox_obj.yview) self.listBox_obj.config(yscrollcommand=self.scrollbar_obj.set) layer1 = 0 layer2 = 50 # ======================= layer 1 ========================= # combobox self.combo_label.grid( row=layer1 + 30, column=0, sticky=W + E + N + S, padx=3, pady=3, columnspan=6) self.combo_category.grid( row=layer1 + 30, column=6, sticky=W + E + N + S, padx=3, pady=3, columnspan=6) # show det self.checkbn_det.grid( row=layer1 + 40, column=0, sticky=N + S, padx=3, pady=3, columnspan=4) # show det text self.checkbn_det_txt.grid( row=layer1 + 40, column=4, sticky=N + S, padx=3, pady=3, columnspan=2) # ======================= layer 2 ========================= self.listBox_img_label.grid( row=layer2 + 0, column=0, sticky=N + S + E + W, columnspan=12) # find name self.find_label.grid( row=layer2 + 20, column=0, sticky=E + W, columnspan=4) self.find_entry.grid( row=layer2 + 20, column=4, sticky=E + W, columnspan=4) self.find_button.grid( row=layer2 + 20, column=8, sticky=E + W, pady=3, columnspan=4) self.scrollbar_img.grid(row=layer2 + 30, column=11, sticky=N + S + W) self.label_img.grid( row=layer1 + 30, column=12, sticky=N + E, padx=3, pady=3, rowspan=110) self.listBox_img.grid( row=layer2 + 30, column=0, sticky=N + S + E + W, pady=3, columnspan=11) self.th_label.grid( row=layer2 + 40, column=0, sticky=E + W, columnspan=6) self.th_entry.grid( row=layer2 + 40, column=6, sticky=E + W, columnspan=3) self.th_button.grid( row=layer2 + 40, column=9, sticky=E + W, columnspan=3) self.listBox_obj_label1.grid( row=layer2 + 60, column=0, sticky=E + W, pady=3, columnspan=12) self.listBox_obj_label2.grid( row=layer2 + 70, column=0, sticky=E + W, pady=2, columnspan=12) self.scrollbar_obj.grid( row=layer2 + 80, column=11, sticky=N + S + W, pady=3) self.listBox_obj.grid( row=layer2 + 80, column=0, sticky=N + S + E + W, pady=3, columnspan=11) self.clear_add_listBox_img() self.listBox_img.bind('<<ListboxSelect>>', self.change_img) self.listBox_img.bind_all('<KeyRelease>', self.eventhandler) self.listBox_obj.bind('<<ListboxSelect>>', self.change_obj) self.th_entry.bind('<Return>', self.change_threshold) self.th_entry.bind('<KP_Enter>', self.change_threshold) self.find_entry.bind('<Return>', self.findname) self.find_entry.bind('<KP_Enter>', self.findname) self.combo_category.bind('<<ComboboxSelected>>', self.combobox_change) self.window.mainloop() class aug_category: def __init__(self, categories): self.category = categories self.combo_list = categories.copy() self.combo_list.insert(0, 'All') self.all = True if __name__ == '__main__': vis_tool().run()
35.852136
84
0.506584
b110ff9ffe5fad9ca568ee61d99837d5ceee0c08
2,884
py
Python
perplexity.py
Artemis-ii/LDA
496e43f875ef35084cfb8539ee8bfe4e4fe68fb7
[ "Apache-2.0" ]
null
null
null
perplexity.py
Artemis-ii/LDA
496e43f875ef35084cfb8539ee8bfe4e4fe68fb7
[ "Apache-2.0" ]
null
null
null
perplexity.py
Artemis-ii/LDA
496e43f875ef35084cfb8539ee8bfe4e4fe68fb7
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Thu Nov 1 16:46:55 2018 @author: 月神少女 """ import math import matplotlib.pyplot as plt def dictionary_found(wordlist): #对模型训练出来的词转换成一个词为KEY,概率为值的字典。 word_dictionary1={} for i in range(len(wordlist)): if i%2==0: if word_dictionary1.__contains__(wordlist[i])==True: word_probability=word_dictionary1.get(wordlist[i]) word_probability=float(word_probability) word_dictionary1.update({wordlist[i]:word_probability}) else: word_dictionary1.update({wordlist[i]:wordlist[i+1]}) else: pass return word_dictionary1 def look_into_dic(dictionary,testset): #对于测试集的每一个词,在字典中查找其概率。 '''Calculates the TF-list for perplexity''' frequency=[] letter_list=[] a=0.0 for letter in testset.split(): if letter not in letter_list: letter_list.append(letter) letter_frequency=(dictionary.get(letter)) frequency.append(letter_frequency) else: pass for each in frequency: if each!=None: a+=float(each) else: pass return a def f_testset_word_count(testset): #测试集的词数统计 '''reture the sum of words in testset which is the denominator of the formula of Perplexity''' testset_clean=testset.split() return (len(testset_clean)-testset.count("\n")) def f_perplexity(word_frequency,word_count): #计算困惑度 '''Search the probability of each word in dictionary Calculates the perplexity of the LDA model for every parameter T''' duishu=-math.log(word_frequency) kuohaoli=duishu/word_count perplexity=math.exp(kuohaoli) return perplexity def graph_draw(topic,perplexity): #做主题数与困惑度的折线图 x=topic y=perplexity plt.plot(x,y,color="red",linewidth=2) plt.xlabel("Number of Topic") plt.ylabel("Perplexity") plt.show() topic=[i for i in range(10,110,10)] perplexity_list=[] f1=open('data/cart_text_cut.txt','r', encoding = 'utf-8') #测试集目录 testset=f1.read() testset_word_count=f_testset_word_count(testset) #call the function to count the sum-words in testset for i in topic: dictionary={} trace="data/result/topic_word_"+str(i)+".txt" #模型目录 f=open(trace,'r', encoding = 'utf-8') text=f.readlines() word_list=[] for line in text: if line.startswith("Topic") or line is None: continue line_clean=line.split() word_list.extend(line_clean) word_dictionary=dictionary_found(word_list) frequency=look_into_dic(word_dictionary,testset) perplexity=f_perplexity(frequency,testset_word_count) perplexity_list.append(perplexity) graph_draw(topic,perplexity_list) f.close() f1.close()
31.692308
109
0.643551
f101f2a323003e61bc00bd65305f7602125aa280
4,574
py
Python
benchmark/startQiskit_Class1687.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startQiskit_Class1687.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startQiskit_Class1687.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
# qubit number=5 # total number=59 import cirq import qiskit from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import BasicAer, execute, transpile from pprint import pprint from qiskit.test.mock import FakeVigo from math import log2,floor, sqrt, pi import numpy as np import networkx as nx def build_oracle(n: int, f) -> QuantumCircuit: # implement the oracle O_f^\pm # NOTE: use U1 gate (P gate) with \lambda = 180 ==> CZ gate # or multi_control_Z_gate (issue #127) controls = QuantumRegister(n, "ofc") oracle = QuantumCircuit(controls, name="Zf") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.h(controls[n]) if n >= 2: oracle.mcu1(pi, controls[1:], controls[0]) for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() return oracle def make_circuit(n:int,f) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n,"qc") classical = ClassicalRegister(n, "qm") prog = QuantumCircuit(input_qubit, classical) prog.h(input_qubit[0]) # number=3 prog.h(input_qubit[1]) # number=4 prog.h(input_qubit[2]) # number=5 prog.h(input_qubit[3]) # number=6 prog.h(input_qubit[4]) # number=21 prog.h(input_qubit[0]) # number=43 prog.cz(input_qubit[4],input_qubit[0]) # number=44 prog.h(input_qubit[0]) # number=45 prog.h(input_qubit[0]) # number=56 prog.cz(input_qubit[4],input_qubit[0]) # number=57 prog.h(input_qubit[0]) # number=58 prog.z(input_qubit[4]) # number=47 prog.cx(input_qubit[4],input_qubit[0]) # number=48 prog.h(input_qubit[0]) # number=37 prog.cz(input_qubit[4],input_qubit[0]) # number=38 prog.h(input_qubit[0]) # number=39 Zf = build_oracle(n, f) repeat = floor(sqrt(2 ** n) * pi / 4) for i in range(repeat): prog.append(Zf.to_gate(), [input_qubit[i] for i in range(n)]) prog.h(input_qubit[0]) # number=1 prog.rx(-1.0430087609918113,input_qubit[4]) # number=36 prog.h(input_qubit[1]) # number=2 prog.h(input_qubit[2]) # number=7 prog.h(input_qubit[3]) # number=8 prog.cx(input_qubit[1],input_qubit[0]) # number=40 prog.cx(input_qubit[1],input_qubit[0]) # number=52 prog.x(input_qubit[0]) # number=53 prog.cx(input_qubit[1],input_qubit[0]) # number=54 prog.h(input_qubit[0]) # number=49 prog.cz(input_qubit[1],input_qubit[0]) # number=50 prog.h(input_qubit[0]) # number=51 prog.x(input_qubit[1]) # number=10 prog.rx(-0.06597344572538572,input_qubit[3]) # number=27 prog.cx(input_qubit[0],input_qubit[2]) # number=22 prog.x(input_qubit[2]) # number=23 prog.h(input_qubit[2]) # number=28 prog.cz(input_qubit[0],input_qubit[2]) # number=29 prog.h(input_qubit[2]) # number=30 prog.x(input_qubit[3]) # number=12 if n>=2: prog.mcu1(pi,input_qubit[1:],input_qubit[0]) prog.x(input_qubit[0]) # number=13 prog.x(input_qubit[1]) # number=14 prog.x(input_qubit[2]) # number=15 prog.x(input_qubit[3]) # number=16 prog.h(input_qubit[4]) # number=35 prog.h(input_qubit[0]) # number=17 prog.rx(2.4912829742967055,input_qubit[2]) # number=26 prog.h(input_qubit[1]) # number=18 prog.h(input_qubit[2]) # number=19 prog.h(input_qubit[2]) # number=55 prog.h(input_qubit[2]) # number=25 prog.h(input_qubit[3]) # number=20 # circuit end return prog if __name__ == '__main__': key = "00000" f = lambda rep: str(int(rep == key)) prog = make_circuit(5,f) backend = BasicAer.get_backend('statevector_simulator') sample_shot =7924 info = execute(prog, backend=backend).result().get_statevector() qubits = round(log2(len(info))) info = { np.binary_repr(i, qubits): round((info[i]*(info[i].conjugate())).real,3) for i in range(2 ** qubits) } backend = FakeVigo() circuit1 = transpile(prog,backend,optimization_level=2) writefile = open("../data/startQiskit_Class1687.csv","w") print(info,file=writefile) print("results end", file=writefile) print(circuit1.depth(),file=writefile) print(circuit1,file=writefile) writefile.close()
32.439716
80
0.612593
f66f592a57dadacb3d195ad26bab6c81d331895c
15,752
py
Python
zoo/policies/cross-rl-agent/cross_rl_agent/train/run_train.py
MCZhi/SMARTS
3ef5650b04ac6fb7145cf4e23d5534d73e0929fc
[ "MIT" ]
2
2021-12-13T12:41:54.000Z
2021-12-16T03:10:24.000Z
zoo/policies/cross-rl-agent/cross_rl_agent/train/run_train.py
MCZhi/SMARTS
3ef5650b04ac6fb7145cf4e23d5534d73e0929fc
[ "MIT" ]
null
null
null
zoo/policies/cross-rl-agent/cross_rl_agent/train/run_train.py
MCZhi/SMARTS
3ef5650b04ac6fb7145cf4e23d5534d73e0929fc
[ "MIT" ]
null
null
null
# Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # The author of this file is: https://github.com/mg2015started # The following was modified from examples/ray_multi_instance.py import argparse import logging import os import pickle import warnings import gym import numpy as np import tensorflow as tf from ac_network import ActorNetwork, CriticNetwork from adapters import ( action_adapter, cross_interface, get_aux_info, observation_adapter, reward_adapter, ) from config import HyperParameters from prioritized_replay import Buffer from soc_mt_ac_network import SocMtActorNetwork, SocMtCriticNetwork from smarts.core.utils.episodes import episodes from smarts.zoo.agent_spec import AgentSpec from utils import get_split_batch warnings.filterwarnings("ignore") logging.basicConfig(level=logging.INFO) AGENT_ID = "Agent-007" def init_tensorflow(): configProto = tf.compat.v1.ConfigProto() configProto.gpu_options.allow_growth = True # reset tensorflow graph tf.compat.v1.reset_default_graph() return configProto def train( training_scenarios, sim_name, headless, num_episodes, seed, without_soc_mt, session_dir, ): WITH_SOC_MT = without_soc_mt config = HyperParameters() configProto = init_tensorflow() # init env agent_spec = AgentSpec( # you can custom AgentInterface to control what obs information you need and the action type interface=cross_interface, # agent_builder=actor, # you can custom your observation adapter, reward adapter, info adapter, action adapter and so on. observation_adapter=observation_adapter, reward_adapter=reward_adapter, action_adapter=action_adapter, ) env = gym.make( "smarts.env:hiway-v0", scenarios=training_scenarios, agent_specs={AGENT_ID: agent_spec}, sim_name=sim_name, headless=headless, timestep_sec=0.1, seed=seed, ) # init nets structure if WITH_SOC_MT: model_name = "Soc_Mt_TD3Network" actor = SocMtActorNetwork(name="actor") critic_1 = SocMtCriticNetwork(name="critic_1") critic_2 = SocMtCriticNetwork(name="critic_2") else: model_name = "TD3Network" actor = ActorNetwork(name="actor") critic_1 = CriticNetwork(name="critic_1") critic_2 = CriticNetwork(name="critic_2") # tensorflow summary for tensorboard visualization writer = tf.compat.v1.summary.FileWriter("summary") # losses tf.compat.v1.summary.scalar("Loss", critic_1.loss) tf.compat.v1.summary.scalar("Hubor_loss", critic_1.loss_2) tf.compat.v1.summary.histogram("ISWeights", critic_1.ISWeights) write_op = tf.compat.v1.summary.merge_all() saver = tf.compat.v1.train.Saver(max_to_keep=1000) # init memory buffer buffer = Buffer(config.buffer_size, config.pretrain_length) if config.load_buffer: # !!!the capacity of the buffer is limited with buffer file buffer = buffer.load_buffer(config.buffer_load_path) print("BUFFER: Buffer Loaded") else: buffer.fill_buffer(env, AGENT_ID) print("BUFFER: Buffer Filled") buffer.save_buffer(config.buffer_save_path, buffer) print("BUFFER: Buffer initialize") with tf.compat.v1.Session(config=configProto) as sess: # init nets params sess.run(tf.compat.v1.global_variables_initializer()) writer.add_graph(sess.graph) # update params of the target network actor.update_target(sess) critic_1.update_target(sess) critic_2.update_target(sess) # Reinforcement Learning loop print("Training Starts...") # experiment results recent_rewards = [] # rewards from recent 100 episodes avarage_rewards = [] # avareage reward of recent 100 episodes recent_success = [] recent_success_rate = [] EPSILON = 1 for episode in episodes(n=num_episodes): env_steps = 0 # save the model from time to time if config.model_save_frequency: if episode.index % config.model_save_frequency == 0: save_path = saver.save(sess, f"{session_dir}/{model_name}.ckpt") print("latest model saved") if episode.index % config.model_save_frequency_no_paste == 0: saver.save( sess, f"{session_dir}/{model_name}_{str(episode.index)}.ckpt", ) print("model saved") # initialize EPSILON = (config.noised_episodes - episode.index) / config.noised_episodes episode_reward = 0 observations = env.reset() # states of all vehs state = observations[AGENT_ID] # ego state episode.record_scenario(env.scenario_log) dones = {"__all__": False} while not dones["__all__"]: action_noise = actor.get_action_noise(sess, state, rate=EPSILON) observations, rewards, dones, infos = env.step( {AGENT_ID: action_noise} ) # states of all vehs in next step # ego state in next step next_state = observations[AGENT_ID] if WITH_SOC_MT: reward = rewards[AGENT_ID] else: reward = np.sum(rewards.values()) done = dones[AGENT_ID] info = infos[AGENT_ID] aux_info = get_aux_info(infos[AGENT_ID]["env_obs"]) episode.record_step(observations, rewards, dones, infos) if WITH_SOC_MT: episode_reward += np.sum(reward) else: episode_reward += reward # store the experience experience = state, action_noise, reward, next_state, done # print(state) buffer.store(experience) ## Model training STARTS if env_steps % config.train_frequency == 0: # "Delayed" Policy Updates policy_delayed = 2 for _ in range(policy_delayed): # First we need a mini-batch with experiences (s, a, r, s', done) tree_idx, batch, ISWeights_mb = buffer.sample(config.batch_size) s_mb, a_mb, r_mb, next_s_mb, dones_mb = get_split_batch(batch) task_mb = s_mb[:, -config.task_size :] next_task_mb = next_s_mb[:, -config.task_size :] # Get q_target values for next_state from the critic_target if WITH_SOC_MT: a_target_next_state = actor.get_action_target( sess, next_s_mb ) # with Target Policy Smoothing q_target_next_state_1 = critic_1.get_q_value_target( sess, next_s_mb, a_target_next_state ) q_target_next_state_1 = ( q_target_next_state_1 * next_task_mb ) # multi task q value q_target_next_state_2 = critic_2.get_q_value_target( sess, next_s_mb, a_target_next_state ) q_target_next_state_2 = ( q_target_next_state_2 * next_task_mb ) # multi task q value q_target_next_state = np.minimum( q_target_next_state_1, q_target_next_state_2 ) else: a_target_next_state = actor.get_action_target( sess, next_s_mb ) # with Target Policy Smoothing q_target_next_state_1 = critic_1.get_q_value_target( sess, next_s_mb, a_target_next_state ) q_target_next_state_2 = critic_2.get_q_value_target( sess, next_s_mb, a_target_next_state ) q_target_next_state = np.minimum( q_target_next_state_1, q_target_next_state_2 ) # Set Q_target = r if the episode ends at s+1, otherwise Q_target = r + gamma * Qtarget(s',a') target_Qs_batch = [] for i in range(0, len(dones_mb)): terminal = dones_mb[i] # if we are in a terminal state. only equals reward if terminal: target_Qs_batch.append((r_mb[i] * task_mb[i])) else: # take the Q taregt for action a' target = ( r_mb[i] * task_mb[i] + config.gamma * q_target_next_state[i] ) target_Qs_batch.append(target) targets_mb = np.array([each for each in target_Qs_batch]) # critic train if len(a_mb.shape) > 2: a_mb = np.squeeze(a_mb, axis=1) loss, absolute_errors = critic_1.train( sess, s_mb, a_mb, targets_mb, ISWeights_mb ) loss_2, absolute_errors_2 = critic_2.train( sess, s_mb, a_mb, targets_mb, ISWeights_mb ) # actor train a_for_grad = actor.get_action(sess, s_mb) a_gradients = critic_1.get_gradients(sess, s_mb, a_for_grad) # print(a_gradients) actor.train(sess, s_mb, a_gradients[0]) # target train actor.update_target(sess) critic_1.update_target(sess) critic_2.update_target(sess) # update replay memory priorities if WITH_SOC_MT: absolute_errors = np.sum(absolute_errors, axis=1) buffer.batch_update(tree_idx, absolute_errors) ## Model training ENDS if done: # visualize reward data recent_rewards.append(episode_reward) if len(recent_rewards) > 100: recent_rewards.pop(0) avarage_rewards.append(np.mean(recent_rewards)) avarage_rewards_data = np.array(avarage_rewards) d = {"avarage_rewards": avarage_rewards_data} with open( os.path.join("results", "reward_data" + ".pkl"), "wb" ) as f: pickle.dump(d, f, pickle.HIGHEST_PROTOCOL) # visualize success rate data if aux_info == "success": recent_success.append(1) else: recent_success.append(0) if len(recent_success) > 100: recent_success.pop(0) avarage_success_rate = recent_success.count(1) / len(recent_success) recent_success_rate.append(avarage_success_rate) recent_success_rate_data = np.array(recent_success_rate) d = {"recent_success_rates": recent_success_rate_data} with open( os.path.join("results", "success_rate_data" + ".pkl"), "wb" ) as f: pickle.dump(d, f, pickle.HIGHEST_PROTOCOL) # print results on the terminal print("Episode total reward:", episode_reward) print("Episode time:", env_steps * 0.1) print("Success rate:", avarage_success_rate) print(episode.index, "episode finished.") buffer.measure_utilization() print("---" * 15) break else: state = next_state env_steps += 1 env.close() def default_argument_parser(program: str): """This factory method returns a vanilla `argparse.ArgumentParser` with the minimum subset of arguments that should be supported. You can extend it with more `parser.add_argument(...)` calls or obtain the arguments via `parser.parse_args()`. """ parser = argparse.ArgumentParser(program) parser.add_argument( "scenarios", help="A list of scenarios. Each element can be either the scenario to run " "(see scenarios/ for some samples you can use) OR a directory of scenarios " "to sample from.", type=str, nargs="+", ) parser.add_argument( "--sim-name", help="a string that gives this simulation a name.", type=str, default=None, ) parser.add_argument( "--headless", help="Run the simulation in headless mode.", action="store_true" ) parser.add_argument("--seed", type=int, default=42) parser.add_argument( "--sumo-port", help="Run SUMO with a specified port.", type=int, default=None ) parser.add_argument( "--episodes", help="The number of episodes to run the simulation for.", type=int, default=5000, ) return parser if __name__ == "__main__": parser = default_argument_parser("pytorch-example") parser.add_argument( "--without-soc-mt", help="Enable social mt.", action="store_true" ) parser.add_argument( "--session-dir", help="The save directory for the model.", type=str, default="model/", ) args = parser.parse_args() train( training_scenarios=args.scenarios, sim_name=args.sim_name, headless=args.headless, num_episodes=args.episodes, seed=args.seed, without_soc_mt=args.without_soc_mt, session_dir=args.session_dir, )
41.343832
118
0.562913
6f5397f4f180d682238e4f61981a809b3ef2aabd
2,596
py
Python
tartiflette/scalar/builtins/string.py
matt-koevort/tartiflette
5777866b133d846ce4f8aa03f735fa81832896cd
[ "MIT" ]
530
2019-06-04T11:45:36.000Z
2022-03-31T09:29:56.000Z
tartiflette/scalar/builtins/string.py
matt-koevort/tartiflette
5777866b133d846ce4f8aa03f735fa81832896cd
[ "MIT" ]
242
2019-06-04T11:53:08.000Z
2022-03-28T07:06:27.000Z
tartiflette/scalar/builtins/string.py
matt-koevort/tartiflette
5777866b133d846ce4f8aa03f735fa81832896cd
[ "MIT" ]
36
2019-06-21T06:40:27.000Z
2021-11-04T13:11:16.000Z
from typing import Any, Dict, Optional, Union from tartiflette import Scalar from tartiflette.constants import UNDEFINED_VALUE from tartiflette.language.ast import StringValueNode class ScalarString: """ Built-in scalar which handle string values. """ def coerce_output(self, value: Any) -> str: """ Coerce the resolved value for output. :param value: value to coerce :type value: Any :return: the coerced value :rtype: str """ # pylint: disable=no-self-use if isinstance(value, str): return value if isinstance(value, bool): return "true" if value else "false" try: # TODO: maybe we shouldn't accepts None, list, dict, exceptions... return str(value) except Exception: # pylint: disable=broad-except pass raise TypeError(f"String cannot represent value: < {value} >.") def coerce_input(self, value: Any) -> str: """ Coerce the user input from variable value. :param value: value to coerce :type value: Any :return: the coerced value :rtype: str """ # pylint: disable=no-self-use if not isinstance(value, str): raise TypeError( f"String cannot represent a non string value: < {value} >." ) return value def parse_literal(self, ast: "Node") -> Union[str, "UNDEFINED_VALUE"]: """ Coerce the input value from an AST node. :param ast: AST node to coerce :type ast: Node :return: the coerced value :rtype: Union[str, UNDEFINED_VALUE] """ # pylint: disable=no-self-use return ( ast.value if isinstance(ast, StringValueNode) else UNDEFINED_VALUE ) def bake(schema_name: str, config: Optional[Dict[str, Any]] = None) -> str: """ Links the scalar to the appropriate schema and returns the SDL related to the scalar. :param schema_name: schema name to link with :param config: configuration of the scalar :type schema_name: str :type config: Optional[Dict[str, Any]] :return: the SDL related to the scalar :rtype: str """ # pylint: disable=unused-argument Scalar("String", schema_name=schema_name)(ScalarString()) return ''' """The `String` scalar type represents textual data, represented as UTF-8 character sequences. The String type is most often used by GraphQL to represent free-form human-readable text.""" scalar String '''
32.049383
191
0.614407
8d55b2b7fa1c08a07eb1275c93af59256d27d79c
151
py
Python
config.py
siprikorea/aguri-bot
98c81ee865f7814be0574c69dedaae0373da7249
[ "Apache-2.0" ]
null
null
null
config.py
siprikorea/aguri-bot
98c81ee865f7814be0574c69dedaae0373da7249
[ "Apache-2.0" ]
null
null
null
config.py
siprikorea/aguri-bot
98c81ee865f7814be0574c69dedaae0373da7249
[ "Apache-2.0" ]
null
null
null
class config(object): bot_token = '190337691:AAEmrH-pVz_wImCfYpnFDRA4G12Jhx7X1Jk' base_url = 'https://api.telegram.org/bot' + bot_token + '/'
30.2
63
0.715232
72f28c924cd6ef0ce99f261039db52a2bdade042
22,034
py
Python
nmt/model_helper.py
whiskyboy/CVAE_GNMT
12d01df4b36cb5c44eb719c79cae71d782e1aacd
[ "Apache-2.0" ]
null
null
null
nmt/model_helper.py
whiskyboy/CVAE_GNMT
12d01df4b36cb5c44eb719c79cae71d782e1aacd
[ "Apache-2.0" ]
null
null
null
nmt/model_helper.py
whiskyboy/CVAE_GNMT
12d01df4b36cb5c44eb719c79cae71d782e1aacd
[ "Apache-2.0" ]
null
null
null
"""Utility functions for building models.""" from __future__ import print_function import collections import six import os import time import numpy as np import tensorflow as tf from tensorflow.python.ops import lookup_ops from .utils import iterator_utils from .utils import misc_utils as utils from .utils import vocab_utils __all__ = [ "get_initializer", "get_device_str", "create_train_model", "create_eval_model", "create_infer_model", "create_emb_for_encoder_and_decoder", "create_rnn_cell", "gradient_clip", "create_or_load_model", "load_model", "avg_checkpoints", "compute_perplexity" ] # If a vocab size is greater than this value, put the embedding on cpu instead VOCAB_SIZE_THRESHOLD_CPU = 50000 def get_initializer(init_op, seed=None, init_weight=None): """Create an initializer. init_weight is only for uniform.""" if init_op == "uniform": assert init_weight return tf.random_uniform_initializer( -init_weight, init_weight, seed=seed) elif init_op == "glorot_normal": return tf.keras.initializers.glorot_normal( seed=seed) elif init_op == "glorot_uniform": return tf.keras.initializers.glorot_uniform( seed=seed) else: raise ValueError("Unknown init_op %s" % init_op) def get_device_str(device_id, num_gpus): """Return a device string for multi-GPU setup.""" if num_gpus == 0: return "/cpu:0" device_str_output = "/gpu:%d" % (device_id % num_gpus) return device_str_output class ExtraArgs(collections.namedtuple( "ExtraArgs", ("single_cell_fn", "model_device_fn", "attention_mechanism_fn"))): pass class TrainModel( collections.namedtuple("TrainModel", ("graph", "model", "iterator", "skip_count_placeholder"))): pass def create_train_model( model_creator, hparams, scope=None, num_workers=1, jobid=0, extra_args=None): """Create train graph, model, and iterator.""" src_file = "%s.%s" % (hparams.train_prefix, hparams.src) tgt_file = "%s.%s" % (hparams.train_prefix, hparams.tgt) src_vocab_file = hparams.src_vocab_file tgt_vocab_file = hparams.tgt_vocab_file graph = tf.Graph() with graph.as_default(), tf.container(scope or "train"): src_vocab_table, tgt_vocab_table = vocab_utils.create_vocab_tables( src_vocab_file, tgt_vocab_file, hparams.share_vocab) src_dataset = tf.data.TextLineDataset(src_file) tgt_dataset = tf.data.TextLineDataset(tgt_file) skip_count_placeholder = tf.placeholder(shape=(), dtype=tf.int64) iterator = iterator_utils.get_iterator( src_dataset, tgt_dataset, src_vocab_table, tgt_vocab_table, batch_size=hparams.batch_size, sos=hparams.sos, eos=hparams.eos, random_seed=hparams.random_seed, num_buckets=hparams.num_buckets, src_max_len=hparams.src_max_len, tgt_max_len=hparams.tgt_max_len, skip_count=skip_count_placeholder, num_shards=num_workers, shard_index=jobid) # Note: One can set model_device_fn to # `tf.train.replica_device_setter(ps_tasks)` for distributed training. model_device_fn = None if extra_args: model_device_fn = extra_args.model_device_fn with tf.device(model_device_fn): model = model_creator( hparams, iterator=iterator, mode=tf.contrib.learn.ModeKeys.TRAIN, source_vocab_table=src_vocab_table, target_vocab_table=tgt_vocab_table, scope=scope, extra_args=extra_args) return TrainModel( graph=graph, model=model, iterator=iterator, skip_count_placeholder=skip_count_placeholder) class EvalModel( collections.namedtuple("EvalModel", ("graph", "model", "src_file_placeholder", "tgt_file_placeholder", "iterator"))): pass def create_eval_model(model_creator, hparams, scope=None, extra_args=None): """Create train graph, model, src/tgt file holders, and iterator.""" src_vocab_file = hparams.src_vocab_file tgt_vocab_file = hparams.tgt_vocab_file graph = tf.Graph() with graph.as_default(), tf.container(scope or "eval"): src_vocab_table, tgt_vocab_table = vocab_utils.create_vocab_tables( src_vocab_file, tgt_vocab_file, hparams.share_vocab) src_file_placeholder = tf.placeholder(shape=(), dtype=tf.string) tgt_file_placeholder = tf.placeholder(shape=(), dtype=tf.string) src_dataset = tf.data.TextLineDataset(src_file_placeholder) tgt_dataset = tf.data.TextLineDataset(tgt_file_placeholder) iterator = iterator_utils.get_iterator( src_dataset, tgt_dataset, src_vocab_table, tgt_vocab_table, hparams.batch_size, sos=hparams.sos, eos=hparams.eos, random_seed=hparams.random_seed, num_buckets=hparams.num_buckets, src_max_len=hparams.src_max_len_infer, tgt_max_len=hparams.tgt_max_len_infer) model = model_creator( hparams, iterator=iterator, mode=tf.contrib.learn.ModeKeys.EVAL, source_vocab_table=src_vocab_table, target_vocab_table=tgt_vocab_table, scope=scope, extra_args=extra_args) return EvalModel( graph=graph, model=model, src_file_placeholder=src_file_placeholder, tgt_file_placeholder=tgt_file_placeholder, iterator=iterator) class InferModel( collections.namedtuple("InferModel", ("graph", "model", "src_placeholder", "batch_size_placeholder", "iterator"))): pass def create_infer_model(model_creator, hparams, scope=None, extra_args=None): """Create inference model.""" graph = tf.Graph() src_vocab_file = hparams.src_vocab_file tgt_vocab_file = hparams.tgt_vocab_file with graph.as_default(), tf.container(scope or "infer"): src_vocab_table, tgt_vocab_table = vocab_utils.create_vocab_tables( src_vocab_file, tgt_vocab_file, hparams.share_vocab) reverse_tgt_vocab_table = lookup_ops.index_to_string_table_from_file( tgt_vocab_file, default_value=vocab_utils.UNK) src_placeholder = tf.placeholder(shape=[None], dtype=tf.string) batch_size_placeholder = tf.placeholder(shape=[], dtype=tf.int64) src_dataset = tf.data.Dataset.from_tensor_slices( src_placeholder) iterator = iterator_utils.get_infer_iterator( src_dataset, src_vocab_table, batch_size=batch_size_placeholder, eos=hparams.eos, src_max_len=hparams.src_max_len_infer) model = model_creator( hparams, iterator=iterator, mode=tf.contrib.learn.ModeKeys.INFER, source_vocab_table=src_vocab_table, target_vocab_table=tgt_vocab_table, reverse_target_vocab_table=reverse_tgt_vocab_table, scope=scope, extra_args=extra_args) return InferModel( graph=graph, model=model, src_placeholder=src_placeholder, batch_size_placeholder=batch_size_placeholder, iterator=iterator) def _get_embed_device(vocab_size): """Decide on which device to place an embed matrix given its vocab size.""" if vocab_size > VOCAB_SIZE_THRESHOLD_CPU: return "/cpu:0" else: return "/gpu:0" def _create_pretrained_emb_from_txt( vocab_file, embed_file, num_trainable_tokens=3, dtype=tf.float32, scope=None): """Load pretrain embeding from embed_file, and return an embedding matrix. Args: embed_file: Path to a Glove formated embedding txt file. num_trainable_tokens: Make the first n tokens in the vocab file as trainable variables. Default is 3, which is "<unk>", "<s>" and "</s>". """ vocab, _ = vocab_utils.load_vocab(vocab_file) trainable_tokens = vocab[:num_trainable_tokens] utils.print_out("# Using pretrained embedding: %s." % embed_file) utils.print_out(" with trainable tokens: ") emb_dict, emb_size = vocab_utils.load_embed_txt(embed_file) for token in trainable_tokens: utils.print_out(" %s" % token) if token not in emb_dict: emb_dict[token] = [0.0] * emb_size emb_mat = np.array( [emb_dict[token] for token in vocab], dtype=dtype.as_numpy_dtype()) emb_mat = tf.constant(emb_mat) emb_mat_const = tf.slice(emb_mat, [num_trainable_tokens, 0], [-1, -1]) with tf.variable_scope(scope or "pretrain_embeddings", dtype=dtype) as scope: with tf.device(_get_embed_device(num_trainable_tokens)): emb_mat_var = tf.get_variable( "emb_mat_var", [num_trainable_tokens, emb_size]) return tf.concat([emb_mat_var, emb_mat_const], 0) def _create_or_load_embed(embed_name, vocab_file, embed_file, vocab_size, embed_size, dtype): """Create a new or load an existing embedding matrix.""" if vocab_file and embed_file: embedding = _create_pretrained_emb_from_txt(vocab_file, embed_file) else: with tf.device(_get_embed_device(vocab_size)): embedding = tf.get_variable( embed_name, [vocab_size, embed_size], dtype) return embedding def create_emb_for_encoder_and_decoder(share_vocab, src_vocab_size, tgt_vocab_size, src_embed_size, tgt_embed_size, dtype=tf.float32, num_partitions=0, src_vocab_file=None, tgt_vocab_file=None, src_embed_file=None, tgt_embed_file=None, scope=None): """Create embedding matrix for both encoder and decoder. Args: share_vocab: A boolean. Whether to share embedding matrix for both encoder and decoder. src_vocab_size: An integer. The source vocab size. tgt_vocab_size: An integer. The target vocab size. src_embed_size: An integer. The embedding dimension for the encoder's embedding. tgt_embed_size: An integer. The embedding dimension for the decoder's embedding. dtype: dtype of the embedding matrix. Default to float32. num_partitions: number of partitions used for the embedding vars. scope: VariableScope for the created subgraph. Default to "embedding". Returns: embedding_encoder: Encoder's embedding matrix. embedding_decoder: Decoder's embedding matrix. Raises: ValueError: if use share_vocab but source and target have different vocab size. """ if num_partitions <= 1: partitioner = None else: # Note: num_partitions > 1 is required for distributed training due to # embedding_lookup tries to colocate single partition-ed embedding variable # with lookup ops. This may cause embedding variables being placed on worker # jobs. partitioner = tf.fixed_size_partitioner(num_partitions) if (src_embed_file or tgt_embed_file) and partitioner: raise ValueError( "Can't set num_partitions > 1 when using pretrained embedding") with tf.variable_scope( scope or "embeddings", dtype=dtype, partitioner=partitioner) as scope: # Share embedding if share_vocab: if src_vocab_size != tgt_vocab_size: raise ValueError("Share embedding but different src/tgt vocab sizes" " %d vs. %d" % (src_vocab_size, tgt_vocab_size)) assert src_embed_size == tgt_embed_size utils.print_out("# Use the same embedding for source and target") vocab_file = src_vocab_file or tgt_vocab_file embed_file = src_embed_file or tgt_embed_file embedding_encoder = _create_or_load_embed( "embedding_share", vocab_file, embed_file, src_vocab_size, src_embed_size, dtype) embedding_decoder = embedding_encoder else: with tf.variable_scope("encoder", partitioner=partitioner): embedding_encoder = _create_or_load_embed( "embedding_encoder", src_vocab_file, src_embed_file, src_vocab_size, src_embed_size, dtype) with tf.variable_scope("decoder", partitioner=partitioner): embedding_decoder = _create_or_load_embed( "embedding_decoder", tgt_vocab_file, tgt_embed_file, tgt_vocab_size, tgt_embed_size, dtype) return embedding_encoder, embedding_decoder def _single_cell(unit_type, num_units, forget_bias, dropout, mode, residual_connection=False, device_str=None, residual_fn=None): """Create an instance of a single RNN cell.""" # dropout (= 1 - keep_prob) is set to 0 during eval and infer dropout = dropout if mode == tf.contrib.learn.ModeKeys.TRAIN else 0.0 # Cell Type if unit_type == "lstm": utils.print_out(" LSTM, forget_bias=%g" % forget_bias, new_line=False) single_cell = tf.contrib.rnn.BasicLSTMCell( num_units, forget_bias=forget_bias) elif unit_type == "gru": utils.print_out(" GRU", new_line=False) single_cell = tf.contrib.rnn.GRUCell(num_units) elif unit_type == "layer_norm_lstm": utils.print_out(" Layer Normalized LSTM, forget_bias=%g" % forget_bias, new_line=False) single_cell = tf.contrib.rnn.LayerNormBasicLSTMCell( num_units, forget_bias=forget_bias, layer_norm=True) elif unit_type == "nas": utils.print_out(" NASCell", new_line=False) single_cell = tf.contrib.rnn.NASCell(num_units) else: raise ValueError("Unknown unit type %s!" % unit_type) # Dropout (= 1 - keep_prob) if dropout > 0.0: single_cell = tf.contrib.rnn.DropoutWrapper( cell=single_cell, input_keep_prob=(1.0 - dropout)) utils.print_out(" %s, dropout=%g " %(type(single_cell).__name__, dropout), new_line=False) # Residual if residual_connection: single_cell = tf.contrib.rnn.ResidualWrapper( single_cell, residual_fn=residual_fn) utils.print_out(" %s" % type(single_cell).__name__, new_line=False) # Device Wrapper if device_str: single_cell = tf.contrib.rnn.DeviceWrapper(single_cell, device_str) utils.print_out(" %s, device=%s" % (type(single_cell).__name__, device_str), new_line=False) return single_cell def _cell_list(unit_type, num_units, num_layers, num_residual_layers, forget_bias, dropout, mode, num_gpus, base_gpu=0, single_cell_fn=None, residual_fn=None): """Create a list of RNN cells.""" if not single_cell_fn: single_cell_fn = _single_cell # Multi-GPU cell_list = [] for i in range(num_layers): utils.print_out(" cell %d" % i, new_line=False) single_cell = single_cell_fn( unit_type=unit_type, num_units=num_units, forget_bias=forget_bias, dropout=dropout, mode=mode, residual_connection=(i >= num_layers - num_residual_layers), device_str=get_device_str(i + base_gpu, num_gpus), residual_fn=residual_fn ) utils.print_out("") cell_list.append(single_cell) return cell_list def create_rnn_cell(unit_type, num_units, num_layers, num_residual_layers, forget_bias, dropout, mode, num_gpus, base_gpu=0, single_cell_fn=None): """Create multi-layer RNN cell. Args: unit_type: string representing the unit type, i.e. "lstm". num_units: the depth of each unit. num_layers: number of cells. num_residual_layers: Number of residual layers from top to bottom. For example, if `num_layers=4` and `num_residual_layers=2`, the last 2 RNN cells in the returned list will be wrapped with `ResidualWrapper`. forget_bias: the initial forget bias of the RNNCell(s). dropout: floating point value between 0.0 and 1.0: the probability of dropout. this is ignored if `mode != TRAIN`. mode: either tf.contrib.learn.TRAIN/EVAL/INFER num_gpus: The number of gpus to use when performing round-robin placement of layers. base_gpu: The gpu device id to use for the first RNN cell in the returned list. The i-th RNN cell will use `(base_gpu + i) % num_gpus` as its device id. single_cell_fn: allow for adding customized cell. When not specified, we default to model_helper._single_cell Returns: An `RNNCell` instance. """ cell_list = _cell_list(unit_type=unit_type, num_units=num_units, num_layers=num_layers, num_residual_layers=num_residual_layers, forget_bias=forget_bias, dropout=dropout, mode=mode, num_gpus=num_gpus, base_gpu=base_gpu, single_cell_fn=single_cell_fn) if len(cell_list) == 1: # Single layer. return cell_list[0] else: # Multi layers return tf.contrib.rnn.MultiRNNCell(cell_list) def gradient_clip(gradients, max_gradient_norm): """Clipping gradients of a model.""" clipped_gradients, gradient_norm = tf.clip_by_global_norm( gradients, max_gradient_norm) gradient_norm_summary = [tf.summary.scalar("grad_norm", gradient_norm)] gradient_norm_summary.append( tf.summary.scalar("clipped_gradient", tf.global_norm(clipped_gradients))) return clipped_gradients, gradient_norm_summary, gradient_norm def load_model(model, ckpt, session, name): start_time = time.time() model.saver.restore(session, ckpt) session.run(tf.tables_initializer()) utils.print_out( " loaded %s model parameters from %s, time %.2fs" % (name, ckpt, time.time() - start_time)) return model def avg_checkpoints(model_dir, num_last_checkpoints, global_step, global_step_name): """Average the last N checkpoints in the model_dir.""" checkpoint_state = tf.train.get_checkpoint_state(model_dir) if not checkpoint_state: utils.print_out("# No checkpoint file found in directory: %s" % model_dir) return None # Checkpoints are ordered from oldest to newest. checkpoints = ( checkpoint_state.all_model_checkpoint_paths[-num_last_checkpoints:]) if len(checkpoints) < num_last_checkpoints: utils.print_out( "# Skipping averaging checkpoints because not enough checkpoints is " "avaliable." ) return None avg_model_dir = os.path.join(model_dir, "avg_checkpoints") if not tf.gfile.Exists(avg_model_dir): utils.print_out( "# Creating new directory %s for saving averaged checkpoints." % avg_model_dir) tf.gfile.MakeDirs(avg_model_dir) utils.print_out("# Reading and averaging variables in checkpoints:") var_list = tf.contrib.framework.list_variables(checkpoints[0]) var_values, var_dtypes = {}, {} for (name, shape) in var_list: if name != global_step_name: var_values[name] = np.zeros(shape) for checkpoint in checkpoints: utils.print_out(" %s" % checkpoint) reader = tf.contrib.framework.load_checkpoint(checkpoint) for name in var_values: tensor = reader.get_tensor(name) var_dtypes[name] = tensor.dtype var_values[name] += tensor for name in var_values: var_values[name] /= len(checkpoints) # Build a graph with same variables in the checkpoints, and save the averaged # variables into the avg_model_dir. with tf.Graph().as_default(): tf_vars = [ tf.get_variable(v, shape=var_values[v].shape, dtype=var_dtypes[name]) for v in var_values ] placeholders = [tf.placeholder(v.dtype, shape=v.shape) for v in tf_vars] assign_ops = [tf.assign(v, p) for (v, p) in zip(tf_vars, placeholders)] global_step_var = tf.Variable( global_step, name=global_step_name, trainable=False) saver = tf.train.Saver(tf.all_variables()) with tf.Session() as sess: sess.run(tf.initialize_all_variables()) for p, assign_op, (name, value) in zip(placeholders, assign_ops, six.iteritems(var_values)): sess.run(assign_op, {p: value}) # Use the built saver to save the averaged checkpoint. Only keep 1 # checkpoint and the best checkpoint will be moved to avg_best_metric_dir. saver.save( sess, os.path.join(avg_model_dir, "translate.ckpt")) return avg_model_dir def create_or_load_model(model, model_dir, session, name): """Create translation model and initialize or load parameters in session.""" latest_ckpt = tf.train.latest_checkpoint(model_dir) if latest_ckpt: model = load_model(model, latest_ckpt, session, name) else: start_time = time.time() session.run(tf.global_variables_initializer()) session.run(tf.tables_initializer()) utils.print_out(" created %s model with fresh parameters, time %.2fs" % (name, time.time() - start_time)) global_step = model.global_step.eval(session=session) return model, global_step def compute_perplexity(model, sess, name): """Compute perplexity of the output of the model. Args: model: model for compute perplexity. sess: tensorflow session to use. name: name of the batch. Returns: The perplexity of the eval outputs. """ total_loss = 0 total_predict_count = 0 start_time = time.time() while True: try: step_result = model.eval(sess) if len(step_result) == 3: loss, predict_count, batch_size = step_result bow_loss = kl_loss = 0 elif len(step_result) == 5: loss, predict_count, batch_size, bow_loss, kl_loss = step_result total_loss += (loss - bow_loss - kl_loss) * batch_size total_predict_count += predict_count except tf.errors.OutOfRangeError: break perplexity = utils.safe_exp(total_loss / total_predict_count) utils.print_time(" eval %s: perplexity %.2f" % (name, perplexity), start_time) return perplexity
36.003268
80
0.6824
5f28b4d5282c2563c296dfecbcbe72224ee8fce1
400
py
Python
src/network_manager_dispatcher_app/sound_thread.py
meads/dns-leak-test-py
2771c56c486ab549519d886e691993a6b090f27c
[ "MIT" ]
1
2022-02-19T09:09:52.000Z
2022-02-19T09:09:52.000Z
src/network_manager_dispatcher_app/sound_thread.py
meads/network-manager-dispatcher-app
2771c56c486ab549519d886e691993a6b090f27c
[ "MIT" ]
null
null
null
src/network_manager_dispatcher_app/sound_thread.py
meads/network-manager-dispatcher-app
2771c56c486ab549519d886e691993a6b090f27c
[ "MIT" ]
null
null
null
import threading from queue import Queue from .sox_player import ISoXPlayer class SoundThread(threading.Thread): def __init__(self, q: Queue, play: ISoXPlayer): threading.Thread.__init__(self) self.q = q self.play = play def run(self): while True: if self.q.empty(): self.play.dialer() continue return
23.529412
51
0.5875
ec211937be56a3d8aa96b4904a7e8fce678d5840
6,952
py
Python
test/functional/rpc_getblockstats.py
WFLSCoin/wflscoin
794eb115845c3e7d6b75cf40031568bf5329ee25
[ "MIT" ]
null
null
null
test/functional/rpc_getblockstats.py
WFLSCoin/wflscoin
794eb115845c3e7d6b75cf40031568bf5329ee25
[ "MIT" ]
null
null
null
test/functional/rpc_getblockstats.py
WFLSCoin/wflscoin
794eb115845c3e7d6b75cf40031568bf5329ee25
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2017-2019 The Wflscoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Test getblockstats rpc call # from test_framework.blocktools import COINBASE_MATURITY from test_framework.test_framework import WflscoinTestFramework from test_framework.util import ( assert_equal, assert_raises_rpc_error, ) import json import os TESTSDIR = os.path.dirname(os.path.realpath(__file__)) class GetblockstatsTest(WflscoinTestFramework): start_height = 101 max_stat_pos = 2 def add_options(self, parser): parser.add_argument('--gen-test-data', dest='gen_test_data', default=False, action='store_true', help='Generate test data') parser.add_argument('--test-data', dest='test_data', default='data/rpc_getblockstats.json', action='store', metavar='FILE', help='Test data file') def set_test_params(self): self.num_nodes = 1 self.setup_clean_chain = True self.supports_cli = False def get_stats(self): return [self.nodes[0].getblockstats(hash_or_height=self.start_height + i) for i in range(self.max_stat_pos+1)] def generate_test_data(self, filename): mocktime = 1525107225 self.nodes[0].setmocktime(mocktime) self.nodes[0].generate(COINBASE_MATURITY + 1) address = self.nodes[0].get_deterministic_priv_key().address self.nodes[0].sendtoaddress(address=address, amount=10, subtractfeefromamount=True) self.nodes[0].generate(1) self.sync_all() self.nodes[0].sendtoaddress(address=address, amount=10, subtractfeefromamount=True) self.nodes[0].sendtoaddress(address=address, amount=10, subtractfeefromamount=False) self.nodes[0].settxfee(amount=0.003) self.nodes[0].sendtoaddress(address=address, amount=1, subtractfeefromamount=True) self.sync_all() self.nodes[0].generate(1) self.expected_stats = self.get_stats() blocks = [] tip = self.nodes[0].getbestblockhash() blockhash = None height = 0 while tip != blockhash: blockhash = self.nodes[0].getblockhash(height) blocks.append(self.nodes[0].getblock(blockhash, 0)) height += 1 to_dump = { 'blocks': blocks, 'mocktime': int(mocktime), 'stats': self.expected_stats, } with open(filename, 'w', encoding="utf8") as f: json.dump(to_dump, f, sort_keys=True, indent=2) def load_test_data(self, filename): with open(filename, 'r', encoding="utf8") as f: d = json.load(f) blocks = d['blocks'] mocktime = d['mocktime'] self.expected_stats = d['stats'] # Set the timestamps from the file so that the nodes can get out of Initial Block Download self.nodes[0].setmocktime(mocktime) self.sync_all() for b in blocks: self.nodes[0].submitblock(b) def run_test(self): test_data = os.path.join(TESTSDIR, self.options.test_data) if self.options.gen_test_data: self.generate_test_data(test_data) else: self.load_test_data(test_data) self.sync_all() stats = self.get_stats() # Make sure all valid statistics are included but nothing else is expected_keys = self.expected_stats[0].keys() assert_equal(set(stats[0].keys()), set(expected_keys)) assert_equal(stats[0]['height'], self.start_height) assert_equal(stats[self.max_stat_pos]['height'], self.start_height + self.max_stat_pos) for i in range(self.max_stat_pos+1): self.log.info('Checking block %d\n' % (i)) assert_equal(stats[i], self.expected_stats[i]) # Check selecting block by hash too blockhash = self.expected_stats[i]['blockhash'] stats_by_hash = self.nodes[0].getblockstats(hash_or_height=blockhash) assert_equal(stats_by_hash, self.expected_stats[i]) # Make sure each stat can be queried on its own for stat in expected_keys: for i in range(self.max_stat_pos+1): result = self.nodes[0].getblockstats(hash_or_height=self.start_height + i, stats=[stat]) assert_equal(list(result.keys()), [stat]) if result[stat] != self.expected_stats[i][stat]: self.log.info('result[%s] (%d) failed, %r != %r' % ( stat, i, result[stat], self.expected_stats[i][stat])) assert_equal(result[stat], self.expected_stats[i][stat]) # Make sure only the selected statistics are included (more than one) some_stats = {'minfee', 'maxfee'} stats = self.nodes[0].getblockstats(hash_or_height=1, stats=list(some_stats)) assert_equal(set(stats.keys()), some_stats) # Test invalid parameters raise the proper json exceptions tip = self.start_height + self.max_stat_pos assert_raises_rpc_error(-8, 'Target block height %d after current tip %d' % (tip+1, tip), self.nodes[0].getblockstats, hash_or_height=tip+1) assert_raises_rpc_error(-8, 'Target block height %d is negative' % (-1), self.nodes[0].getblockstats, hash_or_height=-1) # Make sure not valid stats aren't allowed inv_sel_stat = 'asdfghjkl' inv_stats = [ [inv_sel_stat], ['minfee' , inv_sel_stat], [inv_sel_stat, 'minfee'], ['minfee', inv_sel_stat, 'maxfee'], ] for inv_stat in inv_stats: assert_raises_rpc_error(-8, 'Invalid selected statistic %s' % inv_sel_stat, self.nodes[0].getblockstats, hash_or_height=1, stats=inv_stat) # Make sure we aren't always returning inv_sel_stat as the culprit stat assert_raises_rpc_error(-8, 'Invalid selected statistic aaa%s' % inv_sel_stat, self.nodes[0].getblockstats, hash_or_height=1, stats=['minfee' , 'aaa%s' % inv_sel_stat]) # Mainchain's genesis block shouldn't be found on regtest assert_raises_rpc_error(-5, 'Block not found', self.nodes[0].getblockstats, hash_or_height='000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f') # Invalid number of args assert_raises_rpc_error(-1, 'getblockstats hash_or_height ( stats )', self.nodes[0].getblockstats, '00', 1, 2) assert_raises_rpc_error(-1, 'getblockstats hash_or_height ( stats )', self.nodes[0].getblockstats) if __name__ == '__main__': GetblockstatsTest().main()
41.380952
121
0.627014
b46b87e5c35cb0ed602cd3a787ce287c9838c13f
627
py
Python
api/app/utils.py
pedroporras/intro-deployment-ml
ff2768be17bc6ca3b3ab5ae5380c3b7516f9396d
[ "MIT" ]
null
null
null
api/app/utils.py
pedroporras/intro-deployment-ml
ff2768be17bc6ca3b3ab5ae5380c3b7516f9396d
[ "MIT" ]
null
null
null
api/app/utils.py
pedroporras/intro-deployment-ml
ff2768be17bc6ca3b3ab5ae5380c3b7516f9396d
[ "MIT" ]
null
null
null
from multiprocessing import Pipe from joblib import load from sklearn.pipeline import Pipeline from pydantic import BaseModel from pandas import DataFrame import os from io import BytesIO def get_model() -> Pipeline: model_path = os.environ.get('MODEL_PATH', 'model/model.pkl') with open(model_path, 'rb') as model_file: model = load(BytesIO(model_file.read())) return model def transform_to_dataframe(class_model: BaseModel) -> DataFrame: transition_dictionary = {key: [value] for key, value in class_model.dict().items()} data_frame = DataFrame(transition_dictionary) return data_frame
31.35
87
0.751196
688f1bc7810191f836e6233b3209444bb9181847
4,401
py
Python
tests/test_cookiecutter_python_library.py
ghassanmas/edx-cookiecutters
b186021f7322d9c493f1875fff797ebae33157b0
[ "Apache-2.0" ]
2
2022-02-21T15:21:40.000Z
2022-03-07T14:09:05.000Z
tests/test_cookiecutter_python_library.py
ghassanmas/edx-cookiecutters
b186021f7322d9c493f1875fff797ebae33157b0
[ "Apache-2.0" ]
8
2021-12-27T02:19:03.000Z
2022-03-15T19:05:52.000Z
tests/test_cookiecutter_python_library.py
ghassanmas/edx-cookiecutters
b186021f7322d9c493f1875fff797ebae33157b0
[ "Apache-2.0" ]
1
2022-03-02T16:48:26.000Z
2022-03-02T16:48:26.000Z
""" Tests of the project generation output. """ import logging import logging.config import os import re from contextlib import contextmanager from pathlib import Path import pytest import sh from test_utils.bake import bake_in_temp_dir from test_utils.venv import run_in_virtualenv LOGGING_CONFIG = { 'version': 1, 'incremental': True, 'loggers': { 'binaryornot': { 'level': logging.INFO, }, 'sh': { 'level': logging.INFO, } } } logging.config.dictConfig(LOGGING_CONFIG) common = { "library_name": "cookie_lover", "repo_name": "cookie_repo", } configurations = [ pytest.param( { **common, }, ) ] @pytest.fixture(name='custom_template', scope="module") def fixture_custom_template(cookies_session): template = cookies_session._default_template + "/cookiecutter-python-library" # pylint: disable=protected-access return template @pytest.fixture(params=configurations, name='options_baked', scope="module") def fixture_options_baked(cookies_session, request, custom_template): """ Bake a cookie cutter, parameterized by configurations. Provides the configuration dict, and changes into the directory with the baked result. """ with bake_in_temp_dir(cookies_session, extra_context=request.param, template=custom_template): yield request.param # Fixture names aren't always used in test functions. Disable completely. # pylint: disable=unused-argument @pytest.mark.parametrize("license_name, target_string", [ ('AGPL 3.0', 'GNU AFFERO GENERAL PUBLIC LICENSE'), ('Apache Software License 2.0', 'Apache'), ]) def test_bake_selecting_license(cookies, license_name, target_string, custom_template): """Test to check if LICENSE.txt gets the correct license selected.""" with bake_in_temp_dir(cookies, extra_context={'open_source_license': license_name}, template=custom_template): assert target_string in Path("LICENSE.txt").read_text() assert license_name in Path("setup.py").read_text() def test_readme(options_baked, custom_template): """The generated README.rst file should pass some sanity checks and validate as a PyPI long description.""" readme_file = Path('README.rst') readme_lines = [x.strip() for x in readme_file.open()] assert "cookie_repo" == readme_lines[0] assert ':target: https://pypi.python.org/pypi/cookie_repo/' in readme_lines try: os.system("python -m build --wheel") os.system("twine check dist/*") except os.ErrorReturnCode as exc: pytest.fail(str(exc)) def test_github_actions_ci(options_baked): """The generated ci.yml file should pass a sanity check.""" ci_text = Path(".github/workflows/ci.yml").read_text() assert 'pip install -r requirements/ci.txt' in ci_text def test_manifest(options_baked): """The generated MANIFEST.in should pass a sanity check.""" manifest_text = Path("MANIFEST.in").read_text() assert 'recursive-include cookie_lover *.html' in manifest_text def test_setup_py(options_baked): """The generated setup.py should pass a sanity check.""" setup_text = Path("setup.py").read_text() assert "VERSION = get_version('cookie_lover', '__init__.py')" in setup_text assert " author='edX'," in setup_text def test_upgrade(options_baked): """Make sure the upgrade target works""" try: run_in_virtualenv('make upgrade') except sh.ErrorReturnCode as exc: pytest.fail(str(exc.stderr)) def test_quality(options_baked): """Run quality tests on the given generated output.""" for dirpath, _dirnames, filenames in os.walk("."): for filename in filenames: name = os.path.join(dirpath, filename) if not name.endswith('.py'): continue try: sh.pylint(name) sh.pycodestyle(name) sh.pydocstyle(name) sh.isort(name, check_only=True, diff=True) except sh.ErrorReturnCode as exc: pytest.fail(str(exc)) try: # Sanity check the generated Makefile sh.make('help') # quality check docs sh.doc8("README.rst", ignore_path="docs/_build") sh.doc8("docs", ignore_path="docs/_build") except sh.ErrorReturnCode as exc: pytest.fail(str(exc))
30.992958
117
0.676437
0fcb3d3f23b1a2edefc6c91960598753390bf298
1,426
py
Python
dai15shou/code15-1_fushimi.py
naoshige314/workshop01
5c7be08f99eb164b7901628de26cecfd04fa926f
[ "MIT" ]
null
null
null
dai15shou/code15-1_fushimi.py
naoshige314/workshop01
5c7be08f99eb164b7901628de26cecfd04fa926f
[ "MIT" ]
null
null
null
dai15shou/code15-1_fushimi.py
naoshige314/workshop01
5c7be08f99eb164b7901628de26cecfd04fa926f
[ "MIT" ]
2
2021-06-10T11:53:02.000Z
2021-06-20T15:43:39.000Z
#Union-Findの実装 class UnionFind: def __init__(self,n): self.par=[-1]*n self.siz=[1]*n #根を求める def root(self,x): if self.par[x] == -1: return x else: #経路圧縮 self.par[x]=self.root(self.par[x]) return self.par[x] #グループ判定(根が一致するかどうか) def issame(self,x,y): return self.root(x) == self.root(y) #xとyを併合する def unite(self,x,y): #根まで移動する x=self.root(x) y=self.root(y) if x==y: return False #union by size(y側のサイズを小さく) if self.siz[x] < self.siz[y]: tmp=y y=x x=tmp self.par[y]=x self.siz[x] += self.siz[y] return True #xを含むグループのサイズ def size(self,x): return self.siz[self.root(x)] #辺e=(u,v)を[w(e),u,v]で表す #n,m=頂点数、辺数 n,m=8,12 edges=[] edges.append([4,1,4]) edges.append([2,6,4]) edges.append([3,1,6]) edges.append([9,2,4]) edges.append([8,1,3]) edges.append([7,6,7]) edges.append([5,2,7]) edges.append([6,3,7]) edges.append([3,7,0]) edges.append([5,3,0]) edges.append([10,2,5]) edges.append([6,0,5]) #重みが小さい順にソート edges.sort() res=0 uf=UnionFind(n) for i in range(m): [w,u,v]=edges[i] #w,u,v=edges[i][0],edges[i][1],edges[i][2] #u,vが既に同じグループなら辺を追加しない if uf.issame(u,v): continue #辺を追加 res += w uf.unite(u,v) print(res)
18.519481
46
0.514727
ca515f76e04d3277ba2a8619290ccd2130b3a2ff
44,054
py
Python
listings/listing11-2.py
eivl/MissionPython
dc4e06f2eaac9d53f5091ae6f921e39db986d101
[ "Apache-2.0" ]
4
2018-09-07T15:35:24.000Z
2019-03-27T09:48:12.000Z
listings/listing11-2.py
eivl/MissionPython
dc4e06f2eaac9d53f5091ae6f921e39db986d101
[ "Apache-2.0" ]
371
2020-03-04T21:51:56.000Z
2022-03-31T20:59:11.000Z
listings/listing11-2.py
eivl/MissionPython
dc4e06f2eaac9d53f5091ae6f921e39db986d101
[ "Apache-2.0" ]
3
2019-06-18T19:57:17.000Z
2020-11-06T03:55:08.000Z
# Escape - A Python Adventure # by Sean McManus / www.sean.co.uk # Art by Rafael Pimenta # Typed in by PUT YOUR NAME HERE import time, random, math ############### ## VARIABLES ## ############### WIDTH = 800 #window size HEIGHT = 800 #PLAYER variables PLAYER_NAME = "Sean" # change this to your name! FRIEND1_NAME = "Karen" # change this to a friend's name! FRIEND2_NAME = "Leo" # change this to another friend's name! current_room = 31 # start room = 31 top_left_x = 100 top_left_y = 150 DEMO_OBJECTS = [images.floor, images.pillar, images.soil] LANDER_SECTOR = random.randint(1, 24) LANDER_X = random.randint(2, 11) LANDER_Y = random.randint(2, 11) TILE_SIZE = 30 player_y, player_x = 2, 5 game_over = False PLAYER = { "left": [images.spacesuit_left, images.spacesuit_left_1, images.spacesuit_left_2, images.spacesuit_left_3, images.spacesuit_left_4 ], "right": [images.spacesuit_right, images.spacesuit_right_1, images.spacesuit_right_2, images.spacesuit_right_3, images.spacesuit_right_4 ], "up": [images.spacesuit_back, images.spacesuit_back_1, images.spacesuit_back_2, images.spacesuit_back_3, images.spacesuit_back_4 ], "down": [images.spacesuit_front, images.spacesuit_front_1, images.spacesuit_front_2, images.spacesuit_front_3, images.spacesuit_front_4 ] } player_direction = "down" player_frame = 0 player_image = PLAYER[player_direction][player_frame] player_offset_x, player_offset_y = 0, 0 PLAYER_SHADOW = { "left": [images.spacesuit_left_shadow, images.spacesuit_left_1_shadow, images.spacesuit_left_2_shadow, images.spacesuit_left_3_shadow, images.spacesuit_left_3_shadow ], "right": [images.spacesuit_right_shadow, images.spacesuit_right_1_shadow, images.spacesuit_right_2_shadow, images.spacesuit_right_3_shadow, images.spacesuit_right_3_shadow ], "up": [images.spacesuit_back_shadow, images.spacesuit_back_1_shadow, images.spacesuit_back_2_shadow, images.spacesuit_back_3_shadow, images.spacesuit_back_3_shadow ], "down": [images.spacesuit_front_shadow, images.spacesuit_front_1_shadow, images.spacesuit_front_2_shadow, images.spacesuit_front_3_shadow, images.spacesuit_front_3_shadow ] } player_image_shadow = PLAYER_SHADOW["down"][0] PILLARS = [ images.pillar, images.pillar_95, images.pillar_80, images.pillar_60, images.pillar_50 ] wall_transparency_frame = 0 BLACK = (0, 0, 0) BLUE = (0, 155, 255) YELLOW = (255, 255, 0) WHITE = (255, 255, 255) GREEN = (0, 255, 0) RED = (128, 0, 0) air, energy = 100, 100 suit_stitched, air_fixed = False, False launch_frame = 0 ############### ## MAP ## ############### MAP_WIDTH = 5 MAP_HEIGHT = 10 MAP_SIZE = MAP_WIDTH * MAP_HEIGHT GAME_MAP = [ ["Room 0 - where unused objects are kept", 0, 0, False, False] ] outdoor_rooms = range(1, 26) for planetsectors in range(1, 26): #rooms 1 to 25 are generated here GAME_MAP.append( ["The dusty planet surface", 13, 13, True, True] ) GAME_MAP += [ #["Room name", height, width, Top exit?, Right exit?] ["The airlock", 13, 5, True, False], # room 26 ["The engineering lab", 13, 13, False, False], # room 27 ["Poodle Mission Control", 9, 13, False, True], # room 28 ["The viewing gallery", 9, 15, False, False], # room 29 ["The crew's bathroom", 5, 5, False, False], # room 30 ["The airlock entry bay", 7, 11, True, True], # room 31 ["Left elbow room", 9, 7, True, False], # room 32 ["Right elbow room", 7, 13, True, True], # room 33 ["The science lab", 13, 13, False, True], # room 34 ["The greenhouse", 13, 13, True, False], # room 35 [PLAYER_NAME + "'s sleeping quarters", 9, 11, False, False], # room 36 ["West corridor", 15, 5, True, True], # room 37 ["The briefing room", 7, 13, False, True], # room 38 ["The crew's community room", 11, 13, True, False], # room 39 ["Main Mission Control", 14, 14, False, False], # room 40 ["The sick bay", 12, 7, True, False], # room 41 ["West corridor", 9, 7, True, False], # room 42 ["Utilities control room", 9, 9, False, True], # room 43 ["Systems engineering bay", 9, 11, False, False], # room 44 ["Security portal to Mission Control", 7, 7, True, False], # room 45 [FRIEND1_NAME + "'s sleeping quarters", 9, 11, True, True], # room 46 [FRIEND2_NAME + "'s sleeping quarters", 9, 11, True, True], # room 47 ["The pipeworks", 13, 11, True, False], # room 48 ["The chief scientist's office", 9, 7, True, True], # room 49 ["The robot workshop", 9, 11, True, False] # room 50 ] #simple sanity check on map above to check data entry assert len(GAME_MAP)-1 == MAP_SIZE, "Map size and GAME_MAP don't match" ############### ## OBJECTS ## ############### objects = { 0: [images.floor, None, "The floor is shiny and clean"], 1: [images.pillar, images.full_shadow, "The wall is smooth and cold"], 2: [images.soil, None, "It's like a desert. Or should that be dessert?"], 3: [images.pillar_low, images.half_shadow, "The wall is smooth and cold"], 4: [images.bed, images.half_shadow, "A tidy and comfortable bed"], 5: [images.table, images.half_shadow, "It's made from strong plastic."], 6: [images.chair_left, None, "A chair with a soft cushion"], 7: [images.chair_right, None, "A chair with a soft cushion"], 8: [images.bookcase_tall, images.full_shadow, "Bookshelves, stacked with reference books"], 9: [images.bookcase_small, images.half_shadow, "Bookshelves, stacked with reference books"], 10: [images.cabinet, images.half_shadow, "A small locker, for storing personal items"], 11: [images.desk_computer, images.half_shadow, "A computer. Use it to run life support diagnostics"], 12: [images.plant, images.plant_shadow, "A spaceberry plant, grown here"], 13: [images.electrical1, images.half_shadow, "Electrical systems used for powering the space station"], 14: [images.electrical2, images.half_shadow, "Electrical systems used for powering the space station"], 15: [images.cactus, images.cactus_shadow, "Ouch! Careful on the cactus!"], 16: [images.shrub, images.shrub_shadow, "A space lettuce. A bit limp, but amazing it's growing here!"], 17: [images.pipes1, images.pipes1_shadow, "Water purification pipes"], 18: [images.pipes2, images.pipes2_shadow, "Pipes for the life support systems"], 19: [images.pipes3, images.pipes3_shadow, "Pipes for the life support systems"], 20: [images.door, images.door_shadow, "Safety door. Opens automatically \ for astronauts in functioning spacesuits."], 21: [images.door, images.door_shadow, "The airlock door. \ For safety reasons, it requires two person operation."], 22: [images.door, images.door_shadow, "A locked door. It needs " \ + PLAYER_NAME + "'s access card"], 23: [images.door, images.door_shadow, "A locked door. It needs " \ + FRIEND1_NAME + "'s access card"], 24: [images.door, images.door_shadow, "A locked door. It needs " \ + FRIEND2_NAME + "'s access card"], 25: [images.door, images.door_shadow, "A locked door. It is opened from Main Mission Control"], 26: [images.door, images.door_shadow, "A locked door in the engineering bay."], 27: [images.map, images.full_shadow, "The screen says the crash site was Sector: " \ + str(LANDER_SECTOR) + " // X: " + str(LANDER_X) + \ " // Y: " + str(LANDER_Y)], 28: [images.rock_large, images.rock_large_shadow, "A rock. Its coarse surface feels like a whetstone", "the rock"], 29: [images.rock_small, images.rock_small_shadow, "A small but heavy piece of Martian rock"], 30: [images.crater, None, "A crater in the planet surface"], 31: [images.fence, None, "A fine gauze fence. It helps protect the station from dust storms"], 32: [images.contraption, images.contraption_shadow, "One of the scientific experiments. It gently vibrates"], 33: [images.robot_arm, images.robot_arm_shadow, "A robot arm, used for heavy lifting"], 34: [images.toilet, images.half_shadow, "A sparkling clean toilet"], 35: [images.sink, None, "A sink with running water", "the taps"], 36: [images.globe, images.globe_shadow, "A giant globe of the planet. It gently glows from inside"], 37: [images.science_lab_table, None, "A table of experiments, analyzing the planet soil and dust"], 38: [images.vending_machine, images.full_shadow, "A vending machine. It requires a credit.", "the vending machine"], 39: [images.floor_pad, None, "A pressure sensor to make sure nobody goes out alone."], 40: [images.rescue_ship, images.rescue_ship_shadow, "A rescue ship!"], 41: [images.mission_control_desk, images.mission_control_desk_shadow, \ "Mission Control stations."], 42: [images.button, images.button_shadow, "The button for opening the time-locked door in engineering."], 43: [images.whiteboard, images.full_shadow, "The whiteboard is used in brainstorms and planning meetings."], 44: [images.window, images.full_shadow, "The window provides a view out onto the planet surface."], 45: [images.robot, images.robot_shadow, "A cleaning robot, turned off."], 46: [images.robot2, images.robot2_shadow, "A planet surface exploration robot, awaiting set-up."], 47: [images.rocket, images.rocket_shadow, "A one-person craft in repair"], 48: [images.toxic_floor, None, "Toxic floor - do not walk on!"], 49: [images.drone, None, "A delivery drone"], 50: [images.energy_ball, None, "An energy ball - dangerous!"], 51: [images.energy_ball2, None, "An energy ball - dangerous!"], 52: [images.computer, images.computer_shadow, "A computer workstation, for managing space station systems."], 53: [images.clipboard, None, "A clipboard. Someone has doodled on it.", "the clipboard"], 54: [images.bubble_gum, None, "A piece of sticky bubble gum. Spaceberry flavour.", "bubble gum"], 55: [images.yoyo, None, "A toy made of fine, strong string and plastic. \ Used for antigrav experiments.", PLAYER_NAME + "'s yoyo"], 56: [images.thread, None, "A piece of fine, strong string", "a piece of string"], 57: [images.needle, None, "A sharp needle from a cactus plant", "a cactus needle"], 58: [images.threaded_needle, None, "A cactus needle, spearing a length of string", "needle and string"], 59: [images.canister, None, "The air canister has a leak.", "a leaky air canister"], 60: [images.canister, None, "It looks like the seal will hold!", "a sealed air canister"], 61: [images.mirror, None, "The mirror throws a circle of light on the walls.", "a mirror"], 62: [images.bin_empty, None, "A rarely used bin, made of light plastic", "a bin"], 63: [images.bin_full, None, "A heavy bin full of water", "a bin full of water"], 64: [images.rags, None, "An oily rag. Pick it up by one corner if you must!", "an oily rag"], 65: [images.hammer, None, "A hammer. Maybe good for cracking things open...", "a hammer"], 66: [images.spoon, None, "A large serving spoon", "a spoon"], 67: [images.food_pouch, None, "A dehydrated food pouch. It needs water.", "a dry food pack"], 68: [images.food, None, "A food pouch. Use it to get 100% energy.", "ready-to-eat food"], 69: [images.book, None, "The book has the words 'Don't Panic' on the \ cover in large, friendly letters", "a book"], 70: [images.mp3_player, None, "An MP3 player, with all the latest tunes", "an MP3 player"], 71: [images.lander, None, "The Poodle, a small space exploration craft. \ Its black box has a radio sealed inside.", "the Poodle lander"], 72: [images.radio, None, "A radio communications system, from the \ Poodle", "a communications radio"], 73: [images.gps_module, None, "A GPS Module", "a GPS module"], 74: [images.positioning_system, None, "Part of a positioning system. \ Needs a GPS module.", "a positioning interface"], 75: [images.positioning_system, None, "A working positioning system", "a positioning computer"], 76: [images.scissors, None, "Scissors. They're too blunt to cut \ anything. Can you sharpen them?", "blunt scissors"], 77: [images.scissors, None, "Razor-sharp scissors. Careful!", "sharpened scissors"], 78: [images.credit, None, "A small coin for the station's vending systems", "a station credit"], 79: [images.access_card, None, "This access card belongs to " + PLAYER_NAME, "an access card"], 80: [images.access_card, None, "This access card belongs to " + FRIEND1_NAME, "an access card"], 81: [images.access_card, None, "This access card belongs to " + FRIEND2_NAME, "an access card"] } items_player_may_carry = list(range(53, 82)) # Numbers below are for floor, pressure pad, soil, toxic floor. items_player_may_stand_on = items_player_may_carry + [0, 39, 2, 48] ############### ## SCENERY ## ############### # Scenery describes objects that cannot move between rooms. # room number: [[object number, y position, x position]...] scenery = { 26: [[39,8,2]], 27: [[33,5,5], [33,1,1], [33,1,8], [47,5,2], [47,3,10], [47,9,8], [42,1,6]], 28: [[27,0,3], [41,4,3], [41,4,7]], 29: [[7,2,6], [6,2,8], [12,1,13], [44,0,1], [36,4,10], [10,1,1], [19,4,2], [17,4,4]], 30: [[34,1,1], [35,1,3]], 31: [[11,1,1], [19,1,8], [46,1,3]], 32: [[48,2,2], [48,2,3], [48,2,4], [48,3,2], [48,3,3], [48,3,4], [48,4,2], [48,4,3], [48,4,4]], 33: [[13,1,1], [13,1,3], [13,1,8], [13,1,10], [48,2,1], [48,2,7], [48,3,6], [48,3,3]], 34: [[37,2,2], [32,6,7], [37,10,4], [28,5,3]], 35: [[16,2,9], [16,2,2], [16,3,3], [16,3,8], [16,8,9], [16,8,2], [16,1,8], [16,1,3], [12,8,6], [12,9,4], [12,9,8], [15,4,6], [12,7,1], [12,7,11]], 36: [[4,3,1], [9,1,7], [8,1,8], [8,1,9], [5,5,4], [6,5,7], [10,1,1], [12,1,2]], 37: [[48,3,1], [48,3,2], [48,7,1], [48,5,2], [48,5,3], [48,7,2], [48,9,2], [48,9,3], [48,11,1], [48,11,2]], 38: [[43,0,2], [6,2,2], [6,3,5], [6,4,7], [6,2,9], [45,1,10]], 39: [[38,1,1], [7,3,4], [7,6,4], [5,3,6], [5,6,6], [6,3,9], [6,6,9], [45,1,11], [12,1,8], [12,1,4]], 40: [[41,5,3], [41,5,7], [41,9,3], [41,9,7], [13,1,1], [13,1,3], [42,1,12]], 41: [[4,3,1], [10,3,5], [4,5,1], [10,5,5], [4,7,1], [10,7,5], [12,1,1], [12,1,5]], 44: [[46,4,3], [46,4,5], [18,1,1], [19,1,3], [19,1,5], [52,4,7], [14,1,8]], 45: [[48,2,1], [48,2,2], [48,3,3], [48,3,4], [48,1,4], [48,1,1]], 46: [[10,1,1], [4,1,2], [8,1,7], [9,1,8], [8,1,9], [5,4,3], [7,3,2]], 47: [[9,1,1], [9,1,2], [10,1,3], [12,1,7], [5,4,4], [6,4,7], [4,1,8]], 48: [[17,4,1], [17,4,2], [17,4,3], [17,4,4], [17,4,5], [17,4,6], [17,4,7], [17,8,1], [17,8,2], [17,8,3], [17,8,4], [17,8,5], [17,8,6], [17,8,7], [14,1,1]], 49: [[14,2,2], [14,2,4], [7,5,1], [5,5,3], [48,3,3], [48,3,4]], 50: [[45,4,8], [11,1,1], [13,1,8], [33,2,1], [46,4,6]] } checksum = 0 check_counter = 0 for key, room_scenery_list in scenery.items(): for scenery_item_list in room_scenery_list: checksum += (scenery_item_list[0] * key + scenery_item_list[1] * (key + 1) + scenery_item_list[2] * (key + 2)) check_counter += 1 print(check_counter, "scenery items") assert check_counter == 161, "Expected 161 scenery items" assert checksum == 200095, "Error in scenery data" print("Scenery checksum: " + str(checksum)) for room in range(1, 26):# Add random scenery in planet locations. if room != 13: # Skip room 13. scenery_item = random.choice([16, 28, 29, 30]) scenery[room] = [[scenery_item, random.randint(2, 10), random.randint(2, 10)]] # Use loops to add fences to the planet surface rooms. for room_coordinate in range(0, 13): for room_number in [1, 2, 3, 4, 5]: # Add top fence scenery[room_number] += [[31, 0, room_coordinate]] for room_number in [1, 6, 11, 16, 21]: # Add left fence scenery[room_number] += [[31, room_coordinate, 0]] for room_number in [5, 10, 15, 20, 25]: # Add right fence scenery[room_number] += [[31, room_coordinate, 12]] del scenery[21][-1] # Delete last fence panel in Room 21 del scenery[25][-1] # Delete last fence panel in Room 25 ############### ## MAKE MAP ## ############### def get_floor_type(): if current_room in outdoor_rooms: return 2 # soil else: return 0 # tiled floor def generate_map(): # This function makes the map for the current room, # using room data, scenery data and prop data. global room_map, room_width, room_height, room_name, hazard_map global top_left_x, top_left_y, wall_transparency_frame room_data = GAME_MAP[current_room] room_name = room_data[0] room_height = room_data[1] room_width = room_data[2] floor_type = get_floor_type() if current_room in range(1, 21): bottom_edge = 2 #soil side_edge = 2 #soil if current_room in range(21, 26): bottom_edge = 1 #wall side_edge = 2 #soil if current_room > 25: bottom_edge = 1 #wall side_edge = 1 #wall # Create top line of room map. room_map=[[side_edge] * room_width] # Add middle lines of room map (wall, floor to fill width, wall). for y in range(room_height - 2): room_map.append([side_edge] + [floor_type]*(room_width - 2) + [side_edge]) # Add bottom line of room map. room_map.append([bottom_edge] * room_width) # Add doorways. middle_row = int(room_height / 2) middle_column = int(room_width / 2) if room_data[4]: # If exit at right of this room room_map[middle_row][room_width - 1] = floor_type room_map[middle_row+1][room_width - 1] = floor_type room_map[middle_row-1][room_width - 1] = floor_type if current_room % MAP_WIDTH != 1: # If room is not on left of map room_to_left = GAME_MAP[current_room - 1] # If room on the left has a right exit, add left exit in this room if room_to_left[4]: room_map[middle_row][0] = floor_type room_map[middle_row + 1][0] = floor_type room_map[middle_row - 1][0] = floor_type if room_data[3]: # If exit at top of this room room_map[0][middle_column] = floor_type room_map[0][middle_column + 1] = floor_type room_map[0][middle_column - 1] = floor_type if current_room <= MAP_SIZE - MAP_WIDTH: # If room is not on bottom row room_below = GAME_MAP[current_room+MAP_WIDTH] # If room below has a top exit, add exit at bottom of this one if room_below[3]: room_map[room_height-1][middle_column] = floor_type room_map[room_height-1][middle_column + 1] = floor_type room_map[room_height-1][middle_column - 1] = floor_type if current_room in scenery: for this_scenery in scenery[current_room]: scenery_number = this_scenery[0] scenery_y = this_scenery[1] scenery_x = this_scenery[2] room_map[scenery_y][scenery_x] = scenery_number image_here = objects[scenery_number][0] image_width = image_here.get_width() image_width_in_tiles = int(image_width / TILE_SIZE) for tile_number in range(1, image_width_in_tiles): room_map[scenery_y][scenery_x + tile_number] = 255 center_y = int(HEIGHT / 2) # Center of game window center_x = int(WIDTH / 2) room_pixel_width = room_width * TILE_SIZE # Size of room in pixels room_pixel_height = room_height * TILE_SIZE top_left_x = center_x - 0.5 * room_pixel_width top_left_y = (center_y - 0.5 * room_pixel_height) + 110 for prop_number, prop_info in props.items(): prop_room = prop_info[0] prop_y = prop_info[1] prop_x = prop_info[2] if (prop_room == current_room and room_map[prop_y][prop_x] in [0, 39, 2]): room_map[prop_y][prop_x] = prop_number image_here = objects[prop_number][0] image_width = image_here.get_width() image_width_in_tiles = int(image_width / TILE_SIZE) for tile_number in range(1, image_width_in_tiles): room_map[prop_y][prop_x + tile_number] = 255 ############### ## GAME LOOP ## ############### def start_room(): show_text("You are here: " + room_name, 0) def game_loop(): global player_x, player_y, current_room global from_player_x, from_player_y global player_image, player_image_shadow global selected_item, item_carrying, energy global player_offset_x, player_offset_y global player_frame, player_direction if game_over: return if player_frame > 0: player_frame += 1 time.sleep(0.05) if player_frame == 5: player_frame = 0 player_offset_x = 0 player_offset_y = 0 # save player's current position old_player_x = player_x old_player_y = player_y # move if key is pressed if player_frame == 0: if keyboard.right: from_player_x = player_x from_player_y = player_y player_x += 1 player_direction = "right" player_frame = 1 elif keyboard.left: #elif stops player making diagonal movements from_player_x = player_x from_player_y = player_y player_x -= 1 player_direction = "left" player_frame = 1 elif keyboard.up: from_player_x = player_x from_player_y = player_y player_y -= 1 player_direction = "up" player_frame = 1 elif keyboard.down: from_player_x = player_x from_player_y = player_y player_y += 1 player_direction = "down" player_frame = 1 # check for exiting the room if player_x == room_width: # through door on RIGHT #clock.unschedule(hazard_move) current_room += 1 generate_map() player_x = 0 # enter at left player_y = int(room_height / 2) # enter at door player_frame = 0 start_room() return if player_x == -1: # through door on LEFT #clock.unschedule(hazard_move) current_room -= 1 generate_map() player_x = room_width - 1 # enter at right player_y = int(room_height / 2) # enter at door player_frame = 0 start_room() return if player_y == room_height: # through door at BOTTOM #clock.unschedule(hazard_move) current_room += MAP_WIDTH generate_map() player_y = 0 # enter at top player_x = int(room_width / 2) # enter at door player_frame = 0 start_room() return if player_y == -1: # through door at TOP #clock.unschedule(hazard_move) current_room -= MAP_WIDTH generate_map() player_y = room_height - 1 # enter at bottom player_x = int(room_width / 2) # enter at door player_frame = 0 start_room() return if keyboard.g: pick_up_object() if keyboard.tab and len(in_my_pockets) > 0: selected_item += 1 if selected_item > len(in_my_pockets) - 1: selected_item = 0 item_carrying = in_my_pockets[selected_item] display_inventory() if keyboard.d and item_carrying: drop_object(old_player_y, old_player_x) if keyboard.space: examine_object() if keyboard.u: use_object() # If the player is standing somewhere they shouldn't, move them back. if room_map[player_y][player_x] not in items_player_may_stand_on: #\ # or hazard_map[player_y][player_x] != 0: player_x = old_player_x player_y = old_player_y player_frame = 0 if player_direction == "right" and player_frame > 0: player_offset_x = -1 + (0.25 * player_frame) if player_direction == "left" and player_frame > 0: player_offset_x = 1 - (0.25 * player_frame) if player_direction == "up" and player_frame > 0: player_offset_y = 1 - (0.25 * player_frame) if player_direction == "down" and player_frame > 0: player_offset_y = -1 + (0.25 * player_frame) ############### ## DISPLAY ## ############### def draw_image(image, y, x): screen.blit( image, (top_left_x + (x * TILE_SIZE), top_left_y + (y * TILE_SIZE) - image.get_height()) ) def draw_shadow(image, y, x): screen.blit( image, (top_left_x + (x * TILE_SIZE), top_left_y + (y * TILE_SIZE)) ) def draw_player(): player_image = PLAYER[player_direction][player_frame] draw_image(player_image, player_y + player_offset_y, player_x + player_offset_x) player_image_shadow = PLAYER_SHADOW[player_direction][player_frame] draw_shadow(player_image_shadow, player_y + player_offset_y, player_x + player_offset_x) def draw(): if game_over: return # Clear the game arena area. box = Rect((0, 150), (800, 600)) screen.draw.filled_rect(box, RED) box = Rect ((0, 0), (800, top_left_y + (room_height - 1)*30)) screen.surface.set_clip(box) floor_type = get_floor_type() for y in range(room_height): # Lay down floor tiles, then items on floor. for x in range(room_width): draw_image(objects[floor_type][0], y, x) # Next line enables shadows to fall on top of objects on floor if room_map[y][x] in items_player_may_stand_on: draw_image(objects[room_map[y][x]][0], y, x) # Pressure pad in room 26 is added here, so props can go on top of it. if current_room == 26: draw_image(objects[39][0], 8, 2) image_on_pad = room_map[8][2] if image_on_pad > 0: draw_image(objects[image_on_pad][0], 8, 2) for y in range(room_height): for x in range(room_width): item_here = room_map[y][x] # Player cannot walk on 255: it marks spaces used by wide objects. if item_here not in items_player_may_stand_on + [255]: image = objects[item_here][0] if (current_room in outdoor_rooms and y == room_height - 1 and room_map[y][x] == 1) or \ (current_room not in outdoor_rooms and y == room_height - 1 and room_map[y][x] == 1 and x > 0 and x < room_width - 1): # Add transparent wall image in the front row. image = PILLARS[wall_transparency_frame] draw_image(image, y, x) if objects[item_here][1] is not None: # If object has a shadow shadow_image = objects[item_here][1] # if shadow might need horizontal tiling if shadow_image in [images.half_shadow, images.full_shadow]: shadow_width = int(image.get_width() / TILE_SIZE) # Use shadow across width of object. for z in range(0, shadow_width): draw_shadow(shadow_image, y, x+z) else: draw_shadow(shadow_image, y, x) if (player_y == y): draw_player() screen.surface.set_clip(None) def adjust_wall_transparency(): global wall_transparency_frame if (player_y == room_height - 2 and room_map[room_height - 1][player_x] == 1 and wall_transparency_frame < 4): wall_transparency_frame += 1 # Fade wall out. if ((player_y < room_height - 2 or room_map[room_height - 1][player_x] != 1) and wall_transparency_frame > 0): wall_transparency_frame -= 1 # Fade wall in. def show_text(text_to_show, line_number): if game_over: return text_lines = [15, 50] box = Rect((0, text_lines[line_number]), (800, 35)) screen.draw.filled_rect(box, BLACK) screen.draw.text(text_to_show, (20, text_lines[line_number]), color=GREEN) ############### ## PROPS ## ############### # Props are objects that may move between rooms, appear or disappear. # All props must be set up here. Props not yet in the game go into room 0. # object number : [room, y, x] props = { 20: [31, 0, 4], 21: [26, 0, 1], 22: [41, 0, 2], 23: [39, 0, 5], 24: [45, 0, 2], 25: [32, 0, 2], 26: [27, 12, 5], # two sides of same door 40: [0, 8, 6], 53: [45, 1, 5], 54: [0, 0, 0], 55: [0, 0, 0], 56: [0, 0, 0], 57: [35, 4, 6], 58: [0, 0, 0], 59: [31, 1, 7], 60: [0, 0, 0], 61: [36, 1, 1], 62: [36, 1, 6], 63: [0, 0, 0], 64: [27, 8, 3], 65: [50, 1, 7], 66: [39, 5, 6], 67: [46, 1, 1], 68: [0, 0, 0], 69: [30, 3, 3], 70: [47, 1, 3], 71: [0, LANDER_Y, LANDER_X], 72: [0, 0, 0], 73: [27, 4, 6], 74: [28, 1, 11], 75: [0, 0, 0], 76: [41, 3, 5], 77: [0, 0, 0], 78: [35, 9, 11], 79: [26, 3, 2], 80: [41, 7, 5], 81: [29, 1, 1] } checksum = 0 for key, prop in props.items(): if key != 71: # 71 is skipped because it's different each game. checksum += (prop[0] * key + prop[1] * (key + 1) + prop[2] * (key + 2)) print(len(props), "props") assert len(props) == 37, "Expected 37 prop items" print("Prop checksum:", checksum) assert checksum == 61414, "Error in props data" in_my_pockets = [55] selected_item = 0 # the first item item_carrying = in_my_pockets[selected_item] RECIPES = [ [62, 35, 63], [76, 28, 77], [78, 38, 54], [73, 74, 75], [59, 54, 60], [77, 55, 56], [56, 57, 58], [71, 65, 72], [88, 58, 89], [89, 60, 90], [67, 35, 68] ] checksum = 0 check_counter = 1 for recipe in RECIPES: checksum += (recipe[0] * check_counter + recipe[1] * (check_counter + 1) + recipe[2] * (check_counter + 2)) check_counter += 3 print(len(RECIPES), "recipes") assert len(RECIPES) == 11, "Expected 11 recipes" assert checksum == 37296, "Error in recipes data" print("Recipe checksum:", checksum) ####################### ## PROP INTERACTIONS ## ####################### def find_object_start_x(): checker_x = player_x while room_map[player_y][checker_x] == 255: checker_x -= 1 return checker_x def get_item_under_player(): item_x = find_object_start_x() item_player_is_on = room_map[player_y][item_x] return item_player_is_on def pick_up_object(): global room_map # Get object number at player's location. item_player_is_on = get_item_under_player() if item_player_is_on in items_player_may_carry: # Clear the floor space. room_map[player_y][player_x] = get_floor_type() add_object(item_player_is_on) show_text("Now carrying " + objects[item_player_is_on][3], 0) sounds.pickup.play() time.sleep(0.5) else: show_text("You can't carry that!", 0) def add_object(item): # Adds item to inventory. global selected_item, item_carrying in_my_pockets.append(item) item_carrying = item # Minus one because indexes start at 0. selected_item = len(in_my_pockets) - 1 display_inventory() props[item][0] = 0 # Carried objects go into room 0 (off the map). def display_inventory(): box = Rect((0, 45), (800, 105)) screen.draw.filled_rect(box, BLACK) if len(in_my_pockets) == 0: return start_display = (selected_item // 16) * 16 list_to_show = in_my_pockets[start_display : start_display + 16] selected_marker = selected_item % 16 for item_counter in range(len(list_to_show)): item_number = list_to_show[item_counter] image = objects[item_number][0] screen.blit(image, (25 + (46 * item_counter), 90)) box_left = (selected_marker * 46) - 3 box = Rect((22 + box_left, 85), (40, 40)) screen.draw.rect(box, WHITE) item_highlighted = in_my_pockets[selected_item] description = objects[item_highlighted][2] screen.draw.text(description, (20, 130), color="white") def drop_object(old_y, old_x): global room_map, props if room_map[old_y][old_x] in [0, 2, 39]: # places you can drop things props[item_carrying][0] = current_room props[item_carrying][1] = old_y props[item_carrying][2] = old_x room_map[old_y][old_x] = item_carrying show_text("You have dropped " + objects[item_carrying][3], 0) sounds.drop.play() remove_object(item_carrying) time.sleep(0.5) else: # This only happens if there is already a prop here show_text("You can't drop that there.", 0) time.sleep(0.5) def remove_object(item): # Takes item out of inventory global selected_item, in_my_pockets, item_carrying in_my_pockets.remove(item) selected_item = selected_item - 1 if selected_item < 0: selected_item = 0 if len(in_my_pockets) == 0: # If they're not carrying anything item_carrying = False # Set item_carrying to False else: # Otherwise set it to the new selected item item_carrying = in_my_pockets[selected_item] display_inventory() def examine_object(): item_player_is_on = get_item_under_player() left_tile_of_item = find_object_start_x() if item_player_is_on in [0, 2]: # don't describe the floor return description = "You see: " + objects[item_player_is_on][2] for prop_number, details in props.items(): # props = object number: [room number, y, x] if details[0] == current_room: # if prop is in the room # If prop is hidden (= at player's location but not on map) if (details[1] == player_y and details[2] == left_tile_of_item and room_map[details[1]][details[2]] != prop_number): add_object(prop_number) description = "You found " + objects[prop_number][3] sounds.combine.play() show_text(description, 0) time.sleep(0.5) ################# ## USE OBJECTS ## ################# def use_object(): global room_map, props, item_carrying, air, selected_item, energy global in_my_pockets, suit_stitched, air_fixed, game_over use_message = "You fiddle around with it but don't get anywhere." standard_responses = { 4: "Air is running out! You can't take this lying down!", 6: "This is no time to sit around!", 7: "This is no time to sit around!", 32: "It shakes and rumbles, but nothing else happens.", 34: "Ah! That's better. Now wash your hands.", 35: "You wash your hands and shake the water off.", 37: "The test tubes smoke slightly as you shake them.", 54: "You chew the gum. It's sticky like glue.", 55: "The yoyo bounces up and down, slightly slower than on Earth", 56: "It's a bit too fiddly. Can you thread it on something?", 59: "You need to fix the leak before you can use the canister", 61: "You try signalling with the mirror, but nobody can see you.", 62: "Don't throw resources away. Things might come in handy...", 67: "To enjoy yummy space food, just add water!", 75: "You are at Sector: " + str(current_room) + " // X: " \ + str(player_x) + " // Y: " + str(player_y) } # Get object number at player's location. item_player_is_on = get_item_under_player() for this_item in [item_player_is_on, item_carrying]: if this_item in standard_responses: use_message = standard_responses[this_item] if item_carrying == 70 or item_player_is_on == 70: use_message = "Banging tunes!" sounds.steelmusic.play(2) elif item_player_is_on == 11: use_message = "AIR: " + str(air) + \ "% / ENERGY " + str(energy) + "% / " if not suit_stitched: use_message += "*ALERT* SUIT FABRIC TORN / " if not air_fixed: use_message += "*ALERT* SUIT AIR BOTTLE MISSING" if suit_stitched and air_fixed: use_message += " SUIT OK" show_text(use_message, 0) sounds.say_status_report.play() time.sleep(0.5) # If "on" the computer, player intention is clearly status update. # Return to stop another object use accidentally overriding this. return elif item_carrying == 60 or item_player_is_on == 60: use_message = "You fix " + objects[60][3] + " to the suit" air_fixed = True air = 90 air_countdown() remove_object(60) elif (item_carrying == 58 or item_player_is_on == 58) \ and not suit_stitched: use_message = "You use " + objects[56][3] + \ " to repair the suit fabric" suit_stitched = True remove_object(58) elif item_carrying == 72 or item_player_is_on == 72: use_message = "You radio for help. A rescue ship is coming. \ Rendezvous Sector 13, outside." props[40][0] = 13 elif (item_carrying == 66 or item_player_is_on == 66) \ and current_room in outdoor_rooms: use_message = "You dig..." if (current_room == LANDER_SECTOR and player_x == LANDER_X and player_y == LANDER_Y): add_object(71) use_message = "You found the Poodle lander!" elif item_player_is_on == 40: clock.unschedule(air_countdown) show_text("Congratulations, "+ PLAYER_NAME +"!", 0) show_text("Mission success! You have made it to safety.", 1) game_over = True sounds.take_off.play() game_completion_sequence() elif item_player_is_on == 16: energy += 1 if energy > 100: energy = 100 use_message = "You munch the lettuce and get a little energy back" draw_energy_air() elif item_player_is_on == 42: if current_room == 27: open_door(26) props[25][0] = 0 # Door from RM32 to engineering bay props[26][0] = 0 # Door inside engineering bay clock.schedule_unique(shut_engineering_door, 60) use_message = "You press the button" show_text("Door to engineering bay is open for 60 seconds", 1) sounds.say_doors_open.play() sounds.doors.play() elif item_carrying == 68 or item_player_is_on == 68: energy = 100 use_message = "You use the food to restore your energy" remove_object(68) draw_energy_air() if suit_stitched and air_fixed: # open airlock access if current_room == 31 and props[20][0] == 31: open_door(20) # which includes removing the door sounds.say_airlock_open.play() show_text("The computer tells you the airlock is now open.", 1) elif props[20][0] == 31: props[20][0] = 0 # remove door from map sounds.say_airlock_open.play() show_text("The computer tells you the airlock is now open.", 1) for recipe in RECIPES: ingredient1 = recipe[0] ingredient2 = recipe[1] combination = recipe[2] if (item_carrying == ingredient1 and item_player_is_on == ingredient2) \ or (item_carrying == ingredient2 and item_player_is_on == ingredient1): use_message = "You combine " + objects[ingredient1][3] \ + " and " + objects[ingredient2][3] \ + " to make " + objects[combination][3] if item_player_is_on in props.keys(): props[item_player_is_on][0] = 0 room_map[player_y][player_x] = get_floor_type() in_my_pockets.remove(item_carrying) add_object(combination) sounds.combine.play() # {key object number: door object number} ACCESS_DICTIONARY = { 79:22, 80:23, 81:24 } if item_carrying in ACCESS_DICTIONARY: door_number = ACCESS_DICTIONARY[item_carrying] if props[door_number][0] == current_room: use_message = "You unlock the door!" sounds.say_doors_open.play() sounds.doors.play() open_door(door_number) show_text(use_message, 0) time.sleep(0.5) def game_completion_sequence(): global launch_frame #(initial value is 0, set up in VARIABLES section) box = Rect((0, 150), (800, 600)) screen.draw.filled_rect(box, (128, 0, 0)) box = Rect ((0, top_left_y - 30), (800, 390)) screen.surface.set_clip(box) for y in range(0, 13): for x in range(0, 13): draw_image(images.soil, y, x) launch_frame += 1 if launch_frame < 9: draw_image(images.rescue_ship, 8 - launch_frame, 6) draw_shadow(images.rescue_ship_shadow, 8 + launch_frame, 6) clock.schedule(game_completion_sequence, 0.25) else: screen.surface.set_clip(None) screen.draw.text("MISSION", (200, 380), color = "white", fontsize = 128, shadow = (1, 1), scolor = "black") screen.draw.text("COMPLETE", (145, 480), color = "white", fontsize = 128, shadow = (1, 1), scolor = "black") sounds.completion.play() sounds.say_mission_complete.play() ############### ## DOORS ## ############### def open_door(opening_door_number): global door_frames, door_shadow_frames global door_frame_number, door_object_number door_frames = [images.door1, images.door2, images.door3, images.door4, images.floor] # (Final frame restores shadow ready for when door reappears). door_shadow_frames = [images.door1_shadow, images.door2_shadow, images.door3_shadow, images.door4_shadow, images.door_shadow] door_frame_number = 0 door_object_number = opening_door_number do_door_animation() def close_door(closing_door_number): global door_frames, door_shadow_frames global door_frame_number, door_object_number, player_y door_frames = [images.door4, images.door3, images.door2, images.door1, images.door] door_shadow_frames = [images.door4_shadow, images.door3_shadow, images.door2_shadow, images.door1_shadow, images.door_shadow] door_frame_number = 0 door_object_number = closing_door_number # If player is in same row as a door, they must be in open doorway if player_y == props[door_object_number][1]: if player_y == 0: # if in the top doorway player_y = 1 # move them down else: player_y = room_height - 2 # move them up do_door_animation() ############### ## START ## ############### clock.schedule_interval(game_loop, 0.03) generate_map() clock.schedule_interval(adjust_wall_transparency, 0.05) clock.schedule_unique(display_inventory, 1)
39.36908
79
0.60301
06546f7c6d7996749ef1fee9de4291fc3480bfd1
3,962
py
Python
alipay/aop/api/request/AlipayInsDataAutoScoreQueryRequest.py
snowxmas/alipay-sdk-python-all
96870ced60facd96c5bce18d19371720cbda3317
[ "Apache-2.0" ]
213
2018-08-27T16:49:32.000Z
2021-12-29T04:34:12.000Z
alipay/aop/api/request/AlipayInsDataAutoScoreQueryRequest.py
snowxmas/alipay-sdk-python-all
96870ced60facd96c5bce18d19371720cbda3317
[ "Apache-2.0" ]
29
2018-09-29T06:43:00.000Z
2021-09-02T03:27:32.000Z
alipay/aop/api/request/AlipayInsDataAutoScoreQueryRequest.py
snowxmas/alipay-sdk-python-all
96870ced60facd96c5bce18d19371720cbda3317
[ "Apache-2.0" ]
59
2018-08-27T16:59:26.000Z
2022-03-25T10:08:15.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.FileItem import FileItem from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.AlipayInsDataAutoScoreQueryModel import AlipayInsDataAutoScoreQueryModel class AlipayInsDataAutoScoreQueryRequest(object): def __init__(self, biz_model=None): self._biz_model = biz_model self._biz_content = None self._version = "1.0" self._terminal_type = None self._terminal_info = None self._prod_code = None self._notify_url = None self._return_url = None self._udf_params = None self._need_encrypt = False @property def biz_model(self): return self._biz_model @biz_model.setter def biz_model(self, value): self._biz_model = value @property def biz_content(self): return self._biz_content @biz_content.setter def biz_content(self, value): if isinstance(value, AlipayInsDataAutoScoreQueryModel): self._biz_content = value else: self._biz_content = AlipayInsDataAutoScoreQueryModel.from_alipay_dict(value) @property def version(self): return self._version @version.setter def version(self, value): self._version = value @property def terminal_type(self): return self._terminal_type @terminal_type.setter def terminal_type(self, value): self._terminal_type = value @property def terminal_info(self): return self._terminal_info @terminal_info.setter def terminal_info(self, value): self._terminal_info = value @property def prod_code(self): return self._prod_code @prod_code.setter def prod_code(self, value): self._prod_code = value @property def notify_url(self): return self._notify_url @notify_url.setter def notify_url(self, value): self._notify_url = value @property def return_url(self): return self._return_url @return_url.setter def return_url(self, value): self._return_url = value @property def udf_params(self): return self._udf_params @udf_params.setter def udf_params(self, value): if not isinstance(value, dict): return self._udf_params = value @property def need_encrypt(self): return self._need_encrypt @need_encrypt.setter def need_encrypt(self, value): self._need_encrypt = value def add_other_text_param(self, key, value): if not self.udf_params: self.udf_params = dict() self.udf_params[key] = value def get_params(self): params = dict() params[P_METHOD] = 'alipay.ins.data.auto.score.query' params[P_VERSION] = self.version if self.biz_model: params[P_BIZ_CONTENT] = json.dumps(obj=self.biz_model.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) if self.biz_content: if hasattr(self.biz_content, 'to_alipay_dict'): params['biz_content'] = json.dumps(obj=self.biz_content.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) else: params['biz_content'] = self.biz_content if self.terminal_type: params['terminal_type'] = self.terminal_type if self.terminal_info: params['terminal_info'] = self.terminal_info if self.prod_code: params['prod_code'] = self.prod_code if self.notify_url: params['notify_url'] = self.notify_url if self.return_url: params['return_url'] = self.return_url if self.udf_params: params.update(self.udf_params) return params def get_multipart_params(self): multipart_params = dict() return multipart_params
27.324138
148
0.643614
c5650e3bf56ed1b2670b4e803792f0c3c4bb4db2
7,289
py
Python
4_flask_restful/practice/JihyunLee/answer.py
geronimo03/WebStudio2019
c7a9b59098c2ce97bddfd7727963c3b0f48bdbba
[ "MIT" ]
14
2019-03-06T10:32:40.000Z
2021-11-18T01:44:28.000Z
4_flask_restful/practice/JihyunLee/answer.py
geronimo03/WebStudio2019
c7a9b59098c2ce97bddfd7727963c3b0f48bdbba
[ "MIT" ]
35
2019-03-13T07:04:02.000Z
2019-10-08T06:26:45.000Z
4_flask_restful/practice/JihyunLee/answer.py
geronimo03/WebStudio2019
c7a9b59098c2ce97bddfd7727963c3b0f48bdbba
[ "MIT" ]
22
2019-03-11T11:00:24.000Z
2019-09-14T06:53:30.000Z
from flask import Flask, request from flask_restful import Api, Resource import json import os app = Flask(__name__) api = Api(app) class UserList(Resource): filename = 'users.json' def get_users(self): users = [] if os.path.exists(self.filename): with open(self.filename, 'r') as fp: users = json.loads(fp.read()) return users def get(self): if not os.path.exists(self.filename): return 'users.json is not exists' r = self.get_users() s = '' for d in r: email = d['email'] password = d['password'] s += '[email: {}, pw: {}]'.format(email, password) return s def post(self): r_json = request.get_json() email = r_json['email'] password = r_json['password'] r = self.get_users() for d in r: if email == d['email']: return '{} is aleady exists'.format(email) _id = 0 for d in r: _id = max(_id, d['id']) _id = _id + 1 r_json['id'] = _id r.append(r_json) with open(self.filename, 'w') as fp: fp.write(json.dumps(r)) return 'email: {}, pw: {}'.format(email, password) def put(self): r_json = request.get_json() _id = r_json['id'] password = r_json['password'] users = self.get_users() found = False for idx, _ in enumerate(users): if users[idx]['id'] == _id: found = True users[idx]['password'] = password if not found: return '{} is not exists'.format(_id) with open(self.filename, 'w') as fp: fp.write(json.dumps(users)) return 'update password successfully' def delete(self): r_json = request.get_json() _id = r_json['id'] users = self.get_users() found = False for idx, _ in enumerate(users): if users[idx]['id'] == _id: found = True del users[idx] if not found: return '{} is not exists'.format(_id) with open(self.filename, 'w') as fp: fp.write(json.dumps(users)) return '{} deleted successfully'.format(_id) class ArticleList(Resource): filename = 'articles.json' def get_articles(self): articles = [] if os.path.exists(self.filename): with open(self.filename, 'r') as fp: articles = json.loads(fp.read()) return articles def get(self): if not os.path.exists(self.filename): return 'articles.json does not exist' r = self.get_articles() s = '' for d in r: id = d['id'] user_id = d['user_id'] title = d['title'] content = d['content'] s += '[id: {}, user_id: {}, title: {}, content: {}]'.format(id, user_id, title, content) return s def post(self): r_json = request.get_json() user_id = r_json['user_id'] title = r_json['title'] content = r_json['content'] r = self.get_articles() for d in r: if title == d['title']: return '{} is already taken'.format(title) _id = 0 for d in r: _id = max(_id, d['id']) _id = _id + 1 r_json['id'] = _id r.append(r_json) with open(self.filename, 'w') as fp: fp.write(json.dumps(r)) return 'id: {}, user_id: {}, title: {}, content: {}'.format(id, user_id, title, content) def put (self): r_json = request.get_json() _id = r_json['id'] title = r_json['title'] content = r_json['content'] articles = self.get_articles() found = False for idx, _ in enumerate(articles): if articles[idx]['id'] == _id: found = True articles[idx]['title'] = title articles[idx]['content']= content with open(self.filename,'w') as fp: fp.write(json.dumps(articles)) return 'Edited successfully' return '{} does not exist'.format(_id) def delete (self): r_json = request.get_json() _id = r_json['id'] articles = self.get_articles() found = False for idx, _ in enumerate(articles): if articles[idx]['id'] == _id: found = True del articles[idx] with open(self.filename, 'w') as fp: fp.write(json.dumps(articles)) return 'Deleted successfully' return '{} does not exist'.format(_id) class CommentList(Resource): filename = 'comments.json' def get_comments(self): comments = [] if os.path.exists(self.filename): with open(self.filename, 'r') as fp: comments = json.loads(fp.read()) return comments def get(self): if not os.path.exists(self.filename): return 'comments.json does not exist' r = self.get_comments() s = '' for d in r: id = d['id'] user_id = d['user_id'] article_id = d['article_id'] content = d['content'] s += '[id: {}, user_id: {}, article_id: {}, content: {}]'.format(id, user_id, article_id, content) return s def post(self): r_json = request.get_json() user_id = r_json['user_id'] article_id = r_json['article_id'] content = r_json['content'] r = self.get_comments() _id = 0 for d in r: _id = max(_id, d['id']) _id = _id +1 r_json['id'] = _id r. append(r_json) with open(self.filename, 'w') as fp: fp.write(json.dumps(r)) return 'user_id: {}, article_id: {}, content: {}'. format(user_id, article_id, content) def put(self): r_json = request.get_json() _id = r_json['id'] content = r_json['content'] comments = self.get_comments() found = False for idx, _ in enumerate(comments): if comments[idx]['id'] == _id: found = True comments[idx]['content'] =content with open(self.filename, 'w') as fp: fp.write(json.dumps(comments)) return 'Comments Edited successfully' return '{} does not exist'.format(_id) def delete(self): r_json = request.get_json() _id = r_json['id'] comments = self.get_comments() found = False for idx, _ in enumerate(comments): if comments[idx]['id'] == _id: found = True del comments[idx] with open(self.filename, 'w') as fp: fp.write(json.dumps(comments)) return 'Deleted successfully' return '{} does not exist'.format(_id) api.add_resource(UserList, '/api/users') api.add_resource(ArticleList, '/api/articles') api.add_resource(CommentList, '/api/comments') if __name__ == '__main__': app.run(host='0.0.0.0', port=5000, debug=True)
30.885593
110
0.511593
f1cf3054931c7a5b84468d280367ca11e237c244
844
py
Python
src/utils/data_mgmt.py
Rohanbagulwar/DVC-NLP-Simple-usecase
9968439be55c64566250d01f19414401825884dc
[ "MIT" ]
null
null
null
src/utils/data_mgmt.py
Rohanbagulwar/DVC-NLP-Simple-usecase
9968439be55c64566250d01f19414401825884dc
[ "MIT" ]
null
null
null
src/utils/data_mgmt.py
Rohanbagulwar/DVC-NLP-Simple-usecase
9968439be55c64566250d01f19414401825884dc
[ "MIT" ]
null
null
null
import logging # from tqdm import tqdm import random import xml.etree.ElementTree as ET import re def process_posts(fd_in, fd_out_train, fd_out_test, target_tag, split): line_num = 1 for line in (fd_in): try: fd_out = fd_out_train if random.random() > split else fd_out_test attr = ET.fromstring(line).attrib pid = attr.get("Id", "") label = 1 if target_tag in attr.get("Tags", "") else 0 title = re.sub(r"\s+", " ", attr.get("Title", "")).strip() body = re.sub(r"\s+", " ", attr.get("Body", "")).strip() text = title + " " + body fd_out.write(f"{pid}\t{label}\t{text}\n") line_num += 1 except Exception as e: msg = f"Skipping the broken line {line_num}: {e}\n" logging.exception(msg)
33.76
77
0.554502
19311c998f39cd18458d7b364013a383e6b3d94c
5,137
py
Python
imagededup/handlers/search/retrieval.py
Incopro/imagededup
6ad3325512fce6b44fd62c628ff4a62ebdc5c7f2
[ "Apache-2.0" ]
2
2019-12-06T08:48:32.000Z
2019-12-30T21:29:14.000Z
imagededup/handlers/search/retrieval.py
Incopro/imagededup
6ad3325512fce6b44fd62c628ff4a62ebdc5c7f2
[ "Apache-2.0" ]
8
2020-09-25T22:25:25.000Z
2022-02-10T02:04:10.000Z
imagededup/handlers/search/retrieval.py
Incopro/imagededup
6ad3325512fce6b44fd62c628ff4a62ebdc5c7f2
[ "Apache-2.0" ]
null
null
null
from typing import Callable, Dict, Union, Tuple import numpy as np from sklearn.metrics.pairwise import cosine_similarity from imagededup.handlers.search.bktree import BKTree from imagededup.handlers.search.brute_force import BruteForce from imagededup.utils.general_utils import parallelise def cosine_similarity_chunk(t: Tuple) -> np.ndarray: return cosine_similarity(t[0][t[1][0] : t[1][1]], t[0]).astype('float16') def get_cosine_similarity( X: np.ndarray, chunk_size: int = 1000, threshold: int = 10000 ) -> np.ndarray: n_rows = X.shape[0] if n_rows <= threshold: return cosine_similarity(X) else: print('Large feature matrix thus calculating cosine similarities in chunks...') start_idxs = list(range(0, n_rows, chunk_size)) end_idxs = start_idxs[1:] + [n_rows] cos_sim = parallelise( cosine_similarity_chunk, [(X, idxs) for i, idxs in enumerate(zip(start_idxs, end_idxs))], ) return np.vstack(cos_sim) class HashEval: def __init__( self, test: Dict, queries: Dict, distance_function: Callable, threshold: int = 5, search_method: str = 'bktree', ) -> None: """ Initialize a HashEval object which offers an interface to control hashing and search methods for desired dataset. Compute a map of duplicate images in the document space given certain input control parameters. """ self.test = test # database self.queries = queries self.distance_invoker = distance_function self.threshold = threshold self.query_results_map = None if search_method == 'bktree': self._fetch_nearest_neighbors_bktree() # bktree is the default search method else: self._fetch_nearest_neighbors_brute_force() def _searcher(self, data_tuple) -> None: """ Perform search on a query passed in by _get_query_results multiprocessing part. Args: data_tuple: Tuple of (query_key, query_val, search_method_object, thresh) Returns: List of retrieved duplicate files and corresponding hamming distance for the query file. """ query_key, query_val, search_method_object, thresh = data_tuple res = search_method_object.search(query=query_val, tol=thresh) res = [i for i in res if i[0] != query_key] # to avoid self retrieval return res def _get_query_results( self, search_method_object: Union[BruteForce, BKTree] ) -> None: """ Get result for the query using specified search object. Populate the global query_results_map. Args: search_method_object: BruteForce or BKTree object to get results for the query. """ args = list( zip( list(self.queries.keys()), list(self.queries.values()), [search_method_object] * len(self.queries), [self.threshold] * len(self.queries), ) ) result_map_list = parallelise(self._searcher, args) result_map = dict(zip(list(self.queries.keys()), result_map_list)) self.query_results_map = { k: [i for i in sorted(v, key=lambda tup: tup[1], reverse=False)] for k, v in result_map.items() } # {'filename.jpg': [('dup1.jpg', 3)], 'filename2.jpg': [('dup2.jpg', 10)]} def _fetch_nearest_neighbors_brute_force(self) -> None: """ Wrapper function to retrieve results for all queries in dataset using brute-force search. """ print('Start: Retrieving duplicates using Brute force algorithm') bruteforce = BruteForce(self.test, self.distance_invoker) self._get_query_results(bruteforce) print('End: Retrieving duplicates using Brute force algorithm') def _fetch_nearest_neighbors_bktree(self) -> None: """ Wrapper function to retrieve results for all queries in dataset using a BKTree search. """ print('Start: Retrieving duplicates using BKTree algorithm') built_tree = BKTree(self.test, self.distance_invoker) # construct bktree self._get_query_results(built_tree) print('End: Retrieving duplicates using BKTree algorithm') def retrieve_results(self, scores: bool = False) -> Dict: """ Return results with or without scores. Args: scores: Boolean indicating whether results are to eb returned with or without scores. Returns: if scores is True, then a dictionary of the form {'image1.jpg': [('image1_duplicate1.jpg', score), ('image1_duplicate2.jpg', score)], 'image2.jpg': [] ..} if scores is False, then a dictionary of the form {'image1.jpg': ['image1_duplicate1.jpg', 'image1_duplicate2.jpg'], 'image2.jpg':['image1_duplicate1.jpg',..], ..} """ if scores: return self.query_results_map else: return {k: [i[0] for i in v] for k, v in self.query_results_map.items()}
38.335821
112
0.638894
c20a745252df39c1c793868fea8d50485dea7c3f
151
py
Python
data types and variables exerscise/Triples of Latin Letters.py
nrgxtra/fundamentals
d9f35eb040c0e1009aad2f7305c035fda207a147
[ "MIT" ]
null
null
null
data types and variables exerscise/Triples of Latin Letters.py
nrgxtra/fundamentals
d9f35eb040c0e1009aad2f7305c035fda207a147
[ "MIT" ]
null
null
null
data types and variables exerscise/Triples of Latin Letters.py
nrgxtra/fundamentals
d9f35eb040c0e1009aad2f7305c035fda207a147
[ "MIT" ]
null
null
null
n = int(input()) for i in range(n): for j in range(n): for h in range(n): print(f'{chr(97+i)}{chr(97+j)}{chr(97+h)}')
18.875
56
0.456954
35616cb99d42189ffb1d878629f3eb605e2c649d
9,244
py
Python
nova/tests/unit/virt/vmwareapi/test_network_util.py
viveknandavanam/nova
556377b6915936467436c9d5bb33bc0e22244e1e
[ "Apache-2.0" ]
1
2019-07-29T10:30:24.000Z
2019-07-29T10:30:24.000Z
nova/tests/unit/virt/vmwareapi/test_network_util.py
viveknandavanam/nova
556377b6915936467436c9d5bb33bc0e22244e1e
[ "Apache-2.0" ]
11
2017-06-19T01:28:55.000Z
2017-06-23T02:01:47.000Z
nova/tests/unit/virt/vmwareapi/test_network_util.py
viveknandavanam/nova
556377b6915936467436c9d5bb33bc0e22244e1e
[ "Apache-2.0" ]
7
2015-01-20T10:30:08.000Z
2020-02-05T10:29:05.000Z
# Copyright (c) 2014 VMware, Inc. # # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import collections import mock from oslo_vmware import vim_util from nova import exception from nova import test from nova.tests.unit.virt.vmwareapi import fake from nova.tests.unit.virt.vmwareapi import stubs from nova.virt.vmwareapi import driver from nova.virt.vmwareapi import network_util from nova.virt.vmwareapi import vm_util ResultSet = collections.namedtuple('ResultSet', ['objects']) ObjectContent = collections.namedtuple('ObjectContent', ['obj', 'propSet']) DynamicProperty = collections.namedtuple('DynamicProperty', ['name', 'val']) class GetNetworkWithTheNameTestCase(test.NoDBTestCase): def setUp(self): super(GetNetworkWithTheNameTestCase, self).setUp() fake.reset() self.stub_out('nova.virt.vmwareapi.driver.VMwareAPISession.vim', stubs.fake_vim_prop) self.stub_out('nova.virt.vmwareapi.driver.' 'VMwareAPISession.is_vim_object', stubs.fake_is_vim_object) self._session = driver.VMwareAPISession() def _build_cluster_networks(self, networks): """Returns a set of results for a cluster network lookup. This is an example: (ObjectContent){ obj = (obj){ value = "domain-c7" _type = "ClusterComputeResource" } propSet[] = (DynamicProperty){ name = "network" val = (ArrayOfManagedObjectReference){ ManagedObjectReference[] = (ManagedObjectReference){ value = "network-54" _type = "Network" }, (ManagedObjectReference){ value = "dvportgroup-14" _type = "DistributedVirtualPortgroup" }, } }, }] """ objects = [] obj = ObjectContent(obj=vim_util.get_moref("domain-c7", "ClusterComputeResource"), propSet=[]) value = fake.DataObject() value.ManagedObjectReference = [] for network in networks: value.ManagedObjectReference.append(network) obj.propSet.append( DynamicProperty(name='network', val=value)) objects.append(obj) return ResultSet(objects=objects) def test_get_network_no_match(self): net_morefs = [vim_util.get_moref("dvportgroup-135", "DistributedVirtualPortgroup"), vim_util.get_moref("dvportgroup-136", "DistributedVirtualPortgroup")] networks = self._build_cluster_networks(net_morefs) self._continue_retrieval_called = False def mock_call_method(module, method, *args, **kwargs): if method == 'get_object_properties': return networks if method == 'get_object_property': result = fake.DataObject() result.name = 'no-match' return result if method == 'continue_retrieval': self._continue_retrieval_called = True with mock.patch.object(self._session, '_call_method', mock_call_method): res = network_util.get_network_with_the_name(self._session, 'fake_net', 'fake_cluster') self.assertTrue(self._continue_retrieval_called) self.assertIsNone(res) def _get_network_dvs_match(self, name, token=False): net_morefs = [vim_util.get_moref("dvportgroup-135", "DistributedVirtualPortgroup")] networks = self._build_cluster_networks(net_morefs) def mock_call_method(module, method, *args, **kwargs): if method == 'get_object_properties': return networks if method == 'get_object_property': result = fake.DataObject() if not token or self._continue_retrieval_called: result.name = name else: result.name = 'fake_name' result.key = 'fake_key' result.distributedVirtualSwitch = 'fake_dvs' return result if method == 'continue_retrieval': if token: self._continue_retrieval_called = True return networks if method == 'cancel_retrieval': self._cancel_retrieval_called = True with mock.patch.object(self._session, '_call_method', mock_call_method): res = network_util.get_network_with_the_name(self._session, 'fake_net', 'fake_cluster') self.assertIsNotNone(res) def test_get_network_dvs_exact_match(self): self._cancel_retrieval_called = False self._get_network_dvs_match('fake_net') self.assertTrue(self._cancel_retrieval_called) def test_get_network_dvs_match(self): self._cancel_retrieval_called = False self._get_network_dvs_match('dvs_7-virtualwire-7-fake_net') self.assertTrue(self._cancel_retrieval_called) def test_get_network_dvs_match_with_token(self): self._continue_retrieval_called = False self._cancel_retrieval_called = False self._get_network_dvs_match('dvs_7-virtualwire-7-fake_net', token=True) self.assertTrue(self._continue_retrieval_called) self.assertTrue(self._cancel_retrieval_called) def test_get_network_network_match(self): net_morefs = [vim_util.get_moref("network-54", "Network")] networks = self._build_cluster_networks(net_morefs) def mock_call_method(module, method, *args, **kwargs): if method == 'get_object_properties': return networks if method == 'get_object_property': return 'fake_net' with mock.patch.object(self._session, '_call_method', mock_call_method): res = network_util.get_network_with_the_name(self._session, 'fake_net', 'fake_cluster') self.assertIsNotNone(res) class GetVlanIdAndVswitchForPortgroupTestCase(test.NoDBTestCase): @mock.patch.object(vm_util, 'get_host_ref') def test_no_port_groups(self, mock_get_host_ref): session = mock.Mock() session._call_method.return_value = None self.assertRaises( exception.NovaException, network_util.get_vlanid_and_vswitch_for_portgroup, session, 'port_group_name', 'fake_cluster' ) @mock.patch.object(vm_util, 'get_host_ref') def test_valid_port_group(self, mock_get_host_ref): session = mock.Mock() session._call_method.return_value = self._fake_port_groups() vlanid, vswitch = network_util.get_vlanid_and_vswitch_for_portgroup( session, 'port_group_name', 'fake_cluster' ) self.assertEqual(vlanid, 100) self.assertEqual(vswitch, 'vswitch_name') @mock.patch.object(vm_util, 'get_host_ref') def test_unknown_port_group(self, mock_get_host_ref): session = mock.Mock() session._call_method.return_value = self._fake_port_groups() vlanid, vswitch = network_util.get_vlanid_and_vswitch_for_portgroup( session, 'unknown_port_group', 'fake_cluster' ) self.assertIsNone(vlanid) self.assertIsNone(vswitch) def _fake_port_groups(self): port_group_spec = fake.DataObject() port_group_spec.name = 'port_group_name' port_group_spec.vlanId = 100 port_group_spec.vswitchName = 'vswitch_name' port_group = fake.DataObject() port_group.vswitch = 'vswitch_name' port_group.spec = port_group_spec response = fake.DataObject() response.HostPortGroup = [port_group] return response
39.169492
78
0.583081
578bb162ee296a673f6b3c06d996f97d33b8af81
680
py
Python
poky/scripts/lib/build_perf/html.py
buildlinux/unityos
dcbe232d0589013d77a62c33959d6a69f9bfbc5e
[ "Apache-2.0" ]
53
2018-02-28T08:51:32.000Z
2022-02-28T06:49:23.000Z
scripts/lib/build_perf/html.py
nareshgbhat/luv-yocto
48976c54238dda0791e274927371265d259c0e5a
[ "MIT" ]
27
2018-01-25T00:26:53.000Z
2020-08-09T05:20:04.000Z
scripts/lib/build_perf/html.py
nareshgbhat/luv-yocto
48976c54238dda0791e274927371265d259c0e5a
[ "MIT" ]
51
2018-02-21T04:46:08.000Z
2022-03-02T04:20:41.000Z
# # Copyright (c) 2017, Intel Corporation. # # This program is free software; you can redistribute it and/or modify it # under the terms and conditions of the GNU General Public License, # version 2, as published by the Free Software Foundation. # # This program is distributed in the hope it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for # more details. # """Helper module for HTML reporting""" from jinja2 import Environment, PackageLoader env = Environment(loader=PackageLoader('build_perf', 'html')) template = env.get_template('report.html')
34
75
0.769118
e5ab6c6697bd5669e2ab509f1546d4224a4444d6
4,732
py
Python
osf_tests/management_commands/test_backfill_egap_metadata.py
gaybro8777/osf.io
30408511510a40bc393565817b343ef5fd76ab14
[ "Apache-2.0" ]
628
2015-01-15T04:33:22.000Z
2022-03-30T06:40:10.000Z
osf_tests/management_commands/test_backfill_egap_metadata.py
gaybro8777/osf.io
30408511510a40bc393565817b343ef5fd76ab14
[ "Apache-2.0" ]
4,712
2015-01-02T01:41:53.000Z
2022-03-30T14:18:40.000Z
osf_tests/management_commands/test_backfill_egap_metadata.py
Johnetordoff/osf.io
de10bf249c46cede04c78f7e6f7e352c69e6e6b5
[ "Apache-2.0" ]
371
2015-01-12T16:14:08.000Z
2022-03-31T18:58:29.000Z
import pytest from osf.management.commands.backfill_egap_provider_metadata import backfill_egap_metadata from osf.management.commands.update_registration_schemas import update_registration_schemas from osf.models import RegistrationSchema from osf_tests.factories import RegistrationFactory, RegistrationProviderFactory EGAP_ID_SCHEMA_KEY = 'q3' REGISTRATION_DATE_SCHEMA_KEY = 'q4' OLDER_EGAP_ID = 'ABC123' OLDER_TIMESTAMP = '2020-10-04 08:30:00 -0400' OLDEST_EGAP_ID = 'XYZ789' OLDEST_TIMESTAMP = '03/01/2011 - 22:00' @pytest.mark.django_db class TestMigrateEgapRegistrationMetadata: @pytest.fixture() def egap(self): return RegistrationProviderFactory(_id='egap') @pytest.fixture() def older_registration(self, egap): schema = RegistrationSchema.objects.get(name='EGAP Registration', schema_version=3) registration = RegistrationFactory(schema=schema) registration.provider = egap registration.registration_responses[EGAP_ID_SCHEMA_KEY] = OLDER_EGAP_ID registration.registration_responses[REGISTRATION_DATE_SCHEMA_KEY] = OLDER_TIMESTAMP registration.save() return registration @pytest.fixture() def oldest_registration(self, egap): schema = RegistrationSchema.objects.get(name='EGAP Registration', schema_version=2) registration = RegistrationFactory(schema=schema) registration.provider = egap registration.registration_responses[EGAP_ID_SCHEMA_KEY] = OLDEST_EGAP_ID registration.registration_responses[REGISTRATION_DATE_SCHEMA_KEY] = OLDEST_TIMESTAMP registration.save() return registration @pytest.fixture() def newer_registration(self, egap): try: schema = RegistrationSchema.objects.get(name='EGAP Registration', schema_version=4) except Exception: update_registration_schemas() schema = RegistrationSchema.objects.get(name='EGAP Registration', schema_version=4) registration = RegistrationFactory(schema=schema) registration.provider = egap registration.save() return registration @pytest.fixture() def non_egap_registration(self): return RegistrationFactory() def test_backfill_egap_metadata( self, newer_registration, older_registration, oldest_registration, non_egap_registration): assert older_registration.additional_metadata is None assert oldest_registration.additional_metadata is None backfilled_registration_count = backfill_egap_metadata() assert backfilled_registration_count == 2 newer_registration.refresh_from_db() older_registration.refresh_from_db() oldest_registration.refresh_from_db() non_egap_registration.refresh_from_db() assert older_registration.additional_metadata['EGAP Registration ID'] == OLDER_EGAP_ID # Automatically converted to UTC, apparently expected_older_date_string = '2020-10-04 12:30:00' assert older_registration.registered_date.strftime('%Y-%m-%d %H:%M:%S') == expected_older_date_string assert oldest_registration.additional_metadata['EGAP Registration ID'] == OLDEST_EGAP_ID expected_oldest_date_string = '2011-03-01 22:00:00' assert oldest_registration.registered_date.strftime('%Y-%m-%d %H:%M:%S') == expected_oldest_date_string # Should have been excluded based on version assert newer_registration.additional_metadata is None # Shold have been excluded based on provider assert non_egap_registration.additional_metadata is None def test_backfill_egap_metadata_dry_run(self, older_registration, oldest_registration): backfill_count = backfill_egap_metadata(dry_run=True) assert backfill_count == 2 older_registration.refresh_from_db() oldest_registration.refresh_from_db() assert older_registration.additional_metadata is None assert oldest_registration.additional_metadata is None def test_backfill_egap_metadata_ignores_updated_registrations( self, older_registration, oldest_registration): older_registration.additional_metadata = {'EGAP Registration ID': OLDER_EGAP_ID} older_registration.save() backfill_count = backfill_egap_metadata() assert backfill_count == 1 oldest_registration.refresh_from_db() assert oldest_registration.additional_metadata['EGAP Registration ID'] == OLDEST_EGAP_ID assert backfill_egap_metadata() == 0 def test_backfill_egap_metadata_batch_size( self, older_registration, oldest_registration): assert backfill_egap_metadata(batch_size=1) == 1
41.876106
111
0.744505
f321fbc395c4358da192e1bbd761ff86399d3ac9
543
py
Python
manage.py
seLain/MissAchieve
e65ecf46d3c35b79151d526d0b0abce7b55a6652
[ "MIT" ]
null
null
null
manage.py
seLain/MissAchieve
e65ecf46d3c35b79151d526d0b0abce7b55a6652
[ "MIT" ]
7
2018-03-29T05:38:46.000Z
2021-06-10T20:09:49.000Z
manage.py
seLain/MissAchieve
e65ecf46d3c35b79151d526d0b0abce7b55a6652
[ "MIT" ]
null
null
null
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "MissAchieve.settings") try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv)
33.9375
75
0.688766
15415a1901079c94d72442a3953863ab8d537c35
880
py
Python
config.py
lyori6/microblog_app
335135cebe90e647639a6fc6c659ca26923cc1e3
[ "MIT" ]
null
null
null
config.py
lyori6/microblog_app
335135cebe90e647639a6fc6c659ca26923cc1e3
[ "MIT" ]
1
2019-09-13T16:12:45.000Z
2019-09-13T16:12:45.000Z
config.py
hoquem/microblog
b0421a0157ac73cbb4f467838010eb20f888086c
[ "MIT" ]
null
null
null
import os from dotenv import load_dotenv basedir = os.path.abspath(os.path.dirname(__file__)) load_dotenv(os.path.join(basedir, '.env')) class Config(object): SECRET_KEY = os.environ.get('SECRET_KEY') or 'you-will-never-guess' SQLALCHEMY_DATABASE_URI = os.environ.get('DATABASE_URL') or \ 'sqlite:///' + os.path.join(basedir, 'app.db') SQLALCHEMY_TRACK_MODIFICATIONS = False MAIL_SERVER = os.environ.get('MAIL_SERVER') MAIL_PORT = int(os.environ.get('MAIL_PORT') or 25) MAIL_USE_TLS = os.environ.get('MAIL_USE_TLS') is not None MAIL_USERNAME = os.environ.get('MAIL_USERNAME') MAIL_PASSWORD = os.environ.get('MAIL_PASSWORD') ADMINS = ['your-email@example.com'] LANGUAGES = ['en', 'es'] MS_TRANSLATOR_KEY = os.environ.get('MS_TRANSLATOR_KEY') ELASTICSEARCH_URL = os.environ.get('ELASTICSEARCH_URL') POSTS_PER_PAGE = 25
38.26087
71
0.710227
a1e2c99b92ea5a5af22263327dd30e46cfd54d6f
69,232
py
Python
pylogix/eip.py
zursch/pylogix
1d7889454b7db1d00dce7028cb81eae60ebda787
[ "Apache-2.0" ]
null
null
null
pylogix/eip.py
zursch/pylogix
1d7889454b7db1d00dce7028cb81eae60ebda787
[ "Apache-2.0" ]
null
null
null
pylogix/eip.py
zursch/pylogix
1d7889454b7db1d00dce7028cb81eae60ebda787
[ "Apache-2.0" ]
null
null
null
''' Originally created by Burt Peterson Updated and maintained by Dustin Roeder (dmroeder@gmail.com) Copyright 2019 Dustin Roeder Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import socket import sys import time from datetime import datetime, timedelta from .lgxDevice import LGXDevice, GetDevice, GetVendor from random import randrange from struct import pack, unpack_from programNames = [] class PLC: def __init__(self): ''' Initialize our parameters ''' self.IPAddress = "" self.ProcessorSlot = 0 self.Micro800 = False self.Port = 44818 self.VendorID = 0x1337 self.Context = 0x00 self.ContextPointer = 0 self.Socket = socket.socket() self.SocketConnected = False self.OTNetworkConnectionID=None self.SessionHandle = 0x0000 self.SessionRegistered = False self.SerialNumber = 0 self.OriginatorSerialNumber = 42 self.SequenceCounter = 1 self.ConnectionSize = 508 self.Offset = 0 self.KnownTags = {} self.TagList = [] self.StructIdentifier = 0x0fCE self.CIPTypes = {160:(88 ,"STRUCT", 'B'), 193:(1, "BOOL", '?'), 194:(1, "SINT", 'b'), 195:(2, "INT", 'h'), 196:(4, "DINT", 'i'), 197:(8, "LINT", 'q'), 198:(1, "USINT", 'B'), 199:(2, "UINT", 'H'), 200:(4, "UDINT", 'I'), 201:(8, "LWORD", 'Q'), 202:(4, "REAL", 'f'), 203:(8, "LREAL", 'd'), 211:(4, "DWORD", 'I'), 218:(0, "STRING", 'B')} def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): ''' Clean up on exit ''' return self._closeConnection() def Read(self, tag, count=1, datatype=None): ''' We have two options for reading depending on the arguments, read a single tag, or read an array ''' if isinstance(tag, (list, tuple)): if len(tag) == 1: return [ self._readTag(tag[0], count, datatype) ] if datatype: raise TypeError('Datatype should be set to None when reading lists') return self._multiRead(tag) else: return self._readTag(tag, count, datatype) def Write(self, tag, value, datatype=None): ''' We have two options for writing depending on the arguments, write a single tag, or write an array ''' return self._writeTag(tag, value, datatype) def MultiRead(self, tags): ''' Read multiple tags in one request ''' return self._multiRead(tags) def GetPLCTime(self, raw=False): ''' Get the PLC's clock time, return as human readable (default) or raw if raw=True ''' return self._getPLCTime(raw) def SetPLCTime(self): ''' Sets the PLC's clock time ''' return self._setPLCTime() def GetTagList(self, allTags = True): ''' Retrieves the tag list from the PLC Optional parameter allTags set to True If is set to False, it will return only controller otherwise controller tags and program tags. ''' if allTags: self._getTagList() self._getAllProgramsTags() else: self._getTagList() self._getUDT() return self.TagList def GetProgramTagList(self, programName): ''' Retrieves a program tag list from the PLC programName = "Program:ExampleProgram" ''' # Ensure programNames is not empty if not programNames: self._getTagList() # Get a single program tags if progragName exists if programName in programNames: self._getProgramTagList(programName) self._getUDT() return self.TagList if programName not in programNames: print("Program not found, please check name!") return None def GetProgramsList(self): ''' Retrieves a program names list from the PLC Sanity check: checks if programNames is empty and runs _getTagList ''' if not programNames: self._getTagList() return programNames def Discover(self): ''' Query all the EIP devices on the network ''' return self._discover() def GetModuleProperties(self, slot): ''' Get the properties of module in specified slot ''' return self._getModuleProperties(slot) def Close(self): ''' Close the connection to the PLC ''' return self._closeConnection() def _readTag(self, tag, elements, dt): ''' processes the read request ''' self.Offset = 0 if not self._connect(): return None t,b,i = _parseTagName(tag, 0) self._initial_read(t, b, dt) datatype = self.KnownTags[b][0] bitCount = self.CIPTypes[datatype][0] * 8 if datatype == 211: # bool array tagData = self._buildTagIOI(tag, isBoolArray=True) words = _getWordCount(i, elements, bitCount) readRequest = self._addReadIOI(tagData, words) elif BitofWord(t): # bits of word split_tag = tag.split('.') bitPos = split_tag[len(split_tag)-1] bitPos = int(bitPos) tagData = self._buildTagIOI(tag, isBoolArray=False) words = _getWordCount(bitPos, elements, bitCount) readRequest = self._addReadIOI(tagData, words) else: # everything else tagData = self._buildTagIOI(tag, isBoolArray=False) readRequest = self._addReadIOI(tagData, elements) eipHeader = self._buildEIPHeader(readRequest) status, retData = self._getBytes(eipHeader) if status == 0 or status == 6: return self._parseReply(tag, elements, retData) else: if status in cipErrorCodes.keys(): err = cipErrorCodes[status] else: err = 'Unknown error {}'.format(status) raise ValueError('Read failed: {}'.format(err)) def _writeTag(self, tag, value, dt): ''' Processes the write request ''' self.Offset = 0 writeData = [] if not self._connect(): return None t,b,i = _parseTagName(tag, 0) self._initial_read(t, b, dt) dataType = self.KnownTags[b][0] # check if values passed were a list if isinstance(value, list): elements = len(value) else: elements = 1 value = [value] for v in value: if dataType == 202 or dataType == 203: writeData.append(float(v)) elif dataType == 160 or dataType == 218: writeData.append(self._makeString(v)) else: writeData.append(int(v)) # write a bit of a word, boolean array or everything else if BitofWord(tag): tagData = self._buildTagIOI(tag, isBoolArray=False) writeRequest = self._addWriteBitIOI(tag, tagData, writeData, dataType) elif dataType == 211: tagData = self._buildTagIOI(tag, isBoolArray=True) writeRequest = self._addWriteBitIOI(tag, tagData, writeData, dataType) else: tagData = self._buildTagIOI(tag, isBoolArray=False) writeRequest = self._addWriteIOI(tagData, writeData, dataType) eipHeader = self._buildEIPHeader(writeRequest) status, retData = self._getBytes(eipHeader) if status == 0: return else: if status in cipErrorCodes.keys(): err = cipErrorCodes[status] else: err = 'Unknown error {}'.format(status) raise ValueError('Write Failed: {}'.format(err)) def _multiRead(self, tags): ''' Processes the multiple read request ''' serviceSegments = [] segments = b"" tagCount = len(tags) self.Offset = 0 if not self._connect(): return None for tag in tags: if isinstance(tag, (list, tuple)): tag_name, base, ind = _parseTagName(tag[0], 0) self._initial_read(tag_name, base, tag[1]) else: tag_name, base, ind = _parseTagName(tag, 0) self._initial_read(tag_name, base, None) dataType = self.KnownTags[base][0] if dataType == 211: tagIOI = self._buildTagIOI(tag_name, isBoolArray=True) else: tagIOI = self._buildTagIOI(tag_name, isBoolArray=False) readIOI = self._addReadIOI(tagIOI, 1) serviceSegments.append(readIOI) header = self._buildMultiServiceHeader() segmentCount = pack('<H', tagCount) temp = len(header) if tagCount > 2: temp += (tagCount-2)*2 offsets = pack('<H', temp) # assemble all the segments for i in range(tagCount): segments += serviceSegments[i] for i in range(tagCount-1): temp += len(serviceSegments[i]) offsets += pack('<H', temp) readRequest = header+segmentCount+offsets+segments eipHeader = self._buildEIPHeader(readRequest) status, retData = self._getBytes(eipHeader) if status == 0: return self._multiParser(tags, retData) else: if status in cipErrorCodes.keys(): err = cipErrorCodes[status] else: err = 'Unknown error {}'.format(status) raise ValueError('Multi-read failed: {}'.format(err)) def _getPLCTime(self, raw=False): ''' Requests the PLC clock time ''' if not self._connect(): return None AttributeService = 0x03 AttributeSize = 0x02 AttributeClassType = 0x20 AttributeClass = 0x8B AttributeInstanceType = 0x24 AttributeInstance = 0x01 AttributeCount = 0x01 TimeAttribute = 0x0B AttributePacket = pack('<BBBBBBH1H', AttributeService, AttributeSize, AttributeClassType, AttributeClass, AttributeInstanceType, AttributeInstance, AttributeCount, TimeAttribute) eipHeader = self._buildEIPHeader(AttributePacket) status, retData = self._getBytes(eipHeader) if status == 0: # get the time from the packet plcTime = unpack_from('<Q', retData, 56)[0] if raw: return plcTime humanTime = datetime(1970, 1, 1) + timedelta(microseconds=plcTime) return humanTime else: if status in cipErrorCodes.keys(): err = cipErrorCodes[status] else: err = 'Unknown error {}'.format(status) raise ValueError('Failed to get PLC time: {}'.format(err)) def _setPLCTime(self): ''' Requests the PLC clock time ''' if not self._connect(): return None AttributeService = 0x04 AttributeSize = 0x02 AttributeClassType = 0x20 AttributeClass = 0x8B AttributeInstanceType = 0x24 AttributeInstance = 0x01 AttributeCount = 0x01 Attribute = 0x06 Time = int(time.time() * 1000000) AttributePacket = pack('<BBBBBBHHQ', AttributeService, AttributeSize, AttributeClassType, AttributeClass, AttributeInstanceType, AttributeInstance, AttributeCount, Attribute, Time) eipHeader = self._buildEIPHeader(AttributePacket) status, retData = self._getBytes(eipHeader) if status == 0: return else: if status in cipErrorCodes.keys(): err = cipErrorCodes[status] else: err = 'Unknown error {}'.format(status) raise ValueError('Failed to set PLC time: {}'.format(err)) def _getTagList(self): ''' Requests the controller tag list and returns a list of LgxTag type ''' if not self._connect(): return None self.Offset = 0 del programNames[:] del self.TagList[:] request = self._buildTagListRequest(programName=None) eipHeader = self._buildEIPHeader(request) status, retData = self._getBytes(eipHeader) if status == 0 or status == 6: self._extractTagPacket(retData, programName=None) else: if status in cipErrorCodes.keys(): err = cipErrorCodes[status] else: err = 'Unknown error {}'.format(status) raise ValueError('Failed to get tag list {}'.format(err)) while status == 6: self.Offset += 1 request = self._buildTagListRequest(programName=None) eipHeader = self._buildEIPHeader(request) status, retData = self._getBytes(eipHeader) if status == 0 or status == 6: self._extractTagPacket(retData, programName=None) else: if status in cipErrorCodes.keys(): err = cipErrorCodes[status] else: err = 'Unknown error {}'.format(status) raise ValueError('Failed to get tag list: {}'.format(err)) return def _getAllProgramsTags(self): ''' Requests all programs tag list and appends to taglist (LgxTag type) ''' if not self._connect(): return None self.Offset = 0 for programName in programNames: self.Offset = 0 request = self._buildTagListRequest(programName) eipHeader = self._buildEIPHeader(request) status, retData = self._getBytes(eipHeader) if status == 0 or status == 6: self._extractTagPacket(retData, programName) else: if status in cipErrorCodes.keys(): err = cipErrorCodes[status] else: err = 'Unknown error {}'.format(status) raise ValueError('Failed to get program tag list: {}'.format(err)) while status == 6: self.Offset += 1 request = self._buildTagListRequest(programName) eipHeader = self._buildEIPHeader(request) status, retData = self._getBytes(eipHeader) if status == 0 or status == 6: self._extractTagPacket(retData, programName) else: if status in cipErrorCodes.keys(): err = cipErrorCodes[status] else: err = 'Unknown error {}'.format(status) raise ValueError('Failed to get program tag list: {}'.format(err)) return def _getProgramTagList(self, programName): ''' Requests tag list for a specific program and returns a list of LgxTag type ''' if not self._connect(): return None self.Offset = 0 del self.TagList[:] request = self._buildTagListRequest(programName) eipHeader = self._buildEIPHeader(request) status, retData = self._getBytes(eipHeader) if status == 0 or status == 6: self._extractTagPacket(retData, programName) else: if status in cipErrorCodes.keys(): err = cipErrorCodes[status] else: err = 'Unknown error {}'.format(status) raise ValueError('Failed to get program tag list: {}'.format(err)) while status == 6: self.Offset += 1 request = self._buildTagListRequest(programName) eipHeader = self._buildEIPHeader(request) status, retData = self._getBytes(eipHeader) if status == 0 or status == 6: self._extractTagPacket(retData, programName) else: if status in cipErrorCodes.keys(): err = cipErrorCodes[status] else: err = 'Unknown error {}'.format(status) raise ValueError('Failed to get program tag list: {}'.format(err)) return def _getUDT(self): # get only tags that are a struct struct_tags = [x for x in self.TagList if x.Struct == 1] # reduce our struct tag list to only unique instances seen = set() unique = [obj for obj in struct_tags if obj.DataTypeValue not in seen and not seen.add(obj.DataTypeValue)] template = {} for u in unique: temp = self._getTemplateAttribute(u.DataTypeValue) val = unpack_from('<I', temp[46:], 10)[0] words = (val * 4) - 23 member_count = int(unpack_from('<H', temp[46:], 24)[0]) template[u.DataTypeValue] = [words, '', member_count] for key,value in template.items(): t = self._getTemplate(key, value[0]) size = value[2] * 8 p = t[50:] member_bytes = p[size:] split_char = pack('<b', 0x00) members = member_bytes.split(split_char) split_char = pack('<b', 0x3b) name = members[0].split(split_char)[0] template[key][1] = str(name.decode('utf-8')) for tag in self.TagList: if tag.DataTypeValue in template: tag.DataType = template[tag.DataTypeValue][1] elif tag.SymbolType in self.CIPTypes: tag.DataType = self.CIPTypes[tag.SymbolType][1] return def _getTemplateAttribute(self, instance): ''' Get the attributes of a UDT ''' if not self._connect(): return None readRequest = self._buildTemplateAttributes(instance) eipHeader = self._buildEIPHeader(readRequest) status, retData = self._getBytes(eipHeader) return retData def _getTemplate(self, instance, dataLen): ''' Get the members of a UDT so we can get it ''' if not self._connect(): return None readRequest = self._readTemplateService(instance, dataLen) eipHeader = self._buildEIPHeader(readRequest) status, retData = self._getBytes(eipHeader) return retData def _buildTemplateAttributes(self, instance): TemplateService = 0x03 TemplateLength = 0x03 TemplateClassType = 0x20 TemplateClass = 0x6c TemplateInstanceType = 0x25 TemplateInstance = instance AttribCount = 0x04 Attrib4 = 0x04 Attrib3 = 0x03 Attrib2 = 0x02 Attrib1 = 0x01 return pack('<BBBBHHHHHHH', TemplateService, TemplateLength, TemplateClassType, TemplateClass, TemplateInstanceType, TemplateInstance, AttribCount, Attrib4, Attrib3, Attrib2, Attrib1) def _readTemplateService(self, instance, dataLen): TemplateService = 0x4c TemplateLength = 0x03 TemplateClassType = 0x20 TemplateClass = 0x6c TemplateInstanceType = 0x25 TemplateInstance = instance TemplateOffset = 0x00 DataLength = dataLen return pack('<BBBBHHIH', TemplateService, TemplateLength, TemplateClassType, TemplateClass, TemplateInstanceType, TemplateInstance, TemplateOffset, DataLength) def _discover(self): devices = [] request = self._buildListIdentity() # get available ip addresses addresses = socket.getaddrinfo(socket.gethostname(), None) # we're going to send a request for all available ipv4 # addresses and build a list of all the devices that reply for ip in addresses: if ip[0] == 2: # IP v4 # create a socket s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.settimeout(0.5) s.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1) s.bind((ip[4][0], 0)) s.sendto(request, ('255.255.255.255', 44818)) try: while(1): ret = s.recv(4096) context = unpack_from('<Q', ret, 14)[0] if context == 0x006d6f4d6948: device = _parseIdentityResponse(ret) if device.IPAddress: devices.append(device) except: pass # added this because looping through addresses above doesn't work on # linux so this is a "just in case". If we don't get results with the # above code, try one more time without binding to an address if len(devices) == 0: s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.settimeout(0.5) s.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1) s.sendto(request, ('255.255.255.255', 44818)) try: while(1): ret = s.recv(4096) context = unpack_from('<Q', ret, 14)[0] if context == 0x006d6f4d6948: device = _parseIdentityResponse(ret) if device.IPAddress: devices.append(device) except: pass return devices def _getModuleProperties(self, slot): ''' Request the properties of a module in a particular slot. Returns LgxDevice ''' if not self._connect(): return None AttributeService = 0x01 AttributeSize = 0x02 AttributeClassType = 0x20 AttributeClass = 0x01 AttributeInstanceType = 0x24 AttributeInstance = 0x01 PathRouteSize = 0x01 Reserved = 0x00 Backplane = 0x01 LinkAddress = slot AttributePacket = pack('<10B', AttributeService, AttributeSize, AttributeClassType, AttributeClass, AttributeInstanceType, AttributeInstance, PathRouteSize, Reserved, Backplane, LinkAddress) frame = self._buildCIPUnconnectedSend() + AttributePacket eipHeader = self._buildEIPSendRRDataHeader(len(frame)) + frame pad = pack('<I', 0x00) self.Socket.send(eipHeader) retData = pad + self.recv_data() status = unpack_from('<B', retData, 46)[0] if status == 0: return _parseIdentityResponse(retData) else: return LGXDevice() def _connect(self): ''' Open a connection to the PLC ''' if self.SocketConnected: return True # Make sure the connection size is correct if not 500 <= self.ConnectionSize <= 4000: raise ValueError("ConnectionSize must be an integer between 500 and 4000") try: self.Socket = socket.socket() self.Socket.settimeout(5.0) self.Socket.connect((self.IPAddress, self.Port)) except(socket.error): self.SocketConnected = False self.SequenceCounter = 1 self.Socket.close() raise self.Socket.send(self._buildRegisterSession()) retData = self.recv_data() if retData: self.SessionHandle = unpack_from('<I', retData, 4)[0] else: self.SocketConnected = False raise Exception("Failed to register session") self.Socket.send(self._buildForwardOpenPacket()) retData = self.recv_data() sts = unpack_from('<b', retData, 42)[0] if not sts: self.OTNetworkConnectionID = unpack_from('<I', retData, 44)[0] self.SocketConnected = True else: self.SocketConnected = False raise Exception("Forward Open Failed") return True def _closeConnection(self): ''' Close the connection to the PLC (forward close, unregister session) ''' self.SocketConnected = False close_packet = self._buildForwardClosePacket() unreg_packet = self._buildUnregisterSession() try: self.Socket.send(close_packet) self.Socket.send(unreg_packet) self.Socket.close() except: self.Socket.close() finally: pass def _getBytes(self, data): ''' Sends data and gets the return data ''' try: self.Socket.send(data) retData = self.recv_data() if retData: status = unpack_from('<B', retData, 48)[0] return status, retData else: return 1, None except (socket.gaierror): self.SocketConnected = False return 1, None except (IOError): self.SocketConnected = False return 7, None def _buildRegisterSession(self): ''' Register our CIP connection ''' EIPCommand = 0x0065 EIPLength = 0x0004 EIPSessionHandle = self.SessionHandle EIPStatus = 0x0000 EIPContext = self.Context EIPOptions = 0x0000 EIPProtocolVersion = 0x01 EIPOptionFlag = 0x00 return pack('<HHIIQIHH', EIPCommand, EIPLength, EIPSessionHandle, EIPStatus, EIPContext, EIPOptions, EIPProtocolVersion, EIPOptionFlag) def _buildUnregisterSession(self): EIPCommand = 0x66 EIPLength = 0x0 EIPSessionHandle = self.SessionHandle EIPStatus = 0x0000 EIPContext = self.Context EIPOptions = 0x0000 return pack('<HHIIQI', EIPCommand, EIPLength, EIPSessionHandle, EIPStatus, EIPContext, EIPOptions) def _buildForwardOpenPacket(self): ''' Assemble the forward open packet ''' forwardOpen = self._buildCIPForwardOpen() rrDataHeader = self._buildEIPSendRRDataHeader(len(forwardOpen)) return rrDataHeader+forwardOpen def _buildForwardClosePacket(self): ''' Assemble the forward close packet ''' forwardClose = self._buildForwardClose() rrDataHeader = self._buildEIPSendRRDataHeader(len(forwardClose)) return rrDataHeader + forwardClose def _buildCIPForwardOpen(self): ''' Forward Open happens after a connection is made, this will sequp the CIP connection parameters ''' CIPPathSize = 0x02 CIPClassType = 0x20 CIPClass = 0x06 CIPInstanceType = 0x24 CIPInstance = 0x01 CIPPriority = 0x0A CIPTimeoutTicks = 0x0e CIPOTConnectionID = 0x20000002 CIPTOConnectionID = 0x20000001 self.SerialNumber = randrange(65000) CIPConnectionSerialNumber = self.SerialNumber CIPVendorID = self.VendorID CIPOriginatorSerialNumber = self.OriginatorSerialNumber CIPMultiplier = 0x03 CIPOTRPI = 0x00201234 CIPConnectionParameters = 0x4200 CIPTORPI = 0x00204001 CIPTransportTrigger = 0xA3 # decide whether to use the standard ForwardOpen # or the large format if self.ConnectionSize <= 511: CIPService = 0x54 CIPConnectionParameters += self.ConnectionSize pack_format = '<BBBBBBBBIIHHIIIHIHB' else: CIPService = 0x5B CIPConnectionParameters = CIPConnectionParameters << 16 CIPConnectionParameters += self.ConnectionSize pack_format = '<BBBBBBBBIIHHIIIIIIB' CIPOTNetworkConnectionParameters = CIPConnectionParameters CIPTONetworkConnectionParameters = CIPConnectionParameters ForwardOpen = pack(pack_format, CIPService, CIPPathSize, CIPClassType, CIPClass, CIPInstanceType, CIPInstance, CIPPriority, CIPTimeoutTicks, CIPOTConnectionID, CIPTOConnectionID, CIPConnectionSerialNumber, CIPVendorID, CIPOriginatorSerialNumber, CIPMultiplier, CIPOTRPI, CIPOTNetworkConnectionParameters, CIPTORPI, CIPTONetworkConnectionParameters, CIPTransportTrigger) # add the connection path if self.Micro800: ConnectionPath = [0x20, 0x02, 0x24, 0x01] else: ConnectionPath = [0x01, self.ProcessorSlot, 0x20, 0x02, 0x24, 0x01] ConnectionPathSize = int(len(ConnectionPath)/2) pack_format = '<B' + str(len(ConnectionPath)) + 'B' CIPConnectionPath = pack(pack_format, ConnectionPathSize, *ConnectionPath) return ForwardOpen + CIPConnectionPath def _buildForwardClose(self): ''' Forward Close packet for closing the connection ''' CIPService = 0x4E CIPPathSize = 0x02 CIPClassType = 0x20 CIPClass = 0x06 CIPInstanceType = 0x24 CIPInstance = 0x01 CIPPriority = 0x0A CIPTimeoutTicks = 0x0e CIPConnectionSerialNumber = self.SerialNumber CIPVendorID = self.VendorID CIPOriginatorSerialNumber = self.OriginatorSerialNumber ForwardClose = pack('<BBBBBBBBHHI', CIPService, CIPPathSize, CIPClassType, CIPClass, CIPInstanceType, CIPInstance, CIPPriority, CIPTimeoutTicks, CIPConnectionSerialNumber, CIPVendorID, CIPOriginatorSerialNumber) # add the connection path if self.Micro800: ConnectionPath = [0x20, 0x02, 0x24, 0x01] else: ConnectionPath = [0x01, self.ProcessorSlot, 0x20, 0x02, 0x24, 0x01] ConnectionPathSize = int(len(ConnectionPath)/2) pack_format = '<H' + str(len(ConnectionPath)) + 'B' CIPConnectionPath = pack(pack_format, ConnectionPathSize, *ConnectionPath) return ForwardClose + CIPConnectionPath def _buildEIPSendRRDataHeader(self, frameLen): EIPCommand = 0x6F EIPLength = 16+frameLen EIPSessionHandle = self.SessionHandle EIPStatus = 0x00 EIPContext = self.Context EIPOptions = 0x00 EIPInterfaceHandle = 0x00 EIPTimeout = 0x00 EIPItemCount = 0x02 EIPItem1Type = 0x00 EIPItem1Length = 0x00 EIPItem2Type = 0xB2 EIPItem2Length = frameLen return pack('<HHIIQIIHHHHHH', EIPCommand, EIPLength, EIPSessionHandle, EIPStatus, EIPContext, EIPOptions, EIPInterfaceHandle, EIPTimeout, EIPItemCount, EIPItem1Type, EIPItem1Length, EIPItem2Type, EIPItem2Length) def _buildCIPUnconnectedSend(self): ''' build unconnected send to request tag database ''' CIPService = 0x52 CIPPathSize = 0x02 CIPClassType = 0x20 CIPClass = 0x06 CIPInstanceType = 0x24 CIPInstance = 0x01 CIPPriority = 0x0A CIPTimeoutTicks = 0x0e ServiceSize = 0x06 return pack('<BBBBBBBBH', CIPService, CIPPathSize, CIPClassType, CIPClass, CIPInstanceType, CIPInstance, CIPPriority, CIPTimeoutTicks, ServiceSize) def _buildTagIOI(self, tagName, isBoolArray): ''' The tag IOI is basically the tag name assembled into an array of bytes structured in a way that the PLC will understand. It's a little crazy, but we have to consider the many variations that a tag can be: TagName (DINT) TagName.1 (Bit of DINT) TagName.Thing (UDT) TagName[4].Thing[2].Length (more complex UDT) We also might be reading arrays, a bool from arrays (atomic), strings. Oh and multi-dim arrays, program scope tags... ''' RequestTagData = b"" tagArray = tagName.split(".") # this loop figures out the packet length and builds our packet for i in range(len(tagArray)): if tagArray[i].endswith("]"): tag, basetag, index = _parseTagName(tagArray[i], 0) BaseTagLenBytes = len(basetag) if isBoolArray and i == len(tagArray)-1: index = int(index/32) # Assemble the packet RequestTagData += pack('<BB', 0x91, BaseTagLenBytes) RequestTagData += basetag.encode('utf-8') if BaseTagLenBytes%2: BaseTagLenBytes += 1 RequestTagData += pack('<B', 0x00) BaseTagLenWords = BaseTagLenBytes/2 if i < len(tagArray): if not isinstance(index, list): if index < 256: RequestTagData += pack('<BB', 0x28, index) if 65536 > index > 255: RequestTagData += pack('<HH', 0x29, index) if index > 65535: RequestTagData += pack('<HI', 0x2A, index) else: for i in range(len(index)): if index[i] < 256: RequestTagData += pack('<BB', 0x28, index[i]) if 65536 > index[i] > 255: RequestTagData += pack('<HH', 0x29, index[i]) if index[i] > 65535: RequestTagData += pack('<HI', 0x2A, index[i]) else: ''' for non-array segment of tag the try might be a stupid way of doing this. If the portion of the tag can be converted to an integer successfully then we must be just looking for a bit from a word rather than a UDT. So we then don't want to assemble the read request as a UDT, just read the value of the DINT. We'll figure out the individual bit in the read function. ''' try: if int(tagArray[i]) <= 31: pass except: BaseTagLenBytes = int(len(tagArray[i])) RequestTagData += pack('<BB', 0x91, BaseTagLenBytes) RequestTagData += tagArray[i].encode('utf-8') if BaseTagLenBytes%2: BaseTagLenBytes += 1 RequestTagData += pack('<B', 0x00) return RequestTagData def _addReadIOI(self, tagIOI, elements): ''' Add the read service to the tagIOI ''' RequestService = 0x4C RequestPathSize = int(len(tagIOI)/2) readIOI = pack('<BB', RequestService, RequestPathSize) readIOI += tagIOI readIOI += pack('<H', int(elements)) return readIOI def _addPartialReadIOI(self, tagIOI, elements): ''' Add the partial read service to the tag IOI ''' RequestService = 0x52 RequestPathSize = int(len(tagIOI)/2) readIOI = pack('<BB', RequestService, RequestPathSize) readIOI += tagIOI readIOI += pack('<H', int(elements)) readIOI += pack('<I', self.Offset) return readIOI def _addWriteIOI(self, tagIOI, writeData, dataType): ''' Add the write command stuff to the tagIOI ''' elementSize = self.CIPTypes[dataType][0] dataLen = len(writeData) NumberOfBytes = elementSize*dataLen RequestNumberOfElements = dataLen RequestPathSize = int(len(tagIOI)/2) RequestService = 0x4D CIPWriteRequest = pack('<BB', RequestService, RequestPathSize) CIPWriteRequest += tagIOI if dataType == 160: RequestNumberOfElements = self.StructIdentifier TypeCodeLen = 0x02 CIPWriteRequest += pack('<BBHH', dataType, TypeCodeLen, RequestNumberOfElements, len(writeData)) else: TypeCodeLen = 0x00 CIPWriteRequest += pack('<BBH', dataType, TypeCodeLen, RequestNumberOfElements) for v in writeData: try: for i in range(len(v)): el = v[i] CIPWriteRequest += pack(self.CIPTypes[dataType][2],el) except: CIPWriteRequest += pack(self.CIPTypes[dataType][2],v) return CIPWriteRequest def _addWriteBitIOI(self, tag, tagIOI, writeData, dataType): ''' This will add the bit level request to the tagIOI Writing to a bit is handled in a different way than other writes ''' elementSize = self.CIPTypes[dataType][0] dataLen = len(writeData) NumberOfBytes = elementSize*dataLen RequestNumberOfElements = dataLen RequestPathSize = int(len(tagIOI)/2) RequestService = 0x4E writeIOI = pack('<BB', RequestService, RequestPathSize) writeIOI += tagIOI fmt = self.CIPTypes[dataType][2] fmt = fmt.upper() s = tag.split('.') if dataType == 211: t = s[len(s)-1] tag, basetag, bit = _parseTagName(t, 0) bit %= 32 else: bit = s[len(s)-1] bit = int(bit) writeIOI += pack('<h', NumberOfBytes) byte = 2**(NumberOfBytes*8)-1 bits = 2**bit if writeData[0]: writeIOI += pack(fmt, bits) writeIOI += pack(fmt, byte) else: writeIOI += pack(fmt, 0x00) writeIOI += pack(fmt, (byte-bits)) return writeIOI def _buildEIPHeader(self, tagIOI): ''' The EIP Header contains the tagIOI and the commands to perform the read or write. This request will be followed by the reply containing the data ''' if self.ContextPointer == 155: self.ContextPointer = 0 EIPPayloadLength = 22+len(tagIOI) EIPConnectedDataLength = len(tagIOI)+2 EIPCommand = 0x70 EIPLength = 22+len(tagIOI) EIPSessionHandle = self.SessionHandle EIPStatus = 0x00 EIPContext=context_dict[self.ContextPointer] self.ContextPointer+=1 EIPOptions = 0x0000 EIPInterfaceHandle = 0x00 EIPTimeout = 0x00 EIPItemCount = 0x02 EIPItem1ID = 0xA1 EIPItem1Length = 0x04 EIPItem1 = self.OTNetworkConnectionID EIPItem2ID = 0xB1 EIPItem2Length = EIPConnectedDataLength EIPSequence = self.SequenceCounter self.SequenceCounter += 1 self.SequenceCounter = self.SequenceCounter%0x10000 EIPHeaderFrame = pack('<HHIIQIIHHHHIHHH', EIPCommand, EIPLength, EIPSessionHandle, EIPStatus, EIPContext, EIPOptions, EIPInterfaceHandle, EIPTimeout, EIPItemCount, EIPItem1ID, EIPItem1Length, EIPItem1, EIPItem2ID,EIPItem2Length,EIPSequence) return EIPHeaderFrame+tagIOI def _buildMultiServiceHeader(self): ''' Service header for making a multiple tag request ''' MultiService = 0X0A MultiPathSize = 0x02 MutliClassType = 0x20 MultiClassSegment = 0x02 MultiInstanceType = 0x24 MultiInstanceSegment = 0x01 return pack('<BBBBBB', MultiService, MultiPathSize, MutliClassType, MultiClassSegment, MultiInstanceType, MultiInstanceSegment) def _buildTagListRequest(self, programName): ''' Build the request for the PLC tags Program scoped tags will pass the program name for the request ''' Service = 0x55 PathSegment = b"" #If we're dealing with program scoped tags... if programName: PathSegment = pack('<BB', 0x91, len(programName)) + programName.encode('utf-8') # if odd number of characters, need to add a byte to the end. if len(programName) % 2: PathSegment += pack('<B', 0x00) PathSegment += pack('<H', 0x6B20) if self.Offset < 256: PathSegment += pack('<BB', 0x24, self.Offset) else: PathSegment += pack('<HH', 0x25, self.Offset) PathSegmentLen = int(len(PathSegment)/2) AttributeCount = 0x03 SymbolType = 0x02 ByteCount = 0x08 SymbolName = 0x01 Attributes = pack('<HHHH', AttributeCount, SymbolName, SymbolType, ByteCount) TagListRequest = pack('<BB', Service, PathSegmentLen) TagListRequest += PathSegment + Attributes return TagListRequest def _parseReply(self, tag, elements, data): ''' Gets the replies from the PLC In the case of BOOL arrays and bits of a word, we do some reformating ''' tagName, basetag, index = _parseTagName(tag, 0) datatype = self.KnownTags[basetag][0] bitCount = self.CIPTypes[datatype][0] * 8 # if bit of word was requested if BitofWord(tag): split_tag = tag.split('.') bitPos = split_tag[len(split_tag)-1] bitPos = int(bitPos) wordCount = _getWordCount(bitPos, elements, bitCount) words = self._getReplyValues(tag, wordCount, data) vals = self._wordsToBits(tag, words, count=elements) elif datatype == 211: wordCount = _getWordCount(index, elements, bitCount) words = self._getReplyValues(tag, wordCount, data) vals = self._wordsToBits(tag, words, count=elements) else: vals = self._getReplyValues(tag, elements, data) if len(vals) == 1: return vals[0] else: return vals def _getReplyValues(self, tag, elements, data): ''' Gather up all the values in the reply/replies ''' status = unpack_from('<B', data, 48)[0] extendedStatus = unpack_from('<B', data, 49)[0] elements = int(elements) if status == 0 or status == 6: # parse the tag tagName, basetag, index = _parseTagName(tag, 0) datatype = self.KnownTags[basetag][0] CIPFormat = self.CIPTypes[datatype][2] vals = [] dataSize = self.CIPTypes[datatype][0] numbytes = len(data)-dataSize counter = 0 self.Offset = 0 for i in range(elements): index = 52+(counter*dataSize) if datatype == 160: tmp = unpack_from('<h', data, 52)[0] if tmp == self.StructIdentifier: # gotta handle strings a little different index = 54+(counter*dataSize) NameLength = unpack_from('<L', data, index)[0] s = data[index+4:index+4+NameLength] vals.append(str(s.decode('utf-8'))) else: d = data[index:index+len(data)] vals.append(d) elif datatype == 218: index = 52+(counter*dataSize) NameLength = unpack_from('<B', data, index)[0] s = data[index+1:index+1+NameLength] vals.append(str(s.decode('utf-8'))) else: returnvalue = unpack_from(CIPFormat, data, index)[0] vals.append(returnvalue) self.Offset += dataSize counter += 1 # re-read because the data is in more than one packet if index == numbytes and status == 6: index = 0 counter = 0 tagIOI = self._buildTagIOI(tag, isBoolArray=False) readIOI = self._addPartialReadIOI(tagIOI, elements) eipHeader = self._buildEIPHeader(readIOI) self.Socket.send(eipHeader) data = self.recv_data() status = unpack_from('<B', data, 48)[0] numbytes = len(data)-dataSize return vals else: # didn't nail it if status in cipErrorCodes.keys(): err = cipErrorCodes[status] else: err = 'Unknown error' return 'Failed to read tag: {} - {}'.format(tag, err) def recv_data(self): ''' When receiving data from the socket, it is possible to receive incomplete data. The initial packet that comes in contains the length of the payload. We can use that to keep calling recv() until the entire payload is received. This only happnens when using LargeForwardOpen ''' data = b'' part = self.Socket.recv(4096) payload_len = unpack_from('<H', part, 2)[0] data += part while len(data)-24 < payload_len: part = self.Socket.recv(4096) data += part return data def _initial_read(self, tag, baseTag, dt): ''' Store each unique tag read in a dict so that we can retreive the data type or data length (for STRING) later ''' # if a tag alread exists, return True if baseTag in self.KnownTags: return True if dt: self.KnownTags[baseTag] = (dt, 0) return True tagData = self._buildTagIOI(baseTag, isBoolArray=False) readRequest = self._addPartialReadIOI(tagData, 1) eipHeader = self._buildEIPHeader(readRequest) # send our tag read request status, retData = self._getBytes(eipHeader) # make sure it was successful if status == 0 or status == 6: dataType = unpack_from('<B', retData, 50)[0] dataLen = unpack_from('<H', retData, 2)[0] # this is really just used for STRING self.KnownTags[baseTag] = (dataType, dataLen) return True else: if status in cipErrorCodes.keys(): err = cipErrorCodes[status] else: err = 'Unknown error {}'.format(status) raise ValueError('Failed to read tag: {}'.format(err)) def _wordsToBits(self, tag, value, count=0): ''' Convert words to a list of true/false ''' tagName, basetag, index = _parseTagName(tag, 0) datatype = self.KnownTags[basetag][0] bitCount = self.CIPTypes[datatype][0] * 8 if datatype == 211: bitPos = index%32 else: split_tag = tag.split('.') bitPos = split_tag[len(split_tag)-1] bitPos = int(bitPos) ret = [] for v in value: for i in range(0,bitCount): ret.append(BitValue(v, i)) return ret[bitPos:bitPos+count] def _multiParser(self, tags, data): ''' Takes multi read reply data and returns an array of the values ''' # remove the beginning of the packet because we just don't care about it stripped = data[50:] tagCount = unpack_from('<H', stripped, 0)[0] # get the offset values for each of the tags in the packet reply = [] for i, tag in enumerate(tags): if isinstance(tag, (list, tuple)): tag = tag[0] loc = 2+(i*2) offset = unpack_from('<H', stripped, loc)[0] replyStatus = unpack_from('<b', stripped, offset+2)[0] replyExtended = unpack_from('<b', stripped, offset+3)[0] # successful reply, add the value to our list if replyStatus == 0 and replyExtended == 0: dataTypeValue = unpack_from('<B', stripped, offset+4)[0] # if bit of word was requested if BitofWord(tag): dataTypeFormat = self.CIPTypes[dataTypeValue][2] val = unpack_from(dataTypeFormat, stripped, offset+6)[0] bitState = _getBitOfWord(tag, val) reply.append(bitState) elif dataTypeValue == 211: dataTypeFormat = self.CIPTypes[dataTypeValue][2] val = unpack_from(dataTypeFormat, stripped, offset+6)[0] bitState = _getBitOfWord(tag, val) reply.append(bitState) elif dataTypeValue == 160: strlen = unpack_from('<B', stripped, offset+8)[0] s = stripped[offset+12:offset+12+strlen] reply.append(str(s.decode('utf-8'))) else: dataTypeFormat = self.CIPTypes[dataTypeValue][2] reply.append(unpack_from(dataTypeFormat, stripped, offset+6)[0]) else: reply.append("Error") return reply def _buildListIdentity(self): ''' Build the list identity request for discovering Ethernet I/P devices on the network ''' ListService = 0x63 ListLength = 0x00 ListSessionHandle = 0x00 ListStatus = 0x00 ListResponse = 0xFA ListContext1 = 0x6948 ListContext2 = 0x6f4d ListContext3 = 0x006d ListOptions = 0x00 return pack("<HHIIHHHHI", ListService, ListLength, ListSessionHandle, ListStatus, ListResponse, ListContext1, ListContext2, ListContext3, ListOptions) def _extractTagPacket(self, data, programName): # the first tag in a packet starts at byte 50 packetStart = 50 while packetStart < len(data): # get the length of the tag name tagLen = unpack_from('<H', data, packetStart+4)[0] # get a single tag from the packet packet = data[packetStart:packetStart+tagLen+20] # extract the offset self.Offset = unpack_from('<H', packet, 0)[0] # add the tag to our tag list tag = parseLgxTag(packet, programName) # filter out garbage if '__DEFVAL_' in tag.TagName: pass elif 'Routine:' in tag.TagName: pass elif 'Map:' in tag.TagName: pass elif 'Task:' in tag.TagName: pass else: self.TagList.append(tag) if not programName: if 'Program:' in tag.TagName: programNames.append(tag.TagName) # increment ot the next tag in the packet packetStart = packetStart+tagLen+20 def _makeString(self, string): work = [] if self.Micro800: temp = pack('<B', len(string)).decode('utf-8') else: temp = pack('<I', len(string)).decode('utf-8') for char in temp: work.append(ord(char)) for char in string: work.append(ord(char)) if not self.Micro800: for x in range(len(string), 84): work.append(0x00) return work def _getBitOfWord(tag, value): ''' Takes a tag name, gets the bit from the end of it, then returns that bits value ''' split_tag = tag.split('.') stripped = split_tag[len(split_tag)-1] if stripped.endswith(']'): val = stripped[stripped.find("[")+1:stripped.find("]")] val = int(val) bitPos = val & 0x1f returnValue = BitValue(value, bitPos) else: try: bitPos = int(stripped) if bitPos <= 31: returnValue = BitValue(value, bitPos) except: pass return returnValue def _getWordCount(start, length, bits): ''' Get the number of words that the requested bits would occupy. We have to take into account how many bits are in a word and the fact that the number of requested bits can span multipe words. ''' newStart = start % bits newEnd = newStart + length totalWords = (newEnd-1) / bits return totalWords + 1 def _parseTagName(tag, offset): ''' parse the packet to get the base tag name the offset is so that we can increment the array pointer if need be ''' bt = tag ind = 0 try: if tag.endswith(']'): pos = (len(tag)-tag.rindex("["))# find position of [ bt = tag[:-pos] # remove [x]: result=SuperDuper temp = tag[-pos:] # remove tag: result=[x] ind = temp[1:-1] # strip the []: result=x s = ind.split(',') # split so we can check for multi dimensin array if len(s) == 1: ind = int(ind) newTagName = bt+'['+str(ind+offset)+']' else: # if we have a multi dim array, return the index ind = [] for i in range(len(s)): s[i] = int(s[i]) ind.append(s[i]) else: pass return tag, bt, ind except: return tag, bt, 0 def BitofWord(tag): ''' Test if the user is trying to write to a bit of a word ex. Tag.1 returns True (Tag = DINT) ''' s = tag.split('.') if s[len(s)-1].isdigit(): return True else: return False def BitValue(value, bitno): ''' Returns the specific bit of a words value ''' mask = 1 << bitno if (value & mask): return True else: return False def _parseIdentityResponse(data): # we're going to take the packet and parse all # the data that is in it. resp = LGXDevice() resp.Length = unpack_from('<H', data, 28)[0] resp.EncapsulationVersion = unpack_from('<H', data, 30)[0] longIP = unpack_from('<I', data, 36)[0] resp.IPAddress = socket.inet_ntoa(pack('<L', longIP)) resp.VendorID = unpack_from('<H', data, 48)[0] resp.Vendor = GetVendor(resp.VendorID) resp.DeviceID = unpack_from('<H', data, 50)[0] resp.Device = GetDevice(resp.DeviceID) resp.ProductCode = unpack_from('<H', data, 52)[0] major = unpack_from('<B', data, 54)[0] minor = unpack_from('<B', data, 55)[0] resp.Revision = str(major) + '.' + str(minor) resp.Status = unpack_from('<H', data, 56)[0] resp.SerialNumber = hex(unpack_from('<I', data, 58)[0]) resp.ProductNameLength = unpack_from('<B', data, 62)[0] resp.ProductName = str(data[63:63+resp.ProductNameLength].decode('utf-8')) state = data[-1:] resp.State = unpack_from('<B', state, 0)[0] return resp def parseLgxTag(packet, programName): t = LgxTag() length = unpack_from('<H', packet, 4)[0] name = packet[6:length+6].decode('utf-8') if programName: t.TagName = str(programName + '.' + name) else: t.TagName = str(name) t.InstanceID = unpack_from('<H', packet, 0)[0] val = unpack_from('<H', packet, length+6)[0] t.SymbolType = val & 0xff t.DataTypeValue = val & 0xfff t.Array = (val & 0x6000) >> 13 t.Struct = (val & 0x8000) >> 15 if t.Array: t.Size = unpack_from('<H', packet, length+8)[0] else: t.Size = 0 return t class LgxTag: def __init__(self): self.TagName = '' self.InstanceID = 0x00 self.SymbolType = 0x00 self.DataTypeValue = 0x00 self.DataType = '' self.Array = 0x00 self.Struct = 0x00 self.Size = 0x00 cipErrorCodes = {0x00: 'Success', 0x01: 'Connection failure', 0x02: 'Resource unavailable', 0x03: 'Invalid parameter value', 0x04: 'Path segment error', 0x05: 'Path destination unknown', 0x06: 'Partial transfer', 0x07: 'Connection lost', 0x08: 'Service not supported', 0x09: 'Invalid Attribute', 0x0A: 'Attribute list error', 0x0B: 'Already in requested mode/state', 0x0C: 'Object state conflict', 0x0D: 'Object already exists', 0x0E: 'Attribute not settable', 0x0F: 'Privilege violation', 0x10: 'Device state conflict', 0x11: 'Reply data too large', 0x12: 'Fragmentation of a premitive value', 0x13: 'Not enough data', 0x14: 'Attribute not supported', 0x15: 'Too much data', 0x16: 'Object does not exist', 0x17: 'Service fragmentation sequence not in progress', 0x18: 'No stored attribute data', 0x19: 'Store operation failure', 0x1A: 'Routing failure, request packet too large', 0x1B: 'Routing failure, response packet too large', 0x1C: 'Missing attribute list entry data', 0x1D: 'Invalid attribute value list', 0x1E: 'Embedded service error', 0x1F: 'Vendor specific', 0x20: 'Invalid Parameter', 0x21: 'Write once value or medium already written', 0x22: 'Invalid reply received', 0x23: 'Buffer overflow', 0x24: 'Invalid message format', 0x25: 'Key failure in path', 0x26: 'Path size invalid', 0x27: 'Unexpected attribute in list', 0x28: 'Invalid member ID', 0x29: 'Member not settable', 0x2A: 'Group 2 only server general failure', 0x2B: 'Unknown Modbus error', 0x2C: 'Attribute not gettable'} # Context values passed to the PLC when reading/writing context_dict = {0: 0x6572276557, 1: 0x6f6e, 2: 0x676e61727473, 3: 0x737265, 4: 0x6f74, 5: 0x65766f6c, 6: 0x756f59, 7: 0x776f6e6b, 8: 0x656874, 9: 0x73656c7572, 10: 0x646e61, 11: 0x6f73, 12: 0x6f64, 13: 0x49, 14: 0x41, 15: 0x6c6c7566, 16: 0x74696d6d6f63, 17: 0x7327746e656d, 18: 0x74616877, 19: 0x6d2749, 20: 0x6b6e696874, 21: 0x676e69, 22: 0x666f, 23: 0x756f59, 24: 0x746e646c756f77, 25: 0x746567, 26: 0x73696874, 27: 0x6d6f7266, 28: 0x796e61, 29: 0x726568746f, 30: 0x797567, 31: 0x49, 32: 0x7473756a, 33: 0x616e6e6177, 34: 0x6c6c6574, 35: 0x756f79, 36: 0x776f68, 37: 0x6d2749, 38: 0x676e696c656566, 39: 0x6174746f47, 40: 0x656b616d, 41: 0x756f79, 42: 0x7265646e75, 43: 0x646e617473, 44: 0x726576654e, 45: 0x616e6e6f67, 46: 0x65766967, 47: 0x756f79, 48: 0x7075, 49: 0x726576654e, 50: 0x616e6e6f67, 51: 0x74656c, 52: 0x756f79, 53: 0x6e776f64, 54: 0x726576654e, 55: 0x616e6e6f67, 56: 0x6e7572, 57: 0x646e756f7261, 58: 0x646e61, 59: 0x747265736564, 60: 0x756f79, 61: 0x726576654e, 62: 0x616e6e6f67, 63: 0x656b616d, 64: 0x756f79, 65: 0x797263, 66: 0x726576654e, 67: 0x616e6e6f67, 68: 0x796173, 69: 0x657962646f6f67, 70: 0x726576654e, 71: 0x616e6e6f67, 72: 0x6c6c6574, 73: 0x61, 74: 0x65696c, 75: 0x646e61, 76: 0x74727568, 77: 0x756f79, 78: 0x6576276557, 79: 0x6e776f6e6b, 80: 0x68636165, 81: 0x726568746f, 82: 0x726f66, 83: 0x6f73, 84: 0x676e6f6c, 85: 0x72756f59, 86: 0x73277472616568, 87: 0x6e656562, 88: 0x676e69686361, 89: 0x747562, 90: 0x657227756f59, 91: 0x6f6f74, 92: 0x796873, 93: 0x6f74, 94: 0x796173, 95: 0x7469, 96: 0x656469736e49, 97: 0x6577, 98: 0x68746f62, 99: 0x776f6e6b, 100: 0x732774616877, 101: 0x6e656562, 102: 0x676e696f67, 103: 0x6e6f, 104: 0x6557, 105: 0x776f6e6b, 106: 0x656874, 107: 0x656d6167, 108: 0x646e61, 109: 0x6572276577, 110: 0x616e6e6f67, 111: 0x79616c70, 112: 0x7469, 113: 0x646e41, 114: 0x6669, 115: 0x756f79, 116: 0x6b7361, 117: 0x656d, 118: 0x776f68, 119: 0x6d2749, 120: 0x676e696c656566, 121: 0x74276e6f44, 122: 0x6c6c6574, 123: 0x656d, 124: 0x657227756f79, 125: 0x6f6f74, 126: 0x646e696c62, 127: 0x6f74, 128: 0x656573, 129: 0x726576654e, 130: 0x616e6e6f67, 131: 0x65766967, 132: 0x756f79, 133: 0x7075, 134: 0x726576654e, 135: 0x616e6e6f67, 136: 0x74656c, 137: 0x756f79, 138: 0x6e776f64, 139: 0x726576654e, 140: 0x6e7572, 141: 0x646e756f7261, 142: 0x646e61, 143: 0x747265736564, 144: 0x756f79, 145: 0x726576654e, 146: 0x616e6e6f67, 147: 0x656b616d, 148: 0x756f79, 149: 0x797263, 150: 0x726576654e, 151: 0x616e6e6f67, 152: 0x796173, 153: 0x657962646f6f67, 154: 0x726576654e, 155: 0xa680e2616e6e6f67}
35.521806
115
0.503004
26aa17d4ad757d16d85af83a63d06e383faf6c20
739
py
Python
pyefun/systemProcessingBase.py
liguoqing-byte/pyefun
773b89944aae5beb060d75f21cf1553bb359660a
[ "Apache-2.0" ]
null
null
null
pyefun/systemProcessingBase.py
liguoqing-byte/pyefun
773b89944aae5beb060d75f21cf1553bb359660a
[ "Apache-2.0" ]
null
null
null
pyefun/systemProcessingBase.py
liguoqing-byte/pyefun
773b89944aae5beb060d75f21cf1553bb359660a
[ "Apache-2.0" ]
null
null
null
""" .. Hint:: 系统处理 .. literalinclude:: ../../../pyefun/systemProcessingBase_test.py :language: python :caption: 代码示例 :linenos: """ import time import os import platform def 系统_是否为window系统(): return platform.system().lower() == 'windows' def 系统_是否为linux系统(): return platform.system().lower() == 'linux' def 系统_是否为mac系统(): return platform.system().lower() == 'darwin' # 运行 # 打开内存文件 # 取剪辑板文本 # 置剪辑板文本 # 剪辑板中可有文本 # 清除剪辑板 # 取屏幕宽度 # 取屏幕高度 # 取鼠标水平位置 # 取鼠标垂直位置 # 取颜色数 # 输入框 # 信息框 # 取文本注册项 # 取数值注册项 # 取字节集注册 # 写注册项 # 删除注册项 # 注册项是否存在 # 取默认底色 # 快照 # 读配置项 # 写配置项 # 取配置节名 # 取操作系统类别 # 多文件对话框 def 延时(秒: int): time.sleep(秒) def 运行(cmd): p = os.popen(cmd) x = p.read() p.close() return x
10.408451
64
0.608931
a384df9531cad8ac8918981c727f5a2182ad016c
1,097
py
Python
invirtualenv_plugins/rpm_scripts/pre_uninstall.py
BenLloydPearson/invirtualenv
5103eece3a998499fa260413ef7e57baa57555c4
[ "BSD-3-Clause" ]
null
null
null
invirtualenv_plugins/rpm_scripts/pre_uninstall.py
BenLloydPearson/invirtualenv
5103eece3a998499fa260413ef7e57baa57555c4
[ "BSD-3-Clause" ]
null
null
null
invirtualenv_plugins/rpm_scripts/pre_uninstall.py
BenLloydPearson/invirtualenv
5103eece3a998499fa260413ef7e57baa57555c4
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 from __future__ import print_function import logging import os import shutil import sys from invirtualenv.deploy import unlink_deployed_bin_files from invirtualenv.config import get_configuration_dict if __name__ == "__main__": # /usr/share/<packagename_version>/package_scripts this_script_dir = os.path.dirname(os.path.realpath(__file__)) path_bits = this_script_dir.split(os.path.sep) # Remove leading package_scripts from the path path_bits.remove('package_scripts') # /usr/share/<packagename_version>/ data_dir = os.path.sep.join(path_bits) deploy_conf = os.path.join(data_dir, 'deploy.conf') if not os.path.exists(deploy_conf): print("No 'deploy.conf' found. Doing nothing", file=sys.stderr) sys.exit(0) config = get_configuration_dict(deploy_conf) venv_dir = config['global'].get('virtualenv_deploy_dir', None) if venv_dir and os.path.exists(venv_dir): unlink_deployed_bin_files(venv_dir) logging.debug('Removing virtualenv directory %r' % venv_dir) shutil.rmtree(venv_dir)
35.387097
72
0.740201
6f38befcc863f9f0504dac65b12395f691150084
25,154
py
Python
app/navigation.py
cds-snc/notification-admin
d4056798bf889ad29893667bbb67ead2f8e466e4
[ "MIT" ]
16
2019-11-05T21:35:49.000Z
2022-01-12T15:00:32.000Z
app/navigation.py
cds-snc/notification-admin
d4056798bf889ad29893667bbb67ead2f8e466e4
[ "MIT" ]
509
2019-07-11T22:03:19.000Z
2022-03-30T15:19:26.000Z
app/navigation.py
cds-snc/notification-admin
d4056798bf889ad29893667bbb67ead2f8e466e4
[ "MIT" ]
8
2020-02-21T20:19:29.000Z
2022-03-31T14:17:02.000Z
from itertools import chain from flask import request class Navigation: mapping: dict = {} exclude: set = set() selected_attribute = "class=selected" def __init__(self): self.mapping = { navigation: {"main.{}".format(endpoint) for endpoint in endpoints} for navigation, endpoints in self.mapping.items() } @property def endpoints_with_navigation(self): return tuple(chain.from_iterable((endpoints for navigation_item, endpoints in self.mapping.items()))) @property def endpoints_without_navigation(self): return tuple("main.{}".format(endpoint) for endpoint in self.exclude) + ( "static", "status.show_status", ) def is_selected(self, navigation_item): if request.endpoint in self.mapping[navigation_item]: return self.selected_attribute return "" class AdminNavigation(Navigation): selected_attribute = "active" mapping = { "choose_account": { "choose_account", }, "live_services": { "live_services", }, "trial_services": { "trial_services", }, "organisations": { "organisations", }, "live_api_keys": { "live_api_keys", }, "email_branding": { "email_branding", }, "find_services_by_name": { "find_services_by_name", }, "find_users_by_email": { "find_users_by_email", }, "platform_admin_list_complaints": { "platform_admin_list_complaints", }, "platform_admin_reports": { "platform_admin_reports", }, "inbound_sms_admin": { "inbound_sms_admin", }, "view_providers": { "view_providers", }, "clear_cache": { "clear_cache", }, } class HeaderNavigation(Navigation): selected_attribute = "active" mapping = { "dashboard": { "monthly", "service_dashboard", "template_usage", "view_job", "view_jobs", "view_notification", "view_notifications", }, "support": { "set_lang", "contact", }, "features": { "features", }, "home": { "index", }, "why-notify": { "why-notify", }, "contact": { "contact", }, "pricing": { "pricing", }, "documentation": { "documentation", }, "design_content": { "design_content", }, "user-profile": { "user_profile", "user_profile_email", "user_profile_email_authenticate", "user_profile_email_confirm", "user_profile_mobile_number", "user_profile_mobile_number_authenticate", "user_profile_mobile_number_confirm", "user_profile_name", "user_profile_password", "user_profile_disable_platform_admin_view", }, "sign-in": { "sign_in", "two_factor_sms_sent", "two_factor_email_sent", "verify", "verify_email", "verify_mobile", }, "choose_account": { "choose_account", }, "team-members": { "confirm_edit_user_email", "confirm_edit_user_mobile_number", "edit_user_email", "edit_user_mobile_number", "edit_user_permissions", "invite_user", "manage_users", "remove_user_from_service", }, "templates": { "action_blocked", "add_service_template", "check_messages", "check_notification", "choose_template", "choose_template_to_copy", "confirm_redact_template", "copy_template", "delete_service_template", "edit_service_template", "edit_template_postage", "manage_template_folder", "s3_send", "send_messages", "send_one_off", "send_one_off_step", "send_test", "send_test_preview", "send_test_step", "set_sender", "set_template_sender", "view_template", "view_template_version", "view_template_versions", }, "api-integration": { "api_callbacks", "api_documentation", "api_integration", "api_keys", "create_api_key", "delivery_status_callback", "received_text_messages_callback", "revoke_api_key", "safelist", }, "settings": { "branding_request", "link_service_to_organisation", "request_letter_branding", "request_to_go_live", "service_add_email_reply_to", "service_add_letter_contact", "service_add_sms_sender", "service_agreement", "service_accept_agreement", "service_confirm_agreement", "service_confirm_delete_email_reply_to", "service_confirm_delete_letter_contact", "service_confirm_delete_sms_sender", "service_edit_email_reply_to", "service_edit_letter_contact", "service_edit_sms_sender", "service_email_reply_to", "service_letter_contact_details", "service_make_blank_default_letter_contact", "service_name_change", "service_name_change_confirm", "service_email_from_change", "service_email_from_change_confirm", "service_preview_email_branding", "service_preview_letter_branding", "service_set_auth_type", "service_set_channel", "service_set_contact_link", "service_set_email_branding", "service_set_inbound_number", "service_set_inbound_sms", "service_set_international_sms", "service_set_letter_contact_block", "service_set_letters", "service_set_reply_to_email", "service_set_sms_prefix", "service_verify_reply_to_address", "service_verify_reply_to_address_updates", "service_settings", "service_sms_senders", "set_message_limit", "set_free_sms_allowance", "service_set_letter_branding", "submit_request_to_go_live", }, "sent-messages": { "view_notifications", "view_notification", }, "bulk-sends": { "view_jobs", "view_job", }, } exclude = { "accept_invite", "accept_org_invite", "add_data_retention", "add_inbound_sms_admin", "add_organisation", "add_service", "archive_service", "callbacks", "cancel_invited_org_user", "cancel_invited_user", "cancel_job", "cancel_letter", "cancel_letter_job", "check_and_resend_text_code", "check_and_resend_verification_code", "check_messages_preview", "check_notification_preview", "choose_account", "choose_service", "confirm_edit_organisation_name", "data_retention", "delete_template_folder", "design_content", "download_notifications_csv", "edit_data_retention", "edit_organisation_agreement", "edit_organisation_crown_status", "edit_organisation_domains", "edit_organisation_email_branding", "edit_organisation_letter_branding", "edit_organisation_go_live_notes", "edit_organisation_name", "edit_organisation_type", "edit_provider", "edit_user_org_permissions", "email_not_received", "email_template", "error", "forgot_password", "get_example_csv", "get_notifications_as_json", "go_to_dashboard_after_tour", "inbound_sms_admin", "invite_org_user", "letter_branding_preview_image", "letter_template", "manage_org_users", "new_password", "redirect_contact", "redirect_service_dashboard", "redirect_terms", "redirect_roadmap", "redirect_email", "redirect_sms", "redirect_letters", "redirect_templates", "redirect_security", "redirect_messages_status", "organisation_dashboard", "organisation_trial_mode_services", "organisation_settings", "organisation_preview_email_branding", "organisation_preview_letter_branding", "organisations", "privacy", "public_agreement", "public_download_agreement", "redact_template", "register", "register_from_invite", "register_from_org_invite", "registration_continue", "remove_user_from_organisation", "remove_user_from_service", "request_letter_branding", "request_to_go_live", "terms_of_use", "use_case", "resend_email_link", "resend_email_verification", "resume_service", "robots", "security_txt", "send_notification", "service_dashboard", "service_dashboard_updates", "service_delete_email_reply_to", "service_delete_letter_contact", "service_delete_sms_sender", "service_download_agreement", "service_letter_validation_preview", "service_switch_upload_document", "service_switch_count_as_live", "service_switch_live", "service_set_permission", "services_or_dashboard", "show_accounts_or_dashboard", "sign_out", "start_job", "start_tour", "styleguide", "temp_service_history", "template_history", "user_profile_authenticate_security_keys", "user_profile_complete_security_keys", "user_profile_validate_security_keys", "user_profile_add_security_keys", "user_profile_security_keys", "user_profile_security_keys_confirm_delete", "uploads", "usage", "view_job_csv", "view_job_updates", "view_letter_notification_as_preview", "view_letter_template_preview", "view_notification_updates", "view_notifications_csv", "view_template_version_preview", "safelist", "get_template_data", "block_user", "unblock_user", "service_sending_domain", "welcome", } class MainNavigation(Navigation): mapping = { "dashboard": { "monthly", "service_dashboard", "template_usage", "view_job", "view_jobs", "view_notification", "view_notifications", }, "templates": { "action_blocked", "add_service_template", "check_messages", "check_notification", "choose_template", "choose_template_to_copy", "confirm_redact_template", "copy_template", "delete_service_template", "edit_service_template", "edit_template_postage", "manage_template_folder", "s3_send", "send_messages", "send_one_off", "send_one_off_step", "send_test", "send_test_preview", "send_test_step", "set_sender", "set_template_sender", "view_template", "view_template_version", "view_template_versions", "welcome", }, "uploads": { "uploads", }, "team-members": { "confirm_edit_user_email", "confirm_edit_user_mobile_number", "edit_user_email", "edit_user_mobile_number", "edit_user_permissions", "invite_user", "manage_users", "remove_user_from_service", }, "usage": { "usage", }, "settings": { "branding_request", "link_service_to_organisation", "request_letter_branding", "request_to_go_live", "terms_of_use", "use_case", "service_add_email_reply_to", "service_add_letter_contact", "service_add_sms_sender", "service_agreement", "service_accept_agreement", "service_confirm_agreement", "service_confirm_delete_email_reply_to", "service_confirm_delete_letter_contact", "service_confirm_delete_sms_sender", "service_edit_email_reply_to", "service_edit_letter_contact", "service_edit_sms_sender", "service_email_reply_to", "service_letter_contact_details", "service_make_blank_default_letter_contact", "service_name_change", "service_name_change_confirm", "service_email_from_change", "service_email_from_change_confirm", "service_preview_email_branding", "service_preview_letter_branding", "service_set_auth_type", "service_set_channel", "service_set_contact_link", "service_set_email_branding", "service_set_inbound_number", "service_set_inbound_sms", "service_set_international_sms", "service_set_letter_contact_block", "service_set_letters", "service_set_reply_to_email", "service_set_sms_prefix", "service_verify_reply_to_address", "service_verify_reply_to_address_updates", "service_settings", "service_sms_senders", "set_message_limit", "set_free_sms_allowance", "service_set_letter_branding", "submit_request_to_go_live", }, "api-integration": { "api_callbacks", "api_documentation", "api_integration", "api_keys", "create_api_key", "delivery_status_callback", "received_text_messages_callback", "revoke_api_key", "safelist", }, "choose_account": { "choose_account", }, "live_services": { "live_services", }, "user_profile": { "user_profile", }, "sign_out": {"sign_out"}, } exclude = { "accept_invite", "accept_org_invite", "add_data_retention", "add_inbound_sms_admin", "add_organisation", "add_service", "archive_service", "archive_user", "clear_cache", "create_email_branding", "create_letter_branding", "email_branding", "find_services_by_name", "find_users_by_email", "letter_branding", "live_api_keys", "live_services", "live_services_csv", "notifications_sent_by_service", "performance_platform_xlsx", "send_method_stats_by_service", "trial_report_csv", "usage_for_all_services", "platform_admin", "platform_admin_letter_validation_preview", "platform_admin_list_complaints", "platform_admin_reports", "platform_admin_returned_letters", "suspend_service", "trial_services", "update_email_branding", "update_letter_branding", "user_information", "view_provider", "view_providers", "welcome", } class OrgNavigation(Navigation): mapping = { "dashboard": { "organisation_dashboard", }, "settings": { "confirm_edit_organisation_name", "edit_organisation_agreement", "edit_organisation_crown_status", "edit_organisation_domains", "edit_organisation_email_branding", "edit_organisation_letter_branding", "edit_organisation_domains", "edit_organisation_go_live_notes", "edit_organisation_name", "edit_organisation_type", "organisation_preview_email_branding", "organisation_preview_letter_branding", "organisation_settings", }, "team-members": { "edit_user_org_permissions", "invite_org_user", "manage_org_users", "remove_user_from_organisation", }, "trial-services": { "organisation_trial_mode_services", }, } exclude = { "accept_invite", "accept_org_invite", "a11y", "action_blocked", "add_data_retention", "add_inbound_sms_admin", "add_organisation", "add_service", "add_service_template", "api_callbacks", "api_documentation", "api_integration", "api_keys", "archive_service", "archive_user", "branding_request", "callbacks", "cancel_invited_org_user", "cancel_invited_user", "cancel_job", "cancel_letter", "cancel_letter_job", "check_and_resend_text_code", "check_and_resend_verification_code", "check_messages", "check_messages_preview", "check_notification", "check_notification_preview", "choose_account", "choose_service", "choose_template", "choose_template_to_copy", "clear_cache", "confirm_edit_user_email", "confirm_edit_user_mobile_number", "confirm_redact_template", "copy_template", "create_api_key", "create_email_branding", "create_letter_branding", "data_retention", "delete_service_template", "delete_template_folder", "delivery_status_callback", "design_content", "documentation", "download_notifications_csv", "edit_data_retention", "edit_provider", "edit_service_template", "edit_template_postage", "edit_user_email", "edit_user_mobile_number", "edit_user_permissions", "email_branding", "email_not_received", "email_template", "error", "features", "email", "letters", "templates", "sms", "contact", "find_services_by_name", "find_users_by_email", "forgot_password", "get_example_csv", "get_notifications_as_json", "go_to_dashboard_after_tour", "inbound_sms_admin", "index", "invite_user", "letter_branding", "letter_branding_preview_image", "letter_template", "link_service_to_organisation", "live_api_keys", "live_services", "live_services_csv", "manage_template_folder", "manage_users", "messages_status", "new_password", "notifications_sent_by_service", "redirect_contact", "redirect_roadmap", "redirect_service_dashboard", "redirect_terms", "redirect_email", "redirect_sms", "redirect_letters", "redirect_templates", "redirect_security", "redirect_messages_status", "organisations", "performance_platform_xlsx", "send_method_stats_by_service", "trial_report_csv", "platform_admin", "platform_admin_letter_validation_preview", "platform_admin_list_complaints", "platform_admin_reports", "platform_admin_returned_letters", "pricing", "privacy", "public_agreement", "public_download_agreement", "received_text_messages_callback", "redact_template", "register", "register_from_invite", "register_from_org_invite", "registration_continue", "remove_user_from_service", "request_letter_branding", "request_to_go_live", "terms_of_use", "use_case", "resend_email_link", "resend_email_verification", "resume_service", "revoke_api_key", "roadmap", "robots", "s3_send", "security", "security_txt", "send_messages", "send_notification", "send_one_off", "send_one_off_step", "send_test", "send_test_preview", "send_test_step", "service_add_email_reply_to", "service_add_letter_contact", "service_add_sms_sender", "service_agreement", "service_accept_agreement", "service_confirm_agreement", "service_confirm_delete_email_reply_to", "service_confirm_delete_letter_contact", "service_confirm_delete_sms_sender", "service_dashboard", "service_dashboard_updates", "service_delete_email_reply_to", "service_delete_letter_contact", "service_delete_sms_sender", "service_download_agreement", "service_edit_email_reply_to", "service_edit_letter_contact", "service_edit_sms_sender", "service_email_reply_to", "service_letter_contact_details", "service_letter_validation_preview", "service_make_blank_default_letter_contact", "service_name_change", "service_name_change_confirm", "service_email_from_change", "service_email_from_change_confirm", "service_preview_email_branding", "service_preview_letter_branding", "service_set_auth_type", "service_set_channel", "service_set_contact_link", "service_set_email_branding", "service_set_inbound_number", "service_set_inbound_sms", "service_set_international_sms", "service_set_letter_contact_block", "service_set_letters", "service_set_reply_to_email", "service_set_sms_prefix", "service_settings", "service_sms_senders", "service_switch_upload_document", "service_switch_count_as_live", "service_switch_live", "service_set_permission", "service_verify_reply_to_address", "service_verify_reply_to_address_updates", "services_or_dashboard", "set_message_limit", "set_free_sms_allowance", "service_set_letter_branding", "set_lang", "set_sender", "set_template_sender", "show_accounts_or_dashboard", "sign_in", "sign_out", "start_job", "start_tour", "activity", "activity_download", "styleguide", "submit_request_to_go_live", "suspend_service", "temp_service_history", "template_history", "template_usage", "terms", "trial_services", "two_factor_sms_sent", "two_factor_email_sent", "update_email_branding", "update_letter_branding", "uploads", "usage", "usage_for_all_services", "user_information", "user_profile", "user_profile_authenticate_security_keys", "user_profile_complete_security_keys", "user_profile_validate_security_keys", "user_profile_add_security_keys", "user_profile_security_keys", "user_profile_security_keys_confirm_delete", "user_profile_email", "user_profile_email_authenticate", "user_profile_email_confirm", "user_profile_mobile_number", "user_profile_mobile_number_authenticate", "user_profile_mobile_number_confirm", "user_profile_name", "user_profile_password", "user_profile_disable_platform_admin_view", "verify", "verify_email", "verify_mobile", "view_job", "view_job_csv", "view_job_updates", "view_jobs", "view_letter_notification_as_preview", "view_letter_template_preview", "view_notification", "view_notification_updates", "view_notifications", "view_notifications_csv", "view_provider", "view_providers", "view_template", "view_template_version", "view_template_version_preview", "view_template_versions", "why-notify", "safelist", "get_template_data", "block_user", "unblock_user", "service_sending_domain", "welcome", }
30.526699
128
0.57637
f385e56e9ef6a4355d833a7d21dfc036ff777f6b
1,092
py
Python
tsengine/util/operations.py
ccccxjin/TsEngine
5f8deed436eb9756be40f78a7bf52be9e910b501
[ "MIT" ]
1
2020-07-10T09:11:38.000Z
2020-07-10T09:11:38.000Z
tsengine/util/operations.py
ccccxjin/tsengine
5f8deed436eb9756be40f78a7bf52be9e910b501
[ "MIT" ]
null
null
null
tsengine/util/operations.py
ccccxjin/tsengine
5f8deed436eb9756be40f78a7bf52be9e910b501
[ "MIT" ]
null
null
null
from ._collections import _escape_mapper_args class F: __slots__ = 'name' def __init__(self, name): self.name = name def __lt__(self, other): other = _escape_mapper_args(other) return '%s < %s' % (self.name, other) def __le__(self, other): other = _escape_mapper_args(other) return '%s <= %s' % (self.name, other) def __gt__(self, other): other = _escape_mapper_args(other) return '%s > %s' % (self.name, other) def __ge__(self, other): other = _escape_mapper_args(other) return '%s >= %s' % (self.name, other) def __eq__(self, other): other = _escape_mapper_args(other) return '%s = %s' % (self.name, other) def __ne__(self, other): other = _escape_mapper_args(other) return '%s != %s' % (self.name, other) def like(self, other): other = _escape_mapper_args(other) return "%s like '%s' " % (self.name, other) f = F def or_(*args): return '(' + ' or '.join(args) + ')' def and_(*args): return ' and '.join(args)
22.75
51
0.572344
3305a83dae6e4396b85627393c3d99118eeff877
34,682
py
Python
electrumx/server/block_processor.py
commerceblock/cb-electrum-server
c1d5aaf32790e4679bec8b640cdbbc15bc6a9b27
[ "MIT" ]
1
2019-06-19T23:36:28.000Z
2019-06-19T23:36:28.000Z
electrumx/server/block_processor.py
commerceblock/cb-electrum-server
c1d5aaf32790e4679bec8b640cdbbc15bc6a9b27
[ "MIT" ]
5
2018-11-16T14:06:30.000Z
2019-08-30T14:05:08.000Z
electrumx/server/block_processor.py
commerceblock/cb-electrum-server
c1d5aaf32790e4679bec8b640cdbbc15bc6a9b27
[ "MIT" ]
null
null
null
# Copyright (c) 2016-2017, Neil Booth # Copyright (c) 2017, the ElectrumX authors # # All rights reserved. # # See the file "LICENCE" for information about the copyright # and warranty status of this software. '''Block prefetcher and chain processor.''' import array import asyncio from struct import pack, unpack import time from functools import partial from aiorpcx import TaskGroup, run_in_thread import electrumx from electrumx.server.daemon import DaemonError from electrumx.lib.hash import hash_to_hex_str, HASHX_LEN from electrumx.lib.merkle import Merkle, MerkleCache from electrumx.lib.util import chunks, formatted_time, class_logger, unpack_uint64_from import electrumx.server.db class Prefetcher(object): '''Prefetches blocks (in the forward direction only).''' def __init__(self, daemon, coin, blocks_event): self.logger = class_logger(__name__, self.__class__.__name__) self.daemon = daemon self.coin = coin self.blocks_event = blocks_event self.blocks = [] self.caught_up = False # Access to fetched_height should be protected by the semaphore self.fetched_height = None self.semaphore = asyncio.Semaphore() self.refill_event = asyncio.Event() # The prefetched block cache size. The min cache size has # little effect on sync time. self.cache_size = 0 self.min_cache_size = 10 * 1024 * 1024 # This makes the first fetch be 10 blocks self.ave_size = self.min_cache_size // 10 async def main_loop(self, bp_height): '''Loop forever polling for more blocks.''' await self.reset_height(bp_height) while True: try: # Sleep a while if there is nothing to prefetch await self.refill_event.wait() if not await self._prefetch_blocks(): await asyncio.sleep(5) except DaemonError as e: self.logger.info('ignoring daemon error: {}'.format(e)) def get_prefetched_blocks(self): '''Called by block processor when it is processing queued blocks.''' blocks = self.blocks self.blocks = [] self.cache_size = 0 self.refill_event.set() return blocks async def reset_height(self, height): '''Reset to prefetch blocks from the block processor's height. Used in blockchain reorganisations. This coroutine can be called asynchronously to the _prefetch_blocks coroutine so we must synchronize with a semaphore. ''' async with self.semaphore: self.blocks.clear() self.cache_size = 0 self.fetched_height = height self.refill_event.set() daemon_height = await self.daemon.height() behind = daemon_height - height if behind > 0: self.logger.info('catching up to daemon height {:,d} ' '({:,d} blocks behind)' .format(daemon_height, behind)) else: self.logger.info('caught up to daemon height {:,d}' .format(daemon_height)) async def _prefetch_blocks(self): '''Prefetch some blocks and put them on the queue. Repeats until the queue is full or caught up. ''' daemon = self.daemon daemon_height = await daemon.height() async with self.semaphore: while self.cache_size < self.min_cache_size: # Try and catch up all blocks but limit to room in cache. # Constrain fetch count to between 0 and 500 regardless; # testnet can be lumpy. cache_room = self.min_cache_size // self.ave_size count = min(daemon_height - self.fetched_height, cache_room) count = min(500, max(count, 0)) if not count: self.caught_up = True return False first = self.fetched_height + 1 hex_hashes = await daemon.block_hex_hashes(first, count) if self.caught_up: self.logger.info('new block height {:,d} hash {}' .format(first + count-1, hex_hashes[-1])) blocks = await daemon.raw_blocks(hex_hashes) assert count == len(blocks) # Special handling for genesis block if first == 0: blocks[0] = self.coin.genesis_block(blocks[0]) self.logger.info('verified genesis block with hash {}' .format(hex_hashes[0])) # Update our recent average block size estimate size = sum(len(block) for block in blocks) if count >= 10: self.ave_size = size // count else: self.ave_size = (size + (10 - count) * self.ave_size) // 10 self.blocks.extend(blocks) self.cache_size += size self.fetched_height += count self.blocks_event.set() self.refill_event.clear() return True class HeaderSource(object): def __init__(self, db): self.hashes = db.fs_block_hashes class ChainError(Exception): '''Raised on error processing blocks.''' class BlockProcessor(electrumx.server.db.DB): '''Process blocks and update the DB state to match. Employ a prefetcher to prefetch blocks in batches for processing. Coordinate backing up in case of chain reorganisations. ''' def __init__(self, env, daemon, notifications): super().__init__(env) self.daemon = daemon self.notifications = notifications self.blocks_event = asyncio.Event() self.prefetcher = Prefetcher(daemon, env.coin, self.blocks_event) # Meta self.cache_MB = env.cache_MB self.next_cache_check = 0 self.last_flush = time.time() self.touched = set() self.reorg_count = 0 # Header merkle cache self.merkle = Merkle() self.header_mc = None # Caches of unflushed items. self.headers = [] self.tx_hashes = [] self.undo_infos = [] # UTXO cache self.utxo_cache = {} self.db_deletes = [] # If the lock is successfully acquired, in-memory chain state # is consistent with self.height self.state_lock = asyncio.Lock() async def run_in_thread_shielded(self, func, *args): async with self.state_lock: return await asyncio.shield(run_in_thread(func, *args)) async def check_and_advance_blocks(self, raw_blocks): '''Process the list of raw blocks passed. Detects and handles reorgs. ''' if not raw_blocks: return first = self.height + 1 blocks = [self.coin.block(raw_block, first + n) for n, raw_block in enumerate(raw_blocks)] headers = [block.header for block in blocks] hprevs = [self.coin.header_prevhash(h) for h in headers] chain = [self.tip] + [self.coin.header_hash(h) for h in headers[:-1]] if hprevs == chain: await self.run_in_thread_shielded(self.advance_blocks, blocks) if self._caught_up_event.is_set(): await self.notifications.on_block(self.touched, self.height) self.touched = set() elif hprevs[0] != chain[0]: await self.reorg_chain() else: # It is probably possible but extremely rare that what # bitcoind returns doesn't form a chain because it # reorg-ed the chain as it was processing the batched # block hash requests. Should this happen it's simplest # just to reset the prefetcher and try again. self.logger.warning('daemon blocks do not form a chain; ' 'resetting the prefetcher') await self.prefetcher.reset_height(self.height) async def reorg_chain(self, count=None): '''Handle a chain reorganisation. Count is the number of blocks to simulate a reorg, or None for a real reorg.''' if count is None: self.logger.info('chain reorg detected') else: self.logger.info(f'faking a reorg of {count:,d} blocks') await run_in_thread(self.flush, True) async def get_raw_blocks(last_height, hex_hashes): heights = range(last_height, last_height - len(hex_hashes), -1) try: blocks = [self.read_raw_block(height) for height in heights] self.logger.info(f'read {len(blocks)} blocks from disk') return blocks except Exception: return await self.daemon.raw_blocks(hex_hashes) start, last, hashes = await self.reorg_hashes(count) # Reverse and convert to hex strings. hashes = [hash_to_hex_str(hash) for hash in reversed(hashes)] for hex_hashes in chunks(hashes, 50): raw_blocks = await get_raw_blocks(last, hex_hashes) await self.run_in_thread_shielded(self.backup_blocks, raw_blocks) last -= len(raw_blocks) # Truncate header_mc: header count is 1 more than the height. # Note header_mc is None if the reorg happens at startup. if self.header_mc: self.header_mc.truncate(self.height + 1) await self.prefetcher.reset_height(self.height) async def reorg_hashes(self, count): '''Return a pair (start, last, hashes) of blocks to back up during a reorg. The hashes are returned in order of increasing height. Start is the height of the first hash, last of the last. ''' start, count = await self.calc_reorg_range(count) last = start + count - 1 s = '' if count == 1 else 's' self.logger.info(f'chain was reorganised replacing {count:,d} ' f'block{s} at heights {start:,d}-{last:,d}') return start, last, self.fs_block_hashes(start, count) async def calc_reorg_range(self, count): '''Calculate the reorg range''' def diff_pos(hashes1, hashes2): '''Returns the index of the first difference in the hash lists. If both lists match returns their length.''' for n, (hash1, hash2) in enumerate(zip(hashes1, hashes2)): if hash1 != hash2: return n return len(hashes) if count is None: # A real reorg start = self.height - 1 count = 1 while start > 0: hashes = self.fs_block_hashes(start, count) hex_hashes = [hash_to_hex_str(hash) for hash in hashes] d_hex_hashes = await self.daemon.block_hex_hashes(start, count) n = diff_pos(hex_hashes, d_hex_hashes) if n > 0: start += n break count = min(count * 2, start) start -= count count = (self.height - start) + 1 else: start = (self.height - count) + 1 return start, count def flush_state(self, batch): '''Flush chain state to the batch.''' now = time.time() self.wall_time += now - self.last_flush self.last_flush = now self.last_flush_tx_count = self.tx_count self.write_utxo_state(batch) def assert_flushed(self): '''Asserts state is fully flushed.''' assert self.tx_count == self.fs_tx_count == self.db_tx_count assert self.height == self.fs_height == self.db_height assert not self.undo_infos assert not self.utxo_cache assert not self.db_deletes self.history.assert_flushed() def flush(self, flush_utxos=False): '''Flush out cached state. History is always flushed. UTXOs are flushed if flush_utxos.''' if self.height == self.db_height: self.assert_flushed() return flush_start = time.time() last_flush = self.last_flush tx_diff = self.tx_count - self.last_flush_tx_count # Flush to file system self.fs_flush() fs_end = time.time() if self.utxo_db.for_sync: self.logger.info('flushed to FS in {:.1f}s' .format(fs_end - flush_start)) # History next - it's fast and frees memory hashX_count = self.history.flush() if self.utxo_db.for_sync: self.logger.info('flushed history in {:.1f}s for {:,d} addrs' .format(time.time() - fs_end, hashX_count)) # Flush state last as it reads the wall time. with self.utxo_db.write_batch() as batch: if flush_utxos: self.flush_utxos(batch) self.flush_state(batch) # Update and put the wall time again - otherwise we drop the # time it took to commit the batch self.flush_state(self.utxo_db) self.logger.info('flush #{:,d} took {:.1f}s. Height {:,d} txs: {:,d}' .format(self.history.flush_count, self.last_flush - flush_start, self.height, self.tx_count)) # Catch-up stats if self.utxo_db.for_sync: tx_per_sec = int(self.tx_count / self.wall_time) this_tx_per_sec = 1 + int(tx_diff / (self.last_flush - last_flush)) self.logger.info('tx/sec since genesis: {:,d}, ' 'since last flush: {:,d}' .format(tx_per_sec, this_tx_per_sec)) daemon_height = self.daemon.cached_height() if self.height > self.coin.TX_COUNT_HEIGHT: tx_est = (daemon_height - self.height) * self.coin.TX_PER_BLOCK else: tx_est = ((daemon_height - self.coin.TX_COUNT_HEIGHT) * self.coin.TX_PER_BLOCK + (self.coin.TX_COUNT - self.tx_count)) # Damp the enthusiasm realism = 2.0 - 0.9 * self.height / self.coin.TX_COUNT_HEIGHT tx_est *= max(realism, 1.0) self.logger.info('sync time: {} ETA: {}' .format(formatted_time(self.wall_time), formatted_time(tx_est / this_tx_per_sec))) def fs_flush(self): '''Flush the things stored on the filesystem.''' assert self.fs_height + len(self.headers) == self.height assert self.tx_count == self.tx_counts[-1] if self.tx_counts else 0 self.fs_update(self.fs_height, self.headers, self.tx_hashes) self.fs_height = self.height self.fs_tx_count = self.tx_count self.tx_hashes = [] self.headers = [] def backup_flush(self): '''Like flush() but when backing up. All UTXOs are flushed. hashXs - sequence of hashXs which were touched by backing up. Searched for history entries to remove after the backup height. ''' assert self.height < self.db_height self.history.assert_flushed() flush_start = time.time() # Backup FS (just move the pointers back) self.fs_height = self.height self.fs_tx_count = self.tx_count assert not self.headers assert not self.tx_hashes # Backup history. self.touched can include other addresses # which is harmless, but remove None. self.touched.discard(None) nremoves = self.history.backup(self.touched, self.tx_count) self.logger.info('backing up removed {:,d} history entries' .format(nremoves)) with self.utxo_db.write_batch() as batch: # Flush state last as it reads the wall time. self.flush_utxos(batch) self.flush_state(batch) self.logger.info('backup flush #{:,d} took {:.1f}s. ' 'Height {:,d} txs: {:,d}' .format(self.history.flush_count, self.last_flush - flush_start, self.height, self.tx_count)) def check_cache_size(self): '''Flush a cache if it gets too big.''' # Good average estimates based on traversal of subobjects and # requesting size from Python (see deep_getsizeof). one_MB = 1000*1000 utxo_cache_size = len(self.utxo_cache) * 205 db_deletes_size = len(self.db_deletes) * 57 hist_cache_size = self.history.unflushed_memsize() # Roughly ntxs * 32 + nblocks * 42 tx_hash_size = ((self.tx_count - self.fs_tx_count) * 32 + (self.height - self.fs_height) * 42) utxo_MB = (db_deletes_size + utxo_cache_size) // one_MB hist_MB = (hist_cache_size + tx_hash_size) // one_MB self.logger.info('our height: {:,d} daemon: {:,d} ' 'UTXOs {:,d}MB hist {:,d}MB' .format(self.height, self.daemon.cached_height(), utxo_MB, hist_MB)) # Flush history if it takes up over 20% of cache memory. # Flush UTXOs once they take up 80% of cache memory. if utxo_MB + hist_MB >= self.cache_MB or hist_MB >= self.cache_MB // 5: self.flush(utxo_MB >= self.cache_MB * 4 // 5) def advance_blocks(self, blocks): '''Synchronously advance the blocks. It is already verified they correctly connect onto our tip. ''' start = time.time() min_height = self.min_undo_height(self.daemon.cached_height()) height = self.height for block in blocks: height += 1 undo_info = self.advance_txs(block.transactions) if height >= min_height: self.undo_infos.append((undo_info, height)) self.write_raw_block(block.raw, height) headers = [block.header for block in blocks] self.height = height self.headers.extend(headers) self.tip = self.coin.header_hash(headers[-1]) # If caught up, flush everything as client queries are # performed on the DB. if self._caught_up_event.is_set(): self.flush(True) else: if time.time() > self.next_cache_check: self.check_cache_size() self.next_cache_check = time.time() + 30 if not self.first_sync: s = '' if len(blocks) == 1 else 's' self.logger.info('processed {:,d} block{} in {:.1f}s' .format(len(blocks), s, time.time() - start)) def _get_txout_value(self, txout): assert not self.coin.EXTENDED_VOUT return s_pack('<Q', txout.value) def advance_txs(self, txs): self.tx_hashes.append(b''.join(tx_hash for tx, tx_hash in txs)) # Use local vars for speed in the loops undo_info = [] tx_num = self.tx_count script_hashX = self.coin.hashX_from_script s_pack = pack put_utxo = self.utxo_cache.__setitem__ spend_utxo = self.spend_utxo undo_info_append = undo_info.append update_touched = self.touched.update hashXs_by_tx = [] append_hashXs = hashXs_by_tx.append for tx, tx_hash in txs: hashXs = [] append_hashX = hashXs.append tx_numb = s_pack('<I', tx_num) # Spend the inputs if not tx.is_coinbase: for txin in tx.inputs: cache_value = spend_utxo(txin.prev_hash, txin.prev_idx) undo_info_append(cache_value) append_hashX(cache_value[:-12]) # Add the new UTXOs for idx, txout in enumerate(tx.outputs): # Get the hashX. Ignore unspendable outputs hashX = script_hashX(txout.pk_script) if hashX: append_hashX(hashX) put_utxo(tx_hash + s_pack('<H', idx), hashX + tx_numb + self._get_txout_value(txout)) append_hashXs(hashXs) update_touched(hashXs) tx_num += 1 self.history.add_unflushed(hashXs_by_tx, self.tx_count) self.tx_count = tx_num self.tx_counts.append(tx_num) return undo_info def backup_blocks(self, raw_blocks): '''Backup the raw blocks and flush. The blocks should be in order of decreasing height, starting at. self.height. A flush is performed once the blocks are backed up. ''' self.assert_flushed() assert self.height >= len(raw_blocks) coin = self.coin for raw_block in raw_blocks: # Check and update self.tip block = coin.block(raw_block, self.height) header_hash = coin.header_hash(block.header) if header_hash != self.tip: raise ChainError('backup block {} not tip {} at height {:,d}' .format(hash_to_hex_str(header_hash), hash_to_hex_str(self.tip), self.height)) self.tip = coin.header_prevhash(block.header) self.backup_txs(block.transactions) self.height -= 1 self.tx_counts.pop() self.logger.info('backed up to height {:,d}'.format(self.height)) self.backup_flush() def backup_txs(self, txs): # Prevout values, in order down the block (coinbase first if present) # undo_info is in reverse block order undo_info = self.read_undo_info(self.height) if undo_info is None: raise ChainError('no undo information found for height {:,d}' .format(self.height)) n = len(undo_info) # Use local vars for speed in the loops s_pack = pack put_utxo = self.utxo_cache.__setitem__ spend_utxo = self.spend_utxo script_hashX = self.coin.hashX_from_script touched = self.touched undo_entry_len = (44 if self.coin.EXTENDED_VOUT else 12) + HASHX_LEN for tx, tx_hash in reversed(txs): for idx, txout in enumerate(tx.outputs): # Spend the TX outputs. Be careful with unspendable # outputs - we didn't save those in the first place. hashX = script_hashX(txout.pk_script) if hashX: cache_value = spend_utxo(tx_hash, idx) touched.add(cache_value[:-44 if self.coin.EXTENDED_VOUT else -12]) # Restore the inputs if not tx.is_coinbase: for txin in reversed(tx.inputs): n -= undo_entry_len undo_item = undo_info[n:n + undo_entry_len] put_utxo(txin.prev_hash + s_pack('<H', txin.prev_idx), undo_item) touched.add(undo_item[:-44 if self.coin.EXTENDED_VOUT else -12]) assert n == 0 self.tx_count -= len(txs) '''An in-memory UTXO cache, representing all changes to UTXO state since the last DB flush. We want to store millions of these in memory for optimal performance during initial sync, because then it is possible to spend UTXOs without ever going to the database (other than as an entry in the address history, and there is only one such entry per TX not per UTXO). So store them in a Python dictionary with binary keys and values. Key: TX_HASH + TX_IDX (32 + 2 = 34 bytes) Value: HASHX + TX_NUM + VALUE (11 + 4 + 8 = 23 bytes) That's 57 bytes of raw data in-memory. Python dictionary overhead means each entry actually uses about 205 bytes of memory. So almost 5 million UTXOs can fit in 1GB of RAM. There are approximately 42 million UTXOs on bitcoin mainnet at height 433,000. Semantics: add: Add it to the cache dictionary. spend: Remove it if in the cache dictionary. Otherwise it's been flushed to the DB. Each UTXO is responsible for two entries in the DB. Mark them for deletion in the next cache flush. The UTXO database format has to be able to do two things efficiently: 1. Given an address be able to list its UTXOs and their values so its balance can be efficiently computed. 2. When processing transactions, for each prevout spent - a (tx_hash, idx) pair - we have to be able to remove it from the DB. To send notifications to clients we also need to know any address it paid to. To this end we maintain two "tables", one for each point above: 1. Key: b'u' + address_hashX + tx_idx + tx_num Value: the UTXO value as a 64-bit unsigned integer 2. Key: b'h' + compressed_tx_hash + tx_idx + tx_num Value: hashX The compressed tx hash is just the first few bytes of the hash of the tx in which the UTXO was created. As this is not unique there will be potential collisions so tx_num is also in the key. When looking up a UTXO the prefix space of the compressed hash needs to be searched and resolved if necessary with the tx_num. The collision rate is low (<0.1%). ''' def spend_utxo(self, tx_hash, tx_idx): '''Spend a UTXO and return the 33-byte value. If the UTXO is not in the cache it must be on disk. We store all UTXOs so not finding one indicates a logic error or DB corruption. ''' # Fast track is it being in the cache idx_packed = pack('<H', tx_idx) cache_value = self.utxo_cache.pop(tx_hash + idx_packed, None) if cache_value: return cache_value # Spend it from the DB. # Key: b'h' + compressed_tx_hash + tx_idx + tx_num # Value: hashX prefix = b'h' + tx_hash[:4] + idx_packed candidates = {db_key: hashX for db_key, hashX in self.utxo_db.iterator(prefix=prefix)} for hdb_key, hashX in candidates.items(): tx_num_packed = hdb_key[-4:] if len(candidates) > 1: tx_num, = unpack('<I', tx_num_packed) hash, height = self.fs_tx_hash(tx_num) if hash != tx_hash: assert hash is not None # Should always be found continue # Key: b'u' + address_hashX + tx_idx + tx_num # Value: the UTXO value as a 64-bit unsigned integer udb_key = b'u' + hashX + hdb_key[-6:] utxo_value_packed = self.utxo_db.get(udb_key) if utxo_value_packed: # Remove both entries for this UTXO self.db_deletes.append(hdb_key) self.db_deletes.append(udb_key) return hashX + tx_num_packed + utxo_value_packed raise ChainError('UTXO {} / {:,d} not found in "h" table' .format(hash_to_hex_str(tx_hash), tx_idx)) def _flush_cached_utxo(self, batch_put, cache_key, cache_value): assert not self.coin.EXTENDED_VOUT hashX = cache_value[:-12] suffix = cache_key[-2:] + cache_value[-12:-8] batch_put(b'h' + cache_key[:4] + suffix, hashX) batch_put(b'u' + hashX + suffix, cache_value[-8:]) def flush_utxos(self, batch): '''Flush the cached DB writes and UTXO set to the batch.''' # Care is needed because the writes generated by flushing the # UTXO state may have keys in common with our write cache or # may be in the DB already. flush_start = time.time() delete_count = len(self.db_deletes) // 2 utxo_cache_len = len(self.utxo_cache) # Spends batch_delete = batch.delete for key in sorted(self.db_deletes): batch_delete(key) self.db_deletes = [] # New UTXOs batch_put = batch.put for cache_key, cache_value in self.utxo_cache.items(): # suffix = tx_idx + tx_num self._flush_cached_utxo(batch_put, cache_key, cache_value) self.utxo_cache = {} # New undo information self.flush_undo_infos(batch_put, self.undo_infos) self.undo_infos = [] if self.utxo_db.for_sync: self.logger.info('flushed {:,d} blocks with {:,d} txs, {:,d} UTXO ' 'adds, {:,d} spends in {:.1f}s, committing...' .format(self.height - self.db_height, self.tx_count - self.db_tx_count, utxo_cache_len, delete_count, time.time() - flush_start)) self.utxo_flush_count = self.history.flush_count self.db_tx_count = self.tx_count self.db_height = self.height self.db_tip = self.tip async def _process_prefetched_blocks(self): '''Loop forever processing blocks as they arrive.''' while True: if self.height == self.daemon.cached_height(): if not self._caught_up_event.is_set(): await self._first_caught_up() self._caught_up_event.set() await self.blocks_event.wait() self.blocks_event.clear() if self.reorg_count: await self.reorg_chain(self.reorg_count) self.reorg_count = 0 else: blocks = self.prefetcher.get_prefetched_blocks() await self.check_and_advance_blocks(blocks) async def _first_caught_up(self): self.logger.info(f'caught up to height {self.height}') # Flush everything but with first_sync->False state. first_sync = self.first_sync self.first_sync = False self.flush(True) if first_sync: self.logger.info(f'{electrumx.version} synced to ' f'height {self.height:,d}') # Initialise the notification framework await self.notifications.on_block(set(), self.height) # Reopen for serving await self.open_for_serving() # Populate the header merkle cache length = max(1, self.height - self.env.reorg_limit) self.header_mc = MerkleCache(self.merkle, HeaderSource(self), length) self.logger.info('populated header merkle cache') async def _first_open_dbs(self): await self.open_for_sync() # An incomplete compaction needs to be cancelled otherwise # restarting it will corrupt the history self.history.cancel_compaction() # These are our state as we move ahead of DB state self.fs_height = self.db_height self.fs_tx_count = self.db_tx_count self.height = self.db_height self.tip = self.db_tip self.tx_count = self.db_tx_count self.last_flush_tx_count = self.tx_count if self.utxo_db.for_sync: self.logger.info(f'flushing DB cache at {self.cache_MB:,d} MB') # --- External API async def fetch_and_process_blocks(self, caught_up_event): '''Fetch, process and index blocks from the daemon. Sets caught_up_event when first caught up. Flushes to disk and shuts down cleanly if cancelled. This is mainly because if, during initial sync ElectrumX is asked to shut down when a large number of blocks have been processed but not written to disk, it should write those to disk before exiting, as otherwise a significant amount of work could be lost. ''' self._caught_up_event = caught_up_event async with TaskGroup() as group: await group.spawn(self._first_open_dbs()) # Ensure cached_height is set await group.spawn(self.daemon.height()) try: async with TaskGroup() as group: await group.spawn(self.prefetcher.main_loop(self.height)) await group.spawn(self._process_prefetched_blocks()) finally: async with self.state_lock: # Shut down block processing self.logger.info('flushing to DB for a clean shutdown...') self.flush(True) def force_chain_reorg(self, count): '''Force a reorg of the given number of blocks. Returns True if a reorg is queued, false if not caught up. ''' if self._caught_up_event.is_set(): self.reorg_count = count self.blocks_event.set() return True return False class OceanBlockProcessor(BlockProcessor): ''' UTXO changes from parent block processor UTXO cache Key: TX_HASH + TX_IDX (32 + 2 = 34 bytes) Value: HASHX + TX_NUM + ASSET_ID + VALUE (11 + 4 + 32 + 8 = 55 bytes) To this end we maintain two "tables", one for each point above: 1. Key: b'u' + address_hashX + tx_idx + tx_num Value: asset_id (32 byte) + utxo value (64 bit int) 2. Key: b'h' + compressed_tx_hash + tx_idx + tx_num Value: hashX ''' def _get_txout_value(self, txout): assert self.coin.EXTENDED_VOUT conf_value_s = txout.value[1:] conf_value_v = txout.value[0] if conf_value_v == 1 or conf_value_v == 0xff: int_value, = unpack_uint64_from(conf_value_s[::-1], 0) return txout.asset[1:] + pack('<Q', int_value) else: raise Exception("Confidential transactions are not yet handled") def _flush_cached_utxo(self, batch_put, cache_key, cache_value): assert self.coin.EXTENDED_VOUT hashX = cache_value[:-44] suffix = cache_key[-2:] + cache_value[-44:-40] batch_put(b'h' + cache_key[:4] + suffix, hashX) batch_put(b'u' + hashX + suffix, cache_value[-40:]) class DecredBlockProcessor(BlockProcessor): async def calc_reorg_range(self, count): start, count = super().calc_reorg_range(count) if start > 0: # A reorg in Decred can invalidate the previous block start -= 1 count += 1 return start, count
39.056306
87
0.587394
50b70938957dfc575f78127156d86c336d176e5f
562
py
Python
src/icolos/utils/enums/flow_control_enums.py
jharrymoore/Icolos
c60cc00c34208ab7011d41d52a74651763673e7a
[ "Apache-2.0" ]
null
null
null
src/icolos/utils/enums/flow_control_enums.py
jharrymoore/Icolos
c60cc00c34208ab7011d41d52a74651763673e7a
[ "Apache-2.0" ]
null
null
null
src/icolos/utils/enums/flow_control_enums.py
jharrymoore/Icolos
c60cc00c34208ab7011d41d52a74651763673e7a
[ "Apache-2.0" ]
null
null
null
from icolos.core.workflow_steps.prediction.active_learning import StepActiveLearning from icolos.utils.enums.step_enums import StepBaseEnum from icolos.core.flow_control.iterator import StepIterator _SBE = StepBaseEnum class FlowControlInitializationEnum: # These steps are responsible for initializing other steps as part of their execution # Keep these separate to the main pool of steps to avoid circular imports FLOW_CONTROL_INIT_DICT = { _SBE.STEP_ITERATOR: StepIterator, _SBE.STEP_ACTIVE_LEARNING: StepActiveLearning, }
35.125
89
0.800712
e48aa6f051f6f9bbefe6b37382433e4be1f23131
7,265
py
Python
userbot/modules/globalban.py
qmuensa/QB-USERBOT
5a6c098e387755256801b60c1c57f1a404edc671
[ "Naumen", "Condor-1.1", "MS-PL" ]
1
2022-02-03T15:00:26.000Z
2022-02-03T15:00:26.000Z
userbot/modules/globalban.py
qmuensa/QB-USERBOT
5a6c098e387755256801b60c1c57f1a404edc671
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
userbot/modules/globalban.py
qmuensa/QB-USERBOT
5a6c098e387755256801b60c1c57f1a404edc671
[ "Naumen", "Condor-1.1", "MS-PL" ]
1
2022-02-21T16:07:35.000Z
2022-02-21T16:07:35.000Z
# Copyright (C) 2020 Catuserbot <https://github.com/sandy1709/catuserbot> # Ported by @mrismanaziz # FROM Man-Userbot <https://github.com/mrismanaziz/Man-Userbot> # t.me/SharingUserbot import asyncio from datetime import datetime from io import BytesIO from telethon import events from telethon.errors import BadRequestError from telethon.tl.functions.channels import EditBannedRequest from telethon.tl.types import Channel import userbot.modules.sql_helper.gban_sql as gban_sql from userbot import BOTLOG_CHATID from userbot import CMD_HANDLER as cmd from userbot import CMD_HELP, DEVS, bot from userbot.events import register from userbot.utils import edit_or_reply, get_user_from_event, man_cmd from .admin import BANNED_RIGHTS, UNBAN_RIGHTS async def admin_groups(grp): admgroups = [] async for dialog in grp.client.iter_dialogs(): entity = dialog.entity if ( isinstance(entity, Channel) and entity.megagroup and (entity.creator or entity.admin_rights) ): admgroups.append(entity.id) return admgroups def mentionuser(name, userid): return f"[{name}](tg://user?id={userid})" @man_cmd(pattern="gban(?: |$)(.*)") @register(pattern=r"^\.cgban(?: |$)(.*)", sudo=True) async def gban(event): if event.fwd_from: return gbun = await edit_or_reply(event, "`Gbanning...`") start = datetime.now() user, reason = await get_user_from_event(event, gbun) if not user: return if user.id == (await event.client.get_me()).id: await gbun.edit("**Ngapain NgeGban diri sendiri Goblok 🐽**") return if user.id in DEVS: await gbun.edit("**Gagal GBAN karena dia adalah Pembuat saya 🗿**") return if gban_sql.is_gbanned(user.id): await gbun.edit( f"**Si** [Jamet](tg://user?id={user.id}) **ini sudah ada di daftar gbanned**" ) else: gban_sql.freakgban(user.id, reason) san = [] san = await admin_groups(event) count = 0 fiz = len(san) if fiz == 0: await gbun.edit("**Anda Tidak mempunyai GC yang anda admin 🥺**") return await gbun.edit( f"**initiating gban of the** [Jamet](tg://user?id={user.id}) **in** `{len(san)}` **groups**" ) for i in range(fiz): try: await event.client(EditBannedRequest(san[i], user.id, BANNED_RIGHTS)) await asyncio.sleep(0.5) count += 1 except BadRequestError: await event.client.send_message( BOTLOG_CHATID, f"**Anda tidak memiliki izin Banned di :**\n**Group Chat :** `{event.chat_id}`", ) end = datetime.now() timetaken = (end - start).seconds if reason: await gbun.edit( f"**GBanned** [{user.first_name}](tg://user?id={user.id}) **in** `{count}` **groups in** `{timetaken}` **seconds**!!\n**Reason :** `{reason}`" ) else: await gbun.edit( f"**GBanned** [{user.first_name}](tg://user?id={user.id}) **in** `{count}` **groups in** `{timetaken}` **seconds**!!\n**Added to gbanlist.**" ) @man_cmd(pattern="ungban(?: |$)(.*)") @register(pattern=r"^\.cungban(?: |$)(.*)", sudo=True) async def ungban(event): if event.fwd_from: return ungbun = await edit_or_reply(event, "`UnGbanning...`") start = datetime.now() user, reason = await get_user_from_event(event, ungbun) if not user: return if gban_sql.is_gbanned(user.id): gban_sql.freakungban(user.id) else: await ungbun.edit( f"**Si** [Jamet](tg://user?id={user.id}) **ini tidak ada dalam daftar gban Anda**" ) return san = [] san = await admin_groups(event) count = 0 fiz = len(san) if fiz == 0: await ungbun.edit("**Anda Tidak mempunyai GC yang anda admin 🥺**") return await ungbun.edit( f"**initiating ungban of the** [Jamet](tg://user?id={user.id}) **in** `{len(san)}` **groups**" ) for i in range(fiz): try: await event.client(EditBannedRequest(san[i], user.id, UNBAN_RIGHTS)) await asyncio.sleep(0.5) count += 1 except BadRequestError: await event.client.send_message( BOTLOG_CHATID, f"**Anda tidak memiliki izin Banned di :**\n**Group Chat :** `{event.chat_id}`", ) end = datetime.now() timetaken = (end - start).seconds if reason: await ungbun.edit( f"**Ungbanned** [{user.first_name}](tg://user?id={user.id}`) **in** `{count}` **groups in** `{timetaken}` **seconds**!!\n**Reason :** `{reason}`" ) else: await ungbun.edit( f"**Ungbanned** [{user.first_name}](tg://user?id={user.id}) **in** `{count}` **groups in** `{timetaken}` **seconds**!!\n**Removed from gbanlist**" ) @man_cmd(pattern="listgban$") async def gablist(event): if event.fwd_from: return gbanned_users = gban_sql.get_all_gbanned() GBANNED_LIST = "**List Global Banned Saat Ini**\n" if len(gbanned_users) > 0: for a_user in gbanned_users: if a_user.reason: GBANNED_LIST += f"👉 [{a_user.chat_id}](tg://user?id={a_user.chat_id}) **Reason** `{a_user.reason}`\n" else: GBANNED_LIST += ( f"👉 [{a_user.chat_id}](tg://user?id={a_user.chat_id}) `No Reason`\n" ) if len(gbanned_users) >= 4096: with BytesIO(str.encode(GBANNED_LIST)) as fileuser: fileuser.name = "list-gban.txt" await event.client.send_file( event.chat_id, fileuser, force_document=True, thumb="userbot/resources/logo.jpg", caption="**List Global Banned**", allow_cache=False, ) else: GBANNED_LIST = "Belum ada Pengguna yang Di-Gban" await edit_or_reply(event, GBANNED_LIST) @bot.on(events.ChatAction) async def _(event): if event.user_joined or event.added_by: user = await event.get_user() chat = await event.get_chat() if gban_sql.is_gbanned(user.id) and chat.admin_rights: try: await event.client.edit_permissions( chat.id, user.id, view_messages=False, ) await event.reply( f"**#GBanned_User** Joined.\n\n** • First Name:** [{user.first_name}](tg://user?id={user.id})\n • **Action:** `Banned`" ) except BaseException: pass # Ported by @mrismanaziz # FROM Man-Userbot <https://github.com/mrismanaziz/Man-Userbot> # t.me/SharingUserbot CMD_HELP.update( { "gban": f"**Plugin : **`gban`\ \n\n • **Syntax :** `{cmd}gban` <username/id>\ \n • **Function : **Melakukan Banned Secara Global Ke Semua Grup Dimana anda Sebagai Admin.\ \n\n • **Syntax :** `{cmd}ungban` <username/id>\ \n • **Function : **Membatalkan Global Banned\ \n\n • **Syntax :** `{cmd}listgban`\ \n • **Function : **Menampilkan List Global Banned\ " } )
34.43128
158
0.577151
af53796fce82c63c53d91ac174159281d20f6d2a
620
py
Python
Aulas/Mundo 3/091.py
JoaoEmanuell/Meus-Estudos-Python
f6f6eeb6016919e594613785ffe7136d74241ada
[ "MIT" ]
2
2021-07-29T18:58:02.000Z
2021-10-29T21:11:22.000Z
Aulas/Mundo 3/091.py
JoaoEmanuell/Meus-Estudos-Python
f6f6eeb6016919e594613785ffe7136d74241ada
[ "MIT" ]
null
null
null
Aulas/Mundo 3/091.py
JoaoEmanuell/Meus-Estudos-Python
f6f6eeb6016919e594613785ffe7136d74241ada
[ "MIT" ]
null
null
null
from random import randint from operator import itemgetter jogo = {'jogador1': randint(1, 6), 'jogador2': randint(1, 6), 'jogador3': randint(1, 6), 'jogador4': randint(1, 6)} print('Valores sorteados') rank = [] for k, v in jogo.items(): print(f'{k} tirou {v} no dado') print('=' * 30) rank = sorted(jogo.items(), key=itemgetter(1), reverse=True)#o itemgetter vai ser responsavel por permitr uma organização de forma mais facil, ele ira pegar os dados do dicionario, e utiliza-los de forma organizada for i, v in enumerate(rank): print(f'{i+1}° o lugar: {v[0]} com {v[1]}')
41.333333
215
0.646774
2732c1e924031c3533ec180c59d1ba8aba3c1fa4
2,980
py
Python
src/secondaires/navigation/equipage/volontes/virer_tribord.py
stormi/tsunami
bdc853229834b52b2ee8ed54a3161a1a3133d926
[ "BSD-3-Clause" ]
null
null
null
src/secondaires/navigation/equipage/volontes/virer_tribord.py
stormi/tsunami
bdc853229834b52b2ee8ed54a3161a1a3133d926
[ "BSD-3-Clause" ]
null
null
null
src/secondaires/navigation/equipage/volontes/virer_tribord.py
stormi/tsunami
bdc853229834b52b2ee8ed54a3161a1a3133d926
[ "BSD-3-Clause" ]
null
null
null
# -*-coding:Utf-8 -* # Copyright (c) 2013 LE GOFF Vincent # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT # OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Fichier contenant la volonté VirerTribord.""" import re from secondaires.navigation.equipage.volontes.virer_gouvernail import \ VirerGouvernail class VirerTribord(VirerGouvernail): """Classe représentant une volonté. Cette volonté choisit un matelot pour, si besoin, se déplacer dans la salle du gouvernail, le prendre en main et lui demander de virer sur tribord. Cette volonté utilise donc l'alignement relatif, à la différence de 'virer' qui utilise l'alignement absolu. """ cle = "virer_tribord" ordre_court = re.compile(r"^vt([0-9]{1,3})$", re.I) ordre_long = re.compile(r"^virer\s+tribord\s+([0-9]{1,3})$", re.I) def executer(self, couple): """Exécute la volonté.""" self.navire.equipage.retirer_controle("direction") VirerGouvernail.executer(self, couple) def crier_ordres(self, personnage): """On fait crier l'ordre au personnage.""" direction = int((self.direction - self.navire.direction.direction) % \ 180) msg = "{} s'écrie : virez de {}° tribord !".format( personnage.distinction_audible, direction) self.navire.envoyer(msg) @classmethod def extraire_arguments(cls, navire, direction): """Extrait les arguments de la volonté.""" direction = int(direction) % 180 return ((navire.direction.direction + direction) % 360, )
41.971831
79
0.72349
c2fc460528777bc979b0eb11d01deb297cf8daac
800
py
Python
ros/src/twist_controller/pid.py
mrhm2000/CarND-Capstone
804182ecfc329d9a593555eff795da1f7cf628e2
[ "MIT" ]
null
null
null
ros/src/twist_controller/pid.py
mrhm2000/CarND-Capstone
804182ecfc329d9a593555eff795da1f7cf628e2
[ "MIT" ]
2
2018-06-25T16:28:45.000Z
2018-07-01T14:07:40.000Z
ros/src/twist_controller/pid.py
mrhm2000/CarND-Capstone
804182ecfc329d9a593555eff795da1f7cf628e2
[ "MIT" ]
8
2018-06-10T17:18:03.000Z
2018-07-19T18:28:07.000Z
MIN_NUM = float('-inf') MAX_NUM = float('inf') class PID(object): def __init__(self, kp, ki, kd, min=MIN_NUM, max=MAX_NUM): self.kp = kp self.ki = ki self.kd = kd self.min = min self.max = max self.integral = self.last_error = 0. def reset(self): self.integral = 0.0 def step(self, error, sample_time): integral = self.integral + error * sample_time derivative = (error - self.last_error) / sample_time result = self.kp * error + self.ki * integral + self.kd * derivative if result > self.max: result = self.max elif result < self.min: result = self.min else: self.integral = integral self.last_error = error return result
23.529412
76
0.55625
4a46d3a6597e11d7e43ec9f801e82f47f8d06b99
9,018
py
Python
salt/modules/match.py
fictivekin/salt
f4b6f815d47ab8c790028e8ddad64ee0f8bb3f00
[ "Apache-2.0" ]
null
null
null
salt/modules/match.py
fictivekin/salt
f4b6f815d47ab8c790028e8ddad64ee0f8bb3f00
[ "Apache-2.0" ]
null
null
null
salt/modules/match.py
fictivekin/salt
f4b6f815d47ab8c790028e8ddad64ee0f8bb3f00
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- ''' The match module allows for match routines to be run and determine target specs ''' from __future__ import absolute_import # Import python libs import inspect import logging import sys # Import salt libs import salt.minion import salt.utils from salt.defaults import DEFAULT_TARGET_DELIM from salt.ext.six import string_types __func_alias__ = { 'list_': 'list' } log = logging.getLogger(__name__) def compound(tgt, minion_id=None): ''' Return True if the minion ID matches the given compound target minion_id Specify the minion ID to match against the target expression .. versionadded:: 2014.7.0 CLI Example: .. code-block:: bash salt '*' match.compound 'L@cheese,foo and *' ''' opts = {'grains': __grains__} if minion_id is not None: if not isinstance(minion_id, string_types): minion_id = str(minion_id) else: minion_id = __grains__['id'] opts['id'] = minion_id matcher = salt.minion.Matcher(opts, __salt__) try: return matcher.compound_match(tgt) except Exception as exc: log.exception(exc) return False def ipcidr(tgt): ''' Return True if the minion matches the given ipcidr target CLI Example: .. code-block:: bash salt '*' match.ipcidr '192.168.44.0/24' delimiter Pillar Example: .. code-block:: yaml '172.16.0.0/12': - match: ipcidr - nodeclass: internal ''' matcher = salt.minion.Matcher({'grains': __grains__}, __salt__) try: return matcher.ipcidr_match(tgt) except Exception as exc: log.exception(exc) return False def pillar_pcre(tgt, delimiter=DEFAULT_TARGET_DELIM): ''' Return True if the minion matches the given pillar_pcre target. The ``delimiter`` argument can be used to specify a different delimiter. CLI Example: .. code-block:: bash salt '*' match.pillar_pcre 'cheese:(swiss|american)' salt '*' match.pillar_pcre 'clone_url|https://github\\.com/.*\\.git' delimiter='|' delimiter Specify an alternate delimiter to use when traversing a nested dict .. versionadded:: 2014.7.0 delim Specify an alternate delimiter to use when traversing a nested dict .. versionadded:: 0.16.4 .. deprecated:: 2015.8.0 ''' matcher = salt.minion.Matcher({'pillar': __pillar__}, __salt__) try: return matcher.pillar_pcre_match(tgt, delimiter=delimiter) except Exception as exc: log.exception(exc) return False def pillar(tgt, delimiter=DEFAULT_TARGET_DELIM): ''' Return True if the minion matches the given pillar target. The ``delimiter`` argument can be used to specify a different delimiter. CLI Example: .. code-block:: bash salt '*' match.pillar 'cheese:foo' salt '*' match.pillar 'clone_url|https://github.com/saltstack/salt.git' delimiter='|' delimiter Specify an alternate delimiter to use when traversing a nested dict .. versionadded:: 2014.7.0 delim Specify an alternate delimiter to use when traversing a nested dict .. versionadded:: 0.16.4 .. deprecated:: 2015.8.0 ''' matcher = salt.minion.Matcher({'pillar': __pillar__}, __salt__) try: return matcher.pillar_match(tgt, delimiter=delimiter) except Exception as exc: log.exception(exc) return False def data(tgt): ''' Return True if the minion matches the given data target CLI Example: .. code-block:: bash salt '*' match.data 'spam:eggs' ''' matcher = salt.minion.Matcher(__opts__, __salt__) try: return matcher.data_match(tgt) except Exception as exc: log.exception(exc) return False def grain_pcre(tgt, delimiter=DEFAULT_TARGET_DELIM): ''' Return True if the minion matches the given grain_pcre target. The ``delimiter`` argument can be used to specify a different delimiter. CLI Example: .. code-block:: bash salt '*' match.grain_pcre 'os:Fedo.*' salt '*' match.grain_pcre 'ipv6|2001:.*' delimiter='|' delimiter Specify an alternate delimiter to use when traversing a nested dict .. versionadded:: 2014.7.0 delim Specify an alternate delimiter to use when traversing a nested dict .. versionadded:: 0.16.4 .. deprecated:: 2015.8.0 ''' matcher = salt.minion.Matcher({'grains': __grains__}, __salt__) try: return matcher.grain_pcre_match(tgt, delimiter=delimiter) except Exception as exc: log.exception(exc) return False def grain(tgt, delimiter=DEFAULT_TARGET_DELIM): ''' Return True if the minion matches the given grain target. The ``delimiter`` argument can be used to specify a different delimiter. CLI Example: .. code-block:: bash salt '*' match.grain 'os:Ubuntu' salt '*' match.grain 'ipv6|2001:db8::ff00:42:8329' delimiter='|' delimiter Specify an alternate delimiter to use when traversing a nested dict .. versionadded:: 2014.7.0 delim Specify an alternate delimiter to use when traversing a nested dict .. versionadded:: 0.16.4 .. deprecated:: 2015.8.0 ''' matcher = salt.minion.Matcher({'grains': __grains__}, __salt__) try: return matcher.grain_match(tgt, delimiter=delimiter) except Exception as exc: log.exception(exc) return False def list_(tgt, minion_id=None): ''' Return True if the minion ID matches the given list target minion_id Specify the minion ID to match against the target expression .. versionadded:: 2014.7.0 CLI Example: .. code-block:: bash salt '*' match.list 'server1,server2' ''' if minion_id is not None: if not isinstance(minion_id, string_types): minion_id = str(minion_id) else: minion_id = __grains__['id'] matcher = salt.minion.Matcher({'id': minion_id}, __salt__) try: return matcher.list_match(tgt) except Exception as exc: log.exception(exc) return False def pcre(tgt, minion_id=None): ''' Return True if the minion ID matches the given pcre target minion_id Specify the minion ID to match against the target expression .. versionadded:: 2014.7.0 CLI Example: .. code-block:: bash salt '*' match.pcre '.*' ''' if minion_id is not None: if not isinstance(minion_id, string_types): minion_id = str(minion_id) else: minion_id = __grains__['id'] matcher = salt.minion.Matcher({'id': minion_id}, __salt__) try: return matcher.pcre_match(tgt) except Exception as exc: log.exception(exc) return False def glob(tgt, minion_id=None): ''' Return True if the minion ID matches the given glob target minion_id Specify the minion ID to match against the target expression .. versionadded:: 2014.7.0 CLI Example: .. code-block:: bash salt '*' match.glob '*' ''' if minion_id is not None: if not isinstance(minion_id, string_types): minion_id = str(minion_id) else: minion_id = __grains__['id'] matcher = salt.minion.Matcher({'id': minion_id}, __salt__) try: return matcher.glob_match(tgt) except Exception as exc: log.exception(exc) return False def filter_by(lookup, tgt_type='compound', minion_id=None, expr_form=None): ''' Return the first match in a dictionary of target patterns .. versionadded:: 2014.7.0 CLI Example: .. code-block:: bash salt '*' match.filter_by '{foo*: Foo!, bar*: Bar!}' minion_id=bar03 Pillar Example: .. code-block:: yaml # Filter the data for the current minion into a variable: {% set roles = salt['match.filter_by']({ 'web*': ['app', 'caching'], 'db*': ['db'], }) %} # Make the filtered data available to Pillar: roles: {{ roles | yaml() }} ''' # remember to remove the expr_form argument from this function when # performing the cleanup on this deprecation. if expr_form is not None: salt.utils.warn_until( 'Fluorine', 'the target type should be passed using the \'tgt_type\' ' 'argument instead of \'expr_form\'. Support for using ' '\'expr_form\' will be removed in Salt Fluorine.' ) tgt_type = expr_form expr_funcs = dict(inspect.getmembers(sys.modules[__name__], predicate=inspect.isfunction)) for key in lookup: params = (key, minion_id) if minion_id else (key, ) if expr_funcs[tgt_type](*params): return lookup[key] return None
25.260504
93
0.626081
e5adbee718a71e09e83dc6cb75e0ad77f2e474c7
7,529
py
Python
pymultifracs/cumulants.py
MerlinDumeur/pymultifracs
9767ee4c34a3a39a7609f40afd6265151ba4e550
[ "MIT" ]
9
2019-03-29T05:28:42.000Z
2019-12-29T12:41:15.000Z
pymultifracs/cumulants.py
MerlinDumeur/pymultifracs
9767ee4c34a3a39a7609f40afd6265151ba4e550
[ "MIT" ]
4
2021-01-20T14:58:03.000Z
2021-03-01T11:52:09.000Z
pymultifracs/cumulants.py
MerlinDumeur/pymultifracs
9767ee4c34a3a39a7609f40afd6265151ba4e550
[ "MIT" ]
6
2021-02-08T15:23:39.000Z
2022-03-28T13:30:46.000Z
""" Authors: Omar D. Domingues <omar.darwiche-domingues@inria.fr> Merlin Dumeur <merlin@dumeur.net> """ from dataclasses import dataclass, field, InitVar import numpy as np import matplotlib.pyplot as plt from scipy.special import binom as binomial_coefficient from .utils import linear_regression, fast_power from .multiresquantity import MultiResolutionQuantity, \ MultiResolutionQuantityBase # from .viz import plot_multiscale @dataclass class Cumulants(MultiResolutionQuantityBase): r""" Computes and analyzes cumulants Parameters ---------- mrq : MultiResolutionQuantity Multi resolution quantity to analyze. n_cumul : int Number of cumulants to compute. j1 : int Lower-bound of the scale support for the linear regressions. j2 : int Upper-bound of the scale support for the linear regressions. weighted: bool Whether to used weighted linear regressions. Attributes ---------- formalism : str Formalism used. Can be any of 'wavelet coefs', 'wavelet leaders', or 'wavelet p-leaders'. nj : dict(ndarray) Number of coefficients at scale j. Arrays are of the shape (nrep,) values : ndarray, shape (n_cumulants, n_scales, nrep) :math:`C_m(j)`. n_cumul : int Number of computed cumulants. j1 : int Lower-bound of the scale support for the linear regressions. j2 : int Upper-bound of the scale support for the linear regressions. weighted : bool Whether weighted regression was performed. m : ndarray, shape (n_cumulants,) List of the m values (cumulants), in order presented in the value arrays. j : ndarray, shape (n_scales,) List of the j values (scales), in order presented in the value arrays. log_cumulants : ndarray, shape (n_cumulants, nrep) :math:`(c_m)_m`, slopes of the curves :math:`j \times C_m(j)`. var_log_cumulants : ndarray, shape (n_cumulants, nrep) Estimates of the log-cumulants .. warning:: var_log_cumulants was not debugged nrep : int Number of realisations """ mrq: InitVar[MultiResolutionQuantity] n_cumul: int j1: int j2: int weighted: bool m: np.ndarray = field(init=False) j: np.ndarray = field(init=False) values: np.ndarray = field(init=False) log_cumulants: np.ndarray = field(init=False) var_log_cumulants: np.ndarray = field(init=False) def __post_init__(self, mrq): self.formalism = mrq.formalism self.nj = mrq.nj self.nrep = mrq.nrep self.j = np.array(list(mrq.values)) self.m = np.arange(1, self.n_cumul+1) self.values = np.zeros((len(self.m), len(self.j), self.nrep)) self._compute(mrq) self._compute_log_cumulants() def _compute(self, mrq): moments = np.zeros((len(self.m), len(self.j), self.nrep)) for ind_j, j in enumerate(self.j): T_X_j = np.abs(mrq.values[j]) log_T_X_j = np.log(T_X_j) for ind_m, m in enumerate(self.m): moments[ind_m, ind_j] = np.nanmean(fast_power(log_T_X_j, m), axis=0) if m == 1: self.values[ind_m, ind_j] = moments[ind_m, ind_j] else: aux = 0 for ind_n, n in enumerate(np.arange(1, m)): aux += (binomial_coefficient(m-1, n-1) * self.values[ind_n, ind_j] * moments[ind_m-ind_n-1, ind_j]) self.values[ind_m, ind_j] = moments[ind_m, ind_j] - aux def _compute_log_cumulants(self): """ Compute the log-cumulants (angular coefficients of the curves j->log[C_p(j)]) """ self.log_cumulants = np.zeros(((len(self.m), self.nrep))) self.var_log_cumulants = np.zeros((len(self.m), self.nrep)) self.slope = np.zeros((len(self.m), self.nrep)) self.intercept = np.zeros((len(self.m), self.nrep)) log2_e = np.log2(np.exp(1)) x = np.tile(np.arange(self.j1, self.j2+1)[:, None], (1, self.nrep)) if self.weighted: nj = self.get_nj_interv(self.j1, self.j2) else: nj = np.ones((len(x), self.nrep)) # nj = np.tile(nj[:, None], (1, self.nrep)) ind_j1 = self.j1-1 ind_j2 = self.j2-1 for ind_m, _ in enumerate(self.m): y = self.values[ind_m, ind_j1:ind_j2+1] # pylint: disable=unbalanced-tuple-unpacking slope, intercept, var_slope = \ linear_regression(x, y, nj, return_variance=True) self.log_cumulants[ind_m] = slope*log2_e self.var_log_cumulants[ind_m] = (log2_e**2)*var_slope self.slope[ind_m] = slope self.intercept[ind_m] = intercept def __getattr__(self, name): if name[0] == 'c' and len(name) == 2 and name[1:].isdigit(): return self.log_cumulants[self.m == int(name[1])] if name[0] == 'C' and len(name) == 2 and name[1:].isdigit(): return self.values[self.m == int(name[1])] if name == 'M': return -self.c2 return self.__getattribute__(name) def plot(self, fignum=1, nrow=3, filename=None): """ Plots the cumulants. Args: fignum(int): figure number plt : pointer to matplotlib.pyplot """ nrow = min(nrow, len(self.m)) if len(self.m) > 1: plot_dim_1 = nrow plot_dim_2 = int(np.ceil(len(self.m) / nrow)) else: plot_dim_1 = 1 plot_dim_2 = 1 fig, axes = plt.subplots(plot_dim_1, plot_dim_2, num=fignum, squeeze=False) fig.suptitle(self.formalism + r' - cumulants $C_m(j)$') x = self.j for ind_m, m in enumerate(self.m): y = self.values[ind_m, :] ax = axes[ind_m % nrow][ind_m // nrow] if self.nrep == 1: ax.plot(x, y, 'r--.') ax.set_xlabel('j') ax.set_ylabel('m = ' + str(m)) # ax.grid() # plt.draw() if len(self.log_cumulants) > 0: # plot regression line x0 = self.j1 x1 = self.j2 slope_log2_e = self.log_cumulants[ind_m] slope = self.slope[ind_m] intercept = self.intercept[ind_m] y0 = slope*x0 + intercept y1 = slope*x1 + intercept legend = (r'slope [$\times \log_2(e)]$ = ' '%.5f' % (slope_log2_e)) ax.plot([x0, x1], [y0, y1], color='k', linestyle='-', linewidth=2, label=legend) ax.legend() plt.draw() else: pass # plot_multiscale({(i, 'cm'): self.values[m, j, nrep] for }, # {'cm': '#00000020', 'cm_avg': '#000000ff'}, ax) for j in range(ind_m + 1, len(axes.flat)): fig.delaxes(axes[j % nrow][j // nrow]) if filename is not None: plt.savefig(filename)
32.175214
78
0.53699
a957f445ff1d9c3e270c79b09e653c697dac97c9
146
py
Python
lista_convidados.py
WestenPy/Curso_em_video
9f6a9775d27e1b86d54b381aba5da69b2ae21b27
[ "MIT" ]
null
null
null
lista_convidados.py
WestenPy/Curso_em_video
9f6a9775d27e1b86d54b381aba5da69b2ae21b27
[ "MIT" ]
null
null
null
lista_convidados.py
WestenPy/Curso_em_video
9f6a9775d27e1b86d54b381aba5da69b2ae21b27
[ "MIT" ]
null
null
null
lista = [1, 2, 3, 4, 5] lista.append(6) print(lista) print() a = lista.pop(0) b = lista.pop(3) print(lista) print(a, b) del lista[1] print(lista)
13.272727
23
0.636986
6424e394df45ee3ca29991691ccc559c1fb06ed3
14,821
py
Python
isic/utils/dataset.py
bomcon123456/isic
bf86f6a057c96c85a089587e2e1076bf5d586d3f
[ "Apache-2.0" ]
null
null
null
isic/utils/dataset.py
bomcon123456/isic
bf86f6a057c96c85a089587e2e1076bf5d586d3f
[ "Apache-2.0" ]
2
2021-09-28T05:33:52.000Z
2022-02-26T09:50:37.000Z
isic/utils/dataset.py
bomcon123456/isic
bf86f6a057c96c85a089587e2e1076bf5d586d3f
[ "Apache-2.0" ]
null
null
null
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/utils_dataset.ipynb (unless otherwise specified). __all__ = ['SkinLabels', 'from_label_idx_to_key', 'preprocess_df', 'split_df_to_cat_num_df', 'undersampling_df', 'oversampling_df', 'oversampling_not_flat_df', 'hybridsampling_df', 'gen_new_dts', 'get_class_weights', 'AdvancedHairAugmentation', 'DrawHair', 'Microscope', 'get_default_train_transform', 'get_advanced_train_transform', 'get_default_val_transform', 'gen_dts_color_consistancy'] # Cell import copy import os import random import torch from torch.utils.data import DataLoader, Dataset, RandomSampler import torchvision.transforms as transforms import numpy as np import pandas as pd from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import pytorch_lightning as pl from tqdm import tqdm import cv2 from PIL import Image import albumentations as A from ..config import * from ..sampler import ImbalancedDatasetSampler # Cell class SkinLabels: lesion_type_dict = { 'nv': 'Melanocytic nevi', 'mel': 'Melanoma', 'bkl': 'Benign keratosis-like lesions', 'bcc': 'Basal cell carcinoma', 'akiec': 'Actinic keratoses', 'vasc': 'Vascular lesions', 'df': 'Dermatofibroma' } lesion_type_dict_inversed = { 'Melanocytic nevi': 'nv', 'Melanoma': 'mel', 'Benign keratosis-like lesions': 'bkl', 'Basal cell carcinoma': 'bcc', 'Actinic keratoses': 'akiec', 'Vascular lesions': 'vasc', 'Dermatofibroma': 'df' } lesion_type_vi_dict = { 'nv': 'Nốt ruồi', 'mel': 'Ung thư hắc tố', 'bkl': 'Dày sừng lành tính', 'bcc': 'Ung thư biểu mô tế bào đáy', 'akiec': 'Dày sừng quang hóa', 'vasc': 'Thương tổn mạch máu', 'df': 'U xơ da' } # Cell def from_label_idx_to_key(label_idx, labels): label_string = labels[label_idx] key = SkinLabels.lesion_type_dict_inversed[label_string] return key # Cell def preprocess_df(df, valid_size=0.2, seed=AppConfig.SEED, image_label_only=False, img_path = PathConfig.IMAGE_PATH): df['age'].fillna((df['age'].mean()), inplace=True) df['path'] = img_path + '/' + df['image_id'] + '.jpg' df['label_fullstr'] = df['dx'].map(SkinLabels.lesion_type_dict.get) label_str = pd.Categorical(df['label_fullstr']) df['label_index'] = label_str.codes df_undup = df.groupby('lesion_id').count() df_undup = df_undup[df_undup['image_id'] == 1] df_undup.reset_index(inplace=True) _, valid = train_test_split(df_undup['lesion_id'], test_size=valid_size, random_state=seed, stratify=df_undup['label_index']) valid = set(valid) df['val'] = df['lesion_id'].apply(lambda x: 1 if str(x) in valid else 0) df_train = df[df['val'] == 0] df_valid = df[df['val'] == 1] dest_df_train = df_train.reset_index(drop=True) dest_df_valid = df_valid.reset_index(drop=True) if not image_label_only: return dest_df_train, dest_df_valid, list(label_str.categories) else: train_imgs = [] val_imgs = [] i = 0 for df in (dest_df_train, dest_df_valid): for j, path in enumerate(df['path']): x = np.array(Image.open(path)) y = torch.tensor(int(df['label_index'][j])) if i == 0: train_imgs.append((x, y)) else: val_imgs.append((x, y)) i += 1 return train_imgs, val_imgs, list(label_str.categories) # Cell def split_df_to_cat_num_df(df): text_fields = ['image_id', 'lesion_id', 'dx', 'dx_type', 'localization', 'path', 'label_fullstr', 'sex'] text_df = df.loc[:, df.columns.isin(text_fields)].copy() numerical_df = df.drop(columns = text_fields) image_id_cat = pd.Categorical(df['image_id']) text_df['img_id'] = image_id_cat.codes numerical_df['img_id']=image_id_cat.codes y = numerical_df['label_index'] numerical_df = numerical_df.drop(columns=['label_index']) return text_df, numerical_df, y # Cell def undersampling_df(df): from imblearn.under_sampling import RandomUnderSampler rus = RandomUnderSampler(random_state=0) X_resampled, y_resampled = rus.fit_resample(df.drop(columns=['label_index']), df['label_index']) X_resampled['label_index'] = y_resampled return X_resampled # Cell def oversampling_df(df): from imblearn.over_sampling import RandomOverSampler ros = RandomOverSampler(random_state=0) X_resampled, y_resampled = ros.fit_resample(df.drop(columns=['label_index']), df['label_index']) X_resampled['label_index'] = y_resampled return X_resampled # Cell def oversampling_not_flat_df(df, data_aug_rate=None): if data_aug_rate is None: data_aug_rate = [15,10,5,50,0,5,40] for i in range(7): if data_aug_rate[i]: df=df.append([df.loc[df['label_index'] == i,:]]*(data_aug_rate[i]-1), ignore_index=True) return df # Cell def hybridsampling_df(df, data_aug_rate=None): if data_aug_rate is None: data_aug_rate = [7, 7, 3, 15,-0.2, 4, 15] for i in range(7): if data_aug_rate[i]>0: df=df.append([df.loc[df['label_index'] == i,:]]*(data_aug_rate[i]-1), ignore_index=True) elif data_aug_rate[i]<0: entries = df.loc[df['label_index'] == i,:].index.tolist() dropIndices = np.random.choice(entries, size = int(len(entries)*abs(data_aug_rate[i]))) df = df.drop(dropIndices) entries = df.loc[df['label_index'] == i,:].index.tolist() return df # Cell def gen_new_dts(data_gen_aug=None): save_path = 'D:/Workspace/ML/HAM10000/aug/images/' if data_gen_aug is None: data_gen_aug = [5, 5, 3, 10, 0, 3, 10] df = pd.read_csv(PathConfig.CSV_PATH) train_df, valid_df, labels = preprocess_df(df, 0.2) t1 = transforms.Compose([ AdvancedHairAugmentation(8,hairs_folder='/Work/Workspace/ML/HAM10000/data/black_hair/'), Microscope(p=0.5), ]) t2 = transforms.Compose([ DrawHair(8), Microscope(p=0.5), ]) ts = [t1,t1,t2] for index, row in train_df.iterrows(): label_idx = row['label_index'] if data_gen_aug[label_idx]: for i in range(data_gen_aug[label_idx]): path = row['path'] image_id = row['image_id'] + '_' + str(i) new_path = save_path + image_id + '.jpg' # image = cv2.imread(path) # # Generate augment image # idx = random.randint(0,2) # tfs = ts[idx](image) # Add to dataframe new_row = row.copy() new_row["image_id"] = image_id new_row["path"] = new_path train_df = train_df.append(new_row) # save # cv2.imwrite(new_path, tfs) # Save train_df, valid_df to csv train_df = train_df.reset_index() train_df = train_df.drop(columns=['index','path']) valid_df = valid_df.drop(columns=['path']) train_df.to_csv('/Work/Workspace/ML/HAM10000/aug/train.csv', index=False) valid_df.to_csv('/Work/Workspace/ML/HAM10000/aug/valid.csv', index=False) return train_df, valid_df # Cell def get_class_weights(target): class_sample_count = np.unique(target, return_counts=True)[1] print(class_sample_count) weight = 1. / class_sample_count samples_weight = weight[target] samples_weight = torch.from_numpy(samples_weight) return weight, samples_weight # Cell class AdvancedHairAugmentation: """ Impose an image of a hair to the target image Args: hairs (int): maximum number of hairs to impose hairs_folder (str): path to the folder with hairs images """ def __init__(self, hairs: int = 5, hairs_folder: str = ""): self.hairs = hairs self.hairs_folder = hairs_folder def __call__(self, img): """ Args: img (PIL Image): Image to draw hairs on. Returns: PIL Image: Image with drawn hairs. """ n_hairs = random.randint(0, self.hairs) if not n_hairs: return img height, width, _ = img.shape # target image width and height hair_images = [im for im in os.listdir(self.hairs_folder) if 'png' in im] for _ in range(n_hairs): hair = cv2.imread(os.path.join(self.hairs_folder, random.choice(hair_images))) hair = cv2.flip(hair, random.choice([-1, 0, 1])) hair = cv2.rotate(hair, random.choice([0, 1, 2])) h_height, h_width, _ = hair.shape # hair image width and height if img.shape[0] < hair.shape[0] or img.shape[1] < hair.shape[1]: hair = cv2.resize(hair, (int(width*0.8), int(height*0.8))) h_height, h_width, _ = hair.shape # hair image width and height roi_ho = random.randint(0, img.shape[0] - hair.shape[0]) roi_wo = random.randint(0, img.shape[1] - hair.shape[1]) roi = img[roi_ho:roi_ho + h_height, roi_wo:roi_wo + h_width] # Creating a mask and inverse mask img2gray = cv2.cvtColor(hair, cv2.COLOR_BGR2GRAY) ret, mask = cv2.threshold(img2gray, 10, 255, cv2.THRESH_BINARY) mask_inv = cv2.bitwise_not(mask) # Now black-out the area of hair in ROI img_bg = cv2.bitwise_and(roi, roi, mask=mask_inv) # Take only region of hair from hair image. hair_fg = cv2.bitwise_and(hair, hair, mask=mask) # Put hair in ROI and modify the target image dst = cv2.add(img_bg, hair_fg) img[roi_ho:roi_ho + h_height, roi_wo:roi_wo + h_width] = dst return img def __repr__(self): return f'{self.__class__.__name__}(hairs={self.hairs}, hairs_folder="{self.hairs_folder}")' # Cell class DrawHair: """ Draw a random number of pseudo hairs Args: hairs (int): maximum number of hairs to draw width (tuple): possible width of the hair in pixels """ def __init__(self, hairs:int = 4, width:tuple = (1, 2)): self.hairs = hairs self.width = width def __call__(self, img): """ Args: img (PIL Image): Image to draw hairs on. Returns: PIL Image: Image with drawn hairs. """ if not self.hairs: return img width, height, _ = img.shape for _ in range(random.randint(0, self.hairs)): # The origin point of the line will always be at the top half of the image origin = (random.randint(0, width), random.randint(0, height // 2)) # The end of the line end = (random.randint(0, width), random.randint(0, height)) color = (0, 0, 0) # color of the hair. Black. cv2.line(img, origin, end, color, random.randint(self.width[0], self.width[1])) return img def __repr__(self): return f'{self.__class__.__name__}(hairs={self.hairs}, width={self.width})' # Cell class Microscope: """ Cutting out the edges around the center circle of the image Imitating a picture, taken through the microscope Args: p (float): probability of applying an augmentation """ def __init__(self, p: float = 0.5): self.p = p def __call__(self, img): """ Args: img (PIL Image): Image to apply transformation to. Returns: PIL Image: Image with transformation. """ if random.random() < self.p: circle = cv2.circle((np.ones(img.shape) * 255).astype(np.uint8), # image placeholder (img.shape[1]//2, img.shape[0]//2), # center point of circle random.randint(img.shape[1]//2 - 3, img.shape[1]//2 + 15), # radius (0, 0, 0), # color -1) mask = circle - 255 img = np.multiply(img, mask) return img def __repr__(self): return f'{self.__class__.__name__}(p={self.p})' # Cell def get_default_train_transform(image_size=224, no_norm=False): transforms_train = [ A.Transpose(p=0.5), A.VerticalFlip(p=0.5), A.HorizontalFlip(p=0.5), A.Resize(400, 400), A.RandomResizedCrop(image_size, image_size) ] norm = A.Normalize() if no_norm: norm = A.Normalize(mean=0, std=1) transforms_train.append(norm) return A.Compose(transforms_train) def get_advanced_train_transform(image_size=224, cut_out=True, no_norm=False): transforms_train = [ A.Transpose(p=0.5), A.VerticalFlip(p=0.5), A.HorizontalFlip(p=0.5), A.RandomBrightness(limit=0.2, p=0.75), A.RandomContrast(limit=0.2, p=0.75), A.OneOf([ A.MotionBlur(blur_limit=5), A.MedianBlur(blur_limit=5), A.GaussianBlur(blur_limit=5), A.GaussNoise(var_limit=(5.0, 30.0)), ], p=0.7), A.OneOf([ A.OpticalDistortion(distort_limit=1.0), A.GridDistortion(num_steps=5, distort_limit=1.), A.ElasticTransform(alpha=3), ], p=0.7), A.CLAHE(clip_limit=4.0, p=0.7), A.HueSaturationValue(hue_shift_limit=10, sat_shift_limit=20, val_shift_limit=10, p=0.5), A.ShiftScaleRotate(shift_limit=0.1, scale_limit=0.1, rotate_limit=15, border_mode=0, p=0.85), A.Resize(image_size, image_size) ] if cut_out: transforms_train.append(A.Cutout(max_h_size=int(image_size * 0.375), max_w_size=int(image_size * 0.375), num_holes=1, p=0.7)) norm = A.Normalize() if no_norm: norm = A.Normalize(mean=0, std=1) transforms_train.append(norm) return A.Compose(transforms_train) def get_default_val_transform(image_size=224): return A.Compose([ A.Resize(image_size, image_size), A.Normalize() ]) # Cell def gen_dts_color_consistancy(img_paths, output_folder_path, resize=None): if not os.path.isdir(output_folder_path): os.mkdir(output_folder_path) with tqdm(total=len(img_paths), ascii=True, ncols=100) as t: for img_path in img_paths: img_name = img_path.split('\\')[-1] img_ = cv2.imread(img_path, cv2.IMREAD_COLOR) if resize is not None: img_ = cv2.resize(img_, resize, cv2.INTER_AREA) np_img = color_constancy(img_) file_name = 'D:/Workspace/ML/HAM10000/aug2/' + img_name.split('.')[0] + '.jpg' cv2.imwrite(file_name, np_img) t.update()
34.30787
133
0.611362
b07d73c57532e63ecee6c7b10c3a74eea72c46da
872
py
Python
src/learning/NaiveBayes.py
alexandrabenamar/Who-Wins
23df54f98286e67aab39e92ac746bccf6916c231
[ "MIT" ]
3
2018-04-10T21:52:57.000Z
2018-08-22T15:41:58.000Z
src/learning/NaiveBayes.py
alexandrabenamar/Who-Wins
23df54f98286e67aab39e92ac746bccf6916c231
[ "MIT" ]
null
null
null
src/learning/NaiveBayes.py
alexandrabenamar/Who-Wins
23df54f98286e67aab39e92ac746bccf6916c231
[ "MIT" ]
1
2020-05-18T15:46:23.000Z
2020-05-18T15:46:23.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from pyspark.mllib.classification import NaiveBayes from functions_MLlib import spark_context, training_set, test_set, write_result, brexit_labeled_data, mode_predict if __name__ == "__main__" : sc = spark_context() numFeatures = 10000 print("Training...\n") (training, idf) = training_set(sc, numFeatures = numFeatures) model = NaiveBayes.train(training) print("Test... \n") test = test_set(sc, numFeatures = numFeatures, idf = idf) (num_pos, num_neg) = mode_predict(model, test) print("Test on Brexit labeled data...\n") (accuracy, f1) = brexit_labeled_data(sc, model = model, numFeatures = numFeatures, idf = idf) print("Saving results...") write_result(num_pos, num_neg, accuracy = accuracy, f1 = f1, name = "Naïve Bayes")
27.25
114
0.658257
08ec6d6ad7cd41ddb71590624af6d18098ce3bbe
49,161
py
Python
integration_tests/ci_analyzer/test_analyzer_aggregation_queries.py
nordic-institute/X-Road-Metrics
249d859466bf6065257cf8b3c27d0e9db4ab2378
[ "MIT" ]
2
2021-06-30T11:12:31.000Z
2021-09-24T08:50:03.000Z
integration_tests/ci_analyzer/test_analyzer_aggregation_queries.py
nordic-institute/X-Road-Metrics
249d859466bf6065257cf8b3c27d0e9db4ab2378
[ "MIT" ]
null
null
null
integration_tests/ci_analyzer/test_analyzer_aggregation_queries.py
nordic-institute/X-Road-Metrics
249d859466bf6065257cf8b3c27d0e9db4ab2378
[ "MIT" ]
2
2021-07-02T12:31:37.000Z
2021-11-09T08:44:09.000Z
import unittest from unittest.mock import Mock from integration_tests.helpers import cl_db_handler from integration_tests.ci_analyzer.ci_analyzer_settings import Settings from analysis_module.opmon_analyzer.AnalyzerDatabaseManager import AnalyzerDatabaseManager from datetime import datetime import time class TestAnalyzerAggregationQueriesCI(unittest.TestCase): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # load the test database settings settings = Settings() # initialize a helper for operations the test database self.mongodb_h = cl_db_handler.MongoDBHandler(settings.MONGODB_USER, settings.MONGODB_PWD, settings.MONGODB_SERVER) # db conf db_config = Mock() db_config.MDB_USER = settings.MONGODB_USER db_config.MDB_PWD = settings.MONGODB_PWD db_config.MDB_SERVER = settings.MONGODB_SERVER db_config.MONGODB_URI = "mongodb://{0}:{1}@{2}/auth_db".format(settings.MONGODB_USER, settings.MONGODB_PWD, settings.MONGODB_SERVER) db_config.MONGODB_QD = "CI_query_db" db_config.MONGODB_AD = "CI_analyzer_database" self._db_config = db_config # analyzer conf config = Mock() config.timestamp_field = "timestamp" config.service_call_fields = ["service_call"] config.failed_request_ratio_threshold = 0.7 config.historic_averages_thresholds = {'request_count': 0.95} config.relevant_cols_nested = ["service_call", "succeeded", "messageId", "timestamp"] config.relevant_cols_general_alternative = [('requestSize', 'clientRequestSize', 'producerRequestSize'), ('responseSize', 'clientResponseSize', 'producerResponseSize')] config.relevant_cols_general = ["_id", 'totalDuration', 'producerDurationProducerView', 'requestNwDuration', 'responseNwDuration', 'correctorStatus'] self._config = config # set up the Analyzer database manager to be tested self.db_manager = AnalyzerDatabaseManager(db_config, config) def test_aggregate_data_empty_database(self): # Clean database state self.mongodb_h.remove_all() self.mongodb_h.create_indexes() # Add clean data clean_documents = [] self.mongodb_h.add_clean_documents(clean_documents) # Run AnalyzerDatabaseManager data = self.db_manager.aggregate_data("failed_request_ratio", agg_minutes=60, start_time=None, end_time=None, ids_to_exclude=[]) self.assertEqual(0, len(data)) data = self.db_manager.aggregate_data("duplicate_message_ids", agg_minutes=60, start_time=None, end_time=None, ids_to_exclude=[]) self.assertEqual(0, len(data)) data = self.db_manager.aggregate_data(model_type="time_sync_errors", metric="responseNwDuration", threshold=0, agg_minutes=60, start_time=None, end_time=None, ids_to_exclude=[]) self.assertEqual(0, len(data)) data = self.db_manager.aggregate_data_for_historic_averages_model(agg_minutes=60, start_time=None, end_time=None, ids_to_exclude=[]) self.assertEqual(0, len(data)) # Clean before exit self.mongodb_h.remove_all() def test_aggregate_data_for_failed_request_ratio_model_single_query(self): # Clean database state self.mongodb_h.remove_all() self.mongodb_h.create_indexes() # Add clean data client = {"timestamp": datetime.strptime("5/10/2017 10:00:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000, "service_call": "sc1", "succeeded": True, "messageId": "mID"} clean_doc = {"client": client, "producer": client} clean_doc["clientRequestSize"] = 1000 clean_doc["producerRequestSize"] = 1000 clean_doc["clientResponseSize"] = 1000 clean_doc["producerResponseSize"] = 1000 clean_doc["_id"] = "id1" clean_doc["correctorStatus"] = "done" clean_doc["totalDuration"] = 100 clean_doc["producerDurationProducerView"] = 100 clean_doc["requestNwDuration"] = 100 clean_doc["responseNwDuration"] = 100 clean_documents = [clean_doc] self.mongodb_h.add_clean_documents(clean_documents) # Run AnalyzerDatabaseManager data = self.db_manager.aggregate_data("failed_request_ratio", agg_minutes=60, start_time=None, end_time=None, ids_to_exclude=[]) self.assertEqual(1, len(data)) self.assertEqual(1, data[data.succeeded].iloc[0]["count"]) # Clean before exit self.mongodb_h.remove_all() def test_aggregate_data_for_failed_request_ratio_model_single_query_client_missing(self): # Clean database state self.mongodb_h.remove_all() self.mongodb_h.create_indexes() # Add clean data client = {"timestamp": datetime.strptime("5/10/2017 10:00:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000, "service_call": "sc1", "succeeded": True, "messageId": "mID"} clean_doc = {"client": None, "producer": client} clean_doc["producerRequestSize"] = 1000 clean_doc["producerResponseSize"] = 1000 clean_doc["_id"] = "id1" clean_doc["correctorStatus"] = "done" clean_doc["totalDuration"] = 100 clean_doc["producerDurationProducerView"] = 100 clean_doc["requestNwDuration"] = 100 clean_doc["responseNwDuration"] = 100 clean_documents = [clean_doc] self.mongodb_h.add_clean_documents(clean_documents) # Run AnalyzerDatabaseManager data = self.db_manager.aggregate_data("failed_request_ratio", agg_minutes=60, start_time=None, end_time=None, ids_to_exclude=[]) self.assertEqual(1, len(data)) self.assertEqual(1, data[data.succeeded].iloc[0]["count"]) # Clean before exit self.mongodb_h.remove_all() def test_aggregate_data_for_failed_request_ratio_model_single_query_producer_missing(self): # Clean database state self.mongodb_h.remove_all() self.mongodb_h.create_indexes() # Add clean data client = {"timestamp": datetime.strptime("5/10/2017 10:00:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000, "service_call": "sc1", "succeeded": True, "messageId": "mID"} clean_doc = {"client": client, "producer": None} clean_doc["clientRequestSize"] = 1000 clean_doc["clientResponseSize"] = 1000 clean_doc["_id"] = "id1" clean_doc["correctorStatus"] = "done" clean_doc["totalDuration"] = 100 clean_doc["producerDurationProducerView"] = 100 clean_doc["requestNwDuration"] = 100 clean_doc["responseNwDuration"] = 100 clean_documents = [clean_doc] self.mongodb_h.add_clean_documents(clean_documents) # Run AnalyzerDatabaseManager data = self.db_manager.aggregate_data("failed_request_ratio", agg_minutes=60, start_time=None, end_time=None, ids_to_exclude=[]) self.assertEqual(1, len(data)) self.assertEqual(1, data[data.succeeded].iloc[0]["count"]) # Clean before exit self.mongodb_h.remove_all() def test_aggregate_data_for_failed_request_ratio_model_two_queries_in_same_period_both_true(self): # Clean database state self.mongodb_h.remove_all() self.mongodb_h.create_indexes() # Add clean data client = {"timestamp": datetime.strptime("5/10/2017 10:00:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000, "service_call": "sc1", "succeeded": True, "messageId": "mID"} clean_doc = {"client": client, "producer": client} clean_doc["clientRequestSize"] = 1000 clean_doc["producerRequestSize"] = 1000 clean_doc["clientResponseSize"] = 1000 clean_doc["producerResponseSize"] = 1000 clean_doc["_id"] = "id1" clean_doc["correctorStatus"] = "done" clean_doc["totalDuration"] = 100 clean_doc["producerDurationProducerView"] = 100 clean_doc["requestNwDuration"] = 100 clean_doc["responseNwDuration"] = 100 clean_doc2 = clean_doc.copy() clean_doc2["_id"] = "id2" client2 = client.copy() client2["timestamp"] = datetime.strptime("5/10/2017 10:30:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000 clean_doc2["client"] = client2 clean_doc2["producer"] = client2 clean_documents = [clean_doc, clean_doc2] self.mongodb_h.add_clean_documents(clean_documents) # Run AnalyzerDatabaseManager data = self.db_manager.aggregate_data("failed_request_ratio", agg_minutes=60, start_time=None, end_time=None, ids_to_exclude=[]) self.assertEqual(1, len(data)) self.assertEqual(2, data[data.succeeded].iloc[0]["count"]) # Clean before exit self.mongodb_h.remove_all() def test_aggregate_data_for_failed_request_ratio_model_two_queries_in_same_period_different_values(self): # Clean database state self.mongodb_h.remove_all() self.mongodb_h.create_indexes() # Add clean data client = {"timestamp": datetime.strptime("5/10/2017 10:00:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000, "service_call": "sc1", "succeeded": True, "messageId": "mID"} clean_doc = {"client": client, "producer": client} clean_doc["clientRequestSize"] = 1000 clean_doc["producerRequestSize"] = 1000 clean_doc["clientResponseSize"] = 1000 clean_doc["producerResponseSize"] = 1000 clean_doc["_id"] = "id1" clean_doc["correctorStatus"] = "done" clean_doc["totalDuration"] = 100 clean_doc["producerDurationProducerView"] = 100 clean_doc["requestNwDuration"] = 100 clean_doc["responseNwDuration"] = 100 clean_doc2 = clean_doc.copy() clean_doc2["_id"] = "id2" client2 = client.copy() client2["succeeded"] = False client2["timestamp"] = datetime.strptime("5/10/2017 10:30:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000 clean_doc2["client"] = client2 clean_doc2["producer"] = client2 clean_documents = [clean_doc, clean_doc2] self.mongodb_h.add_clean_documents(clean_documents) # Run AnalyzerDatabaseManager data = self.db_manager.aggregate_data("failed_request_ratio", agg_minutes=60, start_time=None, end_time=None, ids_to_exclude=[]) self.assertEqual(2, len(data)) self.assertEqual(1, data[data.succeeded].iloc[0]["count"]) self.assertEqual(1, data[~data.succeeded].iloc[0]["count"]) # Clean before exit self.mongodb_h.remove_all() def test_aggregate_data_for_failed_request_ratio_model_two_queries_in_different_periods_same_values(self): # Clean database state self.mongodb_h.remove_all() self.mongodb_h.create_indexes() # Add clean data client = {"timestamp": datetime.strptime("5/10/2017 10:00:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000, "service_call": "sc1", "succeeded": True, "messageId": "mID"} clean_doc = {"client": client, "producer": client} clean_doc["clientRequestSize"] = 1000 clean_doc["producerRequestSize"] = 1000 clean_doc["clientResponseSize"] = 1000 clean_doc["producerResponseSize"] = 1000 clean_doc["_id"] = "id1" clean_doc["correctorStatus"] = "done" clean_doc["totalDuration"] = 100 clean_doc["producerDurationProducerView"] = 100 clean_doc["requestNwDuration"] = 100 clean_doc["responseNwDuration"] = 100 clean_doc2 = clean_doc.copy() clean_doc2["_id"] = "id2" client2 = client.copy() client2["timestamp"] = datetime.strptime("5/11/2017 10:30:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000 clean_doc2["client"] = client2 clean_doc2["producer"] = client2 clean_documents = [clean_doc, clean_doc2] self.mongodb_h.add_clean_documents(clean_documents) # Run AnalyzerDatabaseManager data = self.db_manager.aggregate_data("failed_request_ratio", agg_minutes=60, start_time=None, end_time=None, ids_to_exclude=[]) self.assertEqual(2, len(data)) self.assertEqual(2, sum(data.succeeded)) self.assertEqual(1, data[data.succeeded].iloc[0]["count"]) # Clean before exit self.mongodb_h.remove_all() def test_aggregate_data_for_failed_request_ratio_model_two_queries_limited_start_time(self): # Clean database state self.mongodb_h.remove_all() self.mongodb_h.create_indexes() # Add clean data client = {"timestamp": datetime.strptime("5/10/2017 10:00:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000, "service_call": "sc1", "succeeded": True, "messageId": "mID"} clean_doc = {"client": client, "producer": client} clean_doc["clientRequestSize"] = 1000 clean_doc["producerRequestSize"] = 1000 clean_doc["clientResponseSize"] = 1000 clean_doc["producerResponseSize"] = 1000 clean_doc["_id"] = "id1" clean_doc["correctorStatus"] = "done" clean_doc["totalDuration"] = 100 clean_doc["producerDurationProducerView"] = 100 clean_doc["requestNwDuration"] = 100 clean_doc["responseNwDuration"] = 100 clean_doc2 = clean_doc.copy() clean_doc2["_id"] = "id2" client2 = client.copy() client2["timestamp"] = datetime.strptime("9/11/2017 10:30:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000 clean_doc2["client"] = client2 clean_doc2["producer"] = client2 clean_documents = [clean_doc, clean_doc2] self.mongodb_h.add_clean_documents(clean_documents) # Run AnalyzerDatabaseManager data = self.db_manager.aggregate_data("failed_request_ratio", agg_minutes=60, start_time=datetime.strptime("7/11/2017 10:30:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000, end_time=None, ids_to_exclude=[]) print(data) self.assertEqual(1, len(data)) self.assertEqual(1, sum(data.succeeded)) self.assertEqual(1, data[data.succeeded].iloc[0]["count"]) self.assertEqual(["id2"], data[data.succeeded].iloc[0]["request_ids"]) # Clean before exit self.mongodb_h.remove_all() def test_aggregate_data_for_failed_request_ratio_model_two_queries_limited_end_time(self): # Clean database state self.mongodb_h.remove_all() self.mongodb_h.create_indexes() # Add clean data client = {"timestamp": datetime.strptime("5/10/2017 10:00:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000, "service_call": "sc1", "succeeded": True, "messageId": "mID"} clean_doc = {"client": client, "producer": client} clean_doc["clientRequestSize"] = 1000 clean_doc["producerRequestSize"] = 1000 clean_doc["clientResponseSize"] = 1000 clean_doc["producerResponseSize"] = 1000 clean_doc["_id"] = "id1" clean_doc["correctorStatus"] = "done" clean_doc["totalDuration"] = 100 clean_doc["producerDurationProducerView"] = 100 clean_doc["requestNwDuration"] = 100 clean_doc["responseNwDuration"] = 100 clean_doc2 = clean_doc.copy() clean_doc2["_id"] = "id2" client2 = client.copy() client2["timestamp"] = datetime.strptime("9/11/2017 10:30:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000 clean_doc2["client"] = client2 clean_doc2["producer"] = client2 clean_documents = [clean_doc, clean_doc2] self.mongodb_h.add_clean_documents(clean_documents) # Run AnalyzerDatabaseManager data = self.db_manager.aggregate_data("failed_request_ratio", agg_minutes=60, start_time=None, end_time=datetime.strptime("7/11/2017 10:30:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000, ids_to_exclude=[]) print(data) self.assertEqual(1, len(data)) self.assertEqual(1, sum(data.succeeded)) self.assertEqual(1, data[data.succeeded].iloc[0]["count"]) self.assertEqual(["id1"], data[data.succeeded].iloc[0]["request_ids"]) # Clean before exit self.mongodb_h.remove_all() def test_aggregate_data_for_failed_request_ratio_model_two_queries_excluded_ids(self): # Clean database state self.mongodb_h.remove_all() self.mongodb_h.create_indexes() # Add clean data client = {"timestamp": datetime.strptime("5/10/2017 10:00:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000, "service_call": "sc1", "succeeded": True, "messageId": "mID"} clean_doc = {"client": client, "producer": client} clean_doc["clientRequestSize"] = 1000 clean_doc["producerRequestSize"] = 1000 clean_doc["clientResponseSize"] = 1000 clean_doc["producerResponseSize"] = 1000 clean_doc["_id"] = "id1" clean_doc["correctorStatus"] = "done" clean_doc["totalDuration"] = 100 clean_doc["producerDurationProducerView"] = 100 clean_doc["requestNwDuration"] = 100 clean_doc["responseNwDuration"] = 100 clean_doc2 = clean_doc.copy() clean_doc2["_id"] = "id2" client2 = client.copy() client2["timestamp"] = datetime.strptime("9/11/2017 10:30:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000 clean_doc2["client"] = client2 clean_doc2["producer"] = client2 clean_documents = [clean_doc, clean_doc2] self.mongodb_h.add_clean_documents(clean_documents) # Run AnalyzerDatabaseManager data = self.db_manager.aggregate_data("failed_request_ratio", agg_minutes=60, start_time=None, end_time=None, ids_to_exclude=["id2"]) print(data) self.assertEqual(1, len(data)) self.assertEqual(1, sum(data.succeeded)) self.assertEqual(1, data[data.succeeded].iloc[0]["count"]) self.assertEqual(["id1"], data[data.succeeded].iloc[0]["request_ids"]) # Clean before exit self.mongodb_h.remove_all() def test_aggregate_data_for_duplicate_message_id_model_single_query(self): # Clean database state self.mongodb_h.remove_all() self.mongodb_h.create_indexes() # Add clean data client = {"timestamp": datetime.strptime("5/10/2017 10:00:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000, "service_call": "sc1", "succeeded": True, "messageId": "mID"} clean_doc = {"client": client, "producer": client} clean_doc["clientRequestSize"] = 1000 clean_doc["producerRequestSize"] = 1000 clean_doc["clientResponseSize"] = 1000 clean_doc["producerResponseSize"] = 1000 clean_doc["_id"] = "id1" clean_doc["correctorStatus"] = "done" clean_doc["totalDuration"] = 100 clean_doc["producerDurationProducerView"] = 100 clean_doc["requestNwDuration"] = 100 clean_doc["responseNwDuration"] = 100 clean_documents = [clean_doc] # Run AnalyzerDatabaseManager data = self.db_manager.aggregate_data("duplicate_message_ids", agg_minutes=60, start_time=None, end_time=None, ids_to_exclude=[]) self.assertEqual(0, len(data)) # Clean before exit self.mongodb_h.remove_all() def test_aggregate_data_for_duplicate_message_id_model_two_queries_same_period_different_ids(self): # Clean database state self.mongodb_h.remove_all() self.mongodb_h.create_indexes() # Add clean data client = {"timestamp": datetime.strptime("5/10/2017 10:00:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000, "service_call": "sc1", "succeeded": True, "messageId": "mID"} clean_doc = {"client": client, "producer": client} clean_doc["clientRequestSize"] = 1000 clean_doc["producerRequestSize"] = 1000 clean_doc["clientResponseSize"] = 1000 clean_doc["producerResponseSize"] = 1000 clean_doc["_id"] = "id1" clean_doc["correctorStatus"] = "done" clean_doc["totalDuration"] = 100 clean_doc["producerDurationProducerView"] = 100 clean_doc["requestNwDuration"] = 100 clean_doc["responseNwDuration"] = 100 clean_doc2 = clean_doc.copy() clean_doc2["_id"] = "id2" client2 = client.copy() client2["timestamp"] = datetime.strptime("5/10/2017 10:30:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000 client2["messageId"] = "mID2" clean_doc2["client"] = client2 clean_doc2["producer"] = client2 clean_documents = [clean_doc, clean_doc2] self.mongodb_h.add_clean_documents(clean_documents) # Run AnalyzerDatabaseManager data = self.db_manager.aggregate_data("duplicate_message_ids", agg_minutes=60, start_time=None, end_time=None, ids_to_exclude=[]) self.assertEqual(0, len(data)) # Clean before exit self.mongodb_h.remove_all() def test_aggregate_data_for_duplicate_message_id_model_two_queries_same_period_same_ids(self): # Clean database state self.mongodb_h.remove_all() self.mongodb_h.create_indexes() # Add clean data client = {"timestamp": datetime.strptime("5/10/2017 10:00:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000, "service_call": "sc1", "succeeded": True, "messageId": "mID"} clean_doc = {"client": client, "producer": client} clean_doc["clientRequestSize"] = 1000 clean_doc["producerRequestSize"] = 1000 clean_doc["clientResponseSize"] = 1000 clean_doc["producerResponseSize"] = 1000 clean_doc["_id"] = "id1" clean_doc["correctorStatus"] = "done" clean_doc["totalDuration"] = 100 clean_doc["producerDurationProducerView"] = 100 clean_doc["requestNwDuration"] = 100 clean_doc["responseNwDuration"] = 100 clean_doc2 = clean_doc.copy() clean_doc2["_id"] = "id2" client2 = client.copy() client2["timestamp"] = datetime.strptime("5/10/2017 10:30:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000 clean_doc2["client"] = client2 clean_doc2["producer"] = client2 clean_documents = [clean_doc, clean_doc2] self.mongodb_h.add_clean_documents(clean_documents) # Run AnalyzerDatabaseManager data = self.db_manager.aggregate_data("duplicate_message_ids", agg_minutes=60, start_time=None, end_time=None, ids_to_exclude=[]) self.assertEqual(1, len(data)) self.assertEqual(2, data.iloc[0]["message_id_count"]) # Clean before exit self.mongodb_h.remove_all() def test_aggregate_data_for_duplicate_message_id_model_two_queries_different_periods_same_ids(self): # Clean database state self.mongodb_h.remove_all() self.mongodb_h.create_indexes() # Add clean data client = {"timestamp": datetime.strptime("5/10/2017 10:00:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000, "service_call": "sc1", "succeeded": True, "messageId": "mID"} clean_doc = {"client": client, "producer": client} clean_doc["clientRequestSize"] = 1000 clean_doc["producerRequestSize"] = 1000 clean_doc["clientResponseSize"] = 1000 clean_doc["producerResponseSize"] = 1000 clean_doc["_id"] = "id1" clean_doc["correctorStatus"] = "done" clean_doc["totalDuration"] = 100 clean_doc["producerDurationProducerView"] = 100 clean_doc["requestNwDuration"] = 100 clean_doc["responseNwDuration"] = 100 clean_doc2 = clean_doc.copy() clean_doc2["_id"] = "id2" client2 = client.copy() client2["timestamp"] = datetime.strptime("5/12/2017 10:30:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000 clean_doc2["client"] = client2 clean_doc2["producer"] = client2 clean_documents = [clean_doc, clean_doc2] self.mongodb_h.add_clean_documents(clean_documents) # Run AnalyzerDatabaseManager data = self.db_manager.aggregate_data("duplicate_message_ids", agg_minutes=60, start_time=None, end_time=None, ids_to_exclude=[]) self.assertEqual(0, len(data)) # Clean before exit self.mongodb_h.remove_all() def test_aggregate_data_for_time_sync_model_no_anomaly_found(self): # Clean database state self.mongodb_h.remove_all() self.mongodb_h.create_indexes() # Add clean data client = {"timestamp": datetime.strptime("5/10/2017 10:00:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000, "service_call": "sc1", "succeeded": True, "messageId": "mID"} clean_doc = {"client": client, "producer": client} clean_doc["clientRequestSize"] = 1000 clean_doc["producerRequestSize"] = 1000 clean_doc["clientResponseSize"] = 1000 clean_doc["producerResponseSize"] = 1000 clean_doc["_id"] = "id1" clean_doc["correctorStatus"] = "done" clean_doc["totalDuration"] = 100 clean_doc["producerDurationProducerView"] = 100 clean_doc["requestNwDuration"] = 100 clean_doc["responseNwDuration"] = 100 clean_documents = [clean_doc] self.mongodb_h.add_clean_documents(clean_documents) # Run AnalyzerDatabaseManager data = self.db_manager.aggregate_data(model_type="time_sync_errors", metric="responseNwDuration", threshold=0, agg_minutes=60, start_time=None, end_time=None, ids_to_exclude=[]) self.assertEqual(0, len(data)) # Clean before exit self.mongodb_h.remove_all() def test_aggregate_data_for_time_sync_model_anomaly_found(self): # Clean database state self.mongodb_h.remove_all() self.mongodb_h.create_indexes() # Add clean data client = {"timestamp": datetime.strptime("5/10/2017 10:00:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000, "service_call": "sc1", "succeeded": True, "messageId": "mID"} clean_doc = {"client": client, "producer": client} clean_doc["clientRequestSize"] = 1000 clean_doc["producerRequestSize"] = 1000 clean_doc["clientResponseSize"] = 1000 clean_doc["producerResponseSize"] = 1000 clean_doc["_id"] = "id1" clean_doc["correctorStatus"] = "done" clean_doc["totalDuration"] = 100 clean_doc["producerDurationProducerView"] = 100 clean_doc["requestNwDuration"] = 100 clean_doc["responseNwDuration"] = -100 clean_documents = [clean_doc] self.mongodb_h.add_clean_documents(clean_documents) # Run AnalyzerDatabaseManager data = self.db_manager.aggregate_data(model_type="time_sync_errors", metric="responseNwDuration", threshold=0, agg_minutes=60, start_time=None, end_time=None, ids_to_exclude=[]) self.assertEqual(1, len(data)) self.assertEqual(1, data.iloc[0]["erroneous_count"]) self.assertEqual(-100, data.iloc[0]["avg_erroneous_diff"]) self.assertEqual(1, data.iloc[0]["request_count"]) # Clean before exit self.mongodb_h.remove_all() def test_aggregate_data_for_time_sync_model_two_queries_in_same_period_one_anomalous(self): # Clean database state self.mongodb_h.remove_all() self.mongodb_h.create_indexes() # Add clean data client = {"timestamp": datetime.strptime("5/10/2017 10:00:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000, "service_call": "sc1", "succeeded": True, "messageId": "mID"} clean_doc = {"client": client, "producer": client} clean_doc["clientRequestSize"] = 1000 clean_doc["producerRequestSize"] = 1000 clean_doc["clientResponseSize"] = 1000 clean_doc["producerResponseSize"] = 1000 clean_doc["_id"] = "id1" clean_doc["correctorStatus"] = "done" clean_doc["totalDuration"] = 100 clean_doc["producerDurationProducerView"] = 100 clean_doc["requestNwDuration"] = 100 clean_doc["responseNwDuration"] = 100 clean_doc2 = clean_doc.copy() clean_doc2["_id"] = "id2" client2 = client.copy() client2["timestamp"] = datetime.strptime("5/10/2017 10:30:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000 clean_doc2["client"] = client2 clean_doc2["producer"] = client2 clean_doc2["responseNwDuration"] = -100 clean_documents = [clean_doc, clean_doc2] self.mongodb_h.add_clean_documents(clean_documents) # Run AnalyzerDatabaseManager data = self.db_manager.aggregate_data(model_type="time_sync_errors", metric="responseNwDuration", threshold=0, agg_minutes=60, start_time=None, end_time=None, ids_to_exclude=[]) self.assertEqual(1, len(data)) self.assertEqual(1, data.iloc[0]["erroneous_count"]) self.assertEqual(-100, data.iloc[0]["avg_erroneous_diff"]) self.assertEqual(2, data.iloc[0]["request_count"]) # Clean before exit self.mongodb_h.remove_all() def test_aggregate_data_for_time_sync_model_two_queries_in_same_period_both_anomalous(self): # Clean database state self.mongodb_h.remove_all() self.mongodb_h.create_indexes() # Add clean data client = {"timestamp": datetime.strptime("5/10/2017 10:00:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000, "service_call": "sc1", "succeeded": True, "messageId": "mID"} clean_doc = {"client": client, "producer": client} clean_doc["clientRequestSize"] = 1000 clean_doc["producerRequestSize"] = 1000 clean_doc["clientResponseSize"] = 1000 clean_doc["producerResponseSize"] = 1000 clean_doc["_id"] = "id1" clean_doc["correctorStatus"] = "done" clean_doc["totalDuration"] = 100 clean_doc["producerDurationProducerView"] = 100 clean_doc["requestNwDuration"] = 100 clean_doc["responseNwDuration"] = -200 clean_doc2 = clean_doc.copy() clean_doc2["_id"] = "id2" client2 = client.copy() client2["timestamp"] = datetime.strptime("5/10/2017 10:30:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000 clean_doc2["client"] = client2 clean_doc2["producer"] = client2 clean_doc2["responseNwDuration"] = -100 clean_documents = [clean_doc, clean_doc2] self.mongodb_h.add_clean_documents(clean_documents) # Run AnalyzerDatabaseManager data = self.db_manager.aggregate_data(model_type="time_sync_errors", metric="responseNwDuration", threshold=0, agg_minutes=60, start_time=None, end_time=None, ids_to_exclude=[]) self.assertEqual(1, len(data)) self.assertEqual(2, data.iloc[0]["erroneous_count"]) self.assertEqual(-150, data.iloc[0]["avg_erroneous_diff"]) self.assertEqual(2, data.iloc[0]["request_count"]) # Clean before exit self.mongodb_h.remove_all() def test_aggregate_data_for_historic_averages_model_single_query(self): # Clean database state self.mongodb_h.remove_all() self.mongodb_h.create_indexes() # Add clean data client = {"timestamp": datetime.strptime("5/10/2017 10:00:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000, "service_call": "sc1", "succeeded": True, "messageId": "mID"} clean_doc = {"client": client, "producer": client} clean_doc["clientRequestSize"] = 1000 clean_doc["producerRequestSize"] = 1000 clean_doc["clientResponseSize"] = 1000 clean_doc["producerResponseSize"] = 1000 clean_doc["_id"] = "id1" clean_doc["correctorStatus"] = "done" clean_doc["totalDuration"] = 100 clean_doc["producerDurationProducerView"] = 100 clean_doc["requestNwDuration"] = 100 clean_doc["responseNwDuration"] = 100 clean_documents = [clean_doc] self.mongodb_h.add_clean_documents(clean_documents) # Run AnalyzerDatabaseManager data = self.db_manager.aggregate_data_for_historic_averages_model(agg_minutes=60, start_time=None, end_time=None, ids_to_exclude=[]) self.assertEqual(1, len(data)) self.assertEqual(1, data.iloc[0]["request_count"]) self.assertEqual(1000, data.iloc[0]["mean_request_size"]) self.assertEqual(1000, data.iloc[0]["mean_response_size"]) self.assertEqual(100, data.iloc[0]["mean_client_duration"]) self.assertEqual(100, data.iloc[0]["mean_producer_duration"]) # Clean before exit self.mongodb_h.remove_all() def test_aggregate_data_for_historic_averages_model_single_query_client_missing(self): # Clean database state self.mongodb_h.remove_all() self.mongodb_h.create_indexes() # Add clean data client = {"timestamp": datetime.strptime("5/10/2017 10:00:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000, "service_call": "sc1", "succeeded": True, "messageId": "mID"} clean_doc = {"client": None, "producer": client} clean_doc["producerRequestSize"] = 1000 clean_doc["producerResponseSize"] = 1000 clean_doc["_id"] = "id1" clean_doc["correctorStatus"] = "done" clean_doc["producerDurationProducerView"] = 100 clean_doc["requestNwDuration"] = 100 clean_doc["responseNwDuration"] = 100 clean_documents = [clean_doc] self.mongodb_h.add_clean_documents(clean_documents) # Run AnalyzerDatabaseManager data = self.db_manager.aggregate_data_for_historic_averages_model(agg_minutes=60, start_time=None, end_time=None, ids_to_exclude=[]) print(data) self.assertEqual(1, len(data)) self.assertEqual(1, data.iloc[0]["request_count"]) self.assertEqual(1000, data.iloc[0]["mean_request_size"]) self.assertEqual(1000, data.iloc[0]["mean_response_size"]) self.assertEqual(None, data.iloc[0]["mean_client_duration"]) self.assertEqual(100, data.iloc[0]["mean_producer_duration"]) # Clean before exit self.mongodb_h.remove_all() def test_aggregate_data_for_historic_averages_model_single_query_producer_missing(self): # Clean database state self.mongodb_h.remove_all() self.mongodb_h.create_indexes() # Add clean data client = {"timestamp": datetime.strptime("5/10/2017 10:00:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000, "service_call": "sc1", "succeeded": True, "messageId": "mID"} clean_doc = {"client": client, "producer": None} clean_doc["clientRequestSize"] = 1000 clean_doc["clientResponseSize"] = 1000 clean_doc["_id"] = "id1" clean_doc["correctorStatus"] = "done" clean_doc["totalDuration"] = 100 clean_doc["requestNwDuration"] = 100 clean_doc["responseNwDuration"] = 100 clean_documents = [clean_doc] self.mongodb_h.add_clean_documents(clean_documents) # Run AnalyzerDatabaseManager data = self.db_manager.aggregate_data_for_historic_averages_model(agg_minutes=60, start_time=None, end_time=None, ids_to_exclude=[]) self.assertEqual(1, len(data)) self.assertEqual(1, data.iloc[0]["request_count"]) self.assertEqual(1000, data.iloc[0]["mean_request_size"]) self.assertEqual(1000, data.iloc[0]["mean_response_size"]) self.assertEqual(100, data.iloc[0]["mean_client_duration"]) self.assertEqual(None, data.iloc[0]["mean_producer_duration"]) # Clean before exit self.mongodb_h.remove_all() def test_aggregate_data_for_historic_averages_model_single_query_client_producer_different(self): # Clean database state self.mongodb_h.remove_all() self.mongodb_h.create_indexes() # Add clean data client = {"timestamp": datetime.strptime("5/10/2017 10:00:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000, "service_call": "sc1", "succeeded": True, "messageId": "mID"} clean_doc = {"client": client, "producer": client} clean_doc["clientRequestSize"] = 1000 clean_doc["producerRequestSize"] = 500 clean_doc["clientResponseSize"] = 1000 clean_doc["producerResponseSize"] = 500 clean_doc["_id"] = "id1" clean_doc["correctorStatus"] = "done" clean_doc["totalDuration"] = 100 clean_doc["producerDurationProducerView"] = 100 clean_doc["requestNwDuration"] = 100 clean_doc["responseNwDuration"] = 100 clean_documents = [clean_doc] self.mongodb_h.add_clean_documents(clean_documents) # Run AnalyzerDatabaseManager data = self.db_manager.aggregate_data_for_historic_averages_model(agg_minutes=60, start_time=None, end_time=None, ids_to_exclude=[]) self.assertEqual(1, len(data)) self.assertEqual(1, data.iloc[0]["request_count"]) self.assertEqual(1000, data.iloc[0]["mean_request_size"]) self.assertEqual(1000, data.iloc[0]["mean_response_size"]) self.assertEqual(100, data.iloc[0]["mean_client_duration"]) self.assertEqual(100, data.iloc[0]["mean_producer_duration"]) # Clean before exit self.mongodb_h.remove_all() def test_aggregate_data_for_historic_averages_model_two_queries_in_same_period(self): # Clean database state self.mongodb_h.remove_all() self.mongodb_h.create_indexes() # Add clean data client = {"timestamp": datetime.strptime("5/10/2017 10:00:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000, "service_call": "sc1", "succeeded": True, "messageId": "mID"} clean_doc = {"client": client, "producer": client} clean_doc["clientRequestSize"] = 1000 clean_doc["producerRequestSize"] = 1000 clean_doc["clientResponseSize"] = 1000 clean_doc["producerResponseSize"] = 1000 clean_doc["_id"] = "id1" clean_doc["correctorStatus"] = "done" clean_doc["totalDuration"] = 100 clean_doc["producerDurationProducerView"] = 100 clean_doc["requestNwDuration"] = 100 clean_doc["responseNwDuration"] = 100 clean_doc2 = clean_doc.copy() clean_doc2["_id"] = "id2" client2 = client.copy() client2["timestamp"] = datetime.strptime("5/10/2017 10:30:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000 clean_doc2["client"] = client2 clean_doc2["producer"] = client2 clean_documents = [clean_doc, clean_doc2] self.mongodb_h.add_clean_documents(clean_documents) # Run AnalyzerDatabaseManager data = self.db_manager.aggregate_data_for_historic_averages_model(agg_minutes=60, start_time=None, end_time=None, ids_to_exclude=[]) self.assertEqual(1, len(data)) self.assertEqual(2, data.iloc[0]["request_count"]) self.assertEqual(1000, data.iloc[0]["mean_request_size"]) self.assertEqual(1000, data.iloc[0]["mean_response_size"]) self.assertEqual(100, data.iloc[0]["mean_client_duration"]) self.assertEqual(100, data.iloc[0]["mean_producer_duration"]) # Clean before exit self.mongodb_h.remove_all() def test_aggregate_data_for_historic_averages_model_two_queries_in_same_period_one_not_successful(self): # Clean database state self.mongodb_h.remove_all() self.mongodb_h.create_indexes() # Add clean data client = {"timestamp": datetime.strptime("5/10/2017 10:00:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000, "service_call": "sc1", "succeeded": True, "messageId": "mID"} clean_doc = {"client": client, "producer": client} clean_doc["clientRequestSize"] = 1000 clean_doc["producerRequestSize"] = 1000 clean_doc["clientResponseSize"] = 1000 clean_doc["producerResponseSize"] = 1000 clean_doc["_id"] = "id1" clean_doc["correctorStatus"] = "done" clean_doc["totalDuration"] = 100 clean_doc["producerDurationProducerView"] = 100 clean_doc["requestNwDuration"] = 100 clean_doc["responseNwDuration"] = 100 clean_doc2 = clean_doc.copy() clean_doc2["_id"] = "id2" client2 = client.copy() client2["timestamp"] = datetime.strptime("5/10/2017 10:30:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000 client2["succeeded"] = False clean_doc2["client"] = client2 clean_doc2["producer"] = client2 clean_documents = [clean_doc, clean_doc2] self.mongodb_h.add_clean_documents(clean_documents) # Run AnalyzerDatabaseManager data = self.db_manager.aggregate_data_for_historic_averages_model(agg_minutes=60, start_time=None, end_time=None, ids_to_exclude=[]) self.assertEqual(1, len(data)) self.assertEqual(1, data.iloc[0]["request_count"]) self.assertEqual(1000, data.iloc[0]["mean_request_size"]) self.assertEqual(1000, data.iloc[0]["mean_response_size"]) self.assertEqual(100, data.iloc[0]["mean_client_duration"]) self.assertEqual(100, data.iloc[0]["mean_producer_duration"]) # Clean before exit self.mongodb_h.remove_all() def test_aggregate_data_for_historic_averages_model_two_queries_in_same_period_different_service_calls(self): # Clean database state self.mongodb_h.remove_all() self.mongodb_h.create_indexes() # Add clean data client = {"timestamp": datetime.strptime("5/10/2017 10:00:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000, "service_call": "sc1", "succeeded": True, "messageId": "mID"} clean_doc = {"client": client, "producer": client} clean_doc["clientRequestSize"] = 1000 clean_doc["producerRequestSize"] = 1000 clean_doc["clientResponseSize"] = 1000 clean_doc["producerResponseSize"] = 1000 clean_doc["_id"] = "id1" clean_doc["correctorStatus"] = "done" clean_doc["totalDuration"] = 100 clean_doc["producerDurationProducerView"] = 100 clean_doc["requestNwDuration"] = 100 clean_doc["responseNwDuration"] = 100 clean_doc2 = clean_doc.copy() clean_doc2["_id"] = "id2" client2 = client.copy() client2["timestamp"] = datetime.strptime("5/10/2017 10:30:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000 client2["service_call"] = "sc2" clean_doc2["client"] = client2 clean_doc2["producer"] = client2 clean_doc2["clientRequestSize"] = 500 clean_doc2["clientResponseSize"] = 500 clean_doc2["totalDuration"] = 50 clean_doc2["producerDurationProducerView"] = 50 clean_documents = [clean_doc, clean_doc2] self.mongodb_h.add_clean_documents(clean_documents) # Run AnalyzerDatabaseManager data = self.db_manager.aggregate_data_for_historic_averages_model(agg_minutes=60, start_time=None, end_time=None, ids_to_exclude=[]) self.assertEqual(2, len(data)) self.assertEqual(1, data[data.service_call == "sc1"].iloc[0]["request_count"]) self.assertEqual(1, data[data.service_call == "sc2"].iloc[0]["request_count"]) self.assertEqual(1000, data[data.service_call == "sc1"].iloc[0]["mean_request_size"]) self.assertEqual(500, data[data.service_call == "sc2"].iloc[0]["mean_request_size"]) self.assertEqual(1000, data[data.service_call == "sc1"].iloc[0]["mean_response_size"]) self.assertEqual(500, data[data.service_call == "sc2"].iloc[0]["mean_response_size"]) self.assertEqual(100, data[data.service_call == "sc1"].iloc[0]["mean_client_duration"]) self.assertEqual(50, data[data.service_call == "sc2"].iloc[0]["mean_client_duration"]) self.assertEqual(100, data[data.service_call == "sc1"].iloc[0]["mean_producer_duration"]) self.assertEqual(50, data[data.service_call == "sc2"].iloc[0]["mean_producer_duration"]) # Clean before exit self.mongodb_h.remove_all() def test_aggregate_data_for_historic_averages_model_two_queries_different_periods_same_service_call(self): # Clean database state self.mongodb_h.remove_all() self.mongodb_h.create_indexes() # Add clean data client = {"timestamp": datetime.strptime("5/10/2017 10:00:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000, "service_call": "sc1", "succeeded": True, "messageId": "mID"} clean_doc = {"client": client, "producer": client} clean_doc["clientRequestSize"] = 1000 clean_doc["producerRequestSize"] = 1000 clean_doc["clientResponseSize"] = 1000 clean_doc["producerResponseSize"] = 1000 clean_doc["_id"] = "id1" clean_doc["correctorStatus"] = "done" clean_doc["totalDuration"] = 100 clean_doc["producerDurationProducerView"] = 100 clean_doc["requestNwDuration"] = 100 clean_doc["responseNwDuration"] = 100 clean_doc2 = clean_doc.copy() clean_doc2["_id"] = "id2" client2 = client.copy() client2["timestamp"] = datetime.strptime("5/12/2017 10:30:00", "%d/%m/%Y %H:%M:%S").timestamp() * 1000 clean_doc2["client"] = client2 clean_doc2["producer"] = client2 clean_doc2["clientRequestSize"] = 500 clean_doc2["clientResponseSize"] = 500 clean_doc2["totalDuration"] = 50 clean_doc2["producerDurationProducerView"] = 50 clean_documents = [clean_doc, clean_doc2] self.mongodb_h.add_clean_documents(clean_documents) # Run AnalyzerDatabaseManager data = self.db_manager.aggregate_data_for_historic_averages_model(agg_minutes=60, start_time=None, end_time=None, ids_to_exclude=[]) print(data) self.assertEqual(2, len(data)) self.assertEqual(1, data[data.timestamp.dt.month == 10].iloc[0]["request_count"]) self.assertEqual(1, data[data.timestamp.dt.month == 12].iloc[0]["request_count"]) self.assertEqual(1000, data[data.timestamp.dt.month == 10].iloc[0]["mean_request_size"]) self.assertEqual(500, data[data.timestamp.dt.month == 12].iloc[0]["mean_request_size"]) self.assertEqual(1000, data[data.timestamp.dt.month == 10].iloc[0]["mean_response_size"]) self.assertEqual(500, data[data.timestamp.dt.month == 12].iloc[0]["mean_response_size"]) self.assertEqual(100, data[data.timestamp.dt.month == 10].iloc[0]["mean_client_duration"]) self.assertEqual(50, data[data.timestamp.dt.month == 12].iloc[0]["mean_client_duration"]) self.assertEqual(100, data[data.timestamp.dt.month == 10].iloc[0]["mean_producer_duration"]) self.assertEqual(50, data[data.timestamp.dt.month == 12].iloc[0]["mean_producer_duration"]) # Clean before exit self.mongodb_h.remove_all()
43.737544
140
0.623462
ef1790e1d254d801ba8736f136a67699b8eca72d
4,533
py
Python
apis/bilibili/video.py
LXG-Shadow/BilibiliGetFavorite
a3912eb983be5f420c3729d705eefbf06d240309
[ "Apache-2.0" ]
60
2018-08-27T07:10:58.000Z
2021-07-14T11:13:53.000Z
apis/bilibili/video.py
LXG-Shadow/BilibiliGetFavorite
a3912eb983be5f420c3729d705eefbf06d240309
[ "Apache-2.0" ]
6
2019-09-09T02:50:23.000Z
2021-06-08T21:46:16.000Z
apis/bilibili/video.py
LXG-Shadow/BilibiliGetFavorite
a3912eb983be5f420c3729d705eefbf06d240309
[ "Apache-2.0" ]
17
2019-01-20T08:46:01.000Z
2021-06-30T10:44:01.000Z
from apis import CommonRequestWrapper from config import Config class QUALITY: P4k = (120, "FLV", "超清 4K", True) P1080F60 = (116, "FLV", "高清 1080P60", True) P1080PLUS = (112, "FLV", "高清 1080P+", True) P1080 = (80, "FLV", "高清 1080P", True) P720F60 = (74, "FLV", "高清 720P", True) P720 = (64, "FLV", "高清 720P", True) P720MP4 = (48, "MP4", "高清 720P (MP4)", True) P480 = (32, "FLV", "清晰 480P", False) P360 = (16, "FLV", "流畅 360P", False) values = [P4k, P1080F60, P1080PLUS, P1080, P720F60, P720, P720MP4, P480, P360] @staticmethod def id(quality): return quality[0] @staticmethod def format(quality): return quality[1] @staticmethod def description(quality): return quality[2] @staticmethod def cookie(quality): return quality[3] class API: cookies = Config.getCookie("bilibili") @staticmethod def headers(): h = Config.commonHeaders.copy() h.update({"referer": "https://www.bilibili.com"}) return h @staticmethod def detail_api(bvid): return "https://api.bilibili.com/x/web-interface/view/detail?" \ "bvid={bvid}&aid=&jsonp=jsonp".format(bvid=bvid) @staticmethod def pages_api(bvid): return "https://api.bilibili.com/x/player/pagelist?bvid={bvid}".format(bvid=bvid) @staticmethod def playurl_api(bvid, cid, quality): return "https://api.bilibili.com/x/player/playurl?type=&otype=json&fourk=1&" \ "avid=&bvid={bvid}&cid={cid}&qn={quality}".format(bvid=bvid, cid=cid, quality=quality) @staticmethod def bangumi_url(ep_id): return "https://www.bilibili.com/bangumi/play/{ep_id}".format(ep_id=ep_id) @staticmethod def bangumi_playurl_api(bvid, cid, quality): return "https://api.bilibili.com/pgc/player/web/playurl?type=&otype=json&fourk=1&" \ "avid=&bvid={bvid}&cid={cid}&qn={quality}".format(bvid=bvid, cid=cid, quality=quality) @staticmethod def danmu_api(cid): return "http://comment.bilibili.com/{cid}.xml".format(cid=cid) @CommonRequestWrapper def getVideoInfo(bvid: str): """ return video ifo :param bvid: bilibili bvid :return: bytes """ return ("get", API.detail_api(bvid), {"headers": API.headers()} ) @CommonRequestWrapper def getVideoCid(bvid: str): """ return video pages including page name and cid :param bvid: bilibili bvid :return: bytes """ return ("get", API.pages_api(bvid), {"headers": API.headers(), "cookies": API.cookies} ) @CommonRequestWrapper def getPlayUrl(bvid: str, cid: str, quality: int = QUALITY.id(QUALITY.P1080F60)): """ return video real url by bvid and cid :param bvid: bilibili bvid :return: bytes """ return ("get", API.playurl_api(bvid, cid, quality), {"headers": API.headers(), "cookies": API.cookies} ) @CommonRequestWrapper def getBangumiInfo(ep_id:str): """ get bangumi info by ep id or ss id epxxx ssxxxx :param ep_id: bilibili ep_id :return: bytes """ return ("get", API.bangumi_url(ep_id), {"headers": API.headers(), "cookies": API.cookies} ) @CommonRequestWrapper def getBangumiPlayUrl(bvid: str, cid: str, quality: int = QUALITY.id(QUALITY.P1080F60)): """ return video real url by bvid and cid :param bvid: bilibili bvid :return: bytes """ return ("get", API.bangumi_playurl_api(bvid, cid, quality), {"headers": API.headers(), "cookies": API.cookies} ) # videoUrl = "https://www.bilibili.com/video/av%s" # baseUrl = "https://www.bilibili.com/video/%s" # pagesApi = "https://www.bilibili.com/widget/getPageList?aid=%s" # pagesApi = "https://api.bilibili.com/x/player/pagelist?bvid=%s" # detailApi = "https://api.bilibili.com/x/web-interface/view/detail?bvid=%s&aid=&jsonp=jsonp" # playurlApi = "https://api.bilibili.com/x/player/playurl?avid=&bvid=%s&cid=%s&qn=%s&type=&otype=json&fourk=1" # dmApi = "http://comment.bilibili.com/%s.xml"
28.15528
110
0.566953
f40355cfb7ec8c3b4e34be4e3611baa03daeb4a4
304
py
Python
tests/test_invoice_line_item.py
Files-com/files-sdk-python
84cedc9be099cd9e4db6249ef7a9d60595487090
[ "MIT" ]
14
2020-08-05T15:48:06.000Z
2021-08-18T13:13:39.000Z
tests/test_invoice_line_item.py
Files-com/files-sdk-python
84cedc9be099cd9e4db6249ef7a9d60595487090
[ "MIT" ]
4
2020-10-30T14:49:25.000Z
2021-09-29T17:11:53.000Z
tests/test_invoice_line_item.py
Files-com/files-sdk-python
84cedc9be099cd9e4db6249ef7a9d60595487090
[ "MIT" ]
null
null
null
import unittest import inspect import files_sdk from tests.base import TestBase from files_sdk.models import InvoiceLineItem from files_sdk import invoice_line_item class InvoiceLineItemTest(TestBase): pass # Instance Methods # Static Methods if __name__ == '__main__': unittest.main()
21.714286
44
0.786184
52c895bee1aa9a9cbf371e66a93b0a5bced7f980
1,590
py
Python
client/back/server_connection.py
joaorura/HangmanGameOnline-HGC
9d32ba7bd5f95cd1d899afe3eb0f327faff36596
[ "MIT" ]
null
null
null
client/back/server_connection.py
joaorura/HangmanGameOnline-HGC
9d32ba7bd5f95cd1d899afe3eb0f327faff36596
[ "MIT" ]
null
null
null
client/back/server_connection.py
joaorura/HangmanGameOnline-HGC
9d32ba7bd5f95cd1d899afe3eb0f327faff36596
[ "MIT" ]
null
null
null
from socket import socket from multiprocessing import Queue from utils.utils import check_type from .process_all import ProcessAll from .process_receive import ProcessReceive from .process_send import ProcessSend class ServerConnection: def __init__(self, ip, port): self.address = (ip, port) self.process_list = [] self.socket = socket() a = 0 while True: try: self.socket.connect(self.address) break except ConnectionRefusedError: if a == 5: raise ConnectionRefusedError a += 1 continue self.queue_send = Queue() self.queue_receive = Queue() self.queue_front = Queue() self.process_send = ProcessSend(self.queue_send, self.queue_front, self.socket) self.process_receive = ProcessReceive(self.queue_receive, self.socket) self.process = ProcessAll(self.queue_front, self.queue_send, self.queue_receive) self.process_list.append(self.process_send) self.process_list.append(self.process_receive) self.process_list.append(self.process) def send(self, jdata): check_type(jdata, dict) self.queue_send.put(jdata) def terminate(self): for a in self.process_list: a.terminate() def start(self): for a in self.process_list: a.start() self.process.intergame.start() self.process.intergame.game_to_server.end() self.terminate() self.socket.shutdown(1)
30
88
0.627044
2391a4e8b73a7b6fd7af117cc9422ee579d79321
3,775
py
Python
homeassistant/components/sensor/zwave.py
hemantsangwan/home-assistant
28b397030d2f66bb084f80d8a237d0a2c11bac79
[ "MIT" ]
2
2021-05-25T01:08:57.000Z
2022-01-09T21:02:46.000Z
homeassistant/components/sensor/zwave.py
hemantsangwan/home-assistant
28b397030d2f66bb084f80d8a237d0a2c11bac79
[ "MIT" ]
null
null
null
homeassistant/components/sensor/zwave.py
hemantsangwan/home-assistant
28b397030d2f66bb084f80d8a237d0a2c11bac79
[ "MIT" ]
1
2022-02-04T10:11:57.000Z
2022-02-04T10:11:57.000Z
""" homeassistant.components.sensor.zwave ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Interfaces with Z-Wave sensors. """ # pylint: disable=import-error from openzwave.network import ZWaveNetwork from pydispatch import dispatcher import homeassistant.components.zwave as zwave from homeassistant.helpers.device import Device from homeassistant.const import ( ATTR_BATTERY_LEVEL, ATTR_UNIT_OF_MEASUREMENT, STATE_ON, STATE_OFF, TEMP_CELCIUS, TEMP_FAHRENHEIT, ATTR_LOCATION) def setup_platform(hass, config, add_devices, discovery_info=None): """ Sets up Z-Wave sensors. """ node = zwave.NETWORK.nodes[discovery_info[zwave.ATTR_NODE_ID]] value = node.values[discovery_info[zwave.ATTR_VALUE_ID]] value.set_change_verified(False) if zwave.NETWORK.controller.node_id not in node.groups[1].associations: node.groups[1].add_association(zwave.NETWORK.controller.node_id) if value.command_class == zwave.COMMAND_CLASS_SENSOR_BINARY: return [ZWaveBinarySensor(value)] elif value.command_class == zwave.COMMAND_CLASS_SENSOR_MULTILEVEL: return [ZWaveMultilevelSensor(value)] class ZWaveSensor(Device): """ Represents a Z-Wave sensor. """ def __init__(self, sensor_value): self._value = sensor_value self._node = sensor_value.node dispatcher.connect( self._value_changed, ZWaveNetwork.SIGNAL_VALUE_CHANGED) @property def should_poll(self): """ False because we will push our own state to HA when changed. """ return False @property def unique_id(self): """ Returns a unique id. """ return "ZWAVE-{}-{}".format(self._node.node_id, self._value.object_id) @property def name(self): """ Returns the name of the device. """ name = self._node.name or "{} {}".format( self._node.manufacturer_name, self._node.product_name) return "{} {}".format(name, self._value.label) @property def state(self): """ Returns the state of the sensor. """ return self._value.data @property def state_attributes(self): """ Returns the state attributes. """ attrs = { zwave.ATTR_NODE_ID: self._node.node_id, } battery_level = self._node.get_battery_level() if battery_level is not None: attrs[ATTR_BATTERY_LEVEL] = battery_level unit = self.unit if unit: attrs[ATTR_UNIT_OF_MEASUREMENT] = unit location = self._node.location if location: attrs[ATTR_LOCATION] = location return attrs @property def unit(self): """ Unit if sensor has one. """ return self._value.units def _value_changed(self, value): """ Called when a value has changed on the network. """ if self._value.value_id == value.value_id: self.update_ha_state() # pylint: disable=too-few-public-methods class ZWaveBinarySensor(ZWaveSensor): """ Represents a binary sensor within Z-Wave. """ @property def state(self): """ Returns the state of the sensor. """ return STATE_ON if self._value.data else STATE_OFF class ZWaveMultilevelSensor(ZWaveSensor): """ Represents a multi level sensor Z-Wave sensor. """ @property def state(self): """ Returns the state of the sensor. """ value = self._value.data if self._value.units in ('C', 'F'): return round(value, 1) return value @property def unit(self): """ Unit of this sensor. """ unit = self._value.units if unit == 'C': return TEMP_CELCIUS elif unit == 'F': return TEMP_FAHRENHEIT else: return unit
27.757353
78
0.639205
834181020b98b5a79dd72dd438c316cbb19abd09
5,102
py
Python
T2API/migrations/0001_initial.py
hackhb18-T2/api
c42be466492d07d6451ff3145985cd8cc0927257
[ "Apache-2.0" ]
null
null
null
T2API/migrations/0001_initial.py
hackhb18-T2/api
c42be466492d07d6451ff3145985cd8cc0927257
[ "Apache-2.0" ]
null
null
null
T2API/migrations/0001_initial.py
hackhb18-T2/api
c42be466492d07d6451ff3145985cd8cc0927257
[ "Apache-2.0" ]
null
null
null
# Generated by Django 2.0.2 on 2018-02-17 03:15 import django.contrib.auth.models import django.contrib.auth.validators import django.utils.timezone from django.conf import settings from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0009_alter_user_last_name_max_length'), ] operations = [ migrations.CreateModel( name='Device', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('mac', models.CharField(max_length=12, unique=True)), ('resolution', models.CharField(max_length=15)), ('last_ping', models.DateTimeField(auto_now=True)), ('battery_status', models.CharField(max_length=20)), ], options={ 'ordering': ('mac',), }, ), migrations.CreateModel( name='Product', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=150)), ('ean', models.CharField(max_length=13)), ], ), migrations.CreateModel( name='ApiUser', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('username', models.CharField(error_messages={'unique': 'A user with that username already exists.'}, help_text='Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.', max_length=150, unique=True, validators=[django.contrib.auth.validators.UnicodeUsernameValidator()], verbose_name='username')), ('first_name', models.CharField(blank=True, max_length=30, verbose_name='first name')), ('last_name', models.CharField(blank=True, max_length=150, verbose_name='last name')), ('email', models.EmailField(blank=True, max_length=254, verbose_name='email address')), ('is_staff', models.BooleanField(default=False, help_text='Designates whether the user can log into this admin site.', verbose_name='staff status')), ('is_active', models.BooleanField(default=True, help_text='Designates whether this user should be treated as active. Unselect this instead of deleting accounts.', verbose_name='active')), ('date_joined', models.DateTimeField(default=django.utils.timezone.now, verbose_name='date joined')), ('groups', models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups')), ('user_permissions', models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions')), ], options={ 'verbose_name': 'user', 'verbose_name_plural': 'users', 'abstract': False, }, managers=[ ('objects', django.contrib.auth.models.UserManager()), ], ), migrations.AddField( model_name='device', name='product', field=models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, related_name='devices', to='T2API.Product'), ), migrations.AddField( model_name='device', name='user', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='devices', to=settings.AUTH_USER_MODEL), ), ]
54.860215
164
0.525284
cb40d0155a934c13d9d4deddd580429b19dba719
2,171
py
Python
young/apps/users/migrations/0007_auto_20190104_1205.py
Aooyh/Young
223671c05085f79a9f12513ccc16abbb4ca801d4
[ "MIT" ]
1
2019-04-20T07:54:21.000Z
2019-04-20T07:54:21.000Z
young/apps/users/migrations/0007_auto_20190104_1205.py
Aooyh/Young
223671c05085f79a9f12513ccc16abbb4ca801d4
[ "MIT" ]
null
null
null
young/apps/users/migrations/0007_auto_20190104_1205.py
Aooyh/Young
223671c05085f79a9f12513ccc16abbb4ca801d4
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11.11 on 2019-01-04 12:05 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('users', '0006_article_focus_url'), ] operations = [ migrations.AddField( model_name='article', name='trans_count', field=models.IntegerField(default=0, verbose_name='转发数'), ), migrations.AddField( model_name='comment', name='author', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='comments', to=settings.AUTH_USER_MODEL, verbose_name='评论者'), ), migrations.AddField( model_name='comment', name='content', field=models.CharField(max_length=500, null=True, verbose_name='评论内容'), ), migrations.AddField( model_name='comment', name='create_time', field=models.DateField(auto_now=True, verbose_name='创建时间'), ), migrations.AddField( model_name='comment', name='update_time', field=models.DateField(default=django.utils.timezone.now, verbose_name='更新时间'), ), migrations.AddField( model_name='user', name='collect_articles', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='users.Article', verbose_name='收藏文臧'), ), migrations.AddField( model_name='user', name='like_articles', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='like_users', to='users.Article', verbose_name='点赞文章'), ), migrations.AddField( model_name='user', name='like_comments', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='like_users', to='users.Comment', verbose_name='点赞评论'), ), ]
36.79661
166
0.620912
c23f8f47befa30db6d6758c8d6c0e1243c037b84
19,914
py
Python
homeassistant/components/netatmo/climate.py
pszafer/core
ab6fb5cb7705a7f2e3a4f310b5d42047c3372bd2
[ "Apache-2.0" ]
3
2019-07-06T08:00:22.000Z
2021-11-12T23:01:59.000Z
homeassistant/components/netatmo/climate.py
pszafer/core
ab6fb5cb7705a7f2e3a4f310b5d42047c3372bd2
[ "Apache-2.0" ]
44
2020-08-03T07:31:07.000Z
2022-03-31T06:02:04.000Z
homeassistant/components/netatmo/climate.py
titilambert/home-assistant
a2651845f379992231fd7b9c8458828036296ee0
[ "Apache-2.0" ]
2
2017-09-03T16:06:02.000Z
2021-01-12T15:07:52.000Z
"""Support for Netatmo Smart thermostats.""" import logging from typing import List, Optional import voluptuous as vol from homeassistant.components.climate import ClimateEntity from homeassistant.components.climate.const import ( CURRENT_HVAC_HEAT, CURRENT_HVAC_IDLE, DEFAULT_MIN_TEMP, HVAC_MODE_AUTO, HVAC_MODE_HEAT, HVAC_MODE_OFF, PRESET_AWAY, PRESET_BOOST, SUPPORT_PRESET_MODE, SUPPORT_TARGET_TEMPERATURE, ) from homeassistant.const import ( ATTR_BATTERY_LEVEL, ATTR_TEMPERATURE, PRECISION_HALVES, STATE_OFF, TEMP_CELSIUS, ) from homeassistant.core import callback from homeassistant.helpers import config_validation as cv, entity_platform from homeassistant.helpers.dispatcher import async_dispatcher_connect from .const import ( ATTR_HEATING_POWER_REQUEST, ATTR_SCHEDULE_NAME, DATA_HANDLER, DATA_HOMES, DATA_SCHEDULES, DOMAIN, EVENT_TYPE_CANCEL_SET_POINT, EVENT_TYPE_SET_POINT, EVENT_TYPE_THERM_MODE, MANUFACTURER, SERVICE_SET_SCHEDULE, SIGNAL_NAME, ) from .data_handler import HOMEDATA_DATA_CLASS_NAME, HOMESTATUS_DATA_CLASS_NAME from .netatmo_entity_base import NetatmoBase _LOGGER = logging.getLogger(__name__) PRESET_FROST_GUARD = "Frost Guard" PRESET_SCHEDULE = "Schedule" PRESET_MANUAL = "Manual" SUPPORT_FLAGS = SUPPORT_TARGET_TEMPERATURE | SUPPORT_PRESET_MODE SUPPORT_HVAC = [HVAC_MODE_HEAT, HVAC_MODE_AUTO, HVAC_MODE_OFF] SUPPORT_PRESET = [PRESET_AWAY, PRESET_BOOST, PRESET_FROST_GUARD, PRESET_SCHEDULE] STATE_NETATMO_SCHEDULE = "schedule" STATE_NETATMO_HG = "hg" STATE_NETATMO_MAX = "max" STATE_NETATMO_AWAY = PRESET_AWAY STATE_NETATMO_OFF = STATE_OFF STATE_NETATMO_MANUAL = "manual" STATE_NETATMO_HOME = "home" PRESET_MAP_NETATMO = { PRESET_FROST_GUARD: STATE_NETATMO_HG, PRESET_BOOST: STATE_NETATMO_MAX, PRESET_SCHEDULE: STATE_NETATMO_SCHEDULE, PRESET_AWAY: STATE_NETATMO_AWAY, STATE_NETATMO_OFF: STATE_NETATMO_OFF, } NETATMO_MAP_PRESET = { STATE_NETATMO_HG: PRESET_FROST_GUARD, STATE_NETATMO_MAX: PRESET_BOOST, STATE_NETATMO_SCHEDULE: PRESET_SCHEDULE, STATE_NETATMO_AWAY: PRESET_AWAY, STATE_NETATMO_OFF: STATE_NETATMO_OFF, STATE_NETATMO_MANUAL: STATE_NETATMO_MANUAL, } HVAC_MAP_NETATMO = { PRESET_SCHEDULE: HVAC_MODE_AUTO, STATE_NETATMO_HG: HVAC_MODE_AUTO, PRESET_FROST_GUARD: HVAC_MODE_AUTO, PRESET_BOOST: HVAC_MODE_HEAT, STATE_NETATMO_OFF: HVAC_MODE_OFF, STATE_NETATMO_MANUAL: HVAC_MODE_AUTO, PRESET_MANUAL: HVAC_MODE_AUTO, STATE_NETATMO_AWAY: HVAC_MODE_AUTO, } CURRENT_HVAC_MAP_NETATMO = {True: CURRENT_HVAC_HEAT, False: CURRENT_HVAC_IDLE} DEFAULT_MAX_TEMP = 30 NA_THERM = "NATherm1" NA_VALVE = "NRV" async def async_setup_entry(hass, entry, async_add_entities): """Set up the Netatmo energy platform.""" data_handler = hass.data[DOMAIN][entry.entry_id][DATA_HANDLER] await data_handler.register_data_class( HOMEDATA_DATA_CLASS_NAME, HOMEDATA_DATA_CLASS_NAME, None ) home_data = data_handler.data.get(HOMEDATA_DATA_CLASS_NAME) if not home_data: return async def get_entities(): """Retrieve Netatmo entities.""" entities = [] for home_id in get_all_home_ids(home_data): _LOGGER.debug("Setting up home %s ...", home_id) for room_id in home_data.rooms[home_id].keys(): room_name = home_data.rooms[home_id][room_id]["name"] _LOGGER.debug("Setting up room %s (%s) ...", room_name, room_id) signal_name = f"{HOMESTATUS_DATA_CLASS_NAME}-{home_id}" await data_handler.register_data_class( HOMESTATUS_DATA_CLASS_NAME, signal_name, None, home_id=home_id ) home_status = data_handler.data.get(signal_name) if home_status and room_id in home_status.rooms: entities.append(NetatmoThermostat(data_handler, home_id, room_id)) hass.data[DOMAIN][DATA_SCHEDULES][home_id] = { schedule_id: schedule_data.get("name") for schedule_id, schedule_data in ( data_handler.data[HOMEDATA_DATA_CLASS_NAME] .schedules[home_id] .items() ) } hass.data[DOMAIN][DATA_HOMES] = { home_id: home_data.get("name") for home_id, home_data in ( data_handler.data[HOMEDATA_DATA_CLASS_NAME].homes.items() ) } return entities async_add_entities(await get_entities(), True) platform = entity_platform.current_platform.get() if home_data is not None: platform.async_register_entity_service( SERVICE_SET_SCHEDULE, {vol.Required(ATTR_SCHEDULE_NAME): cv.string}, "_service_set_schedule", ) class NetatmoThermostat(NetatmoBase, ClimateEntity): """Representation a Netatmo thermostat.""" def __init__(self, data_handler, home_id, room_id): """Initialize the sensor.""" ClimateEntity.__init__(self) super().__init__(data_handler) self._id = room_id self._home_id = home_id self._home_status_class = f"{HOMESTATUS_DATA_CLASS_NAME}-{self._home_id}" self._data_classes.extend( [ { "name": HOMEDATA_DATA_CLASS_NAME, SIGNAL_NAME: HOMEDATA_DATA_CLASS_NAME, }, { "name": HOMESTATUS_DATA_CLASS_NAME, "home_id": self._home_id, SIGNAL_NAME: self._home_status_class, }, ] ) self._home_status = self.data_handler.data[self._home_status_class] self._room_status = self._home_status.rooms[room_id] self._room_data = self._data.rooms[home_id][room_id] self._model = NA_VALVE for module in self._room_data.get("module_ids"): if self._home_status.thermostats.get(module): self._model = NA_THERM break self._state = None self._device_name = self._data.rooms[home_id][room_id]["name"] self._name = f"{MANUFACTURER} {self._device_name}" self._current_temperature = None self._target_temperature = None self._preset = None self._away = None self._operation_list = [HVAC_MODE_AUTO, HVAC_MODE_HEAT] self._support_flags = SUPPORT_FLAGS self._hvac_mode = None self._battery_level = None self._connected = None self._away_temperature = None self._hg_temperature = None self._boilerstatus = None self._setpoint_duration = None if self._model == NA_THERM: self._operation_list.append(HVAC_MODE_OFF) self._unique_id = f"{self._id}-{self._model}" async def async_added_to_hass(self) -> None: """Entity created.""" await super().async_added_to_hass() for event_type in ( EVENT_TYPE_SET_POINT, EVENT_TYPE_THERM_MODE, EVENT_TYPE_CANCEL_SET_POINT, ): self._listeners.append( async_dispatcher_connect( self.hass, f"signal-{DOMAIN}-webhook-{event_type}", self.handle_event, ) ) async def handle_event(self, event): """Handle webhook events.""" data = event["data"] if not data.get("home"): return home = data["home"] if self._home_id == home["id"] and data["event_type"] == EVENT_TYPE_THERM_MODE: self._preset = NETATMO_MAP_PRESET[home[EVENT_TYPE_THERM_MODE]] self._hvac_mode = HVAC_MAP_NETATMO[self._preset] if self._preset == PRESET_FROST_GUARD: self._target_temperature = self._hg_temperature elif self._preset == PRESET_AWAY: self._target_temperature = self._away_temperature elif self._preset == PRESET_SCHEDULE: self.async_update_callback() self.async_write_ha_state() return if not home.get("rooms"): return for room in home["rooms"]: if data["event_type"] == EVENT_TYPE_SET_POINT: if self._id == room["id"]: if room["therm_setpoint_mode"] == STATE_NETATMO_OFF: self._hvac_mode = HVAC_MODE_OFF elif room["therm_setpoint_mode"] == STATE_NETATMO_MAX: self._hvac_mode = HVAC_MODE_HEAT self._target_temperature = DEFAULT_MAX_TEMP else: self._target_temperature = room["therm_setpoint_temperature"] self.async_write_ha_state() break elif data["event_type"] == EVENT_TYPE_CANCEL_SET_POINT: if self._id == room["id"]: self.async_update_callback() self.async_write_ha_state() break @property def supported_features(self): """Return the list of supported features.""" return self._support_flags @property def temperature_unit(self): """Return the unit of measurement.""" return TEMP_CELSIUS @property def current_temperature(self): """Return the current temperature.""" return self._current_temperature @property def target_temperature(self): """Return the temperature we try to reach.""" return self._target_temperature @property def target_temperature_step(self) -> Optional[float]: """Return the supported step of target temperature.""" return PRECISION_HALVES @property def hvac_mode(self): """Return hvac operation ie. heat, cool mode.""" return self._hvac_mode @property def hvac_modes(self): """Return the list of available hvac operation modes.""" return self._operation_list @property def hvac_action(self) -> Optional[str]: """Return the current running hvac operation if supported.""" if self._model == NA_THERM: return CURRENT_HVAC_MAP_NETATMO[self._boilerstatus] # Maybe it is a valve if self._room_status and self._room_status.get("heating_power_request", 0) > 0: return CURRENT_HVAC_HEAT return CURRENT_HVAC_IDLE def set_hvac_mode(self, hvac_mode: str) -> None: """Set new target hvac mode.""" if hvac_mode == HVAC_MODE_OFF: self.turn_off() elif hvac_mode == HVAC_MODE_AUTO: if self.hvac_mode == HVAC_MODE_OFF: self.turn_on() self.set_preset_mode(PRESET_SCHEDULE) elif hvac_mode == HVAC_MODE_HEAT: self.set_preset_mode(PRESET_BOOST) def set_preset_mode(self, preset_mode: str) -> None: """Set new preset mode.""" if self.target_temperature == 0: self._home_status.set_room_thermpoint( self._id, STATE_NETATMO_HOME, ) if preset_mode in [PRESET_BOOST, STATE_NETATMO_MAX] and self._model == NA_VALVE: self._home_status.set_room_thermpoint( self._id, STATE_NETATMO_MANUAL, DEFAULT_MAX_TEMP, ) elif preset_mode in [PRESET_BOOST, STATE_NETATMO_MAX]: self._home_status.set_room_thermpoint( self._id, PRESET_MAP_NETATMO[preset_mode] ) elif preset_mode in [PRESET_SCHEDULE, PRESET_FROST_GUARD, PRESET_AWAY]: self._home_status.set_thermmode(PRESET_MAP_NETATMO[preset_mode]) else: _LOGGER.error("Preset mode '%s' not available", preset_mode) self.async_write_ha_state() @property def preset_mode(self) -> Optional[str]: """Return the current preset mode, e.g., home, away, temp.""" return self._preset @property def preset_modes(self) -> Optional[List[str]]: """Return a list of available preset modes.""" return SUPPORT_PRESET def set_temperature(self, **kwargs): """Set new target temperature for 2 hours.""" temp = kwargs.get(ATTR_TEMPERATURE) if temp is None: return self._home_status.set_room_thermpoint(self._id, STATE_NETATMO_MANUAL, temp) self.async_write_ha_state() @property def device_state_attributes(self): """Return the state attributes of the thermostat.""" attr = {} if self._battery_level is not None: attr[ATTR_BATTERY_LEVEL] = self._battery_level if self._model == NA_VALVE: attr[ATTR_HEATING_POWER_REQUEST] = self._room_status.get( "heating_power_request", 0 ) return attr def turn_off(self): """Turn the entity off.""" if self._model == NA_VALVE: self._home_status.set_room_thermpoint( self._id, STATE_NETATMO_MANUAL, DEFAULT_MIN_TEMP, ) elif self.hvac_mode != HVAC_MODE_OFF: self._home_status.set_room_thermpoint(self._id, STATE_NETATMO_OFF) self.async_write_ha_state() def turn_on(self): """Turn the entity on.""" self._home_status.set_room_thermpoint(self._id, STATE_NETATMO_HOME) self.async_write_ha_state() @property def available(self) -> bool: """If the device hasn't been able to connect, mark as unavailable.""" return bool(self._connected) @callback def async_update_callback(self): """Update the entity's state.""" self._home_status = self.data_handler.data[self._home_status_class] self._room_status = self._home_status.rooms.get(self._id) self._room_data = self._data.rooms.get(self._home_id, {}).get(self._id) if not self._room_status or not self._room_data: if self._connected: _LOGGER.info( "The thermostat in room %s seems to be out of reach", self._device_name, ) self._connected = False return roomstatus = {"roomID": self._room_status.get("id", {})} if self._room_status.get("reachable"): roomstatus.update(self._build_room_status()) self._away_temperature = self._data.get_away_temp(self._home_id) self._hg_temperature = self._data.get_hg_temp(self._home_id) self._setpoint_duration = self._data.setpoint_duration[self._home_id] if "current_temperature" not in roomstatus: return if self._model is None: self._model = roomstatus["module_type"] self._current_temperature = roomstatus["current_temperature"] self._target_temperature = roomstatus["target_temperature"] self._preset = NETATMO_MAP_PRESET[roomstatus["setpoint_mode"]] self._hvac_mode = HVAC_MAP_NETATMO[self._preset] self._battery_level = roomstatus.get("battery_level") self._connected = True self._away = self._hvac_mode == HVAC_MAP_NETATMO[STATE_NETATMO_AWAY] def _build_room_status(self): """Construct room status.""" try: roomstatus = { "roomname": self._room_data["name"], "target_temperature": self._room_status["therm_setpoint_temperature"], "setpoint_mode": self._room_status["therm_setpoint_mode"], "current_temperature": self._room_status["therm_measured_temperature"], "module_type": self._data.get_thermostat_type( home_id=self._home_id, room_id=self._id ), "module_id": None, "heating_status": None, "heating_power_request": None, } batterylevel = None for module_id in self._room_data["module_ids"]: if ( self._data.modules[self._home_id][module_id]["type"] == NA_THERM or roomstatus["module_id"] is None ): roomstatus["module_id"] = module_id if roomstatus["module_type"] == NA_THERM: self._boilerstatus = self._home_status.boiler_status( roomstatus["module_id"] ) roomstatus["heating_status"] = self._boilerstatus batterylevel = self._home_status.thermostats[ roomstatus["module_id"] ].get("battery_level") elif roomstatus["module_type"] == NA_VALVE: roomstatus["heating_power_request"] = self._room_status[ "heating_power_request" ] roomstatus["heating_status"] = roomstatus["heating_power_request"] > 0 if self._boilerstatus is not None: roomstatus["heating_status"] = ( self._boilerstatus and roomstatus["heating_status"] ) batterylevel = self._home_status.valves[roomstatus["module_id"]].get( "battery_level" ) if batterylevel: batterypct = interpolate(batterylevel, roomstatus["module_type"]) if ( not roomstatus.get("battery_level") or batterypct < roomstatus["battery_level"] ): roomstatus["battery_level"] = batterypct return roomstatus except KeyError as err: _LOGGER.error("Update of room %s failed. Error: %s", self._id, err) return {} def _service_set_schedule(self, **kwargs): schedule_name = kwargs.get(ATTR_SCHEDULE_NAME) schedule_id = None for sid, name in self.hass.data[DOMAIN][DATA_SCHEDULES][self._home_id].items(): if name == schedule_name: schedule_id = sid if not schedule_id: _LOGGER.error("You passed an invalid schedule") return self._data.switch_home_schedule(home_id=self._home_id, schedule_id=schedule_id) _LOGGER.debug( "Setting %s schedule to %s (%s)", self._home_id, kwargs.get(ATTR_SCHEDULE_NAME), schedule_id, ) def interpolate(batterylevel, module_type): """Interpolate battery level depending on device type.""" na_battery_levels = { NA_THERM: { "full": 4100, "high": 3600, "medium": 3300, "low": 3000, "empty": 2800, }, NA_VALVE: { "full": 3200, "high": 2700, "medium": 2400, "low": 2200, "empty": 2200, }, } levels = sorted(na_battery_levels[module_type].values()) steps = [20, 50, 80, 100] na_battery_level = na_battery_levels[module_type] if batterylevel >= na_battery_level["full"]: return 100 if batterylevel >= na_battery_level["high"]: i = 3 elif batterylevel >= na_battery_level["medium"]: i = 2 elif batterylevel >= na_battery_level["low"]: i = 1 else: return 0 pct = steps[i - 1] + ( (steps[i] - steps[i - 1]) * (batterylevel - levels[i]) / (levels[i + 1] - levels[i]) ) return int(pct) def get_all_home_ids(home_data): """Get all the home ids returned by NetAtmo API.""" if home_data is None: return [] return [ home_data.homes[home_id]["id"] for home_id in home_data.homes if ( "therm_schedules" in home_data.homes[home_id] and "modules" in home_data.homes[home_id] ) ]
34.099315
88
0.615547
99acede90e68c6a9be099056d7bbdaa7b7a6328b
5,377
py
Python
samcli/local/common/runtime_template.py
darthzyklus/aws-sam-cli
9c5546801e4c46a79ffc2d1f1d1e5005d0451bf0
[ "BSD-2-Clause", "Apache-2.0" ]
859
2020-08-25T03:53:17.000Z
2022-03-31T12:33:07.000Z
samcli/local/common/runtime_template.py
darthzyklus/aws-sam-cli
9c5546801e4c46a79ffc2d1f1d1e5005d0451bf0
[ "BSD-2-Clause", "Apache-2.0" ]
1,369
2020-08-25T10:57:03.000Z
2022-03-31T23:00:25.000Z
samcli/local/common/runtime_template.py
darthzyklus/aws-sam-cli
9c5546801e4c46a79ffc2d1f1d1e5005d0451bf0
[ "BSD-2-Clause", "Apache-2.0" ]
275
2020-08-25T19:33:50.000Z
2022-03-26T08:32:52.000Z
""" All-in-one metadata about runtimes """ import itertools import os import pathlib from typing import Set _init_path = str(pathlib.Path(os.path.dirname(__file__)).parent.parent) _templates = os.path.join(_init_path, "lib", "init", "templates") _lambda_images_templates = os.path.join(_init_path, "lib", "init", "image_templates") # Note(TheSriram): The ordering of the runtimes list per language is based on the latest to oldest. RUNTIME_DEP_TEMPLATE_MAPPING = { "python": [ { "runtimes": ["python3.9", "python3.8", "python3.7", "python3.6", "python2.7"], "dependency_manager": "pip", "init_location": os.path.join(_templates, "cookiecutter-aws-sam-hello-python"), "build": True, } ], "ruby": [ { "runtimes": ["ruby2.5", "ruby2.7"], "dependency_manager": "bundler", "init_location": os.path.join(_templates, "cookiecutter-aws-sam-hello-ruby"), "build": True, } ], "nodejs": [ { "runtimes": ["nodejs14.x", "nodejs12.x", "nodejs10.x"], "dependency_manager": "npm", "init_location": os.path.join(_templates, "cookiecutter-aws-sam-hello-nodejs"), "build": True, } ], "dotnet": [ { "runtimes": ["dotnetcore3.1", "dotnetcore2.1"], "dependency_manager": "cli-package", "init_location": os.path.join(_templates, "cookiecutter-aws-sam-hello-dotnet"), "build": True, } ], "go": [ { "runtimes": ["go1.x"], "dependency_manager": "mod", "init_location": os.path.join(_templates, "cookiecutter-aws-sam-hello-golang"), "build": False, } ], "java": [ { "runtimes": ["java11", "java8", "java8.al2"], "dependency_manager": "maven", "init_location": os.path.join(_templates, "cookiecutter-aws-sam-hello-java-maven"), "build": True, }, { "runtimes": ["java11", "java8", "java8.al2"], "dependency_manager": "gradle", "init_location": os.path.join(_templates, "cookiecutter-aws-sam-hello-java-gradle"), "build": True, }, ], } def get_local_lambda_images_location(mapping, runtime): dir_name = os.path.basename(mapping["init_location"]) if dir_name.endswith("-lambda-image"): return os.path.join(_lambda_images_templates, runtime, dir_name) return os.path.join(_lambda_images_templates, runtime, dir_name + "-lambda-image") RUNTIME_TO_DEPENDENCY_MANAGERS = { "python3.9": ["pip"], "python3.8": ["pip"], "python3.7": ["pip"], "python3.6": ["pip"], "python2.7": ["pip"], "ruby2.5": ["bundler"], "ruby2.7": ["bundler"], "nodejs14.x": ["npm"], "nodejs12.x": ["npm"], "nodejs10.x": ["npm"], "dotnetcore3.1": ["cli-package"], "dotnetcore2.1": ["cli-package"], "go1.x": ["mod"], "java8": ["maven", "gradle"], "java11": ["maven", "gradle"], "java8.al2": ["maven", "gradle"], } SUPPORTED_DEP_MANAGERS: Set[str] = { c["dependency_manager"] # type: ignore for c in list(itertools.chain(*(RUNTIME_DEP_TEMPLATE_MAPPING.values()))) if c["dependency_manager"] } RUNTIMES: Set[str] = set( itertools.chain( *[c["runtimes"] for c in list(itertools.chain(*(RUNTIME_DEP_TEMPLATE_MAPPING.values())))] # type: ignore ) ) # When adding new Lambda runtimes, please update SAM_RUNTIME_TO_SCHEMAS_CODE_LANG_MAPPING # Runtimes are ordered in alphabetical fashion with reverse version order (latest versions first) INIT_RUNTIMES = [ # dotnetcore runtimes in descending order "dotnet5.0", "dotnetcore3.1", "dotnetcore2.1", "go1.x", # java runtimes in descending order "java11", "java8.al2", "java8", # nodejs runtimes in descending order "nodejs14.x", "nodejs12.x", "nodejs10.x", # python runtimes in descending order "python3.9", "python3.8", "python3.7", "python3.6", "python2.7", # ruby runtimes in descending order "ruby2.7", "ruby2.5", ] LAMBDA_IMAGES_RUNTIMES_MAP = { "dotnet5.0": "amazon/dotnet5.0-base", "dotnetcore3.1": "amazon/dotnetcore3.1-base", "dotnetcore2.1": "amazon/dotnetcore2.1-base", "go1.x": "amazon/go1.x-base", "java11": "amazon/java11-base", "java8.al2": "amazon/java8.al2-base", "java8": "amazon/java8-base", "nodejs14.x": "amazon/nodejs14.x-base", "nodejs12.x": "amazon/nodejs12.x-base", "nodejs10.x": "amazon/nodejs10.x-base", "python3.9": "amazon/python3.9-base", "python3.8": "amazon/python3.8-base", "python3.7": "amazon/python3.7-base", "python3.6": "amazon/python3.6-base", "python2.7": "amazon/python2.7-base", "ruby2.7": "amazon/ruby2.7-base", "ruby2.5": "amazon/ruby2.5-base", } LAMBDA_IMAGES_RUNTIMES = LAMBDA_IMAGES_RUNTIMES_MAP.values() # Schemas Code lang is a MINIMUM supported version # - this is why later Lambda runtimes can be mapped to earlier Schemas Code Languages SAM_RUNTIME_TO_SCHEMAS_CODE_LANG_MAPPING = { "java8": "Java8", "java8.al2": "Java8", "java11": "Java8", "python3.7": "Python36", "python3.6": "Python36", "python3.8": "Python36", "python3.9": "Python36", }
31.080925
113
0.598103
4c42d650b64e321e3fd971fbd810c8c8bdb75819
382
py
Python
Binary Number with Alternating Bits (693)/693.py
WeaverDyl/LeetCode-Solutions
5b37e26390bcda69ffcb1142cc03e193f74735e6
[ "MIT" ]
null
null
null
Binary Number with Alternating Bits (693)/693.py
WeaverDyl/LeetCode-Solutions
5b37e26390bcda69ffcb1142cc03e193f74735e6
[ "MIT" ]
null
null
null
Binary Number with Alternating Bits (693)/693.py
WeaverDyl/LeetCode-Solutions
5b37e26390bcda69ffcb1142cc03e193f74735e6
[ "MIT" ]
null
null
null
# Runtime: 20 ms # Beats 100% of Python submissions class Solution(object): def hasAlternatingBits(self, n): """ :type n: int :rtype: bool """ while n != 0: prev_bit = n & 1 n = n >> 1 curr_bit = n & 1 if prev_bit == curr_bit: return False return True
21.222222
36
0.442408
a7085f7cd78ca29a2b4e8567acab231c470f34cb
80
py
Python
ocradmin/projects/tasks.py
mikesname/ocropodium
a3e379cca38dc1999349bf4e9b5608e81dc54b10
[ "Apache-2.0" ]
1
2018-04-18T20:39:02.000Z
2018-04-18T20:39:02.000Z
ocradmin/projects/tasks.py
mikesname/ocropodium
a3e379cca38dc1999349bf4e9b5608e81dc54b10
[ "Apache-2.0" ]
null
null
null
ocradmin/projects/tasks.py
mikesname/ocropodium
a3e379cca38dc1999349bf4e9b5608e81dc54b10
[ "Apache-2.0" ]
null
null
null
""" Celery functions to be processed in a non-blocking distributed manner. """
16
70
0.7375
42daa578772ffe2930eb1ea191563bdef9b6ed0b
516
py
Python
advance_py/04 Collections/defaultdict_start.py
joejoeyjoseph/playground
fa739d51635823b866fafd1e712760074cfc175c
[ "MIT" ]
null
null
null
advance_py/04 Collections/defaultdict_start.py
joejoeyjoseph/playground
fa739d51635823b866fafd1e712760074cfc175c
[ "MIT" ]
null
null
null
advance_py/04 Collections/defaultdict_start.py
joejoeyjoseph/playground
fa739d51635823b866fafd1e712760074cfc175c
[ "MIT" ]
null
null
null
# Demonstrate the usage of defaultdict objects def main(): # define a list of items that we want to count fruits = ['apple', 'pear', 'orange', 'banana', 'apple', 'grape', 'banana', 'banana'] # use a dictionary to count each element fruitCounter = {} # Count the elements in the list for fruit in fruits: fruitCounter[fruit] += 1 # print the result for (k, v) in fruitCounter.items(): print(k + ": " + str(v)) if __name__ == "__main__": main()
22.434783
51
0.587209
c7217f0c821779672fd2e857185c15af50449bad
12,005
py
Python
bert/run_bert.py
qianyingw/bioner
8f62f1871497b16e0e7bd7c083f758a01657cbcc
[ "MIT" ]
1
2021-08-23T14:24:33.000Z
2021-08-23T14:24:33.000Z
bert/run_bert.py
qianyingw/pre-pico
8f62f1871497b16e0e7bd7c083f758a01657cbcc
[ "MIT" ]
null
null
null
bert/run_bert.py
qianyingw/pre-pico
8f62f1871497b16e0e7bd7c083f758a01657cbcc
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Dec 28 17:02:50 2020 @author: qwang """ import os os.chdir("/home/qwang/pre-pico/bert") # import sys # sys.path[0] = sys.path[0][:-5] import random import json import torch from torch.utils.data import DataLoader from transformers import BertTokenizerFast, BertForTokenClassification from transformers import DistilBertTokenizerFast, DistilBertForTokenClassification from transformers import AdamW, get_linear_schedule_with_warmup from bert_args import get_args import bert_utils from bert_utils import tokenize_encode, EncodingDataset, PadDoc, plot_prfs import bert_fn import bert_crf_fn from bert_model import BERT_CRF, BERT_LSTM_CRF, Distil_CRF #%% Load data args = get_args() args.epochs = 20 args.lr = 1e-3 args.warm_frac = 0.1 # 0.1 args.exp_dir = "/media/mynewdrive/pico/exp/bert_crf/temp" args.pre_wgts = 'pubmed-full' # ['distil', 'bert', 'biobert', 'pubmed-full', 'pubmed-abs'] args.model = 'bert_crf' # ['bert', 'bert_crf', 'bert_lstm_crf', 'distil', 'distil_crf'] args.save_model = True with open('/media/mynewdrive/pico/exp/bert_crf/bc6_full/bc6_full_prfs.json') as f: js = json.load(f) from argparse import Namespace args = Namespace(**js['args']) idx2tag = js['idx2tag'] idx2tag = {int(idx): tag for idx, tag in idx2tag.items()} tag2idx = {tag: idx for idx, tag in idx2tag.items()} random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # This makes things slower # Load json file json_path = os.path.join(args.data_dir, "tsv/18mar_output/pico_18mar.json") # json_path = os.path.join(args.data_dir, "tsv/output/b1.json") train_seqs, train_tags = bert_utils.load_pico(json_path, group='train') valid_seqs, valid_tags = bert_utils.load_pico(json_path, group='valid') test_seqs, test_tags = bert_utils.load_pico(json_path, group='test') # train_data = bert_utils.load_conll(os.path.join(args.data_dir, "train.txt")) # valid_data = bert_utils.load_conll(os.path.join(args.data_dir, "valid.txt")) # test_data = bert_utils.load_conll(os.path.join(args.data_dir, "test.txt")) # Unique tags # all_tags = train_tags + valid_tags # tag_set = set(t for tags in all_tags for t in tags) # tag2idx = {tag: idx for idx, tag in enumerate(tag_set)} # idx2tag = {idx: tag for tag, idx in tag2idx.items()} #%% Encoding and DataLoader n_tags = 13 # Define 'Fast' Tokenizer if args.pre_wgts == 'distil': # tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') tokenizer = DistilBertTokenizerFast.from_pretrained('distilbert-base-uncased', num_labels=n_tags) elif args.pre_wgts == 'biobert': tokenizer = BertTokenizerFast.from_pretrained('dmis-lab/biobert-v1.1', num_labels=n_tags) elif args.pre_wgts == 'pubmed-full': tokenizer = BertTokenizerFast.from_pretrained('microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext', num_labels=n_tags) elif args.pre_wgts == 'pubmed-abs': tokenizer = BertTokenizerFast.from_pretrained('microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract', num_labels=n_tags) else: # args.pre_wgts == 'bert-base' # tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased') tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased', num_labels=n_tags) # Tokenize seqs & encoding tags (set tags for non-first sub tokens to -100) train_inputs = tokenize_encode(train_seqs, train_tags, tag2idx, tokenizer) valid_inputs = tokenize_encode(valid_seqs, valid_tags, tag2idx, tokenizer) test_inputs = tokenize_encode(test_seqs, test_tags, tag2idx, tokenizer) # Torch Dataset train_dataset = EncodingDataset(train_inputs) valid_dataset = EncodingDataset(valid_inputs) test_dataset = EncodingDataset(test_inputs) # temp = train_dataset[99] # temp['tags'] # temp['input_ids'] # temp['attention_mask'] # temp['tags'] train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, collate_fn=PadDoc()) valid_loader = DataLoader(valid_dataset, batch_size=args.batch_size, shuffle=True, collate_fn=PadDoc()) test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=True, collate_fn=PadDoc()) # batch = next(iter(train_loader)) # input_ids_batch, attn_masks_batch, tags_batch, lens = batch #%% Model & Optimizer & Scheduler device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') if args.pre_wgts == 'distil': pre_wgts = "distilbert-base-uncased" elif args.pre_wgts == 'biobert': pre_wgts = "dmis-lab/biobert-v1.1" elif args.pre_wgts == 'pubmed-full': pre_wgts = "microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext" elif args.pre_wgts == 'pubmed-abs': pre_wgts = "microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract" else: # args.pre_wgts == 'bert-base' pre_wgts = "bert-base-uncased" if args.model == 'bert': model = BertForTokenClassification.from_pretrained(pre_wgts, num_labels=n_tags) if args.model == 'bert_crf': model = BERT_CRF.from_pretrained(pre_wgts, num_labels=n_tags) if args.model == 'bert_lstm_crf': model = BERT_LSTM_CRF.from_pretrained(pre_wgts, num_labels=n_tags) if args.model == 'distil': model = DistilBertForTokenClassification.from_pretrained(pre_wgts, num_labels=n_tags) if args.model == 'distil_crf': model = Distil_CRF.from_pretrained(pre_wgts, num_labels=n_tags) model.to(device) optimizer = AdamW(model.parameters(), lr=args.lr) # Slanted triangular Learning rate scheduler total_steps = len(train_loader) * args.epochs // args.accum_step warm_steps = int(total_steps * args.warm_frac) scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warm_steps, num_training_steps=total_steps) #%% Train the model if os.path.exists(args.exp_dir) == False: os.makedirs(args.exp_dir) # Create args and output dictionary (for json output) output_dict = {'args': vars(args), 'prfs': {}} # For early stopping n_worse = 0 min_valid_loss = float('inf') for epoch in range(args.epochs): if args.model in ['distil_crf', 'bert_crf', 'bert_lstm_crf']: train_scores = bert_crf_fn.train_fn(model, train_loader, idx2tag, optimizer, scheduler, tokenizer, args.clip, args.accum_step, device) valid_scores = bert_crf_fn.valid_fn(model, valid_loader, idx2tag, tokenizer, device) if args.model in ['distil', 'bert']: train_scores = bert_fn.train_fn(model, train_loader, idx2tag, optimizer, scheduler, tokenizer, args.clip, args.accum_step, device) valid_scores = bert_fn.valid_fn(model, valid_loader, idx2tag, tokenizer, device) # Update output dictionary output_dict['prfs'][str('train_'+str(epoch+1))] = train_scores output_dict['prfs'][str('valid_'+str(epoch+1))] = valid_scores # Save scores is_best = (valid_scores['loss'] < min_valid_loss) if is_best == True: min_valid_loss = valid_scores['loss'] # Save model if args.save_model == True: bert_utils.save_checkpoint({'epoch': epoch+1, 'state_dict': model.state_dict(), 'optim_Dict': optimizer.state_dict()}, is_best = is_best, checkdir = args.exp_dir) print("\n\nEpoch {}/{}...".format(epoch+1, args.epochs)) print('[Train] loss: {0:.3f} | acc: {1:.2f}% | f1: {2:.2f}% | prec: {3:.2f}% | rec: {4:.2f}%'.format( train_scores['loss'], train_scores['acc']*100, train_scores['f1']*100, train_scores['prec']*100, train_scores['rec']*100)) print('[Valid] loss: {0:.3f} | acc: {1:.2f}% | f1: {2:.2f}% | prec: {3:.2f}% | rec: {4:.2f}%\n'.format( valid_scores['loss'], valid_scores['acc']*100, valid_scores['f1']*100, valid_scores['prec']*100, valid_scores['rec']*100)) # Early stopping # if valid_scores['loss']-min_valid_loss > 0: # args.stop_c1) and (max_valid_f1-valid_scores['f1'] > args.stop_c2): # n_worse += 1 # if n_worse == 5: # args.stop_p: # print("Early stopping") # break # Write performance and args to json prfs_name = os.path.basename(args.exp_dir)+'_prfs.json' prfs_path = os.path.join(args.exp_dir, prfs_name) output_dict['idx2tag'] = idx2tag with open(prfs_path, 'w') as fout: json.dump(output_dict, fout, indent=4) #%% Evaluation on valid/test set (classification report) from seqeval.metrics import classification_report from torchcrf import CRF # crf = CRF(13, batch_first=True) def cls_report(data_loader, pth_path, add_crf=True, device=torch.device('cpu')): # Load checkpoin checkpoint = torch.load(pth_path, map_location=device) state_dict = checkpoint['state_dict'] model.load_state_dict(state_dict, strict=False) model.cpu() model.eval() epoch_preds, epoch_trues = [], [] for j, batch in enumerate(data_loader): input_ids = batch[0].to(device) # [batch_size, seq_len] attn_mask = batch[1].to(device) # [batch_size, seq_len] tags = batch[2].to(device) # [batch_size, seq_len] true_lens = batch[3] # [batch_size] word_ids = batch[4].to(device) # [batch_size, seq_len] # print(true_lens) if add_crf == True: preds_cut, probs_cut, mask_cut, log_likelihood = model(input_ids, attention_mask = attn_mask, labels = tags) # preds_cut = model.crf.decode(probs_cut, mask=mask_cut) for sin_preds, sin_tags, sin_lens, sin_wids in zip(preds_cut, tags, true_lens, word_ids): sin_wids = sin_wids[1:sin_lens+1] sin_tags = sin_tags[1:sin_lens+1] # list of lists (1st/last tag is -100 so need to move one step) pre_wid = None sin_preds_new, sin_tags_new = [], [] for p, t, wid in zip(sin_preds, sin_tags, sin_wids): if wid != pre_wid: sin_preds_new.append(p) sin_tags_new.append(t.tolist()) pre_wid = wid epoch_preds.append(sin_preds_new) # list of lists epoch_trues.append(sin_tags_new) else: outputs = model(input_ids, attention_mask = attn_mask, labels = tags) logits = outputs[1] # [batch_size, seq_len, num_tags] preds = torch.argmax(logits, dim=2) # [batch_size, seq_len] for sin_preds, sin_tags, sin_lens, sin_wids in zip(preds, tags, true_lens, word_ids): # list of lists (1st/last tag is -100 so need to move one step) sin_wids = sin_wids[1:sin_lens+1] sin_tags = sin_tags[1:sin_lens+1] sin_preds = sin_preds[1:sin_lens+1] pre_wid = None sin_preds_new, sin_tags_new = [], [] for p, t, wid in zip(sin_preds, sin_tags, sin_wids): if wid != pre_wid: sin_preds_new.append(p.tolist()) sin_tags_new.append(t.tolist()) pre_wid = wid epoch_preds.append(sin_preds_new) # list of lists epoch_trues.append(sin_tags_new) # Convert epoch_idxs to epoch_tags epoch_tag_preds = bert_utils.epoch_idx2tag(epoch_preds, idx2tag) epoch_tag_trues = bert_utils.epoch_idx2tag(epoch_trues, idx2tag) print(classification_report(epoch_tag_trues, epoch_tag_preds, output_dict=False, digits=4)) pth_path = os.path.join(args.exp_dir, 'best.pth.tar') cls_report(valid_loader, pth_path, add_crf=True) cls_report(test_loader, pth_path, add_crf=True) pth_path = os.path.join(args.exp_dir, 'last.pth.tar') cls_report(valid_loader, pth_path, add_crf=True) cls_report(test_loader, pth_path, add_crf=True)
43.813869
142
0.68005
ad969a195cb9898c5febea88a0c73a7f0a3094fa
6,694
py
Python
databuilder/extractor/dashboard/tableau/tableau_external_table_extractor.py
keyko-io/nevermined-amundsen-databuilder
e48f803320e5ce16168c9ed01adee3ea4f7d51cf
[ "Apache-2.0" ]
null
null
null
databuilder/extractor/dashboard/tableau/tableau_external_table_extractor.py
keyko-io/nevermined-amundsen-databuilder
e48f803320e5ce16168c9ed01adee3ea4f7d51cf
[ "Apache-2.0" ]
null
null
null
databuilder/extractor/dashboard/tableau/tableau_external_table_extractor.py
keyko-io/nevermined-amundsen-databuilder
e48f803320e5ce16168c9ed01adee3ea4f7d51cf
[ "Apache-2.0" ]
null
null
null
import logging from typing import Any, Dict, Iterator from pyhocon import ConfigFactory, ConfigTree import databuilder.extractor.dashboard.tableau.tableau_dashboard_constants as const from databuilder import Scoped from databuilder.extractor.base_extractor import Extractor from databuilder.extractor.dashboard.tableau.tableau_dashboard_utils import TableauGraphQLApiExtractor,\ TableauDashboardUtils from databuilder.transformer.base_transformer import ChainedTransformer from databuilder.transformer.dict_to_model import DictToModel, MODEL_CLASS LOGGER = logging.getLogger(__name__) class TableauGraphQLExternalTableExtractor(TableauGraphQLApiExtractor): """ Implements the extraction-time logic for parsing the GraphQL result and transforming into a dict that fills the TableMetadata model. """ EXTERNAL_CLUSTER_NAME = const.EXTERNAL_CLUSTER_NAME EXTERNAL_SCHEMA_NAME = const.EXTERNAL_SCHEMA_NAME def execute(self) -> Iterator[Dict[str, Any]]: response = self.execute_query() for table in response['databases']: if table['connectionType'] in ['google-sheets', 'salesforce', 'excel-direct']: for downstreamTable in table['tables']: data = { 'cluster': self._conf.get_string(TableauGraphQLExternalTableExtractor.EXTERNAL_CLUSTER_NAME), 'database': TableauDashboardUtils.sanitize_database_name( table['connectionType'] ), 'schema': TableauDashboardUtils.sanitize_schema_name(table['name']), 'name': TableauDashboardUtils.sanitize_table_name(downstreamTable['name']), 'description': table['description'] } yield data else: data = { 'cluster': self._conf.get_string(TableauGraphQLExternalTableExtractor.EXTERNAL_CLUSTER_NAME), 'database': TableauDashboardUtils.sanitize_database_name(table['connectionType']), 'schema': self._conf.get_string(TableauGraphQLExternalTableExtractor.EXTERNAL_SCHEMA_NAME), 'name': TableauDashboardUtils.sanitize_table_name(table['name']), 'description': table['description'] } yield data class TableauDashboardExternalTableExtractor(Extractor): """ Creates the "external" Tableau tables. In this context, "external" tables are "tables" that are not from a typical database, and are loaded using some other data format, like CSV files. This extractor has been tested with the following types of external tables: Excel spreadsheets Text files (including CSV files) Salesforce connections Google Sheets connections Excel spreadsheets, Salesforce connections, and Google Sheets connections are all classified as "databases" in terms of Tableau's Metadata API, with their "subsheets" forming their "tables" when present. However, these tables are not assigned a schema, this extractor chooses to use the name parent sheet as the schema, and assign a new table to each subsheet. The connection type is always used as the database, and for text files, the schema is set using the EXTERNAL_SCHEMA_NAME config option. Since these external tables are usually named for human consumption only and often contain a wider range of characters, all inputs are transformed to remove any problematic occurences before they are inserted: see the sanitize methods TableauDashboardUtils for specifics. A more concrete example: if one had a Google Sheet titled "Growth by Region & County" with 2 subsheets called "FY19 Report" and "FY20 Report", two tables would be generated with the following keys: googlesheets://external.growth_by_region_county/FY_19_Report googlesheets://external.growth_by_region_county/FY_20_Report """ API_VERSION = const.API_VERSION CLUSTER = const.CLUSTER EXCLUDED_PROJECTS = const.EXCLUDED_PROJECTS EXTERNAL_CLUSTER_NAME = const.EXTERNAL_CLUSTER_NAME EXTERNAL_SCHEMA_NAME = const.EXTERNAL_SCHEMA_NAME EXTERNAL_TABLE_TYPES = const.EXTERNAL_TABLE_TYPES SITE_NAME = const.SITE_NAME TABLEAU_HOST = const.TABLEAU_HOST TABLEAU_ACCESS_TOKEN_NAME = const.TABLEAU_ACCESS_TOKEN_NAME TABLEAU_ACCESS_TOKEN_SECRET = const.TABLEAU_ACCESS_TOKEN_SECRET VERIFY_REQUEST = const.VERIFY_REQUEST def init(self, conf: ConfigTree) -> None: self._conf = conf self.query = """query externalTables($externalTableTypes: [String]) { databases (filter: {connectionTypeWithin: $externalTableTypes}) { name connectionType description tables { name } } }""" self.query_variables = { 'externalTableTypes': self._conf.get_list(TableauDashboardExternalTableExtractor.EXTERNAL_TABLE_TYPES)} self._extractor = self._build_extractor() transformers = [] dict_to_model_transformer = DictToModel() dict_to_model_transformer.init( conf=Scoped.get_scoped_conf(self._conf, dict_to_model_transformer.get_scope()).with_fallback( ConfigFactory.from_dict( {MODEL_CLASS: 'databuilder.models.table_metadata.TableMetadata'}))) transformers.append(dict_to_model_transformer) self._transformer = ChainedTransformer(transformers=transformers) def extract(self) -> Any: record = self._extractor.extract() if not record: return None return self._transformer.transform(record=record) def get_scope(self) -> str: return 'extractor.tableau_external_table' def _build_extractor(self) -> TableauGraphQLExternalTableExtractor: """ Builds a TableauGraphQLExternalTableExtractor. All data required can be retrieved with a single GraphQL call. :return: A TableauGraphQLExternalTableExtractor that creates external table metadata entities. """ extractor = TableauGraphQLExternalTableExtractor() config_dict = { TableauGraphQLApiExtractor.QUERY_VARIABLES: self.query_variables, TableauGraphQLApiExtractor.QUERY: self.query} tableau_extractor_conf = \ Scoped.get_scoped_conf(self._conf, extractor.get_scope())\ .with_fallback(self._conf)\ .with_fallback(ConfigFactory.from_dict(config_dict)) extractor.init(conf=tableau_extractor_conf) return extractor
47.140845
117
0.699731
c5df30f2fb164861ba55826e16e6b7e25a6324fb
3,723
py
Python
modelchimp/views/api/experiment_custom_object.py
akarsh3007/modelchimp
1b4a53547d6835867df0d4ca7be83ea6c805c8ce
[ "BSD-2-Clause" ]
null
null
null
modelchimp/views/api/experiment_custom_object.py
akarsh3007/modelchimp
1b4a53547d6835867df0d4ca7be83ea6c805c8ce
[ "BSD-2-Clause" ]
null
null
null
modelchimp/views/api/experiment_custom_object.py
akarsh3007/modelchimp
1b4a53547d6835867df0d4ca7be83ea6c805c8ce
[ "BSD-2-Clause" ]
null
null
null
import re from django.http import HttpResponse from rest_framework import status from rest_framework import generics, mixins, views from rest_framework.response import Response from modelchimp.serializers.experiment_custom_object import ExperimentCustomObjectSerializer from modelchimp.models.experiment_custom_object import ExperimentCustomObject from modelchimp.models.membership import Membership from modelchimp.models.machinelearning_model import MachineLearningModel from modelchimp.api_permissions import HasProjectMembership from rest_framework.permissions import IsAuthenticated class ExperimentCustomObjectAPI(mixins.RetrieveModelMixin, mixins.CreateModelMixin, generics.GenericAPIView): serializer_class = ExperimentCustomObjectSerializer queryset = ExperimentCustomObject.objects.all() permission_classes = (IsAuthenticated, HasProjectMembership) def retrieve(self, project_id): try: # Get the filter parameters from the request params = self.request.query_params custom_object_id = None # Check if the duration exists if 'custom-object-id' in params: custom_object_id = params['custom-object-id'] if not self._is_uuid4_pattern(custom_object_id): raise TypeError('custom_object_id is of wrong type') except Exception as e: return Response("Error: %s" % e, status=status.HTTP_400_BAD_REQUEST) custom_object_instance = self.get_queryset().get(custom_object_id=custom_object_id) custom_object_pointer = custom_object_instance.custom_object_file response = HttpResponse(custom_object_pointer,content_type='application/gzip') response['Content-Disposition'] = 'attachment; filename=NameOfFile' return response def create(self, request, project_id): project_id = request.data.get('project_id') user = self.request.user serializer = self.get_serializer(data=request.data) if serializer.is_valid(): serializer.save() return Response(status=status.HTTP_201_CREATED) return Response(status=status.HTTP_400_BAD_REQUEST) def post(self, request, *args, **kwargs): return self.create(request, *args, **kwargs) def get(self, request, project_id, *args, **kwargs): return self.retrieve(project_id, *args, **kwargs) def _is_uuid4_pattern(self, text): pattern = re.compile( ( '[a-f0-9]{8}-' + '[a-f0-9]{4}-' + '4' + '[a-f0-9]{3}-' + '[89ab][a-f0-9]{3}-' + '[a-f0-9]{12}$' ), re.IGNORECASE ) return pattern.match(text) class ExperimentCustomObjectDetailAPI(mixins.RetrieveModelMixin, generics.ListAPIView): serializer_class = ExperimentCustomObjectSerializer queryset = ExperimentCustomObject.objects.all() permission_classes = (IsAuthenticated, HasProjectMembership) def list(self, request, model_id): try: ml_model_obj = MachineLearningModel.objects.get(id=model_id) except Exception as e: return Response("Error: %s" % e, status=status.HTTP_400_BAD_REQUEST) access = Membership.objects.filter(user=self.request.user, project=ml_model_obj.project).exists() if not access: return Response(status=status.HTTP_403_FORBIDDEN) queryset = self.get_queryset().filter(ml_model_id=model_id) serializer = self.serializer_class(queryset, many=True) return Response(serializer.data, status=status.HTTP_200_OK)
37.606061
105
0.681708
6e84941d9b1ac1dfd237fb0f091c1e0e1d0c27d6
16,916
py
Python
src/dcos_e2e/_vendor/dcos_launch/platforms/arm.py
Fabs/dcos-e2e
8836dfa5b83f9d61e92b8b4bd8b058404a3bdc20
[ "Apache-2.0" ]
null
null
null
src/dcos_e2e/_vendor/dcos_launch/platforms/arm.py
Fabs/dcos-e2e
8836dfa5b83f9d61e92b8b4bd8b058404a3bdc20
[ "Apache-2.0" ]
null
null
null
src/dcos_e2e/_vendor/dcos_launch/platforms/arm.py
Fabs/dcos-e2e
8836dfa5b83f9d61e92b8b4bd8b058404a3bdc20
[ "Apache-2.0" ]
null
null
null
""" This module is intended to allow deploying of arbitrary Azure Resource Manager (ARM) templates and describe the provided DC/OS cluster. For more information on how to configure and interpret these templates, see: https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-authoring-templates """ import contextlib import copy import logging import re import requests import retrying from azure.common.credentials import ServicePrincipalCredentials from azure.common.exceptions import CloudError from azure.mgmt.network import NetworkManagementClient from azure.mgmt.resource.resources.v2016_02_01 import ResourceManagementClient from azure.mgmt.resource.resources.v2016_02_01.models import (DeploymentMode, DeploymentProperties, ResourceGroup) from azure.monitor import MonitorClient from ...dcos_launch.util import DeploymentError from ...dcos_test_utils.helpers import Host log = logging.getLogger(__name__) # This interface is designed to only use a single deployment. # Being as the azure interface is based around resource groups, deriving # deployment name from group names makes it easier to attach to creating deploys DEPLOYMENT_NAME = '{}-Deployment' def validate_hostname_prefix(prefix): """Hostname prefixes in azure templates are used to link a variety of resources Not all of these resources will have their constraints checked at when ARM valiation occurs. This check in particular was aggravating as no docs surfaced this issue, so logs needed to be scanned just to discover this error """ assert re.match('^[a-z][a-z0-9-]{1,61}[a-z0-9]$', prefix), 'Invalid DNS prefix: {}'.format(prefix) def check_json_object(obj): """ Simple check to fill in the map for automatic parameter casting JSON objects must be represented as dict at this level """ assert isinstance(obj, dict), 'Invalid JSON object: {}'.format(obj) return obj def check_array(arr): """ Simple check to fill in the map for automatic parameter casting JSON arrays must be represented as lists at this level """ assert isinstance(arr, list), 'Invalid array: {}'.format(arr) return arr def nic_to_host(nic, public_ip=None): assert len(nic.ip_configurations) == 1 ip_config = nic.ip_configurations[0] if ip_config.public_ip_address is None and public_ip is None: return Host(ip_config.private_ip_address, None) if public_ip is None: return Host(ip_config.private_ip_address, ip_config.public_ip_address.ip_address) return Host(ip_config.private_ip_address, public_ip) class AzureWrapper: def __init__(self, location: str, subscription_id: str, client_id: str, client_secret: str, tenant_id: str): self.credentials = ServicePrincipalCredentials( client_id=client_id, secret=client_secret, tenant=tenant_id) self.rmc = ResourceManagementClient(self.credentials, subscription_id) self.nmc = NetworkManagementClient(self.credentials, subscription_id) self.mc = MonitorClient(self.credentials, subscription_id) # location is included to keep a similar model as dcos_launch.platforms.aws.BotoWrapper self.location = location def deploy_template_to_new_resource_group( self, template_url, group_name, parameters, tags=None, template=None): if tags is None: tags = dict() log.info('Checking deployment parameters vs template before starting...') deployment_properties = self.create_deployment_properties( template_url, parameters, template=template) deployment_name = DEPLOYMENT_NAME.format(group_name) # Resource group must be created before validation can occur if self.rmc.resource_groups.check_existence(group_name): raise Exception("Group name already exists / taken: {}".format(group_name)) log.info('Starting resource group_creation') def get_all_details(error): formatted_message = '{}: {}\n\n'.format(error.code, error.message) if error.details is None: return formatted_message for d in error.details: formatted_message += get_all_details(d) return formatted_message with contextlib.ExitStack() as stack: self.rmc.resource_groups.create_or_update( group_name, ResourceGroup(location=self.location, tags=tags)) # Ensure the resource group will be deleted if the following steps fail stack.callback(self.rmc.resource_groups.delete, group_name) log.info('Resource group created: {}'.format(group_name)) log.info('Checking with Azure to validate template deployment') result = self.rmc.deployments.validate( group_name, deployment_name, properties=deployment_properties) if result.error: raise Exception("Template verification failed!\n{}".format(get_all_details(result.error))) log.info('Template successfully validated') log.info('Starting template deployment') self.rmc.deployments.create_or_update( group_name, deployment_name, deployment_properties, raw=True) stack.pop_all() log.info('Successfully started template deployment') def create_deployment_properties(self, template_url, parameters, template: dict=None): """ Pulls the targeted template, checks parameter specs and casts user provided parameters to the appropriate type. Assertion is raised if there are unused parameters or invalid casting """ user_parameters = copy.deepcopy(parameters) type_cast_map = { 'string': str, 'securestring': str, 'int': int, 'bool': bool, 'object': check_json_object, 'secureObject': check_json_object, 'array': check_array} log.debug('Pulling Azure template for parameter validation...') if template is None: r = requests.get(template_url) r.raise_for_status() template = r.json() if 'parameters' not in template: assert user_parameters is None, 'This template does not support parameters, ' \ 'yet parameters were supplied: {}'.format(user_parameters) log.debug('Constructing DeploymentProperties from user parameters: {}'.format(parameters)) template_parameters = {} for k, v in template['parameters'].items(): if k in user_parameters: # All templates parameters are required to have a type field. # Azure requires that parameters be provided as {key: {'value': value}}. template_parameters[k] = { 'value': type_cast_map[v['type']](user_parameters.pop(k))} log.debug('Final template parameters: {}'.format(template_parameters)) if len(user_parameters) > 0: raise Exception('Unrecognized template parameters were supplied: {}'.format(user_parameters)) return DeploymentProperties( template=template, mode=DeploymentMode.incremental, parameters=template_parameters) class DcosAzureResourceGroup: """ An abstraction for cleanly handling the life cycle of a DC/OS template deployment. Operations include: create, wait, describe host IPs, and delete """ def __init__(self, group_name, azure_wrapper): self.group_name = group_name self.azure_wrapper = azure_wrapper @classmethod def deploy_acs_template( cls, azure_wrapper: AzureWrapper, template_url: str, group_name: str, public_key, master_prefix, agent_prefix, admin_name, oauth_enabled, vm_size, agent_count, name_suffix, vm_diagnostics_enabled): """ Creates a new resource group and deploys a ACS DC/OS template to it using a subset of parameters for a simple deployment. To see a full listing of parameters, including description and formatting, go to: gen/azure/templates/acs.json in this repository. Args: azure_wrapper: see above template_url: Azure-accessible location for the desired ACS template group_name: name used for the new resource group that will be created for this template deployment Args that wrap template parameters: public_key -> sshRSAPublicKey master_prefix -> masterEndpointDNSNamePrefix agent_prefix -> agentEndpointDNSNamePrefix admin_name -> linuxAdminUsername vm_size -> agentVMSize agent_count -> agentCount name_suffix -> nameSuffix oauth_enabled -> oauthEnabled vm_diagnostics_enabled -> enableVMDiagnostics """ assert master_prefix != agent_prefix, 'Master and agents must have unique prefixs' validate_hostname_prefix(master_prefix) validate_hostname_prefix(agent_prefix) parameters = { 'sshRSAPublicKey': public_key, 'masterEndpointDNSNamePrefix': master_prefix, 'agentEndpointDNSNamePrefix': agent_prefix, 'linuxAdminUsername': admin_name, 'agentVMSize': vm_size, 'agentCount': agent_count, 'nameSuffix': name_suffix, 'oauthEnabled': oauth_enabled, 'enableVMDiagnostics': vm_diagnostics_enabled} azure_wrapper.deploy_template_to_new_resource_group(template_url, group_name, parameters) return cls(group_name, azure_wrapper) def get_deployment_state(self): return self.azure_wrapper.rmc.deployments.get( self.group_name, DEPLOYMENT_NAME.format(self.group_name)).properties.provisioning_state def wait_for_deployment(self, timeout=60 * 60): """ Azure will not register a template instantly after deployment, so CloudError must be expected as retried. Once the ops are retrieved, this loops through all operations in the group's only deployment if any operations are still in progress, then this function will sleep once all operations are complete, if there any failures, those will be printed to the log stream """ log.info('Waiting for deployment to finish') def azure_failure_report(): deploy_ops = self.azure_wrapper.rmc.deployment_operations.list( self.group_name, DEPLOYMENT_NAME.format(self.group_name)) failures = [(op.properties.status_code, op.properties.status_message) for op in deploy_ops if op.properties.provisioning_state == 'Failed'] for failure in failures: log.error('Deployment operation failed! {}: {}'.format(*failure)) @retrying.retry( wait_fixed=60 * 1000, stop_max_delay=timeout * 1000, retry_on_result=lambda res: res is False, retry_on_exception=lambda ex: isinstance(ex, CloudError)) def check_deployment_operations(): deploy_state = self.get_deployment_state() if deploy_state == 'Succeeded': return True elif deploy_state == 'Failed': log.info('Deployment failed. Checking deployment operations.') azure_failure_report() raise DeploymentError('Azure Deployment Failed!') else: log.info('Waiting for deployment. Current state: {}. It should either be Succeeded/Failed.'.format( deploy_state)) return False try: check_deployment_operations() except retrying.RetryError: log.info('Deployment failed. Checking deployment operations.') azure_failure_report() raise DeploymentError("Azure Deployment Failed!") def list_resources(self, filter_string): yield from self.azure_wrapper.rmc.resource_groups.list_resources( self.group_name, filter=(filter_string)) def get_scale_set_nics(self, name_substring=None): for resource in self.list_resources("resourceType eq 'Microsoft.Compute/virtualMachineScaleSets'"): if name_substring and name_substring not in resource.name: continue yield from self.azure_wrapper.nmc.network_interfaces.list_virtual_machine_scale_set_network_interfaces( self.group_name, resource.name) def get_public_ip_address(self, name_substring=None): for resource in self.list_resources("resourceType eq 'Microsoft.Network/publicIPAddresses'"): if name_substring and name_substring not in resource.name: continue return self.azure_wrapper.nmc.public_ip_addresses.get(self.group_name, resource.name) @property def public_agent_lb_fqdn(self): return self.get_public_ip_address('agent-ip').dns_settings.fqdn @property def public_master_lb_fqdn(self): return self.get_public_ip_address('master-ip').dns_settings.fqdn @property def master_nics(self): """ The only instances of networkInterface Resources are for masters """ for resource in self.list_resources("resourceType eq 'Microsoft.Network/networkInterfaces'"): assert 'master' in resource.name, 'Expected to only find master NICs, not: {}'.format(resource.name) yield self.azure_wrapper.nmc.network_interfaces.get(self.group_name, resource.name) def get_master_ips(self): """ Traffic from abroad is routed to a master wth the public master loadbalancer FQDN and the VM index plus 2200 (so the first master will be at 2200) """ public_lb_ip = self.public_master_lb_fqdn return [Host(nic_to_host(nic).private_ip, '{}:{}'.format(public_lb_ip, 2200 + int(nic.name[-1]))) for nic in self.master_nics] def get_private_agent_ips(self): return [nic_to_host(nic) for nic in self.get_scale_set_nics('private')] def get_public_agent_ips(self): """ public traffic is routed to public agents via a specific load balancer """ public_lb_ip = self.public_agent_lb_fqdn return [Host(nic_to_host(nic).private_ip, public_lb_ip) for nic in self.get_scale_set_nics('public')] def update_tags(self, new_tags: dict): rg = self.azure_wrapper.rmc.resource_groups.get(self.group_name) if rg.tags is None: rg.tags = dict() rg.tags.update(new_tags) self.azure_wrapper.rmc.resource_groups.patch(rg.name, { 'tags': rg.tags, 'location': rg.location}, raw=True) def delete(self): log.info('Triggering delete') self.azure_wrapper.rmc.resource_groups.delete(self.group_name, raw=True) def __enter__(self): return self def __exit__(self, exc_type, exc, exc_tb): self.delete() class HybridDcosAzureResourceGroup(DcosAzureResourceGroup): @property def master_nics(self): for resource in self.list_resources("resourceType eq 'Microsoft.Network/networkInterfaces'"): if 'bootstrap' in resource.name: # Skipping the bootstrap NICs continue assert 'master' in resource.name, 'Expected to find master NICs, not: {}'.format(resource.name) yield self.azure_wrapper.nmc.network_interfaces.get(self.group_name, resource.name) def get_master_ips(self): public_lb_ip = self.public_master_lb_fqdn return [nic_to_host(nic, public_lb_ip) for nic in self.master_nics] def get_linux_private_agent_ips(self): return [nic_to_host(nic) for nic in self.get_scale_set_nics('linpri')] def get_linux_public_agent_ips(self): return [nic_to_host(nic, self.linux_public_agent_lb_fqdn) for nic in self.get_scale_set_nics('linpub')] def get_windows_public_agent_ips(self): # this VMSS name is derived from this being the 0-th element in the VMSS list return [nic_to_host(nic, self.windows_public_agent_lb_fqdn) for nic in self.get_scale_set_nics('900-vmss')] def get_windows_private_agent_ips(self): # this VMSS name is derived from this being the 1-th element in the VMSS list return [nic_to_host(nic) for nic in self.get_scale_set_nics('901-vmss')] @property def linux_public_agent_lb_fqdn(self): return self.get_public_ip_address('agent-ip-linpub').dns_settings.fqdn @property def windows_public_agent_lb_fqdn(self): return self.get_public_ip_address('agent-ip-wpub').dns_settings.fqdn
45.718919
115
0.676578
7f59884addfe7603506144ca1c3ca7ae9ce3d373
625
py
Python
cookie_decrypter.py
6un9-h0-Dan/PoshC2
dd39e62421ed5efd1e895e66b8ad59f034bf6a4c
[ "BSD-3-Clause" ]
1,504
2016-07-12T04:14:00.000Z
2022-03-31T02:59:30.000Z
cookie_decrypter.py
6un9-h0-Dan/PoshC2
dd39e62421ed5efd1e895e66b8ad59f034bf6a4c
[ "BSD-3-Clause" ]
139
2016-10-13T10:41:18.000Z
2022-03-31T13:22:47.000Z
cookie_decrypter.py
6un9-h0-Dan/PoshC2
dd39e62421ed5efd1e895e66b8ad59f034bf6a4c
[ "BSD-3-Clause" ]
377
2016-07-12T03:10:03.000Z
2022-03-31T10:04:13.000Z
#!/usr/bin/env python3 from poshc2.Colours import Colours from poshc2.server.Core import decrypt from poshc2.server.database.DB import get_keys, database_connect import sys, re file = open(sys.argv[1], "r") database_connect() result = get_keys() if result: for line in file: if re.search("SessionID", line): for i in result: try: value = decrypt(i[0], line.split('=')[1]) print(Colours.GREEN + "Success with Key %s - %s" % (i[0], value)) except Exception: print(Colours.RED + "Failed with Key %s" % i[0])
28.409091
85
0.5792
ea04ad1a61f11b3cc74e5469b8a6197b5ad36a85
12,009
py
Python
tests/test_expectations.py
codelover-without-talent/GPflow
1af7b1ca7da6687974150a1440d821a106b2159d
[ "Apache-2.0" ]
1
2018-10-20T03:02:50.000Z
2018-10-20T03:02:50.000Z
tests/test_expectations.py
codelover-without-talent/GPflow
1af7b1ca7da6687974150a1440d821a106b2159d
[ "Apache-2.0" ]
null
null
null
tests/test_expectations.py
codelover-without-talent/GPflow
1af7b1ca7da6687974150a1440d821a106b2159d
[ "Apache-2.0" ]
1
2019-01-12T23:35:26.000Z
2019-01-12T23:35:26.000Z
# Copyright 2018 the GPflow authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import tensorflow as tf import copy import pytest import gpflow from gpflow.expectations import expectation, quadrature_expectation from gpflow.probability_distributions import Gaussian, DiagonalGaussian, MarkovGaussian from gpflow import kernels, mean_functions, features from gpflow.test_util import session_tf from gpflow.test_util import cache_tensor from numpy.testing import assert_allclose rng = np.random.RandomState(1) RTOL = 1e-6 class Data: num_data = 5 num_ind = 4 D_in = 2 D_out = 2 Xmu = rng.randn(num_data, D_in) Xmu_markov = rng.randn(num_data + 1, D_in) # (N+1)xD Xcov = rng.randn(num_data, D_in, D_in) Xcov = Xcov @ np.transpose(Xcov, (0, 2, 1)) Z = rng.randn(num_ind, D_in) Z2 = rng.randn(num_ind - 1, D_in) cov_params = rng.randn(num_data + 1, D_in, 2 * D_in) / 2. # (N+1)xDx2D NN_cov = cov_params @ np.transpose(cov_params, (0, 2, 1)) # (N+1)xDxD NNplus1_cross = cov_params[:-1] @ np.transpose(cov_params[1:], (0, 2, 1)) # NxDxD NNplus1_cross = np.concatenate((NNplus1_cross, np.zeros((1, D_in, D_in))), 0) # (N+1)xDxD Xcov_markov = np.stack([NN_cov, NNplus1_cross]) # 2x(N+1)xDxD @pytest.fixture def feature(): return features.InducingPoints(Data.Z) @cache_tensor def feature2(): return features.InducingPoints(Data.Z2) @cache_tensor def gauss(): return Gaussian( tf.convert_to_tensor(Data.Xmu), tf.convert_to_tensor(Data.Xcov)) @cache_tensor def dirac_gauss(): return Gaussian( tf.convert_to_tensor(Data.Xmu), tf.convert_to_tensor(np.zeros((Data.num_data, Data.D_in, Data.D_in)))) @cache_tensor def gauss_diag(): return DiagonalGaussian( tf.convert_to_tensor(Data.Xmu), tf.convert_to_tensor(rng.rand(Data.num_data, Data.D_in))) @cache_tensor def dirac_diag(): return DiagonalGaussian( tf.convert_to_tensor(Data.Xmu), tf.convert_to_tensor(np.zeros((Data.num_data, Data.D_in)))) @cache_tensor def markov_gauss(): return MarkovGaussian( tf.convert_to_tensor(Data.Xmu_markov), tf.convert_to_tensor(Data.Xcov_markov)) @cache_tensor def dirac_markov_gauss(): return MarkovGaussian( tf.convert_to_tensor(Data.Xmu_markov), tf.convert_to_tensor(np.zeros((2, Data.num_data + 1, Data.D_in, Data.D_in)))) @cache_tensor def rbf_kern(): return kernels.RBF(Data.D_in, variance=rng.rand(), lengthscales=rng.rand() + 1.) @cache_tensor def rbf_kern_2(): # Additional cached rbf kernel for rbf cross covariance tests return kernels.RBF(Data.D_in, variance=rng.rand(), lengthscales=rng.rand() + 1.) @cache_tensor def lin_kern(): return kernels.Linear(Data.D_in, variance=rng.rand()) @cache_tensor def matern_kern(): return kernels.Matern32(Data.D_in, variance=rng.rand()) @cache_tensor def rbf_lin_sum_kern(): return kernels.Sum([ kernels.RBF(Data.D_in, variance=rng.rand(), lengthscales=rng.rand() + 1.), kernels.Linear(Data.D_in, variance=rng.rand()) ]) @cache_tensor def rbf_lin_sum_kern2(): return kernels.Sum([ kernels.Linear(Data.D_in, variance=rng.rand()), kernels.RBF(Data.D_in, variance=rng.rand(), lengthscales=rng.rand() + 1.), kernels.Linear(Data.D_in, variance=rng.rand()), kernels.RBF(Data.D_in, variance=rng.rand(), lengthscales=rng.rand() + 1.), ]) @cache_tensor def rbf_lin_prod_kern(): return kernels.Product([ kernels.RBF(1, variance=rng.rand(), lengthscales=rng.rand() + 1., active_dims=[0]), kernels.Linear(1, variance=rng.rand(), active_dims=[1]) ]) @cache_tensor def rbf_kern_act_dim_0(): return kernels.RBF(1, variance=rng.rand(), lengthscales=rng.rand() + 1., active_dims=[0]) @cache_tensor def rbf_kern_act_dim_1(): return kernels.RBF(1, variance=rng.rand(), lengthscales=rng.rand() + 1., active_dims=[1]) @cache_tensor def lin_kern_act_dim_0(): return kernels.Linear(1, variance=rng.rand(), active_dims=[0]) @cache_tensor def lin_kern_act_dim_1(): return kernels.Linear(1, variance=rng.rand(), active_dims=[1]) @cache_tensor def lin_mean(): return mean_functions.Linear(A=rng.randn(Data.D_in, Data.D_out), b=rng.randn(Data.D_out)) @cache_tensor def identity_mean(): # Note: Identity can only be used if Din == Dout return mean_functions.Identity(input_dim=Data.D_in) @cache_tensor def const_mean(): return mean_functions.Constant(c=rng.randn(Data.D_out)) @cache_tensor def zero_mean(): return mean_functions.Zero(output_dim=Data.D_out) def _check(params): analytic = expectation(*params) quad = quadrature_expectation(*params) session = tf.get_default_session() analytic, quad = session.run([analytic, quad]) assert_allclose(analytic, quad, rtol=RTOL) # =================================== TESTS =================================== @pytest.mark.parametrize("distribution", [gauss]) @pytest.mark.parametrize("mean1", [lin_mean, identity_mean, const_mean, zero_mean]) @pytest.mark.parametrize("mean2", [lin_mean, identity_mean, const_mean, zero_mean]) @pytest.mark.parametrize("arg_filter", [lambda p, m1, m2: (p, m1), lambda p, m1, m2: (p, m1, m2)]) def test_mean_function_only_expectations(session_tf, distribution, mean1, mean2, arg_filter): params = arg_filter(distribution(), mean1(), mean2()) _check(params) @pytest.mark.parametrize("distribution", [gauss, gauss_diag]) @pytest.mark.parametrize("kernel", [lin_kern, rbf_kern, rbf_lin_sum_kern, rbf_lin_prod_kern]) @pytest.mark.parametrize("arg_filter", [lambda p, k, f: (p, k), lambda p, k, f: (p, (k, f)), lambda p, k, f: (p, (k, f), (k, f))]) def test_kernel_only_expectations(session_tf, distribution, kernel, feature, arg_filter): params = arg_filter(distribution(), kernel(), feature) _check(params) @pytest.mark.parametrize("distribution", [gauss]) @pytest.mark.parametrize("kernel", [rbf_kern, lin_kern, matern_kern, rbf_lin_sum_kern]) @pytest.mark.parametrize("mean", [lin_mean, identity_mean, const_mean, zero_mean]) @pytest.mark.parametrize("arg_filter", [lambda p, k, f, m: (p, (k, f), m), lambda p, k, f, m: (p, m, (k, f))]) def test_kernel_mean_function_expectations( session_tf, distribution, kernel, feature, mean, arg_filter): params = arg_filter(distribution(), kernel(), feature, mean()) _check(params) @pytest.mark.parametrize("kernel", [lin_kern, rbf_kern, rbf_lin_sum_kern, rbf_lin_prod_kern]) def test_eKdiag_no_uncertainty(session_tf, kernel): eKdiag = expectation(dirac_diag(), kernel()) Kdiag = kernel().Kdiag(Data.Xmu) eKdiag, Kdiag = session_tf.run([eKdiag, Kdiag]) assert_allclose(eKdiag, Kdiag, rtol=RTOL) @pytest.mark.parametrize("kernel", [lin_kern, rbf_kern, rbf_lin_sum_kern, rbf_lin_prod_kern]) def test_eKxz_no_uncertainty(session_tf, kernel, feature): eKxz = expectation(dirac_diag(), (kernel(), feature)) Kxz = kernel().K(Data.Xmu, Data.Z) eKxz, Kxz = session_tf.run([eKxz, Kxz]) assert_allclose(eKxz, Kxz, rtol=RTOL) @pytest.mark.parametrize("kernel", [lin_kern, rbf_kern, rbf_lin_sum_kern]) @pytest.mark.parametrize("mean", [lin_mean, identity_mean, const_mean, zero_mean]) def test_eMxKxz_no_uncertainty(session_tf, kernel, feature, mean): exKxz = expectation(dirac_diag(), mean(), (kernel(), feature)) Kxz = kernel().K(Data.Xmu, Data.Z) xKxz = expectation(dirac_gauss(), mean())[:, :, None] * Kxz[:, None, :] exKxz, xKxz = session_tf.run([exKxz, xKxz]) assert_allclose(exKxz, xKxz, rtol=RTOL) @pytest.mark.parametrize("kernel", [lin_kern, rbf_kern, rbf_lin_sum_kern, rbf_lin_prod_kern]) def test_eKzxKxz_no_uncertainty(session_tf, kernel, feature): kern = kernel() eKzxKxz = expectation(dirac_diag(), (kern, feature), (kern, feature)) Kxz = kern.K(Data.Xmu, Data.Z) eKzxKxz, Kxz = session_tf.run([eKzxKxz, Kxz]) KzxKxz = Kxz[:, :, None] * Kxz[:, None, :] assert_allclose(eKzxKxz, KzxKxz, rtol=RTOL) def test_RBF_eKzxKxz_gradient_not_NaN(session_tf): """ Ensure that <K_{Z, x} K_{x, Z}>_p(x) is not NaN and correct, when K_{Z, Z} is zero with finite precision. See pull request #595. """ kern = gpflow.kernels.RBF(1, lengthscales=0.1) kern.variance = 2. p = gpflow.probability_distributions.Gaussian( tf.constant([[10]], dtype=gpflow.settings.tf_float), tf.constant([[[0.1]]], dtype=gpflow.settings.tf_float)) z = gpflow.features.InducingPoints([[-10.], [10.]]) ekz = expectation(p, (kern, z), (kern, z)) g, = tf.gradients(ekz, kern.lengthscales._unconstrained_tensor) grad = session_tf.run(g) assert grad is not None and not np.isnan(grad) @pytest.mark.parametrize("kernel1", [rbf_kern_act_dim_0, lin_kern_act_dim_0]) @pytest.mark.parametrize("kernel2", [rbf_kern_act_dim_1, lin_kern_act_dim_1]) def test_eKzxKxz_separate_dims_simplification( session_tf, kernel1, kernel2, feature): _check((gauss_diag(), (kernel1(), feature), (kernel2(), feature))) def test_eKzxKxz_different_sum_kernels(session_tf, feature): kern1, kern2 = rbf_lin_sum_kern(), rbf_lin_sum_kern2() _check((gauss(), (kern1, feature), (kern2, feature))) def test_eKzxKxz_same_vs_different_sum_kernels(session_tf, feature): # check the result is the same if we pass different objects with the same value kern1 = rbf_lin_sum_kern2() kern2 = copy.copy(rbf_lin_sum_kern2()) same = expectation(*(gauss(), (kern1, feature), (kern1, feature))) different = expectation(*(gauss(), (kern1, feature), (kern2, feature))) session = tf.get_default_session() same, different = session.run([same, different]) assert_allclose(same, different, rtol=RTOL) @pytest.mark.parametrize("kernel", [rbf_kern, lin_kern, rbf_lin_sum_kern]) def test_exKxz_markov(session_tf, kernel, feature): _check((markov_gauss(), (kernel(), feature), identity_mean())) @pytest.mark.parametrize("kernel", [rbf_kern, lin_kern, rbf_lin_sum_kern]) def test_exKxz_markov_no_uncertainty(session_tf, kernel, feature): exKxz = expectation(dirac_markov_gauss(), (kernel(), feature), identity_mean()) exKxz = session_tf.run(exKxz) Kzx = kernel().compute_K(Data.Xmu_markov[:-1, :], Data.Z) # NxM xKxz = Kzx[..., None] * Data.Xmu_markov[1:, None, :] # NxMxD assert_allclose(exKxz, xKxz, rtol=RTOL) @pytest.mark.parametrize("distribution", [gauss, gauss_diag, markov_gauss]) def test_cov_shape_inference(session_tf, distribution, feature): gauss_tuple = (distribution().mu, distribution().cov) _check((gauss_tuple, (rbf_kern(), feature))) if isinstance(distribution(), MarkovGaussian): _check((gauss_tuple, None, (rbf_kern(), feature))) @pytest.mark.parametrize("distribution", [gauss, gauss_diag]) @pytest.mark.parametrize("kernel1", [rbf_kern, rbf_kern_2]) @pytest.mark.parametrize("kernel2", [rbf_kern, rbf_kern_2]) @pytest.mark.parametrize("feat1", [feature, feature2]) @pytest.mark.parametrize("feat2", [feature, feature2]) def test_eKzxKxz_rbf_cross_covariance(session_tf, distribution, kernel1, kernel2, feat1, feat2): _check((distribution(), (kernel1(), feat1()), (kernel2(), feat2())))
34.808696
94
0.691148
4dd1b8d9b9023b06396fda1b851e8d28b6b5d1b9
327
py
Python
Python/HRL/01-Intro to Python/01_variables.py
Errrneist/Exia
d9040386089d64c67b466db99c64f786cdf625e8
[ "Apache-2.0" ]
null
null
null
Python/HRL/01-Intro to Python/01_variables.py
Errrneist/Exia
d9040386089d64c67b466db99c64f786cdf625e8
[ "Apache-2.0" ]
null
null
null
Python/HRL/01-Intro to Python/01_variables.py
Errrneist/Exia
d9040386089d64c67b466db99c64f786cdf625e8
[ "Apache-2.0" ]
null
null
null
# Hongjun Wu # 20180208 # Python test files. This file test on variable and basic calculations. price = 8.5 weight = 7.5 money = weight * price # 卧槽toString原来是这么写的啊 print('You need to pay this amount: ' + money.__str__()) print('Now I will give you five bucks backs.') money -= 5 print('Now just pay: ' + money.__str__())
19.235294
71
0.700306
1811ab4eaae14f37e35d3b7d9342db1dd0f3339b
3,381
py
Python
skipp/filters/tests/tests/test_laplace.py
IntelPython/scikit-ipp
df3c595296ab2009f95b1cfe412f6bf0680d4be3
[ "BSD-3-Clause" ]
6
2021-08-24T06:49:12.000Z
2022-03-22T11:12:06.000Z
skipp/filters/tests/tests/test_laplace.py
IntelPython/scikit-ipp
df3c595296ab2009f95b1cfe412f6bf0680d4be3
[ "BSD-3-Clause" ]
4
2020-11-17T14:54:25.000Z
2021-03-18T08:58:15.000Z
skipp/filters/tests/tests/test_laplace.py
IntelPython/scikit-ipp
df3c595296ab2009f95b1cfe412f6bf0680d4be3
[ "BSD-3-Clause" ]
2
2020-08-25T12:09:55.000Z
2022-03-19T12:06:18.000Z
# ****************************************************************************** # Copyright (c) 2020, Intel Corporation # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of Intel Corporation nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ****************************************************************************** import pytest import numpy as np from numpy.testing import assert_allclose from skipp.filters import laplace def test_laplace_zeros(): """Laplace on a square image.""" # Create a synthetic 2D image image = np.zeros((9, 9), dtype=np.float32) image[3:-3, 3:-3] = 1 result = laplace(image) check_result = np.array([[0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., -1., -1., -1., 0., 0., 0.], [0., 0., -1., 2., 1., 2., -1., 0., 0.], [0., 0., -1., 1., 0., 1., -1., 0., 0.], [0., 0., -1., 2., 1., 2., -1., 0., 0.], [0., 0., 0., -1., -1., -1., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0.]]) assert_allclose(result, check_result) # TODO @pytest.mark.skip(reason="deveoloping _mask_filter_result") def test_laplace_mask(): """Laplace on a masked array should be zero.""" # Create a synthetic 2D image image = np.zeros((9, 9), dtype=np.float32) image[3:-3, 3:-3] = 1 # Define the mask result = laplace(image, ksize=3, mask=np.zeros((9, 9), dtype=bool)) assert (np.all(result == 0)) @pytest.mark.parametrize( "dtype", [np.uint8, np.uint16, np.int16, np.float32] ) def test_laplace_preserve_dtype(dtype): image = np.arange(25, dtype=dtype).reshape(5, 5) filtered = laplace(image) assert filtered.dtype == dtype
49
81
0.578527
27c4b5a2b254dbb84348676dbaa9908cce764ab4
22,871
py
Python
mkt/webapps/indexers.py
ngokevin/zamboni
a33dcd489175d8e7ba1c02ee4dabb6cfdc405e69
[ "BSD-3-Clause" ]
null
null
null
mkt/webapps/indexers.py
ngokevin/zamboni
a33dcd489175d8e7ba1c02ee4dabb6cfdc405e69
[ "BSD-3-Clause" ]
null
null
null
mkt/webapps/indexers.py
ngokevin/zamboni
a33dcd489175d8e7ba1c02ee4dabb6cfdc405e69
[ "BSD-3-Clause" ]
null
null
null
import sys from operator import attrgetter from django.conf import settings from django.core.urlresolvers import reverse from django.db.models import Min from elasticsearch_dsl import F, filter as es_filter, query import commonware.log import amo import mkt from mkt.constants import APP_FEATURES from mkt.constants.applications import DEVICE_GAIA from mkt.features.utils import get_feature_profile from mkt.prices.models import AddonPremium from mkt.search.indexers import BaseIndexer from mkt.search.utils import Search from mkt.translations.models import attach_trans_dict from mkt.translations.utils import to_language from mkt.versions.models import Version log = commonware.log.getLogger('z.addons') class WebappIndexer(BaseIndexer): """ Bunch of ES stuff for Webapp include mappings, indexing, search. """ @classmethod def search(cls, using=None): """ Returns a `Search` object. We override this to use our patched version which adds statsd timing. """ return Search(using=using or cls.get_es(), index=cls.get_index(), doc_type=cls.get_mapping_type_name()) @classmethod def get_mapping_type_name(cls): """ Returns mapping type name which is used as the key in ES_INDEXES to determine which index to use. We override this because Webapp is a proxy model to Addon. """ return 'webapp' @classmethod def get_model(cls): from mkt.webapps.models import Webapp return Webapp @classmethod def get_mapping(cls): doc_type = cls.get_mapping_type_name() def _locale_field_mapping(field, analyzer): get_analyzer = lambda a: ( '%s_analyzer' % a if a in amo.STEMMER_MAP else a) return {'%s_%s' % (field, analyzer): { 'type': 'string', 'analyzer': get_analyzer(analyzer)}} mapping = { doc_type: { # Disable _all field to reduce index size. '_all': {'enabled': False}, 'properties': { # Add a boost field to enhance relevancy of a document. # This is used during queries in a function scoring query. 'boost': {'type': 'long', 'doc_values': True}, # App fields. 'id': {'type': 'long'}, 'app_slug': {'type': 'string'}, 'app_type': {'type': 'byte'}, 'author': { 'type': 'string', 'analyzer': 'default_icu', 'fields': { # For exact matches. The simple analyzer allows # for case-insensitive matching. 'raw': {'type': 'string', 'analyzer': 'exact_lowercase'}, }, }, 'banner_regions': cls.string_not_indexed(), 'bayesian_rating': {'type': 'float', 'doc_values': True}, 'category': cls.string_not_analyzed(), 'collection': { 'type': 'nested', 'include_in_parent': True, 'properties': { 'id': {'type': 'long'}, 'order': {'type': 'short'} } }, 'content_descriptors': cls.string_not_indexed(), 'content_ratings': { 'type': 'object', 'dynamic': 'true', }, 'created': {'format': 'dateOptionalTime', 'type': 'date', 'doc_values': True}, 'current_version': cls.string_not_indexed(), 'default_locale': cls.string_not_indexed(), 'description': {'type': 'string', 'analyzer': 'default_icu'}, 'device': {'type': 'byte'}, 'features': { 'type': 'object', 'properties': dict( ('has_%s' % f.lower(), {'type': 'boolean'}) for f in APP_FEATURES) }, 'has_public_stats': {'type': 'boolean'}, 'icon_hash': cls.string_not_indexed(), 'interactive_elements': cls.string_not_indexed(), 'is_disabled': {'type': 'boolean'}, 'is_escalated': {'type': 'boolean'}, 'is_offline': {'type': 'boolean'}, 'is_priority': {'type': 'boolean'}, 'is_rereviewed': {'type': 'boolean'}, 'last_updated': {'format': 'dateOptionalTime', 'type': 'date'}, 'latest_version': { 'type': 'object', 'properties': { 'status': {'type': 'byte'}, 'is_privileged': {'type': 'boolean'}, 'has_editor_comment': {'type': 'boolean'}, 'has_info_request': {'type': 'boolean'}, 'nomination_date': {'type': 'date', 'format': 'dateOptionalTime'}, 'created_date': {'type': 'date', 'format': 'dateOptionalTime'}, }, }, 'manifest_url': cls.string_not_analyzed(), 'modified': {'format': 'dateOptionalTime', 'type': 'date'}, # Name for searching. 'name': {'type': 'string', 'analyzer': 'default_icu'}, # Name for sorting. 'name_sort': cls.string_not_analyzed(doc_values=True), # Name for suggestions. 'name_suggest': {'type': 'completion', 'payloads': True}, 'owners': {'type': 'long'}, 'package_path': cls.string_not_indexed(), 'popularity': {'type': 'long', 'doc_values': True}, 'premium_type': {'type': 'byte'}, 'previews': { 'type': 'object', 'dynamic': 'true', }, 'price_tier': cls.string_not_indexed(), 'ratings': { 'type': 'object', 'properties': { 'average': {'type': 'float'}, 'count': {'type': 'short'}, } }, 'region_exclusions': {'type': 'short'}, 'reviewed': {'format': 'dateOptionalTime', 'type': 'date', 'doc_values': True}, 'status': {'type': 'byte'}, 'supported_locales': cls.string_not_analyzed(), 'tags': {'type': 'string', 'analyzer': 'simple'}, 'upsell': { 'type': 'object', 'properties': { 'id': {'type': 'long'}, 'app_slug': cls.string_not_indexed(), 'icon_url': cls.string_not_indexed(), 'name': cls.string_not_indexed(), 'region_exclusions': {'type': 'short'}, } }, 'uses_flash': {'type': 'boolean'}, 'versions': { 'type': 'object', 'properties': { 'version': cls.string_not_indexed(), 'resource_uri': cls.string_not_indexed(), } }, 'weekly_downloads': {'type': 'long', 'doc_values': True}, } } } # Add popularity by region. for region in mkt.regions.ALL_REGION_IDS: mapping[doc_type]['properties'].update( {'popularity_%s' % region: {'type': 'long'}}) # Add fields that we expect to return all translations. cls.attach_translation_mappings( mapping, ('banner_message', 'description', 'homepage', 'name', 'release_notes', 'support_email', 'support_url')) # Add room for language-specific indexes. for analyzer in amo.SEARCH_ANALYZER_MAP: if (not settings.ES_USE_PLUGINS and analyzer in amo.SEARCH_ANALYZER_PLUGINS): log.info('While creating mapping, skipping the %s analyzer' % analyzer) continue mapping[doc_type]['properties'].update( _locale_field_mapping('name', analyzer)) mapping[doc_type]['properties'].update( _locale_field_mapping('description', analyzer)) return mapping @classmethod def extract_document(cls, pk=None, obj=None): """Extracts the ElasticSearch index document for this instance.""" from mkt.webapps.models import (AppFeatures, attach_devices, attach_prices, attach_tags, attach_translations, Geodata, Installed, RatingDescriptors, RatingInteractives) if obj is None: obj = cls.get_model().objects.no_cache().get(pk=pk) # Attach everything we need to index apps. for transform in (attach_devices, attach_prices, attach_tags, attach_translations): transform([obj]) latest_version = obj.latest_version version = obj.current_version geodata = obj.geodata features = (version.features.to_dict() if version else AppFeatures().to_dict()) try: status = latest_version.statuses[0][1] if latest_version else None except IndexError: status = None installed_ids = list(Installed.objects.filter(addon=obj) .values_list('id', flat=True)) attrs = ('app_slug', 'bayesian_rating', 'created', 'id', 'is_disabled', 'last_updated', 'modified', 'premium_type', 'status', 'uses_flash', 'weekly_downloads') d = dict(zip(attrs, attrgetter(*attrs)(obj))) d['boost'] = len(installed_ids) or 1 d['app_type'] = obj.app_type_id d['author'] = obj.developer_name d['banner_regions'] = geodata.banner_regions_slugs() d['category'] = obj.categories if obj.categories else [] if obj.is_published: d['collection'] = [{'id': cms.collection_id, 'order': cms.order} for cms in obj.collectionmembership_set.all()] else: d['collection'] = [] d['content_ratings'] = (obj.get_content_ratings_by_body(es=True) or None) try: d['content_descriptors'] = obj.rating_descriptors.to_keys() except RatingDescriptors.DoesNotExist: d['content_descriptors'] = [] d['current_version'] = version.version if version else None d['default_locale'] = obj.default_locale d['description'] = list( set(string for _, string in obj.translations[obj.description_id])) d['device'] = getattr(obj, 'device_ids', []) d['features'] = features d['has_public_stats'] = obj.public_stats d['icon_hash'] = obj.icon_hash try: d['interactive_elements'] = obj.rating_interactives.to_keys() except RatingInteractives.DoesNotExist: d['interactive_elements'] = [] d['is_escalated'] = obj.escalationqueue_set.exists() d['is_offline'] = getattr(obj, 'is_offline', False) d['is_priority'] = obj.priority_review d['is_rereviewed'] = obj.rereviewqueue_set.exists() if latest_version: d['latest_version'] = { 'status': status, 'is_privileged': latest_version.is_privileged, 'has_editor_comment': latest_version.has_editor_comment, 'has_info_request': latest_version.has_info_request, 'nomination_date': latest_version.nomination, 'created_date': latest_version.created, } else: d['latest_version'] = { 'status': None, 'is_privileged': None, 'has_editor_comment': None, 'has_info_request': None, 'nomination_date': None, 'created_date': None, } d['manifest_url'] = obj.get_manifest_url() d['package_path'] = obj.get_package_path() d['name'] = list( set(string for _, string in obj.translations[obj.name_id])) d['name_sort'] = unicode(obj.name).lower() d['owners'] = [au.user.id for au in obj.addonuser_set.filter(role=amo.AUTHOR_ROLE_OWNER)] d['popularity'] = len(installed_ids) d['previews'] = [{'filetype': p.filetype, 'modified': p.modified, 'id': p.id, 'sizes': p.sizes} for p in obj.previews.all()] try: p = obj.addonpremium.price d['price_tier'] = p.name except AddonPremium.DoesNotExist: d['price_tier'] = None d['ratings'] = { 'average': obj.average_rating, 'count': obj.total_reviews, } d['region_exclusions'] = obj.get_excluded_region_ids() d['reviewed'] = obj.versions.filter( deleted=False).aggregate(Min('reviewed')).get('reviewed__min') if version: d['supported_locales'] = filter( None, version.supported_locales.split(',')) else: d['supported_locales'] = [] d['tags'] = getattr(obj, 'tag_list', []) if obj.upsell and obj.upsell.premium.is_published(): upsell_obj = obj.upsell.premium d['upsell'] = { 'id': upsell_obj.id, 'app_slug': upsell_obj.app_slug, 'icon_url': upsell_obj.get_icon_url(128), # TODO: Store all localizations of upsell.name. 'name': unicode(upsell_obj.name), 'region_exclusions': upsell_obj.get_excluded_region_ids() } d['versions'] = [dict(version=v.version, resource_uri=reverse_version(v)) for v in obj.versions.all()] # Handle our localized fields. for field in ('description', 'homepage', 'name', 'support_email', 'support_url'): d['%s_translations' % field] = [ {'lang': to_language(lang), 'string': string} for lang, string in obj.translations[getattr(obj, '%s_id' % field)] if string] if version: attach_trans_dict(Version, [version]) d['release_notes_translations'] = [ {'lang': to_language(lang), 'string': string} for lang, string in version.translations[version.releasenotes_id]] else: d['release_notes_translations'] = None attach_trans_dict(Geodata, [geodata]) d['banner_message_translations'] = [ {'lang': to_language(lang), 'string': string} for lang, string in geodata.translations[geodata.banner_message_id]] for region in mkt.regions.ALL_REGION_IDS: d['popularity_%s' % region] = d['popularity'] # Bump the boost if the add-on is public. if obj.status == amo.STATUS_PUBLIC: d['boost'] = max(d['boost'], 1) * 4 # If the app is compatible with Firefox OS, push suggestion data in the # index - This will be used by RocketbarView API, which is specific to # Firefox OS. if DEVICE_GAIA.id in d['device'] and obj.is_published(): d['name_suggest'] = { 'input': d['name'], 'output': unicode(obj.id), # We only care about the payload. 'weight': d['boost'], 'payload': { 'default_locale': d['default_locale'], 'icon_hash': d['icon_hash'], 'id': d['id'], 'manifest_url': d['manifest_url'], 'modified': d['modified'], 'name_translations': d['name_translations'], 'slug': d['app_slug'], } } # Indices for each language. languages is a list of locales we want to # index with analyzer if the string's locale matches. for analyzer, languages in amo.SEARCH_ANALYZER_MAP.iteritems(): if (not settings.ES_USE_PLUGINS and analyzer in amo.SEARCH_ANALYZER_PLUGINS): continue d['name_' + analyzer] = list( set(string for locale, string in obj.translations[obj.name_id] if locale.lower() in languages)) d['description_' + analyzer] = list( set(string for locale, string in obj.translations[obj.description_id] if locale.lower() in languages)) return d @classmethod def get_indexable(cls): """Returns the queryset of ids of all things to be indexed.""" from mkt.webapps.models import Webapp return Webapp.with_deleted.all() @classmethod def run_indexing(cls, ids, ES, index=None, **kw): """Override run_indexing to use app transformers.""" from mkt.webapps.models import Webapp sys.stdout.write('Indexing %s webapps\n' % len(ids)) qs = Webapp.with_deleted.no_cache().filter(id__in=ids) docs = [] for obj in qs: try: docs.append(cls.extract_document(obj.id, obj=obj)) except Exception as e: sys.stdout.write('Failed to index webapp {0}: {1}\n'.format( obj.id, e)) cls.bulk_index(docs, es=ES, index=index or cls.get_index()) @classmethod def get_app_filter(cls, request, additional_data=None, sq=None, app_ids=None, no_filter=False): """ THE grand, consolidated ES filter for Webapps. By default: - Excludes non-public apps. - Excludes disabled apps (whether by reviewer or by developer). - Excludes based on region exclusions. - TODO: Excludes based on device and platform support. additional_data -- an object with more data to allow more filtering. sq -- if you have an existing search object to filter off of. app_ids -- if you want to filter by a list of app IDs. no_filter -- doesn't apply the consumer-side excludes (public/region). """ from mkt.api.base import get_region_from_request from mkt.search.views import name_query sq = sq or cls.search() additional_data = additional_data or {} app_ids = app_ids or [] data = { 'app_type': [], 'author.raw': None, 'category': None, # Slug. 'device': None, # ID. 'gaia': getattr(request, 'GAIA', False), 'is_offline': None, 'manifest_url': '', 'mobile': getattr(request, 'MOBILE', False), 'premium_type': [], 'profile': get_feature_profile(request), 'q': '', 'region': getattr(get_region_from_request(request), 'id', None), 'status': None, 'supported_locales': [], 'tablet': getattr(request, 'TABLET', False), 'tags': '', } data.update(additional_data) # Fields that will be filtered with a term query. term_fields = ('author.raw', 'device', 'manifest_url', 'status', 'tags') # Fields that will be filtered with a terms query. terms_fields = ('category', 'premium_type', 'app_type', 'supported_locales') # QUERY. if data['q']: # Function score for popularity boosting (defaults to multiply). sq = sq.query( 'function_score', query=name_query(data['q'].lower()), functions=[query.SF('field_value_factor', field='boost')]) # MUST. must = [ F('term', status=amo.STATUS_PUBLIC), F('term', is_disabled=False), ] if not no_filter else [] for field in term_fields + terms_fields: # Term filters. if data[field]: filter_type = 'term' if field in term_fields else 'terms' must.append(F(filter_type, **{field: data[field]})) if not no_filter: if data['profile']: # Feature filters. profile = data['profile'] for k, v in profile.to_kwargs(prefix='features.has_').items(): must.append(F('term', **{k: v})) if data['mobile'] or data['gaia']: # Uses flash. must.append(F('term', uses_flash=False)) if data['is_offline'] is not None: must.append(F('term', is_offline=data['is_offline'])) # SHOULD. should = [] if app_ids: should = [es_filter.Terms(id=list(set(app_ids)))] sq = sq[0:len(set(app_ids))] # FILTER. if must or should: sq = sq.filter(es_filter.Bool(must=must, should=should)) if data['region'] and not no_filter: # Region exclusions. sq = sq.filter(~F('term', region_exclusions=data['region'])) return sq def reverse_version(version): """ The try/except AttributeError allows this to be used where the input is ambiguous, and could be either an already-reversed URL or a Version object. """ if version: try: return reverse('version-detail', kwargs={'pk': version.pk}) except AttributeError: return version return
41.432971
79
0.50505
8d150c6bcf0e26f6f91eec2f63a144fb86ae6759
2,503
py
Python
includes/cisco.py
b1scuit-thi3f/jimiPlugin-remote
915621e325df6424832a9052d47af3ee0f6b095a
[ "Apache-2.0" ]
null
null
null
includes/cisco.py
b1scuit-thi3f/jimiPlugin-remote
915621e325df6424832a9052d47af3ee0f6b095a
[ "Apache-2.0" ]
null
null
null
includes/cisco.py
b1scuit-thi3f/jimiPlugin-remote
915621e325df6424832a9052d47af3ee0f6b095a
[ "Apache-2.0" ]
null
null
null
import time import re import logging from netmiko import ConnectHandler from plugins.remote.includes import remote class cisco(remote.remote): def __init__(self, host, deviceHostname, username="Admin", password='', enablePassword="", port=22, timeout=5): self.host = host self.deviceHostname = deviceHostname self.timeout = timeout self.enablePassword = enablePassword self.error = "" self.type = "cisco_ios" self.client = self.connect(username,password,port) def connect(self,username,password,port): try: client = ConnectHandler(host=self.host, device_type=self.type, username=username, password=password, secret=self.enablePassword, port=port, system_host_keys=True, timeout=self.timeout) detectedDevice = client.find_prompt().strip()[:-1] if detectedDevice != self.deviceHostname: self.error = f"Device detected name does not match the device name provided. Hostname found = {detectedDevice}" client.disconnect() return None return client except Exception as e: self.error = e return None def disconnect(self): if self.client: self.client.disconnect() self.client = None def sendCommand(self,command,attempt=0): if attempt > 3: return False output = self.client.send_command(command) if output: return output time.sleep(0.1) logging.warning("Command was not received by remote console. command={0}, attempt={1}".format(command),attempt) return self.sendCommand(command,attempt+1) def command(self, command, args=[], elevate=False, runAs=None, timeout=5): if command == "enable": try: self.client.enable() return (0, "test") except ValueError: return (None,"","Could not enable") if args: command = command + " " + " ".join(args) returnedData = self.sendCommand(command) if returnedData is False: return (None,"","Unable to send command") if returnedData == False or "% Invalid input detected at '^'" in returnedData or "% Incomplete command." in returnedData or "Command rejected" in returnedData: return (None,"",returnedData) return (0, returnedData, "") def __del__(self): self.disconnect()
39.109375
196
0.613264
07b238fba3c3d48e0514e0643187d25b907bc648
4,360
py
Python
app/utils.py
kindweb223/React-Django-M3U8
ee3edfabcf4e4423e96591df7cf42f8d89813292
[ "Apache-2.0" ]
1
2020-12-28T07:54:05.000Z
2020-12-28T07:54:05.000Z
app/utils.py
kindweb223/React-Django-M3U8
ee3edfabcf4e4423e96591df7cf42f8d89813292
[ "Apache-2.0" ]
11
2020-06-05T17:35:01.000Z
2022-02-26T07:00:16.000Z
app/utils.py
kindweb223/React-Django-M3U8
ee3edfabcf4e4423e96591df7cf42f8d89813292
[ "Apache-2.0" ]
1
2021-11-02T11:35:45.000Z
2021-11-02T11:35:45.000Z
import json import logging import re import requests from django.conf import settings logger = logging.getLogger(__name__) class M3U8ChannelFactory(object): group = None duration = None title = None path = None extra_data = {} def init_channel(self, extinf_string): logger.info('Init channel: %s', extinf_string) self.duration = None self.title = None self.group = None self.path = None self.extra_data = dict() try: duration = re.findall(r'EXTINF:(-?\d+)', extinf_string)[0] title = extinf_string.split(',')[-1] self.title = title self.duration = duration except IndexError as e: logging.warning('Unable to parse EXTINF string: {}. Error: {} '.format(extinf_string, e)) return # Collect extra attrs extra_attrs = [ 'tvg-ID', 'tvg-name', 'tvg-logo', 'group-title' ] for attr in extra_attrs: attr_values = re.findall(r'^.*(?i){attr}="([^"]*)".*'.format(attr=attr), extinf_string) if attr_values: self.extra_data[attr] = attr_values[0] def process_line(self, line): """ Add line to the channel """ logger.info('Processing line: %s', line) if not line: return if isinstance(line, bytes): line = line.decode("utf-8", errors="ignore") if line == '#EXTM3U': return if line.startswith('#EXTINF:'): self.init_channel(line) return if line.startswith('#EXTGRP:'): self.group = line[8:] return if line.startswith('#'): logger.warning('Unsupported line skipped: {}'.format(line)) return # Line without hash is the last in the channel definition and it is the path logger.info('Adding path: %s', line) self.path = line def get_extra_data(self): if self.extra_data: return json.dumps(self.extra_data) else: return None def is_complete(self): logger.info('Checking if channel complete') return all([self.path, self.title, self.group, self.duration]) def load_remote_m3u8(link, playlist, remove_existed=False): from app.models import Channel r = requests.get(link) if not r.ok: return False if remove_existed: Channel.objects.filter(playlists=playlist).delete() channel_factory = M3U8ChannelFactory() channel_count = 0 for line in r.iter_lines(decode_unicode=True): channel_factory.process_line(line) if channel_factory.is_complete(): channel_count += 1 if channel_count > settings.MAX_CHANNELS: logger.warning('Too many channels, only %s was loaded', settings.MAX_CHANNELS) return False channel_obj = Channel.objects.create( user=playlist.user, title=channel_factory.title, duration=channel_factory.duration, group=channel_factory.group, extra_data=channel_factory.get_extra_data(), path=channel_factory.path ) channel_obj.playlists.add(playlist) return True def load_m3u8_from_file(fo, playlist, remove_existed=False): from app.models import Channel if remove_existed: Channel.objects.filter(playlists=playlist).delete() channel_factory = M3U8ChannelFactory() channel_count = 0 for line in fo.read().splitlines(): channel_factory.process_line(line) if channel_factory.is_complete(): channel_count += 1 if channel_count > settings.MAX_CHANNELS: logger.warning('Too many channels, only %s was loaded', settings.MAX_CHANNELS) return False channel_obj = Channel.objects.create( user=playlist.user, title=channel_factory.title, duration=channel_factory.duration, group=channel_factory.group, extra_data=channel_factory.get_extra_data(), path=channel_factory.path ) channel_obj.playlists.add(playlist) return True
28.874172
101
0.586468
d0d0e5620db0317ecc637195eadc729744f5e9ed
5,405
py
Python
warehouse/admin/views/banners.py
fairhopeweb/warehouse
7d8ef742e8fe6b401190c28ce56761848041c89f
[ "Apache-2.0" ]
3,103
2015-01-30T00:24:10.000Z
2022-03-31T23:21:39.000Z
warehouse/admin/views/banners.py
fairhopeweb/warehouse
7d8ef742e8fe6b401190c28ce56761848041c89f
[ "Apache-2.0" ]
6,709
2015-01-05T01:23:20.000Z
2022-03-31T14:49:46.000Z
warehouse/admin/views/banners.py
fairhopeweb/warehouse
7d8ef742e8fe6b401190c28ce56761848041c89f
[ "Apache-2.0" ]
959
2015-01-12T22:22:40.000Z
2022-03-31T22:21:51.000Z
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import wtforms from pyramid.httpexceptions import HTTPNotFound, HTTPSeeOther from pyramid.view import view_config from sqlalchemy.orm.exc import NoResultFound from warehouse.banners.models import Banner from warehouse.forms import Form, URIValidator @view_config( route_name="admin.banner.list", renderer="admin/banners/list.html", permission="admin_dashboard_access", request_method="GET", uses_session=True, ) def banner_list(request): banners = request.db.query(Banner).all() return {"banners": banners} @view_config( route_name="admin.banner.edit", renderer="admin/banners/edit.html", permission="admin_dashboard_access", request_method="GET", uses_session=True, require_csrf=True, require_methods=False, ) @view_config( route_name="admin.banner.edit", renderer="admin/banners/edit.html", permission="psf_staff", request_method="POST", uses_session=True, require_csrf=True, require_methods=False, ) def edit_banner(request): id_ = request.matchdict["banner_id"] try: banner = request.db.query(Banner).filter(Banner.id == id_).one() except NoResultFound: raise HTTPNotFound form = BannerForm(request.POST if request.method == "POST" else None, banner) if request.method == "POST" and form.validate(): form.populate_obj(banner) request.session.flash("Banner updated", queue="success") return HTTPSeeOther(location=request.current_route_path()) return {"banner": banner, "form": form} @view_config( route_name="admin.banner.create", renderer="admin/banners/edit.html", permission="admin_dashboard_access", request_method="GET", uses_session=True, require_csrf=True, require_methods=False, ) @view_config( route_name="admin.banner.create", renderer="admin/banners/edit.html", permission="psf_staff", request_method="POST", uses_session=True, require_csrf=True, require_methods=False, ) def create_banner(request): form = BannerForm(request.POST if request.method == "POST" else None) if request.method == "POST" and form.validate(): banner = Banner(**form.data) request.db.add(banner) request.session.flash( f"Added new banner '{banner.name}'", queue="success", ) redirect_url = request.route_url("admin.banner.list") return HTTPSeeOther(location=redirect_url) return {"form": form} @view_config( route_name="admin.banner.delete", require_methods=["POST"], permission="psf_staff", uses_session=True, require_csrf=True, ) def delete_banner(request): id_ = request.matchdict["banner_id"] try: banner = request.db.query(Banner).filter(Banner.id == id_).one() except NoResultFound: raise HTTPNotFound # Safeguard check on banner name if banner.name != request.params.get("banner"): request.session.flash("Wrong confirmation input", queue="error") return HTTPSeeOther(request.route_url("admin.banner.edit", banner_id=banner.id)) # Delete the banner request.db.delete(banner) request.session.flash(f"Deleted banner {banner.name}", queue="success") return HTTPSeeOther(request.route_url("admin.banner.list")) @view_config( route_name="admin.banner.preview", require_methods=["GET"], permission="moderator", uses_session=True, require_csrf=True, has_translations=True, renderer="admin/banners/preview.html", ) def preview_banner(request): id_ = request.matchdict["banner_id"] try: banner = request.db.query(Banner).filter(Banner.id == id_).one() return {"banner": banner} except NoResultFound: raise HTTPNotFound class BannerForm(Form): name = wtforms.fields.StringField( validators=[ wtforms.validators.Length(max=100), wtforms.validators.DataRequired(), ], ) text = wtforms.fields.StringField( validators=[ wtforms.validators.Length(max=280), wtforms.validators.DataRequired(), ], ) link_url = wtforms.fields.StringField( validators=[ wtforms.validators.DataRequired(), URIValidator(), ] ) link_label = wtforms.fields.StringField( validators=[ wtforms.validators.Optional(), ], default=Banner.DEFAULT_BTN_LABEL, ) fa_icon = wtforms.fields.StringField( validators=[ wtforms.validators.Length(max=20), wtforms.validators.Optional(), ], default=Banner.DEFAULT_FA_ICON, ) active = wtforms.fields.BooleanField( validators=[wtforms.validators.Optional()], default=False ) end = wtforms.fields.DateField(validators=[wtforms.validators.DataRequired()])
29.535519
88
0.679371
451f5c4d89346835c58d37cd42eadd492e17d300
893
py
Python
src/main.py
andresmesad09/challenge-python-01
188e26f938eddebc16d68d6730ad79f2c9f93a7e
[ "MIT" ]
null
null
null
src/main.py
andresmesad09/challenge-python-01
188e26f938eddebc16d68d6730ad79f2c9f93a7e
[ "MIT" ]
null
null
null
src/main.py
andresmesad09/challenge-python-01
188e26f938eddebc16d68d6730ad79f2c9f93a7e
[ "MIT" ]
1
2020-07-21T04:02:47.000Z
2020-07-21T04:02:47.000Z
# Resolve the problem!! PALINDROMES = [ 'Acaso hubo buhos aca', 'A la catalana banal atacala', 'Amar da drama', ] NOT_PALINDROMES = [ 'Hola como estas', 'Platzi' 'Oscar', ] def is_palindrome(palindrome): # Start coding here word_lower = palindrome.lower() word_strip = word_lower.replace(' ', '') word_inverse = word_strip[::-1] if word_inverse == palindrome.replace(' ', '').lower(): return True else: return False def validate(): for palindrome in PALINDROMES: if not is_palindrome(palindrome): return False for not_palindrome in NOT_PALINDROMES: if is_palindrome(not_palindrome): return False return True def run(): if validate(): print('Completaste el test') else: print('No completaste el test') if __name__ == '__main__': run()
19
59
0.606943
f9ecdf663a769032384e347af9237ced758594dd
10,600
py
Python
openstack/tests/functional/cloud/test_identity.py
NeCTAR-RC/openstacksdk
60a24f6c4717a1f9a0e545c9a07e68afaedc5a27
[ "Apache-2.0" ]
99
2018-03-28T15:41:45.000Z
2022-01-23T17:22:13.000Z
openstack/tests/functional/cloud/test_identity.py
NeCTAR-RC/openstacksdk
60a24f6c4717a1f9a0e545c9a07e68afaedc5a27
[ "Apache-2.0" ]
5
2018-05-25T16:54:23.000Z
2021-11-21T02:27:16.000Z
openstack/tests/functional/cloud/test_identity.py
NeCTAR-RC/openstacksdk
60a24f6c4717a1f9a0e545c9a07e68afaedc5a27
[ "Apache-2.0" ]
104
2018-04-06T14:33:54.000Z
2022-03-01T01:58:09.000Z
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ test_identity ---------------------------------- Functional tests for `shade` identity methods. """ import random import string from openstack.cloud.exc import OpenStackCloudException from openstack.tests.functional import base class TestIdentity(base.KeystoneBaseFunctionalTest): def setUp(self): super(TestIdentity, self).setUp() self.role_prefix = 'test_role' + ''.join( random.choice(string.ascii_lowercase) for _ in range(5)) self.user_prefix = self.getUniqueString('user') self.group_prefix = self.getUniqueString('group') self.addCleanup(self._cleanup_users) if self.identity_version not in ('2', '2.0'): self.addCleanup(self._cleanup_groups) self.addCleanup(self._cleanup_roles) def _cleanup_groups(self): exception_list = list() for group in self.operator_cloud.list_groups(): if group['name'].startswith(self.group_prefix): try: self.operator_cloud.delete_group(group['id']) except Exception as e: exception_list.append(str(e)) continue if exception_list: # Raise an error: we must make users aware that something went # wrong raise OpenStackCloudException('\n'.join(exception_list)) def _cleanup_users(self): exception_list = list() for user in self.operator_cloud.list_users(): if user['name'].startswith(self.user_prefix): try: self.operator_cloud.delete_user(user['id']) except Exception as e: exception_list.append(str(e)) continue if exception_list: raise OpenStackCloudException('\n'.join(exception_list)) def _cleanup_roles(self): exception_list = list() for role in self.operator_cloud.list_roles(): if role['name'].startswith(self.role_prefix): try: self.operator_cloud.delete_role(role['name']) except Exception as e: exception_list.append(str(e)) continue if exception_list: raise OpenStackCloudException('\n'.join(exception_list)) def _create_user(self, **kwargs): domain_id = None if self.identity_version not in ('2', '2.0'): domain = self.operator_cloud.get_domain('default') domain_id = domain['id'] return self.operator_cloud.create_user(domain_id=domain_id, **kwargs) def test_list_roles(self): roles = self.operator_cloud.list_roles() self.assertIsNotNone(roles) self.assertNotEqual([], roles) def test_get_role(self): role = self.operator_cloud.get_role('admin') self.assertIsNotNone(role) self.assertIn('id', role) self.assertIn('name', role) self.assertEqual('admin', role['name']) def test_search_roles(self): roles = self.operator_cloud.search_roles(filters={'name': 'admin'}) self.assertIsNotNone(roles) self.assertEqual(1, len(roles)) self.assertEqual('admin', roles[0]['name']) def test_create_role(self): role_name = self.role_prefix + '_create_role' role = self.operator_cloud.create_role(role_name) self.assertIsNotNone(role) self.assertIn('id', role) self.assertIn('name', role) self.assertEqual(role_name, role['name']) def test_delete_role(self): role_name = self.role_prefix + '_delete_role' role = self.operator_cloud.create_role(role_name) self.assertIsNotNone(role) self.assertTrue(self.operator_cloud.delete_role(role_name)) # TODO(Shrews): Once we can support assigning roles within shade, we # need to make this test a little more specific, and add more for testing # filtering functionality. def test_list_role_assignments(self): if self.identity_version in ('2', '2.0'): self.skipTest("Identity service does not support role assignments") assignments = self.operator_cloud.list_role_assignments() self.assertIsInstance(assignments, list) self.assertGreater(len(assignments), 0) def test_list_role_assignments_v2(self): user = self.operator_cloud.get_user('demo') project = self.operator_cloud.get_project('demo') assignments = self.operator_cloud.list_role_assignments( filters={'user': user['id'], 'project': project['id']}) self.assertIsInstance(assignments, list) self.assertGreater(len(assignments), 0) def test_grant_revoke_role_user_project(self): user_name = self.user_prefix + '_user_project' user_email = 'nobody@nowhere.com' role_name = self.role_prefix + '_grant_user_project' role = self.operator_cloud.create_role(role_name) user = self._create_user(name=user_name, email=user_email, default_project='demo') self.assertTrue(self.operator_cloud.grant_role( role_name, user=user['id'], project='demo', wait=True)) assignments = self.operator_cloud.list_role_assignments({ 'role': role['id'], 'user': user['id'], 'project': self.operator_cloud.get_project('demo')['id'] }) self.assertIsInstance(assignments, list) self.assertEqual(1, len(assignments)) self.assertTrue(self.operator_cloud.revoke_role( role_name, user=user['id'], project='demo', wait=True)) assignments = self.operator_cloud.list_role_assignments({ 'role': role['id'], 'user': user['id'], 'project': self.operator_cloud.get_project('demo')['id'] }) self.assertIsInstance(assignments, list) self.assertEqual(0, len(assignments)) def test_grant_revoke_role_group_project(self): if self.identity_version in ('2', '2.0'): self.skipTest("Identity service does not support group") role_name = self.role_prefix + '_grant_group_project' role = self.operator_cloud.create_role(role_name) group_name = self.group_prefix + '_group_project' group = self.operator_cloud.create_group( name=group_name, description='test group', domain='default') self.assertTrue(self.operator_cloud.grant_role( role_name, group=group['id'], project='demo')) assignments = self.operator_cloud.list_role_assignments({ 'role': role['id'], 'group': group['id'], 'project': self.operator_cloud.get_project('demo')['id'] }) self.assertIsInstance(assignments, list) self.assertEqual(1, len(assignments)) self.assertTrue(self.operator_cloud.revoke_role( role_name, group=group['id'], project='demo')) assignments = self.operator_cloud.list_role_assignments({ 'role': role['id'], 'group': group['id'], 'project': self.operator_cloud.get_project('demo')['id'] }) self.assertIsInstance(assignments, list) self.assertEqual(0, len(assignments)) def test_grant_revoke_role_user_domain(self): if self.identity_version in ('2', '2.0'): self.skipTest("Identity service does not support domain") role_name = self.role_prefix + '_grant_user_domain' role = self.operator_cloud.create_role(role_name) user_name = self.user_prefix + '_user_domain' user_email = 'nobody@nowhere.com' user = self._create_user(name=user_name, email=user_email, default_project='demo') self.assertTrue(self.operator_cloud.grant_role( role_name, user=user['id'], domain='default')) assignments = self.operator_cloud.list_role_assignments({ 'role': role['id'], 'user': user['id'], 'domain': self.operator_cloud.get_domain('default')['id'] }) self.assertIsInstance(assignments, list) self.assertEqual(1, len(assignments)) self.assertTrue(self.operator_cloud.revoke_role( role_name, user=user['id'], domain='default')) assignments = self.operator_cloud.list_role_assignments({ 'role': role['id'], 'user': user['id'], 'domain': self.operator_cloud.get_domain('default')['id'] }) self.assertIsInstance(assignments, list) self.assertEqual(0, len(assignments)) def test_grant_revoke_role_group_domain(self): if self.identity_version in ('2', '2.0'): self.skipTest("Identity service does not support domain or group") role_name = self.role_prefix + '_grant_group_domain' role = self.operator_cloud.create_role(role_name) group_name = self.group_prefix + '_group_domain' group = self.operator_cloud.create_group( name=group_name, description='test group', domain='default') self.assertTrue(self.operator_cloud.grant_role( role_name, group=group['id'], domain='default')) assignments = self.operator_cloud.list_role_assignments({ 'role': role['id'], 'group': group['id'], 'domain': self.operator_cloud.get_domain('default')['id'] }) self.assertIsInstance(assignments, list) self.assertEqual(1, len(assignments)) self.assertTrue(self.operator_cloud.revoke_role( role_name, group=group['id'], domain='default')) assignments = self.operator_cloud.list_role_assignments({ 'role': role['id'], 'group': group['id'], 'domain': self.operator_cloud.get_domain('default')['id'] }) self.assertIsInstance(assignments, list) self.assertEqual(0, len(assignments))
42.231076
79
0.62717
baf73fab3c2dd1c31c1286ebc8b991979a6b0535
382
py
Python
src/Cheese/testError.py
KubaBoi/CheeseFramework
ffe35449f43efa957bd5b30b28f61d3bf165699c
[ "MIT" ]
2
2022-03-10T15:37:12.000Z
2022-03-12T01:17:05.000Z
src/Cheese/testError.py
KubaBoi/CheeseFramework
ffe35449f43efa957bd5b30b28f61d3bf165699c
[ "MIT" ]
null
null
null
src/Cheese/testError.py
KubaBoi/CheeseFramework
ffe35449f43efa957bd5b30b28f61d3bf165699c
[ "MIT" ]
null
null
null
#cheese class TestError(Exception): def __init__(self, value, template, comment): self.value = value self.template = template self.comment = comment class MockError(Exception): def __init__(self, repositoryName, methodName, argName): self.repositoryName = repositoryName self.methodName = methodName self.argName = argName
25.466667
60
0.67801
538ab6da279f3078b867649572d493ea6e4cd4a0
1,434
py
Python
bikesharing/migrations/0047_vehicle_type_reservation_20210906_1403.py
iteratec/cykel
10e238395b4ca2ecc9c18272305af6c27da6c640
[ "MIT" ]
null
null
null
bikesharing/migrations/0047_vehicle_type_reservation_20210906_1403.py
iteratec/cykel
10e238395b4ca2ecc9c18272305af6c27da6c640
[ "MIT" ]
null
null
null
bikesharing/migrations/0047_vehicle_type_reservation_20210906_1403.py
iteratec/cykel
10e238395b4ca2ecc9c18272305af6c27da6c640
[ "MIT" ]
1
2020-11-30T09:50:19.000Z
2020-11-30T09:50:19.000Z
from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("bikesharing", "0046_rent_remove_position_20201204_2059"), ] operations = [ migrations.AddField( model_name="vehicletype", name="allow_spontaneous_rent", field=models.BooleanField( default=True, ), ), migrations.AddField( model_name="vehicletype", name="allow_reservation", field=models.BooleanField( default=False, ), ), migrations.AddField( model_name="vehicletype", name="min_spontaneous_rent_vehicles", field=models.IntegerField( default=0, ), ), migrations.AddField( model_name="vehicletype", name="min_reservation_vehicles", field=models.IntegerField( default=0, ), ), migrations.AddField( model_name="vehicletype", name="reservation_lead_time_minutes", field=models.IntegerField( default=120, ), ), migrations.AddField( model_name="vehicletype", name="max_reservation_days", field=models.IntegerField( default=7, ), ), ]
26.555556
67
0.511158
78c021a9af559006ce42e991dc55f3b0e177fa9d
3,064
py
Python
pcraster/pcraster-4.2.0/pcraster-4.2.0/source/pcraster_block_python/usecase.py
quanpands/wflow
b454a55e4a63556eaac3fbabd97f8a0b80901e5a
[ "MIT" ]
null
null
null
pcraster/pcraster-4.2.0/pcraster-4.2.0/source/pcraster_block_python/usecase.py
quanpands/wflow
b454a55e4a63556eaac3fbabd97f8a0b80901e5a
[ "MIT" ]
null
null
null
pcraster/pcraster-4.2.0/pcraster-4.2.0/source/pcraster_block_python/usecase.py
quanpands/wflow
b454a55e4a63556eaac3fbabd97f8a0b80901e5a
[ "MIT" ]
null
null
null
#!/usr/bin/env python2.4 from pcraster import * from PCRasterBlock import * nrRows = 3 nrCols = 2 cellSize = 1 west = 0.0 north = 0.0 # Use pcrasterpy for all rasters. raster = Raster(nrRows, nrCols, cellSize, west, north) baseElevation = REAL4RasterData(raster, 0.0) block = createBlock(baseElevation) originalThickness = REAL4BlockData(block, 0.0) # Not used. thickness = REAL4RasterData(raster, 1) maxVoxelThickness = 0.1 compactors = Compactors() age = REAL4BlockData(block, 12.5) sediment = INT4BlockData(block, 3) # sediment = INT4BlockData(block, "aboolean.pcr") # ? data type sediment?? for i in range(block.nrCells()): print(i) sediment.setDefaultValue(i) compactors.setCompactor(i, DummyCompactor()) setMVREAL4(thickness, i) # TODO block kan eruit. mackeyBridgeAdd(block, originalThickness, sediment, thickness, maxVoxelThickness, compactors) # thickness="dep.map" # sedimentation="sed.map" # add(block, thickness, maxVoxelThickness, compactors, # sediment = sedimentation, age="age.map") # add("sed.map", "age.map", thickness, maxVoxelThickness, compactors) # add("age.map", "sed.map", thickness, maxVoxelThickness, compactors) # #sediment.default("sed.map") #age.default("age.map") # add(block, thickness, maxVoxelThickness, compactors) # sand = sediment == 3 # Ksat=if(sand,12.4,4.0) # Q=modflow(block) regularBlock = resampleBlock(block, 0.2) # writeREAL4BlockDataVTK( # resampleREAL4BlockData(sediment, regularBlock), "sediment.xml") writeINT4BlockDataVTK( resampleINT4BlockData(sediment, regularBlock), "sediment.xml") # lowestElevation = mapminimum(baseElevation(block)) lowestElevation = 0.0 # highestElevation = mapminimum(surfaceElevation(block)) # heightDifference = highestElevation - lowestElevation heightDifference = 100 interval = 50 nrLayers = int(heightDifference / interval) height = lowestElevation for i in range(nrLayers): profile = profileINT4(sediment, height) height += interval # report(height, "height%d" % (i)) # Check discretisation. # for i in range(block.nrCells()): # assert len(block.cell(i)) == 16 # assert block.cell(i).thickness() == 15.5 # assert block.cell(i)[len(block.cell(i)) - 1] == 0.5 # Check data. # TODO copy from C++ tests # elevation = surfaceElevation(block) # writeBlock(block, "area1.pcrblock") # writeINT4BlockData(sediment, "sediment.pcrblock") # sediment2 = readINT4BlockData("sediment.pcrblock", block) # assert sediment == sediment2 # d_block=block.block() -> skip, changed interface # d_block.configure(1,1) -> skip, set from the outside, during save/read # d_block.setBase(self.ElevationIni) -> skip, constructor argument # d_block.add(ifthen(d_clone,scalar(50)), # ifthen(d_clone,scalar(10.0)), \ # ifthen(d_clone,nominal(0))) -> skip, changed interface # Elevation=d_block.surface() # d_block.remove(Erosion) -> skip, changed interface # d_sampleData.d_block.resample(0.4) -> changed interface # d_sampleData.d_block.saveAsBinary() -> use profile which returns a raster print("done")
30.039216
75
0.725849
300989971702e21924f3f86b1494a6a6796bbc98
790
py
Python
bot/tests/conftest.py
sh4rpy/volodya
5165584281ddfeabe5b1e637690a6adade291524
[ "BSD-3-Clause" ]
null
null
null
bot/tests/conftest.py
sh4rpy/volodya
5165584281ddfeabe5b1e637690a6adade291524
[ "BSD-3-Clause" ]
null
null
null
bot/tests/conftest.py
sh4rpy/volodya
5165584281ddfeabe5b1e637690a6adade291524
[ "BSD-3-Clause" ]
null
null
null
import os import pytest from django.conf import settings from dotenv import load_dotenv from users.models import TelegramUser load_dotenv() @pytest.fixture(scope='session') def django_db_setup(): settings.DATABASES['default'] = { 'ENGINE': 'django.db.backends.postgresql', 'NAME': os.getenv('DB_NAME', 'postgres'), 'USER': os.getenv('DB_USER', 'postgres'), 'HOST': os.getenv('DB_HOST', 'db'), 'PORT': os.getenv('DB_PORT', 5432), 'PASSWORD': os.getenv('DB_PASSWORD', 'postgres'), } @pytest.fixture def get_telegram_admin_user_id(): return TelegramUser.objects.filter(is_admin=True).first().telegram_id @pytest.fixture def get_telegram_user_id(): return TelegramUser.objects.filter(is_admin=False).first().telegram_id
23.939394
74
0.693671
6cea097d6f247ff42da78bf9b6e670027776a98d
2,482
py
Python
contrib/pyi_runtimehook.py
stashpayio/electrum-stash
a04e1fde408196e547cf80f8ce9d9391133bd865
[ "MIT" ]
null
null
null
contrib/pyi_runtimehook.py
stashpayio/electrum-stash
a04e1fde408196e547cf80f8ce9d9391133bd865
[ "MIT" ]
null
null
null
contrib/pyi_runtimehook.py
stashpayio/electrum-stash
a04e1fde408196e547cf80f8ce9d9391133bd865
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """PyInstaller runtime hook""" import imp import sys import pkgutil _old_find_module = imp.find_module def _new_find_module(name, *args, **kwargs): if name in ['lib', 'gui', 'plugins']: return (None, name, ('', '', 5)) else: return _old_find_module(name, *args, **kwargs) imp.find_module = _new_find_module _old_load_module = imp.load_module def _new_load_module(name, file, pathname, description): if pathname in ['lib', 'gui', 'plugins']: return __import__(name) else: return _old_load_module(name, file, pathname, description) imp.load_module = _new_load_module PLUGINS_PREFIX = 'electrum_dash_plugins' KEYSTORE_PLUGINS = [ 'hw_wallet', 'digitalbitbox', 'keepkey', 'ledger', 'trezor', ] OTHER_PLUGINS= [ 'audio_modem', 'cosigner_pool', 'email_requests', 'labels', 'virtualkeyboard', ] OTHER_PLUGINS = map(lambda p: '%s.%s' % (PLUGINS_PREFIX, p), OTHER_PLUGINS) PLUGINS = KEYSTORE_PLUGINS + OTHER_PLUGINS class PluginsImporter(object): def find_module(self, name): return self def load_module(self, name): if name in KEYSTORE_PLUGINS: return getattr(__import__('%s.%s' % (PLUGINS_PREFIX, name)), name) elif name in OTHER_PLUGINS: return getattr(__import__(name), name.split('.')[-1]) elif name.endswith('.qt'): split = name.split('.') if split[0] != split[1]: plugin_module = getattr(__import__(name), split[-2]) return getattr(plugin_module, 'qt') else: path = '.'.join(split[1:]) plugin_module = getattr(__import__(path), split[-2]) return getattr(plugin_module, 'qt') else: raise Exception('Can not import %s' % name) _old_find_loader = pkgutil.find_loader def _new_find_loader(fullname): if fullname.startswith('%s.' % PLUGINS_PREFIX): return PluginsImporter() else: return _old_find_loader(fullname) pkgutil.find_loader = _new_find_loader _old_iter_modules = pkgutil.iter_modules def _new_iter_modules(path=None, prefix=''): if path and len(path) == 1 and path[0].endswith(PLUGINS_PREFIX): for p in PLUGINS: yield PluginsImporter(), p, True else: for loader, name, ispkg in _old_iter_modules(path, prefix): yield loader, name, ispkg pkgutil.iter_modules = _new_iter_modules
27.88764
78
0.637389
b8c3b81e718bb43af75247dc3fc71dab2334ae80
502
py
Python
strings.py
ghanshyam30/python_with_mosh
f1defd8785fdec494ae9d657406cddd94771bcd6
[ "MIT" ]
null
null
null
strings.py
ghanshyam30/python_with_mosh
f1defd8785fdec494ae9d657406cddd94771bcd6
[ "MIT" ]
null
null
null
strings.py
ghanshyam30/python_with_mosh
f1defd8785fdec494ae9d657406cddd94771bcd6
[ "MIT" ]
null
null
null
# STRINGS # We can define strings using single (‘ ‘) or double (“ “) quotes. course_title = "PYTHON FOR BEGINNERS" # Accessing individual characters or slices print("Expected O/P:H \nActual O/P:",course_title[3]) print("Expected O/P:S \nActual O/P:",course_title[-1]) # Slicing print("Expected O/P:YTH \nActual O/P:",course_title[1:4]) # Slicing if you expect reversed output print("Expected O/P:OHT \nActual O/P:",course_title[4:1:-1]) print("Expected O/P:SRE \nActual O/P:",course_title[-1:-4:-1])
38.615385
67
0.711155
83a3c1b76f64fffb124c60a267ee6d47ad1aa433
4,278
py
Python
tests/pytests/unit/modules/test_pdbedit.py
tomdoherty/salt
f87d5d7abbf9777773c4d91fdafecb8b1a728e76
[ "Apache-2.0" ]
9,425
2015-01-01T05:59:24.000Z
2022-03-31T20:44:05.000Z
tests/pytests/unit/modules/test_pdbedit.py
tomdoherty/salt
f87d5d7abbf9777773c4d91fdafecb8b1a728e76
[ "Apache-2.0" ]
33,507
2015-01-01T00:19:56.000Z
2022-03-31T23:48:20.000Z
tests/pytests/unit/modules/test_pdbedit.py
tomdoherty/salt
f87d5d7abbf9777773c4d91fdafecb8b1a728e76
[ "Apache-2.0" ]
5,810
2015-01-01T19:11:45.000Z
2022-03-31T02:37:20.000Z
from textwrap import dedent import pytest import salt.modules.pdbedit as pdbedit from tests.support.mock import MagicMock, patch @pytest.fixture(autouse=True) def setup_loader(request): setup_loader_modules = {pdbedit: {}} with pytest.helpers.loader_mock(request, setup_loader_modules) as loader_mock: yield loader_mock @pytest.mark.parametrize("verbose", [True, False]) def test_when_no_users_returned_no_data_should_be_returned(verbose): expected_users = {} if verbose else [] with patch.dict( pdbedit.__salt__, { "cmd.run_all": MagicMock( return_value={"stdout": "", "stderr": "", "retcode": 0} ) }, ): actual_users = pdbedit.list_users(verbose=verbose) assert actual_users == expected_users def test_when_verbose_and_retcode_is_nonzero_output_should_be_had(): expected_stderr = "this is something fnord" with patch.dict( pdbedit.__salt__, { "cmd.run_all": MagicMock( return_value={"stdout": "", "stderr": expected_stderr, "retcode": 1} ) }, ), patch("salt.modules.pdbedit.log.error", autospec=True) as fake_error_log: pdbedit.list_users(verbose=True) actual_error = fake_error_log.mock_calls[0].args[0] assert actual_error == expected_stderr def test_when_verbose_and_single_good_output_expected_data_should_be_parsed(): expected_data = { "roscivs": { "unix username": "roscivs", "nt username": "bottia", "full name": "Roscivs Bottia", "user sid": "42", "primary group sid": "99", "home directory": r"\\samba\roscivs", "account desc": "separators! xxx so long and thanks for all the fish", "logoff time": "Sat, 14 Aug 2010 15:06:39 UTC", "kickoff time": "Sat, 14 Aug 2010 15:06:39 UTC", "password must change": "never", } } pdb_output = dedent( r""" Unix username: roscivs NT username: bottia User SID: 42 Primary Group SID: 99 Full Name: Roscivs Bottia Home Directory: \\samba\roscivs Account desc: separators! xxx so long and thanks for all the fish Logoff time: Sat, 14 Aug 2010 15:06:39 UTC Kickoff time: Sat, 14 Aug 2010 15:06:39 UTC Password must change: never """ ).strip() with patch.dict( pdbedit.__salt__, { "cmd.run_all": MagicMock( return_value={"stdout": pdb_output, "stderr": "", "retcode": 0} ) }, ): actual_data = pdbedit.list_users(verbose=True) assert actual_data == expected_data def test_when_verbose_and_multiple_records_present_data_should_be_correctly_parsed(): expected_data = { "roscivs": { "unix username": "roscivs", "nt username": "bottia", "user sid": "42", }, "srilyk": { "unix username": "srilyk", "nt username": "srilyk", "account desc": "trololollol", "user sid": "99", }, "jewlz": { "unix username": "jewlz", "nt username": "flutterbies", "user sid": "4", }, } pdb_output = dedent( """ ------------- Unix username: roscivs NT username: bottia User SID: 42 ------------- Unix username: srilyk NT username: srilyk User SID: 99 Account desc: trololol\x1dlol ------------- Unix username: jewlz NT username: flutterbies User SID: 4 ------------- ------------- ------------- """ ).strip() with patch.dict( pdbedit.__salt__, { "cmd.run_all": MagicMock( return_value={"stdout": pdb_output, "stderr": "", "retcode": 0} ) }, ): actual_data = pdbedit.list_users(verbose=True) assert actual_data == expected_data
31
85
0.531089
6ec8fdaff3be970ba79864a32925ed78b62c270f
33,638
py
Python
pymux/layout.py
timgates42/pymux
3f66e62b9de4b2251c7f9afad6c516dc5a30ec67
[ "BSD-3-Clause" ]
1,280
2015-04-27T03:59:31.000Z
2018-10-25T02:35:00.000Z
pymux/layout.py
timgates42/pymux
3f66e62b9de4b2251c7f9afad6c516dc5a30ec67
[ "BSD-3-Clause" ]
71
2015-05-19T14:37:53.000Z
2018-09-10T09:37:26.000Z
pymux/layout.py
timgates42/pymux
3f66e62b9de4b2251c7f9afad6c516dc5a30ec67
[ "BSD-3-Clause" ]
80
2016-01-03T18:06:55.000Z
2018-08-27T00:57:13.000Z
# encoding: utf-8 """ The layout engine. This builds the prompt_toolkit layout. """ from __future__ import unicode_literals from prompt_toolkit.application.current import get_app from prompt_toolkit.filters import Condition, has_focus from prompt_toolkit.formatted_text import FormattedText, HTML from prompt_toolkit.layout.containers import VSplit, HSplit, Window, FloatContainer, Float, ConditionalContainer, Container, WindowAlign, to_container from prompt_toolkit.layout.controls import BufferControl, FormattedTextControl from prompt_toolkit.layout.dimension import Dimension from prompt_toolkit.layout.dimension import Dimension as D from prompt_toolkit.layout.dimension import to_dimension, is_dimension from prompt_toolkit.layout.menus import CompletionsMenu from prompt_toolkit.layout.processors import BeforeInput, ShowArg, AppendAutoSuggestion, Processor, Transformation, HighlightSelectionProcessor from prompt_toolkit.layout.screen import Char from prompt_toolkit.mouse_events import MouseEventType from prompt_toolkit.widgets import FormattedTextToolbar, TextArea, Dialog, SearchToolbar from six.moves import range from functools import partial import pymux.arrangement as arrangement import datetime import weakref import six from .filters import WaitsForConfirmation from .format import format_pymux_string from .log import logger __all__ = ( 'LayoutManager', ) class Justify: " Justify enum for the status bar. " LEFT = 'left' CENTER = 'center' RIGHT = 'right' _ALL = [LEFT, CENTER, RIGHT] class Z_INDEX: HIGHLIGHTED_BORDER = 2 STATUS_BAR = 5 COMMAND_LINE = 6 MESSAGE_TOOLBAR = 7 WINDOW_TITLE_BAR = 8 POPUP = 9 class Background(Container): """ Generate the background of dots, which becomes visible when several clients are attached and not all of them have the same size. (This is implemented as a Container, rather than a UIControl wrapped in a Window, because it can be done very effecient this way.) """ def reset(self): pass def preferred_width(self, max_available_width): return D() def preferred_height(self, width, max_available_height): return D() def write_to_screen(self, screen, mouse_handlers, write_position, parent_style, erase_bg, z_index): " Fill the whole area of write_position with dots. " default_char = Char(' ', 'class:background') dot = Char('.', 'class:background') ypos = write_position.ypos xpos = write_position.xpos for y in range(ypos, ypos + write_position.height): row = screen.data_buffer[y] for x in range(xpos, xpos + write_position.width): row[x] = dot if (x + y) % 3 == 0 else default_char def get_children(self): return [] # Numbers for the clock and pane numbering. _numbers = list(zip(*[ # (Transpose x/y.) ['#####', ' #', '#####', '#####', '# #', '#####', '#####', '#####', '#####', '#####'], ['# #', ' #', ' #', ' #', '# #', '# ', '# ', ' #', '# #', '# #'], ['# #', ' #', '#####', '#####', '#####', '#####', '#####', ' #', '#####', '#####'], ['# #', ' #', '# ', ' #', ' #', ' #', '# #', ' #', '# #', ' #'], ['#####', ' #', '#####', '#####', ' #', '#####', '#####', ' #', '#####', '#####'], ])) def _draw_number(screen, x_offset, y_offset, number, style='class:clock', transparent=False): " Write number at position. " fg = Char(' ', 'class:clock') bg = Char(' ', '') for y, row in enumerate(_numbers[number]): screen_row = screen.data_buffer[y + y_offset] for x, n in enumerate(row): if n == '#': screen_row[x + x_offset] = fg elif not transparent: screen_row[x + x_offset] = bg class BigClock(Container): """ Display a big clock. """ WIDTH = 28 HEIGHT = 5 def __init__(self, on_click): assert callable(on_click) self.on_click = on_click def reset(self): pass def write_to_screen(self, screen, mouse_handlers, write_position, parent_style, erase_bg, z_index): xpos = write_position.xpos ypos = write_position.ypos # Erase background. bg = Char(' ', '') def draw_func(): for y in range(ypos, self.HEIGHT + ypos): row = screen.data_buffer[y] for x in range(xpos, xpos + self.WIDTH): row[x] = bg # Display time. now = datetime.datetime.now() _draw_number(screen, xpos + 0, ypos, now.hour // 10) _draw_number(screen, xpos + 6, ypos, now.hour % 10) _draw_number(screen, xpos + 16, ypos, now.minute // 10) _draw_number(screen, xpos + 23, ypos, now.minute % 10) # Add a colon screen.data_buffer[ypos + 1][xpos + 13] = Char(' ', 'class:clock') screen.data_buffer[ypos + 3][xpos + 13] = Char(' ', 'class:clock') screen.width = self.WIDTH screen.height = self.HEIGHT mouse_handlers.set_mouse_handler_for_range( x_min=xpos, x_max=xpos + write_position.width, y_min=ypos, y_max=ypos + write_position.height, handler=self._mouse_handler) screen.draw_with_z_index(z_index=z_index, draw_func=draw_func) def _mouse_handler(self, cli, mouse_event): " Click callback. " if mouse_event.event_type == MouseEventType.MOUSE_UP: self.on_click(cli) else: return NotImplemented def preferred_width(self, max_available_width): return D.exact(BigClock.WIDTH) def preferred_height(self, width, max_available_height): return D.exact(BigClock.HEIGHT) def get_children(self): return [] class PaneNumber(Container): # XXX: make FormattedTextControl """ Number of panes, to be drawn in the middle of the pane. """ WIDTH = 5 HEIGHT = 5 def __init__(self, pymux, arrangement_pane): self.pymux = pymux self.arrangement_pane = arrangement_pane def reset(self): pass def _get_index(self): window = self.pymux.arrangement.get_active_window() try: return window.get_pane_index(self.arrangement_pane) except ValueError: return 0 def preferred_width(self, max_available_width): # Enough to display all the digits. return Dimension.exact(6 * len('%s' % self._get_index()) - 1) def preferred_height(self, width, max_available_height): return Dimension.exact(self.HEIGHT) def write_to_screen(self, screen, mouse_handlers, write_position, parent_style, erase_bg, z_index): style = 'class:panenumber' def draw_func(): for i, d in enumerate('%s' % (self._get_index(),)): _draw_number(screen, write_position.xpos + i * 6, write_position.ypos, int(d), style=style, transparent=True) screen.draw_with_z_index(z_index=z_index, draw_func=draw_func) def get_children(self): return [] class MessageToolbar(FormattedTextToolbar): """ Pop-up (at the bottom) for showing error/status messages. """ def __init__(self, client_state): def get_message(): # If there is a message to be shown for this client, show that. if client_state.message: return client_state.message else: return '' def get_tokens(): message = get_message() if message: return FormattedText([ ('class:message', message), ('[SetCursorPosition]', ''), ('class:message', ' '), ]) else: return '' @Condition def is_visible(): return bool(get_message()) super(MessageToolbar, self).__init__(get_tokens) class LayoutManager(object): """ The main layout class, that contains the whole Pymux layout. """ def __init__(self, pymux, client_state): self.pymux = pymux self.client_state = client_state # Popup dialog for displaying keys, etc... search_textarea = SearchToolbar() self._popup_textarea = TextArea(scrollbar=True, read_only=True, search_field=search_textarea) self.popup_dialog = Dialog( title='Keys', body=HSplit([ Window(FormattedTextControl(text=''), height=1), # 1 line margin. self._popup_textarea, search_textarea, Window( FormattedTextControl( text=HTML('Press [<b>q</b>] to quit or [<b>/</b>] for searching.')), align=WindowAlign.CENTER, height=1) ]) ) self.layout = self._create_layout() # Keep track of render information. self.pane_write_positions = {} def reset_write_positions(self): """ Clear write positions right before rendering. (They are populated during rendering). """ self.pane_write_positions = {} def display_popup(self, title, content): """ Display a pop-up dialog. """ assert isinstance(title, six.text_type) assert isinstance(content, six.text_type) self.popup_dialog.title = title self._popup_textarea.text = content self.client_state.display_popup = True get_app().layout.focus(self._popup_textarea) def _create_select_window_handler(self, window): " Return a mouse handler that selects the given window when clicking. " def handler(mouse_event): if mouse_event.event_type == MouseEventType.MOUSE_DOWN: self.pymux.arrangement.set_active_window(window) self.pymux.invalidate() else: return NotImplemented # Event not handled here. return handler def _get_status_tokens(self): " The tokens for the status bar. " result = [] # Display panes. for i, w in enumerate(self.pymux.arrangement.windows): if i > 0: result.append(('', ' ')) if w == self.pymux.arrangement.get_active_window(): style = 'class:window.current' format_str = self.pymux.window_status_current_format else: style = 'class:window' format_str = self.pymux.window_status_format result.append(( style, format_pymux_string(self.pymux, format_str, window=w), self._create_select_window_handler(w))) return result def _get_status_left_tokens(self): return format_pymux_string(self.pymux, self.pymux.status_left) def _get_status_right_tokens(self): return format_pymux_string(self.pymux, self.pymux.status_right) def _get_align(self): if self.pymux.status_justify == Justify.RIGHT: return WindowAlign.RIGHT elif self.pymux.status_justify == Justify.CENTER: return WindowAlign.CENTER else: return WindowAlign.LEFT def _before_prompt_command_tokens(self): return [('class:commandline.prompt', '%s ' % (self.client_state.prompt_text, ))] def _create_layout(self): """ Generate the main prompt_toolkit layout. """ waits_for_confirmation = WaitsForConfirmation(self.pymux) return FloatContainer( content=HSplit([ # The main window. FloatContainer( Background(), floats=[ Float(width=lambda: self.pymux.get_window_size().columns, height=lambda: self.pymux.get_window_size().rows, content=DynamicBody(self.pymux)) ]), # Status bar. ConditionalContainer( content=VSplit([ # Left. Window( height=1, width=(lambda: D(max=self.pymux.status_left_length)), dont_extend_width=True, content=FormattedTextControl(self._get_status_left_tokens)), # List of windows in the middle. Window( height=1, char=' ', align=self._get_align, content=FormattedTextControl(self._get_status_tokens)), # Right. Window( height=1, width=(lambda: D(max=self.pymux.status_right_length)), dont_extend_width=True, align=WindowAlign.RIGHT, content=FormattedTextControl(self._get_status_right_tokens)) ], z_index=Z_INDEX.STATUS_BAR, style='class:statusbar'), filter=Condition(lambda: self.pymux.enable_status), ) ]), floats=[ Float(bottom=1, left=0, z_index=Z_INDEX.MESSAGE_TOOLBAR, content=MessageToolbar(self.client_state)), Float(left=0, right=0, bottom=0, content=HSplit([ # Wait for confirmation toolbar. ConditionalContainer( content=Window( height=1, content=ConfirmationToolbar(self.pymux, self.client_state), z_index=Z_INDEX.COMMAND_LINE, ), filter=waits_for_confirmation, ), # ':' prompt toolbar. ConditionalContainer( content=Window( height=D(min=1), # Can be more if the command is multiline. style='class:commandline', dont_extend_height=True, content=BufferControl( buffer=self.client_state.command_buffer, preview_search=True, input_processors=[ AppendAutoSuggestion(), BeforeInput(':', style='class:commandline-prompt'), ShowArg(), HighlightSelectionProcessor(), ]), z_index=Z_INDEX.COMMAND_LINE, ), filter=has_focus(self.client_state.command_buffer), ), # Other command-prompt commands toolbar. ConditionalContainer( content=Window( height=1, style='class:commandline', content=BufferControl( buffer=self.client_state.prompt_buffer, input_processors=[ BeforeInput(self._before_prompt_command_tokens), AppendAutoSuggestion(), HighlightSelectionProcessor(), ]), z_index=Z_INDEX.COMMAND_LINE, ), filter=has_focus(self.client_state.prompt_buffer), ), ])), # Keys pop-up. Float( content=ConditionalContainer( content=self.popup_dialog, filter=Condition(lambda: self.client_state.display_popup), ), left=3, right=3, top=5, bottom=5, z_index=Z_INDEX.POPUP, ), Float(xcursor=True, ycursor=True, content=CompletionsMenu(max_height=12)), ] ) class ConfirmationToolbar(FormattedTextControl): """ Window that displays the yes/no confirmation dialog. """ def __init__(self, pymux, client_state): def get_tokens(): return [ ('class:question', ' '), ('class:question', format_pymux_string( pymux, client_state.confirm_text or '')), ('class:question', ' '), ('class:yesno', ' y/n'), ('[SetCursorPosition]', ''), ('class:yesno', ' '), ] super(ConfirmationToolbar, self).__init__( get_tokens, style='class:confirmationtoolbar') class DynamicBody(Container): """ The dynamic part, which is different for each CLI (for each client). It depends on which window/pane is active. This makes it possible to have just one main layout class, and automatically rebuild the parts that change if the windows/panes arrangement changes, without doing any synchronisation. """ def __init__(self, pymux): self.pymux = pymux self._bodies_for_app = weakref.WeakKeyDictionary() # Maps Application to (hash, Container) def _get_body(self): " Return the Container object for the current CLI. " new_hash = self.pymux.arrangement.invalidation_hash() # Return existing layout if nothing has changed to the arrangement. app = get_app() if app in self._bodies_for_app: existing_hash, container = self._bodies_for_app[app] if existing_hash == new_hash: return container # The layout changed. Build a new layout when the arrangement changed. new_layout = self._build_layout() self._bodies_for_app[app] = (new_hash, new_layout) return new_layout def _build_layout(self): " Rebuild a new Container object and return that. " logger.info('Rebuilding layout.') if not self.pymux.arrangement.windows: # No Pymux windows in the arrangement. return Window() active_window = self.pymux.arrangement.get_active_window() # When zoomed, only show the current pane, otherwise show all of them. if active_window.zoom: return to_container(_create_container_for_process( self.pymux, active_window, active_window.active_pane, zoom=True)) else: window = self.pymux.arrangement.get_active_window() return HSplit([ # Some spacing for the top status bar. ConditionalContainer( content=Window(height=1), filter=Condition(lambda: self.pymux.enable_pane_status)), # The actual content. _create_split(self.pymux, window, window.root) ]) def reset(self): for invalidation_hash, body in self._bodies_for_app.values(): body.reset() def preferred_width(self, max_available_width): body = self._get_body() return body.preferred_width(max_available_width) def preferred_height(self, width, max_available_height): body = self._get_body() return body.preferred_height(width, max_available_height) def write_to_screen(self, screen, mouse_handlers, write_position, parent_style, erase_bg, z_index): body = self._get_body() body.write_to_screen(screen, mouse_handlers, write_position, parent_style, erase_bg, z_index) def get_children(self): # (Required for prompt_toolkit.layout.utils.find_window_for_buffer_name.) body = self._get_body() return [body] class SizedBox(Container): """ Container whith enforces a given width/height without taking the children into account (even if no width/height is given). :param content: `Container`. :param report_write_position_callback: `None` or a callable for reporting back the dimensions used while drawing. """ def __init__(self, content, width=None, height=None, report_write_position_callback=None): assert is_dimension(width) assert is_dimension(height) assert report_write_position_callback is None or callable(report_write_position_callback) self.content = to_container(content) self.width = width self.height = height self.report_write_position_callback = report_write_position_callback def reset(self): self.content.reset() def preferred_width(self, max_available_width): return to_dimension(self.width) def preferred_height(self, width, max_available_height): return to_dimension(self.height) def write_to_screen(self, screen, mouse_handlers, write_position, parent_style, erase_bg, z_index): # Report dimensions. if self.report_write_position_callback: self.report_write_position_callback(write_position) self.content.write_to_screen( screen, mouse_handlers, write_position, parent_style, erase_bg, z_index) def get_children(self): return [self.content] def _create_split(pymux, window, split): """ Create a prompt_toolkit `Container` instance for the given pymux split. """ assert isinstance(split, (arrangement.HSplit, arrangement.VSplit)) is_vsplit = isinstance(split, arrangement.VSplit) def get_average_weight(): """ Calculate average weight of the children. Return 1 if none of the children has a weight specified yet. """ weights = 0 count = 0 for i in split: if i in split.weights: weights += split.weights[i] count += 1 if weights: return max(1, weights // count) else: return 1 def report_write_position_callback(item, write_position): """ When the layout is rendered, store the actial dimensions as weights in the arrangement.VSplit/HSplit classes. This is required because when a pane is resized with an increase of +1, we want to be sure that this corresponds exactly with one row or column. So, that updating weights corresponds exactly 1/1 to updating the size of the panes. """ if is_vsplit: split.weights[item] = write_position.width else: split.weights[item] = write_position.height def get_size(item): return D(weight=split.weights.get(item) or average_weight) content = [] average_weight = get_average_weight() for i, item in enumerate(split): # Create function for calculating dimensions for child. width = height = None if is_vsplit: width = partial(get_size, item) else: height = partial(get_size, item) # Create child. if isinstance(item, (arrangement.VSplit, arrangement.HSplit)): child = _create_split(pymux, window, item) elif isinstance(item, arrangement.Pane): child = _create_container_for_process(pymux, window, item) else: raise TypeError('Got %r' % (item,)) # Wrap child in `SizedBox` to enforce dimensions and sync back. content.append(SizedBox( child, width=width, height=height, report_write_position_callback=partial(report_write_position_callback, item))) # Create prompt_toolkit Container. if is_vsplit: return_cls = VSplit padding_char = _border_vertical else: return_cls = HSplit padding_char = _border_horizontal return return_cls(content, padding=1, padding_char=padding_char) class _UseCopyTokenListProcessor(Processor): """ In order to allow highlighting of the copy region, we use a preprocessed list of (Token, text) tuples. This processor returns just that list for the given pane. """ def __init__(self, arrangement_pane): self.arrangement_pane = arrangement_pane def apply_transformation(self, document, lineno, source_to_display, tokens): tokens = self.arrangement_pane.copy_get_tokens_for_line(lineno) return Transformation(tokens[:]) def invalidation_hash(self, document): return document.text def _create_container_for_process(pymux, window, arrangement_pane, zoom=False): """ Create a `Container` with a titlebar for a process. """ @Condition def clock_is_visible(): return arrangement_pane.clock_mode @Condition def pane_numbers_are_visible(): return pymux.display_pane_numbers terminal_is_focused = has_focus(arrangement_pane.terminal) def get_terminal_style(): if terminal_is_focused(): result = 'class:terminal.focused' else: result = 'class:terminal' return result def get_titlebar_text_fragments(): result = [] if zoom: result.append(('class:titlebar-zoom', ' Z ')) if arrangement_pane.process.is_terminated: result.append(('class:terminated', ' Terminated ')) # Scroll buffer info. if arrangement_pane.display_scroll_buffer: result.append(('class:copymode', ' %s ' % arrangement_pane.scroll_buffer_title)) # Cursor position. document = arrangement_pane.scroll_buffer.document result.append(('class:copymode.position', ' %i,%i ' % ( document.cursor_position_row, document.cursor_position_col))) if arrangement_pane.name: result.append(('class:name', ' %s ' % arrangement_pane.name)) result.append(('', ' ')) return result + [ ('', format_pymux_string(pymux, ' #T ', pane=arrangement_pane)) # XXX: Make configurable. ] def get_pane_index(): try: w = pymux.arrangement.get_active_window() index = w.get_pane_index(arrangement_pane) except ValueError: index = '/' return '%3s ' % index def on_click(): " Click handler for the clock. When clicked, select this pane. " arrangement_pane.clock_mode = False pymux.arrangement.get_active_window().active_pane = arrangement_pane pymux.invalidate() return HighlightBordersIfActive( window, arrangement_pane, get_terminal_style, FloatContainer( HSplit([ # The terminal. TracePaneWritePosition( pymux, arrangement_pane, content=arrangement_pane.terminal), ]), # floats=[ # The title bar. Float(content= ConditionalContainer( content=VSplit([ Window( height=1, content=FormattedTextControl( get_titlebar_text_fragments)), Window( height=1, width=4, content=FormattedTextControl(get_pane_index), style='class:paneindex') ], style='class:titlebar'), filter=Condition(lambda: pymux.enable_pane_status)), left=0, right=0, top=-1, height=1, z_index=Z_INDEX.WINDOW_TITLE_BAR), # The clock. Float( content=ConditionalContainer(BigClock(on_click), filter=clock_is_visible)), # Pane number. Float(content=ConditionalContainer( content=PaneNumber(pymux, arrangement_pane), filter=pane_numbers_are_visible)), ] ) ) class _ContainerProxy(Container): def __init__(self, content): self.content = content def reset(self): self.content.reset() def preferred_width(self, max_available_width): return self.content.preferred_width(max_available_width) def preferred_height(self, width, max_available_height): return self.content.preferred_height(width, max_available_height) def write_to_screen(self, screen, mouse_handlers, write_position, parent_style, erase_bg, z_index): self.content.write_to_screen(screen, mouse_handlers, write_position, parent_style, erase_bg, z_index) def get_children(self): return [self.content] _focused_border_titlebar = '┃' _focused_border_vertical = '┃' _focused_border_horizontal = '━' _focused_border_left_top = '┏' _focused_border_right_top = '┓' _focused_border_left_bottom = '┗' _focused_border_right_bottom = '┛' _border_vertical = '│' _border_horizontal = '─' _border_left_bottom = '└' _border_right_bottom = '┘' _border_left_top = '┌' _border_right_top = '┐' class HighlightBordersIfActive(object): """ Put borders around this control if active. """ def __init__(self, window, pane, style, content): @Condition def is_selected(): return window.active_pane == pane def conditional_float(char, left=None, right=None, top=None, bottom=None, width=None, height=None): return Float( content=ConditionalContainer( Window(char=char, style='class:border'), filter=is_selected), left=left, right=right, top=top, bottom=bottom, width=width, height=height, z_index=Z_INDEX.HIGHLIGHTED_BORDER) self.container = FloatContainer( content, style=style, floats=[ # Sides. conditional_float(_focused_border_vertical, left=-1, top=0, bottom=0, width=1), conditional_float(_focused_border_vertical, right=-1, top=0, bottom=0, width=1), conditional_float(_focused_border_horizontal, left=0, right=0, top=-1, height=1), conditional_float(_focused_border_horizontal, left=0, right=0, bottom=-1, height=1), # Corners. conditional_float(_focused_border_left_top, left=-1, top=-1, width=1, height=1), conditional_float(_focused_border_right_top, right=-1, top=-1, width=1, height=1), conditional_float(_focused_border_left_bottom, left=-1, bottom=-1, width=1, height=1), conditional_float(_focused_border_right_bottom, right=-1, bottom=-1, width=1, height=1), ]) def __pt_container__(self): return self.container class TracePaneWritePosition(_ContainerProxy): # XXX: replace with SizedBox " Trace the write position of this pane. " def __init__(self, pymux, arrangement_pane, content): content = to_container(content) _ContainerProxy.__init__(self, content) self.pymux = pymux self.arrangement_pane = arrangement_pane def write_to_screen(self, screen, mouse_handlers, write_position, parent_style, erase_bg, z_inedx): _ContainerProxy.write_to_screen(self, screen, mouse_handlers, write_position, parent_style, erase_bg, z_inedx) self.pymux.get_client_state().layout_manager.pane_write_positions[self.arrangement_pane] = write_position def focus_left(pymux): " Move focus to the left. " _move_focus(pymux, lambda wp: wp.xpos - 2, # 2 in order to skip over the border. lambda wp: wp.ypos) def focus_right(pymux): " Move focus to the right. " _move_focus(pymux, lambda wp: wp.xpos + wp.width + 1, lambda wp: wp.ypos) def focus_down(pymux): " Move focus down. " _move_focus(pymux, lambda wp: wp.xpos, lambda wp: wp.ypos + wp.height + 2) # 2 in order to skip over the border. Only required when the # pane-status is not shown, but a border instead. def focus_up(pymux): " Move focus up. " _move_focus(pymux, lambda wp: wp.xpos, lambda wp: wp.ypos - 2) def _move_focus(pymux, get_x, get_y): " Move focus of the active window. " window = pymux.arrangement.get_active_window() try: write_pos = pymux.get_client_state().layout_manager.pane_write_positions[window.active_pane] except KeyError: pass else: x = get_x(write_pos) y = get_y(write_pos) # Look for the pane at this position. for pane, wp in pymux.get_client_state().layout_manager.pane_write_positions.items(): if (wp.xpos <= x < wp.xpos + wp.width and wp.ypos <= y < wp.ypos + wp.height): window.active_pane = pane return
35.633475
150
0.579969
7cfd4c2dae80b92585f726933df87d32bcaeba19
292
py
Python
output/models/nist_data/atomic/g_year_month/schema_instance/nistschema_sv_iv_atomic_g_year_month_max_inclusive_2_xsd/__init__.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
1
2021-08-14T17:59:21.000Z
2021-08-14T17:59:21.000Z
output/models/nist_data/atomic/g_year_month/schema_instance/nistschema_sv_iv_atomic_g_year_month_max_inclusive_2_xsd/__init__.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
4
2020-02-12T21:30:44.000Z
2020-04-15T20:06:46.000Z
output/models/nist_data/atomic/g_year_month/schema_instance/nistschema_sv_iv_atomic_g_year_month_max_inclusive_2_xsd/__init__.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
null
null
null
from output.models.nist_data.atomic.g_year_month.schema_instance.nistschema_sv_iv_atomic_g_year_month_max_inclusive_2_xsd.nistschema_sv_iv_atomic_g_year_month_max_inclusive_2 import NistschemaSvIvAtomicGYearMonthMaxInclusive2 __all__ = [ "NistschemaSvIvAtomicGYearMonthMaxInclusive2", ]
48.666667
225
0.907534
d61d032636d74646bfadfaf8bd4b180cb4f990f0
1,898
py
Python
nuvem-parallel/nuvem/lookup.py
isabella232/nuvem
b92a21dc6d902845810a67711e25a3f6fa9fb9f3
[ "Apache-2.0" ]
4
2016-03-11T21:13:57.000Z
2021-11-10T13:38:53.000Z
nuvem-parallel/nuvem/lookup.py
apache/nuvem
b92a21dc6d902845810a67711e25a3f6fa9fb9f3
[ "Apache-2.0" ]
1
2021-11-04T13:04:16.000Z
2021-11-04T13:04:16.000Z
nuvem-parallel/nuvem/lookup.py
isabella232/nuvem
b92a21dc6d902845810a67711e25a3f6fa9fb9f3
[ "Apache-2.0" ]
9
2015-12-05T21:09:42.000Z
2021-11-10T13:35:50.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # Return a list of name value pairs that match a name def get(r, n, l): def isList(v): if getattr(v, '__iter__', False) == False: return False if isinstance(v, basestring) or isinstance(v, dict): return False return True def isAssoc(v): return isList(v) and len(v) == 2 and isinstance(v[0], basestring) and v[0][0:1] == "'" def lookup(nv, lv): if lv == (): return () # Check if list element is a name value pair assoc a = lv[0] if not isAssoc(a): return lookup(nv, lv[1:]) # Got a match, return it and lookup rest of the list an = "'" + a[0][2:] if a[0][0:2] == "'@" else a[0] if an == nv: return (a,) + lookup(nv, lv[1:]) # No match, lookup rest of the list return lookup(nv, lv[1:]) def qsymbol(x): if not isinstance(x, basestring): return x return x if x[0:1] == "'" else "'" + x nv = n.get(r) lv = l.get(r) return lookup(qsymbol(nv), () if lv is None else lv)
33.892857
94
0.612223
bdbac9caac2368234fa6f9c4434329f6a00d0316
10,610
py
Python
configs/models/lenet.py
jamesoneill12/LayerFusion
99cba1030ed8c012a453bc7715830fc99fb980dc
[ "Apache-2.0" ]
null
null
null
configs/models/lenet.py
jamesoneill12/LayerFusion
99cba1030ed8c012a453bc7715830fc99fb980dc
[ "Apache-2.0" ]
null
null
null
configs/models/lenet.py
jamesoneill12/LayerFusion
99cba1030ed8c012a453bc7715830fc99fb980dc
[ "Apache-2.0" ]
null
null
null
import argparse import os, sys import shutil import time import math import torch import torch.nn as nn import torch.nn.parallel import torch.optim as optim import torch.utils.data import torch.utils.data.distributed import torchvision.transforms as transforms import torchvision.datasets as datasets import torchvision.models as models from datetime import timedelta import logging logging.basicConfig(stream=sys.stdout, level=logging.INFO, format="%(asctime)s %(message)s", datefmt="%m-%d %H:%M") model_names = sorted(name for name in models.__dict__ if name.islower() and not name.startswith("__") and callable(models.__dict__[name])) optim_names = sorted(name for name in optim.__dict__ if callable(optim.__dict__[name])) def parse_args(): parser = argparse.ArgumentParser(description='Implementation of iterative pruning in the paper: ' 'Learning both Weights and Connections for Efficient Neural Networks') parser.add_argument('--data', '-d', metavar='DIR', help='path to dataset') parser.add_argument('--arch', '-a', metavar='ARCH', default='', choices=model_names, help='model architecture: ' + ' | '.join(model_names)) parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', help='number of data loading workers (default: 4)') parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256)') parser.add_argument('-o', '--optimizer', default='SGD', metavar='O', choices=optim_names, help='optimizers: ' + ' | '.join(optim_names) + ' (default: SGD)') parser.add_argument('-m', '--max_epochs', default=5, type=int, metavar='E', help='max number of epochs while training') parser.add_argument('-c', '--interval', default=5, type=int, metavar='I', help='checkpointing interval') parser.add_argument('--lr', '--learning-rate', default=0.0001, type=float, metavar='LR', help='initial learning rate') parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum') parser.add_argument('--weight_decay', '--wd', default=0.005, type=float, metavar='W', help='weight decay') parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('--pretrained', dest='pretrained', action='store_true', help='use pre-trained model') parser.add_argument('-t', '--topk', default=[1,5], metavar='T', nargs='+', type=int, help='Top k precision metrics') parser.add_argument('--cuda', action='store_true') return parser.parse_args() def adjust_learning_rate(optimizer, lr, verbose=False): """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" # lr = args.lr * (0.1 ** (epoch // 30)) for param_group in optimizer.param_groups: param_group['lr'] = lr if verbose: print(optimizer.param_groups) class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res def validate(model, dataloader, topk, cuda=False): ''' validate the model on a given dataset :param model: specify the model to be validated dataloader: a loader for the dataset to be validated on topk: a list that specifies which top k scores we want cuda: whether cuda is used :return: all the top k precision scores ''' scores = [AverageMeter() for _ in topk] # switch to evaluate mode model.eval() start = time.time() print('Validating ', end='', flush=True) for i, (input, target) in enumerate(dataloader): if cuda: input = input.cuda() target = target.cuda(async=True) # input_var = Variable(input, volatile=True) # target_var = Variable(target, volatile=True) # compute output # output = model(input_var) output = model(input) # measure accuracy precisions = accuracy(output.data, target, topk=topk) # top1.update(prec1[0], input.size(0)) # top5.update(prec5[0], input.size(0)) for i, s in enumerate(scores): s.update(precisions[i][0], input.size(0)) if i % 20 == 0: print('.', end='', flush=True) time_elapse = time.time() - start print('\ninference time:', str(timedelta(seconds=time_elapse))) # print(' * Prec@1 {top1.avg:.3f}% Prec@5 {top5.avg:.3f}%' # .format(top1=top1, top5=top5)) ret = list(map(lambda x:x.avg, scores)) string = ' '.join(['Prec@%d: %.3f%%' % (topk[i], a) for i, a in enumerate(ret)]) print(' *', string) # return top1.avg, top5.avg return ret def save_checkpoint(state, filename='checkpoint.pth.tar', dir=None, is_best=False): if dir is not None and not os.path.exists(dir): os.makedirs(dir) filename = filename if dir is None else os.path.join(dir, filename) torch.save(state, filename) if is_best: bestname = 'model_best.pth.tar' if dir is not None: bestname = os.path.join(dir, bestname) shutil.copyfile(filename, bestname) def load_checkpoint(filename='checkpoint.pth.tar', dir=None): assert dir is None or os.path.exists(dir) if dir: filename = os.path.join(dir, filename) return torch.load(filename) def get_loaders(args): batch_size = args.batch_size traindir = os.path.join(args.data, 'train') valdir = os.path.join(args.data, 'val') testdir = os.path.join(args.data, 'test') normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) transform = transforms.Compose([ transforms.RandomSizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ]) trainset = datasets.ImageFolder( traindir, transform ) train_loader = torch.utils.data.DataLoader( trainset, batch_size=batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) val_loader = torch.utils.data.DataLoader( datasets.ImageFolder(valdir, transform), batch_size=batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) test_loader = torch.utils.data.DataLoader( datasets.ImageFolder(testdir, transform), batch_size=batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) return train_loader, val_loader, test_loader def get_mnist_loaders(args): batch_size = args.batch_size transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) trainset = datasets.MNIST(root='D:/data/mnist', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=1) testset = datasets.MNIST(root='D:/data/mnist', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=1) return trainloader, testloader, testloader def get_svhn_loaders(args): batch_size = args.batch_size transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,0.5, 0.5), (0.5, 0.5, 0.5))]) trainset = datasets.SVHN(root='D:/data/svhn', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=1) testset = datasets.SVHN(root='D:/data/svhn', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=1) return trainloader, testloader, testloader def get_fashion_loaders(args): batch_size = args.batch_size transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,0.5, 0.5), (0.5, 0.5, 0.5))]) trainset = datasets.FashionMNIST(root='D:/data/fashion-mnist', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=1) testset = datasets.FashionMNIST(root='D:/data/fashion-mnist', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=1) return trainloader, testloader, testloader def get_cifar10_loaders(args): batch_size = args.batch_size transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,0.5, 0.5), (0.5, 0.5, 0.5))]) trainset = datasets.CIFAR10(root='D:/data/cifar10', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=1) testset = datasets.CIFAR10(root='D:/data/cifar10', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=1) return trainloader, testloader, testloader def converged(old, new): converge = True for old_score, new_score in zip(old, new): converge = converge and abs(old_score - new_score) < 0.001 return converge
39.007353
119
0.637795
864322c2a8a04a0ba3d9f7c9146cb233ef0a9d15
1,531
py
Python
tests/core/test_bitops.py
greysonDEV/SHA-256
512de78a7261728316f79de5be2ca8b6eddebbb6
[ "MIT" ]
null
null
null
tests/core/test_bitops.py
greysonDEV/SHA-256
512de78a7261728316f79de5be2ca8b6eddebbb6
[ "MIT" ]
null
null
null
tests/core/test_bitops.py
greysonDEV/SHA-256
512de78a7261728316f79de5be2ca8b6eddebbb6
[ "MIT" ]
null
null
null
from sha256.core.bitops import binary, prepad, add, twos def test_binary(): result = binary(0) expected = [0] assert result == expected result = binary(10) expected = [1,0,1,0] assert result == expected result = binary(528193) expected = [1,0,0,0,0,0,0,0,1,1,1,1,0,1,0,0,0,0,0,1] assert result == expected def test_prepad(): result = prepad([0,0,1,1], to=0) expected = [0,0,1,1] assert result == expected result = prepad([1,1,1,1], to=8) expected = [0,0,0,0,1,1,1,1] assert result == expected result = prepad([0,0,0,0,1,1,1,1], to=32) expected = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1] assert result == expected def test_add(): result = add([1,0,1,0,1,0,1,0], [1,1,0,0,1,1,0,0]) expected = [1,0,1,1,1,0,1,1,0] assert result == expected result = add([1,0,0,1,1,1,0,0,1], [1,1,1,0,0,0,1,1,0]) expected = [1,0,1,1,1,1,1,1,1,1] assert result == expected result = add([0,0,1,1,1,0,1,0,0,1], [1,0,0,1,1,1,0,0,1,1]) expected = [1,1,0,1,0,1,1,1,0,0] assert result == expected def test_twos(): result = twos([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0]) expected = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,0,0] assert result == expected result = twos([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,1,0,1,1,1,1,0,1,0]) expected = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,0,0,1,0,0,0,0,1,1,0] assert result == expected
30.62
84
0.547355
6961e1d83e9a66f473c0cac181bc4b1b38859c11
1,865
py
Python
python/desc/twinkles/analyseICat.py
LSSTDESC/Twinkles
86d6caebde7f965b76ded80df0a1b66254f2a866
[ "MIT" ]
6
2017-02-10T00:38:09.000Z
2018-12-13T17:12:08.000Z
python/desc/twinkles/analyseICat.py
LSSTDESC/Twinkles
86d6caebde7f965b76ded80df0a1b66254f2a866
[ "MIT" ]
101
2016-11-29T15:31:00.000Z
2019-08-23T19:14:19.000Z
python/desc/twinkles/analyseICat.py
LSSTDESC/Twinkles
86d6caebde7f965b76ded80df0a1b66254f2a866
[ "MIT" ]
4
2017-01-05T20:28:40.000Z
2018-12-13T17:12:09.000Z
from __future__ import absolute_import, division, print_function import pandas as pd import numpy as np def readPhoSimInstanceCatalog(fname, names=['obj', 'SourceID', 'RA', 'DEC', 'MAG_NORM',\ 'SED_NAME', 'REDSHIFT', 'GAMMA1',\ 'GAMMA2', 'MU', 'DELTA_RA', 'DELTA_DEC',\ 'SOURCE_TYPE', 'DUST_REST_NAME',\ 'Av', 'Rv', 'Dust_Lab_Name', 'EBV']): """ read the phoSimInstanceCatalog and return the contents Parameters ---------- fname : mandatory, string filename of the phosim instance catalog names : a list of column names matching the number of columns Returns ------- A `pandas.DataFrame` with the phosim Instance Catalog with metadata accessed as a dictionary through the meta attribute of the return. """ # read the header into a metadata list, and get number of lines to skip # for catalog metalines = [] with open(fname) as f: linenum = 0 for line in f: if line.startswith('object'): continue metalines.append(line) linenum += 1 # process the headers into a metadata list meta = metadataFromLines(metalines) # read the catalog into a dataframe df = pd.read_csv(fname, skiprows=linenum, names=names, sep='\s+') df.meta = meta return df def metadataFromLines(lines): """ process the metadata lines into a dictionary """ info = [line.split() for line in lines] meta = {key: np.float(value) for key, value in info} return meta if __name__ == "__main__": meta, df = readPhoSimInstanceCatalog('/Users/rbiswas/src/LSST/sims_catUtils/examples/SNOnlyPhoSimCatalog.dat') print(df.head())
30.080645
114
0.589812
08662e3756cccdb6402a64b83a1e68427c059d1f
32,469
py
Python
xpsi/PostProcessing/_spectrum.py
DevarshiChoudhury/xpsi
200b82b4ef4a4e7342fc30dd03c5821cff0031c2
[ "MIT" ]
14
2019-09-26T12:08:06.000Z
2021-05-11T15:26:10.000Z
xpsi/PostProcessing/_spectrum.py
DevarshiChoudhury/xpsi
200b82b4ef4a4e7342fc30dd03c5821cff0031c2
[ "MIT" ]
13
2020-01-10T11:03:28.000Z
2021-10-04T14:44:01.000Z
xpsi/PostProcessing/_spectrum.py
DevarshiChoudhury/xpsi
200b82b4ef4a4e7342fc30dd03c5821cff0031c2
[ "MIT" ]
9
2020-03-04T13:28:05.000Z
2021-09-28T09:00:50.000Z
from __future__ import division from ._global_imports import * try: import fgivenx except ImportError: _warning('Cannot import fgivenx for conditional posterior contours.') fgivenx = None from ..tools.phase_integrator import phase_integrator from ..tools.energy_interpolator import energy_interpolator from ..tools.phase_interpolator import phase_interpolator as interp from ._signalplot import SignalPlot class SpectrumPlot(SignalPlot): """ Plot posterior-averaged channel count-rate spectra. The figure contains three panels which share phase as an x-axis: * the top panel displays the specific photon flux signal from the source, resolved as a function of energy, optionally showing both unattenuated and attenuated incident spectra and optionally using :mod:`fgivenx`; * the center panel displays the posterior expectation of the count-rate signal as a function of channel and phase, optionally including an expected background signal; * the bottom panel displays the phase-integrated (averaged) count-rate spectum as a function of channel number, optionally including an expected background signal and optionally using :mod:`fgivenx`. The top and bottom panels aim to render the conditional posterior distribution of the associated signal as a function an energy (proxy) variable, ideally with contours to map out the conditional posterior mass. These panels have space to optionally display other elements such as: the posterior-expected total signal; the posterior-expected component signals; the true total and component signals if the ground truth (the injected signal correpsonding to some model parameter vector) is known; attenuated incident spectra; and the summation of posterior-expected total (component-summed) source count-rate signals with posterior-expected background count-rate signals. The following example is (improved) from :ref:`R19`: .. image:: _static/_spectrumplot.png :param float rel_num_energies: The number of energies desired for interpolation as a fraction of the number of energies implemented for the original incident signal integration. The energy set will be appropriately spaced and bounded. :param int num_phases: The number of phases to interpolate the pulse-profile signals at for the center panel. :param str registered_cmap: Colormap name from :mod:`matplotlib` to use for the posterior-expected registered signal as a function of channel and phase (center panel). :param bool show_components: If the :class:`~.Signal.Signal` instance has multiple components (hot region signals), display the posterior expectations of those components as a function of energy (top panel) and channel (bottom panel). :param bool show_attenuated: If the source signal is attenuated by the interstellar absorption processes, display the posterior-expected attenuated incident specific photon flux spectra? This switch also instructs :mod:`fgivenx`, if enabled, to generate conditional posterior contours for the attenuated spectrum instead of the unattenuated spectrum (top panel). If :mod:`fgivenx` is not invoked, this switch instructs the plotting of sample-by-sample attenuated total (component-summed) spectra to delineate the distribution of conditional posterior mass (top panel). :param dict expectation_line_kwargs: Keyword arguments for plotting the posterior-expected signal lines (in the top and bottom panels). :param bool add_background: Add an posterior-expected background count-rate signal to the total (component-summed) expected source count-rate signals in the center and bottom panels? :param dict background_line_kwargs: Keyword arguments for plotting the posterior-expected spectrum in the bottom panel that includes the background signal. :param bool use_fgivenx: Use :mod:`fgivenx` to plot conditional posterior contours in the top and bottom panels? :param dict incident_contour_kwargs: Keyword arguments for :mod:`fgivenx` incident signal contours (top panel) that will take precedence over the corresponding class attributes. (See the :class:`~.SignalPlot` class if you choose not to modify these attributes on this present subclass.) :param dict registered_contour_kwargs: Keyword arguments for :mod:`fgivenx` registered signal contours (bottom panel) that will take precedence over the corresponding class attributes. (See the :class:`~.SignalPlot` class if you choose not to modify these attributes on this present subclass.) :param plot_truth: Plot the ground truth (injected) signal, if known and available, in the top and bottom panels. :param truth_line_kwargs: Keyword arguments for plotting the ground truth signal lines (top and bottom panels). :param comp_truth_line_kwargs: Keyword arguments for plotting the component ground truth signal lines (top and bottom panels). """ __figtype__ = 'signalplot_spectrum' # do not change at runtime (see base class comments): __caching_targets__ = ['shifts', 'signals', # count-rate signals # incident specific flux signals 'incident_specific_flux_signals'] __rows__ = 3 __columns__ = 1 __ax_rows__ = 2 __ax_columns__ = 1 __height_ratios__ = [1,2] __width_ratios__ = [1] __wspace__ = 0.025 __hspace__ = 0.175 @make_verbose('Instantiating a spectrum plotter for posterior checking', 'Spectrum plotter instantiated') def __init__(self, rel_num_energies=10.0, num_phases=1000, registered_cmap='inferno', show_components=False, show_attenuated=True, expectation_line_kwargs=None, comp_expectation_line_kwargs=None, add_background=False, background_line_kwargs=None, sample_line_kwargs=None, use_fgivenx=False, incident_contour_kwargs=None, registered_contour_kwargs=None, plot_truth=False, truth_line_kwargs=None, comp_truth_line_kwargs=None, **kwargs): try: _shadow = not self._logspace_y except AttributeError: _shadow = True if _shadow: # shadow class attribute kwargs.setdefault('logspace_y', True) if not kwargs.get('logspace_y'): yield ('Spectrum plots may have conditional-probability ' 'contour artefacts if logspace_y is not True.') super(SpectrumPlot, self).__init__(**kwargs) self._rel_num_energies = rel_num_energies self._phases = _np.linspace(0.0, 2.0, int(num_phases)) self._show_attenuated = show_attenuated self._add_background = add_background if add_background: # count-rate spectrum self.__caching_targets__.append('background_signal') if use_fgivenx and fgivenx is None: raise ImportError('Install fgivenx to plot contours.') self._use_fgivenx = use_fgivenx if self._use_fgivenx: self._incident_contour_kwargs =\ incident_contour_kwargs if incident_contour_kwargs else {} self._registered_contour_kwargs =\ registered_contour_kwargs if registered_contour_kwargs else {} self._get_figure() fig = self._fig gs = self._gs cls = type(self) # for the incident specific flux signal incident on an instrument gs_top = gridspec.GridSpecFromSubplotSpec(1, 2, subplot_spec=gs[0,0], wspace=cls.__wspace__, width_ratios=[50,1]) self._ax_incident = fig.add_subplot(gs_top[0,0]) # for the count-rate signal registered by an an instrument gs_bottom = gridspec.GridSpecFromSubplotSpec(2, 2, subplot_spec=gs[1,0], wspace=cls.__wspace__, hspace=0.125*self._fscale, height_ratios=[1,1], width_ratios=[50,1]) self._ax_registered = fig.add_subplot(gs_bottom[0,0]) self._ax_registered_1d = fig.add_subplot(gs_bottom[1,0]) self._axes = [self._ax_incident, self._ax_registered, self._ax_registered_1d] # incident axis properties self._ax_incident.set_xlabel(r'$E$ [keV]') self._ax_incident.set_xscale('log') self._ax_incident.set_ylabel(r'photons/keV/cm$^{2}$/s') self._ax_incident.set_yscale('log') # registered axis properties for ax in self._axes[1:]: ax.set_xscale('log') self._ax_registered.tick_params(axis='x', which='both', labelbottom=False) self._ax_registered_1d.set_xlabel('channel') self._ax_registered.set_ylabel(r'$\phi$ [cycles]') self._ax_registered.yaxis.set_major_locator(MultipleLocator(0.5)) self._ax_registered.yaxis.set_minor_locator(MultipleLocator(0.1)) self._ax_registered.set_ylim([0.0,2.0]) self._ax_registered_1d.set_ylabel('counts/s') self._ax_registered_1d.set_yscale('log') # colorbars if use_fgivenx: self._ax_incident_cb = fig.add_subplot(gs_top[0,1]) self._axes.append(self._ax_incident_cb) self._ax_registered_1d_cb = fig.add_subplot(gs_bottom[1,1]) self._axes.append(self._ax_registered_1d_cb) self._ax_registered_cb = fig.add_subplot(gs_bottom[0,1]) self._axes.append(self._ax_registered_cb) self._show_components = show_components self._registered_cmap = registered_cmap if sample_line_kwargs is not None: self._sample_line_kwargs = sample_line_kwargs else: self._sample_line_kwargs = {} self._plot_truth = plot_truth if self._plot_truth: if truth_line_kwargs is None: self._truth_line_kwargs = \ dict(color=('b' if self._use_fgivenx else 'darkgreen'), ls='-.', lw=1.0, alpha=1.0) else: self._truth_line_kwargs = truth_line_kwargs if comp_truth_line_kwargs is not None: self._comp_truth_line_kwargs = comp_truth_line_kwargs else: self._comp_truth_line_kwargs = self._truth_line_kwargs if expectation_line_kwargs is None: color = 'k' if self._use_fgivenx else 'r' self._expectation_line_kwargs = dict(color=color, ls='-', lw=1.0, alpha=1.0) else: self._expectation_line_kwargs = expectation_line_kwargs if comp_expectation_line_kwargs is not None: self._comp_expectation_line_kwargs = comp_expectation_line_kwargs else: self._comp_expectation_line_kwargs = self._expectation_line_kwargs if background_line_kwargs is None: self._background_line_kwargs = dict(color='orange', ls='-', lw=1.0, alpha=1.0) else: self._background_line_kwargs = background_line_kwargs plt.close() yield @property def instruction_set(self): return self._instruction_set @instruction_set.deleter def instruction_set(self): try: del self._instruction_set except AttributeError: pass @make_verbose('SpectrumPlot object iterating over samples', 'SpectrumPlot object finished iterating') def execute(self, thetas, wrapper): self._num_samples = thetas.shape[0] self._energies = self._signal.create_energy_array(self._rel_num_energies) if self._use_fgivenx: # determine which spectrum to compute contours for if self._show_attenuated: wrapped = wrapper(self, 'incident_sums') self._instruction_set = 1 # calculate expected unattenuated incident for i in range(self._num_samples): _ = wrapped(None, thetas[i,:]) # rewrap to reset the cache iterator wrapped = wrapper(self, 'attenuated_incident_sums') self._instruction_set = 0 else: wrapped = wrapper(self, 'incident_sums') self._instruction_set = 1 self._add_incident_contours(wrapped, thetas) self._instruction_set = 2 self._add_registered_contours(wrapper(self, 'registered_sums'), thetas) yield 'Added conditional posterior contours for incident spectrum.' if self._add_background: self._instruction_set = 3 wrapped = wrapper(self, 'background_sum') for i in range(self._num_samples): wrapped(None, thetas[i,:]) else: del self.instruction_set wrapped = wrapper(self, ['attenuated_incident_sums', 'incident_sums', 'registered_sums']) for i in range(self._num_samples): wrapped(None, thetas[i,:]) yield def next(self): """ Update posterior expected signals given the updated signal. Plots signals if :mod:`fgivenx` is not used, otherwise returns callback information for :mod:`fgivenx`. .. note:: You cannot make an iterator from an instance of this class. """ try: self._instruction_set except AttributeError: if self._show_attenuated: signal = self._handle_attenuated_incident() self._add_signal(self._ax_incident, self._energies, signal, **self._sample_line_kwargs) signal = self._handle_incident() if not self._show_attenuated: self._add_signal(self._ax_incident, self._energies, signal, **self._sample_line_kwargs) signal = self._handle_registered() self._add_registered_spectrum(self._ax_registered_1d, signal, **self._sample_line_kwargs) if self._add_background: self._handle_background() # nothing to plot here else: if self._instruction_set == 0: return self._handle_attenuated_incident() # end execution here if self._instruction_set == 1: return self._handle_incident() if self._instruction_set == 2: return self._handle_registered() if self._instruction_set == 3: self._handle_background() # nothing to return return None # reached if not invoking fgivenx def _handle_attenuated_incident(self): """ Instructions for handling the attenuated incident spectrum. """ ref = self._signal try: self._attenuated_incident_sums except AttributeError: self._attenuated_incident_sums = [None]*len(ref.incident_specific_flux_signals) attenuated_incident = None for i, component in enumerate(ref.incident_specific_flux_signals): temp = phase_integrator(1.0, _np.array([0.0,1.0]), component, ref.phases[i], 0.0) temp = energy_interpolator(1, # threads temp, _np.log10(ref.energies), _np.log10(self._energies)).reshape(-1) # requires a user implementation or will raise NotImplementedError ref.interstellar(self._energies, temp) try: attenuated_incident += temp except TypeError: attenuated_incident = temp try: self._attenuated_incident_sums[i] += temp except TypeError: self._attenuated_incident_sums[i] = temp.copy() return attenuated_incident @property def attenuated_incident_sums(self): return self._attenuated_incident_sums @attenuated_incident_sums.deleter def attenuated_incident_sums(self): try: del self._attenuated_incident_sums except AttributeError: pass @property def expected_attenuated_incident(self): """ Get the expectations of the incident (component) spectra. """ return [component/self._num_samples for component \ in self._attenuated_incident_sums] def _handle_incident(self): """ Instructions for handling the unattenuated incident spectrum. """ ref = self._signal try: self._incident_sums except AttributeError: self._incident_sums = [None] * len(ref.incident_specific_flux_signals) incident = None for i, component in enumerate(ref.incident_specific_flux_signals): temp = phase_integrator(1.0, _np.array([0.0,1.0]), component, ref.phases[i], 0.0) temp = energy_interpolator(1, # threads temp, _np.log10(ref.energies), _np.log10(self._energies)).reshape(-1) try: incident += temp except TypeError: incident = temp try: self._incident_sums[i] += temp except TypeError: self._incident_sums[i] = temp.copy() return incident @property def incident_sums(self): return self._incident_sums @incident_sums.deleter def incident_sums(self): try: del self._incident_sums except AttributeError: pass @property def expected_incident(self): """ Get the expectations of the incident (component) spectra. """ return [component/self._num_samples for component in self._incident_sums] def _handle_registered(self): """ Instructions for handling the registered spectrum. """ ref = self._signal try: self._registered_sums except AttributeError: self._registered_sums = [None] * len(ref.signals) registered = None for i, component in enumerate(ref.signals): temp = phase_integrator(1.0, _np.array([0.0,1.0]), component, ref.phases[i], 0.0).reshape(-1) try: registered += temp except TypeError: registered = temp try: self._registered_sums[i] += component except TypeError: self._registered_sums[i] = component return registered @property def registered_sums(self): return self._registered_sums @registered_sums.deleter def registered_sums(self): try: del self._registered_sums except AttributeError: pass @property def expected_registered(self): """ Get the expectations of the registered count-rate spectra. """ return [component/self._num_samples for component in self._registered_sums] def _handle_background(self): """ Instructions for handling the background spectrum. """ ref = self._signal try: self._background_sum except AttributeError: self._background_sum = None background = ref.background_signal try: self._background_sum += background except TypeError: self._background_sum = background return None @property def background_sum(self): return self._background_sum @background_sum.deleter def background_sum(self): try: del self._background_sum except AttributeError: pass @property def expected_background(self): """ Get the expectation of the background count-rate spectrum. """ mean = self._background_sum/self._num_samples # transform to count rate signal, assuming background signal # is in units of counts; subclass and overwrite if you want to change return mean/self._signal.data.exposure_time @make_verbose('SpectrumPlot object finalizing', 'SpectrumPlot object finalized') def finalize(self): """ Execute final instructions. """ ref = self._signal self._plot_components = self._show_components and ref.num_components > 1 # add the incident signals if self._plot_truth: self._add_true_incident_signals() self._add_expected_incident_signals() # add the registered signals if self._plot_truth: self._add_true_registered_signals() self._add_expected_registered_signals() def _add_true_incident_signals(self): """ Render ground truth incident (component) signals. """ ref = self._signal total = None for component, phases in zip(ref.incident_specific_flux_signals, ref.phases): temp = phase_integrator(1.0, _np.array([0.0,1.0]), component, phases, 0.0) temp = energy_interpolator(1, # threads temp, _np.log10(ref.energies), _np.log10(self._energies)).reshape(-1) if self._show_attenuated: ref.interstellar(self.energies, temp) try: total += temp except TypeError: total = temp if self._plot_components: self._add_signal(self._ax_incident, self._energies, temp, **self._comp_truth_line_kwargs) self._add_signal(self._ax_incident, self._energies, total, **self._truth_line_kwargs) def _add_expected_incident_signals(self): """ Render posterior-expected incident (component) signals. """ ax = self._ax_incident view_y_bottom = ax.yaxis.get_view_interval()[0] ref = self._signal total = None for component in self.expected_incident: try: total += component except TypeError: total = component if self._plot_components: self._add_signal(ax, self._energies, component, **self._comp_expectation_line_kwargs) self._add_signal(ax, self._energies, total, **self._expectation_line_kwargs) if self._show_attenuated: total = None for component in self.expected_attenuated_incident: try: total += component except TypeError: total = component if self._plot_components: self._add_signal(ax, self._energies, component, **self._comp_expectation_line_kwargs) self._add_signal(ax, self._energies, total, **self._expectation_line_kwargs) ax.set_ylim(bottom = view_y_bottom) ax.set_xlim([self._signal.energy_edges[0], self._signal.energy_edges[-1]]) locmaj = LogLocator(base=10.0, numticks=100) ax.yaxis.set_major_locator(locmaj) locmin = LogLocator(base=10.0, subs=_np.arange(2,10)*0.1, numticks=100) ax.yaxis.set_minor_locator(locmin) ax.yaxis.set_minor_formatter(NullFormatter()) def _add_true_registered_signals(self): """ Render ground truth registered (component) signals. """ ref = self._signals total = None for component, phases in zip(ref.signals, ref.phases): temp = phase_integrator(1.0, _np.array([0.0,1.0]), component, phases, 0.0).reshape(-1) try: total += temp except TypeError: toral = temp if self._plot_components: self._add_registered_spectrum(self._ax_registered_1d, temp, **self._comp_truth_line_kwargs) self._add_registered_spectrum(self._ax_registered_1d, total, **self._truth_line_kwargs) if self._add_background: # another line including the background total += ref.background_signal self._add_registered_spectrum(self._ax_registered_1d, total, **self._background_line_kwargs) def _add_expected_registered_signals(self): """ Render posterior-expected registered (component) signals. """ ref = self._signal total = None for component, phases in zip(self.expected_registered, ref.phases): temp = phase_integrator(1.0, _np.array([0.0,1.0]), component, phases, 0.0).reshape(-1) try: total += temp except TypeError: total = temp if self._plot_components: self._add_registered_spectrum(self._ax_registered_1d, temp, **self._comp_expectation_line_kwargs) # 1D self._add_registered_spectrum(self._ax_registered_1d, total, **self._expectation_line_kwargs) if self._add_background: # another line including the background total += self.expected_background self._add_registered_spectrum(self._ax_registered_1d, total, **self._background_line_kwargs) ax = self._ax_registered_1d ax.set_xlim([ref.data.channels[0], ref.data.channels[-1]]) locmaj = LogLocator(base=10.0, numticks=100) ax.yaxis.set_major_locator(locmaj) locmin = LogLocator(base=10.0, subs=_np.arange(2,10)*0.1, numticks=100) ax.yaxis.set_minor_locator(locmin) ax.yaxis.set_minor_formatter(NullFormatter()) # 2D total = None for component, shift, phases in zip(self.expected_registered, ref.shifts, ref.phases): temp = interp(self._phases, phases, component, shift) try: total += temp except TypeError: total = temp if self._add_background: # add expectated background for i in range(total.shape[1]): total[:,i] += self.expected_background registered = self._ax_registered.pcolormesh(ref.data.channels, self._phases, total.T, # channel number as x-axis cmap = cm.get_cmap(self._registered_cmap), linewidth = 0, rasterized = self._rasterized) registered.set_edgecolor('face') self._ax_registered.set_xlim([ref.data.channels[0], ref.data.channels[-1]]) self._registered_cb = plt.colorbar(registered, cax=self._ax_registered_cb, ticks=_get_default_locator(None), format=_get_default_formatter()) self._registered_cb.ax.set_frame_on(True) self._registered_cb.ax.yaxis.set_minor_locator(AutoMinorLocator()) self._registered_cb.set_label(label=r'counts/s', labelpad=15) def _add_registered_spectrum(self, ax, spectrum, **kwargs): """ Add registered spectrum line as a function of channel number. """ if not kwargs: kwargs.update(dict(color='k', linestyle='-', lw=0.05, alpha=1.0)) elif 'ls' in kwargs: kwargs['linestyle'] = kwargs.pop('ls') ax.step(self._signal.data.channels, spectrum, where='mid', **kwargs) @make_verbose('Adding credible intervals on the incident specific photon ' 'flux spectrum', 'Credible intervals added') def _add_incident_contours(self, callback, thetas): """ Add contours to 1D incident specific flux spectrum axes objects. """ self._add_contours(callback, thetas, self._energies, self._ax_incident, self._ax_incident_cb, **self._incident_contour_kwargs) label = r'$\pi(\mathrm{photons/keV/cm}^{2}\mathrm{/s};E)$' self._ax_incident_cb.set_ylabel(label) @make_verbose('Adding credible intervals on the count-rate spectrum', 'Credible intervals added') def _add_registered_contours(self, callback, thetas): """ Add contours to 1D count-rate spectrum axes objects. """ self._add_contours(callback, thetas, self._signal.data.channels, self._ax_registered_1d, self._ax_registered_1d_cb, **self._registered_contour_kwargs) self._ax_registered_1d_cb.set_ylabel(r'$\pi(\mathrm{counts/s};\mathrm{channel})$')
38.470379
91
0.560134
2fb843391c823c0c9cf63109e755bf17c567e242
3,222
py
Python
pacK/modul2.py
Nika1411/Laba17
408fd297495e199d8489617ebdf6fe10d7c04fc2
[ "MIT" ]
null
null
null
pacK/modul2.py
Nika1411/Laba17
408fd297495e199d8489617ebdf6fe10d7c04fc2
[ "MIT" ]
null
null
null
pacK/modul2.py
Nika1411/Laba17
408fd297495e199d8489617ebdf6fe10d7c04fc2
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Вариант 14 # Создать класс Payment (зарплата). В классе должны быть представлены поля: фамилия- # имя-отчество, оклад, год поступления на работу, процент надбавки, подоходный налог, # количество отработанных дней в месяце, количество рабочих дней в месяце, начисленная и # удержанная суммы. Реализовать методы: вычисления начисленной суммы, вычисления # удержанной суммы, вычисления суммы, выдаваемой на руки, вычисления стажа. Стаж # вычисляется как полное количество лет, прошедших от года поступления на работу, до теку- # щего года. Начисления представляют собой сумму, начисленную за отработанные дни, и # надбавки, то есть доли от первой суммы. Удержания представляют собой отчисления в # пенсионный фонд (1% от начисленной суммы) и подоходный налог. Подоходный налог # составляет 13% от начисленной суммы без отчислений в пенсионный фонд. class Payment: def __init__(self, full_name=' ', salary=0, year=0, percent=0, daysworked=0, workingdays=1): self.__full_name = str(full_name) self.__salary = int(salary) self.__year = int(year) self.__percent = float(percent) self.__days_worked = int(daysworked) self.__working_days = int(workingdays) # self.amount = 0 # self.held_amount = 0 # self.hand_amount = 0 # self.exp = 0 # self.accrued_amount() # self.withheld_amount() # self.handed_amount() # self.experience() def accrued_amount(self): a = self.__salary / self.__working_days b = a * self.__days_worked percent = self.__percent / 100 + 1 return b * percent def withheld_amount(self): b = (self.__salary / self.__working_days) * self.__days_worked return b * (0.13 + 0.01) def handed_amount(self): a = self.__salary / self.__working_days b = a * self.__days_worked percent = self.__percent / 100 + 1 return b * percent - (self.__salary / self.__working_days) * self.__days_worked def experience(self): return 2020 - self.__year # def __str__(self): # return f"Experience: {self.exp} years \nCalculations: {self.amount} - {self.held_amount} = {self.hand_amount}" def __lt__(self, other): return self.__salary < other.__salary def __eq__(self, other): return self.__salary == other.__salary def __ne__(self, other): return self.__salary != other.__salary def __gt__(self, other): return self.__salary > other.__salary def __ge__(self, other): return self.__salary >= other.__salary def __le__(self, other): return self.__salary <= other.__salary def __truediv__(self, other): if self.__salary >= other.__salary: return self.__salary / other.__salary else: return other.__salary / self.__salary def __sub__(self, other): if self.__days_worked >= other.__days_worked: return self.__days_worked - other.__days_worked else: return other.__days_worked - self.__days_worked def __add__(self, other): return self.__working_days + other.__working_days
35.8
120
0.667908
5bbeead3df22125db183e582d4b92a991181da8b
35
py
Python
vkbottle/dispatch/return_manager/__init__.py
homus32/vkbottle
8247665ef74835abe0c2c5e5981826540d0ecdb5
[ "MIT" ]
698
2019-08-09T17:32:52.000Z
2021-07-22T08:30:32.000Z
vkbottle/dispatch/return_manager/__init__.py
homus32/vkbottle
8247665ef74835abe0c2c5e5981826540d0ecdb5
[ "MIT" ]
216
2019-08-18T19:22:50.000Z
2021-07-30T12:15:17.000Z
vkbottle/dispatch/return_manager/__init__.py
homus32/vkbottle
8247665ef74835abe0c2c5e5981826540d0ecdb5
[ "MIT" ]
268
2019-08-10T14:52:04.000Z
2021-07-28T07:06:42.000Z
from .abc import BaseReturnManager
17.5
34
0.857143
d010d090643176a7143a847e73080106627a44af
1,720
py
Python
setup.py
parrondo/test
f2c88ad12e3715f002aecf54a06dc518aa9171e0
[ "MIT" ]
null
null
null
setup.py
parrondo/test
f2c88ad12e3715f002aecf54a06dc518aa9171e0
[ "MIT" ]
null
null
null
setup.py
parrondo/test
f2c88ad12e3715f002aecf54a06dc518aa9171e0
[ "MIT" ]
null
null
null
import os import re from setuptools import setup, find_packages regexp = re.compile(r'.*__version__ = [\'\"](.*?)[\'\"]', re.S) base_package = 'test' base_path = os.path.dirname(__file__) init_file = os.path.join(base_path, 'src', 'test', '__init__.py') with open(init_file, 'r') as f: module_content = f.read() match = regexp.match(module_content) if match: version = match.group(1) else: raise RuntimeError( 'Cannot find __version__ in {}'.format(init_file)) with open('README.rst', 'r') as f: readme = f.read() with open('CHANGELOG.rst', 'r') as f: changes = f.read() def parse_requirements(filename): ''' Load requirements from a pip requirements file ''' with open(filename, 'r') as fd: lines = [] for line in fd: line.strip() if line and not line.startswith("#"): lines.append(line) return lines requirements = parse_requirements('requirements.txt') if __name__ == '__main__': setup( name='test', description='A description of the package', long_description='\n\n'.join([readme, changes]), license='MIT license', url='https://github.com/GithubUserName/test', version=version, author='Your Name', author_email='', maintainer='Your Name', maintainer_email='', install_requires=requirements, keywords=['test'], package_dir={'': 'src'}, packages=find_packages('src'), zip_safe=False, classifiers=['Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'Programming Language :: Python :: 3.6'] )
28.196721
65
0.589535
0ef7598dfc450c658627b0f48e6d6050d763d93e
2,719
py
Python
ch05_CNN/00_lenet.py
insaneyilin/d2l_pytorch_notes
aa607b3ff0f5e47659dc4cdbdb4d13bff630a4e4
[ "Apache-2.0" ]
null
null
null
ch05_CNN/00_lenet.py
insaneyilin/d2l_pytorch_notes
aa607b3ff0f5e47659dc4cdbdb4d13bff630a4e4
[ "Apache-2.0" ]
null
null
null
ch05_CNN/00_lenet.py
insaneyilin/d2l_pytorch_notes
aa607b3ff0f5e47659dc4cdbdb4d13bff630a4e4
[ "Apache-2.0" ]
null
null
null
import os import time import torch from torch import nn, optim import sys sys.path.append("..") # to find d2lzh_pytorch import d2lzh_pytorch as d2l # check device os.environ["CUDA_VISIBLE_DEVICES"] = "0" device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print(torch.__version__) print(device) class LeNet(nn.Module): def __init__(self): super(LeNet, self).__init__() self.conv = nn.Sequential( nn.Conv2d(1, 6, 5), # in_channels, out_channels, kernel_size nn.Sigmoid(), nn.MaxPool2d(2, 2), # kernel_size, stride nn.Conv2d(6, 16, 5), nn.Sigmoid(), nn.MaxPool2d(2, 2) ) self.fc = nn.Sequential( nn.Linear(16 * 4 * 4, 120), nn.Sigmoid(), nn.Linear(120, 84), nn.Sigmoid(), nn.Linear(84, 10) ) def forward(self, img): feature = self.conv(img) output = self.fc(feature.view(img.shape[0], -1)) return output lenet = LeNet() print(lenet) # load data batch_size = 256 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size) # training function def train(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs): net = net.to(device) print("training on ", device) loss = torch.nn.CrossEntropyLoss() batch_count = 0 for epoch in range(num_epochs): train_loss_sum, train_acc_sum, n, start = 0.0, 0.0, 0, time.time() # iterate during each epoch for X, y in train_iter: X = X.to(device) y = y.to(device) y_hat = net(X) l = loss(y_hat, y) # calc loss optimizer.zero_grad() # clear grad. info l.backward() # backward propagation optimizer.step() # optimization train_loss_sum += l.cpu().item() # accumulate training loss # accumulate training accurate predicted samples train_acc_sum += (y_hat.argmax(dim=1) == y).sum().cpu().item() n += y.shape[0] # accumulate total number of samples during training process batch_count += 1 # number of batch counts # evaluate after one epoch's training is done test_acc = d2l.evaluate_accuracy(test_iter, net) print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, time %.1f sec' % (epoch + 1, train_loss_sum / batch_count, train_acc_sum / n, test_acc, time.time() - start)) # learning rate, number of epochs lr, num_epochs = 0.001, 5 optimizer = torch.optim.Adam(lenet.parameters(), lr=lr) train(lenet, train_iter, test_iter, batch_size, optimizer, device, num_epochs)
33.158537
108
0.604266
74c87c03b633954b6407919ec06a67ec3ace61e2
450
py
Python
src/data-structures/heaps/test_minHeap.py
Sunhick/csci-2270
2a65cf088010b2d508833700da05ed607a84d24c
[ "MIT" ]
1
2017-05-04T05:01:13.000Z
2017-05-04T05:01:13.000Z
src/data-structures/heaps/test_minHeap.py
Sunhick/csci-2270
2a65cf088010b2d508833700da05ed607a84d24c
[ "MIT" ]
null
null
null
src/data-structures/heaps/test_minHeap.py
Sunhick/csci-2270
2a65cf088010b2d508833700da05ed607a84d24c
[ "MIT" ]
null
null
null
#!/usr/bin/python3 """ minHeaps Pythonic implementation of Heaps """ __author__ = "Sunil" __email__ = "suba5417@colorado.edu" import unittest from minHeap import MinHeap class test_MinHeap(unittest.TestCase): """ Test heap create, delete, insert """ heap = None def __init__(self): self.heap = MinHeap() def setUp(self): pass def tearDown(self): pass def testCase(self): pass
13.636364
38
0.626667
493f544865cd9bfe74771a0df347ed3eb1bcf2d2
932
py
Python
text/detector/utils/python_nms.py
kernelforce/invoice
58c4e24484b3e47ed8aaf227964b372eac475227
[ "MIT" ]
1,017
2019-08-02T04:18:35.000Z
2022-03-29T08:18:03.000Z
text/detector/utils/python_nms.py
guanshuicheng/-
21ea131ed8680dbb1740c45d690d6ed0e3eb4798
[ "MIT" ]
47
2019-08-08T08:36:48.000Z
2022-03-08T07:00:29.000Z
text/detector/utils/python_nms.py
guanshuicheng/-
21ea131ed8680dbb1740c45d690d6ed0e3eb4798
[ "MIT" ]
300
2019-08-03T03:06:30.000Z
2022-03-31T02:20:11.000Z
import numpy as np def nms(boxes, threshold, method='Union'): if boxes.size==0: return np.empty((0,3)) x1 = boxes[:,0] y1 = boxes[:,1] x2 = boxes[:,2] y2 = boxes[:,3] s = boxes[:,4] area = (x2-x1+1) * (y2-y1+1) I = np.argsort(s) pick = np.zeros_like(s, dtype=np.int16) counter = 0 while I.size>0: i = I[-1] pick[counter] = i counter += 1 idx = I[0:-1] xx1 = np.maximum(x1[i], x1[idx]) yy1 = np.maximum(y1[i], y1[idx]) xx2 = np.minimum(x2[i], x2[idx]) yy2 = np.minimum(y2[i], y2[idx]) w = np.maximum(0.0, xx2-xx1+1) h = np.maximum(0.0, yy2-yy1+1) inter = w * h if method is 'Min': o = inter / np.minimum(area[i], area[idx]) else: o = inter / (area[i] + area[idx] - inter) I = I[np.where(o<=threshold)] pick = pick[0:counter] return pick
28.242424
54
0.483906
c8f6a3771f8427ef7281eb590e15c5795998de56
514
py
Python
chapter5/rgb_hsv_grayscale.py
vizcacha/practicalcv
6bd8170bbb7325585811938fd35069f5e1b5605e
[ "MIT" ]
null
null
null
chapter5/rgb_hsv_grayscale.py
vizcacha/practicalcv
6bd8170bbb7325585811938fd35069f5e1b5605e
[ "MIT" ]
null
null
null
chapter5/rgb_hsv_grayscale.py
vizcacha/practicalcv
6bd8170bbb7325585811938fd35069f5e1b5605e
[ "MIT" ]
null
null
null
from SimpleCV import Image, Display import time displayObject = Display() img = Image('starry_night.png') print 'Initial: %s' % (img.getPixel(25, 25),) img.save(displayObject) time.sleep(3) hsv = img.toHSV() print 'HSV: %s' % (hsv.getPixel(25, 25),) hsv.save(displayObject) time.sleep(3) rgb = hsv.toRGB() print 'RGB: %s' % (rgb.getPixel(25, 25),) rgb.save(displayObject) time.sleep(3) gray = img.grayscale() print 'Grayscale: %s' % (gray.getPixel(25, 25),) gray.save(displayObject) time.sleep(3)
13.891892
48
0.678988
de4ec424d0e27b4cdaef58efb807d12a1530b565
2,033
py
Python
venv/Lib/site-packages/pyrogram/raw/types/input_report_reason_geo_irrelevant.py
iamgeorgiy/heroku-userbot
5a92417d16f8ead949d88cb38da213fc2da5d3a4
[ "Apache-2.0" ]
null
null
null
venv/Lib/site-packages/pyrogram/raw/types/input_report_reason_geo_irrelevant.py
iamgeorgiy/heroku-userbot
5a92417d16f8ead949d88cb38da213fc2da5d3a4
[ "Apache-2.0" ]
null
null
null
venv/Lib/site-packages/pyrogram/raw/types/input_report_reason_geo_irrelevant.py
iamgeorgiy/heroku-userbot
5a92417d16f8ead949d88cb38da213fc2da5d3a4
[ "Apache-2.0" ]
null
null
null
# Pyrogram - Telegram MTProto API Client Library for Python # Copyright (C) 2017-2020 Dan <https://github.com/delivrance> # # This file is part of Pyrogram. # # Pyrogram is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Pyrogram is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Pyrogram. If not, see <http://www.gnu.org/licenses/>. from io import BytesIO from pyrogram.raw.core.primitives import Int, Long, Int128, Int256, Bool, Bytes, String, Double, Vector from pyrogram.raw.core import TLObject from pyrogram import raw from typing import List, Union, Any # # # # # # # # # # # # # # # # # # # # # # # # # !!! WARNING !!! # # This is a generated file! # # All changes made in this file will be lost! # # # # # # # # # # # # # # # # # # # # # # # # # class InputReportReasonGeoIrrelevant(TLObject): # type: ignore """This object is a constructor of the base type :obj:`~pyrogram.raw.base.ReportReason`. Details: - Layer: ``117`` - ID: ``0xdbd4feed`` **No parameters required.** """ __slots__: List[str] = [] ID = 0xdbd4feed QUALNAME = "types.InputReportReasonGeoIrrelevant" def __init__(self) -> None: pass @staticmethod def read(data: BytesIO, *args: Any) -> "InputReportReasonGeoIrrelevant": # No flags return InputReportReasonGeoIrrelevant() def write(self) -> bytes: data = BytesIO() data.write(Int(self.ID, False)) # No flags return data.getvalue()
31.765625
103
0.640433
a8511c4934ca02239845af28e1db32dcb2c9f2e0
3,388
py
Python
scripts/gha/install_prereqs_desktop.py
oliwilkinsonio/firebase-cpp-sdk
1a2790030e92f77ad2aaa87000a1222d12dcabfc
[ "Apache-2.0" ]
193
2019-03-18T16:30:43.000Z
2022-03-30T17:39:32.000Z
scripts/gha/install_prereqs_desktop.py
oliwilkinsonio/firebase-cpp-sdk
1a2790030e92f77ad2aaa87000a1222d12dcabfc
[ "Apache-2.0" ]
647
2019-03-18T20:50:41.000Z
2022-03-31T18:32:33.000Z
scripts/gha/install_prereqs_desktop.py
oliwilkinsonio/firebase-cpp-sdk
1a2790030e92f77ad2aaa87000a1222d12dcabfc
[ "Apache-2.0" ]
86
2019-04-21T09:40:38.000Z
2022-03-26T20:48:37.000Z
#!/usr/bin/env python # Copyright 2020 Google # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script needs to be run once to prepare the machine for building SDK. It will download required python dependencies and also install ccache on mac/linux. ccache considerably improves the build times. Please note that this script is aganostic of various desktop configurations. For example, you can run it once regardless if you are following up with a build of x86 or x64. Run this script from the root of the repository Usage: python scripts/gha/install_prereqs_desktop.py """ import utils def main(): # Install protobuf on linux/mac if its not installed already if not utils.is_command_installed('protoc'): if utils.is_linux_os(): # sudo apt install protobuf-compiler utils.run_command(['apt', 'install', '-y','protobuf-compiler'], as_root=True) elif utils.is_mac_os(): # brew install protobuf utils.run_command(['brew', 'install', 'protobuf']) # Install go on linux/mac if its not installed already if not utils.is_command_installed('go'): if utils.is_linux_os(): # sudo apt install -y golang utils.run_command(['apt', 'install', '-y','golang'], as_root=True) elif utils.is_mac_os(): # brew install protobuf utils.run_command(['brew', 'install', 'go']) # Install openssl on linux/mac if its not installed already if not utils.is_command_installed('go'): if utils.is_linux_os(): # sudo apt install -y openssl utils.run_command(['apt', 'install', '-y','openssl'], as_root=True) elif utils.is_mac_os(): # brew install protobuf utils.run_command(['brew', 'install', 'openssl']) # Install ccache on linux/mac if its not installed already if not utils.is_command_installed('ccache'): if utils.is_linux_os(): # sudo apt install ccache utils.run_command(['apt', 'install', '-y', 'ccache'], as_root=True) elif utils.is_mac_os(): # brew install ccache utils.run_command(['brew', 'install', 'ccache']) # Install clang-format on linux/mac if its not installed already if not utils.is_command_installed('clang-format'): if utils.is_linux_os(): # sudo apt install clang-format utils.run_command(['apt', 'install', '-y','clang-format'], as_root=True) elif utils.is_mac_os(): # brew install protobuf utils.run_command(['brew', 'install', 'clang-format']) # Install required python dependencies. # On Catalina, python2 in installed as default python. # Example command: # python3 -m pip install -r external/pip_requirements.txt --user utils.run_command( ['python3' if utils.is_command_installed('python3') else 'python', '-m', 'pip', 'install', '-r', 'external/pip_requirements.txt', '--user'] ) if __name__ == '__main__': main()
37.230769
95
0.691854
683c226df95cfdc762243d09f84ed53114ccc011
946
py
Python
myutils.py
hiszm/credit_card_scan
c2ebde77b5e878c57e514c5c2fed72444271ad6c
[ "Xnet", "X11" ]
null
null
null
myutils.py
hiszm/credit_card_scan
c2ebde77b5e878c57e514c5c2fed72444271ad6c
[ "Xnet", "X11" ]
null
null
null
myutils.py
hiszm/credit_card_scan
c2ebde77b5e878c57e514c5c2fed72444271ad6c
[ "Xnet", "X11" ]
null
null
null
import cv2 def sort_contours(cnts, method="left-to-right"): reverse = False i = 0 if method == "right-to-left" or method == "bottom-to-top": reverse = True if method == "top-to-bottom" or method == "bottom-to-top": i = 1 # 用一个最小的矩形,把找到的形状包起来x,y,h,w # 执行一个排序操作,得到是排序完整 boundingBoxes = [cv2.boundingRect(c) for c in cnts] (cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes), key=lambda b: b[1][i], reverse=reverse)) return cnts, boundingBoxes def resize(image, width=None, height=None, inter=cv2.INTER_AREA): dim = None (h, w) = image.shape[:2] if width is None and height is None: return image if width is None: r = height / float(h) dim = (int(w * r), height) else: r = width / float(w) dim = (width, int(h * r)) resized = cv2.resize(image, dim, interpolation=inter) return resized
30.516129
80
0.585624
a85d162629ba65d91d742e16a7a29b7a6544640d
867
py
Python
pyone/server.py
andromedia/addon-pyone
cf72fc27ac2267169c6c9ecf48ca3739249a51fe
[ "Apache-2.0" ]
null
null
null
pyone/server.py
andromedia/addon-pyone
cf72fc27ac2267169c6c9ecf48ca3739249a51fe
[ "Apache-2.0" ]
null
null
null
pyone/server.py
andromedia/addon-pyone
cf72fc27ac2267169c6c9ecf48ca3739249a51fe
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 www.privaz.io Valletech AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from os import environ # check if test stub featuers are enabled _test_fixture = (environ.get("PYONE_TEST_FIXTURE", "False").lower() in ["1", "yes", "true"]) if _test_fixture is False: from . import OneServer else: from pyone.tester import OneServerTester as OneServer
34.68
92
0.756632
3573f06c6b6a0d836950f5f5b719a700e5b4f319
5,890
py
Python
Contents/Libraries/Shared/js2py/legecy_translators/translator.py
fossabot/Sub-Zero.bundle
fb2210f2fd9003b68f78f4c878f4428ec4aa0d4f
[ "MIT" ]
1,553
2015-11-09T02:17:06.000Z
2022-03-31T20:24:52.000Z
Contents/Libraries/Shared/js2py/legecy_translators/translator.py
saiterlz/Sub-Zero.bundle
1a0bb9c3e4be84be35d46672907783363fe5a87b
[ "MIT" ]
691
2015-11-05T21:32:26.000Z
2022-03-17T10:52:45.000Z
Contents/Libraries/Shared/js2py/legecy_translators/translator.py
saiterlz/Sub-Zero.bundle
1a0bb9c3e4be84be35d46672907783363fe5a87b
[ "MIT" ]
162
2015-11-06T19:38:55.000Z
2022-03-16T02:42:41.000Z
from flow import translate_flow from constants import remove_constants, recover_constants from objects import remove_objects, remove_arrays, translate_object, translate_array, set_func_translator from functions import remove_functions, reset_inline_count from jsparser import inject_before_lval, indent, dbg TOP_GLOBAL = '''from js2py.pyjs import *\nvar = Scope( JS_BUILTINS )\nset_global_object(var)\n''' def translate_js(js, top=TOP_GLOBAL): """js has to be a javascript source code. returns equivalent python code.""" # Remove constant literals no_const, constants = remove_constants(js) #print 'const count', len(constants) # Remove object literals no_obj, objects, obj_count = remove_objects(no_const) #print 'obj count', len(objects) # Remove arrays no_arr, arrays, arr_count = remove_arrays(no_obj) #print 'arr count', len(arrays) # Here remove and replace functions reset_inline_count() no_func, hoisted, inline = remove_functions(no_arr) #translate flow and expressions py_seed, to_register = translate_flow(no_func) # register variables and hoisted functions #top += '# register variables\n' top += 'var.registers(%s)\n' % str(to_register + hoisted.keys()) #Recover functions # hoisted functions recovery defs = '' #defs += '# define hoisted functions\n' #print len(hoisted) , 'HH'*40 for nested_name, nested_info in hoisted.iteritems(): nested_block, nested_args = nested_info new_code = translate_func('PyJsLvalTempHoisted', nested_block, nested_args) new_code += 'PyJsLvalTempHoisted.func_name = %s\n' % repr(nested_name) defs += new_code + '\nvar.put(%s, PyJsLvalTempHoisted)\n' % repr( nested_name) #defs += '# Everting ready!\n' # inline functions recovery for nested_name, nested_info in inline.iteritems(): nested_block, nested_args = nested_info new_code = translate_func(nested_name, nested_block, nested_args) py_seed = inject_before_lval(py_seed, nested_name.split('@')[0], new_code) # add hoisted definitiond - they have literals that have to be recovered py_seed = defs + py_seed #Recover arrays for arr_lval, arr_code in arrays.iteritems(): translation, obj_count, arr_count = translate_array( arr_code, arr_lval, obj_count, arr_count) py_seed = inject_before_lval(py_seed, arr_lval, translation) #Recover objects for obj_lval, obj_code in objects.iteritems(): translation, obj_count, arr_count = translate_object( obj_code, obj_lval, obj_count, arr_count) py_seed = inject_before_lval(py_seed, obj_lval, translation) #Recover constants py_code = recover_constants(py_seed, constants) return top + py_code def translate_func(name, block, args): """Translates functions and all nested functions to Python code. name - name of that function (global functions will be available under var while inline will be available directly under this name ) block - code of the function (*with* brackets {} ) args - arguments that this function takes""" inline = name.startswith('PyJsLvalInline') real_name = '' if inline: name, real_name = name.split('@') arglist = ', '.join(args) + ', ' if args else '' code = '@Js\ndef %s(%sthis, arguments, var=var):\n' % (name, arglist) # register local variables scope = "'this':this, 'arguments':arguments" #it will be a simple dictionary for arg in args: scope += ', %s:%s' % (repr(arg), arg) if real_name: scope += ', %s:%s' % (repr(real_name), name) code += indent('var = Scope({%s}, var)\n' % scope) block, nested_hoisted, nested_inline = remove_functions(block) py_code, to_register = translate_flow(block) #register variables declared with var and names of hoisted functions. to_register += nested_hoisted.keys() if to_register: code += indent('var.registers(%s)\n' % str(to_register)) for nested_name, info in nested_hoisted.iteritems(): nested_block, nested_args = info new_code = translate_func('PyJsLvalTempHoisted', nested_block, nested_args) # Now put definition of hoisted function on the top code += indent(new_code) code += indent( 'PyJsLvalTempHoisted.func_name = %s\n' % repr(nested_name)) code += indent( 'var.put(%s, PyJsLvalTempHoisted)\n' % repr(nested_name)) for nested_name, info in nested_inline.iteritems(): nested_block, nested_args = info new_code = translate_func(nested_name, nested_block, nested_args) # Inject definitions of inline functions just before usage # nested inline names have this format : LVAL_NAME@REAL_NAME py_code = inject_before_lval(py_code, nested_name.split('@')[0], new_code) if py_code.strip(): code += indent(py_code) return code set_func_translator(translate_func) #print inject_before_lval(' chuj\n moj\n lval\nelse\n', 'lval', 'siema\njestem piter\n') import time #print time.time() #print translate_js('if (1) console.log("Hello, World!"); else if (5) console.log("Hello world?");') #print time.time() t = """ var x = [1,2,3,4,5,6]; for (var e in x) {console.log(e); delete x[3];} console.log(5 in [1,2,3,4,5]); """ SANDBOX = ''' import traceback try: %s except: print traceback.format_exc() print raw_input('Press Enter to quit') ''' if __name__ == '__main__': # test with jq if works then it really works :) #with open('jq.js', 'r') as f: #jq = f.read() #res = translate_js(jq) res = translate_js(t) dbg(SANDBOX % indent(res)) print 'Done'
38.75
105
0.662479
2d65ffc2d0625f7f84bf4e16e749bccacf5a1d50
1,613
py
Python
umap/settings/__init__.py
sosm/umap
7893ff1c7d943b7fb71b74dbd8a3b47b7b104ca3
[ "WTFPL" ]
1
2020-12-13T20:56:53.000Z
2020-12-13T20:56:53.000Z
umap/settings/__init__.py
sosm/umap
7893ff1c7d943b7fb71b74dbd8a3b47b7b104ca3
[ "WTFPL" ]
1
2020-07-11T08:38:44.000Z
2020-07-11T08:38:44.000Z
umap/settings/__init__.py
sosm/umap
7893ff1c7d943b7fb71b74dbd8a3b47b7b104ca3
[ "WTFPL" ]
3
2019-06-27T06:46:05.000Z
2019-12-12T09:46:12.000Z
import imp import os import sys from django.utils.termcolors import colorize from .base import * # NOQA, default values # Allow to override setting from any file, may be out of the PYTHONPATH, # to make it easier for non python people. path = os.environ.get('UMAP_SETTINGS') if not path: # Retrocompat path = os.path.join('/etc', 'umap', 'umap.conf') if not os.path.exists(path): # Retrocompat path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'local.py') if not os.path.exists(path): msg = ('You must configure UMAP_SETTINGS or define ' '/etc/umap/umap.conf') print(colorize(msg, fg='red')) sys.exit(1) d = imp.new_module('config') d.__file__ = path try: with open(path) as config_file: exec(compile(config_file.read(), path, 'exec'), d.__dict__) except IOError as e: msg = 'Unable to import {} from UMAP_SETTINGS'.format(path) print(colorize(msg, fg='red')) sys.exit(e) else: print('Loaded local config from', path) for key in dir(d): if key.isupper(): value = getattr(d, key) if key.startswith('LEAFLET_STORAGE'): # Retrocompat pre 1.0, remove me in 1.1. globals()['UMAP' + key[15:]] = value elif key == 'UMAP_CUSTOM_TEMPLATES': globals()['TEMPLATES'][0]['DIRS'].insert(0, value) elif key == 'UMAP_CUSTOM_STATICS': globals()['STATICFILES_DIRS'].insert(0, value) else: globals()[key] = value
33.604167
72
0.584005