hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
786057b639f3a0b5b3e99837cc5b24131f77a024
135
py
Python
conan/tools/meson/__init__.py
Erlkoenig90/conan
da8de69618d75da5ac7d77e0eb7a38ee4d564eb9
[ "MIT" ]
null
null
null
conan/tools/meson/__init__.py
Erlkoenig90/conan
da8de69618d75da5ac7d77e0eb7a38ee4d564eb9
[ "MIT" ]
null
null
null
conan/tools/meson/__init__.py
Erlkoenig90/conan
da8de69618d75da5ac7d77e0eb7a38ee4d564eb9
[ "MIT" ]
null
null
null
# noinspection PyUnresolvedReferences from conan.tools.meson.toolchain import MesonToolchain from conan.tools.meson.meson import Meson
33.75
54
0.866667
25e5b124b6b979be3bacc05f98eae96c6e33dd1c
2,419
py
Python
Software/src/liv/iotConnectors/devicehive/devicehive/utils.py
nadaol/Weather_Station
5bfb31c2974227fcc8d912e3911f356d4e3fb187
[ "MIT" ]
null
null
null
Software/src/liv/iotConnectors/devicehive/devicehive/utils.py
nadaol/Weather_Station
5bfb31c2974227fcc8d912e3911f356d4e3fb187
[ "MIT" ]
null
null
null
Software/src/liv/iotConnectors/devicehive/devicehive/utils.py
nadaol/Weather_Station
5bfb31c2974227fcc8d912e3911f356d4e3fb187
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # vim:set et tabstop=4 shiftwidth=4 nu nowrap fileencoding=utf-8: import json from datetime import datetime from urlparse import urlsplit, urljoin from twisted.internet.protocol import Protocol from twisted.internet.defer import Deferred, succeed, fail from twisted.web.iweb import IBodyProducer from zope.interface import implements __all__ = ['parse_url', 'parse_date', 'url_path', 'TextDataConsumer', 'EmptyDataProducer'] def parse_url(device_hive_url): if not device_hive_url.endswith('/'): device_hive_url += '/' url = urlsplit(device_hive_url) netloc_split = url.netloc.split(':') port = 80 host = netloc_split[0] if url.scheme == 'https': port = 443 if len(netloc_split) == 2: port = int(netloc_split[1], 10) return (device_hive_url, host, port) def url_path(base_uri, api_uri): uri = urlsplit(urljoin(base_uri, api_uri)) path = uri.path if len(uri.query) > 0 : path += '?' + uri.query return path def parse_date(date_str) : """ Converts a date-time string into a datetime object. """ if len(date_str) > 19: return datetime.strptime(date_str, '%Y-%m-%dT%H:%M:%S.%f') else : return datetime.strptime(date_str, '%Y-%m-%dT%H:%M:%S') class TextDataConsumer(Protocol): """ Converts a text input into a C{str}. """ def __init__(self, deferred): self.deferred = deferred self.text = '' def dataReceived(self, data): self.text += data def connectionLost(self, reason): self.deferred.callback(self.text) class JsonDataConsumer(Protocol): """ JsonDataConsumer receives JSON data as an input and then converts it into C{dict} type. """ def __init__(self, deferred): self.deferred = deferred self.data = [] def dataReceived(self, data): self.data.append(data) def connectionLost(self, reason): data = json.loads(''.join(self.data)) self.deferred.callback(data) class EmptyDataProducer(object): implements(IBodyProducer) def __init__(self): self.length = 0 def startProducing(self, consumer): try: consumer.write('') return succeed(None) except Exception, error: return fail(error) def stopProducing(self): pass
24.683673
90
0.628359
b0eeb3b14eb48e44ed155665a50a5a04284a9d78
478
py
Python
leetcode-problems/0238_product_of_array_except_self.py
shikhalakra22/Algorithms
5932b162214add40f4fd3ca217e16217a36823fe
[ "MIT" ]
null
null
null
leetcode-problems/0238_product_of_array_except_self.py
shikhalakra22/Algorithms
5932b162214add40f4fd3ca217e16217a36823fe
[ "MIT" ]
null
null
null
leetcode-problems/0238_product_of_array_except_self.py
shikhalakra22/Algorithms
5932b162214add40f4fd3ca217e16217a36823fe
[ "MIT" ]
null
null
null
class Solution: def productExceptSelf(self, nums: List[int]) -> List[int]: n = len(nums) left = [0]*n right = [0]*n prod = [0]*n left[0] = 1 right[n-1] = 1 for i in range(1, n): left[i] = nums[i - 1] * left[i - 1] for i in range(n-2, -1, -1): right[i] = nums[i + 1] * right[i + 1] for i in range(n): prod[i] = left[i] * right[i] return prod
23.9
62
0.414226
e340e8a293a6f085cc11a83f60f04e733bb259a4
6,478
py
Python
maestrowf/conductor.py
usnistgov/corr-maestrowf
49d67a71a8c116754712048d51cf0bf65d6f7c42
[ "MIT" ]
null
null
null
maestrowf/conductor.py
usnistgov/corr-maestrowf
49d67a71a8c116754712048d51cf0bf65d6f7c42
[ "MIT" ]
null
null
null
maestrowf/conductor.py
usnistgov/corr-maestrowf
49d67a71a8c116754712048d51cf0bf65d6f7c42
[ "MIT" ]
null
null
null
############################################################################### # Copyright (c) 2017, Lawrence Livermore National Security, LLC. # Produced at the Lawrence Livermore National Laboratory # Written by Francesco Di Natale, dinatale3@llnl.gov. # # LLNL-CODE-734340 # All rights reserved. # This file is part of MaestroWF, Version: 1.0.0. # # For details, see https://github.com/LLNL/maestrowf. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. ############################################################################### from argparse import ArgumentParser, RawTextHelpFormatter from datetime import datetime import glob import inspect import logging import os import sys from time import sleep from maestrowf.datastructures.core import ExecutionGraph from maestrowf.utils import create_parentdir # Logger instantiation rootlogger = logging.getLogger(inspect.getmodule(__name__)) logger = logging.getLogger(__name__) # Formatting of logger. LFORMAT = "%(asctime)s - %(name)s:%(funcName)s:%(lineno)s - " \ "%(levelname)s - %(message)s" def setup_argparser(): """ Method for setting up the program's argument parser. """ parser = ArgumentParser(prog="ExecutionManager", description="An application for checking and " "managing an ExecutionDAG within an executing" "study.", formatter_class=RawTextHelpFormatter) parser.add_argument("directory", type=str, help="The directory where" "a study has been set up and where a pickle file" " of an ExecutionGraph is stored.") parser.add_argument("-s", "--status", action="store_true", help="Check the status of the ExecutionGraph " "located as specified by the 'directory' " "argument.") parser.add_argument("-l", "--logpath", type=str, help="Alternate path to store program logging.") parser.add_argument("-d", "--debug_lvl", type=int, default=2, help="Level of logging messages to be output:\n" "5 - Critical\n" "4 - Error\n" "3 - Warning\n" "2 - Info (Default)\n" "1 - Debug") parser.add_argument("-c", "--logstdout", action="store_true", help="Output logging to stdout in addition to a file.") parser.add_argument("-t", "--sleeptime", type=int, default=60, help="Amount of time (in seconds) for the manager to " "wait between job status checks.") return parser def setup_logging(args, name): """ Method for setting up logging in the Main class. :param args: A Namespace object created by a parsed ArgumentParser. :param name: The name of the log file. """ # Check if the user has specified a custom log path. if args.logpath: logger.info("Log path overwritten by command line -- %s", args.logpath) log_path = args.logpath else: log_path = os.path.join(args.directory, "logs") loglevel = args.debug_lvl * 10 # Attempt to create the logging directory. create_parentdir(log_path) formatter = logging.Formatter(LFORMAT) rootlogger.setLevel(loglevel) # Set up handlers if args.logstdout: handler = logging.StreamHandler() handler.setFormatter(formatter) rootlogger.addHandler(handler) log_file = os.path.join(log_path, "{}.log".format(name)) handler = logging.FileHandler(log_file) handler.setFormatter(formatter) rootlogger.addHandler(handler) rootlogger.setLevel(loglevel) # Print the level of logging. logger.info("INFO Logging Level -- Enabled") logger.warning("WARNING Logging Level -- Enabled") logger.critical("CRITICAL Logging Level -- Enabled") logger.debug("DEBUG Logging Level -- Enabled") def main(): # Set up and parse the ArgumentParser parser = setup_argparser() args = parser.parse_args() # Unpickle the ExecutionGraph study_pkl = glob.glob(os.path.join(args.directory, "*.pkl")) # We expect only a single pickle file. if len(study_pkl) == 1: dag = ExecutionGraph.unpickle(study_pkl[0]) else: if len(study_pkl) > 1: msg = "More than one pickle found. Expected only one. Aborting." status = 2 else: msg = "No pickle found. Aborting." status = 1 sys.stderr.write(msg) sys.exit(status) # Set up logging setup_logging(args, dag.name) # Use ExecutionGraph API to determine next jobs to be launched. logger.info("Checking the ExecutionGraph for study '%s' located in " "%s...", dag.name, study_pkl[0]) logger.info("Study Description: %s", dag.description) study_complete = False while not study_complete: logger.info("Checking DAG status at %s", str(datetime.now())) # Execute steps that are ready study_complete = dag.execute_ready_steps() # Re-pickle the ExecutionGraph. dag.pickle(study_pkl[0]) # Sleep for SLEEPTIME in args sleep(args.sleeptime) # Explicitly return a 0 status. sys.exit(0) if __name__ == "__main__": main()
37.883041
79
0.628435
f76809be6510d2224726358af250aea09c174ecb
1,471
py
Python
src/sendMail.py
smrnjeet222/CertificateGenerator
7567e3fc2b46c529d76e68e1be12921d8582fc35
[ "MIT" ]
null
null
null
src/sendMail.py
smrnjeet222/CertificateGenerator
7567e3fc2b46c529d76e68e1be12921d8582fc35
[ "MIT" ]
null
null
null
src/sendMail.py
smrnjeet222/CertificateGenerator
7567e3fc2b46c529d76e68e1be12921d8582fc35
[ "MIT" ]
2
2020-07-26T17:03:02.000Z
2021-05-02T20:09:42.000Z
import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from email.mime.base import MIMEBase from email import encoders import src.config as con FROM = con.MAIL def sendMail(name, toaddr): # instance of MIMEMultipart filename = name.replace(" ", "_").lower()+'.pdf' file_path = f"output/{filename}" msg = MIMEMultipart() # storing the senders email address msg['From'] = FROM # storing the receivers email address msg['To'] = toaddr msg['Subject'] = con.SUBJECT body = con.body(name) # attach the body with the msg instance msg.attach(MIMEText(body, 'plain')) attachment = open(file_path, "rb") # instance of MIMEBase and named as p p = MIMEBase('application', 'octet-stream') # To change the payload into encoded form p.set_payload((attachment).read()) # encode into base64 encoders.encode_base64(p) p.add_header('Content-Disposition', f"attachment; filename= {filename}") # attach the instance 'p' to instance 'msg' msg.attach(p) # creates SMTP session s = smtplib.SMTP('smtp.gmail.com', 587) # start TLS for security s.starttls() # Authentication s.login(FROM, con.PASS) # Converts the Multipart msg into a string text = msg.as_string() # sending the mail s.sendmail(FROM, toaddr, text) print(f"Mail Sent to {name} : {toaddr}\n") # terminating the session s.quit()
22.984375
76
0.665534
b842effa8e3dfe5899abe828cdf2d55f4e8a903f
4,308
py
Python
lib/h8s/service.py
enigmata/h8s-proto-py
4fa8a14bb80f0ac0fedc11d401412c15d2d033d7
[ "MIT" ]
null
null
null
lib/h8s/service.py
enigmata/h8s-proto-py
4fa8a14bb80f0ac0fedc11d401412c15d2d033d7
[ "MIT" ]
null
null
null
lib/h8s/service.py
enigmata/h8s-proto-py
4fa8a14bb80f0ac0fedc11d401412c15d2d033d7
[ "MIT" ]
null
null
null
import os import importlib import re class Service(): """ A Service class is the generic representation of a service, which is responsible for carrying out required functions of the service, and maintaining its own lifecycle. The attributes of a Service: Name: Since word uniquely identifying the service's responsibility Description: One-line English description of the service Version: Triple: <version>.<release>.<modification> Commands: Behaviours of the service, actions to change state of the service State: State of the service as it progresses through its lifecycle NOTE: You do not instantiate the Service class. A service will specialize the Service class as a subclass which is then instantiated. """ def __init__(self, path, name, description, version): self.name = name self.description = description self.version = version self.state = None # TBD self.commands = {} self.COMMANDS_IDX_MOD = 0 # command's python module self.COMMANDS_IDX_OBJ = 1 # command's python object self.COMMANDS_IDX_VER = 2 # version of the command (from filename) self.COMMANDS_IDX_SAW = 3 # highest cmd version found in file system self.re_command_fname = re.compile(r'^(([^_.].*)_v(\d+))\.py$') self.root_dir = path self.cmd_dir = os.path.join(self.root_dir, 'commands') self.service_name = os.path.basename(self.root_dir) def getName(self): return self.name def getServiceName(self): return self.service_name def getDescription(self): return self.description def getVersion(self): return self.version def getState(self): return self.state def getPath(self): return self.root_dir def load_commands(self): for command_fname in os.listdir(self.cmd_dir): m = self.re_command_fname.match(command_fname) if m and os.path.isfile(os.path.join(self.cmd_dir, command_fname)): command_name = m.group(2) command_ver = int(m.group(3)) if command_name in self.commands and command_ver > self.commands[command_name][self.COMMANDS_IDX_VER]: del self.commands[command_name][self.COMMANDS_IDX_OBJ] del self.commands[command_name][self.COMMANDS_IDX_MOD] del self.commands[command_name] if command_name not in self.commands: command_fullname = m.group(1) command_mod = importlib.import_module('services.'+self.service_name+'.commands.'+command_fullname) command_obj = getattr( command_mod, command_name.capitalize() )(self, command_ver) self.commands[command_name] = [ command_mod, command_obj, command_ver, command_ver ] else: if command_ver > self.commands[command_name][self.COMMANDS_IDX_SAW]: self.commands[command_name][self.COMMANDS_IDX_SAW] = command_ver for command_name in self.commands: if self.commands[command_name][self.COMMANDS_IDX_SAW] == self.commands[command_name][self.COMMANDS_IDX_VER]: self.commands[command_name][self.COMMANDS_IDX_SAW] = 0 else: command_ver = self.commands[command_name][self.COMMANDS_IDX_SAW] del self.commands[command_name][self.COMMANDS_IDX_OBJ] del self.commands[command_name][self.COMMANDS_IDX_MOD] del self.commands[command_name] if command_ver > 0: command_mod = importlib.import_module('services.'+self.service_name+'.commands.'+command_name+'_v'+command_ver) command_obj = getattr( command_mod, command_name.capitalize() )(self, command_ver) self.commands[command_name] = [ command_mod, command_obj, command_ver, 0 ] def command_interfaces(self): for command in self.commands: yield self.commands[command][self.COMMANDS_IDX_OBJ].getInterface() def execute_command(self, command, args): return self.commands[command][self.COMMANDS_IDX_OBJ].execute(args)
43.959184
131
0.645311
4a479896f1d1459a4ff434d914f4af1881e24e9e
1,390
py
Python
dependencies/panda/Panda3D-1.10.0-x64/direct/interval/MopathInterval.py
CrankySupertoon01/Toontown-2
60893d104528a8e7eb4aced5d0015f22e203466d
[ "MIT" ]
3
2018-03-09T12:07:29.000Z
2021-02-25T06:50:25.000Z
direct/src/interval/MopathInterval.py
Sinkay/panda3d
16bfd3750f726a8831771b81649d18d087917fd5
[ "PHP-3.01", "PHP-3.0" ]
1
2018-07-28T20:07:04.000Z
2018-07-30T18:28:34.000Z
direct/src/interval/MopathInterval.py
Sinkay/panda3d
16bfd3750f726a8831771b81649d18d087917fd5
[ "PHP-3.01", "PHP-3.0" ]
2
2019-12-02T01:39:10.000Z
2021-02-13T22:41:00.000Z
"""MopathInterval module: contains the MopathInterval class""" __all__ = ['MopathInterval'] import LerpInterval from panda3d.core import * from panda3d.direct import * from direct.directnotify.DirectNotifyGlobal import * # import Mopath class MopathInterval(LerpInterval.LerpFunctionInterval): # Name counter mopathNum = 1 # create MopathInterval DirectNotify category notify = directNotify.newCategory('MopathInterval') # Class methods def __init__(self, mopath, node, fromT = 0, toT = None, duration = None, blendType = 'noBlend', name = None): if toT == None: toT = mopath.getMaxT() if duration == None: duration = abs(toT - fromT) # Generate unique name if necessary if (name == None): name = 'Mopath-%d' % MopathInterval.mopathNum MopathInterval.mopathNum += 1 LerpInterval.LerpFunctionInterval.__init__( self, self.__doMopath, fromData = fromT, toData = toT, duration = duration, blendType = blendType, name = name) self.mopath = mopath self.node = node def destroy(self): """Cleanup to avoid a garbage cycle.""" self.function = None def __doMopath(self, t): """ Go to time t """ self.mopath.goTo(self.node, t)
28.367347
70
0.607194
cb92ced5c698a78273441d98397b8dbb18557e7e
6,300
py
Python
frappe/utils/redis_wrapper.py
vinhnguyent090/frappe
636d9442e2ccf0cfac2d5aace427d8de05f63bd9
[ "MIT" ]
5
2017-09-12T15:56:31.000Z
2022-03-09T13:50:21.000Z
frappe/utils/redis_wrapper.py
alexbow2008/frappe
ce592a40b4c5e80a9c6cbdc541105218bf98c966
[ "MIT" ]
7
2020-03-24T18:15:04.000Z
2022-02-10T20:52:45.000Z
frappe/utils/redis_wrapper.py
alexbow2008/frappe
ce592a40b4c5e80a9c6cbdc541105218bf98c966
[ "MIT" ]
8
2019-04-21T07:49:50.000Z
2021-12-24T20:20:38.000Z
# Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors # MIT License. See license.txt from __future__ import unicode_literals import redis, frappe, re from six.moves import cPickle as pickle from frappe.utils import cstr from six import iteritems class RedisWrapper(redis.Redis): """Redis client that will automatically prefix conf.db_name""" def connected(self): try: self.ping() return True except redis.exceptions.ConnectionError: return False def make_key(self, key, user=None, shared=False): if shared: return key if user: if user == True: user = frappe.session.user key = "user:{0}:{1}".format(user, key) return "{0}|{1}".format(frappe.conf.db_name, key).encode('utf-8') def set_value(self, key, val, user=None, expires_in_sec=None): """Sets cache value. :param key: Cache key :param val: Value to be cached :param user: Prepends key with User :param expires_in_sec: Expire value of this key in X seconds """ key = self.make_key(key, user) if not expires_in_sec: frappe.local.cache[key] = val try: if expires_in_sec: self.setex(key, pickle.dumps(val), expires_in_sec) else: self.set(key, pickle.dumps(val)) except redis.exceptions.ConnectionError: return None def get_value(self, key, generator=None, user=None, expires=False): """Returns cache value. If not found and generator function is given, it will call the generator. :param key: Cache key. :param generator: Function to be called to generate a value if `None` is returned. :param expires: If the key is supposed to be with an expiry, don't store it in frappe.local """ original_key = key key = self.make_key(key, user) if key in frappe.local.cache: val = frappe.local.cache[key] else: val = None try: val = self.get(key) except redis.exceptions.ConnectionError: pass if val is not None: val = pickle.loads(val) if not expires: if val is None and generator: val = generator() self.set_value(original_key, val, user=user) else: frappe.local.cache[key] = val return val def get_all(self, key): ret = {} for k in self.get_keys(key): ret[key] = self.get_value(k) return ret def get_keys(self, key): """Return keys starting with `key`.""" try: key = self.make_key(key + "*") return self.keys(key) except redis.exceptions.ConnectionError: regex = re.compile(cstr(key).replace("|", "\|").replace("*", "[\w]*")) return [k for k in list(frappe.local.cache) if regex.match(k.decode())] def delete_keys(self, key): """Delete keys with wildcard `*`.""" try: self.delete_value(self.get_keys(key), make_keys=False) except redis.exceptions.ConnectionError: pass def delete_key(self, *args, **kwargs): self.delete_value(*args, **kwargs) def delete_value(self, keys, user=None, make_keys=True, shared=False): """Delete value, list of values.""" if not isinstance(keys, (list, tuple)): keys = (keys, ) for key in keys: if make_keys: key = self.make_key(key, shared=shared) if key in frappe.local.cache: del frappe.local.cache[key] try: self.delete(key) except redis.exceptions.ConnectionError: pass def lpush(self, key, value): super(RedisWrapper, self).lpush(self.make_key(key), value) def rpush(self, key, value): super(RedisWrapper, self).rpush(self.make_key(key), value) def lpop(self, key): return super(RedisWrapper, self).lpop(self.make_key(key)) def llen(self, key): return super(RedisWrapper, self).llen(self.make_key(key)) def hset(self, name, key, value, shared=False): _name = self.make_key(name, shared=shared) # set in local if not _name in frappe.local.cache: frappe.local.cache[_name] = {} frappe.local.cache[_name][key] = value # set in redis try: super(RedisWrapper, self).hset(_name, key, pickle.dumps(value)) except redis.exceptions.ConnectionError: pass def hgetall(self, name): return {key: pickle.loads(value) for key, value in iteritems(super(RedisWrapper, self).hgetall(self.make_key(name)))} def hget(self, name, key, generator=None, shared=False): _name = self.make_key(name, shared=shared) if not _name in frappe.local.cache: frappe.local.cache[_name] = {} if key in frappe.local.cache[_name]: return frappe.local.cache[_name][key] value = None try: value = super(RedisWrapper, self).hget(_name, key) except redis.exceptions.ConnectionError: pass if value: value = pickle.loads(value) frappe.local.cache[_name][key] = value elif generator: value = generator() try: self.hset(name, key, value) except redis.exceptions.ConnectionError: pass return value def hdel(self, name, key, shared=False): _name = self.make_key(name, shared=shared) if _name in frappe.local.cache: if key in frappe.local.cache[_name]: del frappe.local.cache[_name][key] try: super(RedisWrapper, self).hdel(_name, key) except redis.exceptions.ConnectionError: pass def hdel_keys(self, name_starts_with, key): """Delete hash names with wildcard `*` and key""" for name in frappe.cache().get_keys(name_starts_with): name = name.split("|", 1)[1] self.hdel(name, key) def hkeys(self, name): try: return super(RedisWrapper, self).hkeys(self.make_key(name)) except redis.exceptions.ConnectionError: return [] def sadd(self, name, *values): """Add a member/members to a given set""" super(RedisWrapper, self).sadd(self.make_key(name), *values) def srem(self, name, *values): """Remove a specific member/list of members from the set""" super(RedisWrapper, self).srem(self.make_key(name), *values) def sismember(self, name, value): """Returns True or False based on if a given value is present in the set""" return super(RedisWrapper, self).sismember(self.make_key(name), value) def spop(self, name): """Removes and returns a random member from the set""" return super(RedisWrapper, self).spop(self.make_key(name)) def srandmember(self, name, count=None): """Returns a random member from the set""" return super(RedisWrapper, self).srandmember(self.make_key(name)) def smembers(self, name): """Return all members of the set""" return super(RedisWrapper, self).smembers(self.make_key(name))
26.923077
93
0.694921
92d092c059fea3857092e35472c3865c7ccc5572
8,767
py
Python
graph.py
Goffayoh/py_graphpath
aed73eea19daa860ad365703fa2bfeaba5f0eefe
[ "CNRI-Python" ]
null
null
null
graph.py
Goffayoh/py_graphpath
aed73eea19daa860ad365703fa2bfeaba5f0eefe
[ "CNRI-Python" ]
null
null
null
graph.py
Goffayoh/py_graphpath
aed73eea19daa860ad365703fa2bfeaba5f0eefe
[ "CNRI-Python" ]
null
null
null
# coding: utf-8 import numpy as np # Définition de la classe Graph contenant la structure d'un graphe ainsi que des différentes fonctions # permettant les réalistions des deux algorithmes de rendez-vous. class Graph: # Structure du graphe def __init__(self, data): self.size = data["nbNoeuds"] self.sommetsList = list(data["nomSommets"]) self.rdvList = list(data["nomRdv"]) self.sommetsIniList = list(data["nomSommetsInitiaux"]) self.arcs = list(data["arcs"]) self.error = 0 if self.sommetsList.__len__() != data["nbNoeuds"]: self.error = 1 if self.rdvList.__len__() != data["nbLieuxRdv"]: self.error = 2 # Ces attributs sont utilisé lors du parcours récursif du graphe dans l'algorithme 2 # path conserve le chemin actuel self.path = np.zeros(self.size ** 2) # bool conserve les sommets par lesquels on est déja passé self.bool = np.zeros(self.size ** 2) # target correspont au point de rendez-vous actuellement testé self.target = 0 # min conserve la taille du chemin le plus petit actuellement trouvé self.min = np.inf # res contient les chemins de taille min self.res = [] def error(self): return self.error # Fonction renvoyant la matrice des distances du graphe def mat_graph(self): mat = np.full((self.size, self.size), np.inf) for arc in self.arcs: mat[self.pos_sommet(arc["sommetInitial"]) , self.pos_sommet(arc["sommetTerminal"])] = arc["duree"] return mat # Fonction qui renvoie un entier correspondant a un sommet du graphe permettant le parcours des matrices def pos_sommet(self, char): return self.sommetsList.index(char) # fonction qui renvoie une matrice des distances correspondant à un graphe qui à pour sommet une paire de # sommet du graphe initial et pour arcs des arcs du graphe initial tel que pour a,b,i dans S on a : # (a,b) -> ((a,i),(b,i)) et (a,b) -> ((i,a),(i,b)) def transform(self, mat): size_pair = self.size * self.size mat_pair = np.full((size_pair, size_pair), np.inf) for i in range(self.size): for j in range(self.size): for k in range(self.size): for l in range(self.size): if i == k and j == l : mat_pair[i * self.size + j, k * self.size + l] \ = np.inf elif i == k : mat_pair[i * self.size + j, k * self.size + l] \ = mat[j, l] elif j == l : mat_pair[i * self.size + j, k * self.size + l] \ = mat[i, k] return mat_pair # fonction du premier algorithme qui détermine le points de rendez-optimal en comparant la plus courte distance # entre le sommet initial (a,b) (où a et b sont les deux points de départs) et chaque points de rendez-vous # possible (i,i) (où i figures parmit les points d'arrivés) def rdv_optimal(self): mat_pcd = self.mat_pcd(self.transform(self.mat_graph())) # sommet inital init = self.pos_sommet(self.sommetsIniList[0]) * self.size + self.pos_sommet(self.sommetsIniList[1]) # construction d'un tableau contenant les points de rendez-vous possibles rdv = [] for c in self.rdvList: rdv.append(self.pos_sommet(c) * self.size + self.pos_sommet(c)) res = np.inf fin = np.inf # recherche de la plus courte distance for i in range(len(rdv)): if mat_pcd[init, rdv[i]] < res: res = mat_pcd[init, rdv[i]] fin = i if fin != np.inf: return str(self.rdvList[fin]) else: return "" # fonction qui prend une matrice des distances en entrée et qui renvoie la matrices des plus courtes distantes # correspondantes selon l'algorithme de Floyd-Warshall def mat_pcd(self, mat): size_pair = self.size * self.size for i in range(size_pair): mat[i, i] = 0 for k in range(size_pair): for i in range(size_pair): for j in range(size_pair): mat[i, j] = min(mat[i, j], mat[i, k] + mat[k, j]) return mat # fonction récursive qui permet de parcourir le graphe en profondeur pour rassembler tout les chemins possible # entre un point de départ et une cible. La pronfondeur est borné par la longueur d'un chemin minimal déja # trouvé afin de limiter les appels récursif def explore(self, mat, position, depth): if depth > self.min: return self.path[depth] = position if position == self.target: if self.min == depth: # Si l'on a déja trouvé un chemin de même taille on sauvegarde aussi le nouveau chemin car il peut avoir # une durée plus courte self.res.append(np.copy(self.path[0:depth + 1]).astype(int).tolist()) if self.min > depth: # Si l'on trouve un nouveau chemin minimal on écrase notre résultat par ce nouveau chemin # et on met à jour le nombre d'étape minimale self.min = depth self.res = [np.copy(self.path[0:depth + 1]).astype(int).tolist()] return # On marque ce sommet car on y est passé une fois self.bool[position] = 1 for i in range(self.size ** 2): # Si il n'y a pas d'arc vers le sommet ou qu'on est déja passé par celui-ci on l'ignore if mat[position][i] == np.inf or self.bool[i] == 1: continue # Sinon on explore par ce sommet self.explore(mat, i, depth + 1) # on retire la marque self.bool[position] = 0 return # Fonction qui implémente l'algorithme 2 def rdv_optimal2(self): size_pair = self.size * self.size mat = self.transform(self.mat_graph()) # Sommet inital init = self.pos_sommet(self.sommetsIniList[0]) * self.size + self.pos_sommet(self.sommetsIniList[1]) # Construction d'un tableau contenant les points de rendez-vous possibles rdv = [] for c in self.rdvList: rdv.append(self.pos_sommet(c) * self.size + self.pos_sommet(c)) roadres = [] sizemin = np.inf # Pour chaque point de rendez-vous on dresse une liste de chemin point de départ -> point de rendez-vous de # taille minimale. En même temps on conserve la taille du plus petit chemin trouvé dans sizemin for i in range(len(rdv)): # Avant chaque exploration on réinitialise les variables et on choisit la bonne cible self.bool = np.zeros(self.size ** 2) self.path = np.zeros(self.size ** 2) self.min = np.inf self.target = rdv[i] self.explore(mat, init, 0) if len(self.res[0]) < sizemin: sizemin = len(self.res[0]) roadres.append(self.res) candidat = [] # On ne conserve que les points de rendez vous ayant des chemin de tailles minimales for i in range(len(roadres)): if (len(roadres[i][0])) == sizemin: candidat.append(roadres[i]) distmin = np.inf resfinal = np.inf # On regarde combien de candidat on obtient if len(candidat) > 1: # Lorsqu'il y a plusieurs candidats on recherche celui qui a le plus court chemin en terme de durée parmi # ceux de taille minimale for i in range(len(candidat)): dist = 0 for u in range(len(candidat[i])): for j in range(sizemin - 1): # on calcule la durée du chemin dist = dist + mat[candidat[i][u][j]][candidat[i][u][j + 1]] if dist < distmin: # Si on trouve une nouvelle durée minimale on sauvegarde celle-ci ainsi que le point de # rendez-vous qui se trouve à la fin du chemin resfinal = candidat[i][0][sizemin - 1] distmin = dist else: # Si il y a un seul candidat on le récupère en allant cherchez le point de rendez vous qui est le dernier # des chemins qu'on a sauvegardé resfinal = candidat[0][0][sizemin - 1] return str(self.sommetsList[(resfinal // (self.size+1))])
47.389189
120
0.570549
e8addd2e5900990c979cf594c5b698b208713bd2
66,692
py
Python
px.py
bedla/px
d6670f27babfc948bb03141d0e95ce26865ba461
[ "MIT" ]
1
2020-08-06T12:36:44.000Z
2020-08-06T12:36:44.000Z
px.py
bedla/px
d6670f27babfc948bb03141d0e95ce26865ba461
[ "MIT" ]
null
null
null
px.py
bedla/px
d6670f27babfc948bb03141d0e95ce26865ba461
[ "MIT" ]
null
null
null
"Px is an HTTP proxy server to automatically authenticate through an NTLM proxy" from __future__ import print_function __version__ = "0.4.0" import base64 import ctypes import ctypes.wintypes import multiprocessing import os import select import signal import socket import sys import threading import time import traceback # Print if possible def pprint(*objs): try: print(*objs) except: pass # Dependencies try: import concurrent.futures except ImportError: pprint("Requires module futures") sys.exit() try: import netaddr except ImportError: pprint("Requires module netaddr") sys.exit() try: import psutil except ImportError: pprint("Requires module psutil") sys.exit() try: import pywintypes import sspi except ImportError: pprint("Requires module pywin32") sys.exit() try: import winkerberos except ImportError: pprint("Requires module winkerberos") sys.exit() try: import ntlm_auth.ntlm except ImportError: pprint("Requires module ntlm-auth") sys.exit() try: import keyring import keyring.backends.Windows keyring.set_keyring(keyring.backends.Windows.WinVaultKeyring()) except ImportError: pprint("Requires module keyring") sys.exit() # Python 2.x vs 3.x support try: import configparser import http.server as httpserver import socketserver import urllib.parse as urlparse import winreg except ImportError: import ConfigParser as configparser import SimpleHTTPServer as httpserver import SocketServer as socketserver import urlparse import _winreg as winreg os.getppid = psutil.Process().ppid PermissionError = WindowsError HELP = """Px v%s An HTTP proxy server to automatically authenticate through an NTLM proxy Usage: px [FLAGS] python px.py [FLAGS] Actions: --save Save configuration to px.ini or file specified with --config Allows setting up Px config directly from command line Values specified on CLI override any values in existing config file Values not specified on CLI or config file are set to defaults --install Add Px to the Windows registry to run on startup --uninstall Remove Px from the Windows registry --quit Quit a running instance of Px.exe Configuration: --config= Specify config file. Valid file path, default: px.ini in working directory --proxy= --server= proxy:server= in INI file NTLM server(s) to connect through. IP:port, hostname:port Multiple proxies can be specified comma separated. Px will iterate through and use the one that works. Required field unless --noproxy is defined. If remote server is not in noproxy list and proxy is undefined, Px will reject the request --pac= proxy:pac= PAC file to use to connect Use in place of server if PAC file should be loaded from a custom URL or file location instead of from Internet Options --listen= proxy:listen= IP interface to listen on. Valid IP address, default: 127.0.0.1 --port= proxy:port= Port to run this proxy. Valid port number, default: 3128 --gateway proxy:gateway= Allow remote machines to use proxy. 0 or 1, default: 0 Overrides 'listen' and binds to all interfaces --hostonly proxy:hostonly= Allow only local interfaces to use proxy. 0 or 1, default: 0 Px allows all IP addresses assigned to local interfaces to use the service. This allows local apps as well as VM or container apps to use Px when in a NAT config. Px does this by listening on all interfaces and overriding the allow list. --allow= proxy:allow= Allow connection from specific subnets. Comma separated, default: *.*.*.* Whitelist which IPs can use the proxy. --hostonly overrides any definitions unless --gateway mode is also specified 127.0.0.1 - specific ip 192.168.0.* - wildcards 192.168.0.1-192.168.0.255 - ranges 192.168.0.1/24 - CIDR --noproxy= proxy:noproxy= Direct connect to specific subnets like a regular proxy. Comma separated Skip the NTLM proxy for connections to these subnets 127.0.0.1 - specific ip 192.168.0.* - wildcards 192.168.0.1-192.168.0.255 - ranges 192.168.0.1/24 - CIDR --useragent= proxy:useragent= Override or send User-Agent header on client's behalf --username= proxy:username= Authentication to use when SSPI is unavailable. Format is domain\\username Service name "Px" and this username are used to retrieve the password using Python keyring. Px only retrieves credentials and storage should be done directly in the keyring backend. On Windows, Credential Manager is the backed and can be accessed from Control Panel > User Accounts > Credential Manager > Windows Credentials. Create a generic credential with Px as the network address, this username and corresponding password. --auth= proxy:auth= Force instead of discovering upstream proxy type By default, Px will attempt to discover the upstream proxy type and either use pywin32/ntlm-auth for NTLM auth or winkerberos for Kerberos or Negotiate auth. This option will force either NTLM, Kerberos or Basic and not query the upstream proxy type. --workers= settings:workers= Number of parallel workers (processes). Valid integer, default: 2 --threads= settings:threads= Number of parallel threads per worker (process). Valid integer, default: 5 --idle= settings:idle= Idle timeout in seconds for HTTP connect sessions. Valid integer, default: 30 --socktimeout= settings:socktimeout= Timeout in seconds for connections before giving up. Valid float, default: 20 --proxyreload= settings:proxyreload= Time interval in seconds before refreshing proxy info. Valid int, default: 60 Proxy info reloaded from a PAC file found via WPAD or AutoConfig URL, or manual proxy info defined in Internet Options --foreground settings:foreground= Run in foreground when frozen or with pythonw.exe. 0 or 1, default: 0 Px will attach to the console and write to it even though the prompt is available for further commands. CTRL-C in the console will exit Px --debug settings:log= Enable debug logging. default: 0 Logs are written to working directory and over-written on startup A log is automatically created if Px crashes for some reason --uniqlog Generate unique log file names Prevents logs from being overwritten on subsequent runs. Also useful if running multiple instances of Px""" % __version__ # Windows version # 6.1 = Windows 7 # 6.2 = Windows 8 # 6.3 = Windows 8.1 # 10.0 = Windows 10 WIN_VERSION = float( str(sys.getwindowsversion().major) + "." + str(sys.getwindowsversion().minor)) # Proxy modes - source of proxy info MODE_NONE = 0 MODE_CONFIG = 1 MODE_AUTO = 2 MODE_PAC = 3 MODE_MANUAL = 4 MODE_CONFIG_PAC = 5 class State(object): allow = netaddr.IPGlob("*.*.*.*") config = None domain = "" exit = False hostonly = False logger = None noproxy = netaddr.IPSet([]) noproxy_hosts = [] pac = "" proxy_mode = MODE_NONE proxy_refresh = None proxy_server = [] proxy_type = {} stdout = None useragent = "" username = "" auth = None ini = "px.ini" max_disconnect = 3 max_line = 65536 + 1 # Locks for thread synchronization; # multiprocess sync isn't neccessary because State object is only shared by # threads but every process has it's own State object proxy_type_lock = threading.Lock() proxy_mode_lock = threading.Lock() class Response(object): __slots__ = ["code", "length", "headers", "data", "body", "chunked", "close"] def __init__(self, code=503): self.code = code self.length = 0 self.headers = [] self.data = None self.body = False self.chunked = False self.close = False class Log(object): def __init__(self, name, mode): self.file = open(name, mode) self.stdout = sys.stdout self.stderr = sys.stderr sys.stdout = self sys.stderr = self def close(self): sys.stdout = self.stdout sys.stderr = self.stderr self.file.close() def write(self, data): try: self.file.write(data) except: pass if self.stdout is not None: self.stdout.write(data) self.flush() def flush(self): self.file.flush() os.fsync(self.file.fileno()) if self.stdout is not None: self.stdout.flush() def dprint(msg): if State.logger is not None: # Do locking to avoid mixing the output of different threads as there are # two calls to print which could otherwise interleave sys.stdout.write( multiprocessing.current_process().name + ": " + threading.current_thread().name + ": " + str(int(time.time())) + ": " + sys._getframe(1).f_code.co_name + ": " + msg + "\n") def dfile(): name = multiprocessing.current_process().name if "--quit" in sys.argv: name = "quit" if "--uniqlog" in sys.argv: name = "%s-%f" % (name, time.time()) logfile = os.path.join(os.path.dirname(get_script_path()), "debug-%s.log" % name) return logfile def reopen_stdout(): clrstr = "\r" + " " * 80 + "\r" if State.logger is None: State.stdout = sys.stdout sys.stdout = open("CONOUT$", "w") sys.stdout.write(clrstr) else: State.stdout = State.logger.stdout State.logger.stdout = open("CONOUT$", "w") State.logger.stdout.write(clrstr) def restore_stdout(): if State.logger is None: sys.stdout.close() sys.stdout = State.stdout else: State.logger.stdout.close() State.logger.stdout = State.stdout ### # Auth support def b64decode(val): try: return base64.decodebytes(val.encode("utf-8")) except AttributeError: return base64.decodestring(val) def b64encode(val): try: return base64.encodebytes(val.encode("utf-8")) except AttributeError: return base64.encodestring(val) class AuthMessageGenerator: def __init__(self, proxy_type, proxy_server_address): pwd = "" if State.username: key = State.username if State.domain != "": key = State.domain + "\\" + State.username pwd = keyring.get_password("Px", key) if proxy_type == "NTLM": if not pwd: self.ctx = sspi.ClientAuth("NTLM", os.environ.get("USERNAME"), scflags=0) self.get_response = self.get_response_sspi else: self.ctx = ntlm_auth.ntlm.NtlmContext( State.username, pwd, State.domain, "", ntlm_compatibility=3) self.get_response = self.get_response_ntlm elif proxy_type == "BASIC": if not State.username: dprint("No username configured for Basic authentication") elif not pwd: dprint("No password configured for Basic authentication") else: # Colons are forbidden in usernames and passwords for basic auth # but since this can happen very easily, we make a special check # just for colons so people immediately understand that and don't # have to look up other resources. if ":" in State.username or ":" in pwd: dprint("Credentials contain invalid colon character") else: # Additionally check for invalid control characters as per # RFC5234 Appendix B.1 (section CTL) illegal_control_characters = "".join( chr(i) for i in range(0x20)) + "\u007F" if any(char in State.username or char in pwd for char in illegal_control_characters): dprint("Credentials contain invalid characters: %s" % ", ".join("0x" + "%x" % ord(char) for char in illegal_control_characters)) else: # Remove newline appended by base64 function self.ctx = b64encode( "%s:%s" % (State.username, pwd))[:-1].decode() self.get_response = self.get_response_basic else: principal = None if pwd: if State.domain: principal = (urlparse.quote(State.username) + "@" + urlparse.quote(State.domain) + ":" + urlparse.quote(pwd)) else: principal = (urlparse.quote(State.username) + ":" + urlparse.quote(pwd)) _, self.ctx = winkerberos.authGSSClientInit("HTTP@" + proxy_server_address, principal=principal, gssflags=0, mech_oid=winkerberos.GSS_MECH_OID_SPNEGO) self.get_response = self.get_response_wkb def get_response_sspi(self, challenge=None): dprint("pywin32 SSPI") if challenge: challenge = b64decode(challenge) output_buffer = None try: error_msg, output_buffer = self.ctx.authorize(challenge) except pywintypes.error: traceback.print_exc(file=sys.stdout) return None response_msg = b64encode(output_buffer[0].Buffer) response_msg = response_msg.decode("utf-8").replace('\012', '') return response_msg def get_response_wkb(self, challenge=""): dprint("winkerberos SSPI") try: winkerberos.authGSSClientStep(self.ctx, challenge) auth_req = winkerberos.authGSSClientResponse(self.ctx) except winkerberos.GSSError: traceback.print_exc(file=sys.stdout) return None return auth_req def get_response_ntlm(self, challenge=""): dprint("ntlm-auth") if challenge: challenge = b64decode(challenge) response_msg = b64encode(self.ctx.step(challenge)) response_msg = response_msg.decode("utf-8").replace('\012', '') return response_msg def get_response_basic(self, challenge=""): dprint("basic") return self.ctx ### # Proxy handler class Proxy(httpserver.SimpleHTTPRequestHandler): protocol_version = "HTTP/1.1" # Contains the proxy servers responsible for the url this Proxy instance # (aka thread) serves proxy_servers = [] proxy_socket = None def handle_one_request(self): try: httpserver.SimpleHTTPRequestHandler.handle_one_request(self) except socket.error as e: dprint("Socket error: %s" % e) if not hasattr(self, "_host_disconnected"): self._host_disconnected = 1 dprint("Host disconnected") elif self._host_disconnected < State.max_disconnect: self._host_disconnected += 1 dprint("Host disconnected: %d" % self._host_disconnected) else: dprint("Closed connection to avoid infinite loop") self.close_connection = True def address_string(self): host, port = self.client_address[:2] #return socket.getfqdn(host) return host def log_message(self, format, *args): dprint(format % args) def do_socket_connect(self, destination=None): # Already connected? if self.proxy_socket is not None: return True dests = list(self.proxy_servers) if destination is None else [ destination] for dest in dests: dprint("New connection: " + str(dest)) proxy_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: proxy_socket.connect(dest) self.proxy_address = dest self.proxy_socket = proxy_socket break except Exception as e: dprint("Connect failed: %s" % e) # move a non reachable proxy to the end of the proxy list; if len(self.proxy_servers) > 1: # append first and then remove, this should ensure thread # safety with manual configurated proxies (in this case # self.proxy_servers references the shared # State.proxy_server) self.proxy_servers.append(dest) self.proxy_servers.remove(dest) if self.proxy_socket is not None: return True return False def do_socket(self, xheaders={}, destination=None): dprint("Entering") # Connect to proxy or destination if not self.do_socket_connect(destination): return Response(408) # No chit chat on SSL if destination is not None and self.command == "CONNECT": return Response(200) cl = 0 chk = False expect = False keepalive = False ua = False cmdstr = "%s %s %s\r\n" % (self.command, self.path, self.request_version) self.proxy_socket.sendall(cmdstr.encode("utf-8")) dprint(cmdstr.strip()) for header in self.headers: hlower = header.lower() if hlower == "user-agent" and State.useragent != "": ua = True h = "%s: %s\r\n" % (header, State.useragent) else: h = "%s: %s\r\n" % (header, self.headers[header]) self.proxy_socket.sendall(h.encode("utf-8")) if hlower != "authorization": dprint("Sending %s" % h.strip()) else: dprint("Sending %s: sanitized len(%d)" % ( header, len(self.headers[header]))) if hlower == "content-length": cl = int(self.headers[header]) elif (hlower == "expect" and self.headers[header].lower() == "100-continue"): expect = True elif hlower == "proxy-connection": keepalive = True elif (hlower == "transfer-encoding" and self.headers[header].lower() == "chunked"): dprint("CHUNKED data") chk = True if not keepalive and self.request_version.lower() == "http/1.0": xheaders["Proxy-Connection"] = "keep-alive" if not ua and State.useragent != "": xheaders["User-Agent"] = State.useragent for header in xheaders: h = ("%s: %s\r\n" % (header, xheaders[header])).encode("utf-8") self.proxy_socket.sendall(h) if header.lower() != "proxy-authorization": dprint("Sending extra %s" % h.strip()) else: dprint("Sending extra %s: sanitized len(%d)" % ( header, len(xheaders[header]))) self.proxy_socket.sendall(b"\r\n") if self.command in ["POST", "PUT", "PATCH"]: if not hasattr(self, "body"): dprint("Getting body for POST/PUT/PATCH") if cl: self.body = self.rfile.read(cl) else: self.body = self.rfile.read() dprint("Sending body for POST/PUT/PATCH: %d = %d" % ( cl or -1, len(self.body))) self.proxy_socket.sendall(self.body) self.proxy_fp = self.proxy_socket.makefile("rb") resp = Response() if self.command != "HEAD": resp.body = True # Response code for i in range(2): dprint("Reading response code") line = self.proxy_fp.readline(State.max_line) if line == b"\r\n": line = self.proxy_fp.readline(State.max_line) try: resp.code = int(line.split()[1]) except (ValueError, IndexError): dprint("Bad response %s" % line) if line == b"": dprint("Client closed connection") return Response(444) if (b"connection established" in line.lower() or resp.code == 204 or resp.code == 304): resp.body = False dprint("Response code: %d " % resp.code + str(resp.body)) # Get response again if 100-Continue if not (expect and resp.code == 100): break # Headers dprint("Reading response headers") while not State.exit: line = self.proxy_fp.readline(State.max_line).decode("utf-8") if line == b"": if self.proxy_socket: self.proxy_socket.shutdown(socket.SHUT_WR) self.proxy_socket.close() self.proxy_socket = None dprint("Proxy closed connection: %s" % resp.code) return Response(444) if line == "\r\n": break nv = line.split(":", 1) if len(nv) != 2: dprint("Bad header =>%s<=" % line) continue name = nv[0].strip() value = nv[1].strip() resp.headers.append((name, value)) if name.lower() != "proxy-authenticate": dprint("Received %s: %s" % (name, value)) else: dprint("Received %s: sanitized (%d)" % (name, len(value))) if name.lower() == "content-length": resp.length = int(value) if not resp.length: resp.body = False elif (name.lower() == "transfer-encoding" and value.lower() == "chunked"): resp.chunked = True resp.body = True elif (name.lower() in ["proxy-connection", "connection"] and value.lower() == "close"): resp.close = True return resp def do_proxy_type(self): # Connect to proxy if not hasattr(self, "proxy_address"): if not self.do_socket_connect(): return Response(408), None State.proxy_type_lock.acquire() try: # Read State.proxy_type only once and use value for function return # if it is not None; State.proxy_type should only be read here to # avoid getting None after successfully identifying the proxy type # if another thread clears it with load_proxy proxy_type = State.proxy_type.get(self.proxy_address, State.auth) if proxy_type is None: # New proxy, don't know type yet dprint("Searching proxy type") resp = self.do_socket() proxy_auth = "" for header in resp.headers: if header[0].lower() == "proxy-authenticate": proxy_auth += header[1] + " " for auth in proxy_auth.split(): auth = auth.upper() if auth in ["NTLM", "KERBEROS", "NEGOTIATE", "BASIC"]: proxy_type = auth break if proxy_type is not None: # Writing State.proxy_type only once but use local variable # as return value to avoid losing the query result (for the # current request) by clearing State.proxy_type in load_proxy State.proxy_type[self.proxy_address] = proxy_type dprint("Auth mechanisms: " + proxy_auth) dprint("Selected: " + str(self.proxy_address) + ": " + str(proxy_type)) return resp, proxy_type return Response(407), proxy_type finally: State.proxy_type_lock.release() def do_transaction(self): dprint("Entering") ipport = self.get_destination() if ipport not in [False, True]: dprint("Skipping auth proxying") resp = self.do_socket(destination=ipport) elif ipport: # Get proxy type directly from do_proxy_type instead by accessing # State.proxy_type do avoid a race condition with clearing # State.proxy_type in load_proxy which sometimes led to a proxy type # of None (clearing State.proxy_type in one thread was done after # another thread's do_proxy_type but before accessing # State.proxy_type in the second thread) resp, proxy_type = self.do_proxy_type() if resp.code == 407: # Unknown auth mechanism if proxy_type is None: dprint("Unknown auth mechanism expected") return resp # Generate auth message ntlm = AuthMessageGenerator(proxy_type, self.proxy_address[0]) ntlm_resp = ntlm.get_response() if ntlm_resp is None: dprint("Bad auth response") return Response(503) self.fwd_data(resp, flush=True) hconnection = "" for i in ["connection", "Connection"]: if i in self.headers: hconnection = self.headers[i] del self.headers[i] dprint("Remove header %s: %s" % (i, hconnection)) # Send auth message resp = self.do_socket({ "Proxy-Authorization": "%s %s" % (proxy_type, ntlm_resp), "Proxy-Connection": "Keep-Alive" }) if resp.code == 407: dprint("Auth required") ntlm_challenge = "" for header in resp.headers: if (header[0].lower() == "proxy-authenticate" and proxy_type in header[1].upper()): h = header[1].split() if len(h) == 2: ntlm_challenge = h[1] break if ntlm_challenge: dprint("Challenged") ntlm_resp = ntlm.get_response(ntlm_challenge) if ntlm_resp is None: dprint("Bad auth response") return Response(503) self.fwd_data(resp, flush=True) if hconnection != "": self.headers["Connection"] = hconnection dprint("Restore header Connection: " + hconnection) # Reply to challenge resp = self.do_socket({ "Proxy-Authorization": "%s %s" % ( proxy_type, ntlm_resp) }) else: dprint("Didn't get challenge, auth didn't work") else: dprint("No auth required cached") else: dprint("No auth required") else: dprint("No proxy server specified and not in noproxy list") return Response(501) return resp def do_HEAD(self): dprint("Entering") self.do_GET() dprint("Done") def do_PAC(self): resp = Response(404) if State.proxy_mode in [MODE_PAC, MODE_CONFIG_PAC]: pac = State.pac if "file://" in State.pac: pac = file_url_to_local_path(State.pac) dprint(pac) try: resp.code = 200 with open(pac) as p: resp.data = p.read().encode("utf-8") resp.body = True resp.headers = [ ("Content-Length", len(resp.data)), ("Content-Type", "application/x-ns-proxy-autoconfig") ] except: traceback.print_exc(file=sys.stdout) return resp def do_GET(self): dprint("Entering") dprint("Path = " + self.path) if "/PxPACFile.pac" in self.path: resp = self.do_PAC() else: resp = self.do_transaction() if resp.code >= 400: dprint("Error %d" % resp.code) self.fwd_resp(resp) dprint("Done") def do_POST(self): dprint("Entering") self.do_GET() dprint("Done") def do_PUT(self): dprint("Entering") self.do_GET() dprint("Done") def do_DELETE(self): dprint("Entering") self.do_GET() dprint("Done") def do_PATCH(self): dprint("Entering") self.do_GET() dprint("Done") def do_CONNECT(self): dprint("Entering") for i in ["connection", "Connection"]: if i in self.headers: del self.headers[i] dprint("Remove header " + i) cl = 0 cs = 0 resp = self.do_transaction() if resp.code >= 400: dprint("Error %d" % resp.code) self.fwd_resp(resp) else: # Proxy connection may be already closed due to header # (Proxy-)Connection: close received from proxy -> forward this to # the client if self.proxy_socket is None: dprint("Proxy connection closed") self.send_response(200, "True") self.send_header("Proxy-Connection", "close") self.end_headers() else: dprint("Tunneling through proxy") self.send_response(200, "Connection established") self.send_header("Proxy-Agent", self.version_string()) self.end_headers() # sockets will be removed from these lists, when they are # detected as closed by remote host; wlist contains sockets # only when data has to be written rlist = [self.connection, self.proxy_socket] wlist = [] # data to be written to client connection and proxy socket cdata = [] sdata = [] idle = State.config.getint("settings", "idle") max_idle = time.time() + idle while not State.exit and (rlist or wlist): (ins, outs, exs) = select.select(rlist, wlist, rlist, idle) if exs: break if ins: for i in ins: if i is self.proxy_socket: out = self.connection wdata = cdata source = "proxy" else: out = self.proxy_socket wdata = sdata source = "client" data = i.recv(4096) if data: cl += len(data) # Prepare data to send it later in outs section wdata.append(data) if out not in outs: outs.append(out) max_idle = time.time() + idle else: # No data means connection closed by remote host dprint("Connection closed by %s" % source) # Because tunnel is closed on one end there is # no need to read from both ends del rlist[:] # Do not write anymore to the closed end if i in wlist: wlist.remove(i) if i in outs: outs.remove(i) if outs: for o in outs: if o is self.proxy_socket: wdata = sdata else: wdata = cdata data = wdata[0] # socket.send() may sending only a part of the data # (as documentation says). To ensure sending all data bsnt = o.send(data) if bsnt > 0: if bsnt < len(data): # Not all data was sent; store data not # sent and ensure select() get's it when # the socket can be written again wdata[0] = data[bsnt:] if o not in wlist: wlist.append(o) else: wdata.pop(0) if not data and o in wlist: wlist.remove(o) cs += bsnt else: dprint("No data sent") max_idle = time.time() + idle if max_idle < time.time(): # No data in timeout seconds dprint("Proxy connection timeout") break # After serving the proxy tunnel it could not be used for samething else. # A proxy doesn't really know, when a proxy tunnnel isn't needed any # more (there is no content length for data). So servings will be ended # either after timeout seconds without data transfer or when at least # one side closes the connection. Close both proxy and client # connection if still open. if self.proxy_socket is not None: dprint("Cleanup proxy connection") self.proxy_socket.shutdown(socket.SHUT_WR) self.proxy_socket.close() self.proxy_socket = None self.close_connection = True dprint("%d bytes read, %d bytes written" % (cl, cs)) dprint("Done") def fwd_data(self, resp, flush=False): cl = resp.length dprint("Reading response data") if resp.body: if cl: dprint("Content length %d" % cl) while cl > 0: if cl > 4096: l = 4096 cl -= l else: l = cl cl = 0 d = self.proxy_fp.read(l) if not flush: self.wfile.write(d) elif resp.chunked: dprint("Chunked encoding") while not State.exit: line = self.proxy_fp.readline(State.max_line) if not flush: self.wfile.write(line) line = line.decode("utf-8").strip() if not len(line): dprint("Blank chunk size") break else: try: csize = int(line, 16) + 2 dprint("Chunk of size %d" % csize) except ValueError: dprint("Bad chunk size '%s'" % line) continue d = self.proxy_fp.read(csize) if not flush: self.wfile.write(d) if csize == 2: dprint("No more chunks") break if len(d) < csize: dprint("Chunk size doesn't match data") break elif resp.data is not None: dprint("Sending data string") if not flush: self.wfile.write(resp.data) else: dprint("Not sure how much") while not State.exit: time.sleep(0.1) d = self.proxy_fp.read(1024) if not flush: self.wfile.write(d) if len(d) < 1024: break if resp.close and self.proxy_socket: dprint("Close proxy connection per header") self.proxy_socket.close() self.proxy_socket = None def fwd_resp(self, resp): dprint("Entering") self.send_response(resp.code) for header in resp.headers: dprint("Returning %s: %s" % (header[0], header[1])) self.send_header(header[0], header[1]) self.end_headers() self.fwd_data(resp) dprint("Done") def get_destination(self): netloc = self.path path = "/" if self.command != "CONNECT": parse = urlparse.urlparse(self.path, allow_fragments=False) if parse.netloc: netloc = parse.netloc if ":" not in netloc: port = parse.port if not port: if parse.scheme == "http": port = 80 elif parse.scheme == "https": port = 443 elif parse.scheme == "ftp": port = 21 netloc = netloc + ":" + str(port) path = parse.path or "/" if parse.params: path = path + ";" + parse.params if parse.query: path = path + "?" + parse.query dprint(netloc) # Check destination for noproxy first, before doing any expensive stuff # possibly involving connections if State.noproxy.size: addr = [] spl = netloc.split(":", 1) try: addr = socket.getaddrinfo(spl[0], int(spl[1])) except socket.gaierror: # Couldn't resolve, let parent proxy try, #18 dprint("Couldn't resolve host") if len(addr) and len(addr[0]) == 5: ipport = addr[0][4] dprint("%s => %s + %s" % (self.path, ipport, path)) if ipport[0] in State.noproxy: dprint("Direct connection from noproxy configuration") self.path = path return ipport # Get proxy mode and servers straight from load_proxy to avoid # threading issues (proxy_mode, self.proxy_servers) = load_proxy() if proxy_mode in [MODE_AUTO, MODE_PAC, MODE_CONFIG_PAC]: proxy_str = find_proxy_for_url( ("https://" if "://" not in self.path else "") + self.path) if proxy_str == "DIRECT": ipport = netloc.split(":") ipport[1] = int(ipport[1]) dprint("Direct connection from PAC") self.path = path return tuple(ipport) if proxy_str: dprint("Proxy from PAC = " + str(proxy_str)) # parse_proxy does not modify State.proxy_server any more, # it returns the proxy server tuples instead, because proxy_str # contains only the proxy servers for URL served by this thread self.proxy_servers = parse_proxy(proxy_str) return True if self.proxy_servers else False ### # Multi-processing and multi-threading def get_host_ips(): localips = [ip[4][0] for ip in socket.getaddrinfo( socket.gethostname(), 80, socket.AF_INET)] localips.insert(0, "127.0.0.1") return localips class PoolMixIn(socketserver.ThreadingMixIn): def process_request(self, request, client_address): self.pool.submit(self.process_request_thread, request, client_address) def verify_request(self, request, client_address): dprint("Client address: %s" % client_address[0]) if client_address[0] in State.allow: return True if State.hostonly and client_address[0] in get_host_ips(): dprint("Host-only IP allowed") return True dprint("Client not allowed: %s" % client_address[0]) return False class ThreadedTCPServer(PoolMixIn, socketserver.TCPServer): daemon_threads = True allow_reuse_address = True def __init__(self, server_address, RequestHandlerClass, bind_and_activate=True): socketserver.TCPServer.__init__(self, server_address, RequestHandlerClass, bind_and_activate) try: # Workaround bad thread naming code in Python 3.6+, fixed in master self.pool = concurrent.futures.ThreadPoolExecutor( max_workers=State.config.getint("settings", "threads"), thread_name_prefix="Thread") except: self.pool = concurrent.futures.ThreadPoolExecutor( max_workers=State.config.getint("settings", "threads")) def print_banner(): pprint("Serving at %s:%d proc %s" % ( State.config.get("proxy", "listen").strip(), State.config.getint("proxy", "port"), multiprocessing.current_process().name) ) if getattr(sys, "frozen", False) != False or "pythonw.exe" in sys.executable: if State.config.getint("settings", "foreground") == 0: detach_console() for section in State.config.sections(): for option in State.config.options(section): dprint(section + ":" + option + " = " + State.config.get( section, option)) def serve_forever(httpd): signal.signal(signal.SIGINT, signal.SIG_DFL) try: httpd.serve_forever() except KeyboardInterrupt: dprint("Exiting") State.exit = True httpd.shutdown() def start_worker(pipeout): parse_config() httpd = ThreadedTCPServer(( State.config.get("proxy", "listen").strip(), State.config.getint("proxy", "port")), Proxy, bind_and_activate=False) mainsock = socket.fromshare(pipeout.recv()) httpd.socket = mainsock print_banner() serve_forever(httpd) def run_pool(): try: httpd = ThreadedTCPServer((State.config.get("proxy", "listen").strip(), State.config.getint("proxy", "port")), Proxy) except OSError as exc: if "attempt was made" in str(exc): print("Px failed to start - port in use") else: pprint(exc) return mainsock = httpd.socket print_banner() if hasattr(socket, "fromshare"): workers = State.config.getint("settings", "workers") for i in range(workers-1): (pipeout, pipein) = multiprocessing.Pipe() p = multiprocessing.Process(target=start_worker, args=(pipeout,)) p.daemon = True p.start() while p.pid is None: time.sleep(1) pipein.send(mainsock.share(p.pid)) serve_forever(httpd) ### # Proxy detection class WINHTTP_CURRENT_USER_IE_PROXY_CONFIG(ctypes.Structure): _fields_ = [("fAutoDetect", ctypes.wintypes.BOOL), # "Automatically detect settings" ("lpszAutoConfigUrl", ctypes.wintypes.LPWSTR), # "Use automatic configuration script, Address" ("lpszProxy", ctypes.wintypes.LPWSTR), # "1.2.3.4:5" if "Use the same proxy server for all protocols", # else advanced # "ftp=1.2.3.4:5;http=1.2.3.4:5;https=1.2.3.4:5;socks=1.2.3.4:5" ("lpszProxyBypass", ctypes.wintypes.LPWSTR), # ";"-separated list # "Bypass proxy server for local addresses" adds "<local>" ] class WINHTTP_AUTOPROXY_OPTIONS(ctypes.Structure): _fields_ = [("dwFlags", ctypes.wintypes.DWORD), ("dwAutoDetectFlags", ctypes.wintypes.DWORD), ("lpszAutoConfigUrl", ctypes.wintypes.LPCWSTR), ("lpvReserved", ctypes.c_void_p), ("dwReserved", ctypes.wintypes.DWORD), ("fAutoLogonIfChallenged", ctypes.wintypes.BOOL), ] class WINHTTP_PROXY_INFO(ctypes.Structure): _fields_ = [("dwAccessType", ctypes.wintypes.DWORD), ("lpszProxy", ctypes.wintypes.LPCWSTR), ("lpszProxyBypass", ctypes.wintypes.LPCWSTR), ] # Parameters for WinHttpOpen, http://msdn.microsoft.com/en-us/library/aa384098(VS.85).aspx WINHTTP_NO_PROXY_NAME = 0 WINHTTP_NO_PROXY_BYPASS = 0 WINHTTP_FLAG_ASYNC = 0x10000000 # dwFlags values WINHTTP_AUTOPROXY_AUTO_DETECT = 0x00000001 WINHTTP_AUTOPROXY_CONFIG_URL = 0x00000002 # dwAutoDetectFlags values WINHTTP_AUTO_DETECT_TYPE_DHCP = 0x00000001 WINHTTP_AUTO_DETECT_TYPE_DNS_A = 0x00000002 # dwAccessType values WINHTTP_ACCESS_TYPE_DEFAULT_PROXY = 0 WINHTTP_ACCESS_TYPE_NO_PROXY = 1 WINHTTP_ACCESS_TYPE_NAMED_PROXY = 3 WINHTTP_ACCESS_TYPE_AUTOMATIC_PROXY = 4 # Error messages WINHTTP_ERROR_WINHTTP_UNABLE_TO_DOWNLOAD_SCRIPT = 12167 def winhttp_find_proxy_for_url( url, autodetect=False, pac_url=None, autologon=True): # Fix issue #51 ACCESS_TYPE = WINHTTP_ACCESS_TYPE_AUTOMATIC_PROXY if WIN_VERSION < 6.3: ACCESS_TYPE = WINHTTP_ACCESS_TYPE_DEFAULT_PROXY ctypes.windll.winhttp.WinHttpOpen.restype = ctypes.c_void_p hInternet = ctypes.windll.winhttp.WinHttpOpen( ctypes.wintypes.LPCWSTR("Px"), ACCESS_TYPE, WINHTTP_NO_PROXY_NAME, WINHTTP_NO_PROXY_BYPASS, WINHTTP_FLAG_ASYNC) if not hInternet: dprint("WinHttpOpen failed: " + str(ctypes.GetLastError())) return "" autoproxy_options = WINHTTP_AUTOPROXY_OPTIONS() if pac_url: autoproxy_options.dwFlags = WINHTTP_AUTOPROXY_CONFIG_URL autoproxy_options.dwAutoDetectFlags = 0 autoproxy_options.lpszAutoConfigUrl = pac_url elif autodetect: autoproxy_options.dwFlags = WINHTTP_AUTOPROXY_AUTO_DETECT autoproxy_options.dwAutoDetectFlags = ( WINHTTP_AUTO_DETECT_TYPE_DHCP | WINHTTP_AUTO_DETECT_TYPE_DNS_A) autoproxy_options.lpszAutoConfigUrl = 0 else: return "" autoproxy_options.fAutoLogonIfChallenged = autologon proxy_info = WINHTTP_PROXY_INFO() # Fix issue #43 ctypes.windll.winhttp.WinHttpGetProxyForUrl.argtypes = [ctypes.c_void_p, ctypes.wintypes.LPCWSTR, ctypes.POINTER(WINHTTP_AUTOPROXY_OPTIONS), ctypes.POINTER(WINHTTP_PROXY_INFO)] ok = ctypes.windll.winhttp.WinHttpGetProxyForUrl( hInternet, ctypes.wintypes.LPCWSTR(url), ctypes.byref(autoproxy_options), ctypes.byref(proxy_info)) if not ok: error = ctypes.GetLastError() dprint("WinHttpGetProxyForUrl error %s" % error) if error == WINHTTP_ERROR_WINHTTP_UNABLE_TO_DOWNLOAD_SCRIPT: dprint("Could not download PAC file, trying DIRECT instead") return "DIRECT" return "" if proxy_info.dwAccessType == WINHTTP_ACCESS_TYPE_NAMED_PROXY: # Note: proxy_info.lpszProxyBypass makes no sense here! if not proxy_info.lpszProxy: dprint('WinHttpGetProxyForUrl named proxy without name') return "" return proxy_info.lpszProxy.replace(" ", ",").replace(";", ",").replace( ",DIRECT", "") # Note: We only see the first! if proxy_info.dwAccessType == WINHTTP_ACCESS_TYPE_NO_PROXY: return "DIRECT" # WinHttpCloseHandle() dprint("WinHttpGetProxyForUrl accesstype %s" % (proxy_info.dwAccessType,)) return "" def file_url_to_local_path(file_url): parts = urlparse.urlparse(file_url) path = urlparse.unquote(parts.path) if path.startswith('/') and not path.startswith('//'): if len(parts.netloc) == 2 and parts.netloc[1] == ':': return parts.netloc + path return 'C:' + path if len(path) > 2 and path[1] == ':': return path def load_proxy(quiet=False): # Return if proxies specified in Px config if State.proxy_mode in [MODE_CONFIG, MODE_CONFIG_PAC]: return (State.proxy_mode, State.proxy_server) # Do locking to avoid updating globally shared State object by multiple # threads simultaneously State.proxy_mode_lock.acquire() try: proxy_mode = State.proxy_mode proxy_servers = State.proxy_server # Check if need to refresh if (State.proxy_refresh is not None and time.time() - State.proxy_refresh < State.config.getint("settings", "proxyreload")): if not quiet: dprint("Skip proxy refresh") return (proxy_mode, proxy_servers) # Start with clean proxy mode and server list proxy_mode = MODE_NONE proxy_servers = [] # Get proxy info from Internet Options ie_proxy_config = WINHTTP_CURRENT_USER_IE_PROXY_CONFIG() ok = ctypes.windll.winhttp.WinHttpGetIEProxyConfigForCurrentUser( ctypes.byref(ie_proxy_config)) if not ok: if not quiet: dprint(ctypes.GetLastError()) else: if ie_proxy_config.fAutoDetect: proxy_mode = MODE_AUTO elif ie_proxy_config.lpszAutoConfigUrl: State.pac = ie_proxy_config.lpszAutoConfigUrl proxy_mode = MODE_PAC if not quiet: dprint("AutoConfigURL = " + State.pac) else: # Manual proxy proxies = [] proxies_str = ie_proxy_config.lpszProxy or "" for proxy_str in proxies_str.lower().replace( ' ', ';').split(';'): if '=' in proxy_str: scheme, proxy = proxy_str.split('=', 1) if scheme.strip() != "ftp": proxies.append(proxy) elif proxy_str: proxies.append(proxy_str) if proxies: proxy_servers = parse_proxy(",".join(proxies)) proxy_mode = MODE_MANUAL # Proxy exceptions into noproxy bypass_str = ie_proxy_config.lpszProxyBypass or "" # FIXME: Handle "<local>" bypasses = [h.strip() for h in bypass_str.lower().replace( ' ', ';').split(';')] for bypass in bypasses: try: ipns = netaddr.IPGlob(bypass) State.noproxy.add(ipns) if not quiet: dprint("Noproxy += " + bypass) except: State.noproxy_hosts.append(bypass) if not quiet: dprint("Noproxy hostname += " + bypass) State.proxy_refresh = time.time() if not quiet: dprint("Proxy mode = " + str(proxy_mode)) State.proxy_mode = proxy_mode State.proxy_server = proxy_servers # Clear proxy types on proxy server update State.proxy_type = {} finally: State.proxy_mode_lock.release() return (proxy_mode, proxy_servers) def find_proxy_for_url(url): proxy_str = "" if State.proxy_mode == MODE_AUTO: proxy_str = winhttp_find_proxy_for_url(url, autodetect=True) elif State.proxy_mode in [MODE_PAC, MODE_CONFIG_PAC]: pac = State.pac if "file://" in State.pac or not State.pac.startswith("http"): host = State.config.get("proxy", "listen") or "localhost" port = State.config.getint("proxy", "port") pac = "http://%s:%d/PxPACFile.pac" % (host, port) dprint("PAC URL is local: " + pac) proxy_str = winhttp_find_proxy_for_url(url, pac_url=pac) # Handle edge case if the result is a list that starts with DIRECT. Assume # everything should be direct as the string DIRECT is tested explicitly in # get_destination if proxy_str.startswith("DIRECT,"): proxy_str = "DIRECT" # If the proxy_str it still empty at this point, then there is no proxy # configured. Try to do a direct connection. if proxy_str == "": proxy_str = "DIRECT" dprint("Proxy found: " + proxy_str) return proxy_str ### # Parse settings and command line def parse_proxy(proxystrs): if not proxystrs: return [] servers = [] for proxystr in [i.strip() for i in proxystrs.split(",")]: pserver = [i.strip() for i in proxystr.split(":")] if len(pserver) == 1: pserver.append(80) elif len(pserver) == 2: try: pserver[1] = int(pserver[1]) except ValueError: pprint("Bad proxy server port: " + pserver[1]) sys.exit() else: pprint("Bad proxy server definition: " + proxystr) sys.exit() if tuple(pserver) not in servers: servers.append(tuple(pserver)) return servers def parse_ip_ranges(iprangesconfig): ipranges = netaddr.IPSet([]) iprangessplit = [i.strip() for i in iprangesconfig.split(",")] for iprange in iprangessplit: if not iprange: continue try: if "-" in iprange: spl = iprange.split("-", 1) ipns = netaddr.IPRange(spl[0], spl[1]) elif "*" in iprange: ipns = netaddr.IPGlob(iprange) else: ipns = netaddr.IPNetwork(iprange) ipranges.add(ipns) except: pprint("Bad IP definition: %s" % iprangesconfig) sys.exit() return ipranges def parse_allow(allow): State.allow = parse_ip_ranges(allow) def parse_noproxy(noproxy): State.noproxy = parse_ip_ranges(noproxy) def set_useragent(useragent): State.useragent = useragent def set_username(username): ud = username.split("\\") if len(ud) == 2: State.username = ud[1] State.domain = ud[0] else: State.username = username def set_pac(pac): if pac == "": return pacproxy = False if pac.startswith("http"): pacproxy = True elif pac.startswith("file"): pac = file_url_to_local_path(pac) if os.path.exists(pac): pacproxy = True if pacproxy: State.pac = pac else: pprint("Unsupported PAC location or file not found: %s" % pac) sys.exit() def set_auth(auth): if auth.upper() not in ["NTLM", "KERBEROS", "BASIC", ""]: pprint("Bad proxy auth type: %s" % auth) sys.exit() if auth != "": State.auth = auth def cfg_int_init(section, name, default, override=False): val = default if not override: try: val = State.config.get(section, name).strip() except configparser.NoOptionError: pass try: val = int(val) except ValueError: pprint("Invalid integer value for " + section + ":" + name) State.config.set(section, name, str(val)) def cfg_float_init(section, name, default, override=False): val = default if not override: try: val = State.config.get(section, name).strip() except configparser.NoOptionError: pass try: val = float(val) except ValueError: pprint("Invalid float value for " + section + ":" + name) State.config.set(section, name, str(val)) def cfg_str_init(section, name, default, proc=None, override=False): val = default if not override: try: val = State.config.get(section, name).strip() except configparser.NoOptionError: pass State.config.set(section, name, val) if proc != None: proc(val) def save(): with open(State.ini, "w") as cfgfile: State.config.write(cfgfile) pprint("Saved config to " + State.ini + "\n") with open(State.ini, "r") as cfgfile: sys.stdout.write(cfgfile.read()) sys.exit() def parse_config(): if "--debug" in sys.argv: State.logger = Log(dfile(), "w") if getattr(sys, "frozen", False) != False or "pythonw.exe" in sys.executable: attach_console() if "-h" in sys.argv or "--help" in sys.argv: pprint(HELP) sys.exit() # Load configuration file State.config = configparser.ConfigParser() State.ini = os.path.join(os.path.dirname(get_script_path()), State.ini) for i in range(len(sys.argv)): if "=" in sys.argv[i]: val = sys.argv[i].split("=")[1] if "--config=" in sys.argv[i]: State.ini = val if not os.path.exists(val) and "--save" not in sys.argv: pprint("Could not find config file: " + val) sys.exit() if os.path.exists(State.ini): State.config.read(State.ini) # [proxy] section if "proxy" not in State.config.sections(): State.config.add_section("proxy") cfg_str_init("proxy", "server", "") cfg_str_init("proxy", "pac", "", set_pac) cfg_int_init("proxy", "port", "3128") cfg_str_init("proxy", "listen", "127.0.0.1") cfg_str_init("proxy", "allow", "*.*.*.*", parse_allow) cfg_int_init("proxy", "gateway", "0") cfg_int_init("proxy", "hostonly", "0") cfg_str_init("proxy", "noproxy", "", parse_noproxy) cfg_str_init("proxy", "useragent", "", set_useragent) cfg_str_init("proxy", "username", "", set_username) cfg_str_init("proxy", "auth", "", set_auth) # [settings] section if "settings" not in State.config.sections(): State.config.add_section("settings") cfg_int_init("settings", "workers", "2") cfg_int_init("settings", "threads", "5") cfg_int_init("settings", "idle", "30") cfg_float_init("settings", "socktimeout", "20.0") cfg_int_init("settings", "proxyreload", "60") cfg_int_init("settings", "foreground", "0") cfg_int_init("settings", "log", "0" if State.logger is None else "1") if State.config.get("settings", "log") == "1" and State.logger is None: State.logger = Log(dfile(), "w") # Command line flags for i in range(len(sys.argv)): if "=" in sys.argv[i]: val = sys.argv[i].split("=")[1] if "--proxy=" in sys.argv[i] or "--server=" in sys.argv[i]: cfg_str_init("proxy", "server", val, None, True) elif "--pac=" in sys.argv[i]: cfg_str_init("proxy", "pac", val, set_pac, True) elif "--listen=" in sys.argv[i]: cfg_str_init("proxy", "listen", val, None, True) elif "--port=" in sys.argv[i]: cfg_int_init("proxy", "port", val, True) elif "--allow=" in sys.argv[i]: cfg_str_init("proxy", "allow", val, parse_allow, True) elif "--noproxy=" in sys.argv[i]: cfg_str_init("proxy", "noproxy", val, parse_noproxy, True) elif "--useragent=" in sys.argv[i]: cfg_str_init("proxy", "useragent", val, set_useragent, True) elif "--username=" in sys.argv[i]: cfg_str_init("proxy", "username", val, set_username, True) elif "--auth=" in sys.argv[i]: cfg_str_init("proxy", "auth", val, set_auth, True) else: for j in ["workers", "threads", "idle", "proxyreload"]: if "--" + j + "=" in sys.argv[i]: cfg_int_init("settings", j, val, True) for j in ["socktimeout"]: if "--" + j + "=" in sys.argv[i]: cfg_float_init("settings", j, val, True) if "--gateway" in sys.argv: cfg_int_init("proxy", "gateway", "1", True) if "--hostonly" in sys.argv: cfg_int_init("proxy", "hostonly", "1", True) if "--foreground" in sys.argv: cfg_int_init("settings", "foreground", "1", True) ### # Dependency propagation # If gateway mode if State.config.getint("proxy", "gateway") == 1: # Listen on all interfaces cfg_str_init("proxy", "listen", "", None, True) # If hostonly mode if State.config.getint("proxy", "hostonly") == 1: State.hostonly = True # Listen on all interfaces cfg_str_init("proxy", "listen", "", None, True) # If not gateway mode or gateway with default allow rules if (State.config.getint("proxy", "gateway") == 0 or (State.config.getint("proxy", "gateway") == 1 and State.config.get("proxy", "allow") in [ "*.*.*.*", "0.0.0.0/0"])): # Purge allow rules cfg_str_init("proxy", "allow", "", parse_allow, True) State.proxy_server = parse_proxy(State.config.get("proxy", "server")) if "--install" in sys.argv: install() elif "--uninstall" in sys.argv: uninstall() elif "--quit" in sys.argv: quit() elif "--save" in sys.argv: save() if State.proxy_server: State.proxy_mode = MODE_CONFIG elif State.pac: State.proxy_mode = MODE_CONFIG_PAC else: load_proxy(quiet=True) if State.proxy_mode == MODE_NONE and not State.config.get( "proxy", "noproxy"): pprint("No proxy server or noproxy list defined") sys.exit() socket.setdefaulttimeout(State.config.getfloat("settings", "socktimeout")) ### # Exit related def quit(force=False): count = 0 mypids = [os.getpid(), os.getppid()] for pid in sorted(psutil.pids(), reverse=True): if pid in mypids: continue try: p = psutil.Process(pid) if p.exe().lower() == sys.executable.lower(): count += 1 if force: p.kill() else: p.send_signal(signal.CTRL_C_EVENT) except (psutil.AccessDenied, psutil.NoSuchProcess, PermissionError, SystemError): pass except: traceback.print_exc(file=sys.stdout) if count != 0: if force: sys.stdout.write(".") else: sys.stdout.write("Quitting Px ..") time.sleep(4) sys.stdout.flush() quit(True) else: if force: pprint(" DONE") else: pprint("Px is not running") sys.exit() def handle_exceptions(extype, value, tb): # Create traceback log lst = (traceback.format_tb(tb, None) + traceback.format_exception_only(extype, value)) tracelog = '\nTraceback (most recent call last):\n' + "%-20s%s\n" % ( "".join(lst[:-1]), lst[-1]) if State.logger != None: pprint(tracelog) else: sys.stderr.write(tracelog) # Save to debug.log dbg = open(dfile(), 'w') dbg.write(tracelog) dbg.close() ### # Install Px to startup def get_script_path(): if getattr(sys, "frozen", False) is False: # Script mode return os.path.normpath(os.path.join(os.getcwd(), sys.argv[0])) # Frozen mode return sys.executable def get_script_cmd(): spath = get_script_path() if os.path.splitext(spath)[1].lower() == ".py": return sys.executable + ' "%s"' % spath return spath def check_installed(): ret = True runkey = winreg.OpenKey(winreg.HKEY_CURRENT_USER, r"Software\Microsoft\Windows\CurrentVersion\Run", 0, winreg.KEY_READ) try: winreg.QueryValueEx(runkey, "Px") except: ret = False winreg.CloseKey(runkey) return ret def install(): if check_installed() is False: runkey = winreg.OpenKey(winreg.HKEY_CURRENT_USER, r"Software\Microsoft\Windows\CurrentVersion\Run", 0, winreg.KEY_WRITE) winreg.SetValueEx(runkey, "Px", 0, winreg.REG_EXPAND_SZ, get_script_cmd()) winreg.CloseKey(runkey) pprint("Px installed successfully") else: pprint("Px already installed") sys.exit() def uninstall(): if check_installed() is True: runkey = winreg.OpenKey(winreg.HKEY_CURRENT_USER, r"Software\Microsoft\Windows\CurrentVersion\Run", 0, winreg.KEY_WRITE) winreg.DeleteValue(runkey, "Px") winreg.CloseKey(runkey) pprint("Px uninstalled successfully") else: pprint("Px is not installed") sys.exit() ### # Attach/detach console def attach_console(): if ctypes.windll.kernel32.GetConsoleWindow() != 0: dprint("Already attached to a console") return # Find parent cmd.exe if exists pid = os.getpid() while True: try: p = psutil.Process(pid) except psutil.NoSuchProcess: # No such parent - started without console pid = -1 break if os.path.basename(p.name()).lower() in [ "cmd", "cmd.exe", "powershell", "powershell.exe"]: # Found it break # Search parent pid = p.ppid() # Not found, started without console if pid == -1: dprint("No parent console to attach to") return dprint("Attaching to console " + str(pid)) if ctypes.windll.kernel32.AttachConsole(pid) == 0: dprint("Attach failed with error " + str(ctypes.windll.kernel32.GetLastError())) return if ctypes.windll.kernel32.GetConsoleWindow() == 0: dprint("Not a console window") return reopen_stdout() def detach_console(): if ctypes.windll.kernel32.GetConsoleWindow() == 0: return restore_stdout() if not ctypes.windll.kernel32.FreeConsole(): dprint("Free console failed with error " + str(ctypes.windll.kernel32.GetLastError())) else: dprint("Freed console successfully") ### # Startup def main(): multiprocessing.freeze_support() sys.excepthook = handle_exceptions parse_config() run_pool() if __name__ == "__main__": main()
34.430563
152
0.556783
3fdc2a647a3512bccff693996e87dcf02307d79b
471
py
Python
app/test_health.py
chrisguest75/banner_service
ea0475e4159a84913c4d5a67a054126e82f3e440
[ "MIT" ]
1
2021-02-23T21:59:26.000Z
2021-02-23T21:59:26.000Z
app/test_health.py
chrisguest75/banner_service
ea0475e4159a84913c4d5a67a054126e82f3e440
[ "MIT" ]
null
null
null
app/test_health.py
chrisguest75/banner_service
ea0475e4159a84913c4d5a67a054126e82f3e440
[ "MIT" ]
null
null
null
import pytest import connexion flask_app = connexion.FlaskApp(__name__, specification_dir='./openapi') flask_app.add_api('./swagger.yaml') flask_app.testing = True @pytest.fixture(scope='module') def client(): with flask_app.app.test_client() as c: yield c def test_health(client): """ Test health endpoint returns 200 """ response = client.get('/api/health') assert response.json == "Healthy" assert response.status_code == 200
21.409091
71
0.696391
979aae0a1b9e6111bf28f4943a9c3915918dd782
7,867
py
Python
preview_generator/utils.py
asweeney86/preview-generator
354cbac1c131ebbb81cd9cfd9b4bc0c184d10103
[ "MIT" ]
null
null
null
preview_generator/utils.py
asweeney86/preview-generator
354cbac1c131ebbb81cd9cfd9b4bc0c184d10103
[ "MIT" ]
null
null
null
preview_generator/utils.py
asweeney86/preview-generator
354cbac1c131ebbb81cd9cfd9b4bc0c184d10103
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from datetime import date from datetime import datetime from json import JSONEncoder import os import shutil from subprocess import check_call import tempfile import typing from PyPDF2 import PdfFileReader from wand.version import formats as wand_supported_format from preview_generator.extension import mimetypes_storage LOGGER_NAME = "PreviewGenerator" BLACKLISTED_IMAGEMAGICK_MIME = [ "image/svg+xml", "image/svg", "application/pdf", "application/x-silverlight", ] LOCKFILE_EXTENSION = ".lock" # INFO - G.M - 2020-07-03 if another preview is created for same file, # this is the default time preview Manager allow waiting for # the other preview to be generated. LOCK_DEFAULT_TIMEOUT = 20 def get_subclasses_recursively(_class: type, _seen: set = None) -> typing.Generator: """ itersubclasses(cls) Generator over all subclasses of a given class, in depth first order. >>> list(get_subclasses_recursively(int)) == [bool] True >>> class A(object): pass >>> class B(A): pass >>> class C(A): pass >>> class D(B,C): pass >>> class E(D): pass >>> >>> for cls in get_subclasses_recursively(A): ... print(cls.__name__) B D E C >>> # get ALL (new-style) classes currently defined >>> [cls.__name__ for cls in get_subclasses_recursively(object)] # doctest: +ELLIPSIS ['type', ...'tuple', ...] """ if not isinstance(_class, type): raise TypeError( "itersubclasses must be called with " "new-style classes, not %.100r" % _class ) if _seen is None: _seen = set() try: subs = _class.__subclasses__() except TypeError: # fails only when cls is type subs = _class.__subclasses__(_class) # type: ignore for sub in subs: if sub not in _seen: _seen.add(sub) yield sub for sub in get_subclasses_recursively(sub, _seen): yield sub class ImgDims(object): def __init__(self, width: int, height: int) -> None: self.width = width self.height = height def ratio(self) -> float: return self.width / self.height def __str__(self) -> str: return "{}x{}".format(self.width, self.height) class MimetypeMapping(object): def __init__(self, mimetype: str, file_extension: str) -> None: self.mimetype = mimetype self.file_extension = file_extension def __str__(self) -> str: return "MimetypeMapping:{}:{}".format(self.mimetype, self.file_extension) class CropDims(object): def __init__(self, left: int, top: int, right: int, bottom: int) -> None: self.left = left self.top = top self.right = right self.bottom = bottom def __str__(self) -> str: return "({},{}) x ({},{})".format(self.left, self.top, self.right, self.bottom) def compute_resize_dims(dims_in: ImgDims, dims_out: ImgDims) -> ImgDims: """ Compute resize dimensions for transforming image in format into image out format. This is related to a crop operation which will allow to transform ratio from image in into a given ratio. :param dims_in: :param dims_out: :return: """ img_ratio_in = dims_in.width / dims_in.height img_ratio_out = dims_out.width / dims_out.height if img_ratio_in > img_ratio_out: size_ratio = dims_out.width / dims_in.width else: size_ratio = dims_out.height / dims_in.height return ImgDims( width=round(dims_in.width * size_ratio), height=round(dims_in.height * size_ratio) ) def compute_crop_dims(dims_in: ImgDims, dims_out: ImgDims) -> CropDims: left = round((dims_in.width / 2) - (dims_out.width / 2)) upper = round((dims_in.height / 2) - (dims_out.height / 2)) right = left + dims_out.width lower = upper + dims_out.height return CropDims(left=left, top=upper, right=right, bottom=lower) def executable_is_available( executable_name: typing.Union[str, typing.List[str], typing.Tuple[str]] ) -> bool: """Check if an executable is available in execution environment. :param executable_name: List or Tuple, or single command name :return: `True` if the exec if found, `False` otherwize """ if isinstance(executable_name, (list, tuple)): for _exec_name in executable_name: print("_exec_name =", _exec_name) if shutil.which(_exec_name) is not None: return True return False return shutil.which(executable_name) is not None class PreviewGeneratorJsonEncoder(JSONEncoder): def default(self, obj: typing.Any) -> str: if isinstance(obj, bytes): try: return obj.decode("ascii") except: # noqa: E722 return "" if isinstance(obj, (datetime, date)): serial = obj.isoformat() return serial return JSONEncoder.default(self, obj) def get_decrypted_pdf( stream: typing.BinaryIO, strict: bool = True, warndest: typing.TextIO = None, overwriteWarnings: bool = True, ) -> PdfFileReader: """ Return a PdfFileReader object decrypted with default empty key (if file is encrypted) The signature is taken from PdfFileReader.__init__ See https://github.com/algoo/preview-generator/issues/52 which is related to https://github.com/mstamy2/PyPDF2/issues/51 :param stream: :param strict: :param warndest: :param overwriteWarnings: :return: """ pdf = PdfFileReader(stream, strict, warndest, overwriteWarnings) if pdf.isEncrypted: #  TODO - D.A. - 2018-11-08 - manage password protected PDFs password = "" try: pdf.decrypt(password) except NotImplementedError: # If not supported, try and use qpdf to decrypt with '' first. # See https://github.com/mstamy2/PyPDF2/issues/378 # Workaround for the "NotImplementedError: only algorithm code 1 and 2 are supported" issue. tf = tempfile.NamedTemporaryFile( prefix="preview-generator-", suffix=".pdf", delete=False ) tfoname = tf.name + "_decrypted.pdf" stream.seek(0) tf.write(stream.read()) tf.close() if password: check_call(["qpdf", "--password=" + password, "--decrypt", tf.name, tfoname]) else: check_call(["qpdf", "--decrypt", tf.name, tfoname]) pdf = PdfFileReader(tfoname, strict, warndest, overwriteWarnings) os.unlink(tf.name) os.unlink(tfoname) return pdf def imagemagick_supported_mimes() -> typing.List[str]: all_supported = wand_supported_format("*") valid_mime = [] # type: typing.List[str] all_imagemagick_mime_supported = [] # type: typing.List[str] for supported in all_supported: fake_url = "./FILE.{0}".format(supported) # Fake a url mime, enc = mimetypes_storage.guess_type(fake_url) if mime and mime not in all_imagemagick_mime_supported: all_imagemagick_mime_supported.append(mime) for mime in all_imagemagick_mime_supported: # INFO - G.M - 2019-11-15 - we drop text file format support (no working correctly) if mime.startswith("text/"): continue # INFO - G.M - 2019-11-15 - we drop video file format support (no working correctly either) if mime.startswith("video/"): continue # HACK - G.M - 2019-11-15 - check if some "chemical" file can be processed as image, # now considered them as not supported. if mime.startswith("chemical/"): continue if mime in BLACKLISTED_IMAGEMAGICK_MIME: continue valid_mime.append(mime) return valid_mime
32.643154
104
0.638744
e7936cc0535ab5e6e8a86881a995a539784d9a35
6,230
py
Python
homeassistant/components/sensor/openweathermap.py
gwendalg/home-assistant
fb94aaa5a1a1e125dafb681e50c18be45dfe1b19
[ "MIT" ]
1
2017-02-12T18:44:18.000Z
2017-02-12T18:44:18.000Z
homeassistant/components/sensor/openweathermap.py
gwendalg/home-assistant
fb94aaa5a1a1e125dafb681e50c18be45dfe1b19
[ "MIT" ]
null
null
null
homeassistant/components/sensor/openweathermap.py
gwendalg/home-assistant
fb94aaa5a1a1e125dafb681e50c18be45dfe1b19
[ "MIT" ]
1
2021-02-25T10:32:08.000Z
2021-02-25T10:32:08.000Z
""" Support for the OpenWeatherMap (OWM) service. For more details about this platform, please refer to the documentation at https://home-assistant.io/components/sensor.openweathermap/ """ import logging from datetime import timedelta import voluptuous as vol from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.const import ( CONF_API_KEY, CONF_NAME, TEMP_CELSIUS, TEMP_FAHRENHEIT, CONF_MONITORED_CONDITIONS) import homeassistant.helpers.config_validation as cv from homeassistant.helpers.entity import Entity from homeassistant.util import Throttle REQUIREMENTS = ['pyowm==2.4.0'] _LOGGER = logging.getLogger(__name__) CONF_FORECAST = 'forecast' DEFAULT_NAME = 'OWM' MIN_TIME_BETWEEN_UPDATES = timedelta(seconds=120) SENSOR_TYPES = { 'weather': ['Condition', None], 'temperature': ['Temperature', None], 'wind_speed': ['Wind speed', 'm/s'], 'humidity': ['Humidity', '%'], 'pressure': ['Pressure', 'mbar'], 'clouds': ['Cloud coverage', '%'], 'rain': ['Rain', 'mm'], 'snow': ['Snow', 'mm'] } PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ vol.Required(CONF_API_KEY): cv.string, vol.Optional(CONF_MONITORED_CONDITIONS, default=[]): vol.All(cv.ensure_list, [vol.In(SENSOR_TYPES)]), vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, vol.Optional(CONF_FORECAST, default=False): cv.boolean }) def setup_platform(hass, config, add_devices, discovery_info=None): """Setup the OpenWeatherMap sensor.""" if None in (hass.config.latitude, hass.config.longitude): _LOGGER.error("Latitude or longitude not set in Home Assistant config") return False from pyowm import OWM SENSOR_TYPES['temperature'][1] = hass.config.units.temperature_unit name = config.get(CONF_NAME) forecast = config.get(CONF_FORECAST) owm = OWM(config.get(CONF_API_KEY)) if not owm: _LOGGER.error( "Connection error " "Please check your settings for OpenWeatherMap") return False data = WeatherData(owm, forecast, hass.config.latitude, hass.config.longitude) dev = [] for variable in config[CONF_MONITORED_CONDITIONS]: dev.append(OpenWeatherMapSensor( name, data, variable, SENSOR_TYPES[variable][1])) if forecast: SENSOR_TYPES['forecast'] = ['Forecast', None] dev.append(OpenWeatherMapSensor( name, data, 'forecast', SENSOR_TYPES['temperature'][1])) add_devices(dev) # pylint: disable=too-few-public-methods class OpenWeatherMapSensor(Entity): """Implementation of an OpenWeatherMap sensor.""" def __init__(self, name, weather_data, sensor_type, temp_unit): """Initialize the sensor.""" self.client_name = name self._name = SENSOR_TYPES[sensor_type][0] self.owa_client = weather_data self.temp_unit = temp_unit self.type = sensor_type self._state = None self._unit_of_measurement = SENSOR_TYPES[sensor_type][1] self.update() @property def name(self): """Return the name of the sensor.""" return '{} {}'.format(self.client_name, self._name) @property def state(self): """Return the state of the device.""" return self._state @property def unit_of_measurement(self): """Return the unit of measurement of this entity, if any.""" return self._unit_of_measurement # pylint: disable=too-many-branches def update(self): """Get the latest data from OWM and updates the states.""" self.owa_client.update() data = self.owa_client.data fc_data = self.owa_client.fc_data if self.type == 'weather': self._state = data.get_detailed_status() elif self.type == 'temperature': if self.temp_unit == TEMP_CELSIUS: self._state = round(data.get_temperature('celsius')['temp'], 1) elif self.temp_unit == TEMP_FAHRENHEIT: self._state = round(data.get_temperature('fahrenheit')['temp'], 1) else: self._state = round(data.get_temperature()['temp'], 1) elif self.type == 'wind_speed': self._state = round(data.get_wind()['speed'], 1) elif self.type == 'humidity': self._state = round(data.get_humidity(), 1) elif self.type == 'pressure': self._state = round(data.get_pressure()['press'], 0) elif self.type == 'clouds': self._state = data.get_clouds() elif self.type == 'rain': if data.get_rain(): self._state = round(data.get_rain()['3h'], 0) self._unit_of_measurement = 'mm' else: self._state = 'not raining' self._unit_of_measurement = '' elif self.type == 'snow': if data.get_snow(): self._state = round(data.get_snow(), 0) self._unit_of_measurement = 'mm' else: self._state = 'not snowing' self._unit_of_measurement = '' elif self.type == 'forecast': self._state = fc_data.get_weathers()[0].get_status() class WeatherData(object): """Get the latest data from OpenWeatherMap.""" def __init__(self, owm, forecast, latitude, longitude): """Initialize the data object.""" self.owm = owm self.forecast = forecast self.latitude = latitude self.longitude = longitude self.data = None self.fc_data = None @Throttle(MIN_TIME_BETWEEN_UPDATES) def update(self): """Get the latest data from OpenWeatherMap.""" obs = self.owm.weather_at_coords(self.latitude, self.longitude) if obs is None: _LOGGER.warning('Failed to fetch data from OWM') return self.data = obs.get_weather() if self.forecast == 1: obs = self.owm.three_hours_forecast_at_coords(self.latitude, self.longitude) self.fc_data = obs.get_forecast()
33.494624
79
0.617496
a254617bd948f167093fcdf391f123345660ae35
1,247
py
Python
jp.atcoder/abc060/arc073_b/8237346.py
kagemeka/atcoder-submissions
91d8ad37411ea2ec582b10ba41b1e3cae01d4d6e
[ "MIT" ]
1
2022-02-09T03:06:25.000Z
2022-02-09T03:06:25.000Z
jp.atcoder/abc060/arc073_b/8237346.py
kagemeka/atcoder-submissions
91d8ad37411ea2ec582b10ba41b1e3cae01d4d6e
[ "MIT" ]
1
2022-02-05T22:53:18.000Z
2022-02-09T01:29:30.000Z
jp.atcoder/abc060/arc073_b/8237346.py
kagemeka/atcoder-submissions
91d8ad37411ea2ec582b10ba41b1e3cae01d4d6e
[ "MIT" ]
null
null
null
n, W = [int(x) for x in input().split()] wv = [[int(x) for x in input().split()] for _ in range(n)] # weight, value min_w = wv[0][0] for i in range(n): wv[i].insert(0, wv[i][1] / wv[i][0]) wv.sort(reverse=1) # sort in order that high value per unit weight. sw = [0] * n # camulative sum of weights sw[0] = wv[0][1] sv = [0] * n # camulative sum of values sv[0] = wv[0][2] for i in range(n - 1): sw[i + 1] = sw[i] + wv[i + 1][1] sv[i + 1] = sv[i] + wv[i + 1][2] ans = 0 for i in range(n): if sw[i] < W: ans = sv[i] # continuous updating continue elif sw[i] == W: ans = sv[i] break else: if i > 0: d = W - sw[i - 1] for j in range(d, min_w - 1, -1): # if d >= min_w for k in range(i + 1, n): if j == wv[k][1]: ans += wv[k][2] print(ans) exit() else: for j in range(W, min_w - 1, -1): for k in range(1, n): if j == wv[k][1]: ans += wv[k][2] print(ans) exit() print(ans)
27.711111
76
0.38733
dcc358e323d4da561d37ecaac25b7775ee87c28f
148
py
Python
docs_src/path_operation_advanced_configuration/tutorial003.py
Aryabhata-Rootspring/fastapi
f6237ad05a8468ac19c591181adad38d75372c46
[ "MIT" ]
53,007
2018-12-08T10:05:29.000Z
2022-03-31T23:30:02.000Z
docs_src/path_operation_advanced_configuration/tutorial003.py
Aryabhata-Rootspring/fastapi
f6237ad05a8468ac19c591181adad38d75372c46
[ "MIT" ]
4,155
2019-01-05T05:07:49.000Z
2022-03-31T21:25:38.000Z
docs_src/path_operation_advanced_configuration/tutorial003.py
Aryabhata-Rootspring/fastapi
f6237ad05a8468ac19c591181adad38d75372c46
[ "MIT" ]
4,092
2018-12-09T16:21:00.000Z
2022-03-31T07:59:45.000Z
from fastapi import FastAPI app = FastAPI() @app.get("/items/", include_in_schema=False) async def read_items(): return [{"item_id": "Foo"}]
16.444444
44
0.682432
b8cfe6e8a7df5a671babb7f0f2bfe2f2a2544940
13,392
py
Python
tests/www/views/test_views_log.py
jayantsande25/airflow
d04aa135268b8e0230be3af6598a3b18e8614c3c
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
2
2021-07-30T17:22:53.000Z
2021-08-03T13:51:15.000Z
tests/www/views/test_views_log.py
jayantsande25/airflow
d04aa135268b8e0230be3af6598a3b18e8614c3c
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
null
null
null
tests/www/views/test_views_log.py
jayantsande25/airflow
d04aa135268b8e0230be3af6598a3b18e8614c3c
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
1
2021-08-28T09:47:31.000Z
2021-08-28T09:47:31.000Z
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import copy import logging.config import pathlib import sys import tempfile import unittest.mock import urllib.parse import pytest from airflow import settings from airflow.config_templates.airflow_local_settings import DEFAULT_LOGGING_CONFIG from airflow.models import DAG, DagBag, TaskInstance from airflow.operators.dummy import DummyOperator from airflow.utils import timezone from airflow.utils.log.logging_mixin import ExternalLoggingMixin from airflow.utils.session import create_session from airflow.utils.state import State from airflow.www.app import create_app from tests.test_utils.config import conf_vars from tests.test_utils.decorators import dont_initialize_flask_app_submodules from tests.test_utils.www import client_with_login DAG_ID = 'dag_for_testing_log_view' DAG_ID_REMOVED = 'removed_dag_for_testing_log_view' TASK_ID = 'task_for_testing_log_view' DEFAULT_DATE = timezone.datetime(2017, 9, 1) ENDPOINT = f'log?dag_id={DAG_ID}&task_id={TASK_ID}&execution_date={DEFAULT_DATE}' @pytest.fixture(scope="module", autouse=True) def backup_modules(): """Make sure that the configure_logging is not cached.""" return dict(sys.modules) @pytest.fixture(scope="module") def log_app(backup_modules): @dont_initialize_flask_app_submodules( skip_all_except=["init_appbuilder", "init_jinja_globals", "init_appbuilder_views"] ) @conf_vars({('logging', 'logging_config_class'): 'airflow_local_settings.LOGGING_CONFIG'}) def factory(): app = create_app(testing=True) app.config["WTF_CSRF_ENABLED"] = False settings.configure_orm() security_manager = app.appbuilder.sm if not security_manager.find_user(username='test'): security_manager.add_user( username='test', first_name='test', last_name='test', email='test@fab.org', role=security_manager.find_role('Admin'), password='test', ) return app # Create a custom logging configuration logging_config = copy.deepcopy(DEFAULT_LOGGING_CONFIG) logging_config['handlers']['task']['base_log_folder'] = str( pathlib.Path(__file__, "..", "..", "test_logs").resolve(), ) logging_config['handlers']['task'][ 'filename_template' ] = '{{ ti.dag_id }}/{{ ti.task_id }}/{{ ts | replace(":", ".") }}/{{ try_number }}.log' with tempfile.TemporaryDirectory() as settings_dir: local_settings = pathlib.Path(settings_dir, "airflow_local_settings.py") local_settings.write_text(f"LOGGING_CONFIG = {logging_config!r}") sys.path.append(settings_dir) yield factory() sys.path.remove(settings_dir) logging.config.dictConfig(DEFAULT_LOGGING_CONFIG) @pytest.fixture(autouse=True) def reset_modules_after_every_test(backup_modules): yield # Remove any new modules imported during the test run. # This lets us import the same source files for more than one test. for mod in [m for m in sys.modules if m not in backup_modules]: del sys.modules[mod] @pytest.fixture(autouse=True) def dags(log_app): dag = DAG(DAG_ID, start_date=DEFAULT_DATE) dag_removed = DAG(DAG_ID_REMOVED, start_date=DEFAULT_DATE) bag = DagBag(include_examples=False) bag.bag_dag(dag=dag, root_dag=dag) bag.bag_dag(dag=dag_removed, root_dag=dag_removed) # Since we don't want to store the code for the DAG defined in this file with unittest.mock.patch('airflow.models.dag.DagCode.bulk_sync_to_db'): dag.sync_to_db() dag_removed.sync_to_db() bag.sync_to_db() log_app.dag_bag = bag return dag, dag_removed @pytest.fixture(autouse=True) def tis(dags): dag, dag_removed = dags ti = TaskInstance( task=DummyOperator(task_id=TASK_ID, dag=dag), execution_date=DEFAULT_DATE, ) ti.try_number = 1 ti_removed_dag = TaskInstance( task=DummyOperator(task_id=TASK_ID, dag=dag_removed), execution_date=DEFAULT_DATE, ) ti_removed_dag.try_number = 1 with create_session() as session: session.merge(ti) session.merge(ti_removed_dag) yield ti, ti_removed_dag with create_session() as session: session.query(TaskInstance).delete() @pytest.fixture() def log_admin_client(log_app): return client_with_login(log_app, username="test", password="test") @pytest.mark.parametrize( "state, try_number, num_logs", [ (State.NONE, 0, 0), (State.UP_FOR_RETRY, 2, 2), (State.UP_FOR_RESCHEDULE, 0, 1), (State.UP_FOR_RESCHEDULE, 1, 2), (State.RUNNING, 1, 1), (State.SUCCESS, 1, 1), (State.FAILED, 3, 3), ], ids=[ "none", "up-for-retry", "up-for-reschedule-0", "up-for-reschedule-1", "running", "success", "failed", ], ) def test_get_file_task_log(log_admin_client, tis, state, try_number, num_logs): ti, _ = tis with create_session() as session: ti.state = state ti.try_number = try_number session.merge(ti) response = log_admin_client.get( ENDPOINT, data={"username": "test", "password": "test"}, follow_redirects=True, ) assert response.status_code == 200 data = response.data.decode() assert 'Log by attempts' in data for num in range(1, num_logs + 1): assert f'log-group-{num}' in data assert 'log-group-0' not in data assert f'log-group-{num_logs + 1}' not in data def test_get_logs_with_metadata_as_download_file(log_admin_client): url_template = ( "get_logs_with_metadata?dag_id={}&" "task_id={}&execution_date={}&" "try_number={}&metadata={}&format=file" ) try_number = 1 url = url_template.format( DAG_ID, TASK_ID, urllib.parse.quote_plus(DEFAULT_DATE.isoformat()), try_number, "{}", ) response = log_admin_client.get(url) content_disposition = response.headers['Content-Disposition'] assert content_disposition.startswith('attachment') assert f'{DAG_ID}/{TASK_ID}/{DEFAULT_DATE.isoformat()}/{try_number}.log' in content_disposition assert 200 == response.status_code assert 'Log for testing.' in response.data.decode('utf-8') @unittest.mock.patch( "airflow.utils.log.file_task_handler.FileTaskHandler.read", side_effect=[ ([[('default_log', '1st line')]], [{}]), ([[('default_log', '2nd line')]], [{'end_of_log': False}]), ([[('default_log', '3rd line')]], [{'end_of_log': True}]), ([[('default_log', 'should never be read')]], [{'end_of_log': True}]), ], ) def test_get_logs_with_metadata_as_download_large_file(_, log_admin_client): url_template = ( "get_logs_with_metadata?dag_id={}&" "task_id={}&execution_date={}&" "try_number={}&metadata={}&format=file" ) try_number = 1 url = url_template.format( DAG_ID, TASK_ID, urllib.parse.quote_plus(DEFAULT_DATE.isoformat()), try_number, "{}", ) response = log_admin_client.get(url) data = response.data.decode() assert '1st line' in data assert '2nd line' in data assert '3rd line' in data assert 'should never be read' not in data @pytest.mark.parametrize("metadata", ["null", "{}"]) def test_get_logs_with_metadata(log_admin_client, metadata): url_template = "get_logs_with_metadata?dag_id={}&task_id={}&execution_date={}&try_number={}&metadata={}" response = log_admin_client.get( url_template.format( DAG_ID, TASK_ID, urllib.parse.quote_plus(DEFAULT_DATE.isoformat()), 1, metadata, ), data={"username": "test", "password": "test"}, follow_redirects=True, ) assert 200 == response.status_code data = response.data.decode() assert '"message":' in data assert '"metadata":' in data assert 'Log for testing.' in data @unittest.mock.patch( "airflow.utils.log.file_task_handler.FileTaskHandler.read", return_value=(['airflow log line'], [{'end_of_log': True}]), ) def test_get_logs_with_metadata_for_removed_dag(_, log_admin_client): url_template = "get_logs_with_metadata?dag_id={}&task_id={}&execution_date={}&try_number={}&metadata={}" response = log_admin_client.get( url_template.format( DAG_ID_REMOVED, TASK_ID, urllib.parse.quote_plus(DEFAULT_DATE.isoformat()), 1, "{}", ), data={"username": "test", "password": "test"}, follow_redirects=True, ) assert 200 == response.status_code data = response.data.decode() assert '"message":' in data assert '"metadata":' in data assert 'airflow log line' in data def test_get_logs_response_with_ti_equal_to_none(log_admin_client): url_template = ( "get_logs_with_metadata?dag_id={}&" "task_id={}&execution_date={}&" "try_number={}&metadata={}&format=file" ) try_number = 1 url = url_template.format( DAG_ID, 'Non_Existing_ID', urllib.parse.quote_plus(DEFAULT_DATE.isoformat()), try_number, "{}", ) response = log_admin_client.get(url) data = response.json assert 'message' in data assert 'error' in data assert "*** Task instance did not exist in the DB\n" == data['message'] def test_get_logs_with_json_response_format(log_admin_client): url_template = ( "get_logs_with_metadata?dag_id={}&" "task_id={}&execution_date={}&" "try_number={}&metadata={}&format=json" ) try_number = 1 url = url_template.format( DAG_ID, TASK_ID, urllib.parse.quote_plus(DEFAULT_DATE.isoformat()), try_number, "{}", ) response = log_admin_client.get(url) assert 200 == response.status_code assert 'message' in response.json assert 'metadata' in response.json assert 'Log for testing.' in response.json['message'][0][1] @unittest.mock.patch("airflow.www.views.TaskLogReader") def test_get_logs_for_handler_without_read_method(mock_reader, log_admin_client): type(mock_reader.return_value).supports_read = unittest.mock.PropertyMock(return_value=False) url_template = ( "get_logs_with_metadata?dag_id={}&" "task_id={}&execution_date={}&" "try_number={}&metadata={}&format=json" ) try_number = 1 url = url_template.format( DAG_ID, TASK_ID, urllib.parse.quote_plus(DEFAULT_DATE.isoformat()), try_number, "{}", ) response = log_admin_client.get(url) assert 200 == response.status_code data = response.json assert 'message' in data assert 'metadata' in data assert 'Task log handler does not support read logs.' in data['message'] @pytest.mark.parametrize("task_id", ['inexistent', TASK_ID]) def test_redirect_to_external_log_with_local_log_handler(log_admin_client, task_id): """Redirect to home if TI does not exist or if log handler is local""" url_template = "redirect_to_external_log?dag_id={}&task_id={}&execution_date={}&try_number={}" try_number = 1 url = url_template.format( DAG_ID, task_id, urllib.parse.quote_plus(DEFAULT_DATE.isoformat()), try_number, ) response = log_admin_client.get(url) assert 302 == response.status_code assert 'http://localhost/home' == response.headers['Location'] class _ExternalHandler(ExternalLoggingMixin): EXTERNAL_URL = 'http://external-service.com' @property def log_name(self) -> str: return 'ExternalLog' def get_external_log_url(self, *args, **kwargs) -> str: return self.EXTERNAL_URL @property def supports_external_link(self) -> bool: return True @unittest.mock.patch( 'airflow.utils.log.log_reader.TaskLogReader.log_handler', new_callable=unittest.mock.PropertyMock, return_value=_ExternalHandler(), ) def test_redirect_to_external_log_with_external_log_handler(_, log_admin_client): url_template = "redirect_to_external_log?dag_id={}&task_id={}&execution_date={}&try_number={}" try_number = 1 url = url_template.format( DAG_ID, TASK_ID, urllib.parse.quote_plus(DEFAULT_DATE.isoformat()), try_number, ) response = log_admin_client.get(url) assert 302 == response.status_code assert _ExternalHandler.EXTERNAL_URL == response.headers['Location']
32.347826
108
0.671744
f847ae3ae08d4ce7b42ad8a1d6cfd2db782e029f
1,259
py
Python
models/difference.py
ChaokunChang/SVAS
61af6eb39269edff8ea5147311628b3200c3a3d2
[ "Apache-2.0" ]
null
null
null
models/difference.py
ChaokunChang/SVAS
61af6eb39269edff8ea5147311628b3200c3a3d2
[ "Apache-2.0" ]
null
null
null
models/difference.py
ChaokunChang/SVAS
61af6eb39269edff8ea5147311628b3200c3a3d2
[ "Apache-2.0" ]
null
null
null
from numpy.core.numeric import Inf import torch class SimpleDiff(): def __init__(self, diff_thresh=30.0, delay=30) -> None: self.diff_thresh = diff_thresh self.delay = delay def infer(self, frames, delay=None): if delay is None: delay = self.delay num_frames = len(frames) results = [Inf] + [-Inf]*(min(delay, num_frames)-1) prev_key_id = len(results) // 2 ref_frame = frames[prev_key_id] for start_id in range(delay, num_frames, delay): end_id = min(start_id + delay, num_frames) batch_results = [-Inf for _ in range(start_id, end_id)] if len(batch_results) == 0: break cur_key_id = (start_id + end_id) // 2 cur_frame = frames[cur_key_id] diff = ((cur_frame - ref_frame.unsqueeze(0))**2).view(len(cur_frame), -1).mean(-1) score = torch.sum(diff).cpu() # print("DEBUG-DIFF: ", diff) if score > self.diff_thresh: batch_results[0] = Inf ref_frame = cur_frame results.extend(batch_results) return results def __call__(self, frames, delay=None): return self.infer(frames, delay)
35.971429
94
0.570294
f7dbc2e9901dc1323049db23230fd23f2b3b5ede
191
py
Python
expense/admin.py
ShyamSundhar1411/Expense-Manager
8ecc4196619f1666f43fa74f1140c72a1e14b800
[ "MIT" ]
1
2021-11-10T15:29:22.000Z
2021-11-10T15:29:22.000Z
expense/admin.py
ShyamSundhar1411/Expense-Manager
8ecc4196619f1666f43fa74f1140c72a1e14b800
[ "MIT" ]
null
null
null
expense/admin.py
ShyamSundhar1411/Expense-Manager
8ecc4196619f1666f43fa74f1140c72a1e14b800
[ "MIT" ]
null
null
null
from django.contrib import admin from .models import Expense,Budget,Profile # Register your models here. admin.site.register(Expense) admin.site.register(Budget) admin.site.register(Profile)
27.285714
42
0.82199
2c2c0776a9592d048b2a2656481cdaa527d11ec2
444
py
Python
api/views.py
julianarchila/music_controller
166936ff9b03fbf7dc0d27db923638ac284636bd
[ "MIT" ]
1
2021-08-07T08:03:52.000Z
2021-08-07T08:03:52.000Z
api/views.py
julianarchila/music_controller
166936ff9b03fbf7dc0d27db923638ac284636bd
[ "MIT" ]
null
null
null
api/views.py
julianarchila/music_controller
166936ff9b03fbf7dc0d27db923638ac284636bd
[ "MIT" ]
null
null
null
""" Api views. """ # Django REST Framework from rest_framework.viewsets import GenericViewSet from rest_framework import mixins # Serializers from api.serializers import RoomModelSerializer # Models from api.models import Room class RoomViewSet( mixins.CreateModelMixin, mixins.ListModelMixin, GenericViewSet): """ Room view set. """ serializer_class = RoomModelSerializer queryset = Room.objects.all()
21.142857
50
0.734234
77ae80a24d3a27b944e22b681f4072ec80a5295a
169
py
Python
src/domain/use_cases/divide.py
panda-coder/py-clean-flask
e7b8af5056178cd1dc6161f52a909f8043dc4b66
[ "MIT" ]
null
null
null
src/domain/use_cases/divide.py
panda-coder/py-clean-flask
e7b8af5056178cd1dc6161f52a909f8043dc4b66
[ "MIT" ]
null
null
null
src/domain/use_cases/divide.py
panda-coder/py-clean-flask
e7b8af5056178cd1dc6161f52a909f8043dc4b66
[ "MIT" ]
null
null
null
from abc import ABC, abstractmethod from domain.dtos import DivideDTO class Divide(ABC): @abstractmethod def calculate(self, params: DivideDTO): pass
16.9
43
0.721893
e0c35b43e304e504503490a3a2636c90f41bacd4
2,851
py
Python
MultiEsenNIC/pycocoevalcap/tokenizer/ptbtokenizer.py
CSnode/Global-Local-Captioning
7eb420b1217391d03732e220d92e680f0aadb38e
[ "MIT" ]
null
null
null
MultiEsenNIC/pycocoevalcap/tokenizer/ptbtokenizer.py
CSnode/Global-Local-Captioning
7eb420b1217391d03732e220d92e680f0aadb38e
[ "MIT" ]
null
null
null
MultiEsenNIC/pycocoevalcap/tokenizer/ptbtokenizer.py
CSnode/Global-Local-Captioning
7eb420b1217391d03732e220d92e680f0aadb38e
[ "MIT" ]
null
null
null
#-*- coding:utf-8 -*- #!/usr/bin/env python # # File Name : ptbtokenizer.py # # Description : Do the PTB Tokenization and remove punctuations. # # Creation Date : 29-12-2014 # Last Modified : Thu Mar 19 09:53:35 2015 # Authors : Hao Fang <hfang@uw.edu> and Tsung-Yi Lin <tl483@cornell.edu> import os import sys import subprocess import tempfile import itertools # path to the stanford corenlp jar STANFORD_CORENLP_3_4_1_JAR = 'stanford-corenlp-3.4.1.jar' # punctuations to be removed from the sentences PUNCTUATIONS = ["''", "'", "``", "`", "-LRB-", "-RRB-", "-LCB-", "-RCB-", \ ".", "?", "!", ",", ":", "-", "--", "...", ";", "。"] class PTBTokenizer: """Python wrapper of Stanford PTBTokenizer""" def tokenize(self, captions_for_image): cmd = ['java', '-cp', STANFORD_CORENLP_3_4_1_JAR, \ 'edu.stanford.nlp.process.PTBTokenizer', \ '-preserveLines', '-lowerCase'] # ====================================================== # prepare data for PTB Tokenizer # ====================================================== final_tokenized_captions_for_image = {} image_id = [k for k, v in captions_for_image.items() for _ in range(len(v))] sentences = '\n'.join([c['caption'].replace('\n', ' ') for k, v in captions_for_image.items() for c in v]) # ====================================================== # save sentences to temporary file # ====================================================== path_to_jar_dirname=os.path.dirname(os.path.abspath(__file__)) tmp_file = tempfile.NamedTemporaryFile(delete=False, dir=path_to_jar_dirname) tmp_file.write(sentences.encode('utf-8')) tmp_file.close() # ====================================================== # tokenize sentence # ====================================================== cmd.append(os.path.basename(tmp_file.name)) p_tokenizer = subprocess.Popen(cmd, cwd=path_to_jar_dirname, \ stdout=subprocess.PIPE) token_lines = p_tokenizer.communicate(input=sentences.rstrip())[0] lines = token_lines.split('\n') # remove temp file os.remove(tmp_file.name) # ====================================================== # create dictionary for tokenized captions # ====================================================== for k, line in zip(image_id, lines): if not k in final_tokenized_captions_for_image: final_tokenized_captions_for_image[k] = [] tokenized_caption = ' '.join([w for w in line.rstrip().split(' ') \ if w not in PUNCTUATIONS]) final_tokenized_captions_for_image[k].append(tokenized_caption) return final_tokenized_captions_for_image
40.728571
114
0.519467
99ce67861db52925fd7c7e46be30807ffb2a19d0
1,679
py
Python
samples/carpedrestian/car_pedrestian_api/api/config.py
Risvil/CarPedrestianDetectorAPI
19beb31c991304115279fef5f231d0408be37989
[ "MIT" ]
null
null
null
samples/carpedrestian/car_pedrestian_api/api/config.py
Risvil/CarPedrestianDetectorAPI
19beb31c991304115279fef5f231d0408be37989
[ "MIT" ]
null
null
null
samples/carpedrestian/car_pedrestian_api/api/config.py
Risvil/CarPedrestianDetectorAPI
19beb31c991304115279fef5f231d0408be37989
[ "MIT" ]
null
null
null
import pathlib import logging from logging.handlers import TimedRotatingFileHandler import os import sys PACKAGE_ROOT = pathlib.Path(__file__).resolve().parent.parent FORMATTER = logging.Formatter( "%(asctime)s - %(name)s - %(levelname)s -" "%(funcName)s:%(lineno)d - %(message)s" ) LOG_DIR = PACKAGE_ROOT / 'logs' LOG_DIR.mkdir(exist_ok=True) LOG_FILE = LOG_DIR / 'car_pedrestian_api.log' UPLOAD_FOLDER = PACKAGE_ROOT / 'uploads' UPLOAD_FOLDER.mkdir(exist_ok=True) ALLOWED_EXTENSIONS = set(['png', 'jpg', 'jpeg']) def get_console_handler(): console_handler = logging.StreamHandler(sys.stdout) console_handler.setFormatter(FORMATTER) return console_handler def get_file_handler(): file_handler = TimedRotatingFileHandler( LOG_FILE, when='midnight' ) file_handler.setFormatter(FORMATTER) file_handler.setLevel(logging.WARNING) return file_handler def get_logger(logger_name): """Get logger with prepared handlers.""" logger = logging.getLogger(logger_name) logger.setLevel(logging.INFO) logger.addHandler(get_console_handler()) logger.addHandler(get_file_handler()) logger.propagate = False return logger class Config: DEBUG = False TESTING = False CSRF_ENABLED = True SECRET_KEY = 'this-really-needs-to-be-changed' SERVER_PORT = 5000 UPLOAD_FOLDER = UPLOAD_FOLDER class ProductionConfig(Config): DEBUG = False SEREVER_ADDRESS: os.environ.get('SERVER_ADDRESS', '0.0.0.0') SERVER_PORT: os.environ.get('SERVER_PORT', '5000') class DevelopmentConfig(Config): DEVELOPMENT = True DEBUG = True class TestingConfig(Config): TESTING = True
23.319444
64
0.724241
66e619e99524835511454a826a9afa19c968806b
109,839
py
Python
devices/mikrotik/mikrotik_routeros.py
ericorain/netscud
b791ee25c2e60b10f7269c306c4b153914149b22
[ "Apache-2.0" ]
null
null
null
devices/mikrotik/mikrotik_routeros.py
ericorain/netscud
b791ee25c2e60b10f7269c306c4b153914149b22
[ "Apache-2.0" ]
null
null
null
devices/mikrotik/mikrotik_routeros.py
ericorain/netscud
b791ee25c2e60b10f7269c306c4b153914149b22
[ "Apache-2.0" ]
null
null
null
# Python library import from netscud.base_connection import NetworkDevice, log import asyncio, asyncssh # Declaration of constant values # Max data to read in read function MAX_BUFFER_DATA = 65535 class MikrotikRouterOS(NetworkDevice): """ Class for Mikrotik RouterOS devices """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.interface_mode = { "access": "admit-only-untagged-and-priority-tagged", "trunk": "admit-only-vlan-tagged", "hybrid": "admit-all", } # Remove useless escape data using the user login self.username = self.username + "+cte" # self._connect_first_ending_prompt = ["> \x1b[K"] self._connect_first_ending_prompt = "\x1b\x5b\x4b" self._connect_second_ending_prompt = "> " self.list_of_possible_ending_prompts = [ "] > ", ] self._carriage_return_for_send_command = "\r\n" self._telnet_connect_login = "Login: " self._telnet_connect_password = "Password: " self._telnet_connect_authentication_fail_prompt = [ "Login: ", "Login failed, incorrect username or password", ] self._telnet_connect_first_ending_prompt = ["] > "] # General commands # No global disabling for Mikrotik RouterOS so use # "without-paging" at the end of your commands self.cmd_disable_paging = None self.cmd_exit_config_mode = "/" self.cmd_get_version = "system resource print without-paging" self.cmd_get_hostname = "system identity print without-paging" self.cmd_get_model = "system resource print without-paging" self.cmd_get_serial_number = "system routerboard print without-paging" self.cmd_get_config = "export" # No command to save the config. So it is always saved after "Enter" self.cmd_save_config = "" # Layer 1 commands # Commands for status, duplex/speed, mode # self.cmd_get_interfaces = [ # "interface ethernet print terse without-paging", # "foreach i in=([/interface ethernet find]) do={/interface ethernet monitor $i once without-paging}", # "interface bridge vlan print terse", # ] self.cmd_get_interfaces = [ "interface ethernet print terse without-paging", "foreach i in=([/interface ethernet find]) do={/interface ethernet monitor $i once without-paging}", "interface bridge port print terse without-paging", ] self.cmd_set_interface = [ "interface ethernet enable <INTERFACE>", "interface ethernet disable <INTERFACE>", 'interface ethernet comment <INTERFACE> "<COMMENT>"', "interface ethernet set l2mtu=<MAXIMUMFRAMESIZE> <INTERFACE>", "interface bridge port set frame-types=<MODE> ingress-filtering=<FILTERINGVLAN> [find interface=<INTERFACE>]", ] # Layer 2 commands self.cmd_get_mac_address_table = "interface bridge host print without-paging" self.cmd_get_arp = "ip arp print terse without-paging" self.cmd_get_lldp_neighbors = "ip neighbor print terse without-paging" self.cmd_get_vlans = "interface bridge vlan print terse without-paging" self.cmd_get_bridges = ( "interface bridge print terse without-paging" # Specific to Mikrotik ) self.cmd_add_vlan = 'interface bridge vlan add vlan-ids=<VLAN> comment="<VLAN_NAME>" bridge=<BRIDGE>' self.cmd_remove_vlan = "interface bridge vlan remove [find vlan-ids=<VLAN>]" self.cmd_add_interface_to_vlan = [ "interface bridge vlan print terse", "interface bridge vlan set [find vlan-ids=<VLAN>] untagged=<INTERFACE>", "interface bridge vlan set [find vlan-ids=<VLAN>] tagged=<INTERFACE>", "interface bridge port set [find interface=<INTERFACE>] pvid=<VLAN>", ] self.cmd_remove_interface_from_vlan = [ "interface bridge vlan print terse", "interface bridge vlan set [find vlan-ids=<VLAN>] untagged=<INTERFACE>", "interface bridge vlan set [find vlan-ids=<VLAN>] tagged=<INTERFACE>", "interface bridge port set [find interface=<INTERFACE>] pvid=<VLAN>", ] # Layer 3 commands self.cmd_get_routing_table = "ip route print without-paging terse" self.cmd_get_interfaces_ip = "ip address print terse without-paging" self.cmd_add_static_route = "ip route add dst-address=<NETWORK>/<PREFIXLENGTH> gateway=<DESTINATION> distance=<METRIC>" self.cmd_remove_static_route = ( "ip route remove [find dst-address=<NETWORK>/<PREFIXLENGTH>]" ) async def connectSSH(self): """ Async method used for connecting a device using SSH protocol Mikrotik has a special prompt which is difficult to manage. Here is an example of the SSH prompt of Mikrotik switch: "[admin@myswitch] > [admin@myswitch] > [admin@myswitch] >  [admin@myswitch] >" So this method is special to Mikrotik devices. """ # Display info message log.info("connectSSH") # Parameters of the connection generator = asyncssh.connect( self.ip, username=self.username, password=self.password, known_hosts=None, # encryption_algs="*", # Parameter that includes all encryption algorithms (even the old ones disabled by default) encryption_algs=[ algs.decode("utf-8") for algs in asyncssh.encryption._enc_algs ], # Parameter that includes all encryption algorithms (even the old ones disabled by default) ) # Trying to connect to the device try: self.conn = await asyncio.wait_for(generator, timeout=self.timeout) except asyncio.exceptions.TimeoutError as error: # Timeout # Display error message log.error(f"connectSSH: connection failed: {self.ip} timeout: '{error}'") # Exception propagation raise asyncio.exceptions.TimeoutError( "Connection failed: connection timed out." ) except Exception as error: # Connection failed # Display error message log.error(f"connectSSH: connection failed: {self.ip} '{error}'") # Exception propagation raise # Display info message log.info("connectSSH: connection success") # Create a session self.stdinx, self.stdoutx, _ = await self.conn.open_session(term_type="netscud") # Display info message log.info("connectSSH: open_session success") # By default no data has been read data = "" # By default no prompt found prompt_not_found = True try: # Read data while prompt_not_found: # Display info message log.info("connectSSH: beginning of the loop") # Read the prompt data += await asyncio.wait_for( self.stdoutx.read(MAX_BUFFER_DATA), timeout=self.timeout ) # Display info message log.info(f"connectSSH: data: '{str(data)}'") # Display info message log.info(f"connectSSH: data: hex:'{data.encode('utf-8').hex()}'") # Check if the first part of the expected prompt is found if self._connect_first_ending_prompt in data: # Found # Second (ending) prompt found? if data.endswith(self._connect_second_ending_prompt): # Yes # Display info message log.info(f"connectSSH: ending of prompt found") # A ending prompt has been found prompt_not_found = False # Leave the loop break # Display info message log.info("connectSSH: end of loop") except Exception as error: # Fail while reading the prompt # Display error message log.error( f"connectSSH: timeout while reading the prompt: {self.ip} '{error}'" ) # Exception propagation raise # Display info message log.info(f"connectSSH: end of prompt loop") # # Remove possible escape sequence # data = self.remove_ansi_escape_sequence(data) # # Find prompt # self.prompt = self.find_prompt(str(data)) # # Display info message # log.info(f"connectSSH: prompt found: '{self.prompt}'") # # Display info message # log.info(f"connectSSH: prompt found size: '{len(self.prompt)}'") # # Disable paging command available? # if self.cmd_disable_paging: # # Yes # # Disable paging # await self.disable_paging() async def connectTelnet(self): """ Async method used for connecting a device using Telnet protocol Mikrotik has a special prompt which is difficult to manage. Here is an example of the Telnet prompt of Mikrotik switch: "\r\r\r\r\r\r[admin@myswitch] > \r[admin@myswitch] > " So this method is special to Mikrotik devices. """ # Display info message log.info("connectTelnet") try: # Prepare connection with Telnet conn = asyncio.open_connection(self.ip, self.port) except Exception as error: # Preparation to the connection failed # Display error message log.error(f"connectTelnet: preparation to the connection failed: '{error}'") # Exception propagation raise # Display info message log.info("connectTelnet: preparation to the connection success") try: # Connection with Telnet self._reader, self._writer = await asyncio.wait_for( conn, timeout=self.timeout ) except asyncio.TimeoutError: # Time out during connection # Display error message log.error("connectTelnet: connection: timeout") # Exception propagation raise # Display info message log.info("connectTelnet: connection success") # Get prompt for the login prompt = self._telnet_connect_login # Get prompt for the password prompt_password = self._telnet_connect_password # By default a login is expected use_login = True # Temporary string variable output = "" # Temporary bytes variable byte_data = b"" # Read the telnet information and first prompt (for login but a password prompt can be found for IOS for instance) while True: # Display info message log.info(f"connectTelnet: read data for prompt") # await asyncio.sleep(2) # Read returned prompt byte_data += await asyncio.wait_for( self._reader.read(MAX_BUFFER_DATA), timeout=self.timeout ) # Display info message log.info(f"connectTelnet: byte_data: {byte_data}") # Temporary convertion in string. This string has the following form: "b'....'" output = str(byte_data) # Display info message log.info(f"connectTelnet: output: {output}") # Prompt for the username found? if prompt in output: # Yes # Leave the loop break # Prompt for the password found? elif prompt_password in output: # Yes # That means only password is required use_login = False # Leave the loop break # A special Telnet string send at first connection? elif b"\xff\xfd\x18\xff\xfd \xff\xfd#\xff\xfd" in byte_data: # Yes # Display info message log.info(f"connectTelnet: telnet_init_message") # chr(0xFF).chr(0xFB).chr(0x1F).chr(0xFF).chr(0xFB).chr(0x20).chr(0xFF).chr(0xFB).chr(0x18).chr(0xFF).chr(0xFB).chr(0x27).chr(0xFF).chr(0xFD).chr(0x01).chr(0xFF).chr(0xFB).chr(0x03).chr(0xFF).chr(0xFD).chr(0x03).chr(0xFF).chr(0xFC).chr(0x23).chr(0xFF).chr(0xFC).chr(0x24).chr(0xFF).chr(0xFA).chr(0x1F).chr(0x00).chr(0x50).chr(0x00).chr(0x18).chr(0xFF).chr(0xF0).chr(0xFF).chr(0xFA).chr(0x20).chr(0x00).chr(0x33).chr(0x38).chr(0x34).chr(0x30).chr(0x30).chr(0x2C).chr(0x33).chr(0x38).chr(0x34).chr(0x30).chr(0x30).chr(0xFF).chr(0xF0).chr(0xFF).chr(0xFA).chr(0x27).chr(0x00).chr(0xFF).chr(0xF0).chr(0xFF).chr(0xFA).chr(0x18).chr(0x00).chr(0x41).chr(0x4E).chr(0x53).chr(0x49).chr(0xFF).chr(0xF0); # Messages in Telnet format cmd = b"\xff\xfb\x1f\xff\xfb\x20\xff\xfb\x18\xff\xfb\x27\xff\xfd\x01\xff\xfb\x03\xff\xfd\x03\xff\xfc\x23\xff\xfc\x24\xff\xfa\x1f\x00\x50\x00\x18\xff\xf0\xff\xfa\x20\x00\x33\x38\x34\x30\x30\x2c\x33\x38\x34\x30\x30\xff\xf0\xff\xfa\x27\x00\xff\xf0\xff\xfa\x18\x00\x41\x4e\x53\x49\xff\xf0" cmd += b"\xff\xfc\x01\xff\xfc\x22\xff\xfe\x05\xff\xfc\x21" # Display info message log.info(f"connectTelnet: telnet_init_message: send: {cmd}") # Display info message log.debug(f"connectTelnet: telnet_init_message: send: '{cmd.hex()}'") # Sending command self._writer.write(cmd) # Temporary bytes variable cleared byte_data = b"" # Display info message log.info(f"connectTelnet: login prompt: '{output}'") # Login to use? if use_login: # Yes # Display info message log.info("connectTelnet: sending login") try: # Send login # await self.send_command(self.username, prompt_password) # Sending command cmd = self.username + "\r\n" self._writer.write(cmd.encode()) # Display info message log.info("connectTelnet: login sent") except Exception: # Problem with the login # Propagate the exception raise # Display info message log.info("connectTelnet: sending password") try: # Send password output = await self.telnet_send_command_with_unexpected_pattern( self.password, self._telnet_connect_first_ending_prompt, self._telnet_connect_authentication_fail_prompt, ) except Exception: # Problem with the password # Propagate the exception raise # Display info message log.info("connectTelnet: password sent") async def send_commandSSH(self, cmd, pattern=None, timeout=None): """ Async method used to send data to a device :param cmd: command to send :type cmd: str :param pattern: optional, a pattern replacing the prompt when the prompt is not expected :type pattern: str :param timeout: optional, a timeout for the command sent. Default value is self.timeout :type timeout: str :return: the output of command :rtype: str """ # Debug info message log.info("send_commandSSH") # Default value of timeout variable if timeout is None: timeout = self.timeout # Debug info message log.info(f"send_commandSSH: cmd = '{cmd}'") # Sending command # Add carriage return at the end of the command (mandatory to send the command) self.stdinx.write(cmd + self._carriage_return_for_send_command) # Display message log.info("send_commandSSH: command sent") # Variable used to gather data output = "" # Variable used for leaving loop (necessary since there is a "while" with a "for" and a "break" command) stay_in_loop = True # Reading data while stay_in_loop: # Read the data received output += await asyncio.wait_for( self.stdoutx.read(MAX_BUFFER_DATA), timeout=timeout ) # Debug info message log.debug(f"send_commandSSH: output hex: '{output.encode('utf-8').hex()}'") # Remove ANSI escape sequence output = self.remove_ansi_escape_sequence(output) # Remove possible "\r" output = output.replace("\r", "") # Debug info message log.info(f"send_commandSSH: output: '{output}'") # Is a patten used? if pattern: # Use pattern instead of prompt if pattern in output: # Yes # Leave the loop break else: # Check if prompt is found for prompt in self.list_of_possible_ending_prompts: # A pattern found twice (or more)? if output.count(prompt) >= 2: # Yes # Display info message log.info( f"send_commandSSH: prompt found twice or more: '{prompt}'" ) # Will leave the while loop stay_in_loop = False # Leave the loop break # Debug info message log.debug( f"send_commandSSH: raw output: '{output}'\nsend_commandSSH: raw output (hex): '{output.encode().hex()}'" ) # # Remove the command sent from the result of the command # output = self.remove_command_in_output(output, str(cmd)) # # Remove the carriage return of the output # output = self.remove_starting_carriage_return_in_output(output) # # Remove the ending prompt of the output # output = self.remove_ending_prompt_in_output(output) # Remove the command sent from the result of the command # output = self.remove_command_in_output(output, str(cmd)) # For Mikrotik just remove the first line (complicated otherwise) output = output.split("\n", 1)[1] # Remove the carriage return of the output # output = self.remove_starting_carriage_return_in_output(output) # Remove the ending prompt of the output # 2 lines? if "\n" in output: # Yes # For Mikrotik just remove the last line (complicated otherwise) output = output[: output.rfind("\n")] else: # No. There is just the prompt # Empty string is returned output = "" # Debug info message log.debug( f"send_commandSSH: cleaned output: '{output}'\nsend_commandSSH: cleaned output (hex): '{output.encode().hex()}'" ) # Return the result of the command return output async def send_commandTelnet(self, cmd, pattern=None, timeout=None): """ Async method used to send data to a device :param cmd: command to send :type cmd: str :param pattern: optional, a pattern replacing the prompt when the prompt is not expected :type pattern: str :param timeout: optional, a timeout for the command sent. Default value is self.timeout :type timeout: str :return: the output of command :rtype: str """ # Debug info message log.info("send_commandTelnet") # Default value of timeout variable if timeout is None: timeout = self.timeout # Add carriage return at the end of the command (mandatory to send the command) cmd = cmd + self._carriage_return_for_send_command # Sending command self._writer.write(cmd.encode()) # Temporary string variable output = "" # Temporary bytes variable byte_data = b"" # Variable used for leaving loop (necessary since there is a "while" with a "for" and a "break" command) stay_in_loop = True try: # Read data while stay_in_loop: # Read returned prompt byte_data += await asyncio.wait_for( self._reader.read(MAX_BUFFER_DATA), timeout=timeout ) # Display info message log.info(f"send_commandTelnet: byte_data: '{byte_data}'") # Temporary convertion in string. This string has the following form: "b'....'" output = str(byte_data) # Display info message log.info(f"send_commandTelnet: output: '{output}'") # Is a patten used? if pattern: # Use pattern instead of prompt if pattern in output: # Yes # Leave the loop break else: # Check if prompt is found for prompt in self.list_of_possible_ending_prompts: # A pattern found twice (or more)? if output.count(prompt) >= 2: # Yes # Display info message log.info( f"send_commandTelnet: prompt found twice or more: '{prompt}'" ) # Will leave the while loop stay_in_loop = False # Leave the loop break except asyncio.TimeoutError: # Time out during when reading prompt # Display error message log.error("send_commandTelnet: connection: timeout") # Exception propagation raise except Exception as error: # Error during when reading prompt # Display error message log.error(f"send_commandTelnet: error: {error}") # Exception propagation raise # Convert data (bytes) into string output = byte_data.decode("utf-8", "ignore") # Debug info message log.debug( f"send_commandTelnet: raw output: '{output}'\nsend_commandTelnet: raw output (hex): '{output.encode().hex()}'" ) # Remove the command sent from the result of the command # output = self.remove_command_in_output(output, str(cmd)) # For Mikrotik just remove the first line (complicated otherwise) output = output.split("\n\r", 1)[1] # Remove the carriage return of the output # output = self.remove_starting_carriage_return_in_output(output) # Remove the ending prompt of the output # For Mikrotik just remove the last line (complicated otherwise) output = output[: output.rfind("\n")] # Debug info message log.debug( f"send_commandTelnet: cleaned output: '{output}'\nsend_commandTelnet: cleaned output (hex): '{output.encode().hex()}'" ) # Return the result of the command return output async def telnet_send_command_with_unexpected_pattern( self, cmd, pattern, error_pattern=None, timeout=None ): """ Async method used to send command for Telnet connection to a device with possible unexpected patterns send_command can wait till time out if login and password are wrong. This method speed up the returned error message when authentication failed is identified. This method is limited to authentication whem password is required :param cmd: command to send :type cmd: str :param pattern: optional, a list of patterns located at the very end of the a returned string. Can be used to define a custom or unexpected prompt a the end of a string :type pattern: str :param timeout: optional, a timeout for the command sent. Default value is self.timeout :type timeout: str :param error_pattern: optional, a list of failed prompts found when the login and password are not correct :type error_pattern: str :return: the output of command :rtype: str """ # Debug info message log.info("telnet_send_command_with_unexpected_pattern") # Default value of timeout variable if timeout is None: timeout = self.timeout # Add carriage return at the end of the command (mandatory to send the command) cmd = cmd + "\n" # Sending command self._writer.write(cmd.encode()) # Temporary string variable output = "" # Temporary bytes variable byte_data = b"" # By default pattern is not found pattern_not_found = True try: # Read data while pattern_not_found: # Read returned prompt byte_data += await asyncio.wait_for( self._reader.read(MAX_BUFFER_DATA), timeout=timeout ) # Display info message log.info( f"telnet_send_command_with_unexpected_pattern: byte_data: '{byte_data}'" ) # Display debug message log.debug( f"telnet_send_command_with_unexpected_pattern: byte_data: hex: '{byte_data.hex()}'" ) # Temporary convertion in string. This string has the following form: "b'....'" output = str(byte_data) # Display info message log.info( f"telnet_send_command_with_unexpected_pattern: output: '{output}'" ) # Is a pattern used? if pattern: # Check all pattern of prompt in the output for prompt in pattern: # Display info message log.info( f"telnet_send_command_with_unexpected_pattern: checking prompt: '{prompt}'" ) # A pattern found twice (or more)? if output.count(prompt) >= 2: # if prompt in output: # Yes # A pattern is found. The main loop can be stopped pattern_not_found = False # Display info message log.info( f"telnet_send_command_with_unexpected_pattern: prompt found: '{prompt}'" ) # Leave the loop break # Is an unexpected pattern used? if error_pattern and pattern_not_found: # Check all unexpected pattern of prompt in the output for bad_prompt in error_pattern: # Display info message log.info( f"telnet_send_command_with_unexpected_pattern: checking unexpected prompt: '{bad_prompt}'" ) # An error_pattern pattern found? if bad_prompt in output: # Yes # Display error message log.error( "telnet_send_command_with_unexpected_pattern: authentication failed" ) # Raise exception raise Exception( "telnet_send_command_with_unexpected_pattern: authentication failed" ) # Leave the loop # break except asyncio.TimeoutError: # Time out during when reading prompt # Close the connection in order to not display RuntimeError await self.disconnect() # Display error message log.error( "telnet_send_command_with_unexpected_pattern: reading prompt: timeout" ) # Exception propagation raise except Exception as error: # Error during when reading prompt # Close the connection in order to not display RuntimeError await self.disconnect() # Display error message log.error( f"telnet_send_command_with_unexpected_pattern: reading prompt: error: {error}" ) # Exception propagation raise # Convert data (bytes) into string output = byte_data.decode("utf-8", "ignore") # Debug info message log.debug( f"telnet_send_command_with_unexpected_pattern: raw output: '{output}'\ntelnet_send_command_with_unexpected_pattern: raw output (hex): '{output.encode().hex()}'" ) # Remove the command sent from the result of the command # output = self.remove_command_in_output(output, str(cmd)) output = output.split("\n\r", 1)[1] # Remove the carriage return of the output output = self.remove_starting_carriage_return_in_output(output) # Remove the ending prompt of the output # For Mikrotik just remove the last line (complicated otherwise) output = output[: output.rfind("\n")] # Debug info message log.debug( f"telnet_send_command_with_unexpected_pattern: cleaned output: '{output}'\ntelnet_send_command_with_unexpected_pattern: cleaned output (hex): '{output.encode().hex()}'" ) # Return the result of the command return output async def send_config_set(self, cmds=None, timeout=None): """ Async method used to send command in config mode There is no configuration mode with Mikrotik RouterOS switches. So this command will just run a group of commands :param cmds: The commands to the device :type cmds: str or list :param timeout: optional, a timeout for the command sent. Default value is self.timeout :type timeout: str :return: the results of the commands sent :rtype: list of str """ # Display info message log.info("send_config_set") # Default value of timeout variable if timeout is None: timeout = self.timeout # By default there is no output output = "" # Optional carriage return carriage_return = "" # Check if cmds is a string if isinstance(cmds, str): # A string # Convert the string into a list cmds = [cmds] # A list? elif not isinstance(cmds, list): # Not a list (and not a string) # Display error message log.error( "send_config_set: parameter cmds used in send_config_set is neither a string nor a list" ) # Leave the method return output # Run each command for cmd in cmds: # Add carriage return if needed (first time no carriage return) output += carriage_return # Send a command output += await self.send_command(cmd) # Set carriage return for next commands carriage_return = "\n" # Return the commands sent return output ######################################################### # # List of API # ######################################################### async def get_version(self): """ Asyn method used to get the version of the software of the device :return: Version of the software of the device :rtype: str """ # Display info message log.info("get_version") # By default empty string version = "" # Run get version on the device output = await self.send_command(self.cmd_get_version) # Seek data to get the version in the returned output version = output.split("version: ")[1].split()[0] # Display info message log.info(f"get_version: version: {version}") # Return the version of the software of the device return version async def get_hostname(self): """ Asyn method used to get the name of the device :return: Name of the device :rtype: str """ # Display info message log.info("get_hostname") # Get hostname output = await self.send_command(self.cmd_get_hostname) # Display info message log.info(f"get_hostname: output: '{output}'") # Remove the useless information in the returned string output = output.split()[1] # Display info message log.info(f"get_hostname: hostname found: '{output}'") # Return the name of the device return output async def get_model(self): """ Asyn method used to get the model of the device :return: Model of the device :rtype: str """ # Display info message log.info("get_model") # Get model output = await self.send_command(self.cmd_get_model) # Display info message log.info(f"get_model: output: '{output}'") # Remove the useless information in the returned string output = output.split("board-name: ")[1].split()[0] # Display info message log.info(f"get_model: model found: '{output}'") # Return the model of the device return output async def get_serial_number(self): """ Get serial number of the switch or the serial number of the first switch of a stack :return: Serial number of the device :rtype: str """ # Display info message log.info("get_serial_number") # Get model output = await self.send_command(self.cmd_get_serial_number) # Display info message log.info(f"get_serial_number: output: '{output}'") # Remove the useless information in the returned string output = output.split("serial-number: ")[1].split()[0] # Display info message log.info(f"get_hostname: hostname found: '{output}'") # Return the serial number of the device return output async def get_config(self, timeout=None): """ Asyn method used to get the configuration of the device :param timeout: optional, a timeout for the command sent. Default value is self.timeout :type timeout: str :return: Configuration of the device :rtype: str """ # Display info message log.info("get_config") # Default value of timeout variable if timeout is None: timeout = self.timeout # Get config output = await self.send_command(self.cmd_get_config, timeout=timeout) # Return de configuration of the device return output async def save_config(self): """ Asyn method used to save the current configuration on the device :return: Commands of the configuration saving process :rtype: str """ # Display info message log.info("save_config") # No need to send a commmand output = "" # Return the commands of the configuration saving process return output async def get_mac_address_table(self): """ Asyn method used to get the mac address table of the device :return: MAC address table of the device :rtype: list of dict """ # Display info message log.info("get_mac_address_table") # By default nothing is returned returned_output = [] # Send a command output = await self.send_command(self.cmd_get_mac_address_table) # Convert string to list of string and remove the 2 first lines lines = output.splitlines()[2:] # Read each line for line in lines: # Set default values for variables mac_type = None mac_address = None vlan = None interface = None # If the MAC address is dynamic AND local then it is self (its own MAC address) # Get the type of MAC address (dynamic, static or self) if len(line) > 6: if line[6].lower() == "l": # Self MAC address mac_type = "self" # Get the type of MAC address (dynamic, static or self) elif line[5].lower() == "d": # Dynamic MAC address mac_type = "dynamic" else: # Static MAC address mac_type = "static" # Get MAC address if len(line) > 26: mac_address = line[9:26] # Convert MAC address into lower case mac_address = mac_address.lower() # Get VLAN if len(line) > 31: vlan = int(line[27:31].strip()) # Get interface if len(line) > 32: interface = line[32:].split()[0] # Create a dictionary mac_dict = { "mac_type": mac_type, "mac_address": mac_address, "vlan": vlan, "interface": interface, } # Add the MAC information to the list if mac_address: returned_output.append(mac_dict) # Return data return returned_output async def get_arp_table(self): """ Asyn method used to get the ARP table of the device :return: ARP table of the device :rtype: list of dict """ # Display info message log.info("get_arp_table") # By default nothing is returned returned_output = [] # Send a command output = await self.send_command(self.cmd_get_arp) # Display info message log.info(f"get_arp:\n'{output}'") # Convert a string into a list of strings lines = output.splitlines() # Read each line for line in lines: # Set default values for variables address = None mac_address = None interface = None # Get IP address if " address=" in line: address = line.split(" address=")[-1].split()[0] # Get MAC address if " mac-address=" in line: mac_address = line.split(" mac-address=")[-1].split()[0] # Get interface if " interface=" in line: interface = line.split(" interface=")[-1].split()[0] # Create a dictionary returned_dict = { "address": address, "mac_address": mac_address, "interface": interface, } # Add the information to the list if address: returned_output.append(returned_dict) # Return data return returned_output async def get_lldp_neighbors(self): """ Asyn method used to get the LLDP information from the device The problem with LLDP implementation on RouterOS is that the command used to get LLDP information can return data even though there is no LLDP service running on neighbour device. Thus Interface and MAC addresses fields could be filled of data without LLDP neighbour device. Data will be considered as LLDP information is there are other fields than Interface and MAC addresses are found. :return: LLDP information of the device :rtype: dict of list of dict """ # Display info message log.info("get_lldp_neighbors") # By default nothing is returned returned_output = {} # Send a command output = await self.send_command(self.cmd_get_lldp_neighbors) # Display info message log.info(f"get_lldp_neighbors:\n'{output}'") # Convert a string into a list of strings lines = output.splitlines() # Read each line for line in lines: # Default value for local interface (no interface) local_interface = None # Initialize potential LLDP data with default values chassis_id = "" port_id = "" ttl = None port_description = "" system_name = "" system_description = "" system_capabilities = [] management_address = "" # Get local interface if " interface=" in line: local_interface = line.split(" interface=")[-1].split()[0].split(",")[0] # Display info message log.info(f"get_lldp_neighbors: local_interface: {local_interface}") # Get Chassis ID - TLV type 1 if " mac-address=" in line: chassis_id = line.split(" mac-address=")[-1].split()[0] # Convert the MAC address of the Chassis ID into a lower case string chassis_id = chassis_id.lower() # Display info message log.info(f"get_lldp_neighbors: chassis_id: {chassis_id}") # Get Port ID - TLV type 2 if " interface-name=" in line: port_id = ( line.split(" interface-name=")[-1].split("=")[0].rsplit(" ", 1)[0] ) # Display info message log.info(f"get_lldp_neighbors: port_id: {port_id}") # Get Time To Live - TLV type 3 # Not available on RouterOS. "age" parameter is a decreasing counter # Get Port description - TLV type 4 # Not available on RouterOS. # Get System name - TLV type 5 if " identity=" in line: system_name = line.split(" identity=")[-1].split()[0] # Check if return value is a string "" (just double quotes which means empty data) if system_name == '""': # Yes, empty string system_name = "" # Display info message log.info(f"get_lldp_neighbors: system_name: {system_name}") # Get System description - TLV type 6 if " system-description=" in line: system_description = ( line.split(" system-description=")[-1] .split("=")[0] .rsplit(" ", 1)[0] ) # Display info message log.info( f"get_lldp_neighbors: system_description: {system_description}" ) # Get System capabilities - TLV type 7 if " system-caps=" in line: # First get the capablities as a string separated by commas # e.g.: 'bridge,wlan-ap,router,station-only' string_capability = line.split(" system-caps=")[-1].split()[0] # Then convert them into a list of characters # Code Capability # B Bridge (Switch) # C DOCSIS Cable Device # O Other # P Repeater # R Router # S Station # T Telephone # W WLAN Access Point # Read each capability for capability in string_capability.split(","): # Check if string is not null if len(capability) > 0: # Get the first letter of the capability, convert this character in uppercase # and add it to a list system_capabilities.append(capability[0].upper()) # Display info message log.info( f"get_lldp_neighbors: system_capabilities: {system_capabilities}" ) # Get Management address - TLV type 8 if " address=" in line: management_address = line.split(" address=")[-1].split()[0] # LLDP TLV Type 9 to 127 are currently not supported by this method # Check if data can be considered as LLDP if local_interface and ( port_id or system_name or system_description or management_address ): # Probably LLDP # Create a dictionary returned_dict = { "chassis_id": chassis_id, "port_id": port_id, "ttl": ttl, "port_description": port_description, "system_name": system_name, "system_description": system_description, "system_capabilities": system_capabilities, "management_address": management_address, } # Add the information to the dict # Each interface can get several returned_dict in a list returned_output[local_interface] = returned_output.get( local_interface, [] ) + [returned_dict] # Return data return returned_output async def get_interfaces(self): """ Asyn method used to get the information of ALL the interfaces of the device some commands are used to collect interface data: - one for status - one for duplex/speed - one for mode (access / trunk / hybrid) :return: Interfaces of the device :rtype: dict of dict """ # Display info message log.info("get_interfaces") # By default nothing is returned returned_output = {} # Command for the status of the interfaces # Send a command output_status = await self.send_command(self.cmd_get_interfaces[0]) # Display info message log.info(f"get_interfaces: status command\n'{output_status}'") # Command for the speed and the duplex mode of the interfaces # Send a command output_bitrate = await self.send_command(self.cmd_get_interfaces[1]) # Display info message log.info(f"get_interfaces: speed duplex command\n'{output_bitrate}'") # Command for the mode of the interfaces (access or trunk) # Send a command output_mode = await self.send_command(self.cmd_get_interfaces[2]) # Display info message log.info(f"get_interfaces: mode command\n'{output_mode}'") # Convert a string into a list of strings (status) lines = output_status.splitlines() # Convert a string into a list of block of strings (duplex/speed) block_of_strings_bitrate = output_bitrate.split("\n\n") # Convert a string into a list of block of strings (mode) block_of_strings_mode = output_mode.splitlines() # By default there is no trunk interface dict_trunk_interface = {} # Read all tagged interfaces line by line for line in block_of_strings_mode: # Check if a " frame-types=" is inside the string if " frame-types=" in line: # Yes # Save the string with the name of the interfaces separated with a comma frame_types = line.split(" frame-types=")[-1].split()[0] # Mikrotik devices have 3 modes: # access, trunk or hybrid # (FrameTypes ::= admit-all | admit-only-untagged-and-priority-tagged | admit-only-vlan-tagged) # # self.interface_mode = { # "access": "admit-only-untagged-and-priority-tagged", # "trunk": "admit-only-vlan-tagged", # "hybrid": "admit-all", # } # Check all modes an interface can get for mode in self.interface_mode: # Does this interface is in the current mode? if frame_types == self.interface_mode[mode]: # Yes # Display info message log.info( f"get_interfaces: frame-types: mode found: '{frame_types}'" ) # Get the name of the interface interface_trunk = line.split(" interface=")[-1].split()[0] # Display info message log.info( f"get_interfaces: frame-types: interface: '{interface_trunk}'" ) # So save the interface mode with a conventional name dict_trunk_interface[interface_trunk] = mode # Leave the loop break # # Check if value is not empty # if tagged_interfaces != '""': # # Not empty # # Read all trunk interfaces found and separate them # for interface_trunk in tagged_interfaces.split(","): # # Save the trunk interface # dict_trunk_interface[interface_trunk] = True # Read each line for line in lines: # Initialize data with default values interface_name = "" operational = False admin_state = False maximum_frame_size = 0 full_duplex = False speed = 0 # speed is in Mbit/s mode = "access" description = "" # Get interface name if " name=" in line: interface_name = line.split(" name=")[-1].split()[0] # Display info message log.info(f"get_interfaces: interface_name: {interface_name}") # Get operational and admin_state status if len(line) > 3: data = line[3].upper() # operational + admin_state = "up"? if data == "R": # Yes operational = True admin_state = True # operational = "down" and admin_state = "up"? elif data == " ": # Yes admin_state = True # operational + admin_state = "down" means data == "X" # No need to compare since default values are already fine # Display info message log.info(f"get_interfaces: operational: {operational}, admin_state") # Get maximum frame size if " l2mtu=" in line: maximum_frame_size = int(line.split(" l2mtu=")[-1].split()[0]) # Display info message log.info( f"get_interfaces: maximum_frame_size : {maximum_frame_size}" ) # Get speed and duplex information for index, data_block in enumerate(block_of_strings_bitrate): # Display info message log.info( f"get_interfaces: get_speed: index: {index} [{len(block_of_strings_bitrate)}]" ) # Is the name of interface found in the block of strings? if f"name: {interface_name}" in data_block: # Yes, so this block of strings has information on the interface # Display info message log.info(f"get_interfaces: get_speed: index found: {index}") # " rate: " field found in the block of strings? (speed) if " rate: " in data_block: # Yes # Then extract the string data rate_string = ( data_block.split(" rate: ")[-1].split()[0].lower() ) # Is is mbps? if "mbps" in rate_string: # Yes # Then speed is saved speed = int(float(rate_string.split("mbps")[0])) # Is is gbps? elif "gbps" in rate_string: # Yes # Then speed is saved in mpbs speed = int(float(rate_string.split("gbps")[0]) * 1000) # Is is tbps? (not seen on current Mikrotik product; for future use) elif "tbps" in rate_string: # Yes # Then speed is saved in mpbs speed = int( float(rate_string.split("tbps")[0]) * 1000000 ) # Display info message log.info( f"get_interfaces: get_speed: rate found: {rate_string}, rate: {speed} mbps" ) # " full-duplex: yes" field found in the block of strings? (full_duplex) if " full-duplex: yes" in data_block: # Yes # Display info message log.info( f"get_interfaces: get_duplex: {interface_name} is in full duplex mode" ) # Then the insterface is in full duplex mode full_duplex = True # Remove current interface information from the block of data # (to speed up the research of data) del block_of_strings_bitrate[index] # Leave the loop break # Get interface mode (access, trunk or hybrid) # Check if the interface is one of the trunk interface if interface_name in dict_trunk_interface: # Yes # Set interface mode mode = dict_trunk_interface[interface_name] # Display info message log.info(f"get_interfaces: mode: {mode}") # # Check if the interface is one of the trunk interface # if interface_name in dict_trunk_interface: # # Yes # # Set trunk mode # mode = "trunk" # # Display info message # log.info(f"get_interfaces: mode: {mode}") # # Get input erros, FCS errors, input packets anf output packets # for index, data_stats in enumerate(block_of_strings_stats): # # Display info message # log.info( # f"get_interfaces: get_stats: index: {index} [{len(block_of_strings_stats)}]" # ) # # Is the name of interface found in the block of strings? # if f"name: {interface_name}" in data_stats: # # Yes, so this block of strings has information on the interface # # Display info message # log.info(f"get_interfaces: get_stats: index found: {index}") # # " rx-fcs-error=" filed found in the block of strings? (speed) # if " rx-fcs-error=" in data_stats: # # Yes # # Save the line with the data of FCS errors # line_split = data_stats.split("rx-fcs-error=")[-1].split("=")[0] # # By default no string gathered # fcs_string = "" # # Check each character till a non-numeric character # for character in line_split: # # Display info message # log.info( # f"get_interfaces: get_stats: fcs errors: char = {character}" # ) # # Is it a numeric characer ("0" to "9")? # if character >= "0" and character <= "9": # # Yes # # So the character is added to a string # fcs_string += character # # Is the character different than " " (which can be used for separator)? # elif character != " ": # # Yes, this is not a space # # Leave the loop then since this is the beginning of another word # break # log.info( # f"get_interfaces: get_stats: fcs errors: fcs_string: {fcs_string}" # ) # # String not empty? # if fcs_string: # # Yes # # Then save the result in integer # fcs_error = int(fcs_string) # Get description if " comment=" in line: description = ( line.split(" comment=")[-1].split("=")[0].rsplit(" ", 1)[0] ) # Display info message log.info(f"get_interfaces: comment: {description}") # Create a dictionary returned_dict = { "operational": operational, "admin_state": admin_state, "maximum_frame_size": maximum_frame_size, "full_duplex": full_duplex, "speed": speed, "mode": mode, "description": description, } # Add the information to the dict if interface_name: returned_output[interface_name] = returned_dict # Return data return returned_output async def get_vlans(self): """ Asyn method used to get the vlans information from the device :return: VLANs of the device :rtype: dict """ # Display info message log.info("get_vlans") # By default nothing is returned returned_output = {} # Send a command output = await self.send_command(self.cmd_get_vlans) # Display info message log.info(f"get_vlans:\n'{output}'") # Convert a string into a list of strings lines = output.splitlines() # Read each line for line in lines: # Initialize data with default values name = "" vlan_id = 0 extra = None # extra = { # "bridge": "", # } # Get VLAN name if " comment=" in line: name = line.split(" comment=")[-1].split("=")[0].rsplit(" ", 1)[0] # Display info message log.info(f"get_vlans: name: {name}") # Get VLAN ID if " vlan-ids=" in line: vlan_id = int(line.split(" vlan-ids=")[-1].split()[0]) # Display info message log.info(f"get_vlans: vlan_id: {vlan_id}") # Get bridge (special Mikrotik) if " bridge=" in line: bridge = line.split(" bridge=")[-1].split("=")[0].rsplit(" ", 1)[0] # Display info message log.info(f"get_vlans: bridge: {bridge}") # Save bridge information into extra = { "bridge": bridge, } # Create a dictionary returned_dict = { "name": name, "extra": extra, } # Is VLAN ID not nul? if vlan_id: # Yes # Add the information to the dict returned_output[vlan_id] = returned_dict # Return data return returned_output async def get_routing_table(self): """ Asyn method used to get the routing table of the device :return: Routing table of the device :rtype: dict """ # Display info message log.info("get_routing_table") # By default nothing is returned returned_output = {} # Send a command output = await self.send_command(self.cmd_get_routing_table) # Display info message log.info(f"get_routing_table:\n'{output}'") # Convert a string into a list of strings lines = output.splitlines() # Read each line for line in lines: # Initialize data with default values network = "" address = "" prefix = 0 protocol = "unknown" administrative_distance = 0 gateway = "" active = False protocol_attributes = None # Get network, address and prefix if " dst-address=" in line: network = line.split(" dst-address=")[-1].split()[0] address = network.split("/")[0] prefix = int(network.split("/")[1]) # Get protocol # Save char with protocol letter if len(line) > 5: protocol_char = line[5] if protocol_char == "C": # Connected protocol = "connected" elif protocol_char == "S": # Static protocol = "static" elif protocol_char == "r": # RIP protocol = "rip" elif protocol_char == "b": # BGP protocol = "bgp" elif protocol_char == "o": # OSPF protocol = "ospf" elif protocol_char == "m": # MME protocol = "mme" # Get administrative distance if " distance=" in line: administrative_distance = int(line.split(" distance=")[-1].split()[0]) # Get gateway if " gateway=" in line: gateway = line.split(" gateway=")[-1].split()[0] # Get active status if len(line) > 3: if line[3] == "A": active = True # Create a dictionary returned_dict = { "address": address, "prefix": prefix, "protocol": protocol, "administrative_distance": administrative_distance, "gateway": gateway, "active": active, "protocol_attributes": protocol_attributes, } # Is a network found? if network: # Yes # Add the information to the dict returned_output[network] = returned_dict # Return data return returned_output async def get_bridges(self): """ Asyn method used to get bridges from the device :return: A dictionary with the bridge information :rtype: dict of dict """ # Display info message log.info("get_bridges") # By default nothing is returned returned_output = {} # Send a command output = await self.send_command(self.cmd_get_bridges) # Display info message log.info(f"get_bridges:\n'{output}'") # Convert a string into a list of strings lines = output.splitlines() # Read each line for line in lines: # Initialize data with default values index = None name = "" status = False mac_address = None spanning_tree = None igmp_snooping = False vlan_filtering = False multicast_querier = False # Get index # Line has enough characters? if len(line) > 1: # Yes # Get the 2 first characters (100 bridges max should be ok) index_string = line[:2] # Convert characters into a integer try: index = int(index_string) # Display info message log.info(f"get_bridges: index: {index}") except: # Convertion failed pass # Get name if " name=" in line: name = line.split(" name=")[-1].split("=")[0].rsplit(" ", 1)[0] # Display info message log.info(f"get_bridges: name: {name}") # Get status line_words = line.split() # Enough words? if len(line_words) > 1: # Running? if line_words[1] == "R": # Yes # So the bridge is enabled status = True # Display info message log.info(f"get_bridges: status: {status}") # Get MAC ADDRESS if " mac-address=" in line: mac_address = ( line.split(" mac-address=")[-1].split("=")[0].rsplit(" ", 1)[0] ) # Display info message log.info(f"get_bridges: mac_address: {mac_address}") # Get Spanning Tree mode if " protocol-mode=" in line: spanning_tree = ( line.split(" protocol-mode=")[-1].split("=")[0].rsplit(" ", 1)[0] ) # Display info message log.info(f"get_bridges: spanning_tree: {spanning_tree}") # Get IGMP SNOOPING status if " igmp-snooping=" in line: # Value "yes" for IGMP SNOOPING? if ( line.split(" igmp-snooping=")[-1].split("=")[0].rsplit(" ", 1)[0] == "yes" ): # Yes # IGMP SNOOPING is enabled igmp_snooping = True # Display info message log.info(f"get_bridges: igmp_snooping: {igmp_snooping}") # Get VLAN filtering status if " vlan-filtering=" in line: # Value "yes" for VLAN filtering? if ( line.split(" vlan-filtering=")[-1].split("=")[0].rsplit(" ", 1)[0] == "yes" ): # Yes # VLAN filtering is enabled vlan_filtering = True # Display info message log.info(f"get_bridges: vlan_filtering: {vlan_filtering}") # Get multicast querier status if " multicast-querier=" in line: # Value "yes"? if ( line.split(" multicast-querier=")[-1] .split("=")[0] .rsplit(" ", 1)[0] == "yes" ): # Yes # VLAN filtering is enabled multicast_querier = True # Display info message log.info(f"get_bridges: multicast_querier: {multicast_querier}") # Create a dictionary returned_dict = { "name": name, "status": status, "mac_address": mac_address, "spanning_tree": spanning_tree, "igmp_snooping": igmp_snooping, "vlan_filtering": vlan_filtering, "multicast_querier": multicast_querier, } # Is there a value? if index is not None: # Yes # Add the information to the dict returned_output[index] = returned_dict # Return data return returned_output async def add_vlan(self, vland_id, vlan_name="", **kwargs): """ Asyn method used to add a vlan to a bridge from the device VLAN to interface is not supported :param vland_id: VLAN ID :type vland_id: int :param vlan_name: optional, name of the VLAN :type vlan_name: str :param kwargs: mandatory, must contain "bridge_name" (str) to specify which bridge to use (specific to Mikrotik) :type kwargs: str :return: Status. True = no error, False = error :rtype: bool """ # Display info message log.info("add_vlan") # Default parameters value bridge_name = None # By default result status is having an error return_status = False # Get parameters # "bridge_name" found? if "bridge_name" not in kwargs: # No # So the VLAN cannot be added # Return status return return_status # Save "bridge" parameter bridge_name = kwargs["bridge_name"] # Display info message log.info(f"add_vlan: bridge_name found: '{bridge_name}'") # Adapt the command line # self.cmd_add_vlan = "interface bridge vlan add vlan-ids=<VLAN> comment=\"<VLAN_NAME>\" bridge=<BRIDGE>" cmd_add_vlan = self.cmd_add_vlan # Replace <VLAN> with the VLAN number cmd_add_vlan = cmd_add_vlan.replace("<VLAN>", str(vland_id)) # Replace <BRIDGE> with the bridge name cmd_add_vlan = cmd_add_vlan.replace("<BRIDGE>", bridge_name) # Replace <VLAN_NAME> with the VLAN name cmd_add_vlan = cmd_add_vlan.replace("<VLAN_NAME>", vlan_name) # Display info message log.info(f"add_vlan: cmd_add_vlan: '{cmd_add_vlan}'") # Add VLAN output = await self.send_command(cmd_add_vlan) # Display info message log.info(f"add_vlan: output: '{output}'") # Check if an error happened # "failure: vlan already added" if "failure" not in output: # No error return_status = True # Return status return return_status async def remove_vlan(self, vland_id): """ Asyn method used to remove a vlan from a bridge of the device VLAN to interface is not supported :param vland_id: VLAN ID :type vland_id: int :return: Status. True = no error, False = error :rtype: bool """ # Display info message log.info("remove_vlan") # By default result status is having an error return_status = False # Adapt the command line # Replace <VLAN> with the VLAN number cmd_remove_vlan = self.cmd_remove_vlan.replace("<VLAN>", str(vland_id)) # Display info message log.info(f"remove_vlan: cmd_remove_vlan: '{cmd_remove_vlan}'") # Add VLAN output = await self.send_command(cmd_remove_vlan) # Display info message log.info(f"remove_vlan: output: '{output}'") # No error? if "no such item" not in output: # No error return_status = True # Sadly "no such item" or any error message cannot be returned # with "[find ...]" command # Return status return return_status async def set_interface( self, interface=None, admin_state=None, description=None, maximum_frame_size=None, mode=None, **kwargs, ): """ Asyn method used to set the state of an interface of the device :param interface: the name of the interface :type interface: str :param admin_state: optional, "up" or "down" status of the interface :type admin_state: bool :param description: optional, a description for the interface :type description: str :param maximum_frame_size: optional, L2 MTU for packets :type maximum_frame_size: int :param mode: optional, set the mode (access, trunk, hybrid) of the interface :type mode: str :param kwargs: not used :type kwargs: dict :return: Status. True = no error, False = error :rtype: bool """ # Display info message log.info("set_interface") # By default result status is having an error return_status = False # Display info message log.info(f"set_interface: input: interface: {interface}") log.info(f"set_interface: input: admin_state: {admin_state}") log.info(f"set_interface: input: description: {description}") log.info(f"set_interface: input: maximum_frame_size: {maximum_frame_size}") log.info(f"set_interface: input: mode: {mode}") # Get parameters # "interface" found? if interface == None: # No # So no action can be performed # Display info message log.info("set_interface: no interface specified") # Return status return return_status # "admin_state" found? if admin_state != None: # Yes # So admin state of the interface can be changed # Display info message log.info("set_interface: admin_state") # "up" or "down"? (True of False) if admin_state: # "up" # ["interface ethernet enable <INTERFACE>", "interface ethernet disable <INTERFACE>"] # Get the command cmd = self.cmd_set_interface[0] else: # "down" # Get the command cmd = self.cmd_set_interface[1] # Adapt the command line # Replace <INTERFACE> with the interface name cmd = cmd.replace("<INTERFACE>", interface) # Display info message log.info(f"set_interface: admin_state: cmd: {cmd}") # Change the state of the interface await self.send_command(cmd) # "description" found? if description != None: # Yes # So description of the interface can be changed # Display info message log.info("set_interface: description") # Adapt the command line # 'interface ethernet comment <INTERFACE> "<COMMENT>"', # Replace <INTERFACE> with the interface name cmd = self.cmd_set_interface[2].replace("<INTERFACE>", interface) # Replace <COMMENT> with the description cmd = cmd.replace("<COMMENT>", description) # Display info message log.info(f"set_interface: description: cmd: {cmd}") # Change the description of the interface await self.send_command(cmd) # "maximum_frame_size" found? if maximum_frame_size != None: # Yes # So the Maximum Frame Size can be changed # Display info message log.info("set_interface: maximum_frame_size") # Adapt the command line # "interface ethernet set l2mtu=<MAXIMUMFRAMESIZE> <INTERFACE>", # Replace <INTERFACE> with the interface name cmd = self.cmd_set_interface[3].replace("<INTERFACE>", interface) # Replace <MAXIMUMFRAMESIZE> with the size of the frame cmd = cmd.replace("<MAXIMUMFRAMESIZE>", str(maximum_frame_size)) # Display info message log.info(f"set_interface: maximum_frame_size: cmd: {cmd}") # Change the Maximum Frame Size of the interface output = await self.send_command(cmd) # Check if there is an error # "value of l2mtu out of range (0..65536)" if "out of range" in output: # Error with the Maximum Frame Size value # Display info message log.error(f"set_interface: maximum_frame_size: output: {output}") # Return an error return return_status # "mode" found? if mode != None: # Yes # So the mode (access, trunk, hybrid) of the interface can be changed # Note that it affects an interface inside a bridge # Display info message log.info("set_interface: mode") # Adapt the command line # "interface bridge port set frame-types=<MODE> ingress-filtering=<FILTERINGVLAN> [find interface=<INTERFACE>]", # Replace <INTERFACE> with the interface name cmd = self.cmd_set_interface[4].replace("<INTERFACE>", interface) # Replace <FILTERINGVLAN> with "yes" (hybrid, trunk) or "no" (access) cmd = cmd.replace("<FILTERINGVLAN>", "no" if mode == "access" else "yes") # By default port is in trunk mode interface_mode = "admit-only-vlan-tagged" # Access? if mode == "access": # Yes interface_mode = "admit-only-untagged-and-priority-tagged" # Hybrid? elif mode == "hybrid": # Yes interface_mode = "admit-all" # Replace <MODE> with: # "admit-all": for "hybrid" # "admit-only-untagged-and-priority-tagged": for "access" # "admit-only-vlan-tagged": for "trunk" cmd = cmd.replace("<MODE>", interface_mode) # Display info message log.info(f"set_interface: mode: cmd: {cmd}") # Change the mode of the interface await self.send_command(cmd) # No error return_status = True # Return status return return_status async def add_interface_to_vlan( self, interface=None, mode=None, vlan=None, **kwargs, ): """ Asyn method used to add an interface to a VLAN of the device :param interface: the name of the interface :type interface: str :param mode: mode of the interface (access, trunk, hybrid) :type mode: str :param vlan: VLAN number :type vlan: int :param kwargs: not used :type kwargs: dict :return: Status. True = no error, False = error :rtype: bool """ # Display info message log.info("add_interface_to_vlan") # By default result status is having an error return_status = False # Display info message log.info(f"add_interface_to_vlan: input: interface: {interface}") log.info(f"add_interface_to_vlan: input: mode: {mode}") log.info(f"add_interface_to_vlan: input: vlan: {vlan}") # Get parameters # "interface" found? if interface == None: # No # So no action can be performed # Display info message log.info("add_interface_to_vlan: no interface specified") # Return status return return_status # "mode" found? if mode == None: # No # So no action can be performed # Display info message log.info("add_interface_to_vlan: no mode specified") # Return status return return_status # "vlan" found? if vlan == None: # No # So no action can be performed # Display info message log.info("add_interface_to_vlan: no vlan specified") # Return status return return_status # Convert VLAN (integer) to string vlan_string = str(vlan) # Get all VLAN IDs # Get command cmd = self.cmd_add_interface_to_vlan[0] # Display info message log.info(f"add_interface_to_vlan: get VLAN IDs: cmd: {cmd}") # Change the VLAN of the interface (in VLAN config of a bridge) output = await self.send_command(cmd) # Display info message log.info(f"add_interface_to_vlan: get VLAN IDs: output: {output}") # Convert a string into a list of strings lines = output.splitlines() # By default no VLAN found vlan_found = False # Check each line for line in lines: # VLAN IDs in the line? if "vlan-ids=" in line: # Yes # Get VLAN IDs list_of_vlans_in_one_line = ( line.split(" vlan-ids=")[-1].split()[0].split(",") ) # Something returned? if list_of_vlans_in_one_line: # Yes # Is the first element empty? if list_of_vlans_in_one_line[0] != '""': # No it is not empty # Check if the current VLAN is the one we look for if vlan_string in list_of_vlans_in_one_line: # That is the VLAN # Display info message log.info( f"add_interface_to_vlan: get VLAN IDs: VLAN found: {vlan}" ) # Get tagged list of interfaces tagged_list_of_interfaces = ( line.split(" tagged=")[-1].split()[0].split(",") ) # Get untagged list of interfaces untagged_list_of_interfaces = ( line.split(" untagged=")[-1].split()[0].split(",") ) # VLAN found vlan_found = True # Leave the loop break # VLAN found? if not vlan_found: # No VLAN found # So it is impossible to add interface to a non-existing VLAN # Display info message log.info("add_interface_to_vlan: get VLAN IDs: no VLAN found") return False # Display info message log.info( f"add_interface_to_vlan: get VLAN IDs: tagged_list_of_interfaces: {tagged_list_of_interfaces}" ) # Display info message log.info( f"add_interface_to_vlan: get VLAN IDs: untagged_list_of_interfaces: {untagged_list_of_interfaces}" ) # Check if tagged and untagged list have a value ['""'] # Check if tagged_list_of_interfaces has just one element if len(tagged_list_of_interfaces) == 1: # Yes just one # Check if that element is "" if tagged_list_of_interfaces[0] == '""': # Yes it is # So the value is removed tagged_list_of_interfaces = [] # Check if untagged_list_of_interfaces has just one element if len(untagged_list_of_interfaces) == 1: # Yes just one # Check if that element is "" if untagged_list_of_interfaces[0] == '""': # Yes it is # So the value is removed untagged_list_of_interfaces = [] # Display info message log.info( f'add_interface_to_vlan: get VLAN IDs: after removing "": tagged_list_of_interfaces: {tagged_list_of_interfaces}' ) # Display info message log.info( f'add_interface_to_vlan: get VLAN IDs: after removing "": untagged_list_of_interfaces: {untagged_list_of_interfaces}' ) # Check if mode is "access" if mode == "access": # Access mode interface # Add the interface to the list of all the untagged interfaces untagged_list_of_interfaces.append(interface) # String with all interfaces seperated with comma all_untagged_list_of_interfaces = ",".join(untagged_list_of_interfaces) # "interface bridge vlan set [find vlan-ids=<VLAN>] untagged=<INTERFACE>", # Replace <INTERFACE> with the interface name cmd = self.cmd_add_interface_to_vlan[1].replace( "<INTERFACE>", all_untagged_list_of_interfaces ) # Replace <VLAN> with the VLAN value cmd = cmd.replace("<VLAN>", vlan_string) # Display info message log.info(f"add_interface_to_vlan: mode access: vlan: cmd: {cmd}") # Change the VLAN of the interface (in VLAN config of a bridge) output = await self.send_command(cmd) # Check if there is an error # "failure: interface cannot be in tagged and untagged at the same time" # "failure: each interface can appear only once" if "failure" in output: # Error with the VLAN value # Display info message log.error(f"add_interface_to_vlan: mode access: vlan: output: {output}") # Return an error return return_status # "interface bridge port set [find interface=<INTERFACE>] pvid=<VLAN>", # Replace <INTERFACE> with the interface name cmd = self.cmd_add_interface_to_vlan[3].replace("<INTERFACE>", interface) # Replace <VLAN> with the VLAN value cmd = cmd.replace("<VLAN>", vlan_string) # Display info message log.info(f"add_interface_to_vlan: mode access: port: cmd: {cmd}") # Change the VLAN of the interface (in Port config of a bridge) output = await self.send_command(cmd) # Check if there is an error # "value of pvid out of range (1..4094)" if "out of range" in output: # Error with the VLAN value # Display info message log.error(f"add_interface_to_vlan: mode access: port: output: {output}") # Return an error return return_status else: # trunk or hybrid mode # Add the interface to the list of all the tagged interfaces tagged_list_of_interfaces.append(interface) # String with all interfaces seperated with comma all_tagged_list_of_interfaces = ",".join(tagged_list_of_interfaces) # "interface bridge vlan set [find vlan-ids=<VLAN>] tagged=<INTERFACE>", # Replace <INTERFACE> with the interface name cmd = self.cmd_add_interface_to_vlan[2].replace( "<INTERFACE>", all_tagged_list_of_interfaces ) # Replace <VLAN> with the VLAN value cmd = cmd.replace("<VLAN>", vlan_string) # Display info message log.info(f"add_interface_to_vlan: mode trunk or hybrid: cmd: {cmd}") # Change the description of the interface output = await self.send_command(cmd) # Check if there is an error # "failure: interface cannot be in tagged and untagged at the same time" # "failure: can not change dynamic" # "failure: each interface can appear only once" if "failure" in output: # Error with the VLAN value # Display info message log.error( f"add_interface_to_vlan: mode trunk/hybrid: port: output: {output}" ) # Return an error return return_status # No error return_status = True # Return status return return_status async def remove_interface_from_vlan( self, interface=None, mode=None, vlan=None, **kwargs, ): """ Asyn method used to remove an interface from a VLAN of the device :param interface: the name of the interface :type interface: str :param mode: mode of the interface (access, trunk, hybrid) :type mode: str :param vlan: VLAN number :type vlan: int :param kwargs: not used :type kwargs: dict :return: Status. True = no error, False = error :rtype: bool """ # Display info message log.info("remove_interface_from_vlan") # By default result status is having an error return_status = False # Display info message log.info(f"remove_interface_from_vlan: input: interface: {interface}") log.info(f"remove_interface_from_vlan: input: mode: {mode}") log.info(f"remove_interface_from_vlan: input: vlan: {vlan}") # Get parameters # "interface" found? if interface == None: # No # So no action can be performed # Display info message log.info("remove_interface_from_vlan: no interface specified") # Return status return return_status # "mode" found? if mode == None: # No # So no action can be performed # Display info message log.info("remove_interface_from_vlan: no mode specified") # Return status return return_status # "vlan" found? if vlan == None: # No # So no action can be performed # Display info message log.info("remove_interface_from_vlan: no vlan specified") # Return status return return_status # Convert VLAN (integer) to string vlan_string = str(vlan) # Get command cmd = self.cmd_remove_interface_from_vlan[0] # Display info message log.info(f"remove_interface_from_vlan: get VLAN IDs: cmd: {cmd}") # Change the VLAN of the interface (in VLAN config of a bridge) output = await self.send_command(cmd) # Display info message log.info(f"remove_interface_from_vlan: get VLAN IDs: output: {output}") # Convert a string into a list of strings lines = output.splitlines() # By default no VLAN found vlan_found = False # Check each line for line in lines: # VLAN IDs in the line? if "vlan-ids=" in line: # Yes # Get VLAN IDs list_of_vlans_in_one_line = ( line.split(" vlan-ids=")[-1].split()[0].split(",") ) # Something returned? if list_of_vlans_in_one_line: # Yes # Is the first element empty? if list_of_vlans_in_one_line[0] != '""': # No it is not empty # Check if the current VLAN is the one we look for if vlan_string in list_of_vlans_in_one_line: # That is the VLAN # Display info message log.info( f"remove_interface_from_vlan: get VLAN IDs: VLAN found: {vlan}" ) # Get tagged list of interfaces tagged_list_of_interfaces = ( line.split(" tagged=")[-1].split()[0].split(",") ) # Get untagged list of interfaces untagged_list_of_interfaces = ( line.split(" untagged=")[-1].split()[0].split(",") ) # VLAN found vlan_found = True # Leave the loop break # VLAN found? if not vlan_found: # No VLAN found # So it is impossible to remove interface from a non-existing VLAN # Display info message log.info("remove_interface_from_vlan: get VLAN IDs: no VLAN found") return False # Display info message log.info( f"remove_interface_from_vlan: get VLAN IDs: tagged_list_of_interfaces: {tagged_list_of_interfaces}" ) # Display info message log.info( f"remove_interface_from_vlan: get VLAN IDs: untagged_list_of_interfaces: {untagged_list_of_interfaces}" ) # Check if tagged and untagged list have a value ['""'] # Check if tagged_list_of_interfaces has just one element if len(tagged_list_of_interfaces) == 1: # Yes just one # Check if that element is "" if tagged_list_of_interfaces[0] == '""': # Yes it is # So the value is removed tagged_list_of_interfaces = [] # Check if untagged_list_of_interfaces has just one element if len(untagged_list_of_interfaces) == 1: # Yes just one # Check if that element is "" if untagged_list_of_interfaces[0] == '""': # Yes it is # So the value is removed untagged_list_of_interfaces = [] # Display info message log.info( f'remove_interface_from_vlan: get VLAN IDs: after removing "": tagged_list_of_interfaces: {tagged_list_of_interfaces}' ) # Display info message log.info( f'remove_interface_from_vlan: get VLAN IDs: after removing "": untagged_list_of_interfaces: {untagged_list_of_interfaces}' ) # Check if mode is "access" if mode == "access": # Access mode interface # Check if the interface is in the list of tagged interfaces if interface not in untagged_list_of_interfaces: # The interface is not in the list of interfaces of the VLAN # Display info message log.error( f"remove_interface_from_vlan: access: interface '{interface}' does not belong to VLAN {vlan_string}" ) # Return an error return return_status # Remove the interface to the list of all the untagged interfaces untagged_list_of_interfaces.remove(interface) # String with all interfaces seperated with comma all_untagged_list_of_interfaces = ",".join(untagged_list_of_interfaces) # Empty string? if all_untagged_list_of_interfaces == "": # Yes # Give an empty string (Mikrotik format) all_untagged_list_of_interfaces = '""' # "interface bridge vlan set [find vlan-ids=<VLAN>] untagged=<INTERFACE>", # Replace <INTERFACE> with the interface name cmd = self.cmd_remove_interface_from_vlan[1].replace( "<INTERFACE>", all_untagged_list_of_interfaces ) # Replace <VLAN> with the VLAN value cmd = cmd.replace("<VLAN>", vlan_string) # Display info message log.info(f"remove_interface_from_vlan: mode access: vlan: cmd: {cmd}") # Change the VLAN of the interface (in VLAN config of a bridge) output = await self.send_command(cmd) # Check if there is an error # "failure: interface cannot be in tagged and untagged at the same time" # "failure: each interface can appear only once" if "failure" in output: # Error with the VLAN value # Display info message log.error( f"remove_interface_from_vlan: mode access: vlan: output: {output}" ) # Return an error return return_status # "interface bridge port set [find interface=<INTERFACE>] pvid=<VLAN>", # Replace <INTERFACE> with the interface name cmd = self.cmd_remove_interface_from_vlan[3].replace( "<INTERFACE>", interface ) # Replace <VLAN> with the default VLAN value cmd = cmd.replace("<VLAN>", "1") # Display info message log.info(f"remove_interface_from_vlan: mode access: port: cmd: {cmd}") # Change the VLAN of the interface (in Port config of a bridge) output = await self.send_command(cmd) # Check if there is an error # "value of pvid out of range (1..4094)" if "out of range" in output: # Error with the VLAN value # Display info message log.error( f"cmd_remove_interface_from_vlan: mode access: port: output: {output}" ) # Return an error return return_status else: # trunk or hybrid mode # Check if the interface is in the list of tagged interfaces if interface not in tagged_list_of_interfaces: # The interface is not in the list of interfaces of the VLAN # Display info message log.error( f"remove_interface_from_vlan: trunk/hybrid: interface '{interface}' does not belong to VLAN {vlan_string}" ) # Return an error return return_status # Remove the interface from the list of all the tagged interfaces tagged_list_of_interfaces.remove(interface) # String with all interfaces seperated with comma all_tagged_list_of_interfaces = ",".join(tagged_list_of_interfaces) # Empty string? if all_tagged_list_of_interfaces == "": # Yes # Give an empty string (Mikrotik format) all_tagged_list_of_interfaces = '""' # "interface bridge vlan set [find vlan-ids=<VLAN>] tagged=<INTERFACE>", # Replace <INTERFACE> with the interface name cmd = self.cmd_remove_interface_from_vlan[2].replace( "<INTERFACE>", all_tagged_list_of_interfaces ) # Replace <VLAN> with the VLAN value cmd = cmd.replace("<VLAN>", vlan_string) # Display info message log.info(f"remove_interface_from_vlan: mode trunk or hybrid: cmd: {cmd}") # Change the description of the interface output = await self.send_command(cmd) # Check if there is an error # "failure: interface cannot be in tagged and untagged at the same time" # "failure: can not change dynamic" # "failure: each interface can appear only once" if "failure" in output: # Error with the VLAN value # Display info message log.error( f"remove_interface_from_vlan: mode trunk/hybrid: port: output: {output}" ) # Return an error return return_status # No error return_status = True # Return status return return_status async def get_interfaces_ip(self): """ Asyn method used to get IP addresses of the interfaces of the device Only IPv4 is supported :return: the interfaces and their IP addresses :rtype: dict of dict """ # Display info message log.info("get_interfaces_ip") # Get command cmd = self.cmd_get_interfaces_ip # Sending command output = await self.send_command(cmd) # Display info message log.info(f"get_interfaces_ip: output: '{output}'") # By default the dictionary returned is empty returned_dict = {} # Convert a string into a list of strings lines = output.splitlines() # Read each line for line in lines: # Set default values for variables interface = None address = None prefix = None # Get interface if " interface=" in line: interface = line.split(" interface=")[-1].split()[0] # Get IP address and prefix if " address=" in line: full_address = line.split(" address=")[-1].split()[0] # Separate IP address from prefix (address, prefix_string) = full_address.split("/") # Convert prefix into a number prefix = int(prefix_string) # An interface found? if interface: # Yes # So the information can be saved into the returned dictionary # Is it a new interface? if interface in returned_dict: # No # Save another IP address for the same interface returned_dict[interface]["ipv4"][address] = {"prefix_length": 24} else: # Yes # So the new interface is saved into the dictionary returned_dict[interface] = { "ipv4": {address: {"prefix_length": prefix}} } # Return data return returned_dict async def add_static_route( self, network_ip=None, prefix_length=None, destination_ip=None, metric=1, **kwargs, ): """ Asyn method used to add a static route to the routing table the device Only IPv4 is supported EXPERIMENTAL (not tested) :param network_ip: the network to add to the route :type network_ip: str :param prefix_length: length of the network mask (32, 31, 30 ... for /32, /31, /30 ...) :type prefix_length: int :param destination_ip: IP address as a destination :type destination_ip: str :param metric: optional, the metric to specify to the route. Default value is 1 :type metric: int :param kwargs: not used :type kwargs: dict :return: Status. True = no error, False = error :rtype: bool """ # Display info message log.info("add_static_route") # By default result status is having an error return_status = False # Check if a network has been specified if not network_ip: # No # Display info message log.error(f"add_static_route: no network specified: {network_ip}") # Return an error return return_status # Check if a prefix_length has been specified if not prefix_length: # No # Display info message log.error(f"add_static_route: no prefix_length specified: {prefix_length}") # Return an error return return_status # Check if the prefix_length is between 1 and 32 if prefix_length < 1 or prefix_length > 32: # No # Display info message log.error( f"add_static_route: prefix_length incorrect value (1...32): {prefix_length}" ) # Return an error return return_status # Check if a destination_ip has been specified if not destination_ip: # No # Display info message log.error( f"add_static_route: no destination_ip specified: {destination_ip}" ) # Return an error return return_status # Check if a metric has been specified if not metric: # No # Display info message log.error(f"add_static_route: no metric specified: {metric}") # Return an error return return_status # self.cmd_add_static_route = "ip route add dst-address=<NETWORK>/<PREFIXLENGTH> gateway=<DESTINATION> distance=<METRIC>" # Replace <NETWORK> with the network value cmd = self.cmd_add_static_route.replace("<NETWORK>", network_ip) # Replace <PREFIXLENGTH> with the prefix_length value cmd = cmd.replace("<PREFIXLENGTH>", str(prefix_length)) # Replace <DESTINATION> with the destination value cmd = cmd.replace("<DESTINATION>", destination_ip) # Replace <METRIC> with the metric value cmd = cmd.replace("<METRIC>", str(metric)) # Display info message log.info(f"add_static_route: cmd: {cmd}") # Sending command await self.send_command(cmd) # No error return_status = True # Return status return return_status async def remove_static_route( self, network_ip=None, prefix_length=None, destination_ip=None, **kwargs, ): """ Asyn method used to remove a static route to the routing table the device Only IPv4 is supported EXPERIMENTAL (not tested) :param network_ip: the network to remove to the route :type network_ip: str :param prefix_length: length of the network mask (32, 31, 30 ... for /32, /31, /30 ...) :type prefix_length: int :param destination_ip: not used :type destination_ip: str :param kwargs: not used :type kwargs: dict :return: Status. True = no error, False = error :rtype: bool """ # Display info message log.info("remove_static_route") # By default result status is having an error return_status = False # Check if a network has been specified if not network_ip: # No # Display info message log.error(f"remove_static_route: no network specified: {network_ip}") # Return an error return return_status # Check if a prefix_length has been specified if not prefix_length: # No # Display info message log.error( f"remove_static_route: no prefix_length specified: {prefix_length}" ) # Return an error return return_status # Check if the prefix_length is between 1 and 32 if prefix_length < 1 or prefix_length > 32: # No # Display info message log.error( f"remove_static_route: prefix_length incorrect value (1...32): {prefix_length}" ) # Return an error return return_status # self.cmd_remove_static_route = "ip route remove [find dst-address=<NETWORK>/<PREFIXLENGTH>]" # Replace <NETWORK> with the network value cmd = self.cmd_remove_static_route.replace("<NETWORK>", network_ip) # Replace <PREFIXLENGTH> with the prefix_length value cmd = cmd.replace("<PREFIXLENGTH>", str(prefix_length)) # Display info message log.info(f"remove_static_route: cmd: {cmd}") # Sending command await self.send_command(cmd) # No error return_status = True # Return status return return_status
31.572003
708
0.532033
cd3e8ded2d7a9f19b9301172ece1f38fba4de2ca
22,060
py
Python
source/segment/nnmf_segment.py
lucori/NN-MitralSeg
d20a7348f309db5c86d3f53c3e13c3cfa98a64a6
[ "MIT" ]
2
2021-09-23T06:35:57.000Z
2021-12-07T18:04:28.000Z
source/segment/nnmf_segment.py
lucori/NN-MitralSeg
d20a7348f309db5c86d3f53c3e13c3cfa98a64a6
[ "MIT" ]
null
null
null
source/segment/nnmf_segment.py
lucori/NN-MitralSeg
d20a7348f309db5c86d3f53c3e13c3cfa98a64a6
[ "MIT" ]
1
2021-05-06T09:07:45.000Z
2021-05-06T09:07:45.000Z
import torch import torch.optim as optim import torch.nn as nn from torch.autograd import Variable import os from segment.nnmf import NNMF from evaluation import get_scores from .pytorch_utils import load_dataset, EarlyStopping from .segment_class import MitralSeg from sklearn.decomposition import NMF from utils import window_detection import numpy as np from utils import animate, colorize, refactor, softplus import matplotlib.pyplot as plt import matplotlib matplotlib.use('agg') from torch.utils.tensorboard import SummaryWriter import time dir_path = os.path.dirname(os.path.realpath(__file__)) class SegNNMF(MitralSeg): def __init__(self, l1_mult, l21_mult, embedding_mult, epochs, n_steps, learning_rate, mlp_size, gmf_size, batchsize, num_workers, device, embedding_nmf_init, gmf_net_init, mlp_layers, threshold_layers, window_size, save_data_every, save_tensorboard_summary_every, search_window_size, opt_flow_window_size, train_test_split, patience, min_delta, early_stopping, connected_struct, morph_op, option, threshold_mv, threshold_wd, spat_temp_mult): super(SegNNMF, self).__init__() self.mlp_size = mlp_size self.gmf_size = gmf_size self.l1_mult = l1_mult self.l21_mult = l21_mult self.embedding_mult = embedding_mult self.spat_temp_mult = spat_temp_mult self.epochs = epochs self.n_steps = n_steps self.lr = learning_rate self.batchsize = batchsize self.num_workers = num_workers self.device = device self.embedding_nmf_init = embedding_nmf_init self.gmf_net_init = gmf_net_init self.mlp_layers = mlp_layers self.threshold_layers = threshold_layers self.option = option self.nnmf = NNMF(self.gmf_size, self.mlp_size, self.mlp_layers, self.threshold_layers) self.window_size = window_size self.search_window_size = search_window_size self.opt_flow_window_size = float(opt_flow_window_size) self.connected_struct = connected_struct self.morph_op = morph_op self.train_test_split = train_test_split self.patience = patience self.min_delta = min_delta self.early_stopping = early_stopping self.save_data_every = save_data_every self.save_tensorboard_summary_every = save_tensorboard_summary_every self.x_hat = None self.s = None self.s_reshape = None self.train_loader = None self.val_loader = None self.embedding_params = None self.embedding_opt = None self.neu_mf_opt = None self.threshold_opt = None self.threshold_mv = threshold_mv self.threshold_wd = threshold_wd def l1_loss(self, s_out): loss = torch.mean(torch.abs(s_out)) return loss def l21_loss(self, s): return torch.mean(torch.norm(s, dim=1) / np.sqrt(s.shape[1])) def set_x(self, matrix3d): super(SegNNMF, self).set_x(matrix3d) self.x_hat = torch.empty_like(torch.from_numpy(self.matrix2d), dtype=torch.float32) self.s = torch.empty_like(torch.from_numpy(self.matrix2d), dtype=torch.float32) embedding_nmf_init = self.initialize_embedding_gmf() self.nnmf.set_matrix(self.matrix2d, embedding_nmf_init) # create data loader print('loading dataset') if self.n_steps: self.epochs = int(self.n_steps / (matrix3d.size / self.batchsize)) (self.train_loader, self.val_loader) = load_dataset(self.matrix2d, batch_size=self.batchsize, num_workers=self.num_workers, train_test_split=self.train_test_split) # optimizers for mlp and latent features self.embedding_params = self.nnmf.embedding_parameters() self.embedding_opt = optim.Adam(self.embedding_params, lr=self.lr) self.neu_mf_opt = optim.Adam(list(self.nnmf.mlp.parameters()) + list(self.nnmf.neu_mf.parameters()), lr=self.lr) self.threshold_opt = optim.Adam(self.nnmf.threshold_mlp.parameters(), lr=self.lr) def initialize_embedding_gmf(self): if self.embedding_nmf_init: model = NMF(n_components=self.gmf_size, init='random', random_state=0, max_iter=200, tol=0.0001) w = model.fit_transform(self.matrix2d) h = model.components_.transpose() nmf_par = (w, h) else: nmf_par = None return nmf_par def train_threshold(self, mse_xs_loss, l1_loss, l21_loss): self.threshold_opt.zero_grad() loss_threshold = mse_xs_loss + self.l1_mult * l1_loss + self.l21_mult * l21_loss loss_threshold.backward(retain_graph=True) self.threshold_opt.step() def train_neu_mf(self, mse_x_loss): self.neu_mf_opt.zero_grad() loss_neu_mf = mse_x_loss loss_neu_mf.backward(retain_graph=True) self.neu_mf_opt.step() def train_embedding(self, mse_x_loss, embedding_reg, spatial_ref, temporal_reg, valve=None): self.embedding_opt.zero_grad() embedding_loss = mse_x_loss + self.embedding_mult * embedding_reg + \ self.spat_temp_mult * (spatial_ref + temporal_reg) embedding_loss.backward(retain_graph=True) if valve: valve_frames = [int(list(v.keys())[0])-1 for v in valve] mid = int((valve_frames[-1]+valve_frames[-2])/2) for par in self.embedding_params: if par.shape[0] == self.m: par.grad[mid:, ...] = 0 self.embedding_opt.step() def train(self, save_location=None): # initialize epochs self.nnmf.init_params(gmf_net_init=self.gmf_net_init) self.nnmf.to(self.device) self.x_hat = self.x_hat.to(self.device) self.s = self.s.to(self.device) train_writer = SummaryWriter(log_dir=save_location + '/train') if self.val_loader: val_writer = SummaryWriter(log_dir=save_location + '/val') print('beginning training') ep = 0 global_step = 0 self.save_tensorboard_summary(train_writer, initialization=True) eval_dict = {} if self.early_stopping: self.early_stopping = EarlyStopping(patience=self.patience, mode='min', percentage=True, min_delta=self.min_delta) training_time = 0 while ep < self.epochs: print("Epoch {} of {}".format(ep, self.epochs - 1)) start_time_epoch = time.time() time_detach = 0 self.nnmf.train() if self.early_stopping: cum_mse_xs_loss = 0 cum_mse_x_loss = 0 cum_l1_loss = 0 cum_embedding_reg = 0 for batch_id, batch in enumerate(self.train_loader, 0): pixel = Variable(batch[0]) frame = Variable(batch[1]) target = Variable(batch[2]) # send x_hat and s to gpu pixel = pixel.to(self.device) frame = frame.to(self.device) target = target.to(self.device).float() target = torch.reshape(target, shape=(target.shape[0], 1)) self.batchsize_eff = pixel.shape[0] # forward pass x_out, s_out = self.nnmf.forward(pixel, frame, target) self.s[pixel, frame] = torch.squeeze(s_out) # compute losses mse_xs_loss = nn.functional.mse_loss(target, x_out + s_out) mse_x_loss = nn.functional.mse_loss(target, x_out) l1_loss = self.l1_loss(s_out) l21_loss = 0 # self.l21_loss(self.s) embedding_reg = self.nnmf.embedding_regularization(pixel, frame) spatial_reg = self.nnmf.spatial_regularization(self.device) temporal_reg = self.nnmf.temporal_regularization(self.device) # backward and step self.train_neu_mf(mse_x_loss) self.train_embedding(mse_x_loss, embedding_reg, spatial_reg, temporal_reg) self.train_threshold(mse_xs_loss, l1_loss, l21_loss) # update x_hat and s start_time = time.time() self.x_hat[pixel, frame] = torch.squeeze(x_out.detach()) self.s = self.s.detach() time_detach += time.time() - start_time training_time += time.time() - start_time_epoch time_detach = time_detach + time.time() - start_time if global_step % (self.epochs*5) == 0: data_dict = {'mse_x': mse_x_loss, 'mse_xs': mse_xs_loss, 'embedding_regularization': embedding_reg, 'l1_loss': l1_loss, 'l21_loss': l21_loss} # Print training progress every 100 steps print(data_dict) self.save_scalar_summary(data_dict, train_writer, global_step) self.s_reshape = np.reshape(self.s.cpu().numpy(), newshape=(self.vert, self.horz, self.m)) self.myocardium = np.reshape(self.x_hat.cpu().numpy(), newshape=(self.vert, self.horz, self.m)) if self.early_stopping: cum_mse_xs_loss += mse_xs_loss.detach() / len(self.train_loader) cum_mse_x_loss += mse_x_loss.detach() / len(self.train_loader) cum_l1_loss += l1_loss.detach() / len(self.train_loader) cum_embedding_reg += embedding_reg.detach() / len(self.train_loader) # batches global_step = global_step + 1 if ep == 0 or (ep % self.save_data_every == 0 or ep == self.epochs - 1): print('extracting tensors for segmentation') start_time = time.time() self.s_reshape = np.reshape(self.s.cpu().numpy(), newshape=(self.vert, self.horz, self.m)) self.myocardium = np.reshape(self.x_hat.cpu().numpy(), newshape=(self.vert, self.horz, self.m)) print('finish extracting in ', time.time() - start_time, "seconds") print("window detection...") start_time = time.time() # detect window win, _, _ = window_detection(tensor=self.s_reshape, option=self.option, time_series=self.nnmf.gmf_v.weight.detach().cpu().numpy(), window_size=self.window_size, search_window_size=self.search_window_size, opt_flow_window_size=self.opt_flow_window_size, threshold=self.threshold_wd, stride=2) self.mask = win[0] print('finish window detection in ', time.time() - start_time, "seconds") start_time = time.time() self.valve = self.get_valve(self.s_reshape, self.mask, threshold=self.threshold_mv) print('finish valve segmentation in ', time.time() - start_time, "seconds") # saving segmentation and predicted window as well the embedding and sparse matrix data_dict_save = self.create_dict(ep) if ep != 0: self.save_data(data_dict_save, save_location=save_location) # get evaluation scores start_time = time.time() if self.valve_gt is not None and self.mask_gt is not None: eval_dict = get_scores(self.mask, self.valve, self.mask_gt, self.valve_gt) self.save_scalar_summary(eval_dict, train_writer, global_step) print('finish scalar eval summary in ', time.time() - start_time, "seconds") if self.early_stopping: if self.early_stopping.step(cum_mse_x_loss): self.save_tensorboard_summary(train_writer, initialization=False, global_step=global_step) break start_time = time.time() if ep % self.save_tensorboard_summary_every == 0 or ep == self.epochs - 1: self.save_tensorboard_summary(train_writer, initialization=False, global_step=global_step) pass print('finish image summary in ', time.time() - start_time, "seconds") if self.val_loader: with torch.no_grad(): self.nnmf.eval() mse_xs_loss = 0 mse_x_loss = 0 l1_loss = 0 embedding_reg = 0 spatial_reg = 0 temporal_reg = 0 for batch_id, batch in enumerate(self.val_loader, 0): pixel, frame, target = Variable(batch[0]), Variable(batch[1]), Variable(batch[2]) # send x_hat and s to gpu pixel = pixel.to(self.device) frame = frame.to(self.device) target = target.to(self.device).float() target = torch.reshape(target, shape=(target.shape[0], 1)) self.batchsize_eff = pixel.shape[0] # forward pass x_out, s_out = self.nnmf.forward(pixel, frame, target) # compute losses mse_xs_loss += nn.functional.mse_loss(target, x_out + s_out) mse_x_loss += nn.functional.mse_loss(target, x_out) l1_loss += self.l1_loss(s_out) embedding_reg += self.nnmf.embedding_regularization(pixel, frame) * self.embedding_mult / self.batchsize_eff spatial_reg += self.nnmf.spatial_regularization(self.device) temporal_reg += self.nnmf.temporal_regularization(self.device) mse_xs_loss = mse_xs_loss / len(self.val_loader) mse_x_loss = mse_x_loss / len(self.val_loader) l1_loss = l1_loss / len(self.val_loader) embedding_reg = embedding_reg / len(self.val_loader) spatial_reg = spatial_reg / len(self.val_loader) temporal_reg = temporal_reg / len(self.val_loader) data_dict = {'mse_x': mse_x_loss, 'mse_xs': mse_xs_loss, 'embedding_regularization': embedding_reg, 'l1_loss': l1_loss, 'spatial_reg': spatial_reg, 'temporal_reg': temporal_reg} self.save_scalar_summary(data_dict, val_writer, global_step) ep = ep + 1 eval_dict.update({'time': training_time}) return eval_dict def save_scalar_summary(self, dict, writer, global_step): for name, loss in dict.items(): writer.add_scalar(name, loss, global_step=global_step) def save_plots(self, data_dict, ep): animate(self.matrix3d, data_dict['valve.npy'], self.dir + 'valve' + str(ep) + '.mp4') animate(self.matrix3d, data_dict['myocardium.npy'], self.dir + 'myocardium' + str(ep) + '.mp4') animate(self.matrix3d, data_dict['s.npy'], self.dir + 's' + str(ep) + '.mp4') fig, ax = plt.subplots(figsize=(8, 8), nrows=2, ncols=2) U = data_dict['U'].reshape((self.vert, self.horz, self.d)) ax[0, 0].imshow(U[:, :, 0], cmap='binary') ax[0, 1].imshow(U[:, :, 1], cmap='binary') plt.savefig(self.dir + 'U' + str(ep) + '.jpg') plt.plot(data_dict['V']) plt.savefig(self.dir + 'V' + str(ep) + '.jpg') def save_tensorboard_embeddings(self, u, v, embedding_dim, name_u, name_v, writer, global_step, matrix_bin): u = softplus(u.weight.detach().cpu().numpy().reshape((self.vert, self.horz, embedding_dim))) u = np.expand_dims(np.stack([u, u, u], axis=0), axis=0) writer.add_images(name_u, refactor(u), global_step=global_step) v = softplus(v.weight.detach().cpu().numpy()) fig = plt.figure() plt.plot(v) writer.add_figure(name_v, fig, global_step=global_step) dot_product = np.dot(u, v.T)[0, 0, ...] myocardium_dot_prod = self.get_video(dot_product, matrix_bin, cmap='rainbow') writer.add_video(name_u + '_' + name_v + '_dotprod', myocardium_dot_prod, global_step=global_step) def save_tensorboard_summary(self, writer, initialization=True, global_step=0): matrix = np.transpose(self.matrix3d, axes=(2, 0, 1)) matrix_bin = colorize(matrix, cmap='binary') for j, l in enumerate(self.nnmf.neu_mf.parameters()): writer.add_histogram('weights_neu_mf' + str(j), l.data, global_step=global_step) inp = np.expand_dims(np.linspace(-1, 1), axis=1) out = self.nnmf.threshold_mlp.forward(torch.from_numpy(inp).to(self.device).float()).detach().cpu().numpy() fig = plt.figure() plt.plot(inp, out) writer.add_figure('threshold_fun', fig, global_step=global_step) if self.mlp_size > 0: #for j, l in enumerate(self.nnmf.mlp.parameters()): # writer.add_histogram('weights_' + str(j), l.data, global_step=global_step) self.save_tensorboard_embeddings(self.nnmf.mlp_u, self.nnmf.mlp_v, self.mlp_size, 'mlp_u', 'mlp_v', writer, global_step, matrix_bin) if self.gmf_size > 0: self.save_tensorboard_embeddings(self.nnmf.gmf_u, self.nnmf.gmf_v, self.gmf_size, 'gmf_u', 'gmf_v', writer, global_step, matrix_bin) # for first time if not initialization: myocardium = self.get_video(self.myocardium, matrix_bin, cmap='rainbow') noise = self.get_video(self.s_reshape, matrix_bin, cmap='rainbow') myocardium = self.get_video(self.myocardium, matrix_bin, cmap='rainbow') sparse = self.get_video(self.s_reshape, matrix_bin, cmap='rainbow') writer.add_video('myocardium', myocardium, global_step=global_step) writer.add_video('sparse', sparse, global_step=global_step) valve = self.get_video(self.valve, matrix_bin, cmap='rainbow') writer.add_video('valve', valve, global_step=global_step) # predicted and ground truth valves if self.valve_gt is not None: fig, axs = plt.subplots(1, 3) fig.set_size_inches(12, 4) fig.suptitle('') for i in range(len(self.valve_gt)): axs[i].imshow(self.get_valve_image(i, initialization)) writer.add_figure('segmentation', fig, global_step=global_step) # predicted and ground truth window if self.mask_gt is not None: fig = plt.figure() frame = np.squeeze(self.matrix3d[..., 0]) if initialization: mask = np.zeros(shape=self.mask_gt.shape) else: if len(self.mask.shape) == 3: mask = np.squeeze(self.mask[..., 0]) else: mask = self.mask color_image = np.clip(np.dstack([0.75 * frame + mask, 0.75 * frame, 0.75 * frame + self.mask_gt]), a_min=0, a_max=1) plt.imshow(color_image) writer.add_figure('window', fig, global_step=global_step) def get_video(self, tensor, matrix_bin, cmap='binary'): tensor = np.transpose(tensor, axes=(2, 0, 1)) tensor_col = colorize(tensor, cmap=cmap) tensor = np.where(np.stack([tensor for _ in range(4)], axis=-1), tensor_col, matrix_bin) tensor = np.transpose(tensor, axes=(0, 3, 1, 2)) tensor = np.expand_dims(tensor, axis=0) return tensor def create_dict(self, ep): ep = str(ep) get_name = lambda x: x + ep + '.npy' data_dict = {get_name('valve'): self.valve, get_name('myocardium'): self.myocardium, get_name('mask'): self.mask, get_name('s'): self.s_reshape} if self.mlp_size != 0: data_dict.update({get_name('mlp_u'): self.nnmf.mlp_u.weight.detach().cpu().numpy(), get_name('mlp_v'): self.nnmf.mlp_v.weight.detach().cpu().numpy()}) if self.gmf_size != 0: data_dict.update({get_name('gmf_u'): self.nnmf.gmf_u.weight.detach().cpu().numpy(), get_name('gmf_v'): self.nnmf.gmf_v.weight.detach().cpu().numpy()}) inp = np.expand_dims(np.linspace(-1, 1), axis=1) out = self.nnmf.threshold_mlp.forward(torch.from_numpy(inp).to(self.device).float()).detach().cpu().numpy() data_dict.update({'threshold_fun' + ep + '.npy': out}) return data_dict def get_valve_image(self, idx, initialization): valve_idx = int(list(self.valve_gt[idx].keys())[0]) - 1 valve_values = list(self.valve_gt[idx].values())[0] frame = np.squeeze(self.matrix3d[..., valve_idx]) if initialization: valve_pred = np.zeros(shape=valve_values.shape) else: valve_pred = np.squeeze(self.valve[..., valve_idx]) valve_image = np.clip(np.dstack([0.75 * frame + valve_pred, 0.75 * frame, 0.75 * frame + valve_values]), a_min=0, a_max=1) return valve_image
48.590308
125
0.582185
f240604d68729dbbbab7bf9c7338ae8223c95211
891
py
Python
challenges/print_level_order/test_print_level_order.py
seattlechem/data-structures-and-algorithms
376e465c0a5529ea7c5c4e972a9852b6340251ff
[ "MIT" ]
null
null
null
challenges/print_level_order/test_print_level_order.py
seattlechem/data-structures-and-algorithms
376e465c0a5529ea7c5c4e972a9852b6340251ff
[ "MIT" ]
null
null
null
challenges/print_level_order/test_print_level_order.py
seattlechem/data-structures-and-algorithms
376e465c0a5529ea7c5c4e972a9852b6340251ff
[ "MIT" ]
null
null
null
"""Print level order test.""" from .print_level_order import print_level_order import pytest def test_print_level_order_true(small_tree): """Confirm if true for level order print.""" result = print_level_order(small_tree) assert result == '5 \n 9 3 \n ' def test_level_print_large_tree(large_tree): """Confirm the result of level_order_print of large_tree.""" result = print_level_order(large_tree) assert result == '12 \n 9 2 11 \n 1 3 99 \n 13 14 \n ' def test_type_error(): """Confirm if error is thrown if input is not K-ary Tree.""" with pytest.raises(TypeError) as err: print_level_order(34) assert err is 'Input must be K-ary Tree.' def test_value_error(): """Confirm if error is thrown if input is missing.""" with pytest.raises(ValueError) as err: print_level_order() assert err is 'Input is missing.'
29.7
64
0.690236
ab323493cebe8b6bd7431270a57b1a15b093040f
11,369
py
Python
bitstream/decoder/cb_translate.py
mfkiwl/NEM-Relay-CGRA
1ad59b83b9a61ee56da43e5491a95d2f4e6c2ac4
[ "BSD-3-Clause" ]
2
2021-03-28T08:03:01.000Z
2021-09-19T08:10:02.000Z
bitstream/decoder/cb_translate.py
mfkiwl/NEM-Relay-CGRA
1ad59b83b9a61ee56da43e5491a95d2f4e6c2ac4
[ "BSD-3-Clause" ]
null
null
null
bitstream/decoder/cb_translate.py
mfkiwl/NEM-Relay-CGRA
1ad59b83b9a61ee56da43e5491a95d2f4e6c2ac4
[ "BSD-3-Clause" ]
2
2021-03-28T08:02:57.000Z
2021-11-06T05:14:17.000Z
#!/usr/bin/python import sys; import re; VERBOSE = False TEST = False # Test of pass by reference # def modify(foo): # foo["bar"] = 'baz' # # foo = {} # modify(foo) # print foo # sys.exit(0) def main(): if TEST: VERBOSE = True test_cbfix() sys.exit(0) # inputstream = sys.stdin; input_lines = inputstream; # for line in inputstream: # input_lines = (); input_lines = sys.stdin; input_lines = [] # for line in sys.stdin: input_lines.append(line) for line in sys.stdin: input_lines.append(line) print "################################################################" print "# PRE-PASS to build cb, sb dictionaries" print "################################################################" # cb_config and cb_annote are dictionaries of strings # containing cb config and annote strings e.g. # cb_config["00020003"] = "01230456" # cb_annote["00020003"] = "# connect a to foo" # sb_config and sb_annote are dictionaries of lists of strings # containing sb config and annote strings # sb_config["00050007"] = ("02020000","00001100") # sb_annote["00050007"] = ("# annote1...", "# annote2...") cb_config = {}; cb_annote = {} sb_config = {}; sb_annote = {} for line in input_lines: # print 'foo'+line fix_cb(line, cb_config, cb_annote, sb_config, sb_annote, DBG=1) print "################################################################" print "# Now use cb, sb dictionaries to translate v0 => v1" print "################################################################" for line in input_lines: line = line.strip() # YES # (reg,feature,tile,data) = parse_bs_line(line) (addr, data) = parse_bs_line(line) (reg,feature,tile) = parse_bs_addr(addr) if addr in cb_config: print "# %s" % line print "# Found addr '%s' in CB %s" % (addr, cb_config) print "%s %s" % (addr, cb_config[addr]) print "# " del cb_config[addr] elif addr in sb_config: print "# %s" % line # print "# Oh boy get to merge addr '%s' into SB %s" % (addr, sb_config) print "# Oh boy found existing sb route(s) %s" % sb_config[addr] newdata= merge_sbroutes( [data] + sb_config[addr]) print "%s %s" % (addr, newdata) print "# " del sb_config[addr] else: print line print "" print "# LEFTOVERS" # print "CB: %s" % cb_config print "# SB: %s" % sb_config print "# " for addr in sb_config: newdata= merge_sbroutes(sb_config[addr]) print "%s %s" % (addr, newdata) def merge_sbroutes(sb_list): sb_merged = 0 for rte in sb_list: sb_merged = sb_merged | int(rte,16) sb_merged = "%08X" % sb_merged print "# %s merged to %s" % (sb_list, sb_merged) return sb_merged def fix_cb(line, cb_config, cb_annote, sb_config, sb_annote, DBG=0): line = line.strip() # YES # (reg,feature,tile,data) = parse_bs_line(line) (addr, data) = parse_bs_line(line) (reg,feature,tile) = parse_bs_addr(addr) # Only interested in a, b connection boxes # (Elsewhere, should have checked to make sure this is PE and not mem tile) if feature != "02" and feature != "03": return False # Translate! # (cb_addr, cb_data, sbnew, sbstring) = fix_cba(line,DBG) (cb_addr, cb_data, sb_addr, sb_data) = fix_cba(line,DBG) cb_config[cb_addr] = cb_data try: sb_config[sb_addr].append(sb_data) except: sb_config[sb_addr] = [] sb_config[sb_addr].append(sb_data) print "CB: %s" % cb_config print "SB: %s" % sb_config print "" # This should be in decode library I guess # and/or why not a single line # (reg,feature,tile,data) = myparse(line, "(..)(..)(....) (........)", 4) def parse_bs_line(line): line = line.strip() # Why not parse = re.search("(........) (........)", line) if parse: addr = parse.group(1) data = parse.group(2) return (addr,data) else: print "ERROR bad bitstream line:\n%s" % line sys.stdout.flush(); traceback.print_stack(); sys.stderr.flush() sys.exit(-1) def parse_bs_addr(addr): parse = re.search("(..)(..)(....)", addr) if parse: reg = parse.group(1) feature = parse.group(2) tile = parse.group(3) return (reg,feature,tile) else: print "ERROR bad bitstream address:\n%s" % line sys.stdout.flush(); traceback.print_stack(); sys.stderr.flush() sys.exit(-1) def fix_cba(line, DBG=0): '''Connection box 'a' input''' # (reg,feature,tile,data) = parse_bs_line(line) (addr, data) = parse_bs_line(line) (reg,feature,tile) = parse_bs_addr(addr) ################################################################ # Feature == "02" => op_a_in # OLD (v0): # xx02xxxx 0000 000[01234] # a <= in_s1t[01234] # xx02xxxx 0000 000[56789] # a <= in_s3t[01234] if feature == "02": (inside_lo,inside_hi) = (1,3) # NEW (v1): # xx02xxxx 0000 000[56789] # a <= out_s2t[01234] if feature == "02": out_side = 2 # xx05xxxx 0010 0000 # out_s2t0 <= in_s1t0 [21:20]==1 # xx05xxxx 0040 0000 # out_s2t1 <= in_s1t1 [23:22]==1 # xx05xxxx 0100 0000 # out_s2t2 <= in_s1t2 [25:24]==1 # xx05xxxx 0400 0000 # out_s2t3 <= in_s1t3 [27:26]==1 # xx05xxxx 1000 0000 # out_s2t4 <= in_s1t4 [29:28]==1 # xx05xxxx 0020 0000 # out_s2t0 <= in_s3t0 [21:20]==2 # xx05xxxx 0080 0000 # out_s2t1 <= in_s3t1 [23:22]==2 # xx05xxxx 0200 0000 # out_s2t2 <= in_s3t2 [25:24]==2 # xx05xxxx 0800 0000 # out_s2t3 <= in_s3t3 [27:26]==2 # xx05xxxx 2000 0000 # out_s2t4 <= in_s3t4 [29:28]==2 ################################################################ # Feature == "03" => op_b_in # OLD: # xx03xxxx 0000 000[01234] # b <= in_s0t[01234] # xx03xxxx 0000 000[56789] # b <= in_s2t[01234] if feature == "03": (inside_lo,inside_hi) = (0, 2) # NEW: # xx03xxxx 0000 000[56789] # b <= out_s1t[01234] if feature == "03": out_side = 1 # xx05xxxx 0000 0000 # # xx05xxxx 0000 0000 # out_s1t0 <= in_s0t0 [11:10]==0 # xx05xxxx 0000 0000 # out_s1t1 <= in_s0t1 [13:12]==0 # xx05xxxx 0000 0000 # out_s1t2 <= in_s0t2 [15:14]==0 # xx05xxxx 0000 0000 # out_s1t3 <= in_s0t3 [17:16]==0 # xx05xxxx 0000 0000 # out_s1t4 <= in_s0t4 [19:18]==0 # xx05xxxx 0000 0400 # out_s1t0 <= in_s2t0 [11:10]==1 # xx05xxxx 0000 1000 # out_s1t1 <= in_s2t1 [13:12]==1 # xx05xxxx 0000 4000 # out_s1t2 <= in_s2t2 [15:14]==1 # xx05xxxx 0001 0000 # out_s1t3 <= in_s2t3 [17:16]==1 # xx05xxxx 0004 0000 # out_s1t4 <= in_s2t4 [19:18]==1 sel = int(data, 16) # O.k. to use all 32 bits track = sel%5 # v0: 'a' originally came from inwire on side 1 or 3 as indicated by sel bits # v0: 'b' originally came from inwire on side 0 or 2 as indicated by sel bits # if sel < 5: in_side = 1 # else: in_side = 3 if sel < 5: in_side = inside_lo else: in_side = inside_hi # v1 step 1: change cb so 'a' input comes from out_s2 (feature 02) # and 'b' input comes from out_s1 (feature 03) cb_addr = "%s%s%s" % (reg,feature,tile) cb_data = "0000000%d" % (track+5) # v1 step 2: tell sb to connect orig inwire to out_s2t<track> instead of 'a' # or to out_s1t<track> instead of 'b' (sel,shiftamt,sbstring) = sbconnect(in_side, out_side, track) # sbnew = "%s%s%s %08x" % (reg,"05",tile, sel<<shiftamt) sb_addr = "%s%s%s" % (reg,"05",tile) sb_data = "%08x" % (sel<<shiftamt) VERBOSE = True if (VERBOSE): # What we did. E.g. # # BEFORE: xx030007 00000008 # b <= in_s2t3 # AFTER: xx030007 00000008 # b <= out_s1t3 # xx050007 00010000 # out_s1t3 <= in_s2t3 ([17:16]=1) if feature == '02': op='a' else: op='b' inwire = "%s <= in_s%dt%d" % (op, in_side, track) outwire = "%s <= out_s%dt%d" % (op, out_side, track) cbnew = "%s %s" % (cb_addr, cb_data) sbnew = "%s %s" % (sb_addr, sb_data) print "# BEFORE: %s # %s" % (line, inwire) print "# AFTER: %s # %s" % (cbnew, outwire) print "# %s # %s" % (sbnew, sbstring) print "" return(cb_addr, cb_data, sb_addr, sb_data) def sbconnect(in_side, out_side, track): ''' Build a switchbox that connects in_s<in_side>t<track> to out_s<out_side>t<track> ''' # (input b) # For now only needs to work for output sides 1 and 2 if out_side == 1: shiftamt = 10 + 2*track # output to side 1 (out_s1) # For now only needs to work for input sides 0 and 2 if in_side == 0: sel = 0 elif in_side == 2: sel = 1 else: print "ERROR in_side=%d when out_side=1" % in_side # (input a) # For now only needs to work for output sides 1 and 2 elif out_side == 2: shiftamt = 20 + 2*track # output to side 2 (out_s2) # For now only needs to work for input sides 1 and 3 if in_side == 1: sel = 1 elif in_side == 3: sel = 2 else: print "ERROR in_side=%d when out_side=2" % in_side else: print "ERROR out_side=%d" % in_side # For debug purposes, make a text string e.g. # "out_s2t3 <= in_s2t3 ([17:16]=1)" # connection = "out_s%dt%d <= in_s%dt%d ([%d:%d]=%d)" \ % (out_side, track, in_side, track, shiftamt+1, shiftamt, sel) return (sel, shiftamt, connection) # NOTE MUST ADD 0005<TTTT> to a watchlist now!!! # Keep a list of all switchboxes used; # keep a list of all switchboxes modified; # make sure the two lists have NO COMMON TILES. def test_cbfix(): x = {} # dummy dict fix_cb("xx020007 00000000", x, x, x, x, DBG=1) fix_cb("xx020007 00000001", x, x, x, x, DBG=1) fix_cb("xx020007 00000002", x, x, x, x, DBG=1) fix_cb("xx020007 00000003", x, x, x, x, DBG=1) fix_cb("xx020007 00000004", x, x, x, x, DBG=1) fix_cb("xx020007 00000005", x, x, x, x, DBG=1) fix_cb("xx020007 00000006", x, x, x, x, DBG=1) fix_cb("xx020007 00000007", x, x, x, x, DBG=1) fix_cb("xx020007 00000008", x, x, x, x, DBG=1) fix_cb("xx020007 00000009", x, x, x, x, DBG=1) print "##########################################################################" fix_cb("xx030007 00000000", x, x, x, x, DBG=1) fix_cb("xx030007 00000001", x, x, x, x, DBG=1) fix_cb("xx030007 00000002", x, x, x, x, DBG=1) fix_cb("xx030007 00000003", x, x, x, x, DBG=1) fix_cb("xx030007 00000004", x, x, x, x, DBG=1) fix_cb("xx030007 00000005", x, x, x, x, DBG=1) fix_cb("xx030007 00000006", x, x, x, x, DBG=1) fix_cb("xx030007 00000007", x, x, x, x, DBG=1) fix_cb("xx030007 00000008", x, x, x, x, DBG=1) fix_cb("xx030007 00000009", x, x, x, x, DBG=1) main()
33.340176
86
0.53857
de579c3ca2ca0aa2feed1de6fa986e945e92028e
489
py
Python
easy/202.py
oneTaken/leetcode
f9357d839ac8fa6333b0d7eeb2028ba28a63764c
[ "Apache-2.0" ]
null
null
null
easy/202.py
oneTaken/leetcode
f9357d839ac8fa6333b0d7eeb2028ba28a63764c
[ "Apache-2.0" ]
null
null
null
easy/202.py
oneTaken/leetcode
f9357d839ac8fa6333b0d7eeb2028ba28a63764c
[ "Apache-2.0" ]
null
null
null
class Solution: def isHappy(self, n): """ :type n: int :rtype: bool """ nums = dict() square = lambda x: int(x) * int(x) sum_str = lambda x: sum(list(map(square, x))) flag = True while n != 1: print(n, nums.get(n)) if nums.get(n) is None: nums[n] = 1 else: flag = False break n = sum_str(str(n)) return flag
23.285714
53
0.400818
9886b6d2b7773026172cda2d30f08709afc7d734
191,401
py
Python
test/test_cuda.py
stungkit/pytorch
0f05e398705bf15406bce79f7ee57d3935ad2abd
[ "Intel" ]
null
null
null
test/test_cuda.py
stungkit/pytorch
0f05e398705bf15406bce79f7ee57d3935ad2abd
[ "Intel" ]
1
2022-01-10T18:39:28.000Z
2022-01-10T19:15:57.000Z
test/test_cuda.py
stungkit/pytorch
0f05e398705bf15406bce79f7ee57d3935ad2abd
[ "Intel" ]
1
2022-03-26T14:42:50.000Z
2022-03-26T14:42:50.000Z
# Owner(s): ["module: cuda"] from itertools import repeat, chain, product from typing import NamedTuple import collections import contextlib import ctypes import gc import io import os import pickle import queue import sys import tempfile import threading import unittest import torch import torch.cuda import torch.cuda.comm as comm from torch.nn.parallel import scatter_gather from torch.utils.checkpoint import checkpoint_sequential from torch._six import inf, nan from torch.testing._internal.common_methods_invocations import tri_tests_args, tri_large_tests_args, \ _compare_trilu_indices, _compare_large_trilu_indices from torch.testing._internal.common_utils import TestCase, freeze_rng_state, run_tests, \ NO_MULTIPROCESSING_SPAWN, skipIfRocm, load_tests, IS_REMOTE_GPU, IS_SANDCASTLE, IS_WINDOWS, \ slowTest, skipCUDANonDefaultStreamIf, skipCUDAMemoryLeakCheckIf, TEST_WITH_ROCM, TEST_NUMPY, \ get_cycles_per_ms from torch.testing._internal.autocast_test_lists import AutocastTestLists # load_tests from common_utils is used to automatically filter tests for # sharding on sandcastle. This line silences flake warnings load_tests = load_tests # We cannot import TEST_CUDA and TEST_MULTIGPU from torch.testing._internal.common_cuda here, # because if we do that, the TEST_CUDNN line from torch.testing._internal.common_cuda will be executed # multiple times as well during the execution of this test suite, and it will # cause CUDA OOM error on Windows. TEST_CUDA = torch.cuda.is_available() TEST_MULTIGPU = TEST_CUDA and torch.cuda.device_count() >= 2 if not TEST_CUDA: print('CUDA not available, skipping tests', file=sys.stderr) TestCase = object # noqa: F811 TEST_LARGE_TENSOR = TEST_CUDA TEST_MEDIUM_TENSOR = TEST_CUDA TEST_CUDNN = TEST_CUDA TEST_BF16 = False if TEST_CUDA: torch.ones(1).cuda() # initialize cuda context TEST_CUDNN = TEST_CUDA and (TEST_WITH_ROCM or torch.backends.cudnn.is_acceptable(torch.tensor(1., device=torch.device('cuda:0')))) TEST_LARGE_TENSOR = torch.cuda.get_device_properties(0).total_memory >= 12e9 TEST_MEDIUM_TENSOR = torch.cuda.get_device_properties(0).total_memory >= 6e9 TEST_BF16 = torch.cuda.is_bf16_supported() def make_sparse_tensor(t, n, *sizes): assert t.is_sparse tensor = t() i = tensor._indices() i = i.new(len(sizes), n).copy_( torch.cat([torch.LongTensor(1, n).random_(s) for s in sizes], 0)) v = tensor._values() v = v.new(n).copy_(torch.randn(n)) return t(i, v, torch.Size(sizes)).coalesce() _cycles_per_ms = None class TestCuda(TestCase): _do_cuda_memory_leak_check = True _do_cuda_non_default_stream = True FIFTY_MIL_CYCLES = 50000000 def setUp(self): super(TestCuda, self).setUp() self.autocast_lists = AutocastTestLists(torch.device('cuda:0')) def tearDown(self): del self.autocast_lists super(TestCuda, self).tearDown() def _check_memory_stat_consistency(self): snapshot = torch.cuda.memory_snapshot() expected_each_device = collections.defaultdict(lambda: collections.defaultdict(int)) for segment in snapshot: expected = expected_each_device[segment["device"]] pool_str = segment["segment_type"] + "_pool" expected["segment.all.current"] += 1 expected["segment." + pool_str + ".current"] += 1 expected["allocated_bytes.all.current"] += segment["allocated_size"] expected["allocated_bytes." + pool_str + ".current"] += segment["allocated_size"] expected["reserved_bytes.all.current"] += segment["total_size"] expected["reserved_bytes." + pool_str + ".current"] += segment["total_size"] expected["active_bytes.all.current"] += segment["active_size"] expected["active_bytes." + pool_str + ".current"] += segment["active_size"] is_split = len(segment["blocks"]) > 1 for block in segment["blocks"]: if block["state"] == "active_allocated": expected["allocation.all.current"] += 1 expected["allocation." + pool_str + ".current"] += 1 if block["state"].startswith("active_"): expected["active.all.current"] += 1 expected["active." + pool_str + ".current"] += 1 if block["state"] == "inactive" and is_split: expected["inactive_split.all.current"] += 1 expected["inactive_split." + pool_str + ".current"] += 1 expected["inactive_split_bytes.all.current"] += block["size"] expected["inactive_split_bytes." + pool_str + ".current"] += block["size"] for device, expected in expected_each_device.items(): stats = torch.cuda.memory_stats(device) for k, v in expected.items(): self.assertEqual(v, stats[k]) @staticmethod def _test_memory_stats_generator(self, device=None, N=35): if device is None: device = torch.cuda.current_device() m0 = torch.cuda.memory_allocated(device) last_m_arr = [torch.cuda.memory_allocated(device)] max_m_arr = [torch.cuda.max_memory_allocated(device)] last_r_arr = [torch.cuda.memory_reserved(device)] max_r_arr = [torch.cuda.max_memory_reserved(device)] def alloc(*size): with torch.cuda.device(device): # NOTE: do **not** use methods that can have additional # memory overhead, e.g., inplace random sampling methods. # they can leave some memory occupied even after being # deallocated, e.g., initialized RNG state, causing some # memory checks below to fail. return torch.cuda.FloatTensor(*size) def assert_change(comp=1, empty_cache=False, reset_peak=False): # comp > 0: increased # comp = 0: equal # comp < 0: decreased new_m = torch.cuda.memory_allocated(device) new_max_m = torch.cuda.max_memory_allocated(device) if comp > 0: self.assertGreater(new_m, last_m_arr[0]) elif comp < 0: self.assertLess(new_m, last_m_arr[0]) else: self.assertEqual(new_m, last_m_arr[0]) self.assertLessEqual(new_m, new_max_m) self.assertGreaterEqual(new_max_m, max_m_arr[0]) last_m_arr[0] = new_m max_m_arr[0] = new_max_m new_r = torch.cuda.memory_reserved(device) new_max_r = torch.cuda.max_memory_reserved(device) # emptying cache may happen (due to allocation or empty_cache), so # we can't assert new_c >= last_c self.assertLessEqual(new_r, new_max_r) self.assertGreaterEqual(new_max_r, max_r_arr[0]) last_r_arr[0] = new_r max_r_arr[0] = new_max_r if empty_cache: torch.cuda.empty_cache() new_r = torch.cuda.memory_reserved(device) new_max_r = torch.cuda.max_memory_reserved(device) self.assertLessEqual(new_r, last_r_arr[0]) self.assertLessEqual(new_r, new_max_r) self.assertEqual(new_max_r, max_r_arr[0]) last_r_arr[0] = new_r if reset_peak: torch.cuda.reset_peak_memory_stats(device) self.assertEqual(torch.cuda.memory_allocated(device), last_m_arr[0]) self.assertEqual(torch.cuda.max_memory_allocated(device), last_m_arr[0]) max_m_arr[0] = last_m_arr[0] self.assertEqual(torch.cuda.memory_reserved(device), last_r_arr[0]) self.assertEqual(torch.cuda.max_memory_reserved(device), last_r_arr[0]) max_r_arr[0] = last_r_arr[0] assert_change(0) assert_change(0, reset_peak=True) assert_change(0, empty_cache=True) assert_change(0, reset_peak=True) assert_change(0) yield tensors1 = [alloc(1), alloc(10, 20), alloc(200, 300, 2000)] m1 = torch.cuda.memory_allocated(device) assert_change(1) yield tensors2 = [] for i in range(1, int(N / 2) + 1): # small ones tensors2.append(alloc(i, i * 4)) assert_change(1) yield for i in range(5, int(N / 2) + 5): # large ones tensors2.append(alloc(i, i * 7, i * 9, i * 11)) assert_change(1, reset_peak=(i % 2 == 0)) yield tensors2.append(alloc(0, 0, 0)) assert_change(0) yield permute = [] for i in torch.randperm(len(tensors2)): permute.append(tensors2[i]) assert_change(0) yield del tensors2 assert_change(0) yield tensors2 = permute assert_change(0) yield del permute assert_change(0, reset_peak=True) yield for i in range(int(N / 2)): x = tensors2[i].numel() del tensors2[i] assert_change(-x) # in case that tensors2[i] is empty yield for i in range(2, int(2 * N / 3) + 2): tensors2.append(alloc(i, i * 3, i * 8)) assert_change(1) yield del tensors2 assert_change(-1, reset_peak=True) assert_change(0) self.assertEqual(torch.cuda.memory_allocated(device), m1) yield True del tensors1 assert_change(-1, reset_peak=True) self.assertEqual(torch.cuda.memory_allocated(device), m0) # test empty_cache and reset_peak assert_change(0, empty_cache=True) assert_change(0, reset_peak=True) def test_cudart_register(self): t = torch.ones(20) self.assertFalse(t.is_pinned()) cudart = torch.cuda.cudart() r = cudart.cudaHostRegister(t.data_ptr(), t.numel() * t.element_size(), 0) self.assertEqual(r, 0) self.assertTrue(t.is_pinned()) r = cudart.cudaHostUnregister(t.data_ptr()) self.assertEqual(r, 0) self.assertFalse(t.is_pinned()) def test_memory_stats(self): gc.collect() torch.cuda.empty_cache() for _ in self._test_memory_stats_generator(self): self._check_memory_stat_consistency() def test_memory_allocation(self): gc.collect() torch.cuda.empty_cache() mem = None size = 1 prev = 0 try: prev = torch.cuda.memory_allocated() mem = torch.cuda.caching_allocator_alloc(size) self.assertGreater(torch.cuda.memory_allocated(), prev) finally: if mem is not None: torch.cuda.caching_allocator_delete(mem) self.assertEqual(torch.cuda.memory_allocated(), prev) def test_check_error(self): # Assert this call doesn't raise. torch.cuda.check_error(0) with self.assertRaisesRegex(torch.cuda.CudaError, "out of memory|hipErrorOutOfMemory"): torch.cuda.check_error(2) def test_cuda_get_device_name(self): # Testing the behaviour with None as an argument current_device = torch.cuda.current_device() current_device_name = torch.cuda.get_device_name(current_device) device_name_None = torch.cuda.get_device_name(None) self.assertEqual(current_device_name, device_name_None) # Testing the behaviour for No argument device_name_no_argument = torch.cuda.get_device_name() self.assertEqual(current_device_name, device_name_no_argument) def test_cuda_get_device_capability(self): # Testing the behaviour with None as an argument current_device = torch.cuda.current_device() current_device_capability = torch.cuda.get_device_capability(current_device) device_capability_None = torch.cuda.get_device_capability(None) self.assertEqual(current_device_capability, device_capability_None) # Testing the behaviour for No argument device_capability_no_argument = torch.cuda.get_device_capability() self.assertEqual(current_device_capability, device_capability_no_argument) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_memory_stats_multigpu(self): # advance a generator with a end flag def advance(gen, end): if not end: try: next(gen) except StopIteration: end = True return end # interlace torch.cuda.empty_cache() gen0 = self._test_memory_stats_generator(self, device='cuda:0', N=35) gen1 = self._test_memory_stats_generator(self, device=torch.device('cuda:1'), N=35) end0 = end1 = False while not (end0 and end1): end0 = advance(gen0, end0) end1 = advance(gen1, end1) # semi-random order torch.cuda.empty_cache() gen0 = self._test_memory_stats_generator(self, device=0, N=35) gen1 = self._test_memory_stats_generator(self, device=torch.device('cuda:1'), N=35) end0 = end1 = False while not (end0 and end1): end0 = advance(gen0, end0) if not end0: gen1_max_times = torch.LongTensor(1).random_(0, 3)[0] else: gen1_max_times = inf t = 0 while t < gen1_max_times and not end1: end1 = advance(gen1, end1) t += 1 def test_out_of_memory(self): tensor = torch.zeros(1024, device='cuda') with self.assertRaisesRegex(RuntimeError, "Tried to allocate 800000000.00 GiB"): torch.empty(1024 * 1024 * 1024 * 800000000, dtype=torch.int8, device='cuda') with self.assertRaisesRegex(RuntimeError, "Tried to allocate more than 1EB memory"): torch.empty(1024 * 1024 * 1024 * 8000000000, dtype=torch.int8, device='cuda') # ensure out of memory error doesn't disturb subsequent kernel tensor.fill_(1) self.assertTrue((tensor == 1).all()) def test_set_per_process_memory_fraction(self): # test invalid fraction value. with self.assertRaisesRegex(TypeError, "Invalid type"): torch.cuda.set_per_process_memory_fraction(int(1)) with self.assertRaisesRegex(ValueError, "Invalid fraction value"): torch.cuda.set_per_process_memory_fraction(-0.1) with self.assertRaisesRegex(ValueError, "Invalid fraction value"): torch.cuda.set_per_process_memory_fraction(2.0) tensor = torch.zeros(1024, device='cuda') torch.cuda.empty_cache() total_memory = torch.cuda.get_device_properties(0).total_memory torch.cuda.set_per_process_memory_fraction(0.5, 0) # test 0.499 allocation is ok. application = int(total_memory * 0.499) - torch.cuda.max_memory_reserved() tmp_tensor = torch.empty(application, dtype=torch.int8, device='cuda') del tmp_tensor torch.cuda.empty_cache() application = int(total_memory * 0.5) # it will get OOM when try to allocate more than half memory. with self.assertRaisesRegex(RuntimeError, "out of memory"): torch.empty(application, dtype=torch.int8, device='cuda') # ensure out of memory error doesn't disturb subsequent kernel tensor.fill_(1) self.assertTrue((tensor == 1).all()) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_autogpu(self): x = torch.randn(5, 5).cuda() y = torch.randn(5, 5).cuda() self.assertEqual(x.get_device(), 0) self.assertEqual(x.get_device(), 0) with torch.cuda.device(1): z = torch.randn(5, 5).cuda() self.assertEqual(z.get_device(), 1) q = x.add(y) self.assertEqual(q.get_device(), 0) w = torch.randn(5, 5).cuda() self.assertEqual(w.get_device(), 1) self.assertEqual(y.cuda().get_device(), 1) z = z.cuda() self.assertEqual(z.get_device(), 0) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_new(self): x = torch.randn(3, 3).cuda() self.assertEqual(x.new([0, 1, 2]).get_device(), 0) self.assertEqual(x.new([0, 1, 2], device=1).get_device(), 1) with torch.cuda.device(1): self.assertEqual(x.new([0, 1, 2]).get_device(), 0) self.assertEqual(x.new([0, 1, 2], device=1).get_device(), 1) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_copy_device(self): x = torch.randn(5, 5).cuda() with torch.cuda.device(1): y = x.cuda() self.assertEqual(y.get_device(), 1) self.assertIs(y.cuda(), y) z = y.cuda(0) self.assertEqual(z.get_device(), 0) self.assertIs(z.cuda(0), z) x = torch.randn(5, 5) with torch.cuda.device(1): y = x.cuda() self.assertEqual(y.get_device(), 1) self.assertIs(y.cuda(), y) z = y.cuda(0) self.assertEqual(z.get_device(), 0) self.assertIs(z.cuda(0), z) def _test_copy_sync_current_stream(self, x, y): x_plus_one = x + 1 s0 = torch.cuda.Stream(device=x.device) s1 = torch.cuda.Stream(device=y.device) s2 = torch.cuda.Stream(device=x.device) s3 = torch.cuda.Stream(device=y.device) # same dst stream different src streams with torch.cuda.stream(s0): torch.cuda._sleep(TestCuda.FIFTY_MIL_CYCLES) with torch.cuda.stream(s1): y.copy_(x_plus_one) with torch.cuda.stream(s2), torch.cuda.stream(s1): y.copy_(x) s1.synchronize() # The copy() is synchronized on the current streams of both src and dst. # In the above test, the _sleep() op on s0 will not block the copy() on # s2, but both copies are synchronized on s1 in the dst device. Hence, # x is copied to y after x_plus_one is copied to y. If x and y are on # the same device, both copy() ops are synchronized on s1. self.assertEqual(y, x) # same src stream different dst streams with torch.cuda.stream(s1): torch.cuda._sleep(TestCuda.FIFTY_MIL_CYCLES) with torch.cuda.stream(s0): y.copy_(x_plus_one) with torch.cuda.stream(s3), torch.cuda.stream(s0): y.copy_(x) s0.synchronize() # Similarly, both copy() ops are synchronized on s0. self.assertEqual(y, x) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_copy_streams(self): d0 = torch.device('cuda:0') x0 = torch.zeros(5, 5, device=d0) d1 = torch.device('cuda:1') x1 = torch.zeros(5, 5, device=d1) self._test_copy_sync_current_stream(x0, x1) x2 = torch.zeros(5, 5, device=d0) self._test_copy_sync_current_stream(x0, x2) def test_copy_non_blocking(self): def _test_copy_non_blocking(a, b): event = torch.cuda.Event() a.copy_(b, non_blocking=True) event.record() event.synchronize() self.assertEqual(a, b) # 10MB copies x = torch.ones(10000000, dtype=torch.uint8).cuda() y = torch.zeros(10000000, dtype=torch.uint8).pin_memory() _test_copy_non_blocking(x, y) x = torch.zeros(10000000, dtype=torch.uint8).pin_memory() y = torch.ones(10000000, dtype=torch.uint8).cuda() _test_copy_non_blocking(x, y) # Test the case where the pinned data_ptr is not equal to the storage data_ptr. x_base = torch.zeros(10000000, dtype=torch.uint8).pin_memory() x = x_base[1:] self.assertTrue(x.is_pinned()) self.assertTrue(x_base.is_pinned()) self.assertNotEqual(x_base.data_ptr(), x.data_ptr()) self.assertEqual(x_base.storage().data_ptr(), x.storage().data_ptr()) y = torch.ones(10000000 - 1, dtype=torch.uint8).cuda() _test_copy_non_blocking(x, y) def test_to_non_blocking(self): stream = torch.cuda.current_stream() def _test_to_non_blocking(a, non_blocking, dst): torch.cuda.synchronize() # Pushes an 0.1 second spin to stream so if the copy is non blocking, # stream will almost surely be active when we query(). torch.cuda._sleep(int(100 * get_cycles_per_ms())) b = a.to(device=dst, non_blocking=non_blocking) self.assertEqual(stream.query(), not non_blocking) stream.synchronize() self.assertEqual(a, b) self.assertTrue(b.is_pinned() == (non_blocking and dst == "cpu")) for dst, try_non_blocking in product(("cuda", "cpu"), (True, False)): # Creates source on the opposite device from destination. src = torch.randn(1000000, device="cuda" if dst == "cpu" else "cpu", pin_memory=True if dst == "cuda" else False) _test_to_non_blocking(src, try_non_blocking, dst) def test_to_cpu_blocking_by_default(self): src = torch.randn(1000000, device="cuda") torch.cuda.synchronize() torch.cuda._sleep(int(100 * get_cycles_per_ms())) dst = src.to(device="cpu") self.assertEqual(torch.cuda.current_stream().query(), True) self.assertEqual(src, dst) self.assertFalse(dst.is_pinned()) def test_serialization_array_with_storage(self): x = torch.randn(5, 5).cuda() y = torch.IntTensor(2, 5).fill_(0).cuda() q = [x, y, x, y.storage()] with tempfile.NamedTemporaryFile() as f: torch.save(q, f) f.seek(0) q_copy = torch.load(f) self.assertEqual(q_copy, q, atol=0, rtol=0) q_copy[0].fill_(5) self.assertEqual(q_copy[0], q_copy[2], atol=0, rtol=0) self.assertTrue(isinstance(q_copy[0], torch.cuda.FloatTensor)) self.assertTrue(isinstance(q_copy[1], torch.cuda.IntTensor)) self.assertTrue(isinstance(q_copy[2], torch.cuda.FloatTensor)) self.assertTrue(isinstance(q_copy[3], torch.storage._TypedStorage)) self.assertTrue(isinstance(q_copy[3]._storage, torch._UntypedStorage)) q_copy[1].fill_(10) self.assertEqual(q_copy[3], torch.cuda.IntStorage(10).fill_(10)) def test_cublas_allow_tf32_get_set(self): skip_tf32_cublas = 'TORCH_ALLOW_TF32_CUBLAS_OVERRIDE' in os.environ and\ int(os.environ['TORCH_ALLOW_TF32_CUBLAS_OVERRIDE']) if skip_tf32_cublas: self.assertTrue(torch.backends.cuda.matmul.allow_tf32) return orig = torch.backends.cuda.matmul.allow_tf32 self.assertEqual(torch._C._get_cublas_allow_tf32(), orig) torch.backends.cuda.matmul.allow_tf32 = not orig self.assertEqual(torch._C._get_cublas_allow_tf32(), not orig) torch.backends.cuda.matmul.allow_tf32 = orig def test_float32_matmul_precision_get_set(self): self.assertEqual(torch.get_float32_matmul_precision(), 'highest') skip_tf32_cublas = 'TORCH_ALLOW_TF32_CUBLAS_OVERRIDE' in os.environ and\ int(os.environ['TORCH_ALLOW_TF32_CUBLAS_OVERRIDE']) if not skip_tf32_cublas: self.assertFalse(torch.backends.cuda.matmul.allow_tf32) for p in ('medium', 'high'): torch.set_float32_matmul_precision(p) self.assertEqual(torch.get_float32_matmul_precision(), p) if not skip_tf32_cublas: self.assertTrue(torch.backends.cuda.matmul.allow_tf32) torch.set_float32_matmul_precision('highest') self.assertEqual(torch.get_float32_matmul_precision(), 'highest') if not skip_tf32_cublas: self.assertFalse(torch.backends.cuda.matmul.allow_tf32) def test_cublas_allow_fp16_reduced_precision_reduction_get_set(self): orig = torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction self.assertEqual(torch._C._get_cublas_allow_fp16_reduced_precision_reduction(), orig) torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = not orig self.assertEqual(torch._C._get_cublas_allow_fp16_reduced_precision_reduction(), not orig) torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = orig def test_cudnn_allow_tf32_get_set(self): with torch.backends.cudnn.flags(enabled=None, benchmark=None, deterministic=None, allow_tf32=False): self.assertFalse(torch.backends.cudnn.allow_tf32) with torch.backends.cudnn.flags(enabled=None, benchmark=None, deterministic=None, allow_tf32=True): self.assertTrue(torch.backends.cudnn.allow_tf32) def test_type_conversions(self): x = torch.randn(5, 5) self.assertIsInstance(x.float(), torch.FloatTensor) self.assertIsInstance(x.cuda().double(), torch.cuda.DoubleTensor) self.assertIsInstance(x.cuda().float(), torch.cuda.FloatTensor) self.assertIsInstance(x.cuda().float().cpu(), torch.FloatTensor) self.assertIsInstance(x.cuda().float().cpu().int(), torch.IntTensor) y = x.storage() self.assertIsInstance(y.float(), torch.FloatStorage) self.assertIsInstance(y.cuda().double(), torch.cuda.DoubleStorage) self.assertIsInstance(y.cuda().float(), torch.cuda.FloatStorage) self.assertIsInstance(y.cuda().float().cpu(), torch.FloatStorage) self.assertIsInstance(y.cuda().float().cpu().int(), torch.IntStorage) @unittest.skip("was disabled due to not enough memory, but actually it always fail") def test_arithmetic_large_tensor(self): x = torch.empty(2**30, device='cuda') x.fill_(1) self.assertEqual(x.sum(), 2**30) x += 1 self.assertEqual(x.sum(), 2**31) x.fill_(1) x -= 0.5 self.assertEqual(x.sum(), 2**29) x.fill_(1) x *= 2 self.assertEqual(x.sum(), 2**31) x.fill_(1) x /= 2 self.assertEqual(x.sum(), 2**29) def test_gather_bool(self): t = torch.tensor([[False, True], [True, True]], device='cuda') self.assertEqual(torch.gather(t, 1, torch.tensor([[0, 0], [1, 0]], device='cuda')), torch.tensor([[False, False], [True, True]], device='cuda')) def test_torch_manual_seed_seeds_cuda_devices(self): with freeze_rng_state(): x = torch.zeros(4, 4).float().cuda() torch.manual_seed(2) self.assertEqual(torch.cuda.initial_seed(), 2) x.uniform_() torch.manual_seed(2) y = x.clone().uniform_() self.assertEqual(x, y) self.assertEqual(torch.cuda.initial_seed(), 2) def test_manual_seed(self): with freeze_rng_state(): x = torch.zeros(4, 4).float().cuda() torch.cuda.manual_seed(2) self.assertEqual(torch.cuda.initial_seed(), 2) x.uniform_() a = torch.bernoulli(torch.full_like(x, 0.5)) torch.cuda.manual_seed(2) y = x.clone().uniform_() b = torch.bernoulli(torch.full_like(x, 0.5)) self.assertEqual(x, y) self.assertEqual(a, b) self.assertEqual(torch.cuda.initial_seed(), 2) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_cat_autogpu(self): x = torch.randn(4, 4).cuda(1) y = torch.randn(4, 4).cuda(1) z = torch.cat([x, y], 0) self.assertEqual(z.get_device(), x.get_device()) @unittest.skipIf(torch.cuda.device_count() >= 10, "Loading a cuda:9 tensor") def test_load_nonexistent_device(self): # Setup: create a serialized file object with a 'cuda:9' restore location tensor = torch.randn(2, device='cuda') buf = io.BytesIO() torch.save(tensor, buf) # NB: this might not work in the future if serialization changes buf = io.BytesIO(buf.getvalue().replace(b'cuda:0', b'cuda:9')) msg = r'Attempting to deserialize object on CUDA device 9' with self.assertRaisesRegex(RuntimeError, msg): _ = torch.load(buf) def test_specify_improper_device_name(self): import os fname = "tempfile.pt" try: with self.assertRaisesRegex(RuntimeError, "Invalid device string"): torch.save([torch.nn.Parameter(torch.randn(10, 10))], fname, _use_new_zipfile_serialization=True) torch.load(fname, 'cuda0') finally: if os.path.exists(fname): os.remove(fname) def test_get_device_index(self): from torch.cuda._utils import _get_device_index with self.assertRaisesRegex(RuntimeError, "Invalid device string"): _get_device_index('cuda0', optional=True) with self.assertRaisesRegex(ValueError, "Expected a cuda device"): cpu_device = torch.device('cpu') _get_device_index(cpu_device, optional=True) def test_serialization_array_with_empty(self): x = [torch.randn(4, 4).cuda(), torch.cuda.FloatTensor()] with tempfile.NamedTemporaryFile() as f: torch.save(x, f) f.seek(0) x_copy = torch.load(f) for original, copy in zip(x, x_copy): self.assertEqual(copy, original) self.assertIs(type(copy), type(original)) self.assertEqual(copy.get_device(), original.get_device()) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_multigpu_serialization_remap(self): x = [torch.randn(4, 4).cuda(0), torch.randn(4, 4).cuda(1)] def gpu_remap(storage, location): if location == 'cuda:1': return storage.cuda(0) with tempfile.NamedTemporaryFile() as f: torch.save(x, f) f.seek(0) x_copy = torch.load(f, map_location=gpu_remap) for original, copy in zip(x, x_copy): self.assertEqual(copy, original) self.assertIs(type(copy), type(original)) self.assertEqual(copy.get_device(), 0) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_multigpu_serialization_remap_dict(self): x = [torch.randn(4, 4).cuda(0), torch.randn(4, 4).cuda(1)] with tempfile.NamedTemporaryFile() as f: torch.save(x, f) f.seek(0) x_copy = torch.load(f, map_location={'cuda:1': 'cuda:0'}) for original, copy in zip(x, x_copy): self.assertEqual(copy, original) self.assertIs(type(copy), type(original)) self.assertEqual(copy.get_device(), 0) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_multigpu_storage_clone(self): x = torch.randn(4, 4, device='cuda:1').storage() y = x.clone() self.assertEqual(x.get_device(), y.get_device()) for t in ['byte', 'char', 'short', 'int', 'long', 'half', 'double']: self.assertEqual(getattr(x, t)().get_device(), x.get_device()) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_cuda_set_device(self): x = torch.randn(5, 5) with torch.cuda.device(1): self.assertEqual(x.cuda().get_device(), 1) torch.cuda.set_device(0) self.assertEqual(x.cuda().get_device(), 0) with torch.cuda.device(1): self.assertEqual(x.cuda().get_device(), 1) self.assertEqual(x.cuda().get_device(), 0) torch.cuda.set_device(1) self.assertEqual(x.cuda().get_device(), 0) def test_cuda_synchronize(self): torch.cuda.synchronize() torch.cuda.synchronize('cuda') torch.cuda.synchronize('cuda:0') torch.cuda.synchronize(0) torch.cuda.synchronize(torch.device('cuda:0')) if TEST_MULTIGPU: torch.cuda.synchronize('cuda:1') torch.cuda.synchronize(1) torch.cuda.synchronize(torch.device('cuda:1')) with self.assertRaisesRegex(ValueError, "Expected a cuda device, but"): torch.cuda.synchronize(torch.device("cpu")) with self.assertRaisesRegex(ValueError, "Expected a cuda device, but"): torch.cuda.synchronize("cpu") @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_current_stream(self): d0 = torch.device('cuda:0') d1 = torch.device('cuda:1') s0 = torch.cuda.current_stream() s1 = torch.cuda.current_stream(device=1) s2 = torch.cuda.current_stream(device=0) self.assertEqual(d0, s0.device) self.assertEqual(d1, s1.device) self.assertEqual(d0, s2.device) self.assertEqual(s0, s2) with torch.cuda.device(d1): s0 = torch.cuda.current_stream() s1 = torch.cuda.current_stream(1) s2 = torch.cuda.current_stream(d0) self.assertEqual(d1, s0.device) self.assertEqual(d1, s1.device) self.assertEqual(d0, s2.device) self.assertEqual(s0, s1) with self.assertRaisesRegex(ValueError, "Expected a cuda device, but got: cpu"): torch.cuda.current_stream(torch.device('cpu')) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") @skipCUDANonDefaultStreamIf(True) def test_default_stream(self): d0 = torch.device('cuda:0') d1 = torch.device('cuda:1') with torch.cuda.device(d0): s0 = torch.cuda.default_stream() with torch.cuda.device(d1): s1 = torch.cuda.default_stream() s2 = torch.cuda.default_stream(device=0) s3 = torch.cuda.default_stream(d1) self.assertEqual(d0, s0.device) self.assertEqual(d1, s1.device) self.assertEqual(d0, s2.device) self.assertEqual(d1, s3.device) self.assertEqual(s0, s2) self.assertEqual(s1, s3) with torch.cuda.device(d0): self.assertEqual(torch.cuda.current_stream(), s0) with torch.cuda.device(d1): self.assertEqual(torch.cuda.current_stream(), s1) with self.assertRaisesRegex(ValueError, "Expected a cuda device, but got: cpu"): torch.cuda.default_stream(torch.device('cpu')) @skipCUDANonDefaultStreamIf(True) def test_streams(self): default_stream = torch.cuda.current_stream() user_stream = torch.cuda.Stream() self.assertEqual(torch.cuda.current_stream(), default_stream) self.assertNotEqual(default_stream, user_stream) self.assertEqual(default_stream.cuda_stream, 0) self.assertNotEqual(user_stream.cuda_stream, 0) with torch.cuda.stream(user_stream): self.assertEqual(torch.cuda.current_stream(), user_stream) self.assertTrue(user_stream.query()) tensor1 = torch.ByteTensor(5).pin_memory() tensor2 = tensor1.cuda(non_blocking=True) + 1 default_stream.synchronize() self.assertTrue(default_stream.query()) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_stream_event_device(self): d0 = torch.device('cuda:0') d1 = torch.device('cuda:1') e0 = torch.cuda.Event() self.assertEqual(None, e0.device) with torch.cuda.device(d0): s0 = torch.cuda.current_stream() s0.record_event(e0) with torch.cuda.device(d1): s1 = torch.cuda.Stream() e1 = s1.record_event() self.assertEqual(s0.device, torch.device('cuda:0')) self.assertEqual(e0.device, torch.device('cuda:0')) self.assertEqual(s1.device, torch.device('cuda:1')) self.assertEqual(e1.device, torch.device('cuda:1')) def test_stream_event_repr(self): s = torch.cuda.current_stream() self.assertTrue("torch.cuda.Stream" in s.__repr__()) e = torch.cuda.Event() self.assertTrue("torch.cuda.Event" in e.__repr__()) s.record_event(e) self.assertTrue("torch.cuda.Event" in e.__repr__()) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_stream_context(self): s0 = torch.cuda.current_stream() s1 = torch.cuda.Stream(device=1) s2 = torch.cuda.Stream(device=0) with torch.cuda.device(s1.device): prev_stream_on_cuda1 = torch.cuda.current_stream() self.assertEqual(torch.cuda.current_stream(), s0) self.assertEqual(0, torch.cuda.current_device()) with torch.cuda.stream(s1): self.assertEqual(torch.cuda.current_stream(), s1) self.assertEqual(1, torch.cuda.current_device()) with torch.cuda.stream(s2): self.assertEqual(torch.cuda.current_stream(), s2) self.assertEqual(0, torch.cuda.current_device()) with torch.cuda.stream(s0): self.assertEqual(torch.cuda.current_stream(), s0) self.assertEqual(0, torch.cuda.current_device()) self.assertEqual(torch.cuda.current_stream(), s2) self.assertEqual(0, torch.cuda.current_device()) self.assertEqual(torch.cuda.current_stream(), s1) self.assertEqual(1, torch.cuda.current_device()) with torch.cuda.device(s1.device): self.assertEqual(prev_stream_on_cuda1, torch.cuda.current_stream()) self.assertEqual(torch.cuda.current_stream(), s0) self.assertEqual(0, torch.cuda.current_device()) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_streams_multi_gpu(self): default_stream = torch.cuda.current_stream() self.assertEqual(default_stream.device, torch.device('cuda:0')) stream = torch.cuda.Stream(device=1) self.assertEqual(stream.device, torch.device('cuda:1')) with torch.cuda.device(1): self.assertEqual( torch.cuda.current_stream().device, torch.device('cuda:1')) self.assertNotEqual(torch.cuda.current_stream(), default_stream) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_streams_multi_gpu_query(self): d0 = torch.device('cuda:0') d1 = torch.device('cuda:1') torch.cuda.synchronize(d0) torch.cuda.synchronize(d1) with torch.cuda.device(d0): s0 = torch.cuda.current_stream() with torch.cuda.device(d1): s1 = torch.cuda.current_stream() torch.cuda._sleep(TestCuda.FIFTY_MIL_CYCLES) self.assertTrue(s0.query()) self.assertFalse(s1.query()) with torch.cuda.device(d0): self.assertTrue(s0.query()) self.assertFalse(s1.query()) with torch.cuda.device(d1): self.assertTrue(s0.query()) self.assertFalse(s1.query()) # deliberately using a different device with torch.cuda.device(d0): s1.synchronize() self.assertTrue(s0.query()) self.assertTrue(s1.query()) with torch.cuda.device(d0): self.assertTrue(s0.query()) self.assertTrue(s1.query()) with torch.cuda.device(d1): self.assertTrue(s0.query()) self.assertTrue(s1.query()) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_streams_multi_gpu_eq(self): d0 = torch.device('cuda:0') d1 = torch.device('cuda:1') with torch.cuda.device(d0): s0 = torch.cuda.current_stream() s1 = torch.cuda.current_stream() with torch.cuda.device(d1): s2 = torch.cuda.current_stream() s3 = torch.cuda.current_stream() self.assertTrue(s0 == s0) self.assertTrue(s0 == s1) self.assertTrue(s2 == s2) self.assertTrue(s2 == s3) self.assertFalse(s0 == s2) self.assertFalse(s1 == s3) self.assertEqual(s0.device, s1.device) self.assertEqual(s0.cuda_stream, s1.cuda_stream) self.assertEqual(s2.device, s3.device) self.assertEqual(s2.cuda_stream, s3.cuda_stream) self.assertNotEqual(s0.device, s3.device) self.assertEqual(hash(s0), hash(s1)) self.assertEqual(hash(s2), hash(s3)) self.assertNotEqual(hash(s0), hash(s3)) @unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported") def test_streams_priority(self): low, high = torch.cuda.Stream.priority_range() s0 = torch.cuda.Stream(device=0, priority=low) self.assertEqual(low, s0.priority) self.assertEqual(torch.device('cuda:0'), s0.device) s1 = torch.cuda.Stream(device=1, priority=high) self.assertEqual(high, s1.priority) self.assertEqual(torch.device('cuda:1'), s1.device) @unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported") def test_tensor_device(self): self.assertEqual(torch.cuda.FloatTensor(1).get_device(), 0) self.assertEqual(torch.cuda.FloatTensor(1, device=1).get_device(), 1) with torch.cuda.device(1): self.assertEqual(torch.cuda.FloatTensor(1).get_device(), 1) self.assertEqual(torch.cuda.FloatTensor(1, device=0).get_device(), 0) self.assertEqual(torch.cuda.FloatTensor(1, device=None).get_device(), 1) def test_events(self): stream = torch.cuda.current_stream() event = torch.cuda.Event(enable_timing=True) self.assertTrue(event.query()) start_event = torch.cuda.Event(enable_timing=True) stream.record_event(start_event) torch.cuda._sleep(int(50 * get_cycles_per_ms())) stream.record_event(event) self.assertFalse(event.query()) event.synchronize() self.assertTrue(event.query()) self.assertGreater(start_event.elapsed_time(event), 0) @staticmethod def _stream_synchronize(self, spin_time_cycles): s = torch.cuda.current_stream() e_tik = torch.cuda.Event(enable_timing=True) e_tok = torch.cuda.Event(enable_timing=True) e_tik.record(s) torch.cuda._sleep(spin_time_cycles) e_tok.record(s) s.synchronize() self.assertTrue(s.query()) # not necessary to check e_tik and e_tok, as elapsed_time would throw # exception if otherwise. return e_tik.elapsed_time(e_tok) @staticmethod def _event_synchronize(self, spin_time_cycles): s = torch.cuda.current_stream() e_tik = torch.cuda.Event(enable_timing=True) e_tok = torch.cuda.Event(enable_timing=True) e_tik.record(s) torch.cuda._sleep(spin_time_cycles) s.record_event(e_tok) e_tok.synchronize() self.assertTrue(s.query()) # not necessary to check e_tik and e_tok, as elapsed_time would throw # exception if otherwise. return e_tik.elapsed_time(e_tok) @staticmethod def _event_wait(self, spin_time_cycles): s0 = torch.cuda.current_stream() s1 = torch.cuda.Stream() e_tik = torch.cuda.Event(blocking=True, enable_timing=True) e_tok = torch.cuda.Event(blocking=True, enable_timing=True) e_tik.record(s0) torch.cuda._sleep(spin_time_cycles - 10) e_sync = torch.cuda.Event(blocking=True) e_sync.record() e_sync.wait(s1) with torch.cuda.stream(s1): torch.cuda._sleep(10) s1.synchronize() e_tok.record() e_tok.synchronize() self.assertTrue(s0.query()) self.assertTrue(s1.query()) self.assertTrue(e_sync.query()) # not necessary to check e_tik and e_tok, as elapsed_time would throw # exception if otherwise. return e_tik.elapsed_time(e_tok) @staticmethod def _test_stream_event_nogil(self, sync_func, p2c, c2p): with torch.cuda.device('cuda:1'): c2p.put(0) p2c.get() c2p.put(sync_func(self, TestCuda.FIFTY_MIL_CYCLES)) # Skip the test for ROCm as per https://github.com/pytorch/pytorch/issues/53190 @skipIfRocm @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_stream_event_nogil(self): for sync_func in [TestCuda._stream_synchronize, TestCuda._event_synchronize, TestCuda._event_wait]: p2c = queue.Queue() c2p = queue.Queue() e_tik = torch.cuda.Event(enable_timing=True) e_tok = torch.cuda.Event(enable_timing=True) t = threading.Thread( target=TestCuda._test_stream_event_nogil, args=(self, sync_func, p2c, c2p)) t.daemon = True t.start() c2p.get() with torch.cuda.device('cuda:0'): e_tik.record() p2c.put(0) parent_time = sync_func(self, TestCuda.FIFTY_MIL_CYCLES) child_time = c2p.get() e_tok.record() e_tok.synchronize() total_time = e_tik.elapsed_time(e_tok) # Without GIL, synchronizations in parent and child threads can # overlap. The total execution time should be a little bit longer # than spinning fifty million cycles and much shorter than twice of # that. However, testing absolute execution time is not reliable as # it may vary on different hardware in different environments. # Therefore, this test uses relative comparisons, checking if the # sum of parent and child threads execution time is greater than the # real execution time by least 40%. self.assertGreater(parent_time + child_time, total_time * 1.4) # This test is flaky for ROCm, see issue #62602 @skipIfRocm @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_events_wait(self): d0 = torch.device('cuda:0') d1 = torch.device('cuda:1') torch.cuda.synchronize(d0) torch.cuda.synchronize(d1) with torch.cuda.device(d0): s0 = torch.cuda.current_stream() torch.cuda._sleep(TestCuda.FIFTY_MIL_CYCLES) e0 = torch.cuda.Event() s0.record_event(e0) with torch.cuda.device(d1): s1 = torch.cuda.current_stream() self.assertFalse(s0.query()) self.assertTrue(s1.query()) s1.wait_event(e0) s1.synchronize() self.assertTrue(e0.query()) self.assertTrue(s0.query()) self.assertTrue(s1.query()) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_events_multi_gpu_query(self): d0 = torch.device('cuda:0') d1 = torch.device('cuda:1') with torch.cuda.device(d0): s0 = torch.cuda.current_stream() e0 = s0.record_event() s0.synchronize() with torch.cuda.device(d1): s1 = torch.cuda.current_stream() torch.cuda._sleep(TestCuda.FIFTY_MIL_CYCLES) e1 = s1.record_event() self.assertTrue(e0.query()) self.assertFalse(e1.query()) with torch.cuda.device(d0): self.assertTrue(e0.query()) self.assertFalse(e1.query()) with torch.cuda.device(d1): self.assertTrue(e0.query()) self.assertFalse(e1.query()) # deliberately using a different device with torch.cuda.device(d0): e1.synchronize() self.assertTrue(e0.query()) self.assertTrue(e1.query()) with torch.cuda.device(d0): self.assertTrue(e0.query()) self.assertTrue(e1.query()) with torch.cuda.device(d1): self.assertTrue(e0.query()) self.assertTrue(e1.query()) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") @skipIfRocm def test_events_multi_gpu_elapsed_time(self): d0 = torch.device('cuda:0') d1 = torch.device('cuda:1') with torch.cuda.device(d0): s0 = torch.cuda.current_stream() e0 = torch.cuda.Event(enable_timing=True) torch.cuda._sleep(10) s0.record_event(e0) with torch.cuda.device(d1): s1 = torch.cuda.current_stream() e1 = torch.cuda.Event(enable_timing=True) torch.cuda._sleep(TestCuda.FIFTY_MIL_CYCLES) s1.record_event(e1) e0.synchronize() e1.synchronize() with torch.cuda.device(d0): with self.assertRaises(RuntimeError): self.assertGreater(e0.elapsed_time(e1), 0) with torch.cuda.device(d1): with self.assertRaises(RuntimeError): self.assertGreater(e0.elapsed_time(e1), 0) with torch.cuda.device(d0): s0 = torch.cuda.current_stream() e2 = torch.cuda.Event(enable_timing=True) torch.cuda._sleep(TestCuda.FIFTY_MIL_CYCLES) s0.record_event(e2) s0.synchronize() self.assertGreater(e0.elapsed_time(e2), 0) # deliberately calling from a different device with torch.cuda.device(d1): self.assertGreater(e0.elapsed_time(e2), 0) def test_record_stream(self): cycles_per_ms = get_cycles_per_ms() t = torch.FloatTensor([1, 2, 3, 4]).pin_memory() result = torch.cuda.FloatTensor(t.size()) stream = torch.cuda.Stream() ptr = [None] # Performs the CPU->GPU copy in a background stream def perform_copy(): with torch.cuda.stream(stream): tmp = t.cuda(non_blocking=True) ptr[0] = tmp.data_ptr() torch.cuda.current_stream().wait_stream(stream) tmp.record_stream(torch.cuda.current_stream()) torch.cuda._sleep(int(50 * cycles_per_ms)) # delay the copy result.copy_(tmp) perform_copy() with torch.cuda.stream(stream): tmp2 = torch.cuda.FloatTensor(t.size()) tmp2.zero_() self.assertNotEqual(tmp2.data_ptr(), ptr[0], msg='allocation re-used to soon') self.assertEqual(result.tolist(), [1, 2, 3, 4]) # Check that the block will be re-used after the main stream finishes torch.cuda.current_stream().synchronize() with torch.cuda.stream(stream): tmp3 = torch.cuda.FloatTensor(t.size()) self.assertEqual(tmp3.data_ptr(), ptr[0], msg='allocation not re-used') def test_record_stream_on_shifted_view(self): # See issue #27366 # This test detects unexpected block reallocation. For reliable test, # the stream to allocate tensors is isolated. The allocator will not # reuse free blocks which were allocated from another stream. stream_alloc = torch.cuda.Stream() with torch.cuda.stream(stream_alloc): base = torch.cuda.FloatTensor([10, 10]) # Record another stream on a shifted view tensor. view = base[5:] assert view.storage_offset() > 0 stream_record = torch.cuda.Stream() with torch.cuda.stream(stream_record): torch.cuda._sleep(int(50 * get_cycles_per_ms())) view.record_stream(stream_record) # Delete those tensors to make the block free soon. data_ptr = base.data_ptr() del base, view # A new tensor should not be allocated to the block above. stream_alloc.synchronize() with torch.cuda.stream(stream_alloc): try_realloc = torch.cuda.FloatTensor([10, 10]) self.assertNotEqual(try_realloc.data_ptr(), data_ptr) @contextlib.contextmanager def _get_external_stream(self, device): cudart = torch.cuda.cudart() stream = ctypes.c_ulonglong(0) stream_p = ctypes.POINTER(ctypes.c_void_p)(stream) stream_p_int = ctypes.cast(stream_p, ctypes.c_void_p).value with device: try: out = cudart.cudaStreamCreate(stream_p_int) self.assertEqual(out, 0) self.assertNotEqual(stream.value, 0) yield stream.value finally: out = cudart.cudaStreamDestroy(stream.value) self.assertEqual(out, 0) @skipIfRocm def test_external_streams(self): device = torch.cuda.device(0) with self._get_external_stream(device) as stream_v: ext_stream = torch.cuda.ExternalStream(stream_v) self.assertEqual(stream_v, ext_stream.cuda_stream) self.assertEqual(ext_stream.device.index, device.idx) @skipIfRocm @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_external_streams_multi_device(self): device = torch.cuda.device(1) with self._get_external_stream(device) as stream_v: ext_stream = torch.cuda.ExternalStream( stream_v, device=device) self.assertEqual(stream_v, ext_stream.cuda_stream) self.assertEqual(ext_stream.device.index, device.idx) def test_noncontiguous_pinned_memory(self): # See issue #3266 x = torch.arange(0, 10).view((2, 5)) self.assertEqual(x.t(), x.t().pin_memory()) def test_caching_pinned_memory(self): cycles_per_ms = get_cycles_per_ms() # check that allocations are re-used after deletion t = torch.FloatTensor([1]).pin_memory() ptr = t.data_ptr() del t t = torch.FloatTensor([1]).pin_memory() self.assertEqual(t.data_ptr(), ptr, msg='allocation not reused') # check that the allocation is not re-used if it's in-use by a copy gpu_tensor = torch.cuda.FloatTensor([0]) torch.cuda._sleep(int(50 * cycles_per_ms)) # delay the copy gpu_tensor.copy_(t, non_blocking=True) del t t = torch.FloatTensor([1]).pin_memory() self.assertNotEqual(t.data_ptr(), ptr, msg='allocation re-used too soon') self.assertEqual(list(gpu_tensor), [1]) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_caching_pinned_memory_multi_gpu(self): # checks that the events preventing pinned memory from being re-used # too early are recorded on the correct GPU cycles_per_ms = get_cycles_per_ms() t = torch.FloatTensor([1]).pin_memory() ptr = t.data_ptr() gpu_tensor0 = torch.cuda.FloatTensor([0], device=0) gpu_tensor1 = torch.cuda.FloatTensor([0], device=1) with torch.cuda.device(1): torch.cuda._sleep(int(50 * cycles_per_ms)) # delay the copy gpu_tensor1.copy_(t, non_blocking=True) del t t = torch.FloatTensor([2]).pin_memory() self.assertNotEqual(t.data_ptr(), ptr, msg='allocation re-used too soon') with torch.cuda.device(0): gpu_tensor0.copy_(t, non_blocking=True) self.assertEqual(gpu_tensor1[0], 1) self.assertEqual(gpu_tensor0[0], 2) def test_caching_allocator_record_stream_oom(self): """allocations delayed by a record_stream call should still be freed on an out-of-memory in cuda_malloc_retry. see issue #19219""" stream = torch.cuda.Stream() with torch.cuda.stream(stream): y = torch.zeros(40 * 1024 * 1024, device='cuda') for _ in range(100): x = torch.empty(40 * 1024 * 1024, device='cuda') with torch.cuda.stream(stream): y += x # delays re-use of `x` until after all operations in `stream` x.record_stream(stream) del x # we've made a mess by allocating up to the device capacity. free any # cached blocks in case it affects future tests. torch.cuda.empty_cache() # Tests for historic illegal memory access, see #17040. def test_reduction_gpu_memory_accessing(self): x = torch.ones(512, 8, dtype=torch.float32, device='cuda') torch.sum(x, 0) def test_sum_fp16(self): x = torch.zeros(10, device='cuda', dtype=torch.float16) self.assertEqual(x.sum(), 0) x = torch.ones(65504, device='cuda', dtype=torch.float16) self.assertEqual(x.sum(), 65504) self.assertEqual(x.sum(dtype=torch.float32), 65504) x = torch.ones(65536, device='cuda', dtype=torch.float16) self.assertEqual(x.sum(dtype=torch.float32), 65536) a = torch.zeros(1203611).bernoulli_(0.0005) x = a.to(device='cuda', dtype=torch.float16) self.assertEqual(x.sum().item(), a.sum().item()) a = torch.zeros(100, 121, 80).bernoulli_(0.0005) x = a.to(device='cuda', dtype=torch.float16) self.assertEqual(x.sum((0, 2)).float().cpu(), a.sum((0, 2))) def test_mean_fp16(self): x = torch.ones(65536, device='cuda', dtype=torch.float16) self.assertEqual(x.mean(), 1) x = torch.ones(65536, device='cuda', dtype=torch.float16) self.assertEqual(x.mean(dtype=torch.float32), 1) def test_prod_large(self): # tests global reduction (should_global_reduce = true) in case of non-zero identity element x = torch.ones(240000, device='cuda', dtype=torch.float32) self.assertEqual(x.prod(), 1) # test for complex types. Note 240k is divisible by 4 for dtype in [torch.cfloat, torch.cdouble]: x = torch.ones(240000, device='cuda', dtype=dtype) * (0 + 1j) self.assertEqual(x.prod(), 1) def test_multinomial_ext(self): # Test two corner cases from older PyTorch (Issue #4858) freqs = torch.cuda.FloatTensor([ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03178183361887932, 0.027680952101945877, 0.033176131546497345, 0.046052902936935425, 0.07742464542388916, 0.11543981730937958, 0.14148041605949402, 0.15784293413162231, 0.13180233538150787, 0.08271478116512299, 0.049702685326337814, 0.027557924389839172, 0.018125897273421288, 0.011851548217236996, 0.010252203792333603, 0.007422595750540495, 0.005372154992073774, 0.0045109698548913, 0.0036087757907807827, 0.0035267581697553396, 0.0018864056328311563, 0.0024605290964245796, 0.0022964938543736935, 0.0018453967059031129, 0.0010662291897460818, 0.0009842115687206388, 0.00045109697384759784, 0.0007791675161570311, 0.00020504408166743815, 0.00020504408166743815, 0.00020504408166743815, 0.00012302644609007984, 0.0, 0.00012302644609007984, 4.100881778867915e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) torch.cuda.manual_seed(11042) sample = torch.multinomial(freqs, 1000, True) self.assertNotEqual(freqs[sample].min(), 0) p = torch.zeros(3421, 2, device="cuda", dtype=torch.float) p[:, 1] = 1 torch.cuda.manual_seed(5214) r = torch.multinomial(p, 1) self.assertNotEqual(r.min().item(), 0) # test corner case from Issue #13867 torch.cuda.manual_seed(33) probs = torch.randn(1000000, device='cuda').clamp(min=0) * 3e-5 samples = probs.multinomial(1000000, replacement=True) self.assertGreater(probs[samples].min().item(), 0) def _spawn_test_multinomial_invalid_probs_cuda(self, probs): import subprocess try: p = subprocess.Popen([sys.executable, '-c', f"""\ import sys import torch from torch._six import inf, nan try: with torch.random.fork_rng(devices=[0]): torch.multinomial(torch.tensor({probs}).to('cuda'), 2, replacement=True) torch.cuda.synchronize() sys.exit(-1) # Should not be reached except RuntimeError as e: sys.exit(-2) """], stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) out, err = p.communicate(timeout=10) p.wait(timeout=10) except subprocess.TimeoutExpired as e: p.kill() out, err = p.communicate() expected_messages = [ 'device-side assert triggered', # CUDA 'Assertion', # CUDA 'HSA_STATUS_ERROR_EXCEPTION', # ROCm 'Device-side assertion' # ROCm ] self.assertTrue(any([msg in out or msg in err for msg in expected_messages])) @slowTest @unittest.skipIf(TEST_WITH_ROCM, "ROCm doesn't support device side asserts") @unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \ don't support multiprocessing with spawn start method") def test_multinomial_invalid_probs_cuda(self): self._spawn_test_multinomial_invalid_probs_cuda([1., -1., 1.]) self._spawn_test_multinomial_invalid_probs_cuda([1., inf, 1.]) self._spawn_test_multinomial_invalid_probs_cuda([1., -inf, 1.]) self._spawn_test_multinomial_invalid_probs_cuda([1., 1., nan]) @slowTest @unittest.skipIf(not TEST_LARGE_TENSOR, "not enough memory") def test_huge_index(self): src = torch.empty(15000000, 45, device='cuda', dtype=torch.long).random_(0, 2**22) idx = torch.randperm(src.shape[0], device='cuda') res = src[idx] res_cpu = src.cpu()[idx.cpu()] self.assertEqual(res.cpu(), res_cpu) def test_min_max_inits(self): # Testing if THC_reduceAll received the correct index initialization. # This affects the result of THC_reduceAll operations at extreme values x = torch.cuda.ByteTensor([0]) y = torch.cuda.ByteTensor([255]) expected = torch.cuda.LongTensor([0])[0] _, v = x.max(dim=0) self.assertEqual(v, expected) _, v = y.min(dim=0) self.assertEqual(v, expected) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_get_set_rng_state_all(self): states = torch.cuda.get_rng_state_all() before0 = torch.cuda.FloatTensor(100, device=0).normal_() before1 = torch.cuda.FloatTensor(100, device=1).normal_() torch.cuda.set_rng_state_all(states) after0 = torch.cuda.FloatTensor(100, device=0).normal_() after1 = torch.cuda.FloatTensor(100, device=1).normal_() self.assertEqual(before0, after0, atol=0, rtol=0) self.assertEqual(before1, after1, atol=0, rtol=0) def test_nvtx(self): # Just making sure we can see the symbols torch.cuda.nvtx.range_push("foo") torch.cuda.nvtx.mark("bar") torch.cuda.nvtx.range_pop() range_handle = torch.cuda.nvtx.range_start("range_start") torch.cuda.nvtx.range_end(range_handle) def test_bincount_ext(self): # ensure CUDA code coverage input_size = (5000,) w = torch.randn(input_size, dtype=torch.double, device='cuda') w_cpu = w.cpu() # test shared memory impl t = torch.randint(50, input_size, dtype=torch.int8, device='cuda') self.assertEqual(t.cpu().bincount(), t.bincount()) self.assertEqual(t.cpu().bincount(w_cpu), t.bincount(w)) # test multi block memory impl # see `THRESH_NUMBER_BINS_FOR_MULTI_BLOCK_MEM` in SummaryOps.cu t = torch.randint(500, input_size, dtype=torch.int64, device='cuda') self.assertEqual(t.cpu().bincount(), t.bincount()) self.assertEqual(t.cpu().bincount(w_cpu), t.bincount(w)) # test global memory impl # see `THRESH_NUMBER_BINS_FOR_GLOBAL_MEM` in SummaryOps.cu t = torch.randint(2000, input_size, dtype=torch.int64, device='cuda') self.assertEqual(t.cpu().bincount(), t.bincount()) self.assertEqual(t.cpu().bincount(w_cpu), t.bincount(w)) t = torch.zeros([10], dtype=torch.int32, device='cuda') # 35488 * 65536 as int32 would cause overflow to negative value # giving negative bin offset t[0] = 35488 counted = t.bincount(minlength=65536) self.assertEqual(torch.sum(counted), 10) def test_tiny_half_norm_(self): a = torch.arange(25).cuda().float() a /= 100000000 b = a.half() self.assertGreater(b.norm().item(), 0) def test_norm_type_conversion(self): a = torch.ones(65536).cuda().half() self.assertEqual(a.norm(p=0, dtype=torch.float32), 65536) # Verifies that mem_get_info works, including when called for a different device def test_mem_get_info(self): def _test(idx): before_free_bytes, before_available_bytes = torch.cuda.mem_get_info(idx) # increasing to 8MB to force acquiring a new block and overcome blocksize differences across platforms t = torch.randn(1024 * 1024 * 8, device='cuda:' + str(idx)) after_free_bytes, after_available_bytes = torch.cuda.mem_get_info(idx) self.assertTrue(after_free_bytes < before_free_bytes) self.assertEqual(before_available_bytes, after_available_bytes) _test(0) if TEST_MULTIGPU: _test(1) # Test that wrap_with_cuda_memory_check successfully detects leak # skip for ROCM. Look into #62533. @skipIfRocm def test_cuda_memory_leak_detection(self): l = [] @self.wrap_with_cuda_memory_check def no_leak(): pass @self.wrap_with_cuda_memory_check def leak_gpu0(): # increasing to 8MB to force acquiring a new block and overcome blocksize differences across platforms l.append(torch.randn(1024 * 1024 * 8, device=torch.device("cuda:0"))) no_leak() with self.assertRaisesRegex(RuntimeError, r"CUDA driver API confirmed .+ on device 0.+"): leak_gpu0() if TEST_MULTIGPU: @self.wrap_with_cuda_memory_check def leak_gpu1(): # increasing to 8MB to force acquiring a new block and overcome blocksize differences across platforms l.append(torch.randn(1024 * 1024 * 8, device=torch.device("cuda:1"))) with self.assertRaisesRegex(RuntimeError, r"CUDA driver API confirmed .+ on device 1.+"): leak_gpu1() def test_cuda_memory_leak_detection_propagates_errors(self): with self.assertRaisesRegex(RuntimeError, r"The size of tensor a \(3\) must match"): with self.assertLeaksNoCudaTensors(): x = torch.randn(3, 1, device='cuda') y = torch.randn(2, 1, device='cuda') z = x + y def test_trilu_indices(self): for test_args in tri_tests_args: _compare_trilu_indices(self, *test_args, device='cuda') # test default options x = torch.ones( 3, 3, dtype=torch.long, device='cuda', layout=torch.strided) self.assertEqual( x.tril(0).nonzero().transpose(0, 1), torch.tril_indices(3, 3, device='cuda')) self.assertEqual( x.triu(0).nonzero().transpose(0, 1), torch.triu_indices(3, 3, device='cuda')) def test_large_trilu_indices(self): for test_args in tri_large_tests_args: _compare_large_trilu_indices(self, *test_args, device='cuda') @unittest.skipIf(not TEST_MEDIUM_TENSOR, "not enough memory") def test_cuda_kernel_loop_overflow(self): # Issue #24309: In extreme cases, the loop variable could overflow and continue # the kernel loop with a negative index, causing a RuntimeError (invalid write): x = torch.randn(1, 1, 1, 2**30 + 1, dtype=torch.float16, device="cuda") expected = x[0, 0, 0, 2**30] y = torch.nn.functional.avg_pool2d(x, kernel_size=1) torch.cuda.synchronize() self.assertEqual(y[0, 0, 0, 2**30], expected) @unittest.skipIf(not TEST_LARGE_TENSOR, "not enough memory") def test_cuda_kernel_loop_overflow_large(self): # Make sure input.numel() > INT_MAX is handled: x = torch.randn(1, 1, 1, 2**31, dtype=torch.float16, device="cuda") with self.assertRaisesRegex(RuntimeError, "integer out of range"): y = torch.nn.functional.avg_pool2d(x, kernel_size=1) # Issue #24309: In extreme cases, the loop variable could overflow and continue # the kernel loop with a negative index, causing a RuntimeError (invalid write): x = torch.randn(1, 1, 1, 2**31 - 1, dtype=torch.float16, device="cuda") expected = x[0, 0, 0, 2**31 - 2] y = torch.nn.functional.avg_pool2d(x, kernel_size=1) torch.cuda.synchronize() self.assertEqual(y[0, 0, 0, 2**31 - 2], expected) # this might create a reference cycle on self... def _make_multiply_in_stream(self): class MultiplyInStream(torch.autograd.Function): @staticmethod def forward(ctx, x, val): ctx.val = val ctx.stream = torch.cuda.current_stream() return x * val @staticmethod def backward(ctx, grad): self.assertEqual(torch.cuda.current_stream(), ctx.stream) # delays the operation in the the background stream torch.cuda._sleep(1000 * 5000) return grad * ctx.val, None return MultiplyInStream @skipCUDANonDefaultStreamIf(True) def test_streaming_backwards_sync(self): default_stream = torch.cuda.current_stream() stream = torch.cuda.Stream() MultiplyInStream = self._make_multiply_in_stream() # Tests using grads outside the backward() stream context # See "Stream semantics of backward passes" on https://pytorch.org/docs/stable/notes/cuda.html x = torch.randn(5, 5, device='cuda', requires_grad=True) with torch.cuda.stream(stream): stream.wait_stream(default_stream) output = MultiplyInStream.apply(x, 2) output.sum().backward() # sync needed default_stream.wait_stream(stream) self.assertEqual(x.grad, torch.ones_like(x) * 2) self.assertEqual(torch.cuda.current_stream(), default_stream) # Tests that using grads in the same stream context as backward() # is safe regardless what streams bwd ops ran on bwd_ambient_stream = torch.cuda.Stream() x = torch.randn(5, 5, device='cuda', requires_grad=True) with torch.cuda.stream(stream): stream.wait_stream(default_stream) output = MultiplyInStream.apply(x, 3) with torch.cuda.stream(bwd_ambient_stream): bwd_ambient_stream.wait_stream(stream) output.sum().backward() # x was first used on "stream" so its AccumulateGrad leaf should run on "stream". # The end of backward() should have synced "bwd_ambient_stream" with "stream" # so it should be safe to use x.grad here without any syncs. self.assertEqual(x.grad, torch.ones_like(x) * 3) self.assertEqual(torch.cuda.current_stream(), bwd_ambient_stream) # Skip the test for ROCm as per https://github.com/pytorch/pytorch/issues/53190 @skipIfRocm def test_streaming_backwards_multiple_streams(self): MultiplyInStream = self._make_multiply_in_stream() class StreamModel(torch.nn.Module): def __init__(self): super(StreamModel, self).__init__() self.event = torch.cuda.Event() self.stream0 = torch.cuda.Stream() self.stream1 = torch.cuda.Stream() def forward(self, x, x_first_use_on_ambient): if x_first_use_on_ambient: x0 = x.clone() self.stream0.wait_stream(torch.cuda.current_stream()) self.stream1.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(self.stream0): if not x_first_use_on_ambient: x0 = x.clone() y0 = MultiplyInStream.apply(x0, 2) self.event.record(stream=torch.cuda.current_stream()) with torch.cuda.stream(self.stream1): y1 = MultiplyInStream.apply(x, 3) self.stream1.wait_event(self.event) return y0 + y1 stream = torch.cuda.Stream() for x_first_use_on_ambient in (True, False): # the out_of_place=False, iters=1 case stresses if proper syncs are inserted # when grads are initially None and stolen by backward ops. for out_of_place, iters in ((True, 1), (False, 1), (False, 5)): with torch.cuda.stream(stream): x = torch.randn(5, 5, device='cuda', requires_grad=True) model = StreamModel().cuda() x.register_hook(lambda grad: self.assertEqual(torch.cuda.current_stream(), stream if x_first_use_on_ambient else model.stream0)) for p in model.parameters(): self.assertTrue(p.grad is None) for i in range(iters): loss = model(x, x_first_use_on_ambient).sum() if out_of_place: x_grad = torch.autograd.grad((loss,), (x,))[0] else: loss.backward() # See "Stream semantics of backward passes" on https://pytorch.org/docs/stable/notes/cuda.html torch.cuda.current_stream().wait_stream(stream) if out_of_place: self.assertEqual(x_grad, torch.ones_like(x) * 5 * iters) else: self.assertEqual(x.grad, torch.ones_like(x) * 5 * iters) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_streaming_backwards_device_transfer(self): # This function must run with non-default current streams on all devices, otherwise it's meaningless. # The intention is to test that to()'s backward (CopyBackward) interacts properly with the # synchronization logic in torch/csrc/autograd/input_buffer.cpp. dev0 = torch.device("cuda:0") dev1 = torch.device("cuda:1") # Unfortunately I need to make the tensors largeish. # Bigger tensors = longer D2D transfers = more likely to expose races. size = 2**26 a = torch.full((size,), 1, device=dev1, dtype=torch.float64, requires_grad=True) b = torch.full((size,), 1, device=dev1, dtype=torch.float64, requires_grad=True) # Here to_backward_recipient = a*b is used only once, so MulBackward's InputBuffer slot only expects 1 input. # This tests the situation where we don't call InputBuffer::accumulate for MulBackward's InputBuffer. to_backward_recipient = a * b s = to_backward_recipient.to(device="cuda:0").sum() torch.cuda.synchronize(device=dev0) torch.cuda.synchronize(device=dev1) s.backward() self.assertTrue(a.grad.sum().item() == size) self.assertTrue(b.grad.sum().item() == size) # Here to_backward_recipient = a*b is used twice, so MulBackward's InputBuffer slot expects 2 inputs. # This tests the situation where we do call InputBuffer::accumulate for MulBackward's InputBuffer. a.grad = None b.grad = None to_backward_recipient = a * b # Multiply by 2 here so to's backward creates gradient values that are different from the case above, # to mitigate weirdness if the caching allocator happens to reuse memory regions that were populated # with 1s by the case above s0 = to_backward_recipient.to(device="cuda:0").sum() * 2. s1 = to_backward_recipient.to(device="cuda:0").sum() * 2. torch.cuda.synchronize(device=dev0) torch.cuda.synchronize(device=dev1) s0.backward(retain_graph=True) s1.backward() self.assertTrue(a.grad.sum().item() == 4 * size) self.assertTrue(b.grad.sum().item() == 4 * size) def test_streaming_backwards_sync_graph_root(self): # This function tests if bwd ops running on a side stream properly sync with the GraphRoot. # The potential bug it targets is a race condition. The test uses multiple trials and # torch.cuda._sleep such that if the race condition exists, the test will almost certainly fail, # but there's a chance it may spuriously pass. Passing does not guarantee the backend is bug-free, # but failure does guarantee there is a bug. fwd_bwd_op_stream = torch.cuda.Stream() bwd_ambient_stream = torch.cuda.Stream() # We need these streams to be different otherwise the test is meaningless. self.assertTrue(fwd_bwd_op_stream != bwd_ambient_stream) size = int(1e3) a = torch.full((size,), 2.0, device="cuda", requires_grad=True) b = torch.full((size,), 3.0, device="cuda", requires_grad=True) # I don't think we need any manual record_streams below. # a and b remain in scope for the entire test. # c and grad remain in scope for each iteration, and there's a full sync between iterations. for trial in range(5): torch.cuda.synchronize() a.grad = b.grad = None with torch.cuda.stream(fwd_bwd_op_stream): c = a * b with torch.cuda.stream(bwd_ambient_stream): torch.cuda.synchronize() # Long-running dummy kernel on bwd_ambient_stream delays filling of grad torch.cuda._sleep(int(50 * get_cycles_per_ms())) # Fills grad on bwd_ambient_stream grad = torch.full((size,), float(trial + 1), device="cuda") # Bwd ops still run on fwd_bwd_ops_stream, so the following will likely fail if # bwd ops don't sync with bwd_ambient_stream before consuming grad. torch.autograd.backward(tensors=c, grad_tensors=grad) # See https://github.com/pytorch/pytorch/issues/47028 # assertEquals below run on bwd_ambient_stream, so this test may also fail # if backward() fails to sync with bwd_ambient_stream at the end. # Synchronizing here works around the issue until a proper fix can be made. torch.cuda.synchronize() with torch.no_grad(): self.assertEqual(a.grad, grad * b) self.assertEqual(b.grad, grad * a) def test_streaming_backwards_callback(self): # Tests if autograd callbacks sync properly with respect to leaf streams and # the user-facing stream surrounding backward(). If it fails, first suspect is # sync logic where "final_callbacks_" are called in torch/csrc/autograd/engine.cpp MultiplyInStream = self._make_multiply_in_stream() size = int(1e3) a = torch.full((size,), 1, device="cuda", dtype=torch.float, requires_grad=True) b = torch.full((size,), 1, device="cuda", dtype=torch.float, requires_grad=True) s0 = torch.cuda.Stream() s1 = torch.cuda.Stream() s2 = torch.cuda.Stream() stash = [] # sets up a nontrivial structure of leaf streams s0.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(s0): c = MultiplyInStream.apply(a, 2) s1.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(s1): d = MultiplyInStream.apply(b, 3) s1.wait_stream(s0) e = c * d def clone_leaf_grads(): stash.append(a.grad.clone()) stash.append(b.grad.clone()) # Use a hook on e to install the callback e.register_hook(lambda grad: torch.autograd.Variable._execution_engine.queue_callback(clone_leaf_grads)) s2.wait_stream(s1) with torch.cuda.stream(s2): e.sum().backward() # The autograd engine should sync s2 with all leaf streams then run the callback clone_leaf_grads on s2. # If those things happened properly, checking the values of the cloned grads on s2 should be safe: self.assertEqual(stash[0], torch.full_like(a, 6)) self.assertEqual(stash[1], torch.full_like(a, 6)) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") @unittest.skipIf(IS_SANDCASTLE or IS_REMOTE_GPU, "Does not work on Sandcastle") def test_cuda_init_race(self): # See https://github.com/pytorch/pytorch/issues/16559 import subprocess subprocess.check_call([sys.executable, '-c', """\ import torch import threading def worker(rank): torch.tensor([1.]).cuda(rank) t1 = threading.Thread(target=worker, args=(0,)) t2 = threading.Thread(target=worker, args=(1,)) t1.start() t2.start() """]) @unittest.skipIf(TEST_WITH_ROCM, "ROCm doesn't support device side asserts") def test_fixed_cuda_assert_async(self): with self.assertRaisesRegex(RuntimeError, "Boolean value of Tensor with no values is ambiguous"): torch._assert_async(torch.tensor([], device="cuda")) with self.assertRaisesRegex(RuntimeError, "Boolean value of Tensor with more than one value is ambiguous"): torch._assert_async(torch.tensor([0, 0], device="cuda")) torch._assert_async(torch.tensor(1, device="cuda")) torch._assert_async(torch.tensor(0.1, device="cuda")) torch._assert_async(torch.tensor(-0.1, device="cuda")) torch._assert_async(torch.tensor(True, device="cuda")) torch._assert_async(torch.tensor(0 + 0.1j, device="cuda")) fail_stmts = [ "torch._assert_async(torch.tensor(0, device='cuda'))", "torch._assert_async(torch.tensor(0.0, device='cuda'))", "torch._assert_async(torch.tensor(False, device='cuda'))", "torch._assert_async(torch.tensor(0 + 0j, device='cuda'))", ] import subprocess for stmt in fail_stmts: with self.subTest(stmt=stmt): r = subprocess.call([sys.executable, '-c', f"""\ import torch {stmt} torch.cuda.synchronize() """]) self.assertTrue(r != 0) def test_grad_scaling_unscale(self, dtype=torch.float): inv_scale = torch.full((1,), 0.25, dtype=torch.float, device="cuda:0") found_inf = torch.full((1,), 0.0, dtype=torch.float, device="cuda:0") size = 10 g = torch.full((size, size), 4.0, dtype=dtype, device="cuda:0") ginf = g.clone() ginf[2, 2] = float('inf') gnan = g.clone() gnan[2, 2] = float('nan') # Tries selected combinations of # - contiguous grads # - g.clone().t() which is not contiguous but still non overlapping and dense # - variants of g.clone()[:, :5] which are not non overlapping and dense # Non overlapping and dense grads route into a multi tensor apply kernel, # others use a fallback per-tensor kernel, so we should try both. cases = ( ([g.clone(), g.clone()], False), ([g.clone(), g.clone().t()], False), ([g.clone(), g.clone()[:, :5]], False), ([g.clone()[:, :5], g.clone()[:, :5]], False), ([g.clone(), ginf.clone()], True), ([g.clone(), gnan.clone()], True), ([g.clone(), ginf.clone()[:, :5]], True), ([g.clone(), gnan.clone()[:, :5]], True), ([ginf.clone(), g.clone()[:, :5]], True), ([ginf.clone()[:, :5], g.clone()[:, :5]], True), ) for grads, has_inf in cases: found_inf.zero_() torch._amp_foreach_non_finite_check_and_unscale_(grads, found_inf, inv_scale) if has_inf: self.assertEqual(found_inf, 1.0) else: self.assertEqual(found_inf, 0.0) for grad in grads: self.assertEqual(grad, torch.ones_like(grad), rtol=1e-5, atol=1e-7) # When passing lists with mismatched dtypes to a raw # _amp_foreach_non_finite_check_and_unscale_ call, # it's expected to fall back to single-tensor TensorIterator kernel. grads = [g.clone(), g.to(dtype=torch.float16)] torch._amp_foreach_non_finite_check_and_unscale_(grads, found_inf, inv_scale) for grad in grads: self.assertEqual(grad, torch.ones_like(grad), rtol=1e-5, atol=1e-7) # Passing lists with mismatched devices to a raw # _amp_foreach_non_finite_check_and_unscale_ call should raise errors. if TEST_MULTIGPU: with self.assertRaisesRegex(RuntimeError, r"Expected all tensors to be on the same device"): torch._amp_foreach_non_finite_check_and_unscale_([g.clone(), g.to(device="cuda:1")], found_inf, inv_scale) # Creates a list of grads with mismatched dtypes and devices, to ensure # scaler._unscale_grads_ organizes grads by dtype and device before calling # _amp_foreach_non_finite_check_and_unscale_ on each set. # If inject_inf >= 0, writes an inf into one grad for _unscale_grads_ to find. def perfect_storm_grads(inject_inf): grads = [g.clone(), g.clone()[:, :5], g.to(dtype=torch.float16), g.to(dtype=torch.float16)] if TEST_MULTIGPU: grads += [g.to(device="cuda:1"), g.to(device="cuda:1")[:, :5], g.to(device="cuda:1", dtype=torch.float16), g.to(device="cuda:1", dtype=torch.float16)] if inject_inf >= 0: grads[inject_inf][2, 2] = float('inf') return grads scaler = torch.cuda.amp.GradScaler() dummy_params = [torch.empty_like(g) for g in perfect_storm_grads(-1)] dummy_opt = torch.optim.SGD(dummy_params, lr=1.) # Ensures the inf/nan checking can find an inf injected onto any grad in the perfect storm. for inject_inf in range(-1, len(dummy_params)): found_inf = torch.full((1,), 0.0, dtype=torch.float, device="cuda:0") grads = perfect_storm_grads(inject_inf) for i, p in enumerate(dummy_params): p.grad = grads[i] found_inf_per_device = scaler._unscale_grads_(dummy_opt, inv_scale, found_inf, True) if inject_inf < 0: # No inf was injected, ensures unscaling worked normally. self.assertTrue(sum(v.item() for v in found_inf_per_device.values()) == 0) for grad in grads: self.assertEqual(grad, torch.ones_like(grad), rtol=1e-5, atol=1e-7) else: # inf was injected, ensures inf was found. self.assertTrue(sum(v.item() for v in found_inf_per_device.values()) == 1) def test_grad_scaling_update_scale(self, device="cuda", dtype=torch.float): growth = 2.0 backoff = 0.25 growth_interval = 2 scale = torch.full((1,), 4.0, dtype=dtype, device=device) growth_tracker = torch.full((1,), 0.0, dtype=torch.int32, device=device) found_inf = torch.full((1,), 0.0, dtype=torch.float, device="cuda:0") # Simulates 2 consecutive unskipped iterations torch._amp_update_scale_(scale, growth_tracker, found_inf, growth, backoff, growth_interval) self.assertEqual(growth_tracker, 1) self.assertEqual(scale, 4.0) torch._amp_update_scale_(scale, growth_tracker, found_inf, growth, backoff, growth_interval) self.assertEqual(growth_tracker, 0) self.assertEqual(scale, 8.0) # Simulates a skipped iteration found_inf.fill_(1.0) torch._amp_update_scale_(scale, growth_tracker, found_inf, growth, backoff, growth_interval) self.assertEqual(growth_tracker, 0) self.assertEqual(scale, 2.0) def test_grad_scaling_unscale_sparse(self, device="cuda", dtype=torch.float): scaler = torch.cuda.amp.GradScaler() inv_scale = torch.full((1,), 0.25, dtype=dtype, device=device) found_inf = torch.empty((1,), dtype=dtype, device=device) cur = found_inf.device # As of d0c925f (4/16/20), docs are unclear about best API for sparse cuda tensor construction. # https://pytorch.org/docs/master/tensors.html shows torch.sparse_coo_tensor(...), but it has no docstring. # The same page shows several tensors with layout=torch.sparse_coo, but no constructors using that layout. # Meanwhile, https://pytorch.org/docs/master/sparse.html shows torch.sparse.FloatTensor(...), which looks # legacy and does not accept a device="cuda" kwarg. Going with torch.sparse_coo_tensor. i = torch.tensor([[0, 1, 1], [2, 0, 2]], device="cuda", dtype=torch.int64) v = torch.tensor([16., 32., 64.], device="cuda", dtype=torch.float) s = torch.sparse_coo_tensor(i, v, torch.Size([2, 3]), device="cuda", dtype=dtype) p = s.clone() assert p.is_sparse opt = torch.optim.SGD([p], lr=1.) p.grad = s.clone() found_inf.zero_() found_inf = scaler._unscale_grads_(opt, inv_scale, found_inf, False)[cur] self.assertEqual(found_inf, 0.0) self.assertEqual(p.grad.to_dense(), (s / 4).to_dense()) v = torch.FloatTensor([16., 32., float('inf')]) p.grad = torch.sparse_coo_tensor(i, v, torch.Size([2, 3]), device="cuda", dtype=dtype) found_inf.zero_() found_inf = scaler._unscale_grads_(opt, inv_scale, found_inf, False)[cur] self.assertEqual(found_inf, 1.0) v = torch.FloatTensor([16., 32., float('nan')]) p.grad = torch.sparse_coo_tensor(i, v, torch.Size([2, 3]), device="cuda", dtype=dtype) found_inf.zero_() found_inf = scaler._unscale_grads_(opt, inv_scale, found_inf, False)[cur] self.assertEqual(found_inf, 1.0) p = s.clone().half() assert p.is_sparse opt = torch.optim.SGD([p], lr=1.) p.grad = s.clone().half() found_inf.zero_() found_inf = scaler._unscale_grads_(opt, inv_scale, found_inf, True)[cur] self.assertEqual(found_inf, 0.0) self.assertEqual(p.grad.to_dense(), (s.half() / 4).to_dense()) # Creates fp16 sparse tensor with duplicated indices (uncoalesced). The uncoalesced representation # does not overflow in fp16, but the coalesced representation would, because 64000 + 64000 > fp16 max. # _amp_non_finite_check_and_unscale_ should report an overflow here. i = torch.LongTensor([[0, 1, 0], [2, 0, 2]]) v = torch.FloatTensor([64000., 32., 64000.]) p.grad = torch.sparse_coo_tensor(i, v, torch.Size([2, 3]), device="cuda", dtype=torch.float16) found_inf.zero_() found_inf = scaler._unscale_grads_(opt, inv_scale, found_inf, True)[cur] self.assertEqual(found_inf, 1.0) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_grad_scaling_device_as_key(self): # Ensure that different instances of "device" objects that point to the same device # are treated as identical keys by dicts. GradScaler relies on this behavior, and may # error otherwise in a way that's difficult to detect (a silent performance hit). d = {} t = torch.empty((1,), device="cuda:0") dev0a = torch.device("cuda:0") dev0b = torch.device("cuda:0") dev1a = torch.device("cuda:1") dev1b = torch.device("cuda:1") self.assertTrue(hash(dev0a) == hash(dev0b)) self.assertTrue(hash(dev1a) == hash(dev1b)) d[dev0a] = "0a" d[dev0b] = "0b" self.assertTrue(len(d) == 1) self.assertTrue(d[dev0a] == "0b") d[t.device] = "t" self.assertTrue(len(d) == 1) self.assertTrue(d[dev0a] == "t") d[dev1a] = "1a" d[dev1b] = "1b" self.assertTrue(len(d) == 2) self.assertTrue(d[dev1a] == "1b") @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_grad_scaling_scale(self): scaler = torch.cuda.amp.GradScaler(init_scale=2.) t0 = torch.full((1,), 4.0, dtype=torch.float32, device="cuda:0") t1 = torch.full((1,), 4.0, dtype=torch.float32, device="cuda:1") # Create some nested iterables of tensors on different devices. outputs = (t1.clone(), (t0.clone(), t1.clone()), [t0.clone(), (t1.clone(), t0.clone())]) outputs = scaler.scale(outputs) self.assertTrue(outputs[0] == 8.0 and outputs[1][0] == 8.0 and outputs[1][1] == 8.0 and outputs[2][0] == 8.0 and outputs[2][1][0] == 8.0 and outputs[2][1][1] == 8.0) self.assertTrue(scaler._scale.device == t1.device) def test_grad_scaling_state_dict(self): for lazy_init_scale in True, False: s0 = torch.cuda.amp.GradScaler(init_scale=3., growth_factor=4., backoff_factor=.5, growth_interval=2) s1 = torch.cuda.amp.GradScaler(init_scale=6., growth_factor=7., backoff_factor=.8, growth_interval=1) # sets a random value for load_state_dict to overwrite s1._init_growth_tracker = 7 if lazy_init_scale: # Dummy scale() call to ensure the scale tensor is lazily initialized. s1.scale(torch.full((1,), 4.0, dtype=torch.float32, device="cuda:0")) self.assertTrue(isinstance(s1._scale, torch.cuda.FloatTensor)) s1.load_state_dict(s0.state_dict()) self.assertEqual(s1.get_scale(), 3.) self.assertEqual(s1.get_growth_factor(), 4.) self.assertEqual(s1.get_backoff_factor(), .5) self.assertEqual(s1.get_growth_interval(), 2) self.assertEqual(s1._init_growth_tracker, 0) def _create_scaling_models_optimizers(self, device="cuda"): # Create a module+optimizer that will use scaling, and a control module+optimizer # that will not use scaling, against which the scaling-enabled module+optimizer can be compared. mod_control = torch.nn.Sequential(torch.nn.Linear(8, 8), torch.nn.Linear(8, 8)).to(device=device) mod_scaling = torch.nn.Sequential(torch.nn.Linear(8, 8), torch.nn.Linear(8, 8)).to(device=device) for c, s in zip(mod_control.parameters(), mod_scaling.parameters()): s.data.copy_(c.data) opt_control = torch.optim.SGD(mod_control.parameters(), lr=1.0) opt_scaling = torch.optim.SGD(mod_scaling.parameters(), lr=1.0) return mod_control, mod_scaling, opt_control, opt_scaling def _create_scaling_case(self, device="cuda", dtype=torch.float): data = [(torch.randn((8, 8), dtype=dtype, device=device), torch.randn((8, 8), dtype=dtype, device=device)), (torch.randn((8, 8), dtype=dtype, device=device), torch.randn((8, 8), dtype=dtype, device=device)), (torch.randn((8, 8), dtype=dtype, device=device), torch.randn((8, 8), dtype=dtype, device=device)), (torch.randn((8, 8), dtype=dtype, device=device), torch.randn((8, 8), dtype=dtype, device=device))] loss_fn = torch.nn.MSELoss().cuda() skip_iter = 2 return self._create_scaling_models_optimizers(device=device) + (data, loss_fn, skip_iter) # _run_scaling_case generalizes some single-optimizer test logic to avoid too much copy-pasting below. def _run_scaling_case(self, run, unskipped, skipped, atol=1e-7): # Ensure scaling can be disabled without changing user control flow. for enabled in True, False: mod_control, mod_scaling, opt_control, opt_scaling, data, loss_fn, skip_iter = self._create_scaling_case() # For functionality, test with a modest initial scale, and an unrealistically-large growth factor # so any potential errors with the growth factor handling will be magnified. scaler = torch.cuda.amp.GradScaler(init_scale=128., growth_factor=2.0, enabled=enabled, growth_interval=1) _ = run(data, mod_control, opt_control, scaler, loss_fn, skip_iter, False) ret = run(data, mod_scaling, opt_scaling, scaler, loss_fn, skip_iter, True) # Allows run() to optionally return a different scaler instance. scaler = ret if ret else scaler # If scaling was enabled, the scale factor should have been multiplied by the growth factor # len(data) - skipped times and the backoff factor "skipped" times. if enabled: net_growth = scaler.get_growth_factor()**unskipped if unskipped > 0 else 1.0 net_backoff = scaler.get_backoff_factor()**skipped if skipped > 0 else 1.0 self.assertTrue(scaler.get_scale() == (128. * net_growth * net_backoff)) else: self.assertTrue(scaler.get_scale() == 1.0) for c, s in zip(mod_control.parameters(), mod_scaling.parameters()): self.assertEqual(c, s, atol=atol, rtol=1e-05) # Compares no scaling + no autocasting against scaling + autocasting. def test_grad_scaling_autocast(self): try_pickle = False def run(data, model, optimizer, scaler, loss_fn, skip_iter, try_scaling_api): for i, (input, target) in enumerate(data): optimizer.zero_grad() with torch.autocast('cuda', enabled=try_scaling_api): output = model(input) loss = loss_fn(output, target) if try_scaling_api: scaler.scale(loss).backward() if i == skip_iter and scaler.is_enabled(): model[1].weight.grad.data.fill_(float('inf')) scaler.step(optimizer) scaler.update() if try_pickle: scaler = pickle.loads(pickle.dumps(scaler)) else: loss.backward() if (not scaler.is_enabled()) or (i != skip_iter): optimizer.step() return scaler # sets atol=1e-3 because we're comparing pure fp32 arithmetic vs a mixture of fp16 and fp32 self._run_scaling_case(run, unskipped=3, skipped=1, atol=1e-3) # this will be picked up by try_pickle within run(): try_pickle = True self._run_scaling_case(run, unskipped=3, skipped=1, atol=1e-3) def test_grad_scaling_clipping(self): def run(data, model, optimizer, scaler, loss_fn, skip_iter, try_scaling_api): max_norm = 0.2 # A reasonable value that actually has an effect, based on printouts of grads for i, (input, target) in enumerate(data): optimizer.zero_grad() output = model(input) loss = loss_fn(output, target) if try_scaling_api: scaler.scale(loss).backward() torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm * scaler.get_scale()) if i == skip_iter and scaler.is_enabled(): model[1].weight.grad.data.fill_(float('inf')) scaler.step(optimizer) scaler.update() else: loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm) if (not scaler.is_enabled()) or (i != skip_iter): optimizer.step() self._run_scaling_case(run, unskipped=3, skipped=1, atol=1e-5) def test_grad_scaling_clipping_separate_unscale(self): def run(data, model, optimizer, scaler, loss_fn, skip_iter, try_scaling_api): max_norm = 0.2 # A reasonable value that actually has an effect, based on printouts of grads for i, (input, target) in enumerate(data): optimizer.zero_grad() output = model(input) loss = loss_fn(output, target) if try_scaling_api: scaler.scale(loss).backward() if i == skip_iter and scaler.is_enabled(): model[1].weight.grad.data.fill_(float('inf')) scaler.unscale_(optimizer) torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm, error_if_nonfinite=False) scaler.step(optimizer) scaler.update() else: loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm) if (not scaler.is_enabled()) or (i != skip_iter): optimizer.step() self._run_scaling_case(run, unskipped=3, skipped=1) @unittest.skipIf(IS_WINDOWS, 'FIXME: fix this test for Windows') def test_grad_scaling_penalty(self): def run(data, model, optimizer, scaler, loss_fn, skip_iter, try_scaling_api): for i, (input, target) in enumerate(data): optimizer.zero_grad() output = model(input) loss = loss_fn(output, target) if try_scaling_api: grad_params = torch.autograd.grad(scaler.scale(loss), model.parameters(), create_graph=True) inv_scale = 1. / scaler.get_scale() grad_params = [p * inv_scale for p in grad_params] else: grad_params = torch.autograd.grad(loss, model.parameters(), create_graph=True) grad_norm = 0 for grad in grad_params: grad_norm += grad.pow(2).sum() grad_norm = grad_norm.sqrt() loss = loss + grad_norm if try_scaling_api: scaler.scale(loss).backward() if i == skip_iter and scaler.is_enabled(): model[1].weight.grad.data.fill_(float('inf')) scaler.step(optimizer) scaler.update() else: loss.backward() if (not scaler.is_enabled()) or (i != skip_iter): optimizer.step() self._run_scaling_case(run, unskipped=3, skipped=1) def test_grad_scaling_accumulation(self): def run(data, model, optimizer, scaler, loss_fn, skip_iter, try_scaling_api): iters_to_accumulate = 2 for i, (input, target) in enumerate(data): output = model(input) loss = loss_fn(output, target) loss = loss / iters_to_accumulate if try_scaling_api: scaler.scale(loss).backward() else: loss.backward() if (i + 1) % iters_to_accumulate == 0: if try_scaling_api: scaler.step(optimizer) scaler.update() optimizer.zero_grad() else: optimizer.step() optimizer.zero_grad() self._run_scaling_case(run, unskipped=2, skipped=0) def test_grad_scaling_multiple(self): # Tests gradient scaling with 2 models and 2 optimizers that both receive gradients from 2 losses. # Some of the logic here cannot reuse the generic helper functions created for the 1-optimizer cases. for enabled in True, False: mod_control0, mod_scaling0, opt_control0, opt_scaling0, data, loss_fn, skip_iter = \ self._create_scaling_case() mod_control1, mod_scaling1, opt_control1, opt_scaling1 = \ self._create_scaling_models_optimizers() scaler = torch.cuda.amp.GradScaler(init_scale=128., growth_factor=2.0, enabled=enabled, growth_interval=1) def run(model0, model1, optimizer0, optimizer1, try_scaling_api): for i, (input, target) in enumerate(data): optimizer0.zero_grad() optimizer1.zero_grad() output0 = model0(input) output1 = model1(input) loss0 = loss_fn(0.3 * output0 + 0.7 * output1, target) loss1 = loss_fn(0.6 * output0 - 0.4 * output1, target) if try_scaling_api: scaler.scale(loss0).backward(retain_graph=True) scaler.scale(loss1).backward() if i == skip_iter and scaler.is_enabled(): model1[1].weight.grad.data.fill_(float('inf')) # As an additional stress test, separately unscale for one of the optimizers. scaler.unscale_(optimizer0) scaler.step(optimizer0) scaler.step(optimizer1) scaler.update() else: loss0.backward(retain_graph=True) loss1.backward() optimizer0.step() if (not scaler.is_enabled()) or (i != skip_iter): optimizer1.step() run(mod_control0, mod_control1, opt_control0, opt_control1, False) run(mod_scaling0, mod_scaling1, opt_scaling0, opt_scaling1, True) # The loss scale should have been multiplied by the growth factor 3 times and the backoff factor once. self.assertTrue(scaler.get_scale() == (128. * scaler.get_growth_factor()**3 * scaler.get_backoff_factor()**1) if enabled else 1.0) for c, s in zip(chain(mod_control0.parameters(), mod_control1.parameters()), chain(mod_scaling0.parameters(), mod_scaling1.parameters())): self.assertEqual(c, s, rtol=1e-5, atol=1e-7) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_grad_scaling_multigpu(self): # Same as above, but runs some of the models on device 1. # GradScaler should transparently handle losses and gradients on multiple devices. # This test could be combined with the test above, but I think it makes sense to treat # multi-GPU operations separately. dev0 = torch.device("cuda:0") dev1 = torch.device("cuda:1") for enabled in True, False: mod_control0, mod_scaling0, opt_control0, opt_scaling0, data, loss_fn, skip_iter = \ self._create_scaling_case() mod_control1, mod_scaling1, opt_control1, opt_scaling1 = \ self._create_scaling_models_optimizers(device=dev1) scaler = torch.cuda.amp.GradScaler(init_scale=128., growth_factor=2.0, enabled=enabled, growth_interval=1) def run(model0, model1, optimizer0, optimizer1, try_scaling_api): for i, (input, target) in enumerate(data): optimizer0.zero_grad() optimizer1.zero_grad() output0 = model0(input) output1 = model1(input.to(dev1)) loss0 = loss_fn(0.3 * output0 + 0.7 * output1.to(dev0), target) loss1 = loss_fn(0.6 * output0.to(dev1) - 0.4 * output1, target.to(dev1)) if try_scaling_api: scaler.scale(loss0).backward(retain_graph=True) scaler.scale(loss1).backward() if i == skip_iter and scaler.is_enabled(): model1[1].weight.grad.data.fill_(float('inf')) # As an additional stress test, separately unscale for one of the optimizers. scaler.unscale_(optimizer0) scaler.step(optimizer0) scaler.step(optimizer1) # Make sure the found_infs were collected properly across optimizers and devices. if scaler.is_enabled(): self.assertTrue(len(scaler._found_inf_per_device(optimizer0)) == 1) self.assertTrue(len(scaler._found_inf_per_device(optimizer1)) == 1) self.assertTrue(scaler._found_inf_per_device(optimizer0)[dev0].item() == 0.) self.assertTrue(scaler._found_inf_per_device(optimizer1)[dev1].item() == float(i == skip_iter)) scaler.update() else: loss0.backward(retain_graph=True) loss1.backward() optimizer0.step() if (not scaler.is_enabled()) or (i != skip_iter): optimizer1.step() run(mod_control0, mod_control1, opt_control0, opt_control1, False) run(mod_scaling0, mod_scaling1, opt_scaling0, opt_scaling1, True) # The loss scale should have been multiplied by the growth factor 3 times and the backoff factor once. self.assertTrue(scaler.get_scale() == (128. * scaler.get_growth_factor()**3 * scaler.get_backoff_factor()**1) if enabled else 1.0) # Copy mod_control1 and mod_scaling1 back the device 0 for comparison mod_control1.to(dev0) mod_scaling1.to(dev0) for c, s in zip(chain(mod_control0.parameters(), mod_control1.parameters()), chain(mod_scaling0.parameters(), mod_scaling1.parameters())): self.assertEqual(c, s, rtol=1e-5, atol=1e-7) def test_cublas_multiple_threads_same_device(self): # Note, these parameters should be very carefully tuned # Too small number makes it hard for the racing condition # to happen, while too large number sometimes cause hang size = 1024 num_threads = 2 trials = 3 test_iters = 100 weight = torch.ones((size, size), device='cuda') results = {} barrier = threading.Barrier(num_threads) def _worker(t): my_stream = torch.cuda.Stream() # Hard sync so we don't need to worry about creating and using tensors # across streams or the fact that default streams are thread-local. # Those issues are not the target of this test. torch.cuda.synchronize() # Line up threads to increase likelihood of race conditions. barrier.wait() with torch.cuda.stream(my_stream): for i in range(test_iters): # If all threads are sharing the same cublas handle, # the following sequence may occur: # thread 0 calls cublasSetStream() # thread 1 calls cublasSetStream() # thread 0 launches its raw gemm, which it thinks is in # its own stream, but is actually in thread 1's stream. # thread 0 enqueues its div_, which IS is its own stream, # but actually now races with its gemm. results[t] = torch.mm(results[t], weight) results[t].div_(float(size)) torch.cuda.synchronize() for _ in range(trials): for t in range(num_threads): results[t] = torch.ones((size, size), device='cuda') threads = [threading.Thread(target=_worker, args=(t,)) for t in range(num_threads)] for thread in threads: thread.start() for thread in threads: thread.join() for t in range(num_threads): self.assertEqual(results[t].sum().item(), size * size) # Test is flaky on Windows (https://github.com/pytorch/pytorch/issues/57401) @unittest.skipIf(IS_WINDOWS, 'Test is flaky on Windows (see issue 57401)') @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') @skipIfRocm def test_cudnn_multiple_threads_same_device(self): # This function is intended to test the lazy creation and reuse of per-thread # cudnn handles on each device in aten/src/ATen/cudnn/Handles.cpp. # Failure here likely indicates something wrong with that logic. weight = torch.ones((1, 1, 2, 2), device='cuda') results = {} num_threads = 2 trials = 3 test_iters = 1000 barrier = threading.Barrier(num_threads) with torch.backends.cudnn.flags(enabled=True): def _worker(t): my_stream = torch.cuda.Stream() # Hard sync so we don't need to worry about creating and using tensors # across streams or the fact that default streams are thread-local. # Those issues are not the target of this test. torch.cuda.synchronize() # Line up threads to increase likelihood of race conditions. barrier.wait() with torch.cuda.stream(my_stream): for _ in range(test_iters): # If all threads are sharing the same cudnn handle, # the following sequence may occur: # thread 0 calls setCuDNNStreamToCurrent() # thread 1 calls setCuDNNStreamToCurrent() # thread 0 launches its raw convolution, which it thinks is in # its own stream, but is actually in thread 1's stream. # thread 0 enqueues its div_, which IS is its own stream, # but now races with its convolution. results[t] = torch.nn.functional.conv2d(results[t], weight, padding=0) results[t].div_(4.0) torch.cuda.synchronize() for _ in range(trials): for t in range(num_threads): results[t] = torch.ones((1, 1, 2048, 2048), device='cuda') threads = [threading.Thread(target=_worker, args=(t,)) for t in range(num_threads)] for thread in threads: thread.start() for thread in threads: thread.join() for t in range(num_threads): self.assertEqual(results[t].sum().item(), (2048 - test_iters) * (2048 - test_iters)) def test_cusparse_multiple_threads_same_device(self): size = 1024 num_threads = 2 trials = 3 test_iters = 500 def ones_sparse(size): a = torch.arange(size, device='cuda') indices = torch.cartesian_prod(a, a).t() values = torch.ones(size * size, device='cuda') return torch.sparse_coo_tensor(indices, values) weight = ones_sparse(size) results = {} barrier = threading.Barrier(num_threads) def _worker(t): my_stream = torch.cuda.Stream() # Hard sync so we don't need to worry about creating and using tensors # across streams or the fact that default streams are thread-local. # Those issues are not the target of this test. torch.cuda.synchronize() # Line up threads to increase likelihood of race conditions. barrier.wait() with torch.cuda.stream(my_stream): for i in range(test_iters): # If all threads are sharing the same cublas handle, # the following sequence may occur: # thread 0 calls cublasSetStream() # thread 1 calls cublasSetStream() # thread 0 launches its raw gemm, which it thinks is in # its own stream, but is actually in thread 1's stream. # thread 0 enqueues its div_, which IS is its own stream, # but actually now races with its gemm. results[t] = weight.mm(results[t]) results[t].div_(float(size)) torch.cuda.synchronize() for _ in range(trials): for t in range(num_threads): results[t] = torch.ones((size, size), device='cuda') threads = [threading.Thread(target=_worker, args=(t,)) for t in range(num_threads)] for thread in threads: thread.start() for thread in threads: thread.join() for t in range(num_threads): self.assertEqual(results[t].sum().item(), size * size) def _run_autocast_outofplace(self, op, args, run_as_type, out_type=None, module=torch, add_kwargs=None): # helper to cast args def cast(val, to_type): if isinstance(val, torch.Tensor): return val.to(to_type) if val.is_floating_point() else val elif isinstance(val, collections.abc.Iterable): return type(val)(cast(v, to_type) for v in val) else: return val if add_kwargs is None: add_kwargs = {} fast_dtype = torch.bfloat16 if run_as_type == torch.bfloat16 else torch.float16 self.assertFalse(torch.is_autocast_enabled()) with torch.autocast('cuda', dtype=fast_dtype): self.assertTrue(torch.is_autocast_enabled()) out_type = out_type if out_type is not None else run_as_type output = output_method = None # Try module.* variant, if requested: if module is not None and hasattr(module, op): output = getattr(module, op)(*args, **add_kwargs) if isinstance(output, torch.Tensor): self.assertTrue(out_type == output.dtype, "autocast for torch.{} produced {}, should produce {}" .format(op, output.dtype, out_type)) # Try Tensor.* variant: if hasattr(torch.Tensor, op): output_method = getattr(args[0], op)(*args[1:], **add_kwargs) if isinstance(output_method, torch.Tensor): self.assertTrue(out_type == output_method.dtype, "autocast for torch.{} produced {}, should produce torch.{}" .format(op, output_method.dtype, out_type)) self.assertTrue((output is not None) or (output_method is not None), "{} not found as an attribute on either Tensor or the requested module {}".format( op, module)) # Accounts for ops that return Tensors, iterables, and other non-Tensors. # For example, lstm_cell returns a tuple and equal returns bool. def compare(first, second): if isinstance(first, torch.Tensor): return torch.equal(first, second) elif isinstance(first, collections.abc.Iterable): return all(compare(f, s) for f, s in zip(first, second)) else: return first == second # If both torch.* and Tensor.* variants were found, check outputs are identical if (output is not None) and (output_method is not None): self.assertTrue(type(output) == type(output_method)) comparison = compare(output, output_method) self.assertTrue(comparison, "torch.{0} result did not match Tensor.{0} result".format(op)) # Compare numerics to Python-side "autocasting" that (we expect) does the same thing # as the C++-side autocasting, and should be bitwise accurate. output_to_compare = output if output is not None else output_method with torch.autocast('cuda', enabled=False): self.assertFalse(torch.is_autocast_enabled()) if module is not None and hasattr(module, op): control = getattr(module, op)(*cast(args, run_as_type), **add_kwargs) else: control = getattr(args[0].to(run_as_type), op)(*cast(args[1:], run_as_type), **add_kwargs) self.assertTrue(type(output_to_compare) == type(control)) comparison = compare(output_to_compare, control) self.assertTrue(comparison, "torch.{} result did not match control".format(op)) self.assertTrue(torch.is_autocast_enabled()) self.assertFalse(torch.is_autocast_enabled()) def args_maybe_kwargs(self, op_with_args): if len(op_with_args) == 2: return op_with_args[0], op_with_args[1], {} else: return op_with_args[0], op_with_args[1], op_with_args[2] @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') def test_autocast_torch_fp16(self): with torch.backends.cudnn.flags(enabled=True, deterministic=True): for op_with_args in self.autocast_lists.torch_fp16: skip_test = False op, args = op_with_args[0], op_with_args[1] if len(op_with_args) == 3: skip_test = op_with_args[2] # TEST_WITH_ROCM if not skip_test: self._run_autocast_outofplace(op, args, torch.float16) @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') def test_autocast_torch_bf16(self): with torch.backends.cudnn.flags(enabled=True, deterministic=True): for op_with_args in self.autocast_lists.torch_fp16: skip_test = False op, args = op_with_args[0], op_with_args[1] if len(op_with_args) == 3: skip_test = op_with_args[2] # TEST_WITH_ROCM should_error_from_not_implemented = 'cudnn' in op or 'prelu' in op or 'thnn' in op \ or 'fused' in op or 'gru' in op or op == '_thnn_fused_lstm_cell' or op == 'lstm_cell' if not skip_test: if should_error_from_not_implemented: with self.assertRaises(RuntimeError, msg=str(op) + ' should not be supported for bfloat16!'): self._run_autocast_outofplace(op, args, torch.bfloat16) else: if torch.cuda.is_bf16_supported(): self._run_autocast_outofplace(op, args, torch.bfloat16) else: with self.assertRaisesRegex(RuntimeError, 'Device does not support bfloat16'): self._run_autocast_outofplace(op, args, torch.bfloat16) @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') def test_autocast_torch_fp32(self): for op_with_args in self.autocast_lists.torch_fp32: op, args, maybe_kwargs = self.args_maybe_kwargs(op_with_args) self._run_autocast_outofplace(op, args, torch.float32, add_kwargs=maybe_kwargs) @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') def test_autocast_torch_need_autocast_promote(self): for op, args in self.autocast_lists.torch_need_autocast_promote: self._run_autocast_outofplace(op, args, torch.float32) @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') def test_autocast_torch_expect_builtin_promote(self): for op, args, out_type in self.autocast_lists.torch_expect_builtin_promote: self._run_autocast_outofplace(op, args, torch.float32, out_type=out_type) @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') def test_autocast_nn_fp16(self): with torch.backends.cudnn.flags(enabled=True, deterministic=True): for op, args in self.autocast_lists.nn_fp16: self._run_autocast_outofplace(op, args, torch.float16, module=torch._C._nn) @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') def test_autocast_nn_bf16(self): with torch.backends.cudnn.flags(enabled=True, deterministic=True): for op, args in self.autocast_lists.nn_fp16: if torch.cuda.is_bf16_supported(): self._run_autocast_outofplace(op, args, torch.bfloat16, module=torch._C._nn) else: with self.assertRaisesRegex(RuntimeError, 'Device does not support bfloat16'): self._run_autocast_outofplace(op, args, torch.bfloat16, module=torch._C._nn) @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') def test_autocast_nn_fp32(self): for op, args in self.autocast_lists.nn_fp32: self._run_autocast_outofplace(op, args, torch.float32, module=torch._C._nn) @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') def test_autocast_linalg_fp16(self): with torch.backends.cudnn.flags(enabled=True, deterministic=True): for op, args in self.autocast_lists.linalg_fp16: self._run_autocast_outofplace(op, args, torch.float16, module=torch._C._linalg) @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') def test_autocast_methods_fp16(self): with torch.backends.cudnn.flags(enabled=True, deterministic=True): for op, args in self.autocast_lists.methods_fp16: self._run_autocast_outofplace(op, args, torch.float16, module=None) @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') def test_autocast_methods_fp32(self): for op, args in self.autocast_lists.methods_fp32: self._run_autocast_outofplace(op, args, torch.float32, module=None) @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') def test_autocast_methods_expect_builtin_promote(self): for op, args, out_type in self.autocast_lists.methods_expect_builtin_promote: self._run_autocast_outofplace(op, args, torch.float32, module=None, out_type=out_type) def test_autocast_banned(self): with torch.autocast('cuda'): for op, args, module in self.autocast_lists.banned: with self.assertRaises(RuntimeError): getattr(module, op)(*args) def test_autocast_ignored_types(self): with torch.autocast('cuda'): for ignore_type in (torch.double, torch.int32): a_ignore = torch.ones((8, 8), dtype=ignore_type, device="cuda:0") b_ignore = torch.ones((8, 8), dtype=ignore_type, device="cuda:0") c_16 = torch.ones((8, 8), dtype=torch.float16, device="cuda:0") # Tests if CastPolicy::fp16 ops ignore double and int # Currently, no ops belonging to this policy support integer inputs. if ignore_type is torch.double: with self.assertRaises(RuntimeError): torch.mm(a_ignore, c_16) with torch.autocast('cuda', enabled=False): type_no_autocast = torch.mm(a_ignore, b_ignore).dtype self.assertTrue(torch.mm(a_ignore, b_ignore).dtype is type_no_autocast) # Tests if CastPolicy::fp32 ops ignore double and int with torch.autocast('cuda', enabled=False): type_no_autocast = torch.pow(a_ignore, 2.0).dtype self.assertTrue(torch.pow(a_ignore, 2.0).dtype is type_no_autocast) # Tests if CastPolicy::fp32_set_opt_dtype ops ignore double and int with torch.autocast('cuda', enabled=False): type_no_autocast = torch.sum(a_ignore).dtype self.assertTrue(torch.sum(a_ignore).dtype is type_no_autocast) # Tests if CastPolicy::fp32_append_dtype ops ignore double and int # Currently, no ops belonging to this policy support integer inputs. if ignore_type is torch.double: with torch.autocast('cuda', enabled=False): type_no_autocast = torch.norm(a_ignore).dtype self.assertTrue(torch.norm(a_ignore).dtype is type_no_autocast) def test_autocast_custom_enabled(self): class MyMM(torch.autograd.Function): @staticmethod @torch.cuda.amp.custom_fwd def forward(ctx, a, b): self.assertTrue(a.dtype is torch.float32) self.assertTrue(b.dtype is torch.float32) self.assertTrue(torch.is_autocast_enabled()) ctx.save_for_backward(a, b) return a.mm(b) @staticmethod @torch.cuda.amp.custom_bwd def backward(ctx, grad): self.assertTrue(torch.is_autocast_enabled()) a, b = ctx.saved_tensors return grad.mm(b.t()), a.t().mm(grad) mymm = MyMM.apply x = torch.randn((8, 8), device="cuda", dtype=torch.float32, requires_grad=True) y = torch.randn((8, 8), device="cuda", dtype=torch.float32, requires_grad=True) with torch.cuda.amp.autocast(): output = mymm(x, y) self.assertTrue(output.dtype is torch.float16) loss = output.sum() loss.backward() def test_autocast_custom_cast_inputs(self): class MyMM(torch.autograd.Function): @staticmethod @torch.cuda.amp.custom_fwd(cast_inputs=torch.float32) def forward(ctx, a, container, expect_type): b = container[1][0] self.assertTrue(a.dtype is expect_type) self.assertTrue(b.dtype is expect_type) self.assertFalse(torch.is_autocast_enabled()) ctx.save_for_backward(a, b) return a.mm(b) @staticmethod @torch.cuda.amp.custom_bwd def backward(ctx, grad): self.assertFalse(torch.is_autocast_enabled()) a, b = ctx.saved_tensors return grad.mm(b.t()), None, None mymm = MyMM.apply x = torch.randn((8, 8), device="cuda", dtype=torch.float16, requires_grad=True) # Puts one input tensor in a nested container. y's contained Tensor won't receive a gradient, # because torch.autograd.Function can't hand gradients back to non-Tensor forward arguments. # Sets requires_grad=False explicitly so we don't lie about expecting a gradient. y = (0, {0: torch.randn((8, 8), device="cuda", dtype=torch.float16, requires_grad=False)}) with torch.autocast('cuda', ): output = mymm(x, y, torch.float32) self.assertTrue(output.dtype is torch.float32) loss = output.sum() loss.backward() # Tests if custom_fwd becomes a no-op when mymm runs outside an autocast-enabled region. output = mymm(x, y, torch.float16) self.assertTrue(output.dtype is torch.float16) loss = output.sum() loss.backward() def test_autocast_cat_jit(self): # Reported at https://github.com/pytorch/pytorch/issues/38958 class Model(torch.nn.Module): def forward(self): a = torch.randn(1) b = torch.randn(1) c = torch.cat((a, b), 0) d = torch.stack([c, c], 0) return d # The JIT here doesn't really matter, we just need to call # cat via the boxed API model = Model() model_jit_script = torch.jit.script(model) with torch.autocast('cuda', enabled=True): model() model_jit_script() # cudnn RNNs require special backend handling (weights are cast to FP16 and reflattened) # so they get a dedicated test. # Despite the large number of RNN cases it tries, the test takes < 15 seconds on a Titan V (similar to V100). @skipIfRocm @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') def test_autocast_rnn(self): with torch.backends.cudnn.flags(enabled=True, deterministic=True): # seq, batch, features, hidden size clses = ("RNN", "GRU", "LSTM") T, B, F, H = 3, 4, 5, 6 dtypes = (torch.float16, torch.float32) input_layouts = ("seq_first", "batch_first", "packed") for (cls, num_layers, bias, input_layout, bidirectional, try_nonpreflattened_weights, input_dtype, hidden_dtype, weight_dtype) in \ product(clses, (1, 2), (True, False), input_layouts, (True, False), (True, False), dtypes, dtypes, dtypes): if input_layout == "seq_first": batch_first = False x = torch.randn((T, B, F), device="cuda", dtype=input_dtype) elif input_layout == "batch_first": batch_first = True x = torch.randn((B, T, F), device="cuda", dtype=input_dtype) elif input_layout == "packed": batch_first = False x = torch.nn.utils.rnn.pack_padded_sequence(torch.randn((T, B, F), device="cuda", dtype=input_dtype), lengths=(3, 2, 1, 3), enforce_sorted=False) rnn = getattr(torch.nn, cls)(F, H, num_layers=num_layers, bidirectional=bidirectional, bias=bias, batch_first=batch_first).cuda().to(dtype=weight_dtype) if try_nonpreflattened_weights: for p in rnn.parameters(): with torch.no_grad(): p.set_(p.clone()) h = torch.randn((num_layers * (2 if bidirectional else 1), B, H), device="cuda", dtype=hidden_dtype) if cls == "LSTM": c = torch.randn((num_layers * (2 if bidirectional else 1), B, H), device="cuda", dtype=hidden_dtype) h = (h, c) with torch.autocast('cuda', ): out, h_out = rnn(x, h) out = out.data if input_layout == "packed" else out self.assertEqual(out.dtype, torch.float16) # Autocast wrapper requires at::_cudnn_rnn is autograd-exposed. This check can't guarantee # at::_cudnn_rnn is autograd-exposed, but if it fires, it indicates some funny business has # occurred and we should double check that at::_cudnn_rnn remains autograd-exposed. self.assertEqual(out.grad_fn.name(), "CudnnRnnBackward0") out.sum().backward() grads = [p.grad.clone() for p in rnn.parameters()] rnn.zero_grad() if cls == "LSTM": out_control, h_out_control = rnn.to(dtype=torch.float16)(x.half(), (h[0].half(), h[1].half())) else: out_control, h_out_control = rnn.to(dtype=torch.float16)(x.half(), h.half()) out_control = out_control.data if input_layout == "packed" else out_control out_control.sum().backward() grads_control = [p.grad.clone() for p in rnn.parameters()] # Compares with default tolerances, even for FP16 execution. Barring nondeterminism, # autocast and control results should be bitwise identical. self.assertEqual(out, out_control) if cls == "LSTM": self.assertTrue(h_out[0].dtype is torch.float16 and h_out[1].dtype is torch.float16) self.assertEqual(h_out[0], h_out_control[0]) self.assertEqual(h_out[1], h_out_control[1]) else: self.assertEqual(h_out.dtype, torch.float16) self.assertEqual(h_out, h_out_control) for grad, grad_control in zip(grads, grads_control): self.assertEqual(grad.half(), grad_control) def test_autocast_cache_leak(self): # Reported at https://github.com/pytorch/pytorch/issues/48049 # Test is used to check, if autocast recaches the same parameters # when executed in a `torch.no_grad()` block. linear = torch.nn.Linear(10, 10).to('cuda') data = torch.randn(1, 10, device='cuda') with torch.autocast('cuda', ): with torch.no_grad(): out = linear(data) first_iter_mem = torch.cuda.memory_allocated() for _ in range(3): out = linear(data) self.assertTrue(first_iter_mem == torch.cuda.memory_allocated()) def test_autocast_checkpointing(self): model = torch.nn.Sequential(torch.nn.Linear(8, 8), torch.nn.Linear(8, 8), torch.nn.Linear(8, 8)).cuda() input = torch.rand((8, 8), device="cuda", dtype=torch.float16, requires_grad=True) with torch.autocast('cuda', ): output = checkpoint_sequential(model, 2, input) self.assertTrue(output.requires_grad) self.assertTrue(output.dtype is torch.float16) output.sum().backward() @slowTest @unittest.skipIf(not TEST_LARGE_TENSOR, "not enough memory") def test_max_large_axis(self): x = torch.zeros(2**32, device='cuda', dtype=torch.int8) x[-1] = 1 val, idx = x.max(0) self.assertEqual(val, 1) self.assertEqual(idx, x.shape[0] - 1) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_to_numpy(self): self.assertRaises(TypeError, lambda: torch.empty(1, device="cuda").numpy()) def test_graph_is_current_stream_capturing(self): self.assertFalse(torch.cuda.is_current_stream_capturing()) if (TEST_CUDA and (not TEST_WITH_ROCM) and int(torch.version.cuda.split(".")[0]) >= 11): s = torch.cuda.Stream() with torch.cuda.stream(s): g = torch.cuda.CUDAGraph() self.assertFalse(torch.cuda.is_current_stream_capturing()) g.capture_begin() self.assertTrue(torch.cuda.is_current_stream_capturing()) g.capture_end() @unittest.skipIf((not TEST_CUDA) or TEST_WITH_ROCM or int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs") def test_graph_capture_simple(self): s = torch.cuda.Stream() with torch.cuda.stream(s): a = torch.full((1000,), 1, device="cuda") g = torch.cuda.CUDAGraph() torch.cuda.empty_cache() g.capture_begin() b = a for _ in range(10): b = b + 1 g.capture_end() torch.cuda.current_stream().wait_stream(s) g.replay() self.assertTrue(b.sum().item() == 11000.) @unittest.skipIf((not TEST_CUDA) or TEST_WITH_ROCM or int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs") def test_graph_capture_oom(self): with self.assertRaisesRegex(RuntimeError, "out of memory"): with torch.cuda.graph(torch.cuda.CUDAGraph()): torch.zeros(2 ** 40, device="cuda") @unittest.skipIf((not TEST_CUDA) or TEST_WITH_ROCM or int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs") def test_graph_rng_functional(self): ops_with_kwargs = ((torch.nn.functional.dropout, {"p": 0.1}), (torch.nn.functional.rrelu, {"training": True}),) size = 10000 def run(op, kwargs): a = torch.randn((size,), device="cuda", dtype=torch.float) # Control torch.cuda.manual_seed(5) eager_out = a for _ in range(6): eager_out = op(eager_out, **kwargs) graph_in = a.clone() stream = torch.cuda.Stream() stream.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(stream): torch.cuda.manual_seed(5) g = torch.cuda.CUDAGraph() torch.cuda.empty_cache() g.capture_begin() graph_out = graph_in for _ in range(2): graph_out = op(graph_out, **kwargs) g.capture_end() torch.cuda.current_stream().wait_stream(stream) # Runs a graphed->eager->graphed sequence of RNG ops. # replay() plays 2 invocations of the op, so the sequence has 6 # invocations total, matching Control. # replay() reads from graph_in and writes to graph_out. g.replay() out = op(graph_out, **kwargs) out = op(out, **kwargs) graph_in.copy_(out) g.replay() # If replay() updated RNG state correctly, graph_out # should now hold data equal to eager_out. try: self.assertEqual(eager_out, graph_out) except Exception as e: raise RuntimeError("Failed on ", op) from e # We hold references to all tensors used across streams up til this sync, # so no need to call record_stream on those tensors. torch.cuda.synchronize() for op, kwargs in ops_with_kwargs: run(op, kwargs) @unittest.skipIf((not TEST_CUDA) or TEST_WITH_ROCM or int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs") def test_graph_rng_distributions(self): size = 10000 input = torch.rand((size,), device="cuda", dtype=torch.float) alloc = torch.empty((size,), device="cuda", dtype=torch.float) # Torch ops to test with sample args (tuple) and kwargs (dict) torch_with_args = (("bernoulli", (input.clone(),), {}), # multinomial uses some uncapturable CUDA calls. # TODO: reenable multinomial tests if/when the implementation is capturable. # ("multinomial", (input.clone(), size, True), {}), # ("multinomial", (input.clone(), size // 2, False), {}), # TODO: reenable normal test, where std is a device # tensor, when graph test failures are fixed # ("normal", (input.clone() + 1, input.clone()), {}), ("normal", (input.clone() + 1, 1.0), {}), ("poisson", (input.clone(),), {}), ("rand", (size,), {"device": "cuda", "dtype": torch.float}), ("randint", (0, 3, (size,)), {"device": "cuda", "dtype": torch.float}), ("randn", (size,), {"device": "cuda", "dtype": torch.float}),) # Tensor methods to test with sample args (tuple) tensor_with_args = (("bernoulli_", (input.clone(),)), ("cauchy_", ()), ("exponential_", ()), ("geometric_", (0.3,)), ("log_normal_", ()), ("normal_", ()), ("random_", ()), ("uniform_", ()),) def run(module, op, args, kwargs): torch.cuda.manual_seed(5) # Each path runs a dummy op to increment the state a bit before creating controls. if (module == "torch"): dummy = getattr(torch, op)(*args, **kwargs) control1 = getattr(torch, op)(*args, **kwargs) control2 = getattr(torch, op)(*args, **kwargs) else: dummy = alloc.clone() control1 = alloc.clone() control2 = alloc.clone() getattr(dummy, op)(*args) getattr(control1, op)(*args) getattr(control2, op)(*args) stream = torch.cuda.Stream() stream.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(stream): torch.cuda.manual_seed(5) g = torch.cuda.CUDAGraph() torch.cuda.empty_cache() if (module == "torch"): g.capture_begin() t1 = getattr(torch, op)(*args, **kwargs) t2 = getattr(torch, op)(*args, **kwargs) g.capture_end() else: t1 = alloc.clone() t2 = alloc.clone() g.capture_begin() getattr(t1, op)(*args) getattr(t2, op)(*args) g.capture_end() torch.cuda.current_stream().wait_stream(stream) try: self.assertNotEqual(control1, t1) self.assertNotEqual(control2, t2) except Exception as e: raise RuntimeError("Failed on " + module + "." + op) from e # Runs a dummy op prelude, as for controls, to make sure replay() # picks up the dummy op's state increment. if module == "torch": dummy = getattr(torch, op)(*args, **kwargs) else: dummy = alloc.clone() getattr(dummy, op)(*args) # Runs RNG ops that fill t1 and t2. g.replay() try: self.assertEqual(control1, t1) self.assertEqual(control2, t2) except Exception as e: raise RuntimeError("Failed on " + module + "." + op) from e # We hold references to all tensors used across streams up til this sync, # so no need to call record_stream on those tensors. torch.cuda.synchronize() for op_with_args in torch_with_args: run("torch", *op_with_args) for meth_with_args in tensor_with_args: # Adds an empty dict for kwargs, which none of the Tensor methods use run("Tensor", *(meth_with_args + ({},))) @unittest.skipIf((not TEST_CUDA) or TEST_WITH_ROCM or int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs") def test_graph_two_successive(self): torch.cuda.empty_cache() size = 1000 kSmallBuffer = 2097152 def func_with_temps(t, val): x = t.clone() + val y = t.clone() + val return x + y s = torch.cuda.Stream() for share_mem in ("Don't share", "via pool()", "via graph_pool_handle()"): g0 = torch.cuda.CUDAGraph() g1 = torch.cuda.CUDAGraph() a = torch.ones((size,), device="cuda") s.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(s): g0_args = (torch.cuda.graph_pool_handle(),) if share_mem == "via graph_pool_handle()" else () g0.capture_begin(*g0_args) b = a.clone() for _ in range(5): b = func_with_temps(b, 1) g0.capture_end() g1_args = (g0.pool(),) if share_mem == "via pool()" else g0_args g1.capture_begin(*g1_args) for _ in range(5): b = func_with_temps(b, 1) g1.capture_end() torch.cuda.current_stream().wait_stream(s) # mixes unrelated eager ops with replays c = a.clone() for _ in range(2): c = func_with_temps(c, 3) g0.replay() for _ in range(2): c = func_with_temps(c, 3) g1.replay() for _ in range(2): c = func_with_temps(c, 3) self.assertEqual(b.sum().item(), size * 3070) self.assertEqual(c.sum().item(), size * 442) if share_mem != "Don't share": self.assertEqual(reserved_no_sharing - torch.cuda.memory_stats()["reserved_bytes.all.current"], kSmallBuffer) else: reserved_no_sharing = torch.cuda.memory_stats()["reserved_bytes.all.current"] del a, b, c, g0, g1 # Tensors used across streams (a and b) were held until just now, so no need to call record_stream on them. torch.cuda.synchronize() torch.cuda.empty_cache() @unittest.skip("Temporarily disabled due to a graphs bug in libcuda.so, " + "see https://github.com/pytorch/pytorch/pull/57556") @unittest.skipIf((not TEST_CUDA) or TEST_WITH_ROCM or int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs") def test_graph_concurrent_replay(self): torch.cuda.empty_cache() size = 1000000 # largeish to help expose race conditions def func_with_temps(t, val): x = t.clone() + val y = t.clone() + val return x + y s = torch.cuda.Stream() for share_mem in ("Don't share", "via pool()", "via graph_pool_handle()"): g0 = torch.cuda.CUDAGraph() g1 = torch.cuda.CUDAGraph() s0 = torch.cuda.Stream() s1 = torch.cuda.Stream() a = torch.ones((size,), device="cuda") s.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(s): g0_args = (torch.cuda.graph_pool_handle(),) if share_mem == "via graph_pool_handle()" else () g0.capture_begin(*g0_args) b = a.clone() for _ in range(5): b = func_with_temps(b, 1) g0.capture_end() g1_args = (g0.pool(),) if share_mem == "via pool()" else g0_args g1.capture_begin(*g1_args) c = a.clone() for _ in range(5): c = func_with_temps(c, 2) g1.capture_end() # To reproduce data corruption, I need g0 and g1's kernels to run concurrently. # But replay() (especially cudaGraphLaunch) can incur significant CPU overhead. # The following pattern helps align device-side execution of g0 and g1's kernels. torch.cuda.synchronize() with torch.cuda.stream(s0): torch.cuda._sleep(1000000) s1.wait_stream(s0) g0.replay() with torch.cuda.stream(s1): g1.replay() torch.cuda.current_stream().wait_stream(s0) torch.cuda.current_stream().wait_stream(s1) if share_mem != "Don't share": # Confirms concurrent replays using the same mempool corrupted each other. self.assertNotEqual(b.sum().item(), size * 94) self.assertNotEqual(c.sum().item(), size * 156) else: # Confirms concurrent replays using different mempools did not corrupt each other. self.assertEqual(b.sum().item(), size * 94) self.assertEqual(c.sum().item(), size * 156) del a, b, c, g0, g1 # Tensors used across streams (a, b, c) were held until just now, so no need to call record_stream on them. torch.cuda.synchronize() torch.cuda.empty_cache() @unittest.skipIf((not TEST_CUDA) or TEST_WITH_ROCM or int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs") def test_graph_three_successive(self): torch.cuda.empty_cache() size = 1000 s = torch.cuda.Stream() for share_mem in ("Don't share", "via pool()", "via graph_pool_handle()"): a = torch.ones((size,), device="cuda") g0 = torch.cuda.CUDAGraph() g1 = torch.cuda.CUDAGraph() g2 = torch.cuda.CUDAGraph() s.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(s): g0_args = (torch.cuda.graph_pool_handle(),) if share_mem == "via graph_pool_handle()" else () g0.capture_begin(*g0_args) b = a.clone() c = b + 1 d = b + 2 g0.capture_end() args = (g0.pool(),) if share_mem == "via pool()" else g0_args g1.capture_begin(*args) e = c + 3 del c g1.capture_end() g2.capture_begin(*args) f = d + 4 g2.capture_end() torch.cuda.current_stream().wait_stream(s) # Tests that replaying in capture order is valid g0.replay() g1.replay() g2.replay() self.assertEqual(e.sum().item(), size * 5) self.assertEqual(f.sum().item(), size * 7) # Tests that replaying as g0, g2, g1 is only valid if they don't share a pool g0.replay() g2.replay() g1.replay() # If share_mem is True, g2's capture should have reused c's memory for f. We replayed g2 then g1, # so we expect g1's captured "e = c + 3" mistakenly filled e with "f's vals + 3". self.assertEqual(e.sum().item(), size * (7 + 3) if share_mem != "Don't share" else size * 5) self.assertEqual(f.sum().item(), size * 7) del a, b, d, e, f, g0, g1, g2 # Tensors used across streams (a, e, f) were held until just now, so no need to call record_stream on them. torch.cuda.synchronize() torch.cuda.empty_cache() @unittest.skipIf((not TEST_CUDA) or TEST_WITH_ROCM or int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs") def test_graph_memory_stats_and_use_result_after_destroy_graph(self): kSmallSize = 1048576 kSmallBuffer = 2097152 kLargeBuffer = 20971520 kMinLargeAlloc = 10485760 kRoundLarge = 2097152 elem = 4 # this was annoying to write but stresses the expectations pretty rigorously cases = ((512 // elem, 1, kSmallBuffer, kSmallBuffer, "small_pool"), (kSmallSize // elem, 2, 2 * kSmallBuffer, kSmallBuffer, "small_pool"), ((kSmallSize + 512) // elem, 1, kLargeBuffer, kLargeBuffer, "large_pool"), ((kMinLargeAlloc - 512) // elem, 2, 2 * kLargeBuffer, kLargeBuffer, "large_pool"), ((kMinLargeAlloc + 512) // elem, 3, 3 * (kRoundLarge * ((kMinLargeAlloc + 512 + kRoundLarge - 1) // kRoundLarge)), kRoundLarge * ((kMinLargeAlloc + 512 + kRoundLarge - 1) // kRoundLarge), "large_pool"),) stats_to_check = ("segment.", "reserved_bytes.", "active.", "active_bytes.") gc.collect() torch.cuda.empty_cache() s = torch.cuda.Stream() for (numel, delta_cudaMallocs, delta_cudaMalloc_bytes, delta_cudaMalloc_bytes_post_del_g, pool_string) in cases: if pool_string == "small_pool": delta_active_blocks = 2 # one from "b" plus a sneaky one from CUDAGraph's one-element rng offset holder delta_active_bytes = numel * elem + 512 # + 512 for CUDAGraph's rng offset holder else: delta_active_blocks = 1 # We only check the large pool, which isn't affected by rng offset holder delta_active_bytes = numel * elem g = torch.cuda.CUDAGraph() s.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(s): # Allocation stat estimates assume input is created on the same stream as capture_begin() # (in other words, the same stream silo as the rng offset holder, which is not allocated from the # capture's private pool). a = torch.ones((numel,), device="cuda") precapture_stats = torch.cuda.memory_stats() g.capture_begin() b = a.clone() for _ in range(5): b = b.clone() + 1 g.capture_end() torch.cuda.current_stream().wait_stream(s) gc.collect() postcapture_stats = torch.cuda.memory_stats() expecteds = (delta_cudaMallocs, delta_cudaMalloc_bytes, delta_active_blocks, delta_active_bytes) # Double checks replay and stats before and after a call to empty_cache for i in range(2): for stat, expected in zip(stats_to_check, expecteds): stat = stat + pool_string + ".current" current = postcapture_stats[stat] - precapture_stats[stat] self.assertEqual(current, expected, "Pre to post capture delta of " + stat + " = {}, expected = {}, numel = {}".format(current, expected, numel)) g.replay() self.assertEqual(b.sum().item(), 6 * numel) if i == 0: torch.cuda.empty_cache() del g gc.collect() torch.cuda.empty_cache() postdel_stats = torch.cuda.memory_stats() # Uses graph result b after graph has been deleted self.assertEqual(b.sum().item(), 6 * numel) # b should be the only live reference remaining from the graph's private pool expecteds = (1, delta_cudaMalloc_bytes_post_del_g, 1, numel * elem) for stat, expected in zip(stats_to_check, expecteds): stat = stat + pool_string + ".current" current = postdel_stats[stat] - precapture_stats[stat] self.assertEqual(current, expected, "Pre capture to post graph delete delta of " + stat + " = {}, expected = {}, numel = {}".format(current, expected, numel)) # del a, b before the next case is essential, otherwise overwriting a and b in the next case # can throw off its allocation/deallocation counts. del a, b # Tensors used across streams (a and b) were held until just now, so no need to call record_stream on them. torch.cuda.synchronize() torch.cuda.empty_cache() @unittest.skipIf((not TEST_CUDA) or TEST_WITH_ROCM or int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs") def test_graph_record_stream(self): # Makes sure graph capture defers attempting to reclaim allocations used across streams. See # "Q. Why skip process_events if a capture might be underway?" in c10/cuda/CUDACachingAllocator.cpp torch.cuda.empty_cache() potential_problem = torch.zeros((3,), device="cuda") a = torch.zeros((3,), device="cuda") s0 = torch.cuda.Stream() s1 = torch.cuda.Stream() s2 = torch.cuda.Stream() g = torch.cuda.CUDAGraph() torch.cuda.synchronize() with torch.cuda.stream(s0): potential_problem.record_stream(s0) torch.cuda._sleep(TestCuda.FIFTY_MIL_CYCLES) potential_problem.fill_(1.) del potential_problem with torch.cuda.stream(s1): g.capture_begin() # potential_problem's allocation should still be outstanding. if DeviceCachingAllocator::malloc # mistakenly calls process_events, it will trigger cudaEventQueries on potential_problem's end-of-life # event, which will cause the capture to error. b = a.clone() # Let's also see what happens if we record_stream on a tensor during capture. s2.wait_stream(s1) with torch.cuda.stream(s2): b.fill_(1.) b.record_stream(s2) # dummy record_stream del b s1.wait_stream(s2) g.capture_end() torch.cuda.synchronize() # dummy allocation triggers process_events, Hopefully successfully processes b's end-of-life event. c = torch.zeros((3,), device="cuda") @unittest.skipIf((not TEST_CUDA) or TEST_WITH_ROCM or int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs") # If this test is the first in the process to try cudnn rnns with dropout, it'll initialize # DropoutState's long-lived internal buffer. Calling code perceives this (correct) behavior # as a memory leak unless we skip the leak check. @skipCUDAMemoryLeakCheckIf(True) def test_graph_cudnn_dropout(self): # Tests the interaction of cuda graph capture with DropoutState's syncs in ATen/native/cudnn/RNN.cpp. # In particular, if user runs a sequence of captured and noncaptured cudnn rnns, DropoutState should # avoid syncing noncapturing streams with captured events or vice versa. torch.cuda.empty_cache() model = torch.nn.LSTM(512, 512, 2, dropout=0.5).cuda() x = torch.ones(100, 192, 512, device="cuda") y = model(x) g = torch.cuda.CUDAGraph() s = torch.cuda.Stream() s.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(s): g.capture_begin() y = model(x) g.capture_end() torch.cuda.current_stream().wait_stream(s) y = model(x) @unittest.skipIf((not TEST_CUDA) or TEST_WITH_ROCM or int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs") def test_graph_grad_scaling(self): torch.cuda.empty_cache() scaler = torch.cuda.amp.GradScaler(init_scale=4.) g = torch.cuda.CUDAGraph() s = torch.cuda.Stream() weight = torch.ones((100,), device="cuda", requires_grad=True) opt = torch.optim.SGD([weight], lr=0.1) static_input = torch.ones_like(weight) static_grad = torch.ones_like(weight) # warmup s = torch.cuda.Stream() s.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(s): loss = (weight.half() * static_input).sum() scaler.scale(loss).backward() torch.cuda.current_stream().wait_stream(s) opt.zero_grad(set_to_none=True) # capture with torch.cuda.graph(g): loss = (weight.half() * static_input).sum() scaler.scale(loss).backward() input_vals = [5, 20000, 5, 40000] # If the scale gets updated properly, these are the scale, growth tracker, # and grad values we expect. expected_scales = [4, 2, 2, 1] expected_growth_trackers = [1, 0, 1, 0] expected_grad_vals = [5 * 4, float("inf"), 5 * 2, float("inf")] for data, scale, growth_tracker, grad_val in zip(input_vals, expected_scales, expected_growth_trackers, expected_grad_vals): static_input.fill_(data) g.replay() self.assertEqual(weight.grad, torch.full_like(weight.grad, grad_val)) scaler.step(opt) scaler.update() self.assertEqual(scaler._scale, scale) self.assertEqual(scaler._growth_tracker, growth_tracker) @unittest.skipIf((not TEST_CUDA) or TEST_WITH_ROCM or int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs") def test_graph_make_graphed_callables(self): torch.manual_seed(5) torch.cuda.manual_seed(5) N, D_in, H, D_out = 640, 4096, 2048, 1024 models = [] for _ in range(2): model_section1 = torch.nn.Sequential(torch.nn.Linear(D_in, H), torch.nn.Dropout(p=0.1)).cuda() model_section2 = torch.nn.Sequential(torch.nn.Linear(H, D_out), torch.nn.Dropout(p=0.2)).cuda() models.append(torch.nn.Sequential(model_section1, model_section2)) model_graphed = models[0] model_control = models[1] model_graphed.load_state_dict(model_control.state_dict()) opt_graphed = torch.optim.SGD(model_graphed.parameters(), lr=0.1) opt_control = torch.optim.SGD(model_control.parameters(), lr=0.1) x = torch.randn(N, D_in, device='cuda') h = torch.randn(N, H, device='cuda', requires_grad=True) y_pred = torch.randn(N, D_out, device='cuda', requires_grad=True) y = torch.randn(N, D_out, device='cuda') loss_fn_control = torch.nn.functional.mse_loss relu_control = torch.nn.functional.relu # This is a good stress test. It graphs four callables: two Modules and two python functions. model_graphed[0], model_graphed[1], relu_graphed, loss_fn_graphed = \ torch.cuda.make_graphed_callables((model_graphed[0], model_graphed[1], relu_control, loss_fn_control), ((x,), (h,), (y_pred,), (y_pred, y))) real_inputs = [torch.rand_like(x) for _ in range(10)] real_targets = [torch.rand_like(y) for _ in range(10)] for m, opt, relu, loss_fn in zip((model_graphed, model_control), (opt_graphed, opt_control), (relu_graphed, relu_control), (loss_fn_graphed, loss_fn_control)): # Resets RNC states before iterations for graphed and ungraphed models, # so dropout math should be bitwise identical for both. torch.manual_seed(5) torch.cuda.manual_seed(5) for data, target in zip(real_inputs, real_targets): opt.zero_grad(set_to_none=True) y_pred = m(data) y_pred = relu(y_pred) loss = loss_fn(y_pred, target) loss.backward() opt.step() for p, pc in zip(model_graphed.parameters(), model_control.parameters()): self.assertEqual(p, pc) # We graphed the models in training mode. Eval should still run ungraphed. model_graphed.eval() model_control.eval() self.assertEqual(model_graphed(real_inputs[0]), model_control(real_inputs[0])) def test_batch_norm_gather_stats(self): input = torch.randn(1, 3, 3, 3, device='cuda') mean, invstd = torch.batch_norm_gather_stats( input, mean=torch.ones(2, 3, device='cuda'), invstd=torch.ones(2, 3, device='cuda'), running_mean=None, running_var=None , momentum=.1, eps=1e-5, count=2 ) self.assertEqual(mean, torch.ones(3, device='cuda')) self.assertEqual(invstd, torch.ones(3, device='cuda')) @unittest.skipIf(not TEST_MULTIGPU, "Test needs multiple GPUs") def test_cuda_device_memory_allocated(self): from torch.cuda import memory_allocated device_count = torch.cuda.device_count() current_alloc = [memory_allocated(idx) for idx in range(device_count)] x = torch.ones(10, device="cuda:0") self.assertTrue(memory_allocated(0) > current_alloc[0]) self.assertTrue(all(memory_allocated(torch.cuda.device(idx)) == current_alloc[idx] for idx in range(1, device_count))) def test_matmul_memory_use(self): def get_max_used(): torch.cuda.synchronize() val = torch.cuda.max_memory_allocated() torch.cuda.reset_peak_memory_stats() return val a = torch.rand(1, 32, 32, device="cuda") b = torch.rand(24, 32, 1, device="cuda") get_max_used() torch.matmul(a, b) matmul_mem = get_max_used() a = a.expand(24, 32, 32) torch.matmul(a, b) matmul_expand_mem = get_max_used() torch.bmm(a, b) bmm_mem = get_max_used() self.assertEqual(matmul_expand_mem, matmul_mem) self.assertEqual(bmm_mem, matmul_mem) @unittest.skipIf(not TEST_WITH_ROCM, "ROCm-only test") def test_rocm_backward_pass_guard(self): # The test exercises a ROCm-specific feature. class MyFunction(torch.autograd.Function): @staticmethod def forward(ctx, tensor, constant): self.assertFalse(torch._C._rocm_is_backward_pass()) ctx.constant = constant return tensor * constant @staticmethod def backward(ctx, grad_output): self.assertTrue(torch._C._rocm_is_backward_pass()) return grad_output * ctx.constant, None class MyModule(torch.nn.Module): def __init__(self): super().__init__() self.a = torch.nn.Parameter(torch.randn(())) def forward(self, x): return MyFunction.apply(x, self.a) model = MyModule() criterion = torch.nn.MSELoss(reduction='sum') optimizer = torch.optim.SGD(model.parameters(), lr=1e-6) x = torch.randn(5, 5) result = model(x) loss = criterion(result, x) optimizer.zero_grad() loss.backward() optimizer.step() class TestCudaComm(TestCase): def _test_broadcast(self, input): if not TEST_MULTIGPU: raise unittest.SkipTest("only one GPU detected") # test regular results = comm.broadcast(input, (0, 1)) for i, t in enumerate(results): self.assertEqual(t.get_device(), i) self.assertEqual(t, input) if input.is_cuda and input.get_device() == i: # test not copying on same device self.assertEqual(t.data_ptr(), input.data_ptr()) # test out= for inplace in [True, False]: if inplace: outputs = [torch.empty_like(input, device=0), torch.empty_like(input, device=1)] else: outputs = [input.cuda(0), torch.empty_like(input, device=1)] results = comm.broadcast(input, out=outputs) for r, o in zip(results, outputs): self.assertIs(r, o) for i, t in enumerate(results): self.assertEqual(t.get_device(), i) self.assertEqual(t, input) # test error msg with self.assertRaisesRegex(RuntimeError, r"Exactly one of 'devices' and 'out'"): comm.broadcast(input, (0, 1), out=outputs) with self.assertRaisesRegex(RuntimeError, r"Expected all output tensors to be CUDA tensors, but output tensor at index 1"): comm.broadcast(input, out=[input.cuda(0), input.cpu()]) with self.assertRaisesRegex(RuntimeError, r"Expected all output tensors to have same shape as the source .+ at index 1"): comm.broadcast(input, out=[input.cuda(0), input.cuda(1).unsqueeze(0)]) def test_broadcast_cpu(self): self._test_broadcast(torch.randn(5, 5)) def test_broadcast_gpu(self): self._test_broadcast(torch.randn(5, 5).cuda()) def _test_broadcast_coalesced(self, tensors, buffer_size): b_tensors = [comm.broadcast(t, (0, 1)) for t in tensors] for (_, bt), t in zip(b_tensors, tensors): self.assertEqual(bt.get_device(), 1) self.assertEqual(bt, t) self.assertIsInstance(bt, type(t)) bc_tensors = comm.broadcast_coalesced(tensors, (0, 1), buffer_size=buffer_size) bc_tensors_t = list(zip(*bc_tensors)) self.assertEqual(b_tensors, bc_tensors_t) for (_, bt), (_, bct) in zip(b_tensors, bc_tensors_t): self.assertEqual(bt.get_device(), bct.get_device()) self.assertIsInstance(bct, type(bt)) # check that tensors on device[0] are returned as-is for out_tensors in (b_tensors, bc_tensors_t): for inp_t, (out_t, _) in zip(tensors, out_tensors): self.assertIs(inp_t, out_t) # check that the tensors not on device[0] have different version counters # NOTE [ Version Counter in comm.*_coalesced ] versions = [t._version for _, t in bc_tensors_t] for old_version, (_, t) in zip(versions, bc_tensors_t): self.assertEqual(t._version, old_version) t.zero_() self.assertEqual(t._version, old_version + 1) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") # Note: fails sometimes on the CI, passes on dual gfx906 def test_broadcast_coalesced(self): numel = 5 num_bytes = numel * 8 tensors = [ make_sparse_tensor(torch.cuda.sparse.DoubleTensor, 1, 2, 3), torch.randn(numel).long().cuda(), torch.randn(numel).cuda(), make_sparse_tensor(torch.cuda.sparse.DoubleTensor, 10, 2, 3), make_sparse_tensor(torch.cuda.sparse.DoubleTensor, 5, 2, 3), make_sparse_tensor(torch.cuda.sparse.LongTensor, 7, 3, 3), make_sparse_tensor(torch.cuda.sparse.FloatTensor, 2, 2, 3), torch.randn(numel).long().cuda(), torch.randn(numel).long().cuda(), make_sparse_tensor(torch.cuda.sparse.LongTensor, 3, 2, 7), torch.randn(numel * 2).int().cuda(), # int is 2x shorter torch.randn(numel).cuda(), ] self._test_broadcast_coalesced(tensors, num_bytes * 5 // 2) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_broadcast_coalesced_dense_only(self): numel = 5 num_bytes = numel * 8 tensors = [ torch.randn(numel).long().cuda(), torch.randn(numel).cuda(), torch.randn(numel).long().cuda(), torch.randn(numel).long().cuda(), torch.randn(numel * 2).int().cuda(), # int is 2x shorter torch.randn(numel).cuda(), ] self._test_broadcast_coalesced(tensors, num_bytes * 5 // 2) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_broadcast_coalesced_empty_tensors(self): tensors = [ torch.tensor([]).byte().cuda(), torch.randn(5).cuda(), torch.randn(5).double().cuda() ] self._test_broadcast_coalesced(tensors, 256) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_reduce_add(self): x = torch.randn(5, 5) y = torch.randn(5, 5) x_cuda = x.cuda(0) y_cuda = y.cuda(1) result = comm.reduce_add((x_cuda, y_cuda)) self.assertEqual(result.get_device(), 0) self.assertEqual(result.cpu(), x + y) def _test_reduce_add_coalesced(self, tensors, buffer_size): dup_tensors = [tensors, [t.cuda(1) for t in tensors]] r_tensors = [comm.reduce_add(t) for t in zip(*dup_tensors)] for r, t in zip(r_tensors, tensors): self.assertEqualTypeString(r, t) self.assertEqual(r.coalesce() if r.is_sparse else r, t * 2) rc_tensors = comm.reduce_add_coalesced(dup_tensors, buffer_size=buffer_size) self.assertEqual(r_tensors, rc_tensors) for r, rc in zip(r_tensors, rc_tensors): self.assertEqualTypeString(rc, r) # Since we have both cuda:0 and cuda:1 inputs, the outputs must be new. # We can check that they have different version counters. # NOTE [ Version Counter in comm.*_coalesced ] versions = [t._version for t in rc_tensors] for old_version, t in zip(versions, rc_tensors): self.assertEqual(t._version, old_version) t.zero_() self.assertEqual(t._version, old_version + 1) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_reduce_add_coalesced(self): numel = 5 num_bytes = numel * 8 tensors = [ make_sparse_tensor(torch.cuda.sparse.DoubleTensor, 1, 2, 3), torch.randn(numel).long().cuda(), torch.randn(numel).cuda(), make_sparse_tensor(torch.cuda.sparse.DoubleTensor, 10, 2, 3), make_sparse_tensor(torch.cuda.sparse.DoubleTensor, 5, 2, 3), make_sparse_tensor(torch.cuda.sparse.LongTensor, 7, 3, 3), make_sparse_tensor(torch.cuda.sparse.FloatTensor, 2, 2, 3), torch.randn(numel).long().cuda(), torch.randn(numel).long().cuda(), make_sparse_tensor(torch.cuda.sparse.LongTensor, 3, 2, 7), torch.randn(numel * 2).int().cuda(), # int is 2x shorter torch.randn(numel).cuda(), ] self._test_reduce_add_coalesced(tensors, num_bytes * 5 // 2) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_reduce_add_coalesced_dense_only(self): numel = 5 num_bytes = numel * 8 tensors = [ torch.randn(numel).long().cuda(), torch.randn(numel).cuda(), torch.randn(numel).long().cuda(), torch.randn(numel).long().cuda(), torch.randn(numel * 2).int().cuda(), # int is 2x shorter torch.randn(numel).cuda(), ] self._test_reduce_add_coalesced(tensors, num_bytes * 5 // 2) def _test_scatter(self, input, chunk_sizes=None, dim=0): if not TEST_MULTIGPU: raise unittest.SkipTest("only one GPU detected") if chunk_sizes is None: ref_chunk_sizes = tuple(repeat(input.size(dim) // 2, 2)) else: ref_chunk_sizes = chunk_sizes # test regular result = comm.scatter(input, (0, 1), chunk_sizes, dim) self.assertEqual(len(result), 2) chunk_start = 0 for i, r in enumerate(result): chunk_end = chunk_start + ref_chunk_sizes[i] index = [slice(None, None) for _ in range(input.dim())] index[dim] = slice(chunk_start, chunk_end) self.assertEqual(r, input[tuple(index)], atol=0, rtol=0) chunk_start = chunk_end if r.device == input.device: self.assertEqual(r.data_ptr(), input.data_ptr()) # for target @ same device, a view should be returned # test out out = [torch.empty_like(t) for t in result] result = comm.scatter(input, dim=dim, out=out) self.assertEqual(len(result), 2) chunk_start = 0 for i, r in enumerate(result): self.assertIs(r, out[i]) chunk_end = chunk_start + ref_chunk_sizes[i] index = [slice(None, None) for _ in range(input.dim())] index[dim] = slice(chunk_start, chunk_end) self.assertEqual(r, input[tuple(index)], atol=0, rtol=0) chunk_start = chunk_end # test error msg if chunk_sizes is not None: with self.assertRaisesRegex(RuntimeError, r"Expected devices and chunk_sizes to be of same length"): comm.scatter(input, [0 for _ in range(len(chunk_sizes) + 1)], dim=dim, chunk_sizes=chunk_sizes) with self.assertRaisesRegex(RuntimeError, r"'devices' must not be specified"): comm.scatter(input, (0, 1), dim=dim, out=out) with self.assertRaisesRegex(RuntimeError, r"Expected at least one device to scatter to"): comm.scatter(input, (), dim=dim) with self.assertRaisesRegex(RuntimeError, r"Expected at least one output tensor to scatter to"): comm.scatter(input, dim=dim, out=[]) with self.assertRaisesRegex(RuntimeError, r"Expected all output tensors to be CUDA tensors, but output tensor at index 0"): comm.scatter(input, dim=dim, out=([out[0].cpu()] + out[1:])) with self.assertRaisesRegex(RuntimeError, r"Output tensor at index 0 has incorrect shape"): comm.scatter(input, dim=dim, out=([out[0].unsqueeze(0)] + out[1:])) with self.assertRaisesRegex(RuntimeError, r"Total size for output tensors along scatter dim \d+ does not match"): index = [slice(None, None) for _ in range(input.dim())] index[dim] = slice(1, None) comm.scatter(input, dim=dim, out=([out[0][tuple(index)]] + out[1:])) def test_scatter_cpu(self): self._test_scatter(torch.randn(4, 4), dim=0) def test_scatter_cpu_dim(self): self._test_scatter(torch.randn(4, 4), dim=1) def test_scatter_cpu_neg_dim(self): self._test_scatter(torch.randn(4, 4), dim=-2) def test_scatter_cpu_sizes(self): self._test_scatter(torch.randn(6, 4), chunk_sizes=(2, 4)) def test_scatter_gpu(self): self._test_scatter(torch.randn(4, 4).cuda(), dim=0) def test_scatter_gpu_dim(self): self._test_scatter(torch.randn(4, 4).cuda(), dim=1) def test_scatter_gpu_neg_dim(self): self._test_scatter(torch.randn(4, 4).cuda(), dim=-2) def test_scatter_gpu_sizes(self): self._test_scatter(torch.randn(6, 4).cuda(), chunk_sizes=(2, 4)) def _test_gather(self, dim): if not TEST_MULTIGPU: raise unittest.SkipTest("only one GPU detected") x = torch.randn(2, 5, device=0) y = torch.randn(2, 5, device=1) expected_size = list(x.size()) expected_size[dim] += y.size(dim) expected_size = torch.Size(expected_size) destinations = [None, torch.device('cuda:0'), torch.device('cpu')] if torch.cuda.device_count() > 2: destinations.append(torch.device('cuda:2')) with torch.cuda.device(1): for destination in destinations: if destination is None: expected_device = torch.device('cuda', torch.cuda.current_device()) else: expected_device = destination for use_out in [True, False]: if use_out: out = torch.empty(expected_size, device=expected_device) result = comm.gather((x, y), dim, out=out) self.assertIs(out, result) else: result = comm.gather((x, y), dim, destination=destination) self.assertEqual(result.device, expected_device) self.assertEqual(result.size(), expected_size) index = [slice(None, None), slice(None, None)] index[dim] = slice(0, x.size(dim)) self.assertEqual(result[tuple(index)], x) index[dim] = slice(x.size(dim), x.size(dim) + y.size(dim)) self.assertEqual(result[tuple(index)], y) # test error msg with self.assertRaisesRegex(RuntimeError, r"'destination' must not be specified"): comm.gather((x, y), dim, destination='cpu', out=torch.empty(expected_size, device='cpu')) with self.assertRaisesRegex(RuntimeError, r"Expected at least one tensor to gather from"): comm.gather(()) with self.assertRaisesRegex(RuntimeError, r"Expected all input tensors to be CUDA tensors, "): comm.gather((x.cpu(), y)) with self.assertRaisesRegex(RuntimeError, r"Expected all input tensors to have the same number of dimensions"): comm.gather((x, y.unsqueeze(0))) with self.assertRaisesRegex(RuntimeError, r"Input tensor at index 1 has invalid shape"): if dim in [0, -2]: comm.gather((x, y[:, 1:]), dim=dim) elif dim in [1, -1]: comm.gather((x, y[1:, :]), dim=dim) def test_gather(self): self._test_gather(0) def test_gather_dim(self): self._test_gather(1) def test_gather_neg_dim(self): self._test_gather(-1) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_memory_format_scatter_gather(self): nhwc = torch.randn((10, 3, 32, 32), device='cpu').contiguous(memory_format=torch.channels_last) results = torch.cuda.comm.scatter(nhwc, (0, 1), None, 0) for result in results: self.assertFalse(result.is_contiguous()) self.assertTrue(result.is_contiguous(memory_format=torch.channels_last)) gathered = torch.cuda.comm.gather(results) self.assertTrue(gathered.is_contiguous(memory_format=torch.channels_last)) def test_matmul_device_mismatch(self): cpu = torch.rand((10, 10)) cuda = cpu.cuda() with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"): cpu @ cuda with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"): cuda @ cpu for s, m1, m2 in product((cpu, cuda), repeat=3): if s.device == m1.device == m2.device: torch.addmm(s, m1, m2) else: with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"): torch.addmm(s, m1, m2) @unittest.skipIf(not TEST_MULTIGPU, "Test needs multiple GPUs") def test_scatter_namedtuple(self): # tests ability to scatter namedtuples and retrieve a list where each # element is of the expected namedtuple type. fields = ("a", "b") TestNamedTupleInput_0 = collections.namedtuple("NamedTuple", fields) num_gpus = torch.cuda.device_count() a = torch.rand(num_gpus * 2, device=0) b = torch.rand(num_gpus * 2, device=0) a_tensors_for_gpu = [a[2 * i : 2 * i + 2].to(i) for i in range(num_gpus)] b_tensors_for_gpu = [b[2 * i : 2 * i + 2].to(i) for i in range(num_gpus)] inp = TestNamedTupleInput_0(a, b) target_gpus = [torch.device(i) for i in range(num_gpus)] scatter_out = scatter_gather.scatter(inp, target_gpus) for i, x in enumerate(scatter_out): self.assertTrue(isinstance(x, type(inp))) self.assertEqual(x._fields, fields) expected_a = a_tensors_for_gpu[i] expected_b = b_tensors_for_gpu[i] self.assertEqual(expected_a, x.a) self.assertEqual(expected_b, x.b) class TestNamedTupleInput_1(NamedTuple): a: torch.tensor b: torch.tensor a = torch.rand(num_gpus * 2, device=0) b = torch.rand(num_gpus * 2, device=0) a_tensors_for_gpu = [a[2 * i : 2 * i + 2].to(i) for i in range(num_gpus)] b_tensors_for_gpu = [b[2 * i : 2 * i + 2].to(i) for i in range(num_gpus)] inp = TestNamedTupleInput_1(a, b) scatter_out = scatter_gather.scatter(inp, target_gpus) for i, x in enumerate(scatter_out): self.assertTrue(isinstance(x, type(inp))) self.assertEqual(x._fields, fields) expected_a = a_tensors_for_gpu[i] expected_b = b_tensors_for_gpu[i] self.assertEqual(expected_a, x.a) self.assertEqual(expected_b, x.b) @unittest.skipIf(not TEST_MULTIGPU, "Test needs multiple GPUs") def test_gather_namedtuple(self): # tests ability to gather a list of namedtuples and return a namedtuple where each # element is of the expected tensor type. fields = ['a', 'b'] TestNamedTupleInput_0 = collections.namedtuple('NamedTuple', fields) num_gpus = torch.cuda.device_count() a = torch.rand(num_gpus * 2, device=0) b = torch.rand(num_gpus * 2, device=1) out1 = TestNamedTupleInput_0(a, b) a = torch.rand(num_gpus * 2, device=1) b = torch.rand(num_gpus * 2, device=0) out2 = TestNamedTupleInput_0(a, b) outputs = [out1, out2] out = scatter_gather.gather(outputs, 'cpu') # test on CPU for i, x in enumerate(out): self.assertTrue(isinstance(x, type(out2[-1]))) # x must be a tensor cat = torch.cat((outputs[0][i].to('cpu'), outputs[1][i].to('cpu'))) self.assertTrue(torch.equal(x, cat)) out = scatter_gather.gather(outputs, 0) # test on GPU for i, x in enumerate(out): self.assertTrue(isinstance(x, type(out2[-1]))) cat = torch.cat((outputs[0][i].to(0), outputs[1][i].to(0))) self.assertTrue(torch.equal(x, cat)) class TestNamedTupleInput_1(NamedTuple): a: torch.tensor b: torch.tensor a = torch.rand(num_gpus * 2, device=0) b = torch.rand(num_gpus * 2, device=1) out1 = TestNamedTupleInput_1(a, b) a = torch.rand(num_gpus * 2, device=1) b = torch.rand(num_gpus * 2, device=0) out2 = TestNamedTupleInput_1(a, b) outputs = [out1, out2] out = scatter_gather.gather(outputs, 0) # test on GPU for i, x in enumerate(out): self.assertTrue(isinstance(x, type(out2[-1]))) cat = torch.cat((outputs[0][i].to(0), outputs[1][i].to(0))) self.assertTrue(torch.equal(x, cat)) out = scatter_gather.gather(outputs, 'cpu') # test on CPU for i, x in enumerate(out): self.assertTrue(isinstance(x, type(out2[-1]))) cat = torch.cat((outputs[0][i].to('cpu'), outputs[1][i].to('cpu'))) self.assertTrue(torch.equal(x, cat)) if __name__ == '__main__': run_tests()
44.132119
126
0.594851
4132e126f06ee3e98fca3c32a13b83ac619d79c4
3,759
py
Python
rbf.py
antoinebrl/practice-ML
b2c87987871db39255f87732e4ec4dee7179c9b7
[ "MIT" ]
null
null
null
rbf.py
antoinebrl/practice-ML
b2c87987871db39255f87732e4ec4dee7179c9b7
[ "MIT" ]
null
null
null
rbf.py
antoinebrl/practice-ML
b2c87987871db39255f87732e4ec4dee7179c9b7
[ "MIT" ]
null
null
null
# Author : Antoine Broyelle # Licence : MIT # inspired by : KTH - DD2432 : Artificial Neural Networks and Other Learning Systems # https://www.kth.se/student/kurser/kurs/DD2432?l=en import numpy as np from kmeans import Kmeans from pcn import PCN from utils.distances import euclidianDist class RBF: '''Radial Basis Function Network. Can be used for classification or function approximation''' def __init__(self, inputs, targets, n=1, sigma=0, distance=euclidianDist, weights=None, usage='class', normalization=False): ''' :param inputs: set of data points as row vectors :param targets: set of targets as row vectors :param n: (int) number of weights. :param sigma: (float) spread of receptive fields :param distance: (function) compute metric between points :param weights: set of weights. If None, weights are generated with K-means algorithm. Otherwise provided weights are used no matter the value of n. :param usage: (string) Should be equal to 'class' for classification and 'fctapprox' for function approximation. Otherwise raise an error. :param normalization: (bool) If true, perform a normalization of the hidden layer. ''' if not usage is 'class' and not usage is 'fctapprox': raise Exception('[RBF][__init__] the usage is unrecognized. Should be equal to ' '"class" for classification and "fctapprox" for function approximation') self.targets = targets self.inputs = inputs self.dist = distance self.n = n self.weights = weights self.usage = usage self.normalization = normalization if sigma == 0: self.sigma = (inputs.max(axis=0)-inputs.min(axis=0)).max() / np.sqrt(2*n) else: self.sigma = sigma def fieldActivation(self, inputs, weights, sigma, dist): hidden = dist(inputs, weights) hidden = np.exp(- hidden / sigma) return hidden def train(self, nbIte=100): if self.weights is None: km = Kmeans(self.inputs, k=self.n, distance=self.dist) km.train(nbIte=1000) self.weights = km.centers hidden = self.fieldActivation(self.inputs, self.weights, self.sigma, self.dist) if self.normalization: hidden = hidden / np.sum(hidden, axis=1)[:, np.newaxis] if self.usage is 'class': self.pcn = PCN(inputs=hidden, targets=self.targets, delta=True) return self.pcn.train(nbIte=nbIte) else : # linear regression self.weights2 = np.linalg.inv(np.dot(hidden.T, hidden)) self.weights2 = np.dot(self.weights2, np.dot(hidden.T, self.targets)) return np.dot(hidden, self.weights2) def predict(self, data): h = self.fieldActivation(data, self.weights, self.sigma, self.dist) if self.usage is 'class': return self.pcn.predict(h) else: return np.dot(h, self.weights2) if __name__ == "__main__": # Classification inputs = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) XORtargets = np.array([[0], [1], [1], [0]]) rbf = RBF(inputs=inputs, targets=XORtargets, n=4) print rbf.train(nbIte=300) # Function approximation import matplotlib.pyplot as plt x = np.linspace(start=0, stop=2*np.pi, num=63) y = np.sin(x) w = np.linspace(start=0, stop=2 * np.pi, num=8) x = x[:, np.newaxis] y = y[:, np.newaxis] w = w[:, np.newaxis] rbf = RBF(inputs=x, targets=y, usage='fctapprox', weights=w, normalization=True) out = rbf.train() plt.plot(x,y, 'r') plt.plot(x,out, 'b') plt.show()
37.217822
100
0.617717
1dcf333b31621bda63bfd85eff18831cf4f003de
12,471
py
Python
Assignment_01_Linear_Regression/linear_regression_pytorch.py
luwis93choi/ML2020_Class
eb6e0a5b69a68b5c45535cf9738ac697bd722557
[ "MIT" ]
null
null
null
Assignment_01_Linear_Regression/linear_regression_pytorch.py
luwis93choi/ML2020_Class
eb6e0a5b69a68b5c45535cf9738ac697bd722557
[ "MIT" ]
null
null
null
Assignment_01_Linear_Regression/linear_regression_pytorch.py
luwis93choi/ML2020_Class
eb6e0a5b69a68b5c45535cf9738ac697bd722557
[ "MIT" ]
null
null
null
# Reference 01 (Anaconda Installation) : https://docs.anaconda.com/anaconda/install/linux/ # Reference 02 (Anaconda Package Control) : https://niceman.tistory.com/86 # Reference 03 (Anaconda Pytorch Setup) : https://pytorch.org/get-started/locally/ # Reference 04 (Pytorch Linear Regression) : https://greeksharifa.github.io/pytorch/2018/11/02/pytorch-usage-02-Linear-Regression-Model/ # Reference 05 (Google Machine Learning Crash Course - Linear Regression) : https://developers.google.com/machine-learning/crash-course/descending-into-ml/video-lecture # Reference 06 : 인공지능을 위한 수학 (이시카와 아키히코) - 5장 선형회귀 # Reference 07 (Linear Regression From Scratch without any Library) : https://www.kaggle.com/siddhrath/linear-regression-from-scratch-without-any-library import pandas as pd # pandas (Python Data Analysis Library) - 데이터셋을 읽고 분석하기 위해 사용 pandas 라이브러리 사용 import torch # torch (Pytorch) - Machine Learning 및 Neural Network 라이브러리 사용 from torch import nn # Pytorch의 Neural Network 라이브러리 사용 import matplotlib.pyplot as plt # matplotlib - 그래프 작성 및 출력을 위한 라이브러리 사용 print("--- ML2020 Assignment 01 : Linear Regression ---") # pandas를 이용하여 csv 파일로 저장된 데이터셋 읽음 data = pd.read_csv('./train_data.csv') # Hyper Parameters - Machine Learning의 Training 및 Inference 전반적으로 영향을 주는 Hyper Parameter 변수 선언 learning_rate = 0.01 # 학습 과정시 Loss Function 최소값를 도달하기 위해 매번마다 Weight와 Bias에 얼마나 크게 변화를 줄 지 결정 / Loss Function 최소값 탐색의 한 단계의 크기 결정 train_step = 3000 # 전체 학습의 횟수 결정 # PyTorch를 사용한 선형 회귀 (Linear Regression) 함수 def linear_regression_Pytorch(data, _lr, train_step): x = torch.from_numpy(data['x'].values).unsqueeze(dim=1).float() # csv에서 읽은 x축 데이터를 numpy 배열에서 tensor 형태로 변환 y = torch.from_numpy(data['y'].values).unsqueeze(dim=1).float() # csv에서 읽은 y축 데이터를 numpy 배열에서 tensor 형태로 변환 model = nn.Linear(in_features=1, out_features=1, bias=True) # Linear Regression 모델 선언 # - in_features : Linear Regression 모델의 입력 데이터의 개수 (x 1개) (weight가 아닌 모델에 입력되는 데이터) # - out_features : Linear Regression 모델의 출력 데이터의 개수 (y 1개) (weight가 아닌 모델이 출력하는 데이터) # *** 학습의 결과가 ML/NN 모델이며, 모델은 입력 데이터를 받아 특정 데이터를 출력되게 만들어짐 *** criterion = nn.MSELoss() # MSE (Mean Squared Error)를 Loss Function으로 사용 optimizer = torch.optim.Adam(params=model.parameters(), lr=_lr) # Loss Function 최소값 탐색을 위해 사용할 Optimizer로 Adam Optimizer 사용하며, 탐색의 한 단계의 크기 Learning Rate를 설정함 loss_list = [] # 추후 Loss Function 그래프를 그리기 위해 Loss 값을 저장할 리스트 fig, axes = plt.subplots(1, 2) # Linear Regression 결과를 1x2 그래프 2개로 그릴 예정 # 상기 정의한 train_step 값만큼 전체 데이터셋을 가지고 학습을 반복함 for step in range(train_step): prediction = model(x) # 현재 모델 / 현재까지 학습된 모델을 가지고 입력 데이터 x에 대한 출력 데이터를 산출함 loss = criterion(input=prediction, target=y) # 현재 모델 / 현재까지 학습된 모델이 출력한 데이터가 목표하는 원래 y값에 비교해서 얼마나 Loss가 발생하는지 MSE Loss Function값으로 구함 loss_list.append(loss.data.item()) # 현재 모델의 Loss값을 저장함 optimizer.zero_grad() # Optimizer의 grad값을 0으로 설정함 / PyTorch는 Parameter들이 gradient를 계산해줄때 grad가 누적됨. 이에 따라 Gradient를 다시 계산할 때는 0으로 초기화해야함 loss.backward() # Gradient 계산에 따른 Backpropagation(역전파) 수행 optimizer.step() # 계산한 Gradient값을 기반으로 Parameter (Weight, Bias)를 Learning Rate에 비례해서 업데이트해줌 # 학습의 마지막 단계에 도달했을 시 학습 결과에 대한 그래프를 저장함 if step == train_step-1: plt.suptitle('Linear Regression using PyTorch') # 메인 Title 작성 # 좌측 그래프는 현재 학습된 결과(Weight, Bias)에 기반한 Linear 그래프를 데이터셋 분포도 상에 그림 axes[0].set_title('loss={:.4}, w={:.4}, b={:.4}'.format(loss.data.item(), model.weight.item(), model.bias.item())) # 좌측 그래프 제목에 현재 학습 모델의 Loss, Weight, Bias를 보여줌 axes[0].set_xlim(0, 11) # 그래프상 x축의 범위 설정 axes[0].set_ylim(0, 8) # 그래프상 y축의 범위 설정 axes[0].scatter(x.data.numpy(), y.data.numpy()) # 데이터셋 분포도 그래프 그림 axes[0].plot(x.data.numpy(), prediction.data.numpy(), 'b--') # 데이터셋 분포도 상에 현재 학습된 결과(Weight, Bias)에 기반한 Linear 그래프를 그림 # 우측 그래프는 학습 과정에서 산출된 Loss의 기록을 그림 axes[1].set_title('MSE Loss Function') # 우측 그래프의 제목 설정 axes[1].plot(range(len(loss_list)), loss_list, 'b') # 우측 그래프에 현재까지의 Loss값 기록을 그래프로 그림 plt.savefig('./linear_regression_result_with_PyTorch.png') # 최종 결과 그래프 저장 plt.draw() # 20번마다 Loss 값을 그래프에 기록하고, 학습결과 (Weight, Bias)에 따라 데이터셋 분포도에 Linear 그래프를 그림 elif step % 20 == 0: print('MSE Loss : ' + str(loss.data.item())) # 현재 Loss값을 CLI (Command Line Interface) 콘솔창에 보여줌 plt.suptitle('Linear Regression using Pytorch') # 좌측 그래프는 현재 학습된 결과에 기반한 Linear 그래프를 데이터셋 분포도상에 그림 axes[0].set_title('loss={:.4}, w={:.4}, b={:.4}'.format(loss.data.item(), model.weight.item(), model.bias.item())) # 우측 그래프 제목에 현재 학습 모델의 Loss, Weight, Bias를 보여줌 axes[0].set_xlim(0, 11) # 그래프상 x축의 범위 설정 axes[0].set_ylim(0, 8) # 그래프상 y축의 범위 설정 axes[0].scatter(x.data.numpy(), y.data.numpy()) # 데이터셋 분포도 그래프 그림 axes[0].plot(x.data.numpy(), prediction.data.numpy(), 'b--') # 데이터셋 분포도 상에 현재 학습된 결과(Weight, Bias)에 기반한 Linear 그래프를 그림 # 우측 그래프는 학습 과정에서 산출된 Loss의 기록을 그림 axes[1].set_title('MSE Loss Function') # 우측 그래프의 제목 설정 axes[1].plot(range(len(loss_list)), loss_list, 'b') # 우측 그래프에 현재까지의 Loss값 기록을 그래프로 그림 plt.draw() # 좌측/우측 그래프 렌더링 수행 plt.pause(0.01) # 그래프 작성 딜레이 axes[0].clear() # 좌측 그래프 업데이트를 위한 화면 Clear # 주어진 Weight와 Bias를 기반으로 입력 데이터 x에 대한 결과값 출력함수 def predict(_x, _w, _b): return _w * _x + _b # Linear 함수 : y = w * x + b # 주어진 Weight와 Bias를 기반으로 입력 데이터 x가 출력한 값과 출력 데이터 y 간의 MSE를 계산하여 Loss를 산출하는 함수 def MSE_loss_function(_x, _y, _w, _b): data_num = len(_x) # 전체 데이터 개수 total_error = 0.0 # Squared Error 누적값 # 전체 x와 y 데이터에 대해서 Squared Error 누적값을 구함 for i in range(data_num): total_error += (_y[i] - (_w * _x[i] + _b))**2 # 모델이 현재까지 학습한 Weight와 Bias값을 기반으로 # i번째 x 데이터의 출력 결과(_w * _x[i] + _b)와 i번째 y 데이터(y[i]) 간의 Error값을 구하고 제곱함 # Error값을 누적하여 Squared Error 누적값을 산출함 return total_error / data_num # 누적된 Error값에 대해서 평균을 내어 MSE값을 출력값으로 제공함 # Gradient Descent를 이용하여 Loss 최소값에 도달하는 함수 def update_gradient_descent(_x, _y, _w, _b, learning_rate): # MSE Loss Function은 학습의 대상인 Weight와 Bias에 대해서 2차함수임 # Loss가 최소값에 곳은 MSE Loss의 변화량/미분값이 0이 되는 순간임 # MSE Loss는 2개의 변수에 의해서 제어되기 때문에 미분을 할 경우 Weight와 Bias에 대해서 각각 편미분을 해줘야함 # # Loss Gradient = (d Loss/d weight, d Loss/d bias) weight_derivative = 0 # Weight값에 대한 편미분 결과값 bias_derivative = 0 # Bias값에 대한 편미분 결과값 data_num = len(_x) # 전체 데이터 개수 # Gradient Descent는 전체 학습 데이터에 대해서 Loss Gradient를 모두 합해서 최소값에 도달하는지 판단함 for i in range(data_num): weight_derivative += -2 * _x[i] * (_y[i] - (_x[i] * _w + _b)) # MSE Loss 공식을 Weight에 대해서 편미분한 결과에 각각 현재 Weight, 현재 Bias, x, y값을 넣어서 누적함 bias_derivative += -2 * (_y[i] - (_x[i] * _w + _b)) # MSE Loss 공식을 Bias에 대해서 편미분한 결과에 각각 현재 Weight, 현재 Bias, x, y값을 넣어서 누적함 _w -= (weight_derivative / data_num) * learning_rate # 새롭게 업데이트 되는 Weight값은 누적된 편미분값(누적 변화량)을 평균내어 평균 변화량에 Learning Rate를 반영하여 차감함 # (최소값을 향해서 가는 Negative Gradient Descent) # Learning Rate에 비례해서 Weight가 한 단계 넘어갈 수 있게함 _b -= (bias_derivative / data_num) * learning_rate # 새롭게 업데이트 되는 Bias값은 누적된 편미분값(누적 변화량)을 평균내어 평균 변화량에 Learning Rate를 반영하여 차감함 # (최소값을 향해서 가는 Negative Gradient Descent) # Learning Rate에 비례해서 Bias가 한 단계 넘어갈 수 있게함 return _w, _b # 매 학습은 Gradient Descent를 통해 최소값을 한단계 씩 도달하는 과정이며, 이에 따라 업데이트된 Weight, Bias값을 출력해줌 # PyTorch를 사용하지 않고 MSE Loss Function 공식과 Gradient Descent의 편미분 공식을 기반으로한 선형 회귀 (Linear Regression) 함수 def linear_regression_NoPytorch(data, init_w, init_b, learning_rate, train_step): x = data['x'].values # 'x' 라벨의 입력 데이터를 읽어옴 y = data['y'].values # 'y' 라벨의 출력 데이터를 읽어옴 loss_list = [] # 추후 Loss Function 그래프를 그리기 위해 Loss 값을 저장할 리스트 fig, axes = plt.subplots(1, 2) # Linear Regression 결과를 1x2 그래프 2개로 그릴 예정 # 상기 정의한 train_step 값만큼 전체 데이터셋을 가지고 학습을 반복함 for step in range(train_step): # 매단계마다 현재 모델의 Weight, Bias를 기반으로 Loss를 계산하고, # Negative Gradient Descent를 통해 Weight와 Bias값이 Gradient가 최소가 되는 방향으로 업데이트 되게 만듬 init_w, init_b = update_gradient_descent(x, y, init_w, init_b, learning_rate) loss = MSE_loss_function(x, y, init_w, init_b) # 현재 모델 / 현재까지 학습된 모델이 출력한 데이터가 목표하는 원래 y값에 비교해서 얼마나 Loss가 발생하는지 MSE Loss Function값으로 구함 loss_list.append(loss) # 현재 모델의 Loss값을 저장함 # 학습의 마지막 단계에 도달했을 시 학습 결과에 대한 그래프를 저장함 if step == train_step-1: plt.suptitle('Linear Regression without PyTorch') # 메인 Title 작성 # 좌측 그래프는 현재 학습된 결과(Weight, Bias)에 기반한 Linear 그래프를 데이터셋 분포도 상에 그림 axes[0].set_title('loss={:.4}, w={:.4}, b={:.4}'.format(loss, init_w, init_b)) # 좌측 그래프 제목에 현재 학습 모델의 Loss, Weight, Bias를 보여줌 axes[0].set_xlim(0, 11) # 그래프상 x축의 범위 설정 axes[0].set_ylim(0, 8) # 그래프상 y축의 범위 설정 axes[0].scatter(x, y) # 데이터셋 분포도 그래프 그림 axes[0].plot(x, predict(x, init_w, init_b), 'b--') # 데이터셋 분포도 상에 현재 학습된 결과(Weight, Bias)에 기반한 Linear 그래프를 그림 # 우측 그래프는 학습 과정에서 산출된 Loss의 기록을 그림 axes[1].set_title('MSE Loss Function') # 우측 그래프의 제목 설정 axes[1].plot(range(len(loss_list)), loss_list, 'b') # 우측 그래프에 현재까지의 Loss값 기록을 그래프로 그림 plt.savefig('./linear_regression_result_without_PyTorch.png') # 최종 결과 그래프 저장 plt.show() # 20번마다 Loss 값을 그래프에 기록하고, 학습결과 (Weight, Bias)에 따라 데이터셋 분포도에 Linear 그래프를 그림 elif step % 20 == 0: print('MSE Loss : ' + str(loss)) # 현재 Loss값을 CLI (Command Line Interface) 콘솔창에 보여줌 plt.suptitle('Linear Regression without Pytorch') # 좌측 그래프는 현재 학습된 결과에 기반한 Linear 그래프를 데이터셋 분포도상에 그림 axes[0].set_title('loss={:.4}, w={:.4}, b={:.4}'.format(loss, init_w, init_b)) # 우측 그래프 제목에 현재 학습 모델의 Loss, Weight, Bias를 보여줌 axes[0].set_xlim(0, 11) # 그래프상 x축의 범위 설정 axes[0].set_ylim(0, 8) # 그래프상 y축의 범위 설정 axes[0].scatter(x, y) # 데이터셋 분포도 그래프 그림 axes[0].plot(x, predict(x, init_w, init_b), 'b--') # 데이터셋 분포도 상에 현재 학습된 결과(Weight, Bias)에 기반한 Linear 그래프를 그림 # 우측 그래프는 학습 과정에서 산출된 Loss의 기록을 그림 axes[1].set_title('MSE Loss Function') # 우측 그래프의 제목 설정 axes[1].plot(range(len(loss_list)), loss_list, 'b') # 우측 그래프에 현재까지의 Loss값 기록을 그래프로 그림 plt.draw() # 좌측/우측 그래프 렌더링 수행 plt.pause(0.01) # 그래프 작성 딜레이 axes[0].clear() # 좌측 그래프 업데이트를 위한 화면 Clear return init_w, init_b # 최종 학습 모델의 Weight, Bias 출력 linear_regression_Pytorch(data, learning_rate, train_step) # PyTorch를 사용하여 Linear Regerssion 수행 linear_regression_NoPytorch(data, 0, 0, learning_rate, train_step) # PyTorch를 사용하지 않고 MSE Loss Function 공식과 Gradient Descent의 편미분 공식을 기반으로한 Linear Regerssion 수행
59.385714
174
0.571085
1e4dd9269240652d35e1804e0494bc2365b608ec
12,756
py
Python
tests/logictest/logictest.py
ZeaLoVe/databend
4ebc55c5ccff15ed510e93d8c63965f6aa1bd76c
[ "Apache-2.0" ]
null
null
null
tests/logictest/logictest.py
ZeaLoVe/databend
4ebc55c5ccff15ed510e93d8c63965f6aa1bd76c
[ "Apache-2.0" ]
null
null
null
tests/logictest/logictest.py
ZeaLoVe/databend
4ebc55c5ccff15ed510e93d8c63965f6aa1bd76c
[ "Apache-2.0" ]
null
null
null
import abc import collections import glob import os import re import six from hamcrest import assert_that, is_, none, is_not from log import log # statement is a statement in sql logic test state_regex = r"^\s*statement\s+(?P<statement>((?P<ok>OK)|((?P<error>)ERROR\s*(?P<expectError>.*))|(?P<query>QUERY\s*((" \ r"ERROR\s+(?P<queryError>.*))|(?P<queryOptions>.*)))))$" result_regex = r"^----\s*(?P<label>.*)?$" # return the statement type # `None` represent that the current format is not a statement type def get_statement_type(line): return re.match(state_regex, line, re.MULTILINE | re.IGNORECASE) def get_result_label(line): return re.match(result_regex, line, re.MULTILINE | re.IGNORECASE) # return false if the line is not empty def is_empty_line(line): if line.split(): return False return True # iterate lines over a file and return a iterator def get_lines(suite_path): with open(suite_path, encoding="UTF-8") as reader: for line_idx, line in enumerate(reader.readlines()): yield line_idx, line.rstrip('\n ') # keep tab /t # return a single statement def get_single_statement(lines): statement_lines = [] for line_idx, line in lines: if is_empty_line(line): statement = "\n".join(statement_lines) return statement statement_lines.append(line) return "\n".join(statement_lines) def get_result(lines): result_lines = [] result_label = None val = 0 for line_idx, line in lines: val = line_idx if line.startswith('\t'): # tab as empty row in results result_lines.append(line) continue if is_empty_line(line) and result_label is None: continue if is_empty_line(line) and result_label is not None: return result_label, line_idx, "\n".join(result_lines) if result_label is not None: result_lines.append(line) if result_label is None: result_label = get_result_label(line) if result_label is not None: return result_label, val, "\n".join(result_lines) def parse_token_args(tokens, arg): i = 0 while i < len(tokens): if tokens[i].startswith( "{}(".format(arg)) and tokens[i].endswith(")") is False: tokens[i] = tokens[i] + "," + tokens[i + 1] del tokens[i + 1] i -= 1 i += 1 class LogicError(Exception): def __init__(self, message, expected): self.message = message self.expected = expected def __str__(self): return "Expected regex{}, Actual: {}".format(self.expected, self.message) class Statement: def __init__(self, matched): assert matched is not None self.matched = matched self.label = None self.retry = False self.query_type = None self.expect_error = None if matched.group("ok") is not None: self.type = "ok" elif matched.group("error") is not None: self.type = "error" self.expect_error = matched.group("expectError") elif matched.group("query"): self.type = "query" if matched.group("queryError"): self.query_error = matched.group("queryError") else: qo = matched.group("queryOptions") s = qo.split(" ", 1) if len(s) < 1: raise Exception("Invalid query options: {}".format(qo)) if len(s) == 1: if is_empty_line(s[0]): raise Exception( "Invalid query options, query type should not be empty: {}" .format(qo)) self.query_type = s[0] return query_type, options = qo.split(" ", 1) tokens = options.split(",") tokens = [t.strip() for t in tokens] parse_token_args(tokens, "label") self.query_type = query_type for token in tokens: if token.startswith("label(") and token.endswith(")"): trimed = token[len("label("):-1] self.label = trimed.split(",") if token == "retry": self.retry = True else: raise Exception("Unknown statement type {}".format(matched.group())) def __str__(self): s = "Statement: {}, type: {}".format(self.type, self.query_type) if self.type == "query": if self.query_type is not None: s += ", query_type: {}".format(self.query_type) if self.label is not None: s += ", label: {}".format(self.label) s += ", retry: {}".format(self.retry) return s class ParsedStatement( collections.namedtuple( 'ParsedStatement', ["at_line", "s_type", "suite_name", "text", "results"])): def get_fields(self): return self._fields def __str__(self): result = ["", "Parsed Statement"] for field in self.get_fields(): value = str(getattr(self, field)) if field != 'text': result.append(' ' * 4 + '%s: %s,' % (field, value)) else: result.append(' ' * 4 + '%s:' % field) result.extend([' ' * 8 + row for row in value.split('\n')]) return "\n".join(result) # return all statements in a file def get_statements(suite_path, suite_name): lines = get_lines(suite_path) for line_idx, line in lines: if is_empty_line(line): # empty line or junk lines continue statement_type = get_statement_type(line) if statement_type is None: continue s = Statement(statement_type) text = get_single_statement(lines) results = [] if s.type == "query" and s.query_type is not None: # TODO need a better way to get all results if s.label is None: results.append(get_result(lines)) else: for i in s.label: results.append(get_result(lines)) yield ParsedStatement(line_idx, s, suite_name, text, results) def format_value(vals, val_num): row = len(vals) // val_num width = len(str(vals[0])) + 2 for i in range(len(vals)): width = max(width, len(vals[i]) + 2) table = "" for i in range(row): ans = [] for j in range(val_num): ans.append('{: >{w}}'.format(str(vals[i * val_num + j]), w=width)) table += "".join(ans) table += "\n" return table def safe_execute(method, *info): try: return method() except Exception as e: collected = "\n".join([str(e)] + [str(el) for el in info]) raise RuntimeError("Failed to execute. Collected info: %s" % collected) # factory class to abstract runtime interface @six.add_metaclass(abc.ABCMeta) class SuiteRunner(object): def __init__(self, kind, pattern): self.label = None self.retry_time = 3 self.driver = None self.path = "./suites/" self.statement_files = [] self.kind = kind self.show_query_on_execution = True self.on_error_return = False self.pattern = pattern # return all files under the path # format: a list of file absolute path and name(relative path) def fetch_files(self): skip_files = os.getenv("SKIP_TEST_FILES") skip_tests = skip_files.split(",") if skip_files is not None else [] log.debug("Skip test file list {}".format(skip_tests)) for filename in glob.iglob('{}/**'.format(self.path), recursive=True): if os.path.isfile(filename): if os.path.basename(filename) in skip_tests: log.info("Skip test file {}".format(filename)) continue if re.match(self.pattern, filename): self.statement_files.append( (filename, os.path.relpath(filename, self.path))) self.statement_files.sort() def execute(self): # batch execute use single session if callable(getattr(self, "batch_execute")): # case batch for (file_path, suite_name) in self.statement_files: log.info("Batch execute, suite name:{} in file {}".format(suite_name, file_path)) statement_list = list() for state in get_statements(file_path, suite_name): statement_list.append(state) self.batch_execute(statement_list) else: # case one by one for (file_path, suite_name) in self.statement_files: log.info("One by one execute, suite name:{} in file {}".format(suite_name, file_path)) for state in get_statements(file_path, suite_name): self.execute_statement(state) def execute_statement(self, statement): if self.show_query_on_execution: log.info("executing statement, type {}\n{}\n".format( statement.s_type.type, statement.text)) if statement.s_type.type == "query": self.assert_execute_query(statement) elif statement.s_type.type == "error": self.assert_execute_error(statement) elif statement.s_type.type == "ok": self.assert_execute_ok(statement) else: raise Exception("Unknown statement type") # expect the query just return ok def assert_execute_ok(self, statement): actual = safe_execute(lambda: self.execute_ok(statement.text), statement) assert_that( actual, is_(none()), str(statement), ) def assert_query_equal(self, f, resultset, statement): # use join after split instead of strip compare_f = "".join(f.split()) compare_result = "".join(resultset[2].split()) assert compare_f == compare_result, "Expected:\n{}\n Actual:\n{}\n Statement:{}\n Start " \ "Line: {}, Result Label: {}".format(resultset[2].rstrip(), f.rstrip(), str(statement), resultset[1], resultset[0].group("label")) def assert_execute_query(self, statement): actual = safe_execute(lambda: self.execute_query(statement), statement) try: f = format_value(actual, len(statement.s_type.query_type)) except Exception: log.warning("{} statement type is query but return nothing".format( statement)) raise assert statement.results is not None and len( statement.results) > 0, "No result found {}".format(statement) hasResult = False for resultset in statement.results: if resultset[0].group("label") is not None and resultset[0].group( "label") == self.kind: self.assert_query_equal(f, resultset, statement) hasResult = True if not hasResult: for resultset in statement.results: if resultset[0].group("label") is None or len( resultset[0].group("label")) == 0: self.assert_query_equal(f, resultset, statement) hasResult = True assert hasResult, "No result found {}".format(statement) # expect the query just return error def assert_execute_error(self, statement): actual = safe_execute(lambda: self.execute_error(statement.text), statement) if actual is None: raise Exception("Expected error but got none") match = re.search(statement.s_type.expect_error, actual.msg) assert_that( match, is_not(none()), "statement {}, expect error regex {}, found {}".format( str(statement), statement.s_type.expect_error, actual)) def run_sql_suite(self): log.info("run_sql_suite for {} on base {}".format( self.kind, os.path.abspath(self.path))) self.fetch_files() self.execute() def set_label(self, label): self.label = label def set_driver(self, driver): self.driver = driver
36.238636
122
0.556209
1a1498464540acb0973a2d201ac0501786cab89d
4,839
py
Python
cytoskeleton_analyser/fitting/__init__.py
vsukhor/cytoskeleton-analyser
681a1f6ba1381a5fb293f2310fce5e97d400cfcb
[ "BSD-3-Clause" ]
null
null
null
cytoskeleton_analyser/fitting/__init__.py
vsukhor/cytoskeleton-analyser
681a1f6ba1381a5fb293f2310fce5e97d400cfcb
[ "BSD-3-Clause" ]
null
null
null
cytoskeleton_analyser/fitting/__init__.py
vsukhor/cytoskeleton-analyser
681a1f6ba1381a5fb293f2310fce5e97d400cfcb
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2021 Valerii Sukhorukov. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER ''AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE # USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ----------------------------------------------------------------------------- """ Model classes and auxiliary functions for data fitting. """ import sys from typing import Callable, Optional, Sequence, Union from types import ModuleType import numpy as np from .base import set_logger from .rayleigh import Rayleigh from .weibull import Weibull from .exponential import Exponential from .von_mises import VonMisesDouble from .von_mises import VonMisesTriple from .gamma import Gamma from .normal import Normal from .lognorm import Lognorm from .const import MockConst __all__ = [ 'set_logger', 'Rayleigh', 'Weibull', 'Exponential', 'VonMisesDouble', 'VonMisesTriple', 'Gamma', 'Normal', 'Lognorm', 'MockConst', ] def is_const(model) -> bool: """Check if ``model`` is a mock wrapping a constant. :return: True if the ``model`` is a mock model representing a constant number. """ return isinstance(model, MockConst) def is_mock(model) -> bool: """Check if ``model`` is a constant number. :return: True if the ``model`` is a mock model representing a constant value. """ return \ isinstance(model, np.float64) or \ isinstance(model, np.float32) def fit( ft: Sequence, x: np.ndarray, y: np.ndarray, ) -> list: """Fit alternative models to the data. For each element of alternative fitters ``ft`` create instance of fitting the class and fit specific function to the data. :param ft: Collection of alternative fitters to apply to the data. :param x: Data x values. :param y: Data y values. :return: Parametrised models resulting from the fitting. """ res = [] for f in ft: if hasattr(f[0], '__self__'): res.append(f[0].__self__(x, f[1]).fit(f[0], y)) else: res.append(f[0].outer(x, f[1], f[2]).fit(f[0], y)) return res def restore( f: Union[Callable, type], p: np.array, tu: str, x: np.ndarray, y: np.ndarray, fun: Optional[Callable] = None, ): """Generic function for restoring fitted models. """ if hasattr(f, '__self__'): return f.__self__(x, p).restore(f, p, x, y) elif hasattr(f, 'outer'): return f.outer(x, p, tu).restore(f, y) else: return f(x, p).restore(fun, y) def class_from_classname( module: ModuleType, classname: str, ) -> type: """Class object by name and module. """ return getattr(sys.modules[module.__name__], classname.split('.')[0]) def subtype_from_classname( c: type, classname: str, ) -> type: """Child class (if exists) od a class. Uses compound name ``classname`` containng child class name to return child class object of a given class. """ if hasattr(c, 'subtype'): return c.subtype(classname.split('.')[1]) else: return c def method_from_classname( c: type, classname: str, ) -> Optional[Callable]: """Method od a class (if exists).. Uses compound name ``classname`` containng method name to return method of a given class. """ a = classname.split('.')[1] return getattr(c, a) if hasattr(c, a) else None
29.150602
79
0.659434
3e76c3c1638989385ac47a0eafeb7ca3ac7d2038
165
py
Python
game/screen_upbar.py
SHI3DO/Andante
beb6fdf96ef86a10de9f802cef2d97dd81b3e688
[ "MIT" ]
2
2021-12-26T06:26:06.000Z
2022-02-24T23:54:58.000Z
game/screen_upbar.py
SHI3DO/Andante
beb6fdf96ef86a10de9f802cef2d97dd81b3e688
[ "MIT" ]
null
null
null
game/screen_upbar.py
SHI3DO/Andante
beb6fdf96ef86a10de9f802cef2d97dd81b3e688
[ "MIT" ]
null
null
null
def draw(screen, pg, screenx, screeny): upbar = pg.Surface((screenx, screeny/12)) upbar.set_alpha(100) upbar.fill((0,0,0)) screen.blit(upbar, (0, 0))
33
45
0.636364
4fe894dcd36a55d56f87ab955dc416e20091575c
4,927
py
Python
tests/test_tile_stitcher.py
thiloSchlemmer/TileStitcher
c72d7944ebe55992a538cce22be8787a70d62530
[ "MIT" ]
6
2018-06-14T13:15:19.000Z
2020-09-11T00:55:20.000Z
tests/test_tile_stitcher.py
thiloSchlemmer/TileStitcher
c72d7944ebe55992a538cce22be8787a70d62530
[ "MIT" ]
null
null
null
tests/test_tile_stitcher.py
thiloSchlemmer/TileStitcher
c72d7944ebe55992a538cce22be8787a70d62530
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import os import platform import unittest from quantized_mesh_tile import TerrainTile import tile_stitcher def get_neighbours(z, x, y): return {'west': (z, x - 1, y), 'north': (z, x, y + 1), 'south': (z, x, y - 1), 'east': (z, x + 1, y)} def get_tmp_path(): current_system = platform.system() if 'Windows' is current_system: return 'c:/Temp/' else: return '/tmp/' def get_tile(z, x, y): terrain_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'data/%s_%s_%s.terrain' % (z, x, y)) return tile_stitcher.load_tile(terrain_path, x, y, z) class TestTileStitcher(unittest.TestCase): def test_constructor(self): # arrange center_x = 17388 center_y = 12517 center_z = 14 neighbour_x = 17388 neighbour_y = 12518 neighbour_z = 14 # act center_tile = get_tile(center_z, center_x, center_y) neighbour_tile = get_tile(neighbour_z, neighbour_x, neighbour_y) tile_stitcher.TileStitcher(center_tile) # assert self.assertIsInstance(center_tile, TerrainTile) self.assertIsInstance(neighbour_tile, TerrainTile) def test_getEdgeConnection(self): # arrange center_x = 17388 center_y = 12517 center_z = 14 neighbour_x = 17388 neighbour_y = 12518 neighbour_z = 14 # act center_tile = get_tile(center_z, center_x, center_y) neighbour_tile = get_tile(neighbour_z, neighbour_x, neighbour_y) stitcher = tile_stitcher.TileStitcher(center_tile) edge_connection = stitcher._get_edge_connection(neighbour_tile) # assert self.assertIs(edge_connection, 'n') self.assertIsNotNone(edge_connection) def test_stitch_together_with_south(self): # arrange center_x = 4347 center_y = 3128 center_z = 12 neighbour_x = 4347 neighbour_y = 3127 neighbour_z = 12 center_tile = get_tile(center_z, center_x, center_y) neighbour_tile = get_tile(neighbour_z, neighbour_x, neighbour_y) # act stitcher = tile_stitcher.TileStitcher(center_tile) stitcher.add_neighbour(neighbour_tile) stitcher.stitch_together() stitcher.save_to(get_tmp_path()) # assert center_tile = tile_stitcher.load_tile( os.path.join(get_tmp_path(), '12_4347_3128.terrain'), center_x, center_y, center_z) neighbour_tile = tile_stitcher.load_tile( os.path.join(get_tmp_path(), '12_4347_3127.terrain'), neighbour_x, neighbour_y, neighbour_z) center_vertices_count = len(center_tile.get_edge_vertices(edge='s')) neighbour_vertices_count = len(neighbour_tile.get_edge_vertices(edge='n')) self.assertTrue(center_vertices_count == neighbour_vertices_count) def test_stitch_with_west_east(self): # arrange center_x = 4347 center_y = 3128 center_z = 12 neighbour_x = 4348 neighbour_y = 3128 neighbour_z = 12 center_tile = get_tile(center_z, center_x, center_y) neighbour_tile = get_tile(neighbour_z, neighbour_x, neighbour_y) # act stitcher = tile_stitcher.TileStitcher(center_tile) stitcher.add_neighbour(neighbour_tile) stitcher.stitch_together() # assert center_vertices_count = len(center_tile.get_edge_vertices(edge='e')) neighbour_vertices_count = len(neighbour_tile.get_edge_vertices(edge='w')) self.assertTrue(center_vertices_count == neighbour_vertices_count) def test_stitch_with_east_and_south(self): # arrange center_x = 4346 center_y = 3127 center_z = 12 east_x = 4347 east_y = 3127 east_z = 12 south_x = 4346 south_y = 3126 south_z = 12 center_tile = get_tile(center_z, center_x, center_y) east_tile = get_tile(east_z, east_x, east_y) south_tile = get_tile(south_z, south_x, south_y) # act stitcher = tile_stitcher.TileStitcher(center_tile) stitcher.add_neighbour(east_tile) stitcher.add_neighbour(south_tile) stitcher.stitch_together() # assert center_to_east_vertices_count = len(center_tile.get_edge_vertices(edge='e')) center_to_south_vertices_count = len(center_tile.get_edge_vertices(edge='s')) east_vertices_count = len(east_tile.get_edge_vertices(edge='w')) south_vertices_count = len(south_tile.get_edge_vertices(edge='n')) self.assertTrue(center_to_east_vertices_count == east_vertices_count) self.assertTrue(center_to_south_vertices_count == south_vertices_count)
30.226994
85
0.641567
d29a4ef48a1671181157b55fd83662e1f8c5616f
12,146
py
Python
config/settings/base.py
qingfulishang/models_test
b3c93bd644acbcbb1a0273c4a04907dc9430c941
[ "BSD-3-Clause" ]
null
null
null
config/settings/base.py
qingfulishang/models_test
b3c93bd644acbcbb1a0273c4a04907dc9430c941
[ "BSD-3-Clause" ]
null
null
null
config/settings/base.py
qingfulishang/models_test
b3c93bd644acbcbb1a0273c4a04907dc9430c941
[ "BSD-3-Clause" ]
null
null
null
""" Base settings to build other settings files upon. """ import environ ROOT_DIR = ( environ.Path(__file__) - 3 ) # (models_test/config/settings/base.py - 3 = models_test/) APPS_DIR = ROOT_DIR.path("models_test") env = environ.Env() READ_DOT_ENV_FILE = env.bool("DJANGO_READ_DOT_ENV_FILE", default=False) if READ_DOT_ENV_FILE: # OS environment variables take precedence over variables from .env env.read_env(str(ROOT_DIR.path(".env"))) # GENERAL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#debug DEBUG = env.bool("DJANGO_DEBUG", False) # Local time zone. Choices are # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # though not all of them may be available with every OS. # In Windows, this must be set to your system time zone. TIME_ZONE = "UTC" # https://docs.djangoproject.com/en/dev/ref/settings/#language-code LANGUAGE_CODE = "en-us" # https://docs.djangoproject.com/en/dev/ref/settings/#site-id SITE_ID = 1 # https://docs.djangoproject.com/en/dev/ref/settings/#use-i18n USE_I18N = True # https://docs.djangoproject.com/en/dev/ref/settings/#use-l10n USE_L10N = True # https://docs.djangoproject.com/en/dev/ref/settings/#use-tz USE_TZ = True # https://docs.djangoproject.com/en/dev/ref/settings/#locale-paths LOCALE_PATHS = [ROOT_DIR.path("locale")] # DATABASES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#databases DATABASES = {"default": env.db("DATABASE_URL")} DATABASES["default"]["ATOMIC_REQUESTS"] = True # URLS # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#root-urlconf ROOT_URLCONF = "config.urls" # https://docs.djangoproject.com/en/dev/ref/settings/#wsgi-application WSGI_APPLICATION = "config.wsgi.application" # APPS # ------------------------------------------------------------------------------ DJANGO_APPS = [ "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.sessions", "django.contrib.sites", "django.contrib.messages", "django.contrib.staticfiles", # "django.contrib.humanize", # Handy template tags "django.contrib.admin", ] THIRD_PARTY_APPS = [ "crispy_forms", "allauth", "allauth.account", "allauth.socialaccount", "rest_framework", "django_celery_beat", ] LOCAL_APPS = [ "models_test.users.apps.UsersConfig", # Your stuff: custom apps go here ] # https://docs.djangoproject.com/en/dev/ref/settings/#installed-apps INSTALLED_APPS = DJANGO_APPS + THIRD_PARTY_APPS + LOCAL_APPS # MIGRATIONS # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#migration-modules MIGRATION_MODULES = {"sites": "models_test.contrib.sites.migrations"} # AUTHENTICATION # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#authentication-backends AUTHENTICATION_BACKENDS = [ "django.contrib.auth.backends.ModelBackend", "allauth.account.auth_backends.AuthenticationBackend", ] # https://docs.djangoproject.com/en/dev/ref/settings/#auth-user-model AUTH_USER_MODEL = "users.User" # https://docs.djangoproject.com/en/dev/ref/settings/#login-redirect-url LOGIN_REDIRECT_URL = "users:redirect" # https://docs.djangoproject.com/en/dev/ref/settings/#login-url LOGIN_URL = "account_login" # PASSWORDS # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#password-hashers PASSWORD_HASHERS = [ # https://docs.djangoproject.com/en/dev/topics/auth/passwords/#using-argon2-with-django "django.contrib.auth.hashers.Argon2PasswordHasher", "django.contrib.auth.hashers.PBKDF2PasswordHasher", "django.contrib.auth.hashers.PBKDF2SHA1PasswordHasher", "django.contrib.auth.hashers.BCryptSHA256PasswordHasher", ] # https://docs.djangoproject.com/en/dev/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { "NAME": "django.contrib.auth.password_validation.UserAttributeSimilarityValidator" }, {"NAME": "django.contrib.auth.password_validation.MinimumLengthValidator"}, {"NAME": "django.contrib.auth.password_validation.CommonPasswordValidator"}, {"NAME": "django.contrib.auth.password_validation.NumericPasswordValidator"}, ] # MIDDLEWARE # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#middleware MIDDLEWARE = [ "django.middleware.security.SecurityMiddleware", "django.contrib.sessions.middleware.SessionMiddleware", "django.middleware.locale.LocaleMiddleware", "django.middleware.common.CommonMiddleware", "django.middleware.csrf.CsrfViewMiddleware", "django.contrib.auth.middleware.AuthenticationMiddleware", "django.contrib.messages.middleware.MessageMiddleware", "django.middleware.clickjacking.XFrameOptionsMiddleware", ] # STATIC # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#static-root STATIC_ROOT = str(ROOT_DIR("staticfiles")) # https://docs.djangoproject.com/en/dev/ref/settings/#static-url STATIC_URL = "/static/" # https://docs.djangoproject.com/en/dev/ref/contrib/staticfiles/#std:setting-STATICFILES_DIRS STATICFILES_DIRS = [str(APPS_DIR.path("static"))] # https://docs.djangoproject.com/en/dev/ref/contrib/staticfiles/#staticfiles-finders STATICFILES_FINDERS = [ "django.contrib.staticfiles.finders.FileSystemFinder", "django.contrib.staticfiles.finders.AppDirectoriesFinder", ] # MEDIA # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#media-root MEDIA_ROOT = str(APPS_DIR("media")) # https://docs.djangoproject.com/en/dev/ref/settings/#media-url MEDIA_URL = "/media/" # TEMPLATES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#templates TEMPLATES = [ { # https://docs.djangoproject.com/en/dev/ref/settings/#std:setting-TEMPLATES-BACKEND "BACKEND": "django.template.backends.django.DjangoTemplates", # https://docs.djangoproject.com/en/dev/ref/settings/#template-dirs "DIRS": [str(APPS_DIR.path("templates"))], "OPTIONS": { # https://docs.djangoproject.com/en/dev/ref/settings/#template-loaders # https://docs.djangoproject.com/en/dev/ref/templates/api/#loader-types "loaders": [ "django.template.loaders.filesystem.Loader", "django.template.loaders.app_directories.Loader", ], # https://docs.djangoproject.com/en/dev/ref/settings/#template-context-processors "context_processors": [ "django.template.context_processors.debug", "django.template.context_processors.request", "django.contrib.auth.context_processors.auth", "django.template.context_processors.i18n", "django.template.context_processors.media", "django.template.context_processors.static", "django.template.context_processors.tz", "django.contrib.messages.context_processors.messages", ], }, } ] # http://django-crispy-forms.readthedocs.io/en/latest/install.html#template-packs CRISPY_TEMPLATE_PACK = "bootstrap4" # FIXTURES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#fixture-dirs FIXTURE_DIRS = (str(APPS_DIR.path("fixtures")),) # SECURITY # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#session-cookie-httponly SESSION_COOKIE_HTTPONLY = True # https://docs.djangoproject.com/en/dev/ref/settings/#csrf-cookie-httponly CSRF_COOKIE_HTTPONLY = True # https://docs.djangoproject.com/en/dev/ref/settings/#secure-browser-xss-filter SECURE_BROWSER_XSS_FILTER = True # https://docs.djangoproject.com/en/dev/ref/settings/#x-frame-options X_FRAME_OPTIONS = "DENY" # EMAIL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#email-backend EMAIL_BACKEND = env( "DJANGO_EMAIL_BACKEND", default="django.core.mail.backends.smtp.EmailBackend" ) # https://docs.djangoproject.com/en/2.2/ref/settings/#email-timeout EMAIL_TIMEOUT = 5 # ADMIN # ------------------------------------------------------------------------------ # Django Admin URL. ADMIN_URL = "admin/" # https://docs.djangoproject.com/en/dev/ref/settings/#admins ADMINS = [("""ningzeyang@qq.com""", "ningzeyang@qq.com@example.com")] # https://docs.djangoproject.com/en/dev/ref/settings/#managers MANAGERS = ADMINS # LOGGING # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#logging # See https://docs.djangoproject.com/en/dev/topics/logging for # more details on how to customize your logging configuration. LOGGING = { "version": 1, "disable_existing_loggers": False, "formatters": { "verbose": { "format": "%(levelname)s %(asctime)s %(module)s " "%(process)d %(thread)d %(message)s" } }, "handlers": { "console": { "level": "DEBUG", "class": "logging.StreamHandler", "formatter": "verbose", } }, "root": {"level": "INFO", "handlers": ["console"]}, } # Celery # ------------------------------------------------------------------------------ if USE_TZ: # http://docs.celeryproject.org/en/latest/userguide/configuration.html#std:setting-timezone CELERY_TIMEZONE = TIME_ZONE # http://docs.celeryproject.org/en/latest/userguide/configuration.html#std:setting-broker_url CELERY_BROKER_URL = env("CELERY_BROKER_URL") # http://docs.celeryproject.org/en/latest/userguide/configuration.html#std:setting-result_backend CELERY_RESULT_BACKEND = CELERY_BROKER_URL # http://docs.celeryproject.org/en/latest/userguide/configuration.html#std:setting-accept_content CELERY_ACCEPT_CONTENT = ["json"] # http://docs.celeryproject.org/en/latest/userguide/configuration.html#std:setting-task_serializer CELERY_TASK_SERIALIZER = "json" # http://docs.celeryproject.org/en/latest/userguide/configuration.html#std:setting-result_serializer CELERY_RESULT_SERIALIZER = "json" # http://docs.celeryproject.org/en/latest/userguide/configuration.html#task-time-limit # TODO: set to whatever value is adequate in your circumstances CELERY_TASK_TIME_LIMIT = 5 * 60 # http://docs.celeryproject.org/en/latest/userguide/configuration.html#task-soft-time-limit # TODO: set to whatever value is adequate in your circumstances CELERY_TASK_SOFT_TIME_LIMIT = 60 # http://docs.celeryproject.org/en/latest/userguide/configuration.html#beat-scheduler CELERY_BEAT_SCHEDULER = "django_celery_beat.schedulers:DatabaseScheduler" # django-allauth # ------------------------------------------------------------------------------ ACCOUNT_ALLOW_REGISTRATION = env.bool("DJANGO_ACCOUNT_ALLOW_REGISTRATION", True) # https://django-allauth.readthedocs.io/en/latest/configuration.html ACCOUNT_AUTHENTICATION_METHOD = "username" # https://django-allauth.readthedocs.io/en/latest/configuration.html ACCOUNT_EMAIL_REQUIRED = True # https://django-allauth.readthedocs.io/en/latest/configuration.html ACCOUNT_EMAIL_VERIFICATION = "mandatory" # https://django-allauth.readthedocs.io/en/latest/configuration.html ACCOUNT_ADAPTER = "models_test.users.adapters.AccountAdapter" # https://django-allauth.readthedocs.io/en/latest/configuration.html SOCIALACCOUNT_ADAPTER = "models_test.users.adapters.SocialAccountAdapter" # Your stuff... # ------------------------------------------------------------------------------
42.320557
100
0.645974
c0480fa061a8094583f5115dd0186bf42bafcdf6
3,911
py
Python
templates/stm32f030-cct6/osconfig.py
flyghost/OneOS-V2.1.0
6fedab0558c07fe679d63ba1eb8ee9992c044d86
[ "Apache-2.0" ]
null
null
null
templates/stm32f030-cct6/osconfig.py
flyghost/OneOS-V2.1.0
6fedab0558c07fe679d63ba1eb8ee9992c044d86
[ "Apache-2.0" ]
null
null
null
templates/stm32f030-cct6/osconfig.py
flyghost/OneOS-V2.1.0
6fedab0558c07fe679d63ba1eb8ee9992c044d86
[ "Apache-2.0" ]
null
null
null
import os # toolchains options ARCH = 'arm' CPU = 'cortex-m0' CROSS_TOOL = 'gcc' # bsp lib config BSP_LIBRARY_TYPE = None if os.getenv('OS_CC'): CROSS_TOOL = os.getenv('OS_CC') if os.getenv('OS_ROOT'): OS_ROOT = os.getenv('OS_ROOT') # cross_tool provides the cross compiler # COMPILER_PATH is the compiler execute path, for example, CodeSourcery, Keil MDK, IAR if CROSS_TOOL == 'gcc': COMPILER = 'gcc' COMPILER_PATH = '' elif CROSS_TOOL == 'keil': COMPILER = 'armcc' # Notice: The installation path of armcc cannot have Chinese COMPILER_PATH = r'C:/Keil_v5' elif CROSS_TOOL == 'iar': COMPILER = 'iar' COMPILER_PATH = r'C:/Program Files (x86)/IAR Systems/Embedded Workbench 8.0' BUILD = 'debug' if COMPILER == 'gcc': # toolchains if COMPILER_PATH == '': COMPILER_PATH = os.getenv('OS_EXEC_PATH') PREFIX = 'arm-none-eabi-' CC = PREFIX + 'gcc' AS = PREFIX + 'gcc' AR = PREFIX + 'ar' CXX = PREFIX + 'g++' LINK = PREFIX + 'gcc' RESULT_SUFFIX = 'elf' SIZE = PREFIX + 'size' OBJDUMP = PREFIX + 'objdump' OBJCPY = PREFIX + 'objcopy' DEVICE = ' -mcpu=cortex-m0 -mthumb -ffunction-sections -fdata-sections' CFLAGS = DEVICE + ' -Dgcc' AFLAGS = ' -c' + DEVICE + ' -x assembler-with-cpp -Wa,-mimplicit-it=thumb ' LFLAGS = DEVICE + ' -Wl,--gc-sections,-Map=oneos.map,-cref,-u,Reset_Handler -T board/linker_scripts/link.lds' CPATH = '' LPATH = '' if BUILD == 'debug': CFLAGS += ' -O0 -gdwarf-2 -g' AFLAGS += ' -gdwarf-2' else: CFLAGS += ' -O2' CXXFLAGS = CFLAGS POST_ACTION = OBJCPY + ' -R .reserved_ram -O binary $TARGET oneos.bin\n' + SIZE + ' $TARGET \n' elif COMPILER == 'armcc': # toolchains CC = 'armcc' CXX = 'armcc' AS = 'armasm' AR = 'armar' LINK = 'armlink' RESULT_SUFFIX = 'axf' DEVICE = ' --cpu Cortex-M0 ' CFLAGS = '-c ' + DEVICE + ' --apcs=interwork --split_sections --c99' AFLAGS = DEVICE + ' --apcs=interwork ' LFLAGS = DEVICE + ' --scatter "board\linker_scripts\link.sct" --info sizes --info totals --info unused --info veneers --list oneos.map --strict' CFLAGS += ' -I "' + COMPILER_PATH + '/ARM/ARMCC/include"' LFLAGS += ' --libpath="' + COMPILER_PATH + '/ARM/ARMCC/lib"' #CFLAGS += ' -D__MICROLIB ' #AFLAGS += ' --pd "__MICROLIB SETA 1" ' #LFLAGS += ' --library_type=microlib ' COMPILER_PATH += '/ARM/ARMCC/bin/' if BUILD == 'debug': CFLAGS += ' -g -O0' AFLAGS += ' -g' else: CFLAGS += ' -O2' CXXFLAGS = CFLAGS POST_ACTION = 'fromelf --bin $TARGET --output oneos.bin \nfromelf -z $TARGET' elif COMPILER == 'iar': # toolchains CC = 'iccarm' CXX = 'iccarm' AS = 'iasmarm' AR = 'iarchive' LINK = 'ilinkarm' RESULT_SUFFIX = 'out' DEVICE = '-Dewarm' CFLAGS = DEVICE CFLAGS += ' --diag_suppress Pa050' CFLAGS += ' --no_cse' CFLAGS += ' --no_unroll' CFLAGS += ' --no_inline' CFLAGS += ' --no_code_motion' CFLAGS += ' --no_tbaa' CFLAGS += ' --no_clustering' CFLAGS += ' --no_scheduling' CFLAGS += ' --endian=little' CFLAGS += ' --cpu=Cortex-M4' CFLAGS += ' -e' CFLAGS += ' --fpu=VFPv4_sp' CFLAGS += ' --dlib_config "' + COMPILER_PATH + '/arm/INC/c/DLib_Config_Normal.h"' CFLAGS += ' --silent' AFLAGS = DEVICE AFLAGS += ' -s+' AFLAGS += ' -w+' AFLAGS += ' -r' AFLAGS += ' --cpu Cortex-M4' AFLAGS += ' --fpu VFPv4_sp' AFLAGS += ' -S' if BUILD == 'debug': CFLAGS += ' --debug' CFLAGS += ' -On' else: CFLAGS += ' -Oh' LFLAGS = ' --config "board/linker_scripts/link.icf"' LFLAGS += ' --entry __iar_program_start' CXXFLAGS = CFLAGS COMPILER_PATH = COMPILER_PATH + '/arm/bin/' POST_ACTION = 'ielftool --bin $TARGET oneos.bin'
27.159722
148
0.573766
ce83660d3da39af07faad3db38b211ba181a5bf2
1,828
py
Python
justenough/transforms/dataloaders.py
DamLabResources/justenough
3ee5887430598a9e1c042d64d2b9827ee879961a
[ "Apache-2.0" ]
null
null
null
justenough/transforms/dataloaders.py
DamLabResources/justenough
3ee5887430598a9e1c042d64d2b9827ee879961a
[ "Apache-2.0" ]
null
null
null
justenough/transforms/dataloaders.py
DamLabResources/justenough
3ee5887430598a9e1c042d64d2b9827ee879961a
[ "Apache-2.0" ]
null
null
null
# AUTOGENERATED! DO NOT EDIT! File to edit: notebooks/12_transforms.dataloaders.ipynb (unless otherwise specified). __all__ = ['HFBertDataLoaders'] # Cell from fastai.text.all import * from .sequence import * # Cell # export class HFBertDataLoaders(DataLoaders): @staticmethod def from_df(frame, tokenizer, model, sequence_col = 'sequence', label_col = None, vocab=None, max_length = 128, device = 'cuda', bs = 32, precompute = True, splitter = None, num_workers = 0): if splitter is None: splitter = RandomSplitter() seq_tfms = [ColReader(sequence_col), SpaceTransform(), HFTokenizerWrapper(tokenizer, max_length=max_length, tokens_only=False, device = device), HFPoolingTransform(model, bs=bs)] if label_col is None: label_tfms = seq_tfms else: label_tfms = [ColReader(label_col), Categorize(vocab=vocab)] if precompute: seq_pipe = Pipeline(seq_tfms) seq_tls = seq_pipe(frame) if label_col is None: label_tls = seq_tls else: label_tls = TfmdLists(frame, label_tfms) tls = TfmdLists(zip(seq_tls, label_tls), []) train, test = splitter(tls) return DataLoaders.from_dsets(tls[train], tls[test], num_workers=0, bs=bs).to(device) else: train, test = splitter(frame) feat_tls = Datasets(frame, [seq_tfms, label_tfms], splits = (train, test)) dls = feat_tls.dataloaders(num_workers=0, bs=bs).to(device) return dls
28.123077
115
0.54814
dfea265646db1d93e04912f398cf29d1c32f5913
41
py
Python
config.py
soybean217/opencv_python_cam_windows_demo
aab0a4cebc34760c437b32fb43c5e794fa181081
[ "MIT" ]
null
null
null
config.py
soybean217/opencv_python_cam_windows_demo
aab0a4cebc34760c437b32fb43c5e794fa181081
[ "MIT" ]
null
null
null
config.py
soybean217/opencv_python_cam_windows_demo
aab0a4cebc34760c437b32fb43c5e794fa181081
[ "MIT" ]
null
null
null
GLOBAL_SETTINGS = { "port": 11111, }
10.25
19
0.585366
98b2b35d50f1390c40846d67d07850d93b383186
1,909
py
Python
eds/openmtc-gevent/server/openmtc-cse/src/openmtc_cse/methoddomain/filtercriteria/__init__.py
piyush82/elastest-device-emulator-service
b4d6b393d6042c54a7b3dfb5f58cad5efd00f0e7
[ "Apache-2.0" ]
null
null
null
eds/openmtc-gevent/server/openmtc-cse/src/openmtc_cse/methoddomain/filtercriteria/__init__.py
piyush82/elastest-device-emulator-service
b4d6b393d6042c54a7b3dfb5f58cad5efd00f0e7
[ "Apache-2.0" ]
null
null
null
eds/openmtc-gevent/server/openmtc-cse/src/openmtc_cse/methoddomain/filtercriteria/__init__.py
piyush82/elastest-device-emulator-service
b4d6b393d6042c54a7b3dfb5f58cad5efd00f0e7
[ "Apache-2.0" ]
null
null
null
from futile.logging import get_logger from openmtc.model import ModelTypeError from openmtc_cse.methoddomain.filtercriteria import filters from openmtc_onem2m.exc import CSEBadRequest from openmtc_onem2m.model import FilterCriteria _logger = get_logger(__name__) def check_match(resource, filter_criteria): _logger.debug("checking if filter criteria '%s' are matched by " "resource '%s'", filter_criteria, resource) for criteria, value in filter_criteria.get_values(True).iteritems(): if not value: continue _logger.debug("checking if resource matches: %s=%s", criteria, value) try: filter_function = getattr(filters, criteria) except AttributeError: _logger.error("'%s' is not a valid filter criterion", criteria) return False else: if not filter_function(resource, value): _logger.debug("resource '%s' does not match criterion '%s=%s'", resource, criteria, value) return False _logger.debug("resource '%s' matches filter criteria '%s'", resource, filter_criteria) return True def parse_filter_criteria(filter_criteria): if filter_criteria is None: filter_criteria = {} _logger.debug("parsing '%s'", filter_criteria) int_criteria = ('stateTagSmaller', 'stateTagBigger', 'resourceType', 'sizeAbove', 'sizeBelow', 'filterUsage', 'limit') parsed_criteria = {} for k, v in filter_criteria.iteritems(): if k in int_criteria: if isinstance(v, list): parsed_criteria[k] = map(int, v) else: parsed_criteria[k] = int(v) else: parsed_criteria[k] = v try: return FilterCriteria(**parsed_criteria) except ModelTypeError: raise CSEBadRequest()
36.018868
79
0.631221
9514da467b512ec91d9dfb34a8a63b900fd85bf6
471
py
Python
source/MatematicaFinanciera/valorPresente/valor_presente.py
AbelMurgas/Python-Aplicado
0f01f54d64aae8b7689921741241be76383f3662
[ "MIT" ]
null
null
null
source/MatematicaFinanciera/valorPresente/valor_presente.py
AbelMurgas/Python-Aplicado
0f01f54d64aae8b7689921741241be76383f3662
[ "MIT" ]
null
null
null
source/MatematicaFinanciera/valorPresente/valor_presente.py
AbelMurgas/Python-Aplicado
0f01f54d64aae8b7689921741241be76383f3662
[ "MIT" ]
null
null
null
class Valor_Presente: def obtener_valor_presente(tiempo_anual: float, periodo: int, interes_porcentual: float, valor_futuro: float): i = (interes_porcentual/100)/periodo n = tiempo_anual*periodo resultado = valor_futuro/(1+i)**n return round(resultado, 2) def obtener_valor_presente_mediante_descuento(monto: float, descuento_simple: float) -> float: respuesta = monto-descuento_simple return round(respuesta, 2)
39.25
114
0.713376
cbcb6bc1f37ce680cb8c2ea040f5197c5a328dd0
7,008
py
Python
EndPoint/app/RDF/validator.py
osoc-es/data-quality-madrid
500f540b5f57d5292f53eba4bac6f67947710ba7
[ "Apache-2.0" ]
null
null
null
EndPoint/app/RDF/validator.py
osoc-es/data-quality-madrid
500f540b5f57d5292f53eba4bac6f67947710ba7
[ "Apache-2.0" ]
19
2021-07-05T09:31:17.000Z
2021-07-16T10:27:36.000Z
EndPoint/app/RDF/validator.py
osoc-es/data-quality-madrid
500f540b5f57d5292f53eba4bac6f67947710ba7
[ "Apache-2.0" ]
null
null
null
import csv from datetime import datetime import re import time def initializeProcess(csvFile:str): start = time.time() # Initialize the process f = open(csvFile, "r",encoding="ISO8859-1") lines = f.readlines() delimiter = findDelimiter(lines[0:10]) rowCount = 0 dictErrs = { "columnas": { "repeticion" :[] }, "CamposTexto": { "ceroizquierda": [] }, "CampoNumerico": { "Region" :[] }, "Fechas": { "formatoFecha" :[] }, "CampoTelefono": { "codigopais":[] }, "CoordGeoGraficas":{ "noSeparadas":[] }, "errorProcessing":"" } f.close() for line in lines: row = line.split(delimiter) if(rowCount == 0): dictErrs["repetition"] = hasRepetitiveCols(row,rowCount) rowCount += 1 continue col = 0 for val in row: # Pasar filtros # ((rowCount,col), <Error/Valor>) try: dictErrs["CamposTexto"]["ceroizquierda"] += [((rowCount,col), val)] if checkNumber(val) else [] dictErrs["CampoNumerico"]["Region"] += [((rowCount,col), val)] if checkCorrectNumber(val) else [] dictErrs["Fechas"]["formatoFecha"] += [((rowCount,col), val)] if checkFechas(val) else [] dictErrs["CampoTelefono"]["codigopais"] += [((rowCount,col), val)] if checkTelephone(val) else [] dictErrs["CoordGeoGraficas"]["noSeparadas"] += [((rowCount,col), val)] if checkCoordinates(val) else [] except Exception as e: print(e) continue col += 1 if(rowCount>50): break rowCount += 1 end = time.time() print(f"initializeProcess >> TIME ELAPSE IN CSV : {end-start}") return dictErrs def hasRepetitiveCols(row,rowCount): '''Check if the row has repetitive columns Args: row: the row to be checked Returns: True if the row has repetitive columns ''' repetitives = [] cols = set() colNum = 0 for col in row: if col in cols: repetitives += [((rowCount,colNum),col)] cols.add(col) colNum += 1 return repetitives def findDelimiter(lines): '''Find delimiter Args: csvFile: csv file path Returns: delimiter ''' def most_frequent(List): return max(set(List), key = List.count) delimitadores = [] for i in lines: dialect = csv.Sniffer().sniff(i) delimitadores += [dialect.delimiter] return most_frequent(delimitadores) def checkNumber(value): # Se puede convertir 009 --> 9 try: float(value) except Exception: return False # Se pueden pasar numeros, en tal caso esta formateado if(type(value) == float or type(value) == int or value == "0"): return False # Es String y es numerico return (not not (re.match(r"[0][0-9]*",value)) ) def checkFechas(value): if not (type(value) == str): return False # Puede ser fecha al tener - y / if possibleDateEncounter(value): # ¿Puede se hora con :? if ":" in value: try: datetime.strptime(value, "%Y-%m-%d:%H:%M:%S") except ValueError: return True else: try: datetime.strptime(value, "%Y-%m-%d") except ValueError: return True return False def possibleDateEncounter(value): if value.count('-') == 2 or value.count('/') == 2: res = value.split("-") if "-" in value else value.split("/") if ":" in res[2] : res = [res[0],res[1]]+res[2].split(":") for i in res: try: int(i) if(len(i)>4): return False except Exception: return False return True def checkTelephone(value): if type(value) == int: value = str(value) if len(value) == 9: return True def checkCorrectNumber(value): #Si tenemos un entero, hemos de revisar que en caso de ser negativo no vaya entre parentesis. #El valor es negativo, luego revisamos que no haya instancias de "(" if(((value.count(")")) > 0) and ((value.count("(")) > 0)): if(int((value.replace("(","")).replace(")","")) < 0): return True else: #Revisamos que no tenga separador de millares. if value.count(".") > 0: res = value.split(".") #Vemos que lo que queda a ambos lados del punto sean enteros. for i in res: try: int(i) except Exception: pass return True #Revisamos si es un numero con separador regional (en ESP, comas). if value.count(",") > 0: if(float("123,123".replace(",","."))): pass else: res = value.split(",") for i in res: try: int(i) except Exception: pass return True def checkCoordinates(value): ''' Given a value checks if it is a coordinate ''' regex_string =[ r"(?:(-?[1-8]?d(?:.d{1,18})?|90(?:.0{1,18})?),(-?(?:1[0-7]|[1-9])?d(?:.d{1,18})?|180(?:.0{1,18})?))(?:|(?:(-?[1-8]?d(?:.d{1,18})?|90(?:.0{1,18})?),(-?(?:1[0-7]|[1-9])?d(?:.d{1,18})?|180(?:.0{1,18})?)))*$", r"^[-+]?([1-8]?\d(\.\d+)?|90(\.0+)?),\s*[-+]?(180(\.0+)?|((1[0-7]\d)|([1-9]?\d))(\.\d+)?)$", r"^([-+]?)([\d]{1,2})(((\.)(\d+)(,)))(\s*)(([-+]?)([\d]{1,3})((\.)(\d+))?)$", r"^([-+]?)([\d]{1,3})(((\.)(\d+)(,)))(\s*)(([-+]?)([\d]{1,2})(((\.)(\d+)(,)))(\s*)([-+]?)([\d]{1,3})((\.)(\d+))?)$", r"^(\()([-+]?)([\d]{1,2})(((\.)(\d+)(,)))(\s*)(([-+]?)([\d]{1,3})((\.)(\d+))?(\)))$", r"(-?(90[ :°d]*00[ :\'\'m]*00(\.0+)?|[0-8][0-9][ :°d]*[0-5][0-9][ :\'\'m]*[0-5][0-9](\.\d+)?)[ :\?\"s]*(N|n|S|s)?)[ ,]*(-?(180[ :°d]*00[ :\'\'m]*00(\.0+)?|(1[0-7][0-9]|0[0-9][0-9])[ :°d]*[0-5][0-9][ :\'\'m]*[0-5][0-9](\.\d+)?)[ :\?\"s]*(E|e|W|w)?)" r"""([0-8]?\d(°|\s)[0-5]?\d('|\s)[0-5]?\d(\.\d{1,6})?"?|90(°|\s)0?0('|\s)0?0"?)\s{0,}[NnSs]\s{1,}([0-1]?[0-7]?\d(°|\s)[0-5]?\d('|\s)[0-5]?\d(\.\d{1,6})?"?|180(°|\s)0?0('|\s)0?0"?)\s{0,}[EeOoWw]""" r"^(?:(-?[1-8]?d(?:.d{1,18})?|90(?:.0{1,18})?),(-?(?:1[0-7]|[1-9])?d(?:.d{1,18})?|180(?:.0{1,18})?))(?:|(?:(-?[1-8]?d(?:.d{1,18})?|90(?:.0{1,18})?),(-?(?:1[0-7]|[1-9])?d(?:.d{1,18})?|180(?:.0{1,18})?)))*$"] for i in regex_string: if re.match(i, value): return True return False
33.056604
256
0.446062
fd70654cb9f8bcfaa789861fe7c0591c09e3395c
109,919
py
Python
BaseTools/Source/Python/Ecc/c.py
James992927108/uEFI_Edk2_Practice
2cac7618dfee10bfa5104a2e167c85425fde0100
[ "BSD-2-Clause" ]
6
2020-01-10T05:16:15.000Z
2022-01-06T17:41:58.000Z
BaseTools/Source/Python/Ecc/c.py
James992927108/uEFI_Edk2_Practice
2cac7618dfee10bfa5104a2e167c85425fde0100
[ "BSD-2-Clause" ]
null
null
null
BaseTools/Source/Python/Ecc/c.py
James992927108/uEFI_Edk2_Practice
2cac7618dfee10bfa5104a2e167c85425fde0100
[ "BSD-2-Clause" ]
3
2018-04-21T07:59:33.000Z
2018-04-23T02:06:01.000Z
## @file # This file is used to be the c coding style checking of ECC tool # # Copyright (c) 2009 - 2017, Intel Corporation. All rights reserved.<BR> # This program and the accompanying materials # are licensed and made available under the terms and conditions of the BSD License # which accompanies this distribution. The full text of the license may be found at # http://opensource.org/licenses/bsd-license.php # # THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, # WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. # import sys import Common.LongFilePathOs as os import re import string import CodeFragmentCollector import FileProfile from CommonDataClass import DataClass import Database from Common import EdkLogger from EccToolError import * import EccGlobalData import MetaDataParser IncludeFileListDict = {} AllIncludeFileListDict = {} IncludePathListDict = {} ComplexTypeDict = {} SUDict = {} IgnoredKeywordList = ['EFI_ERROR'] def GetIgnoredDirListPattern(): skipList = list(EccGlobalData.gConfig.SkipDirList) + ['.svn'] DirString = string.join(skipList, '|') p = re.compile(r'.*[\\/](?:%s)[\\/]?.*' % DirString) return p def GetFuncDeclPattern(): p = re.compile(r'(?:EFIAPI|EFI_BOOT_SERVICE|EFI_RUNTIME_SERVICE)?\s*[_\w]+\s*\(.*\)$', re.DOTALL) return p def GetArrayPattern(): p = re.compile(r'[_\w]*\s*[\[.*\]]+') return p def GetTypedefFuncPointerPattern(): p = re.compile('[_\w\s]*\([\w\s]*\*+\s*[_\w]+\s*\)\s*\(.*\)', re.DOTALL) return p def GetDB(): return EccGlobalData.gDb def GetConfig(): return EccGlobalData.gConfig def PrintErrorMsg(ErrorType, Msg, TableName, ItemId): Msg = Msg.replace('\n', '').replace('\r', '') MsgPartList = Msg.split() Msg = '' for Part in MsgPartList: Msg += Part Msg += ' ' GetDB().TblReport.Insert(ErrorType, OtherMsg=Msg, BelongsToTable=TableName, BelongsToItem=ItemId) def GetIdType(Str): Type = DataClass.MODEL_UNKNOWN Str = Str.replace('#', '# ') List = Str.split() if List[1] == 'include': Type = DataClass.MODEL_IDENTIFIER_INCLUDE elif List[1] == 'define': Type = DataClass.MODEL_IDENTIFIER_MACRO_DEFINE elif List[1] == 'ifdef': Type = DataClass.MODEL_IDENTIFIER_MACRO_IFDEF elif List[1] == 'ifndef': Type = DataClass.MODEL_IDENTIFIER_MACRO_IFNDEF elif List[1] == 'endif': Type = DataClass.MODEL_IDENTIFIER_MACRO_ENDIF elif List[1] == 'pragma': Type = DataClass.MODEL_IDENTIFIER_MACRO_PROGMA else: Type = DataClass.MODEL_UNKNOWN return Type def SuOccurInTypedef (Su, TdList): for Td in TdList: if Su.StartPos[0] == Td.StartPos[0] and Su.EndPos[0] == Td.EndPos[0]: return True return False def GetIdentifierList(): IdList = [] for comment in FileProfile.CommentList: IdComment = DataClass.IdentifierClass(-1, '', '', '', comment.Content, DataClass.MODEL_IDENTIFIER_COMMENT, -1, -1, comment.StartPos[0], comment.StartPos[1], comment.EndPos[0], comment.EndPos[1]) IdList.append(IdComment) for pp in FileProfile.PPDirectiveList: Type = GetIdType(pp.Content) IdPP = DataClass.IdentifierClass(-1, '', '', '', pp.Content, Type, -1, -1, pp.StartPos[0], pp.StartPos[1], pp.EndPos[0], pp.EndPos[1]) IdList.append(IdPP) for pe in FileProfile.PredicateExpressionList: IdPE = DataClass.IdentifierClass(-1, '', '', '', pe.Content, DataClass.MODEL_IDENTIFIER_PREDICATE_EXPRESSION, -1, -1, pe.StartPos[0], pe.StartPos[1], pe.EndPos[0], pe.EndPos[1]) IdList.append(IdPE) FuncDeclPattern = GetFuncDeclPattern() ArrayPattern = GetArrayPattern() for var in FileProfile.VariableDeclarationList: DeclText = var.Declarator.lstrip() FuncPointerPattern = GetTypedefFuncPointerPattern() if FuncPointerPattern.match(DeclText): continue VarNameStartLine = var.NameStartPos[0] VarNameStartColumn = var.NameStartPos[1] FirstChar = DeclText[0] while not FirstChar.isalpha() and FirstChar != '_': if FirstChar == '*': var.Modifier += '*' VarNameStartColumn += 1 DeclText = DeclText.lstrip('*') elif FirstChar == '\r': DeclText = DeclText.lstrip('\r\n').lstrip('\r') VarNameStartLine += 1 VarNameStartColumn = 0 elif FirstChar == '\n': DeclText = DeclText.lstrip('\n') VarNameStartLine += 1 VarNameStartColumn = 0 elif FirstChar == ' ': DeclText = DeclText.lstrip(' ') VarNameStartColumn += 1 elif FirstChar == '\t': DeclText = DeclText.lstrip('\t') VarNameStartColumn += 8 else: DeclText = DeclText[1:] VarNameStartColumn += 1 FirstChar = DeclText[0] var.Declarator = DeclText if FuncDeclPattern.match(var.Declarator): DeclSplitList = var.Declarator.split('(') FuncName = DeclSplitList[0].strip() FuncNamePartList = FuncName.split() if len(FuncNamePartList) > 1: FuncName = FuncNamePartList[-1].strip() NameStart = DeclSplitList[0].rfind(FuncName) var.Declarator = var.Declarator[NameStart:] if NameStart > 0: var.Modifier += ' ' + DeclSplitList[0][0:NameStart] Index = 0 PreChar = '' while Index < NameStart: FirstChar = DeclSplitList[0][Index] if DeclSplitList[0][Index:].startswith('EFIAPI'): Index += 6 VarNameStartColumn += 6 PreChar = '' continue elif FirstChar == '\r': Index += 1 VarNameStartLine += 1 VarNameStartColumn = 0 elif FirstChar == '\n': Index += 1 if PreChar != '\r': VarNameStartLine += 1 VarNameStartColumn = 0 elif FirstChar == ' ': Index += 1 VarNameStartColumn += 1 elif FirstChar == '\t': Index += 1 VarNameStartColumn += 8 else: Index += 1 VarNameStartColumn += 1 PreChar = FirstChar IdVar = DataClass.IdentifierClass(-1, var.Modifier, '', var.Declarator, FuncName, DataClass.MODEL_IDENTIFIER_FUNCTION_DECLARATION, -1, -1, var.StartPos[0], var.StartPos[1], VarNameStartLine, VarNameStartColumn) IdList.append(IdVar) continue if var.Declarator.find('{') == -1: for decl in var.Declarator.split(','): DeclList = decl.split('=') Name = DeclList[0].strip() if ArrayPattern.match(Name): LSBPos = var.Declarator.find('[') var.Modifier += ' ' + Name[LSBPos:] Name = Name[0:LSBPos] IdVar = DataClass.IdentifierClass(-1, var.Modifier, '', Name, (len(DeclList) > 1 and [DeclList[1]]or [''])[0], DataClass.MODEL_IDENTIFIER_VARIABLE, -1, -1, var.StartPos[0], var.StartPos[1], VarNameStartLine, VarNameStartColumn) IdList.append(IdVar) else: DeclList = var.Declarator.split('=') Name = DeclList[0].strip() if ArrayPattern.match(Name): LSBPos = var.Declarator.find('[') var.Modifier += ' ' + Name[LSBPos:] Name = Name[0:LSBPos] IdVar = DataClass.IdentifierClass(-1, var.Modifier, '', Name, (len(DeclList) > 1 and [DeclList[1]]or [''])[0], DataClass.MODEL_IDENTIFIER_VARIABLE, -1, -1, var.StartPos[0], var.StartPos[1], VarNameStartLine, VarNameStartColumn) IdList.append(IdVar) for enum in FileProfile.EnumerationDefinitionList: LBPos = enum.Content.find('{') RBPos = enum.Content.find('}') Name = enum.Content[4:LBPos].strip() Value = enum.Content[LBPos + 1:RBPos] IdEnum = DataClass.IdentifierClass(-1, '', '', Name, Value, DataClass.MODEL_IDENTIFIER_ENUMERATE, -1, -1, enum.StartPos[0], enum.StartPos[1], enum.EndPos[0], enum.EndPos[1]) IdList.append(IdEnum) for su in FileProfile.StructUnionDefinitionList: if SuOccurInTypedef(su, FileProfile.TypedefDefinitionList): continue Type = DataClass.MODEL_IDENTIFIER_STRUCTURE SkipLen = 6 if su.Content.startswith('union'): Type = DataClass.MODEL_IDENTIFIER_UNION SkipLen = 5 LBPos = su.Content.find('{') RBPos = su.Content.find('}') if LBPos == -1 or RBPos == -1: Name = su.Content[SkipLen:].strip() Value = '' else: Name = su.Content[SkipLen:LBPos].strip() Value = su.Content[LBPos:RBPos + 1] IdPE = DataClass.IdentifierClass(-1, '', '', Name, Value, Type, -1, -1, su.StartPos[0], su.StartPos[1], su.EndPos[0], su.EndPos[1]) IdList.append(IdPE) TdFuncPointerPattern = GetTypedefFuncPointerPattern() for td in FileProfile.TypedefDefinitionList: Modifier = '' Name = td.ToType Value = td.FromType if TdFuncPointerPattern.match(td.ToType): Modifier = td.FromType LBPos = td.ToType.find('(') TmpStr = td.ToType[LBPos + 1:].strip() StarPos = TmpStr.find('*') if StarPos != -1: Modifier += ' ' + TmpStr[0:StarPos] while TmpStr[StarPos] == '*': # Modifier += ' ' + '*' StarPos += 1 TmpStr = TmpStr[StarPos:].strip() RBPos = TmpStr.find(')') Name = TmpStr[0:RBPos] Value = 'FP' + TmpStr[RBPos + 1:] else: while Name.startswith('*'): Value += ' ' + '*' Name = Name.lstrip('*').strip() if Name.find('[') != -1: LBPos = Name.find('[') RBPos = Name.rfind(']') Value += Name[LBPos : RBPos + 1] Name = Name[0 : LBPos] IdTd = DataClass.IdentifierClass(-1, Modifier, '', Name, Value, DataClass.MODEL_IDENTIFIER_TYPEDEF, -1, -1, td.StartPos[0], td.StartPos[1], td.EndPos[0], td.EndPos[1]) IdList.append(IdTd) for funcCall in FileProfile.FunctionCallingList: IdFC = DataClass.IdentifierClass(-1, '', '', funcCall.FuncName, funcCall.ParamList, DataClass.MODEL_IDENTIFIER_FUNCTION_CALLING, -1, -1, funcCall.StartPos[0], funcCall.StartPos[1], funcCall.EndPos[0], funcCall.EndPos[1]) IdList.append(IdFC) return IdList def StripNonAlnumChars(Str): StrippedStr = '' for Char in Str: if Char.isalnum() or Char == '_': StrippedStr += Char return StrippedStr def GetParamList(FuncDeclarator, FuncNameLine=0, FuncNameOffset=0): FuncDeclarator = StripComments(FuncDeclarator) ParamIdList = [] #DeclSplitList = FuncDeclarator.split('(') LBPos = FuncDeclarator.find('(') #if len(DeclSplitList) < 2: if LBPos == -1: return ParamIdList #FuncName = DeclSplitList[0] FuncName = FuncDeclarator[0:LBPos] #ParamStr = DeclSplitList[1].rstrip(')') ParamStr = FuncDeclarator[LBPos + 1:].rstrip(')') LineSkipped = 0 OffsetSkipped = 0 TailChar = FuncName[-1] while not TailChar.isalpha() and TailChar != '_': if TailChar == '\n': FuncName = FuncName.rstrip('\r\n').rstrip('\n') LineSkipped += 1 OffsetSkipped = 0 elif TailChar == '\r': FuncName = FuncName.rstrip('\r') LineSkipped += 1 OffsetSkipped = 0 elif TailChar == ' ': FuncName = FuncName.rstrip(' ') OffsetSkipped += 1 elif TailChar == '\t': FuncName = FuncName.rstrip('\t') OffsetSkipped += 8 else: FuncName = FuncName[:-1] TailChar = FuncName[-1] OffsetSkipped += 1 #skip '(' for p in ParamStr.split(','): ListP = p.split() if len(ListP) == 0: continue ParamName = ListP[-1] DeclText = ParamName.strip() RightSpacePos = p.rfind(ParamName) ParamModifier = p[0:RightSpacePos] if ParamName == 'OPTIONAL': if ParamModifier == '': ParamModifier += ' ' + 'OPTIONAL' DeclText = '' else: ParamName = ListP[-2] DeclText = ParamName.strip() RightSpacePos = p.rfind(ParamName) ParamModifier = p[0:RightSpacePos] ParamModifier += 'OPTIONAL' while DeclText.startswith('*'): ParamModifier += ' ' + '*' DeclText = DeclText.lstrip('*').strip() ParamName = DeclText # ignore array length if exists. LBIndex = ParamName.find('[') if LBIndex != -1: ParamName = ParamName[0:LBIndex] Start = RightSpacePos Index = 0 PreChar = '' while Index < Start: FirstChar = p[Index] if FirstChar == '\r': Index += 1 LineSkipped += 1 OffsetSkipped = 0 elif FirstChar == '\n': Index += 1 if PreChar != '\r': LineSkipped += 1 OffsetSkipped = 0 elif FirstChar == ' ': Index += 1 OffsetSkipped += 1 elif FirstChar == '\t': Index += 1 OffsetSkipped += 8 else: Index += 1 OffsetSkipped += 1 PreChar = FirstChar ParamBeginLine = FuncNameLine + LineSkipped ParamBeginOffset = FuncNameOffset + OffsetSkipped Index = Start + len(ParamName) PreChar = '' while Index < len(p): FirstChar = p[Index] if FirstChar == '\r': Index += 1 LineSkipped += 1 OffsetSkipped = 0 elif FirstChar == '\n': Index += 1 if PreChar != '\r': LineSkipped += 1 OffsetSkipped = 0 elif FirstChar == ' ': Index += 1 OffsetSkipped += 1 elif FirstChar == '\t': Index += 1 OffsetSkipped += 8 else: Index += 1 OffsetSkipped += 1 PreChar = FirstChar ParamEndLine = FuncNameLine + LineSkipped ParamEndOffset = FuncNameOffset + OffsetSkipped if ParamName != '...': ParamName = StripNonAlnumChars(ParamName) IdParam = DataClass.IdentifierClass(-1, ParamModifier, '', ParamName, '', DataClass.MODEL_IDENTIFIER_PARAMETER, -1, -1, ParamBeginLine, ParamBeginOffset, ParamEndLine, ParamEndOffset) ParamIdList.append(IdParam) OffsetSkipped += 1 #skip ',' return ParamIdList def GetFunctionList(): FuncObjList = [] for FuncDef in FileProfile.FunctionDefinitionList: ParamIdList = [] DeclText = FuncDef.Declarator.lstrip() FuncNameStartLine = FuncDef.NamePos[0] FuncNameStartColumn = FuncDef.NamePos[1] FirstChar = DeclText[0] while not FirstChar.isalpha() and FirstChar != '_': if FirstChar == '*': FuncDef.Modifier += '*' FuncNameStartColumn += 1 DeclText = DeclText.lstrip('*') elif FirstChar == '\r': DeclText = DeclText.lstrip('\r\n').lstrip('\r') FuncNameStartLine += 1 FuncNameStartColumn = 0 elif FirstChar == '\n': DeclText = DeclText.lstrip('\n') FuncNameStartLine += 1 FuncNameStartColumn = 0 elif FirstChar == ' ': DeclText = DeclText.lstrip(' ') FuncNameStartColumn += 1 elif FirstChar == '\t': DeclText = DeclText.lstrip('\t') FuncNameStartColumn += 8 else: DeclText = DeclText[1:] FuncNameStartColumn += 1 FirstChar = DeclText[0] FuncDef.Declarator = DeclText DeclSplitList = FuncDef.Declarator.split('(') if len(DeclSplitList) < 2: continue FuncName = DeclSplitList[0] FuncNamePartList = FuncName.split() if len(FuncNamePartList) > 1: FuncName = FuncNamePartList[-1] NameStart = DeclSplitList[0].rfind(FuncName) if NameStart > 0: FuncDef.Modifier += ' ' + DeclSplitList[0][0:NameStart] Index = 0 PreChar = '' while Index < NameStart: FirstChar = DeclSplitList[0][Index] if DeclSplitList[0][Index:].startswith('EFIAPI'): Index += 6 FuncNameStartColumn += 6 PreChar = '' continue elif FirstChar == '\r': Index += 1 FuncNameStartLine += 1 FuncNameStartColumn = 0 elif FirstChar == '\n': Index += 1 if PreChar != '\r': FuncNameStartLine += 1 FuncNameStartColumn = 0 elif FirstChar == ' ': Index += 1 FuncNameStartColumn += 1 elif FirstChar == '\t': Index += 1 FuncNameStartColumn += 8 else: Index += 1 FuncNameStartColumn += 1 PreChar = FirstChar FuncObj = DataClass.FunctionClass(-1, FuncDef.Declarator, FuncDef.Modifier, FuncName.strip(), '', FuncDef.StartPos[0], FuncDef.StartPos[1], FuncDef.EndPos[0], FuncDef.EndPos[1], FuncDef.LeftBracePos[0], FuncDef.LeftBracePos[1], -1, ParamIdList, [], FuncNameStartLine, FuncNameStartColumn) FuncObjList.append(FuncObj) return FuncObjList def GetFileModificationTimeFromDB(FullFileName): TimeValue = 0.0 Db = GetDB() SqlStatement = """ select TimeStamp from File where FullPath = \'%s\' """ % (FullFileName) ResultSet = Db.TblFile.Exec(SqlStatement) for Result in ResultSet: TimeValue = Result[0] return TimeValue def CollectSourceCodeDataIntoDB(RootDir): FileObjList = [] tuple = os.walk(RootDir) IgnoredPattern = GetIgnoredDirListPattern() ParseErrorFileList = [] for dirpath, dirnames, filenames in tuple: if IgnoredPattern.match(dirpath.upper()): continue for Dir in dirnames: Dirname = os.path.join(dirpath, Dir) if os.path.islink(Dirname): Dirname = os.path.realpath(Dirname) if os.path.isdir(Dirname): # symlinks to directories are treated as directories dirnames.remove(Dir) dirnames.append(Dirname) for f in filenames: if f.lower() in EccGlobalData.gConfig.SkipFileList: continue collector = None FullName = os.path.normpath(os.path.join(dirpath, f)) model = DataClass.MODEL_FILE_OTHERS if os.path.splitext(f)[1] in ('.h', '.c'): EdkLogger.info("Parsing " + FullName) model = f.endswith('c') and DataClass.MODEL_FILE_C or DataClass.MODEL_FILE_H collector = CodeFragmentCollector.CodeFragmentCollector(FullName) try: collector.ParseFile() except UnicodeError: ParseErrorFileList.append(FullName) collector.CleanFileProfileBuffer() collector.ParseFileWithClearedPPDirective() # collector.PrintFragments() BaseName = os.path.basename(f) DirName = os.path.dirname(FullName) Ext = os.path.splitext(f)[1].lstrip('.') ModifiedTime = os.path.getmtime(FullName) FileObj = DataClass.FileClass(-1, BaseName, Ext, DirName, FullName, model, ModifiedTime, GetFunctionList(), GetIdentifierList(), []) FileObjList.append(FileObj) if collector: collector.CleanFileProfileBuffer() if len(ParseErrorFileList) > 0: EdkLogger.info("Found unrecoverable error during parsing:\n\t%s\n" % "\n\t".join(ParseErrorFileList)) Db = GetDB() for file in FileObjList: if file.ExtName.upper() not in ['INF', 'DEC', 'DSC', 'FDF']: Db.InsertOneFile(file) Db.UpdateIdentifierBelongsToFunction() def GetTableID(FullFileName, ErrorMsgList=None): if ErrorMsgList == None: ErrorMsgList = [] Db = GetDB() SqlStatement = """ select ID from File where FullPath like '%s' """ % FullFileName ResultSet = Db.TblFile.Exec(SqlStatement) FileID = -1 for Result in ResultSet: if FileID != -1: ErrorMsgList.append('Duplicate file ID found in DB for file %s' % FullFileName) return - 2 FileID = Result[0] if FileID == -1: ErrorMsgList.append('NO file ID found in DB for file %s' % FullFileName) return - 1 return FileID def GetIncludeFileList(FullFileName): if os.path.splitext(FullFileName)[1].upper() not in ('.H'): return [] IFList = IncludeFileListDict.get(FullFileName) if IFList != None: return IFList FileID = GetTableID(FullFileName) if FileID < 0: return [] Db = GetDB() FileTable = 'Identifier' + str(FileID) SqlStatement = """ select Value from %s where Model = %d """ % (FileTable, DataClass.MODEL_IDENTIFIER_INCLUDE) ResultSet = Db.TblFile.Exec(SqlStatement) IncludeFileListDict[FullFileName] = ResultSet return ResultSet def GetFullPathOfIncludeFile(Str, IncludePathList): for IncludePath in IncludePathList: FullPath = os.path.join(IncludePath, Str) FullPath = os.path.normpath(FullPath) if os.path.exists(FullPath): return FullPath return None def GetAllIncludeFiles(FullFileName): if AllIncludeFileListDict.get(FullFileName) != None: return AllIncludeFileListDict.get(FullFileName) FileDirName = os.path.dirname(FullFileName) IncludePathList = IncludePathListDict.get(FileDirName) if IncludePathList == None: IncludePathList = MetaDataParser.GetIncludeListOfFile(EccGlobalData.gWorkspace, FullFileName, GetDB()) if FileDirName not in IncludePathList: IncludePathList.insert(0, FileDirName) IncludePathListDict[FileDirName] = IncludePathList IncludeFileQueue = [] for IncludeFile in GetIncludeFileList(FullFileName): FileName = IncludeFile[0].lstrip('#').strip() FileName = FileName.lstrip('include').strip() FileName = FileName.strip('\"') FileName = FileName.lstrip('<').rstrip('>').strip() FullPath = GetFullPathOfIncludeFile(FileName, IncludePathList) if FullPath != None: IncludeFileQueue.append(FullPath) i = 0 while i < len(IncludeFileQueue): for IncludeFile in GetIncludeFileList(IncludeFileQueue[i]): FileName = IncludeFile[0].lstrip('#').strip() FileName = FileName.lstrip('include').strip() FileName = FileName.strip('\"') FileName = FileName.lstrip('<').rstrip('>').strip() FullPath = GetFullPathOfIncludeFile(FileName, IncludePathList) if FullPath != None and FullPath not in IncludeFileQueue: IncludeFileQueue.insert(i + 1, FullPath) i += 1 AllIncludeFileListDict[FullFileName] = IncludeFileQueue return IncludeFileQueue def GetPredicateListFromPredicateExpStr(PES): PredicateList = [] i = 0 PredicateBegin = 0 #PredicateEnd = 0 LogicOpPos = -1 p = GetFuncDeclPattern() while i < len(PES) - 1: if (PES[i].isalnum() or PES[i] == '_' or PES[i] == '*') and LogicOpPos > PredicateBegin: PredicateBegin = i if (PES[i] == '&' and PES[i + 1] == '&') or (PES[i] == '|' and PES[i + 1] == '|'): LogicOpPos = i Exp = PES[PredicateBegin:i].strip() # Exp may contain '.' or '->' TmpExp = Exp.replace('.', '').replace('->', '') if p.match(TmpExp): PredicateList.append(Exp) else: PredicateList.append(Exp.rstrip(';').rstrip(')').strip()) i += 1 if PredicateBegin > LogicOpPos: while PredicateBegin < len(PES): if PES[PredicateBegin].isalnum() or PES[PredicateBegin] == '_' or PES[PredicateBegin] == '*': break PredicateBegin += 1 Exp = PES[PredicateBegin:len(PES)].strip() # Exp may contain '.' or '->' TmpExp = Exp.replace('.', '').replace('->', '') if p.match(TmpExp): PredicateList.append(Exp) else: PredicateList.append(Exp.rstrip(';').rstrip(')').strip()) return PredicateList def GetCNameList(Lvalue, StarList=[]): Lvalue += ' ' i = 0 SearchBegin = 0 VarStart = -1 VarEnd = -1 VarList = [] while SearchBegin < len(Lvalue): while i < len(Lvalue): if Lvalue[i].isalnum() or Lvalue[i] == '_': if VarStart == -1: VarStart = i VarEnd = i i += 1 elif VarEnd != -1: VarList.append(Lvalue[VarStart:VarEnd + 1]) i += 1 break else: if VarStart == -1 and Lvalue[i] == '*': StarList.append('*') i += 1 if VarEnd == -1: break DotIndex = Lvalue[VarEnd:].find('.') ArrowIndex = Lvalue[VarEnd:].find('->') if DotIndex == -1 and ArrowIndex == -1: break elif DotIndex == -1 and ArrowIndex != -1: SearchBegin = VarEnd + ArrowIndex elif ArrowIndex == -1 and DotIndex != -1: SearchBegin = VarEnd + DotIndex else: SearchBegin = VarEnd + ((DotIndex < ArrowIndex) and DotIndex or ArrowIndex) i = SearchBegin VarStart = -1 VarEnd = -1 return VarList def SplitPredicateByOp(Str, Op, IsFuncCalling=False): Name = Str.strip() Value = None if IsFuncCalling: Index = 0 LBFound = False UnmatchedLBCount = 0 while Index < len(Str): while not LBFound and Str[Index] != '_' and not Str[Index].isalnum(): Index += 1 while not LBFound and (Str[Index].isalnum() or Str[Index] == '_'): Index += 1 # maybe type-cast at the begining, skip it. RemainingStr = Str[Index:].lstrip() if RemainingStr.startswith(')') and not LBFound: Index += 1 continue if RemainingStr.startswith('(') and not LBFound: LBFound = True if Str[Index] == '(': UnmatchedLBCount += 1 Index += 1 continue if Str[Index] == ')': UnmatchedLBCount -= 1 Index += 1 if UnmatchedLBCount == 0: break continue Index += 1 if UnmatchedLBCount > 0: return [Name] IndexInRemainingStr = Str[Index:].find(Op) if IndexInRemainingStr == -1: return [Name] Name = Str[0:Index + IndexInRemainingStr].strip() Value = Str[Index + IndexInRemainingStr + len(Op):].strip().strip(')') return [Name, Value] TmpStr = Str.rstrip(';').rstrip(')') while True: Index = TmpStr.rfind(Op) if Index == -1: return [Name] if Str[Index - 1].isalnum() or Str[Index - 1].isspace() or Str[Index - 1] == ')' or Str[Index - 1] == ']': Name = Str[0:Index].strip() Value = Str[Index + len(Op):].strip() return [Name, Value] TmpStr = Str[0:Index - 1] def SplitPredicateStr(Str): Str = Str.lstrip('(') IsFuncCalling = False p = GetFuncDeclPattern() TmpStr = Str.replace('.', '').replace('->', '') if p.match(TmpStr): IsFuncCalling = True PredPartList = SplitPredicateByOp(Str, '==', IsFuncCalling) if len(PredPartList) > 1: return [PredPartList, '=='] PredPartList = SplitPredicateByOp(Str, '!=', IsFuncCalling) if len(PredPartList) > 1: return [PredPartList, '!='] PredPartList = SplitPredicateByOp(Str, '>=', IsFuncCalling) if len(PredPartList) > 1: return [PredPartList, '>='] PredPartList = SplitPredicateByOp(Str, '<=', IsFuncCalling) if len(PredPartList) > 1: return [PredPartList, '<='] PredPartList = SplitPredicateByOp(Str, '>', IsFuncCalling) if len(PredPartList) > 1: return [PredPartList, '>'] PredPartList = SplitPredicateByOp(Str, '<', IsFuncCalling) if len(PredPartList) > 1: return [PredPartList, '<'] return [[Str, None], None] def GetFuncContainsPE(ExpLine, ResultSet): for Result in ResultSet: if Result[0] < ExpLine and Result[1] > ExpLine: return Result return None def PatternInModifier(Modifier, SubStr): PartList = Modifier.split() for Part in PartList: if Part == SubStr: return True return False def GetDataTypeFromModifier(ModifierStr): MList = ModifierStr.split() ReturnType = '' for M in MList: if M in EccGlobalData.gConfig.ModifierList: continue # remove array sufix if M.startswith('[') or M.endswith(']'): continue ReturnType += M + ' ' ReturnType = ReturnType.strip() if len(ReturnType) == 0: ReturnType = 'VOID' return ReturnType def DiffModifier(Str1, Str2): PartList1 = Str1.split() PartList2 = Str2.split() if PartList1 == PartList2: return False else: return True def GetTypedefDict(FullFileName): Dict = ComplexTypeDict.get(FullFileName) if Dict != None: return Dict FileID = GetTableID(FullFileName) FileTable = 'Identifier' + str(FileID) Db = GetDB() SqlStatement = """ select Modifier, Name, Value, ID from %s where Model = %d """ % (FileTable, DataClass.MODEL_IDENTIFIER_TYPEDEF) ResultSet = Db.TblFile.Exec(SqlStatement) Dict = {} for Result in ResultSet: if len(Result[0]) == 0: Dict[Result[1]] = Result[2] IncludeFileList = GetAllIncludeFiles(FullFileName) for F in IncludeFileList: FileID = GetTableID(F) if FileID < 0: continue FileTable = 'Identifier' + str(FileID) SqlStatement = """ select Modifier, Name, Value, ID from %s where Model = %d """ % (FileTable, DataClass.MODEL_IDENTIFIER_TYPEDEF) ResultSet = Db.TblFile.Exec(SqlStatement) for Result in ResultSet: if not Result[2].startswith('FP ('): Dict[Result[1]] = Result[2] else: if len(Result[0]) == 0: Dict[Result[1]] = 'VOID' else: Dict[Result[1]] = GetDataTypeFromModifier(Result[0]) ComplexTypeDict[FullFileName] = Dict return Dict def GetSUDict(FullFileName): Dict = SUDict.get(FullFileName) if Dict != None: return Dict FileID = GetTableID(FullFileName) FileTable = 'Identifier' + str(FileID) Db = GetDB() SqlStatement = """ select Name, Value, ID from %s where Model = %d or Model = %d """ % (FileTable, DataClass.MODEL_IDENTIFIER_STRUCTURE, DataClass.MODEL_IDENTIFIER_UNION) ResultSet = Db.TblFile.Exec(SqlStatement) Dict = {} for Result in ResultSet: if len(Result[1]) > 0: Dict[Result[0]] = Result[1] IncludeFileList = GetAllIncludeFiles(FullFileName) for F in IncludeFileList: FileID = GetTableID(F) if FileID < 0: continue FileTable = 'Identifier' + str(FileID) SqlStatement = """ select Name, Value, ID from %s where Model = %d or Model = %d """ % (FileTable, DataClass.MODEL_IDENTIFIER_STRUCTURE, DataClass.MODEL_IDENTIFIER_UNION) ResultSet = Db.TblFile.Exec(SqlStatement) for Result in ResultSet: if len(Result[1]) > 0: Dict[Result[0]] = Result[1] SUDict[FullFileName] = Dict return Dict def StripComments(Str): Str += ' ' ListFromStr = list(Str) InComment = False DoubleSlashComment = False Index = 0 while Index < len(ListFromStr): # meet new line, then no longer in a comment for // if ListFromStr[Index] == '\n': if InComment and DoubleSlashComment: InComment = False DoubleSlashComment = False Index += 1 # check for */ comment end elif InComment and not DoubleSlashComment and ListFromStr[Index] == '*' and ListFromStr[Index + 1] == '/': ListFromStr[Index] = ' ' Index += 1 ListFromStr[Index] = ' ' Index += 1 InComment = False # set comments to spaces elif InComment: ListFromStr[Index] = ' ' Index += 1 # check for // comment elif ListFromStr[Index] == '/' and ListFromStr[Index + 1] == '/' and ListFromStr[Index + 2] != '\n': InComment = True DoubleSlashComment = True # check for /* comment start elif ListFromStr[Index] == '/' and ListFromStr[Index + 1] == '*': ListFromStr[Index] = ' ' Index += 1 ListFromStr[Index] = ' ' Index += 1 InComment = True else: Index += 1 # restore from List to String Str = "".join(ListFromStr) Str = Str.rstrip(' ') return Str def GetFinalTypeValue(Type, FieldName, TypedefDict, SUDict): Value = TypedefDict.get(Type) if Value == None: Value = SUDict.get(Type) if Value == None: return None LBPos = Value.find('{') while LBPos == -1: FTList = Value.split() for FT in FTList: if FT not in ('struct', 'union'): Value = TypedefDict.get(FT) if Value == None: Value = SUDict.get(FT) break if Value == None: return None LBPos = Value.find('{') # RBPos = Value.find('}') Fields = Value[LBPos + 1:] Fields = StripComments(Fields) FieldsList = Fields.split(';') for Field in FieldsList: Field = Field.strip() Index = Field.rfind(FieldName) if Index < 1: continue if not Field[Index - 1].isalnum(): if Index + len(FieldName) == len(Field): Type = GetDataTypeFromModifier(Field[0:Index]) return Type.strip() else: # For the condition that the field in struct is an array with [] sufixes... if not Field[Index + len(FieldName)].isalnum(): Type = GetDataTypeFromModifier(Field[0:Index]) return Type.strip() return None def GetRealType(Type, TypedefDict, TargetType=None): if TargetType != None and Type == TargetType: return Type while TypedefDict.get(Type): Type = TypedefDict.get(Type) if TargetType != None and Type == TargetType: return Type return Type def GetTypeInfo(RefList, Modifier, FullFileName, TargetType=None): TypedefDict = GetTypedefDict(FullFileName) SUDict = GetSUDict(FullFileName) Type = GetDataTypeFromModifier(Modifier).replace('*', '').strip() Type = Type.split()[-1] Index = 0 while Index < len(RefList): FieldName = RefList[Index] FromType = GetFinalTypeValue(Type, FieldName, TypedefDict, SUDict) if FromType == None: return None # we want to determine the exact type. if TargetType != None: Type = FromType.split()[0] # we only want to check if it is a pointer else: Type = FromType if Type.find('*') != -1 and Index == len(RefList) - 1: return Type Type = FromType.split()[0] Index += 1 Type = GetRealType(Type, TypedefDict, TargetType) return Type def GetVarInfo(PredVarList, FuncRecord, FullFileName, IsFuncCall=False, TargetType=None, StarList=None): PredVar = PredVarList[0] FileID = GetTableID(FullFileName) Db = GetDB() FileTable = 'Identifier' + str(FileID) # search variable in include files # it is a function call, search function declarations and definitions if IsFuncCall: SqlStatement = """ select Modifier, ID from %s where Model = %d and Value = \'%s\' """ % (FileTable, DataClass.MODEL_IDENTIFIER_FUNCTION_DECLARATION, PredVar) ResultSet = Db.TblFile.Exec(SqlStatement) for Result in ResultSet: Type = GetDataTypeFromModifier(Result[0]).split()[-1] TypedefDict = GetTypedefDict(FullFileName) Type = GetRealType(Type, TypedefDict, TargetType) return Type IncludeFileList = GetAllIncludeFiles(FullFileName) for F in IncludeFileList: FileID = GetTableID(F) if FileID < 0: continue FileTable = 'Identifier' + str(FileID) SqlStatement = """ select Modifier, ID from %s where Model = %d and Value = \'%s\' """ % (FileTable, DataClass.MODEL_IDENTIFIER_FUNCTION_DECLARATION, PredVar) ResultSet = Db.TblFile.Exec(SqlStatement) for Result in ResultSet: Type = GetDataTypeFromModifier(Result[0]).split()[-1] TypedefDict = GetTypedefDict(FullFileName) Type = GetRealType(Type, TypedefDict, TargetType) return Type FileID = GetTableID(FullFileName) SqlStatement = """ select Modifier, ID from Function where BelongsToFile = %d and Name = \'%s\' """ % (FileID, PredVar) ResultSet = Db.TblFile.Exec(SqlStatement) for Result in ResultSet: Type = GetDataTypeFromModifier(Result[0]).split()[-1] TypedefDict = GetTypedefDict(FullFileName) Type = GetRealType(Type, TypedefDict, TargetType) return Type for F in IncludeFileList: FileID = GetTableID(F) if FileID < 0: continue FileTable = 'Identifier' + str(FileID) SqlStatement = """ select Modifier, ID from Function where BelongsToFile = %d and Name = \'%s\' """ % (FileID, PredVar) ResultSet = Db.TblFile.Exec(SqlStatement) for Result in ResultSet: Type = GetDataTypeFromModifier(Result[0]).split()[-1] TypedefDict = GetTypedefDict(FullFileName) Type = GetRealType(Type, TypedefDict, TargetType) return Type return None # really variable, search local variable first SqlStatement = """ select Modifier, ID from %s where Model = %d and Name = \'%s\' and StartLine >= %d and StartLine <= %d """ % (FileTable, DataClass.MODEL_IDENTIFIER_VARIABLE, PredVar, FuncRecord[0], FuncRecord[1]) ResultSet = Db.TblFile.Exec(SqlStatement) VarFound = False for Result in ResultSet: if len(PredVarList) > 1: Type = GetTypeInfo(PredVarList[1:], Result[0], FullFileName, TargetType) return Type else: # Type = GetDataTypeFromModifier(Result[0]).split()[-1] TypeList = GetDataTypeFromModifier(Result[0]).split() Type = TypeList[-1] if len(TypeList) > 1 and StarList != None: for Star in StarList: Type = Type.strip() Type = Type.rstrip(Star) # Get real type after de-reference pointers. if len(Type.strip()) == 0: Type = TypeList[-2] TypedefDict = GetTypedefDict(FullFileName) Type = GetRealType(Type, TypedefDict, TargetType) return Type # search function parameters second ParamList = GetParamList(FuncRecord[2]) for Param in ParamList: if Param.Name.strip() == PredVar: if len(PredVarList) > 1: Type = GetTypeInfo(PredVarList[1:], Param.Modifier, FullFileName, TargetType) return Type else: TypeList = GetDataTypeFromModifier(Param.Modifier).split() Type = TypeList[-1] if Type == '*' and len(TypeList) >= 2: Type = TypeList[-2] if len(TypeList) > 1 and StarList != None: for Star in StarList: Type = Type.strip() Type = Type.rstrip(Star) # Get real type after de-reference pointers. if len(Type.strip()) == 0: Type = TypeList[-2] TypedefDict = GetTypedefDict(FullFileName) Type = GetRealType(Type, TypedefDict, TargetType) return Type # search global variable next SqlStatement = """ select Modifier, ID from %s where Model = %d and Name = \'%s\' and BelongsToFunction = -1 """ % (FileTable, DataClass.MODEL_IDENTIFIER_VARIABLE, PredVar) ResultSet = Db.TblFile.Exec(SqlStatement) for Result in ResultSet: if len(PredVarList) > 1: Type = GetTypeInfo(PredVarList[1:], Result[0], FullFileName, TargetType) return Type else: TypeList = GetDataTypeFromModifier(Result[0]).split() Type = TypeList[-1] if len(TypeList) > 1 and StarList != None: for Star in StarList: Type = Type.strip() Type = Type.rstrip(Star) # Get real type after de-reference pointers. if len(Type.strip()) == 0: Type = TypeList[-2] TypedefDict = GetTypedefDict(FullFileName) Type = GetRealType(Type, TypedefDict, TargetType) return Type IncludeFileList = GetAllIncludeFiles(FullFileName) for F in IncludeFileList: FileID = GetTableID(F) if FileID < 0: continue FileTable = 'Identifier' + str(FileID) SqlStatement = """ select Modifier, ID from %s where Model = %d and BelongsToFunction = -1 and Name = \'%s\' """ % (FileTable, DataClass.MODEL_IDENTIFIER_VARIABLE, PredVar) ResultSet = Db.TblFile.Exec(SqlStatement) for Result in ResultSet: if len(PredVarList) > 1: Type = GetTypeInfo(PredVarList[1:], Result[0], FullFileName, TargetType) return Type else: TypeList = GetDataTypeFromModifier(Result[0]).split() Type = TypeList[-1] if len(TypeList) > 1 and StarList != None: for Star in StarList: Type = Type.strip() Type = Type.rstrip(Star) # Get real type after de-reference pointers. if len(Type.strip()) == 0: Type = TypeList[-2] TypedefDict = GetTypedefDict(FullFileName) Type = GetRealType(Type, TypedefDict, TargetType) return Type def GetTypeFromArray(Type, Var): Count = Var.count('[') while Count > 0: Type = Type.strip() Type = Type.rstrip('*') Count = Count - 1 return Type def CheckFuncLayoutReturnType(FullFileName): ErrorMsgList = [] FileID = GetTableID(FullFileName, ErrorMsgList) if FileID < 0: return ErrorMsgList Db = GetDB() FileTable = 'Identifier' + str(FileID) SqlStatement = """ select Modifier, ID, StartLine, StartColumn, EndLine, Value from %s where Model = %d """ % (FileTable, DataClass.MODEL_IDENTIFIER_FUNCTION_DECLARATION) ResultSet = Db.TblFile.Exec(SqlStatement) for Result in ResultSet: ReturnType = GetDataTypeFromModifier(Result[0]) TypeStart = ReturnType.split()[0] FuncName = Result[5] if EccGlobalData.gException.IsException(ERROR_C_FUNCTION_LAYOUT_CHECK_RETURN_TYPE, FuncName): continue Result0 = Result[0] if Result0.upper().startswith('STATIC'): Result0 = Result0[6:].strip() Index = Result0.find(TypeStart) if Index != 0 or Result[3] != 0: PrintErrorMsg(ERROR_C_FUNCTION_LAYOUT_CHECK_RETURN_TYPE, '[%s] Return Type should appear at the start of line' % FuncName, FileTable, Result[1]) if Result[2] == Result[4]: PrintErrorMsg(ERROR_C_FUNCTION_LAYOUT_CHECK_RETURN_TYPE, '[%s] Return Type should appear on its own line' % FuncName, FileTable, Result[1]) SqlStatement = """ select Modifier, ID, StartLine, StartColumn, FunNameStartLine, Name from Function where BelongsToFile = %d """ % (FileID) ResultSet = Db.TblFile.Exec(SqlStatement) for Result in ResultSet: ReturnType = GetDataTypeFromModifier(Result[0]) TypeStart = ReturnType.split()[0] FuncName = Result[5] if EccGlobalData.gException.IsException(ERROR_C_FUNCTION_LAYOUT_CHECK_RETURN_TYPE, FuncName): continue Result0 = Result[0] if Result0.upper().startswith('STATIC'): Result0 = Result0[6:].strip() Index = Result0.find(ReturnType) if Index != 0 or Result[3] != 0: PrintErrorMsg(ERROR_C_FUNCTION_LAYOUT_CHECK_RETURN_TYPE, '[%s] Return Type should appear at the start of line' % FuncName, 'Function', Result[1]) def CheckFuncLayoutModifier(FullFileName): ErrorMsgList = [] FileID = GetTableID(FullFileName, ErrorMsgList) if FileID < 0: return ErrorMsgList Db = GetDB() FileTable = 'Identifier' + str(FileID) SqlStatement = """ select Modifier, ID from %s where Model = %d """ % (FileTable, DataClass.MODEL_IDENTIFIER_FUNCTION_DECLARATION) ResultSet = Db.TblFile.Exec(SqlStatement) for Result in ResultSet: ReturnType = GetDataTypeFromModifier(Result[0]) TypeStart = ReturnType.split()[0] Result0 = Result[0] if Result0.upper().startswith('STATIC'): Result0 = Result0[6:].strip() Index = Result0.find(TypeStart) if Index != 0: PrintErrorMsg(ERROR_C_FUNCTION_LAYOUT_CHECK_OPTIONAL_FUNCTIONAL_MODIFIER, '', FileTable, Result[1]) SqlStatement = """ select Modifier, ID from Function where BelongsToFile = %d """ % (FileID) ResultSet = Db.TblFile.Exec(SqlStatement) for Result in ResultSet: ReturnType = GetDataTypeFromModifier(Result[0]) TypeStart = ReturnType.split()[0] Result0 = Result[0] if Result0.upper().startswith('STATIC'): Result0 = Result0[6:].strip() Index = Result0.find(TypeStart) if Index != 0: PrintErrorMsg(ERROR_C_FUNCTION_LAYOUT_CHECK_OPTIONAL_FUNCTIONAL_MODIFIER, '', 'Function', Result[1]) def CheckFuncLayoutName(FullFileName): ErrorMsgList = [] # Parameter variable format pattern. Pattern = re.compile(r'^[A-Z]+\S*[a-z]\S*$') ParamIgnoreList = ('VOID', '...') FileID = GetTableID(FullFileName, ErrorMsgList) if FileID < 0: return ErrorMsgList Db = GetDB() FileTable = 'Identifier' + str(FileID) SqlStatement = """ select Name, ID, EndColumn, Value from %s where Model = %d """ % (FileTable, DataClass.MODEL_IDENTIFIER_FUNCTION_DECLARATION) ResultSet = Db.TblFile.Exec(SqlStatement) for Result in ResultSet: FuncName = Result[3] if EccGlobalData.gException.IsException(ERROR_C_FUNCTION_LAYOUT_CHECK_FUNCTION_NAME, FuncName): continue if Result[2] != 0: PrintErrorMsg(ERROR_C_FUNCTION_LAYOUT_CHECK_FUNCTION_NAME, 'Function name [%s] should appear at the start of a line' % FuncName, FileTable, Result[1]) ParamList = GetParamList(Result[0]) if len(ParamList) == 0: continue StartLine = 0 for Param in ParamList: if Param.StartLine <= StartLine: PrintErrorMsg(ERROR_C_FUNCTION_LAYOUT_CHECK_FUNCTION_NAME, 'Parameter %s should be in its own line.' % Param.Name, FileTable, Result[1]) if Param.StartLine - StartLine > 1: PrintErrorMsg(ERROR_C_FUNCTION_LAYOUT_CHECK_FUNCTION_NAME, 'Empty line appears before Parameter %s.' % Param.Name, FileTable, Result[1]) if not Pattern.match(Param.Name) and not Param.Name in ParamIgnoreList and not EccGlobalData.gException.IsException(ERROR_NAMING_CONVENTION_CHECK_VARIABLE_NAME, Param.Name): PrintErrorMsg(ERROR_NAMING_CONVENTION_CHECK_VARIABLE_NAME, 'Parameter [%s] NOT follow naming convention.' % Param.Name, FileTable, Result[1]) StartLine = Param.StartLine if not Result[0].endswith('\n )') and not Result[0].endswith('\r )'): PrintErrorMsg(ERROR_C_FUNCTION_LAYOUT_CHECK_FUNCTION_NAME, '\')\' should be on a new line and indented two spaces', FileTable, Result[1]) SqlStatement = """ select Modifier, ID, FunNameStartColumn, Name from Function where BelongsToFile = %d """ % (FileID) ResultSet = Db.TblFile.Exec(SqlStatement) for Result in ResultSet: FuncName = Result[3] if EccGlobalData.gException.IsException(ERROR_C_FUNCTION_LAYOUT_CHECK_FUNCTION_NAME, FuncName): continue if Result[2] != 0: PrintErrorMsg(ERROR_C_FUNCTION_LAYOUT_CHECK_FUNCTION_NAME, 'Function name [%s] should appear at the start of a line' % FuncName, 'Function', Result[1]) ParamList = GetParamList(Result[0]) if len(ParamList) == 0: continue StartLine = 0 for Param in ParamList: if Param.StartLine <= StartLine: PrintErrorMsg(ERROR_C_FUNCTION_LAYOUT_CHECK_FUNCTION_NAME, 'Parameter %s should be in its own line.' % Param.Name, 'Function', Result[1]) if Param.StartLine - StartLine > 1: PrintErrorMsg(ERROR_C_FUNCTION_LAYOUT_CHECK_FUNCTION_NAME, 'Empty line appears before Parameter %s.' % Param.Name, 'Function', Result[1]) if not Pattern.match(Param.Name) and not Param.Name in ParamIgnoreList and not EccGlobalData.gException.IsException(ERROR_NAMING_CONVENTION_CHECK_VARIABLE_NAME, Param.Name): PrintErrorMsg(ERROR_NAMING_CONVENTION_CHECK_VARIABLE_NAME, 'Parameter [%s] NOT follow naming convention.' % Param.Name, FileTable, Result[1]) StartLine = Param.StartLine if not Result[0].endswith('\n )') and not Result[0].endswith('\r )'): PrintErrorMsg(ERROR_C_FUNCTION_LAYOUT_CHECK_FUNCTION_NAME, '\')\' should be on a new line and indented two spaces', 'Function', Result[1]) def CheckFuncLayoutPrototype(FullFileName): ErrorMsgList = [] FileID = GetTableID(FullFileName, ErrorMsgList) if FileID < 0: return ErrorMsgList FileTable = 'Identifier' + str(FileID) Db = GetDB() SqlStatement = """ select Modifier, Header, Name, ID from Function where BelongsToFile = %d """ % (FileID) ResultSet = Db.TblFile.Exec(SqlStatement) if len(ResultSet) == 0: return ErrorMsgList FuncDefList = [] for Result in ResultSet: FuncDefList.append(Result) SqlStatement = """ select Modifier, Name, ID from %s where Model = %d """ % (FileTable, DataClass.MODEL_IDENTIFIER_FUNCTION_DECLARATION) ResultSet = Db.TblFile.Exec(SqlStatement) FuncDeclList = [] for Result in ResultSet: FuncDeclList.append(Result) UndeclFuncList = [] for FuncDef in FuncDefList: FuncName = FuncDef[2].strip() FuncModifier = FuncDef[0] FuncDefHeader = FuncDef[1] for FuncDecl in FuncDeclList: LBPos = FuncDecl[1].find('(') DeclName = FuncDecl[1][0:LBPos].strip() DeclModifier = FuncDecl[0] if DeclName == FuncName: if DiffModifier(FuncModifier, DeclModifier) and not EccGlobalData.gException.IsException(ERROR_C_FUNCTION_LAYOUT_CHECK_FUNCTION_PROTO_TYPE, FuncName): PrintErrorMsg(ERROR_C_FUNCTION_LAYOUT_CHECK_FUNCTION_PROTO_TYPE, 'Function [%s] modifier different with prototype.' % FuncName, 'Function', FuncDef[3]) ParamListOfDef = GetParamList(FuncDefHeader) ParamListOfDecl = GetParamList(FuncDecl[1]) if len(ParamListOfDef) != len(ParamListOfDecl) and not EccGlobalData.gException.IsException(ERROR_C_FUNCTION_LAYOUT_CHECK_FUNCTION_PROTO_TYPE_2, FuncName): PrintErrorMsg(ERROR_C_FUNCTION_LAYOUT_CHECK_FUNCTION_PROTO_TYPE_2, 'Parameter number different in function [%s].' % FuncName, 'Function', FuncDef[3]) break Index = 0 while Index < len(ParamListOfDef): if DiffModifier(ParamListOfDef[Index].Modifier, ParamListOfDecl[Index].Modifier) and not EccGlobalData.gException.IsException(ERROR_C_FUNCTION_LAYOUT_CHECK_FUNCTION_PROTO_TYPE_3, FuncName): PrintErrorMsg(ERROR_C_FUNCTION_LAYOUT_CHECK_FUNCTION_PROTO_TYPE_3, 'Parameter %s has different modifier with prototype in function [%s].' % (ParamListOfDef[Index].Name, FuncName), 'Function', FuncDef[3]) Index += 1 break else: UndeclFuncList.append(FuncDef) IncludeFileList = GetAllIncludeFiles(FullFileName) FuncDeclList = [] for F in IncludeFileList: FileID = GetTableID(F, ErrorMsgList) if FileID < 0: continue FileTable = 'Identifier' + str(FileID) SqlStatement = """ select Modifier, Name, ID from %s where Model = %d """ % (FileTable, DataClass.MODEL_IDENTIFIER_FUNCTION_DECLARATION) ResultSet = Db.TblFile.Exec(SqlStatement) for Result in ResultSet: FuncDeclList.append(Result) for FuncDef in UndeclFuncList: FuncName = FuncDef[2].strip() FuncModifier = FuncDef[0] FuncDefHeader = FuncDef[1] for FuncDecl in FuncDeclList: LBPos = FuncDecl[1].find('(') DeclName = FuncDecl[1][0:LBPos].strip() DeclModifier = FuncDecl[0] if DeclName == FuncName: if DiffModifier(FuncModifier, DeclModifier) and not EccGlobalData.gException.IsException(ERROR_C_FUNCTION_LAYOUT_CHECK_FUNCTION_PROTO_TYPE, FuncName): PrintErrorMsg(ERROR_C_FUNCTION_LAYOUT_CHECK_FUNCTION_PROTO_TYPE, 'Function [%s] modifier different with prototype.' % FuncName, 'Function', FuncDef[3]) ParamListOfDef = GetParamList(FuncDefHeader) ParamListOfDecl = GetParamList(FuncDecl[1]) if len(ParamListOfDef) != len(ParamListOfDecl) and not EccGlobalData.gException.IsException(ERROR_C_FUNCTION_LAYOUT_CHECK_FUNCTION_PROTO_TYPE_2, FuncName): PrintErrorMsg(ERROR_C_FUNCTION_LAYOUT_CHECK_FUNCTION_PROTO_TYPE_2, 'Parameter number different in function [%s].' % FuncName, 'Function', FuncDef[3]) break Index = 0 while Index < len(ParamListOfDef): if DiffModifier(ParamListOfDef[Index].Modifier, ParamListOfDecl[Index].Modifier) and not EccGlobalData.gException.IsException(ERROR_C_FUNCTION_LAYOUT_CHECK_FUNCTION_PROTO_TYPE_3, FuncName): PrintErrorMsg(ERROR_C_FUNCTION_LAYOUT_CHECK_FUNCTION_PROTO_TYPE_3, 'Parameter %s has different modifier with prototype in function [%s].' % (ParamListOfDef[Index].Name, FuncName), 'Function', FuncDef[3]) Index += 1 break def CheckFuncLayoutBody(FullFileName): ErrorMsgList = [] FileID = GetTableID(FullFileName, ErrorMsgList) if FileID < 0: return ErrorMsgList FileTable = 'Identifier' + str(FileID) Db = GetDB() SqlStatement = """ select BodyStartColumn, EndColumn, ID from Function where BelongsToFile = %d """ % (FileID) ResultSet = Db.TblFile.Exec(SqlStatement) if len(ResultSet) == 0: return ErrorMsgList for Result in ResultSet: if Result[0] != 0: PrintErrorMsg(ERROR_C_FUNCTION_LAYOUT_CHECK_FUNCTION_BODY, 'open brace should be at the very beginning of a line.', 'Function', Result[2]) if Result[1] != 0: PrintErrorMsg(ERROR_C_FUNCTION_LAYOUT_CHECK_FUNCTION_BODY, 'close brace should be at the very beginning of a line.', 'Function', Result[2]) def CheckFuncLayoutLocalVariable(FullFileName): ErrorMsgList = [] FileID = GetTableID(FullFileName, ErrorMsgList) if FileID < 0: return ErrorMsgList Db = GetDB() FileTable = 'Identifier' + str(FileID) SqlStatement = """ select ID from Function where BelongsToFile = %d """ % (FileID) ResultSet = Db.TblFile.Exec(SqlStatement) if len(ResultSet) == 0: return ErrorMsgList FL = [] for Result in ResultSet: FL.append(Result) for F in FL: SqlStatement = """ select Name, Value, ID, Modifier from %s where Model = %d and BelongsToFunction = %d """ % (FileTable, DataClass.MODEL_IDENTIFIER_VARIABLE, F[0]) ResultSet = Db.TblFile.Exec(SqlStatement) if len(ResultSet) == 0: continue for Result in ResultSet: if len(Result[1]) > 0 and 'CONST' not in Result[3]: PrintErrorMsg(ERROR_C_FUNCTION_LAYOUT_CHECK_NO_INIT_OF_VARIABLE, 'Variable Name: %s' % Result[0], FileTable, Result[2]) def CheckMemberVariableFormat(Name, Value, FileTable, TdId, ModelId): ErrMsgList = [] # Member variable format pattern. Pattern = re.compile(r'^[A-Z]+\S*[a-z]\S*$') LBPos = Value.find('{') RBPos = Value.rfind('}') if LBPos == -1 or RBPos == -1: return ErrMsgList Fields = Value[LBPos + 1 : RBPos] Fields = StripComments(Fields).strip() NestPos = Fields.find ('struct') if NestPos != -1 and (NestPos + len('struct') < len(Fields)) and ModelId != DataClass.MODEL_IDENTIFIER_UNION: if not Fields[NestPos + len('struct') + 1].isalnum(): if not EccGlobalData.gException.IsException(ERROR_DECLARATION_DATA_TYPE_CHECK_NESTED_STRUCTURE, Name): PrintErrorMsg(ERROR_DECLARATION_DATA_TYPE_CHECK_NESTED_STRUCTURE, 'Nested struct in [%s].' % (Name), FileTable, TdId) return ErrMsgList NestPos = Fields.find ('union') if NestPos != -1 and (NestPos + len('union') < len(Fields)): if not Fields[NestPos + len('union') + 1].isalnum(): if not EccGlobalData.gException.IsException(ERROR_DECLARATION_DATA_TYPE_CHECK_NESTED_STRUCTURE, Name): PrintErrorMsg(ERROR_DECLARATION_DATA_TYPE_CHECK_NESTED_STRUCTURE, 'Nested union in [%s].' % (Name), FileTable, TdId) return ErrMsgList NestPos = Fields.find ('enum') if NestPos != -1 and (NestPos + len('enum') < len(Fields)): if not Fields[NestPos + len('enum') + 1].isalnum(): if not EccGlobalData.gException.IsException(ERROR_DECLARATION_DATA_TYPE_CHECK_NESTED_STRUCTURE, Name): PrintErrorMsg(ERROR_DECLARATION_DATA_TYPE_CHECK_NESTED_STRUCTURE, 'Nested enum in [%s].' % (Name), FileTable, TdId) return ErrMsgList if ModelId == DataClass.MODEL_IDENTIFIER_ENUMERATE: FieldsList = Fields.split(',') # deal with enum is pre-assigned a value by function call ( , , , ...) QuoteCount = 0 Index = 0 RemoveCurrentElement = False while Index < len(FieldsList): Field = FieldsList[Index] if Field.find('(') != -1: QuoteCount += 1 RemoveCurrentElement = True Index += 1 continue if Field.find(')') != -1 and QuoteCount > 0: QuoteCount -= 1 if RemoveCurrentElement: FieldsList.remove(Field) if QuoteCount == 0: RemoveCurrentElement = False continue if QuoteCount == 0: RemoveCurrentElement = False Index += 1 else: FieldsList = Fields.split(';') for Field in FieldsList: Field = Field.strip() if Field == '': continue # For the condition that the field in struct is an array with [] sufixes... if Field[-1] == ']': LBPos = Field.find('[') Field = Field[0:LBPos] # For the condition that bit field ": Number" if Field.find(':') != -1: ColonPos = Field.find(':') Field = Field[0:ColonPos] Field = Field.strip() if Field == '': continue if Field.startswith("#"): continue # Enum could directly assign value to variable Field = Field.split('=')[0].strip() TokenList = Field.split() # Remove pointers before variable Token = TokenList[-1] if Token in ['OPTIONAL']: Token = TokenList[-2] if not Pattern.match(Token.lstrip('*')): ErrMsgList.append(Token.lstrip('*')) return ErrMsgList def CheckDeclTypedefFormat(FullFileName, ModelId): ErrorMsgList = [] FileID = GetTableID(FullFileName, ErrorMsgList) if FileID < 0: return ErrorMsgList Db = GetDB() FileTable = 'Identifier' + str(FileID) SqlStatement = """ select Name, StartLine, EndLine, ID, Value from %s where Model = %d """ % (FileTable, ModelId) ResultSet = Db.TblFile.Exec(SqlStatement) ResultList = [] for Result in ResultSet: ResultList.append(Result) ErrorType = ERROR_DECLARATION_DATA_TYPE_CHECK_ALL if ModelId == DataClass.MODEL_IDENTIFIER_STRUCTURE: ErrorType = ERROR_DECLARATION_DATA_TYPE_CHECK_STRUCTURE_DECLARATION elif ModelId == DataClass.MODEL_IDENTIFIER_ENUMERATE: ErrorType = ERROR_DECLARATION_DATA_TYPE_CHECK_ENUMERATED_TYPE elif ModelId == DataClass.MODEL_IDENTIFIER_UNION: ErrorType = ERROR_DECLARATION_DATA_TYPE_CHECK_UNION_TYPE SqlStatement = """ select Modifier, Name, Value, StartLine, EndLine, ID from %s where Model = %d """ % (FileTable, DataClass.MODEL_IDENTIFIER_TYPEDEF) TdSet = Db.TblFile.Exec(SqlStatement) TdList = [] for Td in TdSet: TdList.append(Td) # Check member variable name format that from typedefs of ONLY this file. for Td in TdList: Name = Td[1].strip() Value = Td[2].strip() if Value.startswith('enum'): ValueModelId = DataClass.MODEL_IDENTIFIER_ENUMERATE elif Value.startswith('struct'): ValueModelId = DataClass.MODEL_IDENTIFIER_STRUCTURE elif Value.startswith('union'): ValueModelId = DataClass.MODEL_IDENTIFIER_UNION else: continue if ValueModelId != ModelId: continue # Check member variable format. ErrMsgList = CheckMemberVariableFormat(Name, Value, FileTable, Td[5], ModelId) for ErrMsg in ErrMsgList: if EccGlobalData.gException.IsException(ERROR_NAMING_CONVENTION_CHECK_VARIABLE_NAME, Name + '.' + ErrMsg): continue PrintErrorMsg(ERROR_NAMING_CONVENTION_CHECK_VARIABLE_NAME, 'Member variable [%s] NOT follow naming convention.' % (Name + '.' + ErrMsg), FileTable, Td[5]) # First check in current file to see whether struct/union/enum is typedef-ed. UntypedefedList = [] for Result in ResultList: # Check member variable format. Name = Result[0].strip() Value = Result[4].strip() if Value.startswith('enum'): ValueModelId = DataClass.MODEL_IDENTIFIER_ENUMERATE elif Value.startswith('struct'): ValueModelId = DataClass.MODEL_IDENTIFIER_STRUCTURE elif Value.startswith('union'): ValueModelId = DataClass.MODEL_IDENTIFIER_UNION else: continue if ValueModelId != ModelId: continue ErrMsgList = CheckMemberVariableFormat(Name, Value, FileTable, Result[3], ModelId) for ErrMsg in ErrMsgList: if EccGlobalData.gException.IsException(ERROR_NAMING_CONVENTION_CHECK_VARIABLE_NAME, Result[0] + '.' + ErrMsg): continue PrintErrorMsg(ERROR_NAMING_CONVENTION_CHECK_VARIABLE_NAME, 'Member variable [%s] NOT follow naming convention.' % (Result[0] + '.' + ErrMsg), FileTable, Result[3]) # Check whether it is typedefed. Found = False for Td in TdList: # skip function pointer if len(Td[0]) > 0: continue if Result[1] >= Td[3] and Td[4] >= Result[2]: Found = True if not Td[1].isupper(): PrintErrorMsg(ErrorType, 'Typedef should be UPPER case', FileTable, Td[5]) if Result[0] in Td[2].split(): Found = True if not Td[1].isupper(): PrintErrorMsg(ErrorType, 'Typedef should be UPPER case', FileTable, Td[5]) if Found: break if not Found: UntypedefedList.append(Result) continue if len(UntypedefedList) == 0: return IncludeFileList = GetAllIncludeFiles(FullFileName) TdList = [] for F in IncludeFileList: FileID = GetTableID(F, ErrorMsgList) if FileID < 0: continue IncludeFileTable = 'Identifier' + str(FileID) SqlStatement = """ select Modifier, Name, Value, StartLine, EndLine, ID from %s where Model = %d """ % (IncludeFileTable, DataClass.MODEL_IDENTIFIER_TYPEDEF) ResultSet = Db.TblFile.Exec(SqlStatement) TdList.extend(ResultSet) for Result in UntypedefedList: # Check whether it is typedefed. Found = False for Td in TdList: if len(Td[0]) > 0: continue if Result[1] >= Td[3] and Td[4] >= Result[2]: Found = True if not Td[1].isupper(): PrintErrorMsg(ErrorType, 'Typedef should be UPPER case', FileTable, Td[5]) if Result[0] in Td[2].split(): Found = True if not Td[1].isupper(): PrintErrorMsg(ErrorType, 'Typedef should be UPPER case', FileTable, Td[5]) if Found: break if not Found: PrintErrorMsg(ErrorType, 'No Typedef for %s' % Result[0], FileTable, Result[3]) continue def CheckDeclStructTypedef(FullFileName): CheckDeclTypedefFormat(FullFileName, DataClass.MODEL_IDENTIFIER_STRUCTURE) def CheckDeclEnumTypedef(FullFileName): CheckDeclTypedefFormat(FullFileName, DataClass.MODEL_IDENTIFIER_ENUMERATE) def CheckDeclUnionTypedef(FullFileName): CheckDeclTypedefFormat(FullFileName, DataClass.MODEL_IDENTIFIER_UNION) def CheckDeclArgModifier(FullFileName): ErrorMsgList = [] FileID = GetTableID(FullFileName, ErrorMsgList) if FileID < 0: return ErrorMsgList Db = GetDB() FileTable = 'Identifier' + str(FileID) SqlStatement = """ select Modifier, Name, ID from %s where Model = %d """ % (FileTable, DataClass.MODEL_IDENTIFIER_VARIABLE) ResultSet = Db.TblFile.Exec(SqlStatement) ModifierTuple = ('IN', 'OUT', 'OPTIONAL', 'UNALIGNED') MAX_MODIFIER_LENGTH = 100 for Result in ResultSet: for Modifier in ModifierTuple: if PatternInModifier(Result[0], Modifier) and len(Result[0]) < MAX_MODIFIER_LENGTH: PrintErrorMsg(ERROR_DECLARATION_DATA_TYPE_CHECK_IN_OUT_MODIFIER, 'Variable Modifier %s' % Result[0], FileTable, Result[2]) break SqlStatement = """ select Modifier, Name, ID from %s where Model = %d """ % (FileTable, DataClass.MODEL_IDENTIFIER_FUNCTION_DECLARATION) ResultSet = Db.TblFile.Exec(SqlStatement) for Result in ResultSet: for Modifier in ModifierTuple: if PatternInModifier(Result[0], Modifier): PrintErrorMsg(ERROR_DECLARATION_DATA_TYPE_CHECK_IN_OUT_MODIFIER, 'Return Type Modifier %s' % Result[0], FileTable, Result[2]) break SqlStatement = """ select Modifier, Header, ID from Function where BelongsToFile = %d """ % (FileID) ResultSet = Db.TblFile.Exec(SqlStatement) for Result in ResultSet: for Modifier in ModifierTuple: if PatternInModifier(Result[0], Modifier): PrintErrorMsg(ERROR_DECLARATION_DATA_TYPE_CHECK_IN_OUT_MODIFIER, 'Return Type Modifier %s' % Result[0], FileTable, Result[2]) break def CheckDeclNoUseCType(FullFileName): ErrorMsgList = [] FileID = GetTableID(FullFileName, ErrorMsgList) if FileID < 0: return ErrorMsgList Db = GetDB() FileTable = 'Identifier' + str(FileID) SqlStatement = """ select Modifier, Name, ID from %s where Model = %d """ % (FileTable, DataClass.MODEL_IDENTIFIER_VARIABLE) ResultSet = Db.TblFile.Exec(SqlStatement) CTypeTuple = ('int', 'unsigned', 'char', 'void', 'static', 'long') for Result in ResultSet: for Type in CTypeTuple: if PatternInModifier(Result[0], Type): PrintErrorMsg(ERROR_DECLARATION_DATA_TYPE_CHECK_NO_USE_C_TYPE, 'Variable type %s' % Type, FileTable, Result[2]) break SqlStatement = """ select Modifier, Name, ID, Value from %s where Model = %d """ % (FileTable, DataClass.MODEL_IDENTIFIER_FUNCTION_DECLARATION) ResultSet = Db.TblFile.Exec(SqlStatement) for Result in ResultSet: ParamList = GetParamList(Result[1]) FuncName = Result[3] if EccGlobalData.gException.IsException(ERROR_DECLARATION_DATA_TYPE_CHECK_NO_USE_C_TYPE, FuncName): continue for Type in CTypeTuple: if PatternInModifier(Result[0], Type): PrintErrorMsg(ERROR_DECLARATION_DATA_TYPE_CHECK_NO_USE_C_TYPE, '%s Return type %s' % (FuncName, Result[0]), FileTable, Result[2]) for Param in ParamList: if PatternInModifier(Param.Modifier, Type): PrintErrorMsg(ERROR_DECLARATION_DATA_TYPE_CHECK_NO_USE_C_TYPE, 'Parameter %s' % Param.Name, FileTable, Result[2]) SqlStatement = """ select Modifier, Header, ID, Name from Function where BelongsToFile = %d """ % (FileID) ResultSet = Db.TblFile.Exec(SqlStatement) for Result in ResultSet: ParamList = GetParamList(Result[1]) FuncName = Result[3] if EccGlobalData.gException.IsException(ERROR_DECLARATION_DATA_TYPE_CHECK_NO_USE_C_TYPE, FuncName): continue for Type in CTypeTuple: if PatternInModifier(Result[0], Type): PrintErrorMsg(ERROR_DECLARATION_DATA_TYPE_CHECK_NO_USE_C_TYPE, '[%s] Return type %s' % (FuncName, Result[0]), FileTable, Result[2]) for Param in ParamList: if PatternInModifier(Param.Modifier, Type): PrintErrorMsg(ERROR_DECLARATION_DATA_TYPE_CHECK_NO_USE_C_TYPE, 'Parameter %s' % Param.Name, FileTable, Result[2]) def CheckPointerNullComparison(FullFileName): ErrorMsgList = [] FileID = GetTableID(FullFileName, ErrorMsgList) if FileID < 0: return ErrorMsgList # cache the found function return type to accelerate later checking in this file. FuncReturnTypeDict = {} Db = GetDB() FileTable = 'Identifier' + str(FileID) SqlStatement = """ select Value, StartLine, ID from %s where Model = %d """ % (FileTable, DataClass.MODEL_IDENTIFIER_PREDICATE_EXPRESSION) ResultSet = Db.TblFile.Exec(SqlStatement) if len(ResultSet) == 0: return PSL = [] for Result in ResultSet: PSL.append([Result[0], Result[1], Result[2]]) SqlStatement = """ select BodyStartLine, EndLine, Header, Modifier, ID from Function where BelongsToFile = %d """ % (FileID) ResultSet = Db.TblFile.Exec(SqlStatement) FL = [] for Result in ResultSet: FL.append([Result[0], Result[1], Result[2], Result[3], Result[4]]) p = GetFuncDeclPattern() for Str in PSL: FuncRecord = GetFuncContainsPE(Str[1], FL) if FuncRecord == None: continue for Exp in GetPredicateListFromPredicateExpStr(Str[0]): PredInfo = SplitPredicateStr(Exp) if PredInfo[1] == None: PredVarStr = PredInfo[0][0].strip() IsFuncCall = False SearchInCache = False # PredVarStr may contain '.' or '->' TmpStr = PredVarStr.replace('.', '').replace('->', '') if p.match(TmpStr): PredVarStr = PredVarStr[0:PredVarStr.find('(')] SearchInCache = True # Only direct function call using IsFuncCall branch. Multi-level ref. function call is considered a variable. if TmpStr.startswith(PredVarStr): IsFuncCall = True if PredVarStr.strip() in IgnoredKeywordList: continue StarList = [] PredVarList = GetCNameList(PredVarStr, StarList) # No variable found, maybe value first? like (0 == VarName) if len(PredVarList) == 0: continue if SearchInCache: Type = FuncReturnTypeDict.get(PredVarStr) if Type != None: if Type.find('*') != -1 and Type != 'BOOLEAN*': PrintErrorMsg(ERROR_PREDICATE_EXPRESSION_CHECK_COMPARISON_NULL_TYPE, 'Predicate Expression: %s' % Exp, FileTable, Str[2]) continue if PredVarStr in FuncReturnTypeDict: continue Type = GetVarInfo(PredVarList, FuncRecord, FullFileName, IsFuncCall, None, StarList) if SearchInCache: FuncReturnTypeDict[PredVarStr] = Type if Type == None: continue Type = GetTypeFromArray(Type, PredVarStr) if Type.find('*') != -1 and Type != 'BOOLEAN*': PrintErrorMsg(ERROR_PREDICATE_EXPRESSION_CHECK_COMPARISON_NULL_TYPE, 'Predicate Expression: %s' % Exp, FileTable, Str[2]) def CheckNonBooleanValueComparison(FullFileName): ErrorMsgList = [] FileID = GetTableID(FullFileName, ErrorMsgList) if FileID < 0: return ErrorMsgList # cache the found function return type to accelerate later checking in this file. FuncReturnTypeDict = {} Db = GetDB() FileTable = 'Identifier' + str(FileID) SqlStatement = """ select Value, StartLine, ID from %s where Model = %d """ % (FileTable, DataClass.MODEL_IDENTIFIER_PREDICATE_EXPRESSION) ResultSet = Db.TblFile.Exec(SqlStatement) if len(ResultSet) == 0: return PSL = [] for Result in ResultSet: PSL.append([Result[0], Result[1], Result[2]]) SqlStatement = """ select BodyStartLine, EndLine, Header, Modifier, ID from Function where BelongsToFile = %d """ % (FileID) ResultSet = Db.TblFile.Exec(SqlStatement) FL = [] for Result in ResultSet: FL.append([Result[0], Result[1], Result[2], Result[3], Result[4]]) p = GetFuncDeclPattern() for Str in PSL: FuncRecord = GetFuncContainsPE(Str[1], FL) if FuncRecord == None: continue for Exp in GetPredicateListFromPredicateExpStr(Str[0]): PredInfo = SplitPredicateStr(Exp) if PredInfo[1] == None: PredVarStr = PredInfo[0][0].strip() IsFuncCall = False SearchInCache = False # PredVarStr may contain '.' or '->' TmpStr = PredVarStr.replace('.', '').replace('->', '') if p.match(TmpStr): PredVarStr = PredVarStr[0:PredVarStr.find('(')] SearchInCache = True # Only direct function call using IsFuncCall branch. Multi-level ref. function call is considered a variable. if TmpStr.startswith(PredVarStr): IsFuncCall = True if PredVarStr.strip() in IgnoredKeywordList: continue StarList = [] PredVarList = GetCNameList(PredVarStr, StarList) # No variable found, maybe value first? like (0 == VarName) if len(PredVarList) == 0: continue if SearchInCache: Type = FuncReturnTypeDict.get(PredVarStr) if Type != None: if Type.find('BOOLEAN') == -1: PrintErrorMsg(ERROR_PREDICATE_EXPRESSION_CHECK_NO_BOOLEAN_OPERATOR, 'Predicate Expression: %s' % Exp, FileTable, Str[2]) continue if PredVarStr in FuncReturnTypeDict: continue Type = GetVarInfo(PredVarList, FuncRecord, FullFileName, IsFuncCall, 'BOOLEAN', StarList) if SearchInCache: FuncReturnTypeDict[PredVarStr] = Type if Type == None: continue if Type.find('BOOLEAN') == -1: PrintErrorMsg(ERROR_PREDICATE_EXPRESSION_CHECK_NO_BOOLEAN_OPERATOR, 'Predicate Expression: %s' % Exp, FileTable, Str[2]) def CheckBooleanValueComparison(FullFileName): ErrorMsgList = [] FileID = GetTableID(FullFileName, ErrorMsgList) if FileID < 0: return ErrorMsgList # cache the found function return type to accelerate later checking in this file. FuncReturnTypeDict = {} Db = GetDB() FileTable = 'Identifier' + str(FileID) SqlStatement = """ select Value, StartLine, ID from %s where Model = %d """ % (FileTable, DataClass.MODEL_IDENTIFIER_PREDICATE_EXPRESSION) ResultSet = Db.TblFile.Exec(SqlStatement) if len(ResultSet) == 0: return PSL = [] for Result in ResultSet: PSL.append([Result[0], Result[1], Result[2]]) SqlStatement = """ select BodyStartLine, EndLine, Header, Modifier, ID from Function where BelongsToFile = %d """ % (FileID) ResultSet = Db.TblFile.Exec(SqlStatement) FL = [] for Result in ResultSet: FL.append([Result[0], Result[1], Result[2], Result[3], Result[4]]) p = GetFuncDeclPattern() for Str in PSL: FuncRecord = GetFuncContainsPE(Str[1], FL) if FuncRecord == None: continue for Exp in GetPredicateListFromPredicateExpStr(Str[0]): PredInfo = SplitPredicateStr(Exp) if PredInfo[1] in ('==', '!=') and PredInfo[0][1] in ('TRUE', 'FALSE'): PredVarStr = PredInfo[0][0].strip() IsFuncCall = False SearchInCache = False # PredVarStr may contain '.' or '->' TmpStr = PredVarStr.replace('.', '').replace('->', '') if p.match(TmpStr): PredVarStr = PredVarStr[0:PredVarStr.find('(')] SearchInCache = True # Only direct function call using IsFuncCall branch. Multi-level ref. function call is considered a variable. if TmpStr.startswith(PredVarStr): IsFuncCall = True if PredVarStr.strip() in IgnoredKeywordList: continue StarList = [] PredVarList = GetCNameList(PredVarStr, StarList) # No variable found, maybe value first? like (0 == VarName) if len(PredVarList) == 0: continue if SearchInCache: Type = FuncReturnTypeDict.get(PredVarStr) if Type != None: if Type.find('BOOLEAN') != -1: PrintErrorMsg(ERROR_PREDICATE_EXPRESSION_CHECK_BOOLEAN_VALUE, 'Predicate Expression: %s' % Exp, FileTable, Str[2]) continue if PredVarStr in FuncReturnTypeDict: continue Type = GetVarInfo(PredVarList, FuncRecord, FullFileName, IsFuncCall, 'BOOLEAN', StarList) if SearchInCache: FuncReturnTypeDict[PredVarStr] = Type if Type == None: continue if Type.find('BOOLEAN') != -1: PrintErrorMsg(ERROR_PREDICATE_EXPRESSION_CHECK_BOOLEAN_VALUE, 'Predicate Expression: %s' % Exp, FileTable, Str[2]) def CheckHeaderFileData(FullFileName): ErrorMsgList = [] FileID = GetTableID(FullFileName, ErrorMsgList) if FileID < 0: return ErrorMsgList Db = GetDB() FileTable = 'Identifier' + str(FileID) SqlStatement = """ select ID, Modifier from %s where Model = %d """ % (FileTable, DataClass.MODEL_IDENTIFIER_VARIABLE) ResultSet = Db.TblFile.Exec(SqlStatement) for Result in ResultSet: if not Result[1].startswith('extern'): PrintErrorMsg(ERROR_INCLUDE_FILE_CHECK_DATA, 'Variable definition appears in header file', FileTable, Result[0]) SqlStatement = """ select ID from Function where BelongsToFile = %d """ % FileID ResultSet = Db.TblFile.Exec(SqlStatement) for Result in ResultSet: PrintErrorMsg(ERROR_INCLUDE_FILE_CHECK_DATA, 'Function definition appears in header file', 'Function', Result[0]) return ErrorMsgList def CheckHeaderFileIfndef(FullFileName): ErrorMsgList = [] FileID = GetTableID(FullFileName, ErrorMsgList) if FileID < 0: return ErrorMsgList Db = GetDB() FileTable = 'Identifier' + str(FileID) SqlStatement = """ select Value, StartLine from %s where Model = %d order by StartLine """ % (FileTable, DataClass.MODEL_IDENTIFIER_MACRO_IFNDEF) ResultSet = Db.TblFile.Exec(SqlStatement) if len(ResultSet) == 0: PrintErrorMsg(ERROR_INCLUDE_FILE_CHECK_IFNDEF_STATEMENT_1, '', 'File', FileID) return ErrorMsgList for Result in ResultSet: SqlStatement = """ select Value, EndLine from %s where EndLine < %d """ % (FileTable, Result[1]) ResultSet = Db.TblFile.Exec(SqlStatement) for Result in ResultSet: if not Result[0].startswith('/*') and not Result[0].startswith('//'): PrintErrorMsg(ERROR_INCLUDE_FILE_CHECK_IFNDEF_STATEMENT_2, '', 'File', FileID) break SqlStatement = """ select Value from %s where StartLine > (select max(EndLine) from %s where Model = %d) """ % (FileTable, FileTable, DataClass.MODEL_IDENTIFIER_MACRO_ENDIF) ResultSet = Db.TblFile.Exec(SqlStatement) for Result in ResultSet: if not Result[0].startswith('/*') and not Result[0].startswith('//'): PrintErrorMsg(ERROR_INCLUDE_FILE_CHECK_IFNDEF_STATEMENT_3, '', 'File', FileID) return ErrorMsgList def CheckDoxygenCommand(FullFileName): ErrorMsgList = [] FileID = GetTableID(FullFileName, ErrorMsgList) if FileID < 0: return ErrorMsgList Db = GetDB() FileTable = 'Identifier' + str(FileID) SqlStatement = """ select Value, ID from %s where Model = %d or Model = %d """ % (FileTable, DataClass.MODEL_IDENTIFIER_COMMENT, DataClass.MODEL_IDENTIFIER_FUNCTION_HEADER) ResultSet = Db.TblFile.Exec(SqlStatement) DoxygenCommandList = ['bug', 'todo', 'example', 'file', 'attention', 'param', 'post', 'pre', 'retval', 'return', 'sa', 'since', 'test', 'note', 'par', 'endcode', 'code'] for Result in ResultSet: CommentStr = Result[0] CommentPartList = CommentStr.split() for Part in CommentPartList: if Part.upper() == 'BUGBUG': PrintErrorMsg(ERROR_DOXYGEN_CHECK_COMMAND, 'Bug should be marked with doxygen tag @bug', FileTable, Result[1]) if Part.upper() == 'TODO': PrintErrorMsg(ERROR_DOXYGEN_CHECK_COMMAND, 'ToDo should be marked with doxygen tag @todo', FileTable, Result[1]) if Part.startswith('@'): if EccGlobalData.gException.IsException(ERROR_DOXYGEN_CHECK_COMMAND, Part): continue if not Part.replace('@', '').strip(): continue if Part.lstrip('@') in ['{', '}']: continue if Part.lstrip('@').isalpha(): if Part.lstrip('@') not in DoxygenCommandList: PrintErrorMsg(ERROR_DOXYGEN_CHECK_COMMAND, 'Unknown doxygen command %s' % Part, FileTable, Result[1]) else: Index = Part.find('[') if Index == -1: PrintErrorMsg(ERROR_DOXYGEN_CHECK_COMMAND, 'Unknown doxygen command %s' % Part, FileTable, Result[1]) RealCmd = Part[1:Index] if RealCmd not in DoxygenCommandList: PrintErrorMsg(ERROR_DOXYGEN_CHECK_COMMAND, 'Unknown doxygen command %s' % Part, FileTable, Result[1]) def CheckDoxygenTripleForwardSlash(FullFileName): ErrorMsgList = [] FileID = GetTableID(FullFileName, ErrorMsgList) if FileID < 0: return ErrorMsgList Db = GetDB() SqlStatement = """ select ID, BodyStartLine, BodyStartColumn, EndLine, EndColumn from Function where BelongsToFile = %d """ % (FileID) ResultSet = Db.TblFile.Exec(SqlStatement) if len(ResultSet) == 0: return FuncDefSet = [] for Result in ResultSet: FuncDefSet.append(Result) FileTable = 'Identifier' + str(FileID) SqlStatement = """ select Value, ID, StartLine, StartColumn, EndLine, EndColumn from %s where Model = %d """ % (FileTable, DataClass.MODEL_IDENTIFIER_COMMENT) ResultSet = Db.TblFile.Exec(SqlStatement) CommentSet = [] try: for Result in ResultSet: CommentSet.append(Result) except: print 'Unrecognized chars in comment of file %s', FullFileName for Result in CommentSet: CommentStr = Result[0] StartLine = Result[2] StartColumn = Result[3] EndLine = Result[4] EndColumn = Result[5] if not CommentStr.startswith('///<'): continue Found = False for FuncDef in FuncDefSet: if StartLine == FuncDef[1] and StartColumn > FuncDef[2] and EndLine == FuncDef[3] and EndColumn < FuncDef[4]: Found = True break if StartLine > FuncDef[1] and EndLine < FuncDef[3]: Found = True break if StartLine == FuncDef[1] and StartColumn > FuncDef[2] and EndLine < FuncDef[3]: Found = True break if StartLine > FuncDef[1] and EndLine == FuncDef[3] and EndColumn < FuncDef[4]: Found = True break if Found: PrintErrorMsg(ERROR_DOXYGEN_CHECK_COMMENT_FORMAT, '', FileTable, Result[1]) def CheckFileHeaderDoxygenComments(FullFileName): ErrorMsgList = [] FileID = GetTableID(FullFileName, ErrorMsgList) if FileID < 0: return ErrorMsgList Db = GetDB() FileTable = 'Identifier' + str(FileID) SqlStatement = """ select Value, ID from %s where Model = %d and (StartLine = 1 or StartLine = 7 or StartLine = 8) and StartColumn = 0 """ % (FileTable, DataClass.MODEL_IDENTIFIER_COMMENT) ResultSet = Db.TblFile.Exec(SqlStatement) if len(ResultSet) == 0: PrintErrorMsg(ERROR_HEADER_CHECK_FILE, 'No File License header appear at the very beginning of file.', 'File', FileID) return ErrorMsgList NoHeaderCommentStartFlag = True NoHeaderCommentEndFlag = True NoHeaderCommentPeriodFlag = True NoCopyrightFlag = True NoLicenseFlag = True NoRevReferFlag = True NextLineIndex = 0 for Result in ResultSet: FileStartFlag = False CommentStrList = [] CommentStr = Result[0].strip() CommentStrListTemp = CommentStr.split('\n') if (len(CommentStrListTemp) <= 1): # For Mac CommentStrListTemp = CommentStr.split('\r') # Skip the content before the file header for CommentLine in CommentStrListTemp: if CommentLine.strip().startswith('/** @file'): FileStartFlag = True if FileStartFlag == True: CommentStrList.append(CommentLine) ID = Result[1] Index = 0 if CommentStrList and CommentStrList[0].strip().startswith('/** @file'): NoHeaderCommentStartFlag = False else: continue if CommentStrList and CommentStrList[-1].strip().endswith('**/'): NoHeaderCommentEndFlag = False else: continue for CommentLine in CommentStrList: Index = Index + 1 NextLineIndex = Index if CommentLine.startswith('/** @file'): continue if CommentLine.startswith('**/'): break # Check whether C File header Comment content start with two spaces. if EccGlobalData.gConfig.HeaderCheckCFileCommentStartSpacesNum == '1' or EccGlobalData.gConfig.HeaderCheckAll == '1' or EccGlobalData.gConfig.CheckAll == '1': if CommentLine.startswith('/** @file') == False and CommentLine.startswith('**/') == False and CommentLine.strip() and CommentLine.startswith(' ') == False: PrintErrorMsg(ERROR_HEADER_CHECK_FILE, 'File header comment content should start with two spaces at each line', FileTable, ID) CommentLine = CommentLine.strip() if CommentLine.startswith('Copyright'): NoCopyrightFlag = False if CommentLine.find('All rights reserved') == -1: for Copyright in EccGlobalData.gConfig.Copyright: if CommentLine.find(Copyright) > -1: PrintErrorMsg(ERROR_HEADER_CHECK_FILE, '""All rights reserved"" announcement should be following the ""Copyright"" at the same line', FileTable, ID) break if CommentLine.endswith('<BR>') == -1: PrintErrorMsg(ERROR_HEADER_CHECK_FILE, 'The ""<BR>"" at the end of the Copyright line is required', FileTable, ID) if NextLineIndex < len(CommentStrList) and CommentStrList[NextLineIndex].strip().startswith('Copyright') == False and CommentStrList[NextLineIndex].strip(): NoLicenseFlag = False if CommentLine.startswith('@par Revision Reference:'): NoRevReferFlag = False RefListFlag = False for RefLine in CommentStrList[NextLineIndex:]: if RefLine.strip() and (NextLineIndex + 1) < len(CommentStrList) and CommentStrList[NextLineIndex+1].strip() and CommentStrList[NextLineIndex+1].strip().startswith('**/') == False: RefListFlag = True if RefLine.strip() == False or RefLine.strip().startswith('**/'): RefListFlag = False break # Check whether C File header Comment's each reference at list should begin with a bullet character. if EccGlobalData.gConfig.HeaderCheckCFileCommentReferenceFormat == '1' or EccGlobalData.gConfig.HeaderCheckAll == '1' or EccGlobalData.gConfig.CheckAll == '1': if RefListFlag == True: if RefLine.strip() and RefLine.strip().startswith('**/') == False and RefLine.startswith(' -') == False: PrintErrorMsg(ERROR_HEADER_CHECK_FILE, 'Each reference on a separate line should begin with a bullet character ""-"" ', FileTable, ID) if NoHeaderCommentStartFlag: PrintErrorMsg(ERROR_DOXYGEN_CHECK_FILE_HEADER, 'File header comment should begin with ""/** @file""', FileTable, ID) return if NoHeaderCommentEndFlag: PrintErrorMsg(ERROR_HEADER_CHECK_FILE, 'File header comment should end with ""**/""', FileTable, ID) return if NoCopyrightFlag: PrintErrorMsg(ERROR_HEADER_CHECK_FILE, 'File header comment missing the ""Copyright""', FileTable, ID) #Check whether C File header Comment have the License immediately after the ""Copyright"" line. if EccGlobalData.gConfig.HeaderCheckCFileCommentLicenseFormat == '1' or EccGlobalData.gConfig.HeaderCheckAll == '1' or EccGlobalData.gConfig.CheckAll == '1': if NoLicenseFlag: PrintErrorMsg(ERROR_HEADER_CHECK_FILE, 'File header comment should have the License immediately after the ""Copyright"" line', FileTable, ID) def CheckFuncHeaderDoxygenComments(FullFileName): ErrorMsgList = [] FileID = GetTableID(FullFileName, ErrorMsgList) if FileID < 0: return ErrorMsgList Db = GetDB() FileTable = 'Identifier' + str(FileID) SqlStatement = """ select Value, StartLine, EndLine, ID from %s where Model = %d """ % (FileTable, DataClass.MODEL_IDENTIFIER_COMMENT) ResultSet = Db.TblFile.Exec(SqlStatement) CommentSet = [] try: for Result in ResultSet: CommentSet.append(Result) except: print 'Unrecognized chars in comment of file %s', FullFileName # Func Decl check SqlStatement = """ select Modifier, Name, StartLine, ID, Value from %s where Model = %d """ % (FileTable, DataClass.MODEL_IDENTIFIER_FUNCTION_DECLARATION) ResultSet = Db.TblFile.Exec(SqlStatement) for Result in ResultSet: FuncName = Result[4] FunctionHeaderComment = CheckCommentImmediatelyPrecedeFunctionHeader(Result[1], Result[2], CommentSet) if FunctionHeaderComment: CheckFunctionHeaderConsistentWithDoxygenComment(Result[0], Result[1], Result[2], FunctionHeaderComment[0], FunctionHeaderComment[1], ErrorMsgList, FunctionHeaderComment[3], FileTable) else: if EccGlobalData.gException.IsException(ERROR_HEADER_CHECK_FUNCTION, FuncName): continue ErrorMsgList.append('Line %d :Function %s has NO comment immediately preceding it.' % (Result[2], Result[1])) PrintErrorMsg(ERROR_HEADER_CHECK_FUNCTION, 'Function [%s] has NO comment immediately preceding it.' % (FuncName), FileTable, Result[3]) # Func Def check SqlStatement = """ select Value, StartLine, EndLine, ID from %s where Model = %d """ % (FileTable, DataClass.MODEL_IDENTIFIER_FUNCTION_HEADER) ResultSet = Db.TblFile.Exec(SqlStatement) CommentSet = [] try: for Result in ResultSet: CommentSet.append(Result) except: print 'Unrecognized chars in comment of file %s', FullFileName SqlStatement = """ select Modifier, Header, StartLine, ID, Name from Function where BelongsToFile = %d """ % (FileID) ResultSet = Db.TblFile.Exec(SqlStatement) for Result in ResultSet: FuncName = Result[4] FunctionHeaderComment = CheckCommentImmediatelyPrecedeFunctionHeader(Result[1], Result[2], CommentSet) if FunctionHeaderComment: CheckFunctionHeaderConsistentWithDoxygenComment(Result[0], Result[1], Result[2], FunctionHeaderComment[0], FunctionHeaderComment[1], ErrorMsgList, FunctionHeaderComment[3], FileTable) else: if EccGlobalData.gException.IsException(ERROR_HEADER_CHECK_FUNCTION, FuncName): continue ErrorMsgList.append('Line %d :Function [%s] has NO comment immediately preceding it.' % (Result[2], Result[1])) PrintErrorMsg(ERROR_HEADER_CHECK_FUNCTION, 'Function [%s] has NO comment immediately preceding it.' % (FuncName), 'Function', Result[3]) return ErrorMsgList def CheckCommentImmediatelyPrecedeFunctionHeader(FuncName, FuncStartLine, CommentSet): for Comment in CommentSet: if Comment[2] == FuncStartLine - 1: return Comment return None def GetDoxygenStrFromComment(Str): DoxygenStrList = [] ParamTagList = Str.split('@param') if len(ParamTagList) > 1: i = 1 while i < len(ParamTagList): DoxygenStrList.append('@param' + ParamTagList[i]) i += 1 Str = ParamTagList[0] RetvalTagList = ParamTagList[-1].split('@retval') if len(RetvalTagList) > 1: if len(ParamTagList) > 1: DoxygenStrList[-1] = '@param' + RetvalTagList[0] i = 1 while i < len(RetvalTagList): DoxygenStrList.append('@retval' + RetvalTagList[i]) i += 1 ReturnTagList = RetvalTagList[-1].split('@return') if len(ReturnTagList) > 1: if len(RetvalTagList) > 1: DoxygenStrList[-1] = '@retval' + ReturnTagList[0] elif len(ParamTagList) > 1: DoxygenStrList[-1] = '@param' + ReturnTagList[0] i = 1 while i < len(ReturnTagList): DoxygenStrList.append('@return' + ReturnTagList[i]) i += 1 if len(DoxygenStrList) > 0: DoxygenStrList[-1] = DoxygenStrList[-1].rstrip('--*/') return DoxygenStrList def CheckGeneralDoxygenCommentLayout(Str, StartLine, ErrorMsgList, CommentId= -1, TableName=''): #/** --*/ @retval after @param if not Str.startswith('/**'): ErrorMsgList.append('Line %d : Comment does NOT have prefix /** ' % StartLine) PrintErrorMsg(ERROR_DOXYGEN_CHECK_FUNCTION_HEADER, 'Comment does NOT have prefix /** ', TableName, CommentId) if not Str.endswith('**/'): ErrorMsgList.append('Line %d : Comment does NOT have tail **/ ' % StartLine) PrintErrorMsg(ERROR_DOXYGEN_CHECK_FUNCTION_HEADER, 'Comment does NOT have tail **/ ', TableName, CommentId) FirstRetvalIndex = Str.find('@retval') LastParamIndex = Str.rfind('@param') if (FirstRetvalIndex > 0) and (LastParamIndex > 0) and (FirstRetvalIndex < LastParamIndex): ErrorMsgList.append('Line %d : @retval appear before @param ' % StartLine) PrintErrorMsg(ERROR_DOXYGEN_CHECK_FUNCTION_HEADER, 'in Comment, @retval appear before @param ', TableName, CommentId) def CheckFunctionHeaderConsistentWithDoxygenComment(FuncModifier, FuncHeader, FuncStartLine, CommentStr, CommentStartLine, ErrorMsgList, CommentId= -1, TableName=''): ParamList = GetParamList(FuncHeader) CheckGeneralDoxygenCommentLayout(CommentStr, CommentStartLine, ErrorMsgList, CommentId, TableName) DescriptionStr = CommentStr DoxygenStrList = GetDoxygenStrFromComment(DescriptionStr) if DescriptionStr.find('.') == -1: PrintErrorMsg(ERROR_DOXYGEN_CHECK_COMMENT_DESCRIPTION, 'Comment description should end with period \'.\'', TableName, CommentId) DoxygenTagNumber = len(DoxygenStrList) ParamNumber = len(ParamList) for Param in ParamList: if Param.Name.upper() == 'VOID' and ParamNumber == 1: ParamNumber -= 1 Index = 0 if ParamNumber > 0 and DoxygenTagNumber > 0: while Index < ParamNumber and Index < DoxygenTagNumber: ParamModifier = ParamList[Index].Modifier ParamName = ParamList[Index].Name.strip() Tag = DoxygenStrList[Index].strip(' ') if (not Tag[-1] == ('\n')) and (not Tag[-1] == ('\r')): ErrorMsgList.append('Line %d : in Comment, <%s> does NOT end with new line ' % (CommentStartLine, Tag.replace('\n', '').replace('\r', ''))) PrintErrorMsg(ERROR_HEADER_CHECK_FUNCTION, 'in Comment, <%s> does NOT end with new line ' % (Tag.replace('\n', '').replace('\r', '')), TableName, CommentId) TagPartList = Tag.split() if len(TagPartList) < 2: ErrorMsgList.append('Line %d : in Comment, <%s> does NOT contain doxygen contents ' % (CommentStartLine, Tag.replace('\n', '').replace('\r', ''))) PrintErrorMsg(ERROR_DOXYGEN_CHECK_FUNCTION_HEADER, 'in Comment, <%s> does NOT contain doxygen contents ' % (Tag.replace('\n', '').replace('\r', '')), TableName, CommentId) Index += 1 continue LBPos = Tag.find('[') RBPos = Tag.find(']') ParamToLBContent = Tag[len('@param'):LBPos].strip() if LBPos > 0 and len(ParamToLBContent) == 0 and RBPos > LBPos: InOutStr = '' ModifierPartList = ParamModifier.split() for Part in ModifierPartList: if Part.strip() == 'IN': InOutStr += 'in' if Part.strip() == 'OUT': if InOutStr != '': InOutStr += ', out' else: InOutStr = 'out' if InOutStr != '': if Tag.find('[' + InOutStr + ']') == -1: if InOutStr != 'in, out': ErrorMsgList.append('Line %d : in Comment, <%s> does NOT have %s ' % (CommentStartLine, (TagPartList[0] + ' ' + TagPartList[1]).replace('\n', '').replace('\r', ''), '[' + InOutStr + ']')) PrintErrorMsg(ERROR_DOXYGEN_CHECK_FUNCTION_HEADER, 'in Comment, <%s> does NOT have %s ' % ((TagPartList[0] + ' ' + TagPartList[1]).replace('\n', '').replace('\r', ''), '[' + InOutStr + ']'), TableName, CommentId) else: if Tag.find('[in,out]') == -1: ErrorMsgList.append('Line %d : in Comment, <%s> does NOT have %s ' % (CommentStartLine, (TagPartList[0] + ' ' + TagPartList[1]).replace('\n', '').replace('\r', ''), '[' + InOutStr + ']')) PrintErrorMsg(ERROR_DOXYGEN_CHECK_FUNCTION_HEADER, 'in Comment, <%s> does NOT have %s ' % ((TagPartList[0] + ' ' + TagPartList[1]).replace('\n', '').replace('\r', ''), '[' + InOutStr + ']'), TableName, CommentId) if Tag.find(ParamName) == -1 and ParamName != 'VOID' and ParamName != 'void': ErrorMsgList.append('Line %d : in Comment, <%s> does NOT consistent with parameter name %s ' % (CommentStartLine, (TagPartList[0] + ' ' + TagPartList[1]).replace('\n', '').replace('\r', ''), ParamName)) PrintErrorMsg(ERROR_DOXYGEN_CHECK_FUNCTION_HEADER, 'in Comment, <%s> does NOT consistent with parameter name %s ' % ((TagPartList[0] + ' ' + TagPartList[1]).replace('\n', '').replace('\r', ''), ParamName), TableName, CommentId) Index += 1 if Index < ParamNumber: ErrorMsgList.append('Line %d : Number of doxygen tags in comment less than number of function parameters' % CommentStartLine) PrintErrorMsg(ERROR_DOXYGEN_CHECK_FUNCTION_HEADER, 'Number of doxygen tags in comment less than number of function parameters ', TableName, CommentId) # VOID return type, NOT VOID*. VOID* should be matched with a doxygen tag. if (FuncModifier.find('VOID') != -1 or FuncModifier.find('void') != -1) and FuncModifier.find('*') == -1: # assume we allow a return description tag for void func. return. that's why 'DoxygenTagNumber - 1' is used instead of 'DoxygenTagNumber' if Index < DoxygenTagNumber - 1 or (Index < DoxygenTagNumber and DoxygenStrList[Index].startswith('@retval')): ErrorMsgList.append('Line %d : VOID return type need NO doxygen tags in comment' % CommentStartLine) PrintErrorMsg(ERROR_DOXYGEN_CHECK_FUNCTION_HEADER, 'VOID return type need no doxygen tags in comment ', TableName, CommentId) else: if Index < DoxygenTagNumber and not DoxygenStrList[Index].startswith('@retval') and not DoxygenStrList[Index].startswith('@return'): ErrorMsgList.append('Line %d : Number of @param doxygen tags in comment does NOT match number of function parameters' % CommentStartLine) PrintErrorMsg(ERROR_DOXYGEN_CHECK_FUNCTION_HEADER, 'Number of @param doxygen tags in comment does NOT match number of function parameters ', TableName, CommentId) else: if ParamNumber == 0 and DoxygenTagNumber != 0 and ((FuncModifier.find('VOID') != -1 or FuncModifier.find('void') != -1) and FuncModifier.find('*') == -1): ErrorMsgList.append('Line %d : VOID return type need NO doxygen tags in comment' % CommentStartLine) PrintErrorMsg(ERROR_DOXYGEN_CHECK_FUNCTION_HEADER, 'VOID return type need NO doxygen tags in comment ', TableName, CommentId) if ParamNumber != 0 and DoxygenTagNumber == 0: ErrorMsgList.append('Line %d : No doxygen tags in comment' % CommentStartLine) PrintErrorMsg(ERROR_DOXYGEN_CHECK_FUNCTION_HEADER, 'No doxygen tags in comment ', TableName, CommentId) if __name__ == '__main__': # EdkLogger.Initialize() # EdkLogger.SetLevel(EdkLogger.QUIET) # CollectSourceCodeDataIntoDB(sys.argv[1]) try: test_file = sys.argv[1] except IndexError, v: print "Usage: %s filename" % sys.argv[0] sys.exit(1) MsgList = CheckFuncHeaderDoxygenComments(test_file) for Msg in MsgList: print Msg print 'Done!'
41.683352
296
0.579536
33177ac4524143e78942c60455a88dcbc6825e55
56,029
py
Python
pandas/core/dtypes/common.py
JustinZhengBC/pandas
99df7da9ef5b3b210f3045ee19279808368def28
[ "BSD-3-Clause" ]
null
null
null
pandas/core/dtypes/common.py
JustinZhengBC/pandas
99df7da9ef5b3b210f3045ee19279808368def28
[ "BSD-3-Clause" ]
null
null
null
pandas/core/dtypes/common.py
JustinZhengBC/pandas
99df7da9ef5b3b210f3045ee19279808368def28
[ "BSD-3-Clause" ]
null
null
null
""" common type operations """ import numpy as np from pandas._libs import algos, lib from pandas._libs.interval import Interval from pandas._libs.tslibs import Period, Timestamp, conversion from pandas.compat import PY3, PY36, binary_type, string_types, text_type from pandas.core.dtypes.dtypes import ( CategoricalDtype, CategoricalDtypeType, DatetimeTZDtype, ExtensionDtype, IntervalDtype, PandasExtensionDtype, PeriodDtype, _pandas_registry, registry) from pandas.core.dtypes.generic import ( ABCCategorical, ABCCategoricalIndex, ABCDateOffset, ABCDatetimeIndex, ABCIndexClass, ABCPeriodArray, ABCPeriodIndex, ABCSeries, ABCSparseArray, ABCSparseSeries) from pandas.core.dtypes.inference import ( # noqa:F401 is_array_like, is_bool, is_complex, is_decimal, is_dict_like, is_file_like, is_float, is_hashable, is_integer, is_interval, is_iterator, is_list_like, is_named_tuple, is_nested_list_like, is_number, is_re, is_re_compilable, is_scalar, is_sequence, is_string_like) _POSSIBLY_CAST_DTYPES = {np.dtype(t).name for t in ['O', 'int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32', 'int64', 'uint64']} _NS_DTYPE = conversion.NS_DTYPE _TD_DTYPE = conversion.TD_DTYPE _INT64_DTYPE = np.dtype(np.int64) # oh the troubles to reduce import time _is_scipy_sparse = None ensure_float64 = algos.ensure_float64 ensure_float32 = algos.ensure_float32 _ensure_datetime64ns = conversion.ensure_datetime64ns _ensure_timedelta64ns = conversion.ensure_timedelta64ns def ensure_float(arr): """ Ensure that an array object has a float dtype if possible. Parameters ---------- arr : array-like The array whose data type we want to enforce as float. Returns ------- float_arr : The original array cast to the float dtype if possible. Otherwise, the original array is returned. """ if issubclass(arr.dtype.type, (np.integer, np.bool_)): arr = arr.astype(float) return arr ensure_uint64 = algos.ensure_uint64 ensure_int64 = algos.ensure_int64 ensure_int32 = algos.ensure_int32 ensure_int16 = algos.ensure_int16 ensure_int8 = algos.ensure_int8 ensure_platform_int = algos.ensure_platform_int ensure_object = algos.ensure_object def ensure_categorical(arr): """ Ensure that an array-like object is a Categorical (if not already). Parameters ---------- arr : array-like The array that we want to convert into a Categorical. Returns ------- cat_arr : The original array cast as a Categorical. If it already is a Categorical, we return as is. """ if not is_categorical(arr): from pandas import Categorical arr = Categorical(arr) return arr def ensure_int64_or_float64(arr, copy=False): """ Ensure that an dtype array of some integer dtype has an int64 dtype if possible If it's not possible, potentially because of overflow, convert the array to float64 instead. Parameters ---------- arr : array-like The array whose data type we want to enforce. copy: boolean Whether to copy the original array or reuse it in place, if possible. Returns ------- out_arr : The input array cast as int64 if possible without overflow. Otherwise the input array cast to float64. """ try: return arr.astype('int64', copy=copy, casting='safe') except TypeError: return arr.astype('float64', copy=copy) def is_object_dtype(arr_or_dtype): """ Check whether an array-like or dtype is of the object dtype. Parameters ---------- arr_or_dtype : array-like The array-like or dtype to check. Returns ------- boolean : Whether or not the array-like or dtype is of the object dtype. Examples -------- >>> is_object_dtype(object) True >>> is_object_dtype(int) False >>> is_object_dtype(np.array([], dtype=object)) True >>> is_object_dtype(np.array([], dtype=int)) False >>> is_object_dtype([1, 2, 3]) False """ if arr_or_dtype is None: return False tipo = _get_dtype_type(arr_or_dtype) return issubclass(tipo, np.object_) def is_sparse(arr): """ Check whether an array-like is a 1-D pandas sparse array. Check that the one-dimensional array-like is a pandas sparse array. Returns True if it is a pandas sparse array, not another type of sparse array. Parameters ---------- arr : array-like Array-like to check. Returns ------- bool Whether or not the array-like is a pandas sparse array. See Also -------- DataFrame.to_sparse : Convert DataFrame to a SparseDataFrame. Series.to_sparse : Convert Series to SparseSeries. Series.to_dense : Return dense representation of a Series. Examples -------- Returns `True` if the parameter is a 1-D pandas sparse array. >>> is_sparse(pd.SparseArray([0, 0, 1, 0])) True >>> is_sparse(pd.SparseSeries([0, 0, 1, 0])) True Returns `False` if the parameter is not sparse. >>> is_sparse(np.array([0, 0, 1, 0])) False >>> is_sparse(pd.Series([0, 1, 0, 0])) False Returns `False` if the parameter is not a pandas sparse array. >>> from scipy.sparse import bsr_matrix >>> is_sparse(bsr_matrix([0, 1, 0, 0])) False Returns `False` if the parameter has more than one dimension. >>> df = pd.SparseDataFrame([389., 24., 80.5, np.nan], columns=['max_speed'], index=['falcon', 'parrot', 'lion', 'monkey']) >>> is_sparse(df) False >>> is_sparse(df.max_speed) True """ from pandas.core.arrays.sparse import SparseDtype dtype = getattr(arr, 'dtype', arr) return isinstance(dtype, SparseDtype) def is_scipy_sparse(arr): """ Check whether an array-like is a scipy.sparse.spmatrix instance. Parameters ---------- arr : array-like The array-like to check. Returns ------- boolean : Whether or not the array-like is a scipy.sparse.spmatrix instance. Notes ----- If scipy is not installed, this function will always return False. Examples -------- >>> from scipy.sparse import bsr_matrix >>> is_scipy_sparse(bsr_matrix([1, 2, 3])) True >>> is_scipy_sparse(pd.SparseArray([1, 2, 3])) False >>> is_scipy_sparse(pd.SparseSeries([1, 2, 3])) False """ global _is_scipy_sparse if _is_scipy_sparse is None: try: from scipy.sparse import issparse as _is_scipy_sparse except ImportError: _is_scipy_sparse = lambda _: False return _is_scipy_sparse(arr) def is_categorical(arr): """ Check whether an array-like is a Categorical instance. Parameters ---------- arr : array-like The array-like to check. Returns ------- boolean : Whether or not the array-like is of a Categorical instance. Examples -------- >>> is_categorical([1, 2, 3]) False Categoricals, Series Categoricals, and CategoricalIndex will return True. >>> cat = pd.Categorical([1, 2, 3]) >>> is_categorical(cat) True >>> is_categorical(pd.Series(cat)) True >>> is_categorical(pd.CategoricalIndex([1, 2, 3])) True """ return isinstance(arr, ABCCategorical) or is_categorical_dtype(arr) def is_datetimetz(arr): """ Check whether an array-like is a datetime array-like with a timezone component in its dtype. Parameters ---------- arr : array-like The array-like to check. Returns ------- boolean : Whether or not the array-like is a datetime array-like with a timezone component in its dtype. Examples -------- >>> is_datetimetz([1, 2, 3]) False Although the following examples are both DatetimeIndex objects, the first one returns False because it has no timezone component unlike the second one, which returns True. >>> is_datetimetz(pd.DatetimeIndex([1, 2, 3])) False >>> is_datetimetz(pd.DatetimeIndex([1, 2, 3], tz="US/Eastern")) True The object need not be a DatetimeIndex object. It just needs to have a dtype which has a timezone component. >>> dtype = DatetimeTZDtype("ns", tz="US/Eastern") >>> s = pd.Series([], dtype=dtype) >>> is_datetimetz(s) True """ # TODO: do we need this function? # It seems like a repeat of is_datetime64tz_dtype. return ((isinstance(arr, ABCDatetimeIndex) and getattr(arr, 'tz', None) is not None) or is_datetime64tz_dtype(arr)) def is_offsetlike(arr_or_obj): """ Check if obj or all elements of list-like is DateOffset Parameters ---------- arr_or_obj : object Returns ------- boolean : Whether the object is a DateOffset or listlike of DatetOffsets Examples -------- >>> is_offsetlike(pd.DateOffset(days=1)) True >>> is_offsetlike('offset') False >>> is_offsetlike([pd.offsets.Minute(4), pd.offsets.MonthEnd()]) True >>> is_offsetlike(np.array([pd.DateOffset(months=3), pd.Timestamp.now()])) False """ if isinstance(arr_or_obj, ABCDateOffset): return True elif (is_list_like(arr_or_obj) and len(arr_or_obj) and is_object_dtype(arr_or_obj)): return all(isinstance(x, ABCDateOffset) for x in arr_or_obj) return False def is_period(arr): """ Check whether an array-like is a periodical index. Parameters ---------- arr : array-like The array-like to check. Returns ------- boolean : Whether or not the array-like is a periodical index. Examples -------- >>> is_period([1, 2, 3]) False >>> is_period(pd.Index([1, 2, 3])) False >>> is_period(pd.PeriodIndex(["2017-01-01"], freq="D")) True """ # TODO: do we need this function? # It seems like a repeat of is_period_arraylike. return isinstance(arr, ABCPeriodIndex) or is_period_arraylike(arr) def is_datetime64_dtype(arr_or_dtype): """ Check whether an array-like or dtype is of the datetime64 dtype. Parameters ---------- arr_or_dtype : array-like The array-like or dtype to check. Returns ------- boolean : Whether or not the array-like or dtype is of the datetime64 dtype. Examples -------- >>> is_datetime64_dtype(object) False >>> is_datetime64_dtype(np.datetime64) True >>> is_datetime64_dtype(np.array([], dtype=int)) False >>> is_datetime64_dtype(np.array([], dtype=np.datetime64)) True >>> is_datetime64_dtype([1, 2, 3]) False """ if arr_or_dtype is None: return False try: tipo = _get_dtype_type(arr_or_dtype) except (TypeError, UnicodeEncodeError): return False return issubclass(tipo, np.datetime64) def is_datetime64tz_dtype(arr_or_dtype): """ Check whether an array-like or dtype is of a DatetimeTZDtype dtype. Parameters ---------- arr_or_dtype : array-like The array-like or dtype to check. Returns ------- boolean : Whether or not the array-like or dtype is of a DatetimeTZDtype dtype. Examples -------- >>> is_datetime64tz_dtype(object) False >>> is_datetime64tz_dtype([1, 2, 3]) False >>> is_datetime64tz_dtype(pd.DatetimeIndex([1, 2, 3])) # tz-naive False >>> is_datetime64tz_dtype(pd.DatetimeIndex([1, 2, 3], tz="US/Eastern")) True >>> dtype = DatetimeTZDtype("ns", tz="US/Eastern") >>> s = pd.Series([], dtype=dtype) >>> is_datetime64tz_dtype(dtype) True >>> is_datetime64tz_dtype(s) True """ if arr_or_dtype is None: return False return DatetimeTZDtype.is_dtype(arr_or_dtype) def is_timedelta64_dtype(arr_or_dtype): """ Check whether an array-like or dtype is of the timedelta64 dtype. Parameters ---------- arr_or_dtype : array-like The array-like or dtype to check. Returns ------- boolean : Whether or not the array-like or dtype is of the timedelta64 dtype. Examples -------- >>> is_timedelta64_dtype(object) False >>> is_timedelta64_dtype(np.timedelta64) True >>> is_timedelta64_dtype([1, 2, 3]) False >>> is_timedelta64_dtype(pd.Series([], dtype="timedelta64[ns]")) True >>> is_timedelta64_dtype('0 days') False """ if arr_or_dtype is None: return False try: tipo = _get_dtype_type(arr_or_dtype) except (TypeError, ValueError, SyntaxError): return False return issubclass(tipo, np.timedelta64) def is_period_dtype(arr_or_dtype): """ Check whether an array-like or dtype is of the Period dtype. Parameters ---------- arr_or_dtype : array-like The array-like or dtype to check. Returns ------- boolean : Whether or not the array-like or dtype is of the Period dtype. Examples -------- >>> is_period_dtype(object) False >>> is_period_dtype(PeriodDtype(freq="D")) True >>> is_period_dtype([1, 2, 3]) False >>> is_period_dtype(pd.Period("2017-01-01")) False >>> is_period_dtype(pd.PeriodIndex([], freq="A")) True """ # TODO: Consider making Period an instance of PeriodDtype if arr_or_dtype is None: return False return PeriodDtype.is_dtype(arr_or_dtype) def is_interval_dtype(arr_or_dtype): """ Check whether an array-like or dtype is of the Interval dtype. Parameters ---------- arr_or_dtype : array-like The array-like or dtype to check. Returns ------- boolean : Whether or not the array-like or dtype is of the Interval dtype. Examples -------- >>> is_interval_dtype(object) False >>> is_interval_dtype(IntervalDtype()) True >>> is_interval_dtype([1, 2, 3]) False >>> >>> interval = pd.Interval(1, 2, closed="right") >>> is_interval_dtype(interval) False >>> is_interval_dtype(pd.IntervalIndex([interval])) True """ # TODO: Consider making Interval an instance of IntervalDtype if arr_or_dtype is None: return False return IntervalDtype.is_dtype(arr_or_dtype) def is_categorical_dtype(arr_or_dtype): """ Check whether an array-like or dtype is of the Categorical dtype. Parameters ---------- arr_or_dtype : array-like The array-like or dtype to check. Returns ------- boolean : Whether or not the array-like or dtype is of the Categorical dtype. Examples -------- >>> is_categorical_dtype(object) False >>> is_categorical_dtype(CategoricalDtype()) True >>> is_categorical_dtype([1, 2, 3]) False >>> is_categorical_dtype(pd.Categorical([1, 2, 3])) True >>> is_categorical_dtype(pd.CategoricalIndex([1, 2, 3])) True """ if arr_or_dtype is None: return False return CategoricalDtype.is_dtype(arr_or_dtype) def is_string_dtype(arr_or_dtype): """ Check whether the provided array or dtype is of the string dtype. Parameters ---------- arr_or_dtype : array-like The array or dtype to check. Returns ------- boolean : Whether or not the array or dtype is of the string dtype. Examples -------- >>> is_string_dtype(str) True >>> is_string_dtype(object) True >>> is_string_dtype(int) False >>> >>> is_string_dtype(np.array(['a', 'b'])) True >>> is_string_dtype(pd.Series([1, 2])) False """ # TODO: gh-15585: consider making the checks stricter. if arr_or_dtype is None: return False try: dtype = _get_dtype(arr_or_dtype) return dtype.kind in ('O', 'S', 'U') and not is_period_dtype(dtype) except TypeError: return False def is_period_arraylike(arr): """ Check whether an array-like is a periodical array-like or PeriodIndex. Parameters ---------- arr : array-like The array-like to check. Returns ------- boolean : Whether or not the array-like is a periodical array-like or PeriodIndex instance. Examples -------- >>> is_period_arraylike([1, 2, 3]) False >>> is_period_arraylike(pd.Index([1, 2, 3])) False >>> is_period_arraylike(pd.PeriodIndex(["2017-01-01"], freq="D")) True """ if isinstance(arr, (ABCPeriodIndex, ABCPeriodArray)): return True elif isinstance(arr, (np.ndarray, ABCSeries)): return is_period_dtype(arr.dtype) return getattr(arr, 'inferred_type', None) == 'period' def is_datetime_arraylike(arr): """ Check whether an array-like is a datetime array-like or DatetimeIndex. Parameters ---------- arr : array-like The array-like to check. Returns ------- boolean : Whether or not the array-like is a datetime array-like or DatetimeIndex. Examples -------- >>> is_datetime_arraylike([1, 2, 3]) False >>> is_datetime_arraylike(pd.Index([1, 2, 3])) False >>> is_datetime_arraylike(pd.DatetimeIndex([1, 2, 3])) True """ if isinstance(arr, ABCDatetimeIndex): return True elif isinstance(arr, (np.ndarray, ABCSeries)): return arr.dtype == object and lib.infer_dtype(arr) == 'datetime' return getattr(arr, 'inferred_type', None) == 'datetime' def is_datetimelike(arr): """ Check whether an array-like is a datetime-like array-like. Acceptable datetime-like objects are (but not limited to) datetime indices, periodic indices, and timedelta indices. Parameters ---------- arr : array-like The array-like to check. Returns ------- boolean : Whether or not the array-like is a datetime-like array-like. Examples -------- >>> is_datetimelike([1, 2, 3]) False >>> is_datetimelike(pd.Index([1, 2, 3])) False >>> is_datetimelike(pd.DatetimeIndex([1, 2, 3])) True >>> is_datetimelike(pd.DatetimeIndex([1, 2, 3], tz="US/Eastern")) True >>> is_datetimelike(pd.PeriodIndex([], freq="A")) True >>> is_datetimelike(np.array([], dtype=np.datetime64)) True >>> is_datetimelike(pd.Series([], dtype="timedelta64[ns]")) True >>> >>> dtype = DatetimeTZDtype("ns", tz="US/Eastern") >>> s = pd.Series([], dtype=dtype) >>> is_datetimelike(s) True """ return (is_datetime64_dtype(arr) or is_datetime64tz_dtype(arr) or is_timedelta64_dtype(arr) or isinstance(arr, ABCPeriodIndex) or is_datetimetz(arr)) def is_dtype_equal(source, target): """ Check if two dtypes are equal. Parameters ---------- source : The first dtype to compare target : The second dtype to compare Returns ---------- boolean : Whether or not the two dtypes are equal. Examples -------- >>> is_dtype_equal(int, float) False >>> is_dtype_equal("int", int) True >>> is_dtype_equal(object, "category") False >>> is_dtype_equal(CategoricalDtype(), "category") True >>> is_dtype_equal(DatetimeTZDtype(), "datetime64") False """ try: source = _get_dtype(source) target = _get_dtype(target) return source == target except (TypeError, AttributeError): # invalid comparison # object == category will hit this return False def is_dtype_union_equal(source, target): """ Check whether two arrays have compatible dtypes to do a union. numpy types are checked with ``is_dtype_equal``. Extension types are checked separately. Parameters ---------- source : The first dtype to compare target : The second dtype to compare Returns ---------- boolean : Whether or not the two dtypes are equal. >>> is_dtype_equal("int", int) True >>> is_dtype_equal(CategoricalDtype(['a', 'b'], ... CategoricalDtype(['b', 'c'])) True >>> is_dtype_equal(CategoricalDtype(['a', 'b'], ... CategoricalDtype(['b', 'c'], ordered=True)) False """ source = _get_dtype(source) target = _get_dtype(target) if is_categorical_dtype(source) and is_categorical_dtype(target): # ordered False for both return source.ordered is target.ordered return is_dtype_equal(source, target) def is_any_int_dtype(arr_or_dtype): """Check whether the provided array or dtype is of an integer dtype. In this function, timedelta64 instances are also considered "any-integer" type objects and will return True. This function is internal and should not be exposed in the public API. Parameters ---------- arr_or_dtype : array-like The array or dtype to check. Returns ------- boolean : Whether or not the array or dtype is of an integer dtype. Examples -------- >>> is_any_int_dtype(str) False >>> is_any_int_dtype(int) True >>> is_any_int_dtype(float) False >>> is_any_int_dtype(np.uint64) True >>> is_any_int_dtype(np.datetime64) False >>> is_any_int_dtype(np.timedelta64) True >>> is_any_int_dtype(np.array(['a', 'b'])) False >>> is_any_int_dtype(pd.Series([1, 2])) True >>> is_any_int_dtype(np.array([], dtype=np.timedelta64)) True >>> is_any_int_dtype(pd.Index([1, 2.])) # float False """ if arr_or_dtype is None: return False tipo = _get_dtype_type(arr_or_dtype) return issubclass(tipo, np.integer) def is_integer_dtype(arr_or_dtype): """ Check whether the provided array or dtype is of an integer dtype. Unlike in `in_any_int_dtype`, timedelta64 instances will return False. Parameters ---------- arr_or_dtype : array-like The array or dtype to check. Returns ------- boolean : Whether or not the array or dtype is of an integer dtype and not an instance of timedelta64. Examples -------- >>> is_integer_dtype(str) False >>> is_integer_dtype(int) True >>> is_integer_dtype(float) False >>> is_integer_dtype(np.uint64) True >>> is_integer_dtype(np.datetime64) False >>> is_integer_dtype(np.timedelta64) False >>> is_integer_dtype(np.array(['a', 'b'])) False >>> is_integer_dtype(pd.Series([1, 2])) True >>> is_integer_dtype(np.array([], dtype=np.timedelta64)) False >>> is_integer_dtype(pd.Index([1, 2.])) # float False """ if arr_or_dtype is None: return False tipo = _get_dtype_type(arr_or_dtype) return (issubclass(tipo, np.integer) and not issubclass(tipo, (np.datetime64, np.timedelta64))) def is_signed_integer_dtype(arr_or_dtype): """ Check whether the provided array or dtype is of a signed integer dtype. Unlike in `in_any_int_dtype`, timedelta64 instances will return False. Parameters ---------- arr_or_dtype : array-like The array or dtype to check. Returns ------- boolean : Whether or not the array or dtype is of a signed integer dtype and not an instance of timedelta64. Examples -------- >>> is_signed_integer_dtype(str) False >>> is_signed_integer_dtype(int) True >>> is_signed_integer_dtype(float) False >>> is_signed_integer_dtype(np.uint64) # unsigned False >>> is_signed_integer_dtype(np.datetime64) False >>> is_signed_integer_dtype(np.timedelta64) False >>> is_signed_integer_dtype(np.array(['a', 'b'])) False >>> is_signed_integer_dtype(pd.Series([1, 2])) True >>> is_signed_integer_dtype(np.array([], dtype=np.timedelta64)) False >>> is_signed_integer_dtype(pd.Index([1, 2.])) # float False >>> is_signed_integer_dtype(np.array([1, 2], dtype=np.uint32)) # unsigned False """ if arr_or_dtype is None: return False tipo = _get_dtype_type(arr_or_dtype) return (issubclass(tipo, np.signedinteger) and not issubclass(tipo, (np.datetime64, np.timedelta64))) def is_unsigned_integer_dtype(arr_or_dtype): """ Check whether the provided array or dtype is of an unsigned integer dtype. Parameters ---------- arr_or_dtype : array-like The array or dtype to check. Returns ------- boolean : Whether or not the array or dtype is of an unsigned integer dtype. Examples -------- >>> is_unsigned_integer_dtype(str) False >>> is_unsigned_integer_dtype(int) # signed False >>> is_unsigned_integer_dtype(float) False >>> is_unsigned_integer_dtype(np.uint64) True >>> is_unsigned_integer_dtype(np.array(['a', 'b'])) False >>> is_unsigned_integer_dtype(pd.Series([1, 2])) # signed False >>> is_unsigned_integer_dtype(pd.Index([1, 2.])) # float False >>> is_unsigned_integer_dtype(np.array([1, 2], dtype=np.uint32)) True """ if arr_or_dtype is None: return False tipo = _get_dtype_type(arr_or_dtype) return (issubclass(tipo, np.unsignedinteger) and not issubclass(tipo, (np.datetime64, np.timedelta64))) def is_int64_dtype(arr_or_dtype): """ Check whether the provided array or dtype is of the int64 dtype. Parameters ---------- arr_or_dtype : array-like The array or dtype to check. Returns ------- boolean : Whether or not the array or dtype is of the int64 dtype. Notes ----- Depending on system architecture, the return value of `is_int64_dtype( int)` will be True if the OS uses 64-bit integers and False if the OS uses 32-bit integers. Examples -------- >>> is_int64_dtype(str) False >>> is_int64_dtype(np.int32) False >>> is_int64_dtype(np.int64) True >>> is_int64_dtype(float) False >>> is_int64_dtype(np.uint64) # unsigned False >>> is_int64_dtype(np.array(['a', 'b'])) False >>> is_int64_dtype(np.array([1, 2], dtype=np.int64)) True >>> is_int64_dtype(pd.Index([1, 2.])) # float False >>> is_int64_dtype(np.array([1, 2], dtype=np.uint32)) # unsigned False """ if arr_or_dtype is None: return False tipo = _get_dtype_type(arr_or_dtype) return issubclass(tipo, np.int64) def is_int_or_datetime_dtype(arr_or_dtype): """ Check whether the provided array or dtype is of an integer, timedelta64, or datetime64 dtype. Parameters ---------- arr_or_dtype : array-like The array or dtype to check. Returns ------- boolean : Whether or not the array or dtype is of an integer, timedelta64, or datetime64 dtype. Examples -------- >>> is_int_or_datetime_dtype(str) False >>> is_int_or_datetime_dtype(int) True >>> is_int_or_datetime_dtype(float) False >>> is_int_or_datetime_dtype(np.uint64) True >>> is_int_or_datetime_dtype(np.datetime64) True >>> is_int_or_datetime_dtype(np.timedelta64) True >>> is_int_or_datetime_dtype(np.array(['a', 'b'])) False >>> is_int_or_datetime_dtype(pd.Series([1, 2])) True >>> is_int_or_datetime_dtype(np.array([], dtype=np.timedelta64)) True >>> is_int_or_datetime_dtype(np.array([], dtype=np.datetime64)) True >>> is_int_or_datetime_dtype(pd.Index([1, 2.])) # float False """ if arr_or_dtype is None: return False tipo = _get_dtype_type(arr_or_dtype) return (issubclass(tipo, np.integer) or issubclass(tipo, (np.datetime64, np.timedelta64))) def is_datetime64_any_dtype(arr_or_dtype): """ Check whether the provided array or dtype is of the datetime64 dtype. Parameters ---------- arr_or_dtype : array-like The array or dtype to check. Returns ------- boolean : Whether or not the array or dtype is of the datetime64 dtype. Examples -------- >>> is_datetime64_any_dtype(str) False >>> is_datetime64_any_dtype(int) False >>> is_datetime64_any_dtype(np.datetime64) # can be tz-naive True >>> is_datetime64_any_dtype(DatetimeTZDtype("ns", "US/Eastern")) True >>> is_datetime64_any_dtype(np.array(['a', 'b'])) False >>> is_datetime64_any_dtype(np.array([1, 2])) False >>> is_datetime64_any_dtype(np.array([], dtype=np.datetime64)) True >>> is_datetime64_any_dtype(pd.DatetimeIndex([1, 2, 3], dtype=np.datetime64)) True """ if arr_or_dtype is None: return False return (is_datetime64_dtype(arr_or_dtype) or is_datetime64tz_dtype(arr_or_dtype)) def is_datetime64_ns_dtype(arr_or_dtype): """ Check whether the provided array or dtype is of the datetime64[ns] dtype. Parameters ---------- arr_or_dtype : array-like The array or dtype to check. Returns ------- boolean : Whether or not the array or dtype is of the datetime64[ns] dtype. Examples -------- >>> is_datetime64_ns_dtype(str) False >>> is_datetime64_ns_dtype(int) False >>> is_datetime64_ns_dtype(np.datetime64) # no unit False >>> is_datetime64_ns_dtype(DatetimeTZDtype("ns", "US/Eastern")) True >>> is_datetime64_ns_dtype(np.array(['a', 'b'])) False >>> is_datetime64_ns_dtype(np.array([1, 2])) False >>> is_datetime64_ns_dtype(np.array([], dtype=np.datetime64)) # no unit False >>> is_datetime64_ns_dtype(np.array([], dtype="datetime64[ps]")) # wrong unit False >>> is_datetime64_ns_dtype(pd.DatetimeIndex([1, 2, 3], dtype=np.datetime64)) # has 'ns' unit True """ if arr_or_dtype is None: return False try: tipo = _get_dtype(arr_or_dtype) except TypeError: if is_datetime64tz_dtype(arr_or_dtype): tipo = _get_dtype(arr_or_dtype.dtype) else: return False return tipo == _NS_DTYPE or getattr(tipo, 'base', None) == _NS_DTYPE def is_timedelta64_ns_dtype(arr_or_dtype): """ Check whether the provided array or dtype is of the timedelta64[ns] dtype. This is a very specific dtype, so generic ones like `np.timedelta64` will return False if passed into this function. Parameters ---------- arr_or_dtype : array-like The array or dtype to check. Returns ------- boolean : Whether or not the array or dtype is of the timedelta64[ns] dtype. Examples -------- >>> is_timedelta64_ns_dtype(np.dtype('m8[ns]')) True >>> is_timedelta64_ns_dtype(np.dtype('m8[ps]')) # Wrong frequency False >>> is_timedelta64_ns_dtype(np.array([1, 2], dtype='m8[ns]')) True >>> is_timedelta64_ns_dtype(np.array([1, 2], dtype=np.timedelta64)) False """ if arr_or_dtype is None: return False try: tipo = _get_dtype(arr_or_dtype) return tipo == _TD_DTYPE except TypeError: return False def is_datetime_or_timedelta_dtype(arr_or_dtype): """ Check whether the provided array or dtype is of a timedelta64 or datetime64 dtype. Parameters ---------- arr_or_dtype : array-like The array or dtype to check. Returns ------- boolean : Whether or not the array or dtype is of a timedelta64, or datetime64 dtype. Examples -------- >>> is_datetime_or_timedelta_dtype(str) False >>> is_datetime_or_timedelta_dtype(int) False >>> is_datetime_or_timedelta_dtype(np.datetime64) True >>> is_datetime_or_timedelta_dtype(np.timedelta64) True >>> is_datetime_or_timedelta_dtype(np.array(['a', 'b'])) False >>> is_datetime_or_timedelta_dtype(pd.Series([1, 2])) False >>> is_datetime_or_timedelta_dtype(np.array([], dtype=np.timedelta64)) True >>> is_datetime_or_timedelta_dtype(np.array([], dtype=np.datetime64)) True """ if arr_or_dtype is None: return False tipo = _get_dtype_type(arr_or_dtype) return issubclass(tipo, (np.datetime64, np.timedelta64)) def _is_unorderable_exception(e): """ Check if the exception raised is an unorderable exception. The error message differs for 3 <= PY <= 3.5 and PY >= 3.6, so we need to condition based on Python version. Parameters ---------- e : Exception or sub-class The exception object to check. Returns ------- boolean : Whether or not the exception raised is an unorderable exception. """ if PY36: return "'>' not supported between instances of" in str(e) elif PY3: return 'unorderable' in str(e) return False def is_numeric_v_string_like(a, b): """ Check if we are comparing a string-like object to a numeric ndarray. NumPy doesn't like to compare such objects, especially numeric arrays and scalar string-likes. Parameters ---------- a : array-like, scalar The first object to check. b : array-like, scalar The second object to check. Returns ------- boolean : Whether we return a comparing a string-like object to a numeric array. Examples -------- >>> is_numeric_v_string_like(1, 1) False >>> is_numeric_v_string_like("foo", "foo") False >>> is_numeric_v_string_like(1, "foo") # non-array numeric False >>> is_numeric_v_string_like(np.array([1]), "foo") True >>> is_numeric_v_string_like("foo", np.array([1])) # symmetric check True >>> is_numeric_v_string_like(np.array([1, 2]), np.array(["foo"])) True >>> is_numeric_v_string_like(np.array(["foo"]), np.array([1, 2])) True >>> is_numeric_v_string_like(np.array([1]), np.array([2])) False >>> is_numeric_v_string_like(np.array(["foo"]), np.array(["foo"])) False """ is_a_array = isinstance(a, np.ndarray) is_b_array = isinstance(b, np.ndarray) is_a_numeric_array = is_a_array and is_numeric_dtype(a) is_b_numeric_array = is_b_array and is_numeric_dtype(b) is_a_string_array = is_a_array and is_string_like_dtype(a) is_b_string_array = is_b_array and is_string_like_dtype(b) is_a_scalar_string_like = not is_a_array and is_string_like(a) is_b_scalar_string_like = not is_b_array and is_string_like(b) return ((is_a_numeric_array and is_b_scalar_string_like) or (is_b_numeric_array and is_a_scalar_string_like) or (is_a_numeric_array and is_b_string_array) or (is_b_numeric_array and is_a_string_array)) def is_datetimelike_v_numeric(a, b): """ Check if we are comparing a datetime-like object to a numeric object. By "numeric," we mean an object that is either of an int or float dtype. Parameters ---------- a : array-like, scalar The first object to check. b : array-like, scalar The second object to check. Returns ------- boolean : Whether we return a comparing a datetime-like to a numeric object. Examples -------- >>> dt = np.datetime64(pd.datetime(2017, 1, 1)) >>> >>> is_datetimelike_v_numeric(1, 1) False >>> is_datetimelike_v_numeric(dt, dt) False >>> is_datetimelike_v_numeric(1, dt) True >>> is_datetimelike_v_numeric(dt, 1) # symmetric check True >>> is_datetimelike_v_numeric(np.array([dt]), 1) True >>> is_datetimelike_v_numeric(np.array([1]), dt) True >>> is_datetimelike_v_numeric(np.array([dt]), np.array([1])) True >>> is_datetimelike_v_numeric(np.array([1]), np.array([2])) False >>> is_datetimelike_v_numeric(np.array([dt]), np.array([dt])) False """ if not hasattr(a, 'dtype'): a = np.asarray(a) if not hasattr(b, 'dtype'): b = np.asarray(b) def is_numeric(x): """ Check if an object has a numeric dtype (i.e. integer or float). """ return is_integer_dtype(x) or is_float_dtype(x) is_datetimelike = needs_i8_conversion return ((is_datetimelike(a) and is_numeric(b)) or (is_datetimelike(b) and is_numeric(a))) def is_datetimelike_v_object(a, b): """ Check if we are comparing a datetime-like object to an object instance. Parameters ---------- a : array-like, scalar The first object to check. b : array-like, scalar The second object to check. Returns ------- boolean : Whether we return a comparing a datetime-like to an object instance. Examples -------- >>> obj = object() >>> dt = np.datetime64(pd.datetime(2017, 1, 1)) >>> >>> is_datetimelike_v_object(obj, obj) False >>> is_datetimelike_v_object(dt, dt) False >>> is_datetimelike_v_object(obj, dt) True >>> is_datetimelike_v_object(dt, obj) # symmetric check True >>> is_datetimelike_v_object(np.array([dt]), obj) True >>> is_datetimelike_v_object(np.array([obj]), dt) True >>> is_datetimelike_v_object(np.array([dt]), np.array([obj])) True >>> is_datetimelike_v_object(np.array([obj]), np.array([obj])) False >>> is_datetimelike_v_object(np.array([dt]), np.array([1])) False >>> is_datetimelike_v_object(np.array([dt]), np.array([dt])) False """ if not hasattr(a, 'dtype'): a = np.asarray(a) if not hasattr(b, 'dtype'): b = np.asarray(b) is_datetimelike = needs_i8_conversion return ((is_datetimelike(a) and is_object_dtype(b)) or (is_datetimelike(b) and is_object_dtype(a))) def needs_i8_conversion(arr_or_dtype): """ Check whether the array or dtype should be converted to int64. An array-like or dtype "needs" such a conversion if the array-like or dtype is of a datetime-like dtype Parameters ---------- arr_or_dtype : array-like The array or dtype to check. Returns ------- boolean : Whether or not the array or dtype should be converted to int64. Examples -------- >>> needs_i8_conversion(str) False >>> needs_i8_conversion(np.int64) False >>> needs_i8_conversion(np.datetime64) True >>> needs_i8_conversion(np.array(['a', 'b'])) False >>> needs_i8_conversion(pd.Series([1, 2])) False >>> needs_i8_conversion(pd.Series([], dtype="timedelta64[ns]")) True >>> needs_i8_conversion(pd.DatetimeIndex([1, 2, 3], tz="US/Eastern")) True """ if arr_or_dtype is None: return False return (is_datetime_or_timedelta_dtype(arr_or_dtype) or is_datetime64tz_dtype(arr_or_dtype) or is_period_dtype(arr_or_dtype)) def is_numeric_dtype(arr_or_dtype): """ Check whether the provided array or dtype is of a numeric dtype. Parameters ---------- arr_or_dtype : array-like The array or dtype to check. Returns ------- boolean : Whether or not the array or dtype is of a numeric dtype. Examples -------- >>> is_numeric_dtype(str) False >>> is_numeric_dtype(int) True >>> is_numeric_dtype(float) True >>> is_numeric_dtype(np.uint64) True >>> is_numeric_dtype(np.datetime64) False >>> is_numeric_dtype(np.timedelta64) False >>> is_numeric_dtype(np.array(['a', 'b'])) False >>> is_numeric_dtype(pd.Series([1, 2])) True >>> is_numeric_dtype(pd.Index([1, 2.])) True >>> is_numeric_dtype(np.array([], dtype=np.timedelta64)) False """ if arr_or_dtype is None: return False tipo = _get_dtype_type(arr_or_dtype) return (issubclass(tipo, (np.number, np.bool_)) and not issubclass(tipo, (np.datetime64, np.timedelta64))) def is_string_like_dtype(arr_or_dtype): """ Check whether the provided array or dtype is of a string-like dtype. Unlike `is_string_dtype`, the object dtype is excluded because it is a mixed dtype. Parameters ---------- arr_or_dtype : array-like The array or dtype to check. Returns ------- boolean : Whether or not the array or dtype is of the string dtype. Examples -------- >>> is_string_like_dtype(str) True >>> is_string_like_dtype(object) False >>> is_string_like_dtype(np.array(['a', 'b'])) True >>> is_string_like_dtype(pd.Series([1, 2])) False """ if arr_or_dtype is None: return False try: dtype = _get_dtype(arr_or_dtype) return dtype.kind in ('S', 'U') except TypeError: return False def is_float_dtype(arr_or_dtype): """ Check whether the provided array or dtype is of a float dtype. This function is internal and should not be exposed in the public API. Parameters ---------- arr_or_dtype : array-like The array or dtype to check. Returns ------- boolean : Whether or not the array or dtype is of a float dtype. Examples -------- >>> is_float_dtype(str) False >>> is_float_dtype(int) False >>> is_float_dtype(float) True >>> is_float_dtype(np.array(['a', 'b'])) False >>> is_float_dtype(pd.Series([1, 2])) False >>> is_float_dtype(pd.Index([1, 2.])) True """ if arr_or_dtype is None: return False tipo = _get_dtype_type(arr_or_dtype) return issubclass(tipo, np.floating) def is_floating_dtype(arr_or_dtype): """Check whether the provided array or dtype is an instance of numpy's float dtype. .. deprecated:: 0.20.0 Unlike, `is_float_dtype`, this check is a lot stricter, as it requires `isinstance` of `np.floating` and not `issubclass`. """ if arr_or_dtype is None: return False tipo = _get_dtype_type(arr_or_dtype) return isinstance(tipo, np.floating) def is_bool_dtype(arr_or_dtype): """ Check whether the provided array or dtype is of a boolean dtype. Parameters ---------- arr_or_dtype : array-like The array or dtype to check. Returns ------- boolean : Whether or not the array or dtype is of a boolean dtype. Notes ----- An ExtensionArray is considered boolean when the ``_is_boolean`` attribute is set to True. Examples -------- >>> is_bool_dtype(str) False >>> is_bool_dtype(int) False >>> is_bool_dtype(bool) True >>> is_bool_dtype(np.bool) True >>> is_bool_dtype(np.array(['a', 'b'])) False >>> is_bool_dtype(pd.Series([1, 2])) False >>> is_bool_dtype(np.array([True, False])) True >>> is_bool_dtype(pd.Categorical([True, False])) True >>> is_bool_dtype(pd.SparseArray([True, False])) True """ if arr_or_dtype is None: return False try: tipo = _get_dtype_type(arr_or_dtype) except ValueError: # this isn't even a dtype return False if isinstance(arr_or_dtype, (ABCCategorical, ABCCategoricalIndex)): arr_or_dtype = arr_or_dtype.dtype if isinstance(arr_or_dtype, CategoricalDtype): arr_or_dtype = arr_or_dtype.categories # now we use the special definition for Index if isinstance(arr_or_dtype, ABCIndexClass): # TODO(jreback) # we don't have a boolean Index class # so its object, we need to infer to # guess this return (arr_or_dtype.is_object and arr_or_dtype.inferred_type == 'boolean') elif is_extension_array_dtype(arr_or_dtype): dtype = getattr(arr_or_dtype, 'dtype', arr_or_dtype) return dtype._is_boolean return issubclass(tipo, np.bool_) def is_extension_type(arr): """ Check whether an array-like is of a pandas extension class instance. Extension classes include categoricals, pandas sparse objects (i.e. classes represented within the pandas library and not ones external to it like scipy sparse matrices), and datetime-like arrays. Parameters ---------- arr : array-like The array-like to check. Returns ------- boolean : Whether or not the array-like is of a pandas extension class instance. Examples -------- >>> is_extension_type([1, 2, 3]) False >>> is_extension_type(np.array([1, 2, 3])) False >>> >>> cat = pd.Categorical([1, 2, 3]) >>> >>> is_extension_type(cat) True >>> is_extension_type(pd.Series(cat)) True >>> is_extension_type(pd.SparseArray([1, 2, 3])) True >>> is_extension_type(pd.SparseSeries([1, 2, 3])) True >>> >>> from scipy.sparse import bsr_matrix >>> is_extension_type(bsr_matrix([1, 2, 3])) False >>> is_extension_type(pd.DatetimeIndex([1, 2, 3])) False >>> is_extension_type(pd.DatetimeIndex([1, 2, 3], tz="US/Eastern")) True >>> >>> dtype = DatetimeTZDtype("ns", tz="US/Eastern") >>> s = pd.Series([], dtype=dtype) >>> is_extension_type(s) True """ if is_categorical(arr): return True elif is_sparse(arr): return True elif is_datetimetz(arr): return True return False def is_extension_array_dtype(arr_or_dtype): """Check if an object is a pandas extension array type. Parameters ---------- arr_or_dtype : object Returns ------- bool Notes ----- This checks whether an object implements the pandas extension array interface. In pandas, this includes: * Categorical * Sparse * Interval Third-party libraries may implement arrays or types satisfying this interface as well. """ dtype = getattr(arr_or_dtype, 'dtype', arr_or_dtype) return (isinstance(dtype, ExtensionDtype) or registry.find(dtype) is not None) def is_complex_dtype(arr_or_dtype): """ Check whether the provided array or dtype is of a complex dtype. Parameters ---------- arr_or_dtype : array-like The array or dtype to check. Returns ------- boolean : Whether or not the array or dtype is of a compex dtype. Examples -------- >>> is_complex_dtype(str) False >>> is_complex_dtype(int) False >>> is_complex_dtype(np.complex) True >>> is_complex_dtype(np.array(['a', 'b'])) False >>> is_complex_dtype(pd.Series([1, 2])) False >>> is_complex_dtype(np.array([1 + 1j, 5])) True """ if arr_or_dtype is None: return False tipo = _get_dtype_type(arr_or_dtype) return issubclass(tipo, np.complexfloating) def _coerce_to_dtype(dtype): """ Coerce a string or np.dtype to a pandas or numpy dtype if possible. If we cannot convert to a pandas dtype initially, we convert to a numpy dtype. Parameters ---------- dtype : The dtype that we want to coerce. Returns ------- pd_or_np_dtype : The coerced dtype. """ if is_categorical_dtype(dtype): categories = getattr(dtype, 'categories', None) ordered = getattr(dtype, 'ordered', False) dtype = CategoricalDtype(categories=categories, ordered=ordered) elif is_datetime64tz_dtype(dtype): dtype = DatetimeTZDtype(dtype) elif is_period_dtype(dtype): dtype = PeriodDtype(dtype) elif is_interval_dtype(dtype): dtype = IntervalDtype(dtype) else: dtype = np.dtype(dtype) return dtype def _get_dtype(arr_or_dtype): """ Get the dtype instance associated with an array or dtype object. Parameters ---------- arr_or_dtype : array-like The array-like or dtype object whose dtype we want to extract. Returns ------- obj_dtype : The extract dtype instance from the passed in array or dtype object. Raises ------ TypeError : The passed in object is None. """ # TODO(extension) # replace with pandas_dtype if arr_or_dtype is None: raise TypeError("Cannot deduce dtype from null object") if isinstance(arr_or_dtype, np.dtype): return arr_or_dtype elif isinstance(arr_or_dtype, type): return np.dtype(arr_or_dtype) elif isinstance(arr_or_dtype, ExtensionDtype): return arr_or_dtype elif isinstance(arr_or_dtype, DatetimeTZDtype): return arr_or_dtype elif isinstance(arr_or_dtype, PeriodDtype): return arr_or_dtype elif isinstance(arr_or_dtype, IntervalDtype): return arr_or_dtype elif isinstance(arr_or_dtype, string_types): if is_categorical_dtype(arr_or_dtype): return CategoricalDtype.construct_from_string(arr_or_dtype) elif is_datetime64tz_dtype(arr_or_dtype): return DatetimeTZDtype.construct_from_string(arr_or_dtype) elif is_period_dtype(arr_or_dtype): return PeriodDtype.construct_from_string(arr_or_dtype) elif is_interval_dtype(arr_or_dtype): return IntervalDtype.construct_from_string(arr_or_dtype) elif isinstance(arr_or_dtype, (ABCCategorical, ABCCategoricalIndex, ABCSparseArray, ABCSparseSeries)): return arr_or_dtype.dtype if hasattr(arr_or_dtype, 'dtype'): arr_or_dtype = arr_or_dtype.dtype return np.dtype(arr_or_dtype) def _get_dtype_type(arr_or_dtype): """ Get the type (NOT dtype) instance associated with an array or dtype object. Parameters ---------- arr_or_dtype : array-like The array-like or dtype object whose type we want to extract. Returns ------- obj_type : The extract type instance from the passed in array or dtype object. """ # TODO(extension) # replace with pandas_dtype if isinstance(arr_or_dtype, np.dtype): return arr_or_dtype.type elif isinstance(arr_or_dtype, type): return np.dtype(arr_or_dtype).type elif isinstance(arr_or_dtype, CategoricalDtype): return CategoricalDtypeType elif isinstance(arr_or_dtype, DatetimeTZDtype): return Timestamp elif isinstance(arr_or_dtype, IntervalDtype): return Interval elif isinstance(arr_or_dtype, PeriodDtype): return Period elif isinstance(arr_or_dtype, string_types): if is_categorical_dtype(arr_or_dtype): return CategoricalDtypeType elif is_datetime64tz_dtype(arr_or_dtype): return Timestamp elif is_period_dtype(arr_or_dtype): return Period elif is_interval_dtype(arr_or_dtype): return Interval return _get_dtype_type(np.dtype(arr_or_dtype)) else: from pandas.core.arrays.sparse import SparseDtype if isinstance(arr_or_dtype, (ABCSparseSeries, ABCSparseArray, SparseDtype)): dtype = getattr(arr_or_dtype, 'dtype', arr_or_dtype) return dtype.type try: return arr_or_dtype.dtype.type except AttributeError: return type(None) def _get_dtype_from_object(dtype): """ Get a numpy dtype.type-style object for a dtype object. This methods also includes handling of the datetime64[ns] and datetime64[ns, TZ] objects. If no dtype can be found, we return ``object``. Parameters ---------- dtype : dtype, type The dtype object whose numpy dtype.type-style object we want to extract. Returns ------- dtype_object : The extracted numpy dtype.type-style object. """ if isinstance(dtype, type) and issubclass(dtype, np.generic): # Type object from a dtype return dtype elif is_categorical(dtype): return CategoricalDtype().type elif is_datetimetz(dtype): return DatetimeTZDtype(dtype).type elif isinstance(dtype, np.dtype): # dtype object try: _validate_date_like_dtype(dtype) except TypeError: # Should still pass if we don't have a date-like pass return dtype.type elif isinstance(dtype, string_types): if dtype in ['datetimetz', 'datetime64tz']: return DatetimeTZDtype.type elif dtype in ['period']: raise NotImplementedError if dtype == 'datetime' or dtype == 'timedelta': dtype += '64' try: return _get_dtype_from_object(getattr(np, dtype)) except (AttributeError, TypeError): # Handles cases like _get_dtype(int) i.e., # Python objects that are valid dtypes # (unlike user-defined types, in general) # # TypeError handles the float16 type code of 'e' # further handle internal types pass return _get_dtype_from_object(np.dtype(dtype)) def _validate_date_like_dtype(dtype): """ Check whether the dtype is a date-like dtype. Raises an error if invalid. Parameters ---------- dtype : dtype, type The dtype to check. Raises ------ TypeError : The dtype could not be casted to a date-like dtype. ValueError : The dtype is an illegal date-like dtype (e.g. the the frequency provided is too specific) """ try: typ = np.datetime_data(dtype)[0] except ValueError as e: raise TypeError('{error}'.format(error=e)) if typ != 'generic' and typ != 'ns': msg = '{name!r} is too specific of a frequency, try passing {type!r}' raise ValueError(msg.format(name=dtype.name, type=dtype.type.__name__)) _string_dtypes = frozenset(map(_get_dtype_from_object, (binary_type, text_type))) def pandas_dtype(dtype): """ Converts input into a pandas only dtype object or a numpy dtype object. Parameters ---------- dtype : object to be converted Returns ------- np.dtype or a pandas dtype Raises ------ TypeError if not a dtype """ # short-circuit if isinstance(dtype, np.ndarray): return dtype.dtype elif isinstance(dtype, np.dtype): return dtype # registered extension types result = _pandas_registry.find(dtype) or registry.find(dtype) if result is not None: return result # un-registered extension types elif isinstance(dtype, (PandasExtensionDtype, ExtensionDtype)): return dtype # try a numpy dtype # raise a consistent TypeError if failed try: npdtype = np.dtype(dtype) except Exception: # we don't want to force a repr of the non-string if not isinstance(dtype, string_types): raise TypeError("data type not understood") raise TypeError("data type '{}' not understood".format( dtype)) # Any invalid dtype (such as pd.Timestamp) should raise an error. # np.dtype(invalid_type).kind = 0 for such objects. However, this will # also catch some valid dtypes such as object, np.object_ and 'object' # which we safeguard against by catching them earlier and returning # np.dtype(valid_dtype) before this condition is evaluated. if is_hashable(dtype) and dtype in [object, np.object_, 'object', 'O']: # check hashability to avoid errors/DeprecationWarning when we get # here and `dtype` is an array return npdtype elif npdtype.kind == 'O': raise TypeError("dtype '{}' not understood".format(dtype)) return npdtype
26.54145
79
0.628371
913d591184ed35c8f057a5e413146803e58cdf4f
560
py
Python
scripts/study_case/ID_4/test/transforms/test_random_shear.py
kzbnb/numerical_bugs
bc22e72bcc06df6ce7889a25e0aeed027bde910b
[ "Apache-2.0" ]
8
2021-06-30T06:55:14.000Z
2022-03-18T01:57:14.000Z
scripts/study_case/ID_4/test/transforms/test_random_shear.py
kzbnb/numerical_bugs
bc22e72bcc06df6ce7889a25e0aeed027bde910b
[ "Apache-2.0" ]
1
2021-06-30T03:08:15.000Z
2021-06-30T03:08:15.000Z
scripts/study_case/ID_4/test/transforms/test_random_shear.py
kzbnb/numerical_bugs
bc22e72bcc06df6ce7889a25e0aeed027bde910b
[ "Apache-2.0" ]
2
2021-11-17T11:19:48.000Z
2021-11-18T03:05:58.000Z
import torch from scripts.study_case.ID_4.torch_geometric.transforms import RandomShear from scripts.study_case.ID_4.torch_geometric.data import Data def test_random_shear(): assert RandomShear(0.1).__repr__() == 'RandomShear(0.1)' pos = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]]) data = Data(pos=pos) data = RandomShear(0)(data) assert len(data) == 1 assert data.pos.tolist() == pos.tolist() data = Data(pos=pos) data = RandomShear(0.1)(data) assert len(data) == 1 assert data.pos.tolist() != pos.tolist()
28
74
0.655357
25aae02126e1c10a29c6d5e52e6c89d196c51688
10,054
py
Python
rllib/examples/env/matrix_sequential_social_dilemma.py
mgelbart/ray
4cec2286572e368a4bd64aae467751a384eff62d
[ "Apache-2.0" ]
22
2018-05-08T05:52:34.000Z
2020-04-01T10:09:55.000Z
rllib/examples/env/matrix_sequential_social_dilemma.py
mgelbart/ray
4cec2286572e368a4bd64aae467751a384eff62d
[ "Apache-2.0" ]
73
2021-09-25T07:11:39.000Z
2022-03-26T07:10:59.000Z
rllib/examples/env/matrix_sequential_social_dilemma.py
mgelbart/ray
4cec2286572e368a4bd64aae467751a384eff62d
[ "Apache-2.0" ]
10
2018-04-27T10:50:59.000Z
2020-02-24T02:41:43.000Z
########## # Contribution by the Center on Long-Term Risk: # https://github.com/longtermrisk/marltoolbox # Some parts are originally from: # https://github.com/alshedivat/lola/tree/master/lola ########## import logging from abc import ABC from collections import Iterable from typing import Dict, Optional import numpy as np from gym.spaces import Discrete from gym.utils import seeding from ray.rllib.env.multi_agent_env import MultiAgentEnv from ray.rllib.examples.env.utils.interfaces import InfoAccumulationInterface from ray.rllib.examples.env.utils.mixins import ( TwoPlayersTwoActionsInfoMixin, NPlayersNDiscreteActionsInfoMixin, ) logger = logging.getLogger(__name__) class MatrixSequentialSocialDilemma(InfoAccumulationInterface, MultiAgentEnv, ABC): """ A multi-agent abstract class for two player matrix games. PAYOUT_MATRIX: Numpy array. Along the dimension N, the action of the Nth player change. The last dimension is used to select the player whose reward you want to know. max_steps: number of step in one episode players_ids: list of the RLlib agent id of each player output_additional_info: ask the environment to aggregate information about the last episode and output them as info at the end of the episode. """ def __init__(self, config: Optional[Dict] = None): if config is None: config = {} assert "reward_randomness" not in config.keys() assert self.PAYOUT_MATRIX is not None if "players_ids" in config: assert ( isinstance(config["players_ids"], Iterable) and len(config["players_ids"]) == self.NUM_AGENTS ) self.players_ids = config.get("players_ids", ["player_row", "player_col"]) self.player_row_id, self.player_col_id = self.players_ids self.max_steps = config.get("max_steps", 20) self.output_additional_info = config.get("output_additional_info", True) self.step_count_in_current_episode = None # To store info about the fraction of each states if self.output_additional_info: self._init_info() def seed(self, seed=None): """Seed the PRNG of this space.""" self.np_random, seed = seeding.np_random(seed) return [seed] def reset(self): self.step_count_in_current_episode = 0 if self.output_additional_info: self._reset_info() return { self.player_row_id: self.NUM_STATES - 1, self.player_col_id: self.NUM_STATES - 1, } def step(self, actions: dict): """ :param actions: Dict containing both actions for player_1 and player_2 :return: observations, rewards, done, info """ self.step_count_in_current_episode += 1 action_player_row = actions[self.player_row_id] action_player_col = actions[self.player_col_id] if self.output_additional_info: self._accumulate_info(action_player_row, action_player_col) observations = self._produce_observations_invariant_to_the_player_trained( action_player_row, action_player_col ) rewards = self._get_players_rewards(action_player_row, action_player_col) epi_is_done = self.step_count_in_current_episode >= self.max_steps if self.step_count_in_current_episode > self.max_steps: logger.warning("self.step_count_in_current_episode >= self.max_steps") info = self._get_info_for_current_epi(epi_is_done) return self._to_RLlib_API(observations, rewards, epi_is_done, info) def _produce_observations_invariant_to_the_player_trained( self, action_player_0: int, action_player_1: int ): """ We want to be able to use a policy trained as player 1 for evaluation as player 2 and vice versa. """ return [ action_player_0 * self.NUM_ACTIONS + action_player_1, action_player_1 * self.NUM_ACTIONS + action_player_0, ] def _get_players_rewards(self, action_player_0: int, action_player_1: int): return [ self.PAYOUT_MATRIX[action_player_0][action_player_1][0], self.PAYOUT_MATRIX[action_player_0][action_player_1][1], ] def _to_RLlib_API( self, observations: list, rewards: list, epi_is_done: bool, info: dict ): observations = { self.player_row_id: observations[0], self.player_col_id: observations[1], } rewards = {self.player_row_id: rewards[0], self.player_col_id: rewards[1]} if info is None: info = {} else: info = {self.player_row_id: info, self.player_col_id: info} done = { self.player_row_id: epi_is_done, self.player_col_id: epi_is_done, "__all__": epi_is_done, } return observations, rewards, done, info def _get_info_for_current_epi(self, epi_is_done): if epi_is_done and self.output_additional_info: info_for_current_epi = self._get_episode_info() else: info_for_current_epi = None return info_for_current_epi def __str__(self): return self.NAME class IteratedMatchingPennies( TwoPlayersTwoActionsInfoMixin, MatrixSequentialSocialDilemma ): """ A two-agent environment for the Matching Pennies game. """ NUM_AGENTS = 2 NUM_ACTIONS = 2 NUM_STATES = NUM_ACTIONS ** NUM_AGENTS + 1 ACTION_SPACE = Discrete(NUM_ACTIONS) OBSERVATION_SPACE = Discrete(NUM_STATES) PAYOUT_MATRIX = np.array([[[+1, -1], [-1, +1]], [[-1, +1], [+1, -1]]]) NAME = "IMP" class IteratedPrisonersDilemma( TwoPlayersTwoActionsInfoMixin, MatrixSequentialSocialDilemma ): """ A two-agent environment for the Prisoner's Dilemma game. """ NUM_AGENTS = 2 NUM_ACTIONS = 2 NUM_STATES = NUM_ACTIONS ** NUM_AGENTS + 1 ACTION_SPACE = Discrete(NUM_ACTIONS) OBSERVATION_SPACE = Discrete(NUM_STATES) PAYOUT_MATRIX = np.array([[[-1, -1], [-3, +0]], [[+0, -3], [-2, -2]]]) NAME = "IPD" class IteratedAsymPrisonersDilemma( TwoPlayersTwoActionsInfoMixin, MatrixSequentialSocialDilemma ): """ A two-agent environment for the Asymmetric Prisoner's Dilemma game. """ NUM_AGENTS = 2 NUM_ACTIONS = 2 NUM_STATES = NUM_ACTIONS ** NUM_AGENTS + 1 ACTION_SPACE = Discrete(NUM_ACTIONS) OBSERVATION_SPACE = Discrete(NUM_STATES) PAYOUT_MATRIX = np.array([[[+0, -1], [-3, +0]], [[+0, -3], [-2, -2]]]) NAME = "IPD" class IteratedStagHunt(TwoPlayersTwoActionsInfoMixin, MatrixSequentialSocialDilemma): """ A two-agent environment for the Stag Hunt game. """ NUM_AGENTS = 2 NUM_ACTIONS = 2 NUM_STATES = NUM_ACTIONS ** NUM_AGENTS + 1 ACTION_SPACE = Discrete(NUM_ACTIONS) OBSERVATION_SPACE = Discrete(NUM_STATES) PAYOUT_MATRIX = np.array([[[3, 3], [0, 2]], [[2, 0], [1, 1]]]) NAME = "IteratedStagHunt" class IteratedChicken(TwoPlayersTwoActionsInfoMixin, MatrixSequentialSocialDilemma): """ A two-agent environment for the Chicken game. """ NUM_AGENTS = 2 NUM_ACTIONS = 2 NUM_STATES = NUM_ACTIONS ** NUM_AGENTS + 1 ACTION_SPACE = Discrete(NUM_ACTIONS) OBSERVATION_SPACE = Discrete(NUM_STATES) PAYOUT_MATRIX = np.array([[[+0, +0], [-1.0, +1.0]], [[+1, -1], [-10, -10]]]) NAME = "IteratedChicken" class IteratedAsymChicken(TwoPlayersTwoActionsInfoMixin, MatrixSequentialSocialDilemma): """ A two-agent environment for the Asymmetric Chicken game. """ NUM_AGENTS = 2 NUM_ACTIONS = 2 NUM_STATES = NUM_ACTIONS ** NUM_AGENTS + 1 ACTION_SPACE = Discrete(NUM_ACTIONS) OBSERVATION_SPACE = Discrete(NUM_STATES) PAYOUT_MATRIX = np.array([[[+2.0, +0], [-1.0, +1.0]], [[+2.5, -1], [-10, -10]]]) NAME = "AsymmetricIteratedChicken" class IteratedBoS(TwoPlayersTwoActionsInfoMixin, MatrixSequentialSocialDilemma): """ A two-agent environment for the BoS game. """ NUM_AGENTS = 2 NUM_ACTIONS = 2 NUM_STATES = NUM_ACTIONS ** NUM_AGENTS + 1 ACTION_SPACE = Discrete(NUM_ACTIONS) OBSERVATION_SPACE = Discrete(NUM_STATES) PAYOUT_MATRIX = np.array( [[[+3.0, +2.0], [+0.0, +0.0]], [[+0.0, +0.0], [+2.0, +3.0]]] ) NAME = "IteratedBoS" class IteratedAsymBoS(TwoPlayersTwoActionsInfoMixin, MatrixSequentialSocialDilemma): """ A two-agent environment for the BoS game. """ NUM_AGENTS = 2 NUM_ACTIONS = 2 NUM_STATES = NUM_ACTIONS ** NUM_AGENTS + 1 ACTION_SPACE = Discrete(NUM_ACTIONS) OBSERVATION_SPACE = Discrete(NUM_STATES) PAYOUT_MATRIX = np.array( [[[+4.0, +1.0], [+0.0, +0.0]], [[+0.0, +0.0], [+2.0, +2.0]]] ) NAME = "AsymmetricIteratedBoS" def define_greed_fear_matrix_game(greed, fear): class GreedFearGame(TwoPlayersTwoActionsInfoMixin, MatrixSequentialSocialDilemma): NUM_AGENTS = 2 NUM_ACTIONS = 2 NUM_STATES = NUM_ACTIONS ** NUM_AGENTS + 1 ACTION_SPACE = Discrete(NUM_ACTIONS) OBSERVATION_SPACE = Discrete(NUM_STATES) R = 3 P = 1 T = R + greed S = P - fear PAYOUT_MATRIX = np.array([[[R, R], [S, T]], [[T, S], [P, P]]]) NAME = "IteratedGreedFear" def __str__(self): return f"{self.NAME} with greed={greed} and fear={fear}" return GreedFearGame class IteratedBoSAndPD( NPlayersNDiscreteActionsInfoMixin, MatrixSequentialSocialDilemma ): """ A two-agent environment for the BOTS + PD game. """ NUM_AGENTS = 2 NUM_ACTIONS = 3 NUM_STATES = NUM_ACTIONS ** NUM_AGENTS + 1 ACTION_SPACE = Discrete(NUM_ACTIONS) OBSERVATION_SPACE = Discrete(NUM_STATES) PAYOUT_MATRIX = np.array( [ [[3.5, +1], [+0, +0], [-3, +2]], [[+0.0, +0], [+1, +3], [-3, +2]], [[+2.0, -3], [+2, -3], [-1, -1]], ] ) NAME = "IteratedBoSAndPD"
31.616352
88
0.652676
2ae4763cc17a1e280c7da2251df98f9372304681
4,491
py
Python
starry_process/ops/base_op.py
arfon/starry_process
72b2a540e7e4fdb2e6af61507efa1c9861d5c919
[ "MIT" ]
13
2020-04-14T17:47:28.000Z
2022-03-16T15:19:48.000Z
starry_process/ops/base_op.py
arfon/starry_process
72b2a540e7e4fdb2e6af61507efa1c9861d5c919
[ "MIT" ]
22
2020-09-23T20:33:22.000Z
2022-02-07T17:38:09.000Z
starry_process/ops/base_op.py
arfon/starry_process
72b2a540e7e4fdb2e6af61507efa1c9861d5c919
[ "MIT" ]
8
2020-04-14T17:47:44.000Z
2022-02-06T16:39:47.000Z
# -*- coding: utf-8 -*- from ..starry_process_version import __version__ from ..defaults import defaults from ..compat import theano, tt, COp, Apply, floatX import sys import pkg_resources # Allow C code caching even in dev mode? try: from .. import CACHE_DEV_C_CODE except: CACHE_DEV_C_CODE = False __all__ = ["BaseOp", "IntegralOp"] class BaseOp(COp): __props__ = ("ydeg", "udeg", "compile_args") func_file = None func_name = None def __init__( self, ydeg=defaults["ydeg"], udeg=defaults["udeg"], compile_args=[], **kwargs ): self.ydeg = ydeg self.N = (self.ydeg + 1) ** 2 self.udeg = udeg self.NLU = (self.ydeg + self.udeg + 1) ** 2 assert type(compile_args) is list, "arg `compile_args` must be a list" for item in compile_args: assert ( type(item) is tuple ), "items in `compile_args` must be tuples" assert len(item) == 2, "tuples in `compile_args` must have 2 items" self.compile_args = tuple(compile_args) super().__init__(self.func_file, self.func_name) def perform(self, *args): raise NotImplementedError("Only C op is implemented") def c_code_cache_version(self, *args, **kwargs): if ("dev" in __version__) and not CACHE_DEV_C_CODE: return () else: v = [] for sv in __version__.split("."): try: v.append(int(sv)) except: v.append(sv) return tuple(v) def c_headers(self, *args, **kwargs): return [ "utils.h", "special.h", "latitude.h", "wigner.h", "eigh.h", "flux.h", "theano_helpers.h", "vector", ] def c_header_dirs(self, *args, **kwargs): dirs = [ pkg_resources.resource_filename("starry_process", "ops/include") ] dirs += [ pkg_resources.resource_filename( "starry_process", "ops/vendor/eigen_3.3.5" ) ] return dirs def c_compile_args(self, *args, **kwargs): args = ["-std=c++14", "-O2", "-DNDEBUG"] if sys.platform == "darwin": args += ["-stdlib=libc++", "-mmacosx-version-min=10.7"] args += ["-DSP__LMAX={0}".format(self.ydeg)] args += ["-DSP__UMAX={0}".format(self.udeg)] for (key, value) in self.compile_args: if key.startswith("SP_"): args += ["-D{0}={1}".format(key, value)] return args class IntegralOp(BaseOp): def make_node(self, alpha, beta): in_args = [ tt.as_tensor_variable(arg).astype(floatX) for arg in [alpha, beta] ] out_args = [ tt.TensorType(dtype=floatX, broadcastable=[False])(), tt.TensorType(dtype=floatX, broadcastable=[False])(), tt.TensorType(dtype=floatX, broadcastable=[False])(), tt.TensorType(dtype=floatX, broadcastable=[False, False])(), tt.TensorType(dtype=floatX, broadcastable=[False, False])(), tt.TensorType(dtype=floatX, broadcastable=[False, False])(), ] return Apply(self, in_args, out_args) def infer_shape(self, *args): return ( [self.N], [self.N], [self.N], [self.N, self.N], [self.N, self.N], [self.N, self.N], ) def grad(self, inputs, gradients): alpha, beta = inputs q, dqda, dqdb, Q, dQda, dQdb = self(*inputs) bq = gradients[0] bQ = gradients[3] # Derivs of derivs not implemented for i, g in enumerate(list(gradients[1:3]) + list(gradients[4:6])): if not isinstance(g.type, theano.gradient.DisconnectedType): raise ValueError( "can't propagate gradients wrt parameter {0}".format(i + 1) ) # Chain rule ba = 0.0 bb = 0.0 for g, fa, fb in zip([bq, bQ], [dqda, dQda], [dqdb, dQdb]): if not isinstance(g.type, theano.gradient.DisconnectedType): ba += tt.sum(g * fa) bb += tt.sum(g * fb) return ba, bb def R_op(self, inputs, eval_points): if eval_points[0] is None: return eval_points return self.grad(inputs, eval_points)
31.1875
79
0.531285
6f8ea7d7e0fe3f7ad67d9786d63a5216df23498b
69
py
Python
python/testData/editing/noBackslashOnEnterInMappingPattern.after.py
06needhamt/intellij-community
63d7b8030e4fdefeb4760e511e289f7e6b3a5c5b
[ "Apache-2.0" ]
null
null
null
python/testData/editing/noBackslashOnEnterInMappingPattern.after.py
06needhamt/intellij-community
63d7b8030e4fdefeb4760e511e289f7e6b3a5c5b
[ "Apache-2.0" ]
null
null
null
python/testData/editing/noBackslashOnEnterInMappingPattern.after.py
06needhamt/intellij-community
63d7b8030e4fdefeb4760e511e289f7e6b3a5c5b
[ "Apache-2.0" ]
null
null
null
match x: case {'foo': 1, <caret>'bar': 2} pass
17.25
26
0.391304
2e212ba7238166c94ef356bff92e6d0a2a82f77f
56,426
py
Python
leo/commands/commanderOutlineCommands.py
gamtiq/leo-editor
3f51986fea4c16ed0713699b088bc8a8abd738c3
[ "MIT" ]
1
2020-11-07T23:22:12.000Z
2020-11-07T23:22:12.000Z
leo/commands/commanderOutlineCommands.py
gamtiq/leo-editor
3f51986fea4c16ed0713699b088bc8a8abd738c3
[ "MIT" ]
null
null
null
leo/commands/commanderOutlineCommands.py
gamtiq/leo-editor
3f51986fea4c16ed0713699b088bc8a8abd738c3
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- #@+leo-ver=5-thin #@+node:ekr.20171124080430.1: * @file ../commands/commanderOutlineCommands.py #@@first """Outline commands that used to be defined in leoCommands.py""" import leo.core.leoGlobals as g import xml.etree.ElementTree as ElementTree import leo.core.leoNodes as leoNodes import leo.core.leoFileCommands as leoFileCommands #@+others #@+node:ekr.20031218072017.1548: ** c_oc.Cut & Paste Outlines #@+node:ekr.20031218072017.1550: *3* c_oc.copyOutline @g.commander_command('copy-node') def copyOutline(self, event=None): """Copy the selected outline to the clipboard.""" # Copying an outline has no undo consequences. c = self c.endEditing() s = c.fileCommands.putLeoOutline() g.app.paste_c = c g.app.gui.replaceClipboardWith(s) #@+node:ekr.20031218072017.1549: *3* c_oc.cutOutline @g.commander_command('cut-node') def cutOutline(self, event=None): """Delete the selected outline and send it to the clipboard.""" c = self if c.canDeleteHeadline(): c.copyOutline() c.deleteOutline(op_name="Cut Node") c.recolor() #@+node:ekr.20031218072017.1551: *3* c_oc.pasteOutline @g.commander_command('paste-node') def pasteOutline(self, event=None, redrawFlag=True, s=None, undoFlag=True ): """ Paste an outline into the present outline from the clipboard. Nodes do *not* retain their original identify. """ c = self if s is None: s = g.app.gui.getTextFromClipboard() c.endEditing() if not s or not c.canPasteOutline(s): return None # This should never happen. isLeo = g.match(s, 0, g.app.prolog_prefix_string) if not isLeo: return None # Get *position* to be pasted. pasted = c.fileCommands.getLeoOutlineFromClipboard(s) if not pasted: # Leo no longer supports MORE outlines. Use import-MORE-files instead. return None # Validate. c.validateOutline() c.checkOutline() # Handle the "before" data for undo. if undoFlag: undoData = c.undoer.beforeInsertNode(c.p, pasteAsClone=False, copiedBunchList=[], ) # Paste the node into the outline. c.selectPosition(pasted) pasted.setDirty() c.setChanged(redrawFlag=redrawFlag) # Prevent flash when fixing #387. back = pasted.back() if back and back.hasChildren() and back.isExpanded(): pasted.moveToNthChildOf(back, 0) # Finish the command. if undoFlag: c.undoer.afterInsertNode(pasted, 'Paste Node', undoData) if redrawFlag: c.redraw(pasted) c.recolor() return pasted #@+node:EKR.20040610130943: *3* c_oc.pasteOutlineRetainingClones & helpers @g.commander_command('paste-retaining-clones') def pasteOutlineRetainingClones(self, event=None, redrawFlag=True, s=None, undoFlag=True, ): """ Paste an outline into the present outline from the clipboard. Nodes *retain* their original identify. """ c = self if s is None: s = g.app.gui.getTextFromClipboard() c.endEditing() if not s or not c.canPasteOutline(s): return None # This should never happen. isLeo = g.match(s, 0, g.app.prolog_prefix_string) if not isLeo: return None # Get *position* to be pasted. pasted = c.fileCommands.getLeoOutlineFromClipboardRetainingClones(s) if not pasted: # Leo no longer supports MORE outlines. Use import-MORE-files instead. return None # Validate. c.validateOutline() c.checkOutline() # Handle the "before" data for undo. if undoFlag: vnodeInfoDict = computeVnodeInfoDict(c) undoData = c.undoer.beforeInsertNode(c.p, pasteAsClone=True, copiedBunchList=computeCopiedBunchList(c, pasted, vnodeInfoDict), ) # Paste the node into the outline. c.selectPosition(pasted) pasted.setDirty() c.setChanged(redrawFlag=redrawFlag) # Prevent flash when fixing #387. back = pasted.back() if back and back.hasChildren() and back.isExpanded(): pasted.moveToNthChildOf(back, 0) pasted.setDirty() # Set dirty bits for ancestors of *all* pasted nodes. for p in pasted.self_and_subtree(): p.setAllAncestorAtFileNodesDirty() # Finish the command. if undoFlag: c.undoer.afterInsertNode(pasted, 'Paste As Clone', undoData) if redrawFlag: c.redraw(pasted) c.recolor() return pasted #@+node:ekr.20050418084539.2: *4* def computeCopiedBunchList def computeCopiedBunchList(c, pasted, vnodeInfoDict): """Create a dict containing only copied vnodes.""" d = {} for p in pasted.self_and_subtree(copy=False): d[p.v] = p.v aList = [] for v in vnodeInfoDict: if d.get(v): bunch = vnodeInfoDict.get(v) aList.append(bunch) return aList #@+node:ekr.20050418084539: *4* def computeVnodeInfoDict def computeVnodeInfoDict(c): """ We don't know yet which nodes will be affected by the paste, so we remember everything. This is expensive, but foolproof. The alternative is to try to remember the 'before' values of nodes in the FileCommands read logic. Several experiments failed, and the code is very ugly. In short, it seems wise to do things the foolproof way. """ d = {} for v in c.all_unique_nodes(): if v not in d: d[v] = g.Bunch(v=v, head=v.h, body=v.b) return d #@+node:vitalije.20200529105105.1: *3* c_oc.pasteAsTemplate @g.commander_command('paste-as-template') def pasteAsTemplate(self, event=None): c = self p = c.p #@+others #@+node:vitalije.20200529112224.1: *4* skip_root def skip_root(v): ''' generates v nodes in the outline order but skips a subtree of the node with root_gnx ''' if v.gnx != root_gnx: yield v for ch in v.children: yield from skip_root(ch) #@+node:vitalije.20200529112459.1: *4* translate_gnx def translate_gnx(gnx): ''' allocates a new gnx for all nodes that are not found outside copied tree ''' if gnx in outside: return gnx return g.app.nodeIndices.computeNewIndex() #@+node:vitalije.20200529115141.1: *4* viter def viter(parent_gnx, xv): ''' iterates <v> nodes generating tuples: (parent_gnx, child_gnx, headline, body) skipping the descendants of already seen nodes. ''' chgnx = xv.attrib.get('t') b = bodies[chgnx] gnx = translation.get(chgnx) if gnx in seen: yield parent_gnx, gnx, heads.get(gnx), b else: seen.add(gnx) h = xv[0].text heads[gnx] = h yield parent_gnx, gnx, h, b for xch in xv[1:]: yield from viter(gnx, xch) #@+node:vitalije.20200529114857.1: *4* getv gnx2v = c.fileCommands.gnxDict def getv(gnx): ''' returns a pair (vnode, is_new) for the given gnx. if node doesn't exist, creates a new one. ''' v = gnx2v.get(gnx) if v is None: return leoNodes.VNode(c, gnx), True return v, False #@+node:vitalije.20200529115539.1: *4* do_paste def do_paste(vpar, index): ''' pastes a new node as a child of vpar at given index ''' vpargnx = vpar.gnx # the first node is inserted at the given index # and the rest are just appended at parents children # to achieve this we first create a generator object rows = viter(vpargnx, xvnodes[0]) # then we just take first tuple pgnx, gnx, h, b = next(rows) # create vnode v, _ = getv(gnx) v.h = h v.b = b # and finally insert it at the given index vpar.children.insert(index, v) v.parents.append(vpar) pasted = v # remember the first node as a return value # now we iterate the rest of tuples for pgnx, gnx, h, b in rows: # get or create a child `v` v, isNew = getv(gnx) if isNew: v.h = h v.b = b ua = uas.get(gnx) if ua: v.unknownAttributes = ua # get parent node `vpar` vpar = getv(pgnx)[0] # and link them vpar.children.append(v) v.parents.append(vpar) return pasted #@+node:vitalije.20200529120440.1: *4* undoHelper def undoHelper(): v = vpar.children.pop(index) v.parents.remove(vpar) c.redraw(bunch.p) #@+node:vitalije.20200529120537.1: *4* redoHelper def redoHelper(): vpar.children.insert(index, pasted) pasted.parents.append(vpar) c.redraw(newp) #@-others xroot = ElementTree.fromstring(g.app.gui.getTextFromClipboard()) xvnodes = xroot.find('vnodes') xtnodes = xroot.find('tnodes') bodies, uas = leoFileCommands.FastRead(c, {}).scanTnodes(xtnodes) root_gnx = xvnodes[0].attrib.get('t') # the gnx of copied node outside = { x.gnx for x in skip_root(c.hiddenRootNode) } # outside will contain gnxes of nodes that are outside the copied tree translation = { x: translate_gnx(x) for x in bodies } # we generate new gnx for each node in the copied tree seen = set(outside) # required for the treatment of local clones inside the copied tree heads = {} bunch = c.undoer.createCommonBunch(p) #@+<< prepare destination data >> #@+node:vitalije.20200529111500.1: *4* << prepare destination data >> # destination data consists of # 1. vpar --- parent v node that should receive pasted child # 2. index --- at which pasted child will be # 3. parStack --- a stack for creating new position of the pasted node # # the new position will be: Position(vpar.children[index], index, parStack) # but it can't be calculated yet, before actual paste is done if p.isExpanded(): # paste as a first child of current position vpar = p.v index = 0 parStack = p.stack + [(p.v, p._childIndex)] else: # paste after the current position parStack = p.stack vpar = p.stack[-1][0] if p.stack else c.hiddenRootNode index = p._childIndex + 1 #@-<< prepare destination data >> pasted = do_paste(vpar, index) newp = leoNodes.Position(pasted, index, parStack) bunch.undoHelper = undoHelper bunch.redoHelper = redoHelper bunch.undoType = 'paste-retaining-outside-clones' newp.setDirty() c.undoer.pushBead(bunch) c.redraw(newp) #@+node:ekr.20040412060927: ** c_oc.dumpOutline @g.commander_command('dump-outline') def dumpOutline(self, event=None): """ Dump all nodes in the outline.""" c = self seen = {} print('') print('=' * 40) v = c.hiddenRootNode v.dump() seen[v] = True for p in c.all_positions(): if p.v not in seen: seen[p.v] = True p.v.dump() #@+node:ekr.20031218072017.2898: ** c_oc.Expand & contract commands #@+node:ekr.20031218072017.2900: *3* c_oc.contract-all @g.commander_command('contract-all') def contractAllHeadlinesCommand(self, event=None, redrawFlag=True): """Contract all nodes in the outline.""" # The helper does all the work. c = self c.contractAllHeadlines(event=event, redrawFlag=redrawFlag) #@+node:ekr.20080819075811.3: *3* c_oc.contractAllOtherNodes & helper @g.commander_command('contract-all-other-nodes') def contractAllOtherNodes(self, event=None): """ Contract all nodes except those needed to make the presently selected node visible. """ c = self leaveOpen = c.p for p in c.rootPosition().self_and_siblings(): contractIfNotCurrent(c, p, leaveOpen) c.redraw() #@+node:ekr.20080819075811.7: *4* def contractIfNotCurrent def contractIfNotCurrent(c, p, leaveOpen): if p == leaveOpen or not p.isAncestorOf(leaveOpen): p.contract() for child in p.children(): if child != leaveOpen and child.isAncestorOf(leaveOpen): contractIfNotCurrent(c, child, leaveOpen) else: for p2 in child.self_and_subtree(): p2.contract() #@+node:ekr.20200824130837.1: *3* c_oc.contractAllSubheads (new) @g.commander_command('contract-all-subheads') def contractAllSubheads(self, event=None): """Contract all children of the presently selected node.""" c, p = self, self.p if not p: return child = p.firstChild() c.contractSubtree(p) while child: c.contractSubtree(child) child = child.next() c.redraw(p) #@+node:ekr.20031218072017.2901: *3* c_oc.contractNode @g.commander_command('contract-node') def contractNode(self, event=None): """Contract the presently selected node.""" c = self p = c.p c.endEditing() p.contract() c.redraw_after_contract(p) c.selectPosition(p) #@+node:ekr.20040930064232: *3* c_oc.contractNodeOrGoToParent @g.commander_command('contract-or-go-left') def contractNodeOrGoToParent(self, event=None): """Simulate the left Arrow Key in folder of Windows Explorer.""" c, cc, p = self, self.chapterController, self.p parent = p.parent() redraw = False # Bug fix: 2016/04/19: test p.v.isExpanded(). if p.hasChildren() and (p.v.isExpanded() or p.isExpanded()): c.contractNode() elif parent and parent.isVisible(c): # Contract all children first. if c.collapse_on_lt_arrow: for child in parent.children(): if child.isExpanded(): child.contract() if child.hasChildren(): redraw = True if cc and cc.inChapter and parent.h.startswith('@chapter '): pass else: c.goToParent() if redraw: # A *child* should be collapsed. Do a *full* redraw. c.redraw() #@+node:ekr.20031218072017.2902: *3* c_oc.contractParent @g.commander_command('contract-parent') def contractParent(self, event=None): """Contract the parent of the presently selected node.""" c = self c.endEditing() p = c.p parent = p.parent() if not parent: return parent.contract() c.redraw_after_contract(p=parent) #@+node:ekr.20031218072017.2903: *3* c_oc.expandAllHeadlines @g.commander_command('expand-all') def expandAllHeadlines(self, event=None): """Expand all headlines. Warning: this can take a long time for large outlines.""" c = self c.endEditing() p = c.rootPosition() while p: c.expandSubtree(p, redraw=False) p.moveToNext() c.redraw_after_expand(p=c.rootPosition()) c.expansionLevel = 0 # Reset expansion level. #@+node:ekr.20031218072017.2904: *3* c_oc.expandAllSubheads @g.commander_command('expand-all-subheads') def expandAllSubheads(self, event=None): """Expand all children of the presently selected node.""" c = self; p = c.p if not p: return child = p.firstChild() c.expandSubtree(p) while child: c.expandSubtree(child) child = child.next() c.redraw(p) #@+node:ekr.20031218072017.2905: *3* c_oc.expandLevel1..9 @g.commander_command('expand-to-level-1') def expandLevel1(self, event=None): """Expand the outline to level 1""" self.expandToLevel(1) @g.commander_command('expand-to-level-2') def expandLevel2(self, event=None): """Expand the outline to level 2""" self.expandToLevel(2) @g.commander_command('expand-to-level-3') def expandLevel3(self, event=None): """Expand the outline to level 3""" self.expandToLevel(3) @g.commander_command('expand-to-level-4') def expandLevel4(self, event=None): """Expand the outline to level 4""" self.expandToLevel(4) @g.commander_command('expand-to-level-5') def expandLevel5(self, event=None): """Expand the outline to level 5""" self.expandToLevel(5) @g.commander_command('expand-to-level-6') def expandLevel6(self, event=None): """Expand the outline to level 6""" self.expandToLevel(6) @g.commander_command('expand-to-level-7') def expandLevel7(self, event=None): """Expand the outline to level 7""" self.expandToLevel(7) @g.commander_command('expand-to-level-8') def expandLevel8(self, event=None): """Expand the outline to level 8""" self.expandToLevel(8) @g.commander_command('expand-to-level-9') def expandLevel9(self, event=None): """Expand the outline to level 9""" self.expandToLevel(9) #@+node:ekr.20031218072017.2906: *3* c_oc.expandNextLevel @g.commander_command('expand-next-level') def expandNextLevel(self, event=None): """ Increase the expansion level of the outline and Expand all nodes at that level or lower. """ c = self # Expansion levels are now local to a particular tree. if c.expansionNode != c.p: c.expansionLevel = 1 c.expansionNode = c.p.copy() self.expandToLevel(c.expansionLevel + 1) #@+node:ekr.20031218072017.2907: *3* c_oc.expandNode @g.commander_command('expand-node') def expandNode(self, event=None): """Expand the presently selected node.""" c = self p = c.p c.endEditing() p.expand() c.redraw_after_expand(p) c.selectPosition(p) #@+node:ekr.20040930064232.1: *3* c_oc.expandNodeAndGoToFirstChild @g.commander_command('expand-and-go-right') def expandNodeAndGoToFirstChild(self, event=None): """If a node has children, expand it if needed and go to the first child.""" c, p = self, self.p c.endEditing() if p.hasChildren(): if not p.isExpanded(): c.expandNode() c.selectPosition(p.firstChild()) c.treeFocusHelper() #@+node:ekr.20171125082744.1: *3* c_oc.expandNodeOrGoToFirstChild @g.commander_command('expand-or-go-right') def expandNodeOrGoToFirstChild(self, event=None): """ Simulate the Right Arrow Key in folder of Windows Explorer. if c.p has no children, do nothing. Otherwise, if c.p is expanded, select the first child. Otherwise, expand c.p. """ c, p = self, self.p c.endEditing() if p.hasChildren(): if p.isExpanded(): c.redraw_after_expand(p.firstChild()) else: c.expandNode() #@+node:ekr.20060928062431: *3* c_oc.expandOnlyAncestorsOfNode @g.commander_command('expand-ancestors-only') def expandOnlyAncestorsOfNode(self, event=None, p=None): """Contract all nodes in the outline.""" c = self level = 1 if p: c.selectPosition(p) # 2013/12/25 root = c.p for p in c.all_unique_positions(): p.v.expandedPositions = [] p.v.contract() for p in root.parents(): p.expand() level += 1 c.expansionLevel = level # Reset expansion level. #@+node:ekr.20031218072017.2908: *3* c_oc.expandPrevLevel @g.commander_command('expand-prev-level') def expandPrevLevel(self, event=None): """Decrease the expansion level of the outline and Expand all nodes at that level or lower.""" c = self # Expansion levels are now local to a particular tree. if c.expansionNode != c.p: c.expansionLevel = 1 c.expansionNode = c.p.copy() self.expandToLevel(max(1, c.expansionLevel - 1)) #@+node:ekr.20171124081846.1: ** c_oc.fullCheckOutline @g.commander_command('check-outline') def fullCheckOutline(self, event=None): """ Performs a full check of the consistency of a .leo file. As of Leo 5.1, Leo performs checks of gnx's and outline structure before writes and after reads, pastes and undo/redo. """ c = self return c.checkOutline(check_links=True) #@+node:ekr.20031218072017.2913: ** c_oc.Goto commands #@+node:ekr.20071213123942: *3* c_oc.findNextClone @g.commander_command('find-next-clone') def findNextClone(self, event=None): """Select the next cloned node.""" c = self; p = c.p; cc = c.chapterController if not p: return if p.isCloned(): p.moveToThreadNext() flag = False while p: if p.isCloned(): flag = True; break else: p.moveToThreadNext() if flag: if cc: # name = cc.findChapterNameForPosition(p) cc.selectChapterByName('main') c.selectPosition(p) c.redraw_after_select(p) else: g.blue('no more clones') #@+node:ekr.20031218072017.1628: *3* c_oc.goNextVisitedNode @g.commander_command('go-forward') def goNextVisitedNode(self, event=None): """Select the next visited node.""" c = self p = c.nodeHistory.goNext() if p: c.nodeHistory.skipBeadUpdate = True try: c.selectPosition(p) finally: c.nodeHistory.skipBeadUpdate = False c.redraw_after_select(p) #@+node:ekr.20031218072017.1627: *3* c_oc.goPrevVisitedNode @g.commander_command('go-back') def goPrevVisitedNode(self, event=None): """Select the previously visited node.""" c = self p = c.nodeHistory.goPrev() if p: c.nodeHistory.skipBeadUpdate = True try: c.selectPosition(p) finally: c.nodeHistory.skipBeadUpdate = False c.redraw_after_select(p) #@+node:ekr.20031218072017.2914: *3* c_oc.goToFirstNode @g.commander_command('goto-first-node') def goToFirstNode(self, event=None): """Select the first node of the entire outline.""" c = self p = c.rootPosition() c.expandOnlyAncestorsOfNode(p=p) c.redraw() #@+node:ekr.20051012092453: *3* c_oc.goToFirstSibling @g.commander_command('goto-first-sibling') def goToFirstSibling(self, event=None): """Select the first sibling of the selected node.""" c = self; p = c.p if p.hasBack(): while p.hasBack(): p.moveToBack() c.treeSelectHelper(p) #@+node:ekr.20070615070925: *3* c_oc.goToFirstVisibleNode @g.commander_command('goto-first-visible-node') def goToFirstVisibleNode(self, event=None): """Select the first visible node of the selected chapter or hoist.""" c = self p = c.firstVisible() if p: c.expandOnlyAncestorsOfNode(p=p) c.redraw() #@+node:ekr.20031218072017.2915: *3* c_oc.goToLastNode @g.commander_command('goto-last-node') def goToLastNode(self, event=None): """Select the last node in the entire tree.""" c = self p = c.rootPosition() while p and p.hasThreadNext(): p.moveToThreadNext() c.expandOnlyAncestorsOfNode(p=p) c.redraw() #@+node:ekr.20051012092847.1: *3* c_oc.goToLastSibling @g.commander_command('goto-last-sibling') def goToLastSibling(self, event=None): """Select the last sibling of the selected node.""" c = self; p = c.p if p.hasNext(): while p.hasNext(): p.moveToNext() c.treeSelectHelper(p) #@+node:ekr.20050711153537: *3* c_oc.goToLastVisibleNode @g.commander_command('goto-last-visible-node') def goToLastVisibleNode(self, event=None): """Select the last visible node of selected chapter or hoist.""" c = self p = c.lastVisible() if p: c.expandOnlyAncestorsOfNode(p=p) c.redraw() #@+node:ekr.20031218072017.2916: *3* c_oc.goToNextClone @g.commander_command('goto-next-clone') def goToNextClone(self, event=None): """ Select the next node that is a clone of the selected node. If the selected node is not a clone, do find-next-clone. """ c, p = self, self.p cc = c.chapterController; p = c.p if not p: return if not p.isCloned(): c.findNextClone() return v = p.v p.moveToThreadNext() wrapped = False while 1: if p and p.v == v: break elif p: p.moveToThreadNext() elif wrapped: break else: wrapped = True p = c.rootPosition() if p: c.expandAllAncestors(p) if cc: # #252: goto-next clone activate chapter. chapter = cc.getSelectedChapter() old_name = chapter and chapter.name new_name = cc.findChapterNameForPosition(p) if new_name == old_name: # Always do a full redraw. c.redraw(p) else: if 1: cc.selectChapterByName(new_name) c.redraw(p) else: # Old code. c.selectPosition(p) cc.selectChapterByName(new_name) else: # Always do a full redraw. c.redraw(p) else: g.blue('done') #@+node:ekr.20031218072017.2917: *3* c_oc.goToNextDirtyHeadline @g.commander_command('goto-next-changed') def goToNextDirtyHeadline(self, event=None): """Select the node that is marked as changed.""" c = self; p = c.p if not p: return p.moveToThreadNext() wrapped = False while 1: if p and p.isDirty(): break elif p: p.moveToThreadNext() elif wrapped: break else: wrapped = True p = c.rootPosition() if not p: g.blue('done') c.treeSelectHelper(p) # Sets focus. #@+node:ekr.20031218072017.2918: *3* c_oc.goToNextMarkedHeadline @g.commander_command('goto-next-marked') def goToNextMarkedHeadline(self, event=None): """Select the next marked node.""" c = self; p = c.p if not p: return p.moveToThreadNext() wrapped = False while 1: if p and p.isMarked(): break elif p: p.moveToThreadNext() elif wrapped: break else: wrapped = True p = c.rootPosition() if not p: g.blue('done') c.treeSelectHelper(p) # Sets focus. #@+node:ekr.20031218072017.2919: *3* c_oc.goToNextSibling @g.commander_command('goto-next-sibling') def goToNextSibling(self, event=None): """Select the next sibling of the selected node.""" c = self; p = c.p c.treeSelectHelper(p and p.next()) #@+node:ekr.20031218072017.2920: *3* c_oc.goToParent @g.commander_command('goto-parent') def goToParent(self, event=None): """Select the parent of the selected node.""" c = self; p = c.p c.treeSelectHelper(p and p.parent()) #@+node:ekr.20190211104913.1: *3* c_oc.goToPrevMarkedHeadline @g.commander_command('goto-prev-marked') def goToPrevMarkedHeadline(self, event=None): """Select the next marked node.""" c = self; p = c.p if not p: return p.moveToThreadBack() wrapped = False while 1: if p and p.isMarked(): break elif p: p.moveToThreadBack() elif wrapped: break else: wrapped = True p = c.rootPosition() if not p: g.blue('done') c.treeSelectHelper(p) # Sets focus. #@+node:ekr.20031218072017.2921: *3* c_oc.goToPrevSibling @g.commander_command('goto-prev-sibling') def goToPrevSibling(self, event=None): """Select the previous sibling of the selected node.""" c = self; p = c.p c.treeSelectHelper(p and p.back()) #@+node:ekr.20031218072017.2993: *3* c_oc.selectThreadBack @g.commander_command('goto-prev-node') def selectThreadBack(self, event=None): """Select the node preceding the selected node in outline order.""" c = self; p = c.p if not p: return p.moveToThreadBack() c.treeSelectHelper(p) #@+node:ekr.20031218072017.2994: *3* c_oc.selectThreadNext @g.commander_command('goto-next-node') def selectThreadNext(self, event=None): """Select the node following the selected node in outline order.""" c = self; p = c.p if not p: return p.moveToThreadNext() c.treeSelectHelper(p) #@+node:ekr.20031218072017.2995: *3* c_oc.selectVisBack @g.commander_command('goto-prev-visible') def selectVisBack(self, event=None): """Select the visible node preceding the presently selected node.""" # This has an up arrow for a control key. c, p = self, self.p if not p: return if c.canSelectVisBack(): p.moveToVisBack(c) c.treeSelectHelper(p) else: c.endEditing() # 2011/05/28: A special case. #@+node:ekr.20031218072017.2996: *3* c_oc.selectVisNext @g.commander_command('goto-next-visible') def selectVisNext(self, event=None): """Select the visible node following the presently selected node.""" c, p = self, self.p if not p: return if c.canSelectVisNext(): p.moveToVisNext(c) c.treeSelectHelper(p) else: c.endEditing() # 2011/05/28: A special case. #@+node:ekr.20031218072017.2028: ** c_oc.hoist/dehoist/clearAllHoists #@+node:ekr.20120308061112.9865: *3* c_oc.deHoist @g.commander_command('de-hoist') @g.commander_command('dehoist') def dehoist(self, event=None): """Undo a previous hoist of an outline.""" c = self if not c.p or not c.hoistStack: return # Don't de-hoist an @chapter node. if c.chapterController and c.p.h.startswith('@chapter '): if not g.unitTesting: g.es('can not de-hoist an @chapter node.', color='blue') return bunch = c.hoistStack.pop() p = bunch.p if bunch.expanded: p.expand() else: p.contract() c.setCurrentPosition(p) c.redraw() c.frame.clearStatusLine() c.frame.putStatusLine("De-Hoist: " + p.h) c.undoer.afterDehoist(p, 'DeHoist') g.doHook('hoist-changed', c=c) #@+node:ekr.20120308061112.9866: *3* c_oc.clearAllHoists @g.commander_command('clear-all-hoists') def clearAllHoists(self, event=None): """Undo a previous hoist of an outline.""" c = self c.hoistStack = [] c.frame.putStatusLine("Hoists cleared") g.doHook('hoist-changed', c=c) #@+node:ekr.20120308061112.9867: *3* c_oc.hoist @g.commander_command('hoist') def hoist(self, event=None): """Make only the selected outline visible.""" c = self p = c.p if not p: return # Don't hoist an @chapter node. if c.chapterController and p.h.startswith('@chapter '): if not g.unitTesting: g.es('can not hoist an @chapter node.', color='blue') return # Remember the expansion state. bunch = g.Bunch(p=p.copy(), expanded=p.isExpanded()) c.hoistStack.append(bunch) p.expand() c.redraw(p) c.frame.clearStatusLine() c.frame.putStatusLine("Hoist: " + p.h) c.undoer.afterHoist(p, 'Hoist') g.doHook('hoist-changed', c=c) #@+node:ekr.20031218072017.1759: ** c_oc.Insert, Delete & Clone commands #@+node:ekr.20031218072017.1762: *3* c_oc.clone @g.commander_command('clone-node') def clone(self, event=None): """Create a clone of the selected outline.""" c = self; u = c.undoer; p = c.p if not p: return None undoData = c.undoer.beforeCloneNode(p) c.endEditing() # Capture any changes to the headline. clone = p.clone() clone.setDirty() c.setChanged() if c.validateOutline(): u.afterCloneNode(clone, 'Clone Node', undoData) c.redraw(clone) c.treeWantsFocus() return clone # For mod_labels and chapters plugins. clone.doDelete() c.setCurrentPosition(p) return None #@+node:ekr.20150630152607.1: *3* c_oc.cloneToAtSpot @g.commander_command('clone-to-at-spot') def cloneToAtSpot(self, event=None): """ Create a clone of the selected node and move it to the last @spot node of the outline. Create the @spot node if necessary. """ c = self; u = c.undoer; p = c.p if not p: return # 2015/12/27: fix bug 220: do not allow clone-to-at-spot on @spot node. if p.h.startswith('@spot'): g.es("can not clone @spot node", color='red') return last_spot = None for p2 in c.all_positions(): if g.match_word(p2.h, 0, '@spot'): last_spot = p2.copy() if not last_spot: last = c.lastTopLevel() last_spot = last.insertAfter() last_spot.h = '@spot' undoData = c.undoer.beforeCloneNode(p) c.endEditing() # Capture any changes to the headline. clone = p.copy() clone._linkAsNthChild(last_spot, n=last_spot.numberOfChildren()) clone.setDirty() c.setChanged() if c.validateOutline(): u.afterCloneNode(clone, 'Clone Node', undoData) c.contractAllHeadlines() c.redraw() c.selectPosition(clone) else: clone.doDelete() c.setCurrentPosition(p) #@+node:ekr.20141023154408.5: *3* c_oc.cloneToLastNode @g.commander_command('clone-node-to-last-node') def cloneToLastNode(self, event=None): """ Clone the selected node and move it to the last node. Do *not* change the selected node. """ c, p, u = self, self.p, self.undoer if not p: return prev = p.copy() undoData = c.undoer.beforeCloneNode(p) c.endEditing() # Capture any changes to the headline. clone = p.clone() last = c.rootPosition() while last and last.hasNext(): last.moveToNext() clone.moveAfter(last) clone.setDirty() c.setChanged() u.afterCloneNode(clone, 'Clone Node To Last', undoData) c.redraw(prev) # return clone # For mod_labels and chapters plugins. #@+node:ekr.20031218072017.1193: *3* c_oc.deleteOutline @g.commander_command('delete-node') def deleteOutline(self, event=None, op_name="Delete Node"): """Deletes the selected outline.""" c, u = self, self.undoer p = c.p if not p: return c.endEditing() # Make sure we capture the headline for Undo. if False: # c.config.getBool('select-next-after-delete'): # #721: Optionally select next node after delete. if p.hasVisNext(c): newNode = p.visNext(c) elif p.hasParent(): newNode = p.parent() else: newNode = p.back() # _not_ p.visBack(): we are at the top level. else: # Legacy: select previous node if possible. if p.hasVisBack(c): newNode = p.visBack(c) else: newNode = p.next() # _not_ p.visNext(): we are at the top level. if not newNode: return undoData = u.beforeDeleteNode(p) p.setDirty() p.doDelete(newNode) c.setChanged() u.afterDeleteNode(newNode, op_name, undoData) c.redraw(newNode) c.validateOutline() #@+node:ekr.20071005173203.1: *3* c_oc.insertChild @g.commander_command('insert-child') def insertChild(self, event=None): """Insert a node after the presently selected node.""" c = self return c.insertHeadline(event=event, op_name='Insert Child', as_child=True) #@+node:ekr.20031218072017.1761: *3* c_oc.insertHeadline (insert-*) @g.commander_command('insert-node') def insertHeadline(self, event=None, op_name="Insert Node", as_child=False): """Insert a node after the presently selected node.""" c = self # Fix #600. return insertHeadlineHelper(c, event=event, as_child=as_child) @g.commander_command('insert-as-first-child') def insertNodeAsFirstChild(self, event=None): """Insert a node as the last child of the previous node.""" c = self return insertHeadlineHelper(c, event=event, as_first_child=True) @g.commander_command('insert-as-last-child') def insertNodeAsLastChild(self, event=None): """Insert a node as the last child of the previous node.""" c = self return insertHeadlineHelper(c, event=event, as_last_child=True) #@+node:ekr.20171124091846.1: *4* def insertHeadlineHelper def insertHeadlineHelper(c, event=None, op_name="Insert Node", as_child=False, as_first_child=False, as_last_child=False, ): """Insert a node after the presently selected node.""" u = c.undoer current = c.p if not current: return None c.endEditing() undoData = c.undoer.beforeInsertNode(current) if as_first_child: p = current.insertAsNthChild(0) elif as_last_child: p = current.insertAsLastChild() elif ( as_child or (current.hasChildren() and current.isExpanded()) or (c.hoistStack and current == c.hoistStack[-1].p) ): # Make sure the new node is visible when hoisting. if c.config.getBool('insert-new-nodes-at-end'): p = current.insertAsLastChild() else: p = current.insertAsNthChild(0) else: p = current.insertAfter() g.doHook('create-node', c=c, p=p) p.setDirty() c.setChanged() u.afterInsertNode(p, op_name, undoData) c.redrawAndEdit(p, selectAll=True) return p #@+node:ekr.20130922133218.11540: *3* c_oc.insertHeadlineBefore @g.commander_command('insert-node-before') def insertHeadlineBefore(self, event=None): """Insert a node before the presently selected node.""" c, current, u = self, self.p, self.undoer op_name = 'Insert Node Before' if not current: return None # Can not insert before the base of a hoist. if c.hoistStack and current == c.hoistStack[-1].p: g.warning('can not insert a node before the base of a hoist') return None c.endEditing() undoData = u.beforeInsertNode(current) p = current.insertBefore() g.doHook('create-node', c=c, p=p) p.setDirty() c.setChanged() u.afterInsertNode(p, op_name, undoData) c.redrawAndEdit(p, selectAll=True) return p #@+node:ekr.20031218072017.2922: ** c_oc.Mark commands #@+node:ekr.20090905110447.6098: *3* c_oc.cloneMarked @g.commander_command('clone-marked-nodes') def cloneMarked(self, event=None): """Clone all marked nodes as children of a new node.""" c = self; u = c.undoer; p1 = c.p.copy() # Create a new node to hold clones. parent = p1.insertAfter() parent.h = 'Clones of marked nodes' cloned, n, p = [], 0, c.rootPosition() while p: # Careful: don't clone already-cloned nodes. if p == parent: p.moveToNodeAfterTree() elif p.isMarked() and p.v not in cloned: cloned.append(p.v) if 0: # old code # Calling p.clone would cause problems p.clone().moveToLastChildOf(parent) else: # New code. # Create the clone directly as a child of parent. p2 = p.copy() n = parent.numberOfChildren() p2._linkAsNthChild(parent, n) p.moveToNodeAfterTree() n += 1 else: p.moveToThreadNext() if n: c.setChanged() parent.expand() c.selectPosition(parent) u.afterCloneMarkedNodes(p1) else: parent.doDelete() c.selectPosition(p1) if not g.unitTesting: g.blue(f"cloned {n} nodes") c.redraw() #@+node:ekr.20160502090456.1: *3* c_oc.copyMarked @g.commander_command('copy-marked-nodes') def copyMarked(self, event=None): """Copy all marked nodes as children of a new node.""" c = self; u = c.undoer; p1 = c.p.copy() # Create a new node to hold clones. parent = p1.insertAfter() parent.h = 'Copies of marked nodes' copied, n, p = [], 0, c.rootPosition() while p: # Careful: don't clone already-cloned nodes. if p == parent: p.moveToNodeAfterTree() elif p.isMarked() and p.v not in copied: copied.append(p.v) p2 = p.copyWithNewVnodes(copyMarked=True) p2._linkAsNthChild(parent, n) p.moveToNodeAfterTree() n += 1 else: p.moveToThreadNext() if n: c.setChanged() parent.expand() c.selectPosition(parent) u.afterCopyMarkedNodes(p1) else: parent.doDelete() c.selectPosition(p1) if not g.unitTesting: g.blue(f"copied {n} nodes") c.redraw() #@+node:ekr.20111005081134.15540: *3* c_oc.deleteMarked @g.commander_command('delete-marked-nodes') def deleteMarked(self, event=None): """Delete all marked nodes.""" c = self; u = c.undoer; p1 = c.p.copy() undo_data, p = [], c.rootPosition() while p: if p.isMarked(): undo_data.append(p.copy()) next = p.positionAfterDeletedTree() p.doDelete() p = next else: p.moveToThreadNext() if undo_data: u.afterDeleteMarkedNodes(undo_data, p1) if not g.unitTesting: g.blue(f"deleted {len(undo_data)} nodes") c.setChanged() # Don't even *think* about restoring the old position. c.contractAllHeadlines() c.selectPosition(c.rootPosition()) c.redraw() #@+node:ekr.20111005081134.15539: *3* c_oc.moveMarked & helper @g.commander_command('move-marked-nodes') def moveMarked(self, event=None): """ Move all marked nodes as children of a new node. This command is not undoable. Consider using clone-marked-nodes, followed by copy/paste instead. """ c = self p1 = c.p.copy() # Check for marks. for v in c.all_unique_nodes(): if v.isMarked(): break else: g.warning('no marked nodes') return result = g.app.gui.runAskYesNoDialog(c, 'Move Marked Nodes?', message='move-marked-nodes is not undoable\nProceed?', ) if result == 'no': return # Create a new *root* node to hold the moved nodes. # This node's position remains stable while other nodes move. parent = createMoveMarkedNode(c) assert not parent.isMarked() moved = [] p = c.rootPosition() while p: assert parent == c.rootPosition() # Careful: don't move already-moved nodes. if p.isMarked() and not parent.isAncestorOf(p): moved.append(p.copy()) next = p.positionAfterDeletedTree() p.moveToLastChildOf(parent) # This does not change parent's position. p = next else: p.moveToThreadNext() if moved: # Find a position p2 outside of parent's tree with p2.v == p1.v. # Such a position may not exist. p2 = c.rootPosition() while p2: if p2 == parent: p2.moveToNodeAfterTree() elif p2.v == p1.v: break else: p2.moveToThreadNext() else: # Not found. Move to last top-level. p2 = c.lastTopLevel() parent.moveAfter(p2) # u.afterMoveMarkedNodes(moved, p1) if not g.unitTesting: g.blue(f"moved {len(moved)} nodes") c.setChanged() # c.contractAllHeadlines() # Causes problems when in a chapter. c.selectPosition(parent) c.redraw() #@+node:ekr.20111005081134.15543: *4* def createMoveMarkedNode def createMoveMarkedNode(c): oldRoot = c.rootPosition() p = oldRoot.insertAfter() p.moveToRoot() c.setHeadString(p, 'Moved marked nodes') return p #@+node:ekr.20031218072017.2923: *3* c_oc.markChangedHeadlines @g.commander_command('mark-changed-items') def markChangedHeadlines(self, event=None): """Mark all nodes that have been changed.""" c = self; u = c.undoer; undoType = 'Mark Changed' current = c.p c.endEditing() u.beforeChangeGroup(current, undoType) for p in c.all_unique_positions(): if p.isDirty() and not p.isMarked(): bunch = u.beforeMark(p, undoType) # c.setMarked calls a hook. c.setMarked(p) p.setDirty() c.setChanged() u.afterMark(p, undoType, bunch) u.afterChangeGroup(current, undoType) if not g.unitTesting: g.blue('done') c.redraw_after_icons_changed() #@+node:ekr.20031218072017.2924: *3* c_oc.markChangedRoots def markChangedRoots(self, event=None): """Mark all changed @root nodes.""" c = self; u = c.undoer; undoType = 'Mark Changed' current = c.p c.endEditing() u.beforeChangeGroup(current, undoType) for p in c.all_unique_positions(): if p.isDirty() and not p.isMarked(): s = p.b flag, i = g.is_special(s, "@root") if flag: bunch = u.beforeMark(p, undoType) c.setMarked(p) # Calls a hook. p.setDirty() c.setChanged() u.afterMark(p, undoType, bunch) u.afterChangeGroup(current, undoType) if not g.unitTesting: g.blue('done') c.redraw_after_icons_changed() #@+node:ekr.20031218072017.2928: *3* c_oc.markHeadline @g.commander_command('mark') def markHeadline(self, event=None): """Toggle the mark of the selected node.""" c = self; u = c.undoer; p = c.p if not p: return c.endEditing() undoType = 'Unmark' if p.isMarked() else 'Mark' bunch = u.beforeMark(p, undoType) # c.set/clearMarked call a hook. if p.isMarked(): c.clearMarked(p) else: c.setMarked(p) p.setDirty() c.setChanged() u.afterMark(p, undoType, bunch) c.redraw_after_icons_changed() #@+node:ekr.20031218072017.2929: *3* c_oc.markSubheads @g.commander_command('mark-subheads') def markSubheads(self, event=None): """Mark all children of the selected node as changed.""" c = self; u = c.undoer; undoType = 'Mark Subheads' current = c.p if not current: return c.endEditing() u.beforeChangeGroup(current, undoType) for p in current.children(): if not p.isMarked(): bunch = u.beforeMark(p, undoType) c.setMarked(p) # Calls a hook. p.setDirty() c.setChanged() u.afterMark(p, undoType, bunch) u.afterChangeGroup(current, undoType) c.redraw_after_icons_changed() #@+node:ekr.20031218072017.2930: *3* c_oc.unmarkAll @g.commander_command('unmark-all') def unmarkAll(self, event=None): """Unmark all nodes in the entire outline.""" c = self; u = c.undoer; undoType = 'Unmark All' current = c.p if not current: return c.endEditing() u.beforeChangeGroup(current, undoType) changed = False p = None # To keep pylint happy. for p in c.all_unique_positions(): if p.isMarked(): bunch = u.beforeMark(p, undoType) # c.clearMarked(p) # Very slow: calls a hook. p.v.clearMarked() p.setDirty() u.afterMark(p, undoType, bunch) changed = True if changed: g.doHook("clear-all-marks", c=c, p=p) c.setChanged() u.afterChangeGroup(current, undoType) c.redraw_after_icons_changed() #@+node:ekr.20031218072017.1766: ** c_oc.Move commands #@+node:ekr.20031218072017.1767: *3* c_oc.demote @g.commander_command('demote') def demote(self, event=None): """Make all following siblings children of the selected node.""" c = self; u = c.undoer p = c.p if not p or not p.hasNext(): c.treeFocusHelper() return # Make sure all the moves will be valid. next = p.next() while next: if not c.checkMoveWithParentWithWarning(next, p, True): c.treeFocusHelper() return next.moveToNext() c.endEditing() parent_v = p._parentVnode() n = p.childIndex() followingSibs = parent_v.children[n + 1 :] # Remove the moved nodes from the parent's children. parent_v.children = parent_v.children[: n + 1] # Add the moved nodes to p's children p.v.children.extend(followingSibs) # Adjust the parent links in the moved nodes. # There is no need to adjust descendant links. for child in followingSibs: child.parents.remove(parent_v) child.parents.append(p.v) p.expand() p.setDirty() c.setChanged() u.afterDemote(p, followingSibs) c.redraw(p) c.updateSyntaxColorer(p) # Moving can change syntax coloring. #@+node:ekr.20031218072017.1768: *3* c_oc.moveOutlineDown @g.commander_command('move-outline-down') def moveOutlineDown(self, event=None): """Move the selected node down.""" # Moving down is more tricky than moving up because we can't # move p to be a child of itself. # # An important optimization: # we don't have to call checkMoveWithParentWithWarning() if the parent of # the moved node remains the same. c = self; u = c.undoer; p = c.p if not p: return if not c.canMoveOutlineDown(): if c.hoistStack: cantMoveMessage(c) c.treeFocusHelper() return parent = p.parent() next = p.visNext(c) while next and p.isAncestorOf(next): next = next.visNext(c) if not next: if c.hoistStack: cantMoveMessage(c) c.treeFocusHelper() return c.endEditing() undoData = u.beforeMoveNode(p) #@+<< Move p down & set moved if successful >> #@+node:ekr.20031218072017.1769: *4* << Move p down & set moved if successful >> if next.hasChildren() and next.isExpanded(): # Attempt to move p to the first child of next. moved = c.checkMoveWithParentWithWarning(p, next, True) if moved: p.setDirty() p.moveToNthChildOf(next, 0) else: # Attempt to move p after next. moved = c.checkMoveWithParentWithWarning(p, next.parent(), True) if moved: p.setDirty() p.moveAfter(next) # Patch by nh2: 0004-Add-bool-collapse_nodes_after_move-option.patch if ( c.collapse_nodes_after_move and moved and c.sparse_move and parent and not parent.isAncestorOf(p) ): # New in Leo 4.4.2: contract the old parent if it is no longer the parent of p. parent.contract() #@-<< Move p down & set moved if successful >> if moved: p.setDirty() c.setChanged() u.afterMoveNode(p, 'Move Down', undoData) c.redraw(p) c.updateSyntaxColorer(p) # Moving can change syntax coloring. #@+node:ekr.20031218072017.1770: *3* c_oc.moveOutlineLeft @g.commander_command('move-outline-left') def moveOutlineLeft(self, event=None): """Move the selected node left if possible.""" c = self; u = c.undoer; p = c.p if not p: return if not c.canMoveOutlineLeft(): if c.hoistStack: cantMoveMessage(c) c.treeFocusHelper() return if not p.hasParent(): c.treeFocusHelper() return parent = p.parent() c.endEditing() undoData = u.beforeMoveNode(p) p.setDirty() p.moveAfter(parent) p.setDirty() c.setChanged() u.afterMoveNode(p, 'Move Left', undoData) # Patch by nh2: 0004-Add-bool-collapse_nodes_after_move-option.patch if c.collapse_nodes_after_move and c.sparse_move: # New in Leo 4.4.2 parent.contract() c.redraw(p) c.recolor() # Moving can change syntax coloring. #@+node:ekr.20031218072017.1771: *3* c_oc.moveOutlineRight @g.commander_command('move-outline-right') def moveOutlineRight(self, event=None): """Move the selected node right if possible.""" c = self; u = c.undoer; p = c.p if not p: return if not c.canMoveOutlineRight(): # 11/4/03: Support for hoist. if c.hoistStack: cantMoveMessage(c) c.treeFocusHelper() return back = p.back() if not back: c.treeFocusHelper() return if not c.checkMoveWithParentWithWarning(p, back, True): c.treeFocusHelper() return c.endEditing() undoData = u.beforeMoveNode(p) p.setDirty() n = back.numberOfChildren() p.moveToNthChildOf(back, n) p.setDirty() u.afterMoveNode(p, 'Move Right', undoData) c.redraw(p) c.recolor() #@+node:ekr.20031218072017.1772: *3* c_oc.moveOutlineUp @g.commander_command('move-outline-up') def moveOutlineUp(self, event=None): """Move the selected node up if possible.""" c = self; u = c.undoer; p = c.p if not p: return if not c.canMoveOutlineUp(): # Support for hoist. if c.hoistStack: cantMoveMessage(c) c.treeFocusHelper() return back = p.visBack(c) if not back: return back2 = back.visBack(c) c.endEditing() undoData = u.beforeMoveNode(p) moved = False #@+<< Move p up >> #@+node:ekr.20031218072017.1773: *4* << Move p up >> parent = p.parent() if not back2: if c.hoistStack: # hoist or chapter. limit, limitIsVisible = c.visLimit() assert limit if limitIsVisible: # canMoveOutlineUp should have caught this. g.trace('can not happen. In hoist') else: moved = True p.setDirty() p.moveToFirstChildOf(limit) else: # p will be the new root node p.setDirty() p.moveToRoot() moved = True elif back2.hasChildren() and back2.isExpanded(): if c.checkMoveWithParentWithWarning(p, back2, True): moved = True p.setDirty() p.moveToNthChildOf(back2, 0) else: if c.checkMoveWithParentWithWarning(p, back2.parent(), True): moved = True p.setDirty() p.moveAfter(back2) # Patch by nh2: 0004-Add-bool-collapse_nodes_after_move-option.patch if ( c.collapse_nodes_after_move and moved and c.sparse_move and parent and not parent.isAncestorOf(p) ): # New in Leo 4.4.2: contract the old parent if it is no longer the parent of p. parent.contract() #@-<< Move p up >> if moved: p.setDirty() c.setChanged() u.afterMoveNode(p, 'Move Right', undoData) c.redraw(p) c.updateSyntaxColorer(p) # Moving can change syntax coloring. #@+node:ekr.20031218072017.1774: *3* c_oc.promote @g.commander_command('promote') def promote(self, event=None, undoFlag=True, redrawFlag=True): """Make all children of the selected nodes siblings of the selected node.""" c = self; u = c.undoer; p = c.p if not p or not p.hasChildren(): c.treeFocusHelper() return c.endEditing() children = p.v.children # First, for undo. p.promote() c.setChanged() if undoFlag: p.setDirty() u.afterPromote(p, children) if redrawFlag: c.redraw(p) c.updateSyntaxColorer(p) # Moving can change syntax coloring. #@+node:ekr.20071213185710: *3* c_oc.toggleSparseMove @g.commander_command('toggle-sparse-move') def toggleSparseMove(self, event=None): """Toggle whether moves collapse the outline.""" c = self c.sparse_move = not c.sparse_move if not g.unitTesting: g.blue(f"sparse-move: {c.sparse_move}") #@+node:ekr.20080425060424.1: ** c_oc.Sort commands #@+node:ekr.20050415134809: *3* c_oc.sortChildren @g.commander_command('sort-children') def sortChildren(self, event=None, key=None, reverse=False): """Sort the children of a node.""" # This method no longer supports the 'cmp' keyword arg. c = self; p = c.p if p and p.hasChildren(): c.sortSiblings(p=p.firstChild(), sortChildren=True, key=key, reverse=reverse) #@+node:ekr.20050415134809.1: *3* c_oc.sortSiblings @g.commander_command('sort-siblings') def sortSiblings(self, event=None, # cmp keyword is no longer supported. key=None, p=None, sortChildren=False, reverse=False ): """Sort the siblings of a node.""" c = self; u = c.undoer if not p: p = c.p if not p: return c.endEditing() undoType = 'Sort Children' if sortChildren else 'Sort Siblings' parent_v = p._parentVnode() oldChildren = parent_v.children[:] newChildren = parent_v.children[:] if key is None: def lowerKey(self): return (self.h.lower()) key = lowerKey newChildren.sort(key=key, reverse=reverse) if oldChildren == newChildren: return # 2010/01/20. Fix bug 510148. c.setChanged() bunch = u.beforeSort(p, undoType, oldChildren, newChildren, sortChildren) parent_v.children = newChildren u.afterSort(p, bunch) # Sorting destroys position p, and possibly the root position. p = c.setPositionAfterSort(sortChildren) if p.parent(): p.parent().setDirty() c.redraw(p) #@+node:ekr.20070420092425: ** def cantMoveMessage def cantMoveMessage(c): h = c.rootPosition().h kind = 'chapter' if h.startswith('@chapter') else 'hoist' g.warning("can't move node out of", kind) #@+node:ekr.20180201040936.1: ** count-children @g.command('count-children') def count_children(event=None): c = event and event.get('c') if c: g.es_print(f"{c.p.numberOfChildren()} children") #@-others #@-leo
34.114873
91
0.629816
98e9c33334ef004ee1dc5561ff2459a9fce4fa31
1,884
py
Python
tools/download.py
dkratzert/FinalCif
07ca23dbb4e7439b108a906521a118cdb876d97e
[ "Beerware" ]
13
2020-01-14T16:23:48.000Z
2022-02-16T18:02:08.000Z
tools/download.py
dkratzert/FinalCif
07ca23dbb4e7439b108a906521a118cdb876d97e
[ "Beerware" ]
24
2021-04-21T05:30:42.000Z
2022-03-31T20:07:29.000Z
tools/download.py
dkratzert/FinalCif
07ca23dbb4e7439b108a906521a118cdb876d97e
[ "Beerware" ]
1
2021-08-09T16:48:33.000Z
2021-08-09T16:48:33.000Z
import sys import requests from PyQt5.QtCore import QThread, pyqtSignal from tools.version import VERSION class MyDownloader(QThread): progress = pyqtSignal(str) failed = pyqtSignal(int) finished = pyqtSignal(bytes) def __init__(self, parent, url: str): super().__init__(parent) self.url = url def run(self): self.download(self.url) def print_status(self, status: str) -> None: print(status) def failed_to_download(self, status_code: int): print('Failed to download: {}'.format(self.url)) print('HTTP status was {}'.format(status_code)) def download(self, full_url: str, user_agent=None) -> bytes: user_agent = user_agent if user_agent else 'FinalCif v{}'.format(VERSION) headers = { 'User-Agent': user_agent, } # noinspection PyUnresolvedReferences # self.progress.emit('Starting download: {}'.format(full_url)) response = requests.get(full_url, stream=True, headers=headers) if response.status_code != 200: # noinspection PyUnresolvedReferences self.failed.emit(response.status_code) # noinspection PyUnresolvedReferences self.finished.emit(b'') return b'' # noinspection PyUnresolvedReferences self.finished.emit(response.content) return response.content if __name__ == "__main__": from PyQt5.QtWidgets import QWidget from PyQt5.QtWidgets import QApplication app = QApplication(sys.argv) w = QWidget() w.show() def foo(bar: bytes): print(bar.decode('ascii')) upd = MyDownloader(None, "https://dkratzert.de/files/finalcif/version.txt") upd.finished.connect(foo) upd.failed.connect(upd.failed_to_download) upd.progress.connect(upd.print_status) upd.start() sys.exit(app.exec_())
28.545455
81
0.654459
3680312fbb6ced5fd0870a2c981abc389f11dc15
257
py
Python
BOJ9461.py
INYEONGKIM/BOJ
5e83d77a92d18b0d20d26645c7cfe4ba3e2d25bc
[ "MIT" ]
2
2019-03-05T15:42:46.000Z
2019-07-24T15:52:36.000Z
BOJ9461.py
INYEONGKIM/BOJ
5e83d77a92d18b0d20d26645c7cfe4ba3e2d25bc
[ "MIT" ]
null
null
null
BOJ9461.py
INYEONGKIM/BOJ
5e83d77a92d18b0d20d26645c7cfe4ba3e2d25bc
[ "MIT" ]
null
null
null
res="" p=[1]*100 p[3]=2;p[4]=2;p[5]=3;p[6]=4;p[7]=5;p[8]=7;p[9]=9 for i in range(10, 100): p[i] = p[i-1] + p[i-5] for _ in range(int(__import__('sys').stdin.readline())): res += f'{p[int(__import__("sys").stdin.readline())-1]}\n' print(res.strip())
28.555556
62
0.552529
ed97cbd51cef903155f6a2f10eda555b0a620b5e
176
py
Python
tests/test_cipher_xs2428_mds.py
QMSS-G5072-2021/cipher_Shan_Kimberly
ec258e785048f43b95fdc2297ae269c4217ee462
[ "MIT" ]
null
null
null
tests/test_cipher_xs2428_mds.py
QMSS-G5072-2021/cipher_Shan_Kimberly
ec258e785048f43b95fdc2297ae269c4217ee462
[ "MIT" ]
null
null
null
tests/test_cipher_xs2428_mds.py
QMSS-G5072-2021/cipher_Shan_Kimberly
ec258e785048f43b95fdc2297ae269c4217ee462
[ "MIT" ]
null
null
null
from cipher_xs2428_mds import cipher_xs2428_mds def test_cipher(): expected = 'Bqqmf' actual = cipher_xs2428_mds.cipher('Apple', 1, True) assert actual == expected
29.333333
55
0.738636
cff78eb03f96b757913b6202c1a90195680a6fc4
868
py
Python
ML1-Supervised-Learning/ML1.1-Classification/cl5_overfitting_underfitting.py
ridhanf/machine-learning-datacamp
2c2c0f5dfcf9df315488cdef8eabd1d4f9fbd0e8
[ "MIT" ]
null
null
null
ML1-Supervised-Learning/ML1.1-Classification/cl5_overfitting_underfitting.py
ridhanf/machine-learning-datacamp
2c2c0f5dfcf9df315488cdef8eabd1d4f9fbd0e8
[ "MIT" ]
null
null
null
ML1-Supervised-Learning/ML1.1-Classification/cl5_overfitting_underfitting.py
ridhanf/machine-learning-datacamp
2c2c0f5dfcf9df315488cdef8eabd1d4f9fbd0e8
[ "MIT" ]
null
null
null
# Setup arrays to store train and test accuracies neighbors = np.arange(1, 9) train_accuracy = np.empty(len(neighbors)) test_accuracy = np.empty(len(neighbors)) # Loop over different values of k for i, k in enumerate(neighbors): # Setup a k-NN Classifier with k neighbors: knn knn = KNeighborsClassifier(n_neighbors=k) # Fit the classifier to the training data knn.fit(X_train, y_train) #Compute accuracy on the training set train_accuracy[i] = knn.score(X_train, y_train) #Compute accuracy on the testing set test_accuracy[i] = knn.score(X_test, y_test) # Generate plot plt.title('k-NN: Varying Number of Neighbors') plt.plot(neighbors, test_accuracy, label = 'Testing Accuracy') plt.plot(neighbors, train_accuracy, label = 'Training Accuracy') plt.legend() plt.xlabel('Number of Neighbors') plt.ylabel('Accuracy') plt.show()
31
64
0.733871
def351d8b98d300e8b5a6f9280a5e56c9e9adbdc
12,412
py
Python
haystack/file_converter/pdf.py
SjSnowball/haystack
bb066c0a2c10253cf2bf7eb8cc829f1a0edde84d
[ "Apache-2.0" ]
4,544
2019-11-14T11:57:49.000Z
2022-03-31T17:41:18.000Z
haystack/file_converter/pdf.py
SjSnowball/haystack
bb066c0a2c10253cf2bf7eb8cc829f1a0edde84d
[ "Apache-2.0" ]
1,679
2020-01-14T15:55:58.000Z
2022-03-31T20:55:25.000Z
haystack/file_converter/pdf.py
SjSnowball/haystack
bb066c0a2c10253cf2bf7eb8cc829f1a0edde84d
[ "Apache-2.0" ]
820
2019-11-27T13:01:42.000Z
2022-03-31T12:54:34.000Z
import logging import subprocess from pathlib import Path import tempfile import os from typing import List, Optional, Dict, Any from pdf2image import convert_from_path, convert_from_bytes from haystack.file_converter.base import BaseConverter from haystack.file_converter.image import ImageToTextConverter logger = logging.getLogger(__name__) class PDFToTextConverter(BaseConverter): def __init__( self, remove_numeric_tables: bool = False, valid_languages: Optional[List[str]] = None, ): """ :param remove_numeric_tables: This option uses heuristics to remove numeric rows from the tables. The tabular structures in documents might be noise for the reader model if it does not have table parsing capability for finding answers. However, tables may also have long strings that could possible candidate for searching answers. The rows containing strings are thus retained in this option. :param valid_languages: validate languages from a list of languages specified in the ISO 639-1 (https://en.wikipedia.org/wiki/ISO_639-1) format. This option can be used to add test for encoding errors. If the extracted text is not one of the valid languages, then it might likely be encoding error resulting in garbled text. """ # save init parameters to enable export of component config as YAML self.set_config( remove_numeric_tables=remove_numeric_tables, valid_languages=valid_languages ) verify_installation = subprocess.run(["pdftotext -v"], shell=True) if verify_installation.returncode == 127: raise Exception( """pdftotext is not installed. It is part of xpdf or poppler-utils software suite. Installation on Linux: wget --no-check-certificate https://dl.xpdfreader.com/xpdf-tools-linux-4.03.tar.gz && tar -xvf xpdf-tools-linux-4.03.tar.gz && sudo cp xpdf-tools-linux-4.03/bin64/pdftotext /usr/local/bin Installation on MacOS: brew install xpdf You can find more details here: https://www.xpdfreader.com """ ) super().__init__( remove_numeric_tables=remove_numeric_tables, valid_languages=valid_languages ) def convert( self, file_path: Path, meta: Optional[Dict[str, str]] = None, remove_numeric_tables: Optional[bool] = None, valid_languages: Optional[List[str]] = None, encoding: Optional[str] = "Latin1", ) -> Dict[str, Any]: """ Extract text from a .pdf file using the pdftotext library (https://www.xpdfreader.com/pdftotext-man.html) :param file_path: Path to the .pdf file you want to convert :param meta: Optional dictionary with metadata that shall be attached to all resulting documents. Can be any custom keys and values. :param remove_numeric_tables: This option uses heuristics to remove numeric rows from the tables. The tabular structures in documents might be noise for the reader model if it does not have table parsing capability for finding answers. However, tables may also have long strings that could possible candidate for searching answers. The rows containing strings are thus retained in this option. :param valid_languages: validate languages from a list of languages specified in the ISO 639-1 (https://en.wikipedia.org/wiki/ISO_639-1) format. This option can be used to add test for encoding errors. If the extracted text is not one of the valid languages, then it might likely be encoding error resulting in garbled text. :param encoding: Encoding that will be passed as -enc parameter to pdftotext. "Latin 1" is the default encoding of pdftotext. While this works well on many PDFs, it might be needed to switch to "UTF-8" or others if your doc contains special characters (e.g. German Umlauts, Cyrillic characters ...). Note: With "UTF-8" we experienced cases, where a simple "fi" gets wrongly parsed as "xef\xac\x81c" (see test cases). That's why we keep "Latin 1" as default here. (See list of available encodings by running `pdftotext -listenc` in the terminal) """ pages = self._read_pdf(file_path, layout=False, encoding=encoding) if remove_numeric_tables is None: remove_numeric_tables = self.remove_numeric_tables if valid_languages is None: valid_languages = self.valid_languages cleaned_pages = [] for page in pages: # pdftotext tool provides an option to retain the original physical layout of a PDF page. This behaviour # can be toggled by using the layout param. # layout=True # + table structures get retained better # - multi-column pages(eg, research papers) gets extracted with text from multiple columns on same line # layout=False # + keeps strings in content stream order, hence multi column layout works well # - cells of tables gets split across line # # Here, as a "safe" default, layout is turned off. lines = page.splitlines() cleaned_lines = [] for line in lines: words = line.split() digits = [word for word in words if any(i.isdigit() for i in word)] # remove lines having > 40% of words as digits AND not ending with a period(.) if remove_numeric_tables: if ( words and len(digits) / len(words) > 0.4 and not line.strip().endswith(".") ): logger.debug(f"Removing line '{line}' from {file_path}") continue cleaned_lines.append(line) page = "\n".join(cleaned_lines) cleaned_pages.append(page) if valid_languages: document_text = "".join(cleaned_pages) if not self.validate_language(document_text): logger.warning( f"The language for {file_path} is not one of {self.valid_languages}. The file may not have " f"been decoded in the correct text format." ) text = "\f".join(cleaned_pages) document = {"content": text, "content_type": "text", "meta": meta} return document def _read_pdf( self, file_path: Path, layout: bool, encoding: Optional[str] = "Latin1" ) -> List[str]: """ Extract pages from the pdf file at file_path. :param file_path: path of the pdf file :param layout: whether to retain the original physical layout for a page. If disabled, PDF pages are read in the content stream order. """ if layout: command = ["pdftotext", "-enc", encoding, "-layout", str(file_path), "-"] else: command = ["pdftotext", "-enc", encoding, str(file_path), "-"] output = subprocess.run(command, stdout=subprocess.PIPE, shell=False) # type: ignore document = output.stdout.decode(errors="ignore") pages = document.split("\f") pages = pages[:-1] # the last page in the split is always empty. return pages class PDFToTextOCRConverter(BaseConverter): def __init__( self, remove_numeric_tables: bool = False, valid_languages: Optional[List[str]] = ["eng"], ): """ Extract text from image file using the pytesseract library (https://github.com/madmaze/pytesseract) :param remove_numeric_tables: This option uses heuristics to remove numeric rows from the tables. The tabular structures in documents might be noise for the reader model if it does not have table parsing capability for finding answers. However, tables may also have long strings that could possible candidate for searching answers. The rows containing strings are thus retained in this option. :param valid_languages: validate languages from a list of languages supported by tessarect (https://tesseract-ocr.github.io/tessdoc/Data-Files-in-different-versions.html). This option can be used to add test for encoding errors. If the extracted text is not one of the valid languages, then it might likely be encoding error resulting in garbled text. """ # init image to text instance self.image_2_text = ImageToTextConverter(remove_numeric_tables, valid_languages) # save init parameters to enable export of component config as YAML self.set_config( remove_numeric_tables=remove_numeric_tables, valid_languages=valid_languages ) super().__init__( remove_numeric_tables=remove_numeric_tables, valid_languages=valid_languages ) def convert( self, file_path: Path, meta: Optional[Dict[str, str]] = None, remove_numeric_tables: Optional[bool] = None, valid_languages: Optional[List[str]] = None, encoding: Optional[str] = "utf-8", ) -> Dict[str, Any]: """ Convert a file to a dictionary containing the text and any associated meta data. File converters may extract file meta like name or size. In addition to it, user supplied meta data like author, url, external IDs can be supplied as a dictionary. :param file_path: path of the file to convert :param meta: dictionary of meta data key-value pairs to append in the returned document. :param remove_numeric_tables: This option uses heuristics to remove numeric rows from the tables. The tabular structures in documents might be noise for the reader model if it does not have table parsing capability for finding answers. However, tables may also have long strings that could possible candidate for searching answers. The rows containing strings are thus retained in this option. :param valid_languages: validate languages from a list of languages specified in the ISO 639-1 (https://en.wikipedia.org/wiki/ISO_639-1) format. This option can be used to add test for encoding errors. If the extracted text is not one of the valid languages, then it might likely be encoding error resulting in garbled text. :param encoding: Select the file encoding (default is `utf-8`) """ pages = [] try: images = convert_from_path(file_path) for image in images: temp_img = tempfile.NamedTemporaryFile( dir=os.path.dirname(os.path.realpath(__file__)), suffix=".jpeg" ) image.save(temp_img.name) pages.append(self.image_2_text.convert(temp_img.name)["content"]) except Exception as exception: logger.error(f"File {file_path} has an error \n {exception}") raw_text = "\f".join(pages) document = {"content": raw_text, "meta": meta} return document
52.151261
120
0.592008
305abee0bcd92aa93cc3c354d2952b0d6c9d3490
4,647
py
Python
topi/python/topi/bifrost/depthwise_conv2d.py
robo-corg/incubator-tvm
4ddfdb4b15d05a5bf85a984837967d004efee5dd
[ "Apache-2.0" ]
3
2021-02-23T22:06:01.000Z
2021-09-30T09:59:17.000Z
topi/python/topi/bifrost/depthwise_conv2d.py
robo-corg/incubator-tvm
4ddfdb4b15d05a5bf85a984837967d004efee5dd
[ "Apache-2.0" ]
4
2021-03-30T11:59:59.000Z
2022-03-12T00:40:23.000Z
topi/python/topi/bifrost/depthwise_conv2d.py
robo-corg/incubator-tvm
4ddfdb4b15d05a5bf85a984837967d004efee5dd
[ "Apache-2.0" ]
3
2021-07-20T07:40:15.000Z
2021-08-03T08:39:17.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name,unused-variable,unused-argument """depthwise_conv2d schedule on ARM Mali GPU""" from __future__ import absolute_import as _abs import tvm from .. import generic from .. import util from .. import tag @generic.schedule_depthwise_conv2d_nchw.register(["bifrost"]) def schedule_depthwise_conv2d_nchw(outs): """Schedule for depthwise_conv2d nchw forward. Parameters ---------- outs: Array of Tensor The computation graph description of depthwise_conv2d in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for depthwise_conv2d nchw. """ outs = [outs] if isinstance(outs, tvm.tensor.Tensor) else outs s = tvm.create_schedule([x.op for x in outs]) def _schedule(pad_data, kernel, conv): raw_data = s[pad_data].op.input_tensors[0] if conv.op not in s.outputs: # has bias or relu output = outs[0] else: # no bias or relu output = conv def tile_and_bind3d(tensor, z, y, x, z_factor=2, y_factor=None, x_factor=None): """ tile and bind 3d """ y_factor = y_factor or z_factor x_factor = x_factor or y_factor zo, zi = s[tensor].split(z, z_factor) yo, yi = s[tensor].split(y, y_factor) xo, xi = s[tensor].split(x, x_factor) s[tensor].bind(zo, tvm.thread_axis("blockIdx.z")) s[tensor].bind(zi, tvm.thread_axis("threadIdx.z")) s[tensor].bind(yo, tvm.thread_axis("blockIdx.y")) s[tensor].bind(yi, tvm.thread_axis("threadIdx.y")) s[tensor].bind(xo, tvm.thread_axis("blockIdx.x")) s[tensor].bind(xi, tvm.thread_axis("threadIdx.x")) return zo, zi, yo, yi, xo, xi # set tunable parameters VH = 1 VW = 1 num_thread = 4 while util.get_const_int(conv.shape[3]) % (VW * 2) == 0 and VW * 2 <= 4: VW = VW * 2 while util.get_const_int(conv.shape[2]) % (VH * 2) == 0 and VH * 2 <= 2: VH = VH * 2 if raw_data.dtype == 'float16': if util.get_const_int(conv.shape[3]) % (VW * 2) == 0: VW *= 2 num_thread *= 2 else: num_thread *= 2 # schedule padding _, c, y, x = s[pad_data].op.axis tile_and_bind3d(pad_data, c, y, x, num_thread, 1, 1) # schedule conv di, dj = s[conv].op.reduce_axis s[conv].unroll(di) s[conv].unroll(dj) _, c, y, x = s[output].op.axis y, x, yi, xi = s[output].tile(y, x, VH, VW) s[output].unroll(yi) s[output].vectorize(xi) _, _, _, _, _, ji = tile_and_bind3d(output, c, y, x, num_thread, 1, 1) if conv.op not in s.outputs: _, c, y, x = s[conv].op.axis y, x, yi, xi = s[conv].tile(y, x, VH, VW) s[conv].unroll(yi) s[conv].vectorize(xi) s[conv].compute_at(s[output], ji) def traverse(op): """Internal traverse function""" # inline all one-to-one-mapping operators except the last stage (output) if tag.is_broadcast(op.tag): if op not in s.outputs: s[op].compute_inline() for tensor in op.input_tensors: if tensor.op.input_tensors: traverse(tensor.op) # schedule depthwise_conv2d if op.tag == 'depthwise_conv2d_nchw': pad_data = op.input_tensors[0] kernel = op.input_tensors[1] if isinstance(kernel.op, tvm.tensor.ComputeOp) and 'dilate' in kernel.op.tag: s[kernel].compute_inline() conv = op.output(0) _schedule(pad_data, kernel, conv) traverse(outs[0].op) return s
36.590551
89
0.594362
ea631f74beead1c09594c9d2aacf772853e8f8d6
2,566
py
Python
customuser/forms.py
vitaliyharchenko/Stepee
1daadc19e7538562a91fec01668e1d5791869af8
[ "MIT" ]
null
null
null
customuser/forms.py
vitaliyharchenko/Stepee
1daadc19e7538562a91fec01668e1d5791869af8
[ "MIT" ]
null
null
null
customuser/forms.py
vitaliyharchenko/Stepee
1daadc19e7538562a91fec01668e1d5791869af8
[ "MIT" ]
null
null
null
# coding=utf-8 from django import forms from django.contrib.auth import get_user_model from django.contrib.auth.forms import ReadOnlyPasswordHashField from models import User class UserCreationForm(forms.ModelForm): error_messages = { 'duplicate_email': "A user with that email already exists.", 'password_mismatch': "The two password fields didn't match.", } password1 = forms.CharField( label="Password", widget=forms.PasswordInput) password2 = forms.CharField( label="Password confirmation", widget=forms.PasswordInput, help_text="Enter the same password as above, for verification.") class Meta: model = User fields = ('email', 'grade') def clean_email(self): email = self.cleaned_data["email"] try: get_user_model().objects.get(email=email) except get_user_model().DoesNotExist: return email raise forms.ValidationError( self.error_messages['duplicate_email'], code='duplicate_email', ) def clean_password2(self): password1 = self.cleaned_data.get("password1") password2 = self.cleaned_data.get("password2") if password1 and password2 and password1 != password2: raise forms.ValidationError( self.error_messages['password_mismatch'], code='password_mismatch', ) return password2 def save(self, commit=True): user = super(UserCreationForm, self).save(commit=False) user.set_password(self.cleaned_data["password1"]) if commit: user.save() return user class UserChangeForm(forms.ModelForm): password = ReadOnlyPasswordHashField(label="Password", help_text= "Raw passwords are not stored, so there is no way to see " "this user's password, but you can change the password " "using <a href=\"password/\">this form</a>.") class Meta: model = User exclude = () def __init__(self, *args, **kwargs): super(UserChangeForm, self).__init__(*args, **kwargs) f = self.fields.get('user_permissions', None) if f is not None: f.queryset = f.queryset.select_related('content_type') def clean_password(self): return self.initial["password"] class UserLoginForm(forms.Form): email = forms.EmailField(label='Email', max_length=150) # TODO: label localization password = forms.CharField(label='Пароль', widget=forms.PasswordInput())
32.481013
76
0.644193
62608e2f17267c6945fe7819bcca54f7fdfacc59
57,680
py
Python
pandas/tests/io/formats/style/test_style.py
dorothykiz1/pandas
6033ed4b3383d874ee4a8a461724c0b8c2ca968d
[ "BSD-3-Clause" ]
1
2022-03-29T01:38:03.000Z
2022-03-29T01:38:03.000Z
pandas/tests/io/formats/style/test_style.py
dorothykiz1/pandas
6033ed4b3383d874ee4a8a461724c0b8c2ca968d
[ "BSD-3-Clause" ]
1
2022-03-08T02:15:07.000Z
2022-03-08T02:15:07.000Z
pandas/tests/io/formats/style/test_style.py
dorothykiz1/pandas
6033ed4b3383d874ee4a8a461724c0b8c2ca968d
[ "BSD-3-Clause" ]
1
2022-03-22T11:50:25.000Z
2022-03-22T11:50:25.000Z
import copy import re from textwrap import dedent import numpy as np import pytest from pandas import ( Categorical, DataFrame, IndexSlice, MultiIndex, Series, option_context, ) import pandas._testing as tm jinja2 = pytest.importorskip("jinja2") from pandas.io.formats.style import ( # isort:skip Styler, ) from pandas.io.formats.style_render import ( _get_level_lengths, _get_trimming_maximums, maybe_convert_css_to_tuples, non_reducing_slice, ) @pytest.fixture def mi_df(): return DataFrame( [[1, 2], [3, 4]], index=MultiIndex.from_product([["i0"], ["i1_a", "i1_b"]]), columns=MultiIndex.from_product([["c0"], ["c1_a", "c1_b"]]), dtype=int, ) @pytest.fixture def mi_styler(mi_df): return Styler(mi_df, uuid_len=0) @pytest.fixture def mi_styler_comp(mi_styler): # comprehensively add features to mi_styler mi_styler = mi_styler._copy(deepcopy=True) mi_styler.css = {**mi_styler.css, **{"row": "ROW", "col": "COL"}} mi_styler.uuid_len = 5 mi_styler.uuid = "abcde" mi_styler.set_caption("capt") mi_styler.set_table_styles([{"selector": "a", "props": "a:v;"}]) mi_styler.hide(axis="columns") mi_styler.hide([("c0", "c1_a")], axis="columns", names=True) mi_styler.hide(axis="index") mi_styler.hide([("i0", "i1_a")], axis="index", names=True) mi_styler.set_table_attributes('class="box"') other = mi_styler.data.agg(["mean"]) other.index = MultiIndex.from_product([[""], other.index]) mi_styler.concat(other.style) mi_styler.format(na_rep="MISSING", precision=3) mi_styler.format_index(precision=2, axis=0) mi_styler.format_index(precision=4, axis=1) mi_styler.highlight_max(axis=None) mi_styler.applymap_index(lambda x: "color: white;", axis=0) mi_styler.applymap_index(lambda x: "color: black;", axis=1) mi_styler.set_td_classes( DataFrame( [["a", "b"], ["a", "c"]], index=mi_styler.index, columns=mi_styler.columns ) ) mi_styler.set_tooltips( DataFrame( [["a2", "b2"], ["a2", "c2"]], index=mi_styler.index, columns=mi_styler.columns, ) ) return mi_styler @pytest.mark.parametrize( "sparse_columns, exp_cols", [ ( True, [ {"is_visible": True, "attributes": 'colspan="2"', "value": "c0"}, {"is_visible": False, "attributes": "", "value": "c0"}, ], ), ( False, [ {"is_visible": True, "attributes": "", "value": "c0"}, {"is_visible": True, "attributes": "", "value": "c0"}, ], ), ], ) def test_mi_styler_sparsify_columns(mi_styler, sparse_columns, exp_cols): exp_l1_c0 = {"is_visible": True, "attributes": "", "display_value": "c1_a"} exp_l1_c1 = {"is_visible": True, "attributes": "", "display_value": "c1_b"} ctx = mi_styler._translate(True, sparse_columns) assert exp_cols[0].items() <= ctx["head"][0][2].items() assert exp_cols[1].items() <= ctx["head"][0][3].items() assert exp_l1_c0.items() <= ctx["head"][1][2].items() assert exp_l1_c1.items() <= ctx["head"][1][3].items() @pytest.mark.parametrize( "sparse_index, exp_rows", [ ( True, [ {"is_visible": True, "attributes": 'rowspan="2"', "value": "i0"}, {"is_visible": False, "attributes": "", "value": "i0"}, ], ), ( False, [ {"is_visible": True, "attributes": "", "value": "i0"}, {"is_visible": True, "attributes": "", "value": "i0"}, ], ), ], ) def test_mi_styler_sparsify_index(mi_styler, sparse_index, exp_rows): exp_l1_r0 = {"is_visible": True, "attributes": "", "display_value": "i1_a"} exp_l1_r1 = {"is_visible": True, "attributes": "", "display_value": "i1_b"} ctx = mi_styler._translate(sparse_index, True) assert exp_rows[0].items() <= ctx["body"][0][0].items() assert exp_rows[1].items() <= ctx["body"][1][0].items() assert exp_l1_r0.items() <= ctx["body"][0][1].items() assert exp_l1_r1.items() <= ctx["body"][1][1].items() def test_mi_styler_sparsify_options(mi_styler): with option_context("styler.sparse.index", False): html1 = mi_styler.to_html() with option_context("styler.sparse.index", True): html2 = mi_styler.to_html() assert html1 != html2 with option_context("styler.sparse.columns", False): html1 = mi_styler.to_html() with option_context("styler.sparse.columns", True): html2 = mi_styler.to_html() assert html1 != html2 @pytest.mark.parametrize( "rn, cn, max_els, max_rows, max_cols, exp_rn, exp_cn", [ (100, 100, 100, None, None, 12, 6), # reduce to (12, 6) < 100 elements (1000, 3, 750, None, None, 250, 3), # dynamically reduce rows to 250, keep cols (4, 1000, 500, None, None, 4, 125), # dynamically reduce cols to 125, keep rows (1000, 3, 750, 10, None, 10, 3), # overwrite above dynamics with max_row (4, 1000, 500, None, 5, 4, 5), # overwrite above dynamics with max_col (100, 100, 700, 50, 50, 25, 25), # rows cols below given maxes so < 700 elmts ], ) def test_trimming_maximum(rn, cn, max_els, max_rows, max_cols, exp_rn, exp_cn): rn, cn = _get_trimming_maximums( rn, cn, max_els, max_rows, max_cols, scaling_factor=0.5 ) assert (rn, cn) == (exp_rn, exp_cn) @pytest.mark.parametrize( "option, val", [ ("styler.render.max_elements", 6), ("styler.render.max_rows", 3), ], ) def test_render_trimming_rows(option, val): # test auto and specific trimming of rows df = DataFrame(np.arange(120).reshape(60, 2)) with option_context(option, val): ctx = df.style._translate(True, True) assert len(ctx["head"][0]) == 3 # index + 2 data cols assert len(ctx["body"]) == 4 # 3 data rows + trimming row assert len(ctx["body"][0]) == 3 # index + 2 data cols @pytest.mark.parametrize( "option, val", [ ("styler.render.max_elements", 6), ("styler.render.max_columns", 2), ], ) def test_render_trimming_cols(option, val): # test auto and specific trimming of cols df = DataFrame(np.arange(30).reshape(3, 10)) with option_context(option, val): ctx = df.style._translate(True, True) assert len(ctx["head"][0]) == 4 # index + 2 data cols + trimming col assert len(ctx["body"]) == 3 # 3 data rows assert len(ctx["body"][0]) == 4 # index + 2 data cols + trimming col def test_render_trimming_mi(): midx = MultiIndex.from_product([[1, 2], [1, 2, 3]]) df = DataFrame(np.arange(36).reshape(6, 6), columns=midx, index=midx) with option_context("styler.render.max_elements", 4): ctx = df.style._translate(True, True) assert len(ctx["body"][0]) == 5 # 2 indexes + 2 data cols + trimming row assert {"attributes": 'rowspan="2"'}.items() <= ctx["body"][0][0].items() assert {"class": "data row0 col_trim"}.items() <= ctx["body"][0][4].items() assert {"class": "data row_trim col_trim"}.items() <= ctx["body"][2][4].items() assert len(ctx["body"]) == 3 # 2 data rows + trimming row def test_render_empty_mi(): # GH 43305 df = DataFrame(index=MultiIndex.from_product([["A"], [0, 1]], names=[None, "one"])) expected = dedent( """\ > <thead> <tr> <th class="index_name level0" >&nbsp;</th> <th class="index_name level1" >one</th> </tr> </thead> """ ) assert expected in df.style.to_html() @pytest.mark.parametrize("comprehensive", [True, False]) @pytest.mark.parametrize("render", [True, False]) @pytest.mark.parametrize("deepcopy", [True, False]) def test_copy(comprehensive, render, deepcopy, mi_styler, mi_styler_comp): styler = mi_styler_comp if comprehensive else mi_styler styler.uuid_len = 5 s2 = copy.deepcopy(styler) if deepcopy else copy.copy(styler) # make copy and check assert s2 is not styler if render: styler.to_html() excl = [ "na_rep", # deprecated "precision", # deprecated "cellstyle_map", # render time vars.. "cellstyle_map_columns", "cellstyle_map_index", "template_latex", # render templates are class level "template_html", "template_html_style", "template_html_table", ] if not deepcopy: # check memory locations are equal for all included attributes for attr in [a for a in styler.__dict__ if (not callable(a) and a not in excl)]: assert id(getattr(s2, attr)) == id(getattr(styler, attr)) else: # check memory locations are different for nested or mutable vars shallow = [ "data", "columns", "index", "uuid_len", "uuid", "caption", "cell_ids", "hide_index_", "hide_columns_", "hide_index_names", "hide_column_names", "table_attributes", ] for attr in shallow: assert id(getattr(s2, attr)) == id(getattr(styler, attr)) for attr in [ a for a in styler.__dict__ if (not callable(a) and a not in excl and a not in shallow) ]: if getattr(s2, attr) is None: assert id(getattr(s2, attr)) == id(getattr(styler, attr)) else: assert id(getattr(s2, attr)) != id(getattr(styler, attr)) def test_clear(mi_styler_comp): # NOTE: if this test fails for new features then 'mi_styler_comp' should be updated # to ensure proper testing of the 'copy', 'clear', 'export' methods with new feature # GH 40675 styler = mi_styler_comp styler._compute() # execute applied methods clean_copy = Styler(styler.data, uuid=styler.uuid) excl = [ "data", "index", "columns", "uuid", "uuid_len", # uuid is set to be the same on styler and clean_copy "cell_ids", "cellstyle_map", # execution time only "cellstyle_map_columns", # execution time only "cellstyle_map_index", # execution time only "precision", # deprecated "na_rep", # deprecated "template_latex", # render templates are class level "template_html", "template_html_style", "template_html_table", ] # tests vars are not same vals on obj and clean copy before clear (except for excl) for attr in [a for a in styler.__dict__ if not (callable(a) or a in excl)]: res = getattr(styler, attr) == getattr(clean_copy, attr) if hasattr(res, "__iter__") and len(res) > 0: assert not all(res) # some element in iterable differs elif hasattr(res, "__iter__") and len(res) == 0: pass # empty array else: assert not res # explicit var differs # test vars have same vales on obj and clean copy after clearing styler.clear() for attr in [a for a in styler.__dict__ if not (callable(a))]: res = getattr(styler, attr) == getattr(clean_copy, attr) assert all(res) if hasattr(res, "__iter__") else res def test_export(mi_styler_comp, mi_styler): exp_attrs = [ "_todo", "hide_index_", "hide_index_names", "hide_columns_", "hide_column_names", "table_attributes", "table_styles", "css", ] for attr in exp_attrs: check = getattr(mi_styler, attr) == getattr(mi_styler_comp, attr) assert not ( all(check) if (hasattr(check, "__iter__") and len(check) > 0) else check ) export = mi_styler_comp.export() used = mi_styler.use(export) for attr in exp_attrs: check = getattr(used, attr) == getattr(mi_styler_comp, attr) assert all(check) if (hasattr(check, "__iter__") and len(check) > 0) else check used.to_html() def test_hide_raises(mi_styler): msg = "`subset` and `level` cannot be passed simultaneously" with pytest.raises(ValueError, match=msg): mi_styler.hide(axis="index", subset="something", level="something else") msg = "`level` must be of type `int`, `str` or list of such" with pytest.raises(ValueError, match=msg): mi_styler.hide(axis="index", level={"bad": 1, "type": 2}) @pytest.mark.parametrize("level", [1, "one", [1], ["one"]]) def test_hide_index_level(mi_styler, level): mi_styler.index.names, mi_styler.columns.names = ["zero", "one"], ["zero", "one"] ctx = mi_styler.hide(axis="index", level=level)._translate(False, True) assert len(ctx["head"][0]) == 3 assert len(ctx["head"][1]) == 3 assert len(ctx["head"][2]) == 4 assert ctx["head"][2][0]["is_visible"] assert not ctx["head"][2][1]["is_visible"] assert ctx["body"][0][0]["is_visible"] assert not ctx["body"][0][1]["is_visible"] assert ctx["body"][1][0]["is_visible"] assert not ctx["body"][1][1]["is_visible"] @pytest.mark.parametrize("level", [1, "one", [1], ["one"]]) @pytest.mark.parametrize("names", [True, False]) def test_hide_columns_level(mi_styler, level, names): mi_styler.columns.names = ["zero", "one"] if names: mi_styler.index.names = ["zero", "one"] ctx = mi_styler.hide(axis="columns", level=level)._translate(True, False) assert len(ctx["head"]) == (2 if names else 1) @pytest.mark.parametrize("method", ["applymap", "apply"]) @pytest.mark.parametrize("axis", ["index", "columns"]) def test_apply_map_header(method, axis): # GH 41893 df = DataFrame({"A": [0, 0], "B": [1, 1]}, index=["C", "D"]) func = { "apply": lambda s: ["attr: val" if ("A" in v or "C" in v) else "" for v in s], "applymap": lambda v: "attr: val" if ("A" in v or "C" in v) else "", } # test execution added to todo result = getattr(df.style, f"{method}_index")(func[method], axis=axis) assert len(result._todo) == 1 assert len(getattr(result, f"ctx_{axis}")) == 0 # test ctx object on compute result._compute() expected = { (0, 0): [("attr", "val")], } assert getattr(result, f"ctx_{axis}") == expected @pytest.mark.parametrize("method", ["apply", "applymap"]) @pytest.mark.parametrize("axis", ["index", "columns"]) def test_apply_map_header_mi(mi_styler, method, axis): # GH 41893 func = { "apply": lambda s: ["attr: val;" if "b" in v else "" for v in s], "applymap": lambda v: "attr: val" if "b" in v else "", } result = getattr(mi_styler, f"{method}_index")(func[method], axis=axis)._compute() expected = {(1, 1): [("attr", "val")]} assert getattr(result, f"ctx_{axis}") == expected def test_apply_map_header_raises(mi_styler): # GH 41893 with pytest.raises(ValueError, match="No axis named bad for object type DataFrame"): mi_styler.applymap_index(lambda v: "attr: val;", axis="bad")._compute() class TestStyler: def setup_method(self): np.random.seed(24) self.s = DataFrame({"A": np.random.permutation(range(6))}) self.df = DataFrame({"A": [0, 1], "B": np.random.randn(2)}) self.f = lambda x: x self.g = lambda x: x def h(x, foo="bar"): return Series(f"color: {foo}", index=x.index, name=x.name) self.h = h self.styler = Styler(self.df) self.attrs = DataFrame({"A": ["color: red", "color: blue"]}) self.dataframes = [ self.df, DataFrame({"f": [1.0, 2.0], "o": ["a", "b"], "c": Categorical(["a", "b"])}), ] self.blank_value = "&nbsp;" def test_init_non_pandas(self): msg = "``data`` must be a Series or DataFrame" with pytest.raises(TypeError, match=msg): Styler([1, 2, 3]) def test_init_series(self): result = Styler(Series([1, 2])) assert result.data.ndim == 2 def test_repr_html_ok(self): self.styler._repr_html_() def test_repr_html_mathjax(self): # gh-19824 / 41395 assert "tex2jax_ignore" not in self.styler._repr_html_() with option_context("styler.html.mathjax", False): assert "tex2jax_ignore" in self.styler._repr_html_() def test_update_ctx(self): self.styler._update_ctx(self.attrs) expected = {(0, 0): [("color", "red")], (1, 0): [("color", "blue")]} assert self.styler.ctx == expected def test_update_ctx_flatten_multi_and_trailing_semi(self): attrs = DataFrame({"A": ["color: red; foo: bar", "color:blue ; foo: baz;"]}) self.styler._update_ctx(attrs) expected = { (0, 0): [("color", "red"), ("foo", "bar")], (1, 0): [("color", "blue"), ("foo", "baz")], } assert self.styler.ctx == expected def test_render(self): df = DataFrame({"A": [0, 1]}) style = lambda x: Series(["color: red", "color: blue"], name=x.name) s = Styler(df, uuid="AB").apply(style) s.to_html() # it worked? def test_multiple_render(self): # GH 39396 s = Styler(self.df, uuid_len=0).applymap(lambda x: "color: red;", subset=["A"]) s.to_html() # do 2 renders to ensure css styles not duplicated assert ( '<style type="text/css">\n#T__row0_col0, #T__row1_col0 {\n' " color: red;\n}\n</style>" in s.to_html() ) def test_render_empty_dfs(self): empty_df = DataFrame() es = Styler(empty_df) es.to_html() # An index but no columns DataFrame(columns=["a"]).style.to_html() # A column but no index DataFrame(index=["a"]).style.to_html() # No IndexError raised? def test_render_double(self): df = DataFrame({"A": [0, 1]}) style = lambda x: Series( ["color: red; border: 1px", "color: blue; border: 2px"], name=x.name ) s = Styler(df, uuid="AB").apply(style) s.to_html() # it worked? def test_set_properties(self): df = DataFrame({"A": [0, 1]}) result = df.style.set_properties(color="white", size="10px")._compute().ctx # order is deterministic v = [("color", "white"), ("size", "10px")] expected = {(0, 0): v, (1, 0): v} assert result.keys() == expected.keys() for v1, v2 in zip(result.values(), expected.values()): assert sorted(v1) == sorted(v2) def test_set_properties_subset(self): df = DataFrame({"A": [0, 1]}) result = ( df.style.set_properties(subset=IndexSlice[0, "A"], color="white") ._compute() .ctx ) expected = {(0, 0): [("color", "white")]} assert result == expected def test_empty_index_name_doesnt_display(self): # https://github.com/pandas-dev/pandas/pull/12090#issuecomment-180695902 df = DataFrame({"A": [1, 2], "B": [3, 4], "C": [5, 6]}) result = df.style._translate(True, True) assert len(result["head"]) == 1 expected = { "class": "blank level0", "type": "th", "value": self.blank_value, "is_visible": True, "display_value": self.blank_value, } assert expected.items() <= result["head"][0][0].items() def test_index_name(self): # https://github.com/pandas-dev/pandas/issues/11655 df = DataFrame({"A": [1, 2], "B": [3, 4], "C": [5, 6]}) result = df.set_index("A").style._translate(True, True) expected = { "class": "index_name level0", "type": "th", "value": "A", "is_visible": True, "display_value": "A", } assert expected.items() <= result["head"][1][0].items() def test_numeric_columns(self): # https://github.com/pandas-dev/pandas/issues/12125 # smoke test for _translate df = DataFrame({0: [1, 2, 3]}) df.style._translate(True, True) def test_apply_axis(self): df = DataFrame({"A": [0, 0], "B": [1, 1]}) f = lambda x: [f"val: {x.max()}" for v in x] result = df.style.apply(f, axis=1) assert len(result._todo) == 1 assert len(result.ctx) == 0 result._compute() expected = { (0, 0): [("val", "1")], (0, 1): [("val", "1")], (1, 0): [("val", "1")], (1, 1): [("val", "1")], } assert result.ctx == expected result = df.style.apply(f, axis=0) expected = { (0, 0): [("val", "0")], (0, 1): [("val", "1")], (1, 0): [("val", "0")], (1, 1): [("val", "1")], } result._compute() assert result.ctx == expected result = df.style.apply(f) # default result._compute() assert result.ctx == expected @pytest.mark.parametrize("axis", [0, 1]) def test_apply_series_return(self, axis): # GH 42014 df = DataFrame([[1, 2], [3, 4]], index=["X", "Y"], columns=["X", "Y"]) # test Series return where len(Series) < df.index or df.columns but labels OK func = lambda s: Series(["color: red;"], index=["Y"]) result = df.style.apply(func, axis=axis)._compute().ctx assert result[(1, 1)] == [("color", "red")] assert result[(1 - axis, axis)] == [("color", "red")] # test Series return where labels align but different order func = lambda s: Series(["color: red;", "color: blue;"], index=["Y", "X"]) result = df.style.apply(func, axis=axis)._compute().ctx assert result[(0, 0)] == [("color", "blue")] assert result[(1, 1)] == [("color", "red")] assert result[(1 - axis, axis)] == [("color", "red")] assert result[(axis, 1 - axis)] == [("color", "blue")] @pytest.mark.parametrize("index", [False, True]) @pytest.mark.parametrize("columns", [False, True]) def test_apply_dataframe_return(self, index, columns): # GH 42014 df = DataFrame([[1, 2], [3, 4]], index=["X", "Y"], columns=["X", "Y"]) idxs = ["X", "Y"] if index else ["Y"] cols = ["X", "Y"] if columns else ["Y"] df_styles = DataFrame("color: red;", index=idxs, columns=cols) result = df.style.apply(lambda x: df_styles, axis=None)._compute().ctx assert result[(1, 1)] == [("color", "red")] # (Y,Y) styles always present assert (result[(0, 1)] == [("color", "red")]) is index # (X,Y) only if index assert (result[(1, 0)] == [("color", "red")]) is columns # (Y,X) only if cols assert (result[(0, 0)] == [("color", "red")]) is (index and columns) # (X,X) @pytest.mark.parametrize( "slice_", [ IndexSlice[:], IndexSlice[:, ["A"]], IndexSlice[[1], :], IndexSlice[[1], ["A"]], IndexSlice[:2, ["A", "B"]], ], ) @pytest.mark.parametrize("axis", [0, 1]) def test_apply_subset(self, slice_, axis): result = ( self.df.style.apply(self.h, axis=axis, subset=slice_, foo="baz") ._compute() .ctx ) expected = { (r, c): [("color", "baz")] for r, row in enumerate(self.df.index) for c, col in enumerate(self.df.columns) if row in self.df.loc[slice_].index and col in self.df.loc[slice_].columns } assert result == expected @pytest.mark.parametrize( "slice_", [ IndexSlice[:], IndexSlice[:, ["A"]], IndexSlice[[1], :], IndexSlice[[1], ["A"]], IndexSlice[:2, ["A", "B"]], ], ) def test_applymap_subset(self, slice_): result = ( self.df.style.applymap(lambda x: "color:baz;", subset=slice_)._compute().ctx ) expected = { (r, c): [("color", "baz")] for r, row in enumerate(self.df.index) for c, col in enumerate(self.df.columns) if row in self.df.loc[slice_].index and col in self.df.loc[slice_].columns } assert result == expected @pytest.mark.parametrize( "slice_", [ IndexSlice[:, IndexSlice["x", "A"]], IndexSlice[:, IndexSlice[:, "A"]], IndexSlice[:, IndexSlice[:, ["A", "C"]]], # missing col element IndexSlice[IndexSlice["a", 1], :], IndexSlice[IndexSlice[:, 1], :], IndexSlice[IndexSlice[:, [1, 3]], :], # missing row element IndexSlice[:, ("x", "A")], IndexSlice[("a", 1), :], ], ) def test_applymap_subset_multiindex(self, slice_): # GH 19861 # edited for GH 33562 warn = None msg = "indexing on a MultiIndex with a nested sequence of labels" if ( isinstance(slice_[-1], tuple) and isinstance(slice_[-1][-1], list) and "C" in slice_[-1][-1] ): warn = FutureWarning elif ( isinstance(slice_[0], tuple) and isinstance(slice_[0][1], list) and 3 in slice_[0][1] ): warn = FutureWarning idx = MultiIndex.from_product([["a", "b"], [1, 2]]) col = MultiIndex.from_product([["x", "y"], ["A", "B"]]) df = DataFrame(np.random.rand(4, 4), columns=col, index=idx) with tm.assert_produces_warning(warn, match=msg): df.style.applymap(lambda x: "color: red;", subset=slice_).to_html() def test_applymap_subset_multiindex_code(self): # https://github.com/pandas-dev/pandas/issues/25858 # Checks styler.applymap works with multindex when codes are provided codes = np.array([[0, 0, 1, 1], [0, 1, 0, 1]]) columns = MultiIndex( levels=[["a", "b"], ["%", "#"]], codes=codes, names=["", ""] ) df = DataFrame( [[1, -1, 1, 1], [-1, 1, 1, 1]], index=["hello", "world"], columns=columns ) pct_subset = IndexSlice[:, IndexSlice[:, "%":"%"]] def color_negative_red(val): color = "red" if val < 0 else "black" return f"color: {color}" df.loc[pct_subset] df.style.applymap(color_negative_red, subset=pct_subset) def test_empty(self): df = DataFrame({"A": [1, 0]}) s = df.style s.ctx = {(0, 0): [("color", "red")], (1, 0): [("", "")]} result = s._translate(True, True)["cellstyle"] expected = [ {"props": [("color", "red")], "selectors": ["row0_col0"]}, {"props": [("", "")], "selectors": ["row1_col0"]}, ] assert result == expected def test_duplicate(self): df = DataFrame({"A": [1, 0]}) s = df.style s.ctx = {(0, 0): [("color", "red")], (1, 0): [("color", "red")]} result = s._translate(True, True)["cellstyle"] expected = [ {"props": [("color", "red")], "selectors": ["row0_col0", "row1_col0"]} ] assert result == expected def test_init_with_na_rep(self): # GH 21527 28358 df = DataFrame([[None, None], [1.1, 1.2]], columns=["A", "B"]) ctx = Styler(df, na_rep="NA")._translate(True, True) assert ctx["body"][0][1]["display_value"] == "NA" assert ctx["body"][0][2]["display_value"] == "NA" def test_caption(self): styler = Styler(self.df, caption="foo") result = styler.to_html() assert all(["caption" in result, "foo" in result]) styler = self.df.style result = styler.set_caption("baz") assert styler is result assert styler.caption == "baz" def test_uuid(self): styler = Styler(self.df, uuid="abc123") result = styler.to_html() assert "abc123" in result styler = self.df.style result = styler.set_uuid("aaa") assert result is styler assert result.uuid == "aaa" def test_unique_id(self): # See https://github.com/pandas-dev/pandas/issues/16780 df = DataFrame({"a": [1, 3, 5, 6], "b": [2, 4, 12, 21]}) result = df.style.to_html(uuid="test") assert "test" in result ids = re.findall('id="(.*?)"', result) assert np.unique(ids).size == len(ids) def test_table_styles(self): style = [{"selector": "th", "props": [("foo", "bar")]}] # default format styler = Styler(self.df, table_styles=style) result = " ".join(styler.to_html().split()) assert "th { foo: bar; }" in result styler = self.df.style result = styler.set_table_styles(style) assert styler is result assert styler.table_styles == style # GH 39563 style = [{"selector": "th", "props": "foo:bar;"}] # css string format styler = self.df.style.set_table_styles(style) result = " ".join(styler.to_html().split()) assert "th { foo: bar; }" in result def test_table_styles_multiple(self): ctx = self.df.style.set_table_styles( [ {"selector": "th,td", "props": "color:red;"}, {"selector": "tr", "props": "color:green;"}, ] )._translate(True, True)["table_styles"] assert ctx == [ {"selector": "th", "props": [("color", "red")]}, {"selector": "td", "props": [("color", "red")]}, {"selector": "tr", "props": [("color", "green")]}, ] def test_table_styles_dict_multiple_selectors(self): # GH 44011 result = self.df.style.set_table_styles( { "B": [ {"selector": "th,td", "props": [("border-left", "2px solid black")]} ] } )._translate(True, True)["table_styles"] expected = [ {"selector": "th.col1", "props": [("border-left", "2px solid black")]}, {"selector": "td.col1", "props": [("border-left", "2px solid black")]}, ] assert result == expected def test_maybe_convert_css_to_tuples(self): expected = [("a", "b"), ("c", "d e")] assert maybe_convert_css_to_tuples("a:b;c:d e;") == expected assert maybe_convert_css_to_tuples("a: b ;c: d e ") == expected expected = [] assert maybe_convert_css_to_tuples("") == expected def test_maybe_convert_css_to_tuples_err(self): msg = "Styles supplied as string must follow CSS rule formats" with pytest.raises(ValueError, match=msg): maybe_convert_css_to_tuples("err") def test_table_attributes(self): attributes = 'class="foo" data-bar' styler = Styler(self.df, table_attributes=attributes) result = styler.to_html() assert 'class="foo" data-bar' in result result = self.df.style.set_table_attributes(attributes).to_html() assert 'class="foo" data-bar' in result def test_apply_none(self): def f(x): return DataFrame( np.where(x == x.max(), "color: red", ""), index=x.index, columns=x.columns, ) result = DataFrame([[1, 2], [3, 4]]).style.apply(f, axis=None)._compute().ctx assert result[(1, 1)] == [("color", "red")] def test_trim(self): result = self.df.style.to_html() # trim=True assert result.count("#") == 0 result = self.df.style.highlight_max().to_html() assert result.count("#") == len(self.df.columns) def test_export(self): f = lambda x: "color: red" if x > 0 else "color: blue" g = lambda x, z: f"color: {z}" if x > 0 else f"color: {z}" style1 = self.styler style1.applymap(f).applymap(g, z="b").highlight_max()._compute() # = render result = style1.export() style2 = self.df.style style2.use(result) assert style1._todo == style2._todo style2.to_html() def test_bad_apply_shape(self): df = DataFrame([[1, 2], [3, 4]], index=["A", "B"], columns=["X", "Y"]) msg = "resulted in the apply method collapsing to a Series." with pytest.raises(ValueError, match=msg): df.style._apply(lambda x: "x") msg = "created invalid {} labels" with pytest.raises(ValueError, match=msg.format("index")): df.style._apply(lambda x: [""]) with pytest.raises(ValueError, match=msg.format("index")): df.style._apply(lambda x: ["", "", "", ""]) with pytest.raises(ValueError, match=msg.format("index")): df.style._apply(lambda x: Series(["a:v;", ""], index=["A", "C"]), axis=0) with pytest.raises(ValueError, match=msg.format("columns")): df.style._apply(lambda x: ["", "", ""], axis=1) with pytest.raises(ValueError, match=msg.format("columns")): df.style._apply(lambda x: Series(["a:v;", ""], index=["X", "Z"]), axis=1) msg = "returned ndarray with wrong shape" with pytest.raises(ValueError, match=msg): df.style._apply(lambda x: np.array([[""], [""]]), axis=None) def test_apply_bad_return(self): def f(x): return "" df = DataFrame([[1, 2], [3, 4]]) msg = ( "must return a DataFrame or ndarray when passed to `Styler.apply` " "with axis=None" ) with pytest.raises(TypeError, match=msg): df.style._apply(f, axis=None) @pytest.mark.parametrize("axis", ["index", "columns"]) def test_apply_bad_labels(self, axis): def f(x): return DataFrame(**{axis: ["bad", "labels"]}) df = DataFrame([[1, 2], [3, 4]]) msg = f"created invalid {axis} labels." with pytest.raises(ValueError, match=msg): df.style._apply(f, axis=None) def test_get_level_lengths(self): index = MultiIndex.from_product([["a", "b"], [0, 1, 2]]) expected = { (0, 0): 3, (0, 3): 3, (1, 0): 1, (1, 1): 1, (1, 2): 1, (1, 3): 1, (1, 4): 1, (1, 5): 1, } result = _get_level_lengths(index, sparsify=True, max_index=100) tm.assert_dict_equal(result, expected) expected = { (0, 0): 1, (0, 1): 1, (0, 2): 1, (0, 3): 1, (0, 4): 1, (0, 5): 1, (1, 0): 1, (1, 1): 1, (1, 2): 1, (1, 3): 1, (1, 4): 1, (1, 5): 1, } result = _get_level_lengths(index, sparsify=False, max_index=100) tm.assert_dict_equal(result, expected) def test_get_level_lengths_un_sorted(self): index = MultiIndex.from_arrays([[1, 1, 2, 1], ["a", "b", "b", "d"]]) expected = { (0, 0): 2, (0, 2): 1, (0, 3): 1, (1, 0): 1, (1, 1): 1, (1, 2): 1, (1, 3): 1, } result = _get_level_lengths(index, sparsify=True, max_index=100) tm.assert_dict_equal(result, expected) expected = { (0, 0): 1, (0, 1): 1, (0, 2): 1, (0, 3): 1, (1, 0): 1, (1, 1): 1, (1, 2): 1, (1, 3): 1, } result = _get_level_lengths(index, sparsify=False, max_index=100) tm.assert_dict_equal(result, expected) def test_mi_sparse_index_names(self): # Test the class names and displayed value are correct on rendering MI names df = DataFrame( {"A": [1, 2]}, index=MultiIndex.from_arrays( [["a", "a"], [0, 1]], names=["idx_level_0", "idx_level_1"] ), ) result = df.style._translate(True, True) head = result["head"][1] expected = [ { "class": "index_name level0", "display_value": "idx_level_0", "is_visible": True, }, { "class": "index_name level1", "display_value": "idx_level_1", "is_visible": True, }, { "class": "blank col0", "display_value": self.blank_value, "is_visible": True, }, ] for i, expected_dict in enumerate(expected): assert expected_dict.items() <= head[i].items() def test_mi_sparse_column_names(self): df = DataFrame( np.arange(16).reshape(4, 4), index=MultiIndex.from_arrays( [["a", "a", "b", "a"], [0, 1, 1, 2]], names=["idx_level_0", "idx_level_1"], ), columns=MultiIndex.from_arrays( [["C1", "C1", "C2", "C2"], [1, 0, 1, 0]], names=["colnam_0", "colnam_1"] ), ) result = Styler(df, cell_ids=False)._translate(True, True) for level in [0, 1]: head = result["head"][level] expected = [ { "class": "blank", "display_value": self.blank_value, "is_visible": True, }, { "class": f"index_name level{level}", "display_value": f"colnam_{level}", "is_visible": True, }, ] for i, expected_dict in enumerate(expected): assert expected_dict.items() <= head[i].items() def test_hide_column_headers(self): ctx = self.styler.hide(axis="columns")._translate(True, True) assert len(ctx["head"]) == 0 # no header entries with an unnamed index self.df.index.name = "some_name" ctx = self.df.style.hide(axis="columns")._translate(True, True) assert len(ctx["head"]) == 1 # index names still visible, changed in #42101, reverted in 43404 def test_hide_single_index(self): # GH 14194 # single unnamed index ctx = self.df.style._translate(True, True) assert ctx["body"][0][0]["is_visible"] assert ctx["head"][0][0]["is_visible"] ctx2 = self.df.style.hide(axis="index")._translate(True, True) assert not ctx2["body"][0][0]["is_visible"] assert not ctx2["head"][0][0]["is_visible"] # single named index ctx3 = self.df.set_index("A").style._translate(True, True) assert ctx3["body"][0][0]["is_visible"] assert len(ctx3["head"]) == 2 # 2 header levels assert ctx3["head"][0][0]["is_visible"] ctx4 = self.df.set_index("A").style.hide(axis="index")._translate(True, True) assert not ctx4["body"][0][0]["is_visible"] assert len(ctx4["head"]) == 1 # only 1 header levels assert not ctx4["head"][0][0]["is_visible"] def test_hide_multiindex(self): # GH 14194 df = DataFrame( {"A": [1, 2], "B": [1, 2]}, index=MultiIndex.from_arrays( [["a", "a"], [0, 1]], names=["idx_level_0", "idx_level_1"] ), ) ctx1 = df.style._translate(True, True) # tests for 'a' and '0' assert ctx1["body"][0][0]["is_visible"] assert ctx1["body"][0][1]["is_visible"] # check for blank header rows assert len(ctx1["head"][0]) == 4 # two visible indexes and two data columns ctx2 = df.style.hide(axis="index")._translate(True, True) # tests for 'a' and '0' assert not ctx2["body"][0][0]["is_visible"] assert not ctx2["body"][0][1]["is_visible"] # check for blank header rows assert len(ctx2["head"][0]) == 3 # one hidden (col name) and two data columns assert not ctx2["head"][0][0]["is_visible"] def test_hide_columns_single_level(self): # GH 14194 # test hiding single column ctx = self.df.style._translate(True, True) assert ctx["head"][0][1]["is_visible"] assert ctx["head"][0][1]["display_value"] == "A" assert ctx["head"][0][2]["is_visible"] assert ctx["head"][0][2]["display_value"] == "B" assert ctx["body"][0][1]["is_visible"] # col A, row 1 assert ctx["body"][1][2]["is_visible"] # col B, row 1 ctx = self.df.style.hide("A", axis="columns")._translate(True, True) assert not ctx["head"][0][1]["is_visible"] assert not ctx["body"][0][1]["is_visible"] # col A, row 1 assert ctx["body"][1][2]["is_visible"] # col B, row 1 # test hiding mulitiple columns ctx = self.df.style.hide(["A", "B"], axis="columns")._translate(True, True) assert not ctx["head"][0][1]["is_visible"] assert not ctx["head"][0][2]["is_visible"] assert not ctx["body"][0][1]["is_visible"] # col A, row 1 assert not ctx["body"][1][2]["is_visible"] # col B, row 1 def test_hide_columns_index_mult_levels(self): # GH 14194 # setup dataframe with multiple column levels and indices i1 = MultiIndex.from_arrays( [["a", "a"], [0, 1]], names=["idx_level_0", "idx_level_1"] ) i2 = MultiIndex.from_arrays( [["b", "b"], [0, 1]], names=["col_level_0", "col_level_1"] ) df = DataFrame([[1, 2], [3, 4]], index=i1, columns=i2) ctx = df.style._translate(True, True) # column headers assert ctx["head"][0][2]["is_visible"] assert ctx["head"][1][2]["is_visible"] assert ctx["head"][1][3]["display_value"] == "1" # indices assert ctx["body"][0][0]["is_visible"] # data assert ctx["body"][1][2]["is_visible"] assert ctx["body"][1][2]["display_value"] == "3" assert ctx["body"][1][3]["is_visible"] assert ctx["body"][1][3]["display_value"] == "4" # hide top column level, which hides both columns ctx = df.style.hide("b", axis="columns")._translate(True, True) assert not ctx["head"][0][2]["is_visible"] # b assert not ctx["head"][1][2]["is_visible"] # 0 assert not ctx["body"][1][2]["is_visible"] # 3 assert ctx["body"][0][0]["is_visible"] # index # hide first column only ctx = df.style.hide([("b", 0)], axis="columns")._translate(True, True) assert not ctx["head"][0][2]["is_visible"] # b assert ctx["head"][0][3]["is_visible"] # b assert not ctx["head"][1][2]["is_visible"] # 0 assert not ctx["body"][1][2]["is_visible"] # 3 assert ctx["body"][1][3]["is_visible"] assert ctx["body"][1][3]["display_value"] == "4" # hide second column and index ctx = df.style.hide([("b", 1)], axis=1).hide(axis=0)._translate(True, True) assert not ctx["body"][0][0]["is_visible"] # index assert len(ctx["head"][0]) == 3 assert ctx["head"][0][1]["is_visible"] # b assert ctx["head"][1][1]["is_visible"] # 0 assert not ctx["head"][1][2]["is_visible"] # 1 assert not ctx["body"][1][3]["is_visible"] # 4 assert ctx["body"][1][2]["is_visible"] assert ctx["body"][1][2]["display_value"] == "3" # hide top row level, which hides both rows so body empty ctx = df.style.hide("a", axis="index")._translate(True, True) assert ctx["body"] == [] # hide first row only ctx = df.style.hide(("a", 0), axis="index")._translate(True, True) for i in [0, 1, 2, 3]: assert "row1" in ctx["body"][0][i]["class"] # row0 not included in body assert ctx["body"][0][i]["is_visible"] def test_pipe(self): def set_caption_from_template(styler, a, b): return styler.set_caption(f"Dataframe with a = {a} and b = {b}") styler = self.df.style.pipe(set_caption_from_template, "A", b="B") assert "Dataframe with a = A and b = B" in styler.to_html() # Test with an argument that is a (callable, keyword_name) pair. def f(a, b, styler): return (a, b, styler) styler = self.df.style result = styler.pipe((f, "styler"), a=1, b=2) assert result == (1, 2, styler) def test_no_cell_ids(self): # GH 35588 # GH 35663 df = DataFrame(data=[[0]]) styler = Styler(df, uuid="_", cell_ids=False) styler.to_html() s = styler.to_html() # render twice to ensure ctx is not updated assert s.find('<td class="data row0 col0" >') != -1 @pytest.mark.parametrize( "classes", [ DataFrame( data=[["", "test-class"], [np.nan, None]], columns=["A", "B"], index=["a", "b"], ), DataFrame(data=[["test-class"]], columns=["B"], index=["a"]), DataFrame(data=[["test-class", "unused"]], columns=["B", "C"], index=["a"]), ], ) def test_set_data_classes(self, classes): # GH 36159 df = DataFrame(data=[[0, 1], [2, 3]], columns=["A", "B"], index=["a", "b"]) s = Styler(df, uuid_len=0, cell_ids=False).set_td_classes(classes).to_html() assert '<td class="data row0 col0" >0</td>' in s assert '<td class="data row0 col1 test-class" >1</td>' in s assert '<td class="data row1 col0" >2</td>' in s assert '<td class="data row1 col1" >3</td>' in s # GH 39317 s = Styler(df, uuid_len=0, cell_ids=True).set_td_classes(classes).to_html() assert '<td id="T__row0_col0" class="data row0 col0" >0</td>' in s assert '<td id="T__row0_col1" class="data row0 col1 test-class" >1</td>' in s assert '<td id="T__row1_col0" class="data row1 col0" >2</td>' in s assert '<td id="T__row1_col1" class="data row1 col1" >3</td>' in s def test_set_data_classes_reindex(self): # GH 39317 df = DataFrame( data=[[0, 1, 2], [3, 4, 5], [6, 7, 8]], columns=[0, 1, 2], index=[0, 1, 2] ) classes = DataFrame( data=[["mi", "ma"], ["mu", "mo"]], columns=[0, 2], index=[0, 2], ) s = Styler(df, uuid_len=0).set_td_classes(classes).to_html() assert '<td id="T__row0_col0" class="data row0 col0 mi" >0</td>' in s assert '<td id="T__row0_col2" class="data row0 col2 ma" >2</td>' in s assert '<td id="T__row1_col1" class="data row1 col1" >4</td>' in s assert '<td id="T__row2_col0" class="data row2 col0 mu" >6</td>' in s assert '<td id="T__row2_col2" class="data row2 col2 mo" >8</td>' in s def test_chaining_table_styles(self): # GH 35607 df = DataFrame(data=[[0, 1], [1, 2]], columns=["A", "B"]) styler = df.style.set_table_styles( [{"selector": "", "props": [("background-color", "yellow")]}] ).set_table_styles( [{"selector": ".col0", "props": [("background-color", "blue")]}], overwrite=False, ) assert len(styler.table_styles) == 2 def test_column_and_row_styling(self): # GH 35607 df = DataFrame(data=[[0, 1], [1, 2]], columns=["A", "B"]) s = Styler(df, uuid_len=0) s = s.set_table_styles({"A": [{"selector": "", "props": [("color", "blue")]}]}) assert "#T_ .col0 {\n color: blue;\n}" in s.to_html() s = s.set_table_styles( {0: [{"selector": "", "props": [("color", "blue")]}]}, axis=1 ) assert "#T_ .row0 {\n color: blue;\n}" in s.to_html() @pytest.mark.parametrize("len_", [1, 5, 32, 33, 100]) def test_uuid_len(self, len_): # GH 36345 df = DataFrame(data=[["A"]]) s = Styler(df, uuid_len=len_, cell_ids=False).to_html() strt = s.find('id="T_') end = s[strt + 6 :].find('"') if len_ > 32: assert end == 32 else: assert end == len_ @pytest.mark.parametrize("len_", [-2, "bad", None]) def test_uuid_len_raises(self, len_): # GH 36345 df = DataFrame(data=[["A"]]) msg = "``uuid_len`` must be an integer in range \\[0, 32\\]." with pytest.raises(TypeError, match=msg): Styler(df, uuid_len=len_, cell_ids=False).to_html() @pytest.mark.parametrize( "slc", [ IndexSlice[:, :], IndexSlice[:, 1], IndexSlice[1, :], IndexSlice[[1], [1]], IndexSlice[1, [1]], IndexSlice[[1], 1], IndexSlice[1], IndexSlice[1, 1], slice(None, None, None), [0, 1], np.array([0, 1]), Series([0, 1]), ], ) def test_non_reducing_slice(self, slc): df = DataFrame([[0, 1], [2, 3]]) tslice_ = non_reducing_slice(slc) assert isinstance(df.loc[tslice_], DataFrame) @pytest.mark.parametrize("box", [list, Series, np.array]) def test_list_slice(self, box): # like dataframe getitem subset = box(["A"]) df = DataFrame({"A": [1, 2], "B": [3, 4]}, index=["A", "B"]) expected = IndexSlice[:, ["A"]] result = non_reducing_slice(subset) tm.assert_frame_equal(df.loc[result], df.loc[expected]) def test_non_reducing_slice_on_multiindex(self): # GH 19861 dic = { ("a", "d"): [1, 4], ("a", "c"): [2, 3], ("b", "c"): [3, 2], ("b", "d"): [4, 1], } df = DataFrame(dic, index=[0, 1]) idx = IndexSlice slice_ = idx[:, idx["b", "d"]] tslice_ = non_reducing_slice(slice_) result = df.loc[tslice_] expected = DataFrame({("b", "d"): [4, 1]}) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "slice_", [ IndexSlice[:, :], # check cols IndexSlice[:, IndexSlice[["a"]]], # inferred deeper need list IndexSlice[:, IndexSlice[["a"], ["c"]]], # inferred deeper need list IndexSlice[:, IndexSlice["a", "c", :]], IndexSlice[:, IndexSlice["a", :, "e"]], IndexSlice[:, IndexSlice[:, "c", "e"]], IndexSlice[:, IndexSlice["a", ["c", "d"], :]], # check list IndexSlice[:, IndexSlice["a", ["c", "d", "-"], :]], # allow missing IndexSlice[:, IndexSlice["a", ["c", "d", "-"], "e"]], # no slice # check rows IndexSlice[IndexSlice[["U"]], :], # inferred deeper need list IndexSlice[IndexSlice[["U"], ["W"]], :], # inferred deeper need list IndexSlice[IndexSlice["U", "W", :], :], IndexSlice[IndexSlice["U", :, "Y"], :], IndexSlice[IndexSlice[:, "W", "Y"], :], IndexSlice[IndexSlice[:, "W", ["Y", "Z"]], :], # check list IndexSlice[IndexSlice[:, "W", ["Y", "Z", "-"]], :], # allow missing IndexSlice[IndexSlice["U", "W", ["Y", "Z", "-"]], :], # no slice # check simultaneous IndexSlice[IndexSlice[:, "W", "Y"], IndexSlice["a", "c", :]], ], ) def test_non_reducing_multi_slice_on_multiindex(self, slice_): # GH 33562 cols = MultiIndex.from_product([["a", "b"], ["c", "d"], ["e", "f"]]) idxs = MultiIndex.from_product([["U", "V"], ["W", "X"], ["Y", "Z"]]) df = DataFrame(np.arange(64).reshape(8, 8), columns=cols, index=idxs) msg = "indexing on a MultiIndex with a nested sequence of labels" warn = None for lvl in [0, 1]: key = slice_[lvl] if isinstance(key, tuple): for subkey in key: if isinstance(subkey, list) and "-" in subkey: # not present in the index level, ignored, will raise in future warn = FutureWarning with tm.assert_produces_warning(warn, match=msg): expected = df.loc[slice_] with tm.assert_produces_warning(warn, match=msg): result = df.loc[non_reducing_slice(slice_)] tm.assert_frame_equal(result, expected) def test_hidden_index_names(mi_df): mi_df.index.names = ["Lev0", "Lev1"] mi_styler = mi_df.style ctx = mi_styler._translate(True, True) assert len(ctx["head"]) == 3 # 2 column index levels + 1 index names row mi_styler.hide(axis="index", names=True) ctx = mi_styler._translate(True, True) assert len(ctx["head"]) == 2 # index names row is unparsed for i in range(4): assert ctx["body"][0][i]["is_visible"] # 2 index levels + 2 data values visible mi_styler.hide(axis="index", level=1) ctx = mi_styler._translate(True, True) assert len(ctx["head"]) == 2 # index names row is still hidden assert ctx["body"][0][0]["is_visible"] is True assert ctx["body"][0][1]["is_visible"] is False def test_hidden_column_names(mi_df): mi_df.columns.names = ["Lev0", "Lev1"] mi_styler = mi_df.style ctx = mi_styler._translate(True, True) assert ctx["head"][0][1]["display_value"] == "Lev0" assert ctx["head"][1][1]["display_value"] == "Lev1" mi_styler.hide(names=True, axis="columns") ctx = mi_styler._translate(True, True) assert ctx["head"][0][1]["display_value"] == "&nbsp;" assert ctx["head"][1][1]["display_value"] == "&nbsp;" mi_styler.hide(level=0, axis="columns") ctx = mi_styler._translate(True, True) assert len(ctx["head"]) == 1 # no index names and only one visible column headers assert ctx["head"][0][1]["display_value"] == "&nbsp;" @pytest.mark.parametrize("caption", [1, ("a", "b", "c"), (1, "s")]) def test_caption_raises(mi_styler, caption): msg = "`caption` must be either a string or 2-tuple of strings." with pytest.raises(ValueError, match=msg): mi_styler.set_caption(caption) def test_hiding_headers_over_index_no_sparsify(): # GH 43464 midx = MultiIndex.from_product([[1, 2], ["a", "a", "b"]]) df = DataFrame(9, index=midx, columns=[0]) ctx = df.style._translate(False, False) assert len(ctx["body"]) == 6 ctx = df.style.hide((1, "a"), axis=0)._translate(False, False) assert len(ctx["body"]) == 4 assert "row2" in ctx["body"][0][0]["class"] def test_hiding_headers_over_columns_no_sparsify(): # GH 43464 midx = MultiIndex.from_product([[1, 2], ["a", "a", "b"]]) df = DataFrame(9, columns=midx, index=[0]) ctx = df.style._translate(False, False) for ix in [(0, 1), (0, 2), (1, 1), (1, 2)]: assert ctx["head"][ix[0]][ix[1]]["is_visible"] is True ctx = df.style.hide((1, "a"), axis="columns")._translate(False, False) for ix in [(0, 1), (0, 2), (1, 1), (1, 2)]: assert ctx["head"][ix[0]][ix[1]]["is_visible"] is False def test_get_level_lengths_mi_hidden(): # GH 43464 index = MultiIndex.from_arrays([[1, 1, 1, 2, 2, 2], ["a", "a", "b", "a", "a", "b"]]) expected = { (0, 2): 1, (0, 3): 1, (0, 4): 1, (0, 5): 1, (1, 2): 1, (1, 3): 1, (1, 4): 1, (1, 5): 1, } result = _get_level_lengths( index, sparsify=False, max_index=100, hidden_elements=[0, 1, 0, 1], # hidden element can repeat if duplicated index ) tm.assert_dict_equal(result, expected) def test_row_trimming_hide_index(): # gh 43703 df = DataFrame([[1], [2], [3], [4], [5]]) with option_context("styler.render.max_rows", 2): ctx = df.style.hide([0, 1], axis="index")._translate(True, True) assert len(ctx["body"]) == 3 for r, val in enumerate(["3", "4", "..."]): assert ctx["body"][r][1]["display_value"] == val def test_row_trimming_hide_index_mi(): # gh 44247 df = DataFrame([[1], [2], [3], [4], [5]]) df.index = MultiIndex.from_product([[0], [0, 1, 2, 3, 4]]) with option_context("styler.render.max_rows", 2): ctx = df.style.hide([(0, 0), (0, 1)], axis="index")._translate(True, True) assert len(ctx["body"]) == 3 # level 0 index headers (sparsified) assert {"value": 0, "attributes": 'rowspan="2"', "is_visible": True}.items() <= ctx[ "body" ][0][0].items() assert {"value": 0, "attributes": "", "is_visible": False}.items() <= ctx["body"][ 1 ][0].items() assert {"value": "...", "is_visible": True}.items() <= ctx["body"][2][0].items() for r, val in enumerate(["2", "3", "..."]): assert ctx["body"][r][1]["display_value"] == val # level 1 index headers for r, val in enumerate(["3", "4", "..."]): assert ctx["body"][r][2]["display_value"] == val # data values def test_col_trimming_hide_columns(): # gh 44272 df = DataFrame([[1, 2, 3, 4, 5]]) with option_context("styler.render.max_columns", 2): ctx = df.style.hide([0, 1], axis="columns")._translate(True, True) assert len(ctx["head"][0]) == 6 # blank, [0, 1 (hidden)], [2 ,3 (visible)], + trim for c, vals in enumerate([(1, False), (2, True), (3, True), ("...", True)]): assert ctx["head"][0][c + 2]["value"] == vals[0] assert ctx["head"][0][c + 2]["is_visible"] == vals[1] assert len(ctx["body"][0]) == 6 # index + 2 hidden + 2 visible + trimming col def test_no_empty_apply(mi_styler): # 45313 mi_styler.apply(lambda s: ["a:v;"] * 2, subset=[False, False]) mi_styler._compute()
36.879795
88
0.541609
016928020bd777ff5e6b1b0fa8fae3fe3fd4d165
9,032
py
Python
robosuite/devices/spacemouse.py
ElieAljalbout/robosuite
5092e805157ca7a255d3692f34a4d51599e72699
[ "MIT" ]
null
null
null
robosuite/devices/spacemouse.py
ElieAljalbout/robosuite
5092e805157ca7a255d3692f34a4d51599e72699
[ "MIT" ]
null
null
null
robosuite/devices/spacemouse.py
ElieAljalbout/robosuite
5092e805157ca7a255d3692f34a4d51599e72699
[ "MIT" ]
null
null
null
"""Driver class for SpaceMouse controller. This class provides a driver support to SpaceMouse on macOS. In particular, we assume you are using a SpaceMouse Wireless by default. To set up a new SpaceMouse controller: 1. Download and install driver from https://www.3dconnexion.com/service/drivers.html 2. Install hidapi library through pip (make sure you run uninstall hid first if it is installed). 3. Make sure SpaceMouse is connected before running the script 4. (Optional) Based on the model of SpaceMouse, you might need to change the vendor id and product id that correspond to the device. For Linux support, you can find open-source Linux drivers and SDKs online. See http://spacenav.sourceforge.net/ """ import threading import time from collections import namedtuple import numpy as np try: import hid except ModuleNotFoundError as exc: raise ImportError( "Unable to load module hid, required to interface with SpaceMouse. " "Only macOS is officially supported. Install the additional " "requirements with `pip install -r requirements-extra.txt`" ) from exc from robosuite.devices import Device from robosuite.utils.transform_utils import rotation_matrix AxisSpec = namedtuple("AxisSpec", ["channel", "byte1", "byte2", "scale"]) SPACE_MOUSE_SPEC = { "x": AxisSpec(channel=1, byte1=1, byte2=2, scale=1), "y": AxisSpec(channel=1, byte1=3, byte2=4, scale=-1), "z": AxisSpec(channel=1, byte1=5, byte2=6, scale=-1), "roll": AxisSpec(channel=1, byte1=7, byte2=8, scale=-1), "pitch": AxisSpec(channel=1, byte1=9, byte2=10, scale=-1), "yaw": AxisSpec(channel=1, byte1=11, byte2=12, scale=1), } def to_int16(y1, y2): """ Convert two 8 bit bytes to a signed 16 bit integer. Args: y1 (int): 8-bit byte y2 (int): 8-bit byte Returns: int: 16-bit integer """ x = (y1) | (y2 << 8) if x >= 32768: x = -(65536 - x) return x def scale_to_control(x, axis_scale=350.0, min_v=-1.0, max_v=1.0): """ Normalize raw HID readings to target range. Args: x (int): Raw reading from HID axis_scale (float): (Inverted) scaling factor for mapping raw input value min_v (float): Minimum limit after scaling max_v (float): Maximum limit after scaling Returns: float: Clipped, scaled input from HID """ x = x / axis_scale x = min(max(x, min_v), max_v) return x def convert(b1, b2): """ Converts SpaceMouse message to commands. Args: b1 (int): 8-bit byte b2 (int): 8-bit byte Returns: float: Scaled value from Spacemouse message """ return scale_to_control(to_int16(b1, b2)) class SpaceMouse(Device): """ A minimalistic driver class for SpaceMouse with HID library. Note: Use hid.enumerate() to view all USB human interface devices (HID). Make sure SpaceMouse is detected before running the script. You can look up its vendor/product id from this method. Args: vendor_id (int): HID device vendor id product_id (int): HID device product id pos_sensitivity (float): Magnitude of input position command scaling rot_sensitivity (float): Magnitude of scale input rotation commands scaling """ def __init__(self, vendor_id=9583, product_id=50735, pos_sensitivity=1.0, rot_sensitivity=1.0): print("Opening SpaceMouse device") self.device = hid.device() self.device.open(vendor_id, product_id) # SpaceMouse self.pos_sensitivity = pos_sensitivity self.rot_sensitivity = rot_sensitivity print("Manufacturer: %s" % self.device.get_manufacturer_string()) print("Product: %s" % self.device.get_product_string()) # 6-DOF variables self.x, self.y, self.z = 0, 0, 0 self.roll, self.pitch, self.yaw = 0, 0, 0 self._display_controls() self.single_click_and_hold = False self._control = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] self._reset_state = 0 self.rotation = np.array([[-1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0]]) self._enabled = False # launch a new listener thread to listen to SpaceMouse self.thread = threading.Thread(target=self.run) self.thread.daemon = True self.thread.start() @staticmethod def _display_controls(): """ Method to pretty print controls. """ def print_command(char, info): char += " " * (30 - len(char)) print("{}\t{}".format(char, info)) print("") print_command("Control", "Command") print_command("Right button", "reset simulation") print_command("Left button (hold)", "close gripper") print_command("Move mouse laterally", "move arm horizontally in x-y plane") print_command("Move mouse vertically", "move arm vertically") print_command("Twist mouse about an axis", "rotate arm about a corresponding axis") print_command("ESC", "quit") print("") def _reset_internal_state(self): """ Resets internal state of controller, except for the reset signal. """ self.rotation = np.array([[-1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0]]) # Reset 6-DOF variables self.x, self.y, self.z = 0, 0, 0 self.roll, self.pitch, self.yaw = 0, 0, 0 # Reset control self._control = np.zeros(6) # Reset grasp self.single_click_and_hold = False def start_control(self): """ Method that should be called externally before controller can start receiving commands. """ self._reset_internal_state() self._reset_state = 0 self._enabled = True def get_controller_state(self): """ Grabs the current state of the 3D mouse. Returns: dict: A dictionary containing dpos, orn, unmodified orn, grasp, and reset """ dpos = self.control[:3] * 0.005 * self.pos_sensitivity roll, pitch, yaw = self.control[3:] * 0.005 * self.rot_sensitivity # convert RPY to an absolute orientation drot1 = rotation_matrix(angle=-pitch, direction=[1.0, 0, 0], point=None)[:3, :3] drot2 = rotation_matrix(angle=roll, direction=[0, 1.0, 0], point=None)[:3, :3] drot3 = rotation_matrix(angle=yaw, direction=[0, 0, 1.0], point=None)[:3, :3] self.rotation = self.rotation.dot(drot1.dot(drot2.dot(drot3))) return dict( dpos=dpos, rotation=self.rotation, raw_drotation=np.array([roll, pitch, yaw]), grasp=self.control_gripper, reset=self._reset_state, ) def run(self): """Listener method that keeps pulling new messages.""" t_last_click = -1 while True: d = self.device.read(13) if d is not None and self._enabled: if d[0] == 1: ## readings from 6-DoF sensor self.y = convert(d[1], d[2]) self.x = convert(d[3], d[4]) self.z = convert(d[5], d[6]) * -1.0 self.roll = convert(d[7], d[8]) self.pitch = convert(d[9], d[10]) self.yaw = convert(d[11], d[12]) self._control = [ self.x, self.y, self.z, self.roll, self.pitch, self.yaw, ] elif d[0] == 3: ## readings from the side buttons # press left button if d[1] == 1: t_click = time.time() elapsed_time = t_click - t_last_click t_last_click = t_click self.single_click_and_hold = True # release left button if d[1] == 0: self.single_click_and_hold = False # right button is for reset if d[1] == 2: self._reset_state = 1 self._enabled = False self._reset_internal_state() @property def control(self): """ Grabs current pose of Spacemouse Returns: np.array: 6-DoF control value """ return np.array(self._control) @property def control_gripper(self): """ Maps internal states into gripper commands. Returns: float: Whether we're using single click and hold or not """ if self.single_click_and_hold: return 1.0 return 0 if __name__ == "__main__": space_mouse = SpaceMouse() for i in range(100): print(space_mouse.control, space_mouse.control_gripper) time.sleep(0.02)
31.691228
99
0.580824
86c7e380cf0bfb30359cea5a8391517b944e4168
798
py
Python
source/FAST/Examples/Python/stream_from_clarius_ultrasound_scanner.py
andreped/FAST
361819190ea0ae5a2f068e7bd808a1c70af5a171
[ "BSD-2-Clause" ]
null
null
null
source/FAST/Examples/Python/stream_from_clarius_ultrasound_scanner.py
andreped/FAST
361819190ea0ae5a2f068e7bd808a1c70af5a171
[ "BSD-2-Clause" ]
null
null
null
source/FAST/Examples/Python/stream_from_clarius_ultrasound_scanner.py
andreped/FAST
361819190ea0ae5a2f068e7bd808a1c70af5a171
[ "BSD-2-Clause" ]
null
null
null
## @example stream_from_clarius_ultrasound_scanner.py # This example will stream images from a clarius ultrasound scanner, apply a non-local-means filter # and display it in real-time. Note: Do run this example you have to have: # * A Clarius ultrasound probe running with the research cast API enabled. # * Unfreeze the ultrasond probe. # * Your machine has to be connected to the Clarius probe wifi. # * If on windows, disable the windows firewall, or add an exception. import fast streamer = fast.ClariusStreamer.create() filter = fast.NonLocalMeans.create().connect(streamer) renderer = fast.ImageRenderer.create().connect(streamer) renderer2 = fast.ImageRenderer.create().connect(filter) fast.DualViewWindow2D.create()\ .connectLeft(renderer)\ .connectRight(renderer2)\ .run()
38
99
0.769424
a80383a78d9daf42b5f9c8b91a96a2b29f3c09a0
81
py
Python
0/3/3004/3004.py
chr0m3/boj-codes
d71d0a22d0a3ae62c225f382442461275f56fe8f
[ "MIT" ]
3
2017-07-08T16:29:06.000Z
2020-07-20T00:17:45.000Z
0/3/3004/3004.py
chr0m3/boj-codes
d71d0a22d0a3ae62c225f382442461275f56fe8f
[ "MIT" ]
null
null
null
0/3/3004/3004.py
chr0m3/boj-codes
d71d0a22d0a3ae62c225f382442461275f56fe8f
[ "MIT" ]
2
2017-11-20T14:06:06.000Z
2020-07-20T00:17:47.000Z
import math n = int(input()) - 1 print((2 + (n // 2)) * (1 + math.ceil(n / 2)))
16.2
46
0.481481
3bd2e3468710e0566903e1522adcec563f2b7035
22,509
py
Python
spyne/server/twisted/http.py
florath/spyne-1
88d7b9b9020d5067b80927a30e229c3c5d64af85
[ "BSD-3-Clause" ]
null
null
null
spyne/server/twisted/http.py
florath/spyne-1
88d7b9b9020d5067b80927a30e229c3c5d64af85
[ "BSD-3-Clause" ]
null
null
null
spyne/server/twisted/http.py
florath/spyne-1
88d7b9b9020d5067b80927a30e229c3c5d64af85
[ "BSD-3-Clause" ]
null
null
null
# # spyne - Copyright (C) Spyne contributors. # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 # """The ``spyne.server.twisted`` module contains a server transport compatible with the Twisted event loop. It uses the TwistedWebResource object as transport. Also see the twisted examples in the examples directory of the source distribution. If you want to have a hard-coded URL in the wsdl document, this is how to do it: :: resource = TwistedWebResource(...) resource.http_transport.doc.wsdl11.build_interface_document("http://example.com") This is not strictly necessary. If you don't do this, Spyne will get the URL from the first request, build the wsdl on-the-fly and cache it as a string in memory for later requests. However, if you want to make sure you only have this url on the WSDL, this is how to do it. Note that if your client takes the information in wsdl seriously, all requests will go to the designated url above which can make testing a bit difficult. Use in moderation. """ from __future__ import absolute_import import logging logger = logging.getLogger(__name__) import re import cgi import threading from os import fstat from mmap import mmap from inspect import isclass from collections import namedtuple from twisted.web import static from twisted.web.server import NOT_DONE_YET, Request from twisted.web.resource import Resource, NoResource, ForbiddenResource from twisted.web.static import getTypeAndEncoding from twisted.python.log import err from twisted.python.failure import Failure from twisted.internet import reactor from twisted.internet.task import deferLater from twisted.internet.defer import Deferred from twisted.internet.threads import deferToThread from spyne import Redirect from spyne.application import logger_server from spyne.application import get_fault_string_from_exception from spyne.error import InternalError from spyne.auxproc import process_contexts from spyne.const.ansi_color import LIGHT_GREEN from spyne.const.ansi_color import END_COLOR from spyne.const.http import HTTP_404, HTTP_200 from spyne.model import PushBase, File, ComplexModelBase from spyne.model.fault import Fault from spyne.protocol.http import HttpRpc from spyne.server.http import HttpBase from spyne.server.http import HttpMethodContext from spyne.server.http import HttpTransportContext from spyne.server.twisted._base import Producer from spyne.util.six import text_type, string_types from spyne.util.six.moves.urllib.parse import unquote def _render_file(file, request): """ Begin sending the contents of this L{File} (or a subset of the contents, based on the 'range' header) to the given request. """ file.restat(False) if file.type is None: file.type, file.encoding = getTypeAndEncoding(file.basename(), file.contentTypes, file.contentEncodings, file.defaultType) if not file.exists(): return file.childNotFound.render(request) if file.isdir(): return file.redirect(request) request.setHeader('accept-ranges', 'bytes') try: fileForReading = file.openForReading() except IOError as e: import errno if e[0] == errno.EACCES: return ForbiddenResource().render(request) else: raise #if request.setLastModified(file.getmtime()) is CACHED: # return '' producer = file.makeProducer(request, fileForReading) if request.method == 'HEAD': return '' producer.start() # and make sure the connection doesn't get closed return NOT_DONE_YET def _set_response_headers(request, headers): retval = [] for k, v in headers.items(): if isinstance(v, (list, tuple)): request.responseHeaders.setRawHeaders(k, v) else: request.responseHeaders.setRawHeaders(k, [v]) return retval def _reconstruct_url(request): server_name = request.getRequestHostname() server_port = request.getHost().port if (bool(request.isSecure()), server_port) not in [(True, 443), (False, 80)]: server_name = '%s:%d' % (server_name, server_port) if request.isSecure(): url_scheme = 'https' else: url_scheme = 'http' return ''.join([url_scheme, "://", server_name, request.uri]) class TwistedHttpTransportContext(HttpTransportContext): def set_mime_type(self, what): if isinstance(what, text_type): what = what.encode('ascii', errors='replace') super(TwistedHttpTransportContext, self).set_mime_type(what) self.req.setHeader('Content-Type', what) def get_cookie(self, key): return self.req.getCookie(key) def get_path(self): return self.req.URLPath().path def get_path_and_qs(self): return self.req.uri def get_request_method(self): return self.req.method def get_request_content_type(self): return self.req.getHeader("Content-Type") class TwistedHttpMethodContext(HttpMethodContext): default_transport_context = TwistedHttpTransportContext class TwistedHttpTransport(HttpBase): def __init__(self, app, chunked=False, max_content_length=2 * 1024 * 1024, block_length=8 * 1024): super(TwistedHttpTransport, self).__init__(app, chunked=chunked, max_content_length=max_content_length, block_length=block_length) self.reactor_thread = None def _cb(): self.reactor_thread = threading.current_thread() deferLater(reactor, 0, _cb) def pusher_init(self, p_ctx, gen, _cb_push_finish, pusher, interim): if pusher.orig_thread != self.reactor_thread: return deferToThread(super(TwistedHttpTransport, self).pusher_init, p_ctx, gen, _cb_push_finish, pusher, interim) return super(TwistedHttpTransport, self).pusher_init( p_ctx, gen, _cb_push_finish, pusher, interim) @staticmethod def set_out_document_push(ctx): class _ISwearImAGenerator(object): def send(self, data): if not data: return ctx.out_stream.write(data) ctx.out_document = _ISwearImAGenerator() def pusher_try_close(self, ctx, pusher, retval): # the whole point of this function is to call ctx.out_stream.finish() # when a *root* pusher has no more data to send. interim pushers don't # have to close anything. if isinstance(retval, Deferred): def _eb_push_close(f): assert isinstance(f, Failure) logger.error(f.getTraceback()) subretval = super(TwistedHttpTransport, self) \ .pusher_try_close(ctx, pusher, retval) if not pusher.interim: ctx.out_stream.finish() return subretval def _cb_push_close(r): def _eb_inner(f): if not pusher.interim: ctx.out_stream.finish() return f if not isinstance(r, Deferred): retval = super(TwistedHttpTransport, self) \ .pusher_try_close(ctx, pusher, r) if not pusher.interim: ctx.out_stream.finish() return retval return r \ .addCallback(_cb_push_close) \ .addErrback(_eb_inner) return retval \ .addCallback(_cb_push_close) \ .addErrback(_eb_push_close) \ .addErrback(err) if not pusher.interim: retval = ctx.out_stream.finish() super(TwistedHttpTransport, self).pusher_try_close(ctx, pusher, retval) return retval def decompose_incoming_envelope(self, prot, ctx, message): """This function is only called by the HttpRpc protocol to have the twisted web's Request object is parsed into ``ctx.in_body_doc`` and ``ctx.in_header_doc``. """ request = ctx.in_document assert isinstance(request, Request) ctx.in_header_doc = dict(request.requestHeaders.getAllRawHeaders()) ctx.in_body_doc = request.args for fi in ctx.transport.file_info: assert isinstance(fi, _FileInfo) data = request.args.get(fi.field_name, None) if data is not None and fi.file_name is not None: ctx.in_body_doc[fi.field_name] = \ [File.Value( name=fi.file_name, type=fi.file_type, data=fi.data)] # this is a huge hack because twisted seems to take the slashes in urls # too seriously. postpath = getattr(request, 'realpostpath', None) if postpath is None: postpath = request.path params = self.match_pattern(ctx, request.method, postpath, request.getHeader('Host')) if ctx.method_request_string is None: # no pattern match ctx.method_request_string = '{%s}%s' % (self.app.interface.get_tns(), request.path.rsplit('/', 1)[-1]) logger.debug("%sMethod name: %r%s" % (LIGHT_GREEN, ctx.method_request_string, END_COLOR)) for k, v in params.items(): val = ctx.in_body_doc.get(k, []) val.extend(v) ctx.in_body_doc[k] = val r = {} for k,v in ctx.in_body_doc.items(): l = [] for v2 in v: if isinstance(v2, string_types): l.append(unquote(v2)) else: l.append(v2) r[k] = l ctx.in_body_doc = r # This is consistent with what server.wsgi does. if request.method in ('POST', 'PUT', 'PATCH'): for k, v in ctx.in_body_doc.items(): if v == ['']: ctx.in_body_doc[k] = [None] FIELD_NAME_RE = re.compile(r'name="([^"]+)"') FILE_NAME_RE = re.compile(r'filename="([^"]+)"') _FileInfo = namedtuple("_FileInfo", "field_name file_name file_type data") def _get_file_info(ctx): """We need this hack because twisted doesn't offer a way to get file name from Content-Disposition header. """ retval = [] request = ctx.transport.req headers = request.getAllHeaders() content_type = headers.get('content-type', None) if content_type is None: return retval img = cgi.FieldStorage( fp=request.content, headers=ctx.in_header_doc, environ={ 'REQUEST_METHOD': request.method, 'CONTENT_TYPE': content_type, } ) try: keys = img.keys() except TypeError: return retval for k in keys: field = img[k] file_type = field.type file_name = field.disposition_options.get('filename', None) if file_name is not None: retval.append(_FileInfo(k, file_name, file_type, [mmap(field.file.fileno(), 0)])) return retval def _has_fd(istr): if not hasattr(istr, 'fileno'): return False try: istr.fileno() except IOError: return False else: return True class TwistedWebResource(Resource): """A server transport that exposes the application as a twisted web Resource. """ def __init__(self, app, chunked=False, max_content_length=2 * 1024 * 1024, block_length=8 * 1024, prepath=None): Resource.__init__(self) self.app = app self.http_transport = TwistedHttpTransport(app, chunked, max_content_length, block_length) self._wsdl = None self.prepath = prepath def getChildWithDefault(self, path, request): # this hack is necessary because twisted takes the slash character in # http requests too seriously. i.e. it insists that a leaf node can only # handle the last path fragment. if self.prepath is None: request.realprepath = '/' + '/'.join(request.prepath) else: if not self.prepath.startswith('/'): request.realprepath = '/' + self.prepath else: request.realprepath = self.prepath if path in self.children: retval = self.children[path] else: retval = self.getChild(path, request) if isinstance(retval, NoResource): retval = self else: request.realpostpath = request.path[len(request.realprepath):] return retval def render(self, request): if request.method == 'GET' and ( request.uri.endswith('.wsdl') or request.uri.endswith('?wsdl')): return self.__handle_wsdl_request(request) return self.handle_rpc(request) def handle_rpc_error(self, p_ctx, others, error, request): logger.error(error) resp_code = p_ctx.transport.resp_code # If user code set its own response code, don't touch it. if resp_code is None: resp_code = p_ctx.out_protocol.fault_to_http_response_code(error) request.setResponseCode(int(resp_code[:3])) _set_response_headers(request, p_ctx.transport.resp_headers) # In case user code set its own out_* attributes before failing. p_ctx.out_document = None p_ctx.out_string = None p_ctx.out_object = error self.http_transport.get_out_string(p_ctx) retval = ''.join(p_ctx.out_string) p_ctx.close() process_contexts(self.http_transport, others, p_ctx, error=error) return retval def handle_rpc(self, request): initial_ctx = TwistedHttpMethodContext(self.http_transport, request, self.http_transport.app.out_protocol.mime_type) if _has_fd(request.content): f = request.content # it's best to avoid empty mappings. if fstat(f.fileno()).st_size == 0: initial_ctx.in_string = [''] else: initial_ctx.in_string = [mmap(f.fileno(), 0)] else: request.content.seek(0) initial_ctx.in_string = [request.content.read()] initial_ctx.transport.file_info = _get_file_info(initial_ctx) contexts = self.http_transport.generate_contexts(initial_ctx) p_ctx, others = contexts[0], contexts[1:] p_ctx.active = True p_ctx.out_stream = request # TODO: Rate limiting p_ctx.active = True if p_ctx.in_error: return self.handle_rpc_error(p_ctx, others, p_ctx.in_error, request) else: self.http_transport.get_in_object(p_ctx) if p_ctx.in_error: return self.handle_rpc_error(p_ctx, others, p_ctx.in_error, request) self.http_transport.get_out_object(p_ctx) if p_ctx.out_error: return self.handle_rpc_error(p_ctx, others, p_ctx.out_error, request) ret = p_ctx.out_object[0] retval = NOT_DONE_YET if isinstance(ret, Deferred): ret.addCallback(_cb_deferred, request, p_ctx, others, resource=self) ret.addErrback(_eb_deferred, request, p_ctx, others, resource=self) elif isinstance(ret, PushBase): self.http_transport.init_root_push(ret, p_ctx, others) else: try: retval = _cb_deferred(p_ctx.out_object, request, p_ctx, others, self, cb=False) except Exception as e: logger_server.exception(e) _eb_deferred(Failure(), request, p_ctx, others, resource=self) return retval def __handle_wsdl_request(self, request): ctx = TwistedHttpMethodContext(self.http_transport, request, "text/xml; charset=utf-8") url = _reconstruct_url(request) if self.http_transport.doc.wsdl11 is None: return HTTP_404 if self._wsdl is None: self._wsdl = self.http_transport.doc.wsdl11.get_interface_document() ctx.transport.wsdl = self._wsdl _set_response_headers(request, ctx.transport.resp_headers) try: if self._wsdl is None: self.http_transport.doc.wsdl11.build_interface_document(url) ctx.transport.wsdl = self._wsdl = \ self.http_transport.doc.wsdl11.get_interface_document() assert ctx.transport.wsdl is not None self.http_transport.event_manager.fire_event('wsdl', ctx) return ctx.transport.wsdl except Exception as e: ctx.transport.wsdl_error = e self.http_transport.event_manager.fire_event('wsdl_exception', ctx) raise finally: ctx.close() def _cb_request_finished(retval, request, p_ctx): request.finish() p_ctx.close() def _eb_request_finished(retval, request, p_ctx): err(request) p_ctx.close() request.finish() def _cb_deferred(ret, request, p_ctx, others, resource, cb=True): ### set response headers resp_code = p_ctx.transport.resp_code # If user code set its own response code, don't touch it. if resp_code is None: resp_code = HTTP_200 request.setResponseCode(int(resp_code[:3])) _set_response_headers(request, p_ctx.transport.resp_headers) ### normalize response data om = p_ctx.descriptor.out_message single_class = None if cb: if p_ctx.descriptor.is_out_bare(): p_ctx.out_object = [ret] elif (not issubclass(om, ComplexModelBase)) or len(om._type_info) <= 1: p_ctx.out_object = [ret] if len(om._type_info) == 1: single_class, = om._type_info.values() else: p_ctx.out_object = ret else: p_ctx.out_object = ret ### start response retval = NOT_DONE_YET if isinstance(ret, PushBase): pass elif ((isclass(om) and issubclass(om, File)) or (isclass(single_class) and issubclass(single_class, File))) and \ isinstance(p_ctx.out_protocol, HttpRpc) and \ getattr(ret, 'abspath', None) is not None: file = static.File(ret.abspath, defaultType=str(ret.type) or 'application/octet-stream') retval = _render_file(file, request) if retval != NOT_DONE_YET and cb: request.write(retval) request.finish() p_ctx.close() else: def _close_only_context(ret): p_ctx.close() request.notifyFinish().addCallback(_close_only_context) request.notifyFinish().addErrback(_eb_request_finished, request, p_ctx) else: ret = resource.http_transport.get_out_string(p_ctx) if not isinstance(ret, Deferred): producer = Producer(p_ctx.out_string, request) producer.deferred.addCallback(_cb_request_finished, request, p_ctx) producer.deferred.addErrback(_eb_request_finished, request, p_ctx) try: request.registerProducer(producer, False) except Exception as e: logger_server.exception(e) _eb_deferred(Failure(), request, p_ctx, others, resource) else: def _cb(ret): if isinstance(ret, Deferred): return ret \ .addCallback(_cb) \ .addErrback(_eb_request_finished, request, p_ctx) else: return _cb_request_finished(ret, request, p_ctx) ret \ .addCallback(_cb) \ .addErrback(_eb_request_finished, request, p_ctx) process_contexts(resource.http_transport, others, p_ctx) return retval def _eb_deferred(ret, request, p_ctx, others, resource): app = p_ctx.app # DRY this with what's in Application.process_request if issubclass(ret.type, Redirect): try: ret.value.do_redirect() # Now that the processing is switched to the outgoing message, # point ctx.protocol to ctx.out_protocol p_ctx.protocol = p_ctx.outprot_ctx _cb_deferred(None, request, p_ctx, others, resource, cb=False) p_ctx.fire_event('method_redirect') except Exception as e: logger_server.exception(e) p_ctx.out_error = Fault('Server', get_fault_string_from_exception(e)) p_ctx.fire_event('method_redirect_exception') elif issubclass(ret.type, Fault): p_ctx.out_error = ret.value ret = resource.handle_rpc_error(p_ctx, others, p_ctx.out_error, request) p_ctx.fire_event('method_exception_object') request.write(ret) else: p_ctx.out_error = ret.value ret.printTraceback() p_ctx.out_error = InternalError(ret.value) p_ctx.fire_event('method_exception_object') request.finish()
33.101471
85
0.613444
616dd0b2d21a5988d748bfc9eb80b60f013b6394
1,369
py
Python
src/drivetools.py
jhanc97/backend
e747aa2d779b8856f37d0ca400164791ee45b61a
[ "MIT" ]
null
null
null
src/drivetools.py
jhanc97/backend
e747aa2d779b8856f37d0ca400164791ee45b61a
[ "MIT" ]
null
null
null
src/drivetools.py
jhanc97/backend
e747aa2d779b8856f37d0ca400164791ee45b61a
[ "MIT" ]
1
2021-06-02T07:23:51.000Z
2021-06-02T07:23:51.000Z
def driveIter(root, drive): params = { "pageToken": None, "supportsAllDrives": True, "includeItemsFromAllDrives": True, "fields": "files(id,name,mimeType), incompleteSearch, nextPageToken", "q": "'%s' in parents and trashed = false and (mimeType = 'application/vnd.google-apps.folder' or mimeType contains 'video')" % (root["id"]), "orderBy": "name", } while True: response = drive.files().list(**params).execute() for file in response["files"]: yield file try: params["pageToken"] = response["nextPageToken"] except KeyError: return def driveWalk(root, drive, walk): if root["mimeType"] == "application/vnd.google-apps.folder": for item in driveIter(root, drive): driveWalk(item, drive, walk) elif "video" in root["mimeType"]: root["type"] = "file" walk["children"].append(root) else: return return walk def driveTree(root, drive): if root["mimeType"] == "application/vnd.google-apps.folder": tree = root tree["type"] = "directory" tree["children"] = [driveTree(item, drive) for item in driveIter(root, drive)] elif "video" in root["mimeType"]: tree = root tree["type"] = "file" else: return return tree
31.113636
133
0.577064
76ea90726c47ae425d358ce1a5376063f23c5cc3
6,886
py
Python
tests/test_searchpath.py
nfwprod/diffjson
ad7ea15c42e25f16f610491e95da3d0b2e35d654
[ "MIT" ]
1
2021-02-13T08:24:52.000Z
2021-02-13T08:24:52.000Z
tests/test_searchpath.py
nfwstg/diffjson
52cb24e5629797b32c23e7971d36d111a6817121
[ "MIT" ]
3
2021-03-13T06:44:27.000Z
2021-04-21T16:45:43.000Z
tests/test_searchpath.py
nfwstg/diffjson
52cb24e5629797b32c23e7971d36d111a6817121
[ "MIT" ]
4
2021-03-13T06:39:30.000Z
2021-04-24T04:52:36.000Z
import pytest import yaml import diffjson class TestSearchpathClasses(object): def test_init_NodenameRoot(self): n = diffjson.NodenameRoot() expected = '/' assert str(n) == expected def test_init_NodenameAsterisk(self): n = diffjson.NodenameAsterisk() expected = '*' assert str(n) == expected def test_init_NodenameDescendant(self): n = diffjson.NodenameDescendant() expected = '' assert str(n) == expected def test_init_NodenameParent(self): n = diffjson.NodenameParent() expected = '..' assert str(n) == expected def test_init_NodenameSelf(self): n = diffjson.NodenameSelf() expected = '.' assert str(n) == expected def test_init_NodenameKey(self): n = diffjson.NodenameKey('key') expected = 'key' assert str(n) == expected def test_init_NodenameIndex(self): n = diffjson.NodenameIndex(1) expected = '[1]' assert str(n) == expected def test_init_LocationStep(self): l = diffjson.LocationStep(diffjson.NodenameRoot()) expected = '/' assert str(l) == expected def test_init_LocationPath(self): lp = diffjson.LocationPath( [diffjson.LocationStep(diffjson.NodenameRoot())]) expected = '/' assert str(lp) == expected def test_init_Predicate(self): plp = diffjson.LocationPath( [diffjson.LocationStep(diffjson.NodenameKey('key'))]) p = diffjson.Predicate(plp, 'predicate') expected = 'key=predicate' assert str(p) == expected def test_init_LocationStepWithPredicates(self): plp = diffjson.LocationPath( [diffjson.LocationStep(diffjson.NodenameKey('key'))]) p = diffjson.Predicate(plp, 'predicate') ps = diffjson.Predicates([p]) l = diffjson.LocationStep(diffjson.NodenameRoot(), ps) expected = '/[key=predicate]' assert str(l) == expected # Functions def test_init_LocationPath_current(self): lp = diffjson.LocationPath([ diffjson.LocationStep(diffjson.NodenameRoot()), diffjson.LocationStep(diffjson.NodenameKey('key01')), diffjson.LocationStep(diffjson.NodenameKey('key02')), ]) expected = '/' assert str(lp.current()) == expected def test_init_LocationPath_branch(self): lp = diffjson.LocationPath([ diffjson.LocationStep(diffjson.NodenameRoot()), diffjson.LocationStep(diffjson.NodenameKey('key01')), diffjson.LocationStep(diffjson.NodenameKey('key02')), ]) expected = 'key01/key02' assert str(lp.branch()) == expected class TestSearchpathParses(object): def test_parse_simple01(self): """ Parser must parse input string and output appropriate LocationPath instance. """ expected = diffjson.LocationPath([ diffjson.LocationStep(diffjson.NodenameRoot()), diffjson.LocationStep(diffjson.NodenameKey('branch01')), diffjson.LocationStep(diffjson.NodenameKey('b01-01')), ]) pathstring = '/branch01/b01-01' p = diffjson.parse(pathstring) assert p == expected assert str(p) == pathstring def test_parse_complex01(self): """ Parser must parse input string and output appropriate LocationPath instance. """ expected = diffjson.LocationPath([ diffjson.LocationStep(diffjson.NodenameRoot()), diffjson.LocationStep(diffjson.NodenameKey('branch.01-02_03@example.net')), diffjson.LocationStep(diffjson.NodenameKey('b01-01')), ]) pathstring = '/branch.01-02_03@example.net/b01-01' p = diffjson.parse(pathstring) assert p == expected assert str(p) == pathstring def test_parse_with_index(self): """ Parser with NodeIndex. """ expected = diffjson.LocationPath([ diffjson.LocationStep(diffjson.NodenameRoot()), diffjson.LocationStep(diffjson.NodenameKey('branch01')), diffjson.LocationStep(diffjson.NodenameKey('b01-01')), diffjson.LocationStep(diffjson.NodenameIndex(1)), diffjson.LocationStep(diffjson.NodenameKey('b01-01-01')), ]) pathstring = '/branch01/b01-01/[1]/b01-01-01' p = diffjson.parse(pathstring) assert p == expected assert str(p) == pathstring def test_parse_with_asterisk(self): """ Parser with Asterisk. """ expected = diffjson.LocationPath([ diffjson.LocationStep(diffjson.NodenameRoot()), diffjson.LocationStep(diffjson.NodenameKey('branch01')), diffjson.LocationStep(diffjson.NodenameAsterisk()), diffjson.LocationStep(diffjson.NodenameKey('b01-01-01')), ]) pathstring = '/branch01/*/b01-01-01' p = diffjson.parse(pathstring) assert p == expected assert str(p) == pathstring def test_parse_with_decendant(self): """ Parser with Descendant. """ expected = diffjson.LocationPath([ diffjson.LocationStep(diffjson.NodenameRoot()), diffjson.LocationStep(diffjson.NodenameKey('branch01')), diffjson.LocationStep(diffjson.NodenameDescendant()), diffjson.LocationStep(diffjson.NodenameKey('branch01-01-01')), ]) pathstring = '/branch01//branch01-01-01' p = diffjson.parse(pathstring) assert p == expected assert str(p) == pathstring def test_parse_with_parent(self): """ Parser with Parent. """ expected = diffjson.LocationPath([ diffjson.LocationStep(diffjson.NodenameRoot()), diffjson.LocationStep(diffjson.NodenameKey('branch01')), diffjson.LocationStep(diffjson.NodenameKey('b01-01')), diffjson.LocationStep(diffjson.NodenameParent()), diffjson.LocationStep(diffjson.NodenameKey('branch01-02')), ]) pathstring = '/branch01/b01-01/../branch01-02' p = diffjson.parse(pathstring) assert p == expected assert str(p) == pathstring def test_parse_with_self(self): """ Parser with Self. """ expected = diffjson.LocationPath([ diffjson.LocationStep(diffjson.NodenameRoot()), diffjson.LocationStep(diffjson.NodenameKey('branch01')), diffjson.LocationStep(diffjson.NodenameSelf()), diffjson.LocationStep(diffjson.NodenameKey('b01-01')), ]) pathstring = '/branch01/./b01-01' p = diffjson.parse(pathstring) assert p == expected assert str(p) == pathstring
32.027907
87
0.612257
45e18cfce83011f2251c5fb2bcd1403b35c6595b
16,500
py
Python
lightning_base.py
ksboy/ccks3
c500af33b6b879751ea04ce5fab456b01db9868c
[ "Apache-2.0" ]
1
2021-07-14T06:30:20.000Z
2021-07-14T06:30:20.000Z
lightning_base.py
ksboy/ccks3
c500af33b6b879751ea04ce5fab456b01db9868c
[ "Apache-2.0" ]
null
null
null
lightning_base.py
ksboy/ccks3
c500af33b6b879751ea04ce5fab456b01db9868c
[ "Apache-2.0" ]
null
null
null
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) logger = logging.getLogger(__name__) MODEL_MODES = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeq2SeqLM, "translation": AutoModelForSeq2SeqLM, } # update this and the import above to support new schedulers from transformers.optimization arg_to_scheduler = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } arg_to_scheduler_choices = sorted(arg_to_scheduler.keys()) arg_to_scheduler_metavar = "{" + ", ".join(arg_to_scheduler_choices) + "}" class BaseTransformer(pl.LightningModule): def __init__( self, hparams: argparse.Namespace, num_labels=None, mode="base", config=None, tokenizer=None, model=None, **config_kwargs ): """Initialize a model, tokenizer and config.""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(hparams) self.step_count = 0 self.output_dir = Path(self.hparams.output_dir) cache_dir = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: self.config = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path, **({"num_labels": num_labels} if num_labels is not None else {}), cache_dir=cache_dir, **config_kwargs, ) else: self.config: PretrainedConfig = config extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(self.hparams, p, None): assert hasattr(self.config, p), f"model config doesn't have a `{p}` attribute" setattr(self.config, p, getattr(self.hparams, p)) if tokenizer is None: self.tokenizer = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path, cache_dir=cache_dir, ) else: self.tokenizer: PreTrainedTokenizer = tokenizer self.model_type = MODEL_MODES[mode] if model is None: self.model = self.model_type.from_pretrained( self.hparams.model_name_or_path, from_tf=bool(".ckpt" in self.hparams.model_name_or_path), config=self.config, cache_dir=cache_dir, ) else: self.model = model def load_hf_checkpoint(self, *args, **kwargs): self.model = self.model_type.from_pretrained(*args, **kwargs) def get_lr_scheduler(self): get_schedule_func = arg_to_scheduler[self.hparams.lr_scheduler] scheduler = get_schedule_func( self.opt, num_warmup_steps=self.hparams.warmup_steps, num_training_steps=self.total_steps ) scheduler = {"scheduler": scheduler, "interval": "step", "frequency": 1} return scheduler def configure_optimizers(self): """Prepare optimizer and schedule (linear warmup and decay)""" model = self.model no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": self.hparams.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, ] if self.hparams.adafactor: optimizer = Adafactor( optimizer_grouped_parameters, lr=self.hparams.learning_rate, scale_parameter=False, relative_step=False ) else: optimizer = AdamW( optimizer_grouped_parameters, lr=self.hparams.learning_rate, eps=self.hparams.adam_epsilon ) self.opt = optimizer scheduler = self.get_lr_scheduler() return [optimizer], [scheduler] def test_step(self, batch, batch_nb): return self.validation_step(batch, batch_nb) def test_epoch_end(self, outputs): return self.validation_end(outputs) @property def total_steps(self) -> int: """The number of total training steps that will be run. Used for lr scheduler purposes.""" num_devices = max(1, self.hparams.gpus) # TODO: consider num_tpu_cores effective_batch_size = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices dataset_size = len(self.train_loader.dataset) return (dataset_size / effective_batch_size) * self.hparams.max_epochs def setup(self, stage): if stage == "fit": self.train_loader = self.get_dataloader("train", self.hparams.train_batch_size, shuffle=True) def get_dataloader(self, type_path, batch_size, shuffle=False): raise NotImplementedError("You must implement this for your task") def train_dataloader(self): return self.train_loader def val_dataloader(self): return self.get_dataloader("dev", self.hparams.eval_batch_size, shuffle=False) def test_dataloader(self): return self.get_dataloader("test", self.hparams.eval_batch_size, shuffle=False) def _feature_file(self, mode): return os.path.join( self.hparams.data_dir, "cached_{}_{}_{}".format( mode, list(filter(None, self.hparams.model_name_or_path.split("/"))).pop(), str(self.hparams.max_seq_length), ), ) @pl.utilities.rank_zero_only def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None: save_path = self.output_dir.joinpath("checkpoint-best") self.model.config.save_step = self.step_count self.model.save_pretrained(save_path) self.tokenizer.save_pretrained(save_path) @staticmethod def add_model_specific_args(parser, root_dir): parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pretrained model or model identifier from huggingface.co/models", ) parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name" ) parser.add_argument( "--tokenizer_name", default=None, type=str, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from s3", ) parser.add_argument( "--encoder_layerdrop", type=float, help="Encoder layer dropout probability (Optional). Goes into model.config", ) parser.add_argument( "--decoder_layerdrop", type=float, help="Decoder layer dropout probability (Optional). Goes into model.config", ) parser.add_argument( "--dropout", type=float, help="Dropout probability (Optional). Goes into model.config", ) parser.add_argument( "--attention_dropout", type=float, help="Attention dropout probability (Optional). Goes into model.config", ) parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument( "--lr_scheduler", default="linear", choices=arg_to_scheduler_choices, metavar=arg_to_scheduler_metavar, type=str, help="Learning rate scheduler", ) parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument("--num_workers", default=4, type=int, help="kwarg passed to DataLoader") parser.add_argument("--num_train_epochs", dest="max_epochs", default=3, type=int) parser.add_argument("--train_batch_size", "--per_gpu_train_batch_size", default=32, type=int) parser.add_argument("--eval_batch_size", "--per_gpu_eval_batch_size", default=32, type=int) parser.add_argument("--adafactor", action="store_true") class LoggingCallback(pl.Callback): def on_batch_end(self, trainer, pl_module): lr_scheduler = trainer.lr_schedulers[0]["scheduler"] lrs = {f"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr())} pl_module.logger.log_metrics(lrs) def on_validation_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule): rank_zero_info("***** Validation results *****") metrics = trainer.callback_metrics # Log results # checkpoint_best_path = os.path.join(pl_module.hparams.output_dir, "checkpoint-best") # if not os.path.exists(checkpoint_best_path): os.makedirs(checkpoint_best_path) # output_eval_results_file = os.path.join(pl_module.hparams.output_dir, "eval_results.txt") # with open(output_eval_results_file, "w") as writer: for key in sorted(metrics): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(key, str(metrics[key]))) # writer.write("{} = {}\n".format(key, str(metrics[key]))) def on_test_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule): rank_zero_info("***** Test results *****") metrics = trainer.callback_metrics # Log and save results to file # checkpoint_best_path = os.path.join(pl_module.hparams.output_dir, "checkpoint-best") # if not os.path.exists(checkpoint_best_path): os.makedirs(checkpoint_best_path) # output_test_results_file = os.path.join(pl_module.hparams.output_dir, "test_results.txt") # with open(output_test_results_file, "w") as writer: for key in sorted(metrics): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(key, str(metrics[key]))) # writer.write("{} = {}\n".format(key, str(metrics[key]))) def add_generic_args(parser, root_dir) -> None: # TODO(SS): allow all pl args? parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=str, default="O2", help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html", ) parser.add_argument("--n_tpu_cores", dest="tpu_cores", type=int) parser.add_argument("--max_grad_norm", dest="gradient_clip_val", default=1.0, type=float, help="Max gradient norm") parser.add_argument("--do_train", action="store_true", help="Whether to run training.") parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") parser.add_argument("--do_predict", action="store_true", help="Whether to run predictions on the test set.") parser.add_argument( "--gradient_accumulation_steps", dest="accumulate_grad_batches", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the training files for the CoNLL-2003 NER task.", ) def IntorFloat(string): if '.' in string: return float(string) else: return int(string) parser.add_argument( # "--every_n_train_steps", "--val_check_interval", "--logging_steps", "--save_steps", default=1.0, type=IntorFloat, help="How often to check the validation set. Use float to check within a training epoch \ use int to check every n steps (batches)." ) parser.add_argument( "--gpus", default=1, type=int, help="The number of GPUs allocated for this, it is by default 0 meaning none", ) parser.add_argument( "--monitor", default='f1', type=str, help="CallBacks monitor Metric.", ) parser.add_argument("--early_stop", default=4, type=int, help="early stop when metric does not increases any more") def generic_train( model: BaseTransformer, args: argparse.Namespace, logger=True, # can pass WandbLogger() here extra_callbacks=[], checkpoint_callback=None, early_stopping_callback=None, logging_callback=None, **extra_train_kwargs ): pl.seed_everything(args.seed) # init model odir = Path(model.hparams.output_dir) odir.mkdir(exist_ok=True) # add custom checkpoints if checkpoint_callback is None: checkpoint_callback = pl.callbacks.ModelCheckpoint( filepath=args.output_dir, prefix="checkpoint", monitor=args.monitor, mode="max", save_top_k=1 ) if logging_callback is None: logging_callback = LoggingCallback() if early_stopping_callback is None: early_stopping_callback = pl.callbacks.EarlyStopping(patience=args.early_stop, monitor=args.monitor, mode="max") train_params = {} # TODO: remove with PyTorch 1.6 since pl uses native amp if args.fp16: train_params["precision"] = 16 train_params["amp_level"] = args.fp16_opt_level if args.gpus > 1: train_params["distributed_backend"] = "ddp" train_params["accumulate_grad_batches"] = args.accumulate_grad_batches train_params["val_check_interval"] = args.val_check_interval trainer = pl.Trainer.from_argparse_args( args, default_root_dir=odir, weights_summary=None, callbacks=[logging_callback, early_stopping_callback] + extra_callbacks, logger=logger, checkpoint_callback=checkpoint_callback, **train_params, ) if args.do_train: trainer.fit(model) return trainer
38.732394
120
0.647697
4c8514cd2a30866d29e83ae612c6a0cf14d32abd
5,759
py
Python
config_dialog.py
shuming2/ONU_POWER_ANALYSIS
faa6603d3f5b7cd6e6d3dd9851e4d1b61bd7e8fd
[ "Apache-2.0" ]
null
null
null
config_dialog.py
shuming2/ONU_POWER_ANALYSIS
faa6603d3f5b7cd6e6d3dd9851e4d1b61bd7e8fd
[ "Apache-2.0" ]
2
2018-08-16T04:26:39.000Z
2018-08-18T12:33:37.000Z
config_dialog.py
shuming2/ONU_POWER_ANALYSIS
faa6603d3f5b7cd6e6d3dd9851e4d1b61bd7e8fd
[ "Apache-2.0" ]
null
null
null
import os import re import sys import tkinter from tkinter import ttk, Spinbox class ConfigDialog(tkinter.Toplevel): def __init__(self, parent): super().__init__() self.transient(parent) self.grab_set() self.geometry("+%d+%d" % (parent.winfo_rootx() + 50, parent.winfo_rooty() + 50)) self.resizable(0, 0) icopath = self._resource_path(r'pic/panda.ico') if os.path.exists(icopath): self.iconbitmap(icopath) self.frame = ttk.Frame(self) self.ok_button = tkinter.Button(self.frame, text="确定") self.cancel_button = tkinter.Button(self.frame, text="取消", command=self.destroy) def _set_config(self, config_dict=None): if config_dict: config_path = self._resource_path(r'config.py') with open(config_path, 'r') as config_file: lines = config_file.readlines() with open(config_path, 'w') as new_config_file: for line in lines: config_name = re.sub(r' = .*', '', line.strip()) lower_config_name = str.lower(config_name) if lower_config_name in config_dict: new_config_file.write('{} = {}\n'.format(config_name, config_dict[lower_config_name])) else: new_config_file.write(line) self.destroy() def _get_config(self, config_name_lst=None): config_value_lst = [] config_path = self._resource_path(r'config.py') with open(config_path, 'r') as config_file: for line in config_file: line = line.strip() config_name = re.sub(r' = .*', '', line) if config_name_lst: lower_config_name = str.lower(config_name) if lower_config_name in config_name_lst: config_value = line.split('=')[1].strip().strip("'") config_value_lst.append(config_value) return config_value_lst @staticmethod def _resource_path(relative): if hasattr(sys, "_MEIPASS"): return os.path.join(sys._MEIPASS, relative) return os.path.join(relative) class AlertConfigDialog(ConfigDialog): def __init__(self, parent): super().__init__(parent) self.title('告警设置') self.alert_threshold_label = ttk.Label(self.frame, text='告警阈值:') self.alert_threshold_value = tkinter.StringVar() self.alert_threshold_spinbox = Spinbox(self.frame, from_=0, to=10, width=5, bd=1, textvariable=self.alert_threshold_value) self.alert_threshold_value.set(self._get_config(['alert_threshold'])[0]) self.ok_button.configure(command=self._update_alert_threshold) def gui_arrang(self): self.frame.grid(row=0, column=0, padx=10, pady=5) self.alert_threshold_label.grid(row=0, column=0, sticky='W') self.alert_threshold_spinbox.grid(row=0, column=1) self.ok_button.grid(row=2, column=3, pady=5) self.cancel_button.grid(row=2, column=4, pady=5) self.focus() def _update_alert_threshold(self): self._set_config({'alert_threshold': self.alert_threshold_value.get()}) class DBConfigDialog(ConfigDialog): def __init__(self, parent): super().__init__(parent) self.title('数据库设置') self.config_names = ['ip', 'username', 'pwd', 'db_name'] self.ip_label = ttk.Label(self.frame, text='IP地址:') self.username_label = ttk.Label(self.frame, text='用户名:') self.pwd_label = ttk.Label(self.frame, text='密码:') self.db_name_label = ttk.Label(self.frame, text='数据库名:') # self.table_name_label = ttk.Label(self.frame, text='表名:') self.ui_labels = [self.ip_label, self.username_label, self.pwd_label, self.db_name_label] self.ip_value = tkinter.StringVar() self.username_value = tkinter.StringVar() self.pwd_value = tkinter.StringVar() self.db_name_value = tkinter.StringVar() # self.table_name_value = tkinter.StringVar() self.ui_values = [self.ip_value, self.username_value, self.pwd_value, self.db_name_value] self.ip_entry = tkinter.Entry(self.frame, width=20, textvariable=self.ip_value) self.username_entry = tkinter.Entry(self.frame, width=20, textvariable=self.username_value) self.pwd_entry = tkinter.Entry(self.frame, width=20, textvariable=self.pwd_value) self.db_name_entry = tkinter.Entry(self.frame, width=20, textvariable=self.db_name_value) # self.table_name_entry = tkinter.Entry(self.frame, width=20, textvariable=self.table_name_value) self.ui_entries = [self.ip_entry, self.username_entry, self.pwd_entry, self.db_name_entry] self.pwd_entry['show'] = '*' config_values = self._get_config(self.config_names) for i in range(len(self.config_names)): self.ui_values[i].set(config_values[i]) self.ok_button.configure(command=self._update_db_config, text='连接') def gui_arrang(self): self.frame.grid(row=0, column=0, padx=10, pady=5) for i in range(len(self.config_names)): self.ui_labels[i].grid(row=i, column=0, sticky='W') self.ui_entries[i].grid(row=i, column=1) self.ok_button.grid(row=len(self.config_names), column=3, pady=5) self.cancel_button.grid(row=len(self.config_names), column=4, pady=5) self.focus() def _update_db_config(self): config_dict = {} for i in range(len(self.config_names)): config_dict[self.config_names[i]] = "'{}'".format(self.ui_values[i].get()) self._set_config(config_dict)
42.977612
110
0.632054
feef4705641ebc11180c7fd6fd308efaa6aff874
64
py
Python
Calc.py
danielwilson2017/Calculus-Project-Q2
d41c2c79c30d8d42444af4980422f19b1484d2cb
[ "MIT" ]
null
null
null
Calc.py
danielwilson2017/Calculus-Project-Q2
d41c2c79c30d8d42444af4980422f19b1484d2cb
[ "MIT" ]
null
null
null
Calc.py
danielwilson2017/Calculus-Project-Q2
d41c2c79c30d8d42444af4980422f19b1484d2cb
[ "MIT" ]
null
null
null
nox = int(input("What is the function in values of x")) if nox
21.333333
55
0.6875
d4719ccb2e4442b7738b0a6bfc737f37ae882c9b
470
py
Python
apps/core/views/viewsets/best_search.py
sparcs-kaist/new-ara-api
63998da575cb148347708199fe1345c4e7ee3e1b
[ "MIT" ]
19
2017-09-13T07:51:58.000Z
2022-03-28T11:04:03.000Z
apps/core/views/viewsets/best_search.py
sparcs-kaist/new-ara-api
63998da575cb148347708199fe1345c4e7ee3e1b
[ "MIT" ]
147
2017-09-14T13:45:30.000Z
2022-03-14T15:54:09.000Z
apps/core/views/viewsets/best_search.py
sparcs-kaist/new-ara-api
63998da575cb148347708199fe1345c4e7ee3e1b
[ "MIT" ]
5
2019-08-31T13:13:30.000Z
2021-03-26T15:46:38.000Z
from rest_framework import viewsets, permissions from ara.classes.viewset import ActionAPIViewSet from apps.core.serializers.best_search import BestSearchSerializer from apps.core.models import BestSearch class BestSearchViewSet(viewsets.ReadOnlyModelViewSet, ActionAPIViewSet): queryset = BestSearch.objects.all() filterset_fields = ['latest'] serializer_class = BestSearchSerializer permission_classes = ( permissions.IsAuthenticated, )
31.333333
73
0.8
f33b6b926d31d0e6838d7afca730fca5ae8b5668
679
py
Python
picorss/src/infrastructure/models/meta.py
rok-povsic/picorss
7c182953868e56389d5c080f3c0b75d7c0fafa74
[ "MIT" ]
null
null
null
picorss/src/infrastructure/models/meta.py
rok-povsic/picorss
7c182953868e56389d5c080f3c0b75d7c0fafa74
[ "MIT" ]
null
null
null
picorss/src/infrastructure/models/meta.py
rok-povsic/picorss
7c182953868e56389d5c080f3c0b75d7c0fafa74
[ "MIT" ]
null
null
null
from sqlalchemy import schema from sqlalchemy.ext import declarative # Recommended naming convention used by Alembic, as various different database # providers will autogenerate vastly different names making migrations more # difficult. See: http://alembic.zzzcomputing.com/en/latest/naming.html NAMING_CONVENTION = { "ix": "ix_%(column_0_label)s", "uq": "uq_%(table_name)s_%(column_0_name)s", "ck": "ck_%(table_name)s_%(constraint_name)s", "fk": "fk_%(table_name)s_%(column_0_name)s_%(referred_table_name)s", "pk": "pk_%(table_name)s" } metadata = schema.MetaData(naming_convention=NAMING_CONVENTION) Base = declarative.declarative_base(metadata=metadata)
39.941176
78
0.764359
76dbfbcc891c69b629d44dbf36122b9b7ed21dbb
366
py
Python
djlang/views.py
Joneswn/Baloti
c499666dd9e2553fac88130dea2b6e9df8278234
[ "MIT" ]
1
2022-02-24T17:30:53.000Z
2022-02-24T17:30:53.000Z
djlang/views.py
Joneswn/Baloti
c499666dd9e2553fac88130dea2b6e9df8278234
[ "MIT" ]
null
null
null
djlang/views.py
Joneswn/Baloti
c499666dd9e2553fac88130dea2b6e9df8278234
[ "MIT" ]
2
2021-10-06T11:52:41.000Z
2022-01-20T11:07:27.000Z
import json from django.http import HttpResponse from django.urls import path from .models import Text def text_view(request): data = list(Text.objects.order_by('id', 'key').distinct('id', 'key').values()) return HttpResponse(json.dumps(data, ensure_ascii=False), content_type='application/json') urlpatterns = [ path('', text_view, name='text') ]
21.529412
94
0.718579
88c77a5110793edeb73475372e23f5f19b694a29
1,997
py
Python
django/utils/translation/trans_null.py
ericholscher/django
b9a90b371c90a987ed57f7a4a7cc1274c432b438
[ "BSD-3-Clause" ]
1
2015-11-08T11:42:08.000Z
2015-11-08T11:42:08.000Z
django/utils/translation/trans_null.py
ericholscher/django
b9a90b371c90a987ed57f7a4a7cc1274c432b438
[ "BSD-3-Clause" ]
null
null
null
django/utils/translation/trans_null.py
ericholscher/django
b9a90b371c90a987ed57f7a4a7cc1274c432b438
[ "BSD-3-Clause" ]
null
null
null
# These are versions of the functions in django.utils.translation.trans_real # that don't actually do anything. This is purely for performance, so that # settings.USE_I18N = False can use this module rather than trans_real.py. from django.conf import settings from django.utils.encoding import force_text from django.utils.safestring import mark_safe, SafeData def ngettext(singular, plural, number): if number == 1: return singular return plural ngettext_lazy = ngettext def ungettext(singular, plural, number): return force_text(ngettext(singular, plural, number)) def pgettext(context, message): return ugettext(message) def npgettext(context, singular, plural, number): return ungettext(singular, plural, number) activate = lambda x: None deactivate = deactivate_all = lambda: None get_language = lambda: settings.LANGUAGE_CODE get_language_bidi = lambda: settings.LANGUAGE_CODE in settings.LANGUAGES_BIDI check_for_language = lambda x: True # date formats shouldn't be used using gettext anymore. This # is kept for backward compatibility TECHNICAL_ID_MAP = { "DATE_WITH_TIME_FULL": settings.DATETIME_FORMAT, "DATE_FORMAT": settings.DATE_FORMAT, "DATETIME_FORMAT": settings.DATETIME_FORMAT, "TIME_FORMAT": settings.TIME_FORMAT, "YEAR_MONTH_FORMAT": settings.YEAR_MONTH_FORMAT, "MONTH_DAY_FORMAT": settings.MONTH_DAY_FORMAT, } def gettext(message): result = TECHNICAL_ID_MAP.get(message, message) if isinstance(message, SafeData): return mark_safe(result) return result def ugettext(message): return force_text(gettext(message)) gettext_noop = gettext_lazy = _ = gettext def to_locale(language): p = language.find('-') if p >= 0: return language[:p].lower()+'_'+language[p+1:].upper() else: return language.lower() def get_language_from_request(request, check_path=False): return settings.LANGUAGE_CODE def get_language_from_path(request, supported=None): return None
31.203125
77
0.755133
b80c82b923ed59f76053d23109369b83e38effe1
2,114
py
Python
wizard/core/custom_logger.py
Wizard-collab/wizard_2
a2cb23362e178a0205f6dd0b9b4328c329b5b142
[ "MIT" ]
1
2021-10-13T15:07:32.000Z
2021-10-13T15:07:32.000Z
wizard/core/custom_logger.py
Wizard-collab/wizard_2
a2cb23362e178a0205f6dd0b9b4328c329b5b142
[ "MIT" ]
null
null
null
wizard/core/custom_logger.py
Wizard-collab/wizard_2
a2cb23362e178a0205f6dd0b9b4328c329b5b142
[ "MIT" ]
null
null
null
# coding: utf-8 # Author: Leo BRUNEL # Contact: contact@leobrunel.com # This file is part of Wizard # MIT License # Copyright (c) 2021 Leo brunel # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # Python modules import logging import os import sys # Wizard modules from wizard.vars import user_vars from wizard.core import path_utils def get_root_logger(): create_prefs_folder() root_logger = logging.getLogger() if 'DEBUG' in sys.argv: root_logger.setLevel(logging.DEBUG) else: root_logger.setLevel(logging.INFO) file_handler = logging.FileHandler(user_vars._user_logger_file_) file_handler.setFormatter(logging.Formatter('%(asctime)s [%(name)-23.23s] [%(levelname)-5.5s] %(message)s')) root_logger.addHandler(file_handler) stream_handler = logging.StreamHandler() stream_handler.setFormatter(logging.Formatter('%(asctime)s [%(name)-23.23s] [%(levelname)-5.5s] %(message)s')) root_logger.addHandler(stream_handler) def create_prefs_folder(): if not path_utils.isdir(user_vars._user_path_): path_utils.makedirs(user_vars._user_path_)
38.436364
114
0.76017
f3b2c12f4c9acb5877fb1ddd88506f8d3b37d1c2
2,241
py
Python
samba_edit/add_option.py
tosbaa/samba-liman
ddc76b8ab322a07a8d918a9c581440984939d7fe
[ "MIT" ]
1
2020-07-03T06:04:36.000Z
2020-07-03T06:04:36.000Z
samba_edit/add_option.py
tosbaa/samba-liman
ddc76b8ab322a07a8d918a9c581440984939d7fe
[ "MIT" ]
null
null
null
samba_edit/add_option.py
tosbaa/samba-liman
ddc76b8ab322a07a8d918a9c581440984939d7fe
[ "MIT" ]
null
null
null
import sys import configparser import os import subprocess SAMBA_CONFIG_PARSER = configparser.ConfigParser() SAMBA_FILE_PATH = '../smb.conf' SAMBA_CONFIG_PARSER.read(SAMBA_FILE_PATH) SECTION_NAME = sys.argv[2] OPTION_NAME = sys.argv[3] VALUE = sys.argv[4] def section_exist(section_name): """ Takes section_name(str) argument and returns True if the given name exist """ return SAMBA_CONFIG_PARSER.has_section(section_name) def option_exist(section_name, option_name): """ Checks section_name(str) and option_name(str) and returns True if option exist """ return SAMBA_CONFIG_PARSER.has_option(section_name, option_name) def add_option(section_name, option_name, value): sed_script = "sed -i '/\[{:s}\]/a {:s} \= {:s}' {:s}".format(SECTION_NAME, OPTION_NAME, VALUE, SAMBA_FILE_PATH) subprocess.Popen(sed_script, shell=True) def get_option_value(section_name, option_name): return SAMBA_CONFIG_PARSER.get(section_name, option_name) def make_bash_call(stage_name): bash = ['python3.7', __file__, stage_name, sys.argv[2], sys.argv[3], sys.argv[4]] output = subprocess.Popen(bash, stdout=subprocess.PIPE).stdout return output.read().decode('utf-8') def automate(): before_output = make_bash_call('before') if before_output != "ok\n": print(before_output) exit() print('before ok') make_bash_call('run') after_output = make_bash_call('after') if after_output != 'ok\n': print(after_output) exit() print('after ok') def before(): if not section_exist(SECTION_NAME): print('Section : {:s} is not exist'.format(SECTION_NAME)) exit() if option_exist(SECTION_NAME, OPTION_NAME): print('Option : {:s} is already defined'.format(OPTION_NAME)) exit() print('ok') def run(): add_option(SECTION_NAME, OPTION_NAME, VALUE) def after(): if not option_exist(SECTION_NAME, OPTION_NAME): print('Option : {:s} can not be created'.format(VALUE)) exit() if VALUE != get_option_value(SECTION_NAME, OPTION_NAME): print('Value : {:s} can not be assigned'.format(VALUE)) exit() print('ok') if __name__ == "__main__": globals()[sys.argv[1]]()
28.0125
114
0.683623
f9a315bde2ba93a5c1aea438076f1fcd3a123828
2,512
py
Python
src/models/user_serviceprovider.py
kumardeepak/user-mgmt
43f37fd1bf0a21ae3d17126b21e0b906145ecaf6
[ "MIT" ]
null
null
null
src/models/user_serviceprovider.py
kumardeepak/user-mgmt
43f37fd1bf0a21ae3d17126b21e0b906145ecaf6
[ "MIT" ]
null
null
null
src/models/user_serviceprovider.py
kumardeepak/user-mgmt
43f37fd1bf0a21ae3d17126b21e0b906145ecaf6
[ "MIT" ]
null
null
null
import json from datetime import datetime class UserServiceProvider: def __init__(self, args, ignore_username=False): if ignore_username == False: self.username = args['username'] self.role = args['role'] self.first_name = args['first_name'] self.last_name = args['last_name'] self.contact_mobile_number = args['contact_mobile_number'] self.contact_email_address = args['contact_email_address'] self.address = args['address'] self.country = args['country'] self.state = args['state'] self.zip_code = args['zip_code'] else: self.username = '' self.role = '' self.first_name = '' self.last_name = '' self.contact_mobile_number = '' self.contact_email_address = '' self.address = '' self.country = '' self.state = '' self.zip_code = '' self.app_key = args['app_key'] self.app_secret = args['app_secret'] self.created_on = datetime.utcnow() self.modified_on = datetime.utcnow() self.created_by = '' def to_dict(self): user = { 'username': self.username, 'role': self.role, 'first_name': self.first_name, 'last_name': self.last_name, 'contact_mobile_number': self.contact_mobile_number, 'contact_email_address': self.contact_email_address, 'address': self.address, 'country': self.country, 'state': self.state, 'zip_code': self.zip_code, 'created_on': str(self.created_on), 'modified_on': str(self.modified_on), 'created_by': self.created_by, 'app_key': self.app_key, 'app_secret': self.app_secret, } return user def get_role(self): return 'service_provider'
43.310345
71
0.435111
4905650b3f0609f8b2ceb77a96da114c500071e1
624
py
Python
manage.py
SoftwareDevTest/softwaredapi
44feb67c7b3f7cdfa05d0e81aca5013e71b999b5
[ "Apache-2.0" ]
5
2019-12-10T05:20:59.000Z
2019-12-10T09:59:34.000Z
manage.py
SoftwareDevTest/softwaredapi
44feb67c7b3f7cdfa05d0e81aca5013e71b999b5
[ "Apache-2.0" ]
6
2020-02-12T02:30:31.000Z
2021-06-09T18:46:58.000Z
manage.py
SoftwareDevTest/softwaredapi
44feb67c7b3f7cdfa05d0e81aca5013e71b999b5
[ "Apache-2.0" ]
1
2019-12-10T05:21:02.000Z
2019-12-10T05:21:02.000Z
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'dapi.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
28.363636
73
0.68109
bb0c46c27910ba2d06b5a99b2ca7480d34f23af4
8,493
py
Python
h1/model/iso.py
hyperonecom/h1-client-python
4ce355852ba3120ec1b8f509ab5894a5c08da730
[ "MIT" ]
null
null
null
h1/model/iso.py
hyperonecom/h1-client-python
4ce355852ba3120ec1b8f509ab5894a5c08da730
[ "MIT" ]
null
null
null
h1/model/iso.py
hyperonecom/h1-client-python
4ce355852ba3120ec1b8f509ab5894a5c08da730
[ "MIT" ]
null
null
null
""" HyperOne HyperOne API # noqa: E501 The version of the OpenAPI document: 0.1.0 Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from h1.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) def lazy_import(): from h1.model.iso_metadata import IsoMetadata from h1.model.tag import Tag globals()['IsoMetadata'] = IsoMetadata globals()['Tag'] = Tag class Iso(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { ('state',): { 'UPLOADING': "Uploading", 'ONLINE': "Online", 'UNKNOWN': "Unknown", 'PROCESSING': "Processing", 'NOTCREATED': "NotCreated", }, } validations = { } additional_properties_type = None _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'id': (str,), # noqa: E501 'name': (str,), # noqa: E501 'flavour': (str,), # noqa: E501 'modified_on': (datetime,), # noqa: E501 'modified_by': (str,), # noqa: E501 'created_on': (datetime,), # noqa: E501 'created_by': (str,), # noqa: E501 'state': (str,), # noqa: E501 'project': (str,), # noqa: E501 'uri': (str,), # noqa: E501 'size': (float,), # noqa: E501 'metadata': (IsoMetadata,), # noqa: E501 'tag': ([Tag],), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'id': 'id', # noqa: E501 'name': 'name', # noqa: E501 'flavour': 'flavour', # noqa: E501 'modified_on': 'modifiedOn', # noqa: E501 'modified_by': 'modifiedBy', # noqa: E501 'created_on': 'createdOn', # noqa: E501 'created_by': 'createdBy', # noqa: E501 'state': 'state', # noqa: E501 'project': 'project', # noqa: E501 'uri': 'uri', # noqa: E501 'size': 'size', # noqa: E501 'metadata': 'metadata', # noqa: E501 'tag': 'tag', # noqa: E501 } _composed_schemas = {} required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """Iso - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) id (str): [optional] # noqa: E501 name (str): [optional] # noqa: E501 flavour (str): [optional] # noqa: E501 modified_on (datetime): [optional] # noqa: E501 modified_by (str): [optional] # noqa: E501 created_on (datetime): [optional] # noqa: E501 created_by (str): [optional] # noqa: E501 state (str): [optional] # noqa: E501 project (str): [optional] # noqa: E501 uri (str): [optional] # noqa: E501 size (float): [optional] # noqa: E501 metadata (IsoMetadata): [optional] # noqa: E501 tag ([Tag]): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value)
39.138249
110
0.554221
d6a52dc1101c14a2ba5c46cdf21a7dc4477789cc
15,659
py
Python
timeseriesql_matplotlib/__init__.py
mbeale/tiemseriesql-matplotlib
5eb388fd1224790dfb69690e0be289a10f82c2e0
[ "BSD-2-Clause" ]
5
2020-01-28T18:56:08.000Z
2020-05-25T22:30:08.000Z
timeseriesql_matplotlib/__init__.py
mbeale/tiemseriesql-matplotlib
5eb388fd1224790dfb69690e0be289a10f82c2e0
[ "BSD-2-Clause" ]
null
null
null
timeseriesql_matplotlib/__init__.py
mbeale/tiemseriesql-matplotlib
5eb388fd1224790dfb69690e0be289a10f82c2e0
[ "BSD-2-Clause" ]
null
null
null
import matplotlib.pyplot as plt from matplotlib.dates import ( DayLocator, HourLocator, MonthLocator, YearLocator, MinuteLocator, DateFormatter, ) import numpy as np import math from timeseriesql.plot import Plot DEFAULT_FIGURE_SIZE = (20, 10) FIGURE_COUNTER = 1 def init_ax_if_none(func): def inner(*args, **kwargs): if 'ax' not in kwargs or kwargs['ax'] == None: global FIGURE_COUNTER fig = plt.figure(FIGURE_COUNTER, figsize=DEFAULT_FIGURE_SIZE) fig.autofmt_xdate() ax = fig.add_subplot(111) print(id(ax)) kwargs['ax'] = ax FIGURE_COUNTER += 1 return func(*args, **kwargs) return inner def auto_plot(ts): diff = ts.time[-1] - ts.time[0] if diff > 31536000: return "y" elif diff > 2678400: return "mth" elif diff > 604800: return "dow" elif diff > 86400: return "h" elif diff > 3600: return "m" return "s" timebox_funcs = { "s": ["second", 60, None], "m": ["minute", 60, None], "h": ["hour", 24, None], "dow": ["weekday", 7, ["Mon", "Tues", "Wed", "Thu", "Fri", "Sat", "Sun"]], "d": ["day", 31, None], "mth": [ "month", 12, [ "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec", ], ], } class MatplotlibTQL(Plot): def _create_xaxis_date(self, ax, date_index): """ Uses buest guess for x axis labels """ window = (date_index[-1] - date_index[0]).astype(int) interval=5 xlabel = "" if window <= 3600: minor_locator = MinuteLocator(interval=interval) minor_formatter = DateFormatter("%M") major_locator = HourLocator() major_formatter = DateFormatter("\n%Y-%m-%d %H:%M") xlabel = "Minute" elif window <= 86400: minor_locator = HourLocator(interval=interval) minor_formatter = DateFormatter("%H:%M") major_locator = DayLocator() major_formatter = DateFormatter("\n%Y-%m-%d") xlabel = "Hour" elif window <= (7 * 86400): minor_locator = HourLocator(interval=6) minor_formatter = DateFormatter("%H:%M") major_locator = DayLocator() major_formatter = DateFormatter("\n%Y-%m-%d") xlabel = "Hour" elif window <= (60 * 86400): #if len(date_index) > 30: # interval = 2 minor_locator = DayLocator(interval=interval) minor_formatter = DateFormatter("%m-%d") major_locator = YearLocator() major_formatter = DateFormatter("\n%Y") xlabel = "Day" else: minor_locator = MonthLocator(interval=interval) minor_formatter = DateFormatter("%B") major_locator = YearLocator() major_formatter = DateFormatter("\n%Y") xlabel = "Month" ax.xaxis.set_minor_locator(minor_locator) ax.xaxis.set_minor_formatter(minor_formatter) ax.xaxis.set_major_locator(major_locator) ax.xaxis.set_major_formatter(major_formatter) ax.fmt_xdata = DateFormatter("%Y-%m-%d %H:%M:%S") ax.set_xlabel(xlabel) def subplot(self, func, ts, **kwargs): """ Plot each column in it's own chart func: function The plotting function ts: TimeSeries the time series kwargs: arguement list this will be pass to the plotting function Example ------- subplot(dist_plot,ts, percentiles=[50, 99]) >>> """ size = ts.shape[1] fig, ax = plt.subplots( size, 1, figsize=DEFAULT_FIGURE_SIZE, sharex="col", sharey="row" ) for i, col in enumerate(ax): func(ts[:, i], ax=col, **kwargs) @init_ax_if_none def line_plot(self, ts, ax=None, legend=True, labels=None, ylabel=None, **kwargs): """Plot charts using sane time series defaults with Matplotlib. Parameters ---------- ts: TimeSeries time series to plot ax : matplotlib.axes.Axes an Axes to plot against. One will be created if not included legend: Boolean Decision to generate a legend labels: list A list of labels to use instead of generated labels ylabel: string yaxis_label Returns ------- None Example ------- line_plot(ts) >>> """ ylabel = self.ylabel_func(ts) if ylabel is None else ylabel date_index = ts.time.dt self._create_xaxis_date(ax, date_index) ax.set_title(self.title_func(ts), fontsize=18) ax.plot(date_index, ts.data, **kwargs) ax.set_ylabel(ylabel) if legend: if not labels: labels = self.legend_labels_func(ts) if labels != [""]: ax.legend(title="Streams", labels=labels[:5]) @init_ax_if_none def dist_plot(self, ts, ax=None, percentiles=None, xlabel=None, **kwargs): """ Create a distribution plot Parameters ---------- ts: TimeSeries time series to plot ax : matplotlib.axes.Axes an Axes to plot against. One will be created if not included percentiles: list an array of percentiles to plot xlabel: string xaxis_label Returns ------- None Example ------- dist_plot(ts, percentiles=[50, 99]) >>> """ xlabel = self.xlabel_func(ts) if xlabel is None else xlabel hist = ax.hist(ts.data.flatten(), bins="auto", rwidth=0.99) ax.set_title("Distribution for " + self.title_func(ts), fontsize=18) ax.set_ylabel("Count") ax.set_xlabel(xlabel) if percentiles: m = max(hist[0]) for p in percentiles: value = np.percentile(ts.data.flatten(), p) ax.axvline(value, color="r", linestyle="--", ymax=0.95) ax.text(x=value, y=m, s=f"p{p}") @init_ax_if_none def stacked_plot(self, ts, ax=None, ylabel=None, **kwargs): """Plot stacked charts using sane time series defaults with Matplotlib. Parameters ---------- ts: TimeSeries time series to plot ax : matplotlib.axes.Axes an Axes to plot against. One will be created if not included ylabel: string yaxis_label Returns ------- None Example ------- stacked_plot(ts) >>> """ ylabel = self.ylabel_func(ts) if ylabel is None else ylabel date_index = ts.time.dt self._create_xaxis_date(ax, date_index) labels = self.legend_labels_func(ts) ax.set_title(self.title_func(ts), fontsize=18) ax.stackplot(date_index, ts.data.T, labels=labels[:5]) ax.set_ylabel(ylabel) ax.legend(title="Streams", labels=labels[:5]) @init_ax_if_none def timebox_plot(self, ts, ax=None, plot="auto", ylabel=None, **kwargs): """ A time boxplot for time series EDA. plot: string options ------- auto - find the best possible time range s - second buckets m - minute buckets h - hour buckets d - day buckets mth - month buckets y - year buckets ax: axes to use for plotting. One is generated if not passed ylabel: string yaxis_label kwargs: kwargs pass to the axes as options """ ylabel = self.ylabel_func(ts) if ylabel is None else ylabel if plot == "auto": plot = auto_plot(ts) func, max_size, labels = timebox_funcs[plot] dates = ts.time.dt if plot == "dow": # <-----:puke: dates = np.array([getattr(x.tolist(), func)() for x in dates]) else: dates = np.array([getattr(x.tolist(), func) for x in dates]) max_count = 0 for i in range(max_size): l = len(np.argwhere(dates == i)) if l > max_count: max_count = l data = np.empty((max_count, max_size)) data[:] = np.nan for i in range(max_size): row_slice = slice(None, None, None) temp = ts.data[np.argwhere(dates == i)[:, 0]][:, 0] if temp.shape != data[:, i].shape: row_slice = slice(None, temp.shape[0], None) data[row_slice, i] = temp # drop nan new_data = [] for col in data.T: new_data.append(col[~np.isnan(col)]) ax.boxplot(new_data, **kwargs) ax.set_ylabel(ylabel) ax.set_xlabel(func[0].upper() + func[1:]) ax.set_title(self.title_func(ts), fontsize=18) if labels: ax.set_xticklabels(labels) @init_ax_if_none def correlogram_plot(self, ts, ax=None, **kwargs): """Plot stacked charts using sane time series defaults with Matplotlib. Parameters ---------- ts: TimeSeries time series to plot ax : matplotlib.axes.Axes an Axes to plot against. One will be created if not included Returns ------- None Example ------- correlogram_plot(ts) >>> """ ax.acorr(ts.data.flatten(), usevlines=True, normed=True, lw=2, **kwargs) ax.set_ylabel("Correlation") ax.set_xlabel("Lag") def lag_plot(self, ts, lags=12, max_per_row=3, **kwargs): """Plot lag plots Parameters ---------- ts: TimeSeries time series to plot lags: int or iterable the lags to plot. If an iterable, a custom lag configuration with be used ax : matplotlib.axes.Axes an Axes to plot against. One will be created if not included max_per_row : int the maximum charts in a row Returns ------- None Example ------- lag_plot(ts) >>> """ if isinstance(lags, int): obj = range(1, lags+1) else: obj = lags try: iter(obj) except TypeError: raise TypeError("Expecting lags to be either an int or an iterable") s = {} l = len(ts) for i in obj: if isinstance(i, int): original_slice = slice(0, -(i)) lag_slice = slice(i, l) s[i] = [original_slice, lag_slice] size = len(s) fig, ax = plt.subplots( math.ceil(size / max_per_row), max_per_row, figsize=DEFAULT_FIGURE_SIZE, sharex="col", sharey="row" ) for index, (key, (original,compare)) in enumerate(s.items()): if max_per_row == 1: ax[index].scatter(ts.data[original],ts.data[compare]) ax[index].set_title(f"lag -{key}") else: ax[index // max_per_row][index % max_per_row].scatter(ts.data[original],ts.data[compare]) ax[index // max_per_row][index % max_per_row].set_title(f"lag -{key}") return None @init_ax_if_none def heatmap_plot(self, ts, ax=None, plot="auto", cmap="Blues", title="", ylabel=None, **kwargs): """ A heatmap for time series EDA. plot: string options ------- auto - find the best possible time range s - second buckets m - minute buckets h - hour buckets d - day buckets mth - month buckets y - year buckets ax: axes to use for plotting. One is generated if not passed cmap : string the value to use for the coloring. see https://matplotlib.org/tutorials/colors/colormaps.html ylabel: string yaxis_label kwargs: kwargs pass to the axes as options """ ylabel = self.ylabel_func(ts) if ylabel is None else ylabel if plot == "auto": plot = auto_plot(ts) func, max_size, labels = timebox_funcs[plot] hist, bins = np.histogram(ts) new_ts = np.zeros((len(bins)-1, max_size)) dates = ts.time.dt if plot == "dow": # <-----:puke: dates = np.array([getattr(x.tolist(), func)() for x in dates]) else: dates = np.array([getattr(x.tolist(), func) for x in dates]) for i in range(max_size): new_ts[:,i] = np.histogram(ts[np.argwhere(dates==i)], bins)[0] im = ax.imshow(new_ts, cmap=cmap, interpolation='nearest') plt.colorbar(im, ax=ax) test = ax.get_xticklabels() ax.set_ylabel(ylabel) ax.set_xlabel(func[0].upper() + func[1:]) ax.set_title(self.title_func(ts), fontsize=18) if labels: labels = [labels[int(x)] for x in ax.get_xticks() if x < len(labels)] ax.set_xticklabels(labels) ax.set_yticklabels([math.ceil(x) for x in bins]) return None @init_ax_if_none def text_plot(self, value, ax=None, title="", fontsize=48, thresholds=None, **kwargs): """ Plot a single value Parameters ---------- value: number a value to display ax : matplotlib.axes.Axes an Axes to plot against. One will be created if not included title: string title for box fontsize: int size for the text thresholds: list(tuple) tuples that colorize the text and background color based on the value of the numer The format is (threshold, background color, font color). Based on the color palette at: https://matplotlib.org/3.1.0/gallery/color/named_colors.html If threshold is None, then the condition is considered met. The default background color is 'white' and the font color is 'black' Returns ------- None Example ------- text_plot(value, title="A Nice Text Box", thresholds=[(0, 'green', 'white'), (20, 'cornflowerblue', 'white'), (None, 'darkorange', 'white')]) >>> """ fontcolor = 'black' facecolor = 'white' if thresholds: for t in thresholds: if t[0] is not None: if value < t[0]: if t[1]: facecolor = t[1] if t[2]: fontcolor = t[2] break else: if t[1]: facecolor = t[1] if t[2]: fontcolor = t[2] break ax.text(0.5, 0.5, "%.2f" % (value), va="center", ha="center", fontsize=fontsize, color=fontcolor) ax.set_title(title) ax.set_facecolor(facecolor) ax.tick_params(labelbottom=False, labelleft=False) ax.grid(False)
30.524366
149
0.520723
6d45cb282714357f188f75097614850eca42e10a
3,774
py
Python
org-watch.py
NicholasTaylor/ticket-watch
75db54ef060a4aa0d0944898865ba32b08e4d57c
[ "MIT" ]
null
null
null
org-watch.py
NicholasTaylor/ticket-watch
75db54ef060a4aa0d0944898865ba32b08e4d57c
[ "MIT" ]
null
null
null
org-watch.py
NicholasTaylor/ticket-watch
75db54ef060a4aa0d0944898865ba32b08e4d57c
[ "MIT" ]
null
null
null
import requests, functions, config, json from classes import Event def getOrgs(): from pathlib import Path return json.loads(Path('orgs.json').read_text()) def getOrgStatus(org,latestPage,events): page = latestPage multipage = True if latestPage and latestPage > 1 else False url = 'https://www.eventbriteapi.com/v3/organizers/' +str(org) +'/events?page=' +str(latestPage) if multipage else 'https://www.eventbriteapi.com/v3/organizers/' +str(org) +'/events/?page=1' headers = { 'Authorization': 'Bearer ' +config.event_auth } r = requests.get(url, headers=headers) eventsList = [] jsonOutput = r.json() print('Org: %i' % (org)) try: print('Reading from page ' +str(jsonOutput['pagination']['page_number']) +'.') except: pass outputs = jsonOutput['events'] try: continuation = jsonOutput['pagination']['continuation'] except: pass has_more_items = jsonOutput['pagination']['has_more_items'] while has_more_items and continuation: page += 1 print('More data available. Pulling from next page.') url2 = url +'&continuation=' +continuation headers2 = { 'Authorization': 'Bearer ' +config.event_auth } r2 = requests.get(url2, headers=headers2) json2 = r2.json() print('Reading from page ' +str(json2['pagination']['page_number']) +'.') outputs += json2['events'] try: continuation = json2['pagination']['continuation'] except: pass has_more_items = json2['pagination']['has_more_items'] for event in outputs: candidate = Event(event['id'],event['name']['text'],event['start']['utc'],event['url']) if candidate.isFuture() and candidate.id not in events: eventsList.append(candidate) return page, eventsList def orgValidate(orgs): for org in orgs: try: checks = [(str(org['orgId']), 'Organization ID'), (org['name'], 'Organization Name')] for check in checks: cField, cName = check functions.configCheck(cField, cName) except AttributeError: print('Your orgs file is missing certain required key/value pairs. Check orgs.json. Exiting.') # Checking if latestPage exists try: print(str(org['latestPage'])) except KeyError: print('No latestPage found. Setting default to 1. Backfilling from beginning.') org['latestPage'] = 1 # Checking if events array exists try: print(str(org['events'])) except KeyError: print('No events array found. Not filtering for this run.') org['events'] = [] def main(orgs): contacts = functions.genContacts(config.twilio_contacts) for org in orgs: newPage, newEventsList = (getOrgStatus(org['orgId'],org['latestPage'],org['events'])) org['latestPage'] = newPage contacts_batch = [] for contact in contacts: if contact.is_optin(org['orgId']): contacts_batch.append(contact.number) if len(newEventsList) > 0: plural = 's' if len(newEventsList) > 1 else '' msg = 'Heads up. New event' +plural +' from ' +org['name'] +':\n' for event in newEventsList: msg += event.name +': ' +event.url +'\n' org['events'].append(event.id) if len(contacts_batch) > 0: for number in contacts_batch: print(functions.sendTxt(number,msg)) with open('orgs.json', 'w+') as writeFile: json.dump(orgs, writeFile) functions.validate() orgs = getOrgs() orgValidate(orgs) main(orgs)
38.907216
194
0.595919
1fc3f520fd7266f1340185f8a44a05e7a7f33dee
1,714
py
Python
tacker/sol_refactored/objects/v1/placement_constraint.py
h1r0mu/tacker
8c69dda51fcfe215c4878a86b82018d2b96e5561
[ "Apache-2.0" ]
116
2015-10-18T02:57:08.000Z
2022-03-15T04:09:18.000Z
tacker/sol_refactored/objects/v1/placement_constraint.py
h1r0mu/tacker
8c69dda51fcfe215c4878a86b82018d2b96e5561
[ "Apache-2.0" ]
6
2016-11-07T22:15:54.000Z
2021-05-09T06:13:08.000Z
tacker/sol_refactored/objects/v1/placement_constraint.py
h1r0mu/tacker
8c69dda51fcfe215c4878a86b82018d2b96e5561
[ "Apache-2.0" ]
166
2015-10-20T15:31:52.000Z
2021-11-12T08:39:49.000Z
# Copyright (C) 2021 Nippon Telegraph and Telephone Corporation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from tacker.sol_refactored.objects import base from tacker.sol_refactored.objects import fields # NFV-SOL 003 # - v2.6.1 9.5.3.6 (API version: 1.3.0) # - v2.7.1 9.5.3.6 (API version: 1.3.0) # - v2.8.1 9.5.3.6 (API version: 1.3.0) # - v3.3.1 9.5.3.6 (API version: 1.4.0) @base.TackerObjectRegistry.register class PlacementConstraintV1(base.TackerObject, base.TackerObjectDictCompat): # Version 1.0: Initial version VERSION = '1.0' fields = { 'affinityOrAntiAffinity': fields.EnumField( valid_values=[ 'AFFINITY', 'ANTI_AFFINITY', ], nullable=False ), 'scope': fields.EnumField( valid_values=[ 'NFVI_POP', 'ZONE', 'ZONE_GROUP', 'NFVI_NODE', ], nullable=False, ), 'resource': fields.ListOfObjectsField( 'ConstraintResourceRefV1', nullable=False), 'fallbackBestEffort': fields.BooleanField(nullable=True), }
32.961538
78
0.627188
66946f3e174b00e1a68bd347aa535c685b1e8b8f
6,939
py
Python
examples/pwr_run/checkpointing/debug/k80_only/job48.py
boringlee24/keras_old
1e1176c45c4952ba1b9b9e58e9cc4df027ab111d
[ "MIT" ]
null
null
null
examples/pwr_run/checkpointing/debug/k80_only/job48.py
boringlee24/keras_old
1e1176c45c4952ba1b9b9e58e9cc4df027ab111d
[ "MIT" ]
null
null
null
examples/pwr_run/checkpointing/debug/k80_only/job48.py
boringlee24/keras_old
1e1176c45c4952ba1b9b9e58e9cc4df027ab111d
[ "MIT" ]
null
null
null
""" #Trains a ResNet on the CIFAR10 dataset. """ from __future__ import print_function import keras from keras.layers import Dense, Conv2D, BatchNormalization, Activation from keras.layers import AveragePooling2D, Input, Flatten from keras.optimizers import Adam from keras.callbacks import ModelCheckpoint, LearningRateScheduler from keras.callbacks import ReduceLROnPlateau, TensorBoard from keras.preprocessing.image import ImageDataGenerator from keras.regularizers import l2 from keras import backend as K from keras.models import Model from keras.datasets import cifar10 from keras.applications.resnet import ResNet50, ResNet101, ResNet152 from keras import models, layers, optimizers from datetime import datetime import tensorflow as tf import numpy as np import os import pdb import sys import argparse import time import signal import glob import json import send_signal parser = argparse.ArgumentParser(description='Tensorflow Cifar10 Training') parser.add_argument('--tc', metavar='TESTCASE', type=str, help='specific testcase name') parser.add_argument('--resume', dest='resume', action='store_true', help='if True, resume training from a checkpoint') parser.add_argument('--gpu_num', metavar='GPU_NUMBER', type=str, help='select which gpu to use') parser.add_argument('--node', metavar='HOST_NODE', type=str, help='node of the host (scheduler)') parser.set_defaults(resume=False) args = parser.parse_args() os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"]=args.gpu_num # Training parameters batch_size = 32 args_lr = 0.0014 args_model = 'resnet101' epoch_begin_time = 0 job_name = sys.argv[0].split('.')[0] save_files = '/scratch/li.baol/checkpoint_k80_only/' + job_name + '*' total_epochs = 134 starting_epoch = 0 if args.resume: save_file = glob.glob(save_files)[0] # epochs = int(save_file.split('/')[4].split('_')[1].split('.')[0]) starting_epoch = int(save_file.split('/')[4].split('.')[0].split('_')[-1]) data_augmentation = True num_classes = 10 # Subtracting pixel mean improves accuracy subtract_pixel_mean = True n = 3 # Model name, depth and version model_type = args.tc #'P100_resnet50_he_256_1' # Load the CIFAR10 data. (x_train, y_train), (x_test, y_test) = cifar10.load_data() # Normalize data. x_train = x_train.astype('float32') / 255 x_test = x_test.astype('float32') / 255 # If subtract pixel mean is enabled if subtract_pixel_mean: x_train_mean = np.mean(x_train, axis=0) x_train -= x_train_mean x_test -= x_train_mean print('x_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') print('y_train shape:', y_train.shape) # Convert class vectors to binary class matrices. y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) if args.resume: print('resume from checkpoint') model = keras.models.load_model(save_file) else: print('train from start') model = models.Sequential() if '50' in args_model: base_model = ResNet50(weights=None, include_top=False, input_shape=(32, 32, 3), pooling=None) elif '101' in args_model: base_model = ResNet101(weights=None, include_top=False, input_shape=(32, 32, 3), pooling=None) elif '152' in args_model: base_model = ResNet152(weights=None, include_top=False, input_shape=(32, 32, 3), pooling=None) #base_model.summary() #pdb.set_trace() #model.add(layers.UpSampling2D((2,2))) #model.add(layers.UpSampling2D((2,2))) #model.add(layers.UpSampling2D((2,2))) model.add(base_model) model.add(layers.Flatten()) #model.add(layers.BatchNormalization()) #model.add(layers.Dense(128, activation='relu')) #model.add(layers.Dropout(0.5)) #model.add(layers.BatchNormalization()) #model.add(layers.Dense(64, activation='relu')) #model.add(layers.Dropout(0.5)) #model.add(layers.BatchNormalization()) model.add(layers.Dense(10, activation='softmax'))#, kernel_initializer='he_uniform')) model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=args_lr), metrics=['accuracy']) #model.summary() print(model_type) #pdb.set_trace() current_epoch = 0 ################### connects interrupt signal to the process ##################### def terminateProcess(signalNumber, frame): # first record the wasted epoch time global epoch_begin_time if epoch_begin_time == 0: epoch_waste_time = 0 else: epoch_waste_time = int(time.time() - epoch_begin_time) epoch_waste_dict = {} with open('epoch_waste.json', 'r') as fp: epoch_waste_dict = json.load(fp) epoch_waste_dict[job_name] += epoch_waste_time json_file3 = json.dumps(epoch_waste_dict) with open('epoch_waste.json', 'w') as fp: fp.write(json_file3) print('checkpointing the model triggered by kill -15 signal') # delete whatever checkpoint that already exists for f in glob.glob(save_files): os.remove(f) model.save('/scratch/li.baol/checkpoint_k80_only/' + job_name + '_' + str(current_epoch) + '.h5') print ('(SIGTERM) terminating the process') checkpoint_dict = {} with open('checkpoint.json', 'r') as fp: checkpoint_dict = json.load(fp) checkpoint_dict[job_name] = 1 json_file3 = json.dumps(checkpoint_dict) with open('checkpoint.json', 'w') as fp: fp.write(json_file3) sys.exit() signal.signal(signal.SIGTERM, terminateProcess) ################################################################################# logdir = '/scratch/li.baol/tsrbrd_log/job_runs/' + model_type + '/' + job_name tensorboard_callback = TensorBoard(log_dir=logdir)#, update_freq='batch') class PrintEpoch(keras.callbacks.Callback): def on_epoch_begin(self, epoch, logs=None): global current_epoch #remaining_epochs = epochs - epoch current_epoch = epoch print('current epoch ' + str(current_epoch)) global epoch_begin_time epoch_begin_time = time.time() my_callback = PrintEpoch() callbacks = [tensorboard_callback, my_callback] #[checkpoint, lr_reducer, lr_scheduler, tensorboard_callback] # Run training # send signal to indicate checkpoint is qualified message = job_name + ' ckpt_qual' send_signal.send(args.node, 10002, message) model.fit(x_train, y_train, batch_size=batch_size, epochs=round(total_epochs/2), validation_data=(x_test, y_test), shuffle=True, callbacks=callbacks, initial_epoch=starting_epoch, verbose=1 ) # Score trained model. scores = model.evaluate(x_test, y_test, verbose=1) print('Test loss:', scores[0]) print('Test accuracy:', scores[1]) # send signal to indicate job has finished message = job_name + ' finish' send_signal.send(args.node, 10002, message)
31.684932
118
0.702407
3f7020ba676457ca01fc3888aa5bf0a94acb05e0
3,450
py
Python
lib/common.py
haribommi/vaapi-fits
cbf2a463bd3b2c9af5c45a1376b0bde2b703ed23
[ "BSD-3-Clause" ]
null
null
null
lib/common.py
haribommi/vaapi-fits
cbf2a463bd3b2c9af5c45a1376b0bde2b703ed23
[ "BSD-3-Clause" ]
null
null
null
lib/common.py
haribommi/vaapi-fits
cbf2a463bd3b2c9af5c45a1376b0bde2b703ed23
[ "BSD-3-Clause" ]
null
null
null
### ### Copyright (C) 2018-2019 Intel Corporation ### ### SPDX-License-Identifier: BSD-3-Clause ### import os import slash import subprocess import threading import time class memoize: def __init__(self, function): self.function = function self.memoized = {} def __call__(self, *args): try: return self.memoized[args] except KeyError: r = self.function(*args) self.memoized[args] = r return r def __repr__(self): return str(self.function.__name__) @memoize def get_media(): return slash.plugins.manager.get_plugin("media") def killproc(proc): result = proc.poll() if result is not None: return result # try to 'gently' terminate proc proc.terminate() for i in xrange(5): result = proc.poll() if result is not None: return result time.sleep(1) # wait a little longer for proc to terminate # failed to terminate proc, so kill it proc.kill() for i in xrange(10): result = proc.poll() if result is not None: return result time.sleep(1) # give system more time to kill proc # failed to kill proc if result is None: slash.logger.warn('Failed to kill process with pid {}'.format(proc.pid)) return result def call(command, withSlashLogger = True): calls_allowed = get_media()._calls_allowed() assert calls_allowed, "call refused" if withSlashLogger: logger = slash.logger.info else: logger = lambda x: None def readproc(proc): for line in iter(proc.stdout.readline, ''): readproc.output += line logger(line.rstrip('\n')) readproc.output = "" def timeout(proc): timeout.triggered = proc.poll() is None killproc(proc) timeout.triggered = False error = False message = "" # Without "exec", the shell will launch the "command" in a child process and # proc.pid will represent the shell (not the "command"). And therefore, the # "command" will not get killed with proc.terminate() or proc.kill(). # # When we use "exec" to run the "command". This will cause the "command" to # inherit the shell process and proc.pid will represent the actual "command". proc = subprocess.Popen( "exec " + command, stdin = subprocess.PIPE, stdout = subprocess.PIPE, stderr = subprocess.STDOUT, shell = True) logger("CALL: {} (pid: {})".format(command, proc.pid)) reader = threading.Thread(target = readproc, args = [proc]) timer = threading.Timer(get_media().call_timeout, timeout, [proc]) reader.daemon = True timer.daemon = True reader.start() timer.start() try: # in case of user interrupt proc.wait() timer.cancel() except: killproc(proc) raise finally: timer.cancel() timer.join(30) reader.join(30) if timeout.triggered: error = True get_media()._report_call_timeout() message = "CALL TIMEOUT: timeout after {} seconds (pid: {}).".format( get_media().call_timeout, proc.pid) elif proc.returncode != 0: error = True message = "CALL ERROR: failed with exitcode {} (pid: {})".format(proc.returncode, proc.pid) assert not error, message return readproc.output def try_call(command): try: subprocess.check_output(command, stderr = subprocess.STDOUT, shell = True) except: return False return True def mapRange(value, srcRange, destRange): (smin, smax), (dmin, dmax) = srcRange, destRange return dmin + ((value - smin) * (dmax - dmin) / (smax - smin))
24.642857
95
0.666667
d75b375e44855e0f0428ce2891275fc67b0cdd33
2,654
py
Python
tests/test_fits.py
dennisvang/imageio
54e957a8d4c5faa90c6dd16ae3f64346a5ceafa4
[ "BSD-2-Clause" ]
null
null
null
tests/test_fits.py
dennisvang/imageio
54e957a8d4c5faa90c6dd16ae3f64346a5ceafa4
[ "BSD-2-Clause" ]
null
null
null
tests/test_fits.py
dennisvang/imageio
54e957a8d4c5faa90c6dd16ae3f64346a5ceafa4
[ "BSD-2-Clause" ]
null
null
null
""" Test fits plugin functionality. """ import pytest import imageio.v2 as iio from imageio.core import Request import numpy as np from conftest import deprecated_test fits = pytest.importorskip("astropy.io.fits", reason="astropy is not installed") @deprecated_test def setup_module(): # During this test, pretend that FITS is the default format iio.formats.sort("FITS") @deprecated_test def teardown_module(): # Set back to normal iio.formats.sort() @pytest.fixture def normal_plugin_order(): # Use fixture to temporarily set context of normal plugin order for # tests and return to module setup afterwards teardown_module() yield setup_module() @deprecated_test def test_fits_format(test_images): # Test selection for name in ["fits", ".fits"]: format = iio.formats["fits"] assert format.name == "FITS" assert format.__module__.endswith(".fits") # Test cannot read png = test_images / "chelsea.png" assert not format.can_read(Request(png, "ri")) assert not format.can_write(Request(png, "wi")) def test_fits_reading(test_images): """Test reading fits""" simple = test_images / "simple.fits" multi = test_images / "multi.fits" compressed = test_images / "compressed.fits.fz" # One image im = iio.imread(simple, format="fits") ims = iio.mimread(simple, format="fits") assert (im == ims[0]).all() assert len(ims) == 1 # Multiple images ims = iio.mimread(multi, format="fits") assert len(ims) == 3 R = iio.read(multi, format="fits") assert R.format.name == "FITS" ims = list(R) # == [im for im in R] assert len(ims) == 3 # Fail raises = pytest.raises raises(IndexError, R.get_data, -1) raises(IndexError, R.get_data, 3) raises(RuntimeError, R.get_meta_data, None) # no meta data support raises(RuntimeError, R.get_meta_data, 0) # no meta data support # Compressed image im = iio.imread(compressed, format="fits") assert im.shape == (2042, 3054) def test_fits_get_reader(normal_plugin_order, tmp_path): """Test reading fits with get_reader method This is a regression test that closes GitHub issue #636 """ sigma = 10 xx, yy = np.meshgrid(np.arange(512), np.arange(512)) z = (1 / (2 * np.pi * (sigma**2))) * np.exp( -((xx**2) + (yy**2)) / (2 * (sigma**2)) ) img = np.log(z, where=z != 0, out=np.zeros_like(z)) phdu = fits.PrimaryHDU() ihdu = fits.ImageHDU(img) hdul = fits.HDUList([phdu, ihdu]) hdul.writeto(tmp_path / "test.fits") iio.get_reader(tmp_path / "test.fits", format="fits")
26.54
80
0.653353
c2d465d84b58928e4efc3321e844c1e2b270b96e
97
py
Python
flow/__init__.py
nschloe/flow
ef45bdd4181d385b1b01042e9ce0b48e4cdc2318
[ "MIT" ]
6
2018-05-01T18:04:03.000Z
2020-12-29T08:05:53.000Z
flow/__init__.py
nschloe/flow
ef45bdd4181d385b1b01042e9ce0b48e4cdc2318
[ "MIT" ]
1
2018-08-09T07:17:59.000Z
2018-08-09T07:52:18.000Z
flow/__init__.py
nschloe/flow
ef45bdd4181d385b1b01042e9ce0b48e4cdc2318
[ "MIT" ]
4
2018-01-29T18:46:12.000Z
2020-12-27T11:44:05.000Z
# -*- coding: utf-8 -*- # from . import message from . import navier_stokes from . import stokes
16.166667
27
0.680412
0f6bab726e1761e0c8a1e579432081ffda8e4fac
5,047
py
Python
tests/test_describe.py
andras-tim/sadisplay
0f63a67b7a831fce812c662da8b7ca92407c7376
[ "BSD-3-Clause" ]
1
2021-11-06T17:13:58.000Z
2021-11-06T17:13:58.000Z
tests/test_describe.py
andras-tim/sadisplay
0f63a67b7a831fce812c662da8b7ca92407c7376
[ "BSD-3-Clause" ]
null
null
null
tests/test_describe.py
andras-tim/sadisplay
0f63a67b7a831fce812c662da8b7ca92407c7376
[ "BSD-3-Clause" ]
1
2021-11-06T17:13:48.000Z
2021-11-06T17:13:48.000Z
# -*- coding: utf-8 -*- from nose.tools import assert_equal import sadisplay import model class TestDescribe(object): def test_single_mapper(self): objects, relations, inherits = sadisplay.describe([model.User]) assert len(objects) == 1 assert relations == [] assert inherits == [] assert_equal( objects[0], { 'name': model.User.__name__, 'cols': [ ('INTEGER', 'id', 'pk'), ('VARCHAR(50)', 'name', None), ], 'props': ['address', 'books', ], 'methods': ['login', ], } ) def test_single_table(self): objects, relations, inherits = sadisplay.describe([model.notes]) assert len(objects) == 1 assert relations == [] assert inherits == [] assert_equal( objects[0], { 'name': model.notes.name, 'cols': [ ('INTEGER', 'id', 'pk'), ('INTEGER', 'user_id', 'fk'), ('VARCHAR(50)', 'name', None), ], 'props': [], 'methods': [], } ) def test_inherits(self): objects, relations, inherits = sadisplay \ .describe([model.User, model.Admin, model.Manager]) assert len(relations) == 0 assert len(objects) == 3 assert len(inherits) == 2 assert_equal( objects[1], { 'name': model.Admin.__name__, 'cols': [ ('INTEGER', 'id', 'pk'), ('VARCHAR(50)', 'name', None), ('VARCHAR(50)', 'phone', None), ], 'props': ['address', 'books', ], 'methods': ['permissions', ], } ) assert_equal( inherits[0], { 'child': model.Admin.__name__, 'parent': model.User.__name__, } ) def test_relation(self): objects, relations, inherits = sadisplay \ .describe([model.User, model.Address]) assert len(objects) == 2 assert_equal( objects[1], { 'name': model.Address.__name__, 'cols': [ ('INTEGER', 'id', 'pk'), ('INTEGER', 'user_id', 'fk'), ], 'props': ['user'], 'methods': [], } ) assert len(inherits) == 0 assert_equal( relations[0], { 'from': model.Address.__name__, 'to': model.User.__name__, 'by': 'user_id', } ) def test_table(self): objects, relations, inherits = sadisplay \ .describe([model.Book]) assert len(objects) == 1 assert_equal( objects[0], { 'name': model.Book.__name__, 'cols': [ ('INTEGER', 'id', 'pk'), ('INTEGER', 'user_id', 'fk'), ('VARCHAR(50)', 'title', None), ], 'props': ['user'], 'methods': [], } ) objects, relations, inherits = sadisplay \ .describe([model.Book, model.books]) assert len(objects) == 1 assert_equal( objects[0], { 'name': model.Book.__name__, 'cols': [ ('INTEGER', 'id', 'pk'), ('INTEGER', 'user_id', 'fk'), ('VARCHAR(50)', 'title', None), ], 'props': ['user'], 'methods': [], } ) objects, relations, inherits = sadisplay \ .describe([model.books]) assert len(objects) == 1 assert_equal( objects[0], { 'name': model.books.name, 'cols': [ ('INTEGER', 'id', 'pk'), ('INTEGER', 'user_id', 'fk'), ('VARCHAR(50)', 'title', None), ], 'props': [], 'methods': [], } ) def test_column_property(self): objects, relations, inherits = sadisplay \ .describe([model.Employee]) assert_equal(len(objects), 1) assert_equal( objects[0], { 'name': model.Employee.__name__, 'cols': [ ('INTEGER', 'id', 'pk'), ('INTEGER', 'manager_id', 'fk'), ('VARCHAR(50)', 'name', None), ('VARCHAR(50)', 'rank', None), ], 'props': ['address', 'books', 'department'], 'methods': [], })
27.429348
72
0.385377
3cce34f2a12d3d5b8569dbb303beaa191fb0fc7e
271
py
Python
venv/Lib/site-packages/mcipc/rcon/je/commands/spectate.py
Svesnav2/Discord-Bot-Minecraft-server-status
ee34948e741930567a3adb557197523f9d32ace1
[ "Unlicense" ]
null
null
null
venv/Lib/site-packages/mcipc/rcon/je/commands/spectate.py
Svesnav2/Discord-Bot-Minecraft-server-status
ee34948e741930567a3adb557197523f9d32ace1
[ "Unlicense" ]
null
null
null
venv/Lib/site-packages/mcipc/rcon/je/commands/spectate.py
Svesnav2/Discord-Bot-Minecraft-server-status
ee34948e741930567a3adb557197523f9d32ace1
[ "Unlicense" ]
null
null
null
"""Implementation of the spectate command.""" from mcipc.rcon.client import Client __all__ = ['spectate'] def spectate(self: Client, target: str = None, player: str = None) -> str: """Start or stop spectating.""" return self.run('spectate', target, player)
20.846154
74
0.678967
394f33a8496008d2a0589e40471ec10911f80978
8,386
py
Python
moe/optimal_learning/python/interfaces/expected_improvement_interface.py
misokg/Cornell-MOE
1547d6b168b7fc70857d522baa0d5d45c41d3cdf
[ "Apache-2.0" ]
218
2017-10-14T03:54:00.000Z
2022-03-25T14:48:38.000Z
moe/optimal_learning/python/interfaces/expected_improvement_interface.py
Tracy3370/Cornell-MOE
df299d1be882d2af9796d7a68b3f9505cac7a53e
[ "Apache-2.0" ]
45
2017-09-27T14:33:31.000Z
2020-12-16T09:32:50.000Z
moe/optimal_learning/python/interfaces/expected_improvement_interface.py
Tracy3370/Cornell-MOE
df299d1be882d2af9796d7a68b3f9505cac7a53e
[ "Apache-2.0" ]
63
2017-09-25T14:23:57.000Z
2022-03-17T01:41:42.000Z
# -*- coding: utf-8 -*- r"""Interface for computation of the Expected Improvement at points sampled from a GaussianProcess. .. NOTE:: These comments were copied from the file comments in gpp_math.cpp. See the package docs (:mod:`moe.optimal_learning.python.interfaces`) for the basics of expected improvement and the definition of the q,p-EI problem. Then the improvement for this single sample is: ``I = { best_known - min(y) if (best_known - min(y) > 0) (Equation 5)`` `` { 0 else`` where y is a particular prediction from the underlying Gaussian Process and best_known is the best observed value (min) so far. And the expected improvement, EI, can be computed by averaging repeated computations of I; i.e., monte-carlo integration. This is done in :mod:`moe.optimal_learning.python.interfaces.expected_improvement_interface.ExpectedImprovementInterface.compute_expected_improvement`; we can also compute the gradient. This computation is needed in the optimization of q,p-EI. There is also a special, analytic case of EI computation that does not require monte-carlo integration. This special case can only be used to compute 1,0-EI (and its gradient). Still this can be very useful (e.g., the heuristic optimization in gpp_heuristic_expected_improvement_optimization.hpp estimates q,0-EI by repeatedly solving 1,0-EI). From there, since EI is taken from a sum of gaussians, we expect it to be reasonably smooth and apply multistart, restarted gradient descent to find the optimum. The use of gradient descent implies the need for all of the various "grad" functions, e.g., gaussian_process.compute_grad_mean_of_points(). This is handled by coupling an implementation of :class:`moe.optimal_learning.python.interfaces.expected_improvement_interface.ExpectedImprovementInterface` to an optimizer (:mod:`moe.optimal_learning.python.interfaces.optimization_interface`). """ from builtins import object from abc import ABCMeta, abstractmethod, abstractproperty from future.utils import with_metaclass class ExpectedImprovementInterface(with_metaclass(ABCMeta, object)): r"""Interface for Expected Improvement computation: EI and its gradient at specified point(s) sampled from a GaussianProcess. A class to encapsulate the computation of expected improvement and its spatial gradient using points sampled from an associated GaussianProcess. The general EI computation requires monte-carlo integration; it can support q,p-EI optimization. It is designed to work with any GaussianProcess. See file docs for a description of what EI is and an overview of how it can be computed. Implementers are responsible for dealing with PRNG state for any randomness needed in EI computation. Implementers are also responsible for storing ``points_to_sample`` and ``points_being_sampled``: :param points_to_sample: points at which to evaluate EI and/or its gradient to check their value in future experiments (i.e., "q" in q,p-EI) :type points_to_sample: array of float64 with shape (num_to_sample, dim) :param points_being_sampled: points being sampled in concurrent experiments (i.e., "p" in q,p-EI) :type points_being_sampled: array of float64 with shape (num_being_sampled, dim) """ @abstractproperty def dim(self): """Return the number of spatial dimensions.""" pass @abstractproperty def num_to_sample(self): """Number of points at which to compute/optimize EI, aka potential points to sample in future experiments; i.e., the ``q`` in ``q,p-EI``.""" pass @abstractproperty def num_being_sampled(self): """Number of points being sampled in concurrent experiments; i.e., the ``p`` in ``q,p-EI``.""" pass @abstractmethod def compute_expected_improvement(self, **kwargs): r"""Compute the expected improvement at ``points_to_sample``, with ``points_being_sampled`` concurrent points being sampled. .. NOTE:: These comments were copied from ExpectedImprovementEvaluator::ComputeExpectedImprovement in gpp_math.hpp. and duplicated in :meth:`moe.optimal_learning.python.cpp_wrappers.expected_improvement.ExpectedImprovement.compute_expected_improvement` and :meth:`moe.optimal_learning.python.python_version.expected_improvement.ExpectedImprovement.compute_expected_improvement` ``points_to_sample`` is the "q" and ``points_being_sampled`` is the "p" in q,p-EI. Computes the expected improvement ``EI(Xs) = E_n[[f^*_n(X) - min(f(Xs_1),...,f(Xs_m))]^+]``, where ``Xs`` are potential points to sample (union of ``points_to_sample`` and ``points_being_sampled``) and ``X`` are already sampled points. The ``^+`` indicates that the expression in the expectation evaluates to 0 if it is negative. ``f^*(X)`` is the MINIMUM over all known function evaluations (``points_sampled_value``), whereas ``f(Xs)`` are *GP-predicted* function evaluations. In words, we are computing the expected improvement (over the current ``best_so_far``, best known objective function value) that would result from sampling (aka running new experiments) at ``points_to_sample`` with ``points_being_sampled`` concurrent/ongoing experiments. In general, the EI expression is complex and difficult to evaluate; hence we use Monte-Carlo simulation to approximate it. When faster (e.g., analytic) techniques are available, we will prefer them. The idea of the MC approach is to repeatedly sample at the union of ``points_to_sample`` and ``points_being_sampled``. This is analogous to gaussian_process_interface.sample_point_from_gp, but we sample ``num_union`` points at once: ``y = \mu + Lw`` where ``\mu`` is the GP-mean, ``L`` is the ``chol_factor(GP-variance)`` and ``w`` is a vector of ``num_union`` draws from N(0, 1). Then: ``improvement_per_step = max(max(best_so_far - y), 0.0)`` Observe that the inner ``max`` means only the smallest component of ``y`` contributes in each iteration. We compute the improvement over many random draws and average. :return: the expected improvement from sampling ``points_to_sample`` with ``points_being_sampled`` concurrent experiments :rtype: float64 """ pass @abstractmethod def compute_grad_expected_improvement(self, **kwargs): r"""Compute the gradient of expected improvement at ``points_to_sample`` wrt ``points_to_sample``, with ``points_being_sampled`` concurrent samples. .. NOTE:: These comments were copied from ExpectedImprovementEvaluator::ComputeGradExpectedImprovement in gpp_math.hpp and duplicated :meth:`moe.optimal_learning.python.cpp_wrappers.expected_improvement.ExpectedImprovement.compute_grad_expected_improvement` and :meth:`moe.optimal_learning.python.python_version.expected_improvement.ExpectedImprovement.compute_grad_expected_improvement` ``points_to_sample`` is the "q" and ``points_being_sampled`` is the "p" in q,p-EI. In general, the expressions for gradients of EI are complex and difficult to evaluate; hence we use Monte-Carlo simulation to approximate it. When faster (e.g., analytic) techniques are available, we will prefer them. The MC computation of grad EI is similar to the computation of EI (decsribed in compute_expected_improvement). We differentiate ``y = \mu + Lw`` wrt ``points_to_sample``; only terms from the gradient of ``\mu`` and ``L`` contribute. In EI, we computed: ``improvement_per_step = max(max(best_so_far - y), 0.0)`` and noted that only the smallest component of ``y`` may contribute (if it is > 0.0). Call this index ``winner``. Thus in computing grad EI, we only add gradient terms that are attributable to the ``winner``-th component of ``y``. :return: gradient of EI, ``\pderiv{EI(Xq \cup Xp)}{Xq_{i,d}}`` where ``Xq`` is ``points_to_sample`` and ``Xp`` is ``points_being_sampled`` (grad EI from sampling ``points_to_sample`` with ``points_being_sampled`` concurrent experiments wrt each dimension of the points in ``points_to_sample``) :rtype: array of float64 with shape (num_to_sample, dim) """ pass
60.330935
156
0.72788
45349fefd8152498d09e20e2c45957e59446778f
1,242
py
Python
TCP/TCP_S.py
WilliamWuLH/Network_Basic_Programming
284f8d3664340b0270271da5c50d5b8bb7ce8534
[ "MIT" ]
1
2020-11-29T14:56:22.000Z
2020-11-29T14:56:22.000Z
TCP/TCP_S.py
WilliamWuLH/Network_Basic_Programming
284f8d3664340b0270271da5c50d5b8bb7ce8534
[ "MIT" ]
null
null
null
TCP/TCP_S.py
WilliamWuLH/Network_Basic_Programming
284f8d3664340b0270271da5c50d5b8bb7ce8534
[ "MIT" ]
null
null
null
import socket import threading import time import sys IP = '127.0.0.1' PORT = 5050 SER_ADDR = IP,PORT BUFFSIZE = 1024 def server_socket(): try: sk = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sk.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sk.bind(SER_ADDR) sk.listen(10) except socket.error as msg: print(msg) sys.exit(1) print('server waiting...') while True: conn,addr = sk.accept() t = threading.Thread(target = handle_data, args = (conn,addr)) t.start() def handle_data(conn, addr): print('Accept new connection from {0}'.format(addr)) conn.send(('Hi, Welcome to the server!').encode()) while True: client_data = conn.recv(BUFFSIZE) print('{0} client send data is {1}'.format(addr, client_data.decode())) time.sleep(1) if client_data.decode() == 'exit' or not client_data: print('{0} connection close'.format(addr)) conn.send( ('Connection closed!').encode() ) break massage = input("Server : ").strip() conn.send( ("Server : "+massage).encode() ) conn.close() if __name__ == "__main__": server_socket() #socket server
24.84
79
0.605475
0df2781e7962d8d02dca4d1d2ed83132ca287e7e
1,192
py
Python
solutions/codeforces/1425Adp.py
forxhunter/ComputingIntro
50fa2ac030748626c694ec5c884c5ac32f0b42a8
[ "Apache-2.0" ]
1
2021-01-02T04:31:34.000Z
2021-01-02T04:31:34.000Z
solutions/codeforces/1425Adp.py
forxhunter/ComputingIntro
50fa2ac030748626c694ec5c884c5ac32f0b42a8
[ "Apache-2.0" ]
null
null
null
solutions/codeforces/1425Adp.py
forxhunter/ComputingIntro
50fa2ac030748626c694ec5c884c5ac32f0b42a8
[ "Apache-2.0" ]
null
null
null
''' 1425A. Arena of Greed games, greedy, 1400 https://codeforces.com/problemset/problem/1425/A ''' # get the input at once t = int(input()) golds = [] for _ in range(t): golds.append(int(input())) # save the solved puzzle dp = {} # save the special case when n == 4 dp[4] = [3, 1] def optimum(n): left = n greedy_first = 0 greedy_second = 0 # if Chanek is first fs = True if left & 1 == 1: left -= 1 fs = False while left: # for first man # dp if left in dp: greedy_first += dp[left][0] greedy_second += dp[left][1] left -= (dp[left][0]+dp[left][0]) break else: if (left //2) & 1: greedy_first += left // 2 greedy_second += 1 left = (left//2) - 1 else: greedy_first += 1 greedy_second += 1 left -= 2 dp[n] = [greedy_first, greedy_second] return [greedy_second+1,greedy_first][fs] # find the answer ans = [] for gold in golds: if gold == 1: ans.append(1) else: ans.append(optimum(gold)) print(*ans,sep='\n')
21.285714
48
0.5
139da666ed14015ffb6dd0c13b72c5836ffcd054
5,866
py
Python
hack/gen-content.py
berendt/fluxcd-website
fc8470f0e4cd4c9dfd8dd629257b69b999c7d885
[ "Apache-2.0" ]
6
2019-08-14T05:48:27.000Z
2020-06-16T22:07:39.000Z
hack/gen-content.py
berendt/fluxcd-website
fc8470f0e4cd4c9dfd8dd629257b69b999c7d885
[ "Apache-2.0" ]
22
2019-08-15T06:22:15.000Z
2020-10-30T15:15:37.000Z
hack/gen-content.py
berendt/fluxcd-website
fc8470f0e4cd4c9dfd8dd629257b69b999c7d885
[ "Apache-2.0" ]
10
2019-08-13T17:42:09.000Z
2020-10-05T17:50:13.000Z
#!/usr/bin/env python3 # This was inspired by # http://sigs.k8s.io/contributor-site/hack/gen-content.sh # Check out # external-sources/README.md for some instructions on how # the file format works. import csv import os import re import shutil import sys import subprocess import tempfile # Workaround to make this work in Netlify... LOCAL_PY_PATH = '/opt/buildhome/python3.8/lib/python3.8/site-packages/' if LOCAL_PY_PATH not in sys.path: sys.path.append(LOCAL_PY_PATH) import pathlib global link_mapping link_mapping = [] ''' We are adding basic Front-Matter here. `docs` files can't have front-matter and # (h1) ''' def rewrite_header(out_file, title=None, docs=False, weight=None): lines = open(out_file, 'r').readlines() if not title or title == '-': title = os.path.basename(out_file).split('.md')[0].title() header_lines = [ '---\n', 'title: {}\n'.format(title), 'importedDoc: true\n' ] if docs: header_lines += ['type: docs\n'] if weight: header_lines += ['weight: {}\n'.format(weight)] header_lines += [ '---\n', '\n' ] file_desc = open(out_file, 'w') file_desc.writelines(header_lines) for line in lines: if not docs or not line.startswith('# ') or lines.index(line) >= 4: if not line.startswith('<!-- '): #FML! file_desc.write(line) file_desc.close() class Repo(): def __init__(self, external_sources_dir, repo_fn): self.temp_dir = tempfile.mkdtemp() self.repo_id = repo_fn.split(external_sources_dir)[1][1:] self.gh_source = 'https://github.com/{}/'.format(self.repo_id).strip('/') self.repo_fn = repo_fn self.dest = os.path.join(self.temp_dir, self.repo_id) self.file_list = [] global link_mapping with open(self.repo_fn, 'r') as file_desc: csv_reader = csv.reader(file_desc) for line in csv_reader: self.file_list += [[entry.strip('/') for entry in line]] link_mapping += [[self.gh_source]+[entry.strip('/') for entry in line]] def __del__(self): shutil.rmtree(self.temp_dir) def clone_repo(self): subprocess.call([ 'git', 'clone', '--depth=1', '-q', self.gh_source, self.dest]) def rewrite_links(self, out_file): ''' Types of links in Markdown 1: <url> # hard to find - we have markdown that's mixed with html 2: [label](url) 3: [url] 4: [label]: url together with [label] ''' with open(out_file, 'r') as file_desc: content = file_desc.read() # links_1 = re.findall(r'\<.+?\>', content, re.MULTILINE) links_2 = re.findall(r'\[.+?\]\((.+?)\)', content, re.MULTILINE) links_3 = re.findall(r'\[(.+?)]\s+', content, re.MULTILINE) links_4 = re.findall(r'\[(.+?)\]\:\s+.+?', content, re.MULTILINE) # set() because we only want to review every link just once # str.split('#')[0] because we ignore anchors links = set([a.split('#')[0] for a in links_2+links_3+links_4 if not a.startswith('#')]) link_rewrites = {} for link in links: if not link: continue global link_mapping for entry in link_mapping: if link == entry[1]: link_rewrites[link] = '/{}'.format(entry[2].lower().split('.md')[0]) elif link.startswith(self.gh_source) and link.endswith(entry[1]) and \ self.gh_source == entry[0]: link_rewrites[link] = '/{}'.format(entry[2].lower().split('.md')[0]) if link not in link_rewrites and os.path.exists(os.path.join(self.dest, link)) and \ not link.startswith('https://') and not link.startswith('http://'): link_rewrites[link] = os.path.join(self.gh_source, 'blob/main', link) for key in link_rewrites: content = content.replace(key, link_rewrites[key]) with open(out_file, 'w') as file_desc: file_desc.write(content) def copy_files(self, content_dir): for entry in self.file_list: out_file = os.path.join(content_dir, entry[1]) shutil.copyfile( os.path.join(self.dest, entry[0]), out_file) docs = entry[1].startswith('docs/') or entry[1].startswith('legacy/') or \ entry[1].startswith('flagger/') title = None weight = None if len(entry) == 4: weight = entry[3] if len(entry) >= 3: title = entry[2] rewrite_header(out_file, title=title, docs=docs, weight=weight) self.rewrite_links(out_file) def get_repo_list(external_sources_dir): repos = [] file_refs = pathlib.Path(external_sources_dir).glob('*/*') for file in file_refs: repo_fn = str(file) if os.path.isfile(repo_fn): repos += [Repo(external_sources_dir, repo_fn)] return repos def main(): repo_root = os.path.realpath( os.path.join(os.path.dirname(__file__), '..')) if os.getcwd() != repo_root: print('Please run this script from top-level of the repository.') sys.exit(1) content_dir = os.path.join(repo_root, 'content/en') external_sources_dir = os.path.join(repo_root, 'external-sources') repos = get_repo_list(external_sources_dir) for repo in repos: repo.clone_repo() for repo in repos: repo.copy_files(content_dir) if __name__ == '__main__': try: main() except KeyboardInterrupt: print("Aborted.", sys.stderr) sys.exit(1)
32.230769
96
0.573645
ba6c89d444d8505bfe5837a9cb06454a2c8a0d73
557
py
Python
Blips Server/alembic/versions/331f3604a692_altered_timelines.py
andrewapperley/Blips-Server
136a68ca41cec682a727cf3df20d0d8b1fc35526
[ "MIT" ]
null
null
null
Blips Server/alembic/versions/331f3604a692_altered_timelines.py
andrewapperley/Blips-Server
136a68ca41cec682a727cf3df20d0d8b1fc35526
[ "MIT" ]
null
null
null
Blips Server/alembic/versions/331f3604a692_altered_timelines.py
andrewapperley/Blips-Server
136a68ca41cec682a727cf3df20d0d8b1fc35526
[ "MIT" ]
null
null
null
"""altered_timelines Revision ID: 331f3604a692 Revises: 58972abd14d9 Create Date: 2014-06-04 23:07:22.652321 """ # revision identifiers, used by Alembic. revision = '331f3604a692' down_revision = '58972abd14d9' from alembic import op import sqlalchemy as sa def upgrade(): op.drop_column("notification_users", "notification_receiver_id") op.drop_column("timelines", "description") op.drop_column("timelines", "cover_image") op.drop_column("timelines", "start_date") op.drop_column("timelines", "title") def downgrade(): pass
20.62963
68
0.736086
c52066be3cc8098d9be3c3c613baf4d682334e3c
26,676
py
Python
Lib/test/test_contextlib.py
Ricky-Wilson/Python
9896d7a9901dabea4b3d555af471577a624d1b95
[ "PSF-2.0" ]
6
2016-03-15T19:07:14.000Z
2018-08-15T13:11:03.000Z
Lib/test/test_contextlib.py
Ricky-Wilson/Python
9896d7a9901dabea4b3d555af471577a624d1b95
[ "PSF-2.0" ]
null
null
null
Lib/test/test_contextlib.py
Ricky-Wilson/Python
9896d7a9901dabea4b3d555af471577a624d1b95
[ "PSF-2.0" ]
2
2016-08-24T14:29:14.000Z
2021-12-29T19:27:06.000Z
"""Unit tests for contextlib.py, and other context managers.""" import io import sys import tempfile import unittest from contextlib import * # Tests __all__ from test import support try: import threading except ImportError: threading = None class ContextManagerTestCase(unittest.TestCase): def test_contextmanager_plain(self): state = [] @contextmanager def woohoo(): state.append(1) yield 42 state.append(999) with woohoo() as x: self.assertEqual(state, [1]) self.assertEqual(x, 42) state.append(x) self.assertEqual(state, [1, 42, 999]) def test_contextmanager_finally(self): state = [] @contextmanager def woohoo(): state.append(1) try: yield 42 finally: state.append(999) with self.assertRaises(ZeroDivisionError): with woohoo() as x: self.assertEqual(state, [1]) self.assertEqual(x, 42) state.append(x) raise ZeroDivisionError() self.assertEqual(state, [1, 42, 999]) def test_contextmanager_no_reraise(self): @contextmanager def whee(): yield ctx = whee() ctx.__enter__() # Calling __exit__ should not result in an exception self.assertFalse(ctx.__exit__(TypeError, TypeError("foo"), None)) def test_contextmanager_trap_yield_after_throw(self): @contextmanager def whoo(): try: yield except: yield ctx = whoo() ctx.__enter__() self.assertRaises( RuntimeError, ctx.__exit__, TypeError, TypeError("foo"), None ) def test_contextmanager_except(self): state = [] @contextmanager def woohoo(): state.append(1) try: yield 42 except ZeroDivisionError as e: state.append(e.args[0]) self.assertEqual(state, [1, 42, 999]) with woohoo() as x: self.assertEqual(state, [1]) self.assertEqual(x, 42) state.append(x) raise ZeroDivisionError(999) self.assertEqual(state, [1, 42, 999]) def _create_contextmanager_attribs(self): def attribs(**kw): def decorate(func): for k,v in kw.items(): setattr(func,k,v) return func return decorate @contextmanager @attribs(foo='bar') def baz(spam): """Whee!""" return baz def test_contextmanager_attribs(self): baz = self._create_contextmanager_attribs() self.assertEqual(baz.__name__,'baz') self.assertEqual(baz.foo, 'bar') @support.requires_docstrings def test_contextmanager_doc_attrib(self): baz = self._create_contextmanager_attribs() self.assertEqual(baz.__doc__, "Whee!") @support.requires_docstrings def test_instance_docstring_given_cm_docstring(self): baz = self._create_contextmanager_attribs()(None) self.assertEqual(baz.__doc__, "Whee!") class ClosingTestCase(unittest.TestCase): @support.requires_docstrings def test_instance_docs(self): # Issue 19330: ensure context manager instances have good docstrings cm_docstring = closing.__doc__ obj = closing(None) self.assertEqual(obj.__doc__, cm_docstring) def test_closing(self): state = [] class C: def close(self): state.append(1) x = C() self.assertEqual(state, []) with closing(x) as y: self.assertEqual(x, y) self.assertEqual(state, [1]) def test_closing_error(self): state = [] class C: def close(self): state.append(1) x = C() self.assertEqual(state, []) with self.assertRaises(ZeroDivisionError): with closing(x) as y: self.assertEqual(x, y) 1 / 0 self.assertEqual(state, [1]) class FileContextTestCase(unittest.TestCase): def testWithOpen(self): tfn = tempfile.mktemp() try: f = None with open(tfn, "w") as f: self.assertFalse(f.closed) f.write("Booh\n") self.assertTrue(f.closed) f = None with self.assertRaises(ZeroDivisionError): with open(tfn, "r") as f: self.assertFalse(f.closed) self.assertEqual(f.read(), "Booh\n") 1 / 0 self.assertTrue(f.closed) finally: support.unlink(tfn) @unittest.skipUnless(threading, 'Threading required for this test.') class LockContextTestCase(unittest.TestCase): def boilerPlate(self, lock, locked): self.assertFalse(locked()) with lock: self.assertTrue(locked()) self.assertFalse(locked()) with self.assertRaises(ZeroDivisionError): with lock: self.assertTrue(locked()) 1 / 0 self.assertFalse(locked()) def testWithLock(self): lock = threading.Lock() self.boilerPlate(lock, lock.locked) def testWithRLock(self): lock = threading.RLock() self.boilerPlate(lock, lock._is_owned) def testWithCondition(self): lock = threading.Condition() def locked(): return lock._is_owned() self.boilerPlate(lock, locked) def testWithSemaphore(self): lock = threading.Semaphore() def locked(): if lock.acquire(False): lock.release() return False else: return True self.boilerPlate(lock, locked) def testWithBoundedSemaphore(self): lock = threading.BoundedSemaphore() def locked(): if lock.acquire(False): lock.release() return False else: return True self.boilerPlate(lock, locked) class mycontext(ContextDecorator): """Example decoration-compatible context manager for testing""" started = False exc = None catch = False def __enter__(self): self.started = True return self def __exit__(self, *exc): self.exc = exc return self.catch class TestContextDecorator(unittest.TestCase): @support.requires_docstrings def test_instance_docs(self): # Issue 19330: ensure context manager instances have good docstrings cm_docstring = mycontext.__doc__ obj = mycontext() self.assertEqual(obj.__doc__, cm_docstring) def test_contextdecorator(self): context = mycontext() with context as result: self.assertIs(result, context) self.assertTrue(context.started) self.assertEqual(context.exc, (None, None, None)) def test_contextdecorator_with_exception(self): context = mycontext() with self.assertRaisesRegex(NameError, 'foo'): with context: raise NameError('foo') self.assertIsNotNone(context.exc) self.assertIs(context.exc[0], NameError) context = mycontext() context.catch = True with context: raise NameError('foo') self.assertIsNotNone(context.exc) self.assertIs(context.exc[0], NameError) def test_decorator(self): context = mycontext() @context def test(): self.assertIsNone(context.exc) self.assertTrue(context.started) test() self.assertEqual(context.exc, (None, None, None)) def test_decorator_with_exception(self): context = mycontext() @context def test(): self.assertIsNone(context.exc) self.assertTrue(context.started) raise NameError('foo') with self.assertRaisesRegex(NameError, 'foo'): test() self.assertIsNotNone(context.exc) self.assertIs(context.exc[0], NameError) def test_decorating_method(self): context = mycontext() class Test(object): @context def method(self, a, b, c=None): self.a = a self.b = b self.c = c # these tests are for argument passing when used as a decorator test = Test() test.method(1, 2) self.assertEqual(test.a, 1) self.assertEqual(test.b, 2) self.assertEqual(test.c, None) test = Test() test.method('a', 'b', 'c') self.assertEqual(test.a, 'a') self.assertEqual(test.b, 'b') self.assertEqual(test.c, 'c') test = Test() test.method(a=1, b=2) self.assertEqual(test.a, 1) self.assertEqual(test.b, 2) def test_typo_enter(self): class mycontext(ContextDecorator): def __unter__(self): pass def __exit__(self, *exc): pass with self.assertRaises(AttributeError): with mycontext(): pass def test_typo_exit(self): class mycontext(ContextDecorator): def __enter__(self): pass def __uxit__(self, *exc): pass with self.assertRaises(AttributeError): with mycontext(): pass def test_contextdecorator_as_mixin(self): class somecontext(object): started = False exc = None def __enter__(self): self.started = True return self def __exit__(self, *exc): self.exc = exc class mycontext(somecontext, ContextDecorator): pass context = mycontext() @context def test(): self.assertIsNone(context.exc) self.assertTrue(context.started) test() self.assertEqual(context.exc, (None, None, None)) def test_contextmanager_as_decorator(self): @contextmanager def woohoo(y): state.append(y) yield state.append(999) state = [] @woohoo(1) def test(x): self.assertEqual(state, [1]) state.append(x) test('something') self.assertEqual(state, [1, 'something', 999]) # Issue #11647: Ensure the decorated function is 'reusable' state = [] test('something else') self.assertEqual(state, [1, 'something else', 999]) class TestExitStack(unittest.TestCase): @support.requires_docstrings def test_instance_docs(self): # Issue 19330: ensure context manager instances have good docstrings cm_docstring = ExitStack.__doc__ obj = ExitStack() self.assertEqual(obj.__doc__, cm_docstring) def test_no_resources(self): with ExitStack(): pass def test_callback(self): expected = [ ((), {}), ((1,), {}), ((1,2), {}), ((), dict(example=1)), ((1,), dict(example=1)), ((1,2), dict(example=1)), ] result = [] def _exit(*args, **kwds): """Test metadata propagation""" result.append((args, kwds)) with ExitStack() as stack: for args, kwds in reversed(expected): if args and kwds: f = stack.callback(_exit, *args, **kwds) elif args: f = stack.callback(_exit, *args) elif kwds: f = stack.callback(_exit, **kwds) else: f = stack.callback(_exit) self.assertIs(f, _exit) for wrapper in stack._exit_callbacks: self.assertIs(wrapper.__wrapped__, _exit) self.assertNotEqual(wrapper.__name__, _exit.__name__) self.assertIsNone(wrapper.__doc__, _exit.__doc__) self.assertEqual(result, expected) def test_push(self): exc_raised = ZeroDivisionError def _expect_exc(exc_type, exc, exc_tb): self.assertIs(exc_type, exc_raised) def _suppress_exc(*exc_details): return True def _expect_ok(exc_type, exc, exc_tb): self.assertIsNone(exc_type) self.assertIsNone(exc) self.assertIsNone(exc_tb) class ExitCM(object): def __init__(self, check_exc): self.check_exc = check_exc def __enter__(self): self.fail("Should not be called!") def __exit__(self, *exc_details): self.check_exc(*exc_details) with ExitStack() as stack: stack.push(_expect_ok) self.assertIs(stack._exit_callbacks[-1], _expect_ok) cm = ExitCM(_expect_ok) stack.push(cm) self.assertIs(stack._exit_callbacks[-1].__self__, cm) stack.push(_suppress_exc) self.assertIs(stack._exit_callbacks[-1], _suppress_exc) cm = ExitCM(_expect_exc) stack.push(cm) self.assertIs(stack._exit_callbacks[-1].__self__, cm) stack.push(_expect_exc) self.assertIs(stack._exit_callbacks[-1], _expect_exc) stack.push(_expect_exc) self.assertIs(stack._exit_callbacks[-1], _expect_exc) 1/0 def test_enter_context(self): class TestCM(object): def __enter__(self): result.append(1) def __exit__(self, *exc_details): result.append(3) result = [] cm = TestCM() with ExitStack() as stack: @stack.callback # Registered first => cleaned up last def _exit(): result.append(4) self.assertIsNotNone(_exit) stack.enter_context(cm) self.assertIs(stack._exit_callbacks[-1].__self__, cm) result.append(2) self.assertEqual(result, [1, 2, 3, 4]) def test_close(self): result = [] with ExitStack() as stack: @stack.callback def _exit(): result.append(1) self.assertIsNotNone(_exit) stack.close() result.append(2) self.assertEqual(result, [1, 2]) def test_pop_all(self): result = [] with ExitStack() as stack: @stack.callback def _exit(): result.append(3) self.assertIsNotNone(_exit) new_stack = stack.pop_all() result.append(1) result.append(2) new_stack.close() self.assertEqual(result, [1, 2, 3]) def test_exit_raise(self): with self.assertRaises(ZeroDivisionError): with ExitStack() as stack: stack.push(lambda *exc: False) 1/0 def test_exit_suppress(self): with ExitStack() as stack: stack.push(lambda *exc: True) 1/0 def test_exit_exception_chaining_reference(self): # Sanity check to make sure that ExitStack chaining matches # actual nested with statements class RaiseExc: def __init__(self, exc): self.exc = exc def __enter__(self): return self def __exit__(self, *exc_details): raise self.exc class RaiseExcWithContext: def __init__(self, outer, inner): self.outer = outer self.inner = inner def __enter__(self): return self def __exit__(self, *exc_details): try: raise self.inner except: raise self.outer class SuppressExc: def __enter__(self): return self def __exit__(self, *exc_details): type(self).saved_details = exc_details return True try: with RaiseExc(IndexError): with RaiseExcWithContext(KeyError, AttributeError): with SuppressExc(): with RaiseExc(ValueError): 1 / 0 except IndexError as exc: self.assertIsInstance(exc.__context__, KeyError) self.assertIsInstance(exc.__context__.__context__, AttributeError) # Inner exceptions were suppressed self.assertIsNone(exc.__context__.__context__.__context__) else: self.fail("Expected IndexError, but no exception was raised") # Check the inner exceptions inner_exc = SuppressExc.saved_details[1] self.assertIsInstance(inner_exc, ValueError) self.assertIsInstance(inner_exc.__context__, ZeroDivisionError) def test_exit_exception_chaining(self): # Ensure exception chaining matches the reference behaviour def raise_exc(exc): raise exc saved_details = None def suppress_exc(*exc_details): nonlocal saved_details saved_details = exc_details return True try: with ExitStack() as stack: stack.callback(raise_exc, IndexError) stack.callback(raise_exc, KeyError) stack.callback(raise_exc, AttributeError) stack.push(suppress_exc) stack.callback(raise_exc, ValueError) 1 / 0 except IndexError as exc: self.assertIsInstance(exc.__context__, KeyError) self.assertIsInstance(exc.__context__.__context__, AttributeError) # Inner exceptions were suppressed self.assertIsNone(exc.__context__.__context__.__context__) else: self.fail("Expected IndexError, but no exception was raised") # Check the inner exceptions inner_exc = saved_details[1] self.assertIsInstance(inner_exc, ValueError) self.assertIsInstance(inner_exc.__context__, ZeroDivisionError) def test_exit_exception_non_suppressing(self): # http://bugs.python.org/issue19092 def raise_exc(exc): raise exc def suppress_exc(*exc_details): return True try: with ExitStack() as stack: stack.callback(lambda: None) stack.callback(raise_exc, IndexError) except Exception as exc: self.assertIsInstance(exc, IndexError) else: self.fail("Expected IndexError, but no exception was raised") try: with ExitStack() as stack: stack.callback(raise_exc, KeyError) stack.push(suppress_exc) stack.callback(raise_exc, IndexError) except Exception as exc: self.assertIsInstance(exc, KeyError) else: self.fail("Expected KeyError, but no exception was raised") def test_exit_exception_with_correct_context(self): # http://bugs.python.org/issue20317 @contextmanager def gets_the_context_right(exc): try: yield finally: raise exc exc1 = Exception(1) exc2 = Exception(2) exc3 = Exception(3) exc4 = Exception(4) # The contextmanager already fixes the context, so prior to the # fix, ExitStack would try to fix it *again* and get into an # infinite self-referential loop try: with ExitStack() as stack: stack.enter_context(gets_the_context_right(exc4)) stack.enter_context(gets_the_context_right(exc3)) stack.enter_context(gets_the_context_right(exc2)) raise exc1 except Exception as exc: self.assertIs(exc, exc4) self.assertIs(exc.__context__, exc3) self.assertIs(exc.__context__.__context__, exc2) self.assertIs(exc.__context__.__context__.__context__, exc1) self.assertIsNone( exc.__context__.__context__.__context__.__context__) def test_exit_exception_with_existing_context(self): # Addresses a lack of test coverage discovered after checking in a # fix for issue 20317 that still contained debugging code. def raise_nested(inner_exc, outer_exc): try: raise inner_exc finally: raise outer_exc exc1 = Exception(1) exc2 = Exception(2) exc3 = Exception(3) exc4 = Exception(4) exc5 = Exception(5) try: with ExitStack() as stack: stack.callback(raise_nested, exc4, exc5) stack.callback(raise_nested, exc2, exc3) raise exc1 except Exception as exc: self.assertIs(exc, exc5) self.assertIs(exc.__context__, exc4) self.assertIs(exc.__context__.__context__, exc3) self.assertIs(exc.__context__.__context__.__context__, exc2) self.assertIs( exc.__context__.__context__.__context__.__context__, exc1) self.assertIsNone( exc.__context__.__context__.__context__.__context__.__context__) def test_body_exception_suppress(self): def suppress_exc(*exc_details): return True try: with ExitStack() as stack: stack.push(suppress_exc) 1/0 except IndexError as exc: self.fail("Expected no exception, got IndexError") def test_exit_exception_chaining_suppress(self): with ExitStack() as stack: stack.push(lambda *exc: True) stack.push(lambda *exc: 1/0) stack.push(lambda *exc: {}[1]) def test_excessive_nesting(self): # The original implementation would die with RecursionError here with ExitStack() as stack: for i in range(10000): stack.callback(int) def test_instance_bypass(self): class Example(object): pass cm = Example() cm.__exit__ = object() stack = ExitStack() self.assertRaises(AttributeError, stack.enter_context, cm) stack.push(cm) self.assertIs(stack._exit_callbacks[-1], cm) class TestRedirectStream: redirect_stream = None orig_stream = None @support.requires_docstrings def test_instance_docs(self): # Issue 19330: ensure context manager instances have good docstrings cm_docstring = self.redirect_stream.__doc__ obj = self.redirect_stream(None) self.assertEqual(obj.__doc__, cm_docstring) def test_no_redirect_in_init(self): orig_stdout = getattr(sys, self.orig_stream) self.redirect_stream(None) self.assertIs(getattr(sys, self.orig_stream), orig_stdout) def test_redirect_to_string_io(self): f = io.StringIO() msg = "Consider an API like help(), which prints directly to stdout" orig_stdout = getattr(sys, self.orig_stream) with self.redirect_stream(f): print(msg, file=getattr(sys, self.orig_stream)) self.assertIs(getattr(sys, self.orig_stream), orig_stdout) s = f.getvalue().strip() self.assertEqual(s, msg) def test_enter_result_is_target(self): f = io.StringIO() with self.redirect_stream(f) as enter_result: self.assertIs(enter_result, f) def test_cm_is_reusable(self): f = io.StringIO() write_to_f = self.redirect_stream(f) orig_stdout = getattr(sys, self.orig_stream) with write_to_f: print("Hello", end=" ", file=getattr(sys, self.orig_stream)) with write_to_f: print("World!", file=getattr(sys, self.orig_stream)) self.assertIs(getattr(sys, self.orig_stream), orig_stdout) s = f.getvalue() self.assertEqual(s, "Hello World!\n") def test_cm_is_reentrant(self): f = io.StringIO() write_to_f = self.redirect_stream(f) orig_stdout = getattr(sys, self.orig_stream) with write_to_f: print("Hello", end=" ", file=getattr(sys, self.orig_stream)) with write_to_f: print("World!", file=getattr(sys, self.orig_stream)) self.assertIs(getattr(sys, self.orig_stream), orig_stdout) s = f.getvalue() self.assertEqual(s, "Hello World!\n") class TestRedirectStdout(TestRedirectStream, unittest.TestCase): redirect_stream = redirect_stdout orig_stream = "stdout" class TestRedirectStderr(TestRedirectStream, unittest.TestCase): redirect_stream = redirect_stderr orig_stream = "stderr" class TestSuppress(unittest.TestCase): @support.requires_docstrings def test_instance_docs(self): # Issue 19330: ensure context manager instances have good docstrings cm_docstring = suppress.__doc__ obj = suppress() self.assertEqual(obj.__doc__, cm_docstring) def test_no_result_from_enter(self): with suppress(ValueError) as enter_result: self.assertIsNone(enter_result) def test_no_exception(self): with suppress(ValueError): self.assertEqual(pow(2, 5), 32) def test_exact_exception(self): with suppress(TypeError): len(5) def test_exception_hierarchy(self): with suppress(LookupError): 'Hello'[50] def test_other_exception(self): with self.assertRaises(ZeroDivisionError): with suppress(TypeError): 1/0 def test_no_args(self): with self.assertRaises(ZeroDivisionError): with suppress(): 1/0 def test_multiple_exception_args(self): with suppress(ZeroDivisionError, TypeError): 1/0 with suppress(ZeroDivisionError, TypeError): len(5) def test_cm_is_reentrant(self): ignore_exceptions = suppress(Exception) with ignore_exceptions: pass with ignore_exceptions: len(5) with ignore_exceptions: 1/0 with ignore_exceptions: # Check nested usage len(5) if __name__ == "__main__": unittest.main()
31.569231
80
0.575611
bf24cd43748302e2843970cdd696ef350068adcd
566
py
Python
packages/server/build.py
arraypad/automuse
09aa75375048c4175950eb91a32d114cbc22940a
[ "Unlicense" ]
1
2021-03-13T17:22:36.000Z
2021-03-13T17:22:36.000Z
packages/server/build.py
arraypad/automuse
09aa75375048c4175950eb91a32d114cbc22940a
[ "Unlicense" ]
null
null
null
packages/server/build.py
arraypad/automuse
09aa75375048c4175950eb91a32d114cbc22940a
[ "Unlicense" ]
1
2021-02-22T17:08:17.000Z
2021-02-22T17:08:17.000Z
#!/usr/bin/env python import os import glob import json from shutil import copyfile def read(path): with open(path, 'r') as f: return f.read() templates = { os.path.splitext(os.path.basename(f))[0]: read(f) \ for f in glob.glob('../ui/example/*.js') } index = read('src/index.js').replace( 'templates = {}', 'templates = {}'.format(json.dumps(templates)) ).replace( 'uiDist = ``', 'uiDist = {}'.format(json.dumps(read('../ui/dist/index.js'))), ) with open('dist/index.js', 'w') as f: f.write(index) copyfile('src/templates.js', 'dist/templates.js')
19.517241
63
0.64311
8f1be471721acb22dda30cab8c39b00d21f8b5df
21,298
py
Python
printrun/stlplater.py
aurelianammon/flask-socketio-printer
addd318d1468891fdf46adb1f01f319ae33f2044
[ "MIT" ]
null
null
null
printrun/stlplater.py
aurelianammon/flask-socketio-printer
addd318d1468891fdf46adb1f01f319ae33f2044
[ "MIT" ]
null
null
null
printrun/stlplater.py
aurelianammon/flask-socketio-printer
addd318d1468891fdf46adb1f01f319ae33f2044
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # This file is part of the Printrun suite. # # Printrun is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Printrun is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Printrun. If not, see <http://www.gnu.org/licenses/>. import os # Set up Internationalization using gettext # searching for installed locales on /usr/share; uses relative folder if not found (windows) from .utils import install_locale install_locale('pronterface') import wx import time import logging import threading import math import sys import re import traceback import subprocess from copy import copy from printrun import stltool from printrun.objectplater import make_plater, PlaterPanel glview = '--no-gl' not in sys.argv if glview: try: from printrun import stlview except: glview = False logging.warning("Could not load 3D viewer for plater:" + "\n" + traceback.format_exc()) def evalme(s): return eval(s[s.find("(") + 1:s.find(")")]) def transformation_matrix(model): matrix = stltool.I if any(model.centeroffset): matrix = model.translation_matrix(model.centeroffset).dot(matrix) if model.rot: matrix = model.rotation_matrix([0, 0, model.rot]).dot(matrix) if any(model.offsets): matrix = model.translation_matrix(model.offsets).dot(matrix) return matrix class showstl(wx.Window): def __init__(self, parent, size, pos): super().__init__(parent, size = size, pos = pos) self.i = 0 self.parent = parent self.previ = 0 self.Bind(wx.EVT_MOUSEWHEEL, self.rot) self.Bind(wx.EVT_MOUSE_EVENTS, self.move) self.Bind(wx.EVT_PAINT, self.repaint) self.Bind(wx.EVT_KEY_DOWN, self.keypress) self.triggered = 0 self.initpos = None self.prevsel = -1 def prepare_model(self, m, scale): m.bitmap = wx.Bitmap(800, 800, 32) dc = wx.MemoryDC() dc.SelectObject(m.bitmap) dc.SetBackground(wx.Brush((0, 0, 0, 0))) dc.SetBrush(wx.Brush((0, 0, 0, 255))) dc.SetBrush(wx.Brush(wx.Colour(128, 255, 128))) dc.SetPen(wx.Pen(wx.Colour(128, 128, 128))) for i in m.facets: dc.DrawPolygon([wx.Point(400 + scale * p[0], (400 - scale * p[1])) for p in i[1]]) dc.SelectObject(wx.NullBitmap) m.bitmap.SetMask(wx.Mask(m.bitmap, wx.Colour(0, 0, 0, 255))) def move_shape(self, delta): """moves shape (selected in l, which is list ListBox of shapes) by an offset specified in tuple delta. Positive numbers move to (rigt, down)""" name = self.parent.l.GetSelection() if name == wx.NOT_FOUND: return False name = self.parent.l.GetString(name) model = self.parent.models[name] model.offsets = [model.offsets[0] + delta[0], model.offsets[1] + delta[1], model.offsets[2] ] self.Refresh() return True def move(self, event): if event.ButtonUp(wx.MOUSE_BTN_LEFT): if self.initpos is not None: currentpos = event.GetPosition() delta = (0.5 * (currentpos[0] - self.initpos[0]), -0.5 * (currentpos[1] - self.initpos[1]) ) self.move_shape(delta) self.Refresh() self.initpos = None elif event.ButtonDown(wx.MOUSE_BTN_RIGHT): self.parent.right(event) elif event.Dragging(): if self.initpos is None: self.initpos = event.GetPosition() self.Refresh() dc = wx.ClientDC(self) p = event.GetPosition() dc.DrawLine(self.initpos[0], self.initpos[1], p[0], p[1]) del dc else: event.Skip() def rotate_shape(self, angle): """rotates active shape positive angle is clockwise """ self.i += angle if not self.triggered: self.triggered = 1 threading.Thread(target = self.cr).start() def keypress(self, event): """gets keypress events and moves/rotates active shape""" keycode = event.GetKeyCode() step = 5 angle = 18 if event.ControlDown(): step = 1 angle = 1 # h if keycode == 72: self.move_shape((-step, 0)) # l if keycode == 76: self.move_shape((step, 0)) # j if keycode == 75: self.move_shape((0, step)) # k if keycode == 74: self.move_shape((0, -step)) # [ if keycode == 91: self.rotate_shape(-angle) # ] if keycode == 93: self.rotate_shape(angle) event.Skip() def rotateafter(self): if self.i != self.previ: i = self.parent.l.GetSelection() if i != wx.NOT_FOUND: self.parent.models[self.parent.l.GetString(i)].rot -= 5 * (self.i - self.previ) self.previ = self.i self.Refresh() def cr(self): time.sleep(0.01) wx.CallAfter(self.rotateafter) self.triggered = 0 def rot(self, event): z = event.GetWheelRotation() s = self.parent.l.GetSelection() if self.prevsel != s: self.i = 0 self.prevsel = s self.rotate_shape(-1 if z < 0 else 1) #TEST def repaint(self, event): dc = wx.PaintDC(self) self.paint(dc = dc) def paint(self, coord1 = "x", coord2 = "y", dc = None): if dc is None: dc = wx.ClientDC(self) scale = 2 dc.SetPen(wx.Pen(wx.Colour(100, 100, 100))) for i in range(20): dc.DrawLine(0, i * scale * 10, 400, i * scale * 10) dc.DrawLine(i * scale * 10, 0, i * scale * 10, 400) dc.SetPen(wx.Pen(wx.Colour(0, 0, 0))) for i in range(4): dc.DrawLine(0, i * scale * 50, 400, i * scale * 50) dc.DrawLine(i * scale * 50, 0, i * scale * 50, 400) dc.SetBrush(wx.Brush(wx.Colour(128, 255, 128))) dc.SetPen(wx.Pen(wx.Colour(128, 128, 128))) dcs = wx.MemoryDC() for m in self.parent.models.values(): b = m.bitmap im = b.ConvertToImage() imgc = wx.Point(im.GetWidth() / 2, im.GetHeight() / 2) im = im.Rotate(math.radians(m.rot), imgc, 0) bm = wx.BitmapFromImage(im) dcs.SelectObject(bm) bsz = bm.GetSize() dc.Blit(scale * m.offsets[0] - bsz[0] / 2, 400 - (scale * m.offsets[1] + bsz[1] / 2), bsz[0], bsz[1], dcs, 0, 0, useMask = 1) del dc class StlPlaterPanel(PlaterPanel): load_wildcard = _("STL files (*.stl;*.STL)|*.stl;*.STL|OpenSCAD files (*.scad)|*.scad") save_wildcard = _("STL files (*.stl;*.STL)|*.stl;*.STL") def prepare_ui(self, filenames = [], callback = None, parent = None, build_dimensions = None, circular_platform = False, simarrange_path = None, antialias_samples = 0): super().prepare_ui(filenames, callback, parent, build_dimensions) self.cutting = False self.cutting_axis = None self.cutting_dist = None if glview: viewer = stlview.StlViewPanel(self, wx.DefaultSize, build_dimensions = self.build_dimensions, circular = circular_platform, antialias_samples = antialias_samples) # Cutting tool nrows = self.menusizer.GetRows() self.menusizer.Add(wx.StaticText(self.menupanel, -1, _("Cut along:")), pos = (nrows, 0), span = (1, 1), flag = wx.ALIGN_CENTER) cutconfirmbutton = wx.Button(self.menupanel, label = _("Confirm cut")) cutconfirmbutton.Bind(wx.EVT_BUTTON, self.cut_confirm) cutconfirmbutton.Disable() self.cutconfirmbutton = cutconfirmbutton self.menusizer.Add(cutconfirmbutton, pos = (nrows, 1), span = (1, 1), flag = wx.EXPAND) cutpanel = wx.Panel(self.menupanel) cutsizer = self.cutsizer = wx.BoxSizer(wx.HORIZONTAL) cutpanel.SetSizer(cutsizer) cutxplusbutton = wx.ToggleButton(cutpanel, label = _(">X"), style = wx.BU_EXACTFIT) cutxplusbutton.Bind(wx.EVT_TOGGLEBUTTON, lambda event: self.start_cutting_tool(event, "x", 1)) cutsizer.Add(cutxplusbutton, 1, flag = wx.EXPAND) cutzplusbutton = wx.ToggleButton(cutpanel, label = _(">Y"), style = wx.BU_EXACTFIT) cutzplusbutton.Bind(wx.EVT_TOGGLEBUTTON, lambda event: self.start_cutting_tool(event, "y", 1)) cutsizer.Add(cutzplusbutton, 1, flag = wx.EXPAND) cutzplusbutton = wx.ToggleButton(cutpanel, label = _(">Z"), style = wx.BU_EXACTFIT) cutzplusbutton.Bind(wx.EVT_TOGGLEBUTTON, lambda event: self.start_cutting_tool(event, "z", 1)) cutsizer.Add(cutzplusbutton, 1, flag = wx.EXPAND) cutxminusbutton = wx.ToggleButton(cutpanel, label = _("<X"), style = wx.BU_EXACTFIT) cutxminusbutton.Bind(wx.EVT_TOGGLEBUTTON, lambda event: self.start_cutting_tool(event, "x", -1)) cutsizer.Add(cutxminusbutton, 1, flag = wx.EXPAND) cutzminusbutton = wx.ToggleButton(cutpanel, label = _("<Y"), style = wx.BU_EXACTFIT) cutzminusbutton.Bind(wx.EVT_TOGGLEBUTTON, lambda event: self.start_cutting_tool(event, "y", -1)) cutsizer.Add(cutzminusbutton, 1, flag = wx.EXPAND) cutzminusbutton = wx.ToggleButton(cutpanel, label = _("<Z"), style = wx.BU_EXACTFIT) cutzminusbutton.Bind(wx.EVT_TOGGLEBUTTON, lambda event: self.start_cutting_tool(event, "z", -1)) cutsizer.Add(cutzminusbutton, 1, flag = wx.EXPAND) self.menusizer.Add(cutpanel, pos = (nrows + 1, 0), span = (1, 2), flag = wx.EXPAND) else: viewer = showstl(self, (580, 580), (0, 0)) self.simarrange_path = simarrange_path self.set_viewer(viewer) def start_cutting_tool(self, event, axis, direction): toggle = event.EventObject self.cutting = toggle.Value if toggle.Value: # Disable the other toggles for child in self.cutsizer.Children: child = child.Window if child != toggle: child.Value = False self.cutting_axis = axis self.cutting_direction = direction else: self.cutting_axis = None self.cutting_direction = None self.cutting_dist = None def cut_confirm(self, event): name = self.l.GetSelection() name = self.l.GetString(name) model = self.models[name] transformation = transformation_matrix(model) transformed = model.transform(transformation) logging.info(_("Cutting %s alongside %s axis") % (name, self.cutting_axis)) axes = ["x", "y", "z"] cut = transformed.cut(axes.index(self.cutting_axis), self.cutting_direction, self.cutting_dist) cut.offsets = [0, 0, 0] cut.rot = 0 cut.scale = model.scale cut.filename = model.filename cut.centeroffset = [0, 0, 0] self.s.prepare_model(cut, 2) self.models[name] = cut self.cutconfirmbutton.Disable() self.cutting = False self.cutting_axis = None self.cutting_dist = None self.cutting_direction = None for child in self.cutsizer.GetChildren(): child = child.GetWindow() child.SetValue(False) def clickcb(self, event, single = False): if not isinstance(self.s, stlview.StlViewPanel): return if self.cutting: self.clickcb_cut(event) else: self.clickcb_rebase(event) def clickcb_cut(self, event): axis = self.cutting_axis self.cutting_dist, _, _ = self.s.get_cutting_plane(axis, None, local_transform = True) if self.cutting_dist is not None: self.cutconfirmbutton.Enable() def clickcb_rebase(self, event): x, y = event.GetPosition() ray_near, ray_far = self.s.mouse_to_ray(x, y, local_transform = True) best_match = None best_facet = None best_dist = float("inf") for key, model in self.models.items(): transformation = transformation_matrix(model) transformed = model.transform(transformation) if not transformed.intersect_box(ray_near, ray_far): logging.debug("Skipping %s for rebase search" % key) continue facet, facet_dist = transformed.intersect(ray_near, ray_far) if facet is not None and facet_dist < best_dist: best_match = key best_facet = facet best_dist = facet_dist if best_match is not None: logging.info("Rebasing %s" % best_match) model = self.models[best_match] newmodel = model.rebase(best_facet) newmodel.offsets = list(model.offsets) newmodel.rot = 0 newmodel.scale = model.scale newmodel.filename = model.filename newmodel.centeroffset = [-(newmodel.dims[1] + newmodel.dims[0]) / 2, -(newmodel.dims[3] + newmodel.dims[2]) / 2, 0] self.s.prepare_model(newmodel, 2) self.models[best_match] = newmodel wx.CallAfter(self.Refresh) def done(self, event, cb): if not os.path.exists("tempstl"): os.mkdir("tempstl") name = "tempstl/" + str(int(time.time()) % 10000) + ".stl" self.export_to(name) if cb is not None: cb(name) if self.destroy_on_done: self.Destroy() def load_file(self, filename): if filename.lower().endswith(".stl"): try: self.load_stl(filename) except: dlg = wx.MessageDialog(self, _("Loading STL file failed"), _("Error:") + traceback.format_exc(), wx.OK) dlg.ShowModal() logging.error(_("Loading STL file failed:") + "\n" + traceback.format_exc()) elif filename.lower().endswith(".scad"): try: self.load_scad(filename) except: dlg = wx.MessageDialog(self, _("Loading OpenSCAD file failed"), _("Error:") + traceback.format_exc(), wx.OK) dlg.ShowModal() logging.error(_("Loading OpenSCAD file failed:") + "\n" + traceback.format_exc()) def load_scad(self, name): lf = open(name) s = [i.replace("\n", "").replace("\r", "").replace(";", "") for i in lf if "stl" in i] lf.close() for i in s: parts = i.split() for part in parts: if 'translate' in part: translate_list = evalme(part) for part in parts: if 'rotate' in part: rotate_list = evalme(part) for part in parts: if 'import' in part: stl_file = evalme(part) newname = os.path.split(stl_file.lower())[1] c = 1 while newname in self.models: newname = os.path.split(stl_file.lower())[1] newname = newname + "(%d)" % c c += 1 stl_path = os.path.join(os.path.split(name)[0:len(os.path.split(stl_file)) - 1]) stl_full_path = os.path.join(stl_path[0], str(stl_file)) self.load_stl_into_model(stl_full_path, stl_file, translate_list, rotate_list[2]) def load_stl(self, name): if not os.path.exists(name): logging.error(_("Couldn't load non-existing file %s") % name) return path = os.path.split(name)[0] self.basedir = path if name.lower().endswith(".stl"): for model in self.models.values(): if model.filename == name: newmodel = copy(model) newmodel.offsets = list(model.offsets) newmodel.rot = model.rot newmodel.scale = list(model.scale) self.add_model(name, newmodel) self.s.prepare_model(newmodel, 2) break else: # Filter out the path, just show the STL filename. self.load_stl_into_model(name, name) wx.CallAfter(self.Refresh) def load_stl_into_model(self, path, name, offset = None, rotation = 0, scale = [1.0, 1.0, 1.0]): model = stltool.stl(path) if offset is None: offset = [self.build_dimensions[3], self.build_dimensions[4], 0] model.offsets = list(offset) model.rot = rotation model.scale = list(scale) model.filename = name self.add_model(name, model) model.centeroffset = [-(model.dims[1] + model.dims[0]) / 2, -(model.dims[3] + model.dims[2]) / 2, 0] self.s.prepare_model(model, 2) def export_to(self, name): with open(name.replace(".", "_") + ".scad", "w") as sf: facets = [] for model in self.models.values(): r = model.rot o = model.offsets co = model.centeroffset sf.write("translate([%s, %s, %s])" "rotate([0, 0, %s])" "translate([%s, %s, %s])" "import(\"%s\");\n" % (o[0], o[1], o[2], r, co[0], co[1], co[2], model.filename)) model = model.transform(transformation_matrix(model)) facets += model.facets stltool.emitstl(name, facets, "plater_export") logging.info(_("Wrote plate to %s") % name) def autoplate(self, event = None): if self.simarrange_path: try: self.autoplate_simarrange() except Exception as e: logging.warning(_("Failed to use simarrange for plating, " "falling back to the standard method. " "The error was: ") + e) super(StlPlaterPanel, self).autoplate() else: super(StlPlaterPanel, self).autoplate() def autoplate_simarrange(self): logging.info(_("Autoplating using simarrange")) models = dict(self.models) files = [model.filename for model in models.values()] command = [self.simarrange_path, "--dryrun", "-m", # Pack around center "-x", str(int(self.build_dimensions[0])), "-y", str(int(self.build_dimensions[1]))] + files p = subprocess.Popen(command, stdout = subprocess.PIPE, universal_newlines = True) pos_regexp = re.compile("File: (.*) minx: ([0-9]+), miny: ([0-9]+), minrot: ([0-9]+)") for line in p.stdout: line = line.rstrip() if "Generating plate" in line: plateid = int(line.split()[-1]) if plateid > 0: logging.error(_("Plate full, please remove some objects")) break if "File:" in line: bits = pos_regexp.match(line).groups() filename = bits[0] x = float(bits[1]) y = float(bits[2]) rot = -float(bits[3]) for name, model in list(models.items()): # FIXME: not sure this is going to work superwell with utf8 if model.filename == filename: model.offsets[0] = x + self.build_dimensions[3] model.offsets[1] = y + self.build_dimensions[4] model.rot = rot del models[name] break if p.wait() != 0: raise RuntimeError(_("simarrange failed")) StlPlater = make_plater(StlPlaterPanel)
40.957692
137
0.5416
133b42d22c9f7356dfd6b17ce9a10517755aed30
650
py
Python
examples/16_inverse_design/inverse_spar_design.py
johnjasa/WISDEM
a4571e71cb5b9869c81790f8abb1bb7fba8fdb02
[ "Apache-2.0" ]
null
null
null
examples/16_inverse_design/inverse_spar_design.py
johnjasa/WISDEM
a4571e71cb5b9869c81790f8abb1bb7fba8fdb02
[ "Apache-2.0" ]
null
null
null
examples/16_inverse_design/inverse_spar_design.py
johnjasa/WISDEM
a4571e71cb5b9869c81790f8abb1bb7fba8fdb02
[ "Apache-2.0" ]
null
null
null
import os import sys import time from wisdem.commonse.mpi_tools import MPI from wisdem.glue_code.runWISDEM import run_wisdem ## File management run_dir = os.path.dirname(os.path.realpath(__file__)) + os.sep wisdem_examples = os.path.dirname(os.path.dirname(run_dir)) fname_wt_input_oc3 = os.path.join(wisdem_examples, "09_floating", "nrel5mw-spar_oc3.yaml") fname_modeling_options = os.path.join(wisdem_examples, "09_floating", "modeling_options_noRNA.yaml") fname_analysis_options = run_dir + os.sep + "analysis_options.yaml" wt_opt, modeling_options, opt_options = run_wisdem(fname_wt_input_oc3, fname_modeling_options, fname_analysis_options)
38.235294
118
0.818462
78916087743484625c09bb1a4f5249d6c4693fad
13,366
py
Python
tods/feature_analysis/StatisticalSkew.py
ZhuangweiKang/tods
fe3f55f8ccb306dd292c668e0f1154f1afdfa556
[ "Apache-2.0" ]
544
2020-09-21T06:02:33.000Z
2022-03-27T07:16:32.000Z
tods/feature_analysis/StatisticalSkew.py
ZhuangweiKang/tods
fe3f55f8ccb306dd292c668e0f1154f1afdfa556
[ "Apache-2.0" ]
35
2020-09-21T06:33:13.000Z
2022-03-11T14:20:21.000Z
tods/feature_analysis/StatisticalSkew.py
ZhuangweiKang/tods
fe3f55f8ccb306dd292c668e0f1154f1afdfa556
[ "Apache-2.0" ]
86
2020-09-21T16:44:33.000Z
2022-03-11T18:20:22.000Z
import os from typing import Any,Optional,List import statsmodels.api as sm import numpy as np from d3m import container, utils as d3m_utils from d3m import utils from numpy import ndarray from collections import OrderedDict from scipy import sparse import os from scipy import stats import numpy import typing import time import uuid from d3m import container from d3m.primitive_interfaces import base, transformer from d3m.container import DataFrame as d3m_dataframe from d3m.metadata import hyperparams, params, base as metadata_base from d3m.base import utils as base_utils from d3m.exceptions import PrimitiveNotFittedError from ..common.TODSBasePrimitives import TODSTransformerPrimitiveBase __all__ = ('StatisticalSkewPrimitive',) Inputs = container.DataFrame Outputs = container.DataFrame class Params(params.Params): #to-do : how to make params dynamic use_column_names: Optional[Any] class Hyperparams(hyperparams.Hyperparams): #Tuning Parameter #default -1 consider entire time series is considered window_size = hyperparams.Hyperparameter(default=-1, semantic_types=[ 'https://metadata.datadrivendiscovery.org/types/TuningParameter', ], description="Window Size for decomposition") #control parameter use_columns = hyperparams.Set( elements=hyperparams.Hyperparameter[int](-1), default=(), semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'], description="A set of column indices to force primitive to operate on. If any specified column cannot be parsed, it is skipped.", ) exclude_columns = hyperparams.Set( elements=hyperparams.Hyperparameter[int](-1), default=(), semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'], description="A set of column indices to not operate on. Applicable only if \"use_columns\" is not provided.", ) return_result = hyperparams.Enumeration( values=['append', 'replace', 'new'], default='append', semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'], description="Should parsed columns be appended, should they replace original columns, or should only parsed columns be returned? This hyperparam is ignored if use_semantic_types is set to false.", ) use_semantic_types = hyperparams.UniformBool( default=False, semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'], description="Controls whether semantic_types metadata will be used for filtering columns in input dataframe. Setting this to false makes the code ignore return_result and will produce only the output dataframe" ) add_index_columns = hyperparams.UniformBool( default=False, semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'], description="Also include primary index columns if input data has them. Applicable only if \"return_result\" is set to \"new\".", ) error_on_no_input = hyperparams.UniformBool( default=True, semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'], description="Throw an exception if no input column is selected/provided. Defaults to true to behave like sklearn. To prevent pipelines from breaking set this to False.", ) return_semantic_type = hyperparams.Enumeration[str]( values=['https://metadata.datadrivendiscovery.org/types/Attribute', 'https://metadata.datadrivendiscovery.org/types/ConstructedAttribute'], default='https://metadata.datadrivendiscovery.org/types/Attribute', description='Decides what semantic type to attach to generated attributes', semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'] ) class StatisticalSkewPrimitive(TODSTransformerPrimitiveBase[Inputs, Outputs, Hyperparams]): """ Primitive to find skew of time series """ metadata = metadata_base.PrimitiveMetadata({ "__author__": "DATA Lab @ Texas A&M University", 'name': 'Time Series Decompostional', 'python_path': 'd3m.primitives.tods.feature_analysis.statistical_skew', 'keywords': ['Time Series','Skew'], 'source': { 'name': 'DATA Lab at Texas A&M University', 'contact': 'mailto:khlai037@tamu.edu' }, 'version': '0.1.0', "hyperparams_to_tune": ['window_size'], 'algorithm_types': [ metadata_base.PrimitiveAlgorithmType.TODS_PRIMITIVE, ], 'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION, 'id': str(uuid.uuid3(uuid.NAMESPACE_DNS, 'StatisticalSkewPrimitive')), }) def _produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]: """ Args: inputs: Container DataFrame timeout: Default iterations: Default Returns: Container DataFrame containing skew of time series """ self.logger.info('Statistical Skew Primitive called') # Get cols to fit. self._fitted = False self._training_inputs, self._training_indices = self._get_columns_to_fit(inputs, self.hyperparams) self._input_column_names = self._training_inputs.columns if len(self._training_indices) > 0: # self._clf.fit(self._training_inputs) self._fitted = True else: # pragma: no cover if self.hyperparams['error_on_no_input']: raise RuntimeError("No input columns were selected") self.logger.warn("No input columns were selected") if not self._fitted: raise PrimitiveNotFittedError("Primitive not fitted.") statistical_skew_input = inputs if self.hyperparams['use_semantic_types']: statistical_skew_input = inputs.iloc[:, self._training_indices] output_columns = [] if len(self._training_indices) > 0: statistical_skew_output = self._skew(statistical_skew_input,self.hyperparams["window_size"]) if sparse.issparse(statistical_skew_output): statistical_skew_output = statistical_skew_output.toarray() outputs = self._wrap_predictions(inputs, statistical_skew_output) #if len(outputs.columns) == len(self._input_column_names): # outputs.columns = self._input_column_names output_columns = [outputs] else: # pragma: no cover if self.hyperparams['error_on_no_input']: raise RuntimeError("No input columns were selected") self.logger.warn("No input columns were selected") outputs = base_utils.combine_columns(return_result=self.hyperparams['return_result'], add_index_columns=self.hyperparams['add_index_columns'], inputs=inputs, column_indices=self._training_indices, columns_list=output_columns) self.logger.info('Statistical Skew Primitive returned') return base.CallResult(outputs) @classmethod def _get_columns_to_fit(cls, inputs: Inputs, hyperparams: Hyperparams): """ Select columns to fit. Args: inputs: Container DataFrame hyperparams: d3m.metadata.hyperparams.Hyperparams Returns: list """ if not hyperparams['use_semantic_types']: return inputs, list(range(len(inputs.columns))) inputs_metadata = inputs.metadata def can_produce_column(column_index: int) -> bool: return cls._can_produce_column(inputs_metadata, column_index, hyperparams) use_columns = hyperparams['use_columns'] exclude_columns = hyperparams['exclude_columns'] columns_to_produce, columns_not_to_produce = base_utils.get_columns_to_use(inputs_metadata, use_columns=use_columns, exclude_columns=exclude_columns, can_use_column=can_produce_column) return inputs.iloc[:, columns_to_produce], columns_to_produce # return columns_to_produce @classmethod def _can_produce_column(cls, inputs_metadata: metadata_base.DataMetadata, column_index: int, hyperparams: Hyperparams) -> bool: """ Output whether a column can be processed. Args: inputs_metadata: d3m.metadata.base.DataMetadata column_index: int Returns: bool """ column_metadata = inputs_metadata.query((metadata_base.ALL_ELEMENTS, column_index)) accepted_structural_types = (int, float, numpy.integer, numpy.float64) accepted_semantic_types = set() accepted_semantic_types.add("https://metadata.datadrivendiscovery.org/types/Attribute") if not issubclass(column_metadata['structural_type'], accepted_structural_types): return False semantic_types = set(column_metadata.get('semantic_types', [])) return True if len(semantic_types) == 0: cls.logger.warning("No semantic types found in column metadata") return False # Making sure all accepted_semantic_types are available in semantic_types if len(accepted_semantic_types - semantic_types) == 0: return True return False @classmethod def _update_predictions_metadata(cls, inputs_metadata: metadata_base.DataMetadata, outputs: Optional[Outputs], target_columns_metadata: List[OrderedDict]) -> metadata_base.DataMetadata: """ Updata metadata for selected columns. Args: inputs_metadata: metadata_base.DataMetadata outputs: Container Dataframe target_columns_metadata: list Returns: d3m.metadata.base.DataMetadata """ outputs_metadata = metadata_base.DataMetadata().generate(value=outputs) for column_index, column_metadata in enumerate(target_columns_metadata): column_metadata.pop("structural_type", None) outputs_metadata = outputs_metadata.update_column(column_index, column_metadata) return outputs_metadata def _wrap_predictions(self, inputs: Inputs, predictions: ndarray) -> Outputs: """ Wrap predictions into dataframe Args: inputs: Container Dataframe predictions: array-like data (n_samples, n_features) Returns: Dataframe """ outputs = d3m_dataframe(predictions, generate_metadata=True) target_columns_metadata = self._add_target_columns_metadata(outputs.metadata, self.hyperparams) outputs.metadata = self._update_predictions_metadata(inputs.metadata, outputs, target_columns_metadata) return outputs @classmethod def _add_target_columns_metadata(cls, outputs_metadata: metadata_base.DataMetadata, hyperparams): """ Add target columns metadata Args: outputs_metadata: metadata.base.DataMetadata hyperparams: d3m.metadata.hyperparams.Hyperparams Returns: List[OrderedDict] """ outputs_length = outputs_metadata.query((metadata_base.ALL_ELEMENTS,))['dimension']['length'] target_columns_metadata: List[OrderedDict] = [] for column_index in range(outputs_length): # column_name = "output_{}".format(column_index) column_metadata = OrderedDict() semantic_types = set() semantic_types.add(hyperparams["return_semantic_type"]) column_metadata['semantic_types'] = list(semantic_types) # column_metadata["name"] = str(column_name) target_columns_metadata.append(column_metadata) return target_columns_metadata def _write(self, inputs: Inputs): # pragma: no cover inputs.to_csv(str(time.time()) + '.csv') def _skew(self,X,window_size): """ statistical skew of time series sequence Args: X : DataFrame Time series. Returns: DataFrame A object with skew """ if(window_size==-1): window_size = len(X) transformed_X = utils.pandas.DataFrame() for column in X.columns: column_value = X[column].values column_skew = np.zeros(len(column_value)) for iter in range(window_size-1,len(column_value)): sequence = column_value[iter-window_size+1:iter+1] column_skew[iter] = round(stats.skew(sequence),4) column_skew[:window_size-1] = column_skew[window_size-1] transformed_X[column + "_skew"] = column_skew return transformed_X
41.509317
221
0.654496
d07299313299db4ad90e7916c7f0d8c28fd5e6d0
21,702
py
Python
salt/modules/boto_asg.py
bogdanr/salt
4f198525873a1b7da3fbb9994dbb40d381494922
[ "Apache-2.0" ]
null
null
null
salt/modules/boto_asg.py
bogdanr/salt
4f198525873a1b7da3fbb9994dbb40d381494922
[ "Apache-2.0" ]
null
null
null
salt/modules/boto_asg.py
bogdanr/salt
4f198525873a1b7da3fbb9994dbb40d381494922
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- ''' Connection module for Amazon Autoscale Groups .. versionadded:: 2014.7.0 :configuration: This module accepts explicit autoscale credentials but can also utilize IAM roles assigned to the instance trough Instance Profiles. Dynamic credentials are then automatically obtained from AWS API and no further configuration is necessary. More Information available at:: http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html If IAM roles are not used you need to specify them either in a pillar or in the minion's config file:: asg.keyid: GKTADJGHEIQSXMKKRBJ08H asg.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs A region may also be specified in the configuration:: asg.region: us-east-1 If a region is not specified, the default is us-east-1. It's also possible to specify key, keyid and region via a profile, either as a passed in dict, or as a string to pull from pillars or minion config: myprofile: keyid: GKTADJGHEIQSXMKKRBJ08H key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs region: us-east-1 :depends: boto ''' # keep lint from choking on _get_conn and _cache_id #pylint: disable=E0602 # Import Python libs from __future__ import absolute_import import logging import json import sys import email.mime.multipart log = logging.getLogger(__name__) # Import third party libs import yaml import salt.ext.six as six try: import boto import boto.ec2 import boto.ec2.instance import boto.ec2.blockdevicemapping as blockdevicemapping import boto.ec2.autoscale as autoscale logging.getLogger('boto').setLevel(logging.CRITICAL) HAS_BOTO = True except ImportError: HAS_BOTO = False # Import Salt libs import salt.utils.odict as odict def __virtual__(): ''' Only load if boto libraries exist. ''' if not HAS_BOTO: return False __utils__['boto.assign_funcs'](__name__, 'asg', module='ec2.autoscale') setattr(sys.modules[__name__], '_get_ec2_conn', __utils__['boto.get_connection_func']('ec2')) return True def exists(name, region=None, key=None, keyid=None, profile=None): ''' Check to see if an autoscale group exists. CLI example:: salt myminion boto_asg.exists myasg region=us-east-1 ''' conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) try: _conn = conn.get_all_groups(names=[name]) if _conn: return True else: msg = 'The autoscale group does not exist in region {0}'.format(region) log.debug(msg) return False except boto.exception.BotoServerError as e: log.debug(e) return False def get_config(name, region=None, key=None, keyid=None, profile=None): ''' Get the configuration for an autoscale group. CLI example:: salt myminion boto_asg.get_config myasg region=us-east-1 ''' conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) try: asg = conn.get_all_groups(names=[name]) if asg: asg = asg[0] else: return {} ret = odict.OrderedDict() attrs = ['name', 'availability_zones', 'default_cooldown', 'desired_capacity', 'health_check_period', 'health_check_type', 'launch_config_name', 'load_balancers', 'max_size', 'min_size', 'placement_group', 'vpc_zone_identifier', 'tags', 'termination_policies', 'suspended_processes'] for attr in attrs: # Tags are objects, so we need to turn them into dicts. if attr == 'tags': _tags = [] for tag in asg.tags: _tag = odict.OrderedDict() _tag['key'] = tag.key _tag['value'] = tag.value _tag['propagate_at_launch'] = tag.propagate_at_launch _tags.append(_tag) ret['tags'] = _tags # Boto accepts a string or list as input for vpc_zone_identifier, # but always returns a comma separated list. We require lists in # states. elif attr == 'vpc_zone_identifier': ret[attr] = getattr(asg, attr).split(',') # convert SuspendedProcess objects to names elif attr == 'suspended_processes': suspended_processes = getattr(asg, attr) ret[attr] = sorted([x.process_name for x in suspended_processes]) else: ret[attr] = getattr(asg, attr) # scaling policies policies = conn.get_all_policies(as_group=name) ret["scaling_policies"] = [] for policy in policies: ret["scaling_policies"].append( dict([ ("name", policy.name), ("adjustment_type", policy.adjustment_type), ("scaling_adjustment", policy.scaling_adjustment), ("min_adjustment_step", policy.min_adjustment_step), ("cooldown", policy.cooldown) ]) ) return ret except boto.exception.BotoServerError as e: log.debug(e) return {} def create(name, launch_config_name, availability_zones, min_size, max_size, desired_capacity=None, load_balancers=None, default_cooldown=None, health_check_type=None, health_check_period=None, placement_group=None, vpc_zone_identifier=None, tags=None, termination_policies=None, suspended_processes=None, scaling_policies=None, region=None, notification_arn=None, notification_types=None, key=None, keyid=None, profile=None): ''' Create an autoscale group. CLI example:: salt myminion boto_asg.create myasg mylc '["us-east-1a", "us-east-1e"]' 1 10 load_balancers='["myelb", "myelb2"]' tags='[{"key": "Name", value="myasg", "propagate_at_launch": True}]' ''' conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) if isinstance(availability_zones, six.string_types): availability_zones = json.loads(availability_zones) if isinstance(load_balancers, six.string_types): load_balancers = json.loads(load_balancers) if isinstance(vpc_zone_identifier, six.string_types): vpc_zone_identifier = json.loads(vpc_zone_identifier) if isinstance(tags, six.string_types): tags = json.loads(tags) # Make a list of tag objects from the dict. _tags = [] if tags: for tag in tags: try: key = tag.get('key') except KeyError: log.error('Tag missing key.') return False try: value = tag.get('value') except KeyError: log.error('Tag missing value.') return False propagate_at_launch = tag.get('propagate_at_launch', False) _tag = autoscale.Tag(key=key, value=value, resource_id=name, propagate_at_launch=propagate_at_launch) _tags.append(_tag) if isinstance(termination_policies, six.string_types): termination_policies = json.loads(termination_policies) if isinstance(suspended_processes, six.string_types): suspended_processes = json.loads(suspended_processes) try: _asg = autoscale.AutoScalingGroup( name=name, launch_config=launch_config_name, availability_zones=availability_zones, min_size=min_size, max_size=max_size, desired_capacity=desired_capacity, load_balancers=load_balancers, default_cooldown=default_cooldown, health_check_type=health_check_type, health_check_period=health_check_period, placement_group=placement_group, tags=_tags, vpc_zone_identifier=vpc_zone_identifier, termination_policies=termination_policies, suspended_processes=suspended_processes) conn.create_auto_scaling_group(_asg) # create scaling policies _create_scaling_policies(conn, name, scaling_policies) # create notifications if notification_arn and notification_types: conn.put_notification_configuration(_asg, notification_arn, notification_types) log.info('Created ASG {0}'.format(name)) return True except boto.exception.BotoServerError as e: log.debug(e) msg = 'Failed to create ASG {0}'.format(name) log.error(msg) return False def update(name, launch_config_name, availability_zones, min_size, max_size, desired_capacity=None, load_balancers=None, default_cooldown=None, health_check_type=None, health_check_period=None, placement_group=None, vpc_zone_identifier=None, tags=None, termination_policies=None, suspended_processes=None, scaling_policies=None, notification_arn=None, notification_types=None, region=None, key=None, keyid=None, profile=None): ''' Update an autoscale group. CLI example:: salt myminion boto_asg.update myasg mylc '["us-east-1a", "us-east-1e"]' 1 10 load_balancers='["myelb", "myelb2"]' tags='[{"key": "Name", value="myasg", "propagate_at_launch": True}]' ''' conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) if not conn: return False, "failed to connect to AWS" if isinstance(availability_zones, six.string_types): availability_zones = json.loads(availability_zones) if isinstance(load_balancers, six.string_types): load_balancers = json.loads(load_balancers) if isinstance(vpc_zone_identifier, six.string_types): vpc_zone_identifier = json.loads(vpc_zone_identifier) if isinstance(tags, six.string_types): tags = json.loads(tags) # Make a list of tag objects from the dict. _tags = [] if tags: for tag in tags: try: key = tag.get('key') except KeyError: log.error('Tag missing key.') return False, "Tag {0} missing key".format(tag) try: value = tag.get('value') except KeyError: log.error('Tag missing value.') return False, "Tag {0} missing value".format(tag) propagate_at_launch = tag.get('propagate_at_launch', False) _tag = autoscale.Tag(key=key, value=value, resource_id=name, propagate_at_launch=propagate_at_launch) _tags.append(_tag) if isinstance(termination_policies, six.string_types): termination_policies = json.loads(termination_policies) if isinstance(suspended_processes, six.string_types): suspended_processes = json.loads(suspended_processes) try: _asg = autoscale.AutoScalingGroup( connection=conn, name=name, launch_config=launch_config_name, availability_zones=availability_zones, min_size=min_size, max_size=max_size, desired_capacity=desired_capacity, load_balancers=load_balancers, default_cooldown=default_cooldown, health_check_type=health_check_type, health_check_period=health_check_period, placement_group=placement_group, tags=_tags, vpc_zone_identifier=vpc_zone_identifier, termination_policies=termination_policies) if notification_arn and notification_types: conn.put_notification_configuration(_asg, notification_arn, notification_types) _asg.update() # Seems the update call doesn't handle tags, so we'll need to update # that separately. if _tags: conn.create_or_update_tags(_tags) # update doesn't handle suspended_processes either # Resume all processes _asg.resume_processes() # suspend any that are specified. Note that the boto default of empty # list suspends all; don't do that. if suspended_processes is not None and len(suspended_processes) > 0: _asg.suspend_processes(suspended_processes) log.info('Updated ASG {0}'.format(name)) # ### scaling policies # delete all policies, then recreate them for policy in conn.get_all_policies(as_group=name): conn.delete_policy(policy.name, autoscale_group=name) _create_scaling_policies(conn, name, scaling_policies) return True, '' except boto.exception.BotoServerError as e: log.debug(e) msg = 'Failed to update ASG {0}'.format(name) log.error(msg) return False, str(e) def _create_scaling_policies(conn, as_name, scaling_policies): 'helper function to create scaling policies' if scaling_policies: for policy in scaling_policies: policy = autoscale.policy.ScalingPolicy( name=policy["name"], as_name=as_name, adjustment_type=policy["adjustment_type"], scaling_adjustment=policy["scaling_adjustment"], min_adjustment_step=policy.get("min_adjustment_step", None), cooldown=policy["cooldown"]) conn.create_scaling_policy(policy) def delete(name, force=False, region=None, key=None, keyid=None, profile=None): ''' Delete an autoscale group. CLI example:: salt myminion boto_asg.delete myasg region=us-east-1 ''' conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) try: conn.delete_auto_scaling_group(name, force) msg = 'Deleted autoscale group {0}.'.format(name) log.info(msg) return True except boto.exception.BotoServerError as e: log.debug(e) msg = 'Failed to delete autoscale group {0}'.format(name) log.error(msg) return False def get_cloud_init_mime(cloud_init): ''' Get a mime multipart encoded string from a cloud-init dict. Currently supports scripts and cloud-config. CLI Example: .. code-block:: bash salt myminion boto.get_cloud_init_mime <cloud init> ''' if isinstance(cloud_init, six.string_types): cloud_init = json.loads(cloud_init) _cloud_init = email.mime.multipart.MIMEMultipart() if 'scripts' in cloud_init: for script_name, script in six.iteritems(cloud_init['scripts']): _script = email.mime.text.MIMEText(script, 'x-shellscript') _cloud_init.attach(_script) if 'cloud-config' in cloud_init: cloud_config = cloud_init['cloud-config'] _cloud_config = email.mime.text.MIMEText(_safe_dump(cloud_config), 'cloud-config') _cloud_init.attach(_cloud_config) return _cloud_init.as_string() def _safe_dump(data): def ordered_dict_presenter(dumper, data): return dumper.represent_dict(six.iteritems(data)) yaml.add_representer(odict.OrderedDict, ordered_dict_presenter, Dumper=yaml.dumper.SafeDumper) return yaml.safe_dump(data, default_flow_style=False) def launch_configuration_exists(name, region=None, key=None, keyid=None, profile=None): ''' Check for a launch configuration's existence. CLI example:: salt myminion boto_asg.launch_configuration_exists mylc ''' conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) try: lc = conn.get_all_launch_configurations(names=[name]) if lc: return True else: msg = 'The launch configuration does not exist in region {0}'.format(region) log.debug(msg) return False except boto.exception.BotoServerError as e: log.debug(e) return False def create_launch_configuration(name, image_id, key_name=None, security_groups=None, user_data=None, instance_type='m1.small', kernel_id=None, ramdisk_id=None, block_device_mappings=None, instance_monitoring=False, spot_price=None, instance_profile_name=None, ebs_optimized=False, associate_public_ip_address=None, volume_type=None, delete_on_termination=True, iops=None, use_block_device_types=False, region=None, key=None, keyid=None, profile=None): ''' Create a launch configuration. CLI example:: salt myminion boto_asg.create_launch_configuration mylc image_id=ami-0b9c9f62 key_name='mykey' security_groups='["mygroup"]' instance_type='c3.2xlarge' ''' conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) if isinstance(security_groups, six.string_types): security_groups = json.loads(security_groups) if isinstance(block_device_mappings, six.string_types): block_device_mappings = json.loads(block_device_mappings) _bdms = [] if block_device_mappings: # Boto requires objects for the mappings and the devices. _block_device_map = blockdevicemapping.BlockDeviceMapping() for block_device_dict in block_device_mappings: for block_device, attributes in six.iteritems(block_device_dict): _block_device = blockdevicemapping.EBSBlockDeviceType() for attribute, value in six.iteritems(attributes): setattr(_block_device, attribute, value) _block_device_map[block_device] = _block_device _bdms = [_block_device_map] lc = autoscale.LaunchConfiguration( name=name, image_id=image_id, key_name=key_name, security_groups=security_groups, user_data=user_data, instance_type=instance_type, kernel_id=kernel_id, ramdisk_id=ramdisk_id, block_device_mappings=_bdms, instance_monitoring=instance_monitoring, spot_price=spot_price, instance_profile_name=instance_profile_name, ebs_optimized=ebs_optimized, associate_public_ip_address=associate_public_ip_address, volume_type=volume_type, delete_on_termination=delete_on_termination, iops=iops, use_block_device_types=use_block_device_types) try: conn.create_launch_configuration(lc) log.info('Created LC {0}'.format(name)) return True except boto.exception.BotoServerError as e: log.debug(e) msg = 'Failed to create LC {0}'.format(name) log.error(msg) return False def delete_launch_configuration(name, region=None, key=None, keyid=None, profile=None): ''' Delete a launch configuration. CLI example:: salt myminion boto_asg.delete_launch_configuration mylc ''' conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) try: conn.delete_launch_configuration(name) log.info('Deleted LC {0}'.format(name)) return True except boto.exception.BotoServerError as e: log.debug(e) msg = 'Failed to delete LC {0}'.format(name) log.error(msg) return False def get_scaling_policy_arn(as_group, scaling_policy_name, region=None, key=None, keyid=None, profile=None): ''' Return the arn for a scaling policy in a specific autoscale group or None if not found. Mainly used as a helper method for boto_cloudwatch_alarm, for linking alarms to scaling policies. CLI Example:: salt '*' boto_asg.get_scaling_policy_arn mygroup mypolicy ''' conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) policies = conn.get_all_policies(as_group=as_group) for policy in policies: if policy.name == scaling_policy_name: return policy.policy_arn log.error('Could not convert: {0}'.format(as_group)) return None def get_instances(name, lifecycle_state="InService", health_status="Healthy", attribute="private_ip_address", region=None, key=None, keyid=None, profile=None): """return attribute of all instances in the named autoscale group. CLI example:: salt-call boto_asg.get_instances my_autoscale_group_name """ conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) ec2_conn = _get_ec2_conn(region=region, key=key, keyid=keyid, profile=profile) try: asgs = conn.get_all_groups(names=[name]) except boto.exception.BotoServerError as e: log.debug(e) return False if len(asgs) != 1: log.debug("name '{0}' returns multiple ASGs: {1}".format(name, [asg.name for asg in asgs])) return False asg = asgs[0] instance_ids = [] # match lifecycle_state and health_status for i in asg.instances: if lifecycle_state is not None and i.lifecycle_state != lifecycle_state: continue if health_status is not None and i.health_status != health_status: continue instance_ids.append(i.instance_id) # get full instance info, so that we can return the attribute instances = ec2_conn.get_only_instances(instance_ids=instance_ids) return [getattr(instance, attribute).encode("ascii") for instance in instances]
39.60219
190
0.646945
328e84854a1a976f05c957b09e55654232d32f6e
3,547
py
Python
rally/plugins/openstack/scenarios/neutron/security_groups.py
LorenzoBianconi/rally
2bbd7ee590cca048fb4ad6a8eefc484989979ff8
[ "Apache-2.0" ]
null
null
null
rally/plugins/openstack/scenarios/neutron/security_groups.py
LorenzoBianconi/rally
2bbd7ee590cca048fb4ad6a8eefc484989979ff8
[ "Apache-2.0" ]
1
2020-07-14T11:29:31.000Z
2020-07-14T11:29:31.000Z
rally/plugins/openstack/scenarios/neutron/security_groups.py
LorenzoBianconi/rally
2bbd7ee590cca048fb4ad6a8eefc484989979ff8
[ "Apache-2.0" ]
1
2020-07-02T01:33:48.000Z
2020-07-02T01:33:48.000Z
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from rally import consts from rally.plugins.openstack import scenario from rally.plugins.openstack.scenarios.neutron import utils from rally.task import validation class NeutronSecurityGroup(utils.NeutronScenario): """Benchmark scenarios for Neutron Security Groups.""" @validation.required_services(consts.Service.NEUTRON) @validation.required_openstack(users=True) @scenario.configure(context={"cleanup": ["neutron"]}) def create_and_list_security_groups(self, security_group_create_args=None): """Create and list Neutron security-groups. Measure the "neutron security-group-create" and "neutron security-group-list" command performance. :param security_group_create_args: dict, POST /v2.0/security-groups request options """ security_group_create_args = security_group_create_args or {} self._create_security_group(**security_group_create_args) self._list_security_groups() @validation.required_services(consts.Service.NEUTRON) @validation.required_openstack(users=True) @scenario.configure() def create_and_delete_security_groups(self, security_group_create_args=None): """Create and delete Neutron security-groups. Measure the "neutron security-group-create" and "neutron security-group-delete" command performance. :param security_group_create_args: dict, POST /v2.0/security-groups request options """ security_group_create_args = security_group_create_args or {} security_group = self._create_security_group( **security_group_create_args) self._delete_security_group(security_group) @validation.required_services(consts.Service.NEUTRON) @validation.required_openstack(users=True) @scenario.configure(context={"cleanup": ["neutron"]}) def create_and_update_security_groups(self, security_group_create_args=None, security_group_update_args=None): """Create and update Neutron security-groups. Measure the "neutron security-group-create" and "neutron security-group-update" command performance. :param security_group_create_args: dict, POST /v2.0/security-groups request options :param security_group_update_args: dict, POST /v2.0/security-groups update options """ security_group_create_args = security_group_create_args or {} security_group_update_args = security_group_update_args or {} security_group = self._create_security_group( **security_group_create_args) self._update_security_group(security_group, **security_group_update_args)
45.474359
79
0.673809
bd9e4a2d7f32035cf02a2267bfca2e54e4216f8a
3,013
py
Python
utils/utils.py
kashimmirza/TextBoxGan
ba7aeef92a0cce2c5a33d259beda038825a4bac4
[ "MIT" ]
1
2021-03-14T11:27:33.000Z
2021-03-14T11:27:33.000Z
utils/utils.py
kashimmirza/TextBoxGan
ba7aeef92a0cce2c5a33d259beda038825a4bac4
[ "MIT" ]
null
null
null
utils/utils.py
kashimmirza/TextBoxGan
ba7aeef92a0cce2c5a33d259beda038825a4bac4
[ "MIT" ]
null
null
null
from typing import List import tensorflow as tf from tensorflow.keras.preprocessing.sequence import pad_sequences from config import cfg def mask_text_box(fake_images: tf.float32, input_words: tf.int32, char_width: int): """ Masks the text boxes outputted by the generator, in the cases where the length of the word is less than cfg.max_char_number. Since each character is supposed to take 1/cfg.max_char_number of the width of the text box, this function masks the extra width. Parameters ---------- fake_images: Text boxes generated with our model. input_words: Integer sequences obtained from the input words (initially strings) using the MAIN_CHAR_VECTOR. char_width: Width of a single character. Returns ------- Masked fake_images """ mask = tf.tile( tf.expand_dims( tf.expand_dims( tf.repeat( tf.where(input_words == 0, 0.0, 1.0), repeats=tf.tile([char_width], [tf.shape(input_words)[1]]), axis=1, ), 1, ), 1, ), [1, fake_images.shape[1], fake_images.shape[2], 1], ) return fake_images * mask def generator_output_to_uint8(fake_images: tf.float32): """ Converts the output of the generator to uint8 RGB images. Parameters ---------- fake_images: Text boxes generated with our model. Returns ------- Generated text boxes in a uint8 RGB format. """ fake_images = (tf.clip_by_value(fake_images, -1.0, 1.0) + 1.0) * 127.5 fake_images = tf.transpose(fake_images, perm=[0, 2, 3, 1]) return tf.cast(fake_images, tf.uint8) def string_to_main_int_sequence(words_list: List[str]): """ Converts input strings to integer sequences using the main character vector, and pad them if their length are less than cfg.max_char_number. Parameters ---------- words_list: List of words to generate Returns ------- Integer sequences obtained from the input words (initially strings) using the MAIN_CHAR_VECTOR. """ int_sequence = cfg.char_tokenizer.main.texts_to_sequences(words_list) # First element is 1 so remove 1 to each element to match embedding shape return ( pad_sequences(int_sequence, maxlen=cfg.max_char_number, value=1, padding="post") - 1 ) def string_to_aster_int_sequence(words_list: List[str]): """ Converts input strings to integer sequences using aster's character vector, and pad them if their length are less than cfg.max_char_number. Parameters ---------- words_list: List of words to generate Returns ------- Integer sequences obtained from the input words (initially strings) using the ASTER_CHAR_VECTOR. """ int_sequence = cfg.char_tokenizer.aster.texts_to_sequences(words_list) return pad_sequences( int_sequence, maxlen=cfg.max_char_number, value=1, padding="post" )
29.539216
118
0.658148
47cb4a0a213c6dee725b3019e7e588ac1037c26e
2,013
py
Python
Shark_Training/pyimagesearch/nn/conv/simplenet.py
crpurcell/MQ_DPI_Release
97444513e8b8d48ec91ff8a43b9dfaed0da029f9
[ "MIT" ]
null
null
null
Shark_Training/pyimagesearch/nn/conv/simplenet.py
crpurcell/MQ_DPI_Release
97444513e8b8d48ec91ff8a43b9dfaed0da029f9
[ "MIT" ]
null
null
null
Shark_Training/pyimagesearch/nn/conv/simplenet.py
crpurcell/MQ_DPI_Release
97444513e8b8d48ec91ff8a43b9dfaed0da029f9
[ "MIT" ]
null
null
null
#=============================================================================# # # # MODIFIED: 05-Sep-2018 by C. Purcell # # # #=============================================================================# from keras.models import Sequential from keras.layers.convolutional import Conv2D from keras.layers.convolutional import MaxPooling2D from keras.layers.core import Activation from keras.layers.core import Flatten from keras.layers.core import Dropout from keras.layers.core import Dense from keras import backend as K #-----------------------------------------------------------------------------# class SimpleNet: @staticmethod def build(width, height, depth, classes): # Initialize the model and channel order model = Sequential() inputShape = (height, width, depth) chanDim = -1 if K.image_data_format() == "channels_first": inputShape = (depth, height, width) chanDim = 1 # First CONV(32) => RELU => POOL(2) layer set model.add(Conv2D(32, (3, 3), input_shape=inputShape)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) # Second CONV(32) => RELU => POOL(2) layer set model.add(Conv2D(32, (3, 3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) # Third CONV(64) => RELU => POOL(2) layer set model.add(Conv2D(64, (3, 3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) # FC(64) => RELU => DROP(0.5) model.add(Flatten()) model.add(Dense(64)) model.add(Activation('relu')) model.add(Dropout(0.5)) # Softmax classifier model.add(Dense(classes)) model.add(Activation('softmax')) return model
36.6
79
0.486836
002bf02b27d5bfd97d1a7445458c50b7fe992004
8,360
py
Python
src/ebay_rest/api/buy_marketing/configuration.py
gbm001/ebay_rest
077d3478423ccd80ff35e0361821d6a11180bc54
[ "MIT" ]
3
2021-12-12T04:28:03.000Z
2022-03-10T03:29:18.000Z
src/ebay_rest/api/buy_marketing/configuration.py
jdavv/ebay_rest
20fc88c6aefdae9ab90f9c1330e79abddcd750cd
[ "MIT" ]
33
2021-06-16T20:44:36.000Z
2022-03-30T14:55:06.000Z
src/ebay_rest/api/buy_marketing/configuration.py
jdavv/ebay_rest
20fc88c6aefdae9ab90f9c1330e79abddcd750cd
[ "MIT" ]
7
2021-06-03T09:30:23.000Z
2022-03-08T19:51:33.000Z
# coding: utf-8 """ Buy Marketing API The Marketing API retrieves eBay products based on a metric, such as Best Selling, as well as products that were also bought and also viewed. # noqa: E501 OpenAPI spec version: v1_beta.1.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import copy import logging import multiprocessing import sys import urllib3 import six from six.moves import http_client as httplib class TypeWithDefault(type): def __init__(cls, name, bases, dct): super(TypeWithDefault, cls).__init__(name, bases, dct) cls._default = None def __call__(cls): if cls._default is None: cls._default = type.__call__(cls) return copy.copy(cls._default) def set_default(cls, default): cls._default = copy.copy(default) class Configuration(six.with_metaclass(TypeWithDefault, object)): """NOTE: This class is auto generated by the swagger code generator program. Ref: https://github.com/swagger-api/swagger-codegen Do not edit the class manually. """ def __init__(self): """Constructor""" # Default Base url self.host = "https://api.ebay.com{basePath}" # Temp file folder for downloading files self.temp_folder_path = None # Authentication Settings # dict to store API key(s) self.api_key = {} # dict to store API prefix (e.g. Bearer) self.api_key_prefix = {} # function to refresh API key if expired self.refresh_api_key_hook = None # Username for HTTP basic authentication self.username = "" # Password for HTTP basic authentication self.password = "" # access token for OAuth self.access_token = "" # Logging Settings self.logger = {} self.logger["package_logger"] = logging.getLogger("buy_marketing") self.logger["urllib3_logger"] = logging.getLogger("urllib3") # Log format self.logger_format = '%(asctime)s %(levelname)s %(message)s' # Log stream handler self.logger_stream_handler = None # Log file handler self.logger_file_handler = None # Debug file location self.logger_file = None # Debug switch self.debug = False # SSL/TLS verification # Set this to false to skip verifying SSL certificate when calling API # from https server. self.verify_ssl = True # Set this to customize the certificate file to verify the peer. self.ssl_ca_cert = None # client certificate file self.cert_file = None # client key file self.key_file = None # Set this to True/False to enable/disable SSL hostname verification. self.assert_hostname = None # urllib3 connection pool's maximum number of connections saved # per pool. urllib3 uses 1 connection as default value, but this is # not the best value when you are making a lot of possibly parallel # requests to the same host, which is often the case here. # cpu_count * 5 is used as default value to increase performance. self.connection_pool_maxsize = multiprocessing.cpu_count() * 5 # Proxy URL self.proxy = None # Safe chars for path_param self.safe_chars_for_path_param = '' @property def logger_file(self): """The logger file. If the logger_file is None, then add stream handler and remove file handler. Otherwise, add file handler and remove stream handler. :param value: The logger_file path. :type: str """ return self.__logger_file @logger_file.setter def logger_file(self, value): """The logger file. If the logger_file is None, then add stream handler and remove file handler. Otherwise, add file handler and remove stream handler. :param value: The logger_file path. :type: str """ self.__logger_file = value if self.__logger_file: # If set logging file, # then add file handler and remove stream handler. self.logger_file_handler = logging.FileHandler(self.__logger_file) self.logger_file_handler.setFormatter(self.logger_formatter) for _, logger in six.iteritems(self.logger): logger.addHandler(self.logger_file_handler) if self.logger_stream_handler: logger.removeHandler(self.logger_stream_handler) else: # If not set logging file, # then add stream handler and remove file handler. self.logger_stream_handler = logging.StreamHandler() self.logger_stream_handler.setFormatter(self.logger_formatter) for _, logger in six.iteritems(self.logger): logger.addHandler(self.logger_stream_handler) if self.logger_file_handler: logger.removeHandler(self.logger_file_handler) @property def debug(self): """Debug status :param value: The debug status, True or False. :type: bool """ return self.__debug @debug.setter def debug(self, value): """Debug status :param value: The debug status, True or False. :type: bool """ self.__debug = value if self.__debug: # if debug status is True, turn on debug logging for _, logger in six.iteritems(self.logger): logger.setLevel(logging.DEBUG) # turn on httplib debug httplib.HTTPConnection.debuglevel = 1 else: # if debug status is False, turn off debug logging, # setting log level to default `logging.WARNING` for _, logger in six.iteritems(self.logger): logger.setLevel(logging.WARNING) # turn off httplib debug httplib.HTTPConnection.debuglevel = 0 @property def logger_format(self): """The logger format. The logger_formatter will be updated when sets logger_format. :param value: The format string. :type: str """ return self.__logger_format @logger_format.setter def logger_format(self, value): """The logger format. The logger_formatter will be updated when sets logger_format. :param value: The format string. :type: str """ self.__logger_format = value self.logger_formatter = logging.Formatter(self.__logger_format) def get_api_key_with_prefix(self, identifier): """Gets API key (with prefix if set). :param identifier: The identifier of apiKey. :return: The token for api key authentication. """ if self.refresh_api_key_hook: self.refresh_api_key_hook(self) key = self.api_key.get(identifier) if key: prefix = self.api_key_prefix.get(identifier) if prefix: return "%s %s" % (prefix, key) else: return key def get_basic_auth_token(self): """Gets HTTP basic authentication header (string). :return: The token for basic HTTP authentication. """ return urllib3.util.make_headers( basic_auth=self.username + ':' + self.password ).get('authorization') def auth_settings(self): """Gets Auth Settings dict for api client. :return: The Auth Settings information dict. """ return { 'api_auth': { 'type': 'oauth2', 'in': 'header', 'key': 'Authorization', 'value': 'Bearer ' + self.access_token }, } def to_debug_report(self): """Gets the essential information for debugging. :return: The report for debugging. """ return "Python SDK Debug Report:\n"\ "OS: {env}\n"\ "Python Version: {pyversion}\n"\ "Version of the API: v1_beta.1.0\n"\ "SDK Package Version: 1.0.0".\ format(env=sys.platform, pyversion=sys.version)
32.913386
159
0.608732
54ce8f3f5566f3f8cb283172a78856bf280b04ad
1,224
py
Python
ml-agents/mlagents/trainers/tests/test_models.py
williamthegrey/ml-agents
c75eacbdc40f9afffaedfd79d861b83a88cf3b8d
[ "Apache-2.0" ]
1
2020-07-06T14:15:33.000Z
2020-07-06T14:15:33.000Z
ml-agents/mlagents/trainers/tests/test_models.py
williamthegrey/ml-agents
c75eacbdc40f9afffaedfd79d861b83a88cf3b8d
[ "Apache-2.0" ]
null
null
null
ml-agents/mlagents/trainers/tests/test_models.py
williamthegrey/ml-agents
c75eacbdc40f9afffaedfd79d861b83a88cf3b8d
[ "Apache-2.0" ]
1
2020-12-10T09:53:30.000Z
2020-12-10T09:53:30.000Z
import pytest from mlagents.trainers.models import ModelUtils from mlagents.tf_utils import tf from mlagents_envs.base_env import BehaviorSpec, ActionType def create_behavior_spec(num_visual, num_vector, vector_size): behavior_spec = BehaviorSpec( [(84, 84, 3)] * int(num_visual) + [(vector_size,)] * int(num_vector), ActionType.DISCRETE, (1,), ) return behavior_spec @pytest.mark.parametrize("num_visual", [1, 2, 4]) @pytest.mark.parametrize("num_vector", [1, 2, 4]) def test_create_input_placeholders(num_vector, num_visual): vec_size = 8 name_prefix = "test123" bspec = create_behavior_spec(num_visual, num_vector, vec_size) vec_in, vis_in = ModelUtils.create_input_placeholders( bspec.observation_shapes, name_prefix=name_prefix ) assert isinstance(vis_in, list) assert len(vis_in) == num_visual assert isinstance(vec_in, tf.Tensor) assert vec_in.get_shape().as_list()[1] == num_vector * 8 # Check names contain prefix and vis shapes are correct for _vis in vis_in: assert _vis.get_shape().as_list() == [None, 84, 84, 3] assert _vis.name.startswith(name_prefix) assert vec_in.name.startswith(name_prefix)
33.081081
77
0.714869
ef2beccca2b40e133e227b3f37b4302cba51a0b9
1,467
py
Python
DynamicProgramming/CommonPatternsContinued/paint_fence.py
mamoudmatook/Leetcode
59fb1612ee648a9b99ff7cc779ada5656c01ecd2
[ "MIT" ]
null
null
null
DynamicProgramming/CommonPatternsContinued/paint_fence.py
mamoudmatook/Leetcode
59fb1612ee648a9b99ff7cc779ada5656c01ecd2
[ "MIT" ]
null
null
null
DynamicProgramming/CommonPatternsContinued/paint_fence.py
mamoudmatook/Leetcode
59fb1612ee648a9b99ff7cc779ada5656c01ecd2
[ "MIT" ]
null
null
null
# # Created on Sun Dec 26 2021 # # The MIT License (MIT) # Copyright (c) 2021 Maatuq # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software # and associated documentation files (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or substantial # portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED # TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # from functools import lru_cache class Solution: def numWays(self, n: int, k: int) -> int: @lru_cache(maxsize=None) def dp(i): if i == 1: return k if i == 2: return k * k return (k - 1) * (dp(i - 1) + dp(i - 2)) return dp(n)
41.914286
122
0.697342