hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
ce7d407480d8a7f47b9d9e91e7767883c6f1e739
994
py
Python
tests/test_imphooks.py
Granitosaurus/xonsh
3796c4ba3b2e857a02760b260b5a911b148a511d
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
tests/test_imphooks.py
Granitosaurus/xonsh
3796c4ba3b2e857a02760b260b5a911b148a511d
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
tests/test_imphooks.py
Granitosaurus/xonsh
3796c4ba3b2e857a02760b260b5a911b148a511d
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
# -*- coding: utf-8 -*- """Testing xonsh import hooks""" import pytest from xonsh import imphooks # noqa from xonsh import built_ins from xonsh.environ import Env from xonsh.execer import Execer from xonsh.built_ins import load_builtins, unload_builtins import builtins @pytest.yield_fixture(autouse=True) def imp_env(xonsh_execer): """Call `load_builtins` with `xonsh_execer`""" load_builtins(execer=xonsh_execer) builtins.__xonsh_env__ = Env({'PATH': [], 'PATHEXT': []}) yield unload_builtins() def test_import(): import sample assert ('hello mom jawaka\n' == sample.x) def test_absolute_import(): from xpack import sample assert ('hello mom jawaka\n' == sample.x) def test_relative_import(): from xpack import relimp assert ('hello mom jawaka\n' == relimp.sample.x) assert ('hello mom jawaka\ndark chest of wonders' == relimp.y) def test_sub_import(): from xpack.sub import sample assert ('hello mom jawaka\n' == sample.x)
24.243902
66
0.709256
f4a3806a891c33b26809c9c1ba6dd699b56e328e
21,001
py
Python
tests/components/insteon/test_config_flow.py
erogleva/core
994ae09f69afe772150a698953c0d7386a745de2
[ "Apache-2.0" ]
6
2016-11-25T06:36:27.000Z
2021-11-16T11:20:23.000Z
tests/components/insteon/test_config_flow.py
erogleva/core
994ae09f69afe772150a698953c0d7386a745de2
[ "Apache-2.0" ]
52
2020-07-14T14:12:26.000Z
2022-03-31T06:24:02.000Z
tests/components/insteon/test_config_flow.py
erogleva/core
994ae09f69afe772150a698953c0d7386a745de2
[ "Apache-2.0" ]
2
2019-08-04T13:39:43.000Z
2020-02-07T23:01:23.000Z
"""Test the config flow for the Insteon integration.""" from homeassistant import config_entries, data_entry_flow, setup from homeassistant.components.insteon.config_flow import ( HUB1, HUB2, MODEM_TYPE, PLM, STEP_ADD_OVERRIDE, STEP_ADD_X10, STEP_CHANGE_HUB_CONFIG, STEP_HUB_V2, STEP_REMOVE_OVERRIDE, STEP_REMOVE_X10, ) from homeassistant.components.insteon.const import ( CONF_CAT, CONF_DIM_STEPS, CONF_HOUSECODE, CONF_HUB_VERSION, CONF_OVERRIDE, CONF_SUBCAT, CONF_UNITCODE, CONF_X10, DOMAIN, ) from homeassistant.const import ( CONF_ADDRESS, CONF_DEVICE, CONF_HOST, CONF_PASSWORD, CONF_PLATFORM, CONF_PORT, CONF_USERNAME, ) from homeassistant.helpers.typing import HomeAssistantType from .const import ( MOCK_HOSTNAME, MOCK_IMPORT_CONFIG_PLM, MOCK_IMPORT_MINIMUM_HUB_V1, MOCK_IMPORT_MINIMUM_HUB_V2, MOCK_PASSWORD, MOCK_USER_INPUT_HUB_V1, MOCK_USER_INPUT_HUB_V2, MOCK_USER_INPUT_PLM, MOCK_USERNAME, PATCH_ASYNC_SETUP, PATCH_ASYNC_SETUP_ENTRY, PATCH_CONNECTION, ) from tests.async_mock import patch from tests.common import MockConfigEntry async def mock_successful_connection(*args, **kwargs): """Return a successful connection.""" return True async def mock_failed_connection(*args, **kwargs): """Return a failed connection.""" raise ConnectionError("Connection failed") async def _init_form(hass, modem_type): """Run the user form.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["errors"] == {} result2 = await hass.config_entries.flow.async_configure( result["flow_id"], {MODEM_TYPE: modem_type}, ) return result2 async def _device_form(hass, flow_id, connection, user_input): """Test the PLM, Hub v1 or Hub v2 form.""" with patch(PATCH_CONNECTION, new=connection,), patch( PATCH_ASYNC_SETUP, return_value=True ) as mock_setup, patch( PATCH_ASYNC_SETUP_ENTRY, return_value=True, ) as mock_setup_entry: result = await hass.config_entries.flow.async_configure(flow_id, user_input) return result, mock_setup, mock_setup_entry async def test_form_select_modem(hass: HomeAssistantType): """Test we get a modem form.""" await setup.async_setup_component(hass, "persistent_notification", {}) result = await _init_form(hass, HUB2) assert result["step_id"] == STEP_HUB_V2 assert result["type"] == "form" async def test_fail_on_existing(hass: HomeAssistantType): """Test we fail if the integration is already configured.""" config_entry = MockConfigEntry( domain=DOMAIN, entry_id="abcde12345", data={**MOCK_USER_INPUT_HUB_V2, CONF_HUB_VERSION: 2}, options={}, ) config_entry.add_to_hass(hass) assert config_entry.state == config_entries.ENTRY_STATE_NOT_LOADED result = await hass.config_entries.flow.async_init( DOMAIN, data={**MOCK_USER_INPUT_HUB_V2, CONF_HUB_VERSION: 2}, context={"source": config_entries.SOURCE_USER}, ) assert result["type"] == data_entry_flow.RESULT_TYPE_ABORT assert result["reason"] == "single_instance_allowed" async def test_form_select_plm(hass: HomeAssistantType): """Test we set up the PLM correctly.""" await setup.async_setup_component(hass, "persistent_notification", {}) result = await _init_form(hass, PLM) result2, mock_setup, mock_setup_entry = await _device_form( hass, result["flow_id"], mock_successful_connection, MOCK_USER_INPUT_PLM ) assert result2["type"] == "create_entry" assert result2["data"] == MOCK_USER_INPUT_PLM await hass.async_block_till_done() assert len(mock_setup.mock_calls) == 1 assert len(mock_setup_entry.mock_calls) == 1 async def test_form_select_hub_v1(hass: HomeAssistantType): """Test we set up the Hub v1 correctly.""" await setup.async_setup_component(hass, "persistent_notification", {}) result = await _init_form(hass, HUB1) result2, mock_setup, mock_setup_entry = await _device_form( hass, result["flow_id"], mock_successful_connection, MOCK_USER_INPUT_HUB_V1 ) assert result2["type"] == "create_entry" assert result2["data"] == { **MOCK_USER_INPUT_HUB_V1, CONF_HUB_VERSION: 1, } await hass.async_block_till_done() assert len(mock_setup.mock_calls) == 1 assert len(mock_setup_entry.mock_calls) == 1 async def test_form_select_hub_v2(hass: HomeAssistantType): """Test we set up the Hub v2 correctly.""" await setup.async_setup_component(hass, "persistent_notification", {}) result = await _init_form(hass, HUB2) result2, mock_setup, mock_setup_entry = await _device_form( hass, result["flow_id"], mock_successful_connection, MOCK_USER_INPUT_HUB_V2 ) assert result2["type"] == "create_entry" assert result2["data"] == { **MOCK_USER_INPUT_HUB_V2, CONF_HUB_VERSION: 2, } await hass.async_block_till_done() assert len(mock_setup.mock_calls) == 1 assert len(mock_setup_entry.mock_calls) == 1 async def test_failed_connection_plm(hass: HomeAssistantType): """Test a failed connection with the PLM.""" await setup.async_setup_component(hass, "persistent_notification", {}) result = await _init_form(hass, PLM) result2, _, _ = await _device_form( hass, result["flow_id"], mock_failed_connection, MOCK_USER_INPUT_PLM ) assert result2["type"] == "form" assert result2["errors"] == {"base": "cannot_connect"} async def test_failed_connection_hub(hass: HomeAssistantType): """Test a failed connection with a Hub.""" await setup.async_setup_component(hass, "persistent_notification", {}) result = await _init_form(hass, HUB2) result2, _, _ = await _device_form( hass, result["flow_id"], mock_failed_connection, MOCK_USER_INPUT_HUB_V2 ) assert result2["type"] == "form" assert result2["errors"] == {"base": "cannot_connect"} async def _import_config(hass, config): """Run the import step.""" with patch(PATCH_CONNECTION, new=mock_successful_connection,), patch( PATCH_ASYNC_SETUP, return_value=True ), patch(PATCH_ASYNC_SETUP_ENTRY, return_value=True): return await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_IMPORT}, data=config ) async def test_import_plm(hass: HomeAssistantType): """Test importing a minimum PLM config from yaml.""" await setup.async_setup_component(hass, "persistent_notification", {}) result = await _import_config(hass, MOCK_IMPORT_CONFIG_PLM) assert result["type"] == "create_entry" assert hass.config_entries.async_entries(DOMAIN) for entry in hass.config_entries.async_entries(DOMAIN): assert entry.data == MOCK_IMPORT_CONFIG_PLM async def _options_init_form(hass, entry_id, step): """Run the init options form.""" with patch(PATCH_ASYNC_SETUP_ENTRY, return_value=True): result = await hass.config_entries.options.async_init(entry_id) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "init" result2 = await hass.config_entries.options.async_configure( result["flow_id"], {step: True}, ) return result2 async def test_import_min_hub_v2(hass: HomeAssistantType): """Test importing a minimum Hub v2 config from yaml.""" await setup.async_setup_component(hass, "persistent_notification", {}) result = await _import_config( hass, {**MOCK_IMPORT_MINIMUM_HUB_V2, CONF_PORT: 25105, CONF_HUB_VERSION: 2} ) assert result["type"] == "create_entry" assert hass.config_entries.async_entries(DOMAIN) for entry in hass.config_entries.async_entries(DOMAIN): assert entry.data[CONF_HOST] == MOCK_HOSTNAME assert entry.data[CONF_PORT] == 25105 assert entry.data[CONF_USERNAME] == MOCK_USERNAME assert entry.data[CONF_PASSWORD] == MOCK_PASSWORD assert entry.data[CONF_HUB_VERSION] == 2 async def test_import_min_hub_v1(hass: HomeAssistantType): """Test importing a minimum Hub v1 config from yaml.""" await setup.async_setup_component(hass, "persistent_notification", {}) result = await _import_config( hass, {**MOCK_IMPORT_MINIMUM_HUB_V1, CONF_PORT: 9761, CONF_HUB_VERSION: 1} ) assert result["type"] == "create_entry" assert hass.config_entries.async_entries(DOMAIN) for entry in hass.config_entries.async_entries(DOMAIN): assert entry.data[CONF_HOST] == MOCK_HOSTNAME assert entry.data[CONF_PORT] == 9761 assert entry.data[CONF_HUB_VERSION] == 1 async def test_import_existing(hass: HomeAssistantType): """Test we fail on an existing config imported.""" config_entry = MockConfigEntry( domain=DOMAIN, entry_id="abcde12345", data={**MOCK_USER_INPUT_HUB_V2, CONF_HUB_VERSION: 2}, options={}, ) config_entry.add_to_hass(hass) assert config_entry.state == config_entries.ENTRY_STATE_NOT_LOADED result = await _import_config( hass, {**MOCK_IMPORT_MINIMUM_HUB_V2, CONF_PORT: 25105, CONF_HUB_VERSION: 2} ) assert result["type"] == data_entry_flow.RESULT_TYPE_ABORT assert result["reason"] == "single_instance_allowed" async def test_import_failed_connection(hass: HomeAssistantType): """Test a failed connection on import.""" await setup.async_setup_component(hass, "persistent_notification", {}) with patch(PATCH_CONNECTION, new=mock_failed_connection,), patch( PATCH_ASYNC_SETUP, return_value=True ), patch(PATCH_ASYNC_SETUP_ENTRY, return_value=True): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_IMPORT}, data={**MOCK_IMPORT_MINIMUM_HUB_V2, CONF_PORT: 25105, CONF_HUB_VERSION: 2}, ) assert result["type"] == data_entry_flow.RESULT_TYPE_ABORT assert result["reason"] == "cannot_connect" async def _options_form(hass, flow_id, user_input): """Test an options form.""" with patch(PATCH_ASYNC_SETUP_ENTRY, return_value=True) as mock_setup_entry: result = await hass.config_entries.options.async_configure(flow_id, user_input) return result, mock_setup_entry async def test_options_change_hub_config(hass: HomeAssistantType): """Test changing Hub v2 config.""" config_entry = MockConfigEntry( domain=DOMAIN, entry_id="abcde12345", data={**MOCK_USER_INPUT_HUB_V2, CONF_HUB_VERSION: 2}, options={}, ) config_entry.add_to_hass(hass) result = await _options_init_form( hass, config_entry.entry_id, STEP_CHANGE_HUB_CONFIG ) user_input = { CONF_HOST: "2.3.4.5", CONF_PORT: 9999, CONF_USERNAME: "new username", CONF_PASSWORD: "new password", } result, _ = await _options_form(hass, result["flow_id"], user_input) assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY assert config_entry.options == {} assert config_entry.data == {**user_input, CONF_HUB_VERSION: 2} async def test_options_add_device_override(hass: HomeAssistantType): """Test adding a device override.""" config_entry = MockConfigEntry( domain=DOMAIN, entry_id="abcde12345", data={**MOCK_USER_INPUT_HUB_V2, CONF_HUB_VERSION: 2}, options={}, ) config_entry.add_to_hass(hass) result = await _options_init_form(hass, config_entry.entry_id, STEP_ADD_OVERRIDE) user_input = { CONF_ADDRESS: "1a2b3c", CONF_CAT: "0x04", CONF_SUBCAT: "0xaa", } result, _ = await _options_form(hass, result["flow_id"], user_input) assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY assert len(config_entry.options[CONF_OVERRIDE]) == 1 assert config_entry.options[CONF_OVERRIDE][0][CONF_ADDRESS] == "1A.2B.3C" assert config_entry.options[CONF_OVERRIDE][0][CONF_CAT] == 4 assert config_entry.options[CONF_OVERRIDE][0][CONF_SUBCAT] == 170 result2 = await _options_init_form(hass, config_entry.entry_id, STEP_ADD_OVERRIDE) user_input = { CONF_ADDRESS: "4d5e6f", CONF_CAT: "05", CONF_SUBCAT: "bb", } await _options_form(hass, result2["flow_id"], user_input) assert len(config_entry.options[CONF_OVERRIDE]) == 2 assert config_entry.options[CONF_OVERRIDE][1][CONF_ADDRESS] == "4D.5E.6F" assert config_entry.options[CONF_OVERRIDE][1][CONF_CAT] == 5 assert config_entry.options[CONF_OVERRIDE][1][CONF_SUBCAT] == 187 async def test_options_remove_device_override(hass: HomeAssistantType): """Test removing a device override.""" config_entry = MockConfigEntry( domain=DOMAIN, entry_id="abcde12345", data={**MOCK_USER_INPUT_HUB_V2, CONF_HUB_VERSION: 2}, options={ CONF_OVERRIDE: [ {CONF_ADDRESS: "1A.2B.3C", CONF_CAT: 6, CONF_SUBCAT: 100}, {CONF_ADDRESS: "4D.5E.6F", CONF_CAT: 7, CONF_SUBCAT: 200}, ] }, ) config_entry.add_to_hass(hass) result = await _options_init_form(hass, config_entry.entry_id, STEP_REMOVE_OVERRIDE) user_input = {CONF_ADDRESS: "1A.2B.3C"} result, _ = await _options_form(hass, result["flow_id"], user_input) assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY assert len(config_entry.options[CONF_OVERRIDE]) == 1 async def test_options_remove_device_override_with_x10(hass: HomeAssistantType): """Test removing a device override when an X10 device is configured.""" config_entry = MockConfigEntry( domain=DOMAIN, entry_id="abcde12345", data={**MOCK_USER_INPUT_HUB_V2, CONF_HUB_VERSION: 2}, options={ CONF_OVERRIDE: [ {CONF_ADDRESS: "1A.2B.3C", CONF_CAT: 6, CONF_SUBCAT: 100}, {CONF_ADDRESS: "4D.5E.6F", CONF_CAT: 7, CONF_SUBCAT: 200}, ], CONF_X10: [ { CONF_HOUSECODE: "d", CONF_UNITCODE: 5, CONF_PLATFORM: "light", CONF_DIM_STEPS: 22, } ], }, ) config_entry.add_to_hass(hass) result = await _options_init_form(hass, config_entry.entry_id, STEP_REMOVE_OVERRIDE) user_input = {CONF_ADDRESS: "1A.2B.3C"} result, _ = await _options_form(hass, result["flow_id"], user_input) assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY assert len(config_entry.options[CONF_OVERRIDE]) == 1 assert len(config_entry.options[CONF_X10]) == 1 async def test_options_add_x10_device(hass: HomeAssistantType): """Test adding an X10 device.""" config_entry = MockConfigEntry( domain=DOMAIN, entry_id="abcde12345", data={**MOCK_USER_INPUT_HUB_V2, CONF_HUB_VERSION: 2}, options={}, ) config_entry.add_to_hass(hass) result = await _options_init_form(hass, config_entry.entry_id, STEP_ADD_X10) user_input = { CONF_HOUSECODE: "c", CONF_UNITCODE: 12, CONF_PLATFORM: "light", CONF_DIM_STEPS: 18, } result2, _ = await _options_form(hass, result["flow_id"], user_input) assert result2["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY assert len(config_entry.options[CONF_X10]) == 1 assert config_entry.options[CONF_X10][0][CONF_HOUSECODE] == "c" assert config_entry.options[CONF_X10][0][CONF_UNITCODE] == 12 assert config_entry.options[CONF_X10][0][CONF_PLATFORM] == "light" assert config_entry.options[CONF_X10][0][CONF_DIM_STEPS] == 18 result = await _options_init_form(hass, config_entry.entry_id, STEP_ADD_X10) user_input = { CONF_HOUSECODE: "d", CONF_UNITCODE: 10, CONF_PLATFORM: "binary_sensor", CONF_DIM_STEPS: 15, } result3, _ = await _options_form(hass, result["flow_id"], user_input) assert result3["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY assert len(config_entry.options[CONF_X10]) == 2 assert config_entry.options[CONF_X10][1][CONF_HOUSECODE] == "d" assert config_entry.options[CONF_X10][1][CONF_UNITCODE] == 10 assert config_entry.options[CONF_X10][1][CONF_PLATFORM] == "binary_sensor" assert config_entry.options[CONF_X10][1][CONF_DIM_STEPS] == 15 async def test_options_remove_x10_device(hass: HomeAssistantType): """Test removing an X10 device.""" config_entry = MockConfigEntry( domain=DOMAIN, entry_id="abcde12345", data={**MOCK_USER_INPUT_HUB_V2, CONF_HUB_VERSION: 2}, options={ CONF_X10: [ { CONF_HOUSECODE: "C", CONF_UNITCODE: 4, CONF_PLATFORM: "light", CONF_DIM_STEPS: 18, }, { CONF_HOUSECODE: "D", CONF_UNITCODE: 10, CONF_PLATFORM: "binary_sensor", CONF_DIM_STEPS: 15, }, ] }, ) config_entry.add_to_hass(hass) result = await _options_init_form(hass, config_entry.entry_id, STEP_REMOVE_X10) for device in config_entry.options[CONF_X10]: housecode = device[CONF_HOUSECODE].upper() unitcode = device[CONF_UNITCODE] print(f"Housecode: {housecode}, Unitcode: {unitcode}") user_input = {CONF_DEVICE: "Housecode: C, Unitcode: 4"} result, _ = await _options_form(hass, result["flow_id"], user_input) assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY assert len(config_entry.options[CONF_X10]) == 1 async def test_options_remove_x10_device_with_override(hass: HomeAssistantType): """Test removing an X10 device when a device override is configured.""" config_entry = MockConfigEntry( domain=DOMAIN, entry_id="abcde12345", data={**MOCK_USER_INPUT_HUB_V2, CONF_HUB_VERSION: 2}, options={ CONF_X10: [ { CONF_HOUSECODE: "C", CONF_UNITCODE: 4, CONF_PLATFORM: "light", CONF_DIM_STEPS: 18, }, { CONF_HOUSECODE: "D", CONF_UNITCODE: 10, CONF_PLATFORM: "binary_sensor", CONF_DIM_STEPS: 15, }, ], CONF_OVERRIDE: [{CONF_ADDRESS: "1A.2B.3C", CONF_CAT: 1, CONF_SUBCAT: 18}], }, ) config_entry.add_to_hass(hass) result = await _options_init_form(hass, config_entry.entry_id, STEP_REMOVE_X10) for device in config_entry.options[CONF_X10]: housecode = device[CONF_HOUSECODE].upper() unitcode = device[CONF_UNITCODE] print(f"Housecode: {housecode}, Unitcode: {unitcode}") user_input = {CONF_DEVICE: "Housecode: C, Unitcode: 4"} result, _ = await _options_form(hass, result["flow_id"], user_input) assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY assert len(config_entry.options[CONF_X10]) == 1 assert len(config_entry.options[CONF_OVERRIDE]) == 1 async def test_options_dup_selection(hass: HomeAssistantType): """Test if a duplicate selection was made in options.""" config_entry = MockConfigEntry( domain=DOMAIN, entry_id="abcde12345", data={**MOCK_USER_INPUT_HUB_V2, CONF_HUB_VERSION: 2}, options={}, ) config_entry.add_to_hass(hass) result = await hass.config_entries.options.async_init(config_entry.entry_id) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "init" result2 = await hass.config_entries.options.async_configure( result["flow_id"], {STEP_ADD_OVERRIDE: True, STEP_ADD_X10: True}, ) assert result2["type"] == data_entry_flow.RESULT_TYPE_FORM assert result2["errors"] == {"base": "select_single"} async def test_options_override_bad_data(hass: HomeAssistantType): """Test for bad data in a device override.""" config_entry = MockConfigEntry( domain=DOMAIN, entry_id="abcde12345", data={**MOCK_USER_INPUT_HUB_V2, CONF_HUB_VERSION: 2}, options={}, ) config_entry.add_to_hass(hass) result = await _options_init_form(hass, config_entry.entry_id, STEP_ADD_OVERRIDE) user_input = { CONF_ADDRESS: "zzzzzz", CONF_CAT: "bad", CONF_SUBCAT: "data", } result, _ = await _options_form(hass, result["flow_id"], user_input) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["errors"] == {"base": "input_error"}
34.655116
88
0.677968
ef66ae8f5b16f6c48c967efd62cb118cc537be4d
23,917
py
Python
onmt/inputters/inputter.py
axenov/BERT-Summarization-for-OpenNMT
b453b33efb4961ec11b9e424f65049e7b7a5146f
[ "MIT" ]
5
2021-03-08T12:53:48.000Z
2021-09-14T16:18:23.000Z
onmt/inputters/inputter.py
axenov/BERT-Summarization-for-OpenNMT
b453b33efb4961ec11b9e424f65049e7b7a5146f
[ "MIT" ]
null
null
null
onmt/inputters/inputter.py
axenov/BERT-Summarization-for-OpenNMT
b453b33efb4961ec11b9e424f65049e7b7a5146f
[ "MIT" ]
2
2021-03-06T15:28:44.000Z
2021-07-30T19:36:08.000Z
# -*- coding: utf-8 -*- import glob import os import codecs import math from collections import Counter, defaultdict from itertools import chain, cycle import torch import torchtext.data from torchtext.data import Field from torchtext.vocab import Vocab from onmt.inputters.text_dataset import text_fields, TextMultiField from onmt.inputters.image_dataset import image_fields from onmt.inputters.audio_dataset import audio_fields from onmt.utils.logging import logger # backwards compatibility from onmt.inputters.text_dataset import _feature_tokenize # noqa: F401 from onmt.inputters.image_dataset import ( # noqa: F401 batch_img as make_img) import gc # monkey-patch to make torchtext Vocab's pickleable def _getstate(self): return dict(self.__dict__, stoi=dict(self.stoi)) def _setstate(self, state): self.__dict__.update(state) self.stoi = defaultdict(lambda: 0, self.stoi) Vocab.__getstate__ = _getstate Vocab.__setstate__ = _setstate def make_src(data, vocab): src_size = max([t.size(0) for t in data]) src_vocab_size = max([t.max() for t in data]) + 1 alignment = torch.zeros(src_size, len(data), src_vocab_size) for i, sent in enumerate(data): for j, t in enumerate(sent): alignment[j, i, t] = 1 return alignment def make_tgt(data, vocab): tgt_size = max([t.size(0) for t in data]) alignment = torch.zeros(tgt_size, len(data)).long() for i, sent in enumerate(data): alignment[:sent.size(0), i] = sent return alignment def get_fields( src_data_type, n_src_feats, n_tgt_feats, #pad='<blank>', pad ='[PAD]', #bos='<s>', #eos='</s>', bos='[CLS]', eos='[SEP]', dynamic_dict=False, src_truncate=None, tgt_truncate=None ): """ Args: src_data_type: type of the source input. Options are [text|img|audio]. n_src_feats (int): the number of source features (not counting tokens) to create a :class:`torchtext.data.Field` for. (If ``src_data_type=="text"``, these fields are stored together as a ``TextMultiField``). n_tgt_feats (int): See above. pad (str): Special pad symbol. Used on src and tgt side. bos (str): Special beginning of sequence symbol. Only relevant for tgt. eos (str): Special end of sequence symbol. Only relevant for tgt. dynamic_dict (bool): Whether or not to include source map and alignment fields. src_truncate: Cut off src sequences beyond this (passed to ``src_data_type``'s data reader - see there for more details). tgt_truncate: Cut off tgt sequences beyond this (passed to :class:`TextDataReader` - see there for more details). Returns: A dict mapping names to fields. These names need to match the dataset example attributes. """ assert src_data_type in ['text', 'img', 'audio'], \ "Data type not implemented" assert not dynamic_dict or src_data_type == 'text', \ 'it is not possible to use dynamic_dict with non-text input' fields = {} fields_getters = {"text": text_fields, "img": image_fields, "audio": audio_fields} src_field_kwargs = {"n_feats": n_src_feats, "include_lengths": True, "pad": pad, "bos": None, "eos": None, "truncate": src_truncate, "base_name": "src"} fields["src"] = fields_getters[src_data_type](**src_field_kwargs) tgt_field_kwargs = {"n_feats": n_tgt_feats, "include_lengths": False, "pad": pad, "bos": bos, "eos": eos, "truncate": tgt_truncate, "base_name": "tgt"} fields["tgt"] = fields_getters["text"](**tgt_field_kwargs) indices = Field(use_vocab=False, dtype=torch.long, sequential=False) fields["indices"] = indices if dynamic_dict: src_map = Field( use_vocab=False, dtype=torch.float, postprocessing=make_src, sequential=False) fields["src_map"] = src_map align = Field( use_vocab=False, dtype=torch.long, postprocessing=make_tgt, sequential=False) fields["alignment"] = align return fields def load_old_vocab(vocab, data_type="text", dynamic_dict=False): """Update a legacy vocab/field format. Args: vocab: a list of (field name, torchtext.vocab.Vocab) pairs. This is the format formerly saved in *.vocab.pt files. Or, text data not using a :class:`TextMultiField`. data_type (str): text, img, or audio dynamic_dict (bool): Used for copy attention. Returns: a dictionary whose keys are the field names and whose values Fields. """ if _old_style_vocab(vocab): # List[Tuple[str, Vocab]] -> List[Tuple[str, Field]] # -> dict[str, Field] vocab = dict(vocab) n_src_features = sum('src_feat_' in k for k in vocab) n_tgt_features = sum('tgt_feat_' in k for k in vocab) fields = get_fields( data_type, n_src_features, n_tgt_features, dynamic_dict=dynamic_dict) for n, f in fields.items(): try: f_iter = iter(f) except TypeError: f_iter = [(n, f)] for sub_n, sub_f in f_iter: if sub_n in vocab: sub_f.vocab = vocab[sub_n] return fields if _old_style_field_list(vocab): # upgrade to multifield # Dict[str, List[Tuple[str, Field]]] # doesn't change structure - don't return early. fields = vocab for base_name, vals in fields.items(): if ((base_name == 'src' and data_type == 'text') or base_name == 'tgt'): assert not isinstance(vals[0][1], TextMultiField) fields[base_name] = [(base_name, TextMultiField( vals[0][0], vals[0][1], vals[1:]))] if _old_style_nesting(vocab): # Dict[str, List[Tuple[str, Field]]] -> List[Tuple[str, Field]] # -> dict[str, Field] fields = dict(list(chain.from_iterable(vocab.values()))) return fields def _old_style_vocab(vocab): """Detect old-style vocabs (``List[Tuple[str, torchtext.data.Vocab]]``). Args: vocab: some object loaded from a *.vocab.pt file Returns: Whether ``vocab`` is a list of pairs where the second object is a :class:`torchtext.vocab.Vocab` object. This exists because previously only the vocab objects from the fields were saved directly, not the fields themselves, and the fields needed to be reconstructed at training and translation time. """ return isinstance(vocab, list) and \ any(isinstance(v[1], Vocab) for v in vocab) def _old_style_nesting(vocab): """Detect old-style nesting (``dict[str, List[Tuple[str, Field]]]``).""" return isinstance(vocab, dict) and \ any(isinstance(v, list) for v in vocab.values()) def _old_style_field_list(vocab): """Detect old-style text fields. Not old style vocab, old nesting, and text-type fields not using ``TextMultiField``. Args: vocab: some object loaded from a *.vocab.pt file Returns: Whether ``vocab`` is not an :func:`_old_style_vocab` and not a :class:`TextMultiField` (using an old-style text representation). """ # if tgt isn't using TextMultiField, then no text field is. return (not _old_style_vocab(vocab)) and _old_style_nesting(vocab) and \ (not isinstance(vocab['tgt'][0][1], TextMultiField)) def old_style_vocab(vocab): """The vocab/fields need updated.""" return _old_style_vocab(vocab) or _old_style_field_list(vocab) or \ _old_style_nesting(vocab) def filter_example(ex, use_src_len=True, use_tgt_len=True, min_src_len=1, max_src_len=float('inf'), min_tgt_len=1, max_tgt_len=float('inf')): """Return whether an example is an acceptable length. If used with a dataset as ``filter_pred``, use :func:`partial()` for all keyword arguments. Args: ex (torchtext.data.Example): An object with a ``src`` and ``tgt`` property. use_src_len (bool): Filter based on the length of ``ex.src``. use_tgt_len (bool): Similar to above. min_src_len (int): A non-negative minimally acceptable length (examples of exactly this length will be included). min_tgt_len (int): Similar to above. max_src_len (int or float): A non-negative (possibly infinite) maximally acceptable length (examples of exactly this length will be included). max_tgt_len (int or float): Similar to above. """ src_len = len(ex.src[0]) tgt_len = len(ex.tgt[0]) return (not use_src_len or min_src_len <= src_len <= max_src_len) and \ (not use_tgt_len or min_tgt_len <= tgt_len <= max_tgt_len) def _pad_vocab_to_multiple(vocab, multiple): vocab_size = len(vocab) if vocab_size % multiple == 0: return target_size = int(math.ceil(vocab_size / multiple)) * multiple padding_tokens = [ "averyunlikelytoken%d" % i for i in range(target_size - vocab_size)] vocab.extend(Vocab(Counter(), specials=padding_tokens)) return vocab def _build_field_vocab(field, counter, size_multiple=1, **kwargs): # this is basically copy-pasted from torchtext. all_specials = [ field.unk_token, field.pad_token, field.init_token, field.eos_token ] specials = [tok for tok in all_specials if tok is not None] field.vocab = field.vocab_cls(counter, specials=specials, **kwargs) if size_multiple > 1: _pad_vocab_to_multiple(field.vocab, size_multiple) def _load_vocab(vocab_path, name, counters, min_freq): # counters changes in place vocab = _read_vocab_file(vocab_path, name) vocab_size = len(vocab) logger.info('Loaded %s vocab has %d tokens.' % (name, vocab_size)) for i, token in enumerate(vocab): # keep the order of tokens specified in the vocab file by # adding them to the counter with decreasing counting values counters[name][token] = vocab_size - i + min_freq return vocab, vocab_size def _build_fv_from_multifield(multifield, counters, build_fv_args, size_multiple=1): for name, field in multifield: _build_field_vocab( field, counters[name], size_multiple=size_multiple, **build_fv_args[name]) logger.info(" * %s vocab size: %d." % (name, len(field.vocab))) def build_vocab(train_dataset_files, fields, data_type, share_vocab, src_vocab_path, src_vocab_size, src_words_min_frequency, tgt_vocab_path, tgt_vocab_size, tgt_words_min_frequency, vocab_size_multiple=1): """Build the fields for all data sides. Args: train_dataset_files: a list of train dataset pt file. fields (dict[str, Field]): fields to build vocab for. data_type (str): A supported data type string. share_vocab (bool): share source and target vocabulary? src_vocab_path (str): Path to src vocabulary file. src_vocab_size (int): size of the source vocabulary. src_words_min_frequency (int): the minimum frequency needed to include a source word in the vocabulary. tgt_vocab_path (str): Path to tgt vocabulary file. tgt_vocab_size (int): size of the target vocabulary. tgt_words_min_frequency (int): the minimum frequency needed to include a target word in the vocabulary. vocab_size_multiple (int): ensure that the vocabulary size is a multiple of this value. Returns: Dict of Fields """ counters = defaultdict(Counter) if src_vocab_path: try: logger.info("Using existing vocabulary...") vocab = torch.load(src_vocab_path) # return vocab to dump with standard name return vocab except torch.serialization.pickle.UnpicklingError: logger.info("Building vocab from text file...") # empty train_dataset_files so that vocab is only loaded from # given paths in src_vocab_path, tgt_vocab_path train_dataset_files = [] # Load vocabulary if src_vocab_path: src_vocab, src_vocab_size = _load_vocab( src_vocab_path, "src", counters, src_words_min_frequency) else: src_vocab = None if tgt_vocab_path: tgt_vocab, tgt_vocab_size = _load_vocab( tgt_vocab_path, "tgt", counters, tgt_words_min_frequency) else: tgt_vocab = None for i, path in enumerate(train_dataset_files): dataset = torch.load(path) logger.info(" * reloading %s." % path) for ex in dataset.examples: for name, field in fields.items(): try: f_iter = iter(field) except TypeError: f_iter = [(name, field)] all_data = [getattr(ex, name, None)] else: all_data = getattr(ex, name) for (sub_n, sub_f), fd in zip( f_iter, all_data): has_vocab = (sub_n == 'src' and src_vocab) or \ (sub_n == 'tgt' and tgt_vocab) if sub_f.sequential and not has_vocab: val = fd counters[sub_n].update(val) # Drop the none-using from memory but keep the last if i < len(train_dataset_files) - 1: dataset.examples = None gc.collect() del dataset.examples gc.collect() del dataset gc.collect() build_fv_args = defaultdict(dict) build_fv_args["src"] = dict( max_size=src_vocab_size, min_freq=src_words_min_frequency) build_fv_args["tgt"] = dict( max_size=tgt_vocab_size, min_freq=tgt_words_min_frequency) tgt_multifield = fields["tgt"] _build_fv_from_multifield( tgt_multifield, counters, build_fv_args, size_multiple=vocab_size_multiple if not share_vocab else 1) if data_type == 'text': src_multifield = fields["src"] _build_fv_from_multifield( src_multifield, counters, build_fv_args, size_multiple=vocab_size_multiple if not share_vocab else 1) if share_vocab: # `tgt_vocab_size` is ignored when sharing vocabularies logger.info(" * merging src and tgt vocab...") src_field = src_multifield.base_field tgt_field = tgt_multifield.base_field _merge_field_vocabs( src_field, tgt_field, vocab_size=src_vocab_size, min_freq=src_words_min_frequency, vocab_size_multiple=vocab_size_multiple) logger.info(" * merged vocab size: %d." % len(src_field.vocab)) return fields # is the return necessary? def _merge_field_vocabs(src_field, tgt_field, vocab_size, min_freq, vocab_size_multiple): # in the long run, shouldn't it be possible to do this by calling # build_vocab with both the src and tgt data? specials = [tgt_field.unk_token, tgt_field.pad_token, tgt_field.init_token, tgt_field.eos_token] merged = sum( [src_field.vocab.freqs, tgt_field.vocab.freqs], Counter() ) merged_vocab = Vocab( merged, specials=specials, max_size=vocab_size, min_freq=min_freq ) if vocab_size_multiple > 1: _pad_vocab_to_multiple(merged_vocab, vocab_size_multiple) src_field.vocab = merged_vocab tgt_field.vocab = merged_vocab assert len(src_field.vocab) == len(tgt_field.vocab) def _read_vocab_file(vocab_path, tag): """Loads a vocabulary from the given path. Args: vocab_path (str): Path to utf-8 text file containing vocabulary. Each token should be on a line by itself. Tokens must not contain whitespace (else only before the whitespace is considered). tag (str): Used for logging which vocab is being read. """ logger.info("Loading {} vocabulary from {}".format(tag, vocab_path)) if not os.path.exists(vocab_path): raise RuntimeError( "{} vocabulary not found at {}".format(tag, vocab_path)) else: with codecs.open(vocab_path, 'r', 'utf-8') as f: return [line.strip().split()[0] for line in f if line.strip()] def batch_iter(data, batch_size, batch_size_fn=None, batch_size_multiple=1): """Yield elements from data in chunks of batch_size, where each chunk size is a multiple of batch_size_multiple. This is an extended version of torchtext.data.batch. """ if batch_size_fn is None: def batch_size_fn(new, count, sofar): return count minibatch, size_so_far = [], 0 for ex in data: minibatch.append(ex) size_so_far = batch_size_fn(ex, len(minibatch), size_so_far) if size_so_far >= batch_size: overflowed = 0 if size_so_far > batch_size: overflowed += 1 if batch_size_multiple > 1: overflowed += ( (len(minibatch) - overflowed) % batch_size_multiple) if overflowed == 0: yield minibatch minibatch, size_so_far = [], 0 else: yield minibatch[:-overflowed] minibatch = minibatch[-overflowed:] size_so_far = 0 for i, ex in enumerate(minibatch): size_so_far = batch_size_fn(ex, i + 1, size_so_far) if minibatch: yield minibatch class OrderedIterator(torchtext.data.Iterator): def __init__(self, dataset, batch_size, batch_size_multiple=1, **kwargs): super(OrderedIterator, self).__init__(dataset, batch_size, **kwargs) self.batch_size_multiple = batch_size_multiple def create_batches(self): if self.train: def _pool(data, random_shuffler): for p in torchtext.data.batch(data, self.batch_size * 100): p_batch = batch_iter( sorted(p, key=self.sort_key), self.batch_size, batch_size_fn=self.batch_size_fn, batch_size_multiple=self.batch_size_multiple) for b in random_shuffler(list(p_batch)): yield b self.batches = _pool(self.data(), self.random_shuffler) else: self.batches = [] for b in batch_iter( self.data(), self.batch_size, batch_size_fn=self.batch_size_fn, batch_size_multiple=self.batch_size_multiple): self.batches.append(sorted(b, key=self.sort_key)) class DatasetLazyIter(object): """Yield data from sharded dataset files. Args: dataset_paths: a list containing the locations of dataset files. fields (dict[str, Field]): fields dict for the datasets. batch_size (int): batch size. batch_size_fn: custom batch process function. device: See :class:`OrderedIterator` ``device``. is_train (bool): train or valid? """ def __init__(self, dataset_paths, fields, batch_size, batch_size_fn, batch_size_multiple, device, is_train, repeat=True, num_batches_multiple=1): self._paths = dataset_paths self.fields = fields self.batch_size = batch_size self.batch_size_fn = batch_size_fn self.batch_size_multiple = batch_size_multiple self.device = device self.is_train = is_train self.repeat = repeat self.num_batches_multiple = num_batches_multiple def _iter_dataset(self, path): cur_dataset = torch.load(path) logger.info('Loading dataset from %s, number of examples: %d' % (path, len(cur_dataset))) cur_dataset.fields = self.fields cur_iter = OrderedIterator( dataset=cur_dataset, batch_size=self.batch_size, batch_size_multiple=self.batch_size_multiple, batch_size_fn=self.batch_size_fn, device=self.device, train=self.is_train, sort=False, sort_within_batch=True, repeat=False ) for batch in cur_iter: yield batch cur_dataset.examples = None gc.collect() del cur_dataset gc.collect() def __iter__(self): num_batches = 0 paths = self._paths if self.is_train and self.repeat: # Cycle through the shards indefinitely. paths = cycle(paths) for path in paths: for batch in self._iter_dataset(path): yield batch num_batches += 1 if self.is_train and not self.repeat and \ num_batches % self.num_batches_multiple != 0: # When the dataset is not repeated, we might need to ensure that # the number of returned batches is the multiple of a given value. # This is important for multi GPU training to ensure that all # workers have the same number of batches to process. for path in paths: for batch in self._iter_dataset(path): yield batch num_batches += 1 if num_batches % self.num_batches_multiple == 0: return def max_tok_len(new, count, sofar): """ In token batching scheme, the number of sequences is limited such that the total number of src/tgt tokens (including padding) in a batch <= batch_size """ # Maintains the longest src and tgt length in the current batch global max_src_in_batch, max_tgt_in_batch # this is a hack # Reset current longest length at a new batch (count=1) if count == 1: max_src_in_batch = 0 max_tgt_in_batch = 0 # Src: [<bos> w1 ... wN <eos>] max_src_in_batch = max(max_src_in_batch, len(new.src[0]) + 2) # Tgt: [w1 ... wM <eos>] max_tgt_in_batch = max(max_tgt_in_batch, len(new.tgt[0]) + 1) src_elements = count * max_src_in_batch tgt_elements = count * max_tgt_in_batch return max(src_elements, tgt_elements) def build_dataset_iter(corpus_type, fields, opt, is_train=True): """ This returns user-defined train/validate data iterator for the trainer to iterate over. We implement simple ordered iterator strategy here, but more sophisticated strategy like curriculum learning is ok too. """ dataset_paths = list(sorted( glob.glob(opt.data + '.' + corpus_type + '*.pt'))) if not dataset_paths: return None batch_size = opt.batch_size if is_train else opt.valid_batch_size batch_fn = max_tok_len if is_train and opt.batch_type == "tokens" else None batch_size_multiple = 8 if opt.model_dtype == "fp16" else 1 device = "cuda" if opt.gpu_ranks else "cpu" return DatasetLazyIter( dataset_paths, fields, batch_size, batch_fn, batch_size_multiple, device, is_train, repeat=not opt.single_pass, num_batches_multiple=max(opt.accum_count) * opt.world_size)
36.458841
79
0.61772
f866b865e5666a56b6b97532f601f6abf5871732
12,759
py
Python
egg/zoo/objects_game/train.py
renata-nerenata/EGG
b8532efc3569defabeba6851986cecb0c6640984
[ "MIT" ]
1
2021-05-26T14:23:25.000Z
2021-05-26T14:23:25.000Z
egg/zoo/objects_game/train.py
renata-nerenata/EGG
b8532efc3569defabeba6851986cecb0c6640984
[ "MIT" ]
1
2019-10-31T16:21:01.000Z
2019-10-31T16:21:01.000Z
egg/zoo/objects_game/train.py
renata-nerenata/EGG
b8532efc3569defabeba6851986cecb0c6640984
[ "MIT" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import print_function import argparse import operator import pathlib import numpy as np import torch.nn.functional as F import torch.utils.data import egg.core as core from egg.core.util import move_to from egg.zoo.objects_game.archs import Receiver, Sender from egg.zoo.objects_game.features import VectorsLoader from egg.zoo.objects_game.util import (compute_baseline_accuracy, compute_mi_input_msgs, dump_sender_receiver, entropy, mutual_info) def get_params(params): parser = argparse.ArgumentParser() input_data = parser.add_mutually_exclusive_group() input_data.add_argument('--perceptual_dimensions', type=str, default='[4, 4, 4, 4, 4]', help='Number of features for every perceptual dimension') input_data.add_argument('--load_data_path', type=str, default=None, help='Path to .npz data file to load') parser.add_argument('--n_distractors', type=int, default=3, help='Number of distractor objects for the receiver (default: 3)') parser.add_argument('--train_samples', type=float, default=1e5, help='Number of tuples in training data (default: 1e6)') parser.add_argument('--validation_samples', type=float, default=1e3, help='Number of tuples in validation data (default: 1e4)') parser.add_argument('--test_samples', type=float, default=1e3, help='Number of tuples in test data (default: 1e3)') parser.add_argument('--data_seed', type=int, default=111, help="Seed for random creation of train, validation and test tuples (default: 111)") parser.add_argument('--shuffle_train_data', action='store_true', default=False, help="Shuffle train data before every epoch (default: False)") parser.add_argument('--sender_hidden', type=int, default=50, help='Size of the hidden layer of Sender (default: 50)') parser.add_argument('--receiver_hidden', type=int, default=50, help='Size of the hidden layer of Receiver (default: 50)') parser.add_argument('--sender_embedding', type=int, default=10, help='Dimensionality of the embedding hidden layer for Sender (default: 10)') parser.add_argument('--receiver_embedding', type=int, default=10, help='Dimensionality of the embedding hidden layer for Receiver (default: 10)') parser.add_argument('--sender_cell', type=str, default='rnn', help='Type of the cell used for Sender {rnn, gru, lstm} (default: rnn)') parser.add_argument('--receiver_cell', type=str, default='rnn', help='Type of the cell used for Receiver {rnn, gru, lstm} (default: rnn)') parser.add_argument('--sender_lr', type=float, default=1e-1, help="Learning rate for Sender's parameters (default: 1e-1)") parser.add_argument('--receiver_lr', type=float, default=1e-1, help="Learning rate for Receiver's parameters (default: 1e-1)") parser.add_argument('--temperature', type=float, default=1.0, help="GS temperature for the sender (default: 1.0)") parser.add_argument('--mode', type=str, default='gs', help="Selects whether Reinforce or GumbelSoftmax relaxation is used for training {gs only at the moment}" "(default: rf)") parser.add_argument('--output_json', action='store_true', default=False, help="If set, egg will output validation stats in json format (default: False)") parser.add_argument('--evaluate', action='store_true', default=False, help="Evaluate trained model on test data") parser.add_argument('--dump_data_folder', type=str, default=None, help="Folder where file with dumped data will be created") parser.add_argument('--dump_msg_folder', type=str, default=None, help="Folder where file with dumped messages will be created") parser.add_argument('--debug', action='store_true', default=False, help="Run egg/objects_game with pdb enabled") args = core.init(parser, params) check_args(args) print(args) return args def check_args(args): args.train_samples, args.validation_samples, args.test_samples = int(args.train_samples), int(args.validation_samples), int(args.test_samples) try: args.perceptual_dimensions = eval(args.perceptual_dimensions) except SyntaxError: print( "The format of the # of perceptual dimensions param is not correct. Please change it to string representing a list of int. Correct format: '[int, ..., int]' ") exit(1) if args.debug: import pdb pdb.set_trace() args.n_features=len(args.perceptual_dimensions) # can't set data loading and data dumping at the same time assert not (args.load_data_path and args.dump_data_folder), "Cannot set folder to dump data while setting path to vectors to be loaded. Are you trying to dump the same vectors that you are loading?" args.dump_msg_folder = pathlib.Path(args.dump_msg_folder) if args.dump_msg_folder is not None else None if (not args.evaluate) and args.dump_msg_folder: print("| WARNING --dump_msg_folder was set without --evaluate. Evaluation will not be performed nor any results will be dumped. Please set --evaluate") def loss(_sender_input, _message, _receiver_input, receiver_output, _labels): acc = (receiver_output.argmax(dim=1) == _labels).detach().float() loss = F.cross_entropy(receiver_output, _labels, reduction="none") return loss, {'acc': acc} def main(params): opts = get_params(params) device = torch.device('cuda' if opts.cuda else 'cpu') data_loader = VectorsLoader(perceptual_dimensions=opts.perceptual_dimensions, n_distractors=opts.n_distractors, batch_size=opts.batch_size, train_samples=opts.train_samples, validation_samples=opts.validation_samples, test_samples=opts.test_samples, shuffle_train_data=opts.shuffle_train_data, dump_data_folder=opts.dump_data_folder, load_data_path=opts.load_data_path, seed=opts.data_seed) train_data, validation_data, test_data = data_loader.get_iterators() data_loader.upd_cl_options(opts) if opts.max_len > 1: baseline_msg = 'Cannot yet compute "smart" baseline value for messages of length greater than 1' else: baseline_msg = f'\n| Baselines measures with {opts.n_distractors} distractors and messages of max_len = {opts.max_len}:\n' \ f'| Dummy random baseline: accuracy = {1 / (opts.n_distractors + 1)}\n' if -1 not in opts.perceptual_dimensions: baseline_msg += f'| "Smart" baseline with perceptual_dimensions {opts.perceptual_dimensions} = {compute_baseline_accuracy(opts.n_distractors, opts.max_len, *opts.perceptual_dimensions)}\n' else: baseline_msg += f'| Data was loaded froman external file, thus no perceptual_dimension vector was provided, "smart baseline" cannot be computed\n' print(baseline_msg) sender = Sender(n_features=data_loader.n_features, n_hidden=opts.sender_hidden) receiver = Receiver(n_features=data_loader.n_features, linear_units=opts.receiver_hidden) if opts.mode.lower() == 'gs': sender = core.RnnSenderGS(sender, opts.vocab_size, opts.sender_embedding, opts.sender_hidden, cell=opts.sender_cell, max_len=opts.max_len, temperature=opts.temperature) receiver = core.RnnReceiverGS(receiver, opts.vocab_size, opts.receiver_embedding, opts.receiver_hidden, cell=opts.receiver_cell ) game = core.SenderReceiverRnnGS(sender, receiver, loss) else: raise NotImplementedError(f'Unknown training mode, {opts.mode}') optimizer = torch.optim.Adam([ {'params': game.sender.parameters(), 'lr': opts.sender_lr}, {'params': game.receiver.parameters(), 'lr': opts.receiver_lr} ]) callbacks = [core.ConsoleLogger(as_json=True)] if opts.mode.lower() == 'gs': callbacks.append(core.TemperatureUpdater(agent=sender, decay=0.9, minimum=0.1)) trainer = core.Trainer(game=game, optimizer=optimizer, train_data=train_data, validation_data=validation_data, callbacks=callbacks) trainer.train(n_epochs=opts.n_epochs) if opts.evaluate: is_gs = opts.mode == 'gs' sender_inputs, messages, receiver_inputs, receiver_outputs, labels = dump_sender_receiver(game, test_data, is_gs, variable_length=True, device=device) receiver_outputs = move_to(receiver_outputs, device) labels = move_to(labels, device) receiver_outputs = torch.stack(receiver_outputs) labels = torch.stack(labels) tensor_accuracy = receiver_outputs.argmax(dim=1) == labels accuracy = torch.mean(tensor_accuracy.float()).item() unique_dict = {} for elem in sender_inputs: target = "" for dim in elem: target += f'{str(int(dim.item()))}-' target = target[:-1] if target not in unique_dict: unique_dict[target] = True print(f'| Accuracy on test set: {accuracy}') compute_mi_input_msgs(sender_inputs, messages) print(f'entropy sender inputs {entropy(sender_inputs)}') print(f'mi sender inputs msgs {mutual_info(sender_inputs, messages)}') if opts.dump_msg_folder: opts.dump_msg_folder.mkdir(exist_ok=True) msg_dict = {} output_msg = f'messages_{opts.perceptual_dimensions}_vocab_{opts.vocab_size}' \ f'_maxlen_{opts.max_len}_bsize_{opts.batch_size}' \ f'_n_distractors_{opts.n_distractors}_train_size_{opts.train_samples}' \ f'_valid_size_{opts.validation_samples}_test_size_{opts.test_samples}' \ f'_slr_{opts.sender_lr}_rlr_{opts.receiver_lr}_shidden_{opts.sender_hidden}' \ f'_rhidden_{opts.receiver_hidden}_semb_{opts.sender_embedding}' \ f'_remb_{opts.receiver_embedding}_mode_{opts.mode}' \ f'_scell_{opts.sender_cell}_rcell_{opts.receiver_cell}.msg' output_file = opts.dump_msg_folder / output_msg with open(output_file, 'w') as f: f.write(f'{opts}\n') for sender_input, message, receiver_input, receiver_output, label \ in zip(sender_inputs, messages, receiver_inputs, receiver_outputs, labels): sender_input = ','.join(map(str, sender_input.tolist())) message = ','.join(map(str, message.tolist())) distractors_list = receiver_input.tolist() receiver_input = '; '.join([','.join(map(str, elem)) for elem in distractors_list]) if is_gs: receiver_output = receiver_output.argmax() f.write(f'{sender_input} -> {receiver_input} -> {message} -> {receiver_output} (label={label.item()})\n') if message in msg_dict: msg_dict[message] += 1 else: msg_dict[message] = 1 sorted_msgs = sorted(msg_dict.items(), key=operator.itemgetter(1), reverse=True) f.write(f'\nUnique target vectors seen by sender: {len(unique_dict.keys())}\n') f.write(f'Unique messages produced by sender: {len(msg_dict.keys())}\n') f.write(f"Messagses: 'msg' : msg_count: {str(sorted_msgs)}\n") f.write(f'\nAccuracy: {accuracy}') if __name__ == "__main__": import sys main(sys.argv[1:])
49.073077
203
0.62309
f2fd2ad184d8dccaf787c971d75b58eb5a7a0ee0
1,302
py
Python
setup.py
TinkerEdgeT/mendel-mdt
f3cc1097ab90ba5713eb3f1769f8c34265ade2fa
[ "Apache-2.0" ]
null
null
null
setup.py
TinkerEdgeT/mendel-mdt
f3cc1097ab90ba5713eb3f1769f8c34265ade2fa
[ "Apache-2.0" ]
null
null
null
setup.py
TinkerEdgeT/mendel-mdt
f3cc1097ab90ba5713eb3f1769f8c34265ade2fa
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python3 from setuptools import setup, find_packages from os import path from io import open here = path.abspath(path.dirname(__file__)) with open(path.join(here, 'README.md'), encoding='utf-8') as f: long_description = f.read() setup( name='mendel-development-tool', version='1.2', description='A command-line tool to manage Mendel Linux embedded systems', long_description=long_description, long_description_content_type='text/markdown', url='https://coral.googlesource.com/mdt.git', author='Mendel Linux Software Team', author_email='coral-support@google.com', license='Apache 2', classifiers = [ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Software Development', 'Topic :: Utilities', 'License :: OSI Approved :: Apache Software License', 'Operating System :: POSIX', 'Programming Language :: Python :: 3', ], keywords='embedded development', packages=find_packages(), python_requires='>=3.5.0', install_requires=[ 'zeroconf>=0.19.1', 'paramiko>=2.0.0' ], data_files=[('share/man/man1', ['man/mdt.1'])], entry_points={ 'console_scripts': [ 'mdt=mdt.main:main', ], }, )
28.933333
78
0.630568
6c6176059aae48f74200c2bd7a74e48f8714c186
13,127
py
Python
scripts/train_fcn.py
AdityaAS/cycada
04e062201ec23829e405639c400ce433d8a6da6a
[ "BSD-2-Clause" ]
1
2020-02-22T02:23:56.000Z
2020-02-22T02:23:56.000Z
scripts/train_fcn.py
AdityaAS/cycada
04e062201ec23829e405639c400ce433d8a6da6a
[ "BSD-2-Clause" ]
null
null
null
scripts/train_fcn.py
AdityaAS/cycada
04e062201ec23829e405639c400ce433d8a6da6a
[ "BSD-2-Clause" ]
null
null
null
import sys sys.path.append('./') import logging import os from os.path import join, exists from collections import deque import click import math import json import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torchvision import torchvision.utils as vutils from tensorboardX import SummaryWriter from PIL import Image from copy import copy from torch.autograd import Variable print(os.getcwd()) import shutil from cycada.data.data_loader import get_fcn_dataset as get_fcn_dataset from cycada.models import get_model from cycada.models.models import models from cycada.transforms import augment_collate from cycada.util import config_logging from cycada.util import to_tensor_raw from cycada.util import roundrobin_infinite from cycada.util import preprocess_viz from cycada.tools.util import make_variable from cycada.loss_fns import supervised_loss from cycada.metrics import fast_hist from cycada.metrics import result_stats from cycada.metrics import sklearnScores from tqdm import tqdm import argparse parser = argparse.ArgumentParser() parser.add_argument('--load', dest='load', type=str, help="path to load model", default=False) parser.add_argument('--c', dest='config', type=str, help="Config file", default=False) args = parser.parse_args() def main(config_path): config = None config_file = config_path.split('/')[-1] version = config_file.split('.')[0][1:] with open(config_path, 'r') as f: config = json.load(f) config["version"] = version config_logging() # Initialize SummaryWriter - For tensorboard visualizations logdir = 'runs/{:s}/{:s}/{:s}/{:s}'.format(config["model"], config["dataset"], 'v{}'.format(config["version"]), 'tflogs') logdir = logdir + "/" checkpointdir = join('runs', config["model"], config["dataset"], 'v{}'.format(config["version"]), 'checkpoints') print("Logging directory: {}".format(logdir)) print("Checkpoint directory: {}".format(checkpointdir)) versionpath = join('runs', config["model"], config["dataset"], 'v{}'.format(config["version"])) if not exists(versionpath): os.makedirs(versionpath) os.makedirs(checkpointdir) os.makedirs(logdir) elif exists(versionpath) and config["force"]: shutil.rmtree(versionpath) os.makedirs(versionpath) os.makedirs(checkpointdir) os.makedirs(logdir) else: print("Version {} already exists! Please run with different version number".format(config["version"])) logging.info("Version {} already exists! Please run with different version number".format(config["version"])) sys.exit(-1) writer = SummaryWriter(logdir) # Get appropriate model based on config parameters net = get_model(config["model"], num_cls=config["num_cls"]) if args.load: net.load_state_dict(torch.load(args.load)) print("============ Loading Model ===============") model_parameters = filter(lambda p: p.requires_grad, net.parameters()) params = sum([np.prod(p.size()) for p in model_parameters]) dataset = config["dataset"] num_workers = config["num_workers"] pin_memory = config["pin_memory"] dataset = dataset[0] datasets_train = get_fcn_dataset(config["dataset"], config["data_type"], join(config["datadir"], config["dataset"]), split='train') datasets_val = get_fcn_dataset(config["dataset"], config["data_type"], join(config["datadir"], config["dataset"]), split='val') datasets_test = get_fcn_dataset(config["dataset"], config["data_type"], join(config["datadir"], config["dataset"]), split='test') if config["weights"] is not None: weights = np.loadtxt(config["weights"]) opt = torch.optim.SGD(net.parameters(), lr=config["lr"], momentum=config["momentum"], weight_decay=0.0005) if config["augmentation"]: collate_fn = lambda batch: augment_collate(batch, crop=config["crop_size"], flip=True) else: collate_fn = torch.utils.data.dataloader.default_collate train_loader = torch.utils.data.DataLoader(datasets_train, batch_size=config["batch_size"], shuffle=True, num_workers=num_workers, collate_fn=collate_fn, pin_memory=pin_memory) # val_loader = torch.utils.data.DataLoader(datasets_val, batch_size=config["batch_size"], # shuffle=True, num_workers=num_workers, # collate_fn=collate_fn, # pin_memory=pin_memory) test_loader = torch.utils.data.DataLoader(datasets_test, batch_size=config["batch_size"], shuffle=False, num_workers=num_workers, collate_fn=collate_fn, pin_memory=pin_memory) data_metric = {'train': None, 'val' : None, 'test' : None} Q_size = len(train_loader)/config["batch_size"] metrics = {'losses': list(), 'ious': list(), 'recalls': list()} data_metric['train'] = copy(metrics) data_metric['val'] = copy(metrics) data_metric['test'] = copy(metrics) num_cls = config["num_cls"] hist = np.zeros((num_cls, num_cls)) iteration = 0 for epoch in range(config["num_epochs"]+1): if config["phase"] == 'train': net.train() iterator = tqdm(iter(train_loader)) # Epoch train print("Train Epoch!") for im, label in iterator: if torch.isnan(im).any() or torch.isnan(label).any(): import pdb; pdb.set_trace(); iteration += 1 # Clear out gradients opt.zero_grad() # load data/label im = make_variable(im, requires_grad=False) label = make_variable(label, requires_grad=False) #print(im.size()) # forward pass and compute loss preds = net(im) #score = preds.data #_, pred = torch.max(score, 1) #hist += fast_hist(label.cpu().numpy().flatten(), pred.cpu().numpy().flatten(),num_cls) #acc_overall, acc_percls, iu, fwIU = result_stats(hist) loss = supervised_loss(preds, label) # iou = jaccard_score(preds, label) precision, rc, fscore, support, iou = sklearnScores(preds, label.type(torch.IntTensor)) #print(acc_overall, np.nanmean(acc_percls), np.nanmean(iu), fwIU) # backward pass loss.backward() # TODO: Right now this is running average, ideally we want true average. Make that change # Total average will be memory intensive, let it be running average for the moment. data_metric['train']['losses'].append(loss.item()) data_metric['train']['ious'].append(iou) data_metric['train']['recalls'].append(rc) # step gradients opt.step() # Train visualizations - each iteration if iteration % config["train_tf_interval"] == 0: vizz = preprocess_viz(im, preds, label) writer.add_scalar('train/loss', loss, iteration) writer.add_scalar('train/IOU', iou, iteration) writer.add_scalar('train/recall', rc, iteration) imutil = vutils.make_grid(torch.from_numpy(vizz), nrow=3, normalize=True, scale_each=True) writer.add_image('{}_image_data'.format('train'), imutil, iteration) iterator.set_description("TRAIN V: {} | Epoch: {}".format(config["version"], epoch)) iterator.refresh() if iteration % 20000 == 0: torch.save(net.state_dict(), join(checkpointdir, 'iter_{}_{}.pth'.format(iteration, epoch))) # clean before test/val opt.zero_grad() # Train visualizations - per epoch vizz = preprocess_viz(im, preds, label) writer.add_scalar('trainepoch/loss', np.mean(data_metric['train']['losses']), global_step=epoch) writer.add_scalar('trainepoch/IOU', np.mean(data_metric['train']['ious']), global_step=epoch) writer.add_scalar('trainepoch/recall', np.mean(data_metric['train']['recalls']), global_step=epoch) imutil = vutils.make_grid(torch.from_numpy(vizz), nrow=3, normalize=True, scale_each=True) writer.add_image('{}_image_data'.format('trainepoch'), imutil, global_step=epoch) print("Loss :{}".format(np.mean(data_metric['train']['losses']))) print("IOU :{}".format(np.mean(data_metric['train']['ious']))) print("recall :{}".format(np.mean(data_metric['train']['recalls']))) if epoch % config["checkpoint_interval"] == 0: torch.save(net.state_dict(), join(checkpointdir, 'iter{}.pth'.format(epoch))) # Train epoch done. Free up lists for key in data_metric['train'].keys(): data_metric['train'][key] = list() if epoch % config["val_epoch_interval"] == 0: net.eval() print("Val_epoch!") iterator = tqdm(iter(val_loader)) for im, label in iterator: # load data/label im = make_variable(im, requires_grad=False) label = make_variable(label, requires_grad=False) # forward pass and compute loss preds = net(im) loss = supervised_loss(preds, label) precision, rc, fscore, support, iou = sklearnScores(preds, label.type(torch.IntTensor)) data_metric['val']['losses'].append(loss.item()) data_metric['val']['ious'].append(iou) data_metric['val']['recalls'].append(rc) iterator.set_description("VAL V: {} | Epoch: {}".format(config["version"], epoch)) iterator.refresh() # Val visualizations vizz = preprocess_viz(im, preds, label) writer.add_scalar('valepoch/loss', np.mean(data_metric['val']['losses']), global_step=epoch) writer.add_scalar('valepoch/IOU', np.mean(data_metric['val']['ious']), global_step=epoch) writer.add_scalar('valepoch/Recall', np.mean(data_metric['val']['recalls']), global_step=epoch) imutil = vutils.make_grid(torch.from_numpy(vizz), nrow=3, normalize=True, scale_each=True) writer.add_image('{}_image_data'.format('val'), imutil, global_step=epoch) # Val epoch done. Free up lists for key in data_metric['val'].keys(): data_metric['val'][key] = list() # Epoch Test if epoch % config["test_epoch_interval"] == 0: net.eval() print("Test_epoch!") iterator = tqdm(iter(test_loader)) for im, label in iterator: # load data/label im = make_variable(im, requires_grad=False) label = make_variable(label, requires_grad=False) # forward pass and compute loss preds = net(im) loss = supervised_loss(preds, label) precision, rc, fscore, support, iou = sklearnScores(preds, label.type(torch.IntTensor)) data_metric['test']['losses'].append(loss.item()) data_metric['test']['ious'].append(iou) data_metric['test']['recalls'].append(rc) iterator.set_description("TEST V: {} | Epoch: {}".format(config["version"], epoch)) iterator.refresh() # Test visualizations writer.add_scalar('testepoch/loss', np.mean(data_metric['test']['losses']), global_step=epoch) writer.add_scalar('testepoch/IOU', np.mean(data_metric['test']['ious']), global_step=epoch) writer.add_scalar('testepoch/Recall', np.mean(data_metric['test']['recalls']), global_step=epoch) # Test epoch done. Free up lists for key in data_metric['test'].keys(): data_metric['test'][key] = list() if config["step"] is not None and epoch % config["step"] == 0: logging.info('Decreasing learning rate by 0.1 factor') step_lr(optimizer, 0.1) logging.info('Optimization complete.') if __name__ == '__main__': p = args.config#sys.argv[1] config_path = join('./configs/fcn/', p) if exists(config_path): main(config_path) else : print(p) print("Incorrect Path")
43.756667
135
0.588101
0d1bb9801bebf3c964f56b4337529760ca807ee1
2,834
py
Python
onnxruntime/test/testdata/transform/noop-add.py
lchang20/onnxruntime
97b8f6f394ae02c73ed775f456fd85639c91ced1
[ "MIT" ]
6,036
2019-05-07T06:03:57.000Z
2022-03-31T17:59:54.000Z
onnxruntime/test/testdata/transform/noop-add.py
lchang20/onnxruntime
97b8f6f394ae02c73ed775f456fd85639c91ced1
[ "MIT" ]
5,730
2019-05-06T23:04:55.000Z
2022-03-31T23:55:56.000Z
onnxruntime/test/testdata/transform/noop-add.py
lchang20/onnxruntime
97b8f6f394ae02c73ed775f456fd85639c91ced1
[ "MIT" ]
1,566
2019-05-07T01:30:07.000Z
2022-03-31T17:06:50.000Z
import onnx from onnx import helper from onnx import TensorProto, OperatorSetIdProto opsets = [] onnxdomain = OperatorSetIdProto() onnxdomain.version = 12 onnxdomain.domain = "" # The empty string ("") or absence of this field implies the operator set that is defined as part of the ONNX specification. opsets.append(onnxdomain) msdomain = OperatorSetIdProto() msdomain.version = 1 msdomain.domain = 'com.microsoft' opsets.append(msdomain) kwargs={} kwargs['opset_imports'] = opsets def GenerateModel(model_name): nodes = [ # subgraph # float helper.make_node("Identity", ["X1"], ["id_1"], "id_1"), helper.make_node("Add", ["float_1", "id_1"], ["add_1"], "add_1"), helper.make_node("Identity", ["add_1"], ["Y1"], "id_2"), # float_16 helper.make_node("Identity", ["X2"], ["id_3"], "id_3"), helper.make_node("Add", ["float16_1", "id_3"], ["add_2"], "add_2"), helper.make_node("Identity", ["add_2"], ["Y2"], "id_4"), # int64 - flip the input 0 and 1 helper.make_node("Identity", ["X3"], ["id_5"], "id_5"), helper.make_node("Add", ["id_5", "int64_1"], ["add_3"], "add_3"), helper.make_node("Identity", ["add_3"], ["Y3"], "id_6"), # int64 helper.make_node("Identity", ["X4"], ["id_7"], "id_7"), helper.make_node("Add", ["id_7", "int64_2"], ["add_4"], "add_4"), helper.make_node("Identity", ["add_4"], ["Y4"], "id_8"), ] inputs = [ # inputs helper.make_tensor_value_info('X1', TensorProto.FLOAT, ['M', 'K']), helper.make_tensor_value_info('X2', TensorProto.FLOAT16, ['M', 'K']), helper.make_tensor_value_info('X3', TensorProto.INT64, ['M', 'K']), helper.make_tensor_value_info('X4', TensorProto.INT64, ['M', 'K']), ] initializers = [ helper.make_tensor('float_1', TensorProto.FLOAT, [1], [0.0]), helper.make_tensor('float16_1', TensorProto.FLOAT16, [1], [0]), # int64 - set tensor size to 0 helper.make_tensor('int64_1', TensorProto.INT64, (), [0]), # higher rank helper.make_tensor('int64_2', TensorProto.INT64, [1,1,1], [0]), ] graph = helper.make_graph( nodes, "NoopAdd", #name inputs, [ # outputs helper.make_tensor_value_info('Y1', TensorProto.FLOAT, ['M', 'K']), helper.make_tensor_value_info('Y2', TensorProto.FLOAT16, ['M', 'K']), helper.make_tensor_value_info('Y3', TensorProto.INT64, ['M', 'K']), helper.make_tensor_value_info('Y4', TensorProto.INT64, ['M', 'K', 1]), ], initializers) model = helper.make_model(graph, **kwargs) onnx.save(model, model_name) if __name__ == "__main__": GenerateModel('noop-add.onnx')
39.915493
147
0.586097
2c73f13b4a1a221a17489fe7dd8b692be8fb1e8e
4,839
py
Python
experiments/full_simulation/full_forearm_simulation.py
CAMI-DKFZ/simpa_paper_experiments
f5a37d57692b29b78b85d60a38e4dc0aaa5aadfc
[ "MIT" ]
null
null
null
experiments/full_simulation/full_forearm_simulation.py
CAMI-DKFZ/simpa_paper_experiments
f5a37d57692b29b78b85d60a38e4dc0aaa5aadfc
[ "MIT" ]
null
null
null
experiments/full_simulation/full_forearm_simulation.py
CAMI-DKFZ/simpa_paper_experiments
f5a37d57692b29b78b85d60a38e4dc0aaa5aadfc
[ "MIT" ]
null
null
null
# SPDX-FileCopyrightText: 2021 Computer Assisted Medical Interventions Group, DKFZ # SPDX-FileCopyrightText: 2021 Janek Groehl # SPDX-License-Identifier: MIT import simpa as sp from simpa import Tags import numpy as np import matplotlib.pyplot as plt from utils.save_directory import get_save_path from utils.create_example_tissue import create_example_tissue from utils.basic_settings import create_basic_optical_settings, create_basic_acoustic_settings, \ create_basic_reconstruction_settings import os os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" VOLUME_WIDTH_HEIGHT_DIM_IN_MM = 50 VOLUME_PLANAR_DIM_IN_MM = 50 SPACING = 0.3 RANDOM_SEED = 24618925 path_manager = sp.PathManager() SAVE_PATH = get_save_path("full_simulation", "forearm") # Seed the numpy random configuration prior to creating the global_settings file in # order to ensure that the same volume # is generated with the same random seed every time. np.random.seed(RANDOM_SEED) VOLUME_NAME = "ForearmScan" + str(RANDOM_SEED) file_path = SAVE_PATH + "/" + VOLUME_NAME + ".hdf5" settings = { # These parameters set he general propeties of the simulated volume Tags.RANDOM_SEED: RANDOM_SEED, Tags.VOLUME_NAME: VOLUME_NAME, Tags.SIMULATION_PATH: SAVE_PATH, Tags.SPACING_MM: SPACING, Tags.WAVELENGTHS: [800], Tags.DIM_VOLUME_Z_MM: VOLUME_WIDTH_HEIGHT_DIM_IN_MM, Tags.DIM_VOLUME_X_MM: VOLUME_WIDTH_HEIGHT_DIM_IN_MM, Tags.DIM_VOLUME_Y_MM: VOLUME_PLANAR_DIM_IN_MM, Tags.VOLUME_CREATOR: Tags.VOLUME_CREATOR_VERSATILE, Tags.GPU: True } settings = sp.Settings(settings) settings.set_volume_creation_settings({ Tags.STRUCTURES: create_example_tissue(), Tags.SIMULATE_DEFORMED_LAYERS: True }) settings.set_optical_settings(create_basic_optical_settings(path_manager)) settings.set_acoustic_settings(create_basic_acoustic_settings(path_manager)) settings.set_reconstruction_settings(create_basic_reconstruction_settings(path_manager, SPACING)) settings["noise_time_series"] = { Tags.NOISE_STD: 100, Tags.NOISE_MODE: Tags.NOISE_MODE_ADDITIVE, Tags.DATA_FIELD: Tags.DATA_FIELD_TIME_SERIES_DATA } device = sp.PhotoacousticDevice(device_position_mm=np.asarray([VOLUME_WIDTH_HEIGHT_DIM_IN_MM/2, VOLUME_PLANAR_DIM_IN_MM/2, 0])) device.set_detection_geometry(sp.LinearArrayDetectionGeometry(device_position_mm=np.asarray([ VOLUME_WIDTH_HEIGHT_DIM_IN_MM/2, VOLUME_PLANAR_DIM_IN_MM/2, 0]), number_detector_elements=256, pitch_mm=0.15)) device.add_illumination_geometry(sp.GaussianBeamIlluminationGeometry(beam_radius_mm=25)) SIMUATION_PIPELINE = [ sp.ModelBasedVolumeCreationAdapter(settings), sp.MCXAdapter(settings), sp.KWaveAdapter(settings), sp.GaussianNoise(settings, "noise_time_series"), sp.DelayAndSumAdapter(settings), sp.FieldOfViewCropping(settings) ] sp.simulate(SIMUATION_PIPELINE, settings, device) wavelength = settings[Tags.WAVELENGTHS][0] segmentation_mask = sp.load_data_field(file_path=file_path, wavelength=wavelength, data_field=Tags.DATA_FIELD_SEGMENTATION) reco = np.rot90(sp.load_data_field(file_path, wavelength=wavelength, data_field=Tags.DATA_FIELD_RECONSTRUCTED_DATA), -1) time_series = np.rot90(sp.load_data_field(file_path, wavelength=wavelength, data_field=Tags.DATA_FIELD_TIME_SERIES_DATA), -1) initial_pressure = np.rot90(sp.load_data_field(file_path, wavelength=wavelength, data_field=Tags.DATA_FIELD_INITIAL_PRESSURE), -1) plt.figure(figsize=(7, 3)) plt.subplot(1, 3, 1) plt.axis('off') plt.imshow(initial_pressure) plt.subplot(1, 3, 2) plt.axis('off') plt.imshow(time_series, aspect=0.18) plt.subplot(1, 3, 3) plt.axis('off') plt.imshow(reco) plt.tight_layout() plt.savefig(os.path.join(SAVE_PATH, "result.svg"), dpi=300) plt.close() # fig = plt.figure(figsize=(7, 7)) # ax = fig.add_subplot(111, projection='3d') # ax.voxels(segmentation_mask==SegmentationClasses.EPIDERMIS, shade=True, facecolors="brown", alpha=0.45) # ax.voxels(segmentation_mask==SegmentationClasses.DERMIS, shade=True, facecolors="pink", alpha=0.45) # ax.voxels(segmentation_mask==SegmentationClasses.FAT, shade=True, facecolors="yellow", alpha=0.45) # ax.voxels(segmentation_mask==SegmentationClasses.BLOOD, shade=True, facecolors="red", alpha=0.55) # ax.voxels(segmentation_mask==SegmentationClasses.BONE, shade=True, facecolors="antiquewhite", alpha=0.55) # ax.set_aspect('auto') # ax.set_zlim(50, 0) # ax.set_zlabel("Depth [mm]") # ax.set_xlabel("x width [mm]") # ax.set_ylabel("y width [mm]") # ax.view_init(elev=10., azim=-45) # plt.savefig(os.path.join(SAVE_PATH, "forearm.svg"), dpi=300) # plt.show()
39.341463
130
0.750775
584818d7cfdc28a3e1184ea9ba1cae97bfccbe35
1,404
py
Python
mne_bids/commands/run.py
zuxfoucault/mne-bids
5c54442bced9b1bdcd4a77c9f5a347dc4b8c552d
[ "BSD-3-Clause" ]
null
null
null
mne_bids/commands/run.py
zuxfoucault/mne-bids
5c54442bced9b1bdcd4a77c9f5a347dc4b8c552d
[ "BSD-3-Clause" ]
null
null
null
mne_bids/commands/run.py
zuxfoucault/mne-bids
5c54442bced9b1bdcd4a77c9f5a347dc4b8c552d
[ "BSD-3-Clause" ]
null
null
null
"""Command Line Interface for MNE-BIDS.""" # Authors: Teon Brooks <teon.brooks@gmail.com> # Stefan Appelhoff <stefan.appelhoff@mailbox.org> # # License: BSD (3-clause) import sys import glob import subprocess import os.path as op import mne_bids mne_bin_dir = op.abspath(op.dirname(mne_bids.__file__)) valid_commands = sorted(glob.glob(op.join(mne_bin_dir, 'commands', 'mne_bids_*.py'))) valid_commands = [c.split(op.sep)[-1][9:-3] for c in valid_commands] def print_help(): """Print the help.""" print("Usage : mne_bids command options\n") print("Accepted commands :\n") for c in valid_commands: print("\t- %s" % c) print("\nExample : mne_bids raw_to_bids --subject_id sub01 --task rest", "--raw_file data.edf --output_path new_path") sys.exit(0) def main(): if len(sys.argv) == 1: print_help() elif ("help" in sys.argv[1] or "-h" in sys.argv[1]): print_help() elif sys.argv[1] == "--version": print("MNE-BIDS %s" % mne_bids.__version__) elif sys.argv[1] not in valid_commands: print('Invalid command: "%s"\n' % sys.argv[1]) print_help() sys.exit(0) else: cmd = sys.argv[1] cmd_path = op.join(mne_bin_dir, 'commands', 'mne_bids_%s.py' % cmd) sys.exit(subprocess.call([sys.executable, cmd_path] + sys.argv[2:]))
30.521739
76
0.61396
e1be2452850c8da7b6ce5748fbf55dfbc9fce500
5,255
py
Python
conf.py
jmbowman/managing_python_package_dependencies
b1cb94a490f653a14803a869f1f81128bba12356
[ "CC-BY-4.0" ]
null
null
null
conf.py
jmbowman/managing_python_package_dependencies
b1cb94a490f653a14803a869f1f81128bba12356
[ "CC-BY-4.0" ]
null
null
null
conf.py
jmbowman/managing_python_package_dependencies
b1cb94a490f653a14803a869f1f81128bba12356
[ "CC-BY-4.0" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # flaky_bok-choy_talk documentation build configuration file, created by # sphinx-quickstart on Thu Apr 20 14:05:02 2017. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinxjp.themes.revealjs' ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = 'Managing Python Package Dependencies' copyright = '2018, Jeremy Bowman' author = 'Jeremy Bowman' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '' # The full version, including alpha/beta/rc tags. release = '' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'revealjs' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = { 'fragments': True, 'lang': 'en', 'theme': 'night', } # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # The name for this set of Sphinx documents. # "<project> v<release> documentation" by default. html_title = 'Managing Python Package Dependencies' # If false, no index is generated. html_use_index = False # -- Options for HTMLHelp output ------------------------------------------ # Output file base name for HTML help builder. htmlhelp_basename = 'managing_python_package_dependencies_doc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'managing_python_package_dependencies.tex', 'Managing Python Package Dependencies', 'Jeremy Bowman', 'manual'), ] # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'managing_python_package_dependencies', 'Managing Python Package Dependencies', [author], 1) ] # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'managing_python_package_dependencies', 'Managing Python Package Dependencies', author, 'managing_python_package_dependencies', 'June 2018 Boston Django Meetup presentation', 'Miscellaneous'), ]
30.911765
100
0.693054
4e90af5d3be05b07fad62a428d2a9162dd378a9e
4,992
py
Python
NVIDIA/benchmarks/deepcam/implementations/pytorch/src/deepCam/utils/parser.py
mlcommons/hpc_results_v1.0
a3f7469937aa44a48e186160a2e97464970cf72f
[ "Apache-2.0" ]
3
2021-11-18T20:01:35.000Z
2021-12-17T17:47:23.000Z
NVIDIA/benchmarks/deepcam/implementations/pytorch/src/deepCam/utils/parser.py
mlcommons/hpc_results_v1.0
a3f7469937aa44a48e186160a2e97464970cf72f
[ "Apache-2.0" ]
1
2022-03-16T07:29:30.000Z
2022-03-31T10:19:07.000Z
LBNL/benchmarks/deepcam/implementations/deepcam-pytorch/deepCam/utils/parser.py
mlcommons/hpc_results_v1.0
a3f7469937aa44a48e186160a2e97464970cf72f
[ "Apache-2.0" ]
1
2021-11-18T01:53:25.000Z
2021-11-18T01:53:25.000Z
import argparse as ap #dict helper for argparse class StoreDictKeyPair(ap.Action): def __call__(self, parser, namespace, values, option_string=None): my_dict = {} for kv in values.split(","): k,v = kv.split("=") my_dict[k] = v setattr(namespace, self.dest, my_dict) def get_parser(): AP = ap.ArgumentParser() AP.add_argument("--wireup_method", type=str, default="nccl-openmpi", choices=["dummy", "nccl-file", "nccl-openmpi", \ "nccl-slurm", "nccl-slurm-pmi", "mpi"], help="Specify what is used for wiring up the ranks") AP.add_argument("--wandb_certdir", type=str, default="/opt/certs", help="Directory in which to find the certificate for wandb logging.") AP.add_argument("--run_tag", type=str, help="Unique run tag, to allow for better identification") AP.add_argument("--experiment_id", type=int, default=1, help="Experiment Number") AP.add_argument("--output_dir", type=str, help="Directory used for storing output. Needs to read/writeable from rank 0") AP.add_argument("--checkpoint", type=str, default=None, help="Checkpoint file to restart training from.") AP.add_argument("--data_dir_prefix", type=str, default='/', help="prefix to data dir") AP.add_argument("--max_inter_threads", type=int, default=1, help="Maximum number of concurrent readers") AP.add_argument("--max_epochs", type=int, default=30, help="Maximum number of epochs to train") AP.add_argument("--save_frequency", type=int, default=100, help="Frequency with which the model is saved in number of steps") AP.add_argument("--logging_frequency", type=int, default=100, help="Frequency with which the training progress is logged. If not positive, logging will be disabled") AP.add_argument("--local_batch_size", type=int, default=1, help="Number of samples per local minibatch") AP.add_argument("--local_batch_size_validation", type=int, default=1, help="Number of samples per local minibatch for validation") AP.add_argument("--channels", type=int, nargs='+', default=[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15], help="Channels used in input") AP.add_argument("--optimizer", type=str, default="Adam", choices=["Adam", "AdamW", "LAMB", "DistributedLAMB"], help="Optimizer to use (LAMB requires APEX support).") AP.add_argument("--start_lr", type=float, default=1e-3, help="Start LR") AP.add_argument("--weight_decay", type=float, default=1e-6, help="Weight decay") AP.add_argument("--lr_warmup_steps", type=int, default=0, help="Number of steps for linear LR warmup") AP.add_argument("--lr_warmup_factor", type=float, default=1., help="Multiplier for linear LR warmup") AP.add_argument("--lr_schedule", action=StoreDictKeyPair) AP.add_argument("--target_iou", type=float, default=0.82, help="Target IoU score.") AP.add_argument("--model_prefix", type=str, default="model", help="Prefix for the stored model") AP.add_argument("--gradient_accumulation_frequency", type=int, default=1, help="Number of gradient accumulation steps before update") AP.add_argument("--batchnorm_group_size", type=int, default=1, help="Process group size for sync batchnorm") AP.add_argument("--shuffle_mode", type=str, default="global", choices=["global", "node", "gpu"], help="Specifies how to shuffle the data") AP.add_argument("--data_format", type=str, default="dali-numpy", choices=["hdf5", "dali-numpy", "dali-recordio", "dali-es", "dali-es-disk", "dali-dummy"], help="Specify data format") AP.add_argument("--data_cache_directory", type=str, default="/tmp", help="Directory to which the data is cached. Only relevant for dali-es-disk dataloader, ignored otherwise") AP.add_argument("--data_oversampling_factor", type=int, default=1, help="Determines how many different shard per nodes will be staged") AP.add_argument("--precision_mode", type=str, default="amp", choices=["fp32", "amp", "fp16"], help="Specify precision format") AP.add_argument("--enable_gds", action='store_true') AP.add_argument("--enable_jit", action='store_true') AP.add_argument("--enable_nhwc", action='store_true') AP.add_argument("--enable_graph", action='store_true', help="Flag for enabling CUDA graph capture.") AP.add_argument("--disable_tuning", action='store_true', help="Flag for disabling cuDNN benchmark mode to autotune kernels. Should not be necessary") AP.add_argument("--force_groupbn", action='store_true') AP.add_argument("--disable_validation", action='store_true') AP.add_argument("--disable_comm_overlap", action='store_true') AP.add_argument("--data_augmentations", type=str, nargs='+', default=[], help="Data augmentations used. Supported are [roll, flip]") AP.add_argument("--enable_wandb", action='store_true') AP.add_argument("--resume_logging", action='store_true') AP.add_argument("--seed", default=333, type=int) return AP
84.610169
186
0.701723
a1002f1f8aac3bf35eab69f2051a21bc53745ec8
1,524
py
Python
setup.py
MLGB3/mlgb.indexer
e3e75620f3a4be01cabeff87555716e9c00599eb
[ "Apache-2.0" ]
null
null
null
setup.py
MLGB3/mlgb.indexer
e3e75620f3a4be01cabeff87555716e9c00599eb
[ "Apache-2.0" ]
null
null
null
setup.py
MLGB3/mlgb.indexer
e3e75620f3a4be01cabeff87555716e9c00599eb
[ "Apache-2.0" ]
null
null
null
import os from setuptools import setup from setuptools import find_packages version = open( os.path.join("mlgb", "indexer", "version.txt") ).read().strip() description = "Indexing scripts for mlgb." longdesc = open("README.md").read() longdesc += open(os.path.join("docs", "HISTORY.rst")).read() setup( name='mlgb.indexer', version=version, description=description, long_description=longdesc, author='Michael Davis', author_email='michael.davis@bodleian.ox.ac.uk', packages=find_packages(exclude=['ez_setup']), namespace_packages=['mlgb'], include_package_data=True, zip_safe=False, install_requires=[ 'setuptools', 'MySQL-python', ], extras_require={ 'test': ['pytest', ], }, entry_points={ 'console_scripts': [ 'set_index_book_ids=mlgb.indexer.setIndexBookIDs:setBookIDs', 'strip_xml_comments=mlgb.indexer.stripXMLcomments:stripComments', 'strip_unwanted_tags=mlgb.indexer.stripUnwantedFormatting:stripUnwantedTags', 'write_xml=mlgb.indexer.authortitle_to_xml:writeXML', 'write_html=mlgb.indexer.writeHTML:writeAllHTMLFiles', 'catalogues_html=mlgb.indexer.cataloguesHTML:writeAllHTMLFiles', 'write_static_html=mlgb.indexer.write_static_mlgb:writeStaticHTML', ], }, classifiers=[ 'Programming Language :: Python', 'License :: Other/Proprietary License', 'Development Status :: 3 - Alpha', ], )
30.48
89
0.665354
403d5581afafab673473df67de55d680e1dd80f4
6,859
py
Python
scripts/purge_participant_data.py
jakehemmerle/beiwe-backend
fd7765a348a0d497341cf084bb4da0c0805748bd
[ "BSD-3-Clause" ]
null
null
null
scripts/purge_participant_data.py
jakehemmerle/beiwe-backend
fd7765a348a0d497341cf084bb4da0c0805748bd
[ "BSD-3-Clause" ]
67
2020-05-22T20:34:52.000Z
2021-07-28T14:26:57.000Z
scripts/purge_participant_data.py
tx-covid19/beiwe-backend-serverless
b154110c8543e4317d3295c0e8225e9a97b1aad4
[ "BSD-3-Clause" ]
2
2020-04-03T23:24:56.000Z
2020-04-13T14:29:02.000Z
# python 2-3 compatibility section try: input = raw_input except NameError: pass import imp as _imp import json from datetime import datetime from sys import argv from os.path import abspath as _abspath from pprint import pprint # modify python path so that this script can be targeted directly but still import everything. _current_folder_init = _abspath(__file__).rsplit('/', 1)[0]+ "/__init__.py" _imp.load_source("__init__", _current_folder_init) # noinspection PyUnresolvedReferences from config import load_django from config.settings import S3_BUCKET from config.constants import CHUNKS_FOLDER, API_TIME_FORMAT from database.user_models import Participant from database.data_access_models import ChunkRegistry from libs.file_processing import unix_time_to_string from libs.s3 import s3_list_files, s3_list_versions, conn as s3_conn UNIX_EPOCH_START = datetime(1970,1,1) DOCUMENTATION = """ This script takes a single command line argument, a file path pointing at a file containing json. The JSON must look like this: { "username_1": "2019-08-24", "username_2": "2019-08-25" } That is a dictionary of usernames mapped to a date in unambiguous "YEAR-MONTH-DAY" format. You can also supply an argument "-y" to skip the confirmation if you intend to run this in the background. """.strip() print() # just a blank line def humanize_date(date_string): """ returns dates as in this form: 'August 24 2019' """ return convert_date(date_string).strftime("%B %d %Y") def convert_date(date_string): """ transforms the canonical date strings into dates """ try: return datetime.strptime(date_string, "%Y-%m-%d") except ValueError as e: print("woops, the date '%s' is not in YEAR-MONTH-DAY format." % date_string) exit(1) def setup(): # determine whether "-y" was provided on the command line try: argv.pop(argv.index('-y')) skip_confirmation = True except ValueError: skip_confirmation = False # basic sanity check if len(argv) != 2: print(DOCUMENTATION) print("you provided %s argument(s)" % len(argv)) print() exit(1) else: try: with open(argv[1], 'r') as file: file_json = json.load(file) except ValueError as e: print("woops, looks like there is a syntax issue in your JSON, the following error was encountered:") print(e) print() exit(1) # sort deletees by date. sorted_data = sorted(file_json.items(), key=lambda x: x[1]) # test thata all the participants exist, exit if they don't all_patients_exist = True for patient_id, _ in sorted_data: if not Participant.objects.filter(patient_id=patient_id).exists(): all_patients_exist = False print("Participant '%s' does not exist." % patient_id) if not all_patients_exist: exit(1) # print out info for confirmation for participant_name, date in sorted_data: print(participant_name, "--", humanize_date(date)) # force user to confirm if not skip_confirmation: print() msg = input( "I hereby confirm that I want to irreparably delete all data for the above users starting on the day listed. (y/n)\n" ) if not msg.lower() == "y": print("Exiting...") print() exit(0) return sorted_data # delete chunk registries def delete_chunk_registries(sorted_data): print() for patient_id, date in sorted_data: print("removing ChunkRegistry data for %s..." % patient_id) date = convert_date(date) participant = Participant.objects.filter(patient_id=patient_id) ChunkRegistry.objects.filter(participant=participant, time_bin__gte=date).delete() def assemble_deletable_files(sorted_data): deletable_file_paths = [] for patient_id, expunge_start_date in sorted_data: participant = Participant.objects.get(patient_id=patient_id) # technically it is a datetime object expunge_start_date = convert_date(expunge_start_date) expunge_start_unix_timestamp = int((expunge_start_date - UNIX_EPOCH_START).total_seconds()) * 1000 prefix = str(participant.study.object_id) + "/" + patient_id + "/" s3_files = s3_list_files(prefix, as_generator=True) chunks_prefix = CHUNKS_FOLDER + "/" + prefix s3_chunks_files = s3_list_files(chunks_prefix, as_generator=True) raw_files = assemble_raw_files(s3_files, expunge_start_unix_timestamp) chunked_files = assemble_chunked_files(s3_chunks_files, expunge_start_date) print( patient_id, "timestamp: %s, (unixtime: %s): %s files" % (expunge_start_date, expunge_start_unix_timestamp/1000, len(raw_files) + len(chunked_files)) ) deletable_file_paths.extend(raw_files) deletable_file_paths.extend(chunked_files) return deletable_file_paths def assemble_raw_files(s3_file_paths, expunge_timestamp): ret = [] for file_path in s3_file_paths: # there may be some corrupt file paths that has _ instead of / extracted_timestamp_str = file_path.replace("_", "/").rsplit("/", 1)[1][:-4] extracted_timestamp_int = int(extracted_timestamp_str) if len(extracted_timestamp_str) == 10: extracted_timestamp_int = extracted_timestamp_int * 1000 if expunge_timestamp <= extracted_timestamp_int: ret.append(file_path) return ret def assemble_chunked_files(s3_chunks_files, expunge_start_date): ret = [] for file_path in s3_chunks_files: # there may be some corrupt file paths that has _ instead of / extracted_timestamp_str = file_path.replace("_", "/").rsplit("/", 1)[1][:-4] extracted_dt = datetime.strptime(extracted_timestamp_str, API_TIME_FORMAT) if expunge_start_date < extracted_dt: ret.append(file_path) return ret def delete_versions(files_to_delete): print("Deleting many files, this could take a while...") for s3_file_path in files_to_delete: file_args = s3_list_versions(s3_file_path) print( "Deleting %s version(s) of %s with the following VersionIds: %s" % (len(file_args), s3_file_path, ", ".join([f['VersionId'] for f in file_args]) ) ) delete_args = { "Bucket": S3_BUCKET, "Delete": { 'Objects': file_args, 'Quiet': False, }, } s3_conn.delete_objects(**delete_args) setup_data = setup() delete_chunk_registries(setup_data) print("\nAssembling the files to delete...") deletable_files = assemble_deletable_files(setup_data) delete_versions(deletable_files)
32.818182
129
0.675609
458fe67bbd87b47d7f491e3094ffd0b215e8a58d
10,500
py
Python
sympy/core/tests/test_functions.py
fperez/sympy
7d8d096215c8f65ba1d4a9c09af78ec0c3844518
[ "BSD-3-Clause" ]
null
null
null
sympy/core/tests/test_functions.py
fperez/sympy
7d8d096215c8f65ba1d4a9c09af78ec0c3844518
[ "BSD-3-Clause" ]
null
null
null
sympy/core/tests/test_functions.py
fperez/sympy
7d8d096215c8f65ba1d4a9c09af78ec0c3844518
[ "BSD-3-Clause" ]
1
2021-11-10T06:39:41.000Z
2021-11-10T06:39:41.000Z
from sympy import Lambda, Symbol, Function, WildFunction, Derivative, sqrt, \ log, exp, Rational, Real, sign, Basic, sin, cos, diff, I, re, im, \ oo, zoo, nan, E, expand, pi, raises, O, Sum from sympy.utilities.pytest import XFAIL from sympy.abc import x, y from sympy.core.function import PoleError def test_log(): assert log(2) > 0 assert log(1).is_zero assert log(0.5).is_negative == True def test_exp_log(): x = Symbol("x", real=True) assert log(exp(x)) == x assert exp(log(x)) == x def test_log_expansion(): x = Symbol("x", positive=True) y = Symbol("y", positive=True) # ok in interactive, fails in py.test #assert log(x*y) != log(x)+log(y) #assert log(x**2) != 2*log(x) assert log(x*y).expand() == log(x)+log(y) assert log(x**2).expand() == 2*log(x) assert (log(x**-5)**-1).expand() == -1/log(x)/5 def test_log_hashing_bug(): x = Symbol("y") assert x != log(log(x)) assert hash(x) != hash(log(log(x))) assert log(x) != log(log(log(x))) e = 1/log(log(x)+log(log(x))) assert e.base.func is log e = 1/log(log(x)+log(log(log(x)))) assert e.base.func is log x = Symbol("x") e = log(log(x)) assert e.func is log assert not x.func is log assert hash(log(log(x))) != hash(x) assert e != x def test_sign(): assert sign(log(2)) == 1 def test_exp_bug(): x = Symbol("x") assert exp(1*log(x)) == x def test_exp_expand(): x = Symbol("x") y = Symbol("y") e = exp(log(Rational(2))*(1+x)-log(Rational(2))*x) assert e.expand() == 2 assert exp(x+y) != exp(x)*exp(y) assert exp(x+y).expand() == exp(x)*exp(y) def test_f_expand_complex(): f = Function('f') x = Symbol('x', real=True) z = Symbol('z') assert f(x).expand(complex=True) == I*im(f(x)) + re(f(x)) assert exp(x).expand(complex=True) == exp(x) assert exp(I*x).expand(complex=True) == cos(x) + I*sin(x) assert exp(z).expand(complex=True) == cos(im(z))*exp(re(z)) + \ I*sin(im(z))*exp(re(z)) def test_bug1(): x = Symbol("x") w = Symbol("w") e = sqrt(-log(w)) assert e.subs(log(w),-x) == sqrt(x) e = sqrt(-5*log(w)) assert e.subs(log(w),-x) == sqrt(5*x) def test_general_function(): nu = Function('nu', nargs=1) x = Symbol("x") y = Symbol("y") e = nu(x) edx = e.diff(x) edy = e.diff(y) edxdx = e.diff(x).diff(x) edxdy = e.diff(x).diff(y) assert e == nu(x) assert edx != nu(x) assert edx == diff(nu(x), x) assert edy == 0 assert edxdx == diff(diff(nu(x), x), x) assert edxdy == 0 def test_function_nargs(): f = Function('f') x = Symbol('x') assert f.nargs == None assert f(x).nargs == 1 assert f(x, x, x, x).nargs == 4 def test_derivative_subs_bug(): x = Symbol("x y") l = Function('l', nargs=1) n = Function('n', nargs=1) e = diff(n(x), x) assert e.subs(n(x), l(x)) != e assert e.subs(n(x), l(x)) == diff(l(x), x) assert e.subs(n(x), -l(x)) == diff(-l(x), x) assert e.subs(x, y) == diff(n(y), y) def test_derivative_subs_self_bug(): f = Function('f') d = diff(f(x), x) assert d.subs(d, y) == y def test_derivative_linearity(): x = Symbol("x") y = Symbol("y") n = Function('n', nargs=1) assert diff(-n(x), x) == -diff(n(x), x) assert diff(8*n(x), x) == 8*diff(n(x), x) assert diff(8*n(x), x) != 7*diff(n(x), x) assert diff(8*n(x)*x, x) == 8*n(x) + 8*x*diff(n(x), x) assert diff(8*n(x)*y*x, x) == 8*y*n(x) + 8*y*x*diff(n(x), x) def test_derivative_evaluate(): x = Symbol('x') assert Derivative(sin(x), x) != diff(sin(x), x) assert Derivative(sin(x), x).doit() == diff(sin(x), x) f = Function('f') assert Derivative(Derivative(f(x), x), x) == diff(f(x), x, x) assert Derivative(sin(x), x, 0) == sin(x) def test_diff_symbols(): x = Symbol('x') y = Symbol('y') z = Symbol('z') f = Function('f') g = Function('g') assert diff(f(x, y, z), x, y, z) == Derivative(f(x, y, z), x, y, z) assert diff(f(x, y, z), x, x, x) == Derivative(f(x, y, z), x, x, x) assert diff(f(x, y, z), x, 3) == Derivative(f(x, y, z), x, 3) assert diff([f(x, y, z), g(x, y, z)], [x, y, z, (x, x), (y, 2), (z, 3), (x, y, z, 2), (x, x, x)]) == \ [[Derivative(f(x, y, z), x), Derivative(f(x, y, z), y), Derivative(f(x, y, z), z), Derivative(f(x, y, z), x, x), Derivative(f(x, y, z), y, y), Derivative(f(x, y, z), z, z, z), Derivative(f(x, y, z), x, y, z, z), Derivative(f(x, y, z), x, x, x)], [Derivative(g(x, y, z), x), Derivative(g(x, y, z), y), Derivative(g(x, y, z), z), Derivative(g(x, y, z), x, x), Derivative(g(x, y, z), y, y), Derivative(g(x, y, z), z, z, z), Derivative(g(x, y, z), x, y, z, z), Derivative(g(x, y, z), x, x, x)]] @XFAIL def test_combine(): # XXX combine no longer exists x = Symbol("x") y = Symbol("y") assert exp(x)*exp(-x) != 1 assert (exp(x)*exp(-x)).combine() == 1 assert exp(x)**2 != exp(2*x) assert (exp(x)**2).combine() == exp(2*x) assert exp(x)*exp(-x/2)*exp(-x/2) != 1 assert (exp(x)*exp(-x/2)*exp(-x/2)).combine() == 1 assert (2*log(x)).combine() == log(x**2) assert exp(2*log(x)) != x**2 assert exp(2*log(x)).combine() == x**2 assert exp(x)*exp(-x)-1 !=0 assert (exp(x)*exp(-x)-1).combine() == 0 assert (2*exp(x)*exp(-x)).combine() == 2 assert (x/exp(x)*exp(-x)).combine() == x*exp(-2*x) def test_Lambda(): e = Lambda(x, x**2) f = Function('f') assert e(4) == 16 assert e(x) == x**2 assert e(y) == y**2 assert Lambda(x, x**2) == Lambda(x, x**2) assert Lambda(x, x**2) == Lambda(y, y**2) assert Lambda(x, x**2) != Lambda(y, y**2+1) assert Lambda(x,y,x**y) == Lambda(y,x,y**x) assert Lambda(x,y,x**y) != Lambda(x,y,y**x) assert Lambda(x,y,x**y)(x,y) == x**y assert Lambda(x,y,x**y)(x) == Lambda(y,x**y) assert Lambda(x,y,x**y)(x)(y) == x**y assert Lambda(x,y,x**y)(x)(3) == x**3 assert Lambda(x,y,x**y)(3)(y) == 3**y assert Lambda(x,y,x**y)(3)(3) == 3**3 assert Lambda(x,y,x**y)(3,3) == 3**3 assert Lambda(x,y,x**y)(x,3) == x**3 assert Lambda(x,y,x**y)(3,y) == 3**y assert Lambda(x,f(x))(x) == f(x) assert Lambda(x,f(x))() == Lambda(x,f(x)) assert Lambda(x,x**2)(e(x)) == x**4 assert e(e(x)) == x**4 assert Lambda(x,y,f(x)+f(y))(x) == Lambda(y,f(x)+f(y)) #doesn't work yet: #class F(Function): # pass #assert Lambda(x, F(x)) == F assert Lambda(x, y, x+y).nargs == 2 z = Symbol('z') t = Symbol('t') p = x, y, z, t assert Lambda(p, t*(x+y+z))(*p) == t * (x + y + z) def test_expand_function(): assert expand(x+y) == x + y assert expand(x+y, complex=True) == I*im(x) + I*im(y) + re(x) + re(y) def test_function_comparable(): x = Symbol('x') assert sin(x).is_comparable == False assert cos(x).is_comparable == False assert sin(Real('0.1')).is_comparable == True assert cos(Real('0.1')).is_comparable == True assert sin(E).is_comparable == True assert cos(E).is_comparable == True assert sin(Rational(1,3)).is_comparable == True assert cos(Rational(1,3)).is_comparable == True @XFAIL def test_function_comparable_fail(): x = Symbol('x') assert sin(oo).is_comparable == False assert sin(-oo).is_comparable == False assert sin(zoo).is_comparable == False assert sin(nan).is_comparable == False def test_deriv1(): f=Function('f') g=Function('g') x = Symbol('x') assert f(g(x)).diff(x) == Derivative(f(g(x)), g(x)) * Derivative(g(x), x) def test_deriv2(): f=Function('f') g=Function('g') x = Symbol('x') assert f(x).diff(x) == Derivative(f(x), x) assert f(2*x).diff(x) == 2*Derivative(f(2*x), 2*x) assert (f(x)**3).diff(x) == 3*f(x)**2*f(x).diff(x) assert (f(2*x)**3).diff(x) == 6*f(2*x)**2*Derivative(f(2*x), 2*x) assert f(2+x).diff(x) == Derivative(f(2+x), 2+x) assert f(2+3*x).diff(x) == 3*Derivative(f(2+3*x), 2+3*x) assert f(sin(x)).diff(x) == Derivative(f(sin(x)), sin(x)) * cos(x) assert f(3*sin(x)).diff(x) == 3*Derivative(f(3*sin(x)), 3*sin(x)) * cos(x) def test_deriv3(): f=Function('f') g=Function('g') x = Symbol('x') assert (x**3).diff(x) == 3*x**2 assert (x**3).diff(x, evaluate=False) != 3*x**2 assert (x**3).diff(x, evaluate=False) == Derivative(x**3, x) assert diff(x**3, x) == 3*x**2 assert diff(x**3, x, evaluate=False) != 3*x**2 assert diff(x**3, x, evaluate=False) == Derivative(x**3, x) def test_suppressed_evaluation(): a = sin(0, evaluate=False) assert a != 0 assert a.func is sin assert a.args == (0,) def test_function_evalf(): def eq(a,b,eps): return abs(a-b) < eps assert eq(sin(1).evalf(15), Real("0.841470984807897"), 1e-13) assert eq(sin(2).evalf(25), Real("0.9092974268256816953960199",25), 1e-23) assert eq(sin(1+I).evalf(15), Real("1.29845758141598") + Real("0.634963914784736")*I, 1e-13) assert eq(exp(1+I).evalf(15), Real("1.46869393991588") + Real("2.28735528717884239")*I, 1e-13) assert eq(exp(-0.5+1.5*I).evalf(15), Real("0.0429042815937374") + Real("0.605011292285002")*I, 1e-13) assert eq(log(pi+sqrt(2)*I).evalf(15), Real("1.23699044022052") + Real("0.422985442737893")*I, 1e-13) assert eq(cos(100).evalf(15), Real("0.86231887228768"), 1e-13) def test_extensibility_eval(): class MyFunc(Function): @classmethod def eval(cls, *args): return (0,0,0) assert MyFunc(0) == (0,0,0) def test_function_non_commutative(): x = Symbol('x', commutative=False) f = Function('f') assert f(x).is_commutative == False assert sin(x).is_commutative == False assert exp(x).is_commutative == False assert log(x).is_commutative == False def test_function__eval_nseries(): x = Symbol('x') assert sin(x)._eval_nseries(x,0,2) == x + O(x**2) assert sin(x+1)._eval_nseries(x,0,2) == x*cos(1) + sin(1) + O(x**2) assert sin(pi*(1-x))._eval_nseries(x,0,2) == pi*x + O(x**2) raises(PoleError, 'sin(1/x)._eval_nseries(x,0,2)') def test_doit(): n = Symbol('n', integer = True) f = Sum(2 * n * x, (n, 1, 3)) d = Derivative(f, x) assert d.doit() == 12 assert d.doit(deep = False) == d
30.523256
105
0.544
af14d4c5be099018263b5d35fc0360bbace84777
4,137
py
Python
hotbox_designer/templates.py
dgirondi/hotbox_designer
2fb3f4ee01662d7607888d3f43721c5c0123068f
[ "BSD-3-Clause-Clear" ]
null
null
null
hotbox_designer/templates.py
dgirondi/hotbox_designer
2fb3f4ee01662d7607888d3f43721c5c0123068f
[ "BSD-3-Clause-Clear" ]
null
null
null
hotbox_designer/templates.py
dgirondi/hotbox_designer
2fb3f4ee01662d7607888d3f43721c5c0123068f
[ "BSD-3-Clause-Clear" ]
null
null
null
# coding=utf-8 SQUARE_BUTTON = { 'shape': 'square', # or round 'shape.left': 0.0, 'shape.top': 0.0, 'shape.width': 120.0, 'shape.height': 25.0, 'border': True, 'borderwidth.normal': 1.0, 'borderwidth.hovered': 1.25, 'borderwidth.clicked': 2, 'bordercolor.normal': '#000000', 'bordercolor.hovered': '#393939', 'bordercolor.clicked': '#FFFFFF', 'bordercolor.transparency': 0, 'bgcolor.normal': '#888888', 'bgcolor.hovered': '#AAAAAA', 'bgcolor.clicked': '#DDDDDD', 'bgcolor.transparency': 0, 'text.content': 'Button', 'text.size': 12, 'text.bold': False, 'text.italic': False, 'text.color': '#FFFFFF', 'text.valign': 'center', # or 'top' or bottom 'text.halign': 'center', # or 'left' or 'right' 'action.left': True, 'action.left.close': False, 'action.left.language': 'python', # or mel 'action.left.command': '', 'action.right': False, 'action.right.close': False, 'action.right.language': 'python', # or mel 'action.right.command': '', 'image.path': '', 'image.fit': True, 'image.height': 32, 'image.width': 32} TEXT = { 'shape': 'square', # or round 'shape.left': 0.0, 'shape.top': 0.0, 'shape.width': 200.0, 'shape.height': 50.0, 'border': False, 'borderwidth.normal': 0, 'borderwidth.hovered': 0, 'borderwidth.clicked': 0, 'bordercolor.normal': '#000000', 'bordercolor.hovered': '#393939', 'bordercolor.clicked': '#FFFFFF', 'bordercolor.transparency': 0, 'bgcolor.normal': '#888888', 'bgcolor.hovered': '#AAAAAA', 'bgcolor.clicked': '#DDDDDD', 'bgcolor.transparency': 255, 'text.content': 'Text', 'text.size': 16, 'text.bold': True, 'text.italic': False, 'text.color': '#FFFFFF', 'text.valign': 'top', # or 'top' or bottom 'text.halign': 'left', # or 'left' or 'right' 'action.left': False, 'action.left.close': False, 'action.left.language': 'python', # or mel 'action.left.command': '', 'action.right': False, 'action.right.close': False, 'action.right.language': 'python', # or mel 'action.right.command': '', 'image.path': '', 'image.fit': False, 'image.height': 32, 'image.width': 32} BACKGROUND = { 'shape': 'square', # or round 'shape.left': 0.0, 'shape.top': 0.0, 'shape.width': 400.0, 'shape.height': 400.0, 'border': False, 'borderwidth.normal': 0, 'borderwidth.hovered': 0, 'borderwidth.clicked': 0, 'bordercolor.normal': '#888888', 'bordercolor.hovered': '#888888', 'bordercolor.clicked': '#888888', 'bordercolor.transparency': 0, 'bgcolor.normal': '#888888', 'bgcolor.hovered': '#888888', 'bgcolor.clicked': '#888888', 'bgcolor.transparency': 0, 'text.content': '', 'text.size': 12, 'text.bold': False, 'text.italic': False, 'text.color': '#FFFFFF', 'text.valign': 'center', # or 'top' or bottom 'text.halign': 'center', # or 'left' or 'right' 'action.left': False, 'action.left.close': False, 'action.left.language': 'python', # or mel 'action.left.command': '', 'action.right': False, 'action.right.close': False, 'action.right.language': 'python', # or mel 'action.right.command': '', 'image.path': '', 'image.fit': False, 'image.height': 32, 'image.width': 32} HOTBOX = { 'name': '', 'triggering': 'click only', # or 'click or close', 'aiming': False, 'centerx': 450, 'centery': 300, 'width': 900, 'height': 600, 'submenu': False, 'leaveclose': False }
32.574803
59
0.505439
9233da3c979679e4cf1d5214def6de21f2024e1b
3,046
py
Python
chaingreen/rpc/rpc_client.py
todortron/chaingreen-blockchain
89fe435e5dc87de4a7bb4d64c1ad335d81f24b95
[ "Apache-2.0" ]
1
2021-11-12T20:30:23.000Z
2021-11-12T20:30:23.000Z
chaingreen/rpc/rpc_client.py
morrillup/chaingreen-blockchain
0b2d008dd10228670decf360d21448a65fce48a4
[ "Apache-2.0" ]
19
2021-09-07T08:07:05.000Z
2022-03-29T08:10:34.000Z
chaingreen/rpc/rpc_client.py
morrillup/chaingreen-blockchain
0b2d008dd10228670decf360d21448a65fce48a4
[ "Apache-2.0" ]
null
null
null
import asyncio from ssl import SSLContext from typing import Dict, List, Optional, Any import aiohttp from chaingreen.server.server import NodeType, ssl_context_for_client from chaingreen.server.ssl_context import private_ssl_ca_paths from chaingreen.types.blockchain_format.sized_bytes import bytes32 from chaingreen.util.byte_types import hexstr_to_bytes from chaingreen.util.ints import uint16 class RpcClient: """ Client to Chaingreen RPC, connects to a local service. Uses HTTP/JSON, and converts back from JSON into native python objects before returning. All api calls use POST requests. Note that this is not the same as the peer protocol, or wallet protocol (which run Chaingreen's protocol on top of TCP), it's a separate protocol on top of HTTP that provides easy access to the full node. """ url: str session: aiohttp.ClientSession closing_task: Optional[asyncio.Task] ssl_context: Optional[SSLContext] hostname: str port: uint16 @classmethod async def create(cls, self_hostname: str, port: uint16, root_path, net_config): self = cls() self.hostname = self_hostname self.port = port self.url = f"https://{self_hostname}:{str(port)}/" self.session = aiohttp.ClientSession() ca_crt_path, ca_key_path = private_ssl_ca_paths(root_path, net_config) crt_path = root_path / net_config["daemon_ssl"]["private_crt"] key_path = root_path / net_config["daemon_ssl"]["private_key"] self.ssl_context = ssl_context_for_client(ca_crt_path, ca_key_path, crt_path, key_path) self.closing_task = None return self async def fetch(self, path, request_json) -> Any: async with self.session.post(self.url + path, json=request_json, ssl_context=self.ssl_context) as response: response.raise_for_status() res_json = await response.json() if not res_json["success"]: raise ValueError(res_json) return res_json async def get_connections(self, node_type: Optional[NodeType] = None) -> List[Dict]: request = {} if node_type is not None: request["node_type"] = node_type.value response = await self.fetch("get_connections", request) for connection in response["connections"]: connection["node_id"] = hexstr_to_bytes(connection["node_id"]) return response["connections"] async def open_connection(self, host: str, port: int) -> Dict: return await self.fetch("open_connection", {"host": host, "port": int(port)}) async def close_connection(self, node_id: bytes32) -> Dict: return await self.fetch("close_connection", {"node_id": node_id.hex()}) async def stop_node(self) -> Dict: return await self.fetch("stop_node", {}) def close(self): self.closing_task = asyncio.create_task(self.session.close()) async def await_closed(self): if self.closing_task is not None: await self.closing_task
40.078947
115
0.692055
56a70b06df0463b3cd3ceaf20f4f4fcb317af191
747
py
Python
bosch_thermostat_client/operation_mode/nefit_dhw.py
bosch-thermostat/bosch-thermostat-client-python
07d8cf35f38eea0a5d6063bb49d1a5252428dd9a
[ "Apache-2.0" ]
9
2021-01-16T16:46:04.000Z
2022-03-09T11:43:21.000Z
bosch_thermostat_client/operation_mode/nefit_dhw.py
bosch-thermostat/bosch-thermostat-client-python
07d8cf35f38eea0a5d6063bb49d1a5252428dd9a
[ "Apache-2.0" ]
18
2020-09-08T07:24:03.000Z
2021-12-08T21:32:50.000Z
bosch_thermostat_client/operation_mode/nefit_dhw.py
bosch-thermostat/bosch-thermostat-client-python
07d8cf35f38eea0a5d6063bb49d1a5252428dd9a
[ "Apache-2.0" ]
10
2020-09-19T21:04:09.000Z
2022-03-09T11:43:45.000Z
""" Operation mode helper for DHW. """ from bosch_thermostat_client.const import AUTO, MANUAL, USED, VALUE, ON, OFF from .base import OperationModeHelper class NefitDhwOperationModeHelper(OperationModeHelper): @property def available_modes(self): """Get Bosch operations modes.""" return ["clock", "manual"] @property def mode_type(self): """Check if operation mode type is manual or auto.""" if self._operation_mode.get(USED, True) != "false": return super().mode_type return MANUAL @property def current_mode(self): """Retrieve current mode of Circuit.""" if self._operation_mode.get(VALUE, OFF) == ON: return MANUAL return AUTO
27.666667
76
0.646586
0ae7edb4118c23b02ceefcd4dd9630f3cfbf5964
421
py
Python
sleap/nn/data/__init__.py
preeti98/sleap
203c3a03c0c54f8dab242611d9a8d24595e98081
[ "BSD-3-Clause-Clear" ]
156
2020-05-01T18:43:43.000Z
2022-03-25T10:31:18.000Z
sleap/nn/data/__init__.py
preeti98/sleap
203c3a03c0c54f8dab242611d9a8d24595e98081
[ "BSD-3-Clause-Clear" ]
299
2020-04-20T16:37:52.000Z
2022-03-31T23:54:48.000Z
sleap/nn/data/__init__.py
preeti98/sleap
203c3a03c0c54f8dab242611d9a8d24595e98081
[ "BSD-3-Clause-Clear" ]
41
2020-05-14T15:25:21.000Z
2022-03-25T12:44:54.000Z
from sleap.nn.data import augmentation from sleap.nn.data import confidence_maps from sleap.nn.data import instance_centroids from sleap.nn.data import instance_cropping from sleap.nn.data import normalization from sleap.nn.data import pipelines from sleap.nn.data import providers from sleap.nn.data import resizing from sleap.nn.data import utils from sleap.nn.data import inference from sleap.nn.data import pipelines
35.083333
44
0.84323
ab0c3bfe03b8c41ed68cef3aef6a33c459564933
588
py
Python
edparser/datasets/cws/sighan2005/pku.py
attardi/iwpt-shared-task-2020
3a70c42d53716678776afcccf02d896655777353
[ "Apache-2.0" ]
3
2020-06-16T12:58:57.000Z
2021-06-07T21:07:37.000Z
edparser/datasets/cws/sighan2005/pku.py
attardi/iwpt-shared-task-2020
3a70c42d53716678776afcccf02d896655777353
[ "Apache-2.0" ]
6
2020-06-22T07:46:49.000Z
2022-02-10T02:22:14.000Z
edparser/datasets/cws/sighan2005/pku.py
attardi/iwpt-shared-task-2020
3a70c42d53716678776afcccf02d896655777353
[ "Apache-2.0" ]
2
2020-06-27T07:32:43.000Z
2020-11-10T07:21:03.000Z
# -*- coding:utf-8 -*- # Author: hankcs # Date: 2019-12-21 15:42 from edparser.datasets.cws.sighan2005 import SIGHAN2005, make SIGHAN2005_PKU_DICT = SIGHAN2005 + "#" + "gold/pku_training_words.utf8" SIGHAN2005_PKU_TRAIN_FULL = SIGHAN2005 + "#" + "training/pku_training.utf8" SIGHAN2005_PKU_TRAIN = SIGHAN2005 + "#" + "training/pku_training_90.txt" SIGHAN2005_PKU_VALID = SIGHAN2005 + "#" + "training/pku_training_10.txt" SIGHAN2005_PKU_TEST_INPUT = SIGHAN2005 + "#" + "testing/pku_test.utf8" SIGHAN2005_PKU_TEST = SIGHAN2005 + "#" + "gold/pku_test_gold.utf8" make(SIGHAN2005_PKU_TRAIN)
42
75
0.756803
0f4be4a272b38001c39a4c9c16a2e2f7c36506bc
6,405
py
Python
lte/gateway/python/magma/pipelined/tests/test_check_quota.py
fbcode/magma_old
054ef8e079478bda36d2b13b8a88386c6dc94ef2
[ "BSD-3-Clause" ]
null
null
null
lte/gateway/python/magma/pipelined/tests/test_check_quota.py
fbcode/magma_old
054ef8e079478bda36d2b13b8a88386c6dc94ef2
[ "BSD-3-Clause" ]
6
2021-03-31T19:59:59.000Z
2022-01-22T12:56:47.000Z
lte/gateway/python/magma/pipelined/tests/test_check_quota.py
fbcode/magma_old
054ef8e079478bda36d2b13b8a88386c6dc94ef2
[ "BSD-3-Clause" ]
null
null
null
""" Copyright (c) 2019-present, Facebook, Inc. All rights reserved. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. An additional grant of patent rights can be found in the PATENTS file in the same directory. """ import unittest import warnings from concurrent.futures import Future from lte.protos.mconfig.mconfigs_pb2 import PipelineD from lte.protos.pipelined_pb2 import SubscriberQuotaUpdate from lte.protos.subscriberdb_pb2 import SubscriberID from magma.pipelined.tests.app.start_pipelined import ( TestSetup, PipelinedController, ) from magma.pipelined.bridge_util import BridgeTools from magma.pipelined.tests.pipelined_test_util import ( SnapshotVerifier, start_ryu_app_thread, stop_ryu_app_thread, create_service_manager, wait_after_send ) @unittest.skip("Skip test, currenlty flaky") class UEMacAddressTest(unittest.TestCase): BRIDGE = 'testing_br' IFACE = 'testing_br' BRIDGE_IP = '192.168.130.1' @classmethod @unittest.mock.patch('netifaces.ifaddresses', return_value=[[{'addr': '00:11:22:33:44:55'}]]) @unittest.mock.patch('netifaces.AF_LINK', 0) def setUpClass(cls, *_): """ Starts the thread which launches ryu apps Create a testing bridge, add a port, setup the port interfaces. Then launch the ryu apps for testing pipelined. Gets the references to apps launched by using futures. """ super(UEMacAddressTest, cls).setUpClass() warnings.simplefilter('ignore') cls.service_manager = create_service_manager([], ['ue_mac', 'arpd', 'check_quota']) check_quota_controller_reference = Future() testing_controller_reference = Future() arp_controller_reference = Future() test_setup = TestSetup( apps=[PipelinedController.UEMac, PipelinedController.Arp, PipelinedController.CheckQuotaController, PipelinedController.Testing, PipelinedController.StartupFlows], references={ PipelinedController.CheckQuotaController: check_quota_controller_reference, PipelinedController.Testing: testing_controller_reference, PipelinedController.UEMac: Future(), PipelinedController.Arp: arp_controller_reference, PipelinedController.StartupFlows: Future(), }, config={ 'setup_type': 'CWF', 'allow_unknown_arps': False, 'bridge_name': cls.BRIDGE, 'bridge_ip_address': cls.BRIDGE_IP, 'internal_ip_subnet': '192.168.0.0/16', 'ovs_gtp_port_number': 32768, 'has_quota_port': 50001, 'no_quota_port': 50002, 'quota_check_ip': '1.2.3.4', 'local_ue_eth_addr': False, 'clean_restart': True, }, mconfig=PipelineD( ue_ip_block='192.168.128.0/24', ), loop=None, service_manager=cls.service_manager, integ_test=False, ) BridgeTools.create_bridge(cls.BRIDGE, cls.IFACE) cls.thread = start_ryu_app_thread(test_setup) cls.check_quota_controller = check_quota_controller_reference.result() cls.arp_controlelr = arp_controller_reference.result() cls.testing_controller = testing_controller_reference.result() @classmethod def tearDownClass(cls): stop_ryu_app_thread(cls.thread) BridgeTools.destroy_bridge(cls.BRIDGE) def test_add_valid_quota_subscriber(self): """ Add flows for two subscribers """ imsi_1 = 'IMSI010000000088888' imsi_2 = 'IMSI010000111111118' imsi_3 = 'IMSI010002222222222' mac_1 = '5e:cc:cc:b1:49:4b' mac_2 = '5e:a:cc:af:aa:fe' mac_3 = '5e:bb:cc:aa:aa:fe' # Add subscriber with UE MAC address self.check_quota_controller.update_subscriber_quota_state( [ SubscriberQuotaUpdate( sid=SubscriberID(id=imsi_1), mac_addr=mac_1, update_type=SubscriberQuotaUpdate.VALID_QUOTA), SubscriberQuotaUpdate( sid=SubscriberID(id=imsi_2), mac_addr=mac_2, update_type=SubscriberQuotaUpdate.TERMINATE), SubscriberQuotaUpdate( sid=SubscriberID(id=imsi_3), mac_addr=mac_3, update_type=SubscriberQuotaUpdate.TERMINATE), ] ) snapshot_verifier = SnapshotVerifier(self, self.BRIDGE, self.service_manager, include_stats=False) with snapshot_verifier: wait_after_send(self.testing_controller) def test_add_three_subscribers(self): """ Add flows for two subscribers """ imsi_1 = 'IMSI010000000088888' imsi_2 = 'IMSI010000111111118' imsi_3 = 'IMSI010002222222222' mac_1 = '5e:cc:cc:b1:49:4b' mac_2 = '5e:a:cc:af:aa:fe' mac_3 = '5e:bb:cc:aa:aa:fe' # Add subscriber with UE MAC address self.check_quota_controller.update_subscriber_quota_state( [ SubscriberQuotaUpdate( sid=SubscriberID(id=imsi_1), mac_addr=mac_1, update_type=SubscriberQuotaUpdate.NO_QUOTA), SubscriberQuotaUpdate( sid=SubscriberID(id=imsi_2), mac_addr=mac_2, update_type=SubscriberQuotaUpdate.NO_QUOTA), SubscriberQuotaUpdate( sid=SubscriberID(id=imsi_3), mac_addr=mac_3, update_type=SubscriberQuotaUpdate.VALID_QUOTA), ] ) snapshot_verifier = SnapshotVerifier(self, self.BRIDGE, self.service_manager, include_stats=False) with snapshot_verifier: wait_after_send(self.testing_controller) if __name__ == "__main__": unittest.main()
36.6
78
0.602654
83d4adfe24794f4693429dde191826f6ef5eb0a0
716
py
Python
Algorithm/Easy/1000+/1200RelativeRanks.py
MartinYan623/Lint-Code
57d2fa441d6496234615736e3f55d0b71aaa51dc
[ "MIT" ]
null
null
null
Algorithm/Easy/1000+/1200RelativeRanks.py
MartinYan623/Lint-Code
57d2fa441d6496234615736e3f55d0b71aaa51dc
[ "MIT" ]
1
2020-08-08T10:14:53.000Z
2020-08-08T10:18:37.000Z
Algorithm/Easy/1000+/1200RelativeRanks.py
MartinYan623/Lint-Code
57d2fa441d6496234615736e3f55d0b71aaa51dc
[ "MIT" ]
null
null
null
class Solution: """ @param nums: List[int] @return: return List[str] """ def findRelativeRanks(self, nums): # write your code here if len(nums)==1: return ['Gold Medal'] if len(nums)==2: if nums[0]>nums[1]: return ['Gold Medal','Silver Medal'] else: return ['Silver Medal','Gold Medal'] list1=sorted(nums) nums[nums.index(list1[-1])]='Gold Medal' nums[nums.index(list1[-2])]='Silver Medal' nums[nums.index(list1[-3])]='Bronze Medal' j=4 for i in range(len(nums)-4,-1,-1): nums[nums.index(list1[i])]=str(j) j+=1 return nums
31.130435
52
0.498603
01a463bb859fd788260eb517eb14fa7471a2f5a8
294
py
Python
venv/lib/python3.9/site-packages/asyncpraw/const.py
proxamon/proxabot
2f4858ca5a77667ddd167bf2256eecf882369a27
[ "MIT" ]
null
null
null
venv/lib/python3.9/site-packages/asyncpraw/const.py
proxamon/proxabot
2f4858ca5a77667ddd167bf2256eecf882369a27
[ "MIT" ]
12
2021-04-11T19:46:06.000Z
2021-06-18T16:08:37.000Z
venv/lib/python3.9/site-packages/asyncpraw/const.py
EDiasAlberto/proxabot
2f4858ca5a77667ddd167bf2256eecf882369a27
[ "MIT" ]
null
null
null
"""Async PRAW constants.""" from .endpoints import API_PATH # noqa: F401 __version__ = "7.2.0" USER_AGENT_FORMAT = f"{{}} Async PRAW/{__version__}" MAX_IMAGE_SIZE = 512000 MIN_JPEG_SIZE = 128 MIN_PNG_SIZE = 67 JPEG_HEADER = b"\xff\xd8\xff" PNG_HEADER = b"\x89\x50\x4e\x47\x0d\x0a\x1a\x0a"
21
52
0.717687
01a04eb0de5eb21618287e76573da12dccd1460a
2,027
py
Python
matplotlib_exercise/select-rectangle.py
terasakisatoshi/pythonCodes
baee095ecee96f6b5ec6431267cdc6c40512a542
[ "MIT" ]
null
null
null
matplotlib_exercise/select-rectangle.py
terasakisatoshi/pythonCodes
baee095ecee96f6b5ec6431267cdc6c40512a542
[ "MIT" ]
null
null
null
matplotlib_exercise/select-rectangle.py
terasakisatoshi/pythonCodes
baee095ecee96f6b5ec6431267cdc6c40512a542
[ "MIT" ]
null
null
null
from __future__ import print_function import matplotlib.widgets as widgets import numpy as np import matplotlib.pyplot as plt class MyRectangleSelector(widgets.RectangleSelector): def release(self, event): super(MyRectangleSelector, self).release(event) self.to_draw.set_visible(True) self.canvas.draw() def line_select_callback(eclick, erelease): 'eclick and erelease are the press and release events' x1, y1 = eclick.xdata, eclick.ydata x2, y2 = erelease.xdata, erelease.ydata print("(%3.2f, %3.2f) --> (%3.2f, %3.2f)" % (x1, y1, x2, y2)) print(" The button you used were: %s %s" % (eclick.button, erelease.button)) def toggle_selector(event): print(' Key pressed.') if event.key in ['Q', 'q'] and toggle_selector.RS.active: print(' RectangleSelector deactivated.') toggle_selector.RS.set_active(False) if event.key in ['A', 'a'] and not toggle_selector.RS.active: print(' RectangleSelector activated.') toggle_selector.RS.set_active(True) fig, current_ax = plt.subplots() # make a new plotingrange N = 100000 # If N is large one can see x = np.linspace(0.0, 10.0, N) # improvement by use blitting! plt.plot(x, +np.sin(.2 * np.pi * x), lw=3.5, c='b', alpha=.7) # plot something plt.plot(x, +np.cos(.2 * np.pi * x), lw=3.5, c='r', alpha=.5) plt.plot(x, -np.sin(.2 * np.pi * x), lw=3.5, c='g', alpha=.3) print("\n click --> release") # drawtype is 'box' or 'line' or 'none' toggle_selector.RS = MyRectangleSelector(current_ax, line_select_callback, drawtype='box', useblit=True, # don't use middle button button=[1, 3], minspanx=5, minspany=5, spancoords='pixels') plt.connect('key_press_event', toggle_selector) plt.show()
38.245283
79
0.579181
74773933ec98f561a6440108ecfc8852ac5d7ff6
3,598
py
Python
libreoffice/sw_layout2svg.py
vmiklos/vmexam
ff4ef386d3cfd84b8ed06387cbd87b119dd50448
[ "MIT" ]
1
2015-02-09T10:21:51.000Z
2015-02-09T10:21:51.000Z
libreoffice/sw_layout2svg.py
vmiklos/vmexam
ff4ef386d3cfd84b8ed06387cbd87b119dd50448
[ "MIT" ]
null
null
null
libreoffice/sw_layout2svg.py
vmiklos/vmexam
ff4ef386d3cfd84b8ed06387cbd87b119dd50448
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. # # Quick&dirty script to turn an 'SW_DEBUG=1 ./soffice' layout dump (produced by pressing F12) into # an SVG file, which visualizes the relations between the layout frames. from xml.dom import minidom import sys FONT_SIZE = 12 RECTANGLE_STYLE = "stroke: black; fill: none;" def get_by_name(node, child_name): return [i for i in node.childNodes if i.localName == child_name][0] def twip_to_pt(fro): return fro / 20 def print_text(x, y, text): print(' <text x="{}pt" y="{}pt" font-size="{}pt" dominant-baseline="hanging">{}</text>'.format(x, y, FONT_SIZE, text)) def print_rect(identifier, left, top, width, height): print(' <rect id="{}" x="{}pt" y="{}pt" width="{}pt" height="{}pt" style="{}"/>'.format(identifier, left, top, width, height, RECTANGLE_STYLE)) def is_frame_name(frame): return frame in ("page", "header", "footer", "body", "txt", "fly", "notxt") def handle_frame(frame): identifier = "" symbol = "" for k, v in list(frame.attributes.items()): if k == "id": identifier = v elif k == "symbol": symbol = v infos = get_by_name(frame, "infos") infos_bounds = get_by_name(infos, "bounds") left = 0 top = 0 width = 0 height = 0 for k, v in list(infos_bounds.attributes.items()): if k == "left": left = twip_to_pt(float(v)) elif k == "top": top = twip_to_pt(float(v)) elif k == "width": width = twip_to_pt(float(v)) elif k == "height": height = twip_to_pt(float(v)) print_rect(identifier, left, top, width, height) print_text(left, top, "{} {}".format(symbol, identifier)) for child in [i for i in frame.childNodes if is_frame_name(i.localName)]: handle_frame(child) anchoreds = [i for i in frame.childNodes if i.localName == "anchored"] if anchoreds: anchored = anchoreds[0] for child in [i for i in anchored.childNodes if is_frame_name(i.localName)]: handle_frame(child) def main(): print('<?xml version="1.0"?>') layout = minidom.parse(sys.argv[1]) root = get_by_name(layout, "root") identifier = "" symbol = "" for k, v in list(root.attributes.items()): if k == "id": identifier = v elif k == "symbol": symbol = v root_infos = get_by_name(root, "infos") root_infos_bounds = get_by_name(root_infos, "bounds") left = 0 top = 0 width = 0 height = 0 for k, v in list(root_infos_bounds.attributes.items()): if k == "left": left = twip_to_pt(float(v)) elif k == "top": top = twip_to_pt(float(v)) elif k == "width": width = twip_to_pt(float(v)) elif k == "height": height = twip_to_pt(float(v)) # Root frame is the bounding box of all pages, canvas size is the same + the margins. print('<svg width="{}pt" height="{}pt" xmlns="http://www.w3.org/2000/svg">'.format(width + 2 * left, height + 2 * top)) print_rect(identifier, left, top, width, height) print_text(left, top, "{} {}".format(symbol, identifier)) for page in [i for i in root.childNodes if is_frame_name(i.localName)]: handle_frame(page) print('</svg>') if __name__ == '__main__': main() # vim:set shiftwidth=4 softtabstop=4 expandtab:
30.752137
148
0.603669
91eabeb0e1ada57c20ecfe9382fc516366a302b2
15,179
py
Python
lib/python2.7/site-packages/sklearn/externals/joblib/format_stack.py
wfehrnstrom/harmonize
e5661d24b2021739e8ac4bf1d3a530eda4e155b3
[ "MIT" ]
6,989
2017-07-18T06:23:18.000Z
2022-03-31T15:58:36.000Z
lib/python2.7/site-packages/sklearn/externals/joblib/format_stack.py
wfehrnstrom/harmonize
e5661d24b2021739e8ac4bf1d3a530eda4e155b3
[ "MIT" ]
1,978
2017-07-18T09:17:58.000Z
2022-03-31T14:28:43.000Z
lib/python2.7/site-packages/sklearn/externals/joblib/format_stack.py
wfehrnstrom/harmonize
e5661d24b2021739e8ac4bf1d3a530eda4e155b3
[ "MIT" ]
1,228
2017-07-18T09:03:13.000Z
2022-03-29T05:57:40.000Z
""" Represent an exception with a lot of information. Provides 2 useful functions: format_exc: format an exception into a complete traceback, with full debugging instruction. format_outer_frames: format the current position in the stack call. Adapted from IPython's VerboseTB. """ # Authors: Gael Varoquaux < gael dot varoquaux at normalesup dot org > # Nathaniel Gray <n8gray@caltech.edu> # Fernando Perez <fperez@colorado.edu> # Copyright: 2010, Gael Varoquaux # 2001-2004, Fernando Perez # 2001 Nathaniel Gray # License: BSD 3 clause import inspect import keyword import linecache import os import pydoc import sys import time import tokenize import traceback try: # Python 2 generate_tokens = tokenize.generate_tokens except AttributeError: # Python 3 generate_tokens = tokenize.tokenize INDENT = ' ' * 8 ############################################################################### # some internal-use functions def safe_repr(value): """Hopefully pretty robust repr equivalent.""" # this is pretty horrible but should always return *something* try: return pydoc.text.repr(value) except KeyboardInterrupt: raise except: try: return repr(value) except KeyboardInterrupt: raise except: try: # all still in an except block so we catch # getattr raising name = getattr(value, '__name__', None) if name: # ick, recursion return safe_repr(name) klass = getattr(value, '__class__', None) if klass: return '%s instance' % safe_repr(klass) except KeyboardInterrupt: raise except: return 'UNRECOVERABLE REPR FAILURE' def eq_repr(value, repr=safe_repr): return '=%s' % repr(value) ############################################################################### def uniq_stable(elems): """uniq_stable(elems) -> list Return from an iterable, a list of all the unique elements in the input, but maintaining the order in which they first appear. A naive solution to this problem which just makes a dictionary with the elements as keys fails to respect the stability condition, since dictionaries are unsorted by nature. Note: All elements in the input must be hashable. """ unique = [] unique_set = set() for nn in elems: if nn not in unique_set: unique.append(nn) unique_set.add(nn) return unique ############################################################################### def fix_frame_records_filenames(records): """Try to fix the filenames in each record from inspect.getinnerframes(). Particularly, modules loaded from within zip files have useless filenames attached to their code object, and inspect.getinnerframes() just uses it. """ fixed_records = [] for frame, filename, line_no, func_name, lines, index in records: # Look inside the frame's globals dictionary for __file__, which should # be better. better_fn = frame.f_globals.get('__file__', None) if isinstance(better_fn, str): # Check the type just in case someone did something weird with # __file__. It might also be None if the error occurred during # import. filename = better_fn fixed_records.append((frame, filename, line_no, func_name, lines, index)) return fixed_records def _fixed_getframes(etb, context=1, tb_offset=0): LNUM_POS, LINES_POS, INDEX_POS = 2, 4, 5 records = fix_frame_records_filenames(inspect.getinnerframes(etb, context)) # If the error is at the console, don't build any context, since it would # otherwise produce 5 blank lines printed out (there is no file at the # console) rec_check = records[tb_offset:] try: rname = rec_check[0][1] if rname == '<ipython console>' or rname.endswith('<string>'): return rec_check except IndexError: pass aux = traceback.extract_tb(etb) assert len(records) == len(aux) for i, (file, lnum, _, _) in enumerate(aux): maybeStart = lnum - 1 - context // 2 start = max(maybeStart, 0) end = start + context lines = linecache.getlines(file)[start:end] # pad with empty lines if necessary if maybeStart < 0: lines = (['\n'] * -maybeStart) + lines if len(lines) < context: lines += ['\n'] * (context - len(lines)) buf = list(records[i]) buf[LNUM_POS] = lnum buf[INDEX_POS] = lnum - 1 - start buf[LINES_POS] = lines records[i] = tuple(buf) return records[tb_offset:] def _format_traceback_lines(lnum, index, lines, lvals=None): numbers_width = 7 res = [] i = lnum - index for line in lines: if i == lnum: # This is the line with the error pad = numbers_width - len(str(i)) if pad >= 3: marker = '-' * (pad - 3) + '-> ' elif pad == 2: marker = '> ' elif pad == 1: marker = '>' else: marker = '' num = marker + str(i) else: num = '%*s' % (numbers_width, i) line = '%s %s' % (num, line) res.append(line) if lvals and i == lnum: res.append(lvals + '\n') i = i + 1 return res def format_records(records): # , print_globals=False): # Loop over all records printing context and info frames = [] abspath = os.path.abspath for frame, file, lnum, func, lines, index in records: try: file = file and abspath(file) or '?' except OSError: # if file is '<console>' or something not in the filesystem, # the abspath call will throw an OSError. Just ignore it and # keep the original file string. pass if file.endswith('.pyc'): file = file[:-4] + '.py' link = file args, varargs, varkw, locals = inspect.getargvalues(frame) if func == '?': call = '' else: # Decide whether to include variable details or not try: call = 'in %s%s' % (func, inspect.formatargvalues(args, varargs, varkw, locals, formatvalue=eq_repr)) except KeyError: # Very odd crash from inspect.formatargvalues(). The # scenario under which it appeared was a call to # view(array,scale) in NumTut.view.view(), where scale had # been defined as a scalar (it should be a tuple). Somehow # inspect messes up resolving the argument list of view() # and barfs out. At some point I should dig into this one # and file a bug report about it. print("\nJoblib's exception reporting continues...\n") call = 'in %s(***failed resolving arguments***)' % func # Initialize a list of names on the current line, which the # tokenizer below will populate. names = [] def tokeneater(token_type, token, start, end, line): """Stateful tokeneater which builds dotted names. The list of names it appends to (from the enclosing scope) can contain repeated composite names. This is unavoidable, since there is no way to disambiguate partial dotted structures until the full list is known. The caller is responsible for pruning the final list of duplicates before using it.""" # build composite names if token == '.': try: names[-1] += '.' # store state so the next token is added for x.y.z names tokeneater.name_cont = True return except IndexError: pass if token_type == tokenize.NAME and token not in keyword.kwlist: if tokeneater.name_cont: # Dotted names names[-1] += token tokeneater.name_cont = False else: # Regular new names. We append everything, the caller # will be responsible for pruning the list later. It's # very tricky to try to prune as we go, b/c composite # names can fool us. The pruning at the end is easy # to do (or the caller can print a list with repeated # names if so desired. names.append(token) elif token_type == tokenize.NEWLINE: raise IndexError # we need to store a bit of state in the tokenizer to build # dotted names tokeneater.name_cont = False def linereader(file=file, lnum=[lnum], getline=linecache.getline): line = getline(file, lnum[0]) lnum[0] += 1 return line # Build the list of names on this line of code where the exception # occurred. try: # This builds the names list in-place by capturing it from the # enclosing scope. for token in generate_tokens(linereader): tokeneater(*token) except (IndexError, UnicodeDecodeError, SyntaxError): # signals exit of tokenizer # SyntaxError can happen when trying to tokenize # a compiled (e.g. .so or .pyd) extension pass except tokenize.TokenError as msg: _m = ("An unexpected error occurred while tokenizing input file %s\n" "The following traceback may be corrupted or invalid\n" "The error message is: %s\n" % (file, msg)) print(_m) # prune names list of duplicates, but keep the right order unique_names = uniq_stable(names) # Start loop over vars lvals = [] for name_full in unique_names: name_base = name_full.split('.', 1)[0] if name_base in frame.f_code.co_varnames: if name_base in locals.keys(): try: value = safe_repr(eval(name_full, locals)) except: value = "undefined" else: value = "undefined" name = name_full lvals.append('%s = %s' % (name, value)) #elif print_globals: # if frame.f_globals.has_key(name_base): # try: # value = safe_repr(eval(name_full,frame.f_globals)) # except: # value = "undefined" # else: # value = "undefined" # name = 'global %s' % name_full # lvals.append('%s = %s' % (name,value)) if lvals: lvals = '%s%s' % (INDENT, ('\n%s' % INDENT).join(lvals)) else: lvals = '' level = '%s\n%s %s\n' % (75 * '.', link, call) if index is None: frames.append(level) else: frames.append('%s%s' % (level, ''.join( _format_traceback_lines(lnum, index, lines, lvals)))) return frames ############################################################################### def format_exc(etype, evalue, etb, context=5, tb_offset=0): """ Return a nice text document describing the traceback. Parameters ----------- etype, evalue, etb: as returned by sys.exc_info context: number of lines of the source file to plot tb_offset: the number of stack frame not to use (0 = use all) """ # some locals try: etype = etype.__name__ except AttributeError: pass # Header with the exception type, python version, and date pyver = 'Python ' + sys.version.split()[0] + ': ' + sys.executable date = time.ctime(time.time()) pid = 'PID: %i' % os.getpid() head = '%s%s%s\n%s%s%s' % ( etype, ' ' * (75 - len(str(etype)) - len(date)), date, pid, ' ' * (75 - len(str(pid)) - len(pyver)), pyver) # Drop topmost frames if requested try: records = _fixed_getframes(etb, context, tb_offset) except: raise print('\nUnfortunately, your original traceback can not be ' 'constructed.\n') return '' # Get (safely) a string form of the exception info try: etype_str, evalue_str = map(str, (etype, evalue)) except: # User exception is improperly defined. etype, evalue = str, sys.exc_info()[:2] etype_str, evalue_str = map(str, (etype, evalue)) # ... and format it exception = ['%s: %s' % (etype_str, evalue_str)] frames = format_records(records) return '%s\n%s\n%s' % (head, '\n'.join(frames), ''.join(exception[0])) ############################################################################### def format_outer_frames(context=5, stack_start=None, stack_end=None, ignore_ipython=True): LNUM_POS, LINES_POS, INDEX_POS = 2, 4, 5 records = inspect.getouterframes(inspect.currentframe()) output = list() for i, (frame, filename, line_no, func_name, lines, index) \ in enumerate(records): # Look inside the frame's globals dictionary for __file__, which should # be better. better_fn = frame.f_globals.get('__file__', None) if isinstance(better_fn, str): # Check the type just in case someone did something weird with # __file__. It might also be None if the error occurred during # import. filename = better_fn if filename.endswith('.pyc'): filename = filename[:-4] + '.py' if ignore_ipython: # Hack to avoid printing the internals of IPython if (os.path.basename(filename) == 'iplib.py' and func_name in ('safe_execfile', 'runcode')): break maybeStart = line_no - 1 - context // 2 start = max(maybeStart, 0) end = start + context lines = linecache.getlines(filename)[start:end] # pad with empty lines if necessary if maybeStart < 0: lines = (['\n'] * -maybeStart) + lines if len(lines) < context: lines += ['\n'] * (context - len(lines)) buf = list(records[i]) buf[LNUM_POS] = line_no buf[INDEX_POS] = line_no - 1 - start buf[LINES_POS] = lines output.append(tuple(buf)) return '\n'.join(format_records(output[stack_end:stack_start:-1]))
36.313397
81
0.542855
2488c3efff097d4a8d9680db7b127792179b2a00
494
py
Python
src/main/resources/rqmjazz/control/retrieve_test_results.py
xebialabs-community/xlr-rqmjazz-plugin
d0053be8558ca36937f64487fd2b8d6ca1e45e68
[ "MIT" ]
1
2019-07-24T03:25:28.000Z
2019-07-24T03:25:28.000Z
src/main/resources/rqmjazz/control/retrieve_test_results.py
xebialabs-community/xlr-rqmjazz-plugin
d0053be8558ca36937f64487fd2b8d6ca1e45e68
[ "MIT" ]
null
null
null
src/main/resources/rqmjazz/control/retrieve_test_results.py
xebialabs-community/xlr-rqmjazz-plugin
d0053be8558ca36937f64487fd2b8d6ca1e45e68
[ "MIT" ]
null
null
null
# Copyright (c) 2019 XebiaLabs # # This software is released under the MIT License. # https://opensource.org/licenses/MIT from rqmjazz.core.RQMClient import RQMClient def process(task_vars): server = task_vars['server'] client = RQMClient.create_client(server, username = task_vars["username"], password = task_vars["password"]) return client.get_test_results(task_vars['result_url']) if __name__ == '__main__' or __name__ == '__builtin__': job_result = process(locals())
29.058824
112
0.736842
a6042c2ed4a6ebe41f11ab3554a8e66a1b541af4
196
py
Python
Flask_IHome/map_demo_py3.py
haitaoss/flask_project
84475d035d818382b824d535b55c29dbf61a6162
[ "Apache-2.0" ]
null
null
null
Flask_IHome/map_demo_py3.py
haitaoss/flask_project
84475d035d818382b824d535b55c29dbf61a6162
[ "Apache-2.0" ]
null
null
null
Flask_IHome/map_demo_py3.py
haitaoss/flask_project
84475d035d818382b824d535b55c29dbf61a6162
[ "Apache-2.0" ]
null
null
null
li1 = [1, 2, 3, 4] li2 = [2, 3] def add(num1, num2): return num1 + num2 # map函数,参数:函数,调用函数所需的参数 ret = map(add, li1, li2) print(ret) # python2 返回的是list,python3返回的是map类型 print(list(ret))
13.066667
47
0.632653
a7f08c710cadce146ffb15d2f45019b005649163
6,940
py
Python
sdk/lusid/models/index_model_options_all_of.py
slemasne/lusid-sdk-python-preview
94a97951ec2052bc1672b7be21e52ad2fcf6eea0
[ "MIT" ]
null
null
null
sdk/lusid/models/index_model_options_all_of.py
slemasne/lusid-sdk-python-preview
94a97951ec2052bc1672b7be21e52ad2fcf6eea0
[ "MIT" ]
null
null
null
sdk/lusid/models/index_model_options_all_of.py
slemasne/lusid-sdk-python-preview
94a97951ec2052bc1672b7be21e52ad2fcf6eea0
[ "MIT" ]
null
null
null
# coding: utf-8 """ LUSID API FINBOURNE Technology # noqa: E501 The version of the OpenAPI document: 0.11.3725 Contact: info@finbourne.com Generated by: https://openapi-generator.tech """ try: from inspect import getfullargspec except ImportError: from inspect import getargspec as getfullargspec import pprint import re # noqa: F401 import six from lusid.configuration import Configuration class IndexModelOptionsAllOf(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. required_map (dict): The key is attribute name and the value is whether it is 'required' or 'optional'. """ openapi_types = { 'portfolio_scaling': 'str', 'model_options_type': 'str' } attribute_map = { 'portfolio_scaling': 'portfolioScaling', 'model_options_type': 'modelOptionsType' } required_map = { 'portfolio_scaling': 'required', 'model_options_type': 'required' } def __init__(self, portfolio_scaling=None, model_options_type=None, local_vars_configuration=None): # noqa: E501 """IndexModelOptionsAllOf - a model defined in OpenAPI" :param portfolio_scaling: The available values are: Sum, AbsoluteSum, Unity (required) :type portfolio_scaling: str :param model_options_type: The available values are: Invalid, OpaqueModelOptions, EmptyModelOptions, IndexModelOptions (required) :type model_options_type: str """ # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration.get_default_copy() self.local_vars_configuration = local_vars_configuration self._portfolio_scaling = None self._model_options_type = None self.discriminator = None self.portfolio_scaling = portfolio_scaling self.model_options_type = model_options_type @property def portfolio_scaling(self): """Gets the portfolio_scaling of this IndexModelOptionsAllOf. # noqa: E501 The available values are: Sum, AbsoluteSum, Unity # noqa: E501 :return: The portfolio_scaling of this IndexModelOptionsAllOf. # noqa: E501 :rtype: str """ return self._portfolio_scaling @portfolio_scaling.setter def portfolio_scaling(self, portfolio_scaling): """Sets the portfolio_scaling of this IndexModelOptionsAllOf. The available values are: Sum, AbsoluteSum, Unity # noqa: E501 :param portfolio_scaling: The portfolio_scaling of this IndexModelOptionsAllOf. # noqa: E501 :type portfolio_scaling: str """ if self.local_vars_configuration.client_side_validation and portfolio_scaling is None: # noqa: E501 raise ValueError("Invalid value for `portfolio_scaling`, must not be `None`") # noqa: E501 allowed_values = ["Sum", "AbsoluteSum", "Unity"] # noqa: E501 if self.local_vars_configuration.client_side_validation and portfolio_scaling not in allowed_values: # noqa: E501 raise ValueError( "Invalid value for `portfolio_scaling` ({0}), must be one of {1}" # noqa: E501 .format(portfolio_scaling, allowed_values) ) self._portfolio_scaling = portfolio_scaling @property def model_options_type(self): """Gets the model_options_type of this IndexModelOptionsAllOf. # noqa: E501 The available values are: Invalid, OpaqueModelOptions, EmptyModelOptions, IndexModelOptions # noqa: E501 :return: The model_options_type of this IndexModelOptionsAllOf. # noqa: E501 :rtype: str """ return self._model_options_type @model_options_type.setter def model_options_type(self, model_options_type): """Sets the model_options_type of this IndexModelOptionsAllOf. The available values are: Invalid, OpaqueModelOptions, EmptyModelOptions, IndexModelOptions # noqa: E501 :param model_options_type: The model_options_type of this IndexModelOptionsAllOf. # noqa: E501 :type model_options_type: str """ if self.local_vars_configuration.client_side_validation and model_options_type is None: # noqa: E501 raise ValueError("Invalid value for `model_options_type`, must not be `None`") # noqa: E501 allowed_values = ["Invalid", "OpaqueModelOptions", "EmptyModelOptions", "IndexModelOptions"] # noqa: E501 if self.local_vars_configuration.client_side_validation and model_options_type not in allowed_values: # noqa: E501 raise ValueError( "Invalid value for `model_options_type` ({0}), must be one of {1}" # noqa: E501 .format(model_options_type, allowed_values) ) self._model_options_type = model_options_type def to_dict(self, serialize=False): """Returns the model properties as a dict""" result = {} def convert(x): if hasattr(x, "to_dict"): args = getfullargspec(x.to_dict).args if len(args) == 1: return x.to_dict() else: return x.to_dict(serialize) else: return x for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) attr = self.attribute_map.get(attr, attr) if serialize else attr if isinstance(value, list): result[attr] = list(map( lambda x: convert(x), value )) elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], convert(item[1])), value.items() )) else: result[attr] = convert(value) return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, IndexModelOptionsAllOf): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, IndexModelOptionsAllOf): return True return self.to_dict() != other.to_dict()
36.335079
138
0.636599
d137400fc2dc582765d3dea5abfc2723d6105531
880
py
Python
vivisect/impapi/windows/ws2plus_64.py
4k4xs4pH1r3/vivisect
dea425eed796176309a3be46936eb682598271aa
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
vivisect/impapi/windows/ws2plus_64.py
4k4xs4pH1r3/vivisect
dea425eed796176309a3be46936eb682598271aa
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
vivisect/impapi/windows/ws2plus_64.py
4k4xs4pH1r3/vivisect
dea425eed796176309a3be46936eb682598271aa
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# APIs for Windows 64-bit libraries ws2_32, mswsock, wsock32, and wininet. # Built as a delta from the 32-bit version. # Format: retval, rettype, callconv, exactname, arglist(type, name) # arglist type is one of ['int', 'void *'] # arglist name is one of [None, 'funcptr', 'obj', 'ptr'] # List the normalized name of any 32-bit functions to omit. api_32_omits = [] # Define any functions specific to 64-bit. api_64_adds = { } # Build from the 32-bit API, skipping omits, changing the calling convention, # and adding any specific 64-bit functions. api_defs_64 = {} import vivisect.impapi.windows.ws2plus_32 as m32 for name in m32.api_defs.iterkeys(): if name in api_32_omits: continue (rtype,rname,cconv,cname,cargs) = m32.api_defs[name] api_defs_64[name] = (rtype, rname, 'msx64call', cname, cargs) api_defs_64.update(api_64_adds)
33.846154
77
0.703409
7fcff5d1c6a3ec83abb35209620bc08f133c0429
2,213
py
Python
blazar_dashboard/content/hosts/forms.py
stackhpc/blazar-dashboard
c33709700f0c2ccfe89341f22cb608a785216699
[ "Apache-2.0" ]
7
2017-10-31T10:09:19.000Z
2019-01-28T21:52:45.000Z
blazar_dashboard/content/hosts/forms.py
stackhpc/blazar-dashboard
c33709700f0c2ccfe89341f22cb608a785216699
[ "Apache-2.0" ]
1
2017-10-24T20:48:23.000Z
2017-10-24T21:09:32.000Z
blazar_dashboard/content/hosts/forms.py
stackhpc/blazar-dashboard
c33709700f0c2ccfe89341f22cb608a785216699
[ "Apache-2.0" ]
5
2017-08-30T16:11:21.000Z
2021-05-31T14:32:38.000Z
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import json import logging from django.utils.translation import ugettext_lazy as _ from horizon import exceptions from horizon import forms from horizon import messages from blazar_dashboard import api LOG = logging.getLogger(__name__) class UpdateForm(forms.SelfHandlingForm): class Meta(object): name = _('Update Host Parameters') host_id = forms.CharField( label=_('Host ID'), widget=forms.widgets.HiddenInput, required=True) values = forms.CharField( label=_("Values to Update"), required=True, help_text=_('Enter values to update in JSON'), widget=forms.Textarea( attrs={'rows': 5}), max_length=511) def handle(self, request, data): try: api.client.host_update(self.request, host_id=data.get('host_id'), values=data.get('values')) messages.success(request, _("Host was successfully updated.")) return True except Exception as e: LOG.error('Error updating host: %s', e) exceptions.handle(request, message="An error occurred while updating this" " host. Please try again.") def clean(self): cleaned_data = super(UpdateForm, self).clean() values = cleaned_data.get('values') try: values = json.loads(values) cleaned_data['values'] = values except json.JSONDecodeError: raise forms.ValidationError( _('Values must be written in JSON') ) return cleaned_data
33.530303
78
0.630366
69ad62843f399d2a031c7f2d474e1e99fafca09a
1,282
py
Python
yowsup/layers/protocol_media/protocolentities/test_message_media_downloadable_video.py
zulu494/Anoa-Bot-
6666b0257d0c5bd2ce57c473078c4059ecd0fecd
[ "MIT" ]
1
2021-09-11T13:38:47.000Z
2021-09-11T13:38:47.000Z
yowsup/layers/protocol_media/protocolentities/test_message_media_downloadable_video.py
enigma-chan/Anti-Hoax-Bot
6666b0257d0c5bd2ce57c473078c4059ecd0fecd
[ "MIT" ]
null
null
null
yowsup/layers/protocol_media/protocolentities/test_message_media_downloadable_video.py
enigma-chan/Anti-Hoax-Bot
6666b0257d0c5bd2ce57c473078c4059ecd0fecd
[ "MIT" ]
null
null
null
from yowsup.layers.protocol_media.protocolentities.message_media_downloadable_video \ import VideoDownloadableMediaMessageProtocolEntity from yowsup.layers.protocol_messages.proto.e2e_pb2 import Message from .test_message_media import MediaMessageProtocolEntityTest class VideoDownloadableMediaMessageProtocolEntityTest(MediaMessageProtocolEntityTest): def setUp(self): super(VideoDownloadableMediaMessageProtocolEntityTest, self).setUp() self.ProtocolEntity = VideoDownloadableMediaMessageProtocolEntity proto_node = self.node.getChild("proto") m = Message() media_message = Message.VideoMessage() media_message.url = "url" media_message.mimetype = "video/mp4" media_message.caption = "caption" media_message.file_sha256 = b"shaval" media_message.file_length = 4 media_message.width = 1 media_message.height = 2 media_message.seconds = 3 media_message.media_key = b"MEDIA_KEY" media_message.jpeg_thumbnail = b"THUMBNAIL" media_message.gif_attribution = 0 media_message.gif_playback = False media_message.streaming_sidecar = b'' m.video_message.MergeFrom(media_message) proto_node.setData(m.SerializeToString())
44.206897
86
0.74181
e029f77b89eb3ff6ee7f7a6ad38c7d54ad772544
407
py
Python
Pensive/asgi.py
ajra7/Pensive
cffd14267aec21e70c99e16b55c961107605f5db
[ "Apache-2.0" ]
null
null
null
Pensive/asgi.py
ajra7/Pensive
cffd14267aec21e70c99e16b55c961107605f5db
[ "Apache-2.0" ]
null
null
null
Pensive/asgi.py
ajra7/Pensive
cffd14267aec21e70c99e16b55c961107605f5db
[ "Apache-2.0" ]
null
null
null
""" ASGI config for Pensive project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'Pensive.settings') application = get_asgi_application()
23.941176
79
0.7543
d661750cffb15a4b4a9159c3979cd55d1614d9f9
881
py
Python
var/spack/repos/builtin/packages/py-alabaster/package.py
msimberg/spack
27a339eeb28007bf0844e4c331bdd7d9da13da2e
[ "ECL-2.0", "Apache-2.0", "MIT" ]
null
null
null
var/spack/repos/builtin/packages/py-alabaster/package.py
msimberg/spack
27a339eeb28007bf0844e4c331bdd7d9da13da2e
[ "ECL-2.0", "Apache-2.0", "MIT" ]
null
null
null
var/spack/repos/builtin/packages/py-alabaster/package.py
msimberg/spack
27a339eeb28007bf0844e4c331bdd7d9da13da2e
[ "ECL-2.0", "Apache-2.0", "MIT" ]
null
null
null
# Copyright 2013-2019 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class PyAlabaster(PythonPackage): """Alabaster is a visually (c)lean, responsive, configurable theme for the Sphinx documentation system.""" homepage = "https://alabaster.readthedocs.io/" url = "https://pypi.io/packages/source/a/alabaster/alabaster-0.7.10.tar.gz" import_modules = ['alabaster'] version('0.7.12', sha256='a661d72d58e6ea8a57f7a86e37d86716863ee5e92788398526d58b26a4e4dc02') version('0.7.10', sha256='37cdcb9e9954ed60912ebc1ca12a9d12178c26637abdf124e3cde2341c257fe0') version('0.7.9', sha256='47afd43b08a4ecaa45e3496e139a193ce364571e7e10c6a87ca1a4c57eb7ea08') depends_on('py-setuptools', type='build')
38.304348
96
0.758229
80932cb7f60cbb85cdf021c3253544964c757685
62,576
py
Python
calibre-plugin/dialogs.py
stranger-danger-zamu/FanFicFare
9ea9cf4c681ee76f792e53f0ed3829dadd0bb827
[ "Apache-2.0" ]
2
2015-04-01T19:00:25.000Z
2015-04-01T20:09:51.000Z
calibre-plugin/dialogs.py
stranger-danger-zamu/FanFicFare
9ea9cf4c681ee76f792e53f0ed3829dadd0bb827
[ "Apache-2.0" ]
null
null
null
calibre-plugin/dialogs.py
stranger-danger-zamu/FanFicFare
9ea9cf4c681ee76f792e53f0ed3829dadd0bb827
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import (absolute_import, unicode_literals, division, print_function) __license__ = 'GPL v3' __copyright__ = '2020, Jim Miller' __docformat__ = 'restructuredtext en' import re from functools import partial import logging logger = logging.getLogger(__name__) from datetime import datetime from PyQt5 import QtWidgets as QtGui from PyQt5 import QtCore from PyQt5.Qt import (QApplication, QDialog, QWidget, QTableWidget, QVBoxLayout, QHBoxLayout, QGridLayout, QPushButton, QFont, QLabel, QCheckBox, QIcon, QLineEdit, QComboBox, QProgressDialog, QTimer, QDialogButtonBox, QScrollArea, QPixmap, Qt, QAbstractItemView, QTextEdit, pyqtSignal, QGroupBox, QFrame) try: # qt6 Calibre v6+ QTextEditNoWrap = QTextEdit.LineWrapMode.NoWrap except: # qt5 Calibre v2-5 QTextEditNoWrap = QTextEdit.NoWrap from calibre.gui2 import gprefs show_download_options = 'fff:add new/update dialogs:show_download_options' from calibre.gui2.dialogs.confirm_delete import confirm from calibre.gui2.complete2 import EditWithComplete from fanficfare.six import text_type as unicode, ensure_text # pulls in translation files for _() strings try: load_translations() except NameError: pass # load_translations() added in calibre 1.9 from calibre_plugins.fanficfare_plugin.common_utils import ( ReadOnlyTableWidgetItem, ReadOnlyTextIconWidgetItem, SizePersistedDialog, EditableTableWidgetItem, ImageTitleLayout, get_icon) from fanficfare.geturls import get_urls_from_mime from fanficfare.adapters import getNormalStoryURL from fanficfare.configurable import ( get_valid_sections, get_valid_entries, get_valid_keywords, get_valid_entry_keywords) from .inihighlighter import IniHighlighter ## moved to prefs.py so they can be included in jobs.py. from calibre_plugins.fanficfare_plugin.prefs import ( SKIP, ADDNEW, UPDATE, UPDATEALWAYS, OVERWRITE, OVERWRITEALWAYS, CALIBREONLY, CALIBREONLYSAVECOL, collision_order, save_collisions, anthology_collision_order, ) gpstyle='QGroupBox {border:0; padding-top:10px; padding-bottom:0px; margin-bottom:0px;}' # background-color:red; class RejectUrlEntry: matchpat=re.compile(r"^(?P<url>[^,]+?)(,(?P<fullnote>(((?P<title>.+?) by (?P<auth>.+?)( - (?P<note>.+))?)|.*)))?$") def __init__(self,url_or_line,note=None,title=None,auth=None, addreasontext=None,fromline=False,book_id=None, normalize=True): self.url=url_or_line self.note=note self.title=title self.auth=auth self.valid=False self.book_id=book_id if fromline: mc = re.match(self.matchpat,url_or_line) if mc: #print("mc:%s"%mc.groupdict()) (url,title,auth,note) = mc.group('url','title','auth','note') if not mc.group('title'): title='' auth='' note=mc.group('fullnote') self.url=url self.note=note self.title=title self.auth=auth if not self.note: if addreasontext: self.note = addreasontext else: self.note = '' else: if addreasontext: self.note = self.note + ' - ' + addreasontext if normalize and self.url: self.url = getNormalStoryURL(self.url) self.valid = self.url != None def to_line(self): # always 'url,' return "%s,%s"%(self.url,self.fullnote()) @classmethod def from_data(cls,data): rue = cls('') rue.url=data['url'] rue.title=data['title'] rue.auth=data['auth'] rue.note=data['note'] rue.valid=True # rue.book_id=book_id return rue def to_data(self): return { 'url': self.url, 'title': self.title, 'auth': self.auth, 'note': self.note, } def fullnote(self): retval = "" if self.title and self.auth: # don't translate--ends up being saved and confuses regex above. retval = retval + "%s by %s"%(self.title,self.auth) if self.note: retval = retval + " - " if self.note: retval = retval + self.note return retval class NotGoingToDownload(Exception): def __init__(self,error,icon='dialog_error.png',showerror=True): self.error=error self.icon=icon self.showerror=showerror def __str__(self): return self.error class DroppableQTextEdit(QTextEdit): def __init__(self,parent): QTextEdit.__init__(self,parent) self.setTabChangesFocus(True) def dropEvent(self,event): # logger.debug("dropEvent") urllist = get_urls_from_mime(event.mimeData()) if urllist: self.append("\n".join(urllist)) return None return QTextEdit.dropEvent(self,event) def insertFromMimeData(self, mime_data): # logger.debug("insertFromMimeData") # logger.debug(mime_data) urllist = None if mime_data.hasFormat('text/html'): urllist = get_urls_from_mime(mime_data) # logger.debug(urllist) if urllist: [ self.append(url) for url in urllist ] else: return QTextEdit.insertFromMimeData(self, mime_data) class AddNewDialog(SizePersistedDialog): go_signal = pyqtSignal(object, object, object, object) def __init__(self, gui, prefs, icon): SizePersistedDialog.__init__(self, gui, 'fff:add new dialog') self.prefs = prefs self.setMinimumWidth(300) self.l = QVBoxLayout() self.setLayout(self.l) self.setWindowTitle('FanFicFare') self.setWindowIcon(icon) self.merge = self.newmerge = False self.extraoptions = {} # elements to hide when doing merge. self.mergehide = [] self.mergeshow = [] # elements to show again when doing *update* merge self.mergeupdateshow = [] self.toplabel=QLabel("Toplabel") self.l.addWidget(self.toplabel) ## XXX add labels for series name and desc? Desc in tooltip? row = 0 grid = QGridLayout() label = QLabel('<b>'+_('Series')+':</b>') grid.addWidget(label,row,0) self.mergedname=QLabel("mergedname") tt = _('This name will be used with the %s setting to set the title of the new book.')%'<i>anthology_title_pattern</i>' label.setToolTip(tt) self.mergeshow.append(label) self.mergedname.setToolTip(tt) grid.addWidget(self.mergedname,row,1,1,-1) self.l.addLayout(grid) self.mergeshow.append(self.mergedname) row+=1 label = QLabel('<b>'+_('Comments')+':</b>') grid.addWidget(label,row,0) self.mergeddesc=QLabel("mergeddesc") tt = _('These comments about the series will be included in the Comments of the new book.')+'<i></i>' # for html for auto-wrap label.setToolTip(tt) self.mergeshow.append(label) self.mergeddesc.setToolTip(tt) self.mergeddesc.setWordWrap(True) grid.addWidget(self.mergeddesc,row,1,1,-1) self.l.addLayout(grid) self.mergeshow.append(self.mergeddesc) grid.setColumnStretch(1,1) self.url = DroppableQTextEdit(self) self.url.setToolTip("UrlTooltip") self.url.setLineWrapMode(QTextEditNoWrap) self.l.addWidget(self.url) self.groupbox = QGroupBox(_("Show Download Options")) self.groupbox.setCheckable(True) self.groupbox.setFlat(True) #print("style:%s"%self.groupbox.styleSheet()) self.groupbox.setStyleSheet(gpstyle) self.gbf = QFrame() self.gbl = QVBoxLayout() self.gbl.addWidget(self.gbf) self.groupbox.setLayout(self.gbl) self.gbl = QVBoxLayout() self.gbf.setLayout(self.gbl) self.l.addWidget(self.groupbox) self.groupbox.setChecked(gprefs.get(show_download_options,False)) self.gbf.setVisible(gprefs.get(show_download_options,False)) self.groupbox.toggled.connect(self.click_show_download_options) horz = QHBoxLayout() label = QLabel(_('Output &Format:')) self.mergehide.append(label) self.fileform = QComboBox(self) self.fileform.addItem('epub') self.fileform.addItem('mobi') self.fileform.addItem('html') self.fileform.addItem('txt') self.fileform.setToolTip(_('Choose output format to create. May set default from plugin configuration.')) self.fileform.activated.connect(self.set_collisions) horz.addWidget(label) label.setBuddy(self.fileform) horz.addWidget(self.fileform) self.gbl.addLayout(horz) self.mergehide.append(self.fileform) horz = QHBoxLayout() self.collisionlabel = QLabel("CollisionLabel") horz.addWidget(self.collisionlabel) self.collision = QComboBox(self) self.collision.setToolTip("CollisionToolTip") # add collision options self.set_collisions() i = self.collision.findText(save_collisions[self.prefs['collision']]) if i > -1: self.collision.setCurrentIndex(i) self.collisionlabel.setBuddy(self.collision) horz.addWidget(self.collision) self.gbl.addLayout(horz) self.mergehide.append(self.collisionlabel) self.mergehide.append(self.collision) self.mergeupdateshow.append(self.collisionlabel) self.mergeupdateshow.append(self.collision) horz = QHBoxLayout() self.updatemeta = QCheckBox(_('Update Calibre &Metadata?'),self) self.updatemeta.setToolTip(_("Update metadata for existing stories in Calibre from web site?\n(Columns set to 'New Only' in the column tabs will only be set for new books.)")) self.updatemeta.setChecked(self.prefs['updatemeta']) horz.addWidget(self.updatemeta) self.mergehide.append(self.updatemeta) self.mergeupdateshow.append(self.updatemeta) self.updateepubcover = QCheckBox(_('Update EPUB Cover?'),self) self.updateepubcover.setToolTip(_('Update book cover image from site or defaults (if found) <i>inside</i> the EPUB when EPUB is updated.')) self.updateepubcover.setChecked(self.prefs['updateepubcover']) horz.addWidget(self.updateepubcover) self.mergehide.append(self.updateepubcover) self.gbl.addLayout(horz) ## bgmeta not used with Add New because of stories that change ## story URL and for title/author collision matching. # horz = QHBoxLayout() # self.bgmeta = QCheckBox(_('Background Metadata?'),self) # self.bgmeta.setToolTip(_("Collect Metadata from sites in a Background process.<br />This returns control to you quicker while updating, but you won't be asked for username/passwords or if you are an adult--stories that need those will just fail.")) # self.bgmeta.setChecked(self.prefs['bgmeta']) # horz.addWidget(self.bgmeta) # self.mergehide.append(self.bgmeta) # self.mergeupdateshow.append(self.bgmeta) # self.gbl.addLayout(horz) self.button_box = QDialogButtonBox(QDialogButtonBox.Ok | QDialogButtonBox.Cancel) self.button_box.accepted.connect(self.ok_clicked) self.button_box.rejected.connect(self.reject) self.l.addWidget(self.button_box) def click_show_download_options(self,x): self.gbf.setVisible(x) gprefs[show_download_options] = x # invoke the def ok_clicked(self): self.dialog_closing(None) # save persistent size. self.hide() self.go_signal.emit( self.get_fff_options(), self.get_urlstext(), self.merge, self.extrapayload ) def show_dialog(self, url_list_text, callback, show=True, merge=False, newmerge=True, extraoptions={}, extrapayload=None): # rather than mutex in fff_plugin, just bail here if it's # already in use. if self.isVisible(): if url_list_text: # add to open box. self.url.setText( '\n'.join([self.get_urlstext(), url_list_text]) ) return try: self.go_signal.disconnect() except: pass # if not already connected. self.go_signal.connect(callback) self.merge = merge self.newmerge = newmerge self.extraoptions = extraoptions self.extrapayload = extrapayload self.groupbox.setVisible(not(self.merge and self.newmerge)) if self.merge: count="" if url_list_text: count = " " + _("(%s URLs found)")%len(url_list_text.split()) # count lines self.toplabel.setText('<b>'+_('Story URLs for anthology, one per line:') + count + '</b>') self.url.setToolTip(_('URLs for stories to include in the anthology, one per line.\nWill take URLs from clipboard, but only valid URLs.')) self.collisionlabel.setText(_('If Story Already Exists in Anthology?')) self.collision.setToolTip(_("What to do if there's already an existing story with the same URL in the anthology.")) for widget in self.mergehide: widget.setVisible(False) for widget in self.mergeshow: widget.setVisible(True) if not self.newmerge: for widget in self.mergeupdateshow: widget.setVisible(True) n = extraoptions.get('frompage',{}).get('name',None) if n: self.mergedname.setText(n) else: self.mergedname.setVisible(False) d = extraoptions.get('frompage',{}).get('desc',None) if d: self.mergeddesc.setText(unicode(d)) else: self.mergeddesc.setVisible(False) else: for widget in self.mergehide: widget.setVisible(True) for widget in self.mergeshow: widget.setVisible(False) self.toplabel.setText(_('Story URLs, one per line:')) self.url.setToolTip(_('URLs for stories, one per line.\nWill take URLs from clipboard, but only valid URLs.\nAdd [1,5] after the URL to limit the download to chapters 1-5.')) self.collisionlabel.setText(_('If Story Already Exists?')) self.collision.setToolTip(_("What to do if there's already an existing story with the same URL or title and author.")) self.groupbox.setChecked(gprefs.get(show_download_options,False)) self.gbf.setVisible(gprefs.get(show_download_options,False)) self.groupbox.toggled.connect(self.click_show_download_options) # Need to re-able after hiding/showing self.setAcceptDrops(True) self.url.setFocus() if self.prefs['adddialogstaysontop']: QDialog.setWindowFlags ( self, Qt.Dialog | Qt.WindowStaysOnTopHint ) else: QDialog.setWindowFlags ( self, Qt.Dialog ) if not self.merge: self.fileform.setCurrentIndex(self.fileform.findText(self.prefs['fileform'])) else: # always epub on self.merge (anthology) self.fileform.setCurrentIndex(self.fileform.findText('epub')) # add collision options self.set_collisions() if 'collision' in extraoptions: use_collision = extraoptions['collision'] # self.collision.setDisabled(True) # self.collision.setToolTip(_("Update Mode set by menu/shortcut choice.")) else: use_collision = save_collisions[self.prefs['collision']] # self.collision.setDisabled(False) i = self.collision.findText(use_collision) if i > -1: self.collision.setCurrentIndex(i) self.updatemeta.setChecked(self.prefs['updatemeta']) # self.bgmeta.setChecked(self.prefs['bgmeta']) if not self.merge: self.updateepubcover.setChecked(self.prefs['updateepubcover']) self.url.setText(url_list_text) if url_list_text: self.button_box.button(QDialogButtonBox.Ok).setFocus() # restore saved size. self.resize_dialog() if show: # so anthology update can be modal still. self.show() #self.resize(self.sizeHint()) def set_collisions(self): prev=self.collision.currentText() self.collision.clear() if self.merge: order = list(anthology_collision_order) else: order = list(collision_order) ## Remove options that aren't valid. if self.fileform.currentText() != 'epub': order.remove(UPDATE) order.remove(UPDATEALWAYS) if self.prefs['savemetacol'] == '': order.remove(CALIBREONLYSAVECOL) for o in order: self.collision.addItem(o) i = self.collision.findText(prev) if i > -1: self.collision.setCurrentIndex(i) def get_fff_options(self): retval = { 'fileform': unicode(self.fileform.currentText()), 'collision': unicode(self.collision.currentText()), 'updatemeta': self.updatemeta.isChecked(), 'bgmeta': False, # self.bgmeta.isChecked(), 'updateepubcover': self.updateepubcover.isChecked(), 'smarten_punctuation':self.prefs['smarten_punctuation'], 'do_wordcount':self.prefs['do_wordcount'], } if self.merge: retval['fileform']=='epub' retval['updateepubcover']=True if self.newmerge: retval['updatemeta']=True retval['collision']=ADDNEW logger.debug("self.extraoptions['anthology_url']:%s"%self.extraoptions.get('anthology_url','NOT FOUND')) retval.update(self.extraoptions) return retval def get_urlstext(self): return unicode(self.url.toPlainText()) class FakeLineEdit(): def __init__(self): pass def text(self): pass class CollectURLDialog(SizePersistedDialog): ''' Collect single url for get urls. ''' def __init__(self, gui, title, url_text, anthology=False, indiv=True): SizePersistedDialog.__init__(self, gui, 'fff:get story urls') self.status=False self.anthology=False self.setMinimumWidth(300) self.l = QVBoxLayout() self.setLayout(self.l) self.setWindowTitle(title) self.l.addWidget(QLabel(title)) horz = QHBoxLayout() self.l.addLayout(horz) horz.addWidget(QLabel("URL:")) self.url = QLineEdit(self) self.url.setText(url_text) horz.addWidget(self.url) horz = QHBoxLayout() self.l.addLayout(horz) if indiv: self.indiv_button = QPushButton(_('For Individual Books'), self) self.indiv_button.setToolTip(_('Get URLs and go to dialog for individual story downloads.')) self.indiv_button.clicked.connect(self.indiv) horz.addWidget(self.indiv_button) if anthology: self.merge_button = QPushButton(_('For Anthology Epub'), self) self.merge_button.setToolTip(_('Get URLs and go to dialog for Anthology download.\nRequires %s plugin.')%'EpubMerge 1.3.1+') self.merge_button.clicked.connect(self.merge) horz.addWidget(self.merge_button) self.cancel_button = QPushButton(_('Cancel'), self) self.cancel_button.clicked.connect(self.cancel) horz.addWidget(self.cancel_button) # restore saved size. self.resize_dialog() def indiv(self): self.status=True self.accept() def merge(self): self.status=True self.anthology=True self.accept() def cancel(self): self.status=False self.reject() class UserPassDialog(QDialog): ''' Need to collect User/Pass for some sites. ''' def __init__(self, gui, site, exception=None): QDialog.__init__(self, gui) self.status=False self.l = QGridLayout() self.setLayout(self.l) if exception and exception.passwdonly: self.setWindowTitle(_('Password')) self.l.addWidget(QLabel(_("Author requires a password for this story(%s).")%exception.url),0,0,1,2) # user isn't used, but it's easier to still have it for # post processing. self.user = FakeLineEdit() else: self.setWindowTitle(_('User/Password')) self.l.addWidget(QLabel(_("%s requires you to login to download this story.")%site),0,0,1,2) self.l.addWidget(QLabel(_("User:")),1,0) self.user = QLineEdit(self) self.l.addWidget(self.user,1,1) self.l.addWidget(QLabel(_("Password:")),2,0) self.passwd = QLineEdit(self) self.passwd.setEchoMode(QLineEdit.Password) self.l.addWidget(self.passwd,2,1) self.ok_button = QPushButton(_('OK'), self) self.ok_button.clicked.connect(self.ok) self.l.addWidget(self.ok_button,3,0) self.cancel_button = QPushButton(_('Cancel'), self) self.cancel_button.clicked.connect(self.cancel) self.l.addWidget(self.cancel_button,3,1) self.resize(self.sizeHint()) def ok(self): self.status=True self.hide() def cancel(self): self.status=False self.hide() def LoopProgressDialog(gui, book_list, foreach_function, finish_function, init_label=_("Fetching metadata for stories..."), win_title=_("Downloading metadata for stories"), status_prefix=_("Fetched metadata for")): ld = _LoopProgressDialog(gui, book_list, foreach_function, init_label, win_title, status_prefix) # Mac OS X gets upset if the finish_function is called from inside # the real _LoopProgressDialog class. # reflect old behavior. if not ld.wasCanceled(): finish_function(book_list) class _LoopProgressDialog(QProgressDialog): ''' ProgressDialog displayed while fetching metadata for each story. ''' def __init__(self, gui, book_list, foreach_function, init_label=_("Fetching metadata for stories..."), win_title=_("Downloading metadata for stories"), status_prefix=_("Fetched metadata for")): QProgressDialog.__init__(self, init_label, _('Cancel'), 0, len(book_list), gui) self.setWindowTitle(win_title) self.setMinimumWidth(500) self.book_list = book_list self.foreach_function = foreach_function self.status_prefix = status_prefix self.i = 0 self.start_time = datetime.now() self.first = True # can't import at file load. from calibre_plugins.fanficfare_plugin.prefs import prefs self.show_est_time = prefs['show_est_time'] self.setLabelText('%s %d / %d' % (self.status_prefix, self.i, len(self.book_list))) self.setValue(self.i) ## self.do_loop does QTimer.singleShot on self.do_loop also. ## A weird way to do a loop, but that was the example I had. QTimer.singleShot(0, self.do_loop) self.exec_() def updateStatus(self): remaining_time_string = '' if self.show_est_time and self.i > -1: time_spent = (datetime.now() - self.start_time).total_seconds() estimated_remaining = (time_spent/(self.i+1)) * len(self.book_list) - time_spent remaining_time_string = _(' - %s estimated until done') % ( time_duration_format(estimated_remaining)) self.setLabelText('%s %d / %d%s' % (self.status_prefix, self.i+1, len(self.book_list), remaining_time_string)) self.setValue(self.i+1) #print(self.labelText()) def do_loop(self): if self.first: ## Windows 10 doesn't want to show the prog dialog content ## until after the timer's been called again. Something to ## do with cooperative multi threading maybe? ## So this just trips the timer loop an extra time at the start. self.first = False QTimer.singleShot(0, self.do_loop) return book = self.book_list[self.i] try: ## collision spec passed into getadapter by partial from fff_plugin ## no retval only if it exists, but collision is SKIP self.foreach_function(book) except NotGoingToDownload as d: book['status']=_('Skipped') book['good']=False book['showerror']=d.showerror book['comment']=unicode(d) book['icon'] = d.icon except Exception as e: book['good']=False book['status']=_("Error") book['comment']=unicode(e) logger.error("Exception: %s:%s"%(book,book['comment']),exc_info=True) self.updateStatus() self.i += 1 if self.i >= len(self.book_list) or self.wasCanceled(): return self.do_when_finished() else: QTimer.singleShot(0, self.do_loop) def do_when_finished(self): self.hide() def time_duration_format(seconds): """ Convert seconds into a string describing the duration in larger time units (seconds, minutes, hours, days) Only returns the two largest time divisions (eg, will drop seconds if there's hours remaining) :param seconds: number of seconds :return: string description of the duration """ periods = [ (_('%d day'),_('%d days'), 60*60*24), (_('%d hour'),_('%d hours'), 60*60), (_('%d minute'),_('%d minutes'), 60), (_('%d second'),_('%d seconds'), 1) ] strings = [] for period_label, period_plural_label, period_seconds in periods: if seconds > period_seconds: period_value, seconds = divmod(seconds,period_seconds) if period_value == 1: strings.append( period_label % period_value) else: strings.append(period_plural_label % period_value) if len(strings) == 2: break if len(strings) == 0: return _('less than 1 second') else: return ', '.join(strings) class AboutDialog(QDialog): def __init__(self, parent, icon, text): QDialog.__init__(self, parent) #self.resize(400, 250) self.l = QGridLayout() self.setLayout(self.l) self.logo = QLabel() self.logo.setMaximumWidth(110) self.logo.setPixmap(QPixmap(icon.pixmap(100,100))) self.label = QLabel(text) self.label.setOpenExternalLinks(True) self.label.setWordWrap(True) self.setWindowTitle(_('About FanFicFare')) self.setWindowIcon(icon) self.l.addWidget(self.logo, 0, 0) self.l.addWidget(self.label, 0, 1) self.bb = QDialogButtonBox(self) b = self.bb.addButton(_('OK'), self.bb.AcceptRole) b.setDefault(True) self.l.addWidget(self.bb, 2, 0, 1, -1) self.bb.accepted.connect(self.accept) class IconWidgetItem(ReadOnlyTextIconWidgetItem): def __init__(self, text, icon, sort_key): ReadOnlyTextIconWidgetItem.__init__(self, text, icon) self.sort_key = sort_key #Qt uses a simple < check for sorting items, override this to use the sortKey def __lt__(self, other): return self.sort_key < other.sort_key class AuthorTableWidgetItem(ReadOnlyTableWidgetItem): def __init__(self, text, sort_key): ReadOnlyTableWidgetItem.__init__(self, text) self.sort_key = sort_key #Qt uses a simple < check for sorting items, override this to use the sortKey def __lt__(self, other): return self.sort_key.lower() < other.sort_key.lower() class UpdateExistingDialog(SizePersistedDialog): def __init__(self, gui, header, prefs, icon, books, extraoptions={}, save_size_name='fff:update list dialog'): SizePersistedDialog.__init__(self, gui, save_size_name) self.prefs = prefs self.setWindowTitle(header) self.setWindowIcon(icon) layout = QVBoxLayout(self) self.setLayout(layout) title_layout = ImageTitleLayout(self, 'images/icon.png', header) layout.addLayout(title_layout) books_layout = QHBoxLayout() layout.addLayout(books_layout) self.books_table = StoryListTableWidget(self) books_layout.addWidget(self.books_table) button_layout = QVBoxLayout() books_layout.addLayout(button_layout) spacerItem = QtGui.QSpacerItem(20, 40, QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Expanding) button_layout.addItem(spacerItem) self.remove_button = QtGui.QToolButton(self) self.remove_button.setToolTip(_('Remove selected books from the list')) self.remove_button.setIcon(get_icon('list_remove.png')) self.remove_button.clicked.connect(self.remove_from_list) button_layout.addWidget(self.remove_button) spacerItem1 = QtGui.QSpacerItem(20, 40, QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Expanding) button_layout.addItem(spacerItem1) options_layout = QHBoxLayout() groupbox = QGroupBox(_("Show Download Options")) groupbox.setCheckable(True) groupbox.setChecked(gprefs.get(show_download_options,False)) groupbox.setFlat(True) groupbox.setStyleSheet(gpstyle) self.gbf = QFrame() gbl = QVBoxLayout() gbl.addWidget(self.gbf) groupbox.setLayout(gbl) gbl = QVBoxLayout() self.gbf.setLayout(gbl) options_layout.addWidget(groupbox) self.gbf.setVisible(gprefs.get(show_download_options,False)) groupbox.toggled.connect(self.click_show_download_options) horz = QHBoxLayout() gbl.addLayout(horz) label = QLabel(_('Output &Format:')) horz.addWidget(label) self.fileform = QComboBox(self) self.fileform.addItem('epub') self.fileform.addItem('mobi') self.fileform.addItem('html') self.fileform.addItem('txt') self.fileform.setCurrentIndex(self.fileform.findText(self.prefs['fileform'])) self.fileform.setToolTip(_('Choose output format to create. May set default from plugin configuration.')) self.fileform.activated.connect(self.set_collisions) label.setBuddy(self.fileform) horz.addWidget(self.fileform) label = QLabel(_('Update Mode:')) horz.addWidget(label) self.collision = QComboBox(self) self.collision.setToolTip(_("What sort of update to perform. May set default from plugin configuration.")) # add collision options self.set_collisions() if 'collision' in extraoptions: use_collision = extraoptions['collision'] # self.collision.setDisabled(True) # self.collision.setToolTip(_("Update Mode set by menu/shortcut choice.")) else: use_collision = save_collisions[self.prefs['collision']] # self.collision.setDisabled(False) i = self.collision.findText(use_collision) if i > -1: self.collision.setCurrentIndex(i) label.setBuddy(self.collision) horz.addWidget(self.collision) horz = QHBoxLayout() gbl.addLayout(horz) self.updatemeta = QCheckBox(_('Update Calibre &Metadata?'),self) self.updatemeta.setToolTip(_("Update metadata for existing stories in Calibre from web site?\n(Columns set to 'New Only' in the column tabs will only be set for new books.)")) self.updatemeta.setChecked(self.prefs['updatemeta']) horz.addWidget(self.updatemeta) self.updateepubcover = QCheckBox(_('Update EPUB Cover?'),self) self.updateepubcover.setToolTip(_('Update book cover image from site or defaults (if found) <i>inside</i> the EPUB when EPUB is updated.')) self.updateepubcover.setChecked(self.prefs['updateepubcover']) horz.addWidget(self.updateepubcover) self.bgmeta = QCheckBox(_('Background Metadata?'),self) self.bgmeta.setToolTip(_("Collect Metadata from sites in a Background process.<br />This returns control to you quicker while updating, but you won't be asked for username/passwords or if you are an adult--stories that need those will just fail.")) self.bgmeta.setChecked(self.prefs['bgmeta']) horz.addWidget(self.bgmeta) button_box = QDialogButtonBox(QDialogButtonBox.Ok | QDialogButtonBox.Cancel) button_box.accepted.connect(self.accept) button_box.rejected.connect(self.reject) options_layout.addWidget(button_box) layout.addLayout(options_layout) # Cause our dialog size to be restored from prefs or created on first usage self.resize_dialog() self.books_table.populate_table(books) def click_show_download_options(self,x): self.gbf.setVisible(x) gprefs[show_download_options] = x def set_collisions(self): prev=self.collision.currentText() self.collision.clear() order = list(collision_order) order.remove(ADDNEW) order.remove(SKIP) if self.fileform.currentText() != 'epub': order.remove(UPDATE) order.remove(UPDATEALWAYS) if self.prefs['savemetacol'] == '': order.remove(CALIBREONLYSAVECOL) for o in order: self.collision.addItem(o) i = self.collision.findText(prev) if i > -1: self.collision.setCurrentIndex(i) def remove_from_list(self): self.books_table.remove_selected_rows() def get_books(self): return self.books_table.get_books() def get_fff_options(self): return { 'fileform': unicode(self.fileform.currentText()), 'collision': unicode(self.collision.currentText()), 'updatemeta': self.updatemeta.isChecked(), 'bgmeta': self.bgmeta.isChecked(), 'updateepubcover': self.updateepubcover.isChecked(), 'smarten_punctuation':self.prefs['smarten_punctuation'], 'do_wordcount':self.prefs['do_wordcount'], } class StoryListTableWidget(QTableWidget): def __init__(self, parent): QTableWidget.__init__(self, parent) self.setSelectionBehavior(QAbstractItemView.SelectRows) def populate_table(self, books): self.clear() self.setAlternatingRowColors(True) self.setRowCount(len(books)) header_labels = ['',_('Title'), _('Author'), 'URL', _('Comment')] self.setColumnCount(len(header_labels)) self.setHorizontalHeaderLabels(header_labels) self.horizontalHeader().setStretchLastSection(True) #self.verticalHeader().setDefaultSectionSize(24) self.verticalHeader().hide() self.books={} for row, book in enumerate(books): self.populate_table_row(row, book) self.books[row] = book # turning True breaks up/down. Do we need either sorting or up/down? self.setSortingEnabled(True) self.resizeColumnsToContents() self.setMinimumColumnWidth(1, 100) self.setMinimumColumnWidth(2, 100) self.setMinimumColumnWidth(3, 100) self.setMinimumSize(300, 0) # if len(books) > 0: # self.selectRow(0) self.sortItems(1) self.sortItems(0) def setMinimumColumnWidth(self, col, minimum): if self.columnWidth(col) < minimum: self.setColumnWidth(col, minimum) def populate_table_row(self, row, book): if book['good']: icon = get_icon('ok.png') val = 0 else: icon = get_icon('minus.png') val = 1 if 'icon' in book: icon = get_icon(book['icon']) status_cell = IconWidgetItem(None,icon,val) status_cell.setData(Qt.UserRole, val) self.setItem(row, 0, status_cell) title_cell = ReadOnlyTableWidgetItem(book['title']) title_cell.setData(Qt.UserRole, row) self.setItem(row, 1, title_cell) self.setItem(row, 2, AuthorTableWidgetItem(", ".join(book['author']), ", ".join(book['author_sort']))) url_cell = ReadOnlyTableWidgetItem(book['url']) self.setItem(row, 3, url_cell) comment_cell = ReadOnlyTableWidgetItem(book['comment']) self.setItem(row, 4, comment_cell) def get_books(self): books = [] #print("=========================\nbooks:%s"%self.books) for row in range(self.rowCount()): rnum = self.item(row, 1).data(Qt.UserRole) book = self.books[rnum] books.append(book) return books def remove_selected_rows(self): self.setFocus() rows = self.selectionModel().selectedRows() if len(rows) == 0: return message = '<p>'+_('Are you sure you want to remove this book from the list?') if len(rows) > 1: message = '<p>'+_('Are you sure you want to remove the selected %d books from the list?')%len(rows) if not confirm(message,'fff_delete_item', self): return first_sel_row = self.currentRow() for selrow in reversed(rows): self.removeRow(selrow.row()) if first_sel_row < self.rowCount(): self.select_and_scroll_to_row(first_sel_row) elif self.rowCount() > 0: self.select_and_scroll_to_row(first_sel_row - 1) def select_and_scroll_to_row(self, row): self.selectRow(row) self.scrollToItem(self.currentItem()) class RejectListTableWidget(QTableWidget): def __init__(self, parent,rejectreasons=[]): QTableWidget.__init__(self, parent) self.setSelectionBehavior(QAbstractItemView.SelectRows) self.rejectreasons = rejectreasons def populate_table(self, reject_list): self.clear() self.setAlternatingRowColors(True) self.setRowCount(len(reject_list)) header_labels = ['URL', _('Title'), _('Author'), _('Note')] self.setColumnCount(len(header_labels)) self.setHorizontalHeaderLabels(header_labels) self.horizontalHeader().setStretchLastSection(True) #self.verticalHeader().setDefaultSectionSize(24) #self.verticalHeader().hide() # it's generally recommended to enable sort after pop, not # before. But then it needs to be sorted on a column and I'd # rather keep the order given. self.setSortingEnabled(True) # row is just row number. for row, rejectrow in enumerate(reject_list): #print("populating table:%s"%rejectrow.to_line()) self.populate_table_row(row,rejectrow) self.resizeColumnsToContents() self.setMinimumColumnWidth(0, 100) self.setMinimumColumnWidth(3, 100) self.setMinimumSize(300, 0) def setMinimumColumnWidth(self, col, minimum): if self.columnWidth(col) < minimum: self.setColumnWidth(col, minimum) def populate_table_row(self, row, rej): url_cell = ReadOnlyTableWidgetItem(rej.url) url_cell.setData(Qt.UserRole, rej.book_id) self.setItem(row, 0, url_cell) self.setItem(row, 1, EditableTableWidgetItem(rej.title)) self.setItem(row, 2, EditableTableWidgetItem(rej.auth)) note_cell = EditWithComplete(self,sort_func=lambda x:1) items = [rej.note]+self.rejectreasons note_cell.update_items_cache(items) note_cell.show_initial_value(rej.note) note_cell.set_separator(None) note_cell.setToolTip(_('Select or Edit Reject Note.')) self.setCellWidget(row, 3, note_cell) note_cell.setCursorPosition(0) def remove_selected_rows(self): self.setFocus() rows = self.selectionModel().selectedRows() if len(rows) == 0: return message = '<p>'+_('Are you sure you want to remove this URL from the list?') if len(rows) > 1: message = '<p>'+_('Are you sure you want to remove the %d selected URLs from the list?')%len(rows) if not confirm(message,'fff_rejectlist_delete_item_again', self): return first_sel_row = self.currentRow() for selrow in reversed(rows): self.removeRow(selrow.row()) if first_sel_row < self.rowCount(): self.select_and_scroll_to_row(first_sel_row) elif self.rowCount() > 0: self.select_and_scroll_to_row(first_sel_row - 1) def select_and_scroll_to_row(self, row): self.selectRow(row) self.scrollToItem(self.currentItem()) class RejectListDialog(SizePersistedDialog): def __init__(self, gui, reject_list, rejectreasons=[], header=_("List of Books to Reject"), icon='rotate-right.png', show_delete=True, show_all_reasons=True, save_size_name='fff:reject list dialog'): SizePersistedDialog.__init__(self, gui, save_size_name) self.setWindowTitle(header) self.setWindowIcon(get_icon(icon)) layout = QVBoxLayout(self) self.setLayout(layout) title_layout = ImageTitleLayout(self, icon, header, '<i></i>'+_('FFF will remember these URLs and display the note and offer to reject them if you try to download them again later.')) layout.addLayout(title_layout) rejects_layout = QHBoxLayout() layout.addLayout(rejects_layout) self.rejects_table = RejectListTableWidget(self,rejectreasons=rejectreasons) rejects_layout.addWidget(self.rejects_table) button_layout = QVBoxLayout() rejects_layout.addLayout(button_layout) spacerItem = QtGui.QSpacerItem(20, 40, QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Expanding) button_layout.addItem(spacerItem) self.remove_button = QtGui.QToolButton(self) self.remove_button.setToolTip(_('Remove selected URLs from the list')) self.remove_button.setIcon(get_icon('list_remove.png')) self.remove_button.clicked.connect(self.remove_from_list) button_layout.addWidget(self.remove_button) spacerItem1 = QtGui.QSpacerItem(20, 40, QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Expanding) button_layout.addItem(spacerItem1) if show_all_reasons: self.reason_edit = EditWithComplete(self,sort_func=lambda x:1) items = ['']+rejectreasons self.reason_edit.update_items_cache(items) self.reason_edit.show_initial_value('') self.reason_edit.set_separator(None) self.reason_edit.setToolTip(_("This will be added to whatever note you've set for each URL above.")) horz = QHBoxLayout() label = QLabel(_("Add this reason to all URLs added:")) label.setToolTip(_("This will be added to whatever note you've set for each URL above.")) horz.addWidget(label) horz.addWidget(self.reason_edit) self.reason_edit.setCursorPosition(0) horz.insertStretch(-1) layout.addLayout(horz) options_layout = QHBoxLayout() if show_delete: # can't import at file load. from calibre_plugins.fanficfare_plugin.prefs import prefs self.deletebooks = QCheckBox(_('Delete Books (including books without FanFiction URLs)?'),self) self.deletebooks.setToolTip(_("Delete the selected books after adding them to the Rejected URLs list.")) self.deletebooks.setChecked(prefs['reject_delete_default']) options_layout.addWidget(self.deletebooks) button_box = QDialogButtonBox(QDialogButtonBox.Ok | QDialogButtonBox.Cancel) button_box.accepted.connect(self.accept) button_box.rejected.connect(self.reject) options_layout.addWidget(button_box) layout.addLayout(options_layout) # Cause our dialog size to be restored from prefs or created on first usage self.resize_dialog() self.rejects_table.populate_table(reject_list) def remove_from_list(self): self.rejects_table.remove_selected_rows() def get_reject_list(self): rejectrows = [] for row in range(self.rejects_table.rowCount()): url = unicode(self.rejects_table.item(row, 0).text()).strip() book_id =self.rejects_table.item(row, 0).data(Qt.UserRole) title = unicode(self.rejects_table.item(row, 1).text()).strip() auth = unicode(self.rejects_table.item(row, 2).text()).strip() note = unicode(self.rejects_table.cellWidget(row, 3).currentText()).strip() rejectrows.append(RejectUrlEntry(url,note,title,auth,self.get_reason_text(),book_id=book_id,normalize=False)) return rejectrows def get_reject_list_ids(self): rejectrows = [] for row in range(self.rejects_table.rowCount()): book_id = self.rejects_table.item(row, 0).data(Qt.UserRole) if book_id: rejectrows.append(book_id) return rejectrows def get_reason_text(self): try: return unicode(self.reason_edit.currentText()).strip() except: # doesn't have self.reason_edit when editing existing list. return None def get_deletebooks(self): return self.deletebooks.isChecked() class EditTextDialog(SizePersistedDialog): def __init__(self, parent, text, icon=None, title=None, label=None, tooltip=None, read_only=False, rejectreasons=[],reasonslabel=None, save_size_name='fff:edit text dialog', ): SizePersistedDialog.__init__(self, parent, save_size_name) self.l = QVBoxLayout() self.setLayout(self.l) self.label = QLabel(label) if title: self.setWindowTitle(title) if icon: self.setWindowIcon(icon) self.l.addWidget(self.label) self.textedit = QTextEdit(self) self.textedit.setLineWrapMode(QTextEditNoWrap) self.textedit.setReadOnly(read_only) self.textedit.setText(text) self.l.addWidget(self.textedit) if tooltip: self.label.setToolTip(tooltip) self.textedit.setToolTip(tooltip) if rejectreasons or reasonslabel: self.reason_edit = EditWithComplete(self,sort_func=lambda x:1) items = ['']+rejectreasons self.reason_edit.update_items_cache(items) self.reason_edit.show_initial_value('') self.reason_edit.set_separator(None) self.reason_edit.setToolTip(reasonslabel) if reasonslabel: horz = QHBoxLayout() label = QLabel(reasonslabel) label.setToolTip(reasonslabel) horz.addWidget(label) horz.addWidget(self.reason_edit) self.l.addLayout(horz) else: self.l.addWidget(self.reason_edit) self.reason_edit.setCursorPosition(0) button_box = QDialogButtonBox(QDialogButtonBox.Ok | QDialogButtonBox.Cancel) button_box.accepted.connect(self.accept) button_box.rejected.connect(self.reject) self.l.addWidget(button_box) # Cause our dialog size to be restored from prefs or created on first usage self.resize_dialog() def get_plain_text(self): return unicode(self.textedit.toPlainText()) def get_reason_text(self): return unicode(self.reason_edit.currentText()).strip() class IniTextDialog(SizePersistedDialog): def __init__(self, parent, text, icon=None, title=None, label=None, use_find=False, read_only=False, save_size_name='fff:ini text dialog', ): SizePersistedDialog.__init__(self, parent, save_size_name) self.keys=dict() self.l = QVBoxLayout() self.setLayout(self.l) self.label = QLabel(label) if title: self.setWindowTitle(title) if icon: self.setWindowIcon(icon) self.l.addWidget(self.label) self.textedit = QTextEdit(self) highlighter = IniHighlighter(self.textedit, sections=get_valid_sections(), keywords=get_valid_keywords(), entries=get_valid_entries(), entry_keywords=get_valid_entry_keywords(), ) self.textedit.setLineWrapMode(QTextEditNoWrap) try: self.textedit.setFont(QFont("Courier", parent.font().pointSize()+1)) except Exception as e: logger.error("Couldn't get font: %s"%e) self.textedit.setReadOnly(read_only) self.textedit.setText(ensure_text(text)) self.l.addWidget(self.textedit) self.lastStart = 0 if use_find: findtooltip=_('Search for string in edit box.') horz = QHBoxLayout() label = QLabel(_('Find:')) label.setToolTip(findtooltip) # Button to search the document for something self.findButton = QtGui.QPushButton(_('Find'),self) self.findButton.clicked.connect(self.find) self.findButton.setToolTip(findtooltip) # The field into which to type the query self.findField = QLineEdit(self) self.findField.setToolTip(findtooltip) self.findField.returnPressed.connect(self.findButton.setFocus) # Case Sensitivity option self.caseSens = QtGui.QCheckBox(_('Case sensitive'),self) self.caseSens.setToolTip(_("Search for case sensitive string; don't treat Harry, HARRY and harry all the same.")) horz.addWidget(label) horz.addWidget(self.findField) horz.addWidget(self.findButton) horz.addWidget(self.caseSens) self.l.addLayout(horz) self.addCtrlKeyPress(QtCore.Qt.Key_F,self.findFocus) self.addCtrlKeyPress(QtCore.Qt.Key_G,self.find) button_box = QDialogButtonBox(QDialogButtonBox.Ok | QDialogButtonBox.Cancel) button_box.accepted.connect(self.accept) button_box.rejected.connect(self.reject) self.l.addWidget(button_box) # Cause our dialog size to be restored from prefs or created on first usage self.resize_dialog() def accept(self): from .fff_util import test_config # print("in accept") errors = test_config(self.get_plain_text()) retry = False if errors: d = ViewLog(self, _('Go back to fix errors?'), errors) retry = d.exec_() == d.Accepted # print("retry:%s"%retry) if retry: lineno=d.get_lineno() if lineno: # print("go to lineno (%s) here"%lineno) self.select_line(lineno) else: # print("call parent accept") return SizePersistedDialog.accept(self) def addCtrlKeyPress(self,key,func): # print("addKeyPress: key(0x%x)"%key) # print("control: 0x%x"%QtCore.Qt.ControlModifier) self.keys[key]=func def keyPressEvent(self, event): # print("event: key(0x%x) modifiers(0x%x)"%(event.key(),event.modifiers())) if (event.modifiers() & QtCore.Qt.ControlModifier) and event.key() in self.keys: func = self.keys[event.key()] return func() else: return SizePersistedDialog.keyPressEvent(self, event) def get_plain_text(self): return unicode(self.textedit.toPlainText()) def findFocus(self): # print("findFocus called") self.findField.setFocus() self.findField.selectAll() def find(self): #print("find self.lastStart:%s"%self.lastStart) # Grab the parent's text text = self.textedit.toPlainText() # And the text to find query = self.findField.text() if not self.caseSens.isChecked(): text = text.lower() query = query.lower() # Use normal string search to find the query from the # last starting position self.lastStart = text.find(query,self.lastStart + 1) # If the find() method didn't return -1 (not found) if self.lastStart >= 0: end = self.lastStart + len(query) self.moveCursor(self.lastStart,end) else: # Make the next search start from the begining again self.lastStart = 0 self.textedit.moveCursor(self.textedit.textCursor().Start) def moveCursor(self,start,end): # We retrieve the QTextCursor object from the parent's QTextEdit cursor = self.textedit.textCursor() # Then we set the position to the beginning of the last match cursor.setPosition(start) # Next we move the Cursor by over the match and pass the KeepAnchor parameter # which will make the cursor select the match's text cursor.movePosition(cursor.Right,cursor.KeepAnchor,end - start) # And finally we set this new cursor as the parent's self.textedit.setTextCursor(cursor) def select_line(self,lineno): # We retrieve the QTextCursor object from the parent's QTextEdit cursor = self.textedit.textCursor() # Then we set the position to the beginning of the buffer cursor.setPosition(0) # Next we move the Cursor down lineno times cursor.movePosition(cursor.Down,cursor.MoveAnchor,lineno-1) # Next we move the Cursor to the end of the line cursor.movePosition(cursor.EndOfLine,cursor.KeepAnchor,1) # And finally we set this new cursor as the parent's self.textedit.setTextCursor(cursor) class ViewLog(SizePersistedDialog): def label_clicked(self, event, lineno=None): self.lineno = lineno # print("lineno set to: %s"%lineno) self.accept() def get_lineno(self): return self.lineno def __init__(self, parent, title, errors, save_size_name='fff:view log dialog',): SizePersistedDialog.__init__(self, parent,save_size_name) self.l = l = QVBoxLayout() self.setLayout(l) label = QLabel(_('Click an error below to return to Editing directly on that line:')) label.setWordWrap(True) self.l.addWidget(label) self.lineno = None scrollable = QScrollArea() scrollcontent = QWidget() scrollable.setWidget(scrollcontent) scrollable.setWidgetResizable(True) self.l.addWidget(scrollable) self.sl = QVBoxLayout() scrollcontent.setLayout(self.sl) ## error = (lineno, msg) for (lineno, error_msg) in errors: # print('adding label for error:%s: %s'%(lineno, error_msg)) if len(error_msg) > 200: error_msg=error_msg[:200]+" ..." label = QLabel('%s: %s'%(lineno, error_msg)) label.setWordWrap(True) if( hasattr(QApplication.instance(),'is_dark_theme') and QApplication.instance().is_dark_theme ): label.setStyleSheet("QLabel { margin-left: 2em; color : aqua; } QLabel:hover { color: red; }"); else: label.setStyleSheet("QLabel { margin-left: 2em; color : blue; } QLabel:hover { color: red; }"); label.setToolTip(_('Click to go to line %s')%lineno) label.mouseReleaseEvent = partial(self.label_clicked, lineno=lineno) self.sl.addWidget(label) # html='<p>'+'</p><p>'.join([ '(lineno: %s) %s'%e for e in errors ])+'</p>' # self.tb = QTextBrowser(self) # self.tb.setFont(QFont("Courier", # parent.font().pointSize()+1)) # self.tb.setHtml(html) # l.addWidget(self.tb) self.sl.insertStretch(-1) horz = QHBoxLayout() editagain = QPushButton(_('Return to Editing'), self) editagain.clicked.connect(self.accept) horz.addWidget(editagain) saveanyway = QPushButton(_('Save Anyway'), self) saveanyway.clicked.connect(self.reject) horz.addWidget(saveanyway) l.addLayout(horz) self.setModal(False) self.setWindowTitle(title) self.setWindowIcon(QIcon(I('debug.png'))) #self.show() # Cause our dialog size to be restored from prefs or created on first usage self.resize_dialog() def copy_to_clipboard(self): txt = self.tb.toPlainText() QApplication.clipboard().setText(txt) class EmailPassDialog(QDialog): ''' Need to collect Pass for imap. ''' def __init__(self, gui, user): QDialog.__init__(self, gui) self.status=False self.l = QGridLayout() self.setLayout(self.l) self.setWindowTitle(_('Password')) self.l.addWidget(QLabel(_("Enter Email Password for %s:")%user),0,0,1,2) # self.l.addWidget(QLabel(_("Password:")),1,0) self.passwd = QLineEdit(self) self.passwd.setEchoMode(QLineEdit.Password) self.l.addWidget(self.passwd,1,0,1,2) self.ok_button = QPushButton(_('OK'), self) self.ok_button.clicked.connect(self.ok) self.l.addWidget(self.ok_button,2,0) self.cancel_button = QPushButton(_('Cancel'), self) self.cancel_button.clicked.connect(self.cancel) self.l.addWidget(self.cancel_button,2,1) # set stretch factors the same. self.l.setColumnStretch(0,1) self.l.setColumnStretch(1,1) self.resize(self.sizeHint()) def ok(self): self.status=True self.hide() def cancel(self): self.status=False self.hide() def get_pass(self): return u"%s"%self.passwd.text() def get_remember(self): return self.remember_pass.isChecked() def question_dialog_all(parent, title, msg, det_msg='', show_copy_button=False, default_yes=True, # Skippable dialogs # Set skip_dialog_name to a unique name for this dialog # Set skip_dialog_msg to a message displayed to the user skip_dialog_name=None, skip_dialog_msg=_('Show this confirmation again'), skip_dialog_skipped_value=True, skip_dialog_skip_precheck=True, # Override icon (QIcon to be used as the icon for this dialog or string for I()) override_icon=None, # Change the text/icons of the yes and no buttons. # The icons must be QIcon objects or strings for I() yes_text=None, no_text=None, yes_icon=None, no_icon=None, # for yes/no to all memory: question_name=None, question_cache=None, ): # print(question_cache) if isinstance(question_cache,dict) and question_name and question_name in question_cache: return question_cache[question_name] from calibre.gui2.dialogs.message_box import MessageBox if not isinstance(skip_dialog_name, unicode): skip_dialog_name = None try: auto_skip = set(gprefs.get('questions_to_auto_skip', ())) except Exception: auto_skip = set() if (skip_dialog_name is not None and skip_dialog_name in auto_skip): return bool(skip_dialog_skipped_value) ## There's almost certainly a more elegant way to do this, but ## this works and I understand it. all_flag is a contain so the ## click connect can change the contents. all_flag = [] def set_all_flag(a,s): a.append(s) d = MessageBox(MessageBox.QUESTION, title, msg, det_msg, parent=parent, show_copy_button=show_copy_button, default_yes=default_yes, q_icon=override_icon, yes_text=yes_text, no_text=no_text, yes_icon=yes_icon, no_icon=no_icon) d.bb.setStandardButtons(d.bb.Yes|d.bb.No|d.bb.YesToAll|d.bb.NoToAll) d.bb.button(d.bb.YesToAll).setIcon(d.bb.button(d.bb.Yes).icon()) d.bb.button(d.bb.NoToAll ).setIcon(d.bb.button(d.bb.No ).icon()) d.bb.button(d.bb.YesToAll).clicked.connect(partial(set_all_flag,all_flag,'yes_all')) d.bb.button(d.bb.NoToAll ).clicked.connect(partial(set_all_flag,all_flag,'no_all')) # d.bb.button(d.bb.NoToAll ).clicked.connect(lambda x:no_all = True) if skip_dialog_name is not None and skip_dialog_msg: tc = d.toggle_checkbox tc.setVisible(True) tc.setText(skip_dialog_msg) tc.setChecked(bool(skip_dialog_skip_precheck)) d.resize_needed.emit() ret = d.exec_() == d.Accepted # print("yes/no_all:") # print(all_flag) if all_flag and isinstance(question_cache,dict) and question_name: question_cache[question_name] = (all_flag[0] == 'yes_all') # print(question_cache) if skip_dialog_name is not None and not d.toggle_checkbox.isChecked(): auto_skip.add(skip_dialog_name) gprefs.set('questions_to_auto_skip', list(auto_skip)) return ret
37.093065
258
0.624121
f55f67489ae3b6803ef2b8b5142a84b4fb386795
4,314
py
Python
tests/test_units.py
iamliamc/Brick
45909dbfa39535f265072bc6bc99eb1ce504add5
[ "BSD-3-Clause" ]
null
null
null
tests/test_units.py
iamliamc/Brick
45909dbfa39535f265072bc6bc99eb1ce504add5
[ "BSD-3-Clause" ]
null
null
null
tests/test_units.py
iamliamc/Brick
45909dbfa39535f265072bc6bc99eb1ce504add5
[ "BSD-3-Clause" ]
null
null
null
from rdflib import Namespace import re import brickschema from collections import defaultdict import warnings import sys sys.path.append("..") from bricksrc.namespaces import A, BRICK, TAG, QUDT # noqa: E402 BLDG = Namespace("https://brickschema.org/schema/ExampleBuilding#") def test_quantity_has_one_quantitykind(): """ In the current implementation, using owl:sameAs to align Quantity with QUDT QuantityKinds, we need to make sure that a Brick Quantity does not end up with more than 1 QuantityKind """ g = brickschema.graph.Graph() g.load_file("Brick.ttl") g.bind("qudt", QUDT) g.expand(profile="owlrl") quantity_qk = g.query( "SELECT ?quantity ?kind WHERE {\ ?quantity a brick:Quantity .\ ?quantity owl:sameAs ?kind }" ) assert len(quantity_qk) > 0 seen = defaultdict(list) for quant, quantkind in quantity_qk: if quant == quantkind: continue if "Brick" in quant and "qudt" in quantkind: seen[quant].append(quantkind) for quant, kindlist in seen.items(): assert ( len(kindlist) == 1 ), f"Quantity {quant} has more than one associated QuantityKind! {kindlist}" def test_instances_measure_correct_units(): """ Tests that the units associated with instances are properly linked through the QuantityKinds Recall that the Brick unit model is such: Brick class ---measures---> Brick quantity -- sameAs --> QuantityKind | | | +-----applicableUnit-----------+ | | v v Instance --- hasUnit ---> QUDT unit We create an instance of each Brick class which 'measures' a quantity and associate that instance with one of the applicable units as defined by QUDT. We then verify that all of those units are associated with the correct quantity """ g = brickschema.graph.Graph() g.load_file("Brick.ttl") g.bind("qudt", QUDT) g.expand(profile="owlrl") # test the definitions by making sure that some quantities have applicable # units classes_with_quantities = g.query( "SELECT ?class ?quantity ?unit WHERE { \ ?class a brick:Class .\ ?class brick:measures ?quantity .\ ?quantity qudt:applicableUnit ?unit }" ) triples = [] for brickclass, quantity, unit in classes_with_quantities: class_name = re.split("/|#", brickclass)[-1] unit_name = re.split("/|#", unit)[-1] instance_name = f"Instance_of_{class_name}_{unit_name}" triples.append((BLDG[instance_name], A, brickclass)) triples.append((BLDG[instance_name], BRICK.hasUnit, unit)) g.add(*triples) g.expand(profile="owlrl") instances = g.query( "SELECT ?inst ?quantity ?unit WHERE {\ ?inst rdf:type brick:Sensor .\ ?inst rdf:type/brick:measures ?quantity .\ ?quantity a brick:Quantity .\ ?inst brick:hasUnit ?unit .}" ) assert len(instances) == len(classes_with_quantities) def test_quantity_units(): g = brickschema.graph.Graph() g.load_file("Brick.ttl") g.bind("qudt", QUDT) g.expand(profile="owlrl") # test the definitions by making sure that some quantities have applicable # units quantities_with_units = g.query( "SELECT ?q WHERE { \ ?q rdf:type brick:Quantity .\ ?q qudt:applicableUnit ?unit}" ) assert len(quantities_with_units) > 0 def test_all_quantities_have_units(): g = brickschema.graph.Graph() g.load_file("Brick.ttl") g.bind("qudt", QUDT) g.expand(profile="owlrl") # test the definitions by making sure that some quantities have applicable # units quantities_without_units = list( g.query( "SELECT ?q WHERE { \ ?q rdf:type brick:Quantity .\ FILTER NOT EXISTS {?q qudt:applicableUnit ?unit} }" ) ) if len(quantities_without_units) > 0: warnings.warn( f"The following quantities do not have associated units: {quantities_without_units}" )
32.931298
96
0.608252
ace8ec943ff987d21fe4479f9bcf27bf5aab9d24
10,397
py
Python
tests/cli/test_add.py
julie777/pdm
a6029ca02105d79da4841c701edf73f7315f74eb
[ "MIT" ]
1
2022-03-02T19:43:46.000Z
2022-03-02T19:43:46.000Z
tests/cli/test_add.py
julie777/pdm
a6029ca02105d79da4841c701edf73f7315f74eb
[ "MIT" ]
1
2022-03-20T07:36:27.000Z
2022-03-20T07:36:27.000Z
tests/cli/test_add.py
julie777/pdm
a6029ca02105d79da4841c701edf73f7315f74eb
[ "MIT" ]
null
null
null
import shutil from pathlib import Path import pytest from pdm.cli import actions from pdm.models.pip_shims import Link from pdm.models.specifiers import PySpecSet from tests import FIXTURES @pytest.mark.usefixtures("repository") def test_add_package(project, working_set, is_dev): actions.do_add(project, is_dev, packages=["requests"]) group = ( project.tool_settings["dev-dependencies"]["dev"] if is_dev else project.meta["dependencies"] ) assert group[0] == "requests~=2.19" locked_candidates = project.locked_repository.all_candidates assert locked_candidates["idna"].version == "2.7" for package in ("requests", "idna", "chardet", "urllib3", "certifi"): assert package in working_set def test_add_command(project, invoke, mocker): do_add = mocker.patch.object(actions, "do_add") invoke(["add", "requests"], obj=project) do_add.assert_called_once() @pytest.mark.usefixtures("repository") def test_add_package_to_custom_group(project, working_set): actions.do_add(project, group="test", packages=["requests"]) assert "requests" in project.meta.optional_dependencies["test"][0] locked_candidates = project.locked_repository.all_candidates assert locked_candidates["idna"].version == "2.7" for package in ("requests", "idna", "chardet", "urllib3", "certifi"): assert package in working_set @pytest.mark.usefixtures("repository") def test_add_package_to_custom_dev_group(project, working_set): actions.do_add(project, dev=True, group="test", packages=["requests"]) dependencies = project.tool_settings["dev-dependencies"]["test"] assert "requests" in dependencies[0] locked_candidates = project.locked_repository.all_candidates assert locked_candidates["idna"].version == "2.7" for package in ("requests", "idna", "chardet", "urllib3", "certifi"): assert package in working_set @pytest.mark.usefixtures("repository", "vcs") def test_add_editable_package(project, working_set, is_dev): # Ensure that correct python version is used. project.environment.python_requires = PySpecSet(">=3.6") actions.do_add(project, is_dev, packages=["demo"]) actions.do_add( project, is_dev, editables=["git+https://github.com/test-root/demo.git#egg=demo"], ) group = ( project.tool_settings["dev-dependencies"]["dev"] if is_dev else project.meta["dependencies"] ) assert "demo" in group[0] assert "-e git+https://github.com/test-root/demo.git#egg=demo" in group[1] locked_candidates = project.locked_repository.all_candidates assert ( locked_candidates["demo"].prepare(project.environment).revision == "1234567890abcdef" ) assert locked_candidates["idna"].version == "2.7" assert "idna" in working_set actions.do_sync(project, no_editable=True) assert not working_set["demo"].link_file @pytest.mark.usefixtures("repository", "vcs") def test_editable_package_override_non_editable(project, working_set): project.environment.python_requires = PySpecSet(">=3.6") actions.do_add( project, packages=["git+https://github.com/test-root/demo.git#egg=demo"] ) actions.do_add( project, editables=["git+https://github.com/test-root/demo.git#egg=demo"], ) assert working_set["demo"].link_file @pytest.mark.usefixtures("repository", "working_set") def test_add_remote_package_url(project, is_dev): project.environment.python_requires = PySpecSet(">=3.6") actions.do_add( project, is_dev, packages=["http://fixtures.test/artifacts/demo-0.0.1-py2.py3-none-any.whl"], ) group = ( project.tool_settings["dev-dependencies"]["dev"] if is_dev else project.meta["dependencies"] ) assert ( group[0] == "demo @ http://fixtures.test/artifacts/demo-0.0.1-py2.py3-none-any.whl" ) @pytest.mark.usefixtures("repository") def test_add_no_install(project, working_set): actions.do_add(project, sync=False, packages=["requests"]) for package in ("requests", "idna", "chardet", "urllib3", "certifi"): assert package not in working_set @pytest.mark.usefixtures("repository") def test_add_package_save_exact(project): actions.do_add(project, sync=False, save="exact", packages=["requests"]) assert project.meta.dependencies[0] == "requests==2.19.1" @pytest.mark.usefixtures("repository") def test_add_package_save_wildcard(project): actions.do_add(project, sync=False, save="wildcard", packages=["requests"]) assert project.meta.dependencies[0] == "requests" @pytest.mark.usefixtures("repository") def test_add_package_save_minimum(project): actions.do_add(project, sync=False, save="minimum", packages=["requests"]) assert project.meta.dependencies[0] == "requests>=2.19.1" def test_add_package_update_reuse(project, repository): actions.do_add(project, sync=False, save="wildcard", packages=["requests", "pytz"]) locked_candidates = project.locked_repository.all_candidates assert locked_candidates["requests"].version == "2.19.1" assert locked_candidates["chardet"].version == "3.0.4" assert locked_candidates["pytz"].version == "2019.3" repository.add_candidate("pytz", "2019.6") repository.add_candidate("chardet", "3.0.5") repository.add_candidate("requests", "2.20.0") repository.add_dependencies( "requests", "2.20.0", [ "certifi>=2017.4.17", "chardet<3.1.0,>=3.0.2", "idna<2.8,>=2.5", "urllib3<1.24,>=1.21.1", ], ) actions.do_add( project, sync=False, save="wildcard", packages=["requests"], strategy="reuse" ) locked_candidates = project.locked_repository.all_candidates assert locked_candidates["requests"].version == "2.20.0" assert locked_candidates["chardet"].version == "3.0.4" assert locked_candidates["pytz"].version == "2019.3" def test_add_package_update_eager(project, repository): actions.do_add(project, sync=False, save="wildcard", packages=["requests", "pytz"]) locked_candidates = project.locked_repository.all_candidates assert locked_candidates["requests"].version == "2.19.1" assert locked_candidates["chardet"].version == "3.0.4" assert locked_candidates["pytz"].version == "2019.3" repository.add_candidate("pytz", "2019.6") repository.add_candidate("chardet", "3.0.5") repository.add_candidate("requests", "2.20.0") repository.add_dependencies( "requests", "2.20.0", [ "certifi>=2017.4.17", "chardet<3.1.0,>=3.0.2", "idna<2.8,>=2.5", "urllib3<1.24,>=1.21.1", ], ) actions.do_add( project, sync=False, save="wildcard", packages=["requests"], strategy="eager" ) locked_candidates = project.locked_repository.all_candidates assert locked_candidates["requests"].version == "2.20.0" assert locked_candidates["chardet"].version == "3.0.5" assert locked_candidates["pytz"].version == "2019.3" @pytest.mark.usefixtures("repository") def test_add_package_with_mismatch_marker(project, working_set, mocker): mocker.patch( "pdm.models.environment.get_pep508_environment", return_value={"platform_system": "Darwin"}, ) actions.do_add(project, packages=["requests", "pytz; platform_system!='Darwin'"]) assert "pytz" not in working_set @pytest.mark.usefixtures("repository") def test_add_dependency_from_multiple_parents(project, working_set, mocker): mocker.patch( "pdm.models.environment.get_pep508_environment", return_value={"platform_system": "Darwin"}, ) actions.do_add(project, packages=["requests", "chardet; platform_system!='Darwin'"]) assert "chardet" in working_set @pytest.mark.usefixtures("repository") def test_add_packages_without_self(project, working_set): project.environment.python_requires = PySpecSet(">=3.6") actions.do_add(project, packages=["requests"], no_self=True) assert project.meta.name not in working_set @pytest.mark.usefixtures("repository", "working_set") def test_add_package_unconstrained_rewrite_specifier(project): project.environment.python_requires = PySpecSet(">=3.6") actions.do_add(project, packages=["django"], no_self=True) locked_candidates = project.locked_repository.all_candidates assert locked_candidates["django"].version == "2.2.9" assert project.meta.dependencies[0] == "django~=2.2" actions.do_add( project, packages=["django-toolbar"], no_self=True, unconstrained=True ) locked_candidates = project.locked_repository.all_candidates assert locked_candidates["django"].version == "1.11.8" assert project.meta.dependencies[0] == "django~=1.11" @pytest.mark.usefixtures("repository", "working_set", "vcs") def test_add_cached_vcs_requirement(project, mocker): project.environment.python_requires = PySpecSet(">=3.6") url = "git+https://github.com/test-root/demo.git@1234567890abcdef#egg=demo" built_path = FIXTURES / "artifacts/demo-0.0.1-py2.py3-none-any.whl" wheel_cache = project.make_wheel_cache() cache_path = Path(wheel_cache.get_path_for_link(Link(url))) if not cache_path.exists(): cache_path.mkdir(parents=True) shutil.copy2(built_path, cache_path) downloader = mocker.patch("pdm.models.pip_shims.unpack_url") builder = mocker.patch("pdm.builders.WheelBuilder.build") actions.do_add(project, packages=[url], no_self=True) lockfile_entry = next(p for p in project.lockfile["package"] if p["name"] == "demo") assert lockfile_entry["revision"] == "1234567890abcdef" downloader.assert_not_called() builder.assert_not_called() @pytest.mark.usefixtures("repository") def test_add_with_dry_run(project, capsys): actions.do_add(project, dry_run=True, packages=["requests"]) out, _ = capsys.readouterr() assert not project.get_dependencies() assert "requests 2.19.1" in out assert "urllib3 1.22" in out @pytest.mark.usefixtures("repository") def test_add_with_prerelease(project, working_set): actions.do_add(project, packages=["urllib3"], prerelease=True) assert working_set["urllib3"].version == "1.23b0" assert project.meta.dependencies[0] == "urllib3<2,>=1.23b0"
37.265233
88
0.697413
e96a7df038b2730ea468a3e0815b91778c6b7e66
287
py
Python
speed-tests/python-libs/backend/json_file.py
tivvit/shus-benchmarks
4a26ceeb3c5fe58478b3c4a0e8da2f1bdd4b2282
[ "MIT" ]
null
null
null
speed-tests/python-libs/backend/json_file.py
tivvit/shus-benchmarks
4a26ceeb3c5fe58478b3c4a0e8da2f1bdd4b2282
[ "MIT" ]
1
2022-03-13T12:13:37.000Z
2022-03-13T12:13:37.000Z
speed-tests/python-libs/backend/json_file.py
tivvit/shush-benchmarks
97869e19a57ea556dcf1e0011b8d1104b4a012a8
[ "MIT" ]
null
null
null
import json class JsonFile(object): def __init__(self, fn): self.data = json.load(open(fn, "r")) def __contains__(self, item): return item in self.data def get_all(self): return self.data def get(self, key): return self.data.get(key)
17.9375
44
0.602787
0fb2df8c0fac99769096596a0bbc30ac0b41100d
37,177
py
Python
syft/frameworks/torch/hook/hook.py
brandonhee/PySyft
31217f28aa3d996b2bb84477fb15a990f0cb9a80
[ "Apache-2.0" ]
1
2020-07-14T18:19:25.000Z
2020-07-14T18:19:25.000Z
syft/frameworks/torch/hook/hook.py
brandonhee/PySyft
31217f28aa3d996b2bb84477fb15a990f0cb9a80
[ "Apache-2.0" ]
1
2020-01-25T19:33:08.000Z
2020-01-25T19:33:08.000Z
syft/frameworks/torch/hook/hook.py
brandonhee/PySyft
31217f28aa3d996b2bb84477fb15a990f0cb9a80
[ "Apache-2.0" ]
1
2021-12-22T05:16:43.000Z
2021-12-22T05:16:43.000Z
import copy from functools import wraps import logging from math import inf import torch from torch import nn import types import weakref import syft from syft.generic.frameworks.hook import hook_args from syft.generic.frameworks.hook.hook import FrameworkHook from syft.generic.tensor import AbstractTensor from syft.generic.frameworks.remote import Remote from syft.frameworks.torch.tensors.interpreters.autograd import AutogradTensor from syft.frameworks.torch.tensors.interpreters.native import TorchTensor from syft.frameworks.torch.tensors.interpreters.promise import PromiseTensor from syft.frameworks.torch.tensors.interpreters.hook import HookedTensor from syft.frameworks.torch.tensors.interpreters.paillier import PaillierTensor from syft.frameworks.torch.tensors.decorators.logging import LoggingTensor from syft.frameworks.torch.tensors.interpreters.precision import FixedPrecisionTensor from syft.frameworks.torch.tensors.interpreters.additive_shared import AdditiveSharingTensor from syft.frameworks.torch.tensors.interpreters.large_precision import LargePrecisionTensor from syft.frameworks.torch.tensors.interpreters.private import PrivateTensor from syft.frameworks.torch.torch_attributes import TorchAttributes from syft.generic.pointers.multi_pointer import MultiPointerTensor from syft.generic.pointers.pointer_tensor import PointerTensor from syft.generic.tensor import initialize_tensor from syft.generic.tensor import _apply_args from syft.workers.base import BaseWorker from syft.workers.virtual import VirtualWorker from syft.messaging.plan import Plan from syft.messaging.promise import Promise from syft.exceptions import route_method_exception class TorchHook(FrameworkHook): """A Hook which Overrides Methods on PyTorch Tensors. The purpose of this class is to: * extend torch methods to allow for the moving of tensors from one worker to another. * override torch methods to execute commands on one worker that are called on tensors controlled by the local worker. This class is typically the first thing you will initialize when using PySyft with PyTorch because it is responsible for augmenting PyTorch with PySyft's added functionality (such as remote execution). Args: local_worker: An optional BaseWorker instance that lets you provide a local worker as a parameter which TorchHook will assume to be the worker owned by the local machine. If you leave it empty, TorchClient will automatically initialize a :class:`.workers.VirtualWorker` under the assumption you're looking to do local experimentation or development. is_client: An optional boolean parameter (default True), indicating whether TorchHook is being initialized as an end-user client.This can impact whether or not variables are deleted when they fall out of scope. If you set this incorrectly on a end user client, Tensors and Variables will never be deleted. If you set this incorrectly on a remote machine (not a client), tensors will not get saved. It's really only important if you're not initializing the local worker yourself. verbose: An optional boolean parameter (default True) to indicate whether or not to print the operations as they occur. queue_size: An integer optional parameter (default 0) to specify the max length of the list that stores the messages to be sent. Example: >>> import torch as th >>> import syft as sy >>> hook = sy.TorchHook(th) Hooking into Torch... Overloading Complete. # constructing a normal torch tensor in pysyft >>> x = th.Tensor([-2,-1,0,1,2,3]) >>> x -2 -1 0 1 2 3 [syft.core.frameworks.torch.tensor.FloatTensor of size 6] """ def __init__( self, torch, local_worker: BaseWorker = None, is_client: bool = True, verbose: bool = True ): """Initializes the hook. Initialize the hook and define all the attributes pertaining to the torch hook in a special TorchAttibute class, that will be added in the syft.torch attributes. Hence, this parameters are now conveyed by the syft module. """ # Save the provided torch module as an attribute of the hook self.torch = torch self.framework = self.torch # Save the local worker as an attribute self.local_worker = local_worker if hasattr(torch, "torch_hooked"): logging.warning("Torch was already hooked... skipping hooking process") self.local_worker = syft.local_worker return else: torch.torch_hooked = True # Add all the torch attributes in the syft.torch attr syft.torch = TorchAttributes(torch, self) syft.framework = syft.torch # Hook some torch methods such that tensors could be created directy at workers self._hook_worker_methods() if self.local_worker is None: # Every TorchHook instance should have a local worker which is # responsible for interfacing with other workers. The worker # interface is what allows the Torch specific code in TorchHook to # be agnostic to the means by which workers communicate (such as # peer-to-peer, sockets, through local ports, or all within the # same process) self.local_worker = VirtualWorker(hook=self, is_client_worker=is_client, id="me") else: self.local_worker.hook = self self.to_auto_overload = {} self.args_hook_for_overloaded_attr = {} self._hook_native_tensor(torch.Tensor, TorchTensor) # Add all hooked tensor methods to pointer but change behaviour to have the cmd sent self._hook_pointer_tensor_methods(self.torch.Tensor) # Add all hooked tensor methods to AdditiveSharingTensor tensor but change behaviour # to all shares (when it makes sense, otherwise the method is overwritten in the # AdditiveSharingTensor class) self._hook_additive_shared_tensor_methods() # Add all hooked tensor methods to multi_pointer to change behavior to have the cmd # sent to all child pointers. self._hook_multi_pointer_tensor_methods(self.torch.Tensor) # Add all hooked tensor methods to Logging tensor but change behaviour to just forward # the cmd to the next child (behaviour can be changed in the SyftTensor class file) self._hook_syft_tensor_methods(LoggingTensor) # Add all hooked tensor methods to Paillier tensor but change behaviour to just forward # the cmd to the next child (behaviour can be changed in the SyftTensor class file) self._hook_syft_tensor_methods(PaillierTensor) # Add all hooked tensor methods to FixedPrecisionTensor tensor but change behaviour # to just forward the cmd to the next child (behaviour can be changed in the # SyftTensor class file) self._hook_syft_tensor_methods(FixedPrecisionTensor) # Add all hooked tensor methods to AutogradTensor tensor but change behaviour # to just forward the cmd to the next child (behaviour can be changed in the # SyftTensor class file) self._hook_syft_tensor_methods(AutogradTensor) # Add all hooked tensor methods to PrivateTensor tensor but change behaviour # to just forward the cmd to the next child (behaviour can be changed in the # SyftTensor class file) self._hook_private_tensor_methods(PrivateTensor) # Add all hooked tensor methods to AdditiveSharingTensor tensor but change behaviour # to just forward the cmd to the next child (behaviour can be changed in the # SyftTensor class file) self._hook_syft_tensor_methods(AdditiveSharingTensor) # Add all hooked tensor methods to LargePrecisionTensor tensor self._hook_syft_tensor_methods(LargePrecisionTensor) # Add all hooked tensor methods to NumpyTensor tensor self._hook_syft_tensor_methods(HookedTensor) # Add all built-in 'str' methods to String self._hook_string_methods(owner=self.local_worker) # Add all string methods to StringPointer # This method call should strictly come after the # call to self._hook_string_methods() self._hook_string_pointer_methods() # Add all hooked tensor methods to PromiseTensor self._hook_promise_tensor() # Hook the tensor constructor function self._hook_tensor() # Hook the Parameter methods to store tensor chains in parameters self._hook_parameters() # Hook torch functions from modules like torch.add OR torch.nn.functional (containing relu, etc.) self._hook_torch_module() # Hook torch.nn (containing Linear and Convolution layers) self._hook_module() # Hook torch.optim (containing optim.SGD, Adam, etc) self._hook_optim() # Add the local_worker to syft so that it can be found if the hook is # called several times syft.local_worker = self.local_worker syft.hook = self def create_shape(cls, shape_dims): return torch.Size(shape_dims) def create_wrapper(cls, wrapper_type): # Note this overrides FrameworkHook.create_wrapper, so it must conform to # that classmethod's signature assert ( wrapper_type is None or wrapper_type == torch.Tensor ), "TorchHook only uses torch.Tensor wrappers" return torch.Tensor() def create_zeros(cls, *shape, dtype=None, **kwargs): return torch.zeros(*shape, dtype=dtype, **kwargs) def _hook_native_tensor(self, tensor_type: type, syft_type: type): """Adds PySyft Tensor Functionality to the given native tensor type. Overloads the given native Torch tensor to add PySyft Tensor Functionality. Overloading involves modifying the tensor type with PySyft's added functionality. You may read about what kind of modifications are made in the methods that this method calls. Args: tensor_type: The type of tensor being hooked (in this refactor this is only ever torch.Tensor, but in previous versions of PySyft this iterated over all tensor types. syft_type: The abstract type whose methods should all be added to the tensor_type class. In practice this is always TorchTensor. Read more about it there. """ # Reinitialize init method of Torch tensor with Syft init self._add_registration_to___init__(tensor_type, is_tensor=True) # Overload Torch tensor properties with Syft properties self._hook_properties(tensor_type) # Returns a list of methods to be overloaded, stored in the dict to_auto_overload # with tensor_type as a key self.to_auto_overload[tensor_type] = self._which_methods_should_we_auto_overload( tensor_type ) # [We don't rename native methods as torch tensors are not hooked] Rename native functions # #self._rename_native_functions(tensor_type) # Overload auto overloaded with Torch methods self._transfer_methods_to_native_tensor(tensor_type, syft_type) self._hook_native_methods(tensor_type) def __hook_properties(self, tensor_type): super()._hook_properties(tensor_type) tensor_type.native_shape = tensor_type.shape def _hook_syft_tensor_methods(self, syft_type: type): tensor_type = self.torch.Tensor super()._hook_syft_tensor_methods(tensor_type, syft_type) def _hook_private_tensor_methods(self, syft_type: type): tensor_type = self.torch.Tensor super()._hook_private_tensor_methods(tensor_type, syft_type) def _hook_worker_methods(self): class Torch(object): name = "torch" def __init__(self, worker, *args, **kwargs): self.worker = weakref.ref(worker) Remote.register_framework(Torch) for attr in syft.torch.worker_methods: new_method = self._get_hooked_base_worker_method(attr) setattr(Torch, attr, new_method) def _get_hooked_base_worker_method(hook_self, attr): @wraps(attr) def overloaded_attr(self_torch, *args, **kwargs): ptr = hook_self.local_worker.send_command( recipient=self_torch.worker(), message=("{}.{}".format("torch", attr), None, args, kwargs), ) return ptr.wrap() return overloaded_attr def _hook_additive_shared_tensor_methods(self): """ Add hooked version of all methods of the torch Tensor to the Additive Shared tensor: instead of performing the native tensor method, it will be forwarded to each share when it is relevant """ tensor_type = self.torch.Tensor # Use a pre-defined list to select the methods to overload for attr in self.to_auto_overload[tensor_type]: if attr not in dir(AdditiveSharingTensor): new_method = self._get_hooked_additive_shared_method(attr) setattr(AdditiveSharingTensor, attr, new_method) def _hook_parameters(self): """ This method overrides the torch Parameter class such that it works correctly with our overridden tensor types. The native torch Parameter class kept deleting all of our attributes on our custom tensors, so we wrote our own. """ # Hook __new__ to handle when non-pure torch tensors are given as data attribute def hooked__new__(cls, data=None, requires_grad=True): if data is None: data = torch.Tensor() # If data is not a pure torch tensor you need to store the chain in a # specific place otherwise it will get deleted if not isinstance(data, torch.Tensor) or hasattr(data, "child"): p = torch.Tensor._make_subclass(cls, torch.Tensor(), requires_grad) if isinstance(data, torch.Tensor): # so it's a wrapper: remove it p.child = data.child else: p.child = data else: p = torch.Tensor._make_subclass(cls, data, requires_grad) return p torch.nn.Parameter.__new__ = hooked__new__ # Hook __repr__ to handle chain repr when needed torch.nn.Parameter.native_param___repr__ = torch.nn.Parameter.__repr__ def hooked__repr__(self): if hasattr(self, "child"): return "Parameter containing:\n" + self.child.__repr__() else: return self.native_param___repr__() # torch.nn.Parameter.__repr__ = hooked__repr__ def get_data(self): if hasattr(self, "child"): to_return = self.child.attr("data") else: to_return = self.native_data # good to ensure that the ID stays consistent # not 100% this is required but it's at least # good practice try: to_return.id = self.data_id except AttributeError: self.data_id = to_return.id return to_return def set_data(self, new_data): # If data is not a pure torch tensor you need to store the chain in a # specific place otherwise it will get deleted if not isinstance(new_data, torch.Tensor) or hasattr(new_data, "child"): self.child = new_data # .wrap() else: if hasattr(self, "child"): del self.child with torch.no_grad(): self.native_data = new_data return self torch.nn.Parameter.data = property(fget=get_data, fset=set_data) # Hook .grad to handle chain assignment when needed torch.nn.Parameter.native_param_grad = torch.nn.Parameter.grad @property def grad(self): if hasattr(self, "child"): to_return = self.child.attr("grad") if to_return is not None and isinstance(to_return.child, PointerTensor): if to_return.child.is_none(): to_return = None else: to_return = self.native_param_grad # good to ensure that the ID stays consistent # not 100% this is required but it's at least # good practice try: to_return.id = self.grad_id except AttributeError: if to_return is not None and hasattr(to_return, "id"): self.grad_id = to_return.id return to_return @grad.setter def grad(self, new_grad): # If grad is not a pure torch tensor you need to store the chain in a # specific place otherwise it will get deleted if new_grad is not None and ( not isinstance(new_grad, torch.Tensor) or hasattr(new_grad, "child") ): self.child.grad = new_grad # .wrap() else: if self.native_param_grad is not None: with torch.no_grad(): self.native_param_grad = new_grad elif new_grad is not None: self.native_param_grad = new_grad return self torch.nn.Parameter.grad = grad def _hook_torch_module(self): """Overloads functions in the main torch modules. The way this is accomplished is by first moving all existing module functions in the torch module to native_<function_name_here>. Example: the real :func:`torch.cat` will become :func:`torch.native_cat` and :func:`torch.cat` will have our hooking code. """ if torch.__version__ < "1.0.2": # Hard fix for PyTorch versions < 1.0.2 # usage of torch.jit requires a torch version < torch 1.1, so we still need to support this torch version syft.torch.apply_fix16922(self.torch) torch_modules = syft.torch.torch_modules for module_name, torch_module in torch_modules.items(): for func in dir(torch_module): # Some functions we want to ignore (not override). Such functions have been hard # coded into the torch_attribute exclude (see TorchAttribute class) if func in syft.torch.exclude: continue # ignore dunder functions if "__" in func: continue # ignore capitalized func values which are Classes not functions if func[0].isupper(): continue # ignore hidden functins if func[0] == "_": continue # If we haven't already overloaded this function if "native_" in func or f"native_{func}" in dir(torch_module): continue self._perform_function_overloading(module_name, torch_module, func) @classmethod def _get_hooked_func(cls, public_module_name, func_api_name, attr): """Torch-specific implementation. See the subclass for more.""" if attr.__module__ is None: attr.__module__ = "torch" return super()._get_hooked_func(attr.__module__, func_api_name, attr) def _get_hooked_additive_shared_method(hook_self, attr): """ Hook a method to send it multiple remote workers Args: attr (str): the method to hook Return: the hooked method """ def dispatch(args, k): return map(lambda x: x[k] if isinstance(x, dict) else x, args) @wraps(attr) def overloaded_attr(self, *args, **kwargs): """ Operate the hooking """ # Replace all syft tensor with their child attribute new_self, new_args, new_kwargs = hook_args.unwrap_args_from_method( attr, self, args, kwargs ) results = {} for k, v in new_self.items(): results[k] = v.__getattribute__(attr)(*dispatch(new_args, k), **new_kwargs) # Put back AdditiveSharingTensor on the tensors found in the response response = hook_args.hook_response( attr, results, wrap_type=AdditiveSharingTensor, wrap_args=self.get_class_attributes(), ) return response return overloaded_attr def _hook_promise_tensor(hook_self): methods_to_hook = hook_self.to_auto_overload[torch.Tensor] def generate_method(method_name): def method(self, *args, **kwargs): arg_shapes = list([self.shape]) arg_ids = list([self.id]) # Convert scalar arguments to tensors to be able to use them with plans args = list(args) for ia in range(len(args)): if not isinstance(args[ia], (torch.Tensor, AbstractTensor)): args[ia] = torch.tensor(args[ia]) for arg in args: arg_shapes.append(arg.shape) @syft.func2plan(arg_shapes) def operation_method(self, *args, **kwargs): return getattr(self, method_name)(*args, **kwargs) self.plans.add(operation_method.id) for arg in args: if isinstance(arg, PromiseTensor): arg.plans.add(operation_method.id) operation_method.procedure.update_args( [self, *args], operation_method.procedure.result_ids ) promise_out = PromiseTensor( owner=self.owner, shape=operation_method.output_shape, tensor_type=self.obj_type, plans=set(), ) operation_method.procedure.promise_out_id = promise_out.id if operation_method.owner != self.owner: operation_method.send(self.owner) else: # otherwise object not registered on local worker operation_method.owner.register_obj(operation_method) return promise_out return method for method_name in methods_to_hook: setattr(PromiseTensor, method_name, generate_method(method_name)) def FloatTensor(shape, *args, **kwargs): return PromiseTensor(shape, tensor_type="torch.FloatTensor", *args, **kwargs).wrap() setattr(Promise, "FloatTensor", FloatTensor) def DoubleTensor(shape, *args, **kwargs): return PromiseTensor(shape, tensor_type="torch.DoubleTensor", *args, **kwargs).wrap() setattr(Promise, "DoubleTensor", DoubleTensor) def HalfTensor(shape, *args, **kwargs): return PromiseTensor(shape, tensor_type="torch.HalfTensor", *args, **kwargs).wrap() setattr(Promise, "HalfTensor", HalfTensor) def ByteTensor(shape, *args, **kwargs): return PromiseTensor(shape, tensor_type="torch.ByteTensor", *args, **kwargs).wrap() setattr(Promise, "ByteTensor", ByteTensor) def CharTensor(shape, *args, **kwargs): return PromiseTensor(shape, tensor_type="torch.CharTensor", *args, **kwargs).wrap() setattr(Promise, "CharTensor", CharTensor) def ShortTensor(shape, *args, **kwargs): return PromiseTensor(shape, tensor_type="torch.ShortTensor", *args, **kwargs).wrap() setattr(Promise, "ShortTensor", ShortTensor) def IntTensor(shape, *args, **kwargs): return PromiseTensor(shape, tensor_type="torch.IntTensor", *args, **kwargs).wrap() setattr(Promise, "IntTensor", IntTensor) def LongTensor(shape, *args, **kwargs): return PromiseTensor(shape, tensor_type="torch.LongTensor", *args, **kwargs).wrap() setattr(Promise, "LongTensor", LongTensor) def BoolTensor(shape, args, **kwargs): return PromiseTensor(shape, tensor_type="torch.BoolTensor", *args, **kwargs).wrap() setattr(Promise, "BoolTensor", BoolTensor) def _hook_tensor(hook_self): """Hooks the function torch.tensor() We need to do this seperately from hooking the class because internally torch does not pick up the change to add the args Args: hook_self: the hook itself """ if "native_tensor" not in dir(hook_self.torch): hook_self.torch.native_tensor = hook_self.torch.tensor def new_tensor(*args, owner=None, id=None, register=True, **kwargs): current_tensor = hook_self.torch.native_tensor(*args, **kwargs) _apply_args(hook_self, current_tensor, owner, id) if register: current_tensor.owner.register_obj(current_tensor) return current_tensor hook_self.torch.tensor = new_tensor @classmethod def _transfer_methods_to_native_tensor(cls, tensor_type: type, syft_type: type): """Adds methods from the TorchTensor class to the native torch tensor. The class TorchTensor is a proxy to avoid extending directly the torch tensor class. Args: tensor_type: The tensor type to which we are adding methods from TorchTensor class. """ exclude = [ "__class__", "__delattr__", "__dir__", "__doc__", "__dict__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__weakref__", "__module__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__setattr__", "__sizeof__", "__subclasshook__", "_get_type", # "__eq__", # FIXME it now overwritten in native.py to use torch.eq, because of pb between == & __eq__ See #2030 "__gt__", "__ge__", "__lt__", "__le__", ] cls._transfer_methods_to_framework_class(tensor_type, syft_type, exclude) def _hook_module(self): """Overloading torch.nn.Module with PySyft functionality, the primary module responsible for core ML functionality such as Neural network layers and loss functions. It is important to note that all the operations are actually in-place. """ def module_is_missing_grad(model): """Checks if all the parameters in the model have been assigned a gradient""" for p in model.parameters(): if p.grad is None: return True return False def create_grad_objects(model): """Assigns gradient to model parameters if not assigned""" for p in model.parameters(): o = p.sum() o.backward() if p.grad is not None: p.grad -= p.grad def module_send_(nn_self, *dest, force_send=False, **kwargs): """Overloads torch.nn instances so that they could be sent to other workers""" if module_is_missing_grad(nn_self): create_grad_objects(nn_self) for p in nn_self.parameters(): p.send_(*dest, **kwargs) if isinstance(nn_self.forward, Plan): nn_self.forward.send(*dest, force=force_send) return nn_self self.torch.nn.Module.send = module_send_ self.torch.nn.Module.send_ = module_send_ def module_move_(nn_self, destination): params = list(nn_self.parameters()) for p in params: p.move(destination) self.torch.nn.Module.move = module_move_ # def module_end_get_(nn_self): # """Overloads send to remote for torch.nn.Module.""" # if module_is_missing_grad(nn_self): # create_grad_objects(nn_self) # # for p in nn_self.parameters(): # p.end_get() # # return nn_self # # self.torch.nn.Module.end_get = module_end_get_ # # def module_move_(nn_self, dest): # return nn_self.send(dest).end_get() # # self.torch.nn.Module.move = module_move_ def module_get_(nn_self): """overloads torch.nn instances with get method so that parameters could be sent back to owner""" for p in nn_self.parameters(): p.get_() if isinstance(nn_self.forward, Plan): nn_self.forward.get() return nn_self self.torch.nn.Module.get_ = module_get_ self.torch.nn.Module.get = module_get_ def module_share_(nn_self, *args, **kwargs): """Overloads fix_precision for torch.nn.Module.""" # TODO: add .data and .grad to syft tensors if module_is_missing_grad(nn_self): create_grad_objects(nn_self) for p in nn_self.parameters(): p.share_(*args, **kwargs) return nn_self self.torch.nn.Module.share_ = module_share_ self.torch.nn.Module.share = module_share_ def module_fix_precision_(nn_self, *args, **kwargs): """Overloads fix_precision for torch.nn.Module.""" if module_is_missing_grad(nn_self): create_grad_objects(nn_self) for p in nn_self.parameters(): p.fix_precision_(*args, **kwargs) return nn_self self.torch.nn.Module.fix_precision_ = module_fix_precision_ self.torch.nn.Module.fix_precision = module_fix_precision_ self.torch.nn.Module.fix_prec = module_fix_precision_ def module_float_precision_(nn_self): """Overloads float_precision for torch.nn.Module, convert fix_precision parameters to normal float parameters""" # TODO: add .data and .grad to syft tensors # if module_is_missing_grad(nn_self): # create_grad_objects(nn_self) for p in nn_self.parameters(): p.float_precision_() return nn_self self.torch.nn.Module.float_precision_ = module_float_precision_ self.torch.nn.Module.float_precision = module_float_precision_ self.torch.nn.Module.float_prec = module_float_precision_ def module_copy(nn_self): """Returns a copy of a torch.nn.Module""" return copy.deepcopy(nn_self) self.torch.nn.Module.copy = module_copy @property def owner(nn_self): for p in nn_self.parameters(): return p.owner self.torch.nn.Module.owner = owner @property def location(nn_self): try: for p in nn_self.parameters(): return p.location except AttributeError: raise AttributeError( "Module has no attribute location, did you already send it to some location?" ) self.torch.nn.Module.location = location # Make sure PySyft uses the PyTorch version self.torch.nn.modules.rnn._rnn_impls["LSTM"] = self.torch.lstm # Add support for GRUs self.torch.nn.modules.rnn._rnn_impls["GRU"] = self.torch.gru # Override _VF.LSTM_Cell and _VF.GRU_Cell with torch.LSTM_Cell and torch.GRU_Cell # With the pytorch-based version self.torch.nn.modules.rnn._VF = self.torch def _hook_optim(self): """Overloading torch.optim.Optimizer with PySyft functionality. Optimizer hyper-parameters should indeed be converted to fixed precision to interact with fixed precision or additive shared tensors. It is important to note that all the operations are actually in-place. """ def optim_fix_precision_(optim_self, *args, **kwargs): """Overloads fix_precision for torch.optim.Optimizer""" for param_group in optim_self.param_groups: for key, param in param_group.items(): if isinstance(param, (float, int, bool)) and param != 0 and key != "params": param_group[key] = torch.tensor(param).fix_precision(*args, **kwargs).child return optim_self self.torch.optim.Optimizer.fix_precision = optim_fix_precision_ def optim_float_precision_(optim_self): """Overloads float_precision for torch.optim.Optimizer, convert fix_precision hyper-parameters to normal float values""" for param_group in optim_self.param_groups: for key, param in param_group.items(): if isinstance(param, FixedPrecisionTensor) and key != "params": param_group[key] = param.float_precision().item() return optim_self self.torch.optim.Optimizer.float_precision = optim_float_precision_ # Modification of torch/nn/utils/clip_grad.py. The plain PyTorch method was not compatible with # PySyft remote tensors, so this method adds support for gradient clipping of remote tensors, # and keeps functionalities from PyTorch to clip local PyTorch tensors. def clip_grad_norm_remote_(parameters, max_norm, norm_type=2): """Clips gradient norm of an iterable of parameters stored over a remote model The norm is computed over all gradients together, as if they were concatenated into a single vector. Gradients are modified in-place. Arguments: - parameters (Iterable[Tensor] or Tensor): an iterable of PySyft remote Tensors or PyTorch tensor will have gradients normalized or a single PySyfy / PyTorch tensor. - max_norm (float or int): max norm of the gradients - worker: The worker where the parameters are hosted and where the gradient clipping will be performed - norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for infinity norm. Returns: Total norm of the parameters (viewed as a single vector). """ def param_is_pointer_tensor(param): """ A list of parameters is remote if all params contained in the list are remote (i.e., the child of each param is a pointer tensor). This method checks if a single param is indeed remote, so whether the child of a parameter is a pointer tensor """ return hasattr(param, "child") and isinstance(param.child, PointerTensor) if isinstance(parameters, torch.Tensor): parameters = [parameters] parameters = list(filter(lambda p: p.grad is not None, parameters)) max_norm = float(max_norm) norm_type = float(norm_type) if norm_type == inf: total_norm = max(p.grad.data.abs().max() for p in parameters) else: # all parameters are remote if all([param_is_pointer_tensor(param) for param in parameters]): total_norm = torch.zeros(1) # Let's send the total norm over to the remote where the remote tensor is total_norm = total_norm.send(parameters[0].location) else: total_norm = 0 for p in parameters: param_norm = p.grad.data.norm(norm_type) # Remote PySyft tensor if param_is_pointer_tensor(p): total_norm += param_norm ** norm_type # Local PySyft tensor else: total_norm += param_norm.item() ** norm_type total_norm = total_norm ** (1.0 / norm_type) clip_coef = max_norm / (total_norm + 1e-6) if clip_coef < 1: for p in parameters: p.grad.data.mul_(clip_coef) return total_norm self.torch.nn.utils.clip_grad_norm_ = clip_grad_norm_remote_
39.761497
124
0.6231
50e7f02f7329e714ff496e56fbe9b35c2a32f699
3,217
py
Python
tests/models/test_autoencoders.py
dandelin/pytorch-lightning-bolts
8652a8a9f6c3e0d4b034e12d1f7b3a339f92cd0f
[ "Apache-2.0" ]
null
null
null
tests/models/test_autoencoders.py
dandelin/pytorch-lightning-bolts
8652a8a9f6c3e0d4b034e12d1f7b3a339f92cd0f
[ "Apache-2.0" ]
null
null
null
tests/models/test_autoencoders.py
dandelin/pytorch-lightning-bolts
8652a8a9f6c3e0d4b034e12d1f7b3a339f92cd0f
[ "Apache-2.0" ]
null
null
null
import pytest import pytorch_lightning as pl import torch from pytorch_lightning import seed_everything from pl_bolts.datamodules import CIFAR10DataModule from pl_bolts.models.autoencoders import AE, VAE from pl_bolts.models.autoencoders import resnet18_encoder, resnet18_decoder from pl_bolts.models.autoencoders import resnet50_encoder @pytest.mark.parametrize("dm_cls", [pytest.param(CIFAR10DataModule, id="cifar10")]) def test_vae(tmpdir, dm_cls): seed_everything() dm = dm_cls(batch_size=4) model = VAE(input_height=dm.size()[-1]) trainer = pl.Trainer( fast_dev_run=True, default_root_dir=tmpdir, max_epochs=1, gpus=None ) result = trainer.fit(model, dm) assert result == 1 @pytest.mark.parametrize("dm_cls", [pytest.param(CIFAR10DataModule, id="cifar10")]) def test_ae(tmpdir, dm_cls): seed_everything() dm = dm_cls(batch_size=4) model = AE(input_height=dm.size()[-1]) trainer = pl.Trainer( fast_dev_run=True, default_root_dir=tmpdir, max_epochs=1, gpus=None ) result = trainer.fit(model, dm) assert result == 1 def test_encoder(tmpdir): img = torch.rand(16, 3, 224, 224) encoder1 = resnet18_encoder(first_conv=False, maxpool1=True) encoder2 = resnet50_encoder(first_conv=False, maxpool1=True) out1 = encoder1(img) out2 = encoder2(img) assert out1.shape == (16, 512) assert out2.shape == (16, 2048) def test_decoder(tmpdir): latent_dim = 128 input_height = 288 # random but has to be a multiple of 32 for first_conv=True, maxpool1=True decoder1 = resnet18_decoder(latent_dim=latent_dim, input_height=input_height, first_conv=True, maxpool1=True) decoder2 = resnet18_decoder(latent_dim=latent_dim, input_height=input_height, first_conv=True, maxpool1=False) decoder3 = resnet18_decoder(latent_dim=latent_dim, input_height=input_height, first_conv=False, maxpool1=True) decoder4 = resnet18_decoder(latent_dim=latent_dim, input_height=input_height, first_conv=False, maxpool1=False) z = torch.rand(2, latent_dim) out1 = decoder1(z) out2 = decoder2(z) out3 = decoder3(z) out4 = decoder4(z) assert out1.shape == (2, 3, 288, 288) assert out2.shape == (2, 3, 288, 288) assert out3.shape == (2, 3, 288, 288) assert out4.shape == (2, 3, 288, 288) def test_from_pretrained(tmpdir): vae = VAE(input_height=32) ae = AE(input_height=32) assert len(VAE.pretrained_weights_available()) > 0 assert len(AE.pretrained_weights_available()) > 0 exception_raised = False try: vae = vae.from_pretrained('cifar10-resnet18') vae = vae.from_pretrained('stl10-resnet18') # try loading weights not compatible with exact architecture ae = ae.from_pretrained('cifar10-resnet18') except Exception as e: exception_raised = True assert exception_raised is False, "error in loading weights" keyerror = False try: vae = vae.from_pretrained('abc') ae = ae.from_pretrained('xyz') except KeyError: keyerror = True assert keyerror is True, "KeyError not raised when provided with illegal checkpoint name"
29.513761
115
0.700964
411fa371cd9b60edc221ad75ad98c1ff5fb952f0
8,041
py
Python
benchmarking/mgd3d.py
0xDBFB7/Nyion
9bd1c3a8a70e9d1c75e04ab63325a42cc983dedb
[ "MIT" ]
null
null
null
benchmarking/mgd3d.py
0xDBFB7/Nyion
9bd1c3a8a70e9d1c75e04ab63325a42cc983dedb
[ "MIT" ]
null
null
null
benchmarking/mgd3d.py
0xDBFB7/Nyion
9bd1c3a8a70e9d1c75e04ab63325a42cc983dedb
[ "MIT" ]
null
null
null
""" 2017 (c) A. R. Malipeddi 3D geometric multigrid code for poissons equation in a cube. - Finite difference method - 7pt operator - trilinear interpolation - Two-color Gauss Seidel smoothing """ import matplotlib.pyplot as plt import numpy as np def GSrelax(B,nx,ny,nz,u,f,iters=1,flag=1): ''' Red-Black Gauss Seidel smoothing flag : 1 = pre-sweep 2 = post-sweep ''' dx=1.0/nx dy=1.0/ny dz=1.0/nz Ax=1.0/dx**2 Ay=1.0/dy**2 Az=1.0/dz**2 Ap=1.0/(2.0*(1.0/dx**2+1.0/dy**2+1.0/dz**2)) #BCs. Needs to be generalized! u[ 0,:,:] = 0 u[-1,:,:] = 0 u[: ,0,:] = 0 u[:,-1,:] = 0 u[:,:, 0] = 0 u[:,:,-1] = 0 T = u.copy() for it in range(iters): for i in range(1,nx+1): for j in range(1,ny+1): for k in range(1,nz+1): if(not B[i,j,k]): T[i,j,k]= Ap*( Ax*(u[i+1,j,k]+u[i-1,j,k]) + Ay*(u[i,j+1,k]+u[i,j-1,k]) + Az*(u[i,j,k+1]+u[i,j,k-1]) - f[i,j,k]) np.copyto(u,T) #BCs. Needs to be generalized! u[ 0,:,:] = 0 u[-1,:,:] = 0 u[: ,0,:] = 0 u[:,-1,:] = 0 u[:,:, 0] = 0 u[:,:,-1] = 0 #if residual not needed if(flag==2): return u,None res=np.zeros([nx+2,ny+2,nz+2]) for i in range(1,nx+1): for j in range(1,ny+1): for k in range(1,nz+1): if(not B[i,j,k]): res[i,j,k]=f[i,j,k] - (Ax*(u[i+1,j,k]+u[i-1,j,k]) + Ay*(u[i,j+1,k]+u[i,j-1,k]) + Az*(u[i,j,k+1]+u[i,j,k-1]) - 2.0*(Ax+Ay+Az)*u[i,j,k]) return u,res def restrict(B,nx,ny,nz,v): ''' restrict 'v' to the coarser grid ''' v_c=np.zeros([nx+2,ny+2,nz+2]) for i in range(1,nx+1): for j in range(1,ny+1): for k in range(1,nz+1): # if(not B[i*2,j*2,k*2]): v_c[i,j,k]=0 count = 0 if(not B[i*2-1,j*2,k*2]): v_c[i,j,k] += v[2*i-1,2*j,2*k] count+=1 if(not B[i*2,j*2-1,k*2]): v_c[i,j,k] += v[2*i,2*j-1,2*k] count+=1 if(not B[i*2,j*2-1,k*2]): v_c[i,j,k] += v[2*i,2*j-1,2*k] count+=1 if(not B[i*2,j*2,k*2]): v_c[i,j,k] += v[2*i,2*j,2*k] count+=1 v_c[i,j,k] /= count # 0.125*(v[2*i-1,2*j-1,2*k-1]+v[2*i,2*j-1,2*k-1]+v[2*i-1,2*j,2*k-1]+v[2*i,2*j,2*k-1] # +v[2*i-1,2*j-1,2*k ]+v[2*i,2*j-1,2*k ]+v[2*i-1,2*j,2*k ]+v[2*i,2*j,2*k ]) return v_c def restrict_B(nx,ny,nz,B): v_c=np.zeros([nx+2,ny+2,nz+2]) for i in range(1,nx+1): for j in range(1,ny+1): for k in range(1,nz+1): v_c[i,j,k] = B[i*2,j*2,k*2] return v_c # def prolong(B,nx,ny,nz,v): # ''' # interpolate correction to the fine grid # ''' # v_f=np.zeros([2*nx+2,2*ny+2,2*nz+2]) # # a=27.0/64 # b= 9.0/64 # c= 3.0/64 # d= 1.0/64 # # for i in range(1,nx+1): # for j in range(1,ny+1): # for k in range(1,nz+1): # v_f[2*i-1,2*j-1,2*k-1] = a*v[i,j,k] + b*(v[i-1,j,k] + v[i,j-1,k] + v[i,j,k-1]) + c*(v[i-1,j-1,k] + v[i-1,j,k-1] + v[i,j-1,k-1]) + d*v[i-1,j-1,k-1] # v_f[2*i ,2*j-1,2*k-1] = a*v[i,j,k] + b*(v[i+1,j,k] + v[i,j-1,k] + v[i,j,k-1]) + c*(v[i+1,j-1,k] + v[i+1,j,k-1] + v[i,j-1,k-1]) + d*v[i+1,j-1,k-1] # v_f[2*i-1,2*j ,2*k-1] = a*v[i,j,k] + b*(v[i-1,j,k] + v[i,j+1,k] + v[i,j,k-1]) + c*(v[i-1,j+1,k] + v[i-1,j,k-1] + v[i,j+1,k-1]) + d*v[i-1,j+1,k-1] # v_f[2*i ,2*j ,2*k-1] = a*v[i,j,k] + b*(v[i+1,j,k] + v[i,j+1,k] + v[i,j,k-1]) + c*(v[i+1,j+1,k] + v[i+1,j,k-1] + v[i,j+1,k-1]) + d*v[i+1,j+1,k-1] # v_f[2*i-1,2*j-1,2*k ] = a*v[i,j,k] + b*(v[i-1,j,k] + v[i,j-1,k] + v[i,j,k+1]) + c*(v[i-1,j-1,k] + v[i-1,j,k+1] + v[i,j-1,k+1]) + d*v[i-1,j-1,k+1] # v_f[2*i ,2*j-1,2*k ] = a*v[i,j,k] + b*(v[i+1,j,k] + v[i,j-1,k] + v[i,j,k+1]) + c*(v[i+1,j-1,k] + v[i+1,j,k+1] + v[i,j-1,k+1]) + d*v[i+1,j-1,k+1] # v_f[2*i-1,2*j ,2*k ] = a*v[i,j,k] + b*(v[i-1,j,k] + v[i,j+1,k] + v[i,j,k+1]) + c*(v[i-1,j+1,k] + v[i-1,j,k+1] + v[i,j+1,k+1]) + d*v[i-1,j+1,k+1] # v_f[2*i ,2*j ,2*k ] = a*v[i,j,k] + b*(v[i+1,j,k] + v[i,j+1,k] + v[i,j,k+1]) + c*(v[i+1,j+1,k] + v[i+1,j,k+1] + v[i,j+1,k+1]) + d*v[i+1,j+1,k+1] # # return v_f def prolong(B,nx,ny,nz,v): v_f=np.zeros([2*nx+2,2*ny+2,2*nz+2]) for x in range(1, nx+1): for y in range(1, ny+1): for z in range(1, nz+1): V000 = v[x,y,z] V001 = v[x,y,z+1] V010 = v[x,y+1,z] V100 = v[x+1,y,z] V101 = v[x+1,y,z+1] V110 = v[x+1,y+1,z] V111 = v[x+1,y+1,z+1] for i in range(0,2): for j in range(0,2): for k in range(0,2): f_x = float(i)/2 f_y = float(j)/2 f_z = float(k)/2 v_f[2*x+i,2*y+j,2*z+k] = 0 v_f[2*x+i,2*y+j,2*z+k] += V000*(1.0-f_x)*(1.0-f_y)*(1.0-f_z) v_f[2*x+i,2*y+j,2*z+k] += V001*(1.0-f_x)*(1.0-f_y)*(f_z) v_f[2*x+i,2*y+j,2*z+k] += V010*(1.0-f_x)*(f_y)*(1.0-f_z) v_f[2*x+i,2*y+j,2*z+k] += V100*(f_x)*(1.0-f_y)*(1.0-f_z) v_f[2*x+i,2*y+j,2*z+k] += V101*(f_x)*(1.0-f_y)*(f_z) v_f[2*x+i,2*y+j,2*z+k] += V110*(f_x)*(f_y)*(1.0-f_z) v_f[2*x+i,2*y+j,2*z+k] += V111*(f_x)*(f_y)*(f_z) return v_f def V_cycle(B,nx,ny,nz,num_levels,u,f,level=1): ''' V cycle ''' if(level==num_levels):#bottom solve u,res=GSrelax(B,nx,ny,nz,u,f,iters=100) return u,res #Step 1: Relax Au=f on this grid u,res=GSrelax(B,nx,ny,nz,u,f,2) # plt.figure() # plt.subplot(2, 3, 2) # plt.gca().set_title('Potentials') # plt.plot(u[:,int(nx/2),int(nx/2)]) # # plt.subplot(2, 3, 3) # plt.gca().set_title('Residuals') # plt.plot(res[:,int(nx/2),int(nx/2)]) # plt.subplot(2, 3, 3) # plt.plot(B[:,int(nx/2),int(nx/2)]) #Step 2: Restrict residual to coarse grid res_c=restrict(B,nx//2,ny//2,nz//2,res) b_c=restrict_B(nx//2,ny//2,nz//2,B) # # plt.subplot(2, 3, 4) # plt.gca().set_title('Restricted Residuals') # plt.plot(res_c[:,int(nx/4),int(nx/4)]) # plt.subplot(2, 3, 4) # plt.plot(b_c[:,int(nx/4),int(nx/4)]) print(np.amax(u)) #Step 3:Solve A e_c=res_c on the coarse grid. (Recursively) e_c=np.zeros_like(res_c) e_c,res_c=V_cycle(b_c,nx//2,ny//2,nz//2,num_levels,e_c,res_c,level+1) # # plt.subplot(2, 3, 5) # plt.gca().set_title('Restricted Correction') # plt.plot(e_c[:,int(nx/4),int(nx/4)]) #Step 4: Interpolate(prolong) e_c to fine grid and add to u R = prolong(B,nx//2,ny//2,nz//2,e_c)*(1.0-B) u+= R # # plt.subplot(2, 3, 6) # plt.gca().set_title('Prolongated Correction') # plt.plot(R[:,int(nx/2),int(nx/2)]) # plt.subplot(2, 3, 6) # plt.gca().set_title('Prolongated Correction') # plt.plot(B[:,int(nx/2),int(nx/2)]) # # plt.draw() # plt.pause(1) #Step 5: Relax Au=f on this grid if(level==1): u,res=GSrelax(B,nx,ny,nz,u,f,2,flag=1) input(">") else: u,res=GSrelax(B,nx,ny,nz,u,f,2,flag=2) return u,res def FMG(B,nx,ny,nz,num_levels,f,nv=1,level=1): if(level==num_levels):#bottom solve u=np.zeros([nx+2,ny+2,nz+2]) u,res=GSrelax(B,nx,ny,nz,u,f,iters=100) return u,res #Step 1: Restrict the rhs to a coarse grid f_c=restrict(B,nx//2,ny//2,nz//2,f) b_c=restrict_B(nx//2,ny//2,nz//2,B) #Step 2: Solve the coarse grid problem using FMG u_c,_=FMG(b_c,nx//2,ny//2,nz//2,num_levels,f_c,nv,level+1) #Step 3: Interpolate u_c to the fine grid u=prolong(B,nx//2,ny//2,nz//2,u_c) #step 4: Execute 'nv' V-cycles for _ in range(nv): u,res=V_cycle(B,nx,ny,nz,num_levels-level,u,f) return u,res
31.65748
160
0.456162
d8e8c5c667b515fa69e7c17067714412651ba8cc
453
py
Python
src/sorunlib/commands.py
simonsobs/sorunlib
08f638c2dc77d69029acdb6deb1ed2e0fbb8bfc8
[ "BSD-2-Clause" ]
null
null
null
src/sorunlib/commands.py
simonsobs/sorunlib
08f638c2dc77d69029acdb6deb1ed2e0fbb8bfc8
[ "BSD-2-Clause" ]
6
2022-03-10T17:07:20.000Z
2022-03-14T15:18:44.000Z
src/sorunlib/commands.py
simonsobs/sorunlib
08f638c2dc77d69029acdb6deb1ed2e0fbb8bfc8
[ "BSD-2-Clause" ]
null
null
null
import time import datetime as dt def wait(target_time): """Wait until a specified time. Args: target_time (str): Time in ISO format to wait until, i.e. "2015-10-21T07:28:00" """ t0 = dt.datetime.now() t1 = dt.datetime.fromisoformat(target_time) assert t1 > t0, f"time {t1} is in the past" diff = t1 - t0 print(f"Waiting for {diff.total_seconds()} seconds") time.sleep(diff.total_seconds())
21.571429
60
0.624724
da0adbbacd391d78f15a1f417375b94a89a01ce0
20,426
py
Python
tmtoolkit/topicmod/evaluate.py
samir-joshi/tmtoolkit
41f5cbddad539107016680d132ca1ee9ebe49b5c
[ "Apache-2.0" ]
167
2017-11-11T11:49:32.000Z
2022-03-15T11:45:11.000Z
tmtoolkit/topicmod/evaluate.py
samir-joshi/tmtoolkit
41f5cbddad539107016680d132ca1ee9ebe49b5c
[ "Apache-2.0" ]
23
2017-11-27T22:44:09.000Z
2022-02-23T03:31:30.000Z
tmtoolkit/topicmod/evaluate.py
shalevy1/tmtoolkit
42fdd388e606d6d1c45d80d2364dfa42b8408111
[ "Apache-2.0" ]
30
2018-03-27T13:00:41.000Z
2022-03-28T12:15:33.000Z
""" Metrics for topic model evaluation. In order to run model evaluations in parallel use one of the modules :mod:`~tmtoolkit.topicmod.tm_gensim`, :mod:`~tmtoolkit.topicmod.tm_lda` or :mod:`~tmtoolkit.topicmod.tm_sklearn`. """ import numpy as np from scipy.spatial.distance import pdist from scipy.sparse import issparse from scipy.special import gammaln from ._eval_tools import FakedGensimDict from tmtoolkit.bow.dtm import dtm_and_vocab_to_gensim_corpus_and_dict from .model_stats import top_words_for_topics from tmtoolkit.bow.bow_stats import doc_frequencies, codoc_frequencies from ..utils import argsort #%% Evaluation metrics def metric_held_out_documents_wallach09(dtm_test, theta_test, phi_train, alpha, n_samples=10000): """ Estimation of the probability of held-out documents according to [Wallach2009]_ using a document-topic estimation `theta_test` that was estimated via held-out documents `dtm_test` on a trained model with a topic-word distribution `phi_train` and a document-topic prior `alpha`. Draw `n_samples` according to `theta_test` for each document in `dtm_test` (memory consumption and run time can be very high for larger `n_samples` and a large amount of big documents in `dtm_test`). A document-topic estimation `theta_test` can be obtained from a trained model from the "lda" package or scikit-learn package with the `transform()` method. Adopted MATLAB code `originally from Ian Murray, 2009 <https://people.cs.umass.edu/~wallach/code/etm/>`_ and downloaded from `umass.edu <https://people.cs.umass.edu/~wallach/code/etm/lda_eval_matlab_code_20120930.tar.gz>`_. .. note:: Requires `gmpy2 <https://github.com/aleaxit/gmpy>`_ package for multiple-precision arithmetic to avoid numerical underflow. .. [Wallach2009] Wallach, H.M., Murray, I., Salakhutdinov, R. and Mimno, D., 2009. Evaluation methods for topic models. :param dtm_test: held-out documents of shape NxM with N documents and vocabulary size M :param theta_test: document-topic estimation of `dtm_test`; shape NxK with K topics :param phi_train: topic-word distribution of a trained topic model that should be evaluated; shape KxM :param alpha: document-topic prior of the trained topic model that should be evaluated; either a scalar or an array of length K :return: estimated probability of held-out documents """ import gmpy2 n_test_docs, n_vocab = dtm_test.shape if n_test_docs != theta_test.shape[0]: raise ValueError('shapes of `dtm_test` and `theta_test` do not match (unequal number of documents)') _, n_topics = theta_test.shape if n_topics != phi_train.shape[0]: raise ValueError('shapes of `theta_test` and `phi_train` do not match (unequal number of topics)') if n_vocab != phi_train.shape[1]: raise ValueError('shapes of `dtm_test` and `phi_train` do not match (unequal size of vocabulary)') if isinstance(alpha, np.ndarray): alpha_sum = np.sum(alpha) else: alpha_sum = alpha * n_topics alpha = np.repeat(alpha, n_topics) if alpha.shape != (n_topics, ): raise ValueError('`alpha` has invalid shape (should be vector of length n_topics)') # samples: random topic assignments for each document # shape: n_test_docs x n_samples # values in [0, n_topics) ~ theta_test samples = np.array([np.random.choice(n_topics, n_samples, p=theta_test[d, :]) for d in range(n_test_docs)]) assert samples.shape == (n_test_docs, n_samples) assert 0 <= samples.min() < n_topics assert 0 <= samples.max() < n_topics # n_k: number of documents per topic and sample # shape: n_topics x n_samples # values in [0, n_test_docs] n_k = np.array([np.sum(samples == t, axis=0) for t in range(n_topics)]) assert n_k.shape == (n_topics, n_samples) assert 0 <= n_k.min() <= n_test_docs assert 0 <= n_k.max() <= n_test_docs # calculate log p(z) for each sample # shape: 1 x n_samples log_p_z = np.sum(gammaln(n_k + alpha[:, np.newaxis]), axis=0) + gammaln(alpha_sum) \ - np.sum(gammaln(alpha)) - gammaln(n_test_docs + alpha_sum) assert log_p_z.shape == (n_samples,) # calculate log p(w|z) for each sample # shape: 1 x n_samples log_p_w_given_z = np.zeros(n_samples) dtm_is_sparse = issparse(dtm_test) for d in range(n_test_docs): if dtm_is_sparse: word_counts_d = dtm_test[d].toarray().flatten() else: word_counts_d = dtm_test[d] words = np.repeat(np.arange(n_vocab), word_counts_d) assert words.shape == (word_counts_d.sum(),) phi_topics_d = phi_train[samples[d]] # phi for topics in samples for document d log_p_w_given_z += np.sum(np.log(phi_topics_d[:, words]), axis=1) log_joint = log_p_z + log_p_w_given_z # calculate log theta_test # shape: 1 x n_samples log_theta_test = np.zeros(n_samples) for d in range(n_test_docs): log_theta_test += np.log(theta_test[d, samples[d]]) # compare log_weights = log_joint - log_theta_test # calculate final log evidence # requires using gmpy2 to avoid numerical underflow exp_sum = gmpy2.mpfr(0) for exp in (gmpy2.exp(x) for x in log_weights): exp_sum += exp return float(gmpy2.log(exp_sum)) - np.log(n_samples) metric_held_out_documents_wallach09.direction = 'maximize' def metric_cao_juan_2009(topic_word_distrib): """ Calculate metric as in [Cao2008]_ using topic-word distribution `topic_word_distrib`. .. [Cao2008] Cao Juan, Xia Tian, Li Jintao, Zhang Yongdong, and Tang Sheng. 2009. A density-based method for adaptive LDA model selection. Neurocomputing — 16th European Symposium on Artificial Neural Networks 2008 72, 7–9: 1775–1781. <http://doi.org/10.1016/j.neucom.2008.06.011>. :param topic_word_distrib: topic-word distribution; shape KxM, where K is number of topics, M is vocabulary size :return: calculated metric """ # pdist will calculate the pair-wise cosine distance between all topics in the topic-word distribution # then calculate the mean of cosine similarity (1 - cosine_distance) cos_sim = 1 - pdist(topic_word_distrib, metric='cosine') return np.mean(cos_sim) metric_cao_juan_2009.direction = 'minimize' def metric_arun_2010(topic_word_distrib, doc_topic_distrib, doc_lengths): """ Calculate metric as in [Arun2010]_ using topic-word distribution `topic_word_distrib`, document-topic distribution `doc_topic_distrib` and document lengths `doc_lengths`. .. note:: It will fail when num. of words in the vocabulary is less then the num. of topics (which is very unusual). .. [Arun2010] Rajkumar Arun, V. Suresh, C. E. Veni Madhavan, and M. N. Narasimha Murthy. 2010. On finding the natural number of topics with latent dirichlet allocation: Some observations. In Advances in knowledge discovery and data mining, Mohammed J. Zaki, Jeffrey Xu Yu, Balaraman Ravindran and Vikram Pudi (eds.). Springer Berlin Heidelberg, 391–402. http://doi.org/10.1007/978-3-642-13657-3_43. :param topic_word_distrib: topic-word distribution; shape KxM, where K is number of topics, M is vocabulary size :param doc_topic_distrib: document-topic distribution; shape NxK, where N is the number of documents :param doc_lengths: array of length `N` with number of tokens per document :return: calculated metric """ # CM1 = SVD(M1) cm1 = np.linalg.svd(topic_word_distrib, compute_uv=False) #cm1 /= np.sum(cm1) # normalize by L1 norm # the paper says nothing about normalizing so let's leave it as it is... # CM2 = L*M2 / norm2(L) if doc_lengths.shape[0] != 1: doc_lengths = doc_lengths.T cm2 = np.array(doc_lengths * np.matrix(doc_topic_distrib))[0] cm2 /= np.linalg.norm(doc_lengths, 2) # wrong: #cm2 /= np.linalg.norm(cm2, 2) # normalize by L2 norm # also wrong: #cm2 /= np.sum(cm2) # normalize by L1 norm # symmetric Kullback-Leibler divergence KL(cm1||cm2) + KL(cm2||cm1) # KL is called entropy in scipy # we can't use this because entropy() will normalize the vectors so that they sum up to 1 but this should not # be done according to the paper #return entropy(cm1, cm2) + entropy(cm2, cm1) # use it as in the paper (note: cm1 and cm2 are not prob. distributions that sum up to 1) return np.sum(cm1*np.log(cm1/cm2)) + np.sum(cm2*np.log(cm2/cm1)) metric_arun_2010.direction = 'minimize' def metric_griffiths_2004(logliks): """ Calculate metric as in [GriffithsSteyvers2004]_. Calculates the harmonic mean of the log-likelihood values `logliks`. Burn-in values should already be removed from `logliks`. .. [GriffithsSteyvers2004] Thomas L. Griffiths and Mark Steyvers. 2004. Finding scientific topics. Proceedings of the National Academy of Sciences 101, suppl 1: 5228–5235. http://doi.org/10.1073/pnas.0307752101 .. note:: Requires `gmpy2 <https://github.com/aleaxit/gmpy>`_ package for multiple-precision arithmetic to avoid numerical underflow. :param logliks: array with log-likelihood values :return: calculated metric """ import gmpy2 # using median trick as in Martin Ponweiser's Diploma Thesis 2012, p.36 ll_med = np.median(logliks) ps = [gmpy2.exp(ll_med - x) for x in logliks] ps_mean = gmpy2.mpfr(0) for p in ps: ps_mean += p / len(ps) return float(ll_med - gmpy2.log(ps_mean)) # after taking the log() we can use a Python float() again metric_griffiths_2004.direction = 'maximize' def metric_coherence_mimno_2011(topic_word_distrib, dtm, top_n=20, eps=1e-12, normalize=True, return_mean=False): """ Calculate coherence metric according to [Mimno2011]_ (a.k.a. "U_Mass" coherence metric). There are two modifications to the originally suggested measure: - uses a different epsilon by default (set `eps=1` for original) - uses a normalizing constant by default (set `normalize=False` for original) Provide a topic word distribution as `topic_word_distrib` and a document-term-matrix `dtm` (can be sparse). `top_n` controls how many most probable words per topic are selected. By default, it will return a NumPy array of coherence values per topic (same ordering as in `topic_word_distrib`). Set `return_mean` to True to return the mean of all topics instead. .. [Mimno2011] D. Mimno, H. Wallach, E. Talley, M. Leenders, A. McCullum 2011: Optimizing semantic coherence in topic models :param topic_word_distrib: topic-word distribution; shape KxM, where K is number of topics, M is vocabulary size :param dtm: document-term matrix of shape NxM with N documents and vocabulary size M :param top_n: number of most probable words selected per topic :param eps: smoothing constant epsilon :param normalize: if True, normalize coherence values :param return_mean: if True, return mean of all coherence values, otherwise array of coherence per topic :return: if `return_mean` is True, mean of all coherence values, otherwise array of length K with coherence per topic """ n_topics, n_vocab = topic_word_distrib.shape if n_vocab != dtm.shape[1]: raise ValueError('shapes of provided `topic_word_distrib` and `dtm` do not match (vocab sizes differ)') if top_n > n_vocab: raise ValueError('`top_n=%d` is larger than the vocabulary size of %d words' % (top_n, topic_word_distrib.shape[1])) top_words = top_words_for_topics(topic_word_distrib, top_n) # V if issparse(dtm) and dtm.format != 'csc': dtm = dtm.tocsc() coh = [] for t in range(n_topics): c_t = 0 v = top_words[t] top_dtm = dtm[:, v] df = doc_frequencies(top_dtm) # D(v) codf = codoc_frequencies(top_dtm) # D(v, v') for m in range(1, top_n): for l in range(m): c_t += np.log((codf[m, l] + eps) / df[l]) coh.append(c_t) coh = np.array(coh) if normalize: coh *= 2 / (top_n * (top_n-1)) if return_mean: return coh.mean() else: return coh metric_coherence_mimno_2011.direction = 'maximize' def metric_coherence_gensim(measure, topic_word_distrib=None, gensim_model=None, vocab=None, dtm=None, gensim_corpus=None, texts=None, top_n=20, return_coh_model=False, return_mean=False, **kwargs): """ Calculate model coherence using Gensim's `CoherenceModel <https://radimrehurek.com/gensim/models/coherencemodel.html>`_. See also this `tutorial <https://rare-technologies.com/what-is-topic-coherence/>`_. Define which measure to use with parameter `measure`: - ``'u_mass'`` - ``'c_v'`` - ``'c_uci'`` - ``'c_npmi'`` Provide a topic word distribution `topic_word_distrib` OR a Gensim model `gensim_model` and the corpus' vocabulary as `vocab` OR pass a gensim corpus as `gensim_corpus`. `top_n` controls how many most probable words per topic are selected. If measure is ``'u_mass'``, a document-term-matrix `dtm` or `gensim_corpus` must be provided and `texts` can be None. If any other measure than ``'u_mass'`` is used, tokenized input as `texts` must be provided as 2D list:: [['some', 'text', ...], # doc. 1 ['some', 'more', ...], # doc. 2 ['another', 'document', ...]] # doc. 3 If `return_coh_model` is True, the whole :class:`gensim.models.CoherenceModel` instance will be returned, otherwise: - if `return_mean` is True, the mean coherence value will be returned - if `return_mean` is False, a list of coherence values (for each topic) will be returned Provided `kwargs` will be passed to :class:`gensim.models.CoherenceModel` or :meth:`gensim.models.CoherenceModel.get_coherence_per_topic`. .. note:: This function also supports models from `lda` and `sklearn` (by passing `topic_word_distrib`, `dtm` and `vocab`)! :param measure: the coherence calculation type; one of the values listed above :param topic_word_distrib: topic-word distribution; shape KxM, where K is number of topics, M is vocabulary size if `gensim_model` is not given :param gensim_model: a topic model from Gensim if `topic_word_distrib` is not given :param vocab: vocabulary list/array if `gensim_corpus` is not given :param dtm: document-term matrix of shape NxM with N documents and vocabulary size M if `gensim_corpus` is not given :param gensim_corpus: a Gensim corpus if `vocab` is not given :param texts: list of tokenized documents; necessary if using a `measure` other than ``'u_mass'`` :param top_n: number of most probable words selected per topic :param return_coh_model: if True, return :class:`gensim.models.CoherenceModel` as result :param return_mean: if `return_coh_model` is False and `return_mean` is True, return mean coherence :param kwargs: parameters passed to :class:`gensim.models.CoherenceModel` or :meth:`gensim.models.CoherenceModel.get_coherence_per_topic` :return: if `return_coh_model` is True, return :class:`gensim.models.CoherenceModel` as result; otherwise if `return_mean` is True, mean of all coherence values, otherwise array of length K with coherence per topic """ try: import gensim except ImportError: raise ValueError('package `gensim` must be installed for `coherence_gensim` metric') if measure == 'u_mass' and dtm is None and gensim_corpus is None: raise ValueError('document-term-matrix `dtm` or Gensim corpus `gensim_corpus` must be provided for measure ' '`u_mass`') elif measure != 'u_mass' and texts is None: raise ValueError('`texts` must be provided for any other measure than `u_mass`') if gensim_model is None: if topic_word_distrib is None: raise ValueError('`topic_word_distrib` must be given if `gensim_model` was not passed') n_topics, n_vocab = topic_word_distrib.shape else: n_topics, n_vocab = None, None if vocab is not None: if len(vocab) != n_vocab: raise ValueError('shape of provided `topic_word_distrib` and length of `vocab` do not match ' '(vocab sizes differ)') if top_n > n_vocab: raise ValueError('`top_n=%d` is larger than the vocabulary size of %d words' % (top_n, topic_word_distrib.shape[1])) elif gensim_corpus is None: raise ValueError('a gensim corpus `gensim_corpus` must be passed if no `vocab` is given') if measure == 'u_mass' and gensim_corpus is None and n_vocab != dtm.shape[1]: raise ValueError('shapes of provided `topic_word_distrib` and `dtm` do not match (vocab sizes differ)') if vocab is not None: top_words = top_words_for_topics(topic_word_distrib, top_n, vocab=vocab) # V else: top_words = None coh_model_kwargs = {'coherence': measure} if measure == 'u_mass': if gensim_corpus is None: gensim_corpus, gensim_dict = dtm_and_vocab_to_gensim_corpus_and_dict(dtm, vocab) coh_model_kwargs.update(dict(corpus=gensim_corpus, dictionary=gensim_dict, topics=top_words)) else: coh_model_kwargs.update(dict(model=gensim_model, corpus=gensim_corpus, topn=top_n)) else: if gensim_corpus is None: coh_model_kwargs.update(dict(texts=texts, topics=top_words, dictionary=FakedGensimDict.from_vocab(vocab))) else: coh_model_kwargs.update(dict(texts=texts, model=gensim_model, corpus=gensim_corpus, topn=top_n)) get_coh_kwargs = {} for opt in ('segmented_topics', 'with_std', 'with_support'): if opt in kwargs: get_coh_kwargs[opt] = kwargs.pop(opt) coh_model_kwargs.update(kwargs) coh_model = gensim.models.CoherenceModel(**coh_model_kwargs) if return_coh_model: return coh_model else: if return_mean: return coh_model.get_coherence() else: return coh_model.get_coherence_per_topic(**get_coh_kwargs) metric_coherence_gensim.direction = 'maximize' #%% Helper functions for topic model evaluation def results_by_parameter(res, param, sort_by=None, sort_desc=False): """ Takes a list of evaluation results `res` returned by a topic model evaluation function – a list in the form: .. code-block:: text [(parameter_set_1, {'<metric_name>': result_1, ...}), ..., (parameter_set_n, {'<metric_name>': result_n, ...})]) Then returns a list with tuple pairs using only the parameter `param` from the parameter sets in the evaluation results such that the returned list is: .. code-block:: text [(param_1, {'<metric_name>': result_1, ...}), ..., (param_n, {'<metric_name>': result_n, ...})] Optionally order either by parameter value (`sort_by` is None - the default) or by result metric (``sort_by='<metric name>'``). :param res: list of evaluation results :param param: string of parameter name :param sort_by: order by parameter value if this is None, or by a certain result metric given as string :param sort_desc: sort in descending order :return: list with tuple pairs using only the parameter `param` from the parameter sets """ if len(res) == 0: return [] tuples = [(p[param], r) for p, r in res] # single validation results if len(tuples[0]) != 2: raise ValueError('invalid evaluation results passed') params, metric_results = list(zip(*tuples)) if sort_by: sorted_ind = argsort([r[sort_by] for r in metric_results]) else: sorted_ind = argsort(params) if sort_desc: sorted_ind = reversed(sorted_ind) measurements = tuples return [measurements[i] for i in sorted_ind]
43.459574
126
0.679526
0c7918907bbf8b6631211ec4d640bfc6bb165e5f
1,874
py
Python
capstone/capdb/migrations/0051_auto_20181001_1905.py
rachelaus/capstone
2affa02706f9b1a99d032c66f258a7421c40a35e
[ "MIT" ]
134
2017-07-12T17:03:06.000Z
2022-03-27T06:38:29.000Z
capstone/capdb/migrations/0051_auto_20181001_1905.py
rachelaus/capstone
2affa02706f9b1a99d032c66f258a7421c40a35e
[ "MIT" ]
1,362
2017-06-22T17:42:49.000Z
2022-03-31T15:28:00.000Z
capstone/capdb/migrations/0051_auto_20181001_1905.py
rachelaus/capstone
2affa02706f9b1a99d032c66f258a7421c40a35e
[ "MIT" ]
38
2017-06-22T14:46:23.000Z
2022-03-16T05:32:54.000Z
# Generated by Django 2.0.8 on 2018-10-01 19:05 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('capdb', '0050_fts'), ] operations = [ migrations.CreateModel( name='Ngram', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('count', models.IntegerField()), ('year', models.IntegerField()), ('jurisdiction', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='ngrams', to='capdb.Jurisdiction', to_field='slug')), ], ), migrations.CreateModel( name='NgramWord', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('word', models.CharField(max_length=10000, unique=True)), ], ), migrations.AddField( model_name='ngram', name='w1', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='w1', to='capdb.NgramWord'), ), migrations.AddField( model_name='ngram', name='w2', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='w2', to='capdb.NgramWord'), ), migrations.AddField( model_name='ngram', name='w3', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='w3', to='capdb.NgramWord'), ), migrations.AddIndex( model_name='ngram', index=models.Index(fields=['w1', 'w2', 'w3'], name='capdb_ngram_w1_id_22799f_idx'), ), ]
37.48
162
0.58111
e06b3c7184bf1af176c6cbb42dbc511b9ac75f23
25,178
py
Python
rvlyzer/analysis/graphs.py
nessdoor/RVlyzer
239beb63a4db1653261bc1cc59227ee2ddb77d1a
[ "MIT" ]
null
null
null
rvlyzer/analysis/graphs.py
nessdoor/RVlyzer
239beb63a4db1653261bc1cc59227ee2ddb77d1a
[ "MIT" ]
null
null
null
rvlyzer/analysis/graphs.py
nessdoor/RVlyzer
239beb63a4db1653261bc1cc59227ee2ddb77d1a
[ "MIT" ]
null
null
null
from __future__ import annotations from enum import Enum from itertools import chain, tee, repeat from operator import attrgetter from typing import FrozenSet, List, Tuple, Optional, Mapping, Hashable, Iterable, MutableMapping, \ NamedTuple, Dict, Union from networkx import DiGraph, simple_cycles, restricted_view, all_simple_paths, relabel_nodes, dfs_preorder_nodes, \ Graph from networkx.classes.graphviews import subgraph_view from networkx.utils import generate_unique_node from rep.base import Instruction, to_line_iterator from rep.fragments import FragmentView, CodeFragment class InvalidCodeError(Exception): """An error raised when a code fragment doesn't follow some expected layout or assumption.""" pass class Transition(Enum): """ A type of control flow progression. Each member carries some information characterizing the type of advancement: - resolve_symbol: whether the progression implies a symbol resolution; - branching: whether progressing in this direction is conditional. """ SEQ = (False, False) """Sequential advancement: PC advances linearly, towards the instruction that follows.""" U_JUMP = (True, False) """Unconditional jump: a simple local unconditional jump.""" C_JUMP = (True, True) """ Conditional jump: a simple local conditional jump. An alternate sequential execution path exists.""" CALL = (True, False) """Procedure call: non-local jump to an internal or external procedure.""" RETURN = (False, False) """Return: return jump from a call.""" def __new__(cls, *args, **kwargs): # Calculate a unique ID to avoid aliasing id_val = len(cls.__members__) + 1 instance = object.__new__(cls) instance._value_ = id_val return instance def __init__(self, resolve_symbol: bool, branching: bool): self.resolve_symbol = resolve_symbol self.branching = branching def __repr__(self): return '<%s.%s: (%s,%s)>' % (self.__class__.__name__, self.name, self.resolve_symbol, self.branching) jump_ops: Mapping[str, Transition] = { "call": Transition.CALL, "jr": Transition.RETURN, "j": Transition.U_JUMP, "jal": Transition.CALL, "jalr": Transition.CALL, "beq": Transition.C_JUMP, "beqz": Transition.C_JUMP, "bne": Transition.C_JUMP, "bnez": Transition.C_JUMP, "blt": Transition.C_JUMP, "bltz": Transition.C_JUMP, "bltu": Transition.C_JUMP, "ble": Transition.C_JUMP, "blez": Transition.C_JUMP, "bleu": Transition.C_JUMP, "bgt": Transition.C_JUMP, "bgtz": Transition.C_JUMP, "bgtu": Transition.C_JUMP, "bge": Transition.C_JUMP, "bgez": Transition.C_JUMP, "bgeu": Transition.C_JUMP } """Mapping between control flow manipulation instructions and the kind of transition that they introduce.""" class BasicBlock: """ A program's basic block. Each member of this class is a code container, decorated with additional metadata that would have to be extracted every time from bare assembly. Members of this class are identified by some hashable object. Uniqueness is not enforced. :ivar identifier: the hashable identifier for the basic block :ivar labels: labels representing marking the entry point for the basic block, if any :ivar code: the code fragment containing the actual code :ivar outgoing_flow: the shape of the outgoing flow and its destination, in the format returned by the execution_flow_at function """ identifier: Hashable labels: List[str] code: CodeFragment outgoing_flow: Tuple[Transition, Optional[str]] def __init__(self, fragment: CodeFragment, block_id: Hashable): starting_line = fragment[fragment.begin] ending_line = fragment[fragment.end - 1] if not isinstance(ending_line, Instruction): raise InvalidCodeError("A basic block must always end with an instruction.") self.identifier = block_id self.labels = list(starting_line.labels) self.code = fragment self.outgoing_flow = execution_flow_at(ending_line) def __repr__(self): return "BasicBlock(" + repr(self.code) + ", " + repr(self.identifier) + ")" def __str__(self): return "---\nBB ID: " + str(self.identifier) + "\nLabels: " + str(self.labels) + "\n\n" + str(self.code) + \ "\nOutgoing exec arc: " + str(self.outgoing_flow) + "\n---\n" class ProcedureCall(NamedTuple): """ A procedure call. Calls are represented in terms of caller, callee and point where execution is expected to return (`confluence point`). """ caller: Hashable callee: Hashable confluence_point: Hashable class LocalGraph: """ A CFG representing some part of a program. A local graph is characterized by one or more entry-points, a digraph, some terminal nodes and a collection of "arcs" directed to some external procedures. All entering execution flows proceed from the entry-points and reach the terminal nodes, unless an external call diverges. A local graph may not be connected, with disconnected components being confluence point for flows returning from external calls. The information necessary to obtain a connected graph can be extracted by resolving the external calls. Internal calls are represented by edges connecting caller and confluence point, labeled with the `CALL` transition kind and with a `caller` attribute indicating the called procedure's symbolic name. No check is performed on the consistency of the information used to instantiate these objects. """ entry_labels: List[str] entry_point_ids: List[Hashable] graph: DiGraph external_calls: List[ProcedureCall] terminal_nodes_ids: List[Hashable] def __init__(self, entry_points: Iterable[Hashable], graph: DiGraph, calls: Iterable[ProcedureCall], terminals: Iterable[Hashable]): """ Construct a new local graph. :param entry_points: a collection of node IDs indicating the entry-points :param graph: the local graph, as a NetworkX DiGraph :param calls: a collection of purportedly external calls :param terminals: a collection of node IDs indicating which are the terminal nodes """ # Set up the entry-point information self.entry_point_ids = list(entry_points) # Characterize the function in terms of a graph and the nested calls it performs self.graph = graph self.external_calls = list(calls) # Keep track of the terminal nodes self.terminal_nodes_ids = list(terminals) @property def entry_labels(self) -> List[str]: labeling_lists = map(lambda n: self.graph.nodes[n]['labels'], self.entry_point_ids) return list(chain.from_iterable(labeling_lists)) def get_symbol_table(self) -> Mapping[str, Hashable]: """ Return a mapping between entry labels and entry-points' node IDs. :return: a mapping from public labels to their entry-point IDs """ return {lab: nid for nid in self.entry_point_ids for lab in self.graph.nodes[nid]['labels']} def merge(self, other: LocalGraph) -> LocalGraph: """ Merge this local graph with `other` into a new local graph. The resulting local graph has the union of entry-points, graphs and terminals. A cross-lookup is performed between the two objects in an attempt to resolve external calls that may become internal. Newly found internal calls are converted into graph edges of kind `Transition.CALL` with attribute `callee` pointing to one of the local entry-points. The remaining external calls are merged and included in the new object. :param other: the other graph that takes part in the operation :return: a local graph obtained by merging self with other :raise InvalidCodeError: when there is a naming clash between entry labels of the two graphs """ self_symbols = self.get_symbol_table() other_symbols = other.get_symbol_table() # Look for entry labels collisions. If the original code is rational, this shouldn't happen. if not frozenset(self_symbols).isdisjoint(other_symbols): raise InvalidCodeError("Labeling clash") # Remap the other graph, entry-point IDs, callers and terminals other = remap_local_graph(other, solve_graph_collision(self.graph, other.graph)) # Start merging stuff merged_eps = chain(self.entry_point_ids, other.entry_point_ids) merged_graph = self.graph.copy() merged_graph.update(other.graph) merged_terminals = chain(self.terminal_nodes_ids, other.terminal_nodes_ids) # TODO re-implement with partitions sec1, sec2 = tee(self.external_calls) oec1, oec2 = tee(other.external_calls) # Merge external calls merged_calls = chain(filter(lambda c: c.callee not in other_symbols, sec1), filter(lambda c: c.callee not in self_symbols, oec1)) # Resolve internal calls for ic in filter(lambda c: c.callee in other_symbols, sec2): merged_graph.add_edge(ic.caller, ic.confluence_point, kind=Transition.CALL, callee=ic.callee) for ic in filter(lambda c: c.callee in self_symbols, oec2): merged_graph.add_edge(ic.caller, ic.confluence_point, kind=Transition.CALL, callee=ic.callee) return LocalGraph(merged_eps, merged_graph, merged_calls, merged_terminals) def solve_graph_collision(ref: Graph, other: Graph) -> Dict[Hashable, Hashable]: """ Given two NetworkX graphs, find eventual name collisions between nodes and propose a solution. The proposed solution comes in the form of a dictionary, containing remapping rules that could be applied to the second graph in order to solve any clash. :param ref: a reference graph :param other: the other graph, on which renaming has to be performed :return: a partial mapping that solves eventual clashes once applied on the second graph """ id_clashes = ref.nbunch_iter(other.nodes) return {idc: generate_unique_node() for idc in id_clashes} def remap_local_graph(cfg: LocalGraph, mapping: Dict[Hashable, Hashable]) -> LocalGraph: """ Given a local graph, use the provided mapping to remap node identifiers. An invocation of this function results in the creation of a new local graph in which node identifiers have been remapped according to the contents in the supplied dictionary. The original graph is left untouched. The new mapping may be partial. In that case, only the nodes for which a corresponding key exists are remapped. :param cfg: the local graph to be remapped :param mapping: a dictionary containing the new mappings :return: a new local graph where the selected nodes have been remapped """ new_entry = map(lambda ep: mapping.get(ep, ep), cfg.entry_point_ids) new_graph = relabel_nodes(cfg.graph, mapping) new_calls = map(lambda c: ProcedureCall(mapping.get(c.caller, c.caller), c.callee, mapping.get(c.confluence_point, c.confluence_point)), cfg.external_calls) new_terminals = map(lambda term: mapping.get(term, term), cfg.terminal_nodes_ids) return LocalGraph(new_entry, new_graph, new_calls, new_terminals) def execution_flow_at(inst: Instruction) -> Tuple[Transition, Optional[str]]: """ Determine the state of the execution flow at the given instruction. This function returns a tuple containing a `Transition` type specifier and, in case of a jump, the symbol representing its destination. The transition type indicates in what manner the execution flow shall progress past the given instruction. :param inst: the instruction at which the control flow status must be checked :return: the tuple containing the parting transition """ if inst.opcode in jump_ops: trans_type = jump_ops[inst.opcode] if trans_type.resolve_symbol: return trans_type, inst.immediate.symbol else: return trans_type, None else: # Any instruction that is not a jump instruction must maintain the sequential control flow return Transition.SEQ, None def basic_blocks(code: CodeFragment) -> List[BasicBlock]: """ Extract the basic blocks from a code fragment. The resulting basic blocks contain views on the source fragment, and come in the same order in which they appear in the original fragment. Non-code statements are discarded if they reside between BB boundaries and are not interleaved with code statements. For a correct behaviour, launch this function on a well-delimited code fragment (started by at least one label, terminated by a jump). Be aware that fancy ways of jumping around based on runtime-loaded addresses are not currently supported by this package. :param code: the code fragment whose basic blocks will be extracted :return: the list of basic blocks contained in the original fragment :raise InvalidCodeError: when the provided code fragment has no label or no outgoing jump """ # Identify the block boundaries, that is: those lines marked by a label or containing a control transfer instruction block_boundaries = filter(lambda asl: isinstance(asl.statement, Instruction) and (asl.statement.opcode in jump_ops or len(asl.statement.labels) > 0), # Use a line-oriented iterator, so that we can extract the line numbers to_line_iterator(iter(code), code.begin)) # Given the boundaries, calculate the appropriate cutoff points. # A dictionary is used as a way of implementing an "ordered set" for easy duplicate removal. # TODO find a more elegant way to remove duplicates online cutoff_points = dict() for boundary in block_boundaries: if len(boundary.statement.labels) > 0 and boundary.statement.opcode in jump_ops: # For a labeled line that also contains a jump, record two cut-points so that a single-line block can be # created. cutoff_points[boundary.number] = None cutoff_points[boundary.number + 1] = None elif len(boundary.statement.labels) > 0: # Labeled lines mark cut-points themselves cutoff_points[boundary.number] = None else: # A cut has to be made below any line containing a jump cutoff_points[boundary.number + 1] = None if len(cutoff_points) < 2: raise InvalidCodeError("Code fragment does not start with a label or end with a jump/return.") # Convert the "ordered set" back into a list cutoff_points = list(iter(cutoff_points)) # Start slicing code into basic blocks bb = [] head = cutoff_points[0] for tail in cutoff_points[1:]: if any(isinstance(line, Instruction) for line in code[head:tail]): # Since these blocks are probably gonna end up inside a graph, use the NetworkX's function for unique IDs bb.append(BasicBlock(FragmentView(code, head, tail, head), generate_unique_node())) head = tail return bb def local_cfg(bbs: List[BasicBlock]) -> LocalGraph: """ Construct a local graph from a list of basic blocks. Nodes and edges of the resulting graph will be decorated, respectively, with assembly labels and transition types, registered with the attribute names of `labels` and `kind`. This function works based on a few assumptions: - the basic blocks are provided in the same order they appear inside the original code fragment; - the first block is the entry-point; - all jumps are local; - all blocks with a final `RETURN` transition actually return control to whoever caused the PC to reach the EP. When these conditions are satisfied, a well-formed local graph is returned. :param bbs: the list of basic blocks of which the local graph is formed :return: a LocalGraph object representing the local graph """ local_graph = DiGraph() local_symbol_table: MutableMapping[str, Hashable] = {} pending_jumps: List[Tuple[Hashable, str, Transition]] = [] terminal_nodes = [] calls = [] parent_seq_block = None pending_call = None for bb in bbs: local_graph.add_node(bb.identifier, labels=list(bb.labels), block=bb.code) if parent_seq_block is not None: # Attach the current node to the sequence-wise previous one local_graph.add_edge(parent_seq_block, bb.identifier, kind=Transition.SEQ) parent_seq_block = None elif pending_call is not None: # Set the current node as the return point of an external procedure call calls.append(ProcedureCall(pending_call[0], pending_call[1], bb.identifier)) pending_call = None # Embed the basic block's labels into the node local_symbol_table.update((lab, bb.identifier) for lab in bb.labels) outgoing_transition = bb.outgoing_flow[0] if outgoing_transition is Transition.RETURN: # The outgoing transition is a return-jump: add the node to the list of terminals. terminal_nodes.append(bb.identifier) elif outgoing_transition is Transition.CALL: # The outgoing transition is a procedure call: keep track of it so that the subsequent block will be set as # its confluence point. pending_call = bb.identifier, bb.outgoing_flow[1] else: if outgoing_transition is Transition.SEQ or outgoing_transition.branching: # In case of a sequential or branching transition, the subsequent basic block is to be attached to the # current one. parent_seq_block = bb.identifier if outgoing_transition.resolve_symbol: # In case of a jump, store its origin and symbolic destination for the coming one-pass resolution. pending_jumps.append((bb.identifier, bb.outgoing_flow[1], bb.outgoing_flow[0])) for jumper, dst, kind in pending_jumps: # Resolve the internal symbolic jumps and add the missing edges local_graph.add_edge(jumper, local_symbol_table[dst], kind=kind) # Transform recursive calls into internal call arcs # TODO re-implement with partitions or sets ci, ce = tee(calls) for cll in filter(lambda c: c.callee in local_symbol_table, ci): local_graph.add_edge(cll.caller, cll.confluence_point, kind=Transition.CALL, callee=cll.callee) return LocalGraph([bbs[0].identifier], local_graph, filter(lambda c: c.callee not in local_symbol_table, ce), terminal_nodes) def internalize_calls(cfg: LocalGraph) -> LocalGraph: """ Transform external callees into symbolic internal nodes. A symbolic node will bear an identifier and a single label, both equal to the callee's symbolic name. Of course, these new nodes will be isolated from the rest of the graph. Therefore, this method is of practical use only when the user is planning an attempt at name resolution by modifying the internal graph. :param cfg: a local graph :return: a new local graph, with all external calls converted into symbolic nodes """ # Gather all the callees' names external_nodes_ids = set(map(attrgetter('callee'), cfg.external_calls)) # Create a new local graph containing only the symbolic nodes foreign_graph = DiGraph() foreign_graph.add_nodes_from((i, {'labels': [i], 'external': True}) for i in external_nodes_ids) external = LocalGraph(external_nodes_ids, foreign_graph, [], external_nodes_ids) # Merge the new graph with the original and return the result return cfg.merge(external) def exec_graph(cfg: LocalGraph, entry_point: Union[str, Hashable], ignore_calls: FrozenSet[str] = frozenset()) -> DiGraph: """ Given a local CFG and an entry-point, return the graph of the node visits performed by the execution flow. The procedure consists in a recursive, depth-first visit of sub-graphs, starting from the initial node and repeating itself for every `CALL` arc encountered. Given their nasty nature, recursive calls are not expanded; instead, they are represented by special nodes with IDs of the form `call{<call destination>, <unique ID>}`. The user can specify additional calls that mustn't be expanded. Different calls to the same procedure result in differently-labeled sub-graphs being attached, so the resulting graph is more a substantiation of the execution paths than a sub-graph of the original CFG. As a consequence, don't expect a one-to-one correspondence between the CFG's nodes and the one in the execution graph. Terminal nodes reachability is guaranteed only if the graph is well formed and any external call reached by the execution flow has been internalized, if not explicitly set as ignored. :param cfg: a CFG description of some code :param entry_point: an entry-point specification for the CFG, either as a node ID or as a symbolic label :param ignore_calls: a set of calls that won't be expanded into sub-graphs :return: a directed graph representing the execution starting from the specified entry-point """ # Get the entry-point ID source = entry_point if entry_point in cfg.entry_point_ids else cfg.get_symbol_table()[entry_point] source_labels = cfg.graph.nodes[source]['labels'] # If one of the entry-point's labels is in the ignore set, return a node summarizing the call if not ignore_calls.isdisjoint(source_labels): res = DiGraph() # The node will have a synthetic ID 'call{<call destination>, <unique ID>}', and will carry the original labels. res.add_node('call{' + str(source) + ', ' + generate_unique_node() + '}', labels=source_labels, external=True) return res # Traverse the subtree rooted at the entry-point and collect the visited nodes visited_nodes = frozenset(dfs_preorder_nodes(cfg.graph, source)) # Produce a view of the visited component visited_component: Graph = subgraph_view(cfg.graph, lambda n: n in visited_nodes) # Initialize the returned graph with the contents of the visited component res = DiGraph() res.update(visited_component) # Iterate over the CALL edges inside the visited component for edge in filter(lambda e: visited_component.edges[e]['kind'] == Transition.CALL, visited_component.edges): # Recursively compute the component of the called procedures nested_component = exec_graph(cfg, visited_component.edges[edge]['callee'], ignore_calls.union(source_labels)) # Add the nested component to the result, avoiding ID clashes relabel_nodes(nested_component, solve_graph_collision(res, nested_component), False) res.update(nested_component) # Take the root of the sub-component and its terminal nodes head = next(filter(lambda n: nested_component.in_degree(n) == 0, nested_component.nodes)) tail = filter(lambda n: nested_component.out_degree(n) == 0, nested_component.nodes) # Substitute the original edge with call and return edges toward/from the sub-component res.remove_edge(*edge) res.add_edge(edge[0], head, kind=Transition.CALL) res.add_edges_from(zip(tail, repeat(edge[1])), kind=Transition.RETURN) return res def merge_points(cfg: DiGraph) -> FrozenSet[int]: """ Find all the merge point in the CFG. A merge point is a node on which multiple directed edges converge. :arg cfg: the CFG representing a program :return: a frozen set containing all the merge points """ # Node 0 represents the calling environment, so it must be excluded from the analysis return frozenset((n for n in cfg.nodes.keys() if n != 0 and cfg.in_degree(n) > 1)) def loop_back_nodes(cfg: DiGraph) -> FrozenSet[int]: """ Find all the nodes of a CFG that are exclusively part of a loop. A node is exclusively part of a loop if it belongs only to those paths that traverse the back-loop of a cycle. :arg cfg: the CFG representation of a program :return: a frozen set of all the loop-exclusive nodes """ # Node 0 closes an improper loop over the CFG, so it must be ignored cycle_nodes = frozenset(chain.from_iterable(simple_cycles(restricted_view(cfg, [0], [])))) return frozenset(cycle_nodes.difference(chain.from_iterable( # For every path, its last component is node 0; therefore, we have to cut it. map(lambda l: l[:-1], all_simple_paths(cfg, 1, 0)))))
43.864111
120
0.698308
d9aa957182d6521f7cd86108ab6408f7edfe4d78
2,663
py
Python
pandas/tests/test_msgpack/test_limits.py
springcoil/pandas
945075ad78cef652039feb50d60092b0580604e6
[ "PSF-2.0", "Apache-2.0", "BSD-2-Clause", "BSD-3-Clause" ]
652
2015-07-26T00:00:17.000Z
2022-02-24T18:30:04.000Z
pandas/tests/test_msgpack/test_limits.py
springcoil/pandas
945075ad78cef652039feb50d60092b0580604e6
[ "PSF-2.0", "Apache-2.0", "BSD-2-Clause", "BSD-3-Clause" ]
8
2015-09-07T03:38:19.000Z
2021-05-23T03:18:51.000Z
pandas/tests/test_msgpack/test_limits.py
springcoil/pandas
945075ad78cef652039feb50d60092b0580604e6
[ "PSF-2.0", "Apache-2.0", "BSD-2-Clause", "BSD-3-Clause" ]
40
2015-07-24T19:45:08.000Z
2021-11-01T14:54:56.000Z
#!/usr/bin/env python # coding: utf-8 from __future__ import absolute_import, division, print_function, unicode_literals import pandas.util.testing as tm from pandas.msgpack import packb, unpackb, Packer, Unpacker, ExtType class TestLimits(tm.TestCase): def test_integer(self): x = -(2 ** 63) assert unpackb(packb(x)) == x self.assertRaises((OverflowError, ValueError), packb, x-1) x = 2 ** 64 - 1 assert unpackb(packb(x)) == x self.assertRaises((OverflowError, ValueError), packb, x+1) def test_array_header(self): packer = Packer() packer.pack_array_header(2**32-1) self.assertRaises((OverflowError, ValueError), packer.pack_array_header, 2**32) def test_map_header(self): packer = Packer() packer.pack_map_header(2**32-1) self.assertRaises((OverflowError, ValueError), packer.pack_array_header, 2**32) def test_max_str_len(self): d = 'x' * 3 packed = packb(d) unpacker = Unpacker(max_str_len=3, encoding='utf-8') unpacker.feed(packed) assert unpacker.unpack() == d unpacker = Unpacker(max_str_len=2, encoding='utf-8') unpacker.feed(packed) self.assertRaises(ValueError, unpacker.unpack) def test_max_bin_len(self): d = b'x' * 3 packed = packb(d, use_bin_type=True) unpacker = Unpacker(max_bin_len=3) unpacker.feed(packed) assert unpacker.unpack() == d unpacker = Unpacker(max_bin_len=2) unpacker.feed(packed) self.assertRaises(ValueError, unpacker.unpack) def test_max_array_len(self): d = [1, 2, 3] packed = packb(d) unpacker = Unpacker(max_array_len=3) unpacker.feed(packed) assert unpacker.unpack() == d unpacker = Unpacker(max_array_len=2) unpacker.feed(packed) self.assertRaises(ValueError, unpacker.unpack) def test_max_map_len(self): d = {1: 2, 3: 4, 5: 6} packed = packb(d) unpacker = Unpacker(max_map_len=3) unpacker.feed(packed) assert unpacker.unpack() == d unpacker = Unpacker(max_map_len=2) unpacker.feed(packed) self.assertRaises(ValueError, unpacker.unpack) def test_max_ext_len(self): d = ExtType(42, b"abc") packed = packb(d) unpacker = Unpacker(max_ext_len=3) unpacker.feed(packed) assert unpacker.unpack() == d unpacker = Unpacker(max_ext_len=2) unpacker.feed(packed) self.assertRaises(ValueError, unpacker.unpack)
28.031579
82
0.614345
36fa1044f90401ce931c47d01539df024db862bf
644
py
Python
edukasi/migrations/0028_auto_20210114_1654.py
irzaip/trampill_py
74310e44864ab1bb8b20f529c21079cbd8076875
[ "MIT" ]
2
2020-11-21T04:25:11.000Z
2021-07-07T08:26:10.000Z
edukasi/migrations/0028_auto_20210114_1654.py
irzaip/trampill_py
74310e44864ab1bb8b20f529c21079cbd8076875
[ "MIT" ]
7
2021-07-04T14:55:48.000Z
2021-09-08T12:51:22.000Z
edukasi/migrations/0028_auto_20210114_1654.py
irzaip/trampill_py
74310e44864ab1bb8b20f529c21079cbd8076875
[ "MIT" ]
1
2021-09-10T06:05:49.000Z
2021-09-10T06:05:49.000Z
# Generated by Django 3.1.2 on 2021-01-14 09:54 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('edukasi', '0027_review'), ] operations = [ migrations.AddField( model_name='review', name='date_created', field=models.DateTimeField(auto_now_add=True, null=True), ), migrations.AlterField( model_name='review', name='review', field=models.IntegerField(choices=[(1, '*'), (2, '**'), (3, '***'), (4, '****'), (5, '*****')], default='5'), ), ]
26.833333
122
0.509317
37db91139e5ae03f7d95a6648f26f63231204928
6,491
py
Python
external/BB2SegNet/refinement_net/core/Engine.py
zhuhu00/MOTSFusion_modify
190224a7c3fbded69fedf9645a0ebbf08227fb6d
[ "MIT" ]
154
2019-07-25T02:27:39.000Z
2022-02-18T19:40:43.000Z
external/BB2SegNet/refinement_net/core/Engine.py
zhuhu00/MOTSFusion_modify
190224a7c3fbded69fedf9645a0ebbf08227fb6d
[ "MIT" ]
4
2019-11-12T00:38:54.000Z
2021-08-14T08:40:12.000Z
external/BB2SegNet/refinement_net/core/Engine.py
zhuhu00/MOTSFusion_modify
190224a7c3fbded69fedf9645a0ebbf08227fb6d
[ "MIT" ]
25
2019-09-17T08:49:57.000Z
2022-03-21T20:11:57.000Z
import tensorflow as tf from external.BB2SegNet.refinement_net.core import Measures from external.BB2SegNet.refinement_net.core.Log import log from external.BB2SegNet.refinement_net.core.Measures import measures_string_to_print, accumulate_measures, compute_measures_average from external.BB2SegNet.refinement_net.core.Saver import Saver from external.BB2SegNet.refinement_net.core.Timer import Timer from external.BB2SegNet.refinement_net.core.Trainer import Trainer from external.BB2SegNet.refinement_net.datasets.Loader import load_dataset from external.BB2SegNet.refinement_net.forwarding.FewShotSegmentationForwarder import FewShotSegmentationForwarder from external.BB2SegNet.refinement_net.network.Network import Network class Engine: def __init__(self, config, session=None): self.config = config self.save = config.bool("save", True) self.task = config.string("task", "train") self.dataset = config.string("dataset").lower() self.num_epochs = config.int("num_epochs", 1000) self.session = self._create_session(session) self.global_step = tf.Variable(0, name='global_step', trainable=False) # need_train = True # TODO should be self.task != "eval", but right now testnet needs to reuse variables from train need_train = config.bool("need_train",True) if need_train: self.train_data = load_dataset(config, "train", self.session, self.dataset) freeze_batchnorm = config.bool("freeze_batchnorm", False) print("creating trainnet...") self.train_network = Network(self.config, self.train_data, is_trainnet=True, freeze_batchnorm=freeze_batchnorm, name="trainnet") else: self.train_data = None self.train_network = None need_val = self.task != "train_no_val" if need_val: self.valid_data = load_dataset(config, "val", self.session, self.dataset) print("creating testnet...") reuse_variables = None if need_train else False # with tf.variable_scope('refinement_net'): self.test_network = Network(config, self.valid_data, is_trainnet=False, freeze_batchnorm=True, name="testnet", reuse_variables=reuse_variables) else: self.valid_data = None self.test_network = None self.trainer = Trainer(config, self.train_network, self.test_network, self.global_step, self.session) self.saver = Saver(config, self.session) tf.global_variables_initializer().run(session=self.session) tf.local_variables_initializer().run(session=self.session) self.start_epoch = self.saver.try_load_weights() # self.session.graph.finalize() @staticmethod def _create_session(sess): if sess is None: sess_config = tf.ConfigProto(allow_soft_placement=True) sess_config.gpu_options.allow_growth = True # sess = tf.Session(graph=tf.Graph(),config=sess_config) sess = tf.Session(config=sess_config) # sess = tf.InteractiveSession(config=sess_config) return sess def run(self): if self.task in ("train", "train_no_val"): self.train() elif self.task == "eval": self.eval() elif self.task == "test_dataset_speed": self.test_dataset_speed() elif self.task == "few_shot_segmentation": FewShotSegmentationForwarder(self).forward() # elif self.task == "davis_iterative_few_shot_segmentation": # DAVISIterativeFewShotSegmentationForwarder(self).forward() else: assert False, ("unknown task", self.task) def test_dataset_speed(self): n_total = self.train_data.n_examples_per_epoch() batch_size = self.config.int("batch_size") input_tensors_dict = self.train_network.input_tensors_dict n_curr = 0 with Timer(message="elapsed"): while n_curr < n_total: self.session.run(input_tensors_dict) n_curr += batch_size print("{:>5}".format(n_curr), "/", n_total) def train(self): print("starting training", file=log.v1) for epoch in range(self.start_epoch, self.num_epochs): timer = Timer() train_measures = self.run_epoch(self.trainer.train_step, self.train_data, epoch, is_train_run=True) if self.valid_data is not None: valid_measures = self.run_epoch(self.trainer.validation_step, self.valid_data, epoch, is_train_run=False) else: valid_measures = {} if self.save: self.saver.save_model(epoch + 1) if hasattr(self.train_data, "save_masks"): self.train_data.save_masks(epoch + 1) elapsed = timer.elapsed() train_measures_str = measures_string_to_print(train_measures) val_measures_str = measures_string_to_print(valid_measures) print("epoch", epoch + 1, "finished. elapsed:", "%.5f" % elapsed, "train:", train_measures_str, "valid:", val_measures_str, file=log.v1) def eval(self): timer = Timer() measures = self.run_epoch(self.trainer.validation_step, self.valid_data, epoch=0, is_train_run=False) elapsed = timer.elapsed() print("eval finished. elapsed:", elapsed, measures, file=log.v1) @staticmethod def run_epoch(step_fn, data, epoch, is_train_run): n_examples_processed = 0 n_examples_per_epoch = data.n_examples_per_epoch() extraction_keys = data.get_extraction_keys() measures_accumulated = {} if not is_train_run and hasattr(data, "prepare_saving_epoch_measures"): data.prepare_saving_epoch_measures(epoch + 1) while n_examples_processed < n_examples_per_epoch: timer = Timer() res = step_fn(epoch, extraction_keys=extraction_keys) measures = res[Measures.MEASURES] n_examples_processed += measures[Measures.N_EXAMPLES] measures_str = measures_string_to_print(compute_measures_average(measures, for_final_result=False)) accumulate_measures(measures_accumulated, measures) if not is_train_run and hasattr(data, "save_epoch_measures"): data.save_epoch_measures(measures) if hasattr(data, "use_segmentation_mask"): data.use_segmentation_mask(res) elapsed = timer.elapsed() print("{:>5}".format(n_examples_processed), '/', n_examples_per_epoch, measures_str, "elapsed", elapsed, file=log.v5) measures_averaged = compute_measures_average(measures_accumulated, for_final_result=True) if not is_train_run and hasattr(data, "finalize_saving_epoch_measures"): new_measures = data.finalize_saving_epoch_measures() measures_averaged.update(new_measures) return measures_averaged
45.391608
131
0.725158
2bf1e601e8bd724c073a00fd575e78ced4e13706
53,264
py
Python
src/bondora_api/models/loan_part_details.py
parruc/bondora_api
f36ea8d7149d75a2e5f14a695e5a4e57f0a3518d
[ "Apache-2.0" ]
8
2019-03-09T20:38:27.000Z
2021-02-10T20:44:22.000Z
src/bondora_api/models/loan_part_details.py
parruc/bondora_api
f36ea8d7149d75a2e5f14a695e5a4e57f0a3518d
[ "Apache-2.0" ]
1
2018-03-06T09:44:21.000Z
2018-03-06T09:44:21.000Z
src/bondora_api/models/loan_part_details.py
parruc/bondora_api
f36ea8d7149d75a2e5f14a695e5a4e57f0a3518d
[ "Apache-2.0" ]
3
2019-06-03T13:44:05.000Z
2020-11-16T13:17:38.000Z
# coding: utf-8 """ Bondora API V1 Bondora API version 1 OpenAPI spec version: v1 Contact: investor@bondora.com Generated by: https://github.com/swagger-api/swagger-codegen.git Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from pprint import pformat from six import iteritems import re class LoanPartDetails(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self, loan_part_id=None, amount=None, auction_id=None, auction_name=None, auction_number=None, auction_bid_number=None, country=None, credit_score=None, credit_score_es_micro_l=None, credit_score_es_equifax_risk=None, credit_score_fi_asiakas_tieto_risk_grade=None, credit_score_ee_mini=None, rating=None, initial_interest=None, interest=None, use_of_loan=None, income_verification_status=None, loan_id=None, loan_status_code=None, user_name=None, gender=None, date_of_birth=None, signed_date=None, re_scheduled_on=None, debt_occured_on=None, debt_occured_on_for_secondary=None, loan_duration=None, next_payment_nr=None, next_payment_date=None, next_payment_sum=None, nr_of_scheduled_payments=None, last_payment_date=None, principal_repaid=None, interest_repaid=None, late_amount_paid=None, principal_late_amount=None, interest_late_amount=None, penalty_late_amount=None, principal_write_off_amount=None, interest_write_off_amount=None, penalty_write_off_amount=None, debt_servicing_cost_main_amount=None, debt_servicing_cost_interest_amount=None, debt_servicing_cost_penalty_amount=None, repaid_principal_current_owner=None, repaid_interests_current_owner=None, late_charges_paid_current_owner=None, repaid_total_current_owner=None, total_repaid=None, debt_managment_events=None, loan_transfers=None, scheduled_payments=None): """ LoanPartDetails - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition. """ self.swagger_types = { 'loan_part_id': 'str', 'amount': 'float', 'auction_id': 'str', 'auction_name': 'str', 'auction_number': 'int', 'auction_bid_number': 'int', 'country': 'str', 'credit_score': 'float', 'credit_score_es_micro_l': 'str', 'credit_score_es_equifax_risk': 'str', 'credit_score_fi_asiakas_tieto_risk_grade': 'str', 'credit_score_ee_mini': 'str', 'rating': 'str', 'initial_interest': 'float', 'interest': 'float', 'use_of_loan': 'int', 'income_verification_status': 'int', 'loan_id': 'str', 'loan_status_code': 'int', 'user_name': 'str', 'gender': 'int', 'date_of_birth': 'datetime', 'signed_date': 'datetime', 're_scheduled_on': 'datetime', 'debt_occured_on': 'datetime', 'debt_occured_on_for_secondary': 'datetime', 'loan_duration': 'int', 'next_payment_nr': 'int', 'next_payment_date': 'datetime', 'next_payment_sum': 'float', 'nr_of_scheduled_payments': 'int', 'last_payment_date': 'datetime', 'principal_repaid': 'float', 'interest_repaid': 'float', 'late_amount_paid': 'float', 'principal_remaining': 'float', 'principal_late_amount': 'float', 'interest_late_amount': 'float', 'penalty_late_amount': 'float', 'late_amount_total': 'float', 'principal_write_off_amount': 'float', 'interest_write_off_amount': 'float', 'penalty_write_off_amount': 'float', 'write_off_total': 'float', 'debt_servicing_cost_main_amount': 'float', 'debt_servicing_cost_interest_amount': 'float', 'debt_servicing_cost_penalty_amount': 'float', 'debt_servicing_cost_total': 'float', 'repaid_principal_current_owner': 'float', 'repaid_interests_current_owner': 'float', 'late_charges_paid_current_owner': 'float', 'repaid_total_current_owner': 'float', 'total_repaid': 'float', 'debt_managment_events': 'list[DebtManagementEvent]', 'loan_transfers': 'list[LoanTransfer]', 'scheduled_payments': 'list[ScheduledPayment]' } self.attribute_map = { 'loan_part_id': 'LoanPartId', 'amount': 'Amount', 'auction_id': 'AuctionId', 'auction_name': 'AuctionName', 'auction_number': 'AuctionNumber', 'auction_bid_number': 'AuctionBidNumber', 'country': 'Country', 'credit_score': 'CreditScore', 'credit_score_es_micro_l': 'CreditScoreEsMicroL', 'credit_score_es_equifax_risk': 'CreditScoreEsEquifaxRisk', 'credit_score_fi_asiakas_tieto_risk_grade': 'CreditScoreFiAsiakasTietoRiskGrade', 'credit_score_ee_mini': 'CreditScoreEeMini', 'rating': 'Rating', 'initial_interest': 'InitialInterest', 'interest': 'Interest', 'use_of_loan': 'UseOfLoan', 'income_verification_status': 'IncomeVerificationStatus', 'loan_id': 'LoanId', 'loan_status_code': 'LoanStatusCode', 'user_name': 'UserName', 'gender': 'Gender', 'date_of_birth': 'DateOfBirth', 'signed_date': 'SignedDate', 're_scheduled_on': 'ReScheduledOn', 'debt_occured_on': 'DebtOccuredOn', 'debt_occured_on_for_secondary': 'DebtOccuredOnForSecondary', 'loan_duration': 'LoanDuration', 'next_payment_nr': 'NextPaymentNr', 'next_payment_date': 'NextPaymentDate', 'next_payment_sum': 'NextPaymentSum', 'nr_of_scheduled_payments': 'NrOfScheduledPayments', 'last_payment_date': 'LastPaymentDate', 'principal_repaid': 'PrincipalRepaid', 'interest_repaid': 'InterestRepaid', 'late_amount_paid': 'LateAmountPaid', 'principal_remaining': 'PrincipalRemaining', 'principal_late_amount': 'PrincipalLateAmount', 'interest_late_amount': 'InterestLateAmount', 'penalty_late_amount': 'PenaltyLateAmount', 'late_amount_total': 'LateAmountTotal', 'principal_write_off_amount': 'PrincipalWriteOffAmount', 'interest_write_off_amount': 'InterestWriteOffAmount', 'penalty_write_off_amount': 'PenaltyWriteOffAmount', 'write_off_total': 'WriteOffTotal', 'debt_servicing_cost_main_amount': 'DebtServicingCostMainAmount', 'debt_servicing_cost_interest_amount': 'DebtServicingCostInterestAmount', 'debt_servicing_cost_penalty_amount': 'DebtServicingCostPenaltyAmount', 'debt_servicing_cost_total': 'DebtServicingCostTotal', 'repaid_principal_current_owner': 'RepaidPrincipalCurrentOwner', 'repaid_interests_current_owner': 'RepaidInterestsCurrentOwner', 'late_charges_paid_current_owner': 'LateChargesPaidCurrentOwner', 'repaid_total_current_owner': 'RepaidTotalCurrentOwner', 'total_repaid': 'TotalRepaid', 'debt_managment_events': 'DebtManagmentEvents', 'loan_transfers': 'LoanTransfers', 'scheduled_payments': 'ScheduledPayments' } self._principal_remaining = None self._late_amount_total = None self._write_off_total = None self._debt_servicing_cost_total = None self._loan_part_id = loan_part_id self._amount = amount self._auction_id = auction_id self._auction_name = auction_name self._auction_number = auction_number self._auction_bid_number = auction_bid_number self._country = country self._credit_score = credit_score self._credit_score_es_micro_l = credit_score_es_micro_l self._credit_score_es_equifax_risk = credit_score_es_equifax_risk self._credit_score_fi_asiakas_tieto_risk_grade = credit_score_fi_asiakas_tieto_risk_grade self._credit_score_ee_mini = credit_score_ee_mini self._rating = rating self._initial_interest = initial_interest self._interest = interest self._use_of_loan = use_of_loan self._income_verification_status = income_verification_status self._loan_id = loan_id self._loan_status_code = loan_status_code self._user_name = user_name self._gender = gender self._date_of_birth = date_of_birth self._signed_date = signed_date self._re_scheduled_on = re_scheduled_on self._debt_occured_on = debt_occured_on self._debt_occured_on_for_secondary = debt_occured_on_for_secondary self._loan_duration = loan_duration self._next_payment_nr = next_payment_nr self._next_payment_date = next_payment_date self._next_payment_sum = next_payment_sum self._nr_of_scheduled_payments = nr_of_scheduled_payments self._last_payment_date = last_payment_date self._principal_repaid = principal_repaid self._interest_repaid = interest_repaid self._late_amount_paid = late_amount_paid self._principal_late_amount = principal_late_amount self._interest_late_amount = interest_late_amount self._penalty_late_amount = penalty_late_amount self._principal_write_off_amount = principal_write_off_amount self._interest_write_off_amount = interest_write_off_amount self._penalty_write_off_amount = penalty_write_off_amount self._debt_servicing_cost_main_amount = debt_servicing_cost_main_amount self._debt_servicing_cost_interest_amount = debt_servicing_cost_interest_amount self._debt_servicing_cost_penalty_amount = debt_servicing_cost_penalty_amount self._repaid_principal_current_owner = repaid_principal_current_owner self._repaid_interests_current_owner = repaid_interests_current_owner self._late_charges_paid_current_owner = late_charges_paid_current_owner self._repaid_total_current_owner = repaid_total_current_owner self._total_repaid = total_repaid self._debt_managment_events = debt_managment_events self._loan_transfers = loan_transfers self._scheduled_payments = scheduled_payments @property def loan_part_id(self): """ Gets the loan_part_id of this LoanPartDetails. LoanPart unique identifier :return: The loan_part_id of this LoanPartDetails. :rtype: str """ return self._loan_part_id @loan_part_id.setter def loan_part_id(self, loan_part_id): """ Sets the loan_part_id of this LoanPartDetails. LoanPart unique identifier :param loan_part_id: The loan_part_id of this LoanPartDetails. :type: str """ self._loan_part_id = loan_part_id @property def amount(self): """ Gets the amount of this LoanPartDetails. Investment amount :return: The amount of this LoanPartDetails. :rtype: float """ return self._amount @amount.setter def amount(self, amount): """ Sets the amount of this LoanPartDetails. Investment amount :param amount: The amount of this LoanPartDetails. :type: float """ self._amount = amount @property def auction_id(self): """ Gets the auction_id of this LoanPartDetails. Auction unique identifier :return: The auction_id of this LoanPartDetails. :rtype: str """ return self._auction_id @auction_id.setter def auction_id(self, auction_id): """ Sets the auction_id of this LoanPartDetails. Auction unique identifier :param auction_id: The auction_id of this LoanPartDetails. :type: str """ self._auction_id = auction_id @property def auction_name(self): """ Gets the auction_name of this LoanPartDetails. Auction name :return: The auction_name of this LoanPartDetails. :rtype: str """ return self._auction_name @auction_name.setter def auction_name(self, auction_name): """ Sets the auction_name of this LoanPartDetails. Auction name :param auction_name: The auction_name of this LoanPartDetails. :type: str """ self._auction_name = auction_name @property def auction_number(self): """ Gets the auction_number of this LoanPartDetails. Auction number :return: The auction_number of this LoanPartDetails. :rtype: int """ return self._auction_number @auction_number.setter def auction_number(self, auction_number): """ Sets the auction_number of this LoanPartDetails. Auction number :param auction_number: The auction_number of this LoanPartDetails. :type: int """ self._auction_number = auction_number @property def auction_bid_number(self): """ Gets the auction_bid_number of this LoanPartDetails. Auction bid number :return: The auction_bid_number of this LoanPartDetails. :rtype: int """ return self._auction_bid_number @auction_bid_number.setter def auction_bid_number(self, auction_bid_number): """ Sets the auction_bid_number of this LoanPartDetails. Auction bid number :param auction_bid_number: The auction_bid_number of this LoanPartDetails. :type: int """ self._auction_bid_number = auction_bid_number @property def country(self): """ Gets the country of this LoanPartDetails. Residency of the borrower :return: The country of this LoanPartDetails. :rtype: str """ return self._country @country.setter def country(self, country): """ Sets the country of this LoanPartDetails. Residency of the borrower :param country: The country of this LoanPartDetails. :type: str """ self._country = country @property def credit_score(self): """ Gets the credit_score of this LoanPartDetails. <para> 1000 No previous payments problems</para> <para> 900 Payments problems finished 24-36 months ago</para> <para> 800 Payments problems finished 12-24 months ago</para> <para> 700 Payments problems finished 6-12 months ago</para> <para> 600 Payment problems finished &lt;6 months ago</para> <para> 500 Active payment problems</para> :return: The credit_score of this LoanPartDetails. :rtype: float """ return self._credit_score @credit_score.setter def credit_score(self, credit_score): """ Sets the credit_score of this LoanPartDetails. <para> 1000 No previous payments problems</para> <para> 900 Payments problems finished 24-36 months ago</para> <para> 800 Payments problems finished 12-24 months ago</para> <para> 700 Payments problems finished 6-12 months ago</para> <para> 600 Payment problems finished &lt;6 months ago</para> <para> 500 Active payment problems</para> :param credit_score: The credit_score of this LoanPartDetails. :type: float """ self._credit_score = credit_score @property def credit_score_es_micro_l(self): """ Gets the credit_score_es_micro_l of this LoanPartDetails. A score that is specifically designed for risk classifying subprime borrowers (defined by Equifax as borrowers that do not have access to bank loans). A measure of the probability of default one month ahead. <para>The score is given on a 10-grade scale, from the best score to the worst:</para><para>M1, M2, M3, M4, M5, M6, M7, M8, M9, M10</para> :return: The credit_score_es_micro_l of this LoanPartDetails. :rtype: str """ return self._credit_score_es_micro_l @credit_score_es_micro_l.setter def credit_score_es_micro_l(self, credit_score_es_micro_l): """ Sets the credit_score_es_micro_l of this LoanPartDetails. A score that is specifically designed for risk classifying subprime borrowers (defined by Equifax as borrowers that do not have access to bank loans). A measure of the probability of default one month ahead. <para>The score is given on a 10-grade scale, from the best score to the worst:</para><para>M1, M2, M3, M4, M5, M6, M7, M8, M9, M10</para> :param credit_score_es_micro_l: The credit_score_es_micro_l of this LoanPartDetails. :type: str """ self._credit_score_es_micro_l = credit_score_es_micro_l @property def credit_score_es_equifax_risk(self): """ Gets the credit_score_es_equifax_risk of this LoanPartDetails. Generic score for the loan applicants that do not have active past due operations in ASNEF. A measure of the probability of default one year ahead. The score is given on a 6-grade scale. <para>AAA Very low</para><para>AA Low</para><para>A Average</para><para>B Average High</para><para>C High</para><para>D Very High</para> :return: The credit_score_es_equifax_risk of this LoanPartDetails. :rtype: str """ return self._credit_score_es_equifax_risk @credit_score_es_equifax_risk.setter def credit_score_es_equifax_risk(self, credit_score_es_equifax_risk): """ Sets the credit_score_es_equifax_risk of this LoanPartDetails. Generic score for the loan applicants that do not have active past due operations in ASNEF. A measure of the probability of default one year ahead. The score is given on a 6-grade scale. <para>AAA Very low</para><para>AA Low</para><para>A Average</para><para>B Average High</para><para>C High</para><para>D Very High</para> :param credit_score_es_equifax_risk: The credit_score_es_equifax_risk of this LoanPartDetails. :type: str """ self._credit_score_es_equifax_risk = credit_score_es_equifax_risk @property def credit_score_fi_asiakas_tieto_risk_grade(self): """ Gets the credit_score_fi_asiakas_tieto_risk_grade of this LoanPartDetails. Credit Scoring model for Finnish Asiakastieto <para>RL1 Very low risk 01-20</para><para>RL2 Low risk 21-40</para><para>RL3 Average risk 41-60</para><para>RL4 Big risk 61-80</para><para>RL5 Huge risk 81-100</para> :return: The credit_score_fi_asiakas_tieto_risk_grade of this LoanPartDetails. :rtype: str """ return self._credit_score_fi_asiakas_tieto_risk_grade @credit_score_fi_asiakas_tieto_risk_grade.setter def credit_score_fi_asiakas_tieto_risk_grade(self, credit_score_fi_asiakas_tieto_risk_grade): """ Sets the credit_score_fi_asiakas_tieto_risk_grade of this LoanPartDetails. Credit Scoring model for Finnish Asiakastieto <para>RL1 Very low risk 01-20</para><para>RL2 Low risk 21-40</para><para>RL3 Average risk 41-60</para><para>RL4 Big risk 61-80</para><para>RL5 Huge risk 81-100</para> :param credit_score_fi_asiakas_tieto_risk_grade: The credit_score_fi_asiakas_tieto_risk_grade of this LoanPartDetails. :type: str """ self._credit_score_fi_asiakas_tieto_risk_grade = credit_score_fi_asiakas_tieto_risk_grade @property def credit_score_ee_mini(self): """ Gets the credit_score_ee_mini of this LoanPartDetails. Credit scoring for Estonian loans <para>1000 No previous payments problems</para><para>900 Payments problems finished 24-36 months ago</para><para>800 Payments problems finished 12-24 months ago</para><para>700 Payments problems finished 6-12 months ago</para><para>600 Payment problems finished &lt;6 months ago</para><para>500 Active payment problems</para> :return: The credit_score_ee_mini of this LoanPartDetails. :rtype: str """ return self._credit_score_ee_mini @credit_score_ee_mini.setter def credit_score_ee_mini(self, credit_score_ee_mini): """ Sets the credit_score_ee_mini of this LoanPartDetails. Credit scoring for Estonian loans <para>1000 No previous payments problems</para><para>900 Payments problems finished 24-36 months ago</para><para>800 Payments problems finished 12-24 months ago</para><para>700 Payments problems finished 6-12 months ago</para><para>600 Payment problems finished &lt;6 months ago</para><para>500 Active payment problems</para> :param credit_score_ee_mini: The credit_score_ee_mini of this LoanPartDetails. :type: str """ self._credit_score_ee_mini = credit_score_ee_mini @property def rating(self): """ Gets the rating of this LoanPartDetails. Bondora Rating issued by the Rating model :return: The rating of this LoanPartDetails. :rtype: str """ return self._rating @rating.setter def rating(self, rating): """ Sets the rating of this LoanPartDetails. Bondora Rating issued by the Rating model :param rating: The rating of this LoanPartDetails. :type: str """ self._rating = rating @property def initial_interest(self): """ Gets the initial_interest of this LoanPartDetails. Initial interest rate :return: The initial_interest of this LoanPartDetails. :rtype: float """ return self._initial_interest @initial_interest.setter def initial_interest(self, initial_interest): """ Sets the initial_interest of this LoanPartDetails. Initial interest rate :param initial_interest: The initial_interest of this LoanPartDetails. :type: float """ self._initial_interest = initial_interest @property def interest(self): """ Gets the interest of this LoanPartDetails. Current interest rate :return: The interest of this LoanPartDetails. :rtype: float """ return self._interest @interest.setter def interest(self, interest): """ Sets the interest of this LoanPartDetails. Current interest rate :param interest: The interest of this LoanPartDetails. :type: float """ self._interest = interest @property def use_of_loan(self): """ Gets the use_of_loan of this LoanPartDetails. Use of loan :return: The use_of_loan of this LoanPartDetails. :rtype: int """ return self._use_of_loan @use_of_loan.setter def use_of_loan(self, use_of_loan): """ Sets the use_of_loan of this LoanPartDetails. Use of loan :param use_of_loan: The use_of_loan of this LoanPartDetails. :type: int """ allowed_values = [0, 1, 2, 3, 4, 5, 6, 7, 8, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, -1] if use_of_loan not in allowed_values: raise ValueError( "Invalid value for `use_of_loan` ({0}), must be one of {1}" .format(use_of_loan, allowed_values) ) self._use_of_loan = use_of_loan @property def income_verification_status(self): """ Gets the income_verification_status of this LoanPartDetails. Income verification type :return: The income_verification_status of this LoanPartDetails. :rtype: int """ return self._income_verification_status @income_verification_status.setter def income_verification_status(self, income_verification_status): """ Sets the income_verification_status of this LoanPartDetails. Income verification type :param income_verification_status: The income_verification_status of this LoanPartDetails. :type: int """ allowed_values = [1, 2, 3, 4] if income_verification_status not in allowed_values: raise ValueError( "Invalid value for `income_verification_status` ({0}), must be one of {1}" .format(income_verification_status, allowed_values) ) self._income_verification_status = income_verification_status @property def loan_id(self): """ Gets the loan_id of this LoanPartDetails. Loan unique identifier :return: The loan_id of this LoanPartDetails. :rtype: str """ return self._loan_id @loan_id.setter def loan_id(self, loan_id): """ Sets the loan_id of this LoanPartDetails. Loan unique identifier :param loan_id: The loan_id of this LoanPartDetails. :type: str """ self._loan_id = loan_id @property def loan_status_code(self): """ Gets the loan_status_code of this LoanPartDetails. Loan status code <para>2 Current</para><para>100 Overdue</para><para>5 60+ days overdue</para><para>4 Repaid</para><para>8 Released</para> :return: The loan_status_code of this LoanPartDetails. :rtype: int """ return self._loan_status_code @loan_status_code.setter def loan_status_code(self, loan_status_code): """ Sets the loan_status_code of this LoanPartDetails. Loan status code <para>2 Current</para><para>100 Overdue</para><para>5 60+ days overdue</para><para>4 Repaid</para><para>8 Released</para> :param loan_status_code: The loan_status_code of this LoanPartDetails. :type: int """ self._loan_status_code = loan_status_code @property def user_name(self): """ Gets the user_name of this LoanPartDetails. Borrower's username :return: The user_name of this LoanPartDetails. :rtype: str """ return self._user_name @user_name.setter def user_name(self, user_name): """ Sets the user_name of this LoanPartDetails. Borrower's username :param user_name: The user_name of this LoanPartDetails. :type: str """ self._user_name = user_name @property def gender(self): """ Gets the gender of this LoanPartDetails. Borrower's Gender :return: The gender of this LoanPartDetails. :rtype: int """ return self._gender @gender.setter def gender(self, gender): """ Sets the gender of this LoanPartDetails. Borrower's Gender :param gender: The gender of this LoanPartDetails. :type: int """ allowed_values = [0, 1, 2] if gender not in allowed_values: raise ValueError( "Invalid value for `gender` ({0}), must be one of {1}" .format(gender, allowed_values) ) self._gender = gender @property def date_of_birth(self): """ Gets the date_of_birth of this LoanPartDetails. Borrower's date of birth :return: The date_of_birth of this LoanPartDetails. :rtype: datetime """ return self._date_of_birth @date_of_birth.setter def date_of_birth(self, date_of_birth): """ Sets the date_of_birth of this LoanPartDetails. Borrower's date of birth :param date_of_birth: The date_of_birth of this LoanPartDetails. :type: datetime """ self._date_of_birth = date_of_birth @property def signed_date(self): """ Gets the signed_date of this LoanPartDetails. Loan issued date :return: The signed_date of this LoanPartDetails. :rtype: datetime """ return self._signed_date @signed_date.setter def signed_date(self, signed_date): """ Sets the signed_date of this LoanPartDetails. Loan issued date :param signed_date: The signed_date of this LoanPartDetails. :type: datetime """ self._signed_date = signed_date @property def re_scheduled_on(self): """ Gets the re_scheduled_on of this LoanPartDetails. Last rescheduling date :return: The re_scheduled_on of this LoanPartDetails. :rtype: datetime """ return self._re_scheduled_on @re_scheduled_on.setter def re_scheduled_on(self, re_scheduled_on): """ Sets the re_scheduled_on of this LoanPartDetails. Last rescheduling date :param re_scheduled_on: The re_scheduled_on of this LoanPartDetails. :type: datetime """ self._re_scheduled_on = re_scheduled_on @property def debt_occured_on(self): """ Gets the debt_occured_on of this LoanPartDetails. Debt occured on date :return: The debt_occured_on of this LoanPartDetails. :rtype: datetime """ return self._debt_occured_on @debt_occured_on.setter def debt_occured_on(self, debt_occured_on): """ Sets the debt_occured_on of this LoanPartDetails. Debt occured on date :param debt_occured_on: The debt_occured_on of this LoanPartDetails. :type: datetime """ self._debt_occured_on = debt_occured_on @property def debt_occured_on_for_secondary(self): """ Gets the debt_occured_on_for_secondary of this LoanPartDetails. Debt occured on date :return: The debt_occured_on_for_secondary of this LoanPartDetails. :rtype: datetime """ return self._debt_occured_on_for_secondary @debt_occured_on_for_secondary.setter def debt_occured_on_for_secondary(self, debt_occured_on_for_secondary): """ Sets the debt_occured_on_for_secondary of this LoanPartDetails. Debt occured on date :param debt_occured_on_for_secondary: The debt_occured_on_for_secondary of this LoanPartDetails. :type: datetime """ self._debt_occured_on_for_secondary = debt_occured_on_for_secondary @property def loan_duration(self): """ Gets the loan_duration of this LoanPartDetails. Loan original lenght :return: The loan_duration of this LoanPartDetails. :rtype: int """ return self._loan_duration @loan_duration.setter def loan_duration(self, loan_duration): """ Sets the loan_duration of this LoanPartDetails. Loan original lenght :param loan_duration: The loan_duration of this LoanPartDetails. :type: int """ self._loan_duration = loan_duration @property def next_payment_nr(self): """ Gets the next_payment_nr of this LoanPartDetails. Next scheduled payment number :return: The next_payment_nr of this LoanPartDetails. :rtype: int """ return self._next_payment_nr @next_payment_nr.setter def next_payment_nr(self, next_payment_nr): """ Sets the next_payment_nr of this LoanPartDetails. Next scheduled payment number :param next_payment_nr: The next_payment_nr of this LoanPartDetails. :type: int """ self._next_payment_nr = next_payment_nr @property def next_payment_date(self): """ Gets the next_payment_date of this LoanPartDetails. Next scheduled payment date :return: The next_payment_date of this LoanPartDetails. :rtype: datetime """ return self._next_payment_date @next_payment_date.setter def next_payment_date(self, next_payment_date): """ Sets the next_payment_date of this LoanPartDetails. Next scheduled payment date :param next_payment_date: The next_payment_date of this LoanPartDetails. :type: datetime """ self._next_payment_date = next_payment_date @property def next_payment_sum(self): """ Gets the next_payment_sum of this LoanPartDetails. Next scheduled payment amount :return: The next_payment_sum of this LoanPartDetails. :rtype: float """ return self._next_payment_sum @next_payment_sum.setter def next_payment_sum(self, next_payment_sum): """ Sets the next_payment_sum of this LoanPartDetails. Next scheduled payment amount :param next_payment_sum: The next_payment_sum of this LoanPartDetails. :type: float """ self._next_payment_sum = next_payment_sum @property def nr_of_scheduled_payments(self): """ Gets the nr_of_scheduled_payments of this LoanPartDetails. Total number of scheduled payments :return: The nr_of_scheduled_payments of this LoanPartDetails. :rtype: int """ return self._nr_of_scheduled_payments @nr_of_scheduled_payments.setter def nr_of_scheduled_payments(self, nr_of_scheduled_payments): """ Sets the nr_of_scheduled_payments of this LoanPartDetails. Total number of scheduled payments :param nr_of_scheduled_payments: The nr_of_scheduled_payments of this LoanPartDetails. :type: int """ self._nr_of_scheduled_payments = nr_of_scheduled_payments @property def last_payment_date(self): """ Gets the last_payment_date of this LoanPartDetails. Last scheduled payment date :return: The last_payment_date of this LoanPartDetails. :rtype: datetime """ return self._last_payment_date @last_payment_date.setter def last_payment_date(self, last_payment_date): """ Sets the last_payment_date of this LoanPartDetails. Last scheduled payment date :param last_payment_date: The last_payment_date of this LoanPartDetails. :type: datetime """ self._last_payment_date = last_payment_date @property def principal_repaid(self): """ Gets the principal_repaid of this LoanPartDetails. Total principal repaid amount :return: The principal_repaid of this LoanPartDetails. :rtype: float """ return self._principal_repaid @principal_repaid.setter def principal_repaid(self, principal_repaid): """ Sets the principal_repaid of this LoanPartDetails. Total principal repaid amount :param principal_repaid: The principal_repaid of this LoanPartDetails. :type: float """ self._principal_repaid = principal_repaid @property def interest_repaid(self): """ Gets the interest_repaid of this LoanPartDetails. Total interest repaid amount :return: The interest_repaid of this LoanPartDetails. :rtype: float """ return self._interest_repaid @interest_repaid.setter def interest_repaid(self, interest_repaid): """ Sets the interest_repaid of this LoanPartDetails. Total interest repaid amount :param interest_repaid: The interest_repaid of this LoanPartDetails. :type: float """ self._interest_repaid = interest_repaid @property def late_amount_paid(self): """ Gets the late_amount_paid of this LoanPartDetails. Total late charges paid amount :return: The late_amount_paid of this LoanPartDetails. :rtype: float """ return self._late_amount_paid @late_amount_paid.setter def late_amount_paid(self, late_amount_paid): """ Sets the late_amount_paid of this LoanPartDetails. Total late charges paid amount :param late_amount_paid: The late_amount_paid of this LoanPartDetails. :type: float """ self._late_amount_paid = late_amount_paid @property def principal_remaining(self): """ Gets the principal_remaining of this LoanPartDetails. Remaining principal amount :return: The principal_remaining of this LoanPartDetails. :rtype: float """ return self._principal_remaining @property def principal_late_amount(self): """ Gets the principal_late_amount of this LoanPartDetails. Principal debt amount :return: The principal_late_amount of this LoanPartDetails. :rtype: float """ return self._principal_late_amount @principal_late_amount.setter def principal_late_amount(self, principal_late_amount): """ Sets the principal_late_amount of this LoanPartDetails. Principal debt amount :param principal_late_amount: The principal_late_amount of this LoanPartDetails. :type: float """ self._principal_late_amount = principal_late_amount @property def interest_late_amount(self): """ Gets the interest_late_amount of this LoanPartDetails. Interest debt amount :return: The interest_late_amount of this LoanPartDetails. :rtype: float """ return self._interest_late_amount @interest_late_amount.setter def interest_late_amount(self, interest_late_amount): """ Sets the interest_late_amount of this LoanPartDetails. Interest debt amount :param interest_late_amount: The interest_late_amount of this LoanPartDetails. :type: float """ self._interest_late_amount = interest_late_amount @property def penalty_late_amount(self): """ Gets the penalty_late_amount of this LoanPartDetails. Late charges debt amount :return: The penalty_late_amount of this LoanPartDetails. :rtype: float """ return self._penalty_late_amount @penalty_late_amount.setter def penalty_late_amount(self, penalty_late_amount): """ Sets the penalty_late_amount of this LoanPartDetails. Late charges debt amount :param penalty_late_amount: The penalty_late_amount of this LoanPartDetails. :type: float """ self._penalty_late_amount = penalty_late_amount @property def late_amount_total(self): """ Gets the late_amount_total of this LoanPartDetails. Late amount total :return: The late_amount_total of this LoanPartDetails. :rtype: float """ return self._late_amount_total @property def principal_write_off_amount(self): """ Gets the principal_write_off_amount of this LoanPartDetails. Total amount of principal written off :return: The principal_write_off_amount of this LoanPartDetails. :rtype: float """ return self._principal_write_off_amount @principal_write_off_amount.setter def principal_write_off_amount(self, principal_write_off_amount): """ Sets the principal_write_off_amount of this LoanPartDetails. Total amount of principal written off :param principal_write_off_amount: The principal_write_off_amount of this LoanPartDetails. :type: float """ self._principal_write_off_amount = principal_write_off_amount @property def interest_write_off_amount(self): """ Gets the interest_write_off_amount of this LoanPartDetails. Total amount of interest written off :return: The interest_write_off_amount of this LoanPartDetails. :rtype: float """ return self._interest_write_off_amount @interest_write_off_amount.setter def interest_write_off_amount(self, interest_write_off_amount): """ Sets the interest_write_off_amount of this LoanPartDetails. Total amount of interest written off :param interest_write_off_amount: The interest_write_off_amount of this LoanPartDetails. :type: float """ self._interest_write_off_amount = interest_write_off_amount @property def penalty_write_off_amount(self): """ Gets the penalty_write_off_amount of this LoanPartDetails. Total amount of penalty written off :return: The penalty_write_off_amount of this LoanPartDetails. :rtype: float """ return self._penalty_write_off_amount @penalty_write_off_amount.setter def penalty_write_off_amount(self, penalty_write_off_amount): """ Sets the penalty_write_off_amount of this LoanPartDetails. Total amount of penalty written off :param penalty_write_off_amount: The penalty_write_off_amount of this LoanPartDetails. :type: float """ self._penalty_write_off_amount = penalty_write_off_amount @property def write_off_total(self): """ Gets the write_off_total of this LoanPartDetails. Write off total :return: The write_off_total of this LoanPartDetails. :rtype: float """ return self._write_off_total @property def debt_servicing_cost_main_amount(self): """ Gets the debt_servicing_cost_main_amount of this LoanPartDetails. Total amount of principal debt servicing cost :return: The debt_servicing_cost_main_amount of this LoanPartDetails. :rtype: float """ return self._debt_servicing_cost_main_amount @debt_servicing_cost_main_amount.setter def debt_servicing_cost_main_amount(self, debt_servicing_cost_main_amount): """ Sets the debt_servicing_cost_main_amount of this LoanPartDetails. Total amount of principal debt servicing cost :param debt_servicing_cost_main_amount: The debt_servicing_cost_main_amount of this LoanPartDetails. :type: float """ self._debt_servicing_cost_main_amount = debt_servicing_cost_main_amount @property def debt_servicing_cost_interest_amount(self): """ Gets the debt_servicing_cost_interest_amount of this LoanPartDetails. Total amount of interest debt servicing cost :return: The debt_servicing_cost_interest_amount of this LoanPartDetails. :rtype: float """ return self._debt_servicing_cost_interest_amount @debt_servicing_cost_interest_amount.setter def debt_servicing_cost_interest_amount(self, debt_servicing_cost_interest_amount): """ Sets the debt_servicing_cost_interest_amount of this LoanPartDetails. Total amount of interest debt servicing cost :param debt_servicing_cost_interest_amount: The debt_servicing_cost_interest_amount of this LoanPartDetails. :type: float """ self._debt_servicing_cost_interest_amount = debt_servicing_cost_interest_amount @property def debt_servicing_cost_penalty_amount(self): """ Gets the debt_servicing_cost_penalty_amount of this LoanPartDetails. Total amount of penalty debt servicing cost :return: The debt_servicing_cost_penalty_amount of this LoanPartDetails. :rtype: float """ return self._debt_servicing_cost_penalty_amount @debt_servicing_cost_penalty_amount.setter def debt_servicing_cost_penalty_amount(self, debt_servicing_cost_penalty_amount): """ Sets the debt_servicing_cost_penalty_amount of this LoanPartDetails. Total amount of penalty debt servicing cost :param debt_servicing_cost_penalty_amount: The debt_servicing_cost_penalty_amount of this LoanPartDetails. :type: float """ self._debt_servicing_cost_penalty_amount = debt_servicing_cost_penalty_amount @property def debt_servicing_cost_total(self): """ Gets the debt_servicing_cost_total of this LoanPartDetails. Debt servicing cost total :return: The debt_servicing_cost_total of this LoanPartDetails. :rtype: float """ return self._debt_servicing_cost_total @property def repaid_principal_current_owner(self): """ Gets the repaid_principal_current_owner of this LoanPartDetails. Total principal repaid amount to current note owner :return: The repaid_principal_current_owner of this LoanPartDetails. :rtype: float """ return self._repaid_principal_current_owner @repaid_principal_current_owner.setter def repaid_principal_current_owner(self, repaid_principal_current_owner): """ Sets the repaid_principal_current_owner of this LoanPartDetails. Total principal repaid amount to current note owner :param repaid_principal_current_owner: The repaid_principal_current_owner of this LoanPartDetails. :type: float """ self._repaid_principal_current_owner = repaid_principal_current_owner @property def repaid_interests_current_owner(self): """ Gets the repaid_interests_current_owner of this LoanPartDetails. Total interest repaid amount to current note owner :return: The repaid_interests_current_owner of this LoanPartDetails. :rtype: float """ return self._repaid_interests_current_owner @repaid_interests_current_owner.setter def repaid_interests_current_owner(self, repaid_interests_current_owner): """ Sets the repaid_interests_current_owner of this LoanPartDetails. Total interest repaid amount to current note owner :param repaid_interests_current_owner: The repaid_interests_current_owner of this LoanPartDetails. :type: float """ self._repaid_interests_current_owner = repaid_interests_current_owner @property def late_charges_paid_current_owner(self): """ Gets the late_charges_paid_current_owner of this LoanPartDetails. Late charges paid amount to current note owner :return: The late_charges_paid_current_owner of this LoanPartDetails. :rtype: float """ return self._late_charges_paid_current_owner @late_charges_paid_current_owner.setter def late_charges_paid_current_owner(self, late_charges_paid_current_owner): """ Sets the late_charges_paid_current_owner of this LoanPartDetails. Late charges paid amount to current note owner :param late_charges_paid_current_owner: The late_charges_paid_current_owner of this LoanPartDetails. :type: float """ self._late_charges_paid_current_owner = late_charges_paid_current_owner @property def repaid_total_current_owner(self): """ Gets the repaid_total_current_owner of this LoanPartDetails. Total repaid amount to current note owner :return: The repaid_total_current_owner of this LoanPartDetails. :rtype: float """ return self._repaid_total_current_owner @repaid_total_current_owner.setter def repaid_total_current_owner(self, repaid_total_current_owner): """ Sets the repaid_total_current_owner of this LoanPartDetails. Total repaid amount to current note owner :param repaid_total_current_owner: The repaid_total_current_owner of this LoanPartDetails. :type: float """ self._repaid_total_current_owner = repaid_total_current_owner @property def total_repaid(self): """ Gets the total_repaid of this LoanPartDetails. Total repaid amount :return: The total_repaid of this LoanPartDetails. :rtype: float """ return self._total_repaid @total_repaid.setter def total_repaid(self, total_repaid): """ Sets the total_repaid of this LoanPartDetails. Total repaid amount :param total_repaid: The total_repaid of this LoanPartDetails. :type: float """ self._total_repaid = total_repaid @property def debt_managment_events(self): """ Gets the debt_managment_events of this LoanPartDetails. Debt managment event collection :return: The debt_managment_events of this LoanPartDetails. :rtype: list[DebtManagementEvent] """ return self._debt_managment_events @debt_managment_events.setter def debt_managment_events(self, debt_managment_events): """ Sets the debt_managment_events of this LoanPartDetails. Debt managment event collection :param debt_managment_events: The debt_managment_events of this LoanPartDetails. :type: list[DebtManagementEvent] """ self._debt_managment_events = debt_managment_events @property def loan_transfers(self): """ Gets the loan_transfers of this LoanPartDetails. Collection of all loan payments :return: The loan_transfers of this LoanPartDetails. :rtype: list[LoanTransfer] """ return self._loan_transfers @loan_transfers.setter def loan_transfers(self, loan_transfers): """ Sets the loan_transfers of this LoanPartDetails. Collection of all loan payments :param loan_transfers: The loan_transfers of this LoanPartDetails. :type: list[LoanTransfer] """ self._loan_transfers = loan_transfers @property def scheduled_payments(self): """ Gets the scheduled_payments of this LoanPartDetails. Collection of all loan scheduled payments. Contains previous period values before rescheduling was made :return: The scheduled_payments of this LoanPartDetails. :rtype: list[ScheduledPayment] """ return self._scheduled_payments @scheduled_payments.setter def scheduled_payments(self, scheduled_payments): """ Sets the scheduled_payments of this LoanPartDetails. Collection of all loan scheduled payments. Contains previous period values before rescheduling was made :param scheduled_payments: The scheduled_payments of this LoanPartDetails. :type: list[ScheduledPayment] """ self._scheduled_payments = scheduled_payments def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
34.904325
1,343
0.663863
09463f4ceba2674bc43b5fac3a30cc57727dbdfd
3,012
py
Python
lib/tests/ServerTestCase.py
Camilo-Mendoza/streamlit-ML
be8aafdf9f334b92a6e056e6c4f994da82587f80
[ "Apache-2.0" ]
null
null
null
lib/tests/ServerTestCase.py
Camilo-Mendoza/streamlit-ML
be8aafdf9f334b92a6e056e6c4f994da82587f80
[ "Apache-2.0" ]
9
2021-03-01T20:47:52.000Z
2022-02-12T20:49:50.000Z
lib/tests/ServerTestCase.py
Camilo-Mendoza/streamlit-ML
be8aafdf9f334b92a6e056e6c4f994da82587f80
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2018-2019 Streamlit Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import mock import requests import tornado.testing import tornado.web import tornado.websocket from tornado.concurrent import Future from streamlit.server.Server import Server class ServerTestCase(tornado.testing.AsyncHTTPTestCase): """Base class for async streamlit.Server testing. Subclasses should patch 'streamlit.server.Server.ReportSession', to prevent ReportSessions from being created, and scripts from being run. (Script running involves creating new threads, which interfere with other tests if not properly terminated.) See the "ServerTest" class for example usage. """ def get_app(self): # Create a Server, and patch its _on_stopped function # to no-op. This prevents it from shutting down the # ioloop when it stops. self.server = Server(self.io_loop, '/not/a/script.py', []) self.server._on_stopped = mock.MagicMock() app = self.server._create_app() return app def tearDown(self): super(ServerTestCase, self).tearDown() # Clear the Server singleton for the next test Server._singleton = None def start_server_loop(self): """Starts the server's loop coroutine. Returns ------- Future A Future that resolves when the loop has started. You need to yield on this value from within a 'tornado.testing.gen_test' coroutine. """ server_started = Future() self.io_loop.spawn_callback( self.server._loop_coroutine, lambda _: server_started.set_result(None)) return server_started def get_ws_url(self, path): """Return a ws:// URL with the given path for our test server.""" # get_url() gives us a result with the 'http' scheme; # we swap it out for 'ws'. url = self.get_url(path) parts = list(requests.utils.urlparse(url)) parts[0] = 'ws' return requests.utils.urlunparse(tuple(parts)) def ws_connect(self): """Open a websocket connection to the server. Returns ------- Future A Future that resolves with the connected websocket client. You need to yield on this value from within a 'tornado.testing.gen_test' coroutine. """ return tornado.websocket.websocket_connect(self.get_ws_url('/stream'))
34.227273
78
0.669323
8c0322741b983325f1644cb066eb81b6673866d8
26,989
py
Python
source/pydwf/core/auxiliary/enum_types.py
sidneycadot/pydwf
cd9eba8b45d990f09095bec62b20115f0757baba
[ "MIT" ]
14
2021-05-10T16:19:45.000Z
2022-03-13T08:30:12.000Z
source/pydwf/core/auxiliary/enum_types.py
sidneycadot/pydwf
cd9eba8b45d990f09095bec62b20115f0757baba
[ "MIT" ]
22
2021-05-01T09:51:09.000Z
2021-11-13T12:35:36.000Z
source/pydwf/core/auxiliary/enum_types.py
sidneycadot/pydwf
cd9eba8b45d990f09095bec62b20115f0757baba
[ "MIT" ]
2
2021-05-02T12:13:16.000Z
2022-03-11T21:15:07.000Z
"""This module defines Python equivalents of the enumerations found in the C library header file *dwf.h*. Note: The obsolete enumerations *TRIGCOND* and *STS* that are defined in the C header file have not been defined here. *TRIGCOND* has been replaced by |DwfTriggerSlope:link|; *STS* has been replaced by |DwfState:link|. """ import enum class _FixReprMethod: """Mixin class that overrides the __repr__ methods for Enum classes. Enums in Python have a strange default '__repr__' implementation. This mixin class fixes that. """ # pylint: disable=no-member, too-few-public-methods def __repr__(self): return "{}.{}".format(self.__class__.__name__, self.name) @enum.unique class DwfErrorCode(_FixReprMethod, enum.Enum): """Enumeration type for error reporting constants of the DWF API. This type is used by the |DwfLibrary.getLastError:link| method to report the error condition of the most recent C API call. In |pydwf|, it is only used as the type of the :py:attr:`~pydwf.core.auxiliary.exceptions.DwfLibraryError.code` field of |DwfLibraryError:link| instances. In the C API, this type is called 'DWFERC', and it is represented as an *int*. """ NoErc = 0 """No error occurred.""" UnknownError = 1 """Unknown error.""" ApiLockTimeout = 2 """API waiting on pending operation timed out.""" AlreadyOpened = 3 """Device already opened.""" NotSupported = 4 """Device not supported.""" InvalidParameter0 = 0x10 """Invalid parameter sent in API call.""" InvalidParameter1 = 0x11 """Invalid parameter sent in API call.""" InvalidParameter2 = 0x12 """Invalid parameter sent in API call.""" InvalidParameter3 = 0x13 """Invalid parameter sent in API call.""" InvalidParameter4 = 0x14 """Invalid parameter sent in API call.""" class DwfEnumFilter(_FixReprMethod, enum.Flag): """Enumeration type for device class constants, used during device enumeration. This type is used by the |DeviceEnum.enumerateDevices:link| method to constrain the type of devices that will be considered during device enumeration. In the C API, this type is called 'ENUMFILTER', and it is represented as an *int*. """ All = 0 """Enumerate all available devices.""" Type = 0x80000000 """Enumerate by type (0x80000000).""" USB = 0x00000001 """Enumerate USB devices.""" Network = 0x00000002 """Enumerate Network devices.""" AXI = 0x00000004 """Enumerate AXI devices (used when running on an ADP 3x50 device).""" Remote = 0x10000000 """Enumerate remote devices (0x10000000).""" Audio = 0x20000000 """Enumerate audio devices (0x20000000).""" Demo = 0x40000000 """Enumerate demo devices (0x40000000).""" EExplorer = 1 """Enumerate only Electronics Explorer devices. Deprecated since DWF version 3.17.""" Discovery = 2 """Enumerate only Analog Discovery devices. Deprecated since DWF version 3.17.""" Discovery2 = 3 """Enumerate only Analog Discovery 2 devices. Deprecated since DWF version 3.17.""" DDiscovery = 4 """Enumerate only Digital Discovery devices. Deprecated since DWF version 3.17.""" @enum.unique class DwfEnumConfigInfo(_FixReprMethod, enum.Enum): """Enumeration type for device configuration parameter type constants. This type lists the device parameters that can vary between different |device configurations:link| of the same device. In the C API, this type is represented as an *int*. """ #pylint: disable=line-too-long TooltipText = -1 """Tooltip text. Maximum length: 2048 characters. Note: This value is not officially documented. Its existence was revealed in a `message on the Digilent forum <https://forum.digilentinc.com/topic/21720-small-issue-and-questions-about-device-configurations/#comment-62717>`_. """ OtherInfoText = -2 """Other info text. Maximum length: 256 characters. Note: This value is not officially documented. Its existence was revealed in a `message on the Digilent forum <https://forum.digilentinc.com/topic/21720-small-issue-and-questions-about-device-configurations/#comment-62717>`_. """ AnalogInChannelCount = 1 """Number of analog input channels.""" AnalogOutChannelCount = 2 """Number of analog output channels.""" AnalogIOChannelCount = 3 """Number of analog power supply channels. Note: This is a different number than the number of channels reported by the |AnalogIO.channelCount:link| method. """ DigitalInChannelCount = 4 """Number of digital input channels.""" DigitalOutChannelCount = 5 """Number of digital output channels.""" DigitalIOChannelCount = 6 """Number of digital I/O channels.""" AnalogInBufferSize = 7 """Analog in buffer size, in samples.""" AnalogOutBufferSize = 8 """Analog out buffer size, in samples.""" DigitalInBufferSize = 9 """Digital in buffer size, in samples.""" DigitalOutBufferSize = 10 """Digital out buffer size, in samples.""" @enum.unique class DwfDeviceID(_FixReprMethod, enum.Enum): """Enumeration type for device ID constants. This type is used by the |DeviceEnum.deviceType:link| method to report on a selected device. In the C API, this type is called 'DEVID', and it is represented as an *int*. """ EExplorer = 1 """Electronics Explorer devices.""" Discovery = 2 """Analog Discovery devices.""" Discovery2 = 3 """Analog Discovery 2 devices.""" DDiscovery = 4 """Digital Discovery devices.""" ADP3X50 = 6 """Analog Discovery Pro devices.""" class DwfDeviceVersion(_FixReprMethod, enum.Enum): """Enumeration type for device version (i.e., hardware revision) constants. This type is used by the |DeviceEnum.deviceType:link| method to report the hardware revision of a selected device. Note: The device revision list given here is not complete; it does not cover all devices. Additionally, the enumeration values :py:attr:`EExplorerC` and :py:attr:`DiscoveryB` have identical integer values (2). In the C API, this type is called 'DEVVER', and it is represented as an *int*. """ EExplorerC = 2 """Electronics Explorer devices, revision C.""" EExplorerE = 4 """Electronics Explorer devices, revision E.""" EExplorerF = 5 """Electronics Explorer devices, revision F.""" DiscoveryA = 1 """Discovery devices, revision A.""" DiscoveryB = 2 """Discovery devices, revision B.""" DiscoveryC = 3 """Discovery devices, revision C.""" @enum.unique class DwfDeviceParameter(_FixReprMethod, enum.Enum): """Enumeration type for device parameter constants. Device parameters are miscellaneous integer settings that influence the behavior of a device. The different device parameters are selected by one of the constant values defined here. This type is used to select device parameters, either to set/get global defaults using the |DwfLibrary|, or to to set/get parameter values on a specific, previously opened device |DwfDevice|. In the C API, this type is called 'DwfParam', and it is represented as an *int*. """ KeepOnClose = 1 """Keep the device running after close. Warning: This value is *obsolete*. Use *OnClose* instead. """ UsbPower = 2 """USB power behavior if AUX power is connected. Possible values: * 0 — Disable USB power. * 1 — Keep USB power enabled. This setting is implemented on the Analog Discovery 2. """ LedBrightness = 3 """Set multicolor LED brightness. The Digital Discovery features a multi-color LED. It is normally blue in case the device is not currently controlled by software, or green if it is. Setting this parameter from 0 to 100 changes the LED's relative brightness, in percents. This can be useful, for example, in a lab with sensitive optics that would preferably be completely dark. On the Analog Discovery 2, this setting has no effect. """ OnClose = 4 """Define behavior on close. Possible values: * 0 — On close, continue. * 1 — On close, stop the device. * 2 — On close, shut down the device. """ AudioOut = 5 """Enable or disable audio output. Possible values: * 0 — Disable audio output. * 1 — Enable audio output. This setting is implemented on the Analog Discovery and the Analog Discovery 2. """ UsbLimit = 6 """USB power limit. The value ranges from 0 to 1000, in mA. The value -1 denotes no limit. This setting is implemented on the Analog Discovery and the Analog Discovery 2. """ AnalogOut = 7 """Enable or disable analog output. Possible values: * 0 — Disable analog output. * 1 — Enable analog output. """ Frequency = 8 """This parameter is undocumented. Todo: The meaning of this parameter needs to be understood. It is some frequency; comments say unit is Hz. """ ExtFreq = 9 """This parameter is undocumented. Todo: The meaning of this parameter needs to be understood. It is some frequency; comments say unit is Hz. """ ClockMode = 10 """This parameter is undocumented. Todo: The meaning of this parameter needs to be understood. Possible values: * 0 — internal. * 1 — output. * 2 — input. * 3 — IO. """ class DwfState(_FixReprMethod, enum.Enum): """Enumeration type for instrument state constants, for instruments that are controlled by an internal state-machine. The following instrument APIs are controlled by a state machine: * |AnalogIn| * |AnalogOut| — *independent state machine for each channel* * |DigitalIn| * |DigitalOut| * |AnalogImpedance| This type is used to return the current state from their *status()* methods. Note: The enumeration values :py:attr:`Triggered` and :py:attr:`Running` have identical integer values (3). The state name :py:attr:`Triggered` is used for capture instruments (|AnalogIn|, |DigitalIn|), while :py:attr:`Running` is used for signal generation instruments (|AnalogOut|, |DigitalOut|). In the C API, this type is represented as an *unsigned char*. """ Ready = 0 """The instrument is idle, waiting to be configured or started.""" Config = 4 """The instrument is being configured.""" Prefill = 5 """The instrument is collecting data prior to arming itself, so it can deliver pre-trigger samples.""" Armed = 1 """The instrument is collecting samples and waiting for the trigger.""" Wait = 7 """The signal generation instrument is waiting before its next run.""" Triggered = 3 """The capture instrument is triggered and collecting data.""" Running = 3 """The signal generation instrument is running (generating signals).""" Done = 2 """The instrument has completed a measurement or signal-generating sequence.""" @enum.unique class DwfTriggerSource(_FixReprMethod, enum.Enum): """Enumeration type for trigger source constants. This type is used by the |DeviceControl| functionality and by the |AnalogIn|, |AnalogOut|, |DigitalIn|, and |DigitalOut| instruments. In the C API, this type is called 'TRIGSRC', and it is represented as an *unsigned char*. """ None_ = 0 """No trigger configured (device starts immediately).""" PC = 1 """PC (software) trigger.""" DetectorAnalogIn = 2 """AnalogIn trigger detector.""" DetectorDigitalIn = 3 """DigitalIn trigger detector.""" AnalogIn = 4 """AnalogIn instrument start.""" DigitalIn = 5 """DigitalIn instrument start.""" DigitalOut = 6 """DigitalOut instrument start.""" AnalogOut1 = 7 """|AnalogOut| instrument channel 1 start.""" AnalogOut2 = 8 """|AnalogOut| instrument channel 2 start.""" AnalogOut3 = 9 """|AnalogOut| instrument channel 3 start.""" AnalogOut4 = 10 """|AnalogOut| instrument channel 4 start.""" External1 = 11 """External trigger #1.""" External2 = 12 """External trigger #2.""" External3 = 13 """External trigger #3.""" External4 = 14 """External trigger #4.""" High = 15 """High (undocumented).""" Low = 16 """Low (undocumented).""" Clock = 17 """Clock (undocumented).""" @enum.unique class DwfTriggerSlope(_FixReprMethod, enum.Enum): """Enumeration type for trigger slope constants. This type is used by the |AnalogIn|, |AnalogOut|, |DigitalIn|, and |DigitalOut| instruments to select the trigger slope. In addition, the |AnalogIn| instrument uses it to select the slope of the sampling clock. In the C API, this type is represented as an *int*. """ Rise = 0 """Rising trigger slope.""" Fall = 1 """Falling trigger slope.""" Either = 2 """Either rising or falling trigger slope.""" @enum.unique class DwfAcquisitionMode(_FixReprMethod, enum.Enum): """Enumeration type for acquisition mode constants. This type is used by the |AnalogIn| and |DigitalIn| instruments. These instruments support multiple acquisition modes that are appropriate for different data acquisition tasks. In the C API, this type is called 'ACQMODE', and it is represented as an *int*. """ Single = 0 """Perform a single buffer acquisition. Re-arm the instrument for the next capture after the data is fetched to the host using the instrument-specific *Status()* method. Note: The difference with the :py:attr:`Single1` mode is unclear. """ ScanShift = 1 """Perform a continuous acquisition in FIFO style. The trigger setting is ignored. The last sample is at the end of the buffer. The instrument's *statusSamplesValid()* method gives the number of the acquired samples, which will increase until reaching the buffer size. After that, the waveform image is shifted for every new sample. """ ScanScreen = 2 """Perform continuous acquisition circularly writing samples into the buffer. This is similar to a heart-monitor display. The trigger setting is ignored. The instrument's *statusIndexWrite()* method gives the buffer write position. """ Record = 3 """Perform acquisition for the length of time set by the instrument's *recordLengthSet()* method.""" Overs = 4 """Overscan mode (undocumented).""" Single1 = 5 """Perform a single buffer acquisition. Note: The difference with the :py:attr:`Single` mode is unclear. """ @enum.unique class DwfAnalogInFilter(_FixReprMethod, enum.Enum): """Enumeration type for analog input filter constants. This type is used by the |AnalogIn| instrument to select a filtering algorithm for the input and trigger channels. The |AnalogIn| instrument's ADC always captures samples at the maximum possible rate. If data acquisition at a lower sampling rate is requested, the resampling can be handled it several different ways. The most obvious choice is *averaging*. This will suppress high-frequency noise, which is often a good thing, but often it is also desirable to know that high-frequency noise is present in the signal, and the averaging may hide that fact. For that reason, the *decimation* filter is available, which simply selects a single sample captured at high frequency when resampling to a lower frequency. The signal-to-noise ratio (SNR) will suffer, but the presence of high-frequency noise (outliers) will be more easily seen in the resampled data. Todo: Examine the MinMax filter choice; it is not currently understood. In the C API, this type is called 'FILTER', and it is represented as an *int*. """ Decimate = 0 """Decimation filter.""" Average = 1 """Averaging filter.""" MinMax = 2 """Min/max filter.""" @enum.unique class DwfAnalogInTriggerType(_FixReprMethod, enum.Enum): """Enumeration type for analog input trigger mode constants. This type is used by the |AnalogIn| instrument to specify the trigger type. In the C API, this type is called 'TRIGTYPE', and it is represented as an *int*. """ Edge = 0 """Edge trigger type.""" Pulse = 1 """Pulse trigger type.""" Transition = 2 """Transition trigger type.""" Window = 3 """Window trigger type.""" @enum.unique class DwfAnalogInTriggerLengthCondition(_FixReprMethod, enum.Enum): """Enumeration type for analog input trigger length condition constants. This type is used by the |AnalogIn| instrument to specify the trigger length condition. In the C API, this type is called 'TRIGLEN', and it is represented as an *int*. """ Less = 0 """Trigger length condition 'less'.""" Timeout = 1 """Trigger length condition 'timeout'.""" More = 2 """Trigger length condition 'more'.""" @enum.unique class DwfAnalogOutFunction(_FixReprMethod, enum.Enum): """Enumeration type for analog output waveform-shape function constants. This type is used by the |AnalogOut| instrument to represent the wave-shape produced on an analog output channel node. The nine fixed waveform shape options are shown below. .. only:: html .. image:: /images/waveforms.gif .. only:: latex .. image:: /images/waveforms.pdf In the C API, this type is called 'FUNC', and it is represented as an *unsigned char*. """ DC = 0 """DC (constant signal) waveform shape. The signal level varies between -1 and 1.""" Sine = 1 """Sinusoid waveform shape. The signal level varies between -1 and 1.""" Square = 2 """Square waveform shape. The signal level varies between -1 and 1.""" Triangle = 3 """Triangle waveform shape. The signal level varies between -1 and 1.""" RampUp = 4 """Ramp Up waveform shape. The signal level varies between -1 and 1.""" RampDown = 5 """Ramp Down waveform shape. The signal level varies between -1 and 1.""" Noise = 6 """Noise waveform shape. The signal level is uniformly distributed between -1 and 1.""" Pulse = 7 """Pulse waveform shape. The signal level varies between 0 and 1.""" Trapezium = 8 """Trapezium waveform shape. The signal level varies between -1 and 1.""" SinePower = 9 """Sinusoid Power waveform shape. The signal level varies between -1 and 1.""" Custom = 30 """Custom (user-defined) waveform shape. The signal level varies between -1 and 1.""" Play = 31 """Continuous playback mode. The signal level varies between -1 and 1.""" @enum.unique class DwfAnalogOutNode(_FixReprMethod, enum.Enum): """Enumeration type for analog output node type constants. This type is used by the |AnalogOut| instrument to represent the node types associated with each output channel. In the C API, this type is called 'AnalogOutNode' (without the *Dwf* prefix), and it is represented as an *int*. """ Carrier = 0 """Carrier signal node. This node represents the base signal without modulation applied.""" FM = 1 """Frequency Modulation node.""" AM = 2 """Amplitude Modulation node.""" @enum.unique class DwfAnalogOutMode(_FixReprMethod, enum.Enum): """Enumeration type for analog out mode constants (voltage or current). This type is used by the |AnalogOut| instrument to set or retrieve the mode of a channel. In the C API, this type is represented as an *int*. """ Voltage = 0 """Voltage mode.""" Current = 1 """Current mode.""" @enum.unique class DwfAnalogOutIdle(_FixReprMethod, enum.Enum): """Enumeration type for analog output idle state constants. This type is used by the |AnalogOut| instrument to set the idle behavior of an output channel. In the C API, this type is represented as an *int*. """ Disable = 0 """When idle, disable the output.""" Offset = 1 """When idle, drive the analog output offset.""" Initial = 2 """When idle, drive the initial value of the selected waveform shape.""" @enum.unique class DwfDigitalInClockSource(_FixReprMethod, enum.Enum): """Enumeration type for digital input clock source constants. This type is used by the |DigitalIn| instrument to specify a clock source. In the C API, this type is represented as an *int*. """ Internal = 0 """Use internal clock source.""" External = 1 """Use external clock source.""" External2 = 2 """Use alternate external clock source.""" @enum.unique class DwfDigitalInSampleMode(_FixReprMethod, enum.Enum): """Enumeration type for digital input sample mode constants. This type is used by the |DigitalIn| instrument to specify a sample mode. In the C API, this type is represented as an *int*. """ Simple = 0 """Only digital samples (no noise).""" Noise = 1 """Alternate samples (noise, sample, noise, sample, …) where noise is more than one transition between two samples. This setting is available when the sample rate is less than the maximum clock frequency (i.e., the divider is greater than one). Digital noise can indicate glitches or ringing. """ @enum.unique class DwfDigitalOutOutput(_FixReprMethod, enum.Enum): """Enumeration type for digital output mode constants. This type is used by the |DigitalOut| instrument to specify the electronic behavior of a digital output channel. In the C API, this type is represented as an *int*. """ PushPull = 0 """Push/Pull.""" OpenDrain = 1 """Open Drain.""" OpenSource = 2 """Open Source.""" ThreeState = 3 """Tristate (for custom and random).""" @enum.unique class DwfDigitalOutType(_FixReprMethod, enum.Enum): """Enumeration type for digital output type constants. This type is used by the |DigitalOut| instrument to specify the behavior mode of a digital output channel. In the C API, this type is represented as an *int*. """ Pulse = 0 """Pulse output.""" Custom = 1 """Custom output.""" Random = 2 """Random output.""" ROM = 3 """ROM (lookup table) output.""" State = 4 """State machine output.""" Play = 5 """Continuous playback output.""" @enum.unique class DwfDigitalOutIdle(_FixReprMethod, enum.Enum): """Enumeration type for digital output idle mode constants. This type is used primarily by the |DigitalOut| instrument to specify the idle behavior mode of a digital output channel. In addition to that, it is used by the |DigitalSpi| protocol functionality to specify the idle behavior of the pins it controls. In the C API, this type is represented as an *int*. """ Init = 0 """Same as initial value of selected output pattern.""" Low = 1 """Low signal level.""" High = 2 """High signal level.""" Zet = 3 """High impedance.""" @enum.unique class DwfAnalogIO(_FixReprMethod, enum.Enum): """Enumeration type for Analog I/O channel node type constants. This type is used by the |AnalogIO| functionality to report the node type. In the C API, this type is called 'ANALOGIO', and it is represented as an *unsigned char*. """ Undocumented = 0 """This value is returned in Analog Pro devices when using 3.16.3 of the DWF library. That is probably a bug.""" Enable = 1 """The node represent an on/off switch.""" Voltage = 2 """The node represents a voltage.""" Current = 3 """The node represents a current.""" Power = 4 """The node represents a power.""" Temperature = 5 """The node represents a temperature.""" Dmm = 6 """The node represents a DMM (digital multimeter) value.""" Range = 7 """The node represents a range.""" Measure = 8 """(unknown)""" Time = 9 """The node represents a time.""" Frequency = 10 """The node represents a frequency.""" Resistance = 11 """The node represents a resistance.""" @enum.unique class DwfAnalogImpedance(_FixReprMethod, enum.Enum): """Enumeration type for analog impedance measurement types. This type is used by the |AnalogImpedance| measurement functionality to specify a measurement quantity type. In the C API, this type is represented as an *int*. """ Impedance = 0 """Measure impedance, in Ohms.""" ImpedancePhase = 1 """Measure impedance phase, in radians.""" Resistance = 2 """Measure resistance, in Ohms.""" Reactance = 3 """Measure reactance, in Ohms.""" Admittance = 4 """Measure admittance, in Siemens.""" AdmittancePhase = 5 """Measure admittance phase, in radians.""" Conductance = 6 """Measure conductance, in Siemens.""" Susceptance = 7 """Measure susceptance, in Siemens.""" SeriesCapacitance = 8 """Measure series capacitance, in Farad.""" ParallelCapacitance = 9 """Measure parallel capacitance, in Farad.""" SeriesInductance = 10 """Measure series inductance, in Henry.""" ParallelInductance = 11 """Measure parallel inductance, in Henry.""" Dissipation = 12 """Measure dissipation, as a factor.""" Quality = 13 """Measure quality, as a factor.""" Vrms = 14 """Measure Vrms, in Volts.""" Vreal = 15 """Measure Vreal (real part of complex voltage), in Volts.""" Vimag = 16 """Measure Vimag (imaginary part of complex voltage), in Volts.""" Irms = 17 """Measure Irms, in Amps.""" Ireal = 18 """Measure Ireal (real part of complex current), in Amps.""" Iimag = 19 """Measure Iimag (imaginary part of complex current), in Amps.""" @enum.unique class DwfDmm(_FixReprMethod, enum.Enum): """Enumeration type for DMM (digital multimeter) measurements. Note: This type is currently unused in the API. It is intended for functionality in the new ADP5250 device. In the C API, this type is called 'DwfDmm', and it is represented as an *int*. """ Resistance = 1 """Resistance measurement.""" Continuity = 2 """Continuity measurement.""" Diode = 3 """Diode measurement.""" DCVoltage = 4 """DC voltage measurement.""" ACVoltage = 5 """AC voltage measurement.""" DCCurrent = 6 """DC current measurement.""" ACCurrent = 7 """AC current measurement.""" DCLowCurrent = 8 """DC low current measurement.""" ACLowCurrent = 9 """AC low current measurement.""" Temperature = 10 """Temperature measurement."""
27.124623
154
0.666716
bebc326041fdb6d1b0586916a42face43bc25ad8
6,972
py
Python
train.py
zijundeng/DM2F-Net
d6f231f8a3f1a3c5ca877b30d8778b9bb9b76668
[ "MIT" ]
30
2019-07-23T06:44:48.000Z
2021-03-27T16:18:55.000Z
train.py
zijundeng/DM2F-Net
d6f231f8a3f1a3c5ca877b30d8778b9bb9b76668
[ "MIT" ]
3
2019-10-29T14:04:30.000Z
2022-03-30T10:27:08.000Z
train.py
zijundeng/DM2F-Net
d6f231f8a3f1a3c5ca877b30d8778b9bb9b76668
[ "MIT" ]
6
2019-10-30T03:04:53.000Z
2022-01-02T14:28:20.000Z
# coding: utf-8 import argparse import os import datetime from tqdm import tqdm import torch from torch import nn from torch import optim from torch.backends import cudnn from torch.utils.data import DataLoader from model import DM2FNet from tools.config import TRAIN_ITS_ROOT, TEST_SOTS_ROOT from datasets import ItsDataset, SotsDataset from tools.utils import AvgMeter, check_mkdir from skimage.metrics import peak_signal_noise_ratio, structural_similarity def parse_args(): parser = argparse.ArgumentParser(description='Train a DM2FNet') parser.add_argument( '--gpus', type=str, default='0', help='gpus to use ') parser.add_argument('--ckpt-path', default='./ckpt', help='checkpoint path') parser.add_argument( '--exp-name', default='RESIDE_ITS', help='experiment name.') args = parser.parse_args() return args cfgs = { 'use_physical': True, 'iter_num': 40000, 'train_batch_size': 16, 'last_iter': 0, 'lr': 5e-4, 'lr_decay': 0.9, 'weight_decay': 0, 'momentum': 0.9, 'snapshot': '', 'val_freq': 5000, 'crop_size': 256 } def main(): net = DM2FNet().cuda().train() # net = nn.DataParallel(net) optimizer = optim.Adam([ {'params': [param for name, param in net.named_parameters() if name[-4:] == 'bias' and param.requires_grad], 'lr': 2 * cfgs['lr']}, {'params': [param for name, param in net.named_parameters() if name[-4:] != 'bias' and param.requires_grad], 'lr': cfgs['lr'], 'weight_decay': cfgs['weight_decay']} ]) if len(cfgs['snapshot']) > 0: print('training resumes from \'%s\'' % cfgs['snapshot']) net.load_state_dict(torch.load(os.path.join(args.ckpt_path, args.exp_name, cfgs['snapshot'] + '.pth'))) optimizer.load_state_dict(torch.load(os.path.join(args.ckpt_path, args.exp_name, cfgs['snapshot'] + '_optim.pth'))) optimizer.param_groups[0]['lr'] = 2 * cfgs['lr'] optimizer.param_groups[1]['lr'] = cfgs['lr'] check_mkdir(args.ckpt_path) check_mkdir(os.path.join(args.ckpt_path, args.exp_name)) open(log_path, 'w').write(str(cfgs) + '\n\n') train(net, optimizer) def train(net, optimizer): curr_iter = cfgs['last_iter'] while curr_iter <= cfgs['iter_num']: train_loss_record = AvgMeter() loss_x_jf_record, loss_x_j0_record = AvgMeter(), AvgMeter() loss_x_j1_record, loss_x_j2_record = AvgMeter(), AvgMeter() loss_x_j3_record, loss_x_j4_record = AvgMeter(), AvgMeter() loss_t_record, loss_a_record = AvgMeter(), AvgMeter() for data in train_loader: optimizer.param_groups[0]['lr'] = 2 * cfgs['lr'] * (1 - float(curr_iter) / cfgs['iter_num']) \ ** cfgs['lr_decay'] optimizer.param_groups[1]['lr'] = cfgs['lr'] * (1 - float(curr_iter) / cfgs['iter_num']) \ ** cfgs['lr_decay'] haze, gt_trans_map, gt_ato, gt, _ = data batch_size = haze.size(0) haze = haze.cuda() gt_trans_map = gt_trans_map.cuda() gt_ato = gt_ato.cuda() gt = gt.cuda() optimizer.zero_grad() x_jf, x_j0, x_j1, x_j2, x_j3, x_j4, t, a = net(haze) loss_x_jf = criterion(x_jf, gt) loss_x_j0 = criterion(x_j0, gt) loss_x_j1 = criterion(x_j1, gt) loss_x_j2 = criterion(x_j2, gt) loss_x_j3 = criterion(x_j3, gt) loss_x_j4 = criterion(x_j4, gt) loss_t = criterion(t, gt_trans_map) loss_a = criterion(a, gt_ato) loss = loss_x_jf + loss_x_j0 + loss_x_j1 + loss_x_j2 + loss_x_j3 + loss_x_j4 \ + 10 * loss_t + loss_a loss.backward() optimizer.step() # update recorder train_loss_record.update(loss.item(), batch_size) loss_x_jf_record.update(loss_x_jf.item(), batch_size) loss_x_j0_record.update(loss_x_j0.item(), batch_size) loss_x_j1_record.update(loss_x_j1.item(), batch_size) loss_x_j2_record.update(loss_x_j2.item(), batch_size) loss_x_j3_record.update(loss_x_j3.item(), batch_size) loss_x_j4_record.update(loss_x_j4.item(), batch_size) loss_t_record.update(loss_t.item(), batch_size) loss_a_record.update(loss_a.item(), batch_size) curr_iter += 1 log = '[iter %d], [train loss %.5f], [loss_x_fusion %.5f], [loss_x_phy %.5f], [loss_x_j1 %.5f], ' \ '[loss_x_j2 %.5f], [loss_x_j3 %.5f], [loss_x_j4 %.5f], [loss_t %.5f], [loss_a %.5f], ' \ '[lr %.13f]' % \ (curr_iter, train_loss_record.avg, loss_x_jf_record.avg, loss_x_j0_record.avg, loss_x_j1_record.avg, loss_x_j2_record.avg, loss_x_j3_record.avg, loss_x_j4_record.avg, loss_t_record.avg, loss_a_record.avg, optimizer.param_groups[1]['lr']) print(log) open(log_path, 'a').write(log + '\n') if (curr_iter + 1) % cfgs['val_freq'] == 0: validate(net, curr_iter, optimizer) if curr_iter > cfgs['iter_num']: break def validate(net, curr_iter, optimizer): print('validating...') net.eval() loss_record = AvgMeter() with torch.no_grad(): for data in tqdm(val_loader): haze, gt, _ = data haze = haze.cuda() gt = gt.cuda() dehaze = net(haze) loss = criterion(dehaze, gt) loss_record.update(loss.item(), haze.size(0)) snapshot_name = 'iter_%d_loss_%.5f_lr_%.6f' % (curr_iter + 1, loss_record.avg, optimizer.param_groups[1]['lr']) print('[validate]: [iter %d], [loss %.5f]' % (curr_iter + 1, loss_record.avg)) torch.save(net.state_dict(), os.path.join(args.ckpt_path, args.exp_name, snapshot_name + '.pth')) torch.save(optimizer.state_dict(), os.path.join(args.ckpt_path, args.exp_name, snapshot_name + '_optim.pth')) net.train() if __name__ == '__main__': args = parse_args() os.environ['CUDA_VISIBLE_DEVICES'] = args.gpus cudnn.benchmark = True torch.cuda.set_device(int(args.gpus)) train_dataset = ItsDataset(TRAIN_ITS_ROOT, True, cfgs['crop_size']) train_loader = DataLoader(train_dataset, batch_size=cfgs['train_batch_size'], num_workers=4, shuffle=True, drop_last=True) val_dataset = SotsDataset(TEST_SOTS_ROOT) val_loader = DataLoader(val_dataset, batch_size=8) criterion = nn.L1Loss().cuda() log_path = os.path.join(args.ckpt_path, args.exp_name, str(datetime.datetime.now()) + '.txt') main()
34.686567
115
0.590361
9142b7ea35029a0e278ff84ce14454906bc2d967
1,245
py
Python
mfile/urls.py
vikifox/CMDB
bac9b7da204c3eee344f55bb2187df38ef3b3d4c
[ "Apache-2.0" ]
16
2020-08-13T04:28:50.000Z
2021-06-10T06:24:51.000Z
mfile/urls.py
vikifox/CMDB
bac9b7da204c3eee344f55bb2187df38ef3b3d4c
[ "Apache-2.0" ]
1
2019-04-15T07:01:42.000Z
2019-04-15T07:01:42.000Z
mfile/urls.py
vikifox/CMDB
bac9b7da204c3eee344f55bb2187df38ef3b3d4c
[ "Apache-2.0" ]
2
2018-12-05T09:51:34.000Z
2019-12-16T16:26:41.000Z
"""example_project URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url,include from django.contrib import admin from django.contrib.auth.views import LoginView,LogoutView from mfile.views import finder from django.views.static import serve from django.conf import settings from django.contrib.staticfiles.urls import staticfiles_urlpatterns urlpatterns = [ url(r'^$',finder.as_view(),name='mfile'), url(r'^elfinder/',include('elfinder.urls')) ] if settings.DEBUG: urlpatterns += staticfiles_urlpatterns() urlpatterns += [ url(r'^media/(?P<path>.*)$', serve, { 'document_root': settings.MEDIA_ROOT, }), ]
36.617647
87
0.719679
0e06325f4bcdcc1a7d72eb5ff1f9989d17fba35c
8,374
py
Python
fpn/train_end2end.py
jyqi/mx-viddet
af89ed736362fecdd1ee5e6584d9b221c59ff8c4
[ "MIT" ]
null
null
null
fpn/train_end2end.py
jyqi/mx-viddet
af89ed736362fecdd1ee5e6584d9b221c59ff8c4
[ "MIT" ]
null
null
null
fpn/train_end2end.py
jyqi/mx-viddet
af89ed736362fecdd1ee5e6584d9b221c59ff8c4
[ "MIT" ]
null
null
null
# -------------------------------------------------------- # Deformable Convolutional Networks # Copyright (c) 2017 Microsoft # Licensed under The MIT License [see LICENSE for details] # Modified by Haozhi Qi # -------------------------------------------------------- # Based on: # MX-RCNN # Copyright (c) 2016 by Contributors # Licence under The Apache 2.0 License # https://github.com/ijkguo/mx-rcnn/ # -------------------------------------------------------- import _init_paths import cv2 import argparse import pprint import os import sys from config.config import config, update_config def parse_args(): parser = argparse.ArgumentParser(description='Train Faster-RCNN network') # general parser.add_argument('--cfg', help='experiment configure file name', required=True, type=str) args, rest = parser.parse_known_args() # update config update_config(args.cfg) # training parser.add_argument('--frequent', help='frequency of logging', default=config.default.frequent, type=int) args = parser.parse_args() return args args = parse_args() curr_path = os.path.abspath(os.path.dirname(__file__)) sys.path.insert(0, os.path.join(curr_path, '../external/mxnet', config.MXNET_VERSION)) import shutil import numpy as np import mxnet as mx from mxboard import SummaryWriter from symbols import * from core.loader import PyramidAnchorIterator from core import callback, metric from core.module import MutableModule from utils.create_logger import create_logger from utils.load_data import load_gt_roidb, merge_roidb, filter_roidb from utils.load_model import load_param from utils.PrefetchingIter import PrefetchingIter from utils.lr_scheduler import WarmupMultiFactorScheduler def train_net(args, ctx, pretrained, epoch, prefix, begin_epoch, end_epoch, lr, lr_step): mx.random.seed(3) np.random.seed(3) logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.image_set) prefix = os.path.join(final_output_path, prefix) tboardlog = SummaryWriter(logdir=os.path.join(final_output_path, 'tb'), flush_secs=5) # load symbol shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'), final_output_path) sym_instance = eval(config.symbol + '.' + config.symbol)() sym = sym_instance.get_symbol(config, is_train=True) feat_pyramid_level = np.log2(config.network.RPN_FEAT_STRIDE).astype(int) feat_sym = [sym.get_internals()['rpn_cls_score_p' + str(x) + '_output'] for x in feat_pyramid_level] # setup multi-gpu batch_size = len(ctx) input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size # print config pprint.pprint(config) logger.info('training config:{}\n'.format(pprint.pformat(config))) # load dataset and prepare imdb for training image_sets = [iset for iset in config.dataset.image_set.split('+')] roidbs = [load_gt_roidb(config.dataset.dataset, image_set, config.dataset.root_path, config.dataset.dataset_path, flip=config.TRAIN.FLIP) for image_set in image_sets] roidb = merge_roidb(roidbs) roidb = filter_roidb(roidb, config) # load training data train_data = PyramidAnchorIterator(feat_sym, roidb, config, batch_size=input_batch_size, shuffle=config.TRAIN.SHUFFLE, ctx=ctx, feat_strides=config.network.RPN_FEAT_STRIDE, anchor_scales=config.network.ANCHOR_SCALES, anchor_ratios=config.network.ANCHOR_RATIOS, aspect_grouping=config.TRAIN.ASPECT_GROUPING, allowed_border=np.inf) # infer max shape max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])))] max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape) max_data_shape.append(('gt_boxes', (config.TRAIN.BATCH_IMAGES, 100, 5))) print 'providing maximum shape', max_data_shape, max_label_shape data_shape_dict = dict(train_data.provide_data_single + train_data.provide_label_single) pprint.pprint(data_shape_dict) sym_instance.infer_shape(data_shape_dict) # load and initialize params if config.TRAIN.RESUME: print('continue training from ', begin_epoch) arg_params, aux_params = load_param(prefix, begin_epoch, convert=True) else: arg_params, aux_params = load_param(pretrained, epoch, convert=True) sym_instance.init_weight(config, arg_params, aux_params) # check parameter shapes sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict) # create solver fixed_param_prefix = config.network.FIXED_PARAMS data_names = [k[0] for k in train_data.provide_data_single] label_names = [k[0] for k in train_data.provide_label_single] mod = MutableModule(sym, data_names=data_names, label_names=label_names, logger=logger, context=ctx, max_data_shapes=[max_data_shape for _ in range(batch_size)], max_label_shapes=[max_label_shape for _ in range(batch_size)], fixed_param_prefix=fixed_param_prefix) if config.TRAIN.RESUME: mod._preload_opt_states = '%s-%04d.states'%(prefix, begin_epoch) # decide training params # metric rpn_eval_metric = metric.RPNAccMetric() rpn_cls_metric = metric.RPNLogLossMetric() rpn_bbox_metric = metric.RPNL1LossMetric() rpn_fg_metric = metric.RPNFGFraction(config) eval_metric = metric.RCNNAccMetric(config) eval_fg_metric = metric.RCNNFGAccuracy(config) cls_metric = metric.RCNNLogLossMetric(config) bbox_metric = metric.RCNNL1LossMetric(config) eval_metrics = mx.metric.CompositeEvalMetric() # rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric for child_metric in [rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, rpn_fg_metric, eval_fg_metric, eval_metric, cls_metric, bbox_metric]: eval_metrics.add(child_metric) # callback # batch_end_callback = callback.Speedometer(train_data.batch_size, frequent=args.frequent) batch_end_callback = [callback.Speedometer(train_data.batch_size, frequent=args.frequent), callback.MXBoard(tboardlog, frequent=100)] means = np.tile(np.array(config.TRAIN.BBOX_MEANS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) stds = np.tile(np.array(config.TRAIN.BBOX_STDS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) epoch_end_callback = [mx.callback.module_checkpoint(mod, prefix, period=1, save_optimizer_states=True), callback.do_checkpoint(prefix, means, stds)] # decide learning rate base_lr = lr lr_factor = config.TRAIN.lr_factor lr_epoch = [float(epoch) for epoch in lr_step.split(',')] lr_epoch_diff = [epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch] lr = base_lr * (lr_factor ** (len(lr_epoch) - len(lr_epoch_diff))) lr_iters = [int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff] print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters) lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor, config.TRAIN.warmup, config.TRAIN.warmup_lr, config.TRAIN.warmup_step) # optimizer optimizer_params = {'momentum': config.TRAIN.momentum, 'wd': config.TRAIN.wd, 'learning_rate': lr, 'lr_scheduler': lr_scheduler, 'clip_gradient': None} # if not isinstance(train_data, PrefetchingIter): train_data = PrefetchingIter(train_data) # train mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback, kvstore=config.default.kvstore, optimizer='sgd', optimizer_params=optimizer_params, arg_params=arg_params, aux_params=aux_params, begin_epoch=begin_epoch, num_epoch=end_epoch) def main(): print('Called with argument:', args) ctx = [mx.gpu(int(i)) for i in config.gpus.split(',')] train_net(args, ctx, config.network.pretrained, config.network.pretrained_epoch, config.TRAIN.model_prefix, config.TRAIN.begin_epoch, config.TRAIN.end_epoch, config.TRAIN.lr, config.TRAIN.lr_step) if __name__ == '__main__': main()
45.264865
152
0.709219
c1cd6be83de1edf00e5353689a3e01683e0f8b0c
1,379
py
Python
dialogue-engine/test/programytest/parser/test_factory.py
cotobadesign/cotoba-agent-oss
3833d56e79dcd7529c3e8b3a3a8a782d513d9b12
[ "MIT" ]
104
2020-03-30T09:40:00.000Z
2022-03-06T22:34:25.000Z
dialogue-engine/test/programytest/parser/test_factory.py
cotobadesign/cotoba-agent-oss
3833d56e79dcd7529c3e8b3a3a8a782d513d9b12
[ "MIT" ]
25
2020-06-12T01:36:35.000Z
2022-02-19T07:30:44.000Z
dialogue-engine/test/programytest/parser/test_factory.py
cotobadesign/cotoba-agent-oss
3833d56e79dcd7529c3e8b3a3a8a782d513d9b12
[ "MIT" ]
10
2020-04-02T23:43:56.000Z
2021-05-14T13:47:01.000Z
""" Copyright (c) 2020 COTOBA DESIGN, Inc. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import unittest from programy.parser.factory import NodeFactory class FactoryTests(unittest.TestCase): def test_init(self): factory = NodeFactory("Test") self.assertIsNotNone(factory) self.assertEqual({}, factory._nodes_config) self.assertEqual("Test", factory._type)
49.25
126
0.778825
1895bcc815ab09c601263457f04cb70db3750ef1
209
py
Python
tint/testing/sample_files.py
Cxl1013/TINT
479c5899713d149003096fbbc900b3c52793394d
[ "BSD-2-Clause" ]
53
2017-12-11T14:27:19.000Z
2021-11-03T06:16:44.000Z
tint/testing/sample_files.py
Cxl1013/TINT
479c5899713d149003096fbbc900b3c52793394d
[ "BSD-2-Clause" ]
14
2017-09-25T16:08:46.000Z
2021-11-30T19:25:12.000Z
tint/testing/sample_files.py
Cxl1013/TINT
479c5899713d149003096fbbc900b3c52793394d
[ "BSD-2-Clause" ]
38
2017-07-24T13:49:06.000Z
2021-11-03T06:16:43.000Z
""" ============ Sample Files ============ Sample files for unit tests. """ import os DATA_PATH = os.path.join(os.path.dirname(__file__), 'data') SAMPLE_GRID_FILE = os.path.join(DATA_PATH, 'test_grid.nc')
14.928571
59
0.631579
34d5eafd9e629f1bec348aad49e25ac6a77c8a23
4,277
py
Python
benchmark/startQiskit_noisy3047.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startQiskit_noisy3047.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startQiskit_noisy3047.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
# qubit number=4 # total number=41 import cirq import qiskit from qiskit.providers.aer import QasmSimulator from qiskit.test.mock import FakeVigo from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import BasicAer, execute, transpile from pprint import pprint from qiskit.test.mock import FakeVigo from math import log2 import numpy as np import networkx as nx def bitwise_xor(s: str, t: str) -> str: length = len(s) res = [] for i in range(length): res.append(str(int(s[i]) ^ int(t[i]))) return ''.join(res[::-1]) def bitwise_dot(s: str, t: str) -> str: length = len(s) res = 0 for i in range(length): res += int(s[i]) * int(t[i]) return str(res % 2) def build_oracle(n: int, f) -> QuantumCircuit: # implement the oracle O_f # NOTE: use multi_control_toffoli_gate ('noancilla' mode) # https://qiskit.org/documentation/_modules/qiskit/aqua/circuits/gates/multi_control_toffoli_gate.html # https://quantumcomputing.stackexchange.com/questions/3943/how-do-you-implement-the-toffoli-gate-using-only-single-qubit-and-cnot-gates # https://quantumcomputing.stackexchange.com/questions/2177/how-can-i-implement-an-n-bit-toffoli-gate controls = QuantumRegister(n, "ofc") target = QuantumRegister(1, "oft") oracle = QuantumCircuit(controls, target, name="Of") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) oracle.mct(controls, target[0], None, mode='noancilla') for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() return oracle def make_circuit(n:int,f) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n,"qc") classical = ClassicalRegister(n, "qm") prog = QuantumCircuit(input_qubit, classical) prog.cx(input_qubit[0],input_qubit[3]) # number=13 prog.cx(input_qubit[0],input_qubit[3]) # number=17 prog.x(input_qubit[3]) # number=18 prog.cx(input_qubit[0],input_qubit[3]) # number=19 prog.cx(input_qubit[0],input_qubit[3]) # number=15 prog.h(input_qubit[1]) # number=2 prog.h(input_qubit[1]) # number=31 prog.cz(input_qubit[2],input_qubit[1]) # number=32 prog.h(input_qubit[1]) # number=33 prog.h(input_qubit[2]) # number=3 prog.h(input_qubit[3]) # number=4 prog.y(input_qubit[3]) # number=12 prog.h(input_qubit[0]) # number=5 oracle = build_oracle(n-1, f) prog.append(oracle.to_gate(),[input_qubit[i] for i in range(n-1)]+[input_qubit[n-1]]) prog.h(input_qubit[1]) # number=6 prog.h(input_qubit[2]) # number=7 prog.h(input_qubit[0]) # number=24 prog.cz(input_qubit[3],input_qubit[0]) # number=25 prog.h(input_qubit[0]) # number=26 prog.h(input_qubit[0]) # number=38 prog.cz(input_qubit[3],input_qubit[0]) # number=39 prog.h(input_qubit[0]) # number=40 prog.z(input_qubit[3]) # number=29 prog.cx(input_qubit[3],input_qubit[0]) # number=30 prog.x(input_qubit[2]) # number=23 prog.cx(input_qubit[3],input_qubit[0]) # number=22 prog.h(input_qubit[3]) # number=8 prog.h(input_qubit[0]) # number=9 prog.y(input_qubit[2]) # number=10 prog.y(input_qubit[2]) # number=11 prog.x(input_qubit[3]) # number=36 prog.cx(input_qubit[3],input_qubit[0]) # number=34 prog.cx(input_qubit[3],input_qubit[0]) # number=35 prog.x(input_qubit[2]) # number=37 # circuit end for i in range(n): prog.measure(input_qubit[i], classical[i]) return prog if __name__ == '__main__': a = "111" b = "0" f = lambda rep: bitwise_xor(bitwise_dot(a, rep), b) prog = make_circuit(4,f) backend = FakeVigo() sample_shot =8000 info = execute(prog, backend=backend, shots=sample_shot).result().get_counts() backend = FakeVigo() circuit1 = transpile(prog,backend,optimization_level=2) writefile = open("../data/startQiskit_noisy3047.csv","w") print(info,file=writefile) print("results end", file=writefile) print(circuit1.__len__(),file=writefile) print(circuit1,file=writefile) writefile.close()
34.772358
140
0.653963
93cc02a61fcbf1e0ecc0596f34d2f996a33043ee
231
py
Python
offline_install/portalocker-2.0.0/portalocker/__about__.py
weisenpan/detectron2-master
a8e0954c414d63fa09e54aeae60e31aa437acaa3
[ "Apache-2.0" ]
null
null
null
offline_install/portalocker-2.0.0/portalocker/__about__.py
weisenpan/detectron2-master
a8e0954c414d63fa09e54aeae60e31aa437acaa3
[ "Apache-2.0" ]
null
null
null
offline_install/portalocker-2.0.0/portalocker/__about__.py
weisenpan/detectron2-master
a8e0954c414d63fa09e54aeae60e31aa437acaa3
[ "Apache-2.0" ]
null
null
null
__package_name__ = 'portalocker' __author__ = 'Rick van Hattem' __email__ = 'wolph@wol.ph' __version__ = '2.0.0' __description__ = '''Wraps the portalocker recipe for easy usage''' __url__ = 'https://github.com/WoLpH/portalocker'
28.875
67
0.744589
e26e4a1989fd12a46da08aa9ff0d7dfe330613ee
881
py
Python
tasks.py
lixiang2017/patchwork
d653591cc8130765978a91d02c4cd108e76cca06
[ "BSD-2-Clause" ]
157
2015-01-07T06:48:34.000Z
2022-03-21T10:04:55.000Z
tasks.py
lixiang2017/patchwork
d653591cc8130765978a91d02c4cd108e76cca06
[ "BSD-2-Clause" ]
23
2015-08-12T06:34:56.000Z
2021-09-13T19:25:31.000Z
tasks.py
lixiang2017/patchwork
d653591cc8130765978a91d02c4cd108e76cca06
[ "BSD-2-Clause" ]
43
2016-01-05T05:08:27.000Z
2021-11-11T13:11:12.000Z
from importlib import import_module from invocations import docs, travis from invocations.checks import blacken from invocations.packaging import release from invocations.pytest import test, coverage from invoke import Collection, task @task def sanity(c): """ Quick sanity check to ensure we're installed successfully. Mostly for CI. """ # Doesn't need to literally import everything, but "a handful" will do. for name in ("environment", "files", "transfers"): mod = "patchwork.{}".format(name) import_module(mod) print("Imported {} successfully".format(mod)) ns = Collection(docs, release, travis, test, coverage, sanity, blacken) ns.configure( { "packaging": { "sign": True, "wheel": True, "check_desc": True, "changelog_file": "docs/changelog.rst", } } )
25.911765
77
0.649262
d57013c3a422214c3904f24a839a29eb6d78ce1b
2,570
py
Python
cherrypy/test/test_wsgi_ns.py
seshness/bearlol
ff89bc1e66a96b6e55538a5cee38370e08e5b682
[ "BSD-3-Clause" ]
2
2020-12-28T22:37:45.000Z
2021-01-23T18:04:46.000Z
cherrypy/test/test_wsgi_ns.py
seshness/bearlol
ff89bc1e66a96b6e55538a5cee38370e08e5b682
[ "BSD-3-Clause" ]
null
null
null
cherrypy/test/test_wsgi_ns.py
seshness/bearlol
ff89bc1e66a96b6e55538a5cee38370e08e5b682
[ "BSD-3-Clause" ]
null
null
null
import cherrypy from cherrypy.test import helper class WSGI_Namespace_Test(helper.CPWebCase): def setup_server(): class WSGIResponse(object): def __init__(self, appresults): self.appresults = appresults self.iter = iter(appresults) def __iter__(self): return self def next(self): return self.iter.next() def close(self): if hasattr(self.appresults, "close"): self.appresults.close() class ChangeCase(object): def __init__(self, app, to=None): self.app = app self.to = to def __call__(self, environ, start_response): res = self.app(environ, start_response) class CaseResults(WSGIResponse): def next(this): return getattr(this.iter.next(), self.to)() return CaseResults(res) class Replacer(object): def __init__(self, app, map={}): self.app = app self.map = map def __call__(self, environ, start_response): res = self.app(environ, start_response) class ReplaceResults(WSGIResponse): def next(this): line = this.iter.next() for k, v in self.map.iteritems(): line = line.replace(k, v) return line return ReplaceResults(res) class Root(object): def index(self): return "HellO WoRlD!" index.exposed = True root_conf = {'wsgi.pipeline': [('replace', Replacer)], 'wsgi.replace.map': {'L': 'X', 'l': 'r'}, } app = cherrypy.Application(Root()) app.wsgiapp.pipeline.append(('changecase', ChangeCase)) app.wsgiapp.config['changecase'] = {'to': 'upper'} cherrypy.tree.mount(app, config={'/': root_conf}) setup_server = staticmethod(setup_server) def test_pipeline(self): if not cherrypy.server.httpserver: return self.skip() self.getPage("/") # If body is "HEXXO WORXD!", the middleware was applied out of order. self.assertBody("HERRO WORRD!")
31.728395
77
0.473541
abb8f1549151fa72494ab62b8e83933a0bdc8dba
19,498
py
Python
venv/lib/python3.8/site-packages/_pytest/terminal.py
LachlanAttwood/ConvertMe
da544b5cacead3213dab76e9e716222b011d7688
[ "MIT" ]
null
null
null
venv/lib/python3.8/site-packages/_pytest/terminal.py
LachlanAttwood/ConvertMe
da544b5cacead3213dab76e9e716222b011d7688
[ "MIT" ]
null
null
null
venv/lib/python3.8/site-packages/_pytest/terminal.py
LachlanAttwood/ConvertMe
da544b5cacead3213dab76e9e716222b011d7688
[ "MIT" ]
null
null
null
""" terminal reporting of the full testing process. This is a good source for looking at the various reporting hooks. """ import pytest import py import sys def pytest_addoption(parser): group = parser.getgroup("terminal reporting", "reporting", after="general") group._addoption('-v', '--verbose', action="count", dest="verbose", default=0, help="increase verbosity."), group._addoption('-q', '--quiet', action="count", dest="quiet", default=0, help="decrease verbosity."), group._addoption('-r', action="store", dest="reportchars", default=None, metavar="chars", help="show extra test summary info as specified by chars (f)ailed, " "(E)error, (s)skipped, (x)failed, (X)passed (w)warnings.") group._addoption('-l', '--showlocals', action="store_true", dest="showlocals", default=False, help="show locals in tracebacks (disabled by default).") group._addoption('--report', action="store", dest="report", default=None, metavar="opts", help="(deprecated, use -r)") group._addoption('--tb', metavar="style", action="store", dest="tbstyle", default='auto', choices=['auto', 'long', 'short', 'no', 'line', 'native'], help="traceback print mode (long/short/line/native/no).") group._addoption('--fulltrace', '--full-trace', action="store_true", default=False, help="don't cut any tracebacks (default is to cut).") group._addoption('--color', metavar="color", action="store", dest="color", default='auto', choices=['yes', 'no', 'auto'], help="color terminal output (yes/no/auto).") def pytest_configure(config): config.option.verbose -= config.option.quiet reporter = TerminalReporter(config, sys.stdout) config.pluginmanager.register(reporter, 'terminalreporter') if config.option.debug or config.option.traceconfig: def mywriter(tags, args): msg = " ".join(map(str, args)) reporter.write_line("[traceconfig] " + msg) config.trace.root.setprocessor("pytest:config", mywriter) def getreportopt(config): reportopts = "" optvalue = config.option.report if optvalue: py.builtin.print_("DEPRECATED: use -r instead of --report option.", file=py.std.sys.stderr) if optvalue: for setting in optvalue.split(","): setting = setting.strip() if setting == "skipped": reportopts += "s" elif setting == "xfailed": reportopts += "x" reportchars = config.option.reportchars if reportchars: for char in reportchars: if char not in reportopts: reportopts += char return reportopts def pytest_report_teststatus(report): if report.passed: letter = "." elif report.skipped: letter = "s" elif report.failed: letter = "F" if report.when != "call": letter = "f" return report.outcome, letter, report.outcome.upper() class WarningReport: def __init__(self, code, message, nodeid=None, fslocation=None): self.code = code self.message = message self.nodeid = nodeid self.fslocation = fslocation class TerminalReporter: def __init__(self, config, file=None): self.config = config self.verbosity = self.config.option.verbose self.showheader = self.verbosity >= 0 self.showfspath = self.verbosity >= 0 self.showlongtestinfo = self.verbosity > 0 self._numcollected = 0 self.stats = {} self.startdir = self.curdir = py.path.local() if file is None: file = py.std.sys.stdout self._tw = self.writer = py.io.TerminalWriter(file) if self.config.option.color == 'yes': self._tw.hasmarkup = True if self.config.option.color == 'no': self._tw.hasmarkup = False self.currentfspath = None self.reportchars = getreportopt(config) self.hasmarkup = self._tw.hasmarkup def hasopt(self, char): char = {'xfailed': 'x', 'skipped': 's'}.get(char, char) return char in self.reportchars def write_fspath_result(self, fspath, res): if fspath != self.currentfspath: self.currentfspath = fspath #fspath = self.startdir.bestrelpath(fspath) self._tw.line() #relpath = self.startdir.bestrelpath(fspath) self._tw.write(fspath + " ") self._tw.write(res) def write_ensure_prefix(self, prefix, extra="", **kwargs): if self.currentfspath != prefix: self._tw.line() self.currentfspath = prefix self._tw.write(prefix) if extra: self._tw.write(extra, **kwargs) self.currentfspath = -2 def ensure_newline(self): if self.currentfspath: self._tw.line() self.currentfspath = None def write(self, content, **markup): self._tw.write(content, **markup) def write_line(self, line, **markup): if not py.builtin._istext(line): line = py.builtin.text(line, errors="replace") self.ensure_newline() self._tw.line(line, **markup) def rewrite(self, line, **markup): line = str(line) self._tw.write("\r" + line, **markup) def write_sep(self, sep, title=None, **markup): self.ensure_newline() self._tw.sep(sep, title, **markup) def section(self, title, sep="=", **kw): self._tw.sep(sep, title, **kw) def line(self, msg, **kw): self._tw.line(msg, **kw) def pytest_internalerror(self, excrepr): for line in py.builtin.text(excrepr).split("\n"): self.write_line("INTERNALERROR> " + line) return 1 def pytest_logwarning(self, code, fslocation, message, nodeid): warnings = self.stats.setdefault("warnings", []) warning = WarningReport(code=code, fslocation=fslocation, message=message, nodeid=nodeid) warnings.append(warning) def pytest_plugin_registered(self, plugin): if self.config.option.traceconfig: msg = "PLUGIN registered: %s" % (plugin,) # XXX this event may happen during setup/teardown time # which unfortunately captures our output here # which garbles our output if we use self.write_line self.write_line(msg) def pytest_deselected(self, items): self.stats.setdefault('deselected', []).extend(items) def pytest_runtest_logstart(self, nodeid, location): # ensure that the path is printed before the # 1st test of a module starts running fspath = nodeid.split("::")[0] if self.showlongtestinfo: line = self._locationline(fspath, *location) self.write_ensure_prefix(line, "") elif self.showfspath: self.write_fspath_result(fspath, "") def pytest_runtest_logreport(self, report): rep = report res = self.config.hook.pytest_report_teststatus(report=rep) cat, letter, word = res self.stats.setdefault(cat, []).append(rep) self._tests_ran = True if not letter and not word: # probably passed setup/teardown return if self.verbosity <= 0: if not hasattr(rep, 'node') and self.showfspath: self.write_fspath_result(rep.fspath, letter) else: self._tw.write(letter) else: if isinstance(word, tuple): word, markup = word else: if rep.passed: markup = {'green':True} elif rep.failed: markup = {'red':True} elif rep.skipped: markup = {'yellow':True} line = self._locationline(str(rep.fspath), *rep.location) if not hasattr(rep, 'node'): self.write_ensure_prefix(line, word, **markup) #self._tw.write(word, **markup) else: self.ensure_newline() if hasattr(rep, 'node'): self._tw.write("[%s] " % rep.node.gateway.id) self._tw.write(word, **markup) self._tw.write(" " + line) self.currentfspath = -2 def pytest_collection(self): if not self.hasmarkup and self.config.option.verbose >= 1: self.write("collecting ... ", bold=True) def pytest_collectreport(self, report): if report.failed: self.stats.setdefault("error", []).append(report) elif report.skipped: self.stats.setdefault("skipped", []).append(report) items = [x for x in report.result if isinstance(x, pytest.Item)] self._numcollected += len(items) if self.hasmarkup: #self.write_fspath_result(report.fspath, 'E') self.report_collect() def report_collect(self, final=False): if self.config.option.verbose < 0: return errors = len(self.stats.get('error', [])) skipped = len(self.stats.get('skipped', [])) if final: line = "collected " else: line = "collecting " line += str(self._numcollected) + " items" if errors: line += " / %d errors" % errors if skipped: line += " / %d skipped" % skipped if self.hasmarkup: if final: line += " \n" self.rewrite(line, bold=True) else: self.write_line(line) def pytest_collection_modifyitems(self): self.report_collect(True) @pytest.mark.trylast def pytest_sessionstart(self, session): self._sessionstarttime = py.std.time.time() if not self.showheader: return self.write_sep("=", "test session starts", bold=True) verinfo = ".".join(map(str, sys.version_info[:3])) msg = "platform %s -- Python %s" % (sys.platform, verinfo) if hasattr(sys, 'pypy_version_info'): verinfo = ".".join(map(str, sys.pypy_version_info[:3])) msg += "[pypy-%s-%s]" % (verinfo, sys.pypy_version_info[3]) msg += " -- py-%s -- pytest-%s" % (py.__version__, pytest.__version__) if self.verbosity > 0 or self.config.option.debug or \ getattr(self.config.option, 'pastebin', None): msg += " -- " + str(sys.executable) self.write_line(msg) lines = self.config.hook.pytest_report_header( config=self.config, startdir=self.startdir) lines.reverse() for line in flatten(lines): self.write_line(line) def pytest_report_header(self, config): plugininfo = config.pluginmanager._plugin_distinfo if plugininfo: l = [] for dist, plugin in plugininfo: name = dist.project_name if name.startswith("pytest-"): name = name[7:] l.append(name) return "plugins: %s" % ", ".join(l) def pytest_collection_finish(self, session): if self.config.option.collectonly: self._printcollecteditems(session.items) if self.stats.get('failed'): self._tw.sep("!", "collection failures") for rep in self.stats.get('failed'): rep.toterminal(self._tw) return 1 return 0 if not self.showheader: return #for i, testarg in enumerate(self.config.args): # self.write_line("test path %d: %s" %(i+1, testarg)) def _printcollecteditems(self, items): # to print out items and their parent collectors # we take care to leave out Instances aka () # because later versions are going to get rid of them anyway if self.config.option.verbose < 0: if self.config.option.verbose < -1: counts = {} for item in items: name = item.nodeid.split('::', 1)[0] counts[name] = counts.get(name, 0) + 1 for name, count in sorted(counts.items()): self._tw.line("%s: %d" % (name, count)) else: for item in items: nodeid = item.nodeid nodeid = nodeid.replace("::()::", "::") self._tw.line(nodeid) return stack = [] indent = "" for item in items: needed_collectors = item.listchain()[1:] # strip root node while stack: if stack == needed_collectors[:len(stack)]: break stack.pop() for col in needed_collectors[len(stack):]: stack.append(col) #if col.name == "()": # continue indent = (len(stack) - 1) * " " self._tw.line("%s%s" % (indent, col)) def pytest_sessionfinish(self, exitstatus, __multicall__): __multicall__.execute() self._tw.line("") if exitstatus in (0, 1, 2, 4): self.summary_errors() self.summary_failures() self.summary_warnings() self.config.hook.pytest_terminal_summary(terminalreporter=self) if exitstatus == 2: self._report_keyboardinterrupt() del self._keyboardinterrupt_memo self.summary_deselected() self.summary_stats() def pytest_keyboard_interrupt(self, excinfo): self._keyboardinterrupt_memo = excinfo.getrepr(funcargs=True) def pytest_unconfigure(self): if hasattr(self, '_keyboardinterrupt_memo'): self._report_keyboardinterrupt() def _report_keyboardinterrupt(self): excrepr = self._keyboardinterrupt_memo msg = excrepr.reprcrash.message self.write_sep("!", msg) if "KeyboardInterrupt" in msg: if self.config.option.fulltrace: excrepr.toterminal(self._tw) else: excrepr.reprcrash.toterminal(self._tw) def _locationline(self, collect_fspath, fspath, lineno, domain): # collect_fspath comes from testid which has a "/"-normalized path if fspath and fspath.replace("\\", "/") != collect_fspath: fspath = "%s <- %s" % (collect_fspath, fspath) if fspath: line = str(fspath) if lineno is not None: lineno += 1 line += "@" + str(lineno) if domain: split = str(domain).split('[') split[0] = split[0].replace('.', '::') # don't replace '.' in params line += "::" + '['.join(split) else: line = "[location]" return line + " " def _getfailureheadline(self, rep): if hasattr(rep, 'location'): fspath, lineno, domain = rep.location return domain else: return "test session" # XXX? def _getcrashline(self, rep): try: return str(rep.longrepr.reprcrash) except AttributeError: try: return str(rep.longrepr)[:50] except AttributeError: return "" # # summaries for sessionfinish # def getreports(self, name): l = [] for x in self.stats.get(name, []): if not hasattr(x, '_pdbshown'): l.append(x) return l def summary_warnings(self): if self.hasopt("w"): warnings = self.stats.get("warnings") if not warnings: return self.write_sep("=", "warning summary") for w in warnings: self._tw.line("W%s %s %s" % (w.code, w.fslocation, w.message)) def summary_failures(self): if self.config.option.tbstyle != "no": reports = self.getreports('failed') if not reports: return self.write_sep("=", "FAILURES") for rep in reports: if self.config.option.tbstyle == "line": line = self._getcrashline(rep) self.write_line(line) else: msg = self._getfailureheadline(rep) self.write_sep("_", msg) self._outrep_summary(rep) def summary_errors(self): if self.config.option.tbstyle != "no": reports = self.getreports('error') if not reports: return self.write_sep("=", "ERRORS") for rep in self.stats['error']: msg = self._getfailureheadline(rep) if not hasattr(rep, 'when'): # collect msg = "ERROR collecting " + msg elif rep.when == "setup": msg = "ERROR at setup of " + msg elif rep.when == "teardown": msg = "ERROR at teardown of " + msg self.write_sep("_", msg) self._outrep_summary(rep) def _outrep_summary(self, rep): rep.toterminal(self._tw) for secname, content in rep.sections: self._tw.sep("-", secname) if content[-1:] == "\n": content = content[:-1] self._tw.line(content) def summary_stats(self): session_duration = py.std.time.time() - self._sessionstarttime keys = ("failed passed skipped deselected " "xfailed xpassed warnings").split() for key in self.stats.keys(): if key not in keys: keys.append(key) parts = [] for key in keys: if key: # setup/teardown reports have an empty key, ignore them val = self.stats.get(key, None) if val: parts.append("%d %s" % (len(val), key)) line = ", ".join(parts) msg = "%s in %.2f seconds" % (line, session_duration) markup = {'bold': True} if 'failed' in self.stats or 'error' in self.stats: markup = {'red': True, 'bold': True} else: markup = {'green': True, 'bold': True} if self.verbosity >= 0: self.write_sep("=", msg, **markup) if self.verbosity == -1: self.write_line(msg, **markup) def summary_deselected(self): if 'deselected' in self.stats: l = [] k = self.config.option.keyword if k: l.append("-k%s" % k) m = self.config.option.markexpr if m: l.append("-m %r" % m) if l: self.write_sep("=", "%d tests deselected by %r" % ( len(self.stats['deselected']), " ".join(l)), bold=True) def repr_pythonversion(v=None): if v is None: v = sys.version_info try: return "%s.%s.%s-%s-%s" % v except (TypeError, ValueError): return str(v) def flatten(l): for x in l: if isinstance(x, (list, tuple)): for y in flatten(x): yield y else: yield x
36.92803
85
0.544364
6c1262fbdb6d9df782631aa31451550c92bb7ef2
6,569
py
Python
setup.py
giammi56/iminuit
afd9f4d48d8e9500875f992f663f1a2f609b9575
[ "MIT" ]
null
null
null
setup.py
giammi56/iminuit
afd9f4d48d8e9500875f992f663f1a2f609b9575
[ "MIT" ]
null
null
null
setup.py
giammi56/iminuit
afd9f4d48d8e9500875f992f663f1a2f609b9575
[ "MIT" ]
null
null
null
# Use CFLAGS="-g -Og -DDEBUG" python setup.py ... for debugging import os import platform from os.path import dirname, join, exists from glob import glob from setuptools import setup, Extension from setuptools.command.build_ext import build_ext from distutils.ccompiler import CCompiler from distutils.unixccompiler import UnixCCompiler from distutils.msvccompiler import MSVCCompiler import distutils.ccompiler extra_flags = [] if bool(os.environ.get("COVERAGE", False)): extra_flags += ["--coverage"] if platform.system() == "Darwin": extra_flags += ["-stdlib=libc++"] # turn off warnings raised by Minuit and generated Cython code that need # to be fixed in the original code bases of Minuit and Cython compiler_opts = { CCompiler: {}, UnixCCompiler: { "extra_compile_args": [ "-std=c++11", "-Wno-shorten-64-to-32", "-Wno-parentheses", "-Wno-unused-variable", "-Wno-sign-compare", "-Wno-cpp", # suppresses #warnings from numpy "-Wno-deprecated-declarations", ] + extra_flags, "extra_link_args": extra_flags, }, MSVCCompiler: {"extra_compile_args": ["/EHsc"]}, } class SmartBuildExt(build_ext): def build_extensions(self): c = self.compiler opts = [v for k, v in compiler_opts.items() if isinstance(c, k)] for e in self.extensions: for o in opts: for attrib, value in o.items(): getattr(e, attrib).extend(value) build_ext.build_extensions(self) # prevent setup from recompiling static Minuit2 code again and again def lazy_compile( self, sources, output_dir=None, macros=None, include_dirs=None, debug=0, extra_preargs=None, extra_postargs=None, depends=None, ): macros, objects, extra_postargs, pp_opts, build = self._setup_compile( output_dir, macros, include_dirs, sources, depends, extra_postargs ) pp_opts += compiler_opts.get(self, {}).get("extra_compile_args", []) cc_args = self._get_cc_args(pp_opts, debug, extra_preargs) for obj in objects: try: src, ext = build[obj] except KeyError: continue if not exists(obj) or os.stat(obj).st_mtime < os.stat(src).st_mtime: self._compile(obj, src, ext, cc_args, extra_postargs, pp_opts) return objects # monkey-patching lazy_compile into CCompiler distutils.ccompiler.CCompiler.compile = lazy_compile # Static linking cwd = dirname(__file__) # We follow the recommendation how to distribute Cython modules: # http://docs.cython.org/src/reference/compilation.html#distributing-cython-modules try: from Cython.Build import cythonize USE_CYTHON = True except ImportError: USE_CYTHON = False if exists("src/iminuit/_libiminuit.cpp"): print("Cython is not available ... using pre-generated cpp file.") else: raise SystemExit( "Looks like you are compiling iminuit from sources. " "This requires Cython. Run\n\n" " pip install cython\n\n" "for a system-wide installation, or\n\n" " pip install --user cython\n\n" "for a user-wide installation." ) ext = ".pyx" if USE_CYTHON else ".cpp" try: import numpy numpy_header = [numpy.get_include()] except ImportError: numpy_header = [] # Install missing Minuit2 submodule as needed if not os.listdir(join(cwd, "extern/Minuit2")): try: import subprocess as subp print("Minuit2 submodule is missing, attempting download...") subp.check_call(["git", "submodule", "update"]) except subp.CalledProcessError: raise SystemExit( "Could not download Minuit2 submodule, run `git submodule update` manually" ) minuit2_cxx = [ join(cwd, "extern/Minuit2/src", x) + ".cxx" for x in open(join(cwd, "minuit2_cxx.lst"), "r").read().split("\n") if x ] libiminuit = Extension( "iminuit._libiminuit", sources=sorted(glob(join(cwd, "src/iminuit/*" + ext)) + minuit2_cxx), include_dirs=[join(cwd, "extern/Minuit2/inc")] + numpy_header, define_macros=[ ("WARNINGMSG", "1"), ("ROOT_Math_VecTypes", "1"), ("MATH_NO_PLUGIN_MANAGER", "1"), ], ) extensions = [libiminuit] if USE_CYTHON: extensions = cythonize(extensions) # Getting the version number at this point is a bit tricky in Python: # https://packaging.python.org/guides/single-sourcing-package-version/?highlight=single%20sourcing with open(join(cwd, "src/iminuit/version.py")) as fp: version = {} exec(fp.read(), version) # this loads __version__ version = version["__version__"] with open(join(cwd, "README.rst")) as readme_rst: txt = readme_rst.read() # skip everything up to the skip marker skip_marker = ".. skip-marker-do-not-remove" long_description = txt[txt.index(skip_marker) + len(skip_marker) :].lstrip() setup( name="iminuit", version=version, description="Jupyter-friendly Python frontend for MINUIT2 in C++", long_description=long_description, long_description_content_type="text/x-rst", author="Piti Ongmongkolkul and the iminuit team", maintainer="Hans Dembinski", maintainer_email="hans.dembinski@gmail.com", url="http://github.com/scikit-hep/iminuit", project_urls={ "Documentation": "https://iminuit.readthedocs.io", "Source Code": "http://github.com/scikit-hep/iminuit", }, packages=["iminuit", "iminuit.tests"], package_dir={"": "src"}, ext_modules=extensions, python_requires=">=3.5", install_requires=["numpy>=1.11.3"], classifiers=[ "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: C++", "Programming Language :: Cython", "Programming Language :: Python :: Implementation :: CPython", "Topic :: Scientific/Engineering :: Physics", "Topic :: Scientific/Engineering :: Mathematics", "Intended Audience :: Science/Research", "Development Status :: 5 - Production/Stable", "License :: OSI Approved :: GNU Library or Lesser General Public License (LGPL)", "License :: OSI Approved :: MIT License", ], cmdclass={"build_ext": SmartBuildExt}, )
32.359606
98
0.650023
057b5ac645c39da8f8ce5be9de53053ce1161ee0
6,229
py
Python
apps/eth/migrations/0001_squashed_0005_transactionreceipt_evm_hash.py
kevingduck/transmission
c29ae529c02c885cdb0e64a35d7d4750ab1b8001
[ "Apache-2.0" ]
19
2018-09-04T14:49:01.000Z
2020-06-09T22:13:10.000Z
apps/eth/migrations/0001_squashed_0005_transactionreceipt_evm_hash.py
kevingduck/transmission
c29ae529c02c885cdb0e64a35d7d4750ab1b8001
[ "Apache-2.0" ]
50
2018-09-18T17:28:57.000Z
2021-01-09T16:18:45.000Z
apps/eth/migrations/0001_squashed_0005_transactionreceipt_evm_hash.py
kevingduck/transmission
c29ae529c02c885cdb0e64a35d7d4750ab1b8001
[ "Apache-2.0" ]
4
2019-12-15T13:44:18.000Z
2021-06-09T20:39:54.000Z
# Generated by Django 3.0.8 on 2020-10-08 22:05 import apps.eth.fields import django.core.validators from django.db import migrations, models import django.db.migrations.operations.special import django.db.models.deletion import django_extensions.db.fields.json import shipchain_common.utils class Migration(migrations.Migration): replaces = [('eth', '0001_squashed_091919'), ('eth', '0002_nullable_fields'), ('eth', '0003_deduplicate_events'), ('eth', '0004_event_unique_constraint'), ('eth', '0005_transactionreceipt_evm_hash')] initial = True dependencies = [ ('shipments', '0001_squashed_091919'), ('jobs', '0001_squashed_091919'), ('contenttypes', '0002_remove_content_type_name'), ] operations = [ migrations.CreateModel( name='EthAction', fields=[ ('transaction_hash', apps.eth.fields.HashField(default='', max_length=66, primary_key=True, serialize=False, validators=[django.core.validators.RegexValidator(message='Invalid hash.', regex='^0x([A-Fa-f0-9]{64})$')])), ('updated_at', models.DateTimeField(auto_now=True)), ('created_at', models.DateTimeField(auto_now_add=True)), ('async_job', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='jobs.AsyncJob')), ('shipment', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='shipments.Shipment')), ], ), migrations.CreateModel( name='Event', fields=[ ('id', models.CharField(default=shipchain_common.utils.random_id, max_length=36, primary_key=True, serialize=False)), ('created_at', models.DateTimeField(auto_now_add=True)), ('address', apps.eth.fields.AddressField(default='0x0', max_length=42, validators=[django.core.validators.RegexValidator(message='Invalid address.', regex='^0x([A-Fa-f0-9]{40})$')])), ('block_number', models.BigIntegerField()), ('transaction_hash', apps.eth.fields.HashField(default='', max_length=66, validators=[django.core.validators.RegexValidator(message='Invalid hash.', regex='^0x([A-Fa-f0-9]{64})$')])), ('transaction_index', models.IntegerField()), ('block_hash', apps.eth.fields.HashField(default='', max_length=66, validators=[django.core.validators.RegexValidator(message='Invalid hash.', regex='^0x([A-Fa-f0-9]{64})$')])), ('log_index', models.IntegerField()), ('removed', models.BooleanField()), ('event_id', models.CharField(max_length=514)), ('return_values', django_extensions.db.fields.json.JSONField(default=dict)), ('event_name', models.CharField(max_length=514)), ('signature', apps.eth.fields.HashField(default='', max_length=66, validators=[django.core.validators.RegexValidator(message='Invalid hash.', regex='^0x([A-Fa-f0-9]{64})$')])), ('raw', django_extensions.db.fields.json.JSONField(default=dict)), ('eth_action', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='eth.EthAction')), ], ), migrations.CreateModel( name='Transaction', fields=[ ('eth_action', models.OneToOneField(db_column='hash', on_delete=django.db.models.deletion.CASCADE, primary_key=True, serialize=False, to='eth.EthAction')), ('nonce', models.CharField(max_length=32)), ('to_address', apps.eth.fields.AddressField(default='0x0', max_length=42, validators=[django.core.validators.RegexValidator(message='Invalid address.', regex='^0x([A-Fa-f0-9]{40})$')])), ('value', models.CharField(max_length=32)), ('gas_limit', models.CharField(max_length=32)), ('gas_price', models.CharField(max_length=32)), ('data', models.TextField()), ('chain_id', models.BigIntegerField()), ], ), migrations.CreateModel( name='TransactionReceipt', fields=[ ('block_hash', apps.eth.fields.HashField(default='', max_length=66, null=True, validators=[django.core.validators.RegexValidator(message='Invalid hash.', regex='^0x([A-Fa-f0-9]{64})$')])), ('block_number', models.BigIntegerField(null=True)), ('contract_address', apps.eth.fields.AddressField(default='0x0', max_length=42, null=True, validators=[django.core.validators.RegexValidator(message='Invalid address.', regex='^0x([A-Fa-f0-9]{40})$')])), ('cumulative_gas_used', models.IntegerField(null=True)), ('from_address', apps.eth.fields.AddressField(default='0x0', max_length=42, validators=[django.core.validators.RegexValidator(message='Invalid address.', regex='^0x([A-Fa-f0-9]{40})$')])), ('gas_used', models.IntegerField(null=True)), ('logs', django_extensions.db.fields.json.JSONField(default=dict, null=True)), ('logs_bloom', models.CharField(max_length=514, null=True)), ('status', models.BooleanField(null=True)), ('to_address', apps.eth.fields.AddressField(default='0x0', max_length=42, null=True, validators=[django.core.validators.RegexValidator(message='Invalid address.', regex='^0x([A-Fa-f0-9]{40})$')])), ('eth_action', models.OneToOneField(db_column='transaction_hash', on_delete=django.db.models.deletion.CASCADE, primary_key=True, serialize=False, to='eth.EthAction')), ('transaction_index', models.IntegerField(null=True)), ], ), migrations.AddConstraint( model_name='event', constraint=models.UniqueConstraint(fields=('eth_action', 'log_index'), name='unique event'), ), migrations.AddField( model_name='transactionreceipt', name='evm_hash', field=apps.eth.fields.HashField(default='', max_length=66, null=True, validators=[django.core.validators.RegexValidator(message='Invalid hash.', regex='^0x([A-Fa-f0-9]{64})$')]), ), ]
65.568421
234
0.632686
89e9e6c7f00a5a24a4065c8166003486c11ca018
9,567
py
Python
myven/lib/python3.8/site-packages/ansible/modules/network/f5/bigip_traffic_group.py
baltham/dne-dna-code
4a13309a790a670d2f07e635c9264a0c29976c6a
[ "MIT" ]
1
2021-04-02T08:08:39.000Z
2021-04-02T08:08:39.000Z
myven/lib/python3.8/site-packages/ansible/modules/network/f5/bigip_traffic_group.py
baltham/dne-dna-code
4a13309a790a670d2f07e635c9264a0c29976c6a
[ "MIT" ]
null
null
null
myven/lib/python3.8/site-packages/ansible/modules/network/f5/bigip_traffic_group.py
baltham/dne-dna-code
4a13309a790a670d2f07e635c9264a0c29976c6a
[ "MIT" ]
1
2020-05-03T01:13:16.000Z
2020-05-03T01:13:16.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright: (c) 2017, F5 Networks Inc. # GNU General Public License v3.0 (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = r''' --- module: bigip_traffic_group short_description: Manages traffic groups on BIG-IP description: - Supports managing traffic groups and their attributes on a BIG-IP. version_added: "2.5" options: name: description: - The name of the traffic group. required: True partition: description: - Device partition to manage resources on. default: Common version_added: 2.5 state: description: - When C(present), ensures that the traffic group exists. - When C(absent), ensures the traffic group is removed. default: present choices: - present - absent version_added: 2.5 extends_documentation_fragment: f5 author: - Tim Rupp (@caphrim007) ''' EXAMPLES = r''' - name: Create a traffic group bigip_traffic_group: name: foo password: secret server: lb.mydomain.com state: present user: admin delegate_to: localhost ''' RETURN = r''' # only common fields returned ''' from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.basic import env_fallback HAS_DEVEL_IMPORTS = False try: # Sideband repository used for dev from library.module_utils.network.f5.bigip import HAS_F5SDK from library.module_utils.network.f5.bigip import F5Client from library.module_utils.network.f5.common import F5ModuleError from library.module_utils.network.f5.common import AnsibleF5Parameters from library.module_utils.network.f5.common import cleanup_tokens from library.module_utils.network.f5.common import fqdn_name from library.module_utils.network.f5.common import f5_argument_spec try: from library.module_utils.network.f5.common import iControlUnexpectedHTTPError except ImportError: HAS_F5SDK = False HAS_DEVEL_IMPORTS = True except ImportError: # Upstream Ansible from ansible.module_utils.network.f5.bigip import HAS_F5SDK from ansible.module_utils.network.f5.bigip import F5Client from ansible.module_utils.network.f5.common import F5ModuleError from ansible.module_utils.network.f5.common import AnsibleF5Parameters from ansible.module_utils.network.f5.common import cleanup_tokens from ansible.module_utils.network.f5.common import fqdn_name from ansible.module_utils.network.f5.common import f5_argument_spec try: from ansible.module_utils.network.f5.common import iControlUnexpectedHTTPError except ImportError: HAS_F5SDK = False class Parameters(AnsibleF5Parameters): api_map = { } api_attributes = [ ] returnables = [ ] updatables = [ ] def to_return(self): result = {} try: for returnable in self.returnables: result[returnable] = getattr(self, returnable) result = self._filter_params(result) except Exception: pass return result class Changes(Parameters): pass class Difference(object): def __init__(self, want, have=None): self.want = want self.have = have def compare(self, param): try: result = getattr(self, param) return result except AttributeError: return self.__default(param) def __default(self, param): attr1 = getattr(self.want, param) try: attr2 = getattr(self.have, param) if attr1 != attr2: return attr1 except AttributeError: return attr1 @property def partition(self): raise F5ModuleError( "Partition cannot be changed for a traffic group. Only /Common is allowed." ) class ModuleManager(object): def __init__(self, *args, **kwargs): self.module = kwargs.get('module', None) self.client = kwargs.get('client', None) self.want = Parameters(params=self.module.params) self.changes = Changes() def _set_changed_options(self): changed = {} for key in Parameters.returnables: if getattr(self.want, key) is not None: changed[key] = getattr(self.want, key) if changed: self.changes = Changes(params=changed) def _update_changed_options(self): diff = Difference(self.want, self.have) updatables = Parameters.updatables changed = dict() for k in updatables: change = diff.compare(k) if change is None: continue else: if isinstance(change, dict): changed.update(change) else: changed[k] = change if changed: self.changes = Changes(params=changed) return True return False def should_update(self): result = self._update_changed_options() if result: return True return False def exec_module(self): changed = False result = dict() state = self.want.state try: if state == "present": changed = self.present() elif state == "absent": changed = self.absent() except iControlUnexpectedHTTPError as e: raise F5ModuleError(str(e)) changes = self.changes.to_return() result.update(**changes) result.update(dict(changed=changed)) self._announce_deprecations(result) return result def _announce_deprecations(self, result): warnings = result.pop('__warnings', []) for warning in warnings: self.module.deprecate( msg=warning['msg'], version=warning['version'] ) def present(self): if self.exists(): return self.update() else: return self.create() def exists(self): result = self.client.api.tm.cm.traffic_groups.traffic_group.exists( name=self.want.name, partition=self.want.partition ) return result def update(self): self.have = self.read_current_from_device() if not self.should_update(): return False if self.module.check_mode: return True self.update_on_device() return True def remove(self): if self.module.check_mode: return True self.remove_from_device() if self.exists(): raise F5ModuleError("Failed to delete the resource.") return True def create(self): self._set_changed_options() if self.want.partition.lower().strip('/') != 'common': raise F5ModuleError( "Traffic groups can only be created in the /Common partition" ) if self.module.check_mode: return True self.create_on_device() return True def create_on_device(self): params = self.want.api_params() self.client.api.tm.cm.traffic_groups.traffic_group.create( name=self.want.name, partition=self.want.partition, **params ) def update_on_device(self): params = self.want.api_params() resource = self.client.api.tm.cm.traffic_groups.traffic_group.load( name=self.want.name, partition=self.want.partition ) resource.modify(**params) def absent(self): if self.exists(): return self.remove() return False def remove_from_device(self): resource = self.client.api.tm.cm.traffic_groups.traffic_group.load( name=self.want.name, partition=self.want.partition ) if resource: resource.delete() def read_current_from_device(self): resource = self.client.api.tm.cm.traffic_groups.traffic_group.load( name=self.want.name, partition=self.want.partition ) result = resource.attrs return Parameters(params=result) class ArgumentSpec(object): def __init__(self): self.supports_check_mode = True argument_spec = dict( name=dict(required=True), state=dict(default='present', choices=['absent', 'present']), partition=dict( default='Common', fallback=(env_fallback, ['F5_PARTITION']) ) ) self.argument_spec = {} self.argument_spec.update(f5_argument_spec) self.argument_spec.update(argument_spec) def main(): spec = ArgumentSpec() module = AnsibleModule( argument_spec=spec.argument_spec, supports_check_mode=spec.supports_check_mode ) if not HAS_F5SDK: module.fail_json(msg="The python f5-sdk module is required") try: client = F5Client(**module.params) mm = ModuleManager(module=module, client=client) results = mm.exec_module() cleanup_tokens(client) module.exit_json(**results) except F5ModuleError as ex: cleanup_tokens(client) module.fail_json(msg=str(ex)) if __name__ == '__main__': main()
28.221239
91
0.621616
d814f7b0291017950bb93fd73c29647f71579dc2
2,556
py
Python
tests/unit/test_models.py
ixc/wagtail-personalisation
956c1bf4f5846ad86470c41df8b8364bc99ab99b
[ "MIT" ]
null
null
null
tests/unit/test_models.py
ixc/wagtail-personalisation
956c1bf4f5846ad86470c41df8b8364bc99ab99b
[ "MIT" ]
2
2021-03-11T01:25:00.000Z
2022-02-10T23:17:24.000Z
tests/unit/test_models.py
ixc/wagtail-personalisation
956c1bf4f5846ad86470c41df8b8364bc99ab99b
[ "MIT" ]
null
null
null
from __future__ import absolute_import, unicode_literals import datetime import pytest from django.db.models import ProtectedError from tests.factories.page import ContentPageFactory from tests.factories.segment import SegmentFactory from tests.site.pages import models from wagtail_personalisation.models import PersonalisablePageMetadata from wagtail_personalisation.rules import TimeRule @pytest.mark.django_db def test_segment_create(): segment = SegmentFactory() TimeRule( start_time=datetime.time(8, 0, 0), end_time=datetime.time(23, 0, 0), segment=segment) @pytest.mark.django_db def test_metadata_page_has_variants(segmented_page): assert not segmented_page.personalisation_metadata.is_canonical assert not segmented_page.personalisation_metadata.has_variants canonical = segmented_page.personalisation_metadata.canonical_page assert canonical.personalisation_metadata.is_canonical assert canonical.personalisation_metadata.has_variants @pytest.mark.django_db def test_content_page_model(): page = ContentPageFactory() qs = models.ContentPage.objects.all() assert page in qs @pytest.mark.django_db def test_variant_can_be_deleted_without_error(segmented_page): segmented_page.delete() # Make sure the metadata gets deleted because of models.CASCADE. with pytest.raises(PersonalisablePageMetadata.DoesNotExist): segmented_page._personalisable_page_metadata.refresh_from_db() @pytest.mark.django_db def test_canonical_page_deletion_is_protected(segmented_page): # When deleting canonical page without deleting variants, it should return # an error. All variants should be deleted beforehand. with pytest.raises(ProtectedError): segmented_page.personalisation_metadata.canonical_page.delete() @pytest.mark.django_db def test_page_protection_when_deleting_segment(segmented_page): segment = segmented_page.personalisation_metadata.segment assert len(segment.get_used_pages()) with pytest.raises(ProtectedError): segment.delete() @pytest.mark.django_db def test_sitemap_generation_for_canonical_pages_is_enabled(segmented_page): canonical = segmented_page.personalisation_metadata.canonical_page assert canonical.personalisation_metadata.is_canonical assert canonical.get_sitemap_urls() @pytest.mark.django_db def test_sitemap_generation_for_variants_is_disabled(segmented_page): assert not segmented_page.personalisation_metadata.is_canonical assert not segmented_page.get_sitemap_urls()
33.631579
78
0.81651
bae7ddc1dcb0e1045147077d33b8173211e4d9dd
5,179
py
Python
kdaHDFE/kdaHDFE.py
sbaker-dev/kdaHDFE
8e442f24002deb8b90f6b358777572f271e1df20
[ "BSD-3-Clause" ]
null
null
null
kdaHDFE/kdaHDFE.py
sbaker-dev/kdaHDFE
8e442f24002deb8b90f6b358777572f271e1df20
[ "BSD-3-Clause" ]
null
null
null
kdaHDFE/kdaHDFE.py
sbaker-dev/kdaHDFE
8e442f24002deb8b90f6b358777572f271e1df20
[ "BSD-3-Clause" ]
null
null
null
from kdaHDFE import formula_transform, clustered_error, is_nested, robust_err, Result, demean import statsmodels.api as sm import pandas as pd import numpy as np class HDFE: def __init__(self, data_frame, formula, robust=False, cm="cgm", ps_def=True, epsilon=1e-8, max_iter=1e6, mean_squared_error=10): # Setup the database reference self.df = data_frame self.obs = len(self.df) # Extract variable names from formula, check they all exist in dataframe self.phenotype, self.covariants, self.fixed_effects, self.clusters = formula_transform(formula) for variable in self.phenotype + self.covariants + self.fixed_effects + self.clusters: assert variable in self.df.columns, f"{variable} is not in DataFrame!" # Some standard variables to be used for demeaning / clustering self.mean_squared_error = mean_squared_error self.epsilon = epsilon self.max_iter = max_iter self.robust = robust # todo: IF clusters > 1 then cgm2 is preferred self.cm = cm self.ps_def = ps_def def reg_hdfe(self, rank, demean_data=True): """ Run a demeaned version of the data frame via absorption of FE's and adjust results relative to the demeaned data :param rank: Degrees of freedom after demeaning :type rank: int :param demean_data: Will Demean based on the variables selected in the formula, defaults to True. If false, assumes data is demeaned and necessary intercepts exist if required. :type demean_data: bool :return: Results of the regression :rtype: Result """ if demean_data: demeaned = self._reg_demean() else: demeaned = self.df # Calculate the base unadjusted OLS results, add residuals to result for clustering and update degrees of # freedom from demeaning result = sm.OLS(demeaned[self.phenotype], demeaned[self.covariants], missing='drop').fit() demeaned['resid'] = result.resid # Ever used? result.df_resid = result.df_resid - rank std_error, covariant_matrix = self._reg_std(result, rank, demeaned) return Result(result, std_error, covariant_matrix) def _reg_demean(self): """ Certain model specifications may require use to add an intercept such as when there is no need to demean as there are no fixed effects yet demeaning was selected. If we have fixed effects, demean the data :return: Demeaned DataFrame, rank of degrees of freedom :rtype: pd.DataFrame """ # Add a constant if the model lacks any covariants / fe or lacks both covariants and fe but not clusters if len(self.covariants) == 0 or len(self.fixed_effects) == 0 or \ (len(self.covariants) == 0 and len(self.fixed_effects) == 0 and len(self.clusters) > 0): # Demean == DataFrame demeaned = self.df.copy() demeaned["Const"] = [1.0 for _ in range(len(demeaned))] self.covariants = self.covariants + ["Const"] return demeaned else: # Demean the whole dataframe return demean(self.phenotype + self.covariants, self.df, self.fixed_effects, self.obs, self.epsilon, self.max_iter, self.mean_squared_error) def _reg_std(self, result, rank, demeaned_df): """ If we have clusters, we need to cluster the standard error depending on the clustering method of self.cm Otherwise, we need to create robust or non robust standard errors from the standard errors calculated adjusted for de-meaning :param result: OLS result :param rank: rank of degrees of freedom :param demeaned_df: Demeaned Database for clustering if required :return: The standard error and the covariance matrix """ # Now we need to update the standard errors of the OLS based on robust and clustering if (len(self.clusters) == 0) & (self.robust is False): std_error = result.bse * np.sqrt((result.nobs - len(self.covariants)) / (result.nobs - len(self.covariants) - rank)) covariance_matrix = result.normalized_cov_params * result.scale * result.df_resid / result.df_resid elif (len(self.clusters) == 0) & (self.robust is True): covariance_matrix = robust_err(demeaned_df, self.covariants, result.nobs, len(self.covariants), rank) std_error = np.sqrt(np.diag(covariance_matrix)) else: nested = is_nested(demeaned_df, self.fixed_effects, self.clusters, self.covariants) covariance_matrix = clustered_error(demeaned_df, self.covariants, self.clusters, result.nobs, len(self.covariants), rank, nested=nested, c_method=self.cm, psdef=self.ps_def) std_error = np.sqrt(np.diag(covariance_matrix)) return std_error, covariance_matrix
45.831858
120
0.63912
cfe5fd52542800bd7b4d1bc9e2acaf9ee50d5d1f
4,140
py
Python
retriever/modifiedBM25/getEntityMatch/entity_match.py
dheeraj7596/HashNews
2c849bf6bdda40e8caa328754d5ba3cee2ce507f
[ "MIT" ]
null
null
null
retriever/modifiedBM25/getEntityMatch/entity_match.py
dheeraj7596/HashNews
2c849bf6bdda40e8caa328754d5ba3cee2ce507f
[ "MIT" ]
null
null
null
retriever/modifiedBM25/getEntityMatch/entity_match.py
dheeraj7596/HashNews
2c849bf6bdda40e8caa328754d5ba3cee2ce507f
[ "MIT" ]
1
2021-04-28T21:54:39.000Z
2021-04-28T21:54:39.000Z
# get entity_matches.json and entity_matches_random.json import pandas as pd from collections import defaultdict import json import argparse import time from datetime import datetime, timedelta # entity_path = "../data/" # tweet_path = "ne_tweets_ner.txt" # news_path = "ne_randomnews.txt" data_path = "/data1/xiuwen/twitter/" result_path = "/home/xiuwen/tweetAnalyze/" # result_path = common_result_path # news_csv = "randomnews.csv" # tweet_json = "tweet.json" def extract_entity_set(df): ner_set = set() for en in df.entity.to_list(): ner_set.update(en) return ner_set def extract_entity_set_from_json(df, key): ner = [['id', 'entity']] ner_set = set() for index, row in df.iterrows(): temp = [i['ner'].lower() for i in row[key]] ner_set.update(temp) ner.append([row['id'] , temp]) return pd.DataFrame(ner[1:], columns=ner[0]), ner_set def entity_match(t_entity, n_entity): matches = defaultdict(list) for t in t_entity: t_temp = t.split() for n in n_entity: n_temp = n.split() if len([1 for i in t_temp if i in n_temp])/len(t_temp) >= 0.65: matches[t].append(n) return matches # parser = argparse.ArgumentParser(description='pass day') # parser.add_argument('--day', '-d') # args = parser.parse_args() if __name__ == '__main__': # use this for first dataset # day = datetime(2018, 10, int(args.day)).date() # if (int(args.day) > 24): # day = datetime(2020, 5, int(args.day)).date() # else: # day = datetime(2020, 6, int(args.day)).date() # print(str(day)) # rand_news = pd.read_pickle(data_path+"news_random.pkl") # news = pd.read_pickle(data_path + "tweet_2020/news.pkl") year = "2020" news = pd.read_json(data_path+"tweet"+year+"/ne_news.txt", orient="records", lines=True) # rand_news = pd.read_json(data_path + "ne_news.txt", orient="records", lines=True) rand_news = pd.read_pickle(data_path + "news_random.pkl") tweet = pd.read_pickle(data_path + "tweet" + year + "/tweets.pkl") # news = pd.read_csv(data_path+news_csv, encoding="utf-8", error_bad_lines=False) # news['publishdate'] = pd.to_datetime(news.publishdate, errors='coerce').dt.date # news = news.dropna() # tweets = pd.read_json(data_path + tweet_json) # tweets.created_at = tweets.created_at.dt.date # tweets_entity_data = pd.read_json(entity_path + tweet_path, orient="records", lines=True) # news_entity_data = pd.read_json(entity_path + news_path, orient="records", lines=True) # # tweets_index, news_index = get_news_5days_before_tweet(day) # is_date = tweets.created_at == day # tweets_this_day = tweets[is_date] # tweets_index = tweets_this_day.id.to_list() tweet_entity = extract_entity_set(tweet) news_pkl, news_entity = extract_entity_set_from_json(news, 'news') rand_news_entity = extract_entity_set(rand_news) # rand_pkl, rand_news_entity = extract_entity_set_from_json(rand_news, 'news') news_pkl.to_pickle(data_path+"tweet"+year+"/news_entity.pkl") # rand_news.to_pickle(data_path + "news_random.pkl") # print(len(quries)) # print(len(corpus)) print(len(tweet_entity)) print(len(news_entity)) print(len(rand_news_entity)) # match = 1 # mismatch = -1 # scoring = swalign.NucleotideScoringMatrix(match, mismatch) # test = list(tweet_entity)[:20] # sw = swalign.LocalAlignment(scoring) matches = entity_match(tweet_entity, news_entity) random_matches = entity_match(tweet_entity, rand_news_entity) match_json = json.dumps(matches) rand_match_json = json.dumps(random_matches) # print(json) # quries.to_pickle("./result/tweets.pkl") # corpus.to_pickle("./result/news.pkl") f = open(result_path+"result"+year+"/entity_matches.json", "w") f.write(match_json) f.close() f = open(result_path + "result"+year+"/entity_matches_random.json", "w") f.write(rand_match_json) f.close()
36.637168
96
0.657246
89441d5a4c0586d49803d1e74637d42f324020cd
5,989
py
Python
pybind/slxos/v16r_1_00b/igmp_snooping/ip/igmp/igmp_snooping/__init__.py
shivharis/pybind
4e1c6d54b9fd722ccec25546ba2413d79ce337e6
[ "Apache-2.0" ]
null
null
null
pybind/slxos/v16r_1_00b/igmp_snooping/ip/igmp/igmp_snooping/__init__.py
shivharis/pybind
4e1c6d54b9fd722ccec25546ba2413d79ce337e6
[ "Apache-2.0" ]
null
null
null
pybind/slxos/v16r_1_00b/igmp_snooping/ip/igmp/igmp_snooping/__init__.py
shivharis/pybind
4e1c6d54b9fd722ccec25546ba2413d79ce337e6
[ "Apache-2.0" ]
1
2021-11-05T22:15:42.000Z
2021-11-05T22:15:42.000Z
from operator import attrgetter import pyangbind.lib.xpathhelper as xpathhelper from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType from pyangbind.lib.yangtypes import YANGBool, YANGListType, YANGDynClass, ReferenceType from pyangbind.lib.base import PybindBase from decimal import Decimal from bitarray import bitarray import __builtin__ class igmp_snooping(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module brocade-igmp-snooping - based on the path /igmp-snooping/ip/igmp/igmp-snooping. Each member element of the container is represented as a class variable - with a specific YANG type. """ __slots__ = ('_pybind_generated_by', '_path_helper', '_yang_name', '_rest_name', '_extmethods', '__igmps_enable',) _yang_name = 'igmp-snooping' _rest_name = 'snooping' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): path_helper_ = kwargs.pop("path_helper", None) if path_helper_ is False: self._path_helper = False elif path_helper_ is not None and isinstance(path_helper_, xpathhelper.YANGPathHelper): self._path_helper = path_helper_ elif hasattr(self, "_parent"): path_helper_ = getattr(self._parent, "_path_helper", False) self._path_helper = path_helper_ else: self._path_helper = False extmethods = kwargs.pop("extmethods", None) if extmethods is False: self._extmethods = False elif extmethods is not None and isinstance(extmethods, dict): self._extmethods = extmethods elif hasattr(self, "_parent"): extmethods = getattr(self._parent, "_extmethods", None) self._extmethods = extmethods else: self._extmethods = False self.__igmps_enable = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="igmps-enable", rest_name="enable", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'IGMP Enable', u'cli-full-command': None, u'cli-suppress-show-conf-path': None, u'alt-name': u'enable'}}, namespace='urn:brocade.com:mgmt:brocade-igmp-snooping', defining_module='brocade-igmp-snooping', yang_type='empty', is_config=True) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return [u'igmp-snooping', u'ip', u'igmp', u'igmp-snooping'] def _rest_path(self): if hasattr(self, "_parent"): if self._rest_name: return self._parent._rest_path()+[self._rest_name] else: return self._parent._rest_path() else: return [u'ip', u'igmp', u'snooping'] def _get_igmps_enable(self): """ Getter method for igmps_enable, mapped from YANG variable /igmp_snooping/ip/igmp/igmp_snooping/igmps_enable (empty) """ return self.__igmps_enable def _set_igmps_enable(self, v, load=False): """ Setter method for igmps_enable, mapped from YANG variable /igmp_snooping/ip/igmp/igmp_snooping/igmps_enable (empty) If this variable is read-only (config: false) in the source YANG file, then _set_igmps_enable is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_igmps_enable() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=YANGBool, is_leaf=True, yang_name="igmps-enable", rest_name="enable", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'IGMP Enable', u'cli-full-command': None, u'cli-suppress-show-conf-path': None, u'alt-name': u'enable'}}, namespace='urn:brocade.com:mgmt:brocade-igmp-snooping', defining_module='brocade-igmp-snooping', yang_type='empty', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """igmps_enable must be of a type compatible with empty""", 'defined-type': "empty", 'generated-type': """YANGDynClass(base=YANGBool, is_leaf=True, yang_name="igmps-enable", rest_name="enable", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'IGMP Enable', u'cli-full-command': None, u'cli-suppress-show-conf-path': None, u'alt-name': u'enable'}}, namespace='urn:brocade.com:mgmt:brocade-igmp-snooping', defining_module='brocade-igmp-snooping', yang_type='empty', is_config=True)""", }) self.__igmps_enable = t if hasattr(self, '_set'): self._set() def _unset_igmps_enable(self): self.__igmps_enable = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="igmps-enable", rest_name="enable", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'IGMP Enable', u'cli-full-command': None, u'cli-suppress-show-conf-path': None, u'alt-name': u'enable'}}, namespace='urn:brocade.com:mgmt:brocade-igmp-snooping', defining_module='brocade-igmp-snooping', yang_type='empty', is_config=True) igmps_enable = __builtin__.property(_get_igmps_enable, _set_igmps_enable) _pyangbind_elements = {'igmps_enable': igmps_enable, }
48.691057
494
0.711638
b0581eba78a64403ab0b340626f84ab97ed016d7
1,005
py
Python
pybamm/input/parameters/lithium-ion/electrolytes/lipf6_EC_EMC_3_7_Landesfeind2019/electrolyte_conductivity_EC_EMC_3_7_Landesfeind2019.py
YannickNoelStephanKuhn/PyBaMM
d90636a755b7b77bbc75ae7bc2728c8ee2fa730a
[ "BSD-3-Clause" ]
1
2021-03-06T15:10:34.000Z
2021-03-06T15:10:34.000Z
pybamm/input/parameters/lithium_ion/electrolytes/lipf6_EC_EMC_3_7_Landesfeind2019/electrolyte_conductivity_EC_EMC_3_7_Landesfeind2019.py
masoodtamaddon/PyBaMM
a31e2095600bb92e913598ac4d02b2b6b77b31c1
[ "BSD-3-Clause" ]
1
2021-01-23T08:54:49.000Z
2021-01-23T08:54:49.000Z
pybamm/input/parameters/lithium_ion/electrolytes/lipf6_EC_EMC_3_7_Landesfeind2019/electrolyte_conductivity_EC_EMC_3_7_Landesfeind2019.py
masoodtamaddon/PyBaMM
a31e2095600bb92e913598ac4d02b2b6b77b31c1
[ "BSD-3-Clause" ]
2
2020-05-21T23:16:29.000Z
2020-06-22T10:11:40.000Z
from electrolyte_base_Landesfeind2019 import ( electrolyte_conductivity_base_Landesfeind2019, ) import numpy as np def electrolyte_conductivity_EC_EMC_3_7_Landesfeind2019(c_e, T): """ Conductivity of LiPF6 in EC:EMC (3:7 w:w) as a function of ion concentration and temperature. The data comes from [1]. References ---------- .. [1] Landesfeind, J. and Gasteiger, H.A., 2019. Temperature and Concentration Dependence of the Ionic Transport Properties of Lithium-Ion Battery Electrolytes. Journal of The Electrochemical Society, 166(14), pp.A3079-A3097. Parameters ---------- c_e: :class:`pybamm.Symbol` Dimensional electrolyte concentration T: :class:`pybamm.Symbol` Dimensional temperature Returns ------- :class:`pybamm.Symbol` Electrolyte conductivity """ coeffs = np.array([5.21e-1, 2.28e2, -1.06, 3.53e-1, -3.59e-3, 1.48e-3]) return electrolyte_conductivity_base_Landesfeind2019(c_e, T, coeffs)
30.454545
85
0.689552
1bf4a42baff4f7c431b10e2523657a977dd9e992
954
py
Python
django_school/classroom/views/classroom.py
Juan-Bogota/Django-Chat-Educatech
146701fcf10e949fdc08114bff284a164e870be6
[ "MIT" ]
1
2020-06-11T04:00:02.000Z
2020-06-11T04:00:02.000Z
django_school/classroom/views/classroom.py
Juan-Bogota/Django-Chat-Educatech
146701fcf10e949fdc08114bff284a164e870be6
[ "MIT" ]
4
2021-09-08T02:09:11.000Z
2022-03-12T00:34:57.000Z
django_school/classroom/views/classroom.py
Juan-Bogota/Django-Chat-Educatech
146701fcf10e949fdc08114bff284a164e870be6
[ "MIT" ]
2
2020-06-16T16:28:21.000Z
2020-08-03T15:13:34.000Z
# Django # standard library from django.shortcuts import redirect, render from django.views.generic import TemplateView from django.contrib import messages from django.contrib.auth import authenticate """ - Redirecting to the html template - Model view to be controled by the urls and based on the models """ class SignUpView(TemplateView): template_name = 'registration/signup.html' def home(request): """ Deploy a message depending of the authentication""" if request.user.is_authenticated: if request.user.is_teacher: messages.success(request, 'Welcome Teacher {} {}'.format(request.user.first_name, request.user.last_name)) return redirect('teachers:teachers') else: messages.success(request, 'Welcome Student {} {}'.format(request.user.first_name, request.user.last_name)) return redirect('students:students') return render(request, 'classroom/home.html')
34.071429
118
0.716981
bbb285a72ffc85fa7197ae91658cd9115d75f353
67,298
py
Python
sympy/core/basic.py
pecan-pine/sympy
3219093a5ae34abd549acf0f4c1b67d419bddc2a
[ "BSD-3-Clause" ]
1
2020-05-04T11:36:24.000Z
2020-05-04T11:36:24.000Z
sympy/core/basic.py
mmelotti/sympy
bea29026d27cc50c2e6a5501b6a70a9629ed3e18
[ "BSD-3-Clause" ]
1
2020-04-22T12:45:26.000Z
2020-04-22T12:45:26.000Z
sympy/core/basic.py
mmelotti/sympy
bea29026d27cc50c2e6a5501b6a70a9629ed3e18
[ "BSD-3-Clause" ]
null
null
null
"""Base class for all the objects in SymPy""" from collections import defaultdict from itertools import chain, zip_longest from .assumptions import BasicMeta, ManagedProperties from .cache import cacheit from .sympify import _sympify, sympify, SympifyError from .compatibility import iterable, ordered, Mapping from .singleton import S from inspect import getmro def as_Basic(expr): """Return expr as a Basic instance using strict sympify or raise a TypeError; this is just a wrapper to _sympify, raising a TypeError instead of a SympifyError.""" from sympy.utilities.misc import func_name try: return _sympify(expr) except SympifyError: raise TypeError( 'Argument must be a Basic object, not `%s`' % func_name( expr)) class Basic(metaclass=ManagedProperties): """ Base class for all SymPy objects. Notes and conventions ===================== 1) Always use ``.args``, when accessing parameters of some instance: >>> from sympy import cot >>> from sympy.abc import x, y >>> cot(x).args (x,) >>> cot(x).args[0] x >>> (x*y).args (x, y) >>> (x*y).args[1] y 2) Never use internal methods or variables (the ones prefixed with ``_``): >>> cot(x)._args # do not use this, use cot(x).args instead (x,) 3) By "SymPy object" we mean something that can be returned by ``sympify``. But not all objects one encounters using SymPy are subclasses of Basic. For example, mutable objects are not: >>> from sympy import Basic, Matrix, sympify >>> A = Matrix([[1, 2], [3, 4]]).as_mutable() >>> isinstance(A, Basic) False >>> B = sympify(A) >>> isinstance(B, Basic) True """ __slots__ = ('_mhash', # hash value '_args', # arguments '_assumptions' ) # To be overridden with True in the appropriate subclasses is_number = False is_Atom = False is_Symbol = False is_symbol = False is_Indexed = False is_Dummy = False is_Wild = False is_Function = False is_Add = False is_Mul = False is_Pow = False is_Number = False is_Float = False is_Rational = False is_Integer = False is_NumberSymbol = False is_Order = False is_Derivative = False is_Piecewise = False is_Poly = False is_AlgebraicNumber = False is_Relational = False is_Equality = False is_Boolean = False is_Not = False is_Matrix = False is_Vector = False is_Point = False is_MatAdd = False is_MatMul = False def __new__(cls, *args): obj = object.__new__(cls) obj._assumptions = cls.default_assumptions obj._mhash = None # will be set by __hash__ method. obj._args = args # all items in args must be Basic objects return obj def copy(self): return self.func(*self.args) def __reduce_ex__(self, proto): """ Pickling support.""" return type(self), self.__getnewargs__(), self.__getstate__() def __getnewargs__(self): return self.args def __getstate__(self): return {} def __setstate__(self, state): for k, v in state.items(): setattr(self, k, v) def __hash__(self): # hash cannot be cached using cache_it because infinite recurrence # occurs as hash is needed for setting cache dictionary keys h = self._mhash if h is None: h = hash((type(self).__name__,) + self._hashable_content()) self._mhash = h return h def _hashable_content(self): """Return a tuple of information about self that can be used to compute the hash. If a class defines additional attributes, like ``name`` in Symbol, then this method should be updated accordingly to return such relevant attributes. Defining more than _hashable_content is necessary if __eq__ has been defined by a class. See note about this in Basic.__eq__.""" return self._args @property def assumptions0(self): """ Return object `type` assumptions. For example: Symbol('x', real=True) Symbol('x', integer=True) are different objects. In other words, besides Python type (Symbol in this case), the initial assumptions are also forming their typeinfo. Examples ======== >>> from sympy import Symbol >>> from sympy.abc import x >>> x.assumptions0 {'commutative': True} >>> x = Symbol("x", positive=True) >>> x.assumptions0 {'commutative': True, 'complex': True, 'extended_negative': False, 'extended_nonnegative': True, 'extended_nonpositive': False, 'extended_nonzero': True, 'extended_positive': True, 'extended_real': True, 'finite': True, 'hermitian': True, 'imaginary': False, 'infinite': False, 'negative': False, 'nonnegative': True, 'nonpositive': False, 'nonzero': True, 'positive': True, 'real': True, 'zero': False} """ return {} def compare(self, other): """ Return -1, 0, 1 if the object is smaller, equal, or greater than other. Not in the mathematical sense. If the object is of a different type from the "other" then their classes are ordered according to the sorted_classes list. Examples ======== >>> from sympy.abc import x, y >>> x.compare(y) -1 >>> x.compare(x) 0 >>> y.compare(x) 1 """ # all redefinitions of __cmp__ method should start with the # following lines: if self is other: return 0 n1 = self.__class__ n2 = other.__class__ c = (n1 > n2) - (n1 < n2) if c: return c # st = self._hashable_content() ot = other._hashable_content() c = (len(st) > len(ot)) - (len(st) < len(ot)) if c: return c for l, r in zip(st, ot): l = Basic(*l) if isinstance(l, frozenset) else l r = Basic(*r) if isinstance(r, frozenset) else r if isinstance(l, Basic): c = l.compare(r) else: c = (l > r) - (l < r) if c: return c return 0 @staticmethod def _compare_pretty(a, b): from sympy.series.order import Order if isinstance(a, Order) and not isinstance(b, Order): return 1 if not isinstance(a, Order) and isinstance(b, Order): return -1 if a.is_Rational and b.is_Rational: l = a.p * b.q r = b.p * a.q return (l > r) - (l < r) else: from sympy.core.symbol import Wild p1, p2, p3 = Wild("p1"), Wild("p2"), Wild("p3") r_a = a.match(p1 * p2**p3) if r_a and p3 in r_a: a3 = r_a[p3] r_b = b.match(p1 * p2**p3) if r_b and p3 in r_b: b3 = r_b[p3] c = Basic.compare(a3, b3) if c != 0: return c return Basic.compare(a, b) @classmethod def fromiter(cls, args, **assumptions): """ Create a new object from an iterable. This is a convenience function that allows one to create objects from any iterable, without having to convert to a list or tuple first. Examples ======== >>> from sympy import Tuple >>> Tuple.fromiter(i for i in range(5)) (0, 1, 2, 3, 4) """ return cls(*tuple(args), **assumptions) @classmethod def class_key(cls): """Nice order of classes. """ return 5, 0, cls.__name__ @cacheit def sort_key(self, order=None): """ Return a sort key. Examples ======== >>> from sympy.core import S, I >>> sorted([S(1)/2, I, -I], key=lambda x: x.sort_key()) [1/2, -I, I] >>> S("[x, 1/x, 1/x**2, x**2, x**(1/2), x**(1/4), x**(3/2)]") [x, 1/x, x**(-2), x**2, sqrt(x), x**(1/4), x**(3/2)] >>> sorted(_, key=lambda x: x.sort_key()) [x**(-2), 1/x, x**(1/4), sqrt(x), x, x**(3/2), x**2] """ # XXX: remove this when issue 5169 is fixed def inner_key(arg): if isinstance(arg, Basic): return arg.sort_key(order) else: return arg args = self._sorted_args args = len(args), tuple([inner_key(arg) for arg in args]) return self.class_key(), args, S.One.sort_key(), S.One def __eq__(self, other): """Return a boolean indicating whether a == b on the basis of their symbolic trees. This is the same as a.compare(b) == 0 but faster. Notes ===== If a class that overrides __eq__() needs to retain the implementation of __hash__() from a parent class, the interpreter must be told this explicitly by setting __hash__ = <ParentClass>.__hash__. Otherwise the inheritance of __hash__() will be blocked, just as if __hash__ had been explicitly set to None. References ========== from http://docs.python.org/dev/reference/datamodel.html#object.__hash__ """ if self is other: return True tself = type(self) tother = type(other) if tself is not tother: try: other = _sympify(other) tother = type(other) except SympifyError: return NotImplemented # As long as we have the ordering of classes (sympy.core), # comparing types will be slow in Python 2, because it uses # __cmp__. Until we can remove it # (https://github.com/sympy/sympy/issues/4269), we only compare # types in Python 2 directly if they actually have __ne__. if type(tself).__ne__ is not type.__ne__: if tself != tother: return False elif tself is not tother: return False return self._hashable_content() == other._hashable_content() def __ne__(self, other): """``a != b`` -> Compare two symbolic trees and see whether they are different this is the same as: ``a.compare(b) != 0`` but faster """ return not self == other def dummy_eq(self, other, symbol=None): """ Compare two expressions and handle dummy symbols. Examples ======== >>> from sympy import Dummy >>> from sympy.abc import x, y >>> u = Dummy('u') >>> (u**2 + 1).dummy_eq(x**2 + 1) True >>> (u**2 + 1) == (x**2 + 1) False >>> (u**2 + y).dummy_eq(x**2 + y, x) True >>> (u**2 + y).dummy_eq(x**2 + y, y) False """ s = self.as_dummy() o = _sympify(other) o = o.as_dummy() dummy_symbols = [i for i in s.free_symbols if i.is_Dummy] if len(dummy_symbols) == 1: dummy = dummy_symbols.pop() else: return s == o if symbol is None: symbols = o.free_symbols if len(symbols) == 1: symbol = symbols.pop() else: return s == o tmp = dummy.__class__() return s.subs(dummy, tmp) == o.subs(symbol, tmp) # Note, we always use the default ordering (lex) in __str__ and __repr__, # regardless of the global setting. See issue 5487. def __repr__(self): """Method to return the string representation. Return the expression as a string. """ from sympy.printing import sstr return sstr(self, order=None) def __str__(self): from sympy.printing import sstr return sstr(self, order=None) # We don't define _repr_png_ here because it would add a large amount of # data to any notebook containing SymPy expressions, without adding # anything useful to the notebook. It can still enabled manually, e.g., # for the qtconsole, with init_printing(). def _repr_latex_(self): """ IPython/Jupyter LaTeX printing To change the behavior of this (e.g., pass in some settings to LaTeX), use init_printing(). init_printing() will also enable LaTeX printing for built in numeric types like ints and container types that contain SymPy objects, like lists and dictionaries of expressions. """ from sympy.printing.latex import latex s = latex(self, mode='plain') return "$\\displaystyle %s$" % s _repr_latex_orig = _repr_latex_ def atoms(self, *types): """Returns the atoms that form the current object. By default, only objects that are truly atomic and can't be divided into smaller pieces are returned: symbols, numbers, and number symbols like I and pi. It is possible to request atoms of any type, however, as demonstrated below. Examples ======== >>> from sympy import I, pi, sin >>> from sympy.abc import x, y >>> (1 + x + 2*sin(y + I*pi)).atoms() {1, 2, I, pi, x, y} If one or more types are given, the results will contain only those types of atoms. >>> from sympy import Number, NumberSymbol, Symbol >>> (1 + x + 2*sin(y + I*pi)).atoms(Symbol) {x, y} >>> (1 + x + 2*sin(y + I*pi)).atoms(Number) {1, 2} >>> (1 + x + 2*sin(y + I*pi)).atoms(Number, NumberSymbol) {1, 2, pi} >>> (1 + x + 2*sin(y + I*pi)).atoms(Number, NumberSymbol, I) {1, 2, I, pi} Note that I (imaginary unit) and zoo (complex infinity) are special types of number symbols and are not part of the NumberSymbol class. The type can be given implicitly, too: >>> (1 + x + 2*sin(y + I*pi)).atoms(x) # x is a Symbol {x, y} Be careful to check your assumptions when using the implicit option since ``S(1).is_Integer = True`` but ``type(S(1))`` is ``One``, a special type of sympy atom, while ``type(S(2))`` is type ``Integer`` and will find all integers in an expression: >>> from sympy import S >>> (1 + x + 2*sin(y + I*pi)).atoms(S(1)) {1} >>> (1 + x + 2*sin(y + I*pi)).atoms(S(2)) {1, 2} Finally, arguments to atoms() can select more than atomic atoms: any sympy type (loaded in core/__init__.py) can be listed as an argument and those types of "atoms" as found in scanning the arguments of the expression recursively: >>> from sympy import Function, Mul >>> from sympy.core.function import AppliedUndef >>> f = Function('f') >>> (1 + f(x) + 2*sin(y + I*pi)).atoms(Function) {f(x), sin(y + I*pi)} >>> (1 + f(x) + 2*sin(y + I*pi)).atoms(AppliedUndef) {f(x)} >>> (1 + x + 2*sin(y + I*pi)).atoms(Mul) {I*pi, 2*sin(y + I*pi)} """ if types: types = tuple( [t if isinstance(t, type) else type(t) for t in types]) nodes = preorder_traversal(self) if types: result = {node for node in nodes if isinstance(node, types)} else: result = {node for node in nodes if not node.args} return result @property def free_symbols(self): """Return from the atoms of self those which are free symbols. For most expressions, all symbols are free symbols. For some classes this is not true. e.g. Integrals use Symbols for the dummy variables which are bound variables, so Integral has a method to return all symbols except those. Derivative keeps track of symbols with respect to which it will perform a derivative; those are bound variables, too, so it has its own free_symbols method. Any other method that uses bound variables should implement a free_symbols method.""" return set().union(*[a.free_symbols for a in self.args]) @property def expr_free_symbols(self): return set() def as_dummy(self): """Return the expression with any objects having structurally bound symbols replaced with unique, canonical symbols within the object in which they appear and having only the default assumption for commutativity being True. Examples ======== >>> from sympy import Integral, Symbol >>> from sympy.abc import x, y >>> r = Symbol('r', real=True) >>> Integral(r, (r, x)).as_dummy() Integral(_0, (_0, x)) >>> _.variables[0].is_real is None True Notes ===== Any object that has structural dummy variables should have a property, `bound_symbols` that returns a list of structural dummy symbols of the object itself. Lambda and Subs have bound symbols, but because of how they are cached, they already compare the same regardless of their bound symbols: >>> from sympy import Lambda >>> Lambda(x, x + 1) == Lambda(y, y + 1) True """ def can(x): d = {i: i.as_dummy() for i in x.bound_symbols} # mask free that shadow bound x = x.subs(d) c = x.canonical_variables # replace bound x = x.xreplace(c) # undo masking x = x.xreplace({v: k for k, v in d.items()}) return x return self.replace( lambda x: hasattr(x, 'bound_symbols'), lambda x: can(x)) @property def canonical_variables(self): """Return a dictionary mapping any variable defined in ``self.bound_symbols`` to Symbols that do not clash with any existing symbol in the expression. Examples ======== >>> from sympy import Lambda >>> from sympy.abc import x >>> Lambda(x, 2*x).canonical_variables {x: _0} """ from sympy.core.symbol import Symbol from sympy.utilities.iterables import numbered_symbols if not hasattr(self, 'bound_symbols'): return {} dums = numbered_symbols('_') reps = {} v = self.bound_symbols # this free will include bound symbols that are not part of # self's bound symbols free = {i.name for i in self.atoms(Symbol) - set(v)} for v in v: d = next(dums) if v.is_Symbol: while v.name == d.name or d.name in free: d = next(dums) reps[v] = d return reps def rcall(self, *args): """Apply on the argument recursively through the expression tree. This method is used to simulate a common abuse of notation for operators. For instance in SymPy the the following will not work: ``(x+Lambda(y, 2*y))(z) == x+2*z``, however you can use >>> from sympy import Lambda >>> from sympy.abc import x, y, z >>> (x + Lambda(y, 2*y)).rcall(z) x + 2*z """ return Basic._recursive_call(self, args) @staticmethod def _recursive_call(expr_to_call, on_args): """Helper for rcall method.""" from sympy import Symbol def the_call_method_is_overridden(expr): for cls in getmro(type(expr)): if '__call__' in cls.__dict__: return cls != Basic if callable(expr_to_call) and the_call_method_is_overridden(expr_to_call): if isinstance(expr_to_call, Symbol): # XXX When you call a Symbol it is return expr_to_call # transformed into an UndefFunction else: return expr_to_call(*on_args) elif expr_to_call.args: args = [Basic._recursive_call( sub, on_args) for sub in expr_to_call.args] return type(expr_to_call)(*args) else: return expr_to_call def is_hypergeometric(self, k): from sympy.simplify import hypersimp return hypersimp(self, k) is not None @property def is_comparable(self): """Return True if self can be computed to a real number (or already is a real number) with precision, else False. Examples ======== >>> from sympy import exp_polar, pi, I >>> (I*exp_polar(I*pi/2)).is_comparable True >>> (I*exp_polar(I*pi*2)).is_comparable False A False result does not mean that `self` cannot be rewritten into a form that would be comparable. For example, the difference computed below is zero but without simplification it does not evaluate to a zero with precision: >>> e = 2**pi*(1 + 2**pi) >>> dif = e - e.expand() >>> dif.is_comparable False >>> dif.n(2)._prec 1 """ is_extended_real = self.is_extended_real if is_extended_real is False: return False if not self.is_number: return False # don't re-eval numbers that are already evaluated since # this will create spurious precision n, i = [p.evalf(2) if not p.is_Number else p for p in self.as_real_imag()] if not (i.is_Number and n.is_Number): return False if i: # if _prec = 1 we can't decide and if not, # the answer is False because numbers with # imaginary parts can't be compared # so return False return False else: return n._prec != 1 @property def func(self): """ The top-level function in an expression. The following should hold for all objects:: >> x == x.func(*x.args) Examples ======== >>> from sympy.abc import x >>> a = 2*x >>> a.func <class 'sympy.core.mul.Mul'> >>> a.args (2, x) >>> a.func(*a.args) 2*x >>> a == a.func(*a.args) True """ return self.__class__ @property def args(self): """Returns a tuple of arguments of 'self'. Examples ======== >>> from sympy import cot >>> from sympy.abc import x, y >>> cot(x).args (x,) >>> cot(x).args[0] x >>> (x*y).args (x, y) >>> (x*y).args[1] y Notes ===== Never use self._args, always use self.args. Only use _args in __new__ when creating a new function. Don't override .args() from Basic (so that it's easy to change the interface in the future if needed). """ return self._args @property def _sorted_args(self): """ The same as ``args``. Derived classes which don't fix an order on their arguments should override this method to produce the sorted representation. """ return self.args def as_content_primitive(self, radical=False, clear=True): """A stub to allow Basic args (like Tuple) to be skipped when computing the content and primitive components of an expression. See Also ======== sympy.core.expr.Expr.as_content_primitive """ return S.One, self def subs(self, *args, **kwargs): """ Substitutes old for new in an expression after sympifying args. `args` is either: - two arguments, e.g. foo.subs(old, new) - one iterable argument, e.g. foo.subs(iterable). The iterable may be o an iterable container with (old, new) pairs. In this case the replacements are processed in the order given with successive patterns possibly affecting replacements already made. o a dict or set whose key/value items correspond to old/new pairs. In this case the old/new pairs will be sorted by op count and in case of a tie, by number of args and the default_sort_key. The resulting sorted list is then processed as an iterable container (see previous). If the keyword ``simultaneous`` is True, the subexpressions will not be evaluated until all the substitutions have been made. Examples ======== >>> from sympy import pi, exp, limit, oo >>> from sympy.abc import x, y >>> (1 + x*y).subs(x, pi) pi*y + 1 >>> (1 + x*y).subs({x:pi, y:2}) 1 + 2*pi >>> (1 + x*y).subs([(x, pi), (y, 2)]) 1 + 2*pi >>> reps = [(y, x**2), (x, 2)] >>> (x + y).subs(reps) 6 >>> (x + y).subs(reversed(reps)) x**2 + 2 >>> (x**2 + x**4).subs(x**2, y) y**2 + y To replace only the x**2 but not the x**4, use xreplace: >>> (x**2 + x**4).xreplace({x**2: y}) x**4 + y To delay evaluation until all substitutions have been made, set the keyword ``simultaneous`` to True: >>> (x/y).subs([(x, 0), (y, 0)]) 0 >>> (x/y).subs([(x, 0), (y, 0)], simultaneous=True) nan This has the added feature of not allowing subsequent substitutions to affect those already made: >>> ((x + y)/y).subs({x + y: y, y: x + y}) 1 >>> ((x + y)/y).subs({x + y: y, y: x + y}, simultaneous=True) y/(x + y) In order to obtain a canonical result, unordered iterables are sorted by count_op length, number of arguments and by the default_sort_key to break any ties. All other iterables are left unsorted. >>> from sympy import sqrt, sin, cos >>> from sympy.abc import a, b, c, d, e >>> A = (sqrt(sin(2*x)), a) >>> B = (sin(2*x), b) >>> C = (cos(2*x), c) >>> D = (x, d) >>> E = (exp(x), e) >>> expr = sqrt(sin(2*x))*sin(exp(x)*x)*cos(2*x) + sin(2*x) >>> expr.subs(dict([A, B, C, D, E])) a*c*sin(d*e) + b The resulting expression represents a literal replacement of the old arguments with the new arguments. This may not reflect the limiting behavior of the expression: >>> (x**3 - 3*x).subs({x: oo}) nan >>> limit(x**3 - 3*x, x, oo) oo If the substitution will be followed by numerical evaluation, it is better to pass the substitution to evalf as >>> (1/x).evalf(subs={x: 3.0}, n=21) 0.333333333333333333333 rather than >>> (1/x).subs({x: 3.0}).evalf(21) 0.333333333333333314830 as the former will ensure that the desired level of precision is obtained. See Also ======== replace: replacement capable of doing wildcard-like matching, parsing of match, and conditional replacements xreplace: exact node replacement in expr tree; also capable of using matching rules sympy.core.evalf.EvalfMixin.evalf: calculates the given formula to a desired level of precision """ from sympy.core.containers import Dict from sympy.utilities.iterables import sift from sympy import Dummy, Symbol unordered = False if len(args) == 1: sequence = args[0] if isinstance(sequence, set): unordered = True elif isinstance(sequence, (Dict, Mapping)): unordered = True sequence = sequence.items() elif not iterable(sequence): from sympy.utilities.misc import filldedent raise ValueError(filldedent(""" When a single argument is passed to subs it should be a dictionary of old: new pairs or an iterable of (old, new) tuples.""")) elif len(args) == 2: sequence = [args] else: raise ValueError("subs accepts either 1 or 2 arguments") sequence = list(sequence) for i, s in enumerate(sequence): if isinstance(s[0], str): # when old is a string we prefer Symbol s = Symbol(s[0]), s[1] try: s = [sympify(_, strict=not isinstance(_, str)) for _ in s] except SympifyError: # if it can't be sympified, skip it sequence[i] = None continue # skip if there is no change sequence[i] = None if _aresame(*s) else tuple(s) sequence = list(filter(None, sequence)) if unordered: sequence = dict(sequence) atoms, nonatoms = sift(list(sequence), lambda x: x.is_Atom, binary=True) sequence = [(k, sequence[k]) for k in list(reversed(list(ordered(nonatoms)))) + list(ordered(atoms))] if kwargs.pop('simultaneous', False): # XXX should this be the default for dict subs? reps = {} rv = self kwargs['hack2'] = True m = Dummy('subs_m') for old, new in sequence: com = new.is_commutative if com is None: com = True d = Dummy('subs_d', commutative=com) # using d*m so Subs will be used on dummy variables # in things like Derivative(f(x, y), x) in which x # is both free and bound rv = rv._subs(old, d*m, **kwargs) if not isinstance(rv, Basic): break reps[d] = new reps[m] = S.One # get rid of m return rv.xreplace(reps) else: rv = self for old, new in sequence: rv = rv._subs(old, new, **kwargs) if not isinstance(rv, Basic): break return rv @cacheit def _subs(self, old, new, **hints): """Substitutes an expression old -> new. If self is not equal to old then _eval_subs is called. If _eval_subs doesn't want to make any special replacement then a None is received which indicates that the fallback should be applied wherein a search for replacements is made amongst the arguments of self. >>> from sympy import Add >>> from sympy.abc import x, y, z Examples ======== Add's _eval_subs knows how to target x + y in the following so it makes the change: >>> (x + y + z).subs(x + y, 1) z + 1 Add's _eval_subs doesn't need to know how to find x + y in the following: >>> Add._eval_subs(z*(x + y) + 3, x + y, 1) is None True The returned None will cause the fallback routine to traverse the args and pass the z*(x + y) arg to Mul where the change will take place and the substitution will succeed: >>> (z*(x + y) + 3).subs(x + y, 1) z + 3 ** Developers Notes ** An _eval_subs routine for a class should be written if: 1) any arguments are not instances of Basic (e.g. bool, tuple); 2) some arguments should not be targeted (as in integration variables); 3) if there is something other than a literal replacement that should be attempted (as in Piecewise where the condition may be updated without doing a replacement). If it is overridden, here are some special cases that might arise: 1) If it turns out that no special change was made and all the original sub-arguments should be checked for replacements then None should be returned. 2) If it is necessary to do substitutions on a portion of the expression then _subs should be called. _subs will handle the case of any sub-expression being equal to old (which usually would not be the case) while its fallback will handle the recursion into the sub-arguments. For example, after Add's _eval_subs removes some matching terms it must process the remaining terms so it calls _subs on each of the un-matched terms and then adds them onto the terms previously obtained. 3) If the initial expression should remain unchanged then the original expression should be returned. (Whenever an expression is returned, modified or not, no further substitution of old -> new is attempted.) Sum's _eval_subs routine uses this strategy when a substitution is attempted on any of its summation variables. """ def fallback(self, old, new): """ Try to replace old with new in any of self's arguments. """ hit = False args = list(self.args) for i, arg in enumerate(args): if not hasattr(arg, '_eval_subs'): continue arg = arg._subs(old, new, **hints) if not _aresame(arg, args[i]): hit = True args[i] = arg if hit: rv = self.func(*args) hack2 = hints.get('hack2', False) if hack2 and self.is_Mul and not rv.is_Mul: # 2-arg hack coeff = S.One nonnumber = [] for i in args: if i.is_Number: coeff *= i else: nonnumber.append(i) nonnumber = self.func(*nonnumber) if coeff is S.One: return nonnumber else: return self.func(coeff, nonnumber, evaluate=False) return rv return self if _aresame(self, old): return new rv = self._eval_subs(old, new) if rv is None: rv = fallback(self, old, new) return rv def _eval_subs(self, old, new): """Override this stub if you want to do anything more than attempt a replacement of old with new in the arguments of self. See also ======== _subs """ return None def xreplace(self, rule): """ Replace occurrences of objects within the expression. Parameters ========== rule : dict-like Expresses a replacement rule Returns ======= xreplace : the result of the replacement Examples ======== >>> from sympy import symbols, pi, exp >>> x, y, z = symbols('x y z') >>> (1 + x*y).xreplace({x: pi}) pi*y + 1 >>> (1 + x*y).xreplace({x: pi, y: 2}) 1 + 2*pi Replacements occur only if an entire node in the expression tree is matched: >>> (x*y + z).xreplace({x*y: pi}) z + pi >>> (x*y*z).xreplace({x*y: pi}) x*y*z >>> (2*x).xreplace({2*x: y, x: z}) y >>> (2*2*x).xreplace({2*x: y, x: z}) 4*z >>> (x + y + 2).xreplace({x + y: 2}) x + y + 2 >>> (x + 2 + exp(x + 2)).xreplace({x + 2: y}) x + exp(y) + 2 xreplace doesn't differentiate between free and bound symbols. In the following, subs(x, y) would not change x since it is a bound symbol, but xreplace does: >>> from sympy import Integral >>> Integral(x, (x, 1, 2*x)).xreplace({x: y}) Integral(y, (y, 1, 2*y)) Trying to replace x with an expression raises an error: >>> Integral(x, (x, 1, 2*x)).xreplace({x: 2*y}) # doctest: +SKIP ValueError: Invalid limits given: ((2*y, 1, 4*y),) See Also ======== replace: replacement capable of doing wildcard-like matching, parsing of match, and conditional replacements subs: substitution of subexpressions as defined by the objects themselves. """ value, _ = self._xreplace(rule) return value def _xreplace(self, rule): """ Helper for xreplace. Tracks whether a replacement actually occurred. """ if self in rule: return rule[self], True elif rule: args = [] changed = False for a in self.args: _xreplace = getattr(a, '_xreplace', None) if _xreplace is not None: a_xr = _xreplace(rule) args.append(a_xr[0]) changed |= a_xr[1] else: args.append(a) args = tuple(args) if changed: return self.func(*args), True return self, False @cacheit def has(self, *patterns): """ Test whether any subexpression matches any of the patterns. Examples ======== >>> from sympy import sin >>> from sympy.abc import x, y, z >>> (x**2 + sin(x*y)).has(z) False >>> (x**2 + sin(x*y)).has(x, y, z) True >>> x.has(x) True Note ``has`` is a structural algorithm with no knowledge of mathematics. Consider the following half-open interval: >>> from sympy.sets import Interval >>> i = Interval.Lopen(0, 5); i Interval.Lopen(0, 5) >>> i.args (0, 5, True, False) >>> i.has(4) # there is no "4" in the arguments False >>> i.has(0) # there *is* a "0" in the arguments True Instead, use ``contains`` to determine whether a number is in the interval or not: >>> i.contains(4) True >>> i.contains(0) False Note that ``expr.has(*patterns)`` is exactly equivalent to ``any(expr.has(p) for p in patterns)``. In particular, ``False`` is returned when the list of patterns is empty. >>> x.has() False """ return any(self._has(pattern) for pattern in patterns) def _has(self, pattern): """Helper for .has()""" from sympy.core.function import UndefinedFunction, Function if isinstance(pattern, UndefinedFunction): return any(f.func == pattern or f == pattern for f in self.atoms(Function, UndefinedFunction)) pattern = _sympify(pattern) if isinstance(pattern, BasicMeta): return any(isinstance(arg, pattern) for arg in preorder_traversal(self)) _has_matcher = getattr(pattern, '_has_matcher', None) if _has_matcher is not None: match = _has_matcher() return any(match(arg) for arg in preorder_traversal(self)) else: return any(arg == pattern for arg in preorder_traversal(self)) def _has_matcher(self): """Helper for .has()""" return lambda other: self == other def replace(self, query, value, map=False, simultaneous=True, exact=None): """ Replace matching subexpressions of ``self`` with ``value``. If ``map = True`` then also return the mapping {old: new} where ``old`` was a sub-expression found with query and ``new`` is the replacement value for it. If the expression itself doesn't match the query, then the returned value will be ``self.xreplace(map)`` otherwise it should be ``self.subs(ordered(map.items()))``. Traverses an expression tree and performs replacement of matching subexpressions from the bottom to the top of the tree. The default approach is to do the replacement in a simultaneous fashion so changes made are targeted only once. If this is not desired or causes problems, ``simultaneous`` can be set to False. In addition, if an expression containing more than one Wild symbol is being used to match subexpressions and the ``exact`` flag is None it will be set to True so the match will only succeed if all non-zero values are received for each Wild that appears in the match pattern. Setting this to False accepts a match of 0; while setting it True accepts all matches that have a 0 in them. See example below for cautions. The list of possible combinations of queries and replacement values is listed below: Examples ======== Initial setup >>> from sympy import log, sin, cos, tan, Wild, Mul, Add >>> from sympy.abc import x, y >>> f = log(sin(x)) + tan(sin(x**2)) 1.1. type -> type obj.replace(type, newtype) When object of type ``type`` is found, replace it with the result of passing its argument(s) to ``newtype``. >>> f.replace(sin, cos) log(cos(x)) + tan(cos(x**2)) >>> sin(x).replace(sin, cos, map=True) (cos(x), {sin(x): cos(x)}) >>> (x*y).replace(Mul, Add) x + y 1.2. type -> func obj.replace(type, func) When object of type ``type`` is found, apply ``func`` to its argument(s). ``func`` must be written to handle the number of arguments of ``type``. >>> f.replace(sin, lambda arg: sin(2*arg)) log(sin(2*x)) + tan(sin(2*x**2)) >>> (x*y).replace(Mul, lambda *args: sin(2*Mul(*args))) sin(2*x*y) 2.1. pattern -> expr obj.replace(pattern(wild), expr(wild)) Replace subexpressions matching ``pattern`` with the expression written in terms of the Wild symbols in ``pattern``. >>> a, b = map(Wild, 'ab') >>> f.replace(sin(a), tan(a)) log(tan(x)) + tan(tan(x**2)) >>> f.replace(sin(a), tan(a/2)) log(tan(x/2)) + tan(tan(x**2/2)) >>> f.replace(sin(a), a) log(x) + tan(x**2) >>> (x*y).replace(a*x, a) y Matching is exact by default when more than one Wild symbol is used: matching fails unless the match gives non-zero values for all Wild symbols: >>> (2*x + y).replace(a*x + b, b - a) y - 2 >>> (2*x).replace(a*x + b, b - a) 2*x When set to False, the results may be non-intuitive: >>> (2*x).replace(a*x + b, b - a, exact=False) 2/x 2.2. pattern -> func obj.replace(pattern(wild), lambda wild: expr(wild)) All behavior is the same as in 2.1 but now a function in terms of pattern variables is used rather than an expression: >>> f.replace(sin(a), lambda a: sin(2*a)) log(sin(2*x)) + tan(sin(2*x**2)) 3.1. func -> func obj.replace(filter, func) Replace subexpression ``e`` with ``func(e)`` if ``filter(e)`` is True. >>> g = 2*sin(x**3) >>> g.replace(lambda expr: expr.is_Number, lambda expr: expr**2) 4*sin(x**9) The expression itself is also targeted by the query but is done in such a fashion that changes are not made twice. >>> e = x*(x*y + 1) >>> e.replace(lambda x: x.is_Mul, lambda x: 2*x) 2*x*(2*x*y + 1) When matching a single symbol, `exact` will default to True, but this may or may not be the behavior that is desired: Here, we want `exact=False`: >>> from sympy import Function >>> f = Function('f') >>> e = f(1) + f(0) >>> q = f(a), lambda a: f(a + 1) >>> e.replace(*q, exact=False) f(1) + f(2) >>> e.replace(*q, exact=True) f(0) + f(2) But here, the nature of matching makes selecting the right setting tricky: >>> e = x**(1 + y) >>> (x**(1 + y)).replace(x**(1 + a), lambda a: x**-a, exact=False) 1 >>> (x**(1 + y)).replace(x**(1 + a), lambda a: x**-a, exact=True) x**(-x - y + 1) >>> (x**y).replace(x**(1 + a), lambda a: x**-a, exact=False) 1 >>> (x**y).replace(x**(1 + a), lambda a: x**-a, exact=True) x**(1 - y) It is probably better to use a different form of the query that describes the target expression more precisely: >>> (1 + x**(1 + y)).replace( ... lambda x: x.is_Pow and x.exp.is_Add and x.exp.args[0] == 1, ... lambda x: x.base**(1 - (x.exp - 1))) ... x**(1 - y) + 1 See Also ======== subs: substitution of subexpressions as defined by the objects themselves. xreplace: exact node replacement in expr tree; also capable of using matching rules """ from sympy.core.symbol import Dummy, Wild from sympy.simplify.simplify import bottom_up try: query = _sympify(query) except SympifyError: pass try: value = _sympify(value) except SympifyError: pass if isinstance(query, type): _query = lambda expr: isinstance(expr, query) if isinstance(value, type): _value = lambda expr, result: value(*expr.args) elif callable(value): _value = lambda expr, result: value(*expr.args) else: raise TypeError( "given a type, replace() expects another " "type or a callable") elif isinstance(query, Basic): _query = lambda expr: expr.match(query) if exact is None: exact = (len(query.atoms(Wild)) > 1) if isinstance(value, Basic): if exact: _value = lambda expr, result: (value.subs(result) if all(result.values()) else expr) else: _value = lambda expr, result: value.subs(result) elif callable(value): # match dictionary keys get the trailing underscore stripped # from them and are then passed as keywords to the callable; # if ``exact`` is True, only accept match if there are no null # values amongst those matched. if exact: _value = lambda expr, result: (value(** {str(k)[:-1]: v for k, v in result.items()}) if all(val for val in result.values()) else expr) else: _value = lambda expr, result: value(** {str(k)[:-1]: v for k, v in result.items()}) else: raise TypeError( "given an expression, replace() expects " "another expression or a callable") elif callable(query): _query = query if callable(value): _value = lambda expr, result: value(expr) else: raise TypeError( "given a callable, replace() expects " "another callable") else: raise TypeError( "first argument to replace() must be a " "type, an expression or a callable") mapping = {} # changes that took place mask = [] # the dummies that were used as change placeholders def rec_replace(expr): result = _query(expr) if result or result == {}: new = _value(expr, result) if new is not None and new != expr: mapping[expr] = new if simultaneous: # don't let this change during rebuilding; # XXX this may fail if the object being replaced # cannot be represented as a Dummy in the expression # tree, e.g. an ExprConditionPair in Piecewise # cannot be represented with a Dummy com = getattr(new, 'is_commutative', True) if com is None: com = True d = Dummy('rec_replace', commutative=com) mask.append((d, new)) expr = d else: expr = new return expr rv = bottom_up(self, rec_replace, atoms=True) # restore original expressions for Dummy symbols if simultaneous: mask = list(reversed(mask)) for o, n in mask: r = {o: n} # if a sub-expression could not be replaced with # a Dummy then this will fail; either filter # against such sub-expressions or figure out a # way to carry out simultaneous replacement # in this situation. rv = rv.xreplace(r) # if this fails, see above if not map: return rv else: if simultaneous: # restore subexpressions in mapping for o, n in mask: r = {o: n} mapping = {k.xreplace(r): v.xreplace(r) for k, v in mapping.items()} return rv, mapping def find(self, query, group=False): """Find all subexpressions matching a query. """ query = _make_find_query(query) results = list(filter(query, preorder_traversal(self))) if not group: return set(results) else: groups = {} for result in results: if result in groups: groups[result] += 1 else: groups[result] = 1 return groups def count(self, query): """Count the number of matching subexpressions. """ query = _make_find_query(query) return sum(bool(query(sub)) for sub in preorder_traversal(self)) def matches(self, expr, repl_dict={}, old=False): """ Helper method for match() that looks for a match between Wild symbols in self and expressions in expr. Examples ======== >>> from sympy import symbols, Wild, Basic >>> a, b, c = symbols('a b c') >>> x = Wild('x') >>> Basic(a + x, x).matches(Basic(a + b, c)) is None True >>> Basic(a + x, x).matches(Basic(a + b + c, b + c)) {x_: b + c} """ expr = sympify(expr) if not isinstance(expr, self.__class__): return None if self == expr: return repl_dict if len(self.args) != len(expr.args): return None d = repl_dict.copy() for arg, other_arg in zip(self.args, expr.args): if arg == other_arg: continue d = arg.xreplace(d).matches(other_arg, d, old=old) if d is None: return None return d def match(self, pattern, old=False): """ Pattern matching. Wild symbols match all. Return ``None`` when expression (self) does not match with pattern. Otherwise return a dictionary such that:: pattern.xreplace(self.match(pattern)) == self Examples ======== >>> from sympy import Wild >>> from sympy.abc import x, y >>> p = Wild("p") >>> q = Wild("q") >>> r = Wild("r") >>> e = (x+y)**(x+y) >>> e.match(p**p) {p_: x + y} >>> e.match(p**q) {p_: x + y, q_: x + y} >>> e = (2*x)**2 >>> e.match(p*q**r) {p_: 4, q_: x, r_: 2} >>> (p*q**r).xreplace(e.match(p*q**r)) 4*x**2 The ``old`` flag will give the old-style pattern matching where expressions and patterns are essentially solved to give the match. Both of the following give None unless ``old=True``: >>> (x - 2).match(p - x, old=True) {p_: 2*x - 2} >>> (2/x).match(p*x, old=True) {p_: 2/x**2} """ pattern = sympify(pattern) return pattern.matches(self, old=old) def count_ops(self, visual=None): """wrapper for count_ops that returns the operation count.""" from sympy import count_ops return count_ops(self, visual) def doit(self, **hints): """Evaluate objects that are not evaluated by default like limits, integrals, sums and products. All objects of this kind will be evaluated recursively, unless some species were excluded via 'hints' or unless the 'deep' hint was set to 'False'. >>> from sympy import Integral >>> from sympy.abc import x >>> 2*Integral(x, x) 2*Integral(x, x) >>> (2*Integral(x, x)).doit() x**2 >>> (2*Integral(x, x)).doit(deep=False) 2*Integral(x, x) """ if hints.get('deep', True): terms = [term.doit(**hints) if isinstance(term, Basic) else term for term in self.args] return self.func(*terms) else: return self def simplify(self, **kwargs): """See the simplify function in sympy.simplify""" from sympy.simplify import simplify return simplify(self, **kwargs) def _eval_rewrite(self, pattern, rule, **hints): if self.is_Atom: if hasattr(self, rule): return getattr(self, rule)() return self if hints.get('deep', True): args = [a._eval_rewrite(pattern, rule, **hints) if isinstance(a, Basic) else a for a in self.args] else: args = self.args if pattern is None or isinstance(self, pattern): if hasattr(self, rule): rewritten = getattr(self, rule)(*args, **hints) if rewritten is not None: return rewritten return self.func(*args) if hints.get('evaluate', True) else self def _accept_eval_derivative(self, s): # This method needs to be overridden by array-like objects return s._visit_eval_derivative_scalar(self) def _visit_eval_derivative_scalar(self, base): # Base is a scalar # Types are (base: scalar, self: scalar) return base._eval_derivative(self) def _visit_eval_derivative_array(self, base): # Types are (base: array/matrix, self: scalar) # Base is some kind of array/matrix, # it should have `.applyfunc(lambda x: x.diff(self)` implemented: return base._eval_derivative_array(self) def _eval_derivative_n_times(self, s, n): # This is the default evaluator for derivatives (as called by `diff` # and `Derivative`), it will attempt a loop to derive the expression # `n` times by calling the corresponding `_eval_derivative` method, # while leaving the derivative unevaluated if `n` is symbolic. This # method should be overridden if the object has a closed form for its # symbolic n-th derivative. from sympy import Integer if isinstance(n, (int, Integer)): obj = self for i in range(n): obj2 = obj._accept_eval_derivative(s) if obj == obj2 or obj2 is None: break obj = obj2 return obj2 else: return None def rewrite(self, *args, **hints): """ Rewrite functions in terms of other functions. Rewrites expression containing applications of functions of one kind in terms of functions of different kind. For example you can rewrite trigonometric functions as complex exponentials or combinatorial functions as gamma function. As a pattern this function accepts a list of functions to to rewrite (instances of DefinedFunction class). As rule you can use string or a destination function instance (in this case rewrite() will use the str() function). There is also the possibility to pass hints on how to rewrite the given expressions. For now there is only one such hint defined called 'deep'. When 'deep' is set to False it will forbid functions to rewrite their contents. Examples ======== >>> from sympy import sin, exp >>> from sympy.abc import x Unspecified pattern: >>> sin(x).rewrite(exp) -I*(exp(I*x) - exp(-I*x))/2 Pattern as a single function: >>> sin(x).rewrite(sin, exp) -I*(exp(I*x) - exp(-I*x))/2 Pattern as a list of functions: >>> sin(x).rewrite([sin, ], exp) -I*(exp(I*x) - exp(-I*x))/2 """ if not args: return self else: pattern = args[:-1] if isinstance(args[-1], str): rule = '_eval_rewrite_as_' + args[-1] else: # rewrite arg is usually a class but can also be a # singleton (e.g. GoldenRatio) so we check # __name__ or __class__.__name__ clsname = getattr(args[-1], "__name__", None) if clsname is None: clsname = args[-1].__class__.__name__ rule = '_eval_rewrite_as_' + clsname if not pattern: return self._eval_rewrite(None, rule, **hints) else: if iterable(pattern[0]): pattern = pattern[0] pattern = [p for p in pattern if self.has(p)] if pattern: return self._eval_rewrite(tuple(pattern), rule, **hints) else: return self _constructor_postprocessor_mapping = {} # type: ignore @classmethod def _exec_constructor_postprocessors(cls, obj): # WARNING: This API is experimental. # This is an experimental API that introduces constructor # postprosessors for SymPy Core elements. If an argument of a SymPy # expression has a `_constructor_postprocessor_mapping` attribute, it will # be interpreted as a dictionary containing lists of postprocessing # functions for matching expression node names. clsname = obj.__class__.__name__ postprocessors = defaultdict(list) for i in obj.args: try: postprocessor_mappings = ( Basic._constructor_postprocessor_mapping[cls].items() for cls in type(i).mro() if cls in Basic._constructor_postprocessor_mapping ) for k, v in chain.from_iterable(postprocessor_mappings): postprocessors[k].extend([j for j in v if j not in postprocessors[k]]) except TypeError: pass for f in postprocessors.get(clsname, []): obj = f(obj) return obj class Atom(Basic): """ A parent class for atomic things. An atom is an expression with no subexpressions. Examples ======== Symbol, Number, Rational, Integer, ... But not: Add, Mul, Pow, ... """ is_Atom = True __slots__ = () def matches(self, expr, repl_dict={}, old=False): if self == expr: return repl_dict def xreplace(self, rule, hack2=False): return rule.get(self, self) def doit(self, **hints): return self @classmethod def class_key(cls): return 2, 0, cls.__name__ @cacheit def sort_key(self, order=None): return self.class_key(), (1, (str(self),)), S.One.sort_key(), S.One def _eval_simplify(self, **kwargs): return self @property def _sorted_args(self): # this is here as a safeguard against accidentally using _sorted_args # on Atoms -- they cannot be rebuilt as atom.func(*atom._sorted_args) # since there are no args. So the calling routine should be checking # to see that this property is not called for Atoms. raise AttributeError('Atoms have no args. It might be necessary' ' to make a check for Atoms in the calling code.') def _aresame(a, b): """Return True if a and b are structurally the same, else False. Examples ======== In SymPy (as in Python) two numbers compare the same if they have the same underlying base-2 representation even though they may not be the same type: >>> from sympy import S >>> 2.0 == S(2) True >>> 0.5 == S.Half True This routine was written to provide a query for such cases that would give false when the types do not match: >>> from sympy.core.basic import _aresame >>> _aresame(S(2.0), S(2)) False """ from .numbers import Number from .function import AppliedUndef, UndefinedFunction as UndefFunc if isinstance(a, Number) and isinstance(b, Number): return a == b and a.__class__ == b.__class__ for i, j in zip_longest(preorder_traversal(a), preorder_traversal(b)): if i != j or type(i) != type(j): if ((isinstance(i, UndefFunc) and isinstance(j, UndefFunc)) or (isinstance(i, AppliedUndef) and isinstance(j, AppliedUndef))): if i.class_key() != j.class_key(): return False else: return False return True def _atomic(e, recursive=False): """Return atom-like quantities as far as substitution is concerned: Derivatives, Functions and Symbols. Don't return any 'atoms' that are inside such quantities unless they also appear outside, too, unless `recursive` is True. Examples ======== >>> from sympy import Derivative, Function, cos >>> from sympy.abc import x, y >>> from sympy.core.basic import _atomic >>> f = Function('f') >>> _atomic(x + y) {x, y} >>> _atomic(x + f(y)) {x, f(y)} >>> _atomic(Derivative(f(x), x) + cos(x) + y) {y, cos(x), Derivative(f(x), x)} """ from sympy import Derivative, Function, Symbol pot = preorder_traversal(e) seen = set() if isinstance(e, Basic): free = getattr(e, "free_symbols", None) if free is None: return {e} else: return set() atoms = set() for p in pot: if p in seen: pot.skip() continue seen.add(p) if isinstance(p, Symbol) and p in free: atoms.add(p) elif isinstance(p, (Derivative, Function)): if not recursive: pot.skip() atoms.add(p) return atoms class preorder_traversal: """ Do a pre-order traversal of a tree. This iterator recursively yields nodes that it has visited in a pre-order fashion. That is, it yields the current node then descends through the tree breadth-first to yield all of a node's children's pre-order traversal. For an expression, the order of the traversal depends on the order of .args, which in many cases can be arbitrary. Parameters ========== node : sympy expression The expression to traverse. keys : (default None) sort key(s) The key(s) used to sort args of Basic objects. When None, args of Basic objects are processed in arbitrary order. If key is defined, it will be passed along to ordered() as the only key(s) to use to sort the arguments; if ``key`` is simply True then the default keys of ordered will be used. Yields ====== subtree : sympy expression All of the subtrees in the tree. Examples ======== >>> from sympy import symbols >>> from sympy.core.basic import preorder_traversal >>> x, y, z = symbols('x y z') The nodes are returned in the order that they are encountered unless key is given; simply passing key=True will guarantee that the traversal is unique. >>> list(preorder_traversal((x + y)*z, keys=None)) # doctest: +SKIP [z*(x + y), z, x + y, y, x] >>> list(preorder_traversal((x + y)*z, keys=True)) [z*(x + y), z, x + y, x, y] """ def __init__(self, node, keys=None): self._skip_flag = False self._pt = self._preorder_traversal(node, keys) def _preorder_traversal(self, node, keys): yield node if self._skip_flag: self._skip_flag = False return if isinstance(node, Basic): if not keys and hasattr(node, '_argset'): # LatticeOp keeps args as a set. We should use this if we # don't care about the order, to prevent unnecessary sorting. args = node._argset else: args = node.args if keys: if keys != True: args = ordered(args, keys, default=False) else: args = ordered(args) for arg in args: yield from self._preorder_traversal(arg, keys) elif iterable(node): for item in node: yield from self._preorder_traversal(item, keys) def skip(self): """ Skip yielding current node's (last yielded node's) subtrees. Examples ======== >>> from sympy.core import symbols >>> from sympy.core.basic import preorder_traversal >>> x, y, z = symbols('x y z') >>> pt = preorder_traversal((x+y*z)*z) >>> for i in pt: ... print(i) ... if i == x+y*z: ... pt.skip() z*(x + y*z) z x + y*z """ self._skip_flag = True def __next__(self): return next(self._pt) def __iter__(self): return self def _make_find_query(query): """Convert the argument of Basic.find() into a callable""" try: query = _sympify(query) except SympifyError: pass if isinstance(query, type): return lambda expr: isinstance(expr, query) elif isinstance(query, Basic): return lambda expr: expr.match(query) is not None return query
32.558297
103
0.541636
622ad4b4f05351c221876743af67071d37ed4608
1,098
py
Python
app/widgets/autotooltipdelegate.py
apardyl/kraksat-receiver
9d9f17853e2a19c657a096f0dc395142df29cc98
[ "MIT" ]
1
2019-10-01T19:04:28.000Z
2019-10-01T19:04:28.000Z
app/widgets/autotooltipdelegate.py
apardyl/kraksat-receiver
9d9f17853e2a19c657a096f0dc395142df29cc98
[ "MIT" ]
null
null
null
app/widgets/autotooltipdelegate.py
apardyl/kraksat-receiver
9d9f17853e2a19c657a096f0dc395142df29cc98
[ "MIT" ]
null
null
null
import html from PyQt5.QtCore import QEvent, Qt from PyQt5.QtWidgets import QStyledItemDelegate, QToolTip class AutoToolTipDelegate(QStyledItemDelegate): """ Item delegate that automatically displays a ToolTip for an item if it is too long to be displayed. """ def helpEvent(self, event, view, option, index): if not (event and view): return False if event.type() == QEvent.ToolTip and not index.data(Qt.ToolTipRole): rect = view.visualRect(index) size = self.sizeHint(option, index) # Compare actual cell width and text width if rect.width() < size.width(): text = index.data(Qt.DisplayRole) QToolTip.showText(event.globalPos(), '<div>{}</div>'.format(html.escape(text)), view) return True if not super().helpEvent(event, view, option, index): QToolTip.hideText() return True return super().helpEvent(event, view, option, index)
32.294118
77
0.577413
86157feefd3062dbbce8e21d86871d2d51df6771
7,126
py
Python
lib/datasets/imdb.py
svebk/py-faster-rcnn
1d0c40c42930f8e89634c057a0ed902aace395bd
[ "BSD-2-Clause" ]
null
null
null
lib/datasets/imdb.py
svebk/py-faster-rcnn
1d0c40c42930f8e89634c057a0ed902aace395bd
[ "BSD-2-Clause" ]
null
null
null
lib/datasets/imdb.py
svebk/py-faster-rcnn
1d0c40c42930f8e89634c057a0ed902aace395bd
[ "BSD-2-Clause" ]
null
null
null
# -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- import os import os.path as osp import PIL from utils.cython_bbox import bbox_overlaps import numpy as np import scipy.sparse from fast_rcnn.config import cfg class imdb(object): """Image database.""" def __init__(self, name): self._name = name self._num_classes = 0 self._classes = [] self._image_index = [] self._obj_proposer = 'selective_search' self._roidb = None self._roidb_handler = self.default_roidb # Use this dict for storing dataset specific config options self.config = {} @property def name(self): return self._name @property def num_classes(self): return len(self._classes) @property def classes(self): return self._classes @property def image_index(self): return self._image_index @property def roidb_handler(self): return self._roidb_handler @roidb_handler.setter def roidb_handler(self, val): self._roidb_handler = val def set_proposal_method(self, method): method = eval('self.' + method + '_roidb') self.roidb_handler = method @property def roidb(self): # A roidb is a list of dictionaries, each with the following keys: # boxes # gt_overlaps # gt_classes # flipped if self._roidb is not None: return self._roidb self._roidb = self.roidb_handler() return self._roidb @property def cache_path(self): cache_path = osp.abspath(osp.join(cfg.DATA_DIR, 'cache')) if not os.path.exists(cache_path): os.makedirs(cache_path) return cache_path @property def num_images(self): return len(self.image_index) def image_path_at(self, i): raise NotImplementedError def default_roidb(self): raise NotImplementedError def evaluate_detections(self, all_boxes, output_dir=None): """ all_boxes is a list of length number-of-classes. Each list element is a list of length number-of-images. Each of those list elements is either an empty list [] or a numpy array of detection. all_boxes[class][image] = [] or np.array of shape #dets x 5 """ raise NotImplementedError def append_flipped_images(self): num_images = self.num_images widths = [PIL.Image.open(self.image_path_at(i)).size[0] for i in xrange(num_images)] for i in xrange(num_images): boxes = self.roidb[i]['boxes'].copy() oldx1 = boxes[:, 0].copy() oldx2 = boxes[:, 2].copy() boxes[:, 0] = widths[i] - oldx2 - 1 boxes[:, 2] = widths[i] - oldx1 - 1 assert (boxes[:, 2] >= boxes[:, 0]).all() entry = {'boxes' : boxes, 'gt_overlaps' : self.roidb[i]['gt_overlaps'], 'gt_classes' : self.roidb[i]['gt_classes'], 'flipped' : True} self.roidb.append(entry) self._image_index = self._image_index * 2 def evaluate_recall(self, candidate_boxes=None, ar_thresh=0.5): # Record max overlap value for each gt box # Return vector of overlap values gt_overlaps = np.zeros(0) for i in xrange(self.num_images): gt_inds = np.where(self.roidb[i]['gt_classes'] > 0)[0] gt_boxes = self.roidb[i]['boxes'][gt_inds, :] if candidate_boxes is None: non_gt_inds = np.where(self.roidb[i]['gt_classes'] == 0)[0] boxes = self.roidb[i]['boxes'][non_gt_inds, :] else: boxes = candidate_boxes[i] if boxes.shape[0] == 0: continue overlaps = bbox_overlaps(boxes.astype(np.float), gt_boxes.astype(np.float)) # gt_overlaps = np.hstack((gt_overlaps, overlaps.max(axis=0))) _gt_overlaps = np.zeros((gt_boxes.shape[0])) for j in xrange(gt_boxes.shape[0]): argmax_overlaps = overlaps.argmax(axis=0) max_overlaps = overlaps.max(axis=0) gt_ind = max_overlaps.argmax() gt_ovr = max_overlaps.max() assert(gt_ovr >= 0) box_ind = argmax_overlaps[gt_ind] _gt_overlaps[j] = overlaps[box_ind, gt_ind] assert(_gt_overlaps[j] == gt_ovr) overlaps[box_ind, :] = -1 overlaps[:, gt_ind] = -1 gt_overlaps = np.hstack((gt_overlaps, _gt_overlaps)) num_pos = gt_overlaps.size gt_overlaps = np.sort(gt_overlaps) step = 0.001 thresholds = np.minimum(np.arange(0.5, 1.0 + step, step), 1.0) recalls = np.zeros_like(thresholds) for i, t in enumerate(thresholds): recalls[i] = (gt_overlaps >= t).sum() / float(num_pos) ar = 2 * np.trapz(recalls, thresholds) return ar, gt_overlaps, recalls, thresholds def create_roidb_from_box_list(self, box_list, gt_roidb): assert len(box_list) == self.num_images, \ 'Number of boxes must match number of ground-truth images' roidb = [] for i in xrange(self.num_images): boxes = box_list[i] num_boxes = boxes.shape[0] overlaps = np.zeros((num_boxes, self.num_classes), dtype=np.float32) if gt_roidb is not None: gt_boxes = gt_roidb[i]['boxes'] gt_classes = gt_roidb[i]['gt_classes'] gt_overlaps = bbox_overlaps(boxes.astype(np.float), gt_boxes.astype(np.float)) argmaxes = gt_overlaps.argmax(axis=1) maxes = gt_overlaps.max(axis=1) I = np.where(maxes > 0)[0] overlaps[I, gt_classes[argmaxes[I]]] = maxes[I] overlaps = scipy.sparse.csr_matrix(overlaps) roidb.append({'boxes' : boxes, 'gt_classes' : np.zeros((num_boxes,), dtype=np.int32), 'gt_overlaps' : overlaps, 'flipped' : False}) return roidb @staticmethod def merge_roidbs(a, b): assert len(a) == len(b) for i in xrange(len(a)): a[i]['boxes'] = np.vstack((a[i]['boxes'], b[i]['boxes'])) a[i]['gt_classes'] = np.hstack((a[i]['gt_classes'], b[i]['gt_classes'])) a[i]['gt_overlaps'] = scipy.sparse.vstack([a[i]['gt_overlaps'], b[i]['gt_overlaps']]) return a def competition_mode(self, on): """Turn competition mode on or off.""" pass
35.277228
80
0.544345
9283c4d9e5efbedd7adb3cfd219f84db2d0d7af2
520
py
Python
.buildozer/android/platform/build-armeabi-v7a/build/venv/lib/python3.7/site-packages/cython.py
VPetras/mobile-test-app
6708dade6873ae2fb1ecb13aa70662f95fb42dc6
[ "MIT" ]
6,663
2015-01-02T06:06:43.000Z
2022-03-31T10:35:02.000Z
cython.py
holzschu/cython
8f6c7f707b28cb8e76ecbf5fcd089c6255dacdb8
[ "Apache-2.0" ]
3,094
2015-01-01T15:44:13.000Z
2022-03-31T19:49:57.000Z
cython.py
scoder/cython
ddaaa7b8bfe9885b7bed432cd0a5ab8191d112cd
[ "Apache-2.0" ]
1,425
2015-01-12T07:21:27.000Z
2022-03-30T14:10:40.000Z
#!/usr/bin/env python # # Cython -- Main Program, generic # if __name__ == '__main__': import os import sys # Make sure we import the right Cython cythonpath, _ = os.path.split(os.path.realpath(__file__)) sys.path.insert(0, cythonpath) from Cython.Compiler.Main import main main(command_line = 1) else: # Void cython.* directives. from Cython.Shadow import * ## and bring in the __version__ from Cython import __version__ from Cython import load_ipython_extension
20.8
61
0.684615
69913efb05036960daa0985af40721d5f3cb2e2f
483
py
Python
.jenkins/remove_invisible_code_block_from_ipynb.py
rgommers/tutorials
9341570d4d8ed2c77371eac3b8520f7038d731ee
[ "BSD-3-Clause" ]
6,424
2017-01-18T17:57:30.000Z
2022-03-31T11:43:48.000Z
.jenkins/remove_invisible_code_block_from_ipynb.py
rgommers/tutorials
9341570d4d8ed2c77371eac3b8520f7038d731ee
[ "BSD-3-Clause" ]
1,713
2017-01-18T18:50:08.000Z
2022-03-31T14:57:25.000Z
.jenkins/remove_invisible_code_block_from_ipynb.py
rgommers/tutorials
9341570d4d8ed2c77371eac3b8520f7038d731ee
[ "BSD-3-Clause" ]
3,932
2017-01-18T21:11:46.000Z
2022-03-31T10:24:24.000Z
import sys from bs4 import BeautifulSoup ipynb_file_path = sys.argv[1] output_file_path = sys.argv[2] with open(ipynb_file_path, 'r', encoding='utf-8') as ipynb_file: ipynb_lines = ipynb_file.readlines() ipynb_out_lines = [] for line in ipynb_lines: if not '%%%%%%INVISIBLE_CODE_BLOCK%%%%%%' in line: ipynb_out_lines.append(line) with open(output_file_path, "w", encoding='utf-8') as output_file: for line in ipynb_out_lines: output_file.write(line)
25.421053
66
0.714286
e3949948a19c0babfb11d1a390c1c6a5caed8216
2,405
py
Python
app/grandchallenge/products/templatetags/products_tags.py
nlessmann/grand-challenge.org
36abf6ccb40e2fc3fd3ff00e81deabd76f7e1ef8
[ "Apache-2.0" ]
101
2018-04-11T14:48:04.000Z
2022-03-28T00:29:48.000Z
app/grandchallenge/products/templatetags/products_tags.py
nlessmann/grand-challenge.org
36abf6ccb40e2fc3fd3ff00e81deabd76f7e1ef8
[ "Apache-2.0" ]
1,733
2018-03-21T11:56:16.000Z
2022-03-31T14:58:30.000Z
app/grandchallenge/products/templatetags/products_tags.py
nlessmann/grand-challenge.org
36abf6ccb40e2fc3fd3ff00e81deabd76f7e1ef8
[ "Apache-2.0" ]
42
2018-06-08T05:49:07.000Z
2022-03-29T08:43:01.000Z
from django import template from django.template.defaultfilters import stringfilter from django.templatetags.static import static from grandchallenge.products.models import Product register = template.Library() @register.inclusion_tag("products/partials/navbar.html", takes_context=True) def navbar(context): url = context.request.resolver_match.url_name return { "items": [ { "url": "product-list", "active": url in ["product-list", "product-detail"], "title": "Products", }, { "url": "company-list", "active": url in ["company-list", "company-detail"], "title": "Companies", }, { "url": "blogs-list", "active": url in ["blogs-list", "blogs-detail"], "title": "Blogs", }, { "title": "About", "active": url in ["project-air", "about", "about-faq", "about-add-product"], "subitems": [ { "url": "about", "active": url == "about", "title": "About", }, { "url": "about-faq", "active": url == "about-faq", "title": "FAQ", }, { "url": "about-add-product", "active": url == "about-add-product", "title": "Add your product", }, { "url": "project-air", "active": url == "project-air", "title": "Project AIR", }, ], }, { "url": "contact", "active": url == "contact", "title": "Contact", }, ], } @register.simple_tag def icon(obj, field): value = getattr(obj, field, None) icon = Product.ICONS.get(value) if icon: return static(f"products/images/{icon}") @register.filter @stringfilter def short(value, max_char): if len(value) > max_char: return value[:max_char].rsplit(" ", 1)[0] + " ..." return value
30.0625
78
0.412474
b028018661b0929da5b6a926d65bb750a50efe57
444
py
Python
oldtoronto/test/toronto_archives_test.py
patcon/oldto
44c099550a4e3cfafa85afbaebd3cd6c33325891
[ "Apache-2.0" ]
22
2018-04-25T22:03:53.000Z
2021-07-13T18:43:23.000Z
oldtoronto/test/toronto_archives_test.py
patcon/oldto
44c099550a4e3cfafa85afbaebd3cd6c33325891
[ "Apache-2.0" ]
17
2018-04-30T14:04:08.000Z
2022-02-13T19:52:44.000Z
oldtoronto/test/toronto_archives_test.py
patcon/oldto
44c099550a4e3cfafa85afbaebd3cd6c33325891
[ "Apache-2.0" ]
7
2018-05-08T23:32:44.000Z
2022-01-27T17:49:30.000Z
from nose.tools import eq_ from oldtoronto.toronto_archives import get_citation_hierarchy # noqa def test_get_citation_hierarchy(): eq_([ 'Fonds 200, Series 123', 'Fonds 200' ], get_citation_hierarchy('Fonds 200, Series 123, Item 456')) eq_([ 'Fonds 257, Series 12, File 1983', 'Fonds 257, Series 12', 'Fonds 257' ], get_citation_hierarchy('Fonds 257, Series 12, File 1983, 52","'))
26.117647
73
0.646396
c2d312239b275568cb1b0a8a43d8134e332a8999
15,649
py
Python
google/ads/googleads/v4/services/services/campaign_draft_service/transports/grpc.py
batardo/google-ads-python
a39748521847e85138fca593f3be2681352ad024
[ "Apache-2.0" ]
null
null
null
google/ads/googleads/v4/services/services/campaign_draft_service/transports/grpc.py
batardo/google-ads-python
a39748521847e85138fca593f3be2681352ad024
[ "Apache-2.0" ]
null
null
null
google/ads/googleads/v4/services/services/campaign_draft_service/transports/grpc.py
batardo/google-ads-python
a39748521847e85138fca593f3be2681352ad024
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import warnings from typing import Callable, Dict, Optional, Sequence, Tuple from google.api_core import grpc_helpers # type: ignore from google.api_core import operations_v1 # type: ignore from google.api_core import gapic_v1 # type: ignore from google import auth # type: ignore from google.auth import credentials # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore import grpc # type: ignore from google.ads.googleads.v4.resources.types import campaign_draft from google.ads.googleads.v4.services.types import campaign_draft_service from google.longrunning import operations_pb2 as operations # type: ignore from .base import CampaignDraftServiceTransport, DEFAULT_CLIENT_INFO class CampaignDraftServiceGrpcTransport(CampaignDraftServiceTransport): """gRPC backend transport for CampaignDraftService. Service to manage campaign drafts. This class defines the same methods as the primary client, so the primary client can load the underlying transport implementation and call it. It sends protocol buffers over the wire using gRPC (which is built on top of HTTP/2); the ``grpcio`` package must be installed. """ def __init__( self, *, host: str = "googleads.googleapis.com", credentials: credentials.Credentials = None, credentials_file: str = None, scopes: Sequence[str] = None, channel: grpc.Channel = None, api_mtls_endpoint: str = None, client_cert_source: Callable[[], Tuple[bytes, bytes]] = None, ssl_channel_credentials: grpc.ChannelCredentials = None, quota_project_id: Optional[str] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. This argument is ignored if ``channel`` is provided. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional(Sequence[str])): A list of scopes. This argument is ignored if ``channel`` is provided. channel (Optional[grpc.Channel]): A ``Channel`` instance through which to make calls. api_mtls_endpoint (Optional[str]): Deprecated. The mutual TLS endpoint. If provided, it overrides the ``host`` argument and tries to create a mutual TLS channel with client SSL credentials from ``client_cert_source`` or applicatin default SSL credentials. client_cert_source (Optional[Callable[[], Tuple[bytes, bytes]]]): Deprecated. A callback to provide client SSL certificate bytes and private key bytes, both in PEM format. It is ignored if ``api_mtls_endpoint`` is None. ssl_channel_credentials (grpc.ChannelCredentials): SSL credentials for grpc channel. It is ignored if ``channel`` is provided. quota_project_id (Optional[str]): An optional project to use for billing and quota. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. Raises: google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport creation failed for any reason. """ self._ssl_channel_credentials = ssl_channel_credentials if channel: # Sanity check: Ensure that channel and credentials are not both # provided. credentials = False # If a channel was explicitly provided, set it. self._grpc_channel = channel self._ssl_channel_credentials = None elif api_mtls_endpoint: warnings.warn( "api_mtls_endpoint and client_cert_source are deprecated", DeprecationWarning, ) host = ( api_mtls_endpoint if ":" in api_mtls_endpoint else api_mtls_endpoint + ":443" ) if credentials is None: credentials, _ = auth.default( scopes=self.AUTH_SCOPES, quota_project_id=quota_project_id ) # Create SSL credentials with client_cert_source or application # default SSL credentials. if client_cert_source: cert, key = client_cert_source() ssl_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) else: ssl_credentials = SslCredentials().ssl_credentials # create a new channel. The provided one is ignored. self._grpc_channel = type(self).create_channel( host, credentials=credentials, credentials_file=credentials_file, ssl_credentials=ssl_credentials, scopes=scopes or self.AUTH_SCOPES, quota_project_id=quota_project_id, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) self._ssl_channel_credentials = ssl_credentials else: host = host if ":" in host else host + ":443" if credentials is None: credentials, _ = auth.default(scopes=self.AUTH_SCOPES) # create a new channel. The provided one is ignored. self._grpc_channel = type(self).create_channel( host, credentials=credentials, ssl_credentials=ssl_channel_credentials, scopes=self.AUTH_SCOPES, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) self._stubs = {} # type: Dict[str, Callable] # Run the base constructor. super().__init__( host=host, credentials=credentials, client_info=client_info, ) @classmethod def create_channel( cls, host: str = "googleads.googleapis.com", credentials: credentials.Credentials = None, scopes: Optional[Sequence[str]] = None, **kwargs, ) -> grpc.Channel: """Create and return a gRPC channel object. Args: address (Optionsl[str]): The host for the channel to use. credentials (Optional[~.Credentials]): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. scopes (Optional[Sequence[str]]): A optional list of scopes needed for this service. These are only used when credentials are not specified and are passed to :func:`google.auth.default`. kwargs (Optional[dict]): Keyword arguments, which are passed to the channel creation. Returns: grpc.Channel: A gRPC channel object. """ return grpc_helpers.create_channel( host, credentials=credentials, scopes=scopes or cls.AUTH_SCOPES, **kwargs, ) @property def grpc_channel(self) -> grpc.Channel: """Return the channel designed to connect to this service. """ return self._grpc_channel @property def operations_client(self) -> operations_v1.OperationsClient: """Create the client designed to process long-running operations. This property caches on the instance; repeated calls return the same client. """ # Sanity check: Only create a new client if we do not already have one. if "operations_client" not in self.__dict__: self.__dict__["operations_client"] = operations_v1.OperationsClient( self.grpc_channel ) # Return the client from cache. return self.__dict__["operations_client"] @property def get_campaign_draft( self, ) -> Callable[ [campaign_draft_service.GetCampaignDraftRequest], campaign_draft.CampaignDraft, ]: r"""Return a callable for the get campaign draft method over gRPC. Returns the requested campaign draft in full detail. Returns: Callable[[~.GetCampaignDraftRequest], ~.CampaignDraft]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "get_campaign_draft" not in self._stubs: self._stubs["get_campaign_draft"] = self.grpc_channel.unary_unary( "/google.ads.googleads.v4.services.CampaignDraftService/GetCampaignDraft", request_serializer=campaign_draft_service.GetCampaignDraftRequest.serialize, response_deserializer=campaign_draft.CampaignDraft.deserialize, ) return self._stubs["get_campaign_draft"] @property def mutate_campaign_drafts( self, ) -> Callable[ [campaign_draft_service.MutateCampaignDraftsRequest], campaign_draft_service.MutateCampaignDraftsResponse, ]: r"""Return a callable for the mutate campaign drafts method over gRPC. Creates, updates, or removes campaign drafts. Operation statuses are returned. Returns: Callable[[~.MutateCampaignDraftsRequest], ~.MutateCampaignDraftsResponse]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "mutate_campaign_drafts" not in self._stubs: self._stubs[ "mutate_campaign_drafts" ] = self.grpc_channel.unary_unary( "/google.ads.googleads.v4.services.CampaignDraftService/MutateCampaignDrafts", request_serializer=campaign_draft_service.MutateCampaignDraftsRequest.serialize, response_deserializer=campaign_draft_service.MutateCampaignDraftsResponse.deserialize, ) return self._stubs["mutate_campaign_drafts"] @property def promote_campaign_draft( self, ) -> Callable[ [campaign_draft_service.PromoteCampaignDraftRequest], operations.Operation, ]: r"""Return a callable for the promote campaign draft method over gRPC. Promotes the changes in a draft back to the base campaign. This method returns a Long Running Operation (LRO) indicating if the Promote is done. Use [Operations.GetOperation] to poll the LRO until it is done. Only a done status is returned in the response. See the status in the Campaign Draft resource to determine if the promotion was successful. If the LRO failed, use [CampaignDraftService.ListCampaignDraftAsyncErrors][google.ads.googleads.v4.services.CampaignDraftService.ListCampaignDraftAsyncErrors] to view the list of error reasons. Returns: Callable[[~.PromoteCampaignDraftRequest], ~.Operation]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "promote_campaign_draft" not in self._stubs: self._stubs[ "promote_campaign_draft" ] = self.grpc_channel.unary_unary( "/google.ads.googleads.v4.services.CampaignDraftService/PromoteCampaignDraft", request_serializer=campaign_draft_service.PromoteCampaignDraftRequest.serialize, response_deserializer=operations.Operation.FromString, ) return self._stubs["promote_campaign_draft"] @property def list_campaign_draft_async_errors( self, ) -> Callable[ [campaign_draft_service.ListCampaignDraftAsyncErrorsRequest], campaign_draft_service.ListCampaignDraftAsyncErrorsResponse, ]: r"""Return a callable for the list campaign draft async errors method over gRPC. Returns all errors that occurred during CampaignDraft promote. Throws an error if called before campaign draft is promoted. Supports standard list paging. Returns: Callable[[~.ListCampaignDraftAsyncErrorsRequest], ~.ListCampaignDraftAsyncErrorsResponse]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "list_campaign_draft_async_errors" not in self._stubs: self._stubs[ "list_campaign_draft_async_errors" ] = self.grpc_channel.unary_unary( "/google.ads.googleads.v4.services.CampaignDraftService/ListCampaignDraftAsyncErrors", request_serializer=campaign_draft_service.ListCampaignDraftAsyncErrorsRequest.serialize, response_deserializer=campaign_draft_service.ListCampaignDraftAsyncErrorsResponse.deserialize, ) return self._stubs["list_campaign_draft_async_errors"] __all__ = ("CampaignDraftServiceGrpcTransport",)
42.409214
143
0.638635
a973ea72975b1781675b132cd22a5699afca9e75
1,641
py
Python
image_classification/models/cnn.py
AmanDaVinci/research
05bbca2fce13ab5d06e43e4f5e0309a87b467d43
[ "MIT" ]
null
null
null
image_classification/models/cnn.py
AmanDaVinci/research
05bbca2fce13ab5d06e43e4f5e0309a87b467d43
[ "MIT" ]
null
null
null
image_classification/models/cnn.py
AmanDaVinci/research
05bbca2fce13ab5d06e43e4f5e0309a87b467d43
[ "MIT" ]
null
null
null
import torch import torch.nn as nn from typing import Any, List, Tuple, Dict, Optional, Callable class CNN(nn.Module): def __init__(self, in_channels: int, out_dim: int, device: torch.device, **kwargs): super().__init__() self.conv1 = nn.Sequential( nn.Conv2d(in_channels, out_channels=32, kernel_size=3, padding=1), nn.BatchNorm2d(32), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2) ) self.conv2 = nn.Sequential( nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3), nn.BatchNorm2d(64), nn.ReLU(), nn.MaxPool2d(2) ) self.fc1 = nn.Linear(in_features=64*6*6, out_features=600) self.drop = nn.Dropout2d(0.25) self.fc2 = nn.Linear(in_features=600, out_features=120) self.fc3 = nn.Linear(in_features=120, out_features=out_dim) self.criterion = nn.CrossEntropyLoss() self.device = device self.to(device) def forward(self, x: torch.Tensor) -> torch.Tensor: out = self.conv1(x) out = self.conv2(out) out = out.view(out.size(0), -1) out = self.fc1(out) out = self.drop(out) out = self.fc2(out) out = self.fc3(out) return out def step(self, batch: Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, float]: x, y = batch x = x.to(self.device) y_pred = self.forward(x) loss = self.criterion(y_pred, y) accuracy = (y_pred.argmax(axis=1)==y).float().mean().item() return loss, accuracy
34.914894
91
0.573431
adc6e3f448d9840e2d8f4186157680cec57e6c4b
5,397
py
Python
cinder/volume/drivers/netapp/dataontap/fc_cmode.py
alexisries/openstack-cinder
7cc6e45c5ddb8bf771bdb01b867628e41761ae11
[ "Apache-2.0" ]
2
2019-05-24T14:13:50.000Z
2019-05-24T14:21:13.000Z
cinder/volume/drivers/netapp/dataontap/fc_cmode.py
vexata/cinder
7b84c0842b685de7ee012acec40fb4064edde5e9
[ "Apache-2.0" ]
3
2020-03-02T01:36:30.000Z
2021-12-13T20:27:46.000Z
cinder/volume/drivers/netapp/dataontap/fc_cmode.py
vexata/cinder
7b84c0842b685de7ee012acec40fb4064edde5e9
[ "Apache-2.0" ]
1
2020-03-02T01:32:26.000Z
2020-03-02T01:32:26.000Z
# Copyright (c) - 2014, Clinton Knight. All rights reserved. # Copyright (c) - 2016 Mike Rooney. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Volume driver for NetApp Data ONTAP FibreChannel storage systems. """ from cinder import interface from cinder.volume import driver from cinder.volume.drivers.netapp.dataontap import block_cmode from cinder.zonemanager import utils as fczm_utils @interface.volumedriver class NetAppCmodeFibreChannelDriver(driver.BaseVD, driver.ManageableVD): """NetApp C-mode FibreChannel volume driver.""" DRIVER_NAME = 'NetApp_FibreChannel_Cluster_direct' # ThirdPartySystems wiki page CI_WIKI_NAME = "NetApp_CI" VERSION = block_cmode.NetAppBlockStorageCmodeLibrary.VERSION def __init__(self, *args, **kwargs): super(NetAppCmodeFibreChannelDriver, self).__init__(*args, **kwargs) self.library = block_cmode.NetAppBlockStorageCmodeLibrary( self.DRIVER_NAME, 'FC', **kwargs) def do_setup(self, context): self.library.do_setup(context) def check_for_setup_error(self): self.library.check_for_setup_error() def create_volume(self, volume): return self.library.create_volume(volume) def create_volume_from_snapshot(self, volume, snapshot): return self.library.create_volume_from_snapshot(volume, snapshot) def create_cloned_volume(self, volume, src_vref): return self.library.create_cloned_volume(volume, src_vref) def delete_volume(self, volume): self.library.delete_volume(volume) def create_snapshot(self, snapshot): self.library.create_snapshot(snapshot) def delete_snapshot(self, snapshot): self.library.delete_snapshot(snapshot) def get_volume_stats(self, refresh=False): return self.library.get_volume_stats(refresh, self.get_filter_function(), self.get_goodness_function()) def get_default_filter_function(self): return self.library.get_default_filter_function() def get_default_goodness_function(self): return self.library.get_default_goodness_function() def extend_volume(self, volume, new_size): self.library.extend_volume(volume, new_size) def ensure_export(self, context, volume): return self.library.ensure_export(context, volume) def create_export(self, context, volume, connector): return self.library.create_export(context, volume) def remove_export(self, context, volume): self.library.remove_export(context, volume) def manage_existing(self, volume, existing_ref): return self.library.manage_existing(volume, existing_ref) def manage_existing_get_size(self, volume, existing_ref): return self.library.manage_existing_get_size(volume, existing_ref) def unmanage(self, volume): return self.library.unmanage(volume) def initialize_connection(self, volume, connector): conn_info = self.library.initialize_connection_fc(volume, connector) fczm_utils.add_fc_zone(conn_info) return conn_info def terminate_connection(self, volume, connector, **kwargs): conn_info = self.library.terminate_connection_fc(volume, connector, **kwargs) fczm_utils.remove_fc_zone(conn_info) return conn_info def get_pool(self, volume): return self.library.get_pool(volume) def create_group(self, context, group): return self.library.create_group(group) def delete_group(self, context, group, volumes): return self.library.delete_group(group, volumes) def update_group(self, context, group, add_volumes=None, remove_volumes=None): return self.library.update_group(group, add_volumes=None, remove_volumes=None) def create_group_snapshot(self, context, group_snapshot, snapshots): return self.library.create_group_snapshot(group_snapshot, snapshots) def delete_group_snapshot(self, context, group_snapshot, snapshots): return self.library.delete_group_snapshot(group_snapshot, snapshots) def create_group_from_src(self, context, group, volumes, group_snapshot=None, snapshots=None, source_group=None, source_vols=None): return self.library.create_group_from_src( group, volumes, group_snapshot=group_snapshot, snapshots=snapshots, source_group=source_group, source_vols=source_vols) def failover_host(self, context, volumes, secondary_id=None, groups=None): return self.library.failover_host( context, volumes, secondary_id=secondary_id)
39.108696
79
0.698536
95308d4eeb07c6eeb3e00d7bd0014a65e611d07a
38,538
py
Python
tests/forms_tests/tests/test_input_formats.py
ericholscher/django
b9a90b371c90a987ed57f7a4a7cc1274c432b438
[ "BSD-3-Clause" ]
1
2015-11-08T11:42:08.000Z
2015-11-08T11:42:08.000Z
tests/forms_tests/tests/test_input_formats.py
ericholscher/django
b9a90b371c90a987ed57f7a4a7cc1274c432b438
[ "BSD-3-Clause" ]
null
null
null
tests/forms_tests/tests/test_input_formats.py
ericholscher/django
b9a90b371c90a987ed57f7a4a7cc1274c432b438
[ "BSD-3-Clause" ]
null
null
null
from datetime import time, date, datetime from django import forms from django.test.utils import override_settings from django.utils.translation import activate, deactivate from django.test import SimpleTestCase @override_settings(TIME_INPUT_FORMATS=["%I:%M:%S %p", "%I:%M %p"], USE_L10N=True) class LocalizedTimeTests(SimpleTestCase): def setUp(self): # nl/formats.py has customized TIME_INPUT_FORMATS: # ('%H:%M:%S', '%H.%M:%S', '%H.%M', '%H:%M') activate('nl') def tearDown(self): deactivate() def test_timeField(self): "TimeFields can parse dates in the default format" f = forms.TimeField() # Parse a time in an unaccepted format; get an error self.assertRaises(forms.ValidationError, f.clean, '1:30:05 PM') # Parse a time in a valid format, get a parsed result result = f.clean('13:30:05') self.assertEqual(result, time(13, 30, 5)) # Check that the parsed result does a round trip text = f.widget._format_value(result) self.assertEqual(text, '13:30:05') # Parse a time in a valid, but non-default format, get a parsed result result = f.clean('13:30') self.assertEqual(result, time(13, 30, 0)) # Check that the parsed result does a round trip to default format text = f.widget._format_value(result) self.assertEqual(text, "13:30:00") # ISO formats are accepted, even if not specified in formats.py result = f.clean('13:30:05.000155') self.assertEqual(result, time(13, 30, 5, 155)) def test_localized_timeField(self): "Localized TimeFields act as unlocalized widgets" f = forms.TimeField(localize=True) # Parse a time in an unaccepted format; get an error self.assertRaises(forms.ValidationError, f.clean, '1:30:05 PM') # Parse a time in a valid format, get a parsed result result = f.clean('13:30:05') self.assertEqual(result, time(13, 30, 5)) # Check that the parsed result does a round trip to the same format text = f.widget._format_value(result) self.assertEqual(text, '13:30:05') # Parse a time in a valid format, get a parsed result result = f.clean('13:30') self.assertEqual(result, time(13, 30, 0)) # Check that the parsed result does a round trip to default format text = f.widget._format_value(result) self.assertEqual(text, "13:30:00") def test_timeField_with_inputformat(self): "TimeFields with manually specified input formats can accept those formats" f = forms.TimeField(input_formats=["%H.%M.%S", "%H.%M"]) # Parse a time in an unaccepted format; get an error self.assertRaises(forms.ValidationError, f.clean, '1:30:05 PM') self.assertRaises(forms.ValidationError, f.clean, '13:30:05') # Parse a time in a valid format, get a parsed result result = f.clean('13.30.05') self.assertEqual(result, time(13, 30, 5)) # Check that the parsed result does a round trip to the same format text = f.widget._format_value(result) self.assertEqual(text, "13:30:05") # Parse a time in a valid format, get a parsed result result = f.clean('13.30') self.assertEqual(result, time(13, 30, 0)) # Check that the parsed result does a round trip to default format text = f.widget._format_value(result) self.assertEqual(text, "13:30:00") def test_localized_timeField_with_inputformat(self): "Localized TimeFields with manually specified input formats can accept those formats" f = forms.TimeField(input_formats=["%H.%M.%S", "%H.%M"], localize=True) # Parse a time in an unaccepted format; get an error self.assertRaises(forms.ValidationError, f.clean, '1:30:05 PM') self.assertRaises(forms.ValidationError, f.clean, '13:30:05') # Parse a time in a valid format, get a parsed result result = f.clean('13.30.05') self.assertEqual(result, time(13, 30, 5)) # Check that the parsed result does a round trip to the same format text = f.widget._format_value(result) self.assertEqual(text, "13:30:05") # Parse a time in a valid format, get a parsed result result = f.clean('13.30') self.assertEqual(result, time(13, 30, 0)) # Check that the parsed result does a round trip to default format text = f.widget._format_value(result) self.assertEqual(text, "13:30:00") @override_settings(TIME_INPUT_FORMATS=["%I:%M:%S %p", "%I:%M %p"]) class CustomTimeInputFormatsTests(SimpleTestCase): def test_timeField(self): "TimeFields can parse dates in the default format" f = forms.TimeField() # Parse a time in an unaccepted format; get an error self.assertRaises(forms.ValidationError, f.clean, '13:30:05') # Parse a time in a valid format, get a parsed result result = f.clean('1:30:05 PM') self.assertEqual(result, time(13, 30, 5)) # Check that the parsed result does a round trip text = f.widget._format_value(result) self.assertEqual(text, '01:30:05 PM') # Parse a time in a valid, but non-default format, get a parsed result result = f.clean('1:30 PM') self.assertEqual(result, time(13, 30, 0)) # Check that the parsed result does a round trip to default format text = f.widget._format_value(result) self.assertEqual(text, "01:30:00 PM") def test_localized_timeField(self): "Localized TimeFields act as unlocalized widgets" f = forms.TimeField(localize=True) # Parse a time in an unaccepted format; get an error self.assertRaises(forms.ValidationError, f.clean, '13:30:05') # Parse a time in a valid format, get a parsed result result = f.clean('1:30:05 PM') self.assertEqual(result, time(13, 30, 5)) # Check that the parsed result does a round trip to the same format text = f.widget._format_value(result) self.assertEqual(text, '01:30:05 PM') # Parse a time in a valid format, get a parsed result result = f.clean('01:30 PM') self.assertEqual(result, time(13, 30, 0)) # Check that the parsed result does a round trip to default format text = f.widget._format_value(result) self.assertEqual(text, "01:30:00 PM") def test_timeField_with_inputformat(self): "TimeFields with manually specified input formats can accept those formats" f = forms.TimeField(input_formats=["%H.%M.%S", "%H.%M"]) # Parse a time in an unaccepted format; get an error self.assertRaises(forms.ValidationError, f.clean, '1:30:05 PM') self.assertRaises(forms.ValidationError, f.clean, '13:30:05') # Parse a time in a valid format, get a parsed result result = f.clean('13.30.05') self.assertEqual(result, time(13, 30, 5)) # Check that the parsed result does a round trip to the same format text = f.widget._format_value(result) self.assertEqual(text, "01:30:05 PM") # Parse a time in a valid format, get a parsed result result = f.clean('13.30') self.assertEqual(result, time(13, 30, 0)) # Check that the parsed result does a round trip to default format text = f.widget._format_value(result) self.assertEqual(text, "01:30:00 PM") def test_localized_timeField_with_inputformat(self): "Localized TimeFields with manually specified input formats can accept those formats" f = forms.TimeField(input_formats=["%H.%M.%S", "%H.%M"], localize=True) # Parse a time in an unaccepted format; get an error self.assertRaises(forms.ValidationError, f.clean, '1:30:05 PM') self.assertRaises(forms.ValidationError, f.clean, '13:30:05') # Parse a time in a valid format, get a parsed result result = f.clean('13.30.05') self.assertEqual(result, time(13, 30, 5)) # # Check that the parsed result does a round trip to the same format text = f.widget._format_value(result) self.assertEqual(text, "01:30:05 PM") # Parse a time in a valid format, get a parsed result result = f.clean('13.30') self.assertEqual(result, time(13, 30, 0)) # Check that the parsed result does a round trip to default format text = f.widget._format_value(result) self.assertEqual(text, "01:30:00 PM") class SimpleTimeFormatTests(SimpleTestCase): def test_timeField(self): "TimeFields can parse dates in the default format" f = forms.TimeField() # Parse a time in an unaccepted format; get an error self.assertRaises(forms.ValidationError, f.clean, '1:30:05 PM') # Parse a time in a valid format, get a parsed result result = f.clean('13:30:05') self.assertEqual(result, time(13, 30, 5)) # Check that the parsed result does a round trip to the same format text = f.widget._format_value(result) self.assertEqual(text, "13:30:05") # Parse a time in a valid, but non-default format, get a parsed result result = f.clean('13:30') self.assertEqual(result, time(13, 30, 0)) # Check that the parsed result does a round trip to default format text = f.widget._format_value(result) self.assertEqual(text, "13:30:00") def test_localized_timeField(self): "Localized TimeFields in a non-localized environment act as unlocalized widgets" f = forms.TimeField() # Parse a time in an unaccepted format; get an error self.assertRaises(forms.ValidationError, f.clean, '1:30:05 PM') # Parse a time in a valid format, get a parsed result result = f.clean('13:30:05') self.assertEqual(result, time(13, 30, 5)) # Check that the parsed result does a round trip to the same format text = f.widget._format_value(result) self.assertEqual(text, "13:30:05") # Parse a time in a valid format, get a parsed result result = f.clean('13:30') self.assertEqual(result, time(13, 30, 0)) # Check that the parsed result does a round trip to default format text = f.widget._format_value(result) self.assertEqual(text, "13:30:00") def test_timeField_with_inputformat(self): "TimeFields with manually specified input formats can accept those formats" f = forms.TimeField(input_formats=["%I:%M:%S %p", "%I:%M %p"]) # Parse a time in an unaccepted format; get an error self.assertRaises(forms.ValidationError, f.clean, '13:30:05') # Parse a time in a valid format, get a parsed result result = f.clean('1:30:05 PM') self.assertEqual(result, time(13, 30, 5)) # Check that the parsed result does a round trip to the same format text = f.widget._format_value(result) self.assertEqual(text, "13:30:05") # Parse a time in a valid format, get a parsed result result = f.clean('1:30 PM') self.assertEqual(result, time(13, 30, 0)) # Check that the parsed result does a round trip to default format text = f.widget._format_value(result) self.assertEqual(text, "13:30:00") def test_localized_timeField_with_inputformat(self): "Localized TimeFields with manually specified input formats can accept those formats" f = forms.TimeField(input_formats=["%I:%M:%S %p", "%I:%M %p"], localize=True) # Parse a time in an unaccepted format; get an error self.assertRaises(forms.ValidationError, f.clean, '13:30:05') # Parse a time in a valid format, get a parsed result result = f.clean('1:30:05 PM') self.assertEqual(result, time(13, 30, 5)) # Check that the parsed result does a round trip to the same format text = f.widget._format_value(result) self.assertEqual(text, "13:30:05") # Parse a time in a valid format, get a parsed result result = f.clean('1:30 PM') self.assertEqual(result, time(13, 30, 0)) # Check that the parsed result does a round trip to default format text = f.widget._format_value(result) self.assertEqual(text, "13:30:00") @override_settings(DATE_INPUT_FORMATS=["%d/%m/%Y", "%d-%m-%Y"], USE_L10N=True) class LocalizedDateTests(SimpleTestCase): def setUp(self): activate('de') def tearDown(self): deactivate() def test_dateField(self): "DateFields can parse dates in the default format" f = forms.DateField() # Parse a date in an unaccepted format; get an error self.assertRaises(forms.ValidationError, f.clean, '21/12/2010') # ISO formats are accepted, even if not specified in formats.py self.assertEqual(f.clean('2010-12-21'), date(2010, 12, 21)) # Parse a date in a valid format, get a parsed result result = f.clean('21.12.2010') self.assertEqual(result, date(2010, 12, 21)) # Check that the parsed result does a round trip text = f.widget._format_value(result) self.assertEqual(text, '21.12.2010') # Parse a date in a valid, but non-default format, get a parsed result result = f.clean('21.12.10') self.assertEqual(result, date(2010, 12, 21)) # Check that the parsed result does a round trip to default format text = f.widget._format_value(result) self.assertEqual(text, "21.12.2010") def test_localized_dateField(self): "Localized DateFields act as unlocalized widgets" f = forms.DateField(localize=True) # Parse a date in an unaccepted format; get an error self.assertRaises(forms.ValidationError, f.clean, '21/12/2010') # Parse a date in a valid format, get a parsed result result = f.clean('21.12.2010') self.assertEqual(result, date(2010, 12, 21)) # Check that the parsed result does a round trip to the same format text = f.widget._format_value(result) self.assertEqual(text, '21.12.2010') # Parse a date in a valid format, get a parsed result result = f.clean('21.12.10') self.assertEqual(result, date(2010, 12, 21)) # Check that the parsed result does a round trip to default format text = f.widget._format_value(result) self.assertEqual(text, "21.12.2010") def test_dateField_with_inputformat(self): "DateFields with manually specified input formats can accept those formats" f = forms.DateField(input_formats=["%m.%d.%Y", "%m-%d-%Y"]) # Parse a date in an unaccepted format; get an error self.assertRaises(forms.ValidationError, f.clean, '2010-12-21') self.assertRaises(forms.ValidationError, f.clean, '21/12/2010') self.assertRaises(forms.ValidationError, f.clean, '21.12.2010') # Parse a date in a valid format, get a parsed result result = f.clean('12.21.2010') self.assertEqual(result, date(2010, 12, 21)) # Check that the parsed result does a round trip to the same format text = f.widget._format_value(result) self.assertEqual(text, "21.12.2010") # Parse a date in a valid format, get a parsed result result = f.clean('12-21-2010') self.assertEqual(result, date(2010, 12, 21)) # Check that the parsed result does a round trip to default format text = f.widget._format_value(result) self.assertEqual(text, "21.12.2010") def test_localized_dateField_with_inputformat(self): "Localized DateFields with manually specified input formats can accept those formats" f = forms.DateField(input_formats=["%m.%d.%Y", "%m-%d-%Y"], localize=True) # Parse a date in an unaccepted format; get an error self.assertRaises(forms.ValidationError, f.clean, '2010-12-21') self.assertRaises(forms.ValidationError, f.clean, '21/12/2010') self.assertRaises(forms.ValidationError, f.clean, '21.12.2010') # Parse a date in a valid format, get a parsed result result = f.clean('12.21.2010') self.assertEqual(result, date(2010, 12, 21)) # # Check that the parsed result does a round trip to the same format text = f.widget._format_value(result) self.assertEqual(text, "21.12.2010") # Parse a date in a valid format, get a parsed result result = f.clean('12-21-2010') self.assertEqual(result, date(2010, 12, 21)) # Check that the parsed result does a round trip to default format text = f.widget._format_value(result) self.assertEqual(text, "21.12.2010") @override_settings(DATE_INPUT_FORMATS=["%d.%m.%Y", "%d-%m-%Y"]) class CustomDateInputFormatsTests(SimpleTestCase): def test_dateField(self): "DateFields can parse dates in the default format" f = forms.DateField() # Parse a date in an unaccepted format; get an error self.assertRaises(forms.ValidationError, f.clean, '2010-12-21') # Parse a date in a valid format, get a parsed result result = f.clean('21.12.2010') self.assertEqual(result, date(2010, 12, 21)) # Check that the parsed result does a round trip text = f.widget._format_value(result) self.assertEqual(text, '21.12.2010') # Parse a date in a valid, but non-default format, get a parsed result result = f.clean('21-12-2010') self.assertEqual(result, date(2010, 12, 21)) # Check that the parsed result does a round trip to default format text = f.widget._format_value(result) self.assertEqual(text, "21.12.2010") def test_localized_dateField(self): "Localized DateFields act as unlocalized widgets" f = forms.DateField(localize=True) # Parse a date in an unaccepted format; get an error self.assertRaises(forms.ValidationError, f.clean, '2010-12-21') # Parse a date in a valid format, get a parsed result result = f.clean('21.12.2010') self.assertEqual(result, date(2010, 12, 21)) # Check that the parsed result does a round trip to the same format text = f.widget._format_value(result) self.assertEqual(text, '21.12.2010') # Parse a date in a valid format, get a parsed result result = f.clean('21-12-2010') self.assertEqual(result, date(2010, 12, 21)) # Check that the parsed result does a round trip to default format text = f.widget._format_value(result) self.assertEqual(text, "21.12.2010") def test_dateField_with_inputformat(self): "DateFields with manually specified input formats can accept those formats" f = forms.DateField(input_formats=["%m.%d.%Y", "%m-%d-%Y"]) # Parse a date in an unaccepted format; get an error self.assertRaises(forms.ValidationError, f.clean, '21.12.2010') self.assertRaises(forms.ValidationError, f.clean, '2010-12-21') # Parse a date in a valid format, get a parsed result result = f.clean('12.21.2010') self.assertEqual(result, date(2010, 12, 21)) # Check that the parsed result does a round trip to the same format text = f.widget._format_value(result) self.assertEqual(text, "21.12.2010") # Parse a date in a valid format, get a parsed result result = f.clean('12-21-2010') self.assertEqual(result, date(2010, 12, 21)) # Check that the parsed result does a round trip to default format text = f.widget._format_value(result) self.assertEqual(text, "21.12.2010") def test_localized_dateField_with_inputformat(self): "Localized DateFields with manually specified input formats can accept those formats" f = forms.DateField(input_formats=["%m.%d.%Y", "%m-%d-%Y"], localize=True) # Parse a date in an unaccepted format; get an error self.assertRaises(forms.ValidationError, f.clean, '21.12.2010') self.assertRaises(forms.ValidationError, f.clean, '2010-12-21') # Parse a date in a valid format, get a parsed result result = f.clean('12.21.2010') self.assertEqual(result, date(2010, 12, 21)) # # Check that the parsed result does a round trip to the same format text = f.widget._format_value(result) self.assertEqual(text, "21.12.2010") # Parse a date in a valid format, get a parsed result result = f.clean('12-21-2010') self.assertEqual(result, date(2010, 12, 21)) # Check that the parsed result does a round trip to default format text = f.widget._format_value(result) self.assertEqual(text, "21.12.2010") class SimpleDateFormatTests(SimpleTestCase): def test_dateField(self): "DateFields can parse dates in the default format" f = forms.DateField() # Parse a date in an unaccepted format; get an error self.assertRaises(forms.ValidationError, f.clean, '21.12.2010') # Parse a date in a valid format, get a parsed result result = f.clean('2010-12-21') self.assertEqual(result, date(2010, 12, 21)) # Check that the parsed result does a round trip to the same format text = f.widget._format_value(result) self.assertEqual(text, "2010-12-21") # Parse a date in a valid, but non-default format, get a parsed result result = f.clean('12/21/2010') self.assertEqual(result, date(2010, 12, 21)) # Check that the parsed result does a round trip to default format text = f.widget._format_value(result) self.assertEqual(text, "2010-12-21") def test_localized_dateField(self): "Localized DateFields in a non-localized environment act as unlocalized widgets" f = forms.DateField() # Parse a date in an unaccepted format; get an error self.assertRaises(forms.ValidationError, f.clean, '21.12.2010') # Parse a date in a valid format, get a parsed result result = f.clean('2010-12-21') self.assertEqual(result, date(2010, 12, 21)) # Check that the parsed result does a round trip to the same format text = f.widget._format_value(result) self.assertEqual(text, "2010-12-21") # Parse a date in a valid format, get a parsed result result = f.clean('12/21/2010') self.assertEqual(result, date(2010, 12, 21)) # Check that the parsed result does a round trip to default format text = f.widget._format_value(result) self.assertEqual(text, "2010-12-21") def test_dateField_with_inputformat(self): "DateFields with manually specified input formats can accept those formats" f = forms.DateField(input_formats=["%d.%m.%Y", "%d-%m-%Y"]) # Parse a date in an unaccepted format; get an error self.assertRaises(forms.ValidationError, f.clean, '2010-12-21') # Parse a date in a valid format, get a parsed result result = f.clean('21.12.2010') self.assertEqual(result, date(2010, 12, 21)) # Check that the parsed result does a round trip to the same format text = f.widget._format_value(result) self.assertEqual(text, "2010-12-21") # Parse a date in a valid format, get a parsed result result = f.clean('21-12-2010') self.assertEqual(result, date(2010, 12, 21)) # Check that the parsed result does a round trip to default format text = f.widget._format_value(result) self.assertEqual(text, "2010-12-21") def test_localized_dateField_with_inputformat(self): "Localized DateFields with manually specified input formats can accept those formats" f = forms.DateField(input_formats=["%d.%m.%Y", "%d-%m-%Y"], localize=True) # Parse a date in an unaccepted format; get an error self.assertRaises(forms.ValidationError, f.clean, '2010-12-21') # Parse a date in a valid format, get a parsed result result = f.clean('21.12.2010') self.assertEqual(result, date(2010, 12, 21)) # Check that the parsed result does a round trip to the same format text = f.widget._format_value(result) self.assertEqual(text, "2010-12-21") # Parse a date in a valid format, get a parsed result result = f.clean('21-12-2010') self.assertEqual(result, date(2010, 12, 21)) # Check that the parsed result does a round trip to default format text = f.widget._format_value(result) self.assertEqual(text, "2010-12-21") @override_settings(DATETIME_INPUT_FORMATS=["%I:%M:%S %p %d/%m/%Y", "%I:%M %p %d-%m-%Y"], USE_L10N=True) class LocalizedDateTimeTests(SimpleTestCase): def setUp(self): activate('de') def tearDown(self): deactivate() def test_dateTimeField(self): "DateTimeFields can parse dates in the default format" f = forms.DateTimeField() # Parse a date in an unaccepted format; get an error self.assertRaises(forms.ValidationError, f.clean, '1:30:05 PM 21/12/2010') # ISO formats are accepted, even if not specified in formats.py self.assertEqual(f.clean('2010-12-21 13:30:05'), datetime(2010, 12, 21, 13, 30, 5)) # Parse a date in a valid format, get a parsed result result = f.clean('21.12.2010 13:30:05') self.assertEqual(result, datetime(2010, 12, 21, 13, 30, 5)) # Check that the parsed result does a round trip text = f.widget._format_value(result) self.assertEqual(text, '21.12.2010 13:30:05') # Parse a date in a valid, but non-default format, get a parsed result result = f.clean('21.12.2010 13:30') self.assertEqual(result, datetime(2010, 12, 21, 13, 30)) # Check that the parsed result does a round trip to default format text = f.widget._format_value(result) self.assertEqual(text, "21.12.2010 13:30:00") def test_localized_dateTimeField(self): "Localized DateTimeFields act as unlocalized widgets" f = forms.DateTimeField(localize=True) # Parse a date in an unaccepted format; get an error self.assertRaises(forms.ValidationError, f.clean, '1:30:05 PM 21/12/2010') # Parse a date in a valid format, get a parsed result result = f.clean('21.12.2010 13:30:05') self.assertEqual(result, datetime(2010, 12, 21, 13, 30, 5)) # Check that the parsed result does a round trip to the same format text = f.widget._format_value(result) self.assertEqual(text, '21.12.2010 13:30:05') # Parse a date in a valid format, get a parsed result result = f.clean('21.12.2010 13:30') self.assertEqual(result, datetime(2010, 12, 21, 13, 30)) # Check that the parsed result does a round trip to default format text = f.widget._format_value(result) self.assertEqual(text, "21.12.2010 13:30:00") def test_dateTimeField_with_inputformat(self): "DateTimeFields with manually specified input formats can accept those formats" f = forms.DateTimeField(input_formats=["%H.%M.%S %m.%d.%Y", "%H.%M %m-%d-%Y"]) # Parse a date in an unaccepted format; get an error self.assertRaises(forms.ValidationError, f.clean, '2010-12-21 13:30:05 13:30:05') self.assertRaises(forms.ValidationError, f.clean, '1:30:05 PM 21/12/2010') self.assertRaises(forms.ValidationError, f.clean, '13:30:05 21.12.2010') # Parse a date in a valid format, get a parsed result result = f.clean('13.30.05 12.21.2010') self.assertEqual(result, datetime(2010, 12, 21, 13, 30, 5)) # Check that the parsed result does a round trip to the same format text = f.widget._format_value(result) self.assertEqual(text, "21.12.2010 13:30:05") # Parse a date in a valid format, get a parsed result result = f.clean('13.30 12-21-2010') self.assertEqual(result, datetime(2010, 12, 21, 13, 30)) # Check that the parsed result does a round trip to default format text = f.widget._format_value(result) self.assertEqual(text, "21.12.2010 13:30:00") def test_localized_dateTimeField_with_inputformat(self): "Localized DateTimeFields with manually specified input formats can accept those formats" f = forms.DateTimeField(input_formats=["%H.%M.%S %m.%d.%Y", "%H.%M %m-%d-%Y"], localize=True) # Parse a date in an unaccepted format; get an error self.assertRaises(forms.ValidationError, f.clean, '2010-12-21 13:30:05') self.assertRaises(forms.ValidationError, f.clean, '1:30:05 PM 21/12/2010') self.assertRaises(forms.ValidationError, f.clean, '13:30:05 21.12.2010') # Parse a date in a valid format, get a parsed result result = f.clean('13.30.05 12.21.2010') self.assertEqual(result, datetime(2010, 12, 21, 13, 30, 5)) # # Check that the parsed result does a round trip to the same format text = f.widget._format_value(result) self.assertEqual(text, "21.12.2010 13:30:05") # Parse a date in a valid format, get a parsed result result = f.clean('13.30 12-21-2010') self.assertEqual(result, datetime(2010, 12, 21, 13, 30)) # Check that the parsed result does a round trip to default format text = f.widget._format_value(result) self.assertEqual(text, "21.12.2010 13:30:00") @override_settings(DATETIME_INPUT_FORMATS=["%I:%M:%S %p %d/%m/%Y", "%I:%M %p %d-%m-%Y"]) class CustomDateTimeInputFormatsTests(SimpleTestCase): def test_dateTimeField(self): "DateTimeFields can parse dates in the default format" f = forms.DateTimeField() # Parse a date in an unaccepted format; get an error self.assertRaises(forms.ValidationError, f.clean, '2010-12-21 13:30:05') # Parse a date in a valid format, get a parsed result result = f.clean('1:30:05 PM 21/12/2010') self.assertEqual(result, datetime(2010, 12, 21, 13, 30, 5)) # Check that the parsed result does a round trip text = f.widget._format_value(result) self.assertEqual(text, '01:30:05 PM 21/12/2010') # Parse a date in a valid, but non-default format, get a parsed result result = f.clean('1:30 PM 21-12-2010') self.assertEqual(result, datetime(2010, 12, 21, 13, 30)) # Check that the parsed result does a round trip to default format text = f.widget._format_value(result) self.assertEqual(text, "01:30:00 PM 21/12/2010") def test_localized_dateTimeField(self): "Localized DateTimeFields act as unlocalized widgets" f = forms.DateTimeField(localize=True) # Parse a date in an unaccepted format; get an error self.assertRaises(forms.ValidationError, f.clean, '2010-12-21 13:30:05') # Parse a date in a valid format, get a parsed result result = f.clean('1:30:05 PM 21/12/2010') self.assertEqual(result, datetime(2010, 12, 21, 13, 30, 5)) # Check that the parsed result does a round trip to the same format text = f.widget._format_value(result) self.assertEqual(text, '01:30:05 PM 21/12/2010') # Parse a date in a valid format, get a parsed result result = f.clean('1:30 PM 21-12-2010') self.assertEqual(result, datetime(2010, 12, 21, 13, 30)) # Check that the parsed result does a round trip to default format text = f.widget._format_value(result) self.assertEqual(text, "01:30:00 PM 21/12/2010") def test_dateTimeField_with_inputformat(self): "DateTimeFields with manually specified input formats can accept those formats" f = forms.DateTimeField(input_formats=["%m.%d.%Y %H:%M:%S", "%m-%d-%Y %H:%M"]) # Parse a date in an unaccepted format; get an error self.assertRaises(forms.ValidationError, f.clean, '13:30:05 21.12.2010') self.assertRaises(forms.ValidationError, f.clean, '2010-12-21 13:30:05') # Parse a date in a valid format, get a parsed result result = f.clean('12.21.2010 13:30:05') self.assertEqual(result, datetime(2010, 12, 21, 13, 30, 5)) # Check that the parsed result does a round trip to the same format text = f.widget._format_value(result) self.assertEqual(text, "01:30:05 PM 21/12/2010") # Parse a date in a valid format, get a parsed result result = f.clean('12-21-2010 13:30') self.assertEqual(result, datetime(2010, 12, 21, 13, 30)) # Check that the parsed result does a round trip to default format text = f.widget._format_value(result) self.assertEqual(text, "01:30:00 PM 21/12/2010") def test_localized_dateTimeField_with_inputformat(self): "Localized DateTimeFields with manually specified input formats can accept those formats" f = forms.DateTimeField(input_formats=["%m.%d.%Y %H:%M:%S", "%m-%d-%Y %H:%M"], localize=True) # Parse a date in an unaccepted format; get an error self.assertRaises(forms.ValidationError, f.clean, '13:30:05 21.12.2010') self.assertRaises(forms.ValidationError, f.clean, '2010-12-21 13:30:05') # Parse a date in a valid format, get a parsed result result = f.clean('12.21.2010 13:30:05') self.assertEqual(result, datetime(2010, 12, 21, 13, 30, 5)) # # Check that the parsed result does a round trip to the same format text = f.widget._format_value(result) self.assertEqual(text, "01:30:05 PM 21/12/2010") # Parse a date in a valid format, get a parsed result result = f.clean('12-21-2010 13:30') self.assertEqual(result, datetime(2010, 12, 21, 13, 30)) # Check that the parsed result does a round trip to default format text = f.widget._format_value(result) self.assertEqual(text, "01:30:00 PM 21/12/2010") class SimpleDateTimeFormatTests(SimpleTestCase): def test_dateTimeField(self): "DateTimeFields can parse dates in the default format" f = forms.DateTimeField() # Parse a date in an unaccepted format; get an error self.assertRaises(forms.ValidationError, f.clean, '13:30:05 21.12.2010') # Parse a date in a valid format, get a parsed result result = f.clean('2010-12-21 13:30:05') self.assertEqual(result, datetime(2010, 12, 21, 13, 30, 5)) # Check that the parsed result does a round trip to the same format text = f.widget._format_value(result) self.assertEqual(text, "2010-12-21 13:30:05") # Parse a date in a valid, but non-default format, get a parsed result result = f.clean('12/21/2010 13:30:05') self.assertEqual(result, datetime(2010, 12, 21, 13, 30, 5)) # Check that the parsed result does a round trip to default format text = f.widget._format_value(result) self.assertEqual(text, "2010-12-21 13:30:05") def test_localized_dateTimeField(self): "Localized DateTimeFields in a non-localized environment act as unlocalized widgets" f = forms.DateTimeField() # Parse a date in an unaccepted format; get an error self.assertRaises(forms.ValidationError, f.clean, '13:30:05 21.12.2010') # Parse a date in a valid format, get a parsed result result = f.clean('2010-12-21 13:30:05') self.assertEqual(result, datetime(2010, 12, 21, 13, 30, 5)) # Check that the parsed result does a round trip to the same format text = f.widget._format_value(result) self.assertEqual(text, "2010-12-21 13:30:05") # Parse a date in a valid format, get a parsed result result = f.clean('12/21/2010 13:30:05') self.assertEqual(result, datetime(2010, 12, 21, 13, 30, 5)) # Check that the parsed result does a round trip to default format text = f.widget._format_value(result) self.assertEqual(text, "2010-12-21 13:30:05") def test_dateTimeField_with_inputformat(self): "DateTimeFields with manually specified input formats can accept those formats" f = forms.DateTimeField(input_formats=["%I:%M:%S %p %d.%m.%Y", "%I:%M %p %d-%m-%Y"]) # Parse a date in an unaccepted format; get an error self.assertRaises(forms.ValidationError, f.clean, '2010-12-21 13:30:05') # Parse a date in a valid format, get a parsed result result = f.clean('1:30:05 PM 21.12.2010') self.assertEqual(result, datetime(2010, 12, 21, 13, 30, 5)) # Check that the parsed result does a round trip to the same format text = f.widget._format_value(result) self.assertEqual(text, "2010-12-21 13:30:05") # Parse a date in a valid format, get a parsed result result = f.clean('1:30 PM 21-12-2010') self.assertEqual(result, datetime(2010, 12, 21, 13, 30)) # Check that the parsed result does a round trip to default format text = f.widget._format_value(result) self.assertEqual(text, "2010-12-21 13:30:00") def test_localized_dateTimeField_with_inputformat(self): "Localized DateTimeFields with manually specified input formats can accept those formats" f = forms.DateTimeField(input_formats=["%I:%M:%S %p %d.%m.%Y", "%I:%M %p %d-%m-%Y"], localize=True) # Parse a date in an unaccepted format; get an error self.assertRaises(forms.ValidationError, f.clean, '2010-12-21 13:30:05') # Parse a date in a valid format, get a parsed result result = f.clean('1:30:05 PM 21.12.2010') self.assertEqual(result, datetime(2010, 12, 21, 13, 30, 5)) # Check that the parsed result does a round trip to the same format text = f.widget._format_value(result) self.assertEqual(text, "2010-12-21 13:30:05") # Parse a date in a valid format, get a parsed result result = f.clean('1:30 PM 21-12-2010') self.assertEqual(result, datetime(2010, 12, 21, 13, 30)) # Check that the parsed result does a round trip to default format text = f.widget._format_value(result) self.assertEqual(text, "2010-12-21 13:30:00")
44.449827
107
0.648892
63ca8ec0886983411f04824c6ca872fad9a0d548
399
py
Python
misitiotest/asgi.py
cristianllanca/django_local_library
ba278bef82d53014ae7a84056c91a3f2d24c0d9c
[ "MIT" ]
null
null
null
misitiotest/asgi.py
cristianllanca/django_local_library
ba278bef82d53014ae7a84056c91a3f2d24c0d9c
[ "MIT" ]
null
null
null
misitiotest/asgi.py
cristianllanca/django_local_library
ba278bef82d53014ae7a84056c91a3f2d24c0d9c
[ "MIT" ]
null
null
null
""" ASGI config for misitiotest project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'misitiotest.settings') application = get_asgi_application()
23.470588
78
0.789474
fee36336c5ac71bf5d34da3a0e51aefe7e7e7ad4
280
py
Python
tests/conftest.py
sapporojones/eyeson_flask
f1e5e6a52f58d0bc9c977644d0f544c22b415bf0
[ "MIT" ]
2
2021-01-14T05:35:41.000Z
2021-01-15T23:35:37.000Z
tests/conftest.py
sapporojones/eyeson_flask
f1e5e6a52f58d0bc9c977644d0f544c22b415bf0
[ "MIT" ]
44
2021-07-09T23:15:14.000Z
2022-03-28T21:32:21.000Z
tests/conftest.py
sapporojones/eyeson_flask
f1e5e6a52f58d0bc9c977644d0f544c22b415bf0
[ "MIT" ]
1
2021-01-14T03:43:17.000Z
2021-01-14T03:43:17.000Z
""" Dummy conftest.py for eyeson_flask. If you don't know what this is for, just leave it empty. Read more about conftest.py under: - https://docs.pytest.org/en/stable/fixture.html - https://docs.pytest.org/en/stable/writing_plugins.html """ # import pytest
25.454545
60
0.692857
bc90d9fd53204f4187e38ac83ad6091fc1a51056
478
py
Python
day4/my_jinja2_ex1.py
grenn72/pynet-ons-feb19
5aff7dfa6a697214dc24818819a60b46a261d0d3
[ "Apache-2.0" ]
null
null
null
day4/my_jinja2_ex1.py
grenn72/pynet-ons-feb19
5aff7dfa6a697214dc24818819a60b46a261d0d3
[ "Apache-2.0" ]
null
null
null
day4/my_jinja2_ex1.py
grenn72/pynet-ons-feb19
5aff7dfa6a697214dc24818819a60b46a261d0d3
[ "Apache-2.0" ]
null
null
null
import jinja2 bgp_vars = { 'local_as': 10, 'peer1_ip': '10.1.20.2', 'peer1_as': 20, 'peer2_ip': '10.1.30.2', 'peer2_as': 30, } bgp_template = """ router bgp {{ local_as }} neighbor {{ peer1_ip }} remote-as {{ peer1_as }} update-source loopback99 ebgp-multihop 2 address-family ipv4 unicast neighbor {{ peer2_ip }} remote-as {{ peer2_as }} address-family ipv4 unicast """ t = jinja2.Template(bgp_template) print(t.render(**bgp_vars))
19.12
50
0.629707
42cd337814a63ddad219e861d5abcf0973527b87
10,753
py
Python
tools/SDKTool/src/ui/tree/applications_tree/ui_explore_tree/explore_result.py
Passer-D/GameAISDK
a089330a30b7bfe1f6442258a12d8c0086240606
[ "Apache-2.0" ]
1,210
2020-08-18T07:57:36.000Z
2022-03-31T15:06:05.000Z
tools/SDKTool/src/ui/tree/applications_tree/ui_explore_tree/explore_result.py
guokaiSama/GameAISDK
a089330a30b7bfe1f6442258a12d8c0086240606
[ "Apache-2.0" ]
37
2020-08-24T02:48:38.000Z
2022-01-30T06:41:52.000Z
tools/SDKTool/src/ui/tree/applications_tree/ui_explore_tree/explore_result.py
guokaiSama/GameAISDK
a089330a30b7bfe1f6442258a12d8c0086240606
[ "Apache-2.0" ]
275
2020-08-18T08:35:16.000Z
2022-03-31T15:06:07.000Z
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making GameAISDK available. This source code file is licensed under the GNU General Public License Version 3. For full details, please refer to the file "LICENSE.txt" which is provided as part of this source code package. Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved. """ import os import sys import json import math import logging import cv2 import numpy as np from matplotlib.font_manager import FontProperties import matplotlib.pyplot as plt from PyQt5.QtGui import QImage, QPixmap from PyQt5.QtWidgets import QTableWidget, QTableWidgetItem, QHeaderView from PyQt5.QtCore import Qt from .graph import UIGraph, UIGRAPH from ....canvas.ui_canvas import canvas from ....dialog.tip_dialog import show_warning_tips from ....main_window.tool_window import ui from .....common.define import UMING_TTC from .....common.utils import get_font from ....utils import cvimg_to_qtimg platform = sys.platform plt.rcParams['font.sans-serif'] = get_font() # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 class ExploreResult(object): def __init__(self, path=None): self.__logger = logging.getLogger('sdktool') # self.__canvas = canvas self.__ui = ui self.__image_list = [] self.__image_index = -1 self.__explore_ret_path = path self.__table_widget = None def set_path(self, path): self.__explore_ret_path = path @staticmethod def load_image_file(ui_graph): w, h = ui_graph.get_painter_size() if w > 0 and h > 0: max_w = max(canvas.geometry().width(), w) max_h = max(canvas.geometry().height(), h) img_data = cv2.imread("Resource/White.jpeg") if img_data is None: raise Exception('Resource/White.jpeg is not found') img_data = cv2.resize(img_data, (max_w, max_h)) qtimg = cvimg_to_qtimg(img_data) canvas.load_pixmap(qtimg) canvas.add_ui_graph(ui_graph) canvas.current_model.append(UIGRAPH) canvas.update() # 优化显示,否则当界面元素过多时,元素显示很小 if canvas.scale < 1: canvas.scale = 1.0 canvas.adjustSize() canvas.update() def ui_graph(self): file_list = os.listdir(self.__explore_ret_path) img_list = [item for item in file_list if item.split('.')[1] in ['jpg']] json_list = [item for item in file_list if '.json' in item] if 0 in [len(file_list), len(img_list), len(json_list)]: show_warning_tips("files count wrong, img count {}, json count{}".format(len(img_list), len(json_list))) return image_label_dict = dict() for item in img_list: key = item.split('.')[0] jsonfile = "{}.json".format(key) if jsonfile in json_list: image_label_dict[key] = dict() image_label_dict[key]["image"] = item image_label_dict[key]["label"] = jsonfile self.__logger.info("images count %s, json count %s, pairs count %s", len(img_list), len(json_list), len(image_label_dict.keys())) ui_graph = UIGraph() ui_graph.set_canvas_scale(canvas.get_scale()) # create graph for key, value in image_label_dict.items(): with open("{0}/{1}".format(self.__explore_ret_path, value.get("label")), 'r') as ui_label_file: content = json.load(ui_label_file) label_list = content.get("labels") cur_image = content.get("fileName") if not label_list: self.__logger.error("%s label is none", ui_label_file) continue for button in label_list: next_ui = button.get("nextUI") # labelName = button.get("label") number = int(button.get("clickNum")) ui_graph.add_node_button(cur_image, (button.get("x"), button.get("y"), button.get("w"), button.get("h")), next_ui, number) # if (nextUI is not '') and (labelName not in ['return']): if next_ui != '': # uiGraph.add_edge(value.get("image"), nextUI) ui_graph.add_edge(cur_image, next_ui) self.__logger.info("edges num %s node num %s", len(ui_graph.edges()), len(ui_graph.nodes())) for node in ui_graph.nodes(): img_path = self.__explore_ret_path + '/' + str(node) ui_graph.add_node_image(node, img_path) ui_graph.process() ui_graph.set_text_edit(self.__ui.textEdit) # 加载图像文件 self.load_image_file(ui_graph) @staticmethod def _plt_set(y_value, x_label, y_label, title): y_max_value = math.ceil(max(y_value) * 1.2) plt.ylim(0, y_max_value) if platform == 'win32': plt.xlabel(str(x_label)) plt.ylabel(str(y_label)) plt.title(str(title)) plt.legend() else: chinesefont = FontProperties(fname=UMING_TTC) plt.xlabel(str(x_label), fontproperties=chinesefont) plt.ylabel(str(y_label), fontproperties=chinesefont) plt.title(str(title), fontproperties=chinesefont) plt.legend(prop=chinesefont) plt.tight_layout() @staticmethod def _set_bar(index, height, width, alpha, color, label): plt.bar(index, height, width, alpha=alpha, color=color, label=label) @staticmethod def _set_bar_text(x, y, s, ha='center'): plt.text(x, y, s, ha=ha) def coverage(self): # clear previous figures plt.figure(1) json_file = self.__explore_ret_path + '/coverage.json' if not os.path.exists(json_file): self.__logger.error("file %s not exists", json_file) return try: with open(json_file) as f: value = json.load(f) except IOError as e: self.__logger.error("load json file %s failed, err: %s", json_file, e) return button_value = value.get("button") scene_value = value.get("scene") if None in [button_value, scene_value]: self.__logger.error("read button or scene from file %s failed", json_file) return plt.cla() n_groups = 1 index = np.arange(n_groups) bar_width = 0.3 _, (ax1, ax2) = plt.subplots(1, 2) # ax2 = plt.subplot(1, 2, 2) plt.sca(ax2) opacity = 0.4 self._set_bar(index, height=button_value.get("sampleNum"), width=bar_width, alpha=opacity, color='b', label='游戏按钮') self._set_bar_text(x=index, y=button_value.get("sampleNum"), s=str(button_value.get("sampleNum")), ha='center') self._set_bar(index + bar_width, button_value.get("coverNum"), bar_width, alpha=opacity, color='r', label='探索覆盖') self._set_bar_text(x=index + bar_width, y=button_value.get("coverNum"), s=str(button_value.get("coverNum")), ha='center') y_value = (button_value.get("sampleNum"), button_value.get("coverNum")) self._plt_set(y_value, x_label=str('按钮'), y_label=str('按钮数量'), title=str('按钮覆盖率')) # ax1 = plt.subplot(1, 2, 1) plt.sca(ax1) self._set_bar(index, height=scene_value.get("sampleNum"), width=bar_width, alpha=opacity, color='g', label='游戏场景') self._set_bar_text(x=index, y=scene_value.get("sampleNum"), s=str(scene_value.get("sampleNum")), ha='center') self._set_bar(index + bar_width, height=scene_value.get("coverNum"), width=bar_width, alpha=opacity, color='y', label='探索覆盖') self._set_bar_text(x=index + bar_width, y=scene_value.get("coverNum"), s=str(scene_value.get("coverNum")), ha='center') y_value = (scene_value.get("sampleNum"), scene_value.get("coverNum")) self._plt_set(y_value, x_label=str('场景'), y_label=str('场景数量'), title=str('场景覆盖率')) plt.subplots_adjust(left=0.1, right=0.97, top=0.92, bottom=0.12, wspace=0.31, hspace=0.2) name = 'coverage.jpg' plt.savefig(name) # 加载图像文件 frame = QImage(name) pix = QPixmap.fromImage(frame) canvas.load_pixmap(pix) canvas.update() plt.close(1) @staticmethod def _set_widget_item(table_widget, name, row=0, col=0, set_edit=True): new_item = QTableWidgetItem(name) if set_edit: new_item.setData(Qt.EditRole, name) table_widget.setItem(row, col, new_item) def ui_coverage(self): json_file = self.__explore_ret_path + '/coverage.json' if not os.path.exists(json_file): self.__logger.error("file %s not exists", json_file) return try: with open(json_file) as f: value = json.load(f) except IOError as e: self.__logger.error("load json file %s failed, err: %s", json_file, e) return cover_list = value.get('coverList') or [] self.__table_widget = QTableWidget() self.__table_widget.setSortingEnabled(True) self.__table_widget.setRowCount(len(cover_list)) self.__table_widget.setColumnCount(4) self.__table_widget.setHorizontalHeaderLabels(['图像名', '按钮数', '覆盖数', '覆盖率']) self.__table_widget.horizontalHeader().setSectionResizeMode(QHeaderView.Stretch) index = 0 for item in cover_list: self._set_widget_item(self.__table_widget, item.get("fileName"), index, 0, set_edit=False) self._set_widget_item(self.__table_widget, int(item.get("sampleNum")), index, 1) self._set_widget_item(self.__table_widget, int(item.get("coverNum")), index, 2) self._set_widget_item(self.__table_widget, str(item.get("coverage")), index, 3) index += 1 for i in range(self.__ui.graph_view_layout.count()): item = self.__ui.graph_view_layout.itemAt(i) item.widget().hide() # self.__ui.horizontalLayout_4.addWidget(self.__table_widget) self.__ui.graph_view_layout.addWidget(self.__table_widget) def reset(self): if self.__table_widget is not None: self.__table_widget.deleteLater() self.__table_widget = None for i in range(self.__ui.graph_view_layout.count()): item = self.__ui.graph_view_layout.itemAt(i) item.widget().show()
38.960145
119
0.606993
21bb34d71827935ab5e4b0ac1772bf8d4a2868d8
629
py
Python
working-library/background/PictureAPI/views.py
FredCof/Fresh-supermarket-Online
25c1cb28f5b5dc1f85e53ee7de5b055de438c491
[ "Apache-2.0" ]
2
2021-03-12T16:35:27.000Z
2021-03-12T16:35:34.000Z
working-library/background/PictureAPI/views.py
FredCof/Fresh-supermarket-Online
25c1cb28f5b5dc1f85e53ee7de5b055de438c491
[ "Apache-2.0" ]
4
2021-03-19T13:16:08.000Z
2021-06-09T19:26:37.000Z
working-library/background/PictureAPI/views.py
FredCof/Fresh-supermarket-Online
25c1cb28f5b5dc1f85e53ee7de5b055de438c491
[ "Apache-2.0" ]
null
null
null
from django.views.decorators.csrf import csrf_exempt from django.http import HttpResponse from filetype import filetype from Fresh_market_online.model import User from LoginAPI.token_module import get_token, out_token import json # Create your views here. @csrf_exempt def PictureGet(request): size = request.POST.get("size") url=request.path end_pos = url.rfind('/') - 1 start_pos = url.rfind('/', 0, end_pos) filename = url[start_pos + 1:] #print(filename) path = r'./static/goods_pic/' + filename avatar = open(path, "rb") return HttpResponse(avatar.read(), content_type='image/png')
29.952381
64
0.720191
7223cd135afe5a9e6e1c20fa22ccee0967d1d603
14,761
py
Python
games/stocks.py
jobyid/muzero-general
8b8b9a66f5a86ea5f7ab2041d3838dfac514a9db
[ "MIT" ]
null
null
null
games/stocks.py
jobyid/muzero-general
8b8b9a66f5a86ea5f7ab2041d3838dfac514a9db
[ "MIT" ]
null
null
null
games/stocks.py
jobyid/muzero-general
8b8b9a66f5a86ea5f7ab2041d3838dfac514a9db
[ "MIT" ]
null
null
null
import datetime import os import numpy import torch from .abstract_game import AbstractGame class MuZeroConfig: def __init__(self): # More information is available here: https://github.com/werner-duvaud/muzero-general/wiki/Hyperparameter-Optimization self.seed = 0 # Seed for numpy, torch and the game self.max_num_gpus = None # Fix the maximum number of GPUs to use. It's usually faster to use a single GPU (set it to 1) if it has enough memory. None will use every GPUs available ### Game self.observation_shape = (3, 6, 7) # Dimensions of the game observation, must be 3D (channel, height, width). For a 1D array, please reshape it to (1, 1, length of array) self.action_space = list(range(7)) # Fixed list of all possible actions. You should only edit the length self.players = list(range(2)) # List of players. You should only edit the length self.stacked_observations = 0 # Number of previous observations and previous actions to add to the current observation # Evaluate self.muzero_player = 0 # Turn Muzero begins to play (0: MuZero plays first, 1: MuZero plays second) self.opponent = "expert" # Hard coded agent that MuZero faces to assess his progress in multiplayer games. It doesn't influence training. None, "random" or "expert" if implemented in the Game class ### Self-Play self.num_workers = 1 # Number of simultaneous threads/workers self-playing to feed the replay buffer self.selfplay_on_gpu = False self.max_moves = 42 # Maximum number of moves if game is not finished before self.num_simulations = 200 # Number of future moves self-simulated self.discount = 1 # Chronological discount of the reward self.temperature_threshold = None # Number of moves before dropping the temperature given by visit_softmax_temperature_fn to 0 (ie selecting the best action). If None, visit_softmax_temperature_fn is used every time # Root prior exploration noise self.root_dirichlet_alpha = 0.3 self.root_exploration_fraction = 0.25 # UCB formula self.pb_c_base = 19652 self.pb_c_init = 1.25 ### Network self.network = "resnet" # "resnet" / "fullyconnected" self.support_size = 10 # Value and reward are scaled (with almost sqrt) and encoded on a vector with a range of -support_size to support_size. Choose it so that support_size <= sqrt(max(abs(discounted reward))) # Residual Network self.downsample = False # Downsample observations before representation network, False / "CNN" (lighter) / "resnet" (See paper appendix Network Architecture) self.blocks = 3 # Number of blocks in the ResNet self.channels = 64 # Number of channels in the ResNet self.reduced_channels_reward = 2 # Number of channels in reward head self.reduced_channels_value = 2 # Number of channels in value head self.reduced_channels_policy = 4 # Number of channels in policy head self.resnet_fc_reward_layers = [64] # Define the hidden layers in the reward head of the dynamic network self.resnet_fc_value_layers = [64] # Define the hidden layers in the value head of the prediction network self.resnet_fc_policy_layers = [64] # Define the hidden layers in the policy head of the prediction network # Fully Connected Network self.encoding_size = 32 self.fc_representation_layers = [] # Define the hidden layers in the representation network self.fc_dynamics_layers = [64] # Define the hidden layers in the dynamics network self.fc_reward_layers = [64] # Define the hidden layers in the reward network self.fc_value_layers = [] # Define the hidden layers in the value network self.fc_policy_layers = [] # Define the hidden layers in the policy network ### Training self.results_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "../results", os.path.basename(__file__)[:-3], datetime.datetime.now().strftime("%Y-%m-%d--%H-%M-%S")) # Path to store the model weights and TensorBoard logs self.save_model = True # Save the checkpoint in results_path as model.checkpoint self.training_steps = 100000 # Total number of training steps (ie weights update according to a batch) self.batch_size = 64 # Number of parts of games to train on at each training step self.checkpoint_interval = 10 # Number of training steps before using the model for self-playing self.value_loss_weight = 0.25 # Scale the value loss to avoid overfitting of the value function, paper recommends 0.25 (See paper appendix Reanalyze) self.train_on_gpu = torch.cuda.is_available() # Train on GPU if available self.optimizer = "Adam" # "Adam" or "SGD". Paper uses SGD self.weight_decay = 1e-4 # L2 weights regularization self.momentum = 0.9 # Used only if optimizer is SGD # Exponential learning rate schedule self.lr_init = 0.005 # Initial learning rate self.lr_decay_rate = 1 # Set it to 1 to use a constant learning rate self.lr_decay_steps = 10000 ### Replay Buffer self.replay_buffer_size = 10000 # Number of self-play games to keep in the replay buffer self.num_unroll_steps = 42 # Number of game moves to keep for every batch element self.td_steps = 42 # Number of steps in the future to take into account for calculating the target value self.PER = True # Prioritized Replay (See paper appendix Training), select in priority the elements in the replay buffer which are unexpected for the network self.PER_alpha = 0.5 # How much prioritization is used, 0 corresponding to the uniform case, paper suggests 1 # Reanalyze (See paper appendix Reanalyse) self.use_last_model_value = True # Use the last model to provide a fresher, stable n-step value (See paper appendix Reanalyze) self.reanalyse_on_gpu = False ### Adjust the self play / training ratio to avoid over/underfitting self.self_play_delay = 0 # Number of seconds to wait after each played game self.training_delay = 0 # Number of seconds to wait after each training step self.ratio = None # Desired training steps per self played step ratio. Equivalent to a synchronous version, training can take much longer. Set it to None to disable it def visit_softmax_temperature_fn(self, trained_steps): """ Parameter to alter the visit count distribution to ensure that the action selection becomes greedier as training progresses. The smaller it is, the more likely the best action (ie with the highest visit count) is chosen. Returns: Positive float. """ return 1 class Game(AbstractGame): """ Game wrapper. """ def __init__(self, seed=None): self.env = Connect4() def step(self, action): """ Apply action to the game. Args: action : action of the action_space to take. Returns: The new observation, the reward and a boolean if the game has ended. """ observation, reward, done = self.env.step(action) return observation, reward * 10, done def to_play(self): """ Return the current player. Returns: The current player, it should be an element of the players list in the config. """ return self.env.to_play() def legal_actions(self): """ Should return the legal actions at each turn, if it is not available, it can return the whole action space. At each turn, the game have to be able to handle one of returned actions. For complex game where calculating legal moves is too long, the idea is to define the legal actions equal to the action space but to return a negative reward if the action is illegal. Returns: An array of integers, subset of the action space. """ return self.env.legal_actions() def reset(self): """ Reset the game for a new game. Returns: Initial observation of the game. """ return self.env.reset() def render(self): """ Display the game observation. """ self.env.render() input("Press enter to take a step ") def human_to_action(self): """ For multiplayer games, ask the user for a legal action and return the corresponding action number. Returns: An integer from the action space. """ choice = input(f"Enter the column to play for the player {self.to_play()}: ") while choice not in [str(action) for action in self.legal_actions()]: choice = input("Enter another column : ") return int(choice) def expert_agent(self): """ Hard coded agent that MuZero faces to assess his progress in multiplayer games. It doesn't influence training Returns: Action as an integer to take in the current game state """ return self.env.expert_action() def action_to_string(self, action_number): """ Convert an action number to a string representing the action. Args: action_number: an integer from the action space. Returns: String representing the action. """ return f"Play column {action_number + 1}" class Stocks: def __init__(self): self.player = 1 def stockList(self): print("stocks") epics = [] return epics def to_play(self): return 1 def get_observation(self): print('Observations') def step(self): print("Review rewards, then move to moves") def legal_actions(self): legal = [] return legal def have_winner(self): print('Winner') def take_action(self): print("Make the move") class Connect4: def __init__(self): self.board = numpy.zeros((6, 7), dtype="int32") self.player = 1 def to_play(self): return 0 if self.player == 1 else 1 def reset(self): self.board = numpy.zeros((6, 7), dtype="int32") self.player = 1 return self.get_observation() def step(self, action): for i in range(6): if self.board[i][action] == 0: self.board[i][action] = self.player break done = self.have_winner() or len(self.legal_actions()) == 0 reward = 1 if self.have_winner() else 0 self.player *= -1 return self.get_observation(), reward, done def get_observation(self): board_player1 = numpy.where(self.board == 1, 1.0, 0.0) board_player2 = numpy.where(self.board == -1, 1.0, 0.0) board_to_play = numpy.full((6, 7), self.player, dtype="int32") return numpy.array([board_player1, board_player2, board_to_play]) def legal_actions(self): legal = [] for i in range(7): if self.board[5][i] == 0: legal.append(i) return legal def have_winner(self): # Horizontal check for i in range(4): for j in range(6): if ( self.board[j][i] == self.player and self.board[j][i + 1] == self.player and self.board[j][i + 2] == self.player and self.board[j][i + 3] == self.player ): return True # Vertical check for i in range(7): for j in range(3): if ( self.board[j][i] == self.player and self.board[j + 1][i] == self.player and self.board[j + 2][i] == self.player and self.board[j + 3][i] == self.player ): return True # Positive diagonal check for i in range(4): for j in range(3): if ( self.board[j][i] == self.player and self.board[j + 1][i + 1] == self.player and self.board[j + 2][i + 2] == self.player and self.board[j + 3][i + 3] == self.player ): return True # Negative diagonal check for i in range(4): for j in range(3, 6): if ( self.board[j][i] == self.player and self.board[j - 1][i + 1] == self.player and self.board[j - 2][i + 2] == self.player and self.board[j - 3][i + 3] == self.player ): return True return False def expert_action(self): board = self.board action = numpy.random.choice(self.legal_actions()) for k in range(3): for l in range(4): sub_board = board[k : k + 4, l : l + 4] # Horizontal and vertical checks for i in range(4): if abs(sum(sub_board[i, :])) == 3: ind = numpy.where(sub_board[i, :] == 0)[0][0] if numpy.count_nonzero(board[:, ind + l]) == i + k: action = ind + l if self.player * sum(sub_board[i, :]) > 0: return action if abs(sum(sub_board[:, i])) == 3: action = i + l if self.player * sum(sub_board[:, i]) > 0: return action # Diagonal checks diag = sub_board.diagonal() anti_diag = numpy.fliplr(sub_board).diagonal() if abs(sum(diag)) == 3: ind = numpy.where(diag == 0)[0][0] if numpy.count_nonzero(board[:, ind + l]) == ind + k: action = ind + l if self.player * sum(diag) > 0: return action if abs(sum(anti_diag)) == 3: ind = numpy.where(anti_diag == 0)[0][0] if numpy.count_nonzero(board[:, 3 - ind + l]) == ind + k: action = 3 - ind + l if self.player * sum(anti_diag) > 0: return action return action def render(self): print(self.board[::-1])
39.787062
244
0.590543
4e4e42b003eadda5673e6a9b32c8f6e73b584986
1,666
py
Python
setup.py
StackStorm/pyangbind
4fb5275e850c5174e67c4691d41cf6f1cd526c62
[ "Apache-2.0" ]
1
2016-11-10T05:07:53.000Z
2016-11-10T05:07:53.000Z
setup.py
StackStorm/pyangbind
4fb5275e850c5174e67c4691d41cf6f1cd526c62
[ "Apache-2.0" ]
null
null
null
setup.py
StackStorm/pyangbind
4fb5275e850c5174e67c4691d41cf6f1cd526c62
[ "Apache-2.0" ]
3
2016-11-01T23:51:35.000Z
2018-05-23T10:09:08.000Z
from setuptools import setup, find_packages from pip.req import parse_requirements from codecs import open from os import path thisdir = path.abspath(path.dirname(__file__)) pip_reqs = parse_requirements(path.join(thisdir, "requirements.txt"), session=False) inst_reqs = [str(ir.req) for ir in pip_reqs] import pyangbind with open(path.join(thisdir, "README.rst"), encoding='utf-8') as readme: long_description = readme.read() setup( name='pyangbind-brcd', # PyangBind uses the same versioning approach as OpenConfig - see # http://www.openconfig.net/file-cabinet/Semantic_Versioning_for_OpenConfig.pdf?attredirects=0&d=1 version=pyangbind.__version__, description="PyangBind is a plugin for pyang which converts YANG data" + \ "models into a Python class hierarchy, such that Python " + \ "can be used to manipulate data that conforms with a YANG" + \ " model.", long_description=long_description, url="https://github.com/StackStorm/pyangbind", author="Rob Shakir", author_email="rjs@rob.sh", license="Apache", classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Telecommunications Industry', 'Intended Audience :: Developers', 'Topic :: Software Development :: Code Generators', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 2 :: Only' ], include_package_data=True, keywords="yang pyang", packages=find_packages(exclude=['lib']), install_requires=inst_reqs, zip_safe = False, )
34
102
0.683073
a1f4cd76aca96f41e904b53dce88276a60c944cd
3,201
py
Python
tests/compute/test_subgraph.py
vipermu/dgl
c9ac6c9889423019977e431c8b74a7b6c70cdc01
[ "Apache-2.0" ]
6
2020-04-27T16:31:53.000Z
2022-03-24T16:27:51.000Z
tests/compute/test_subgraph.py
vipermu/dgl
c9ac6c9889423019977e431c8b74a7b6c70cdc01
[ "Apache-2.0" ]
null
null
null
tests/compute/test_subgraph.py
vipermu/dgl
c9ac6c9889423019977e431c8b74a7b6c70cdc01
[ "Apache-2.0" ]
4
2020-03-17T11:21:56.000Z
2020-07-02T09:42:24.000Z
import numpy as np from dgl.graph import DGLGraph import backend as F D = 5 def generate_graph(grad=False, add_data=True): g = DGLGraph() g.add_nodes(10) # create a graph where 0 is the source and 9 is the sink for i in range(1, 9): g.add_edge(0, i) g.add_edge(i, 9) # add a back flow from 9 to 0 g.add_edge(9, 0) if add_data: ncol = F.randn((10, D)) ecol = F.randn((17, D)) if grad: ncol = F.attach_grad(ncol) ecol = F.attach_grad(ecol) g.ndata['h'] = ncol g.edata['l'] = ecol return g def test_basics1(): # Test when the graph has no node data and edge data. g = generate_graph(add_data=False) eid = [0, 2, 3, 6, 7, 9] sg = g.edge_subgraph(eid) sg.copy_from_parent() sg.ndata['h'] = F.arange(0, sg.number_of_nodes()) sg.edata['h'] = F.arange(0, sg.number_of_edges()) def test_basics(): g = generate_graph() h = g.ndata['h'] l = g.edata['l'] nid = [0, 2, 3, 6, 7, 9] sg = g.subgraph(nid) eid = {2, 3, 4, 5, 10, 11, 12, 13, 16} assert set(F.zerocopy_to_numpy(sg.parent_eid)) == eid eid = F.tensor(sg.parent_eid) # the subgraph is empty initially assert len(sg.ndata) == 0 assert len(sg.edata) == 0 # the data is copied after explict copy from sg.copy_from_parent() assert len(sg.ndata) == 1 assert len(sg.edata) == 1 sh = sg.ndata['h'] assert F.allclose(h[nid], sh) ''' s, d, eid 0, 1, 0 1, 9, 1 0, 2, 2 1 2, 9, 3 1 0, 3, 4 1 3, 9, 5 1 0, 4, 6 4, 9, 7 0, 5, 8 5, 9, 9 3 0, 6, 10 1 6, 9, 11 1 3 0, 7, 12 1 7, 9, 13 1 3 0, 8, 14 8, 9, 15 3 9, 0, 16 1 ''' assert F.allclose(F.gather_row(l, eid), sg.edata['l']) # update the node/edge features on the subgraph should NOT # reflect to the parent graph. sg.ndata['h'] = F.zeros((6, D)) assert F.allclose(h, g.ndata['h']) def test_map_to_subgraph(): g = DGLGraph() g.add_nodes(10) g.add_edges(F.arange(0, 9), F.arange(1, 10)) h = g.subgraph([0, 1, 2, 5, 8]) v = h.map_to_subgraph_nid([0, 8, 2]) assert np.array_equal(F.asnumpy(v), np.array([0, 4, 2])) def test_merge(): # FIXME: current impl cannot handle this case!!! # comment out for now to test CI return """ g = generate_graph() g.set_n_repr({'h' : th.zeros((10, D))}) g.set_e_repr({'l' : th.zeros((17, D))}) # subgraphs sg1 = g.subgraph([0, 2, 3, 6, 7, 9]) sg1.set_n_repr({'h' : th.ones((6, D))}) sg1.set_e_repr({'l' : th.ones((9, D))}) sg2 = g.subgraph([0, 2, 3, 4]) sg2.set_n_repr({'h' : th.ones((4, D)) * 2}) sg3 = g.subgraph([5, 6, 7, 8, 9]) sg3.set_e_repr({'l' : th.ones((4, D)) * 3}) g.merge([sg1, sg2, sg3]) h = g.ndata['h'][:,0] l = g.edata['l'][:,0] assert U.allclose(h, th.tensor([3., 0., 3., 3., 2., 0., 1., 1., 0., 1.])) assert U.allclose(l, th.tensor([0., 0., 1., 1., 1., 1., 0., 0., 0., 3., 1., 4., 1., 4., 0., 3., 1.])) """ if __name__ == '__main__': test_basics() test_basics1() #test_merge()
26.89916
92
0.524836
9b92c0ec66d6bfd48f7c8e9b12af9c7587d1946c
139
py
Python
apps/terraform/terraform.py
brollin/knausj_talon
c7a6f3f5ab7c5696c9b137f8fdf03aae7e259250
[ "MIT" ]
2
2021-12-01T03:25:48.000Z
2022-03-07T03:45:01.000Z
apps/terraform/terraform.py
brollin/knausj_talon
c7a6f3f5ab7c5696c9b137f8fdf03aae7e259250
[ "MIT" ]
1
2022-03-26T15:27:18.000Z
2022-03-26T15:27:18.000Z
apps/terraform/terraform.py
brollin/knausj_talon
c7a6f3f5ab7c5696c9b137f8fdf03aae7e259250
[ "MIT" ]
null
null
null
from talon import Module, Context mod = Module() mod.tag("terraform_client", desc="tag for enabling terraform commands in your terminal")
27.8
88
0.776978
b6de36e29a124e62901136e3dfe7672c3d9dabd4
2,967
py
Python
A3C/models/icm.py
sadeqa/Super-Mario-Bros-RL
e4d0a565359a16684d8617853bf4eb6f8cfc4721
[ "MIT" ]
72
2019-01-19T13:45:08.000Z
2022-01-07T10:18:53.000Z
PPO/a2c_ppo_acktr/icm.py
wwxFromTju/Super-Mario-Bros-RL
e4d0a565359a16684d8617853bf4eb6f8cfc4721
[ "MIT" ]
4
2019-05-03T16:36:23.000Z
2019-10-21T09:55:14.000Z
PPO/a2c_ppo_acktr/icm.py
wwxFromTju/Super-Mario-Bros-RL
e4d0a565359a16684d8617853bf4eb6f8cfc4721
[ "MIT" ]
18
2019-01-24T23:11:16.000Z
2022-03-18T13:52:23.000Z
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F def normalized_columns_initializer(weights, std=1.0): out = torch.randn(weights.size()) out *= std / torch.sqrt(out.pow(2).sum(1, keepdim=True)) return out def weights_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: weight_shape = list(m.weight.data.size()) fan_in = np.prod(weight_shape[1:4]) fan_out = np.prod(weight_shape[2:4]) * weight_shape[0] w_bound = np.sqrt(6. / (fan_in + fan_out)) m.weight.data.uniform_(-w_bound, w_bound) m.bias.data.fill_(0) elif classname.find('Linear') != -1: weight_shape = list(m.weight.data.size()) fan_in = weight_shape[1] fan_out = weight_shape[0] w_bound = np.sqrt(6. / (fan_in + fan_out)) m.weight.data.uniform_(-w_bound, w_bound) m.bias.data.fill_(0) class ICM(torch.nn.Module): def __init__(self, num_inputs, num_actions): super(ICM, self).__init__() self.downsample = nn.AvgPool2d(2,2) #downsample to 42*42 self.conv1 = nn.Conv2d(num_inputs, 32, 3, stride=2, padding=1) self.conv2 = nn.Conv2d(32, 32, 3, stride=2, padding=1) self.conv3 = nn.Conv2d(32, 32, 3, stride=2, padding=1) self.conv4 = nn.Conv2d(32, 32, 3, stride=2, padding=1) lin1 = nn.Linear(288*2, 256) lin2 = nn.Linear(256, num_actions) lin3 = nn.Linear(num_actions + 288 , 256) lin4 = nn.Linear(256, 288) self.apply(weights_init) lin1.weight.data = normalized_columns_initializer( lin1.weight.data, 0.01) lin1.bias.data.fill_(0) lin2.weight.data = normalized_columns_initializer( lin2.weight.data, 0.01) lin2.bias.data.fill_(0) lin3.weight.data = normalized_columns_initializer( lin3.weight.data, 0.01) lin3.bias.data.fill_(0) lin4.weight.data = normalized_columns_initializer( lin4.weight.data, 0.01) lin4.bias.data.fill_(0) self.inverse_model = nn.Sequential(lin1, nn.ReLU(), lin2) self.forward_model = nn.Sequential(lin3, nn.ReLU(), lin4) self.train() def forward(self, inputs): st, stp1, at = inputs xt, xtp1 = self.downsample(st), self.downsample(stp1) xt, xtp1 = F.elu(self.conv1(xt)), F.elu(self.conv1(xtp1)) xt, xtp1 = F.elu(self.conv2(xt)), F.elu(self.conv2(xtp1)) xt, xtp1 = F.elu(self.conv3(xt)), F.elu(self.conv3(xtp1)) xt, xtp1 = F.elu(self.conv4(xt)), F.elu(self.conv4(xtp1)) xt, xtp1 = xt.view(-1, 288), xtp1.view(-1, 288) inverse_features, forward_features = torch.cat((xt, xtp1),1), torch.cat((xt, at),1) return self.inverse_model(inverse_features), self.forward_model(forward_features), xtp1
38.038462
95
0.599259
2232a2020046bc7d8a4381bd6b87a72e2ba9da6e
227
py
Python
Python/BinomialCoefficient.py
patres270/AlgoLib
8b697e1e9348c559dcabdb6665e1031264c1032a
[ "MIT" ]
19
2018-10-01T15:01:43.000Z
2022-03-01T01:28:23.000Z
Python/BinomialCoefficient.py
patres270/AlgoLib
8b697e1e9348c559dcabdb6665e1031264c1032a
[ "MIT" ]
95
2018-10-01T14:43:45.000Z
2018-12-19T14:20:22.000Z
Python/BinomialCoefficient.py
patres270/AlgoLib
8b697e1e9348c559dcabdb6665e1031264c1032a
[ "MIT" ]
93
2018-10-01T14:54:28.000Z
2020-10-02T08:51:29.000Z
""" computing binomial coefficient """ n = int(input("Enter the degree : ")) b = [[1 for j in range(i+1)] for i in range(n+1)] for i in range(2,n+1): for j in range(1,i): b[i][j] = b[i-1][j] + b[i-1][j-1] print(b)
25.222222
49
0.546256
5ffa2f46ffe8db80d0e2917311c0ad2ae4caf457
2,848
py
Python
src/vbLib/GetOSVersion.py
mehrdad-shokri/macro_pack
bcc39728ae70f99e95998cbb48a8beb9e7697031
[ "Apache-2.0" ]
1,550
2017-10-04T13:29:15.000Z
2022-03-30T20:53:25.000Z
src/vbLib/GetOSVersion.py
mehrdad-shokri/macro_pack
bcc39728ae70f99e95998cbb48a8beb9e7697031
[ "Apache-2.0" ]
75
2017-10-19T18:55:35.000Z
2022-02-16T20:17:33.000Z
src/vbLib/GetOSVersion.py
mehrdad-shokri/macro_pack
bcc39728ae70f99e95998cbb48a8beb9e7697031
[ "Apache-2.0" ]
358
2017-10-07T21:16:02.000Z
2022-03-25T03:36:17.000Z
""" Get the windows OS version """ r""" #If VBA7 Then Declare PtrSafe Function RtlGetVersion Lib "NTDLL" (ByRef lpVersionInformation As Long) As Long #Else Declare Function RtlGetVersion Lib "NTDLL" (ByRef lpVersionInformation As Long) As Long #End If Public Function GetOSVersion() As String Dim tOSVw(&H54) As Long tOSVw(0) = &H54 * &H4 Call RtlGetVersion(tOSVw(0)) 'GetOSVersion = Join(Array(tOSVw(1), tOSVw(2), tOSVw(3)), ".") GetOSVersion = VersionToName(Join(Array(tOSVw(1), tOSVw(2)), ".")) End Function Private Function VersionToName(ByRef sVersion As String) As String Select Case sVersion Case "5.1": VersionToName = "Windows XP" Case "5.3": VersionToName = "Windows 2003 (SERVER)" Case "6.0": VersionToName = "Windows Vista" Case "6.1": VersionToName = "Windows 7" Case "6.2": VersionToName = "Windows 8" Case "6.3": VersionToName = "Windows 8.1" Case "10.0": VersionToName = "Windows 10" Case Else: VersionToName = "Unknown" End Select End Function """ VBA = \ r''' Public Function GetOSVersion() As String Dim prodType As String Dim version As String Dim desktopProductType As String desktopProductType = "1" For Each objItem in GetObject("winmgmts://./root/cimv2").ExecQuery("Select * from Win32_OperatingSystem",,48) version = objItem.Version prodType = objItem.ProductType & "" Next Select Case Left(version, Instr(version, ".") + 1) Case "10.0" If (prodType = desktopProductType) Then GetOSVersion = "Windows 10" Else GetOSVersion = "Windows Server 2016" End If Case "6.3" If (prodType = desktopProductType) Then GetOSVersion = "Windows 8.1" Else GetOSVersion = "Windows Server 2012 R2" End If Case "6.2" If (prodType = desktopProductType) Then GetOSVersion = "Windows 8" Else GetOSVersion = "Windows Server 2012" End If Case "6.1" If (prodType = desktopProductType) Then GetOSVersion = "Windows 7" Else GetOSVersion = "Windows Server 2008 R2" End If Case "6.0" If (prodType = desktopProductType) Then GetOSVersion = "Windows Vista" Else GetOSVersion = "Windows Server 2008" End If Case "5.2" If (prodType = desktopProductType) Then GetOSVersion = "Windows XP 64-Bit Edition" ElseIf (Left(Version, 5) = "5.2.3") Then GetOSVersion = "Windows Server 2003 R2" Else GetOSVersion = "Windows Server 2003" End If Case "5.1" GetOSVersion = "Windows XP" Case "5.0" GetOSVersion = "Windows 2000" End Select End Function '''
29.360825
113
0.607093
7fdbdd0f49f4d6819a63470845c2d579b7974277
3,259
py
Python
src/mano-framework/plugins/service-lifecycle-manager/slm/main.py
CN-UPB/Cloud-NFV-Orchestration
28a6852f529ac73fe28f4448597f455b2d2fe552
[ "Apache-2.0" ]
10
2019-01-09T06:32:58.000Z
2021-11-16T11:36:22.000Z
src/mano-framework/plugins/service-lifecycle-manager/slm/main.py
CN-UPB/Cloud-NFV-Orchestration
28a6852f529ac73fe28f4448597f455b2d2fe552
[ "Apache-2.0" ]
14
2019-11-13T06:51:51.000Z
2021-12-09T02:01:29.000Z
src/mano-framework/plugins/service-lifecycle-manager/slm/main.py
CN-UPB/Cloud-NFV-Orchestration
28a6852f529ac73fe28f4448597f455b2d2fe552
[ "Apache-2.0" ]
7
2019-02-06T05:46:56.000Z
2021-08-21T13:56:07.000Z
import logging from typing import Dict from appcfg import get_config from mongoengine import DoesNotExist, connect from manobase.messaging import Message from manobase.plugin import ManoBasePlugin from slm import version from slm.exceptions import ( DeployRequestValidationError, InstantiationError, TerminationError, ) from slm.slm import ServiceLifecycleManager from slm.util import create_status_message logging.basicConfig(level=logging.INFO) LOG = logging.getLogger(__name__) LOG.setLevel(logging.DEBUG) config = get_config(__name__) MONGO_HOST = config["mongo"] class ServiceLifecycleManagerPlugin(ManoBasePlugin): """ Service Lifecycle Manager main class. Instantiate this class to run the SLM. """ def __init__(self, *args, **kwargs): # Connect to MongoDB LOG.debug(f"Connecting to MongoDB at {MONGO_HOST}") connect(host=MONGO_HOST) LOG.info("Connected to MongoDB") # Map service ids to ServiceLifecycleManager instances self.managers: Dict[str, ServiceLifecycleManager] = {} super().__init__(*args, version=version, **kwargs) def declare_subscriptions(self): super().declare_subscriptions() self.conn.register_async_endpoint( self.on_service_instance_create, "service.instances.create" ) self.conn.register_async_endpoint( self.on_service_instance_terminate, "service.instance.terminate" ) def on_lifecycle_start(self, message: Message): super().on_lifecycle_start(message) LOG.info("SLM started and operational.") async def on_service_instance_create(self, message: Message): """ Instantiate a service """ try: manager = ServiceLifecycleManager.from_deploy_request(message, self.conn) self.managers[manager.service_id] = manager # Notify gatekeeper self.conn.notify( message.topic, create_status_message(status="INSTANTIATING"), correlation_id=message.correlation_id, ) await manager.instantiate() return create_status_message( status="READY", payload={"nsr": {"id": manager.service_id}} ) except (DeployRequestValidationError, InstantiationError) as e: return create_status_message(error=e) async def on_service_instance_terminate(self, message: Message): """ Destory a service instance """ service_id = message.payload["instance_id"] try: if service_id in self.managers: manager = self.managers[service_id] else: try: manager = ServiceLifecycleManager.from_database( service_id, self.conn ) except DoesNotExist: raise TerminationError( f"A service with instance id {service_id} is not known to the SLM" ) await manager.terminate() return create_status_message(status="TERMINATED") except TerminationError as e: return create_status_message(error=e)
31.038095
90
0.641608
10646d9ee5a6e27d44aec1d79c0edb48a9fe510a
4,253
py
Python
loss_functions.py
mmonfort/moments_models
c233603fd47625354ad66c4e89521e21206f4980
[ "BSD-2-Clause" ]
272
2018-01-09T05:30:18.000Z
2020-03-03T12:30:45.000Z
loss_functions.py
mmonfort/moments_models
c233603fd47625354ad66c4e89521e21206f4980
[ "BSD-2-Clause" ]
20
2018-01-11T05:52:51.000Z
2020-02-12T05:47:34.000Z
loss_functions.py
mmonfort/moments_models
c233603fd47625354ad66c4e89521e21206f4980
[ "BSD-2-Clause" ]
62
2018-01-10T10:51:18.000Z
2020-03-04T17:31:43.000Z
''' -- Our loss implementations for wlsep, lsep, warp, bp_mll and bce with optional weighted learning -- -- If you use these implementations in your paper please cite our paper https://arxiv.org/abs/1911.00232 -- -- scores is the output of the model -- labels is a binary vector with a 1 indicating a positive class for each batch member -- Both scores and labels have size BxC with B = batch size and C = number of classes -- weights is an optional tensor of size C used to weight the learning for unbalanced training sets -- We used w_i = min(count)/count_i for the weights to train the Multi-Moments model where count_i is the number of examples in the training set with a positive label for class i and min(count) is the number of examples with a positive label for the least common class. -- -- By Mathew Monfort, mmonfort@mit.edu ''' import torch from torch.nn import functional as F # https://arxiv.org/abs/1911.00232 def wlsep(scores, labels, weights=None): mask = ((labels.unsqueeze(1).expand(labels.size(0), labels.size(1), labels.size(1)) - labels.unsqueeze(2).expand(labels.size(0), labels.size(1), labels.size(1))) > 0).float() diffs = (scores.unsqueeze(2).expand(labels.size(0), labels.size(1), labels.size(1)) - scores.unsqueeze(1).expand(labels.size(0), labels.size(1), labels.size(1))) if weights is not None: return F.pad(diffs.add(-(1-mask)*1e10), pad=(0,0,0,1)).logsumexp(dim=1).mul(weights).masked_select(labels.bool()).mean() else: return F.pad(diffs.add(-(1-mask)*1e10), pad=(0,0,0,1)).logsumexp(dim=1).masked_select(labels.bool()).mean() # http://openaccess.thecvf.com/content_cvpr_2017/html/Li_Improving_Pairwise_Ranking_CVPR_2017_paper.html def lsep(scores, labels, weights=None): mask = ((labels.unsqueeze(1).expand(labels.size(0), labels.size(1), labels.size(1)) - labels.unsqueeze(2).expand(labels.size(0), labels.size(1), labels.size(1))) > 0).float() diffs = (scores.unsqueeze(2).expand(labels.size(0), labels.size(1), labels.size(1)) - scores.unsqueeze(1).expand(labels.size(0), labels.size(1), labels.size(1))) return diffs.exp().mul(mask).sum().add(1).log().mean() """ https://www.aaai.org/ocs/index.php/IJCAI/IJCAI11/paper/viewPaper/2926 We pre-compute the rank weights (rank_w) into a tensor as below: rank_w = torch.zeros(num_classes) sum = 0. for i in range(num_classes): sum += 1./(i+1) rank_w[i] = sum """ def warp(scores, labels, rank_w, weights=None): mask = ((labels.unsqueeze(1).expand(labels.size(0), labels.size(1), labels.size(1)) - labels.unsqueeze(2).expand(labels.size(0), labels.size(1), labels.size(1))) > 0).float() diffs = (scores.unsqueeze(2).expand(labels.size(0), labels.size(1), labels.size(1)) - scores.unsqueeze(1).expand(labels.size(0), labels.size(1), labels.size(1))).add(1) if weights is not None: return (diffs.clamp(0,1e10).mul(mask).sum(1).div(mask.sum(1)).mul(weights).masked_select(labels.bool()) .mul(rank_w.index_select(0,scores.sort(descending=True)[1].masked_select(labels.bool()))).mean()) else: return (diffs.clamp(0,1e10).mul(mask).sum(1).div(mask.sum(1)).masked_select(labels.bool()) .mul(rank_w.index_select(0,scores.sort(descending=True)[1].masked_select(labels.bool()))).mean()) #https://ieeexplore.ieee.org/abstract/document/1683770 def bp_mll(scores, labels, weights=None): mask = ((labels.unsqueeze(1).expand(labels.size(0), labels.size(1), labels.size(1)) - labels.unsqueeze(2).expand(labels.size(0), labels.size(1), labels.size(1))) > 0).float() diffs = (scores.unsqueeze(2).expand(labels.size(0), labels.size(1), labels.size(1)) - scores.unsqueeze(1).expand(labels.size(0), labels.size(1), labels.size(1))) if weights is not None: return diffs.exp().mul(mask).sum(1).mul(weights).sum(1).mean() else: return diffs.exp().mul(mask).sum(1).sum(1).mean() def bce(output, labels, weights=None): if weights is not None: return (((1.-weights)*labels + weights*(1.-labels))* bceCriterion(output, torch.autograd.Variable(labels))).sum(1).mean() else: return bceCriterion(output, torch.autograd.Variable(labels)).sum(1).mean()
54.525641
114
0.685163
e56c4a9ddb4b3ee812eab414620aad63f2b0dc9a
799
py
Python
app/urls.py
Sonray/The-share-IP3
3783ea73736e8c7a1e3962eb82d0d2a77e92e293
[ "MIT" ]
null
null
null
app/urls.py
Sonray/The-share-IP3
3783ea73736e8c7a1e3962eb82d0d2a77e92e293
[ "MIT" ]
null
null
null
app/urls.py
Sonray/The-share-IP3
3783ea73736e8c7a1e3962eb82d0d2a77e92e293
[ "MIT" ]
null
null
null
from django.conf.urls import url from django.conf import settings from django.conf.urls.static import static from . import views urlpatterns = [ url('^$',views.home, name = 'home'), url(r'^profile/(\w+)',views.profile,name = 'profile'), url(r'^accounts/profile/$',views.home,name = 'home'), url(r'^new/project$',views.new_project,name = 'new_project'), url(r'^search/',views.search,name='search'), url(r'^project/(\w+)',views.project,name='project'), url(r'^rate/(\d+)',views.rate,name='rate'), url(r'^api/profile/$', views.ProfApi.as_view()), url(r'^api/project/$', views.ProjApi.as_view()), url(r'^new/profile$',views.new_profile,name = 'new_profile'), ] if settings.DEBUG: urlpatterns+= static(settings.MEDIA_URL, document_root = settings.MEDIA_ROOT)
42.052632
81
0.670839
c840b8429f01edc0ddfd5c0cfcdf0dc8485c5b9f
10,891
py
Python
models/vqvae.py
lisiyao21/Bailando
125b529b3c596b58b9d70f22c05dc3f04a01895c
[ "MIT" ]
31
2022-03-21T11:46:33.000Z
2022-03-31T17:59:21.000Z
models/vqvae.py
lisiyao21/Bailando
125b529b3c596b58b9d70f22c05dc3f04a01895c
[ "MIT" ]
1
2022-03-27T08:44:32.000Z
2022-03-28T02:01:55.000Z
models/vqvae.py
lisiyao21/Bailando
125b529b3c596b58b9d70f22c05dc3f04a01895c
[ "MIT" ]
2
2022-03-28T09:35:03.000Z
2022-03-31T18:18:36.000Z
import numpy as np import torch as t import torch.nn as nn from .encdec import Encoder, Decoder, assert_shape from .bottleneck import NoBottleneck, Bottleneck from .utils.logger import average_metrics # from .utils.audio_utils import audio_postprocess def dont_update(params): for param in params: param.requires_grad = False def update(params): for param in params: param.requires_grad = True def calculate_strides(strides, downs): return [stride ** down for stride, down in zip(strides, downs)] # def _loss_fn(loss_fn, x_target, x_pred, hps): # if loss_fn == 'l1': # return t.mean(t.abs(x_pred - x_target)) / hps.bandwidth['l1'] # elif loss_fn == 'l2': # return t.mean((x_pred - x_target) ** 2) / hps.bandwidth['l2'] # elif loss_fn == 'linf': # residual = ((x_pred - x_target) ** 2).reshape(x_target.shape[0], -1) # values, _ = t.topk(residual, hps.linf_k, dim=1) # return t.mean(values) / hps.bandwidth['l2'] # elif loss_fn == 'lmix': # loss = 0.0 # if hps.lmix_l1: # loss += hps.lmix_l1 * _loss_fn('l1', x_target, x_pred, hps) # if hps.lmix_l2: # loss += hps.lmix_l2 * _loss_fn('l2', x_target, x_pred, hps) # if hps.lmix_linf: # loss += hps.lmix_linf * _loss_fn('linf', x_target, x_pred, hps) # return loss # else: # assert False, f"Unknown loss_fn {loss_fn}" def _loss_fn(x_target, x_pred): return t.mean(t.abs(x_pred - x_target)) class VQVAE(nn.Module): def __init__(self, hps, input_dim=72): super().__init__() self.hps = hps input_shape = (hps.sample_length, input_dim) levels = hps.levels downs_t = hps.downs_t strides_t = hps.strides_t emb_width = hps.emb_width l_bins = hps.l_bins mu = hps.l_mu commit = hps.commit # spectral = hps.spectral # multispectral = hps.multispectral multipliers = hps.hvqvae_multipliers use_bottleneck = hps.use_bottleneck if use_bottleneck: print('We use bottleneck!') else: print('We do not use bottleneck!') if not hasattr(hps, 'dilation_cycle'): hps.dilation_cycle = None block_kwargs = dict(width=hps.width, depth=hps.depth, m_conv=hps.m_conv, \ dilation_growth_rate=hps.dilation_growth_rate, \ dilation_cycle=hps.dilation_cycle, \ reverse_decoder_dilation=hps.vqvae_reverse_decoder_dilation) self.sample_length = input_shape[0] x_shape, x_channels = input_shape[:-1], input_shape[-1] self.x_shape = x_shape self.downsamples = calculate_strides(strides_t, downs_t) self.hop_lengths = np.cumprod(self.downsamples) self.z_shapes = z_shapes = [(x_shape[0] // self.hop_lengths[level],) for level in range(levels)] self.levels = levels if multipliers is None: self.multipliers = [1] * levels else: assert len(multipliers) == levels, "Invalid number of multipliers" self.multipliers = multipliers def _block_kwargs(level): this_block_kwargs = dict(block_kwargs) this_block_kwargs["width"] *= self.multipliers[level] this_block_kwargs["depth"] *= self.multipliers[level] return this_block_kwargs encoder = lambda level: Encoder(x_channels, emb_width, level + 1, downs_t[:level+1], strides_t[:level+1], **_block_kwargs(level)) decoder = lambda level: Decoder(x_channels, emb_width, level + 1, downs_t[:level+1], strides_t[:level+1], **_block_kwargs(level)) self.encoders = nn.ModuleList() self.decoders = nn.ModuleList() for level in range(levels): self.encoders.append(encoder(level)) self.decoders.append(decoder(level)) if use_bottleneck: self.bottleneck = Bottleneck(l_bins, emb_width, mu, levels) else: self.bottleneck = NoBottleneck(levels) self.downs_t = downs_t self.strides_t = strides_t self.l_bins = l_bins self.commit = commit self.reg = hps.reg if hasattr(hps, 'reg') else 0 self.acc = hps.acc if hasattr(hps, 'acc') else 0 self.vel = hps.vel if hasattr(hps, 'vel') else 0 if self.reg is 0: print('No motion regularization!') # self.spectral = spectral # self.multispectral = multispectral def preprocess(self, x): # x: NTC [-1,1] -> NCT [-1,1] assert len(x.shape) == 3 x = x.permute(0,2,1).float() return x def postprocess(self, x): # x: NTC [-1,1] <- NCT [-1,1] x = x.permute(0,2,1) return x def _decode(self, zs, start_level=0, end_level=None): # Decode if end_level is None: end_level = self.levels assert len(zs) == end_level - start_level xs_quantised = self.bottleneck.decode(zs, start_level=start_level, end_level=end_level) assert len(xs_quantised) == end_level - start_level # Use only lowest level decoder, x_quantised = self.decoders[start_level], xs_quantised[0:1] x_out = decoder(x_quantised, all_levels=False) x_out = self.postprocess(x_out) return x_out def decode(self, zs, start_level=0, end_level=None, bs_chunks=1): z_chunks = [t.chunk(z, bs_chunks, dim=0) for z in zs] x_outs = [] for i in range(bs_chunks): zs_i = [z_chunk[i] for z_chunk in z_chunks] x_out = self._decode(zs_i, start_level=start_level, end_level=end_level) x_outs.append(x_out) return t.cat(x_outs, dim=0) def _encode(self, x, start_level=0, end_level=None): # Encode if end_level is None: end_level = self.levels x_in = self.preprocess(x) xs = [] for level in range(self.levels): encoder = self.encoders[level] x_out = encoder(x_in) xs.append(x_out[-1]) zs = self.bottleneck.encode(xs) return zs[start_level:end_level] def encode(self, x, start_level=0, end_level=None, bs_chunks=1): x_chunks = t.chunk(x, bs_chunks, dim=0) zs_list = [] for x_i in x_chunks: zs_i = self._encode(x_i, start_level=start_level, end_level=end_level) zs_list.append(zs_i) zs = [t.cat(zs_level_list, dim=0) for zs_level_list in zip(*zs_list)] return zs def sample(self, n_samples): zs = [t.randint(0, self.l_bins, size=(n_samples, *z_shape), device='cuda') for z_shape in self.z_shapes] return self.decode(zs) def forward(self, x): metrics = {} N = x.shape[0] # Encode/Decode x_in = self.preprocess(x) xs = [] for level in range(self.levels): encoder = self.encoders[level] x_out = encoder(x_in) xs.append(x_out[-1]) zs, xs_quantised, commit_losses, quantiser_metrics = self.bottleneck(xs) x_outs = [] for level in range(self.levels): decoder = self.decoders[level] x_out = decoder(xs_quantised[level:level+1], all_levels=False) assert_shape(x_out, x_in.shape) x_outs.append(x_out) # Loss # def _spectral_loss(x_target, x_out, self.hps): # if hps.use_nonrelative_specloss: # sl = spectral_loss(x_target, x_out, self.hps) / hps.bandwidth['spec'] # else: # sl = spectral_convergence(x_target, x_out, self.hps) # sl = t.mean(sl) # return sl # def _multispectral_loss(x_target, x_out, self.hps): # sl = multispectral_loss(x_target, x_out, self.hps) / hps.bandwidth['spec'] # sl = t.mean(sl) # return sl recons_loss = t.zeros(()).to(x.device) regularization = t.zeros(()).to(x.device) velocity_loss = t.zeros(()).to(x.device) acceleration_loss = t.zeros(()).to(x.device) # spec_loss = t.zeros(()).to(x.device) # multispec_loss = t.zeros(()).to(x.device) # x_target = audio_postprocess(x.float(), self.hps) x_target = x.float() for level in reversed(range(self.levels)): x_out = self.postprocess(x_outs[level]) # x_out = audio_postprocess(x_out, self.hps) # this_recons_loss = _loss_fn(loss_fn, x_target, x_out, hps) this_recons_loss = _loss_fn(x_target, x_out) # this_spec_loss = _spectral_loss(x_target, x_out, hps) # this_multispec_loss = _multispectral_loss(x_target, x_out, hps) metrics[f'recons_loss_l{level + 1}'] = this_recons_loss # metrics[f'spectral_loss_l{level + 1}'] = this_spec_loss # metrics[f'multispectral_loss_l{level + 1}'] = this_multispec_loss recons_loss += this_recons_loss # spec_loss += this_spec_loss # multispec_loss += this_multispec_loss regularization += t.mean((x_out[:, 2:] + x_out[:, :-2] - 2 * x_out[:, 1:-1])**2) velocity_loss += _loss_fn( x_out[:, 1:] - x_out[:, :-1], x_target[:, 1:] - x_target[:, :-1]) acceleration_loss += _loss_fn(x_out[:, 2:] + x_out[:, :-2] - 2 * x_out[:, 1:-1], x_target[:, 2:] + x_target[:, :-2] - 2 * x_target[:, 1:-1]) # if not hasattr(self.) commit_loss = sum(commit_losses) # loss = recons_loss + self.spectral * spec_loss + self.multispectral * multispec_loss + self.commit * commit_loss loss = recons_loss + commit_loss * self.commit + self.reg * regularization + self.vel * velocity_loss + self.acc * acceleration_loss with t.no_grad(): # sc = t.mean(spectral_convergence(x_target, x_out, hps)) # l2_loss = _loss_fn("l2", x_target, x_out, hps) l1_loss = _loss_fn(x_target, x_out) # linf_loss = _loss_fn("linf", x_target, x_out, hps) quantiser_metrics = average_metrics(quantiser_metrics) metrics.update(dict( recons_loss=recons_loss, # spectral_loss=spec_loss, # multispectral_loss=multispec_loss, # spectral_convergence=sc, # l2_loss=l2_loss, l1_loss=l1_loss, # linf_loss=linf_loss, commit_loss=commit_loss, regularization=regularization, velocity_loss=velocity_loss, acceleration_loss=acceleration_loss, **quantiser_metrics)) for key, val in metrics.items(): metrics[key] = val.detach() return x_out, loss, metrics
39.748175
153
0.59214
e006bc80a0e6d8d9c5552ca644bac856cb5ce63e
1,967
py
Python
hooks/clang_tidy.py
rambo/pre-commit-hooks
4c6731ed39da9fe55d0d671d51ddd06123e933fc
[ "Apache-2.0" ]
null
null
null
hooks/clang_tidy.py
rambo/pre-commit-hooks
4c6731ed39da9fe55d0d671d51ddd06123e933fc
[ "Apache-2.0" ]
null
null
null
hooks/clang_tidy.py
rambo/pre-commit-hooks
4c6731ed39da9fe55d0d671d51ddd06123e933fc
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 """Wrapper script for clang-tidy.""" ############################################################################# import re import sys from hooks.utils import ClangAnalyzerCmd class ClangTidyCmd(ClangAnalyzerCmd): """Class for the clang-tidy command.""" command = "clang-tidy" lookbehind = "LLVM version " def __init__(self, args): super().__init__(self.command, self.lookbehind, args) self.parse_args(args) self.edit_in_place = "-fix" in self.args or "--fix-errors" in self.args self.parse_ddash_args() # If a compilation database is not used, suppress errors if "-p" not in self.args: self.add_if_missing(["--", "-DCMAKE_EXPORT_COMPILE_COMMANDS=ON"]) # Enable all of the checks self.add_if_missing(["-checks=*"]) def run(self): """Run clang-tidy""" for filename in self.files: self.run_command(filename) sys.stdout.write(self.stdout) # The number of warnings depends on errors in system files self.stderr = re.sub(r"\d+ warnings and ", "", self.stderr) # Don't output stderr if it's complaining about problems in system files no_sysfile_warning = "non-user code" not in self.stderr # On good clang-tidy checks, it will spew warnings to stderr if len(self.stdout) > 0 and no_sysfile_warning: sys.stderr.write(self.stderr) else: self.stderr = "" has_errors = ( "error generated." in self.stderr or "errors generated." in self.stderr ) if has_errors: # Change return code if errors are generated self.returncode = 1 if self.returncode != 0: sys.exit(self.returncode) def main(argv=None): cmd = ClangTidyCmd(argv) cmd.run() if __name__ == "__main__": main()
33.913793
84
0.571429
385e03aad268c5cd837d14c1e19b928c009963cf
594
py
Python
django_user_agents/templatetags/user_agents.py
avallbona/django-user_agents
b1fa72ee9f9a2ebff74abfb33b7ec6c7fd224554
[ "MIT" ]
547
2015-01-13T15:01:39.000Z
2022-03-27T08:35:43.000Z
django_user_agents/templatetags/user_agents.py
avallbona/django-user_agents
b1fa72ee9f9a2ebff74abfb33b7ec6c7fd224554
[ "MIT" ]
34
2015-04-21T00:27:59.000Z
2022-03-22T06:28:34.000Z
django_user_agents/templatetags/user_agents.py
avallbona/django-user_agents
b1fa72ee9f9a2ebff74abfb33b7ec6c7fd224554
[ "MIT" ]
108
2015-01-29T07:37:11.000Z
2022-03-24T17:03:40.000Z
from django import template from ..utils import get_and_set_user_agent register = template.Library() @register.filter() def is_mobile(request): return get_and_set_user_agent(request).is_mobile @register.filter() def is_pc(request): return get_and_set_user_agent(request).is_pc @register.filter() def is_tablet(request): return get_and_set_user_agent(request).is_tablet @register.filter() def is_bot(request): return get_and_set_user_agent(request).is_bot @register.filter() def is_touch_capable(request): return get_and_set_user_agent(request).is_touch_capable
18.5625
59
0.789562
a0b8bd638c37d51d1305cb3f6d7cb6beed8bab9a
2,532
py
Python
src/visualization/generate_notebook_outputs.py
jolfr/capstone-03
3095465170ea0e7e4947cff9edb012344e6a9f05
[ "MIT" ]
1
2021-12-29T04:32:30.000Z
2021-12-29T04:32:30.000Z
src/visualization/generate_notebook_outputs.py
jolfr/capstone-03
3095465170ea0e7e4947cff9edb012344e6a9f05
[ "MIT" ]
null
null
null
src/visualization/generate_notebook_outputs.py
jolfr/capstone-03
3095465170ea0e7e4947cff9edb012344e6a9f05
[ "MIT" ]
null
null
null
import os import nbformat from traitlets.config import Config from nbconvert import MarkdownExporter from nbconvert.writers import FilesWriter notebookDir = r'C:\Users\thoma\projects\datascience\capstone-03\notebooks' outputDir = r'C:\Users\thoma\projects\datascience\jupyter-presentation-framework\src\notebooks' def getsectionParams(sec): sec = sec.replace('-', ' ').replace('_', ' ') sec = sec.split(' ') num = sec.pop(0) newsec = '' for word in sec: newsec = newsec + ' ' + word sec = newsec.lstrip() return num, sec def getnotebookparams(nb): nb = nb.replace('-', ' ').replace('_', ' ').replace('.ipynb', '') nb = nb.split(' ') num = nb.pop(0).split('.')[1] newnb = '' for word in nb: newnb = newnb + ' ' + word nb = newnb.lstrip() return num, nb for entry in os.scandir(notebookDir): if not entry.name.startswith('.'): for notebook in os.scandir(entry.path): if (not notebook.name.startswith('.')) and notebook.path.endswith('.ipynb'): nb_node = nbformat.read(notebook.path, nbformat.NO_CONVERT) me = MarkdownExporter() (output, resource) = me.from_notebook_node(nb_node) c = Config() c.FilesWriter.build_directory = outputDir fw = FilesWriter(config=c) (secNum, section) = getsectionParams(entry.name) secNum = 'secid : ' + secNum + '\n' section = 'section : "' + section + '"\n' (nbNum, title) = getnotebookparams(notebook.name) nbNum = 'nbid : ' + nbNum + '\n' title = 'title: "' + title + '"\n' header = '---\n' + secNum + nbNum + section + title + '---\n' fw.write(header + output, resource, notebook_name=notebook.name) elif notebook.name == 'README.md': with open(notebook.path, 'r', encoding='utf-8') as input_file: text = input_file.read() (secNum, section) = getsectionParams(entry.name) section = 'section : "' + section + '"\n' secNum = 'secid : ' + secNum + '\n' title = 'title: readme\n' header = '---\n' + secNum + section + title + '---\n' newText = header + text with open(outputDir + "\\" + entry.name + '.md', 'w', encoding='utf-8') as output_file: output_file.write(newText)
40.83871
103
0.539494
8d27779cb44626964c688e5a003fbdf508ace3d2
3,789
py
Python
demo/demo_youtop.py
donglaiw/detectron2
35efa63d8c6b5a3d3f06c5ee216aef83a8c958e2
[ "Apache-2.0" ]
null
null
null
demo/demo_youtop.py
donglaiw/detectron2
35efa63d8c6b5a3d3f06c5ee216aef83a8c958e2
[ "Apache-2.0" ]
null
null
null
demo/demo_youtop.py
donglaiw/detectron2
35efa63d8c6b5a3d3f06c5ee216aef83a8c958e2
[ "Apache-2.0" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import argparse import glob import multiprocessing as mp import os import time import tqdm from detectron2.config import get_cfg from detectron2.data.detection_utils import read_image from detectron2.utils.logger import setup_logger from predictor import VisualizationDemo # constants WINDOW_NAME = "COCO detections" # python demo/demo_dw.py --config-file configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml --input-template frame/image_%05d.png --input-index 1,25 --output seg/_s%05d.png --opts MODEL.WEIGHTS detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl def setup_cfg(args): # load config from file and command-line arguments cfg = get_cfg() if 'pointrend' in args.config_file: import sys; sys.path.insert(1, "/n/pfister_lab2/Lab/donglai/lib/pipeline/detectron2/projects/PointRend") import point_rend point_rend.add_pointrend_config(cfg) cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) # Set score_threshold for builtin models cfg.MODEL.RETINANET.SCORE_THRESH_TEST = args.confidence_threshold cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = args.confidence_threshold cfg.MODEL.PANOPTIC_FPN.COMBINE.INSTANCES_CONFIDENCE_THRESH = args.confidence_threshold cfg.freeze() return cfg def get_parser(): parser = argparse.ArgumentParser(description="Detectron2 demo for builtin models") parser.add_argument( "--config-file", default="configs/quick_schedules/mask_rcnn_R_50_FPN_inference_acc_test.yaml", metavar="FILE", help="path to config file", ) parser.add_argument( "--input-template", help="input filename template. e.g., directory/%05d.png", ) parser.add_argument( "--input-index", help="A list of comma separated input image index; ", ) parser.add_argument( "--output-template", help="A file or directory to save output visualizations. " "If not given, will show output in an OpenCV window.", ) parser.add_argument( "--confidence-threshold", type=float, default=0.5, help="Minimum score for instance predictions to be shown", ) parser.add_argument( "--opts", help="Modify config options using the command-line 'KEY VALUE' pairs", default=[], nargs=argparse.REMAINDER, ) return parser if __name__ == "__main__": mp.set_start_method("spawn", force=True) args = get_parser().parse_args() setup_logger(name="fvcore") logger = setup_logger() logger.info("Arguments: " + str(args)) cfg = setup_cfg(args) demo = VisualizationDemo(cfg) input_indices = [int(x) for x in args.input_index.split(',')] output_folder = os.path.dirname(args.output_template) if not os.path.exists(output_folder): os.makedirs(output_folder) for index in tqdm.tqdm(input_indices): # use PIL, to be consistent with evaluation output_name = args.output_template % index if not os.path.exists(output_name): path = args.input_template % index img = read_image(path, format="BGR") start_time = time.time() predictions, visualized_output = demo.run_on_image(img, mask_only=True) logger.info( "{}: {} in {:.2f}s".format( path, "detected {} instances".format(len(predictions["instances"])) if "instances" in predictions else "finished", time.time() - start_time, ) ) visualized_output.save(output_name)
34.445455
295
0.66825