hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
a3153a767e4fae2ec5fa88a9d97f1d0ae0b5c7fe
2,657
bzl
Python
iree/lit_test.bzl
rsuderman/iree
fa5faf0a254db3311dafacc70c383a7469376095
[ "Apache-2.0" ]
1
2020-08-16T17:38:49.000Z
2020-08-16T17:38:49.000Z
iree/lit_test.bzl
rsuderman/iree
fa5faf0a254db3311dafacc70c383a7469376095
[ "Apache-2.0" ]
null
null
null
iree/lit_test.bzl
rsuderman/iree
fa5faf0a254db3311dafacc70c383a7469376095
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Bazel macros for running lit tests.""" def iree_lit_test( name, test_file, data, size = "small", driver = "//iree/tools:run_lit.sh", **kwargs): """Creates a lit test from the specified source file. Args: name: name of the generated test suite. test_file: the test file with the lit test data: binaries used in the lit tests. size: size of the tests. driver: the shell runner for the lit tests. **kwargs: Any additional arguments that will be passed to the underlying sh_test. """ native.sh_test( name = name, srcs = [driver], size = size, data = data + [test_file], args = ["$(location %s)" % (test_file,)], **kwargs ) def iree_lit_test_suite( name, data, srcs, size = "small", driver = "//iree/tools:run_lit.sh", tags = [], **kwargs): """Creates one lit test per source file and a test suite that bundles them. Args: name: name of the generated test suite. data: binaries used in the lit tests. srcs: test file sources. size: size of the tests. driver: the shell runner for the lit tests. tags: tags to apply to the test. Note that as in standard test suites, manual is treated specially and will also apply to the test suite itself. **kwargs: Any additional arguments that will be passed to the underlying tests. """ tests = [] for test_file in srcs: test_name = "%s_%s_test" % (name, test_file) iree_lit_test( name = test_name, test_file = test_file, size = size, data = data, driver = driver, **kwargs ) tests.append(test_name) native.test_suite( name = name, tests = tests, # Note that only the manual tag really has any effect here. Others are # used for test suite filtering, but all tests are passed the same tags. tags = tags, )
32.012048
87
0.614603
9f1f13c5c0bde4da98520b7508fbb0851295a4a0
3,991
py
Python
pykeyvi/tests/dictionary/near_test.py
ssherko/keyvi
b8e57e6207244cc570e0d7d3970015aa1faf4254
[ "Apache-2.0" ]
null
null
null
pykeyvi/tests/dictionary/near_test.py
ssherko/keyvi
b8e57e6207244cc570e0d7d3970015aa1faf4254
[ "Apache-2.0" ]
null
null
null
pykeyvi/tests/dictionary/near_test.py
ssherko/keyvi
b8e57e6207244cc570e0d7d3970015aa1faf4254
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Usage: py.test tests import contextlib import os import pykeyvi import sys import os root = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.join(root, "../")) from test_tools import tmp_dictionary def test_near(): c=pykeyvi.JsonDictionaryCompiler() c.Add("zahnarzt:u0we9yykdyum", '["a" : 2]') c.Add("zahnarzt:u1h2fde2kct3", '["a" : 3]') c.Add("zahnarzt:u1huf1q5cnxn", '["a" : 4]') c.Add("zahnarzt:u0y2dvey61sw", '["a" : 5]') c.Add("zahnarzt:u1hvqmmj801r", '["a" : 6]') c.Add("zahnarzt:u0vvmknrwgmj", '["a" : 7]') c.Add("zahnarzt:u0ypv22fb9q3", '["a" : 8]') c.Add("zahnarzt:u1qcvvw0hxe1", '["a" : 9]') c.Add("zahnarzt:u1xjx6yfvfz2", '["a" : 10]') c.Add("zahnarzt:u1q0gkqsenhf", '["a" : 11]') with tmp_dictionary(c, 'near_simple.kv') as d: assert(len(list(d.GetNear("zahnarzt:u1q0gkqsenhf", 12))) == 1) assert(len(list(d.GetNear("zahnarzt:u1h0gkqsenhf", 12))) == 3) assert(len(list(d.GetNear("zahnarzt:u1h0gkqsenhf", 13))) == 0) assert(len(list(d.GetNear("zahnarzt:u0h0gkqsenhf", 10))) == 4) def test_near_greedy(): c=pykeyvi.JsonDictionaryCompiler() c.Add("zahnarzt:u0we9yykdyum", '["a" : 2]') c.Add("zahnarzt:u1h2fde2kct3", '["a" : 3]') c.Add("zahnarzt:u1huf1q5cnxn", '["a" : 4]') c.Add("zahnarzt:u0y2dvey61sw", '["a" : 5]') c.Add("zahnarzt:u1hvqmmj801r", '["a" : 6]') c.Add("zahnarzt:u0vvmknrwgmj", '["a" : 7]') c.Add("zahnarzt:u0ypv22fb9q3", '["a" : 8]') c.Add("zahnarzt:u1qcvvw0hxe1", '["a" : 9]') c.Add("zahnarzt:u1xjx6yfvfz2", '["a" : 10]') c.Add("zahnarzt:u1q0gkqsenhf", '["a" : 11]') with tmp_dictionary(c, 'near_greedy.kv') as d: assert(len(list(d.GetNear("zahnarzt:u1q0gkqsenhf", 12, True))) == 2) assert(len(list(d.GetNear("zahnarzt:u1h0gkqsenhf", 12, True))) == 3) assert(len(list(d.GetNear("zahnarzt:u1h0gkqsenhf", 13, True))) == 0) assert(len(list(d.GetNear("zahnarzt:u0h0gkqsenhf", 10, True))) == 10) greedy = [x.GetMatchedString() for x in d.GetNear("zahnarzt:u0h0gkqsenhf", 10, True)] non_greedy = [x.GetMatchedString() for x in d.GetNear("zahnarzt:u0h0gkqsenhf", 10, False)] assert greedy[:len(non_greedy)] == non_greedy def test_near_score(): c=pykeyvi.JsonDictionaryCompiler() c.Add("zahnarzt:u0we9yykdyum", '["a" : 2]') c.Add("zahnarzt:u1h2fde2kct3", '["a" : 3]') c.Add("zahnarzt:u1huf1q5cnxn", '["a" : 4]') c.Add("zahnarzt:u0y2dvey61sw", '["a" : 5]') c.Add("zahnarzt:u1hvqmmj801r", '["a" : 6]') c.Add("zahnarzt:u0vvmknrwgmj", '["a" : 7]') c.Add("zahnarzt:u0ypv22fb9q3", '["a" : 8]') c.Add("zahnarzt:u1qcvvw0hxe1", '["a" : 9]') c.Add("zahnarzt:u1xjx6yfvfz2", '["a" : 10]') c.Add("zahnarzt:u1q0gkqsenhf", '["a" : 11]') c.Add("zahnarzt:u0h0gkqsenhf", '["a" : 11]') with tmp_dictionary(c, 'near_score.kv') as d: greedy = list(d.GetNear("zahnarzt:u0h0gkqsenhf", 10, True)) assert greedy[0].GetScore() == 21 for m in greedy[1:5]: assert m.GetScore() == 11 for m in greedy[5:]: assert m.GetScore() == 10 def test_near_less_precission(): c=pykeyvi.JsonDictionaryCompiler() c.Add("zahnarzt:u0we9", '["a" : 2]') c.Add("zahnarzt:u1h2f", '["a" : 3]') c.Add("zahnarzt:u1huf", '["a" : 4]') with tmp_dictionary(c, 'near_less_precission.kv') as d: assert(len(list(d.GetNear("zahnarzt:u1h0gkqsenhf", 12))) == 2) assert(len(list(d.GetNear("zahnarzt:u1h0gkqsenhf", 13))) == 0) def test_near_broken_input(): c=pykeyvi.JsonDictionaryCompiler() c.Add("zahnarzt:u0we9", '["a" : 2]') c.Add("zahnarzt:u1h2f", '["a" : 3]') c.Add("zahnarzt:u1huf", '["a" : 4]') with tmp_dictionary(c, 'near_broken.kv') as d: assert(len(list(d.GetNear("zahnarzt:u1h", 12))) == 2) assert(len(list(d.GetNear("zahnarzt:u", 13))) == 0) assert(len(list(d.GetNear("zahnarzt:u1", 12))) == 0)
40.72449
98
0.59985
7c39bcc595854e43391b207e30ba90c61471a59a
55,582
py
Python
qiskit/visualization/matplotlib.py
errvnd/qiskit-terra
c9c6d46cae3e48f06f4513be9dc0de3a49128424
[ "Apache-2.0" ]
1
2021-10-13T14:37:54.000Z
2021-10-13T14:37:54.000Z
qiskit/visualization/matplotlib.py
errvnd/qiskit-terra
c9c6d46cae3e48f06f4513be9dc0de3a49128424
[ "Apache-2.0" ]
null
null
null
qiskit/visualization/matplotlib.py
errvnd/qiskit-terra
c9c6d46cae3e48f06f4513be9dc0de3a49128424
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=invalid-name,anomalous-backslash-in-string,missing-docstring """mpl circuit visualization backend.""" import collections import fractions import itertools import json import logging import math import numpy as np try: from matplotlib import patches from matplotlib import pyplot as plt from matplotlib import pyplot as plt, gridspec HAS_MATPLOTLIB = True except ImportError: HAS_MATPLOTLIB = False from qiskit.visualization import exceptions from qiskit.visualization import interpolation from qiskit.visualization.qcstyle import (OPStylePulse, OPStyleSched, DefaultStyle, BWStyle) from qiskit.pulse.channels import (DriveChannel, ControlChannel, MeasureChannel, AcquireChannel, SnapshotChannel) from qiskit.pulse import (SamplePulse, FrameChange, PersistentValue, Snapshot, Acquire, PulseError) from qiskit import user_config logger = logging.getLogger(__name__) Register = collections.namedtuple('Register', 'reg index') WID = 0.65 HIG = 0.65 DEFAULT_SCALE = 4.3 PORDER_GATE = 5 PORDER_LINE = 2 PORDER_GRAY = 3 PORDER_TEXT = 6 PORDER_SUBP = 4 class Anchor: def __init__(self, reg_num, yind, fold): self.__yind = yind self.__fold = fold self.__reg_num = reg_num self.__gate_placed = [] self.gate_anchor = 0 def plot_coord(self, index, gate_width): h_pos = index % self.__fold + 1 # check folding if self.__fold > 0: if h_pos + (gate_width - 1) > self.__fold: index += self.__fold - (h_pos - 1) x_pos = index % self.__fold + 1 + 0.5 * (gate_width - 1) y_pos = self.__yind - (index // self.__fold) * (self.__reg_num + 1) else: x_pos = index + 1 + 0.5 * (gate_width - 1) y_pos = self.__yind # could have been updated, so need to store self.gate_anchor = index return x_pos, y_pos def is_locatable(self, index, gate_width): hold = [index + i for i in range(gate_width)] for p in hold: if p in self.__gate_placed: return False return True def set_index(self, index, gate_width): h_pos = index % self.__fold + 1 if h_pos + (gate_width - 1) > self.__fold: _index = index + self.__fold - (h_pos - 1) else: _index = index for ii in range(gate_width): if _index + ii not in self.__gate_placed: self.__gate_placed.append(_index + ii) self.__gate_placed.sort() def get_index(self): if self.__gate_placed: return self.__gate_placed[-1] + 1 return 0 class MatplotlibDrawer: def __init__(self, qregs, cregs, ops, scale=1.0, style=None, plot_barriers=True, reverse_bits=False): if not HAS_MATPLOTLIB: raise ImportError('The class MatplotlibDrawer needs matplotlib. ' 'Run "pip install matplotlib" before.') self._ast = None self._scale = DEFAULT_SCALE * scale self._creg = [] self._qreg = [] self._registers(cregs, qregs) self._ops = ops self._qreg_dict = collections.OrderedDict() self._creg_dict = collections.OrderedDict() self._cond = { 'n_lines': 0, 'xmax': 0, 'ymax': 0, } config = user_config.get_config() if config: config_style = config.get('circuit_mpl_style', 'default') if config_style == 'default': self._style = DefaultStyle() elif config_style == 'bw': self._style = BWStyle() if not config and style is None: self._style = DefaultStyle() elif style is False: self._style = BWStyle() self.plot_barriers = plot_barriers self.reverse_bits = reverse_bits if style: if isinstance(style, dict): self._style.set_style(style) elif isinstance(style, str): with open(style, 'r') as infile: dic = json.load(infile) self._style.set_style(dic) self.figure = plt.figure() self.figure.patch.set_facecolor(color=self._style.bg) self.ax = self.figure.add_subplot(111) self.ax.axis('off') self.ax.set_aspect('equal') self.ax.tick_params(labelbottom=False, labeltop=False, labelleft=False, labelright=False) def _registers(self, creg, qreg): self._creg = [] for r in creg: self._creg.append(Register(reg=r[0], index=r[1])) self._qreg = [] for r in qreg: self._qreg.append(Register(reg=r[0], index=r[1])) @property def ast(self): return self._ast def _custom_multiqubit_gate(self, xy, fc=None, wide=True, text=None, subtext=None): xpos = min([x[0] for x in xy]) ypos = min([y[1] for y in xy]) ypos_max = max([y[1] for y in xy]) if wide: if subtext: boxes_length = round(max([len(text), len(subtext)]) / 8) or 1 else: boxes_length = round(len(text) / 8) or 1 wid = WID * 2.8 * boxes_length else: wid = WID if fc: _fc = fc else: _fc = self._style.gc qubit_span = abs(ypos) - abs(ypos_max) + 1 height = HIG + (qubit_span - 1) box = patches.Rectangle( xy=(xpos - 0.5 * wid, ypos - .5 * HIG), width=wid, height=height, fc=_fc, ec=self._style.lc, linewidth=1.5, zorder=PORDER_GATE) self.ax.add_patch(box) # Annotate inputs for bit, y in enumerate([x[1] for x in xy]): self.ax.text(xpos - 0.45 * wid, y, str(bit), ha='left', va='center', fontsize=self._style.fs, color=self._style.gt, clip_on=True, zorder=PORDER_TEXT) if text: disp_text = text if subtext: self.ax.text(xpos, ypos + 0.15 * height, disp_text, ha='center', va='center', fontsize=self._style.fs, color=self._style.gt, clip_on=True, zorder=PORDER_TEXT) self.ax.text(xpos, ypos - 0.3 * height, subtext, ha='center', va='center', fontsize=self._style.sfs, color=self._style.sc, clip_on=True, zorder=PORDER_TEXT) else: self.ax.text(xpos, ypos + .5 * (qubit_span - 1), disp_text, ha='center', va='center', fontsize=self._style.fs, color=self._style.gt, clip_on=True, zorder=PORDER_TEXT) def _gate(self, xy, fc=None, wide=False, text=None, subtext=None): xpos, ypos = xy if wide: if subtext: wid = WID * 2.8 else: boxes_wide = round(len(text) / 10) or 1 wid = WID * 2.8 * boxes_wide else: wid = WID if fc: _fc = fc elif text and text in self._style.dispcol: _fc = self._style.dispcol[text] else: _fc = self._style.gc box = patches.Rectangle( xy=(xpos - 0.5 * wid, ypos - 0.5 * HIG), width=wid, height=HIG, fc=_fc, ec=self._style.lc, linewidth=1.5, zorder=PORDER_GATE) self.ax.add_patch(box) if text: if text in self._style.dispcol: disp_text = "${}$".format(self._style.disptex[text]) else: disp_text = text if subtext: self.ax.text(xpos, ypos + 0.15 * HIG, disp_text, ha='center', va='center', fontsize=self._style.fs, color=self._style.gt, clip_on=True, zorder=PORDER_TEXT) self.ax.text(xpos, ypos - 0.3 * HIG, subtext, ha='center', va='center', fontsize=self._style.sfs, color=self._style.sc, clip_on=True, zorder=PORDER_TEXT) else: self.ax.text(xpos, ypos, disp_text, ha='center', va='center', fontsize=self._style.fs, color=self._style.gt, clip_on=True, zorder=PORDER_TEXT) def _subtext(self, xy, text): xpos, ypos = xy self.ax.text(xpos, ypos - 0.3 * HIG, text, ha='center', va='top', fontsize=self._style.sfs, color=self._style.tc, clip_on=True, zorder=PORDER_TEXT) def _sidetext(self, xy, text): xpos, ypos = xy # 0.15 = the initial gap, each char means it needs to move # another 0.0375 over xp = xpos + 0.15 + (0.0375 * len(text)) self.ax.text(xp, ypos+HIG, text, ha='center', va='top', fontsize=self._style.sfs, color=self._style.tc, clip_on=True, zorder=PORDER_TEXT) def _line(self, xy0, xy1, lc=None, ls=None): x0, y0 = xy0 x1, y1 = xy1 if lc is None: linecolor = self._style.lc else: linecolor = lc if ls is None: linestyle = 'solid' else: linestyle = ls if linestyle == 'doublet': theta = np.arctan2(np.abs(x1 - x0), np.abs(y1 - y0)) dx = 0.05 * WID * np.cos(theta) dy = 0.05 * WID * np.sin(theta) self.ax.plot([x0 + dx, x1 + dx], [y0 + dy, y1 + dy], color=linecolor, linewidth=1.0, linestyle='solid', zorder=PORDER_LINE) self.ax.plot([x0 - dx, x1 - dx], [y0 - dy, y1 - dy], color=linecolor, linewidth=1.0, linestyle='solid', zorder=PORDER_LINE) else: self.ax.plot([x0, x1], [y0, y1], color=linecolor, linewidth=1.0, linestyle=linestyle, zorder=PORDER_LINE) def _measure(self, qxy, cxy, cid): qx, qy = qxy cx, cy = cxy self._gate(qxy, fc=self._style.dispcol['meas']) # add measure symbol arc = patches.Arc(xy=(qx, qy - 0.15 * HIG), width=WID * 0.7, height=HIG * 0.7, theta1=0, theta2=180, fill=False, ec=self._style.lc, linewidth=1.5, zorder=PORDER_GATE) self.ax.add_patch(arc) self.ax.plot([qx, qx + 0.35 * WID], [qy - 0.15 * HIG, qy + 0.20 * HIG], color=self._style.lc, linewidth=1.5, zorder=PORDER_GATE) # arrow self._line(qxy, [cx, cy + 0.35 * WID], lc=self._style.cc, ls=self._style.cline) arrowhead = patches.Polygon(((cx - 0.20 * WID, cy + 0.35 * WID), (cx + 0.20 * WID, cy + 0.35 * WID), (cx, cy)), fc=self._style.cc, ec=None) self.ax.add_artist(arrowhead) # target if self._style.bundle: self.ax.text(cx + .25, cy + .1, str(cid), ha='left', va='bottom', fontsize=0.8 * self._style.fs, color=self._style.tc, clip_on=True, zorder=PORDER_TEXT) def _conds(self, xy, istrue=False): xpos, ypos = xy if istrue: _fc = self._style.lc else: _fc = self._style.gc box = patches.Circle(xy=(xpos, ypos), radius=WID * 0.15, fc=_fc, ec=self._style.lc, linewidth=1.5, zorder=PORDER_GATE) self.ax.add_patch(box) def _ctrl_qubit(self, xy): xpos, ypos = xy box = patches.Circle(xy=(xpos, ypos), radius=WID * 0.15, fc=self._style.lc, ec=self._style.lc, linewidth=1.5, zorder=PORDER_GATE) self.ax.add_patch(box) def _tgt_qubit(self, xy): xpos, ypos = xy box = patches.Circle(xy=(xpos, ypos), radius=HIG * 0.35, fc=self._style.dispcol['target'], ec=self._style.lc, linewidth=1.5, zorder=PORDER_GATE) self.ax.add_patch(box) # add '+' symbol self.ax.plot([xpos, xpos], [ypos - 0.35 * HIG, ypos + 0.35 * HIG], color=self._style.lc, linewidth=1.0, zorder=PORDER_GATE) self.ax.plot([xpos - 0.35 * HIG, xpos + 0.35 * HIG], [ypos, ypos], color=self._style.lc, linewidth=1.0, zorder=PORDER_GATE) def _swap(self, xy): xpos, ypos = xy self.ax.plot([xpos - 0.20 * WID, xpos + 0.20 * WID], [ypos - 0.20 * WID, ypos + 0.20 * WID], color=self._style.lc, linewidth=1.5, zorder=PORDER_LINE) self.ax.plot([xpos - 0.20 * WID, xpos + 0.20 * WID], [ypos + 0.20 * WID, ypos - 0.20 * WID], color=self._style.lc, linewidth=1.5, zorder=PORDER_LINE) def _barrier(self, config, anc): xys = config['coord'] group = config['group'] y_reg = [] for qreg in self._qreg_dict.values(): if qreg['group'] in group: y_reg.append(qreg['y']) x0 = xys[0][0] box_y0 = min(y_reg) - int(anc / self._style.fold) * (self._cond['n_lines'] + 1) - 0.5 box_y1 = max(y_reg) - int(anc / self._style.fold) * (self._cond['n_lines'] + 1) + 0.5 box = patches.Rectangle(xy=(x0 - 0.3 * WID, box_y0), width=0.6 * WID, height=box_y1 - box_y0, fc=self._style.bc, ec=None, alpha=0.6, linewidth=1.5, zorder=PORDER_GRAY) self.ax.add_patch(box) for xy in xys: xpos, ypos = xy self.ax.plot([xpos, xpos], [ypos + 0.5, ypos - 0.5], linewidth=1, linestyle="dashed", color=self._style.lc, zorder=PORDER_TEXT) def _linefeed_mark(self, xy): xpos, ypos = xy self.ax.plot([xpos - .1, xpos - .1], [ypos, ypos - self._cond['n_lines'] + 1], color=self._style.lc, zorder=PORDER_LINE) self.ax.plot([xpos + .1, xpos + .1], [ypos, ypos - self._cond['n_lines'] + 1], color=self._style.lc, zorder=PORDER_LINE) def draw(self, filename=None, verbose=False): self._draw_regs() self._draw_ops(verbose) _xl = - self._style.margin[0] _xr = self._cond['xmax'] + self._style.margin[1] _yb = - self._cond['ymax'] - self._style.margin[2] + 1 - 0.5 _yt = self._style.margin[3] + 0.5 self.ax.set_xlim(_xl, _xr) self.ax.set_ylim(_yb, _yt) # update figure size fig_w = _xr - _xl fig_h = _yt - _yb if self._style.figwidth < 0.0: self._style.figwidth = fig_w * self._scale * self._style.fs / 72 / WID self.figure.set_size_inches(self._style.figwidth, self._style.figwidth * fig_h / fig_w) if filename: self.figure.savefig(filename, dpi=self._style.dpi, bbox_inches='tight') plt.close(self.figure) return self.figure def _draw_regs(self): # quantum register for ii, reg in enumerate(self._qreg): if len(self._qreg) > 1: label = '${}_{{{}}}$'.format(reg.reg.name, reg.index) else: label = '${}$'.format(reg.reg.name) pos = -ii self._qreg_dict[ii] = { 'y': pos, 'label': label, 'index': reg.index, 'group': reg.reg } self._cond['n_lines'] += 1 # classical register if self._creg: n_creg = self._creg.copy() n_creg.pop(0) idx = 0 y_off = -len(self._qreg) for ii, (reg, nreg) in enumerate(itertools.zip_longest( self._creg, n_creg)): pos = y_off - idx if self._style.bundle: label = '${}$'.format(reg.reg.name) self._creg_dict[ii] = { 'y': pos, 'label': label, 'index': reg.index, 'group': reg.reg } if not (not nreg or reg.reg != nreg.reg): continue else: label = '${}_{{{}}}$'.format(reg.reg.name, reg.index) self._creg_dict[ii] = { 'y': pos, 'label': label, 'index': reg.index, 'group': reg.reg } self._cond['n_lines'] += 1 idx += 1 def _draw_regs_sub(self, n_fold, feedline_l=False, feedline_r=False): # quantum register for qreg in self._qreg_dict.values(): if n_fold == 0: label = qreg['label'] + ' : $\\left|0\\right\\rangle$' else: label = qreg['label'] y = qreg['y'] - n_fold * (self._cond['n_lines'] + 1) self.ax.text(-0.5, y, label, ha='right', va='center', fontsize=self._style.fs, color=self._style.tc, clip_on=True, zorder=PORDER_TEXT) self._line([0, y], [self._cond['xmax'], y]) # classical register this_creg_dict = {} for creg in self._creg_dict.values(): if n_fold == 0: label = creg['label'] + ' : 0 ' else: label = creg['label'] y = creg['y'] - n_fold * (self._cond['n_lines'] + 1) if y not in this_creg_dict.keys(): this_creg_dict[y] = {'val': 1, 'label': label} else: this_creg_dict[y]['val'] += 1 for y, this_creg in this_creg_dict.items(): # bundle if this_creg['val'] > 1: self.ax.plot([.6, .7], [y - .1, y + .1], color=self._style.cc, zorder=PORDER_LINE) self.ax.text(0.5, y + .1, str(this_creg['val']), ha='left', va='bottom', fontsize=0.8 * self._style.fs, color=self._style.tc, clip_on=True, zorder=PORDER_TEXT) self.ax.text(-0.5, y, this_creg['label'], ha='right', va='center', fontsize=self._style.fs, color=self._style.tc, clip_on=True, zorder=PORDER_TEXT) self._line([0, y], [self._cond['xmax'], y], lc=self._style.cc, ls=self._style.cline) # lf line if feedline_r: self._linefeed_mark((self._style.fold + 1 - 0.1, - n_fold * (self._cond['n_lines'] + 1))) if feedline_l: self._linefeed_mark((0.1, - n_fold * (self._cond['n_lines'] + 1))) def _draw_ops(self, verbose=False): _wide_gate = ['u2', 'u3', 'cu2', 'cu3'] _barriers = {'coord': [], 'group': []} # # generate coordinate manager # q_anchors = {} for key, qreg in self._qreg_dict.items(): q_anchors[key] = Anchor(reg_num=self._cond['n_lines'], yind=qreg['y'], fold=self._style.fold) c_anchors = {} for key, creg in self._creg_dict.items(): c_anchors[key] = Anchor(reg_num=self._cond['n_lines'], yind=creg['y'], fold=self._style.fold) # # draw gates # prev_anc = -1 for layer in self._ops: layer_width = 1 for op in layer: if op.name in _wide_gate: if layer_width < 2: layer_width = 2 # if custom gate with a longer than standard name determine # width elif op.name not in ['barrier', 'snapshot', 'load', 'save', 'noise', 'cswap', 'swap'] and len( op.name) >= 4: box_width = round(len(op.name) / 8) # If more than 4 characters min width is 2 if box_width <= 1: box_width = 2 if layer_width < box_width: if box_width > 2: layer_width = box_width * 2 else: layer_width = 2 this_anc = prev_anc + 1 for op in layer: _iswide = op.name in _wide_gate if op.name not in ['barrier', 'snapshot', 'load', 'save', 'noise', 'cswap', 'swap'] and len( op.name) >= 4: _iswide = True # get qreg index q_idxs = [] for qarg in op.qargs: for index, reg in self._qreg_dict.items(): if (reg['group'] == qarg[0] and reg['index'] == qarg[1]): q_idxs.append(index) break # get creg index c_idxs = [] for carg in op.cargs: for index, reg in self._creg_dict.items(): if (reg['group'] == carg[0] and reg['index'] == carg[1]): c_idxs.append(index) break for ii in q_idxs: q_anchors[ii].set_index(this_anc, layer_width) # qreg coordinate q_xy = [q_anchors[ii].plot_coord(this_anc, layer_width) for ii in q_idxs] # creg coordinate c_xy = [c_anchors[ii].plot_coord(this_anc, layer_width) for ii in c_idxs] # bottom and top point of qreg qreg_b = min(q_xy, key=lambda xy: xy[1]) qreg_t = max(q_xy, key=lambda xy: xy[1]) # update index based on the value from plotting this_anc = q_anchors[q_idxs[0]].gate_anchor if verbose: print(op) if op.type == 'op' and hasattr(op.op, 'params'): param = self.param_parse(op.op.params, self._style.pimode) else: param = None # conditional gate if op.condition: c_xy = [c_anchors[ii].plot_coord(this_anc, layer_width) for ii in self._creg_dict] mask = 0 for index, cbit in enumerate(self._creg): if cbit.reg == op.condition[0]: mask |= (1 << index) val = op.condition[1] # cbit list to consider fmt_c = '{{:0{}b}}'.format(len(c_xy)) cmask = list(fmt_c.format(mask))[::-1] # value fmt_v = '{{:0{}b}}'.format(cmask.count('1')) vlist = list(fmt_v.format(val))[::-1] # plot conditionals v_ind = 0 xy_plot = [] for xy, m in zip(c_xy, cmask): if m == '1': if xy not in xy_plot: if vlist[v_ind] == '1' or self._style.bundle: self._conds(xy, istrue=True) else: self._conds(xy, istrue=False) xy_plot.append(xy) v_ind += 1 creg_b = sorted(xy_plot, key=lambda xy: xy[1])[0] self._subtext(creg_b, hex(val)) self._line(qreg_t, creg_b, lc=self._style.cc, ls=self._style.cline) # # draw special gates # if op.name == 'measure': vv = self._creg_dict[c_idxs[0]]['index'] self._measure(q_xy[0], c_xy[0], vv) elif op.name in ['barrier', 'snapshot', 'load', 'save', 'noise']: _barriers = {'coord': [], 'group': []} for index, qbit in enumerate(q_idxs): q_group = self._qreg_dict[qbit]['group'] if q_group not in _barriers['group']: _barriers['group'].append(q_group) _barriers['coord'].append(q_xy[index]) if self.plot_barriers: self._barrier(_barriers, this_anc) # # draw single qubit gates # elif len(q_xy) == 1: disp = op.name if param: prm = '{}'.format(param) if len(prm) < 20: self._gate(q_xy[0], wide=_iswide, text=disp, subtext=prm) else: self._gate(q_xy[0], wide=_iswide, text=disp) else: self._gate(q_xy[0], wide=_iswide, text=disp) # # draw multi-qubit gates (n=2) # elif len(q_xy) == 2: # cx if op.name == 'cx': self._ctrl_qubit(q_xy[0]) self._tgt_qubit(q_xy[1]) # add qubit-qubit wiring self._line(qreg_b, qreg_t) # cz for latexmode elif op.name == 'cz': if self._style.latexmode: self._ctrl_qubit(q_xy[0]) self._ctrl_qubit(q_xy[1]) else: disp = op.name.replace('c', '') self._ctrl_qubit(q_xy[0]) self._gate(q_xy[1], wide=_iswide, text=disp) # add qubit-qubit wiring self._line(qreg_b, qreg_t) # control gate elif op.name in ['cy', 'ch', 'cu3', 'crz']: disp = op.name.replace('c', '') self._ctrl_qubit(q_xy[0]) if param: self._gate(q_xy[1], wide=_iswide, text=disp, subtext='{}'.format(param)) else: self._gate(q_xy[1], wide=_iswide, text=disp) # add qubit-qubit wiring self._line(qreg_b, qreg_t) # cu1 elif op.name == 'cu1': self._ctrl_qubit(q_xy[0]) self._ctrl_qubit(q_xy[1]) self._sidetext(qreg_b, param) # add qubit-qubit wiring self._line(qreg_b, qreg_t) # rzz gate elif op.name == 'rzz': self._ctrl_qubit(q_xy[0]) self._ctrl_qubit(q_xy[1]) self._sidetext(qreg_b, text='zz({})'.format(param)) # add qubit-qubit wiring self._line(qreg_b, qreg_t) # swap gate elif op.name == 'swap': self._swap(q_xy[0]) self._swap(q_xy[1]) # add qubit-qubit wiring self._line(qreg_b, qreg_t) # Custom gate else: self._custom_multiqubit_gate(q_xy, wide=_iswide, text=op.name) # # draw multi-qubit gates (n=3) # elif len(q_xy) == 3: # cswap gate if op.name == 'cswap': self._ctrl_qubit(q_xy[0]) self._swap(q_xy[1]) self._swap(q_xy[2]) # add qubit-qubit wiring self._line(qreg_b, qreg_t) # ccx gate elif op.name == 'ccx': self._ctrl_qubit(q_xy[0]) self._ctrl_qubit(q_xy[1]) self._tgt_qubit(q_xy[2]) # add qubit-qubit wiring self._line(qreg_b, qreg_t) # custom gate else: self._custom_multiqubit_gate(q_xy, wide=_iswide, text=op.name) # draw custom multi-qubit gate elif len(q_xy) > 3: self._custom_multiqubit_gate(q_xy, wide=_iswide, text=op.name) else: logger.critical('Invalid gate %s', op) raise exceptions.VisualizationError('invalid gate {}'.format(op)) prev_anc = this_anc + layer_width - 1 # # adjust window size and draw horizontal lines # anchors = [q_anchors[ii].get_index() for ii in self._qreg_dict] if anchors: max_anc = max(anchors) else: max_anc = 0 n_fold = max(0, max_anc - 1) // self._style.fold # window size if max_anc > self._style.fold > 0: self._cond['xmax'] = self._style.fold + 1 self._cond['ymax'] = (n_fold + 1) * (self._cond['n_lines'] + 1) - 1 else: self._cond['xmax'] = max_anc + 1 self._cond['ymax'] = self._cond['n_lines'] # add horizontal lines for ii in range(n_fold + 1): feedline_r = (n_fold > 0 and n_fold > ii) feedline_l = (ii > 0) self._draw_regs_sub(ii, feedline_l, feedline_r) # draw gate number if self._style.index: for ii in range(max_anc): if self._style.fold > 0: x_coord = ii % self._style.fold + 1 y_coord = - (ii // self._style.fold) * (self._cond['n_lines'] + 1) + 0.7 else: x_coord = ii + 1 y_coord = 0.7 self.ax.text(x_coord, y_coord, str(ii + 1), ha='center', va='center', fontsize=self._style.sfs, color=self._style.tc, clip_on=True, zorder=PORDER_TEXT) @staticmethod def param_parse(v, pimode=False): # create an empty list to store the parameters in param_parts = [None] * len(v) for i, e in enumerate(v): if pimode: try: param_parts[i] = MatplotlibDrawer.format_pi(e) except TypeError: param_parts[i] = str(e) else: try: param_parts[i] = MatplotlibDrawer.format_numeric(e) except TypeError: param_parts[i] = str(e) if param_parts[i].startswith('-'): param_parts[i] = '$-$' + param_parts[i][1:] param_parts = ', '.join(param_parts) return param_parts @staticmethod def format_pi(val): fracvals = MatplotlibDrawer.fraction(val) buf = '' if fracvals: nmr, dnm = fracvals.numerator, fracvals.denominator if nmr == 1: buf += '$\\pi$' elif nmr == -1: buf += '-$\\pi$' else: buf += '{}$\\pi$'.format(nmr) if dnm > 1: buf += '/{}'.format(dnm) return buf else: coef = MatplotlibDrawer.format_numeric(val / np.pi) if coef == '0': return '0' return '{}$\\pi$'.format(coef) @staticmethod def format_numeric(val, tol=1e-5): abs_val = abs(val) if math.isclose(abs_val, 0.0, abs_tol=1e-100): return '0' if math.isclose(math.fmod(abs_val, 1.0), 0.0, abs_tol=tol) and 0.5 < abs_val < 9999.5: return str(int(val)) if 0.1 <= abs_val < 100.0: return '{:.2f}'.format(val) return '{:.1e}'.format(val) @staticmethod def fraction(val, base=np.pi, n=100, tol=1e-5): abs_val = abs(val) for i in range(1, n): for j in range(1, n): if math.isclose(abs_val, i / j * base, rel_tol=tol): if val < 0: i *= -1 return fractions.Fraction(i, j) return None class EventsOutputChannels: """Pulse dataset for channel.""" def __init__(self, t0, tf): """Create new channel dataset. Args: t0 (int): starting time of plot tf (int): ending time of plot """ self.pulses = {} self.t0 = t0 self.tf = tf self._waveform = None self._framechanges = None self._conditionals = None self._snapshots = None self._labels = None self.enable = False def add_instruction(self, start_time, pulse): """Add new pulse instruction to channel. Args: start_time (int): Starting time of instruction pulse (Instruction): Instruction object to be added """ if start_time in self.pulses.keys(): self.pulses[start_time].append(pulse.command) else: self.pulses[start_time] = [pulse.command] @property def waveform(self): """Get waveform.""" if self._waveform is None: self._build_waveform() return self._waveform[self.t0:self.tf] @property def framechanges(self): """Get frame changes.""" if self._framechanges is None: self._build_waveform() return self._trim(self._framechanges) @property def conditionals(self): """Get conditionals.""" if self._conditionals is None: self._build_waveform() return self._trim(self._conditionals) @property def snapshots(self): """Get snapshots.""" if self._snapshots is None: self._build_waveform() return self._trim(self._snapshots) @property def labels(self): """Get labels.""" if self._labels is None: self._build_waveform() return self._trim(self._labels) def is_empty(self): """Return if pulse is empty. Returns: bool: if the channel has nothing to plot """ if any(self.waveform) or self.framechanges or self.conditionals or self.snapshots: return False return True def to_table(self, name): """Get table contains. Args: name (str): name of channel Returns: dict: dictionary of events in the channel """ time_event = [] framechanges = self.framechanges conditionals = self.conditionals snapshots = self.snapshots for key, val in framechanges.items(): data_str = 'framechange: %.2f' % val time_event.append((key, name, data_str)) for key, val in conditionals.items(): data_str = 'conditional, %s' % val time_event.append((key, name, data_str)) for key, val in snapshots.items(): data_str = 'snapshot: %s' % val time_event.append((key, name, data_str)) return time_event def _build_waveform(self): """Create waveform from stored pulses. """ self._framechanges = {} self._conditionals = {} self._snapshots = {} self._labels = {} fc = 0 pv = np.zeros(self.tf + 1, dtype=np.complex128) wf = np.zeros(self.tf + 1, dtype=np.complex128) last_pv = None for time, commands in sorted(self.pulses.items()): if time > self.tf: break tmp_fc = 0 for command in commands: if isinstance(command, FrameChange): tmp_fc += command.phase pv[time:] = 0 elif isinstance(command, Snapshot): self._snapshots[time] = command.name if tmp_fc != 0: self._framechanges[time] = tmp_fc fc += tmp_fc for command in commands: if isinstance(command, PersistentValue): pv[time:] = np.exp(1j*fc) * command.value last_pv = (time, command) break for command in commands: duration = command.duration tf = min(time + duration, self.tf) if isinstance(command, SamplePulse): wf[time:tf] = np.exp(1j*fc) * command.samples[:tf-time] pv[time:] = 0 self._labels[time] = (tf, command) if last_pv is not None: pv_cmd = last_pv[1] self._labels[last_pv[0]] = (time, pv_cmd) last_pv = None elif isinstance(command, Acquire): wf[time:tf] = np.ones(command.duration) self._labels[time] = (tf, command) self._waveform = wf + pv def _trim(self, events): """Return events during given `time_range`. Args: events (dict): time and operation of events Returns: dict: dictionary of events within the time """ events_in_time_range = {} for k, v in events.items(): if self.t0 <= k <= self.tf: events_in_time_range[k] = v return events_in_time_range class SamplePulseDrawer: """A class to create figure for sample pulse.""" def __init__(self, style): """Create new figure. Args: style (OPStylePulse): style sheet """ self.style = style or OPStylePulse() def draw(self, pulse, dt, interp_method, scaling=1): """Draw figure. Args: pulse (SamplePulse): SamplePulse to draw dt (float): time interval interp_method (Callable): interpolation function See `qiskit.visualization.interpolation` for more information scaling (float): Relative visual scaling of waveform amplitudes Returns: matplotlib.figure: A matplotlib figure object of the pulse envelope """ figure = plt.figure() interp_method = interp_method or interpolation.step_wise figure.set_size_inches(self.style.figsize[0], self.style.figsize[1]) ax = figure.add_subplot(111) ax.set_facecolor(self.style.bg_color) samples = pulse.samples time = np.arange(0, len(samples) + 1, dtype=float) * dt time, re, im = interp_method(time, samples, self.style.num_points) # plot ax.fill_between(x=time, y1=re, y2=np.zeros_like(time), facecolor=self.style.wave_color[0], alpha=0.3, edgecolor=self.style.wave_color[0], linewidth=1.5, label='real part') ax.fill_between(x=time, y1=im, y2=np.zeros_like(time), facecolor=self.style.wave_color[1], alpha=0.3, edgecolor=self.style.wave_color[1], linewidth=1.5, label='imaginary part') ax.set_xlim(0, pulse.duration * dt) if scaling: ax.set_ylim(-scaling, scaling) else: v_max = max(max(np.abs(re)), max(np.abs(im))) ax.set_ylim(-1.2 * v_max, 1.2 * v_max) return figure class ScheduleDrawer: """A class to create figure for schedule and channel.""" def __init__(self, style): """Create new figure. Args: style (OPStyleSched): style sheet """ self.style = style or OPStyleSched() def _build_channels(self, schedule, t0, tf): # prepare waveform channels drive_channels = collections.OrderedDict() measure_channels = collections.OrderedDict() control_channels = collections.OrderedDict() acquire_channels = collections.OrderedDict() snapshot_channels = collections.OrderedDict() for chan in schedule.channels: if isinstance(chan, DriveChannel): try: drive_channels[chan] = EventsOutputChannels(t0, tf) except PulseError: pass elif isinstance(chan, MeasureChannel): try: measure_channels[chan] = EventsOutputChannels(t0, tf) except PulseError: pass elif isinstance(chan, ControlChannel): try: control_channels[chan] = EventsOutputChannels(t0, tf) except PulseError: pass elif isinstance(chan, AcquireChannel): try: acquire_channels[chan] = EventsOutputChannels(t0, tf) except PulseError: pass elif isinstance(chan, SnapshotChannel): try: snapshot_channels[chan] = EventsOutputChannels(t0, tf) except PulseError: pass output_channels = {**drive_channels, **measure_channels, **control_channels, **acquire_channels} channels = {**output_channels, **acquire_channels, **snapshot_channels} # sort by index then name to group qubits together. output_channels = collections.OrderedDict(sorted(output_channels.items(), key=lambda x: (x[0].index, x[0].name))) channels = collections.OrderedDict(sorted(channels.items(), key=lambda x: (x[0].index, x[0].name))) for start_time, instruction in schedule.instructions: for channel in instruction.channels: if channel in output_channels: output_channels[channel].add_instruction(start_time, instruction) elif channel in snapshot_channels: snapshot_channels[channel].add_instruction(start_time, instruction) return channels, output_channels, snapshot_channels def _count_valid_waveforms(self, channels, scaling=1, channels_to_plot=None, plot_all=False): # count numbers of valid waveform n_valid_waveform = 0 v_max = 0 for channel, events in channels.items(): if channels_to_plot: if channel in channels_to_plot: waveform = events.waveform v_max = max(v_max, max(np.abs(np.real(waveform))), max(np.abs(np.imag(waveform)))) n_valid_waveform += 1 events.enable = True else: if not events.is_empty() or plot_all: waveform = events.waveform v_max = max(v_max, max(np.abs(np.real(waveform))), max(np.abs(np.imag(waveform)))) n_valid_waveform += 1 events.enable = True if scaling: v_max = 0.5 * scaling else: v_max = 0.5 / (1.2 * v_max) return n_valid_waveform, v_max # pylint: disable=unused-argument def _draw_table(self, figure, channels, dt, n_valid_waveform): # create table table_data = [] if self.style.use_table: for channel, events in channels.items(): if events.enable: table_data.extend(events.to_table(channel.name)) table_data = sorted(table_data, key=lambda x: x[0]) # plot table if table_data: # table area size ncols = self.style.table_columns nrows = int(np.ceil(len(table_data)/ncols)) # fig size h_table = nrows * self.style.fig_unit_h_table h_waves = (self.style.figsize[1] - h_table) # create subplots gs = gridspec.GridSpec(2, 1, height_ratios=[h_table, h_waves], hspace=0) tb = plt.subplot(gs[0]) ax = plt.subplot(gs[1]) # configure each cell tb.axis('off') cell_value = [['' for _kk in range(ncols * 3)] for _jj in range(nrows)] cell_color = [self.style.table_color * ncols for _jj in range(nrows)] cell_width = [*([0.2, 0.2, 0.5] * ncols)] for ii, data in enumerate(table_data): # pylint: disable=unbalanced-tuple-unpacking r, c = np.unravel_index(ii, (nrows, ncols), order='f') # pylint: enable=unbalanced-tuple-unpacking time, ch_name, data_str = data # item cell_value[r][3 * c + 0] = 't = %s' % time * dt cell_value[r][3 * c + 1] = 'ch %s' % ch_name cell_value[r][3 * c + 2] = data_str table = tb.table(cellText=cell_value, cellLoc='left', rowLoc='center', colWidths=cell_width, bbox=[0, 0, 1, 1], cellColours=cell_color) table.auto_set_font_size(False) table.set_fontsize = self.style.table_font_size else: ax = figure.add_subplot(111) figure.set_size_inches(self.style.figsize[0], self.style.figsize[1]) return ax def _draw_snapshots(self, ax, snapshot_channels, dt, y0): for events in snapshot_channels.values(): snapshots = events.snapshots if snapshots: for time in snapshots: ax.annotate(s=u"\u25D8", xy=(time*dt, y0), xytext=(time*dt, y0+0.08), arrowprops={'arrowstyle': 'wedge'}, ha='center') def _draw_framechanges(self, ax, fcs, dt, y0): framechanges_present = True for time in fcs.keys(): ax.text(x=time*dt, y=y0, s=r'$\circlearrowleft$', fontsize=self.style.icon_font_size, ha='center', va='center') return framechanges_present def _get_channel_color(self, channel): # choose color if isinstance(channel, DriveChannel): color = self.style.d_ch_color elif isinstance(channel, ControlChannel): color = self.style.u_ch_color elif isinstance(channel, MeasureChannel): color = self.style.m_ch_color elif isinstance(channel, AcquireChannel): color = self.style.a_ch_color else: color = 'black' return color def _prev_label_at_time(self, prev_labels, time): for _, labels in enumerate(prev_labels): for t0, (tf, _) in labels.items(): if time in (t0, tf): return True return False def _draw_labels(self, ax, labels, prev_labels, dt, y0): for t0, (tf, cmd) in labels.items(): if isinstance(cmd, PersistentValue): name = cmd.name if cmd.name else 'pv' elif isinstance(cmd, Acquire): name = cmd.name if cmd.name else 'acquire' else: name = cmd.name ax.annotate(r'%s' % name, xy=((t0+tf)//2*dt, y0), xytext=((t0+tf)//2*dt, y0-0.07), fontsize=self.style.label_font_size, ha='center', va='center') linestyle = self.style.label_ch_linestyle alpha = self.style.label_ch_alpha color = self.style.label_ch_color if not self._prev_label_at_time(prev_labels, t0): ax.axvline(t0*dt, -1, 1, color=color, linestyle=linestyle, alpha=alpha) if not (self._prev_label_at_time(prev_labels, tf) or tf in labels): ax.axvline(tf*dt, -1, 1, color=color, linestyle=linestyle, alpha=alpha) def _draw_channels(self, ax, output_channels, interp_method, t0, tf, dt, v_max, label=False, framechange=True): y0 = 0 prev_labels = [] for channel, events in output_channels.items(): if events.enable: # plot waveform waveform = events.waveform time = np.arange(t0, tf + 1, dtype=float) * dt time, re, im = interp_method(time, waveform, self.style.num_points) color = self._get_channel_color(channel) # scaling and offset re = v_max * re + y0 im = v_max * im + y0 offset = np.zeros_like(time) + y0 # plot ax.fill_between(x=time, y1=re, y2=offset, facecolor=color[0], alpha=0.3, edgecolor=color[0], linewidth=1.5, label='real part') ax.fill_between(x=time, y1=im, y2=offset, facecolor=color[1], alpha=0.3, edgecolor=color[1], linewidth=1.5, label='imaginary part') ax.plot((t0, tf), (y0, y0), color='#000000', linewidth=1.0) # plot frame changes fcs = events.framechanges if fcs and framechange: self._draw_framechanges(ax, fcs, dt, y0) # plot labels labels = events.labels if labels and label: self._draw_labels(ax, labels, prev_labels, dt, y0) prev_labels.append(labels) else: continue # plot label ax.text(x=0, y=y0, s=channel.name, fontsize=self.style.axis_font_size, ha='right', va='center') y0 -= 1 return y0 def draw(self, schedule, dt, interp_method, plot_range, scaling=1, channels_to_plot=None, plot_all=True, table=True, label=False, framechange=True): """Draw figure. Args: schedule (ScheduleComponent): Schedule to draw dt (float): time interval interp_method (Callable): interpolation function See `qiskit.visualization.interpolation` for more information plot_range (tuple[float]): plot range scaling (float): Relative visual scaling of waveform amplitudes channels_to_plot (list[OutputChannel]): channels to draw plot_all (bool): if plot all channels even it is empty table (bool): Draw event table label (bool): Label individual instructions framechange (bool): Add framechange indicators Returns: matplotlib.figure: A matplotlib figure object for the pulse schedule Raises: VisualizationError: when schedule cannot be drawn """ figure = plt.figure() if not channels_to_plot: channels_to_plot = [] interp_method = interp_method or interpolation.step_wise # setup plot range if plot_range: t0 = int(np.floor(plot_range[0]/dt)) tf = int(np.floor(plot_range[1]/dt)) else: t0 = 0 tf = schedule.stop_time # prepare waveform channels (channels, output_channels, snapshot_channels) = self._build_channels(schedule, t0, tf) # count numbers of valid waveform n_valid_waveform, v_max = self._count_valid_waveforms(output_channels, scaling=scaling, channels_to_plot=channels_to_plot, plot_all=plot_all) if table: ax = self._draw_table(figure, channels, dt, n_valid_waveform) else: ax = figure.add_subplot(111) figure.set_size_inches(self.style.figsize[0], self.style.figsize[1]) ax.set_facecolor(self.style.bg_color) y0 = self._draw_channels(ax, output_channels, interp_method, t0, tf, dt, v_max, label=label, framechange=framechange) self._draw_snapshots(ax, snapshot_channels, dt, y0) ax.set_xlim(t0 * dt, tf * dt) ax.set_ylim(y0, 1) ax.set_yticklabels([]) return figure
38.305996
96
0.481469
f239e48af19b0b4c8b2d209d28288fe113f831c3
6,242
py
Python
pcraster/pcraster-4.2.0/pcraster-4.2.0/source/python_modelling_framework/UnitTests/mcFrameworkTest.py
quanpands/wflow
b454a55e4a63556eaac3fbabd97f8a0b80901e5a
[ "MIT" ]
null
null
null
pcraster/pcraster-4.2.0/pcraster-4.2.0/source/python_modelling_framework/UnitTests/mcFrameworkTest.py
quanpands/wflow
b454a55e4a63556eaac3fbabd97f8a0b80901e5a
[ "MIT" ]
null
null
null
pcraster/pcraster-4.2.0/pcraster-4.2.0/source/python_modelling_framework/UnitTests/mcFrameworkTest.py
quanpands/wflow
b454a55e4a63556eaac3fbabd97f8a0b80901e5a
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import shutil import sys import unittest import pcraster import pcraster.framework.staticFramework as sf import pcraster.framework.dynamicFramework as df import pcraster.framework.mcFramework as mf import pcraster.framework.frameworkBase as fb import staticTestModels import dynamicTestModels import mcTestModels ## \brief unit tests monte carlo framework class mcFrameworkTestScript(unittest.TestCase): def test_1(self): """test type of user model""" myModel = mcTestModels.T0() try: mcFw = mf.MonteCarloFramework(myModel, 5) except fb.FrameworkError as e: self.assertEqual(str(e),"Cannot run MonteCarlo framework: User model must be type of StaticFramework or DynamicFramework") def test_2(self): """test existence of added methods and attributes""" myModel = mcTestModels.staticModel() statFrw = sf.StaticFramework(myModel) mcFw = mf.MonteCarloFramework(statFrw, 5) self.assert_(hasattr(myModel, "nrSamples")) self.assert_(hasattr(myModel, "_d_firstSampleNumber")) self.assert_(hasattr(myModel, "_d_lastSampleNumber")) self.assert_(hasattr(myModel, "_d_currentSampleNumber")) self.assert_(hasattr(myModel, "_d_inSample")) self.assert_(hasattr(myModel, "currentSampleNumber")) self.assert_(hasattr(myModel, "_lastSampleNumber")) self.assert_(hasattr(myModel, "_firstSampleNumber")) self.assert_(hasattr(myModel, "_setCurrentSample")) self.assert_(hasattr(myModel, "_inSample")) self.assert_(hasattr(myModel, "sampleNumbers")) self.assert_(hasattr(myModel, "report")) self.assert_(hasattr(myModel, "readmap"), "todo") def test_3(self): """test framework methods""" myModel = mcTestModels.dynamicModel() dynFrw = df.DynamicFramework(myModel, 10) mcFw = mf.MonteCarloFramework(dynFrw, 5) self.assert_(myModel.sampleNumbers() == range(1,6)) def test_4(self): """test generation of sample directories""" myModel = mcTestModels.staticModel() statFrw = sf.StaticFramework(myModel) mcFw = mf.MonteCarloFramework(statFrw, 5) directoriesCreated = True for directory in range(1,6): if not os.path.isdir(str(directory)): directoriesCreated = False self.assert_(directoriesCreated) for directory in range(1,6): shutil.rmtree(str(directory)) myModel = mcTestModels.dynamicModel() dynFrw = df.DynamicFramework(myModel, 10) mcFw = mf.MonteCarloFramework(dynFrw, 5) directoriesCreated = True for directory in range(1,6): if not os.path.isdir(str(directory)): directoriesCreated = False self.assert_(directoriesCreated) for directory in range(1,6): shutil.rmtree(str(directory)) def test_5(self): """test execution of sections, report, readmap for a static model""" myModel = mcTestModels.staticModel() statFrw = sf.StaticFramework(myModel) mcFw = mf.MonteCarloFramework(statFrw, 5) mcFw.setQuiet(True) mcFw.run() filesInitialCreated = True filesPremcCreated = True filesPostmcCreated = True for sample in range(1,6): nameInit = "mcsi%d.map" % (sample) namePre = "premc%d.map" % (sample) namePost ="postmc%d.map" % (sample) if not os.path.isfile(os.path.join(str(sample), nameInit)): filesInitialCreated = False if not os.path.isfile(namePre): filesPremcCreated = False if not os.path.isfile(namePost): filesPostmcCreated = False self.assert_(filesInitialCreated) self.assert_(filesPremcCreated) self.assert_(filesPostmcCreated) def test_6(self): """test execution of sections, report, readmap for a static model""" myModel = mcTestModels.dynamicModel() dynFrw = df.DynamicFramework(myModel, 10) dynFrw.setQuiet(True) mcFw = mf.MonteCarloFramework(dynFrw, 5) mcFw.setQuiet(True) # see if existing directories were emptied for directory in range(1,6): assert len(os.listdir(str(directory))) == 0 mcFw.run() filesInitialCreated = True filesDynamicCreated = True filesPremcCreated = True filesPostmcCreated = True for sample in range(1,6): nameInit = "mcdi%d.map" % (sample) if not os.path.isfile(os.path.join(str(sample), nameInit)): filesInitialCreated = False for timestep in range(1,11): nameDyn = fb.generateNameT("mcdd%d" % (sample), timestep) if not os.path.isfile(os.path.join(str(sample), nameDyn)): filesDynamicCreated = False for timestep in range(1,11): namePre = "premc_%d_%d.map" % (sample, timestep) namePost ="postmc_%d_%d.map" % (sample, timestep) if not os.path.isfile(namePre): filesPremcCreated = False if not os.path.isfile(namePost): filesPostmcCreated = False self.assert_(filesInitialCreated) self.assert_(filesPremcCreated) self.assert_(filesPostmcCreated) self.assert_(filesDynamicCreated) # It is important to reset the seed values for the random number generators # when a model is used in combination with forking, as clones of the processes # are created. # Reset of seed is done in the forkscript.py in DEVENV # # forking creates clones of the processes, def test_7(self): """ test random seed reset while forking """ myModel = mcTestModels.randomModel() dynFrw = df.DynamicFramework(myModel, 2) dynFrw.setQuiet(True) mcFw = mf.MonteCarloFramework(dynFrw, 2) mcFw.setQuiet(True) mcFw.setForkSamples(True) mcFw.run() pyVal1 = pcraster.cellvalue(pcraster.readmap(os.path.join("1","pyVal.map")),1,1)[0] pyVal2 = pcraster.cellvalue(pcraster.readmap(os.path.join("2","pyVal.map")),1,1)[0] pcrVal1 = pcraster.cellvalue(pcraster.readmap(os.path.join("1","pcrVal.map")),1,1)[0] pcrVal2 = pcraster.cellvalue(pcraster.readmap(os.path.join("2","pcrVal.map")),1,1)[0] npVal1 = pcraster.cellvalue(pcraster.readmap(os.path.join("1","npVal.map")),1,1)[0] npVal2 = pcraster.cellvalue(pcraster.readmap(os.path.join("2","npVal.map")),1,1)[0] self.assertNotEqual(pyVal1, pyVal2) self.assertNotEqual(pcrVal1, pcrVal2) self.assertNotEqual(npVal1, npVal2)
34.677778
128
0.698814
6142ae84f188a502365735bbc29a065066d34ba8
2,587
py
Python
nipype/interfaces/freesurfer/tests/test_auto_ApplyVolTransform.py
sebastientourbier/nipype
99c5904176481520c5bf42a501aae1a12184e672
[ "Apache-2.0" ]
2
2019-01-25T18:20:51.000Z
2019-07-30T20:51:51.000Z
nipype/interfaces/freesurfer/tests/test_auto_ApplyVolTransform.py
sebastientourbier/nipype
99c5904176481520c5bf42a501aae1a12184e672
[ "Apache-2.0" ]
null
null
null
nipype/interfaces/freesurfer/tests/test_auto_ApplyVolTransform.py
sebastientourbier/nipype
99c5904176481520c5bf42a501aae1a12184e672
[ "Apache-2.0" ]
2
2018-01-25T19:48:17.000Z
2019-01-25T18:20:52.000Z
# AUTO-GENERATED by tools/checkspecs.py - DO NOT EDIT from __future__ import unicode_literals from ..preprocess import ApplyVolTransform def test_ApplyVolTransform_inputs(): input_map = dict(args=dict(argstr='%s', ), environ=dict(nohash=True, usedefault=True, ), fs_target=dict(argstr='--fstarg', mandatory=True, requires=['reg_file'], xor=('target_file', 'tal', 'fs_target'), ), fsl_reg_file=dict(argstr='--fsl %s', mandatory=True, xor=('reg_file', 'fsl_reg_file', 'xfm_reg_file', 'reg_header', 'subject'), ), ignore_exception=dict(nohash=True, usedefault=True, ), interp=dict(argstr='--interp %s', ), inverse=dict(argstr='--inv', ), invert_morph=dict(argstr='--inv-morph', requires=['m3z_file'], ), m3z_file=dict(argstr='--m3z %s', ), no_ded_m3z_path=dict(argstr='--noDefM3zPath', requires=['m3z_file'], ), no_resample=dict(argstr='--no-resample', ), reg_file=dict(argstr='--reg %s', mandatory=True, xor=('reg_file', 'fsl_reg_file', 'xfm_reg_file', 'reg_header', 'subject'), ), reg_header=dict(argstr='--regheader', mandatory=True, xor=('reg_file', 'fsl_reg_file', 'xfm_reg_file', 'reg_header', 'subject'), ), source_file=dict(argstr='--mov %s', copyfile=False, mandatory=True, ), subject=dict(argstr='--s %s', mandatory=True, xor=('reg_file', 'fsl_reg_file', 'xfm_reg_file', 'reg_header', 'subject'), ), subjects_dir=dict(), tal=dict(argstr='--tal', mandatory=True, xor=('target_file', 'tal', 'fs_target'), ), tal_resolution=dict(argstr='--talres %.10f', ), target_file=dict(argstr='--targ %s', mandatory=True, xor=('target_file', 'tal', 'fs_target'), ), terminal_output=dict(nohash=True, ), transformed_file=dict(argstr='--o %s', genfile=True, ), xfm_reg_file=dict(argstr='--xfm %s', mandatory=True, xor=('reg_file', 'fsl_reg_file', 'xfm_reg_file', 'reg_header', 'subject'), ), ) inputs = ApplyVolTransform.input_spec() for key, metadata in list(input_map.items()): for metakey, value in list(metadata.items()): assert getattr(inputs.traits()[key], metakey) == value def test_ApplyVolTransform_outputs(): output_map = dict(transformed_file=dict(), ) outputs = ApplyVolTransform.output_spec() for key, metadata in list(output_map.items()): for metakey, value in list(metadata.items()): assert getattr(outputs.traits()[key], metakey) == value
28.744444
78
0.624662
9bc9e03090bc77aea963849a08e0e19015ed4864
39,139
py
Python
cvpods/export/shared.py
lxtGH/BorderDet
ff425172a35a25e733d0facd79c2fd6f378052b0
[ "Apache-2.0" ]
null
null
null
cvpods/export/shared.py
lxtGH/BorderDet
ff425172a35a25e733d0facd79c2fd6f378052b0
[ "Apache-2.0" ]
null
null
null
cvpods/export/shared.py
lxtGH/BorderDet
ff425172a35a25e733d0facd79c2fd6f378052b0
[ "Apache-2.0" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import collections import contextlib import copy import functools import logging import mock import numpy as np import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import caffe2.python.utils as putils import torch import torch.nn.functional as F from caffe2.proto import caffe2_pb2 from caffe2.python import core, net_drawer, workspace from torch.nn.functional import interpolate as interp logger = logging.getLogger(__name__) # ==== torch/utils_toffee/cast.py ======================================= def to_device(t, device_str): """ This function is a replacement of .to(another_device) such that it allows the casting to be traced properly by explicitly calling the underlying copy ops. It also avoids introducing unncessary op when casting to the same device. """ src = t.device dst = torch.device(device_str) if src == dst: return t elif src.type == "cuda" and dst.type == "cpu": return torch.ops._caffe2.CopyGPUToCPU(t) elif src.type == "cpu" and dst.type == "cuda": return torch.ops._caffe2.CopyCPUToGPU(t) else: raise RuntimeError( "Can't cast tensor from device {} to device {}".format(src, dst)) # ==== torch/utils_toffee/interpolate.py ======================================= # Note: borrowed from vision/detection/fair/detectron/detectron/modeling/detector.py def BilinearInterpolation(tensor_in, up_scale): assert up_scale % 2 == 0, "Scale should be even" def upsample_filt(size): factor = (size + 1) // 2 if size % 2 == 1: center = factor - 1 else: center = factor - 0.5 og = np.ogrid[:size, :size] return (1 - abs(og[0] - center) / factor) * ( 1 - abs(og[1] - center) / factor) kernel_size = int(up_scale) * 2 bil_filt = upsample_filt(kernel_size) dim = int(tensor_in.shape[1]) kernel = np.zeros((dim, dim, kernel_size, kernel_size), dtype=np.float32) kernel[range(dim), range(dim), :, :] = bil_filt tensor_out = F.conv_transpose2d( tensor_in, weight=to_device(torch.Tensor(kernel), tensor_in.device), bias=None, stride=int(up_scale), padding=int(up_scale / 2), ) return tensor_out # NOTE: ONNX is incompatible with traced torch.nn.functional.interpolate if # using dynamic `scale_factor` rather than static `size`. (T43166860) # NOTE: Caffe2 Int8 conversion might not be able to quantize `size` properly. def onnx_compatibale_interpolate(input, size=None, scale_factor=None, mode="nearest", align_corners=None): # NOTE: The input dimensions are interpreted in the form: # `mini-batch x channels x [optional depth] x [optional height] x width`. if size is None and scale_factor is not None: if input.dim() == 4: if isinstance(scale_factor, (int, float)): height_scale, width_scale = (scale_factor, scale_factor) else: assert isinstance(scale_factor, (tuple, list)) assert len(scale_factor) == 2 height_scale, width_scale = scale_factor assert not align_corners, "No matching C2 op for align_corners == True" if mode == "nearest": return torch.ops._caffe2.ResizeNearest( input, order="NCHW", width_scale=width_scale, height_scale=height_scale, ) elif mode == "bilinear": logger.warning( "Use F.conv_transpose2d for bilinear interpolate" " because there's no such C2 op, this may cause significant" " slowdown and the boundary pixels won't be as same as" " using F.interpolate due to padding.") assert height_scale == width_scale return BilinearInterpolation(input, up_scale=height_scale) logger.warning( "Output size is not static, it might cause ONNX conversion issue") return interp(input, size, scale_factor, mode, align_corners) @contextlib.contextmanager def mock_torch_nn_functional_interpolate(): if torch.onnx.is_in_onnx_export(): with mock.patch("torch.nn.functional.interpolate", side_effect=onnx_compatibale_interpolate): yield else: yield # ==== torch/utils_caffe2/ws_utils.py ========================================== class ScopedWS(object): def __init__(self, ws_name, is_reset, is_cleanup=False): self.ws_name = ws_name self.is_reset = is_reset self.is_cleanup = is_cleanup self.org_ws = "" def __enter__(self): self.org_ws = workspace.CurrentWorkspace() if self.ws_name is not None: workspace.SwitchWorkspace(self.ws_name, True) if self.is_reset: workspace.ResetWorkspace() return workspace def __exit__(self, *args): if self.is_cleanup: workspace.ResetWorkspace() if self.ws_name is not None: workspace.SwitchWorkspace(self.org_ws) def fetch_any_blob(name): bb = None try: bb = workspace.FetchBlob(name) except TypeError: bb = workspace.FetchInt8Blob(name) except Exception as e: logger.error("Get blob {} error: {}".format(name, e)) return bb # ==== torch/utils_caffe2/protobuf.py ========================================== def get_pb_arg(pb, arg_name): for x in pb.arg: if x.name == arg_name: return x return None def get_pb_arg_valf(pb, arg_name, default_val): arg = get_pb_arg(pb, arg_name) return arg.f if arg is not None else default_val def get_pb_arg_floats(pb, arg_name, default_val): arg = get_pb_arg(pb, arg_name) return list(map(float, arg.floats)) if arg is not None else default_val def get_pb_arg_ints(pb, arg_name, default_val): arg = get_pb_arg(pb, arg_name) return list(map(int, arg.ints)) if arg is not None else default_val def get_pb_arg_vali(pb, arg_name, default_val): arg = get_pb_arg(pb, arg_name) return arg.i if arg is not None else default_val def get_pb_arg_vals(pb, arg_name, default_val): arg = get_pb_arg(pb, arg_name) return arg.s if arg is not None else default_val def get_pb_arg_valstrings(pb, arg_name, default_val): arg = get_pb_arg(pb, arg_name) return list(arg.strings) if arg is not None else default_val def check_set_pb_arg(pb, arg_name, arg_attr, arg_value, allow_override=False): arg = get_pb_arg(pb, arg_name) if arg is None: arg = putils.MakeArgument(arg_name, arg_value) assert hasattr(arg, arg_attr) pb.arg.extend([arg]) if allow_override and getattr(arg, arg_attr) != arg_value: logger.warning("Override argument {}: {} -> {}".format( arg_name, getattr(arg, arg_attr), arg_value)) setattr(arg, arg_attr, arg_value) else: assert arg is not None assert getattr( arg, arg_attr) == arg_value, "Existing value {}, new value {}".format( getattr(arg, arg_attr), arg_value) def _create_const_fill_op_from_numpy(name, tensor, device_option=None): assert type(tensor) == np.ndarray kTypeNameMapper = { np.dtype("float32"): "GivenTensorFill", np.dtype("int32"): "GivenTensorIntFill", np.dtype("int64"): "GivenTensorInt64Fill", np.dtype("uint8"): "GivenTensorStringFill", } args_dict = {} if tensor.dtype == np.dtype("uint8"): args_dict.update({"values": [str(tensor.data)], "shape": [1]}) else: args_dict.update({"values": tensor, "shape": tensor.shape}) if device_option is not None: args_dict["device_option"] = device_option return core.CreateOperator(kTypeNameMapper[tensor.dtype], [], [name], **args_dict) def _create_const_fill_op_from_c2_int8_tensor(name, int8_tensor): assert type(int8_tensor) == workspace.Int8Tensor kTypeNameMapper = { np.dtype("int32"): "Int8GivenIntTensorFill", np.dtype("uint8"): "Int8GivenTensorFill", } tensor = int8_tensor.data assert tensor.dtype in [np.dtype("uint8"), np.dtype("int32")] values = tensor.tobytes() if tensor.dtype == np.dtype("uint8") else tensor return core.CreateOperator( kTypeNameMapper[tensor.dtype], [], [name], values=values, shape=tensor.shape, Y_scale=int8_tensor.scale, Y_zero_point=int8_tensor.zero_point, ) def create_const_fill_op( name: str, blob: Union[np.ndarray, workspace.Int8Tensor], device_option: Optional[caffe2_pb2.DeviceOption] = None, ) -> caffe2_pb2.OperatorDef: """ Given a blob object, return the Caffe2 operator that creates this blob as constant. Currently support NumPy tensor and Caffe2 Int8Tensor. """ tensor_type = type(blob) assert tensor_type in [ np.ndarray, workspace.Int8Tensor ], ('Error when creating const fill op for "{}", unsupported blob type: {}' ).format(name, type(blob)) if tensor_type == np.ndarray: return _create_const_fill_op_from_numpy(name, blob, device_option) elif tensor_type == workspace.Int8Tensor: assert device_option is None return _create_const_fill_op_from_c2_int8_tensor(name, blob) def construct_init_net_from_params( params: Dict[str, Any], device_options: Optional[Dict[str, caffe2_pb2.DeviceOption]] = None ) -> caffe2_pb2.NetDef: """ Construct the init_net from params dictionary """ init_net = caffe2_pb2.NetDef() device_options = device_options or {} for name, blob in params.items(): if isinstance(blob, str): logger.warning(( "Blob {} with type {} is not supported in generating init net," " skipped.".format(name, type(blob)))) continue init_net.op.extend([ create_const_fill_op(name, blob, device_option=device_options.get(name, None)) ]) init_net.external_output.append(name) return init_net def get_producer_map(ssa): """ Return dict from versioned blob to (i, j), where i is index of producer op, j is the index of output of that op. """ producer_map = {} for i in range(len(ssa)): outputs = ssa[i][1] for j, outp in enumerate(outputs): producer_map[outp] = (i, j) return producer_map def get_consumer_map(ssa): """ Return dict from versioned blob to list of (i, j), where i is index of consumer op, j is the index of input of that op. """ consumer_map = collections.defaultdict(list) for i in range(len(ssa)): inputs = ssa[i][0] for j, inp in enumerate(inputs): consumer_map[inp].append((i, j)) return consumer_map def get_params_from_init_net( init_net: caffe2_pb2.NetDef ) -> [Dict[str, Any], Dict[str, caffe2_pb2.DeviceOption]]: """ Take the output blobs from init_net by running it. Outputs: params: dict from blob name to numpy array device_options: dict from blob name to the device option of its creating op """ # NOTE: this assumes that the params is determined by producer op with the # only exception be CopyGPUToCPU which is CUDA op but returns CPU tensor. def _get_device_option(producer_op): if producer_op.type == "CopyGPUToCPU": return caffe2_pb2.DeviceOption() else: return producer_op.device_option with ScopedWS("__get_params_from_init_net__", is_reset=True, is_cleanup=True) as ws: ws.RunNetOnce(init_net) params = {b: fetch_any_blob(b) for b in init_net.external_output} ssa, versions = core.get_ssa(init_net) producer_map = get_producer_map(ssa) device_options = { b: _get_device_option(init_net.op[producer_map[(b, versions[b])][0]]) for b in init_net.external_output } return params, device_options def _updater_raise(op, input_types, output_types): raise RuntimeError( "Failed to apply updater for op {} given input_types {} and" " output_types {}".format(op, input_types, output_types)) def _generic_status_identifier( predict_net: caffe2_pb2.NetDef, status_updater: Callable, known_status: Dict[Tuple[str, int], Any], ) -> Dict[Tuple[str, int], Any]: """ Statically infer the status of each blob, the status can be such as device type (CPU/GPU), layout (NCHW/NHWC), data type (float32/int8), etc. "Blob" here is versioned blob (Tuple[str, int]) in the format compatible with ssa. Inputs: predict_net: the caffe2 network status_updater: a callable, given an op and the status of its input/output, it returns the updated status of input/output. `None` is used for representing unknown status. known_status: a dict containing known status, used as initialization. Outputs: A dict mapping from versioned blob to its status """ ssa, versions = core.get_ssa(predict_net) versioned_ext_input = [(b, 0) for b in predict_net.external_input] versioned_ext_output = [(b, versions[b]) for b in predict_net.external_output] all_versioned_blobs = set().union(*[set(x[0] + x[1]) for x in ssa]) allowed_vbs = all_versioned_blobs.union(versioned_ext_input).union( versioned_ext_output) assert all(k in allowed_vbs for k in known_status) assert all(v is not None for v in known_status.values()) _known_status = copy.deepcopy(known_status) def _check_and_update(key, value): assert value is not None if key in _known_status: if not _known_status[key] == value: raise RuntimeError( "Confilict status for {}, existing status {}, new status {}" .format(key, _known_status[key], value)) _known_status[key] = value def _update_i(op, ssa_i): versioned_inputs = ssa_i[0] versioned_outputs = ssa_i[1] inputs_status = [_known_status.get(b, None) for b in versioned_inputs] outputs_status = [ _known_status.get(b, None) for b in versioned_outputs ] new_inputs_status, new_outputs_status = status_updater( op, inputs_status, outputs_status) for versioned_blob, status in zip( versioned_inputs + versioned_outputs, new_inputs_status + new_outputs_status): if status is not None: _check_and_update(versioned_blob, status) for op, ssa_i in zip(predict_net.op, ssa): _update_i(op, ssa_i) for op, ssa_i in zip(reversed(predict_net.op), reversed(ssa)): _update_i(op, ssa_i) # NOTE: This strictly checks all the blob from predict_net must be assgined # a known status. However sometimes it's impossible (eg. having deadend op), # we may relax this constraint if for k in all_versioned_blobs: if k not in _known_status: raise NotImplementedError( "Can not infer the status for {}. Currently only support the case where" " a single forward and backward pass can identify status for all blobs." .format(k)) return _known_status def infer_device_type( predict_net: caffe2_pb2.NetDef, known_status: Dict[Tuple[str, int], Any], device_name_style: str = "caffe2", ) -> Dict[Tuple[str, int], str]: """ Return the device type ("cpu" or "gpu"/"cuda") of each (versioned) blob """ assert device_name_style in ["caffe2", "pytorch"] _CPU_STR = "cpu" _GPU_STR = "gpu" if device_name_style == "caffe2" else "cuda" def _copy_cpu_to_gpu_updater(op, input_types, output_types): if input_types[0] == _GPU_STR or output_types[0] == _CPU_STR: _updater_raise(op, input_types, output_types) return ([_CPU_STR], [_GPU_STR]) def _copy_gpu_to_cpu_updater(op, input_types, output_types): if input_types[0] == _CPU_STR or output_types[0] == _GPU_STR: _updater_raise(op, input_types, output_types) return ([_GPU_STR], [_CPU_STR]) def _other_ops_updater(op, input_types, output_types): non_none_types = [ x for x in input_types + output_types if x is not None ] if len(non_none_types) > 0: the_type = non_none_types[0] if not all(x == the_type for x in non_none_types): _updater_raise(op, input_types, output_types) else: the_type = None return ([the_type for _ in op.input], [the_type for _ in op.output]) def _device_updater(op, *args, **kwargs): return { "CopyCPUToGPU": _copy_cpu_to_gpu_updater, "CopyGPUToCPU": _copy_gpu_to_cpu_updater, }.get(op.type, _other_ops_updater)(op, *args, **kwargs) return _generic_status_identifier(predict_net, _device_updater, known_status) # ==== torch/utils_caffe2/vis.py =============================================== def _modify_blob_names(ops, blob_rename_f): ret = [] def _replace_list(blob_list, replaced_list): del blob_list[:] blob_list.extend(replaced_list) for x in ops: cur = copy.deepcopy(x) _replace_list(cur.input, list(map(blob_rename_f, cur.input))) _replace_list(cur.output, list(map(blob_rename_f, cur.output))) ret.append(cur) return ret def _rename_blob(name, blob_sizes, blob_ranges): def _list_to_str(bsize): ret = ", ".join([str(x) for x in bsize]) ret = "[" + ret + "]" return ret ret = name if blob_sizes is not None and name in blob_sizes: ret += "\n" + _list_to_str(blob_sizes[name]) if blob_ranges is not None and name in blob_ranges: ret += "\n" + _list_to_str(blob_ranges[name]) return ret # graph_name could not contain word 'graph' def save_graph(net, file_name, graph_name="net", op_only=True, blob_sizes=None, blob_ranges=None): blob_rename_f = functools.partial(_rename_blob, blob_sizes=blob_sizes, blob_ranges=blob_ranges) return save_graph_base(net, file_name, graph_name, op_only, blob_rename_f) def save_graph_base(net, file_name, graph_name="net", op_only=True, blob_rename_func=None): graph = None ops = net.op if blob_rename_func is not None: ops = _modify_blob_names(ops, blob_rename_func) if not op_only: graph = net_drawer.GetPydotGraph(ops, graph_name, rankdir="TB") else: graph = net_drawer.GetPydotGraphMinimal(ops, graph_name, rankdir="TB", minimal_dependency=True) try: par_dir = os.path.dirname(file_name) if not os.path.exists(par_dir): os.makedirs(par_dir) format = os.path.splitext(os.path.basename(file_name))[-1] if format == ".png": graph.write_png(file_name) elif format == ".pdf": graph.write_pdf(file_name) elif format == ".svg": graph.write_svg(file_name) else: print("Incorrect format {}".format(format)) except Exception as e: print("Error when writing graph to image {}".format(e)) return graph # ==== torch/utils_toffee/aten_to_caffe2.py ==================================== def group_norm_replace_aten_with_caffe2(predict_net: caffe2_pb2.NetDef): """ For ONNX exported model, GroupNorm will be represented as ATen op, this can be a drop in replacement from ATen to GroupNorm """ count = 0 for op in predict_net.op: if op.type == "ATen": op_name = get_pb_arg_vals(op, "operator", None) # return byte in py3 if op_name and op_name.decode() == "group_norm": op.arg.remove(get_pb_arg(op, "operator")) if get_pb_arg_vali(op, "cudnn_enabled", None): op.arg.remove(get_pb_arg(op, "cudnn_enabled")) num_groups = get_pb_arg_vali(op, "num_groups", None) if num_groups is not None: op.arg.remove(get_pb_arg(op, "num_groups")) check_set_pb_arg(op, "group", "i", num_groups) op.type = "GroupNorm" count += 1 if count > 1: logger.info("Replaced {} ATen operator to GroupNormOp".format(count)) # ==== torch/utils_toffee/alias.py ============================================= def alias(x, name, is_backward=False): if not torch.onnx.is_in_onnx_export(): return x assert isinstance(x, torch.Tensor) return torch.ops._caffe2.AliasWithName(x, name, is_backward=is_backward) def fuse_alias_placeholder(predict_net, init_net): """ Remove AliasWithName placeholder and rename the input/output of it """ # First we finish all the re-naming for i, op in enumerate(predict_net.op): if op.type == "AliasWithName": assert len(op.input) == 1 assert len(op.output) == 1 name = get_pb_arg_vals(op, "name", None).decode() is_backward = bool(get_pb_arg_vali(op, "is_backward", 0)) rename_op_input(predict_net, init_net, i, 0, name, from_producer=is_backward) rename_op_output(predict_net, i, 0, name) # Remove AliasWithName, should be very safe since it's a non-op new_ops = [] for op in predict_net.op: if op.type != "AliasWithName": new_ops.append(op) else: # safety check assert op.input == op.output assert op.input[0] == op.arg[0].s.decode() del predict_net.op[:] predict_net.op.extend(new_ops) # ==== torch/utils_caffe2/graph_transform.py =================================== class IllegalGraphTransformError(ValueError): """ When a graph transform function call can't be executed. """ def _rename_versioned_blob_in_proto( proto: caffe2_pb2.NetDef, old_name: str, new_name: str, version: int, ssa: List[Tuple[List[Tuple[str, int]], List[Tuple[str, int]]]], start_versions: Dict[str, int], end_versions: Dict[str, int], ): """ In given proto, rename all blobs with matched version """ # Operater list for op, i_th_ssa in zip(proto.op, ssa): versioned_inputs, versioned_outputs = i_th_ssa for i in range(len(op.input)): if versioned_inputs[i] == (old_name, version): op.input[i] = new_name for i in range(len(op.output)): if versioned_outputs[i] == (old_name, version): op.output[i] = new_name # external_input if start_versions.get(old_name, 0) == version: for i in range(len(proto.external_input)): if proto.external_input[i] == old_name: proto.external_input[i] = new_name # external_output if end_versions.get(old_name, 0) == version: for i in range(len(proto.external_output)): if proto.external_output[i] == old_name: proto.external_output[i] = new_name def rename_op_input( predict_net: caffe2_pb2.NetDef, init_net: caffe2_pb2.NetDef, op_id: int, input_id: int, new_name: str, from_producer: bool = False, ): """ Rename the op_id-th operator in predict_net, change it's input_id-th input's name to the new_name. It also does automatic re-route and change external_input and init_net if necessary. - It requires the input is only consumed by this op. - This function modifies predict_net and init_net in-place. - When from_producer is enable, this also updates other operators that consumes the same input. Be cautious because may trigger unintended behaviour. """ assert isinstance(predict_net, caffe2_pb2.NetDef) assert isinstance(init_net, caffe2_pb2.NetDef) init_net_ssa, init_net_versions = core.get_ssa(init_net) predict_net_ssa, predict_net_versions = core.get_ssa( predict_net, copy.deepcopy(init_net_versions)) versioned_inputs, versioned_outputs = predict_net_ssa[op_id] old_name, version = versioned_inputs[input_id] if from_producer: producer_map = get_producer_map(predict_net_ssa) if not (old_name, version) in producer_map: raise NotImplementedError( "Can't find producer, the input {} is probably from" " init_net, this is not supported yet.".format(old_name)) producer = producer_map[(old_name, version)] rename_op_output(predict_net, producer[0], producer[1], new_name) return def contain_targets(op_ssa): return (old_name, version) in op_ssa[0] is_consumer = [contain_targets(op_ssa) for op_ssa in predict_net_ssa] if sum(is_consumer) > 1: raise IllegalGraphTransformError(( "Input '{}' of operator(#{}) are consumed by other ops, please use" + " rename_op_output on the producer instead. Offending op: \n{}" ).format(old_name, op_id, predict_net.op[op_id])) # update init_net _rename_versioned_blob_in_proto(init_net, old_name, new_name, version, init_net_ssa, {}, init_net_versions) # update predict_net _rename_versioned_blob_in_proto( predict_net, old_name, new_name, version, predict_net_ssa, init_net_versions, predict_net_versions, ) def rename_op_output(predict_net: caffe2_pb2.NetDef, op_id: int, output_id: int, new_name: str): """ Rename the op_id-th operator in predict_net, change it's output_id-th input's name to the new_name. It also does automatic re-route and change external_output and if necessary. - It allows multiple consumers of its output. - This function modifies predict_net in-place, doesn't need init_net. """ assert isinstance(predict_net, caffe2_pb2.NetDef) ssa, blob_versions = core.get_ssa(predict_net) versioned_inputs, versioned_outputs = ssa[op_id] old_name, version = versioned_outputs[output_id] # update predict_net _rename_versioned_blob_in_proto(predict_net, old_name, new_name, version, ssa, {}, blob_versions) def get_sub_graph_external_input_output( predict_net: caffe2_pb2.NetDef, sub_graph_op_indices: List[int] ) -> Tuple[List[Tuple[str, int]], List[Tuple[str, int]]]: """ Return the list of external input/output of sub-graph, each element is tuple of the name and corresponding version in predict_net. external input/output is defined the same way as caffe2 NetDef. """ ssa, versions = core.get_ssa(predict_net) all_inputs = [] all_outputs = [] for op_id in sub_graph_op_indices: all_inputs += [inp for inp in ssa[op_id][0] if inp not in all_inputs] all_outputs += list(ssa[op_id][1]) # ssa output won't repeat # for versioned blobs, external inputs are just those blob in all_inputs # but not in all_outputs ext_inputs = [inp for inp in all_inputs if inp not in all_outputs] # external outputs are essentially outputs of this subgraph that are used # outside of this sub-graph (including predict_net.external_output) all_other_inputs = sum( (ssa[i][0] for i in range(len(ssa)) if i not in sub_graph_op_indices), [(outp, versions[outp]) for outp in predict_net.external_output], ) ext_outputs = [ outp for outp in all_outputs if outp in set(all_other_inputs) ] return ext_inputs, ext_outputs class DiGraph: """ A DAG representation of caffe2 graph, each vertice is a versioned blob. """ def __init__(self): self.vertices = set() self.graph = collections.defaultdict(list) def add_edge(self, u, v): self.graph[u].append(v) self.vertices.add(u) self.vertices.add(v) # grab from https://www.geeksforgeeks.org/find-paths-given-source-destination/ def get_all_paths(self, s, d): visited = {k: False for k in self.vertices} path = [] all_paths = [] def _get_all_paths_util(graph, u, d, visited, path): visited[u] = True path.append(u) if u == d: all_paths.append(copy.deepcopy(path)) else: for i in graph[u]: if not visited[i]: _get_all_paths_util(graph, i, d, visited, path) path.pop() visited[u] = False _get_all_paths_util(self.graph, s, d, visited, path) return all_paths @staticmethod def from_ssa(ssa): graph = DiGraph() for op_id in range(len(ssa)): for inp in ssa[op_id][0]: for outp in ssa[op_id][1]: graph.add_edge(inp, outp) return graph def _get_dependency_chain(ssa, versioned_target, versioned_source): """ Return the index list of relevant operator to produce target blob from source blob, if there's no dependency, return empty list. """ # finding all paths between nodes can be O(N!), thus we can only search # in the subgraph using the op starting from the first consumer of source blob # to the producer of the target blob. consumer_map = get_consumer_map(ssa) producer_map = get_producer_map(ssa) start_op = min(x[0] for x in consumer_map[versioned_source]) - 15 end_op = (producer_map[versioned_target][0] + 15 if versioned_target in producer_map else start_op) sub_graph_ssa = ssa[start_op:end_op + 1] if len(sub_graph_ssa) > 30: logger.warning( "Subgraph bebetween {} and {} is large (from op#{} to op#{}), it" " might take non-trival time to find all paths between them.". format(versioned_source, versioned_target, start_op, end_op)) dag = DiGraph.from_ssa(sub_graph_ssa) paths = dag.get_all_paths(versioned_source, versioned_target) # include two ends ops_in_paths = [[producer_map[blob][0] for blob in path[1:]] for path in paths] return sorted(set().union(*[set(ops) for ops in ops_in_paths])) def identify_reshape_sub_graph( predict_net: caffe2_pb2.NetDef, ) -> List[List[int]]: """ Idenfity the reshape sub-graph in a protobuf. The reshape sub-graph is defined as matching the following pattern: (input_blob) -> Op_1 -> ... -> Op_N -> (new_shape) -─┐ └-------------------------------------------> Reshape -> (output_blob) Return: List of sub-graphs, each sub-graph is represented as a list of indices of the relavent ops, [Op_1, Op_2, ..., Op_N, Reshape] """ ssa, _ = core.get_ssa(predict_net) ret = [] for i, op in enumerate(predict_net.op): if op.type == "Reshape": assert len(op.input) == 2 input_ssa = ssa[i][0] data_source = input_ssa[0] shape_source = input_ssa[1] op_indices = _get_dependency_chain(ssa, shape_source, data_source) ret.append(op_indices + [i]) return ret def remove_reshape_for_fc(predict_net, params): """ In PyTorch nn.Linear has to take 2D tensor, this often leads to reshape a 4D tensor to 2D by calling .view(). However this (dynamic) reshaping doesn't work well with ONNX and Int8 tools, and cause using extra ops (eg. ExpandDims) that might not be available on mobile. Luckily Caffe2 supports 4D tensor for FC, so we can remove those reshape after exporting ONNX model. """ from caffe2.python import core # find all reshape sub-graph that can be removed, which is now all Reshape # sub-graph whose output is only consumed by FC. # TODO: to make it safer, we may need the actually value to better determine # if a Reshape before FC is removable. reshape_sub_graphs = identify_reshape_sub_graph(predict_net) sub_graphs_to_remove = [] for reshape_sub_graph in reshape_sub_graphs: reshape_op_id = reshape_sub_graph[-1] assert predict_net.op[reshape_op_id].type == "Reshape" ssa, _ = core.get_ssa(predict_net) reshape_output = ssa[reshape_op_id][1][0] consumers = [i for i in range(len(ssa)) if reshape_output in ssa[i][0]] if all(predict_net.op[consumer].type == "FC" for consumer in consumers): # safety check if the sub-graph is isolated, for this reshape sub-graph, # it means it has one non-param external input and one external output. ext_inputs, ext_outputs = get_sub_graph_external_input_output( predict_net, reshape_sub_graph) non_params_ext_inputs = [inp for inp in ext_inputs if inp[1] != 0] if len(non_params_ext_inputs) == 1 and len(ext_outputs) == 1: sub_graphs_to_remove.append(reshape_sub_graph) # perform removing subgraph by: # 1: rename the Reshape's output to its input, then the graph can be # seen as in-place itentify, meaning whose external input/output are the same. # 2: simply remove those ops. remove_op_ids = [] params_to_remove = [] for sub_graph in sub_graphs_to_remove: logger.info("Remove Reshape sub-graph:\n{}".format("".join( ["(#{:>4})\n{}".format(i, predict_net.op[i]) for i in sub_graph]))) reshape_op_id = sub_graph[-1] new_reshap_output = predict_net.op[reshape_op_id].input[0] rename_op_output(predict_net, reshape_op_id, 0, new_reshap_output) ext_inputs, ext_outputs = get_sub_graph_external_input_output( predict_net, sub_graph) non_params_ext_inputs = [inp for inp in ext_inputs if inp[1] != 0] params_ext_inputs = [inp for inp in ext_inputs if inp[1] == 0] assert len(non_params_ext_inputs) == 1 and len(ext_outputs) == 1 assert ext_outputs[0][0] == non_params_ext_inputs[0][0] assert ext_outputs[0][1] == non_params_ext_inputs[0][1] + 1 remove_op_ids.extend(sub_graph) params_to_remove.extend(params_ext_inputs) predict_net = copy.deepcopy(predict_net) new_ops = [ op for i, op in enumerate(predict_net.op) if i not in remove_op_ids ] del predict_net.op[:] predict_net.op.extend(new_ops) for versioned_params in params_to_remove: name = versioned_params[0] logger.info( "Remove params: {} from init_net and predict_net.external_input". format(name)) del params[name] predict_net.external_input.remove(name) return predict_net, params def fuse_copy_between_cpu_and_gpu(predict_net: caffe2_pb2.NetDef): """ In-place fuse extra copy ops between cpu/gpu for the following case: a -CopyAToB-> b -CopyBToA> c1 -NextOp1-> d1 -CopyBToA> c2 -NextOp2-> d2 The fused network will look like: a -NextOp1-> d1 -NextOp2-> d2 """ _COPY_OPS = ["CopyCPUToGPU", "CopyGPUToCPU"] def _fuse_once(predict_net): ssa, blob_versions = core.get_ssa(predict_net) consumer_map = get_consumer_map(ssa) versioned_external_output = [(name, blob_versions[name]) for name in predict_net.external_output] for op_id, op in enumerate(predict_net.op): if op.type in _COPY_OPS: fw_copy_versioned_output = ssa[op_id][1][0] consumer_ids = [ x[0] for x in consumer_map[fw_copy_versioned_output] ] reverse_op_type = _COPY_OPS[1 - _COPY_OPS.index(op.type)] is_fusable = ( len(consumer_ids) > 0 and fw_copy_versioned_output not in versioned_external_output and all(predict_net.op[_op_id].type == reverse_op_type and ssa[_op_id][1][0] not in versioned_external_output for _op_id in consumer_ids)) if is_fusable: for rv_copy_op_id in consumer_ids: # making each NextOp uses "a" directly and removing Copy ops rs_copy_versioned_output = ssa[rv_copy_op_id][1][0] next_op_id, inp_id = consumer_map[ rs_copy_versioned_output][0] predict_net.op[next_op_id].input[inp_id] = op.input[0] # remove CopyOps new_ops = [ op for i, op in enumerate(predict_net.op) if i != op_id and i not in consumer_ids ] del predict_net.op[:] predict_net.op.extend(new_ops) return True return False # _fuse_once returns False is nothing can be fused while _fuse_once(predict_net): pass def remove_dead_end_ops(net_def: caffe2_pb2.NetDef): """ remove ops if its output is not used or not in external_output """ ssa, versions = core.get_ssa(net_def) versioned_external_output = [(name, versions[name]) for name in net_def.external_output] consumer_map = get_consumer_map(ssa) removed_op_ids = set() def _is_dead_end(versioned_blob): return not (versioned_blob in versioned_external_output or (len(consumer_map[versioned_blob]) > 0 and all(x[0] not in removed_op_ids for x in consumer_map[versioned_blob]))) for i, ssa_i in reversed(list(enumerate(ssa))): versioned_outputs = ssa_i[1] if all(_is_dead_end(outp) for outp in versioned_outputs): removed_op_ids.add(i) # simply removing those deadend ops should have no effect to external_output new_ops = [ op for i, op in enumerate(net_def.op) if i not in removed_op_ids ] del net_def.op[:] net_def.op.extend(new_ops)
36.888784
88
0.620966
b6707dd93b49b6d0e1205564f681e12cc5118345
1,532
py
Python
CodeArena/security.py
SaberSz/WeByte
3f88d572990b8342d2f28065fbb1d092449bf0ea
[ "MIT" ]
null
null
null
CodeArena/security.py
SaberSz/WeByte
3f88d572990b8342d2f28065fbb1d092449bf0ea
[ "MIT" ]
null
null
null
CodeArena/security.py
SaberSz/WeByte
3f88d572990b8342d2f28065fbb1d092449bf0ea
[ "MIT" ]
null
null
null
from itsdangerous import TimedJSONWebSignatureSerializer as Serializer from CodeArena import app, mail import re from flask_mail import Message ts = Serializer(app.config["SECRET_KEY"], 86400) def send_mail(email, subject, html): # token = ts.dumps({'user_id': email}).decode('utf-8') msg = Message(subject, sender='noreply@WeByte.com', recipients=[email]) msg.body = f''' Hey, this is the TechLead. You made a great decision by signing up on WeByte. To activate your account click here {html} If you did not make this request then simply ignore this email and no changes will be made ''' mail.send(msg) # print("Mail sent") def send_mail_content(email, subject, html): msg = Message(subject, sender='noreply@WeByte.com', recipients=[email]) msg.body = html mail.send(msg) # print("Mail sent") def check_pass_strength(password): flag = 0 if (len(password) < 8): flag = -1 # print("z1") elif not re.search("[a-z]", password): flag = -1 # print("z2") elif not re.search("[A-Z]", password): flag = -1 # print("z3") elif not re.search("[0-9]", password): flag = -1 # print("z4") elif not re.search("[_@$#]", password): flag = -1 # print("z5") elif re.search("\s", password): flag = -1 # print("z6") else: flag = 0 return True if flag == -1: return False
26.413793
140
0.574413
ec47c81206535d89cc5fb1443bd160b651c22ab0
2,573
py
Python
src/flaskz/utils/_response.py
taozh1982/flaskz
daf900027bd0bf83e19ba963c3d218072d0ebc1e
[ "MIT" ]
null
null
null
src/flaskz/utils/_response.py
taozh1982/flaskz
daf900027bd0bf83e19ba963c3d218072d0ebc1e
[ "MIT" ]
null
null
null
src/flaskz/utils/_response.py
taozh1982/flaskz
daf900027bd0bf83e19ba963c3d218072d0ebc1e
[ "MIT" ]
null
null
null
from flask import current_app from ._app import get_app_config __all__ = ['create_response', 'get_status_msg', 'ResponseManager'] def create_response(success, data, data_wrapped=False): """ Create the response json result. :param success: :param data: :param data_wrapped: :return: """ if success is True: return _create_success_response(data, data_wrapped) else: return _create_fail_response(data) def _create_success_response(data, data_wrapped=False): """ :param data: :param data_wrapped: :return: """ status = get_app_config('FLASKZ_RES_SUCCESS_STATUS') or 'success' if data_wrapped is True: _data = { 'status': status, } _data.update(data) return _data else: return { 'status': status, 'data': data } def _create_fail_response(status_code, msg=None): """ :param msg: :param status_code: :return: """ status = get_app_config('FLASKZ_RES_FAIL_STATUS') or 'fail' msg = msg or get_status_msg(status_code) if type(status_code) == tuple: status_code = status_code[0] return { 'status': status, 'status_code': status_code, 'message': str(msg), } def get_status_msg(status_code): """ Get the specified message by status_code. Can be used to return internationalized text, Local can be fixed, or get the local from request :param status_code: :return: """ response_callback = get_current_response_manager('get_response_callback') if response_callback: return response_callback(status_code) if type(status_code) == tuple: len_ = len(status_code) if len_ > 1: return status_code[1] or status_code[0] elif len_ > 0: return status_code[0] return status_code def get_current_response_manager(callback_name): response_manager = getattr(current_app, 'response_manager', None) if response_manager: return getattr(response_manager, callback_name) class ResponseManager: """ Used to generate response. """ def __init__(self): self._get_response = None def init_app(self, app): app.response_manager = self def get_response(self, get_response): self._get_response = get_response @property def get_response_callback(self): return self._get_response
24.740385
100
0.620288
e6cffe0e3990a44d8d9029f334da45322a349d1c
26,927
py
Python
src/sage/rings/polynomial/flatten.py
Ivo-Maffei/DistanceRegular
d4dedd5c3e7da73111168fcce60d1f180fe24019
[ "BSL-1.0" ]
1
2020-05-19T22:34:03.000Z
2020-05-19T22:34:03.000Z
src/sage/rings/polynomial/flatten.py
Ivo-Maffei/DistanceRegular
d4dedd5c3e7da73111168fcce60d1f180fe24019
[ "BSL-1.0" ]
null
null
null
src/sage/rings/polynomial/flatten.py
Ivo-Maffei/DistanceRegular
d4dedd5c3e7da73111168fcce60d1f180fe24019
[ "BSL-1.0" ]
3
2020-03-29T17:13:36.000Z
2021-05-03T18:11:28.000Z
# -*- coding: utf-8 -*- r""" Class to flatten polynomial rings over polynomial ring For example ``QQ['a','b'],['x','y']`` flattens to ``QQ['a','b','x','y']``. EXAMPLES:: sage: R = QQ['x']['y']['s','t']['X'] sage: from sage.rings.polynomial.flatten import FlatteningMorphism sage: phi = FlatteningMorphism(R); phi Flattening morphism: From: Univariate Polynomial Ring in X over Multivariate Polynomial Ring in s, t over Univariate Polynomial Ring in y over Univariate Polynomial Ring in x over Rational Field To: Multivariate Polynomial Ring in x, y, s, t, X over Rational Field sage: phi('x*y*s + t*X').parent() Multivariate Polynomial Ring in x, y, s, t, X over Rational Field Authors: Vincent Delecroix, Ben Hutz (July 2016): initial implementation """ #***************************************************************************** # Copyright (C) 2016 # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # http://www.gnu.org/licenses/ #***************************************************************************** from __future__ import absolute_import, print_function import itertools, six from sage.categories.homset import Homset from sage.categories.morphism import Morphism from sage.misc.cachefunc import cached_method from .polynomial_ring_constructor import PolynomialRing from .polynomial_ring import is_PolynomialRing from .multi_polynomial_ring_base import is_MPolynomialRing from sage.rings.fraction_field import is_FractionField from sage.rings.fraction_field_element import FractionFieldElement from sage.rings.polynomial.polydict import ETuple class FlatteningMorphism(Morphism): r""" EXAMPLES:: sage: R = QQ['a','b']['x','y','z']['t1','t2'] sage: from sage.rings.polynomial.flatten import FlatteningMorphism sage: f = FlatteningMorphism(R) sage: f.codomain() Multivariate Polynomial Ring in a, b, x, y, z, t1, t2 over Rational Field sage: p = R('(a+b)*x + (a^2-b)*t2*(z+y)') sage: p ((a^2 - b)*y + (a^2 - b)*z)*t2 + (a + b)*x sage: f(p) a^2*y*t2 + a^2*z*t2 - b*y*t2 - b*z*t2 + a*x + b*x sage: f(p).parent() Multivariate Polynomial Ring in a, b, x, y, z, t1, t2 over Rational Field Also works when univariate polynomial ring are involved:: sage: R = QQ['x']['y']['s','t']['X'] sage: from sage.rings.polynomial.flatten import FlatteningMorphism sage: f = FlatteningMorphism(R) sage: f.codomain() Multivariate Polynomial Ring in x, y, s, t, X over Rational Field sage: p = R('((x^2 + 1) + (x+2)*y + x*y^3)*(s+t) + x*y*X') sage: p x*y*X + (x*y^3 + (x + 2)*y + x^2 + 1)*s + (x*y^3 + (x + 2)*y + x^2 + 1)*t sage: f(p) x*y^3*s + x*y^3*t + x^2*s + x*y*s + x^2*t + x*y*t + x*y*X + 2*y*s + 2*y*t + s + t sage: f(p).parent() Multivariate Polynomial Ring in x, y, s, t, X over Rational Field """ def __init__(self, domain): """ The Python constructor EXAMPLES:: sage: R = ZZ['a', 'b', 'c']['x', 'y', 'z'] sage: from sage.rings.polynomial.flatten import FlatteningMorphism sage: FlatteningMorphism(R) Flattening morphism: From: Multivariate Polynomial Ring in x, y, z over Multivariate Polynomial Ring in a, b, c over Integer Ring To: Multivariate Polynomial Ring in a, b, c, x, y, z over Integer Ring :: sage: R = ZZ['a']['b']['c'] sage: from sage.rings.polynomial.flatten import FlatteningMorphism sage: FlatteningMorphism(R) Flattening morphism: From: Univariate Polynomial Ring in c over Univariate Polynomial Ring in b over Univariate Polynomial Ring in a over Integer Ring To: Multivariate Polynomial Ring in a, b, c over Integer Ring :: sage: R = ZZ['a']['a','b'] sage: from sage.rings.polynomial.flatten import FlatteningMorphism sage: FlatteningMorphism(R) Flattening morphism: From: Multivariate Polynomial Ring in a, b over Univariate Polynomial Ring in a over Integer Ring To: Multivariate Polynomial Ring in a, a0, b over Integer Ring :: sage: K.<v> = NumberField(x^3 - 2) sage: R = K['x','y']['a','b'] sage: from sage.rings.polynomial.flatten import FlatteningMorphism sage: f = FlatteningMorphism(R) sage: f(R('v*a*x^2 + b^2 + 1/v*y')) (v)*x^2*a + b^2 + (1/2*v^2)*y :: sage: R = QQbar['x','y']['a','b'] sage: from sage.rings.polynomial.flatten import FlatteningMorphism sage: f = FlatteningMorphism(R) sage: f(R('QQbar(sqrt(2))*a*x^2 + b^2 + QQbar(I)*y')) 1.414213562373095?*x^2*a + b^2 + I*y :: sage: R.<z> = PolynomialRing(QQbar,1) sage: from sage.rings.polynomial.flatten import FlatteningMorphism sage: f = FlatteningMorphism(R) sage: f.domain(), f.codomain() (Multivariate Polynomial Ring in z over Algebraic Field, Multivariate Polynomial Ring in z over Algebraic Field) :: sage: R.<z> = PolynomialRing(QQbar) sage: from sage.rings.polynomial.flatten import FlatteningMorphism sage: f = FlatteningMorphism(R) sage: f.domain(), f.codomain() (Univariate Polynomial Ring in z over Algebraic Field, Univariate Polynomial Ring in z over Algebraic Field) TESTS:: sage: Pol = QQ['x']['x0']['x'] sage: fl = FlatteningMorphism(Pol) sage: fl Flattening morphism: From: Univariate Polynomial Ring in x over Univariate Polynomial Ring in x0 over Univariate Polynomial Ring in x over Rational Field To: Multivariate Polynomial Ring in x, x0, x1 over Rational Field sage: p = Pol([[[1,2],[3,4]],[[5,6],[7,8]]]) sage: fl.section()(fl(p)) == p True """ if not is_PolynomialRing(domain) and not is_MPolynomialRing(domain): raise ValueError("domain should be a polynomial ring") ring = domain variables = [] intermediate_rings = [] while is_PolynomialRing(ring) or is_MPolynomialRing(ring): intermediate_rings.append(ring) v = ring.variable_names() variables.extend(reversed(v)) ring = ring.base_ring() self._intermediate_rings = intermediate_rings variables.reverse() for i, a in enumerate(variables): if a in variables[:i]: for index in itertools.count(): b = a + str(index) if b not in variables: # not just variables[:i]! break variables[i] = b if is_MPolynomialRing(domain): codomain = PolynomialRing(ring, variables, len(variables)) else: codomain = PolynomialRing(ring, variables) hom = Homset(domain, codomain, base=ring, check=False) Morphism.__init__(self, hom) self._repr_type_str = 'Flattening' def _call_(self, p): r""" Evaluate a flattening morphism. EXAMPLES:: sage: R = QQ['a','b','c']['x','y','z'] sage: from sage.rings.polynomial.flatten import FlatteningMorphism sage: h = FlatteningMorphism(R)('2*a*x + b*z'); h 2*a*x + b*z sage: h.parent() Multivariate Polynomial Ring in a, b, c, x, y, z over Rational Field TESTS:: sage: R = QQ['x']['y']['s','t'] sage: p = R('s*x + y*t + x^2*s + 1 + t') sage: from sage.rings.polynomial.flatten import FlatteningMorphism sage: f = FlatteningMorphism(R) sage: f._call_(p) x^2*s + x*s + y*t + t + 1 """ #If we are just specializing a univariate polynomial, then #the flattening morphism is the identity if self.codomain().ngens()==1: return p p = {(): p} for ring in self._intermediate_rings: new_p = {} if is_PolynomialRing(ring): for mon,pp in six.iteritems(p): assert pp.parent() is ring for i,j in six.iteritems(pp.dict()): new_p[(i,)+(mon)] = j elif is_MPolynomialRing(ring): for mon,pp in six.iteritems(p): assert pp.parent() is ring for mmon,q in six.iteritems(pp.dict()): new_p[tuple(mmon)+mon] = q else: raise RuntimeError p = new_p return self.codomain()(p, check=False) @cached_method def section(self): """ Inverse of this flattening morphism. EXAMPLES:: sage: R = QQ['a','b','c']['x','y','z'] sage: from sage.rings.polynomial.flatten import FlatteningMorphism sage: h = FlatteningMorphism(R) sage: h.section() Unflattening morphism: From: Multivariate Polynomial Ring in a, b, c, x, y, z over Rational Field To: Multivariate Polynomial Ring in x, y, z over Multivariate Polynomial Ring in a, b, c over Rational Field :: sage: R = ZZ['a']['b']['c'] sage: from sage.rings.polynomial.flatten import FlatteningMorphism sage: FlatteningMorphism(R).section() Unflattening morphism: From: Multivariate Polynomial Ring in a, b, c over Integer Ring To: Univariate Polynomial Ring in c over Univariate Polynomial Ring in b over Univariate Polynomial Ring in a over Integer Ring """ phi= UnflatteningMorphism(self.codomain(), self.domain()) return phi class UnflatteningMorphism(Morphism): r""" Inverses for :class:`FlatteningMorphism` EXAMPLES:: sage: R = QQ['c','x','y','z'] sage: S = QQ['c']['x','y','z'] sage: from sage.rings.polynomial.flatten import UnflatteningMorphism sage: f = UnflatteningMorphism(R, S) sage: g = f(R('x^2 + c*y^2 - z^2'));g x^2 + c*y^2 - z^2 sage: g.parent() Multivariate Polynomial Ring in x, y, z over Univariate Polynomial Ring in c over Rational Field :: sage: R = QQ['a','b', 'x','y'] sage: S = QQ['a','b']['x','y'] sage: from sage.rings.polynomial.flatten import UnflatteningMorphism sage: UnflatteningMorphism(R, S) Unflattening morphism: From: Multivariate Polynomial Ring in a, b, x, y over Rational Field To: Multivariate Polynomial Ring in x, y over Multivariate Polynomial Ring in a, b over Rational Field """ def __init__(self, domain, codomain): """ The Python constructor EXAMPLES:: sage: R = QQ['x']['y']['s','t']['X'] sage: p = R.random_element() sage: from sage.rings.polynomial.flatten import FlatteningMorphism sage: f = FlatteningMorphism(R) sage: g = f.section() sage: g(f(p)) == p True :: sage: R = QQ['a','b','x','y'] sage: S = ZZ['a','b']['x','z'] sage: from sage.rings.polynomial.flatten import UnflatteningMorphism sage: UnflatteningMorphism(R, S) Traceback (most recent call last): ... ValueError: rings must have same base ring :: sage: R = QQ['a','b','x','y'] sage: S = QQ['a','b']['x','z','w'] sage: from sage.rings.polynomial.flatten import UnflatteningMorphism sage: UnflatteningMorphism(R, S) Traceback (most recent call last): ... ValueError: rings must have the same number of variables """ if not is_MPolynomialRing(domain): raise ValueError("domain should be a multivariate polynomial ring") if not is_PolynomialRing(codomain) and not is_MPolynomialRing(codomain): raise ValueError("codomain should be a polynomial ring") ring = codomain intermediate_rings = [] while True: is_polynomial_ring = is_PolynomialRing(ring) if not (is_polynomial_ring or is_MPolynomialRing(ring)): break intermediate_rings.append((ring, is_polynomial_ring)) ring = ring.base_ring() if domain.base_ring() != intermediate_rings[-1][0].base_ring(): raise ValueError("rings must have same base ring") if domain.ngens() != sum([R.ngens() for R, _ in intermediate_rings]): raise ValueError("rings must have the same number of variables") self._intermediate_rings = intermediate_rings hom = Homset(domain, codomain, base=ring, check=False) Morphism.__init__(self, hom) self._repr_type_str = 'Unflattening' def _call_(self, p): """ Evaluate an unflattening morphism. TESTS:: sage: from sage.rings.polynomial.flatten import FlatteningMorphism sage: for R in [ZZ['x']['y']['a,b,c'], GF(4)['x','y']['a','b'], ....: AA['x']['a','b']['y'], QQbar['a1','a2']['t']['X','Y']]: ....: f = FlatteningMorphism(R) ....: g = f.section() ....: for _ in range(10): ....: p = R.random_element() ....: assert p == g(f(p)) ....: z = R.zero() ....: assert z == g(f(z)) """ index = [0] for R, _ in reversed(self._intermediate_rings): index.append(index[-1] + len(R.gens())) newpol = [{} for _ in self._intermediate_rings] expo = sorted(p.exponents(), key=lambda e: tuple(reversed(e))) for i in range(len(expo)): cur_exp = expo[i] for l in range(len(self._intermediate_rings)): R, univariate = self._intermediate_rings[-1-l] sub_exp = (cur_exp[index[l]] if univariate else cur_exp[index[l]:index[l+1]]) if l == 0: newpol[l][sub_exp] = p[cur_exp] else: newpol[l][sub_exp] = newpol[l-1] newpol[l-1] = {} if (i == len(expo) - 1 or expo[i+1][index[l+1]:] != cur_exp[index[l+1]:]): newpol[l] = R(newpol[l], check=False) else: break return R(newpol[-1], check=False) class SpecializationMorphism(Morphism): r""" Morphisms to specialize parameters in (stacked) polynomial rings EXAMPLES:: sage: R.<c> = PolynomialRing(QQ) sage: S.<x,y,z> = PolynomialRing(R) sage: D = dict({c:1}) sage: from sage.rings.polynomial.flatten import SpecializationMorphism sage: f = SpecializationMorphism(S, D) sage: g = f(x^2 + c*y^2 - z^2); g x^2 + y^2 - z^2 sage: g.parent() Multivariate Polynomial Ring in x, y, z over Rational Field :: sage: R.<c> = PolynomialRing(QQ) sage: S.<z> = PolynomialRing(R) sage: from sage.rings.polynomial.flatten import SpecializationMorphism sage: xi = SpecializationMorphism(S, {c:0}); xi Specialization morphism: From: Univariate Polynomial Ring in z over Univariate Polynomial Ring in c over Rational Field To: Univariate Polynomial Ring in z over Rational Field sage: xi(z^2+c) z^2 :: sage: R1.<u,v> = PolynomialRing(QQ) sage: R2.<a,b,c> = PolynomialRing(R1) sage: S.<x,y,z> = PolynomialRing(R2) sage: D = dict({a:1, b:2, x:0, u:1}) sage: from sage.rings.polynomial.flatten import SpecializationMorphism sage: xi = SpecializationMorphism(S, D); xi Specialization morphism: From: Multivariate Polynomial Ring in x, y, z over Multivariate Polynomial Ring in a, b, c over Multivariate Polynomial Ring in u, v over Rational Field To: Multivariate Polynomial Ring in y, z over Univariate Polynomial Ring in c over Univariate Polynomial Ring in v over Rational Field sage: xi(a*(x*z+y^2)*u+b*v*u*(x*z+y^2)*y^2*c+c*y^2*z^2) 2*v*c*y^4 + c*y^2*z^2 + y^2 """ def __init__(self, domain, D): """ The Python constructor EXAMPLES:: sage: S.<x,y> = PolynomialRing(QQ) sage: D = dict({x:1}) sage: from sage.rings.polynomial.flatten import SpecializationMorphism sage: phi = SpecializationMorphism(S, D); phi Specialization morphism: From: Multivariate Polynomial Ring in x, y over Rational Field To: Univariate Polynomial Ring in y over Rational Field sage: phi(x^2 + y^2) y^2 + 1 :: sage: R.<a,b,c> = PolynomialRing(ZZ) sage: S.<x,y,z> = PolynomialRing(R) sage: from sage.rings.polynomial.flatten import SpecializationMorphism sage: xi = SpecializationMorphism(S, {a:1/2}) Traceback (most recent call last): ... TypeError: no conversion of this rational to integer The following was fixed in :trac:`23811`:: sage: R.<c>=RR[] sage: P.<z>=AffineSpace(R,1) sage: H=End(P) sage: f=H([z^2+c]) sage: f.specialization({c:1}) Scheme endomorphism of Affine Space of dimension 1 over Real Field with 53 bits of precision Defn: Defined on coordinates by sending (z) to (z^2 + 1.00000000000000) """ if not is_PolynomialRing(domain) and not is_MPolynomialRing(domain): raise TypeError("domain should be a polynomial ring") # use only the generators that are in the stack somewhere, # and ignore the rest all_gens = domain.gens_dict_recursive() new_D = {} for gen in D: if str(gen) in all_gens: new_D[gen] = D[gen] D = new_D # _sub_specialization is a specialization morphism (recursive) # which is applied to the base Fraction field, or None if it's # any other base ring self._sub_specialization = None # We use this composition where "flat" is a flattened # polynomial ring. # # phi D psi # domain → flat → flat → R # │ │ │ # └─────────┴───────────────┘ # _flattening_morph _eval_morph # = phi = psi ∘ D phi = FlatteningMorphism(domain) flat = phi.codomain() base = flat.base_ring() # Change domain of D to "flat" and ensure that the values lie # in the base ring. D = {phi(k): base(D[k]) for k in D} # Construct unflattened codomain R new_vars = [] R = domain while is_PolynomialRing(R) or is_MPolynomialRing(R) or is_FractionField(R): if is_FractionField(R): # We've hit base_ring, so set _sub_specialization and exit the loop field_over = R.base() applicable_vars = {key: val for key,val in D.items() if key not in flat.gens()} # If there are any variables in D to set in _sub_specialization if len(applicable_vars) != 0: # Coerce the generators to be in the right ring # This un-does changing the domain of D to be in the flat base ring tmp = {} for var, val in applicable_vars.items(): for gstr, gen in field_over.gens_dict_recursive().items(): if str(var) == gstr: tmp[gen] = val break else: # Should have been caught earlier raise NameError("argument " + str(var) + " is not a generator anywhere in the polynomial tower") applicable_vars = tmp self._sub_specialization = FractionSpecializationMorphism(R, applicable_vars) break # We're still in the polynomials, so keep track of the tower old = R.gens() new = [t for t in old if t not in D] force_multivariate = ((len(old) == 1) and is_MPolynomialRing(R)) new_vars.append((new, force_multivariate, old)) R = R.base_ring() if self._sub_specialization: # The sub_specialization range will be different # if it applied some variables from D R = self._sub_specialization.codomain().fraction_field() # Construct unflattening map psi (only defined on the variables # of "flat" which are not involved in D) psi = dict() # Reconstruct the proper domain of this morphism # based on the sub_specialization domains new_domain = R for new, force_multivariate, old in reversed(new_vars): if self._sub_specialization: if force_multivariate: new_domain = PolynomialRing(new_domain, old, len(old)) else: new_domain = PolynomialRing(new_domain, old) if not new: continue var_names = [str(var) for var in new] if force_multivariate: R = PolynomialRing(R, var_names, len(var_names)) else: R = PolynomialRing(R, var_names) # Map variables in "new" to R psi.update(zip([phi(w) for w in new], R.gens())) # Fix domain of eval_morph # (note: phi's domain is correct) if self._sub_specialization: phi_prime = FlatteningMorphism(new_domain) flat_old = flat flat = phi_prime.codomain() base_prime = flat.base_ring() D = {phi(k): base_prime(D[k]) for k in D} else: # The bottom of our tower hasn't changed flat_old = lambda x: x # Compose D with psi vals = [] for t in flat.gens(): if t in D: vals.append(R.coerce(D[t])) else: # Make sure keys are in the old domain # or else they won't match exactly vals.append(psi[flat_old(t)]) self._flattening_morph = phi self._eval_morph = flat.hom(vals, R) self._repr_type_str = 'Specialization' Morphism.__init__(self, domain, R) def _call_(self, p): """ Evaluate a specialization morphism. EXAMPLES:: sage: R.<a,b,c> = PolynomialRing(ZZ) sage: S.<x,y,z> = PolynomialRing(R) sage: D = dict({a:1, b:2, c:3}) sage: from sage.rings.polynomial.flatten import SpecializationMorphism sage: xi = SpecializationMorphism(S, D) sage: xi(a*x + b*y + c*z) x + 2*y + 3*z """ flat = self._flattening_morph(p) if self._sub_specialization is not None: # The base_ring should be a fraction field, so # apply _sub_specialization to each coefficient # in the flattened polynomial tmp = {} for exponent, coefficient in flat.dict().items(): # Fix the type of exponent from (a,) to a # (necessary for R(tmp) later) if isinstance(exponent, ETuple) and len(exponent) == 1: exponent = exponent[0] # Coefficient should be a fraction tmp[exponent] = self._sub_specialization._call_(coefficient) # tmp's parent should be the same construction as flat # but over _sub_specialization's codomain ring_constructor = flat.parent().construction()[0] fraction_type = self._sub_specialization.codomain() R = ring_constructor(fraction_type) flat = R(tmp) return self._eval_morph(flat) class FractionSpecializationMorphism(Morphism): """ A specialization morphism for fraction fields over (stacked) polynomial rings """ def __init__(self, domain, D): """ Initialize the morphism with a domain and dictionary of specializations EXAMPLES:: sage: R.<a,c> = QQ[] sage: S.<x,y> = R[] sage: from sage.rings.polynomial.flatten import FractionSpecializationMorphism sage: phi = FractionSpecializationMorphism(Frac(S), {c:3}) sage: phi Fraction Specialization morphism: From: Fraction Field of Multivariate Polynomial Ring in x, y over Multivariate Polynomial Ring in a, c over Rational Field To: Fraction Field of Multivariate Polynomial Ring in x, y over Univariate Polynomial Ring in a over Rational Field """ if not is_FractionField(domain): raise TypeError("domain must be a fraction field") self._specialization = SpecializationMorphism(domain.base(), D) self._repr_type_str = 'Fraction Specialization' Morphism.__init__(self, domain, self._specialization.codomain().fraction_field()) def _call_(self, p): """ Evaluate a fraction specialization morphism EXAMPLES:: sage: R.<a,b,c> = QQ[] sage: S.<x,y,z> = R[] sage: from sage.rings.polynomial.flatten import FractionSpecializationMorphism sage: phi = FractionSpecializationMorphism(Frac(S), {a:3, b:2, c:-2}) sage: spec = phi((a*x + b*y) / (c*z)) sage: spec (3*x + 2*y)/(-2*z) sage: spec.parent() Fraction Field of Multivariate Polynomial Ring in x, y, z over Rational Field """ if not isinstance(p, FractionFieldElement): raise TypeError("p must be a fraction field element") numerator = self._specialization._call_(p.numerator()) denominator = self._specialization._call_(p.denominator()) return numerator / denominator
40.010401
179
0.556467
222e8c9ab0252751f658071380aa8b99e1d16b91
3,707
py
Python
ambari-server/src/test/resources/stacks/HDP/2.0.7/services/HIVE/package/scripts/hive.py
zyclove/ambari
1032f0f54cb7b312b9a3b37570cd840f4e1e89d4
[ "Apache-2.0" ]
null
null
null
ambari-server/src/test/resources/stacks/HDP/2.0.7/services/HIVE/package/scripts/hive.py
zyclove/ambari
1032f0f54cb7b312b9a3b37570cd840f4e1e89d4
[ "Apache-2.0" ]
null
null
null
ambari-server/src/test/resources/stacks/HDP/2.0.7/services/HIVE/package/scripts/hive.py
zyclove/ambari
1032f0f54cb7b312b9a3b37570cd840f4e1e89d4
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python2 """ Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from resource_management import * import sys def hive(name=None): import params if name == 'metastore' or name == 'hiveserver2': hive_config_dir = params.hive_server_conf_dir config_file_mode = 0600 jdbc_connector() else: hive_config_dir = params.hive_conf_dir config_file_mode = 0644 Directory(hive_config_dir, owner=params.hive_user, group=params.user_group, create_parents = True ) XmlConfig("hive-site.xml", conf_dir=hive_config_dir, configurations=params.config['configurations']['hive-site'], configuration_attributes=params.config['configuration_attributes']['hive-site'], owner=params.hive_user, group=params.user_group, mode=config_file_mode ) cmd = format("/bin/sh -c 'cd /usr/lib/ambari-agent/ && curl -kf --retry 5 " "{jdk_location}/{check_db_connection_jar_name} -o {check_db_connection_jar_name}'") Execute(cmd, not_if=format("[ -f {check_db_connection_jar_name}]")) if name == 'metastore': File(params.start_metastore_path, mode=0755, content=StaticFile('startMetastore.sh') ) elif name == 'hiveserver2': File(params.start_hiveserver2_path, mode=0755, content=StaticFile('startHiveserver2.sh') ) if name != "client": crt_directory(params.hive_pid_dir) crt_directory(params.hive_log_dir) crt_directory(params.hive_var_lib) File(format("{hive_config_dir}/hive-env.sh"), owner=params.hive_user, group=params.user_group, content=Template('hive-env.sh.j2', conf_dir=hive_config_dir) ) crt_file(format("{hive_conf_dir}/hive-default.xml.template")) crt_file(format("{hive_conf_dir}/hive-env.sh.template")) crt_file(format("{hive_conf_dir}/hive-exec-log4j.properties.template")) crt_file(format("{hive_conf_dir}/hive-log4j.properties.template")) def crt_directory(name): import params Directory(name, create_parents = True, owner=params.hive_user, group=params.user_group, mode=0755) def crt_file(name): import params File(name, owner=params.hive_user, group=params.user_group ) def jdbc_connector(): import params if params.hive_jdbc_driver == "com.mysql.jdbc.Driver": cmd = format("hive mkdir -p {artifact_dir} ; cp /usr/share/java/{jdbc_jar_name} {target}") Execute(cmd, not_if=format("test -f {target}"), creates=params.target, path=["/bin", "/usr/bin/"]) elif params.hive_jdbc_driver == "oracle.jdbc.driver.OracleDriver": cmd = format( "mkdir -p {artifact_dir} ; curl -kf --retry 10 {driver_curl_source} -o {driver_curl_target} && " "cp {driver_curl_target} {target}") Execute(cmd, not_if=format("test -f {target}"), path=["/bin", "/usr/bin/"])
29.895161
103
0.680874
6c1bd0ab62fdcea31c29b3e371f8324ec23eff69
1,631
py
Python
openquake.hazardlib/openquake/hazardlib/tests/gsim/fukushima_tanaka_1990_test.py
rainzhop/ConvNetQuake
a3e6de3f7992eac72f1b9883fec36b8c7fdefd48
[ "MIT" ]
null
null
null
openquake.hazardlib/openquake/hazardlib/tests/gsim/fukushima_tanaka_1990_test.py
rainzhop/ConvNetQuake
a3e6de3f7992eac72f1b9883fec36b8c7fdefd48
[ "MIT" ]
null
null
null
openquake.hazardlib/openquake/hazardlib/tests/gsim/fukushima_tanaka_1990_test.py
rainzhop/ConvNetQuake
a3e6de3f7992eac72f1b9883fec36b8c7fdefd48
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # vim: tabstop=4 shiftwidth=4 softtabstop=4 # # Copyright (C) 2013-2016 GEM Foundation # # OpenQuake is free software: you can redistribute it and/or modify it # under the terms of the GNU Affero General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # OpenQuake is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with OpenQuake. If not, see <http://www.gnu.org/licenses/>. from openquake.hazardlib.gsim.fukushima_tanaka_1990 import ( FukushimaTanaka1990, FukushimaTanakaSite1990 ) from openquake.hazardlib.tests.gsim.utils import BaseGSIMTestCase class FukushimaTanaka1990TestCase(BaseGSIMTestCase): GSIM_CLASS = FukushimaTanaka1990 def test_mean(self): self.check('FT1990/FT1990_MEAN.csv', max_discrep_percentage=0.1) def test_std_total(self): self.check('FT1990/FT1990_STDTOTAL.csv', max_discrep_percentage=0.1) class FukushimaTanaka1990SiteTestCase(BaseGSIMTestCase): GSIM_CLASS = FukushimaTanakaSite1990 def test_mean(self): self.check('FT1990/FT1990Site_MEAN.csv', max_discrep_percentage=0.1) def test_std_total(self): self.check('FT1990/FT1990Site_STDTOTAL.csv', max_discrep_percentage=0.1)
33.979167
74
0.729614
be8fea2350d5384086a66a475230b6cc337b8889
7,019
py
Python
src/config/vnc_openstack/vnc_openstack/tests/test_vnc_plugin_db.py
Mirantis/contrail-controller
6a8ce71bde9f30e14241027dc89fcd9ca6ac0673
[ "Apache-2.0" ]
3
2019-01-11T06:16:40.000Z
2021-02-24T23:48:21.000Z
src/config/vnc_openstack/vnc_openstack/tests/test_vnc_plugin_db.py
Mirantis/contrail-controller
6a8ce71bde9f30e14241027dc89fcd9ca6ac0673
[ "Apache-2.0" ]
null
null
null
src/config/vnc_openstack/vnc_openstack/tests/test_vnc_plugin_db.py
Mirantis/contrail-controller
6a8ce71bde9f30e14241027dc89fcd9ca6ac0673
[ "Apache-2.0" ]
2
2019-02-06T12:52:00.000Z
2019-04-11T23:19:28.000Z
import unittest import uuid from flexmock import flexmock import fake_neutron from vnc_openstack import neutron_plugin_db as db class MockDbInterface(db.DBInterface): def __init__(self): class MockConnection(object): def wait(self): return self._connected_to_api_server = MockConnection() pass class TestDbInterface(unittest.TestCase): _tenant_ids = ['tenant_id_1', 'tenant_id_2'] def _list_resource(self, resource, ret_count=0): def _list_others(parent_id, count): self.assertEqual(count, True) self.assertTrue(parent_id in self._tenant_ids) self.assertTrue(resource in ['virtual_networks', 'virtual_machine_interfaces', 'logical_routers', 'network_policys', 'network_ipams', 'route_tables']) r = resource.replace("_", "-") return {r: {'count': ret_count}} def _list_fip(back_ref_id, count): self.assertEqual(count, True) self.assertTrue(back_ref_id in self._tenant_ids) r = resource.replace("_", "-") return {r: {'count': ret_count}} if resource == "floating_ips": return _list_fip return _list_others def _test_for(self, resource): dbi = MockDbInterface() kwargs={"operational": True, resource + "_list": self._list_resource(resource, 1), } dbi._vnc_lib = flexmock(**kwargs) ret = dbi._resource_count_optimized(resource, filters={'tenant_id': self._tenant_ids[0]}) self.assertEqual(ret, 1) ret = dbi._resource_count_optimized(resource, filters={'tenant_id': self._tenant_ids}) self.assertEqual(ret, 2) def test_resource_count_optimized(self): dbi = MockDbInterface() ret = dbi._resource_count_optimized('virtual-networks', filters={'f': 'some-filter'}) self.assertEqual(ret, None) ret = dbi._resource_count_optimized('virtual-networks', filters={'tenant_id': 'some-id', 'f': 'some_filter'}) self.assertEqual(ret, None) self._test_for("virtual_networks") self._test_for("virtual_machine_interfaces") self._test_for("floating_ips") self._test_for("logical_routers") self._test_for("network_policys") self._test_for("network_ipams") self._test_for("route_tables") def test_floating_show_router_id(self): dbi = MockDbInterface() vmi_obj = None def fake_virtual_machine_interface_properties(): return None def fake_virtual_machine_read(id, fq_name=None, fields=None, parent_id=None): if id == 'fip_port_uuid1': net_uuid = 'match_vn_uuid' elif id == 'fip_port_uuid2': net_uuid = 'miss_vn_uuid' elif id == 'router_port_uuid': net_uuid = 'match_vn_uuid' return flexmock(uuid=id, get_virtual_machine_interface_properties=\ fake_virtual_machine_interface_properties, get_virtual_network_refs=\ lambda: [{'uuid': net_uuid}]) def fake_virtual_machine_interface_list(*args, **kwargs): if kwargs.get('obj_uuids', []) == ['router_port_uuid']: return [flexmock( uuid='router_port_uuid', get_virtual_machine_interface_properties=\ fake_virtual_machine_interface_properties, get_virtual_network_refs=\ lambda: [{'uuid': 'match_vn_uuid'}])] dbi._vnc_lib = flexmock( fq_name_to_id=lambda res, name: 'fip_pool_uuid', virtual_machine_interface_read=fake_virtual_machine_read, virtual_machine_interfaces_list=fake_virtual_machine_interface_list, logical_routers_list=lambda parent_id, detail: [ flexmock(uuid='router_uuid', get_virtual_machine_interface_refs=\ lambda: [{'uuid': 'router_port_uuid'}])]) fip_obj = flexmock( uuid = 'fip_uuid', get_fq_name=lambda: ['domain', 'project', 'fip'], get_project_refs=lambda: [{'uuid': str(uuid.uuid4())}], get_floating_ip_address=lambda: 'fip_ip', get_floating_ip_fixed_ip_address= lambda: 'fip_port_ip') fip_obj.get_virtual_machine_interface_refs = \ lambda: [{'uuid': 'fip_port_uuid1'}] fip_neutron = dbi._floatingip_vnc_to_neutron(fip_obj) self.assertEqual(fip_neutron['router_id'], 'router_uuid') fip_obj.get_virtual_machine_interface_refs = \ lambda: [{'uuid': 'fip_port_uuid2'}] fip_neutron = dbi._floatingip_vnc_to_neutron(fip_obj) self.assertIsNone(fip_neutron['router_id']) def test_default_security_group_delete(self): dbi = MockDbInterface() sg_obj = None delete_called_for = [""] def _sg_delete(id): delete_called_for[0] = id dbi._vnc_lib = flexmock(operational=True, security_group_read = lambda id: sg_obj, security_group_delete = _sg_delete) # sg_delete should be called when sg_name != default tenant_uuid = str(uuid.uuid4()) sg_uuid = str(uuid.uuid4()) sg_obj = flexmock(operational=True, name="non-default", parent_uuid=tenant_uuid) context = {'tenant_id': tenant_uuid} dbi.security_group_delete(context, sg_uuid) self.assertEqual(delete_called_for[0], sg_uuid) delete_called_for = [""] sg_obj = flexmock(operational=True, name="non-default", parent_uuid=str(uuid.uuid4())) dbi.security_group_delete(context, sg_uuid) self.assertEqual(delete_called_for[0], sg_uuid) delete_called_for = [""] sg_obj = flexmock(operational=True, name="default", parent_uuid=str(uuid.uuid4())) dbi.security_group_delete(context, sg_uuid) self.assertEqual(delete_called_for[0], sg_uuid) with self.assertRaises(Exception): delete_called_for = [""] sg_obj = flexmock(operational=True, name="default", parent_uuid=tenant_uuid) dbi.security_group_delete(context, sg_uuid)
38.994444
87
0.564895
4fb25145601df643b411f3f209217332d8839ac0
545
py
Python
code_all/day17/exercise02.py
testcg/python
4db4bd5d0e44af807d2df80cf8c8980b40cc03c4
[ "MIT" ]
null
null
null
code_all/day17/exercise02.py
testcg/python
4db4bd5d0e44af807d2df80cf8c8980b40cc03c4
[ "MIT" ]
null
null
null
code_all/day17/exercise02.py
testcg/python
4db4bd5d0e44af807d2df80cf8c8980b40cc03c4
[ "MIT" ]
null
null
null
""" 练习2. 定义函数,在列表中找出所有数字 [43,"悟空",True,56,"八戒",87.5,98] """ # 适用性 # 函数有一个结果使用return # 函数有多个结果使用yield def get_number1(list_number): result = [] for item in list_number: if type(item) in (int, float): result.append(item) return result def get_number2(list_number): for item in list_number: if type(item) in (int, float): yield item list01 = [43, "悟空", True, 56, "八戒", 87.5, 98] for item in get_number1(list01): print(item) for item in get_number2(list01): print(item)
18.166667
45
0.609174
493f73ba9f6eb5c961d5c737636e858f26997227
73
py
Python
benchmarks/benchmarks/__init__.py
Ennosigaeon/scipy
2d872f7cf2098031b9be863ec25e366a550b229c
[ "BSD-3-Clause" ]
9,095
2015-01-02T18:24:23.000Z
2022-03-31T20:35:31.000Z
benchmarks/benchmarks/__init__.py
Ennosigaeon/scipy
2d872f7cf2098031b9be863ec25e366a550b229c
[ "BSD-3-Clause" ]
11,500
2015-01-01T01:15:30.000Z
2022-03-31T23:07:35.000Z
benchmarks/benchmarks/__init__.py
Ennosigaeon/scipy
2d872f7cf2098031b9be863ec25e366a550b229c
[ "BSD-3-Clause" ]
5,838
2015-01-05T11:56:42.000Z
2022-03-31T23:21:19.000Z
import numpy as np import random np.random.seed(1234) random.seed(1234)
12.166667
20
0.780822
a72573e54f44f9e83ac2254e225bfb3660686da5
967
py
Python
exercicios2/ex062j.py
LuanGermano/Mundo-2-Curso-em-Video-Python
8e860beb1d3b31f1c5ac369767d32b353935b8b0
[ "MIT" ]
null
null
null
exercicios2/ex062j.py
LuanGermano/Mundo-2-Curso-em-Video-Python
8e860beb1d3b31f1c5ac369767d32b353935b8b0
[ "MIT" ]
null
null
null
exercicios2/ex062j.py
LuanGermano/Mundo-2-Curso-em-Video-Python
8e860beb1d3b31f1c5ac369767d32b353935b8b0
[ "MIT" ]
null
null
null
termo = int(input('Digite o Termo da PA: ')) razao = int(input('Digite a razão: ')) ulti = int(input('Qual o termo da PA para ser mostrado: ')) # valor de entrada dos termos pra PA. while ulti != 0: resp = "n/a" while resp not in 'SsNn': # acontecimento pra resp errado resp = str(input('Vc gostaria de ver o caminho até o termo solicitado? [S/N]: ')).upper().strip() # Decisão que vai separar entre sim e não os acontecimentos. if resp in 'Ss': # caso Sim for c in range(1, ulti+1): pa = termo + (c - 1) * razao print(pa, end=' ',) print(end='\n') break elif resp in 'Nn': # Caso não pa = termo + (ulti-1) * razao print(pa, end='\n') break print('Por favor Responda se gostaria de ver o termo solicitado') ulti = int(input('Qual o termo da PA para ser mostrado: ')) print('Encerrando o Programa') print('=-='*12)
43.954545
167
0.563599
eae9f565ee9e731f72609a3c0a8ec66dc0792ab3
958
py
Python
src/RealmServer.py
Ekkoz/DofusProxy
00369a73dc30f613d900348cb013de377fad2c7f
[ "MIT" ]
null
null
null
src/RealmServer.py
Ekkoz/DofusProxy
00369a73dc30f613d900348cb013de377fad2c7f
[ "MIT" ]
null
null
null
src/RealmServer.py
Ekkoz/DofusProxy
00369a73dc30f613d900348cb013de377fad2c7f
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import socket from src.RealmLocalClient import RealmLocalClient from src.Logger import Logger class RealmServer: def __init__(self): self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) def start(self): try: self.socket.bind(("127.0.0.1", 12345)) except socket.error as msg: Logger.error('[REALM] Bind failed. Error : ' + str(sys.exc_info())) return (False) self.socket.listen(16) Logger.info("[REALM] Listening on port 12345...") while True: fd, addr = self.socket.accept() ip, port = str(addr[0]), str(addr[1]) Logger.info('[REALM] New incomming connection: ' + ip + ':' + port) newClient = RealmLocalClient(fd, addr, ip, port) newClient.start() self.socket.close()
29.030303
79
0.587683
19550defe2e955d4f23de0292b622327edad4a30
211
py
Python
test/manualAreplTests/longStrings.py
manuth/LiveCode
4f55e4cf4bf1b230407caf29bd5b7cd263d292ea
[ "MIT" ]
203
2018-02-12T00:51:47.000Z
2022-03-14T17:28:26.000Z
test/manualAreplTests/longStrings.py
manuth/LiveCode
4f55e4cf4bf1b230407caf29bd5b7cd263d292ea
[ "MIT" ]
404
2018-01-17T03:50:36.000Z
2022-03-24T23:46:06.000Z
test/manualAreplTests/longStrings.py
manuth/LiveCode
4f55e4cf4bf1b230407caf29bd5b7cd263d292ea
[ "MIT" ]
21
2018-07-17T05:55:28.000Z
2022-02-21T08:25:45.000Z
x = "fe\nfa" y = "fafafafaf \nfafafa\nfaffafafafaffafafafaffafafafaffafafafaffafafafaffafafafaffafafafaf\nfafafafaffafafafaf" # first string should show \n # second string should only go multiline when expanded
42.2
112
0.834123
15a5980f8ba9ebdfa87313cfcab3932b365f2d48
1,497
py
Python
rlgym/utils/common_values.py
pizzalord22/rocket-league-gym
c07d237643fdb1264a04147fc9a556bcb786a816
[ "Apache-2.0" ]
63
2021-03-07T00:00:09.000Z
2022-03-27T16:11:26.000Z
rlgym_compat/common_values.py
VirxEC/rlgym-compat
db7b0a41492dcbb1aaa2dbfa5385dae3b9e10558
[ "Apache-2.0" ]
21
2021-03-12T16:02:30.000Z
2022-03-29T01:59:32.000Z
rlgym_compat/common_values.py
VirxEC/rlgym-compat
db7b0a41492dcbb1aaa2dbfa5385dae3b9e10558
[ "Apache-2.0" ]
23
2021-03-12T16:04:35.000Z
2022-03-28T15:49:24.000Z
SIDE_WALL_X = 4096 # +/- BACK_WALL_Y = 5120 # +/- CEILING_Z = 2044 BACK_NET_Y = 6000 # +/- GOAL_HEIGHT = 642.775 ORANGE_GOAL_CENTER = (0, BACK_WALL_Y, GOAL_HEIGHT / 2) BLUE_GOAL_CENTER = (0, -BACK_WALL_Y, GOAL_HEIGHT / 2) # Often more useful than center ORANGE_GOAL_BACK = (0, BACK_NET_Y, GOAL_HEIGHT / 2) BLUE_GOAL_BACK = (0, -BACK_NET_Y, GOAL_HEIGHT / 2) BALL_RADIUS = 92.75 BALL_MAX_SPEED = 6000 CAR_MAX_SPEED = 2300 SUPERSONIC_THRESHOLD = 2200 CAR_MAX_ANG_VEL = 5.5 BLUE_TEAM = 0 ORANGE_TEAM = 1 NUM_ACTIONS = 8 BOOST_LOCATIONS = ( (0.0, -4240.0, 70.0), (-1792.0, -4184.0, 70.0), (1792.0, -4184.0, 70.0), (-3072.0, -4096.0, 73.0), (3072.0, -4096.0, 73.0), (- 940.0, -3308.0, 70.0), (940.0, -3308.0, 70.0), (0.0, -2816.0, 70.0), (-3584.0, -2484.0, 70.0), (3584.0, -2484.0, 70.0), (-1788.0, -2300.0, 70.0), (1788.0, -2300.0, 70.0), (-2048.0, -1036.0, 70.0), (0.0, -1024.0, 70.0), (2048.0, -1036.0, 70.0), (-3584.0, 0.0, 73.0), (-1024.0, 0.0, 70.0), (1024.0, 0.0, 70.0), (3584.0, 0.0, 73.0), (-2048.0, 1036.0, 70.0), (0.0, 1024.0, 70.0), (2048.0, 1036.0, 70.0), (-1788.0, 2300.0, 70.0), (1788.0, 2300.0, 70.0), (-3584.0, 2484.0, 70.0), (3584.0, 2484.0, 70.0), (0.0, 2816.0, 70.0), (- 940.0, 3310.0, 70.0), (940.0, 3308.0, 70.0), (-3072.0, 4096.0, 73.0), (3072.0, 4096.0, 73.0), (-1792.0, 4184.0, 70.0), (1792.0, 4184.0, 70.0), (0.0, 4240.0, 70.0), )
24.145161
54
0.537742
5d1e5c990fed71e7555b03d4bd2c4a4c7425548e
5,345
py
Python
test/test_package_identification_python.py
esteve/colcon-core
c11ce9cb27482dac85f05b50b3cd2c1b459ae6b3
[ "Apache-2.0" ]
null
null
null
test/test_package_identification_python.py
esteve/colcon-core
c11ce9cb27482dac85f05b50b3cd2c1b459ae6b3
[ "Apache-2.0" ]
13
2020-04-02T21:11:56.000Z
2022-01-27T05:47:30.000Z
test/test_package_identification_python.py
esteve/colcon-core
c11ce9cb27482dac85f05b50b3cd2c1b459ae6b3
[ "Apache-2.0" ]
null
null
null
# Copyright 2016-2018 Dirk Thomas # Licensed under the Apache License, Version 2.0 from pathlib import Path from tempfile import TemporaryDirectory from colcon_core.package_augmentation.python \ import create_dependency_descriptor from colcon_core.package_augmentation.python \ import PythonPackageAugmentation from colcon_core.package_descriptor import PackageDescriptor from colcon_core.package_identification.python \ import PythonPackageIdentification import pytest def test_identify(): extension = PythonPackageIdentification() augmentation_extension = PythonPackageAugmentation() with TemporaryDirectory(prefix='test_colcon_') as basepath: desc = PackageDescriptor(basepath) desc.type = 'other' assert extension.identify(desc) is None assert desc.name is None desc.type = None assert extension.identify(desc) is None assert desc.name is None assert desc.type is None basepath = Path(basepath) (basepath / 'setup.py').write_text('setup()') assert extension.identify(desc) is None assert desc.name is None assert desc.type is None (basepath / 'setup.cfg').write_text('') assert extension.identify(desc) is None assert desc.name is None assert desc.type is None (basepath / 'setup.cfg').write_text( '[metadata]\n' 'name = pkg-name\n') assert extension.identify(desc) is None assert desc.name == 'pkg-name' assert desc.type == 'python' assert not desc.dependencies assert not desc.metadata augmentation_extension.augment_package(desc) assert set(desc.dependencies.keys()) == {'build', 'run', 'test'} assert not desc.dependencies['build'] assert not desc.dependencies['run'] assert not desc.dependencies['test'] desc = PackageDescriptor(basepath) desc.name = 'other-name' with pytest.raises(RuntimeError) as e: extension.identify(desc) assert str(e.value).endswith( 'Package name already set to different value') (basepath / 'setup.cfg').write_text( '[metadata]\n' 'name = other-name\n' '[options]\n' 'setup_requires =\n' " build; sys_platform != 'win32'\n" " build-windows; sys_platform == 'win32'\n" 'install_requires =\n' ' runA > 1.2.3\n' ' runB\n' 'tests_require = test == 2.0.0\n' 'zip_safe = false\n' '[options.extras_require]\n' 'test = test2 == 3.0.0\n' 'tests = test3\n' 'testing = test4\n' 'other = not-test\n') assert extension.identify(desc) is None assert desc.name == 'other-name' assert desc.type == 'python' assert not desc.dependencies assert not desc.metadata augmentation_extension.augment_package(desc) assert set(desc.dependencies.keys()) == {'build', 'run', 'test'} assert desc.dependencies['build'] == {'build', 'build-windows'} assert desc.dependencies['run'] == {'runA', 'runB'} dep = next(x for x in desc.dependencies['run'] if x == 'runA') assert dep.metadata['version_gt'] == '1.2.3' assert desc.dependencies['test'] == {'test', 'test2', 'test3', 'test4'} assert callable(desc.metadata['get_python_setup_options']) options = desc.metadata['get_python_setup_options'](None) assert 'zip_safe' in options def test_create_dependency_descriptor(): eq_str = 'pkgname==2.2.0' dep = create_dependency_descriptor(eq_str) assert dep.metadata['version_eq'] == '2.2.0' lt_str = 'pkgname<2.3.0' dep = create_dependency_descriptor(lt_str) assert dep.metadata['version_lt'] == '2.3.0' lte_str = 'pkgname<=2.2.0' dep = create_dependency_descriptor(lte_str) assert dep.metadata['version_lte'] == '2.2.0' gt_str = 'pkgname>2.3.0' dep = create_dependency_descriptor(gt_str) assert dep.metadata['version_gt'] == '2.3.0' gte_str = 'pkgname>=2.2.0' dep = create_dependency_descriptor(gte_str) assert dep.metadata['version_gte'] == '2.2.0' neq_str = 'pkgname!=1.2.1' dep = create_dependency_descriptor(neq_str) assert dep.metadata['version_neq'] == '1.2.1' compat_str = 'pkgname~=1.4.1a4' dep = create_dependency_descriptor(compat_str) assert dep.metadata['version_gte'] == '1.4.1a4' assert dep.metadata['version_lt'] == '1.5' compat_str = 'pkgname~=1.4.1' dep = create_dependency_descriptor(compat_str) assert dep.metadata['version_gte'] == '1.4.1' assert dep.metadata['version_lt'] == '1.5' compat_str = 'pkgname~=1.4.1.4' dep = create_dependency_descriptor(compat_str) assert dep.metadata['version_gte'] == '1.4.1.4' assert dep.metadata['version_lt'] == '1.4.2' compat_str = 'pkgname~=11.12' dep = create_dependency_descriptor(compat_str) assert dep.metadata['version_gte'] == '11.12' assert dep.metadata['version_lt'] == '12.0' multi_str = 'pkgname<=3.2.0, >=2.2.0' dep = create_dependency_descriptor(multi_str) assert dep.metadata['version_gte'] == '2.2.0' assert dep.metadata['version_lte'] == '3.2.0'
35.633333
79
0.635547
2ea6de1cec12fec6e7a6e31bcc5825edb87dbe64
7,174
py
Python
raisimGym/helper/env_helper.py
Pala-hmd/drl_mi_quadcopter
62836ebd78ec4df7af2309f0a8457023dd78daa0
[ "BSD-3-Clause-Clear" ]
null
null
null
raisimGym/helper/env_helper.py
Pala-hmd/drl_mi_quadcopter
62836ebd78ec4df7af2309f0a8457023dd78daa0
[ "BSD-3-Clause-Clear" ]
null
null
null
raisimGym/helper/env_helper.py
Pala-hmd/drl_mi_quadcopter
62836ebd78ec4df7af2309f0a8457023dd78daa0
[ "BSD-3-Clause-Clear" ]
null
null
null
import torch import numpy as np import os import ntpath from shutil import copyfile from raisimGymTorch.env.RaisimGymVecEnv import RunningMeanStd class helper: def __init__(self, env, num_obs, normalize_ob=True, update_mean=True, scale_action=True, clip_action=False, scale_obs_rms=False): self.num_envs = env.num_envs self.num_obs = num_obs self.obs_rms = RunningMeanStd(shape=[self.num_envs, self.num_obs]) self.clip_obs = env.clip_obs self.normalize_ob = normalize_ob self.update_mean = update_mean self.scale_action = scale_action self.clip_action = clip_action self.scale_obs_rms = scale_obs_rms # action scaling def limit_action(self, actions): if self.clip_action: return np.clip(actions.cpu().detach().numpy(), -1, 1) elif self.scale_action: for i in range(0, len(actions)): min = torch.min(actions[i][:]) max = torch.max(actions[i][:]) if torch.abs(min) > 1 or torch.abs(max) > 1: if torch.abs(min) < torch.abs(max): actions[i][:] /= torch.abs(max) else: actions[i][:] /= torch.abs(min) return actions.cpu().detach().numpy() else: return actions.cpu().detach().numpy() """ works as an environment wrapper, uses methods of env to normalize the observation and update the RMS. when to use: If the observation vector of env.observe has more entries than the actual neural network input. The respective method of the env object normalizes also the additional entries of the observation vector passed from the environment (defined in Environment.hpp)""" def normalize_observation(self, observation): if self.normalize_ob == True: if self.update_mean: # update observation scaling based on the parallel algorithm self.obs_rms.update(observation) """ if scale_obs_rms = True: observation RMS will be scaled which has the effect of projecting the target point further away or closer to the agent with a scaling factor of (0.2 + norm(pos)/10), since the agent is trained on target points which are 10 m away.""" obs_rms_var = self.obs_rms.var.copy() if self.scale_obs_rms: if len(observation) > 1: for i in range(len(obs_rms_var)): obs_rms_var[i][0:3] = self.obs_rms.var[i][0:3] * (0.2+(np.linalg.norm(observation[i][0:3])/10)*0.8) observation_norm = np.clip((observation - self.obs_rms.mean) / np.sqrt(obs_rms_var + 1e-8), - self.clip_obs, self.clip_obs) else: obs_rms_var[0:3] = self.obs_rms.var[0:3] * (0.2+(np.linalg.norm(observation[0:3])/10)*0.8) observation_norm = np.clip((observation - self.obs_rms.mean[0]) / np.sqrt(obs_rms_var[0] + 1e-8), - self.clip_obs, self.clip_obs) else: observation_norm = np.clip((observation - self.obs_rms.mean) / np.sqrt(obs_rms_var + 1e-8), - self.clip_obs, self.clip_obs) return observation_norm else: return observation # save and load observation scaling def save_scaling(self, dir_name, iteration): mean_file_name = dir_name + "/mean" + iteration + ".csv" var_file_name = dir_name + "/var" + iteration + ".csv" np.savetxt(mean_file_name, self.obs_rms.mean) np.savetxt(var_file_name, self.obs_rms.var) def load_scaling(self, weight_dir, iteration, count=1e5): dir_name = weight_dir.rsplit('/', 1)[0] mean_file_name = dir_name + "/mean" + str(iteration) + ".csv" var_file_name = dir_name + "/var" + str(iteration) + ".csv" self.obs_rms.count = count self.obs_rms.mean = np.loadtxt(mean_file_name, dtype=np.float32) self.obs_rms.var = np.loadtxt(var_file_name, dtype=np.float32) # load the neural network model parameters and save setup config of pre-trained model def load_param(self, weight_path, actor, critic, learner, data_dir, file_name, save_items=True): if weight_path == "": raise Exception("\nCan't find the pre-trained weight, please provide a pre-trained weight with --weight switch\n") print("\nRetraining from the checkpoint:", weight_path+"\n") iteration_number = weight_path.rsplit('/', 1)[1].split('_', 1)[1].rsplit('.', 1)[0] weight_dir = weight_path.rsplit('/', 1)[0] + '/' mean_csv_path = weight_dir + 'mean' + iteration_number + '.csv' var_csv_path = weight_dir + 'var' + iteration_number + '.csv' items_to_save = [weight_path, mean_csv_path, var_csv_path, weight_dir +file_name + "cfg.yaml", weight_dir + "Environment.hpp"] if items_to_save is not None and save_items: pretrained_data_dir = data_dir + '/pretrained_' + weight_path.rsplit('/', 1)[0].rsplit('/', 1)[1] os.makedirs(pretrained_data_dir) for item_to_save in items_to_save: copyfile(item_to_save, pretrained_data_dir+'/'+item_to_save.rsplit('/', 1)[1]) # load actor and critic parameters from full checkpoint checkpoint = torch.load(weight_path) actor.architecture.load_state_dict(checkpoint['actor_architecture_state_dict']) actor.distribution.load_state_dict(checkpoint['actor_distribution_state_dict']) critic.architecture.load_state_dict(checkpoint['critic_architecture_state_dict']) #learner.optimizer.load_state_dict(checkpoint['optimizer_state_dict']) #learner.scheduler.load_state_dict(checkpoint['scheduler_state_dict']) """ Only useful in combination with DAgger: A method to prevent learning from failed environments and restoring from the last checkpoint""" def restart_from_last_checkpoint(self, env, saver, actor, critic, learner, update_num): # Reset update number update_modulo = update_num % 10 # Reset learner params learner.storage.clear() learner.beta += update_modulo * learner.beta_scheduler learner.scheduler.step(epoch=(update_num-update_modulo)*learner.num_learning_epochs*learner.num_mini_batches) learner.beta += learner.beta_scheduler # Set new environment target for i in range(10 - update_modulo - 1): env.reset() # Restore weights from last checkpoint weight_path = saver.data_dir + "/full_" + str(update_num - update_modulo) + '.pt' self.load_param(weight_path, actor, critic, learner, saver.data_dir, 'dagger', False) return update_modulo + 1 def identify_failed_envs(self, dones) -> object: failed_envs = np.where(dones == 1) index = list(dict.fromkeys(failed_envs[1].tolist())) return len(index), index
48.802721
134
0.627265
d61076db57af678bdbcb76125eb263995408f600
2,947
py
Python
PrePorcessor/Preprocessor.py
Skyho1d/covid
f21b0c30be1144f667e69d582f968abe6b4e360f
[ "Apache-2.0" ]
12
2020-03-23T18:26:45.000Z
2021-03-19T08:40:57.000Z
PrePorcessor/Preprocessor.py
Skyho1d/covid
f21b0c30be1144f667e69d582f968abe6b4e360f
[ "Apache-2.0" ]
2
2021-05-21T16:18:56.000Z
2022-02-10T01:16:50.000Z
PrePorcessor/Preprocessor.py
Skyho1d/covid
f21b0c30be1144f667e69d582f968abe6b4e360f
[ "Apache-2.0" ]
3
2020-03-24T13:23:57.000Z
2020-04-07T12:18:59.000Z
import cv2 import numpy as np class SimplePreprocessor: def __init__(self, width, height, inter=cv2.INTER_AREA): self.width = width self.height = height self.inter = inter def preprocess(self, input_image): try: # if in train time with 100 epoch and size 50 get bad result remove all this line und just resize , convert all dataset befor train network # input_image = cv2.imread(image_paths) # Type = image_paths.split(os.path.sep)[-2] # image_blur = cv2.GaussianBlur(input_image, (7, 7), 0) # image_blur_hsv = cv2.cvtColor(image_blur, cv2.COLOR_RGB2HSV) # min_red = np.array([80, 60, 140]) # max_red = np.array([255, 255, 255]) # image_red1 = cv2.inRange(image_blur_hsv, min_red, max_red) # big_contour, mask = self.find_biggest_contour(image_red1) # (x, y), radius = cv2.minEnclosingCircle(big_contour) # center = (int(x), int(y)) # radius = int(radius) # imCircle = input_image.copy() # cv2.circle(imCircle, center, radius, (0, 255, 0), 1) # height, width, channels = imCircle.shape # border = [0, 0, 0, 0] # if center[0] + radius > width: # extera = (center[0] + radius) - width # border[3] = extera + 1 # # if (center[0] - radius < 0): # extera = width - (center[0] + radius) # border[2] = extera + 1 # # if center[1] + radius > height: # extera = (center[1] + radius) - height # border[1] = extera + 1 # # if center[1] + radius < 0: # extera = height - (center[1] + radius) # border[0] = extera + 1 # # y = center[1] - radius # if y < 0: # y = 0 # y2 = center[1] + radius # x = center[0] - radius # if x < 0: # x = 0 # # x2 = center[0] + radius # # cropped_image = input_image[y:y2, x:x2] return cv2.resize(input_image, (self.width, self.height), interpolation=self.inter) except Exception as a: print("preprocessor", a) def find_biggest_contour(self, image): image = image.copy() s, contours, hierarchy = cv2.findContours(image, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) biggest_contour = max(contours, key=cv2.contourArea) mask = np.zeros(image.shape, np.uint8) cv2.drawContours(mask, [biggest_contour], -1, 255, -1) return biggest_contour, mask def overlay_mask(self, mask, image): rgb_mask = cv2.cvtColor(mask, cv2.COLOR_GRAY2RGB) img = cv2.addWeighted(rgb_mask, 0.5, image, 0.5, 0) # show(img)
39.824324
151
0.519172
b98b76b89b983f67fd15ae383803f47a76dcc15a
2,219
py
Python
tests/integration_tests/data_steward/utils/sandbox_test.py
lrwb-aou/curation
e80447e56d269dc2c9c8bc79e78218d4b0dc504c
[ "MIT" ]
16
2017-06-30T20:05:05.000Z
2022-03-08T21:03:19.000Z
tests/integration_tests/data_steward/utils/sandbox_test.py
lrwb-aou/curation
e80447e56d269dc2c9c8bc79e78218d4b0dc504c
[ "MIT" ]
342
2017-06-23T21:37:40.000Z
2022-03-30T16:44:16.000Z
tests/integration_tests/data_steward/utils/sandbox_test.py
lrwb-aou/curation
e80447e56d269dc2c9c8bc79e78218d4b0dc504c
[ "MIT" ]
33
2017-07-01T00:12:20.000Z
2022-01-26T18:06:53.000Z
# Python imports import os import unittest import app_identity # Project Imports from utils import sandbox from utils.bq import get_client class SandboxTest(unittest.TestCase): @classmethod def setUpClass(cls): print('**************************************************************') print(cls.__name__) print('**************************************************************') def setUp(self): self.project_id = app_identity.get_application_id() self.dataset_id = os.environ.get('UNIONED_DATASET_ID') self.sandbox_id = sandbox.get_sandbox_dataset_id(self.dataset_id) self.fq_sandbox_id = f'{self.project_id}.{self.sandbox_id}' # Removing any existing datasets that might interfere with the test self.client = get_client(self.project_id) self.client.delete_dataset(self.fq_sandbox_id, delete_contents=True, not_found_ok=True) def test_create_sandbox_dataset(self): # pre-conditions pre_test_datasets_obj = list(self.client.list_datasets(self.project_id)) pre_test_datasets = [d.dataset_id for d in pre_test_datasets_obj] # Create sandbox dataset sandbox_dataset = sandbox.create_sandbox_dataset( self.project_id, self.dataset_id) # Post condition checks post_test_datasets_obj = list(self.client.list_datasets( self.project_id)) post_test_datasets = [d.dataset_id for d in post_test_datasets_obj] # make sure the dataset didn't already exist self.assertTrue(sandbox_dataset not in pre_test_datasets) # make sure it was actually created self.assertTrue(sandbox_dataset in post_test_datasets) # Try to create same sandbox, which now already exists self.assertRaises(RuntimeError, sandbox.create_sandbox_dataset, self.project_id, self.dataset_id) def tearDown(self): # Remove fake dataset created in project self.client.delete_dataset(self.fq_sandbox_id, delete_contents=True, not_found_ok=True)
38.258621
80
0.621902
e721be15faf05bd74e4b3ab092e7c5295fc04a4f
10,070
py
Python
src/oci/opsi/models/summarize_host_insight_resource_statistics_aggregation_collection.py
Manny27nyc/oci-python-sdk
de60b04e07a99826254f7255e992f41772902df7
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
src/oci/opsi/models/summarize_host_insight_resource_statistics_aggregation_collection.py
Manny27nyc/oci-python-sdk
de60b04e07a99826254f7255e992f41772902df7
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
src/oci/opsi/models/summarize_host_insight_resource_statistics_aggregation_collection.py
Manny27nyc/oci-python-sdk
de60b04e07a99826254f7255e992f41772902df7
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
# coding: utf-8 # Copyright (c) 2016, 2021, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class SummarizeHostInsightResourceStatisticsAggregationCollection(object): """ Returns list of hosts with resource statistics like usage, capacity, utilization, usage change percent and load. """ #: A constant which can be used with the resource_metric property of a SummarizeHostInsightResourceStatisticsAggregationCollection. #: This constant has a value of "CPU" RESOURCE_METRIC_CPU = "CPU" #: A constant which can be used with the resource_metric property of a SummarizeHostInsightResourceStatisticsAggregationCollection. #: This constant has a value of "MEMORY" RESOURCE_METRIC_MEMORY = "MEMORY" #: A constant which can be used with the resource_metric property of a SummarizeHostInsightResourceStatisticsAggregationCollection. #: This constant has a value of "LOGICAL_MEMORY" RESOURCE_METRIC_LOGICAL_MEMORY = "LOGICAL_MEMORY" #: A constant which can be used with the usage_unit property of a SummarizeHostInsightResourceStatisticsAggregationCollection. #: This constant has a value of "CORES" USAGE_UNIT_CORES = "CORES" #: A constant which can be used with the usage_unit property of a SummarizeHostInsightResourceStatisticsAggregationCollection. #: This constant has a value of "GB" USAGE_UNIT_GB = "GB" #: A constant which can be used with the usage_unit property of a SummarizeHostInsightResourceStatisticsAggregationCollection. #: This constant has a value of "MBPS" USAGE_UNIT_MBPS = "MBPS" #: A constant which can be used with the usage_unit property of a SummarizeHostInsightResourceStatisticsAggregationCollection. #: This constant has a value of "PERCENT" USAGE_UNIT_PERCENT = "PERCENT" def __init__(self, **kwargs): """ Initializes a new SummarizeHostInsightResourceStatisticsAggregationCollection object with values from keyword arguments. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param time_interval_start: The value to assign to the time_interval_start property of this SummarizeHostInsightResourceStatisticsAggregationCollection. :type time_interval_start: datetime :param time_interval_end: The value to assign to the time_interval_end property of this SummarizeHostInsightResourceStatisticsAggregationCollection. :type time_interval_end: datetime :param resource_metric: The value to assign to the resource_metric property of this SummarizeHostInsightResourceStatisticsAggregationCollection. Allowed values for this property are: "CPU", "MEMORY", "LOGICAL_MEMORY", 'UNKNOWN_ENUM_VALUE'. Any unrecognized values returned by a service will be mapped to 'UNKNOWN_ENUM_VALUE'. :type resource_metric: str :param usage_unit: The value to assign to the usage_unit property of this SummarizeHostInsightResourceStatisticsAggregationCollection. Allowed values for this property are: "CORES", "GB", "MBPS", "PERCENT", 'UNKNOWN_ENUM_VALUE'. Any unrecognized values returned by a service will be mapped to 'UNKNOWN_ENUM_VALUE'. :type usage_unit: str :param items: The value to assign to the items property of this SummarizeHostInsightResourceStatisticsAggregationCollection. :type items: list[oci.opsi.models.HostInsightResourceStatisticsAggregation] """ self.swagger_types = { 'time_interval_start': 'datetime', 'time_interval_end': 'datetime', 'resource_metric': 'str', 'usage_unit': 'str', 'items': 'list[HostInsightResourceStatisticsAggregation]' } self.attribute_map = { 'time_interval_start': 'timeIntervalStart', 'time_interval_end': 'timeIntervalEnd', 'resource_metric': 'resourceMetric', 'usage_unit': 'usageUnit', 'items': 'items' } self._time_interval_start = None self._time_interval_end = None self._resource_metric = None self._usage_unit = None self._items = None @property def time_interval_start(self): """ **[Required]** Gets the time_interval_start of this SummarizeHostInsightResourceStatisticsAggregationCollection. The start timestamp that was passed into the request. :return: The time_interval_start of this SummarizeHostInsightResourceStatisticsAggregationCollection. :rtype: datetime """ return self._time_interval_start @time_interval_start.setter def time_interval_start(self, time_interval_start): """ Sets the time_interval_start of this SummarizeHostInsightResourceStatisticsAggregationCollection. The start timestamp that was passed into the request. :param time_interval_start: The time_interval_start of this SummarizeHostInsightResourceStatisticsAggregationCollection. :type: datetime """ self._time_interval_start = time_interval_start @property def time_interval_end(self): """ **[Required]** Gets the time_interval_end of this SummarizeHostInsightResourceStatisticsAggregationCollection. The end timestamp that was passed into the request. :return: The time_interval_end of this SummarizeHostInsightResourceStatisticsAggregationCollection. :rtype: datetime """ return self._time_interval_end @time_interval_end.setter def time_interval_end(self, time_interval_end): """ Sets the time_interval_end of this SummarizeHostInsightResourceStatisticsAggregationCollection. The end timestamp that was passed into the request. :param time_interval_end: The time_interval_end of this SummarizeHostInsightResourceStatisticsAggregationCollection. :type: datetime """ self._time_interval_end = time_interval_end @property def resource_metric(self): """ **[Required]** Gets the resource_metric of this SummarizeHostInsightResourceStatisticsAggregationCollection. Defines the type of resource metric (CPU, Physical Memory, Logical Memory) Allowed values for this property are: "CPU", "MEMORY", "LOGICAL_MEMORY", 'UNKNOWN_ENUM_VALUE'. Any unrecognized values returned by a service will be mapped to 'UNKNOWN_ENUM_VALUE'. :return: The resource_metric of this SummarizeHostInsightResourceStatisticsAggregationCollection. :rtype: str """ return self._resource_metric @resource_metric.setter def resource_metric(self, resource_metric): """ Sets the resource_metric of this SummarizeHostInsightResourceStatisticsAggregationCollection. Defines the type of resource metric (CPU, Physical Memory, Logical Memory) :param resource_metric: The resource_metric of this SummarizeHostInsightResourceStatisticsAggregationCollection. :type: str """ allowed_values = ["CPU", "MEMORY", "LOGICAL_MEMORY"] if not value_allowed_none_or_none_sentinel(resource_metric, allowed_values): resource_metric = 'UNKNOWN_ENUM_VALUE' self._resource_metric = resource_metric @property def usage_unit(self): """ **[Required]** Gets the usage_unit of this SummarizeHostInsightResourceStatisticsAggregationCollection. Displays usage unit. Allowed values for this property are: "CORES", "GB", "MBPS", "PERCENT", 'UNKNOWN_ENUM_VALUE'. Any unrecognized values returned by a service will be mapped to 'UNKNOWN_ENUM_VALUE'. :return: The usage_unit of this SummarizeHostInsightResourceStatisticsAggregationCollection. :rtype: str """ return self._usage_unit @usage_unit.setter def usage_unit(self, usage_unit): """ Sets the usage_unit of this SummarizeHostInsightResourceStatisticsAggregationCollection. Displays usage unit. :param usage_unit: The usage_unit of this SummarizeHostInsightResourceStatisticsAggregationCollection. :type: str """ allowed_values = ["CORES", "GB", "MBPS", "PERCENT"] if not value_allowed_none_or_none_sentinel(usage_unit, allowed_values): usage_unit = 'UNKNOWN_ENUM_VALUE' self._usage_unit = usage_unit @property def items(self): """ **[Required]** Gets the items of this SummarizeHostInsightResourceStatisticsAggregationCollection. Collection of Resource Statistics items :return: The items of this SummarizeHostInsightResourceStatisticsAggregationCollection. :rtype: list[oci.opsi.models.HostInsightResourceStatisticsAggregation] """ return self._items @items.setter def items(self, items): """ Sets the items of this SummarizeHostInsightResourceStatisticsAggregationCollection. Collection of Resource Statistics items :param items: The items of this SummarizeHostInsightResourceStatisticsAggregationCollection. :type: list[oci.opsi.models.HostInsightResourceStatisticsAggregation] """ self._items = items def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
42.133891
245
0.719762
327a50741387f3a31cef74d7811b9450a135ab2d
253
py
Python
benefactor_challenge/benefactor_challenge/doctype/company/company.py
IRANKUND/Benefactor-challenge
78c364fcd9e776f50319e2de4eaf269d64a6508f
[ "MIT" ]
null
null
null
benefactor_challenge/benefactor_challenge/doctype/company/company.py
IRANKUND/Benefactor-challenge
78c364fcd9e776f50319e2de4eaf269d64a6508f
[ "MIT" ]
null
null
null
benefactor_challenge/benefactor_challenge/doctype/company/company.py
IRANKUND/Benefactor-challenge
78c364fcd9e776f50319e2de4eaf269d64a6508f
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2021, patrick and contributors # For license information, please see license.txt from __future__ import unicode_literals # import frappe from frappe.model.document import Document class company(Document): pass
23
49
0.770751
5b58bb9c22522b79d92f3dde69f41f830a00ff52
100
py
Python
Django_UCSD/Registration/apps.py
yotohoshi/UCSDweb_design
eb6e9b61b78b33456c083bb3cb910b00fd527665
[ "MIT" ]
null
null
null
Django_UCSD/Registration/apps.py
yotohoshi/UCSDweb_design
eb6e9b61b78b33456c083bb3cb910b00fd527665
[ "MIT" ]
null
null
null
Django_UCSD/Registration/apps.py
yotohoshi/UCSDweb_design
eb6e9b61b78b33456c083bb3cb910b00fd527665
[ "MIT" ]
null
null
null
from django.apps import AppConfig class RegistrationConfig(AppConfig): name = 'Registration'
14.285714
36
0.77
179a869460810b07be8b67bc8f5f0c55b7cd87ba
1,859
py
Python
ch10/1003_replace_nested_conditional_with_guard_clauses.py
twotwo/refactoring-python
d329601b963c80bf1c16cd36b39048cbed3e2e06
[ "MIT" ]
null
null
null
ch10/1003_replace_nested_conditional_with_guard_clauses.py
twotwo/refactoring-python
d329601b963c80bf1c16cd36b39048cbed3e2e06
[ "MIT" ]
null
null
null
ch10/1003_replace_nested_conditional_with_guard_clauses.py
twotwo/refactoring-python
d329601b963c80bf1c16cd36b39048cbed3e2e06
[ "MIT" ]
null
null
null
""" 1003_replace_nested_conditional_with_guard_clauses.py 范例 将条件反转 我们常常可以将条件表达式反转,从而实现以卫语句取代嵌套条件表达式 """ from dataclasses import dataclass @dataclass class Instrument: capital: int income: int duration: int interest_rate: float adjustment_factor: float def adjusted_capital(instrument): result = 0 if instrument.capital > 0: if instrument.interest_rate > 0 and instrument.duration > 0: result = (instrument.income / instrument.duration) * instrument.adjustment_factor return result def adjusted_capital_stage1(instrument): result = 0 if instrument.capital <= 0: # reverse 1 return result if not (instrument.interest_rate > 0 and instrument.duration > 0): # reverse 2 return result result = (instrument.income / instrument.duration) * instrument.adjustment_factor return result def adjusted_capital_stage2(instrument): result = 0 if instrument.capital <= 0: return result if instrument.interest_rate <= 0 or instrument.duration <= 0: # elimination of not logic return result result = (instrument.income / instrument.duration) * instrument.adjustment_factor return result def adjusted_capital_stage3(instrument): if ( instrument.capital <= 0 or instrument.interest_rate <= 0 or instrument.duration <= 0 ): # 10.2 Consolidate Conditional Expression return 0 return (instrument.income / instrument.duration) * instrument.adjustment_factor if __name__ == "__main__": instrument = Instrument(capital=100, income=10, duration=10, interest_rate=0.2, adjustment_factor=0.8) print("origin", adjusted_capital(instrument)) print("stage1", adjusted_capital_stage1(instrument)) print("stage2", adjusted_capital_stage2(instrument)) print("stage3", adjusted_capital_stage3(instrument))
29.983871
106
0.723507
f8e0e7d8c1df0d0f8d57a2f6a72a793547108e5c
9,250
py
Python
utils/rule_dir_stats.py
deperrone/content
caaff27f01a1d6c15da461f9fafe26090e8fdd18
[ "BSD-3-Clause" ]
1,138
2018-09-05T06:31:44.000Z
2022-03-31T03:38:24.000Z
utils/rule_dir_stats.py
deperrone/content
caaff27f01a1d6c15da461f9fafe26090e8fdd18
[ "BSD-3-Clause" ]
4,743
2018-09-04T15:14:04.000Z
2022-03-31T23:17:57.000Z
utils/rule_dir_stats.py
deperrone/content
caaff27f01a1d6c15da461f9fafe26090e8fdd18
[ "BSD-3-Clause" ]
400
2018-09-08T20:08:49.000Z
2022-03-30T20:54:32.000Z
#!/usr/bin/env python from __future__ import print_function import argparse import os import sys import json import pprint import ssg.build_yaml import ssg.build_remediations import ssg.products import ssg.rule_dir_stats as rds import ssg.rules import ssg.yaml SSG_ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("-i", "--input", type=str, action="store", default="build/rule_dirs.json", help="File to read json output of rule_dir_json from (defaults to build/rule_dirs.json)") parser.add_argument("-p", "--products", type=str, action="store", default="all", help="Products to inquire about, as a comma separated list") parser.add_argument("-t", "--strict", action="store_true", help="Enforce strict --products checking against rule.yml prodtype only") parser.add_argument("-q", "--query", type=str, action="store", default=None, help="Limit actions to only act on a comma separated list of rule_ids") parser.add_argument("-m", "--missing", action="store_true", help="List rules which are missing OVALs or fixes") parser.add_argument("-2", "--two-plus", action="store_true", help="List rules which have two or more OVALs or fixes") parser.add_argument("-r", "--prodtypes", action="store_true", help="List rules which have different YAML prodtypes from checks+fix prodtypes") parser.add_argument("-n", "--product-names", action="store_true", help="List rules which have product specific objects with broader accepted products") parser.add_argument("-?", "--introspect", action="store_true", help="Dump raw objects for explicitly queried rule_ids") parser.add_argument("-u", "--unassociated", action="store_true", help="Search for rules without any product association") parser.add_argument("-o", "--ovals-only", action="store_true", help="Only output information about OVALs") parser.add_argument("-f", "--fixes-only", action="store_true", help="Only output information about fixes") parser.add_argument("-s", "--summary-only", action="store_true", help="Only output summary information") return parser.parse_args() def process_missing(args, known_rules): result = rds.walk_rules_stats(args, known_rules, rds.missing_oval, rds.missing_remediation) affected_rules = result[0] affected_ovals = result[1] affected_remediations = result[3] affected_remediations_type = result[4] verbose_output = result[5] if not args.summary_only: print("Missing Objects Specifics:") for line in verbose_output: print(line) print("\n") print("Missing Objects Summary:") print("Total affected rules: %d" % affected_rules) if not args.fixes_only: print("Rules with no OVALs: %d / %d" % (affected_ovals, affected_rules)) if not args.ovals_only: print("Rules without any remediations: %d / %d" % (affected_remediations, affected_rules)) for r_type in ssg.build_remediations.REMEDIATION_TO_EXT_MAP: r_missing = affected_remediations_type[r_type] print("Rules with no %s remediations: %d / %d" % (r_type, r_missing, affected_rules)) print("\n") def process_two_plus(args, known_rules): result = rds.walk_rules_stats(args, known_rules, rds.two_plus_oval, rds.two_plus_remediation) affected_rules = result[0] affected_ovals = result[1] affected_remediations = result[2] affected_remediations_type = result[4] verbose_output = result[5] if not args.summary_only: print("Two Plus Object Specifics:") for line in verbose_output: print(line) print("\n") print("Two Plus Objects Summary:") print("Total affected rules: %d" % affected_rules) if not args.fixes_only: print("Rules with two or more OVALs: %d / %d" % (affected_ovals, affected_rules)) if not args.ovals_only: print("Rules with two or more remediations: %d / %d" % (affected_remediations, affected_rules)) for r_type in ssg.build_remediations.REMEDIATION_TO_EXT_MAP: r_missing = affected_remediations_type[r_type] print("Rules with two or more %s remediations: %d / %d" % (r_type, r_missing, affected_rules)) print("\n") def process_prodtypes(args, known_rules): result = rds.walk_rules_stats(args, known_rules, rds.prodtypes_oval, rds.prodtypes_remediation) affected_rules = result[0] affected_ovals = result[1] affected_remediations = result[2] affected_remediations_type = result[4] verbose_output = result[5] if not args.summary_only: print("Prodtypes Object Specifics:") for line in verbose_output: print(line) print("\n") print("Prodtypes Objects Summary:") print("Total affected rules: %d" % affected_rules) if not args.fixes_only: print("Rules with differing prodtypes between YAML and OVALs: %d / %d" % (affected_ovals, affected_rules)) if not args.ovals_only: print("Rules with differing prodtypes between YAML and remediations: %d / %d" % (affected_remediations, affected_rules)) for r_type in ssg.build_remediations.REMEDIATION_TO_EXT_MAP: r_missing = affected_remediations_type[r_type] print("Rules with differing prodtypes between YAML and %s remediations: %d / %d" % (r_type, r_missing, affected_rules)) print("\n") def process_product_names(args, known_rules): result = rds.walk_rules_stats(args, known_rules, rds.product_names_oval, rds.product_names_remediation) affected_rules = result[0] affected_ovals = result[1] affected_remediations = result[2] affected_remediations_type = result[4] verbose_output = result[5] if not args.summary_only: print("Product Names Specifics:") for line in verbose_output: print(line) print("\n") print("Product Names Summary:") print("Total affected rules: %d" % affected_rules) if not args.fixes_only: print("Rules with differing products and OVAL names: %d / %d" % (affected_ovals, affected_rules)) if not args.ovals_only: print("Rules with differing product and remediation names: %d / %d" % (affected_remediations, affected_rules)) for r_type in ssg.build_remediations.REMEDIATION_TO_EXT_MAP: r_missing = affected_remediations_type[r_type] print("Rules with differing product and %s remediation names: %d / %d" % (r_type, r_missing, affected_rules)) print("\n") def process_introspection(args, known_rules): for rule_id in args.query: if not args.summary_only: pprint.pprint(known_rules[rule_id]) print("\n") else: print(rule_id) def process_unassociated(args, known_rules, all_products): save_ovals_only = args.ovals_only save_fixes_only = args.fixes_only save_strict = args.strict args.ovals_only = False args.fixes_only = False args.strict = False for rule_id in known_rules: rule_obj = known_rules[rule_id] affected_products = rds.get_all_affected_products(args, rule_obj) if affected_products.intersection(all_products): continue print("Unassociated Rule: rule_id:%s" % rule_id) args.ovals_only = save_ovals_only args.fixes_only = save_fixes_only args.stict = save_strict def main(): args = parse_args() linux_products, other_products = ssg.products.get_all(SSG_ROOT) all_products = linux_products.union(other_products) json_file = open(args.input, 'r') known_rules = json.load(json_file) if args.products.lower() == 'all': args.products = all_products elif args.products.lower() == 'linux': args.products = linux_products elif args.products.lower() == 'other': args.products = other_products else: args.products = args.products.split(',') args.products = set(args.products) args.query = rds.filter_rule_ids(set(known_rules), args.query) if not args.missing and not args.two_plus and not args.prodtypes and not args.introspect and not args.unassociated and not args.product_names: args.missing = True args.two_plus = True args.prodtypes = True print("Total number of known rule directories: %d" % len(known_rules)) print("Total number of queried rules: %d\n" % len(args.query)) if args.missing: process_missing(args, known_rules) if args.two_plus: process_two_plus(args, known_rules) if args.prodtypes: process_prodtypes(args, known_rules) if args.product_names: process_product_names(args, known_rules) if args.introspect and args.query: process_introspection(args, known_rules) if args.unassociated: process_unassociated(args, known_rules, all_products) if __name__ == "__main__": main()
38.381743
146
0.672757
8c0e9505cc0cfa2d29f4ef967d8337efddcb2383
8,154
py
Python
src/custom_oauth.py
EOEPCA/um-user-profile
790487a50fc7d3bca70c2444a6b3b1567574812c
[ "Apache-2.0" ]
1
2020-06-30T14:46:36.000Z
2020-06-30T14:46:36.000Z
src/custom_oauth.py
EOEPCA/um-user-profile
790487a50fc7d3bca70c2444a6b3b1567574812c
[ "Apache-2.0" ]
2
2022-02-28T16:32:44.000Z
2022-03-08T10:16:12.000Z
src/custom_oauth.py
EOEPCA/um-user-profile
790487a50fc7d3bca70c2444a6b3b1567574812c
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python3 import requests import base64 import json from eoepca_scim import * import logging import WellKnownHandler as wkh from base64 import b64encode import generic from jwkest.jws import JWS from jwkest.jwk import SYMKey, KEYS from jwkest.jwk import RSAKey, import_rsa_key_from_file, load_jwks_from_url, import_rsa_key from jwkest.jwk import load_jwks from jwkest.jwk import rsa_load from Crypto.PublicKey import RSA from jwt_verification.signature_verification import JWT_Verification class Singleton(type): _instances = {} def __call__(cls, *args, **kwargs): if cls not in cls._instances: cls._instances[cls] = super(Singleton, cls).__call__(*args, **kwargs) return cls._instances[cls] class OAuthClient(metaclass=Singleton): def __init__(self, config,use_env_var): if use_env_var is False: self.scopes = self._get_valid_url_scopes(config["scopes"]) else: config["scopes"] = config["scopes"].split(" ") self.scopes = self._get_valid_url_scopes(config["scopes"]) sso_url = self._get_valid_https_url(config["sso_url"]) self.url= sso_url self.wkhandler = wkh.WellKnownHandler(sso_url,secure=not config["debug_mode"]) # Force HTTPS if not debug mode scim_client2 = EOEPCA_Scim(sso_url) grantTypes=["client_credentials", "urn:ietf:params:oauth:grant-type:uma-ticket", "authorization_code", "refresh_token", "implicit", "password"] redirectURIs=["https://"+config["sso_url"]+"/web_ui/oauth/callback"] logoutURI="http://"+config["sso_url"]+"/web_ui" responseTypes=["code", "token", "id_token"] scopes=["openid", "user_name", "permission", "email", "eoepca", "is_operator"] sectorIdentifier="https://"+config["sso_url"]+"/oxauth/sectoridentifier/9b473868-fa96-4fd1-a662-76e3663c9726" token_endpoint_auth_method=ENDPOINT_AUTH_CLIENT_POST scim_client2.registerClient("UserClient", grantTypes, redirectURIs, logoutURI, responseTypes, scopes, token_endpoint_auth_method, sectorIdentifier=sectorIdentifier) self.client_id = self._get_valid_url_client_id(scim_client2.client_id) self.redirect_uri = config["redirect_uri"] self.client_secret = scim_client2.client_secret self.post_logout_redirect_uri = config["post_logout_redirect_uri"] def _get_valid_url_client_id(self, client_id): return client_id.replace("@","%40") def _get_valid_url_scopes(self, scopes): return_scopes = "" for scope in scopes: return_scopes = return_scopes + scope + "%20" return_scopes = return_scopes.rstrip("%20") if "is_operator" not in str(return_scopes): return_scopes=return_scopes+"%20is_operator" return return_scopes def _get_valid_https_url(self, url): if "http" not in url: return "https://" + url def get_login_url(self): auth_endpoint = self.wkhandler.get(wkh.TYPE_OIDC, wkh.KEY_OIDC_AUTHORIZATION_ENDPOINT) return auth_endpoint + "?scope="+self.scopes+"&client_id="+self.client_id+"&redirect_uri="+self.redirect_uri+"&response_type=code" def get_token(self, code): token_endpoint = self.wkhandler.get(wkh.TYPE_OIDC, wkh.KEY_OIDC_TOKEN_ENDPOINT) payload = "grant_type=authorization_code&client_id="+self.client_id+"&code="+code+"&client_secret="+self.client_secret+"&scope="+self.scopes+"&redirect_uri="+self.redirect_uri headers = {"content-type": "application/x-www-form-urlencoded", 'cache-control': "no-cache"} response = requests.request("POST", token_endpoint, data=payload, headers=headers, verify=False) self.isOperator = self.verify_uid_headers(self.url, json.loads(response.text),'isOperator') return json.loads(response.text) def refresh_token(self, refresh_token): "Gets a new token, using a previous refresh token" token_endpoint = self.wkhandler.get(wkh.TYPE_OIDC, wkh.KEY_OIDC_TOKEN_ENDPOINT) payload = "grant_type=refresh_token&refresh_token="+refresh_token+"&client_id="+self.client_id+"&client_secret="+self.client_secret headers = {"content-type": "application/x-www-form-urlencoded", 'cache-control': "no-cache"} response = requests.request("POST", token_endpoint, data=payload, headers=headers, verify=False) return json.loads(response.text) def get_user_info(self,access_token): user_info_endpoint = self.wkhandler.get(wkh.TYPE_OIDC, wkh.KEY_OIDC_USERINFO_ENDPOINT) response = requests.request("GET", user_info_endpoint+"?access_token="+access_token, verify=False) status = response.status_code if status > 199 and status < 300: return json.loads(response.text) else: return None def end_session_url(self, id_token): end_session_endpoint = self.wkhandler.get(wkh.TYPE_OIDC, wkh.KEY_OIDC_END_SESSION_ENDPOINT) return end_session_endpoint +"?post_logout_redirect_uri="+self.post_logout_redirect_uri+"&id_token_hint="+id_token def verify_JWT_token(self,url, token, key): try: header = str(token).split(".")[0] paddedHeader = header + '=' * (4 - len(header) % 4) decodedHeader = base64.b64decode(paddedHeader) #to remove byte-code decodedHeader_format = decodedHeader.decode('utf-8') decoded_str_header = json.loads(decodedHeader_format) payload = str(token).split(".")[1] paddedPayload = payload + '=' * (4 - len(payload) % 4) decoded = base64.b64decode(paddedPayload) #to remove byte-code decoded = decoded.decode('utf-8') decoded_str = json.loads(decoded) if decoded_str_header['kid'] != "RSA1": verificator = JWT_Verification(url) result = verificator.verify_signature_JWT(token) else: #validate signature for rpt rsajwk = RSAKey(kid="RSA1", key=import_rsa_key_from_file("config/public.pem")) dict_rpt_values = JWS().verify_compact(token, keys=[rsajwk], sigalg="RS256") if dict_rpt_values == decoded_str: result = True else: result = False if result == False: print("Verification of the signature for the JWT failed!") raise Exception else: print("Signature verification is correct!") if decoded_str_header['kid'] != "RSA1": if key in decoded_str.keys(): if decoded_str[key] != None: user_value = decoded_str[key] else: raise Exception else: user_value = decoded_str['pct_claims'][key] else: if decoded_str[key] == None: if decoded_str['pct_claims'][key][0] == None: raise Exception else: user_value = decoded_str['pct_claims'][key][0] else: user_value = decoded_str[key] return user_value except Exception as e: print("Authenticated RPT Resource. No Valid JWT id token passed! " +str(e)) return None def verify_OAuth_token(self, token, key): headers = { 'content-type': "application/json", 'Authorization' : 'Bearer '+token} url = self.wkh.get(TYPE_OIDC, KEY_OIDC_USERINFO_ENDPOINT ) try: res = get(url, headers=headers, verify=False) user = (res.json()) return user[key] except: print("OIDC Handler: Get User "+key+": Exception occured!") return None def verify_uid_headers(self,url, jwt, key): value = None token_protected = None myJWT = jwt['id_token'] value=self.verify_JWT_token(url, myJWT, key) return value
44.075676
183
0.636988
5e33179e1ee8472c9d87f0b0be89a0da6157ac06
202
py
Python
Chapter16/parse_web_page.py
add54/ADMIN_SYS_PYTHON
5a6d9705537c8663c8f7b0f45d29ccc87b6096e7
[ "MIT" ]
116
2018-12-21T01:05:47.000Z
2022-03-23T21:41:41.000Z
Chapter16/parse_web_page.py
add54/ADMIN_SYS_PYTHON
5a6d9705537c8663c8f7b0f45d29ccc87b6096e7
[ "MIT" ]
2
2021-03-31T19:36:19.000Z
2021-06-10T22:29:26.000Z
Chapter16/parse_web_page.py
add54/ADMIN_SYS_PYTHON
5a6d9705537c8663c8f7b0f45d29ccc87b6096e7
[ "MIT" ]
147
2018-12-19T14:10:32.000Z
2022-03-20T11:03:20.000Z
import requests from bs4 import BeautifulSoup page_result = requests.get('https://www.imdb.com/news/top?ref_=nv_nw_tp') parse_obj = BeautifulSoup(page_result.content, 'html.parser') print(parse_obj)
22.444444
73
0.792079
0b3247284309293fb1ec2674ecea0cacc053bce8
1,648
py
Python
etabotsite/etabotapp/TMSlib/Atlassian_API.py
aradnaev/pmp
2043c61d3b8bd21e49b5b07a4aa85d833d9531e8
[ "Apache-2.0" ]
3
2018-07-05T00:04:59.000Z
2021-03-08T03:04:44.000Z
etabotsite/etabotapp/TMSlib/Atlassian_API.py
aradnaev/pmp
2043c61d3b8bd21e49b5b07a4aa85d833d9531e8
[ "Apache-2.0" ]
20
2020-01-25T03:58:30.000Z
2022-03-02T01:05:52.000Z
etabotsite/etabotapp/TMSlib/Atlassian_API.py
aradnaev/pmp
2043c61d3b8bd21e49b5b07a4aa85d833d9531e8
[ "Apache-2.0" ]
4
2020-04-08T00:00:49.000Z
2021-03-08T03:24:04.000Z
"""Atlassian API helper functions.""" import requests ATLASSIAN_CLOUD_BASE = "https://api.atlassian.com/" ATLASSIAN_CLOUD_PROFILE = ATLASSIAN_CLOUD_BASE + "me" class AtlassianAPI: def __init__(self, token): self.token = token self.accessible_resources_api = \ "https://api.atlassian.com/oauth/token/accessible-resources" def default_headers(self): return { 'Authorization': 'Bearer {}'.format(self.token.access_token), 'Accept': 'application/json' } @staticmethod def mock_get_accessible_resources(self): return [{ "id": "d1083787-4491-40c9-9581-8625f52baf7e", "url": "https://etabot.atlassian.net", "name": "etabot", "scopes": ["write:jira-work", "read:jira-work", "read:jira-user"], "avatarUrl":"https://site-admin-avatar-cdn.prod.public.atl-paas.net/avatars/240/site.png"}] def get_accessible_resources(self): """Example: [{"id":"d1083787-4491-40c9-9581-8625f52baf7e","url":"https://etabot.atlassian.net","name":"etabot","scopes":["write:jira-work","read:jira-work","read:jira-user"],"avatarUrl":"https://site-admin-avatar-cdn.prod.public.atl-paas.net/avatars/240/site.png"}] """ headers = self.default_headers() res = requests.get( self.accessible_resources_api, headers=headers) if res.status_code == 200: return res.json() else: raise NameError('Could not get resources with given token. Status code: {}, message {}:'.format( res.status_code, res.json() ))
37.454545
261
0.615898
d58572d41159dac6085595d61d9686ef1499e0ac
3,780
py
Python
manga_py/info.py
theincognito-inc/manga-dl
899905bafb6c6891815b58cce41eaff32a682570
[ "MIT" ]
1
2020-11-19T00:40:49.000Z
2020-11-19T00:40:49.000Z
manga_py/info.py
eduhoribe/manga-py
fe7eb2e08532b3c75b4f7ac8cc4132f0e7a65eb4
[ "MIT" ]
null
null
null
manga_py/info.py
eduhoribe/manga-py
fe7eb2e08532b3c75b4f7ac8cc4132f0e7a65eb4
[ "MIT" ]
null
null
null
from argparse import Namespace from datetime import datetime from sys import argv from typing import Union from manga_py import meta class Info: __doc__ = """ --print-json argument helper { 'site': 'https://example.org/kumo-desu-ga-nani-ka', 'downloader': [ 'https://manga-py.com/manga-py/', 'https://github.com/manga-py/manga-py', 'https://github.com/yuru-yuri/manga-py', 'https://yuru-yuri.github.io/manga-py', ], 'version': '1.1.4', 'delta': '0:00:00.003625', 'start': '2018-06-08 17:22:24.419565', 'end': '2018-06-08 17:22:24.423190', 'user_agent': 'Mozilla/5.0', 'cookies': {'cf_clearance': 'ec-1528654923-86400', '__cfduid': '21528654914'}, 'args': { '_raw_params': 'manga-py --cbz https://example.org/kumo-desu-ga-nani-ka', 'url': 'https://example.org/kumo-desu-ga-nani-ka', 'name': None, 'destination': None, 'no-progress': False, 'cbz': False, 'skip-volumes': None, 'max-volumes': None, 'user-agent': None, 'proxy': None, 'reverse-downloading': None, 'rewrite-exists-archives': None, 'no-multi-threads': None, }, 'error': False, 'error_msg': '', 'volumes': [ { 'name': 'Kumo desu ga, nani ka? - 0', 'path': 'Manga/kumo-desu-ga-nani-ka/vol_000.zip', }, { 'name': 'Kumo desu ga, nani ka? - 1', 'path': 'Manga/kumo-desu-ga-nani-ka/vol_001.zip', }, ], } """ _data = None _start_time = None @staticmethod def _dt(dt, fmt: str = '%A, %d. %B %Y %H:%M:%S'): return dt.strftime(fmt) def __init__(self, args: Union[Namespace, dict]): # see manga_py.cli arguments _args = args.__dict__ if args is not dict else args _args['_raw_params'] = ' '.join(argv) self._data = { 'site': args.url, 'downloader': meta.repo_url, 'version': meta.version, 'delta': None, 'init': self._dt(datetime.now()), 'start': None, 'end': None, 'user_agent': None, 'cookies': None, 'args': _args, 'return_code': 0, 'error': False, 'error_msg': None, 'volumes': [], } self._volumes = [] def set_ua(self, ua): self._data['user_agent'] = ua def set_error(self, e, rc: int = 1): self._data['return_code'] = rc self._data['error'] = e def start(self): self._start_time = datetime.now() def set_cookies(self, cookies): self._data['cookies'] = cookies def set_volumes(self, volumes: list): self._data['volumes'] = volumes def set_last_volume_error(self, error_message): try: self._data['volumes'][-1]['error'] = True self._data['volumes'][-1]['error_message'] = error_message except IndexError: pass def add_volume(self, url: str, path: str, files: list = None): volume = { 'url': url, 'path': path, 'error': False, 'error_message': '', } if files is not None: volume['files'] = files volume['num_files'] = len(files) self._data['volumes'].append(volume) def get(self): self._data['delta'] = str(datetime.now() - self._start_time) self._data['start'] = self._dt(self._start_time) self._data['end'] = self._dt(datetime.now()) return self._data
30
86
0.504497
5409225d71dd1fbf8c41038ff40017a37f3e3829
849
py
Python
api/migrations/0002_auto_20170528_0513.py
sai29/friendster
f89bb0c27a29b7fc35c3c3746ccb2a51fabe2286
[ "MIT" ]
null
null
null
api/migrations/0002_auto_20170528_0513.py
sai29/friendster
f89bb0c27a29b7fc35c3c3746ccb2a51fabe2286
[ "MIT" ]
null
null
null
api/migrations/0002_auto_20170528_0513.py
sai29/friendster
f89bb0c27a29b7fc35c3c3746ccb2a51fabe2286
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11.1 on 2017-05-28 05:13 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('api', '0001_initial'), ] operations = [ migrations.AlterField( model_name='connectionrequest', name='from_user', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='sender', to=settings.AUTH_USER_MODEL), ), migrations.AlterField( model_name='connectionrequest', name='to_user', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='reciever', to=settings.AUTH_USER_MODEL), ), ]
30.321429
135
0.665489
7c5526a277bd1072974067fd8a3778cf68f355ac
1,119
py
Python
server/djangoapp/urls.py
mrmicrosoft/agfzb-CloudAppDevelopment_Capstone
2b0de5544284e139ccbc4a9448333a47a373012b
[ "Apache-2.0" ]
null
null
null
server/djangoapp/urls.py
mrmicrosoft/agfzb-CloudAppDevelopment_Capstone
2b0de5544284e139ccbc4a9448333a47a373012b
[ "Apache-2.0" ]
null
null
null
server/djangoapp/urls.py
mrmicrosoft/agfzb-CloudAppDevelopment_Capstone
2b0de5544284e139ccbc4a9448333a47a373012b
[ "Apache-2.0" ]
null
null
null
from django.urls import path from django.conf.urls.static import static from django.conf import settings from . import views app_name = 'djangoapp' urlpatterns = [ # route is a string contains a URL pattern # view refers to the view function # name the URL # path for about view path(route='about/', view=views.about, name='about'), # path for contact us view path(route='contact/', view=views.contact, name='contact'), # path for registration path(route='register/', view=views.registration_request, name='register'), # path for login path(route='login/', view=views.login_request, name='login'), # path for logout path(route='logout/', view=views.logout_request, name='logout'), # path for index path(route='', view=views.get_dealerships, name='index'), # path for dealer reviews view path('dealer/<int:dealer_id>/', views.get_dealer_details, name='dealer_details'), # path for add a review view path('review/<int:dealer_id>/', views.add_review, name='add_review'), ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
31.083333
85
0.696157
5a496b32d0e4868e4154248907bba47b02fc5ce6
8,281
py
Python
HuggingFace-TSE/model.py
ywu94/Code-Notes
8c4e9cbfe86163d39608ddce63e550e0e9797a8e
[ "MIT" ]
2
2020-09-11T10:40:43.000Z
2020-10-08T04:02:26.000Z
HuggingFace-TSE/model.py
ywu94/Code-Notes
8c4e9cbfe86163d39608ddce63e550e0e9797a8e
[ "MIT" ]
null
null
null
HuggingFace-TSE/model.py
ywu94/Code-Notes
8c4e9cbfe86163d39608ddce63e550e0e9797a8e
[ "MIT" ]
null
null
null
import os import re import pickle import argparse from collections import namedtuple import numpy as np import torch from torch import nn import torch.nn.functional as F import transformers from transformers import BertModel, BertConfig import pytorch_lightning as pl from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning.callbacks.early_stopping import EarlyStopping from utils import initiate_logger from dataset import get_TSE_dataloader_kfold from callback import PyLoggerCallback from config import get_config class BERT_TSE(nn.Module): def __init__(self, config): super().__init__() self.config = config self.transformer = config.model_cls(config.model_config).from_pretrained(config.pretrain_wt) if 'distilbert' in config.model_name.split('-')[0]: self.n_feature = self.transformer.transformer.layer[-1].ffn.lin2.out_features elif 'albert' in config.model_name.split('-')[0]: self.n_feature = self.transformer.encoder.albert_layer_groups[-1].albert_layers[-1].ffn_output.out_features elif 'bert' in config.model_name.split('-')[0]: self.n_feature = self.transformer.pooler.dense.out_features elif 'roberta' in config.model_name.split('-')[0]: self.n_feature = self.transformer.pooler.dense.out_features self.logits = nn.Sequential( nn.Linear(self.config.n_layer*self.n_feature, 128), nn.Tanh(), nn.Linear(128, 2) ) self.dropout = nn.Dropout(p=0.5) def _set_feature_extract(self): for name, param in self.named_parameters(): if re.search('logits', name): param.requires_grad = True else: param.requires_grad = False def _set_fine_tune(self): for _, param in self.named_parameters(): param.requires_grad = True def _check_parameter_requires_grad(self): params_to_update = [] for name, param in self.named_parameters(): if param.requires_grad == True: params_to_update.append(param) return params_to_update def forward(self, token_ids, token_type_ids, mask): if 'distil' in self.config.model_name.split('-')[0]: hidden_states = self.transformer( token_ids, attention_mask=mask, output_hidden_states=True )[-1] else: hidden_states = self.transformer( token_ids, attention_mask=mask, token_type_ids=token_type_ids, output_hidden_states=True )[-1] features = torch.cat(hidden_states[:self.config.n_layer], dim=-1) if self.config.multi_sample_dropout and self.training: logits = torch.mean(torch.stack([self.logits(self.dropout(features)) for _ in range(5)], dim=0), dim=0) else: logits = self.logits(features) start_logits, end_logits = logits[:,:,0], logits[:,:,1] return start_logits, end_logits def _pred_token_to_char(self, text, offsets, token_pred): char_pred = np.zeros(len(text)) for i, offset in enumerate(offsets): if offset[0] or offset[1]: char_pred[offset[0]:offset[1]]=token_pred[i] return char_pred def _pred_selected(self, text, offsets, start_token_pred, end_token_pred): start_pred = self._pred_token_to_char(text, offsets, start_token_pred) end_pred = self._pred_token_to_char(text, offsets, end_token_pred) start_idx = np.argmax(start_pred) end_idx = len(end_pred) - 1 - np.argmax(end_pred[::-1]) return text[start_idx:end_idx+1] def _jaccard(self, str1, str2): a = set(str1.lower().split()) b = set(str2.lower().split()) c = a.intersection(b) return float(len(c)) / (len(a) + len(b) - len(c)) def _evaluate_pred_selected(self, pred, actual): return self._jaccard(actual, pred) class PL_BERT_TSE(pl.LightningModule): def __init__(self, fold, dl_config, ml_config, batch_size=64, learning_rate=1e-4, *args, **kwargs): super().__init__() self.batch_size = batch_size self.learning_rate = learning_rate self.save_hyperparameters() self.hparams.num_warmup_steps = int(22000/self.batch_size*0.3) self.hparams.num_training_steps = int(5*22000/self.batch_size) self.model = BERT_TSE(ml_config) self._reset_metric_state() def _reset_metric_state(self): self.stat = { 'train': {'loss': [], 'start_loss': [], 'end_loss': []}, 'validation': {'loss': [], 'start_loss': [], 'end_loss': [], 'jaccard_score': []} } def forward(self, token_ids, token_type_ids, mask): start_logits, end_logits = self.model(token_ids, token_type_ids, mask) return start_logits, end_logits def training_step(self, batch, batch_idx): token_ids = batch['ids'] token_type_ids = batch['type_ids'] mask = batch['mask'] start_label = batch['start_label'] end_label = batch['end_label'] start_logits, end_logits = self.model(token_ids, token_type_ids, mask) start_probs = torch.softmax(start_logits, dim=1) end_probs = torch.softmax(end_logits, dim=1) start_loss = F.kl_div(torch.log(start_probs), start_label, reduction='batchmean') end_loss = F.kl_div(torch.log(end_probs), end_label, reduction='batchmean') return {'loss': start_loss+end_loss, 'start_loss': start_loss, 'end_loss': end_loss} def training_epoch_end(self, outputs): loss_mean = torch.stack([x['callback_metrics']['loss'] for x in outputs]).mean() start_loss_mean = torch.stack([x['callback_metrics']['start_loss'] for x in outputs]).mean() end_loss_mean = torch.stack([x['callback_metrics']['end_loss'] for x in outputs]).mean() self.stat['train']['loss'].append(float(loss_mean.cpu().detach().numpy())) self.stat['train']['start_loss'].append(float(start_loss_mean.cpu().detach().numpy())) self.stat['train']['end_loss'].append(float(end_loss_mean.cpu().detach().numpy())) return {'loss': loss_mean} def validation_step(self, batch, batch_idx): token_ids = batch['ids'] token_type_ids = batch['type_ids'] mask = batch['mask'] start_label = batch['start_label'] end_label = batch['end_label'] texts = batch['text'] offsets = batch['offsets'] selected_texts = batch['selected_text'] start_logits, end_logits = self.model(token_ids, token_type_ids, mask) start_probs = torch.softmax(start_logits, dim=1) end_probs = torch.softmax(end_logits, dim=1) start_loss = F.kl_div(torch.log(start_probs), start_label, reduction='batchmean') end_loss = F.kl_div(torch.log(end_probs), end_label, reduction='batchmean') start_probs = start_probs.cpu().detach().numpy() end_probs = end_probs.cpu().detach().numpy() selected_pred = [self.model._pred_selected(text, offset, start_token_pred, end_token_pred) for text, offset, start_token_pred, end_token_pred in zip(texts, offsets, start_probs, end_probs)] jaccard_score = np.mean([self.model._evaluate_pred_selected(p,t) for p, t in zip(selected_pred, selected_texts)]) return {'val_loss': start_loss+end_loss, 'val_start_loss': start_loss, 'val_end_loss': end_loss, 'val_jaccard_score': jaccard_score} def validation_epoch_end(self, outputs): loss_mean = torch.stack([x['val_loss'] for x in outputs]).mean() start_loss_mean = torch.stack([x['val_start_loss'] for x in outputs]).mean() end_loss_mean = torch.stack([x['val_end_loss'] for x in outputs]).mean() jaccard_score_mean = np.mean([x['val_jaccard_score'] for x in outputs]) self.stat['validation']['loss'].append(float(loss_mean.cpu().detach().numpy())) self.stat['validation']['start_loss'].append(float(start_loss_mean.cpu().detach().numpy())) self.stat['validation']['end_loss'].append(float(end_loss_mean.cpu().detach().numpy())) self.stat['validation']['jaccard_score'].append(jaccard_score_mean) return {'val_loss': loss_mean, 'val_jaccard_score': jaccard_score_mean} def train_dataloader(self): dataloader = get_TSE_dataloader_kfold('train', self.hparams.fold, self.hparams.batch_size, self.hparams.dl_config) return dataloader def val_dataloader(self): dataloader = get_TSE_dataloader_kfold('validation', self.hparams.fold, self.hparams.batch_size, self.hparams.dl_config) return dataloader def configure_optimizers(self): params_to_update = self.model._check_parameter_requires_grad() opt = transformers.AdamW(params_to_update, lr=self.hparams.learning_rate, weight_decay=1e-2) sch = { 'scheduler': transformers.get_linear_schedule_with_warmup( opt, num_warmup_steps=self.hparams.num_warmup_steps, num_training_steps=self.hparams.num_training_steps ), 'interval': 'step', 'frequency': 1, } return [opt], [sch]
37.640909
134
0.739162
7789071087f5b7eb8939df0561a5923c41565fb6
2,933
py
Python
backend/api/controller/user/add.py
Vedant1202/sepsis
ed73d897192e561d1742109e642af72f6f26cfdf
[ "MIT" ]
null
null
null
backend/api/controller/user/add.py
Vedant1202/sepsis
ed73d897192e561d1742109e642af72f6f26cfdf
[ "MIT" ]
2
2020-01-28T23:16:01.000Z
2020-09-26T00:36:53.000Z
backend/api/controller/user/add.py
Vedant1202/sepsis
ed73d897192e561d1742109e642af72f6f26cfdf
[ "MIT" ]
null
null
null
# import pymysql from app import app from db import mysql import json from flask import jsonify from flask import flash, request from werkzeug.security import generate_password_hash, check_password_hash from flask_cors import CORS import time from utils.utils import not_found, create_session, calculate_age from utils.utils import not_found, create_session, calculate_age, verify_session, upload_file from werkzeug.utils import secure_filename import os def user_add(): try: _fname = request.form.getlist("fname")[0] _lname = request.form.getlist("lname")[0] _email = request.form.getlist("email")[0] _password = request.form.getlist("password")[0] _dept = request.form.getlist("dept")[0] _dob = request.form.getlist("dob")[0] _gender = request.form.getlist("gender")[0] _phone = request.form.getlist("phone")[0] _type = request.form.getlist("type")[0] _specialization = request.form.getlist("specialization")[0] _experience = request.form.getlist("experience")[0] _registration = request.form.getlist("registration")[0] file = request.files.to_dict()['profImg'] filename = secure_filename(file.filename) filenamefull = filename # filename = os.path.join('E:/HackerEarth/Missing/WebApp/backend/files/missing', filename) filename = 'E:/sih2020/sepsis/backend/files/doctor/profile-pics/images/' + filename print('hello') print(filename) # validate the received values if _fname and _lname and _email and _password and _dept and _dob and _gender and _phone and _type and _specialization and _experience and _registration and request.method == "POST": # do not save password as a plain text _hashed_password = generate_password_hash(_password) # save edits sql = "INSERT INTO user(fname, lname, email, password, dept, dob, gender, phone, type, specialization, experience, registration, profimg, filename) VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)" data = (_fname, _lname, _email, _hashed_password, _dept, _dob, _gender, _phone, _type, _specialization, _experience, _registration, filename, filenamefull) conn = mysql.connect() cursor = conn.cursor() cursor.execute(sql, data) print(cursor.lastrowid) uid = cursor.lastrowid conn.commit() upload_file('doctor/profile-pics/images') skey = create_session(uid) resp = jsonify(uid=uid, skey=skey) resp.status_code = 200 # print(resp) return resp else: return not_found() except Exception as e: print('====================== EXCEPTION ========================') print(e) finally: # print('Done') cursor.close() conn.close()
43.776119
223
0.638595
5940d83d11f0b5c764f8c71360c8ec2217c61215
1,299
py
Python
setup.py
milonoir/yaml_rulz
ee8e3f4d2892aa636832970dddc044d0ca86c691
[ "MIT" ]
1
2017-07-14T16:43:10.000Z
2017-07-14T16:43:10.000Z
setup.py
milonoir/yaml_rulz
ee8e3f4d2892aa636832970dddc044d0ca86c691
[ "MIT" ]
4
2016-09-13T15:14:51.000Z
2017-05-22T10:57:20.000Z
setup.py
milonoir/yaml_rulz
ee8e3f4d2892aa636832970dddc044d0ca86c691
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from setuptools import setup setup( name="yaml_rulz", version="0.0.1", description="A YAML validator", license="MIT", author="Milan Boleradszki", author_email="bmilan1985@gmail.com", maintainer="Milan Boleradszki", maintainer_email="bmilan1985@gmail.com", url="https://github.com/milonoir/yaml_rulz", packages=["yaml_rulz"], install_requires=["PyYAML", "prettytable"], tests_require=["mock"], classifiers=[ # "Development Status :: 1 - Planning", # "Development Status :: 2 - Pre-Alpha", # "Development Status :: 3 - Alpha", "Development Status :: 4 - Beta", # "Development Status :: 5 - Production/Stable", # "Development Status :: 6 - Mature", # "Development Status :: 7 - Inactive", "Environment :: Console", "Intended Audience :: System Administrators", "License :: OSI Approved :: MIT License", "Natural Language :: English", "Operating System :: Unix", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3.5", "Topic :: Text Processing :: Markup", ], entry_points={ "console_scripts": [ "yaml_rulz = yaml_rulz.cli:main", ], }, )
30.928571
56
0.582756
33688a71047f4c9d50f5025064846e0ee5d3648e
1,248
py
Python
jax/scipy/stats/expon.py
ecreager/jax
948def817fd7cc2ee7a988b5142401a580b1bbd3
[ "ECL-2.0", "Apache-2.0" ]
2
2021-06-13T20:51:49.000Z
2021-06-14T02:37:06.000Z
jax/scipy/stats/expon.py
ecreager/jax
948def817fd7cc2ee7a988b5142401a580b1bbd3
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
jax/scipy/stats/expon.py
ecreager/jax
948def817fd7cc2ee7a988b5142401a580b1bbd3
[ "ECL-2.0", "Apache-2.0" ]
1
2019-03-14T10:07:22.000Z
2019-03-14T10:07:22.000Z
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as onp import scipy.stats as osp_stats from ... import lax from ...numpy.lax_numpy import _promote_args_like, _wraps, where, inf @_wraps(osp_stats.expon.logpdf) def logpdf(x, loc=0, scale=1): x, loc, scale = _promote_args_like(osp_stats.expon.logpdf, x, loc, scale) log_scale = lax.log(scale) linear_term = lax.div(lax.sub(x, loc), scale) log_probs = lax.neg(lax.add(linear_term, log_scale)) return where(lax.lt(x, loc), -inf, log_probs) @_wraps(osp_stats.expon.pdf) def pdf(x, loc=0, scale=1): return lax.exp(logpdf(x, loc, scale))
33.72973
75
0.754808
875502dc3c94c25d89245ccb6fb17b332d505c04
4,147
py
Python
PythonCodes/ParallExtraction/ExtractPlanarTimeProfileData.py
Nicolucas/C-Scripts
2608df5c2e635ad16f422877ff440af69f98f960
[ "MIT" ]
null
null
null
PythonCodes/ParallExtraction/ExtractPlanarTimeProfileData.py
Nicolucas/C-Scripts
2608df5c2e635ad16f422877ff440af69f98f960
[ "MIT" ]
null
null
null
PythonCodes/ParallExtraction/ExtractPlanarTimeProfileData.py
Nicolucas/C-Scripts
2608df5c2e635ad16f422877ff440af69f98f960
[ "MIT" ]
null
null
null
import os, time, sys import numpy as np from scipy.interpolate import RectBivariateSpline import multiprocessing as mp sys.path.insert(0,"/import/freenas-m-03-geodynamics/jhayek/petsc-3.12.5/lib/petsc/bin/") sys.path.insert(0,"/import/freenas-m-03-geodynamics/jhayek/TEAR/se2wave/utils/python") sys.path.insert(0,"/import/freenas-m-03-geodynamics/jhayek/TEAR/processing/TEAR/PythonCodes/") from Lib_GeneralFunctions import * from Lib_ProfilePlotting import * from Lib_ProfileProcessing import * from se2waveload import * def ExtractFieldsPerTS_tilting(ListTimeProfileObj, w_filename, se2_coor,TiltAngle): se2_field = se2wave_load_wavefield(w_filename,True,True) TimeStep = se2_field["time"].item() LCoorX, LCoorY = SeparateList(se2_coor['coor'], se2_coor['nx'].item(), se2_coor['ny'].item()) LFieldX, LFieldY = Tilt_SeparateList(se2_field['displ'], se2_field['nx'].item(), se2_field['ny'].item(), TiltAngle) LFieldvelX, LFieldvelY = Tilt_SeparateList(se2_field['vel'], se2_field['nx'].item(), se2_field['ny'].item(), TiltAngle) SplineDispl = [RectBivariateSpline(LCoorX[:,0], LCoorY[0,:], LFieldX, kx=1, ky=1), RectBivariateSpline(LCoorX[:,0], LCoorY[0,:], LFieldY, kx=1, ky=1)] SplineVel = [RectBivariateSpline(LCoorX[:,0], LCoorY[0,:], LFieldvelX, kx=1, ky=1), RectBivariateSpline(LCoorX[:,0], LCoorY[0,:], LFieldvelY, kx=1, ky=1)] for OBJitem in ListTimeProfileObj: CompDispX,CompDispY = GetLocDataTilt(OBJitem.Coord,OBJitem.TwinCoord, SplineDispl, True) CompvelX,CompVelY = GetLocDataTilt(OBJitem.Coord,OBJitem.TwinCoord, SplineVel, True) OBJitem.appendFieldValues(TimeStep, CompDispX, CompDispY, CompvelX, CompVelY) def FillObjectInTime(ListTimeProfileObj, freq, maxtimestep, fname, path, TiltAngle, MeshFilename = "default_mesh_coor.pbin", NumProcessors=1): TSList = np.arange(0, maxtimestep+1, freq).tolist() FilenameList = [os.path.join(path,fname.format(timestep=i)) for i in TSList] filename = os.path.join(path, MeshFilename) se2_coor = se2wave_load_coordinates(filename) ParallExtractField_per_TS = lambda lst: [ExtractFieldsPerTS_tilting(ListTimeProfileObj, x, se2_coor, TiltAngle) for x in lst] FilenameListChunks = np.array_split(FilenameList, NumProcessors) with mp.Pool(processes=NumProcessors) as pool: chunk_processes = [pool.apply_async(ParallExtractField_per_TS, args=(chunk)) for chunk in FilenameListChunks] [chunk.get() for chunk in chunk_processes] start_time = time.time() ########################################## ThickVal = "025" TiltAngle = 0.00 OrderP = 3 thickness = float(ThickVal)*1.001 InFolder = "TEAR49_TPV_T0_P3_025x025_A12phi65_Delt1.001_7s" fname = "step-{timestep:04}_wavefield.pbin" NameWrapper = "{}/".format(InFolder) path = "/import/freenas-m-03-geodynamics/jhayek/TEAR/Results/T2/Runs/{}".format(NameWrapper) TimeStepList = GetListPatternFiles(path,fname,"{timestep:04}") freq = int(TimeStepList[1])-int(TimeStepList[0]) maxtimestep = int(TimeStepList[-1]) OutputFolder = "/import/freenas-m-03-geodynamics/jhayek/SharedWolfel/PaperData/CorrectedSimulations/" + GetTodayDate() + "-2/" OutFileName = "{InFolder}-Tilt{Tilt}-P{order}-TPList_t{timestep}_d{d}.pickle".format(InFolder=InFolder,order=OrderP, Tilt = TiltAngle, timestep = maxtimestep, d = thickness) ############################# print("\n>>START: "+OutFileName+"\n") # Locations relative to the fault Locations = [[8000,thickness],[6000,thickness],[4000,thickness],[2000,thickness],[0,thickness]] #Locations in the real domain TwinLocations = [list(ApplyTilting(TiltAngle,Loc[0],-Loc[1])) for Loc in Locations] Locations = [list(ApplyTilting(TiltAngle,Loc[0],Loc[1])) for Loc in Locations] ListTimeProfileObj = [SingleTimeProfile(Loc) for Loc in Locations] [ListTimeProfileObj[idx].AddTwin(TLoc) for idx,TLoc in enumerate(TwinLocations)] FillObjectInTime(ListTimeProfileObj, freq, maxtimestep, fname, path, -TiltAngle, NumProcessors=60) SavePickleFile(OutputFolder, OutFileName, ListTimeProfileObj) print("--- %s seconds ---" % (time.time() - start_time))
43.197917
173
0.729684
63edbc5bd31d84cd2460550e259f1f92174e1406
4,636
py
Python
resources/lib/addon.py
dagwieers/plugin.video.fosdem
d2f7758159eb040b85dd4dccac009f10f519ca28
[ "MIT" ]
null
null
null
resources/lib/addon.py
dagwieers/plugin.video.fosdem
d2f7758159eb040b85dd4dccac009f10f519ca28
[ "MIT" ]
null
null
null
resources/lib/addon.py
dagwieers/plugin.video.fosdem
d2f7758159eb040b85dd4dccac009f10f519ca28
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, unicode_literals from datetime import datetime, timedelta import routing from xbmcgui import Dialog, ListItem from xbmcplugin import addDirectoryItem, endOfDirectory, getSetting, setContent, setResolvedUrl from fosdem import fetch_xml, contains_videos FORMAT_URL = 'https://fosdem.org/{}/schedule/xml' FORMATS = ['mp4', 'webm'] YEARS_SHOWN = 5 plugin = routing.Plugin() # pylint: disable=invalid-name def years(): now = datetime.now() year = now.year # Determine if FOSDEM happened this year already if now.month < 2 and now.day < 3: year -= 1 # Range does not include the end. year += 1 return range(year - YEARS_SHOWN, year) def get_setting_int(name): val = getSetting(plugin.handle, name) if not val: val = '0' return int(val) def get_format(): return FORMATS[get_setting_int('format')] @plugin.route('/') @plugin.route('/dir/<path:subdir>') def show_dir(subdir=''): if subdir == '': for year in years(): year = str(year) url = plugin.url_for(show_dir, subdir=year) addDirectoryItem(plugin.handle, url, ListItem(year), True) else: root = fetch_xml(subdir) for day in root.findall('day'): number = day.attrib['index'] date = day.attrib['date'] text = 'Day {} ({})'.format(number, date) url = plugin.url_for(show_day, year=subdir, day=number) addDirectoryItem(plugin.handle, url, ListItem(text), True) endOfDirectory(plugin.handle) @plugin.route('/day/<year>/<day>') def show_day(year, day): exp = './day[@index="{}"]/room'.format(day) root = fetch_xml(year) for room in root.findall(exp): if not contains_videos(room.findall('./event/links/link')): continue name = room.attrib['name'] genre = room.find('./event/track').text text = '{} - {}'.format(name, genre) url = plugin.url_for(show_room, year=year, day=day, room=name) addDirectoryItem(plugin.handle, url, ListItem(text), True) endOfDirectory(plugin.handle) @plugin.route('/room/<year>/<day>/<room>') def show_room(day, year, room): exp = './day[@index="{}"]/room[@name="{}"]/event'.format(day, room) root = fetch_xml(year) for event in root.findall(exp): if not contains_videos(event.findall('./links/link')): continue event_id = event.attrib['id'] title = event.find('title').text track = event.find('track').text subtitle = event.find('subtitle').text person_items = event.find('./persons/person') persons = [p.text for p in person_items] if person_items is not None else [] abstract = event.find('abstract').text duration = event.find('duration').text or '0:0' if abstract: abstract = abstract.replace('<p>', '').replace('</p>', '') item = ListItem(title) item.setProperty('IsPlayable', 'true') item.setInfo('video', { 'cast': persons, 'genre': track, 'plot': abstract, 'tagline': subtitle, 'title': title, }) # duration is formatted as 01:30 hour, minute = duration.split(':') seconds = timedelta(hours=int(hour), minutes=int(minute)).total_seconds() item.addStreamInfo('video', { 'duration': seconds }) url = plugin.url_for(show_event, year=year, event_id=event_id) addDirectoryItem(plugin.handle, url, item, False) setContent(plugin.handle, 'videos') endOfDirectory(plugin.handle) @plugin.route('/event/<year>/<event_id>') def show_event(year, event_id): root = fetch_xml(year) event = root.find('.//event[@id="{}"]'.format(event_id)) videos = [link.attrib['href'] for link in event.findall('./links/link') if 'video.fosdem.org' in link.attrib['href']] if not videos: Dialog().ok('Error playing video', 'FOSDEM event {id} in {year} has no videos.'.format(id=event_id, year=year)) endOfDirectory(plugin.handle) return video_format = get_format() urls = [video for video in videos if video.endswith(video_format)] if urls: url = urls[0] else: # Select a random video url = videos[0] setResolvedUrl(plugin.handle, True, ListItem(path=url)) def run(argv): """Addon entry point from wrapper""" plugin.run(argv)
31.324324
121
0.599439
5c67fe8590f9b572f4ddf87ff786be8ef2f7947e
5,583
py
Python
main.py
dasfreak/npm-most-dependend-upon
bf08308209f91d7f99aa9ee39f19a9ea4d2bb017
[ "MIT" ]
null
null
null
main.py
dasfreak/npm-most-dependend-upon
bf08308209f91d7f99aa9ee39f19a9ea4d2bb017
[ "MIT" ]
null
null
null
main.py
dasfreak/npm-most-dependend-upon
bf08308209f91d7f99aa9ee39f19a9ea4d2bb017
[ "MIT" ]
1
2021-10-11T05:37:08.000Z
2021-10-11T05:37:08.000Z
import json import logging import argparse import asciitree parser = argparse.ArgumentParser( description='Calculate the most-depended upon packages on npm.', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--loglevel', choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], default='INFO', help='Which logelevel to use') parser.add_argument('--preprocess', default=False, action='store_true', help='Preprocess the package index to speed up processing') parser.add_argument('--infile', type=str, help='Filename of the package list you downloaded from npm') parser.add_argument('--dependency_tree', default=False, action='store_true', help='Build a dependency tree for a given package') parser.add_argument('--package', type=str, help='Package for which a dependency tree should be build') parser.add_argument('--outfile', type=str, default='most_depended_upon.json', help='Filename to which results will be written') parser.add_argument('--limit', type=int, default=-1, help= 'Return the n most depended-upon packages only, use -1 for untruncted results') args = parser.parse_args() loglevel = { 'DEBUG': logging.DEBUG, 'INFO': logging.INFO, 'WARNING': logging.WARNING, 'ERROR': logging.ERROR, 'CRITICAL': logging.CRITICAL } logger = logging.getLogger(__name__) logger.setLevel(loglevel[args.loglevel]) logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s') # get the package index from npm: # curl -o package_index_$(date --iso-8601=seconds).json https://replicate.npmjs.com/_all_docs?include_docs=true def get_packages(): logger.info(f'Reading from {args.infile}') with open(args.infile, 'r') as infile: # skip first line line = infile.readline() # remove trailing newline and comma line = infile.readline().replace(',\n', '') # read huge ass JSON linewise and yield a single package's meta data while line: try: package = json.loads(line) except BaseException as exc: logger.warning(f'Could not parse JSON: {line.strip()}: {exc}') continue finally: line = infile.readline().replace(',\n', '') yield package def determine_most_depended_upon(): logger.info(f'Starting to count dependencies') most_depended_upon = {} with open('preprocessed.json', 'r') as infile: preprocessed = json.load(infile) for package in preprocessed: logger.debug(f'{package} got {len(preprocessed[package])} dependencies') for dependency in preprocessed[package]: if most_depended_upon.get(dependency): most_depended_upon[dependency] += 1 else: most_depended_upon[dependency] = 1 logger.info('Sorting results by dependency count') if args.limit > 0: logger.info(f'Only returning the {args.limit} most depended upon packages') most_depended_upon = dict( sorted(most_depended_upon.items(), key=lambda item: item[1], reverse=True)[:args.limit]) else: most_depended_upon = dict( sorted(most_depended_upon.items(), key=lambda item: item[1], reverse=True)) logger.info(f'Writing results to file: {args.outfile}') with open(args.outfile, 'w') as outfile: json.dump(most_depended_upon, outfile) logger.info('Goodbye') def preprocess(package): name = package['id'] try: latest_version = package['doc']['dist-tags']['latest'] except KeyError: # sometimes packages don't have a 'latest' version logger.warning(f'{name} does not have a latest version') return {name: []} try: dependencies = list(package['doc']['versions'][latest_version].get('dependencies', {}).keys()) except KeyError: # sometimes packages list versions as latest that do not exist logger.warning(f'{name} does not have version {latest_version}') return {name: []} return {name: dependencies} def get_dependencies(package, preprocessed): try: return {dependency: get_dependencies(dependency, preprocessed) for dependency in preprocessed[package]} except KeyError: logger.error(f'{package} is not in the package index') def build_dependency_tree(package): logger.info(f'Building dependency tree for {package}') with open('preprocessed.json', 'r') as infile: preprocessed = json.load(infile) dependency_tree = {package: get_dependencies(package, preprocessed)} tr = asciitree.LeftAligned() print(tr(dependency_tree)) if __name__ == '__main__': if args.preprocess: if not args.infile: parser.error("--preprocess requires --infile") preprocessed = {} for package in get_packages(): preprocessed.update(preprocess(package)) with open('preprocessed.json', 'w') as outfile: json.dump(preprocessed, outfile) elif args.dependency_tree: if not args.package: parser.error("--dependency_tree requires --package") build_dependency_tree(args.package) else: determine_most_depended_upon()
35.113208
131
0.626545
e8ad09050a796be7b85d8f5675f71c5906b20b59
2,213
py
Python
DecisionTree.py
denizgurzihin/Decision_Tree
7be1697a36113f44164b6d26701f85ab175738b9
[ "MIT" ]
null
null
null
DecisionTree.py
denizgurzihin/Decision_Tree
7be1697a36113f44164b6d26701f85ab175738b9
[ "MIT" ]
null
null
null
DecisionTree.py
denizgurzihin/Decision_Tree
7be1697a36113f44164b6d26701f85ab175738b9
[ "MIT" ]
null
null
null
import pandas as pd from sklearn.tree import DecisionTreeClassifier # Import Decision Tree Classifier from sklearn.model_selection import train_test_split # Import train_test_split function from sklearn.metrics import * from time import time col_names = ['att1', 'att2', 'att3', 'att4', 'att5', 'att6', 'att7', 'att8', 'att9', 'att10', 'att11', 'att12', 'att13', 'att14', 'att15', 'att16','label'] # load dataset DATA = pd.read_csv("Final_Data.csv", header=None, names=col_names) #DATA.info() feature_cols = ['att1', 'att2', 'att3', 'att4', 'att5', 'att6', 'att7', 'att8', 'att9', 'att10', 'att11', 'att12', 'att13', 'att14', 'att15', 'att16'] X = DATA[feature_cols] # Features y = DATA.label # Target variable accuracy = 0 Confusion_Matrix = 0 f1 = 0 precision = 0 recall = 0 timee = 0 for x in range(10): test_start = time() X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=x) # 80% training and 20% test # Create Decision Tree classifer object clf = DecisionTreeClassifier(criterion="entropy") # Train Decision Tree Classifer clf = clf.fit(X_train, y_train) #Predict the response for test dataset y_pred = clf.predict(X_test) accuracy = accuracy + accuracy_score(y_test, y_pred) f1 = f1 + f1_score(y_test, y_pred, average='weighted') precision = precision + precision_score(y_test, y_pred, average='weighted') recall = recall + recall_score(y_test, y_pred, average='weighted') Confusion_Matrix = Confusion_Matrix + confusion_matrix(y_test, y_pred) test_finish = time() timee = timee + test_finish-test_start print("Overall accuracy for decision tree with gain ratio and hold out method(10 times) :", accuracy/10) print("Overall f1_score for decision tree with gain ratio and hold out method(10 times) :", f1/10) print("Overall precision_score for decision tree with gain ratio and hold out method(10 times) :", precision/10) print("Overall recall_score for decision tree with gain ratio and hold out method(10 times) :", recall/10) print(" Confusion Matrix : ") print(Confusion_Matrix/10) print("Overall time needed for decision tree with gain ratio and hold out method(10 times) :", ((timee/10)*10*10*10), " miliseconds")
40.981481
155
0.724356
67579fa4053d78e49a909fd2e7dd83d67942a610
162
py
Python
Python_Programing_Excercise/Day_1/Anagram_string.py
Ena-Sharma/Meraki_Solution
1bfff62f6aeb69354712d0b5a9e46ddacff357f5
[ "MIT" ]
null
null
null
Python_Programing_Excercise/Day_1/Anagram_string.py
Ena-Sharma/Meraki_Solution
1bfff62f6aeb69354712d0b5a9e46ddacff357f5
[ "MIT" ]
null
null
null
Python_Programing_Excercise/Day_1/Anagram_string.py
Ena-Sharma/Meraki_Solution
1bfff62f6aeb69354712d0b5a9e46ddacff357f5
[ "MIT" ]
null
null
null
''' Apko koi 2 words input me milenge apke program me apko yeh batana ha ki dono Anagram hai ya nhi Eg: Input-1: pears Input-1: spear Output: Nhi hai '''
16.2
95
0.691358
c6e77a460575a94cd0666bcb6b839ae22b1994f7
1,613
py
Python
Other/tm1 rest api stress test.py
DJHig/TM1py-samples
da4050380447472a02e2a107a2c5be79ac284d0a
[ "MIT" ]
1
2019-05-30T10:10:20.000Z
2019-05-30T10:10:20.000Z
Other/tm1 rest api stress test.py
DJHig/TM1py-samples
da4050380447472a02e2a107a2c5be79ac284d0a
[ "MIT" ]
null
null
null
Other/tm1 rest api stress test.py
DJHig/TM1py-samples
da4050380447472a02e2a107a2c5be79ac284d0a
[ "MIT" ]
1
2017-09-01T03:35:18.000Z
2017-09-01T03:35:18.000Z
""" Do REST API operations in parallel. Can be handy when troubleshooting REST API bugs. """ import configparser config = configparser.ConfigParser() config.read('..\config.ini') import asyncio cube = "General Ledger" view = "Default" from TM1py.Services import TM1Service # define functions def get_server_name(tm1): for i in range(1000): data = tm1.server.get_server_name() def execute_mdx(tm1): mdx = "SELECT { [}Clients].Members } ON ROWS, { [}Groups].Members } ON COLUMNS FROM [}ClientGroups]" for i in range(1000): data = tm1.cubes.cells.execute_mdx(mdx) def get_all_dimension_names(tm1): for i in range(1000): data = tm1.dimensions.get_all_names() def get_all_process_names(tm1): for i in range(1000): data = tm1.processes.get_all_names() def read_pnl(tm1): for i in range(1000): data = tm1.cubes.cells.execute_view(cube, view, private=False) # fire requests asynchronously async def main(): loop = asyncio.get_event_loop() with TM1Service(**config['tm1srv01']) as tm1: future1 = loop.run_in_executor(None, execute_mdx, tm1) future2 = loop.run_in_executor(None, get_server_name, tm1) future3 = loop.run_in_executor(None, read_pnl, tm1) future4 = loop.run_in_executor(None, get_all_dimension_names, tm1) future5 = loop.run_in_executor(None, get_all_process_names, tm1) response1, response, response3, response4, response5 = \ await future1, await future2, await future3, await future4, await future5 loop = asyncio.get_event_loop() loop.run_until_complete(main())
31.019231
104
0.704278
65e93ac8ca514e52a29ee9ad5eb8cb5c21ce92b4
15,372
py
Python
tests/util/test_short_client_token.py
NYPL-Simplified/library-registry
adf1d24872459fd21f8e41f22c22a56a4558b6aa
[ "Apache-2.0" ]
null
null
null
tests/util/test_short_client_token.py
NYPL-Simplified/library-registry
adf1d24872459fd21f8e41f22c22a56a4558b6aa
[ "Apache-2.0" ]
null
null
null
tests/util/test_short_client_token.py
NYPL-Simplified/library-registry
adf1d24872459fd21f8e41f22c22a56a4558b6aa
[ "Apache-2.0" ]
null
null
null
from datetime import datetime, timedelta import pytest from library_registry.util.short_client_token import ( ShortClientTokenDecoder, ShortClientTokenEncoder, ShortClientTokenTool, ) from library_registry.model import DelegatedPatronIdentifier TEST_NODE_VALUE = 114740953091845 SCT_TESTLIB_SHORT_NAME = 'LIBRARY' SCT_TESTLIB_SECRET = 'LIBSECRET' GENERIC_PATRONID = 'PATRONID' @pytest.fixture def encoder(): encoder_obj = ShortClientTokenEncoder() yield encoder_obj @pytest.fixture def decoder(): decoder_obj = ShortClientTokenDecoder(TEST_NODE_VALUE, []) yield decoder_obj @pytest.fixture def sct_test_library(db_session, create_test_library): library_obj = create_test_library(db_session, short_name=SCT_TESTLIB_SHORT_NAME) library_obj.shared_secret = SCT_TESTLIB_SECRET yield library_obj db_session.delete(library_obj) db_session.commit() class TestShortClientTokenTool: @pytest.mark.parametrize( 'input,output', [ pytest.param(b'alphabravocharliedelta', b'YWxwaGFicmF2b2NoYXJsaWVkZWx0YQ@@', id='simple_bytes'), pytest.param('alphabravocharliedelta', b'YWxwaGFicmF2b2NoYXJsaWVkZWx0YQ@@', id='simple_string'), pytest.param(chr(2110).encode('utf8'), b'4KC:', id='degree_symbol_includes_plus_sign'), pytest.param(chr(3647).encode('utf8'), b'4Li;', id='thai_bhat_symbol_includes_forward_slash'), pytest.param(chr(97).encode('utf8'), b'YQ@@', id='lowercase_a_includes_equals_sign') ] ) def test_adobe_base64_encode(self, input, output): """ GIVEN: A string or bytestring to encode WHEN: ShortClientTokenTool.adobe_base64_encode() is called on that string THEN: A base64 encoded bytestring should be returned with the following changes: - Any plus character ('+') should be replaced with a colon character (':') - Any forward slash character ('/') should be replaced with a semicolon (';') - Any equals sign character ('=') should be replaced with an at sign character ('@') - Newlines should be stripped Note that the substitutions are made in the base64 *output*, not the input string. """ assert ShortClientTokenTool.adobe_base64_encode(input) == output @pytest.mark.parametrize( 'input,output', [ pytest.param(b'YWxwaGFicmF2b2NoYXJsaWVkZWx0YQ@@', b'alphabravocharliedelta', id='simple_bytes'), pytest.param(b'4KC:', chr(2110).encode('utf8'), id='degree_symbol_includes_plus_sign'), pytest.param(b'4Li;', chr(3647).encode('utf8'), id='thai_bhat_symbol_includes_forward_slash'), pytest.param(b'YQ@@', chr(97).encode('utf8'), id='lowercase_a_includes_equals_sign') ] ) def test_adobe_base64_decode(self, input, output): """ GIVEN: A bytestring encoded by ShortClientTokenTool.adobe_base64_encode WHEN: ShortClientTokenTool.adobe_base64_decode() is called on that bytestring THEN: After the following substitutions are performed on the input, a decoded bytestring should return: - Any colon character (':') should be replaced with a plus character ('+') - Any semicolon character (';') should be replaced with a forward slash ('/') - Any at sign ('@') should be replaced with an equals sign ('=') """ assert ShortClientTokenTool.adobe_base64_decode(input) == output @pytest.mark.parametrize( 'input,output', [ pytest.param(datetime(2018, 1, 1, 12, 30, 0, 0), 526350, id='jan_1_2018'), pytest.param(ShortClientTokenTool.SCT_EPOCH - timedelta(days=365), 0, id='time_before_sct_epoch'), ] ) def test_sct_numericdate(self, input, output): """ GIVEN: A datetime object WHEN: ShortClientTokenTool.sct_numericdate() is called on that object THEN: An integer representing the number of minutes since the epoch should be returned, where the epoch datetime is defined in ShortClientTokenTool.SCT_EPOCH """ assert ShortClientTokenTool.sct_numericdate(input) == output @pytest.mark.parametrize( 'input,output', [ pytest.param(datetime(2018, 1, 1, 12, 30, 0, 0), 1514809800, id='jan_1_2018'), pytest.param(ShortClientTokenTool.JWT_EPOCH - timedelta(days=365), 0, id='time_before_jwt_epoch'), ] ) def test_jwt_numericdate(self, input, output): """ GIVEN: A datetime object WHEN: ShortClientTokenTool.jwt_numericdate() is called on that object THEN: An integer representing the number of seconds since the epoch should be returned, where the epoch datetime is defined in ShortClientTokenTool.JWT_EPOCH """ assert ShortClientTokenTool.jwt_numericdate(input) == output class TestShortClientTokenEncoder: def test_encode_well_formed_result(self, encoder): """ GIVEN: Three strings, representing - a library short name - a library secret - a patron identifier WHEN: ShortClientTokenEncoder().encode() is called on those strings THEN: A four part, pipe-delimited string should be returned, representing <LIB_SHORT_NAME>|<EXPIRY>|<PATRON_ID>|<B64_ENCODED_SIGNATURE>, where: - LIB_SHORT_NAME is the string passed in - EXPIRY is an epoch time in minutes - PATRON_ID is the string passed in - B64_ENCODED_SIGNATURE is an encoded string signed with a signing key derived from the library secret passed in, which can be decoded by ShortClientTokenDecoder.decode() """ lib_short_name = 'LIBSHORTNAME' lib_secret = 'LIBSECRET' patron_id = 'PATRONID' result = encoder.encode(lib_short_name, lib_secret, patron_id).split('|') assert len(result) == 4 assert result[0] == lib_short_name try: int(result[1]) except ValueError: assert False assert result[2] == patron_id def test_encode_bad_parameters(self, encoder): """ GIVEN: An instance of ShortClientTokenEncoder WHEN: .encode() is called with missing parameters, or None values THEN: An appropriate ValueError should be raised """ with pytest.raises(ValueError) as exc: encoder.encode(None, None, None) assert "Both library short name and secret must be specified." in str(exc) with pytest.raises(ValueError) as exc: encoder.encode('LIBSHORTNAME', None, None) assert "Both library short name and secret must be specified." in str(exc) with pytest.raises(ValueError) as exc: encoder.encode('LIBSHORTNAME', 'LIBSECRET', None) assert "No patron identifier specified." in str(exc) def test_encode_short_client_token_uses_adobe_base64_encoding(self, encoder): class MockSigner: def prepare_key(self, key): return key def sign(self, value, key): """Always return the same signature, crafted to contain a plus sign, a slash and an equal sign when base64-encoded. """ return "!\tFN6~'Es52?X!#)Z*_S" encoder.signer = MockSigner() token = encoder._encode("lib", "My library secret", "1234", 0) # The signature part of the token has been encoded with our # custom encoding, not vanilla base64. assert token == 'lib|0|1234|IQlGTjZ:J0VzNTI;WCEjKVoqX1M@' class TestShortClientTokenDecoder: def test_uuid(self, decoder): """ GIVEN: An instance of ShortClientTokenDecoder WHEN: The .uuid() method is called THEN: A string should be returned in the format 'urn:uuid:0' + uuid, where the uuid value is seeded based on the node value the decoder was instantiated with. """ u = decoder.uuid() # All UUIDs need to start with a 0 and end with the same node value. assert u.startswith('urn:uuid:0') assert u.endswith('685b35c00f05') def test_decode(self, db_session, encoder, decoder, sct_test_library): """ GIVEN: A four part, pipe-delimited string produced by ShortClientTokenEncoder().encode(), based on a known shared secret, and an instance of ShortClientTokenDecoder. WHEN: That bytestring is passed to the .decode() method of the ShortClientTokenDecoder instance THEN: An instance of DelegatedPatronIdentifier is returned """ token = encoder.encode(SCT_TESTLIB_SHORT_NAME, SCT_TESTLIB_SECRET, GENERIC_PATRONID) identifier = decoder.decode(db_session, token) assert isinstance(identifier, DelegatedPatronIdentifier) assert identifier.library == sct_test_library assert identifier.patron_identifier == GENERIC_PATRONID assert identifier.delegated_identifier.startswith('urn:uuid:') # Do the lookup again and verify we get the same DelegatedPatronIdentifier. identifier2 = decoder.decode(db_session, token) assert identifier2 == identifier def test_decode_two_part(self, db_session, encoder, decoder, sct_test_library): """ GIVEN: A username and password derived from a short client token produced by ShortClientTokenEncoder.encode, and an instance of ShortClientTokenDecoder, where the username is the pipe delimited, left-most portion of the token, containing '<LIBRARY_SHORT_NAME>|<EXPIRY>|<PATRON_ID>' and the password is the signature portion of the token. WHEN: The username and password are passed to the .decode_two_part() method of the ShortClientTokenDecoder THEN: An instance of DelegatedPatronIdentifier is returned """ token = encoder.encode(SCT_TESTLIB_SHORT_NAME, SCT_TESTLIB_SECRET, GENERIC_PATRONID) (username, password) = token.rsplit('|', 1) identifier = decoder.decode_two_part(db_session, username, password) assert isinstance(identifier, DelegatedPatronIdentifier) assert identifier.library == sct_test_library assert identifier.patron_identifier == GENERIC_PATRONID assert identifier.delegated_identifier.startswith('urn:uuid:') # Do the lookup again and verify we get the same DelegatedPatronIdentifier. identifier2 = decoder.decode(db_session, token) assert identifier2 == identifier def test__split_token_bad_parameter(self, db_session, decoder, sct_test_library): """ GIVEN: A corrupt or missing short client token string and an instance of ShortClientTokenDecoder WHEN: The string is passed to the ._split_token() method of the ShortClientTokenDecoder instance THEN: An appropriate exception should be raised """ # A token has to contain at least two pipe characters. with pytest.raises(ValueError) as exc: decoder._split_token(db_session, "foo|") assert "Invalid client token" in str(exc.value) # A library with the short name obtained from the token must exist nonexistent_library = "NONEXISTENT_LIBRARY" with pytest.raises(ValueError) as exc: decoder._split_token(db_session, f"{nonexistent_library}|12345|patron") assert f'I don\'t know how to handle tokens from library "{nonexistent_library}"' in str(exc.value) # The expiration time must be numeric. with pytest.raises(ValueError) as exc: decoder._split_token(db_session, f"{sct_test_library.short_name}|a time|patron") assert 'Expiration time "a time" is not numeric' in str(exc.value) @pytest.mark.skip(reason="TODO") def test_decode_two_part_bad_parameters(self): """ GIVEN: A short client token with a signature that cannot be decoded by any delegate or by ShortClientTokenTool.adobe_base64_decode(). WHEN: ShortClientTokenDecoder.decode_two_part() is called with that signature THEN: An exception should be raised """ @pytest.mark.skip(reason="TODO") def test__decode(self): """ GIVEN: A valid short client token / signature and an instance of ShortClientTokenDecoder WHEN: The ._decode() method is called on that token and signature THEN: A DelegatedPatronIdentifier instance should be returned """ def test__decode_bad_parameters(self, db_session, decoder, sct_test_library): """ GIVEN: A corrupt or missing token string and an instance of ShortClientTokenDecoder WHEN: That string is passed to the ._decode() method of the ShortClientTokenDecoder instance THEN: An appropriate exception should be raised """ # The patron identifier must not be blank. with pytest.raises(ValueError) as exc: decoder._decode(db_session, f"{sct_test_library.short_name}|1234|", "signature") assert f'Token {sct_test_library.short_name}|1234| has empty patron identifier' in str(exc.value) # The token must not have expired. with pytest.raises(ValueError) as exc: decoder._decode(db_session, f"{sct_test_library.short_name}|1234|patron", "signature") assert f'Token {sct_test_library.short_name}|1234|patron expired at 2017-01-01 20:34:00' in str(exc.value) # (Even though the expiration number here is much higher, this token is also expired, because # the expiration date calculation for an old-style token starts at a different epoch and treats # the expiration number as seconds rather than minutes.) with pytest.raises(ValueError) as exc: decoder._decode(db_session, f"{sct_test_library.short_name}|1500000000|patron", "signature") assert f'Token {sct_test_library.short_name}|1500000000|patron expired at 2017-07-14 02:40:00' in str(exc.value) # Finally, the signature must be valid. with pytest.raises(ValueError) as exc: decoder._decode(db_session, f"{sct_test_library.short_name}|99999999999|patron", "signature") assert 'Invalid signature for' in str(exc.value) def test_decode_bad_parameter(self, db_session, decoder): """ GIVEN: A missing or corrupted token and an instance of ShortClientTokenDecoder WHEN: The token is passed to the .decoder() method of the ShortClientTokenDecoder instance THEN: An appropriate exception should be raised """ with pytest.raises(ValueError) as exc: decoder.decode(db_session, "") assert 'Cannot decode an empty token.' in str(exc.value) with pytest.raises(ValueError) as exc: decoder.decode(db_session, "no pipes") assert 'Supposed client token "no pipes" does not contain a pipe.' in str(exc.value) # The library must be a known one. with pytest.raises(ValueError) as exc: decoder._decode(db_session, "unknown|1234|patron", "signature") assert 'I don\'t know how to handle tokens from library "UNKNOWN"' in str(exc.value)
48.188088
120
0.674668
e94f73239f13af66f4ed628974b1683cbaac2c1c
13,006
py
Python
tests/components/doorbird/test_config_flow.py
tbarbette/core
8e58c3aa7bc8d2c2b09b6bd329daa1c092d52d3c
[ "Apache-2.0" ]
6
2017-08-02T19:26:39.000Z
2020-03-14T22:47:41.000Z
tests/components/doorbird/test_config_flow.py
tbarbette/core
8e58c3aa7bc8d2c2b09b6bd329daa1c092d52d3c
[ "Apache-2.0" ]
58
2020-08-03T07:33:02.000Z
2022-03-31T06:02:05.000Z
tests/components/doorbird/test_config_flow.py
tbarbette/core
8e58c3aa7bc8d2c2b09b6bd329daa1c092d52d3c
[ "Apache-2.0" ]
14
2018-08-19T16:28:26.000Z
2021-09-02T18:26:53.000Z
"""Test the DoorBird config flow.""" from unittest.mock import MagicMock, patch import urllib from homeassistant import config_entries, data_entry_flow, setup from homeassistant.components.doorbird import CONF_CUSTOM_URL, CONF_TOKEN from homeassistant.components.doorbird.const import CONF_EVENTS, DOMAIN from homeassistant.const import CONF_HOST, CONF_NAME, CONF_PASSWORD, CONF_USERNAME from tests.common import MockConfigEntry, init_recorder_component VALID_CONFIG = { CONF_HOST: "1.2.3.4", CONF_USERNAME: "friend", CONF_PASSWORD: "password", CONF_NAME: "mydoorbird", } def _get_mock_doorbirdapi_return_values(ready=None, info=None): doorbirdapi_mock = MagicMock() type(doorbirdapi_mock).ready = MagicMock(return_value=ready) type(doorbirdapi_mock).info = MagicMock(return_value=info) return doorbirdapi_mock def _get_mock_doorbirdapi_side_effects(ready=None, info=None): doorbirdapi_mock = MagicMock() type(doorbirdapi_mock).ready = MagicMock(side_effect=ready) type(doorbirdapi_mock).info = MagicMock(side_effect=info) return doorbirdapi_mock async def test_user_form(hass): """Test we get the user form.""" await hass.async_add_executor_job( init_recorder_component, hass ) # force in memory db await setup.async_setup_component(hass, "persistent_notification", {}) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["errors"] == {} doorbirdapi = _get_mock_doorbirdapi_return_values( ready=[True], info={"WIFI_MAC_ADDR": "macaddr"} ) with patch( "homeassistant.components.doorbird.config_flow.DoorBird", return_value=doorbirdapi, ), patch( "homeassistant.components.doorbird.async_setup", return_value=True ) as mock_setup, patch( "homeassistant.components.doorbird.async_setup_entry", return_value=True, ) as mock_setup_entry: result2 = await hass.config_entries.flow.async_configure( result["flow_id"], VALID_CONFIG, ) await hass.async_block_till_done() assert result2["type"] == "create_entry" assert result2["title"] == "1.2.3.4" assert result2["data"] == { "host": "1.2.3.4", "name": "mydoorbird", "password": "password", "username": "friend", } assert len(mock_setup.mock_calls) == 1 assert len(mock_setup_entry.mock_calls) == 1 async def test_form_import(hass): """Test we get the form with import source.""" await hass.async_add_executor_job( init_recorder_component, hass ) # force in memory db await setup.async_setup_component(hass, "persistent_notification", {}) import_config = VALID_CONFIG.copy() import_config[CONF_EVENTS] = ["event1", "event2", "event3"] import_config[CONF_TOKEN] = "imported_token" import_config[ CONF_CUSTOM_URL ] = "http://legacy.custom.url/should/only/come/in/from/yaml" doorbirdapi = _get_mock_doorbirdapi_return_values( ready=[True], info={"WIFI_MAC_ADDR": "macaddr"} ) with patch( "homeassistant.components.doorbird.config_flow.DoorBird", return_value=doorbirdapi, ), patch("homeassistant.components.logbook.async_setup", return_value=True), patch( "homeassistant.components.doorbird.async_setup", return_value=True ) as mock_setup, patch( "homeassistant.components.doorbird.async_setup_entry", return_value=True, ) as mock_setup_entry: result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_IMPORT}, data=import_config, ) await hass.async_block_till_done() assert result["type"] == "create_entry" assert result["title"] == "1.2.3.4" assert result["data"] == { "host": "1.2.3.4", "name": "mydoorbird", "password": "password", "username": "friend", "events": ["event1", "event2", "event3"], "token": "imported_token", # This will go away once we convert to cloud hooks "hass_url_override": "http://legacy.custom.url/should/only/come/in/from/yaml", } # It is not possible to import options at this time # so they end up in the config entry data and are # used a fallback when they are not in options assert len(mock_setup.mock_calls) == 1 assert len(mock_setup_entry.mock_calls) == 1 async def test_form_import_with_zeroconf_already_discovered(hass): """Test we get the form with import source.""" await hass.async_add_executor_job( init_recorder_component, hass ) # force in memory db await setup.async_setup_component(hass, "persistent_notification", {}) # Running the zeroconf init will make the unique id # in progress zero_conf = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_ZEROCONF}, data={ "properties": {"macaddress": "1CCAE3DOORBIRD"}, "name": "Doorstation - abc123._axis-video._tcp.local.", "host": "192.168.1.5", }, ) assert zero_conf["type"] == data_entry_flow.RESULT_TYPE_FORM assert zero_conf["step_id"] == "user" assert zero_conf["errors"] == {} import_config = VALID_CONFIG.copy() import_config[CONF_EVENTS] = ["event1", "event2", "event3"] import_config[CONF_TOKEN] = "imported_token" import_config[ CONF_CUSTOM_URL ] = "http://legacy.custom.url/should/only/come/in/from/yaml" doorbirdapi = _get_mock_doorbirdapi_return_values( ready=[True], info={"WIFI_MAC_ADDR": "1CCAE3DOORBIRD"} ) with patch( "homeassistant.components.doorbird.config_flow.DoorBird", return_value=doorbirdapi, ), patch("homeassistant.components.logbook.async_setup", return_value=True), patch( "homeassistant.components.doorbird.async_setup", return_value=True ) as mock_setup, patch( "homeassistant.components.doorbird.async_setup_entry", return_value=True, ) as mock_setup_entry: result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_IMPORT}, data=import_config, ) await hass.async_block_till_done() assert result["type"] == "create_entry" assert result["title"] == "1.2.3.4" assert result["data"] == { "host": "1.2.3.4", "name": "mydoorbird", "password": "password", "username": "friend", "events": ["event1", "event2", "event3"], "token": "imported_token", # This will go away once we convert to cloud hooks "hass_url_override": "http://legacy.custom.url/should/only/come/in/from/yaml", } # It is not possible to import options at this time # so they end up in the config entry data and are # used a fallback when they are not in options assert len(mock_setup.mock_calls) == 1 assert len(mock_setup_entry.mock_calls) == 1 async def test_form_zeroconf_wrong_oui(hass): """Test we abort when we get the wrong OUI via zeroconf.""" await hass.async_add_executor_job( init_recorder_component, hass ) # force in memory db await setup.async_setup_component(hass, "persistent_notification", {}) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_ZEROCONF}, data={ "properties": {"macaddress": "notdoorbirdoui"}, "host": "192.168.1.8", "name": "Doorstation - abc123._axis-video._tcp.local.", }, ) assert result["type"] == "abort" assert result["reason"] == "not_doorbird_device" async def test_form_zeroconf_link_local_ignored(hass): """Test we abort when we get a link local address via zeroconf.""" await hass.async_add_executor_job( init_recorder_component, hass ) # force in memory db await setup.async_setup_component(hass, "persistent_notification", {}) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_ZEROCONF}, data={ "properties": {"macaddress": "1CCAE3DOORBIRD"}, "host": "169.254.103.61", "name": "Doorstation - abc123._axis-video._tcp.local.", }, ) assert result["type"] == "abort" assert result["reason"] == "link_local_address" async def test_form_zeroconf_correct_oui(hass): """Test we can setup from zeroconf with the correct OUI source.""" await hass.async_add_executor_job( init_recorder_component, hass ) # force in memory db await setup.async_setup_component(hass, "persistent_notification", {}) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_ZEROCONF}, data={ "properties": {"macaddress": "1CCAE3DOORBIRD"}, "name": "Doorstation - abc123._axis-video._tcp.local.", "host": "192.168.1.5", }, ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "user" assert result["errors"] == {} doorbirdapi = _get_mock_doorbirdapi_return_values( ready=[True], info={"WIFI_MAC_ADDR": "macaddr"} ) with patch( "homeassistant.components.doorbird.config_flow.DoorBird", return_value=doorbirdapi, ), patch("homeassistant.components.logbook.async_setup", return_value=True), patch( "homeassistant.components.doorbird.async_setup", return_value=True ) as mock_setup, patch( "homeassistant.components.doorbird.async_setup_entry", return_value=True, ) as mock_setup_entry: result2 = await hass.config_entries.flow.async_configure( result["flow_id"], VALID_CONFIG ) await hass.async_block_till_done() assert result2["type"] == "create_entry" assert result2["title"] == "1.2.3.4" assert result2["data"] == { "host": "1.2.3.4", "name": "mydoorbird", "password": "password", "username": "friend", } assert len(mock_setup.mock_calls) == 1 assert len(mock_setup_entry.mock_calls) == 1 async def test_form_user_cannot_connect(hass): """Test we handle cannot connect error.""" await hass.async_add_executor_job( init_recorder_component, hass ) # force in memory db result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) doorbirdapi = _get_mock_doorbirdapi_side_effects(ready=OSError) with patch( "homeassistant.components.doorbird.config_flow.DoorBird", return_value=doorbirdapi, ): result2 = await hass.config_entries.flow.async_configure( result["flow_id"], VALID_CONFIG, ) assert result2["type"] == data_entry_flow.RESULT_TYPE_FORM assert result2["errors"] == {"base": "cannot_connect"} async def test_form_user_invalid_auth(hass): """Test we handle cannot invalid auth error.""" await hass.async_add_executor_job( init_recorder_component, hass ) # force in memory db result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) mock_urllib_error = urllib.error.HTTPError( "http://xyz.tld", 401, "login failed", {}, None ) doorbirdapi = _get_mock_doorbirdapi_side_effects(ready=mock_urllib_error) with patch( "homeassistant.components.doorbird.config_flow.DoorBird", return_value=doorbirdapi, ): result2 = await hass.config_entries.flow.async_configure( result["flow_id"], VALID_CONFIG, ) assert result2["type"] == "form" assert result2["errors"] == {"base": "invalid_auth"} async def test_options_flow(hass): """Test config flow options.""" config_entry = MockConfigEntry( domain=DOMAIN, unique_id="abcde12345", data=VALID_CONFIG, options={CONF_EVENTS: ["event1", "event2", "event3"]}, ) config_entry.add_to_hass(hass) with patch( "homeassistant.components.doorbird.async_setup_entry", return_value=True ): result = await hass.config_entries.options.async_init(config_entry.entry_id) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "init" result = await hass.config_entries.options.async_configure( result["flow_id"], user_input={CONF_EVENTS: "eventa, eventc, eventq"} ) assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY assert config_entry.options == {CONF_EVENTS: ["eventa", "eventc", "eventq"]}
35.438692
87
0.664924
797c93a728304d926ba6e3a81a8ab8956466548f
1,551
py
Python
tests/test_fast_bernoulli.py
altosaar/deep-exponential-families-gluon
80d69b54081f622c0012bb181aa6d8ab9a740f15
[ "MIT" ]
19
2017-10-17T01:04:23.000Z
2021-11-14T20:50:56.000Z
tests/test_fast_bernoulli.py
afcarl/deep-exponential-families-gluon
80d69b54081f622c0012bb181aa6d8ab9a740f15
[ "MIT" ]
null
null
null
tests/test_fast_bernoulli.py
afcarl/deep-exponential-families-gluon
80d69b54081f622c0012bb181aa6d8ab9a740f15
[ "MIT" ]
1
2018-07-05T21:17:34.000Z
2018-07-05T21:17:34.000Z
import numpy as np import time import distributions import scipy.stats import scipy.special import mxnet as mx from mxnet import nd mx.random.seed(13343) np.random.seed(2324) def test_bernoulli_sampling(): n_samples = 10000 K = 10 # num factors C = 2 # num classes # latent variable is of size [n_samples, batch_size, latent_size] positive_latent = nd.ones((1, 1, K)) * 0.01 weight = nd.ones((K, C)) * 0.1 bias = nd.ones(C) * 0.01 p = distributions.FastBernoulli( positive_latent=positive_latent, weight=weight, bias=bias) samples = p.sample(n_samples) print(samples.shape) mean = nd.mean(samples, 0).asnumpy() print('sampling mean, mean', mean, p.mean.asnumpy()) np.testing.assert_allclose(mean, p.mean.asnumpy(), rtol=1e-1) def test_bernoulli_log_prob(): K = 10 # num factors C = 100 # num classes positive_latent = nd.ones((1, 1, K)) * nd.array(np.random.rand(K)) weight = nd.ones((K, C)) * nd.array(np.random.rand(K, C)) bias = nd.ones(C) * 0.01 data = np.random.binomial(n=1, p=0.1, size=C) assert np.sum(data) > 0 nonzero_idx = np.nonzero(data)[0] p = distributions.FastBernoulli( positive_latent=positive_latent, weight=weight, bias=bias) np_log_prob_sum = scipy.stats.bernoulli.logpmf( np.array(data), p=p.mean.asnumpy()).sum() mx_log_prob_sum = p.log_prob_sum( nonzero_index=nd.array(nonzero_idx)).asnumpy() print('mx log prob sum, np log prob sum', mx_log_prob_sum, np_log_prob_sum) np.testing.assert_allclose(mx_log_prob_sum, np_log_prob_sum, rtol=1e-3)
32.3125
77
0.702772
bbeb677e5f2be509ccaaf2043fc03e2b85b88762
9,579
py
Python
docs/source/conf.py
spidezad/google_screener_data_extract
8efe14e73918808182d8745ef38c38f1ac686f6e
[ "BSD-3-Clause" ]
28
2015-09-27T21:11:23.000Z
2021-05-17T06:33:20.000Z
docs/source/conf.py
spidezad/google_screener_data_extract
8efe14e73918808182d8745ef38c38f1ac686f6e
[ "BSD-3-Clause" ]
1
2015-10-18T23:11:03.000Z
2018-03-27T05:58:10.000Z
docs/source/conf.py
spidezad/google_screener_data_extract
8efe14e73918808182d8745ef38c38f1ac686f6e
[ "BSD-3-Clause" ]
24
2016-01-14T09:53:48.000Z
2018-05-17T02:00:56.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # google_screener_data_extract documentation build configuration file, created by # cookiecutter pipproject # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('../..')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = 'google_screener_data_extract' copyright = '2016, Tan Kok Hua' author = 'Tan Kok Hua' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.0.1' # The full version, including alpha/beta/rc tags. release = '0.0.1' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. # "<project> v<release> documentation" by default. #html_title = 'google_screener_data_extract v0.0.1' # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (relative to this directory) to use as a favicon of # the docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not None, a 'Last updated on:' timestamp is inserted at every page # bottom, using the given strftime format. # The empty string is equivalent to '%b %d, %Y'. #html_last_updated_fmt = None # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'h', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'r', 'sv', 'tr', 'zh' #html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # 'ja' uses this config value. # 'zh' user can custom change `jieba` dictionary path. #html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. #html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'google_screener_data_extractdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', # Latex figure (float) alignment #'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'google_screener_data_extract.tex', 'google_screener_data_extract Documentation', 'Tan Kok Hua', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'google_screener_data_extract', 'google_screener_data_extract Documentation', [author], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'google_screener_data_extract', 'google_screener_data_extract Documentation', author, 'google_screener_data_extract', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False
33.031034
98
0.723875
21250894db6b98dd1265573165d5299f694f5633
2,123
py
Python
clinica/pipelines/t1_freesurfer_longitudinal/t1_freesurfer_template_cli.py
Chengwei94/clinica
0e9d837baf9064a626198422b2a70fe120f227f0
[ "MIT" ]
null
null
null
clinica/pipelines/t1_freesurfer_longitudinal/t1_freesurfer_template_cli.py
Chengwei94/clinica
0e9d837baf9064a626198422b2a70fe120f227f0
[ "MIT" ]
null
null
null
clinica/pipelines/t1_freesurfer_longitudinal/t1_freesurfer_template_cli.py
Chengwei94/clinica
0e9d837baf9064a626198422b2a70fe120f227f0
[ "MIT" ]
null
null
null
# coding: utf8 import clinica.engine as ce class T1FreeSurferTemplateCLI(ce.CmdParser): def define_name(self): """Define the sub-command name to run this pipeline.""" self._name = "t1-freesurfer-template" def define_description(self): """Define a description of this pipeline.""" self._description = ( "Creation of unbiased template with FreeSurfer:\n" "https://aramislab.paris.inria.fr/clinica/docs/public/latest/Pipelines/T1_FreeSurfer_Longitudinal/" ) def define_options(self): from clinica.engine.cmdparser import PIPELINE_CATEGORIES # Clinica compulsory arguments (e.g. BIDS, CAPS, group_label) clinica_comp = self._args.add_argument_group( PIPELINE_CATEGORIES["CLINICA_COMPULSORY"] ) clinica_comp.add_argument("caps_directory", help="Path to the CAPS directory.") # Clinica standard arguments (e.g. --n_procs) self.add_clinica_standard_arguments(add_overwrite_flag=True) def run_command(self, args): """Run the pipeline with defined args.""" from networkx import Graph from clinica.utils.ux import print_crash_files_and_exit, print_end_pipeline from .t1_freesurfer_template_pipeline import T1FreeSurferTemplate pipeline = T1FreeSurferTemplate( caps_directory=self.absolute_path(args.caps_directory), tsv_file=self.absolute_path(args.subjects_sessions_tsv), base_dir=self.absolute_path(args.working_directory), name="t1-freesurfer-template", overwrite_caps=args.overwrite_outputs, ) if args.n_procs: exec_pipeline = pipeline.run( plugin="MultiProc", plugin_args={"n_procs": args.n_procs} ) else: exec_pipeline = pipeline.run() if isinstance(exec_pipeline, Graph): print_end_pipeline( self.name, pipeline.base_dir, pipeline.base_dir_was_specified ) else: print_crash_files_and_exit(args.logname, pipeline.base_dir)
36.603448
111
0.663212
76841d0854cc0bf4fac1998414c9cecf0d563966
70
py
Python
src/rpi_ati_net_ft/__init__.py
rpiRobotics/rpi_ati_net_ft
fdf202d5c2d66dff4ef92f7ed6eb6a9f3121d911
[ "BSD-3-Clause" ]
4
2018-05-25T13:07:06.000Z
2022-01-05T21:26:55.000Z
src/rpi_ati_net_ft/__init__.py
rpiRobotics/rpi_ati_net_ft
fdf202d5c2d66dff4ef92f7ed6eb6a9f3121d911
[ "BSD-3-Clause" ]
1
2018-01-08T23:44:17.000Z
2018-01-08T23:44:17.000Z
src/rpi_ati_net_ft/__init__.py
rpiRobotics/rpi_ati_net_ft
fdf202d5c2d66dff4ef92f7ed6eb6a9f3121d911
[ "BSD-3-Clause" ]
1
2020-11-20T07:09:34.000Z
2020-11-20T07:09:34.000Z
from __future__ import absolute_import from .rpi_ati_net_ft import *
17.5
38
0.842857
aa56ab57123d686c1cb0904c2f788f7abf049bdb
5,197
py
Python
imagetagger/imagetagger/images/models.py
plieningerweb/imagetagger
89c49ef557fa8b4f1f3fd9f2cd58988ce88afee2
[ "MIT" ]
1
2019-05-06T11:14:39.000Z
2019-05-06T11:14:39.000Z
imagetagger/imagetagger/images/models.py
plieningerweb/imagetagger
89c49ef557fa8b4f1f3fd9f2cd58988ce88afee2
[ "MIT" ]
null
null
null
imagetagger/imagetagger/images/models.py
plieningerweb/imagetagger
89c49ef557fa8b4f1f3fd9f2cd58988ce88afee2
[ "MIT" ]
null
null
null
from typing import Set from django.conf import settings from django.contrib.auth import get_user_model from django.db import models import os from imagetagger.users.models import Team class Image(models.Model): image_set = models.ForeignKey( 'ImageSet', on_delete=models.CASCADE, related_name='images') name = models.CharField(max_length=100) filename = models.CharField(max_length=100, unique=True) time = models.DateTimeField(auto_now_add=True) checksum = models.BinaryField() width = models.IntegerField(default=800) height = models.IntegerField(default=600) def path(self): return os.path.join(self.image_set.root_path(), self.filename) def relative_path(self): return os.path.join(self.image_set.path, self.filename) def __str__(self): return u'Image: {0}'.format(self.name) class ImageSet(models.Model): class Meta: unique_together = [ 'name', 'team', ] PRIORITIES = ( (1, 'High'), (0, 'Normal'), (-1, 'Low'), ) path = models.CharField(max_length=100, unique=True, null=True) name = models.CharField(max_length=100) location = models.CharField(max_length=100, null=True, blank=True) description = models.TextField(max_length=1000, null=True, blank=True) time = models.DateTimeField(auto_now_add=True) team = models.ForeignKey( Team, on_delete=models.SET_NULL, related_name='image_sets', null=True, ) creator = models.ForeignKey(settings.AUTH_USER_MODEL, default=None, on_delete=models.SET_NULL, null=True, blank=True) public = models.BooleanField(default=False) public_collaboration = models.BooleanField(default=False) image_lock = models.BooleanField(default=False) priority = models.IntegerField(choices=PRIORITIES, default=0) main_annotation_type = models.ForeignKey( to='annotations.AnnotationType', on_delete=models.SET_NULL, null=True, blank=True, default=None ) pinned_by = models.ManyToManyField(settings.AUTH_USER_MODEL, related_name='pinned_sets') def root_path(self): return os.path.join(settings.IMAGE_PATH, self.path) @property def image_count(self): if hasattr(self, 'image_count_agg'): return self.image_count_agg return self.images.count() def get_perms(self, user: get_user_model()) -> Set[str]: """Get all permissions of the user.""" perms = set() if self.team is not None: if self.team.is_admin(user): perms.update({ 'verify', 'annotate', 'create_export', 'delete_annotation', 'delete_export', 'delete_set', 'delete_images', 'edit_annotation', 'edit_set', 'read', }) if self.team.is_member(user): perms.update({ 'verify', 'annotate', 'create_export', 'delete_annotation', 'delete_export', 'edit_annotation', 'edit_set', 'read', }) if user == self.creator: perms.update({ 'verify', 'annotate', 'create_export', 'delete_annotation', 'delete_export', 'delete_set', 'delete_images', 'edit_annotation', 'edit_set', 'read', }) if self.public: perms.update({ 'read', 'create_export', }) if self.public_collaboration: perms.update({ 'verify', 'annotate', 'delete_annotation', 'edit_annotation', }) return perms def has_perm(self, permission: str, user: get_user_model()) -> bool: """Check whether user has specified permission.""" return permission in self.get_perms(user) def __str__(self): return u'Imageset: {0}'.format(self.name) @property def prio_symbol(self): if self.priority is -1: return '<span class="glyphicon glyphicon-download" data-toggle="tooltip" data-placement="right" title="Low labeling priority"></span>' elif self.priority is 0: return '' elif self.priority is 1: return '<span class="glyphicon glyphicon-exclamation-sign" data-toggle="tooltip" data-placement="right" title="High labeling priority"></span>' class SetTag(models.Model): name = models.CharField(max_length=100, unique=True) imagesets = models.ManyToManyField(ImageSet, related_name='set_tags')
33.314103
155
0.548393
6661e92eb1d4b470603b9d5fd7b0f819450f6492
444
py
Python
save_restore_model/variable/save_model.py
zlpmichelle/crackingtensorflow
66c3517b60c3793ef06f904e5d58e4d044628182
[ "Apache-2.0" ]
3
2017-10-19T23:41:26.000Z
2019-10-22T08:59:35.000Z
save_restore_model/variable/save_model.py
zlpmichelle/crackingtensorflow
66c3517b60c3793ef06f904e5d58e4d044628182
[ "Apache-2.0" ]
null
null
null
save_restore_model/variable/save_model.py
zlpmichelle/crackingtensorflow
66c3517b60c3793ef06f904e5d58e4d044628182
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' 比如,我们需要保存的模型是参数v1和v2,那么只需要使用下列的保存代码save_model.py。 ''' import tensorflow as tf v1 = tf.Variable(1.1, name="v1") v2 = tf.Variable(1.2, name="v2") init = tf.initialize_all_variables() saver = tf.train.Saver() with tf.Session() as sess: sess.run(init) print v2.eval(sess) save_path="/Users/lipingzhang/Downloads/model.ckpt" saver.save(sess,save_path) print "Model stored...."
23.368421
55
0.682432
e06047655833312df2eb44152e844af391358d61
3,926
py
Python
flo/commands/run.py
deanmalmgren/flo
40ba3ce29a03cecb74bf809e40061e5e5c9d6a6b
[ "MIT" ]
15
2015-03-26T07:45:24.000Z
2019-09-09T13:07:29.000Z
flo/commands/run.py
deanmalmgren/flo
40ba3ce29a03cecb74bf809e40061e5e5c9d6a6b
[ "MIT" ]
3
2015-09-16T09:33:30.000Z
2016-08-24T06:39:56.000Z
flo/commands/run.py
deanmalmgren/flo
40ba3ce29a03cecb74bf809e40061e5e5c9d6a6b
[ "MIT" ]
4
2016-07-07T18:32:56.000Z
2020-06-19T07:24:11.000Z
import os import sys from ..exceptions import ShellError, CommandLineException from ..notify import notify from .base import BaseCommand class Command(BaseCommand): help_text = "Run the task workflow." def manipulate_task_graph(self, task_id, start_at, skip, only): # --only is a synonym for setting start_at and task_id to be # the same thing. enforce logic here as it is not possible (?) # to do so with argparse directly # http://stackoverflow.com/q/14985474/564709 if only is not None: if start_at is not None or task_id is not None: self.option_parser.error(( "--only can not be used with --start-at or specifying a " "TASK_ID" )) else: start_at = task_id = only # restrict task graph as necessary for the purposes of running # the workflow if task_id is not None or start_at is not None: self.task_graph = self.task_graph.subgraph_needed_for(start_at, task_id) # if we are skipping a task, remove it from the task graph to # take it out of execution flow and avoid updating its status # in .flo/state.csv if skip: self.task_graph.remove_node_substituting_dependencies(skip) def inner_execute(self, task_id, start_at, skip, only, force, mock_run=False): self.manipulate_task_graph(task_id, start_at, skip, only) # when the workflow is --force'd, this runs all # tasks. Otherwise, only runs tasks that are out of sync. if force: self.task_graph.run_all(mock_run=mock_run) else: self.task_graph.run_all_out_of_sync(mock_run=mock_run) # mark the self.task_graph as completing successfully to send the # correct email message self.task_graph.successful = True def execute(self, task_id=None, start_at=None, skip=None, only=None, force=False, notify_emails=None, **kwargs): super(Command, self).execute(**kwargs) try: self.inner_execute(task_id, start_at, skip, only, force) except CommandLineException: raise finally: if notify_emails: notify(*notify_emails) def add_common_run_options(self): # these options are used by both the `run` and `status` command self.option_parser.add_argument( '-f', '--force', action="store_true", help="Rerun entire workflow, regardless of task state.", ) self.add_task_id_option('Specify a particular task to run.') self.add_task_id_argument( '--start-at', type=str, metavar='TASK_ID', choices=self.available_task_ids, help=( 'Specify a task to start from (run everything downstream, ' 'ignore everything upstream).' ), ) self.add_task_id_argument( '--skip', type=str, metavar='TASK_ID', choices=self.available_task_ids, help='Skip the specified task and ignore whether it is in sync.', ) self.add_task_id_argument( '--only', type=str, metavar='TASK_ID', choices=self.available_task_ids, help='Only run the specified task.', ) def add_command_line_options(self): super(Command, self).add_command_line_options() self.add_common_run_options() self.option_parser.add_argument( '--notify', type=str, metavar='EMAIL', dest="notify_emails", nargs=1, help='Specify an email address to notify on completion.', )
36.018349
77
0.582527
2649f77dede4b0aa6ee3d9bd86310fc408a6cbe6
23,917
py
Python
alpaca_backtrader_api/alpacastore.py
axey733/alpaca-backtrader-api
9e7ff0f61c92832b93a0a83ca97505c3637c3272
[ "Apache-2.0" ]
null
null
null
alpaca_backtrader_api/alpacastore.py
axey733/alpaca-backtrader-api
9e7ff0f61c92832b93a0a83ca97505c3637c3272
[ "Apache-2.0" ]
null
null
null
alpaca_backtrader_api/alpacastore.py
axey733/alpaca-backtrader-api
9e7ff0f61c92832b93a0a83ca97505c3637c3272
[ "Apache-2.0" ]
null
null
null
from __future__ import (absolute_import, division, print_function, unicode_literals) import collections from datetime import datetime, timedelta from dateutil.parser import parse as date_parse import time as _time import threading import asyncio import alpaca_trade_api as tradeapi import pytz import requests import pandas as pd import backtrader as bt from alpaca_trade_api.entity import Aggs from alpaca_trade_api.polygon.entity import NY from backtrader.metabase import MetaParams from backtrader.utils.py3 import queue, with_metaclass # Extend the exceptions to support extra cases class AlpacaError(Exception): """ Generic error class, catches Alpaca response errors """ def __init__(self, error_response): self.error_response = error_response msg = "Alpaca API returned error code %s (%s) " % \ (error_response['code'], error_response['message']) super(AlpacaError, self).__init__(msg) class AlpacaRequestError(AlpacaError): def __init__(self): er = dict(code=599, message='Request Error', description='') super(self.__class__, self).__init__(er) class AlpacaStreamError(AlpacaError): def __init__(self, content=''): er = dict(code=598, message='Failed Streaming', description=content) super(self.__class__, self).__init__(er) class AlpacaTimeFrameError(AlpacaError): def __init__(self, content): er = dict(code=597, message='Not supported TimeFrame', description='') super(self.__class__, self).__init__(er) class AlpacaNetworkError(AlpacaError): def __init__(self): er = dict(code=596, message='Network Error', description='') super(self.__class__, self).__init__(er) class API(tradeapi.REST): def _request(self, method, path, data=None, base_url=None, api_version=None): # Added the try block try: return super(API, self)._request( method, path, data, base_url, api_version) except requests.RequestException as e: resp = AlpacaRequestError().error_response resp['description'] = str(e) return resp except tradeapi.rest.APIError as e: # changed from raise to return return e._error except Exception as e: resp = AlpacaNetworkError().error_response resp['description'] = str(e) return resp return None class Streamer: conn = None def __init__( self, q, api_key='', api_secret='', instrument='', method='', base_url='', data_stream='', *args, **kwargs): try: # make sure we have an event loop, if not create a new one asyncio.get_event_loop() except RuntimeError: asyncio.set_event_loop(asyncio.new_event_loop()) self.data_stream = data_stream self.conn = tradeapi.StreamConn(api_key, api_secret, base_url, data_stream=self.data_stream) self.instrument = instrument self.method = method self.q = q self.conn.on('authenticated')(self.on_auth) self.conn.on(r'Q.*')(self.on_quotes) self.conn.on(r'account_updates')(self.on_account) self.conn.on(r'trade_updates')(self.on_trade) def run(self): channels = [] if not self.method: channels = ['trade_updates'] # 'account_updates' else: if self.data_stream == 'polygon': maps = {"quote": "Q."} elif self.data_stream == 'alpacadatav1': maps = {"quote": "alpacadatav1/Q."} channels = [maps[self.method] + self.instrument] loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) self.conn.run(channels) # Setup event handlers async def on_auth(self, conn, stream, msg): pass async def on_listen(self, conn, stream, msg): pass async def on_quotes(self, conn, subject, msg): msg._raw['time'] = msg.timestamp.to_pydatetime().timestamp() self.q.put(msg._raw) async def on_agg_sec(self, conn, subject, msg): self.q.put(msg) async def on_agg_min(self, conn, subject, msg): self.q.put(msg) async def on_account(self, conn, stream, msg): self.q.put(msg) async def on_trade(self, conn, stream, msg): self.q.put(msg) class MetaSingleton(MetaParams): '''Metaclass to make a metaclassed class a singleton''' def __init__(cls, name, bases, dct): super(MetaSingleton, cls).__init__(name, bases, dct) cls._singleton = None def __call__(cls, *args, **kwargs): if cls._singleton is None: cls._singleton = ( super(MetaSingleton, cls).__call__(*args, **kwargs)) return cls._singleton class AlpacaStore(with_metaclass(MetaSingleton, object)): '''Singleton class wrapping to control the connections to Alpaca. Params: - ``key_id`` (default:``None``): Alpaca API key id - ``secret_key`` (default: ``None``): Alpaca API secret key - ``paper`` (default: ``False``): use the paper trading environment - ``account_tmout`` (default: ``10.0``): refresh period for account value/cash refresh ''' BrokerCls = None # broker class will autoregister DataCls = None # data class will auto register params = ( ('key_id', ''), ('secret_key', ''), ('paper', False), ('usePolygon', False), ('account_tmout', 10.0), # account balance refresh timeout ('api_version', None) ) _DTEPOCH = datetime(1970, 1, 1) _ENVPRACTICE = 'paper' _ENVLIVE = 'live' _ENV_PRACTICE_URL = 'https://paper-api.alpaca.markets' _ENV_LIVE_URL = '' @classmethod def getdata(cls, *args, **kwargs): '''Returns ``DataCls`` with args, kwargs''' return cls.DataCls(*args, **kwargs) @classmethod def getbroker(cls, *args, **kwargs): '''Returns broker with *args, **kwargs from registered ``BrokerCls``''' return cls.BrokerCls(*args, **kwargs) def __init__(self): super(AlpacaStore, self).__init__() self.notifs = collections.deque() # store notifications for cerebro self._env = None # reference to cerebro for general notifications self.broker = None # broker instance self.datas = list() # datas that have registered over start self._orders = collections.OrderedDict() # map order.ref to oid self._ordersrev = collections.OrderedDict() # map oid to order.ref self._transpend = collections.defaultdict(collections.deque) if self.p.paper: self._oenv = self._ENVPRACTICE self.p.base_url = self._ENV_PRACTICE_URL else: self._oenv = self._ENVLIVE self.p.base_url = self._ENV_LIVE_URL self.oapi = API(self.p.key_id, self.p.secret_key, self.p.base_url, self.p.api_version) self._cash = 0.0 self._value = 0.0 self._evt_acct = threading.Event() def start(self, data=None, broker=None): # Datas require some processing to kickstart data reception if data is None and broker is None: self.cash = None return if data is not None: self._env = data._env # For datas simulate a queue with None to kickstart co self.datas.append(data) if self.broker is not None: self.broker.data_started(data) elif broker is not None: self.broker = broker self.streaming_events() self.broker_threads() def stop(self): # signal end of thread if self.broker is not None: self.q_ordercreate.put(None) self.q_orderclose.put(None) self.q_account.put(None) def put_notification(self, msg, *args, **kwargs): self.notifs.append((msg, args, kwargs)) def get_notifications(self): '''Return the pending "store" notifications''' self.notifs.append(None) # put a mark / threads could still append return [x for x in iter(self.notifs.popleft, None)] # Alpaca supported granularities _GRANULARITIES = { (bt.TimeFrame.Minutes, 1): '1Min', (bt.TimeFrame.Minutes, 5): '5Min', (bt.TimeFrame.Minutes, 15): '15Min', (bt.TimeFrame.Minutes, 60): '1H', (bt.TimeFrame.Days, 1): '1D', } def get_positions(self): try: positions = self.oapi.list_positions() except (AlpacaError, AlpacaRequestError,): return [] if positions: if 'code' in positions[0]._raw: return [] # poslist = positions.get('positions', []) return positions def get_granularity(self, timeframe, compression): if timeframe == bt.TimeFrame.Minutes: return "minute" elif timeframe == bt.TimeFrame.Days: return "day" return None def get_instrument(self, dataname): try: insts = self.oapi.get_asset(dataname) except (AlpacaError, AlpacaRequestError,): return None return insts or None def streaming_events(self, tmout=None): q = queue.Queue() kwargs = {'q': q, 'tmout': tmout} t = threading.Thread(target=self._t_streaming_listener, kwargs=kwargs) t.daemon = True t.start() t = threading.Thread(target=self._t_streaming_events, kwargs=kwargs) t.daemon = True t.start() return q def _t_streaming_listener(self, q, tmout=None): while True: trans = q.get() self._transaction(trans.order) def _t_streaming_events(self, q, tmout=None): if tmout is not None: _time.sleep(tmout) streamer = Streamer(q, api_key=self.p.key_id, api_secret=self.p.secret_key, base_url=self.p.base_url, data_stream='polygon' if self.p.usePolygon else 'alpacadatav1' ) streamer.run() def candles(self, dataname, dtbegin, dtend, timeframe, compression, candleFormat, includeFirst): """ :param dataname: symbol name. e.g AAPL :param dtbegin: datetime start :param dtend: datetime end :param timeframe: bt.TimeFrame :param compression: distance between samples. e.g if 1 => get sample every day. if 3 => get sample every 3 days :param candleFormat: (bidask, midpoint, trades) :param includeFirst: :return: """ kwargs = locals().copy() kwargs.pop('self') kwargs['q'] = q = queue.Queue() t = threading.Thread(target=self._t_candles, kwargs=kwargs) t.daemon = True t.start() return q @staticmethod def iso_date(date_str): """ this method will make sure that dates are formatted properly as with isoformat :param date_str: :return: YYYY-MM-DD date formatted """ return date_parse(date_str).date().isoformat() def _t_candles(self, dataname, dtbegin, dtend, timeframe, compression, candleFormat, includeFirst, q): granularity = self.get_granularity(timeframe, compression) if granularity is None: e = AlpacaTimeFrameError() q.put(e.error_response) return dtkwargs = {'start': None, 'end': None} if not dtend: dtend = datetime.utcnow() if not dtbegin: days = 30 if 'd' in granularity else 3 delta = timedelta(days=days) dtbegin = dtend - delta dtkwargs['start'] = dtbegin end_dt = None dtkwargs['end'] = dtend end_dt = dtend.isoformat() cdl = pd.DataFrame() prevdt = 0 while True: try: start_dt = None if dtkwargs['start']: start_dt = dtkwargs['start'].isoformat() if self.p.usePolygon: response = \ self.oapi.polygon.historic_agg_v2( dataname, compression, granularity, _from=self.iso_date(start_dt), to=self.iso_date(end_dt)) else: # response = self.oapi.get_aggs(dataname, # compression, # granularity, # self.iso_date(start_dt), # self.iso_date(end_dt)) # so get_aggs work nicely for days but not for minutes, and # it is not a documented API. barset on the other hand does # but we need to manipulate it to be able to work with it # smoothly and return data the same way polygon does response = self.oapi.get_barset( dataname, granularity, start=start_dt, end=end_dt)[dataname]._raw for bar in response: # Aggs are in milliseconds, we multiply by 1000 to # change seconds to ms bar['t'] *= 1000 response = Aggs({"results": response}) except AlpacaError as e: print(str(e)) q.put(e.error_response) q.put(None) return except Exception as e: print(str(e)) q.put({'code': 'error'}) q.put(None) return # No result from the server, most likely error if response.df.shape[0] == 0: print(response) q.put({'code': 'error'}) q.put(None) return temp = response.df cdl.update(temp) cdl = pd.concat([cdl, temp]) cdl = cdl[~cdl.index.duplicated()] prevdt = dtkwargs['start'] dtkwargs['start'] = cdl.index[-1].to_pydatetime() if prevdt == dtkwargs['start']: # end of the data break freq = str(compression) + ('D' if 'd' in granularity else 'T') cdl = cdl.resample(freq).agg({'open': 'first', 'high': 'max', 'low': 'min', 'close': 'last', 'volume': 'sum'}) # don't use dt.replace. use localize # (https://stackoverflow.com/a/1592837/2739124) cdl = cdl.loc[ pytz.timezone(NY).localize(dtbegin): pytz.timezone(NY).localize(dtend) ].dropna(subset=['high']) records = cdl.reset_index().to_dict('records') for r in records: r['time'] = r['timestamp'] q.put(r) q.put({}) # end of transmission def streaming_prices(self, dataname, tmout=None): q = queue.Queue() kwargs = {'q': q, 'dataname': dataname, 'tmout': tmout} t = threading.Thread(target=self._t_streaming_prices, kwargs=kwargs) t.daemon = True t.start() return q def _t_streaming_prices(self, dataname, q, tmout): if tmout is not None: _time.sleep(tmout) streamer = Streamer(q, api_key=self.p.key_id, api_secret=self.p.secret_key, instrument=dataname, method='quote', base_url=self.p.base_url, data_stream='polygon' if self.p.usePolygon else 'alpacadatav1') streamer.run() def get_cash(self): return self._cash def get_value(self): return self._value _ORDEREXECS = { bt.Order.Market: 'market', bt.Order.Limit: 'limit', bt.Order.Stop: 'stop', bt.Order.StopLimit: 'stop_limit', } def broker_threads(self): self.q_account = queue.Queue() self.q_account.put(True) # force an immediate update t = threading.Thread(target=self._t_account) t.daemon = True t.start() self.q_ordercreate = queue.Queue() t = threading.Thread(target=self._t_order_create) t.daemon = True t.start() self.q_orderclose = queue.Queue() t = threading.Thread(target=self._t_order_cancel) t.daemon = True t.start() # Wait once for the values to be set self._evt_acct.wait(self.p.account_tmout) def _t_account(self): while True: try: msg = self.q_account.get(timeout=self.p.account_tmout) if msg is None: break # end of thread except queue.Empty: # tmout -> time to refresh pass try: accinfo = self.oapi.get_account() except Exception as e: self.put_notification(e) continue if 'code' in accinfo._raw: self.put_notification(accinfo.message) continue try: self._cash = float(accinfo.cash) self._value = float(accinfo.portfolio_value) except KeyError: pass self._evt_acct.set() def order_create(self, order, stopside=None, takeside=None, **kwargs): okwargs = dict() # different data feeds may set _name or _dataname so we cover both okwargs['symbol'] = order.data._name if order.data._name else \ order.data._dataname okwargs['qty'] = abs(int(order.created.size)) okwargs['side'] = 'buy' if order.isbuy() else 'sell' okwargs['type'] = self._ORDEREXECS[order.exectype] okwargs['time_in_force'] = "gtc" if order.exectype != bt.Order.Market: okwargs['limit_price'] = str(order.created.price) if order.exectype in [bt.Order.StopLimit, bt.Order.Stop]: okwargs['stop_price'] = order.created.pricelimit # Not supported in the alpaca api # if order.exectype == bt.Order.StopTrail: # okwargs['trailingStop'] = order.trailamount if stopside: okwargs['stop_loss'] = {'stop_price': stopside.price} if takeside: okwargs['take_profit'] = {'limit_price': takeside.price} if stopside or takeside: okwargs['order_class'] = "bracket" okwargs.update(**kwargs) # anything from the user self.q_ordercreate.put((order.ref, okwargs,)) return order def _t_order_create(self): def _check_if_transaction_occurred(order_id): # a transaction may have happened and was stored. if so let's # process it tpending = self._transpend[order_id] tpending.append(None) # eom marker while True: trans = tpending.popleft() if trans is None: break self._process_transaction(order_id, trans) while True: try: if self.q_ordercreate.empty(): continue msg = self.q_ordercreate.get() if msg is None: continue oref, okwargs = msg try: o = self.oapi.submit_order(**okwargs) except Exception as e: self.put_notification(e) self.broker._reject(oref) continue try: oid = o.id except Exception: if 'code' in o._raw: self.put_notification(o.message) else: self.put_notification( "General error from the Alpaca server") self.broker._reject(oref) continue if okwargs['type'] == 'market': self.broker._accept(oref) # taken immediately self._orders[oref] = oid self._ordersrev[oid] = oref # maps ids to backtrader order _check_if_transaction_occurred(oid) if o.legs: index = 1 for leg in o.legs: self._orders[oref + index] = leg.id self._ordersrev[leg.id] = oref + index _check_if_transaction_occurred(leg.id) self.broker._submit(oref) # inside it submits the legs too if okwargs['type'] == 'market': self.broker._accept(oref) # taken immediately except Exception as e: print(str(e)) def order_cancel(self, order): self.q_orderclose.put(order.ref) return order def _t_order_cancel(self): while True: oref = self.q_orderclose.get() if oref is None: break oid = self._orders.get(oref, None) if oid is None: continue # the order is no longer there try: self.oapi.cancel_order(oid) except Exception as e: self.put_notification( "Order not cancelled: {}, {}".format( oid, e)) continue self.broker._cancel(oref) _X_ORDER_CREATE = ( 'new', 'accepted', 'pending_new', 'accepted_for_bidding', ) def _transaction(self, trans): # Invoked from Streaming Events. May actually receive an event for an # oid which has not yet been returned after creating an order. Hence # store if not yet seen, else forward to processer oid = trans['id'] if not self._ordersrev.get(oid, False): self._transpend[oid].append(trans) self._process_transaction(oid, trans) _X_ORDER_FILLED = ('partially_filled', 'filled', ) def _process_transaction(self, oid, trans): try: oref = self._ordersrev.pop(oid) except KeyError: return ttype = trans['status'] if ttype in self._X_ORDER_FILLED: size = float(trans['filled_qty']) if trans['side'] == 'sell': size = -size price = float(trans['filled_avg_price']) self.broker._fill(oref, size, price, ttype=ttype) elif ttype in self._X_ORDER_CREATE: self.broker._accept(oref) self._ordersrev[oid] = oref elif ttype == 'calculated': return elif ttype == 'expired': self.broker._expire(oref) else: # default action ... if nothing else print("Process transaction - Order type: {}".format(ttype)) self.broker._reject(oref)
33.264256
79
0.53878
d0d780dcb52f90157dda753776d638447530e2fd
27,845
py
Python
test/unit/test_jinja.py
vogt4nick/dbt
1bd82d4914fd80fcc6fe17140e46554ad677eab0
[ "Apache-2.0" ]
null
null
null
test/unit/test_jinja.py
vogt4nick/dbt
1bd82d4914fd80fcc6fe17140e46554ad677eab0
[ "Apache-2.0" ]
null
null
null
test/unit/test_jinja.py
vogt4nick/dbt
1bd82d4914fd80fcc6fe17140e46554ad677eab0
[ "Apache-2.0" ]
null
null
null
from contextlib import contextmanager import pytest import unittest import yaml from dbt.clients.jinja import get_rendered from dbt.clients.jinja import get_template from dbt.clients.jinja import extract_toplevel_blocks from dbt.exceptions import CompilationException, JinjaRenderingException @contextmanager def returns(value): yield value @contextmanager def raises(value): with pytest.raises(value) as exc: yield exc def expected_id(arg): if isinstance(arg, list): return '_'.join(arg) jinja_tests = [ # strings ( '''foo: bar''', returns('bar'), returns('bar'), ), ( '''foo: "bar"''', returns('bar'), returns('bar'), ), ( '''foo: "'bar'"''', returns("'bar'"), returns("'bar'"), ), ( """foo: '"bar"'""", returns('"bar"'), returns('"bar"'), ), ( '''foo: "{{ 'bar' | as_text }}"''', returns('bar'), returns('bar'), ), ( '''foo: "{{ 'bar' | as_bool }}"''', returns('bar'), raises(JinjaRenderingException), ), ( '''foo: "{{ 'bar' | as_number }}"''', returns('bar'), raises(JinjaRenderingException), ), ( '''foo: "{{ 'bar' | as_native }}"''', returns('bar'), returns('bar'), ), # ints ( '''foo: 1''', returns('1'), returns('1'), ), ( '''foo: "1"''', returns('1'), returns('1'), ), ( '''foo: "'1'"''', returns("'1'"), returns("'1'"), ), ( """foo: '"1"'""", returns('"1"'), returns('"1"'), ), ( '''foo: "{{ 1 }}"''', returns('1'), returns('1'), ), ( '''foo: "{{ '1' }}"''', returns('1'), returns('1'), ), ( '''foo: "'{{ 1 }}'"''', returns("'1'"), returns("'1'"), ), ( '''foo: "'{{ '1' }}'"''', returns("'1'"), returns("'1'"), ), ( '''foo: "{{ 1 | as_text }}"''', returns('1'), returns('1'), ), ( '''foo: "{{ 1 | as_bool }}"''', returns('1'), raises(JinjaRenderingException), ), ( '''foo: "{{ 1 | as_number }}"''', returns('1'), returns(1), ), ( '''foo: "{{ 1 | as_native }}"''', returns('1'), returns(1), ), ( '''foo: "{{ '1' | as_text }}"''', returns('1'), returns('1'), ), ( '''foo: "{{ '1' | as_bool }}"''', returns('1'), raises(JinjaRenderingException), ), ( '''foo: "{{ '1' | as_number }}"''', returns('1'), returns(1), ), ( '''foo: "{{ '1' | as_native }}"''', returns('1'), returns(1), ), # booleans. # Note the discrepancy with true vs True: `true` is recognized by jinja but # not literal_eval, but `True` is recognized by ast.literal_eval. # For extra fun, yaml recognizes both. # unquoted true ( '''foo: "{{ True }}"''', returns('True'), returns('True'), ), ( '''foo: "{{ True | as_text }}"''', returns('True'), returns('True'), ), ( '''foo: "{{ True | as_bool }}"''', returns('True'), returns(True), ), ( '''foo: "{{ True | as_number }}"''', returns('True'), raises(JinjaRenderingException), ), ( '''foo: "{{ True | as_native }}"''', returns('True'), returns(True), ), # unquoted true ( '''foo: "{{ true }}"''', returns("True"), returns("True"), ), ( '''foo: "{{ true | as_text }}"''', returns("True"), returns("True"), ), ( '''foo: "{{ true | as_bool }}"''', returns("True"), returns(True), ), ( '''foo: "{{ true | as_number }}"''', returns("True"), raises(JinjaRenderingException), ), ( '''foo: "{{ true | as_native }}"''', returns("True"), returns(True), ), ( '''foo: "{{ 'true' | as_text }}"''', returns("true"), returns("true"), ), # quoted 'true' ( '''foo: "'{{ true }}'"''', returns("'True'"), returns("'True'"), ), # jinja true -> python True -> str(True) -> "True" -> quoted ( '''foo: "'{{ true | as_text }}'"''', returns("'True'"), returns("'True'"), ), ( '''foo: "'{{ true | as_bool }}'"''', returns("'True'"), returns("'True'"), ), ( '''foo: "'{{ true | as_number }}'"''', returns("'True'"), returns("'True'"), ), ( '''foo: "'{{ true | as_native }}'"''', returns("'True'"), returns("'True'"), ), # unquoted True ( '''foo: "{{ True }}"''', returns('True'), returns('True'), ), ( '''foo: "{{ True | as_text }}"''', returns("True"), returns("True"), ), # True -> string 'True' -> text -> str('True') -> 'True' ( '''foo: "{{ True | as_bool }}"''', returns("True"), returns(True), ), ( '''foo: "{{ True | as_number }}"''', returns("True"), raises(JinjaRenderingException), ), ( '''foo: "{{ True | as_native }}"''', returns("True"), returns(True), ), # quoted 'True' within rendering ( '''foo: "{{ 'True' | as_text }}"''', returns("True"), returns("True"), ), # 'True' -> string 'True' -> text -> str('True') -> 'True' ( '''foo: "{{ 'True' | as_bool }}"''', returns('True'), returns(True), ), # quoted 'True' outside rendering ( '''foo: "'{{ True }}'"''', returns("'True'"), returns("'True'"), ), ( '''foo: "'{{ True | as_bool }}'"''', returns("'True'"), returns("'True'"), ), # yaml turns 'yes' into a boolean true ( '''foo: yes''', returns('True'), returns('True'), ), ( '''foo: "yes"''', returns('yes'), returns('yes'), ), # concatenation ( '''foo: "{{ (a_int + 100) | as_native }}"''', returns('200'), returns(200), ), ( '''foo: "{{ (a_str ~ 100) | as_native }}"''', returns('100100'), returns(100100), ), ( '''foo: "{{( a_int ~ 100) | as_native }}"''', returns('100100'), returns(100100), ), # multiple nodes -> always str ( '''foo: "{{ a_str | as_native }}{{ a_str | as_native }}"''', returns('100100'), returns('100100'), ), ( '''foo: "{{ a_int | as_native }}{{ a_int | as_native }}"''', returns('100100'), returns('100100'), ), ( '''foo: "'{{ a_int | as_native }}{{ a_int | as_native }}'"''', returns("'100100'"), returns("'100100'"), ), ( '''foo:''', returns('None'), returns('None'), ), ( '''foo: null''', returns('None'), returns('None'), ), ( '''foo: ""''', returns(''), returns(''), ), ( '''foo: "{{ '' | as_native }}"''', returns(''), returns(''), ), # very annoying, but jinja 'none' is yaml 'null'. ( '''foo: "{{ none | as_native }}"''', returns('None'), returns(None), ), ] @pytest.mark.parametrize( 'value,text_expectation,native_expectation', jinja_tests, ids=expected_id ) def test_jinja_rendering(value, text_expectation, native_expectation): foo_value = yaml.safe_load(value)['foo'] ctx = { 'a_str': '100', 'a_int': 100, 'b_str': 'hello' } with text_expectation as text_result: assert text_result == get_rendered(foo_value, ctx, native=False) with native_expectation as native_result: assert native_result == get_rendered(foo_value, ctx, native=True) class TestJinja(unittest.TestCase): def test_do(self): s = '{% set my_dict = {} %}\n{% do my_dict.update(a=1) %}' template = get_template(s, {}) mod = template.make_module() self.assertEqual(mod.my_dict, {'a': 1}) def test_regular_render(self): s = '{{ "some_value" | as_native }}' value = get_rendered(s, {}, native=False) assert value == 'some_value' s = '{{ 1991 | as_native }}' value = get_rendered(s, {}, native=False) assert value == '1991' s = '{{ "some_value" | as_text }}' value = get_rendered(s, {}, native=False) assert value == 'some_value' s = '{{ 1991 | as_text }}' value = get_rendered(s, {}, native=False) assert value == '1991' def test_native_render(self): s = '{{ "some_value" | as_native }}' value = get_rendered(s, {}, native=True) assert value == 'some_value' s = '{{ 1991 | as_native }}' value = get_rendered(s, {}, native=True) assert value == 1991 s = '{{ "some_value" | as_text }}' value = get_rendered(s, {}, native=True) assert value == 'some_value' s = '{{ 1991 | as_text }}' value = get_rendered(s, {}, native=True) assert value == '1991' class TestBlockLexer(unittest.TestCase): def test_basic(self): body = '{{ config(foo="bar") }}\r\nselect * from this.that\r\n' block_data = ' \n\r\t{%- mytype foo %}'+body+'{%endmytype -%}' blocks = extract_toplevel_blocks(block_data, allowed_blocks={'mytype'}, collect_raw_data=False) self.assertEqual(len(blocks), 1) self.assertEqual(blocks[0].block_type_name, 'mytype') self.assertEqual(blocks[0].block_name, 'foo') self.assertEqual(blocks[0].contents, body) self.assertEqual(blocks[0].full_block, block_data) def test_multiple(self): body_one = '{{ config(foo="bar") }}\r\nselect * from this.that\r\n' body_two = ( '{{ config(bar=1)}}\r\nselect * from {% if foo %} thing ' '{% else %} other_thing {% endif %}' ) block_data = ( ' {% mytype foo %}' + body_one + '{% endmytype %}' + '\r\n{% othertype bar %}' + body_two + '{% endothertype %}' ) blocks = extract_toplevel_blocks(block_data, allowed_blocks={'mytype', 'othertype'}, collect_raw_data=False) self.assertEqual(len(blocks), 2) def test_comments(self): body = '{{ config(foo="bar") }}\r\nselect * from this.that\r\n' comment = '{# my comment #}' block_data = ' \n\r\t{%- mytype foo %}'+body+'{%endmytype -%}' blocks = extract_toplevel_blocks(comment+block_data, allowed_blocks={'mytype'}, collect_raw_data=False) self.assertEqual(len(blocks), 1) self.assertEqual(blocks[0].block_type_name, 'mytype') self.assertEqual(blocks[0].block_name, 'foo') self.assertEqual(blocks[0].contents, body) self.assertEqual(blocks[0].full_block, block_data) def test_evil_comments(self): body = '{{ config(foo="bar") }}\r\nselect * from this.that\r\n' comment = '{# external comment {% othertype bar %} select * from thing.other_thing{% endothertype %} #}' block_data = ' \n\r\t{%- mytype foo %}'+body+'{%endmytype -%}' blocks = extract_toplevel_blocks(comment+block_data, allowed_blocks={'mytype'}, collect_raw_data=False) self.assertEqual(len(blocks), 1) self.assertEqual(blocks[0].block_type_name, 'mytype') self.assertEqual(blocks[0].block_name, 'foo') self.assertEqual(blocks[0].contents, body) self.assertEqual(blocks[0].full_block, block_data) def test_nested_comments(self): body = '{# my comment #} {{ config(foo="bar") }}\r\nselect * from {# my other comment embedding {% endmytype %} #} this.that\r\n' block_data = ' \n\r\t{%- mytype foo %}'+body+'{% endmytype -%}' comment = '{# external comment {% othertype bar %} select * from thing.other_thing{% endothertype %} #}' blocks = extract_toplevel_blocks(comment+block_data, allowed_blocks={'mytype'}, collect_raw_data=False) self.assertEqual(len(blocks), 1) self.assertEqual(blocks[0].block_type_name, 'mytype') self.assertEqual(blocks[0].block_name, 'foo') self.assertEqual(blocks[0].contents, body) self.assertEqual(blocks[0].full_block, block_data) def test_complex_file(self): blocks = extract_toplevel_blocks(complex_snapshot_file, allowed_blocks={'mytype', 'myothertype'}, collect_raw_data=False) self.assertEqual(len(blocks), 3) self.assertEqual(blocks[0].block_type_name, 'mytype') self.assertEqual(blocks[0].block_name, 'foo') self.assertEqual(blocks[0].full_block, '{% mytype foo %} some stuff {% endmytype %}') self.assertEqual(blocks[0].contents, ' some stuff ') self.assertEqual(blocks[1].block_type_name, 'mytype') self.assertEqual(blocks[1].block_name, 'bar') self.assertEqual(blocks[1].full_block, bar_block) self.assertEqual(blocks[1].contents, bar_block[16:-15].rstrip()) self.assertEqual(blocks[2].block_type_name, 'myothertype') self.assertEqual(blocks[2].block_name, 'x') self.assertEqual(blocks[2].full_block, x_block.strip()) self.assertEqual(blocks[2].contents, x_block[len('\n{% myothertype x %}'):-len('{% endmyothertype %}\n')]) def test_peaceful_macro_coexistence(self): body = '{# my macro #} {% macro foo(a, b) %} do a thing {%- endmacro %} {# my model #} {% a b %} test {% enda %}' blocks = extract_toplevel_blocks(body, allowed_blocks={'macro', 'a'}, collect_raw_data=True) self.assertEqual(len(blocks), 4) self.assertEqual(blocks[0].full_block, '{# my macro #} ') self.assertEqual(blocks[1].block_type_name, 'macro') self.assertEqual(blocks[1].block_name, 'foo') self.assertEqual(blocks[1].contents, ' do a thing') self.assertEqual(blocks[2].full_block, ' {# my model #} ') self.assertEqual(blocks[3].block_type_name, 'a') self.assertEqual(blocks[3].block_name, 'b') self.assertEqual(blocks[3].contents, ' test ') def test_macro_with_trailing_data(self): body = '{# my macro #} {% macro foo(a, b) %} do a thing {%- endmacro %} {# my model #} {% a b %} test {% enda %} raw data so cool' blocks = extract_toplevel_blocks(body, allowed_blocks={'macro', 'a'}, collect_raw_data=True) self.assertEqual(len(blocks), 5) self.assertEqual(blocks[0].full_block, '{# my macro #} ') self.assertEqual(blocks[1].block_type_name, 'macro') self.assertEqual(blocks[1].block_name, 'foo') self.assertEqual(blocks[1].contents, ' do a thing') self.assertEqual(blocks[2].full_block, ' {# my model #} ') self.assertEqual(blocks[3].block_type_name, 'a') self.assertEqual(blocks[3].block_name, 'b') self.assertEqual(blocks[3].contents, ' test ') self.assertEqual(blocks[4].full_block, ' raw data so cool') def test_macro_with_crazy_args(self): body = '''{% macro foo(a, b=asdf("cool this is 'embedded'" * 3) + external_var, c)%}cool{# block comment with {% endmacro %} in it #} stuff here {% endmacro %}''' blocks = extract_toplevel_blocks(body, allowed_blocks={'macro'}, collect_raw_data=False) self.assertEqual(len(blocks), 1) self.assertEqual(blocks[0].block_type_name, 'macro') self.assertEqual(blocks[0].block_name, 'foo') self.assertEqual(blocks[0].contents, 'cool{# block comment with {% endmacro %} in it #} stuff here ') def test_materialization_parse(self): body = '{% materialization xxx, default %} ... {% endmaterialization %}' blocks = extract_toplevel_blocks(body, allowed_blocks={'materialization'}, collect_raw_data=False) self.assertEqual(len(blocks), 1) self.assertEqual(blocks[0].block_type_name, 'materialization') self.assertEqual(blocks[0].block_name, 'xxx') self.assertEqual(blocks[0].full_block, body) body = '{% materialization xxx, adapter="other" %} ... {% endmaterialization %}' blocks = extract_toplevel_blocks(body, allowed_blocks={'materialization'}, collect_raw_data=False) self.assertEqual(len(blocks), 1) self.assertEqual(blocks[0].block_type_name, 'materialization') self.assertEqual(blocks[0].block_name, 'xxx') self.assertEqual(blocks[0].full_block, body) def test_nested_not_ok(self): # we don't allow nesting same blocks body = '{% myblock a %} {% myblock b %} {% endmyblock %} {% endmyblock %}' with self.assertRaises(CompilationException): extract_toplevel_blocks(body, allowed_blocks={'myblock'}) def test_incomplete_block_failure(self): fullbody = '{% myblock foo %} {% endmyblock %}' for length in range(len('{% myblock foo %}'), len(fullbody)-1): body = fullbody[:length] with self.assertRaises(CompilationException): extract_toplevel_blocks(body, allowed_blocks={'myblock'}) def test_wrong_end_failure(self): body = '{% myblock foo %} {% endotherblock %}' with self.assertRaises(CompilationException): extract_toplevel_blocks(body, allowed_blocks={'myblock', 'otherblock'}) def test_comment_no_end_failure(self): body = '{# ' with self.assertRaises(CompilationException): extract_toplevel_blocks(body) def test_comment_only(self): body = '{# myblock #}' blocks = extract_toplevel_blocks(body) self.assertEqual(len(blocks), 1) blocks = extract_toplevel_blocks(body, collect_raw_data=False) self.assertEqual(len(blocks), 0) def test_comment_block_self_closing(self): # test the case where a comment start looks a lot like it closes itself # (but it doesn't in jinja!) body = '{#} {% myblock foo %} {#}' blocks = extract_toplevel_blocks(body, collect_raw_data=False) self.assertEqual(len(blocks), 0) def test_embedded_self_closing_comment_block(self): body = '{% myblock foo %} {#}{% endmyblock %} {#}{% endmyblock %}' blocks = extract_toplevel_blocks(body, allowed_blocks={'myblock'}, collect_raw_data=False) self.assertEqual(len(blocks), 1) self.assertEqual(blocks[0].full_block, body) self.assertEqual(blocks[0].contents, ' {#}{% endmyblock %} {#}') def test_set_statement(self): body = '{% set x = 1 %}{% myblock foo %}hi{% endmyblock %}' blocks = extract_toplevel_blocks(body, allowed_blocks={'myblock'}, collect_raw_data=False) self.assertEqual(len(blocks), 1) self.assertEqual(blocks[0].full_block, '{% myblock foo %}hi{% endmyblock %}') def test_set_block(self): body = '{% set x %}1{% endset %}{% myblock foo %}hi{% endmyblock %}' blocks = extract_toplevel_blocks(body, allowed_blocks={'myblock'}, collect_raw_data=False) self.assertEqual(len(blocks), 1) self.assertEqual(blocks[0].full_block, '{% myblock foo %}hi{% endmyblock %}') def test_crazy_set_statement(self): body = '{% set x = (thing("{% myblock foo %}")) %}{% otherblock bar %}x{% endotherblock %}{% set y = otherthing("{% myblock foo %}") %}' blocks = extract_toplevel_blocks(body, allowed_blocks={'otherblock'}, collect_raw_data=False) self.assertEqual(len(blocks), 1) self.assertEqual(blocks[0].full_block, '{% otherblock bar %}x{% endotherblock %}') self.assertEqual(blocks[0].block_type_name, 'otherblock') def test_do_statement(self): body = '{% do thing.update() %}{% myblock foo %}hi{% endmyblock %}' blocks = extract_toplevel_blocks(body, allowed_blocks={'myblock'}, collect_raw_data=False) self.assertEqual(len(blocks), 1) self.assertEqual(blocks[0].full_block, '{% myblock foo %}hi{% endmyblock %}') def test_deceptive_do_statement(self): body = '{% do thing %}{% myblock foo %}hi{% endmyblock %}' blocks = extract_toplevel_blocks(body, allowed_blocks={'myblock'}, collect_raw_data=False) self.assertEqual(len(blocks), 1) self.assertEqual(blocks[0].full_block, '{% myblock foo %}hi{% endmyblock %}') def test_do_block(self): body = '{% do %}thing.update(){% enddo %}{% myblock foo %}hi{% endmyblock %}' blocks = extract_toplevel_blocks(body, allowed_blocks={'do', 'myblock'}, collect_raw_data=False) self.assertEqual(len(blocks), 2) self.assertEqual(blocks[0].contents, 'thing.update()') self.assertEqual(blocks[0].block_type_name, 'do') self.assertEqual(blocks[1].full_block, '{% myblock foo %}hi{% endmyblock %}') def test_crazy_do_statement(self): body = '{% do (thing("{% myblock foo %}")) %}{% otherblock bar %}x{% endotherblock %}{% do otherthing("{% myblock foo %}") %}{% myblock x %}hi{% endmyblock %}' blocks = extract_toplevel_blocks(body, allowed_blocks={'myblock', 'otherblock'}, collect_raw_data=False) self.assertEqual(len(blocks), 2) self.assertEqual(blocks[0].full_block, '{% otherblock bar %}x{% endotherblock %}') self.assertEqual(blocks[0].block_type_name, 'otherblock') self.assertEqual(blocks[1].full_block, '{% myblock x %}hi{% endmyblock %}') self.assertEqual(blocks[1].block_type_name, 'myblock') def test_awful_jinja(self): blocks = extract_toplevel_blocks( if_you_do_this_you_are_awful, allowed_blocks={'snapshot', 'materialization'}, collect_raw_data=False ) self.assertEqual(len(blocks), 2) self.assertEqual(len([b for b in blocks if b.block_type_name == '__dbt__data']), 0) self.assertEqual(blocks[0].block_type_name, 'snapshot') self.assertEqual(blocks[0].contents, '\n '.join([ '''{% set x = ("{% endsnapshot %}" + (40 * '%})')) %}''', '{# {% endsnapshot %} #}', '{% embedded %}', ' some block data right here', '{% endembedded %}' ])) self.assertEqual(blocks[1].block_type_name, 'materialization') self.assertEqual(blocks[1].contents, '\nhi\n') def test_quoted_endblock_within_block(self): body = '{% myblock something -%} {% set x = ("{% endmyblock %}") %} {% endmyblock %}' blocks = extract_toplevel_blocks(body, allowed_blocks={'myblock'}, collect_raw_data=False) self.assertEqual(len(blocks), 1) self.assertEqual(blocks[0].block_type_name, 'myblock') self.assertEqual(blocks[0].contents, '{% set x = ("{% endmyblock %}") %} ') def test_docs_block(self): body = '{% docs __my_doc__ %} asdf {# nope {% enddocs %}} #} {% enddocs %} {% docs __my_other_doc__ %} asdf "{% enddocs %}' blocks = extract_toplevel_blocks(body, allowed_blocks={'docs'}, collect_raw_data=False) self.assertEqual(len(blocks), 2) self.assertEqual(blocks[0].block_type_name, 'docs') self.assertEqual(blocks[0].contents, ' asdf {# nope {% enddocs %}} #} ') self.assertEqual(blocks[0].block_name, '__my_doc__') self.assertEqual(blocks[1].block_type_name, 'docs') self.assertEqual(blocks[1].contents, ' asdf "') self.assertEqual(blocks[1].block_name, '__my_other_doc__') def test_docs_block_expr(self): body = '{% docs more_doc %} asdf {{ "{% enddocs %}" ~ "}}" }}{% enddocs %}' blocks = extract_toplevel_blocks(body, allowed_blocks={'docs'}, collect_raw_data=False) self.assertEqual(len(blocks), 1) self.assertEqual(blocks[0].block_type_name, 'docs') self.assertEqual(blocks[0].contents, ' asdf {{ "{% enddocs %}" ~ "}}" }}') self.assertEqual(blocks[0].block_name, 'more_doc') def test_unclosed_model_quotes(self): # test case for https://github.com/fishtown-analytics/dbt/issues/1533 body = '{% model my_model -%} select * from "something"."something_else{% endmodel %}' blocks = extract_toplevel_blocks(body, allowed_blocks={'model'}, collect_raw_data=False) self.assertEqual(len(blocks), 1) self.assertEqual(blocks[0].block_type_name, 'model') self.assertEqual(blocks[0].contents, 'select * from "something"."something_else') self.assertEqual(blocks[0].block_name, 'my_model') def test_if(self): # if you conditionally define your macros/models, don't body = '{% if true %}{% macro my_macro() %} adsf {% endmacro %}{% endif %}' with self.assertRaises(CompilationException): extract_toplevel_blocks(body) def test_if_innocuous(self): body = '{% if true %}{% something %}asdfasd{% endsomething %}{% endif %}' blocks = extract_toplevel_blocks(body) self.assertEqual(len(blocks), 1) self.assertEqual(blocks[0].full_block, body) def test_for(self): # no for-loops over macros. body = '{% for x in range(10) %}{% macro my_macro() %} adsf {% endmacro %}{% endfor %}' with self.assertRaises(CompilationException): extract_toplevel_blocks(body) def test_for_innocuous(self): # no for-loops over macros. body = '{% for x in range(10) %}{% something my_something %} adsf {% endsomething %}{% endfor %}' blocks = extract_toplevel_blocks(body) self.assertEqual(len(blocks), 1) self.assertEqual(blocks[0].full_block, body) def test_endif(self): body = '{% snapshot foo %}select * from thing{% endsnapshot%}{% endif %}' with self.assertRaises(CompilationException) as err: extract_toplevel_blocks(body) self.assertIn('Got an unexpected control flow end tag, got endif but never saw a preceeding if (@ 1:53)', str(err.exception)) def test_if_endfor(self): body = '{% if x %}...{% endfor %}{% endif %}' with self.assertRaises(CompilationException) as err: extract_toplevel_blocks(body) self.assertIn('Got an unexpected control flow end tag, got endfor but expected endif next (@ 1:13)', str(err.exception)) def test_if_endfor_newlines(self): body = '{% if x %}\n ...\n {% endfor %}\n{% endif %}' with self.assertRaises(CompilationException) as err: extract_toplevel_blocks(body) self.assertIn('Got an unexpected control flow end tag, got endfor but expected endif next (@ 3:4)', str(err.exception)) bar_block = '''{% mytype bar %} {# a comment that inside it has {% mytype baz %} {% endmyothertype %} {% endmytype %} {% endmytype %} {# {% endmytype %}#} some other stuff {%- endmytype%}''' x_block = ''' {% myothertype x %} before {##} and after {% endmyothertype %} ''' complex_snapshot_file = ''' {#some stuff {% mytype foo %} #} {% mytype foo %} some stuff {% endmytype %} '''+bar_block+x_block if_you_do_this_you_are_awful = ''' {#} here is a comment with a block inside {% block x %} asdf {% endblock %} {#} {% do set('foo="bar"') %} {% set x = ("100" + "hello'" + '%}') %} {% snapshot something -%} {% set x = ("{% endsnapshot %}" + (40 * '%})')) %} {# {% endsnapshot %} #} {% embedded %} some block data right here {% endembedded %} {%- endsnapshot %} {% raw %} {% set x = SYNTAX ERROR} {% endraw %} {% materialization whatever, adapter='thing' %} hi {% endmaterialization %} '''
35.561941
170
0.560783
cfc419de9bb47e9ef4174692fcb76c99137bacb8
1,208
py
Python
analysis/visualize.py
metaShen/AlphaPose
662a72e4831778f97d3845273c63782d4b5236af
[ "Apache-2.0" ]
1
2021-05-13T04:50:54.000Z
2021-05-13T04:50:54.000Z
analysis/visualize.py
metaShen/AlphaPose
662a72e4831778f97d3845273c63782d4b5236af
[ "Apache-2.0" ]
5
2021-03-19T01:46:35.000Z
2022-03-11T23:52:41.000Z
analysis/visualize.py
metaStor/AlphaPose
662a72e4831778f97d3845273c63782d4b5236af
[ "Apache-2.0" ]
null
null
null
import json from pyecharts import Line, Overlap path1 = r'/home/meta/software/AlphaPose/examples/demo/res1/video1.json' path2 = r'/home/meta/software/AlphaPose/examples/demo/res2/video2.json' path3 = r'/home/meta/software/AlphaPose/examples/demo/res3/video3.json' def read(path): with open(path, 'r') as f: return json.load(f) def extract(data): x = [] for i in data: x.append(i['keypoints'][36]) return x x1, x2, x3 = extract(read(path1)), extract(read(path2)), extract(read(path3)) line = Line('line') line.add('1', list(range(len(x1))), x1, mark_point=['max', 'min'], is_datazoom_show=True, is_datazoom_extra_show=True, datazoom_type='both') line.add('2', list(range(len(x2))), x2, mark_point=['max', 'min'], is_datazoom_show=True, is_datazoom_extra_show=True, datazoom_type='both') line.add('3', list(range(len(x3))), x3, mark_point=['max', 'min'], is_datazoom_show=True, is_datazoom_extra_show=True, datazoom_type='both') # line.add('y坐标变化', attr, y, mark_point=['max', 'min'], # is_datazoom_show=True, is_datazoom_extra_show=True, datazoom_type='both') line.render('./examples/demo/res1/video1.html') line.show_config()
30.2
84
0.683775
ed02e47668fb3b7187e6d1e016038e9c519eca30
2,469
py
Python
pytorchtools.py
jeffreyng99/early-stopping-pytorch
2e54511f24386310fd66aac737e14fa45305c618
[ "MIT" ]
null
null
null
pytorchtools.py
jeffreyng99/early-stopping-pytorch
2e54511f24386310fd66aac737e14fa45305c618
[ "MIT" ]
null
null
null
pytorchtools.py
jeffreyng99/early-stopping-pytorch
2e54511f24386310fd66aac737e14fa45305c618
[ "MIT" ]
null
null
null
import numpy as np import torch class EarlyStopping: """Early stops the training if validation loss doesn't improve after a given patience.""" def __init__(self, patience=7, verbose=False, delta=0, general_checkpoint=False): """ Args: patience (int): How long to wait after last time validation loss improved. Default: 7 verbose (bool): If True, prints a message for each validation loss improvement. Default: False delta (float): Minimum change in the monitored quantity to qualify as an improvement. Default: 0 general_checkpoint (bool): Saves addition information that can be used to resume training. Default: False """ self.patience = patience self.verbose = verbose self.counter = 0 self.best_score = None self.early_stop = False self.val_loss_min = np.Inf self.delta = delta self.general_checkpoint = general_checkpoint def __call__(self, val_loss, model, epoch=None, optimizer=None): score = -val_loss if self.best_score is None: self.best_score = score self.save_checkpoint(val_loss, model) elif score < self.best_score + self.delta: self.counter += 1 print(f'EarlyStopping counter: {self.counter} out of {self.patience}') if self.counter >= self.patience: self.early_stop = True else: self.best_score = score self.save_checkpoint(val_loss, model, epoch=epoch, optimizer=optimizer) self.counter = 0 def save_checkpoint(self, val_loss, model, epoch=None, optimizer=None): '''Saves model when validation loss decrease.''' if self.verbose: print(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...') if self.general_checkpoint and epoch is not None and optimizer is not None: torch.save({ 'epoch': epoch, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'loss': val_loss }, 'checkpoint.tar') else: torch.save(model.state_dict(), 'checkpoint.pt') self.val_loss_min = val_loss
42.568966
111
0.581612
bc90f80c2efb6b79c8ffaadf69b3f5187ccc4c7f
263
py
Python
02-python-oo/aula-05/exemplos/sync.py
opensanca/trilha-python
9ffadd266e22a920a3c1acfdbc6a5a4645fce9d6
[ "MIT" ]
47
2016-05-19T22:37:18.000Z
2022-02-22T02:34:18.000Z
02-python-oo/aula-05/exemplos/sync.py
opensanca/trilha-python
9ffadd266e22a920a3c1acfdbc6a5a4645fce9d6
[ "MIT" ]
21
2016-05-20T12:35:25.000Z
2016-07-26T00:23:33.000Z
02-python-oo/aula-05/exemplos/sync.py
lamenezes/python-intro
9ffadd266e22a920a3c1acfdbc6a5a4645fce9d6
[ "MIT" ]
25
2016-05-19T22:52:32.000Z
2022-01-08T15:15:36.000Z
import requests if __name__ == '__main__': import sys verbose = '-v' in sys.argv for _ in range(25): response = requests.get('http://httpbin.org/get') print(response.status_code) if verbose: print(response.text)
20.230769
57
0.596958
28beb6760d11514fe41d5c6c4b65e5f1772b84f8
5,482
py
Python
tensorflow/python/keras/initializers.py
elielhojman/tensorflow
163aae337c875efce2518c3cd0fecb61968fe408
[ "Apache-2.0" ]
4
2019-04-12T00:49:38.000Z
2020-06-12T07:12:00.000Z
tensorflow/python/keras/initializers.py
elielhojman/tensorflow
163aae337c875efce2518c3cd0fecb61968fe408
[ "Apache-2.0" ]
1
2020-11-25T21:29:56.000Z
2021-06-11T05:31:49.000Z
tensorflow/python/keras/initializers.py
elielhojman/tensorflow
163aae337c875efce2518c3cd0fecb61968fe408
[ "Apache-2.0" ]
4
2019-11-11T13:46:27.000Z
2020-03-14T05:36:53.000Z
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Keras initializer classes (soon to be replaced with core TF initializers). """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import six from tensorflow.python.keras.utils.generic_utils import deserialize_keras_object from tensorflow.python.keras.utils.generic_utils import serialize_keras_object from tensorflow.python.ops.init_ops import Constant from tensorflow.python.ops.init_ops import glorot_normal_initializer from tensorflow.python.ops.init_ops import glorot_uniform_initializer from tensorflow.python.ops.init_ops import Identity from tensorflow.python.ops.init_ops import Initializer # pylint: disable=unused-import from tensorflow.python.ops.init_ops import Ones from tensorflow.python.ops.init_ops import Orthogonal from tensorflow.python.ops.init_ops import RandomNormal from tensorflow.python.ops.init_ops import RandomUniform from tensorflow.python.ops.init_ops import TruncatedNormal from tensorflow.python.ops.init_ops import VarianceScaling from tensorflow.python.ops.init_ops import Zeros from tensorflow.python.util.tf_export import tf_export @tf_export('keras.initializers.lecun_normal') def lecun_normal(seed=None): """LeCun normal initializer. It draws samples from a truncated normal distribution centered on 0 with `stddev = sqrt(1 / fan_in)` where `fan_in` is the number of input units in the weight tensor. Arguments: seed: A Python integer. Used to seed the random generator. Returns: An initializer. References: - [Self-Normalizing Neural Networks](https://arxiv.org/abs/1706.02515) - [Efficient Backprop](http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf) """ return VarianceScaling( scale=1., mode='fan_in', distribution='normal', seed=seed) @tf_export('keras.initializers.lecun_uniform') def lecun_uniform(seed=None): """LeCun uniform initializer. It draws samples from a uniform distribution within [-limit, limit] where `limit` is `sqrt(3 / fan_in)` where `fan_in` is the number of input units in the weight tensor. Arguments: seed: A Python integer. Used to seed the random generator. Returns: An initializer. References: LeCun 98, Efficient Backprop, http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf """ return VarianceScaling( scale=1., mode='fan_in', distribution='uniform', seed=seed) @tf_export('keras.initializers.he_normal') def he_normal(seed=None): """He normal initializer. It draws samples from a truncated normal distribution centered on 0 with `stddev = sqrt(2 / fan_in)` where `fan_in` is the number of input units in the weight tensor. Arguments: seed: A Python integer. Used to seed the random generator. Returns: An initializer. References: He et al., http://arxiv.org/abs/1502.01852 """ return VarianceScaling( scale=2., mode='fan_in', distribution='normal', seed=seed) @tf_export('keras.initializers.he_uniform') def he_uniform(seed=None): """He uniform variance scaling initializer. It draws samples from a uniform distribution within [-limit, limit] where `limit` is `sqrt(6 / fan_in)` where `fan_in` is the number of input units in the weight tensor. Arguments: seed: A Python integer. Used to seed the random generator. Returns: An initializer. References: He et al., http://arxiv.org/abs/1502.01852 """ return VarianceScaling( scale=2., mode='fan_in', distribution='uniform', seed=seed) # Compatibility aliases # pylint: disable=invalid-name zero = zeros = Zeros one = ones = Ones constant = Constant uniform = random_uniform = RandomUniform normal = random_normal = RandomNormal truncated_normal = TruncatedNormal identity = Identity orthogonal = Orthogonal glorot_normal = glorot_normal_initializer glorot_uniform = glorot_uniform_initializer # pylint: enable=invalid-name # Utility functions @tf_export('keras.initializers.serialize') def serialize(initializer): return serialize_keras_object(initializer) @tf_export('keras.initializers.deserialize') def deserialize(config, custom_objects=None): return deserialize_keras_object( config, module_objects=globals(), custom_objects=custom_objects, printable_module_name='initializer') @tf_export('keras.initializers.get') def get(identifier): if identifier is None: return None if isinstance(identifier, dict): return deserialize(identifier) elif isinstance(identifier, six.string_types): config = {'class_name': str(identifier), 'config': {}} return deserialize(config) elif callable(identifier): return identifier else: raise ValueError('Could not interpret initializer identifier: ' + str(identifier))
31.325714
87
0.743889
4cfc4c8c2894bc07ca1129483810a186a5d4a6d5
62,592
py
Python
run_list.py
DocOneMedical/bioasq-biobert
ac0383f223a5968443c38b877207011588503de0
[ "Apache-2.0" ]
null
null
null
run_list.py
DocOneMedical/bioasq-biobert
ac0383f223a5968443c38b877207011588503de0
[ "Apache-2.0" ]
null
null
null
run_list.py
DocOneMedical/bioasq-biobert
ac0383f223a5968443c38b877207011588503de0
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Run BERT on SQuAD 1.1 and SQuAD 2.0.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from datetime import datetime import json import math import os import random import modeling import optimization import tokenization import six import tensorflow as tf flags = tf.flags FLAGS = flags.FLAGS # Required parameters flags.DEFINE_string("bert_config_file", None, "The config json file corresponding to the pre-trained BERT model. " "This specifies the model architecture.") flags.DEFINE_string("vocab_file", None, "The vocabulary file that the BERT model was trained on.") flags.DEFINE_string("output_dir", None, "The output directory where the model checkpoints will be written.") # Other parameters flags.DEFINE_string("train_file", None, "SQuAD json for training. E.g., train-v1.1.json") flags.DEFINE_string("predict_file", None, "SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json") flags.DEFINE_string("init_checkpoint", None, "Initial checkpoint (usually from a pre-trained BERT model).") flags.DEFINE_bool("do_lower_case", True, "Whether to lower case the input text. Should be True for uncased " "models and False for cased models.") flags.DEFINE_integer("max_seq_length", 384, "The maximum total input sequence length after WordPiece tokenization. " "Sequences longer than this will be truncated, and sequences shorter " "than this will be padded.") flags.DEFINE_integer("doc_stride", 128, "When splitting up a long document into chunks, how much stride to " "take between chunks.") flags.DEFINE_integer("max_query_length", 64, "The maximum number of tokens for the question. Questions longer than " "this will be truncated to this length.") flags.DEFINE_bool("do_train", False, "Whether to run training.") flags.DEFINE_bool("do_predict", False, "Whether to run eval on the dev set.") flags.DEFINE_integer("train_batch_size", 12, "Total batch size for training.") flags.DEFINE_integer("predict_batch_size", 8, "Total batch size for predictions.") flags.DEFINE_float("learning_rate", 1e-5, "The initial learning rate for Adam.") flags.DEFINE_float("num_train_epochs", 5.0, "Total number of training epochs to perform.") flags.DEFINE_float("warmup_proportion", 0.1, "Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10% of training.") flags.DEFINE_integer("save_checkpoints_steps", 1000, "How often to save the model checkpoint.") flags.DEFINE_integer("iterations_per_loop", 1000, "How many steps to make in each estimator call.") flags.DEFINE_integer("n_best_size", 20, "The total number of n-best predictions to generate in the " "nbest_predictions.json output file.") flags.DEFINE_integer("max_answer_length", 30, "The maximum length of an answer that can be generated. This is needed " "because the start and end predictions are not conditioned on one another.") flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.") tf.flags.DEFINE_string("tpu_name", None, "The Cloud TPU to use for training. This should be either the name " "used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 " "url.") tf.flags.DEFINE_string("tpu_zone", None, "[Optional] GCE zone where the Cloud TPU is located in. If not " "specified, we will attempt to automatically detect the GCE project from " "metadata.") tf.flags.DEFINE_string("gcp_project", None, "[Optional] Project name for the Cloud TPU-enabled project. If not " "specified, we will attempt to automatically detect the GCE project from " "metadata.") tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.") flags.DEFINE_integer("num_tpu_cores", 8, "Only used if `use_tpu` is True. Total number of TPU cores to use.") flags.DEFINE_bool("verbose_logging", False, "If true, all of the warnings related to data processing will be printed. " "A number of warnings are expected for a normal SQuAD evaluation.") flags.DEFINE_bool("version_2_with_negative", False, "If true, the SQuAD examples contain some that do not have an answer.") flags.DEFINE_float("null_score_diff_threshold", 0.0, "If null_score - best_non_null is greater than the threshold predict null.") flags.DEFINE_integer("input_shuffle_seed", 12345, "") # Docone additions flags.DEFINE_bool("docone", False, "If true, use the docone set for prediction.") flags.DEFINE_string("docone_directory", None, "SQuAD json for training. E.g., train-v1.1.json") flags.DEFINE_integer("docone_chunk", None, "chunk to start at") class SquadExample(object): """A single training/test example for simple sequence classification. For examples without an answer, the start and end position are -1. """ def __init__(self, qas_id, question_text, doc_tokens, orig_answer_text=None, start_position=None, end_position=None, is_impossible=False): self.qas_id = qas_id self.question_text = question_text self.doc_tokens = doc_tokens self.orig_answer_text = orig_answer_text self.start_position = start_position self.end_position = end_position self.is_impossible = is_impossible def __str__(self): return self.__repr__() def __repr__(self): s = "" s += "qas_id: %s" % (tokenization.printable_text(self.qas_id)) s += ", question_text: %s" % ( tokenization.printable_text(self.question_text)) s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens)) if self.start_position: s += ", start_position: %d" % (self.start_position) if self.start_position: s += ", end_position: %d" % (self.end_position) if self.start_position: s += ", is_impossible: %r" % (self.is_impossible) return s class DoconeIter: def __init__(self, docone_data_path: str): if not tf.io.gfile.exists(docone_data_path): raise ValueError(f"Data folder doesn't exist {docone_data_path}") self.data_path = docone_data_path def iterate(self): files = tf.io.gfile.glob(f"{self.data_path}/*") for js in files: with tf.io.gfile.GFile(js, 'r') as js_handle: examples = self.load_examples_from_json(json.load(js_handle)) yield examples def load_examples_from_json(self, js_data: dict): paragraphs = js_data["data"][0]["paragraphs"] examples = [] # Basically just used for prediction now. start_position = None end_position = None orig_answer_text = None is_impossible = False for p in paragraphs: text = p["context"] questions = p["qas"] doc_tokens = self.process_text(text) for q in questions: example = SquadExample( qas_id=q['id'], question_text=q['question'], doc_tokens=doc_tokens, orig_answer_text=orig_answer_text, start_position=start_position, end_position=end_position, is_impossible=is_impossible) examples.append(example) return examples @staticmethod def process_text(paragraph_text, is_bioasq: bool = True): def is_whitespace(c): if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F: return True return False doc_tokens = [] char_to_word_offset = [] prev_is_whitespace = True if is_bioasq: paragraph_text.replace('/', ' ') for c in paragraph_text: if is_whitespace(c): prev_is_whitespace = True else: if prev_is_whitespace: doc_tokens.append(c) else: doc_tokens[-1] += c prev_is_whitespace = False char_to_word_offset.append(len(doc_tokens) - 1) return doc_tokens class InputFeatures(object): """A single set of features of data.""" def __init__(self, unique_id, example_index, doc_span_index, tokens, token_to_orig_map, token_is_max_context, input_ids, input_mask, segment_ids, start_position=None, end_position=None, is_impossible=None): self.unique_id = unique_id self.example_index = example_index self.doc_span_index = doc_span_index self.tokens = tokens self.token_to_orig_map = token_to_orig_map self.token_is_max_context = token_is_max_context self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.start_position = start_position self.end_position = end_position self.is_impossible = is_impossible def read_squad_examples(input_file, is_training): """Read a SQuAD json file into a list of SquadExample.""" is_bioasq = True with tf.gfile.Open(input_file, "r") as reader: input_data = json.load(reader)["data"] def is_whitespace(c): if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F: return True return False examples = [] for entry in input_data: for paragraph in entry["paragraphs"]: paragraph_text = paragraph["context"] doc_tokens = [] char_to_word_offset = [] prev_is_whitespace = True if is_bioasq: paragraph_text.replace('/', ' ') # need review for c in paragraph_text: if is_whitespace(c): prev_is_whitespace = True else: if prev_is_whitespace: doc_tokens.append(c) else: doc_tokens[-1] += c prev_is_whitespace = False char_to_word_offset.append(len(doc_tokens) - 1) for qa in paragraph["qas"]: qas_id = qa["id"] question_text = qa["question"] start_position = None end_position = None orig_answer_text = None is_impossible = False if is_training: if FLAGS.version_2_with_negative: is_impossible = qa["is_impossible"] if (len(qa["answers"]) != 1) and (not is_impossible): raise ValueError( "For training, each question should have exactly 1 answer.") if not is_impossible: answer = qa["answers"][0] orig_answer_text = answer["text"] answer_offset = answer["answer_start"] answer_length = len(orig_answer_text) start_position = char_to_word_offset[answer_offset] end_position = char_to_word_offset[answer_offset + answer_length - 1] # Only add answers where the text can be exactly recovered from the # document. If this CAN'T happen it's likely due to weird Unicode # stuff so we will just skip the example. # # Note that this means for training mode, every example is NOT # guaranteed to be preserved. actual_text = " ".join(doc_tokens[start_position:(end_position + 1)]) cleaned_answer_text = " ".join(tokenization.whitespace_tokenize(orig_answer_text)) if actual_text.find(cleaned_answer_text) == -1: tf.logging.warning("Could not find answer: '%s' vs. '%s'", actual_text, cleaned_answer_text) continue else: start_position = -1 end_position = -1 orig_answer_text = "" example = SquadExample( qas_id=qas_id, question_text=question_text, doc_tokens=doc_tokens, orig_answer_text=orig_answer_text, start_position=start_position, end_position=end_position, is_impossible=is_impossible) examples.append(example) return examples def convert_examples_to_features(examples, tokenizer, max_seq_length, doc_stride, max_query_length, is_training, output_fn): """Loads a data file into a list of `InputBatch`s.""" unique_id = 1000000000 for (example_index, example) in enumerate(examples): query_tokens = tokenizer.tokenize(example.question_text) if len(query_tokens) > max_query_length: query_tokens = query_tokens[0:max_query_length] tok_to_orig_index = [] orig_to_tok_index = [] all_doc_tokens = [] for (i, token) in enumerate(example.doc_tokens): orig_to_tok_index.append(len(all_doc_tokens)) sub_tokens = tokenizer.tokenize(token) for sub_token in sub_tokens: tok_to_orig_index.append(i) all_doc_tokens.append(sub_token) tok_start_position = None tok_end_position = None if is_training and example.is_impossible: tok_start_position = -1 tok_end_position = -1 if is_training and not example.is_impossible: tok_start_position = orig_to_tok_index[example.start_position] if example.end_position < len(example.doc_tokens) - 1: tok_end_position = orig_to_tok_index[example.end_position + 1] - 1 else: tok_end_position = len(all_doc_tokens) - 1 (tok_start_position, tok_end_position) = _improve_answer_span( all_doc_tokens, tok_start_position, tok_end_position, tokenizer, example.orig_answer_text) # The -3 accounts for [CLS], [SEP] and [SEP] max_tokens_for_doc = max_seq_length - len(query_tokens) - 3 # We can have documents that are longer than the maximum sequence length. # To deal with this we do a sliding window approach, where we take chunks # of the up to our max length with a stride of `doc_stride`. _DocSpan = collections.namedtuple( # pylint: disable=invalid-name "DocSpan", ["start", "length"]) doc_spans = [] start_offset = 0 while start_offset < len(all_doc_tokens): length = len(all_doc_tokens) - start_offset if length > max_tokens_for_doc: length = max_tokens_for_doc doc_spans.append(_DocSpan(start=start_offset, length=length)) if start_offset + length == len(all_doc_tokens): break start_offset += min(length, doc_stride) for (doc_span_index, doc_span) in enumerate(doc_spans): tokens = [] token_to_orig_map = {} token_is_max_context = {} segment_ids = [] tokens.append("[CLS]") segment_ids.append(0) for token in query_tokens: tokens.append(token) segment_ids.append(0) tokens.append("[SEP]") segment_ids.append(0) for i in range(doc_span.length): split_token_index = doc_span.start + i token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index] is_max_context = _check_is_max_context(doc_spans, doc_span_index, split_token_index) token_is_max_context[len(tokens)] = is_max_context tokens.append(all_doc_tokens[split_token_index]) segment_ids.append(1) tokens.append("[SEP]") segment_ids.append(1) input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length start_position = None end_position = None if is_training and not example.is_impossible: # For training, if our document chunk does not contain an annotation # we throw it out, since there is nothing to predict. doc_start = doc_span.start doc_end = doc_span.start + doc_span.length - 1 out_of_span = False if not (tok_start_position >= doc_start and tok_end_position <= doc_end): out_of_span = True if out_of_span: start_position = 0 end_position = 0 else: doc_offset = len(query_tokens) + 2 start_position = tok_start_position - doc_start + doc_offset end_position = tok_end_position - doc_start + doc_offset if is_training and example.is_impossible: start_position = 0 end_position = 0 if example_index < 20: tf.logging.info("*** Example ***") tf.logging.info("unique_id: %s" % (unique_id)) tf.logging.info("example_index: %s" % (example_index)) tf.logging.info("doc_span_index: %s" % (doc_span_index)) tf.logging.info("tokens: %s" % " ".join( [tokenization.printable_text(x) for x in tokens])) tf.logging.info("token_to_orig_map: %s" % " ".join( ["%d:%d" % (x, y) for (x, y) in six.iteritems(token_to_orig_map)])) tf.logging.info("token_is_max_context: %s" % " ".join([ "%d:%s" % (x, y) for (x, y) in six.iteritems(token_is_max_context) ])) tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) tf.logging.info( "input_mask: %s" % " ".join([str(x) for x in input_mask])) tf.logging.info( "segment_ids: %s" % " ".join([str(x) for x in segment_ids])) if is_training and example.is_impossible: tf.logging.info("impossible example") if is_training and not example.is_impossible: answer_text = " ".join(tokens[start_position:(end_position + 1)]) tf.logging.info("start_position: %d" % (start_position)) tf.logging.info("end_position: %d" % (end_position)) tf.logging.info( "answer: %s" % (tokenization.printable_text(answer_text))) feature = InputFeatures( unique_id=unique_id, example_index=example_index, doc_span_index=doc_span_index, tokens=tokens, token_to_orig_map=token_to_orig_map, token_is_max_context=token_is_max_context, input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, start_position=start_position, end_position=end_position, is_impossible=example.is_impossible) # Run callback output_fn(feature) unique_id += 1 def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer, orig_answer_text): """Returns tokenized answer spans that better match the annotated answer.""" # The SQuAD annotations are character based. We first project them to # whitespace-tokenized words. But then after WordPiece tokenization, we can # often find a "better match". For example: # # Question: What year was John Smith born? # Context: The leader was John Smith (1895-1943). # Answer: 1895 # # The original whitespace-tokenized answer will be "(1895-1943).". However # after tokenization, our tokens will be "( 1895 - 1943 ) .". So we can match # the exact answer, 1895. # # However, this is not always possible. Consider the following: # # Question: What country is the top exporter of electornics? # Context: The Japanese electronics industry is the lagest in the world. # Answer: Japan # # In this case, the annotator chose "Japan" as a character sub-span of # the word "Japanese". Since our WordPiece tokenizer does not split # "Japanese", we just use "Japanese" as the annotation. This is fairly rare # in SQuAD, but does happen. tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text)) for new_start in range(input_start, input_end + 1): for new_end in range(input_end, new_start - 1, -1): text_span = " ".join(doc_tokens[new_start:(new_end + 1)]) if text_span == tok_answer_text: return (new_start, new_end) return (input_start, input_end) def _check_is_max_context(doc_spans, cur_span_index, position): """Check if this is the 'max context' doc span for the token.""" # Because of the sliding window approach taken to scoring documents, a single # token can appear in multiple documents. E.g. # Doc: the man went to the store and bought a gallon of milk # Span A: the man went to the # Span B: to the store and bought # Span C: and bought a gallon of # ... # # Now the word 'bought' will have two scores from spans B and C. We only # want to consider the score with "maximum context", which we define as # the *minimum* of its left and right context (the *sum* of left and # right context will always be the same, of course). # # In the example the maximum context for 'bought' would be span C since # it has 1 left context and 3 right context, while span B has 4 left context # and 0 right context. best_score = None best_span_index = None for (span_index, doc_span) in enumerate(doc_spans): end = doc_span.start + doc_span.length - 1 if position < doc_span.start: continue if position > end: continue num_left_context = position - doc_span.start num_right_context = end - position score = min(num_left_context, num_right_context) + 0.01 * doc_span.length if best_score is None or score > best_score: best_score = score best_span_index = span_index return cur_span_index == best_span_index def create_model(bert_config, is_training, input_ids, input_mask, segment_ids, use_one_hot_embeddings): """Creates a classification model.""" model = modeling.BertModel( config=bert_config, is_training=is_training, input_ids=input_ids, input_mask=input_mask, token_type_ids=segment_ids, use_one_hot_embeddings=use_one_hot_embeddings) final_hidden = model.get_sequence_output() final_hidden_shape = modeling.get_shape_list(final_hidden, expected_rank=3) batch_size = final_hidden_shape[0] seq_length = final_hidden_shape[1] hidden_size = final_hidden_shape[2] output_weights = tf.get_variable( "cls/squad/output_weights", [2, hidden_size], initializer=tf.truncated_normal_initializer(stddev=0.02)) output_bias = tf.get_variable( "cls/squad/output_bias", [2], initializer=tf.zeros_initializer()) final_hidden_matrix = tf.reshape(final_hidden, [batch_size * seq_length, hidden_size]) logits = tf.matmul(final_hidden_matrix, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) logits = tf.reshape(logits, [batch_size, seq_length, 2]) logits = tf.transpose(logits, [2, 0, 1]) unstacked_logits = tf.unstack(logits, axis=0) (start_logits, end_logits) = (unstacked_logits[0], unstacked_logits[1]) return (start_logits, end_logits) def model_fn_builder(bert_config, init_checkpoint, learning_rate, num_train_steps, num_warmup_steps, use_tpu, use_one_hot_embeddings): """Returns `model_fn` closure for TPUEstimator.""" def model_fn(features, labels, mode, params): # pylint: disable=unused-argument """The `model_fn` for TPUEstimator.""" tf.logging.info("*** Features ***") for name in sorted(features.keys()): tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape)) unique_ids = features["unique_ids"] input_ids = features["input_ids"] input_mask = features["input_mask"] segment_ids = features["segment_ids"] is_training = (mode == tf.estimator.ModeKeys.TRAIN) (start_logits, end_logits) = create_model( bert_config=bert_config, is_training=is_training, input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, use_one_hot_embeddings=use_one_hot_embeddings) tvars = tf.trainable_variables() initialized_variable_names = {} scaffold_fn = None if init_checkpoint: (assignment_map, initialized_variable_names) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) if use_tpu: def tpu_scaffold(): tf.train.init_from_checkpoint(init_checkpoint, assignment_map) return tf.train.Scaffold() scaffold_fn = tpu_scaffold else: tf.train.init_from_checkpoint(init_checkpoint, assignment_map) tf.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string) if mode == tf.estimator.ModeKeys.TRAIN: seq_length = modeling.get_shape_list(input_ids)[1] def compute_loss(logits, positions): one_hot_positions = tf.one_hot(positions, depth=seq_length, dtype=tf.float32) log_probs = tf.nn.log_softmax(logits, axis=-1) loss = -tf.reduce_mean(tf.reduce_sum(one_hot_positions * log_probs, axis=-1)) return loss start_positions = features["start_positions"] end_positions = features["end_positions"] start_loss = compute_loss(start_logits, start_positions) end_loss = compute_loss(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2.0 train_op = optimization.create_optimizer( total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu) # https://github.com/google-research/bert/issues/70#issuecomment-436533131 logging_hook = tf.train.LoggingTensorHook( tensors={"loss": total_loss}, every_n_iter=100) output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, train_op=train_op, scaffold_fn=scaffold_fn, training_hooks=[logging_hook]) elif mode == tf.estimator.ModeKeys.PREDICT: predictions = { "unique_ids": unique_ids, "start_logits": start_logits, "end_logits": end_logits, } output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, predictions=predictions, scaffold_fn=scaffold_fn) else: raise ValueError("Only TRAIN and PREDICT modes are supported: %s" % (mode)) return output_spec return model_fn def input_fn_builder(input_file, seq_length, is_training, drop_remainder): """Creates an `input_fn` closure to be passed to TPUEstimator.""" name_to_features = { "unique_ids": tf.FixedLenFeature([], tf.int64), "input_ids": tf.FixedLenFeature([seq_length], tf.int64), "input_mask": tf.FixedLenFeature([seq_length], tf.int64), "segment_ids": tf.FixedLenFeature([seq_length], tf.int64), } if is_training: name_to_features["start_positions"] = tf.FixedLenFeature([], tf.int64) name_to_features["end_positions"] = tf.FixedLenFeature([], tf.int64) def _decode_record(record, name_to_features): """Decodes a record to a TensorFlow example.""" example = tf.parse_single_example(record, name_to_features) # tf.Example only supports tf.int64, but the TPU only supports tf.int32. # So cast all int64 to int32. for name in list(example.keys()): t = example[name] if t.dtype == tf.int64: t = tf.to_int32(t) example[name] = t return example def input_fn(params): """The actual input function.""" batch_size = params["batch_size"] # For training, we want a lot of parallel reading and shuffling. # For eval, we want no shuffling and parallel reading doesn't matter. d = tf.data.TFRecordDataset(input_file) if is_training: d = d.repeat() d = d.shuffle(buffer_size=100) d = d.apply( tf.contrib.data.map_and_batch( lambda record: _decode_record(record, name_to_features), batch_size=batch_size, drop_remainder=drop_remainder)) return d return input_fn RawResult = collections.namedtuple("RawResult", ["unique_id", "start_logits", "end_logits"]) def write_predictions(all_examples, all_features, all_results, n_best_size, max_answer_length, do_lower_case, output_prediction_file, output_nbest_file, output_null_log_odds_file): """Write final predictions to the json file and log-odds of null if needed.""" tf.logging.info("Writing predictions to: %s" % (output_prediction_file)) tf.logging.info("Writing nbest to: %s" % (output_nbest_file)) example_index_to_features = collections.defaultdict(list) for feature in all_features: example_index_to_features[feature.example_index].append(feature) unique_id_to_result = {} for result in all_results: unique_id_to_result[result.unique_id] = result _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name "PrelimPrediction", ["feature_index", "start_index", "end_index", "start_logit", "end_logit", "question_text"] ) all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() scores_diff_json = collections.OrderedDict() for (example_index, example) in enumerate(all_examples): features = example_index_to_features[example_index] prelim_predictions = [] # keep track of the minimum score of null start+end of position 0 score_null = 1000000 # large and positive min_null_feature_index = 0 # the paragraph slice with min mull score null_start_logit = 0 # the start logit at the slice with min null score null_end_logit = 0 # the end logit at the slice with min null score for (feature_index, feature) in enumerate(features): result = unique_id_to_result[feature.unique_id] start_indexes = _get_best_indexes(result.start_logits, n_best_size) end_indexes = _get_best_indexes(result.end_logits, n_best_size) # if we could have irrelevant answers, get the min score of irrelevant if FLAGS.version_2_with_negative: feature_null_score = result.start_logits[0] + result.end_logits[0] if feature_null_score < score_null: score_null = feature_null_score min_null_feature_index = feature_index null_start_logit = result.start_logits[0] null_end_logit = result.end_logits[0] for start_index in start_indexes: for end_index in end_indexes: # We could hypothetically create invalid predictions, e.g., predict # that the start of the span is in the question. We throw out all # invalid predictions. if start_index >= len(feature.tokens): continue if end_index >= len(feature.tokens): continue if start_index not in feature.token_to_orig_map: continue if end_index not in feature.token_to_orig_map: continue if not feature.token_is_max_context.get(start_index, False): continue if end_index < start_index: continue length = end_index - start_index + 1 if length > max_answer_length: continue prelim_predictions.append( _PrelimPrediction( feature_index=feature_index, start_index=start_index, end_index=end_index, start_logit=result.start_logits[start_index], end_logit=result.end_logits[end_index], question_text=example.question_text )) if FLAGS.version_2_with_negative: prelim_predictions.append( _PrelimPrediction( feature_index=min_null_feature_index, start_index=0, end_index=0, start_logit=null_start_logit, end_logit=null_end_logit, question_text='' )) prelim_predictions = sorted( prelim_predictions, key=lambda x: (x.start_logit + x.end_logit), reverse=True) # pylint: disable=invalid-name _NbestPrediction = collections.namedtuple( "NbestPrediction", ["text", "start_logit", "end_logit", "question_text"]) seen_predictions = {} nbest = [] for pred in prelim_predictions: if len(nbest) >= n_best_size: break feature = features[pred.feature_index] if pred.start_index > 0: # this is a non-null prediction tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)] orig_doc_start = feature.token_to_orig_map[pred.start_index] orig_doc_end = feature.token_to_orig_map[pred.end_index] orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)] tok_text = " ".join(tok_tokens) # De-tokenize WordPieces that have been split off. tok_text = tok_text.replace(" ##", "") tok_text = tok_text.replace("##", "") # Clean whitespace tok_text = tok_text.strip() tok_text = " ".join(tok_text.split()) orig_text = " ".join(orig_tokens) final_text = get_final_text(tok_text, orig_text, do_lower_case) if final_text in seen_predictions: continue seen_predictions[final_text] = True else: final_text = "" seen_predictions[final_text] = True nbest.append( _NbestPrediction( text=final_text, start_logit=pred.start_logit, end_logit=pred.end_logit, question_text=pred.question_text )) # if we didn't inlude the empty option in the n-best, inlcude it if FLAGS.version_2_with_negative: if "" not in seen_predictions: nbest.append( _NbestPrediction( text="", start_logit=null_start_logit, end_logit=null_end_logit )) # In very rare edge cases we could have no valid predictions. So we # just create a nonce prediction in this case to avoid failure. if not nbest: nbest.append(_NbestPrediction( text="empty", start_logit=0.0, end_logit=0.0, question_text=pred.question_text )) assert len(nbest) >= 1 total_scores = [] best_non_null_entry = None for entry in nbest: total_scores.append(entry.start_logit + entry.end_logit) if not best_non_null_entry: if entry.text: best_non_null_entry = entry probs = _compute_softmax(total_scores) nbest_json = [] for (i, entry) in enumerate(nbest): output = collections.OrderedDict() output["text"] = entry.text output["probability"] = probs[i] output["start_logit"] = entry.start_logit output["end_logit"] = entry.end_logit output["question_text"] = entry.question_text nbest_json.append(output) assert len(nbest_json) >= 1 if not FLAGS.version_2_with_negative: all_predictions[example.qas_id] = nbest_json[0]["text"] else: # predict "" iff the null score - the score of best non-null > threshold score_diff = score_null - best_non_null_entry.start_logit - ( best_non_null_entry.end_logit) scores_diff_json[example.qas_id] = score_diff if score_diff > FLAGS.null_score_diff_threshold: all_predictions[example.qas_id] = "" else: all_predictions[example.qas_id] = best_non_null_entry.text all_nbest_json[example.qas_id] = nbest_json with tf.gfile.GFile(output_prediction_file, "w") as writer: writer.write(json.dumps(all_predictions, indent=4) + "\n") with tf.gfile.GFile(output_nbest_file, "w") as writer: writer.write(json.dumps(all_nbest_json, indent=4) + "\n") if FLAGS.version_2_with_negative: with tf.gfile.GFile(output_null_log_odds_file, "w") as writer: writer.write(json.dumps(scores_diff_json, indent=4) + "\n") def get_final_text(pred_text, orig_text, do_lower_case): """Project the tokenized prediction back to the original text.""" # When we created the data, we kept track of the alignment between original # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So # now `orig_text` contains the span of our original text corresponding to the # span that we predicted. # # However, `orig_text` may contain extra characters that we don't want in # our prediction. # # For example, let's say: # pred_text = steve smith # orig_text = Steve Smith's # # We don't want to return `orig_text` because it contains the extra "'s". # # We don't want to return `pred_text` because it's already been normalized # (the SQuAD eval script also does punctuation stripping/lower casing but # our tokenizer does additional normalization like stripping accent # characters). # # What we really want to return is "Steve Smith". # # Therefore, we have to apply a semi-complicated alignment heruistic between # `pred_text` and `orig_text` to get a character-to-charcter alignment. This # can fail in certain cases in which case we just return `orig_text`. def _strip_spaces(text): ns_chars = [] ns_to_s_map = collections.OrderedDict() for (i, c) in enumerate(text): if c == " ": continue ns_to_s_map[len(ns_chars)] = i ns_chars.append(c) ns_text = "".join(ns_chars) return (ns_text, ns_to_s_map) # We first tokenize `orig_text`, strip whitespace from the result # and `pred_text`, and check if they are the same length. If they are # NOT the same length, the heuristic has failed. If they are the same # length, we assume the characters are one-to-one aligned. tokenizer = tokenization.BasicTokenizer(do_lower_case=do_lower_case) tok_text = " ".join(tokenizer.tokenize(orig_text)) start_position = tok_text.find(pred_text) if start_position == -1: if FLAGS.verbose_logging: tf.logging.info( "Unable to find text: '%s' in '%s'" % (pred_text, orig_text)) return orig_text end_position = start_position + len(pred_text) - 1 (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text) (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text) if len(orig_ns_text) != len(tok_ns_text): if FLAGS.verbose_logging: tf.logging.info("Length not equal after stripping spaces: '%s' vs '%s'", orig_ns_text, tok_ns_text) return orig_text # We then project the characters in `pred_text` back to `orig_text` using # the character-to-character alignment. tok_s_to_ns_map = {} for (i, tok_index) in six.iteritems(tok_ns_to_s_map): tok_s_to_ns_map[tok_index] = i orig_start_position = None if start_position in tok_s_to_ns_map: ns_start_position = tok_s_to_ns_map[start_position] if ns_start_position in orig_ns_to_s_map: orig_start_position = orig_ns_to_s_map[ns_start_position] if orig_start_position is None: if FLAGS.verbose_logging: tf.logging.info("Couldn't map start position") return orig_text orig_end_position = None if end_position in tok_s_to_ns_map: ns_end_position = tok_s_to_ns_map[end_position] if ns_end_position in orig_ns_to_s_map: orig_end_position = orig_ns_to_s_map[ns_end_position] if orig_end_position is None: if FLAGS.verbose_logging: tf.logging.info("Couldn't map end position") return orig_text output_text = orig_text[orig_start_position:(orig_end_position + 1)] return output_text def _get_best_indexes(logits, n_best_size): """Get the n-best logits from a list.""" index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True) best_indexes = [] for i in range(len(index_and_score)): if i >= n_best_size: break best_indexes.append(index_and_score[i][0]) return best_indexes def _compute_softmax(scores): """Compute softmax probability over raw logits.""" if not scores: return [] max_score = None for score in scores: if max_score is None or score > max_score: max_score = score exp_scores = [] total_sum = 0.0 for score in scores: x = math.exp(score - max_score) exp_scores.append(x) total_sum += x probs = [] for score in exp_scores: probs.append(score / total_sum) return probs class FeatureWriter(object): """Writes InputFeature to TF example file.""" def __init__(self, filename, is_training): self.filename = filename self.is_training = is_training self.num_features = 0 self._writer = tf.python_io.TFRecordWriter(filename) def process_feature(self, feature): """Write a InputFeature to the TFRecordWriter as a tf.train.Example.""" self.num_features += 1 def create_int_feature(values): feature = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values))) return feature features = collections.OrderedDict() features["unique_ids"] = create_int_feature([feature.unique_id]) features["input_ids"] = create_int_feature(feature.input_ids) features["input_mask"] = create_int_feature(feature.input_mask) features["segment_ids"] = create_int_feature(feature.segment_ids) if self.is_training: features["start_positions"] = create_int_feature([feature.start_position]) features["end_positions"] = create_int_feature([feature.end_position]) impossible = 0 if feature.is_impossible: impossible = 1 features["is_impossible"] = create_int_feature([impossible]) tf_example = tf.train.Example(features=tf.train.Features(feature=features)) self._writer.write(tf_example.SerializeToString()) def close(self): self._writer.close() def validate_flags_or_throw(bert_config): """Validate the input FLAGS or throw an exception.""" tokenization.validate_case_matches_checkpoint(FLAGS.do_lower_case, FLAGS.init_checkpoint) if not FLAGS.do_train and not FLAGS.do_predict: raise ValueError("At least one of `do_train` or `do_predict` must be True.") if FLAGS.do_train: if not FLAGS.train_file: raise ValueError("If `do_train` is True, then `train_file` must be specified.") if FLAGS.do_predict: if not FLAGS.predict_file: raise ValueError("If `do_predict` is True, then `predict_file` must be specified.") if FLAGS.max_seq_length > bert_config.max_position_embeddings: raise ValueError("Cannot use sequence length %d because the BERT model " "was only trained up to sequence length %d" % (FLAGS.max_seq_length, bert_config.max_position_embeddings)) if FLAGS.max_seq_length <= FLAGS.max_query_length + 3: raise ValueError("The max_seq_length (%d) must be greater than max_query_length " "(%d) + 3" % (FLAGS.max_seq_length, FLAGS.max_query_length)) def main(_): tf.logging.set_verbosity(tf.logging.WARN) start_t = datetime.now() print(start_t) bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file) validate_flags_or_throw(bert_config) tf.gfile.MakeDirs(FLAGS.output_dir) tokenizer = tokenization.FullTokenizer( vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) tpu_cluster_resolver = None if FLAGS.use_tpu and FLAGS.tpu_name: tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver( FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project) session_config = tf.ConfigProto() session_config.gpu_options.allow_growth = True is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2 run_config = tf.contrib.tpu.RunConfig( cluster=tpu_cluster_resolver, master=FLAGS.master, model_dir=FLAGS.output_dir, session_config=session_config, save_checkpoints_steps=FLAGS.save_checkpoints_steps, keep_checkpoint_max=50, tpu_config=tf.contrib.tpu.TPUConfig( iterations_per_loop=FLAGS.iterations_per_loop, num_shards=FLAGS.num_tpu_cores, per_host_input_for_training=is_per_host)) train_examples = None num_train_steps = None num_warmup_steps = None if FLAGS.do_train: train_examples = read_squad_examples( input_file=FLAGS.train_file, is_training=True) num_train_steps = int( len(train_examples) / FLAGS.train_batch_size * FLAGS.num_train_epochs) num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion) # Pre-shuffle the input to avoid having to make a very large shuffle # buffer in in the `input_fn`. rng = random.Random(FLAGS.input_shuffle_seed) rng.shuffle(train_examples) print('#train_examples', len(train_examples)) print('#train_steps', num_train_steps) model_fn = model_fn_builder( bert_config=bert_config, init_checkpoint=FLAGS.init_checkpoint, learning_rate=FLAGS.learning_rate, num_train_steps=num_train_steps, num_warmup_steps=num_warmup_steps, use_tpu=FLAGS.use_tpu, use_one_hot_embeddings=FLAGS.use_tpu) # If TPU is not available, this will fall back to normal Estimator on CPU # or GPU. estimator = tf.contrib.tpu.TPUEstimator( use_tpu=FLAGS.use_tpu, model_fn=model_fn, config=run_config, train_batch_size=FLAGS.train_batch_size, predict_batch_size=FLAGS.predict_batch_size) if FLAGS.do_train: # We write to a temporary file to avoid storing very large constant tensors # in memory. train_writer = FeatureWriter( filename=os.path.join(FLAGS.output_dir, "train.tf_record"), is_training=True) convert_examples_to_features( examples=train_examples, tokenizer=tokenizer, max_seq_length=FLAGS.max_seq_length, doc_stride=FLAGS.doc_stride, max_query_length=FLAGS.max_query_length, is_training=True, output_fn=train_writer.process_feature) train_writer.close() tf.logging.info("***** Running training *****") tf.logging.info(" Num orig examples = %d", len(train_examples)) tf.logging.info(" Num split examples = %d", train_writer.num_features) tf.logging.info(" Batch size = %d", FLAGS.train_batch_size) tf.logging.info(" Num steps = %d", num_train_steps) del train_examples train_input_fn = input_fn_builder( input_file=train_writer.filename, seq_length=FLAGS.max_seq_length, is_training=True, drop_remainder=True) estimator.train(input_fn=train_input_fn, max_steps=num_train_steps) pdir = os.path.join(FLAGS.output_dir, 'predictions') if not tf.io.gfile.exists(pdir): tf.io.gfile.makedirs(pdir) if FLAGS.do_predict: if FLAGS.docone: do_iter = DoconeIter(FLAGS.docone_directory) for i, eval_examples in enumerate(do_iter.iterate()): tf.logging.warning(f"Processing chunk {i}".format(i)) if FLAGS.docone_chunk and i < FLAGS.docone_chunk: continue eval_writer = FeatureWriter( filename=os.path.join(FLAGS.output_dir, "eval.tf_record"), is_training=False) eval_features = [] def append_feature(feature): eval_features.append(feature) eval_writer.process_feature(feature) convert_examples_to_features( examples=eval_examples, tokenizer=tokenizer, max_seq_length=FLAGS.max_seq_length, doc_stride=FLAGS.doc_stride, max_query_length=FLAGS.max_query_length, is_training=False, output_fn=append_feature) eval_writer.close() tf.logging.info("***** Running predictions *****") tf.logging.info(" Num orig examples = %d", len(eval_examples)) tf.logging.info(" Num split examples = %d", len(eval_features)) tf.logging.info(" Batch size = %d", FLAGS.predict_batch_size) all_results = [] predict_input_fn = input_fn_builder( input_file=eval_writer.filename, seq_length=FLAGS.max_seq_length, is_training=False, drop_remainder=False) # If running eval on the TPU, you will need to specify the number of # steps. all_results = [] for result in estimator.predict(predict_input_fn, yield_single_examples=True): if len(all_results) % 100 == 0: tf.logging.info("Processing example: %d" % (len(all_results))) unique_id = int(result["unique_ids"]) start_logits = [float(x) for x in result["start_logits"].flat] end_logits = [float(x) for x in result["end_logits"].flat] all_results.append( RawResult( unique_id=unique_id, start_logits=start_logits, end_logits=end_logits )) output_prediction_file = os.path.join(pdir, f"predictions_{i}.json") output_nbest_file = os.path.join(pdir, f"nbest_predictions_{i}.json") output_null_log_odds_file = os.path.join(pdir, f"null_odds_{i}.json") write_predictions(eval_examples, eval_features, all_results, FLAGS.n_best_size, FLAGS.max_answer_length, FLAGS.do_lower_case, output_prediction_file, output_nbest_file, output_null_log_odds_file) else: eval_examples = read_squad_examples( input_file=FLAGS.predict_file, is_training=False) eval_writer = FeatureWriter( filename=os.path.join(FLAGS.output_dir, "eval.tf_record"), is_training=False) eval_features = [] def append_feature(feature): eval_features.append(feature) eval_writer.process_feature(feature) convert_examples_to_features( examples=eval_examples, tokenizer=tokenizer, max_seq_length=FLAGS.max_seq_length, doc_stride=FLAGS.doc_stride, max_query_length=FLAGS.max_query_length, is_training=False, output_fn=append_feature) eval_writer.close() tf.logging.info("***** Running predictions *****") tf.logging.info(" Num orig examples = %d", len(eval_examples)) tf.logging.info(" Num split examples = %d", len(eval_features)) tf.logging.info(" Batch size = %d", FLAGS.predict_batch_size) predict_input_fn = input_fn_builder( input_file=eval_writer.filename, seq_length=FLAGS.max_seq_length, is_training=False, drop_remainder=False) # If running eval on the TPU, you will need to specify the number of # steps. all_results = [] for result in estimator.predict( predict_input_fn, yield_single_examples=True): if len(all_results) % 1000 == 0: tf.logging.info("Processing example: %d" % (len(all_results))) unique_id = int(result["unique_ids"]) start_logits = [float(x) for x in result["start_logits"].flat] end_logits = [float(x) for x in result["end_logits"].flat] all_results.append( RawResult( unique_id=unique_id, start_logits=start_logits, end_logits=end_logits )) """ # example: BioASQ-test-list-6b-1.json # example: BioASQ-test-list-7b-3-snippet.json # example: BioASQ-test-list-6b-snippet-all.json pred_filename = os.path.split(FLAGS.predict_file)[1] pred_filename = pred_filename.replace('BioASQ-test-list-', '') pred_filename = pred_filename.replace('.json', '') if '-all' == pred_filename[-4:]: task_batch = pred_filename[0] + 'B' # no batch number snp = pred_filename[2:-4] golden = '/hdd1/bioasq/{}b_test/{}_total_golden.json'.format( pred_filename[0], task_batch) else: task_batch = pred_filename.replace('b-', 'B') snp = task_batch[3:] task_batch = task_batch[:3] golden = '/hdd1/biobert/BioASQ/{}_golden.json'.format(task_batch) output_prediction_file = os.path.join( FLAGS.output_dir, "{}_predictions.json".format(task_batch)) output_nbest_file = os.path.join( FLAGS.output_dir, "{}_nbest_predictions.json".format(task_batch)) output_null_log_odds_file = os.path.join( FLAGS.output_dir, "{}_null_odds.json".format(task_batch)) """ output_prediction_file = os.path.join( FLAGS.output_dir, "predictions.json") output_nbest_file = os.path.join( FLAGS.output_dir, "nbest_predictions.json") output_null_log_odds_file = os.path.join( FLAGS.output_dir, "null_odds.json") write_predictions(eval_examples, eval_features, all_results, FLAGS.n_best_size, FLAGS.max_answer_length, FLAGS.do_lower_case, output_prediction_file, output_nbest_file, output_null_log_odds_file) """ # convert print("\nConvert to BioASQ format") import subprocess outdir = FLAGS.output_dir[:-1] if FLAGS.output_dir[-1] == '/' \ else FLAGS.output_dir out_file = '{}_list_result{}.json'.format(task_batch, snp) print('BioASQ format output', os.path.join(outdir, out_file)) eval_proc = subprocess.Popen( ['python3', './biocodes/transform_n2b_list.py', '--nbest_path={}/{}_nbest_predictions.json'.format(outdir, task_batch), # '-s', '--output_path=' + outdir, '--output_file=' + out_file], cwd='.', stdout=subprocess.PIPE ) stdout, stderr = eval_proc.communicate() print(stdout.decode('utf-8')) if stderr is not None: print(stderr.decode('utf-8')) print("\nEvaluation") # https://github.com/BioASQ/Evaluation-Measures/blob/master/flat/BioASQEvaluation/src/evaluation/EvaluatorTask1b.java#L59 print('pred ', os.path.join(outdir, out_file)) print('golden', golden) if os.path.exists(golden): # 1: [1, 2], 3: [3, 4], 5: [5, 6] task_e = { '1': 1, '2': 1, '3': 3, '4': 3, '5': 5, '6': 5, } evalproc1 = subprocess.Popen( ['java', '-Xmx10G', '-cp', '$CLASSPATH:./flat/BioASQEvaluation/dist/BioASQEvaluation.jar', 'evaluation.EvaluatorTask1b', '-phaseB', '-e', '{}'.format(task_e[task_batch[0]]), golden, os.path.join(outdir, out_file)], cwd='/hdd1/biobert/Evaluation-Measures', stdout=subprocess.PIPE ) stdout, _ = evalproc1.communicate() print('\t'.join( ['{:.4f}'.format(float(v)) for v in stdout.decode('utf-8').split(' ')][4:7]), sep='\t') """ print('\nElapsed time', datetime.now() - start_t) if __name__ == "__main__": flags.mark_flag_as_required("vocab_file") flags.mark_flag_as_required("bert_config_file") flags.mark_flag_as_required("output_dir") tf.app.run()
41.589369
133
0.591609
fcf21f8f3fc8572f606036cd40396b86c4bf2acd
305
py
Python
bookapi/api/schemas/user.py
Fersubair40/bookapi
587b512edfad3e05fe648719c6ac176027a630f4
[ "MIT" ]
null
null
null
bookapi/api/schemas/user.py
Fersubair40/bookapi
587b512edfad3e05fe648719c6ac176027a630f4
[ "MIT" ]
null
null
null
bookapi/api/schemas/user.py
Fersubair40/bookapi
587b512edfad3e05fe648719c6ac176027a630f4
[ "MIT" ]
null
null
null
from bookapi.models import User from bookapi.extensions import ma, db class UserSchema(ma.SQLAlchemyAutoSchema): id = ma.Int(dump_only=True) password = ma.String(load_only=True, required=True) class Meta: model = User sqla_session = db.session load_instance = True
21.785714
55
0.695082
93ab8e22b6bfb1396dfedc141a2d800d19ff8828
10,300
py
Python
pictures/substorms/sea_onset_comparison.py
jhaiduce/defense_slides_www
55ca9ea5ebd3bf8f91d5211cc87eb5a24e79c688
[ "Apache-2.0" ]
null
null
null
pictures/substorms/sea_onset_comparison.py
jhaiduce/defense_slides_www
55ca9ea5ebd3bf8f91d5211cc87eb5a24e79c688
[ "Apache-2.0" ]
null
null
null
pictures/substorms/sea_onset_comparison.py
jhaiduce/defense_slides_www
55ca9ea5ebd3bf8f91d5211cc87eb5a24e79c688
[ "Apache-2.0" ]
null
null
null
import matplotlib matplotlib.use('agg') from substorm_utils.signature_lists import get_model_signature_lists, get_obs_signature_lists from substorm_utils.bin_listings import find_convolution_onsets, find_substorms_convolution from datetime import datetime, timedelta from substorm_utils.forecast_stats import dump_stats import numpy as np from spacepy.pybats import ImfInput from matplotlib import pyplot as plt import os from pytz import UTC from matplotlib_utils import remove_overhanging_labels from substorm_utils.parsers.mpb_parsers import parse_index from sea_functions import get_sea_curves from scipy.io import loadmat matplotlib.rcParams['font.size']=8 matplotlib.rcParams['legend.handlelength']=1 matplotlib.rcParams['legend.borderpad']=0.2 matplotlib.rcParams['legend.borderaxespad']=0.2 matplotlib.rcParams['legend.handletextpad']=0.4 matplotlib.rcParams['legend.labelspacing']=0.25 matplotlib.rcParams['lines.linewidth']=0.75 run_properties=[ { 'name':'Hi-res w/ RCM', 'displayname':'SWMF', 'path':'/data2/jhaiduce/substorms_Jan2005_young-comp' }, #{ # 'name':'Hi-res w/o RCM', # 'path':'/data2/jhaiduce/Jan2005_rerun' #}, #{ # 'name':'SWPC', # 'path':'/data1/jhaiduce/Jan2005_swpc' #}, ] signature_filters=('AL','MPB','dipolarizations','plasmoids','epdata','image') mandatory_signatures=() model_threshold=2.5 obs_threshold=2.5 tstep=timedelta(0,1800) from decouple import config datadir=config('DATADIR') supermag_data=np.loadtxt(os.path.join(datadir,'20160728-19-38-supermag.txt'),skiprows=88) supermag_times=np.array([datetime(2005,1,1,tzinfo=UTC)+timedelta(seconds=60*i) for i in range(1440*31+1)]) sml=supermag_data[:,6] imfdata=ImfInput(os.path.join(datadir,'imf_jan2005_merged_zeroed.dat')) imfdata['time']=[t.replace(tzinfo=UTC) for t in imfdata['time']] imf_clockangle=np.arctan2(imfdata['by'],imfdata['bz']) imf_bmag=np.sqrt((imfdata['bx']**2+imfdata['by']**2+imfdata['bz']**2))*1e-9 mu0=4*np.pi*1e-7 imf_bz=imfdata['bz']*1e-9 imf_ux=imfdata['ux']*1000 imf_epsilon=-imf_ux*imf_bmag**2*np.sin(imf_clockangle/2)**4/mu0*1e6 obs_mpb_t,obs_mpb_v=parse_index(os.path.join(datadir,'obs_mpb_index.txt')) obs_signatures=get_obs_signature_lists(datadir=datadir) seadata={ 'bz':['IMF $B_z$ (nT)',imfdata['bz'],imfdata['time']], 'al':['AL (nT)',sml,supermag_times], 'ux':['Solar wind $u_x$ (km/s)',-imfdata['ux'],imfdata['time']], 'rho':[r'Solar wind $\rho$ ($cm^{-3}$)',imfdata['rho'],imfdata['time']], 'epsilon':['Solar wind $\epsilon$ ($\mu W/m^2$)',imf_epsilon,imfdata['time']], 'MPB':['MPB ($nT^4$)',obs_mpb_v,obs_mpb_t] } def plot_sea(ax,onsets,data,times,color,**kwargs): x,median,bound_low,bound_high=get_sea_curves(data,times,onsets) show_iqr=False if show_iqr: polies=ax.fill_between(x,bound_low,bound_high,facecolor=iqr_color,alpha=0.5,edgecolor=iqr_color) else: iqr_color='none' hatch=None polies=ax.fill_between(x,median,median,facecolor=iqr_color,alpha=0.5,edgecolor=iqr_color) #polies=ax.plot(mysea.x,mysea.bound_low.ravel(),linestyle='--',color=color,alpha=0.5) #polies=ax.plot(mysea.x,mysea.bound_high.ravel(),linestyle='--',color=color,alpha=0.5) line,=ax.plot(x,median,color=color,**kwargs) return line,polies def plot_onset_sea(signatures,threshold,data,times,ylabel,ax): onsets=find_convolution_onsets(signatures,threshold) onsets=[datetime(2005,1,1)+timedelta(0,s) for s in onsets] line,polies=plot_sea(ax,onsets,data,times,color=run_colors['All'], linestyle=run_linestyles['All'],linewidth=2) lines=[line] polycols=[polies] for key in signature_types: if key=='All': continue if key in signatures: onsets=signatures[key] onsets=[datetime(2005,1,1)+timedelta(0,s) for s in onsets] if len(onsets)==0: continue line,polies=plot_sea(ax,onsets,data,times,color=run_colors[key], linestyle=run_linestyles[key]) lines.append(line) polycols.append(polies) else: from matplotlib.lines import Line2D from matplotlib.patches import Patch lines.append(Line2D([],[],color=run_colors[key], linestyle=run_linestyles[key])) polycols.append(Patch(color='none',edgecolor='none')) ax.autoscale(False) ax.axhline(0,color='k',linestyle=':') ax.axvline(0,color='k',linestyle=':') ax.set_ylabel(ylabel) ax.set_xlabel('Time since onset (h)') return zip(polycols,lines),[signature_type_labels[key] for key in signature_types] obs_substorms,obs_onsets=find_substorms_convolution(obs_signatures,obs_threshold,tstep=tstep,return_times=True) run_onsets={} run_signatures=get_model_signature_lists(run_properties[0],datadir=datadir) signature_type_labels={ 'All':'All', 'AL':'AL', 'image':'IMAGE/FUV', 'plasmoids':'Plasmoids', 'dipolarizations':'Dipolarizations', 'epdata':'LANL', 'MPB':'MPB' } signature_types=set(['All']+obs_signatures.keys()+run_signatures.keys()) run_colors={run:color for run,color in zip( signature_types, matplotlib.rcParams['axes.prop_cycle'].by_key()['color'] )} run_linestyles={run:linestyle for run,linestyle in zip( signature_types, ['-','-.','--',':', (0, (3, 1, 1, 1, 1, 1)), (0, (3, 1, 1, 1)), (0, (5, 1))] )} def plot_sea_onset_comparison(run_name,var,ax): if run_name=='obs': seadata['MPB']=['MPB ($nT^4$)',obs_mpb_v,obs_mpb_t] seadata['al']=['AL (nT)',sml,supermag_times] ylabel,data,times=seadata[var] artists,labels=plot_onset_sea(obs_signatures,obs_threshold,data,times,ylabel,ax) else: names=[runprops['name'] for runprops in run_properties] runprops=run_properties[names.index(run_name)] run_signatures=get_model_signature_lists(runprops,datadir=datadir) from spacepy import datamodel as dm auroral_inds=dm.fromHDF5(os.path.join(datadir,runprops['name'].replace('/','').replace(' ','_')+'_auroral_inds.h5')) al_time=[datetime(2005,1,1,tzinfo=UTC)+timedelta(seconds=60*m) for m in range(0,1440*31)] #try: # mpbdata=loadmat(os.path.join(datadir,'John Haiducek - '+runprops['name'].replace('/','').replace(' ','_')+'_mag_grid_lat=33_mpb.mat')) #except: # raise #mpb_t=[datetime(2005,1,1,tzinfo=UTC)+timedelta(seconds=m*60) for m in range(0,31*24*60)] #mpb_v=mpbdata['mpb'] mpb_t,mpb_v=parse_index(os.path.join(datadir,'mpb_index.txt')) seadata['MPB']=['MPB ($nT^4$)',mpb_v,mpb_t] seadata['al']=['AL (nT)',auroral_inds['AL'],al_time] ylabel,data,times=seadata[var] artists,labels=plot_onset_sea(run_signatures,model_threshold,data,times,ylabel,ax) return artists,labels def plot_all_all_tiled_sea(): from matplotlib.gridspec import GridSpec fig=plt.figure(figsize=[5.5,6.5]) varlist=['bz','epsilon','al','MPB'] gs=GridSpec(len(varlist),len(run_properties)+1,hspace=0,right=0.98,top=0.95,wspace=0,left=0.12,bottom=0.09) axes=[] run_names=['obs']+[runprops['name'] for runprops in run_properties] labelpos=(0.94,0.94) from string import ascii_lowercase subplot_labels=[ascii_lowercase[i] for i in range(len(varlist)*len(run_names))] for i in range(len(varlist)): axes.append([]) for j in range(len(run_names)): if j>0: ax_kwargs={'sharey':axes[i][0]} else: ax_kwargs={} ax=fig.add_subplot(gs[i,j],**ax_kwargs) axes[i].append(ax) # Add a label to the axis label=subplot_labels[i+j*len(varlist)] text=ax.text(labelpos[0],labelpos[1],label,transform=ax.transAxes,weight='bold',fontsize=11,verticalalignment='top',color='k',horizontalalignment='right') var=varlist[i] run_name=run_names[j] artists,labels=plot_sea_onset_comparison(run_name,var,ax) ylabel,data,times=seadata[var] if j==0: ax.set_ylabel(ylabel) else: plt.setp(ax.get_yticklabels(),visible=False) ax.set_ylabel('') if i==len(varlist)-1: ax.set_xlabel('Time since\nonset (h)') else: plt.setp(ax.get_xticklabels(),visible=False) ax.tick_params('x',which='both',direction='inout',top=True) ax.tick_params('y',which='both',direction='inout',top=True) if i==0: if run_name=='obs': ax.set_title('Observations') else: if len(run_properties)>1: ax.set_title(run_name) else: ax.set_title('MHD') #axes[0][0].set_ylim(-6.5,6.5) #axes[1][0].set_ylim(0,50) #axes[2][0].set_ylim(-650,0) #axes[3][0].set_ylim(0,3500) fig.canvas.draw() for i in range(len(varlist)): for j in range(len(run_names)): ax=axes[i][j] remove_overhanging_labels(ax,fig,'x') remove_overhanging_labels(ax,fig,'y') axes[3][0].legend(artists,labels,loc='best') fig.savefig('all_all_tiled_onsetcomp_sea.pdf') def plot_onsetcomp_fig(run_name,var): fig=plt.figure() ax=fig.add_subplot(1,1,1) plot_sea_onset_comparison(run_name,var,ax) namestr=run_name.replace('/','').replace(' ','_') fig.savefig(namestr+'_'+var+'_onsetcomp_sea.pdf') if __name__=='__main__': from sys import argv filename=argv[1] import re if filename=='all_all_tiled_onsetcomp_sea.pdf': plot_all_all_tiled_sea() else: match=re.match('(.+)_([^_]+)_onsetcomp_sea.pdf',filename) namestr=match.group(1) var=match.group(2) if namestr=='obs': plot_onsetcomp_fig('obs',var) else: namestrs=[runprops['name'].replace('/','').replace(' ','_') for runprops in run_properties] runprops=run_properties[namestrs.index(namestr)] plot_onsetcomp_fig(runprops['name'],var)
35.153584
166
0.645922
0494f10d01c7dd99ca42a6d12dd2a718f1b2c832
5,032
py
Python
src/olympia/amo/tests/test_sitemap.py
anik31/addons-server
cecb61da98d6e830fb45a2b1d61b41e72812137e
[ "BSD-3-Clause" ]
null
null
null
src/olympia/amo/tests/test_sitemap.py
anik31/addons-server
cecb61da98d6e830fb45a2b1d61b41e72812137e
[ "BSD-3-Clause" ]
null
null
null
src/olympia/amo/tests/test_sitemap.py
anik31/addons-server
cecb61da98d6e830fb45a2b1d61b41e72812137e
[ "BSD-3-Clause" ]
null
null
null
import datetime import os from collections import namedtuple from unittest import mock from django.conf import settings from django.urls import reverse from olympia import amo from olympia.amo.sitemap import ( AddonSitemap, AMOSitemap, build_sitemap, CollectionSitemap, get_sitemap_path, get_sitemap_section_pages, sitemaps, ) from olympia.amo.tests import ( addon_factory, collection_factory, license_factory, user_factory, ) from .test_views import TEST_SITEMAPS_DIR def test_addon_sitemap(): addon_a = addon_factory( privacy_policy='privacy!', eula='eula!', version_kw={'license': license_factory()}, ) # addon_factory generates licenses by default, but always with a builtin >0 addon_b = addon_factory() addon_b.update(last_updated=datetime.datetime(2020, 1, 1, 1, 1, 1)) addon_c = addon_factory( eula='only eula', version_kw={'license': license_factory(builtin=1)} ) addon_d = addon_factory(privacy_policy='only privacy') addon_factory(status=amo.STATUS_NOMINATED) # shouldn't show up sitemap = AddonSitemap() assert list(sitemap.items()) == [ (addon_d.last_updated, addon_d.slug, 'detail'), (addon_c.last_updated, addon_c.slug, 'detail'), (addon_a.last_updated, addon_a.slug, 'detail'), (addon_b.last_updated, addon_b.slug, 'detail'), (addon_d.last_updated, addon_d.slug, 'privacy'), (addon_a.last_updated, addon_a.slug, 'privacy'), (addon_c.last_updated, addon_c.slug, 'eula'), (addon_a.last_updated, addon_a.slug, 'eula'), (addon_a.last_updated, addon_a.slug, 'license'), ] for item in sitemap.items(): assert sitemap.location(item) == reverse( 'addons.' + item.urlname, args=[item.slug] ) assert '/en-US/firefox/' in sitemap.location(item) assert sitemap.lastmod(item) == item.last_updated def test_amo_sitemap(): sitemap = AMOSitemap() for item in sitemap.items(): assert sitemap.location(item) == reverse(item) def test_collection_sitemap(mozilla_user): collection_a = collection_factory( author=mozilla_user, modified=datetime.datetime(2020, 1, 1, 1, 1, 1) ) collection_b = collection_factory( author=mozilla_user, modified=datetime.datetime(2020, 2, 2, 2, 2, 2) ) collection_factory(author=user_factory()) # not mozilla user sitemap = CollectionSitemap() assert list(sitemap.items()) == [ (collection_b.modified, collection_b.slug, mozilla_user.id), (collection_a.modified, collection_a.slug, mozilla_user.id), ] for item in sitemap.items(): assert sitemap.location(item) == reverse( 'collections.detail', args=[mozilla_user.id, item.slug] ) assert '/en-US/firefox/' in sitemap.location(item) assert sitemap.lastmod(item) == item.modified def test_get_sitemap_section_pages(): addon_factory() addon_factory() addon_factory() assert list(sitemaps.keys()) == ['amo', 'addons', 'collections'] pages = get_sitemap_section_pages() assert pages == [ ('amo', 1), ('addons', 1), ('collections', 1), ] with mock.patch.object(AddonSitemap, 'limit', 2): pages = get_sitemap_section_pages() assert pages == [ ('amo', 1), ('addons', 1), ('addons', 2), ('collections', 1), ] def test_build_sitemap(): # test the index sitemap build first with mock.patch('olympia.amo.sitemap.get_sitemap_section_pages') as pages_mock: pages_mock.return_value = [ ('amo', 1), ('addons', 1), ('addons', 2), ] built = build_sitemap() with open(os.path.join(TEST_SITEMAPS_DIR, 'sitemap.xml')) as sitemap: assert built == sitemap.read() # then a section build def items_mock(self): AddonValuesList = namedtuple('AddonValuesList', 'last_updated,slug,urlname') return [ AddonValuesList( datetime.datetime(2020, 10, 2, 0, 0, 0), 'delicious-pierogi', 'detail' ), AddonValuesList( datetime.datetime(2020, 10, 1, 0, 0, 0), 'swanky-curry', 'detail' ), AddonValuesList( datetime.datetime(2020, 9, 30, 0, 0, 0), 'spicy-pierogi', 'detail' ), ] with mock.patch.object(AddonSitemap, 'items', items_mock): built = build_sitemap('addons') with open(os.path.join(TEST_SITEMAPS_DIR, 'sitemap-addons-2.xml')) as sitemap: assert built == sitemap.read() def test_get_sitemap_path(): path = settings.SITEMAP_STORAGE_PATH assert get_sitemap_path() == f'{path}/sitemap.xml' assert get_sitemap_path('foo') == f'{path}/sitemap-foo.xml' assert get_sitemap_path('foo', 1) == f'{path}/sitemap-foo.xml' assert get_sitemap_path('foo', 2) == f'{path}/sitemap-foo-2.xml'
32.675325
86
0.632154
a4b215a0383aa17cd7f9cd39d310d6009c08966e
211
py
Python
scripts/item/consume_2434545.py
G00dBye/YYMS
1de816fc842b6598d5b4b7896b6ab0ee8f7cdcfb
[ "MIT" ]
54
2019-04-16T23:24:48.000Z
2021-12-18T11:41:50.000Z
scripts/item/consume_2434545.py
G00dBye/YYMS
1de816fc842b6598d5b4b7896b6ab0ee8f7cdcfb
[ "MIT" ]
3
2019-05-19T15:19:41.000Z
2020-04-27T16:29:16.000Z
scripts/item/consume_2434545.py
G00dBye/YYMS
1de816fc842b6598d5b4b7896b6ab0ee8f7cdcfb
[ "MIT" ]
49
2020-11-25T23:29:16.000Z
2022-03-26T16:20:24.000Z
# Created by MechAviv # Hayato Damage Skin | (2434545) if sm.addDamageSkin(2434545): sm.chat("'Hayato Damage Skin' Damage Skin has been added to your account's damage skin collection.") sm.consumeItem()
42.2
105
0.734597
a99ea7569f5a4ca153ceef5a6033d88dbc09e0ec
1,240
py
Python
apps/terreno/views.py
charles7aponteunillanos/sifos
7c7804cb26da3f82ab591d7668b5b0d43b7f805b
[ "MIT" ]
null
null
null
apps/terreno/views.py
charles7aponteunillanos/sifos
7c7804cb26da3f82ab591d7668b5b0d43b7f805b
[ "MIT" ]
null
null
null
apps/terreno/views.py
charles7aponteunillanos/sifos
7c7804cb26da3f82ab591d7668b5b0d43b7f805b
[ "MIT" ]
null
null
null
from django.shortcuts import render, redirect from django.http import HttpResponse, HttpResponseRedirect # Create your views here. from apps.terreno.models import Poligono def index(request): obj = Poligono.objects.all() obj_nombre = Poligono.nombre obj_coordenadas_puntos = Poligono.coordenadas_puntos obj_area = Poligono.area obj_perimetro = Poligono.perimetro obj_tipo_patron = Poligono.tipo_patron obj_municipio = Poligono.municipio obj_usuario = Poligono.usuario for abc in obj: obj_nombre = abc.nombre obj_coordenadas_puntos = abc.coordenadas_puntos obj_area = abc.area obj_perimetro= abc.perimetro obj_tipo_patron = abc.tipo_patron obj_municipio = abc.municipio obj_usuario = abc.usuario context = { "obj":obj, "obj_nombre":obj_nombre, "obj_coordenadas_puntos":obj_coordenadas_puntos, "obj_area":obj_area, "obj_perimetro":obj_perimetro, "obj_tipo_patron":obj_tipo_patron, "obj_municipio":obj_municipio, "obj_usuario":obj_usuario } return render(request, "terreno/index.html", context) def registro(request): return render(request, "terreno/registrar.html")
31.794872
58
0.707258
122d1ae4507bb90f9735ddccd1cea6cd731df161
3,743
py
Python
PythonClient/airsim/pedestrian.py
tobhil98/MastersProject-AirSim
e4576a84919a4a4baa57473e68a7a65dafcdbc30
[ "MIT" ]
null
null
null
PythonClient/airsim/pedestrian.py
tobhil98/MastersProject-AirSim
e4576a84919a4a4baa57473e68a7a65dafcdbc30
[ "MIT" ]
null
null
null
PythonClient/airsim/pedestrian.py
tobhil98/MastersProject-AirSim
e4576a84919a4a4baa57473e68a7a65dafcdbc30
[ "MIT" ]
null
null
null
import msgpackrpc #install as admin: pip install msgpack-rpc-python import numpy as np #pip install numpy import msgpack from .utils import * from .types import * class PedestrianClient: def __init__(self, ip = "", port = 41452, timeout_value = 3600): if (ip == ""): ip = "127.0.0.1" self.client = msgpackrpc.Client(msgpackrpc.Address(ip, port), timeout = timeout_value, pack_encoding = 'utf-8', unpack_encoding = 'utf-8') # ----------------------------------- Common vehicle APIs --------------------------------------------- def reset(self, pedestrian_name = ''): """ Reset the vehicle to its original starting state Note that you must call `enableApiControl` and `armDisarm` again after the call to reset """ self.client.call('PedestrianReset', pedestrian_name) def ping(self): """ If connection is established then this call will return true otherwise it will be blocked until timeout Returns: bool: """ return self.client.call('PedestrianPing') def getClientVersion(self): return 1 # sync with C++ client def getServerVersion(self): return self.client.call('getServerVersion') def setPedestrianPose(self, pose, ignore_collison, pedestrian_name): """ Set the pose of the vehicle If you don't want to change position (or orientation) then just set components of position (or orientation) to floating point nan values Args: pose (Pose): Desired Pose pf the vehicle ignore_collision (bool): Whether to ignore any collision or not pedestrian_name (str, optional): Name of the vehicle to move """ self.client.call('SetPedestrianPose', pose, ignore_collison, pedestrian_name) def getPedestianPose(self, pedestrian_name): """ Args: pedestrian_name (str, optional): Name of the vehicle to get the Pose of Returns: Pose: """ pose = self.client.call('GetPedestrianPose', pedestrian_name) return Pose.from_msgpack(pose) def enableApiControl(self, is_enabled, pedestrian_name = ''): """ Enables or disables API control for vehicle corresponding to pedestrian_name Args: is_enabled (bool): True to enable, False to disable API control pedestrian_name (str, optional): Name of the vehicle to send this command to """ return self.client.call('PedestrianEnableApiControl', is_enabled, pedestrian_name) def setPedestrianControl(self, controls, pedestrian_name = ''): """ Control the car using throttle, steering, brake, etc. Args: controls (PedestrianControls): Struct containing control values vehicle_name (str, optional): Name of vehicle to be controlled """ self.client.call('setPedestrianControls', controls, pedestrian_name) # Pedestrian camera def simGetImages(self, requests, vehicle_name = ''): """ Get multiple images See https://microsoft.github.io/AirSim/image_apis/ for details and examples Args: requests (list[ImageRequest]): Images required vehicle_name (str, optional): Name of vehicle associated with the camera Returns: list[ImageResponse]: """ responses_raw = self.client.call('simGetImages', requests, vehicle_name) return [ImageResponse.from_msgpack(response_raw) for response_raw in responses_raw] def simGetCameras(self, vehicle_name): return self.client.call('getCameras', vehicle_name) # Get a list of all pedestrians
34.981308
146
0.636121
6e101776847cc1924d732c80249616f63eade00e
900
py
Python
pythonAlgorithm/dp/LongestPalindromicSubsequence.py
Sky-zzt/lintcodePractice
d6436b296c5865d85e55c8ad4fcdbb0165d4ebb1
[ "MIT" ]
1
2020-09-15T07:58:55.000Z
2020-09-15T07:58:55.000Z
pythonAlgorithm/dp/LongestPalindromicSubsequence.py
Sky-zzt/lintcodePractice
d6436b296c5865d85e55c8ad4fcdbb0165d4ebb1
[ "MIT" ]
null
null
null
pythonAlgorithm/dp/LongestPalindromicSubsequence.py
Sky-zzt/lintcodePractice
d6436b296c5865d85e55c8ad4fcdbb0165d4ebb1
[ "MIT" ]
null
null
null
class Solution: """ @param s: the maximum length of s is 1000 @return: the longest palindromic subsequence's length """ ''' 设f[i][j]为S[i..j]的最长回文子串的长度 注意 f[i][j]是指i-j的回文串长度,不是指i-j是回文串 ''' def longestPalindromeSubseq(self, s): # write your code here l = len(s) f = [[0] * (l) for _ in range(l)] for i in range(l): f[i][i]=1 for i in range(l-1): if s[i]==s[i+1]: f[i][i+1]=2 else: f[i][i+1]=1 for length in range(3, l+1): for i in range(l - length+1): j = i + length - 1 f[i][j] = max(f[i + 1][j], f[i][j - 1]) if s[i] == [j]: f[i][j] = max(f[i][j], f[i + 1][j - 1] + 2) print(f) return f[0][l-1] s=Solution() print(s.longestPalindromeSubseq("bbbab"))
27.272727
63
0.432222
f1daaccac1e1558695b49167349232325a1c42b4
5,199
py
Python
stlapp/views/project.py
SahalaProject/stl_simple
9fde58c5987dbf97687a95953282e20b8c117b24
[ "MIT" ]
null
null
null
stlapp/views/project.py
SahalaProject/stl_simple
9fde58c5987dbf97687a95953282e20b8c117b24
[ "MIT" ]
null
null
null
stlapp/views/project.py
SahalaProject/stl_simple
9fde58c5987dbf97687a95953282e20b8c117b24
[ "MIT" ]
null
null
null
from django.core.exceptions import ObjectDoesNotExist from django.utils.decorators import method_decorator from rest_framework.views import APIView from rest_framework.viewsets import GenericViewSet from stlapp import models, serializers from STL import pagination from rest_framework.response import Response from stlapp.utils import response # from stlapp.utils import prepare from stlapp.utils.decorator import request_log class ProjectView(GenericViewSet): """ 项目增删改查 """ queryset = models.Project.objects.all().order_by('-update_time') serializer_class = serializers.ProjectSerializer pagination_class = pagination.MyCursorPagination @method_decorator(request_log(level='DEBUG')) def list(self, request): """ 查询项目信息 """ field_message = request.user.project_field is_not_page = request.query_params.get('is_not_page') # 克隆模态不分页查看所有项目 try: if is_not_page: if field_message == 'all': project_s = models.Project.objects.all().order_by('-create_time') else: project_s = models.Project.objects.filter(id__in=eval(field_message)).order_by('-create_time') serializer_projects = serializers.ProjectSerializer(instance=project_s, many=True).data return Response({'results': serializer_projects}) else: if field_message == 'all': project_s = models.Project.objects.filter(id__in=eval(field_message)).order_by('-create_time') else: project_s = models.Project.objects.filter(id__in=eval(field_message)).order_by('-create_time') page_projects = self.paginate_queryset(project_s) except: if field_message == 'all': projects = self.get_queryset() page_projects = self.paginate_queryset(projects) if not field_message: projects = models.Project.objects.filter(id__in=[]) page_projects = self.paginate_queryset(projects) serializer = self.get_serializer(page_projects, many=True) return self.get_paginated_response(serializer.data) @method_decorator(request_log(level='INFO')) def add(self, request): """添加项目 { name: str } """ if request.user.user_type != 3: return Response(response.PROJECT_CREATE_POWER) name = request.data["name"] if models.Project.objects.filter(name=name).first(): response.PROJECT_EXISTS["name"] = name return Response(response.PROJECT_EXISTS) request.data["responsible"] = request.user.real_name # 反序列化 serializer = serializers.ProjectSerializer(data=request.data) if serializer.is_valid(): serializer.save() project = models.Project.objects.get(name=name) # prepare.project_init(project) return Response(response.PROJECT_ADD_SUCCESS) return Response(response.SYSTEM_ERROR) @method_decorator(request_log(level='INFO')) def update(self, request): """ 编辑项目 """ if request.user.user_type != 3: return Response(response.PROJECT_UPDATE_POWER) try: project = models.Project.objects.get(id=request.data['id']) except (KeyError, ObjectDoesNotExist): return Response(response.SYSTEM_ERROR) if request.data['name'] != project.name: if models.Project.objects.filter(name=request.data['name']).first(): return Response(response.PROJECT_EXISTS) # 调用save方法update_time字段才会自动更新 project.name = request.data['name'] project.responsible = request.user.real_name project.desc = request.data['desc'] project.save() return Response(response.PROJECT_UPDATE_SUCCESS) @method_decorator(request_log(level='INFO')) def delete(self, request): """ 删除项目 """ if request.user.user_type != 3: return Response(response.PROJECT_DELETE_POWER) try: project = models.Project.objects.get(id=request.data['id']) project.delete() return Response(response.PROJECT_DELETE_SUCCESS) except ObjectDoesNotExist: return Response(response.SYSTEM_ERROR) @method_decorator(request_log(level='INFO')) def single(self, request, **kwargs): """ 得到单个项目相关统计信息 """ pk = kwargs.pop('pk') field_message = request.user.project_field if (str(pk) in field_message) or (field_message == 'all'): try: queryset = models.Project.objects.get(id=pk) except ObjectDoesNotExist: return Response(response.PROJECT_NOT_EXISTS) serializer = self.get_serializer(queryset, many=False) # project_info = prepare.get_project_detail(pk) project_info = {} project_info.update(serializer.data) return Response(project_info) return Response(response.PROJECT_SINGLE_POWER)
35.367347
114
0.633583
69ece29089d6dc4e529d3285eeb10fed2048b6eb
12,839
py
Python
tests/interpreters/test_python.py
jiehuan/m2cgen
e0e628bdd0453a8b11f3607bb3a0be60924f515f
[ "MIT" ]
2,161
2019-01-13T02:37:56.000Z
2022-03-30T13:24:09.000Z
tests/interpreters/test_python.py
jiehuan/m2cgen
e0e628bdd0453a8b11f3607bb3a0be60924f515f
[ "MIT" ]
380
2019-01-17T15:59:29.000Z
2022-03-31T20:59:20.000Z
tests/interpreters/test_python.py
jiehuan/m2cgen
e0e628bdd0453a8b11f3607bb3a0be60924f515f
[ "MIT" ]
201
2019-02-13T19:06:44.000Z
2022-03-12T09:45:46.000Z
import pytest from m2cgen import ast from m2cgen.interpreters import PythonInterpreter from tests.utils import assert_code_equal def test_if_expr(): expr = ast.IfExpr( ast.CompExpr(ast.NumVal(1), ast.FeatureRef(0), ast.CompOpType.EQ), ast.NumVal(2), ast.NumVal(3)) expected_code = """ def score(input): if (1.0) == (input[0]): var0 = 2.0 else: var0 = 3.0 return var0 """ interpreter = PythonInterpreter() assert_code_equal(interpreter.interpret(expr), expected_code) def test_bin_num_expr(): expr = ast.BinNumExpr( ast.BinNumExpr( ast.FeatureRef(0), ast.NumVal(-2), ast.BinNumOpType.DIV), ast.NumVal(2), ast.BinNumOpType.MUL) expected_code = """ def score(input): return ((input[0]) / (-2.0)) * (2.0) """ interpreter = PythonInterpreter() assert_code_equal(interpreter.interpret(expr), expected_code) def test_dependable_condition(): left = ast.BinNumExpr( ast.IfExpr( ast.CompExpr(ast.NumVal(1), ast.NumVal(1), ast.CompOpType.EQ), ast.NumVal(1), ast.NumVal(2)), ast.NumVal(2), ast.BinNumOpType.ADD) right = ast.BinNumExpr(ast.NumVal(1), ast.NumVal(2), ast.BinNumOpType.DIV) bool_test = ast.CompExpr(left, right, ast.CompOpType.GTE) expr = ast.IfExpr(bool_test, ast.NumVal(1), ast.FeatureRef(0)) expected_code = """ def score(input): if (1.0) == (1.0): var1 = 1.0 else: var1 = 2.0 if ((var1) + (2.0)) >= ((1.0) / (2.0)): var0 = 1.0 else: var0 = input[0] return var0 """ interpreter = PythonInterpreter() assert_code_equal(interpreter.interpret(expr), expected_code) def test_nested_condition(): left = ast.BinNumExpr( ast.IfExpr( ast.CompExpr(ast.NumVal(1), ast.NumVal(1), ast.CompOpType.EQ), ast.NumVal(1), ast.NumVal(2)), ast.NumVal(2), ast.BinNumOpType.ADD) bool_test = ast.CompExpr(ast.NumVal(1), left, ast.CompOpType.EQ) expr_nested = ast.IfExpr(bool_test, ast.FeatureRef(2), ast.NumVal(2)) expr = ast.IfExpr(bool_test, expr_nested, ast.NumVal(2)) expected_code = """ def score(input): if (1.0) == (1.0): var1 = 1.0 else: var1 = 2.0 if (1.0) == ((var1) + (2.0)): if (1.0) == (1.0): var2 = 1.0 else: var2 = 2.0 if (1.0) == ((var2) + (2.0)): var0 = input[2] else: var0 = 2.0 else: var0 = 2.0 return var0 """ interpreter = PythonInterpreter() assert_code_equal(interpreter.interpret(expr), expected_code) def test_raw_array(): expr = ast.VectorVal([ast.NumVal(3), ast.NumVal(4)]) expected_code = """ def score(input): return [3.0, 4.0] """ interpreter = PythonInterpreter() assert_code_equal(interpreter.interpret(expr), expected_code) def test_multi_output(): expr = ast.IfExpr( ast.CompExpr( ast.NumVal(1), ast.NumVal(1), ast.CompOpType.NOT_EQ), ast.VectorVal([ast.NumVal(1), ast.NumVal(2)]), ast.VectorVal([ast.NumVal(3), ast.NumVal(4)])) expected_code = """ def score(input): if (1.0) != (1.0): var0 = [1.0, 2.0] else: var0 = [3.0, 4.0] return var0 """ interpreter = PythonInterpreter() assert_code_equal(interpreter.interpret(expr), expected_code) def test_bin_vector_expr(): expr = ast.BinVectorExpr( ast.VectorVal([ast.NumVal(1), ast.NumVal(2)]), ast.VectorVal([ast.NumVal(3), ast.NumVal(4)]), ast.BinNumOpType.ADD) expected_code = """ def add_vectors(v1, v2): return [sum(i) for i in zip(v1, v2)] def mul_vector_number(v1, num): return [i * num for i in v1] def score(input): return add_vectors([1.0, 2.0], [3.0, 4.0]) """ interpreter = PythonInterpreter() assert_code_equal(interpreter.interpret(expr), expected_code) def test_bin_vector_num_expr(): expr = ast.BinVectorNumExpr( ast.VectorVal([ast.NumVal(1), ast.NumVal(2)]), ast.NumVal(1), ast.BinNumOpType.MUL) expected_code = """ def add_vectors(v1, v2): return [sum(i) for i in zip(v1, v2)] def mul_vector_number(v1, num): return [i * num for i in v1] def score(input): return mul_vector_number([1.0, 2.0], 1.0) """ interpreter = PythonInterpreter() assert_code_equal(interpreter.interpret(expr), expected_code) class CustomPythonInterpreter(PythonInterpreter): bin_depth_threshold = 2 def test_depth_threshold_with_bin_expr(): expr = ast.NumVal(1) for _ in range(4): expr = ast.BinNumExpr(ast.NumVal(1), expr, ast.BinNumOpType.ADD) expected_code = """ def score(input): var0 = (1.0) + ((1.0) + (1.0)) return (1.0) + ((1.0) + (var0)) """ interpreter = CustomPythonInterpreter() assert_code_equal(interpreter.interpret(expr), expected_code) def test_depth_threshold_with_reused_bin_expr(): reused_expr = ast.BinNumExpr(ast.NumVal(1), ast.NumVal(1), ast.BinNumOpType.ADD, to_reuse=True) expr = ast.BinNumExpr(ast.NumVal(1), reused_expr, ast.BinNumOpType.ADD) expr = ast.BinNumExpr(expr, expr, ast.BinNumOpType.ADD) expected_code = """ def score(input): var0 = (1.0) + (1.0) var1 = var0 return ((1.0) + (var1)) + ((1.0) + (var0)) """ interpreter = CustomPythonInterpreter() assert_code_equal(interpreter.interpret(expr), expected_code) def test_depth_threshold_without_bin_expr(): expr = ast.NumVal(1) for _ in range(4): expr = ast.IfExpr( ast.CompExpr( ast.NumVal(1), ast.NumVal(1), ast.CompOpType.EQ), ast.NumVal(1), expr) expected_code = """ def score(input): if (1.0) == (1.0): var0 = 1.0 else: if (1.0) == (1.0): var0 = 1.0 else: if (1.0) == (1.0): var0 = 1.0 else: if (1.0) == (1.0): var0 = 1.0 else: var0 = 1.0 return var0 """ interpreter = CustomPythonInterpreter() assert_code_equal(interpreter.interpret(expr), expected_code) def test_deep_mixed_exprs_not_reaching_threshold(): expr = ast.NumVal(1) for _ in range(4): inner = ast.NumVal(1) for __ in range(2): inner = ast.BinNumExpr(ast.NumVal(1), inner, ast.BinNumOpType.ADD) expr = ast.IfExpr( ast.CompExpr( inner, ast.NumVal(1), ast.CompOpType.EQ), ast.NumVal(1), expr) expected_code = """ def score(input): if ((1.0) + ((1.0) + (1.0))) == (1.0): var0 = 1.0 else: if ((1.0) + ((1.0) + (1.0))) == (1.0): var0 = 1.0 else: if ((1.0) + ((1.0) + (1.0))) == (1.0): var0 = 1.0 else: if ((1.0) + ((1.0) + (1.0))) == (1.0): var0 = 1.0 else: var0 = 1.0 return var0 """ interpreter = CustomPythonInterpreter() assert_code_equal(interpreter.interpret(expr), expected_code) def test_deep_mixed_exprs_exceeding_threshold(): expr = ast.NumVal(1) for i in range(4): inner = ast.NumVal(1) for _ in range(4): inner = ast.BinNumExpr(ast.NumVal(i), inner, ast.BinNumOpType.ADD) expr = ast.IfExpr( ast.CompExpr( inner, ast.NumVal(1), ast.CompOpType.EQ), ast.NumVal(1), expr) expected_code = """ def score(input): var1 = (3.0) + ((3.0) + (1.0)) if ((3.0) + ((3.0) + (var1))) == (1.0): var0 = 1.0 else: var2 = (2.0) + ((2.0) + (1.0)) if ((2.0) + ((2.0) + (var2))) == (1.0): var0 = 1.0 else: var3 = (1.0) + ((1.0) + (1.0)) if ((1.0) + ((1.0) + (var3))) == (1.0): var0 = 1.0 else: var4 = (0.0) + ((0.0) + (1.0)) if ((0.0) + ((0.0) + (var4))) == (1.0): var0 = 1.0 else: var0 = 1.0 return var0 """ interpreter = CustomPythonInterpreter() assert_code_equal(interpreter.interpret(expr), expected_code) def test_deep_expression(): expr = ast.NumVal(1) for _ in range(120): expr = ast.BinNumExpr(expr, ast.NumVal(1), ast.BinNumOpType.ADD) interpreter = PythonInterpreter() result_code = interpreter.interpret(expr) result_code += """ result = score(None) """ scope = {} exec(result_code, scope) assert scope["result"] == 121 def test_abs_expr(): expr = ast.AbsExpr(ast.NumVal(-1.0)) expected_code = """ def score(input): return abs(-1.0) """ interpreter = PythonInterpreter() assert_code_equal(interpreter.interpret(expr), expected_code) def test_exp_expr(): expr = ast.ExpExpr(ast.NumVal(1.0)) expected_code = """ import math def score(input): return math.exp(1.0) """ interpreter = PythonInterpreter() assert_code_equal(interpreter.interpret(expr), expected_code) def test_pow_expr(): expr = ast.PowExpr(ast.NumVal(2.0), ast.NumVal(3.0)) expected_code = """ import math def score(input): return math.pow(2.0, 3.0) """ interpreter = PythonInterpreter() assert_code_equal(interpreter.interpret(expr), expected_code) def test_sqrt_expr(): expr = ast.SqrtExpr(ast.NumVal(2.0)) expected_code = """ import math def score(input): return math.sqrt(2.0) """ interpreter = PythonInterpreter() assert_code_equal(interpreter.interpret(expr), expected_code) def test_tanh_expr(): expr = ast.TanhExpr(ast.NumVal(2.0)) expected_code = """ import math def score(input): return math.tanh(2.0) """ interpreter = PythonInterpreter() assert_code_equal(interpreter.interpret(expr), expected_code) def test_log_expr(): expr = ast.LogExpr(ast.NumVal(2.0)) expected_code = """ import math def score(input): return math.log(2.0) """ interpreter = PythonInterpreter() assert_code_equal(interpreter.interpret(expr), expected_code) def test_log1p_expr(): expr = ast.Log1pExpr(ast.NumVal(2.0)) expected_code = """ import math def score(input): return math.log1p(2.0) """ interpreter = PythonInterpreter() assert_code_equal(interpreter.interpret(expr), expected_code) def test_atan_expr(): expr = ast.AtanExpr(ast.NumVal(2.0)) expected_code = """ import math def score(input): return math.atan(2.0) """ interpreter = PythonInterpreter() assert_code_equal(interpreter.interpret(expr), expected_code) def test_softmax_expr(): expr = ast.SoftmaxExpr([ast.NumVal(2.0), ast.NumVal(3.0)]) expected_code = """ import math def softmax(x): m = max(x) exps = [math.exp(i - m) for i in x] s = sum(exps) for idx, _ in enumerate(exps): exps[idx] /= s return exps def score(input): return softmax([2.0, 3.0]) """ interpreter = PythonInterpreter() assert_code_equal(interpreter.interpret(expr), expected_code) def test_sigmoid_expr(): expr = ast.SigmoidExpr(ast.NumVal(2.0)) expected_code = """ import math def sigmoid(x): if x < 0.0: z = math.exp(x) return z / (1.0 + z) return 1.0 / (1.0 + math.exp(-x)) def score(input): return sigmoid(2.0) """ interpreter = PythonInterpreter() assert_code_equal(interpreter.interpret(expr), expected_code) def test_reused_expr(): reused_expr = ast.ExpExpr(ast.NumVal(1.0), to_reuse=True) expr = ast.BinNumExpr(reused_expr, reused_expr, ast.BinNumOpType.DIV) expected_code = """ import math def score(input): var0 = math.exp(1.0) return (var0) / (var0) """ interpreter = PythonInterpreter() assert_code_equal(interpreter.interpret(expr), expected_code) def test_unsupported_exprs(): interpreter = PythonInterpreter() expr = ast.Expr() with pytest.raises(NotImplementedError, match="No handler found for 'Expr'"): interpreter.interpret(expr) expr = ast.BinVectorNumExpr( ast.VectorVal([ast.NumVal(1), ast.NumVal(2)]), ast.NumVal(1), ast.BinNumOpType.ADD) with pytest.raises(NotImplementedError, match="Op 'ADD' is unsupported"): interpreter.interpret(expr) expr = ast.BinVectorExpr( ast.VectorVal([ast.NumVal(1), ast.NumVal(2)]), ast.VectorVal([ast.NumVal(3), ast.NumVal(4)]), ast.BinNumOpType.MUL) with pytest.raises(NotImplementedError, match="Op 'MUL' is unsupported"): interpreter.interpret(expr)
24.833656
99
0.586962
c3a82459471dc869057c03114ed773a0b015c608
3,285
py
Python
hippynn/layers/pairs/analysis.py
tautomer/hippynn
df4504a5ea4680cfc61f490984dcddeac7ed99ee
[ "BSD-3-Clause" ]
21
2021-11-17T00:56:35.000Z
2022-03-22T05:57:11.000Z
hippynn/layers/pairs/analysis.py
tautomer/hippynn
df4504a5ea4680cfc61f490984dcddeac7ed99ee
[ "BSD-3-Clause" ]
4
2021-12-17T16:16:53.000Z
2022-03-16T23:50:38.000Z
hippynn/layers/pairs/analysis.py
tautomer/hippynn
df4504a5ea4680cfc61f490984dcddeac7ed99ee
[ "BSD-3-Clause" ]
6
2021-11-30T21:09:31.000Z
2022-03-18T07:07:32.000Z
""" Modules for analyzing pair-valued data """ import torch class RDFBins(torch.nn.Module): def __init__(self, bins, species_set): super().__init__() if bins is None: raise TypeError("Bins must not be None!") bins = torch.as_tensor(bins) species_set = torch.as_tensor(species_set) self.register_buffer("bins", bins.to(torch.float)) self.register_buffer("species_set", species_set.to(torch.int)) def bin_info(self): # Note: widths don't make perfect sense for non-evenly-spaced bins. centers = (self.bins[1:] + self.bins[:-1]) / 2 widths = self.bins[1:] - self.bins[:-1] return centers, widths def forward(self, pair_dist, pair_first, pair_second, one_hot, n_molecules): n_species = one_hot.shape[-1] n_bins = self.bins.shape[0] - 1 rdf = torch.zeros((n_species, n_species, n_bins), dtype=pair_dist.dtype, device=pair_dist.device) for i in range(n_species): for j in range(n_species): mask = one_hot[:, i][pair_first] & one_hot[:, j][pair_second] maskpairs = pair_dist[mask] less = maskpairs.unsqueeze(-1) < self.bins.unsqueeze(0) less_counts = less.sum(dim=0) rdf[i, j] = less_counts[..., 1:] - less_counts[..., :-1] return (rdf / n_molecules).unsqueeze(0) def min_dist_info(rij_list, j_list, mol_index, atom_index, inv_real_atoms, n_atoms_max, n_molecules): n_atoms = rij_list.shape[0] dev = rij_list.device if rij_list.shape[1] == 0: # empty neighbors list min_dist_mol = torch.zeros(n_molecules, dtype=rij_list.dtype, device=dev) min_dist_atom = torch.zeros(n_atoms, dtype=rij_list.dtype, device=dev) min_dist_mol_atom_locs = torch.zeros(n_molecules, dtype=torch.int64, device=dev) min_dist_atomneigh = torch.zeros((n_atoms), dtype=torch.int64, device=dev) return min_dist_mol, min_dist_mol_atom_locs, min_dist_atom, min_dist_atomneigh rmag_list = rij_list.norm(dim=2) maxr = rmag_list.max() rmaglist_new = rmag_list.clone() rmaglist_new[rmaglist_new == 0] = maxr min_dist_atom, where_min_dist_atom = rmaglist_new.min(dim=1) ara = torch.arange(n_atoms, dtype=where_min_dist_atom.dtype, device=dev) min_dist_atomneigh = j_list[ara, where_min_dist_atom] min_dist_molatom = torch.full((n_molecules, n_atoms_max), maxr, device=rmag_list.device, dtype=rmag_list.dtype) min_dist_molatom[mol_index, atom_index] = min_dist_atom min_dist_mol, where_min_dist_mol = min_dist_molatom.min(dim=1) atom1 = where_min_dist_mol atom1_batchloc = torch.arange(n_molecules, device=dev, dtype=torch.int64) * n_atoms_max + atom1 atom1_atomloc = inv_real_atoms[atom1_batchloc] atom2 = atom_index[min_dist_atomneigh[atom1_atomloc]] min_dist_mol_atom_locs = torch.stack([atom1, atom2], dim=1) return min_dist_mol, min_dist_mol_atom_locs, min_dist_atom, min_dist_atomneigh class MinDistModule(torch.nn.Module): def forward(self, rmag_list, j_list, mol_index, atom_index, inv_real_atoms, n_atoms_max, n_molecules): return min_dist_info(rmag_list, j_list, mol_index, atom_index, inv_real_atoms, n_atoms_max, n_molecules)
42.115385
115
0.690715
cbf6e8f4cd6b47661d58d562e10061005b71d760
2,764
py
Python
examples/poleval_ner/train.py
sdadas/yast
f9cd471ae3c915acb8111dd85a53acc72348c355
[ "Apache-2.0" ]
2
2018-12-18T03:12:13.000Z
2018-12-31T18:03:27.000Z
examples/poleval_ner/train.py
sdadas/yast
f9cd471ae3c915acb8111dd85a53acc72348c355
[ "Apache-2.0" ]
6
2020-01-28T21:59:18.000Z
2022-02-09T23:29:00.000Z
examples/poleval_ner/train.py
sdadas/yast
f9cd471ae3c915acb8111dd85a53acc72348c355
[ "Apache-2.0" ]
1
2020-07-07T18:25:15.000Z
2020-07-07T18:25:15.000Z
import argparse import os from typing import List from dataset import DataSet from feature.base import OneHotFeature, Feature from feature.casing import CasingFeature from feature.chars import CharsFeature, CharCNNFeature from feature.elmo import ELMoEmbeddingFeature from feature.fstlexicon import FSTFeature from model import TaggingModel, TaggingPrediction, ModelParams from utils.files import ProjectPath def parse_args() -> argparse.Namespace: default_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "data") parser = argparse.ArgumentParser() parser.add_argument("--data-path", type=str, default=default_path) parser.add_argument("--submodel", action="store_true") parser.add_argument("--no-wikipedia", action="store_true") parser.add_argument("--no-lexicons", action="store_true") return parser.parse_args() def create_features(dataset: DataSet, base_path: ProjectPath, args: argparse.Namespace) -> List[Feature]: fst = lambda name: base_path.join("lexicons", name + ".fst") labels = lambda name: dataset.labels(name) features = [ ELMoEmbeddingFeature("value", base_path.join("elmo")), CharCNNFeature("value", CharsFeature.default_alphabet()), CasingFeature("value") ] lexicons = [ FSTFeature("base", "naming", labels("naming"), fst("names"), to_lower="all", otag="other"), FSTFeature("value", "polimorf", labels("polimorf"), fst("polimorf"), to_lower="first", otag="O"), FSTFeature("value", "gazetteer", labels("gazetteer"), fst("gazetteer"), to_lower="no", otag="other"), FSTFeature("value", "nelexicon", labels("nelexicon"), fst("nelexicon"), to_lower="no", otag="O"), FSTFeature("value", "extras", labels('extras'), fst("extras"), to_lower="no", otag="O") ] if not args.no_lexicons: features.extend(lexicons) if not args.no_wikipedia: features.append(OneHotFeature("wikipedia", labels("wikipedia"))) if args.submodel: features.append(OneHotFeature("type", labels("type"))) return features if __name__ == '__main__': args = parse_args() os.environ["NER_PATH"] = args.data_path path: ProjectPath = ProjectPath("NER_PATH") meta_path = path.join("meta.json").get() train: DataSet = DataSet(path.join("nkjp.txt").get(), meta_path, padding=80) train, valid = train.train_test_split(0.95) features: List[Feature] = create_features(train, path, args) model = TaggingModel(features, train.column("subtype" if args.submodel else "type")) model.train(train, valid=valid, epochs=50) TaggingModel.save(model, path.join("submodel" if args.submodel else "model").get()) pred: TaggingPrediction = model.test(train) pred.evaluate(ignore_tagging_scheme=args.submodel)
46.847458
109
0.710203
c7826df739aa1b0a96eacf322f958e0b11a3bbf9
1,121
py
Python
auth-api/src/auth_api/schemas/suspension_reason_code.py
karthik-aot/sbc-auth
f24028040fda67d4f10ae9b608b8832c15d2a8ad
[ "Apache-2.0" ]
null
null
null
auth-api/src/auth_api/schemas/suspension_reason_code.py
karthik-aot/sbc-auth
f24028040fda67d4f10ae9b608b8832c15d2a8ad
[ "Apache-2.0" ]
null
null
null
auth-api/src/auth_api/schemas/suspension_reason_code.py
karthik-aot/sbc-auth
f24028040fda67d4f10ae9b608b8832c15d2a8ad
[ "Apache-2.0" ]
1
2019-07-25T18:20:41.000Z
2019-07-25T18:20:41.000Z
# Copyright © 2019 Province of British Columbia # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Manager for suspension reason schema and export.""" from auth_api.models import SuspensionReasonCode as SuspensionReasonCodeModel from .base_schema import BaseSchema class SuspensionReasonCodeSchema(BaseSchema): # pylint: disable=too-many-ancestors, too-few-public-methods """This is the schema for the SuspensionReasonCode model.""" class Meta: # pylint: disable=too-few-public-methods """Maps all of the SuspensionReasonCode fields to a default schema.""" model = SuspensionReasonCodeModel
40.035714
107
0.764496
76cef1311627f42e7217a0181c1df77854d00703
8,311
py
Python
tests/io/test_parquet_local.py
yhzqb/kedro
619d7f0ccb51895d3bb43d30e3dee9d4d0cebcab
[ "Apache-2.0" ]
1
2021-11-19T05:36:47.000Z
2021-11-19T05:36:47.000Z
tests/io/test_parquet_local.py
yhzqb/kedro
619d7f0ccb51895d3bb43d30e3dee9d4d0cebcab
[ "Apache-2.0" ]
null
null
null
tests/io/test_parquet_local.py
yhzqb/kedro
619d7f0ccb51895d3bb43d30e3dee9d4d0cebcab
[ "Apache-2.0" ]
1
2021-11-19T05:36:49.000Z
2021-11-19T05:36:49.000Z
# Copyright 2018-2019 QuantumBlack Visual Analytics Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND # NONINFRINGEMENT. IN NO EVENT WILL THE LICENSOR OR OTHER CONTRIBUTORS # BE LIABLE FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF, OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # The QuantumBlack Visual Analytics Limited ("QuantumBlack") name and logo # (either separately or in combination, "QuantumBlack Trademarks") are # trademarks of QuantumBlack. The License does not grant you any right or # license to the QuantumBlack Trademarks. You may not use the QuantumBlack # Trademarks or any confusingly similar mark as a trademark for your product, # or use the QuantumBlack Trademarks in any other manner that might cause # confusion in the marketplace, including but not limited to in advertising, # on websites, or on software. # # See the License for the specific language governing permissions and # limitations under the License. from random import randint import numpy as np import pandas as pd import pytest from pandas.util.testing import assert_frame_equal from kedro.io import DataSetError, ParquetLocalDataSet from kedro.io.core import Version def _generate_sample_pandas_df( randomised: bool = False, with_nan: bool = False ) -> pd.DataFrame: """ Return a dummy data frame with 2-columns [Name, Age] Args: randomised: Set to true to randomise ages. with_nan: Include an entry with nan age value. Returns: Dataframe as specified by the arguments. """ def age(default): return randint(1, 120) if randomised else default return pd.DataFrame( { "Name": ["Alex", "Bob", "Clarke", "Dave"], "Age": [age(31), age(12), age(65), np.nan if with_nan else age(29)], } ) @pytest.fixture(params=[(False, False)]) def input_data(request): randomised, with_nan = request.param return _generate_sample_pandas_df(randomised, with_nan) @pytest.fixture def data_path(tmp_path): return str(tmp_path / "data") @pytest.fixture(params=[dict()]) def parquet_data_set(data_path, request): return ParquetLocalDataSet(filepath=data_path, **request.param) @pytest.fixture def versioned_parquet_data_set(data_path, load_version, save_version): return ParquetLocalDataSet( filepath=data_path, version=Version(load_version, save_version) ) class TestParquetLocalDataSet: _AGE_COLUMN = "Age" @pytest.mark.parametrize("input_data", [(False, False)], indirect=True) def test_save(self, parquet_data_set, input_data): """Test saving and overriding the data set.""" parquet_data_set.save(input_data) # Check that it is loaded correctly loaded_data = parquet_data_set.load() assert_frame_equal(loaded_data, input_data) # Save on top of existing new_data = _generate_sample_pandas_df(randomised=True) parquet_data_set.save(new_data) # Assert data has been overwritten reloaded_data = parquet_data_set.load() assert_frame_equal(reloaded_data, new_data) @pytest.mark.parametrize("input_data", [(False, True)], indirect=True) @pytest.mark.parametrize( "parquet_data_set", [dict(load_args={"columns": [_AGE_COLUMN]})], indirect=True ) def test_load_with_args(self, parquet_data_set, input_data): """Test loading the data set with extra load arguments specified.""" parquet_data_set.save(input_data) loaded_data = parquet_data_set.load() assert_frame_equal(loaded_data, input_data[[self._AGE_COLUMN]]) @pytest.mark.parametrize( "parquet_data_set", [dict(save_args={"compression": "GZIP"})], indirect=True ) def test_save_with_args(self, parquet_data_set, input_data): """Test loading the data set with extra save arguments specified.""" parquet_data_set.save(input_data) loaded_data = parquet_data_set.load() assert_frame_equal(loaded_data, input_data) def test_save_none(self, parquet_data_set): """Check the error when trying to save None.""" pattern = r"Saving `None` to a `DataSet` is not allowed" with pytest.raises(DataSetError, match=pattern): parquet_data_set.save(None) def test_str_representation(self): """Test string representation of the data set instance.""" parquet_data_set = ParquetLocalDataSet("test_file.parquet") pattern = ( "ParquetLocalDataSet(engine=auto, " "filepath=test_file.parquet, save_args={})" ) assert pattern in str(parquet_data_set) def test_exists(self, parquet_data_set, input_data): """Test `exists` method invocation.""" assert not parquet_data_set.exists() parquet_data_set.save(input_data) assert parquet_data_set.exists() class TestParquetLocalDataSetVersioned: def test_save_and_load(self, versioned_parquet_data_set, input_data): """Test that saved and reloaded data matches the original one for the versioned data set.""" versioned_parquet_data_set.save(input_data) reloaded_df = versioned_parquet_data_set.load() assert_frame_equal(reloaded_df, input_data) def test_no_versions(self, versioned_parquet_data_set): """Check the error if no versions are available for load.""" pattern = r"Did not find any versions for ParquetLocalDataSet\(.+\)" with pytest.raises(DataSetError, match=pattern): versioned_parquet_data_set.load() def test_exists(self, versioned_parquet_data_set, input_data): """Test `exists` method invocation for versioned data set.""" assert not versioned_parquet_data_set.exists() versioned_parquet_data_set.save(input_data) assert versioned_parquet_data_set.exists() def test_prevent_overwrite(self, versioned_parquet_data_set, input_data): """Check the error when attempting to override the data set if the corresponding parquet file for a given save version already exists.""" versioned_parquet_data_set.save(input_data) pattern = ( r"Save path \`.+\` for ParquetLocalDataSet\(.+\) must " r"not exist if versioning is enabled\." ) with pytest.raises(DataSetError, match=pattern): versioned_parquet_data_set.save(input_data) @pytest.mark.parametrize( "load_version", ["2019-01-01T23.59.59.999Z"], indirect=True ) @pytest.mark.parametrize( "save_version", ["2019-01-02T00.00.00.000Z"], indirect=True ) def test_save_version_warning( self, versioned_parquet_data_set, load_version, save_version, input_data ): """Check the warning when saving to the path that differs from the subsequent load path.""" pattern = ( r"Save path `.*/{}/data` did not match load path " r"`.*/{}/data` for ParquetLocalDataSet\(.+\)".format( save_version, load_version ) ) with pytest.warns(UserWarning, match=pattern): versioned_parquet_data_set.save(input_data) def test_version_str_repr(self, load_version, save_version): """Test that version is in string representation of the class instance when applicable.""" filepath = "data" ds = ParquetLocalDataSet(filepath=filepath) ds_versioned = ParquetLocalDataSet( filepath=filepath, version=Version(load_version, save_version) ) assert filepath in str(ds) assert "version" not in str(ds) assert filepath in str(ds_versioned) ver_str = "version=Version(load={}, save='{}')".format( load_version, save_version ) assert ver_str in str(ds_versioned)
38.299539
87
0.694862
39976539502be29b0dc4668a3a8f5004bdc28fe6
28,460
py
Python
e7cataTradeBot.py
svzhukov/angelica-the-bot
c4923a9f58b2b4eadf009b9844b87bbd2c8e885f
[ "MIT" ]
null
null
null
e7cataTradeBot.py
svzhukov/angelica-the-bot
c4923a9f58b2b4eadf009b9844b87bbd2c8e885f
[ "MIT" ]
null
null
null
e7cataTradeBot.py
svzhukov/angelica-the-bot
c4923a9f58b2b4eadf009b9844b87bbd2c8e885f
[ "MIT" ]
null
null
null
from __future__ import annotations import json import uuid import os import random import boto3 import discord import jsonpickle import configparser import traceback import inspect import sys from enum import IntEnum from typing import List from typing import Optional from typing import Union from discord.ext import commands from pyaztro import Aztro from time import time from botocore.exceptions import ClientError # region Context Event class EventLogger(): def __init__(self): self.pfx = '' self.target = '' self.invoker = '' self.guild = '' self.action = '' self.function = '' def __repr__(self): return "{}{}{}{}{}".format(self.action, self.target, self.function, self.invoker, self.guild) @staticmethod def logger(target: str, action: str = None, ctx=None): logger = EventLogger() try: logger.invoker = "{} <{}>".format(ctx.message.author, ctx.message.author.id) logger.guild = "{} <{}>".format(ctx.guild, ctx.guild.id) logger.action = action if action else "{}{}".format(ctx.prefix, ctx.command) except AttributeError: logger.action = action finally: logger.target = target logger.function = inspect.getframeinfo(inspect.currentframe().f_back.f_back).function return logger @staticmethod def log(target: str, action: str = None, ctx=None): logger = EventLogger.logger(target, action, ctx) print(logger) # region Properties @property def function(self): return " -> [{}]".format(self._function) if self._function else '' @function.setter def function(self, value): self._function = value @property def target(self): return " {}".format(self._target) if self._target else '' @target.setter def target(self, value): self._target = value @property def invoker(self): return " by {}".format(self._invoker) if self._invoker else '' @invoker.setter def invoker(self, value): self._invoker = value @property def guild(self): return " in {}".format(self._guild) if self._guild else '' @guild.setter def guild(self, value): self._guild = value @property def action(self): return "{} -".format(self._action) if self._action else '' @action.setter def action(self, value): self._action = value # endregion # endregion # region Classes class Config: config = None @staticmethod def load(): Config.setup_config() Config.set_env_vars() @staticmethod def setup_config(): Config.config = configparser.ConfigParser() Config.config.read('config.ini') @staticmethod def set_env_vars(): try: os.environ['CLOUDCUBE_ACCESS_KEY_ID'] = Config.config['DEFAULT']['CLOUDCUBE_ACCESS_KEY_ID'] os.environ['CLOUDCUBE_SECRET_ACCESS_KEY'] = Config.config['DEFAULT']['CLOUDCUBE_SECRET_ACCESS_KEY'] os.environ['DISCORD_BOT_TOKEN'] = Config.config['DEFAULT']['DISCORD_BOT_TOKEN'] os.environ['DISCORD_BOT_PREFIX'] = Config.config['DEFAULT']['DISCORD_BOT_PREFIX'] os.environ['DISCORD_BOT_PREFIX_SECOND'] = Config.config['DEFAULT']['DISCORD_BOT_PREFIX_SECOND'] EventLogger.log("From config.ini", action="load") except KeyError: EventLogger.log("From os", action="load") class S3FileManager: client = None bucket = 'cloud-cube-eu' key = 'ln75ki813ek6/public/' guild_ids_file_name = 'guild_ids.txt' guild_file_prefix = 'guild-' guild_file_suffix = '.json' guild_ids: List[int] = list() @staticmethod def load(): EventLogger.log("S3FileManager", action="load") S3FileManager.setup_client() S3FileManager.download() @staticmethod def setup_client(): S3FileManager.client = boto3.client( 's3', aws_access_key_id=os.environ['CLOUDCUBE_ACCESS_KEY_ID'], aws_secret_access_key=os.environ['CLOUDCUBE_SECRET_ACCESS_KEY'], region_name='eu-west-1') @staticmethod def download(): S3FileManager.download_guild_ids() S3FileManager.download_guilds() @staticmethod def upload(ctx): # Save and upload guild_ids.txt if needed if ctx.guild.id not in S3FileManager.guild_ids: S3FileManager.guild_ids.append(ctx.guild.id) S3FileManager.upload_guild_ids() # Save and upload guild-<id>.json S3FileManager.upload_guild(ctx) @staticmethod def download_guild_ids(): EventLogger.log(S3FileManager.guild_ids_file_name, action="download") try: S3FileManager.client.download_file(S3FileManager.bucket, S3FileManager.key + S3FileManager.guild_ids_file_name, S3FileManager.guild_ids_file_name) with open(S3FileManager.guild_ids_file_name, 'r') as f: S3FileManager.guild_ids = json.load(f) except ClientError as e: if e.response['Error']['Code'] == "404": S3FileManager.guild_ids = [] S3FileManager.upload_guild_ids() @staticmethod def download_guilds(): EventLogger.log("All guild-<id>.json", action="download") for guild in S3FileManager.guild_ids: S3FileManager.client.download_file(S3FileManager.bucket, S3FileManager.key + S3FileManager.file_name(guild), S3FileManager.file_name(guild)) @staticmethod def upload_guild_ids(): EventLogger.log(S3FileManager.guild_ids_file_name, action="upload") with open(S3FileManager.guild_ids_file_name, 'w') as f: json.dump(S3FileManager.guild_ids, f) S3FileManager.client.upload_file(S3FileManager.guild_ids_file_name, S3FileManager.bucket, S3FileManager.key + S3FileManager.guild_ids_file_name) @staticmethod def upload_guild(ctx): file = S3FileManager.file_name(ctx.guild.id) EventLogger.log(file, ctx=ctx, action="upload") with open(file, 'w') as f: json.dump(jsonpickle.encode(Guild.guild(ctx)), f) S3FileManager.client.upload_file(file, S3FileManager.bucket, S3FileManager.key + file) @staticmethod def file_name(guild_id) -> str: return S3FileManager.guild_file_prefix + str(guild_id) + S3FileManager.guild_file_suffix class Guild: guilds: List[Guild] = list() def __init__(self, guild_id: int, name: str, users: List[User] = None, requests: List[Request] = None, bot_var: BotVar = None): self.id = guild_id self.name = name self.users = users if users else [] self.requests = requests if requests else [] self.bot_var = bot_var if bot_var else BotVar() def __repr__(self): return "{}-{}".format(self.name, self.id) def assign_admin_role(self, ctx, role: Union[int, str]): self.bot_var.admin_role = role S3FileManager.upload(ctx) def assign_min_score(self, ctx, score: int): self.bot_var.min_score = score S3FileManager.upload(ctx) @staticmethod # Finds and creates a new one if not found def guild(ctx) -> Guild: gld = Guild.find_guild(ctx) return gld if gld else Guild.add(ctx) @staticmethod def find_guild(ctx) -> Optional[Guild]: return next((guild for guild in Guild.guilds if guild.id == ctx.guild.id), None) @staticmethod def add(ctx) -> Guild: EventLogger.log("NEW trade hub {} is now open!".format(ctx.guild), ctx=ctx) gld = Guild(ctx.guild.id, ctx.guild.name) Guild.guilds.append(gld) return gld @staticmethod def load(): EventLogger.log("Guilds[{}]".format(len(S3FileManager.guild_ids)), action="load") Guild.guilds = [] for guild in S3FileManager.guild_ids: with open(S3FileManager.file_name(guild), 'r') as f: Guild.guilds.append(jsonpickle.decode(json.load(f))) class Request: total_stages = 2 points_per_stage = 1 def __init__(self, guild_id: int, user_id: int, cata_id: uuid.UUID, date_created: float = None, req_id: uuid.UUID = None, stage: int = None, active: bool = None): self.guild_id = guild_id self.id = req_id if req_id else uuid.uuid4() self.user_id = user_id self.cata_id = cata_id self.stage = stage if stage else 0 self.active = active if active else True self.date_created = date_created if date_created else time() def __repr__(self): finished = " - finished" if self.is_complete() else '' return "{name} [{stage}/{total}{finished}]".format(name=self.name(), stage=self.stage, total=Request.total_stages, finished=finished) def stage_advance(self) -> bool: self.stage += 1 self.active = False if self.is_complete() else True return self.active def name(self) -> str: return Catalyst.catalyst(self.cata_id).name def is_complete(self) -> bool: return self.stage == Request.total_stages def cancel(self): self.active = False @staticmethod def repr(ctx, req_id: uuid.UUID) -> str: return Request.find_request(ctx, req_id).__repr__() if Request.find_request(ctx, req_id) else "None" @staticmethod def requests(ctx) -> List[Request]: return Guild.guild(ctx).requests @staticmethod def find_request(ctx, req_id: uuid.UUID) -> Optional[Request]: return next((req for req in Request.requests(ctx) if req.id == req_id), None) @staticmethod def add(ctx, user_id: int, cata_id: uuid.UUID) -> Request: req = Request(ctx.guild.id, user_id, cata_id) EventLogger.log("Don't miss the fresh deal for {}<{}>!".format(req.name(), req.id), ctx=ctx) Guild.guild(ctx).requests.append(req) return req class User: bot_dev_id = 118435077477761029 class AdminRoleCheckError(commands.CommandError): def __init__(self, message: str = None): self.message = message if message else "Comand is restricted to bot admin role" def __repr__(self): return self.message class RoleManagementCheckError(commands.CommandError): def __init__(self, message: str = None): self.message = message if message else "Command requires discord role management permissions" def __repr__(self): return self.message def __init__(self, guild_id: int, user_id: int, name: str, score: int = None, request_id: uuid.UUID = None, assistance: int = None): self.guild_id = guild_id self.id = user_id self.name = name self.score = score if score else 0 self.request_id = request_id if request_id else None self.assistance = assistance if assistance else 0 def __repr__(self): return "{}-{}".format(self.name, self.id) def finished_request_count(self, ctx) -> int: return len([req for req in Request.requests(ctx) if req.user_id == self.id and not req.active and req.is_complete()]) def assign_request(self, ctx, request: Request): self.request_id = request.id self.score -= Request.points_per_stage * Request.total_stages S3FileManager.upload(ctx) def request_cancel(self, ctx) -> int: score_refund = Request.points_per_stage * (Request.total_stages - Request.find_request(ctx, self.request_id).stage) self.score += score_refund Request.find_request(ctx, self.request_id).cancel() self.request_id = None S3FileManager.upload(ctx) return score_refund def thank(self, ctx, user: User): if user.id == self.id: return active = Request.find_request(ctx, self.request_id).stage_advance() self.request_id = self.request_id if active else None if user.id == bot.user.id: self.score += Request.points_per_stage elif user.id != self.id: user.score += Request.points_per_stage user.assistance += Request.points_per_stage S3FileManager.upload(ctx) def gift(self, ctx, user: User): if user.id != bot.user.id and user.id != self.id: self.score -= Request.points_per_stage self.assistance += Request.points_per_stage user.score += Request.points_per_stage S3FileManager.upload(ctx) def set_score(self, ctx, score: int): self.score = score S3FileManager.upload(ctx) @staticmethod def users(ctx) -> List[User]: return Guild.guild(ctx).users @staticmethod # Finds and creates a new one if not found def user(ctx, dc_user) -> User: usr = User.find_user(ctx, dc_user.id) return usr if usr else User.add(ctx, dc_user.id, dc_user.name) @staticmethod def find_user(ctx, user_id: int) -> Optional[User]: return next((usr for usr in User.users(ctx) if usr.id == user_id), None) @staticmethod def add(ctx, user_id: int, user_name: str) -> User: usr = User(ctx.guild.id, user_id, user_name) EventLogger.log("Welcome, new trader {} <{}>!".format(usr.name, usr.id), ctx=ctx) Guild.guild(ctx).users.append(usr) return usr @staticmethod def remove(ctx, user: User): EventLogger.log("Farewell, {} <{}>!".format(user.name, user.id), ctx=ctx) if user.request_id: Request.find_request(ctx, user.request_id).cancel() Guild.guild(ctx).users.remove(user) S3FileManager.upload(ctx) # Checks @staticmethod def has_bot_admin_role(ctx) -> bool: role = Guild.guild(ctx).bot_var.admin_role try: if int(role) in [role.id for role in ctx.message.author.roles]: return True else: raise User.AdminRoleCheckError except ValueError: if role in [role.name for role in ctx.message.author.roles]: return True else: raise User.AdminRoleCheckError @staticmethod def has_role_management_permissions(ctx) -> bool: if True in [role.permissions.manage_roles for role in ctx.message.author.roles] or ctx.message.author.id == ctx.guild.owner.id: return True else: raise User.RoleManagementCheckError class Catalyst: catalysts: List[Catalyst] = list() class Rarity(IntEnum): rare = 1 epic = 4 def __init__(self, cata_id: uuid.UUID, sign_id: uuid.UUID, name: str, rarity_id: Catalyst.Rarity): self.id = cata_id self.sign_id = sign_id self.name = name self.rarity_id = rarity_id def __repr__(self): return "{} <{}>".format(self.name, self.id) @staticmethod def search(query: str) -> List[Catalyst]: return [cata for cata in Catalyst.catalysts if query.lower() in cata.name.lower()] @staticmethod def catalyst(cata_id: uuid.UUID) -> Catalyst: return next(cata for cata in Catalyst.catalysts if cata.id == cata_id) class Sign: signs: List[Sign] = list() def __init__(self, sign_id: uuid.UUID, name: str, catas: List[Catalyst]): self.id = sign_id self.name = name self.catas = catas @staticmethod def all_names() -> List[str]: return [sign.name.lower() for sign in Sign.signs] @staticmethod def load(): with open('catalysts.json', 'r') as f: Sign.signs = jsonpickle.decode(json.load(f)) Catalyst.catalysts = [cata for cata_list in [sign.catas for sign in Sign.signs] for cata in cata_list] EventLogger.log("Signs[{}], Catalysts[{}]".format(len(Sign.signs), len(Catalyst.catalysts)), action="load") class BotVar: default_role = 'Angelica\'s Crew' default_min_score = -6 def __init__(self, admin_role: Union[str, int] = None, min_score: int = None): self.admin_role = admin_role if admin_role else BotVar.default_role self.min_score = min_score if min_score else BotVar.default_min_score # endregion # region Boot up def load(): Config.load() S3FileManager.load() Sign.load() Guild.load() load() # endregion # region Commands # Admin bot = commands.Bot(command_prefix=(os.environ['DISCORD_BOT_PREFIX'], os.environ['DISCORD_BOT_PREFIX_SECOND'])) @bot.command(name='adminrole') @commands.check(User.has_role_management_permissions) async def com_admin_role(ctx, *args): if len(args): Guild.guild(ctx).assign_admin_role(ctx, ' '.join(args)) await ctx.send("New bot admin role has been set to **" + ' '.join(args) + "**") else: await ctx.send("Current bot admin role is **{}**, to set a new one specify either role id or role name" .format(Guild.guild(ctx).bot_var.admin_role)) @bot.command(name='minscore') @commands.check(User.has_bot_admin_role) async def com_min_score(ctx, score=None): try: Guild.guild(ctx).assign_min_score(ctx, int(score)) await ctx.send("New minimum score has been set to **" + score + "**") except (ValueError, TypeError): await ctx.send("Current minimum score is **" + str(Guild.guild(ctx).bot_var.min_score) + "**, to set a new one specify a value") @bot.command(name='cancel') @commands.check(User.has_bot_admin_role) async def com_cancel(ctx): try: user = User.find_user(ctx, ctx.message.mentions[0].id) score_refund = user.request_cancel(ctx) await ctx.send("**{}**'s active request is canceled, **{}** points are refunded back".format(user.name, score_refund)) except (AttributeError, IndexError): await ctx.send("Nothing to cancel ¯\\_(ツ)_/¯") @bot.command(name='remove') @commands.check(User.has_bot_admin_role) async def com_remove(ctx, user_id=None): try: remove_id = ctx.message.mentions[0].id if len(ctx.message.mentions) else int(user_id) User.remove(ctx, User.find_user(ctx, remove_id)) await ctx.send("User **{}** has been removed".format(user_id)) except (ValueError, AttributeError, TypeError): await ctx.send("User not found") @bot.command(name='setscore') @commands.check(User.has_bot_admin_role) async def com_set_score(ctx, mention=None, value=None): try: user = User.user(ctx, ctx.message.mentions[0]) user.set_score(ctx, int(value)) await ctx.send("**{}**'s score successfully set to **{}**".format(user.name, user.score)) except (ValueError, IndexError, TypeError, AttributeError): await ctx.send("Please provide correct arguments") @bot.command(name='test') @commands.check(User.has_bot_admin_role) async def com_test(ctx, arg=None): pass # All user @bot.command(name='respond') async def com_respond(ctx): print("Hello, I'm alive and responding!") await ctx.send("Hello, I'm alive and responding!") @bot.command(name='board') async def com_board(ctx): msg = "{} guild catalyst exchange board:\n".format(ctx.guild.name.capitalize()) for user in User.users(ctx): msg += "**{}** - score: **{}**, request: **{}**, assistance: **[{}]**\n". \ format(user.name, user.score, Request.repr(ctx, user.request_id), user.assistance) await ctx.send(msg) @bot.command(name='request', aliases=['req']) async def com_request(ctx, *args): query = ' '.join(args) if len(args) else '' user = User.user(ctx, ctx.message.author) catas = Catalyst.search(query) if user.request_id: await ctx.send("**{}**, you already have active request for **{}**".format(user.name, Request.repr(ctx, user.request_id))) elif len(query) < 3: await ctx.send("Provide at least **3** characters for catalyst name") elif len(catas) == 0: await ctx.send("No catalyst found") elif len(catas) > 1: await ctx.send("Found more than one catalyst, please specify") elif catas[0].rarity_id == Catalyst.Rarity.epic: await ctx.send("Can't request epic catalysts") elif user.score <= Guild.guild(ctx).bot_var.min_score: await ctx.send("**{}**, your exchange score **({})** has reached its minimum threshold **({})**." " Aid other guild members to improve your score" .format(user.name, user.score, Guild.guild(ctx).bot_var.min_score)) else: request = Request.add(ctx, user.id, catas[0].id) user.assign_request(ctx, request) await ctx.send("**{}** has requested **{}**. User's new score: **{}**".format(user.name, request, user.score)) @bot.command(name='signs', aliases=['sign', 'horoscope']) async def com_horoscope(ctx, query=None): if not query: await ctx.send("Here's the list of available zodiac signs: {}".format(Sign.all_names())) else: sign = query.lower() if query.lower() in Sign.all_names() else random.choice(Sign.all_names()) print(sign) await ctx.send(Aztro(sign=sign).description) @bot.command(name='thank', aliases=['thanks']) async def com_thank(ctx): try: mention = User.user(ctx, ctx.message.mentions[0]) author = User.find_user(ctx, ctx.message.author.id) request = Request.find_request(ctx, author.request_id) if mention.id == ctx.message.author.id: await ctx.send("Don't do that!") else: author.thank(ctx, mention) msg = "No problem :blush:, here's a blessing from the Goddess for you **+1** :pray:! **{}**'s request: **{}**" \ .format(author.name, request) if mention.id == bot.user.id else \ "Thanks for the assistance, **{}**, here's your **+1** :thumbsup:! **{}**'s request: **{}**" \ .format(mention.name, author.name, request) await ctx.send(msg) except (IndexError, AttributeError) as e: await ctx.send("Please mention a user you want to thank, you must have an active request") @bot.command(name='catalysts', aliases=['catas']) async def com_catalysts(ctx): await send_file(ctx, 'catas.jpg') @bot.command(name='how') async def com_how(ctx): await send_file(ctx, 'how.jpg') @bot.command(name='aid') async def com_aid(ctx): try: mention = User.find_user(ctx, ctx.message.mentions[0].id) author = User.find_user(ctx, ctx.message.author.id) request = Request.find_request(ctx, mention.request_id) await ctx.send("**{}**, check your guild box, there might be some :gift: **{}**'s for you from **{}**!" .format(mention.name, request.name(), author.name)) except (IndexError, AttributeError): await ctx.send("Please mention user with an active request you want to notify") @bot.command(name='gift') @commands.cooldown(3, 28800, type=commands.BucketType.member) async def com_gift(ctx): try: author = User.find_user(ctx, ctx.message.author.id) mention = User.user(ctx, ctx.message.mentions[0]) if author.score < 1: await ctx.send("Your score must be above zero to gift to other users") elif mention.id == author.id: await ctx.send("**{}** throws their own party, everyone is invited :partying_face:!".format(author.name)) elif mention.id == bot.user.id: await ctx.send("Thank you, **{}** :blush:, I have a gift for you as well **+1** :heart:!".format(ctx.message.author.name)) else: author.gift(ctx, mention) await ctx.send("**{}** feels generous today and gifts one of their points to **{} +1** :heart:!" .format(ctx.message.author.name, ctx.message.mentions[0].name)) except IndexError: await ctx.send("Please mention user you want to send gifts to") except AttributeError: await ctx.send("Get on the board first!") @bot.command(name='ahelp') async def com_help(ctx): embed = discord.Embed(title="Angelica The Bot", description="See more info about the bot on [GitHub](https://github.com/svzhukov/angelica-the-bot)", color=0xffc0cb) embed.add_field(name="`[User commands]`", value="All arguments should be provided without **<**, **>** brackets", inline=False) embed.add_field(name="!how **<--**", value="Quick visual tutorial that shows how to use the bot", inline=False) embed.add_field(name="!request <catalyst_query>", value="Makes a request for named catalysts, **-2** to points", inline=False) embed.add_field(name="!thanks <@user>", value="Thanks the user who provided the assistance, " "**+1** to exchange and assistance scores of the mentioned user", inline=False) embed.add_field(name="!aid <@user>", value="Notifies mentioned user about your aid, optional command", inline=False) embed.add_field(name="!board", value="Guild board with user scores and active requests", inline=False) embed.add_field(name="!gift <@user>", value="Gifts **1** of your points to the mentioned user, " "gifter receives **+1** assistance in return. Has a cooldown", inline=False) embed.add_field(name="!catalysts", value="Shows neat picture with all the catalysts", inline=False) embed.add_field(name="!signs <sign_name>", value="Your daily horoscope, provide no argument to see all available signs," " if provided sign is not on the list random one will be chosen", inline=False) embed.add_field(name="**\n`[Admin commands]`**", value="Requires bot admin role", inline=False) embed.add_field(name="!adminrole <role_id> or <role_name>", value="Sets bot admin role, requires discord role management permissions to call, " "pass no arguments to view current role", inline=False) embed.add_field(name="!minscore <score>", value="Sets the minimum score threshold value, default is **-6**", inline=False) embed.add_field(name="!setscore <@user new_score>", value="Sets the score manually, should only be used in cases of malfunction. " "Note that all exchange scores from active bot users, taking into account current requests," " should add up close to **0**", inline=False) embed.add_field(name="!cancel <@user>", value="Cancels current request and refunds remaining points", inline=False) embed.add_field(name="!remove <@user> or <user_discord_id>", value="Removes user from the board", inline=False) me = bot.get_user(User.bot_dev_id) embed.set_footer(text="Developed by {0} (Discord ID: {0.id})".format(me), icon_url=me.avatar_url) await ctx.send(embed=embed) # endregion # region Events @bot.event async def on_guild_join(guild): print("A NEW guild {} welcomes Angelica!".format(guild)) @bot.event async def on_guild_remove(guild): print("Angelica just got kicked out from {}, too bad for them!".format(guild)) @bot.event async def on_command(ctx): EventLogger.log('-', ctx=ctx) @bot.event async def on_ready(): print('Bot is ready') await bot.change_presence(status=discord.Status.online, activity=discord.Game("!ahelp")) @bot.event async def on_command_error(ctx, error): if isinstance(error, User.AdminRoleCheckError) or isinstance(error, User.RoleManagementCheckError): EventLogger.log(error.message, ctx=ctx) await ctx.send(error.message) elif isinstance(error, discord.ext.commands.errors.CommandOnCooldown): EventLogger.log(str(error), ctx=ctx) await ctx.send("**{}**, {}".format(ctx.message.author.name, error)) elif isinstance(error, discord.ext.commands.errors.CommandNotFound): # Disable the spam from other bots with the same prefixes pass else: traceback.print_exception(type(error), error, error.__traceback__) # endregion # region Utils async def send_file(ctx, file_name: str): with open(file_name, 'rb') as f: await ctx.send(file=discord.File(f, file_name)) # endregion ####################################################### bot.run(os.environ['DISCORD_BOT_TOKEN'])
37.105606
141
0.640267
fe71767979c726aae4185a4c29b2db6cd9b9277e
2,829
py
Python
preprocessing.py
luizcartolano2/ann-option-pricing
94875b624987c0476feced496e67c4fa42a27767
[ "MIT" ]
1
2021-10-02T02:32:27.000Z
2021-10-02T02:32:27.000Z
preprocessing.py
luizcartolano2/ann-option-pricing
94875b624987c0476feced496e67c4fa42a27767
[ "MIT" ]
2
2020-09-18T03:04:20.000Z
2020-09-18T03:09:58.000Z
preprocessing.py
luizcartolano2/ann-option-pricing
94875b624987c0476feced496e67c4fa42a27767
[ "MIT" ]
null
null
null
import pandas as pd import numpy as np from impliedVolatility.ImpliedVolatility import ImpliedVolatility # read DataFrames with available info about options df_contracts = pd.read_csv('data-source/contracts.csv', usecols=['commodity', 'contract', 'expiry_date']) df_fut = pd.read_csv('data-source/und-fut.csv', usecols=['commodity', 'contract', 'date', 'future_price']) df_opt = pd.read_csv('data-source/option-price.csv', usecols=['commodity', 'contract', 'date', 'put_or_call', 'strike_value', 'settle_price']) # here we merge the DataFrame with information's about contracts # into the one with information's about the options so we are able to # get the expiration date to every option we are looking for df_opt = pd.merge(df_opt, df_contracts, how='left', left_on=['commodity', 'contract'], right_on=['commodity', 'contract']) # here we merge the DataFrame with information's about future # into the one with information's about the options so we are able to # get the underlying price to every option we are looking for df_opt = pd.merge(df_opt, df_fut, how='left', left_on=['commodity', 'contract', 'date'], right_on=['commodity', 'contract', 'date']) # in order to calculate the option tenor we first need to know # the number of days between the "operation date" eg, the day data # was collected and the expiration date of the contract days_to_mat = (pd.to_datetime(df_opt['expiry_date']) - pd.to_datetime(df_opt['date'])).dt.days.values # the tenor is a number representing # the number of days to maturity divide # by 365.25 (since we consider) running days tenor = (days_to_mat + 1) / 365.25 # add the days to maturity and the tenor # to the options info DataFrame df_opt['days_to_mat'] = days_to_mat df_opt['tenor'] = tenor # drop if any NaN number exists on DataFrame df_opt = df_opt[df_opt['days_to_mat'] > 0] df_opt = df_opt.dropna(axis=0, how='any') # in order to calculate the implied volatility # we are going to use the Black Scholes model # together with a bissection function to find equation roots prices = df_opt['settle_price'].values.reshape((-1, 1)) underlying = df_opt['future_price'].values.reshape((-1, 1)) strike = df_opt['strike_value'].values.reshape((-1, 1)) call_put = df_opt['put_or_call'].values.reshape((-1, 1)).astype('float64') tenor = df_opt['tenor'].values.reshape((-1, 1)) # instantiate implied vol class and calculate bissec method implied_volatility = ImpliedVolatility(np.log(1.00501), 0.0001, 2000, 0) i, temp, vols = implied_volatility.implied_volatility_bissec(prices, underlying, strike, call_put, tenor) # add the implied volatility # to the options DataFrame df_opt['volimp'] = vols # save the options DataFrame that will be # used in the future to training the machine # learning model in order to predict options price df_opt.to_csv('data-source/options-data.csv')
47.949153
142
0.75327
f9d2e8d72798f0787f611c6795991625a3685857
6,406
py
Python
src/tutorial_scenarios/userMovement/main.py
vyk1/YAFS
514f8362c90923fa28f871fcf179b755a9315c47
[ "MIT" ]
null
null
null
src/tutorial_scenarios/userMovement/main.py
vyk1/YAFS
514f8362c90923fa28f871fcf179b755a9315c47
[ "MIT" ]
null
null
null
src/tutorial_scenarios/userMovement/main.py
vyk1/YAFS
514f8362c90923fa28f871fcf179b755a9315c47
[ "MIT" ]
null
null
null
""" In this simulation, the users moves in different nodes. There are linked to another nodes. @author: Isaac Lera """ import os import time import json import random import logging.config import networkx as nx from pathlib import Path from yafs.core import Sim from yafs.application import create_applications_from_json from yafs.topology import Topology from yafs.placement import JSONPlacement from yafs.path_routing import DeviceSpeedAwareRouting from yafs.distribution import deterministic_distribution, deterministicDistributionStartPoint from collections import defaultdict class CustomStrategy(): def __init__(self, pathResults, listIdApps): self.activations = 0 self.pathResults = pathResults self.listUsers = [] self.numberMaxUsers = 100 self.listIdApps = listIdApps self.placeAt = {} def createUser(self, sim): app_name = random.sample(self.listIdApps, 1)[0] app = sim.apps[app_name] msg = app.get_message("M.USER.APP.%i" % app_name) dist = deterministic_distribution(30, name="Deterministic") node = random.sample(sim.topology.G.nodes(), 1)[0] idDES = sim.deploy_source(app_name, id_node=node, msg=msg, distribution=dist) self.listUsers.append(idDES) self.placeAt[idDES] = node return idDES def __call__(self, sim, routing): # logging.info("Activating Custom process - number %i " % self.activations) self.activations += 1 # In this case, the new users not change the topology # routing.invalid_cache_value = True # when the service change the cache of the Path.routing is outdated. # We can introduce a new user or we move it if len(self.listUsers) == 0: self.createUser(sim) if random.random() < 0.6: # we create a new user idDES = self.createUser(sim) logging.info(" Creating a new user %i on node %i" % (idDES, self.placeAt[idDES])) elif random.random() < 0.8: # we move a user from one node to other userDES = random.sample(self.listUsers, 1)[0] newNode = random.sample(sim.topology.G.nodes(), 1)[0] logging.info(" Moving a user %i from node %i to %i" % (userDES, self.placeAt[userDES], newNode)) sim.alloc_DES[self.placeAt[userDES]] = newNode else: # we remove an user userDES = random.sample(self.listUsers, 1)[0] sim.undeploy_source(userDES) self.listUsers.remove(userDES) logging.info(" Removing a user %i on node %i" % (userDES, self.placeAt[userDES])) def main(stop_time, it): folder_results = Path("results/") folder_results.mkdir(parents=True, exist_ok=True) folder_results = str(folder_results) + "/" """ TOPOLOGY """ t = Topology() # You also can create a topology using JSONs files. Check out examples folder size = 5 t.G = nx.generators.binomial_tree(size) # In NX-lib there are a lot of Graphs generators # Definition of mandatory attributes of a Topology ## Attr. on edges # PR and BW are 1 unit attPR_BW = {x: 1 for x in t.G.edges()} nx.set_edge_attributes(t.G, name="PR", values=attPR_BW) nx.set_edge_attributes(t.G, name="BW", values=attPR_BW) ## Attr. on nodes # IPT attIPT = {x: 100 for x in t.G.nodes()} nx.set_node_attributes(t.G, name="IPT", values=attIPT) nx.write_gexf(t.G, folder_results + "graph_binomial_tree_%i" % size) # you can export the Graph in multiples format to view in tools like Gephi, and so on. print(t.G.nodes()) # nodes id can be str or int """ APPLICATION or SERVICES """ dataApp = json.load(open('data/appDefinition.json')) apps = create_applications_from_json(dataApp) """ SERVICE PLACEMENT """ placementJson = json.load(open('data/allocDefinition.json')) placement = JSONPlacement(name="Placement", json=placementJson) """ Defining ROUTING algorithm to define how path messages in the topology among modules """ selectorPath = DeviceSpeedAwareRouting() """ SIMULATION ENGINE """ s = Sim(t, default_results_path=folder_results + "sim_trace") """ Deploy services == APP's modules """ for aName in apps.keys(): s.deploy_app(apps[aName], placement, selectorPath) """ Deploy users """ ### IN THIS CASE, We control the users from our custom strategy # userJSON = json.load(open('data/usersDefinition.json')) # for user in userJSON["sources"]: # app_name = user["app"] # app = s.apps[app_name] # msg = app.get_message(user["message"]) # node = user["id_resource"] # dist = deterministic_distribution(100, name="Deterministic") # idDES = s.deploy_source(app_name, id_node=node, msg=msg, distribution=dist) """ This internal monitor in the simulator (a DES process) changes the sim's behaviour. You can have multiples monitors doing different or same tasks. In this case, it changes the number or movement of users. """ listIdApps = [x["id"] for x in dataApp] dist = deterministicDistributionStartPoint(stop_time / 4., stop_time / 2.0 / 10.0, name="Deterministic") evol = CustomStrategy(folder_results, listIdApps) s.deploy_monitor("RandomAllocation", evol, dist, **{"sim": s, "routing": selectorPath}) # __call__ args """ RUNNING - last step """ logging.info(" Performing simulation: %i " % it) s.run(stop_time) # To test deployments put test_initial_deploy a TRUE s.print_debug_assignaments() print("Number of new users: %i" % len(evol.listUsers)) if __name__ == '__main__': logging.config.fileConfig(os.getcwd() + '/logging.ini') nIterations = 1 # iteration for each experiment simulationDuration = 20000 # Iteration for each experiment changing the seed of randoms for iteration in range(nIterations): random.seed(iteration) logging.info("Running experiment it: - %i" % iteration) start_time = time.time() main(stop_time=simulationDuration, it=iteration) print("\n--- %s seconds ---" % (time.time() - start_time)) print("Simulation Done!")
33.715789
155
0.646113
a25aa06c9c0e5a5371f420a7ced973e39b0d38af
3,271
py
Python
scripts/books_database.py
scianand/Programming-With-Databases
4b4363be91f066f2852d78ae2a9240731c46f3b9
[ "Apache-2.0" ]
null
null
null
scripts/books_database.py
scianand/Programming-With-Databases
4b4363be91f066f2852d78ae2a9240731c46f3b9
[ "Apache-2.0" ]
null
null
null
scripts/books_database.py
scianand/Programming-With-Databases
4b4363be91f066f2852d78ae2a9240731c46f3b9
[ "Apache-2.0" ]
null
null
null
""" SQL Alchemy ORM example: schema creation and access both user: postgres password: postgres """ from sqlalchemy import create_engine, Column, Integer, String, ForeignKey from sqlalchemy.orm import sessionmaker, relationship from sqlalchemy.ext.declarative import declarative_base # connect to the database engine = create_engine('postgres://postgres:postgres@localhost/books') Base = declarative_base() # class representation of authors table class Author(Base): __tablename__ = 'authors' author_id = Column(Integer, primary_key=True) first_name = Column(String(length=50)) last_name = Column(String(length=50)) def __repr__(self): return '''<Author(author_id='{0}', first_name='{1}', last_name='{2}')>'''.format( self.author_id, self.first_name, self.last_name) # class representation of books table class Book(Base): __tablename__ = 'books' book_id = Column(Integer, primary_key=True) title = Column(String(length=50)) number_of_pages = Column(Integer) def __repr__(self): return '''<Book(book_id='{0}', title='{1}', number_of_pages='{2}')>'''.format( self.book_id, self.title, self.number_of_pages) # class representation of bookauthors table class BookAuthor(Base): __tablename__ = 'bookauthors' bookauthor_id = Column(Integer, primary_key=True) author_id = Column(Integer, ForeignKey('authors.author_id')) book_id = Column(Integer, ForeignKey('books.book_id')) def __repr__(self): return '''<BookAuthor(bookauthor_id='{0}', author_id='{1}', book_id='{2}')>'''.format( self.bookauthor_id, self.author_id, self.book_id) # relationship for SQLAlchemy classes author = relationship("Author") book = relationship("Book") # create all the above tables using engine Base.metadata.create_all(engine) def create_session(): Session = sessionmaker(bind=engine) return Session() def add_book(title, number_of_pages, first_name, last_name): # create book record book = Book(title=title, number_of_pages=number_of_pages) session = create_session() try: existing_author = session.query(Author).filter(Author.first_name == first_name, Author.last_name == last_name).first() session.add(book) if existing_author is not None: session.flush() pairing = BookAuthor(author_id=existing_author.author_id, book_id = book.book_id) else: # create author record author = Author(first_name=first_name, last_name=last_name) session.add(author) session.flush() pairing = BookAuthor(author_id=author.author_id, book_id=book.book_id) session.add(pairing) session.commit() except: session.rollback() raise finally: session.close() if __name__ == '__main__': print("Input new book!") title = input("What's the book name?\n") number_of_pages = int(input("How many pages are in the book?\n")) first_name = input("What is the first name of the author?\n") last_name = input("What is the last name of the author?") add_book(title, number_of_pages, first_name, last_name) print("Done!")
30.858491
94
0.674411
c741406d9837b164561a6db2eba6d6678dc8826c
1,268
py
Python
getNearestClusterAccuracy.py
arjish/meta-meta-classification
3e1df26a486094bd9cb394ff99d3c29b587b66c3
[ "MIT" ]
3
2021-07-30T23:58:35.000Z
2021-11-11T02:05:58.000Z
getNearestClusterAccuracy.py
arjish/meta-meta-classification
3e1df26a486094bd9cb394ff99d3c29b587b66c3
[ "MIT" ]
null
null
null
getNearestClusterAccuracy.py
arjish/meta-meta-classification
3e1df26a486094bd9cb394ff99d3c29b587b66c3
[ "MIT" ]
1
2021-09-13T10:12:16.000Z
2021-09-13T10:12:16.000Z
import os import numpy as np import argparse parser = argparse.ArgumentParser() parser.add_argument('data_path', metavar='DATA', help='path to data') parser.add_argument('-n', '--n_clusters', default=16, type=int, help='# of models (default=16)') parser.add_argument('-p', '--pkl_file', default='filelist', type=str, help='path to pickle file') args = parser.parse_args() data_path = args.data_path n_clusters = args.n_clusters pkl_file = args.pkl_file clusterLabelsFile = 'clusterLabels_'+str(n_clusters)+'_'+pkl_file + '.npy' labels = np.load(os.path.join(data_path, 'CLUSTER_'+str(n_clusters), clusterLabelsFile)) print('Shape of labels:', labels.shape) acc_list = [] for i in range(n_clusters): acc_file = os.path.join(data_path, 'CLUSTER_'+str(n_clusters), 'queryAcc_' + pkl_file + '_cluster' + str(n_clusters) + '_' + str(i) + '.npy') acc_list.append(np.load(acc_file)) acc_list = np.stack(acc_list, axis=1) print('Shape of acc_list:', acc_list.shape) accs_nearest = acc_list[np.arange(len(labels)), labels] mean_accs = np.mean(accs_nearest) print('Mean accuracy using nearest model:', mean_accs) stds = np.std(accs_nearest) ci95 = 1.96 * stds * 100 / np.sqrt(accs_nearest.shape[0]) print('stds:', stds) print('ci95:', ci95)
31.7
88
0.711356
85a5e232a356a236b8ef07e31d9cb5f5202e7a22
538
py
Python
spokes_deepsense_app/config/desktop.py
karantkiruba/spokes_deepsense_app
90b23fec05866965da8b5a096d0f2084cb3ee4c5
[ "MIT" ]
null
null
null
spokes_deepsense_app/config/desktop.py
karantkiruba/spokes_deepsense_app
90b23fec05866965da8b5a096d0f2084cb3ee4c5
[ "MIT" ]
null
null
null
spokes_deepsense_app/config/desktop.py
karantkiruba/spokes_deepsense_app
90b23fec05866965da8b5a096d0f2084cb3ee4c5
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals from frappe import _ def get_data(): return [ { "module_name": "Spokes Deepsense App", "color": "default", "icon": "default", "type": "module", "label": _("Spokes Deepsense App") }, { "module_name": "Reports", "color": "grey", "icon": "octicon octicon-file-directory", "type": "module", "label": _("Reports") } ]
23.391304
65
0.459108
b7dae768eae9b436605c893c21bd37c1da83bd56
3,763
py
Python
model-experiments/token-based-similarity-classification/src/PostProcessor/MapAtR.py
yingkitw/Project_CodeNet
565ac79043d240c70e5bb9fdfbf5eccdec4e0bc3
[ "Apache-2.0" ]
1,156
2021-05-11T08:37:00.000Z
2022-03-31T11:28:51.000Z
model-experiments/token-based-similarity-classification/src/PostProcessor/MapAtR.py
yingkitw/Project_CodeNet
565ac79043d240c70e5bb9fdfbf5eccdec4e0bc3
[ "Apache-2.0" ]
29
2021-05-11T18:54:49.000Z
2022-03-11T15:26:35.000Z
model-experiments/token-based-similarity-classification/src/PostProcessor/MapAtR.py
yingkitw/Project_CodeNet
565ac79043d240c70e5bb9fdfbf5eccdec4e0bc3
[ "Apache-2.0" ]
149
2021-05-11T10:38:24.000Z
2022-03-21T04:52:28.000Z
""" Program for computing MAP at R metric using matrix of predicted similarity strength for all sample pairs Input data are expected to be in the form of two pickled files: - problem_indices.pcl -- specifies indices of tested problem for each similarity test experiment - similarity_probabilities.pcl -- specifies matrix of similarity test experiment results Each matrix column describes results of comparing one problem solution with solutions of all other problems """ import sys import os import argparse import pickle import numpy as np def map_at_r(sim, pids): """ Function for computing MAP at R metric Parameter: - sim -- 2D numpy array of predicted similarity measures for all pairs of samples - pids -- 1D numpy array of problem ids corresponding to columns of matrix of predicted similarity measures Returns: computed MAP at R metric """ #Count number of source code solutions of each problem r = np.bincount(pids) - 1 max_r = r.max() #Mask for ignoring the similarity predictions lying #beyond the number of solutions of checked problem mask = np.arange(max_r)[np.newaxis, :] < r[pids][:, np.newaxis] np.fill_diagonal(sim,-np.inf) #Select and sort top predictions result = np.argpartition(-sim, range(max_r + 1), axis=1)[:, : max_r] #Get correct similarity predictions tp = pids[result] == pids[:, np.newaxis] #Remove all predictions beyond the number of #solutions of tested problem tp[~mask] = False #Get only tested problem valid = r[pids] > 0 #Compute cumulative probability of correct predictions p = np.cumsum(tp, axis=1, dtype = np.float32) / np.arange(1, max_r+1, dtype = np.float32)[np.newaxis, :] #average across similarity prediction for each tested problem ap = (p * tp).sum(axis=1)[valid] / r[pids][valid] val = np.mean(ap).item() return val def main(args): """ Main function of program for computing MAP at R metric Arguments are descibed below """ if not os.path.exists(args.similarities): sys.exit(f"Directory {args.similarities} with similarity analysis does not exist") with open(f"{args.similarities}/problem_indices.pcl", "rb") as _f: pids = pickle.load(_f) with open(f"{args.similarities}/similarity_probabilities.pcl", "rb") as _f: sim = pickle.load(_f) n_problem_solutions = pids.shape[0] if sim.shape[0] != n_problem_solutions * n_problem_solutions: sys.exit( f"Number of similarity samples {n_problem_solutions.shape[0]} ", f" is not square of number of problem solutions {n_problem_solutions}") map_r = map_at_r(sim.reshape(n_problem_solutions, n_problem_solutions), pids) print("Map@R is ", map_r) ####################################################################### # Command line arguments of are described below ####################################################################### if __name__ == '__main__': print("\nComputation of MAP at R metric of similarity analysis") #Command-line arguments parser = argparse.ArgumentParser( description = "Computation of MAP at R metric") parser.add_argument('similarities', type=str, help='Directory with similarity results') args = parser.parse_args() print("Parameter settings used:") for k,v in sorted(vars(args).items()): print("{}: {}".format(k,v)) main(args)
39.197917
90
0.610949
2b70563c55726013ccb81ff2c26481883d3666e3
47,553
py
Python
octavia_dashboard/api/rest/lbaasv2.py
TomEros/octavia-dashboard
7fb4bac2e835699b0b386336a9f09aeda67a5996
[ "Apache-2.0" ]
null
null
null
octavia_dashboard/api/rest/lbaasv2.py
TomEros/octavia-dashboard
7fb4bac2e835699b0b386336a9f09aeda67a5996
[ "Apache-2.0" ]
null
null
null
octavia_dashboard/api/rest/lbaasv2.py
TomEros/octavia-dashboard
7fb4bac2e835699b0b386336a9f09aeda67a5996
[ "Apache-2.0" ]
null
null
null
# Copyright 2015 IBM Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """API over the neutron LBaaS v2 service. """ import _thread as thread from time import sleep from django.conf import settings from django.views import generic from horizon import conf import octavia_dashboard from openstack import connection try: from openstack import config as occ except ImportError: from os_client_config import config as occ from openstack_dashboard.api import neutron from openstack_dashboard.api.rest import urls from openstack_dashboard.api.rest import utils as rest_utils neutronclient = neutron.neutronclient def _get_sdk_connection(request): """Creates an SDK connection based on the request. :param request: Django request object :returns: SDK connection object """ # NOTE(mordred) Nothing says love like two inverted booleans # The config setting is NO_VERIFY which is, in fact, insecure. # get_one_cloud wants verify, so we pass 'not insecure' to verify. insecure = getattr(settings, 'OPENSTACK_SSL_NO_VERIFY', False) cacert = getattr(settings, 'OPENSTACK_SSL_CACERT', None) # Pass interface to honor 'OPENSTACK_ENDPOINT_TYPE' interface = getattr(settings, 'OPENSTACK_ENDPOINT_TYPE', 'publicURL') # Pass load_yaml_config as this is a Django service with its own config # and we don't want to accidentally pick up a clouds.yaml file. We want to # use the settings we're passing in. cloud_config = occ.OpenStackConfig(load_yaml_config=False).get_one_cloud( verify=not insecure, cacert=cacert, interface=interface, region_name=request.user.services_region, auth_type='token', auth=dict( project_id=request.user.project_id, project_domain_id=request.user.domain_id, token=request.user.token.unscoped_token, auth_url=request.user.endpoint), app_name='octavia-dashboard', app_version=octavia_dashboard.__version__) return connection.from_config(cloud_config=cloud_config) def _sdk_object_to_list(object): """Converts an SDK generator object to a list of dictionaries. :param object: SDK generator object :returns: List of dictionaries """ result_list = [] for item in object: result_list.append(_get_sdk_object_dict(item)) return result_list def _get_sdk_object_dict(object): """Converts an SDK object to a dictionary. Fixes any SDK imposed object oddities. :param object: SDK object :returns: Dictionary """ item_dict = object.to_dict() if 'is_admin_state_up' in item_dict: item_dict['admin_state_up'] = item_dict['is_admin_state_up'] return item_dict def poll_loadbalancer_status(request, loadbalancer_id, callback, from_state='PENDING_UPDATE', to_state='ACTIVE', callback_kwargs=None): """Poll for the status of the load balancer. Polls for the status of the load balancer and calls a function when the status changes to a specified state. :param request: django request object :param loadbalancer_id: id of the load balancer to poll :param callback: function to call when polling is complete :param from_state: initial expected state of the load balancer :param to_state: state to check for :param callback_kwargs: kwargs to pass into the callback function """ interval = conf.HORIZON_CONFIG['ajax_poll_interval'] / 1000.0 status = from_state while status == from_state: sleep(interval) conn = _get_sdk_connection(request) lb = conn.load_balancer.get_load_balancer(loadbalancer_id) status = lb.provisioning_status if status == to_state: kwargs = {'loadbalancer_id': loadbalancer_id} if callback_kwargs: kwargs.update(callback_kwargs) callback(request, **kwargs) def create_loadbalancer(request): data = request.DATA conn = _get_sdk_connection(request) build_kwargs = dict( project_id=request.user.project_id, vip_subnet_id=data['loadbalancer']['vip_subnet_id'], name=data['loadbalancer'].get('name'), description=data['loadbalancer'].get('description'), vip_address=data['loadbalancer'].get('vip_address'), admin_state_up=data['loadbalancer'].get('admin_state_up'), ) flavor_id = data['loadbalancer'].get('flavor_id') if flavor_id: build_kwargs['flavor_id'] = flavor_id availability_zone = data['loadbalancer'].get('availability_zone') if availability_zone: build_kwargs['availability_zone'] = availability_zone loadbalancer = conn.load_balancer.create_load_balancer(**build_kwargs) if data.get('listener'): # There is work underway to add a new API to LBaaS v2 that will # allow us to pass in all information at once. Until that is # available we use a separate thread to poll for the load # balancer status and create the other resources when it becomes # active. args = (request, loadbalancer.id, create_listener) kwargs = {'from_state': 'PENDING_CREATE'} thread.start_new_thread(poll_loadbalancer_status, args, kwargs) return _get_sdk_object_dict(loadbalancer) def create_listener(request, **kwargs): """Create a new listener. """ data = request.DATA try: default_tls_ref = data['certificates'][0] except (KeyError, IndexError): default_tls_ref = None conn = _get_sdk_connection(request) # TODO(johnsom) Add SNI support # https://bugs.launchpad.net/octavia/+bug/1714294 listener = conn.load_balancer.create_listener( protocol=data['listener']['protocol'], protocol_port=data['listener']['protocol_port'], load_balancer_id=kwargs['loadbalancer_id'], name=data['listener'].get('name'), description=data['listener'].get('description'), connection_limit=data['listener'].get('connection_limit'), default_tls_container_ref=default_tls_ref, sni_container_refs=None, admin_state_up=data['listener'].get('admin_state_up'), insert_headers=data['listener'].get('insert_headers'), timeout_client_data=data['listener'].get('timeout_client_data'), timeout_member_connect=data['listener'].get('timeout_member_connect'), timeout_member_data=data['listener'].get('timeout_member_data'), timeout_tcp_inspect=data['listener'].get('timeout_tcp_inspect'), allowed_cidrs=data['listener'].get('allowed_cidrs'), # Replace empty string by None (uses default tls cipher string) tls_ciphers=data['listener'].get('tls_ciphers') or None, ) if data.get('pool'): args = (request, kwargs['loadbalancer_id'], create_pool) kwargs = {'callback_kwargs': {'listener_id': listener.id}} thread.start_new_thread(poll_loadbalancer_status, args, kwargs) return _get_sdk_object_dict(listener) def create_l7_policy(request, **kwargs): """Create a new l7 policy. """ data = request.DATA conn = _get_sdk_connection(request) l7_policy = conn.load_balancer.create_l7_policy( action=data['l7policy']['action'], admin_state_up=data['l7policy'].get('admin_state_up'), description=data['l7policy'].get('description'), listener_id=kwargs['listener_id'], name=data['l7policy'].get('name'), position=data['l7policy'].get('position'), redirect_pool_id=data['l7policy'].get('redirect_pool_id'), redirect_url=data['l7policy'].get('redirect_url'), ) return _get_sdk_object_dict(l7_policy) def create_l7_rule(request, **kwargs): """Create a new l7 rule. """ data = request.DATA conn = _get_sdk_connection(request) l7_rule = conn.load_balancer.create_l7_rule( admin_state_up=data['l7rule'].get('admin_state_up'), compare_type=data['l7rule']['compare_type'], invert=data['l7rule'].get('invert'), key=data['l7rule'].get('key'), l7_policy=kwargs['l7_policy_id'], type=data['l7rule']['type'], rule_value=data['l7rule']['rule_value'], ) return _get_sdk_object_dict(l7_rule) def create_pool(request, **kwargs): """Create a new pool. """ data = request.DATA conn = _get_sdk_connection(request) pool = conn.load_balancer.create_pool( protocol=data['pool']['protocol'], lb_algorithm=data['pool']['lb_algorithm'], session_persistence=data['pool'].get('session_persistence'), listener_id=kwargs['listener_id'], loadbalancer_id=kwargs['loadbalancer_id'], name=data['pool'].get('name'), description=data['pool'].get('description'), admin_state_up=data['pool'].get('admin_state_up'), tls_enabled=data['pool'].get('tls_enabled'), # Replace empty string by None (uses default tls cipher string) tls_ciphers=data['pool'].get('tls_ciphers') or None, ) if data.get('members'): args = (request, kwargs['loadbalancer_id'], add_member) kwargs = {'callback_kwargs': {'pool_id': pool.id, 'index': 0}} thread.start_new_thread(poll_loadbalancer_status, args, kwargs) elif data.get('monitor'): args = (request, kwargs['loadbalancer_id'], create_health_monitor) kwargs = {'callback_kwargs': {'pool_id': pool.id}} thread.start_new_thread(poll_loadbalancer_status, args, kwargs) return _get_sdk_object_dict(pool) def create_health_monitor(request, **kwargs): """Create a new health monitor for a pool. """ data = request.DATA conn = _get_sdk_connection(request) health_mon = conn.load_balancer.create_health_monitor( type=data['monitor']['type'], delay=data['monitor']['delay'], timeout=data['monitor']['timeout'], max_retries=data['monitor']['max_retries'], max_retries_down=data['monitor']['max_retries_down'], pool_id=kwargs['pool_id'], http_method=data['monitor'].get('http_method'), url_path=data['monitor'].get('url_path'), expected_codes=data['monitor'].get('expected_codes'), admin_state_up=data['monitor'].get('admin_state_up'), name=data['monitor'].get('name') ) return _get_sdk_object_dict(health_mon) def create_flavor(request, **kwargs): """Create a new flavor. """ data = request.DATA conn = _get_sdk_connection(request) flavor = conn.load_balancer.create_flavor( name=data['flavor']['name'], flavor_profile_id=data['flavor']['flavor_profile_id'], description=data['flavor'].get('description'), enabled=data['flavor'].get('enabled'), ) return _get_sdk_object_dict(flavor) def create_flavor_profile(request, **kwargs): """Create a new flavor profile. """ data = request.DATA conn = _get_sdk_connection(request) flavor_profile = conn.load_balancer.create_flavor( name=data['flavor_profile']['name'], provider_name=data['flavor_profile']['provider_name'], flavor_data=data['flavor_profile']['flavor_data'], ) return _get_sdk_object_dict(flavor_profile) def add_member(request, **kwargs): """Add a member to a pool. """ data = request.DATA members = data.get('members') pool_id = kwargs.get('pool_id') if kwargs.get('members_to_add'): members_to_add = kwargs['members_to_add'] index = [members.index(member) for member in members if member['id'] == members_to_add[0]][0] loadbalancer_id = data.get('loadbalancer_id') else: index = kwargs.get('index') loadbalancer_id = kwargs.get('loadbalancer_id') member = members[index] conn = _get_sdk_connection(request) monitor_address = member.get('monitor_address') member = conn.load_balancer.create_member( pool_id, address=member['address'], protocol_port=member['protocol_port'], subnet_id=member['subnet_id'], weight=member.get('weight'), monitor_address=monitor_address if monitor_address else None, monitor_port=member.get('monitor_port'), admin_state_up=member.get('admin_state_up'), backup=member.get('backup', False), name=member.get('name'), ) index += 1 if kwargs.get('members_to_add'): args = (request, loadbalancer_id, update_member_list) members_to_add = kwargs['members_to_add'] members_to_add.pop(0) kwargs = {'callback_kwargs': { 'existing_members': kwargs.get('existing_members'), 'members_to_add': members_to_add, 'members_to_delete': kwargs.get('members_to_delete'), 'pool_id': pool_id}} thread.start_new_thread(poll_loadbalancer_status, args, kwargs) elif len(members) > index: args = (request, loadbalancer_id, add_member) kwargs = {'callback_kwargs': {'pool_id': pool_id, 'index': index}} thread.start_new_thread(poll_loadbalancer_status, args, kwargs) elif data.get('monitor'): args = (request, loadbalancer_id, create_health_monitor) kwargs = {'callback_kwargs': {'pool_id': pool_id}} thread.start_new_thread(poll_loadbalancer_status, args, kwargs) return _get_sdk_object_dict(member) def remove_member(request, **kwargs): """Remove a member from the pool. """ data = request.DATA loadbalancer_id = data.get('loadbalancer_id') pool_id = kwargs.get('pool_id') if kwargs.get('members_to_delete'): members_to_delete = kwargs['members_to_delete'] member_id = members_to_delete.pop(0) conn = _get_sdk_connection(request) conn.load_balancer.delete_member(member_id, pool_id, ignore_missing=True) args = (request, loadbalancer_id, update_member_list) kwargs = {'callback_kwargs': { 'existing_members': kwargs.get('existing_members'), 'members_to_add': kwargs.get('members_to_add'), 'members_to_delete': members_to_delete, 'pool_id': pool_id}} thread.start_new_thread(poll_loadbalancer_status, args, kwargs) def update_loadbalancer(request, **kwargs): """Update a load balancer. """ data = request.DATA loadbalancer_id = kwargs.get('loadbalancer_id') conn = _get_sdk_connection(request) loadbalancer = conn.load_balancer.update_load_balancer( loadbalancer_id, name=data['loadbalancer'].get('name'), description=data['loadbalancer'].get('description'), admin_state_up=data['loadbalancer'].get('admin_state_up')) return _get_sdk_object_dict(loadbalancer) def update_listener(request, **kwargs): """Update a listener. """ data = request.DATA listener_id = data['listener'].get('id') loadbalancer_id = data.get('loadbalancer_id') default_pool_id = data['listener'].get('default_pool_id') if not default_pool_id: default_pool_id = None else: default_pool_id = default_pool_id[:36] try: default_tls_ref = data['certificates'][0] except (KeyError, IndexError): default_tls_ref = None conn = _get_sdk_connection(request) listener = conn.load_balancer.update_listener( listener=listener_id, name=data['listener'].get('name'), description=data['listener'].get('description'), connection_limit=data['listener'].get('connection_limit'), default_tls_container_ref=default_tls_ref, sni_container_refs=None, admin_state_up=data['listener'].get('admin_state_up'), default_pool_id=default_pool_id, insert_headers=data['listener'].get('insert_headers'), timeout_client_data=data['listener'].get('timeout_client_data'), timeout_member_connect=data['listener'].get('timeout_member_connect'), timeout_member_data=data['listener'].get('timeout_member_data'), timeout_tcp_inspect=data['listener'].get('timeout_tcp_inspect'), allowed_cidrs=data['listener'].get('allowed_cidrs'), # Replace empty string by None (uses default tls cipher string) tls_ciphers=data['listener'].get('tls_ciphers') or None, ) if data.get('pool'): args = (request, loadbalancer_id, update_pool) thread.start_new_thread(poll_loadbalancer_status, args) return _get_sdk_object_dict(listener) def update_l7_policy(request, **kwargs): """Update a l7 policy. """ data = request.DATA l7_policy_id = data['l7policy'].get('id') conn = _get_sdk_connection(request) l7_policy = conn.load_balancer.update_l7_policy( action=data['l7policy']['action'], admin_state_up=data['l7policy'].get('admin_state_up'), description=data['l7policy'].get('description'), l7_policy=l7_policy_id, name=data['l7policy'].get('name'), position=data['l7policy'].get('position'), redirect_pool_id=data['l7policy'].get('redirect_pool_id'), redirect_url=data['l7policy'].get('redirect_url'), ) return _get_sdk_object_dict(l7_policy) def update_l7_rule(request, **kwargs): """Update a l7 rule. """ data = request.DATA l7_rule_id = data['l7rule'].get('id') conn = _get_sdk_connection(request) l7_rule = conn.load_balancer.update_l7_rule( admin_state_up=data['l7rule'].get('admin_state_up'), compare_type=data['l7rule']['compare_type'], invert=data['l7rule'].get('invert'), key=data['l7rule'].get('key'), l7_policy=kwargs['l7_policy_id'], l7rule=l7_rule_id, type=data['l7rule']['type'], rule_value=data['l7rule']['rule_value'], ) return _get_sdk_object_dict(l7_rule) def update_pool(request, **kwargs): """Update a pool. """ data = request.DATA pool_id = data['pool'].get('id') loadbalancer_id = data.get('loadbalancer_id') conn = _get_sdk_connection(request) pool = conn.load_balancer.update_pool( pool=pool_id, lb_algorithm=data['pool']['lb_algorithm'], session_persistence=data['pool'].get('session_persistence'), name=data['pool'].get('name'), description=data['pool'].get('description'), admin_state_up=data['pool'].get('admin_state_up'), tls_enabled=data['pool'].get('tls_enabled'), # Replace empty string by None (uses default tls cipher string) tls_ciphers=data['pool'].get('tls_ciphers') or None, ) # Assemble the lists of member id's to add and remove, if any exist request_member_data = data.get('members', []) existing_members = _sdk_object_to_list(conn.load_balancer.members(pool_id)) (members_to_add, members_to_delete) = get_members_to_add_remove( request_member_data, existing_members) if members_to_add or members_to_delete: args = (request, loadbalancer_id, update_member_list) kwargs = {'callback_kwargs': {'existing_members': existing_members, 'members_to_add': members_to_add, 'members_to_delete': members_to_delete, 'pool_id': pool_id}} thread.start_new_thread(poll_loadbalancer_status, args, kwargs) elif data.get('monitor'): args = (request, loadbalancer_id, update_monitor) thread.start_new_thread(poll_loadbalancer_status, args) return _get_sdk_object_dict(pool) def update_monitor(request, **kwargs): """Update a health monitor. """ data = request.DATA monitor_id = data['monitor']['id'] conn = _get_sdk_connection(request) healthmonitor = conn.load_balancer.update_health_monitor( monitor_id, delay=data['monitor'].get('delay'), timeout=data['monitor'].get('timeout'), max_retries=data['monitor'].get('max_retries'), max_retries_down=data['monitor'].get('max_retries_down'), http_method=data['monitor'].get('http_method'), url_path=data['monitor'].get('url_path'), expected_codes=data['monitor'].get('expected_codes'), admin_state_up=data['monitor'].get('admin_state_up'), name=data['monitor'].get('name') ) return _get_sdk_object_dict(healthmonitor) def update_flavor(request, **kwargs): """Update a flavor. """ data = request.DATA flavor_id = data['flavor']['id'] conn = _get_sdk_connection(request) flavor = conn.load_balancer.update_flavor( flavor_id, name=data['flavor'].get('name'), description=data['flavor'].get('description'), enabled=data['flavor'].get('enabled'), ) return _get_sdk_object_dict(flavor) def update_flavor_profile(request, **kwargs): """Update a flavor profile. """ data = request.DATA flavor_profile_id = data['flavor_profile']['id'] conn = _get_sdk_connection(request) flavor_profile = conn.load_balancer.update_flavor_profile( flavor_profile_id, name=data['flavor_profile'].get('name'), provider_name=data['flavor_profile'].get('provider_name'), flavor_data=data['flavor_profile'].get('flavor_data'), ) return _get_sdk_object_dict(flavor_profile) def update_member_list(request, **kwargs): """Update the list of members by adding or removing the necessary members. """ data = request.DATA loadbalancer_id = data.get('loadbalancer_id') pool_id = kwargs.get('pool_id') existing_members = kwargs.get('existing_members') members_to_add = kwargs.get('members_to_add') members_to_delete = kwargs.get('members_to_delete') if members_to_delete: kwargs = {'existing_members': existing_members, 'members_to_add': members_to_add, 'members_to_delete': members_to_delete, 'pool_id': pool_id} remove_member(request, **kwargs) elif members_to_add: kwargs = {'existing_members': existing_members, 'members_to_add': members_to_add, 'members_to_delete': members_to_delete, 'pool_id': pool_id} add_member(request, **kwargs) elif data.get('monitor'): args = (request, loadbalancer_id, update_monitor) thread.start_new_thread(poll_loadbalancer_status, args) def get_members_to_add_remove(request_member_data, existing_members): new_member_ids = [member['id'] for member in request_member_data] existing_member_ids = [member['id'] for member in existing_members] members_to_add = [member_id for member_id in new_member_ids if member_id not in existing_member_ids] members_to_delete = [member_id for member_id in existing_member_ids if member_id not in new_member_ids] return members_to_add, members_to_delete def add_floating_ip_info(request, loadbalancers): """Add floating IP address info to each load balancer. """ floating_ips = neutron.tenant_floating_ip_list(request) for lb in loadbalancers: floating_ip = {} associated_ip = next((fip for fip in floating_ips if fip['port_id'] == lb['vip_port_id']), None) if associated_ip is not None: floating_ip['id'] = associated_ip['id'] floating_ip['ip'] = associated_ip['ip'] lb['floating_ip'] = floating_ip @urls.register class LoadBalancers(generic.View): """API for load balancers. """ url_regex = r'lbaas/loadbalancers/$' @rest_utils.ajax() def get(self, request): """List load balancers for current project. The listing result is an object with property "items". """ conn = _get_sdk_connection(request) lb_list = _sdk_object_to_list(conn.load_balancer.load_balancers( project_id=request.user.project_id)) if request.GET.get('full') and neutron.floating_ip_supported(request): add_floating_ip_info(request, lb_list) return {'items': lb_list} @rest_utils.ajax() def post(self, request): """Create a new load balancer. Creates a new load balancer as well as other optional resources such as a listener, pool, monitor, etc. """ return create_loadbalancer(request) @urls.register class LoadBalancer(generic.View): """API for retrieving, updating, and deleting a single load balancer. """ url_regex = r'lbaas/loadbalancers/(?P<loadbalancer_id>[^/]+)/$' @rest_utils.ajax() def get(self, request, loadbalancer_id): """Get a specific load balancer. http://localhost/api/lbaas/loadbalancers/cc758c90-3d98-4ea1-af44-aab405c9c915 """ conn = _get_sdk_connection(request) loadbalancer = conn.load_balancer.find_load_balancer(loadbalancer_id) loadbalancer_dict = _get_sdk_object_dict(loadbalancer) if request.GET.get('full') and neutron.floating_ip_supported(request): add_floating_ip_info(request, [loadbalancer_dict]) return loadbalancer_dict @rest_utils.ajax() def put(self, request, loadbalancer_id): """Edit a load balancer. """ kwargs = {'loadbalancer_id': loadbalancer_id} update_loadbalancer(request, **kwargs) @rest_utils.ajax() def delete(self, request, loadbalancer_id): """Delete a specific load balancer. http://localhost/api/lbaas/loadbalancers/cc758c90-3d98-4ea1-af44-aab405c9c915 """ conn = _get_sdk_connection(request) conn.load_balancer.delete_load_balancer(loadbalancer_id, ignore_missing=True, cascade=True) @urls.register class Listeners(generic.View): """API for load balancer listeners. """ url_regex = r'lbaas/listeners/$' @rest_utils.ajax() def get(self, request): """List of listeners for the current project. The listing result is an object with property "items". """ loadbalancer_id = request.GET.get('loadbalancerId') conn = _get_sdk_connection(request) listener_list = _sdk_object_to_list(conn.load_balancer.listeners( project_id=request.user.project_id)) if loadbalancer_id: listener_list = self._filter_listeners(listener_list, loadbalancer_id) return {'items': listener_list} @rest_utils.ajax() def post(self, request): """Create a new listener. Creates a new listener as well as other optional resources such as a pool, members, and health monitor. """ kwargs = {'loadbalancer_id': request.DATA.get('loadbalancer_id')} return create_listener(request, **kwargs) def _filter_listeners(self, listener_list, loadbalancer_id): filtered_listeners = [] for listener in listener_list: if listener['load_balancers'][0]['id'] == loadbalancer_id: filtered_listeners.append(listener) return filtered_listeners @urls.register class Listener(generic.View): """API for retrieving, updating, and deleting a single listener. """ url_regex = r'lbaas/listeners/(?P<listener_id>[^/]+)/$' @rest_utils.ajax() def get(self, request, listener_id): """Get a specific listener. If the param 'includeChildResources' is passed in as a truthy value, the details of all resources that exist under the listener will be returned along with the listener details. http://localhost/api/lbaas/listeners/cc758c90-3d98-4ea1-af44-aab405c9c915 """ conn = _get_sdk_connection(request) listener = conn.load_balancer.find_listener(listener_id) listener = _get_sdk_object_dict(listener) if request.GET.get('includeChildResources'): resources = {} resources['listener'] = listener if listener.get('default_pool_id'): pool_id = listener['default_pool_id'] pool = conn.load_balancer.find_pool(pool_id) pool = _get_sdk_object_dict(pool) resources['pool'] = pool if pool.get('members'): member_list = _sdk_object_to_list( conn.load_balancer.members(pool_id)) resources['members'] = member_list if pool.get('health_monitor_id'): monitor_id = pool['health_monitor_id'] monitor = conn.load_balancer.find_health_monitor( monitor_id) monitor = _get_sdk_object_dict(monitor) resources['monitor'] = monitor return resources else: return listener @rest_utils.ajax() def put(self, request, listener_id): """Edit a listener as well as any resources below it. """ kwargs = {'listener_id': listener_id} update_listener(request, **kwargs) @rest_utils.ajax() def delete(self, request, listener_id): """Delete a specific listener. http://localhost/api/lbaas/listeners/cc758c90-3d98-4ea1-af44-aab405c9c915 """ conn = _get_sdk_connection(request) conn.load_balancer.delete_listener(listener_id, ignore_missing=True) @urls.register class L7Policies(generic.View): """API for load balancer l7 policies. """ url_regex = r'lbaas/l7policies/$' @rest_utils.ajax() def get(self, request): """List of l7 policies for the current project. The listing result is an object with property "items". """ listener_id = request.GET.get('listenerId') conn = _get_sdk_connection(request) l7_policy_list = _sdk_object_to_list(conn.load_balancer.l7_policies( listener_id=listener_id)) return {'items': l7_policy_list} @rest_utils.ajax() def post(self, request): """Create a new l7 policy. Creates a new l7 policy as well as other optional resources such as l7 rules. """ kwargs = {'listener_id': request.DATA.get('parentResourceId')} return create_l7_policy(request, **kwargs) @urls.register class L7Policy(generic.View): """API for retrieving a single l7 policy. """ url_regex = r'lbaas/l7policies/(?P<l7_policy_id>[^/]+)/$' @rest_utils.ajax() def get(self, request, l7_policy_id): """Get a specific l7 policy. If the param 'includeChildResources' is passed in as a truthy value, the details of all resources that exist under the l7 policy will be returned along with the l7 policy details. http://localhost/api/lbaas/l7policies/cc758c90-3d98-4ea1-af44-aab405c9c915 """ conn = _get_sdk_connection(request) l7_policy = conn.load_balancer.find_l7_policy(l7_policy_id) l7_policy = _get_sdk_object_dict(l7_policy) if request.GET.get('includeChildResources'): resources = {} if l7_policy.get('rules'): l7_rules_list = _sdk_object_to_list( conn.load_balancer.l7_rules(l7_policy_id)) l7_policy['rules'] = l7_rules_list resources['l7policy'] = l7_policy return resources else: return l7_policy @rest_utils.ajax() def put(self, request, l7_policy_id): """Edit a l7 policy as well as any resources below it. """ kwargs = {'l7_policy_id': l7_policy_id} update_l7_policy(request, **kwargs) @rest_utils.ajax() def delete(self, request, l7_policy_id): """Delete a specific l7 policy. http://localhost/api/lbaas/l7policies/cc758c90-3d98-4ea1-af44-aab405c9c915 """ conn = _get_sdk_connection(request) conn.load_balancer.delete_l7_policy(l7_policy_id) @urls.register class L7Rules(generic.View): """API for load balancer l7 rules. """ url_regex = r'lbaas/l7policies/(?P<l7_policy_id>[^/]+)/l7rules/$' @rest_utils.ajax() def get(self, request, l7_policy_id): """List of l7 rules for the current project. The listing result is an object with property "items". """ conn = _get_sdk_connection(request) l7_rule_list = _sdk_object_to_list(conn.load_balancer.l7_rules( l7_policy_id)) return {'items': l7_rule_list} @rest_utils.ajax() def post(self, request, l7_policy_id): """Create a new l7 rule. Creates a new l7 rule as well as other optional resources such as l7 rules. """ kwargs = {'l7_policy_id': l7_policy_id} return create_l7_rule(request, **kwargs) @urls.register class L7Rule(generic.View): """API for retrieving a single l7 rule. """ url_regex = ( r'lbaas/l7policies/(?P<l7_policy_id>[^/]+)' r'/l7rules/(?P<l7_rule_id>[^/]+)/$' ) @rest_utils.ajax() def get(self, request, l7_rule_id, l7_policy_id): """Get a specific l7 rule.""" conn = _get_sdk_connection(request) l7_rule = conn.load_balancer.find_l7_rule(l7_rule_id, l7_policy_id) return _get_sdk_object_dict(l7_rule) @rest_utils.ajax() def put(self, request, l7_rule_id, l7_policy_id): """Edit a specific l7 rule.""" kwargs = {'l7_rule_id': l7_rule_id, 'l7_policy_id': l7_policy_id} update_l7_rule(request, **kwargs) @rest_utils.ajax() def delete(self, request, l7_rule_id, l7_policy_id): """Delete a specific l7 rule.""" conn = _get_sdk_connection(request) conn.load_balancer.delete_l7_rule(l7_rule_id, l7_policy_id) @urls.register class Pools(generic.View): """API for load balancer pools. """ url_regex = r'lbaas/pools/$' @rest_utils.ajax() def get(self, request): """List of pools for the current project. The listing result is an object with property "items". """ loadbalancer_id = request.GET.get('loadbalancerId') listener_id = request.GET.get('listenerId') conn = _get_sdk_connection(request) pool_list = _sdk_object_to_list(conn.load_balancer.pools( project_id=request.user.project_id)) if loadbalancer_id or listener_id: pool_list = self._filter_pools(pool_list, loadbalancer_id, listener_id) return {'items': pool_list} @rest_utils.ajax() def post(self, request): """Create a new pool. Creates a new pool as well as other optional resources such as members and health monitor. """ kwargs = {'loadbalancer_id': request.DATA.get('loadbalancer_id'), 'listener_id': request.DATA.get('parentResourceId')} return create_pool(request, **kwargs) def _filter_pools(self, pool_list, loadbalancer_id, listener_id): filtered_pools = [] for pool in pool_list: if loadbalancer_id: if pool['loadbalancers'][0]['id'] == loadbalancer_id: if listener_id: if (pool['listeners'] and pool['listeners'][0]['id'] == listener_id): filtered_pools.append(pool) else: filtered_pools.append(pool) elif (pool['listeners'] and pool['listeners'][0]['id'] == listener_id): filtered_pools.append(pool) return filtered_pools @urls.register class Pool(generic.View): """API for retrieving a single pool. """ url_regex = r'lbaas/pools/(?P<pool_id>[^/]+)/$' @rest_utils.ajax() def get(self, request, pool_id): """Get a specific pool. If the param 'includeChildResources' is passed in as a truthy value, the details of all resources that exist under the pool will be returned along with the pool details. http://localhost/api/lbaas/pools/cc758c90-3d98-4ea1-af44-aab405c9c915 """ conn = _get_sdk_connection(request) pool = conn.load_balancer.find_pool(pool_id) pool = _get_sdk_object_dict(pool) if request.GET.get('includeChildResources'): resources = {} resources['pool'] = pool if pool.get('members'): member_list = _sdk_object_to_list( conn.load_balancer.members(pool_id)) resources['members'] = member_list if pool.get('health_monitor_id'): monitor_id = pool['health_monitor_id'] monitor = conn.load_balancer.find_health_monitor( monitor_id) monitor = _get_sdk_object_dict(monitor) resources['monitor'] = monitor return resources else: return pool @rest_utils.ajax() def put(self, request, pool_id): """Edit a listener as well as any resources below it. """ kwargs = {'pool_id': pool_id} update_pool(request, **kwargs) @rest_utils.ajax() def delete(self, request, pool_id): """Delete a specific pool. http://localhost/api/lbaas/pools/cc758c90-3d98-4ea1-af44-aab405c9c915 """ conn = _get_sdk_connection(request) conn.load_balancer.delete_pool(pool_id) @urls.register class Members(generic.View): """API for load balancer members. """ url_regex = r'lbaas/pools/(?P<pool_id>[^/]+)/members/$' @rest_utils.ajax() def get(self, request, pool_id): """List of members for the current project. The listing result is an object with property "items". """ conn = _get_sdk_connection(request) members_list = _sdk_object_to_list(conn.load_balancer.members(pool_id)) return {'items': members_list} @rest_utils.ajax() def put(self, request, pool_id): """Update the list of members for the current project. """ # Assemble the lists of member id's to add and remove, if any exist request_member_data = request.DATA.get('members', []) conn = _get_sdk_connection(request) existing_members = _sdk_object_to_list( conn.load_balancer.members(pool_id)) (members_to_add, members_to_delete) = get_members_to_add_remove( request_member_data, existing_members) if members_to_add or members_to_delete: kwargs = {'existing_members': existing_members, 'members_to_add': members_to_add, 'members_to_delete': members_to_delete, 'pool_id': pool_id} update_member_list(request, **kwargs) @urls.register class Member(generic.View): """API for retrieving a single member. """ url_regex = r'lbaas/pools/(?P<pool_id>[^/]+)' + \ '/members/(?P<member_id>[^/]+)/$' @rest_utils.ajax() def get(self, request, member_id, pool_id): """Get a specific member belonging to a specific pool. """ conn = _get_sdk_connection(request) member = conn.load_balancer.find_member(member_id, pool_id) return _get_sdk_object_dict(member) @rest_utils.ajax() def delete(self, request, member_id, pool_id): """Delete a specific member belonging to a specific pool. """ conn = _get_sdk_connection(request) conn.load_balancer.delete_member(member_id, pool_id) @rest_utils.ajax() def put(self, request, member_id, pool_id): """Edit a pool member. """ data = request.DATA conn = _get_sdk_connection(request) monitor_address = data.get('monitor_address') member = conn.load_balancer.update_member( member_id, pool_id, weight=data.get('weight'), monitor_address=monitor_address if monitor_address else None, monitor_port=data.get('monitor_port'), admin_state_up=data.get('admin_state_up'), backup=data.get('backup', False), name=data.get('name'), ) return _get_sdk_object_dict(member) @urls.register class HealthMonitors(generic.View): """API for load balancer pool health monitors. """ url_regex = r'lbaas/healthmonitors/$' @rest_utils.ajax() def get(self, request): """List of health monitors for the current project. The listing result is an object with property "items". """ pool_id = request.GET.get('poolId') conn = _get_sdk_connection(request) health_monitor_list = _sdk_object_to_list( conn.load_balancer.health_monitors( project_id=request.user.project_id ) ) if pool_id: health_monitor_list = self._filter_health_monitors( health_monitor_list, pool_id) return {'items': health_monitor_list} @rest_utils.ajax() def post(self, request): """Create a new health monitor. """ kwargs = {'loadbalancer_id': request.DATA.get('loadbalancer_id'), 'pool_id': request.DATA.get('parentResourceId')} return create_health_monitor(request, **kwargs) def _filter_health_monitors(self, health_monitor_list, pool_id): filtered_health_monitors = [] for health_monitor in health_monitor_list: if health_monitor['pools'][0]['id'] == pool_id: filtered_health_monitors.append(health_monitor) return filtered_health_monitors @urls.register class HealthMonitor(generic.View): """API for retrieving a single health monitor. """ url_regex = r'lbaas/healthmonitors/(?P<health_monitor_id>[^/]+)/$' @rest_utils.ajax() def get(self, request, health_monitor_id): """Get a specific health monitor. """ conn = _get_sdk_connection(request) health_mon = conn.load_balancer.find_health_monitor(health_monitor_id) return _get_sdk_object_dict(health_mon) @rest_utils.ajax() def delete(self, request, health_monitor_id): """Delete a specific health monitor. http://localhost/api/lbaas/healthmonitors/cc758c90-3d98-4ea1-af44-aab405c9c915 """ conn = _get_sdk_connection(request) conn.load_balancer.delete_health_monitor(health_monitor_id, ignore_missing=True) @rest_utils.ajax() def put(self, request, health_monitor_id): """Edit a health monitor. """ update_monitor(request) @urls.register class Flavors(generic.View): """API for load balancer flavors. """ url_regex = r'lbaas/flavors/$' @rest_utils.ajax() def get(self, request): """List of flavors for the current project. The listing result is an object with property "items". """ conn = _get_sdk_connection(request) flavor_list = _sdk_object_to_list( conn.load_balancer.flavors() ) return {'items': flavor_list} @rest_utils.ajax() def post(self, request): """Create a new flavor. """ kwargs = { 'flavor': request.DATA.get('flavor') } return create_flavor(request, **kwargs) @urls.register class Flavor(generic.View): """API for retrieving a single flavor. """ url_regex = r'lbaas/flavors/(?P<flavor_id>[^/]+)/$' @rest_utils.ajax() def get(self, request, flavor_id): """Get a specific flavor. """ conn = _get_sdk_connection(request) flavor = conn.load_balancer.find_flavor(flavor_id) return _get_sdk_object_dict(flavor) @rest_utils.ajax() def delete(self, request, flavor_id): """Delete a specific flavor. http://localhost/api/lbaas/flavors/3971d368-ca9b-4770-929a-3adca5bf89eb """ conn = _get_sdk_connection(request) conn.load_balancer.delete_flavor(flavor_id, ignore_missing=True) @rest_utils.ajax() def put(self, request, flavor_id): """Edit a flavor. """ update_flavor(request) @urls.register class FlavorProfiles(generic.View): """API for load balancer flavor profiles. """ url_regex = r'lbaas/flavorprofiles/$' @rest_utils.ajax() def get(self, request): """List of flavor profiles for the current project. The listing result is an object with property "items". """ conn = _get_sdk_connection(request) flavor_profile_list = _sdk_object_to_list( conn.load_balancer.flavor_profiles() ) return {'items': flavor_profile_list} @rest_utils.ajax() def post(self, request): """Create a new flavor_profile. """ kwargs = { 'flavor_profile': request.DATA.get('flavor_profile') } return create_flavor_profile(request, **kwargs) @urls.register class FlavorProfile(generic.View): """API for retrieving a single flavor profile. """ url_regex = r'lbaas/flavorprofiles/(?P<flavor_profile_id>[^/]+)/$' @rest_utils.ajax() def get(self, request, flavor_profile_id): """Get a specific flavor profile. """ conn = _get_sdk_connection(request) flavor_profile = conn.load_balancer.find_flavor_profile( flavor_profile_id) return _get_sdk_object_dict(flavor_profile) @rest_utils.ajax() def delete(self, request, flavor_profile_id): """Delete a specific flavor profile. http://localhost/api/lbaas/flavorprofiles/e8150eab-aefa-42cc-867e-3fb336da52bd """ conn = _get_sdk_connection(request) conn.load_balancer.delete_flavor_profile(flavor_profile_id, ignore_missing=True) @rest_utils.ajax() def put(self, request, flavor_profile_id): """Edit a flavor profile. """ update_flavor_profile(request) @urls.register class AvailabilityZones(generic.View): """API for load balancer availability zones. """ url_regex = r'lbaas/availabilityzones/$' @rest_utils.ajax() def get(self, request): """List of availability zones for the current project. The listing result is an object with property "items". """ conn = _get_sdk_connection(request) availability_zone_list = _sdk_object_to_list( conn.load_balancer.availability_zones() ) return {'items': availability_zone_list}
33.347125
86
0.644229
97dc00bae8d02e8f139b5f6677d017e9fef4491a
1,994
py
Python
application.py
amfox/af_sbs
327a0a68731e905818b24aaf4efb35cfd0d29637
[ "MIT" ]
null
null
null
application.py
amfox/af_sbs
327a0a68731e905818b24aaf4efb35cfd0d29637
[ "MIT" ]
null
null
null
application.py
amfox/af_sbs
327a0a68731e905818b24aaf4efb35cfd0d29637
[ "MIT" ]
null
null
null
# coding=utf-8 import os import tornado from apscheduler.events import EVENT_JOB_EXECUTED, EVENT_JOB_ERROR, EVENT_JOB_ADDED from apscheduler.schedulers.tornado import TornadoScheduler from handler.AddJobHandler import AddJobHandler from handler.BackUIHandler import BackUIHandler from handler.DebugHandler import DebugHandler from handler.GetJobHandler import GetJobHandler from handler.GetJobsHandler import GetJobsHandler from handler.ModifyJobHandler import ModifyJobHandler from handler.PauseJobHandler import PauseJobHandler from handler.RemoveJobHandler import RemoveJobHandler from handler.ResumeJobHandler import ResumeJobHandler from handler.RunJobHandler import RunJobHandler from settings import jobstores, executors, job_defaults class Application(tornado.web.Application): def __init__(self): handlers = [ (r"/", DebugHandler), (r"/backui", BackUIHandler), (r"/job/getjob", GetJobHandler), (r"/job/getjobs", GetJobsHandler), (r"/job/addjob", AddJobHandler), (r"/job/removejob", RemoveJobHandler), (r"/job/runjob", RunJobHandler), (r"/job/modifyjob", ModifyJobHandler), (r"/job/pausejob", PauseJobHandler), (r"/job/resumejob", ResumeJobHandler), ] settings = dict( template_path=os.path.join(os.path.dirname(__file__), "templates"), static_path=os.path.join(os.path.dirname(__file__), "static"), debug=True, ) tornado.web.Application.__init__(self, handlers, **settings) # Scheduler of jobs self.scheduler = TornadoScheduler() self.scheduler.configure(jobstores=jobstores, executors=executors, job_defaults=job_defaults) self.scheduler.add_listener(self.listener, EVENT_JOB_ADDED | EVENT_JOB_EXECUTED | EVENT_JOB_ERROR) def listener(self, event): print "jobid:", event.job_id, "jobstore", event.jobstore, "eventcode:", event.code
39.098039
106
0.713641
dca618e4aee2a10126bee1646d0196d38f716d03
4,114
py
Python
hello.py
julencastro37/PianoPython
1e72d375f9f5f94c6f4fcad1892df574befe9d8b
[ "CC0-1.0" ]
null
null
null
hello.py
julencastro37/PianoPython
1e72d375f9f5f94c6f4fcad1892df574befe9d8b
[ "CC0-1.0" ]
null
null
null
hello.py
julencastro37/PianoPython
1e72d375f9f5f94c6f4fcad1892df574befe9d8b
[ "CC0-1.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- from tkinter import * from tkinter import ttk # La clase 'Aplicacion' ha crecido. En el ejemplo se incluyen # nuevos widgets en el método constructor __init__(): Uno de # ellos es el botón 'Info' que cuando sea presionado llamará # al método 'verinfo' para mostrar información en el otro # widget, una caja de texto: un evento ejecuta una acción: class Aplicacion(): def __init__(self): # En el ejemplo se utiliza el prefijo 'self' para # declarar algunas variables asociadas al objeto # ('mi_app') de la clase 'Aplicacion'. Su uso es # imprescindible para que se pueda acceder a sus # valores desde otros métodos: self.raiz = Tk() self.raiz.geometry('600x400') # Impide que los bordes puedan desplazarse para # ampliar o reducir el tamaño de la ventana 'self.raiz': self.raiz.resizable(width=False,height=False) self.raiz.title('Piano') # Define el widget Text 'self.tinfo ' en el que se # pueden introducir varias líneas de texto: self.tinfo = Text(self.raiz, width=60, height=20) # Sitúa la caja de texto 'self.tinfo' en la parte # superior de la ventana 'self.raiz': self.tinfo.pack(side=TOP) # Define el widget Button 'self.binfo' que llamará # al metodo 'self.verinfo' cuando sea presionado self.binfo = ttk.Button(self.raiz, text='Info', command=self.verinfo) # Coloca el botón 'self.binfo' debajo y a la izquierda # del widget anterior self.binfo.pack(side=LEFT) # Define el botón 'self.bsalir'. En este caso # cuando sea presionado, el método destruirá o # terminará la aplicación-ventana 'self.raíz' con # 'self.raiz.destroy' self.bsalir = ttk.Button(self.raiz, text='Salir', command=self.raiz.destroy) # Coloca el botón 'self.bsalir' a la derecha del # objeto anterior. self.bsalir.pack(side=RIGHT) # El foco de la aplicación se sitúa en el botón # 'self.binfo' resaltando su borde. Si se presiona # la barra espaciadora el botón que tiene el foco # será pulsado. El foco puede cambiar de un widget # a otro con la tecla tabulador [tab] self.binfo.focus_set() self.raiz.mainloop() def verinfo(self): # Borra el contenido que tenga en un momento dado # la caja de texto self.tinfo.delete("1.0", END) # Obtiene información de la ventana 'self.raiz': info1 = self.raiz.winfo_class() info2 = self.raiz.winfo_geometry() info3 = str(self.raiz.winfo_width()) info4 = str(self.raiz.winfo_height()) info5 = str(self.raiz.winfo_rootx()) info6 = str(self.raiz.winfo_rooty()) info7 = str(self.raiz.winfo_id()) info8 = self.raiz.winfo_name() info9 = self.raiz.winfo_manager() # Construye una cadena de texto con toda la # información obtenida: texto_info = "Clase de 'raiz': " + info1 + "\n" texto_info += "Resolución y posición: " + info2 + "\n" texto_info += "Anchura ventana: " + info3 + "\n" texto_info += "Altura ventana: " + info4 + "\n" texto_info += "Pos. Ventana X: " + info5 + "\n" texto_info += "Pos. Ventana Y: " + info6 + "\n" texto_info += "Id. de 'raiz': " + info7 + "\n" texto_info += "Nombre objeto: " + info8 + "\n" texto_info += "Gestor ventanas: " + info9 + "\n" # Inserta la información en la caja de texto: self.tinfo.insert("1.0", texto_info) def main(): mi_app = Aplicacion() return 0 if __name__ == '__main__': main()
35.773913
64
0.56174
8a8e5d9aed1cf923d116e0e4e0c589b14041b24f
4,642
py
Python
mmedit/models/mattors/indexnet.py
Jian137/mmediting-1
e1ac6c93441ec96696d0b530f040b91b809015b6
[ "Apache-2.0" ]
1,884
2020-07-09T18:53:43.000Z
2022-03-31T12:06:18.000Z
mmedit/models/mattors/indexnet.py
Jian137/mmediting-1
e1ac6c93441ec96696d0b530f040b91b809015b6
[ "Apache-2.0" ]
622
2020-07-09T18:52:27.000Z
2022-03-31T14:41:09.000Z
mmedit/models/mattors/indexnet.py
Jian137/mmediting-1
e1ac6c93441ec96696d0b530f040b91b809015b6
[ "Apache-2.0" ]
361
2020-07-09T19:21:47.000Z
2022-03-31T09:58:27.000Z
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmcv.runner import auto_fp16 from ..builder import build_loss from ..registry import MODELS from .base_mattor import BaseMattor from .utils import get_unknown_tensor @MODELS.register_module() class IndexNet(BaseMattor): """IndexNet matting model. This implementation follows: Indices Matter: Learning to Index for Deep Image Matting Args: backbone (dict): Config of backbone. train_cfg (dict): Config of training. In 'train_cfg', 'train_backbone' should be specified. test_cfg (dict): Config of testing. pretrained (str): path of pretrained model. loss_alpha (dict): Config of the alpha prediction loss. Default: None. loss_comp (dict): Config of the composition loss. Default: None. """ def __init__(self, backbone, train_cfg=None, test_cfg=None, pretrained=None, loss_alpha=None, loss_comp=None): super().__init__(backbone, None, train_cfg, test_cfg, pretrained) self.loss_alpha = ( build_loss(loss_alpha) if loss_alpha is not None else None) self.loss_comp = ( build_loss(loss_comp) if loss_comp is not None else None) # support fp16 self.fp16_enabled = False def forward_dummy(self, inputs): return self.backbone(inputs) @auto_fp16(apply_to=('merged', 'trimap')) def forward_train(self, merged, trimap, meta, alpha, ori_merged, fg, bg): """Forward function for training IndexNet model. Args: merged (Tensor): Input images tensor with shape (N, C, H, W). Typically these should be mean centered and std scaled. trimap (Tensor): Tensor of trimap with shape (N, 1, H, W). meta (list[dict]): Meta data about the current data batch. alpha (Tensor): Tensor of alpha with shape (N, 1, H, W). ori_merged (Tensor): Tensor of origin merged images (not normalized) with shape (N, C, H, W). fg (Tensor): Tensor of foreground with shape (N, C, H, W). bg (Tensor): Tensor of background with shape (N, C, H, W). Returns: dict: Contains the loss items and batch information. """ pred_alpha = self.backbone(torch.cat((merged, trimap), 1)) losses = dict() weight = get_unknown_tensor(trimap, meta) if self.loss_alpha is not None: losses['loss_alpha'] = self.loss_alpha(pred_alpha, alpha, weight) if self.loss_comp is not None: losses['loss_comp'] = self.loss_comp(pred_alpha, fg, bg, ori_merged, weight) return {'losses': losses, 'num_samples': merged.size(0)} def forward_test(self, merged, trimap, meta, save_image=False, save_path=None, iteration=None): """Defines the computation performed at every test call. Args: merged (Tensor): Image to predict alpha matte. trimap (Tensor): Trimap of the input image. meta (list[dict]): Meta data about the current data batch. Currently only batch_size 1 is supported. It may contain information needed to calculate metrics (``ori_alpha`` and ``ori_trimap``) or save predicted alpha matte (``merged_path``). save_image (bool, optional): Whether save predicted alpha matte. Defaults to False. save_path (str, optional): The directory to save predicted alpha matte. Defaults to None. iteration (int, optional): If given as None, the saved alpha matte will have the same file name with ``merged_path`` in meta dict. If given as an int, the saved alpha matte would named with postfix ``_{iteration}.png``. Defaults to None. Returns: dict: Contains the predicted alpha and evaluation result. """ pred_alpha = self.backbone(torch.cat((merged, trimap), 1)) pred_alpha = pred_alpha.cpu().numpy().squeeze() pred_alpha = self.restore_shape(pred_alpha, meta) eval_result = self.evaluate(pred_alpha, meta) if save_image: self.save_image(pred_alpha, meta, save_path, iteration) return {'pred_alpha': pred_alpha, 'eval_result': eval_result}
40.017241
79
0.596726
10c4c08fa6ec45f89c60c38f06511319a9ac77cc
1,617
py
Python
example/test_clustering.py
anandbhoraskar/img2vec
5ae18d32fa54c46dd10bc01c0d340143283296da
[ "MIT" ]
1
2020-05-09T09:11:36.000Z
2020-05-09T09:11:36.000Z
example/test_clustering.py
anandbhoraskar/img2vec
5ae18d32fa54c46dd10bc01c0d340143283296da
[ "MIT" ]
null
null
null
example/test_clustering.py
anandbhoraskar/img2vec
5ae18d32fa54c46dd10bc01c0d340143283296da
[ "MIT" ]
null
null
null
import sys import os from shutil import copyfile sys.path.append("../img2vec_pytorch") # Adds higher directory to python modules path. from img_to_vec import Img2Vec from PIL import Image import numpy as np from sklearn.cluster import KMeans from sklearn.decomposition import PCA input_path = './test_images' files = os.listdir(input_path) img2vec = Img2Vec() vec_length = 512 # Using resnet-18 as default samples = len(files) # Amount of samples to take from input path k_value = 2 # How many clusters # Matrix to hold the image vectors vec_mat = np.zeros((samples, vec_length)) # If samples is < the number of files in the folder, we sample them randomly sample_indices = np.random.choice(range(0, len(files)), size=samples, replace=False) print('Reading images...') for index, i in enumerate(sample_indices): file = files[i] filename = os.fsdecode(file) img = Image.open(os.path.join(input_path, filename)) vec = img2vec.get_vec(img) vec_mat[index, :] = vec print('Applying PCA...') reduced_data = PCA(n_components=2).fit_transform(vec_mat) kmeans = KMeans(init='k-means++', n_clusters=k_value, n_init=10) kmeans.fit(reduced_data) # Create a folder for each cluster (0, 1, 2, ..) for i in set(kmeans.labels_): try: os.mkdir('./' + str(i)) except FileExistsError: continue print('Predicting...') preds = kmeans.predict(reduced_data) print('Copying images...') for index, i in enumerate(sample_indices): file = files[i] filename = os.fsdecode(file) copyfile(input_path + '/' + filename, './' + str(preds[index]) + '/' + filename) print('Done!')
28.875
86
0.709957
d9f3cdcbfe85fbd33bca90cf16c29336075d942c
2,701
py
Python
final_benchmark.py
Freeha-S/Algorithm
61d08de9b7ac2899d29ba7ba8a29730923e1f193
[ "MIT" ]
null
null
null
final_benchmark.py
Freeha-S/Algorithm
61d08de9b7ac2899d29ba7ba8a29730923e1f193
[ "MIT" ]
null
null
null
final_benchmark.py
Freeha-S/Algorithm
61d08de9b7ac2899d29ba7ba8a29730923e1f193
[ "MIT" ]
null
null
null
import numpy as np from numpy.random import randint from time import time from sorting import insertion_sort, merge_sort, quick_sort,selection_sort,radix_sort,radix_Sort from numpy import mean import pandas as pd import matplotlib.pyplot as plt import math """ def random_array(ArraySize): numpy.random.seed(0) testArray = randint(1,ArraySize*2,ArraySize) return testArray """ def benchmark(func,array): results=[] unsorted=list(array) #print("unsorted",unsorted)# to check results for j in range(0,10): #unsorted = random_array(i) start =time() #start time sorted1= list(func(unsorted)) end=time()#end time res=end-start #time elapsed np.random.shuffle(unsorted)#shuffle array for next run #print("sorted",sorted1)# to cofirm if it is working fine results.append(res) print(results) return round(mean(results)*1000,3)# return the average time in milliseconds and rounded to 3 didgits if __name__ == "__main__": # create a dataframe size = [100, 250, 500, 750, 1000, 1250, 2500, 3750, 5000, 6250, 7500, 8750, 10000] df = pd.DataFrame(columns = size, index = ["selection_sort","insertion_sort","merge_sort","quick_sort","radix_sort","radix_Sort"]) for ArraySize in (100, 250, 500, 750, 1000, 1250, 2500, 3750, 5000, 6250, 7500, 8750, 10000): results=[] # create a randowm array of values to use in the tests below array1 = [randint(1,ArraySize*2)for i in range(ArraySize)] #array = [randint(0, 1000) for i in range(ArraySize)] results.append(ArraySize) #print (ArraySize) #call the benchmark function and put the returned value in appropriate row in dataframe df.loc["selection_sort",ArraySize] = benchmark(selection_sort,array1) df.loc["insertion_sort",ArraySize] = benchmark(insertion_sort,array1) df.loc["merge_sort",ArraySize]= benchmark(merge_sort,array1) df.loc["quick_sort",ArraySize]= benchmark(quick_sort,array1) df.loc["radix_sort",ArraySize]=benchmark(radix_sort,array1) df.loc["radix_Sort",ArraySize]=benchmark(radix_Sort,array1) #df.loc[[0,3],'Z'] =used this as reference how to fill dataframe print() print("Average time taken for 10 runs for each array size") pd.set_option('display.max_columns',None) with pd.option_context('display.float_format', '{:0.3f}'.format): print(df) df.to_csv("resultsort.csv",header=True) df2=df.T df2.plot(kind='line') plt.title("Average Time taken by sorting algorithms to sort list") plt.xlabel("n-Input size") plt.ylabel("T(n) in milliseconds") plt.show()
39.144928
134
0.681229
d04936ca4503fae4eacfff41230f9dc60eebde16
9,239
py
Python
sopel/tools/time.py
HumorBaby/sopel
c78d85197538ac4d74389ce1ebe48a67c9c55978
[ "EFL-2.0" ]
1
2019-01-14T13:05:24.000Z
2019-01-14T13:05:24.000Z
sopel/tools/time.py
HumorBaby/sopel
c78d85197538ac4d74389ce1ebe48a67c9c55978
[ "EFL-2.0" ]
null
null
null
sopel/tools/time.py
HumorBaby/sopel
c78d85197538ac4d74389ce1ebe48a67c9c55978
[ "EFL-2.0" ]
null
null
null
# coding=utf-8 """Tools for getting and displaying the time.""" from __future__ import unicode_literals, absolute_import, print_function, division import datetime import pytz def validate_timezone(zone): """Return an IETF timezone from the given IETF zone or common abbreviation. :param str zone: in a strict or a human-friendly format :return: the valid IETF timezone properly formatted :raise ValueError: when ``zone`` is not a valid timezone Prior to checking timezones, two transformations are made to make the zone names more human-friendly: 1. the string is split on ``', '``, the pieces reversed, and then joined with ``/`` (*"New York, America"* becomes *"America/New York"*) 2. Remaining spaces are replaced with ``_`` This means ``new york, america`` becomes ``America/New_York``, and ``utc`` becomes ``UTC``. In the majority of user-facing interactions, such case-insensitivity will be expected. If the zone is not valid, ``ValueError`` will be raised. """ if zone is None: return None zone = '/'.join(reversed(zone.split(', '))).replace(' ', '_') try: tz = pytz.timezone(zone) except pytz.exceptions.UnknownTimeZoneError: raise ValueError('Invalid time zone.') return tz.zone def validate_format(tformat): """Validate a time format string. :param str tformat: the format string to validate :return: the format string, if valid :raise ValueError: when ``tformat`` is not a valid time format string """ try: time = datetime.datetime.utcnow() time.strftime(tformat) except (ValueError, TypeError): raise ValueError('Invalid time format.') return tformat def get_nick_timezone(db, nick): """Get a nick's timezone from database. :param db: Bot's database handler (usually ``bot.db``) :type db: :class:`~sopel.db.SopelDB` :param nick: IRC nickname :type nick: :class:`~sopel.tools.Identifier` :return: the timezone associated with the ``nick`` If a timezone cannot be found for ``nick``, or if it is invalid, ``None`` will be returned. """ try: return validate_timezone(db.get_nick_value(nick, 'timezone')) except ValueError: return None def get_channel_timezone(db, channel): """Get a channel's timezone from database. :param db: Bot's database handler (usually ``bot.db``) :type db: :class:`~sopel.db.SopelDB` :param channel: IRC channel name :type channel: :class:`~sopel.tools.Identifier` :return: the timezone associated with the ``channel`` If a timezone cannot be found for ``channel``, or if it is invalid, ``None`` will be returned. """ try: return validate_timezone(db.get_channel_value(channel, 'timezone')) except ValueError: return None def get_timezone(db=None, config=None, zone=None, nick=None, channel=None): """Find, and return, the appropriate timezone. :param db: bot database object (optional) :type db: :class:`~.db.SopelDB` :param config: bot config object (optional) :type config: :class:`~.config.Config` :param str zone: preferred timezone name (optional) :param str nick: nick whose timezone to use, if set (optional) :param str channel: channel whose timezone to use, if set (optional) Timezone is pulled in the following priority: 1. ``zone``, if it is valid 2. The timezone for the channel or nick ``zone`` in ``db`` if one is set and valid. 3. The timezone for the nick ``nick`` in ``db``, if one is set and valid. 4. The timezone for the channel ``channel`` in ``db``, if one is set and valid. 5. The default timezone in ``config``, if one is set and valid. If ``db`` is not given, or given but not set up, steps 2 and 3 will be skipped. If ``config`` is not given, step 4 will be skipped. If no step yields a valid timezone, ``None`` is returned. Valid timezones are those present in the IANA Time Zone Database. .. seealso:: The :func:`validate_timezone` function handles the validation and formatting of the timezone. """ def _check(zone): try: return validate_timezone(zone) except ValueError: return None tz = None if zone: tz = _check(zone) if not tz: tz = _check( db.get_nick_or_channel_value(zone, 'timezone')) if not tz and nick: tz = _check(db.get_nick_value(nick, 'timezone')) if not tz and channel: tz = _check(db.get_channel_value(channel, 'timezone')) if not tz and config and config.core.default_timezone: tz = _check(config.core.default_timezone) return tz def format_time(db=None, config=None, zone=None, nick=None, channel=None, time=None): """Return a formatted string of the given time in the given zone. :param db: bot database object (optional) :type db: :class:`~.db.SopelDB` :param config: bot config object (optional) :type config: :class:`~.config.Config` :param str zone: name of timezone to use (optional) :param str nick: nick whose time format to use, if set (optional) :param str channel: channel whose time format to use, if set (optional) :param time: the time value to format (optional) :type time: :class:`~datetime.datetime` ``time``, if given, should be a naive ``datetime.datetime`` object and will be treated as being in the UTC timezone. If it is not given, the current time will be used. If ``zone`` is given it must be present in the IANA Time Zone Database; ``get_timezone`` can be helpful for this. If ``zone`` is not given, UTC will be assumed. The format for the string is chosen in the following order: 1. The format for the nick ``nick`` in ``db``, if one is set and valid. 2. The format for the channel ``channel`` in ``db``, if one is set and valid. 3. The default format in ``config``, if one is set and valid. 4. ISO-8601 If ``db`` is not given or is not set up, steps 1 and 2 are skipped. If config is not given, step 3 will be skipped. """ tformat = None if db: if nick: tformat = db.get_nick_value(nick, 'time_format') if not tformat and channel: tformat = db.get_channel_value(channel, 'time_format') if not tformat and config and config.core.default_time_format: tformat = config.core.default_time_format if not tformat: tformat = '%Y-%m-%d - %T%Z' if not time: time = datetime.datetime.utcnow() if not zone: return time.strftime(tformat) else: if not time.tzinfo: utc = pytz.timezone('UTC') time = utc.localize(time) zone = pytz.timezone(zone) return time.astimezone(zone).strftime(tformat) def seconds_to_human(secs): """Format :class:`~datetime.timedelta` as a human-readable relative time. :param secs: time difference to format :type secs: :class:`~datetime.timedelta` or integer Inspiration for function structure from: https://gist.github.com/Highstaker/280a09591df4a5fb1363b0bbaf858f0d Example outputs are: .. code-block:: text 2 years, 1 month ago in 4 hours, 45 minutes in 8 days, 5 hours 1 year ago """ if isinstance(secs, datetime.timedelta): secs = secs.total_seconds() future = False if secs < 0: future = True secs = int(secs) secs = abs(secs) if secs == 0: # zero is a special case that the algorithm below won't handle correctly (#1841) result = "0 seconds" else: years = secs // 31536000 months = (secs - years * 31536000) // 2635200 days = (secs - years * 31536000 - months * 2635200) // 86400 hours = (secs - years * 31536000 - months * 2635200 - days * 86400) // 3600 minutes = (secs - years * 31536000 - months * 2635200 - days * 86400 - hours * 3600) // 60 seconds = secs - years * 31536000 - months * 2635200 - days * 86400 - hours * 3600 - minutes * 60 years_text = "year{}".format("s" if years != 1 else "") months_text = "month{}".format("s" if months != 1 else "") days_text = "day{}".format("s" if days != 1 else "") hours_text = "hour{}".format("s" if hours != 1 else "") minutes_text = "minute{}".format("s" if minutes != 1 else "") seconds_text = "second{}".format("s" if seconds != 1 else "") result = ", ".join(filter(lambda x: bool(x), [ "{0} {1}".format(years, years_text) if years else "", "{0} {1}".format(months, months_text) if months else "", "{0} {1}".format(days, days_text) if days else "", "{0} {1}".format(hours, hours_text) if hours else "", "{0} {1}".format(minutes, minutes_text) if minutes else "", "{0} {1}".format(seconds, seconds_text) if seconds else "" ])) # Granularity result = ", ".join(result.split(", ")[:2]) if future is False: result += " ago" else: result = "in " + result return result
34.864151
105
0.630696
92e8475d0f77a10ea2fe8c9ea35b307b176af0b5
3,808
py
Python
frameit/frame.py
biggorilla-gh/frameit
9cae56b4089fff6c955f8b86c699aa402a1390ac
[ "Apache-2.0" ]
3
2018-12-29T01:10:37.000Z
2020-06-12T09:45:11.000Z
frameit/frame.py
biggorilla-gh/frameit
9cae56b4089fff6c955f8b86c699aa402a1390ac
[ "Apache-2.0" ]
null
null
null
frameit/frame.py
biggorilla-gh/frameit
9cae56b4089fff6c955f8b86c699aa402a1390ac
[ "Apache-2.0" ]
null
null
null
import json from frameit.models import Model from frameit.utterance import Utterance from frameit.frameattr import FrameAttribute class Frame(object): def __init__(self, name, lang='en'): self.name = name self.utterances = set() self.models = [] self.weights = [] self.sum_weights = 0.0 self.num_models = 0 self.attributes = set() self.lang = lang def addExample(self, utterance): assert isinstance(utterance, Utterance) self.utterances.add(utterance) def addExamples(self, utterances): for utterance in utterances: self.addExample(utterance) def addAttribute(self, attrib): self.attributes.add(attrib) def getAttribute(self, name): for att in self.attributes: if att.name == name: return att return None @property def model(self): if self.num_models == 0: self.addModel(Model(lang=self.lang)) return self.models[0] def addModel(self, model, weight=1.0): self.models.append(model) self.weights.append(weight) self.num_models += 1 self.sum_weights += weight def predict(self, data): for x in data: assert isinstance(x, Utterance) labels = [] for x in data: score = 0.0 for i in range(self.num_models): score += self.weighs[i] * model.predict([x])[0][1] score /= self.sum_weights labels.append([1-score, score]) return labels def trainModel(self, corpus, neg_set=None, reg_param=None, batch_size=128, epochs=4, scale_to=4000, index=0): while(self.num_models <= index): self.addModel(Model(lang=self.lang)) history = self.models[index].train(self.utterances, set(corpus.utterances), neg_set, reg_param=reg_param, batch_size=batch_size, epochs=epochs, scale_to=scale_to) return history def trainAll(self, corpus): self.trainModel() for attrib in self.attributes: attrib.trainModel(corpus) # ------------------------------------------ def __str__(self): s = "Frame: " + self.name + "\n" for attr in self.attributes: s += "\t" + str(attr) return s def save(self, filename): with open(filename, "w") as handle: json.dump(self.get_state(), handle, indent=2) @classmethod def load(cls, filename): with open(filename, "r") as handle: state = json.load(handle) frame = cls(None) frame.set_state(state) return frame def get_state(self): state = {'name': self.name, 'lang': self.lang, 'models': [model.get_state() for model in self.models], 'weights': self.weights, 'attributes': [attr.get_state() for attr in self.attributes]} return state def set_state(self, state): self.name = state['name'] self.lang = state.get('lang', 'en') self.attributes = [] for attr_state in state['attributes']: attribute = FrameAttribute(None, None) attribute.set_state(attr_state) self.attributes.append(attribute) model_states = state['models'] if 'models' in state else [state['model']] model_weights = state['weights'] if 'weights' in state else [1.0] for i in range(len(model_states)): model = Model(lang=self.lang) model.set_state(model_states[i]) self.addModel(model, model_weights[i])
31.471074
83
0.555147
db7cf28eb48f844ce7d2fe90fec5cf468e6eb4ad
2,100
py
Python
gan_training/eval.py
MiaoyunZhao/GANTransferLimitedData
5545bc37a1d7d4f28a9c3588aaa12a616bbddd88
[ "MIT" ]
41
2020-06-10T03:49:35.000Z
2022-03-24T02:06:38.000Z
gan_training/eval.py
nianweijie/GANTransferLimitedData
5545bc37a1d7d4f28a9c3588aaa12a616bbddd88
[ "MIT" ]
5
2020-11-16T23:50:17.000Z
2021-05-13T09:43:49.000Z
gan_training/eval.py
nianweijie/GANTransferLimitedData
5545bc37a1d7d4f28a9c3588aaa12a616bbddd88
[ "MIT" ]
6
2020-11-08T16:14:07.000Z
2022-03-11T14:31:44.000Z
import torch from gan_training.metrics import inception_score from gan_training.metrics.fid_score import calculate_fid_given_images import numpy as np class Evaluator(object): def __init__(self, generator, zdist, ydist, batch_size=64, inception_nsamples=10000, device=None, fid_real_samples=None, fid_sample_size=10000): self.generator = generator self.zdist = zdist self.ydist = ydist self.inception_nsamples = inception_nsamples self.batch_size = batch_size self.device = device if fid_real_samples is not None: self.fid_real_samples = fid_real_samples.numpy() self.fid_sample_size = fid_sample_size def compute_inception_score(self): self.generator.eval() imgs = [] while(len(imgs) < self.inception_nsamples): ztest = self.zdist.sample((self.batch_size,)) ytest = self.ydist.sample((self.batch_size,)) samples, _ = self.generator(ztest, ytest) samples = [s.data.cpu().numpy() for s in samples] imgs.extend(samples) inception_imgs = imgs[:self.inception_nsamples] score, score_std = inception_score( inception_imgs, device=self.device, resize=True, splits=10, batch_size=self.batch_size) fid_imgs = np.array(imgs[:self.fid_sample_size]) if self.fid_real_samples is not None: fid = calculate_fid_given_images( self.fid_real_samples, fid_imgs, batch_size=self.batch_size, cuda=True) return score, score_std, fid def create_samples(self, z, y=None): self.generator.eval() batch_size = z.size(0) # Parse y if y is None: y = self.ydist.sample((batch_size,)) elif isinstance(y, int): y = torch.full((batch_size,), y, device=self.device, dtype=torch.int64) # Sample x with torch.no_grad(): x = self.generator(z, y) return x
35
78
0.608571
73e018fc8c400db9ac968f1f816273190fdf58b3
7,125
py
Python
rfvision/datasets/pipelines/imvotenet_pipeline.py
tycoer/rfvision-1
db6e28746d8251d1f394544c32b9e0af388d9964
[ "Apache-2.0" ]
6
2021-09-25T03:53:06.000Z
2022-02-19T03:25:11.000Z
rfvision/datasets/pipelines/imvotenet_pipeline.py
tycoer/rfvision-1
db6e28746d8251d1f394544c32b9e0af388d9964
[ "Apache-2.0" ]
1
2021-07-21T13:14:54.000Z
2021-07-21T13:14:54.000Z
rfvision/datasets/pipelines/imvotenet_pipeline.py
tycoer/rfvision-1
db6e28746d8251d1f394544c32b9e0af388d9964
[ "Apache-2.0" ]
2
2021-07-16T03:25:04.000Z
2021-11-22T06:04:01.000Z
import numpy as np import rflib import os from rfvision.datasets.builder import PIPELINES import torch @PIPELINES.register_module() class LoadImVote: def __init__(self, data_root, class_names, max_imvote_per_pixel=3, ): self.data_root = data_root self.max_imvote_per_pixel = max_imvote_per_pixel self.vote_dims = 1+self.max_imvote_per_pixel*4 self.cat2label = {cat: class_names.index(cat) for cat in class_names} self.MAX_NUM_2D_DET = 100 self.MAX_NUM_PIXEL = 530 * 730 self.NUM_CLS = len(class_names) self.cls_id_map = {} self.cls_score_map = {} self.bbox_2d_map = {} bbox2d_train_dir = os.path.join(data_root, 'sunrgbd_2d_bbox_50k_v1_train') bbox2d_test_dir = os.path.join(data_root, 'sunrgbd_2d_bbox_50k_v1_val') cls_id_map_train , cls_score_map_train, bbox_2d_map_train = self._pre_load_bbox2d(bbox2d_train_dir) cls_id_map_test , cls_score_map_test, bbox_2d_map_test = self._pre_load_bbox2d(bbox2d_test_dir) self.cls_id_map.update(cls_id_map_train) self.cls_id_map.update(cls_id_map_test) self.cls_score_map.update(cls_score_map_train) self.cls_score_map.update(cls_score_map_test) self.bbox_2d_map.update(bbox_2d_map_train) self.bbox_2d_map.update(bbox_2d_map_test) def _pre_load_bbox2d(self,bbox2d_dir): cls_id_map = {} cls_score_map = {} bbox_2d_map = {} for filename in os.listdir(bbox2d_dir): # Read 2D object detection boxes and scores cls_id_list = [] cls_score_list = [] bbox_2d_list = [] idx = int(filename[:6]) for line in open(os.path.join(bbox2d_dir , filename), 'r'): det_info = line.rstrip().split(" ") prob = float(det_info[-1]) # Filter out low-confidence 2D detections if prob < 0.1: continue cls_id_list.append(self.cat2label[det_info[0]]) cls_score_list.append(prob) bbox_2d_list.append(np.float32(det_info[4:8]).astype('int32')) cls_id_map[idx] = cls_id_list cls_score_map[idx] = cls_score_list bbox_2d_map[idx] = bbox_2d_list return cls_id_map, cls_score_map, bbox_2d_map def get_imvote(self, idx): # Read image full_img = rflib.imread(os.path.join(self.data_root, 'sunrgbd_trainval/image/', f'{idx:06d}.jpg')) full_img_height = full_img.shape[0] full_img_width = full_img.shape[1] # Read camera parameters # ------------------------------- 2D IMAGE VOTES ------------------------------ cls_id_list = self.cls_id_map[idx] cls_score_list = self.cls_score_map[idx] bbox_2d_list =self. bbox_2d_map[idx] obj_img_list = [] for i2d, (cls2d, box2d) in enumerate(zip(cls_id_list, bbox_2d_list)): xmin, ymin, xmax, ymax = box2d # During training we randomly drop 2D boxes to reduce over-fitting if np.random.random()>0.5: continue obj_img = full_img[ymin:ymax, xmin:xmax, :] obj_h = obj_img.shape[0] obj_w = obj_img.shape[1] # Bounding box coordinates (4 values), class id, index to the semantic cues meta_data = (xmin, ymin, obj_h, obj_w, cls2d, i2d) if obj_h == 0 or obj_w == 0: continue # Use 2D box center as approximation uv_centroid = np.array([int(obj_w/2), int(obj_h/2)]) uv_centroid = np.expand_dims(uv_centroid, 0) v_coords, u_coords = np.meshgrid(range(obj_h), range(obj_w), indexing='ij') img_vote = np.transpose(np.array([u_coords, v_coords]), (1,2,0)) img_vote = np.expand_dims(uv_centroid, 0) - img_vote obj_img_list.append((meta_data, img_vote)) full_img_votes = np.zeros((full_img_height,full_img_width,self.vote_dims), dtype=np.float32) # Empty votes: 2d box index is set to -1 full_img_votes[:,:,3::4] = -1. for obj_img_data in obj_img_list: meta_data, img_vote = obj_img_data u0, v0, h, w, cls2d, i2d = meta_data for u in range(u0, u0+w): for v in range(v0, v0+h): iidx = int(full_img_votes[v,u,0]) if iidx >= self.max_imvote_per_pixel: continue full_img_votes[v,u,(1+iidx*4):(1+iidx*4+2)] = img_vote[v-v0,u-u0,:] full_img_votes[v,u,(1+iidx*4+2)] = cls2d full_img_votes[v,u,(1+iidx*4+3)] = i2d + 1 # add +1 here as we need a dummy feature for pixels outside all boxes full_img_votes[v0:(v0+h), u0:(u0+w), 0] += 1 full_img_votes_1d = np.zeros((self.MAX_NUM_PIXEL*self.vote_dims), dtype=np.float32) full_img_votes_1d[0:full_img_height*full_img_width*self.vote_dims] = full_img_votes.flatten() full_img_1d = ((full_img - 128) / 255.) full_img_1d = np.zeros((self.MAX_NUM_PIXEL*3), dtype=np.float32) full_img_1d[:full_img_height*full_img_width*3] = full_img.flatten() # Semantic cues: one-hot vector for class scores cls_score_feats = np.zeros((1+self.MAX_NUM_2D_DET,self.NUM_CLS), dtype=np.float32) # First row is dumpy feature len_obj = len(cls_id_list) if len_obj: ind_obj = np.arange(1,len_obj+1) ind_cls = np.array(cls_id_list) cls_score_feats[ind_obj, ind_cls] = np.array(cls_score_list) imvote_dict = {} imvote_dict['cls_score_feats'] = cls_score_feats.astype(np.float32) imvote_dict['full_img_votes_1d'] = full_img_votes_1d.astype(np.float32) imvote_dict['full_img_1d'] = full_img_1d.astype(np.float32) imvote_dict['full_img_width'] = full_img_width return imvote_dict def __call__(self, results): info = results['ann_info']['info'] imvote_dict = self.get_imvote(results['sample_idx']) # update Rtilt according to aug Rtilt = info['calib']['Rt'] rot_mat_T = np.eye(3).T # rotation if 'pcd_rotation' in results: rot_mat_T = results['pcd_rotation'] # filp if results['pcd_horizontal_flip'] == True: rot_mat_T[0,:] *= -1 Rtilt = np.dot(rot_mat_T.T, Rtilt) # scale pcd_scale_factor = np.float32([results['pcd_scale_factor']]) Rtilt = np.dot(np.eye(3) * pcd_scale_factor, Rtilt) # add additional info to imvote_dict imvote_dict['scale'] = pcd_scale_factor.astype('float32') imvote_dict['calib_Rtilt'] = Rtilt.astype('float32') imvote_dict['calib_K'] = info['calib']['K'].reshape(3, 3, order = 'F').astype('float32') results['imvote_dict'] = imvote_dict return results
43.981481
132
0.597754
3b9a07adc0a77609caff823a3149f8be00f3f357
256
py
Python
django_summernote/__init__.py
yuong1979/django-summernote
cf9b2d838310211738162c2acbc7b9145d3970b2
[ "MIT" ]
null
null
null
django_summernote/__init__.py
yuong1979/django-summernote
cf9b2d838310211738162c2acbc7b9145d3970b2
[ "MIT" ]
null
null
null
django_summernote/__init__.py
yuong1979/django-summernote
cf9b2d838310211738162c2acbc7b9145d3970b2
[ "MIT" ]
null
null
null
version_info = (0, 8, 8, 6) __version__ = version = '.'.join(map(str, version_info)) __project__ = PROJECT = 'django-summernote' __author__ = AUTHOR = "django-summernote contributors" default_app_config = 'django_summernote.apps.DjangoSummernoteConfig'
28.444444
68
0.761719
534411eb83793cc72583dc3ab8c9c887d49831f1
4,699
py
Python
tests/examples/minlplib/cvxnonsep_psig20r.py
ouyang-w-19/decogo
52546480e49776251d4d27856e18a46f40c824a1
[ "MIT" ]
2
2021-07-03T13:19:10.000Z
2022-02-06T10:48:13.000Z
tests/examples/minlplib/cvxnonsep_psig20r.py
ouyang-w-19/decogo
52546480e49776251d4d27856e18a46f40c824a1
[ "MIT" ]
1
2021-07-04T14:52:14.000Z
2021-07-15T10:17:11.000Z
tests/examples/minlplib/cvxnonsep_psig20r.py
ouyang-w-19/decogo
52546480e49776251d4d27856e18a46f40c824a1
[ "MIT" ]
null
null
null
# MINLP written by GAMS Convert at 04/21/18 13:51:24 # # Equation counts # Total E G L N X C B # 23 1 0 22 0 0 0 0 # # Variable counts # x b i s1s s2s sc si # Total cont binary integer sos1 sos2 scont sint # 43 33 0 10 0 0 0 0 # FX 0 0 0 0 0 0 0 0 # # Nonzero counts # Total const NL DLL # 85 64 21 0 # # Reformulation has removed 1 variable and 1 equation from pyomo.environ import * model = m = ConcreteModel() m.i1 = Var(within=Integers,bounds=(1,10),initialize=1) m.i2 = Var(within=Integers,bounds=(1,10),initialize=1) m.i3 = Var(within=Integers,bounds=(1,10),initialize=1) m.i4 = Var(within=Integers,bounds=(1,10),initialize=1) m.i5 = Var(within=Integers,bounds=(1,10),initialize=1) m.i6 = Var(within=Integers,bounds=(1,10),initialize=1) m.i7 = Var(within=Integers,bounds=(1,10),initialize=1) m.i8 = Var(within=Integers,bounds=(1,10),initialize=1) m.i9 = Var(within=Integers,bounds=(1,10),initialize=1) m.i10 = Var(within=Integers,bounds=(1,10),initialize=1) m.x11 = Var(within=Reals,bounds=(1,10),initialize=1) m.x12 = Var(within=Reals,bounds=(1,10),initialize=1) m.x13 = Var(within=Reals,bounds=(1,10),initialize=1) m.x14 = Var(within=Reals,bounds=(1,10),initialize=1) m.x15 = Var(within=Reals,bounds=(1,10),initialize=1) m.x16 = Var(within=Reals,bounds=(1,10),initialize=1) m.x17 = Var(within=Reals,bounds=(1,10),initialize=1) m.x18 = Var(within=Reals,bounds=(1,10),initialize=1) m.x19 = Var(within=Reals,bounds=(1,10),initialize=1) m.x20 = Var(within=Reals,bounds=(1,10),initialize=1) m.x21 = Var(within=Reals,bounds=(1E-8,None),initialize=1E-8) m.x22 = Var(within=Reals,bounds=(None,0),initialize=0) m.x23 = Var(within=Reals,bounds=(None,0),initialize=0) m.x24 = Var(within=Reals,bounds=(None,0),initialize=0) m.x25 = Var(within=Reals,bounds=(None,0),initialize=0) m.x26 = Var(within=Reals,bounds=(None,0),initialize=0) m.x27 = Var(within=Reals,bounds=(None,0),initialize=0) m.x28 = Var(within=Reals,bounds=(None,0),initialize=0) m.x29 = Var(within=Reals,bounds=(None,0),initialize=0) m.x30 = Var(within=Reals,bounds=(None,0),initialize=0) m.x31 = Var(within=Reals,bounds=(None,0),initialize=0) m.x32 = Var(within=Reals,bounds=(None,0),initialize=0) m.x33 = Var(within=Reals,bounds=(None,0),initialize=0) m.x34 = Var(within=Reals,bounds=(None,0),initialize=0) m.x35 = Var(within=Reals,bounds=(None,0),initialize=0) m.x36 = Var(within=Reals,bounds=(None,0),initialize=0) m.x37 = Var(within=Reals,bounds=(None,0),initialize=0) m.x38 = Var(within=Reals,bounds=(None,0),initialize=0) m.x39 = Var(within=Reals,bounds=(None,0),initialize=0) m.x40 = Var(within=Reals,bounds=(None,0),initialize=0) m.x41 = Var(within=Reals,bounds=(None,0),initialize=0) m.x42 = Var(within=Reals,bounds=(None,None),initialize=0) m.obj = Objective(expr= m.i1 + m.i2 + m.i3 + m.i4 + m.i5 + m.i6 + m.i7 + m.i8 + m.i9 + m.i10 + m.x11 + m.x12 + m.x13 + m.x14 + m.x15 + m.x16 + m.x17 + m.x18 + m.x19 + m.x20 + 20000*m.x21, sense=minimize) m.c2 = Constraint(expr= m.x22 + m.x23 + m.x24 + m.x25 + m.x26 + m.x27 + m.x28 + m.x29 + m.x30 + m.x31 + m.x32 + m.x33 + m.x34 + m.x35 + m.x36 + m.x37 + m.x38 + m.x39 + m.x40 + m.x41 + m.x42 <= 0) m.c3 = Constraint(expr=-0.32*log(m.i1) - m.x22 <= 0) m.c4 = Constraint(expr=-0.19*log(m.i2) - m.x23 <= 0) m.c5 = Constraint(expr=-0.405*log(m.i3) - m.x24 <= 0) m.c6 = Constraint(expr=-0.265*log(m.i4) - m.x25 <= 0) m.c7 = Constraint(expr=-0.175*log(m.i5) - m.x26 <= 0) m.c8 = Constraint(expr=-0.44*log(m.i6) - m.x27 <= 0) m.c9 = Constraint(expr=-0.275*log(m.i7) - m.x28 <= 0) m.c10 = Constraint(expr=-0.47*log(m.i8) - m.x29 <= 0) m.c11 = Constraint(expr=-0.31*log(m.i9) - m.x30 <= 0) m.c12 = Constraint(expr=-0.295*log(m.i10) - m.x31 <= 0) m.c13 = Constraint(expr=-0.105*log(m.x11) - m.x32 <= 0) m.c14 = Constraint(expr=-0.15*log(m.x12) - m.x33 <= 0) m.c15 = Constraint(expr=-0.235*log(m.x13) - m.x34 <= 0) m.c16 = Constraint(expr=-0.115*log(m.x14) - m.x35 <= 0) m.c17 = Constraint(expr=-0.42*log(m.x15) - m.x36 <= 0) m.c18 = Constraint(expr=-0.095*log(m.x16) - m.x37 <= 0) m.c19 = Constraint(expr=-0.115*log(m.x17) - m.x38 <= 0) m.c20 = Constraint(expr=-0.085*log(m.x18) - m.x39 <= 0) m.c21 = Constraint(expr=-0.115*log(m.x19) - m.x40 <= 0) m.c22 = Constraint(expr=-0.022*log(m.x20) - m.x41 <= 0) m.c23 = Constraint(expr=-log(m.x21) - m.x42 <= 0)
40.86087
119
0.606299
564c46c7d039fb692ab48b4d826556ad55ff1b69
11,157
py
Python
src/se3_distributions/bbTrans/testGaussianMMBounds.py
Mostafa-Mansour/se3_distributions
3c1c2c754e9102a031ae6ff14b703cee0163c413
[ "MIT" ]
1
2021-09-19T18:35:42.000Z
2021-09-19T18:35:42.000Z
src/se3_distributions/bbTrans/testGaussianMMBounds.py
Mostafa-Mansour/se3_distributions
3c1c2c754e9102a031ae6ff14b703cee0163c413
[ "MIT" ]
null
null
null
src/se3_distributions/bbTrans/testGaussianMMBounds.py
Mostafa-Mansour/se3_distributions
3c1c2c754e9102a031ae6ff14b703cee0163c413
[ "MIT" ]
3
2021-11-07T12:51:20.000Z
2022-01-07T10:37:07.000Z
import numpy as np from scipy.linalg import det, solve, inv class Box(object): def __init__(self, ld, ru): self.ld = ld self.ru = ru self.lu = np.array([self.ld[0],self.ru[1]]) self.rd = np.array([self.ru[0],self.ld[1]]) def Inside(self, x): return (self.ld <= x).all() and (x <= self.ru).all() def GetEdge(self, i): if i == 0: return self.ld, -self.ld + self.lu elif i == 1: return self.lu, -self.lu + self.ru elif i == 2: return self.ru, -self.ru + self.rd elif i == 3: return self.rd, -self.rd + self.ld def GetMiddle(self): return (self.ld+self.ru)*0.5 class Gaussian(object): def __init__(self, mu, Sigma, pi): self.pi = pi self.mu = mu self.Sigma = Sigma self.D = mu.size def pdf(self, x): return (2.*np.pi)**(-self.D*0.5) / np.sqrt(det(self.Sigma)) \ * np.exp(-0.5*(x-self.mu).T.dot(solve(self.Sigma, x-self.mu))) def logPdf(self, x): return np.log(2.*np.pi)*(-self.D*0.5) - 0.5*np.log(det(self.Sigma))\ -0.5*(x-self.mu).T.dot(solve(self.Sigma, x-self.mu)) def GetZ(self): return (2.*np.pi)**(-self.D*0.5) / np.sqrt(det(self.Sigma)) def ComputeGmmForT(gmmA, gmmB, R): gmmT = [] for gA in gmmA: for gB in gmmB: gmmT.append(Gaussian(-gA.mu + R.dot(gB.mu), gA.Sigma + \ R.dot(gB.Sigma.dot(R.T)), gA.pi*gB.pi)) print(gmmT[-1].mu.ravel(), gmmT[-1].pi) # Gamma_global = np.zeros(len(gmmT)) Gamma_jk = np.zeros((len(gmmT),len(gmmT))) for k, gTk in enumerate(gmmT): # tU = FindMaxTinBox(inv(gTk.Sigma), solve(gTk.Sigma, gTk.mu), # box_max) if False: print('--', t.ravel()) plt.figure() for i in range(4): a,_ = box.GetEdge(i) plt.plot(a[0],a[1],'ro') print(a.ravel()) plt.plot(tU[0],tU[1],'bx') plt.plot(gTk.mu[0],gTk.mu[1],'gx') plt.xlim([-0.1,2.1]) plt.ylim([-0.1,2.1]) plt.show() for j, gTj in enumerate(gmmT): if not k == j: Gamma_jk[j,k] = gTj.pi*gTj.GetZ()/(gTk.pi*gTk.GetZ()) # Gamma_global[k] += Gamma_jk[j,k] * \ # np.exp(0.5*(tU-gTk.mu).T.dot(solve(gTk.Sigma, tU-gTk.mu))) A = [] b = [] for k,gT in enumerate(gmmT): A.append(inv(gT.Sigma)) b.append(solve(gT.Sigma, gT.mu)) # A += Gamma_global[k] * inv(gT.Sigma) # b += Gamma_global[k] * solve(gT.Sigma, gT.mu) return gmmT, A, b, Gamma_jk def LowerBound(gmmT, box): lb = 0; for gT in gmmT: lb += gT.pi * gT.pdf(box.GetMiddle()) lbs = np.zeros(len(gmmT)) for k,gT in enumerate(gmmT): lbs[k] = np.log(gT.pi) + gT.logPdf(box.GetMiddle()) print("LB", lb, np.exp(lbs-lbs.max()).sum()*np.exp(lbs.max())) if False: print('--', t.ravel()) plt.figure() for i in range(4): a,_ = box.GetEdge(i) plt.plot(a[0],a[1],'ro') plt.plot(box.GetMiddle()[0],box.GetMiddle()[1],'bx') plt.xlim([-0.1,2.1]) plt.ylim([-0.1,2.1]) plt.show() return lb def JensenLowerBound(gmmT, box): lbs = np.ones(len(gmmT)); for i,gT in enumerate(gmmT): lbs[i] = gT.pi * gT.logPdf(box.GetMiddle()) return (lbs.sum()) def UpperBound(gmmT, box): ubs = np.ones(len(gmmT)); for i,gT in enumerate(gmmT): t = FindMinTinBox(inv(gT.Sigma), solve(gT.Sigma, gT.mu), box) ubs[i] = gT.pi * gT.pdf(t) # if box.Inside(gT.mu): # ubs[i] = gT.pi * gT.pdf(gT.mu) # can make this faster # else: # vals = np.zeros(4) # for i in range(4): # a,d = box.GetEdge(i) # # This is finding the max! ## beta = 2.*(a+gT.mu).T.dot(solve(gT.Sigma, d)) ## alpha = d.T.dot(solve(gT.Sigma, d)) ## tau = -2.*beta/alpha ## print alpha, tau ## tau = min(1.,max(0.,tau)) ## vals[i] = gT.pdf(a+tau*d) # vals[i] = gT.pdf(a) # ubs[i] = np.min(vals) if not box.Inside(t): print('--', t.ravel()) plt.figure() for i in range(4): a,_ = box.GetEdge(i) plt.plot(a[0],a[1],'ro') print(a.ravel()) plt.plot(t[0],t[1],'bx') plt.plot(gT.mu[0],gT.mu[1],'kx') plt.show() return ubs.sum() def FindMinTinBox(A,b,box,All=False): ts = [] vals =[] t = solve(A, b) #print A,b,t if not box.Inside(t): # check the sides for the min for i in range(4): a, d = box.GetEdge(i) alpha = (d.T.dot(b) - d.T.dot(A).dot(a))/(d.T.dot(A).dot(d)) if 0. <= alpha and alpha <= 1.: t = a+alpha*d ts.append(t) vals.append( t.T.dot(A).dot(t) -2.*t.T.dot(b)) # print "box edge: ", a,d # print (d.T.dot(b)), "over", (d.T.dot(A).dot(d)) # print b.ravel(), d.ravel() # print alpha, t, vals[-1] for i in range(4): t,_ = box.GetEdge(i) ts.append(t) vals.append( t.T.dot(A).dot(t) -2.*t.T.dot(b)) i_min = np.argmin(vals) t = ts[i_min] # print vals # print ts if not box.Inside(t): print("WARNING sth is wrong here - computed t outside of given box.") print(t) if All: return t, ts, vals return t def FindMaxTinBox(A,b,box): # check the corners for the max vals = [] ts = [] for i in range(4): t,_ = box.GetEdge(i) ts.append(t) vals.append(t.T.dot(A).dot(t) -2.*t.T.dot(b)) i_max = np.argmax(vals) t = ts[i_max] return ts[i_max] def UpperBound2(gmmT, A, b, Gamma_jk, box): ''' log inequality ''' Gamma = np.ones(len(gmmT)) for k,gTk in enumerate(gmmT): tU = FindMaxTinBox(A[k], b[k], box) logU = 0.5*(tU-gTk.mu).T.dot(solve(gTk.Sigma, tU-gTk.mu)) # tL = FindMinTinBox(A[k], b[k], box) for j,gTj in enumerate(gmmT): tL = FindMinTinBox(A[k], b[k], box) logL = 0.5*(tL-gTj.mu).T.dot(solve(gTj.Sigma, tL-gTj.mu)) print(k,"logs", logU, logL, np.exp(logU-logL), Gamma_jk[j,k]) Gamma[k] += Gamma_jk[j,k] * np.exp(logU - logL) Gamma = 1./Gamma A_=np.zeros((2,2)) b_=np.zeros((2,1)) for k,gTk in enumerate(gmmT): A_ += Gamma[k] * A[k] b_ += Gamma[k] * b[k] print(A_, b_) t = FindMinTinBox(A_,b_,box) print("gamma",Gamma) ubs = np.zeros(len(gmmT)) for k,gT in enumerate(gmmT): print("logpdf at ", t.ravel(), gT.logPdf(t), Gamma[k]) ubs[k] = Gamma[k] * (np.log(gT.pi) + gT.logPdf(t)) print(t, ubs) if False: plt.figure() for i in range(4): a,_ = box.GetEdge(i) plt.plot(a[0],a[1],'ro') # print a plt.plot(t[0],t[1],'bx') plt.xlim([0,2]) plt.ylim([0,2]) plt.show() return np.exp(ubs.sum()) * len(gmmT) def UpperBoundConvexity(gmmT, box): ''' log inequality ''' A_=np.zeros((2,2)) b_=np.zeros((2,1)) c_ = 0 for k,gT in enumerate(gmmT): A, b = inv(gT.Sigma), solve(gT.Sigma, gT.mu) tU = FindMinTinBox(A, b, box) tL = FindMaxTinBox(A, b, box) L = -0.5*(tL-gT.mu).T.dot(solve(gT.Sigma, tL-gT.mu)) U = -0.5*(tU-gT.mu).T.dot(solve(gT.Sigma, tU-gT.mu)) g = (1.-np.exp(L-U))*np.exp(U)/(U-L) h = (np.exp(L-U)*U-L)*np.exp(U)/(U-L) print('L,U', L,U, g, h) D = gT.pi * (2.*np.pi)**(-1.) / np.sqrt(det(gT.Sigma)) A_ -= 0.5*D*g*A b_ += D*g*b c_ += D*(h-0.5*g*gT.mu.T.dot(b)) # print g, h, -0.5*D*g,D*g, D*(h-0.5*g*gT.mu.T.dot(b)) if False: plt.figure() for i in range(4): a,_ = box.GetEdge(i) plt.plot(a[0],a[1],'ro', ms=6.) plt.plot(tU[0],tU[1],'bx', ms=20.) plt.plot(tL[0],tL[1],'gx', ms=20.) plt.plot(gT.mu[0],gT.mu[1],'bo', ms=20.) plt.xlim([-0.1,2.1]) plt.ylim([-0.1,2.1]) plt.show() # Not this one? t,ts,vals = FindMinTinBox(-A_,0.5*b_,box, True) ub1 = t.T.dot(A_.dot(t)) + b_.T.dot(t) + c_ print('ub', ub1, t.T.dot(A_.dot(t)), b_.T.dot(t), c_) print(-0.25*b_.T.dot(solve(A_,b_)) + c_) # ubs = np.zeros(len(gmmT)) # for k,gT in enumerate(gmmT): # A, b = inv(gT.Sigma), solve(gT.Sigma, gT.mu) # tL = FindMaxTinBox(A, b, box) # tU = FindMinTinBox(A, b, box) # L = -0.5*(tL-gT.mu).T.dot(solve(gT.Sigma, tL-gT.mu)) # U = -0.5*(tU-gT.mu).T.dot(solve(gT.Sigma, tU-gT.mu)) ## print L,U # g = (1.-np.exp(L-U))*np.exp(U)/(U-L) # h = (np.exp(L-U)*U-L)*np.exp(U)/(U-L) ## print g, h # D = gT.pi * (2.*np.pi)**(-1.5) / det(gT.Sigma) ## print D*g # A_ = -0.5*D*g*A # b_ = D*g*b # c_ = D*(h-0.5*g*gT.mu.T.dot(b)) # ubs[k] = t.T.dot(A_.dot(t)) + b_.T.dot(t) + c_ # print ubs # print ub, ub1 if False: plt.figure() for i in range(4): a,d = box.GetEdge(i) plt.plot(a[0],a[1],'ro') plt.plot([a[0], a[0]+d[0]],[a[1],a[1]+d[1]],'r-') # print a m = solve(A_,-0.5*b_) M = solve(-A_, 0.5*b_) print("m", m.ravel(), M.ravel()) print(vals) plt.plot(t[0],t[1],'bx',ms=6) plt.plot(m[0],m[1],'bo',ms=11) plt.plot(M[0],M[1],'rx',ms=15) for ti in ts: plt.plot(ti[0],ti[1],'bx',ms=3) for k,gT in enumerate(gmmT): plt.plot(gT.mu[0],gT.mu[1],'go', ms=8.) plt.xlim([-0.1,2.1]) plt.ylim([-0.1,2.1]) plt.show() return ub1 def CostFunction(gmmT, t): c = 0. for i,gT in enumerate(gmmT): c += gT.pi * gT.pdf(t) return c import matplotlib.pyplot as plt t = np.ones((2,1)) gmmA = [Gaussian(np.array([[0.],[0.]]), np.eye(2)*0.001, 0.3), Gaussian(np.array([[1.],[0.]]), np.eye(2)*0.01, 0.3), Gaussian(np.array([[0.],[1.]]), np.eye(2)*0.01, 0.4)] gmmB = [Gaussian(np.array([[0.],[0.]])+t, np.eye(2)*0.001, 0.3), Gaussian(np.array([[1.],[0.]])+t, np.eye(2)*0.01, 0.3), Gaussian(np.array([[0.],[1.]])+t, np.eye(2)*0.01, 0.4)] gmmA = [Gaussian(np.array([[0.],[0.]]), np.eye(2)*0.1, 0.3), Gaussian(np.array([[0.],[1.]]), np.eye(2)*0.01, 0.7)] gmmB = [Gaussian(np.array([[0.],[0.]])+t, np.eye(2)*0.1, 0.3), Gaussian(np.array([[0.],[1.]])+t, np.eye(2)*0.01, 0.7)] box = Box(np.array([[0.],[0.]]), np.array([[2.],[2.]])) gmmT, A, b, Gamma_jk = ComputeGmmForT(gmmA, gmmB, \ np.eye(2)) print(Gamma_jk) plt.figure() for res in [180]: #for res in [11, 45,180]: #for res in [10]: ubs = np.zeros((res,res)) ubs2 = np.zeros((res,res)) cs = np.zeros((res,res)) lbs = np.zeros((res,res)) i=res/2 tx = np.linspace(0,2,res)[res/2] #for i,tx in enumerate(np.linspace(0,2,res)): Ty = np.linspace(0,2,res) devs = np.zeros_like(Ty) for j,ty in enumerate(Ty): box = Box(np.array([[tx-1./res],[ty-1./res]]), np.array([[tx+1./res],[ty+1./res]])) ubs[i,j] = UpperBound(gmmT, box) ubs2[i,j] = UpperBoundConvexity(gmmT, box) # ubs2[i,j] = UpperBound2(gmmT, A, b, Gamma_jk, box) lbs[i,j] = LowerBound(gmmT, box) cs[i,j] = CostFunction(gmmT, box.GetMiddle()) devs[j] = np.sqrt((box.GetMiddle()[0]-1.)**2 + (box.GetMiddle()[1]-1.)**2) # plt.figure() # plt.subplot(1,2,1) # plt.imshow(ubs, interpolation="nearest") # plt.colorbar() # plt.subplot(1,2,2) # plt.imshow(lbs, interpolation="nearest") # plt.colorbar() print(ubs2[res/2,:]) idx = np.argsort(devs) # plt.subplot(2,1,1) plt.plot(Ty,ubs[res/2,idx], '-', label="ub indep") plt.plot(Ty,ubs2[res/2,idx], '--', label="ub joint") plt.plot(Ty,(lbs[res/2,idx]), '-.', label="lb") # plt.plot(Ty,np.log(cs[res/2,:]), 'b-', label="c") plt.legend() plt.subplot(2,1,2) plt.plot(Ty, devs[idx]) plt.show()
30.072776
73
0.536883
4a72a740a1149e1e10f7195dee83162c941bddf1
7,050
py
Python
fruitbat/catalogue.py
abatten/frbz
ca350a3a65aaf6033efe094fbf23f8a319a65fb7
[ "BSD-3-Clause" ]
17
2019-02-22T02:56:52.000Z
2022-03-10T01:10:09.000Z
fruitbat/catalogue.py
abatten/frbz
ca350a3a65aaf6033efe094fbf23f8a319a65fb7
[ "BSD-3-Clause" ]
22
2019-02-21T12:15:56.000Z
2021-12-15T03:56:16.000Z
fruitbat/catalogue.py
abatten/frbz
ca350a3a65aaf6033efe094fbf23f8a319a65fb7
[ "BSD-3-Clause" ]
8
2019-02-19T05:52:59.000Z
2021-10-05T01:58:24.000Z
import os import pandas as pd from e13tools import docstring_substitute from fruitbat import Frb, methods, cosmologies __all__ = ["create_analysis_catalogue", "create_methods_catalogue", "read_frb_row"] @docstring_substitute(meth=methods.available_methods(), cosmo=cosmologies.available_cosmologies()) def create_analysis_catalogue(filename="fruitbat_analysis_catalogue", dataset='default', method='Inoue2004', cosmology='Planck18'): """ Analyses an FRB dataset and produces a CSV file containing the estimated redshift, fluence, energy and luminosity for each FRB in additional to its measured quantities. Parameters ---------- filename: str, optional The output file name. Default: 'fruitbat_analysis_catalogue' dataset: str, optional The path to the FRBCAT dataset. The dataset is required to have the following columns: 'frb_name', 'utc', 'telescope', 'rop_raj', 'rop_decj', 'rop_gl', 'rop_gb', 'rop_bandwidth', 'rop_centre_frequency', 'rmp_dm', 'rmp_width', 'rmp_snr', 'rmp_flux'. If ``dataset='default'`` then the builtin dataset will be used. The builtin dataset was last updated: 2019-04-08. Default: 'default' method: str, optional The dispersion measure - redshift relation to use when calculating the redshift. Avaliable methods: %(meth)s. Default: 'Inoue2004' cosmology: str, optional The cosmology to assume when calculating redshift. Avaliable cosmologies: %(cosmo)s. Default: 'Planck18' Generates --------- A csv file with the output of the of the analysis. """ if dataset == 'default': dataset = os.path.join(os.path.dirname(__file__), 'data', 'frbcat_database_20190408.csv') df = pd.read_csv(dataset) columns = ["Name", "Telescope", "RAJ", "DECJ", "gl", "gb", "DM (pc/cm3)", "Width (ms)", "Bandwidth (MHz)", "Centre_Frequency (MHz)", "Flux (Jy)", "SNR", "DM_galaxy (pc/cm3)", "z", "Fluence (Jy ms)", "Energy (erg)", "Luminosity (erg/s)", "Method", "Cosmology"] df_out = pd.DataFrame(index=range(0, len(df)), columns=columns) for item, row in df.iterrows(): data = read_frb_row(row) frb = Frb(data["dm"], raj=data["raj"], decj=data["decj"], gl=data["gl"], gb=data["gb"], width=data["width"], peak_flux=data["flux"], obs_bandwidth=data["bw"], obs_freq_central=data["centre_freq"], name=data["name"]) # Calculate FRB properties frb.calc_dm_galaxy() frb.calc_redshift(method="Inoue2004") energy = frb.calc_energy() luminosity = frb.calc_luminosity() df_out.iloc[item] = [frb.name, data["telescope"], frb.raj, frb.decj, frb.gl, frb.gb, frb.dm.value, frb.width.value, frb.obs_bandwidth.value, frb.obs_freq_central.value, frb.peak_flux.value, frb.snr, frb.dm_galaxy.value, frb.z.value, frb.fluence.value, energy.value, luminosity.value, method, cosmology] output_name = "".join([filename, ".csv"]) df_out.to_csv(output_name) @docstring_substitute(cosmo=cosmologies.available_cosmologies()) def create_methods_catalogue(filename="fruitbat_methods_catalogue", dataset='default', cosmology='Planck18'): """ Analyses an FRB dataset and produces a CSV file containing the estimated redshift for each method. Parameters ---------- filename: str, optional The output file name. Default: 'fruitbat_methods_catalogue' dataset: str, optional The path to the FRBCAT dataset. The dataset is required to have the following columns: 'frb_name', 'utc', 'telescope', 'rop_raj', 'rop_decj', 'rop_gl', 'rop_gb', 'rmp_dm'. If ``dataset='default'`` then the builtin dataset will be used. The builtin dataset was last updated: 2019-04-08. Default: 'default' cosmology: str, optional The cosmology to assume when calculating redshift. Avaliable cosmologies: %(cosmo)s. Default: 'Planck18' Generates --------- A csv file with the output of the of the analysis. """ if dataset == 'default': dataset = os.path.join(os.path.dirname(__file__), 'data', 'frbcat_database_20190408.csv') df = pd.read_csv(dataset) columns = ["Name", "Telescope", "RAJ", "DECJ", "gl", "gb", "DM (pc/cm3)", "DM_galaxy (pc/cm3)", "z (Ioka 2003)", "z (Inoue 2004)", "z (Zhang 2018)"] df_out = pd.DataFrame(index=range(0, len(df)), columns=columns) for item, row in df.iterrows(): data = read_frb_row(row) frb = Frb(data["dm"], raj=data["raj"], decj=data["decj"], gl=data["gl"], gb=data["gb"], name=data["name"]) # Calculate FRB properties frb.calc_dm_galaxy() z_ioka = frb.calc_redshift(method="Ioka2003", cosmology=cosmology) z_inoue = frb.calc_redshift(method="Inoue2004", cosmology=cosmology) z_zhang = frb.calc_redshift(method="Zhang2018", cosmology=cosmology) df_out.iloc[item] = [frb.name, data["telescope"], frb.raj, frb.decj, frb.gl, frb.gb, frb.dm.value, frb.dm_galaxy.value, z_ioka.value, z_inoue.value, z_zhang.value] output_name = "".join([filename, ".csv"]) df_out.to_csv(output_name) def read_frb_row(row): """ Reads the row of a :obj:`~pandas.DataFrame` and retrieves the data in the correct format. Parameters ---------- row: :obj:`~pandas.core.series.Series` The series containing FRB data. Returns ------- A dictionary containing the FRB paramemters """ drow = {"name": row['frb_name'], "utc": row['utc'], "telescope": row['telescope'], "dm": float(row['rmp_dm'].split('&plusmn')[0]), "gl": row['rop_gl'], "gb": row['rop_gb'], "raj": row['rop_raj'], "decj": row['rop_decj'], "bw": float(row['rop_bandwidth']), "width": float(row['rmp_width']), "snr": float(row['rmp_snr']), "flux": float(row['rmp_flux']), "centre_freq": float(row['rop_centre_frequency']) } return drow
36.340206
77
0.553333
95275cc4abf6b56c5be577d3b581fe04fa4bab96
31,656
py
Python
sdk/python/pulumi_docker/docker.py
stevesloka/pulumi-docker
6628c2dfab8ab3b6293da0b8f6befd143d19bd47
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_docker/docker.py
stevesloka/pulumi-docker
6628c2dfab8ab3b6293da0b8f6befd143d19bd47
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_docker/docker.py
stevesloka/pulumi-docker
6628c2dfab8ab3b6293da0b8f6befd143d19bd47
[ "Apache-2.0" ]
null
null
null
# Copyright 2016-2020, Pulumi Corporation. # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http:#www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import asyncio import json import math import os import re from random import random from typing import Optional, Union, List, Mapping, Sequence from distutils.version import LooseVersion import pulumi from .utils import get_image_name_and_tag class Registry: registry: pulumi.Input[str] """ Registry server url """ username: pulumi.Input[str] """ Username for the registry """ password: pulumi.Input[str] """ Password for the registry """ def __init__(self, registry: pulumi.Input[str], username: pulumi.Input[str], password: pulumi.Input[str]): """ Registry is the information required to login to a Docker registry. :param pulumi.Input[str] registry: Registry server url :param pulumi.Input[str] username: Username for the registry :param pulumi.Input[str] password: Password for the registry """ self.registry = registry self.username = username self.password = password class CacheFrom: """ CacheFrom may be used to specify build stages to use for the Docker build cache. The final image is always implicitly included. """ stages: Optional[Sequence[pulumi.Input[pulumi.Input[str]]]] """ An optional list of build stages to use for caching. Each build stage in this list will be built explicitly and pushed to the target repository. A given stage's image will be tagged as "[stage-name]". """ def __init__(self, stages: Optional[Sequence[pulumi.Input[pulumi.Input[str]]]] = None): self.stages = stages class DockerBuild: context: Optional[pulumi.Input[str]] """ context is a path to a directory to use for the Docker build context, usually the directory in which the Dockerfile resides (although dockerfile may be used to choose a custom location independent of this choice). If not specified, the context defaults to the current working directory if a relative path is used, it is relative to the current working directory that Pulumi is evaluating. """ dockerfile: Optional[pulumi.Input[str]] """ dockerfile may be used to override the default Dockerfile name and/or location. By default, it is assumed to be a file named Dockerfile in the root of the build context. """ args: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] """ An optional map of named build-time argument variables to set during the Docker build. This flag allows you to pass built-time variables that can be accessed like environment variables inside the `RUN` instruction. """ cache_from: Optional[pulumi.Input[Union[bool, CacheFrom]]] """ An optional CacheFrom object with information about the build stages to use for the Docker build cache. This parameter maps to the --cache-from argument to the Docker CLI. If this parameter is `true`, only the final image will be pulled and passed to --cache-from if it is a CacheFrom object, the stages named therein will also be pulled and passed to --cache-from. """ extra_options: Optional[Sequence[pulumi.Input[pulumi.Input[str]]]] """ An optional catch-all list of arguments to provide extra CLI options to the docker build command. For example `['--network', 'host']`. """ env: Optional[Mapping[str, str]] """ Environment variables to set on the invocation of `docker build`, for example to support `DOCKER_BUILDKIT=1 docker build`. """ target: Optional[pulumi.Input[str]] """ The target of the dockerfile to build """ def __init__(self, context=None, dockerfile=None, args=None, cache_from=None, extra_options=None, env=None, target=None): """ DockerBuild may be used to specify detailed instructions about how to build a container. :param Optional[pulumi.Input[str]] context: context is a path to a directory to use for the Docker build context, usually the directory in which the Dockerfile resides (although dockerfile may be used to choose a custom location independent of this choice). If not specified, the context defaults to the current working directory if a relative path is used, it is relative to the current working directory that Pulumi is evaluating. :param Optional[pulumi.Input[str]] dockerfile: dockerfile may be used to override the default Dockerfile name and/or location. By default, it is assumed to be a file named Dockerfile in the root of the build context. :param Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] args: An optional map of named build-time argument variables to set during the Docker build. This flag allows you to pass built-time variables that can be accessed like environment variables inside the `RUN` instruction. :param Optional[pulumi.Input[Union[bool, CacheFrom]]] cache_from: An optional CacheFrom object with information about the build stages to use for the Docker build cache. This parameter maps to the --cache-from argument to the Docker CLI. If this parameter is `true`, only the final image will be pulled and passed to --cache-from if it is a CacheFrom object, the stages named therein will also be pulled and passed to --cache-from. :param Optional[Sequence[pulumi.Input[pulumi.Input[str]]]] extra_options: An optional catch-all list of arguments to provide extra CLI options to the docker build command. For example `['--network', 'host']`. :param Optional[Mapping[str, str]] env: Environment variables to set on the invocation of `docker build`, for example to support `DOCKER_BUILDKIT=1 docker build`. :param Optional[pulumi.Input[str]] target: The target of the dockerfile to build """ self.context = context self.dockerfile = dockerfile self.args = args self.cache_from = cache_from self.extra_options = extra_options self.env = env self.target = target class Error(Exception): pass class ResourceError(Error): def __init__(self, message: str, resource: Optional[pulumi.Resource], hide_stack: Optional[bool] = False): self.resource = resource self.hide_stack = hide_stack super().__init__(message) async def use_docker_password_stdin(log_resource: pulumi.Resource): # Verify that 'docker' is on the PATH and get the client/server versions try: docker_version_str = await run_command_that_must_succeed( "docker", ["version", "-f", "{{json .}}"], log_resource) # IDEA: In the future we could warn here on out-of-date versions of Docker which may not support key # features we want to use. pulumi.log.debug(f'\'docker version\' => {docker_version_str}', log_resource) except Exception: raise ResourceError("No 'docker' command available on PATH: Please install to use container 'build' mode.", log_resource) # Decide whether to use --password or --password-stdin based on the client version. try: version_data: any = json.loads(docker_version_str) client_version: str = version_data['Client']['Version'] return LooseVersion(client_version) >= LooseVersion("17.07.0") except Exception as err: pulumi.log.info(f'Could not process Docker version ({err})', log_resource) return False async def build_and_push_image( base_image_name: str, path_or_build: pulumi.Input[Union[str, DockerBuild]], repository_url: pulumi.Input[str], log_resource: pulumi.Resource, registry: Optional[Registry], skip_push: bool = False ) -> str: """ build_and_push_image will build and push the Dockerfile and context from [pathOrBuild] into the requested docker repo [repository_url]. It returns the unique target image name for the image in the docker repository. During preview this will build the image, and return the target image name, without pushing. During a normal update, it will do the same, as well as tag and push the image. """ # Give an initial message indicating what we're about to do. That way, if anything # takes a while, the user has an idea about what's going on. log_debug("Starting docker build and push...", log_resource) check_repository_url(repository_url) _, tag = get_image_name_and_tag(base_image_name) # login immediately if we're going to have to actually communicate with a remote registry. # # We know we have to login if: # # 1. We're doing an update. In that case, we'll always want to login so we can push our # images to the remote registry. # # 2. We're in preview or update and the build information contains 'cache from' information. In # that case, we'll want want to pull from the registry and will need to login for that. pull_from_cache = not isinstance(path_or_build, str) and path_or_build and path_or_build.cache_from and repository_url is not None # If no `registry` info was passed in we simply assume docker is already # logged-in to the correct registry (or uses auto-login via credential helpers). if registry: if not pulumi.runtime.is_dry_run() or pull_from_cache: log_debug("Logging in to registry...", log_resource) await login_to_registry(registry, log_resource) # If the container specified a cache_from parameter, first set up the cached stages. cache_from = None if pull_from_cache: _cache_from_param = CacheFrom() if isinstance(path_or_build.cache_from, bool) else path_or_build.cache_from cache_from_param = _cache_from_param if _cache_from_param else CacheFrom() cache_from = pull_cache(base_image_name, cache_from_param, repository_url, log_resource) # Next, build the image. log_ephemeral(f"Building image '{ path_or_build if isinstance(path_or_build, str) else path_or_build.context or '.'}'...", log_resource) build_result = await build_image(base_image_name, path_or_build, log_resource, cache_from) image_id, stages = build_result.image_id, build_result.stages log_ephemeral("Image build succeeded.", log_resource) if image_id is None: raise Error("Internal error: docker build did not produce an imageId.") # Generate a name that uniquely will identify this built image. This is similar in purpose to # the name@digest form that can be normally be retrieved from a docker repository. However, # this tag doesn't require actually pushing the image, nor does it require communicating with # some external system, making it suitable for unique identification, even during preview. # This also means that if docker produces a new imageId, we'll get a new name here, ensuring that # resources (like docker.Image and cloud.Service) will be appropriately replaced. unique_tagged_image_name = create_tagged_image_name(repository_url, tag, image_id) # Use those to push the image. Then just return the unique target name. as the final result # for our caller to use. Only push the image during an update, do not push during a preview. if not pulumi.runtime.is_dry_run() and not skip_push: # Push the final image first, then push the stage images to use for caching. log_ephemeral(f"Pushing image '{base_image_name}'...", log_resource) # First, push with both the optionally-requested-tag *and* imageId (which is guaranteed to # be defined). By using the imageId we give the image a fully unique location that we can # successfully pull regardless of whatever else has happened at this repository_url. # Next, push only with the optionally-requested-tag. Users of this API still want to get a # nice and simple url that they can reach this image at, without having the explicit imageId # hash added to it. Note: this location is not guaranteed to be idempotent. For example, # pushes on other machines might overwrite that location. await tag_and_push_image(base_image_name, repository_url, tag, image_id, log_resource=log_resource) await tag_and_push_image(base_image_name, repository_url, tag, image_id=None, log_resource=log_resource) for stage in stages: await tag_and_push_image( local_stage_image_name(base_image_name, stage), repository_url, stage, image_id=None, log_resource=log_resource ) log_ephemeral("Image push succeeded.", log_resource) # If we got here, then building/pushing didn't throw any errors. Update the status bar # indicating that things worked properly. That way, the info bar isn't stuck showing the very # last thing printed by some subcommand we launched. log_debug("Successfully pushed to docker", log_resource) return unique_tagged_image_name def log_ephemeral(message: str, log_resource: pulumi.Resource): try: pulumi.log.info(message, log_resource, stream_id=None, ephemeral=True) except TypeError: # that pulumi version does not support ephemeral pulumi.log.info(message, log_resource, stream_id=None) def log_debug(message: str, log_resource: pulumi.Resource): try: pulumi.log.debug(message, log_resource, stream_id=None, ephemeral=True) except TypeError: # that pulumi version does not support ephemeral pulumi.log.info(message, log_resource, stream_id=None) def check_repository_url(repository_url: str): _, tag = get_image_name_and_tag(repository_url) # We want to report an advisory error to users so that they don't accidentally include a 'tag' # in the repo url they supply. i.e. their repo url can be: # # docker.mycompany.com/namespace/myimage # # but should not be: # # docker.mycompany.com/namespace/myimage:latest # # We could consider removing this check entirely. However, it is likely valuable to catch # clear mistakes where a tag was included in a repo url inappropriately. # # However, since we do have the check, we need to ensure that we do allow the user to specify # a *port* on their repository that the are communicating with. i.e. it's fine to have: # # docker.mycompany.com:5000 or # docker.mycompany.com:5000/namespace/myimage # # So check if this actually does look like a port, and don't report an error in that case. # # From: https:#www.w3.org/Addressing/URL/url-spec.txt # # port digits # # Regex = any number of digits, optionally followed by / and any remainder. if tag and not re.match(r'^\d+(/.*)?', tag): raise Error(f'[repository_url] should not contain a tag: {tag}') def local_stage_image_name(image_name: str, stage: str): return f'{image_name}-{stage}' def create_tagged_image_name(repository_url: str, tag: Optional[str], image_id: Optional[str]) -> str: pieces: List = [] if tag: pieces.append(tag) if image_id: pieces.append(image_id) # Note: we don't do any validation that the tag is well formed, as per: # https://docs.docker.com/engine/reference/commandline/tag # # If there are any issues with it, we'll just let docker report the problem. full_tag = "-".join(pieces) return f'{repository_url}:{full_tag}' if full_tag else repository_url async def pull_cache( image_name: str, cache_from, repo_url: str, log_resource: pulumi.Resource ) -> Optional[Sequence[str]]: # Ensure that we have a repository URL. If we don't, we won't be able to pull anything. if not repo_url: return None pulumi.log.debug(f'pulling cache for {image_name} from {repo_url}', log_resource) cache_from_images: List = [] stages = (cache_from.stages if cache_from.stages else []) + [""] for stage in stages: tag = f':{stage}' if stage else "" image = f'{repo_url}{tag}' # Try to pull the existing image if it exists. This may fail if the image does not exist. # That's fine, just move onto the next stage. Also, pass along a flag saying that we # should print that error as a warning instead. We don't want the update to succeed but # the user to then get a nasty "error:" message at the end. command_result = await run_command_that_can_fail( "docker", ["pull", image], log_resource, report_full_command_line=True, report_error_as_warning=True ) if command_result.code: continue cache_from_images.append(image) return cache_from_images class BuildResult: image_id: str stages: Sequence[str] def __init__(self, image_id, stages): self.image_id = image_id self.stages = stages async def build_image( image_name: str, path_or_build: Union[str, DockerBuild], log_resource: pulumi.Resource, cache_from: Optional[Sequence[str]] ) -> BuildResult: if isinstance(path_or_build, str): build = DockerBuild(context=path_or_build) elif path_or_build: build = path_or_build else: raise ResourceError(f'Cannot build a container with an empty build specification', log_resource) # If the build context is missing, default it to the working directory. if not build.context: build.context = "." log_debug( f'Building container image \'{image_name}\': context={build.context}' + (f', dockerfile={build.dockerfile}' if build.dockerfile else "") + (f', args={json.dumps(build.args)}' if build.args else "") + (f', target={build.target}' if build.target else ""), log_resource) # If the container build specified build stages to cache, build each in turn. stages = [] if build.cache_from and not isinstance(build.cache_from, bool) and build.cache_from.stages: for stage in build.cache_from.stages: await docker_build( local_stage_image_name(image_name, stage), build, cache_from=cache_from, log_resource=log_resource, target=stage) stages.append(stage) # Invoke Docker CLI commands to build. await docker_build(image_name, build, log_resource, cache_from) # Finally, inspect the image so we can return the SHA digest. Do not forward the output of this # command this to the CLI to show the user. inspect_result = await run_command_that_must_succeed( "docker", ["image", "inspect", "-f", "{{.Id}}", image_name], log_resource) if not inspect_result: raise ResourceError( f'No digest available for image {image_name}', log_resource) # From https:#docs.docker.com/registry/spec/api/#content-digests # # the image id will be a "algorithm:hex" pair. We don't care about the algorithm part. All we # want is the unique portion we can use elsewhere. Since we are also going to place this in an # image tag, we also don't want the colon, as that's not legal there. So simply grab the hex # portion after the colon and return that. image_id = inspect_result.strip() colon_index = image_id.rfind(":") image_id = image_id if colon_index < 0 else image_id[colon_index + 1:] return BuildResult(image_id, stages) async def docker_build( image_name: str, build: DockerBuild, log_resource: pulumi.Resource, cache_from: Optional[Sequence[str]], target: Optional[str] = None ) -> str: # Prepare the build arguments. build_args: List[str] = ["build"] if build.dockerfile: build_args.extend(["-f", build.dockerfile]) # add a custom Dockerfile location. if build.args: for arg, build_arg in build.args.items(): build_args.extend(["--build-arg", f'{arg}={build_arg}']) if build.target: build_args.extend(["--target", build.target]) if cache_from: for image in cache_from: build_args.extend(["--cache-from", image]) if build.extra_options: build_args.extend(build.extra_options) build_args.extend(["-t", image_name]) # tag the image with the chosen name. if target: build_args.extend(["--target", target]) if build.context: build_args.append(build.context) # push the docker build context onto the path. return await run_command_that_must_succeed("docker", build_args, log_resource, env=build.env) class LoginResult: registry_name: str username: str done: asyncio.Task def __init__(self, registry_name: str, username: str, done: asyncio.Task): self.registry_name = registry_name self.username = username self.done = done # Keep track of registries and users that have been logged in. If we've already logged into that # registry with that user, there's no need to do it again. login_results: List[LoginResult] = [] async def login_to_registry(registry: Registry, log_resource: pulumi.Resource): registry_name = registry.registry username = registry.username password = registry.password # See if we've issued an outstanding requests to login into this registry. If so, just # await the results of that login request. Otherwise, create a new request and keep it # around so that future login requests will see it. result: LoginResult = None for existing in login_results: if existing.registry_name == registry_name and existing.username == username: log_debug(f'Reusing existing login for {username}@{registry_name}', log_resource) result = existing break if not result: # An existing login wasn't found; WARNING: we must not await anything between this check # for existing logins, and appending our new login attempt, otherwise an async interleaving # could sneak in, log into the same server, and yield a redundant login (which will error out). docker_password_stdin = use_docker_password_stdin(log_resource) # pass 'report_full_command_line: false' here so that if we fail to login we don't emit the # username/password in our logs. Instead, we'll just say "'docker login' failed with code ..." coro: asyncio.Coroutine = None if docker_password_stdin: coro = run_command_that_must_succeed("docker", ["login", "-u", username, "--password-stdin", registry_name], log_resource, report_full_command_line=False, stdin=password) else: coro = run_command_that_must_succeed("docker", ["login", "-u", username, "-p", password, registry_name], log_resource, report_full_command_line=False) done = asyncio.create_task(coro) result = LoginResult(registry_name, username, done) login_results.append(result) await result.done async def tag_and_push_image( image_name: str, repository_url: str, tag: Optional[str], image_id: Optional[str], log_resource: pulumi.Resource ): async def do_tag_and_push(target_name: str): await run_command_that_must_succeed("docker", ["tag", image_name, target_name], log_resource) await run_command_that_must_succeed("docker", ["push", target_name], log_resource) # Ensure we have a unique target name for this image, and tag and push to that unique target. await do_tag_and_push(create_tagged_image_name(repository_url, tag, image_id)) # If the user provided a tag themselves (like "x/y:dev") then also tag and push directly to # that 'dev' tag. This is not going to be a unique location, and future pushes will overwrite # this location. However, that's ok as there's still the unique target we generated above. # # Note: don't need to do this if imageId was 'undefined' as the above line will have already # taken care of things for us. if tag is not None and image_id is not None: await do_tag_and_push(create_tagged_image_name(repository_url, tag, image_id=None)) return class CommandResult: code: int stdout: str def __init__(self, code, stdout): self.code = code self.stdout = stdout def get_command_line_message( cmd: str, args: Sequence[str], report_full_command_line: bool, env: Optional[Mapping[str, str]] = None ): elements = [] if env: elements.append(" ".join(map(lambda k: f'{k}={env[k]}', env.keys()))) elements.append(cmd) argstr = " ".join(args) if report_full_command_line else args[0] elements.append(argstr) return f"'{' '.join(elements)}'" def get_failure_message( cmd: str, args: Sequence[str], report_full_command_line: bool, code: int, env: Optional[Mapping[str, str]] = None ): return f'{get_command_line_message(cmd, args, report_full_command_line, env)} failed with exit code {code}' # [report_full_command_line] is used to determine if the full command line should be reported # when an error happens. In general reporting the full command line is fine. But it should be set # to false if it might contain sensitive information (like a username/password) async def run_command_that_must_succeed( cmd: str, args: Sequence[str], log_resource: pulumi.Resource, report_full_command_line: bool = True, stdin: Optional[str] = None, env: Optional[Mapping] = None ) -> str: command_result = await run_command_that_can_fail( cmd, args, log_resource, report_full_command_line, False, stdin, env) code, stdout = command_result.code, command_result.stdout if code != 0: # Fail the entire build and push. This includes the full output of the command so that at # the end the user can review the full docker message about what the problem was. # # Note: a message about the command failing will have already been ephemerally reported to # the status column. raise ResourceError( f'{get_failure_message(cmd, args, report_full_command_line, code)}\n{stdout}', log_resource) return stdout async def run_command_that_can_fail( cmd_name: str, args: Sequence[str], log_resource: pulumi.Resource, report_full_command_line: bool, report_error_as_warning: bool, stdin: Optional[str] = None, env: Optional[Mapping[str, str]] = None ) -> CommandResult: """ Runs a CLI command in a child process, returning a future for the process's exit. Both stdout and stderr are redirected to process.stdout and process.stderr by default. If the [stdin] argument is defined, its contents are piped into stdin for the child process. [log_resource] is used to specify the resource to associate command output with. Stderr messages are always sent (since they may contain important information about something that's gone wrong). Stdout messages will be logged ephemerally to this resource. This lets the user know there is progress, without having that dumped on them at the end. If an error occurs though, the stdout content will be printed. """ # Let the user ephemerally know the command we're going to execute. log_debug(f"Executing {get_command_line_message(cmd_name, args, report_full_command_line, env)}", log_resource) # Generate a unique stream-ID that we'll associate all the docker output with. This will allow # each spawned CLI command's output to associated with 'resource' and also streamed to the UI # in pieces so that it can be displayed live. The stream-ID is so that the UI knows these # messages are all related and should be considered as one large message (just one that was # sent over in chunks). # # We use Math.random here in case our package is loaded multiple times in memory (i.e. because # different downstream dependencies depend on different versions of us). By being random we # effectively make it completely unlikely that any two cli outputs could map to the same stream # id. # # Pick a reasonably distributed number between 0 and 2^30. This will fit as an int32 # which the grpc layer needs. stream_id = math.floor(random() * (1 << 30)) if env is not None: env = os.environ.copy().update(env) process = await asyncio.create_subprocess_exec( cmd_name, *args, env=env, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, stdin=asyncio.subprocess.PIPE) # If stdin input is present, we need to ensure it's encoded into bytes. if isinstance(stdin, str): stdin = stdin.encode('utf-8') # We store the results from stdout in memory and will return them as a str. stdout_chunks: List[str] = [] stderr_chunks: List[str] = [] # A None value for process.returncode indicates that the process hasn't terminated yet while process.returncode is None: outs, errs = await process.communicate(input=stdin) if outs: # Report all stdout messages as ephemeral messages. That way they show up in the # info bar as they're happening. But they do not overwhelm the user as the end # of the run. for line in outs.splitlines(): log_ephemeral(line, log_resource) stdout_chunks.append(outs.rstrip().decode('utf-8')) if errs: # We can't stream these stderr messages as we receive them because we don't knows at # this point because Docker uses stderr for both errors and warnings. So, instead, we # just collect the messages, and wait for the process to end to decide how to report # them. stderr_chunks.append(errs.rstrip().decode('utf-8')) code = process.returncode # Collapse our stored stdout/stderr messages into single strings. stderr = ''.join(stderr_chunks) stdout = ''.join(stdout_chunks) # If we got any stderr messages, report them as an error/warning depending on the # result of the operation. if stderr: if code and not report_error_as_warning: # Command returned non-zero code. Treat these stderr messages as an error. pulumi.log.error(stderr, log_resource, stream_id) else: # command succeeded. These were just warning. pulumi.log.warn(stderr, log_resource, stream_id) # If the command failed report an ephemeral message indicating which command it was. # That way the user can immediately see something went wrong in the info bar. The # caller (normally run_command_that_can_succeed) can choose to also report this # non-ephemerally. if code: log_ephemeral(get_failure_message(cmd_name, args, report_full_command_line, code), log_resource) return CommandResult(code, stdout)
43.723757
140
0.693676
a262e53287691d4dc9c18021db1dbcf6251a0122
7,393
py
Python
pytest_lambda/impl.py
theY4Kman/pytest-lambda
a64de8e9d57176878756686ac128aa93a9e88290
[ "MIT" ]
10
2018-07-31T14:57:23.000Z
2021-05-24T12:45:51.000Z
pytest_lambda/impl.py
theY4Kman/pytest-lambda
a64de8e9d57176878756686ac128aa93a9e88290
[ "MIT" ]
3
2019-01-16T00:41:42.000Z
2020-11-02T21:50:25.000Z
pytest_lambda/impl.py
theY4Kman/pytest-lambda
a64de8e9d57176878756686ac128aa93a9e88290
[ "MIT" ]
3
2019-01-16T00:41:47.000Z
2021-05-01T09:50:36.000Z
import functools from types import ModuleType from typing import Callable, Union import pytest import wrapt _IDENTITY_LAMBDA_FORMAT = ''' {name} = lambda {argnames}: ({argnames}) ''' def create_identity_lambda(name, *argnames): source = _IDENTITY_LAMBDA_FORMAT.format(name=name, argnames=', '.join(argnames)) context = {} exec(source, context) fixture_func = context[name] return fixture_func class LambdaFixture(wrapt.ObjectProxy): # NOTE: pytest won't apply marks unless the markee has a __call__ and a # __name__ defined. __name__ = '<lambda-fixture>' bind: bool fixture_kwargs: dict fixture_func: Callable has_fixture_func: bool parent: Union[type, ModuleType] def __init__(self, fixture_names_or_lambda, bind=False, **fixture_kwargs): self.bind = bind self.fixture_kwargs = fixture_kwargs self.fixture_func = self._not_implemented self.has_fixture_func = False self.parent = None #: pytest fixture info definition self._pytestfixturefunction = pytest.fixture(**fixture_kwargs) if fixture_names_or_lambda is not None: self.set_fixture_func(fixture_names_or_lambda) elif fixture_kwargs.get('params'): # Shortcut to allow `lambda_fixture(params=[1,2,3])` self.set_fixture_func(lambda request: request.param) def __call__(self, *args, **kwargs): if self.bind: args = (self.parent,) + args return self.fixture_func(*args, **kwargs) def _not_implemented(self): raise NotImplementedError( 'The fixture_func for this LambdaFixture has not been defined. ' 'This is a catastrophic error!') def set_fixture_func(self, fixture_names_or_lambda): self.fixture_func = self.build_fixture_func(fixture_names_or_lambda) self.has_fixture_func = True # NOTE: this initializes the ObjectProxy super().__init__(self.fixture_func) def build_fixture_func(self, fixture_names_or_lambda): if callable(fixture_names_or_lambda): real_fixture_func = fixture_names_or_lambda # We create a new method with the same signature as the passed # method, which simply calls the passed method – this is so we can # modify __name__ and other properties of the function without fear # of overwriting functions unrelated to the fixture. (A lambda need # not be used – a method imported from another module can be used.) @functools.wraps(real_fixture_func) def insulator(*args, **kwargs): return real_fixture_func(*args, **kwargs) return insulator else: if self.bind: raise ValueError( 'bind must be False if requesting a fixture by name') fixture_names = fixture_names_or_lambda if isinstance(fixture_names, str): fixture_names = (fixture_names,) # Create a new method with the requested parameter, so pytest can # determine its dependencies at parse time. If we instead use # request.getfixturevalue, pytest won't know to include the fixture # in its dependency graph, and will vomit with "The requested # fixture has no parameter defined for the current test." name = 'fixture__' + '__'.join(fixture_names) # XXX: will this conflict in certain circumstances? return create_identity_lambda(name, *fixture_names) def contribute_to_parent(self, parent: Union[type, ModuleType], name: str, **kwargs): """Setup the LambdaFixture for the given class/module This method is called during collection, when a LambdaFixture is encountered in a module or class. This method is responsible for saving any names and setting any attributes on parent as necessary. """ is_in_class = isinstance(parent, type) is_in_module = isinstance(parent, ModuleType) assert is_in_class or is_in_module if is_in_module and self.bind: raise ValueError(f'bind=True cannot be used at the module level. ' f'Please remove this arg in the {name} fixture in {parent.__file__}') if not self.has_fixture_func: # If no fixture definition was passed to lambda_fixture, it's our # responsibility to define it as the name of the attribute. This is # handy if ya just wanna force a fixture to be used, e.g.: # do_the_thing = lambda_fixture(autouse=True) self.set_fixture_func(name) self.__name__ = name self.__module__ = self.fixture_func.__module__ = ( parent.__module__ if is_in_class else parent.__name__) self.parent = parent # With --doctest-modules enabled, the doctest finder will enumerate all objects # in all relevant modules, and use `isinstance(obj, ...)` to determine whether # the object has doctests to collect. Under the hood, isinstance retrieves the # value of the `obj.__class__` attribute. # # When using implicit referential lambda fixtures (e.g. `name = lambda_fixture()`), # the LambdaFixture object doesn't initialize its underlying object proxy until the # pytest collection phase. Unfortunately, doctest's scanning occurs before this. # When doctest attempts `isinstance(lfix, ...)` on an implicit referential # lambda fixture and accesses `__class__`, the object proxy tries to curry # the access to its wrapped object — but there isn't one, so it raises an error. # # To address this, we override __class__ to return LambdaFixture when the # object proxy has not yet been initialized. @property def __class__(self): try: self.__wrapped__ except ValueError: return LambdaFixture else: return self.__wrapped__.__class__ @__class__.setter def __class__(self, val): self.__wrapped__.__class__ = val # These properties are required in order to expose attributes stored on the # LambdaFixture proxying instance without prefixing them with _self_ @property def bind(self): return self._self_bind @bind.setter def bind(self, value): self._self_bind = value @property def fixture_kwargs(self): return self._self_fixture_kwargs @fixture_kwargs.setter def fixture_kwargs(self, value): self._self_fixture_kwargs = value @property def fixture_func(self): return self._self_fixture_func @fixture_func.setter def fixture_func(self, value): self._self_fixture_func = value @property def has_fixture_func(self): return self._self_has_fixture_func @has_fixture_func.setter def has_fixture_func(self, value): self._self_has_fixture_func = value @property def parent(self): return self._self_parent @parent.setter def parent(self, value): self._self_parent = value @property def _pytestfixturefunction(self): return self._self__pytestfixturefunction @_pytestfixturefunction.setter def _pytestfixturefunction(self, value): self._self__pytestfixturefunction = value
36.063415
110
0.670634
cfcefddf77738011e14575bd5f93ddda875a540d
1,359
py
Python
tests/types/test_permissions.py
nyejon/strawberry
664fde292fe2186c3e33e8cae79964b866fa5822
[ "MIT" ]
1
2021-05-26T18:31:11.000Z
2021-05-26T18:31:11.000Z
tests/types/test_permissions.py
nyejon/strawberry
664fde292fe2186c3e33e8cae79964b866fa5822
[ "MIT" ]
43
2021-07-05T22:51:03.000Z
2022-03-29T10:44:58.000Z
tests/types/test_permissions.py
nyejon/strawberry
664fde292fe2186c3e33e8cae79964b866fa5822
[ "MIT" ]
null
null
null
from typing import Any import strawberry from strawberry.permission import BasePermission from strawberry.types import Info def test_permission_classes_basic_fields(): class IsAuthenticated(BasePermission): message = "User is not authenticated" def has_permission(self, source: Any, info: Info, **kwargs) -> bool: return False @strawberry.type class Query: user: str = strawberry.field(permission_classes=[IsAuthenticated]) definition = Query._type_definition assert definition.name == "Query" assert len(definition.fields) == 1 assert definition.fields[0].graphql_name == "user" assert definition.fields[0].permission_classes == [IsAuthenticated] def test_permission_classes(): class IsAuthenticated(BasePermission): message = "User is not authenticated" def has_permission(self, source: Any, info: Info, **kwargs) -> bool: return False @strawberry.type class Query: @strawberry.field(permission_classes=[IsAuthenticated]) def user(self) -> str: return "patrick" definition = Query._type_definition assert definition.name == "Query" assert len(definition.fields) == 1 assert definition.fields[0].graphql_name == "user" assert definition.fields[0].permission_classes == [IsAuthenticated]
28.3125
76
0.698308
a37b848c0be19172fa620388c5d545c3873183ec
28,298
py
Python
sdk/synapse/azure-mgmt-synapse/azure/mgmt/synapse/aio/operations/_sql_pool_sensitivity_labels_operations.py
xolve/azure-sdk-for-python
9f5baa19c392f77f811d936ee43450e4ea524002
[ "MIT" ]
1
2021-09-07T18:39:05.000Z
2021-09-07T18:39:05.000Z
sdk/synapse/azure-mgmt-synapse/azure/mgmt/synapse/aio/operations/_sql_pool_sensitivity_labels_operations.py
xolve/azure-sdk-for-python
9f5baa19c392f77f811d936ee43450e4ea524002
[ "MIT" ]
null
null
null
sdk/synapse/azure-mgmt-synapse/azure/mgmt/synapse/aio/operations/_sql_pool_sensitivity_labels_operations.py
xolve/azure-sdk-for-python
9f5baa19c392f77f811d936ee43450e4ea524002
[ "MIT" ]
1
2022-03-04T06:21:56.000Z
2022-03-04T06:21:56.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import functools from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.core.tracing.decorator_async import distributed_trace_async from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models from ..._vendor import _convert_request from ...operations._sql_pool_sensitivity_labels_operations import build_create_or_update_request, build_delete_request, build_disable_recommendation_request, build_enable_recommendation_request, build_get_request, build_list_current_request, build_list_recommended_request, build_update_request T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class SqlPoolSensitivityLabelsOperations: """SqlPoolSensitivityLabelsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.synapse.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config @distributed_trace def list_current( self, resource_group_name: str, workspace_name: str, sql_pool_name: str, filter: Optional[str] = None, **kwargs: Any ) -> AsyncIterable["_models.SensitivityLabelListResult"]: """Gets SQL pool sensitivity labels. Gets SQL pool sensitivity labels. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param sql_pool_name: SQL pool name. :type sql_pool_name: str :param filter: An OData filter expression that filters elements in the collection. :type filter: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either SensitivityLabelListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.synapse.models.SensitivityLabelListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.SensitivityLabelListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) def prepare_request(next_link=None): if not next_link: request = build_list_current_request( subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, sql_pool_name=sql_pool_name, filter=filter, template_url=self.list_current.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: request = build_list_current_request( subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, sql_pool_name=sql_pool_name, filter=filter, template_url=next_link, ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request async def extract_data(pipeline_response): deserialized = self._deserialize("SensitivityLabelListResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_current.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/sqlPools/{sqlPoolName}/currentSensitivityLabels'} # type: ignore @distributed_trace_async async def update( self, resource_group_name: str, workspace_name: str, sql_pool_name: str, parameters: "_models.SensitivityLabelUpdateList", **kwargs: Any ) -> None: """Update sensitivity labels of a given SQL Pool using an operations batch. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param sql_pool_name: SQL pool name. :type sql_pool_name: str :param parameters: :type parameters: ~azure.mgmt.synapse.models.SensitivityLabelUpdateList :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] _json = self._serialize.body(parameters, 'SensitivityLabelUpdateList') request = build_update_request( subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, sql_pool_name=sql_pool_name, content_type=content_type, json=_json, template_url=self.update.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/sqlPools/{sqlPoolName}/currentSensitivityLabels'} # type: ignore @distributed_trace def list_recommended( self, resource_group_name: str, workspace_name: str, sql_pool_name: str, include_disabled_recommendations: Optional[bool] = None, skip_token: Optional[str] = None, filter: Optional[str] = None, **kwargs: Any ) -> AsyncIterable["_models.SensitivityLabelListResult"]: """Gets sensitivity labels of a given SQL pool. Gets sensitivity labels of a given SQL pool. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param sql_pool_name: SQL pool name. :type sql_pool_name: str :param include_disabled_recommendations: Specifies whether to include disabled recommendations or not. :type include_disabled_recommendations: bool :param skip_token: An OData query option to indicate how many elements to skip in the collection. :type skip_token: str :param filter: An OData filter expression that filters elements in the collection. :type filter: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either SensitivityLabelListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.synapse.models.SensitivityLabelListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.SensitivityLabelListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) def prepare_request(next_link=None): if not next_link: request = build_list_recommended_request( subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, sql_pool_name=sql_pool_name, include_disabled_recommendations=include_disabled_recommendations, skip_token=skip_token, filter=filter, template_url=self.list_recommended.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: request = build_list_recommended_request( subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, sql_pool_name=sql_pool_name, include_disabled_recommendations=include_disabled_recommendations, skip_token=skip_token, filter=filter, template_url=next_link, ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request async def extract_data(pipeline_response): deserialized = self._deserialize("SensitivityLabelListResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_recommended.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/sqlPools/{sqlPoolName}/recommendedSensitivityLabels'} # type: ignore @distributed_trace_async async def create_or_update( self, resource_group_name: str, workspace_name: str, sql_pool_name: str, schema_name: str, table_name: str, column_name: str, parameters: "_models.SensitivityLabel", **kwargs: Any ) -> "_models.SensitivityLabel": """Creates or updates the sensitivity label of a given column in a Sql pool. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param sql_pool_name: SQL pool name. :type sql_pool_name: str :param schema_name: The name of the schema. :type schema_name: str :param table_name: The name of the table. :type table_name: str :param column_name: The name of the column. :type column_name: str :param parameters: The column sensitivity label resource. :type parameters: ~azure.mgmt.synapse.models.SensitivityLabel :keyword callable cls: A custom type or function that will be passed the direct response :return: SensitivityLabel, or the result of cls(response) :rtype: ~azure.mgmt.synapse.models.SensitivityLabel :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.SensitivityLabel"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] _json = self._serialize.body(parameters, 'SensitivityLabel') request = build_create_or_update_request( subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, sql_pool_name=sql_pool_name, schema_name=schema_name, table_name=table_name, column_name=column_name, content_type=content_type, json=_json, template_url=self.create_or_update.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('SensitivityLabel', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('SensitivityLabel', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/sqlPools/{sqlPoolName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}/sensitivityLabels/{sensitivityLabelSource}'} # type: ignore @distributed_trace_async async def delete( self, resource_group_name: str, workspace_name: str, sql_pool_name: str, schema_name: str, table_name: str, column_name: str, **kwargs: Any ) -> None: """Deletes the sensitivity label of a given column in a Sql pool. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param sql_pool_name: SQL pool name. :type sql_pool_name: str :param schema_name: The name of the schema. :type schema_name: str :param table_name: The name of the table. :type table_name: str :param column_name: The name of the column. :type column_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_delete_request( subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, sql_pool_name=sql_pool_name, schema_name=schema_name, table_name=table_name, column_name=column_name, template_url=self.delete.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/sqlPools/{sqlPoolName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}/sensitivityLabels/{sensitivityLabelSource}'} # type: ignore @distributed_trace_async async def get( self, resource_group_name: str, workspace_name: str, sql_pool_name: str, schema_name: str, table_name: str, column_name: str, sensitivity_label_source: Union[str, "_models.SensitivityLabelSource"], **kwargs: Any ) -> "_models.SensitivityLabel": """Gets the sensitivity label of a given column. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param sql_pool_name: SQL pool name. :type sql_pool_name: str :param schema_name: The name of the schema. :type schema_name: str :param table_name: The name of the table. :type table_name: str :param column_name: The name of the column. :type column_name: str :param sensitivity_label_source: The source of the sensitivity label. :type sensitivity_label_source: str or ~azure.mgmt.synapse.models.SensitivityLabelSource :keyword callable cls: A custom type or function that will be passed the direct response :return: SensitivityLabel, or the result of cls(response) :rtype: ~azure.mgmt.synapse.models.SensitivityLabel :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.SensitivityLabel"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_request( subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, sql_pool_name=sql_pool_name, schema_name=schema_name, table_name=table_name, column_name=column_name, sensitivity_label_source=sensitivity_label_source, template_url=self.get.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('SensitivityLabel', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/sqlPools/{sqlPoolName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}/sensitivityLabels/{sensitivityLabelSource}'} # type: ignore @distributed_trace_async async def enable_recommendation( self, resource_group_name: str, workspace_name: str, sql_pool_name: str, schema_name: str, table_name: str, column_name: str, **kwargs: Any ) -> None: """Enables sensitivity recommendations on a given column (recommendations are enabled by default on all columns). :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param sql_pool_name: SQL pool name. :type sql_pool_name: str :param schema_name: The name of the schema. :type schema_name: str :param table_name: The name of the table. :type table_name: str :param column_name: The name of the column. :type column_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_enable_recommendation_request( subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, sql_pool_name=sql_pool_name, schema_name=schema_name, table_name=table_name, column_name=column_name, template_url=self.enable_recommendation.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) enable_recommendation.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/sqlPools/{sqlPoolName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}/sensitivityLabels/{sensitivityLabelSource}/enable'} # type: ignore @distributed_trace_async async def disable_recommendation( self, resource_group_name: str, workspace_name: str, sql_pool_name: str, schema_name: str, table_name: str, column_name: str, **kwargs: Any ) -> None: """Disables sensitivity recommendations on a given column. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param sql_pool_name: SQL pool name. :type sql_pool_name: str :param schema_name: The name of the schema. :type schema_name: str :param table_name: The name of the table. :type table_name: str :param column_name: The name of the column. :type column_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_disable_recommendation_request( subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, sql_pool_name=sql_pool_name, schema_name=schema_name, table_name=table_name, column_name=column_name, template_url=self.disable_recommendation.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) disable_recommendation.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/sqlPools/{sqlPoolName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}/sensitivityLabels/{sensitivityLabelSource}/disable'} # type: ignore
44.634069
321
0.667326
3bc5c4e73118ba83cf7c40222f661c592921978e
420
py
Python
setup.py
franaguila/DSCI_524-square-python
93a79472a72fc957100b1945949b2443aed1bdac
[ "MIT" ]
null
null
null
setup.py
franaguila/DSCI_524-square-python
93a79472a72fc957100b1945949b2443aed1bdac
[ "MIT" ]
null
null
null
setup.py
franaguila/DSCI_524-square-python
93a79472a72fc957100b1945949b2443aed1bdac
[ "MIT" ]
null
null
null
from distutils.core import setup setup( name='square', version='0.1.0', author='Fran Aguila', author_email='francescaaguila@gmail.com', packages=['square'], scripts=['square/utils.py'], url='https://github.com/franguila/DSCI_524-square-python', license='LICENSE.txt', description='Get the area of a square', long_description=open('README.txt').read(), install_requires=[], )
26.25
62
0.666667
d71461e7cfae43e7ea103a8bb19d4fe04483cce9
2,254
py
Python
ceph_deploy/tests/parser/test_config.py
SUSE/ceph-deploy-to-be-deleted
a7a540668fcd23eea6b9e8d079ae60f32e5426e3
[ "MIT" ]
1
2020-07-29T15:09:23.000Z
2020-07-29T15:09:23.000Z
ceph_deploy/tests/parser/test_config.py
SUSE/ceph-deploy-to-be-deleted
a7a540668fcd23eea6b9e8d079ae60f32e5426e3
[ "MIT" ]
null
null
null
ceph_deploy/tests/parser/test_config.py
SUSE/ceph-deploy-to-be-deleted
a7a540668fcd23eea6b9e8d079ae60f32e5426e3
[ "MIT" ]
null
null
null
import pytest from ceph_deploy.cli import get_parser SUBCMDS_WITH_ARGS = ['push', 'pull'] class TestParserConfig(object): def setup(self): self.parser = get_parser() def test_config_help(self, capsys): with pytest.raises(SystemExit): self.parser.parse_args('config --help'.split()) out, err = capsys.readouterr() assert 'usage: ceph-deploy config' in out assert 'positional arguments:' in out assert 'optional arguments:' in out @pytest.mark.parametrize('cmd', SUBCMDS_WITH_ARGS) def test_config_subcommands_with_args(self, cmd): self.parser.parse_args(['config'] + ['%s' % cmd] + ['host1']) def test_config_invalid_subcommand(self, capsys): with pytest.raises(SystemExit): self.parser.parse_args('config bork'.split()) out, err = capsys.readouterr() assert 'invalid choice' in err @pytest.mark.skipif(reason="http://tracker.ceph.com/issues/12150") def test_config_push_host_required(self, capsys): with pytest.raises(SystemExit): self.parser.parse_args('config push'.split()) out, err = capsys.readouterr() assert "error: too few arguments" in err def test_config_push_one_host(self): args = self.parser.parse_args('config push host1'.split()) assert args.client == ['host1'] def test_config_push_multiple_hosts(self): hostnames = ['host1', 'host2', 'host3'] args = self.parser.parse_args('config push'.split() + hostnames) assert args.client == hostnames @pytest.mark.skipif(reason="http://tracker.ceph.com/issues/12150") def test_config_pull_host_required(self, capsys): with pytest.raises(SystemExit): self.parser.parse_args('config pull'.split()) out, err = capsys.readouterr() assert "error: too few arguments" in err def test_config_pull_one_host(self): args = self.parser.parse_args('config pull host1'.split()) assert args.client == ['host1'] def test_config_pull_multiple_hosts(self): hostnames = ['host1', 'host2', 'host3'] args = self.parser.parse_args('config pull'.split() + hostnames) assert args.client == hostnames
36.354839
72
0.657054
c8c2897679cce1d9021d9eeace5671ce7765ae92
1,679
py
Python
packettcp.py
sekharkaredla/cnlab
8e1ef9a904dea5260f6b6cf968508a2847f9f15c
[ "MIT" ]
null
null
null
packettcp.py
sekharkaredla/cnlab
8e1ef9a904dea5260f6b6cf968508a2847f9f15c
[ "MIT" ]
null
null
null
packettcp.py
sekharkaredla/cnlab
8e1ef9a904dea5260f6b6cf968508a2847f9f15c
[ "MIT" ]
2
2018-04-16T13:25:12.000Z
2018-04-16T14:49:38.000Z
#Packet sniffer in python for Linux #Sniffs only incoming TCP packet import socket, sys from struct import * #create an INET, STREAMing socket try: s = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket.IPPROTO_TCP) except socket.error , msg: print 'Socket could not be created. Error Code : ' + str(msg[0]) + ' Message ' +msg[1] sys.exit() # receive a packet while True: packet = s.recvfrom(65565) #packet string from tuple packet = packet[0] #take first 20 characters for the ip header ip_header = packet[0:20] print ip_header #now unpack them :) iph = unpack('!BBHHHBBH4s4s' , ip_header) print iph version_ihl = iph[0] version = version_ihl >> 4 ihl = version_ihl & 0xF iph_length = ihl * 4 ttl = iph[5] protocol = iph[6] s_addr = socket.inet_ntoa(iph[8]); d_addr = socket.inet_ntoa(iph[9]); print 'Version : ' + str(version) + ' IP Header Length : ' + str(ihl) + ' TTL : ' +str(ttl) + ' Protocol : ' + str(protocol) + ' Source Address : ' + str(s_addr) + 'Destination Address : ' + str(d_addr) tcp_header = packet[iph_length:iph_length+20] #now unpack them :) tcph = unpack('!HHLLBBHHH' , tcp_header) source_port = tcph[0] dest_port = tcph[1] sequence = tcph[2] acknowledgement = tcph[3] doff_reserved = tcph[4] tcph_length = doff_reserved >> 4 print 'Source Port : ' + str(source_port) + ' Dest Port : ' + str(dest_port) + 'Sequence Number : ' + str(sequence) + ' Acknowledgement : ' + str(acknowledgement) + 'TCP header length : ' + str(tcph_length) h_size = iph_length + tcph_length * 4 data_size = len(packet) - h_size #get data from the packet data = packet[h_size:] print 'Data : ' + data
33.58
208
0.671233