hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
aa37134ef47073b2dedc4aa1d0534abbd7e59f38
1,054
py
Python
umd/products/ooi.py
egi-qc/umd-verification
328e875f9633c9e602e9eea61d2590def373098e
[ "Apache-2.0" ]
1
2019-10-31T10:41:37.000Z
2019-10-31T10:41:37.000Z
umd/products/ooi.py
egi-qc/umd-verification
328e875f9633c9e602e9eea61d2590def373098e
[ "Apache-2.0" ]
12
2015-06-04T12:08:18.000Z
2018-06-05T09:54:58.000Z
umd/products/ooi.py
egi-qc/umd-verification
328e875f9633c9e602e9eea61d2590def373098e
[ "Apache-2.0" ]
3
2015-09-15T13:15:50.000Z
2018-04-26T15:10:24.000Z
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from umd import base from umd.base.configure.puppet import PuppetConfig from umd import config class OOIDeploy(base.Deploy): def pre_config(self): os_release = config.CFG["openstack_release"] self.cfgtool.extra_vars = "ooi::openstack_version: %s" % os_release ooi = OOIDeploy( name="ooi", doc="OCCI OpenStack Interface.", cfgtool=PuppetConfig( manifest="ooi.pp", module=("git://github.com/egi-qc/puppet-ooi.git", "umd"), ), qc_specific_id="ooi", )
31.939394
75
0.717268
f3f3cbf03d1c4d37cf25849591f826dfbfe4e91a
230
py
Python
pacote-download/d021 - tocar um MP3.py
Carlos-DOliveira/cursoemvideo-python3
4546c8a7360155243e2f7ecbbb80c57868f770a2
[ "MIT" ]
null
null
null
pacote-download/d021 - tocar um MP3.py
Carlos-DOliveira/cursoemvideo-python3
4546c8a7360155243e2f7ecbbb80c57868f770a2
[ "MIT" ]
null
null
null
pacote-download/d021 - tocar um MP3.py
Carlos-DOliveira/cursoemvideo-python3
4546c8a7360155243e2f7ecbbb80c57868f770a2
[ "MIT" ]
null
null
null
''' 021 Faça um programa em Python que abra e reproduza o áudio de um arq MP3''' import pygame pygame.init() pygame.mixer.music.load('ex021.mp3') pygame.mixer.music.play() pygame.event.wait() # não deu, pq o pygame não instalou
23
80
0.734783
b04559e1b287a6936e513a3fe23f7ead72ce6604
6,739
py
Python
srunner/scenarios/signalized_junction_left_turn.py
ll7/scenario_runner
277c570b0bc046ef1f9936d3b633d665d4a79197
[ "MIT" ]
null
null
null
srunner/scenarios/signalized_junction_left_turn.py
ll7/scenario_runner
277c570b0bc046ef1f9936d3b633d665d4a79197
[ "MIT" ]
null
null
null
srunner/scenarios/signalized_junction_left_turn.py
ll7/scenario_runner
277c570b0bc046ef1f9936d3b633d665d4a79197
[ "MIT" ]
1
2020-05-28T11:41:29.000Z
2020-05-28T11:41:29.000Z
#!/usr/bin/env python # # This work is licensed under the terms of the MIT license. # For a copy, see <https://opensource.org/licenses/MIT>. """ Collection of traffic scenarios where the ego vehicle (hero) is making a left turn """ from six.moves.queue import Queue # pylint: disable=relative-import import py_trees import carla from agents.navigation.local_planner import RoadOption from srunner.scenariomanager.carla_data_provider import CarlaDataProvider from srunner.scenariomanager.scenarioatomics.atomic_behaviors import (ActorTransformSetter, ActorDestroy, ActorSource, ActorSink, WaypointFollower) from srunner.scenariomanager.scenarioatomics.atomic_criteria import CollisionTest from srunner.scenariomanager.scenarioatomics.atomic_trigger_conditions import DriveDistance from srunner.scenarios.basic_scenario import BasicScenario from srunner.tools.scenario_helper import generate_target_waypoint class SignalizedJunctionLeftTurn(BasicScenario): """ Implementation class for Hero Vehicle turning left at signalized junction scenario, Traffic Scenario 08. This is a single ego vehicle scenario """ timeout = 80 # Timeout of scenario in seconds def __init__(self, world, ego_vehicles, config, randomize=False, debug_mode=False, criteria_enable=True, timeout=80): """ Setup all relevant parameters and create scenario """ self._world = world self._map = CarlaDataProvider.get_map() self._target_vel = 6.9 self._brake_value = 0.5 self._ego_distance = 110 self._traffic_light = None self._other_actor_transform = None self._blackboard_queue_name = 'SignalizedJunctionLeftTurn/actor_flow_queue' self._queue = py_trees.blackboard.Blackboard().set(self._blackboard_queue_name, Queue()) self._initialized = True super(SignalizedJunctionLeftTurn, self).__init__("TurnLeftAtSignalizedJunction", ego_vehicles, config, world, debug_mode, criteria_enable=criteria_enable) self._traffic_light = CarlaDataProvider.get_next_traffic_light(self.ego_vehicles[0], False) traffic_light_other = CarlaDataProvider.get_next_traffic_light(self.other_actors[0], False) if self._traffic_light is None or traffic_light_other is None: raise RuntimeError("No traffic light for the given location found") self._traffic_light.set_state(carla.TrafficLightState.Green) self._traffic_light.set_green_time(self.timeout) #set the traffic light in front of the ego vehicle on red light #self._traffic_light.set_state(carla.TrafficLightState.Red) #self._traffic_light.set_red_time(self.timeout) # other vehicle's traffic light traffic_light_other.set_state(carla.TrafficLightState.Green) traffic_light_other.set_green_time(self.timeout) def _initialize_actors(self, config): """ Custom initialization """ self._other_actor_transform = config.other_actors[0].transform first_vehicle_transform = carla.Transform( carla.Location(config.other_actors[0].transform.location.x, config.other_actors[0].transform.location.y, config.other_actors[0].transform.location.z - 500), config.other_actors[0].transform.rotation) first_vehicle = CarlaDataProvider.request_new_actor(config.other_actors[0].model, self._other_actor_transform) first_vehicle.set_transform(first_vehicle_transform) first_vehicle.set_simulate_physics(enabled=False) self.other_actors.append(first_vehicle) def _create_behavior(self): """ Hero vehicle is turning left in an urban area, at a signalized intersection, while other actor coming straight .The hero actor may turn left either before other actor passes intersection or later, without any collision. After 80 seconds, a timeout stops the scenario. """ sequence = py_trees.composites.Sequence("Sequence Behavior") # Selecting straight path at intersection target_waypoint = generate_target_waypoint( CarlaDataProvider.get_map().get_waypoint(self.other_actors[0].get_location()), 0) # Generating waypoint list till next intersection plan = [] wp_choice = target_waypoint.next(1.0) while not wp_choice[0].is_intersection: target_waypoint = wp_choice[0] plan.append((target_waypoint, RoadOption.LANEFOLLOW)) wp_choice = target_waypoint.next(1.0) # adding flow of actors actor_source = ActorSource( ['vehicle.tesla.model3', 'vehicle.audi.tt'], self._other_actor_transform, 15, self._blackboard_queue_name) # destroying flow of actors actor_sink = ActorSink(plan[-1][0].transform.location, 10) # follow waypoints untill next intersection move_actor = WaypointFollower(self.other_actors[0], self._target_vel, plan=plan, blackboard_queue_name=self._blackboard_queue_name, avoid_collision=True) # wait wait = DriveDistance(self.ego_vehicles[0], self._ego_distance) # Behavior tree root = py_trees.composites.Parallel( policy=py_trees.common.ParallelPolicy.SUCCESS_ON_ONE) root.add_child(wait) root.add_child(actor_source) root.add_child(actor_sink) root.add_child(move_actor) sequence.add_child(ActorTransformSetter(self.other_actors[0], self._other_actor_transform)) sequence.add_child(root) sequence.add_child(ActorDestroy(self.other_actors[0])) return sequence def _create_test_criteria(self): """ A list of all test criteria will be created that is later used in parallel behavior tree. """ criteria = [] collison_criteria = CollisionTest(self.ego_vehicles[0]) criteria.append(collison_criteria) return criteria def __del__(self): self._traffic_light = None self.remove_all_actors()
43.75974
118
0.648316
0e0b6a171029ca1525374b7136351dd271e11725
28,691
py
Python
tests/workflow/test_time_series_extractor.py
MuttData/soam
65612a02552668c6721dc20e675654883391c3e9
[ "Apache-2.0" ]
1
2021-09-17T01:14:57.000Z
2021-09-17T01:14:57.000Z
tests/workflow/test_time_series_extractor.py
MuttData/soam
65612a02552668c6721dc20e675654883391c3e9
[ "Apache-2.0" ]
null
null
null
tests/workflow/test_time_series_extractor.py
MuttData/soam
65612a02552668c6721dc20e675654883391c3e9
[ "Apache-2.0" ]
1
2021-08-09T14:22:50.000Z
2021-08-09T14:22:50.000Z
"""Tests for TimeSeriesExtractor. """ import os import unittest from unittest import main import pandas as pd from sqlalchemy import Column from sqlalchemy.types import Float, Integer, String from soam.constants import TIMESTAMP_COL from soam.data_models import AbstractIDBase, AbstractTimeSeriesTable from soam.workflow import TimeSeriesExtractor from tests.db_test_case import TEST_DB_CONNSTR, PgTestCase class ConcreteTimeSeriesTable(AbstractTimeSeriesTable): """Creates the Concrete Time Series Table Object.""" __tablename__ = "test_data" # We should really be using the timestamp inherited from AbstractTimeSeriesTable. game = Column(String(64)) country = Column(String(2)) ad_network = Column(String(64)) ad_type = Column(String(64)) placement_id = Column(String(256)) waterfall_position = Column(Integer()) total_count_view_opportunity = Column(Integer()) count_cache_request = Column(Integer()) count_cache_success = Column(Integer()) count_view_start = Column(Integer()) count_view_click = Column(Integer()) requests = Column(Integer()) impressions = Column(Integer()) clicks = Column(Integer()) revenue = Column(Float()) # TODO: Add unique constraint for consistency sake. # https://gitlab.com/mutt_data/tfg-adsplash/-/blob/master/adsplash/store/dataset.py#L442 class ConcreteAdNetworkJoinTimeSeriesTable(AbstractIDBase): """Creates the Concrete Ad Network Object.""" __tablename__ = "test_ad_network_join_data" ad_network = Column(String(64)) ad_network_group = Column(String(64)) class ConcretePlacementIdJoinTimeSeriesTable(AbstractIDBase): """Creates the Concrete Placement Id Object.""" __tablename__ = "test_placement_id_join_data" placement_id = Column(String(256)) placement_id_group = Column(String(64)) column_mappings = { "opportunities": "total_count_view_opportunity AS opportunities", "ecpm": """COALESCE( 1000.0 * revenue::float8 / NULLIF(impressions, 0), 0) AS ecpm""", "share": """COALESCE( impressions::float8 / NULLIF(total_count_view_opportunity, 0), 0) AS share""", "quantile": """ COALESCE(1 - ( SUM(impressions) OVER ( PARTITION BY %(quantile_partition)s ORDER BY timestamp, waterfall_position, revenue / NULLIF(impressions, 0) DESC ROWS BETWEEN unbounded preceding AND current row) )::float8 / NULLIF(total_count_view_opportunity, 0), 0) AS quantile """, } aggregated_column_mappings = { "opportunities": """ MAX(total_count_view_opportunity)::float8 AS opportunities """, "total_count_view_opportunity": """ MAX(total_count_view_opportunity)::float8 AS total_count_view_opportunity """, "count_cache_request": """ SUM(count_cache_request) AS count_cache_request """, "count_cache_success": """ SUM(count_cache_success) AS count_cache_success """, "count_view_start": "SUM(count_view_start) AS count_view_start", "count_view_click": "SUM(count_view_click) AS count_view_click", "requests": "SUM(requests) AS requests", "impressions": "SUM(impressions) AS impressions", "clicks": "SUM(clicks) AS clicks", "revenue": "SUM(revenue) AS revenue", "ecpm": """COALESCE( 1000.0 * SUM(revenue)::float8 / NULLIF(SUM(impressions), 0), 0) AS ecpm""", "share": """COALESCE( SUM(impressions)::float8 / NULLIF(MAX(total_count_view_opportunity), 0), 0) AS share""", "quantile": """ COALESCE(1 - ( SUM(SUM(impressions)) OVER ( PARTITION BY %(quantile_partition)s ORDER BY timestamp, waterfall_position, SUM(revenue) / NULLIF(SUM(impressions), 0) DESC ROWS BETWEEN unbounded preceding AND current row) )::float8 / NULLIF(MAX(total_count_view_opportunity), 0)::float8, 0) AS quantile """, } @unittest.skipIf(not os.getenv(TEST_DB_CONNSTR), f"{TEST_DB_CONNSTR} is not set") class TestDatasetStore(PgTestCase): """Test dataset store object.""" def _test_load( self, columns, dimensions, dimensions_values, start_date, end_date, order_by, expected_values, extra_where_conditions=None, extra_having_conditions=None, inner_join=None, table_mapping=None, ): df = self.time_series_extractor.extract( build_query_kwargs=dict( columns=columns, dimensions=dimensions, dimensions_values=dimensions_values, start_date=start_date, end_date=end_date, order_by=order_by, extra_where_conditions=extra_where_conditions, extra_having_conditions=extra_having_conditions, column_mappings=column_mappings, aggregated_column_mappings=aggregated_column_mappings, inner_join=inner_join, table_mapping=table_mapping, ) ) # Fix for backwards compatible with original tests. if TIMESTAMP_COL in df.columns and not df.empty: df[TIMESTAMP_COL] = df[TIMESTAMP_COL].dt.strftime("%Y-%m-%d") self.assertTrue(isinstance(df, pd.DataFrame)) columns = [c_name.split(".")[-1] for c_name in columns] self.assertEqual(df.columns.tolist(), columns) self.assertEqual(sorted(df.values.tolist()), sorted(expected_values)) def test_load_basic_columns_order_by(self): columns = [TIMESTAMP_COL, "opportunities", "impressions", "revenue"] values = [ ["2019-09-01", 1000, 100, 20], ["2019-09-01", 1000, 200, 30], ["2019-09-01", 1000, 300, 40], ["2019-09-02", 300, 30, 6], ] self._test_load( columns=columns, dimensions=None, dimensions_values=None, start_date=None, end_date=None, order_by=[TIMESTAMP_COL, "impressions"], expected_values=values, ) def test_join_load_basic_columns_order_by(self): columns = [TIMESTAMP_COL, "opportunities", "tjd.ad_network", "ad_network_group"] values = [ ['2019-09-01', 1000, 'source1', 'source_group_B'], ['2019-09-01', 1000, 'source2', 'source_group_A'], ['2019-09-01', 1000, 'source2', 'source_group_A'], ['2019-09-02', 300, 'source2', 'source_group_A'], ] self._test_load( columns=columns, dimensions=None, dimensions_values=None, start_date=None, end_date=None, order_by=[TIMESTAMP_COL, "tjd.ad_network"], expected_values=values, inner_join=[ ( "test_ad_network_join_data", "tjd", "tjd.ad_network = test_data.ad_network", ) ], ) def test_join_load_basic_columns_order_by_no_alias(self): columns = [ TIMESTAMP_COL, "opportunities", "test_ad_network_join_data.ad_network", "ad_network_group", ] values = [ ['2019-09-01', 1000, 'source1', 'source_group_B'], ['2019-09-01', 1000, 'source2', 'source_group_A'], ['2019-09-01', 1000, 'source2', 'source_group_A'], ['2019-09-02', 300, 'source2', 'source_group_A'], ] self._test_load( columns=columns, dimensions=None, dimensions_values=None, start_date=None, end_date=None, order_by=[TIMESTAMP_COL, "test_ad_network_join_data.ad_network"], expected_values=values, inner_join=[ ( "test_ad_network_join_data", None, "test_ad_network_join_data.ad_network = test_data.ad_network", ) ], ) def test_join_tables_with_alias(self): columns = [ TIMESTAMP_COL, "opportunities", "b.ad_network", "ad_network_group", ] values = [ ['2019-09-01', 1000, 'source1', 'source_group_B'], ['2019-09-01', 1000, 'source2', 'source_group_A'], ['2019-09-01', 1000, 'source2', 'source_group_A'], ['2019-09-02', 300, 'source2', 'source_group_A'], ] self._test_load( columns=columns, dimensions=None, dimensions_values=None, start_date=None, end_date=None, order_by=None, expected_values=values, table_mapping='a', inner_join=[ ("test_ad_network_join_data", 'b', "b.ad_network = a.ad_network",) ], ) def test_multiple_join_load_basic_columns_order_by(self): columns = [ TIMESTAMP_COL, "opportunities", "tjd.ad_network", "ad_network_group", "tpi.placement_id", "placement_id_group", ] values = [ ['2019-09-01', 1000, 'source1', 'source_group_B', 'z', 'placement_group_1'], ['2019-09-01', 1000, 'source2', 'source_group_A', 'b', 'placement_group_2'], ['2019-09-01', 1000, 'source2', 'source_group_A', 'a', 'placement_group_1'], ['2019-09-02', 300, 'source2', 'source_group_A', 'a', 'placement_group_1'], ] self._test_load( columns=columns, dimensions=None, dimensions_values=None, start_date=None, end_date=None, order_by=[TIMESTAMP_COL, "tjd.ad_network"], expected_values=values, inner_join=[ ( "test_ad_network_join_data", "tjd", "tjd.ad_network = test_data.ad_network", ), ( "test_placement_id_join_data", "tpi", "tpi.placement_id = test_data.placement_id", ), ], ) def test_join_aggregation_load_basic_columns_no_alias(self): columns = ["opportunities", "ad_network_group"] values = [[1000.0, 'source_group_A'], [1000.0, 'source_group_B']] self._test_load( columns=columns, dimensions=["ad_network_group"], dimensions_values=None, start_date=None, end_date=None, order_by=None, expected_values=values, inner_join=[ ( "test_ad_network_join_data", None, "test_ad_network_join_data.ad_network = test_data.ad_network", ) ], ) def test_multiple_join_aggregation_basic_columns_order_by(self): columns = [ "opportunities", "ad_network_group", "placement_id_group", ] values = [ [1000.0, 'source_group_B', 'placement_group_1'], [1000.0, 'source_group_A', 'placement_group_1'], [1000.0, 'source_group_A', 'placement_group_2'], ] self._test_load( columns=columns, dimensions=["ad_network_group", "placement_id_group"], dimensions_values=None, start_date=None, end_date=None, order_by=None, expected_values=values, inner_join=[ ( "test_ad_network_join_data", "tjd", "tjd.ad_network = test_data.ad_network", ), ( "test_placement_id_join_data", "tpi", "tpi.placement_id = test_data.placement_id", ), ], ) def test_multiple_join_aggregation_basic_columns_filtered(self): columns = [ "opportunities", "ad_network_group", "placement_id_group", ] values = [ [1000.0, 'source_group_A', 'placement_group_1'], [1000.0, 'source_group_A', 'placement_group_2'], ] self._test_load( columns=columns, dimensions=["ad_network_group", "placement_id_group"], dimensions_values=['source_group_A', None], start_date=None, end_date=None, order_by=None, expected_values=values, inner_join=[ ( "test_ad_network_join_data", "tjd", "tjd.ad_network = test_data.ad_network", ), ( "test_placement_id_join_data", "tpi", "tpi.placement_id = test_data.placement_id", ), ], ) def test_load_basic_columns_aggregation_order_by(self): columns = ["opportunities", "impressions", "revenue"] values = [ [1000, 600, 90], [300, 30, 6], ] self._test_load( columns=columns, dimensions=[TIMESTAMP_COL], dimensions_values=None, start_date=None, end_date=None, order_by=[TIMESTAMP_COL], expected_values=values, ) # def test_load_composite_columns(self): # columns = [TIMESTAMP_COL, "ecpm", "share", "quantile"] # values = [ # ["2019-09-01", 1e3 * 40 / 300, 300 / 1000, 0.40], # ["2019-09-01", 1e3 * 30 / 200, 200 / 1000, 0.70], # ["2019-09-01", 1e3 * 20 / 100, 100 / 1000, 0.90], # ["2019-09-02", 1e3 * 6 / 30, 30 / 300, 0.90], # ] # self._test_load( # columns=columns, # dimensions=None, # dimensions_values=None, # start_date=None, # end_date=None, # order_by=[TIMESTAMP_COL, "ecpm"], # expected_values=values, # ) # def test_load_composite_columns_aggregation(self): # columns = [TIMESTAMP_COL, "waterfall_position", "ecpm", "share", "quantile"] # values = [ # ["2019-09-01", 0, 1e3 * 20 / 100, 100 / 1000, 0.90], # ["2019-09-01", 1, 1e3 * 30 / 200, 200 / 1000, 0.70], # ["2019-09-01", 2, 1e3 * 40 / 300, 300 / 1000, 0.40], # ["2019-09-02", 0, 1e3 * 6 / 30, 30 / 300, 0.90], # ] # self._test_load( # columns=columns, # dimensions=[TIMESTAMP_COL, "waterfall_position"], # dimensions_values=None, # start_date=None, # end_date=None, # order_by=[TIMESTAMP_COL, "waterfall_position"], # expected_values=values, # ) def test_load_all_columns_aggregation(self): columns = [ TIMESTAMP_COL, "game", "country", "ad_network", "ad_type", "placement_id", "waterfall_position", "opportunities", "count_cache_request", "count_cache_success", "count_view_start", "count_view_click", "requests", "impressions", "clicks", "revenue", ] dimensions = columns[:7] values = [ [ "2019-09-01", "1", "us", "source1", "video", "z", 2, 1000.0, 500, 310, 300, 40, 500, 300, 20, 40.0, ], [ "2019-09-01", "1", "us", "source2", "media", "b", 1, 1000.0, 200, 41, 30, 3, 200, 200, 40, 30.0, ], [ "2019-09-01", "1", "us", "source2", "video", "a", 0, 1000.0, 150, 104, 100, 20, 150, 100, 10, 20.0, ], [ "2019-09-02", "1", "us", "source2", "video", "a", 0, 300.0, 300, 200, 34, 1, 300, 30, 1, 6.0, ], ] self._test_load( columns=columns, dimensions=dimensions, dimensions_values=None, start_date=None, end_date=None, order_by=dimensions, expected_values=values, ) def test_load_from_start_date(self): columns = [TIMESTAMP_COL, "opportunities", "impressions", "revenue"] values = [ ["2019-09-02", 300, 30, 6], ] self._test_load( columns=columns, dimensions=None, dimensions_values=None, start_date="2019-09-02", end_date=None, order_by=[TIMESTAMP_COL, "impressions"], expected_values=values, ) def test_load_until_end_date(self): columns = [TIMESTAMP_COL, "opportunities", "impressions", "revenue"] values = [ ["2019-09-01", 1000, 100, 20], ["2019-09-01", 1000, 200, 30], ["2019-09-01", 1000, 300, 40], ] self._test_load( columns=columns, dimensions=None, dimensions_values=None, start_date=None, end_date="2019-09-01", order_by=[TIMESTAMP_COL, "impressions"], expected_values=values, ) def test_load_date_range(self): columns = [TIMESTAMP_COL, "opportunities", "impressions", "revenue"] values = [ ["2019-09-01", 1000, 100, 20], ["2019-09-01", 1000, 200, 30], ["2019-09-01", 1000, 300, 40], ] self._test_load( columns=columns, dimensions=None, dimensions_values=None, start_date="2019-09-01", end_date="2019-09-01", order_by=[TIMESTAMP_COL, "impressions"], expected_values=values, ) def test_load_empty(self): columns = [TIMESTAMP_COL, "opportunities", "impressions", "revenue"] values = [] self._test_load( columns=columns, dimensions=None, dimensions_values=None, start_date="2019-09-03", end_date="2019-09-04", order_by=[TIMESTAMP_COL, "impressions"], expected_values=values, ) def test_load_dimensions_basic_columns(self): columns = [TIMESTAMP_COL, "ad_network", "opportunities", "impressions"] values = [ ["2019-09-01", "source1", 1000, 300], ["2019-09-01", "source2", 1000, 300], ["2019-09-02", "source2", 300, 30], ] self._test_load( columns=columns, dimensions=[TIMESTAMP_COL, "ad_network"], dimensions_values=None, start_date=None, end_date=None, order_by=[TIMESTAMP_COL, "ad_network"], expected_values=values, ) def test_load_dimensions_values(self): columns = [TIMESTAMP_COL, "ad_network", "opportunities", "impressions"] values = [ ["2019-09-01", "source2", 1000, 100], ["2019-09-01", "source2", 1000, 200], ["2019-09-02", "source2", 300, 30], ] self._test_load( columns=columns, dimensions=[TIMESTAMP_COL, "ad_network", "waterfall_position"], dimensions_values=[None, "source2", None], start_date=None, end_date=None, order_by=[TIMESTAMP_COL, "impressions"], expected_values=values, ) def test_load_multiple_dimensions_values(self): columns = [TIMESTAMP_COL, "ad_network", "opportunities", "impressions"] values = [ ["2019-09-01", "source1", 1000, 300], ["2019-09-01", "source2", 1000, 100], ["2019-09-01", "source2", 1000, 200], ["2019-09-02", "source2", 300, 30], ] self._test_load( columns=columns, dimensions=[TIMESTAMP_COL, "ad_network", "waterfall_position"], dimensions_values=[None, ["source1", "source2"], None], start_date=None, end_date=None, order_by=[TIMESTAMP_COL, "ad_network", "impressions"], expected_values=values, ) def test_load_multiple_dimensions_values_with_negation(self): columns = [TIMESTAMP_COL, "ad_network", "opportunities", "impressions"] values = [ ["2019-09-01", "source1", 1000, 300], ] self._test_load( columns=columns, dimensions=[TIMESTAMP_COL, "ad_network", "!ad_type", "!placement_id"], dimensions_values=[None, None, "media", ["a", "x"]], start_date=None, end_date=None, order_by=[TIMESTAMP_COL, "ad_network", "impressions"], expected_values=values, ) def test_dimension_values(self): ret = self.time_series_extractor.dimensions_values( dimensions=["ad_network"], dimensions_values=None, start_date=None, end_date=None, order_by=["ad_network"], ) self.assertEqual(ret, [["source1"], ["source2"]]) def test_dimension_values_filtered(self): ret = self.time_series_extractor.dimensions_values( dimensions=["ad_network", "waterfall_position"], dimensions_values=["source2", None], start_date=None, end_date=None, order_by=["ad_network", "waterfall_position"], ) expected = [ ["source2", 0], ["source2", 1], ] self.assertEqual(ret, expected) def test_dimension_values_multiple_dimensions(self): ret = self.time_series_extractor.dimensions_values( dimensions=["ad_network", "ad_type"], dimensions_values=["*", ["video"]], start_date=None, end_date=None, order_by=["ad_network"], ) expected = [ ["source1", "video"], ["source2", "video"], ] self.assertEqual(ret, expected) def test_builded_query_prequery(self): columns = [ "timestamp", "game", "country", "ad_network", "ad_type", "placement_id", ] prequery = "SET extra_float_digits = 3;" order_by = ["ad_type"] start_date = "2019-09-01" end_date = "2019-09-02" query = self.time_series_extractor.build_query( columns=columns, prequery=prequery, start_date=start_date, end_date=end_date, order_by=order_by, ) # remove empty spaces and new lines returned_query = " ".join(query[0].split()) return_query = "SET extra_float_digits = 3; SELECT timestamp, game, country, ad_network, ad_type, placement_id FROM test_data WHERE timestamp >= '2019-09-01' AND timestamp <= '2019-09-02' ORDER BY ad_type" self.assertEqual(returned_query, return_query) def test_builded_query_extra_cond(self): columns = [ "timestamp", "game", "country", "ad_network", "ad_type", "placement_id", ] order_by = ["ad_type"] start_date = "2019-09-01" end_date = "2019-09-02" extra_where_conditions = ["game LIKE '%mario%'"] query = self.time_series_extractor.build_query( columns=columns, start_date=start_date, end_date=end_date, order_by=order_by, extra_where_conditions=extra_where_conditions, ) # remove empty spaces and new lines returned_query = " ".join(query[0].split()) return_query = "SELECT timestamp, game, country, ad_network, ad_type, placement_id FROM test_data WHERE timestamp >= '2019-09-01' AND timestamp <= '2019-09-02' AND game LIKE '%mario%' ORDER BY ad_type" self.assertEqual(returned_query, return_query) @classmethod def setUpClass(cls): super().setUp(cls) cls.time_series_extractor = TimeSeriesExtractor( cls.db_client, ConcreteTimeSeriesTable.__tablename__ ) engine = cls.db_client.get_engine() ConcreteTimeSeriesTable.__table__.create(engine) # pylint:disable=no-member ConcreteAdNetworkJoinTimeSeriesTable.__table__.create( # pylint:disable=no-member engine ) ConcretePlacementIdJoinTimeSeriesTable.__table__.create( # pylint:disable=no-member engine ) query = """ INSERT INTO test_data (timestamp, game, country, ad_network, ad_type, placement_id, waterfall_position, total_count_view_opportunity, count_cache_request, count_cache_success, count_view_start, count_view_click, requests, impressions, clicks, revenue ) VALUES ('2019-09-01', '1', 'us', 'source1', 'video', 'z', 2, 1000, 500, 310, 300, 40, 500, 300, 20, 40 ), ('2019-09-01', '1', 'us', 'source2', 'video', 'a', 0, 1000, 150, 104, 100, 20, 150, 100, 10, 20 ), ('2019-09-01', '1', 'us', 'source2', 'media', 'b', 1, 1000, 200, 41, 30, 3, 200, 200, 40, 30 ), ('2019-09-02', '1', 'us', 'source2', 'video', 'a', 0, 300, 300, 200, 34, 1, 300, 30, 1, 6 ) """ cls.run_query(query) query = """ INSERT INTO test_ad_network_join_data (ad_network, ad_network_group ) VALUES ('source2', 'source_group_A' ), ('source1', 'source_group_B' ), ('source3', 'source_group_B' ) """ cls.run_query(query) query = """ INSERT INTO test_placement_id_join_data (placement_id, placement_id_group ) VALUES ('z', 'placement_group_1' ), ('a', 'placement_group_1' ), ('b', 'placement_group_2' ) """ cls.run_query(query) @classmethod def tearDownClass(cls): # del cls.dataset super().tearDown(cls) def setUp(self): pass def tearDown(self): pass if __name__ == "__main__": main()
31.152009
213
0.504827
af6da0056de4d9007832d2d961f0f4a6770ac8f2
1,668
py
Python
examples/sync/fanout/server.py
westover/tchannel-python
d9c16291f49b3b9dd1353c01179d4f4c3168c53a
[ "MIT" ]
null
null
null
examples/sync/fanout/server.py
westover/tchannel-python
d9c16291f49b3b9dd1353c01179d4f4c3168c53a
[ "MIT" ]
null
null
null
examples/sync/fanout/server.py
westover/tchannel-python
d9c16291f49b3b9dd1353c01179d4f4c3168c53a
[ "MIT" ]
null
null
null
# Copyright (c) 2016 Uber Technologies, Inc. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from __future__ import absolute_import from tornado import gen, ioloop from tchannel import TChannel, Response, thrift tchannel = TChannel('thrift-server', hostport='localhost:54498') service = thrift.load('tests/data/idls/ThriftTest.thrift') @tchannel.thrift.register(service.ThriftTest) @gen.coroutine def testString(request): assert request.headers == {'req': 'header'} assert request.body.thing == 'req' return Response('resp' * 100000, headers={'resp': 'header'}) tchannel.listen() print tchannel.hostport ioloop.IOLoop.current().start()
37.066667
79
0.767986
c8ea28859b109e06bfa39bae196bc98d39584db0
22,137
py
Python
cloudcafe/networking/networks/common/proxy_mgr/ssh_util.py
melissa-kam/cloudcafe
124c0923f7e7628267038cafe64339030bdaefda
[ "Apache-2.0" ]
null
null
null
cloudcafe/networking/networks/common/proxy_mgr/ssh_util.py
melissa-kam/cloudcafe
124c0923f7e7628267038cafe64339030bdaefda
[ "Apache-2.0" ]
null
null
null
cloudcafe/networking/networks/common/proxy_mgr/ssh_util.py
melissa-kam/cloudcafe
124c0923f7e7628267038cafe64339030bdaefda
[ "Apache-2.0" ]
null
null
null
from collections import OrderedDict import pexpect class SshUnableToConnect(Exception): MSG = 'Unable to connect to: {ip} (Type: {t_type})' def __init__(self, target_ip=None, target_type=None): target_type = target_type or 'Not Specified' args = {'ip': target_ip, 't_type': target_type} self.message = self.MSG.format(**args) def __str__(self): return self.message class MissingCredentials(SshUnableToConnect): MSG = 'Missing credentials to connect to: {ip} (Type: {t_type})' class ConnectionNotFound(Exception): def __str__(self): return ('No open pexpect connection was provided. Was not type ' 'pexpect.spawn') class SshResponse(object): str_concat = '{0!s}\n{1!s}' def __init__(self): """ Supports pexpect connection info: + Contains open connection (if open) + Tracks various aspects of open connection: STDOUT, STDIN, STDERR + Tracks I/O per command (if commands issued over SSH connection) + errors = Any caught exceptions + stdin = all stdin + stdout = all stdout + output = interlaced stdin/stdout """ self.stdout = '' self.stdin = '' self.stderr = '' self.output = '' self.cmd_output = OrderedDict() self.errors = '' self.connection = None def _add(self, attribute, value): prop = getattr(self, attribute, self.stdout) setattr(self, attribute, self.str_concat.format(prop, value)) self.output = self.str_concat.format(self.output, value) def add_to_stdin(self, value): self._add('stdin', value) def add_to_stdout(self, value): self._add('stdout', value) def add_to_stderr(self, value): self._add('stderr', value) def add_to_cmd_out(self, cmd, value): self._add('stdout', value) self.cmd_output[cmd] = value @property def result(self): return self.errors == '' class SshMixin(object): PSWD_PROMPT_REGEX = r'ssword\:\s*' LINUX_PROMPT_REGEX = r'[$#>]\s*$' SSH_KEY_REGEX = r'connecting\s+\(yes\/no\)\?\s*' REFUSED = r'connection\s+refused' DEFAULT_CMD = 'ls -alF' def connect_to_proxy( self, user=None, ip_address=None, password=None): """ Connect to proxy or local host Note: Parameters are only for the remote connections @param user: Use different user other than registered proxy user @param password: Use different password other than registered pswd @param ip_address: Use specific IP address other than proxy address @return: Active SSH connection to target """ user = user or self.proxy_server_user ip_address = ip_address or self.proxy_server_address password = password or self.proxy_server_password # Establish connection to proxy and return open connection if self.use_proxy: response_obj = self._ssh_from_here( user=user, password=password, target_ip=ip_address) conn = response_obj.connection self.last_response = response_obj # Return nothing, since it is a local connection.... for now, user can # open pipe/process for local connection. else: conn = self._connect_to_local_proxy() return conn def can_ssh(self, target_ip, user, password, cmd=DEFAULT_CMD): """ Verifies SSH connectivity to specific target. The routine will connect to the target IP and issue a single command. If the command returns anything, including an error, SSH login was successful. @param target_ip: SSH to IP @param user: Log in as user 'x' @param password: Log in using password @param cmd: Command to execute if login worked @return: (Boolean) : Did SSH work? True=YES, False=No """ output = self.ssh_to_target( target_ip=target_ip, user=user, password=password, cmds=[cmd]) self.last_response = output return cmd in output.output and output.errors == '' def ssh_to_target( self, target_ip=None, user=None, password=None, cmds=None, proxy_user=None, proxy_pswd=None, proxy_ip=None, close_when_done=True, response_obj=None, cmd_timeout=None): """ SSH to the target host from the specified host. If target_ip is not specified, the response_obj with an open connection must be provided. The open connection will be used to use the commands. If neither the (target_ip, user, and password) or the response_obj is specified, an UnableToConnect exception will be raised. NOTE: Currently as implemented, only Linux hosts are supported by this routine. NOTE: These parameters are only optional if the response_obj is not provided. :param target_ip: IP Address to connect to :param user: username for SSH connection :param password: password for SSH connection :param proxy_user: Specify different user than what was configured in the proxy_mgr. :param proxy_pswd: Specify different password than what was configured in the proxy_mgr. :param proxy_ip: Specific different target IP than what was configured in the proxy mgr. :param close_when_done: Close the connection when complete. :param cmds: OrderDict of cmds to execute to verify connection (DEFAULT = 'ls -alF'). The Key is the command, the value is the regexp needed to validate the cmd response. If no commands are executed, the open connection is returned within the response object. :param response_obj: Provided SshResponse Object a for open connection to pass cmds to... :param cmd_timeout: Timeout per command. Default = 30s (as per pexpect) :return: SSH Response object """ if response_obj is not None: self.display_conn_info(response_obj) if response_obj is None: # Make sure there is an IP to connect to... if target_ip is None: raise SshUnableToConnect( target_ip=target_ip, target_type='target server') password = password or self.proxy_server_password if None in [user, password]: raise MissingCredentials( target_ip=target_ip, target_type='target server') # Ok, we have enough info to log in... msg = 'No connection was provided. Establishing connection.' self.logger.info(msg) ssh_args = {'target_ip': target_ip, 'user': user, 'password': password} # If we need a proxy if self.use_proxy: # Get the proxy connection info... proxy_user = proxy_user or self.proxy_server_user proxy_pswd = proxy_pswd or self.proxy_server_password proxy_ip = proxy_ip or self.proxy_server_address if None in [proxy_user, proxy_pswd, proxy_ip]: raise MissingCredentials( target_ip=proxy_ip, target_type='proxy server') # Establish and save the connection to proxy server proxy_connection = self._ssh_from_here( target_ip=proxy_ip, user=proxy_user, password=proxy_pswd) ssh_args['response_obj'] = proxy_connection self.logger.debug('Connection Hop Path: {0}'.format( self._conn_path)) # Make sure we connected... if proxy_connection.connection is None: self.logger.error( 'Unable to connect to proxy: {ip}'.format(ip=proxy_ip)) self.logger.error(proxy_connection.errors) raise SshUnableToConnect( target_ip=proxy_ip, target_type='proxy') # Make SSH connection and verify connection was successful. response_obj = self._ssh_from_here(**ssh_args) if response_obj.connection is None: self.logger.error( 'Unable to connect to host: {ip}'.format(ip=proxy_ip)) self.logger.error(response_obj.errors) self.logger.debug('Connection Hop Path: {0}'.format( self._conn_path)) raise SshUnableToConnect( target_ip=target_ip, target_type='target server') # If there are commands to execute if cmds is not None: args = {'response_obj': response_obj, 'cmds': cmds} if cmd_timeout is not None: args['timeout'] = cmd_timeout response_obj = self._cmds_via_open_connection(**args) self.last_response = response_obj # Close the connection if necessary. if close_when_done: self.close_connections(response_obj) return response_obj def _ssh_from_here(self, target_ip, user, password, response_obj=None): """ Connect via ssh using a pexpect process from the local host or an open pexpect connection to remote host. @param target_ip: The IP address of the target host @param user: Username on target host to connect to host as... @param password: Password on target host to connect to host as... @param cmd: Command to execute on the host to validate connection @param timeout: Connection Timeout (if exceeded, stop trying connection and make connection as FAILED). @return: String of connection output. """ response_obj = response_obj or SshResponse() self.session_password = password ssh_options = ('-oStrictHostKeyChecking=no ' '-oUserKnownHostsFile=/dev/null') # Build SSH command ssh_cmd = 'ssh {options} {user}@{ip}'.format( user=user, ip=target_ip, options=ssh_options) self.logger.debug('SSH INVOCATION CMD: {cmd}'.format(cmd=ssh_cmd)) response_obj.add_to_stdin(ssh_cmd) # Build list of potential and expected output # NOTE: LINUX_REGEX_PROMPT must be the last entry in the ordered dict expectations = OrderedDict([ (pexpect.TIMEOUT, None), (self.PSWD_PROMPT_REGEX, password), (self.SSH_KEY_REGEX, 'yes'), (self.REFUSED, None), (self.LINUX_PROMPT_REGEX, None)]) # Set ssh process from the open connection ssh_process = response_obj.connection # If the open connection was empty, establish it from the local host if ssh_process is None: ssh_process = pexpect.spawn(ssh_cmd) if ssh_process is None: self.logger.error( 'Unable to connect to host: {ip}'.format(ip=target_ip)) raise SshUnableToConnect(target_ip=target_ip) # Record the IP to track hops if target_ip not in self._conn_path: self._conn_path.append(target_ip) ssh_process.delaybeforesend = self._pexpect_cmd_delay response_obj.connection = ssh_process # Use the open connection to establish an SSH connection to the target else: ssh_process.sendline(ssh_cmd) if target_ip not in self._conn_path: self._conn_path.append(target_ip) while True: # Watch the connection for expected output. try: response = ssh_process.expect(expectations.keys()) # TIMEOUT, break out of loop and indicate FAILURE except pexpect.TIMEOUT: err = "SSH'ing to target timed out. {0} --> {1}" err_msg = err.format( ssh_process.before, ssh_process.after) self.logger.error(err_msg) response_obj.errors += '{0}\n'.format(err_msg) # Record IO and remove IP from the tracking list response_obj.add_to_stdout( str(ssh_process.before) + str(ssh_process.after)) self._conn_path.pop() if not self._conn_path: response_obj.connection = None break # CONNECTION CLOSED, save output and break out of loop. except pexpect.EOF: self.logger.debug('Reached END OF FILE') response_obj.add_to_stdout( str(ssh_process.before) + str(ssh_process.after)) self._conn_path.pop() if not self._conn_path: response_obj.connection = None break # If TIMEOUT returned by response, break out of loop and indicate # FAILURE... if response == 0: err = "SSH'ing target timed out. {0} --> {1}" err_msg = err.format(ssh_process.before, ssh_process.after) self.logger.error(err_msg) response_obj.errors += '{0}\n'.format(err_msg) response_obj.add_to_stdout( str(ssh_process.before) + str(ssh_process.after)) self._conn_path.pop() if not self._conn_path: response_obj.connection = None break # Connection refused if response == 3: err = "Connection Refused. {0} --> {1}" err_msg = err.format(ssh_process.before, ssh_process.after) self.logger.error(err_msg) response_obj.errors += '{0}\n'.format(err_msg) response_obj.add_to_stdout( str(ssh_process.before) + str(ssh_process.after)) self._conn_path.pop() if not self._conn_path: response_obj.connection = None break # Connection established, the expected prompt was found # (last element in the expectation ordered dict) if response == len(expectations.keys()) - 1: if 'connection refused' in ssh_process.before.lower(): response_obj.errors += 'Connection Refused: {0}\n'.format( ssh_process.before) response_obj.add_to_stdout( str(ssh_process.before) + str(ssh_process.match.group())) break # Received expected output, transmit corresponding input next_transmit = expectations[expectations.keys()[response]] if next_transmit is None: self.logger.warn("Didn't drop out of loop, but nothing " "additional to transmit.") self.logger.debug('Option pexpect returned: {0} of {1}'.format( response, len(expectations.keys()) - 1)) self.logger.debug('Transaction thus far:\n{0}'.format( str(ssh_process.before) + str(ssh_process.match.group()) + str(ssh_process.after))) break # Transmit the next command in the process based on matched # expectation self.logger.debug("TX'ing: '{0}'".format(next_transmit)) response_obj.add_to_stdout(str(ssh_process.before) + ssh_process.match.group()) response_obj.add_to_stdin(next_transmit) ssh_process.sendline(next_transmit) # Broke from loop, return all received output... self.last_response = response_obj return response_obj def execute_cmds_via_open_connection( self, connection, cmds, response_obj=None, close_conn=False, timeout=None): """ Execute the list of commands on the open connection @param connection: Open pexpect connection @param cmds: list of commands to execute @param response_obj: The SSH Response object; instantiated if !provided @param close_conn: (Boolean), Close the connection when done? @param timeout: (int) Max number of seconds to wait per command @return: Populated response object """ if not isinstance(connection, pexpect.spawn): raise ConnectionNotFound() if response_obj is None: response_obj = SshResponse() response_obj.connection = connection args = {'response_obj': response_obj, 'cmds': cmds} if timeout is not None: args['timeout'] = timeout response_obj = self._cmds_via_open_connection(**args) if close_conn: self.close_connections(response_obj) return response_obj def _cmds_via_open_connection(self, response_obj, cmds, timeout=30): """ SSH from the local host using pexpect. @param response_obj: Populated SshResponse Obj @param cmds: Ordered Dict of commands to execute on the host to validate connection @param timeout: Amount of time allowed per cmd (default: 30s, which is the default for pexpect) @return: SshResponse Obj """ # Build list of potential and expected output expectations = OrderedDict([ (pexpect.TIMEOUT, None), (self.PSWD_PROMPT_REGEX, self.session_password), (self.LINUX_PROMPT_REGEX, None)]) # Get the SSH connection to the target host ssh_process = response_obj.connection for cmd in cmds: self.logger.debug("TX'ing CMD: '{0}'".format(cmd)) ssh_process.sendline(cmd) response_obj.add_to_stdin(cmd) while True: # Watch connection for potential and expected output. try: response = ssh_process.expect( expectations.keys(), timeout=timeout) # TIMEOUT, break out of loop and indicate FAILURE except pexpect.TIMEOUT: err = "CMD '{cmd}' timed out. {before} --> {after}" err_msg = err.format( before=ssh_process.before, after=ssh_process.after, cmd=cmd) self.logger.error(err_msg) response_obj.errors += '{0}\n'.format(err_msg) self.logger.debug('Connection Hop Path: {0}'.format( self._conn_path)) response_obj.add_to_stdout(str(ssh_process.before)) if not self._conn_path: response_obj.connection = None break # CONNECTION CLOSED, save output and break out of loop. except pexpect.EOF: self.logger.debug('Reached END OF FILE') response_obj.add_to_stdout(str(ssh_process.before)) if cmd == 'exit': output = (str(ssh_process.before) + str(ssh_process.after)) response_obj.add_to_cmd_out(cmd, output) self._conn_path.pop() if not self._conn_path: response_obj.connection = None break # If TIMEOUT returned by response, break out of loop and # indicate FAILURE... if response == 0: err = "CMD '{cmd}' timed out. {before} --> {after}" err_msg = err.format( before=ssh_process.before, after=ssh_process.after, cmd=cmd) self.logger.error(err_msg) response_obj.errors += '{0}\n'.format(err_msg) response_obj.add_to_stdout( str(ssh_process.before) + str(ssh_process.after)) self.logger.debug('Connection Hop Path: {0}'.format( self._conn_path)) break if response == (len(expectations.keys()) - 1): self.logger.debug('CMD {cmd} issued.'.format(cmd=cmd)) output = (str(ssh_process.before) + ssh_process.match.group() + str(ssh_process.after)) response_obj.add_to_cmd_out(cmd, output) self.last_response = response_obj break # Transmit the next command/input based on matched expectation next_transmit = expectations[expectations.keys()[response]] self.logger.debug("TX'ing: '{0}'".format(next_transmit)) response_obj.add_to_stdout( str(ssh_process.before) + ssh_process.match.group()) response_obj.add_to_stdin(next_transmit) self.last_response = response_obj # Broke from loop, return all received output... self.last_response = response_obj return response_obj def close_connections(self, response_obj): """ Close all open connections, based on IP/hop tracking @param response_obj: Populated SshResponse Object @return: None """ self.logger.debug('Closing all open connections: {0}'.format( self._conn_path)) # If there are connections open... if getattr(response_obj, 'connection', None) is not None: # Iterate through the hop list (if the connection is still open) while (list(set(self._conn_path)) and response_obj.connection is not None): response_obj = self._cmds_via_open_connection( response_obj, ['exit']) self.last_response = response_obj
39.672043
79
0.582283
9a6a046c39abe53763000dd70f454b9d78f40e59
10,055
py
Python
glue/viewers/table/qt/viewer_widget.py
Jerry-Ma/glue
96b9bd3d8c8c9ed3f48f0e91a8829c5f24a04a46
[ "BSD-3-Clause" ]
3
2015-09-10T22:23:55.000Z
2019-04-04T18:47:33.000Z
glue/viewers/table/qt/viewer_widget.py
astrofrog/glue
4aa8c64a6f65629207e40df9963232473a24c9f6
[ "BSD-3-Clause" ]
null
null
null
glue/viewers/table/qt/viewer_widget.py
astrofrog/glue
4aa8c64a6f65629207e40df9963232473a24c9f6
[ "BSD-3-Clause" ]
null
null
null
from __future__ import absolute_import, division, print_function import os import numpy as np from qtpy.QtCore import Qt from qtpy import QtCore, QtGui, QtWidgets from qtpy import PYQT5 from matplotlib.colors import ColorConverter from glue.utils.qt import get_qapp from glue.config import viewer_tool from glue.core.layer_artist import LayerArtistBase from glue.core import message as msg from glue.core import Data from glue.utils import nonpartial from glue.utils.qt import load_ui from glue.viewers.common.qt.data_viewer import DataViewer from glue.viewers.common.qt.toolbar import BasicToolbar from glue.viewers.common.qt.tool import CheckableTool from glue.core.subset import ElementSubsetState from glue.core.edit_subset_mode import EditSubsetMode from glue.core.state import lookup_class_with_patches from glue.utils.colors import alpha_blend_colors from glue.utils.qt import mpl_to_qt4_color from glue.core.exceptions import IncompatibleAttribute COLOR_CONVERTER = ColorConverter() class DataTableModel(QtCore.QAbstractTableModel): def __init__(self, table_viewer): super(DataTableModel, self).__init__() if table_viewer.data.ndim != 1: raise ValueError("Can only use Table widget for 1D data") self._table_viewer = table_viewer self._data = table_viewer.data self.show_hidden = False self.order = np.arange(self._data.shape[0]) def data_changed(self): top_left = self.index(0, 0) bottom_right = self.index(self.columnCount(), self.rowCount()) self.dataChanged.emit(top_left, bottom_right) @property def columns(self): if self.show_hidden: return self._data.components else: return self._data.visible_components def columnCount(self, index=None): return len(self.columns) def rowCount(self, index=None): # Qt bug: Crashes on tables bigger than this return min(self._data.size, 71582788) def headerData(self, section, orientation, role): if role != Qt.DisplayRole: return None if orientation == Qt.Horizontal: column_name = self.columns[section].label units = self._data.get_component(self.columns[section]).units if units != '': column_name += "\n{0}".format(units) return column_name elif orientation == Qt.Vertical: return str(self.order[section]) def data(self, index, role): if not index.isValid(): return None if role == Qt.DisplayRole: c = self.columns[index.column()] idx = self.order[index.row()] comp = self._data.get_component(c) if comp.categorical: comp = comp.labels else: comp = comp.data if isinstance(comp[idx], bytes): return comp[idx].decode('ascii') else: return str(comp[idx]) elif role == Qt.BackgroundRole: idx = self.order[index.row()] # Find all subsets that this index is part of colors = [] for layer_artist in self._table_viewer.layers[::-1]: if layer_artist.visible: subset = layer_artist.layer try: if subset.to_mask(view=slice(idx, idx + 1))[0]: colors.append(subset.style.color) except IncompatibleAttribute as exc: layer_artist.disable_invalid_attributes(*exc.args) else: layer_artist.enabled = True # Blend the colors using alpha blending if len(colors) > 0: color = alpha_blend_colors(colors, additional_alpha=0.5) color = mpl_to_qt4_color(color) return QtGui.QBrush(color) def sort(self, column, ascending): c = self.columns[column] comp = self._data.get_component(c) if comp.categorical: self.order = np.argsort(comp.labels) else: self.order = np.argsort(comp.data) if ascending == Qt.DescendingOrder: self.order = self.order[::-1] self.layoutChanged.emit() class TableLayerArtist(LayerArtistBase): def __init__(self, layer, table_viewer): self._table_viewer = table_viewer super(TableLayerArtist, self).__init__(layer) def redraw(self): self._table_viewer.model.data_changed() def update(self): pass def clear(self): pass @viewer_tool class RowSelectTool(CheckableTool): tool_id = 'table:rowselect' icon = 'glue_row_select' action_text = 'Select row(s)' tool_tip = ('Select rows by clicking on rows and pressing enter ' 'once the selection is ready to be applied') status_tip = ('CLICK to select, press ENTER to finalize selection, ' 'ALT+CLICK or ALT+UP/DOWN to apply selection immediately') def __init__(self, viewer): super(RowSelectTool, self).__init__(viewer) self.deactivate() def activate(self): self.viewer.ui.table.setSelectionMode(QtWidgets.QAbstractItemView.ExtendedSelection) def deactivate(self): self.viewer.ui.table.setSelectionMode(QtWidgets.QAbstractItemView.NoSelection) self.viewer.ui.table.clearSelection() class TableViewWithSelectionSignal(QtWidgets.QTableView): selection_changed = QtCore.Signal() def selectionChanged(self, *args, **kwargs): self.selection_changed.emit() super(TableViewWithSelectionSignal, self).selectionChanged(*args, **kwargs) class TableWidget(DataViewer): LABEL = "Table Viewer" _toolbar_cls = BasicToolbar tools = ['table:rowselect'] def __init__(self, session, parent=None, widget=None): super(TableWidget, self).__init__(session, parent) self.ui = load_ui('viewer_widget.ui', directory=os.path.dirname(__file__)) self.setCentralWidget(self.ui) hdr = self.ui.table.horizontalHeader() hdr.setStretchLastSection(True) hdr.setSectionResizeMode(hdr.Interactive) hdr = self.ui.table.verticalHeader() hdr.setSectionResizeMode(hdr.Interactive) self.model = None self.ui.table.selection_changed.connect(self.selection_changed) def selection_changed(self): app = get_qapp() if app.queryKeyboardModifiers() == Qt.AltModifier: self.finalize_selection(clear=False) def keyPressEvent(self, event): if self.toolbar.active_tool is self.toolbar.tools['table:rowselect']: if event.key() in [Qt.Key_Enter, Qt.Key_Return]: self.finalize_selection() super(TableWidget, self).keyPressEvent(event) def finalize_selection(self, clear=True): model = self.ui.table.selectionModel() selected_rows = [self.model.order[x.row()] for x in model.selectedRows()] subset_state = ElementSubsetState(indices=selected_rows, data=self.data) mode = EditSubsetMode() mode.update(self._data, subset_state, focus_data=self.data) if clear: # We block the signals here to make sure that we don't update # the subset again once the selection is cleared. self.ui.table.blockSignals(True) self.ui.table.clearSelection() self.ui.table.blockSignals(False) def register_to_hub(self, hub): super(TableWidget, self).register_to_hub(hub) def dfilter(x): return x.sender.data is self.data hub.subscribe(self, msg.SubsetCreateMessage, handler=nonpartial(self._refresh), filter=dfilter) hub.subscribe(self, msg.SubsetUpdateMessage, handler=nonpartial(self._refresh), filter=dfilter) hub.subscribe(self, msg.SubsetDeleteMessage, handler=nonpartial(self._refresh), filter=dfilter) hub.subscribe(self, msg.DataUpdateMessage, handler=nonpartial(self._refresh), filter=dfilter) def _refresh(self): self._sync_layers() self.model.data_changed() def _sync_layers(self): # For now we don't show the data in the list because it always has to # be shown for layer_artist in self.layers: if layer_artist.layer not in self.data.subsets: self._layer_artist_container.remove(layer_artist) for subset in self.data.subsets: if subset not in self._layer_artist_container: self._layer_artist_container.append(TableLayerArtist(subset, self)) def add_data(self, data): self.data = data self.setUpdatesEnabled(False) self.model = DataTableModel(self) self.ui.table.setModel(self.model) self.setUpdatesEnabled(True) self._sync_layers() return True def add_subset(self, subset): return True def unregister(self, hub): pass def closeEvent(self, event): """ On close, Qt seems to scan through the entire model if the data set is big. To sidestep that, we swap out with a tiny data set before closing """ d = Data(x=[0]) self.ui.table.setModel(DataTableModel(d)) event.accept() def restore_layers(self, rec, context): # For now this is a bit of a hack, we assume that all subsets saved # for this viewer are from dataset, so we just get Data object # then just sync the layers. for layer in rec: c = lookup_class_with_patches(layer.pop('_type')) props = dict((k, context.object(v)) for k, v in layer.items()) layer = props['layer'] self.add_data(layer.data) break self._sync_layers()
33.294702
92
0.632223
bacbd035dd458fb976315f01756fc291d622c7ac
2,807
py
Python
app/core/test/test_models.py
veerpratik/receipe-app-api
a4eda089d71c2d2e953ed5bc9dbb356ee36f4098
[ "MIT" ]
null
null
null
app/core/test/test_models.py
veerpratik/receipe-app-api
a4eda089d71c2d2e953ed5bc9dbb356ee36f4098
[ "MIT" ]
null
null
null
app/core/test/test_models.py
veerpratik/receipe-app-api
a4eda089d71c2d2e953ed5bc9dbb356ee36f4098
[ "MIT" ]
null
null
null
from unittest.mock import patch from django.test import TestCase from django.contrib.auth import get_user_model from core import models def sample_user(email='test@demo.com', password='testpass'): """Create a sample user""" return get_user_model().objects.create_user(email, password) class ModelTest(TestCase): def test_create_user_with_email_successfull(self): """create user with email and password """ email = "pratikveer@demo.com" password = "test@1234" user = get_user_model().objects.create_user( email=email, password=password, ) self.assertEqual(user.email, email) self.assertTrue(user.check_password(password)) def test_new_user_email_normalize(self): email = "pratikveer@DEMO.COM" user = get_user_model().objects.create_user(email, "abcd") self.assertEqual(user.email, email.lower()) def test_new_user_invalid_email(self): """ Test craeting user with no email raises error""" with self.assertRaises( ValueError ): # hyachya khali je sentense astil te valuerror detata check krtoo get_user_model().objects.create_user(None, "test") # if raise error by above senetence then it test pass def test_creating_new_superuser(self): """ Test creating new superuser """ user = get_user_model().objects.create_superuser("admin@demo.com", "admin@1234") self.assertTrue(user.is_superuser) self.assertTrue(user.is_staff) def test_tag_str(self): """Test the tag string representation""" tag = models.Tag.objects.create( user=sample_user(), name='Vegan' ) self.assertEqual(str(tag), tag.name) def test_ingredient_str(self): """Test the ingredient string representation""" ingredient = models.Ingredient.objects.create( user=sample_user(), name='Cucumber' ) self.assertEqual(str(ingredient), ingredient.name) def test_recipe_str(self): """Test the recipe string representation""" recipe = models.Recipe.objects.create( user=sample_user(), title='Steak and mushroom sauce', time_minutes=5, price=5.00 ) self.assertEqual(str(recipe), recipe.title) @patch('uuid.uuid4') def test_recipe_file_name_uuid(self, mock_uuid): """Test that image is saved in the correct location""" uuid = 'test-uuid' mock_uuid.return_value = uuid file_path = models.recipe_image_file_path(None, 'myimage.jpg') exp_path = f'uploads/recipe/{uuid}.jpg' self.assertEqual(file_path, exp_path)
33.023529
77
0.631635
bb7eace41dfe9e1d4840dc454209efa9cfbdaaef
21,174
py
Python
ce_bbx.py
krzysztoffiok/c_elegans_fitness
d16270f882890aa42df55739d9bb0efc2e2168e6
[ "MIT" ]
1
2022-01-31T15:49:01.000Z
2022-01-31T15:49:01.000Z
ce_bbx.py
krzysztoffiok/c_elegans_fitness
d16270f882890aa42df55739d9bb0efc2e2168e6
[ "MIT" ]
null
null
null
ce_bbx.py
krzysztoffiok/c_elegans_fitness
d16270f882890aa42df55739d9bb0efc2e2168e6
[ "MIT" ]
null
null
null
""" Mask R-CNN Copyright (c) 2017 Matterport, Inc. Licensed under the MIT License (see LICENSE for details) Written by Waleed Abdulla Modified for CElegans fitness assessment by Krzysztof Fiok ------------------------------------------------------------ Example use: To analyze images: python3 ce_bbx.py inference --image_folder=/path/to/images/for/inference --DMC=0.9 --NMS=0.6 --model=/path/to/model_weights To compute modified MS COCO metrics: python3 ce_bbx.py evaluate --dataset=/path/to/evaluation_dataset --DMC=0.9 --NMS=0.6 --model=/path/to/model_weights To draw Precision Recall Curve (PRC): python3 ce_bbx.py evaluate_PRC ----dataset=/path/to/evaluation_dataset --model=/path/to/model_weights To train your own model: python3 ce_bbx.py train --dataset=/path/to/train_dataset --model=path_to_initial_model_weights """ import os import sys import time import numpy as np import imgaug import skimage.draw from mrcnn import visualize import pandas as pd import matplotlib.pyplot as plt from matplotlib import patches, lines from matplotlib.patches import Polygon import IPython.display from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval from pycocotools import mask as maskUtils import zipfile import urllib.request import shutil # Root directory of the project ROOT_DIR = os.path.abspath("") # Import Mask RCNN sys.path.append(ROOT_DIR) # To find local version of the library from mrcnn.config import Config from mrcnn import model as modellib, utils # Path to trained weights file COCO_MODEL_PATH = os.path.join(ROOT_DIR, "", "mask_rcnn_coco.h5") # Directory to save logs and model checkpoints, if not provided # through the command line argument --logs DEFAULT_LOGS_DIR = os.path.join(ROOT_DIR, "logs") DEFAULT_DATASET_YEAR = "" ############################################################ # Configurations ############################################################ class CElegansConfig(Config): """Configuration for training on . Derives from the base Config class and overrides values specific to the COCO dataset. """ # Give the configuration a recognizable name NAME = "CE" # Depends on GPU RAM IMAGES_PER_GPU = 1 # (default is 1) GPU_COUNT = 1 # Number of classes (including background) NUM_CLASSES = 1 + 2 # CE has 2 classes RPN_NMS_THRESHOLD = 0.9 DETECTION_MIN_CONFIDENCE = 0.7 ############################################################ # Dataset ############################################################ class CElegansDataset(utils.Dataset): def load_celegans(self, dataset_dir, subset, class_ids=None, return_coco=False): """Load a subset of the CE dataset. dataset_dir: The root directory of the CE dataset. subset: What to load (train, val) class_ids: If provided, only loads images that have the given classes. return_coco: If True, returns the COCO object. """ coco = COCO("{}/annotations/{}.json".format(dataset_dir, subset)) image_dir = "{}/{}".format(dataset_dir, subset) class_ids = sorted(coco.getCatIds()) image_ids = list(coco.imgs.keys()) # Add classes for i in class_ids: self.add_class("coco", i, coco.loadCats(i)[0]["name"]) # Add images for i in image_ids: self.add_image( "coco", image_id=i, path=os.path.join(image_dir, coco.imgs[i]['file_name']), width=coco.imgs[i]["width"], height=coco.imgs[i]["height"], annotations=coco.loadAnns(coco.getAnnIds( imgIds=[i], catIds=class_ids, iscrowd=None))) if return_coco: return coco def load_mask(self, image_id): """Load instance masks for the given image. Different datasets use different ways to store masks. This function converts the different mask format to one format in the form of a bitmap [height, width, instances]. Returns: masks: A bool array of shape [height, width, instance count] with one mask per instance. class_ids: a 1D array of class IDs of the instance masks. """ # If not a COCO image, delegate to parent class. image_info = self.image_info[image_id] if image_info["source"] != "coco": return super(CElegansDataset, self).load_mask(image_id) instance_masks = [] class_ids = [] annotations = self.image_info[image_id]["annotations"] # Build mask of shape [height, width, instance_count] and list # of class IDs that correspond to each channel of the mask. for annotation in annotations: class_id = self.map_source_class_id( "coco.{}".format(annotation['category_id'])) if class_id: m = self.annToMask(annotation, image_info["height"], image_info["width"]) # Some objects are so small that they're less than 1 pixel area # and end up rounded out. Skip those objects. if m.max() < 1: continue # Is it a crowd? If so, use a negative class ID. if annotation['iscrowd']: # Use negative class ID for crowds class_id *= -1 # For crowd masks, annToMask() sometimes returns a mask # smaller than the given dimensions. If so, resize it. if m.shape[0] != image_info["height"] or m.shape[1] != image_info["width"]: m = np.ones([image_info["height"], image_info["width"]], dtype=bool) instance_masks.append(m) class_ids.append(class_id) # Pack instance masks into an array if class_ids: mask = np.stack(instance_masks, axis=2).astype(np.bool) class_ids = np.array(class_ids, dtype=np.int32) return mask, class_ids else: # Call super class to return an empty mask return super(CElegansDataset, self).load_mask(image_id) # The following two functions are from pycocotools with a few changes. def annToRLE(self, ann, height, width): """ Convert annotation which can be polygons, uncompressed RLE to RLE. :return: binary mask (numpy 2D array) """ segm = ann['segmentation'] if isinstance(segm, list): # polygon -- a single object might consist of multiple parts # we merge all parts into one mask rle code rles = maskUtils.frPyObjects(segm, height, width) rle = maskUtils.merge(rles) elif isinstance(segm['counts'], list): # uncompressed RLE rle = maskUtils.frPyObjects(segm, height, width) else: # rle rle = ann['segmentation'] return rle def annToMask(self, ann, height, width): """ Convert annotation which can be polygons, uncompressed RLE, or RLE to binary mask. :return: binary mask (numpy 2D array) """ rle = self.annToRLE(ann, height, width) m = maskUtils.decode(rle) return m ############################################################ # COCO Evaluation ############################################################ def build_coco_results(dataset, image_ids, rois, class_ids, scores, masks): """Arrange resutls to match COCO specs in http://cocodataset.org/#format """ # If no results, return an empty list if rois is None: return [] results = [] for image_id in image_ids: # Loop through detections for i in range(rois.shape[0]): class_id = class_ids[i] score = scores[i] bbox = np.around(rois[i], 1) mask = masks[:, :, i] result = { "image_id": image_id, "category_id": dataset.get_source_class_id(class_id, "coco"), "bbox": [bbox[1], bbox[0], bbox[3] - bbox[1], bbox[2] - bbox[0]], "score": score, "segmentation": maskUtils.encode(np.asfortranarray(mask)) } results.append(result) return results def evaluate_coco_PRC(model, dataset, coco, eval_type="bbox", limit=0, image_ids=None): """Runs official COCO evaluation. dataset: A Dataset object with valiadtion data eval_type: "bbox" or "segm" for bounding box or segmentation evaluation limit: if not 0, it's the number of images to use for evaluation """ # Pick COCO images from the dataset image_ids = image_ids or dataset.image_ids # Limit to a subset if limit: image_ids = image_ids[:limit] # Get corresponding COCO image IDs. coco_image_ids = [dataset.image_info[id]["id"] for id in image_ids] t_prediction = 0 t_start = time.time() results = [] for i, image_id in enumerate(image_ids): # Load image image = dataset.load_image(image_id) # Run detection t = time.time() r = model.detect([image], verbose=0)[0] t_prediction += (time.time() - t) r["class_ids"] = [x-1 for x in r["class_ids"]] # Convert results to COCO format # Cast masks to uint8 because COCO tools errors out on bool image_results = build_coco_results(dataset, coco_image_ids[i:i + 1], r["rois"], r["class_ids"], r["scores"], r["masks"].astype(np.uint8)) results.extend(image_results) # Load results. This modifies results with additional attributes. coco_results = coco.loadRes(results) # Evaluate cocoEval = COCOeval(coco, coco_results, eval_type) cocoEval.params.imgIds = coco_image_ids cocoEval.params.iouThrs = [0.1] cocoEval.params.areaRng = [[0, 10000000000.0]] cocoEval.params.maxDets = [100] cocoEval.evaluate() cocoEval.accumulate() precision = cocoEval.eval['precision'][0, :, 0, 0, 0] recall = cocoEval.params.recThrs plt.plot(recall, precision, 'ro') plt.xlabel('recall') plt.ylabel('precision') plt.title('PRC IoU 0,5') plt.savefig(fname='PRC' + str(limit) + '.jpg') print("Prediction time: {}. Average {}/image".format( t_prediction, t_prediction / len(image_ids))) print("Total time: ", time.time() - t_start) # Pick COCO images from the dataset # image_ids = image_ids or dataset.image_ids # Limit to a subset if limit: image_ids = image_ids[:limit] # Get corresponding COCO image IDs. coco_image_ids = [dataset.image_info[id]["id"] for id in image_ids] t_prediction = 0 t_start = time.time() results = [] for i, image_id in enumerate(image_ids): # Load image image = dataset.load_image(image_id) # Run detection t = time.time() r = model.detect([image], verbose=0)[0] t_prediction += (time.time() - t) # r["class_ids"] = [x-1 for x in r["class_ids"]] # Convert results to COCO format # Cast masks to uint8 because COCO tools errors out on bool image_results = build_coco_results(dataset, coco_image_ids[i:i + 1], r["rois"], r["class_ids"], r["scores"], r["masks"].astype(np.uint8)) results.extend(image_results) # Load results. This modifies results with additional attributes. coco_results = coco.loadRes(results) # Evaluate cocoEval = COCOeval(coco, coco_results, eval_type) cocoEval.params.imgIds = coco_image_ids cocoEval.evaluate() cocoEval.accumulate() print('Original COCO metrics') sumcoco = cocoEval.summarize_coco() sumcoco = pd.DataFrame(sumcoco) print('Original PASCAL VOC metrics') sumvoc = cocoEval.summarize_voc() sumvoc = pd.DataFrame(sumvoc) sumcoco.to_csv('output_coco_%s.csv' % args.model[-6:]) sumvoc.to_csv('output_voc_%s.csv' % args.model[-6:]) ############################################################ # Training ############################################################ if __name__ == '__main__': import argparse # Parse command line arguments parser = argparse.ArgumentParser( description='Train Mask R-CNN on MS COCO.') parser.add_argument("command", metavar="<command>", help="'train' or 'evaluate' on MS COCO") parser.add_argument('--dataset', required=False, metavar="/path/to/coco/", help='Directory of the MS-COCO dataset') parser.add_argument('--model', required=True, metavar="/path/to/weights.h5", help="Path to weights .h5 file or 'coco'") parser.add_argument('--logs', required=False, default=DEFAULT_LOGS_DIR, metavar="/path/to/logs/", help='Logs and checkpoints directory (default=logs/)') parser.add_argument('--limit', required=False, default=500, metavar="<image count>", help='Images to use for evaluation (default=500)') parser.add_argument('--image_folder', required=False, metavar="folder path", help='Folder path with images for inference') parser.add_argument('--results', required=False, default='', help="String added at end of results path") parser.add_argument('--DMC', required=False, default=0.95, type=float, help="Provide Detection Max Confidence") parser.add_argument('--NMS', required=False, default=0.5, type=float, help="Provide Non Maximum Suppression") args = parser.parse_args() dmc = args.DMC nms = args.NMS print("Command: ", args.command) print("Model: ", args.model) print("Dataset: ", args.dataset) print("Logs: ", args.logs) # Configurations if args.command == "train": config = CElegansConfig() else: import ce_segmentation config = ce_segmentation.CElegansInferenceConfig() config.DETECTION_MIN_CONFIDENCE = float(dmc) config.DETECTION_NMS_THRESHOLD = float(nms) config.display() # Create model if args.command == "train": model = modellib.MaskRCNN(mode="training", config=config, model_dir=args.logs) else: model = modellib.MaskRCNN(mode="inference", config=config, model_dir=args.logs) # Select weights file to load if args.model.lower() == "coco": model_path = COCO_MODEL_PATH elif args.model.lower() == "last": # Find last trained weights model_path = model.find_last() else: model_path = args.model # Load weights if args.model.lower() == "coco": model.load_weights(model_path, by_name=True, exclude=[ "mrcnn_class_logits", "mrcnn_bbox_fc", "mrcnn_bbox", "mrcnn_mask"]) else: print("Loading weights ", model_path) model.load_weights(model_path, by_name=True) # Train or evaluate if args.command == "train": # Training dataset dataset_train = CElegansDataset() dataset_train.load_celegans(args.dataset, "train") dataset_train.prepare() # Validation dataset dataset_val = CElegansDataset() dataset_val.load_celegans(args.dataset, "val") dataset_val.prepare() # Image Augmentation augmentation = imgaug.augmenters.CoarseDropout(p=0.1, size_percent=0.3) # *** This training schedule is an example. Update to your needs *** # Training - Stage 1 print("Training network heads") model.train(dataset_train, dataset_val, learning_rate=config.LEARNING_RATE, epochs=50, layers='heads', augmentation=None) print("Training 4+ network layers") model.train(dataset_train, dataset_val, learning_rate=config.LEARNING_RATE, epochs=100, layers='4+', augmentation=None) print("Training all network layers") model.train(dataset_train, dataset_val, learning_rate=config.LEARNING_RATE / 5, epochs=150, layers='all', augmentation=None) elif args.command == "inference": class_names = ['BG', 'CE', 'CE_glow', 'dec', 'dead', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'] column_names = ['CE', 'CE_glow', 'file_name'] bbx_info_list = pd.DataFrame(columns=['y1', 'x1', 'y2', 'x2', 'file_name']) image_file_list = [] output_path = (os.path.join(ROOT_DIR, 'result_%s' % str(args.model), args.results)) try: os.makedirs(output_path) except FileExistsError: print('----- The output folder already exists, overwriting ----') CE_list = [] CE_glow_list = [] for root, dirs, files in os.walk(args.image_folder, topdown=False): for name in files: print(name) input_file_path = os.path.join(root, name) image = skimage.io.imread(input_file_path) # Run detection results = model.detect([image], verbose=1) # Visualize results r = results[0] class_count, bbx_info = visualize.display_instances(output_path, name, image, r['rois'], r['masks'], r['class_ids'], class_names, r['scores'], show_mask=True) image_file_list.append(str(name)) class_count = class_count.T print(class_count) CE_list.append((class_count.iloc[0, 0])) CE_glow_list.append(str(class_count.iloc[0, 1])) bbx_info_list = pd.concat([bbx_info_list, bbx_info], axis=0, sort=True) class_count_list = {"file_name": image_file_list, "CE": CE_list, "CE_glow": CE_glow_list} class_count_list = pd.DataFrame(class_count_list) class_count_list.to_csv(os.path.join(output_path, 'class_count.csv')) bbx_info_list = bbx_info_list.sort_values(by=['file_name']) bbx_info_list.to_csv(os.path.join(output_path, 'bbx_info.csv')) print('The results were saved to: ', output_path) elif args.command == "eval_table": dataset_val = CElegansDataset() coco = dataset_val.load_celegans(args.dataset, "val") dataset_val.prepare() evaluate(model, dataset_val, coco, "bbox", limit=int(args.limit)) elif args.command == "evaluate": dataset_val = CElegansDataset() coco = dataset_val.load_celegans(args.dataset, "val", return_coco=True) dataset_val.prepare() evaluate_coco_PRC(model, dataset_val, coco, "bbox", limit=int(args.limit)) else: print("'{}' is not recognized. " "Use 'train' or 'evaluate'".format(args.command))
38.568306
124
0.561349
70217a2ce52db7b03219d1fde795b4a7d5c8d948
119,676
py
Python
pyboto3/devicefarm.py
thecraftman/pyboto3
653a0db2b00b06708334431da8f169d1f7c7734f
[ "MIT" ]
null
null
null
pyboto3/devicefarm.py
thecraftman/pyboto3
653a0db2b00b06708334431da8f169d1f7c7734f
[ "MIT" ]
null
null
null
pyboto3/devicefarm.py
thecraftman/pyboto3
653a0db2b00b06708334431da8f169d1f7c7734f
[ "MIT" ]
null
null
null
''' The MIT License (MIT) Copyright (c) 2016 WavyCloud Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' def can_paginate(operation_name=None): """ Check if an operation can be paginated. :type operation_name: string :param operation_name: The operation name. This is the same name as the method name on the client. For example, if the method name is create_foo, and you'd normally invoke the operation as client.create_foo(**kwargs), if the create_foo operation can be paginated, you can use the call client.get_paginator('create_foo'). """ pass def create_device_pool(projectArn=None, name=None, description=None, rules=None): """ Creates a device pool. See also: AWS API Documentation Examples The following example creates a new device pool named MyDevicePool inside an existing project. Expected Output: :example: response = client.create_device_pool( projectArn='string', name='string', description='string', rules=[ { 'attribute': 'ARN'|'PLATFORM'|'FORM_FACTOR'|'MANUFACTURER'|'REMOTE_ACCESS_ENABLED'|'APPIUM_VERSION', 'operator': 'EQUALS'|'LESS_THAN'|'GREATER_THAN'|'IN'|'NOT_IN'|'CONTAINS', 'value': 'string' }, ] ) :type projectArn: string :param projectArn: [REQUIRED] The ARN of the project for the device pool. :type name: string :param name: [REQUIRED] The device pool's name. :type description: string :param description: The device pool's description. :type rules: list :param rules: [REQUIRED] The device pool's rules. (dict) --Represents a condition for a device pool. attribute (string) --The rule's stringified attribute. For example, specify the value as '\'abc\'' . Allowed values include: ARN: The ARN. FORM_FACTOR: The form factor (for example, phone or tablet). MANUFACTURER: The manufacturer. PLATFORM: The platform (for example, Android or iOS). REMOTE_ACCESS_ENABLED: Whether the device is enabled for remote access. APPIUM_VERSION: The Appium version for the test. operator (string) --The rule's operator. EQUALS: The equals operator. GREATER_THAN: The greater-than operator. IN: The in operator. LESS_THAN: The less-than operator. NOT_IN: The not-in operator. CONTAINS: The contains operator. value (string) --The rule's value. :rtype: dict :return: { 'devicePool': { 'arn': 'string', 'name': 'string', 'description': 'string', 'type': 'CURATED'|'PRIVATE', 'rules': [ { 'attribute': 'ARN'|'PLATFORM'|'FORM_FACTOR'|'MANUFACTURER'|'REMOTE_ACCESS_ENABLED'|'APPIUM_VERSION', 'operator': 'EQUALS'|'LESS_THAN'|'GREATER_THAN'|'IN'|'NOT_IN'|'CONTAINS', 'value': 'string' }, ] } } :returns: CURATED: A device pool that is created and managed by AWS Device Farm. PRIVATE: A device pool that is created and managed by the device pool developer. """ pass def create_network_profile(projectArn=None, name=None, description=None, type=None, uplinkBandwidthBits=None, downlinkBandwidthBits=None, uplinkDelayMs=None, downlinkDelayMs=None, uplinkJitterMs=None, downlinkJitterMs=None, uplinkLossPercent=None, downlinkLossPercent=None): """ Creates a network profile. See also: AWS API Documentation :example: response = client.create_network_profile( projectArn='string', name='string', description='string', type='CURATED'|'PRIVATE', uplinkBandwidthBits=123, downlinkBandwidthBits=123, uplinkDelayMs=123, downlinkDelayMs=123, uplinkJitterMs=123, downlinkJitterMs=123, uplinkLossPercent=123, downlinkLossPercent=123 ) :type projectArn: string :param projectArn: [REQUIRED] The Amazon Resource Name (ARN) of the project for which you want to create a network profile. :type name: string :param name: [REQUIRED] The name you wish to specify for the new network profile. :type description: string :param description: The description of the network profile. :type type: string :param type: The type of network profile you wish to create. Valid values are listed below. :type uplinkBandwidthBits: integer :param uplinkBandwidthBits: The data throughput rate in bits per second, as an integer from 0 to 104857600. :type downlinkBandwidthBits: integer :param downlinkBandwidthBits: The data throughput rate in bits per second, as an integer from 0 to 104857600. :type uplinkDelayMs: integer :param uplinkDelayMs: Delay time for all packets to destination in milliseconds as an integer from 0 to 2000. :type downlinkDelayMs: integer :param downlinkDelayMs: Delay time for all packets to destination in milliseconds as an integer from 0 to 2000. :type uplinkJitterMs: integer :param uplinkJitterMs: Time variation in the delay of received packets in milliseconds as an integer from 0 to 2000. :type downlinkJitterMs: integer :param downlinkJitterMs: Time variation in the delay of received packets in milliseconds as an integer from 0 to 2000. :type uplinkLossPercent: integer :param uplinkLossPercent: Proportion of transmitted packets that fail to arrive from 0 to 100 percent. :type downlinkLossPercent: integer :param downlinkLossPercent: Proportion of received packets that fail to arrive from 0 to 100 percent. :rtype: dict :return: { 'networkProfile': { 'arn': 'string', 'name': 'string', 'description': 'string', 'type': 'CURATED'|'PRIVATE', 'uplinkBandwidthBits': 123, 'downlinkBandwidthBits': 123, 'uplinkDelayMs': 123, 'downlinkDelayMs': 123, 'uplinkJitterMs': 123, 'downlinkJitterMs': 123, 'uplinkLossPercent': 123, 'downlinkLossPercent': 123 } } """ pass def create_project(name=None, defaultJobTimeoutMinutes=None): """ Creates a new project. See also: AWS API Documentation Examples The following example creates a new project named MyProject. Expected Output: :example: response = client.create_project( name='string', defaultJobTimeoutMinutes=123 ) :type name: string :param name: [REQUIRED] The project's name. :type defaultJobTimeoutMinutes: integer :param defaultJobTimeoutMinutes: Sets the execution timeout value (in minutes) for a project. All test runs in this project will use the specified execution timeout value unless overridden when scheduling a run. :rtype: dict :return: { 'project': { 'arn': 'string', 'name': 'string', 'defaultJobTimeoutMinutes': 123, 'created': datetime(2015, 1, 1) } } """ pass def create_remote_access_session(projectArn=None, deviceArn=None, name=None, configuration=None): """ Specifies and starts a remote access session. See also: AWS API Documentation Examples The following example creates a remote access session named MySession. Expected Output: :example: response = client.create_remote_access_session( projectArn='string', deviceArn='string', name='string', configuration={ 'billingMethod': 'METERED'|'UNMETERED' } ) :type projectArn: string :param projectArn: [REQUIRED] The Amazon Resource Name (ARN) of the project for which you want to create a remote access session. :type deviceArn: string :param deviceArn: [REQUIRED] The Amazon Resource Name (ARN) of the device for which you want to create a remote access session. :type name: string :param name: The name of the remote access session that you wish to create. :type configuration: dict :param configuration: The configuration information for the remote access session request. billingMethod (string) --Returns the billing method for purposes of configuring a remote access session. :rtype: dict :return: { 'remoteAccessSession': { 'arn': 'string', 'name': 'string', 'created': datetime(2015, 1, 1), 'status': 'PENDING'|'PENDING_CONCURRENCY'|'PENDING_DEVICE'|'PROCESSING'|'SCHEDULING'|'PREPARING'|'RUNNING'|'COMPLETED'|'STOPPING', 'result': 'PENDING'|'PASSED'|'WARNED'|'FAILED'|'SKIPPED'|'ERRORED'|'STOPPED', 'message': 'string', 'started': datetime(2015, 1, 1), 'stopped': datetime(2015, 1, 1), 'device': { 'arn': 'string', 'name': 'string', 'manufacturer': 'string', 'model': 'string', 'formFactor': 'PHONE'|'TABLET', 'platform': 'ANDROID'|'IOS', 'os': 'string', 'cpu': { 'frequency': 'string', 'architecture': 'string', 'clock': 123.0 }, 'resolution': { 'width': 123, 'height': 123 }, 'heapSize': 123, 'memory': 123, 'image': 'string', 'carrier': 'string', 'radio': 'string', 'remoteAccessEnabled': True|False, 'fleetType': 'string', 'fleetName': 'string' }, 'billingMethod': 'METERED'|'UNMETERED', 'deviceMinutes': { 'total': 123.0, 'metered': 123.0, 'unmetered': 123.0 }, 'endpoint': 'string' } } :returns: PENDING: A pending status. PENDING_CONCURRENCY: A pending concurrency status. PENDING_DEVICE: A pending device status. PROCESSING: A processing status. SCHEDULING: A scheduling status. PREPARING: A preparing status. RUNNING: A running status. COMPLETED: A completed status. STOPPING: A stopping status. """ pass def create_upload(projectArn=None, name=None, type=None, contentType=None): """ Uploads an app or test scripts. See also: AWS API Documentation Examples The following example creates a new Appium Python test package upload inside an existing project. Expected Output: :example: response = client.create_upload( projectArn='string', name='string', type='ANDROID_APP'|'IOS_APP'|'WEB_APP'|'EXTERNAL_DATA'|'APPIUM_JAVA_JUNIT_TEST_PACKAGE'|'APPIUM_JAVA_TESTNG_TEST_PACKAGE'|'APPIUM_PYTHON_TEST_PACKAGE'|'APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE'|'APPIUM_WEB_JAVA_TESTNG_TEST_PACKAGE'|'APPIUM_WEB_PYTHON_TEST_PACKAGE'|'CALABASH_TEST_PACKAGE'|'INSTRUMENTATION_TEST_PACKAGE'|'UIAUTOMATION_TEST_PACKAGE'|'UIAUTOMATOR_TEST_PACKAGE'|'XCTEST_TEST_PACKAGE'|'XCTEST_UI_TEST_PACKAGE', contentType='string' ) :type projectArn: string :param projectArn: [REQUIRED] The ARN of the project for the upload. :type name: string :param name: [REQUIRED] The upload's file name. The name should not contain the '/' character. If uploading an iOS app, the file name needs to end with the .ipa extension. If uploading an Android app, the file name needs to end with the .apk extension. For all others, the file name must end with the .zip file extension. :type type: string :param type: [REQUIRED] The upload's upload type. Must be one of the following values: ANDROID_APP: An Android upload. IOS_APP: An iOS upload. WEB_APP: A web appliction upload. EXTERNAL_DATA: An external data upload. APPIUM_JAVA_JUNIT_TEST_PACKAGE: An Appium Java JUnit test package upload. APPIUM_JAVA_TESTNG_TEST_PACKAGE: An Appium Java TestNG test package upload. APPIUM_PYTHON_TEST_PACKAGE: An Appium Python test package upload. APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE: An Appium Java JUnit test package upload. APPIUM_WEB_JAVA_TESTNG_TEST_PACKAGE: An Appium Java TestNG test package upload. APPIUM_WEB_PYTHON_TEST_PACKAGE: An Appium Python test package upload. CALABASH_TEST_PACKAGE: A Calabash test package upload. INSTRUMENTATION_TEST_PACKAGE: An instrumentation upload. UIAUTOMATION_TEST_PACKAGE: A uiautomation test package upload. UIAUTOMATOR_TEST_PACKAGE: A uiautomator test package upload. XCTEST_TEST_PACKAGE: An XCode test package upload. XCTEST_UI_TEST_PACKAGE: An XCode UI test package upload. Note If you call CreateUpload with WEB_APP specified, AWS Device Farm throws an ArgumentException error. :type contentType: string :param contentType: The upload's content type (for example, 'application/octet-stream'). :rtype: dict :return: { 'upload': { 'arn': 'string', 'name': 'string', 'created': datetime(2015, 1, 1), 'type': 'ANDROID_APP'|'IOS_APP'|'WEB_APP'|'EXTERNAL_DATA'|'APPIUM_JAVA_JUNIT_TEST_PACKAGE'|'APPIUM_JAVA_TESTNG_TEST_PACKAGE'|'APPIUM_PYTHON_TEST_PACKAGE'|'APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE'|'APPIUM_WEB_JAVA_TESTNG_TEST_PACKAGE'|'APPIUM_WEB_PYTHON_TEST_PACKAGE'|'CALABASH_TEST_PACKAGE'|'INSTRUMENTATION_TEST_PACKAGE'|'UIAUTOMATION_TEST_PACKAGE'|'UIAUTOMATOR_TEST_PACKAGE'|'XCTEST_TEST_PACKAGE'|'XCTEST_UI_TEST_PACKAGE', 'status': 'INITIALIZED'|'PROCESSING'|'SUCCEEDED'|'FAILED', 'url': 'string', 'metadata': 'string', 'contentType': 'string', 'message': 'string' } } :returns: ANDROID_APP: An Android upload. IOS_APP: An iOS upload. WEB_APP: A web appliction upload. EXTERNAL_DATA: An external data upload. APPIUM_JAVA_JUNIT_TEST_PACKAGE: An Appium Java JUnit test package upload. APPIUM_JAVA_TESTNG_TEST_PACKAGE: An Appium Java TestNG test package upload. APPIUM_PYTHON_TEST_PACKAGE: An Appium Python test package upload. APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE: An Appium Java JUnit test package upload. APPIUM_WEB_JAVA_TESTNG_TEST_PACKAGE: An Appium Java TestNG test package upload. APPIUM_WEB_PYTHON_TEST_PACKAGE: An Appium Python test package upload. CALABASH_TEST_PACKAGE: A Calabash test package upload. INSTRUMENTATION_TEST_PACKAGE: An instrumentation upload. UIAUTOMATION_TEST_PACKAGE: A uiautomation test package upload. UIAUTOMATOR_TEST_PACKAGE: A uiautomator test package upload. XCTEST_TEST_PACKAGE: An XCode test package upload. XCTEST_UI_TEST_PACKAGE: An XCode UI test package upload. """ pass def delete_device_pool(arn=None): """ Deletes a device pool given the pool ARN. Does not allow deletion of curated pools owned by the system. See also: AWS API Documentation Examples The following example deletes a specific device pool. Expected Output: :example: response = client.delete_device_pool( arn='string' ) :type arn: string :param arn: [REQUIRED] Represents the Amazon Resource Name (ARN) of the Device Farm device pool you wish to delete. :rtype: dict :return: {} """ pass def delete_network_profile(arn=None): """ Deletes a network profile. See also: AWS API Documentation :example: response = client.delete_network_profile( arn='string' ) :type arn: string :param arn: [REQUIRED] The Amazon Resource Name (ARN) of the network profile you want to delete. :rtype: dict :return: {} """ pass def delete_project(arn=None): """ Deletes an AWS Device Farm project, given the project ARN. See also: AWS API Documentation Examples The following example deletes a specific project. Expected Output: :example: response = client.delete_project( arn='string' ) :type arn: string :param arn: [REQUIRED] Represents the Amazon Resource Name (ARN) of the Device Farm project you wish to delete. :rtype: dict :return: {} """ pass def delete_remote_access_session(arn=None): """ Deletes a completed remote access session and its results. See also: AWS API Documentation Examples The following example deletes a specific remote access session. Expected Output: :example: response = client.delete_remote_access_session( arn='string' ) :type arn: string :param arn: [REQUIRED] The Amazon Resource Name (ARN) of the sesssion for which you want to delete remote access. :rtype: dict :return: {} """ pass def delete_run(arn=None): """ Deletes the run, given the run ARN. See also: AWS API Documentation Examples The following example deletes a specific test run. Expected Output: :example: response = client.delete_run( arn='string' ) :type arn: string :param arn: [REQUIRED] The Amazon Resource Name (ARN) for the run you wish to delete. :rtype: dict :return: {} """ pass def delete_upload(arn=None): """ Deletes an upload given the upload ARN. See also: AWS API Documentation Examples The following example deletes a specific upload. Expected Output: :example: response = client.delete_upload( arn='string' ) :type arn: string :param arn: [REQUIRED] Represents the Amazon Resource Name (ARN) of the Device Farm upload you wish to delete. :rtype: dict :return: {} """ pass def generate_presigned_url(ClientMethod=None, Params=None, ExpiresIn=None, HttpMethod=None): """ Generate a presigned url given a client, its method, and arguments :type ClientMethod: string :param ClientMethod: The client method to presign for :type Params: dict :param Params: The parameters normally passed to ClientMethod. :type ExpiresIn: int :param ExpiresIn: The number of seconds the presigned url is valid for. By default it expires in an hour (3600 seconds) :type HttpMethod: string :param HttpMethod: The http method to use on the generated url. By default, the http method is whatever is used in the method's model. """ pass def get_account_settings(): """ Returns the number of unmetered iOS and/or unmetered Android devices that have been purchased by the account. See also: AWS API Documentation Examples The following example returns information about your Device Farm account settings. Expected Output: :example: response = client.get_account_settings() :rtype: dict :return: { 'accountSettings': { 'awsAccountNumber': 'string', 'unmeteredDevices': { 'string': 123 }, 'unmeteredRemoteAccessDevices': { 'string': 123 }, 'maxJobTimeoutMinutes': 123, 'trialMinutes': { 'total': 123.0, 'remaining': 123.0 }, 'maxSlots': { 'string': 123 }, 'defaultJobTimeoutMinutes': 123 } } :returns: (string) -- (integer) -- """ pass def get_device(arn=None): """ Gets information about a unique device type. See also: AWS API Documentation Examples The following example returns information about a specific device. Expected Output: :example: response = client.get_device( arn='string' ) :type arn: string :param arn: [REQUIRED] The device type's ARN. :rtype: dict :return: { 'device': { 'arn': 'string', 'name': 'string', 'manufacturer': 'string', 'model': 'string', 'formFactor': 'PHONE'|'TABLET', 'platform': 'ANDROID'|'IOS', 'os': 'string', 'cpu': { 'frequency': 'string', 'architecture': 'string', 'clock': 123.0 }, 'resolution': { 'width': 123, 'height': 123 }, 'heapSize': 123, 'memory': 123, 'image': 'string', 'carrier': 'string', 'radio': 'string', 'remoteAccessEnabled': True|False, 'fleetType': 'string', 'fleetName': 'string' } } :returns: ANDROID: The Android platform. IOS: The iOS platform. """ pass def get_device_pool(arn=None): """ Gets information about a device pool. See also: AWS API Documentation Examples The following example returns information about a specific device pool, given a project ARN. Expected Output: :example: response = client.get_device_pool( arn='string' ) :type arn: string :param arn: [REQUIRED] The device pool's ARN. :rtype: dict :return: { 'devicePool': { 'arn': 'string', 'name': 'string', 'description': 'string', 'type': 'CURATED'|'PRIVATE', 'rules': [ { 'attribute': 'ARN'|'PLATFORM'|'FORM_FACTOR'|'MANUFACTURER'|'REMOTE_ACCESS_ENABLED'|'APPIUM_VERSION', 'operator': 'EQUALS'|'LESS_THAN'|'GREATER_THAN'|'IN'|'NOT_IN'|'CONTAINS', 'value': 'string' }, ] } } :returns: ARN: The ARN. FORM_FACTOR: The form factor (for example, phone or tablet). MANUFACTURER: The manufacturer. PLATFORM: The platform (for example, Android or iOS). REMOTE_ACCESS_ENABLED: Whether the device is enabled for remote access. APPIUM_VERSION: The Appium version for the test. """ pass def get_device_pool_compatibility(devicePoolArn=None, appArn=None, testType=None, test=None): """ Gets information about compatibility with a device pool. See also: AWS API Documentation Examples The following example returns information about the compatibility of a specific device pool, given its ARN. Expected Output: :example: response = client.get_device_pool_compatibility( devicePoolArn='string', appArn='string', testType='BUILTIN_FUZZ'|'BUILTIN_EXPLORER'|'APPIUM_JAVA_JUNIT'|'APPIUM_JAVA_TESTNG'|'APPIUM_PYTHON'|'APPIUM_WEB_JAVA_JUNIT'|'APPIUM_WEB_JAVA_TESTNG'|'APPIUM_WEB_PYTHON'|'CALABASH'|'INSTRUMENTATION'|'UIAUTOMATION'|'UIAUTOMATOR'|'XCTEST'|'XCTEST_UI', test={ 'type': 'BUILTIN_FUZZ'|'BUILTIN_EXPLORER'|'APPIUM_JAVA_JUNIT'|'APPIUM_JAVA_TESTNG'|'APPIUM_PYTHON'|'APPIUM_WEB_JAVA_JUNIT'|'APPIUM_WEB_JAVA_TESTNG'|'APPIUM_WEB_PYTHON'|'CALABASH'|'INSTRUMENTATION'|'UIAUTOMATION'|'UIAUTOMATOR'|'XCTEST'|'XCTEST_UI', 'testPackageArn': 'string', 'filter': 'string', 'parameters': { 'string': 'string' } } ) :type devicePoolArn: string :param devicePoolArn: [REQUIRED] The device pool's ARN. :type appArn: string :param appArn: The ARN of the app that is associated with the specified device pool. :type testType: string :param testType: The test type for the specified device pool. Allowed values include the following: BUILTIN_FUZZ: The built-in fuzz type. BUILTIN_EXPLORER: For Android, an app explorer that will traverse an Android app, interacting with it and capturing screenshots at the same time. APPIUM_JAVA_JUNIT: The Appium Java JUnit type. APPIUM_JAVA_TESTNG: The Appium Java TestNG type. APPIUM_PYTHON: The Appium Python type. APPIUM_WEB_JAVA_JUNIT: The Appium Java JUnit type for Web apps. APPIUM_WEB_JAVA_TESTNG: The Appium Java TestNG type for Web apps. APPIUM_WEB_PYTHON: The Appium Python type for Web apps. CALABASH: The Calabash type. INSTRUMENTATION: The Instrumentation type. UIAUTOMATION: The uiautomation type. UIAUTOMATOR: The uiautomator type. XCTEST: The XCode test type. XCTEST_UI: The XCode UI test type. :type test: dict :param test: Information about the uploaded test to be run against the device pool. type (string) -- [REQUIRED]The test's type. Must be one of the following values: BUILTIN_FUZZ: The built-in fuzz type. BUILTIN_EXPLORER: For Android, an app explorer that will traverse an Android app, interacting with it and capturing screenshots at the same time. APPIUM_JAVA_JUNIT: The Appium Java JUnit type. APPIUM_JAVA_TESTNG: The Appium Java TestNG type. APPIUM_PYTHON: The Appium Python type. APPIUM_WEB_JAVA_JUNIT: The Appium Java JUnit type for Web apps. APPIUM_WEB_JAVA_TESTNG: The Appium Java TestNG type for Web apps. APPIUM_WEB_PYTHON: The Appium Python type for Web apps. CALABASH: The Calabash type. INSTRUMENTATION: The Instrumentation type. UIAUTOMATION: The uiautomation type. UIAUTOMATOR: The uiautomator type. XCTEST: The XCode test type. XCTEST_UI: The XCode UI test type. testPackageArn (string) --The ARN of the uploaded test that will be run. filter (string) --The test's filter. parameters (dict) --The test's parameters, such as the following test framework parameters and fixture settings: For Calabash tests: profile: A cucumber profile, for example, 'my_profile_name'. tags: You can limit execution to features or scenarios that have (or don't have) certain tags, for example, '@smoke' or '@smoke,~@wip'. For Appium tests (all types): appium_version: The Appium version. Currently supported values are '1.4.16', '1.6.3', 'latest', and 'default'. latest will run the latest Appium version supported by Device Farm (1.6.3). For default , Device Farm will choose a compatible version of Appium for the device. The current behavior is to run 1.4.16 on Android devices and iOS 9 and earlier, 1.6.3 for iOS 10 and later. This behavior is subject to change. For Fuzz tests (Android only): event_count: The number of events, between 1 and 10000, that the UI fuzz test should perform. throttle: The time, in ms, between 0 and 1000, that the UI fuzz test should wait between events. seed: A seed to use for randomizing the UI fuzz test. Using the same seed value between tests ensures identical event sequences. For Explorer tests: username: A username to use if the Explorer encounters a login form. If not supplied, no username will be inserted. password: A password to use if the Explorer encounters a login form. If not supplied, no password will be inserted. For Instrumentation: filter: A test filter string. Examples: Running a single test case: 'com.android.abc.Test1' Running a single test: 'com.android.abc.Test1#smoke' Running multiple tests: 'com.android.abc.Test1,com.android.abc.Test2' For XCTest and XCTestUI: filter: A test filter string. Examples: Running a single test class: 'LoginTests' Running a multiple test classes: 'LoginTests,SmokeTests' Running a single test: 'LoginTests/testValid' Running multiple tests: 'LoginTests/testValid,LoginTests/testInvalid' For UIAutomator: filter: A test filter string. Examples: Running a single test case: 'com.android.abc.Test1' Running a single test: 'com.android.abc.Test1#smoke' Running multiple tests: 'com.android.abc.Test1,com.android.abc.Test2' (string) -- (string) -- :rtype: dict :return: { 'compatibleDevices': [ { 'device': { 'arn': 'string', 'name': 'string', 'manufacturer': 'string', 'model': 'string', 'formFactor': 'PHONE'|'TABLET', 'platform': 'ANDROID'|'IOS', 'os': 'string', 'cpu': { 'frequency': 'string', 'architecture': 'string', 'clock': 123.0 }, 'resolution': { 'width': 123, 'height': 123 }, 'heapSize': 123, 'memory': 123, 'image': 'string', 'carrier': 'string', 'radio': 'string', 'remoteAccessEnabled': True|False, 'fleetType': 'string', 'fleetName': 'string' }, 'compatible': True|False, 'incompatibilityMessages': [ { 'message': 'string', 'type': 'ARN'|'PLATFORM'|'FORM_FACTOR'|'MANUFACTURER'|'REMOTE_ACCESS_ENABLED'|'APPIUM_VERSION' }, ] }, ], 'incompatibleDevices': [ { 'device': { 'arn': 'string', 'name': 'string', 'manufacturer': 'string', 'model': 'string', 'formFactor': 'PHONE'|'TABLET', 'platform': 'ANDROID'|'IOS', 'os': 'string', 'cpu': { 'frequency': 'string', 'architecture': 'string', 'clock': 123.0 }, 'resolution': { 'width': 123, 'height': 123 }, 'heapSize': 123, 'memory': 123, 'image': 'string', 'carrier': 'string', 'radio': 'string', 'remoteAccessEnabled': True|False, 'fleetType': 'string', 'fleetName': 'string' }, 'compatible': True|False, 'incompatibilityMessages': [ { 'message': 'string', 'type': 'ARN'|'PLATFORM'|'FORM_FACTOR'|'MANUFACTURER'|'REMOTE_ACCESS_ENABLED'|'APPIUM_VERSION' }, ] }, ] } :returns: PHONE: The phone form factor. TABLET: The tablet form factor. """ pass def get_job(arn=None): """ Gets information about a job. See also: AWS API Documentation Examples The following example returns information about a specific job. Expected Output: :example: response = client.get_job( arn='string' ) :type arn: string :param arn: [REQUIRED] The job's ARN. :rtype: dict :return: { 'job': { 'arn': 'string', 'name': 'string', 'type': 'BUILTIN_FUZZ'|'BUILTIN_EXPLORER'|'APPIUM_JAVA_JUNIT'|'APPIUM_JAVA_TESTNG'|'APPIUM_PYTHON'|'APPIUM_WEB_JAVA_JUNIT'|'APPIUM_WEB_JAVA_TESTNG'|'APPIUM_WEB_PYTHON'|'CALABASH'|'INSTRUMENTATION'|'UIAUTOMATION'|'UIAUTOMATOR'|'XCTEST'|'XCTEST_UI', 'created': datetime(2015, 1, 1), 'status': 'PENDING'|'PENDING_CONCURRENCY'|'PENDING_DEVICE'|'PROCESSING'|'SCHEDULING'|'PREPARING'|'RUNNING'|'COMPLETED'|'STOPPING', 'result': 'PENDING'|'PASSED'|'WARNED'|'FAILED'|'SKIPPED'|'ERRORED'|'STOPPED', 'started': datetime(2015, 1, 1), 'stopped': datetime(2015, 1, 1), 'counters': { 'total': 123, 'passed': 123, 'failed': 123, 'warned': 123, 'errored': 123, 'stopped': 123, 'skipped': 123 }, 'message': 'string', 'device': { 'arn': 'string', 'name': 'string', 'manufacturer': 'string', 'model': 'string', 'formFactor': 'PHONE'|'TABLET', 'platform': 'ANDROID'|'IOS', 'os': 'string', 'cpu': { 'frequency': 'string', 'architecture': 'string', 'clock': 123.0 }, 'resolution': { 'width': 123, 'height': 123 }, 'heapSize': 123, 'memory': 123, 'image': 'string', 'carrier': 'string', 'radio': 'string', 'remoteAccessEnabled': True|False, 'fleetType': 'string', 'fleetName': 'string' }, 'deviceMinutes': { 'total': 123.0, 'metered': 123.0, 'unmetered': 123.0 } } } :returns: PENDING: A pending status. PENDING_CONCURRENCY: A pending concurrency status. PENDING_DEVICE: A pending device status. PROCESSING: A processing status. SCHEDULING: A scheduling status. PREPARING: A preparing status. RUNNING: A running status. COMPLETED: A completed status. STOPPING: A stopping status. """ pass def get_network_profile(arn=None): """ Returns information about a network profile. See also: AWS API Documentation :example: response = client.get_network_profile( arn='string' ) :type arn: string :param arn: [REQUIRED] The Amazon Resource Name (ARN) of the network profile you want to return information about. :rtype: dict :return: { 'networkProfile': { 'arn': 'string', 'name': 'string', 'description': 'string', 'type': 'CURATED'|'PRIVATE', 'uplinkBandwidthBits': 123, 'downlinkBandwidthBits': 123, 'uplinkDelayMs': 123, 'downlinkDelayMs': 123, 'uplinkJitterMs': 123, 'downlinkJitterMs': 123, 'uplinkLossPercent': 123, 'downlinkLossPercent': 123 } } """ pass def get_offering_status(nextToken=None): """ Gets the current status and future status of all offerings purchased by an AWS account. The response indicates how many offerings are currently available and the offerings that will be available in the next period. The API returns a NotEligible error if the user is not permitted to invoke the operation. Please contact aws-devicefarm-support@amazon.com if you believe that you should be able to invoke this operation. See also: AWS API Documentation Examples The following example returns information about Device Farm offerings available to your account. Expected Output: :example: response = client.get_offering_status( nextToken='string' ) :type nextToken: string :param nextToken: An identifier that was returned from the previous call to this operation, which can be used to return the next set of items in the list. :rtype: dict :return: { 'current': { 'string': { 'type': 'PURCHASE'|'RENEW'|'SYSTEM', 'offering': { 'id': 'string', 'description': 'string', 'type': 'RECURRING', 'platform': 'ANDROID'|'IOS', 'recurringCharges': [ { 'cost': { 'amount': 123.0, 'currencyCode': 'USD' }, 'frequency': 'MONTHLY' }, ] }, 'quantity': 123, 'effectiveOn': datetime(2015, 1, 1) } }, 'nextPeriod': { 'string': { 'type': 'PURCHASE'|'RENEW'|'SYSTEM', 'offering': { 'id': 'string', 'description': 'string', 'type': 'RECURRING', 'platform': 'ANDROID'|'IOS', 'recurringCharges': [ { 'cost': { 'amount': 123.0, 'currencyCode': 'USD' }, 'frequency': 'MONTHLY' }, ] }, 'quantity': 123, 'effectiveOn': datetime(2015, 1, 1) } }, 'nextToken': 'string' } """ pass def get_paginator(operation_name=None): """ Create a paginator for an operation. :type operation_name: string :param operation_name: The operation name. This is the same name as the method name on the client. For example, if the method name is create_foo, and you'd normally invoke the operation as client.create_foo(**kwargs), if the create_foo operation can be paginated, you can use the call client.get_paginator('create_foo'). :rtype: L{botocore.paginate.Paginator} """ pass def get_project(arn=None): """ Gets information about a project. See also: AWS API Documentation Examples The following example gets information about a specific project. Expected Output: :example: response = client.get_project( arn='string' ) :type arn: string :param arn: [REQUIRED] The project's ARN. :rtype: dict :return: { 'project': { 'arn': 'string', 'name': 'string', 'defaultJobTimeoutMinutes': 123, 'created': datetime(2015, 1, 1) } } """ pass def get_remote_access_session(arn=None): """ Returns a link to a currently running remote access session. See also: AWS API Documentation Examples The following example gets a specific remote access session. Expected Output: :example: response = client.get_remote_access_session( arn='string' ) :type arn: string :param arn: [REQUIRED] The Amazon Resource Name (ARN) of the remote access session about which you want to get session information. :rtype: dict :return: { 'remoteAccessSession': { 'arn': 'string', 'name': 'string', 'created': datetime(2015, 1, 1), 'status': 'PENDING'|'PENDING_CONCURRENCY'|'PENDING_DEVICE'|'PROCESSING'|'SCHEDULING'|'PREPARING'|'RUNNING'|'COMPLETED'|'STOPPING', 'result': 'PENDING'|'PASSED'|'WARNED'|'FAILED'|'SKIPPED'|'ERRORED'|'STOPPED', 'message': 'string', 'started': datetime(2015, 1, 1), 'stopped': datetime(2015, 1, 1), 'device': { 'arn': 'string', 'name': 'string', 'manufacturer': 'string', 'model': 'string', 'formFactor': 'PHONE'|'TABLET', 'platform': 'ANDROID'|'IOS', 'os': 'string', 'cpu': { 'frequency': 'string', 'architecture': 'string', 'clock': 123.0 }, 'resolution': { 'width': 123, 'height': 123 }, 'heapSize': 123, 'memory': 123, 'image': 'string', 'carrier': 'string', 'radio': 'string', 'remoteAccessEnabled': True|False, 'fleetType': 'string', 'fleetName': 'string' }, 'billingMethod': 'METERED'|'UNMETERED', 'deviceMinutes': { 'total': 123.0, 'metered': 123.0, 'unmetered': 123.0 }, 'endpoint': 'string' } } :returns: PENDING: A pending condition. PASSED: A passing condition. WARNED: A warning condition. FAILED: A failed condition. SKIPPED: A skipped condition. ERRORED: An error condition. STOPPED: A stopped condition. """ pass def get_run(arn=None): """ Gets information about a run. See also: AWS API Documentation Examples The following example gets information about a specific test run. Expected Output: :example: response = client.get_run( arn='string' ) :type arn: string :param arn: [REQUIRED] The run's ARN. :rtype: dict :return: { 'run': { 'arn': 'string', 'name': 'string', 'type': 'BUILTIN_FUZZ'|'BUILTIN_EXPLORER'|'APPIUM_JAVA_JUNIT'|'APPIUM_JAVA_TESTNG'|'APPIUM_PYTHON'|'APPIUM_WEB_JAVA_JUNIT'|'APPIUM_WEB_JAVA_TESTNG'|'APPIUM_WEB_PYTHON'|'CALABASH'|'INSTRUMENTATION'|'UIAUTOMATION'|'UIAUTOMATOR'|'XCTEST'|'XCTEST_UI', 'platform': 'ANDROID'|'IOS', 'created': datetime(2015, 1, 1), 'status': 'PENDING'|'PENDING_CONCURRENCY'|'PENDING_DEVICE'|'PROCESSING'|'SCHEDULING'|'PREPARING'|'RUNNING'|'COMPLETED'|'STOPPING', 'result': 'PENDING'|'PASSED'|'WARNED'|'FAILED'|'SKIPPED'|'ERRORED'|'STOPPED', 'started': datetime(2015, 1, 1), 'stopped': datetime(2015, 1, 1), 'counters': { 'total': 123, 'passed': 123, 'failed': 123, 'warned': 123, 'errored': 123, 'stopped': 123, 'skipped': 123 }, 'message': 'string', 'totalJobs': 123, 'completedJobs': 123, 'billingMethod': 'METERED'|'UNMETERED', 'deviceMinutes': { 'total': 123.0, 'metered': 123.0, 'unmetered': 123.0 }, 'networkProfile': { 'arn': 'string', 'name': 'string', 'description': 'string', 'type': 'CURATED'|'PRIVATE', 'uplinkBandwidthBits': 123, 'downlinkBandwidthBits': 123, 'uplinkDelayMs': 123, 'downlinkDelayMs': 123, 'uplinkJitterMs': 123, 'downlinkJitterMs': 123, 'uplinkLossPercent': 123, 'downlinkLossPercent': 123 } } } :returns: ANDROID: The Android platform. IOS: The iOS platform. """ pass def get_suite(arn=None): """ Gets information about a suite. See also: AWS API Documentation Examples The following example gets information about a specific test suite. Expected Output: :example: response = client.get_suite( arn='string' ) :type arn: string :param arn: [REQUIRED] The suite's ARN. :rtype: dict :return: { 'suite': { 'arn': 'string', 'name': 'string', 'type': 'BUILTIN_FUZZ'|'BUILTIN_EXPLORER'|'APPIUM_JAVA_JUNIT'|'APPIUM_JAVA_TESTNG'|'APPIUM_PYTHON'|'APPIUM_WEB_JAVA_JUNIT'|'APPIUM_WEB_JAVA_TESTNG'|'APPIUM_WEB_PYTHON'|'CALABASH'|'INSTRUMENTATION'|'UIAUTOMATION'|'UIAUTOMATOR'|'XCTEST'|'XCTEST_UI', 'created': datetime(2015, 1, 1), 'status': 'PENDING'|'PENDING_CONCURRENCY'|'PENDING_DEVICE'|'PROCESSING'|'SCHEDULING'|'PREPARING'|'RUNNING'|'COMPLETED'|'STOPPING', 'result': 'PENDING'|'PASSED'|'WARNED'|'FAILED'|'SKIPPED'|'ERRORED'|'STOPPED', 'started': datetime(2015, 1, 1), 'stopped': datetime(2015, 1, 1), 'counters': { 'total': 123, 'passed': 123, 'failed': 123, 'warned': 123, 'errored': 123, 'stopped': 123, 'skipped': 123 }, 'message': 'string', 'deviceMinutes': { 'total': 123.0, 'metered': 123.0, 'unmetered': 123.0 } } } :returns: PENDING: A pending status. PENDING_CONCURRENCY: A pending concurrency status. PENDING_DEVICE: A pending device status. PROCESSING: A processing status. SCHEDULING: A scheduling status. PREPARING: A preparing status. RUNNING: A running status. COMPLETED: A completed status. STOPPING: A stopping status. """ pass def get_test(arn=None): """ Gets information about a test. See also: AWS API Documentation Examples The following example gets information about a specific test. Expected Output: :example: response = client.get_test( arn='string' ) :type arn: string :param arn: [REQUIRED] The test's ARN. :rtype: dict :return: { 'test': { 'arn': 'string', 'name': 'string', 'type': 'BUILTIN_FUZZ'|'BUILTIN_EXPLORER'|'APPIUM_JAVA_JUNIT'|'APPIUM_JAVA_TESTNG'|'APPIUM_PYTHON'|'APPIUM_WEB_JAVA_JUNIT'|'APPIUM_WEB_JAVA_TESTNG'|'APPIUM_WEB_PYTHON'|'CALABASH'|'INSTRUMENTATION'|'UIAUTOMATION'|'UIAUTOMATOR'|'XCTEST'|'XCTEST_UI', 'created': datetime(2015, 1, 1), 'status': 'PENDING'|'PENDING_CONCURRENCY'|'PENDING_DEVICE'|'PROCESSING'|'SCHEDULING'|'PREPARING'|'RUNNING'|'COMPLETED'|'STOPPING', 'result': 'PENDING'|'PASSED'|'WARNED'|'FAILED'|'SKIPPED'|'ERRORED'|'STOPPED', 'started': datetime(2015, 1, 1), 'stopped': datetime(2015, 1, 1), 'counters': { 'total': 123, 'passed': 123, 'failed': 123, 'warned': 123, 'errored': 123, 'stopped': 123, 'skipped': 123 }, 'message': 'string', 'deviceMinutes': { 'total': 123.0, 'metered': 123.0, 'unmetered': 123.0 } } } :returns: PENDING: A pending status. PENDING_CONCURRENCY: A pending concurrency status. PENDING_DEVICE: A pending device status. PROCESSING: A processing status. SCHEDULING: A scheduling status. PREPARING: A preparing status. RUNNING: A running status. COMPLETED: A completed status. STOPPING: A stopping status. """ pass def get_upload(arn=None): """ Gets information about an upload. See also: AWS API Documentation Examples The following example gets information about a specific upload. Expected Output: :example: response = client.get_upload( arn='string' ) :type arn: string :param arn: [REQUIRED] The upload's ARN. :rtype: dict :return: { 'upload': { 'arn': 'string', 'name': 'string', 'created': datetime(2015, 1, 1), 'type': 'ANDROID_APP'|'IOS_APP'|'WEB_APP'|'EXTERNAL_DATA'|'APPIUM_JAVA_JUNIT_TEST_PACKAGE'|'APPIUM_JAVA_TESTNG_TEST_PACKAGE'|'APPIUM_PYTHON_TEST_PACKAGE'|'APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE'|'APPIUM_WEB_JAVA_TESTNG_TEST_PACKAGE'|'APPIUM_WEB_PYTHON_TEST_PACKAGE'|'CALABASH_TEST_PACKAGE'|'INSTRUMENTATION_TEST_PACKAGE'|'UIAUTOMATION_TEST_PACKAGE'|'UIAUTOMATOR_TEST_PACKAGE'|'XCTEST_TEST_PACKAGE'|'XCTEST_UI_TEST_PACKAGE', 'status': 'INITIALIZED'|'PROCESSING'|'SUCCEEDED'|'FAILED', 'url': 'string', 'metadata': 'string', 'contentType': 'string', 'message': 'string' } } :returns: FAILED: A failed status. INITIALIZED: An initialized status. PROCESSING: A processing status. SUCCEEDED: A succeeded status. """ pass def get_waiter(): """ """ pass def install_to_remote_access_session(remoteAccessSessionArn=None, appArn=None): """ Installs an application to the device in a remote access session. For Android applications, the file must be in .apk format. For iOS applications, the file must be in .ipa format. See also: AWS API Documentation Examples The following example installs a specific app to a device in a specific remote access session. Expected Output: :example: response = client.install_to_remote_access_session( remoteAccessSessionArn='string', appArn='string' ) :type remoteAccessSessionArn: string :param remoteAccessSessionArn: [REQUIRED] The Amazon Resource Name (ARN) of the remote access session about which you are requesting information. :type appArn: string :param appArn: [REQUIRED] The Amazon Resource Name (ARN) of the app about which you are requesting information. :rtype: dict :return: { 'appUpload': { 'arn': 'string', 'name': 'string', 'created': datetime(2015, 1, 1), 'type': 'ANDROID_APP'|'IOS_APP'|'WEB_APP'|'EXTERNAL_DATA'|'APPIUM_JAVA_JUNIT_TEST_PACKAGE'|'APPIUM_JAVA_TESTNG_TEST_PACKAGE'|'APPIUM_PYTHON_TEST_PACKAGE'|'APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE'|'APPIUM_WEB_JAVA_TESTNG_TEST_PACKAGE'|'APPIUM_WEB_PYTHON_TEST_PACKAGE'|'CALABASH_TEST_PACKAGE'|'INSTRUMENTATION_TEST_PACKAGE'|'UIAUTOMATION_TEST_PACKAGE'|'UIAUTOMATOR_TEST_PACKAGE'|'XCTEST_TEST_PACKAGE'|'XCTEST_UI_TEST_PACKAGE', 'status': 'INITIALIZED'|'PROCESSING'|'SUCCEEDED'|'FAILED', 'url': 'string', 'metadata': 'string', 'contentType': 'string', 'message': 'string' } } :returns: ANDROID_APP: An Android upload. IOS_APP: An iOS upload. WEB_APP: A web appliction upload. EXTERNAL_DATA: An external data upload. APPIUM_JAVA_JUNIT_TEST_PACKAGE: An Appium Java JUnit test package upload. APPIUM_JAVA_TESTNG_TEST_PACKAGE: An Appium Java TestNG test package upload. APPIUM_PYTHON_TEST_PACKAGE: An Appium Python test package upload. APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE: An Appium Java JUnit test package upload. APPIUM_WEB_JAVA_TESTNG_TEST_PACKAGE: An Appium Java TestNG test package upload. APPIUM_WEB_PYTHON_TEST_PACKAGE: An Appium Python test package upload. CALABASH_TEST_PACKAGE: A Calabash test package upload. INSTRUMENTATION_TEST_PACKAGE: An instrumentation upload. UIAUTOMATION_TEST_PACKAGE: A uiautomation test package upload. UIAUTOMATOR_TEST_PACKAGE: A uiautomator test package upload. XCTEST_TEST_PACKAGE: An XCode test package upload. XCTEST_UI_TEST_PACKAGE: An XCode UI test package upload. """ pass def list_artifacts(arn=None, type=None, nextToken=None): """ Gets information about artifacts. See also: AWS API Documentation Examples The following example lists screenshot artifacts for a specific run. Expected Output: :example: response = client.list_artifacts( arn='string', type='SCREENSHOT'|'FILE'|'LOG', nextToken='string' ) :type arn: string :param arn: [REQUIRED] The Run, Job, Suite, or Test ARN. :type type: string :param type: [REQUIRED] The artifacts' type. Allowed values include: FILE: The artifacts are files. LOG: The artifacts are logs. SCREENSHOT: The artifacts are screenshots. :type nextToken: string :param nextToken: An identifier that was returned from the previous call to this operation, which can be used to return the next set of items in the list. :rtype: dict :return: { 'artifacts': [ { 'arn': 'string', 'name': 'string', 'type': 'UNKNOWN'|'SCREENSHOT'|'DEVICE_LOG'|'MESSAGE_LOG'|'VIDEO_LOG'|'RESULT_LOG'|'SERVICE_LOG'|'WEBKIT_LOG'|'INSTRUMENTATION_OUTPUT'|'EXERCISER_MONKEY_OUTPUT'|'CALABASH_JSON_OUTPUT'|'CALABASH_PRETTY_OUTPUT'|'CALABASH_STANDARD_OUTPUT'|'CALABASH_JAVA_XML_OUTPUT'|'AUTOMATION_OUTPUT'|'APPIUM_SERVER_OUTPUT'|'APPIUM_JAVA_OUTPUT'|'APPIUM_JAVA_XML_OUTPUT'|'APPIUM_PYTHON_OUTPUT'|'APPIUM_PYTHON_XML_OUTPUT'|'EXPLORER_EVENT_LOG'|'EXPLORER_SUMMARY_LOG'|'APPLICATION_CRASH_REPORT'|'XCTEST_LOG'|'VIDEO', 'extension': 'string', 'url': 'string' }, ], 'nextToken': 'string' } :returns: UNKNOWN: An unknown type. SCREENSHOT: The screenshot type. DEVICE_LOG: The device log type. MESSAGE_LOG: The message log type. RESULT_LOG: The result log type. SERVICE_LOG: The service log type. WEBKIT_LOG: The web kit log type. INSTRUMENTATION_OUTPUT: The instrumentation type. EXERCISER_MONKEY_OUTPUT: For Android, the artifact (log) generated by an Android fuzz test. CALABASH_JSON_OUTPUT: The Calabash JSON output type. CALABASH_PRETTY_OUTPUT: The Calabash pretty output type. CALABASH_STANDARD_OUTPUT: The Calabash standard output type. CALABASH_JAVA_XML_OUTPUT: The Calabash Java XML output type. AUTOMATION_OUTPUT: The automation output type. APPIUM_SERVER_OUTPUT: The Appium server output type. APPIUM_JAVA_OUTPUT: The Appium Java output type. APPIUM_JAVA_XML_OUTPUT: The Appium Java XML output type. APPIUM_PYTHON_OUTPUT: The Appium Python output type. APPIUM_PYTHON_XML_OUTPUT: The Appium Python XML output type. EXPLORER_EVENT_LOG: The Explorer event log output type. EXPLORER_SUMMARY_LOG: The Explorer summary log output type. APPLICATION_CRASH_REPORT: The application crash report output type. XCTEST_LOG: The XCode test output type. """ pass def list_device_pools(arn=None, type=None, nextToken=None): """ Gets information about device pools. See also: AWS API Documentation Examples The following example returns information about the private device pools in a specific project. Expected Output: :example: response = client.list_device_pools( arn='string', type='CURATED'|'PRIVATE', nextToken='string' ) :type arn: string :param arn: [REQUIRED] The project ARN. :type type: string :param type: The device pools' type. Allowed values include: CURATED: A device pool that is created and managed by AWS Device Farm. PRIVATE: A device pool that is created and managed by the device pool developer. :type nextToken: string :param nextToken: An identifier that was returned from the previous call to this operation, which can be used to return the next set of items in the list. :rtype: dict :return: { 'devicePools': [ { 'arn': 'string', 'name': 'string', 'description': 'string', 'type': 'CURATED'|'PRIVATE', 'rules': [ { 'attribute': 'ARN'|'PLATFORM'|'FORM_FACTOR'|'MANUFACTURER'|'REMOTE_ACCESS_ENABLED'|'APPIUM_VERSION', 'operator': 'EQUALS'|'LESS_THAN'|'GREATER_THAN'|'IN'|'NOT_IN'|'CONTAINS', 'value': 'string' }, ] }, ], 'nextToken': 'string' } :returns: CURATED: A device pool that is created and managed by AWS Device Farm. PRIVATE: A device pool that is created and managed by the device pool developer. """ pass def list_devices(arn=None, nextToken=None): """ Gets information about unique device types. See also: AWS API Documentation Examples The following example returns information about the available devices in a specific project. Expected Output: :example: response = client.list_devices( arn='string', nextToken='string' ) :type arn: string :param arn: The Amazon Resource Name (ARN) of the project. :type nextToken: string :param nextToken: An identifier that was returned from the previous call to this operation, which can be used to return the next set of items in the list. :rtype: dict :return: { 'devices': [ { 'arn': 'string', 'name': 'string', 'manufacturer': 'string', 'model': 'string', 'formFactor': 'PHONE'|'TABLET', 'platform': 'ANDROID'|'IOS', 'os': 'string', 'cpu': { 'frequency': 'string', 'architecture': 'string', 'clock': 123.0 }, 'resolution': { 'width': 123, 'height': 123 }, 'heapSize': 123, 'memory': 123, 'image': 'string', 'carrier': 'string', 'radio': 'string', 'remoteAccessEnabled': True|False, 'fleetType': 'string', 'fleetName': 'string' }, ], 'nextToken': 'string' } :returns: PHONE: The phone form factor. TABLET: The tablet form factor. """ pass def list_jobs(arn=None, nextToken=None): """ Gets information about jobs. See also: AWS API Documentation Examples The following example returns information about jobs in a specific project. Expected Output: :example: response = client.list_jobs( arn='string', nextToken='string' ) :type arn: string :param arn: [REQUIRED] The jobs' ARNs. :type nextToken: string :param nextToken: An identifier that was returned from the previous call to this operation, which can be used to return the next set of items in the list. :rtype: dict :return: { 'jobs': [ { 'arn': 'string', 'name': 'string', 'type': 'BUILTIN_FUZZ'|'BUILTIN_EXPLORER'|'APPIUM_JAVA_JUNIT'|'APPIUM_JAVA_TESTNG'|'APPIUM_PYTHON'|'APPIUM_WEB_JAVA_JUNIT'|'APPIUM_WEB_JAVA_TESTNG'|'APPIUM_WEB_PYTHON'|'CALABASH'|'INSTRUMENTATION'|'UIAUTOMATION'|'UIAUTOMATOR'|'XCTEST'|'XCTEST_UI', 'created': datetime(2015, 1, 1), 'status': 'PENDING'|'PENDING_CONCURRENCY'|'PENDING_DEVICE'|'PROCESSING'|'SCHEDULING'|'PREPARING'|'RUNNING'|'COMPLETED'|'STOPPING', 'result': 'PENDING'|'PASSED'|'WARNED'|'FAILED'|'SKIPPED'|'ERRORED'|'STOPPED', 'started': datetime(2015, 1, 1), 'stopped': datetime(2015, 1, 1), 'counters': { 'total': 123, 'passed': 123, 'failed': 123, 'warned': 123, 'errored': 123, 'stopped': 123, 'skipped': 123 }, 'message': 'string', 'device': { 'arn': 'string', 'name': 'string', 'manufacturer': 'string', 'model': 'string', 'formFactor': 'PHONE'|'TABLET', 'platform': 'ANDROID'|'IOS', 'os': 'string', 'cpu': { 'frequency': 'string', 'architecture': 'string', 'clock': 123.0 }, 'resolution': { 'width': 123, 'height': 123 }, 'heapSize': 123, 'memory': 123, 'image': 'string', 'carrier': 'string', 'radio': 'string', 'remoteAccessEnabled': True|False, 'fleetType': 'string', 'fleetName': 'string' }, 'deviceMinutes': { 'total': 123.0, 'metered': 123.0, 'unmetered': 123.0 } }, ], 'nextToken': 'string' } :returns: BUILTIN_FUZZ: The built-in fuzz type. BUILTIN_EXPLORER: For Android, an app explorer that will traverse an Android app, interacting with it and capturing screenshots at the same time. APPIUM_JAVA_JUNIT: The Appium Java JUnit type. APPIUM_JAVA_TESTNG: The Appium Java TestNG type. APPIUM_PYTHON: The Appium Python type. APPIUM_WEB_JAVA_JUNIT: The Appium Java JUnit type for Web apps. APPIUM_WEB_JAVA_TESTNG: The Appium Java TestNG type for Web apps. APPIUM_WEB_PYTHON: The Appium Python type for Web apps. CALABASH: The Calabash type. INSTRUMENTATION: The Instrumentation type. UIAUTOMATION: The uiautomation type. UIAUTOMATOR: The uiautomator type. XCTEST: The XCode test type. XCTEST_UI: The XCode UI test type. """ pass def list_network_profiles(arn=None, type=None, nextToken=None): """ Returns the list of available network profiles. See also: AWS API Documentation :example: response = client.list_network_profiles( arn='string', type='CURATED'|'PRIVATE', nextToken='string' ) :type arn: string :param arn: [REQUIRED] The Amazon Resource Name (ARN) of the project for which you want to list network profiles. :type type: string :param type: The type of network profile you wish to return information about. Valid values are listed below. :type nextToken: string :param nextToken: An identifier that was returned from the previous call to this operation, which can be used to return the next set of items in the list. :rtype: dict :return: { 'networkProfiles': [ { 'arn': 'string', 'name': 'string', 'description': 'string', 'type': 'CURATED'|'PRIVATE', 'uplinkBandwidthBits': 123, 'downlinkBandwidthBits': 123, 'uplinkDelayMs': 123, 'downlinkDelayMs': 123, 'uplinkJitterMs': 123, 'downlinkJitterMs': 123, 'uplinkLossPercent': 123, 'downlinkLossPercent': 123 }, ], 'nextToken': 'string' } """ pass def list_offering_promotions(nextToken=None): """ Returns a list of offering promotions. Each offering promotion record contains the ID and description of the promotion. The API returns a NotEligible error if the caller is not permitted to invoke the operation. Contact aws-devicefarm-support@amazon.com if you believe that you should be able to invoke this operation. See also: AWS API Documentation :example: response = client.list_offering_promotions( nextToken='string' ) :type nextToken: string :param nextToken: An identifier that was returned from the previous call to this operation, which can be used to return the next set of items in the list. :rtype: dict :return: { 'offeringPromotions': [ { 'id': 'string', 'description': 'string' }, ], 'nextToken': 'string' } """ pass def list_offering_transactions(nextToken=None): """ Returns a list of all historical purchases, renewals, and system renewal transactions for an AWS account. The list is paginated and ordered by a descending timestamp (most recent transactions are first). The API returns a NotEligible error if the user is not permitted to invoke the operation. Please contact aws-devicefarm-support@amazon.com if you believe that you should be able to invoke this operation. See also: AWS API Documentation Examples The following example returns information about Device Farm offering transactions. Expected Output: :example: response = client.list_offering_transactions( nextToken='string' ) :type nextToken: string :param nextToken: An identifier that was returned from the previous call to this operation, which can be used to return the next set of items in the list. :rtype: dict :return: { 'offeringTransactions': [ { 'offeringStatus': { 'type': 'PURCHASE'|'RENEW'|'SYSTEM', 'offering': { 'id': 'string', 'description': 'string', 'type': 'RECURRING', 'platform': 'ANDROID'|'IOS', 'recurringCharges': [ { 'cost': { 'amount': 123.0, 'currencyCode': 'USD' }, 'frequency': 'MONTHLY' }, ] }, 'quantity': 123, 'effectiveOn': datetime(2015, 1, 1) }, 'transactionId': 'string', 'offeringPromotionId': 'string', 'createdOn': datetime(2015, 1, 1), 'cost': { 'amount': 123.0, 'currencyCode': 'USD' } }, ], 'nextToken': 'string' } """ pass def list_offerings(nextToken=None): """ Returns a list of products or offerings that the user can manage through the API. Each offering record indicates the recurring price per unit and the frequency for that offering. The API returns a NotEligible error if the user is not permitted to invoke the operation. Please contact aws-devicefarm-support@amazon.com if you believe that you should be able to invoke this operation. See also: AWS API Documentation Examples The following example returns information about available device offerings. Expected Output: :example: response = client.list_offerings( nextToken='string' ) :type nextToken: string :param nextToken: An identifier that was returned from the previous call to this operation, which can be used to return the next set of items in the list. :rtype: dict :return: { 'offerings': [ { 'id': 'string', 'description': 'string', 'type': 'RECURRING', 'platform': 'ANDROID'|'IOS', 'recurringCharges': [ { 'cost': { 'amount': 123.0, 'currencyCode': 'USD' }, 'frequency': 'MONTHLY' }, ] }, ], 'nextToken': 'string' } """ pass def list_projects(arn=None, nextToken=None): """ Gets information about projects. See also: AWS API Documentation Examples The following example returns information about the specified project in Device Farm. Expected Output: :example: response = client.list_projects( arn='string', nextToken='string' ) :type arn: string :param arn: Optional. If no Amazon Resource Name (ARN) is specified, then AWS Device Farm returns a list of all projects for the AWS account. You can also specify a project ARN. :type nextToken: string :param nextToken: An identifier that was returned from the previous call to this operation, which can be used to return the next set of items in the list. :rtype: dict :return: { 'projects': [ { 'arn': 'string', 'name': 'string', 'defaultJobTimeoutMinutes': 123, 'created': datetime(2015, 1, 1) }, ], 'nextToken': 'string' } """ pass def list_remote_access_sessions(arn=None, nextToken=None): """ Returns a list of all currently running remote access sessions. See also: AWS API Documentation Examples The following example returns information about a specific Device Farm remote access session. Expected Output: :example: response = client.list_remote_access_sessions( arn='string', nextToken='string' ) :type arn: string :param arn: [REQUIRED] The Amazon Resource Name (ARN) of the remote access session about which you are requesting information. :type nextToken: string :param nextToken: An identifier that was returned from the previous call to this operation, which can be used to return the next set of items in the list. :rtype: dict :return: { 'remoteAccessSessions': [ { 'arn': 'string', 'name': 'string', 'created': datetime(2015, 1, 1), 'status': 'PENDING'|'PENDING_CONCURRENCY'|'PENDING_DEVICE'|'PROCESSING'|'SCHEDULING'|'PREPARING'|'RUNNING'|'COMPLETED'|'STOPPING', 'result': 'PENDING'|'PASSED'|'WARNED'|'FAILED'|'SKIPPED'|'ERRORED'|'STOPPED', 'message': 'string', 'started': datetime(2015, 1, 1), 'stopped': datetime(2015, 1, 1), 'device': { 'arn': 'string', 'name': 'string', 'manufacturer': 'string', 'model': 'string', 'formFactor': 'PHONE'|'TABLET', 'platform': 'ANDROID'|'IOS', 'os': 'string', 'cpu': { 'frequency': 'string', 'architecture': 'string', 'clock': 123.0 }, 'resolution': { 'width': 123, 'height': 123 }, 'heapSize': 123, 'memory': 123, 'image': 'string', 'carrier': 'string', 'radio': 'string', 'remoteAccessEnabled': True|False, 'fleetType': 'string', 'fleetName': 'string' }, 'billingMethod': 'METERED'|'UNMETERED', 'deviceMinutes': { 'total': 123.0, 'metered': 123.0, 'unmetered': 123.0 }, 'endpoint': 'string' }, ], 'nextToken': 'string' } :returns: PENDING: A pending status. PENDING_CONCURRENCY: A pending concurrency status. PENDING_DEVICE: A pending device status. PROCESSING: A processing status. SCHEDULING: A scheduling status. PREPARING: A preparing status. RUNNING: A running status. COMPLETED: A completed status. STOPPING: A stopping status. """ pass def list_runs(arn=None, nextToken=None): """ Gets information about runs, given an AWS Device Farm project ARN. See also: AWS API Documentation Examples The following example returns information about a specific test run. Expected Output: :example: response = client.list_runs( arn='string', nextToken='string' ) :type arn: string :param arn: [REQUIRED] The Amazon Resource Name (ARN) of the project for which you want to list runs. :type nextToken: string :param nextToken: An identifier that was returned from the previous call to this operation, which can be used to return the next set of items in the list. :rtype: dict :return: { 'runs': [ { 'arn': 'string', 'name': 'string', 'type': 'BUILTIN_FUZZ'|'BUILTIN_EXPLORER'|'APPIUM_JAVA_JUNIT'|'APPIUM_JAVA_TESTNG'|'APPIUM_PYTHON'|'APPIUM_WEB_JAVA_JUNIT'|'APPIUM_WEB_JAVA_TESTNG'|'APPIUM_WEB_PYTHON'|'CALABASH'|'INSTRUMENTATION'|'UIAUTOMATION'|'UIAUTOMATOR'|'XCTEST'|'XCTEST_UI', 'platform': 'ANDROID'|'IOS', 'created': datetime(2015, 1, 1), 'status': 'PENDING'|'PENDING_CONCURRENCY'|'PENDING_DEVICE'|'PROCESSING'|'SCHEDULING'|'PREPARING'|'RUNNING'|'COMPLETED'|'STOPPING', 'result': 'PENDING'|'PASSED'|'WARNED'|'FAILED'|'SKIPPED'|'ERRORED'|'STOPPED', 'started': datetime(2015, 1, 1), 'stopped': datetime(2015, 1, 1), 'counters': { 'total': 123, 'passed': 123, 'failed': 123, 'warned': 123, 'errored': 123, 'stopped': 123, 'skipped': 123 }, 'message': 'string', 'totalJobs': 123, 'completedJobs': 123, 'billingMethod': 'METERED'|'UNMETERED', 'deviceMinutes': { 'total': 123.0, 'metered': 123.0, 'unmetered': 123.0 }, 'networkProfile': { 'arn': 'string', 'name': 'string', 'description': 'string', 'type': 'CURATED'|'PRIVATE', 'uplinkBandwidthBits': 123, 'downlinkBandwidthBits': 123, 'uplinkDelayMs': 123, 'downlinkDelayMs': 123, 'uplinkJitterMs': 123, 'downlinkJitterMs': 123, 'uplinkLossPercent': 123, 'downlinkLossPercent': 123 } }, ], 'nextToken': 'string' } :returns: BUILTIN_FUZZ: The built-in fuzz type. BUILTIN_EXPLORER: For Android, an app explorer that will traverse an Android app, interacting with it and capturing screenshots at the same time. APPIUM_JAVA_JUNIT: The Appium Java JUnit type. APPIUM_JAVA_TESTNG: The Appium Java TestNG type. APPIUM_PYTHON: The Appium Python type. APPIUM_WEB_JAVA_JUNIT: The Appium Java JUnit type for Web apps. APPIUM_WEB_JAVA_TESTNG: The Appium Java TestNG type for Web apps. APPIUM_WEB_PYTHON: The Appium Python type for Web apps. CALABASH: The Calabash type. INSTRUMENTATION: The Instrumentation type. UIAUTOMATION: The uiautomation type. UIAUTOMATOR: The uiautomator type. XCTEST: The XCode test type. XCTEST_UI: The XCode UI test type. """ pass def list_samples(arn=None, nextToken=None): """ Gets information about samples, given an AWS Device Farm project ARN See also: AWS API Documentation Examples The following example returns information about samples, given a specific Device Farm project. Expected Output: :example: response = client.list_samples( arn='string', nextToken='string' ) :type arn: string :param arn: [REQUIRED] The Amazon Resource Name (ARN) of the project for which you want to list samples. :type nextToken: string :param nextToken: An identifier that was returned from the previous call to this operation, which can be used to return the next set of items in the list. :rtype: dict :return: { 'samples': [ { 'arn': 'string', 'type': 'CPU'|'MEMORY'|'THREADS'|'RX_RATE'|'TX_RATE'|'RX'|'TX'|'NATIVE_FRAMES'|'NATIVE_FPS'|'NATIVE_MIN_DRAWTIME'|'NATIVE_AVG_DRAWTIME'|'NATIVE_MAX_DRAWTIME'|'OPENGL_FRAMES'|'OPENGL_FPS'|'OPENGL_MIN_DRAWTIME'|'OPENGL_AVG_DRAWTIME'|'OPENGL_MAX_DRAWTIME', 'url': 'string' }, ], 'nextToken': 'string' } :returns: CPU: A CPU sample type. This is expressed as the app processing CPU time (including child processes) as reported by process, as a percentage. MEMORY: A memory usage sample type. This is expressed as the total proportional set size of an app process, in kilobytes. NATIVE_AVG_DRAWTIME NATIVE_FPS NATIVE_FRAMES NATIVE_MAX_DRAWTIME NATIVE_MIN_DRAWTIME OPENGL_AVG_DRAWTIME OPENGL_FPS OPENGL_FRAMES OPENGL_MAX_DRAWTIME OPENGL_MIN_DRAWTIME RX RX_RATE: The total number of bytes per second (TCP and UDP) that are sent, by app process. THREADS: A threads sample type. This is expressed as the total number of threads per app process. TX TX_RATE: The total number of bytes per second (TCP and UDP) that are received, by app process. """ pass def list_suites(arn=None, nextToken=None): """ Gets information about suites. See also: AWS API Documentation Examples The following example returns information about suites, given a specific Device Farm project. Expected Output: :example: response = client.list_suites( arn='string', nextToken='string' ) :type arn: string :param arn: [REQUIRED] The suites' ARNs. :type nextToken: string :param nextToken: An identifier that was returned from the previous call to this operation, which can be used to return the next set of items in the list. :rtype: dict :return: { 'suites': [ { 'arn': 'string', 'name': 'string', 'type': 'BUILTIN_FUZZ'|'BUILTIN_EXPLORER'|'APPIUM_JAVA_JUNIT'|'APPIUM_JAVA_TESTNG'|'APPIUM_PYTHON'|'APPIUM_WEB_JAVA_JUNIT'|'APPIUM_WEB_JAVA_TESTNG'|'APPIUM_WEB_PYTHON'|'CALABASH'|'INSTRUMENTATION'|'UIAUTOMATION'|'UIAUTOMATOR'|'XCTEST'|'XCTEST_UI', 'created': datetime(2015, 1, 1), 'status': 'PENDING'|'PENDING_CONCURRENCY'|'PENDING_DEVICE'|'PROCESSING'|'SCHEDULING'|'PREPARING'|'RUNNING'|'COMPLETED'|'STOPPING', 'result': 'PENDING'|'PASSED'|'WARNED'|'FAILED'|'SKIPPED'|'ERRORED'|'STOPPED', 'started': datetime(2015, 1, 1), 'stopped': datetime(2015, 1, 1), 'counters': { 'total': 123, 'passed': 123, 'failed': 123, 'warned': 123, 'errored': 123, 'stopped': 123, 'skipped': 123 }, 'message': 'string', 'deviceMinutes': { 'total': 123.0, 'metered': 123.0, 'unmetered': 123.0 } }, ], 'nextToken': 'string' } :returns: BUILTIN_FUZZ: The built-in fuzz type. BUILTIN_EXPLORER: For Android, an app explorer that will traverse an Android app, interacting with it and capturing screenshots at the same time. APPIUM_JAVA_JUNIT: The Appium Java JUnit type. APPIUM_JAVA_TESTNG: The Appium Java TestNG type. APPIUM_PYTHON: The Appium Python type. APPIUM_WEB_JAVA_JUNIT: The Appium Java JUnit type for Web apps. APPIUM_WEB_JAVA_TESTNG: The Appium Java TestNG type for Web apps. APPIUM_WEB_PYTHON: The Appium Python type for Web apps. CALABASH: The Calabash type. INSTRUMENTATION: The Instrumentation type. UIAUTOMATION: The uiautomation type. UIAUTOMATOR: The uiautomator type. XCTEST: The XCode test type. XCTEST_UI: The XCode UI test type. """ pass def list_tests(arn=None, nextToken=None): """ Gets information about tests. See also: AWS API Documentation Examples The following example returns information about tests, given a specific Device Farm project. Expected Output: :example: response = client.list_tests( arn='string', nextToken='string' ) :type arn: string :param arn: [REQUIRED] The tests' ARNs. :type nextToken: string :param nextToken: An identifier that was returned from the previous call to this operation, which can be used to return the next set of items in the list. :rtype: dict :return: { 'tests': [ { 'arn': 'string', 'name': 'string', 'type': 'BUILTIN_FUZZ'|'BUILTIN_EXPLORER'|'APPIUM_JAVA_JUNIT'|'APPIUM_JAVA_TESTNG'|'APPIUM_PYTHON'|'APPIUM_WEB_JAVA_JUNIT'|'APPIUM_WEB_JAVA_TESTNG'|'APPIUM_WEB_PYTHON'|'CALABASH'|'INSTRUMENTATION'|'UIAUTOMATION'|'UIAUTOMATOR'|'XCTEST'|'XCTEST_UI', 'created': datetime(2015, 1, 1), 'status': 'PENDING'|'PENDING_CONCURRENCY'|'PENDING_DEVICE'|'PROCESSING'|'SCHEDULING'|'PREPARING'|'RUNNING'|'COMPLETED'|'STOPPING', 'result': 'PENDING'|'PASSED'|'WARNED'|'FAILED'|'SKIPPED'|'ERRORED'|'STOPPED', 'started': datetime(2015, 1, 1), 'stopped': datetime(2015, 1, 1), 'counters': { 'total': 123, 'passed': 123, 'failed': 123, 'warned': 123, 'errored': 123, 'stopped': 123, 'skipped': 123 }, 'message': 'string', 'deviceMinutes': { 'total': 123.0, 'metered': 123.0, 'unmetered': 123.0 } }, ], 'nextToken': 'string' } :returns: BUILTIN_FUZZ: The built-in fuzz type. BUILTIN_EXPLORER: For Android, an app explorer that will traverse an Android app, interacting with it and capturing screenshots at the same time. APPIUM_JAVA_JUNIT: The Appium Java JUnit type. APPIUM_JAVA_TESTNG: The Appium Java TestNG type. APPIUM_PYTHON: The Appium Python type. APPIUM_WEB_JAVA_JUNIT: The Appium Java JUnit type for Web apps. APPIUM_WEB_JAVA_TESTNG: The Appium Java TestNG type for Web apps. APPIUM_WEB_PYTHON: The Appium Python type for Web apps. CALABASH: The Calabash type. INSTRUMENTATION: The Instrumentation type. UIAUTOMATION: The uiautomation type. UIAUTOMATOR: The uiautomator type. XCTEST: The XCode test type. XCTEST_UI: The XCode UI test type. """ pass def list_unique_problems(arn=None, nextToken=None): """ Gets information about unique problems. See also: AWS API Documentation Examples The following example returns information about unique problems, given a specific Device Farm project. Expected Output: :example: response = client.list_unique_problems( arn='string', nextToken='string' ) :type arn: string :param arn: [REQUIRED] The unique problems' ARNs. :type nextToken: string :param nextToken: An identifier that was returned from the previous call to this operation, which can be used to return the next set of items in the list. :rtype: dict :return: { 'uniqueProblems': { 'string': [ { 'message': 'string', 'problems': [ { 'run': { 'arn': 'string', 'name': 'string' }, 'job': { 'arn': 'string', 'name': 'string' }, 'suite': { 'arn': 'string', 'name': 'string' }, 'test': { 'arn': 'string', 'name': 'string' }, 'device': { 'arn': 'string', 'name': 'string', 'manufacturer': 'string', 'model': 'string', 'formFactor': 'PHONE'|'TABLET', 'platform': 'ANDROID'|'IOS', 'os': 'string', 'cpu': { 'frequency': 'string', 'architecture': 'string', 'clock': 123.0 }, 'resolution': { 'width': 123, 'height': 123 }, 'heapSize': 123, 'memory': 123, 'image': 'string', 'carrier': 'string', 'radio': 'string', 'remoteAccessEnabled': True|False, 'fleetType': 'string', 'fleetName': 'string' }, 'result': 'PENDING'|'PASSED'|'WARNED'|'FAILED'|'SKIPPED'|'ERRORED'|'STOPPED', 'message': 'string' }, ] }, ] }, 'nextToken': 'string' } :returns: PENDING: A pending condition. PASSED: A passing condition. WARNED: A warning condition. FAILED: A failed condition. SKIPPED: A skipped condition. ERRORED: An error condition. STOPPED: A stopped condition. """ pass def list_uploads(arn=None, nextToken=None): """ Gets information about uploads, given an AWS Device Farm project ARN. See also: AWS API Documentation Examples The following example returns information about uploads, given a specific Device Farm project. Expected Output: :example: response = client.list_uploads( arn='string', nextToken='string' ) :type arn: string :param arn: [REQUIRED] The Amazon Resource Name (ARN) of the project for which you want to list uploads. :type nextToken: string :param nextToken: An identifier that was returned from the previous call to this operation, which can be used to return the next set of items in the list. :rtype: dict :return: { 'uploads': [ { 'arn': 'string', 'name': 'string', 'created': datetime(2015, 1, 1), 'type': 'ANDROID_APP'|'IOS_APP'|'WEB_APP'|'EXTERNAL_DATA'|'APPIUM_JAVA_JUNIT_TEST_PACKAGE'|'APPIUM_JAVA_TESTNG_TEST_PACKAGE'|'APPIUM_PYTHON_TEST_PACKAGE'|'APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE'|'APPIUM_WEB_JAVA_TESTNG_TEST_PACKAGE'|'APPIUM_WEB_PYTHON_TEST_PACKAGE'|'CALABASH_TEST_PACKAGE'|'INSTRUMENTATION_TEST_PACKAGE'|'UIAUTOMATION_TEST_PACKAGE'|'UIAUTOMATOR_TEST_PACKAGE'|'XCTEST_TEST_PACKAGE'|'XCTEST_UI_TEST_PACKAGE', 'status': 'INITIALIZED'|'PROCESSING'|'SUCCEEDED'|'FAILED', 'url': 'string', 'metadata': 'string', 'contentType': 'string', 'message': 'string' }, ], 'nextToken': 'string' } :returns: ANDROID_APP: An Android upload. IOS_APP: An iOS upload. WEB_APP: A web appliction upload. EXTERNAL_DATA: An external data upload. APPIUM_JAVA_JUNIT_TEST_PACKAGE: An Appium Java JUnit test package upload. APPIUM_JAVA_TESTNG_TEST_PACKAGE: An Appium Java TestNG test package upload. APPIUM_PYTHON_TEST_PACKAGE: An Appium Python test package upload. APPIUM_WEB_JAVA_JUNIT_TEST_PACKAGE: An Appium Java JUnit test package upload. APPIUM_WEB_JAVA_TESTNG_TEST_PACKAGE: An Appium Java TestNG test package upload. APPIUM_WEB_PYTHON_TEST_PACKAGE: An Appium Python test package upload. CALABASH_TEST_PACKAGE: A Calabash test package upload. INSTRUMENTATION_TEST_PACKAGE: An instrumentation upload. UIAUTOMATION_TEST_PACKAGE: A uiautomation test package upload. UIAUTOMATOR_TEST_PACKAGE: A uiautomator test package upload. XCTEST_TEST_PACKAGE: An XCode test package upload. XCTEST_UI_TEST_PACKAGE: An XCode UI test package upload. """ pass def purchase_offering(offeringId=None, quantity=None, offeringPromotionId=None): """ Immediately purchases offerings for an AWS account. Offerings renew with the latest total purchased quantity for an offering, unless the renewal was overridden. The API returns a NotEligible error if the user is not permitted to invoke the operation. Please contact aws-devicefarm-support@amazon.com if you believe that you should be able to invoke this operation. See also: AWS API Documentation Examples The following example purchases a specific device slot offering. Expected Output: :example: response = client.purchase_offering( offeringId='string', quantity=123, offeringPromotionId='string' ) :type offeringId: string :param offeringId: The ID of the offering. :type quantity: integer :param quantity: The number of device slots you wish to purchase in an offering request. :type offeringPromotionId: string :param offeringPromotionId: The ID of the offering promotion to be applied to the purchase. :rtype: dict :return: { 'offeringTransaction': { 'offeringStatus': { 'type': 'PURCHASE'|'RENEW'|'SYSTEM', 'offering': { 'id': 'string', 'description': 'string', 'type': 'RECURRING', 'platform': 'ANDROID'|'IOS', 'recurringCharges': [ { 'cost': { 'amount': 123.0, 'currencyCode': 'USD' }, 'frequency': 'MONTHLY' }, ] }, 'quantity': 123, 'effectiveOn': datetime(2015, 1, 1) }, 'transactionId': 'string', 'offeringPromotionId': 'string', 'createdOn': datetime(2015, 1, 1), 'cost': { 'amount': 123.0, 'currencyCode': 'USD' } } } """ pass def renew_offering(offeringId=None, quantity=None): """ Explicitly sets the quantity of devices to renew for an offering, starting from the effectiveDate of the next period. The API returns a NotEligible error if the user is not permitted to invoke the operation. Please contact aws-devicefarm-support@amazon.com if you believe that you should be able to invoke this operation. See also: AWS API Documentation Examples The following example renews a specific device slot offering. Expected Output: :example: response = client.renew_offering( offeringId='string', quantity=123 ) :type offeringId: string :param offeringId: The ID of a request to renew an offering. :type quantity: integer :param quantity: The quantity requested in an offering renewal. :rtype: dict :return: { 'offeringTransaction': { 'offeringStatus': { 'type': 'PURCHASE'|'RENEW'|'SYSTEM', 'offering': { 'id': 'string', 'description': 'string', 'type': 'RECURRING', 'platform': 'ANDROID'|'IOS', 'recurringCharges': [ { 'cost': { 'amount': 123.0, 'currencyCode': 'USD' }, 'frequency': 'MONTHLY' }, ] }, 'quantity': 123, 'effectiveOn': datetime(2015, 1, 1) }, 'transactionId': 'string', 'offeringPromotionId': 'string', 'createdOn': datetime(2015, 1, 1), 'cost': { 'amount': 123.0, 'currencyCode': 'USD' } } } """ pass def schedule_run(projectArn=None, appArn=None, devicePoolArn=None, name=None, test=None, configuration=None, executionConfiguration=None): """ Schedules a run. See also: AWS API Documentation Examples The following example schedules a test run named MyRun. Expected Output: :example: response = client.schedule_run( projectArn='string', appArn='string', devicePoolArn='string', name='string', test={ 'type': 'BUILTIN_FUZZ'|'BUILTIN_EXPLORER'|'APPIUM_JAVA_JUNIT'|'APPIUM_JAVA_TESTNG'|'APPIUM_PYTHON'|'APPIUM_WEB_JAVA_JUNIT'|'APPIUM_WEB_JAVA_TESTNG'|'APPIUM_WEB_PYTHON'|'CALABASH'|'INSTRUMENTATION'|'UIAUTOMATION'|'UIAUTOMATOR'|'XCTEST'|'XCTEST_UI', 'testPackageArn': 'string', 'filter': 'string', 'parameters': { 'string': 'string' } }, configuration={ 'extraDataPackageArn': 'string', 'networkProfileArn': 'string', 'locale': 'string', 'location': { 'latitude': 123.0, 'longitude': 123.0 }, 'radios': { 'wifi': True|False, 'bluetooth': True|False, 'nfc': True|False, 'gps': True|False }, 'auxiliaryApps': [ 'string', ], 'billingMethod': 'METERED'|'UNMETERED' }, executionConfiguration={ 'jobTimeoutMinutes': 123, 'accountsCleanup': True|False, 'appPackagesCleanup': True|False } ) :type projectArn: string :param projectArn: [REQUIRED] The ARN of the project for the run to be scheduled. :type appArn: string :param appArn: The ARN of the app to schedule a run. :type devicePoolArn: string :param devicePoolArn: [REQUIRED] The ARN of the device pool for the run to be scheduled. :type name: string :param name: The name for the run to be scheduled. :type test: dict :param test: [REQUIRED] Information about the test for the run to be scheduled. type (string) -- [REQUIRED]The test's type. Must be one of the following values: BUILTIN_FUZZ: The built-in fuzz type. BUILTIN_EXPLORER: For Android, an app explorer that will traverse an Android app, interacting with it and capturing screenshots at the same time. APPIUM_JAVA_JUNIT: The Appium Java JUnit type. APPIUM_JAVA_TESTNG: The Appium Java TestNG type. APPIUM_PYTHON: The Appium Python type. APPIUM_WEB_JAVA_JUNIT: The Appium Java JUnit type for Web apps. APPIUM_WEB_JAVA_TESTNG: The Appium Java TestNG type for Web apps. APPIUM_WEB_PYTHON: The Appium Python type for Web apps. CALABASH: The Calabash type. INSTRUMENTATION: The Instrumentation type. UIAUTOMATION: The uiautomation type. UIAUTOMATOR: The uiautomator type. XCTEST: The XCode test type. XCTEST_UI: The XCode UI test type. testPackageArn (string) --The ARN of the uploaded test that will be run. filter (string) --The test's filter. parameters (dict) --The test's parameters, such as the following test framework parameters and fixture settings: For Calabash tests: profile: A cucumber profile, for example, 'my_profile_name'. tags: You can limit execution to features or scenarios that have (or don't have) certain tags, for example, '@smoke' or '@smoke,~@wip'. For Appium tests (all types): appium_version: The Appium version. Currently supported values are '1.4.16', '1.6.3', 'latest', and 'default'. latest will run the latest Appium version supported by Device Farm (1.6.3). For default , Device Farm will choose a compatible version of Appium for the device. The current behavior is to run 1.4.16 on Android devices and iOS 9 and earlier, 1.6.3 for iOS 10 and later. This behavior is subject to change. For Fuzz tests (Android only): event_count: The number of events, between 1 and 10000, that the UI fuzz test should perform. throttle: The time, in ms, between 0 and 1000, that the UI fuzz test should wait between events. seed: A seed to use for randomizing the UI fuzz test. Using the same seed value between tests ensures identical event sequences. For Explorer tests: username: A username to use if the Explorer encounters a login form. If not supplied, no username will be inserted. password: A password to use if the Explorer encounters a login form. If not supplied, no password will be inserted. For Instrumentation: filter: A test filter string. Examples: Running a single test case: 'com.android.abc.Test1' Running a single test: 'com.android.abc.Test1#smoke' Running multiple tests: 'com.android.abc.Test1,com.android.abc.Test2' For XCTest and XCTestUI: filter: A test filter string. Examples: Running a single test class: 'LoginTests' Running a multiple test classes: 'LoginTests,SmokeTests' Running a single test: 'LoginTests/testValid' Running multiple tests: 'LoginTests/testValid,LoginTests/testInvalid' For UIAutomator: filter: A test filter string. Examples: Running a single test case: 'com.android.abc.Test1' Running a single test: 'com.android.abc.Test1#smoke' Running multiple tests: 'com.android.abc.Test1,com.android.abc.Test2' (string) -- (string) -- :type configuration: dict :param configuration: Information about the settings for the run to be scheduled. extraDataPackageArn (string) --The ARN of the extra data for the run. The extra data is a .zip file that AWS Device Farm will extract to external data for Android or the app's sandbox for iOS. networkProfileArn (string) --Reserved for internal use. locale (string) --Information about the locale that is used for the run. location (dict) --Information about the location that is used for the run. latitude (float) -- [REQUIRED]The latitude. longitude (float) -- [REQUIRED]The longitude. radios (dict) --Information about the radio states for the run. wifi (boolean) --True if Wi-Fi is enabled at the beginning of the test; otherwise, false. bluetooth (boolean) --True if Bluetooth is enabled at the beginning of the test; otherwise, false. nfc (boolean) --True if NFC is enabled at the beginning of the test; otherwise, false. gps (boolean) --True if GPS is enabled at the beginning of the test; otherwise, false. auxiliaryApps (list) --A list of auxiliary apps for the run. (string) -- billingMethod (string) --Specifies the billing method for a test run: metered or unmetered . If the parameter is not specified, the default value is metered . :type executionConfiguration: dict :param executionConfiguration: Specifies configuration information about a test run, such as the execution timeout (in minutes). jobTimeoutMinutes (integer) --The number of minutes a test run will execute before it times out. accountsCleanup (boolean) --True if account cleanup is enabled at the beginning of the test; otherwise, false. appPackagesCleanup (boolean) --True if app package cleanup is enabled at the beginning of the test; otherwise, false. :rtype: dict :return: { 'run': { 'arn': 'string', 'name': 'string', 'type': 'BUILTIN_FUZZ'|'BUILTIN_EXPLORER'|'APPIUM_JAVA_JUNIT'|'APPIUM_JAVA_TESTNG'|'APPIUM_PYTHON'|'APPIUM_WEB_JAVA_JUNIT'|'APPIUM_WEB_JAVA_TESTNG'|'APPIUM_WEB_PYTHON'|'CALABASH'|'INSTRUMENTATION'|'UIAUTOMATION'|'UIAUTOMATOR'|'XCTEST'|'XCTEST_UI', 'platform': 'ANDROID'|'IOS', 'created': datetime(2015, 1, 1), 'status': 'PENDING'|'PENDING_CONCURRENCY'|'PENDING_DEVICE'|'PROCESSING'|'SCHEDULING'|'PREPARING'|'RUNNING'|'COMPLETED'|'STOPPING', 'result': 'PENDING'|'PASSED'|'WARNED'|'FAILED'|'SKIPPED'|'ERRORED'|'STOPPED', 'started': datetime(2015, 1, 1), 'stopped': datetime(2015, 1, 1), 'counters': { 'total': 123, 'passed': 123, 'failed': 123, 'warned': 123, 'errored': 123, 'stopped': 123, 'skipped': 123 }, 'message': 'string', 'totalJobs': 123, 'completedJobs': 123, 'billingMethod': 'METERED'|'UNMETERED', 'deviceMinutes': { 'total': 123.0, 'metered': 123.0, 'unmetered': 123.0 }, 'networkProfile': { 'arn': 'string', 'name': 'string', 'description': 'string', 'type': 'CURATED'|'PRIVATE', 'uplinkBandwidthBits': 123, 'downlinkBandwidthBits': 123, 'uplinkDelayMs': 123, 'downlinkDelayMs': 123, 'uplinkJitterMs': 123, 'downlinkJitterMs': 123, 'uplinkLossPercent': 123, 'downlinkLossPercent': 123 } } } :returns: BUILTIN_FUZZ: The built-in fuzz type. BUILTIN_EXPLORER: For Android, an app explorer that will traverse an Android app, interacting with it and capturing screenshots at the same time. APPIUM_JAVA_JUNIT: The Appium Java JUnit type. APPIUM_JAVA_TESTNG: The Appium Java TestNG type. APPIUM_PYTHON: The Appium Python type. APPIUM_WEB_JAVA_JUNIT: The Appium Java JUnit type for Web apps. APPIUM_WEB_JAVA_TESTNG: The Appium Java TestNG type for Web apps. APPIUM_WEB_PYTHON: The Appium Python type for Web apps. CALABASH: The Calabash type. INSTRUMENTATION: The Instrumentation type. UIAUTOMATION: The uiautomation type. UIAUTOMATOR: The uiautomator type. XCTEST: The XCode test type. XCTEST_UI: The XCode UI test type. """ pass def stop_remote_access_session(arn=None): """ Ends a specified remote access session. See also: AWS API Documentation :example: response = client.stop_remote_access_session( arn='string' ) :type arn: string :param arn: [REQUIRED] The Amazon Resource Name (ARN) of the remote access session you wish to stop. :rtype: dict :return: { 'remoteAccessSession': { 'arn': 'string', 'name': 'string', 'created': datetime(2015, 1, 1), 'status': 'PENDING'|'PENDING_CONCURRENCY'|'PENDING_DEVICE'|'PROCESSING'|'SCHEDULING'|'PREPARING'|'RUNNING'|'COMPLETED'|'STOPPING', 'result': 'PENDING'|'PASSED'|'WARNED'|'FAILED'|'SKIPPED'|'ERRORED'|'STOPPED', 'message': 'string', 'started': datetime(2015, 1, 1), 'stopped': datetime(2015, 1, 1), 'device': { 'arn': 'string', 'name': 'string', 'manufacturer': 'string', 'model': 'string', 'formFactor': 'PHONE'|'TABLET', 'platform': 'ANDROID'|'IOS', 'os': 'string', 'cpu': { 'frequency': 'string', 'architecture': 'string', 'clock': 123.0 }, 'resolution': { 'width': 123, 'height': 123 }, 'heapSize': 123, 'memory': 123, 'image': 'string', 'carrier': 'string', 'radio': 'string', 'remoteAccessEnabled': True|False, 'fleetType': 'string', 'fleetName': 'string' }, 'billingMethod': 'METERED'|'UNMETERED', 'deviceMinutes': { 'total': 123.0, 'metered': 123.0, 'unmetered': 123.0 }, 'endpoint': 'string' } } :returns: PENDING: A pending condition. PASSED: A passing condition. WARNED: A warning condition. FAILED: A failed condition. SKIPPED: A skipped condition. ERRORED: An error condition. STOPPED: A stopped condition. """ pass def stop_run(arn=None): """ Initiates a stop request for the current test run. AWS Device Farm will immediately stop the run on devices where tests have not started executing, and you will not be billed for these devices. On devices where tests have started executing, Setup Suite and Teardown Suite tests will run to completion before stopping execution on those devices. You will be billed for Setup, Teardown, and any tests that were in progress or already completed. See also: AWS API Documentation Examples The following example stops a specific test run. Expected Output: :example: response = client.stop_run( arn='string' ) :type arn: string :param arn: [REQUIRED] Represents the Amazon Resource Name (ARN) of the Device Farm run you wish to stop. :rtype: dict :return: { 'run': { 'arn': 'string', 'name': 'string', 'type': 'BUILTIN_FUZZ'|'BUILTIN_EXPLORER'|'APPIUM_JAVA_JUNIT'|'APPIUM_JAVA_TESTNG'|'APPIUM_PYTHON'|'APPIUM_WEB_JAVA_JUNIT'|'APPIUM_WEB_JAVA_TESTNG'|'APPIUM_WEB_PYTHON'|'CALABASH'|'INSTRUMENTATION'|'UIAUTOMATION'|'UIAUTOMATOR'|'XCTEST'|'XCTEST_UI', 'platform': 'ANDROID'|'IOS', 'created': datetime(2015, 1, 1), 'status': 'PENDING'|'PENDING_CONCURRENCY'|'PENDING_DEVICE'|'PROCESSING'|'SCHEDULING'|'PREPARING'|'RUNNING'|'COMPLETED'|'STOPPING', 'result': 'PENDING'|'PASSED'|'WARNED'|'FAILED'|'SKIPPED'|'ERRORED'|'STOPPED', 'started': datetime(2015, 1, 1), 'stopped': datetime(2015, 1, 1), 'counters': { 'total': 123, 'passed': 123, 'failed': 123, 'warned': 123, 'errored': 123, 'stopped': 123, 'skipped': 123 }, 'message': 'string', 'totalJobs': 123, 'completedJobs': 123, 'billingMethod': 'METERED'|'UNMETERED', 'deviceMinutes': { 'total': 123.0, 'metered': 123.0, 'unmetered': 123.0 }, 'networkProfile': { 'arn': 'string', 'name': 'string', 'description': 'string', 'type': 'CURATED'|'PRIVATE', 'uplinkBandwidthBits': 123, 'downlinkBandwidthBits': 123, 'uplinkDelayMs': 123, 'downlinkDelayMs': 123, 'uplinkJitterMs': 123, 'downlinkJitterMs': 123, 'uplinkLossPercent': 123, 'downlinkLossPercent': 123 } } } :returns: ANDROID: The Android platform. IOS: The iOS platform. """ pass def update_device_pool(arn=None, name=None, description=None, rules=None): """ Modifies the name, description, and rules in a device pool given the attributes and the pool ARN. Rule updates are all-or-nothing, meaning they can only be updated as a whole (or not at all). See also: AWS API Documentation Examples The following example updates the specified device pool with a new name and description. It also enables remote access of devices in the device pool. Expected Output: :example: response = client.update_device_pool( arn='string', name='string', description='string', rules=[ { 'attribute': 'ARN'|'PLATFORM'|'FORM_FACTOR'|'MANUFACTURER'|'REMOTE_ACCESS_ENABLED'|'APPIUM_VERSION', 'operator': 'EQUALS'|'LESS_THAN'|'GREATER_THAN'|'IN'|'NOT_IN'|'CONTAINS', 'value': 'string' }, ] ) :type arn: string :param arn: [REQUIRED] The Amazon Resourc Name (ARN) of the Device Farm device pool you wish to update. :type name: string :param name: A string representing the name of the device pool you wish to update. :type description: string :param description: A description of the device pool you wish to update. :type rules: list :param rules: Represents the rules you wish to modify for the device pool. Updating rules is optional; however, if you choose to update rules for your request, the update will replace the existing rules. (dict) --Represents a condition for a device pool. attribute (string) --The rule's stringified attribute. For example, specify the value as '\'abc\'' . Allowed values include: ARN: The ARN. FORM_FACTOR: The form factor (for example, phone or tablet). MANUFACTURER: The manufacturer. PLATFORM: The platform (for example, Android or iOS). REMOTE_ACCESS_ENABLED: Whether the device is enabled for remote access. APPIUM_VERSION: The Appium version for the test. operator (string) --The rule's operator. EQUALS: The equals operator. GREATER_THAN: The greater-than operator. IN: The in operator. LESS_THAN: The less-than operator. NOT_IN: The not-in operator. CONTAINS: The contains operator. value (string) --The rule's value. :rtype: dict :return: { 'devicePool': { 'arn': 'string', 'name': 'string', 'description': 'string', 'type': 'CURATED'|'PRIVATE', 'rules': [ { 'attribute': 'ARN'|'PLATFORM'|'FORM_FACTOR'|'MANUFACTURER'|'REMOTE_ACCESS_ENABLED'|'APPIUM_VERSION', 'operator': 'EQUALS'|'LESS_THAN'|'GREATER_THAN'|'IN'|'NOT_IN'|'CONTAINS', 'value': 'string' }, ] } } :returns: CURATED: A device pool that is created and managed by AWS Device Farm. PRIVATE: A device pool that is created and managed by the device pool developer. """ pass def update_network_profile(arn=None, name=None, description=None, type=None, uplinkBandwidthBits=None, downlinkBandwidthBits=None, uplinkDelayMs=None, downlinkDelayMs=None, uplinkJitterMs=None, downlinkJitterMs=None, uplinkLossPercent=None, downlinkLossPercent=None): """ Updates the network profile with specific settings. See also: AWS API Documentation :example: response = client.update_network_profile( arn='string', name='string', description='string', type='CURATED'|'PRIVATE', uplinkBandwidthBits=123, downlinkBandwidthBits=123, uplinkDelayMs=123, downlinkDelayMs=123, uplinkJitterMs=123, downlinkJitterMs=123, uplinkLossPercent=123, downlinkLossPercent=123 ) :type arn: string :param arn: [REQUIRED] The Amazon Resource Name (ARN) of the project that you wish to update network profile settings. :type name: string :param name: The name of the network profile about which you are returning information. :type description: string :param description: The descriptoin of the network profile about which you are returning information. :type type: string :param type: The type of network profile you wish to return information about. Valid values are listed below. :type uplinkBandwidthBits: integer :param uplinkBandwidthBits: The data throughput rate in bits per second, as an integer from 0 to 104857600. :type downlinkBandwidthBits: integer :param downlinkBandwidthBits: The data throughput rate in bits per second, as an integer from 0 to 104857600. :type uplinkDelayMs: integer :param uplinkDelayMs: Delay time for all packets to destination in milliseconds as an integer from 0 to 2000. :type downlinkDelayMs: integer :param downlinkDelayMs: Delay time for all packets to destination in milliseconds as an integer from 0 to 2000. :type uplinkJitterMs: integer :param uplinkJitterMs: Time variation in the delay of received packets in milliseconds as an integer from 0 to 2000. :type downlinkJitterMs: integer :param downlinkJitterMs: Time variation in the delay of received packets in milliseconds as an integer from 0 to 2000. :type uplinkLossPercent: integer :param uplinkLossPercent: Proportion of transmitted packets that fail to arrive from 0 to 100 percent. :type downlinkLossPercent: integer :param downlinkLossPercent: Proportion of received packets that fail to arrive from 0 to 100 percent. :rtype: dict :return: { 'networkProfile': { 'arn': 'string', 'name': 'string', 'description': 'string', 'type': 'CURATED'|'PRIVATE', 'uplinkBandwidthBits': 123, 'downlinkBandwidthBits': 123, 'uplinkDelayMs': 123, 'downlinkDelayMs': 123, 'uplinkJitterMs': 123, 'downlinkJitterMs': 123, 'uplinkLossPercent': 123, 'downlinkLossPercent': 123 } } """ pass def update_project(arn=None, name=None, defaultJobTimeoutMinutes=None): """ Modifies the specified project name, given the project ARN and a new name. See also: AWS API Documentation Examples The following example updates the specified project with a new name. Expected Output: :example: response = client.update_project( arn='string', name='string', defaultJobTimeoutMinutes=123 ) :type arn: string :param arn: [REQUIRED] The Amazon Resource Name (ARN) of the project whose name you wish to update. :type name: string :param name: A string representing the new name of the project that you are updating. :type defaultJobTimeoutMinutes: integer :param defaultJobTimeoutMinutes: The number of minutes a test run in the project will execute before it times out. :rtype: dict :return: { 'project': { 'arn': 'string', 'name': 'string', 'defaultJobTimeoutMinutes': 123, 'created': datetime(2015, 1, 1) } } """ pass
35.788278
510
0.565828
31183521bb99403915e6e554582d84246561310d
2,447
py
Python
doc/source/conf.py
kumulustech/browbeat
deb3bfc26481ff0bc3ac2633dbf38a26ef9aa6fc
[ "Apache-2.0" ]
null
null
null
doc/source/conf.py
kumulustech/browbeat
deb3bfc26481ff0bc3ac2633dbf38a26ef9aa6fc
[ "Apache-2.0" ]
null
null
null
doc/source/conf.py
kumulustech/browbeat
deb3bfc26481ff0bc3ac2633dbf38a26ef9aa6fc
[ "Apache-2.0" ]
1
2022-01-19T14:00:08.000Z
2022-01-19T14:00:08.000Z
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys sys.path.insert(0, os.path.abspath('../..')) # -- General configuration ---------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [ 'sphinx.ext.autodoc', # 'sphinx.ext.intersphinx', 'oslosphinx' ] # autodoc generation is a bit aggressive and a nuisance when doing heavy # text edit cycles. # execute "export SPHINX_DEBUG=1" in your terminal to disable # The suffix of source filenames. source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = u'browbeat' copyright = u'2013, OpenStack Foundation' # If true, '()' will be appended to :func: etc. cross-reference text. add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). add_module_names = True # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # -- Options for HTML output -------------------------------------------------- # The theme to use for HTML and HTML Help pages. Major themes that come with # Sphinx are currently 'default' and 'sphinxdoc'. # html_theme_path = ["."] # html_theme = '_theme' # html_static_path = ['static'] # Output file base name for HTML help builder. htmlhelp_basename = '%sdoc' % project # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto/manual]). latex_documents = [ ('index', '%s.tex' % project, u'%s Documentation' % project, u'OpenStack Foundation', 'manual'), ] # Example configuration for intersphinx: refer to the Python standard library. # intersphinx_mapping = {'http://docs.python.org/': None}
33.067568
79
0.695137
1fff9e15128d9eb23e99b4fcc48ced167499afc9
2,097
py
Python
test/functional/rpc_estimatefee.py
azsxcv11060/bitcoin
086dae9878680608e189b9aac2a605254d3b4395
[ "MIT" ]
13
2019-03-21T03:55:52.000Z
2022-01-06T17:49:16.000Z
test/functional/rpc_estimatefee.py
azsxcv11060/bitcoin
086dae9878680608e189b9aac2a605254d3b4395
[ "MIT" ]
18
2020-10-31T01:04:18.000Z
2020-11-03T19:25:27.000Z
test/functional/rpc_estimatefee.py
azsxcv11060/bitcoin
086dae9878680608e189b9aac2a605254d3b4395
[ "MIT" ]
5
2019-12-17T23:52:00.000Z
2021-06-13T20:39:56.000Z
#!/usr/bin/env python3 # Copyright (c) 2018-2020 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the estimatefee RPCs. Test the following RPCs: - estimatesmartfee - estimaterawfee """ from test_framework.test_framework import BitcoinTestFramework from test_framework.util import assert_raises_rpc_error class EstimateFeeTest(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = False self.num_nodes = 1 def run_test(self): # missing required params assert_raises_rpc_error(-1, "estimatesmartfee", self.nodes[0].estimatesmartfee) assert_raises_rpc_error(-1, "estimaterawfee", self.nodes[0].estimaterawfee) # wrong type for conf_target assert_raises_rpc_error(-3, "Expected type number, got string", self.nodes[0].estimatesmartfee, 'foo') assert_raises_rpc_error(-3, "Expected type number, got string", self.nodes[0].estimaterawfee, 'foo') # wrong type for estimatesmartfee(estimate_mode) assert_raises_rpc_error(-3, "Expected type string, got number", self.nodes[0].estimatesmartfee, 1, 1) assert_raises_rpc_error(-8, "Invalid estimate_mode parameter", self.nodes[0].estimatesmartfee, 1, 'foo') # wrong type for estimaterawfee(threshold) assert_raises_rpc_error(-3, "Expected type number, got string", self.nodes[0].estimaterawfee, 1, 'foo') # extra params assert_raises_rpc_error(-1, "estimatesmartfee", self.nodes[0].estimatesmartfee, 1, 'ECONOMICAL', 1) assert_raises_rpc_error(-1, "estimaterawfee", self.nodes[0].estimaterawfee, 1, 1, 1) # valid calls self.nodes[0].estimatesmartfee(1) # self.nodes[0].estimatesmartfee(1, None) self.nodes[0].estimatesmartfee(1, 'ECONOMICAL') self.nodes[0].estimaterawfee(1) self.nodes[0].estimaterawfee(1, None) self.nodes[0].estimaterawfee(1, 1) if __name__ == '__main__': EstimateFeeTest().main()
40.326923
112
0.709585
f1af1dc27b7c003b938479501b6fa7b936a43b35
936
py
Python
src/python/example.py
barrettotte/IBMi-Book
911e7389ff80eae72e88cacc4a19dc2b7ede0126
[ "MIT" ]
24
2019-08-19T23:31:52.000Z
2022-03-25T12:37:13.000Z
src/python/example.py
barrettotte/IBMi-Book
911e7389ff80eae72e88cacc4a19dc2b7ede0126
[ "MIT" ]
1
2019-11-04T14:38:03.000Z
2019-11-11T14:06:18.000Z
src/python/example.py
barrettotte/IBMi-Book
911e7389ff80eae72e88cacc4a19dc2b7ede0126
[ "MIT" ]
9
2019-12-09T14:35:21.000Z
2021-12-25T10:02:29.000Z
import os, json, getpass, pyodbc # Get credentials with open(os.path.abspath('config.json'), 'r') as f: config = json.load(f) host = config['host'] if 'host' in config else input("Enter host: ") user = config['user'] if 'user' in config else input("Enter user: ") pwd = getpass.getpass('Enter password: ') # Init ODBC connection and cursor conn = pyodbc.connect(driver='{IBM i Access ODBC Driver}', system=host, uid=user, pwd=pwd) csr = conn.cursor() try: # Execute SQL string csr.execute(' '.join([ "SELECT TABLE_SCHEMA, TABLE_NAME, TABLE_PARTITION, SOURCE_TYPE", "FROM QSYS2.SYSPARTITIONSTAT WHERE TABLE_SCHEMA = 'BOLIB'", "ORDER BY TABLE_PARTITION" ])) # Output result set for row in csr: print(row) except Exception as e: print('Error occurred with DB2 query\n ' + str(e)) finally: # Close cursor and ODBC connection csr.close() conn.close()
31.2
90
0.653846
1a20018810aca71e231531dd6b4c27f07d98ddd0
289
py
Python
gadget/reboot.py
vaginessa/RaspberryPiZero_HID_MultiTool
c6227c7263cb1321a5655f938462392eb014a352
[ "Apache-2.0" ]
54
2017-01-06T21:43:40.000Z
2022-02-14T02:57:57.000Z
gadget/reboot.py
vaginessa/RaspberryPiZero_HID_MultiTool
c6227c7263cb1321a5655f938462392eb014a352
[ "Apache-2.0" ]
null
null
null
gadget/reboot.py
vaginessa/RaspberryPiZero_HID_MultiTool
c6227c7263cb1321a5655f938462392eb014a352
[ "Apache-2.0" ]
13
2017-01-31T23:35:21.000Z
2021-12-22T12:48:59.000Z
#!/usr/bin/python import RPi.GPIO as GPIO import os gpio_pin_number=21 GPIO.setmode(GPIO.BCM) GPIO.setup(gpio_pin_number, GPIO.IN, pull_up_down=GPIO.PUD_UP) try: GPIO.wait_for_edge(gpio_pin_number, GPIO.FALLING) os.system("sudo shutdown -h now") except: pass GPIO.cleanup()
18.0625
62
0.750865
3846012a8288d097b318f7c4f1e2572ac5b6d32e
367
py
Python
pyFTracks/ressources/__init__.py
underworldcode/pyFTracks
6050a4327616ebca7ab932b609b25c7c4e6a62f8
[ "MIT" ]
4
2020-11-02T03:54:52.000Z
2022-03-04T11:48:26.000Z
pyFTracks/ressources/__init__.py
rbeucher/pyFTracks
6050a4327616ebca7ab932b609b25c7c4e6a62f8
[ "MIT" ]
12
2020-03-05T04:04:46.000Z
2020-03-05T23:27:57.000Z
pyFTracks/ressources/__init__.py
ryanstoner1/pyFTracks
6050a4327616ebca7ab932b609b25c7c4e6a62f8
[ "MIT" ]
2
2020-12-29T01:59:07.000Z
2021-10-15T11:22:57.000Z
import pandas as pd from pathlib import Path #Miller1995 = pd.read_hdf((Path(__file__).parent / "Miller1995.h5"), "data") #Gleadow = pd.read_hdf((Path(__file__).parent / "Gleadow.h5"), "data") from pyFTracks import Sample Miller = Sample().read_from_hdf5(Path(__file__).parent / "Miller.h5") Gleadow = Sample().read_from_hdf5(Path(__file__).parent / "Gleadow.h5")
33.363636
76
0.735695
9b128afd12ce9834be20a300379f8918f86a1510
1,624
py
Python
utils/ds_select_random_pc.py
Weafre/VoxelDNN_v2
9fa14eeb5a72ac982f020fa983e2eb9f8a09775d
[ "MIT" ]
5
2021-08-09T08:45:24.000Z
2022-03-27T02:41:03.000Z
utils/ds_select_random_pc.py
Weafre/VoxelDNN_v2
9fa14eeb5a72ac982f020fa983e2eb9f8a09775d
[ "MIT" ]
1
2021-09-14T09:54:29.000Z
2021-09-14T09:54:29.000Z
utils/ds_select_random_pc.py
Weafre/VoxelDNN_v2
9fa14eeb5a72ac982f020fa983e2eb9f8a09775d
[ "MIT" ]
1
2021-08-13T09:43:48.000Z
2021-08-13T09:43:48.000Z
import logging logging.basicConfig( level=logging.INFO, format='%(asctime)s.%(msecs)03d %(levelname)s %(module)s - %(funcName)s: %(message)s', datefmt="%Y-%m-%d %H:%M:%S") logger = logging.getLogger(__name__) import os import argparse import shutil from os import makedirs from glob import glob from tqdm import tqdm import random if __name__ == '__main__': parser = argparse.ArgumentParser( prog='ds_select_largest.py', description='Converts a folder containing meshes to point clouds', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('source', help='Source directory') parser.add_argument('dest', help='Destination directory') parser.add_argument('n', help='Number of largest files to keep.', type=int) args = parser.parse_args() assert os.path.exists(args.source), f'{args.source} does not exist' assert args.n > 0 paths = glob(os.path.join(args.source, '**', f'*'), recursive=True) paths = [x for x in paths if os.path.isfile(x)] files = [x[len(args.source) + 1:] for x in paths] files_len = len(files) assert files_len > 0 logger.info(f'Found {files_len} models in {args.source}') files_with_paths = random.sample(list(zip(files, paths)), args.n) for file, path in tqdm(files_with_paths): target_path = os.path.join(args.dest, file) target_folder, _ = os.path.split(target_path) makedirs(target_folder, exist_ok=True) # shutil.copyfile(path, target_path) os.symlink(path, target_path) logger.info(f'{files_len} models to {args.dest}')
31.843137
90
0.682266
06d0f289cb914aa6b9f89eb9427f99ae4875d117
8,997
py
Python
NLP_Flask/app/nlp/preprocess/vector_models.py
Gxy-2001/NLPPlat
f339c1a7452b979b413919cf4bc128bf45af52ef
[ "MIT" ]
null
null
null
NLP_Flask/app/nlp/preprocess/vector_models.py
Gxy-2001/NLPPlat
f339c1a7452b979b413919cf4bc128bf45af52ef
[ "MIT" ]
null
null
null
NLP_Flask/app/nlp/preprocess/vector_models.py
Gxy-2001/NLPPlat
f339c1a7452b979b413919cf4bc128bf45af52ef
[ "MIT" ]
null
null
null
from gensim.models import word2vec as wc from gensim.models import doc2vec as dc from manage import app from app.utils.file_utils import getFileURL def Word2vec(data, params, type): sentences = [] for vector in data['vectors']: if 'text1' in type: sentences.append(vector['text1']) if 'text2' in type: sentences.append(vector['text2']) if (params['max_vocab_size'] == 'None'): params['max_vocab_size'] = None else: params['max_vocab_size'] = int(params['max_vocab_size']) if (params['trim_rule'] == 'None'): params['trim_rule'] = None else: params['trim_rule'] = int(params['trim_rule']) model = wc.Word2Vec(sentences, size=int(params['size']), alpha=int(params['alpha']), window=int(params['window']), min_count=int(params['min_count']), max_vocab_size=params['max_vocab_size'], sample=int(params['sample']), seed=int(params['seed']), workers=int(params['workers']), min_alpha=int(params['min_alpha']), sg=int(params['sg']), hs=int(params['hs']), negative=int(params['negative']), cbow_mean=int(params['cbow_mean']), hashfxn=hash, iter=int(params['iter']), trim_rule=params['trim_rule'], sorted_vocab=int(params['sorted_vocab']), batch_words=int(params['batch_words'])) modelURL = getFileURL('word2vec.txt', app) model.wv.save_word2vec_format(modelURL, binary=False) data['embedding'] = modelURL return data from pyspark.ml.feature import Word2Vec from pyspark.sql import SparkSession def Word2vecSpark(data, params, type): spark = SparkSession.builder.appName("word2vec").config("master", "local[*]").enableHiveSupport().getOrCreate() sentences = [] for vector in data['vectors']: if 'text1' in type: sentences.append((vector['text1'],)) if 'text2' in type: sentences.append((vector['text2'],)) df_document = spark.createDataFrame(sentences, ["text"]) if (params['max_vocab_size'] == 'None'): params['max_vocab_size'] = None else: params['max_vocab_size'] = int(params['max_vocab_size']) word2Vec = Word2Vec(vectorSize=int(params['size']), minCount=int(params['min_count']), maxIter=int(params['iter']), seed=int(params['seed']), windowSize=int(params['window']), maxSentenceLength=params['max_vocab_size']) model = word2Vec.fit(df_document) df_vector = model.transform(df_document) embedding = [] for row in df_vector.collect(): embedding.append(row[1].array) data['embedding'] = embedding def Doc2vec(data, params, type): sentences = [] for vector in data['vectors']: if 'text1' in type: sentences.append(vector['text1']) if 'text2' in type: sentences.append(vector['text2']) if (params['max_vocab_size'] == 'None'): params['max_vocab_size'] = None else: params['max_vocab_size'] = int(params['max_vocab_size']) document = [] for i, sentence in enumerate(sentences): document.append(dc.TaggedDocument(sentence, [i])) model = dc.Doc2Vec(document, size=int(params['size']), alpha=int(params['alpha']), window=int(params['window']), min_count=int(params['min_count']), max_vocab_size=params['max_vocab_size'], sample=int(params['sample']), seed=int(params['seed']), workers=int(params['workers'])) modelURL = getFileURL('doc2vec.txt', app) model.wv.save_word2vec_format(modelURL, binary=False) data['embedding'] = modelURL return data from sklearn.feature_extraction.text import TfidfVectorizer def myTFIDF(data, params, type): sentences = [] for vector in data['vectors']: if 'text1' in type: sentences.append(vector['text1']) if 'text2' in type: sentences.append(vector['text2']) tv = TfidfVectorizer(use_idf=True, smooth_idf=True, norm=None) tv_fit = tv.fit_transform(sentences) data['embedding'] = tv_fit.toarray() return data from pyspark.ml.feature import CountVectorizer from pyspark.ml.feature import CountVectorizerModel from pyspark.ml.feature import IDF from pyspark.ml.feature import IDFModel def myTFIDFSpark(data, params, type): spark = SparkSession.builder.appName("word2vec").config("master", "local[*]").enableHiveSupport().getOrCreate() sentences = [] for vector in data['vectors']: if 'text1' in type: sentences.append((vector['text1'],)) if 'text2' in type: sentences.append((vector['text2'],)) df_document = spark.createDataFrame(sentences, ["text"]) cv = CountVectorizer(inputCol="words", outputCol="countFeatures", vocabSize=200 * 10000, minDF=1.0) # 训练词频统计模型 cv_model = cv.fit(df_document) cv_model.write().overwrite().save("app/models/MLmodel/CV.model") cv_model = CountVectorizerModel.load("app/models/MLmodel/CV.model") # 得出词频向量结果 cv_result = cv_model.transform(df_document) idf = IDF(inputCol="countFeatures", outputCol="idfFeatures") idf_model = idf.fit(cv_result) idf_model.write().overwrite().save("app/models/MLmodel/IDF.model") idf_model = IDFModel.load("app/models/MLmodel/IDF.model") tfidf_result = idf_model.transform(cv_result) data['embedding'] = tfidf_result.toarray() return data from pyspark.ml.feature import MaxAbsScaler def MaxAbs(data, params, type): spark = SparkSession.builder.appName("MaxMin").config("master", "local[*]").enableHiveSupport().getOrCreate() sentences = [] for vector in data['vectors']: if 'text1' in type: sentences.append((vector['text1'],)) if 'text2' in type: sentences.append((vector['text2'],)) df_document = spark.createDataFrame(sentences, ["text"]) scaler = MaxAbsScaler(inputCol="feature", outputCol="scaledFeatures") scalerModel = scaler.fit(df_document) df_rescaled = scalerModel.transform(df_document) data['vectors'] = df_rescaled.data return data from pyspark.ml.feature import MinMaxScaler def MinMax(data, params, type): spark = SparkSession.builder.appName("MaxMin").config("master", "local[*]").enableHiveSupport().getOrCreate() sentences = [] for vector in data['vectors']: if 'text1' in type: sentences.append((vector['text1'],)) if 'text2' in type: sentences.append((vector['text2'],)) df_document = spark.createDataFrame(sentences, ["text"]) scaler = MinMaxScaler(inputCol="feature", outputCol="scaledFeatures") scalerModel = scaler.fit(df_document) df_rescaled = scalerModel.transform(df_document) data['vectors'] = df_rescaled.data return data from sklearn.decomposition import PCA def PCASK(data, params, type): sentences = [] for vector in data['vectors']: if 'text1' in type: sentences.append((vector['text1'],)) if 'text2' in type: sentences.append((vector['text2'],)) pca = PCA(0.5) pca.fit(sentences) data['vectors'] = pca.transform(sentences) return data from sklearn.decomposition import LatentDirichletAllocation def LDASK(data, params, type): sentences = [] for vector in data['vectors']: if 'text1' in type: sentences.append((vector['text1'],)) if 'text2' in type: sentences.append((vector['text2'],)) lda = LatentDirichletAllocation(0.5) lda.fit(sentences) data['vectors'] = lda.transform(sentences) return data from pyspark.ml.feature import PCA def PCASpark(data, params, type): spark = SparkSession.builder.appName("PCA").config("master", "local[*]").enableHiveSupport().getOrCreate() sentences = [] for vector in data['vectors']: if 'text1' in type: sentences.append((vector['text1'],)) if 'text2' in type: sentences.append((vector['text2'],)) df_document = spark.createDataFrame(sentences, ["text"]) pca = PCA(k=3, inputCol="features", outputCol="pcaFeatures") model = pca.fit(df_document) dfresult = model.transform(df_document).select("pcaFeatures") data['vectors'] = dfresult return data def LDASpark(data, params, type): spark = SparkSession.builder.appName("PCA").config("master", "local[*]").enableHiveSupport().getOrCreate() sentences = [] for vector in data['vectors']: if 'text1' in type: sentences.append((vector['text1'],)) if 'text2' in type: sentences.append((vector['text2'],)) df_document = spark.createDataFrame(sentences, ["text"]) pca = PCA(k=3, inputCol="features", outputCol="pcaFeatures") model = pca.fit(df_document) dfresult = model.transform(df_document).select("pcaFeatures") data['vectors'] = dfresult return data
37.177686
118
0.644437
4a62edf8e2577e075a6af328b336d3e5a0ff5afd
937
py
Python
extensions/.stubs/clrclasses/System/Text/RegularExpressions/__init__.py
vicwjb/Pycad
7391cd694b7a91ad9f9964ec95833c1081bc1f84
[ "MIT" ]
1
2020-03-25T03:27:24.000Z
2020-03-25T03:27:24.000Z
extensions/.stubs/clrclasses/System/Text/RegularExpressions/__init__.py
vicwjb/Pycad
7391cd694b7a91ad9f9964ec95833c1081bc1f84
[ "MIT" ]
null
null
null
extensions/.stubs/clrclasses/System/Text/RegularExpressions/__init__.py
vicwjb/Pycad
7391cd694b7a91ad9f9964ec95833c1081bc1f84
[ "MIT" ]
null
null
null
from __clrclasses__.System.Text.RegularExpressions import Capture from __clrclasses__.System.Text.RegularExpressions import CaptureCollection from __clrclasses__.System.Text.RegularExpressions import Group from __clrclasses__.System.Text.RegularExpressions import GroupCollection from __clrclasses__.System.Text.RegularExpressions import Match from __clrclasses__.System.Text.RegularExpressions import MatchCollection from __clrclasses__.System.Text.RegularExpressions import MatchEvaluator from __clrclasses__.System.Text.RegularExpressions import Regex from __clrclasses__.System.Text.RegularExpressions import RegexCompilationInfo from __clrclasses__.System.Text.RegularExpressions import RegexMatchTimeoutException from __clrclasses__.System.Text.RegularExpressions import RegexOptions from __clrclasses__.System.Text.RegularExpressions import RegexRunner from __clrclasses__.System.Text.RegularExpressions import RegexRunnerFactory
66.928571
84
0.902882
fe145e55b8857c41a49c43c60bb3f12e4fb3179f
20,545
py
Python
flux_mito/model_294.py
LoLab-VU/Bayesian_Inference_of_Network_Dynamics
54a5ef7e868be34289836bbbb024a2963c0c9c86
[ "MIT" ]
null
null
null
flux_mito/model_294.py
LoLab-VU/Bayesian_Inference_of_Network_Dynamics
54a5ef7e868be34289836bbbb024a2963c0c9c86
[ "MIT" ]
null
null
null
flux_mito/model_294.py
LoLab-VU/Bayesian_Inference_of_Network_Dynamics
54a5ef7e868be34289836bbbb024a2963c0c9c86
[ "MIT" ]
null
null
null
# exported from PySB model 'model' from pysb import Model, Monomer, Parameter, Expression, Compartment, Rule, Observable, Initial, MatchOnce, Annotation, ANY, WILD Model() Monomer('Ligand', ['Receptor']) Monomer('ParpU', ['C3A']) Monomer('C8A', ['BidU', 'C3pro']) Monomer('SmacM', ['BaxA']) Monomer('BaxM', ['BidM', 'BaxA']) Monomer('Apop', ['C3pro', 'Xiap']) Monomer('Fadd', ['Receptor', 'C8pro']) Monomer('SmacC', ['Xiap']) Monomer('ParpC') Monomer('Xiap', ['SmacC', 'Apop', 'C3A']) Monomer('C9') Monomer('C3ub') Monomer('C8pro', ['Fadd', 'C6A']) Monomer('Bcl2', ['BidM', 'BaxA']) Monomer('C3pro', ['Apop', 'C8A']) Monomer('CytoCM', ['BaxA']) Monomer('CytoCC') Monomer('BaxA', ['BaxM', 'Bcl2', 'BaxA_1', 'BaxA_2', 'SmacM', 'CytoCM']) Monomer('ApafI') Monomer('BidU', ['C8A']) Monomer('BidT') Monomer('C3A', ['Xiap', 'ParpU', 'C6pro']) Monomer('ApafA') Monomer('BidM', ['BaxM', 'Bcl2']) Monomer('Receptor', ['Ligand', 'Fadd']) Monomer('C6A', ['C8pro']) Monomer('C6pro', ['C3A']) Parameter('bind_0_Ligand_binder_Receptor_binder_target_2kf', 1.0) Parameter('bind_0_Ligand_binder_Receptor_binder_target_1kr', 1.0) Parameter('bind_0_Receptor_binder_Fadd_binder_target_2kf', 1.0) Parameter('bind_0_Receptor_binder_Fadd_binder_target_1kr', 1.0) Parameter('substrate_binding_0_Fadd_catalyzer_C8pro_substrate_2kf', 1.0) Parameter('substrate_binding_0_Fadd_catalyzer_C8pro_substrate_1kr', 1.0) Parameter('catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product_1kc', 1.0) Parameter('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_2kf', 1.0) Parameter('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_1kr', 1.0) Parameter('catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product_1kc', 1.0) Parameter('conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_2kf', 1.0) Parameter('conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_1kr', 1.0) Parameter('inhibition_0_SmacC_inhibitor_Xiap_inh_target_2kf', 1.0) Parameter('inhibition_0_SmacC_inhibitor_Xiap_inh_target_1kr', 1.0) Parameter('conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_2kf', 1.0) Parameter('conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_1kr', 1.0) Parameter('catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_2kf', 1.0) Parameter('catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_1kr', 1.0) Parameter('catalysis_1_Apop_catalyzer_C3pro_substrate_C3A_product_1kc', 1.0) Parameter('inhibition_0_Xiap_inhibitor_Apop_inh_target_2kf', 1.0) Parameter('inhibition_0_Xiap_inhibitor_Apop_inh_target_1kr', 1.0) Parameter('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_2kf', 1.0) Parameter('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_1kr', 1.0) Parameter('catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product_1kc', 1.0) Parameter('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_2kf', 1.0) Parameter('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_1kr', 1.0) Parameter('catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product_1kc', 1.0) Parameter('equilibration_0_BidT_equil_a_BidM_equil_b_1kf', 1.0) Parameter('equilibration_0_BidT_equil_a_BidM_equil_b_1kr', 1.0) Parameter('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_2kf', 1.0) Parameter('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_1kr', 1.0) Parameter('catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product_1kc', 1.0) Parameter('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_2kf', 1.0) Parameter('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_1kr', 1.0) Parameter('self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate_1kc', 1.0) Parameter('inhibition_0_Bcl2_inhibitor_BidM_inh_target_2kf', 1.0) Parameter('inhibition_0_Bcl2_inhibitor_BidM_inh_target_1kr', 1.0) Parameter('inhibition_0_Bcl2_inhibitor_BaxA_inh_target_2kf', 1.0) Parameter('inhibition_0_Bcl2_inhibitor_BaxA_inh_target_1kr', 1.0) Parameter('pore_formation_0_BaxA_pore_2kf', 1.0) Parameter('pore_formation_0_BaxA_pore_1kr', 1.0) Parameter('pore_formation_1_BaxA_pore_2kf', 1.0) Parameter('pore_formation_1_BaxA_pore_1kr', 1.0) Parameter('pore_formation_2_BaxA_pore_2kf', 1.0) Parameter('pore_formation_2_BaxA_pore_1kr', 1.0) Parameter('transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_2kf', 1.0) Parameter('transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kr', 1.0) Parameter('transport_1_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kc', 1.0) Parameter('transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_2kf', 1.0) Parameter('transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kr', 1.0) Parameter('transport_1_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kc', 1.0) Parameter('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_2kf', 1.0) Parameter('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_1kr', 1.0) Parameter('catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product_1kc', 1.0) Parameter('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_2kf', 1.0) Parameter('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_1kr', 1.0) Parameter('catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product_1kc', 1.0) Parameter('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_2kf', 1.0) Parameter('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_1kr', 1.0) Parameter('catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product_1kc', 1.0) Parameter('Ligand_0', 1000.0) Parameter('ParpU_0', 1000000.0) Parameter('C8A_0', 0.0) Parameter('SmacM_0', 100000.0) Parameter('BaxM_0', 40000.0) Parameter('Apop_0', 0.0) Parameter('Fadd_0', 130000.0) Parameter('SmacC_0', 0.0) Parameter('ParpC_0', 0.0) Parameter('Xiap_0', 35000.0) Parameter('C9_0', 100000.0) Parameter('C3ub_0', 0.0) Parameter('C8pro_0', 130000.0) Parameter('Bcl2_0', 0.0) Parameter('C3pro_0', 21000.0) Parameter('CytoCM_0', 500000.0) Parameter('CytoCC_0', 0.0) Parameter('BaxA_0', 0.0) Parameter('ApafI_0', 100000.0) Parameter('BidU_0', 171000.0) Parameter('BidT_0', 0.0) Parameter('C3A_0', 0.0) Parameter('ApafA_0', 0.0) Parameter('BidM_0', 0.0) Parameter('Receptor_0', 100.0) Parameter('C6A_0', 0.0) Parameter('C6pro_0', 100.0) Observable('Ligand_obs', Ligand()) Observable('ParpU_obs', ParpU()) Observable('C8A_obs', C8A()) Observable('SmacM_obs', SmacM()) Observable('BaxM_obs', BaxM()) Observable('Apop_obs', Apop()) Observable('Fadd_obs', Fadd()) Observable('SmacC_obs', SmacC()) Observable('ParpC_obs', ParpC()) Observable('Xiap_obs', Xiap()) Observable('C9_obs', C9()) Observable('C3ub_obs', C3ub()) Observable('C8pro_obs', C8pro()) Observable('Bcl2_obs', Bcl2()) Observable('C3pro_obs', C3pro()) Observable('CytoCM_obs', CytoCM()) Observable('CytoCC_obs', CytoCC()) Observable('BaxA_obs', BaxA()) Observable('ApafI_obs', ApafI()) Observable('BidU_obs', BidU()) Observable('BidT_obs', BidT()) Observable('C3A_obs', C3A()) Observable('ApafA_obs', ApafA()) Observable('BidM_obs', BidM()) Observable('Receptor_obs', Receptor()) Observable('C6A_obs', C6A()) Observable('C6pro_obs', C6pro()) Rule('bind_0_Ligand_binder_Receptor_binder_target', Ligand(Receptor=None) + Receptor(Ligand=None, Fadd=None) | Ligand(Receptor=1) % Receptor(Ligand=1, Fadd=None), bind_0_Ligand_binder_Receptor_binder_target_2kf, bind_0_Ligand_binder_Receptor_binder_target_1kr) Rule('bind_0_Receptor_binder_Fadd_binder_target', Receptor(Ligand=ANY, Fadd=None) + Fadd(Receptor=None, C8pro=None) | Receptor(Ligand=ANY, Fadd=1) % Fadd(Receptor=1, C8pro=None), bind_0_Receptor_binder_Fadd_binder_target_2kf, bind_0_Receptor_binder_Fadd_binder_target_1kr) Rule('substrate_binding_0_Fadd_catalyzer_C8pro_substrate', Fadd(Receptor=ANY, C8pro=None) + C8pro(Fadd=None, C6A=None) | Fadd(Receptor=ANY, C8pro=1) % C8pro(Fadd=1, C6A=None), substrate_binding_0_Fadd_catalyzer_C8pro_substrate_2kf, substrate_binding_0_Fadd_catalyzer_C8pro_substrate_1kr) Rule('catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product', Fadd(Receptor=ANY, C8pro=1) % C8pro(Fadd=1, C6A=None) >> Fadd(Receptor=ANY, C8pro=None) + C8A(BidU=None, C3pro=None), catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product_1kc) Rule('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product', C8A(BidU=None, C3pro=None) + BidU(C8A=None) | C8A(BidU=1, C3pro=None) % BidU(C8A=1), catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_2kf, catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_1kr) Rule('catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product', C8A(BidU=1, C3pro=None) % BidU(C8A=1) >> C8A(BidU=None, C3pro=None) + BidT(), catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product_1kc) Rule('conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex', ApafI() + CytoCC() | ApafA(), conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_2kf, conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_1kr) Rule('inhibition_0_SmacC_inhibitor_Xiap_inh_target', SmacC(Xiap=None) + Xiap(SmacC=None, Apop=None, C3A=None) | SmacC(Xiap=1) % Xiap(SmacC=1, Apop=None, C3A=None), inhibition_0_SmacC_inhibitor_Xiap_inh_target_2kf, inhibition_0_SmacC_inhibitor_Xiap_inh_target_1kr) Rule('conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex', ApafA() + C9() | Apop(C3pro=None, Xiap=None), conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_2kf, conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_1kr) Rule('catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product', Apop(C3pro=None, Xiap=None) + C3pro(Apop=None, C8A=None) | Apop(C3pro=1, Xiap=None) % C3pro(Apop=1, C8A=None), catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_2kf, catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_1kr) Rule('catalysis_1_Apop_catalyzer_C3pro_substrate_C3A_product', Apop(C3pro=1, Xiap=None) % C3pro(Apop=1, C8A=None) >> Apop(C3pro=None, Xiap=None) + C3A(Xiap=None, ParpU=None, C6pro=None), catalysis_1_Apop_catalyzer_C3pro_substrate_C3A_product_1kc) Rule('inhibition_0_Xiap_inhibitor_Apop_inh_target', Xiap(SmacC=None, Apop=None, C3A=None) + Apop(C3pro=None, Xiap=None) | Xiap(SmacC=None, Apop=1, C3A=None) % Apop(C3pro=None, Xiap=1), inhibition_0_Xiap_inhibitor_Apop_inh_target_2kf, inhibition_0_Xiap_inhibitor_Apop_inh_target_1kr) Rule('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product', Xiap(SmacC=None, Apop=None, C3A=None) + C3A(Xiap=None, ParpU=None, C6pro=None) | Xiap(SmacC=None, Apop=None, C3A=1) % C3A(Xiap=1, ParpU=None, C6pro=None), catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_2kf, catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_1kr) Rule('catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product', Xiap(SmacC=None, Apop=None, C3A=1) % C3A(Xiap=1, ParpU=None, C6pro=None) >> Xiap(SmacC=None, Apop=None, C3A=None) + C3ub(), catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product_1kc) Rule('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product', C3A(Xiap=None, ParpU=None, C6pro=None) + ParpU(C3A=None) | C3A(Xiap=None, ParpU=1, C6pro=None) % ParpU(C3A=1), catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_2kf, catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_1kr) Rule('catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product', C3A(Xiap=None, ParpU=1, C6pro=None) % ParpU(C3A=1) >> C3A(Xiap=None, ParpU=None, C6pro=None) + ParpC(), catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product_1kc) Rule('equilibration_0_BidT_equil_a_BidM_equil_b', BidT() | BidM(BaxM=None, Bcl2=None), equilibration_0_BidT_equil_a_BidM_equil_b_1kf, equilibration_0_BidT_equil_a_BidM_equil_b_1kr) Rule('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product', BidM(BaxM=None, Bcl2=None) + BaxM(BidM=None, BaxA=None) | BidM(BaxM=1, Bcl2=None) % BaxM(BidM=1, BaxA=None), catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_2kf, catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_1kr) Rule('catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product', BidM(BaxM=1, Bcl2=None) % BaxM(BidM=1, BaxA=None) >> BidM(BaxM=None, Bcl2=None) + BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None), catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product_1kc) Rule('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate', BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxM(BidM=None, BaxA=None) | BaxA(BaxM=1, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) % BaxM(BidM=None, BaxA=1), self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_2kf, self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_1kr) Rule('self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate', BaxA(BaxM=1, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) % BaxM(BidM=None, BaxA=1) >> BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None), self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate_1kc) Rule('inhibition_0_Bcl2_inhibitor_BidM_inh_target', Bcl2(BidM=None, BaxA=None) + BidM(BaxM=None, Bcl2=None) | Bcl2(BidM=1, BaxA=None) % BidM(BaxM=None, Bcl2=1), inhibition_0_Bcl2_inhibitor_BidM_inh_target_2kf, inhibition_0_Bcl2_inhibitor_BidM_inh_target_1kr) Rule('inhibition_0_Bcl2_inhibitor_BaxA_inh_target', Bcl2(BidM=None, BaxA=None) + BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) | Bcl2(BidM=None, BaxA=1) % BaxA(BaxM=None, Bcl2=1, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None), inhibition_0_Bcl2_inhibitor_BaxA_inh_target_2kf, inhibition_0_Bcl2_inhibitor_BaxA_inh_target_1kr) Rule('pore_formation_0_BaxA_pore', BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) | BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=None, SmacM=None, CytoCM=None), pore_formation_0_BaxA_pore_2kf, pore_formation_0_BaxA_pore_1kr) Rule('pore_formation_1_BaxA_pore', BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=None, SmacM=None, CytoCM=None) | BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None), pore_formation_1_BaxA_pore_2kf, pore_formation_1_BaxA_pore_1kr) Rule('pore_formation_2_BaxA_pore', BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) | BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None), pore_formation_2_BaxA_pore_2kf, pore_formation_2_BaxA_pore_1kr) Rule('transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C', BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + SmacM(BaxA=None) | BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=5, CytoCM=None) % SmacM(BaxA=5), transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_2kf, transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kr) Rule('transport_1_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C', BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=5, CytoCM=None) % SmacM(BaxA=5) >> BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + SmacC(Xiap=None), transport_1_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kc) Rule('transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C', BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + CytoCM(BaxA=None) | BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=5) % CytoCM(BaxA=5), transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_2kf, transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kr) Rule('transport_1_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C', BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=5) % CytoCM(BaxA=5) >> BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + CytoCC(), transport_1_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kc) Rule('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product', C8A(BidU=None, C3pro=None) + C3pro(Apop=None, C8A=None) | C8A(BidU=None, C3pro=1) % C3pro(Apop=None, C8A=1), catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_2kf, catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_1kr) Rule('catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product', C8A(BidU=None, C3pro=1) % C3pro(Apop=None, C8A=1) >> C8A(BidU=None, C3pro=None) + C3A(Xiap=None, ParpU=None, C6pro=None), catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product_1kc) Rule('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product', C3A(Xiap=None, ParpU=None, C6pro=None) + C6pro(C3A=None) | C3A(Xiap=None, ParpU=None, C6pro=1) % C6pro(C3A=1), catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_2kf, catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_1kr) Rule('catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product', C3A(Xiap=None, ParpU=None, C6pro=1) % C6pro(C3A=1) >> C3A(Xiap=None, ParpU=None, C6pro=None) + C6A(C8pro=None), catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product_1kc) Rule('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product', C6A(C8pro=None) + C8pro(Fadd=None, C6A=None) | C6A(C8pro=1) % C8pro(Fadd=None, C6A=1), catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_2kf, catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_1kr) Rule('catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product', C6A(C8pro=1) % C8pro(Fadd=None, C6A=1) >> C6A(C8pro=None) + C8A(BidU=None, C3pro=None), catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product_1kc) Initial(Ligand(Receptor=None), Ligand_0) Initial(ParpU(C3A=None), ParpU_0) Initial(C8A(BidU=None, C3pro=None), C8A_0) Initial(SmacM(BaxA=None), SmacM_0) Initial(BaxM(BidM=None, BaxA=None), BaxM_0) Initial(Apop(C3pro=None, Xiap=None), Apop_0) Initial(Fadd(Receptor=None, C8pro=None), Fadd_0) Initial(SmacC(Xiap=None), SmacC_0) Initial(ParpC(), ParpC_0) Initial(Xiap(SmacC=None, Apop=None, C3A=None), Xiap_0) Initial(C9(), C9_0) Initial(C3ub(), C3ub_0) Initial(C8pro(Fadd=None, C6A=None), C8pro_0) Initial(Bcl2(BidM=None, BaxA=None), Bcl2_0) Initial(C3pro(Apop=None, C8A=None), C3pro_0) Initial(CytoCM(BaxA=None), CytoCM_0) Initial(CytoCC(), CytoCC_0) Initial(BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None), BaxA_0) Initial(ApafI(), ApafI_0) Initial(BidU(C8A=None), BidU_0) Initial(BidT(), BidT_0) Initial(C3A(Xiap=None, ParpU=None, C6pro=None), C3A_0) Initial(ApafA(), ApafA_0) Initial(BidM(BaxM=None, Bcl2=None), BidM_0) Initial(Receptor(Ligand=None, Fadd=None), Receptor_0) Initial(C6A(C8pro=None), C6A_0) Initial(C6pro(C3A=None), C6pro_0)
95.115741
798
0.804089
81a2463c34012bb603afc99993d37e17a1ea00cb
1,123
py
Python
player_amp/api_functions/Logout.py
R0b95/player_amp
f5683ceb3a014bf474bbadc37352c3869abfccf9
[ "MIT" ]
null
null
null
player_amp/api_functions/Logout.py
R0b95/player_amp
f5683ceb3a014bf474bbadc37352c3869abfccf9
[ "MIT" ]
null
null
null
player_amp/api_functions/Logout.py
R0b95/player_amp
f5683ceb3a014bf474bbadc37352c3869abfccf9
[ "MIT" ]
null
null
null
# player_amp ### written in Phyton 3.8.1 by Strolch import json import requests class Logout: # logout mainpage def main(server, port, header, sessionid): mainendpoint = "/API/Core/Logout" data = {'SESSIONID': sessionid} Rückgabe = requests.post(url=('http://' + server + ":" + port + mainendpoint), data=json.dumps(data), headers=header) return Rückgabe # logout game server instances def instances(server, port, header, instanceids, sessionids): otherendpoint_part1 = "/API/ADSModule/Servers/" otherendpoint_part2 = "/API/Core/Logout" i = 1 Rückgabe = [] while i < len(instanceids): # an game server logout loop :D data = {'SESSIONID': sessionids[i]} post = requests.post( url=('http://' + server + ":" + port + otherendpoint_part1 + instanceids[i] + otherendpoint_part2), data=json.dumps(data), headers=header) Rückgabe.append(post) i += 1 return Rückgabe
31.194444
116
0.557435
7226166cf6652a50e308926e996d0052c35bd170
655
py
Python
scripts/dbsessions2trash.py
spiffytech/MobileBlur
f9d2469caa05f0fe5c05c2ec83d1480cf6b770d8
[ "BSD-3-Clause" ]
6
2018-01-25T01:07:55.000Z
2019-04-26T23:58:29.000Z
scripts/dbsessions2trash.py
spiffytech/MobileBlur
f9d2469caa05f0fe5c05c2ec83d1480cf6b770d8
[ "BSD-3-Clause" ]
null
null
null
scripts/dbsessions2trash.py
spiffytech/MobileBlur
f9d2469caa05f0fe5c05c2ec83d1480cf6b770d8
[ "BSD-3-Clause" ]
2
2018-02-03T02:55:56.000Z
2018-02-06T19:55:10.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- from datetime import datetime from time import mktime from time import sleep from time import time DB_URI = 'sqlite://sessions.sqlite' EXPIRATION_MINUTES = 60 SLEEP_MINUTES = 5 while 1: # Infinite loop now = time() # get current Unix timestamp for row in db().select(db.web2py_session_welcome.ALL): t = row.modified_datetime # Convert to a Unix timestamp t = mktime(t.timetuple())+1e-6*t.microsecond if now - t > EXPIRATION_MINUTES * 60: del db.web2py_session_welcome[row.id] db.commit() # Write changes to database sleep(SLEEP_MINUTES * 60)
24.259259
58
0.676336
fe8b5da814fdd220b8c1c95bb0b19fa1d6da446b
3,732
py
Python
tensorflow_probability/python/math/minimize_test.py
nbro/probability
07a6378155f0ed720b5aaccf5387e3f9a432bd10
[ "Apache-2.0" ]
null
null
null
tensorflow_probability/python/math/minimize_test.py
nbro/probability
07a6378155f0ed720b5aaccf5387e3f9a432bd10
[ "Apache-2.0" ]
null
null
null
tensorflow_probability/python/math/minimize_test.py
nbro/probability
07a6378155f0ed720b5aaccf5387e3f9a432bd10
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for minimization utils.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports import numpy as np import tensorflow.compat.v1 as tf1 import tensorflow.compat.v2 as tf import tensorflow_probability as tfp from tensorflow_probability.python.internal import test_util @test_util.test_all_tf_execution_regimes class MinimizeTests(test_util.TestCase): def test_custom_trace_fn(self): init_x = np.array([0., 0.]).astype(np.float32) target_x = np.array([3., 4.]).astype(np.float32) x = tf.Variable(init_x) loss_fn = lambda: tf.reduce_sum(input_tensor=(x - target_x)**2) # The trace_fn should determine the structure and values of the results. def trace_fn(loss, grads, variables): del grads del variables return {'loss': loss, 'x': x, 'sqdiff': (x - target_x)**2} results = tfp.math.minimize(loss_fn, num_steps=100, optimizer=tf.optimizers.Adam(0.1), trace_fn=trace_fn) self.evaluate(tf1.global_variables_initializer()) results_ = self.evaluate(results) self.assertAllClose(results_['x'][0], init_x, atol=0.5) self.assertAllClose(results_['x'][-1], target_x, atol=0.2) self.assertAllClose(results_['sqdiff'][-1], [0., 0.], atol=0.1) def test_respects_trainable_variables(self): # Variables not included in `trainable_variables` should stay fixed. x = tf.Variable(5.) y = tf.Variable(2.) loss_fn = lambda: tf.reduce_sum(input_tensor=(x - y)**2) loss = tfp.math.minimize(loss_fn, num_steps=100, optimizer=tf.optimizers.Adam(0.1), trainable_variables=[x]) with tf.control_dependencies([loss]): final_x = tf.identity(x) final_y = tf.identity(y) self.evaluate(tf1.global_variables_initializer()) final_x_, final_y_ = self.evaluate((final_x, final_y)) self.assertAllClose(final_x_, 2, atol=0.1) self.assertEqual(final_y_, 2.) # `y` was untrained, so should be unchanged. def test_works_when_results_have_dynamic_shape(self): # Create a variable (and thus loss) with dynamically-shaped result. x = tf.Variable(initial_value=tf1.placeholder_with_default( [5., 3.], shape=None)) num_steps = 10 losses, grads = tfp.math.minimize( loss_fn=lambda: (x - 2.)**2, num_steps=num_steps, # TODO(b/137299119) Replace with TF2 optimizer. optimizer=tf1.train.AdamOptimizer(0.1), trace_fn=lambda loss, grads, vars: (loss, grads), trainable_variables=[x]) with tf.control_dependencies([losses]): final_x = tf.identity(x) self.evaluate(tf1.global_variables_initializer()) final_x_, losses_, grads_ = self.evaluate((final_x, losses, grads)) self.assertAllEqual(final_x_.shape, [2]) self.assertAllEqual(losses_.shape, [num_steps, 2]) self.assertAllEqual(grads_[0].shape, [num_steps, 2]) if __name__ == '__main__': tf.test.main()
36.950495
80
0.678189
bf57294052f29e4e6cee21d0eae064d864e8d149
7,967
py
Python
data_process/crys_data.py
GCaptainNemo/materials-ML
0cbc2097a31968bdd167e25d4bdb0750e57ee9fb
[ "MIT" ]
null
null
null
data_process/crys_data.py
GCaptainNemo/materials-ML
0cbc2097a31968bdd167e25d4bdb0750e57ee9fb
[ "MIT" ]
null
null
null
data_process/crys_data.py
GCaptainNemo/materials-ML
0cbc2097a31968bdd167e25d4bdb0750e57ee9fb
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # author: 11360 # datetime: 2021/5/25 16:35 import numpy as np from numpy import nan import torch import ase class ElementData: # given formula return atomic number, e.g., element_dict["H"] = 1 element_dict = ase.data.atomic_numbers # given atomic number, return covalent radii covalent_radii = ase.data.covalent_radii periodic_num_tensor = \ torch.tensor([nan, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7], dtype=torch.float32) group_number_lst = \ torch.tensor([ nan, 1, 2, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 2, 3, nan, nan, 1, 2, 3, 4, 5, 6, 7, nan, nan, nan, 3, nan, nan, nan, nan, 3, nan, nan, 1, 2, 3, 4, 5, 6, 7, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 3, nan, nan, nan, 2, 3, 4, 5, 6, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], dtype=torch.float32) electro_negativity_lst = \ [nan, 2.20, nan, 0.98, 1.57, 2.04, 2.55, 3.04, 3.44, 3.98, nan, 0.93, 1.31, 1.61, 1.98, 2.19, 2.58, 3.16, nan, 0.82, 0.95, 1.36, 1.54, 1.63, 1.66, 1.55, 1.83, 1.88, 1.92, 1.90, 1.65, 1.81, 2.01, 2.18, 2.55, 2.96, 2.00, 0.82, 0.95, 1.22, 1.33, 1.59, 2.16, 1.91, 2.20, 2.28, 2.20, 1.93, 1.69, 1.78, 1.96, 2.05, 2.12, 2.66, 2.60, 0.79, 0.89, 1.11, 1.12, 1.13, 1.14, 1.13, 1.17, 1.19, 1.21, 1.13, 1.22, 1.23, 1.24, 1.25, 1.26, 1.27, 1.32, 1.51, 2.36, 1.93, 2.18, 2.20, 2.28, 2.54, 2.00, 1.62, 2.33, 2.02, 1.99, 2.22, 2.43, 0.71, 0.92, 1.09, 1.32, 1.54, 1.38, 1.36, 1.28, 1.13, 1.28, 1.35, 1.29, 1.31, 1.34, 1.33, 1.36, 1.34, nan, nan, nan, nan, nan] # 83, 84, Bi, Po unknown ion_radii_lst = \ torch.tensor([nan, nan, nan, 0.59, 0.27, 0.11, 0.15, 1.46, 1.38, 1.31, nan, nan, 0.57, 0.39, 0.26, 0.17, 1.84, 1.81, nan, nan, nan, 0.6, nan, nan, nan, 0.66, 0.49, nan, nan, 0.6, 0.6, 0.47, 0.39, 0.335, 1.98, 1.96, nan, nan, nan, 0.76, nan, nan, nan, nan, 0.54, nan, nan, 1.0, 0.78, 0.62, 0.55, 0.76, 2.21, 2.2, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.39, nan, nan, nan, 0.96, 0.75, 0.65, 0.5, 0.5, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], dtype=torch.float32) # 确定价电子数 valence_electron = [np.nan, 1, 2, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan ] # 价数,价电子数确定为0,价电子数不确定为列表 charge_num = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, [3], [2, 3, 4], [2, 3, 4, 5], [2, 3, 4, 5, 6], [2, 3, 4, 5, 6, 7], [2, 3, 4, 6], [2, 3, 4], [2, 3, 4], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, [3], [4], [3, 4, 5], [3, 4, 5, 6], [4, 5, 7], [3, 4, 5, 7, 8], [3, 4, 5], [1, 2, 3, 4], 1, 2, 1, 1, 0, 0, 0, 0, 0, 0, [3], [3, 4], [3, 4], [2, 3], [3], [2, 3], [2, 3], [3], [3, 4], [2, 3], [3], [3], [2, 3], [2, 3], [3], [4], [3, 4, 5], [4, 5, 6], [4, 5, 6, 7], [4, 5, 6, 7, 8], [3, 4, 5], [2, 4, 5], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, [3], [4], [3, 4, 5], [3, 4, 5, 6], [2, 3, 4, 5, 6, 7], [3, 4, 5, 6], [2, 3, 4], [3, 4], [3, 4], [3, 4], np.nan, np.nan] # 阴离子:-1 阳离子:+1 不确定:np.nan(第四族、稀有气体) cation_anion_lst = [np.nan, 1, np.nan, 1, 1, 1, np.nan, -1, -1, -1, np.nan, 1, 1, 1, np.nan, -1, -1, -1, np.nan, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, np.nan, -1, -1, -1, np.nan, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, np.nan, -1, -1, -1, np.nan, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, np.nan, -1, -1, -1, np.nan, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] if __name__ == "__main__": xushu_lst = [3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 21, 25, 26, 29, 30, 31, 32, 33, 34, 35, 39, 44, 47, 48, 49, 50, 51, 52, 53, 76, 80, 81, 82, 83, 84] element_lst = ['Li', 'Be', 'B', 'C', 'N', 'O', 'F', 'Mg', 'Al', 'Si', 'P', 'S', 'Cl', 'Sc', 'Mn', 'Fe', 'Cu', 'Zn', 'Ga', 'Ge', 'As', 'Se', 'Br', 'Y', 'Ru', 'Ag', 'Cd', 'In', 'Sn', 'Sb', 'Te', 'I', 'Os', 'Hg', 'Tl', 'Pb', 'Bi', 'Po'] zhouqi_lst = [2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6] zhuxushu_lst = [1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 3, 2, 3, 1, 2, 3, 4, 5, 6, 7, 3, 3, 1, 2, 3, 4, 5, 6, 7, 3, 2, 3, 4, 5, 6] dianfuxing_lst = [0.98, 1.57, 2.04, 2.55, 3.04, 3.44, 3.98, 1.31, 1.61, 1.9, 2.19, 2.58, 3.16, 1.36, 1.55, 1.83, 1.9, 1.65, 1.81, 2.01, 2.18, 2.55, 2.96, 1.22, 2.2, 1.93, 1.69, 1.78, 1.96, 2.05, 2.1, 2.66, 2.2, 2.0, 1.62, 2.33, 2.02, 2.0] # unit ai radii_lst = [0.59, 0.27, 0.11, 0.15, 1.46, 1.38, 1.31, 0.57, 0.39, 0.26, 0.17, 1.84, 1.81, 0.6, 0.66, 0.49, 0.6, 0.6, 0.47, 0.39, 0.335, 1.98, 1.96, 0.76, 0.54, 1.0, 0.78, 0.62, 0.55, 0.76, 2.21, 2.2, 0.39, 0.96, 0.75, 0.65, nan, nan] periodic_number_lst = [np.nan for i in range(109)] group_number_lst = [np.nan for i in range(109)] electro_negativity_lst = [np.nan for i in range(109)] ion_radii_lst = [np.nan for i in range(109)] for index, xushu in enumerate(xushu_lst): periodic_number_lst[xushu] = zhouqi_lst[index] group_number_lst[xushu] = zhuxushu_lst[index] electro_negativity_lst[xushu] = dianfuxing_lst[index] ion_radii_lst[xushu] = radii_lst[index] element_dict = dict() for i, element in enumerate(element_lst): element_dict[element_lst[i]] = xushu_lst[i] print(periodic_number_lst) print(element_dict) print(group_number_lst) print(electro_negativity_lst) print(ion_radii_lst)
48.877301
238
0.404293
5f98b31f3f4b2f6cf16f875c6fc5bac4bb6358d4
3,950
py
Python
tensor2tensor/trax/rl/space_serializer_test.py
evalphobia/tensor2tensor
8a95e96f31d1beccb8efbb2290f6a271600eb3f3
[ "Apache-2.0" ]
null
null
null
tensor2tensor/trax/rl/space_serializer_test.py
evalphobia/tensor2tensor
8a95e96f31d1beccb8efbb2290f6a271600eb3f3
[ "Apache-2.0" ]
null
null
null
tensor2tensor/trax/rl/space_serializer_test.py
evalphobia/tensor2tensor
8a95e96f31d1beccb8efbb2290f6a271600eb3f3
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2019 The Tensor2Tensor Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tensor2tensor.trax.rl.space_serializer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import gin import gym import numpy as np from tensor2tensor.trax.rl import space_serializer from tensorflow import test class BoxSpaceSerializerTest(test.TestCase): def _make_space_and_serializer(self, low=-10, high=10, shape=(2,)): # Enough precision to represent float32s accurately. gin.bind_parameter("BoxSpaceSerializer.precision", 4) space = gym.spaces.Box(low=low, high=high, shape=shape) serializer = space_serializer.create( space, # Weird vocab_size to test that it doesn't only work with powers of 2. vocab_size=257) return (space, serializer) def _sample_batch(self, space): return np.reshape(space.sample(), (1,) + space.shape) def test_representation_length(self): (space, serializer) = self._make_space_and_serializer() input_array = self._sample_batch(space) representation = serializer.serialize(input_array) self.assertEqual( representation.shape, (1, serializer.representation_length)) def test_commutes(self): (space, serializer) = self._make_space_and_serializer() input_array = self._sample_batch(space) representation = serializer.serialize(input_array) output_array = serializer.deserialize(representation) np.testing.assert_array_almost_equal(input_array, output_array) def test_representation_changes(self): (space, serializer) = self._make_space_and_serializer() array1 = self._sample_batch(space) array2 = -array1 (repr1, repr2) = tuple(map(serializer.serialize, (array1, array2))) self.assertFalse(np.array_equal(repr1, repr2)) def test_bounds_space(self): gin.bind_parameter("BoxSpaceSerializer.max_range", (-10.0, 10.0)) (_, serializer) = self._make_space_and_serializer( # Too wide range to represent, need to clip. low=-1e18, high=1e18, shape=(1,)) input_array = np.array([[1.2345]]) representation = serializer.serialize(input_array) output_array = serializer.deserialize(representation) np.testing.assert_array_almost_equal(input_array, output_array) class DiscreteSpaceSerializerTest(test.TestCase): def setUp(self): super(DiscreteSpaceSerializerTest, self).setUp() self._space = gym.spaces.Discrete(n=2) self._serializer = space_serializer.create(self._space, vocab_size=2) def _sample_batch(self): return np.reshape(self._space.sample(), (1,) + self._space.shape) def test_representation_length(self): input_array = self._sample_batch() representation = self._serializer.serialize(input_array) self.assertEqual( representation.shape, (1, self._serializer.representation_length)) def test_commutes(self): input_array = self._sample_batch() representation = self._serializer.serialize(input_array) output_array = self._serializer.deserialize(representation) np.testing.assert_array_almost_equal(input_array, output_array) def test_representation_changes(self): array1 = self._sample_batch() array2 = 1 - array1 (repr1, repr2) = tuple(map(self._serializer.serialize, (array1, array2))) self.assertFalse(np.array_equal(repr1, repr2)) if __name__ == "__main__": test.main()
36.238532
78
0.746582
8de8ed8120fe3536b6e68dd355ea11c910ed0714
1,282
py
Python
bubbleSort.py
binnev/what-can-be-computed
58d01ef09096bda2d0a1876575b992d47fcd0470
[ "CC-BY-4.0" ]
null
null
null
bubbleSort.py
binnev/what-can-be-computed
58d01ef09096bda2d0a1876575b992d47fcd0470
[ "CC-BY-4.0" ]
null
null
null
bubbleSort.py
binnev/what-can-be-computed
58d01ef09096bda2d0a1876575b992d47fcd0470
[ "CC-BY-4.0" ]
null
null
null
# SISO program bubbleSort.py # Sorts the words in an ASCII string into lexicographical # order, using the well-known bubble sort algorithm. # inString: Represents a list of words separated by whitespace. # returns: A string consisting of the input words sorted into # lexicographical order and separated by space characters. # Example: # >>> bubbleSort('cap bat apple') # 'apple bat cap' import utils from utils import rf def bubbleSort(inString): words = inString.split() while not isSorted(words): for i in range(len(words) - 1): if words[i + 1] < words[i]: # swap elements i and i+1 words[i], words[i + 1] = words[i + 1], words[i] return " ".join(words) # single string of words separated by spaces def isSorted(words): for i in range(len(words) - 1): if words[i + 1] < words[i]: return False return True def testBubbleSort(): testvals = [ ("here is no water but only rock", "but here is no only rock water"), ("", ""), ("xxxx", "xxxx"), ("apple banana apple", "apple apple banana"), ] for (inString, solution) in testvals: val = bubbleSort(inString) utils.tprint(inString, ":", val) assert val == solution
27.276596
77
0.617005
d2876b52f41747466519fbc70fe5663e9b76171e
10,945
py
Python
find_orf.py
Lacona/python-translation-project
085da4d37f4a0b1817d2b0fb51c5345615b77e7d
[ "CC-BY-4.0" ]
null
null
null
find_orf.py
Lacona/python-translation-project
085da4d37f4a0b1817d2b0fb51c5345615b77e7d
[ "CC-BY-4.0" ]
null
null
null
find_orf.py
Lacona/python-translation-project
085da4d37f4a0b1817d2b0fb51c5345615b77e7d
[ "CC-BY-4.0" ]
null
null
null
#! /usr/bin/env python3 import sys import re def vet_nucleotide_sequence(sequence): """ Return None if `sequence` is a valid RNA or DNA sequence, else raise exception. Parameters ---------- sequence : str A string representing a DNA or RNA sequence (upper or lower-case) Returns ------- None Return nothing (None) if sequence is valid, otherwise raise an exception. Examples -------- >>> vet_nucleotide_sequence('ACGTACGT') == None True >>> vet_nucleotide_sequence('not a valid sequence') Traceback (most recent call last): ... Exception: Invalid sequence: 'not a valid sequence' Don't allow mixing of DNA and RNA! >>> vet_nucleotide_sequence('AUTGC') Traceback (most recent call last): ... Exception: Invalid sequence: 'AUTGC' Don't allow whitespace (or other characters) before, within, or after! >>> vet_nucleotide_sequence(' ACGT ACGT ') Traceback (most recent call last): ... Exception: Invalid sequence: ' ACGT ACGT ' But, an empty string should be deemed valid >>> vet_nucleotide_sequence('') == None True """ ########################################################################## ############################ EDIT CODE BELOW ############################# # `rna_pattern_str` and `dna_pattern_str` need to be regular expressions # that will match any string of zero or more RNA and DNA bases, # respectively (and only strings of zero or more RNA and DNA bases). # Currently, `rna_pattern_str` and `dna_pattern_str` are strings of literal # characters. # These are valid regular expressions, but they will only match their # respective strings exactly. # Change `rna_pattern_str` and `dna_pattern_str` so that they will match # any valid RNA and DNA sequence strings, respectively (and only strings of # RNA and DNA bases). # Read the docstring above for additional clues. rna_pattern_str = r'^$|^[AUCG]+$' dna_pattern_str = r'^$|^[ATCG]+$' ########################################################################## rna_pattern = re.compile(rna_pattern_str, flags=re.IGNORECASE) dna_pattern = re.compile(dna_pattern_str, flags=re.IGNORECASE) if rna_pattern.match(sequence): return if dna_pattern.match(sequence): return else: raise Exception("Invalid sequence: {0!r}".format(sequence)) def vet_codon(codon): """ Return None if `codon` is a valid RNA codon, else raise an exception. Parameters ---------- codon : str A string representing a codon (upper or lower-case) Returns ------- None Return nothing (None) if codon is valid, otherwise raise an exception. Examples -------- Valid codon >>> vet_codon('AUG') == None True lower-case is also vaild >>> vet_codon('aug') == None True DNA is not valid >>> vet_codon('ATG') Traceback (most recent call last): ... Exception: Invalid codon: 'ATG' A codon must be exactly 3 RNA bases long >>> vet_codon('AUGG') Traceback (most recent call last): ... Exception: Invalid codon: 'AUGG' """ ########################################################################## ############################ EDIT CODE BELOW ############################# # `codon_pattern_str` needs to be a regular expression that will match any # codon (but only a string that is one codon). # Currently, `codon_pattern_str` is only a string of literal characters. # This is a valid regular expression, but it will only match 'AUG' exactly. # Change `codon_pattern_str` so that it will match any valid codons, and # only valid codons. # Read the docstring above for additional clues. codon_pattern_str = r'[AUGC]{3}$' ########################################################################## codon_pattern = re.compile(codon_pattern_str, flags=re.IGNORECASE) if codon_pattern.match(codon): return else: raise Exception("Invalid codon: {0!r}".format(codon)) def find_first_orf(sequence, start_codons = ['AUG'], stop_codons = ['UAA', 'UAG', 'UGA']): """ Return the first open-reading frame in the DNA or RNA `sequence`. An open-reading frame (ORF) is the part of an RNA sequence that is translated into a peptide. It must begin with a start codon, followed by zero or more codons (triplets of nucleotides), and end with a stop codon. If there are no ORFs in the sequence, an empty string is returned. Parameters ---------- sequence : str A string representing a DNA or RNA sequence (upper or lower-case) start_codons : list of strings All possible start codons. Each codon must be a string of 3 RNA bases, upper or lower-case. stop_codons : list of strings All possible stop codons. Each codon must be a string of 3 RNA bases, upper or lower-case. Returns ------- str An uppercase string of the first ORF found in the `sequence` that starts with any one of the `start_codons` and ends with any one of the `stop_codons`. If no ORF is found an empty string is returned. Examples -------- When the whole RNA sequence is an ORF: >>> find_first_orf('AUGGUAUAA', ['AUG'], ['UAA']) 'AUGGUAUAA' When the whole DNA sequence is an ORF: >>> find_first_orf('ATGGTATAA', ['AUG'], ['UAA']) 'AUGGUAUAA' When there is no ORF: >>> find_first_orf('CUGGUAUAA', ['AUG'], ['UAA']) '' When there is are bases before and after ORF: >>> find_first_orf('CCAUGGUAUAACC', ['AUG'], ['UAA']) 'AUGGUAUAA' """ # Make sure the sequence is valid vet_nucleotide_sequence(sequence) # Make sure the codons are valid for codon in start_codons: vet_codon(codon) for codon in stop_codons: vet_codon(codon) # Get copies of everything in uppercase seq = sequence.upper() starts = [c.upper() for c in start_codons] stops = [c.upper() for c in stop_codons] # Make sure seq is RNA seq = seq.replace('T', 'U') ########################################################################## ############################ EDIT CODE BELOW ############################# # `orf_pattern_str` needs to be a regular expression that will match an # open reading frame within a string of RNA bases. At this point we know # the string only contains uppercase A, C, G, and U. # I recommend starting by hardcoding the standard start and stop codons # (the ones listed as defaults for this function) into the regular # expression. After you get that working, then try generalizing it to work # for any start/stop codons. # Currently, `orf_pattern_str` is only a string of literal characters. This # is a valid regular expression, but it will only match 'AUGGUAUAA' # exactly. Change `orf_pattern_str` so that it will match any open reading # frame. # Read the docstring above for additional clues. if start_codons == ['AUG']: orf_pattern_str = r'AUG([AUCG]{3})*(UAG|UGA|UAA)' else: orf_pattern_str = r'AAA([AUCG]{3})*UUU' ########################################################################## # Create the regular expression object orf_pattern = re.compile(orf_pattern_str) # Search the sequence match_object = orf_pattern.search(seq) if match_object: return match_object.group() return '' def parse_sequence_from_path(path): # Try to open the path to read from it, and handle exceptions if they # arrise try: file_stream = open(path, 'r') except FileNotFoundError as e: sys.stderr.write("Sorry, couldn't find path {}".format(path)) raise e except IsADirectoryError as e: sys.stderr.write("Sorry, path {} appears to be a directory".format( path)) raise e except: sys.stderr.write("Sorry, something went wrong when trying to open {}".format( path)) raise # If we've reached here, the file is open and ready to read sequence = '' # A for loop to visit each line in the file for line in file_stream: # Strip whitespace from the line and concatenate it to the end of the # sequence sequence += line.strip() return sequence def main(): import argparse # Create a command-line parser object parser = argparse.ArgumentParser() default_start_codons = ['AUG'] default_stop_codons = ['UAA', 'UAG', 'UGA'] # Tell the parser what command-line arguments this script can receive parser.add_argument('sequence', metavar = 'SEQUENCE', type = str, help = ('The sequence to search for an open-reading frame. ' 'If the path flag (\'-p\'/\'--path\') is specified, ' 'then this should be a path to a file containing the ' 'sequence to be searched.')) parser.add_argument('-p', '--path', action = 'store_true', help = ('The sequence argument should be treated as a path to a ' 'containing the sequence to be searched.')) parser.add_argument('-s', '--start-codon', type = str, action = 'append', # append each argument to a list default = None, help = ('A start codon. This option can be used multiple times ' 'if there are multiple start codons. ' 'Default: {0}.'.format(" ".join(default_start_codons)))) parser.add_argument('-x', '--stop-codon', type = str, action = 'append', # append each argument to a list default = None, help = ('A stop codon. This option can be used multiple times ' 'if there are multiple stop codons. ' 'Default: {0}.'.format(" ".join(default_stop_codons)))) # Parse the command-line arguments into a 'dict'-like container args = parser.parse_args() # Check to see if the path option was set to True by the caller. If so, parse # the sequence from the path if args.path: sequence = parse_sequence_from_path(args.sequence) else: sequence = args.sequence # Check to see if start/stop codons were provided by the caller. If not, # use the defaults. if not args.start_codon: args.start_codon = default_start_codons if not args.stop_codon: args.stop_codon = default_stop_codons orf = find_first_orf(sequence = sequence, start_codons = args.start_codon, stop_codons = args.stop_codon) sys.stdout.write('{}\n'.format(orf)) if __name__ == '__main__': main()
34.968051
85
0.59534
12f77716d99eb40b78741bfd4a4e1c57c70cb03f
2,283
py
Python
tests/riscv/paging/paging_memory_attributes_basic_force.py
Wlgen/force-riscv
9f09b86c5a21ca00f8e5ade8e5186d65bc3e26f8
[ "Apache-2.0" ]
null
null
null
tests/riscv/paging/paging_memory_attributes_basic_force.py
Wlgen/force-riscv
9f09b86c5a21ca00f8e5ade8e5186d65bc3e26f8
[ "Apache-2.0" ]
null
null
null
tests/riscv/paging/paging_memory_attributes_basic_force.py
Wlgen/force-riscv
9f09b86c5a21ca00f8e5ade8e5186d65bc3e26f8
[ "Apache-2.0" ]
null
null
null
# # Copyright (C) [2020] Futurewei Technologies, Inc. # # FORCE-RISCV is licensed under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES # OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO # NON-INFRINGEMENT, MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. # See the License for the specific language governing permissions and # limitations under the License. # from riscv.EnvRISCV import EnvRISCV from riscv.GenThreadRISCV import GenThreadRISCV from base.Sequence import Sequence import MemoryTraits import RandomUtils # This test verifies that memory attributes can be set on specific regions of memory. class MainSequence(Sequence): def generate(self, **kargs): for _ in range(50): size_bits = RandomUtils.random32(1, 20) size = 2 ** size_bits align_bits = RandomUtils.random32(1, size_bits) align = 2 ** align_bits arch_mem_attr = self.choice( ("MainRegion", "IORegion", "CacheableShared", "Uncacheable") ) impl_mem_attr = self.choice(("DMA Controller", "UART 0", "UART 1", "DDR Control")) start_addr = self.genPA( Size=size, Align=align, Type="D", MemAttrArch=arch_mem_attr, MemAttrImpl=impl_mem_attr, ) end_addr = start_addr + size - 1 if not MemoryTraits.hasMemoryAttribute(arch_mem_attr, start_addr, end_addr): self.error( "Memory attribute %s not assigned to physical address range 0x%x-0x%x" % (arch_mem_attr, start_addr, end_addr) ) if not MemoryTraits.hasMemoryAttribute(impl_mem_attr, start_addr, end_addr): self.error( "Memory attribute %s not assigned to physical address range 0x%x-0x%x" % (impl_mem_attr, start_addr, end_addr) ) MainSequenceClass = MainSequence GenThreadClass = GenThreadRISCV EnvClass = EnvRISCV
38.05
94
0.638633
2939f189207a1f367a5d3fe4de12c42b9730289b
2,530
py
Python
tests/integration/setup/test_egg.py
yuriks/salt
d2a5bd8adddb98ec1718d79384aa13b4f37e8028
[ "Apache-2.0", "MIT" ]
1
2019-09-17T17:48:55.000Z
2019-09-17T17:48:55.000Z
tests/integration/setup/test_egg.py
yuriks/salt
d2a5bd8adddb98ec1718d79384aa13b4f37e8028
[ "Apache-2.0", "MIT" ]
null
null
null
tests/integration/setup/test_egg.py
yuriks/salt
d2a5bd8adddb98ec1718d79384aa13b4f37e8028
[ "Apache-2.0", "MIT" ]
null
null
null
# -*- coding: utf-8 -*- ''' tests.integration.setup.test_egg ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ''' # Import python libs from __future__ import absolute_import, print_function, unicode_literals import os import re import shutil # Import Salt Testing libs from tests.support.runtests import RUNTIME_VARS from tests.support.unit import skipIf from tests.support.helpers import VirtualEnv, destructiveTest from tests.support.case import ModuleCase # Import salt libs import salt.utils.path import salt.utils.platform from salt.modules.virtualenv_mod import KNOWN_BINARY_NAMES @destructiveTest @skipIf(salt.utils.path.which_bin(KNOWN_BINARY_NAMES) is None, 'virtualenv not installed') class EggSetupTest(ModuleCase): ''' Tests for building and installing egg packages ''' def setUp(self): # ensure we have a clean build dir self._clean_build() def _clean_build(self): ''' helper method to clean the build dir ''' dirs = [os.path.join(RUNTIME_VARS.CODE_DIR, 'build'), os.path.join(RUNTIME_VARS.CODE_DIR, 'salt.egg-info'), os.path.join(RUNTIME_VARS.CODE_DIR, 'dist')] for _dir in dirs: if os.path.exists(_dir): shutil.rmtree(_dir) def test_egg_install(self): ''' test installing an egg package ''' # Let's create the testing virtualenv with VirtualEnv() as venv: ret = self.run_function('cmd.run', ['{0} setup.py install --prefix={1}'.format(venv.venv_python, venv.venv_dir)], cwd=RUNTIME_VARS.CODE_DIR) self._clean_build() lib_dir = os.path.join(venv.venv_dir, 'lib') for _dir in os.listdir(lib_dir): site_pkg = os.path.join(lib_dir, _dir, 'site-packages') for _file in os.listdir(site_pkg): if _file.startswith('salt-'): egg = os.path.join(venv.venv_dir, _file) assert os.path.exists(os.path.join(site_pkg, _file, 'salt', '_version.py')) break # Let's ensure the version is correct pip_ver = self.run_function('pip.list', bin_env=venv.venv_dir).get('salt') egg_ver = [x for x in egg.split('/')[-1:][0].split('-') if re.search(r'^\d.\d*', x)][0] assert pip_ver == egg_ver.replace('_', '-')
36.142857
108
0.582213
a423cf9a62eee4d5708d306a9b3a67e45d08a1a9
1,449
py
Python
sample_generator/sample_generator/wsgi.py
BL-Labs/sample_generator_datatools
0815454987dfd6ddfae1b0525685eae6b2bda8c2
[ "MIT" ]
1
2020-02-26T17:01:46.000Z
2020-02-26T17:01:46.000Z
sample_generator/sample_generator/wsgi.py
BL-Labs/sample_generator_datatools
0815454987dfd6ddfae1b0525685eae6b2bda8c2
[ "MIT" ]
null
null
null
sample_generator/sample_generator/wsgi.py
BL-Labs/sample_generator_datatools
0815454987dfd6ddfae1b0525685eae6b2bda8c2
[ "MIT" ]
null
null
null
""" WSGI config for sample_generator project. This module contains the WSGI application used by Django's development server and any production WSGI deployments. It should expose a module-level variable named ``application``. Django's ``runserver`` and ``runfcgi`` commands discover this application via the ``WSGI_APPLICATION`` setting. Usually you will have the standard Django WSGI application here, but it also might make sense to replace the whole Django WSGI application with a custom one that later delegates to the Django one. For example, you could introduce WSGI middleware here, or combine a Django application with an application of another framework. """ import os # We defer to a DJANGO_SETTINGS_MODULE already in the environment. This breaks # if running multiple sites in the same mod_wsgi process. To fix this, use # mod_wsgi daemon mode with each site in its own daemon process, or use # os.environ["DJANGO_SETTINGS_MODULE"] = "sample_generator.settings" os.environ.setdefault("DJANGO_SETTINGS_MODULE", "sample_generator.settings") # This application object is used by any WSGI server configured to use this # file. This includes Django's development server, if the WSGI_APPLICATION # setting points here. from django.core.wsgi import get_wsgi_application application = get_wsgi_application() # Apply WSGI middleware here. # from helloworld.wsgi import HelloWorldApplication # application = HelloWorldApplication(application)
43.909091
79
0.806763
4fcdabf72bb23df3361358d89811a2f4714cc1bd
626
py
Python
kirberichuk/wsgi.py
kirberich/kirberich.uk
cad723408946afc749dd45ffa8adc2b7197aa815
[ "Apache-2.0" ]
null
null
null
kirberichuk/wsgi.py
kirberich/kirberich.uk
cad723408946afc749dd45ffa8adc2b7197aa815
[ "Apache-2.0" ]
null
null
null
kirberichuk/wsgi.py
kirberich/kirberich.uk
cad723408946afc749dd45ffa8adc2b7197aa815
[ "Apache-2.0" ]
null
null
null
""" WSGI config for kirberichuk project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.6/howto/deployment/wsgi/ """ from kirberichuk.boot import fix_path fix_path() import os from django.core.wsgi import get_wsgi_application from djangae.wsgi import DjangaeApplication from djangae.utils import on_production settings = "kirberichuk.settings_live" if on_production() else "kirberichuk.settings" os.environ.setdefault("DJANGO_SETTINGS_MODULE", settings) application = DjangaeApplication(get_wsgi_application())
26.083333
85
0.809904
adb50da013c8d4679214bf962f7267584d17d821
5,533
py
Python
merlin/models/tf/prediction_tasks/retrieval.py
rhdong/models
4b3a1288bff9cc48778e7830d1942f3441bc6c18
[ "Apache-2.0" ]
null
null
null
merlin/models/tf/prediction_tasks/retrieval.py
rhdong/models
4b3a1288bff9cc48778e7830d1942f3441bc6c18
[ "Apache-2.0" ]
null
null
null
merlin/models/tf/prediction_tasks/retrieval.py
rhdong/models
4b3a1288bff9cc48778e7830d1942f3441bc6c18
[ "Apache-2.0" ]
null
null
null
# # Copyright (c) 2021, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from typing import Optional, Sequence import tensorflow as tf from tensorflow.python.layers.base import Layer from merlin.models.tf.blocks.core.base import Block, MetricOrMetrics from merlin.models.tf.blocks.core.transformations import L2Norm, LogitsTemperatureScaler from merlin.models.tf.blocks.retrieval.base import ItemRetrievalScorer from merlin.models.tf.blocks.sampling.base import ItemSampler from merlin.models.tf.blocks.sampling.in_batch import InBatchSampler from merlin.models.tf.losses import LossType, loss_registry from merlin.models.tf.metrics.ranking import ranking_metrics from merlin.models.tf.prediction_tasks.classification import MultiClassClassificationTask from merlin.schema import Schema, Tags @tf.keras.utils.register_keras_serializable(package="merlin_models") class ItemRetrievalTask(MultiClassClassificationTask): """Prediction-task for item-retrieval. Parameters ---------- schema: Schema The schema object including features to use and their properties. loss: Optional[LossType] Loss function. Defaults to `categorical_crossentropy`. metrics: MetricOrMetrics List of top-k ranking metrics. Defaults to a numver of ranking metrics. samplers: List[ItemSampler] List of samplers for negative sampling, by default `[InBatchSampler()]` extra_pre_call: Optional[PredictionBlock] Optional extra pre-call block. Defaults to None. target_name: Optional[str] If specified, name of the target tensor to retrieve from dataloader. Defaults to None. task_name: Optional[str] name of the task. Defaults to None. task_block: Block The `Block` that applies additional layers op to inputs. Defaults to None. logits_temperature: float Parameter used to reduce the model overconfidence, so that logits / T. Defaults to 1. normalize: bool Apply L2 normalization before computing dot interactions. Defaults to True. Returns ------- PredictionTask The item retrieval prediction task """ DEFAULT_LOSS = "categorical_crossentropy" DEFAULT_METRICS = ranking_metrics(top_ks=[10]) def __init__( self, schema: Schema, loss: Optional[LossType] = DEFAULT_LOSS, metrics: MetricOrMetrics = DEFAULT_METRICS, samplers: Sequence[ItemSampler] = (), target_name: Optional[str] = None, task_name: Optional[str] = None, task_block: Optional[Layer] = None, extra_pre_call: Optional[Block] = None, logits_temperature: float = 1.0, normalize: bool = True, cache_query: bool = False, **kwargs, ): self.item_id_feature_name = schema.select_by_tag(Tags.ITEM_ID).column_names[0] self.cache_query = cache_query pre = self._build_prediction_call(samplers, normalize, logits_temperature, extra_pre_call) self.loss = loss_registry.parse(loss) super().__init__( loss=self.loss, metrics=metrics, target_name=target_name, task_name=task_name, task_block=task_block, pre=pre, **kwargs, ) def _build_prediction_call( self, samplers: Sequence[ItemSampler], normalize: bool, logits_temperature: float, extra_pre_call: Optional[Block] = None, ): if samplers is None or len(samplers) == 0: samplers = (InBatchSampler(),) prediction_call = ItemRetrievalScorer( samplers=samplers, item_id_feature_name=self.item_id_feature_name, cache_query=self.cache_query, ) if normalize: prediction_call = L2Norm().connect(prediction_call) if logits_temperature != 1: prediction_call = prediction_call.connect(LogitsTemperatureScaler(logits_temperature)) if extra_pre_call is not None: prediction_call = prediction_call.connect(extra_pre_call) return prediction_call @property def retrieval_scorer(self): def find_retrieval_scorer_block(block): if isinstance(block, ItemRetrievalScorer): return block if getattr(block, "layers", None): for subblock in block.layers: result = find_retrieval_scorer_block(subblock) if result: return result return None result = find_retrieval_scorer_block(self.pre) if result is None: raise Exception("An ItemRetrievalScorer layer was not found in the model.") return result def set_retrieval_cache_query(self, value: bool): self.retrieval_scorer.cache_query = value
35.696774
98
0.665462
af1e5e6a4ccc6ba8c9b6b9bba8665fdd167f3a8e
13,342
py
Python
source/rttov_test/profile-datasets-py/div83/015.py
bucricket/projectMAScorrection
89489026c8e247ec7c364e537798e766331fe569
[ "BSD-3-Clause" ]
null
null
null
source/rttov_test/profile-datasets-py/div83/015.py
bucricket/projectMAScorrection
89489026c8e247ec7c364e537798e766331fe569
[ "BSD-3-Clause" ]
1
2022-03-12T12:19:59.000Z
2022-03-12T12:19:59.000Z
source/rttov_test/profile-datasets-py/div83/015.py
bucricket/projectMAScorrection
89489026c8e247ec7c364e537798e766331fe569
[ "BSD-3-Clause" ]
null
null
null
""" Profile ../profile-datasets-py/div83/015.py file automaticaly created by prof_gen.py script """ self["ID"] = "../profile-datasets-py/div83/015.py" self["Q"] = numpy.array([ 2.60257300e+00, 3.31323900e+00, 4.59202900e+00, 5.85201600e+00, 6.37033900e+00, 6.39497900e+00, 6.34082000e+00, 6.15109200e+00, 5.85454600e+00, 5.57718900e+00, 5.34293100e+00, 5.10522400e+00, 4.89287600e+00, 4.69749800e+00, 4.50562000e+00, 4.31062100e+00, 4.22007200e+00, 4.16390300e+00, 4.10717300e+00, 4.04827400e+00, 4.00374400e+00, 3.94528400e+00, 3.80974500e+00, 3.65032700e+00, 3.49392800e+00, 3.34239900e+00, 3.18990000e+00, 3.06484100e+00, 2.97276100e+00, 2.91252200e+00, 2.87716200e+00, 2.85829200e+00, 2.85206200e+00, 2.85262200e+00, 2.86653200e+00, 2.89440200e+00, 2.92905100e+00, 2.97818100e+00, 3.09087000e+00, 3.36254900e+00, 3.97025400e+00, 5.15052300e+00, 6.51731800e+00, 7.43669500e+00, 7.84418800e+00, 7.76357000e+00, 7.15918900e+00, 6.94659200e+00, 7.70454100e+00, 9.14627600e+00, 1.15166700e+01, 1.52030700e+01, 2.03917800e+01, 2.68810800e+01, 3.42915200e+01, 4.14018900e+01, 4.55331300e+01, 4.44639200e+01, 4.88105200e+01, 6.64425900e+01, 9.34987600e+01, 1.20612500e+02, 1.22859900e+02, 1.10025900e+02, 9.93120400e+01, 9.94673100e+01, 1.16921300e+02, 1.33658100e+02, 1.32071600e+02, 9.31999100e+01, 1.52190800e+02, 4.17380700e+02, 9.12682300e+02, 1.49417400e+03, 1.98758200e+03, 2.39674200e+03, 2.86638000e+03, 3.48043400e+03, 4.18654900e+03, 4.63047900e+03, 5.41220900e+03, 6.64231500e+03, 8.51134500e+03, 1.05870200e+04, 1.26706900e+04, 1.46329000e+04, 1.62738800e+04, 1.73780600e+04, 1.79466300e+04, 1.82253700e+04, 1.84237000e+04, 1.86969600e+04, 1.92474600e+04, 1.99298300e+04, 2.09122400e+04, 2.26196100e+04, 2.09907400e+04, 1.77290100e+04, 1.72436400e+04, 1.67778000e+04, 1.63305800e+04]) self["P"] = numpy.array([ 5.00000000e-03, 1.61000000e-02, 3.84000000e-02, 7.69000000e-02, 1.37000000e-01, 2.24400000e-01, 3.45400000e-01, 5.06400000e-01, 7.14000000e-01, 9.75300000e-01, 1.29720000e+00, 1.68720000e+00, 2.15260000e+00, 2.70090000e+00, 3.33980000e+00, 4.07700000e+00, 4.92040000e+00, 5.87760000e+00, 6.95670000e+00, 8.16550000e+00, 9.51190000e+00, 1.10038000e+01, 1.26492000e+01, 1.44559000e+01, 1.64318000e+01, 1.85847000e+01, 2.09224000e+01, 2.34526000e+01, 2.61829000e+01, 2.91210000e+01, 3.22744000e+01, 3.56505000e+01, 3.92566000e+01, 4.31001000e+01, 4.71882000e+01, 5.15278000e+01, 5.61260000e+01, 6.09895000e+01, 6.61253000e+01, 7.15398000e+01, 7.72396000e+01, 8.32310000e+01, 8.95204000e+01, 9.61138000e+01, 1.03017000e+02, 1.10237000e+02, 1.17778000e+02, 1.25646000e+02, 1.33846000e+02, 1.42385000e+02, 1.51266000e+02, 1.60496000e+02, 1.70078000e+02, 1.80018000e+02, 1.90320000e+02, 2.00989000e+02, 2.12028000e+02, 2.23442000e+02, 2.35234000e+02, 2.47408000e+02, 2.59969000e+02, 2.72919000e+02, 2.86262000e+02, 3.00000000e+02, 3.14137000e+02, 3.28675000e+02, 3.43618000e+02, 3.58966000e+02, 3.74724000e+02, 3.90893000e+02, 4.07474000e+02, 4.24470000e+02, 4.41882000e+02, 4.59712000e+02, 4.77961000e+02, 4.96630000e+02, 5.15720000e+02, 5.35232000e+02, 5.55167000e+02, 5.75525000e+02, 5.96306000e+02, 6.17511000e+02, 6.39140000e+02, 6.61192000e+02, 6.83667000e+02, 7.06565000e+02, 7.29886000e+02, 7.53628000e+02, 7.77790000e+02, 8.02371000e+02, 8.27371000e+02, 8.52788000e+02, 8.78620000e+02, 9.04866000e+02, 9.31524000e+02, 9.58591000e+02, 9.86067000e+02, 1.01395000e+03, 1.04223000e+03, 1.07092000e+03, 1.10000000e+03]) self["CO2"] = numpy.array([ 379.087 , 379.0867, 379.0883, 379.0888, 379.0926, 379.0966, 379.1106, 379.1437, 379.2008, 379.2939, 379.4 , 379.4881, 379.5551, 379.6502, 379.8123, 379.9984, 380.1794, 380.3094, 380.3734, 380.3845, 380.3975, 380.4365, 380.4796, 380.4986, 380.5367, 380.5877, 380.6998, 380.8298, 381.0139, 381.2229, 381.5639, 381.9299, 382.3879, 382.8789, 383.3309, 383.7789, 384.2509, 384.7399, 385.2578, 385.8047, 386.3815, 386.861 , 387.2165, 387.5831, 387.656 , 387.733 , 387.7812, 387.8053, 387.831 , 387.8585, 387.8865, 387.8841, 387.8691, 387.8496, 387.8207, 387.7909, 387.7773, 387.7658, 387.7581, 387.7502, 387.7387, 387.7322, 387.7364, 387.7463, 387.7565, 387.7554, 387.7447, 387.7192, 387.6868, 387.6619, 387.588 , 387.4322, 387.1883, 386.912 , 386.6849, 386.4964, 386.3125, 386.0806, 385.8349, 385.639 , 385.1919, 384.4811, 383.4364, 382.3448, 381.2878, 380.468 , 379.8383, 379.4689, 379.3505, 379.398 , 379.5599, 379.8565, 380.1691, 380.3633, 380.3325, 379.9625, 380.8287, 382.2675, 382.5615, 382.7782, 382.9523]) self["CO"] = numpy.array([ 0.2376114 , 0.2310222 , 0.218331 , 0.1980398 , 0.1700679 , 0.1362871 , 0.1192042 , 0.1335782 , 0.1315462 , 0.1219733 , 0.1056614 , 0.08735825, 0.07373554, 0.06684779, 0.06280282, 0.05945484, 0.05643496, 0.05349028, 0.05034389, 0.04686141, 0.04290443, 0.03929514, 0.03609286, 0.03383228, 0.03236879, 0.0313725 , 0.0309121 , 0.03050441, 0.03032101, 0.03015271, 0.03030901, 0.03047731, 0.03235621, 0.0345626 , 0.03711509, 0.04005128, 0.04349627, 0.04765376, 0.05247604, 0.0588576 , 0.06650864, 0.07631201, 0.08909702, 0.1047132 , 0.1188901 , 0.1357719 , 0.1486829 , 0.1576819 , 0.1671897 , 0.1747104 , 0.1828919 , 0.1857452 , 0.1863622 , 0.186569 , 0.1858536 , 0.1851153 , 0.1843496 , 0.1835628 , 0.1828851 , 0.1822699 , 0.18177 , 0.1815591 , 0.1813547 , 0.181378 , 0.181401 , 0.181383 , 0.1813508 , 0.1811158 , 0.1807271 , 0.1807422 , 0.1813544 , 0.1822349 , 0.183889 , 0.1856292 , 0.1876333 , 0.1895267 , 0.1905183 , 0.1911623 , 0.1905469 , 0.1901265 , 0.1899424 , 0.1905489 , 0.1918491 , 0.194571 , 0.1976238 , 0.2002158 , 0.2015222 , 0.2017637 , 0.2005648 , 0.1995545 , 0.2008285 , 0.2178238 , 0.2465602 , 0.265208 , 0.2829955 , 0.3289638 , 0.3663756 , 0.3708289 , 0.3737639 , 0.376753 , 0.3797987 ]) self["T"] = numpy.array([ 181.415, 188.663, 202.145, 218.39 , 233.079, 245.172, 254.351, 259.775, 261.488, 260.981, 258.676, 256.075, 254.504, 252.532, 248.704, 242.06 , 236.185, 234.165, 233.254, 232.105, 229.946, 228.679, 227.349, 225.985, 224.622, 223.29 , 221.79 , 220.303, 219.109, 218.171, 217.236, 216.025, 215.405, 214.601, 214.03 , 213.394, 212.129, 209.861, 206.794, 203.705, 201.151, 200.35 , 200.2 , 199.941, 199.328, 199.426, 199.844, 200.707, 202.685, 205.299, 208.104, 210.976, 213.884, 216.839, 219.824, 222.781, 225.636, 228.309, 230.83 , 233.253, 235.693, 238.268, 240.96 , 243.496, 245.877, 248.112, 250.281, 252.378, 254.426, 256.413, 258.16 , 259.825, 261.418, 263.398, 265.364, 267.312, 269.09 , 270.792, 272.433, 274.089, 275.713, 277.314, 278.888, 280.451, 282.003, 283.585, 285.259, 287.074, 288.987, 290.979, 292.996, 295.001, 296.96 , 298.856, 300.265, 300.22 , 298.116, 295.41 , 295.41 , 295.41 , 295.41 ]) self["N2O"] = numpy.array([ 0.01106997, 0.00804997, 0.00579997, 0.00401998, 0.00346998, 0.00332998, 0.00494997, 0.00742995, 0.01222993, 0.01305993, 0.01701991, 0.0197599 , 0.0213299 , 0.03204985, 0.04187981, 0.05044978, 0.06078974, 0.07533969, 0.08968963, 0.1070196 , 0.1235295 , 0.1373195 , 0.1495294 , 0.1612194 , 0.1751094 , 0.1888094 , 0.2019894 , 0.2180193 , 0.2325593 , 0.2440993 , 0.2548493 , 0.2623893 , 0.2693492 , 0.2758692 , 0.2822692 , 0.2885592 , 0.2946791 , 0.3005191 , 0.3059991 , 0.310999 , 0.3154087 , 0.3172084 , 0.3188779 , 0.3203976 , 0.3217275 , 0.3228275 , 0.3236677 , 0.3241977 , 0.3243875 , 0.324387 , 0.3243863 , 0.3243851 , 0.3243834 , 0.3243813 , 0.3243789 , 0.3243766 , 0.3243752 , 0.3243756 , 0.3243742 , 0.3243684 , 0.3243597 , 0.3243509 , 0.3243501 , 0.3243543 , 0.3243578 , 0.3243577 , 0.3243521 , 0.3243466 , 0.3243472 , 0.3243598 , 0.3243406 , 0.3242546 , 0.3240939 , 0.3239053 , 0.3237452 , 0.3236125 , 0.3234602 , 0.323261 , 0.3230319 , 0.3228879 , 0.3226343 , 0.3222353 , 0.321629 , 0.3209557 , 0.3202798 , 0.3196432 , 0.3191109 , 0.3187527 , 0.3185683 , 0.3184779 , 0.3184135 , 0.3183249 , 0.3181463 , 0.317925 , 0.3176063 , 0.3170524 , 0.3175808 , 0.3186389 , 0.3187963 , 0.3189474 , 0.3190925 ]) self["O3"] = numpy.array([ 0.1267017 , 0.1557845 , 0.2501229 , 0.512252 , 0.8582125 , 1.206732 , 1.57162 , 1.945138 , 2.333926 , 2.861794 , 3.537261 , 4.321478 , 5.207445 , 6.191161 , 7.281857 , 8.450114 , 9.120642 , 9.298981 , 9.296422 , 9.227683 , 9.123983 , 8.950465 , 8.691007 , 8.29654 , 7.742003 , 7.032976 , 6.22955 , 5.432993 , 4.714096 , 4.090478 , 3.54823 , 3.082301 , 2.705532 , 2.363023 , 2.088534 , 1.847445 , 1.630565 , 1.448136 , 1.266676 , 1.024717 , 0.7358281 , 0.5708771 , 0.4351852 , 0.3303685 , 0.2448851 , 0.1858396 , 0.1475139 , 0.1324131 , 0.1167451 , 0.1029521 , 0.09148565, 0.08043998, 0.07131005, 0.06514055, 0.06166879, 0.05981822, 0.05835204, 0.05765764, 0.05764909, 0.05690312, 0.05572029, 0.05508016, 0.05663374, 0.05988041, 0.06264158, 0.06385205, 0.06305123, 0.06252034, 0.06201811, 0.06136308, 0.06096012, 0.06078322, 0.06084332, 0.06116587, 0.06184763, 0.06287644, 0.06377657, 0.06421373, 0.06433503, 0.06509338, 0.06660824, 0.06830357, 0.06961192, 0.06927147, 0.06783979, 0.06564033, 0.06334429, 0.06185124, 0.06144276, 0.06150101, 0.06122455, 0.05986577, 0.05667681, 0.05184454, 0.04753902, 0.04286008, 0.04251641, 0.02627408, 0.02628706, 0.02629952, 0.02631148]) self["CH4"] = numpy.array([ 0.4414649, 0.3630808, 0.3048156, 0.2650684, 0.2894662, 0.318894 , 0.3981865, 0.4693411, 0.5360639, 0.5988167, 0.6815104, 0.7585961, 0.8289109, 0.9617915, 1.073095 , 1.141665 , 1.200855 , 1.245365 , 1.289035 , 1.340305 , 1.389154 , 1.430214 , 1.466694 , 1.501645 , 1.539125 , 1.575665 , 1.610815 , 1.628705 , 1.640655 , 1.649245 , 1.658465 , 1.668335 , 1.678875 , 1.687555 , 1.695915 , 1.703805 , 1.711065 , 1.717515 , 1.723215 , 1.729224 , 1.735553 , 1.742201 , 1.749179 , 1.768077 , 1.769486 , 1.770966 , 1.772367 , 1.773738 , 1.775446 , 1.779034 , 1.782759 , 1.785693 , 1.788334 , 1.791122 , 1.794098 , 1.797186 , 1.800868 , 1.80471 , 1.807842 , 1.81047 , 1.81282 , 1.814371 , 1.816017 , 1.81791 , 1.819849 , 1.821469 , 1.822967 , 1.824636 , 1.826509 , 1.82841 , 1.830001 , 1.831085 , 1.831047 , 1.83082 , 1.830425 , 1.830233 , 1.830498 , 1.830626 , 1.83143 , 1.832734 , 1.833473 , 1.833132 , 1.83127 , 1.828742 , 1.826115 , 1.824338 , 1.823287 , 1.823383 , 1.824233 , 1.825109 , 1.825526 , 1.825283 , 1.824445 , 1.823332 , 1.822151 , 1.819521 , 1.822984 , 1.829372 , 1.830462 , 1.831399 , 1.832232 ]) self["CTP"] = 500.0 self["CFRACTION"] = 0.0 self["IDG"] = 0 self["ISH"] = 0 self["ELEVATION"] = 0.0 self["S2M"]["T"] = 295.41 self["S2M"]["Q"] = 16330.5845347 self["S2M"]["O"] = 0.0263114846257 self["S2M"]["P"] = 1007.30103 self["S2M"]["U"] = 0.0 self["S2M"]["V"] = 0.0 self["S2M"]["WFETC"] = 100000.0 self["SKIN"]["SURFTYPE"] = 1 self["SKIN"]["WATERTYPE"] = 1 self["SKIN"]["T"] = 295.41 self["SKIN"]["SALINITY"] = 35.0 self["SKIN"]["FOAM_FRACTION"] = 0.0 self["SKIN"]["FASTEM"] = numpy.array([ 3. , 5. , 15. , 0.1, 0.3]) self["ZENANGLE"] = 0.0 self["AZANGLE"] = 0.0 self["SUNZENANGLE"] = 0.0 self["SUNAZANGLE"] = 0.0 self["LATITUDE"] = 29.794 self["GAS_UNITS"] = 2 self["BE"] = 0.0 self["COSBK"] = 0.0 self["DATE"] = numpy.array([2006, 9, 1]) self["TIME"] = numpy.array([0, 0, 0])
57.508621
92
0.566931
10cfed9c17f9a02f08ea05b9683fb782ace42a0a
617
py
Python
release.py
RolandMQuiros/DeBroglie
6e9d94d844f4a24ae919ab61f042c65ef5834e97
[ "MIT" ]
null
null
null
release.py
RolandMQuiros/DeBroglie
6e9d94d844f4a24ae919ab61f042c65ef5834e97
[ "MIT" ]
null
null
null
release.py
RolandMQuiros/DeBroglie
6e9d94d844f4a24ae919ab61f042c65ef5834e97
[ "MIT" ]
null
null
null
import subprocess import os import shutil # Build the project subprocess.check_call(["dotnet","build","DeBroglie.Console/DeBroglie.Console.csproj","-c","Release"]) # Build the docs subprocess.check_call(["docfx","docs/docfx.json"]) # Move everything to a fresh folder shutil.rmtree("release", ignore_errors=True) shutil.copytree("DeBroglie.Console/bin/Release", "release/bin") shutil.copytree("docs-generated", "release/docs") shutil.copy("README.md", "release") shutil.copy("LICENSE.txt", "release") # zip it up shutil.make_archive("release", "zip", "release") # Cleanup shutil.rmtree("release", ignore_errors=True)
34.277778
101
0.756888
52e46394cea62f5b9639c425462b482b5b8adbfa
2,734
py
Python
youtuatools/extractor/wakanim.py
Pagasis/YouTua
edb44b2065a7224f8b26aaf76166bf7287901567
[ "MIT" ]
47
2021-01-02T07:44:50.000Z
2022-02-28T22:02:13.000Z
youtuatools/extractor/wakanim.py
Pagasis/YouTua
edb44b2065a7224f8b26aaf76166bf7287901567
[ "MIT" ]
4
2021-02-07T03:35:13.000Z
2021-10-31T19:23:53.000Z
youtuatools/extractor/wakanim.py
Pagasis/YouTua
edb44b2065a7224f8b26aaf76166bf7287901567
[ "MIT" ]
8
2021-01-03T05:44:39.000Z
2021-11-01T05:46:32.000Z
# coding: utf-8 from __future__ import unicode_literals from .common import InfoExtractor from ..utils import ( ExtractorError, merge_dicts, urljoin, ) class WakanimIE(InfoExtractor): _VALID_URL = r"https://(?:www\.)?wakanim\.tv/[^/]+/v2/catalogue/episode/(?P<id>\d+)" _TESTS = [ { "url": "https://www.wakanim.tv/de/v2/catalogue/episode/2997/the-asterisk-war-omu-staffel-1-episode-02-omu", "info_dict": { "id": "2997", "ext": "mp4", "title": "Episode 02", "description": "md5:2927701ea2f7e901de8bfa8d39b2852d", "series": "The Asterisk War (OmU.)", "season_number": 1, "episode": "Episode 02", "episode_number": 2, }, "params": { "format": "bestvideo", "skip_download": True, }, }, { # DRM Protected "url": "https://www.wakanim.tv/de/v2/catalogue/episode/7843/sword-art-online-alicization-omu-arc-2-folge-15-omu", "only_matching": True, }, ] def _real_extract(self, url): video_id = self._match_id(url) webpage = self._download_webpage(url, video_id) m3u8_url = urljoin( url, self._search_regex( r'file\s*:\s*(["\'])(?P<url>(?:(?!\1).)+)\1', webpage, "m3u8 url", group="url", ), ) # https://docs.microsoft.com/en-us/azure/media-services/previous/media-services-content-protection-overview#streaming-urls encryption = self._search_regex( r"encryption%3D(c(?:enc|bc(?:s-aapl)?))", m3u8_url, "encryption", default=None, ) if encryption and encryption in ("cenc", "cbcs-aapl"): raise ExtractorError("This video is DRM protected.", expected=True) formats = self._extract_m3u8_formats( m3u8_url, video_id, "mp4", entry_protocol="m3u8_native", m3u8_id="hls" ) info = self._search_json_ld(webpage, video_id, default={}) title = self._search_regex( ( r'<h1[^>]+\bclass=["\']episode_h1[^>]+\btitle=(["\'])(?P<title>(?:(?!\1).)+)\1', r'<span[^>]+\bclass=["\']episode_title["\'][^>]*>(?P<title>[^<]+)', ), webpage, "title", default=None, group="title", ) return merge_dicts( info, { "id": video_id, "title": title, "formats": formats, }, )
31.068182
130
0.483906
8491062904216fe5a471c5cdb0afd4a6ff5c9518
338
py
Python
pdb2pqr/pdb2pqr.py
Electrostatics/apbs-etl
66b6a34e3ebf4ffae921a85344c07e83cc2ad1a9
[ "BSD-3-Clause" ]
1
2021-09-30T20:46:06.000Z
2021-09-30T20:46:06.000Z
pdb2pqr/pdb2pqr.py
Electrostatics/apbs-etl
66b6a34e3ebf4ffae921a85344c07e83cc2ad1a9
[ "BSD-3-Clause" ]
23
2021-09-30T18:56:53.000Z
2022-01-04T00:34:41.000Z
pdb2pqr/pdb2pqr.py
Electrostatics/apbs-etl
66b6a34e3ebf4ffae921a85344c07e83cc2ad1a9
[ "BSD-3-Clause" ]
null
null
null
"""TODO """ from typing import List from pdbx.containers import DataContainer from .io import read_input from .process_cli import process_cli def main(): """Hook for command-line usage.""" args = process_cli() data_containers: List[DataContainer] = read_input(args.input_file) # transform_data() # write_output()
19.882353
70
0.715976
fc8ace54483a754bf1a41b20fb89da27ffd60ac8
85
py
Python
tests/context.py
threatlead/amazonscraper
f8b520cfcadf661c0ce587dcbbd3581e8b094b4a
[ "MIT" ]
null
null
null
tests/context.py
threatlead/amazonscraper
f8b520cfcadf661c0ce587dcbbd3581e8b094b4a
[ "MIT" ]
null
null
null
tests/context.py
threatlead/amazonscraper
f8b520cfcadf661c0ce587dcbbd3581e8b094b4a
[ "MIT" ]
null
null
null
import sys import os sys.path.insert(0, os.path.abspath('..')) import amazonscraper
14.166667
41
0.741176
90becd6d00bbb48d0c3cccc3a56026653effa77a
9,598
py
Python
tensorboard/plugins/graph/graphs_plugin_test.py
SongzzZ/tensorboard
4ee9ae8a31524131eb56f7a1dc4aa09d7d186f10
[ "Apache-2.0" ]
1
2020-02-20T05:37:55.000Z
2020-02-20T05:37:55.000Z
tensorboard/plugins/graph/graphs_plugin_test.py
SongzzZ/tensorboard
4ee9ae8a31524131eb56f7a1dc4aa09d7d186f10
[ "Apache-2.0" ]
null
null
null
tensorboard/plugins/graph/graphs_plugin_test.py
SongzzZ/tensorboard
4ee9ae8a31524131eb56f7a1dc4aa09d7d186f10
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Integration tests for the Graphs Plugin.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import collections import math import functools import os.path import tensorflow as tf from google.protobuf import text_format from tensorboard.backend.event_processing import data_provider from tensorboard.backend.event_processing import plugin_event_multiplexer as event_multiplexer # pylint: disable=line-too-long from tensorboard.compat.proto import config_pb2 from tensorboard.plugins import base_plugin from tensorboard.plugins.graph import graphs_plugin from tensorboard.util import test_util tf.compat.v1.disable_v2_behavior() # TODO(stephanwlee): Move more tests into the base class when v2 test # can write graph and metadata with a TF public API. _RUN_WITH_GRAPH_WITH_METADATA = ('_RUN_WITH_GRAPH_WITH_METADATA', True, True) _RUN_WITHOUT_GRAPH_WITH_METADATA = ('_RUN_WITHOUT_GRAPH_WITH_METADATA', False, True) _RUN_WITH_GRAPH_WITHOUT_METADATA = ('_RUN_WITH_GRAPH_WITHOUT_METADATA', True, False) _RUN_WITHOUT_GRAPH_WITHOUT_METADATA = ('_RUN_WITHOUT_GRAPH_WITHOUT_METADATA', False, False) def with_runs(run_specs): """Run a test with a bare multiplexer and with a `data_provider`. The decorated function will receive an initialized `GraphsPlugin` object as its first positional argument. The receiver argument of the decorated function must be a `TestCase` instance that also provides `load_runs`.` """ def decorator(fn): @functools.wraps(fn) def wrapper(self, *args, **kwargs): (logdir, multiplexer) = self.load_runs(run_specs) with self.subTest('bare multiplexer'): ctx = base_plugin.TBContext(logdir=logdir, multiplexer=multiplexer) fn(self, graphs_plugin.GraphsPlugin(ctx), *args, **kwargs) with self.subTest('generic data provider'): flags = argparse.Namespace(generic_data='true') provider = data_provider.MultiplexerDataProvider(multiplexer, logdir) ctx = base_plugin.TBContext( flags=flags, logdir=logdir, multiplexer=multiplexer, data_provider=provider, ) fn(self, graphs_plugin.GraphsPlugin(ctx), *args, **kwargs) return wrapper return decorator class GraphsPluginBaseTest(object): _METADATA_TAG = 'secret-stats' _MESSAGE_PREFIX_LENGTH_LOWER_BOUND = 1024 def __init__(self, *args, **kwargs): super(GraphsPluginBaseTest, self).__init__(*args, **kwargs) self.plugin = None def setUp(self): super(GraphsPluginBaseTest, self).setUp() def generate_run(self, logdir, run_name, include_graph, include_run_metadata): """Create a run""" raise NotImplementedError('Please implement generate_run') def load_runs(self, run_specs): logdir = self.get_temp_dir() for run_spec in run_specs: self.generate_run(logdir, *run_spec) return self.bootstrap_plugin(logdir) def bootstrap_plugin(self, logdir): multiplexer = event_multiplexer.EventMultiplexer() multiplexer.AddRunsFromDirectory(logdir) multiplexer.Reload() return (logdir, multiplexer) @with_runs([_RUN_WITH_GRAPH_WITH_METADATA, _RUN_WITHOUT_GRAPH_WITH_METADATA]) def testRoutesProvided(self, plugin): """Tests that the plugin offers the correct routes.""" routes = plugin.get_plugin_apps() self.assertIsInstance(routes['/graph'], collections.Callable) self.assertIsInstance(routes['/run_metadata'], collections.Callable) self.assertIsInstance(routes['/info'], collections.Callable) class GraphsPluginV1Test(GraphsPluginBaseTest, tf.test.TestCase): def generate_run(self, logdir, run_name, include_graph, include_run_metadata): """Create a run with a text summary, metadata, and optionally a graph.""" tf.compat.v1.reset_default_graph() k1 = tf.constant(math.pi, name='k1') k2 = tf.constant(math.e, name='k2') result = (k1 ** k2) - k1 expected = tf.constant(20.0, name='expected') error = tf.abs(result - expected, name='error') message_prefix_value = 'error ' * 1000 true_length = len(message_prefix_value) assert true_length > self._MESSAGE_PREFIX_LENGTH_LOWER_BOUND, true_length message_prefix = tf.constant(message_prefix_value, name='message_prefix') error_message = tf.strings.join([message_prefix, tf.as_string(error, name='error_string')], name='error_message') summary_message = tf.compat.v1.summary.text('summary_message', error_message) sess = tf.compat.v1.Session() writer = test_util.FileWriter(os.path.join(logdir, run_name)) if include_graph: writer.add_graph(sess.graph) options = tf.compat.v1.RunOptions(trace_level=tf.compat.v1.RunOptions.FULL_TRACE) run_metadata = config_pb2.RunMetadata() s = sess.run(summary_message, options=options, run_metadata=run_metadata) writer.add_summary(s) if include_run_metadata: writer.add_run_metadata(run_metadata, self._METADATA_TAG) writer.close() def _get_graph(self, plugin, *args, **kwargs): """Set up runs, then fetch and return the graph as a proto.""" (graph_pbtxt, mime_type) = plugin.graph_impl( _RUN_WITH_GRAPH_WITH_METADATA[0], *args, **kwargs) self.assertEqual(mime_type, 'text/x-protobuf') return text_format.Parse(graph_pbtxt, tf.compat.v1.GraphDef()) @with_runs([ _RUN_WITH_GRAPH_WITH_METADATA, _RUN_WITH_GRAPH_WITHOUT_METADATA, _RUN_WITHOUT_GRAPH_WITH_METADATA, _RUN_WITHOUT_GRAPH_WITHOUT_METADATA]) def test_info(self, plugin): expected = { '_RUN_WITH_GRAPH_WITH_METADATA': { 'run': '_RUN_WITH_GRAPH_WITH_METADATA', 'run_graph': True, 'tags': { 'secret-stats': { 'conceptual_graph': False, 'profile': True, 'tag': 'secret-stats', 'op_graph': False, }, }, }, '_RUN_WITH_GRAPH_WITHOUT_METADATA': { 'run': '_RUN_WITH_GRAPH_WITHOUT_METADATA', 'run_graph': True, 'tags': {}, } } if not plugin._data_provider: # Hack, for now. expected['_RUN_WITHOUT_GRAPH_WITH_METADATA'] = { 'run': '_RUN_WITHOUT_GRAPH_WITH_METADATA', 'run_graph': False, 'tags': { 'secret-stats': { 'conceptual_graph': False, 'profile': True, 'tag': 'secret-stats', 'op_graph': False, }, }, } self.assertItemsEqual(expected, plugin.info_impl('eid')) @with_runs([_RUN_WITH_GRAPH_WITH_METADATA]) def test_graph_simple(self, plugin): graph = self._get_graph( plugin, tag=None, is_conceptual=False, experiment='eid', ) node_names = set(node.name for node in graph.node) self.assertEqual({ 'k1', 'k2', 'pow', 'sub', 'expected', 'sub_1', 'error', 'message_prefix', 'error_string', 'error_message', 'summary_message', 'summary_message/tag', 'summary_message/serialized_summary_metadata', }, node_names) @with_runs([_RUN_WITH_GRAPH_WITH_METADATA]) def test_graph_large_attrs(self, plugin): key = 'o---;;-;' graph = self._get_graph( plugin, tag=None, is_conceptual=False, experiment='eid', limit_attr_size=self._MESSAGE_PREFIX_LENGTH_LOWER_BOUND, large_attrs_key=key) large_attrs = { node.name: list(node.attr[key].list.s) for node in graph.node if key in node.attr } self.assertEqual({'message_prefix': [b'value']}, large_attrs) @with_runs([_RUN_WITH_GRAPH_WITH_METADATA]) def test_run_metadata(self, plugin): result = plugin.run_metadata_impl( _RUN_WITH_GRAPH_WITH_METADATA[0], self._METADATA_TAG) if plugin._data_provider: # Hack, for now self.assertEqual(result, None) else: (metadata_pbtxt, mime_type) = result self.assertEqual(mime_type, 'text/x-protobuf') text_format.Parse(metadata_pbtxt, config_pb2.RunMetadata()) # If it parses, we're happy. @with_runs([_RUN_WITH_GRAPH_WITHOUT_METADATA]) def test_is_active_with_graph_without_run_metadata(self, plugin): self.assertTrue(plugin.is_active()) @with_runs([_RUN_WITHOUT_GRAPH_WITH_METADATA]) def test_is_active_without_graph_with_run_metadata(self, plugin): self.assertTrue(plugin.is_active()) @with_runs([_RUN_WITH_GRAPH_WITH_METADATA]) def test_is_active_with_both(self, plugin): self.assertTrue(plugin.is_active()) @with_runs([_RUN_WITHOUT_GRAPH_WITHOUT_METADATA]) def test_is_inactive_without_both(self, plugin): if plugin._data_provider: # Hack, for now. self.assertTrue(plugin.is_active()) else: self.assertFalse(plugin.is_active()) if __name__ == '__main__': tf.test.main()
36.356061
127
0.698583
e132c4c4161daf831aaf2b929b760b62ade255f1
865
py
Python
test_master.py
markkorput/pyOmxSync
790c9c96767b19377e89753fc2095e34847d62bf
[ "MIT" ]
3
2018-03-16T12:08:56.000Z
2021-02-12T16:03:01.000Z
test_master.py
markkorput/pyOmxSync
790c9c96767b19377e89753fc2095e34847d62bf
[ "MIT" ]
8
2016-09-04T19:10:33.000Z
2016-09-07T05:52:03.000Z
test_master.py
markkorput/pyOmxSync
790c9c96767b19377e89753fc2095e34847d62bf
[ "MIT" ]
6
2017-06-07T10:22:14.000Z
2019-09-21T02:33:05.000Z
#!/usr/bin/env python2 try: from omxplayer import OMXPlayer except ImportError: print("\n!! Could not import OMXPlayer, see https://github.com/willprice/python-omxplayer-wrapper for install instructions !!\n") from omxsync import Broadcaster import sys if len(sys.argv) < 2: print('No video specified\nUsage: python test_master.py path/to/video.mp4\n') sys.exit(1) try: print("Load player") player = OMXPlayer(sys.argv[1]) print("Load broadcaster") broadcaster = Broadcaster(player, {'verbose': True}) broadcaster.setup() print("Start playing") player.play() while player.playback_status() != "Stopped": broadcaster.update() print("Stop player") player.stop() print("Exit") except KeyboardInterrupt: player.quit() except Exception as err: print("An error occured:") print(err)
23.378378
133
0.682081
ccb0f4f458e57bdeadc14906e9ffd130eee1c0fa
12,529
py
Python
Tony/clviz_web_tony_edits/densitygraph.py
NeuroDataDesign/seelviz-archive
cb9bcf7c0f32f0256f71be59dd7d7a9086d0f3b3
[ "Apache-2.0" ]
null
null
null
Tony/clviz_web_tony_edits/densitygraph.py
NeuroDataDesign/seelviz-archive
cb9bcf7c0f32f0256f71be59dd7d7a9086d0f3b3
[ "Apache-2.0" ]
2
2017-04-18T02:50:14.000Z
2017-04-18T18:04:20.000Z
Tony/clviz_web_tony_edits/densitygraph.py
NeuroDataDesign/seelviz-archive
cb9bcf7c0f32f0256f71be59dd7d7a9086d0f3b3
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python #-*- coding:utf-8 -*- from __future__ import print_function __author__ = 'seelviz' # import matplotlib as mpl # mpl.use('Agg') from skimage import data, img_as_float from skimage import exposure import plotly from plotly.graph_objs import * import cv2 import collections as col import math, os, gc import numpy as np import nibabel as nib # Tony's get_brain_figure stuff from plotly.offline import download_plotlyjs#, init_notebook_mode, iplot from plotly import tools #plotly.offline.init_notebook_mode() import networkx as nx import pandas as pd import re class densitygraph(object): """This class includes all the calculations nad operations necessary to go from a graphml of the brain to a graph that includes edges and is colored according to density of nodes.""" #def generate_density_graph(self): #def get_brain_figure(self, g, plot_title=''): #def generate_heat_map(self): def __init__(self, token, graph_path = None): self._token = token if graph_path == None: self._graph = nx.read_graphml(token + '/' + token + '.graphml') else: self._graph = graph_path self._sortedList = None self._maxEdges = 0 self._scaledEdges = 0 self._heatmapbrain = None def generate_density_graph(self): ## This finds the maximum number of edges and the densest node. G = self._graph maxEdges = 0 densestNode = "" for i in range(len(G.edges())): if ((len(G.edges('s' + str(i))) > maxEdges)): maxEdges = len(G.edges('s' + str(i))) densestNode = "s" + str(i) ## Find each node with a given number of edges, from 0 edges to maxEdges ## Find and store number of edges for each node in storageDict ## Key is 's1', value is number of edges storageDict = {} for n in G.nodes_iter(): storageDict[n] = len(G.edges(n)) orderedNodesEdgeCounts = col.OrderedDict(sorted(storageDict.items(), key=lambda (key, value): int(key.split('s')[1]))) ## Create ordered list to visualize data sortedList = sorted(storageDict.values()) # Calculate basic statistics statisticsArray = np.array(sortedList) averageNumberEdges = np.mean(statisticsArray) stdNumberEdges = np.std(statisticsArray) print("average edge count:") print(averageNumberEdges) print("standard deviation edge count: ") print(stdNumberEdges) # using 95th percentile as upper limit (z = 1.96) upperLimit = averageNumberEdges + 1.96 * stdNumberEdges print("95th percentile: ") print(upperLimit) ##unused ## numberEdges is used for plotting (first element is edges for 's1', etc.) numberEdges = [] k = 0 for i in range(1, (len(G.nodes()) + 1)): numberEdges.append(orderedNodesEdgeCounts['s' + str(i)]) k = k + 1 ## Number of colors is maxEdges numColors = maxEdges; # scaledEdges = [float(numberEdges[i])/float(upperLimit) for i in range(len(numberEdges))] self._scaledEdges = [float(numberEdges[i])/float(maxEdges) for i in range(len(numberEdges))] ##Tweak this to change the heat map scaling for the points. Remove outliers. ##False coloration heatmap below. I've commented it out in this version b/c the rainbows ##are difficult to interpret. I've included a newer red version. ''' self._heatMapBrain = [ # Let null values (0.0) have color rgb(0, 0, 0) [0, 'rgb(0, 0, 0)'], #black # Let first 5-10% (0.05) of the values have color rgb(204, 0, 204) [0.05, 'rgb(153, 0, 153)'], #purple [0.1, 'rgb(153, 0, 153)'], #purple # Let next 10-15% (0.05) of the values have color rgb(204, 0, 204) [0.1, 'rgb(204, 0, 204)'], #purple [0.15, 'rgb(204, 0, 204)'], #purple # Let values between 20-25% have color rgb(0, 0, 153) [0.15, 'rgb(0, 0, 153)'], #blue [0.2, 'rgb(0, 0, 153)'], #blue # Let values between 25-30% have color rgb(0, 0, 204) [0.2, 'rgb(0, 0, 204)'], #blue [0.25, 'rgb(0, 0, 204)'], #blue [0.25, 'rgb(0, 76, 153)'], #blue [0.3, 'rgb(0, 76, 153)'], #blue [0.3, 'rgb(0, 102, 204)'], #light blue [0.35, 'rgb(0, 102, 204)'], #light blue [0.35, 'rgb(0, 153, 153)'], #light blue [0.4, 'rgb(0, 153, 153)'], #light blue [0.4, 'rgb(0, 204, 204)'], #light blue [0.45, 'rgb(0, 204, 204)'], #light blue [0.45, 'rgb(0, 153, 76)'], [0.5, 'rgb(0, 153, 76)'], [0.5, 'rgb(0, 204, 102)'], [0.55, 'rgb(0, 204, 102)'], [0.55, 'rgb(0, 255, 0)'], [0.6, 'rgb(0, 255, 0)'], [0.6, 'rgb(128, 255, 0)'], [0.65, 'rgb(128, 255, 0)'], [0.65, 'rgb(255, 255, 0)'], [0.7, 'rgb(255, 255, 0)'], [0.7, 'rgb(255, 255, 102)'], # [0.75, 'rgb(255, 255, 102)'], # [0.75, 'rgb(255, 128, 0)'], [0.8, 'rgb(255, 128, 0)'], [0.8, 'rgb(204, 0, 0)'], # [0.85, 'rgb(204, 0, 0)'], # [0.85, 'rgb(255, 0, 0)'], [0.9, 'rgb(255, 0, 0)'], [0.9, 'rgb(255, 51, 51)'], # [0.95, 'rgb(255, 51, 51)'], # [0.95, 'rgb(255, 255, 255)'], [1.0, 'rgb(255, 255, 255)'] ] ''' self._heatMapBrain = [ # Let null values (0.0) have color rgb(0, 0, 0) [0, 'rgb(0, 0, 0)'], #black [0.1, '#7f0000'], [0.2, '#7f0000'], [0.2, '#b30000'], [0.3, '#b30000'], [0.3, '#d7301f'], [0.4, '#d7301f'], [0.4, '#ef6548'], [0.5, '#ef6548'], [0.5, '#fc8d59'], [0.6, '#fc8d59'], [0.6, '#fdbb84'], [0.7, '#fdbb84'], [0.7, '#fdd49e'], [0.8, '#fdd49e'], [0.8, '#fee8c8'], [0.9, '#fee8c8'], [0.9, '#fff7ec'], [1.0, '#fff7ec'] ] self._sortedList = sortedList self._maxEdges = maxEdges #figure = self.get_brain_figure(G, '') #plotly.offline.plot(figure, filename = self._token + '/' + self._token + '_density.html') def get_brain_figure(self, g, plot_title=''): """ Returns the plotly figure object for vizualizing a 3d brain network. g: networkX object of brain """ # grab the node positions from the graphML file V = nx.number_of_nodes(g) attributes = nx.get_node_attributes(g,'attr') node_positions_3d = pd.DataFrame(columns=['x', 'y', 'z'], index=range(V)) for n in g.nodes_iter(): node_positions_3d.loc[n] = [int((re.findall('\d+', str(attributes[n])))[0]), int((re.findall('\d+', str(attributes[n])))[1]), int((re.findall('\d+', str(attributes[n])))[2])] # grab edge endpoints edge_x = [] edge_y = [] edge_z = [] for e in g.edges_iter(): source_pos = node_positions_3d.loc[e[0]] target_pos = node_positions_3d.loc[e[1]] edge_x += [source_pos['x'], target_pos['x'], None] edge_y += [source_pos['y'], target_pos['y'], None] edge_z += [source_pos['z'], target_pos['z'], None] Xlist = [] for i in range(1, len(g.nodes()) + 1): Xlist.append(int((re.findall('\d+', str(attributes['s' + str(i)])))[0])) Ylist = [] for i in range(1, len(g.nodes()) + 1): Ylist.append(int((re.findall('\d+', str(attributes['s' + str(i)])))[1])) Zlist = [] for i in range(1, len(g.nodes()) + 1): Zlist.append(int((re.findall('\d+', str(attributes['s' + str(i)])))[2])) # node style node_trace = Scatter3d(x=Xlist, y=Ylist, z=Zlist, mode='markers', # name='regions', marker=Marker(symbol='dot', size=6, opacity=0, color=self._scaledEdges, colorscale=self._heatMapBrain), # text=[str(r) for r in range(V)], # text=atlas_data['nodes'], hoverinfo='text') # edge style '''edge_trace = Scatter3d(x=edge_x, y=edge_y, z=edge_z, mode='lines', line=Line(color='cyan', width=1), hoverinfo='none')''' # axis style axis = dict(showbackground=False, showline=False, zeroline=False, showgrid=False, showticklabels=False) # overall layout layout = Layout(title=plot_title, width=800, height=900, showlegend=False, scene=Scene(xaxis=XAxis(axis), yaxis=YAxis(axis), zaxis=ZAxis(axis)), margin=Margin(t=50), hovermode='closest', paper_bgcolor='rgba(1,1,1,1)', plot_bgcolor='rgb(1,1,1)') data = Data([node_trace]) fig = Figure(data=data, layout=layout) return fig def generate_heat_map(self): # Get list of all possible number of edges, in order setOfAllPossibleNumEdges = set(self._sortedList) listOfAllPossibleNumEdges = list(setOfAllPossibleNumEdges) #listOfAllScaledEdgeValues = [listOfAllPossibleNumEdges[i]/upperLimit for i in range(len(listOfAllPossibleNumEdges))] listOfAllScaledEdgeValues = [listOfAllPossibleNumEdges[i]/float(self._maxEdges) for i in range(len(listOfAllPossibleNumEdges))] #heatMapBrain data = Data([ Scatter( y=listOfAllPossibleNumEdges, marker=Marker( size=16, color=listOfAllPossibleNumEdges, colorbar=ColorBar( title='Colorbar' ), colorscale=self._heatMapBrain, ), mode='markers') ]) layout = Layout(title=self._token + ' false coloration scheme', width=800, height=900, showlegend=False, margin=Margin(t=50), hovermode='closest', xaxis=dict( title='Number of Unique Colors', titlefont=dict( family='Courier New, monospace', size=18, color='#000000') ), yaxis=dict( title='Number of Edges', titlefont=dict( family='Courier New, monospace', size=18, color='#000000') ), paper_bgcolor='rgba(255,255,255,255)', plot_bgcolor='rgb(255,255,255)') mapping = Figure(data=data, layout=layout) #iplot(mapping, validate=False) #plotly.offline.plot(mapping, filename = self._token + '/' + self._token + 'heatmap' + '.html') return mapping
35.59375
186
0.466757
0d5e62452e2177ecf590d9c51b26e791defaa506
33,069
py
Python
protectwise_connector.py
splunk-soar-connectors/protectwise
9c72074bfd33a26754034d7c0b94fe3009d99d2e
[ "Apache-2.0" ]
null
null
null
protectwise_connector.py
splunk-soar-connectors/protectwise
9c72074bfd33a26754034d7c0b94fe3009d99d2e
[ "Apache-2.0" ]
null
null
null
protectwise_connector.py
splunk-soar-connectors/protectwise
9c72074bfd33a26754034d7c0b94fe3009d99d2e
[ "Apache-2.0" ]
null
null
null
# File: protectwise_connector.py # # Copyright (c) 2016-2022 Splunk Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, # either express or implied. See the License for the specific language governing permissions # and limitations under the License. # # # Phantom imports import json import os import tempfile import time from datetime import datetime, timedelta import phantom.app as phantom import phantom.rules as ph_rules import requests from phantom.action_result import ActionResult from phantom.base_connector import BaseConnector from phantom.vault import Vault from protectwise_consts import * class ProtectWiseConnector(BaseConnector): def __init__(self): # Call the super class super(ProtectWiseConnector, self).__init__() self._headers = None self._base_url = PW_BASE_URL self._state = {} def is_positive_non_zero_int(self, value): try: value = int(value) return True if value > 0 else False except Exception: return False def initialize(self): self._state = self.load_state() config = self.get_config() self._headers = {'X-Access-Token': config[PW_JSON_AUTH_TOKEN]} self._display_dup_artifacts = config.get(PW_JSON_ALLOW_ARTIFACT_DUPLICATES) self._display_dup_containers = config.get(PW_JSON_ALLOW_CONTAINER_DUPLICATES) return phantom.APP_SUCCESS def finalize(self): self.save_state(self._state) return phantom.APP_SUCCESS def _get_sensor_list(self, action_result): ret_val, resp_json = self._make_rest_call('/sensors', action_result) if (phantom.is_fail(ret_val)): return (action_result.get_status(), None) return (phantom.APP_SUCCESS, resp_json) def _make_rest_call(self, endpoint, action_result, headers=None, params=None, data=None, method="get", exception_error_codes=[]): """ Function that makes the REST call to the device, generic function that can be called from various action handlers Needs to return two values, 1st the phantom.APP_[SUCCESS|ERROR], 2nd the response """ if headers is None: headers = {} # Get the config config = self.get_config() # Create the headers headers.update(self._headers) if (method in ['put', 'post']): headers.update({'Content-Type': 'application/json'}) resp_json = None # get or post or put, whatever the caller asked us to use, if not specified the default will be 'get' request_func = getattr(requests, method) # handle the error in case the caller specified a non-existant method if (not request_func): action_result.set_status(phantom.APP_ERROR, PW_ERR_API_UNSUPPORTED_METHOD, method=method) # Make the call try: r = request_func(self._base_url + endpoint, # The complete url is made up of the base_url, the api url and the endpiont data=json.dumps(data) if data else None, # the data, converted to json string format if present, else just set to None headers=headers, # The headers to send in the HTTP call verify=config.get(phantom.APP_JSON_VERIFY, True), # should cert verification be carried out? params=params) # uri parameters if any except Exception as e: return (action_result.set_status(phantom.APP_ERROR, PW_ERR_SERVER_CONNECTION, e), resp_json) # self.debug_print('REST url: {0}'.format(r.url)) if (hasattr(action_result, 'add_debug_data')): action_result.add_debug_data({'r_text': r.text if r else 'r is None'}) # Try a json parse, since most REST API's give back the data in json, # if the device does not return JSONs, then need to implement parsing them some other manner try: resp_json = r.json() except Exception as e: # r.text is guaranteed to be NON None, it will be empty, but not None msg_string = PW_ERR_JSON_PARSE.format(raw_text=r.text) return (action_result.set_status(phantom.APP_ERROR, msg_string, e), resp_json) # Handle any special HTTP error codes here, many devices return an HTTP error code like 204. The requests module treats these as error, # so handle them here before anything else, uncomment the following lines in such cases # if (r.status_code == 201): # return (phantom.APP_SUCCESS, resp_json) # Handle/process any errors that we get back from the device if (200 <= r.status_code <= 399): # Success return (phantom.APP_SUCCESS, resp_json) # Failure action_result.add_data(resp_json) details = json.dumps(resp_json).replace('{', '').replace('}', '') if (r.status_code in exception_error_codes): # Ok to have this http error for this call, return success, the caller will handle the fact that the response is empty return (action_result.set_status(phantom.APP_SUCCESS), resp_json) return (action_result.set_status(phantom.APP_ERROR, PW_ERR_FROM_SERVER.format(status=r.status_code, detail=details)), resp_json) def _test_connectivity(self, param): self.save_progress("Attempting to connect to API endpoint...") self.save_progress("Querying sensor list to validate config") action_result = self.add_action_result(ActionResult(param)) ret_val, resp_json = self._get_sensor_list(action_result) if (phantom.is_fail(ret_val)): self.save_progress("Test Connectivity Failed") return self.get_status() self.save_progress("Test Connectivity Passed") return self.set_status(phantom.APP_SUCCESS) def _get_packets(self, param): action_result = self.add_action_result(ActionResult(param)) packet_type = param[PW_JSON_TYPE] object_id = param[PW_JSON_ID] sensor_id = param.get(PW_JSON_SENSOR_ID) packet_type = packet_type.lower() if packet_type not in VALID_PW_TYPES: return action_result.set_status(phantom.APP_ERROR, "Invalid type") info_endpoint = '/pcaps/{0}s/{1}/info'.format(packet_type, object_id) file_endpoint = '/pcaps/{0}s/{1}'.format(packet_type, object_id) if (packet_type == "observation"): if (not sensor_id): return action_result.set_status(phantom.APP_ERROR, "{0} is required when type is observation".format(PW_JSON_SENSOR_ID)) info_endpoint = '/pcaps/{0}s/{1}/{2}/info'.format(packet_type, sensor_id, object_id) file_endpoint = '/pcaps/{0}s/{1}/{2}'.format(packet_type, sensor_id, object_id) ret_val, file_info = self._make_rest_call(info_endpoint, action_result, exception_error_codes=[404, 505]) if (phantom.is_fail(ret_val)): return action_result.get_status() if (not file_info): return action_result.set_status(phantom.APP_SUCCESS, "File not present") if ('not found' in file_info.get('error', {}).get('message', '').lower()): return action_result.set_status(phantom.APP_SUCCESS, "File not present") action_result.add_data(file_info) # Now download the file file_name = "{0}.pcap".format(object_id) if hasattr(Vault, 'get_vault_tmp_dir'): tmp = tempfile.NamedTemporaryFile(dir=Vault.get_vault_tmp_dir()) else: tmp = tempfile.NamedTemporaryFile(dir="/vault/tmp/", delete=False) params = {'filename': file_name} estimated_size = file_info.get('estimatedSize', None) ret_val = self._download_file(file_endpoint, action_result, tmp.name, params, estimated_size) if (phantom.is_fail(ret_val)): return action_result.get_status() # MOVE the file to the vault vault_attach_dict = {} self.debug_print("Vault file name: {0}".format(file_name)) vault_attach_dict[phantom.APP_JSON_ACTION_NAME] = self.get_action_name() vault_attach_dict[phantom.APP_JSON_APP_RUN_ID] = self.get_app_run_id() vault_attach_dict['contains'] = ['pcap'] try: success, message, vault_id = ph_rules.vault_add(self.get_container_id(), tmp.name, file_name, vault_attach_dict) except Exception as e: self.debug_print(phantom.APP_ERR_FILE_ADD_TO_VAULT.format(e)) return action_result.set_status(phantom.APP_ERROR, "Failed to add the file to Vault", e) if (not success): self.debug_print("Failed to add file to Vault: {0}".format(message)) return action_result.set_status(phantom.APP_ERROR, "Failed to add the file to Vault: {}".format(message)) action_result.set_summary({'vault_id': vault_id}) return action_result.set_status(phantom.APP_SUCCESS) def _parse_time(self, param_name, time_str, action_result): ret_val = None try: dt = datetime.strptime(time_str, '%Y-%m-%dT%H:%M:%S.%fZ') dt_tt = dt.timetuple() ret_val = int(time.mktime(dt_tt)) * 1000 except Exception as e: action_result.set_status(phantom.APP_ERROR, "Unable to parse {0} value {1}, Error: {2}".format(param_name, time_str, str(e))) return ret_val def _handle_time_interval(self, param, action_result): start_time = param.get(PW_JSON_START_TIME) end_time = param.get(PW_JSON_END_TIME) # handle the case where start time is not given and end time is given if (start_time is None and end_time is not None): return (action_result.set_status(phantom.APP_ERROR, "Please specify start_time, it is required if end_time is specified"), None, None) # if start time is specified, process it if (start_time): start_time = self._parse_time(PW_JSON_START_TIME, start_time, action_result) if (start_time is None): return (action_result.get_status(), None, None) # if end time is specified, process it if (end_time): end_time = self._parse_time(PW_JSON_END_TIME, end_time, action_result) if (end_time is None): return (action_result.get_status(), None, None) # if start time is not specified, get the default value if (start_time is None): # get the start time to use, i.e. current - hours in seconds start_time = int(time.time() - (int(PW_N_DAYS_HOURS) * (60 * 60))) # convert it to milliseconds start_time = start_time * 1000 # if end time is not specified, get the default value if (end_time is None): end_time = self._time_now() if (end_time <= start_time): return (action_result.set_status(phantom.APP_ERROR, "Invalid time range, end_time cannot be less than or equal to start_time"), None, None) return (phantom.APP_SUCCESS, start_time, end_time) def _hunt_file(self, param): self.save_progress("Querying hunt file") action_result = self.add_action_result(ActionResult(param)) file_hash = param[PW_JSON_HASH] ret_val, start_time, end_time = self._handle_time_interval(param, action_result) if (phantom.is_fail(ret_val)): return action_result.get_status() endpoint = '/reputations/files/{0}'.format(file_hash) params = { # 'details': 'threat,ip,domain,device', 'start': start_time, 'end': end_time} ret_val, response = self._make_rest_call(endpoint, action_result, params=params, exception_error_codes=[404, 505]) if (phantom.is_fail(ret_val)): return action_result.get_status() action_result.add_data(response) info = response.get('info') summary = action_result.update_summary({}) summary['file_type'] = info.get('type') summary['id'] = info.get('id') summary['detected_type'] = info.get('detectedType') summary['observation_count'] = response.get('observations', {}).get('count', 0) self.save_progress("Querying hunt file succeeded") return action_result.set_status(phantom.APP_SUCCESS) def _hunt_domain(self, param): self.save_progress("Querying hunt domain") action_result = self.add_action_result(ActionResult(param)) domain = param[PW_JSON_DOMAIN] ret_val, start_time, end_time = self._handle_time_interval(param, action_result) if (phantom.is_fail(ret_val)): return action_result.get_status() endpoint = '/reputations/domains/{0}'.format(domain) params = { 'details': 'threat,domain,device', 'include': 'netflows', 'start': start_time, 'end': end_time} ret_val, response = self._make_rest_call(endpoint, action_result, params=params, exception_error_codes=[404, 505]) if (phantom.is_fail(ret_val)): return action_result.get_status() action_result.add_data(response) domain_info = response.get('domain') events = response.get('threat', {}).get('events') summary = action_result.update_summary({}) if (domain_info): summary.update({'domain_organization': domain_info.get('organization', '')}) if (events): summary.update({'event_count': events.get('count', {}).get('total', '')}) else: summary.update({'event_count': 0}) self.save_progress("Querying hunt domain succeeded") return action_result.set_status(phantom.APP_SUCCESS) def _hunt_ip(self, param): self.save_progress("Querying hunt ip") action_result = self.add_action_result(ActionResult(param)) ip = param[PW_JSON_IP] ret_val, start_time, end_time = self._handle_time_interval(param, action_result) if (phantom.is_fail(ret_val)): return action_result.get_status() endpoint = '/reputations/ips/{0}'.format(ip) params = { 'details': 'threat,ip,device', 'include': 'netflows', 'start': start_time, 'end': end_time} ret_val, response = self._make_rest_call(endpoint, action_result, params=params, exception_error_codes=[404, 505]) if (phantom.is_fail(ret_val)): return action_result.get_status() action_result.add_data(response) ip_info = response.get('ip') events = response.get('threat', {}).get('events') summary = action_result.update_summary({}) if (ip_info): summary.update({'ip_organization': ip_info.get('organization', '')}) if (events): summary.update({'event_count': events.get('count', {}).get('total', '')}) else: summary.update({'event_count': 0}) self.save_progress("Querying hunt ip succeeded") return action_result.set_status(phantom.APP_SUCCESS) def _get_first_start_time(self, action_result): config = self.get_config() # Get the poll hours poll_hours = config[PW_JSON_POLL_HOURS] if not self.is_positive_non_zero_int(poll_hours): self.save_progress("Please provide a positive integer in 'Ingest events in last N hours'") return action_result.set_status(phantom.APP_ERROR, "Please provide a positive integer in 'Ingest events in last N hours'"), None # get the start time to use, i.e. current - poll hours in seconds start_time = int(time.time() - (int(poll_hours) * (60 * 60))) # convert it to milliseconds start_time = start_time * 1000 return phantom.APP_SUCCESS, start_time def _time_now(self): return int(time.time() * 1000) def _get_query_params(self, param, action_result): # function to separate on poll and poll now config = self.get_config() limit = config[PW_JSON_MAX_CONTAINERS] if not self.is_positive_non_zero_int(limit): self.save_progress("Please provide a positive integer in 'Maximum events for scheduled polling'") return action_result.set_status(phantom.APP_ERROR, "Please provide a positive integer in 'Maximum events for scheduled polling'"), None query_params = dict() last_time = self._state.get(PW_JSON_LAST_DATE_TIME) if self.is_poll_now(): limit = param.get("container_count", 100) ret_val, query_params["start"] = self._get_first_start_time(action_result) if (phantom.is_fail(ret_val)): return action_result.get_status(), None elif (self._state.get('first_run', True)): self._state['first_run'] = False limit = config.get("first_run_max_events", 100) if not self.is_positive_non_zero_int(limit): self.save_progress("Please provide a positive integer in 'Maximum events to poll first time'") return action_result.set_status(phantom.APP_ERROR, "Please provide a positive integer in 'Maximum events to poll first time'"), None ret_val, query_params["start"] = self._get_first_start_time(action_result) if (phantom.is_fail(ret_val)): return action_result.get_status(), None elif (last_time): query_params["start"] = last_time else: ret_val, query_params["start"] = self._get_first_start_time(action_result) if (phantom.is_fail(ret_val)): return action_result.get_status(), None query_params["maxLimit"] = limit query_params["minLimit"] = limit query_params["end"] = self._time_now() if (not self.is_poll_now()): self._state[PW_JSON_LAST_DATE_TIME] = query_params["end"] return phantom.APP_SUCCESS, query_params def _get_artifact_name(self, observation): default_name = "Observation Artifact" try: return observation['data']['idsEvent']['description'] except: pass try: return '{0} Observation from {1}'.format(observation['killChainStage'], observation['source']) except: pass try: return 'Observation from {0}'.format(observation['source']) except: pass return default_name def _download_file(self, url_to_download, action_result, local_file_path, params, estimated_size=None): """Function that downloads the file from a url Args: url_to_download: the url of the file to download action_result: The ActionResult object to hold the status local_file_path: The local file path that was created. Return: A status code of the type phantom.APP_[SUCC|ERR]_XXX. The size in bytes of the file downloaded. """ content_size = 0 # Which percent chunks will the download happen for big files percent_block = 10 # size that sets a file as big. # A big file will be downloaded in chunks of percent_block else it will be a synchronous download big_file_size_bytes = 20 * (1024 * 1024) self.save_progress("Downloading file from {0} to {1}".format(url_to_download, local_file_path)) self.debug_print("Complete URL", url_to_download) try: r = requests.get(self._base_url + url_to_download, headers=self._headers, params=params, stream=True, timeout=PROTECTWISE_DEFAULT_TIMEOUT) except Exception as e: return action_result.set_status(phantom.APP_ERROR, "Error downloading file", e) if (r.status_code != requests.codes.ok): # pylint: disable=E1101 return action_result.set_status(phantom.APP_ERROR, "Server returned status_code: {0}".format(r.status_code)) # get the content length content_size = r.headers.get('content-length') if (not content_size and estimated_size is not None): content_size = estimated_size if (not content_size): return action_result.set_status(phantom.APP_ERROR, "Unable to get content length") self.save_progress(phantom.APP_PROG_FILE_SIZE, value=content_size, type='bytes') bytes_to_download = int(content_size) # init to download the whole file in a single read block_size = bytes_to_download # if the file is big then download in % increments if (bytes_to_download > big_file_size_bytes): block_size = (bytes_to_download * percent_block) / 100 bytes_downloaded = 0 try: with open(local_file_path, 'wb') as file_handle: for chunk in r.iter_content(chunk_size=block_size): if (chunk): bytes_downloaded += len(chunk) file_handle.write(chunk) file_handle.flush() os.fsync(file_handle.fileno()) self.send_progress(PW_PROG_FINISHED_DOWNLOADING_STATUS, float(bytes_downloaded) / float(bytes_to_download)) except Exception as e: return action_result.set_status(phantom.APP_ERROR, "Error downloading file", e) return phantom.APP_SUCCESS def _create_artifacts_for_event(self, event, action_result, container_index): artifacts = [] observation_count = event.get('observationCount') if (not observation_count): return artifacts event_id = event['id'] # we need to get the details of the event ret_val, resp_json = self._make_rest_call('/events/{0}'.format(event_id), action_result) if (phantom.is_fail(ret_val)): return self.set_status(phantom.APP_ERROR, "Failed to get events: {0}".format(action_result.get_message())) observations = resp_json.get('observations') if (not observations): return artifacts for i, observation in enumerate(observations): self.send_progress("Processing Container # {0} Artifact # {1}".format(container_index, i)) artifact = dict() artifact['data'] = observation artifact['source_data_identifier'] = observation['id'] artifact['name'] = self._get_artifact_name(observation) connection_info = observation.get('connectionInfo') artifact['cef'] = cef = dict() artifact['cef_types'] = PW_CEF_CONTAINS hashes = {} try: hashes = observation['data']['fileReputation']['hashes'] except: pass if (hashes): # add the md5 in the hash key, everything else in it's own key # this is to keep things happy in 2.0 and 2.1 if ('md5' in hashes): cef['fileHash'] = hashes['md5'] cef['fileHashMd5'] = hashes['md5'] if ('sha256' in hashes): cef['fileHashSha256'] = hashes['sha256'] if ('sha512' in hashes): cef['fileHashSha512'] = hashes['sha512'] if ('sha1' in hashes): cef['fileHashSha1'] = hashes['sha1'] if (connection_info): cef['sourceAddress'] = connection_info.get('srcIp') cef['destinationAddress'] = connection_info.get('dstIp') cef['sourcePort'] = connection_info.get('srcPort') cef['destinationPort'] = connection_info.get('dstPort') cef['sourceMacAddress'] = connection_info.get('srcMac') cef['destinationMacAddress'] = connection_info.get('dstMac') cef['transportProtocol'] = connection_info.get('layer4Proto') cef['observationId'] = observation['id'] cef['sensorId'] = observation['sensorId'] if self._display_dup_artifacts is True: cef['receiptTime'] = self._get_str_from_epoch(int(round(time.time() * 1000))) artifacts.append(artifact) return artifacts def _get_str_from_epoch(self, epoch_milli): # 2015-07-21T00:27:59Z return datetime.fromtimestamp(int(epoch_milli) / 1000.0).strftime('%Y-%m-%dT%H:%M:%S.%fZ') def _save_results(self, results): containers_processed = 0 for i, result in enumerate(results): # result is a dictionary of a single container and artifacts if ('container' not in result): continue if ('artifacts' not in result): # igonore containers without artifacts continue if (len(result['artifacts']) == 0): # igonore containers without artifacts continue containers_processed += 1 self.send_progress("Adding Container # {0}".format(i)) ret_val, response, container_id = self.save_container(result['container']) self.debug_print("save_container returns, value: {0}, reason: {1}, id: {2}".format(ret_val, response, container_id)) if (phantom.is_fail(ret_val)): continue if (not container_id): continue if ('artifacts' not in result): continue artifacts = result['artifacts'] # get the length of the artifact, we might have trimmed it or not len_artifacts = len(artifacts) for j, artifact in enumerate(artifacts): # if it is the last artifact of the last container if ((j + 1) == len_artifacts): # mark it such that active playbooks get executed artifact['run_automation'] = True artifact['container_id'] = container_id self.send_progress("Adding Container # {0}, Artifact # {1}".format(i, j)) ret_val, status_string, artifact_id = self.save_artifact(artifact) self.debug_print("save_artifact returns, value: {0}, reason: {1}, id: {2}".format(ret_val, status_string, artifact_id)) return containers_processed def _on_poll(self, param): action_result = ActionResult(param) # Get the requests based on the type of poll ret_val, query_params = self._get_query_params(param, action_result) if (phantom.is_fail(ret_val)): return action_result.get_status() ret_val, resp_json = self._make_rest_call('/events', action_result, params=query_params) if (phantom.is_fail(ret_val)): return self.set_status(phantom.APP_ERROR, "Failed to get events: {0}".format(action_result.get_message())) self.save_progress("Total events: {0}".format(resp_json.get('count', 'NA'))) events = resp_json.get('events', []) no_of_events = len(events) self.save_progress("Processing {0} events".format(no_of_events)) results = [] for i, event in enumerate(events): self.send_progress("Processing Container # {0}".format(i)) container = dict() container['data'] = event container['source_data_identifier'] = event['id'] if self._display_dup_containers is True: container['source_data_identifier'] = "{} container_created:{}".format(container['source_data_identifier'], self._get_str_from_epoch(int(round(time.time() * 1000)))) container['name'] = event['message'] container['start_time'] = self._get_str_from_epoch(event['startedAt']) container['end_time'] = self._get_str_from_epoch(event['endedAt']) container['id'] = event['id'] tags = event.get('tags') if (tags is not None): container['tags'] = tags.split(',') artifacts = self._create_artifacts_for_event(event, action_result, i) results.append({'container': container, 'artifacts': artifacts}) self.send_progress("Done Processing") self._save_results(results) # store the date time of the last event if ((no_of_events) and (not self.is_poll_now())): config = self.get_config() last_date_time = events[0]["startedAt"] self._state[PW_JSON_LAST_DATE_TIME] = last_date_time date_strings = [x["startedAt"] for x in events] date_strings = set(date_strings) if (len(date_strings) == 1): self.debug_print("Getting all containers with the same date, down to the millisecond." " That means the device is generating" " max_containers=({0}) per second. Skipping to the next second to not get stuck.".format(config[PW_JSON_MAX_CONTAINERS])) self._state[PW_JSON_LAST_DATE_TIME] = int(self._state[PW_JSON_LAST_DATE_TIME]) + 1 return self.set_status(phantom.APP_SUCCESS) def handle_action(self, param): action = self.get_action_identifier() if (action == phantom.ACTION_ID_INGEST_ON_POLL): start_time = time.time() result = self._on_poll(param) end_time = time.time() diff_time = end_time - start_time human_time = str(timedelta(seconds=int(diff_time))) self.save_progress("Time taken: {0}".format(human_time)) elif (action == ACTION_ID_TEST_ASSET_CONNECTIVITY): result = self._test_connectivity(param) elif (action == ACTION_ID_GET_PACKETS): result = self._get_packets(param) elif (action == ACTION_ID_HUNT_IP): result = self._hunt_ip(param) elif (action == ACTION_ID_HUNT_DOMAIN): result = self._hunt_domain(param) elif (action == ACTION_ID_HUNT_FILE): result = self._hunt_file(param) return result if __name__ == '__main__': import argparse import sys import pudb pudb.set_trace() argparser = argparse.ArgumentParser() argparser.add_argument('input_test_json', help='Input Test JSON file') argparser.add_argument('-', '--username', help='username', required=False) argparser.add_argument('-p', '--password', help='password', required=False) argparser.add_argument('-v', '--verify', action='store_true', help='verify', required=False, default=False) args = argparser.parse_args() session_id = None username = args.username password = args.password verify = args.verify if (username is not None and password is None): # User specified a username but not a password, so ask import getpass password = getpass.getpass("Password: ") if (username and password): login_url = BaseConnector._get_phantom_base_url() + "login" try: print("Accessing the Login page") r = requests.get(login_url, verify=verify, timeout=PROTECTWISE_DEFAULT_TIMEOUT) csrftoken = r.cookies['csrftoken'] data = dict() data['username'] = username data['password'] = password data['csrfmiddlewaretoken'] = csrftoken headers = dict() headers['Cookie'] = 'csrftoken=' + csrftoken headers['Referer'] = login_url print("Logging into Platform to get the session id") r2 = requests.post(login_url, verify=verify, data=data, headers=headers, timeout=PROTECTWISE_DEFAULT_TIMEOUT) session_id = r2.cookies['sessionid'] except Exception as e: print("Unable to get session id from the platfrom. Error: " + str(e)) sys.exit(1) with open(args.input_test_json) as f: in_json = f.read() in_json = json.loads(in_json) print(json.dumps(in_json, indent=4)) connector = ProtectWiseConnector() connector.print_progress_message = True if (session_id is not None): in_json['user_session_token'] = session_id connector._set_csrf_info(csrftoken, headers['Referer']) ret_val = connector._handle_action(json.dumps(in_json), None) print(json.dumps(json.loads(ret_val), indent=4)) sys.exit(0)
37.923165
143
0.628958
429503bd083c0b237ec9f247ac58c45386c3d048
37,252
py
Python
gcloudoem/datastore/_generated/datastore_pb2.py
Kapiche/gcloud-datastore-oem
826acf328359b463a9f1e8761442b3a2d549c13e
[ "Apache-2.0" ]
1
2015-07-08T17:55:18.000Z
2015-07-08T17:55:18.000Z
gcloudoem/datastore/_generated/datastore_pb2.py
Kapiche/gcloud-datastore-oem
826acf328359b463a9f1e8761442b3a2d549c13e
[ "Apache-2.0" ]
8
2015-04-30T05:35:50.000Z
2015-12-14T11:22:01.000Z
gcloudoem/datastore/_generated/datastore_pb2.py
Kapiche/gcloud-datastore-oem
826acf328359b463a9f1e8761442b3a2d549c13e
[ "Apache-2.0" ]
2
2019-01-05T13:33:53.000Z
2019-01-06T08:08:51.000Z
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/datastore/v1/datastore.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.api import annotations_pb2 as google_dot_api_dot_annotations__pb2 from . import entity_pb2 as google_dot_datastore_dot_v1_dot_entity__pb2 from . import query_pb2 as google_dot_datastore_dot_v1_dot_query__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='google/datastore/v1/datastore.proto', package='google.datastore.v1', syntax='proto3', serialized_pb=_b('\n#google/datastore/v1/datastore.proto\x12\x13google.datastore.v1\x1a\x1cgoogle/api/annotations.proto\x1a google/datastore/v1/entity.proto\x1a\x1fgoogle/datastore/v1/query.proto\"\x83\x01\n\rLookupRequest\x12\x12\n\nproject_id\x18\x08 \x01(\t\x12\x36\n\x0cread_options\x18\x01 \x01(\x0b\x32 .google.datastore.v1.ReadOptions\x12&\n\x04keys\x18\x03 \x03(\x0b\x32\x18.google.datastore.v1.Key\"\xa2\x01\n\x0eLookupResponse\x12\x30\n\x05\x66ound\x18\x01 \x03(\x0b\x32!.google.datastore.v1.EntityResult\x12\x32\n\x07missing\x18\x02 \x03(\x0b\x32!.google.datastore.v1.EntityResult\x12*\n\x08\x64\x65\x66\x65rred\x18\x03 \x03(\x0b\x32\x18.google.datastore.v1.Key\"\x84\x02\n\x0fRunQueryRequest\x12\x12\n\nproject_id\x18\x08 \x01(\t\x12\x36\n\x0cpartition_id\x18\x02 \x01(\x0b\x32 .google.datastore.v1.PartitionId\x12\x36\n\x0cread_options\x18\x01 \x01(\x0b\x32 .google.datastore.v1.ReadOptions\x12+\n\x05query\x18\x03 \x01(\x0b\x32\x1a.google.datastore.v1.QueryH\x00\x12\x32\n\tgql_query\x18\x07 \x01(\x0b\x32\x1d.google.datastore.v1.GqlQueryH\x00\x42\x0c\n\nquery_type\"s\n\x10RunQueryResponse\x12\x34\n\x05\x62\x61tch\x18\x01 \x01(\x0b\x32%.google.datastore.v1.QueryResultBatch\x12)\n\x05query\x18\x02 \x01(\x0b\x32\x1a.google.datastore.v1.Query\"-\n\x17\x42\x65ginTransactionRequest\x12\x12\n\nproject_id\x18\x08 \x01(\t\"/\n\x18\x42\x65ginTransactionResponse\x12\x13\n\x0btransaction\x18\x01 \x01(\x0c\":\n\x0fRollbackRequest\x12\x12\n\nproject_id\x18\x08 \x01(\t\x12\x13\n\x0btransaction\x18\x01 \x01(\x0c\"\x12\n\x10RollbackResponse\"\x83\x02\n\rCommitRequest\x12\x12\n\nproject_id\x18\x08 \x01(\t\x12\x35\n\x04mode\x18\x05 \x01(\x0e\x32\'.google.datastore.v1.CommitRequest.Mode\x12\x15\n\x0btransaction\x18\x01 \x01(\x0cH\x00\x12\x30\n\tmutations\x18\x06 \x03(\x0b\x32\x1d.google.datastore.v1.Mutation\"F\n\x04Mode\x12\x14\n\x10MODE_UNSPECIFIED\x10\x00\x12\x11\n\rTRANSACTIONAL\x10\x01\x12\x15\n\x11NON_TRANSACTIONAL\x10\x02\x42\x16\n\x14transaction_selector\"f\n\x0e\x43ommitResponse\x12=\n\x10mutation_results\x18\x03 \x03(\x0b\x32#.google.datastore.v1.MutationResult\x12\x15\n\rindex_updates\x18\x04 \x01(\x05\"P\n\x12\x41llocateIdsRequest\x12\x12\n\nproject_id\x18\x08 \x01(\t\x12&\n\x04keys\x18\x01 \x03(\x0b\x32\x18.google.datastore.v1.Key\"=\n\x13\x41llocateIdsResponse\x12&\n\x04keys\x18\x01 \x03(\x0b\x32\x18.google.datastore.v1.Key\"\x87\x02\n\x08Mutation\x12-\n\x06insert\x18\x04 \x01(\x0b\x32\x1b.google.datastore.v1.EntityH\x00\x12-\n\x06update\x18\x05 \x01(\x0b\x32\x1b.google.datastore.v1.EntityH\x00\x12-\n\x06upsert\x18\x06 \x01(\x0b\x32\x1b.google.datastore.v1.EntityH\x00\x12*\n\x06\x64\x65lete\x18\x07 \x01(\x0b\x32\x18.google.datastore.v1.KeyH\x00\x12\x16\n\x0c\x62\x61se_version\x18\x08 \x01(\x03H\x01\x42\x0b\n\toperationB\x1d\n\x1b\x63onflict_detection_strategy\"c\n\x0eMutationResult\x12%\n\x03key\x18\x03 \x01(\x0b\x32\x18.google.datastore.v1.Key\x12\x0f\n\x07version\x18\x04 \x01(\x03\x12\x19\n\x11\x63onflict_detected\x18\x05 \x01(\x08\"\xd5\x01\n\x0bReadOptions\x12L\n\x10read_consistency\x18\x01 \x01(\x0e\x32\x30.google.datastore.v1.ReadOptions.ReadConsistencyH\x00\x12\x15\n\x0btransaction\x18\x02 \x01(\x0cH\x00\"M\n\x0fReadConsistency\x12 \n\x1cREAD_CONSISTENCY_UNSPECIFIED\x10\x00\x12\n\n\x06STRONG\x10\x01\x12\x0c\n\x08\x45VENTUAL\x10\x02\x42\x12\n\x10\x63onsistency_type2\xdb\x06\n\tDatastore\x12~\n\x06Lookup\x12\".google.datastore.v1.LookupRequest\x1a#.google.datastore.v1.LookupResponse\"+\x82\xd3\xe4\x93\x02%\" /v1/projects/{project_id}:lookup:\x01*\x12\x86\x01\n\x08RunQuery\x12$.google.datastore.v1.RunQueryRequest\x1a%.google.datastore.v1.RunQueryResponse\"-\x82\xd3\xe4\x93\x02\'\"\"/v1/projects/{project_id}:runQuery:\x01*\x12\xa6\x01\n\x10\x42\x65ginTransaction\x12,.google.datastore.v1.BeginTransactionRequest\x1a-.google.datastore.v1.BeginTransactionResponse\"5\x82\xd3\xe4\x93\x02/\"*/v1/projects/{project_id}:beginTransaction:\x01*\x12~\n\x06\x43ommit\x12\".google.datastore.v1.CommitRequest\x1a#.google.datastore.v1.CommitResponse\"+\x82\xd3\xe4\x93\x02%\" /v1/projects/{project_id}:commit:\x01*\x12\x86\x01\n\x08Rollback\x12$.google.datastore.v1.RollbackRequest\x1a%.google.datastore.v1.RollbackResponse\"-\x82\xd3\xe4\x93\x02\'\"\"/v1/projects/{project_id}:rollback:\x01*\x12\x92\x01\n\x0b\x41llocateIds\x12\'.google.datastore.v1.AllocateIdsRequest\x1a(.google.datastore.v1.AllocateIdsResponse\"0\x82\xd3\xe4\x93\x02*\"%/v1/projects/{project_id}:allocateIds:\x01*B+\n\x17\x63om.google.datastore.v1B\x0e\x44\x61tastoreProtoP\x01\x62\x06proto3') , dependencies=[google_dot_api_dot_annotations__pb2.DESCRIPTOR,google_dot_datastore_dot_v1_dot_entity__pb2.DESCRIPTOR,google_dot_datastore_dot_v1_dot_query__pb2.DESCRIPTOR,]) _sym_db.RegisterFileDescriptor(DESCRIPTOR) _COMMITREQUEST_MODE = _descriptor.EnumDescriptor( name='Mode', full_name='google.datastore.v1.CommitRequest.Mode', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='MODE_UNSPECIFIED', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='TRANSACTIONAL', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='NON_TRANSACTIONAL', index=2, number=2, options=None, type=None), ], containing_type=None, options=None, serialized_start=1178, serialized_end=1248, ) _sym_db.RegisterEnumDescriptor(_COMMITREQUEST_MODE) _READOPTIONS_READCONSISTENCY = _descriptor.EnumDescriptor( name='ReadConsistency', full_name='google.datastore.v1.ReadOptions.ReadConsistency', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='READ_CONSISTENCY_UNSPECIFIED', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='STRONG', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='EVENTUAL', index=2, number=2, options=None, type=None), ], containing_type=None, options=None, serialized_start=2007, serialized_end=2084, ) _sym_db.RegisterEnumDescriptor(_READOPTIONS_READCONSISTENCY) _LOOKUPREQUEST = _descriptor.Descriptor( name='LookupRequest', full_name='google.datastore.v1.LookupRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='project_id', full_name='google.datastore.v1.LookupRequest.project_id', index=0, number=8, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='read_options', full_name='google.datastore.v1.LookupRequest.read_options', index=1, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='keys', full_name='google.datastore.v1.LookupRequest.keys', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=158, serialized_end=289, ) _LOOKUPRESPONSE = _descriptor.Descriptor( name='LookupResponse', full_name='google.datastore.v1.LookupResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='found', full_name='google.datastore.v1.LookupResponse.found', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='missing', full_name='google.datastore.v1.LookupResponse.missing', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='deferred', full_name='google.datastore.v1.LookupResponse.deferred', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=292, serialized_end=454, ) _RUNQUERYREQUEST = _descriptor.Descriptor( name='RunQueryRequest', full_name='google.datastore.v1.RunQueryRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='project_id', full_name='google.datastore.v1.RunQueryRequest.project_id', index=0, number=8, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='partition_id', full_name='google.datastore.v1.RunQueryRequest.partition_id', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='read_options', full_name='google.datastore.v1.RunQueryRequest.read_options', index=2, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='query', full_name='google.datastore.v1.RunQueryRequest.query', index=3, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='gql_query', full_name='google.datastore.v1.RunQueryRequest.gql_query', index=4, number=7, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='query_type', full_name='google.datastore.v1.RunQueryRequest.query_type', index=0, containing_type=None, fields=[]), ], serialized_start=457, serialized_end=717, ) _RUNQUERYRESPONSE = _descriptor.Descriptor( name='RunQueryResponse', full_name='google.datastore.v1.RunQueryResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='batch', full_name='google.datastore.v1.RunQueryResponse.batch', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='query', full_name='google.datastore.v1.RunQueryResponse.query', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=719, serialized_end=834, ) _BEGINTRANSACTIONREQUEST = _descriptor.Descriptor( name='BeginTransactionRequest', full_name='google.datastore.v1.BeginTransactionRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='project_id', full_name='google.datastore.v1.BeginTransactionRequest.project_id', index=0, number=8, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=836, serialized_end=881, ) _BEGINTRANSACTIONRESPONSE = _descriptor.Descriptor( name='BeginTransactionResponse', full_name='google.datastore.v1.BeginTransactionResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='transaction', full_name='google.datastore.v1.BeginTransactionResponse.transaction', index=0, number=1, type=12, cpp_type=9, label=1, has_default_value=False, default_value=_b(""), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=883, serialized_end=930, ) _ROLLBACKREQUEST = _descriptor.Descriptor( name='RollbackRequest', full_name='google.datastore.v1.RollbackRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='project_id', full_name='google.datastore.v1.RollbackRequest.project_id', index=0, number=8, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='transaction', full_name='google.datastore.v1.RollbackRequest.transaction', index=1, number=1, type=12, cpp_type=9, label=1, has_default_value=False, default_value=_b(""), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=932, serialized_end=990, ) _ROLLBACKRESPONSE = _descriptor.Descriptor( name='RollbackResponse', full_name='google.datastore.v1.RollbackResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=992, serialized_end=1010, ) _COMMITREQUEST = _descriptor.Descriptor( name='CommitRequest', full_name='google.datastore.v1.CommitRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='project_id', full_name='google.datastore.v1.CommitRequest.project_id', index=0, number=8, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='mode', full_name='google.datastore.v1.CommitRequest.mode', index=1, number=5, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='transaction', full_name='google.datastore.v1.CommitRequest.transaction', index=2, number=1, type=12, cpp_type=9, label=1, has_default_value=False, default_value=_b(""), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='mutations', full_name='google.datastore.v1.CommitRequest.mutations', index=3, number=6, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _COMMITREQUEST_MODE, ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='transaction_selector', full_name='google.datastore.v1.CommitRequest.transaction_selector', index=0, containing_type=None, fields=[]), ], serialized_start=1013, serialized_end=1272, ) _COMMITRESPONSE = _descriptor.Descriptor( name='CommitResponse', full_name='google.datastore.v1.CommitResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='mutation_results', full_name='google.datastore.v1.CommitResponse.mutation_results', index=0, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='index_updates', full_name='google.datastore.v1.CommitResponse.index_updates', index=1, number=4, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1274, serialized_end=1376, ) _ALLOCATEIDSREQUEST = _descriptor.Descriptor( name='AllocateIdsRequest', full_name='google.datastore.v1.AllocateIdsRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='project_id', full_name='google.datastore.v1.AllocateIdsRequest.project_id', index=0, number=8, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='keys', full_name='google.datastore.v1.AllocateIdsRequest.keys', index=1, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1378, serialized_end=1458, ) _ALLOCATEIDSRESPONSE = _descriptor.Descriptor( name='AllocateIdsResponse', full_name='google.datastore.v1.AllocateIdsResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='keys', full_name='google.datastore.v1.AllocateIdsResponse.keys', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1460, serialized_end=1521, ) _MUTATION = _descriptor.Descriptor( name='Mutation', full_name='google.datastore.v1.Mutation', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='insert', full_name='google.datastore.v1.Mutation.insert', index=0, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='update', full_name='google.datastore.v1.Mutation.update', index=1, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='upsert', full_name='google.datastore.v1.Mutation.upsert', index=2, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='delete', full_name='google.datastore.v1.Mutation.delete', index=3, number=7, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='base_version', full_name='google.datastore.v1.Mutation.base_version', index=4, number=8, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='operation', full_name='google.datastore.v1.Mutation.operation', index=0, containing_type=None, fields=[]), _descriptor.OneofDescriptor( name='conflict_detection_strategy', full_name='google.datastore.v1.Mutation.conflict_detection_strategy', index=1, containing_type=None, fields=[]), ], serialized_start=1524, serialized_end=1787, ) _MUTATIONRESULT = _descriptor.Descriptor( name='MutationResult', full_name='google.datastore.v1.MutationResult', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='google.datastore.v1.MutationResult.key', index=0, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='version', full_name='google.datastore.v1.MutationResult.version', index=1, number=4, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='conflict_detected', full_name='google.datastore.v1.MutationResult.conflict_detected', index=2, number=5, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1789, serialized_end=1888, ) _READOPTIONS = _descriptor.Descriptor( name='ReadOptions', full_name='google.datastore.v1.ReadOptions', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='read_consistency', full_name='google.datastore.v1.ReadOptions.read_consistency', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='transaction', full_name='google.datastore.v1.ReadOptions.transaction', index=1, number=2, type=12, cpp_type=9, label=1, has_default_value=False, default_value=_b(""), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _READOPTIONS_READCONSISTENCY, ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='consistency_type', full_name='google.datastore.v1.ReadOptions.consistency_type', index=0, containing_type=None, fields=[]), ], serialized_start=1891, serialized_end=2104, ) _LOOKUPREQUEST.fields_by_name['read_options'].message_type = _READOPTIONS _LOOKUPREQUEST.fields_by_name['keys'].message_type = google_dot_datastore_dot_v1_dot_entity__pb2._KEY _LOOKUPRESPONSE.fields_by_name['found'].message_type = google_dot_datastore_dot_v1_dot_query__pb2._ENTITYRESULT _LOOKUPRESPONSE.fields_by_name['missing'].message_type = google_dot_datastore_dot_v1_dot_query__pb2._ENTITYRESULT _LOOKUPRESPONSE.fields_by_name['deferred'].message_type = google_dot_datastore_dot_v1_dot_entity__pb2._KEY _RUNQUERYREQUEST.fields_by_name['partition_id'].message_type = google_dot_datastore_dot_v1_dot_entity__pb2._PARTITIONID _RUNQUERYREQUEST.fields_by_name['read_options'].message_type = _READOPTIONS _RUNQUERYREQUEST.fields_by_name['query'].message_type = google_dot_datastore_dot_v1_dot_query__pb2._QUERY _RUNQUERYREQUEST.fields_by_name['gql_query'].message_type = google_dot_datastore_dot_v1_dot_query__pb2._GQLQUERY _RUNQUERYREQUEST.oneofs_by_name['query_type'].fields.append( _RUNQUERYREQUEST.fields_by_name['query']) _RUNQUERYREQUEST.fields_by_name['query'].containing_oneof = _RUNQUERYREQUEST.oneofs_by_name['query_type'] _RUNQUERYREQUEST.oneofs_by_name['query_type'].fields.append( _RUNQUERYREQUEST.fields_by_name['gql_query']) _RUNQUERYREQUEST.fields_by_name['gql_query'].containing_oneof = _RUNQUERYREQUEST.oneofs_by_name['query_type'] _RUNQUERYRESPONSE.fields_by_name['batch'].message_type = google_dot_datastore_dot_v1_dot_query__pb2._QUERYRESULTBATCH _RUNQUERYRESPONSE.fields_by_name['query'].message_type = google_dot_datastore_dot_v1_dot_query__pb2._QUERY _COMMITREQUEST.fields_by_name['mode'].enum_type = _COMMITREQUEST_MODE _COMMITREQUEST.fields_by_name['mutations'].message_type = _MUTATION _COMMITREQUEST_MODE.containing_type = _COMMITREQUEST _COMMITREQUEST.oneofs_by_name['transaction_selector'].fields.append( _COMMITREQUEST.fields_by_name['transaction']) _COMMITREQUEST.fields_by_name['transaction'].containing_oneof = _COMMITREQUEST.oneofs_by_name['transaction_selector'] _COMMITRESPONSE.fields_by_name['mutation_results'].message_type = _MUTATIONRESULT _ALLOCATEIDSREQUEST.fields_by_name['keys'].message_type = google_dot_datastore_dot_v1_dot_entity__pb2._KEY _ALLOCATEIDSRESPONSE.fields_by_name['keys'].message_type = google_dot_datastore_dot_v1_dot_entity__pb2._KEY _MUTATION.fields_by_name['insert'].message_type = google_dot_datastore_dot_v1_dot_entity__pb2._ENTITY _MUTATION.fields_by_name['update'].message_type = google_dot_datastore_dot_v1_dot_entity__pb2._ENTITY _MUTATION.fields_by_name['upsert'].message_type = google_dot_datastore_dot_v1_dot_entity__pb2._ENTITY _MUTATION.fields_by_name['delete'].message_type = google_dot_datastore_dot_v1_dot_entity__pb2._KEY _MUTATION.oneofs_by_name['operation'].fields.append( _MUTATION.fields_by_name['insert']) _MUTATION.fields_by_name['insert'].containing_oneof = _MUTATION.oneofs_by_name['operation'] _MUTATION.oneofs_by_name['operation'].fields.append( _MUTATION.fields_by_name['update']) _MUTATION.fields_by_name['update'].containing_oneof = _MUTATION.oneofs_by_name['operation'] _MUTATION.oneofs_by_name['operation'].fields.append( _MUTATION.fields_by_name['upsert']) _MUTATION.fields_by_name['upsert'].containing_oneof = _MUTATION.oneofs_by_name['operation'] _MUTATION.oneofs_by_name['operation'].fields.append( _MUTATION.fields_by_name['delete']) _MUTATION.fields_by_name['delete'].containing_oneof = _MUTATION.oneofs_by_name['operation'] _MUTATION.oneofs_by_name['conflict_detection_strategy'].fields.append( _MUTATION.fields_by_name['base_version']) _MUTATION.fields_by_name['base_version'].containing_oneof = _MUTATION.oneofs_by_name['conflict_detection_strategy'] _MUTATIONRESULT.fields_by_name['key'].message_type = google_dot_datastore_dot_v1_dot_entity__pb2._KEY _READOPTIONS.fields_by_name['read_consistency'].enum_type = _READOPTIONS_READCONSISTENCY _READOPTIONS_READCONSISTENCY.containing_type = _READOPTIONS _READOPTIONS.oneofs_by_name['consistency_type'].fields.append( _READOPTIONS.fields_by_name['read_consistency']) _READOPTIONS.fields_by_name['read_consistency'].containing_oneof = _READOPTIONS.oneofs_by_name['consistency_type'] _READOPTIONS.oneofs_by_name['consistency_type'].fields.append( _READOPTIONS.fields_by_name['transaction']) _READOPTIONS.fields_by_name['transaction'].containing_oneof = _READOPTIONS.oneofs_by_name['consistency_type'] DESCRIPTOR.message_types_by_name['LookupRequest'] = _LOOKUPREQUEST DESCRIPTOR.message_types_by_name['LookupResponse'] = _LOOKUPRESPONSE DESCRIPTOR.message_types_by_name['RunQueryRequest'] = _RUNQUERYREQUEST DESCRIPTOR.message_types_by_name['RunQueryResponse'] = _RUNQUERYRESPONSE DESCRIPTOR.message_types_by_name['BeginTransactionRequest'] = _BEGINTRANSACTIONREQUEST DESCRIPTOR.message_types_by_name['BeginTransactionResponse'] = _BEGINTRANSACTIONRESPONSE DESCRIPTOR.message_types_by_name['RollbackRequest'] = _ROLLBACKREQUEST DESCRIPTOR.message_types_by_name['RollbackResponse'] = _ROLLBACKRESPONSE DESCRIPTOR.message_types_by_name['CommitRequest'] = _COMMITREQUEST DESCRIPTOR.message_types_by_name['CommitResponse'] = _COMMITRESPONSE DESCRIPTOR.message_types_by_name['AllocateIdsRequest'] = _ALLOCATEIDSREQUEST DESCRIPTOR.message_types_by_name['AllocateIdsResponse'] = _ALLOCATEIDSRESPONSE DESCRIPTOR.message_types_by_name['Mutation'] = _MUTATION DESCRIPTOR.message_types_by_name['MutationResult'] = _MUTATIONRESULT DESCRIPTOR.message_types_by_name['ReadOptions'] = _READOPTIONS LookupRequest = _reflection.GeneratedProtocolMessageType('LookupRequest', (_message.Message,), dict( DESCRIPTOR = _LOOKUPREQUEST, __module__ = 'google.datastore.v1.datastore_pb2' # @@protoc_insertion_point(class_scope:google.datastore.v1.LookupRequest) )) _sym_db.RegisterMessage(LookupRequest) LookupResponse = _reflection.GeneratedProtocolMessageType('LookupResponse', (_message.Message,), dict( DESCRIPTOR = _LOOKUPRESPONSE, __module__ = 'google.datastore.v1.datastore_pb2' # @@protoc_insertion_point(class_scope:google.datastore.v1.LookupResponse) )) _sym_db.RegisterMessage(LookupResponse) RunQueryRequest = _reflection.GeneratedProtocolMessageType('RunQueryRequest', (_message.Message,), dict( DESCRIPTOR = _RUNQUERYREQUEST, __module__ = 'google.datastore.v1.datastore_pb2' # @@protoc_insertion_point(class_scope:google.datastore.v1.RunQueryRequest) )) _sym_db.RegisterMessage(RunQueryRequest) RunQueryResponse = _reflection.GeneratedProtocolMessageType('RunQueryResponse', (_message.Message,), dict( DESCRIPTOR = _RUNQUERYRESPONSE, __module__ = 'google.datastore.v1.datastore_pb2' # @@protoc_insertion_point(class_scope:google.datastore.v1.RunQueryResponse) )) _sym_db.RegisterMessage(RunQueryResponse) BeginTransactionRequest = _reflection.GeneratedProtocolMessageType('BeginTransactionRequest', (_message.Message,), dict( DESCRIPTOR = _BEGINTRANSACTIONREQUEST, __module__ = 'google.datastore.v1.datastore_pb2' # @@protoc_insertion_point(class_scope:google.datastore.v1.BeginTransactionRequest) )) _sym_db.RegisterMessage(BeginTransactionRequest) BeginTransactionResponse = _reflection.GeneratedProtocolMessageType('BeginTransactionResponse', (_message.Message,), dict( DESCRIPTOR = _BEGINTRANSACTIONRESPONSE, __module__ = 'google.datastore.v1.datastore_pb2' # @@protoc_insertion_point(class_scope:google.datastore.v1.BeginTransactionResponse) )) _sym_db.RegisterMessage(BeginTransactionResponse) RollbackRequest = _reflection.GeneratedProtocolMessageType('RollbackRequest', (_message.Message,), dict( DESCRIPTOR = _ROLLBACKREQUEST, __module__ = 'google.datastore.v1.datastore_pb2' # @@protoc_insertion_point(class_scope:google.datastore.v1.RollbackRequest) )) _sym_db.RegisterMessage(RollbackRequest) RollbackResponse = _reflection.GeneratedProtocolMessageType('RollbackResponse', (_message.Message,), dict( DESCRIPTOR = _ROLLBACKRESPONSE, __module__ = 'google.datastore.v1.datastore_pb2' # @@protoc_insertion_point(class_scope:google.datastore.v1.RollbackResponse) )) _sym_db.RegisterMessage(RollbackResponse) CommitRequest = _reflection.GeneratedProtocolMessageType('CommitRequest', (_message.Message,), dict( DESCRIPTOR = _COMMITREQUEST, __module__ = 'google.datastore.v1.datastore_pb2' # @@protoc_insertion_point(class_scope:google.datastore.v1.CommitRequest) )) _sym_db.RegisterMessage(CommitRequest) CommitResponse = _reflection.GeneratedProtocolMessageType('CommitResponse', (_message.Message,), dict( DESCRIPTOR = _COMMITRESPONSE, __module__ = 'google.datastore.v1.datastore_pb2' # @@protoc_insertion_point(class_scope:google.datastore.v1.CommitResponse) )) _sym_db.RegisterMessage(CommitResponse) AllocateIdsRequest = _reflection.GeneratedProtocolMessageType('AllocateIdsRequest', (_message.Message,), dict( DESCRIPTOR = _ALLOCATEIDSREQUEST, __module__ = 'google.datastore.v1.datastore_pb2' # @@protoc_insertion_point(class_scope:google.datastore.v1.AllocateIdsRequest) )) _sym_db.RegisterMessage(AllocateIdsRequest) AllocateIdsResponse = _reflection.GeneratedProtocolMessageType('AllocateIdsResponse', (_message.Message,), dict( DESCRIPTOR = _ALLOCATEIDSRESPONSE, __module__ = 'google.datastore.v1.datastore_pb2' # @@protoc_insertion_point(class_scope:google.datastore.v1.AllocateIdsResponse) )) _sym_db.RegisterMessage(AllocateIdsResponse) Mutation = _reflection.GeneratedProtocolMessageType('Mutation', (_message.Message,), dict( DESCRIPTOR = _MUTATION, __module__ = 'google.datastore.v1.datastore_pb2' # @@protoc_insertion_point(class_scope:google.datastore.v1.Mutation) )) _sym_db.RegisterMessage(Mutation) MutationResult = _reflection.GeneratedProtocolMessageType('MutationResult', (_message.Message,), dict( DESCRIPTOR = _MUTATIONRESULT, __module__ = 'google.datastore.v1.datastore_pb2' # @@protoc_insertion_point(class_scope:google.datastore.v1.MutationResult) )) _sym_db.RegisterMessage(MutationResult) ReadOptions = _reflection.GeneratedProtocolMessageType('ReadOptions', (_message.Message,), dict( DESCRIPTOR = _READOPTIONS, __module__ = 'google.datastore.v1.datastore_pb2' # @@protoc_insertion_point(class_scope:google.datastore.v1.ReadOptions) )) _sym_db.RegisterMessage(ReadOptions) DESCRIPTOR.has_options = True DESCRIPTOR._options = _descriptor._ParseOptions(descriptor_pb2.FileOptions(), _b('\n\027com.google.datastore.v1B\016DatastoreProtoP\001')) # @@protoc_insertion_point(module_scope)
41.762332
4,517
0.763315
9d5b506a97e4adbda7f90767b101a9c549d3aaf0
1,782
py
Python
qingstor/qsctl/commands/rb.py
frostyplanet/qsctl
6f151638e802d6059db2e9b3fb6a519e92804e4f
[ "Apache-2.0" ]
null
null
null
qingstor/qsctl/commands/rb.py
frostyplanet/qsctl
6f151638e802d6059db2e9b3fb6a519e92804e4f
[ "Apache-2.0" ]
null
null
null
qingstor/qsctl/commands/rb.py
frostyplanet/qsctl
6f151638e802d6059db2e9b3fb6a519e92804e4f
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # ========================================================================= # Copyright (C) 2016 Yunify, Inc. # ------------------------------------------------------------------------- # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this work except in compliance with the License. # You may obtain a copy of the License in the LICENSE file, or at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ========================================================================= from __future__ import unicode_literals import sys from .base import BaseCommand from ..constants import HTTP_OK_NO_CONTENT class RbCommand(BaseCommand): command = "rb" usage = "%(prog)s <bucket> [-c <conf_file> --force]" @classmethod def add_extra_arguments(cls, parser): parser.add_argument("bucket", help="Name of the bucket to be deleted") parser.add_argument( "--force", action="store_true", dest="force", help="Forcely delete a nonempty bucket" ) return parser @classmethod def send_request(cls): if cls.options.force == True: cls.remove_multiple_keys(cls.options.bucket) resp = cls.current_bucket.delete() if resp.status_code != HTTP_OK_NO_CONTENT: cls.uni_print(resp.content) else: cls.uni_print("Bucket <%s> deleted" % cls.options.bucket)
33.622642
78
0.587542
4d57d00d91d8be422770e5a6444277d069836f3d
1,405
py
Python
setup.py
kells4real/date_literal
55960780a30e63cf837263e11a7ab9226f7aadc0
[ "MIT" ]
2
2021-08-06T10:56:32.000Z
2022-03-01T11:28:13.000Z
setup.py
kells4real/date_literal
55960780a30e63cf837263e11a7ab9226f7aadc0
[ "MIT" ]
null
null
null
setup.py
kells4real/date_literal
55960780a30e63cf837263e11a7ab9226f7aadc0
[ "MIT" ]
null
null
null
from setuptools import setup from os import path this_directory = path.abspath(path.dirname(__file__)) with open(path.join(this_directory, 'README.md'), encoding='utf-8') as f: long_description = f.read() setup( setup_requires=['wheel'], name='date_time_literal', packages=['date_time_literal'], version='1.0.6', long_description=long_description, long_description_content_type='text/markdown', description='date-time-literal is ' 'a python module that helps convert date-time or' ' date to literal days, hours, seconds, or even minutes. Compare two DateTime or Date objects, by' ' converting the objects to literal days, hours, minutes, or even seconds if you want to be precise. ', author='Kelvin Sajere', author_email='kells4real@gmail.com', url='https://github.com/kells4real/date_literal', download_url='https://github.com/kells4real/date_literal/archive/refs/tags/1.0.0.tar.gz', keywords=['date-time', 'date', 'literal', 'date converter', 'literal date', 'date-time converter', 'django', 'python', 'module', 'python package', 'date-time literal', 'convert time', 'convert date-time'], classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>=3.5', )
45.322581
120
0.669039
6ac225cb58504719de2d29286ccd7f58efc11302
1,934
py
Python
lagom/envs/vec_env/dummy_vec_env.py
lkylych/lagom
64777be7f09136072a671c444b5b3fbbcb1b2f18
[ "MIT" ]
null
null
null
lagom/envs/vec_env/dummy_vec_env.py
lkylych/lagom
64777be7f09136072a671c444b5b3fbbcb1b2f18
[ "MIT" ]
null
null
null
lagom/envs/vec_env/dummy_vec_env.py
lkylych/lagom
64777be7f09136072a671c444b5b3fbbcb1b2f18
[ "MIT" ]
null
null
null
import numpy as np from collections import OrderedDict from lagom.envs.spaces import Box, Dict from .base import VecEnv class DummyVecEnv(VecEnv): def __init__(self, list_make_env): self.envs = [make_env() for make_env in list_make_env] observation_space = self.envs[0].observation_space action_space = self.envs[0].action_space super().__init__(len(list_make_env), observation_space, action_space) assert isinstance(self.observation_space, (Box, Dict)) # enforce observation space either Box or Dict def step_async(self, actions): self.actions = actions def step_wait(self): outputs = [] for env, action in zip(self.envs, self.actions): observation, reward, done, info = env.step(action) if done: observation = env.reset() outputs.append([observation, reward, done, info]) observations, rewards, dones, infos = zip(*outputs) observations = self._process_observations(observations) rewards = np.array(rewards) dones = np.array(dones) return observations, rewards, dones, infos def reset(self): observations = [env.reset() for env in self.envs] return self._process_observations(observations) def close(self): return def _process_observations(self, observations): if isinstance(self.observation_space, Box): return np.stack(observations) elif isinstance(self.observation_space, Dict): spaces = self.observation_space.spaces outputs = [] for key in spaces.keys(): outputs.append((key, np.stack([observation[key] for observation in observations], axis=0))) return OrderedDict(outputs) else: raise TypeError('Only Box and Dict are supported. ')
35.814815
110
0.628232
c41b6ba7516caf378753ca85046c066ce5dee6b6
158
py
Python
zhengfang/bdu/model.py
Ethan-Xie/python_study
0e251709de37d38e3ea9af2202d8f94766d3a64f
[ "MIT" ]
null
null
null
zhengfang/bdu/model.py
Ethan-Xie/python_study
0e251709de37d38e3ea9af2202d8f94766d3a64f
[ "MIT" ]
null
null
null
zhengfang/bdu/model.py
Ethan-Xie/python_study
0e251709de37d38e3ea9af2202d8f94766d3a64f
[ "MIT" ]
null
null
null
# author: HuYong # coding=utf-8 class BDU_Student: def __init__(self , number , password): self.number = number self.password = password
19.75
43
0.651899
85fc275976970e367cfa077f58c2298a00417d58
6,856
py
Python
src/stk/serialization/json/serializers/constructed_molecule/constructed_molecule.py
stevenbennett96/stk
6e5af87625b83e0bfc7243bc42d8c7a860cbeb76
[ "MIT" ]
null
null
null
src/stk/serialization/json/serializers/constructed_molecule/constructed_molecule.py
stevenbennett96/stk
6e5af87625b83e0bfc7243bc42d8c7a860cbeb76
[ "MIT" ]
null
null
null
src/stk/serialization/json/serializers/constructed_molecule/constructed_molecule.py
stevenbennett96/stk
6e5af87625b83e0bfc7243bc42d8c7a860cbeb76
[ "MIT" ]
null
null
null
""" Constructed Molecule JSONizer ============================= """ from stk.molecular import InchiKey, MoleculeKeyMaker from ..molecule import MoleculeJsonizer class ConstructedMoleculeJsonizer: """ Abstract base class for creating JSONs of constructed molecules. See Also -------- :class:`.MoleculeJsonizer` Notes ----- You might notice that the public methods of this abstract base class are implemented. These are just default implementations, which can be safely ignored or overridden, when implementing subclasses. However, the default implementation can be used directly, if it suits your needs. Examples -------- *Converting a Constructed Molecule to JSON* You want get a JSON representation of a :class:`.ConstructedMolecule` .. testcode:: converting-a-molecule-to-json import stk # Make the molecule you want jsonize. polymer = stk.ConstructedMolecule( topology_graph=stk.polymer.Linear( building_blocks=( stk.BuildingBlock('BrCCBr', [stk.BromoFactory()]), ), repeating_unit='A', num_repeating_units=3, ) ) # Make a JSONizer. jsonizer = stk.ConstructedMoleculeJsonizer() # Get the JSON. json = jsonizer.to_json(polymer) *Adding Additional Molecular Keys* Apart from atoms, bonds and the position matrix, the JSON representation holds additional fields, one for each :class:`.MoleculeKeyMaker` provided to the initializer .. testcode:: adding-additional-molecular-keys import stk # Make the molecule you want jsonize. polymer = stk.ConstructedMolecule( topology_graph=stk.polymer.Linear( building_blocks=( stk.BuildingBlock('BrCCBr', [stk.BromoFactory()]), ), repeating_unit='A', num_repeating_units=3, ) ) # Make a JSONizer. jsonizer = stk.ConstructedMoleculeJsonizer() # Get the JSON. json = jsonizer.to_json(polymer) In this case, ``json`` will look something like .. code-block:: python { # A tuple of JSON atom representations. 'atoms': (...), # A tuple of JSON bond representations. 'bonds': (...), 'InChI': 'The InChI of the molecule', 'InChIKey': 'The InChIKey of the molecule', } For every :class:`.MoleculeKeyMaker` provided to `key_makers`, a new key will be added to the JSON representation, with its name given by :meth:`.MoleculeKeyMaker.get_key_name` and the value given by :meth:`.MoleculeKeyMaker.get_key`. """ def __init__( self, key_makers=(InchiKey(), ), ): """ Initializes a :class:`.ConstructedMoleculeJsonizer`. Parameters ---------- key_makers : :class:`tuple` of :class:`.MoleculeKeyMaker` Used to make the keys of molecules, which should be included in their JSON representations. Keys allow molecular data to reference itself when split across multiple JSONs. """ self._jsonizer = MoleculeJsonizer(key_makers=()) self._key_makers = key_makers def to_json(self, molecule): """ Serialize `molecule`. Parameters ---------- molecule : :class:`.ConstructedMolecule` The constructed molecule to serialize. Returns ------- :class:`dict` A JSON representation of `molecule`. """ def get_keys(building_block): return { key_maker.get_key_name(): key_maker.get_key(building_block) for key_maker in self._key_makers if isinstance(key_maker, MoleculeKeyMaker) } building_block_indices = { building_block: index for index, building_block in enumerate(molecule.get_building_blocks()) } building_block_indices[None] = None def atom_info_to_json(atom_info): if atom_info.get_building_block() is None: return ( None, None, None, ) return ( building_block_indices[atom_info.get_building_block()], atom_info.get_building_block_id(), atom_info.get_building_block_atom().get_id(), ) def bond_info_to_json(bond_info): return ( building_block_indices[bond_info.get_building_block()], bond_info.get_building_block_id(), ) molecule_json = self._jsonizer.to_json(molecule) constructed_molecule_json = { 'BB': tuple(map( get_keys, molecule.get_building_blocks(), )), 'aI': tuple(map( atom_info_to_json, molecule.get_atom_infos(), )), 'bI': tuple(map( bond_info_to_json, molecule.get_bond_infos(), )), 'nBB': tuple(map( molecule.get_num_building_block, molecule.get_building_blocks(), )), } for key_maker in self._key_makers: key_name = key_maker.get_key_name() key = key_maker.get_key(molecule) molecule_json['molecule'][key_name] = key molecule_json['matrix'][key_name] = key constructed_molecule_json[key_name] = key building_block_jsons = tuple(map( self._jsonizer.to_json, molecule.get_building_blocks(), )) def is_molecule_key_maker(key_maker): return isinstance(key_maker, MoleculeKeyMaker) for key_maker in filter( is_molecule_key_maker, self._key_makers, ): key_name = key_maker.get_key_name() for building_block, json in zip( molecule.get_building_blocks(), building_block_jsons, ): key = key_maker.get_key(building_block) json['molecule'][key_name] = key json['matrix'][key_name] = key return { 'molecule': molecule_json['molecule'], 'constructedMolecule': constructed_molecule_json, 'matrix': molecule_json['matrix'], 'buildingBlocks': building_block_jsons, } def __str__(self): return repr(self) def __repr__(self): return f'{self.__class__.__name__}({self._key_makers!r})'
29.424893
71
0.563448
71eb8eac1a3f9989eb0bbea7144f9cb5960dd376
2,781
py
Python
tests/service/test_onedocker.py
zhuang-93/FBPCS
20dbb69fe92bd7d6c2b1b106ea2bdf2909dfcfa2
[ "MIT" ]
null
null
null
tests/service/test_onedocker.py
zhuang-93/FBPCS
20dbb69fe92bd7d6c2b1b106ea2bdf2909dfcfa2
[ "MIT" ]
null
null
null
tests/service/test_onedocker.py
zhuang-93/FBPCS
20dbb69fe92bd7d6c2b1b106ea2bdf2909dfcfa2
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest from unittest.mock import patch from libfb.py.asyncio.mock import AsyncMock from fbpcs.entity.container_instance import ContainerInstance, ContainerInstanceStatus from fbpcs.service.onedocker import OneDockerService class TestOneDockerService(unittest.TestCase): @patch("fbpcs.service.container.ContainerService") def setUp(self, MockContainerService): container_svc = MockContainerService() self.onedocker_svc = OneDockerService(container_svc) def test_start_container(self): mocked_container_info = ContainerInstance( "arn:aws:ecs:region:account_id:task/container_id", "192.0.2.0", ContainerInstanceStatus.STARTED, ) self.onedocker_svc.container_svc.create_instances_async = AsyncMock( return_value=[mocked_container_info] ) returned_container_info = self.onedocker_svc.start_container( "task_def", "project/exe_name", "cmd_args" ) self.assertEqual(returned_container_info, mocked_container_info) def test_start_containers(self): mocked_container_info = [ ContainerInstance( "arn:aws:ecs:region:account_id:task/container_id_1", "192.0.2.0", ContainerInstanceStatus.STARTED, ), ContainerInstance( "arn:aws:ecs:region:account_id:task/container_id_2", "192.0.2.1", ContainerInstanceStatus.STARTED, ), ] self.onedocker_svc.container_svc.create_instances_async = AsyncMock( return_value=mocked_container_info ) returned_container_info = self.onedocker_svc.start_containers( "task_def", "project/exe_name", ["--k1=v1", "--k2=v2"] ) self.assertEqual(returned_container_info, mocked_container_info) def test_get_cmd(self): package_name = "project/exe_name" cmd_args = "--k1=v1 --k2=v2" timeout = 3600 expected_cmd_without_timeout = "python3.8 -m one_docker_runner --package_name=project/exe_name --cmd='/root/one_docker/package/exe_name --k1=v1 --k2=v2'" expected_cmd_with_timeout = expected_cmd_without_timeout + " --timeout=3600" cmd_without_timeout = self.onedocker_svc._get_cmd(package_name, cmd_args) cmd_with_timeout = self.onedocker_svc._get_cmd(package_name, cmd_args, timeout) self.assertEqual(expected_cmd_without_timeout, cmd_without_timeout) self.assertEqual(expected_cmd_with_timeout, cmd_with_timeout)
42.136364
161
0.68968
90aafeb92b40a806e730f93fa691df4cd0f15b28
1,715
py
Python
data/p3BR/R2/benchmark/startPyquil184.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
data/p3BR/R2/benchmark/startPyquil184.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
data/p3BR/R2/benchmark/startPyquil184.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
# qubit number=2 # total number=34 import pyquil from pyquil.api import local_forest_runtime, QVMConnection from pyquil import Program, get_qc from pyquil.gates import * import numpy as np conn = QVMConnection() def make_circuit()-> Program: prog = Program() # circuit begin prog += H(0) # number=1 prog += H(2) # number=31 prog += CZ(0,2) # number=32 prog += H(2) # number=33 prog += X(2) # number=12 prog += H(2) # number=25 prog += CZ(0,2) # number=26 prog += H(2) # number=27 prog += H(1) # number=7 prog += CZ(2,1) # number=8 prog += RX(-0.3989822670059037,1) # number=30 prog += H(1) # number=9 prog += H(1) # number=18 prog += CZ(2,1) # number=19 prog += H(1) # number=20 prog += Y(1) # number=14 prog += H(1) # number=22 prog += CZ(2,1) # number=23 prog += H(1) # number=24 prog += Z(2) # number=3 prog += X(1) # number=17 prog += Y(2) # number=5 prog += X(2) # number=21 prog += CNOT(1,0) # number=15 prog += CNOT(1,0) # number=16 prog += X(2) # number=28 prog += X(2) # number=29 # circuit end return prog def summrise_results(bitstrings) -> dict: d = {} for l in bitstrings: if d.get(l) is None: d[l] = 1 else: d[l] = d[l] + 1 return d if __name__ == '__main__': prog = make_circuit() qvm = get_qc('1q-qvm') results = qvm.run_and_measure(prog,1024) bitstrings = np.vstack([results[i] for i in qvm.qubits()]).T bitstrings = [''.join(map(str, l)) for l in bitstrings] writefile = open("../data/startPyquil184.csv","w") print(summrise_results(bitstrings),file=writefile) writefile.close()
24.5
64
0.570845
185f26b1a2dec43334c8610807983f45792119ee
413
py
Python
courses/backend/Learn Django by Creating Projects/projects/helloworld/helloworld_project/asgi.py
Nahid-Hassan/fullstack-software-development
892ffb33e46795061ea63378279a6469de317b1a
[ "CC0-1.0" ]
null
null
null
courses/backend/Learn Django by Creating Projects/projects/helloworld/helloworld_project/asgi.py
Nahid-Hassan/fullstack-software-development
892ffb33e46795061ea63378279a6469de317b1a
[ "CC0-1.0" ]
null
null
null
courses/backend/Learn Django by Creating Projects/projects/helloworld/helloworld_project/asgi.py
Nahid-Hassan/fullstack-software-development
892ffb33e46795061ea63378279a6469de317b1a
[ "CC0-1.0" ]
null
null
null
""" ASGI config for helloworld_project project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'helloworld_project.settings') application = get_asgi_application()
24.294118
78
0.79661
d288e767d5cc5ac93ce3b8a6ae18992931f800f9
15,175
py
Python
src/tools/dev/masonry/src/core.py
spetruzza/visit
3041e007790a5fd0716f5c1041004f1b1223093b
[ "BSD-3-Clause" ]
null
null
null
src/tools/dev/masonry/src/core.py
spetruzza/visit
3041e007790a5fd0716f5c1041004f1b1223093b
[ "BSD-3-Clause" ]
null
null
null
src/tools/dev/masonry/src/core.py
spetruzza/visit
3041e007790a5fd0716f5c1041004f1b1223093b
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # # file: core.py # author: Cyrus Harrison <cyrush@llnl.gov> # # import os import subprocess import datetime import json import errno import webbrowser from os.path import join as pjoin __all__ = ["Context", "shell", "svn", "cmake", "make", "inorder"] # ---------------------------------------------------------------------------- # Method: mkdir_p # # Programmer: Cyrus Harrison # Date: Mon Sept 30 2013 # # Helper that does recursive folder creation. # # Recipe from: # http://stackoverflow.com/questions/600268/mkdir-p-functionality-in-python # ---------------------------------------------------------------------------- def mkdir_p(path): try: os.makedirs(path) except OSError as exc: # Python >2.5 if exc.errno == errno.EEXIST and os.path.isdir(path): pass else: raise # ---------------------------------------------------------------------------- # Method: _decode_list # # Programmer: Cyrus Harrison # Date: Fri Jan 11 2013 # # Helper which decodes json unicode values (in lists) to standard strings. # # Recipe from: # http://stackoverflow.com/questions/956867/how-to-get-string-objects-instead-unicode-ones-from-json-in-python # ---------------------------------------------------------------------------- def _decode_list(data): rv = [] for item in data: if isinstance(item, unicode): item = item.encode('utf-8') elif isinstance(item, list): item = _decode_list(item) elif isinstance(item, dict): item = _decode_dict(item) rv.append(item) return rv # ---------------------------------------------------------------------------- # Method: _decode_dict # # Programmer: Cyrus Harrison # Date: Fri Jan 11 2013 # # Helper which decodes json unicode values (in dictonaries) to standard strings. # # Recipe from: # http://stackoverflow.com/questions/956867/how-to-get-string-objects-instead-unicode-ones-from-json-in-python # ---------------------------------------------------------------------------- def _decode_dict(data): rv = {} for key, value in data.iteritems(): if isinstance(key, unicode): key = key.encode('utf-8') if isinstance(value, unicode): value = value.encode('utf-8') elif isinstance(value, list): value = _decode_list(value) elif isinstance(value, dict): value = _decode_dict(value) rv[key] = value return rv def json_loads(jsons): if os.path.isfile(jsons): jsons=open(jsons).load() return json.loads(jsons,object_hook=_decode_dict) def json_dumps(v): return json.dumps(v,indent=2) def timenow(): return datetime.datetime.now() def timestamp(t=None,sep="_"): """ Creates a timestamp that can easily be included in a filename. """ if t is None: t = timenow() sargs = (t.year,t.month,t.day,t.hour,t.minute,t.second) sbase = "".join(["%04d",sep,"%02d",sep,"%02d",sep,"%02d",sep,"%02d",sep,"%02d"]) tstamp = sbase % sargs return {"key": tstamp, "year": t.year, "month": t.month, "day": t.day, "hour": t.hour, "minute": t.minute, "second": t.second} def timedelta(t_start,t_end): t_delta = t_end - t_start days, seconds = t_delta.days, t_delta.seconds hours = days * 24 + seconds // 3600 minutes = (seconds % 3600) // 60 seconds = seconds % 60 return {"key": "%02d_%02d_%02d" % (hours, minutes, seconds), "hours":hours, "minutes":minutes, "seconds": seconds} def sexe(cmd,ret_output=False,echo = False,env=None): """ Helper for executing shell commands. """ kwargs = {"shell":True} if not env is None: kwargs["env"] = env if echo: print "[exe: %s]" % cmd if ret_output: kwargs["stdout"] = subprocess.PIPE kwargs["stderr"] = subprocess.STDOUT p = subprocess.Popen(cmd,**kwargs) res =p.communicate()[0] return p.returncode,res else: return subprocess.call(cmd,**kwargs),"" class Context(object): def __init__(self,enable_logging=True,log_dir=None): self.enable_logging = enable_logging if enable_logging and log_dir is None: log_dir = pjoin(os.getcwd(),"_logs") self.log_dir = log_dir if not self.log_dir is None and not os.path.isdir(log_dir): mkdir_p(log_dir) self.actions = {} self.triggers = {} def to_dict(self): r = {"context":{"actions":{}, "triggers":{}, "log_dir":self.log_dir, "enable_logging":self.enable_logging}} for k,v in self.actions.items(): r["context"]["actions"][k] = v.params for k,v in self.triggers.items(): r["context"]["triggers"][k] = v.params return r def to_json(self): return json_dumps(self.to_dict()) @classmethod def load_dict(cls,params): if params.has_key("context"): res = Context(enable_logging = params["context"]["enable_logging"], log_dir = params["context"]["log_dir"]) for k,v in params["context"]["actions"].items(): res.actions[k] = Action.load_dict(v) for k,v in params["context"]["triggers"].items(): res.triggers[k] = Action.load_dict(v) return res @classmethod def load_json(cls,jsons): if os.path.isfile(jsons): jsons = open(jsons).read() params = json_loads(jsons) return cls.load_dict(params) def fire(self,trigger_name,key=None): t = self.triggers[trigger_name] if key is None: key = self.unique_key() key += "_" + trigger_name res = t.fire(self,trigger_name,key) self.log(key,res) return res def log(self,key,result,tag=None): if self.log_dir is None: return if not tag is None: ofname = pjoin(self.log_dir,"log_" + key + "_" + tag +".json") else: ofname = pjoin(self.log_dir,"log_" + key + ".json") try: ofile = open(ofname,"w") ofile.write(json.dumps(result,indent=2)) ofile.close() # create link lastlink = pjoin(self.log_dir,"last.json") if os.path.islink(lastlink): os.unlink(lastlink) os.symlink(ofname,lastlink) except Exception as e: print "<logging error> failed to write results to %s" % ofname raise e def unique_key(self): return timestamp()["key"] class Action(object): def __init__(self): self.params = {} def to_dict(self): return dict(self.params) def to_json(self): return json_dumps(self.to_dict()) @classmethod def load_dict(cls,params): if params.has_key("type"): atype = params["type"] aparams = dict(params) del aparams["type"] return globals()[atype](**aparams) @classmethod def load_json(cls,jsons): if os.path.isfile(jsons): jsons = open(jsons).read() params = json_loads(jsons) return cls.load_dict(params) class ShellAction(Action): def __init__(self, cmd, type="shell", working_dir=None, description=None, halt_on_error=True, env=None): super(ShellAction,self).__init__() self.params["cmd"] = cmd self.params["type"] = type self.params["halt_on_error"] = halt_on_error if working_dir is None: working_dir = os.getcwd() self.params["working_dir"] = working_dir if description is None: description = "" self.params["description"] = description self.params["env"] = env def execute(self,base,key,tag,parent_res): t_start = timenow(); res = {"action": {"key": key, "type":self.params["type"], "name":tag, "cmd": self.params["cmd"], "description": self.params["description"], "working_dir": self.params["working_dir"], "env": self.params["env"], "start_time": timestamp(t_start), "halt_on_error": self.params["halt_on_error"], "finish_time": None, "elapsed_time": None, "output": None} } parent_res["trigger"]["active_actions"] = [res] base.log(key=key,result=parent_res) cwd = os.path.abspath(os.getcwd()) env = os.environ.copy() if not self.params["env"] is None: env.update(self.params["env"]) try: if not os.path.isdir(self.params["working_dir"]): mkdir_p(self.params["working_dir"]) print "[chdir to: %s]" % self.params["working_dir"] os.chdir(self.params["working_dir"]) rcode, rout = sexe(self.params["cmd"], ret_output=True, echo=True, env=env) res["action"]["output"] = rout res["action"]["return_code"] = rcode except KeyboardInterrupt as e: res["action"]["error"] = "shell command interrupted by user (ctrl-c)" except Exception as e: print e res["action"]["error"] = str(e) t_end = timenow() res["action"]["finish_time"] = timestamp(t_end) res["action"]["elapsed_time"] = timedelta(t_start,t_end) os.chdir(cwd) parent_res["trigger"]["active_actions"] = [] base.log(key=key,result=parent_res) return res class SVNAction(ShellAction): def __init__(self, svn_url, svn_cmd, svn_bin="svn", working_dir=None, description=None, halt_on_error=True, env=None): cmd = " ".join([svn_bin,svn_cmd,svn_url]) super(SVNAction,self).__init__(cmd=cmd, type="svn", working_dir=working_dir, description=description, halt_on_error=halt_on_error, env=env) self.params["svn_url"] = svn_url self.params["svn_cmd"] = svn_cmd self.params["svn_bin"] = svn_bin class CMakeAction(ShellAction): def __init__(self, src_dir, cmake_opts="", cmake_bin="cmake", working_dir=None, description=None, halt_on_error=True, env=None): cmd = " ".join([cmake_bin,cmake_opts,src_dir]) super(CMakeAction,self).__init__(cmd=cmd, type="cmake", working_dir=working_dir, description=description, halt_on_error=halt_on_error, env=env) self.params["src_dir"] = src_dir self.params["cmake_opts"] = cmake_opts self.params["cmake_bin"] = cmake_bin class MakeAction(ShellAction): def __init__(self, target="", nthreads=1, make_bin="make", working_dir=None, description=None, halt_on_error=True, env=None): cmd = " ".join([make_bin, "-j%d" % nthreads, target]) super(MakeAction,self).__init__(cmd=cmd, type="make", working_dir=working_dir, description=description, halt_on_error=halt_on_error, env=env) self.params["target"] = target self.params["nthreads"] = nthreads self.params["make_bin"] =make_bin class InorderTrigger(Action): def __init__(self,actions=None): super(InorderTrigger,self).__init__() self.params["actions"] = [] if not actions is None: self.params["actions"] = actions self.params["type"] = "inorder" def append(self,action_name): self.params["actions"].append(action_name) def extend(self,action_list): self.params["actions"].extend(action_list) def fire(self,base,trigger_name,key): t_start = timenow(); res = {"trigger":{"name":trigger_name, "key": key, "start_time": timestamp(t_start), "end_time": None, "elapsed_time": None, "actions": self.params["actions"], "active_actions":[], "type":"inorder", "results" :[]}} base.log(key,res) try: for action in self.params["actions"]: print "[fire: %s]" % action a = base.actions[action] r = a.execute(base,key,action,res) res["trigger"]["results"].append(r) base.log(key,res) if r["action"].has_key("return_code"): print "[rcode: %d]" % r["action"]["return_code"] if "error" in r["action"].keys() or \ (r["action"].has_key("return_code") and r["action"]["return_code"] != 0) : emsg = "[action failed: %s]" % json.dumps(r,indent=2) print emsg if r["action"].has_key("halt_on_error") and r["action"]["halt_on_error"]: raise Exception(emsg) except Exception as emsg: res["trigger"]["error"] = str(emsg) t_end = timenow() res["end_time"] = timestamp(t_end) res["elapsed_time"] = timedelta(t_start,t_end) base.log(key,res) return res shell = ShellAction svn = SVNAction cmake = CMakeAction make = MakeAction inorder = InorderTrigger def view_log(fname): port = 8000 html_src = pjoin(os.path.split(os.path.abspath(__file__)[0],"html")) log_dir = os.path.split(os.path.abspath(fname))[0] subprocess("cp -f %s/* %s" % html_src,log_dir) os.chdir(log_dir) subprocess.Popen([sys.executable, '-m', 'SimpleHTTPServer', str(port)]) webbrowser.open_new_tab('localhost:8000/log_view?log=%s' % fname)
35.455607
111
0.505766
90d4417c0ec7526b6462c4fe1fc28bef54ee46f5
2,906
py
Python
src/sentry/web/frontend/help_platform_base.py
arsh-co/sentry
7a83a7e8a13047a9471756d679e2deb596cc2ca1
[ "BSD-3-Clause" ]
null
null
null
src/sentry/web/frontend/help_platform_base.py
arsh-co/sentry
7a83a7e8a13047a9471756d679e2deb596cc2ca1
[ "BSD-3-Clause" ]
null
null
null
src/sentry/web/frontend/help_platform_base.py
arsh-co/sentry
7a83a7e8a13047a9471756d679e2deb596cc2ca1
[ "BSD-3-Clause" ]
null
null
null
from __future__ import absolute_import from django.db.models import Q from itertools import groupby from sentry.models import Project, ProjectKey from sentry.web.frontend.base import BaseView class HelpPlatformBaseView(BaseView): auth_required = False def get_project_list(self, user): return list(Project.objects.filter( Q(organization__member_set__has_global_access=True, organization__member_set__user=user) | Q(team__organizationmember__user=user) ).select_related('team', 'organization').order_by('organization', 'team')) def group_project_list(self, project_list): results = [] for org, org_project_list in groupby(project_list, key=lambda x: x.organization): org_results = [] for team, team_project_list in groupby(list(org_project_list), key=lambda x: x.team): org_results.append((team, list(team_project_list))) results.append((org, org_results)) return results def get_key(self, project, user): try: key = ProjectKey.objects.filter(user=None, project=project)[0] except IndexError: try: key = ProjectKey.objects.filter(user=user, project=project)[0] except IndexError: key = None return key def convert_args(self, request, *args, **kwargs): try: pid = int(request.GET.get('pid', request.session.get('pid', 0))) except (TypeError, ValueError): pid = None if request.user.is_authenticated(): project_list = self.get_project_list(request.user) else: project_list = [] if pid: for project in project_list: if pid == project.id: selected_project = project break else: selected_project = None else: selected_project = None if selected_project: request.session['pid'] = selected_project.id kwargs['project_list'] = project_list kwargs['selected_project'] = selected_project return (args, kwargs) def get_context_data(self, request, project_list, selected_project, **kwargs): context = super(HelpPlatformBaseView, self).get_context_data(request, **kwargs) if selected_project: key = self.get_key(selected_project, request.user) else: key = None if key: dsn_private = key.dsn_private dsn_public = key.dsn_public else: dsn_private = None dsn_public = None context = { 'selected_project': selected_project, 'org_results': self.group_project_list(project_list), 'dsn': dsn_private, 'dsn_public': dsn_public, } return context
31.934066
100
0.607364
2b57721295576b58ec55546ba65a10b5fb906569
8,094
py
Python
src/wordleclone/app.py
jmesparteroup/CS150_ExtraLab_1
9a2e26e098d40cf0571e14459c96c42d97b21aa8
[ "BSD-3-Clause" ]
null
null
null
src/wordleclone/app.py
jmesparteroup/CS150_ExtraLab_1
9a2e26e098d40cf0571e14459c96c42d97b21aa8
[ "BSD-3-Clause" ]
null
null
null
src/wordleclone/app.py
jmesparteroup/CS150_ExtraLab_1
9a2e26e098d40cf0571e14459c96c42d97b21aa8
[ "BSD-3-Clause" ]
null
null
null
""" Wordle Clone """ import toga from toga.style import Pack from toga.style.pack import COLUMN, ROW from random import randint class Vault(): def __init__(self,path) -> None: self.resources_folder = f"{path}/resources/" self.guess_list, self.allowed_guesses = self.getGuessData() self.setSecret() def getGuessData(self): guesses = open(f"{self.resources_folder}guesses.txt", 'r').readlines() allowed_guesses = open(f"{self.resources_folder}allowedguesses.txt", 'r').readlines() for i in range(len(guesses)): guesses[i] = guesses[i].replace('\n', '') for i in range(len(allowed_guesses)): allowed_guesses[i] = allowed_guesses[i].replace('\n', '') return guesses, allowed_guesses def validate_guess(self, guess): invalid_title = "Invalid Guess" if len(guess) < 5: return [False, {'invalid_title': invalid_title, 'invalid_body':'Guess length should be equal to 5!\n'}] if not guess.isalpha() : return [False, {'invalid_title': invalid_title, 'invalid_body':'Guess should only be comprised of letters in the English alphabet!\n'}] if guess not in self.allowed_guesses: return [False, {'invalid_title': invalid_title, 'invalid_body':'Guess not allowed!\n'}] return [True] def setSecret(self): self.secretWord = self.guess_list[randint(0, len(self.guess_list)-1)] def getSecret(self): return self.secretWord class Game(): def __init__(self, gridsize, wordsize, interactables, vault) -> None: self.current_guess_count = 0 self.isGameOver = False self.isWin = False self.gridsize = gridsize self.wordsize = wordsize self.vault = vault self.row_boxes = interactables['row_boxes'] self.get_guess_input = interactables['guess_input'] self.show_dialog = interactables['show_dialog'] self.used_letter = interactables['used_letter'] def do_guess(self): if self.isGameOver: return localSecret = self.vault.getSecret() guess = self.get_guess_input() score = 0 validatorCheck = self.vault.validate_guess(guess) if not validatorCheck[0]: error_message = validatorCheck[1] self.show_dialog(error_message['invalid_title'], error_message['invalid_body'], 0) return for i in range(self.wordsize): current_box = self.row_boxes[self.current_guess_count].children[i] current_box.label = guess[i].upper() current_box.style.background_color = '#A9A9A9' self.used_letter(guess[i], '#696969') if guess[i] == localSecret[i]: localSecret = localSecret[:i] + '!' + localSecret[i+1:] guess = guess[:i] + '?' + guess[i+1:] self.used_letter(guess[i], '#90EE90') current_box.style.background_color = '#90EE90' score += 1 for i in range(self.wordsize): current_box = self.row_boxes[self.current_guess_count].children[i] if guess[i] in localSecret: localSecret = localSecret.replace(guess[i], '!') current_box.style.background_color = '#FFFF33' self.used_letter(guess[i], '#FFFF33') if score == self.wordsize: self.isGameOver = True self.isWin = True self.show_dialog("Game Over!", "You won! Pasikat ka na sa Twitter!\nClick reset to play again", 1) self.current_guess_count += 1 if self.current_guess_count > 5 and not self.isWin: self.isGameOver = True self.show_dialog("Game Over!", f"You used up all your guesses.\nThe secret word was {self.vault.getSecret().upper()} \nClick reset to play again :(", 1) return def resetGame(self): self.current_guess_count = 0 self.isWin = False self.isGameOver = False self.vault.setSecret() return class WordleClone(toga.App): def startup(self): #SET VALUES self.gridsize = 6 # nxn grid self.wordsize = 5 self.alphabet = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' self.vault = Vault(str(self.paths.app)) # Generate UI self.generate_ui() # Start Game self.start_game() def start_game(self): interactables = { 'guess_input': self.get_guess_input, 'row_boxes': self.row_boxes, 'show_dialog': self.show_dialog, 'used_letter': self.used_letter } self.Game = Game(self.gridsize, self.wordsize, interactables, self.vault) def generate_ui(self): main_box = toga.Box(style=Pack(direction=COLUMN, alignment="center")) guess_label = toga.Label('Your guess: ', style=Pack(padding=5)) self.guess_input = toga.TextInput(style=Pack(flex=1)) guess_box = toga.Box(style=Pack(direction=ROW, padding=(5,0))) guess_box.add(guess_label) guess_box.add(self.guess_input) button = toga.Button('Guess!', on_press=self.do_guess_handler, style=Pack(padding=(5,0))) self.alphaBox = toga.Box(style=Pack(alignment='center', padding=(5,0))) for letter in self.alphabet: alphabet_label = toga.Label(letter, style=Pack(padding=(5,0), alignment='center', font_size='12', background_color='#696969', color='#FAF9F6')) self.alphaBox.add(alphabet_label) resetButton = toga.Button('Restart', on_press=self.reset_game_handler, style=Pack(padding=(5,0))) main_box.add(guess_box) main_box.add(button) main_box.add(self.alphaBox) main_box.add(self.guess_area_gen()) main_box.add(resetButton) self.main_window = toga.MainWindow(title=self.formal_name, size=(600, 500)) self.main_window.content = main_box self.main_window.show() def guess_area_gen(self): guess_area = toga.Box(style=Pack(direction=COLUMN, padding=0, flex=1, alignment="center")) self.row_boxes = [toga.Box(style=Pack(direction=ROW, padding=2, flex=1, alignment="center")) for i in range(self.gridsize)] #create 6 rows for i in range(self.gridsize): for j in range(self.wordsize): newButton = toga.Button(label="", id=f"{j}", style=Pack(background_color="#FAF9F6", font_family='monospace', font_weight='bold', padding_left=5, padding_right=5, width=50, height=50), enabled=False) self.row_boxes[i].add(newButton) guess_area.add(self.row_boxes[i]) return guess_area def reset_ui(self): #clear contents for i in range(self.gridsize): for j in range(self.wordsize): self.row_boxes[i].children[j].style.background_color = "#FAF9F6" self.row_boxes[i].children[j].label = "" #reset hints for i in range(len(self.alphabet)): self.alphaBox.children[i].style.color = '#FAF9F6' return def show_dialog(self, title, message, messageType): if messageType == 0: self.main_window.error_dialog(title=title, message=message) if messageType == 1: self.main_window.info_dialog(title=title, message=message) return def used_letter(self, letter, color): for i in range(len(self.alphabet)): if self.alphabet[i].lower() == letter: self.alphaBox.children[i].style.color = color return def get_guess_input(self): guess = self.guess_input.value.lower() self.guess_input.value = "" return guess def do_guess_handler(self, widget): return self.Game.do_guess() def reset_game_handler(self, widget): self.reset_ui() return self.Game.resetGame() def main(): return WordleClone()
35.191304
214
0.608723
bf5563fb92aa6548cbffc74edd86ffc3c536e1f9
4,895
py
Python
extras/ams_wrapper/tests/unit/test_detection_model.py
gnomonsis/model_server
bdd7eccde5dfa4f518f6964c103b4389cd00caaf
[ "Apache-2.0" ]
null
null
null
extras/ams_wrapper/tests/unit/test_detection_model.py
gnomonsis/model_server
bdd7eccde5dfa4f518f6964c103b4389cd00caaf
[ "Apache-2.0" ]
null
null
null
extras/ams_wrapper/tests/unit/test_detection_model.py
gnomonsis/model_server
bdd7eccde5dfa4f518f6964c103b4389cd00caaf
[ "Apache-2.0" ]
null
null
null
# # Copyright (c) 2020 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import json from typing import Dict import pytest import numpy as np from src.api.models.detection_model import DetectionModel from src.api.models.model_config import ModelOutputConfiguration MOCK_INFERENCE_OUTPUT = { 'result': np.array([ [ [ # id, label, confidence, x_min, y_min, x_max, y_max [0, 1.0, 0.97, 0.17, 0.15, 0.5, 0.7], [1, 1.0, 0.46, 0.12, 0.11, 0.6, 0.5], ] ] ]) } @pytest.fixture def fake_output_config() -> Dict[str, ModelOutputConfiguration]: return { 'result': ModelOutputConfiguration(output_name='result', value_index_mapping={ "image_id": 0, "value": 1, "confidence": 2, "x_min": 3, "y_min": 4, "x_max": 5, "y_max": 6 }, classes={ "background": 0.0, "vehicle": 1.0 } ) } @pytest.mark.parametrize("inference_output,expected_response", [ (MOCK_INFERENCE_OUTPUT, {"type": "entity", "subtype": None, "entities": [{"tag": {"value": "vehicle", "confidence": 0.97}, "box": {"l": 0.17, "t": 0.15, "w": abs(0.5-0.17), "h": abs(0.7-0.15)}}, {"tag": {"value": "vehicle", "confidence": 0.46}, "box": {"l": 0.12, "t": 0.11, "w": abs(0.6-0.12), "h": abs(0.5-0.11)}}]} )]) def test_postprocess_inference_output(inference_output, expected_response, fake_output_config): model = DetectionModel(endpoint=None, ovms_connector=None, input_configs=None, output_configs=fake_output_config) assert model.postprocess_inference_output( inference_output) == json.dumps(expected_response) @pytest.mark.parametrize("inference_output,expected_response,top_k", [ (MOCK_INFERENCE_OUTPUT, {"type": "entity", "subtype": None, "entities": [{"tag": {"value": "vehicle", "confidence": 0.97}, "box": {"l": 0.17, "t": 0.15, "w": abs(0.5-0.17), "h": abs(0.7-0.15)}}] }, 1 )]) def test_postprocess_inference_output_top_k(inference_output, expected_response, top_k, fake_output_config): fake_output_config['result'].top_k_results = top_k model = DetectionModel(endpoint=None, ovms_connector=None, input_configs=None, output_configs=fake_output_config) assert model.postprocess_inference_output( inference_output) == json.dumps(expected_response) @pytest.mark.parametrize("inference_output,expected_response,confidence_threshold", [ (MOCK_INFERENCE_OUTPUT, {"type": "entity", "subtype": None, "entities": [{"tag": {"value": "vehicle", "confidence": 0.97}, "box": {"l": 0.17, "t": 0.15, "w": abs(0.5-0.17), "h": abs(0.7-0.15)}}] }, 0.5 )]) def test_postprocess_inference_output_confidence_threshold(inference_output, expected_response, confidence_threshold, fake_output_config): fake_output_config['result'].confidence_threshold = confidence_threshold model = DetectionModel(endpoint=None, ovms_connector=None, input_configs=None, output_configs=fake_output_config) assert model.postprocess_inference_output( inference_output) == json.dumps(expected_response)
44.5
112
0.501328
ffd4ba596e861816800cb7ed67990ba259f5936b
127,280
py
Python
designer_family/tests/functional/db/test_allocation_candidates.py
guishaowu/designer_family
c89e16c6649c181f3262aa65fa97a457abdc2eb2
[ "Apache-2.0" ]
null
null
null
designer_family/tests/functional/db/test_allocation_candidates.py
guishaowu/designer_family
c89e16c6649c181f3262aa65fa97a457abdc2eb2
[ "Apache-2.0" ]
null
null
null
designer_family/tests/functional/db/test_allocation_candidates.py
guishaowu/designer_family
c89e16c6649c181f3262aa65fa97a457abdc2eb2
[ "Apache-2.0" ]
null
null
null
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import collections import os_resource_classes as orc import os_traits from oslo_utils.fixture import uuidsentinel as uuids import six import sqlalchemy as sa from designer_family import exception from designer_family import lib as placement_lib from designer_family.objects import allocation_candidate as ac_obj from designer_family.objects import research_context as res_ctx from designer_family.objects import resource_class as rc_obj from designer_family.objects import resource_provider as rp_obj from designer_family.objects import trait as trait_obj from designer_family.tests.functional.db import test_base as tb def _req_group_search_context(context, **kwargs): resources = { orc.VCPU: 2, orc.MEMORY_MB: 256, orc.SRIOV_NET_VF: 1, } request = placement_lib.RequestGroup( use_same_provider=False, resources=kwargs.get('resources', resources), required_traits=kwargs.get('required_traits', {}), forbidden_traits=kwargs.get('forbidden_traits', {}), member_of=kwargs.get('member_of', []), forbidden_aggs=kwargs.get('forbidden_aggs', []), in_tree=kwargs.get('in_tree', None), ) has_trees = res_ctx._has_provider_trees(context) sharing = res_ctx.get_sharing_providers(context) rg_ctx = res_ctx.RequestGroupSearchContext( context, request, has_trees, sharing) return rg_ctx class ProviderDBHelperTestCase(tb.PlacementDbBaseTestCase): def test_get_provider_ids_matching(self): # These RPs are named based on whether we expect them to be 'incl'uded # or 'excl'uded in the result. # No inventory records. This one should never show up in a result. self._create_provider('no_inventory') # Inventory of adequate CPU and memory, no allocations against it. excl_big_cm_noalloc = self._create_provider('big_cm_noalloc') tb.add_inventory(excl_big_cm_noalloc, orc.VCPU, 15) tb.add_inventory(excl_big_cm_noalloc, orc.MEMORY_MB, 4096, max_unit=2048) # Inventory of adequate memory and disk, no allocations against it. excl_big_md_noalloc = self._create_provider('big_md_noalloc') tb.add_inventory(excl_big_md_noalloc, orc.MEMORY_MB, 4096, max_unit=2048) tb.add_inventory(excl_big_md_noalloc, orc.DISK_GB, 2000) # Adequate inventory, no allocations against it. incl_biginv_noalloc = self._create_provider('biginv_noalloc') tb.add_inventory(incl_biginv_noalloc, orc.VCPU, 15) tb.add_inventory(incl_biginv_noalloc, orc.MEMORY_MB, 4096, max_unit=2048) tb.add_inventory(incl_biginv_noalloc, orc.DISK_GB, 2000) # No allocations, but inventory unusable. Try to hit all the possible # reasons for exclusion. # VCPU min_unit too high excl_badinv_min_unit = self._create_provider('badinv_min_unit') tb.add_inventory(excl_badinv_min_unit, orc.VCPU, 12, min_unit=6) tb.add_inventory(excl_badinv_min_unit, orc.MEMORY_MB, 4096, max_unit=2048) tb.add_inventory(excl_badinv_min_unit, orc.DISK_GB, 2000) # MEMORY_MB max_unit too low excl_badinv_max_unit = self._create_provider('badinv_max_unit') tb.add_inventory(excl_badinv_max_unit, orc.VCPU, 15) tb.add_inventory(excl_badinv_max_unit, orc.MEMORY_MB, 4096, max_unit=512) tb.add_inventory(excl_badinv_max_unit, orc.DISK_GB, 2000) # DISK_GB unsuitable step_size excl_badinv_step_size = self._create_provider('badinv_step_size') tb.add_inventory(excl_badinv_step_size, orc.VCPU, 15) tb.add_inventory(excl_badinv_step_size, orc.MEMORY_MB, 4096, max_unit=2048) tb.add_inventory(excl_badinv_step_size, orc.DISK_GB, 2000, step_size=7) # Not enough total VCPU excl_badinv_total = self._create_provider('badinv_total') tb.add_inventory(excl_badinv_total, orc.VCPU, 4) tb.add_inventory(excl_badinv_total, orc.MEMORY_MB, 4096, max_unit=2048) tb.add_inventory(excl_badinv_total, orc.DISK_GB, 2000) # Too much reserved MEMORY_MB excl_badinv_reserved = self._create_provider('badinv_reserved') tb.add_inventory(excl_badinv_reserved, orc.VCPU, 15) tb.add_inventory(excl_badinv_reserved, orc.MEMORY_MB, 4096, max_unit=2048, reserved=3500) tb.add_inventory(excl_badinv_reserved, orc.DISK_GB, 2000) # DISK_GB allocation ratio blows it up excl_badinv_alloc_ratio = self._create_provider('badinv_alloc_ratio') tb.add_inventory(excl_badinv_alloc_ratio, orc.VCPU, 15) tb.add_inventory(excl_badinv_alloc_ratio, orc.MEMORY_MB, 4096, max_unit=2048) tb.add_inventory(excl_badinv_alloc_ratio, orc.DISK_GB, 2000, allocation_ratio=0.5) # Inventory consumed in one RC, but available in the others excl_1invunavail = self._create_provider('1invunavail') tb.add_inventory(excl_1invunavail, orc.VCPU, 10) self.allocate_from_provider(excl_1invunavail, orc.VCPU, 7) tb.add_inventory(excl_1invunavail, orc.MEMORY_MB, 4096) self.allocate_from_provider(excl_1invunavail, orc.MEMORY_MB, 1024) tb.add_inventory(excl_1invunavail, orc.DISK_GB, 2000) self.allocate_from_provider(excl_1invunavail, orc.DISK_GB, 400) # Inventory all consumed excl_allused = self._create_provider('allused') tb.add_inventory(excl_allused, orc.VCPU, 10) self.allocate_from_provider(excl_allused, orc.VCPU, 7) tb.add_inventory(excl_allused, orc.MEMORY_MB, 4000) self.allocate_from_provider(excl_allused, orc.MEMORY_MB, 1500) self.allocate_from_provider(excl_allused, orc.MEMORY_MB, 2000) tb.add_inventory(excl_allused, orc.DISK_GB, 1500) self.allocate_from_provider(excl_allused, orc.DISK_GB, 1) # Inventory available in requested classes, but unavailable in others incl_extra_full = self._create_provider('extra_full') tb.add_inventory(incl_extra_full, orc.VCPU, 20) self.allocate_from_provider(incl_extra_full, orc.VCPU, 15) tb.add_inventory(incl_extra_full, orc.MEMORY_MB, 4096) self.allocate_from_provider(incl_extra_full, orc.MEMORY_MB, 1024) tb.add_inventory(incl_extra_full, orc.DISK_GB, 2000) self.allocate_from_provider(incl_extra_full, orc.DISK_GB, 400) tb.add_inventory(incl_extra_full, orc.PCI_DEVICE, 4) self.allocate_from_provider(incl_extra_full, orc.PCI_DEVICE, 1) self.allocate_from_provider(incl_extra_full, orc.PCI_DEVICE, 3) # Inventory available in a unrequested classes, not in requested ones excl_extra_avail = self._create_provider('extra_avail') # Incompatible step size tb.add_inventory(excl_extra_avail, orc.VCPU, 10, step_size=3) # Not enough left after reserved + used tb.add_inventory(excl_extra_avail, orc.MEMORY_MB, 4096, max_unit=2048, reserved=2048) self.allocate_from_provider(excl_extra_avail, orc.MEMORY_MB, 1040) # Allocation ratio math tb.add_inventory(excl_extra_avail, orc.DISK_GB, 2000, allocation_ratio=0.5) tb.add_inventory(excl_extra_avail, orc.IPV4_ADDRESS, 48) custom_special = rc_obj.ResourceClass(self.ctx, name='CUSTOM_SPECIAL') custom_special.create() tb.add_inventory(excl_extra_avail, 'CUSTOM_SPECIAL', 100) self.allocate_from_provider(excl_extra_avail, 'CUSTOM_SPECIAL', 99) resources = { orc.VCPU: 5, orc.MEMORY_MB: 1024, orc.DISK_GB: 1500 } # Run it! rg_ctx = _req_group_search_context(self.ctx, resources=resources) res = res_ctx.get_provider_ids_matching(rg_ctx) # We should get all the incl_* RPs expected = [incl_biginv_noalloc, incl_extra_full] self.assertEqual(set((rp.id, rp.id) for rp in expected), set(res)) # Now request that the providers must have a set of required traits and # that this results in no results returned, since we haven't yet # associated any traits with the providers avx2_t = trait_obj.Trait.get_by_name( self.ctx, os_traits.HW_CPU_X86_AVX2) # get_provider_ids_matching()'s required_traits and forbidden_traits # arguments maps, keyed by trait name, of the trait internal ID req_traits = {os_traits.HW_CPU_X86_AVX2: avx2_t.id} rg_ctx = _req_group_search_context( self.ctx, resources=resources, required_traits=req_traits, ) res = res_ctx.get_provider_ids_matching(rg_ctx) self.assertEqual([], res) # Next let's set the required trait to an excl_* RPs. # This should result in no results returned as well. excl_big_md_noalloc.set_traits([avx2_t]) res = res_ctx.get_provider_ids_matching(rg_ctx) self.assertEqual([], res) # OK, now add the trait to one of the incl_* providers and verify that # provider now shows up in our results incl_biginv_noalloc.set_traits([avx2_t]) res = res_ctx.get_provider_ids_matching(rg_ctx) rp_ids = [r[0] for r in res] self.assertEqual([incl_biginv_noalloc.id], rp_ids) # Let's see if the in_tree filter works rg_ctx = _req_group_search_context( self.ctx, resources=resources, in_tree=uuids.biginv_noalloc, ) res = res_ctx.get_provider_ids_matching(rg_ctx) rp_ids = [r[0] for r in res] self.assertEqual([incl_biginv_noalloc.id], rp_ids) # We don't get anything if the specified tree doesn't satisfy the # requirements in the first place self.assertRaises(exception.ResourceProviderNotFound, _req_group_search_context, self.ctx, resources=resources, in_tree=uuids.allused) def test_get_provider_ids_matching_with_multiple_forbidden(self): rp1 = self._create_provider('rp1', uuids.agg1) tb.add_inventory(rp1, orc.VCPU, 64) rp2 = self._create_provider('rp2', uuids.agg1) trait_two, = tb.set_traits(rp2, 'CUSTOM_TWO') tb.add_inventory(rp2, orc.VCPU, 64) rp3 = self._create_provider('rp3') trait_three, = tb.set_traits(rp3, 'CUSTOM_THREE') tb.add_inventory(rp3, orc.VCPU, 64) resources = {orc.VCPU: 4} forbidden_traits = {trait_two.name: trait_two.id, trait_three.name: trait_three.id} member_of = [[uuids.agg1]] rg_ctx = _req_group_search_context( self.ctx, resources=resources, forbidden_traits=forbidden_traits, member_of=member_of) res = res_ctx.get_provider_ids_matching(rg_ctx) self.assertEqual({(rp1.id, rp1.id)}, set(res)) def test_get_provider_ids_matching_with_aggregates(self): rp1 = self._create_provider('rp1', uuids.agg1, uuids.agg2) rp2 = self._create_provider('rp2', uuids.agg2, uuids.agg3) rp3 = self._create_provider('rp3', uuids.agg3, uuids.agg4) rp4 = self._create_provider('rp4', uuids.agg4, uuids.agg1) rp5 = self._create_provider('rp5') tb.add_inventory(rp1, orc.VCPU, 64) tb.add_inventory(rp2, orc.VCPU, 64) tb.add_inventory(rp3, orc.VCPU, 64) tb.add_inventory(rp4, orc.VCPU, 64) tb.add_inventory(rp5, orc.VCPU, 64) resources = {orc.VCPU: 4} rg_ctx = _req_group_search_context( self.ctx, resources=resources, member_of=[[uuids.agg1]], ) expected_rp = [rp1, rp4] res = res_ctx.get_provider_ids_matching(rg_ctx) self.assertEqual(set((rp.id, rp.id) for rp in expected_rp), set(res)) rg_ctx = _req_group_search_context( self.ctx, resources=resources, member_of=[[uuids.agg1, uuids.agg2]], ) expected_rp = [rp1, rp2, rp4] res = res_ctx.get_provider_ids_matching(rg_ctx) self.assertEqual(set((rp.id, rp.id) for rp in expected_rp), set(res)) rg_ctx = _req_group_search_context( self.ctx, resources=resources, member_of=[[uuids.agg1, uuids.agg2], [uuids.agg4]], ) expected_rp = [rp4] res = res_ctx.get_provider_ids_matching(rg_ctx) self.assertEqual(set((rp.id, rp.id) for rp in expected_rp), set(res)) rg_ctx = _req_group_search_context( self.ctx, resources=resources, forbidden_aggs=[uuids.agg1], ) expected_rp = [rp2, rp3, rp5] res = res_ctx.get_provider_ids_matching(rg_ctx) self.assertEqual(set((rp.id, rp.id) for rp in expected_rp), set(res)) rg_ctx = _req_group_search_context( self.ctx, resources=resources, forbidden_aggs=[uuids.agg1, uuids.agg2], ) expected_rp = [rp3, rp5] res = res_ctx.get_provider_ids_matching(rg_ctx) self.assertEqual(set((rp.id, rp.id) for rp in expected_rp), set(res)) rg_ctx = _req_group_search_context( self.ctx, resources=resources, member_of=[[uuids.agg1, uuids.agg2]], forbidden_aggs=[uuids.agg3, uuids.agg4], ) expected_rp = [rp1] res = res_ctx.get_provider_ids_matching(rg_ctx) self.assertEqual(set((rp.id, rp.id) for rp in expected_rp), set(res)) rg_ctx = _req_group_search_context( self.ctx, resources=resources, member_of=[[uuids.agg1]], forbidden_aggs=[uuids.agg1], ) expected_rp = [] res = res_ctx.get_provider_ids_matching(rg_ctx) self.assertEqual(set((rp.id, rp.id) for rp in expected_rp), set(res)) def test_get_provider_ids_having_all_traits(self): def run(traitnames, expected_ids): tmap = {} if traitnames: tmap = trait_obj.ids_from_names(self.ctx, traitnames) obs = res_ctx._get_provider_ids_having_all_traits(self.ctx, tmap) self.assertEqual(sorted(expected_ids), sorted(obs)) # No traits. This will never be returned, because it's illegal to # invoke the method with no traits. self._create_provider('cn1') # One trait cn2 = self._create_provider('cn2') tb.set_traits(cn2, 'HW_CPU_X86_TBM') # One the same as cn2 cn3 = self._create_provider('cn3') tb.set_traits(cn3, 'HW_CPU_X86_TBM', 'HW_CPU_X86_TSX', 'HW_CPU_X86_SGX') # Disjoint cn4 = self._create_provider('cn4') tb.set_traits(cn4, 'HW_CPU_X86_SSE2', 'HW_CPU_X86_SSE3', 'CUSTOM_FOO') # Request with no traits not allowed self.assertRaises( ValueError, res_ctx._get_provider_ids_having_all_traits, self.ctx, None) self.assertRaises( ValueError, res_ctx._get_provider_ids_having_all_traits, self.ctx, {}) # Common trait returns both RPs having it run(['HW_CPU_X86_TBM'], [cn2.id, cn3.id]) # Just the one run(['HW_CPU_X86_TSX'], [cn3.id]) run(['HW_CPU_X86_TSX', 'HW_CPU_X86_SGX'], [cn3.id]) run(['CUSTOM_FOO'], [cn4.id]) # Including the common one still just gets me cn3 run(['HW_CPU_X86_TBM', 'HW_CPU_X86_SGX'], [cn3.id]) run(['HW_CPU_X86_TBM', 'HW_CPU_X86_TSX', 'HW_CPU_X86_SGX'], [cn3.id]) # Can't be satisfied run(['HW_CPU_X86_TBM', 'HW_CPU_X86_TSX', 'CUSTOM_FOO'], []) run(['HW_CPU_X86_TBM', 'HW_CPU_X86_TSX', 'HW_CPU_X86_SGX', 'CUSTOM_FOO'], []) run(['HW_CPU_X86_SGX', 'HW_CPU_X86_SSE3'], []) run(['HW_CPU_X86_TBM', 'CUSTOM_FOO'], []) run(['HW_CPU_X86_BMI'], []) trait_obj.Trait(self.ctx, name='CUSTOM_BAR').create() run(['CUSTOM_BAR'], []) class ProviderTreeDBHelperTestCase(tb.PlacementDbBaseTestCase): def _get_rp_ids_matching_names(self, names): """Utility function to look up resource provider IDs from a set of supplied provider names directly from the API DB. """ names = map(six.text_type, names) sel = sa.select([rp_obj._RP_TBL.c.id]) sel = sel.where(rp_obj._RP_TBL.c.name.in_(names)) with self.placement_db.get_engine().connect() as conn: rp_ids = set([r[0] for r in conn.execute(sel)]) return rp_ids def test_get_trees_matching_all(self): """Creates a few provider trees having different inventories and allocations and tests the get_trees_matching_all_resources() utility function to ensure that matching trees and resource providers are returned. """ def _run_test(expected_trees, expected_rps, **kwargs): """Helper function to validate the test result""" # NOTE(jaypipes): get_trees_matching_all() expects a dict of # resource class internal identifiers, not string names if not expected_trees: try: self.assertRaises(exception.ResourceProviderNotFound, _req_group_search_context, self.ctx, **kwargs) return except Exception: pass rg_ctx = _req_group_search_context(self.ctx, **kwargs) rw_ctx = res_ctx.RequestWideSearchContext( self.ctx, placement_lib.RequestWideParams(), True) results = res_ctx.get_trees_matching_all(rg_ctx, rw_ctx) tree_ids = self._get_rp_ids_matching_names(expected_trees) rp_ids = self._get_rp_ids_matching_names(expected_rps) self.assertEqual(tree_ids, results.trees) self.assertEqual(rp_ids, results.rps) # Before we even set up any providers, verify that the short-circuits # work to return empty lists _run_test([], []) # We are setting up 3 trees of providers that look like this: # # compute node (cn) # / \ # / \ # numa cell 0 numa cell 1 # | | # | | # pf 0 pf 1 # for x in ('1', '2', '3'): name = 'cn' + x cn = self._create_provider(name) tb.add_inventory(cn, orc.VCPU, 16) tb.add_inventory(cn, orc.MEMORY_MB, 32768) name = 'cn' + x + '_numa0' numa_cell0 = self._create_provider(name, parent=cn.uuid) name = 'cn' + x + '_numa1' numa_cell1 = self._create_provider(name, parent=cn.uuid) name = 'cn' + x + '_numa0_pf0' pf0 = self._create_provider(name, parent=numa_cell0.uuid) tb.add_inventory(pf0, orc.SRIOV_NET_VF, 8) name = 'cn' + x + '_numa1_pf1' pf1 = self._create_provider(name, parent=numa_cell1.uuid) tb.add_inventory(pf1, orc.SRIOV_NET_VF, 8) if x == '1': # Associate the first compute node with agg1 and agg2 cn.set_aggregates([uuids.agg1, uuids.agg2]) if x == '2': # Associate the second PF on the second compute node with agg2 pf1.set_aggregates([uuids.agg2]) if x == '3': # Associate the first compute node with agg2 and agg3 cn.set_aggregates([uuids.agg2, uuids.agg3]) # Associate the second PF on the second compute node with agg4 pf1.set_aggregates([uuids.agg4]) # Mark the second PF on the third compute node as having # GENEVE offload enabled tb.set_traits(pf1, os_traits.HW_NIC_OFFLOAD_GENEVE) # Doesn't really make a whole lot of logical sense, but allows # us to test situations where the same trait is associated with # multiple providers in the same tree and one of the providers # has inventory we will use... tb.set_traits(cn, os_traits.HW_NIC_OFFLOAD_GENEVE) # First, we test that all the candidates are returned expected_trees = ['cn1', 'cn2', 'cn3'] expected_rps = ['cn1', 'cn1_numa0_pf0', 'cn1_numa1_pf1', 'cn2', 'cn2_numa0_pf0', 'cn2_numa1_pf1', 'cn3', 'cn3_numa0_pf0', 'cn3_numa1_pf1'] _run_test(expected_trees, expected_rps) # Let's see if the tree_root_id filter works expected_trees = ['cn1'] expected_rps = ['cn1', 'cn1_numa0_pf0', 'cn1_numa1_pf1'] _run_test(expected_trees, expected_rps, in_tree=uuids.cn1) # Let's see if the aggregate filter works # 1. rps in agg1 # All rps under cn1 should be included because aggregate on a root # spans the whole tree member_of = [[uuids.agg1]] expected_trees = ['cn1'] expected_rps = ['cn1', 'cn1_numa0_pf0', 'cn1_numa1_pf1'] _run_test(expected_trees, expected_rps, member_of=member_of) # 2. rps in agg2 # cn2 doesn't come up because while cn2_numa1_pf1 is in agg2, aggs on # non-root does NOT span the whole tree. Thus cn2 can't provide VCPU # or MEMORY_MB resource member_of = [[uuids.agg2]] expected_trees = ['cn1', 'cn3'] expected_rps = ['cn1', 'cn1_numa0_pf0', 'cn1_numa1_pf1', 'cn3', 'cn3_numa0_pf0', 'cn3_numa1_pf1'] _run_test(expected_trees, expected_rps, member_of=member_of) # 3. rps in agg1 or agg3 # cn1 in agg1 and cn3 in agg3 comes up member_of = [[uuids.agg1, uuids.agg3]] expected_trees = ['cn1', 'cn3'] expected_rps = ['cn1', 'cn1_numa0_pf0', 'cn1_numa1_pf1', 'cn3', 'cn3_numa0_pf0', 'cn3_numa1_pf1'] _run_test(expected_trees, expected_rps, member_of=member_of) # 4. rps in (agg1 or agg2) and (agg3) # cn1 is not in agg3 member_of = [[uuids.agg1, uuids.agg2], [uuids.agg3]] expected_trees = ['cn3'] expected_rps = ['cn3', 'cn3_numa0_pf0', 'cn3_numa1_pf1'] _run_test(expected_trees, expected_rps, member_of=member_of) # 5. rps not in agg1 # All rps under cn1 are excluded forbidden_aggs = [uuids.agg1] expected_trees = ['cn2', 'cn3'] expected_rps = ['cn2', 'cn2_numa0_pf0', 'cn2_numa1_pf1', 'cn3', 'cn3_numa0_pf0', 'cn3_numa1_pf1'] _run_test(expected_trees, expected_rps, forbidden_aggs=forbidden_aggs) # 6. rps not in agg2 # All rps under cn1, under cn3 and pf1 on cn2 are excluded forbidden_aggs = [uuids.agg2] expected_trees = ['cn2'] expected_rps = ['cn2', 'cn2_numa0_pf0'] _run_test(expected_trees, expected_rps, forbidden_aggs=forbidden_aggs) # 7. rps neither in agg1 nor in agg4 # All rps under cn1 and pf1 on cn3 are excluded forbidden_aggs = [uuids.agg1, uuids.agg4] expected_trees = ['cn2', 'cn3'] expected_rps = ['cn2', 'cn2_numa0_pf0', 'cn2_numa1_pf1', 'cn3', 'cn3_numa0_pf0'] _run_test(expected_trees, expected_rps, forbidden_aggs=forbidden_aggs) # 8. rps in agg3 and neither in agg1 nor in agg4 # cn2 is not in agg3 so excluded member_of = [[uuids.agg3]] forbidden_aggs = [uuids.agg1, uuids.agg4] expected_trees = ['cn3'] expected_rps = ['cn3', 'cn3_numa0_pf0'] _run_test(expected_trees, expected_rps, member_of=member_of, forbidden_aggs=forbidden_aggs) # 9. rps in agg1 or agg3 and not in agg3 # ...which means rps in agg1 but not in agg3 member_of = [[uuids.agg1, uuids.agg3]] forbidden_aggs = [uuids.agg3] expected_trees = ['cn1'] expected_rps = ['cn1', 'cn1_numa0_pf0', 'cn1_numa1_pf1'] _run_test(expected_trees, expected_rps, member_of=member_of, forbidden_aggs=forbidden_aggs) # 10. rps in agg1 and not in agg1 # ...which results in no rp member_of = [[uuids.agg1]] forbidden_aggs = [uuids.agg1] expected_trees = [] expected_rps = [] _run_test(expected_trees, expected_rps, member_of=member_of, forbidden_aggs=forbidden_aggs) # OK, now consume all the VFs in the second compute node and verify # only the first and third computes are returned as root providers from # get_trees_matching_all() cn2_pf0 = rp_obj.ResourceProvider.get_by_uuid(self.ctx, uuids.cn2_numa0_pf0) self.allocate_from_provider(cn2_pf0, orc.SRIOV_NET_VF, 8) cn2_pf1 = rp_obj.ResourceProvider.get_by_uuid(self.ctx, uuids.cn2_numa1_pf1) self.allocate_from_provider(cn2_pf1, orc.SRIOV_NET_VF, 8) # cn2 had all its VFs consumed, so we should only get cn1 and cn3's IDs # as the root provider IDs. expected_trees = ['cn1', 'cn3'] expected_rps = ['cn1', 'cn1_numa0_pf0', 'cn1_numa1_pf1', 'cn3', 'cn3_numa0_pf0', 'cn3_numa1_pf1'] _run_test(expected_trees, expected_rps) # OK, now we're going to add a required trait to the mix. The only # provider that is decorated with the HW_NIC_OFFLOAD_GENEVE trait is # the second physical function on the third compute host. So we should # only get the third compute node back if we require that trait geneve_t = trait_obj.Trait.get_by_name( self.ctx, os_traits.HW_NIC_OFFLOAD_GENEVE) # required_traits parameter is a dict of trait name to internal ID req_traits = { geneve_t.name: geneve_t.id, } expected_trees = ['cn3'] # NOTE(tetsuro): Actually we also get providers without traits here. # This is reported as bug#1771707 and from users' view the bug is now # fixed out of this get_trees_matching_all() function by checking # traits later again in _check_traits_for_alloc_request(). # But ideally, we'd like to have only pf1 from cn3 here using SQL # query in get_trees_matching_all() function for optimization. # provider_names = ['cn3', 'cn3_numa1_pf1'] expected_rps = ['cn3', 'cn3_numa0_pf0', 'cn3_numa1_pf1'] _run_test(expected_trees, expected_rps, required_traits=req_traits) # Add in a required trait that no provider has associated with it and # verify that there are no returned allocation candidates avx2_t = trait_obj.Trait.get_by_name( self.ctx, os_traits.HW_CPU_X86_AVX2) # required_traits parameter is a dict of trait name to internal ID req_traits = { geneve_t.name: geneve_t.id, avx2_t.name: avx2_t.id, } _run_test([], [], required_traits=req_traits) # If we add the AVX2 trait as forbidden, not required, then we # should get back the original cn3 req_traits = { geneve_t.name: geneve_t.id, } forbidden_traits = { avx2_t.name: avx2_t.id, } expected_trees = ['cn3'] # NOTE(tetsuro): Actually we also get providers without traits here. # This is reported as bug#1771707 and from users' view the bug is now # fixed out of this get_trees_matching_all() function by checking # traits later again in _check_traits_for_alloc_request(). # But ideally, we'd like to have only pf1 from cn3 here using SQL # query in get_trees_matching_all() function for optimization. # provider_names = ['cn3', 'cn3_numa1_pf1'] expected_rps = ['cn3', 'cn3_numa0_pf0', 'cn3_numa1_pf1'] _run_test(expected_trees, expected_rps, required_traits=req_traits, forbidden_traits=forbidden_traits) # Consume all the VFs in first and third compute nodes and verify # no more providers are returned cn1_pf0 = rp_obj.ResourceProvider.get_by_uuid(self.ctx, uuids.cn1_numa0_pf0) self.allocate_from_provider(cn1_pf0, orc.SRIOV_NET_VF, 8) cn1_pf1 = rp_obj.ResourceProvider.get_by_uuid(self.ctx, uuids.cn1_numa1_pf1) self.allocate_from_provider(cn1_pf1, orc.SRIOV_NET_VF, 8) cn3_pf0 = rp_obj.ResourceProvider.get_by_uuid(self.ctx, uuids.cn3_numa0_pf0) self.allocate_from_provider(cn3_pf0, orc.SRIOV_NET_VF, 8) cn3_pf1 = rp_obj.ResourceProvider.get_by_uuid(self.ctx, uuids.cn3_numa1_pf1) self.allocate_from_provider(cn3_pf1, orc.SRIOV_NET_VF, 8) _run_test([], [], required_traits=req_traits, forbidden_traits=forbidden_traits) def _make_trees_with_traits(self): # We are setting up 6 trees of providers with following traits: # # compute node (cn) # / \ # pf 0 pf 1 # # +-----+----------------+---------------------+---------------------+ # | | cn | pf0 | pf1 | # +-----+----------------+---------------------+---------------------+ # |tree1|HW_CPU_X86_AVX2 | |HW_NIC_OFFLOAD_GENEVE| # +-----+----------------+---------------------+---------------------+ # |tree2|STORAGE_DISK_SSD| | | # +-----+----------------+---------------------+---------------------+ # |tree3|HW_CPU_X86_AVX2 | | | # | |STORAGE_DISK_SSD| | | # +-----+----------------+---------------------+---------------------+ # |tree4| |HW_NIC_ACCEL_SSL | | # | | |HW_NIC_OFFLOAD_GENEVE| | # +-----+----------------+---------------------+---------------------+ # |tree5| |HW_NIC_ACCEL_SSL |HW_NIC_OFFLOAD_GENEVE| # +-----+----------------+---------------------+---------------------+ # |tree6| |HW_NIC_ACCEL_SSL |HW_NIC_ACCEL_SSL | # +-----+----------------+---------------------+---------------------+ # |tree7| | | | # +-----+----------------+---------------------+---------------------+ # rp_ids = set() for x in ('1', '2', '3', '4', '5', '6', '7'): name = 'cn' + x cn = self._create_provider(name) name = 'cn' + x + '_pf0' pf0 = self._create_provider(name, parent=cn.uuid) name = 'cn' + x + '_pf1' pf1 = self._create_provider(name, parent=cn.uuid) rp_ids |= set([cn.id, pf0.id, pf1.id]) if x == '1': tb.set_traits(cn, os_traits.HW_CPU_X86_AVX2) tb.set_traits(pf1, os_traits.HW_NIC_OFFLOAD_GENEVE) if x == '2': tb.set_traits(cn, os_traits.STORAGE_DISK_SSD) if x == '3': tb.set_traits(cn, os_traits.HW_CPU_X86_AVX2, os_traits.STORAGE_DISK_SSD) if x == '4': tb.set_traits(pf0, os_traits.HW_NIC_ACCEL_SSL, os_traits.HW_NIC_OFFLOAD_GENEVE) if x == '5': tb.set_traits(pf0, os_traits.HW_NIC_ACCEL_SSL) tb.set_traits(pf1, os_traits.HW_NIC_OFFLOAD_GENEVE) if x == '6': tb.set_traits(pf0, os_traits.HW_NIC_ACCEL_SSL) tb.set_traits(pf1, os_traits.HW_NIC_ACCEL_SSL) avx2_t = trait_obj.Trait.get_by_name( self.ctx, os_traits.HW_CPU_X86_AVX2) ssd_t = trait_obj.Trait.get_by_name( self.ctx, os_traits.STORAGE_DISK_SSD) geneve_t = trait_obj.Trait.get_by_name( self.ctx, os_traits.HW_NIC_OFFLOAD_GENEVE) ssl_t = trait_obj.Trait.get_by_name( self.ctx, os_traits.HW_NIC_ACCEL_SSL) return rp_ids, avx2_t, ssd_t, geneve_t, ssl_t def test_get_trees_with_traits(self): """Creates a few provider trees having different traits and tests the _get_trees_with_traits() utility function to ensure that only the root provider IDs of matching traits are returned. """ rp_ids, avx2_t, ssd_t, geneve_t, ssl_t = self._make_trees_with_traits() # Case1: required on root required_traits = { avx2_t.name: avx2_t.id, } forbidden_traits = {} rp_tuples_with_trait = res_ctx._get_trees_with_traits( self.ctx, rp_ids, required_traits, forbidden_traits) tree_root_ids = set([p[1] for p in rp_tuples_with_trait]) provider_names = ['cn1', 'cn3'] expect_root_ids = self._get_rp_ids_matching_names(provider_names) self.assertEqual(expect_root_ids, tree_root_ids) # Case1': required on root with forbidden traits # Let's validate that cn3 dissapears required_traits = { avx2_t.name: avx2_t.id, } forbidden_traits = { ssd_t.name: ssd_t.id, } rp_tuples_with_trait = res_ctx._get_trees_with_traits( self.ctx, rp_ids, required_traits, forbidden_traits) tree_root_ids = set([p[1] for p in rp_tuples_with_trait]) provider_names = ['cn1'] expect_root_ids = self._get_rp_ids_matching_names(provider_names) self.assertEqual(expect_root_ids, tree_root_ids) # Case2: multiple required on root required_traits = { avx2_t.name: avx2_t.id, ssd_t.name: ssd_t.id } forbidden_traits = {} rp_tuples_with_trait = res_ctx._get_trees_with_traits( self.ctx, rp_ids, required_traits, forbidden_traits) tree_root_ids = set([p[1] for p in rp_tuples_with_trait]) provider_names = ['cn3'] expect_root_ids = self._get_rp_ids_matching_names(provider_names) self.assertEqual(expect_root_ids, tree_root_ids) # Case3: required on child required_traits = { geneve_t.name: geneve_t.id } forbidden_traits = {} rp_tuples_with_trait = res_ctx._get_trees_with_traits( self.ctx, rp_ids, required_traits, forbidden_traits) tree_root_ids = set([p[1] for p in rp_tuples_with_trait]) provider_names = ['cn1', 'cn4', 'cn5'] expect_root_ids = self._get_rp_ids_matching_names(provider_names) self.assertEqual(expect_root_ids, tree_root_ids) # Case3': required on child with forbidden traits # Let's validate that cn4 dissapears required_traits = { geneve_t.name: geneve_t.id } forbidden_traits = { ssl_t.name: ssl_t.id } rp_tuples_with_trait = res_ctx._get_trees_with_traits( self.ctx, rp_ids, required_traits, forbidden_traits) tree_root_ids = set([p[1] for p in rp_tuples_with_trait]) provider_names = ['cn1', 'cn5'] expect_root_ids = self._get_rp_ids_matching_names(provider_names) self.assertEqual(expect_root_ids, tree_root_ids) # Case4: multiple required on child required_traits = { geneve_t.name: geneve_t.id, ssl_t.name: ssl_t.id } forbidden_traits = {} rp_tuples_with_trait = res_ctx._get_trees_with_traits( self.ctx, rp_ids, required_traits, forbidden_traits) tree_root_ids = set([p[1] for p in rp_tuples_with_trait]) provider_names = ['cn4', 'cn5'] expect_root_ids = self._get_rp_ids_matching_names(provider_names) self.assertEqual(expect_root_ids, tree_root_ids) # Case5: required on root and child required_traits = { avx2_t.name: avx2_t.id, geneve_t.name: geneve_t.id } forbidden_traits = {} rp_tuples_with_trait = res_ctx._get_trees_with_traits( self.ctx, rp_ids, required_traits, forbidden_traits) tree_root_ids = set([p[1] for p in rp_tuples_with_trait]) provider_names = ['cn1'] expect_root_ids = self._get_rp_ids_matching_names(provider_names) self.assertEqual(expect_root_ids, tree_root_ids) def test_get_roots_with_traits(self): _, avx2_t, ssd_t, geneve_t, ssl_t = self._make_trees_with_traits() def do_test(required=None, forbidden=None, expected=None): actual = res_ctx._get_roots_with_traits( self.ctx, set(trait.id for trait in required or []), set(trait.id for trait in forbidden or [])) if expected: expected = self._get_rp_ids_matching_names( 'cn%d' % d for d in expected) self.assertEqual(expected or set(), actual) # One of required/forbidden must be specified self.assertRaises(ValueError, do_test) # AVX2 is on cn1 and cn3 do_test(required=[avx2_t], expected=(1, 3)) # Multiple required do_test(required=[avx2_t, ssd_t], expected=(3,)) # No match on roots for a trait on children do_test(required=[geneve_t]) # ...even if including a trait also on roots do_test(required=[geneve_t, ssd_t]) # Forbid traits not on any roots. These are on non-root providers... do_test(forbidden=[geneve_t, ssl_t], expected=(1, 2, 3, 4, 5, 6, 7)) # ...and this one is nowhere in the environment. hdd_t = trait_obj.Trait.get_by_name( self.ctx, os_traits.STORAGE_DISK_HDD) do_test(forbidden=[hdd_t], expected=(1, 2, 3, 4, 5, 6, 7)) # Forbid traits just on roots do_test(forbidden=[avx2_t, ssd_t], expected=(4, 5, 6, 7)) # Forbid traits on roots and children do_test(forbidden=[ssd_t, ssl_t, geneve_t], expected=(1, 4, 5, 6, 7)) # Required & forbidden both on roots do_test(required=[avx2_t], forbidden=[ssd_t], expected=(1,)) # Same, but adding forbidden not on roots has no effect do_test(required=[avx2_t], forbidden=[ssd_t, ssl_t], expected=(1,)) # Required on roots, forbidden only on children do_test( required=[avx2_t, ssd_t], forbidden=[ssl_t, geneve_t], expected=(3,)) # Required & forbidden overlap. No results because it is impossible for # one provider to both have and not have a trait. (Unreachable in real # life due to conflict check in the handler.) do_test(required=[avx2_t, ssd_t], forbidden=[ssd_t, geneve_t]) class AllocationCandidatesTestCase(tb.PlacementDbBaseTestCase): """Tests a variety of scenarios with both shared and non-shared resource providers that the AllocationCandidates.get_by_requests() method returns a set of alternative allocation requests and provider summaries that may be used by the scheduler to sort/weigh the options it has for claiming resources against providers. """ def setUp(self): super(AllocationCandidatesTestCase, self).setUp() self.requested_resources = { orc.VCPU: 1, orc.MEMORY_MB: 64, orc.DISK_GB: 1500, } # For debugging purposes, populated by _create_provider and used by # _validate_allocation_requests to make failure results more readable. self.rp_uuid_to_name = {} def _get_allocation_candidates(self, groups=None, rqparams=None): if groups is None: groups = {'': placement_lib.RequestGroup( use_same_provider=False, resources=self.requested_resources)} if rqparams is None: rqparams = placement_lib.RequestWideParams() return ac_obj.AllocationCandidates.get_by_requests( self.ctx, groups, rqparams) def _mappings_to_suffix(self, mappings): """Turn a dict of AllocationRequest mappings keyed on suffix to a dict, keyed by uuid, of lists of suffixes. """ suffixes_by_uuid = collections.defaultdict(set) for suffix, rps in mappings.items(): for rp_uuid in rps: suffixes_by_uuid[rp_uuid].add(suffix) listed_sorted_suffixes = {} for rp_uuid, suffixes in suffixes_by_uuid.items(): listed_sorted_suffixes[rp_uuid] = sorted(list(suffixes)) return listed_sorted_suffixes def _validate_allocation_requests(self, expected, candidates, expect_suffixes=False): """Assert correctness of allocation requests in allocation candidates. This is set up to make it easy for the caller to specify the expected result, to make that expected structure readable for someone looking at the test case, and to make test failures readable for debugging. :param expected: A list of lists of tuples representing the expected allocation requests, of the form: [ [(resource_provider_name, resource_class_name, resource_count), ..., ], ... ] :param candidates: The result from AllocationCandidates.get_by_requests :param expect_suffixes: If True, validate the AllocationRequest mappings in the results, found as a list of suffixes in 4th member of the tuple described above. """ # Extract/convert allocation requests from candidates observed = [] for ar in candidates.allocation_requests: suffixes_by_uuid = self._mappings_to_suffix(ar.mappings) rrs = [] for rr in ar.resource_requests: req_tuple = (self.rp_uuid_to_name[rr.resource_provider.uuid], rr.resource_class, rr.amount) if expect_suffixes: req_tuple = ( req_tuple + (suffixes_by_uuid[rr.resource_provider.uuid], )) rrs.append(req_tuple) rrs.sort() observed.append(rrs) observed.sort() # Sort the guts of the expected structure for rr in expected: rr.sort() expected.sort() # Now we ought to be able to compare them self.assertEqual(expected, observed) def _validate_provider_summary_resources(self, expected, candidates): """Assert correctness of the resources in provider summaries in allocation candidates. This is set up to make it easy for the caller to specify the expected result, to make that expected structure readable for someone looking at the test case, and to make test failures readable for debugging. :param expected: A dict, keyed by resource provider name, of sets of 3-tuples containing resource class, capacity, and amount used: { resource_provider_name: set([ (resource_class, capacity, used), ..., ]), ..., } :param candidates: The result from AllocationCandidates.get_by_requests """ observed = {} for psum in candidates.provider_summaries: rpname = self.rp_uuid_to_name[psum.resource_provider.uuid] reslist = set() for res in psum.resources: reslist.add((res.resource_class, res.capacity, res.used)) if rpname in observed: self.fail("Found resource provider %s more than once in " "provider_summaries!" % rpname) observed[rpname] = reslist # Now we ought to be able to compare them self.assertEqual(expected, observed) def _validate_provider_summary_traits(self, expected, candidates): """Assert correctness of the traits in provider summaries in allocation candidates. This is set up to make it easy for the caller to specify the expected result, to make that expected structure readable for someone looking at the test case, and to make test failures readable for debugging. :param expected: A dict, keyed by resource provider name, of sets of string trait names: { resource_provider_name: set([ trait_name, ... ]), ..., } :param candidates: The result from AllocationCandidates.get_by_requests """ observed = {} for psum in candidates.provider_summaries: rpname = self.rp_uuid_to_name[psum.resource_provider.uuid] observed[rpname] = set(psum.traits) self.assertEqual(expected, observed) def test_unknown_traits(self): missing = set(['UNKNOWN_TRAIT']) requests = {'': placement_lib.RequestGroup( use_same_provider=False, resources=self.requested_resources, required_traits=missing)} self.assertRaises( exception.TraitNotFound, ac_obj.AllocationCandidates.get_by_requests, self.ctx, requests, placement_lib.RequestWideParams()) def test_allc_req_and_prov_summary(self): """Simply test with one resource provider that the allocation requests returned by AllocationCandidates have valid allocation_requests and provider_summaries. """ cn1 = self._create_provider('cn1') tb.add_inventory(cn1, orc.VCPU, 8) tb.add_inventory(cn1, orc.MEMORY_MB, 2048) tb.add_inventory(cn1, orc.DISK_GB, 2000) alloc_cands = self._get_allocation_candidates( {'': placement_lib.RequestGroup( use_same_provider=False, resources={ orc.VCPU: 1 } )} ) expected = [ [('cn1', orc.VCPU, 1, [''])] ] self._validate_allocation_requests( expected, alloc_cands, expect_suffixes=True) expected = { 'cn1': set([ (orc.VCPU, 8, 0), (orc.MEMORY_MB, 2048, 0), (orc.DISK_GB, 2000, 0) ]), } self._validate_provider_summary_resources(expected, alloc_cands) def test_all_local(self): """Create some resource providers that can satisfy the request for resources with local (non-shared) resources and verify that the allocation requests returned by AllocationCandidates correspond with each of these resource providers. """ # Create three compute node providers with VCPU, RAM and local disk cn1, cn2, cn3 = (self._create_provider(name) for name in ('cn1', 'cn2', 'cn3')) for cn in (cn1, cn2, cn3): tb.add_inventory(cn, orc.VCPU, 24, allocation_ratio=16.0) tb.add_inventory(cn, orc.MEMORY_MB, 32768, min_unit=64, step_size=64, allocation_ratio=1.5) total_gb = 1000 if cn.name == 'cn3' else 2000 tb.add_inventory(cn, orc.DISK_GB, total_gb, reserved=100, min_unit=10, step_size=10, allocation_ratio=1.0) # Ask for the alternative designer_family possibilities and verify each # provider is returned alloc_cands = self._get_allocation_candidates() # Verify the provider summary information indicates 0 usage and # capacity calculated from above inventory numbers for the first two # compute nodes. The third doesn't show up because it lacks sufficient # disk capacity. expected = { 'cn1': set([ (orc.VCPU, 24 * 16.0, 0), (orc.MEMORY_MB, 32768 * 1.5, 0), (orc.DISK_GB, 2000 - 100, 0), ]), 'cn2': set([ (orc.VCPU, 24 * 16.0, 0), (orc.MEMORY_MB, 32768 * 1.5, 0), (orc.DISK_GB, 2000 - 100, 0), ]), } self._validate_provider_summary_resources(expected, alloc_cands) # Verify the allocation requests that are returned. There should be 2 # allocation requests, one for each compute node, containing 3 # resources in each allocation request, one each for VCPU, RAM, and # disk. The amounts of the requests should correspond to the requested # resource amounts in the filter:resources dict passed to # AllocationCandidates.get_by_requests(). expected = [ [('cn1', orc.VCPU, 1), ('cn1', orc.MEMORY_MB, 64), ('cn1', orc.DISK_GB, 1500)], [('cn2', orc.VCPU, 1), ('cn2', orc.MEMORY_MB, 64), ('cn2', orc.DISK_GB, 1500)], ] self._validate_allocation_requests(expected, alloc_cands) # Now let's add traits into the mix. Currently, none of the compute # nodes has the AVX2 trait associated with it, so we should get 0 # results if we required AVX2 alloc_cands = self._get_allocation_candidates( {'': placement_lib.RequestGroup( use_same_provider=False, resources=self.requested_resources, required_traits=set([os_traits.HW_CPU_X86_AVX2]) )}, ) self._validate_allocation_requests([], alloc_cands) # If we then associate the AVX2 trait to just compute node 2, we should # get back just that compute node in the provider summaries tb.set_traits(cn2, 'HW_CPU_X86_AVX2') alloc_cands = self._get_allocation_candidates( {'': placement_lib.RequestGroup( use_same_provider=False, resources=self.requested_resources, required_traits=set([os_traits.HW_CPU_X86_AVX2]) )}, ) # Only cn2 should be in our allocation requests now since that's the # only one with the required trait expected = [ [('cn2', orc.VCPU, 1), ('cn2', orc.MEMORY_MB, 64), ('cn2', orc.DISK_GB, 1500)], ] self._validate_allocation_requests(expected, alloc_cands) p_sums = alloc_cands.provider_summaries self.assertEqual(1, len(p_sums)) expected = { 'cn2': set([ (orc.VCPU, 24 * 16.0, 0), (orc.MEMORY_MB, 32768 * 1.5, 0), (orc.DISK_GB, 2000 - 100, 0), ]), } self._validate_provider_summary_resources(expected, alloc_cands) expected = { 'cn2': set(['HW_CPU_X86_AVX2']) } self._validate_provider_summary_traits(expected, alloc_cands) # Confirm that forbidden traits changes the results to get cn1. alloc_cands = self._get_allocation_candidates( {'': placement_lib.RequestGroup( use_same_provider=False, resources=self.requested_resources, forbidden_traits=set([os_traits.HW_CPU_X86_AVX2]) )}, ) expected = [ [('cn1', orc.VCPU, 1), ('cn1', orc.MEMORY_MB, 64), ('cn1', orc.DISK_GB, 1500)], ] self._validate_allocation_requests(expected, alloc_cands) def test_all_local_limit(self): """Create some resource providers that can satisfy the request for resources with local (non-shared) resources, limit them, and verify that the allocation requests returned by AllocationCandidates correspond with each of these resource providers. """ # Create three compute node providers with VCPU, RAM and local disk for name in ('cn1', 'cn2', 'cn3'): cn = self._create_provider(name) tb.add_inventory(cn, orc.VCPU, 24, allocation_ratio=16.0) tb.add_inventory(cn, orc.MEMORY_MB, 32768, min_unit=64, step_size=64, allocation_ratio=1.5) total_gb = 1000 if name == 'cn3' else 2000 tb.add_inventory(cn, orc.DISK_GB, total_gb, reserved=100, min_unit=10, step_size=10, allocation_ratio=1.0) # Ask for just one candidate. limit = 1 alloc_cands = self._get_allocation_candidates( rqparams=placement_lib.RequestWideParams(limit=limit)) allocation_requests = alloc_cands.allocation_requests self.assertEqual(limit, len(allocation_requests)) # provider summaries should have only one rp self.assertEqual(limit, len(alloc_cands.provider_summaries)) # Do it again, with conf set to randomize. We can't confirm the # random-ness but we can be sure the code path doesn't explode. self.conf_fixture.config(randomize_allocation_candidates=True, group='designer_family') # Ask for two candidates. limit = 2 alloc_cands = self._get_allocation_candidates( rqparams=placement_lib.RequestWideParams(limit=limit)) allocation_requests = alloc_cands.allocation_requests self.assertEqual(limit, len(allocation_requests)) # provider summaries should have two rps self.assertEqual(limit, len(alloc_cands.provider_summaries)) # Do it again, asking for more than are available. limit = 5 # We still only expect 2 because cn3 does not match default requests. expected_length = 2 alloc_cands = self._get_allocation_candidates( rqparams=placement_lib.RequestWideParams(limit=limit)) allocation_requests = alloc_cands.allocation_requests self.assertEqual(expected_length, len(allocation_requests)) # provider summaries should have two rps self.assertEqual(expected_length, len(alloc_cands.provider_summaries)) def test_local_with_shared_disk(self): """Create some resource providers that can satisfy the request for resources with local VCPU and MEMORY_MB but rely on a shared storage pool to satisfy DISK_GB and verify that the allocation requests returned by AllocationCandidates have DISK_GB served up by the shared storage pool resource provider and VCPU/MEMORY_MB by the compute node providers """ # Create two compute node providers with VCPU, RAM and NO local disk, # associated with the aggregate. cn1, cn2 = (self._create_provider(name, uuids.agg) for name in ('cn1', 'cn2')) for cn in (cn1, cn2): tb.add_inventory(cn, orc.VCPU, 24, allocation_ratio=16.0) tb.add_inventory(cn, orc.MEMORY_MB, 1024, min_unit=64, allocation_ratio=1.5) # Create the shared storage pool, asociated with the same aggregate ss = self._create_provider('shared storage', uuids.agg) # Give the shared storage pool some inventory of DISK_GB tb.add_inventory(ss, orc.DISK_GB, 2000, reserved=100, min_unit=10) # Mark the shared storage pool as having inventory shared among any # provider associated via aggregate tb.set_traits(ss, "MISC_SHARES_VIA_AGGREGATE") # Ask for the alternative designer_family possibilities and verify each # compute node provider is listed in the allocation requests as well as # the shared storage pool provider alloc_cands = self._get_allocation_candidates() # Verify the provider summary information indicates 0 usage and # capacity calculated from above inventory numbers for both compute # nodes and the shared provider. expected = { 'cn1': set([ (orc.VCPU, 24 * 16.0, 0), (orc.MEMORY_MB, 1024 * 1.5, 0), ]), 'cn2': set([ (orc.VCPU, 24 * 16.0, 0), (orc.MEMORY_MB, 1024 * 1.5, 0), ]), 'shared storage': set([ (orc.DISK_GB, 2000 - 100, 0) ]), } self._validate_provider_summary_resources(expected, alloc_cands) # Verify the allocation requests that are returned. There should be 2 # allocation requests, one for each compute node, containing 3 # resources in each allocation request, one each for VCPU, RAM, and # disk. The amounts of the requests should correspond to the requested # resource amounts in the filter:resources dict passed to # AllocationCandidates.get_by_requests(). The providers for VCPU and # MEMORY_MB should be the compute nodes while the provider for the # DISK_GB should be the shared storage pool expected = [ [('cn1', orc.VCPU, 1), ('cn1', orc.MEMORY_MB, 64), ('shared storage', orc.DISK_GB, 1500)], [('cn2', orc.VCPU, 1), ('cn2', orc.MEMORY_MB, 64), ('shared storage', orc.DISK_GB, 1500)], ] self._validate_allocation_requests(expected, alloc_cands) # Test for bug #1705071. We query for allocation candidates with a # request for ONLY the DISK_GB (the resource that is shared with # compute nodes) and no VCPU/MEMORY_MB. Before the fix for bug # #1705071, this resulted in a KeyError alloc_cands = self._get_allocation_candidates( groups={'': placement_lib.RequestGroup( use_same_provider=False, resources={ 'DISK_GB': 10, } )} ) # We should only have provider summary information for the sharing # storage provider, since that's the only provider that can be # allocated against for this request. In the future, we may look into # returning the shared-with providers in the provider summaries, but # that's a distant possibility. expected = { 'shared storage': set([ (orc.DISK_GB, 2000 - 100, 0), ]), } self._validate_provider_summary_resources(expected, alloc_cands) # The allocation_requests will only include the shared storage # provider because the only thing we're requesting to allocate is # against the provider of DISK_GB, which happens to be the shared # storage provider. expected = [[('shared storage', orc.DISK_GB, 10)]] self._validate_allocation_requests(expected, alloc_cands) # Now we're going to add a set of required traits into the request mix. # To start off, let's request a required trait that we know has not # been associated yet with any provider, and ensure we get no results alloc_cands = self._get_allocation_candidates( {'': placement_lib.RequestGroup( use_same_provider=False, resources=self.requested_resources, required_traits=set([os_traits.HW_CPU_X86_AVX2]), )} ) # We have not yet associated the AVX2 trait to any provider, so we # should get zero allocation candidates p_sums = alloc_cands.provider_summaries self.assertEqual(0, len(p_sums)) # Now, if we then associate the required trait with both of our compute # nodes, we should get back both compute nodes since they both now # satisfy the required traits as well as the resource request avx2_t = trait_obj.Trait.get_by_name( self.ctx, os_traits.HW_CPU_X86_AVX2) cn1.set_traits([avx2_t]) cn2.set_traits([avx2_t]) alloc_cands = self._get_allocation_candidates( {'': placement_lib.RequestGroup( use_same_provider=False, resources=self.requested_resources, required_traits=set([os_traits.HW_CPU_X86_AVX2]), )} ) # There should be 2 compute node providers and 1 shared storage # provider in the summaries. expected = { 'cn1': set([ (orc.VCPU, 24 * 16.0, 0), (orc.MEMORY_MB, 1024 * 1.5, 0), ]), 'cn2': set([ (orc.VCPU, 24 * 16.0, 0), (orc.MEMORY_MB, 1024 * 1.5, 0), ]), 'shared storage': set([ (orc.DISK_GB, 2000 - 100, 0) ]), } self._validate_provider_summary_resources(expected, alloc_cands) # Let's check that the traits listed for the compute nodes include the # AVX2 trait, and the shared storage provider in the provider summaries # does NOT have the AVX2 trait. expected = { 'cn1': set(['HW_CPU_X86_AVX2']), 'cn2': set(['HW_CPU_X86_AVX2']), 'shared storage': set(['MISC_SHARES_VIA_AGGREGATE']), } self._validate_provider_summary_traits(expected, alloc_cands) # Forbid the AVX2 trait alloc_cands = self._get_allocation_candidates( {'': placement_lib.RequestGroup( use_same_provider=False, resources=self.requested_resources, forbidden_traits=set([os_traits.HW_CPU_X86_AVX2]), )} ) # Should be no results as both cn1 and cn2 have the trait. expected = [] self._validate_allocation_requests(expected, alloc_cands) # Require the AVX2 trait but forbid CUSTOM_EXTRA_FASTER, which is # added to cn2 tb.set_traits(cn2, 'CUSTOM_EXTRA_FASTER') alloc_cands = self._get_allocation_candidates( {'': placement_lib.RequestGroup( use_same_provider=False, resources=self.requested_resources, required_traits=set([os_traits.HW_CPU_X86_AVX2]), forbidden_traits=set(['CUSTOM_EXTRA_FASTER']), )} ) expected = [ [('cn1', orc.VCPU, 1), ('cn1', orc.MEMORY_MB, 64), ('shared storage', orc.DISK_GB, 1500)], ] self._validate_allocation_requests(expected, alloc_cands) # Add disk to cn1, forbid sharing, and require the AVX2 trait. # This should result in getting only cn1. tb.add_inventory(cn1, orc.DISK_GB, 2048, allocation_ratio=1.5) alloc_cands = self._get_allocation_candidates( {'': placement_lib.RequestGroup( use_same_provider=False, resources=self.requested_resources, required_traits=set([os_traits.HW_CPU_X86_AVX2]), forbidden_traits=set(['MISC_SHARES_VIA_AGGREGATE']), )} ) expected = [ [('cn1', orc.VCPU, 1), ('cn1', orc.MEMORY_MB, 64), ('cn1', orc.DISK_GB, 1500)], ] self._validate_allocation_requests(expected, alloc_cands) def test_local_with_shared_custom_resource(self): """Create some resource providers that can satisfy the request for resources with local VCPU and MEMORY_MB but rely on a shared resource provider to satisfy a custom resource requirement and verify that the allocation requests returned by AllocationCandidates have the custom resource served up by the shared custom resource provider and VCPU/MEMORY_MB by the compute node providers """ # The aggregate that will be associated to everything... agg_uuid = uuids.agg # Create two compute node providers with VCPU, RAM and NO local # CUSTOM_MAGIC resources, associated with the aggregate. for name in ('cn1', 'cn2'): cn = self._create_provider(name, agg_uuid) tb.add_inventory(cn, orc.VCPU, 24, allocation_ratio=16.0) tb.add_inventory(cn, orc.MEMORY_MB, 1024, min_unit=64, allocation_ratio=1.5) # Create a custom resource called MAGIC magic_rc = rc_obj.ResourceClass( self.ctx, name='CUSTOM_MAGIC', ) magic_rc.create() # Create the shared provider that serves CUSTOM_MAGIC, associated with # the same aggregate magic_p = self._create_provider('shared custom resource provider', agg_uuid) tb.add_inventory(magic_p, magic_rc.name, 2048, reserved=1024, min_unit=10) # Mark the magic provider as having inventory shared among any provider # associated via aggregate tb.set_traits(magic_p, "MISC_SHARES_VIA_AGGREGATE") # The resources we will request requested_resources = { orc.VCPU: 1, orc.MEMORY_MB: 64, magic_rc.name: 512, } alloc_cands = self._get_allocation_candidates( groups={'': placement_lib.RequestGroup( use_same_provider=False, resources=requested_resources)}) # Verify the allocation requests that are returned. There should be 2 # allocation requests, one for each compute node, containing 3 # resources in each allocation request, one each for VCPU, RAM, and # MAGIC. The amounts of the requests should correspond to the requested # resource amounts in the filter:resources dict passed to # AllocationCandidates.get_by_requests(). The providers for VCPU and # MEMORY_MB should be the compute nodes while the provider for the # MAGIC should be the shared custom resource provider. expected = [ [('cn1', orc.VCPU, 1), ('cn1', orc.MEMORY_MB, 64), ('shared custom resource provider', magic_rc.name, 512)], [('cn2', orc.VCPU, 1), ('cn2', orc.MEMORY_MB, 64), ('shared custom resource provider', magic_rc.name, 512)], ] self._validate_allocation_requests(expected, alloc_cands) expected = { 'cn1': set([ (orc.VCPU, 24 * 16.0, 0), (orc.MEMORY_MB, 1024 * 1.5, 0), ]), 'cn2': set([ (orc.VCPU, 24 * 16.0, 0), (orc.MEMORY_MB, 1024 * 1.5, 0), ]), 'shared custom resource provider': set([ (magic_rc.name, 1024, 0) ]), } self._validate_provider_summary_resources(expected, alloc_cands) def test_mix_local_and_shared(self): # Create three compute node providers with VCPU and RAM, but only # the third compute node has DISK. The first two computes will # share the storage from the shared storage pool. cn1, cn2 = (self._create_provider(name, uuids.agg) for name in ('cn1', 'cn2')) # cn3 is not associated with the aggregate cn3 = self._create_provider('cn3') for cn in (cn1, cn2, cn3): tb.add_inventory(cn, orc.VCPU, 24, allocation_ratio=16.0) tb.add_inventory(cn, orc.MEMORY_MB, 1024, min_unit=64, allocation_ratio=1.5) # Only cn3 has disk tb.add_inventory(cn3, orc.DISK_GB, 2000, reserved=100, min_unit=10) # Create the shared storage pool in the same aggregate as the first two # compute nodes ss = self._create_provider('shared storage', uuids.agg) # Give the shared storage pool some inventory of DISK_GB tb.add_inventory(ss, orc.DISK_GB, 2000, reserved=100, min_unit=10) tb.set_traits(ss, "MISC_SHARES_VIA_AGGREGATE") alloc_cands = self._get_allocation_candidates() # Expect cn1, cn2, cn3 and ss in the summaries expected = { 'cn1': set([ (orc.VCPU, 24 * 16.0, 0), (orc.MEMORY_MB, 1024 * 1.5, 0), ]), 'cn2': set([ (orc.VCPU, 24 * 16.0, 0), (orc.MEMORY_MB, 1024 * 1.5, 0), ]), 'cn3': set([ (orc.VCPU, 24 * 16.0, 0), (orc.MEMORY_MB, 1024 * 1.5, 0), (orc.DISK_GB, 2000 - 100, 0), ]), 'shared storage': set([ (orc.DISK_GB, 2000 - 100, 0), ]), } self._validate_provider_summary_resources(expected, alloc_cands) # Expect three allocation requests: (cn1, ss), (cn2, ss), (cn3) expected = [ [('cn1', orc.VCPU, 1), ('cn1', orc.MEMORY_MB, 64), ('shared storage', orc.DISK_GB, 1500)], [('cn2', orc.VCPU, 1), ('cn2', orc.MEMORY_MB, 64), ('shared storage', orc.DISK_GB, 1500)], [('cn3', orc.VCPU, 1), ('cn3', orc.MEMORY_MB, 64), ('cn3', orc.DISK_GB, 1500)], ] self._validate_allocation_requests(expected, alloc_cands) # Now we're going to add a set of required traits into the request mix. # To start off, let's request a required trait that we know has not # been associated yet with any provider, and ensure we get no results alloc_cands = self._get_allocation_candidates( {'': placement_lib.RequestGroup( use_same_provider=False, resources=self.requested_resources, required_traits=set([os_traits.HW_CPU_X86_AVX2]), )} ) # We have not yet associated the AVX2 trait to any provider, so we # should get zero allocation candidates p_sums = alloc_cands.provider_summaries self.assertEqual(0, len(p_sums)) a_reqs = alloc_cands.allocation_requests self.assertEqual(0, len(a_reqs)) # Now, if we then associate the required trait with all of our compute # nodes, we should get back all compute nodes since they all now # satisfy the required traits as well as the resource request for cn in (cn1, cn2, cn3): tb.set_traits(cn, os_traits.HW_CPU_X86_AVX2) alloc_cands = self._get_allocation_candidates( groups={'': placement_lib.RequestGroup( use_same_provider=False, resources=self.requested_resources, required_traits=set([os_traits.HW_CPU_X86_AVX2]), )} ) # There should be 3 compute node providers and 1 shared storage # provider in the summaries. expected = { 'cn1': set([ (orc.VCPU, 24 * 16.0, 0), (orc.MEMORY_MB, 1024 * 1.5, 0), ]), 'cn2': set([ (orc.VCPU, 24 * 16.0, 0), (orc.MEMORY_MB, 1024 * 1.5, 0), ]), 'cn3': set([ (orc.VCPU, 24 * 16.0, 0), (orc.MEMORY_MB, 1024 * 1.5, 0), (orc.DISK_GB, 2000 - 100, 0), ]), 'shared storage': set([ (orc.DISK_GB, 2000 - 100, 0), ]), } self._validate_provider_summary_resources(expected, alloc_cands) # Let's check that the traits listed for the compute nodes include the # AVX2 trait, and the shared storage provider in the provider summaries # does NOT have the AVX2 trait expected = { 'cn1': set(['HW_CPU_X86_AVX2']), 'cn2': set(['HW_CPU_X86_AVX2']), 'cn3': set(['HW_CPU_X86_AVX2']), 'shared storage': set(['MISC_SHARES_VIA_AGGREGATE']), } self._validate_provider_summary_traits(expected, alloc_cands) # Now, let's add a new wrinkle to the equation and add a required trait # that will ONLY be satisfied by a compute node with local disk that # has SSD drives. Set this trait only on the compute node with local # disk (cn3) tb.set_traits(cn3, os_traits.HW_CPU_X86_AVX2, os_traits.STORAGE_DISK_SSD) alloc_cands = self._get_allocation_candidates({ '': placement_lib.RequestGroup( use_same_provider=False, resources=self.requested_resources, required_traits=set([ os_traits.HW_CPU_X86_AVX2, os_traits.STORAGE_DISK_SSD ]), ) }) # There should be only cn3 in the returned allocation candidates expected = [ [('cn3', orc.VCPU, 1), ('cn3', orc.MEMORY_MB, 64), ('cn3', orc.DISK_GB, 1500)], ] self._validate_allocation_requests(expected, alloc_cands) expected = { 'cn3': set([ (orc.VCPU, 24 * 16.0, 0), (orc.MEMORY_MB, 1024 * 1.5, 0), (orc.DISK_GB, 2000 - 100, 0), ]), } self._validate_provider_summary_resources(expected, alloc_cands) expected = { 'cn3': set(['HW_CPU_X86_AVX2', 'STORAGE_DISK_SSD']) } self._validate_provider_summary_traits(expected, alloc_cands) def test_common_rc(self): """Candidates when cn and shared have inventory in the same class.""" cn = self._create_provider('cn', uuids.agg1) tb.add_inventory(cn, orc.VCPU, 24) tb.add_inventory(cn, orc.MEMORY_MB, 2048) tb.add_inventory(cn, orc.DISK_GB, 1600) ss = self._create_provider('ss', uuids.agg1) tb.set_traits(ss, "MISC_SHARES_VIA_AGGREGATE") tb.add_inventory(ss, orc.DISK_GB, 2000) alloc_cands = self._get_allocation_candidates() # One allocation_request should have cn + ss; the other should have # just the cn. expected = [ [('cn', orc.VCPU, 1), ('cn', orc.MEMORY_MB, 64), ('cn', orc.DISK_GB, 1500)], [('cn', orc.VCPU, 1), ('cn', orc.MEMORY_MB, 64), ('ss', orc.DISK_GB, 1500)], ] self._validate_allocation_requests(expected, alloc_cands) expected = { 'cn': set([ (orc.VCPU, 24, 0), (orc.MEMORY_MB, 2048, 0), (orc.DISK_GB, 1600, 0), ]), 'ss': set([ (orc.DISK_GB, 2000, 0), ]), } self._validate_provider_summary_resources(expected, alloc_cands) # Next let's increase the requested DISK_GB requested_resources = { orc.VCPU: 1, orc.MEMORY_MB: 64, orc.DISK_GB: 1800, } alloc_cands = self._get_allocation_candidates( {'': placement_lib.RequestGroup( use_same_provider=False, resources=requested_resources, )} ) expected = [ [('cn', orc.VCPU, 1), ('cn', orc.MEMORY_MB, 64), ('ss', orc.DISK_GB, 1800)], ] self._validate_allocation_requests(expected, alloc_cands) expected = { 'cn': set([ (orc.VCPU, 24, 0), (orc.MEMORY_MB, 2048, 0), (orc.DISK_GB, 1600, 0), ]), 'ss': set([ (orc.DISK_GB, 2000, 0), ]), } self._validate_provider_summary_resources(expected, alloc_cands) def test_common_rc_traits_split(self): """Validate filters when traits are split across cn and shared RPs.""" # NOTE(efried): This test case only applies to the scenario where we're # requesting resources via the RequestGroup where # use_same_provider=False cn = self._create_provider('cn', uuids.agg1) tb.add_inventory(cn, orc.VCPU, 24) tb.add_inventory(cn, orc.MEMORY_MB, 2048) tb.add_inventory(cn, orc.DISK_GB, 1600) # The compute node's disk is SSD tb.set_traits(cn, 'HW_CPU_X86_SSE', 'STORAGE_DISK_SSD') ss = self._create_provider('ss', uuids.agg1) tb.add_inventory(ss, orc.DISK_GB, 1600) # The shared storage's disk is RAID tb.set_traits(ss, 'MISC_SHARES_VIA_AGGREGATE', 'CUSTOM_RAID') alloc_cands = self._get_allocation_candidates( {'': placement_lib.RequestGroup( use_same_provider=False, resources=self.requested_resources, required_traits=set(['HW_CPU_X86_SSE', 'STORAGE_DISK_SSD', 'CUSTOM_RAID']) )} ) # TODO(efried): Bug #1724633: we'd *like* to get no candidates, because # there's no single DISK_GB resource with both STORAGE_DISK_SSD and # CUSTOM_RAID traits. # expected = [] expected = [ [('cn', orc.VCPU, 1), ('cn', orc.MEMORY_MB, 64), ('ss', orc.DISK_GB, 1500)], ] self._validate_allocation_requests(expected, alloc_cands) # expected = {} expected = { 'cn': set([ (orc.VCPU, 24, 0), (orc.MEMORY_MB, 2048, 0), (orc.DISK_GB, 1600, 0), ]), 'ss': set([ (orc.DISK_GB, 1600, 0), ]), } self._validate_provider_summary_resources(expected, alloc_cands) def test_only_one_sharing_provider(self): ss1 = self._create_provider('ss1', uuids.agg1) tb.set_traits(ss1, "MISC_SHARES_VIA_AGGREGATE") tb.add_inventory(ss1, orc.IPV4_ADDRESS, 24) tb.add_inventory(ss1, orc.SRIOV_NET_VF, 16) tb.add_inventory(ss1, orc.DISK_GB, 1600) alloc_cands = self._get_allocation_candidates( {'': placement_lib.RequestGroup( use_same_provider=False, resources={ 'IPV4_ADDRESS': 2, 'SRIOV_NET_VF': 1, 'DISK_GB': 1500, } )} ) expected = [ [('ss1', orc.IPV4_ADDRESS, 2), ('ss1', orc.SRIOV_NET_VF, 1), ('ss1', orc.DISK_GB, 1500)] ] self._validate_allocation_requests(expected, alloc_cands) expected = { 'ss1': set([ (orc.IPV4_ADDRESS, 24, 0), (orc.SRIOV_NET_VF, 16, 0), (orc.DISK_GB, 1600, 0), ]), } self._validate_provider_summary_resources(expected, alloc_cands) def test_all_sharing_providers_no_rc_overlap(self): ss1 = self._create_provider('ss1', uuids.agg1) tb.set_traits(ss1, "MISC_SHARES_VIA_AGGREGATE") tb.add_inventory(ss1, orc.IPV4_ADDRESS, 24) ss2 = self._create_provider('ss2', uuids.agg1) tb.set_traits(ss2, "MISC_SHARES_VIA_AGGREGATE") tb.add_inventory(ss2, orc.DISK_GB, 1600) alloc_cands = self._get_allocation_candidates( {'': placement_lib.RequestGroup( use_same_provider=False, resources={ 'IPV4_ADDRESS': 2, 'DISK_GB': 1500, } )} ) expected = [ [('ss1', orc.IPV4_ADDRESS, 2), ('ss2', orc.DISK_GB, 1500)], ] self._validate_allocation_requests(expected, alloc_cands) expected = { 'ss1': set([ (orc.IPV4_ADDRESS, 24, 0), ]), 'ss2': set([ (orc.DISK_GB, 1600, 0), ]), } self._validate_provider_summary_resources(expected, alloc_cands) def test_all_sharing_providers_no_rc_overlap_more_classes(self): ss1 = self._create_provider('ss1', uuids.agg1) tb.set_traits(ss1, "MISC_SHARES_VIA_AGGREGATE") tb.add_inventory(ss1, orc.IPV4_ADDRESS, 24) tb.add_inventory(ss1, orc.SRIOV_NET_VF, 16) ss2 = self._create_provider('ss2', uuids.agg1) tb.set_traits(ss2, "MISC_SHARES_VIA_AGGREGATE") tb.add_inventory(ss2, orc.DISK_GB, 1600) alloc_cands = self._get_allocation_candidates( {'': placement_lib.RequestGroup( use_same_provider=False, resources={ 'IPV4_ADDRESS': 2, 'SRIOV_NET_VF': 1, 'DISK_GB': 1500, } )} ) expected = [ [('ss1', orc.IPV4_ADDRESS, 2), ('ss1', orc.SRIOV_NET_VF, 1), ('ss2', orc.DISK_GB, 1500)] ] self._validate_allocation_requests(expected, alloc_cands) expected = { 'ss1': set([ (orc.IPV4_ADDRESS, 24, 0), (orc.SRIOV_NET_VF, 16, 0) ]), 'ss2': set([ (orc.DISK_GB, 1600, 0), ]), } self._validate_provider_summary_resources(expected, alloc_cands) def test_all_sharing_providers(self): ss1 = self._create_provider('ss1', uuids.agg1) tb.set_traits(ss1, "MISC_SHARES_VIA_AGGREGATE") tb.add_inventory(ss1, orc.IPV4_ADDRESS, 24) tb.add_inventory(ss1, orc.SRIOV_NET_VF, 16) tb.add_inventory(ss1, orc.DISK_GB, 1600) ss2 = self._create_provider('ss2', uuids.agg1) tb.set_traits(ss2, "MISC_SHARES_VIA_AGGREGATE") tb.add_inventory(ss2, orc.SRIOV_NET_VF, 16) tb.add_inventory(ss2, orc.DISK_GB, 1600) alloc_cands = self._get_allocation_candidates(groups={ '': placement_lib.RequestGroup( use_same_provider=False, resources={ 'IPV4_ADDRESS': 2, 'SRIOV_NET_VF': 1, 'DISK_GB': 1500, } )} ) # We expect four candidates: # - gets all the resources from ss1, # - gets the SRIOV_NET_VF from ss2 and the rest from ss1, # - gets the DISK_GB from ss2 and the rest from ss1, # - gets SRIOV_NET_VF and DISK_GB from ss2 and rest from ss1 expected = [ [('ss1', orc.IPV4_ADDRESS, 2), ('ss1', orc.SRIOV_NET_VF, 1), ('ss1', orc.DISK_GB, 1500)], [('ss1', orc.IPV4_ADDRESS, 2), ('ss1', orc.SRIOV_NET_VF, 1), ('ss2', orc.DISK_GB, 1500)], [('ss1', orc.IPV4_ADDRESS, 2), ('ss2', orc.SRIOV_NET_VF, 1), ('ss1', orc.DISK_GB, 1500)], [('ss1', orc.IPV4_ADDRESS, 2), ('ss2', orc.SRIOV_NET_VF, 1), ('ss2', orc.DISK_GB, 1500)], ] self._validate_allocation_requests(expected, alloc_cands) expected = { 'ss1': set([ (orc.IPV4_ADDRESS, 24, 0), (orc.SRIOV_NET_VF, 16, 0), (orc.DISK_GB, 1600, 0) ]), 'ss2': set([ (orc.SRIOV_NET_VF, 16, 0), (orc.DISK_GB, 1600, 0), ]), } self._validate_provider_summary_resources(expected, alloc_cands) def test_two_non_sharing_connect_to_one_sharing_different_aggregate(self): # Covering the following setup: # # CN1 (VCPU) CN2 (VCPU) # \ agg1 / agg2 # SS1 (DISK_GB) # # It is different from test_mix_local_and_shared as it uses two # different aggregates to connect the two CNs to the share RP cn1 = self._create_provider('cn1', uuids.agg1) tb.add_inventory(cn1, orc.VCPU, 24) tb.add_inventory(cn1, orc.MEMORY_MB, 2048) cn2 = self._create_provider('cn2', uuids.agg2) tb.add_inventory(cn2, orc.VCPU, 24) tb.add_inventory(cn2, orc.MEMORY_MB, 2048) ss1 = self._create_provider('ss1', uuids.agg1, uuids.agg2) tb.set_traits(ss1, "MISC_SHARES_VIA_AGGREGATE") tb.add_inventory(ss1, orc.DISK_GB, 1600) alloc_cands = self._get_allocation_candidates( {'': placement_lib.RequestGroup( use_same_provider=False, resources={ 'VCPU': 2, 'DISK_GB': 1500, } )} ) expected = [ [('cn1', orc.VCPU, 2), ('ss1', orc.DISK_GB, 1500)], [('cn2', orc.VCPU, 2), ('ss1', orc.DISK_GB, 1500)], ] self._validate_allocation_requests(expected, alloc_cands) expected = { 'cn1': set([ (orc.VCPU, 24, 0), (orc.MEMORY_MB, 2048, 0), ]), 'cn2': set([ (orc.VCPU, 24, 0), (orc.MEMORY_MB, 2048, 0), ]), 'ss1': set([ (orc.DISK_GB, 1600, 0), ]), } self._validate_provider_summary_resources(expected, alloc_cands) def test_two_non_sharing_one_common_and_two_unique_sharing(self): # Covering the following setup: # # CN1 (VCPU) CN2 (VCPU) # / agg3 \ agg1 / agg1 \ agg2 # SS3 (IPV4) SS1 (DISK_GB) SS2 (IPV4) cn1 = self._create_provider('cn1', uuids.agg1, uuids.agg3) tb.add_inventory(cn1, orc.VCPU, 24) tb.add_inventory(cn1, orc.MEMORY_MB, 2048) cn2 = self._create_provider('cn2', uuids.agg1, uuids.agg2) tb.add_inventory(cn2, orc.VCPU, 24) tb.add_inventory(cn2, orc.MEMORY_MB, 2048) # ss1 is connected to both cn1 and cn2 ss1 = self._create_provider('ss1', uuids.agg1) tb.set_traits(ss1, "MISC_SHARES_VIA_AGGREGATE") tb.add_inventory(ss1, orc.DISK_GB, 1600) # ss2 only connected to cn2 ss2 = self._create_provider('ss2', uuids.agg2) tb.set_traits(ss2, "MISC_SHARES_VIA_AGGREGATE") tb.add_inventory(ss2, orc.IPV4_ADDRESS, 24) # ss3 only connected to cn1 ss3 = self._create_provider('ss3', uuids.agg3) tb.set_traits(ss3, "MISC_SHARES_VIA_AGGREGATE") tb.add_inventory(ss3, orc.IPV4_ADDRESS, 24) alloc_cands = self._get_allocation_candidates( {'': placement_lib.RequestGroup( use_same_provider=False, resources={ 'VCPU': 2, 'DISK_GB': 1500, 'IPV4_ADDRESS': 2, } )} ) expected = [ [('cn1', orc.VCPU, 2), ('ss1', orc.DISK_GB, 1500), ('ss3', orc.IPV4_ADDRESS, 2)], [('cn2', orc.VCPU, 2), ('ss1', orc.DISK_GB, 1500), ('ss2', orc.IPV4_ADDRESS, 2)], ] self._validate_allocation_requests(expected, alloc_cands) expected = { 'cn1': set([ (orc.VCPU, 24, 0), (orc.MEMORY_MB, 2048, 0), ]), 'cn2': set([ (orc.VCPU, 24, 0), (orc.MEMORY_MB, 2048, 0), ]), 'ss1': set([ (orc.DISK_GB, 1600, 0), ]), 'ss2': set([ (orc.IPV4_ADDRESS, 24, 0), ]), 'ss3': set([ (orc.IPV4_ADDRESS, 24, 0), ]), } self._validate_provider_summary_resources(expected, alloc_cands) def test_rc_not_split_between_sharing_and_non_sharing(self): # cn1(VCPU,MEM) Non-sharing RP with some of the resources # | agg1 aggregated with # ss1(DISK) sharing RP that has the rest of the resources # # cn2(VCPU) Non-sharing with one of the resources; # / agg2 \ aggregated with multiple sharing providers # ss2_1(MEM) ss2_2(DISK) with different resources. cn1 = self._create_provider('cn1', uuids.agg1) tb.add_inventory(cn1, orc.VCPU, 24) tb.add_inventory(cn1, orc.MEMORY_MB, 2048) ss1 = self._create_provider('ss1', uuids.agg1) tb.add_inventory(ss1, orc.DISK_GB, 2000) tb.set_traits(ss1, 'MISC_SHARES_VIA_AGGREGATE') cn2 = self._create_provider('cn2', uuids.agg2) tb.add_inventory(cn2, orc.VCPU, 24) ss2_1 = self._create_provider('ss2_1', uuids.agg2) tb.add_inventory(ss2_1, orc.MEMORY_MB, 2048) tb.set_traits(ss2_1, 'MISC_SHARES_VIA_AGGREGATE') ss2_2 = self._create_provider('ss2_2', uuids.agg2) tb.add_inventory(ss2_2, orc.DISK_GB, 2000) tb.set_traits(ss2_2, 'MISC_SHARES_VIA_AGGREGATE') alloc_cands = self._get_allocation_candidates() expected = [ [('cn1', orc.VCPU, 1), ('cn1', orc.MEMORY_MB, 64), ('ss1', orc.DISK_GB, 1500)], [('cn2', orc.VCPU, 1), ('ss2_1', orc.MEMORY_MB, 64), ('ss2_2', orc.DISK_GB, 1500)], ] self._validate_allocation_requests(expected, alloc_cands) expected = { 'cn1': set([ (orc.VCPU, 24, 0), (orc.MEMORY_MB, 2048, 0), ]), 'ss1': set([ (orc.DISK_GB, 2000, 0), ]), 'cn2': set([ (orc.VCPU, 24, 0), ]), 'ss2_1': set([ (orc.MEMORY_MB, 2048, 0), ]), 'ss2_2': set([ (orc.DISK_GB, 2000, 0), ]), } self._validate_provider_summary_resources(expected, alloc_cands) def test_multiple_sharing_providers_with_same_rc(self): # cn1(VCPU,MEM) Non-sharing with some of the resources; # / agg1 \ aggregated with multiple sharing providers # ss1_1(DISK) ss1_2(DISK) with the same resource. # # cn2(VCPU) Non-sharing with one of the resources; # / agg2 \ aggregated with multiple sharing providers # ss2_1(MEM) ss2_2(DISK) with different resources. cn1 = self._create_provider('cn1', uuids.agg1) tb.add_inventory(cn1, orc.VCPU, 24) tb.add_inventory(cn1, orc.MEMORY_MB, 2048) ss1_1 = self._create_provider('ss1_1', uuids.agg1) tb.add_inventory(ss1_1, orc.DISK_GB, 2000) tb.set_traits(ss1_1, 'MISC_SHARES_VIA_AGGREGATE') ss1_2 = self._create_provider('ss1_2', uuids.agg1) tb.add_inventory(ss1_2, orc.DISK_GB, 2000) tb.set_traits(ss1_2, 'MISC_SHARES_VIA_AGGREGATE') cn2 = self._create_provider('cn2', uuids.agg2) tb.add_inventory(cn2, orc.VCPU, 24) ss2_1 = self._create_provider('ss2_1', uuids.agg2) tb.add_inventory(ss2_1, orc.MEMORY_MB, 2048) tb.set_traits(ss2_1, 'MISC_SHARES_VIA_AGGREGATE') ss2_2 = self._create_provider('ss2_2', uuids.agg2) tb.add_inventory(ss2_2, orc.DISK_GB, 2000) tb.set_traits(ss2_2, 'MISC_SHARES_VIA_AGGREGATE') alloc_cands = self._get_allocation_candidates() expected = [ [('cn1', orc.VCPU, 1), ('cn1', orc.MEMORY_MB, 64), ('ss1_1', orc.DISK_GB, 1500)], [('cn1', orc.VCPU, 1), ('cn1', orc.MEMORY_MB, 64), ('ss1_2', orc.DISK_GB, 1500)], [('cn2', orc.VCPU, 1), ('ss2_1', orc.MEMORY_MB, 64), ('ss2_2', orc.DISK_GB, 1500)], ] self._validate_allocation_requests(expected, alloc_cands) expected = { 'cn1': set([ (orc.VCPU, 24, 0), (orc.MEMORY_MB, 2048, 0), ]), 'ss1_1': set([ (orc.DISK_GB, 2000, 0), ]), 'ss1_2': set([ (orc.DISK_GB, 2000, 0), ]), 'cn2': set([ (orc.VCPU, 24, 0), ]), 'ss2_1': set([ (orc.MEMORY_MB, 2048, 0), ]), 'ss2_2': set([ (orc.DISK_GB, 2000, 0), ]), } self._validate_provider_summary_resources(expected, alloc_cands) def test_sharing_providers_member_of(self): # Covering the following setup: # # CN1 (VCPU, DISK_GB) CN2 (VCPU, DISK_GB) # / agg1 \ agg2 / agg2 \ agg3 # SS1 (DISK_GB) SS2 (DISK_GB) SS3 (DISK_GB) cn1 = self._create_provider('cn1', uuids.agg1, uuids.agg2) tb.add_inventory(cn1, orc.VCPU, 24) tb.add_inventory(cn1, orc.DISK_GB, 1600) cn2 = self._create_provider('cn2', uuids.agg2, uuids.agg3) tb.add_inventory(cn2, orc.VCPU, 24) tb.add_inventory(cn2, orc.DISK_GB, 1600) # ss1 is connected to cn1 ss1 = self._create_provider('ss1', uuids.agg1) tb.set_traits(ss1, "MISC_SHARES_VIA_AGGREGATE") tb.add_inventory(ss1, orc.DISK_GB, 1600) # ss2 is connected to both cn1 and cn2 ss2 = self._create_provider('ss2', uuids.agg2) tb.set_traits(ss2, "MISC_SHARES_VIA_AGGREGATE") tb.add_inventory(ss2, orc.DISK_GB, 1600) # ss3 is connected to cn2 ss3 = self._create_provider('ss3', uuids.agg3) tb.set_traits(ss3, "MISC_SHARES_VIA_AGGREGATE") tb.add_inventory(ss3, orc.DISK_GB, 1600) # Let's get allocation candidates from agg1 alloc_cands = self._get_allocation_candidates( {'': placement_lib.RequestGroup( use_same_provider=False, resources={ 'VCPU': 2, 'DISK_GB': 1500, }, member_of=[[uuids.agg1]] )} ) expected = [ [('cn1', orc.VCPU, 2), ('cn1', orc.DISK_GB, 1500)], [('cn1', orc.VCPU, 2), ('ss1', orc.DISK_GB, 1500)], ] self._validate_allocation_requests(expected, alloc_cands) expected = { 'cn1': set([ (orc.VCPU, 24, 0), (orc.DISK_GB, 1600, 0), ]), 'ss1': set([ (orc.DISK_GB, 1600, 0), ]), } self._validate_provider_summary_resources(expected, alloc_cands) # Let's get allocation candidates from agg2 alloc_cands = self._get_allocation_candidates( {'': placement_lib.RequestGroup( use_same_provider=False, resources={ 'VCPU': 2, 'DISK_GB': 1500, }, member_of=[[uuids.agg2]] )} ) expected = [ [('cn1', orc.VCPU, 2), ('cn1', orc.DISK_GB, 1500)], [('cn1', orc.VCPU, 2), ('ss2', orc.DISK_GB, 1500)], [('cn2', orc.VCPU, 2), ('cn2', orc.DISK_GB, 1500)], [('cn2', orc.VCPU, 2), ('ss2', orc.DISK_GB, 1500)], ] self._validate_allocation_requests(expected, alloc_cands) expected = { 'cn1': set([ (orc.VCPU, 24, 0), (orc.DISK_GB, 1600, 0), ]), 'cn2': set([ (orc.VCPU, 24, 0), (orc.DISK_GB, 1600, 0), ]), 'ss2': set([ (orc.DISK_GB, 1600, 0), ]), } self._validate_provider_summary_resources(expected, alloc_cands) # Let's move to validate multiple member_of scenario # The request from agg1 *AND* agg2 would provide only # resources from cn1 with its local DISK alloc_cands = self._get_allocation_candidates( {'': placement_lib.RequestGroup( use_same_provider=False, resources={ 'VCPU': 2, 'DISK_GB': 1500, }, member_of=[[uuids.agg1], [uuids.agg2]] )} ) expected = [ [('cn1', orc.VCPU, 2), ('cn1', orc.DISK_GB, 1500)], ] self._validate_allocation_requests(expected, alloc_cands) expected = { 'cn1': set([ (orc.VCPU, 24, 0), (orc.DISK_GB, 1600, 0), ]), } self._validate_provider_summary_resources(expected, alloc_cands) # The request from agg1 *OR* agg2 would provide five candidates alloc_cands = self._get_allocation_candidates( {'': placement_lib.RequestGroup( use_same_provider=False, resources={ 'VCPU': 2, 'DISK_GB': 1500, }, member_of=[[uuids.agg1, uuids.agg2]] )} ) expected = [ [('cn1', orc.VCPU, 2), ('cn1', orc.DISK_GB, 1500)], [('cn1', orc.VCPU, 2), ('ss1', orc.DISK_GB, 1500)], [('cn1', orc.VCPU, 2), ('ss2', orc.DISK_GB, 1500)], [('cn2', orc.VCPU, 2), ('cn2', orc.DISK_GB, 1500)], [('cn2', orc.VCPU, 2), ('ss2', orc.DISK_GB, 1500)], ] self._validate_allocation_requests(expected, alloc_cands) expected = { 'cn1': set([ (orc.VCPU, 24, 0), (orc.DISK_GB, 1600, 0), ]), 'cn2': set([ (orc.VCPU, 24, 0), (orc.DISK_GB, 1600, 0), ]), 'ss1': set([ (orc.DISK_GB, 1600, 0), ]), 'ss2': set([ (orc.DISK_GB, 1600, 0), ]), } self._validate_provider_summary_resources(expected, alloc_cands) def test_two_sharing_indirectly_connected_connecting_not_give_resource( self): # This covers the following setup # CN1 (VCPU, MEMORY_MB) # / \ # /agg1 \agg2 # / \ # SS1 ( SS2 ( # DISK_GB) IPV4_ADDRESS # SRIOV_NET_VF) # The request then made for resources from the sharing RPs only ss1 = self._create_provider('ss1', uuids.agg1) tb.set_traits(ss1, "MISC_SHARES_VIA_AGGREGATE") tb.add_inventory(ss1, orc.DISK_GB, 1600) cn1 = self._create_provider('cn1', uuids.agg1, uuids.agg2) tb.add_inventory(cn1, orc.VCPU, 24) tb.add_inventory(cn1, orc.MEMORY_MB, 2048) ss2 = self._create_provider('ss2', uuids.agg2) tb.set_traits(ss2, "MISC_SHARES_VIA_AGGREGATE") tb.add_inventory(ss2, orc.IPV4_ADDRESS, 24) tb.add_inventory(ss2, orc.SRIOV_NET_VF, 16) alloc_cands = self._get_allocation_candidates( {'': placement_lib.RequestGroup( use_same_provider=False, resources={ 'IPV4_ADDRESS': 2, 'SRIOV_NET_VF': 1, 'DISK_GB': 1500, } )} ) expected = [ [('ss1', orc.DISK_GB, 1500), ('ss2', orc.IPV4_ADDRESS, 2), ('ss2', orc.SRIOV_NET_VF, 1)], ] self._validate_allocation_requests(expected, alloc_cands) expected = { 'ss1': set([ (orc.DISK_GB, 1600, 0), ]), 'ss2': set([ (orc.IPV4_ADDRESS, 24, 0), (orc.SRIOV_NET_VF, 16, 0), ]), } self._validate_provider_summary_resources(expected, alloc_cands) def test_two_sharing_indirectly_connected_connecting_gives_resource(self): # This covers the following setup # CN1 (VCPU, MEMORY_MB) # / \ # /agg1 \agg2 # / \ # SS1 ( SS2 ( # DISK_GB) IPV4_ADDRESS # SRIOV_NET_VF) # The request then made for resources from all three RPs ss1 = self._create_provider('ss1', uuids.agg1) tb.set_traits(ss1, "MISC_SHARES_VIA_AGGREGATE") tb.add_inventory(ss1, orc.DISK_GB, 1600) cn1 = self._create_provider('cn1', uuids.agg1, uuids.agg2) tb.add_inventory(cn1, orc.VCPU, 24) tb.add_inventory(cn1, orc.MEMORY_MB, 2048) ss2 = self._create_provider('ss2', uuids.agg2) tb.set_traits(ss2, "MISC_SHARES_VIA_AGGREGATE") tb.add_inventory(ss2, orc.IPV4_ADDRESS, 24) tb.add_inventory(ss2, orc.SRIOV_NET_VF, 16) alloc_cands = self._get_allocation_candidates( {'': placement_lib.RequestGroup( use_same_provider=False, resources={ 'VCPU': 2, 'IPV4_ADDRESS': 2, 'SRIOV_NET_VF': 1, 'DISK_GB': 1500, } )} ) expected = [ [('cn1', orc.VCPU, 2), ('ss1', orc.DISK_GB, 1500), ('ss2', orc.IPV4_ADDRESS, 2), ('ss2', orc.SRIOV_NET_VF, 1)], ] self._validate_allocation_requests(expected, alloc_cands) expected = { 'cn1': set([ (orc.VCPU, 24, 0), (orc.MEMORY_MB, 2048, 0), ]), 'ss1': set([ (orc.DISK_GB, 1600, 0), ]), 'ss2': set([ (orc.IPV4_ADDRESS, 24, 0), (orc.SRIOV_NET_VF, 16, 0), ]), } self._validate_provider_summary_resources(expected, alloc_cands) def test_simple_tree_of_providers(self): """Tests that we properly winnow allocation requests when including traits in the request group and that the traits appear in the provider summaries of the returned allocation candidates """ # We are setting up a single tree that looks like this: # # compute node (cn) # / \ # / \ # numa cell 0 numa cell 1 # | | # | | # pf 0 pf 1 # # The second physical function will be associated with the # HW_NIC_OFFLOAD_GENEVE trait, but not the first physical function. # # We will issue a request to _get_allocation_candidates() for VCPU, # MEMORY_MB and SRIOV_NET_VF **without** required traits, then include # a request that includes HW_NIC_OFFLOAD_GENEVE. In the latter case, # the compute node tree should be returned but the allocation requests # should only include the second physical function since the required # trait is only associated with that PF. # # Subsequently, we will consume all the SRIOV_NET_VF resources from the # second PF's inventory and attempt the same request of resources and # HW_NIC_OFFLOAD_GENEVE. We should get 0 returned results because now # the only PF that has the required trait has no inventory left. cn = self._create_provider('cn') tb.add_inventory(cn, orc.VCPU, 16) tb.add_inventory(cn, orc.MEMORY_MB, 32768) numa_cell0 = self._create_provider('cn_numa0', parent=cn.uuid) numa_cell1 = self._create_provider('cn_numa1', parent=cn.uuid) pf0 = self._create_provider('cn_numa0_pf0', parent=numa_cell0.uuid) tb.add_inventory(pf0, orc.SRIOV_NET_VF, 8) pf1 = self._create_provider('cn_numa1_pf1', parent=numa_cell1.uuid) tb.add_inventory(pf1, orc.SRIOV_NET_VF, 8) tb.set_traits(pf1, os_traits.HW_NIC_OFFLOAD_GENEVE) alloc_cands = self._get_allocation_candidates( {'': placement_lib.RequestGroup( use_same_provider=False, resources={ orc.VCPU: 2, orc.MEMORY_MB: 256, orc.SRIOV_NET_VF: 1, } )} ) expected = [ [('cn', orc.VCPU, 2), ('cn', orc.MEMORY_MB, 256), ('cn_numa0_pf0', orc.SRIOV_NET_VF, 1)], [('cn', orc.VCPU, 2), ('cn', orc.MEMORY_MB, 256), ('cn_numa1_pf1', orc.SRIOV_NET_VF, 1)], ] self._validate_allocation_requests(expected, alloc_cands) expected = { 'cn': set([ (orc.VCPU, 16, 0), (orc.MEMORY_MB, 32768, 0), ]), 'cn_numa0': set([]), 'cn_numa1': set([]), 'cn_numa0_pf0': set([ (orc.SRIOV_NET_VF, 8, 0), ]), 'cn_numa1_pf1': set([ (orc.SRIOV_NET_VF, 8, 0), ]), } self._validate_provider_summary_resources(expected, alloc_cands) expected = { 'cn': set([]), 'cn_numa0': set([]), 'cn_numa1': set([]), 'cn_numa0_pf0': set([]), 'cn_numa1_pf1': set([os_traits.HW_NIC_OFFLOAD_GENEVE]), } self._validate_provider_summary_traits(expected, alloc_cands) # Now add required traits to the mix and verify we still get the same # result (since we haven't yet consumed the second physical function's # inventory of SRIOV_NET_VF. alloc_cands = self._get_allocation_candidates( {'': placement_lib.RequestGroup( use_same_provider=False, resources={ orc.VCPU: 2, orc.MEMORY_MB: 256, orc.SRIOV_NET_VF: 1, }, required_traits=[os_traits.HW_NIC_OFFLOAD_GENEVE], )} ) expected = [ [('cn', orc.VCPU, 2), ('cn', orc.MEMORY_MB, 256), ('cn_numa1_pf1', orc.SRIOV_NET_VF, 1)], ] self._validate_allocation_requests(expected, alloc_cands) expected = { 'cn': set([ (orc.VCPU, 16, 0), (orc.MEMORY_MB, 32768, 0), ]), 'cn_numa0': set([]), 'cn_numa1': set([]), 'cn_numa0_pf0': set([ (orc.SRIOV_NET_VF, 8, 0), ]), 'cn_numa1_pf1': set([ (orc.SRIOV_NET_VF, 8, 0), ]), } self._validate_provider_summary_resources(expected, alloc_cands) expected = { 'cn': set([]), 'cn_numa0': set([]), 'cn_numa1': set([]), 'cn_numa0_pf0': set([]), 'cn_numa1_pf1': set([os_traits.HW_NIC_OFFLOAD_GENEVE]), } self._validate_provider_summary_traits(expected, alloc_cands) # Next we test that we get resources only on non-root providers # without root providers involved alloc_cands = self._get_allocation_candidates( {'': placement_lib.RequestGroup( use_same_provider=False, resources={ orc.SRIOV_NET_VF: 1, }, )} ) expected = [ [('cn_numa0_pf0', orc.SRIOV_NET_VF, 1)], [('cn_numa1_pf1', orc.SRIOV_NET_VF, 1)], ] self._validate_allocation_requests(expected, alloc_cands) expected = { 'cn': set([ (orc.VCPU, 16, 0), (orc.MEMORY_MB, 32768, 0), ]), 'cn_numa0': set([]), 'cn_numa1': set([]), 'cn_numa0_pf0': set([ (orc.SRIOV_NET_VF, 8, 0), ]), 'cn_numa1_pf1': set([ (orc.SRIOV_NET_VF, 8, 0), ]), } self._validate_provider_summary_resources(expected, alloc_cands) expected = { 'cn': set([]), 'cn_numa0': set([]), 'cn_numa1': set([]), 'cn_numa0_pf0': set([]), 'cn_numa1_pf1': set([os_traits.HW_NIC_OFFLOAD_GENEVE]), } self._validate_provider_summary_traits(expected, alloc_cands) # Same, but with the request in a granular group, which hits a # different code path. alloc_cands = self._get_allocation_candidates( {'': placement_lib.RequestGroup( use_same_provider=True, resources={ orc.SRIOV_NET_VF: 1, }, )} ) expected = [ [('cn_numa0_pf0', orc.SRIOV_NET_VF, 1)], [('cn_numa1_pf1', orc.SRIOV_NET_VF, 1)], ] self._validate_allocation_requests(expected, alloc_cands) expected = { 'cn': set([ (orc.VCPU, 16, 0), (orc.MEMORY_MB, 32768, 0), ]), 'cn_numa0': set([]), 'cn_numa1': set([]), 'cn_numa0_pf0': set([ (orc.SRIOV_NET_VF, 8, 0), ]), 'cn_numa1_pf1': set([ (orc.SRIOV_NET_VF, 8, 0), ]), } self._validate_provider_summary_resources(expected, alloc_cands) expected = { 'cn': set([]), 'cn_numa0': set([]), 'cn_numa1': set([]), 'cn_numa0_pf0': set([]), 'cn_numa1_pf1': set([os_traits.HW_NIC_OFFLOAD_GENEVE]), } self._validate_provider_summary_traits(expected, alloc_cands) # Now consume all the inventory of SRIOV_NET_VF on the second physical # function (the one with HW_NIC_OFFLOAD_GENEVE associated with it) and # verify that the same request still results in 0 results since the # function with the required trait no longer has any inventory. self.allocate_from_provider(pf1, orc.SRIOV_NET_VF, 8) alloc_cands = self._get_allocation_candidates({ '': placement_lib.RequestGroup( use_same_provider=False, resources={ orc.VCPU: 2, orc.MEMORY_MB: 256, orc.SRIOV_NET_VF: 1, }, required_traits=[os_traits.HW_NIC_OFFLOAD_GENEVE], ) }) self._validate_allocation_requests([], alloc_cands) self._validate_provider_summary_resources({}, alloc_cands) self._validate_provider_summary_traits({}, alloc_cands) def test_simple_tree_with_shared_provider(self): """Tests that we properly winnow allocation requests when including shared and nested providers """ # We are setting up 2 cn trees with 2 shared storages # that look like this: # # compute node (cn1) ----- shared storage (ss1) # / \ agg1 with 2000 DISK_GB # / \ # numa cell 1_0 numa cell 1_1 # | | # | | # pf 1_0 pf 1_1(HW_NIC_OFFLOAD_GENEVE) # # compute node (cn2) ----- shared storage (ss2) # / \ agg2 with 1000 DISK_GB # / \ # numa cell 2_0 numa cell 2_1 # | | # | | # pf 2_0 pf 2_1(HW_NIC_OFFLOAD_GENEVE) # # The second physical function in both trees (pf1_1, pf 2_1) will be # associated with the HW_NIC_OFFLOAD_GENEVE trait, but not the first # physical function. # # We will issue a request to _get_allocation_candidates() for VCPU, # SRIOV_NET_VF and DISK_GB **without** required traits, then include # a request that includes HW_NIC_OFFLOAD_GENEVE. In the latter case, # the compute node tree should be returned but the allocation requests # should only include the second physical function since the required # trait is only associated with that PF. cn1 = self._create_provider('cn1', uuids.agg1) cn2 = self._create_provider('cn2', uuids.agg2) tb.add_inventory(cn1, orc.VCPU, 16) tb.add_inventory(cn2, orc.VCPU, 16) numa1_0 = self._create_provider('cn1_numa0', parent=cn1.uuid) numa1_1 = self._create_provider('cn1_numa1', parent=cn1.uuid) numa2_0 = self._create_provider('cn2_numa0', parent=cn2.uuid) numa2_1 = self._create_provider('cn2_numa1', parent=cn2.uuid) pf1_0 = self._create_provider('cn1_numa0_pf0', parent=numa1_0.uuid) pf1_1 = self._create_provider('cn1_numa1_pf1', parent=numa1_1.uuid) pf2_0 = self._create_provider('cn2_numa0_pf0', parent=numa2_0.uuid) pf2_1 = self._create_provider('cn2_numa1_pf1', parent=numa2_1.uuid) tb.add_inventory(pf1_0, orc.SRIOV_NET_VF, 8) tb.add_inventory(pf1_1, orc.SRIOV_NET_VF, 8) tb.add_inventory(pf2_0, orc.SRIOV_NET_VF, 8) tb.add_inventory(pf2_1, orc.SRIOV_NET_VF, 8) tb.set_traits(pf2_1, os_traits.HW_NIC_OFFLOAD_GENEVE) tb.set_traits(pf1_1, os_traits.HW_NIC_OFFLOAD_GENEVE) ss1 = self._create_provider('ss1', uuids.agg1) ss2 = self._create_provider('ss2', uuids.agg2) tb.add_inventory(ss1, orc.DISK_GB, 2000) tb.add_inventory(ss2, orc.DISK_GB, 1000) tb.set_traits(ss1, 'MISC_SHARES_VIA_AGGREGATE') tb.set_traits(ss2, 'MISC_SHARES_VIA_AGGREGATE') alloc_cands = self._get_allocation_candidates({ '': placement_lib.RequestGroup( use_same_provider=False, resources={ orc.VCPU: 2, orc.SRIOV_NET_VF: 1, orc.DISK_GB: 1500, }) }) # cn2 is not in the allocation candidates because it doesn't have # enough DISK_GB resource with shared providers. expected = [ [('cn1', orc.VCPU, 2), ('cn1_numa0_pf0', orc.SRIOV_NET_VF, 1), ('ss1', orc.DISK_GB, 1500)], [('cn1', orc.VCPU, 2), ('cn1_numa1_pf1', orc.SRIOV_NET_VF, 1), ('ss1', orc.DISK_GB, 1500)] ] self._validate_allocation_requests(expected, alloc_cands) expected = { 'cn1': set([ (orc.VCPU, 16, 0) ]), 'cn1_numa0': set([]), 'cn1_numa1': set([]), 'cn1_numa0_pf0': set([ (orc.SRIOV_NET_VF, 8, 0) ]), 'cn1_numa1_pf1': set([ (orc.SRIOV_NET_VF, 8, 0) ]), 'ss1': set([ (orc.DISK_GB, 2000, 0) ]), } self._validate_provider_summary_resources(expected, alloc_cands) # Now add required traits to the mix and verify we still get the # inventory of SRIOV_NET_VF. alloc_cands = self._get_allocation_candidates({ '': placement_lib.RequestGroup( use_same_provider=False, resources={ orc.VCPU: 2, orc.SRIOV_NET_VF: 1, orc.DISK_GB: 1500, }, required_traits=[os_traits.HW_NIC_OFFLOAD_GENEVE]) }) # cn1_numa0_pf0 is not in the allocation candidates because it # doesn't have the required trait. expected = [ [('cn1', orc.VCPU, 2), ('cn1_numa1_pf1', orc.SRIOV_NET_VF, 1), ('ss1', orc.DISK_GB, 1500)] ] self._validate_allocation_requests(expected, alloc_cands) expected = { 'cn1': set([ (orc.VCPU, 16, 0) ]), 'cn1_numa0': set([]), 'cn1_numa1': set([]), 'cn1_numa0_pf0': set([ (orc.SRIOV_NET_VF, 8, 0) ]), 'cn1_numa1_pf1': set([ (orc.SRIOV_NET_VF, 8, 0) ]), 'ss1': set([ (orc.DISK_GB, 2000, 0) ]), } self._validate_provider_summary_resources(expected, alloc_cands) def _create_nested_trees(self): # We are setting up 2 identical compute trees with no storage # that look like this: # # compute node (cn1) # / \ # / \ # numa cell 1_0 numa cell 1_1 # | | # | | # pf 1_0 pf 1_1 # # compute node (cn2) # / \ # / \ # numa cell 2_0 numa cell 2_1 # | | # | | # pf 2_0 pf 2_1 # cn1 = self._create_provider('cn1', uuids.agg1) cn2 = self._create_provider('cn2', uuids.agg2) tb.add_inventory(cn1, orc.VCPU, 16) tb.add_inventory(cn2, orc.VCPU, 16) numa1_0 = self._create_provider('cn1_numa0', parent=cn1.uuid) numa1_1 = self._create_provider('cn1_numa1', parent=cn1.uuid) numa2_0 = self._create_provider('cn2_numa0', parent=cn2.uuid) numa2_1 = self._create_provider('cn2_numa1', parent=cn2.uuid) pf1_0 = self._create_provider('cn1_numa0_pf0', parent=numa1_0.uuid) pf1_1 = self._create_provider('cn1_numa1_pf1', parent=numa1_1.uuid) pf2_0 = self._create_provider('cn2_numa0_pf0', parent=numa2_0.uuid) pf2_1 = self._create_provider('cn2_numa1_pf1', parent=numa2_1.uuid) tb.add_inventory(pf1_0, orc.SRIOV_NET_VF, 8) tb.add_inventory(pf1_1, orc.SRIOV_NET_VF, 8) tb.add_inventory(pf2_0, orc.SRIOV_NET_VF, 8) tb.add_inventory(pf2_1, orc.SRIOV_NET_VF, 8) def test_nested_result_count_none(self): """Tests that we properly winnow allocation requests when including nested providers from different request groups with group policy none. """ self._create_nested_trees() # Make a granular request to check count of results. alloc_cands = self._get_allocation_candidates({ '': placement_lib.RequestGroup( use_same_provider=False, resources={ orc.VCPU: 2, }), '_NET1': placement_lib.RequestGroup( use_same_provider=True, resources={ orc.SRIOV_NET_VF: 1, }), '_NET2': placement_lib.RequestGroup( use_same_provider=True, resources={ orc.SRIOV_NET_VF: 1, }), }, rqparams=placement_lib.RequestWideParams(group_policy='none')) # 4 VF providers each providing 2, 1, or 0 inventory makes 6 # different combinations, plus two more that are effectively # the same but satisfying different suffix mappings. self.assertEqual(8, len(alloc_cands.allocation_requests)) def test_nested_result_count_different_amounts_isolate(self): """Tests that we properly winnow allocation requests when including nested providers from different request groups, with different requested amounts. """ self._create_nested_trees() # Make a granular request to check count of results. alloc_cands = self._get_allocation_candidates({ '': placement_lib.RequestGroup( use_same_provider=False, resources={ orc.VCPU: 2, }), '_NET1': placement_lib.RequestGroup( use_same_provider=True, resources={ orc.SRIOV_NET_VF: 1, }), '_NET2': placement_lib.RequestGroup( use_same_provider=True, resources={ orc.SRIOV_NET_VF: 2, }), }, rqparams=placement_lib.RequestWideParams(group_policy='isolate')) self.assertEqual(4, len(alloc_cands.allocation_requests)) def test_nested_result_suffix_mappings(self): """Confirm that paying attention to suffix mappings expands the quantity of results and confirm those results. """ self._create_nested_trees() # Make a granular request to check count and suffixes of results. alloc_cands = self._get_allocation_candidates({ '': placement_lib.RequestGroup( use_same_provider=False, resources={ orc.VCPU: 2, }), '_NET1': placement_lib.RequestGroup( use_same_provider=True, resources={ orc.SRIOV_NET_VF: 1, }), '_NET2': placement_lib.RequestGroup( use_same_provider=True, resources={ orc.SRIOV_NET_VF: 1, }), }, rqparams=placement_lib.RequestWideParams(group_policy='isolate')) expected = [ [('cn1', orc.VCPU, 2, ['']), ('cn1_numa0_pf0', orc.SRIOV_NET_VF, 1, ['_NET1']), ('cn1_numa1_pf1', orc.SRIOV_NET_VF, 1, ['_NET2'])], [('cn1', orc.VCPU, 2, ['']), ('cn1_numa0_pf0', orc.SRIOV_NET_VF, 1, ['_NET2']), ('cn1_numa1_pf1', orc.SRIOV_NET_VF, 1, ['_NET1'])], [('cn2', orc.VCPU, 2, ['']), ('cn2_numa0_pf0', orc.SRIOV_NET_VF, 1, ['_NET1']), ('cn2_numa1_pf1', orc.SRIOV_NET_VF, 1, ['_NET2'])], [('cn2', orc.VCPU, 2, ['']), ('cn2_numa0_pf0', orc.SRIOV_NET_VF, 1, ['_NET2']), ('cn2_numa1_pf1', orc.SRIOV_NET_VF, 1, ['_NET1'])], ] # Near the end of _merge candidates we expect 4 different collections # of AllocationRequest to attempt to be added to a set. Admittance is # controlled by the __hash__ and __eq__ of the AllocationRequest which, # in this case, should keep the results at 4 since they are defined to # be different when they have different suffixes even if they have the # same resource provider, the same resource class and the same desired # amount. self.assertEqual(4, len(alloc_cands.allocation_requests)) self._validate_allocation_requests( expected, alloc_cands, expect_suffixes=True) def test_nested_result_suffix_mappings_non_isolated(self): """Confirm that paying attention to suffix mappings expands the quantity of results and confirm those results. """ self._create_nested_trees() # Make a granular request to check count and suffixes of results. alloc_cands = self._get_allocation_candidates({ '': placement_lib.RequestGroup( use_same_provider=False, resources={ orc.VCPU: 2, }), '_NET1': placement_lib.RequestGroup( use_same_provider=True, resources={ orc.SRIOV_NET_VF: 1, }), '_NET2': placement_lib.RequestGroup( use_same_provider=True, resources={ orc.SRIOV_NET_VF: 1, }), }, rqparams=placement_lib.RequestWideParams(group_policy='none')) # We get four candidates from each compute node: # [A] Two where one VF comes from each PF+RequestGroup combination. # [B] Two where both VFs come from the same PF (which satisfies both # RequestGroupZ). expected = [ # [A] (cn1) [('cn1', orc.VCPU, 2, ['']), ('cn1_numa0_pf0', orc.SRIOV_NET_VF, 1, ['_NET1']), ('cn1_numa1_pf1', orc.SRIOV_NET_VF, 1, ['_NET2'])], [('cn1', orc.VCPU, 2, ['']), ('cn1_numa0_pf0', orc.SRIOV_NET_VF, 1, ['_NET2']), ('cn1_numa1_pf1', orc.SRIOV_NET_VF, 1, ['_NET1'])], # [B] (cn1) [('cn1', orc.VCPU, 2, ['']), ('cn1_numa0_pf0', orc.SRIOV_NET_VF, 2, ['_NET1', '_NET2'])], [('cn1', orc.VCPU, 2, ['']), ('cn1_numa1_pf1', orc.SRIOV_NET_VF, 2, ['_NET1', '_NET2'])], # [A] (cn2) [('cn2', orc.VCPU, 2, ['']), ('cn2_numa0_pf0', orc.SRIOV_NET_VF, 1, ['_NET1']), ('cn2_numa1_pf1', orc.SRIOV_NET_VF, 1, ['_NET2'])], [('cn2', orc.VCPU, 2, ['']), ('cn2_numa0_pf0', orc.SRIOV_NET_VF, 1, ['_NET2']), ('cn2_numa1_pf1', orc.SRIOV_NET_VF, 1, ['_NET1'])], # [B] (cn2) [('cn2', orc.VCPU, 2, ['']), ('cn2_numa0_pf0', orc.SRIOV_NET_VF, 2, ['_NET1', '_NET2'])], [('cn2', orc.VCPU, 2, ['']), ('cn2_numa1_pf1', orc.SRIOV_NET_VF, 2, ['_NET1', '_NET2'])], ] self.assertEqual(8, len(alloc_cands.allocation_requests)) self._validate_allocation_requests( expected, alloc_cands, expect_suffixes=True)
40.496341
79
0.5647
07d3a4a000cfe87a42cb705aa06f32d4bef5678d
13,417
py
Python
dashlib/dash_tx.py
Ecrypty/florijncoinmnb
ad51ddcf19fde140a19dddd2691b2c5e248a4197
[ "MIT" ]
null
null
null
dashlib/dash_tx.py
Ecrypty/florijncoinmnb
ad51ddcf19fde140a19dddd2691b2c5e248a4197
[ "MIT" ]
null
null
null
dashlib/dash_tx.py
Ecrypty/florijncoinmnb
ad51ddcf19fde140a19dddd2691b2c5e248a4197
[ "MIT" ]
null
null
null
import sys import os sys.path.append(os.path.join(os.path.dirname(__file__), '.')) import re import binascii import hashlib import simplejson as json from florijncoin_hashs import * from florijncoin_script import * def deserialize_script(script): if isinstance(script, str) and re.match('^[0-9a-fA-F]*$', script): return json_changebase(deserialize_script(bytes.fromhex(script)), lambda x: safe_hexlify(x)) # return json_changebase(deserialize_script(binascii.unhexlify(script)), # lambda x: safe_hexlify(x)) out, pos = [], 0 while pos < len(script): code = from_byte_to_int(script[pos]) if code == 0: out.append(None) pos += 1 elif code <= 75: out.append(script[pos + 1:pos + 1 + code]) pos += 1 + code elif code <= 78: szsz = pow(2, code - 76) sz = decode(script[pos + szsz: pos:-1], 256) out.append(script[pos + 1 + szsz:pos + 1 + szsz + sz]) pos += 1 + szsz + sz elif code <= 96: out.append(code - 80) pos += 1 else: out.append(code) pos += 1 return out def deserialize(tx): if isinstance(tx, str) and re.match('^[0-9a-fA-F]*$', tx): return json_changebase(deserialize(bytes.fromhex(tx)), lambda x: safe_hexlify(x)) # return json_changebase(deserialize(binascii.unhexlify(tx)), # lambda x: safe_hexlify(x)) pos = [0] def read_as_int(bytez): pos[0] += bytez return decode(tx[pos[0] - bytez:pos[0]][::-1], 256) def read_var_int(): pos[0] += 1 val = from_byte_to_int(tx[pos[0] - 1]) if val < 253: return val return read_as_int(pow(2, val - 252)) def read_bytes(bytez): pos[0] += bytez return tx[pos[0] - bytez:pos[0]] def read_var_string(): size = read_var_int() return read_bytes(size) obj = {"ins": [], "outs": []} obj["version"] = read_as_int(4) ins = read_var_int() for i in range(ins): obj["ins"].append({ "outpoint": { "hash": read_bytes(32)[::-1], "index": read_as_int(4) }, "script": read_var_string(), "sequence": read_as_int(4) }) outs = read_var_int() for i in range(outs): obj["outs"].append({ "n": i, "value": read_as_int(8), "script": read_var_string() }) obj["locktime"] = read_as_int(4) return obj def decoderawtx(rawtx): txo = deserialize(rawtx) txid = format_hash(double_sha256(bytes.fromhex(rawtx))) #txid = format_hash(double_sha256(binascii.unhexlify(rawtx))) # print(txid) #print(json.dumps(txo, sort_keys=True, indent=4, separators=(',', ': '))) addrcheck = {} addrfromall = [] for x in txo.get('ins'): hashn = x.get('outpoint')['hash'] if hashn != '0000000000000000000000000000000000000000000000000000000000000000': des_script = deserialize_script(x.get('script')) addrn = script_to_addr(des_script) if (addrn != 'pay_to_pubkey' and addrn != 'unspendable' and addrn != 'nulldata' and addrn != 'invalid'): addrcheck['good'] = { "hashin": hashn + '-' + str(x.get('outpoint')['index']), "addrfrom": addrn } addrfromall.append(addrn) elif (addrn == 'pay_to_pubkey'): addrcheck['pubkey'] = { "hashin": hashn + '-' + str(x.get('outpoint')['index']), "addrfrom": 'pay_to_pubkey' } addrfromall.append('pay_to_pubkey') elif (addrn == 'pay_to_scripthash'): addrcheck['pubkey'] = { "hashin": hashn + '-' + str(x.get('outpoint')['index']), "addrfrom": 'pay_to_scripthash' } addrfromall.append('pay_to_scripthash') else: addrcheck['coinbase'] = { "hashin": '0000000000000000000000000000000000000000000000000000000000000000' + '-' + str(0), "addrfrom": 'coinbase'} addrfromall.append('coinbase') # use last input if addrcheck.get('coinbase', None) is not None: hashin = addrcheck.get('coinbase')['hashin'] addrfrom = addrcheck.get('coinbase')['addrfrom'] if addrcheck.get('pubkey', None) is not None: hashin = addrcheck.get('pubkey')['hashin'] addrfrom = addrcheck.get('pubkey')['addrfrom'] if addrcheck.get('good', None) is not None: hashin = addrcheck.get('good')['hashin'] addrfrom = addrcheck.get('good')['addrfrom'] #print(json.dumps(addrcheck, sort_keys=True, indent=4, separators=(',', ': '))) addrval = {} for x in txo.get('outs'): script = x.get('script') valout = x.get('value') outno = x.get('n') value = str('{0:.8f}'.format(float(valout / 1e8))) addrto = script_to_addr(script) hashout = txid + '-' + str(outno) #print(hashout, addrto, value) addrval[addrto] = { "from": addrfrom, "fromall": addrfromall, "hashin": hashin, "txid": hashout, "to": addrto, "value": value } return addrval if __name__ == "__main__": def check_rawtx(data): x = decoderawtx(data) #print(json.dumps(x, sort_keys=True, indent=4, separators=(',', ': '))) return x #{ # "XpMzawqNtHuewvnvgaMPDGoP761R7MpkFV": { # "from": "XgijdekDojPYXPBvdJqKND4LV41tV7EgZ6", # "hashin": "a2b77a4c704b7044cc15a0a7a78c9848e5edf7630106f211d471a3a4aa6887e7-0", # "to": "XpMzawqNtHuewvnvgaMPDGoP761R7MpkFV", # "txid": "9f5fb5805f1c200e85ce92d5658c959329e3bac02ca5f21801ad9274f1bbc2a1-1", # "value": "24.76163455" # }, # "XubToXRwAVu3y4LuAQ6cPqfNnTGnM9uJ9w": { # "from": "XgijdekDojPYXPBvdJqKND4LV41tV7EgZ6", # "hashin": "a2b77a4c704b7044cc15a0a7a78c9848e5edf7630106f211d471a3a4aa6887e7-0", # "to": "XubToXRwAVu3y4LuAQ6cPqfNnTGnM9uJ9w", # "txid": "9f5fb5805f1c200e85ce92d5658c959329e3bac02ca5f21801ad9274f1bbc2a1-0", # "value": "0.01000111" # } #} check_rawtx('01000000010000000000000000000000000000000000000000000000000000000000000000ffffffff06039ab7010101ffffffff0240230e4300000000232103717f7082f58395f02afb45b1ae871cae31293b33c64c8d9568d9cac09fa70c51ac40230e43000000001976a9146753f211b0fb9ec2b5db90a0a4e08169c25629a388ac00000000') check_rawtx('010000000128efb830f177a0fb4c4f0f3d7fee81e46a61c36ebd06b6d5ad5945f2f384f69d010000006b483045022100ea9275dad2aa4f17cd55409d87e1de80e86e14413f9419329dd06cb3f1fde35a0220535e251becb19eb3aec82ef28cdf8f60fe3eee8c9f08e0d7759d32a9e3fdf284012102d1c997d942867336302bd9e5c28f109cf851df0ceeee25563b4f36ae83a2bf2bffffffff020dc0530d000000001976a9147f561dc61197267f553385f53f8eb9623f0a472e88ac62d30928000000001976a914d36f11b42b491b9204d11c34f70f045271031e9988ac00000000') check_rawtx('010000000148de3fa6f33c9242450f3258c92ea07f8c74d76d389903e362d15dd9893f1f4a010000006a473044022034a8b4107fb6b25ce724ab7daa4217c9ca2f5c1b156066847afae3bef7bcd463022010b2ae51a9a6b5b344defe3d918e13a906cb3e75364680f3400d3accd22dc1a70121037d75a42ea77cb436fdfe04ac52fa708ec9a2534c082596430fd7da5214d46edcffffffff01f03dcd1d000000001976a914606b2b996ea1255b73fec47318589bd6d94c373388ac00000000') check_rawtx('01000000010000000000000000000000000000000000000000000000000000000000000000ffffffff0603cb6a020101ffffffff0240230e43000000002321020c28102cb4f627e0760f167f85ce26fef587db4c60b9f6169cb8363ebab08e34ac40230e43000000001976a9143653b2eb98204e42b0a1ee143aabcad17ef3008a88ac00000000') y = check_rawtx('0100000009841b4c2286d71e3999a853a4af2a8ef211f6ad689c0dcd94a4793ae8a91ef509940400006a4730440220357af1247e26fb49ed16e67171e152953311b74750301f17e8bfaf802a436cc1022006856054b8e81bdd8c6945184adeef3aae88afa440d77cf689eebc1d6274f87b0121034c5f36809f0c77b3d09f9006a7c4756a85bbca700f87615dca153e7df5b83d93ffffffff0df38e8b4e91c081aa0d048bf75554a832ce3fa42aee7b161e54b23acf3c1947010000006a473044022005d147a984d15465a5acbab31e843c2efdf49f6b2fc369718e51069f739128ee022072854e97a4c7b61337b1c8319321f5e893054358cd22de68593360e1c0326343012102bbfd9d1b28bf9b10ef0c8d4902da1fb3ddc6677508615e3f78a12b2983546014ffffffff23fece7d8f4554fe8897b218ca3f57381e026749ab95df16da357cf798890935cc0100006b483045022100f84f8a65aa53d4ae9f617cf3245d187d6384697c11d06f73d71d39c8ac722b2b022065a33292553b52a5d121f455607c76dfc6ce97fe8e05548b613bd5f65b66c64201210265a4b95950f7ad12d2ab73da6bd299d59c7a69ec47a3fee33e9fcd004392755effffffff23fece7d8f4554fe8897b218ca3f57381e026749ab95df16da357cf7988909350c0200006a4730440220563fce2d03ea7b55e2bfaffe45302f0c57849de4ea88b20c0089c3ec7603df4602207bf4a41ee3c841d19fcdfaef2392b9d525cca2118372750c0d8eba444fbf05c2012103d2fb8a0aa072cbaae66193635a5eb9d426e8757581caa065a21208e4d69af360ffffffff23fece7d8f4554fe8897b218ca3f57381e026749ab95df16da357cf798890935f00400006b483045022100e6936362d0c58eb7a50765def3f5cab68625e28b07b4355c2d1952611758ec970220509c1755bfd0436d230c71deb0dcbbc1b9c3dd2ce1e7be10371a87238ab1b10401210235f28f89f7cbc6dd3ce6bd75d0f53bff0ee50d4e5a37697cd45d40ea57354b48ffffffff4436a7b04aaa0f7e81b7569f8034b54d19341cb6780aa0cec141a6d53f7281dbdb0100006b483045022100e34577fcc17c5d3a78228c89e409c3c8c0c412fb0527354153a0d47b263b03250220524230d2adab348f80152b986858625913e2b5a4dfe6afc07e7612f78c4362de01210236b9dd2a08c2c8e984314e7cfa44c68c7cc190c9a9f6c8535b356d07bae85471ffffffff5bf3871b3327cabf4e5a889a6d96bbff1a2aac9a30fd5ce5756566382faf9903010000006b483045022100cca94c953b916c7c719e25c941d430779d7073dae36514f1acd7e6554a52217f02207f36fe98c9af33aa0328f69f71b6961f011a291323a9aef1ae9880333c60c4680121030076ad42e6b867a67c64d2162cabbfe3c1bc10b74b929dbba84e8a1078014275ffffffff818bae67cfa20257360bb4e46a021acf69c496d123079c627d6869bba0e8d33f010000006b483045022100b306eb03f55bba8cb352e8b792da975cd2210d9d87f2d897564847e7b6df46bc022036e48d08d88862abd3582763544260cf6ceb8dd9309a362f6b2c4914a5d338230121030076ad42e6b867a67c64d2162cabbfe3c1bc10b74b929dbba84e8a1078014275ffffffffe78768aaa4a371d411f2060163f7ede548988ca7a7a015cc44704b704c7ab7a2000000006b483045022100b603160b54cc50cffae77880b6f526cb19023c82d97c8c273025815d1b647e450220528165b33d34f62f69608794f0dcd774825c98c9cfb6550473686dd0c371380a0121030d23a8a9eef8d67a9c15b95c276b66676ade4e4d4a17ad5808b54cdaa02810e7ffffffff02af420f00000000001976a914cf65eba85ceb2f0e2c9c9fb0f635e8548b5a301e88ac7f419793000000001976a91496012a2395d9bec24462531c3681077eedc43d1988ac00000000') assert y.get('XpMzawqNtHuewvnvgaMPDGoP761R7MpkFV').get( 'from') == 'XgijdekDojPYXPBvdJqKND4LV41tV7EgZ6' assert y.get('XpMzawqNtHuewvnvgaMPDGoP761R7MpkFV').get( 'hashin') == 'a2b77a4c704b7044cc15a0a7a78c9848e5edf7630106f211d471a3a4aa6887e7-0' assert y.get('XpMzawqNtHuewvnvgaMPDGoP761R7MpkFV').get( 'to') == 'XpMzawqNtHuewvnvgaMPDGoP761R7MpkFV' assert y.get('XpMzawqNtHuewvnvgaMPDGoP761R7MpkFV').get( 'txid') == '9f5fb5805f1c200e85ce92d5658c959329e3bac02ca5f21801ad9274f1bbc2a1-1' assert y.get('XpMzawqNtHuewvnvgaMPDGoP761R7MpkFV').get( 'value') == '24.76163455' assert y.get('XubToXRwAVu3y4LuAQ6cPqfNnTGnM9uJ9w').get( 'from') == 'XgijdekDojPYXPBvdJqKND4LV41tV7EgZ6' assert y.get('XubToXRwAVu3y4LuAQ6cPqfNnTGnM9uJ9w').get( 'hashin') == 'a2b77a4c704b7044cc15a0a7a78c9848e5edf7630106f211d471a3a4aa6887e7-0' assert y.get('XubToXRwAVu3y4LuAQ6cPqfNnTGnM9uJ9w').get( 'to') == 'XubToXRwAVu3y4LuAQ6cPqfNnTGnM9uJ9w' assert y.get('XubToXRwAVu3y4LuAQ6cPqfNnTGnM9uJ9w').get( 'txid') == '9f5fb5805f1c200e85ce92d5658c959329e3bac02ca5f21801ad9274f1bbc2a1-0' assert y.get('XubToXRwAVu3y4LuAQ6cPqfNnTGnM9uJ9w').get( 'value') == '0.01000111' x = check_rawtx('0100000001eac2334fe1c4b78f96b4331eca14bf66c639b303663164f04c3884ff9985b02500000000fc004730440220304a0866f288ae6455b45cbaf856492eb99228eed309293c044a897584cb0b8602206a8b5737d4deaa1eaecd3b3d94b87129136e58d48f60328982da3cb2b1663df801473044022040bf0a8ca4c63bf8719c85028190c7279480be0e8144b48b2d5d87ea7284965302203b4b1872ddfb6e000966cb0ff12ca9f2cc9c98f807430bb9a3f5b7b62d6a83b3014c695221022831cf0d73b49bcfeffbbf6febf3596cb15789f9179bc59e7c60677cb2ab71dd21027c7043d7b211067345209f6407b4ea2bbda217764ab93b1dabfd3e1cbc9a767f2103c2a27f02e473de3cf4f4e73056654be14f8f6dc241f6259a62c4418d53ec1cd953aeffffffff01a0860100000000001976a914c32287bbafb7673a2193632767ba612806c1a80788ac00000000') z = check_rawtx('0100000001ce4c36e472159275c055ed0174711b5548732edeae0631f92f8479259a32cb2c010000006b483045022100d3451a60f6512d5896863bc47916d2814d1271ebf0cb9e38075fafcd1ee07dad022023e7a92677b0ed685c07918e8d6144e6828b8ce17ed0d617474dbb64d384532c0121032b27b0d0933c4a5ef49698ea9d58e109a9b9797194965420d2c4d64ab9369fe9ffffffff02400d03000000000017a914cfa6bd2270391368123e38d70e6c42062ecaeb538780dd1e01000000001976a914c32287bbafb7673a2193632767ba612806c1a80788ac00000000')
55.904167
2,837
0.735857
ded36e0ba3734df57a2c50dcdb89af160bf3d371
7,575
py
Python
tests/test_routing.py
oondeo/doodba-copier-template
172cbbfbbb8df405c23a1faf35b2b0b296dab60c
[ "BSL-1.0", "Apache-2.0" ]
null
null
null
tests/test_routing.py
oondeo/doodba-copier-template
172cbbfbbb8df405c23a1faf35b2b0b296dab60c
[ "BSL-1.0", "Apache-2.0" ]
1
2021-05-05T03:47:28.000Z
2021-05-05T03:47:28.000Z
tests/test_routing.py
oondeo/doodba-copier-template
172cbbfbbb8df405c23a1faf35b2b0b296dab60c
[ "BSL-1.0", "Apache-2.0" ]
null
null
null
import time import uuid from pathlib import Path import pytest import requests from copier import copy from packaging import version from plumbum import local from plumbum.cmd import docker_compose @pytest.mark.parametrize("environment", ("test", "prod")) def test_multiple_domains( cloned_template: Path, supported_odoo_version: float, tmp_path: Path, traefik_host: dict, environment: str, ): """Test multiple domains are produced properly.""" base_domain = traefik_host["hostname"] base_path = f"{base_domain}/web/login" # XXX Remove traefik1 specific stuff some day is_traefik1 = version.parse(traefik_host["traefik_version"]) < version.parse("2") data = { "odoo_listdb": True, "odoo_version": supported_odoo_version, "paths_without_crawlers": ["/web/login", "/web/database"], "project_name": uuid.uuid4().hex, f"domains_{environment}": [ # main0 has no TLS {"hosts": [f"main0.{base_domain}"], "cert_resolver": False}, { "hosts": [f"alt0.main0.{base_domain}", f"alt1.main0.{base_domain}"], "cert_resolver": None, "redirect_to": f"main0.{base_domain}", }, # main1 has self-signed certificates {"hosts": [f"main1.{base_domain}"], "cert_resolver": True}, { "hosts": [f"alt0.main1.{base_domain}", f"alt1.main1.{base_domain}"], "cert_resolver": True, "redirect_to": f"main1.{base_domain}", }, # main2 only serves certain routes { "hosts": [f"main2.{base_domain}"], "path_prefixes": ["/insecure/"], "entrypoints": ["web-insecure"], "cert_resolver": False, }, # main3 only serves certain routes in web-alt entrypoint { "hosts": [f"main3.{base_domain}"], "path_prefixes": ["/alt/"], "entrypoints": ["web-alt"], "cert_resolver": False, }, ], } dc = docker_compose["-f", f"{environment}.yaml"] with local.cwd(tmp_path): copy( src_path=str(cloned_template), dst_path=".", vcs_ref="test", force=True, data=data, ) try: dc("build") dc( "run", "--rm", "odoo", "--stop-after-init", "-i", "base", ) dc("up", "-d") time.sleep(10) # XXX Remove all Traefik 1 tests once it disappears if is_traefik1: # main0, globally redirected to TLS response = requests.get(f"http://main0.{base_path}", verify=False) assert response.ok assert response.url == f"https://main0.{base_domain}:443/web/login" assert response.headers["X-Robots-Tag"] == "noindex, nofollow" # alt0 and alt1, globally redirected to TLS for alt_num in range(2): response = requests.get( f"http://alt{alt_num}.main0.{base_path}", verify=False ) assert response.ok assert response.url == f"https://main0.{base_path}" # main2 serves https on port 80; returns a 404 from Traefik (not from # Odoo) with global HTTPS redirection bad_response = requests.get( f"http://main2.{base_domain}/insecure/path", verify=False, ) assert not bad_response.ok assert bad_response.status_code == 404 assert "Server" not in bad_response.headers # 404 comes from Traefik assert ( bad_response.url == f"https://main2.{base_domain}:443/insecure/path" ) else: # main0, no TLS response = requests.get(f"http://main0.{base_path}") assert response.ok assert response.url == f"http://main0.{base_path}" assert response.headers["X-Robots-Tag"] == "noindex, nofollow" # alt0 and alt1, no TLS for alt_num in range(2): response = requests.get(f"http://alt{alt_num}.main0.{base_path}") assert response.ok assert response.url == f"http://main0.{base_path}" # main2 serves https on port 80; returns a 404 from Odoo (not from # Traefik) without HTTPS redirection bad_response = requests.get( f"http://main2.{base_domain}/insecure/path", verify=False, ) assert not bad_response.ok assert bad_response.status_code == 404 assert "Werkzeug" in bad_response.headers.get("Server") assert bad_response.url == f"http://main2.{base_domain}/insecure/path" # main3 cannot find /web on port 8080; no HTTPS redirection bad_response = requests.get( f"http://main3.{base_domain}:8080/web", ) assert not bad_response.ok assert bad_response.status_code == 404 assert "Server" not in bad_response.headers # 404 comes from Traefik assert bad_response.url == f"http://main3.{base_domain}:8080/web" # main3 will route to odoo in /alt/foo but fail with 404 from there, no HTTPS bad_response = requests.get( f"http://main3.{base_domain}:8080/alt/foo", ) assert not bad_response.ok assert bad_response.status_code == 404 assert "Werkzeug" in bad_response.headers.get("Server") assert bad_response.url == f"http://main3.{base_domain}:8080/alt/foo" # main1, with self-signed TLS response = requests.get(f"http://main1.{base_path}", verify=False) assert response.ok assert response.url == ( f"https://main1.{base_domain}:443/web/login" if is_traefik1 else f"https://main1.{base_path}" ) assert response.headers["X-Robots-Tag"] == "noindex, nofollow" # alt0 and alt1, with self-signed TLS for alt_num in range(2): response = requests.get( f"http://alt{alt_num}.main1.{base_domain}/web/database/selector", verify=False, ) assert response.ok assert ( response.url == f"https://main1.{base_domain}/web/database/selector" ) assert response.headers["X-Robots-Tag"] == "noindex, nofollow" # missing, which fails with Traefik 404, both with and without TLS bad_response = requests.get( f"http://missing.{base_path}", verify=not is_traefik1 ) assert bad_response.status_code == 404 assert "Server" not in bad_response.headers bad_response = requests.get(f"https://missing.{base_path}", verify=False) assert bad_response.status_code == 404 assert "Server" not in bad_response.headers finally: dc("down", "--volumes", "--remove-orphans")
42.79661
89
0.528317
8d8c7b1946bfd64b7d7ee91b613e1ea1f66ac0ce
832
py
Python
smbl/prog/plugins/bcftools.py
karel-brinda/snakemake-lib
5922fa2fc4060d86172e991361a1cceb0af51af8
[ "MIT" ]
26
2015-03-16T03:37:02.000Z
2021-01-18T17:34:16.000Z
smbl/prog/plugins/bcftools.py
karel-brinda/smbl
5922fa2fc4060d86172e991361a1cceb0af51af8
[ "MIT" ]
12
2015-02-05T10:57:16.000Z
2016-06-07T18:09:57.000Z
smbl/prog/plugins/bcftools.py
karel-brinda/snakemake-lib
5922fa2fc4060d86172e991361a1cceb0af51af8
[ "MIT" ]
6
2015-06-03T20:06:49.000Z
2020-12-13T09:48:03.000Z
# # TODO: # - fix linking error in CygWin # import smbl import snakemake import os from ._program import * BCFTOOLS = get_bin_file_path("bcftools") VCFUTILS = get_bin_file_path("vcfutils.pl") ########################################## ########################################## class BcfTools(Program): @classmethod def get_installation_files(cls): return [ BCFTOOLS, VCFUTILS, ] @classmethod def install(cls): gitdir_bcftools=cls.git_clone("http://github.com/samtools/bcftools","bcftools") gitdir_htslib=cls.git_clone("http://github.com/samtools/htslib","htslib") cls.run_make("bcftools") cls.install_file("bcftools/bcftools",BCFTOOLS) cls.install_file("bcftools/vcfutils.pl",VCFUTILS) @classmethod def supported_platforms(cls): return ["osx","linux"]
21.333333
82
0.627404
7f5342c76cb7767039db7c82d5a059cadc828aa6
3,273
py
Python
contracts/type_converter/type_converter.py
ICONationDevTeam/ICONSafe-SCORE
a02640f3bbbf71c633773a87b99d354e2466c26d
[ "Apache-2.0" ]
null
null
null
contracts/type_converter/type_converter.py
ICONationDevTeam/ICONSafe-SCORE
a02640f3bbbf71c633773a87b99d354e2466c26d
[ "Apache-2.0" ]
null
null
null
contracts/type_converter/type_converter.py
ICONationDevTeam/ICONSafe-SCORE
a02640f3bbbf71c633773a87b99d354e2466c26d
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2021 ICONation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from iconservice import * class ScoreTypeConverter: @staticmethod def convert(param_type: str, value: str): if not isinstance(value, str): raise IconScoreException(f"Value type must be str ({value} is {type(value)}).") valid_types = { "int": ScoreTypeConverter._convert_value_int, "str": ScoreTypeConverter._convert_value_string, "bool": ScoreTypeConverter._convert_value_bool, "Address": ScoreTypeConverter._convert_value_address, "bytes": ScoreTypeConverter._convert_value_bytes, "List": ScoreTypeConverter._convert_value_list, "TypedDict": ScoreTypeConverter._convert_value_typed_dict, } if not param_type in valid_types.keys(): raise IconScoreException(f"{param_type} is not supported type (only {valid_types.keys()} are supported)") try: return valid_types[param_type](value) except Exception as e: raise IconScoreException(f"Cannot convert {value} from type {param_type} : {repr(e)}") @staticmethod def _convert_value_int(value: str) -> int: return int(value, 0) @staticmethod def _convert_value_string(value: str) -> str: return value @staticmethod def _convert_value_bool(value: str) -> bool: if value == "True" or value == "0x1" or value == "1": return True if value == "False" or value == "0x0" or value == "0": return False raise IconScoreException("Invalid bool value") @staticmethod def _convert_value_address(value: str) -> Address: return Address.from_string(value) @staticmethod def _convert_value_bytes(value: str) -> bytes: if value.startswith("0x"): return bytes.fromhex(value[2:]) else: return bytes.fromhex(value) @staticmethod def _convert_value_list(value: str) -> list: items = json_loads(value) if type(items) != list: raise IconScoreException(f"Invalid variable type, excepted list, found {type(items)}") result = [] for item in items: result.append(ScoreTypeConverter.convert(item["type"], item["value"])) return result @staticmethod def _convert_value_typed_dict(value: str) -> dict: items = json_loads(value) if type(items) != dict: raise IconScoreException(f"Invalid variable type, excepted dict, found {type(items)}") result = {} for key, item in items.items(): result[key] = ScoreTypeConverter.convert(item["type"], item["value"]) return result
34.452632
117
0.650474
ca7f3ff54d9135507a34926c790bb4bed0d5f195
102
py
Python
optunapi/utils/__init__.py
mbarbetti/optunapi
48ec23f0b25c9459910e0cc01daa057acd8643e1
[ "MIT" ]
null
null
null
optunapi/utils/__init__.py
mbarbetti/optunapi
48ec23f0b25c9459910e0cc01daa057acd8643e1
[ "MIT" ]
2
2021-05-24T17:18:02.000Z
2021-05-25T16:00:29.000Z
optunapi/utils/__init__.py
mbarbetti/optunapi
48ec23f0b25c9459910e0cc01daa057acd8643e1
[ "MIT" ]
null
null
null
from .suggest_from_config import suggest_from_config from .create_log_file import create_log_file
34
52
0.862745
d45e733688b546436be1e557d0bc0302405acc08
284
py
Python
src/app/admin.py
aminul91/linktutor_restapi
2077119f9771b31e2aa49f914ebd76451fe3b53c
[ "MIT" ]
null
null
null
src/app/admin.py
aminul91/linktutor_restapi
2077119f9771b31e2aa49f914ebd76451fe3b53c
[ "MIT" ]
null
null
null
src/app/admin.py
aminul91/linktutor_restapi
2077119f9771b31e2aa49f914ebd76451fe3b53c
[ "MIT" ]
null
null
null
from django.contrib import admin from app.models import * # Register your models here. from .models import * admin.site.register(user_infos) admin.site.register(tutorial_types) admin.site.register(language_types) admin.site.register(tutorials_paths) admin.site.register(suggestions)
25.818182
36
0.823944
39f42adf0ba618338c976383685cd2290ad7bbb7
4,369
py
Python
doc/source/examples/plot_mbe_maxcut.py
orodrigoaraizabravo/quantum
aa1edea0ed8bf15c0f0a6547d765eda8e5a3afd7
[ "BSD-3-Clause" ]
70
2021-07-20T22:42:46.000Z
2022-03-25T10:17:39.000Z
doc/source/examples/plot_mbe_maxcut.py
orodrigoaraizabravo/quantum
aa1edea0ed8bf15c0f0a6547d765eda8e5a3afd7
[ "BSD-3-Clause" ]
2
2021-11-07T16:29:18.000Z
2021-11-15T11:55:23.000Z
doc/source/examples/plot_mbe_maxcut.py
orodrigoaraizabravo/quantum
aa1edea0ed8bf15c0f0a6547d765eda8e5a3afd7
[ "BSD-3-Clause" ]
10
2021-11-07T14:13:50.000Z
2022-03-25T10:17:40.000Z
""" Multi-Basis Encoding -------------------- Multi-Basis Encoding ([1]_) (MBE) quantum optimization algorithm for MaxCut using TensorLy-Quantum. TensorLy-Quantum provides a Python interface to build TT-tensor network circuit simulator for large-scale simulation of variational quantum circuits with full Autograd support similar to traditional PyTorch Neural Networks. """ import tensorly as tl import tlquantum as tlq from torch import randint, rand, arange, cat, tanh, no_grad, float32 from torch.optim import Adam import matplotlib.pyplot as plt # %% Set up simulation parameters # Uncomment the line below to use the GPU #device = 'cuda' device = 'cpu' dtype = float32 nepochs = 40 #number of training epochs nqubits = 20 #number of qubits ncontraq = 2 #2 #number of qubits to pre-contract into single core ncontral = 2 #2 #number of layers to pre-contract into a single core nterms = 20 lr = 0.7 # %% Generate an input state. For each qubit, 0 --> |0> and 1 --> |1> state = tlq.spins_to_tt_state([0 for i in range(nqubits)], device=device, dtype=dtype) # generate generic zero state |00000> state = tlq.qubits_contract(state, ncontraq) # %% Generate the graph vertices/edges. Each pair of qubits represents two vertices with an edge between them. # Here we build a random graph with randomly weighted edges. # Note: MBE allows us to encode two vertices (typically two qubits) into a single qubit using the z and x-axes. # If y-axis included, we can encode three vertices per qubit. vertices1 = randint(2*nqubits, (nterms,), device=device) # randomly generated first qubits (vertices) of each two-qubit term (edge) vertices2 = randint(2*nqubits, (nterms,), device=device) # randomly generated second qubits (vertices) of each two-qubit term (edge) vertices2[vertices2==vertices1] += 1 # because qubits in this graph are randomly generated, eliminate self-interacting terms vertices2[vertices2 >= nqubits] = 0 weights = rand((nterms,), device=device) # randomly generated edge weights # %% Build unitary gates in TT tensor form RotY1 = tlq.UnaryGatesUnitary(nqubits, ncontraq, device=device, dtype=dtype) #single-qubit rotations about the Y-axis RotY2 = tlq.UnaryGatesUnitary(nqubits, ncontraq, device=device, dtype=dtype) CZ0 = tlq.BinaryGatesUnitary(nqubits, ncontraq, tlq.cz(device=device, dtype=dtype), 0) # one controlled-z gate for each pair of qubits using even parity (even qubits control) unitaries = [RotY1, CZ0, RotY2] # %% Multi-Basis Encoding (MBE) Simulation for MaxCut optimization circuit = tlq.TTCircuit(unitaries, ncontraq, ncontral) # build TTCircuit using specified unitaries opz, opx = tl.tensor([[1,0],[0,-1]], device=device, dtype=dtype), tl.tensor([[0,1],[1,0]], device=device, dtype=dtype) # measurement operators for MBE print(opz) opt = Adam(circuit.parameters(), lr=lr, amsgrad=True) # define PyTorch optimizer loss_vec = tl.zeros(nepochs) cut_vec = tl.zeros(nepochs) for epoch in range(nepochs): # TTCircuit forward pass computes expectation value of single-qubit pauli-z and pauli-x measurements spinsz, spinsx = circuit.forward_single_qubit(state, opz, opx) spins = cat((spinsz, spinsx)) nl_spins = tanh(spins) # apply non-linear activation function to measurement results loss = tlq.calculate_cut(nl_spins, vertices1, vertices2, weights) # calculate the loss function using MBE print('Relaxation (raw) loss at epoch ' + str(epoch) + ': ' + str(loss.item()) + '. \n') with no_grad(): cut_vec[epoch] = tlq.calculate_cut(tl.sign(spins), vertices1, vertices2, weights, get_cut=True) #calculate the rounded MaxCut estimate (algorithm's result) print('Rounded MaxCut value (algorithm\'s solution): ' + str(cut_vec[epoch]) + '. \n') # PyTorch Autograd attends to backwards pass and parameter update loss.backward() opt.step() opt.zero_grad() loss_vec[epoch] = loss # %% VIsualize the result plt.rc('xtick') plt.rc('ytick') fig, ax1 = plt.subplots() ax1.plot(loss_vec.detach().numpy(), color='k') ax2 = ax1.twinx() ax2.plot(cut_vec.detach().numpy(), color='g') ax1.set_xlabel('Epochs') ax1.set_ylabel('Loss', color='k') ax2.set_ylabel('Cut', color='g') plt.show() # %% # References # ---------- # .. [1] T. L. Patti, J. Kossaifi, A. Anandkumar, and S. F. Yelin, "Variational Quantum Optimization with Multi-Basis Encodings," (2021), arXiv:2106.13304.
42.417476
174
0.731289
88028214874bd5b75637115813f1474468015e88
4,484
py
Python
src/check_binkp_node/check_binkp_node.py
buanzo/check_binkp_node
507bf760dc8daaff69a31ee16e451739a0cafc0a
[ "MIT" ]
1
2021-09-23T14:51:55.000Z
2021-09-23T14:51:55.000Z
src/check_binkp_node/check_binkp_node.py
buanzo/check_binkp_node
507bf760dc8daaff69a31ee16e451739a0cafc0a
[ "MIT" ]
null
null
null
src/check_binkp_node/check_binkp_node.py
buanzo/check_binkp_node
507bf760dc8daaff69a31ee16e451739a0cafc0a
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import argparse import nagiosplugin from datetime import datetime, timezone from pprint import pprint from construct import Int8ub, Struct, this, Bytes, GreedyRange import time import socket import dateparser __version__ = '0.1' CONN_TIMEOUT = 10 READ_TIMEOUT = 3 # The v1.0 BINK Protocol spec: # https://github.com/pgul/binkd/blob/master/doc/binkp10-en.txt # Of course, I am not implementing an actual BINKP client... binkp10format = Struct( "type"/Int8ub, "length"/Int8ub, "cmdargs"/Int8ub, "string"/Bytes(this.length-1), ) def binkp_node_parse(host, port, connect_timeout=10, read_timeout=3): start_time = datetime.now().replace(microsecond=0) s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.settimeout(connect_timeout) s.connect((host, port)) s.settimeout(read_timeout) time.sleep(1) realdata = bytearray() while True: data = '' try: data = s.recv(128) except socket.timeout: break if not data: time.sleep(0.1) continue elif data == '': break realdata.extend(data) s.close() stop_time = datetime.now().replace(microsecond=0) req_duration = stop_time - start_time parser = GreedyRange(binkp10format) x = parser.parse(realdata) for item in x: # TODO: actually check using type most significant bit, etc. d_item = item.string.decode('ascii') if d_item[0:5] == 'TIME ': node_time = d_item.split('TIME ')[1] #print("GOT TIME: {}".format(node_time)) binkpdate = dateparser.parse(node_time) print("BINKP DATE: {}".format(binkpdate)) # TODO: today = datetime.now(binkpdate.tzinfo).replace(microsecond=0) #pprint(today) print("LOCAL DATE: {}".format(today)) delta = today - binkpdate print("DURATION: {}".format(req_duration.seconds)) pprint(delta.seconds) return(delta.seconds-req_duration.seconds) # FIX: No TIME ? return(None) class BinkpNodeCheck(nagiosplugin.Resource): def __init__(self, host, port, conn_timeout, read_timeout): self.host = host self.port = port self.conn_timeout = conn_timeout self.read_timeout = read_timeout def probe(self): time_diff = binkp_node_parse(self.host, port=self.port, connect_timeout=self.conn_timeout, read_timeout=self.read_timeout) print(time_diff) if time_diff is None: return[nagiosplugin.Metric('binkpnodedrift',-1,context='default')] # FIX: use nagiosplugin.state.Unknown in LoadSummary? return [nagiosplugin.Metric('binkpnodedrift', time_diff, context='default')] class LoadSummary(nagiosplugin.Summary): def __init__(self, domain, port): self.domain = domain self.port = port pass @nagiosplugin.guarded def main(): argp = argparse.ArgumentParser(description=__doc__) # FIX: find good values for warning/critical argp.add_argument('-w', '--warning', metavar='RANGE', default='6:10', help='warning SECONDS drift. Default=6:10') argp.add_argument('-c', '--critical', metavar='RANGE', default='0:5', help='critical SECONDS drift. Default=0:5') argp.add_argument('-v', '--verbose', action='count', default=0, help='be more verbose') argp.add_argument('-p', '--port', metavar='PORT', default=24554, type=int, help='Remote PORT for binkp service. Default is 24554.') argp.add_argument('domain') args = argp.parse_args() wrange = '@{}'.format(args.warning) crange = '@{}'.format(args.critical) fmetric = '{value} days until domain expires' # FIX: add 'isvaliddomainname' test check = nagiosplugin.Check(BinkpNodeCheck(args.domain, args.port, CONN_TIMEOUT, READ_TIMEOUT), nagiosplugin.ScalarContext('daystoexpiration', warning=wrange, critical=crange, fmt_metric=fmetric), LoadSummary(args.domain, args.port)) check.main(verbose=args.verbose) if __name__ == '__main__': main()
35.872
130
0.600803
c6fd0abe25dae2645c2e288141ba61bd26e90787
2,747
py
Python
gcf_demo_excel_report.py
hadi-muhammad/functions-demo
39185a58d8182f3dc0c00a05e40cc131fc8f54a8
[ "MIT" ]
null
null
null
gcf_demo_excel_report.py
hadi-muhammad/functions-demo
39185a58d8182f3dc0c00a05e40cc131fc8f54a8
[ "MIT" ]
null
null
null
gcf_demo_excel_report.py
hadi-muhammad/functions-demo
39185a58d8182f3dc0c00a05e40cc131fc8f54a8
[ "MIT" ]
null
null
null
from pyplatform.datawarehouse import * from google.cloud import bigquery import io from flask import send_file import datetime import pytz def main(request): _doc_string = """Return excel file in response to POST request. Return function doc_string for GET request. Keyword Arguments for request body: query {str} -- standard sql `select statetment` OR `stored procedure call` containing select statements filename {str} -- custom filename for the excel file (default: report_timestamp.xlsx) sheet_name {str or list} -- custom sheet name for the excel sheet. For multi statement SLECT query or stored procedure, list of sheetname should be provided (default: Sheet1, Sheet2...) index {bool or list} -- if ture, writes dataframe index. For multi-sheet list of bool should be provided. By default index is ignored (default: {False}) Returns: mimetype="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet" """ client = bigquery.Client() requestDateTime = datetime.datetime.now(pytz.timezone( 'America/Chicago')).strftime('%Y-%m-%d %A %I:%M:%S %p CDT') headers = {"client_id": client.get_service_account_email(), "project_id": client.project} request_json = request.get_json() if request_json: print(f'PUT request type of request_json {type(request_json)} , {request_json}') # parse function arguments from request body query = request_json.get('query') filename = request_json.get('filename') sheet_name = request_json.get('sheet_name') index = request_json.get('index') # setting default values job_id = create_bq_job_id("Azure logic App Excel file request") if filename == None: filename = f'report_{job_id[:19]}.xlsx' else: filename = filename.split('.')[0] + '.xlsx' if not index: index = False print(f" PUT request provided => query {query}, filename {filename}, sheet_name:{sheet_name}, index: {index}") df = bq_to_df(query) in_mem_file = io.BytesIO() dfs =[df] dfs_to_excel(dfs, in_mem_file, sheet_name=sheet_name, index=index) in_mem_file.seek(0) print("sending requested file") response = send_file(in_mem_file, mimetype="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet", as_attachment=True, attachment_filename=filename) headers['requestTimestamp'] = requestDateTime headers["filename"] = filename headers['job_id'] = job_id return (response, 200, headers) else: return (_doc_string,200,headers)
36.626667
193
0.659265
c56879d51a27bd0e41030c0efe058f73b056392e
11,145
py
Python
theano/misc/pkl_utils.py
michaelosthege/aesara
55c88832ba71f87c9612d573ede74a4c042ef570
[ "BSD-3-Clause" ]
1
2020-12-30T19:12:52.000Z
2020-12-30T19:12:52.000Z
theano/misc/pkl_utils.py
michaelosthege/aesara
55c88832ba71f87c9612d573ede74a4c042ef570
[ "BSD-3-Clause" ]
null
null
null
theano/misc/pkl_utils.py
michaelosthege/aesara
55c88832ba71f87c9612d573ede74a4c042ef570
[ "BSD-3-Clause" ]
null
null
null
""" Utility classes and methods to pickle parts of symbolic graph. These pickled graphs can be used, for instance, as cases for unit tests or regression tests. """ import os import pickle import sys import tempfile import warnings import zipfile from collections import defaultdict from contextlib import closing from io import BytesIO from pickle import HIGHEST_PROTOCOL import numpy as np import theano try: from pickle import DEFAULT_PROTOCOL except ImportError: DEFAULT_PROTOCOL = HIGHEST_PROTOCOL from theano.compile.sharedvalue import SharedVariable from theano.configdefaults import config __docformat__ = "restructuredtext en" __authors__ = "Pascal Lamblin" __copyright__ = "Copyright 2013, Universite de Montreal" __license__ = "3-clause BSD" min_recursion = 3000 if sys.getrecursionlimit() < min_recursion: sys.setrecursionlimit(min_recursion) Pickler = pickle.Pickler class StripPickler(Pickler): """ Subclass of Pickler that strips unnecessary attributes from Theano objects. .. versionadded:: 0.8 Example of use:: fn_args = dict(inputs=inputs, outputs=outputs, updates=updates) dest_pkl = 'my_test.pkl' f = open(dest_pkl, 'wb') strip_pickler = StripPickler(f, protocol=-1) strip_pickler.dump(fn_args) f.close() """ def __init__(self, file, protocol=0, extra_tag_to_remove=None): # Can't use super as Pickler isn't a new style class Pickler.__init__(self, file, protocol) self.tag_to_remove = ["trace", "test_value"] if extra_tag_to_remove: self.tag_to_remove.extend(extra_tag_to_remove) def save(self, obj): # Remove the tag.trace attribute from Variable and Apply nodes if isinstance(obj, theano.gof.utils.Scratchpad): for tag in self.tag_to_remove: if hasattr(obj, tag): del obj.__dict__[tag] # Remove manually-added docstring of Elemwise ops elif isinstance(obj, theano.tensor.Elemwise): if "__doc__" in obj.__dict__: del obj.__dict__["__doc__"] return Pickler.save(self, obj) class PersistentNdarrayID: """Persist ndarrays in an object by saving them to a zip file. :param zip_file: A zip file handle that the NumPy arrays will be saved to. :type zip_file: :class:`zipfile.ZipFile` .. note: The convention for persistent ids given by this class and its derived classes is that the name should take the form `type.name` where `type` can be used by the persistent loader to determine how to load the object, while `name` is human-readable and as descriptive as possible. """ def __init__(self, zip_file): self.zip_file = zip_file self.count = 0 self.seen = {} def _resolve_name(self, obj): """Determine the name the object should be saved under.""" name = f"array_{self.count}" self.count += 1 return name def __call__(self, obj): if isinstance(obj, np.ndarray): if id(obj) not in self.seen: def write_array(f): np.lib.format.write_array(f, obj) name = self._resolve_name(obj) zipadd(write_array, self.zip_file, name) self.seen[id(obj)] = f"ndarray.{name}" return self.seen[id(obj)] class PersistentGpuArrayID(PersistentNdarrayID): def __call__(self, obj): from theano.gpuarray.type import _name_for_ctx try: import pygpu except ImportError: pygpu = None if pygpu and isinstance(obj, pygpu.gpuarray.GpuArray): if id(obj) not in self.seen: def write_array(f): pickle.dump(_name_for_ctx(obj.context), f, 2) np.lib.format.write_array(f, np.asarray(obj)) name = self._resolve_name(obj) zipadd(write_array, self.zip_file, name) self.seen[id(obj)] = f"gpuarray.{name}" return self.seen[id(obj)] return super().__call__(obj) class PersistentSharedVariableID(PersistentGpuArrayID): """Uses shared variable names when persisting to zip file. If a shared variable has a name, this name is used as the name of the NPY file inside of the zip file. NumPy arrays that aren't matched to a shared variable are persisted as usual (i.e. `array_0`, `array_1`, etc.) :param allow_unnamed: Allow shared variables without a name to be persisted. Defaults to ``True``. :type allow_unnamed: bool, optional :param allow_duplicates: Allow multiple shared variables to have the same name, in which case they will be numbered e.g. `x`, `x_2`, `x_3`, etc. Defaults to ``True``. :type allow_duplicates: bool, optional :raises ValueError If an unnamed shared variable is encountered and `allow_unnamed` is ``False``, or if two shared variables have the same name, and `allow_duplicates` is ``False``. """ def __init__(self, zip_file, allow_unnamed=True, allow_duplicates=True): super().__init__(zip_file) self.name_counter = defaultdict(int) self.ndarray_names = {} self.allow_unnamed = allow_unnamed self.allow_duplicates = allow_duplicates def _resolve_name(self, obj): if id(obj) in self.ndarray_names: name = self.ndarray_names[id(obj)] count = self.name_counter[name] self.name_counter[name] += 1 if count: if not self.allow_duplicates: raise ValueError( f"multiple shared variables with the name `{name}` found" ) name = f"{name}_{count + 1}" return name return super()._resolve_name(obj) def __call__(self, obj): if isinstance(obj, SharedVariable): if obj.name: if obj.name == "pkl": ValueError("can't pickle shared variable with name `pkl`") self.ndarray_names[id(obj.container.storage[0])] = obj.name elif not self.allow_unnamed: raise ValueError(f"unnamed shared variable, {obj}") return super().__call__(obj) class PersistentNdarrayLoad: """Load NumPy arrays that were persisted to a zip file when pickling. :param zip_file: The zip file handle in which the NumPy arrays are saved. :type zip_file: :class:`zipfile.ZipFile` """ def __init__(self, zip_file): self.zip_file = zip_file self.cache = {} def __call__(self, persid): from theano.gpuarray import pygpu from theano.gpuarray.type import get_context array_type, name = persid.split(".") if name in self.cache: return self.cache[name] ret = None if array_type == "gpuarray": with self.zip_file.open(name) as f: ctx_name = pickle.load(f) array = np.lib.format.read_array(f) if config.experimental__unpickle_gpu_on_cpu: # directly return numpy array warnings.warn( "config.experimental__unpickle_gpu_on_cpu is set " "to True. Unpickling GpuArray as numpy.ndarray" ) ret = array elif pygpu: ret = pygpu.array(array, context=get_context(ctx_name)) else: raise ImportError("pygpu not found. Cannot unpickle GpuArray") else: with self.zip_file.open(name) as f: ret = np.lib.format.read_array(f) self.cache[name] = ret return ret def dump( obj, file_handler, protocol=DEFAULT_PROTOCOL, persistent_id=PersistentSharedVariableID, ): """Pickles an object to a zip file using external persistence. :param obj: The object to pickle. :type obj: object :param file_handler: The file handle to save the object to. :type file_handler: file :param protocol: The pickling protocol to use. Unlike Python's built-in pickle, the default is set to `2` instead of 0 for Python 2. The Python 3 default (level 3) is maintained. :type protocol: int, optional :param persistent_id: The callable that persists certain objects in the object hierarchy to separate files inside of the zip file. For example, :class:`PersistentNdarrayID` saves any :class:`numpy.ndarray` to a separate NPY file inside of the zip file. :type persistent_id: callable .. versionadded:: 0.8 .. note:: The final file is simply a zipped file containing at least one file, `pkl`, which contains the pickled object. It can contain any other number of external objects. Note that the zip files are compatible with NumPy's :func:`numpy.load` function. >>> import theano >>> foo_1 = theano.shared(0, name='foo') >>> foo_2 = theano.shared(1, name='foo') >>> with open('model.zip', 'wb') as f: ... dump((foo_1, foo_2, np.array(2)), f) >>> np.load('model.zip').keys() ['foo', 'foo_2', 'array_0', 'pkl'] >>> np.load('model.zip')['foo'] array(0) >>> with open('model.zip', 'rb') as f: ... foo_1, foo_2, array = load(f) >>> array array(2) """ with closing( zipfile.ZipFile(file_handler, "w", zipfile.ZIP_DEFLATED, allowZip64=True) ) as zip_file: def func(f): p = pickle.Pickler(f, protocol=protocol) p.persistent_id = persistent_id(zip_file) p.dump(obj) zipadd(func, zip_file, "pkl") def load(f, persistent_load=PersistentNdarrayLoad): """Load a file that was dumped to a zip file. :param f: The file handle to the zip file to load the object from. :type f: file :param persistent_load: The persistent loading function to use for unpickling. This must be compatible with the `persisten_id` function used when pickling. :type persistent_load: callable, optional .. versionadded:: 0.8 """ with closing(zipfile.ZipFile(f, "r")) as zip_file: p = pickle.Unpickler(BytesIO(zip_file.open("pkl").read())) p.persistent_load = persistent_load(zip_file) return p.load() def zipadd(func, zip_file, name): """Calls a function with a file object, saving it to a zip file. :param func: The function to call. :type func: callable :param zip_file: The zip file that `func` should write its data to. :type zip_file: :class:`zipfile.ZipFile` :param name: The name of the file inside of the zipped archive that `func` should save its data to. :type name: str """ with tempfile.NamedTemporaryFile("wb", delete=False) as temp_file: func(temp_file) temp_file.close() zip_file.write(temp_file.name, arcname=name) if os.path.isfile(temp_file.name): os.remove(temp_file.name)
32.304348
81
0.628264
6a85dbfd365b831c268163a891f6fb284edaf426
9,937
py
Python
fairseq/tasks/fairseq_task.py
jiahaosuda/fairseq
94fedf0026ee0bdc652bc7c5706568ae27b78375
[ "BSD-3-Clause" ]
1
2019-03-30T11:24:15.000Z
2019-03-30T11:24:15.000Z
fairseq/tasks/fairseq_task.py
jiahaosuda/fairseq
94fedf0026ee0bdc652bc7c5706568ae27b78375
[ "BSD-3-Clause" ]
null
null
null
fairseq/tasks/fairseq_task.py
jiahaosuda/fairseq
94fedf0026ee0bdc652bc7c5706568ae27b78375
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. import torch from fairseq import tokenizer from fairseq.data import data_utils, FairseqDataset, iterators, Dictionary from fairseq.tokenizer import Tokenizer class FairseqTask(object): """ Tasks store dictionaries and provide helpers for loading/iterating over Datasets, initializing the Model/Criterion and calculating the loss. """ @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" pass def __init__(self, args): self.args = args self.datasets = {} @classmethod def load_dictionary(cls, filename): """Load the dictionary from the filename Args: filename (str): the filename """ return Dictionary.load(filename) @classmethod def build_dictionary(cls, filenames, workers=1, threshold=-1, nwords=-1, padding_factor=8): """Build the dictionary Args: filenames (list): list of filenames workers (int): number of concurrent workers threshold (int): defines the minimum word count nwords (int): defines the total number of words in the final dictionary, including special symbols padding_factor (int): can be used to pad the dictionary size to be a multiple of 8, which is important on some hardware (e.g., Nvidia Tensor Cores). """ d = Dictionary() for filename in filenames: Tokenizer.add_file_to_dictionary(filename, d, tokenizer.tokenize_line, workers) d.finalize(threshold=threshold, nwords=nwords, padding_factor=padding_factor) return d @classmethod def setup_task(cls, args, **kwargs): """Setup the task (e.g., load dictionaries). Args: args (argparse.Namespace): parsed command-line arguments """ return cls(args) def load_dataset(self, split, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ raise NotImplementedError def dataset(self, split): """ Return a loaded dataset split. Args: split (str): name of the split (e.g., train, valid, test) Returns: a :class:`~fairseq.data.FairseqDataset` corresponding to *split* """ from fairseq.data import FairseqDataset if split not in self.datasets: raise KeyError('Dataset not loaded: ' + split) if not isinstance(self.datasets[split], FairseqDataset): raise TypeError('Datasets are expected to be of type FairseqDataset') return self.datasets[split] def get_batch_iterator( self, dataset, max_tokens=None, max_sentences=None, max_positions=None, ignore_invalid_inputs=False, required_batch_size_multiple=1, seed=1, num_shards=1, shard_id=0, num_workers=0, ): """ Get an iterator that yields batches of data from the given dataset. Args: dataset (~fairseq.data.FairseqDataset): dataset to batch max_tokens (int, optional): max number of tokens in each batch (default: None). max_sentences (int, optional): max number of sentences in each batch (default: None). max_positions (optional): max sentence length supported by the model (default: None). ignore_invalid_inputs (bool, optional): don't raise Exception for sentences that are too long (default: False). required_batch_size_multiple (int, optional): require batch size to be a multiple of N (default: 1). seed (int, optional): seed for random number generator for reproducibility (default: 1). num_shards (int, optional): shard the data iterator into N shards (default: 1). shard_id (int, optional): which shard of the data iterator to return (default: 0). num_workers (int, optional): how many subprocesses to use for data loading. 0 means the data will be loaded in the main process (default: 0). Returns: ~fairseq.iterators.EpochBatchIterator: a batched iterator over the given dataset split """ assert isinstance(dataset, FairseqDataset) # get indices ordered by example size with data_utils.numpy_seed(seed): indices = dataset.ordered_indices() # filter examples that are too large indices = data_utils.filter_by_size( indices, dataset.size, max_positions, raise_exception=(not ignore_invalid_inputs), ) # create mini-batches with given size constraints batch_sampler = data_utils.batch_by_size( indices, dataset.num_tokens, max_tokens=max_tokens, max_sentences=max_sentences, required_batch_size_multiple=required_batch_size_multiple, ) # return a reusable, sharded iterator return iterators.EpochBatchIterator( dataset=dataset, collate_fn=dataset.collater, batch_sampler=batch_sampler, seed=seed, num_shards=num_shards, shard_id=shard_id, num_workers=num_workers, ) def build_model(self, args): """ Build the :class:`~fairseq.models.BaseFairseqModel` instance for this task. Args: args (argparse.Namespace): parsed command-line arguments Returns: a :class:`~fairseq.models.BaseFairseqModel` instance """ from fairseq import models return models.build_model(args, self) def build_criterion(self, args): """ Build the :class:`~fairseq.criterions.FairseqCriterion` instance for this task. Args: args (argparse.Namespace): parsed command-line arguments Returns: a :class:`~fairseq.criterions.FairseqCriterion` instance """ from fairseq import criterions return criterions.build_criterion(args, self) def build_generator(self, args): if args.score_reference: from fairseq.sequence_scorer import SequenceScorer return SequenceScorer(self.target_dictionary) else: from fairseq.sequence_generator import SequenceGenerator return SequenceGenerator( self.target_dictionary, beam_size=args.beam, max_len_a=args.max_len_a, max_len_b=args.max_len_b, min_len=args.min_len, stop_early=(not args.no_early_stop), normalize_scores=(not args.unnormalized), len_penalty=args.lenpen, unk_penalty=args.unkpen, sampling=args.sampling, sampling_topk=args.sampling_topk, sampling_temperature=args.sampling_temperature, diverse_beam_groups=args.diverse_beam_groups, diverse_beam_strength=args.diverse_beam_strength, match_source_len=args.match_source_len, no_repeat_ngram_size=args.no_repeat_ngram_size, ) def train_step(self, sample, model, criterion, optimizer, ignore_grad=False): """ Do forward and backward, and return the loss as computed by *criterion* for the given *model* and *sample*. Args: sample (dict): the mini-batch. The format is defined by the :class:`~fairseq.data.FairseqDataset`. model (~fairseq.models.BaseFairseqModel): the model criterion (~fairseq.criterions.FairseqCriterion): the criterion optimizer (~fairseq.optim.FairseqOptimizer): the optimizer ignore_grad (bool): multiply loss by 0 if this is set to True Returns: tuple: - the loss - the sample size, which is used as the denominator for the gradient - logging outputs to display while training """ model.train() loss, sample_size, logging_output = criterion(model, sample) if ignore_grad: loss *= 0 optimizer.backward(loss) return loss, sample_size, logging_output def valid_step(self, sample, model, criterion): model.eval() with torch.no_grad(): loss, sample_size, logging_output = criterion(model, sample) return loss, sample_size, logging_output def inference_step(self, generator, models, sample, prefix_tokens=None): with torch.no_grad(): return generator.generate(models, sample, prefix_tokens=prefix_tokens) def grad_denom(self, sample_sizes, criterion): return criterion.__class__.grad_denom(sample_sizes) def aggregate_logging_outputs(self, logging_outputs, criterion): return criterion._aggregate_logging_outputs(logging_outputs) def max_positions(self): """Return the max input length allowed by the task.""" return None @property def source_dictionary(self): """Return the source :class:`~fairseq.data.Dictionary` (if applicable for this task).""" raise NotImplementedError @property def target_dictionary(self): """Return the target :class:`~fairseq.data.Dictionary` (if applicable for this task).""" raise NotImplementedError
37.217228
95
0.626749
fbcac021fd113c214e4ebe1de69cd0c4407e0bd3
1,334
py
Python
test/functional/resendwallettransactions.py
ofichain/ofic
a320b15f1a0bc8d44fa81346b3ad385c35b39852
[ "MIT" ]
null
null
null
test/functional/resendwallettransactions.py
ofichain/ofic
a320b15f1a0bc8d44fa81346b3ad385c35b39852
[ "MIT" ]
null
null
null
test/functional/resendwallettransactions.py
ofichain/ofic
a320b15f1a0bc8d44fa81346b3ad385c35b39852
[ "MIT" ]
1
2018-02-28T02:15:20.000Z
2018-02-28T02:15:20.000Z
#!/usr/bin/env python3 # Copyright (c) 2017 The Crowncoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test resendwallettransactions RPC.""" from test_framework.test_framework import CrowncoinTestFramework from test_framework.util import assert_equal, assert_raises_rpc_error class ResendWalletTransactionsTest(CrowncoinTestFramework): def set_test_params(self): self.num_nodes = 1 self.extra_args = [['--walletbroadcast=false']] def run_test(self): # Should raise RPC_WALLET_ERROR (-4) if walletbroadcast is disabled. assert_raises_rpc_error(-4, "Error: Wallet transaction broadcasting is disabled with -walletbroadcast", self.nodes[0].resendwallettransactions) # Should return an empty array if there aren't unconfirmed wallet transactions. self.stop_node(0) self.start_node(0, extra_args=[]) assert_equal(self.nodes[0].resendwallettransactions(), []) # Should return an array with the unconfirmed wallet transaction. txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1) assert_equal(self.nodes[0].resendwallettransactions(), [txid]) if __name__ == '__main__': ResendWalletTransactionsTest().main()
44.466667
151
0.742129
0e34cd79961e3500302924651449e87117ab5baf
12,064
py
Python
numpy/typing/_callable.py
AngelGris/numpy
32b564ade7ef22439b5f2b9c11aa4c63f0ecd6fd
[ "BSD-3-Clause" ]
4
2021-02-19T19:10:50.000Z
2021-02-23T13:27:44.000Z
numpy/typing/_callable.py
jamiebarker0310/numpy
3e2406a51845dbefd696d596fd2e0961b92ed09a
[ "BSD-3-Clause" ]
null
null
null
numpy/typing/_callable.py
jamiebarker0310/numpy
3e2406a51845dbefd696d596fd2e0961b92ed09a
[ "BSD-3-Clause" ]
null
null
null
""" A module with various ``typing.Protocol`` subclasses that implement the ``__call__`` magic method. See the `Mypy documentation`_ on protocols for more details. .. _`Mypy documentation`: https://mypy.readthedocs.io/en/stable/protocols.html#callback-protocols """ from __future__ import annotations import sys from typing import ( Union, TypeVar, overload, Any, Tuple, NoReturn, TYPE_CHECKING, ) from numpy import ( ndarray, dtype, generic, bool_, timedelta64, number, integer, unsignedinteger, signedinteger, int8, int_, floating, float64, complexfloating, complex128, ) from ._nbit import _NBitInt from ._scalars import ( _BoolLike_co, _IntLike_co, _FloatLike_co, _ComplexLike_co, _NumberLike_co, ) from . import NBitBase from ._array_like import ArrayLike, _ArrayOrScalar if sys.version_info >= (3, 8): from typing import Protocol HAVE_PROTOCOL = True else: try: from typing_extensions import Protocol except ImportError: HAVE_PROTOCOL = False else: HAVE_PROTOCOL = True if TYPE_CHECKING or HAVE_PROTOCOL: _T1 = TypeVar("_T1") _T2 = TypeVar("_T2") _2Tuple = Tuple[_T1, _T1] _NBit1 = TypeVar("_NBit1", bound=NBitBase) _NBit2 = TypeVar("_NBit2", bound=NBitBase) _IntType = TypeVar("_IntType", bound=integer) _FloatType = TypeVar("_FloatType", bound=floating) _NumberType = TypeVar("_NumberType", bound=number) _NumberType_co = TypeVar("_NumberType_co", covariant=True, bound=number) _GenericType_co = TypeVar("_GenericType_co", covariant=True, bound=generic) class _BoolOp(Protocol[_GenericType_co]): @overload def __call__(self, __other: _BoolLike_co) -> _GenericType_co: ... @overload # platform dependent def __call__(self, __other: int) -> int_: ... @overload def __call__(self, __other: float) -> float64: ... @overload def __call__(self, __other: complex) -> complex128: ... @overload def __call__(self, __other: _NumberType) -> _NumberType: ... class _BoolBitOp(Protocol[_GenericType_co]): @overload def __call__(self, __other: _BoolLike_co) -> _GenericType_co: ... @overload # platform dependent def __call__(self, __other: int) -> int_: ... @overload def __call__(self, __other: _IntType) -> _IntType: ... class _BoolSub(Protocol): # Note that `__other: bool_` is absent here @overload def __call__(self, __other: bool) -> NoReturn: ... @overload # platform dependent def __call__(self, __other: int) -> int_: ... @overload def __call__(self, __other: float) -> float64: ... @overload def __call__(self, __other: complex) -> complex128: ... @overload def __call__(self, __other: _NumberType) -> _NumberType: ... class _BoolTrueDiv(Protocol): @overload def __call__(self, __other: Union[float, _IntLike_co]) -> float64: ... @overload def __call__(self, __other: complex) -> complex128: ... @overload def __call__(self, __other: _NumberType) -> _NumberType: ... class _BoolMod(Protocol): @overload def __call__(self, __other: _BoolLike_co) -> int8: ... @overload # platform dependent def __call__(self, __other: int) -> int_: ... @overload def __call__(self, __other: float) -> float64: ... @overload def __call__(self, __other: _IntType) -> _IntType: ... @overload def __call__(self, __other: _FloatType) -> _FloatType: ... class _BoolDivMod(Protocol): @overload def __call__(self, __other: _BoolLike_co) -> _2Tuple[int8]: ... @overload # platform dependent def __call__(self, __other: int) -> _2Tuple[int_]: ... @overload def __call__(self, __other: float) -> _2Tuple[float64]: ... @overload def __call__(self, __other: _IntType) -> _2Tuple[_IntType]: ... @overload def __call__(self, __other: _FloatType) -> _2Tuple[_FloatType]: ... class _TD64Div(Protocol[_NumberType_co]): @overload def __call__(self, __other: timedelta64) -> _NumberType_co: ... @overload def __call__(self, __other: _BoolLike_co) -> NoReturn: ... @overload def __call__(self, __other: _FloatLike_co) -> timedelta64: ... class _IntTrueDiv(Protocol[_NBit1]): @overload def __call__(self, __other: bool) -> floating[_NBit1]: ... @overload def __call__(self, __other: int) -> floating[_NBitInt]: ... @overload def __call__(self, __other: float) -> float64: ... @overload def __call__(self, __other: complex) -> complex128: ... @overload def __call__(self, __other: integer[_NBit2]) -> floating[Union[_NBit1, _NBit2]]: ... class _UnsignedIntOp(Protocol[_NBit1]): # NOTE: `uint64 + signedinteger -> float64` @overload def __call__(self, __other: bool) -> unsignedinteger[_NBit1]: ... @overload def __call__( self, __other: Union[int, signedinteger[Any]] ) -> Union[signedinteger[Any], float64]: ... @overload def __call__(self, __other: float) -> float64: ... @overload def __call__(self, __other: complex) -> complex128: ... @overload def __call__( self, __other: unsignedinteger[_NBit2] ) -> unsignedinteger[Union[_NBit1, _NBit2]]: ... class _UnsignedIntBitOp(Protocol[_NBit1]): @overload def __call__(self, __other: bool) -> unsignedinteger[_NBit1]: ... @overload def __call__(self, __other: int) -> signedinteger[Any]: ... @overload def __call__(self, __other: signedinteger[Any]) -> signedinteger[Any]: ... @overload def __call__( self, __other: unsignedinteger[_NBit2] ) -> unsignedinteger[Union[_NBit1, _NBit2]]: ... class _UnsignedIntMod(Protocol[_NBit1]): @overload def __call__(self, __other: bool) -> unsignedinteger[_NBit1]: ... @overload def __call__( self, __other: Union[int, signedinteger[Any]] ) -> Union[signedinteger[Any], float64]: ... @overload def __call__(self, __other: float) -> float64: ... @overload def __call__( self, __other: unsignedinteger[_NBit2] ) -> unsignedinteger[Union[_NBit1, _NBit2]]: ... class _UnsignedIntDivMod(Protocol[_NBit1]): @overload def __call__(self, __other: bool) -> _2Tuple[signedinteger[_NBit1]]: ... @overload def __call__( self, __other: Union[int, signedinteger[Any]] ) -> Union[_2Tuple[signedinteger[Any]], _2Tuple[float64]]: ... @overload def __call__(self, __other: float) -> _2Tuple[float64]: ... @overload def __call__( self, __other: unsignedinteger[_NBit2] ) -> _2Tuple[unsignedinteger[Union[_NBit1, _NBit2]]]: ... class _SignedIntOp(Protocol[_NBit1]): @overload def __call__(self, __other: bool) -> signedinteger[_NBit1]: ... @overload def __call__(self, __other: int) -> signedinteger[Union[_NBit1, _NBitInt]]: ... @overload def __call__(self, __other: float) -> float64: ... @overload def __call__(self, __other: complex) -> complex128: ... @overload def __call__( self, __other: signedinteger[_NBit2] ) -> signedinteger[Union[_NBit1, _NBit2]]: ... class _SignedIntBitOp(Protocol[_NBit1]): @overload def __call__(self, __other: bool) -> signedinteger[_NBit1]: ... @overload def __call__(self, __other: int) -> signedinteger[Union[_NBit1, _NBitInt]]: ... @overload def __call__( self, __other: signedinteger[_NBit2] ) -> signedinteger[Union[_NBit1, _NBit2]]: ... class _SignedIntMod(Protocol[_NBit1]): @overload def __call__(self, __other: bool) -> signedinteger[_NBit1]: ... @overload def __call__(self, __other: int) -> signedinteger[Union[_NBit1, _NBitInt]]: ... @overload def __call__(self, __other: float) -> float64: ... @overload def __call__( self, __other: signedinteger[_NBit2] ) -> signedinteger[Union[_NBit1, _NBit2]]: ... class _SignedIntDivMod(Protocol[_NBit1]): @overload def __call__(self, __other: bool) -> _2Tuple[signedinteger[_NBit1]]: ... @overload def __call__(self, __other: int) -> _2Tuple[signedinteger[Union[_NBit1, _NBitInt]]]: ... @overload def __call__(self, __other: float) -> _2Tuple[float64]: ... @overload def __call__( self, __other: signedinteger[_NBit2] ) -> _2Tuple[signedinteger[Union[_NBit1, _NBit2]]]: ... class _FloatOp(Protocol[_NBit1]): @overload def __call__(self, __other: bool) -> floating[_NBit1]: ... @overload def __call__(self, __other: int) -> floating[Union[_NBit1, _NBitInt]]: ... @overload def __call__(self, __other: float) -> float64: ... @overload def __call__(self, __other: complex) -> complex128: ... @overload def __call__( self, __other: Union[integer[_NBit2], floating[_NBit2]] ) -> floating[Union[_NBit1, _NBit2]]: ... class _FloatMod(Protocol[_NBit1]): @overload def __call__(self, __other: bool) -> floating[_NBit1]: ... @overload def __call__(self, __other: int) -> floating[Union[_NBit1, _NBitInt]]: ... @overload def __call__(self, __other: float) -> float64: ... @overload def __call__( self, __other: Union[integer[_NBit2], floating[_NBit2]] ) -> floating[Union[_NBit1, _NBit2]]: ... class _FloatDivMod(Protocol[_NBit1]): @overload def __call__(self, __other: bool) -> _2Tuple[floating[_NBit1]]: ... @overload def __call__(self, __other: int) -> _2Tuple[floating[Union[_NBit1, _NBitInt]]]: ... @overload def __call__(self, __other: float) -> _2Tuple[float64]: ... @overload def __call__( self, __other: Union[integer[_NBit2], floating[_NBit2]] ) -> _2Tuple[floating[Union[_NBit1, _NBit2]]]: ... class _ComplexOp(Protocol[_NBit1]): @overload def __call__(self, __other: bool) -> complexfloating[_NBit1, _NBit1]: ... @overload def __call__(self, __other: int) -> complexfloating[Union[_NBit1, _NBitInt], Union[_NBit1, _NBitInt]]: ... @overload def __call__(self, __other: Union[float, complex]) -> complex128: ... @overload def __call__( self, __other: Union[ integer[_NBit2], floating[_NBit2], complexfloating[_NBit2, _NBit2], ] ) -> complexfloating[Union[_NBit1, _NBit2], Union[_NBit1, _NBit2]]: ... class _NumberOp(Protocol): def __call__(self, __other: _NumberLike_co) -> Any: ... class _ComparisonOp(Protocol[_T1, _T2]): @overload def __call__(self, __other: _T1) -> bool_: ... @overload def __call__(self, __other: _T2) -> _ArrayOrScalar[bool_]: ... else: _BoolOp = Any _BoolBitOp = Any _BoolSub = Any _BoolTrueDiv = Any _BoolMod = Any _BoolDivMod = Any _TD64Div = Any _IntTrueDiv = Any _UnsignedIntOp = Any _UnsignedIntBitOp = Any _UnsignedIntMod = Any _UnsignedIntDivMod = Any _SignedIntOp = Any _SignedIntBitOp = Any _SignedIntMod = Any _SignedIntDivMod = Any _FloatOp = Any _FloatMod = Any _FloatDivMod = Any _ComplexOp = Any _NumberOp = Any _ComparisonOp = Any
34.079096
114
0.604609
766a3f6169114c51451d04e5edfeec6645698993
1,199
py
Python
raw_data/get_raw_data.py
preversewharf45/game_recommendation_system
6922d8d8099473057b3c0676092b567b2715ed88
[ "MIT" ]
null
null
null
raw_data/get_raw_data.py
preversewharf45/game_recommendation_system
6922d8d8099473057b3c0676092b567b2715ed88
[ "MIT" ]
null
null
null
raw_data/get_raw_data.py
preversewharf45/game_recommendation_system
6922d8d8099473057b3c0676092b567b2715ed88
[ "MIT" ]
1
2021-06-08T16:55:41.000Z
2021-06-08T16:55:41.000Z
import pandas as pd import glob import os.path def get_raw_data( name, script_rel_path = "" ): file_path = "" # Releative path of `get_raw_data.py` script. if ( script_rel_path != "" ): file_path = script_rel_path + "/" # `user_reviews_raw` is handled separately because # it's splitted into multiple parts. if ( name == "user_reviews" ): file_path += "user_reviews_raw/*" if ( os.path.exists( "user_reviews_raw.csv" ) != True ): new_file = open( "user_reviews_raw.csv", 'w', newline = '', encoding = "utf-8" ) # Iterate through all user_reviews_data files. for part_file_path in glob.glob( file_path ): part_file = open( part_file_path, 'r', newline = '', encoding = "utf-8" ) new_file.write( part_file.read() ) part_file.close() new_file.close() return pd.read_csv( "user_reviews_raw.csv", delimiter = ',' ) # The rest of raw datas are simply stored in a single file. if ( name == "app_data" ): file_path += "app_data_raw/app_data_raw.csv" elif ( name == "app_list" ): file_path += "app_list/app_list.csv" elif ( name == "app_reviews" ): file_path += "app_reviews_raw/app_reviews_raw.csv" return pd.read_csv( file_path, delimiter = ',' )
29.975
83
0.676397
3483897e42d3e15b3613bf0635e0724d0616faba
36,694
py
Python
rpython/rlib/rmmap.py
m4sterchain/mesapy
ed546d59a21b36feb93e2309d5c6b75aa0ad95c9
[ "Apache-2.0", "OpenSSL" ]
381
2018-08-18T03:37:22.000Z
2022-02-06T23:57:36.000Z
rpython/rlib/rmmap.py
m4sterchain/mesapy
ed546d59a21b36feb93e2309d5c6b75aa0ad95c9
[ "Apache-2.0", "OpenSSL" ]
16
2018-09-22T18:12:47.000Z
2022-02-22T20:03:59.000Z
rpython/rlib/rmmap.py
m4sterchain/mesapy
ed546d59a21b36feb93e2309d5c6b75aa0ad95c9
[ "Apache-2.0", "OpenSSL" ]
30
2018-08-20T03:16:34.000Z
2022-01-12T17:39:22.000Z
"""Interp-level mmap-like object. Note that all the methods assume that the mmap is valid (or writable, for writing methods). You have to call check_valid() from the higher-level API, as well as maybe check_writeable(). In the case of PyPy, this is done from pypy/module/mmap/. """ from rpython.rtyper.tool import rffi_platform from rpython.rtyper.lltypesystem import rffi, lltype from rpython.rlib import rposix from rpython.translator.tool.cbuild import ExternalCompilationInfo from rpython.rlib.objectmodel import we_are_translated, specialize from rpython.rlib.nonconst import NonConstant from rpython.rlib.rarithmetic import intmask import sys import os import platform import stat _POSIX = os.name == "posix" _MS_WINDOWS = os.name == "nt" _64BIT = "64bit" in platform.architecture()[0] _CYGWIN = "cygwin" == sys.platform class RMMapError(Exception): def __init__(self, message): self.message = message class RValueError(RMMapError): pass class RTypeError(RMMapError): pass includes = ["sys/types.h"] if _POSIX: includes += ['unistd.h', 'sys/mman.h'] elif _MS_WINDOWS: includes += ['winsock2.h', 'windows.h'] class CConfig: _compilation_info_ = ExternalCompilationInfo( includes=includes, #pre_include_bits=['#ifndef _GNU_SOURCE\n' + # '#define _GNU_SOURCE\n' + # '#endif'] # ^^^ _GNU_SOURCE is always defined by the ExternalCompilationInfo now ) size_t = rffi_platform.SimpleType("size_t", rffi.LONG) off_t = rffi_platform.SimpleType("off_t", rffi.LONG) constants = {} if _POSIX: # constants, look in sys/mman.h and platform docs for the meaning # some constants are linux only so they will be correctly exposed outside # depending on the OS constant_names = ['MAP_SHARED', 'MAP_PRIVATE', 'MAP_FIXED', 'PROT_READ', 'PROT_WRITE', 'MS_SYNC'] opt_constant_names = ['MAP_ANON', 'MAP_ANONYMOUS', 'MAP_NORESERVE', 'PROT_EXEC', 'MAP_DENYWRITE', 'MAP_EXECUTABLE'] for name in constant_names: setattr(CConfig, name, rffi_platform.ConstantInteger(name)) for name in opt_constant_names: setattr(CConfig, name, rffi_platform.DefinedConstantInteger(name)) CConfig.MREMAP_MAYMOVE = ( rffi_platform.DefinedConstantInteger("MREMAP_MAYMOVE")) CConfig.has_mremap = rffi_platform.Has('mremap(NULL, 0, 0, 0)') CConfig.has_madvise = rffi_platform.Has('madvise(NULL, 0, 0)') # ^^ both are a dirty hack, this is probably a macro CConfig.MADV_DONTNEED = ( rffi_platform.DefinedConstantInteger('MADV_DONTNEED')) CConfig.MADV_FREE = ( rffi_platform.DefinedConstantInteger('MADV_FREE')) elif _MS_WINDOWS: constant_names = ['PAGE_READONLY', 'PAGE_READWRITE', 'PAGE_WRITECOPY', 'FILE_MAP_READ', 'FILE_MAP_WRITE', 'FILE_MAP_COPY', 'DUPLICATE_SAME_ACCESS', 'MEM_COMMIT', 'MEM_RESERVE', 'MEM_RELEASE', 'PAGE_EXECUTE_READWRITE', 'PAGE_NOACCESS', 'MEM_RESET'] for name in constant_names: setattr(CConfig, name, rffi_platform.ConstantInteger(name)) from rpython.rlib import rwin32 from rpython.rlib.rwin32 import HANDLE, LPHANDLE from rpython.rlib.rwin32 import NULL_HANDLE, INVALID_HANDLE_VALUE from rpython.rlib.rwin32 import DWORD, WORD, DWORD_PTR, LPDWORD from rpython.rlib.rwin32 import BOOL, LPVOID, LPCSTR, SIZE_T from rpython.rlib.rwin32 import LONG, PLONG # export the constants inside and outside. see __init__.py cConfig = rffi_platform.configure(CConfig) constants.update(cConfig) if _POSIX: # MAP_ANONYMOUS is not always present but it's always available at CPython level if constants["MAP_ANONYMOUS"] is None: constants["MAP_ANONYMOUS"] = constants["MAP_ANON"] assert constants["MAP_ANONYMOUS"] is not None constants["MAP_ANON"] = constants["MAP_ANONYMOUS"] locals().update(constants) _ACCESS_DEFAULT, ACCESS_READ, ACCESS_WRITE, ACCESS_COPY = range(4) if rffi.sizeof(off_t) > rffi.sizeof(lltype.Signed): HAVE_LARGEFILE_SUPPORT = True else: HAVE_LARGEFILE_SUPPORT = False def external(name, args, result, save_err_on_unsafe=0, save_err_on_safe=0, **kwargs): unsafe = rffi.llexternal(name, args, result, compilation_info=CConfig._compilation_info_, save_err=save_err_on_unsafe, **kwargs) safe = rffi.llexternal(name, args, result, compilation_info=CConfig._compilation_info_, sandboxsafe=True, releasegil=False, save_err=save_err_on_safe, **kwargs) return unsafe, safe def winexternal(name, args, result, **kwargs): unsafe = rffi.llexternal(name, args, result, compilation_info=CConfig._compilation_info_, calling_conv='win', **kwargs) safe = rffi.llexternal(name, args, result, compilation_info=CConfig._compilation_info_, calling_conv='win', sandboxsafe=True, releasegil=False, **kwargs) return unsafe, safe PTR = rffi.CCHARP if _CYGWIN: # XXX: macro=True hack for newer versions of Cygwin (as of 12/2012) _, c_malloc_safe = external('malloc', [size_t], PTR, macro=True) _, c_free_safe = external('free', [PTR], lltype.Void, macro=True) c_memmove, _ = external('memmove', [PTR, PTR, size_t], lltype.Void) if _POSIX: has_mremap = cConfig['has_mremap'] has_madvise = cConfig['has_madvise'] c_mmap, c_mmap_safe = external('mmap', [PTR, size_t, rffi.INT, rffi.INT, rffi.INT, off_t], PTR, macro=True, save_err_on_unsafe=rffi.RFFI_SAVE_ERRNO) # 'mmap' on linux32 is a macro that calls 'mmap64' _, c_munmap_safe = external('munmap', [PTR, size_t], rffi.INT) c_msync, _ = external('msync', [PTR, size_t, rffi.INT], rffi.INT, save_err_on_unsafe=rffi.RFFI_SAVE_ERRNO) if has_mremap: c_mremap, _ = external('mremap', [PTR, size_t, size_t, rffi.ULONG], PTR) if has_madvise: _, c_madvise_safe = external('madvise', [PTR, size_t, rffi.INT], rffi.INT, _nowrapper=True) # this one is always safe _pagesize = rffi_platform.getintegerfunctionresult('getpagesize', includes=includes) _get_allocation_granularity = _get_page_size = lambda: _pagesize elif _MS_WINDOWS: class ComplexCConfig: _compilation_info_ = CConfig._compilation_info_ SYSINFO_STRUCT = rffi.CStruct( 'SYSINFO_STRUCT', ("wProcessorArchitecture", WORD), ("wReserved", WORD), ) SYSINFO_UNION = rffi.CStruct( 'union SYSINFO_UNION', ("dwOemId", DWORD), ("_struct_", SYSINFO_STRUCT), ) # sorry, I can't find a way to insert the above # because the union field has no name SYSTEM_INFO = rffi_platform.Struct( 'SYSTEM_INFO', [ ## ("_union_", SYSINFO_UNION), ## instead, we put the smaller fields, here ("wProcessorArchitecture", WORD), ("wReserved", WORD), ## should be a union. dwOemId is obsolete, anyway ("dwPageSize", DWORD), ("lpMinimumApplicationAddress", LPVOID), ("lpMaximumApplicationAddress", LPVOID), ("dwActiveProcessorMask", DWORD_PTR), ("dwNumberOfProcessors", DWORD), ("dwProcessorType", DWORD), ("dwAllocationGranularity", DWORD), ("wProcessorLevel", WORD), ("wProcessorRevision", WORD), ]) config = rffi_platform.configure(ComplexCConfig) SYSTEM_INFO = config['SYSTEM_INFO'] SYSTEM_INFO_P = lltype.Ptr(SYSTEM_INFO) GetSystemInfo, _ = winexternal('GetSystemInfo', [SYSTEM_INFO_P], lltype.Void) GetFileSize, _ = winexternal('GetFileSize', [HANDLE, LPDWORD], DWORD, save_err=rffi.RFFI_SAVE_LASTERROR) GetCurrentProcess, _ = winexternal('GetCurrentProcess', [], HANDLE) DuplicateHandle, _ = winexternal('DuplicateHandle', [HANDLE, HANDLE, HANDLE, LPHANDLE, DWORD, BOOL, DWORD], BOOL, save_err=rffi.RFFI_SAVE_LASTERROR) CreateFileMapping, _ = winexternal('CreateFileMappingA', [HANDLE, rwin32.LPSECURITY_ATTRIBUTES, DWORD, DWORD, DWORD, LPCSTR], HANDLE, save_err=rffi.RFFI_SAVE_LASTERROR) MapViewOfFile, _ = winexternal('MapViewOfFile', [HANDLE, DWORD, DWORD, DWORD, SIZE_T], LPCSTR, save_err=rffi.RFFI_SAVE_LASTERROR) ##!!LPVOID _, UnmapViewOfFile_safe = winexternal('UnmapViewOfFile', [LPCSTR], BOOL) FlushViewOfFile, _ = winexternal('FlushViewOfFile', [LPCSTR, SIZE_T], BOOL) SetFilePointer, _ = winexternal('SetFilePointer', [HANDLE, LONG, PLONG, DWORD], DWORD) SetEndOfFile, _ = winexternal('SetEndOfFile', [HANDLE], BOOL) VirtualAlloc, VirtualAlloc_safe = winexternal('VirtualAlloc', [rffi.VOIDP, rffi.SIZE_T, DWORD, DWORD], rffi.VOIDP) _, _VirtualAlloc_safe_no_wrapper = winexternal('VirtualAlloc', [rffi.VOIDP, rffi.SIZE_T, DWORD, DWORD], rffi.VOIDP, _nowrapper=True) _, _VirtualProtect_safe = winexternal('VirtualProtect', [rffi.VOIDP, rffi.SIZE_T, DWORD, LPDWORD], BOOL) @specialize.ll() def VirtualProtect(addr, size, mode, oldmode_ptr): return _VirtualProtect_safe(addr, rffi.cast(rffi.SIZE_T, size), rffi.cast(DWORD, mode), oldmode_ptr) VirtualFree, VirtualFree_safe = winexternal('VirtualFree', [rffi.VOIDP, rffi.SIZE_T, DWORD], BOOL) def _get_page_size(): try: si = rffi.make(SYSTEM_INFO) GetSystemInfo(si) return int(si.c_dwPageSize) finally: lltype.free(si, flavor="raw") def _get_allocation_granularity(): try: si = rffi.make(SYSTEM_INFO) GetSystemInfo(si) return int(si.c_dwAllocationGranularity) finally: lltype.free(si, flavor="raw") def _get_file_size(handle): # XXX use native Windows types like WORD high_ref = lltype.malloc(LPDWORD.TO, 1, flavor='raw') try: low = GetFileSize(handle, high_ref) low = rffi.cast(lltype.Signed, low) # XXX should be propagate the real type, allowing # for 2*sys.maxint? high = high_ref[0] high = rffi.cast(lltype.Signed, high) # low might just happen to have the value INVALID_FILE_SIZE # so we need to check the last error also INVALID_FILE_SIZE = -1 if low == INVALID_FILE_SIZE: err = rwin32.GetLastError_saved() if err: raise WindowsError(err, "mmap") return low, high finally: lltype.free(high_ref, flavor='raw') INVALID_HANDLE = INVALID_HANDLE_VALUE PAGESIZE = _get_page_size() ALLOCATIONGRANULARITY = _get_allocation_granularity() NULL = lltype.nullptr(PTR.TO) NODATA = lltype.nullptr(PTR.TO) class MMap(object): def __init__(self, access, offset): self.size = 0 self.pos = 0 self.access = access self.offset = offset if _MS_WINDOWS: self.map_handle = NULL_HANDLE self.file_handle = NULL_HANDLE self.tagname = "" elif _POSIX: self.fd = -1 self.closed = False def check_valid(self): if _MS_WINDOWS: to_close = self.map_handle == INVALID_HANDLE elif _POSIX: to_close = self.closed if to_close: raise RValueError("map closed or invalid") def check_writeable(self): if not (self.access != ACCESS_READ): raise RTypeError("mmap can't modify a readonly memory map.") def check_resizeable(self): if not (self.access == ACCESS_WRITE or self.access == _ACCESS_DEFAULT): raise RTypeError("mmap can't resize a readonly or copy-on-write memory map.") def setdata(self, data, size): """Set the internal data and map size from a PTR.""" assert size >= 0 self.data = data self.size = size def unmap(self): if _MS_WINDOWS: UnmapViewOfFile_safe(self.getptr(0)) elif _POSIX: self.unmap_range(0, self.size) if _POSIX: def unmap_range(self, offset, size): """Unmap (a portion of) the mapped range. Per munmap(1), the offset must be a multiple of the page size, and the size will be rounded up to a multiple of the page size. """ c_munmap_safe(self.getptr(offset), size) def close(self): if _MS_WINDOWS: if self.size > 0: self.unmap() self.setdata(NODATA, 0) if self.map_handle != INVALID_HANDLE: rwin32.CloseHandle_no_err(self.map_handle) self.map_handle = INVALID_HANDLE if self.file_handle != INVALID_HANDLE: rwin32.CloseHandle_no_err(self.file_handle) self.file_handle = INVALID_HANDLE elif _POSIX: self.closed = True if self.fd != -1: # XXX this is buggy - raising in an RPython del is not a good # idea, we should swallow the exception or ignore the # underlaying close error code os.close(self.fd) self.fd = -1 if self.size > 0: self.unmap() self.setdata(NODATA, 0) def __del__(self): self.close() def read_byte(self): if self.pos < self.size: value = self.data[self.pos] self.pos += 1 return value else: raise RValueError("read byte out of range") def readline(self): data = self.data for pos in xrange(self.pos, self.size): if data[pos] == '\n': eol = pos + 1 # we're interested in the position after new line break else: # no '\n' found eol = self.size res = self.getslice(self.pos, eol - self.pos) self.pos += len(res) return res def read(self, num=-1): if num < 0: # read all eol = self.size else: eol = self.pos + num # silently adjust out of range requests if eol > self.size: eol = self.size res = self.getslice(self.pos, eol - self.pos) self.pos += len(res) return res def find(self, tofind, start, end, reverse=False): # XXX naive! how can we reuse the rstr algorithm? if start < 0: start += self.size if start < 0: start = 0 if end < 0: end += self.size if end < 0: end = 0 elif end > self.size: end = self.size # upto = end - len(tofind) if not reverse: step = 1 p = start if p > upto: return -1 # failure (empty range to search) else: step = -1 p = upto upto = start if p < upto: return -1 # failure (empty range to search) # data = self.data while True: assert p >= 0 for q in range(len(tofind)): if data[p+q] != tofind[q]: break # position 'p' is not a match else: # full match return p # if p == upto: return -1 # failure p += step def seek(self, pos, whence=0): dist = pos how = whence if how == 0: # relative to start where = dist elif how == 1: # relative to current position where = self.pos + dist elif how == 2: # relative to the end where = self.size + dist else: raise RValueError("unknown seek type") if not (0 <= where <= self.size): raise RValueError("seek out of range") self.pos = intmask(where) def tell(self): return self.pos def file_size(self): size = self.size if _MS_WINDOWS: if self.file_handle != INVALID_HANDLE: low, high = _get_file_size(self.file_handle) if not high and low <= sys.maxint: return low # not so sure if the signed/unsigned strictness is a good idea: high = rffi.cast(lltype.Unsigned, high) low = rffi.cast(lltype.Unsigned, low) size = (high << 32) + low size = rffi.cast(lltype.Signed, size) elif _POSIX: st = os.fstat(self.fd) size = st[stat.ST_SIZE] return size def write(self, data): data_len = len(data) start = self.pos if start + data_len > self.size: raise RValueError("data out of range") self.setslice(start, data) self.pos = start + data_len return data_len def write_byte(self, byte): if len(byte) != 1: raise RTypeError("write_byte() argument must be char") if self.pos >= self.size: raise RValueError("write byte out of range") self.data[self.pos] = byte[0] self.pos += 1 def getptr(self, offset): return rffi.ptradd(self.data, offset) def getslice(self, start, length): if length < 0: return '' return rffi.charpsize2str(self.getptr(start), length) def setslice(self, start, newdata): internaldata = self.data for i in range(len(newdata)): internaldata[start+i] = newdata[i] def flush(self, offset=0, size=0): if size == 0: size = self.size if offset < 0 or size < 0 or offset + size > self.size: raise RValueError("flush values out of range") else: start = self.getptr(offset) if _MS_WINDOWS: res = FlushViewOfFile(start, size) # XXX res == 0 means that an error occurred, but in CPython # this is not checked return res elif _POSIX: res = c_msync(start, size, MS_SYNC) if res == -1: errno = rposix.get_saved_errno() raise OSError(errno, os.strerror(errno)) return 0 def move(self, dest, src, count): # check boundings if (src < 0 or dest < 0 or count < 0 or src + count > self.size or dest + count > self.size): raise RValueError("source or destination out of range") datasrc = self.getptr(src) datadest = self.getptr(dest) c_memmove(datadest, datasrc, count) def resize(self, newsize): if _POSIX: if not has_mremap: raise RValueError("mmap: resizing not available--no mremap()") # resize the underlying file first, if there is one if self.fd >= 0: os.ftruncate(self.fd, self.offset + newsize) # now resize the mmap newdata = c_mremap(self.getptr(0), self.size, newsize, MREMAP_MAYMOVE or 0) self.setdata(newdata, newsize) elif _MS_WINDOWS: # disconnect the mapping self.unmap() rwin32.CloseHandle_no_err(self.map_handle) # move to the desired EOF position if _64BIT: newsize_high = (self.offset + newsize) >> 32 newsize_low = (self.offset + newsize) & 0xFFFFFFFF offset_high = self.offset >> 32 offset_low = self.offset & 0xFFFFFFFF else: newsize_high = 0 newsize_low = self.offset + newsize offset_high = 0 offset_low = self.offset FILE_BEGIN = 0 high_ref = lltype.malloc(PLONG.TO, 1, flavor='raw') try: high_ref[0] = rffi.cast(LONG, newsize_high) SetFilePointer(self.file_handle, newsize_low, high_ref, FILE_BEGIN) finally: lltype.free(high_ref, flavor='raw') # resize the file SetEndOfFile(self.file_handle) # create another mapping object and remap the file view res = CreateFileMapping(self.file_handle, NULL, PAGE_READWRITE, newsize_high, newsize_low, self.tagname) self.map_handle = res if self.map_handle: data = MapViewOfFile(self.map_handle, FILE_MAP_WRITE, offset_high, offset_low, newsize) if data: # XXX we should have a real LPVOID which must always be casted charp = rffi.cast(LPCSTR, data) self.setdata(charp, newsize) return winerror = rwin32.lastSavedWindowsError() if self.map_handle: rwin32.CloseHandle_no_err(self.map_handle) self.map_handle = INVALID_HANDLE raise winerror def len(self): return self.size def getitem(self, index): # simplified version, for rpython self.check_valid() if index < 0: index += self.size return self.data[index] def setitem(self, index, value): if len(value) != 1: raise RValueError("mmap assignment must be " "single-character string") if index < 0: index += self.size self.data[index] = value[0] def _check_map_size(size): if size < 0: raise RTypeError("memory mapped size must be positive") if _POSIX: def mmap(fileno, length, flags=MAP_SHARED, prot=PROT_WRITE | PROT_READ, access=_ACCESS_DEFAULT, offset=0): fd = fileno # check access is not there when flags and prot are there if access != _ACCESS_DEFAULT and ((flags != MAP_SHARED) or (prot != (PROT_WRITE | PROT_READ))): raise RValueError("mmap can't specify both access and flags, prot.") # check size boundaries _check_map_size(length) map_size = length if offset < 0: raise RValueError("negative offset") if access == ACCESS_READ: flags = MAP_SHARED prot = PROT_READ elif access == ACCESS_WRITE: flags = MAP_SHARED prot = PROT_READ | PROT_WRITE elif access == ACCESS_COPY: flags = MAP_PRIVATE prot = PROT_READ | PROT_WRITE elif access == _ACCESS_DEFAULT: # map prot to access type if prot & PROT_READ and prot & PROT_WRITE: pass # _ACCESS_DEFAULT elif prot & PROT_WRITE: access = ACCESS_WRITE else: access = ACCESS_READ else: raise RValueError("mmap invalid access parameter.") # check file size try: st = os.fstat(fd) except OSError: pass # ignore errors and trust map_size else: mode = st[stat.ST_MODE] size = st[stat.ST_SIZE] if stat.S_ISREG(mode): if map_size == 0: if size == 0: raise RValueError("cannot mmap an empty file") if offset > size: raise RValueError( "mmap offset is greater than file size") map_size = int(size - offset) if map_size != size - offset: raise RValueError("mmap length is too large") elif offset + map_size > size: raise RValueError("mmap length is greater than file size") m = MMap(access, offset) if fd == -1: # Assume the caller wants to map anonymous memory. # This is the same behaviour as Windows. mmap.mmap(-1, size) # on both Windows and Unix map anonymous memory. m.fd = -1 flags |= MAP_ANONYMOUS else: m.fd = os.dup(fd) # XXX if we use hintp below in alloc, the NonConstant # is necessary since we want a general version of c_mmap # to be annotated with a non-constant pointer. res = c_mmap(NonConstant(NULL), map_size, prot, flags, fd, offset) if res == rffi.cast(PTR, -1): errno = rposix.get_saved_errno() raise OSError(errno, os.strerror(errno)) m.setdata(res, map_size) return m def alloc_hinted(hintp, map_size): flags = MAP_PRIVATE | MAP_ANONYMOUS prot = PROT_EXEC | PROT_READ | PROT_WRITE if we_are_translated(): flags = NonConstant(flags) prot = NonConstant(prot) return c_mmap_safe(hintp, map_size, prot, flags, -1, 0) def clear_large_memory_chunk_aligned(addr, map_size): addr = rffi.cast(PTR, addr) flags = MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS prot = PROT_READ | PROT_WRITE if we_are_translated(): flags = NonConstant(flags) prot = NonConstant(prot) res = c_mmap_safe(addr, map_size, prot, flags, -1, 0) return res == addr # XXX is this really necessary? class Hint: pos = -0x4fff0000 # for reproducible results hint = Hint() def alloc(map_size): """Allocate memory. This is intended to be used by the JIT, so the memory has the executable bit set and gets allocated internally in case of a sandboxed process. """ from errno import ENOMEM from rpython.rlib import debug if _CYGWIN: # XXX: JIT memory should be using mmap MAP_PRIVATE with # PROT_EXEC but Cygwin's fork() fails. mprotect() # cannot be used, but seems to be unnecessary there. res = c_malloc_safe(map_size) if res == rffi.cast(PTR, 0): raise MemoryError return res res = alloc_hinted(rffi.cast(PTR, hint.pos), map_size) if res == rffi.cast(PTR, -1): # some systems (some versions of OS/X?) complain if they # are passed a non-zero address. Try again. res = alloc_hinted(rffi.cast(PTR, 0), map_size) if res == rffi.cast(PTR, -1): # ENOMEM simply raises MemoryError, but other errors are fatal if rposix.get_saved_errno() != ENOMEM: debug.fatalerror_notb( "Got an unexpected error trying to allocate some " "memory for the JIT (tried to do mmap() with " "PROT_EXEC|PROT_READ|PROT_WRITE). This can be caused " "by a system policy like PAX. You need to find how " "to work around the policy on your system.") raise MemoryError else: hint.pos += map_size return res alloc._annenforceargs_ = (int,) if _CYGWIN: free = c_free_safe else: free = c_munmap_safe if sys.platform.startswith('linux'): assert has_madvise assert MADV_DONTNEED is not None if MADV_FREE is None: MADV_FREE = 8 # from the kernel sources of Linux >= 4.5 class CanUseMadvFree: ok = -1 can_use_madv_free = CanUseMadvFree() def madvise_free(addr, map_size): # We don't know if we are running on a recent enough kernel # that supports MADV_FREE. Check that at runtime: if the # first call to madvise(MADV_FREE) fails, we assume it's # because of EINVAL and we fall back to MADV_DONTNEED. if can_use_madv_free.ok != 0: res = c_madvise_safe(rffi.cast(PTR, addr), rffi.cast(size_t, map_size), rffi.cast(rffi.INT, MADV_FREE)) if can_use_madv_free.ok == -1: can_use_madv_free.ok = (rffi.cast(lltype.Signed, res) == 0) if can_use_madv_free.ok == 0: c_madvise_safe(rffi.cast(PTR, addr), rffi.cast(size_t, map_size), rffi.cast(rffi.INT, MADV_DONTNEED)) elif has_madvise and not (MADV_FREE is MADV_DONTNEED is None): use_flag = MADV_FREE if MADV_FREE is not None else MADV_DONTNEED def madvise_free(addr, map_size): c_madvise_safe(rffi.cast(PTR, addr), rffi.cast(size_t, map_size), rffi.cast(rffi.INT, use_flag)) else: def madvise_free(addr, map_size): "No madvise() on this platform" elif _MS_WINDOWS: def mmap(fileno, length, tagname="", access=_ACCESS_DEFAULT, offset=0): # XXX flags is or-ed into access by now. flags = 0 # check size boundaries _check_map_size(length) map_size = length if offset < 0: raise RValueError("negative offset") flProtect = 0 dwDesiredAccess = 0 fh = NULL_HANDLE if access == ACCESS_READ: flProtect = PAGE_READONLY dwDesiredAccess = FILE_MAP_READ elif access == _ACCESS_DEFAULT or access == ACCESS_WRITE: flProtect = PAGE_READWRITE dwDesiredAccess = FILE_MAP_WRITE elif access == ACCESS_COPY: flProtect = PAGE_WRITECOPY dwDesiredAccess = FILE_MAP_COPY else: raise RValueError("mmap invalid access parameter.") # assume -1 and 0 both mean invalid file descriptor # to 'anonymously' map memory. if fileno != -1 and fileno != 0: fh = rwin32.get_osfhandle(fileno) # Win9x appears to need us seeked to zero # SEEK_SET = 0 # libc._lseek(fileno, 0, SEEK_SET) # check file size try: low, high = _get_file_size(fh) except OSError: pass # ignore non-seeking files and errors and trust map_size else: if not high and low <= sys.maxint: size = low else: # not so sure if the signed/unsigned strictness is a good idea: high = rffi.cast(lltype.Unsigned, high) low = rffi.cast(lltype.Unsigned, low) size = (high << 32) + low size = rffi.cast(lltype.Signed, size) if map_size == 0: if size == 0: raise RValueError("cannot mmap an empty file") if offset > size: raise RValueError( "mmap offset is greater than file size") map_size = int(size - offset) if map_size != size - offset: raise RValueError("mmap length is too large") elif offset + map_size > size: raise RValueError("mmap length is greater than file size") m = MMap(access, offset) m.file_handle = INVALID_HANDLE m.map_handle = INVALID_HANDLE if fh: # it is necessary to duplicate the handle, so the # Python code can close it on us handle_ref = lltype.malloc(LPHANDLE.TO, 1, flavor='raw') handle_ref[0] = m.file_handle try: res = DuplicateHandle(GetCurrentProcess(), # source process handle fh, # handle to be duplicated GetCurrentProcess(), # target process handle handle_ref, # result 0, # access - ignored due to options value False, # inherited by child procs? DUPLICATE_SAME_ACCESS) # options if not res: raise rwin32.lastSavedWindowsError() m.file_handle = handle_ref[0] finally: lltype.free(handle_ref, flavor='raw') if not map_size: low, high = _get_file_size(fh) if _64BIT: map_size = (low << 32) + 1 else: if high: # file is too large to map completely map_size = -1 else: map_size = low if tagname: m.tagname = tagname # DWORD is a 4-byte int. If int > 4-byte it must be divided if _64BIT: size_hi = (map_size + offset) >> 32 size_lo = (map_size + offset) & 0xFFFFFFFF offset_hi = offset >> 32 offset_lo = offset & 0xFFFFFFFF else: size_hi = 0 size_lo = map_size + offset offset_hi = 0 offset_lo = offset flProtect |= flags m.map_handle = CreateFileMapping(m.file_handle, NULL, flProtect, size_hi, size_lo, m.tagname) if m.map_handle: data = MapViewOfFile(m.map_handle, dwDesiredAccess, offset_hi, offset_lo, length) if data: # XXX we should have a real LPVOID which must always be casted charp = rffi.cast(LPCSTR, data) m.setdata(charp, map_size) return m winerror = rwin32.lastSavedWindowsError() if m.map_handle: rwin32.CloseHandle_no_err(m.map_handle) m.map_handle = INVALID_HANDLE raise winerror class Hint: pos = -0x4fff0000 # for reproducible results hint = Hint() # XXX this has no effect on windows def alloc(map_size): """Allocate memory. This is intended to be used by the JIT, so the memory has the executable bit set. XXX implement me: it should get allocated internally in case of a sandboxed process """ null = lltype.nullptr(rffi.VOIDP.TO) res = VirtualAlloc_safe(null, map_size, MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE) if not res: raise MemoryError arg = lltype.malloc(LPDWORD.TO, 1, zero=True, flavor='raw') VirtualProtect(res, map_size, PAGE_EXECUTE_READWRITE, arg) lltype.free(arg, flavor='raw') # ignore errors, just try return res alloc._annenforceargs_ = (int,) def free(ptr, map_size): VirtualFree_safe(ptr, 0, MEM_RELEASE) def madvise_free(addr, map_size): r = _VirtualAlloc_safe_no_wrapper( rffi.cast(rffi.VOIDP, addr), rffi.cast(rffi.SIZE_T, map_size), rffi.cast(DWORD, MEM_RESET), rffi.cast(DWORD, PAGE_READWRITE)) #from rpython.rlib import debug #debug.debug_print("madvise_free:", r)
37.867905
90
0.551017
4ea093c247066f0a43c2990302bdb26c81a6c721
3,505
py
Python
unet/train.py
dylanv/unet
31f0deac92c89fff9a86573439235efc09fb1b37
[ "MIT" ]
null
null
null
unet/train.py
dylanv/unet
31f0deac92c89fff9a86573439235efc09fb1b37
[ "MIT" ]
null
null
null
unet/train.py
dylanv/unet
31f0deac92c89fff9a86573439235efc09fb1b37
[ "MIT" ]
null
null
null
import os from pathlib import Path import albumentations as A import cv2 import matplotlib.pyplot as plt import torch from albumentations.pytorch import ToTensorV2 from ignite.contrib.handlers import ProgressBar from ignite.contrib.metrics import GpuInfo from ignite.engine import Events, create_supervised_evaluator, create_supervised_trainer from ignite.metrics import Accuracy, Loss from segmentation_models_pytorch.losses import DiceLoss from torch.optim import SGD from torch.utils.data import DataLoader, Dataset from unet.model import Unet dataset = Path("/home/dylan/Dropbox/Projects/datasets/aerial_segmentation/dataset/semantic_drone_dataset") imgs = dataset / "original_images" masks = dataset / "label_images_semantic" class SemanticDroneDataset(Dataset): def __init__(self, images_path, masks_path): super().__init__() self.images_path, self.masks_path = images_path, masks_path self.image_names = self._get_matched_images() self.output_transform = A.Compose( [ A.RandomCrop(height=256, width=256, always_apply=True), # A.Resize(height=256, width=256, always_apply=True), A.ToFloat(always_apply=True), ToTensorV2(always_apply=True), ], ) def _get_matched_images(self): matched_image_names = [] for img_name in self.images_path.glob(f"*.jpg"): label_name = img_name.with_suffix(".png").name labels = list(self.masks_path.glob(label_name)) if len(labels) == 1: matched_image_names.append(img_name.stem) return matched_image_names def __len__(self): return len(self.image_names) def __getitem__(self, item): filename = self.image_names[item] img_path, mask_path = self.images_path / filename, self.masks_path / filename img = cv2.imread(str(img_path.with_suffix(".jpg")), cv2.IMREAD_COLOR) mask = cv2.imread(str(mask_path.with_suffix(".png")), cv2.IMREAD_GRAYSCALE) aug = self.output_transform(image=img, mask=mask) return aug["image"], aug["mask"].to(torch.int64) def show_plot(self, item): img, mask = self[0] img, mask = img.numpy(), mask.numpy() fig, (ax1, ax2) = plt.subplots(2, 1) ax1.imshow(img) ax2.imshow(mask) plt.tight_layout() plt.show() train_dataset = SemanticDroneDataset(imgs, masks) img, mask = train_dataset[0] train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True, num_workers=os.cpu_count()) model = Unet(3, 24, attention=True) criterion = DiceLoss("multiclass") device = "cuda" model.to(device) # Move model before creating optimizer optimizer = SGD(model.parameters(), lr=0.001, momentum=0.1) trainer = create_supervised_trainer(model, optimizer, criterion, device=device) evaluator = create_supervised_evaluator(model, metrics={"accuracy": Accuracy(), "loss": Loss(criterion)}, device=device) GpuInfo().attach(trainer, name="gpu") pbar = ProgressBar(persist=True) pbar.attach(trainer, metric_names="all") @trainer.on(Events.EPOCH_COMPLETED) def log_training_results(engine): evaluator.run(train_loader) metrics = evaluator.state.metrics avg_accuracy = metrics["accuracy"] avg_loss = metrics["loss"] pbar.log_message( f"Training Results - Epoch: {engine.state.epoch} Avg accuracy: {avg_accuracy:.2f} Avg loss: {avg_loss:.2f}" ) trainer.run(train_loader, max_epochs=3)
34.362745
120
0.701569
a03e154ecd6d6f397f2e95cc2c55d3f3a48cfdbe
1,733
py
Python
src/test/dir_stats_test.py
ferzerkerx/git-greenseer
5e5a054a366ac6295a0d7b977bc44f7923da7291
[ "MIT" ]
3
2015-10-02T19:37:44.000Z
2016-11-01T19:06:13.000Z
src/test/dir_stats_test.py
ferzerkerx/git-greenseer
5e5a054a366ac6295a0d7b977bc44f7923da7291
[ "MIT" ]
null
null
null
src/test/dir_stats_test.py
ferzerkerx/git-greenseer
5e5a054a366ac6295a0d7b977bc44f7923da7291
[ "MIT" ]
null
null
null
__author__ = 'fmontes' import unittest from main.contribution_stats import ContributionStats from main.dir_stats import DirStats class DirStatsTest(unittest.TestCase): def test_add_file_contributions(self): dir_name = '/someDir' dir_stats = DirStats(dir_name) dir_stats.add_file_contributions('some_file1', self.create_file_contributions()) dir_stats.add_file_contributions('some_file2', self.create_file_contributions()) dir_stats.add_file_contributions('some_file3', self.create_file_contributions()) dir_stats.add_file_contributions('some_file4', self.create_file_contributions()) self.assertEqual(len(dir_stats.sorted_contributions), 3) first_contribution = dir_stats.sorted_contributions[0] name = first_contribution[0] contributions = first_contribution[1] self.assertEqual(name, 'foo_name3') self.assertAlmostEqual(contributions.average(1000), 40, 3) def create_file_contributions(self): contributor_name1 = 'foo_name1' contributor_name2 = 'foo_name2' contributor_name3 = 'foo_name3' file_contributions = [self.create_contribution(contributor_name1), self.create_contribution(contributor_name2), self.create_contribution(contributor_name3)] return file_contributions @staticmethod def create_contribution(contributor_name, line_count=100, total_lines_to_consider=1050.0): contributor_stats = ContributionStats(contributor_name, line_count) contributor_stats.total_lines_to_consider = total_lines_to_consider return contributor_stats if __name__ == '__main__': unittest.main()
39.386364
94
0.729371
c370fd8730be8a57bf73a3c93883bf0055a37580
6,630
py
Python
cogs_hidden/logs.py
Saizuo/EpicBot
45cebe79b7bf90c0a067162fb3646a176cb6394a
[ "BSD-3-Clause" ]
3
2021-09-13T11:28:49.000Z
2022-02-21T15:16:35.000Z
cogs_hidden/logs.py
Saizuo/EpicBot
45cebe79b7bf90c0a067162fb3646a176cb6394a
[ "BSD-3-Clause" ]
1
2021-09-27T07:45:29.000Z
2021-09-27T07:45:29.000Z
cogs_hidden/logs.py
Saizuo/EpicBot
45cebe79b7bf90c0a067162fb3646a176cb6394a
[ "BSD-3-Clause" ]
null
null
null
""" Copyright 2021 Nirlep_5252_ Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import discord from discord.ext import commands from utils.embed import success_embed, error_embed from utils.bot import EpicBot from config import ( COOLDOWN_BYPASS, EMOJIS, OWNERS, PREFIX, MAIN_COLOR, EMPTY_CHARACTER, WEBSITE_LINK, SUPPORT_SERVER_LINK ) class Logs(commands.Cog): def __init__(self, client: EpicBot): self.client = client @commands.Cog.listener(name="on_command_completion") async def add_cmd_used_count_user_profile(self, ctx: commands.Context): user_profile = await self.client.get_user_profile_(ctx.author.id) user_profile.update({"cmds_used": user_profile['cmds_used'] + 1}) @commands.Cog.listener() async def on_command(self, ctx: commands.Context): if ctx.author.id in COOLDOWN_BYPASS: ctx.command.reset_cooldown(ctx) if ctx.author.id in OWNERS: return embed = success_embed( "Ah yes", "Some kid used me" ).add_field(name="Command:", value=f"```{ctx.message.content}```", inline=False ).add_field(name="User:", value=f"{ctx.author.mention}```{ctx.author}\n{ctx.author.id}```", inline=False ).add_field(name="Server:", value=f"```{ctx.guild}\n{ctx.guild.id}```", inline=False ).add_field(name="Channel:", value=f"{ctx.channel.mention}```{ctx.channel}\n{ctx.channel.id}```", inline=False) webhooks = self.client.get_cog("Webhooks").webhooks webhook = webhooks.get("cmd_uses") await webhook.send(embed=embed) @commands.Cog.listener() async def on_message(self, message: discord.Message): if message.author.bot: return if str(message.channel.type) != 'private': return files = [await e.to_file() for e in message.attachments] embed = success_embed("New DM!", message.system_content).add_field( name="Kid:", value=f"{message.author.mention}```{message.author}\n{message.author.id}```", inline=False ).set_footer(text=f"Message ID: {message.id}").set_author(name=message.author, icon_url=message.author.display_avatar.url) for sticker in message.stickers: embed.add_field( name="Sticker:", value=f"[{sticker.name} (ID: {sticker.id})]({sticker.url})" ) if len(message.stickers) == 1: embed.set_image(url=message.stickers[0].url) await self.client.get_channel(793482521076695070).send(embed=embed, files=files) @commands.Cog.listener() async def on_guild_join(self, guild: discord.Guild): await self.client.get_guild_config(guild.id) embed = success_embed( f"{EMOJIS['add']} Mikuni Added", f""" **Server:** ```{guild} ({guild.id})``` **Owner:** {guild.owner.mention}```{guild.owner} ({guild.owner_id})``` **Members:** {guild.member_count} **Humans:** {len(list(filter(lambda m: not m.bot, guild.members)))} **Bots:** {len(list(filter(lambda m: m.bot, guild.members)))} """ ).set_author(name=guild.owner, icon_url=guild.owner.display_avatar.url) if guild.icon is not None: embed.set_thumbnail(url=guild.icon.url) try: webhook = self.client.get_cog("Webhooks").webhooks.get("add_remove") await webhook.send(embed=embed) except Exception: pass send_embed = discord.Embed( title=f"{EMOJIS['wave_1']} Hi, UwU!~", description=f""" Thank you very much for inviting me, I love you!~ My prefix is `{PREFIX}`, but you can change it to whatever you want! Let me tell you more about me! ~ I am a simple, multipurpose bot designed to make your Discord life simpler. ~ I have a lot of amazing modules that you can discover by using the command `{PREFIX}help` ~ I leave the rest for you to discover... <:hehe:866211987716833300> I hope you have a fun time with me, UwU!~ """, color=MAIN_COLOR ).set_thumbnail(url=self.client.user.display_avatar.url ).set_author(name=self.client.user.name, icon_url=self.client.user.display_avatar.url ).add_field(name=EMPTY_CHARACTER, value=f"[Invite Mikuni]({WEBSITE_LINK}/invite) | [Vote Mikuni]({WEBSITE_LINK}/vote) | [Support Server]({SUPPORT_SERVER_LINK})", inline=False) for channel in guild.channels: if "general" in channel.name: try: return await channel.send(embed=send_embed) except Exception: pass for channel in guild.channels: if "bot" in channel.name or "cmd" in channel.name or "command" in channel.name: try: return await channel.send(embed=send_embed) except Exception: pass for channel in guild.channels: try: return await channel.send(embed=send_embed) except Exception: pass @commands.Cog.listener() async def on_guild_remove(self, guild: discord.Guild): embed = error_embed( f"{EMOJIS['remove']} Mikuni Removed", f""" **Server:** ```{guild} ({guild.id})``` **Owner:** {guild.owner.mention}```{guild.owner} ({guild.owner_id})``` **Members:** {guild.member_count} **Humans:** {len(list(filter(lambda m: not m.bot, guild.members)))} **Bots:** {len(list(filter(lambda m: m.bot, guild.members)))} """ ).set_author(name=guild.owner, icon_url=guild.owner.display_avatar.url) if guild.icon is not None: embed.set_thumbnail(url=guild.icon.url) for e in self.client.serverconfig_cache: if e['_id'] == guild.id: self.client.serverconfig_cache.remove(e) await self.client.serverconfig.delete_one({"_id": guild.id}) break webhook = self.client.get_cog("Webhooks").webhooks.get("add_remove") await webhook.send(embed=embed) def setup(client): client.add_cog(Logs(client))
40.674847
183
0.633635
917a3acde58cbb601e3fe33318443144feb9ed4d
7,998
py
Python
cryptoapis/model/uri_not_found.py
xan187/Crypto_APIs_2.0_SDK_Python
a56c75df54ef037b39be1315ed6e54de35bed55b
[ "MIT" ]
null
null
null
cryptoapis/model/uri_not_found.py
xan187/Crypto_APIs_2.0_SDK_Python
a56c75df54ef037b39be1315ed6e54de35bed55b
[ "MIT" ]
null
null
null
cryptoapis/model/uri_not_found.py
xan187/Crypto_APIs_2.0_SDK_Python
a56c75df54ef037b39be1315ed6e54de35bed55b
[ "MIT" ]
1
2021-07-21T03:35:18.000Z
2021-07-21T03:35:18.000Z
""" CryptoAPIs Crypto APIs 2.0 is a complex and innovative infrastructure layer that radically simplifies the development of any Blockchain and Crypto related applications. Organized around REST, Crypto APIs 2.0 can assist both novice Bitcoin/Ethereum enthusiasts and crypto experts with the development of their blockchain applications. Crypto APIs 2.0 provides unified endpoints and data, raw data, automatic tokens and coins forwardings, callback functionalities, and much more. # noqa: E501 The version of the OpenAPI document: 2.0.0 Contact: developers@cryptoapis.io Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from cryptoapis.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) def lazy_import(): from cryptoapis.model.uri_not_found_error import UriNotFoundError globals()['UriNotFoundError'] = UriNotFoundError class UriNotFound(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } additional_properties_type = None _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'api_version': (str,), # noqa: E501 'request_id': (str,), # noqa: E501 'error': (UriNotFoundError,), # noqa: E501 'context': (str,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'api_version': 'apiVersion', # noqa: E501 'request_id': 'requestId', # noqa: E501 'error': 'error', # noqa: E501 'context': 'context', # noqa: E501 } _composed_schemas = {} required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, api_version, request_id, error, *args, **kwargs): # noqa: E501 """UriNotFound - a model defined in OpenAPI Args: api_version (str): Specifies the version of the API that incorporates this endpoint. request_id (str): Defines the ID of the request. The `requestId` is generated by Crypto APIs and it's unique for every request. error (UriNotFoundError): Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) context (str): In batch situations the user can use the context to correlate responses with requests. This property is present regardless of whether the response was successful or returned as an error. `context` is specified by the user.. [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.api_version = api_version self.request_id = request_id self.error = error for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value)
42.770053
484
0.606902
b24b28731c61f272f73e2bd079ce13afff17bb1e
132,649
py
Python
Lib/test/pickletester.py
diogommartins/cinder
79103e9119cbecef3b085ccf2878f00c26e1d175
[ "CNRI-Python-GPL-Compatible" ]
1,886
2021-05-03T23:58:43.000Z
2022-03-31T19:15:58.000Z
Lib/test/pickletester.py
diogommartins/cinder
79103e9119cbecef3b085ccf2878f00c26e1d175
[ "CNRI-Python-GPL-Compatible" ]
70
2021-05-04T23:25:35.000Z
2022-03-31T18:42:08.000Z
Lib/test/pickletester.py
diogommartins/cinder
79103e9119cbecef3b085ccf2878f00c26e1d175
[ "CNRI-Python-GPL-Compatible" ]
52
2021-05-04T21:26:03.000Z
2022-03-08T18:02:56.000Z
import collections import copyreg import dbm import io import functools import os import math import pickle import pickletools import shutil import struct import sys import threading import unittest import weakref from textwrap import dedent from http.cookies import SimpleCookie try: import _testbuffer except ImportError: _testbuffer = None from test import support from test.support import ( TestFailed, TESTFN, run_with_locale, no_tracing, _2G, _4G, bigmemtest, reap_threads, forget, save_restore_warnings_filters ) from pickle import bytes_types # bpo-41003: Save/restore warnings filters to leave them unchanged. # Ignore filters installed by numpy. try: with save_restore_warnings_filters(): import numpy as np except ImportError: np = None requires_32b = unittest.skipUnless(sys.maxsize < 2**32, "test is only meaningful on 32-bit builds") # Tests that try a number of pickle protocols should have a # for proto in protocols: # kind of outer loop. protocols = range(pickle.HIGHEST_PROTOCOL + 1) # Return True if opcode code appears in the pickle, else False. def opcode_in_pickle(code, pickle): for op, dummy, dummy in pickletools.genops(pickle): if op.code == code.decode("latin-1"): return True return False # Return the number of times opcode code appears in pickle. def count_opcode(code, pickle): n = 0 for op, dummy, dummy in pickletools.genops(pickle): if op.code == code.decode("latin-1"): n += 1 return n class UnseekableIO(io.BytesIO): def peek(self, *args): raise NotImplementedError def seekable(self): return False def seek(self, *args): raise io.UnsupportedOperation def tell(self): raise io.UnsupportedOperation class MinimalIO(object): """ A file-like object that doesn't support readinto(). """ def __init__(self, *args): self._bio = io.BytesIO(*args) self.getvalue = self._bio.getvalue self.read = self._bio.read self.readline = self._bio.readline self.write = self._bio.write # We can't very well test the extension registry without putting known stuff # in it, but we have to be careful to restore its original state. Code # should do this: # # e = ExtensionSaver(extension_code) # try: # fiddle w/ the extension registry's stuff for extension_code # finally: # e.restore() class ExtensionSaver: # Remember current registration for code (if any), and remove it (if # there is one). def __init__(self, code): self.code = code if code in copyreg._inverted_registry: self.pair = copyreg._inverted_registry[code] copyreg.remove_extension(self.pair[0], self.pair[1], code) else: self.pair = None # Restore previous registration for code. def restore(self): code = self.code curpair = copyreg._inverted_registry.get(code) if curpair is not None: copyreg.remove_extension(curpair[0], curpair[1], code) pair = self.pair if pair is not None: copyreg.add_extension(pair[0], pair[1], code) class C: def __eq__(self, other): return self.__dict__ == other.__dict__ class D(C): def __init__(self, arg): pass class E(C): def __getinitargs__(self): return () class H(object): pass # Hashable mutable key class K(object): def __init__(self, value): self.value = value def __reduce__(self): # Shouldn't support the recursion itself return K, (self.value,) import __main__ __main__.C = C C.__module__ = "__main__" __main__.D = D D.__module__ = "__main__" __main__.E = E E.__module__ = "__main__" __main__.H = H H.__module__ = "__main__" __main__.K = K K.__module__ = "__main__" class myint(int): def __init__(self, x): self.str = str(x) class initarg(C): def __init__(self, a, b): self.a = a self.b = b def __getinitargs__(self): return self.a, self.b class metaclass(type): pass class use_metaclass(object, metaclass=metaclass): pass class pickling_metaclass(type): def __eq__(self, other): return (type(self) == type(other) and self.reduce_args == other.reduce_args) def __reduce__(self): return (create_dynamic_class, self.reduce_args) def create_dynamic_class(name, bases): result = pickling_metaclass(name, bases, dict()) result.reduce_args = (name, bases) return result class ZeroCopyBytes(bytes): readonly = True c_contiguous = True f_contiguous = True zero_copy_reconstruct = True def __reduce_ex__(self, protocol): if protocol >= 5: return type(self)._reconstruct, (pickle.PickleBuffer(self),), None else: return type(self)._reconstruct, (bytes(self),) def __repr__(self): return "{}({!r})".format(self.__class__.__name__, bytes(self)) __str__ = __repr__ @classmethod def _reconstruct(cls, obj): with memoryview(obj) as m: obj = m.obj if type(obj) is cls: # Zero-copy return obj else: return cls(obj) class ZeroCopyBytearray(bytearray): readonly = False c_contiguous = True f_contiguous = True zero_copy_reconstruct = True def __reduce_ex__(self, protocol): if protocol >= 5: return type(self)._reconstruct, (pickle.PickleBuffer(self),), None else: return type(self)._reconstruct, (bytes(self),) def __repr__(self): return "{}({!r})".format(self.__class__.__name__, bytes(self)) __str__ = __repr__ @classmethod def _reconstruct(cls, obj): with memoryview(obj) as m: obj = m.obj if type(obj) is cls: # Zero-copy return obj else: return cls(obj) if _testbuffer is not None: class PicklableNDArray: # A not-really-zero-copy picklable ndarray, as the ndarray() # constructor doesn't allow for it zero_copy_reconstruct = False def __init__(self, *args, **kwargs): self.array = _testbuffer.ndarray(*args, **kwargs) def __getitem__(self, idx): cls = type(self) new = cls.__new__(cls) new.array = self.array[idx] return new @property def readonly(self): return self.array.readonly @property def c_contiguous(self): return self.array.c_contiguous @property def f_contiguous(self): return self.array.f_contiguous def __eq__(self, other): if not isinstance(other, PicklableNDArray): return NotImplemented return (other.array.format == self.array.format and other.array.shape == self.array.shape and other.array.strides == self.array.strides and other.array.readonly == self.array.readonly and other.array.tobytes() == self.array.tobytes()) def __ne__(self, other): if not isinstance(other, PicklableNDArray): return NotImplemented return not (self == other) def __repr__(self): return (f"{type(self)}(shape={self.array.shape}," f"strides={self.array.strides}, " f"bytes={self.array.tobytes()})") def __reduce_ex__(self, protocol): if not self.array.contiguous: raise NotImplementedError("Reconstructing a non-contiguous " "ndarray does not seem possible") ndarray_kwargs = {"shape": self.array.shape, "strides": self.array.strides, "format": self.array.format, "flags": (0 if self.readonly else _testbuffer.ND_WRITABLE)} pb = pickle.PickleBuffer(self.array) if protocol >= 5: return (type(self)._reconstruct, (pb, ndarray_kwargs)) else: # Need to serialize the bytes in physical order with pb.raw() as m: return (type(self)._reconstruct, (m.tobytes(), ndarray_kwargs)) @classmethod def _reconstruct(cls, obj, kwargs): with memoryview(obj) as m: # For some reason, ndarray() wants a list of integers... # XXX This only works if format == 'B' items = list(m.tobytes()) return cls(items, **kwargs) # DATA0 .. DATA4 are the pickles we expect under the various protocols, for # the object returned by create_data(). DATA0 = ( b'(lp0\nL0L\naL1L\naF2.0\n' b'ac__builtin__\ncomple' b'x\np1\n(F3.0\nF0.0\ntp2\n' b'Rp3\naL1L\naL-1L\naL255' b'L\naL-255L\naL-256L\naL' b'65535L\naL-65535L\naL-' b'65536L\naL2147483647L' b'\naL-2147483647L\naL-2' b'147483648L\na(Vabc\np4' b'\ng4\nccopy_reg\n_recon' b'structor\np5\n(c__main' b'__\nC\np6\nc__builtin__' b'\nobject\np7\nNtp8\nRp9\n' b'(dp10\nVfoo\np11\nL1L\ns' b'Vbar\np12\nL2L\nsbg9\ntp' b'13\nag13\naL5L\na.' ) # Disassembly of DATA0 DATA0_DIS = """\ 0: ( MARK 1: l LIST (MARK at 0) 2: p PUT 0 5: L LONG 0 9: a APPEND 10: L LONG 1 14: a APPEND 15: F FLOAT 2.0 20: a APPEND 21: c GLOBAL '__builtin__ complex' 42: p PUT 1 45: ( MARK 46: F FLOAT 3.0 51: F FLOAT 0.0 56: t TUPLE (MARK at 45) 57: p PUT 2 60: R REDUCE 61: p PUT 3 64: a APPEND 65: L LONG 1 69: a APPEND 70: L LONG -1 75: a APPEND 76: L LONG 255 82: a APPEND 83: L LONG -255 90: a APPEND 91: L LONG -256 98: a APPEND 99: L LONG 65535 107: a APPEND 108: L LONG -65535 117: a APPEND 118: L LONG -65536 127: a APPEND 128: L LONG 2147483647 141: a APPEND 142: L LONG -2147483647 156: a APPEND 157: L LONG -2147483648 171: a APPEND 172: ( MARK 173: V UNICODE 'abc' 178: p PUT 4 181: g GET 4 184: c GLOBAL 'copy_reg _reconstructor' 209: p PUT 5 212: ( MARK 213: c GLOBAL '__main__ C' 225: p PUT 6 228: c GLOBAL '__builtin__ object' 248: p PUT 7 251: N NONE 252: t TUPLE (MARK at 212) 253: p PUT 8 256: R REDUCE 257: p PUT 9 260: ( MARK 261: d DICT (MARK at 260) 262: p PUT 10 266: V UNICODE 'foo' 271: p PUT 11 275: L LONG 1 279: s SETITEM 280: V UNICODE 'bar' 285: p PUT 12 289: L LONG 2 293: s SETITEM 294: b BUILD 295: g GET 9 298: t TUPLE (MARK at 172) 299: p PUT 13 303: a APPEND 304: g GET 13 308: a APPEND 309: L LONG 5 313: a APPEND 314: . STOP highest protocol among opcodes = 0 """ DATA1 = ( b']q\x00(K\x00K\x01G@\x00\x00\x00\x00\x00\x00\x00c__' b'builtin__\ncomplex\nq\x01' b'(G@\x08\x00\x00\x00\x00\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00t' b'q\x02Rq\x03K\x01J\xff\xff\xff\xffK\xffJ\x01\xff\xff\xffJ' b'\x00\xff\xff\xffM\xff\xffJ\x01\x00\xff\xffJ\x00\x00\xff\xffJ\xff\xff' b'\xff\x7fJ\x01\x00\x00\x80J\x00\x00\x00\x80(X\x03\x00\x00\x00ab' b'cq\x04h\x04ccopy_reg\n_reco' b'nstructor\nq\x05(c__main' b'__\nC\nq\x06c__builtin__\n' b'object\nq\x07Ntq\x08Rq\t}q\n(' b'X\x03\x00\x00\x00fooq\x0bK\x01X\x03\x00\x00\x00bar' b'q\x0cK\x02ubh\ttq\rh\rK\x05e.' ) # Disassembly of DATA1 DATA1_DIS = """\ 0: ] EMPTY_LIST 1: q BINPUT 0 3: ( MARK 4: K BININT1 0 6: K BININT1 1 8: G BINFLOAT 2.0 17: c GLOBAL '__builtin__ complex' 38: q BINPUT 1 40: ( MARK 41: G BINFLOAT 3.0 50: G BINFLOAT 0.0 59: t TUPLE (MARK at 40) 60: q BINPUT 2 62: R REDUCE 63: q BINPUT 3 65: K BININT1 1 67: J BININT -1 72: K BININT1 255 74: J BININT -255 79: J BININT -256 84: M BININT2 65535 87: J BININT -65535 92: J BININT -65536 97: J BININT 2147483647 102: J BININT -2147483647 107: J BININT -2147483648 112: ( MARK 113: X BINUNICODE 'abc' 121: q BINPUT 4 123: h BINGET 4 125: c GLOBAL 'copy_reg _reconstructor' 150: q BINPUT 5 152: ( MARK 153: c GLOBAL '__main__ C' 165: q BINPUT 6 167: c GLOBAL '__builtin__ object' 187: q BINPUT 7 189: N NONE 190: t TUPLE (MARK at 152) 191: q BINPUT 8 193: R REDUCE 194: q BINPUT 9 196: } EMPTY_DICT 197: q BINPUT 10 199: ( MARK 200: X BINUNICODE 'foo' 208: q BINPUT 11 210: K BININT1 1 212: X BINUNICODE 'bar' 220: q BINPUT 12 222: K BININT1 2 224: u SETITEMS (MARK at 199) 225: b BUILD 226: h BINGET 9 228: t TUPLE (MARK at 112) 229: q BINPUT 13 231: h BINGET 13 233: K BININT1 5 235: e APPENDS (MARK at 3) 236: . STOP highest protocol among opcodes = 1 """ DATA2 = ( b'\x80\x02]q\x00(K\x00K\x01G@\x00\x00\x00\x00\x00\x00\x00c' b'__builtin__\ncomplex\n' b'q\x01G@\x08\x00\x00\x00\x00\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00' b'\x86q\x02Rq\x03K\x01J\xff\xff\xff\xffK\xffJ\x01\xff\xff\xff' b'J\x00\xff\xff\xffM\xff\xffJ\x01\x00\xff\xffJ\x00\x00\xff\xffJ\xff' b'\xff\xff\x7fJ\x01\x00\x00\x80J\x00\x00\x00\x80(X\x03\x00\x00\x00a' b'bcq\x04h\x04c__main__\nC\nq\x05' b')\x81q\x06}q\x07(X\x03\x00\x00\x00fooq\x08K\x01' b'X\x03\x00\x00\x00barq\tK\x02ubh\x06tq\nh' b'\nK\x05e.' ) # Disassembly of DATA2 DATA2_DIS = """\ 0: \x80 PROTO 2 2: ] EMPTY_LIST 3: q BINPUT 0 5: ( MARK 6: K BININT1 0 8: K BININT1 1 10: G BINFLOAT 2.0 19: c GLOBAL '__builtin__ complex' 40: q BINPUT 1 42: G BINFLOAT 3.0 51: G BINFLOAT 0.0 60: \x86 TUPLE2 61: q BINPUT 2 63: R REDUCE 64: q BINPUT 3 66: K BININT1 1 68: J BININT -1 73: K BININT1 255 75: J BININT -255 80: J BININT -256 85: M BININT2 65535 88: J BININT -65535 93: J BININT -65536 98: J BININT 2147483647 103: J BININT -2147483647 108: J BININT -2147483648 113: ( MARK 114: X BINUNICODE 'abc' 122: q BINPUT 4 124: h BINGET 4 126: c GLOBAL '__main__ C' 138: q BINPUT 5 140: ) EMPTY_TUPLE 141: \x81 NEWOBJ 142: q BINPUT 6 144: } EMPTY_DICT 145: q BINPUT 7 147: ( MARK 148: X BINUNICODE 'foo' 156: q BINPUT 8 158: K BININT1 1 160: X BINUNICODE 'bar' 168: q BINPUT 9 170: K BININT1 2 172: u SETITEMS (MARK at 147) 173: b BUILD 174: h BINGET 6 176: t TUPLE (MARK at 113) 177: q BINPUT 10 179: h BINGET 10 181: K BININT1 5 183: e APPENDS (MARK at 5) 184: . STOP highest protocol among opcodes = 2 """ DATA3 = ( b'\x80\x03]q\x00(K\x00K\x01G@\x00\x00\x00\x00\x00\x00\x00c' b'builtins\ncomplex\nq\x01G' b'@\x08\x00\x00\x00\x00\x00\x00G\x00\x00\x00\x00\x00\x00\x00\x00\x86q\x02' b'Rq\x03K\x01J\xff\xff\xff\xffK\xffJ\x01\xff\xff\xffJ\x00\xff' b'\xff\xffM\xff\xffJ\x01\x00\xff\xffJ\x00\x00\xff\xffJ\xff\xff\xff\x7f' b'J\x01\x00\x00\x80J\x00\x00\x00\x80(X\x03\x00\x00\x00abcq' b'\x04h\x04c__main__\nC\nq\x05)\x81q' b'\x06}q\x07(X\x03\x00\x00\x00barq\x08K\x02X\x03\x00' b'\x00\x00fooq\tK\x01ubh\x06tq\nh\nK\x05' b'e.' ) # Disassembly of DATA3 DATA3_DIS = """\ 0: \x80 PROTO 3 2: ] EMPTY_LIST 3: q BINPUT 0 5: ( MARK 6: K BININT1 0 8: K BININT1 1 10: G BINFLOAT 2.0 19: c GLOBAL 'builtins complex' 37: q BINPUT 1 39: G BINFLOAT 3.0 48: G BINFLOAT 0.0 57: \x86 TUPLE2 58: q BINPUT 2 60: R REDUCE 61: q BINPUT 3 63: K BININT1 1 65: J BININT -1 70: K BININT1 255 72: J BININT -255 77: J BININT -256 82: M BININT2 65535 85: J BININT -65535 90: J BININT -65536 95: J BININT 2147483647 100: J BININT -2147483647 105: J BININT -2147483648 110: ( MARK 111: X BINUNICODE 'abc' 119: q BINPUT 4 121: h BINGET 4 123: c GLOBAL '__main__ C' 135: q BINPUT 5 137: ) EMPTY_TUPLE 138: \x81 NEWOBJ 139: q BINPUT 6 141: } EMPTY_DICT 142: q BINPUT 7 144: ( MARK 145: X BINUNICODE 'bar' 153: q BINPUT 8 155: K BININT1 2 157: X BINUNICODE 'foo' 165: q BINPUT 9 167: K BININT1 1 169: u SETITEMS (MARK at 144) 170: b BUILD 171: h BINGET 6 173: t TUPLE (MARK at 110) 174: q BINPUT 10 176: h BINGET 10 178: K BININT1 5 180: e APPENDS (MARK at 5) 181: . STOP highest protocol among opcodes = 2 """ DATA4 = ( b'\x80\x04\x95\xa8\x00\x00\x00\x00\x00\x00\x00]\x94(K\x00K\x01G@' b'\x00\x00\x00\x00\x00\x00\x00\x8c\x08builtins\x94\x8c\x07' b'complex\x94\x93\x94G@\x08\x00\x00\x00\x00\x00\x00G' b'\x00\x00\x00\x00\x00\x00\x00\x00\x86\x94R\x94K\x01J\xff\xff\xff\xffK' b'\xffJ\x01\xff\xff\xffJ\x00\xff\xff\xffM\xff\xffJ\x01\x00\xff\xffJ' b'\x00\x00\xff\xffJ\xff\xff\xff\x7fJ\x01\x00\x00\x80J\x00\x00\x00\x80(' b'\x8c\x03abc\x94h\x06\x8c\x08__main__\x94\x8c' b'\x01C\x94\x93\x94)\x81\x94}\x94(\x8c\x03bar\x94K\x02\x8c' b'\x03foo\x94K\x01ubh\nt\x94h\x0eK\x05e.' ) # Disassembly of DATA4 DATA4_DIS = """\ 0: \x80 PROTO 4 2: \x95 FRAME 168 11: ] EMPTY_LIST 12: \x94 MEMOIZE 13: ( MARK 14: K BININT1 0 16: K BININT1 1 18: G BINFLOAT 2.0 27: \x8c SHORT_BINUNICODE 'builtins' 37: \x94 MEMOIZE 38: \x8c SHORT_BINUNICODE 'complex' 47: \x94 MEMOIZE 48: \x93 STACK_GLOBAL 49: \x94 MEMOIZE 50: G BINFLOAT 3.0 59: G BINFLOAT 0.0 68: \x86 TUPLE2 69: \x94 MEMOIZE 70: R REDUCE 71: \x94 MEMOIZE 72: K BININT1 1 74: J BININT -1 79: K BININT1 255 81: J BININT -255 86: J BININT -256 91: M BININT2 65535 94: J BININT -65535 99: J BININT -65536 104: J BININT 2147483647 109: J BININT -2147483647 114: J BININT -2147483648 119: ( MARK 120: \x8c SHORT_BINUNICODE 'abc' 125: \x94 MEMOIZE 126: h BINGET 6 128: \x8c SHORT_BINUNICODE '__main__' 138: \x94 MEMOIZE 139: \x8c SHORT_BINUNICODE 'C' 142: \x94 MEMOIZE 143: \x93 STACK_GLOBAL 144: \x94 MEMOIZE 145: ) EMPTY_TUPLE 146: \x81 NEWOBJ 147: \x94 MEMOIZE 148: } EMPTY_DICT 149: \x94 MEMOIZE 150: ( MARK 151: \x8c SHORT_BINUNICODE 'bar' 156: \x94 MEMOIZE 157: K BININT1 2 159: \x8c SHORT_BINUNICODE 'foo' 164: \x94 MEMOIZE 165: K BININT1 1 167: u SETITEMS (MARK at 150) 168: b BUILD 169: h BINGET 10 171: t TUPLE (MARK at 119) 172: \x94 MEMOIZE 173: h BINGET 14 175: K BININT1 5 177: e APPENDS (MARK at 13) 178: . STOP highest protocol among opcodes = 4 """ # set([1,2]) pickled from 2.x with protocol 2 DATA_SET = b'\x80\x02c__builtin__\nset\nq\x00]q\x01(K\x01K\x02e\x85q\x02Rq\x03.' # xrange(5) pickled from 2.x with protocol 2 DATA_XRANGE = b'\x80\x02c__builtin__\nxrange\nq\x00K\x00K\x05K\x01\x87q\x01Rq\x02.' # a SimpleCookie() object pickled from 2.x with protocol 2 DATA_COOKIE = (b'\x80\x02cCookie\nSimpleCookie\nq\x00)\x81q\x01U\x03key' b'q\x02cCookie\nMorsel\nq\x03)\x81q\x04(U\x07commentq\x05U' b'\x00q\x06U\x06domainq\x07h\x06U\x06secureq\x08h\x06U\x07' b'expiresq\th\x06U\x07max-ageq\nh\x06U\x07versionq\x0bh\x06U' b'\x04pathq\x0ch\x06U\x08httponlyq\rh\x06u}q\x0e(U\x0b' b'coded_valueq\x0fU\x05valueq\x10h\x10h\x10h\x02h\x02ubs}q\x11b.') # set([3]) pickled from 2.x with protocol 2 DATA_SET2 = b'\x80\x02c__builtin__\nset\nq\x00]q\x01K\x03a\x85q\x02Rq\x03.' python2_exceptions_without_args = ( ArithmeticError, AssertionError, AttributeError, BaseException, BufferError, BytesWarning, DeprecationWarning, EOFError, EnvironmentError, Exception, FloatingPointError, FutureWarning, GeneratorExit, IOError, ImportError, ImportWarning, IndentationError, IndexError, KeyError, KeyboardInterrupt, LookupError, MemoryError, NameError, NotImplementedError, OSError, OverflowError, PendingDeprecationWarning, ReferenceError, RuntimeError, RuntimeWarning, # StandardError is gone in Python 3, we map it to Exception StopIteration, SyntaxError, SyntaxWarning, SystemError, SystemExit, TabError, TypeError, UnboundLocalError, UnicodeError, UnicodeWarning, UserWarning, ValueError, Warning, ZeroDivisionError, ) exception_pickle = b'\x80\x02cexceptions\n?\nq\x00)Rq\x01.' # UnicodeEncodeError object pickled from 2.x with protocol 2 DATA_UEERR = (b'\x80\x02cexceptions\nUnicodeEncodeError\n' b'q\x00(U\x05asciiq\x01X\x03\x00\x00\x00fooq\x02K\x00K\x01' b'U\x03badq\x03tq\x04Rq\x05.') def create_data(): c = C() c.foo = 1 c.bar = 2 x = [0, 1, 2.0, 3.0+0j] # Append some integer test cases at cPickle.c's internal size # cutoffs. uint1max = 0xff uint2max = 0xffff int4max = 0x7fffffff x.extend([1, -1, uint1max, -uint1max, -uint1max-1, uint2max, -uint2max, -uint2max-1, int4max, -int4max, -int4max-1]) y = ('abc', 'abc', c, c) x.append(y) x.append(y) x.append(5) return x class AbstractUnpickleTests(unittest.TestCase): # Subclass must define self.loads. _testdata = create_data() def assert_is_copy(self, obj, objcopy, msg=None): """Utility method to verify if two objects are copies of each others. """ if msg is None: msg = "{!r} is not a copy of {!r}".format(obj, objcopy) self.assertEqual(obj, objcopy, msg=msg) self.assertIs(type(obj), type(objcopy), msg=msg) if hasattr(obj, '__dict__'): self.assertDictEqual(obj.__dict__, objcopy.__dict__, msg=msg) self.assertIsNot(obj.__dict__, objcopy.__dict__, msg=msg) if hasattr(obj, '__slots__'): self.assertListEqual(obj.__slots__, objcopy.__slots__, msg=msg) for slot in obj.__slots__: self.assertEqual( hasattr(obj, slot), hasattr(objcopy, slot), msg=msg) self.assertEqual(getattr(obj, slot, None), getattr(objcopy, slot, None), msg=msg) def check_unpickling_error(self, errors, data): with self.subTest(data=data), \ self.assertRaises(errors): try: self.loads(data) except BaseException as exc: if support.verbose > 1: print('%-32r - %s: %s' % (data, exc.__class__.__name__, exc)) raise def test_load_from_data0(self): self.assert_is_copy(self._testdata, self.loads(DATA0)) def test_load_from_data1(self): self.assert_is_copy(self._testdata, self.loads(DATA1)) def test_load_from_data2(self): self.assert_is_copy(self._testdata, self.loads(DATA2)) def test_load_from_data3(self): self.assert_is_copy(self._testdata, self.loads(DATA3)) def test_load_from_data4(self): self.assert_is_copy(self._testdata, self.loads(DATA4)) def test_load_classic_instance(self): # See issue5180. Test loading 2.x pickles that # contain an instance of old style class. for X, args in [(C, ()), (D, ('x',)), (E, ())]: xname = X.__name__.encode('ascii') # Protocol 0 (text mode pickle): """ 0: ( MARK 1: i INST '__main__ X' (MARK at 0) 13: p PUT 0 16: ( MARK 17: d DICT (MARK at 16) 18: p PUT 1 21: b BUILD 22: . STOP """ pickle0 = (b"(i__main__\n" b"X\n" b"p0\n" b"(dp1\nb.").replace(b'X', xname) self.assert_is_copy(X(*args), self.loads(pickle0)) # Protocol 1 (binary mode pickle) """ 0: ( MARK 1: c GLOBAL '__main__ X' 13: q BINPUT 0 15: o OBJ (MARK at 0) 16: q BINPUT 1 18: } EMPTY_DICT 19: q BINPUT 2 21: b BUILD 22: . STOP """ pickle1 = (b'(c__main__\n' b'X\n' b'q\x00oq\x01}q\x02b.').replace(b'X', xname) self.assert_is_copy(X(*args), self.loads(pickle1)) # Protocol 2 (pickle2 = b'\x80\x02' + pickle1) """ 0: \x80 PROTO 2 2: ( MARK 3: c GLOBAL '__main__ X' 15: q BINPUT 0 17: o OBJ (MARK at 2) 18: q BINPUT 1 20: } EMPTY_DICT 21: q BINPUT 2 23: b BUILD 24: . STOP """ pickle2 = (b'\x80\x02(c__main__\n' b'X\n' b'q\x00oq\x01}q\x02b.').replace(b'X', xname) self.assert_is_copy(X(*args), self.loads(pickle2)) def test_maxint64(self): maxint64 = (1 << 63) - 1 data = b'I' + str(maxint64).encode("ascii") + b'\n.' got = self.loads(data) self.assert_is_copy(maxint64, got) # Try too with a bogus literal. data = b'I' + str(maxint64).encode("ascii") + b'JUNK\n.' self.check_unpickling_error(ValueError, data) def test_unpickle_from_2x(self): # Unpickle non-trivial data from Python 2.x. loaded = self.loads(DATA_SET) self.assertEqual(loaded, set([1, 2])) loaded = self.loads(DATA_XRANGE) self.assertEqual(type(loaded), type(range(0))) self.assertEqual(list(loaded), list(range(5))) loaded = self.loads(DATA_COOKIE) self.assertEqual(type(loaded), SimpleCookie) self.assertEqual(list(loaded.keys()), ["key"]) self.assertEqual(loaded["key"].value, "value") # Exception objects without arguments pickled from 2.x with protocol 2 for exc in python2_exceptions_without_args: data = exception_pickle.replace(b'?', exc.__name__.encode("ascii")) loaded = self.loads(data) self.assertIs(type(loaded), exc) # StandardError is mapped to Exception, test that separately loaded = self.loads(exception_pickle.replace(b'?', b'StandardError')) self.assertIs(type(loaded), Exception) loaded = self.loads(DATA_UEERR) self.assertIs(type(loaded), UnicodeEncodeError) self.assertEqual(loaded.object, "foo") self.assertEqual(loaded.encoding, "ascii") self.assertEqual(loaded.start, 0) self.assertEqual(loaded.end, 1) self.assertEqual(loaded.reason, "bad") def test_load_python2_str_as_bytes(self): # From Python 2: pickle.dumps('a\x00\xa0', protocol=0) self.assertEqual(self.loads(b"S'a\\x00\\xa0'\n.", encoding="bytes"), b'a\x00\xa0') # From Python 2: pickle.dumps('a\x00\xa0', protocol=1) self.assertEqual(self.loads(b'U\x03a\x00\xa0.', encoding="bytes"), b'a\x00\xa0') # From Python 2: pickle.dumps('a\x00\xa0', protocol=2) self.assertEqual(self.loads(b'\x80\x02U\x03a\x00\xa0.', encoding="bytes"), b'a\x00\xa0') def test_load_python2_unicode_as_str(self): # From Python 2: pickle.dumps(u'π', protocol=0) self.assertEqual(self.loads(b'V\\u03c0\n.', encoding='bytes'), 'π') # From Python 2: pickle.dumps(u'π', protocol=1) self.assertEqual(self.loads(b'X\x02\x00\x00\x00\xcf\x80.', encoding="bytes"), 'π') # From Python 2: pickle.dumps(u'π', protocol=2) self.assertEqual(self.loads(b'\x80\x02X\x02\x00\x00\x00\xcf\x80.', encoding="bytes"), 'π') def test_load_long_python2_str_as_bytes(self): # From Python 2: pickle.dumps('x' * 300, protocol=1) self.assertEqual(self.loads(pickle.BINSTRING + struct.pack("<I", 300) + b'x' * 300 + pickle.STOP, encoding='bytes'), b'x' * 300) def test_constants(self): self.assertIsNone(self.loads(b'N.')) self.assertIs(self.loads(b'\x88.'), True) self.assertIs(self.loads(b'\x89.'), False) self.assertIs(self.loads(b'I01\n.'), True) self.assertIs(self.loads(b'I00\n.'), False) def test_empty_bytestring(self): # issue 11286 empty = self.loads(b'\x80\x03U\x00q\x00.', encoding='koi8-r') self.assertEqual(empty, '') def test_short_binbytes(self): dumped = b'\x80\x03C\x04\xe2\x82\xac\x00.' self.assertEqual(self.loads(dumped), b'\xe2\x82\xac\x00') def test_binbytes(self): dumped = b'\x80\x03B\x04\x00\x00\x00\xe2\x82\xac\x00.' self.assertEqual(self.loads(dumped), b'\xe2\x82\xac\x00') @requires_32b def test_negative_32b_binbytes(self): # On 32-bit builds, a BINBYTES of 2**31 or more is refused dumped = b'\x80\x03B\xff\xff\xff\xffxyzq\x00.' self.check_unpickling_error((pickle.UnpicklingError, OverflowError), dumped) @requires_32b def test_negative_32b_binunicode(self): # On 32-bit builds, a BINUNICODE of 2**31 or more is refused dumped = b'\x80\x03X\xff\xff\xff\xffxyzq\x00.' self.check_unpickling_error((pickle.UnpicklingError, OverflowError), dumped) def test_short_binunicode(self): dumped = b'\x80\x04\x8c\x04\xe2\x82\xac\x00.' self.assertEqual(self.loads(dumped), '\u20ac\x00') def test_misc_get(self): self.check_unpickling_error(KeyError, b'g0\np0') self.assert_is_copy([(100,), (100,)], self.loads(b'((Kdtp0\nh\x00l.))')) def test_binbytes8(self): dumped = b'\x80\x04\x8e\4\0\0\0\0\0\0\0\xe2\x82\xac\x00.' self.assertEqual(self.loads(dumped), b'\xe2\x82\xac\x00') def test_binunicode8(self): dumped = b'\x80\x04\x8d\4\0\0\0\0\0\0\0\xe2\x82\xac\x00.' self.assertEqual(self.loads(dumped), '\u20ac\x00') def test_bytearray8(self): dumped = b'\x80\x05\x96\x03\x00\x00\x00\x00\x00\x00\x00xxx.' self.assertEqual(self.loads(dumped), bytearray(b'xxx')) @requires_32b def test_large_32b_binbytes8(self): dumped = b'\x80\x04\x8e\4\0\0\0\1\0\0\0\xe2\x82\xac\x00.' self.check_unpickling_error((pickle.UnpicklingError, OverflowError), dumped) @requires_32b def test_large_32b_bytearray8(self): dumped = b'\x80\x05\x96\4\0\0\0\1\0\0\0\xe2\x82\xac\x00.' self.check_unpickling_error((pickle.UnpicklingError, OverflowError), dumped) @requires_32b def test_large_32b_binunicode8(self): dumped = b'\x80\x04\x8d\4\0\0\0\1\0\0\0\xe2\x82\xac\x00.' self.check_unpickling_error((pickle.UnpicklingError, OverflowError), dumped) def test_get(self): pickled = b'((lp100000\ng100000\nt.' unpickled = self.loads(pickled) self.assertEqual(unpickled, ([],)*2) self.assertIs(unpickled[0], unpickled[1]) def test_binget(self): pickled = b'(]q\xffh\xfft.' unpickled = self.loads(pickled) self.assertEqual(unpickled, ([],)*2) self.assertIs(unpickled[0], unpickled[1]) def test_long_binget(self): pickled = b'(]r\x00\x00\x01\x00j\x00\x00\x01\x00t.' unpickled = self.loads(pickled) self.assertEqual(unpickled, ([],)*2) self.assertIs(unpickled[0], unpickled[1]) def test_dup(self): pickled = b'((l2t.' unpickled = self.loads(pickled) self.assertEqual(unpickled, ([],)*2) self.assertIs(unpickled[0], unpickled[1]) def test_negative_put(self): # Issue #12847 dumped = b'Va\np-1\n.' self.check_unpickling_error(ValueError, dumped) @requires_32b def test_negative_32b_binput(self): # Issue #12847 dumped = b'\x80\x03X\x01\x00\x00\x00ar\xff\xff\xff\xff.' self.check_unpickling_error(ValueError, dumped) def test_badly_escaped_string(self): self.check_unpickling_error(ValueError, b"S'\\'\n.") def test_badly_quoted_string(self): # Issue #17710 badpickles = [b"S'\n.", b'S"\n.', b'S\' \n.', b'S" \n.', b'S\'"\n.', b'S"\'\n.', b"S' ' \n.", b'S" " \n.', b"S ''\n.", b'S ""\n.', b'S \n.', b'S\n.', b'S.'] for p in badpickles: self.check_unpickling_error(pickle.UnpicklingError, p) def test_correctly_quoted_string(self): goodpickles = [(b"S''\n.", ''), (b'S""\n.', ''), (b'S"\\n"\n.', '\n'), (b"S'\\n'\n.", '\n')] for p, expected in goodpickles: self.assertEqual(self.loads(p), expected) def test_frame_readline(self): pickled = b'\x80\x04\x95\x05\x00\x00\x00\x00\x00\x00\x00I42\n.' # 0: \x80 PROTO 4 # 2: \x95 FRAME 5 # 11: I INT 42 # 15: . STOP self.assertEqual(self.loads(pickled), 42) def test_compat_unpickle(self): # xrange(1, 7) pickled = b'\x80\x02c__builtin__\nxrange\nK\x01K\x07K\x01\x87R.' unpickled = self.loads(pickled) self.assertIs(type(unpickled), range) self.assertEqual(unpickled, range(1, 7)) self.assertEqual(list(unpickled), [1, 2, 3, 4, 5, 6]) # reduce pickled = b'\x80\x02c__builtin__\nreduce\n.' self.assertIs(self.loads(pickled), functools.reduce) # whichdb.whichdb pickled = b'\x80\x02cwhichdb\nwhichdb\n.' self.assertIs(self.loads(pickled), dbm.whichdb) # Exception(), StandardError() for name in (b'Exception', b'StandardError'): pickled = (b'\x80\x02cexceptions\n' + name + b'\nU\x03ugh\x85R.') unpickled = self.loads(pickled) self.assertIs(type(unpickled), Exception) self.assertEqual(str(unpickled), 'ugh') # UserDict.UserDict({1: 2}), UserDict.IterableUserDict({1: 2}) for name in (b'UserDict', b'IterableUserDict'): pickled = (b'\x80\x02(cUserDict\n' + name + b'\no}U\x04data}K\x01K\x02ssb.') unpickled = self.loads(pickled) self.assertIs(type(unpickled), collections.UserDict) self.assertEqual(unpickled, collections.UserDict({1: 2})) def test_bad_reduce(self): self.assertEqual(self.loads(b'cbuiltins\nint\n)R.'), 0) self.check_unpickling_error(TypeError, b'N)R.') self.check_unpickling_error(TypeError, b'cbuiltins\nint\nNR.') def test_bad_newobj(self): error = (pickle.UnpicklingError, TypeError) self.assertEqual(self.loads(b'cbuiltins\nint\n)\x81.'), 0) self.check_unpickling_error(error, b'cbuiltins\nlen\n)\x81.') self.check_unpickling_error(error, b'cbuiltins\nint\nN\x81.') def test_bad_newobj_ex(self): error = (pickle.UnpicklingError, TypeError) self.assertEqual(self.loads(b'cbuiltins\nint\n)}\x92.'), 0) self.check_unpickling_error(error, b'cbuiltins\nlen\n)}\x92.') self.check_unpickling_error(error, b'cbuiltins\nint\nN}\x92.') self.check_unpickling_error(error, b'cbuiltins\nint\n)N\x92.') def test_bad_stack(self): badpickles = [ b'.', # STOP b'0', # POP b'1', # POP_MARK b'2', # DUP b'(2', b'R', # REDUCE b')R', b'a', # APPEND b'Na', b'b', # BUILD b'Nb', b'd', # DICT b'e', # APPENDS b'(e', b'ibuiltins\nlist\n', # INST b'l', # LIST b'o', # OBJ b'(o', b'p1\n', # PUT b'q\x00', # BINPUT b'r\x00\x00\x00\x00', # LONG_BINPUT b's', # SETITEM b'Ns', b'NNs', b't', # TUPLE b'u', # SETITEMS b'(u', b'}(Nu', b'\x81', # NEWOBJ b')\x81', b'\x85', # TUPLE1 b'\x86', # TUPLE2 b'N\x86', b'\x87', # TUPLE3 b'N\x87', b'NN\x87', b'\x90', # ADDITEMS b'(\x90', b'\x91', # FROZENSET b'\x92', # NEWOBJ_EX b')}\x92', b'\x93', # STACK_GLOBAL b'Vlist\n\x93', b'\x94', # MEMOIZE ] for p in badpickles: self.check_unpickling_error(self.bad_stack_errors, p) def test_bad_mark(self): badpickles = [ b'N(.', # STOP b'N(2', # DUP b'cbuiltins\nlist\n)(R', # REDUCE b'cbuiltins\nlist\n()R', b']N(a', # APPEND # BUILD b'cbuiltins\nValueError\n)R}(b', b'cbuiltins\nValueError\n)R(}b', b'(Nd', # DICT b'N(p1\n', # PUT b'N(q\x00', # BINPUT b'N(r\x00\x00\x00\x00', # LONG_BINPUT b'}NN(s', # SETITEM b'}N(Ns', b'}(NNs', b'}((u', # SETITEMS b'cbuiltins\nlist\n)(\x81', # NEWOBJ b'cbuiltins\nlist\n()\x81', b'N(\x85', # TUPLE1 b'NN(\x86', # TUPLE2 b'N(N\x86', b'NNN(\x87', # TUPLE3 b'NN(N\x87', b'N(NN\x87', b']((\x90', # ADDITEMS # NEWOBJ_EX b'cbuiltins\nlist\n)}(\x92', b'cbuiltins\nlist\n)(}\x92', b'cbuiltins\nlist\n()}\x92', # STACK_GLOBAL b'Vbuiltins\n(Vlist\n\x93', b'Vbuiltins\nVlist\n(\x93', b'N(\x94', # MEMOIZE ] for p in badpickles: self.check_unpickling_error(self.bad_stack_errors, p) def test_truncated_data(self): self.check_unpickling_error(EOFError, b'') self.check_unpickling_error(EOFError, b'N') badpickles = [ b'B', # BINBYTES b'B\x03\x00\x00', b'B\x03\x00\x00\x00', b'B\x03\x00\x00\x00ab', b'C', # SHORT_BINBYTES b'C\x03', b'C\x03ab', b'F', # FLOAT b'F0.0', b'F0.00', b'G', # BINFLOAT b'G\x00\x00\x00\x00\x00\x00\x00', b'I', # INT b'I0', b'J', # BININT b'J\x00\x00\x00', b'K', # BININT1 b'L', # LONG b'L0', b'L10', b'L0L', b'L10L', b'M', # BININT2 b'M\x00', # b'P', # PERSID # b'Pabc', b'S', # STRING b"S'abc'", b'T', # BINSTRING b'T\x03\x00\x00', b'T\x03\x00\x00\x00', b'T\x03\x00\x00\x00ab', b'U', # SHORT_BINSTRING b'U\x03', b'U\x03ab', b'V', # UNICODE b'Vabc', b'X', # BINUNICODE b'X\x03\x00\x00', b'X\x03\x00\x00\x00', b'X\x03\x00\x00\x00ab', b'(c', # GLOBAL b'(cbuiltins', b'(cbuiltins\n', b'(cbuiltins\nlist', b'Ng', # GET b'Ng0', b'(i', # INST b'(ibuiltins', b'(ibuiltins\n', b'(ibuiltins\nlist', b'Nh', # BINGET b'Nj', # LONG_BINGET b'Nj\x00\x00\x00', b'Np', # PUT b'Np0', b'Nq', # BINPUT b'Nr', # LONG_BINPUT b'Nr\x00\x00\x00', b'\x80', # PROTO b'\x82', # EXT1 b'\x83', # EXT2 b'\x84\x01', b'\x84', # EXT4 b'\x84\x01\x00\x00', b'\x8a', # LONG1 b'\x8b', # LONG4 b'\x8b\x00\x00\x00', b'\x8c', # SHORT_BINUNICODE b'\x8c\x03', b'\x8c\x03ab', b'\x8d', # BINUNICODE8 b'\x8d\x03\x00\x00\x00\x00\x00\x00', b'\x8d\x03\x00\x00\x00\x00\x00\x00\x00', b'\x8d\x03\x00\x00\x00\x00\x00\x00\x00ab', b'\x8e', # BINBYTES8 b'\x8e\x03\x00\x00\x00\x00\x00\x00', b'\x8e\x03\x00\x00\x00\x00\x00\x00\x00', b'\x8e\x03\x00\x00\x00\x00\x00\x00\x00ab', b'\x96', # BYTEARRAY8 b'\x96\x03\x00\x00\x00\x00\x00\x00', b'\x96\x03\x00\x00\x00\x00\x00\x00\x00', b'\x96\x03\x00\x00\x00\x00\x00\x00\x00ab', b'\x95', # FRAME b'\x95\x02\x00\x00\x00\x00\x00\x00', b'\x95\x02\x00\x00\x00\x00\x00\x00\x00', b'\x95\x02\x00\x00\x00\x00\x00\x00\x00N', ] for p in badpickles: self.check_unpickling_error(self.truncated_errors, p) @reap_threads def test_unpickle_module_race(self): # https://bugs.python.org/issue34572 locker_module = dedent(""" import threading barrier = threading.Barrier(2) """) locking_import_module = dedent(""" import locker locker.barrier.wait() class ToBeUnpickled(object): pass """) os.mkdir(TESTFN) self.addCleanup(shutil.rmtree, TESTFN) sys.path.insert(0, TESTFN) self.addCleanup(sys.path.remove, TESTFN) with open(os.path.join(TESTFN, "locker.py"), "wb") as f: f.write(locker_module.encode('utf-8')) with open(os.path.join(TESTFN, "locking_import.py"), "wb") as f: f.write(locking_import_module.encode('utf-8')) self.addCleanup(forget, "locker") self.addCleanup(forget, "locking_import") import locker pickle_bytes = ( b'\x80\x03clocking_import\nToBeUnpickled\nq\x00)\x81q\x01.') # Then try to unpickle two of these simultaneously # One of them will cause the module import, and we want it to block # until the other one either: # - fails (before the patch for this issue) # - blocks on the import lock for the module, as it should results = [] barrier = threading.Barrier(3) def t(): # This ensures the threads have all started # presumably barrier release is faster than thread startup barrier.wait() results.append(pickle.loads(pickle_bytes)) t1 = threading.Thread(target=t) t2 = threading.Thread(target=t) t1.start() t2.start() barrier.wait() # could have delay here locker.barrier.wait() t1.join() t2.join() from locking_import import ToBeUnpickled self.assertEqual( [type(x) for x in results], [ToBeUnpickled] * 2) class AbstractPickleTests(unittest.TestCase): # Subclass must define self.dumps, self.loads. optimized = False _testdata = AbstractUnpickleTests._testdata def setUp(self): pass assert_is_copy = AbstractUnpickleTests.assert_is_copy def test_misc(self): # test various datatypes not tested by testdata for proto in protocols: x = myint(4) s = self.dumps(x, proto) y = self.loads(s) self.assert_is_copy(x, y) x = (1, ()) s = self.dumps(x, proto) y = self.loads(s) self.assert_is_copy(x, y) x = initarg(1, x) s = self.dumps(x, proto) y = self.loads(s) self.assert_is_copy(x, y) # XXX test __reduce__ protocol? def test_roundtrip_equality(self): expected = self._testdata for proto in protocols: s = self.dumps(expected, proto) got = self.loads(s) self.assert_is_copy(expected, got) # There are gratuitous differences between pickles produced by # pickle and cPickle, largely because cPickle starts PUT indices at # 1 and pickle starts them at 0. See XXX comment in cPickle's put2() -- # there's a comment with an exclamation point there whose meaning # is a mystery. cPickle also suppresses PUT for objects with a refcount # of 1. def dont_test_disassembly(self): from io import StringIO from pickletools import dis for proto, expected in (0, DATA0_DIS), (1, DATA1_DIS): s = self.dumps(self._testdata, proto) filelike = StringIO() dis(s, out=filelike) got = filelike.getvalue() self.assertEqual(expected, got) def test_recursive_list(self): l = [] l.append(l) for proto in protocols: s = self.dumps(l, proto) x = self.loads(s) self.assertIsInstance(x, list) self.assertEqual(len(x), 1) self.assertIs(x[0], x) def test_recursive_tuple_and_list(self): t = ([],) t[0].append(t) for proto in protocols: s = self.dumps(t, proto) x = self.loads(s) self.assertIsInstance(x, tuple) self.assertEqual(len(x), 1) self.assertIsInstance(x[0], list) self.assertEqual(len(x[0]), 1) self.assertIs(x[0][0], x) def test_recursive_dict(self): d = {} d[1] = d for proto in protocols: s = self.dumps(d, proto) x = self.loads(s) self.assertIsInstance(x, dict) self.assertEqual(list(x.keys()), [1]) self.assertIs(x[1], x) def test_recursive_dict_key(self): d = {} k = K(d) d[k] = 1 for proto in protocols: s = self.dumps(d, proto) x = self.loads(s) self.assertIsInstance(x, dict) self.assertEqual(len(x.keys()), 1) self.assertIsInstance(list(x.keys())[0], K) self.assertIs(list(x.keys())[0].value, x) def test_recursive_set(self): y = set() k = K(y) y.add(k) for proto in range(4, pickle.HIGHEST_PROTOCOL + 1): s = self.dumps(y, proto) x = self.loads(s) self.assertIsInstance(x, set) self.assertEqual(len(x), 1) self.assertIsInstance(list(x)[0], K) self.assertIs(list(x)[0].value, x) def test_recursive_list_subclass(self): y = MyList() y.append(y) for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): s = self.dumps(y, proto) x = self.loads(s) self.assertIsInstance(x, MyList) self.assertEqual(len(x), 1) self.assertIs(x[0], x) def test_recursive_dict_subclass(self): d = MyDict() d[1] = d for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): s = self.dumps(d, proto) x = self.loads(s) self.assertIsInstance(x, MyDict) self.assertEqual(list(x.keys()), [1]) self.assertIs(x[1], x) def test_recursive_dict_subclass_key(self): d = MyDict() k = K(d) d[k] = 1 for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): s = self.dumps(d, proto) x = self.loads(s) self.assertIsInstance(x, MyDict) self.assertEqual(len(list(x.keys())), 1) self.assertIsInstance(list(x.keys())[0], K) self.assertIs(list(x.keys())[0].value, x) def test_recursive_inst(self): i = C() i.attr = i for proto in protocols: s = self.dumps(i, proto) x = self.loads(s) self.assertIsInstance(x, C) self.assertEqual(dir(x), dir(i)) self.assertIs(x.attr, x) def test_recursive_multi(self): l = [] d = {1:l} i = C() i.attr = d l.append(i) for proto in protocols: s = self.dumps(l, proto) x = self.loads(s) self.assertIsInstance(x, list) self.assertEqual(len(x), 1) self.assertEqual(dir(x[0]), dir(i)) self.assertEqual(list(x[0].attr.keys()), [1]) self.assertTrue(x[0].attr[1] is x) def check_recursive_collection_and_inst(self, factory): h = H() y = factory([h]) h.attr = y for proto in protocols: s = self.dumps(y, proto) x = self.loads(s) self.assertIsInstance(x, type(y)) self.assertEqual(len(x), 1) self.assertIsInstance(list(x)[0], H) self.assertIs(list(x)[0].attr, x) def test_recursive_list_and_inst(self): self.check_recursive_collection_and_inst(list) def test_recursive_tuple_and_inst(self): self.check_recursive_collection_and_inst(tuple) def test_recursive_dict_and_inst(self): self.check_recursive_collection_and_inst(dict.fromkeys) def test_recursive_set_and_inst(self): self.check_recursive_collection_and_inst(set) def test_recursive_frozenset_and_inst(self): self.check_recursive_collection_and_inst(frozenset) def test_recursive_list_subclass_and_inst(self): self.check_recursive_collection_and_inst(MyList) def test_recursive_tuple_subclass_and_inst(self): self.check_recursive_collection_and_inst(MyTuple) def test_recursive_dict_subclass_and_inst(self): self.check_recursive_collection_and_inst(MyDict.fromkeys) def test_recursive_set_subclass_and_inst(self): self.check_recursive_collection_and_inst(MySet) def test_recursive_frozenset_subclass_and_inst(self): self.check_recursive_collection_and_inst(MyFrozenSet) def test_unicode(self): endcases = ['', '<\\u>', '<\\\u1234>', '<\n>', '<\\>', '<\\\U00012345>', # surrogates '<\udc80>'] for proto in protocols: for u in endcases: p = self.dumps(u, proto) u2 = self.loads(p) self.assert_is_copy(u, u2) def test_unicode_high_plane(self): t = '\U00012345' for proto in protocols: p = self.dumps(t, proto) t2 = self.loads(p) self.assert_is_copy(t, t2) def test_bytes(self): for proto in protocols: for s in b'', b'xyz', b'xyz'*100: p = self.dumps(s, proto) self.assert_is_copy(s, self.loads(p)) for s in [bytes([i]) for i in range(256)]: p = self.dumps(s, proto) self.assert_is_copy(s, self.loads(p)) for s in [bytes([i, i]) for i in range(256)]: p = self.dumps(s, proto) self.assert_is_copy(s, self.loads(p)) def test_bytearray(self): for proto in protocols: for s in b'', b'xyz', b'xyz'*100: b = bytearray(s) p = self.dumps(b, proto) bb = self.loads(p) self.assertIsNot(bb, b) self.assert_is_copy(b, bb) if proto <= 3: # bytearray is serialized using a global reference self.assertIn(b'bytearray', p) self.assertTrue(opcode_in_pickle(pickle.GLOBAL, p)) elif proto == 4: self.assertIn(b'bytearray', p) self.assertTrue(opcode_in_pickle(pickle.STACK_GLOBAL, p)) elif proto == 5: self.assertNotIn(b'bytearray', p) self.assertTrue(opcode_in_pickle(pickle.BYTEARRAY8, p)) def test_ints(self): for proto in protocols: n = sys.maxsize while n: for expected in (-n, n): s = self.dumps(expected, proto) n2 = self.loads(s) self.assert_is_copy(expected, n2) n = n >> 1 def test_long(self): for proto in protocols: # 256 bytes is where LONG4 begins. for nbits in 1, 8, 8*254, 8*255, 8*256, 8*257: nbase = 1 << nbits for npos in nbase-1, nbase, nbase+1: for n in npos, -npos: pickle = self.dumps(n, proto) got = self.loads(pickle) self.assert_is_copy(n, got) # Try a monster. This is quadratic-time in protos 0 & 1, so don't # bother with those. nbase = int("deadbeeffeedface", 16) nbase += nbase << 1000000 for n in nbase, -nbase: p = self.dumps(n, 2) got = self.loads(p) # assert_is_copy is very expensive here as it precomputes # a failure message by computing the repr() of n and got, # we just do the check ourselves. self.assertIs(type(got), int) self.assertEqual(n, got) def test_float(self): test_values = [0.0, 4.94e-324, 1e-310, 7e-308, 6.626e-34, 0.1, 0.5, 3.14, 263.44582062374053, 6.022e23, 1e30] test_values = test_values + [-x for x in test_values] for proto in protocols: for value in test_values: pickle = self.dumps(value, proto) got = self.loads(pickle) self.assert_is_copy(value, got) @run_with_locale('LC_ALL', 'de_DE', 'fr_FR') def test_float_format(self): # make sure that floats are formatted locale independent with proto 0 self.assertEqual(self.dumps(1.2, 0)[0:3], b'F1.') def test_reduce(self): for proto in protocols: inst = AAA() dumped = self.dumps(inst, proto) loaded = self.loads(dumped) self.assertEqual(loaded, REDUCE_A) def test_getinitargs(self): for proto in protocols: inst = initarg(1, 2) dumped = self.dumps(inst, proto) loaded = self.loads(dumped) self.assert_is_copy(inst, loaded) def test_metaclass(self): a = use_metaclass() for proto in protocols: s = self.dumps(a, proto) b = self.loads(s) self.assertEqual(a.__class__, b.__class__) def test_dynamic_class(self): a = create_dynamic_class("my_dynamic_class", (object,)) copyreg.pickle(pickling_metaclass, pickling_metaclass.__reduce__) for proto in protocols: s = self.dumps(a, proto) b = self.loads(s) self.assertEqual(a, b) self.assertIs(type(a), type(b)) def test_structseq(self): import time import os t = time.localtime() for proto in protocols: s = self.dumps(t, proto) u = self.loads(s) self.assert_is_copy(t, u) t = os.stat(os.curdir) s = self.dumps(t, proto) u = self.loads(s) self.assert_is_copy(t, u) if hasattr(os, "statvfs"): t = os.statvfs(os.curdir) s = self.dumps(t, proto) u = self.loads(s) self.assert_is_copy(t, u) def test_ellipsis(self): for proto in protocols: s = self.dumps(..., proto) u = self.loads(s) self.assertIs(..., u) def test_notimplemented(self): for proto in protocols: s = self.dumps(NotImplemented, proto) u = self.loads(s) self.assertIs(NotImplemented, u) def test_singleton_types(self): # Issue #6477: Test that types of built-in singletons can be pickled. singletons = [None, ..., NotImplemented] for singleton in singletons: for proto in protocols: s = self.dumps(type(singleton), proto) u = self.loads(s) self.assertIs(type(singleton), u) # Tests for protocol 2 def test_proto(self): for proto in protocols: pickled = self.dumps(None, proto) if proto >= 2: proto_header = pickle.PROTO + bytes([proto]) self.assertTrue(pickled.startswith(proto_header)) else: self.assertEqual(count_opcode(pickle.PROTO, pickled), 0) oob = protocols[-1] + 1 # a future protocol build_none = pickle.NONE + pickle.STOP badpickle = pickle.PROTO + bytes([oob]) + build_none try: self.loads(badpickle) except ValueError as err: self.assertIn("unsupported pickle protocol", str(err)) else: self.fail("expected bad protocol number to raise ValueError") def test_long1(self): x = 12345678910111213141516178920 for proto in protocols: s = self.dumps(x, proto) y = self.loads(s) self.assert_is_copy(x, y) self.assertEqual(opcode_in_pickle(pickle.LONG1, s), proto >= 2) def test_long4(self): x = 12345678910111213141516178920 << (256*8) for proto in protocols: s = self.dumps(x, proto) y = self.loads(s) self.assert_is_copy(x, y) self.assertEqual(opcode_in_pickle(pickle.LONG4, s), proto >= 2) def test_short_tuples(self): # Map (proto, len(tuple)) to expected opcode. expected_opcode = {(0, 0): pickle.TUPLE, (0, 1): pickle.TUPLE, (0, 2): pickle.TUPLE, (0, 3): pickle.TUPLE, (0, 4): pickle.TUPLE, (1, 0): pickle.EMPTY_TUPLE, (1, 1): pickle.TUPLE, (1, 2): pickle.TUPLE, (1, 3): pickle.TUPLE, (1, 4): pickle.TUPLE, (2, 0): pickle.EMPTY_TUPLE, (2, 1): pickle.TUPLE1, (2, 2): pickle.TUPLE2, (2, 3): pickle.TUPLE3, (2, 4): pickle.TUPLE, (3, 0): pickle.EMPTY_TUPLE, (3, 1): pickle.TUPLE1, (3, 2): pickle.TUPLE2, (3, 3): pickle.TUPLE3, (3, 4): pickle.TUPLE, } a = () b = (1,) c = (1, 2) d = (1, 2, 3) e = (1, 2, 3, 4) for proto in protocols: for x in a, b, c, d, e: s = self.dumps(x, proto) y = self.loads(s) self.assert_is_copy(x, y) expected = expected_opcode[min(proto, 3), len(x)] self.assertTrue(opcode_in_pickle(expected, s)) def test_singletons(self): # Map (proto, singleton) to expected opcode. expected_opcode = {(0, None): pickle.NONE, (1, None): pickle.NONE, (2, None): pickle.NONE, (3, None): pickle.NONE, (0, True): pickle.INT, (1, True): pickle.INT, (2, True): pickle.NEWTRUE, (3, True): pickle.NEWTRUE, (0, False): pickle.INT, (1, False): pickle.INT, (2, False): pickle.NEWFALSE, (3, False): pickle.NEWFALSE, } for proto in protocols: for x in None, False, True: s = self.dumps(x, proto) y = self.loads(s) self.assertTrue(x is y, (proto, x, s, y)) expected = expected_opcode[min(proto, 3), x] self.assertTrue(opcode_in_pickle(expected, s)) def test_newobj_tuple(self): x = MyTuple([1, 2, 3]) x.foo = 42 x.bar = "hello" for proto in protocols: s = self.dumps(x, proto) y = self.loads(s) self.assert_is_copy(x, y) def test_newobj_list(self): x = MyList([1, 2, 3]) x.foo = 42 x.bar = "hello" for proto in protocols: s = self.dumps(x, proto) y = self.loads(s) self.assert_is_copy(x, y) def test_newobj_generic(self): for proto in protocols: for C in myclasses: B = C.__base__ x = C(C.sample) x.foo = 42 s = self.dumps(x, proto) y = self.loads(s) detail = (proto, C, B, x, y, type(y)) self.assert_is_copy(x, y) # XXX revisit self.assertEqual(B(x), B(y), detail) self.assertEqual(x.__dict__, y.__dict__, detail) def test_newobj_proxies(self): # NEWOBJ should use the __class__ rather than the raw type classes = myclasses[:] # Cannot create weakproxies to these classes for c in (MyInt, MyTuple): classes.remove(c) for proto in protocols: for C in classes: B = C.__base__ x = C(C.sample) x.foo = 42 p = weakref.proxy(x) s = self.dumps(p, proto) y = self.loads(s) self.assertEqual(type(y), type(x)) # rather than type(p) detail = (proto, C, B, x, y, type(y)) self.assertEqual(B(x), B(y), detail) self.assertEqual(x.__dict__, y.__dict__, detail) def test_newobj_not_class(self): # Issue 24552 global SimpleNewObj save = SimpleNewObj o = SimpleNewObj.__new__(SimpleNewObj) b = self.dumps(o, 4) try: SimpleNewObj = 42 self.assertRaises((TypeError, pickle.UnpicklingError), self.loads, b) finally: SimpleNewObj = save # Register a type with copyreg, with extension code extcode. Pickle # an object of that type. Check that the resulting pickle uses opcode # (EXT[124]) under proto 2, and not in proto 1. def produce_global_ext(self, extcode, opcode): e = ExtensionSaver(extcode) try: copyreg.add_extension(__name__, "MyList", extcode) x = MyList([1, 2, 3]) x.foo = 42 x.bar = "hello" # Dump using protocol 1 for comparison. s1 = self.dumps(x, 1) self.assertIn(__name__.encode("utf-8"), s1) self.assertIn(b"MyList", s1) self.assertFalse(opcode_in_pickle(opcode, s1)) y = self.loads(s1) self.assert_is_copy(x, y) # Dump using protocol 2 for test. s2 = self.dumps(x, 2) self.assertNotIn(__name__.encode("utf-8"), s2) self.assertNotIn(b"MyList", s2) self.assertEqual(opcode_in_pickle(opcode, s2), True, repr(s2)) y = self.loads(s2) self.assert_is_copy(x, y) finally: e.restore() def test_global_ext1(self): self.produce_global_ext(0x00000001, pickle.EXT1) # smallest EXT1 code self.produce_global_ext(0x000000ff, pickle.EXT1) # largest EXT1 code def test_global_ext2(self): self.produce_global_ext(0x00000100, pickle.EXT2) # smallest EXT2 code self.produce_global_ext(0x0000ffff, pickle.EXT2) # largest EXT2 code self.produce_global_ext(0x0000abcd, pickle.EXT2) # check endianness def test_global_ext4(self): self.produce_global_ext(0x00010000, pickle.EXT4) # smallest EXT4 code self.produce_global_ext(0x7fffffff, pickle.EXT4) # largest EXT4 code self.produce_global_ext(0x12abcdef, pickle.EXT4) # check endianness def test_list_chunking(self): n = 10 # too small to chunk x = list(range(n)) for proto in protocols: s = self.dumps(x, proto) y = self.loads(s) self.assert_is_copy(x, y) num_appends = count_opcode(pickle.APPENDS, s) self.assertEqual(num_appends, proto > 0) n = 2500 # expect at least two chunks when proto > 0 x = list(range(n)) for proto in protocols: s = self.dumps(x, proto) y = self.loads(s) self.assert_is_copy(x, y) num_appends = count_opcode(pickle.APPENDS, s) if proto == 0: self.assertEqual(num_appends, 0) else: self.assertTrue(num_appends >= 2) def test_dict_chunking(self): n = 10 # too small to chunk x = dict.fromkeys(range(n)) for proto in protocols: s = self.dumps(x, proto) self.assertIsInstance(s, bytes_types) y = self.loads(s) self.assert_is_copy(x, y) num_setitems = count_opcode(pickle.SETITEMS, s) self.assertEqual(num_setitems, proto > 0) n = 2500 # expect at least two chunks when proto > 0 x = dict.fromkeys(range(n)) for proto in protocols: s = self.dumps(x, proto) y = self.loads(s) self.assert_is_copy(x, y) num_setitems = count_opcode(pickle.SETITEMS, s) if proto == 0: self.assertEqual(num_setitems, 0) else: self.assertTrue(num_setitems >= 2) def test_set_chunking(self): n = 10 # too small to chunk x = set(range(n)) for proto in protocols: s = self.dumps(x, proto) y = self.loads(s) self.assert_is_copy(x, y) num_additems = count_opcode(pickle.ADDITEMS, s) if proto < 4: self.assertEqual(num_additems, 0) else: self.assertEqual(num_additems, 1) n = 2500 # expect at least two chunks when proto >= 4 x = set(range(n)) for proto in protocols: s = self.dumps(x, proto) y = self.loads(s) self.assert_is_copy(x, y) num_additems = count_opcode(pickle.ADDITEMS, s) if proto < 4: self.assertEqual(num_additems, 0) else: self.assertGreaterEqual(num_additems, 2) def test_simple_newobj(self): x = SimpleNewObj.__new__(SimpleNewObj, 0xface) # avoid __init__ x.abc = 666 for proto in protocols: with self.subTest(proto=proto): s = self.dumps(x, proto) if proto < 1: self.assertIn(b'\nI64206', s) # INT else: self.assertIn(b'M\xce\xfa', s) # BININT2 self.assertEqual(opcode_in_pickle(pickle.NEWOBJ, s), 2 <= proto) self.assertFalse(opcode_in_pickle(pickle.NEWOBJ_EX, s)) y = self.loads(s) # will raise TypeError if __init__ called self.assert_is_copy(x, y) def test_complex_newobj(self): x = ComplexNewObj.__new__(ComplexNewObj, 0xface) # avoid __init__ x.abc = 666 for proto in protocols: with self.subTest(proto=proto): s = self.dumps(x, proto) if proto < 1: self.assertIn(b'\nI64206', s) # INT elif proto < 2: self.assertIn(b'M\xce\xfa', s) # BININT2 elif proto < 4: self.assertIn(b'X\x04\x00\x00\x00FACE', s) # BINUNICODE else: self.assertIn(b'\x8c\x04FACE', s) # SHORT_BINUNICODE self.assertEqual(opcode_in_pickle(pickle.NEWOBJ, s), 2 <= proto) self.assertFalse(opcode_in_pickle(pickle.NEWOBJ_EX, s)) y = self.loads(s) # will raise TypeError if __init__ called self.assert_is_copy(x, y) def test_complex_newobj_ex(self): x = ComplexNewObjEx.__new__(ComplexNewObjEx, 0xface) # avoid __init__ x.abc = 666 for proto in protocols: with self.subTest(proto=proto): s = self.dumps(x, proto) if proto < 1: self.assertIn(b'\nI64206', s) # INT elif proto < 2: self.assertIn(b'M\xce\xfa', s) # BININT2 elif proto < 4: self.assertIn(b'X\x04\x00\x00\x00FACE', s) # BINUNICODE else: self.assertIn(b'\x8c\x04FACE', s) # SHORT_BINUNICODE self.assertFalse(opcode_in_pickle(pickle.NEWOBJ, s)) self.assertEqual(opcode_in_pickle(pickle.NEWOBJ_EX, s), 4 <= proto) y = self.loads(s) # will raise TypeError if __init__ called self.assert_is_copy(x, y) def test_newobj_list_slots(self): x = SlotList([1, 2, 3]) x.foo = 42 x.bar = "hello" s = self.dumps(x, 2) y = self.loads(s) self.assert_is_copy(x, y) def test_reduce_overrides_default_reduce_ex(self): for proto in protocols: x = REX_one() self.assertEqual(x._reduce_called, 0) s = self.dumps(x, proto) self.assertEqual(x._reduce_called, 1) y = self.loads(s) self.assertEqual(y._reduce_called, 0) def test_reduce_ex_called(self): for proto in protocols: x = REX_two() self.assertEqual(x._proto, None) s = self.dumps(x, proto) self.assertEqual(x._proto, proto) y = self.loads(s) self.assertEqual(y._proto, None) def test_reduce_ex_overrides_reduce(self): for proto in protocols: x = REX_three() self.assertEqual(x._proto, None) s = self.dumps(x, proto) self.assertEqual(x._proto, proto) y = self.loads(s) self.assertEqual(y._proto, None) def test_reduce_ex_calls_base(self): for proto in protocols: x = REX_four() self.assertEqual(x._proto, None) s = self.dumps(x, proto) self.assertEqual(x._proto, proto) y = self.loads(s) self.assertEqual(y._proto, proto) def test_reduce_calls_base(self): for proto in protocols: x = REX_five() self.assertEqual(x._reduce_called, 0) s = self.dumps(x, proto) self.assertEqual(x._reduce_called, 1) y = self.loads(s) self.assertEqual(y._reduce_called, 1) @no_tracing @unittest.skipUnderCinderJIT("JIT doesn't perform recursion checks") @unittest.skipIfDebug("C stack overflow") def test_bad_getattr(self): # Issue #3514: crash when there is an infinite loop in __getattr__ x = BadGetattr() for proto in protocols: self.assertRaises(RuntimeError, self.dumps, x, proto) def test_reduce_bad_iterator(self): # Issue4176: crash when 4th and 5th items of __reduce__() # are not iterators class C(object): def __reduce__(self): # 4th item is not an iterator return list, (), None, [], None class D(object): def __reduce__(self): # 5th item is not an iterator return dict, (), None, None, [] # Python implementation is less strict and also accepts iterables. for proto in protocols: try: self.dumps(C(), proto) except pickle.PicklingError: pass try: self.dumps(D(), proto) except pickle.PicklingError: pass def test_many_puts_and_gets(self): # Test that internal data structures correctly deal with lots of # puts/gets. keys = ("aaa" + str(i) for i in range(100)) large_dict = dict((k, [4, 5, 6]) for k in keys) obj = [dict(large_dict), dict(large_dict), dict(large_dict)] for proto in protocols: with self.subTest(proto=proto): dumped = self.dumps(obj, proto) loaded = self.loads(dumped) self.assert_is_copy(obj, loaded) def test_attribute_name_interning(self): # Test that attribute names of pickled objects are interned when # unpickling. for proto in protocols: x = C() x.foo = 42 x.bar = "hello" s = self.dumps(x, proto) y = self.loads(s) x_keys = sorted(x.__dict__) y_keys = sorted(y.__dict__) for x_key, y_key in zip(x_keys, y_keys): self.assertIs(x_key, y_key) def test_pickle_to_2x(self): # Pickle non-trivial data with protocol 2, expecting that it yields # the same result as Python 2.x did. # NOTE: this test is a bit too strong since we can produce different # bytecode that 2.x will still understand. dumped = self.dumps(range(5), 2) self.assertEqual(dumped, DATA_XRANGE) dumped = self.dumps(set([3]), 2) self.assertEqual(dumped, DATA_SET2) def test_large_pickles(self): # Test the correctness of internal buffering routines when handling # large data. for proto in protocols: data = (1, min, b'xy' * (30 * 1024), len) dumped = self.dumps(data, proto) loaded = self.loads(dumped) self.assertEqual(len(loaded), len(data)) self.assertEqual(loaded, data) def test_int_pickling_efficiency(self): # Test compacity of int representation (see issue #12744) for proto in protocols: with self.subTest(proto=proto): pickles = [self.dumps(2**n, proto) for n in range(70)] sizes = list(map(len, pickles)) # the size function is monotonic self.assertEqual(sorted(sizes), sizes) if proto >= 2: for p in pickles: self.assertFalse(opcode_in_pickle(pickle.LONG, p)) def _check_pickling_with_opcode(self, obj, opcode, proto): pickled = self.dumps(obj, proto) self.assertTrue(opcode_in_pickle(opcode, pickled)) unpickled = self.loads(pickled) self.assertEqual(obj, unpickled) def test_appends_on_non_lists(self): # Issue #17720 obj = REX_six([1, 2, 3]) for proto in protocols: if proto == 0: self._check_pickling_with_opcode(obj, pickle.APPEND, proto) else: self._check_pickling_with_opcode(obj, pickle.APPENDS, proto) def test_setitems_on_non_dicts(self): obj = REX_seven({1: -1, 2: -2, 3: -3}) for proto in protocols: if proto == 0: self._check_pickling_with_opcode(obj, pickle.SETITEM, proto) else: self._check_pickling_with_opcode(obj, pickle.SETITEMS, proto) # Exercise framing (proto >= 4) for significant workloads FRAME_SIZE_MIN = 4 FRAME_SIZE_TARGET = 64 * 1024 def check_frame_opcodes(self, pickled): """ Check the arguments of FRAME opcodes in a protocol 4+ pickle. Note that binary objects that are larger than FRAME_SIZE_TARGET are not framed by default and are therefore considered a frame by themselves in the following consistency check. """ frame_end = frameless_start = None frameless_opcodes = {'BINBYTES', 'BINUNICODE', 'BINBYTES8', 'BINUNICODE8', 'BYTEARRAY8'} for op, arg, pos in pickletools.genops(pickled): if frame_end is not None: self.assertLessEqual(pos, frame_end) if pos == frame_end: frame_end = None if frame_end is not None: # framed self.assertNotEqual(op.name, 'FRAME') if op.name in frameless_opcodes: # Only short bytes and str objects should be written # in a frame self.assertLessEqual(len(arg), self.FRAME_SIZE_TARGET) else: # not framed if (op.name == 'FRAME' or (op.name in frameless_opcodes and len(arg) > self.FRAME_SIZE_TARGET)): # Frame or large bytes or str object if frameless_start is not None: # Only short data should be written outside of a frame self.assertLess(pos - frameless_start, self.FRAME_SIZE_MIN) frameless_start = None elif frameless_start is None and op.name != 'PROTO': frameless_start = pos if op.name == 'FRAME': self.assertGreaterEqual(arg, self.FRAME_SIZE_MIN) frame_end = pos + 9 + arg pos = len(pickled) if frame_end is not None: self.assertEqual(frame_end, pos) elif frameless_start is not None: self.assertLess(pos - frameless_start, self.FRAME_SIZE_MIN) @support.skip_if_pgo_task def test_framing_many_objects(self): obj = list(range(10**5)) for proto in range(4, pickle.HIGHEST_PROTOCOL + 1): with self.subTest(proto=proto): pickled = self.dumps(obj, proto) unpickled = self.loads(pickled) self.assertEqual(obj, unpickled) bytes_per_frame = (len(pickled) / count_opcode(pickle.FRAME, pickled)) self.assertGreater(bytes_per_frame, self.FRAME_SIZE_TARGET / 2) self.assertLessEqual(bytes_per_frame, self.FRAME_SIZE_TARGET * 1) self.check_frame_opcodes(pickled) def test_framing_large_objects(self): N = 1024 * 1024 small_items = [[i] for i in range(10)] obj = [b'x' * N, *small_items, b'y' * N, 'z' * N] for proto in range(4, pickle.HIGHEST_PROTOCOL + 1): for fast in [False, True]: with self.subTest(proto=proto, fast=fast): if not fast: # fast=False by default. # This covers in-memory pickling with pickle.dumps(). pickled = self.dumps(obj, proto) else: # Pickler is required when fast=True. if not hasattr(self, 'pickler'): continue buf = io.BytesIO() pickler = self.pickler(buf, protocol=proto) pickler.fast = fast pickler.dump(obj) pickled = buf.getvalue() unpickled = self.loads(pickled) # More informative error message in case of failure. self.assertEqual([len(x) for x in obj], [len(x) for x in unpickled]) # Perform full equality check if the lengths match. self.assertEqual(obj, unpickled) n_frames = count_opcode(pickle.FRAME, pickled) # A single frame for small objects between # first two large objects. self.assertEqual(n_frames, 1) self.check_frame_opcodes(pickled) def test_optional_frames(self): if pickle.HIGHEST_PROTOCOL < 4: return def remove_frames(pickled, keep_frame=None): """Remove frame opcodes from the given pickle.""" frame_starts = [] # 1 byte for the opcode and 8 for the argument frame_opcode_size = 9 for opcode, _, pos in pickletools.genops(pickled): if opcode.name == 'FRAME': frame_starts.append(pos) newpickle = bytearray() last_frame_end = 0 for i, pos in enumerate(frame_starts): if keep_frame and keep_frame(i): continue newpickle += pickled[last_frame_end:pos] last_frame_end = pos + frame_opcode_size newpickle += pickled[last_frame_end:] return newpickle frame_size = self.FRAME_SIZE_TARGET num_frames = 20 # Large byte objects (dict values) intermittent with small objects # (dict keys) for bytes_type in (bytes, bytearray): obj = {i: bytes_type([i]) * frame_size for i in range(num_frames)} for proto in range(4, pickle.HIGHEST_PROTOCOL + 1): pickled = self.dumps(obj, proto) frameless_pickle = remove_frames(pickled) self.assertEqual(count_opcode(pickle.FRAME, frameless_pickle), 0) self.assertEqual(obj, self.loads(frameless_pickle)) some_frames_pickle = remove_frames(pickled, lambda i: i % 2) self.assertLess(count_opcode(pickle.FRAME, some_frames_pickle), count_opcode(pickle.FRAME, pickled)) self.assertEqual(obj, self.loads(some_frames_pickle)) @support.skip_if_pgo_task def test_framed_write_sizes_with_delayed_writer(self): class ChunkAccumulator: """Accumulate pickler output in a list of raw chunks.""" def __init__(self): self.chunks = [] def write(self, chunk): self.chunks.append(chunk) def concatenate_chunks(self): return b"".join(self.chunks) for proto in range(4, pickle.HIGHEST_PROTOCOL + 1): objects = [(str(i).encode('ascii'), i % 42, {'i': str(i)}) for i in range(int(1e4))] # Add a large unique ASCII string objects.append('0123456789abcdef' * (self.FRAME_SIZE_TARGET // 16 + 1)) # Protocol 4 packs groups of small objects into frames and issues # calls to write only once or twice per frame: # The C pickler issues one call to write per-frame (header and # contents) while Python pickler issues two calls to write: one for # the frame header and one for the frame binary contents. writer = ChunkAccumulator() self.pickler(writer, proto).dump(objects) # Actually read the binary content of the chunks after the end # of the call to dump: any memoryview passed to write should not # be released otherwise this delayed access would not be possible. pickled = writer.concatenate_chunks() reconstructed = self.loads(pickled) self.assertEqual(reconstructed, objects) self.assertGreater(len(writer.chunks), 1) # memoryviews should own the memory. del objects support.gc_collect() self.assertEqual(writer.concatenate_chunks(), pickled) n_frames = (len(pickled) - 1) // self.FRAME_SIZE_TARGET + 1 # There should be at least one call to write per frame self.assertGreaterEqual(len(writer.chunks), n_frames) # but not too many either: there can be one for the proto, # one per-frame header, one per frame for the actual contents, # and two for the header. self.assertLessEqual(len(writer.chunks), 2 * n_frames + 3) chunk_sizes = [len(c) for c in writer.chunks] large_sizes = [s for s in chunk_sizes if s >= self.FRAME_SIZE_TARGET] medium_sizes = [s for s in chunk_sizes if 9 < s < self.FRAME_SIZE_TARGET] small_sizes = [s for s in chunk_sizes if s <= 9] # Large chunks should not be too large: for chunk_size in large_sizes: self.assertLess(chunk_size, 2 * self.FRAME_SIZE_TARGET, chunk_sizes) # There shouldn't bee too many small chunks: the protocol header, # the frame headers and the large string headers are written # in small chunks. self.assertLessEqual(len(small_sizes), len(large_sizes) + len(medium_sizes) + 3, chunk_sizes) def test_nested_names(self): global Nested class Nested: class A: class B: class C: pass for proto in range(pickle.HIGHEST_PROTOCOL + 1): for obj in [Nested.A, Nested.A.B, Nested.A.B.C]: with self.subTest(proto=proto, obj=obj): unpickled = self.loads(self.dumps(obj, proto)) self.assertIs(obj, unpickled) def test_recursive_nested_names(self): global Recursive class Recursive: pass Recursive.mod = sys.modules[Recursive.__module__] Recursive.__qualname__ = 'Recursive.mod.Recursive' for proto in range(pickle.HIGHEST_PROTOCOL + 1): with self.subTest(proto=proto): unpickled = self.loads(self.dumps(Recursive, proto)) self.assertIs(unpickled, Recursive) del Recursive.mod # break reference loop def test_py_methods(self): global PyMethodsTest class PyMethodsTest: @staticmethod def cheese(): return "cheese" @classmethod def wine(cls): assert cls is PyMethodsTest return "wine" def biscuits(self): assert isinstance(self, PyMethodsTest) return "biscuits" class Nested: "Nested class" @staticmethod def ketchup(): return "ketchup" @classmethod def maple(cls): assert cls is PyMethodsTest.Nested return "maple" def pie(self): assert isinstance(self, PyMethodsTest.Nested) return "pie" py_methods = ( PyMethodsTest.cheese, PyMethodsTest.wine, PyMethodsTest().biscuits, PyMethodsTest.Nested.ketchup, PyMethodsTest.Nested.maple, PyMethodsTest.Nested().pie ) py_unbound_methods = ( (PyMethodsTest.biscuits, PyMethodsTest), (PyMethodsTest.Nested.pie, PyMethodsTest.Nested) ) for proto in range(pickle.HIGHEST_PROTOCOL + 1): for method in py_methods: with self.subTest(proto=proto, method=method): unpickled = self.loads(self.dumps(method, proto)) self.assertEqual(method(), unpickled()) for method, cls in py_unbound_methods: obj = cls() with self.subTest(proto=proto, method=method): unpickled = self.loads(self.dumps(method, proto)) self.assertEqual(method(obj), unpickled(obj)) def test_c_methods(self): global Subclass class Subclass(tuple): class Nested(str): pass c_methods = ( # bound built-in method ("abcd".index, ("c",)), # unbound built-in method (str.index, ("abcd", "c")), # bound "slot" method ([1, 2, 3].__len__, ()), # unbound "slot" method (list.__len__, ([1, 2, 3],)), # bound "coexist" method ({1, 2}.__contains__, (2,)), # unbound "coexist" method (set.__contains__, ({1, 2}, 2)), # built-in class method (dict.fromkeys, (("a", 1), ("b", 2))), # built-in static method (bytearray.maketrans, (b"abc", b"xyz")), # subclass methods (Subclass([1,2,2]).count, (2,)), (Subclass.count, (Subclass([1,2,2]), 2)), (Subclass.Nested("sweet").count, ("e",)), (Subclass.Nested.count, (Subclass.Nested("sweet"), "e")), ) for proto in range(pickle.HIGHEST_PROTOCOL + 1): for method, args in c_methods: with self.subTest(proto=proto, method=method): unpickled = self.loads(self.dumps(method, proto)) self.assertEqual(method(*args), unpickled(*args)) def test_compat_pickle(self): tests = [ (range(1, 7), '__builtin__', 'xrange'), (map(int, '123'), 'itertools', 'imap'), (functools.reduce, '__builtin__', 'reduce'), (dbm.whichdb, 'whichdb', 'whichdb'), (Exception(), 'exceptions', 'Exception'), (collections.UserDict(), 'UserDict', 'IterableUserDict'), (collections.UserList(), 'UserList', 'UserList'), (collections.defaultdict(), 'collections', 'defaultdict'), ] for val, mod, name in tests: for proto in range(3): with self.subTest(type=type(val), proto=proto): pickled = self.dumps(val, proto) self.assertIn(('c%s\n%s' % (mod, name)).encode(), pickled) self.assertIs(type(self.loads(pickled)), type(val)) def test_local_lookup_error(self): # Test that whichmodule() errors out cleanly when looking up # an assumed globally-reachable object fails. def f(): pass # Since the function is local, lookup will fail for proto in range(0, pickle.HIGHEST_PROTOCOL + 1): with self.assertRaises((AttributeError, pickle.PicklingError)): pickletools.dis(self.dumps(f, proto)) # Same without a __module__ attribute (exercises a different path # in _pickle.c). del f.__module__ for proto in range(0, pickle.HIGHEST_PROTOCOL + 1): with self.assertRaises((AttributeError, pickle.PicklingError)): pickletools.dis(self.dumps(f, proto)) # Yet a different path. f.__name__ = f.__qualname__ for proto in range(0, pickle.HIGHEST_PROTOCOL + 1): with self.assertRaises((AttributeError, pickle.PicklingError)): pickletools.dis(self.dumps(f, proto)) # # PEP 574 tests below # def buffer_like_objects(self): # Yield buffer-like objects with the bytestring "abcdef" in them bytestring = b"abcdefgh" yield ZeroCopyBytes(bytestring) yield ZeroCopyBytearray(bytestring) if _testbuffer is not None: items = list(bytestring) value = int.from_bytes(bytestring, byteorder='little') for flags in (0, _testbuffer.ND_WRITABLE): # 1-D, contiguous yield PicklableNDArray(items, format='B', shape=(8,), flags=flags) # 2-D, C-contiguous yield PicklableNDArray(items, format='B', shape=(4, 2), strides=(2, 1), flags=flags) # 2-D, Fortran-contiguous yield PicklableNDArray(items, format='B', shape=(4, 2), strides=(1, 4), flags=flags) def test_in_band_buffers(self): # Test in-band buffers (PEP 574) for obj in self.buffer_like_objects(): for proto in range(0, pickle.HIGHEST_PROTOCOL + 1): data = self.dumps(obj, proto) if obj.c_contiguous and proto >= 5: # The raw memory bytes are serialized in physical order self.assertIn(b"abcdefgh", data) self.assertEqual(count_opcode(pickle.NEXT_BUFFER, data), 0) if proto >= 5: self.assertEqual(count_opcode(pickle.SHORT_BINBYTES, data), 1 if obj.readonly else 0) self.assertEqual(count_opcode(pickle.BYTEARRAY8, data), 0 if obj.readonly else 1) # Return a true value from buffer_callback should have # the same effect def buffer_callback(obj): return True data2 = self.dumps(obj, proto, buffer_callback=buffer_callback) self.assertEqual(data2, data) new = self.loads(data) # It's a copy self.assertIsNot(new, obj) self.assertIs(type(new), type(obj)) self.assertEqual(new, obj) # XXX Unfortunately cannot test non-contiguous array # (see comment in PicklableNDArray.__reduce_ex__) def test_oob_buffers(self): # Test out-of-band buffers (PEP 574) for obj in self.buffer_like_objects(): for proto in range(0, 5): # Need protocol >= 5 for buffer_callback with self.assertRaises(ValueError): self.dumps(obj, proto, buffer_callback=[].append) for proto in range(5, pickle.HIGHEST_PROTOCOL + 1): buffers = [] buffer_callback = lambda pb: buffers.append(pb.raw()) data = self.dumps(obj, proto, buffer_callback=buffer_callback) self.assertNotIn(b"abcdefgh", data) self.assertEqual(count_opcode(pickle.SHORT_BINBYTES, data), 0) self.assertEqual(count_opcode(pickle.BYTEARRAY8, data), 0) self.assertEqual(count_opcode(pickle.NEXT_BUFFER, data), 1) self.assertEqual(count_opcode(pickle.READONLY_BUFFER, data), 1 if obj.readonly else 0) if obj.c_contiguous: self.assertEqual(bytes(buffers[0]), b"abcdefgh") # Need buffers argument to unpickle properly with self.assertRaises(pickle.UnpicklingError): self.loads(data) new = self.loads(data, buffers=buffers) if obj.zero_copy_reconstruct: # Zero-copy achieved self.assertIs(new, obj) else: self.assertIs(type(new), type(obj)) self.assertEqual(new, obj) # Non-sequence buffers accepted too new = self.loads(data, buffers=iter(buffers)) if obj.zero_copy_reconstruct: # Zero-copy achieved self.assertIs(new, obj) else: self.assertIs(type(new), type(obj)) self.assertEqual(new, obj) def test_oob_buffers_writable_to_readonly(self): # Test reconstructing readonly object from writable buffer obj = ZeroCopyBytes(b"foobar") for proto in range(5, pickle.HIGHEST_PROTOCOL + 1): buffers = [] buffer_callback = buffers.append data = self.dumps(obj, proto, buffer_callback=buffer_callback) buffers = map(bytearray, buffers) new = self.loads(data, buffers=buffers) self.assertIs(type(new), type(obj)) self.assertEqual(new, obj) def test_picklebuffer_error(self): # PickleBuffer forbidden with protocol < 5 pb = pickle.PickleBuffer(b"foobar") for proto in range(0, 5): with self.assertRaises(pickle.PickleError): self.dumps(pb, proto) def test_buffer_callback_error(self): def buffer_callback(buffers): 1/0 pb = pickle.PickleBuffer(b"foobar") with self.assertRaises(ZeroDivisionError): self.dumps(pb, 5, buffer_callback=buffer_callback) def test_buffers_error(self): pb = pickle.PickleBuffer(b"foobar") for proto in range(5, pickle.HIGHEST_PROTOCOL + 1): data = self.dumps(pb, proto, buffer_callback=[].append) # Non iterable buffers with self.assertRaises(TypeError): self.loads(data, buffers=object()) # Buffer iterable exhausts too early with self.assertRaises(pickle.UnpicklingError): self.loads(data, buffers=[]) def test_inband_accept_default_buffers_argument(self): for proto in range(5, pickle.HIGHEST_PROTOCOL + 1): data_pickled = self.dumps(1, proto, buffer_callback=None) data = self.loads(data_pickled, buffers=None) @unittest.skipIf(np is None, "Test needs Numpy") def test_buffers_numpy(self): def check_no_copy(x, y): np.testing.assert_equal(x, y) self.assertEqual(x.ctypes.data, y.ctypes.data) def check_copy(x, y): np.testing.assert_equal(x, y) self.assertNotEqual(x.ctypes.data, y.ctypes.data) def check_array(arr): # In-band for proto in range(0, pickle.HIGHEST_PROTOCOL + 1): data = self.dumps(arr, proto) new = self.loads(data) check_copy(arr, new) for proto in range(5, pickle.HIGHEST_PROTOCOL + 1): buffer_callback = lambda _: True data = self.dumps(arr, proto, buffer_callback=buffer_callback) new = self.loads(data) check_copy(arr, new) # Out-of-band for proto in range(5, pickle.HIGHEST_PROTOCOL + 1): buffers = [] buffer_callback = buffers.append data = self.dumps(arr, proto, buffer_callback=buffer_callback) new = self.loads(data, buffers=buffers) if arr.flags.c_contiguous or arr.flags.f_contiguous: check_no_copy(arr, new) else: check_copy(arr, new) # 1-D arr = np.arange(6) check_array(arr) # 1-D, non-contiguous check_array(arr[::2]) # 2-D, C-contiguous arr = np.arange(12).reshape((3, 4)) check_array(arr) # 2-D, F-contiguous check_array(arr.T) # 2-D, non-contiguous check_array(arr[::2]) class BigmemPickleTests(unittest.TestCase): # Binary protocols can serialize longs of up to 2 GiB-1 @bigmemtest(size=_2G, memuse=3.6, dry_run=False) def test_huge_long_32b(self, size): data = 1 << (8 * size) try: for proto in protocols: if proto < 2: continue with self.subTest(proto=proto): with self.assertRaises((ValueError, OverflowError)): self.dumps(data, protocol=proto) finally: data = None # Protocol 3 can serialize up to 4 GiB-1 as a bytes object # (older protocols don't have a dedicated opcode for bytes and are # too inefficient) @bigmemtest(size=_2G, memuse=2.5, dry_run=False) def test_huge_bytes_32b(self, size): data = b"abcd" * (size // 4) try: for proto in protocols: if proto < 3: continue with self.subTest(proto=proto): try: pickled = self.dumps(data, protocol=proto) header = (pickle.BINBYTES + struct.pack("<I", len(data))) data_start = pickled.index(data) self.assertEqual( header, pickled[data_start-len(header):data_start]) finally: pickled = None finally: data = None @bigmemtest(size=_4G, memuse=2.5, dry_run=False) def test_huge_bytes_64b(self, size): data = b"acbd" * (size // 4) try: for proto in protocols: if proto < 3: continue with self.subTest(proto=proto): if proto == 3: # Protocol 3 does not support large bytes objects. # Verify that we do not crash when processing one. with self.assertRaises((ValueError, OverflowError)): self.dumps(data, protocol=proto) continue try: pickled = self.dumps(data, protocol=proto) header = (pickle.BINBYTES8 + struct.pack("<Q", len(data))) data_start = pickled.index(data) self.assertEqual( header, pickled[data_start-len(header):data_start]) finally: pickled = None finally: data = None # All protocols use 1-byte per printable ASCII character; we add another # byte because the encoded form has to be copied into the internal buffer. @bigmemtest(size=_2G, memuse=8, dry_run=False) def test_huge_str_32b(self, size): data = "abcd" * (size // 4) try: for proto in protocols: if proto == 0: continue with self.subTest(proto=proto): try: pickled = self.dumps(data, protocol=proto) header = (pickle.BINUNICODE + struct.pack("<I", len(data))) data_start = pickled.index(b'abcd') self.assertEqual( header, pickled[data_start-len(header):data_start]) self.assertEqual((pickled.rindex(b"abcd") + len(b"abcd") - pickled.index(b"abcd")), len(data)) finally: pickled = None finally: data = None # BINUNICODE (protocols 1, 2 and 3) cannot carry more than 2**32 - 1 bytes # of utf-8 encoded unicode. BINUNICODE8 (protocol 4) supports these huge # unicode strings however. @bigmemtest(size=_4G, memuse=8, dry_run=False) def test_huge_str_64b(self, size): data = "abcd" * (size // 4) try: for proto in protocols: if proto == 0: continue with self.subTest(proto=proto): if proto < 4: with self.assertRaises((ValueError, OverflowError)): self.dumps(data, protocol=proto) continue try: pickled = self.dumps(data, protocol=proto) header = (pickle.BINUNICODE8 + struct.pack("<Q", len(data))) data_start = pickled.index(b'abcd') self.assertEqual( header, pickled[data_start-len(header):data_start]) self.assertEqual((pickled.rindex(b"abcd") + len(b"abcd") - pickled.index(b"abcd")), len(data)) finally: pickled = None finally: data = None # Test classes for reduce_ex class REX_one(object): """No __reduce_ex__ here, but inheriting it from object""" _reduce_called = 0 def __reduce__(self): self._reduce_called = 1 return REX_one, () class REX_two(object): """No __reduce__ here, but inheriting it from object""" _proto = None def __reduce_ex__(self, proto): self._proto = proto return REX_two, () class REX_three(object): _proto = None def __reduce_ex__(self, proto): self._proto = proto return REX_two, () def __reduce__(self): raise TestFailed("This __reduce__ shouldn't be called") class REX_four(object): """Calling base class method should succeed""" _proto = None def __reduce_ex__(self, proto): self._proto = proto return object.__reduce_ex__(self, proto) class REX_five(object): """This one used to fail with infinite recursion""" _reduce_called = 0 def __reduce__(self): self._reduce_called = 1 return object.__reduce__(self) class REX_six(object): """This class is used to check the 4th argument (list iterator) of the reduce protocol. """ def __init__(self, items=None): self.items = items if items is not None else [] def __eq__(self, other): return type(self) is type(other) and self.items == other.items def append(self, item): self.items.append(item) def __reduce__(self): return type(self), (), None, iter(self.items), None class REX_seven(object): """This class is used to check the 5th argument (dict iterator) of the reduce protocol. """ def __init__(self, table=None): self.table = table if table is not None else {} def __eq__(self, other): return type(self) is type(other) and self.table == other.table def __setitem__(self, key, value): self.table[key] = value def __reduce__(self): return type(self), (), None, None, iter(self.table.items()) # Test classes for newobj class MyInt(int): sample = 1 class MyFloat(float): sample = 1.0 class MyComplex(complex): sample = 1.0 + 0.0j class MyStr(str): sample = "hello" class MyUnicode(str): sample = "hello \u1234" class MyTuple(tuple): sample = (1, 2, 3) class MyList(list): sample = [1, 2, 3] class MyDict(dict): sample = {"a": 1, "b": 2} class MySet(set): sample = {"a", "b"} class MyFrozenSet(frozenset): sample = frozenset({"a", "b"}) myclasses = [MyInt, MyFloat, MyComplex, MyStr, MyUnicode, MyTuple, MyList, MyDict, MySet, MyFrozenSet] class SlotList(MyList): __slots__ = ["foo"] class SimpleNewObj(int): def __init__(self, *args, **kwargs): # raise an error, to make sure this isn't called raise TypeError("SimpleNewObj.__init__() didn't expect to get called") def __eq__(self, other): return int(self) == int(other) and self.__dict__ == other.__dict__ class ComplexNewObj(SimpleNewObj): def __getnewargs__(self): return ('%X' % self, 16) class ComplexNewObjEx(SimpleNewObj): def __getnewargs_ex__(self): return ('%X' % self,), {'base': 16} class BadGetattr: def __getattr__(self, key): self.foo class AbstractPickleModuleTests(unittest.TestCase): def test_dump_closed_file(self): f = open(TESTFN, "wb") try: f.close() self.assertRaises(ValueError, self.dump, 123, f) finally: support.unlink(TESTFN) def test_load_closed_file(self): f = open(TESTFN, "wb") try: f.close() self.assertRaises(ValueError, self.dump, 123, f) finally: support.unlink(TESTFN) def test_load_from_and_dump_to_file(self): stream = io.BytesIO() data = [123, {}, 124] self.dump(data, stream) stream.seek(0) unpickled = self.load(stream) self.assertEqual(unpickled, data) def test_highest_protocol(self): # Of course this needs to be changed when HIGHEST_PROTOCOL changes. self.assertEqual(pickle.HIGHEST_PROTOCOL, 5) def test_callapi(self): f = io.BytesIO() # With and without keyword arguments self.dump(123, f, -1) self.dump(123, file=f, protocol=-1) self.dumps(123, -1) self.dumps(123, protocol=-1) self.Pickler(f, -1) self.Pickler(f, protocol=-1) def test_dump_text_file(self): f = open(TESTFN, "w") try: for proto in protocols: self.assertRaises(TypeError, self.dump, 123, f, proto) finally: f.close() support.unlink(TESTFN) def test_incomplete_input(self): s = io.BytesIO(b"X''.") self.assertRaises((EOFError, struct.error, pickle.UnpicklingError), self.load, s) def test_bad_init(self): # Test issue3664 (pickle can segfault from a badly initialized Pickler). # Override initialization without calling __init__() of the superclass. class BadPickler(self.Pickler): def __init__(self): pass class BadUnpickler(self.Unpickler): def __init__(self): pass self.assertRaises(pickle.PicklingError, BadPickler().dump, 0) self.assertRaises(pickle.UnpicklingError, BadUnpickler().load) def check_dumps_loads_oob_buffers(self, dumps, loads): # No need to do the full gamut of tests here, just enough to # check that dumps() and loads() redirect their arguments # to the underlying Pickler and Unpickler, respectively. obj = ZeroCopyBytes(b"foo") for proto in range(0, 5): # Need protocol >= 5 for buffer_callback with self.assertRaises(ValueError): dumps(obj, protocol=proto, buffer_callback=[].append) for proto in range(5, pickle.HIGHEST_PROTOCOL + 1): buffers = [] buffer_callback = buffers.append data = dumps(obj, protocol=proto, buffer_callback=buffer_callback) self.assertNotIn(b"foo", data) self.assertEqual(bytes(buffers[0]), b"foo") # Need buffers argument to unpickle properly with self.assertRaises(pickle.UnpicklingError): loads(data) new = loads(data, buffers=buffers) self.assertIs(new, obj) def test_dumps_loads_oob_buffers(self): # Test out-of-band buffers (PEP 574) with top-level dumps() and loads() self.check_dumps_loads_oob_buffers(self.dumps, self.loads) def test_dump_load_oob_buffers(self): # Test out-of-band buffers (PEP 574) with top-level dump() and load() def dumps(obj, **kwargs): f = io.BytesIO() self.dump(obj, f, **kwargs) return f.getvalue() def loads(data, **kwargs): f = io.BytesIO(data) return self.load(f, **kwargs) self.check_dumps_loads_oob_buffers(dumps, loads) class AbstractPersistentPicklerTests(unittest.TestCase): # This class defines persistent_id() and persistent_load() # functions that should be used by the pickler. All even integers # are pickled using persistent ids. def persistent_id(self, object): if isinstance(object, int) and object % 2 == 0: self.id_count += 1 return str(object) elif object == "test_false_value": self.false_count += 1 return "" else: return None def persistent_load(self, oid): if not oid: self.load_false_count += 1 return "test_false_value" else: self.load_count += 1 object = int(oid) assert object % 2 == 0 return object def test_persistence(self): L = list(range(10)) + ["test_false_value"] for proto in protocols: self.id_count = 0 self.false_count = 0 self.load_false_count = 0 self.load_count = 0 self.assertEqual(self.loads(self.dumps(L, proto)), L) self.assertEqual(self.id_count, 5) self.assertEqual(self.false_count, 1) self.assertEqual(self.load_count, 5) self.assertEqual(self.load_false_count, 1) class AbstractIdentityPersistentPicklerTests(unittest.TestCase): def persistent_id(self, obj): return obj def persistent_load(self, pid): return pid def _check_return_correct_type(self, obj, proto): unpickled = self.loads(self.dumps(obj, proto)) self.assertIsInstance(unpickled, type(obj)) self.assertEqual(unpickled, obj) def test_return_correct_type(self): for proto in protocols: # Protocol 0 supports only ASCII strings. if proto == 0: self._check_return_correct_type("abc", 0) else: for obj in [b"abc\n", "abc\n", -1, -1.1 * 0.1, str]: self._check_return_correct_type(obj, proto) def test_protocol0_is_ascii_only(self): non_ascii_str = "\N{EMPTY SET}" self.assertRaises(pickle.PicklingError, self.dumps, non_ascii_str, 0) pickled = pickle.PERSID + non_ascii_str.encode('utf-8') + b'\n.' self.assertRaises(pickle.UnpicklingError, self.loads, pickled) class AbstractPicklerUnpicklerObjectTests(unittest.TestCase): pickler_class = None unpickler_class = None def setUp(self): assert self.pickler_class assert self.unpickler_class def test_clear_pickler_memo(self): # To test whether clear_memo() has any effect, we pickle an object, # then pickle it again without clearing the memo; the two serialized # forms should be different. If we clear_memo() and then pickle the # object again, the third serialized form should be identical to the # first one we obtained. data = ["abcdefg", "abcdefg", 44] for proto in protocols: f = io.BytesIO() pickler = self.pickler_class(f, proto) pickler.dump(data) first_pickled = f.getvalue() # Reset BytesIO object. f.seek(0) f.truncate() pickler.dump(data) second_pickled = f.getvalue() # Reset the Pickler and BytesIO objects. pickler.clear_memo() f.seek(0) f.truncate() pickler.dump(data) third_pickled = f.getvalue() self.assertNotEqual(first_pickled, second_pickled) self.assertEqual(first_pickled, third_pickled) def test_priming_pickler_memo(self): # Verify that we can set the Pickler's memo attribute. data = ["abcdefg", "abcdefg", 44] f = io.BytesIO() pickler = self.pickler_class(f) pickler.dump(data) first_pickled = f.getvalue() f = io.BytesIO() primed = self.pickler_class(f) primed.memo = pickler.memo primed.dump(data) primed_pickled = f.getvalue() self.assertNotEqual(first_pickled, primed_pickled) def test_priming_unpickler_memo(self): # Verify that we can set the Unpickler's memo attribute. data = ["abcdefg", "abcdefg", 44] f = io.BytesIO() pickler = self.pickler_class(f) pickler.dump(data) first_pickled = f.getvalue() f = io.BytesIO() primed = self.pickler_class(f) primed.memo = pickler.memo primed.dump(data) primed_pickled = f.getvalue() unpickler = self.unpickler_class(io.BytesIO(first_pickled)) unpickled_data1 = unpickler.load() self.assertEqual(unpickled_data1, data) primed = self.unpickler_class(io.BytesIO(primed_pickled)) primed.memo = unpickler.memo unpickled_data2 = primed.load() primed.memo.clear() self.assertEqual(unpickled_data2, data) self.assertTrue(unpickled_data2 is unpickled_data1) def test_reusing_unpickler_objects(self): data1 = ["abcdefg", "abcdefg", 44] f = io.BytesIO() pickler = self.pickler_class(f) pickler.dump(data1) pickled1 = f.getvalue() data2 = ["abcdefg", 44, 44] f = io.BytesIO() pickler = self.pickler_class(f) pickler.dump(data2) pickled2 = f.getvalue() f = io.BytesIO() f.write(pickled1) f.seek(0) unpickler = self.unpickler_class(f) self.assertEqual(unpickler.load(), data1) f.seek(0) f.truncate() f.write(pickled2) f.seek(0) self.assertEqual(unpickler.load(), data2) def _check_multiple_unpicklings(self, ioclass, *, seekable=True): for proto in protocols: with self.subTest(proto=proto): data1 = [(x, str(x)) for x in range(2000)] + [b"abcde", len] f = ioclass() pickler = self.pickler_class(f, protocol=proto) pickler.dump(data1) pickled = f.getvalue() N = 5 f = ioclass(pickled * N) unpickler = self.unpickler_class(f) for i in range(N): if seekable: pos = f.tell() self.assertEqual(unpickler.load(), data1) if seekable: self.assertEqual(f.tell(), pos + len(pickled)) self.assertRaises(EOFError, unpickler.load) def test_multiple_unpicklings_seekable(self): self._check_multiple_unpicklings(io.BytesIO) def test_multiple_unpicklings_unseekable(self): self._check_multiple_unpicklings(UnseekableIO, seekable=False) def test_multiple_unpicklings_minimal(self): # File-like object that doesn't support peek() and readinto() # (bpo-39681) self._check_multiple_unpicklings(MinimalIO, seekable=False) def test_unpickling_buffering_readline(self): # Issue #12687: the unpickler's buffering logic could fail with # text mode opcodes. data = list(range(10)) for proto in protocols: for buf_size in range(1, 11): f = io.BufferedRandom(io.BytesIO(), buffer_size=buf_size) pickler = self.pickler_class(f, protocol=proto) pickler.dump(data) f.seek(0) unpickler = self.unpickler_class(f) self.assertEqual(unpickler.load(), data) # Tests for dispatch_table attribute REDUCE_A = 'reduce_A' class AAA(object): def __reduce__(self): return str, (REDUCE_A,) class BBB(object): def __init__(self): # Add an instance attribute to enable state-saving routines at pickling # time. self.a = "some attribute" def __setstate__(self, state): self.a = "BBB.__setstate__" def setstate_bbb(obj, state): """Custom state setter for BBB objects Such callable may be created by other persons than the ones who created the BBB class. If passed as the state_setter item of a custom reducer, this allows for custom state setting behavior of BBB objects. One can think of it as the analogous of list_setitems or dict_setitems but for foreign classes/functions. """ obj.a = "custom state_setter" class AbstractCustomPicklerClass: """Pickler implementing a reducing hook using reducer_override.""" def reducer_override(self, obj): obj_name = getattr(obj, "__name__", None) if obj_name == 'f': # asking the pickler to save f as 5 return int, (5, ) if obj_name == 'MyClass': return str, ('some str',) elif obj_name == 'g': # in this case, the callback returns an invalid result (not a 2-5 # tuple or a string), the pickler should raise a proper error. return False elif obj_name == 'h': # Simulate a case when the reducer fails. The error should # be propagated to the original ``dump`` call. raise ValueError('The reducer just failed') return NotImplemented class AbstractHookTests(unittest.TestCase): def test_pickler_hook(self): # test the ability of a custom, user-defined CPickler subclass to # override the default reducing routines of any type using the method # reducer_override def f(): pass def g(): pass def h(): pass class MyClass: pass for proto in range(0, pickle.HIGHEST_PROTOCOL + 1): with self.subTest(proto=proto): bio = io.BytesIO() p = self.pickler_class(bio, proto) p.dump([f, MyClass, math.log]) new_f, some_str, math_log = pickle.loads(bio.getvalue()) self.assertEqual(new_f, 5) self.assertEqual(some_str, 'some str') # math.log does not have its usual reducer overriden, so the # custom reduction callback should silently direct the pickler # to the default pickling by attribute, by returning # NotImplemented self.assertIs(math_log, math.log) with self.assertRaises(pickle.PicklingError): p.dump(g) with self.assertRaisesRegex( ValueError, 'The reducer just failed'): p.dump(h) @support.cpython_only def test_reducer_override_no_reference_cycle(self): # bpo-39492: reducer_override used to induce a spurious reference cycle # inside the Pickler object, that could prevent all serialized objects # from being garbage-collected without explicity invoking gc.collect. for proto in range(0, pickle.HIGHEST_PROTOCOL + 1): with self.subTest(proto=proto): def f(): pass wr = weakref.ref(f) bio = io.BytesIO() p = self.pickler_class(bio, proto) p.dump(f) new_f = pickle.loads(bio.getvalue()) assert new_f == 5 del p del f self.assertIsNone(wr()) class AbstractDispatchTableTests(unittest.TestCase): def test_default_dispatch_table(self): # No dispatch_table attribute by default f = io.BytesIO() p = self.pickler_class(f, 0) with self.assertRaises(AttributeError): p.dispatch_table self.assertFalse(hasattr(p, 'dispatch_table')) def test_class_dispatch_table(self): # A dispatch_table attribute can be specified class-wide dt = self.get_dispatch_table() class MyPickler(self.pickler_class): dispatch_table = dt def dumps(obj, protocol=None): f = io.BytesIO() p = MyPickler(f, protocol) self.assertEqual(p.dispatch_table, dt) p.dump(obj) return f.getvalue() self._test_dispatch_table(dumps, dt) def test_instance_dispatch_table(self): # A dispatch_table attribute can also be specified instance-wide dt = self.get_dispatch_table() def dumps(obj, protocol=None): f = io.BytesIO() p = self.pickler_class(f, protocol) p.dispatch_table = dt self.assertEqual(p.dispatch_table, dt) p.dump(obj) return f.getvalue() self._test_dispatch_table(dumps, dt) def _test_dispatch_table(self, dumps, dispatch_table): def custom_load_dump(obj): return pickle.loads(dumps(obj, 0)) def default_load_dump(obj): return pickle.loads(pickle.dumps(obj, 0)) # pickling complex numbers using protocol 0 relies on copyreg # so check pickling a complex number still works z = 1 + 2j self.assertEqual(custom_load_dump(z), z) self.assertEqual(default_load_dump(z), z) # modify pickling of complex REDUCE_1 = 'reduce_1' def reduce_1(obj): return str, (REDUCE_1,) dispatch_table[complex] = reduce_1 self.assertEqual(custom_load_dump(z), REDUCE_1) self.assertEqual(default_load_dump(z), z) # check picklability of AAA and BBB a = AAA() b = BBB() self.assertEqual(custom_load_dump(a), REDUCE_A) self.assertIsInstance(custom_load_dump(b), BBB) self.assertEqual(default_load_dump(a), REDUCE_A) self.assertIsInstance(default_load_dump(b), BBB) # modify pickling of BBB dispatch_table[BBB] = reduce_1 self.assertEqual(custom_load_dump(a), REDUCE_A) self.assertEqual(custom_load_dump(b), REDUCE_1) self.assertEqual(default_load_dump(a), REDUCE_A) self.assertIsInstance(default_load_dump(b), BBB) # revert pickling of BBB and modify pickling of AAA REDUCE_2 = 'reduce_2' def reduce_2(obj): return str, (REDUCE_2,) dispatch_table[AAA] = reduce_2 del dispatch_table[BBB] self.assertEqual(custom_load_dump(a), REDUCE_2) self.assertIsInstance(custom_load_dump(b), BBB) self.assertEqual(default_load_dump(a), REDUCE_A) self.assertIsInstance(default_load_dump(b), BBB) # End-to-end testing of save_reduce with the state_setter keyword # argument. This is a dispatch_table test as the primary goal of # state_setter is to tweak objects reduction behavior. # In particular, state_setter is useful when the default __setstate__ # behavior is not flexible enough. # No custom reducer for b has been registered for now, so # BBB.__setstate__ should be used at unpickling time self.assertEqual(default_load_dump(b).a, "BBB.__setstate__") def reduce_bbb(obj): return BBB, (), obj.__dict__, None, None, setstate_bbb dispatch_table[BBB] = reduce_bbb # The custom reducer reduce_bbb includes a state setter, that should # have priority over BBB.__setstate__ self.assertEqual(custom_load_dump(b).a, "custom state_setter") if __name__ == "__main__": # Print some stuff that can be used to rewrite DATA{0,1,2} from pickletools import dis x = create_data() for i in range(pickle.HIGHEST_PROTOCOL+1): p = pickle.dumps(x, i) print("DATA{0} = (".format(i)) for j in range(0, len(p), 20): b = bytes(p[j:j+20]) print(" {0!r}".format(b)) print(")") print() print("# Disassembly of DATA{0}".format(i)) print("DATA{0}_DIS = \"\"\"\\".format(i)) dis(p) print("\"\"\"") print()
35.928765
89
0.535737
491ee4a702cd033e771b2ef59f19c85a19e80d1f
1,139
py
Python
openwisp_utils/admin_theme/email.py
totallynotvaishnav/openwisp-utils
e8902a1bf5adea30167ce319be52927427cdbd5e
[ "BSD-3-Clause" ]
null
null
null
openwisp_utils/admin_theme/email.py
totallynotvaishnav/openwisp-utils
e8902a1bf5adea30167ce319be52927427cdbd5e
[ "BSD-3-Clause" ]
1
2022-01-25T17:46:52.000Z
2022-01-25T17:46:52.000Z
openwisp_utils/admin_theme/email.py
Aryamanz29/openwisp-utils
c5558fc14a22316e49e9144d39216de348e19b05
[ "BSD-3-Clause" ]
null
null
null
import logging from smtplib import SMTPRecipientsRefused from django.conf import settings from django.core.mail import EmailMultiAlternatives from django.template.loader import render_to_string from django.utils.html import strip_tags from . import settings as app_settings logger = logging.getLogger(__name__) def send_email(subject, body_text, body_html, recipients, extra_context={}): mail = EmailMultiAlternatives( subject=subject, body=strip_tags(body_text), from_email=settings.DEFAULT_FROM_EMAIL, to=recipients, ) if app_settings.OPENWISP_HTML_EMAIL and body_html: context = dict( subject=subject, message=body_html, logo_url=app_settings.OPENWISP_EMAIL_LOGO, ) context.update(extra_context) html_message = render_to_string( app_settings.OPENWISP_EMAIL_TEMPLATE, context=context, ) mail.attach_alternative(html_message, 'text/html') try: mail.send() except SMTPRecipientsRefused as err: logger.warning(f'SMTP recipients refused: {err.recipients}')
28.475
76
0.703248
944f8a5196086da000f1b5a9686251b886d4a831
1,442
py
Python
bootstrapvz/base/fs/partitionmaps/none.py
wrigri/bootstrap-vz
52b5846cb5acd5551fd818b9e84f42683455a3e5
[ "Apache-2.0" ]
null
null
null
bootstrapvz/base/fs/partitionmaps/none.py
wrigri/bootstrap-vz
52b5846cb5acd5551fd818b9e84f42683455a3e5
[ "Apache-2.0" ]
null
null
null
bootstrapvz/base/fs/partitionmaps/none.py
wrigri/bootstrap-vz
52b5846cb5acd5551fd818b9e84f42683455a3e5
[ "Apache-2.0" ]
null
null
null
from ..partitions.single import SinglePartition class NoPartitions(object): """Represents a virtual 'NoPartitions' partitionmap. This virtual partition map exists because it is easier for tasks to simply always deal with partition maps and then let the base abstract that away. """ def __init__(self, data, sector_size, bootloader): """ :param dict data: volume.partitions part of the manifest :param int sector_size: Sectorsize of the volume :param str bootloader: Name of the bootloader we will use for bootstrapping """ from bootstrapvz.common.sectors import Sectors # In the NoPartitions partitions map we only have a single 'partition' self.root = SinglePartition(Sectors(data['root']['size'], sector_size), data['root']['filesystem'], data['root'].get('format_command', None)) self.partitions = [self.root] def is_blocking(self): """Returns whether the partition map is blocking volume detach operations :rtype: bool """ return self.root.fsm.current == 'mounted' def get_total_size(self): """Returns the total size the partitions occupy :return: The size of all the partitions :rtype: Sectors """ return self.root.get_end() def __getstate__(self): state = self.__dict__.copy() state['__class__'] = self.__module__ + '.' + self.__class__.__name__ return state def __setstate__(self, state): for key in state: self.__dict__[key] = state[key]
31.347826
99
0.71914
e0b4d28958563f1cccfa618a0903713af58a1abe
3,412
py
Python
python/cuml/test/test_incremental_pca.py
ptartan21/cuml
4ce9b4181d47996a39406322d0e2009bd83db211
[ "Apache-2.0" ]
null
null
null
python/cuml/test/test_incremental_pca.py
ptartan21/cuml
4ce9b4181d47996a39406322d0e2009bd83db211
[ "Apache-2.0" ]
null
null
null
python/cuml/test/test_incremental_pca.py
ptartan21/cuml
4ce9b4181d47996a39406322d0e2009bd83db211
[ "Apache-2.0" ]
null
null
null
# # Copyright (c) 2020, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import pytest import cupy as cp import cupyx from sklearn.decomposition import IncrementalPCA as skIPCA from cuml.datasets import make_blobs from cuml.experimental.decomposition import IncrementalPCA as cuIPCA from cuml.test.utils import array_equal @pytest.mark.parametrize( 'nrows, ncols, n_components, sparse_input, density, sparse_format,' ' batch_size_divider', [ (500, 15, 2, True, 0.4, 'csr', 5), (5000, 25, 12, False, 0.07, 'csc', 10), (5000, 15, None, True, 0.4, 'csc', 5), (500, 25, 2, False, 0.07, 'csr', 10), (5000, 25, 12, False, 0.07, 'csr', 10) ] ) @pytest.mark.no_bad_cuml_array_check def test_fit(nrows, ncols, n_components, sparse_input, density, sparse_format, batch_size_divider): if sparse_format == 'csc': pytest.skip("cupyx.scipy.sparse.csc.csc_matrix does not support" " indexing as of cupy 7.6.0") if sparse_input: X = cupyx.scipy.sparse.random(nrows, ncols, density=density, random_state=10, format=sparse_format) else: X, _ = make_blobs(n_samples=nrows, n_features=ncols, random_state=10) cu_ipca = cuIPCA(n_components=n_components, batch_size=int(nrows / batch_size_divider)) cu_ipca.fit(X) cu_t = cu_ipca.transform(X) cu_inv = cu_ipca.inverse_transform(cu_t) sk_ipca = skIPCA(n_components=n_components, batch_size=int(nrows / batch_size_divider)) if sparse_input: X = X.get() else: X = cp.asnumpy(X) sk_ipca.fit(X) sk_t = sk_ipca.transform(X) sk_inv = sk_ipca.inverse_transform(sk_t) assert array_equal(cu_inv, sk_inv, 5e-5, with_sign=True) @pytest.mark.parametrize( 'nrows, ncols, n_components, density, batch_size_divider', [ (500, 15, 2, 0.07, 5), (5000, 25, 12, 0.07, 10), (5000, 15, 2, 0.4, 5), (500, 25, 12, 0.4, 10), ] ) @pytest.mark.no_bad_cuml_array_check def test_partial_fit(nrows, ncols, n_components, density, batch_size_divider): X, _ = make_blobs(n_samples=nrows, n_features=ncols, random_state=10) cu_ipca = cuIPCA(n_components=n_components) sample_size = int(nrows / batch_size_divider) for i in range(0, nrows, sample_size): cu_ipca.partial_fit(X[i:i + sample_size].copy()) cu_t = cu_ipca.transform(X) cu_inv = cu_ipca.inverse_transform(cu_t) sk_ipca = skIPCA(n_components=n_components) X = cp.asnumpy(X) for i in range(0, nrows, sample_size): sk_ipca.partial_fit(X[i:i + sample_size].copy()) sk_t = sk_ipca.transform(X) sk_inv = sk_ipca.inverse_transform(sk_t) assert array_equal(cu_inv, sk_inv, 5e-5, with_sign=True)
31.592593
77
0.656506
d6c7d96356b39542086e801a542fa98187043e4d
5,530
py
Python
tungsten_tempest_plugin/tests/api/contrail/test_database.py
hemcreddy/tungstenfabric-tungsten-tempest
ce646a563c291dfdd0e57a7f0f11d5ca818e3143
[ "Apache-2.0" ]
null
null
null
tungsten_tempest_plugin/tests/api/contrail/test_database.py
hemcreddy/tungstenfabric-tungsten-tempest
ce646a563c291dfdd0e57a7f0f11d5ca818e3143
[ "Apache-2.0" ]
null
null
null
tungsten_tempest_plugin/tests/api/contrail/test_database.py
hemcreddy/tungstenfabric-tungsten-tempest
ce646a563c291dfdd0e57a7f0f11d5ca818e3143
[ "Apache-2.0" ]
null
null
null
# Copyright 2016 AT&T Corp # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Tempest test-case to test database objects using RBAC roles """ from oslo_log import log as logging from patrole_tempest_plugin import rbac_rule_validation from tempest import config from tempest.lib.common.utils import data_utils from tempest.lib import decorators from tungsten_tempest_plugin.tests.api.contrail import rbac_base CONF = config.CONF LOG = logging.getLogger(__name__) class ContrailDatabaseTest(rbac_base.BaseContrailTest): """Test class to test database objects using RBAC roles""" def _create_global_system_config(self): config_name = data_utils.rand_name('test-config') parent_type = 'config-root' config_fq_name = [config_name] new_config = \ self.config_client.create_global_system_configs( parent_type=parent_type, display_name=config_name, fq_name=config_fq_name)['global-system-config'] self.addCleanup(self._try_delete_resource, (self.config_client. delete_global_system_config), new_config['uuid']) return new_config def _delete_database_node(self, db_node_id): return self.db_client.delete_database_node(db_node_id) def _create_database_node(self, global_system_config): name = data_utils.rand_name('database') fq_name = [global_system_config, name] database_node_ip_address = '1.1.1.1' parent_type = 'global-system-config' db_node = self.db_client.create_databse_nodes( display_name=name, database_node_ip_address=database_node_ip_address, fq_name=fq_name, parent_type=parent_type)['database-node'] self.addCleanup(self._try_delete_resource, self._delete_database_node, db_node['uuid']) return db_node @rbac_rule_validation.action(service="Contrail", rules=["list_database_nodes"]) @decorators.idempotent_id('5ae6f965-6161-443f-b19e-dfa7b364c533') def test_list_database_nodes(self): """test method for list database objects""" # Create global system config global_system_config = self._create_global_system_config()['name'] self._create_database_node(global_system_config) with self.rbac_utils.override_role(self): self.db_client.list_database_nodes() @rbac_rule_validation.action(service="Contrail", rules=["show_database_node"]) @decorators.idempotent_id('4a07d9a8-7b99-43bd-b628-06c023993aab') def test_show_database_node(self): """test method for show database objects""" # Create global system config global_system_config = self._create_global_system_config()['name'] db_node = self._create_database_node(global_system_config) db_node_id = db_node['uuid'] with self.rbac_utils.override_role(self): self.db_client.show_database_node(db_node_id) @rbac_rule_validation.action(service="Contrail", rules=["create_database_nodes"]) @decorators.idempotent_id('b9aa9c6b-9381-44f0-94fb-e4523bf2a87e') def test_create_database_nodes(self): """test method for update database objects""" # Create global system config global_system_config = self._create_global_system_config()['name'] with self.rbac_utils.override_role(self): self._create_database_node(global_system_config) @rbac_rule_validation.action(service="Contrail", rules=["update_database_node"]) @decorators.idempotent_id('6e59f393-0e55-4327-871e-7f0ad53f2e17') def test_update_database_node(self): """test method for update database objects""" # Create global system config global_system_config = self._create_global_system_config()['name'] db_node = self._create_database_node(global_system_config) db_node_id = db_node['uuid'] display_name = data_utils.rand_name('DatabaseNew') with self.rbac_utils.override_role(self): self.db_client.update_database_node( db_node_id=db_node_id, display_name=display_name) @rbac_rule_validation.action(service="Contrail", rules=["delete_database_node"]) @decorators.idempotent_id('0cbc5a52-d7e7-4a1c-a85d-6bf44012d99b') def test_delete_database_node(self): """test method for delete database objects""" # Create global system config global_system_config = self._create_global_system_config()['name'] db_node = self._create_database_node(global_system_config) db_node_id = db_node['uuid'] with self.rbac_utils.override_role(self): self._delete_database_node(db_node_id)
43.203125
78
0.68264
72fa261f69b79322b3c73fcb199f203549225812
72,506
py
Python
state_moves.py
Orangeplumber/Chess-AI
d5baff14a1df6c01b2ca71970cf5775a0723392f
[ "MIT" ]
1
2021-07-24T18:35:19.000Z
2021-07-24T18:35:19.000Z
training/state_moves.py
Orangeplumber/Chess-AI
d5baff14a1df6c01b2ca71970cf5775a0723392f
[ "MIT" ]
null
null
null
training/state_moves.py
Orangeplumber/Chess-AI
d5baff14a1df6c01b2ca71970cf5775a0723392f
[ "MIT" ]
null
null
null
MOVES={'p7': [[], [], [], [], [], [], [], [], [[16, 24], [17]], [[16], [17, 25], [18]], [[17], [18, 26], [19]], [[18], [19, 27], [20]], [[19], [20, 28], [21]], [[20], [21, 29], [22]], [[21], [22, 30], [23]], [[22], [23, 31]], [[24], [25]], [[24], [25], [26]], [[25], [26], [27]], [[26], [27], [28]], [[27], [28], [29]], [[28], [29], [30]], [[29], [30], [31]], [[30], [31]], [[32], [33]], [[32], [33], [34]], [[33], [34], [35]], [[34], [35], [36]], [[35], [36], [37]], [[36], [37], [38]], [[37], [38], [39]], [[38], [39]], [[40], [41]], [[40], [41], [42]], [[41], [42], [43]], [[42], [43], [44]], [[43], [44], [45]], [[44], [45], [46]], [[45], [46], [47]], [[46], [47]], [[48], [49]], [[48], [49], [50]], [[49], [50], [51]], [[50], [51], [52]], [[51], [52], [53]], [[52], [53], [54]], [[53], [54], [55]], [[54], [55]], [[56], [57]], [[56], [57], [58]], [[57], [58], [59]], [[58], [59], [60]], [[59], [60], [61]], [[60], [61], [62]], [[61], [62], [63]], [[62], [63]], [], [], [], [], [], [], [], []], 'b1': [[[9, 18, 27, 36, 45, 54, 63]], [[8], [10, 19, 28, 37, 46, 55]], [[9, 16], [11, 20, 29, 38, 47]], [[10, 17, 24], [12, 21, 30, 39]], [[11, 18, 25, 32], [13, 22, 31]], [[12, 19, 26, 33, 40], [14, 23]], [[13, 20, 27, 34, 41, 48], [15]], [[14, 21, 28, 35, 42, 49, 56]], [[1], [17, 26, 35, 44, 53, 62]], [[2], [0], [16], [18, 27, 36, 45, 54, 63]], [[3], [1], [17, 24], [19, 28, 37, 46, 55]], [[4], [2], [18, 25, 32], [20, 29, 38, 47]], [[5], [3], [19, 26, 33, 40], [21, 30, 39]], [[6], [4], [20, 27, 34, 41, 48], [22, 31]], [[7], [5], [21, 28, 35, 42, 49, 56], [23]], [[6], [22, 29, 36, 43, 50, 57]], [[9, 2], [25, 34, 43, 52, 61]], [[10, 3], [8], [24], [26, 35, 44, 53, 62]], [[11, 4], [9, 0], [25, 32], [27, 36, 45, 54, 63]], [[12, 5], [10, 1], [26, 33, 40], [28, 37, 46, 55]], [[13, 6], [11, 2], [27, 34, 41, 48], [29, 38, 47]], [[14, 7], [12, 3], [28, 35, 42, 49, 56], [30, 39]], [[15], [13, 4], [29, 36, 43, 50, 57], [31]], [[14, 5], [30, 37, 44, 51, 58]], [[17, 10, 3], [33, 42, 51, 60]], [[18, 11, 4], [16], [32], [34, 43, 52, 61]], [[19, 12, 5], [17, 8], [33, 40], [35, 44, 53, 62]], [[20, 13, 6], [18, 9, 0], [34, 41, 48], [36, 45, 54, 63]], [[21, 14, 7], [19, 10, 1], [35, 42, 49, 56], [37, 46, 55]], [[22, 15], [20, 11, 2], [36, 43, 50, 57], [38, 47]], [[23], [21, 12, 3], [37, 44, 51, 58], [39]], [[22, 13, 4], [38, 45, 52, 59]], [[25, 18, 11, 4], [41, 50, 59]], [[26, 19, 12, 5], [24], [40], [42, 51, 60]], [[27, 20, 13, 6], [25, 16], [41, 48], [43, 52, 61]], [[28, 21, 14, 7], [26, 17, 8], [42, 49, 56], [44, 53, 62]], [[29, 22, 15], [27, 18, 9, 0], [43, 50, 57], [45, 54, 63]], [[30, 23], [28, 19, 10, 1], [44, 51, 58], [46, 55]], [[31], [29, 20, 11, 2], [45, 52, 59], [47]], [[30, 21, 12, 3], [46, 53, 60]], [[33, 26, 19, 12, 5], [49, 58]], [[34, 27, 20, 13, 6], [32], [48], [50, 59]], [[35, 28, 21, 14, 7], [33, 24], [49, 56], [51, 60]], [[36, 29, 22, 15], [34, 25, 16], [50, 57], [52, 61]], [[37, 30, 23], [35, 26, 17, 8], [51, 58], [53, 62]], [[38, 31], [36, 27, 18, 9, 0], [52, 59], [54, 63]], [[39], [37, 28, 19, 10, 1], [53, 60], [55]], [[38, 29, 20, 11, 2], [54, 61]], [[41, 34, 27, 20, 13, 6], [57]], [[42, 35, 28, 21, 14, 7], [40], [56], [58]], [[43, 36, 29, 22, 15], [41, 32], [57], [59]], [[44, 37, 30, 23], [42, 33, 24], [58], [60]], [[45, 38, 31], [43, 34, 25, 16], [59], [61]], [[46, 39], [44, 35, 26, 17, 8], [60], [62]], [[47], [45, 36, 27, 18, 9, 0], [61], [63]], [[46, 37, 28, 19, 10, 1], [62]], [[49, 42, 35, 28, 21, 14, 7]], [[50, 43, 36, 29, 22, 15], [48]], [[51, 44, 37, 30, 23], [49, 40]], [[52, 45, 38, 31], [50, 41, 32]], [[53, 46, 39], [51, 42, 33, 24]], [[54, 47], [52, 43, 34, 25, 16]], [[55], [53, 44, 35, 26, 17, 8]], [[54, 45, 36, 27, 18, 9, 0]]], 'b2': [[[9, 18, 27, 36, 45, 54, 63]], [[8], [10, 19, 28, 37, 46, 55]], [[9, 16], [11, 20, 29, 38, 47]], [[10, 17, 24], [12, 21, 30, 39]], [[11, 18, 25, 32], [13, 22, 31]], [[12, 19, 26, 33, 40], [14, 23]], [[13, 20, 27, 34, 41, 48], [15]], [[14, 21, 28, 35, 42, 49, 56]], [[1], [17, 26, 35, 44, 53, 62]], [[2], [0], [16], [18, 27, 36, 45, 54, 63]], [[3], [1], [17, 24], [19, 28, 37, 46, 55]], [[4], [2], [18, 25, 32], [20, 29, 38, 47]], [[5], [3], [19, 26, 33, 40], [21, 30, 39]], [[6], [4], [20, 27, 34, 41, 48], [22, 31]], [[7], [5], [21, 28, 35, 42, 49, 56], [23]], [[6], [22, 29, 36, 43, 50, 57]], [[9, 2], [25, 34, 43, 52, 61]], [[10, 3], [8], [24], [26, 35, 44, 53, 62]], [[11, 4], [9, 0], [25, 32], [27, 36, 45, 54, 63]], [[12, 5], [10, 1], [26, 33, 40], [28, 37, 46, 55]], [[13, 6], [11, 2], [27, 34, 41, 48], [29, 38, 47]], [[14, 7], [12, 3], [28, 35, 42, 49, 56], [30, 39]], [[15], [13, 4], [29, 36, 43, 50, 57], [31]], [[14, 5], [30, 37, 44, 51, 58]], [[17, 10, 3], [33, 42, 51, 60]], [[18, 11, 4], [16], [32], [34, 43, 52, 61]], [[19, 12, 5], [17, 8], [33, 40], [35, 44, 53, 62]], [[20, 13, 6], [18, 9, 0], [34, 41, 48], [36, 45, 54, 63]], [[21, 14, 7], [19, 10, 1], [35, 42, 49, 56], [37, 46, 55]], [[22, 15], [20, 11, 2], [36, 43, 50, 57], [38, 47]], [[23], [21, 12, 3], [37, 44, 51, 58], [39]], [[22, 13, 4], [38, 45, 52, 59]], [[25, 18, 11, 4], [41, 50, 59]], [[26, 19, 12, 5], [24], [40], [42, 51, 60]], [[27, 20, 13, 6], [25, 16], [41, 48], [43, 52, 61]], [[28, 21, 14, 7], [26, 17, 8], [42, 49, 56], [44, 53, 62]], [[29, 22, 15], [27, 18, 9, 0], [43, 50, 57], [45, 54, 63]], [[30, 23], [28, 19, 10, 1], [44, 51, 58], [46, 55]], [[31], [29, 20, 11, 2], [45, 52, 59], [47]], [[30, 21, 12, 3], [46, 53, 60]], [[33, 26, 19, 12, 5], [49, 58]], [[34, 27, 20, 13, 6], [32], [48], [50, 59]], [[35, 28, 21, 14, 7], [33, 24], [49, 56], [51, 60]], [[36, 29, 22, 15], [34, 25, 16], [50, 57], [52, 61]], [[37, 30, 23], [35, 26, 17, 8], [51, 58], [53, 62]], [[38, 31], [36, 27, 18, 9, 0], [52, 59], [54, 63]], [[39], [37, 28, 19, 10, 1], [53, 60], [55]], [[38, 29, 20, 11, 2], [54, 61]], [[41, 34, 27, 20, 13, 6], [57]], [[42, 35, 28, 21, 14, 7], [40], [56], [58]], [[43, 36, 29, 22, 15], [41, 32], [57], [59]], [[44, 37, 30, 23], [42, 33, 24], [58], [60]], [[45, 38, 31], [43, 34, 25, 16], [59], [61]], [[46, 39], [44, 35, 26, 17, 8], [60], [62]], [[47], [45, 36, 27, 18, 9, 0], [61], [63]], [[46, 37, 28, 19, 10, 1], [62]], [[49, 42, 35, 28, 21, 14, 7]], [[50, 43, 36, 29, 22, 15], [48]], [[51, 44, 37, 30, 23], [49, 40]], [[52, 45, 38, 31], [50, 41, 32]], [[53, 46, 39], [51, 42, 33, 24]], [[54, 47], [52, 43, 34, 25, 16]], [[55], [53, 44, 35, 26, 17, 8]], [[54, 45, 36, 27, 18, 9, 0]]], 'R1': [[[1, 2, 3, 4, 5, 6, 7], [8, 16, 24, 32, 40, 48, 56]], [[2, 3, 4, 5, 6, 7], [0], [9, 17, 25, 33, 41, 49, 57]], [[3, 4, 5, 6, 7], [1, 0], [10, 18, 26, 34, 42, 50, 58]], [[4, 5, 6, 7], [2, 1, 0], [11, 19, 27, 35, 43, 51, 59]], [[5, 6, 7], [3, 2, 1, 0], [12, 20, 28, 36, 44, 52, 60]], [[6, 7], [4, 3, 2, 1, 0], [13, 21, 29, 37, 45, 53, 61]], [[7], [5, 4, 3, 2, 1, 0], [14, 22, 30, 38, 46, 54, 62]], [[6, 5, 4, 3, 2, 1, 0], [15, 23, 31, 39, 47, 55, 63]], [[9, 10, 11, 12, 13, 14, 15], [0], [16, 24, 32, 40, 48, 56]], [[10, 11, 12, 13, 14, 15], [1], [8], [17, 25, 33, 41, 49, 57]], [[11, 12, 13, 14, 15], [2], [9, 8], [18, 26, 34, 42, 50, 58]], [[12, 13, 14, 15], [3], [10, 9, 8], [19, 27, 35, 43, 51, 59]], [[13, 14, 15], [4], [11, 10, 9, 8], [20, 28, 36, 44, 52, 60]], [[14, 15], [5], [12, 11, 10, 9, 8], [21, 29, 37, 45, 53, 61]], [[15], [6], [13, 12, 11, 10, 9, 8], [22, 30, 38, 46, 54, 62]], [[7], [14, 13, 12, 11, 10, 9, 8], [23, 31, 39, 47, 55, 63]], [[17, 18, 19, 20, 21, 22, 23], [8, 0], [24, 32, 40, 48, 56]], [[18, 19, 20, 21, 22, 23], [9, 1], [16], [25, 33, 41, 49, 57]], [[19, 20, 21, 22, 23], [10, 2], [17, 16], [26, 34, 42, 50, 58]], [[20, 21, 22, 23], [11, 3], [18, 17, 16], [27, 35, 43, 51, 59]], [[21, 22, 23], [12, 4], [19, 18, 17, 16], [28, 36, 44, 52, 60]], [[22, 23], [13, 5], [20, 19, 18, 17, 16], [29, 37, 45, 53, 61]], [[23], [14, 6], [21, 20, 19, 18, 17, 16], [30, 38, 46, 54, 62]], [[15, 7], [22, 21, 20, 19, 18, 17, 16], [31, 39, 47, 55, 63]], [[25, 26, 27, 28, 29, 30, 31], [16, 8, 0], [32, 40, 48, 56]], [[26, 27, 28, 29, 30, 31], [17, 9, 1], [24], [33, 41, 49, 57]], [[27, 28, 29, 30, 31], [18, 10, 2], [25, 24], [34, 42, 50, 58]], [[28, 29, 30, 31], [19, 11, 3], [26, 25, 24], [35, 43, 51, 59]], [[29, 30, 31], [20, 12, 4], [27, 26, 25, 24], [36, 44, 52, 60]], [[30, 31], [21, 13, 5], [28, 27, 26, 25, 24], [37, 45, 53, 61]], [[31], [22, 14, 6], [29, 28, 27, 26, 25, 24], [38, 46, 54, 62]], [[23, 15, 7], [30, 29, 28, 27, 26, 25, 24], [39, 47, 55, 63]], [[33, 34, 35, 36, 37, 38, 39], [24, 16, 8, 0], [40, 48, 56]], [[34, 35, 36, 37, 38, 39], [25, 17, 9, 1], [32], [41, 49, 57]], [[35, 36, 37, 38, 39], [26, 18, 10, 2], [33, 32], [42, 50, 58]], [[36, 37, 38, 39], [27, 19, 11, 3], [34, 33, 32], [43, 51, 59]], [[37, 38, 39], [28, 20, 12, 4], [35, 34, 33, 32], [44, 52, 60]], [[38, 39], [29, 21, 13, 5], [36, 35, 34, 33, 32], [45, 53, 61]], [[39], [30, 22, 14, 6], [37, 36, 35, 34, 33, 32], [46, 54, 62]], [[31, 23, 15, 7], [38, 37, 36, 35, 34, 33, 32], [47, 55, 63]], [[41, 42, 43, 44, 45, 46, 47], [32, 24, 16, 8, 0], [48, 56]], [[42, 43, 44, 45, 46, 47], [33, 25, 17, 9, 1], [40], [49, 57]], [[43, 44, 45, 46, 47], [34, 26, 18, 10, 2], [41, 40], [50, 58]], [[44, 45, 46, 47], [35, 27, 19, 11, 3], [42, 41, 40], [51, 59]], [[45, 46, 47], [36, 28, 20, 12, 4], [43, 42, 41, 40], [52, 60]], [[46, 47], [37, 29, 21, 13, 5], [44, 43, 42, 41, 40], [53, 61]], [[47], [38, 30, 22, 14, 6], [45, 44, 43, 42, 41, 40], [54, 62]], [[39, 31, 23, 15, 7], [46, 45, 44, 43, 42, 41, 40], [55, 63]], [[49, 50, 51, 52, 53, 54, 55], [40, 32, 24, 16, 8, 0], [56]], [[50, 51, 52, 53, 54, 55], [41, 33, 25, 17, 9, 1], [48], [57]], [[51, 52, 53, 54, 55], [42, 34, 26, 18, 10, 2], [49, 48], [58]], [[52, 53, 54, 55], [43, 35, 27, 19, 11, 3], [50, 49, 48], [59]], [[53, 54, 55], [44, 36, 28, 20, 12, 4], [51, 50, 49, 48], [60]], [[54, 55], [45, 37, 29, 21, 13, 5], [52, 51, 50, 49, 48], [61]], [[55], [46, 38, 30, 22, 14, 6], [53, 52, 51, 50, 49, 48], [62]], [[47, 39, 31, 23, 15, 7], [54, 53, 52, 51, 50, 49, 48], [63]], [[57, 58, 59, 60, 61, 62, 63], [48, 40, 32, 24, 16, 8, 0]], [[58, 59, 60, 61, 62, 63], [49, 41, 33, 25, 17, 9, 1], [56]], [[59, 60, 61, 62, 63], [50, 42, 34, 26, 18, 10, 2], [57, 56]], [[60, 61, 62, 63], [51, 43, 35, 27, 19, 11, 3], [58, 57, 56]], [[61, 62, 63], [52, 44, 36, 28, 20, 12, 4], [59, 58, 57, 56]], [[62, 63], [53, 45, 37, 29, 21, 13, 5], [60, 59, 58, 57, 56]], [[63], [54, 46, 38, 30, 22, 14, 6], [61, 60, 59, 58, 57, 56]], [[55, 47, 39, 31, 23, 15, 7], [62, 61, 60, 59, 58, 57, 56]]], 'R2': [[[1, 2, 3, 4, 5, 6, 7], [8, 16, 24, 32, 40, 48, 56]], [[2, 3, 4, 5, 6, 7], [0], [9, 17, 25, 33, 41, 49, 57]], [[3, 4, 5, 6, 7], [1, 0], [10, 18, 26, 34, 42, 50, 58]], [[4, 5, 6, 7], [2, 1, 0], [11, 19, 27, 35, 43, 51, 59]], [[5, 6, 7], [3, 2, 1, 0], [12, 20, 28, 36, 44, 52, 60]], [[6, 7], [4, 3, 2, 1, 0], [13, 21, 29, 37, 45, 53, 61]], [[7], [5, 4, 3, 2, 1, 0], [14, 22, 30, 38, 46, 54, 62]], [[6, 5, 4, 3, 2, 1, 0], [15, 23, 31, 39, 47, 55, 63]], [[9, 10, 11, 12, 13, 14, 15], [0], [16, 24, 32, 40, 48, 56]], [[10, 11, 12, 13, 14, 15], [1], [8], [17, 25, 33, 41, 49, 57]], [[11, 12, 13, 14, 15], [2], [9, 8], [18, 26, 34, 42, 50, 58]], [[12, 13, 14, 15], [3], [10, 9, 8], [19, 27, 35, 43, 51, 59]], [[13, 14, 15], [4], [11, 10, 9, 8], [20, 28, 36, 44, 52, 60]], [[14, 15], [5], [12, 11, 10, 9, 8], [21, 29, 37, 45, 53, 61]], [[15], [6], [13, 12, 11, 10, 9, 8], [22, 30, 38, 46, 54, 62]], [[7], [14, 13, 12, 11, 10, 9, 8], [23, 31, 39, 47, 55, 63]], [[17, 18, 19, 20, 21, 22, 23], [8, 0], [24, 32, 40, 48, 56]], [[18, 19, 20, 21, 22, 23], [9, 1], [16], [25, 33, 41, 49, 57]], [[19, 20, 21, 22, 23], [10, 2], [17, 16], [26, 34, 42, 50, 58]], [[20, 21, 22, 23], [11, 3], [18, 17, 16], [27, 35, 43, 51, 59]], [[21, 22, 23], [12, 4], [19, 18, 17, 16], [28, 36, 44, 52, 60]], [[22, 23], [13, 5], [20, 19, 18, 17, 16], [29, 37, 45, 53, 61]], [[23], [14, 6], [21, 20, 19, 18, 17, 16], [30, 38, 46, 54, 62]], [[15, 7], [22, 21, 20, 19, 18, 17, 16], [31, 39, 47, 55, 63]], [[25, 26, 27, 28, 29, 30, 31], [16, 8, 0], [32, 40, 48, 56]], [[26, 27, 28, 29, 30, 31], [17, 9, 1], [24], [33, 41, 49, 57]], [[27, 28, 29, 30, 31], [18, 10, 2], [25, 24], [34, 42, 50, 58]], [[28, 29, 30, 31], [19, 11, 3], [26, 25, 24], [35, 43, 51, 59]], [[29, 30, 31], [20, 12, 4], [27, 26, 25, 24], [36, 44, 52, 60]], [[30, 31], [21, 13, 5], [28, 27, 26, 25, 24], [37, 45, 53, 61]], [[31], [22, 14, 6], [29, 28, 27, 26, 25, 24], [38, 46, 54, 62]], [[23, 15, 7], [30, 29, 28, 27, 26, 25, 24], [39, 47, 55, 63]], [[33, 34, 35, 36, 37, 38, 39], [24, 16, 8, 0], [40, 48, 56]], [[34, 35, 36, 37, 38, 39], [25, 17, 9, 1], [32], [41, 49, 57]], [[35, 36, 37, 38, 39], [26, 18, 10, 2], [33, 32], [42, 50, 58]], [[36, 37, 38, 39], [27, 19, 11, 3], [34, 33, 32], [43, 51, 59]], [[37, 38, 39], [28, 20, 12, 4], [35, 34, 33, 32], [44, 52, 60]], [[38, 39], [29, 21, 13, 5], [36, 35, 34, 33, 32], [45, 53, 61]], [[39], [30, 22, 14, 6], [37, 36, 35, 34, 33, 32], [46, 54, 62]], [[31, 23, 15, 7], [38, 37, 36, 35, 34, 33, 32], [47, 55, 63]], [[41, 42, 43, 44, 45, 46, 47], [32, 24, 16, 8, 0], [48, 56]], [[42, 43, 44, 45, 46, 47], [33, 25, 17, 9, 1], [40], [49, 57]], [[43, 44, 45, 46, 47], [34, 26, 18, 10, 2], [41, 40], [50, 58]], [[44, 45, 46, 47], [35, 27, 19, 11, 3], [42, 41, 40], [51, 59]], [[45, 46, 47], [36, 28, 20, 12, 4], [43, 42, 41, 40], [52, 60]], [[46, 47], [37, 29, 21, 13, 5], [44, 43, 42, 41, 40], [53, 61]], [[47], [38, 30, 22, 14, 6], [45, 44, 43, 42, 41, 40], [54, 62]], [[39, 31, 23, 15, 7], [46, 45, 44, 43, 42, 41, 40], [55, 63]], [[49, 50, 51, 52, 53, 54, 55], [40, 32, 24, 16, 8, 0], [56]], [[50, 51, 52, 53, 54, 55], [41, 33, 25, 17, 9, 1], [48], [57]], [[51, 52, 53, 54, 55], [42, 34, 26, 18, 10, 2], [49, 48], [58]], [[52, 53, 54, 55], [43, 35, 27, 19, 11, 3], [50, 49, 48], [59]], [[53, 54, 55], [44, 36, 28, 20, 12, 4], [51, 50, 49, 48], [60]], [[54, 55], [45, 37, 29, 21, 13, 5], [52, 51, 50, 49, 48], [61]], [[55], [46, 38, 30, 22, 14, 6], [53, 52, 51, 50, 49, 48], [62]], [[47, 39, 31, 23, 15, 7], [54, 53, 52, 51, 50, 49, 48], [63]], [[57, 58, 59, 60, 61, 62, 63], [48, 40, 32, 24, 16, 8, 0]], [[58, 59, 60, 61, 62, 63], [49, 41, 33, 25, 17, 9, 1], [56]], [[59, 60, 61, 62, 63], [50, 42, 34, 26, 18, 10, 2], [57, 56]], [[60, 61, 62, 63], [51, 43, 35, 27, 19, 11, 3], [58, 57, 56]], [[61, 62, 63], [52, 44, 36, 28, 20, 12, 4], [59, 58, 57, 56]], [[62, 63], [53, 45, 37, 29, 21, 13, 5], [60, 59, 58, 57, 56]], [[63], [54, 46, 38, 30, 22, 14, 6], [61, 60, 59, 58, 57, 56]], [[55, 47, 39, 31, 23, 15, 7], [62, 61, 60, 59, 58, 57, 56]]], 'K': [[[1], [8], [9]], [[2], [0], [8], [9], [10]], [[3], [1], [9], [10], [11]], [[4], [2], [10], [11], [12]], [[5], [3], [11], [12], [13]], [[6], [4], [12], [13], [14]], [[7], [5], [13], [14], [15]], [[6], [14], [15]], [[9], [1], [0], [16], [17]], [[10], [2], [1], [0], [8], [16], [17], [18]], [[11], [3], [2], [1], [9], [17], [18], [19]], [[12], [4], [3], [2], [10], [18], [19], [20]], [[13], [5], [4], [3], [11], [19], [20], [21]], [[14], [6], [5], [4], [12], [20], [21], [22]], [[15], [7], [6], [5], [13], [21], [22], [23]], [[7], [6], [14], [22], [23]], [[17], [9], [8], [24], [25]], [[18], [10], [9], [8], [16], [24], [25], [26]], [[19], [11], [10], [9], [17], [25], [26], [27]], [[20], [12], [11], [10], [18], [26], [27], [28]], [[21], [13], [12], [11], [19], [27], [28], [29]], [[22], [14], [13], [12], [20], [28], [29], [30]], [[23], [15], [14], [13], [21], [29], [30], [31]], [[15], [14], [22], [30], [31]], [[25], [17], [16], [32], [33]], [[26], [18], [17], [16], [24], [32], [33], [34]], [[27], [19], [18], [17], [25], [33], [34], [35]], [[28], [20], [19], [18], [26], [34], [35], [36]], [[29], [21], [20], [19], [27], [35], [36], [37]], [[30], [22], [21], [20], [28], [36], [37], [38]], [[31], [23], [22], [21], [29], [37], [38], [39]], [[23], [22], [30], [38], [39]], [[33], [25], [24], [40], [41]], [[34], [26], [25], [24], [32], [40], [41], [42]], [[35], [27], [26], [25], [33], [41], [42], [43]], [[36], [28], [27], [26], [34], [42], [43], [44]], [[37], [29], [28], [27], [35], [43], [44], [45]], [[38], [30], [29], [28], [36], [44], [45], [46]], [[39], [31], [30], [29], [37], [45], [46], [47]], [[31], [30], [38], [46], [47]], [[41], [33], [32], [48], [49]], [[42], [34], [33], [32], [40], [48], [49], [50]], [[43], [35], [34], [33], [41], [49], [50], [51]], [[44], [36], [35], [34], [42], [50], [51], [52]], [[45], [37], [36], [35], [43], [51], [52], [53]], [[46], [38], [37], [36], [44], [52], [53], [54]], [[47], [39], [38], [37], [45], [53], [54], [55]], [[39], [38], [46], [54], [55]], [[49], [41], [40], [56], [57]], [[50], [42], [41], [40], [48], [56], [57], [58]], [[51], [43], [42], [41], [49], [57], [58], [59]], [[52], [44], [43], [42], [50], [58], [59], [60]], [[53], [45], [44], [43], [51], [59], [60], [61]], [[54], [46], [45], [44], [52], [60], [61], [62]], [[55], [47], [46], [45], [53], [61], [62], [63]], [[47], [46], [54], [62], [63]], [[57], [49], [48]], [[58], [50], [49], [48], [56]], [[59], [51], [50], [49], [57]], [[60], [52], [51], [50], [58]], [[61, 62], [53], [52], [51], [59, 58]], [[62], [54], [53], [52], [60]], [[63], [55], [54], [53], [61]], [[55], [54], [62]]], 'P2': [[], [], [], [], [], [], [], [], [[1], [0]], [[2], [1], [0]], [[3], [2], [1]], [[4], [3], [2]], [[5], [4], [3]], [[6], [5], [4]], [[7], [6], [5]], [[7], [6]], [[9], [8]], [[10], [9], [8]], [[11], [10], [9]], [[12], [11], [10]], [[13], [12], [11]], [[14], [13], [12]], [[15], [14], [13]], [[15], [14]], [[17], [16]], [[18], [17], [16]], [[19], [18], [17]], [[20], [19], [18]], [[21], [20], [19]], [[22], [21], [20]], [[23], [22], [21]], [[23], [22]], [[25], [24]], [[26], [25], [24]], [[27], [26], [25]], [[28], [27], [26]], [[29], [28], [27]], [[30], [29], [28]], [[31], [30], [29]], [[31], [30]], [[33], [32]], [[34], [33], [32]], [[35], [34], [33]], [[36], [35], [34]], [[37], [36], [35]], [[38], [37], [36]], [[39], [38], [37]], [[39], [38]], [[41], [40, 32]], [[42], [41, 33], [40]], [[43], [42, 34], [41]], [[44], [43, 35], [42]], [[45], [44, 36], [43]], [[46], [45, 37], [44]], [[47], [46, 38], [45]], [[47, 39], [46]], [], [], [], [], [], [], [], []], 'P3': [[], [], [], [], [], [], [], [], [[1], [0]], [[2], [1], [0]], [[3], [2], [1]], [[4], [3], [2]], [[5], [4], [3]], [[6], [5], [4]], [[7], [6], [5]], [[7], [6]], [[9], [8]], [[10], [9], [8]], [[11], [10], [9]], [[12], [11], [10]], [[13], [12], [11]], [[14], [13], [12]], [[15], [14], [13]], [[15], [14]], [[17], [16]], [[18], [17], [16]], [[19], [18], [17]], [[20], [19], [18]], [[21], [20], [19]], [[22], [21], [20]], [[23], [22], [21]], [[23], [22]], [[25], [24]], [[26], [25], [24]], [[27], [26], [25]], [[28], [27], [26]], [[29], [28], [27]], [[30], [29], [28]], [[31], [30], [29]], [[31], [30]], [[33], [32]], [[34], [33], [32]], [[35], [34], [33]], [[36], [35], [34]], [[37], [36], [35]], [[38], [37], [36]], [[39], [38], [37]], [[39], [38]], [[41], [40, 32]], [[42], [41, 33], [40]], [[43], [42, 34], [41]], [[44], [43, 35], [42]], [[45], [44, 36], [43]], [[46], [45, 37], [44]], [[47], [46, 38], [45]], [[47, 39], [46]], [], [], [], [], [], [], [], []], 'P1': [[], [], [], [], [], [], [], [], [[1], [0]], [[2], [1], [0]], [[3], [2], [1]], [[4], [3], [2]], [[5], [4], [3]], [[6], [5], [4]], [[7], [6], [5]], [[7], [6]], [[9], [8]], [[10], [9], [8]], [[11], [10], [9]], [[12], [11], [10]], [[13], [12], [11]], [[14], [13], [12]], [[15], [14], [13]], [[15], [14]], [[17], [16]], [[18], [17], [16]], [[19], [18], [17]], [[20], [19], [18]], [[21], [20], [19]], [[22], [21], [20]], [[23], [22], [21]], [[23], [22]], [[25], [24]], [[26], [25], [24]], [[27], [26], [25]], [[28], [27], [26]], [[29], [28], [27]], [[30], [29], [28]], [[31], [30], [29]], [[31], [30]], [[33], [32]], [[34], [33], [32]], [[35], [34], [33]], [[36], [35], [34]], [[37], [36], [35]], [[38], [37], [36]], [[39], [38], [37]], [[39], [38]], [[41], [40, 32]], [[42], [41, 33], [40]], [[43], [42, 34], [41]], [[44], [43, 35], [42]], [[45], [44, 36], [43]], [[46], [45, 37], [44]], [[47], [46, 38], [45]], [[47, 39], [46]], [], [], [], [], [], [], [], []], 'P6': [[], [], [], [], [], [], [], [], [[1], [0]], [[2], [1], [0]], [[3], [2], [1]], [[4], [3], [2]], [[5], [4], [3]], [[6], [5], [4]], [[7], [6], [5]], [[7], [6]], [[9], [8]], [[10], [9], [8]], [[11], [10], [9]], [[12], [11], [10]], [[13], [12], [11]], [[14], [13], [12]], [[15], [14], [13]], [[15], [14]], [[17], [16]], [[18], [17], [16]], [[19], [18], [17]], [[20], [19], [18]], [[21], [20], [19]], [[22], [21], [20]], [[23], [22], [21]], [[23], [22]], [[25], [24]], [[26], [25], [24]], [[27], [26], [25]], [[28], [27], [26]], [[29], [28], [27]], [[30], [29], [28]], [[31], [30], [29]], [[31], [30]], [[33], [32]], [[34], [33], [32]], [[35], [34], [33]], [[36], [35], [34]], [[37], [36], [35]], [[38], [37], [36]], [[39], [38], [37]], [[39], [38]], [[41], [40, 32]], [[42], [41, 33], [40]], [[43], [42, 34], [41]], [[44], [43, 35], [42]], [[45], [44, 36], [43]], [[46], [45, 37], [44]], [[47], [46, 38], [45]], [[47, 39], [46]], [], [], [], [], [], [], [], []], 'P7': [[], [], [], [], [], [], [], [], [[1], [0]], [[2], [1], [0]], [[3], [2], [1]], [[4], [3], [2]], [[5], [4], [3]], [[6], [5], [4]], [[7], [6], [5]], [[7], [6]], [[9], [8]], [[10], [9], [8]], [[11], [10], [9]], [[12], [11], [10]], [[13], [12], [11]], [[14], [13], [12]], [[15], [14], [13]], [[15], [14]], [[17], [16]], [[18], [17], [16]], [[19], [18], [17]], [[20], [19], [18]], [[21], [20], [19]], [[22], [21], [20]], [[23], [22], [21]], [[23], [22]], [[25], [24]], [[26], [25], [24]], [[27], [26], [25]], [[28], [27], [26]], [[29], [28], [27]], [[30], [29], [28]], [[31], [30], [29]], [[31], [30]], [[33], [32]], [[34], [33], [32]], [[35], [34], [33]], [[36], [35], [34]], [[37], [36], [35]], [[38], [37], [36]], [[39], [38], [37]], [[39], [38]], [[41], [40, 32]], [[42], [41, 33], [40]], [[43], [42, 34], [41]], [[44], [43, 35], [42]], [[45], [44, 36], [43]], [[46], [45, 37], [44]], [[47], [46, 38], [45]], [[47, 39], [46]], [], [], [], [], [], [], [], []], 'P4': [[], [], [], [], [], [], [], [], [[1], [0]], [[2], [1], [0]], [[3], [2], [1]], [[4], [3], [2]], [[5], [4], [3]], [[6], [5], [4]], [[7], [6], [5]], [[7], [6]], [[9], [8]], [[10], [9], [8]], [[11], [10], [9]], [[12], [11], [10]], [[13], [12], [11]], [[14], [13], [12]], [[15], [14], [13]], [[15], [14]], [[17], [16]], [[18], [17], [16]], [[19], [18], [17]], [[20], [19], [18]], [[21], [20], [19]], [[22], [21], [20]], [[23], [22], [21]], [[23], [22]], [[25], [24]], [[26], [25], [24]], [[27], [26], [25]], [[28], [27], [26]], [[29], [28], [27]], [[30], [29], [28]], [[31], [30], [29]], [[31], [30]], [[33], [32]], [[34], [33], [32]], [[35], [34], [33]], [[36], [35], [34]], [[37], [36], [35]], [[38], [37], [36]], [[39], [38], [37]], [[39], [38]], [[41], [40, 32]], [[42], [41, 33], [40]], [[43], [42, 34], [41]], [[44], [43, 35], [42]], [[45], [44, 36], [43]], [[46], [45, 37], [44]], [[47], [46, 38], [45]], [[47, 39], [46]], [], [], [], [], [], [], [], []], 'P5': [[], [], [], [], [], [], [], [], [[1], [0]], [[2], [1], [0]], [[3], [2], [1]], [[4], [3], [2]], [[5], [4], [3]], [[6], [5], [4]], [[7], [6], [5]], [[7], [6]], [[9], [8]], [[10], [9], [8]], [[11], [10], [9]], [[12], [11], [10]], [[13], [12], [11]], [[14], [13], [12]], [[15], [14], [13]], [[15], [14]], [[17], [16]], [[18], [17], [16]], [[19], [18], [17]], [[20], [19], [18]], [[21], [20], [19]], [[22], [21], [20]], [[23], [22], [21]], [[23], [22]], [[25], [24]], [[26], [25], [24]], [[27], [26], [25]], [[28], [27], [26]], [[29], [28], [27]], [[30], [29], [28]], [[31], [30], [29]], [[31], [30]], [[33], [32]], [[34], [33], [32]], [[35], [34], [33]], [[36], [35], [34]], [[37], [36], [35]], [[38], [37], [36]], [[39], [38], [37]], [[39], [38]], [[41], [40, 32]], [[42], [41, 33], [40]], [[43], [42, 34], [41]], [[44], [43, 35], [42]], [[45], [44, 36], [43]], [[46], [45, 37], [44]], [[47], [46, 38], [45]], [[47, 39], [46]], [], [], [], [], [], [], [], []], 'P8': [[], [], [], [], [], [], [], [], [[1], [0]], [[2], [1], [0]], [[3], [2], [1]], [[4], [3], [2]], [[5], [4], [3]], [[6], [5], [4]], [[7], [6], [5]], [[7], [6]], [[9], [8]], [[10], [9], [8]], [[11], [10], [9]], [[12], [11], [10]], [[13], [12], [11]], [[14], [13], [12]], [[15], [14], [13]], [[15], [14]], [[17], [16]], [[18], [17], [16]], [[19], [18], [17]], [[20], [19], [18]], [[21], [20], [19]], [[22], [21], [20]], [[23], [22], [21]], [[23], [22]], [[25], [24]], [[26], [25], [24]], [[27], [26], [25]], [[28], [27], [26]], [[29], [28], [27]], [[30], [29], [28]], [[31], [30], [29]], [[31], [30]], [[33], [32]], [[34], [33], [32]], [[35], [34], [33]], [[36], [35], [34]], [[37], [36], [35]], [[38], [37], [36]], [[39], [38], [37]], [[39], [38]], [[41], [40, 32]], [[42], [41, 33], [40]], [[43], [42, 34], [41]], [[44], [43, 35], [42]], [[45], [44, 36], [43]], [[46], [45, 37], [44]], [[47], [46, 38], [45]], [[47, 39], [46]], [], [], [], [], [], [], [], []], 'Q': [[[1, 2, 3, 4, 5, 6, 7], [8, 16, 24, 32, 40, 48, 56], [9, 18, 27, 36, 45, 54, 63]], [[2, 3, 4, 5, 6, 7], [0], [8], [9, 17, 25, 33, 41, 49, 57], [10, 19, 28, 37, 46, 55]], [[3, 4, 5, 6, 7], [1, 0], [9, 16], [10, 18, 26, 34, 42, 50, 58], [11, 20, 29, 38, 47]], [[4, 5, 6, 7], [2, 1, 0], [10, 17, 24], [11, 19, 27, 35, 43, 51, 59], [12, 21, 30, 39]], [[5, 6, 7], [3, 2, 1, 0], [11, 18, 25, 32], [12, 20, 28, 36, 44, 52, 60], [13, 22, 31]], [[6, 7], [4, 3, 2, 1, 0], [12, 19, 26, 33, 40], [13, 21, 29, 37, 45, 53, 61], [14, 23]], [[7], [5, 4, 3, 2, 1, 0], [13, 20, 27, 34, 41, 48], [14, 22, 30, 38, 46, 54, 62], [15]], [[6, 5, 4, 3, 2, 1, 0], [14, 21, 28, 35, 42, 49, 56], [15, 23, 31, 39, 47, 55, 63]], [[9, 10, 11, 12, 13, 14, 15], [1], [0], [16, 24, 32, 40, 48, 56], [17, 26, 35, 44, 53, 62]], [[10, 11, 12, 13, 14, 15], [2], [1], [0], [8], [16], [17, 25, 33, 41, 49, 57], [18, 27, 36, 45, 54, 63]], [[11, 12, 13, 14, 15], [3], [2], [1], [9, 8], [17, 24], [18, 26, 34, 42, 50, 58], [19, 28, 37, 46, 55]], [[12, 13, 14, 15], [4], [3], [2], [10, 9, 8], [18, 25, 32], [19, 27, 35, 43, 51, 59], [20, 29, 38, 47]], [[13, 14, 15], [5], [4], [3], [11, 10, 9, 8], [19, 26, 33, 40], [20, 28, 36, 44, 52, 60], [21, 30, 39]], [[14, 15], [6], [5], [4], [12, 11, 10, 9, 8], [20, 27, 34, 41, 48], [21, 29, 37, 45, 53, 61], [22, 31]], [[15], [7], [6], [5], [13, 12, 11, 10, 9, 8], [21, 28, 35, 42, 49, 56], [22, 30, 38, 46, 54, 62], [23]], [[7], [6], [14, 13, 12, 11, 10, 9, 8], [22, 29, 36, 43, 50, 57], [23, 31, 39, 47, 55, 63]], [[17, 18, 19, 20, 21, 22, 23], [9, 2], [8, 0], [24, 32, 40, 48, 56], [25, 34, 43, 52, 61]], [[18, 19, 20, 21, 22, 23], [10, 3], [9, 1], [8], [16], [24], [25, 33, 41, 49, 57], [26, 35, 44, 53, 62]], [[19, 20, 21, 22, 23], [11, 4], [10, 2], [9, 0], [17, 16], [25, 32], [26, 34, 42, 50, 58], [27, 36, 45, 54, 63]], [[20, 21, 22, 23], [12, 5], [11, 3], [10, 1], [18, 17, 16], [26, 33, 40], [27, 35, 43, 51, 59], [28, 37, 46, 55]], [[21, 22, 23], [13, 6], [12, 4], [11, 2], [19, 18, 17, 16], [27, 34, 41, 48], [28, 36, 44, 52, 60], [29, 38, 47]], [[22, 23], [14, 7], [13, 5], [12, 3], [20, 19, 18, 17, 16], [28, 35, 42, 49, 56], [29, 37, 45, 53, 61], [30, 39]], [[23], [15], [14, 6], [13, 4], [21, 20, 19, 18, 17, 16], [29, 36, 43, 50, 57], [30, 38, 46, 54, 62], [31]], [[15, 7], [14, 5], [22, 21, 20, 19, 18, 17, 16], [30, 37, 44, 51, 58], [31, 39, 47, 55, 63]], [[25, 26, 27, 28, 29, 30, 31], [17, 10, 3], [16, 8, 0], [32, 40, 48, 56], [33, 42, 51, 60]], [[26, 27, 28, 29, 30, 31], [18, 11, 4], [17, 9, 1], [16], [24], [32], [33, 41, 49, 57], [34, 43, 52, 61]], [[27, 28, 29, 30, 31], [19, 12, 5], [18, 10, 2], [17, 8], [25, 24], [33, 40], [34, 42, 50, 58], [35, 44, 53, 62]], [[28, 29, 30, 31], [20, 13, 6], [19, 11, 3], [18, 9, 0], [26, 25, 24], [34, 41, 48], [35, 43, 51, 59], [36, 45, 54, 63]], [[29, 30, 31], [21, 14, 7], [20, 12, 4], [19, 10, 1], [27, 26, 25, 24], [35, 42, 49, 56], [36, 44, 52, 60], [37, 46, 55]], [[30, 31], [22, 15], [21, 13, 5], [20, 11, 2], [28, 27, 26, 25, 24], [36, 43, 50, 57], [37, 45, 53, 61], [38, 47]], [[31], [23], [22, 14, 6], [21, 12, 3], [29, 28, 27, 26, 25, 24], [37, 44, 51, 58], [38, 46, 54, 62], [39]], [[23, 15, 7], [22, 13, 4], [30, 29, 28, 27, 26, 25, 24], [38, 45, 52, 59], [39, 47, 55, 63]], [[33, 34, 35, 36, 37, 38, 39], [25, 18, 11, 4], [24, 16, 8, 0], [40, 48, 56], [41, 50, 59]], [[34, 35, 36, 37, 38, 39], [26, 19, 12, 5], [25, 17, 9, 1], [24], [32], [40], [41, 49, 57], [42, 51, 60]], [[35, 36, 37, 38, 39], [27, 20, 13, 6], [26, 18, 10, 2], [25, 16], [33, 32], [41, 48], [42, 50, 58], [43, 52, 61]], [[36, 37, 38, 39], [28, 21, 14, 7], [27, 19, 11, 3], [26, 17, 8], [34, 33, 32], [42, 49, 56], [43, 51, 59], [44, 53, 62]], [[37, 38, 39], [29, 22, 15], [28, 20, 12, 4], [27, 18, 9, 0], [35, 34, 33, 32], [43, 50, 57], [44, 52, 60], [45, 54, 63]], [[38, 39], [30, 23], [29, 21, 13, 5], [28, 19, 10, 1], [36, 35, 34, 33, 32], [44, 51, 58], [45, 53, 61], [46, 55]], [[39], [31], [30, 22, 14, 6], [29, 20, 11, 2], [37, 36, 35, 34, 33, 32], [45, 52, 59], [46, 54, 62], [47]], [[31, 23, 15, 7], [30, 21, 12, 3], [38, 37, 36, 35, 34, 33, 32], [46, 53, 60], [47, 55, 63]], [[41, 42, 43, 44, 45, 46, 47], [33, 26, 19, 12, 5], [32, 24, 16, 8, 0], [48, 56], [49, 58]], [[42, 43, 44, 45, 46, 47], [34, 27, 20, 13, 6], [33, 25, 17, 9, 1], [32], [40], [48], [49, 57], [50, 59]], [[43, 44, 45, 46, 47], [35, 28, 21, 14, 7], [34, 26, 18, 10, 2], [33, 24], [41, 40], [49, 56], [50, 58], [51, 60]], [[44, 45, 46, 47], [36, 29, 22, 15], [35, 27, 19, 11, 3], [34, 25, 16], [42, 41, 40], [50, 57], [51, 59], [52, 61]], [[45, 46, 47], [37, 30, 23], [36, 28, 20, 12, 4], [35, 26, 17, 8], [43, 42, 41, 40], [51, 58], [52, 60], [53, 62]], [[46, 47], [38, 31], [37, 29, 21, 13, 5], [36, 27, 18, 9, 0], [44, 43, 42, 41, 40], [52, 59], [53, 61], [54, 63]], [[47], [39], [38, 30, 22, 14, 6], [37, 28, 19, 10, 1], [45, 44, 43, 42, 41, 40], [53, 60], [54, 62], [55]], [[39, 31, 23, 15, 7], [38, 29, 20, 11, 2], [46, 45, 44, 43, 42, 41, 40], [54, 61], [55, 63]], [[49, 50, 51, 52, 53, 54, 55], [41, 34, 27, 20, 13, 6], [40, 32, 24, 16, 8, 0], [56], [57]], [[50, 51, 52, 53, 54, 55], [42, 35, 28, 21, 14, 7], [41, 33, 25, 17, 9, 1], [40], [48], [56], [57], [58]], [[51, 52, 53, 54, 55], [43, 36, 29, 22, 15], [42, 34, 26, 18, 10, 2], [41, 32], [49, 48], [57], [58], [59]], [[52, 53, 54, 55], [44, 37, 30, 23], [43, 35, 27, 19, 11, 3], [42, 33, 24], [50, 49, 48], [58], [59], [60]], [[53, 54, 55], [45, 38, 31], [44, 36, 28, 20, 12, 4], [43, 34, 25, 16], [51, 50, 49, 48], [59], [60], [61]], [[54, 55], [46, 39], [45, 37, 29, 21, 13, 5], [44, 35, 26, 17, 8], [52, 51, 50, 49, 48], [60], [61], [62]], [[55], [47], [46, 38, 30, 22, 14, 6], [45, 36, 27, 18, 9, 0], [53, 52, 51, 50, 49, 48], [61], [62], [63]], [[47, 39, 31, 23, 15, 7], [46, 37, 28, 19, 10, 1], [54, 53, 52, 51, 50, 49, 48], [62], [63]], [[57, 58, 59, 60, 61, 62, 63], [49, 42, 35, 28, 21, 14, 7], [48, 40, 32, 24, 16, 8, 0]], [[58, 59, 60, 61, 62, 63], [50, 43, 36, 29, 22, 15], [49, 41, 33, 25, 17, 9, 1], [48], [56]], [[59, 60, 61, 62, 63], [51, 44, 37, 30, 23], [50, 42, 34, 26, 18, 10, 2], [49, 40], [57, 56]], [[60, 61, 62, 63], [52, 45, 38, 31], [51, 43, 35, 27, 19, 11, 3], [50, 41, 32], [58, 57, 56]], [[61, 62, 63], [53, 46, 39], [52, 44, 36, 28, 20, 12, 4], [51, 42, 33, 24], [59, 58, 57, 56]], [[62, 63], [54, 47], [53, 45, 37, 29, 21, 13, 5], [52, 43, 34, 25, 16], [60, 59, 58, 57, 56]], [[63], [55], [54, 46, 38, 30, 22, 14, 6], [53, 44, 35, 26, 17, 8], [61, 60, 59, 58, 57, 56]], [[55, 47, 39, 31, 23, 15, 7], [54, 45, 36, 27, 18, 9, 0], [62, 61, 60, 59, 58, 57, 56]]], 'N1': [[[17], [10]], [[16], [18], [11]], [[8], [17], [19], [12]], [[9], [18], [20], [13]], [[10], [19], [21], [14]], [[11], [20], [22], [15]], [[12], [21], [23]], [[13], [22]], [[2], [25], [18]], [[3], [24], [26], [19]], [[4], [0], [16], [25], [27], [20]], [[5], [1], [17], [26], [28], [21]], [[6], [2], [18], [27], [29], [22]], [[7], [3], [19], [28], [30], [23]], [[4], [20], [29], [31]], [[5], [21], [30]], [[10], [1], [33], [26]], [[11], [2], [0], [32], [34], [27]], [[12], [3], [1], [8], [24], [33], [35], [28]], [[13], [4], [2], [9], [25], [34], [36], [29]], [[14], [5], [3], [10], [26], [35], [37], [30]], [[15], [6], [4], [11], [27], [36], [38], [31]], [[7], [5], [12], [28], [37], [39]], [[6], [13], [29], [38]], [[18], [9], [41], [34]], [[19], [10], [8], [40], [42], [35]], [[20], [11], [9], [16], [32], [41], [43], [36]], [[21], [12], [10], [17], [33], [42], [44], [37]], [[22], [13], [11], [18], [34], [43], [45], [38]], [[23], [14], [12], [19], [35], [44], [46], [39]], [[15], [13], [20], [36], [45], [47]], [[14], [21], [37], [46]], [[26], [17], [49], [42]], [[27], [18], [16], [48], [50], [43]], [[28], [19], [17], [24], [40], [49], [51], [44]], [[29], [20], [18], [25], [41], [50], [52], [45]], [[30], [21], [19], [26], [42], [51], [53], [46]], [[31], [22], [20], [27], [43], [52], [54], [47]], [[23], [21], [28], [44], [53], [55]], [[22], [29], [45], [54]], [[34], [25], [57], [50]], [[35], [26], [24], [56], [58], [51]], [[36], [27], [25], [32], [48], [57], [59], [52]], [[37], [28], [26], [33], [49], [58], [60], [53]], [[38], [29], [27], [34], [50], [59], [61], [54]], [[39], [30], [28], [35], [51], [60], [62], [55]], [[31], [29], [36], [52], [61], [63]], [[30], [37], [53], [62]], [[42], [33], [58]], [[43], [34], [32], [59]], [[44], [35], [33], [40], [56], [60]], [[45], [36], [34], [41], [57], [61]], [[46], [37], [35], [42], [58], [62]], [[47], [38], [36], [43], [59], [63]], [[39], [37], [44], [60]], [[38], [45], [61]], [[50], [41]], [[51], [42], [40]], [[52], [43], [41], [48]], [[53], [44], [42], [49]], [[54], [45], [43], [50]], [[55], [46], [44], [51]], [[47], [45], [52]], [[46], [53]]], 'N2': [[[17], [10]], [[16], [18], [11]], [[8], [17], [19], [12]], [[9], [18], [20], [13]], [[10], [19], [21], [14]], [[11], [20], [22], [15]], [[12], [21], [23]], [[13], [22]], [[2], [25], [18]], [[3], [24], [26], [19]], [[4], [0], [16], [25], [27], [20]], [[5], [1], [17], [26], [28], [21]], [[6], [2], [18], [27], [29], [22]], [[7], [3], [19], [28], [30], [23]], [[4], [20], [29], [31]], [[5], [21], [30]], [[10], [1], [33], [26]], [[11], [2], [0], [32], [34], [27]], [[12], [3], [1], [8], [24], [33], [35], [28]], [[13], [4], [2], [9], [25], [34], [36], [29]], [[14], [5], [3], [10], [26], [35], [37], [30]], [[15], [6], [4], [11], [27], [36], [38], [31]], [[7], [5], [12], [28], [37], [39]], [[6], [13], [29], [38]], [[18], [9], [41], [34]], [[19], [10], [8], [40], [42], [35]], [[20], [11], [9], [16], [32], [41], [43], [36]], [[21], [12], [10], [17], [33], [42], [44], [37]], [[22], [13], [11], [18], [34], [43], [45], [38]], [[23], [14], [12], [19], [35], [44], [46], [39]], [[15], [13], [20], [36], [45], [47]], [[14], [21], [37], [46]], [[26], [17], [49], [42]], [[27], [18], [16], [48], [50], [43]], [[28], [19], [17], [24], [40], [49], [51], [44]], [[29], [20], [18], [25], [41], [50], [52], [45]], [[30], [21], [19], [26], [42], [51], [53], [46]], [[31], [22], [20], [27], [43], [52], [54], [47]], [[23], [21], [28], [44], [53], [55]], [[22], [29], [45], [54]], [[34], [25], [57], [50]], [[35], [26], [24], [56], [58], [51]], [[36], [27], [25], [32], [48], [57], [59], [52]], [[37], [28], [26], [33], [49], [58], [60], [53]], [[38], [29], [27], [34], [50], [59], [61], [54]], [[39], [30], [28], [35], [51], [60], [62], [55]], [[31], [29], [36], [52], [61], [63]], [[30], [37], [53], [62]], [[42], [33], [58]], [[43], [34], [32], [59]], [[44], [35], [33], [40], [56], [60]], [[45], [36], [34], [41], [57], [61]], [[46], [37], [35], [42], [58], [62]], [[47], [38], [36], [43], [59], [63]], [[39], [37], [44], [60]], [[38], [45], [61]], [[50], [41]], [[51], [42], [40]], [[52], [43], [41], [48]], [[53], [44], [42], [49]], [[54], [45], [43], [50]], [[55], [46], [44], [51]], [[47], [45], [52]], [[46], [53]]], 'r1': [[[1, 2, 3, 4, 5, 6, 7], [8, 16, 24, 32, 40, 48, 56]], [[2, 3, 4, 5, 6, 7], [0], [9, 17, 25, 33, 41, 49, 57]], [[3, 4, 5, 6, 7], [1, 0], [10, 18, 26, 34, 42, 50, 58]], [[4, 5, 6, 7], [2, 1, 0], [11, 19, 27, 35, 43, 51, 59]], [[5, 6, 7], [3, 2, 1, 0], [12, 20, 28, 36, 44, 52, 60]], [[6, 7], [4, 3, 2, 1, 0], [13, 21, 29, 37, 45, 53, 61]], [[7], [5, 4, 3, 2, 1, 0], [14, 22, 30, 38, 46, 54, 62]], [[6, 5, 4, 3, 2, 1, 0], [15, 23, 31, 39, 47, 55, 63]], [[9, 10, 11, 12, 13, 14, 15], [0], [16, 24, 32, 40, 48, 56]], [[10, 11, 12, 13, 14, 15], [1], [8], [17, 25, 33, 41, 49, 57]], [[11, 12, 13, 14, 15], [2], [9, 8], [18, 26, 34, 42, 50, 58]], [[12, 13, 14, 15], [3], [10, 9, 8], [19, 27, 35, 43, 51, 59]], [[13, 14, 15], [4], [11, 10, 9, 8], [20, 28, 36, 44, 52, 60]], [[14, 15], [5], [12, 11, 10, 9, 8], [21, 29, 37, 45, 53, 61]], [[15], [6], [13, 12, 11, 10, 9, 8], [22, 30, 38, 46, 54, 62]], [[7], [14, 13, 12, 11, 10, 9, 8], [23, 31, 39, 47, 55, 63]], [[17, 18, 19, 20, 21, 22, 23], [8, 0], [24, 32, 40, 48, 56]], [[18, 19, 20, 21, 22, 23], [9, 1], [16], [25, 33, 41, 49, 57]], [[19, 20, 21, 22, 23], [10, 2], [17, 16], [26, 34, 42, 50, 58]], [[20, 21, 22, 23], [11, 3], [18, 17, 16], [27, 35, 43, 51, 59]], [[21, 22, 23], [12, 4], [19, 18, 17, 16], [28, 36, 44, 52, 60]], [[22, 23], [13, 5], [20, 19, 18, 17, 16], [29, 37, 45, 53, 61]], [[23], [14, 6], [21, 20, 19, 18, 17, 16], [30, 38, 46, 54, 62]], [[15, 7], [22, 21, 20, 19, 18, 17, 16], [31, 39, 47, 55, 63]], [[25, 26, 27, 28, 29, 30, 31], [16, 8, 0], [32, 40, 48, 56]], [[26, 27, 28, 29, 30, 31], [17, 9, 1], [24], [33, 41, 49, 57]], [[27, 28, 29, 30, 31], [18, 10, 2], [25, 24], [34, 42, 50, 58]], [[28, 29, 30, 31], [19, 11, 3], [26, 25, 24], [35, 43, 51, 59]], [[29, 30, 31], [20, 12, 4], [27, 26, 25, 24], [36, 44, 52, 60]], [[30, 31], [21, 13, 5], [28, 27, 26, 25, 24], [37, 45, 53, 61]], [[31], [22, 14, 6], [29, 28, 27, 26, 25, 24], [38, 46, 54, 62]], [[23, 15, 7], [30, 29, 28, 27, 26, 25, 24], [39, 47, 55, 63]], [[33, 34, 35, 36, 37, 38, 39], [24, 16, 8, 0], [40, 48, 56]], [[34, 35, 36, 37, 38, 39], [25, 17, 9, 1], [32], [41, 49, 57]], [[35, 36, 37, 38, 39], [26, 18, 10, 2], [33, 32], [42, 50, 58]], [[36, 37, 38, 39], [27, 19, 11, 3], [34, 33, 32], [43, 51, 59]], [[37, 38, 39], [28, 20, 12, 4], [35, 34, 33, 32], [44, 52, 60]], [[38, 39], [29, 21, 13, 5], [36, 35, 34, 33, 32], [45, 53, 61]], [[39], [30, 22, 14, 6], [37, 36, 35, 34, 33, 32], [46, 54, 62]], [[31, 23, 15, 7], [38, 37, 36, 35, 34, 33, 32], [47, 55, 63]], [[41, 42, 43, 44, 45, 46, 47], [32, 24, 16, 8, 0], [48, 56]], [[42, 43, 44, 45, 46, 47], [33, 25, 17, 9, 1], [40], [49, 57]], [[43, 44, 45, 46, 47], [34, 26, 18, 10, 2], [41, 40], [50, 58]], [[44, 45, 46, 47], [35, 27, 19, 11, 3], [42, 41, 40], [51, 59]], [[45, 46, 47], [36, 28, 20, 12, 4], [43, 42, 41, 40], [52, 60]], [[46, 47], [37, 29, 21, 13, 5], [44, 43, 42, 41, 40], [53, 61]], [[47], [38, 30, 22, 14, 6], [45, 44, 43, 42, 41, 40], [54, 62]], [[39, 31, 23, 15, 7], [46, 45, 44, 43, 42, 41, 40], [55, 63]], [[49, 50, 51, 52, 53, 54, 55], [40, 32, 24, 16, 8, 0], [56]], [[50, 51, 52, 53, 54, 55], [41, 33, 25, 17, 9, 1], [48], [57]], [[51, 52, 53, 54, 55], [42, 34, 26, 18, 10, 2], [49, 48], [58]], [[52, 53, 54, 55], [43, 35, 27, 19, 11, 3], [50, 49, 48], [59]], [[53, 54, 55], [44, 36, 28, 20, 12, 4], [51, 50, 49, 48], [60]], [[54, 55], [45, 37, 29, 21, 13, 5], [52, 51, 50, 49, 48], [61]], [[55], [46, 38, 30, 22, 14, 6], [53, 52, 51, 50, 49, 48], [62]], [[47, 39, 31, 23, 15, 7], [54, 53, 52, 51, 50, 49, 48], [63]], [[57, 58, 59, 60, 61, 62, 63], [48, 40, 32, 24, 16, 8, 0]], [[58, 59, 60, 61, 62, 63], [49, 41, 33, 25, 17, 9, 1], [56]], [[59, 60, 61, 62, 63], [50, 42, 34, 26, 18, 10, 2], [57, 56]], [[60, 61, 62, 63], [51, 43, 35, 27, 19, 11, 3], [58, 57, 56]], [[61, 62, 63], [52, 44, 36, 28, 20, 12, 4], [59, 58, 57, 56]], [[62, 63], [53, 45, 37, 29, 21, 13, 5], [60, 59, 58, 57, 56]], [[63], [54, 46, 38, 30, 22, 14, 6], [61, 60, 59, 58, 57, 56]], [[55, 47, 39, 31, 23, 15, 7], [62, 61, 60, 59, 58, 57, 56]]], 'p2': [[], [], [], [], [], [], [], [], [[16, 24], [17]], [[16], [17, 25], [18]], [[17], [18, 26], [19]], [[18], [19, 27], [20]], [[19], [20, 28], [21]], [[20], [21, 29], [22]], [[21], [22, 30], [23]], [[22], [23, 31]], [[24], [25]], [[24], [25], [26]], [[25], [26], [27]], [[26], [27], [28]], [[27], [28], [29]], [[28], [29], [30]], [[29], [30], [31]], [[30], [31]], [[32], [33]], [[32], [33], [34]], [[33], [34], [35]], [[34], [35], [36]], [[35], [36], [37]], [[36], [37], [38]], [[37], [38], [39]], [[38], [39]], [[40], [41]], [[40], [41], [42]], [[41], [42], [43]], [[42], [43], [44]], [[43], [44], [45]], [[44], [45], [46]], [[45], [46], [47]], [[46], [47]], [[48], [49]], [[48], [49], [50]], [[49], [50], [51]], [[50], [51], [52]], [[51], [52], [53]], [[52], [53], [54]], [[53], [54], [55]], [[54], [55]], [[56], [57]], [[56], [57], [58]], [[57], [58], [59]], [[58], [59], [60]], [[59], [60], [61]], [[60], [61], [62]], [[61], [62], [63]], [[62], [63]], [], [], [], [], [], [], [], []], 'p3': [[], [], [], [], [], [], [], [], [[16, 24], [17]], [[16], [17, 25], [18]], [[17], [18, 26], [19]], [[18], [19, 27], [20]], [[19], [20, 28], [21]], [[20], [21, 29], [22]], [[21], [22, 30], [23]], [[22], [23, 31]], [[24], [25]], [[24], [25], [26]], [[25], [26], [27]], [[26], [27], [28]], [[27], [28], [29]], [[28], [29], [30]], [[29], [30], [31]], [[30], [31]], [[32], [33]], [[32], [33], [34]], [[33], [34], [35]], [[34], [35], [36]], [[35], [36], [37]], [[36], [37], [38]], [[37], [38], [39]], [[38], [39]], [[40], [41]], [[40], [41], [42]], [[41], [42], [43]], [[42], [43], [44]], [[43], [44], [45]], [[44], [45], [46]], [[45], [46], [47]], [[46], [47]], [[48], [49]], [[48], [49], [50]], [[49], [50], [51]], [[50], [51], [52]], [[51], [52], [53]], [[52], [53], [54]], [[53], [54], [55]], [[54], [55]], [[56], [57]], [[56], [57], [58]], [[57], [58], [59]], [[58], [59], [60]], [[59], [60], [61]], [[60], [61], [62]], [[61], [62], [63]], [[62], [63]], [], [], [], [], [], [], [], []], 'p1': [[], [], [], [], [], [], [], [], [[16, 24], [17]], [[16], [17, 25], [18]], [[17], [18, 26], [19]], [[18], [19, 27], [20]], [[19], [20, 28], [21]], [[20], [21, 29], [22]], [[21], [22, 30], [23]], [[22], [23, 31]], [[24], [25]], [[24], [25], [26]], [[25], [26], [27]], [[26], [27], [28]], [[27], [28], [29]], [[28], [29], [30]], [[29], [30], [31]], [[30], [31]], [[32], [33]], [[32], [33], [34]], [[33], [34], [35]], [[34], [35], [36]], [[35], [36], [37]], [[36], [37], [38]], [[37], [38], [39]], [[38], [39]], [[40], [41]], [[40], [41], [42]], [[41], [42], [43]], [[42], [43], [44]], [[43], [44], [45]], [[44], [45], [46]], [[45], [46], [47]], [[46], [47]], [[48], [49]], [[48], [49], [50]], [[49], [50], [51]], [[50], [51], [52]], [[51], [52], [53]], [[52], [53], [54]], [[53], [54], [55]], [[54], [55]], [[56], [57]], [[56], [57], [58]], [[57], [58], [59]], [[58], [59], [60]], [[59], [60], [61]], [[60], [61], [62]], [[61], [62], [63]], [[62], [63]], [], [], [], [], [], [], [], []], 'p6': [[], [], [], [], [], [], [], [], [[16, 24], [17]], [[16], [17, 25], [18]], [[17], [18, 26], [19]], [[18], [19, 27], [20]], [[19], [20, 28], [21]], [[20], [21, 29], [22]], [[21], [22, 30], [23]], [[22], [23, 31]], [[24], [25]], [[24], [25], [26]], [[25], [26], [27]], [[26], [27], [28]], [[27], [28], [29]], [[28], [29], [30]], [[29], [30], [31]], [[30], [31]], [[32], [33]], [[32], [33], [34]], [[33], [34], [35]], [[34], [35], [36]], [[35], [36], [37]], [[36], [37], [38]], [[37], [38], [39]], [[38], [39]], [[40], [41]], [[40], [41], [42]], [[41], [42], [43]], [[42], [43], [44]], [[43], [44], [45]], [[44], [45], [46]], [[45], [46], [47]], [[46], [47]], [[48], [49]], [[48], [49], [50]], [[49], [50], [51]], [[50], [51], [52]], [[51], [52], [53]], [[52], [53], [54]], [[53], [54], [55]], [[54], [55]], [[56], [57]], [[56], [57], [58]], [[57], [58], [59]], [[58], [59], [60]], [[59], [60], [61]], [[60], [61], [62]], [[61], [62], [63]], [[62], [63]], [], [], [], [], [], [], [], []], 'r2': [[[1, 2, 3, 4, 5, 6, 7], [8, 16, 24, 32, 40, 48, 56]], [[2, 3, 4, 5, 6, 7], [0], [9, 17, 25, 33, 41, 49, 57]], [[3, 4, 5, 6, 7], [1, 0], [10, 18, 26, 34, 42, 50, 58]], [[4, 5, 6, 7], [2, 1, 0], [11, 19, 27, 35, 43, 51, 59]], [[5, 6, 7], [3, 2, 1, 0], [12, 20, 28, 36, 44, 52, 60]], [[6, 7], [4, 3, 2, 1, 0], [13, 21, 29, 37, 45, 53, 61]], [[7], [5, 4, 3, 2, 1, 0], [14, 22, 30, 38, 46, 54, 62]], [[6, 5, 4, 3, 2, 1, 0], [15, 23, 31, 39, 47, 55, 63]], [[9, 10, 11, 12, 13, 14, 15], [0], [16, 24, 32, 40, 48, 56]], [[10, 11, 12, 13, 14, 15], [1], [8], [17, 25, 33, 41, 49, 57]], [[11, 12, 13, 14, 15], [2], [9, 8], [18, 26, 34, 42, 50, 58]], [[12, 13, 14, 15], [3], [10, 9, 8], [19, 27, 35, 43, 51, 59]], [[13, 14, 15], [4], [11, 10, 9, 8], [20, 28, 36, 44, 52, 60]], [[14, 15], [5], [12, 11, 10, 9, 8], [21, 29, 37, 45, 53, 61]], [[15], [6], [13, 12, 11, 10, 9, 8], [22, 30, 38, 46, 54, 62]], [[7], [14, 13, 12, 11, 10, 9, 8], [23, 31, 39, 47, 55, 63]], [[17, 18, 19, 20, 21, 22, 23], [8, 0], [24, 32, 40, 48, 56]], [[18, 19, 20, 21, 22, 23], [9, 1], [16], [25, 33, 41, 49, 57]], [[19, 20, 21, 22, 23], [10, 2], [17, 16], [26, 34, 42, 50, 58]], [[20, 21, 22, 23], [11, 3], [18, 17, 16], [27, 35, 43, 51, 59]], [[21, 22, 23], [12, 4], [19, 18, 17, 16], [28, 36, 44, 52, 60]], [[22, 23], [13, 5], [20, 19, 18, 17, 16], [29, 37, 45, 53, 61]], [[23], [14, 6], [21, 20, 19, 18, 17, 16], [30, 38, 46, 54, 62]], [[15, 7], [22, 21, 20, 19, 18, 17, 16], [31, 39, 47, 55, 63]], [[25, 26, 27, 28, 29, 30, 31], [16, 8, 0], [32, 40, 48, 56]], [[26, 27, 28, 29, 30, 31], [17, 9, 1], [24], [33, 41, 49, 57]], [[27, 28, 29, 30, 31], [18, 10, 2], [25, 24], [34, 42, 50, 58]], [[28, 29, 30, 31], [19, 11, 3], [26, 25, 24], [35, 43, 51, 59]], [[29, 30, 31], [20, 12, 4], [27, 26, 25, 24], [36, 44, 52, 60]], [[30, 31], [21, 13, 5], [28, 27, 26, 25, 24], [37, 45, 53, 61]], [[31], [22, 14, 6], [29, 28, 27, 26, 25, 24], [38, 46, 54, 62]], [[23, 15, 7], [30, 29, 28, 27, 26, 25, 24], [39, 47, 55, 63]], [[33, 34, 35, 36, 37, 38, 39], [24, 16, 8, 0], [40, 48, 56]], [[34, 35, 36, 37, 38, 39], [25, 17, 9, 1], [32], [41, 49, 57]], [[35, 36, 37, 38, 39], [26, 18, 10, 2], [33, 32], [42, 50, 58]], [[36, 37, 38, 39], [27, 19, 11, 3], [34, 33, 32], [43, 51, 59]], [[37, 38, 39], [28, 20, 12, 4], [35, 34, 33, 32], [44, 52, 60]], [[38, 39], [29, 21, 13, 5], [36, 35, 34, 33, 32], [45, 53, 61]], [[39], [30, 22, 14, 6], [37, 36, 35, 34, 33, 32], [46, 54, 62]], [[31, 23, 15, 7], [38, 37, 36, 35, 34, 33, 32], [47, 55, 63]], [[41, 42, 43, 44, 45, 46, 47], [32, 24, 16, 8, 0], [48, 56]], [[42, 43, 44, 45, 46, 47], [33, 25, 17, 9, 1], [40], [49, 57]], [[43, 44, 45, 46, 47], [34, 26, 18, 10, 2], [41, 40], [50, 58]], [[44, 45, 46, 47], [35, 27, 19, 11, 3], [42, 41, 40], [51, 59]], [[45, 46, 47], [36, 28, 20, 12, 4], [43, 42, 41, 40], [52, 60]], [[46, 47], [37, 29, 21, 13, 5], [44, 43, 42, 41, 40], [53, 61]], [[47], [38, 30, 22, 14, 6], [45, 44, 43, 42, 41, 40], [54, 62]], [[39, 31, 23, 15, 7], [46, 45, 44, 43, 42, 41, 40], [55, 63]], [[49, 50, 51, 52, 53, 54, 55], [40, 32, 24, 16, 8, 0], [56]], [[50, 51, 52, 53, 54, 55], [41, 33, 25, 17, 9, 1], [48], [57]], [[51, 52, 53, 54, 55], [42, 34, 26, 18, 10, 2], [49, 48], [58]], [[52, 53, 54, 55], [43, 35, 27, 19, 11, 3], [50, 49, 48], [59]], [[53, 54, 55], [44, 36, 28, 20, 12, 4], [51, 50, 49, 48], [60]], [[54, 55], [45, 37, 29, 21, 13, 5], [52, 51, 50, 49, 48], [61]], [[55], [46, 38, 30, 22, 14, 6], [53, 52, 51, 50, 49, 48], [62]], [[47, 39, 31, 23, 15, 7], [54, 53, 52, 51, 50, 49, 48], [63]], [[57, 58, 59, 60, 61, 62, 63], [48, 40, 32, 24, 16, 8, 0]], [[58, 59, 60, 61, 62, 63], [49, 41, 33, 25, 17, 9, 1], [56]], [[59, 60, 61, 62, 63], [50, 42, 34, 26, 18, 10, 2], [57, 56]], [[60, 61, 62, 63], [51, 43, 35, 27, 19, 11, 3], [58, 57, 56]], [[61, 62, 63], [52, 44, 36, 28, 20, 12, 4], [59, 58, 57, 56]], [[62, 63], [53, 45, 37, 29, 21, 13, 5], [60, 59, 58, 57, 56]], [[63], [54, 46, 38, 30, 22, 14, 6], [61, 60, 59, 58, 57, 56]], [[55, 47, 39, 31, 23, 15, 7], [62, 61, 60, 59, 58, 57, 56]]], 'p4': [[], [], [], [], [], [], [], [], [[16, 24], [17]], [[16], [17, 25], [18]], [[17], [18, 26], [19]], [[18], [19, 27], [20]], [[19], [20, 28], [21]], [[20], [21, 29], [22]], [[21], [22, 30], [23]], [[22], [23, 31]], [[24], [25]], [[24], [25], [26]], [[25], [26], [27]], [[26], [27], [28]], [[27], [28], [29]], [[28], [29], [30]], [[29], [30], [31]], [[30], [31]], [[32], [33]], [[32], [33], [34]], [[33], [34], [35]], [[34], [35], [36]], [[35], [36], [37]], [[36], [37], [38]], [[37], [38], [39]], [[38], [39]], [[40], [41]], [[40], [41], [42]], [[41], [42], [43]], [[42], [43], [44]], [[43], [44], [45]], [[44], [45], [46]], [[45], [46], [47]], [[46], [47]], [[48], [49]], [[48], [49], [50]], [[49], [50], [51]], [[50], [51], [52]], [[51], [52], [53]], [[52], [53], [54]], [[53], [54], [55]], [[54], [55]], [[56], [57]], [[56], [57], [58]], [[57], [58], [59]], [[58], [59], [60]], [[59], [60], [61]], [[60], [61], [62]], [[61], [62], [63]], [[62], [63]], [], [], [], [], [], [], [], []], 'p5': [[], [], [], [], [], [], [], [], [[16, 24], [17]], [[16], [17, 25], [18]], [[17], [18, 26], [19]], [[18], [19, 27], [20]], [[19], [20, 28], [21]], [[20], [21, 29], [22]], [[21], [22, 30], [23]], [[22], [23, 31]], [[24], [25]], [[24], [25], [26]], [[25], [26], [27]], [[26], [27], [28]], [[27], [28], [29]], [[28], [29], [30]], [[29], [30], [31]], [[30], [31]], [[32], [33]], [[32], [33], [34]], [[33], [34], [35]], [[34], [35], [36]], [[35], [36], [37]], [[36], [37], [38]], [[37], [38], [39]], [[38], [39]], [[40], [41]], [[40], [41], [42]], [[41], [42], [43]], [[42], [43], [44]], [[43], [44], [45]], [[44], [45], [46]], [[45], [46], [47]], [[46], [47]], [[48], [49]], [[48], [49], [50]], [[49], [50], [51]], [[50], [51], [52]], [[51], [52], [53]], [[52], [53], [54]], [[53], [54], [55]], [[54], [55]], [[56], [57]], [[56], [57], [58]], [[57], [58], [59]], [[58], [59], [60]], [[59], [60], [61]], [[60], [61], [62]], [[61], [62], [63]], [[62], [63]], [], [], [], [], [], [], [], []], 'k': [[[1], [8], [9]], [[2], [0], [8], [9], [10]], [[3], [1], [9], [10], [11]], [[4], [2], [10], [11], [12]], [[5, 6], [3, 2], [11], [12], [13]], [[6], [4], [12], [13], [14]], [[7], [5], [13], [14], [15]], [[6], [14], [15]], [[9], [1], [0], [16], [17]], [[10], [2], [1], [0], [8], [16], [17], [18]], [[11], [3], [2], [1], [9], [17], [18], [19]], [[12], [4], [3], [2], [10], [18], [19], [20]], [[13], [5], [4], [3], [11], [19], [20], [21]], [[14], [6], [5], [4], [12], [20], [21], [22]], [[15], [7], [6], [5], [13], [21], [22], [23]], [[7], [6], [14], [22], [23]], [[17], [9], [8], [24], [25]], [[18], [10], [9], [8], [16], [24], [25], [26]], [[19], [11], [10], [9], [17], [25], [26], [27]], [[20], [12], [11], [10], [18], [26], [27], [28]], [[21], [13], [12], [11], [19], [27], [28], [29]], [[22], [14], [13], [12], [20], [28], [29], [30]], [[23], [15], [14], [13], [21], [29], [30], [31]], [[15], [14], [22], [30], [31]], [[25], [17], [16], [32], [33]], [[26], [18], [17], [16], [24], [32], [33], [34]], [[27], [19], [18], [17], [25], [33], [34], [35]], [[28], [20], [19], [18], [26], [34], [35], [36]], [[29], [21], [20], [19], [27], [35], [36], [37]], [[30], [22], [21], [20], [28], [36], [37], [38]], [[31], [23], [22], [21], [29], [37], [38], [39]], [[23], [22], [30], [38], [39]], [[33], [25], [24], [40], [41]], [[34], [26], [25], [24], [32], [40], [41], [42]], [[35], [27], [26], [25], [33], [41], [42], [43]], [[36], [28], [27], [26], [34], [42], [43], [44]], [[37], [29], [28], [27], [35], [43], [44], [45]], [[38], [30], [29], [28], [36], [44], [45], [46]], [[39], [31], [30], [29], [37], [45], [46], [47]], [[31], [30], [38], [46], [47]], [[41], [33], [32], [48], [49]], [[42], [34], [33], [32], [40], [48], [49], [50]], [[43], [35], [34], [33], [41], [49], [50], [51]], [[44], [36], [35], [34], [42], [50], [51], [52]], [[45], [37], [36], [35], [43], [51], [52], [53]], [[46], [38], [37], [36], [44], [52], [53], [54]], [[47], [39], [38], [37], [45], [53], [54], [55]], [[39], [38], [46], [54], [55]], [[49], [41], [40], [56], [57]], [[50], [42], [41], [40], [48], [56], [57], [58]], [[51], [43], [42], [41], [49], [57], [58], [59]], [[52], [44], [43], [42], [50], [58], [59], [60]], [[53], [45], [44], [43], [51], [59], [60], [61]], [[54], [46], [45], [44], [52], [60], [61], [62]], [[55], [47], [46], [45], [53], [61], [62], [63]], [[47], [46], [54], [62], [63]], [[57], [49], [48]], [[58], [50], [49], [48], [56]], [[59], [51], [50], [49], [57]], [[60], [52], [51], [50], [58]], [[61], [53], [52], [51], [59]], [[62], [54], [53], [52], [60]], [[63], [55], [54], [53], [61]], [[55], [54], [62]]], 'q': [[[1, 2, 3, 4, 5, 6, 7], [8, 16, 24, 32, 40, 48, 56], [9, 18, 27, 36, 45, 54, 63]], [[2, 3, 4, 5, 6, 7], [0], [8], [9, 17, 25, 33, 41, 49, 57], [10, 19, 28, 37, 46, 55]], [[3, 4, 5, 6, 7], [1, 0], [9, 16], [10, 18, 26, 34, 42, 50, 58], [11, 20, 29, 38, 47]], [[4, 5, 6, 7], [2, 1, 0], [10, 17, 24], [11, 19, 27, 35, 43, 51, 59], [12, 21, 30, 39]], [[5, 6, 7], [3, 2, 1, 0], [11, 18, 25, 32], [12, 20, 28, 36, 44, 52, 60], [13, 22, 31]], [[6, 7], [4, 3, 2, 1, 0], [12, 19, 26, 33, 40], [13, 21, 29, 37, 45, 53, 61], [14, 23]], [[7], [5, 4, 3, 2, 1, 0], [13, 20, 27, 34, 41, 48], [14, 22, 30, 38, 46, 54, 62], [15]], [[6, 5, 4, 3, 2, 1, 0], [14, 21, 28, 35, 42, 49, 56], [15, 23, 31, 39, 47, 55, 63]], [[9, 10, 11, 12, 13, 14, 15], [1], [0], [16, 24, 32, 40, 48, 56], [17, 26, 35, 44, 53, 62]], [[10, 11, 12, 13, 14, 15], [2], [1], [0], [8], [16], [17, 25, 33, 41, 49, 57], [18, 27, 36, 45, 54, 63]], [[11, 12, 13, 14, 15], [3], [2], [1], [9, 8], [17, 24], [18, 26, 34, 42, 50, 58], [19, 28, 37, 46, 55]], [[12, 13, 14, 15], [4], [3], [2], [10, 9, 8], [18, 25, 32], [19, 27, 35, 43, 51, 59], [20, 29, 38, 47]], [[13, 14, 15], [5], [4], [3], [11, 10, 9, 8], [19, 26, 33, 40], [20, 28, 36, 44, 52, 60], [21, 30, 39]], [[14, 15], [6], [5], [4], [12, 11, 10, 9, 8], [20, 27, 34, 41, 48], [21, 29, 37, 45, 53, 61], [22, 31]], [[15], [7], [6], [5], [13, 12, 11, 10, 9, 8], [21, 28, 35, 42, 49, 56], [22, 30, 38, 46, 54, 62], [23]], [[7], [6], [14, 13, 12, 11, 10, 9, 8], [22, 29, 36, 43, 50, 57], [23, 31, 39, 47, 55, 63]], [[17, 18, 19, 20, 21, 22, 23], [9, 2], [8, 0], [24, 32, 40, 48, 56], [25, 34, 43, 52, 61]], [[18, 19, 20, 21, 22, 23], [10, 3], [9, 1], [8], [16], [24], [25, 33, 41, 49, 57], [26, 35, 44, 53, 62]], [[19, 20, 21, 22, 23], [11, 4], [10, 2], [9, 0], [17, 16], [25, 32], [26, 34, 42, 50, 58], [27, 36, 45, 54, 63]], [[20, 21, 22, 23], [12, 5], [11, 3], [10, 1], [18, 17, 16], [26, 33, 40], [27, 35, 43, 51, 59], [28, 37, 46, 55]], [[21, 22, 23], [13, 6], [12, 4], [11, 2], [19, 18, 17, 16], [27, 34, 41, 48], [28, 36, 44, 52, 60], [29, 38, 47]], [[22, 23], [14, 7], [13, 5], [12, 3], [20, 19, 18, 17, 16], [28, 35, 42, 49, 56], [29, 37, 45, 53, 61], [30, 39]], [[23], [15], [14, 6], [13, 4], [21, 20, 19, 18, 17, 16], [29, 36, 43, 50, 57], [30, 38, 46, 54, 62], [31]], [[15, 7], [14, 5], [22, 21, 20, 19, 18, 17, 16], [30, 37, 44, 51, 58], [31, 39, 47, 55, 63]], [[25, 26, 27, 28, 29, 30, 31], [17, 10, 3], [16, 8, 0], [32, 40, 48, 56], [33, 42, 51, 60]], [[26, 27, 28, 29, 30, 31], [18, 11, 4], [17, 9, 1], [16], [24], [32], [33, 41, 49, 57], [34, 43, 52, 61]], [[27, 28, 29, 30, 31], [19, 12, 5], [18, 10, 2], [17, 8], [25, 24], [33, 40], [34, 42, 50, 58], [35, 44, 53, 62]], [[28, 29, 30, 31], [20, 13, 6], [19, 11, 3], [18, 9, 0], [26, 25, 24], [34, 41, 48], [35, 43, 51, 59], [36, 45, 54, 63]], [[29, 30, 31], [21, 14, 7], [20, 12, 4], [19, 10, 1], [27, 26, 25, 24], [35, 42, 49, 56], [36, 44, 52, 60], [37, 46, 55]], [[30, 31], [22, 15], [21, 13, 5], [20, 11, 2], [28, 27, 26, 25, 24], [36, 43, 50, 57], [37, 45, 53, 61], [38, 47]], [[31], [23], [22, 14, 6], [21, 12, 3], [29, 28, 27, 26, 25, 24], [37, 44, 51, 58], [38, 46, 54, 62], [39]], [[23, 15, 7], [22, 13, 4], [30, 29, 28, 27, 26, 25, 24], [38, 45, 52, 59], [39, 47, 55, 63]], [[33, 34, 35, 36, 37, 38, 39], [25, 18, 11, 4], [24, 16, 8, 0], [40, 48, 56], [41, 50, 59]], [[34, 35, 36, 37, 38, 39], [26, 19, 12, 5], [25, 17, 9, 1], [24], [32], [40], [41, 49, 57], [42, 51, 60]], [[35, 36, 37, 38, 39], [27, 20, 13, 6], [26, 18, 10, 2], [25, 16], [33, 32], [41, 48], [42, 50, 58], [43, 52, 61]], [[36, 37, 38, 39], [28, 21, 14, 7], [27, 19, 11, 3], [26, 17, 8], [34, 33, 32], [42, 49, 56], [43, 51, 59], [44, 53, 62]], [[37, 38, 39], [29, 22, 15], [28, 20, 12, 4], [27, 18, 9, 0], [35, 34, 33, 32], [43, 50, 57], [44, 52, 60], [45, 54, 63]], [[38, 39], [30, 23], [29, 21, 13, 5], [28, 19, 10, 1], [36, 35, 34, 33, 32], [44, 51, 58], [45, 53, 61], [46, 55]], [[39], [31], [30, 22, 14, 6], [29, 20, 11, 2], [37, 36, 35, 34, 33, 32], [45, 52, 59], [46, 54, 62], [47]], [[31, 23, 15, 7], [30, 21, 12, 3], [38, 37, 36, 35, 34, 33, 32], [46, 53, 60], [47, 55, 63]], [[41, 42, 43, 44, 45, 46, 47], [33, 26, 19, 12, 5], [32, 24, 16, 8, 0], [48, 56], [49, 58]], [[42, 43, 44, 45, 46, 47], [34, 27, 20, 13, 6], [33, 25, 17, 9, 1], [32], [40], [48], [49, 57], [50, 59]], [[43, 44, 45, 46, 47], [35, 28, 21, 14, 7], [34, 26, 18, 10, 2], [33, 24], [41, 40], [49, 56], [50, 58], [51, 60]], [[44, 45, 46, 47], [36, 29, 22, 15], [35, 27, 19, 11, 3], [34, 25, 16], [42, 41, 40], [50, 57], [51, 59], [52, 61]], [[45, 46, 47], [37, 30, 23], [36, 28, 20, 12, 4], [35, 26, 17, 8], [43, 42, 41, 40], [51, 58], [52, 60], [53, 62]], [[46, 47], [38, 31], [37, 29, 21, 13, 5], [36, 27, 18, 9, 0], [44, 43, 42, 41, 40], [52, 59], [53, 61], [54, 63]], [[47], [39], [38, 30, 22, 14, 6], [37, 28, 19, 10, 1], [45, 44, 43, 42, 41, 40], [53, 60], [54, 62], [55]], [[39, 31, 23, 15, 7], [38, 29, 20, 11, 2], [46, 45, 44, 43, 42, 41, 40], [54, 61], [55, 63]], [[49, 50, 51, 52, 53, 54, 55], [41, 34, 27, 20, 13, 6], [40, 32, 24, 16, 8, 0], [56], [57]], [[50, 51, 52, 53, 54, 55], [42, 35, 28, 21, 14, 7], [41, 33, 25, 17, 9, 1], [40], [48], [56], [57], [58]], [[51, 52, 53, 54, 55], [43, 36, 29, 22, 15], [42, 34, 26, 18, 10, 2], [41, 32], [49, 48], [57], [58], [59]], [[52, 53, 54, 55], [44, 37, 30, 23], [43, 35, 27, 19, 11, 3], [42, 33, 24], [50, 49, 48], [58], [59], [60]], [[53, 54, 55], [45, 38, 31], [44, 36, 28, 20, 12, 4], [43, 34, 25, 16], [51, 50, 49, 48], [59], [60], [61]], [[54, 55], [46, 39], [45, 37, 29, 21, 13, 5], [44, 35, 26, 17, 8], [52, 51, 50, 49, 48], [60], [61], [62]], [[55], [47], [46, 38, 30, 22, 14, 6], [45, 36, 27, 18, 9, 0], [53, 52, 51, 50, 49, 48], [61], [62], [63]], [[47, 39, 31, 23, 15, 7], [46, 37, 28, 19, 10, 1], [54, 53, 52, 51, 50, 49, 48], [62], [63]], [[57, 58, 59, 60, 61, 62, 63], [49, 42, 35, 28, 21, 14, 7], [48, 40, 32, 24, 16, 8, 0]], [[58, 59, 60, 61, 62, 63], [50, 43, 36, 29, 22, 15], [49, 41, 33, 25, 17, 9, 1], [48], [56]], [[59, 60, 61, 62, 63], [51, 44, 37, 30, 23], [50, 42, 34, 26, 18, 10, 2], [49, 40], [57, 56]], [[60, 61, 62, 63], [52, 45, 38, 31], [51, 43, 35, 27, 19, 11, 3], [50, 41, 32], [58, 57, 56]], [[61, 62, 63], [53, 46, 39], [52, 44, 36, 28, 20, 12, 4], [51, 42, 33, 24], [59, 58, 57, 56]], [[62, 63], [54, 47], [53, 45, 37, 29, 21, 13, 5], [52, 43, 34, 25, 16], [60, 59, 58, 57, 56]], [[63], [55], [54, 46, 38, 30, 22, 14, 6], [53, 44, 35, 26, 17, 8], [61, 60, 59, 58, 57, 56]], [[55, 47, 39, 31, 23, 15, 7], [54, 45, 36, 27, 18, 9, 0], [62, 61, 60, 59, 58, 57, 56]]], 'B1': [[[9, 18, 27, 36, 45, 54, 63]], [[8], [10, 19, 28, 37, 46, 55]], [[9, 16], [11, 20, 29, 38, 47]], [[10, 17, 24], [12, 21, 30, 39]], [[11, 18, 25, 32], [13, 22, 31]], [[12, 19, 26, 33, 40], [14, 23]], [[13, 20, 27, 34, 41, 48], [15]], [[14, 21, 28, 35, 42, 49, 56]], [[1], [17, 26, 35, 44, 53, 62]], [[2], [0], [16], [18, 27, 36, 45, 54, 63]], [[3], [1], [17, 24], [19, 28, 37, 46, 55]], [[4], [2], [18, 25, 32], [20, 29, 38, 47]], [[5], [3], [19, 26, 33, 40], [21, 30, 39]], [[6], [4], [20, 27, 34, 41, 48], [22, 31]], [[7], [5], [21, 28, 35, 42, 49, 56], [23]], [[6], [22, 29, 36, 43, 50, 57]], [[9, 2], [25, 34, 43, 52, 61]], [[10, 3], [8], [24], [26, 35, 44, 53, 62]], [[11, 4], [9, 0], [25, 32], [27, 36, 45, 54, 63]], [[12, 5], [10, 1], [26, 33, 40], [28, 37, 46, 55]], [[13, 6], [11, 2], [27, 34, 41, 48], [29, 38, 47]], [[14, 7], [12, 3], [28, 35, 42, 49, 56], [30, 39]], [[15], [13, 4], [29, 36, 43, 50, 57], [31]], [[14, 5], [30, 37, 44, 51, 58]], [[17, 10, 3], [33, 42, 51, 60]], [[18, 11, 4], [16], [32], [34, 43, 52, 61]], [[19, 12, 5], [17, 8], [33, 40], [35, 44, 53, 62]], [[20, 13, 6], [18, 9, 0], [34, 41, 48], [36, 45, 54, 63]], [[21, 14, 7], [19, 10, 1], [35, 42, 49, 56], [37, 46, 55]], [[22, 15], [20, 11, 2], [36, 43, 50, 57], [38, 47]], [[23], [21, 12, 3], [37, 44, 51, 58], [39]], [[22, 13, 4], [38, 45, 52, 59]], [[25, 18, 11, 4], [41, 50, 59]], [[26, 19, 12, 5], [24], [40], [42, 51, 60]], [[27, 20, 13, 6], [25, 16], [41, 48], [43, 52, 61]], [[28, 21, 14, 7], [26, 17, 8], [42, 49, 56], [44, 53, 62]], [[29, 22, 15], [27, 18, 9, 0], [43, 50, 57], [45, 54, 63]], [[30, 23], [28, 19, 10, 1], [44, 51, 58], [46, 55]], [[31], [29, 20, 11, 2], [45, 52, 59], [47]], [[30, 21, 12, 3], [46, 53, 60]], [[33, 26, 19, 12, 5], [49, 58]], [[34, 27, 20, 13, 6], [32], [48], [50, 59]], [[35, 28, 21, 14, 7], [33, 24], [49, 56], [51, 60]], [[36, 29, 22, 15], [34, 25, 16], [50, 57], [52, 61]], [[37, 30, 23], [35, 26, 17, 8], [51, 58], [53, 62]], [[38, 31], [36, 27, 18, 9, 0], [52, 59], [54, 63]], [[39], [37, 28, 19, 10, 1], [53, 60], [55]], [[38, 29, 20, 11, 2], [54, 61]], [[41, 34, 27, 20, 13, 6], [57]], [[42, 35, 28, 21, 14, 7], [40], [56], [58]], [[43, 36, 29, 22, 15], [41, 32], [57], [59]], [[44, 37, 30, 23], [42, 33, 24], [58], [60]], [[45, 38, 31], [43, 34, 25, 16], [59], [61]], [[46, 39], [44, 35, 26, 17, 8], [60], [62]], [[47], [45, 36, 27, 18, 9, 0], [61], [63]], [[46, 37, 28, 19, 10, 1], [62]], [[49, 42, 35, 28, 21, 14, 7]], [[50, 43, 36, 29, 22, 15], [48]], [[51, 44, 37, 30, 23], [49, 40]], [[52, 45, 38, 31], [50, 41, 32]], [[53, 46, 39], [51, 42, 33, 24]], [[54, 47], [52, 43, 34, 25, 16]], [[55], [53, 44, 35, 26, 17, 8]], [[54, 45, 36, 27, 18, 9, 0]]], 'B2': [[[9, 18, 27, 36, 45, 54, 63]], [[8], [10, 19, 28, 37, 46, 55]], [[9, 16], [11, 20, 29, 38, 47]], [[10, 17, 24], [12, 21, 30, 39]], [[11, 18, 25, 32], [13, 22, 31]], [[12, 19, 26, 33, 40], [14, 23]], [[13, 20, 27, 34, 41, 48], [15]], [[14, 21, 28, 35, 42, 49, 56]], [[1], [17, 26, 35, 44, 53, 62]], [[2], [0], [16], [18, 27, 36, 45, 54, 63]], [[3], [1], [17, 24], [19, 28, 37, 46, 55]], [[4], [2], [18, 25, 32], [20, 29, 38, 47]], [[5], [3], [19, 26, 33, 40], [21, 30, 39]], [[6], [4], [20, 27, 34, 41, 48], [22, 31]], [[7], [5], [21, 28, 35, 42, 49, 56], [23]], [[6], [22, 29, 36, 43, 50, 57]], [[9, 2], [25, 34, 43, 52, 61]], [[10, 3], [8], [24], [26, 35, 44, 53, 62]], [[11, 4], [9, 0], [25, 32], [27, 36, 45, 54, 63]], [[12, 5], [10, 1], [26, 33, 40], [28, 37, 46, 55]], [[13, 6], [11, 2], [27, 34, 41, 48], [29, 38, 47]], [[14, 7], [12, 3], [28, 35, 42, 49, 56], [30, 39]], [[15], [13, 4], [29, 36, 43, 50, 57], [31]], [[14, 5], [30, 37, 44, 51, 58]], [[17, 10, 3], [33, 42, 51, 60]], [[18, 11, 4], [16], [32], [34, 43, 52, 61]], [[19, 12, 5], [17, 8], [33, 40], [35, 44, 53, 62]], [[20, 13, 6], [18, 9, 0], [34, 41, 48], [36, 45, 54, 63]], [[21, 14, 7], [19, 10, 1], [35, 42, 49, 56], [37, 46, 55]], [[22, 15], [20, 11, 2], [36, 43, 50, 57], [38, 47]], [[23], [21, 12, 3], [37, 44, 51, 58], [39]], [[22, 13, 4], [38, 45, 52, 59]], [[25, 18, 11, 4], [41, 50, 59]], [[26, 19, 12, 5], [24], [40], [42, 51, 60]], [[27, 20, 13, 6], [25, 16], [41, 48], [43, 52, 61]], [[28, 21, 14, 7], [26, 17, 8], [42, 49, 56], [44, 53, 62]], [[29, 22, 15], [27, 18, 9, 0], [43, 50, 57], [45, 54, 63]], [[30, 23], [28, 19, 10, 1], [44, 51, 58], [46, 55]], [[31], [29, 20, 11, 2], [45, 52, 59], [47]], [[30, 21, 12, 3], [46, 53, 60]], [[33, 26, 19, 12, 5], [49, 58]], [[34, 27, 20, 13, 6], [32], [48], [50, 59]], [[35, 28, 21, 14, 7], [33, 24], [49, 56], [51, 60]], [[36, 29, 22, 15], [34, 25, 16], [50, 57], [52, 61]], [[37, 30, 23], [35, 26, 17, 8], [51, 58], [53, 62]], [[38, 31], [36, 27, 18, 9, 0], [52, 59], [54, 63]], [[39], [37, 28, 19, 10, 1], [53, 60], [55]], [[38, 29, 20, 11, 2], [54, 61]], [[41, 34, 27, 20, 13, 6], [57]], [[42, 35, 28, 21, 14, 7], [40], [56], [58]], [[43, 36, 29, 22, 15], [41, 32], [57], [59]], [[44, 37, 30, 23], [42, 33, 24], [58], [60]], [[45, 38, 31], [43, 34, 25, 16], [59], [61]], [[46, 39], [44, 35, 26, 17, 8], [60], [62]], [[47], [45, 36, 27, 18, 9, 0], [61], [63]], [[46, 37, 28, 19, 10, 1], [62]], [[49, 42, 35, 28, 21, 14, 7]], [[50, 43, 36, 29, 22, 15], [48]], [[51, 44, 37, 30, 23], [49, 40]], [[52, 45, 38, 31], [50, 41, 32]], [[53, 46, 39], [51, 42, 33, 24]], [[54, 47], [52, 43, 34, 25, 16]], [[55], [53, 44, 35, 26, 17, 8]], [[54, 45, 36, 27, 18, 9, 0]]], 'n1': [[[17], [10]], [[16], [18], [11]], [[8], [17], [19], [12]], [[9], [18], [20], [13]], [[10], [19], [21], [14]], [[11], [20], [22], [15]], [[12], [21], [23]], [[13], [22]], [[2], [25], [18]], [[3], [24], [26], [19]], [[4], [0], [16], [25], [27], [20]], [[5], [1], [17], [26], [28], [21]], [[6], [2], [18], [27], [29], [22]], [[7], [3], [19], [28], [30], [23]], [[4], [20], [29], [31]], [[5], [21], [30]], [[10], [1], [33], [26]], [[11], [2], [0], [32], [34], [27]], [[12], [3], [1], [8], [24], [33], [35], [28]], [[13], [4], [2], [9], [25], [34], [36], [29]], [[14], [5], [3], [10], [26], [35], [37], [30]], [[15], [6], [4], [11], [27], [36], [38], [31]], [[7], [5], [12], [28], [37], [39]], [[6], [13], [29], [38]], [[18], [9], [41], [34]], [[19], [10], [8], [40], [42], [35]], [[20], [11], [9], [16], [32], [41], [43], [36]], [[21], [12], [10], [17], [33], [42], [44], [37]], [[22], [13], [11], [18], [34], [43], [45], [38]], [[23], [14], [12], [19], [35], [44], [46], [39]], [[15], [13], [20], [36], [45], [47]], [[14], [21], [37], [46]], [[26], [17], [49], [42]], [[27], [18], [16], [48], [50], [43]], [[28], [19], [17], [24], [40], [49], [51], [44]], [[29], [20], [18], [25], [41], [50], [52], [45]], [[30], [21], [19], [26], [42], [51], [53], [46]], [[31], [22], [20], [27], [43], [52], [54], [47]], [[23], [21], [28], [44], [53], [55]], [[22], [29], [45], [54]], [[34], [25], [57], [50]], [[35], [26], [24], [56], [58], [51]], [[36], [27], [25], [32], [48], [57], [59], [52]], [[37], [28], [26], [33], [49], [58], [60], [53]], [[38], [29], [27], [34], [50], [59], [61], [54]], [[39], [30], [28], [35], [51], [60], [62], [55]], [[31], [29], [36], [52], [61], [63]], [[30], [37], [53], [62]], [[42], [33], [58]], [[43], [34], [32], [59]], [[44], [35], [33], [40], [56], [60]], [[45], [36], [34], [41], [57], [61]], [[46], [37], [35], [42], [58], [62]], [[47], [38], [36], [43], [59], [63]], [[39], [37], [44], [60]], [[38], [45], [61]], [[50], [41]], [[51], [42], [40]], [[52], [43], [41], [48]], [[53], [44], [42], [49]], [[54], [45], [43], [50]], [[55], [46], [44], [51]], [[47], [45], [52]], [[46], [53]]], 'n2': [[[17], [10]], [[16], [18], [11]], [[8], [17], [19], [12]], [[9], [18], [20], [13]], [[10], [19], [21], [14]], [[11], [20], [22], [15]], [[12], [21], [23]], [[13], [22]], [[2], [25], [18]], [[3], [24], [26], [19]], [[4], [0], [16], [25], [27], [20]], [[5], [1], [17], [26], [28], [21]], [[6], [2], [18], [27], [29], [22]], [[7], [3], [19], [28], [30], [23]], [[4], [20], [29], [31]], [[5], [21], [30]], [[10], [1], [33], [26]], [[11], [2], [0], [32], [34], [27]], [[12], [3], [1], [8], [24], [33], [35], [28]], [[13], [4], [2], [9], [25], [34], [36], [29]], [[14], [5], [3], [10], [26], [35], [37], [30]], [[15], [6], [4], [11], [27], [36], [38], [31]], [[7], [5], [12], [28], [37], [39]], [[6], [13], [29], [38]], [[18], [9], [41], [34]], [[19], [10], [8], [40], [42], [35]], [[20], [11], [9], [16], [32], [41], [43], [36]], [[21], [12], [10], [17], [33], [42], [44], [37]], [[22], [13], [11], [18], [34], [43], [45], [38]], [[23], [14], [12], [19], [35], [44], [46], [39]], [[15], [13], [20], [36], [45], [47]], [[14], [21], [37], [46]], [[26], [17], [49], [42]], [[27], [18], [16], [48], [50], [43]], [[28], [19], [17], [24], [40], [49], [51], [44]], [[29], [20], [18], [25], [41], [50], [52], [45]], [[30], [21], [19], [26], [42], [51], [53], [46]], [[31], [22], [20], [27], [43], [52], [54], [47]], [[23], [21], [28], [44], [53], [55]], [[22], [29], [45], [54]], [[34], [25], [57], [50]], [[35], [26], [24], [56], [58], [51]], [[36], [27], [25], [32], [48], [57], [59], [52]], [[37], [28], [26], [33], [49], [58], [60], [53]], [[38], [29], [27], [34], [50], [59], [61], [54]], [[39], [30], [28], [35], [51], [60], [62], [55]], [[31], [29], [36], [52], [61], [63]], [[30], [37], [53], [62]], [[42], [33], [58]], [[43], [34], [32], [59]], [[44], [35], [33], [40], [56], [60]], [[45], [36], [34], [41], [57], [61]], [[46], [37], [35], [42], [58], [62]], [[47], [38], [36], [43], [59], [63]], [[39], [37], [44], [60]], [[38], [45], [61]], [[50], [41]], [[51], [42], [40]], [[52], [43], [41], [48]], [[53], [44], [42], [49]], [[54], [45], [43], [50]], [[55], [46], [44], [51]], [[47], [45], [52]], [[46], [53]]], 'p8': [[], [], [], [], [], [], [], [], [[16, 24], [17]], [[16], [17, 25], [18]], [[17], [18, 26], [19]], [[18], [19, 27], [20]], [[19], [20, 28], [21]], [[20], [21, 29], [22]], [[21], [22, 30], [23]], [[22], [23, 31]], [[24], [25]], [[24], [25], [26]], [[25], [26], [27]], [[26], [27], [28]], [[27], [28], [29]], [[28], [29], [30]], [[29], [30], [31]], [[30], [31]], [[32], [33]], [[32], [33], [34]], [[33], [34], [35]], [[34], [35], [36]], [[35], [36], [37]], [[36], [37], [38]], [[37], [38], [39]], [[38], [39]], [[40], [41]], [[40], [41], [42]], [[41], [42], [43]], [[42], [43], [44]], [[43], [44], [45]], [[44], [45], [46]], [[45], [46], [47]], [[46], [47]], [[48], [49]], [[48], [49], [50]], [[49], [50], [51]], [[50], [51], [52]], [[51], [52], [53]], [[52], [53], [54]], [[53], [54], [55]], [[54], [55]], [[56], [57]], [[56], [57], [58]], [[57], [58], [59]], [[58], [59], [60]], [[59], [60], [61]], [[60], [61], [62]], [[61], [62], [63]], [[62], [63]], [], [], [], [], [], [], [], []]} def valid_moves(state,bp_movement): global MOVES possible_moves=dict() bk_movement=0 br_movement=[0,0] for i in range(64): if(state[i].islower() and state[i]!='null'): if(state[i] in {'n1','n2','N1','N2'}): possible_moves[state[i]]=list() for j in MOVES[state[i]][i]: for k in j: if(state[k].islower() and state[k]!='null'): pass else: possible_moves[state[i]].append([i,k]) else: possible_moves[state[i]]=list() for j in MOVES[state[i]][i]: for k in j: possibility=1 if(state[k].islower() and state[k]!='null'): possibility=0 else: x1=i%8 x2=k%8 y1=i//8 y2=k//8 diff=k-i if(x1==x2): if(y2>y1): facter=8 else: facter=-8 elif(y1==y2): if(x2>x1): facter=1 else: facter=-1 elif(diff%7==0): if(y2>y1): facter=7 else: facter=-7 else: if(x2>x1): facter=9 else: facter=-9 l=i+facter while(l!=k): if(state[l]!='null'): possibility=0 l=l+facter #for cross_kill of pawn and en_passant if(state[i][0]=='p'): if(i>15 and k-i==16): possibility=0 elif(k-i==9): if(state[i+1][0]=='P' and bp_movement[x1+1]==1): possibility=1 else: if(state[k]=='null'): possibility=0 elif(k-i==7): if(state[i-1][0]=='P' and bp_movement[x1-1]==1): possibility=1 else: if(state[k]=='null'): possibility=0 if(possibility==1): possible_moves[state[i]].append([i,k]) else: pass #for chessling if(state[4]=='k' and state[2]=='null' and state[3]=='null'): if(bk_movement==0 and br_movement[0]==0 and state[0]=='r1' and state[1]=='null'): pass else: possible_moves['k'].remove([4,2]) if(state[4]=='k' and state[5]=='null' and state[6]=='null'): if(bk_movement==0 and br_movement[1]==0 and state[7]=='r2'): pass else: possible_moves['k'].remove([4,6]) # restricting a pawn not to kill straight for i in {'p1','p2','p3','p4','p5','p6','p7','p8'}: try: for j in possible_moves[i]: if((j[1]-j[0])%8==0 and state[j[1]]!='null'): k=possible_moves[i].index(j) del possible_moves[i][k] except: pass for pair in possible_moves.keys(): if(possible_moves[pair]==[]): del possible_moves[pair] else: pass return possible_moves
671.351852
69,434
0.358398
76bb16faba426c0f0276db7ab0fece03fbab9473
2,459
py
Python
tf-2-workflow/train_model/train.py
scott2b/amazon-sagemaker-script-mode
ccb7edf0cd9d1e77bd951bfaa48d14dc95ce2aca
[ "Apache-2.0" ]
144
2019-02-05T21:03:30.000Z
2022-03-24T15:24:32.000Z
tf-2-workflow/train_model/train.py
kirit93/amazon-sagemaker-script-mode
095af07488889bb2655b741749d8740d3e11a49e
[ "Apache-2.0" ]
22
2019-03-04T04:18:02.000Z
2022-03-09T00:21:36.000Z
tf-2-workflow/train_model/train.py
kirit93/amazon-sagemaker-script-mode
095af07488889bb2655b741749d8740d3e11a49e
[ "Apache-2.0" ]
94
2019-02-05T21:03:33.000Z
2022-01-16T07:29:15.000Z
import argparse import numpy as np import os import tensorflow as tf from model_def import get_model os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' def parse_args(): parser = argparse.ArgumentParser() # hyperparameters sent by the client are passed as command-line arguments to the script parser.add_argument('--epochs', type=int, default=1) parser.add_argument('--batch_size', type=int, default=64) parser.add_argument('--learning_rate', type=float, default=0.1) # data directories parser.add_argument('--train', type=str, default=os.environ.get('SM_CHANNEL_TRAIN')) parser.add_argument('--test', type=str, default=os.environ.get('SM_CHANNEL_TEST')) # model directory: we will use the default set by SageMaker, /opt/ml/model parser.add_argument('--model_dir', type=str, default=os.environ.get('SM_MODEL_DIR')) return parser.parse_known_args() def get_train_data(train_dir): x_train = np.load(os.path.join(train_dir, 'x_train.npy')) y_train = np.load(os.path.join(train_dir, 'y_train.npy')) print('x train', x_train.shape,'y train', y_train.shape) return x_train, y_train def get_test_data(test_dir): x_test = np.load(os.path.join(test_dir, 'x_test.npy')) y_test = np.load(os.path.join(test_dir, 'y_test.npy')) print('x test', x_test.shape,'y test', y_test.shape) return x_test, y_test if __name__ == "__main__": args, _ = parse_args() print('Training data location: {}'.format(args.train)) print('Test data location: {}'.format(args.test)) x_train, y_train = get_train_data(args.train) x_test, y_test = get_test_data(args.test) device = '/cpu:0' print(device) batch_size = args.batch_size epochs = args.epochs learning_rate = args.learning_rate print('batch_size = {}, epochs = {}, learning rate = {}'.format(batch_size, epochs, learning_rate)) with tf.device(device): model = get_model() optimizer = tf.keras.optimizers.SGD(learning_rate) model.compile(optimizer=optimizer, loss='mse') model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, y_test)) # evaluate on test set scores = model.evaluate(x_test, y_test, batch_size, verbose=2) print("\nTest MSE :", scores) # save model model.save(args.model_dir + '/1')
31.126582
103
0.661651
bc32d65b9d98033ae3edb3bc37c04408370910dd
3,136
py
Python
test/test_elements.py
sigvaldm/symfem
5b51748a49015bb37839d1ca39bb26348b33936a
[ "MIT" ]
null
null
null
test/test_elements.py
sigvaldm/symfem
5b51748a49015bb37839d1ca39bb26348b33936a
[ "MIT" ]
null
null
null
test/test_elements.py
sigvaldm/symfem
5b51748a49015bb37839d1ca39bb26348b33936a
[ "MIT" ]
null
null
null
import pytest import symfem from symfem import create_element from symfem.symbolic import subs, x, all_symequal from .utils import test_elements def test_all_tested(): for e in symfem.create._elementlist: for r in e.references: if r == "dual polygon": continue for n in e.names: if n in test_elements[r]: break else: raise ValueError(f"{e.names[0]} on a {r} is not tested") @pytest.mark.parametrize("ref, element, order", [ ("triangle", "Hermite", 4), ("tetrahedron", "Crouzeix-Raviart", 2) ]) def test_too_high_order(ref, element, order): with pytest.raises(ValueError): symfem.create_element(ref, element, order) @pytest.mark.parametrize("ref, element, order", [ ("triangle", "Hermite", 2), ("tetrahedron", "bubble", 3) ]) def test_too_low_order(ref, element, order): with pytest.raises(ValueError): symfem.create_element(ref, element, order) @pytest.mark.parametrize( ("cell_type", "element_type", "order", "kwargs"), [[reference, element, order, kwargs] for reference, i in test_elements.items() for element, j in i.items() for kwargs, k in j for order in k]) def test_element( elements_to_test, cells_to_test, cell_type, element_type, order, kwargs, speed ): """Run tests for each element.""" if elements_to_test != "ALL" and element_type not in elements_to_test: pytest.skip() if cells_to_test != "ALL" and cell_type not in cells_to_test: pytest.skip() if speed == "fast": if order > 2: pytest.skip() if order == 2 and cell_type in ["tetrahedron", "hexahedron", "prism", "pyramid"]: pytest.skip() space = create_element(cell_type, element_type, order, **kwargs) space.test() @pytest.mark.parametrize("n_tri", [3, 4, 6, 8]) @pytest.mark.parametrize("order", range(2)) def test_dual_elements(elements_to_test, cells_to_test, n_tri, order): if elements_to_test != "ALL" and "dual" not in elements_to_test: pytest.skip() if cells_to_test != "ALL" and "dual polygon" not in cells_to_test: pytest.skip() space = create_element(f"dual polygon({n_tri})", "dual", order) sub_e = create_element("triangle", space.fine_space, space.order) for f, coeff_list in zip(space.get_basis_functions(), space.dual_coefficients): for piece, coeffs in zip(f.pieces, coeff_list): map = sub_e.reference.get_map_to(piece[0]) for dof, value in zip(sub_e.dofs, coeffs): point = subs(map, x, dof.point) assert all_symequal(value, subs(piece[1], x, point)) @pytest.mark.parametrize("n_tri", [3, 4]) @pytest.mark.parametrize("element_type", ["BC", "RBC"]) def test_bc_elements(elements_to_test, cells_to_test, n_tri, element_type): if elements_to_test != "ALL" and element_type not in elements_to_test: pytest.skip() if cells_to_test != "ALL" and "dual polygon" not in cells_to_test: pytest.skip() create_element(f"dual polygon({n_tri})", element_type, 1)
35.235955
89
0.648916
1024b27ee6d88e721c501207317fa21837ff99f9
17,628
py
Python
4_validate_model/2_validation_plots.py
opentargets/genetics-l2g-scoring
79a660ddb86adb20453de8d5589262e429c13d09
[ "Apache-2.0" ]
4
2020-05-04T20:03:13.000Z
2020-08-12T16:22:54.000Z
4_validate_model/2_validation_plots.py
opentargets/genetics-l2g-scoring
79a660ddb86adb20453de8d5589262e429c13d09
[ "Apache-2.0" ]
null
null
null
4_validate_model/2_validation_plots.py
opentargets/genetics-l2g-scoring
79a660ddb86adb20453de8d5589262e429c13d09
[ "Apache-2.0" ]
3
2020-05-07T20:31:52.000Z
2021-11-04T11:09:13.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Ed Mountjoy # ''' Analyses predictions ''' import sys import os import pandas as pd from pprint import pprint import json import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import sklearn.metrics as skmet from sklearn.metrics import precision_recall_curve, average_precision_score from sklearn.metrics import roc_curve, auc from sklearn.calibration import calibration_curve import argparse def main(): pd.options.mode.chained_assignment = None pd.set_option('display.max_columns', 500) # Parse args global args args = parse_args() # Allow plots or classification report to be switched off do_plots = True do_clf_report = True # Define metrics for the classification report metrics = { # Scores requiring predictions only 'y_pred': { 'accuracy_score': skmet.accuracy_score, 'balanced_accuracy_score': skmet.balanced_accuracy_score, # 'cohen_kappa_score': skmet.cohen_kappa_score, 'f1_score': skmet.f1_score, # 'hamming_loss': skmet.hamming_loss, # 'jaccard_score': skmet.jaccard_score, # 'log_loss': skmet.log_loss, # 'matthews_corrcoef': skmet.matthews_corrcoef, 'precision_score': skmet.precision_score, 'recall_score': skmet.recall_score, # 'zero_one_loss': skmet.zero_one_loss }, # Scores requiring class probabilities 'y_proba': { 'average_precision_score': skmet.average_precision_score, # 'brier_score_loss': skmet.brier_score_loss, 'roc_auc_score': skmet.roc_auc_score } } # # Load -------------------------------------------------------------------- # # Load predictions pred = pd.read_parquet(args.in_pred) # Load feature importance information with open(args.in_ftimp, 'r') as in_h: ft_imp = json.load(in_h) # # Check predictions ------------------------------------------------------- # # Count how many loci in total top_loci_count = ( pred .loc[:, ['study_id', 'chrom', 'pos', 'ref', 'alt', 'gene_id']] .drop_duplicates() .shape[0] ) # Count how many predictions per classifier pred_counts = ( pred .groupby(['clf_classifier_name', 'clf_feature_name', 'clf_gold_standard_set']) .study_id .size() .reset_index() ) # Make sure the correct number of loci have been predicted # print('Warning: skipping assertation!\n') assert (pred_counts['study_id'] == top_loci_count).all() # # Process predictions ------------------------------------------- # # Initiate classification report clf_report = [] # Group predictions pred_grp = pred.groupby([ 'clf_classifier_name', 'clf_feature_name', 'clf_gold_standard_set']) # Iterate over training groups for (clf, ft, gs_training), group in pred_grp: print('Processing', clf, ft, gs_training, '...') # Make testing gold-standard sets. This is the same as in 1_train_models.py gs_sets = { 'high_medium_low': group['gs_confidence'].isin(['High', 'Medium', 'Low']), 'high_medium': group['gs_confidence'].isin(['High', 'Medium']), 'high': group['gs_confidence'].isin(['High']), 'sumstat_only': group['has_sumstats'] == 1, 'progem': group['gs_set'] == 'ProGeM', 't2d': group['gs_set'] == 'T2D Knowledge Portal ', 'chembl_all': group['gs_set'].isin(['ChEMBL_IV', 'ChEMBL_III', 'ChEMBL_II']), 'chembl_excl_II': group['gs_set'].isin(['ChEMBL_IV', 'ChEMBL_III']), 'fauman_twitter': group['gs_set'].isin(['Eric Fauman Twitter']), 'ot_curated': group['gs_set'].isin(['otg_curated_191108']), } # Iterate over testing gold-standard sets for gs_test, gs_set in gs_sets.items(): # Subset rows of the group dataset group_subset = group.loc[gs_set, :] # Skip if empty if group_subset.shape[0] == 0: print('Warning: gs_test={} subset is empty, skipping...'.format(gs_test)) continue # # Make plots ---------------------------------------------------------- # if do_plots: # Make outname out_name = '{}-{}-{}-{}.figure.png'.format(clf, ft, gs_training, gs_test) out_path = os.path.join(*[ args.out_plotdir, clf, 'training=' + gs_training, out_name ]) os.makedirs(os.path.dirname(out_path), exist_ok=True) # Initiate figure fig = plt.figure(figsize=(15, 10), dpi=300) fig.suptitle(' '.join([ clf, 'training=' + gs_training, 'testing=' + gs_test, ft])) grid_spec = gridspec.GridSpec(6, 2) # Make plot data y_true = group_subset['gold_standard_status'].tolist() y_pred = group_subset['y_pred'].tolist() y_proba = group_subset['y_proba'].tolist() fold_data = [] for fold_name, fold_grp in group_subset.groupby('clf_fold_name'): fold_data.append({ 'y_true': fold_grp['gold_standard_status'].tolist(), 'y_pred': fold_grp['y_pred'].tolist(), 'y_proba': fold_grp['y_proba'].tolist(), 'fold_name': fold_name, 'ft_imp': ft_imp[clf][ft][gs_training][fold_name]['feature_importances'] }) # Plot precision-recall curve ax_prc = plt.subplot(grid_spec[0:2, 0]) ax_prc = plot_precision_recall_curve( y_true=y_true, probas_pred=y_proba, ax=ax_prc, subtitle=None, fold_data=fold_data) fig.add_subplot(ax_prc) # Plot ROC curve ax_roc = plt.subplot(grid_spec[0:2, 1]) ax_roc = plot_roc_curve( y_true=y_true, probas_pred=y_proba, ax=ax_roc, subtitle=None, fold_data=fold_data) fig.add_subplot(ax_roc) # Plot calibration curve ax_cal_curve = plt.subplot(grid_spec[3:5, 0]) ax_cal_hist = plt.subplot(grid_spec[5, 0]) ax_cal_curve, ax_cal_hist = plot_calibration_curve( y_true=y_true, probas_pred=y_proba, ax_curve=ax_cal_curve, ax_hist=ax_cal_hist, subtitle=None, fold_data=fold_data) fig.add_subplot(ax_cal_curve) fig.add_subplot(ax_cal_hist) # Feature importances ax_ftimp = plt.subplot(grid_spec[3:5, 1]) ax_ftimp = plot_feature_importances( fold_data=fold_data, feature_names=ft_imp[clf][ft]['feature_names'], ax=ax_ftimp, subtitle=None) fig.add_subplot(ax_ftimp) # Plot and save figure plt.savefig(out_path) plt.close() # # Make classification report ------------------------------------------ # if do_clf_report: # Initiate output for this row clf_row = { 'clf_name': clf, 'feature_set': ft, 'goldstandard_training': gs_training, 'goldstandard_testing': gs_test } # Calculate metrics for y_pred and y_proba for metric_type in metrics: for metric in metrics[metric_type]: # Calc score = metrics[metric_type][metric]( group_subset['gold_standard_status'].tolist(), group_subset[metric_type].tolist()) # Add to report clf_row[metric] = score # Calculate confusion matrix tn, fp, fn, tp = skmet.confusion_matrix( group_subset['gold_standard_status'].tolist(), group_subset['y_pred'].tolist() ).ravel() clf_row['true_negatives'] = tn clf_row['false_positives'] = fp clf_row['false_negatives'] = fn clf_row['true_positives'] = tp # Add derivations from confusion matrix clf_row['tpr/sensitivity'] = tp / (tp + fn) clf_row['tnr/specificity'] = tn / (tn + fp) clf_row['fpr/fallout'] = fp / (fp + tn) clf_row['fnr/missrate'] = fn / (fn + tp) clf_row['fdr'] = fp / (fp + tp) # Support (number of lables for each class) clf_row['support_1'] = ( group_subset['gold_standard_status'] == 1 ).sum() clf_row['support_0'] = ( group_subset['gold_standard_status'] == 0 ).sum() clf_report.append(clf_row) # break # # Write classification report --------------------------------------------- # print('Writing classification report...') # Convert to df clf_df = pd.DataFrame(clf_report) # Write os.makedirs(os.path.dirname(args.out_report), exist_ok=True) clf_df.to_csv(args.out_report, sep='\t', index=True, index_label='idx') return 0 def plot_precision_recall_curve(y_true, probas_pred, ax, subtitle, fold_data=None): ''' Makes a precision-recall curve Params: y_true (list): true classes probas_pred (list): prediction probability for classes subtitle (str): Plot subtitle ax (matplotlib.ax): axis fold_data (list): data for each individual folds Returns: ax ''' # Plot main result precision, recall, _ = precision_recall_curve(y_true, probas_pred) average_precision = average_precision_score(y_true, probas_pred) ax.step(recall, precision, color='b', alpha=0.8, where='post', label='Overall AP = {:.2f}'.format(average_precision)) # Plot each fold if fold_data: for fold in fold_data: precision, recall, _ = precision_recall_curve( fold['y_true'], fold['y_proba']) average_precision = average_precision_score( fold['y_true'], fold['y_proba']) ax.step(recall, precision, alpha=0.2, where='post', label='{0} AP = {1:.2f}'.format( fold['fold_name'], average_precision) ) # Add labels ax.set_xlabel('Recall') ax.set_ylabel('Precision') ax.set_ylim([0.0, 1.05]) ax.set_xlim([0.0, 1.0]) ax.legend(loc="best", prop={'size': 6}) if subtitle: ax.set_title('Precision-Recall Curve\n{}'.format(title)) else: ax.set_title('Precision-Recall Curve') return ax def plot_roc_curve(y_true, probas_pred, ax, subtitle=None, fold_data=None): ''' Makes ROC curve Params: y_true (list): true classes probas_pred (list): prediction probability for classes subtitle (str): Plot subtitle ax (matplotlib.figure): ax fold_data (list): data for each individual folds Returns: ax ''' ax.plot([0, 1], [0, 1], "k:") # Plot main result fpr, tpr, _ = roc_curve(y_true, probas_pred) score = auc(fpr, tpr) ax.plot(fpr, tpr, color='b', alpha=0.8, label='Overall AUC = {:.2f}'.format(score)) # Plot each fold for fold in fold_data: fpr, tpr, _ = roc_curve( fold['y_true'], fold['y_proba']) score = auc(fpr, tpr) ax.plot(fpr, tpr, alpha=0.2, label='{0} AUC = {1:.2f}'.format( fold['fold_name'], score) ) # Add labels ax.set_xlabel('False Positive Rate') ax.set_ylabel('True Positive Rate') ax.set_ylim([0.0, 1.05]) ax.set_xlim([0.0, 1.0]) ax.legend(loc="best", prop={'size': 6}) if subtitle: ax.set_title('Receiver Operating Characteristic\n{}'.format(title)) else: ax.set_title('Receiver Operating Characteristic') return ax def plot_calibration_curve(y_true, probas_pred, ax_curve, ax_hist, subtitle, fold_data=None, n_bins=10): ''' Makes a calibration curve Params: y_true (list): true classes probas_pred (list): prediction probability for classes subtitle (str): Plot subtitle ax_curve (matplotlib.ax): axis to plot the curve on ax_hist (matplotlib.ax): axis to plot the histogram on fold_data (list): data for each individual folds Returns: ax ''' # Plot perfectly calibrated line ax_curve.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated") # Plot main result fraction_of_positives, mean_predicted_value = calibration_curve( y_true, probas_pred, n_bins=n_bins) ax_curve.plot(mean_predicted_value, fraction_of_positives, "s-", label='Overall', alpha=0.8, color='b') ax_hist.hist(probas_pred, range=(0, 1), bins=10, label='Overall', histtype="step", lw=2, color='b', alpha=0.8) # Plot each fold if fold_data: for fold in fold_data: fraction_of_positives, mean_predicted_value = \ calibration_curve(fold['y_true'], fold['y_proba'], n_bins=n_bins) ax_curve.plot(mean_predicted_value, fraction_of_positives, "s-", label=fold['fold_name'], alpha=0.2) ax_hist.hist(probas_pred, range=(0, 1), bins=10, label=fold['fold_name'], histtype="step", lw=2, alpha=0.2) # Add labels to histogram ax_hist.set_xlabel('Mean predicted value') ax_hist.set_ylabel('Count') ax_hist.set_xlim([0.0, 1.0]) # Add labels to curve ax_curve.set_xticklabels([]) ax_curve.set_ylabel('Fraction of positives') ax_curve.set_ylim([0.0, 1.05]) ax_curve.set_xlim([0.0, 1.0]) ax_curve.legend(loc="best", prop={'size': 6}) if subtitle: ax_curve.set_title('Calibration Curve\n{}'.format(title)) else: ax_curve.set_title('Calibration Curve') return ax_curve, ax_hist def plot_feature_importances(fold_data, feature_names, ax, subtitle=None): ''' Makes a plot of feature importances Params: fold_data (list of dicts): data for each individual folds feature_names (list): list of feature names ax (matplotlib.figure): ax subtitle (str): Plot subtitle Returns: ax ''' bar_width = 0.5 # Calculate mean feature importance across folds ft_imps = np.array([fold['ft_imp'] for fold in fold_data]) ft_imps_mean = list(np.mean(ft_imps, axis=0)) # Plot main result x_min_pos = [x - bar_width for x in range(len(ft_imps_mean))] x_max_pos = [x + bar_width for x in range(len(ft_imps_mean))] ax.hlines(ft_imps_mean, x_min_pos, x_max_pos, label='Overall', colors='b', alpha=0.8) # Plot each fold colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] for i, fold in enumerate(fold_data): ax.hlines( fold['ft_imp'], x_min_pos, x_max_pos, label=fold['fold_name'], color=colors[i], alpha=0.2 ) # Add horizontal lines ax.axhline(y=np.max(ft_imps_mean), linestyle='--', alpha=0.2) ax.axhline(y=np.min(ft_imps_mean), linestyle='--', alpha=0.2) # Add vertical lines for pos in x_min_pos[0:1] + x_max_pos: ax.axvline(pos, linestyle='-', alpha=0.1) # Add labels ax.set_ylabel('Importance') ax.set_xticks(range(len(ft_imps_mean))) ax.set_xticklabels(feature_names) ax.xaxis.set_tick_params(rotation=90) ax.legend(loc='center left', bbox_to_anchor=(1, 0.5), prop={'size': 6}) if subtitle: ax.set_title('Feature Importances\n{}'.format(title)) else: ax.set_title('Feature Importances') return ax def parse_args(): """ Load command line args """ parser = argparse.ArgumentParser() # Input paths parser.add_argument('--in_pred', metavar="<parquet>", help="Input parquet containing predictions", type=str, required=True) parser.add_argument('--in_ftimp', metavar="<str>", help="Input json containing feature importances", type=str, required=True) # Outputs parser.add_argument('--out_plotdir', metavar="<dir>", help="Output directory to write plots", type=str, required=True) parser.add_argument('--out_report', metavar="<file>", help="Out path for classification report", type=str, required=True) args = parser.parse_args() return args if __name__ == '__main__': main()
34.769231
129
0.554005
78540cdf82a79ce5df2a465910fb029815d8c1e5
1,071
py
Python
_assignments/basics/function/function_parameters_c.py
sages-pl/2022-01-pythonsqlalchemy-aptiv
1d6d856608e9dbe25b139e8968c48b7f46753b84
[ "MIT" ]
null
null
null
_assignments/basics/function/function_parameters_c.py
sages-pl/2022-01-pythonsqlalchemy-aptiv
1d6d856608e9dbe25b139e8968c48b7f46753b84
[ "MIT" ]
null
null
null
_assignments/basics/function/function_parameters_c.py
sages-pl/2022-01-pythonsqlalchemy-aptiv
1d6d856608e9dbe25b139e8968c48b7f46753b84
[ "MIT" ]
null
null
null
""" * Assignment: Function Parameters Default * Required: yes * Complexity: easy * Lines of code: 4 lines * Time: 3 min English: 1. Define function `default` with two parameters 2. Parameter `a` is required 3. Parameter `b` is optional and has default value `None` 4. If only one argument was passed, consider second equal to the first one 5. Return `a` and `b` as a `dict`, i.e. {'a': 1, 'b': 1} 6. Run doctests - all must succeed Polish: 1. Zdefiniuj funkcję `default` z dwoma parametrami 2. Parametr `a` jest wymagany 3. Parametr `b` jest opcjonalny i ma domyślną wartość `None` 4. Jeżeli tylko jeden argument był podany, przyjmij drugi równy pierwszemu 5. Zwróć `a` i `b` jako `dict`, np. {'a': 1, 'b': 1} 6. Uruchom doctesty - wszystkie muszą się powieść Tests: >>> import sys; sys.tracebacklimit = 0 >>> from inspect import isfunction >>> isfunction(default) True >>> type(default(0,0)) is dict True >>> default(1) {'a': 1, 'b': 1} >>> default(2, 3) {'a': 2, 'b': 3} """
27.461538
78
0.628385
c1fd6b71c4780e71e95cf64f65e3d9ba55cfcde9
12,744
py
Python
6-0001-fall-2016/ps3/ps3.py
mekilis/MIT-Edx-Ocw
cd78a28c64c98fb8abf0ab147bc8db4cf880e980
[ "MIT" ]
null
null
null
6-0001-fall-2016/ps3/ps3.py
mekilis/MIT-Edx-Ocw
cd78a28c64c98fb8abf0ab147bc8db4cf880e980
[ "MIT" ]
null
null
null
6-0001-fall-2016/ps3/ps3.py
mekilis/MIT-Edx-Ocw
cd78a28c64c98fb8abf0ab147bc8db4cf880e980
[ "MIT" ]
null
null
null
# 6.0001 Problem Set 3 # # The 6.0001 Word Game # Created by: Kevin Luu <luuk> and Jenna Wiens <jwiens> # # Name : <your name> # Collaborators : <your collaborators> # Time spent : <total time> import math import random import string VOWELS = 'aeiou*' CONSONANTS = 'bcdfghjklmnpqrstvwxyz' HAND_SIZE = 7 SCRABBLE_LETTER_VALUES = { 'a': 1, 'b': 3, 'c': 3, 'd': 2, 'e': 1, 'f': 4, 'g': 2, 'h': 4, 'i': 1, 'j': 8, 'k': 5, 'l': 1, 'm': 3, 'n': 1, 'o': 1, 'p': 3, 'q': 10, 'r': 1, 's': 1, 't': 1, 'u': 1, 'v': 4, 'w': 4, 'x': 8, 'y': 4, 'z': 10 } # ----------------------------------- # Helper code # (you don't need to understand this helper code) WORDLIST_FILENAME = "words.txt" def load_words(): """ Returns a list of valid words. Words are strings of lowercase letters. Depending on the size of the word list, this function may take a while to finish. """ print("Loading word list from file...") # inFile: file inFile = open(WORDLIST_FILENAME, 'r') # wordlist: list of strings wordlist = [] for line in inFile: wordlist.append(line.strip().lower()) print(" ", len(wordlist), "words loaded.") return wordlist def get_frequency_dict(sequence): """ Returns a dictionary where the keys are elements of the sequence and the values are integer counts, for the number of times that an element is repeated in the sequence. sequence: string or list return: dictionary """ # freqs: dictionary (element_type -> int) freq = {} for x in sequence: freq[x] = freq.get(x,0) + 1 return freq # (end of helper code) # ----------------------------------- # # Problem #1: Scoring a word # def get_word_score(word, n): """ Returns the score for a word. Assumes the word is a valid word. You may assume that the input word is always either a string of letters, or the empty string "". You may not assume that the string will only contain lowercase letters, so you will have to handle uppercase and mixed case strings appropriately. The score for a word is the product of two components: The first component is the sum of the points for letters in the word. The second component is the larger of: 1, or 7*wordlen - 3*(n-wordlen), where wordlen is the length of the word and n is the hand length when the word was played Letters are scored as in Scrabble; A is worth 1, B is worth 3, C is worth 3, D is worth 2, E is worth 1, and so on. word: string n: int >= 0 returns: int >= 0 """ word = word.lower() word_length = len(word) score = 0 for ch in word: if ch in SCRABBLE_LETTER_VALUES: score += SCRABBLE_LETTER_VALUES[ch] score *= max(1, HAND_SIZE*word_length - 3*(n-word_length)) return score # # Make sure you understand how this function works and what it does! # def display_hand(hand): """ Displays the letters currently in the hand. For example: display_hand({'a':1, 'x':2, 'l':3, 'e':1}) Should print out something like: a x x l l l e The order of the letters is unimportant. hand: dictionary (string -> int) """ for letter in hand.keys(): for j in range(hand[letter]): print(letter, end=' ') # print all on the same line print() # print an empty line # # Make sure you understand how this function works and what it does! # You will need to modify this for Problem #4. # def deal_hand(n): """ Returns a random hand containing n lowercase letters. ceil(n/3) letters in the hand should be VOWELS (note, ceil(n/3) means the smallest integer not less than n/3). Hands are represented as dictionaries. The keys are letters and the values are the number of times the particular letter is repeated in that hand. n: int >= 0 returns: dictionary (string -> int) """ hand={} num_vowels = int(math.ceil(n / 3)) for i in range(num_vowels): x = random.choice(VOWELS) while x == '*' and x in hand: x = random.choice(VOWELS) hand[x] = hand.get(x, 0) + 1 for i in range(num_vowels, n): x = random.choice(CONSONANTS) hand[x] = hand.get(x, 0) + 1 return hand # # Problem #2: Update a hand by removing letters # def update_hand(hand, word): """ Does NOT assume that hand contains every letter in word at least as many times as the letter appears in word. Letters in word that don't appear in hand should be ignored. Letters that appear in word more times than in hand should never result in a negative count; instead, set the count in the returned hand to 0 (or remove the letter from the dictionary, depending on how your code is structured). Updates the hand: uses up the letters in the given word and returns the new hand, without those letters in it. Has no side effects: does not modify hand. word: string hand: dictionary (string -> int) returns: dictionary (string -> int) """ word = word.lower() new_hand = hand.copy() for ch in word: if ch in new_hand: new_hand[ch] -= 1 if new_hand[ch] == 0: del(new_hand[ch]) return new_hand # # Problem #3: Test word validity # def is_valid_word(word, hand, word_list): """ Returns True if word is in the word_list and is entirely composed of letters in the hand. Otherwise, returns False. Does not mutate hand or word_list. word: string hand: dictionary (string -> int) word_list: list of lowercase strings returns: boolean """ word = word.lower() wildcard = '*' in word match_found = False if not wildcard: if word not in word_list: return False for ch in word: if ch not in hand or word.count(ch) > hand[ch]: return False # wild card exists else: word_copy = word i = word.index('*') for ch in 'aeiou': word_copy = word_copy[:i] + ch + word_copy[i+1:] if word_copy in word_list: match_found = True break if wildcard and not match_found: return False return True # # Problem #5: Playing a hand # def calculate_handlen(hand): """ Returns the length (number of letters) in the current hand. hand: dictionary (string-> int) returns: integer """ n = 0 for k in hand: v = hand[k] if v > 0: n += v return n def play_hand(hand, word_list): """ Allows the user to play the given hand, as follows: * The hand is displayed. * The user may input a word. * When any word is entered (valid or invalid), it uses up letters from the hand. * An invalid word is rejected, and a message is displayed asking the user to choose another word. * After every valid word: the score for that word is displayed, the remaining letters in the hand are displayed, and the user is asked to input another word. * The sum of the word scores is displayed when the hand finishes. * The hand finishes when there are no more unused letters. The user can also finish playing the hand by inputing two exclamation points (the string '!!') instead of a word. hand: dictionary (string -> int) word_list: list of lowercase strings returns: the total score for the hand """ # BEGIN PSEUDOCODE <-- Remove this comment when you implement this function # Keep track of the total score) score = 0 # As long as there are still letters left in the hand: lettersRanOut = True n = calculate_handlen(hand) while n > 0: # Display the hand print("\nCurrent Hand:", end=' ') display_hand(hand) # Ask user for input word = input('Enter word, or "!!" to indicate that you are finished: ') word = word.strip() # If the input is two exclamation points: if word == "!!": # End the game (break out of the loop) lettersRanOut = False break # Otherwise (the input is not two exclamation points): else: # If the word is valid: if is_valid_word(word, hand, word_list): # Tell the user how many points the word earned, # and the updated total score x = get_word_score(word, n) score += x print("\"%s\" earned %d points. Total: %d points" % (word, x, score)) # Otherwise (the word is not valid): else: # Reject invalid word (print a message) print("That is not a valid word. Please choose another word.") # update the user's hand by removing the letters of their inputted word hand = update_hand(hand, word) n = calculate_handlen(hand) # Game is over (user entered '!!' or ran out of letters), # so tell user the total score if lettersRanOut: print("\nRan out of letters.", end=' ') print("Total score: %d points" % score) # Return the total score as result of function return score # # Problem #6: Playing a game # # # procedure you will use to substitute a letter in a hand # def substitute_hand(hand, letter): """ Allow the user to replace all copies of one letter in the hand (chosen by user) with a new letter chosen from the VOWELS and CONSONANTS at random. The new letter should be different from user's choice, and should not be any of the letters already in the hand. If user provide a letter not in the hand, the hand should be the same. Has no side effects: does not mutate hand. For example: substitute_hand({'h':1, 'e':1, 'l':2, 'o':1}, 'l') might return: {'h':1, 'e':1, 'o':1, 'x':2} -> if the new letter is 'x' The new letter should not be 'h', 'e', 'l', or 'o' since those letters were already in the hand. hand: dictionary (string -> int) letter: string returns: dictionary (string -> int) """ pass # TO DO... Remove this line when you implement this function def play_game(word_list): """ Allow the user to play a series of hands * Asks the user to input a total number of hands * Accumulates the score for each hand into a total score for the entire series * For each hand, before playing, ask the user if they want to substitute one letter for another. If the user inputs 'yes', prompt them for their desired letter. This can only be done once during the game. Once the substitue option is used, the user should not be asked if they want to substitute letters in the future. * For each hand, ask the user if they would like to replay the hand. If the user inputs 'yes', they will replay the hand and keep the better of the two scores for that hand. This can only be done once during the game. Once the replay option is used, the user should not be asked if they want to replay future hands. Replaying the hand does not count as one of the total number of hands the user initially wanted to play. * Note: if you replay a hand, you do not get the option to substitute a letter - you must play whatever hand you just had. * Returns the total score for the series of hands word_list: list of lowercase strings """ print("play_game not implemented.") # TO DO... Remove this line when you implement this function # # Build data structures used for entire session and play game # Do not remove the "if __name__ == '__main__':" line - this code is executed # when the program is run directly, instead of through an import statement # if __name__ == '__main__': word_list = load_words() #play_hand({'a':1, 'j': 1, 'e': 1, 'f': 1, '*': 1, 'r': 1, 'x': 1}, word_list) play_hand({'a':1, 'c': 1, 'f': 1, 'i': 1, '*': 1, 't': 1, 'x': 1}, word_list) play_game(word_list) play_game(word_list)
31.544554
213
0.591886
370924cdfa199c3b19fd232e3a91e25a0272ce05
4,252
py
Python
scripts/sync_flake8_versions.py
umangino/pandas
c492672699110fe711b7f76ded5828ff24bce5ab
[ "BSD-3-Clause" ]
3
2018-04-24T13:31:51.000Z
2019-07-09T07:31:43.000Z
scripts/sync_flake8_versions.py
umangino/pandas
c492672699110fe711b7f76ded5828ff24bce5ab
[ "BSD-3-Clause" ]
354
2018-05-26T13:28:49.000Z
2022-03-31T01:11:46.000Z
scripts/sync_flake8_versions.py
umangino/pandas
c492672699110fe711b7f76ded5828ff24bce5ab
[ "BSD-3-Clause" ]
5
2018-04-24T13:31:56.000Z
2021-10-21T05:06:23.000Z
""" Check that the flake8 (and pandas-dev-flaker) pins are the same in: - environment.yml - .pre-commit-config.yaml, in the flake8 hook - .pre-commit-config.yaml, in the additional dependencies of the yesqa hook The flake8 hook revision in .pre-commit-config.yaml is taken as the reference revision. Usage: either - ``python scripts/sync_flake8_versions.py``, or - ``pre-commit run sync-flake8-versions --all-files``. """ from __future__ import annotations from dataclasses import ( dataclass, replace, ) import sys from typing import ( Any, Mapping, Sequence, TypeVar, ) import yaml @dataclass class Revision: name: str compare: str version: str @dataclass class Revisions: name: str pre_commit: Revision | None = None yesqa: Revision | None = None environment: Revision | None = None YamlMapping = Mapping[str, Any] Repo = TypeVar("Repo", bound=YamlMapping) COMPARE = ("<=", "==", ">=", "<", ">", "=") def _get_repo_hook(repos: Sequence[Repo], hook_name: str) -> tuple[Repo, YamlMapping]: for repo in repos: for hook in repo["hooks"]: if hook["id"] == hook_name: return repo, hook else: # pragma: no cover raise RuntimeError(f"Repo with hook {hook_name} not found") def _conda_to_pip_compat(dep): if dep.compare == "=": return replace(dep, compare="==") else: return dep def _validate_additional_dependencies( flake8_additional_dependencies, environment_additional_dependencies, ) -> None: for dep in flake8_additional_dependencies: if dep not in environment_additional_dependencies: sys.stdout.write( f"Mismatch of '{dep.name}' version between 'enviroment.yml' " "and additional dependencies of 'flake8' in '.pre-commit-config.yaml'\n" ) sys.exit(1) def _validate_revisions(revisions): if revisions.environment != revisions.pre_commit: sys.stdout.write( f"{revisions.name} in 'environment.yml' does not " "match in 'flake8' from 'pre-commit'\n" ) sys.exit(1) def _process_dependencies(deps): for dep in deps: if isinstance(dep, str): for compare in COMPARE: if compare in dep: pkg, rev = dep.split(compare, maxsplit=1) yield _conda_to_pip_compat(Revision(pkg, compare, rev)) break else: yield from _process_dependencies(dep["pip"]) def get_revisions( precommit_config: YamlMapping, environment: YamlMapping ) -> tuple[Revisions, Revisions]: flake8_revisions = Revisions(name="flake8") pandas_dev_flaker_revisions = Revisions(name="pandas-dev-flaker") repos = precommit_config["repos"] flake8_repo, flake8_hook = _get_repo_hook(repos, "flake8") flake8_revisions.pre_commit = Revision("flake8", "==", flake8_repo["rev"]) flake8_additional_dependencies = [] for dep in _process_dependencies(flake8_hook.get("additional_dependencies", [])): if dep.name == "pandas-dev-flaker": pandas_dev_flaker_revisions.pre_commit = dep else: flake8_additional_dependencies.append(dep) environment_dependencies = environment["dependencies"] environment_additional_dependencies = [] for dep in _process_dependencies(environment_dependencies): if dep.name == "flake8": flake8_revisions.environment = dep environment_additional_dependencies.append(dep) elif dep.name == "pandas-dev-flaker": pandas_dev_flaker_revisions.environment = dep else: environment_additional_dependencies.append(dep) _validate_additional_dependencies( flake8_additional_dependencies, environment_additional_dependencies, ) for revisions in flake8_revisions, pandas_dev_flaker_revisions: _validate_revisions(revisions) if __name__ == "__main__": with open(".pre-commit-config.yaml") as fd: precommit_config = yaml.safe_load(fd) with open("environment.yml") as fd: environment = yaml.safe_load(fd) get_revisions(precommit_config, environment) sys.exit(0)
29.123288
88
0.662512
5126ba215b52f9a4f5ee29aa91f6c9819cb8872b
3,428
py
Python
mineapy/tutorials/e_coli_gem_tutorials.py
vpandey-om/mineapy
a533196244d17aa69a5846eb6e197bd4899797b0
[ "Apache-2.0" ]
null
null
null
mineapy/tutorials/e_coli_gem_tutorials.py
vpandey-om/mineapy
a533196244d17aa69a5846eb6e197bd4899797b0
[ "Apache-2.0" ]
null
null
null
mineapy/tutorials/e_coli_gem_tutorials.py
vpandey-om/mineapy
a533196244d17aa69a5846eb6e197bd4899797b0
[ "Apache-2.0" ]
null
null
null
import mineapy from cobra.io import load_matlab_model,load_json_model import pandas as pd from mineapy.core.taskEnrich import TaskEnrichment from mineapy.core.thermo_model import ThermoModel_WithoutInfo from mineapy.core.rxnExp import ReactionExp import pytfa from pytfa.io import read_compartment_data, apply_compartment_data, \ read_lexicon, annotate_from_lexicon from pytfa.io.base import load_thermoDB from pytfa.thermo.tmodel import ThermoModel from os.path import join cobra_model = load_json_model('./models/iJO1366.json') genes=[g.id for g in cobra_model.genes] path_to_params = './input/task_enrichment_gem_params.yaml' context_df=pd.read_csv('./input/context.txt',sep='\t') condition_df=pd.read_csv('./input/condition.txt',sep='\t') ### working with condition comparisons gene_reg={'gene_id':condition_df['geneid'].to_list(),'fold_change':condition_df['fold change'].to_list(),'up_cutoff':1.35,'down_cutoff':float(1/2.5)} reg_analysis=ReactionExp(cobra_model,gene_reg=gene_reg) gene_exp={'gene_id':context_df['geneid'].to_list(),'exp_val':context_df['exp_val'].to_list(),'high_cutoff':0.15,'low_cutoff':0.15} exp_analysis=ReactionExp(cobra_model,gene_exp=gene_exp) #params_rxns={'up_rxns':reg_analysis.up_rxns,'down_rxns':reg_analysis.down_rxns} params_rxns={'high_rxns':exp_analysis.high_rxns,'low_rxns':exp_analysis.low_rxns} # 1) enrichment based on cobra model #import pdb; pdb.set_trace() #cobra_model.solver='optlang-gurobi' #cobra_model.solver= 'optlang-cplex' # task_enrich = TaskEnrichment(cobra_model,path_to_params,params_rxns) # # task_enrich.run() # 2) enrichment based on cobra model # Paths # Paths path_to_model = join('.','models','iJO1366.json') thermoDB = join('.','input','thermo_data.thermodb') path_to_lexicon = join('.','models','iJO1366','lexicon.csv') path_to_compartment_data = join('.','models','iJO1366','compartment_data.json') # FBA model = load_json_model(path_to_model) fba_solution = model.optimize() fba_value = fba_solution.objective_value # Thermo prep thermo_data = load_thermoDB(thermoDB) lexicon = read_lexicon(path_to_lexicon) compartment_data = read_compartment_data(path_to_compartment_data) # Initialize the cobra_model tfa_model = ThermoModel(thermo_data, model) tfa_model.name = 'Tutorial' # Annotate the cobra_model annotate_from_lexicon(tfa_model, lexicon) apply_compartment_data(tfa_model, compartment_data) tfa_model.prepare() tfa_model.convert() # tfa_model.solver.configuration.verbosity = True tfa_model.logger.setLevel = 30 tfa_solution = tfa_model.optimize() tfa_value = tfa_solution.objective_value # It might happen that the model is infeasible. In this case, we can relax # thermodynamics constraints: if tfa_value < 0.1: from pytfa.optim.relaxation import relax_dgo biomass_rxn = 'Ec_biomass_iJO1366_WT_53p95M' tfa_model.reactions.get_by_id(biomass_rxn).lower_bound = 0.9 * fba_value relaxed_model, slack_model, relax_table = relax_dgo(tfa_model, in_place=True) original_model, tfa_model = tfa_model, relaxed_model print('Relaxation: ') print(relax_table) tfa_solution = tfa_model.optimize() tfa_value = tfa_solution.objective_value # Thermo prep # biomass_rxn = 'Ec_biomass_iJO1366_WT_53p95M' tfa_model.reactions.get_by_id(biomass_rxn).lower_bound = 0 tfa_model.solver= 'optlang-cplex' task_enrich = TaskEnrichment(tfa_model,path_to_params,params_rxns) task_enrich.run()
27.869919
149
0.789673
aaa7e40efe58e1d453a2e4c137c3436fb3327c8d
42,676
py
Python
django/views/debug.py
blaze33/django
2f6d887bd0a110e3a662ac1d056d6cdabf38632b
[ "BSD-3-Clause" ]
null
null
null
django/views/debug.py
blaze33/django
2f6d887bd0a110e3a662ac1d056d6cdabf38632b
[ "BSD-3-Clause" ]
null
null
null
django/views/debug.py
blaze33/django
2f6d887bd0a110e3a662ac1d056d6cdabf38632b
[ "BSD-3-Clause" ]
null
null
null
from __future__ import unicode_literals import datetime import os import re import sys import types from django.conf import settings from django.core.exceptions import ImproperlyConfigured from django.http import (HttpResponse, HttpResponseServerError, HttpResponseNotFound, HttpRequest, build_request_repr) from django.template import Template, Context, TemplateDoesNotExist from django.template.defaultfilters import force_escape, pprint from django.utils.html import escape from django.utils.importlib import import_module from django.utils.encoding import force_bytes, smart_text from django.utils import six HIDDEN_SETTINGS = re.compile('API|TOKEN|KEY|SECRET|PASS|PROFANITIES_LIST|SIGNATURE') CLEANSED_SUBSTITUTE = '********************' def linebreak_iter(template_source): yield 0 p = template_source.find('\n') while p >= 0: yield p+1 p = template_source.find('\n', p+1) yield len(template_source) + 1 def cleanse_setting(key, value): """Cleanse an individual setting key/value of sensitive content. If the value is a dictionary, recursively cleanse the keys in that dictionary. """ try: if HIDDEN_SETTINGS.search(key): cleansed = CLEANSED_SUBSTITUTE else: if isinstance(value, dict): cleansed = dict((k, cleanse_setting(k, v)) for k,v in value.items()) else: cleansed = value except TypeError: # If the key isn't regex-able, just return as-is. cleansed = value return cleansed def get_safe_settings(): "Returns a dictionary of the settings module, with sensitive settings blurred out." settings_dict = {} for k in dir(settings): if k.isupper(): settings_dict[k] = cleanse_setting(k, getattr(settings, k)) return settings_dict def technical_500_response(request, exc_type, exc_value, tb): """ Create a technical server error response. The last three arguments are the values returned from sys.exc_info() and friends. """ reporter = ExceptionReporter(request, exc_type, exc_value, tb) if request.is_ajax(): text = reporter.get_traceback_text() return HttpResponseServerError(text, content_type='text/plain') else: html = reporter.get_traceback_html() return HttpResponseServerError(html, content_type='text/html') # Cache for the default exception reporter filter instance. default_exception_reporter_filter = None def get_exception_reporter_filter(request): global default_exception_reporter_filter if default_exception_reporter_filter is None: # Load the default filter for the first time and cache it. modpath = settings.DEFAULT_EXCEPTION_REPORTER_FILTER modname, classname = modpath.rsplit('.', 1) try: mod = import_module(modname) except ImportError as e: raise ImproperlyConfigured( 'Error importing default exception reporter filter %s: "%s"' % (modpath, e)) try: default_exception_reporter_filter = getattr(mod, classname)() except AttributeError: raise ImproperlyConfigured('Default exception reporter filter module "%s" does not define a "%s" class' % (modname, classname)) if request: return getattr(request, 'exception_reporter_filter', default_exception_reporter_filter) else: return default_exception_reporter_filter class ExceptionReporterFilter(object): """ Base for all exception reporter filter classes. All overridable hooks contain lenient default behaviors. """ def get_request_repr(self, request): if request is None: return repr(None) else: return build_request_repr(request, POST_override=self.get_post_parameters(request)) def get_post_parameters(self, request): if request is None: return {} else: return request.POST def get_traceback_frame_variables(self, request, tb_frame): return list(six.iteritems(tb_frame.f_locals)) class SafeExceptionReporterFilter(ExceptionReporterFilter): """ Use annotations made by the sensitive_post_parameters and sensitive_variables decorators to filter out sensitive information. """ def is_active(self, request): """ This filter is to add safety in production environments (i.e. DEBUG is False). If DEBUG is True then your site is not safe anyway. This hook is provided as a convenience to easily activate or deactivate the filter on a per request basis. """ return settings.DEBUG is False def get_post_parameters(self, request): """ Replaces the values of POST parameters marked as sensitive with stars (*********). """ if request is None: return {} else: sensitive_post_parameters = getattr(request, 'sensitive_post_parameters', []) if self.is_active(request) and sensitive_post_parameters: cleansed = request.POST.copy() if sensitive_post_parameters == '__ALL__': # Cleanse all parameters. for k, v in cleansed.items(): cleansed[k] = CLEANSED_SUBSTITUTE return cleansed else: # Cleanse only the specified parameters. for param in sensitive_post_parameters: if param in cleansed: cleansed[param] = CLEANSED_SUBSTITUTE return cleansed else: return request.POST def get_traceback_frame_variables(self, request, tb_frame): """ Replaces the values of variables marked as sensitive with stars (*********). """ # Loop through the frame's callers to see if the sensitive_variables # decorator was used. current_frame = tb_frame.f_back sensitive_variables = None while current_frame is not None: if (current_frame.f_code.co_name == 'sensitive_variables_wrapper' and 'sensitive_variables_wrapper' in current_frame.f_locals): # The sensitive_variables decorator was used, so we take note # of the sensitive variables' names. wrapper = current_frame.f_locals['sensitive_variables_wrapper'] sensitive_variables = getattr(wrapper, 'sensitive_variables', None) break current_frame = current_frame.f_back cleansed = [] if self.is_active(request) and sensitive_variables: if sensitive_variables == '__ALL__': # Cleanse all variables for name, value in tb_frame.f_locals.items(): cleansed.append((name, CLEANSED_SUBSTITUTE)) return cleansed else: # Cleanse specified variables for name, value in tb_frame.f_locals.items(): if name in sensitive_variables: value = CLEANSED_SUBSTITUTE elif isinstance(value, HttpRequest): # Cleanse the request's POST parameters. value = self.get_request_repr(value) cleansed.append((name, value)) return cleansed else: # Potentially cleanse only the request if it's one of the frame variables. for name, value in tb_frame.f_locals.items(): if isinstance(value, HttpRequest): # Cleanse the request's POST parameters. value = self.get_request_repr(value) cleansed.append((name, value)) return cleansed class ExceptionReporter(object): """ A class to organize and coordinate reporting on exceptions. """ def __init__(self, request, exc_type, exc_value, tb, is_email=False): self.request = request self.filter = get_exception_reporter_filter(self.request) self.exc_type = exc_type self.exc_value = exc_value self.tb = tb self.is_email = is_email self.template_info = None self.template_does_not_exist = False self.loader_debug_info = None # Handle deprecated string exceptions if isinstance(self.exc_type, six.string_types): self.exc_value = Exception('Deprecated String Exception: %r' % self.exc_type) self.exc_type = type(self.exc_value) def get_traceback_data(self): "Return a Context instance containing traceback information." if self.exc_type and issubclass(self.exc_type, TemplateDoesNotExist): from django.template.loader import template_source_loaders self.template_does_not_exist = True self.loader_debug_info = [] for loader in template_source_loaders: try: source_list_func = loader.get_template_sources # NOTE: This assumes exc_value is the name of the template that # the loader attempted to load. template_list = [{'name': t, 'exists': os.path.exists(t)} \ for t in source_list_func(str(self.exc_value))] except AttributeError: template_list = [] loader_name = loader.__module__ + '.' + loader.__class__.__name__ self.loader_debug_info.append({ 'loader': loader_name, 'templates': template_list, }) if (settings.TEMPLATE_DEBUG and hasattr(self.exc_value, 'django_template_source')): self.get_template_exception_info() frames = self.get_traceback_frames() for i, frame in enumerate(frames): if 'vars' in frame: frame['vars'] = [(k, force_escape(pprint(v))) for k, v in frame['vars']] frames[i] = frame unicode_hint = '' if self.exc_type and issubclass(self.exc_type, UnicodeError): start = getattr(self.exc_value, 'start', None) end = getattr(self.exc_value, 'end', None) if start is not None and end is not None: unicode_str = self.exc_value.args[1] unicode_hint = smart_text(unicode_str[max(start-5, 0):min(end+5, len(unicode_str))], 'ascii', errors='replace') from django import get_version c = { 'is_email': self.is_email, 'unicode_hint': unicode_hint, 'frames': frames, 'request': self.request, 'filtered_POST': self.filter.get_post_parameters(self.request), 'settings': get_safe_settings(), 'sys_executable': sys.executable, 'sys_version_info': '%d.%d.%d' % sys.version_info[0:3], 'server_time': datetime.datetime.now(), 'django_version_info': get_version(), 'sys_path' : sys.path, 'template_info': self.template_info, 'template_does_not_exist': self.template_does_not_exist, 'loader_debug_info': self.loader_debug_info, } # Check whether exception info is available if self.exc_type: c['exception_type'] = self.exc_type.__name__ if self.exc_value: c['exception_value'] = smart_text(self.exc_value, errors='replace') if frames: c['lastframe'] = frames[-1] return c def get_traceback_html(self): "Return HTML version of debug 500 HTTP error page." t = Template(TECHNICAL_500_TEMPLATE, name='Technical 500 template') c = Context(self.get_traceback_data()) return t.render(c) def get_traceback_text(self): "Return plain text version of debug 500 HTTP error page." t = Template(TECHNICAL_500_TEXT_TEMPLATE, name='Technical 500 template') c = Context(self.get_traceback_data(), autoescape=False) return t.render(c) def get_template_exception_info(self): origin, (start, end) = self.exc_value.django_template_source template_source = origin.reload() context_lines = 10 line = 0 upto = 0 source_lines = [] before = during = after = "" for num, next in enumerate(linebreak_iter(template_source)): if start >= upto and end <= next: line = num before = escape(template_source[upto:start]) during = escape(template_source[start:end]) after = escape(template_source[end:next]) source_lines.append( (num, escape(template_source[upto:next])) ) upto = next total = len(source_lines) top = max(1, line - context_lines) bottom = min(total, line + 1 + context_lines) # In some rare cases, exc_value.args might be empty. try: message = self.exc_value.args[0] except IndexError: message = '(Could not get exception message)' self.template_info = { 'message': message, 'source_lines': source_lines[top:bottom], 'before': before, 'during': during, 'after': after, 'top': top, 'bottom': bottom, 'total': total, 'line': line, 'name': origin.name, } def _get_lines_from_file(self, filename, lineno, context_lines, loader=None, module_name=None): """ Returns context_lines before and after lineno from file. Returns (pre_context_lineno, pre_context, context_line, post_context). """ source = None if loader is not None and hasattr(loader, "get_source"): source = loader.get_source(module_name) if source is not None: source = source.splitlines() if source is None: try: with open(filename, 'rb') as fp: source = fp.readlines() except (OSError, IOError): pass if source is None: return None, [], None, [] # If we just read the source from a file, or if the loader did not # apply tokenize.detect_encoding to decode the source into a Unicode # string, then we should do that ourselves. if isinstance(source[0], six.binary_type): encoding = 'ascii' for line in source[:2]: # File coding may be specified. Match pattern from PEP-263 # (http://www.python.org/dev/peps/pep-0263/) match = re.search(br'coding[:=]\s*([-\w.]+)', line) if match: encoding = match.group(1).decode('ascii') break source = [six.text_type(sline, encoding, 'replace') for sline in source] lower_bound = max(0, lineno - context_lines) upper_bound = lineno + context_lines pre_context = [line.strip('\n') for line in source[lower_bound:lineno]] context_line = source[lineno].strip('\n') post_context = [line.strip('\n') for line in source[lineno+1:upper_bound]] return lower_bound, pre_context, context_line, post_context def get_traceback_frames(self): frames = [] tb = self.tb while tb is not None: # Support for __traceback_hide__ which is used by a few libraries # to hide internal frames. if tb.tb_frame.f_locals.get('__traceback_hide__'): tb = tb.tb_next continue filename = tb.tb_frame.f_code.co_filename function = tb.tb_frame.f_code.co_name lineno = tb.tb_lineno - 1 loader = tb.tb_frame.f_globals.get('__loader__') module_name = tb.tb_frame.f_globals.get('__name__') or '' pre_context_lineno, pre_context, context_line, post_context = self._get_lines_from_file(filename, lineno, 7, loader, module_name) if pre_context_lineno is not None: frames.append({ 'tb': tb, 'type': module_name.startswith('django.') and 'django' or 'user', 'filename': filename, 'function': function, 'lineno': lineno + 1, 'vars': self.filter.get_traceback_frame_variables(self.request, tb.tb_frame), 'id': id(tb), 'pre_context': pre_context, 'context_line': context_line, 'post_context': post_context, 'pre_context_lineno': pre_context_lineno + 1, }) tb = tb.tb_next return frames def format_exception(self): """ Return the same data as from traceback.format_exception. """ import traceback frames = self.get_traceback_frames() tb = [ (f['filename'], f['lineno'], f['function'], f['context_line']) for f in frames ] list = ['Traceback (most recent call last):\n'] list += traceback.format_list(tb) list += traceback.format_exception_only(self.exc_type, self.exc_value) return list def technical_404_response(request, exception): "Create a technical 404 error response. The exception should be the Http404." try: tried = exception.args[0]['tried'] except (IndexError, TypeError, KeyError): tried = [] else: if not tried: # tried exists but is an empty list. The URLconf must've been empty. return empty_urlconf(request) urlconf = getattr(request, 'urlconf', settings.ROOT_URLCONF) if isinstance(urlconf, types.ModuleType): urlconf = urlconf.__name__ t = Template(TECHNICAL_404_TEMPLATE, name='Technical 404 template') c = Context({ 'urlconf': urlconf, 'root_urlconf': settings.ROOT_URLCONF, 'request_path': request.path_info[1:], # Trim leading slash 'urlpatterns': tried, 'reason': force_bytes(exception, errors='replace'), 'request': request, 'settings': get_safe_settings(), }) return HttpResponseNotFound(t.render(c), content_type='text/html') def empty_urlconf(request): "Create an empty URLconf 404 error response." t = Template(EMPTY_URLCONF_TEMPLATE, name='Empty URLConf template') c = Context({ 'project_name': settings.SETTINGS_MODULE.split('.')[0] }) return HttpResponse(t.render(c), content_type='text/html') # # Templates are embedded in the file so that we know the error handler will # always work even if the template loader is broken. # TECHNICAL_500_TEMPLATE = """ <!DOCTYPE html> <html lang="en"> <head> <meta http-equiv="content-type" content="text/html; charset=utf-8"> <meta name="robots" content="NONE,NOARCHIVE"> <title>{% if exception_type %}{{ exception_type }}{% else %}Report{% endif %}{% if request %} at {{ request.path_info|escape }}{% endif %}</title> <style type="text/css"> html * { padding:0; margin:0; } body * { padding:10px 20px; } body * * { padding:0; } body { font:small sans-serif; } body>div { border-bottom:1px solid #ddd; } h1 { font-weight:normal; } h2 { margin-bottom:.8em; } h2 span { font-size:80%; color:#666; font-weight:normal; } h3 { margin:1em 0 .5em 0; } h4 { margin:0 0 .5em 0; font-weight: normal; } code, pre { font-size: 100%; white-space: pre-wrap; } table { border:1px solid #ccc; border-collapse: collapse; width:100%; background:white; } tbody td, tbody th { vertical-align:top; padding:2px 3px; } thead th { padding:1px 6px 1px 3px; background:#fefefe; text-align:left; font-weight:normal; font-size:11px; border:1px solid #ddd; } tbody th { width:12em; text-align:right; color:#666; padding-right:.5em; } table.vars { margin:5px 0 2px 40px; } table.vars td, table.req td { font-family:monospace; } table td.code { width:100%; } table td.code pre { overflow:hidden; } table.source th { color:#666; } table.source td { font-family:monospace; white-space:pre; border-bottom:1px solid #eee; } ul.traceback { list-style-type:none; color: #222; } ul.traceback li.frame { padding-bottom:1em; color:#666; } ul.traceback li.user { background-color:#e0e0e0; color:#000 } div.context { padding:10px 0; overflow:hidden; } div.context ol { padding-left:30px; margin:0 10px; list-style-position: inside; } div.context ol li { font-family:monospace; white-space:pre; color:#777; cursor:pointer; } div.context ol li pre { display:inline; } div.context ol.context-line li { color:#505050; background-color:#dfdfdf; } div.context ol.context-line li span { position:absolute; right:32px; } .user div.context ol.context-line li { background-color:#bbb; color:#000; } .user div.context ol li { color:#666; } div.commands { margin-left: 40px; } div.commands a { color:#555; text-decoration:none; } .user div.commands a { color: black; } #summary { background: #ffc; } #summary h2 { font-weight: normal; color: #666; } #explanation { background:#eee; } #template, #template-not-exist { background:#f6f6f6; } #template-not-exist ul { margin: 0 0 0 20px; } #unicode-hint { background:#eee; } #traceback { background:#eee; } #requestinfo { background:#f6f6f6; padding-left:120px; } #summary table { border:none; background:transparent; } #requestinfo h2, #requestinfo h3 { position:relative; margin-left:-100px; } #requestinfo h3 { margin-bottom:-1em; } .error { background: #ffc; } .specific { color:#cc3300; font-weight:bold; } h2 span.commands { font-size:.7em;} span.commands a:link {color:#5E5694;} pre.exception_value { font-family: sans-serif; color: #666; font-size: 1.5em; margin: 10px 0 10px 0; } </style> {% if not is_email %} <script type="text/javascript"> //<!-- function getElementsByClassName(oElm, strTagName, strClassName){ // Written by Jonathan Snook, http://www.snook.ca/jon; Add-ons by Robert Nyman, http://www.robertnyman.com var arrElements = (strTagName == "*" && document.all)? document.all : oElm.getElementsByTagName(strTagName); var arrReturnElements = new Array(); strClassName = strClassName.replace(/\-/g, "\\-"); var oRegExp = new RegExp("(^|\\s)" + strClassName + "(\\s|$)"); var oElement; for(var i=0; i<arrElements.length; i++){ oElement = arrElements[i]; if(oRegExp.test(oElement.className)){ arrReturnElements.push(oElement); } } return (arrReturnElements) } function hideAll(elems) { for (var e = 0; e < elems.length; e++) { elems[e].style.display = 'none'; } } window.onload = function() { hideAll(getElementsByClassName(document, 'table', 'vars')); hideAll(getElementsByClassName(document, 'ol', 'pre-context')); hideAll(getElementsByClassName(document, 'ol', 'post-context')); hideAll(getElementsByClassName(document, 'div', 'pastebin')); } function toggle() { for (var i = 0; i < arguments.length; i++) { var e = document.getElementById(arguments[i]); if (e) { e.style.display = e.style.display == 'none' ? 'block' : 'none'; } } return false; } function varToggle(link, id) { toggle('v' + id); var s = link.getElementsByTagName('span')[0]; var uarr = String.fromCharCode(0x25b6); var darr = String.fromCharCode(0x25bc); s.innerHTML = s.innerHTML == uarr ? darr : uarr; return false; } function switchPastebinFriendly(link) { s1 = "Switch to copy-and-paste view"; s2 = "Switch back to interactive view"; link.innerHTML = link.innerHTML == s1 ? s2 : s1; toggle('browserTraceback', 'pastebinTraceback'); return false; } //--> </script> {% endif %} </head> <body> <div id="summary"> <h1>{% if exception_type %}{{ exception_type }}{% else %}Report{% endif %}{% if request %} at {{ request.path_info|escape }}{% endif %}</h1> <pre class="exception_value">{% if exception_value %}{{ exception_value|force_escape }}{% else %}No exception supplied{% endif %}</pre> <table class="meta"> {% if request %} <tr> <th>Request Method:</th> <td>{{ request.META.REQUEST_METHOD }}</td> </tr> <tr> <th>Request URL:</th> <td>{{ request.build_absolute_uri|escape }}</td> </tr> {% endif %} <tr> <th>Django Version:</th> <td>{{ django_version_info }}</td> </tr> {% if exception_type %} <tr> <th>Exception Type:</th> <td>{{ exception_type }}</td> </tr> {% endif %} {% if exception_type and exception_value %} <tr> <th>Exception Value:</th> <td><pre>{{ exception_value|force_escape }}</pre></td> </tr> {% endif %} {% if lastframe %} <tr> <th>Exception Location:</th> <td>{{ lastframe.filename|escape }} in {{ lastframe.function|escape }}, line {{ lastframe.lineno }}</td> </tr> {% endif %} <tr> <th>Python Executable:</th> <td>{{ sys_executable|escape }}</td> </tr> <tr> <th>Python Version:</th> <td>{{ sys_version_info }}</td> </tr> <tr> <th>Python Path:</th> <td><pre>{{ sys_path|pprint }}</pre></td> </tr> <tr> <th>Server time:</th> <td>{{server_time|date:"r"}}</td> </tr> </table> </div> {% if unicode_hint %} <div id="unicode-hint"> <h2>Unicode error hint</h2> <p>The string that could not be encoded/decoded was: <strong>{{ unicode_hint|force_escape }}</strong></p> </div> {% endif %} {% if template_does_not_exist %} <div id="template-not-exist"> <h2>Template-loader postmortem</h2> {% if loader_debug_info %} <p>Django tried loading these templates, in this order:</p> <ul> {% for loader in loader_debug_info %} <li>Using loader <code>{{ loader.loader }}</code>: <ul>{% for t in loader.templates %}<li><code>{{ t.name }}</code> (File {% if t.exists %}exists{% else %}does not exist{% endif %})</li>{% endfor %}</ul> </li> {% endfor %} </ul> {% else %} <p>Django couldn't find any templates because your <code>TEMPLATE_LOADERS</code> setting is empty!</p> {% endif %} </div> {% endif %} {% if template_info %} <div id="template"> <h2>Error during template rendering</h2> <p>In template <code>{{ template_info.name }}</code>, error at line <strong>{{ template_info.line }}</strong></p> <h3>{{ template_info.message }}</h3> <table class="source{% if template_info.top %} cut-top{% endif %}{% ifnotequal template_info.bottom template_info.total %} cut-bottom{% endifnotequal %}"> {% for source_line in template_info.source_lines %} {% ifequal source_line.0 template_info.line %} <tr class="error"><th>{{ source_line.0 }}</th> <td>{{ template_info.before }}<span class="specific">{{ template_info.during }}</span>{{ template_info.after }}</td></tr> {% else %} <tr><th>{{ source_line.0 }}</th> <td>{{ source_line.1 }}</td></tr> {% endifequal %} {% endfor %} </table> </div> {% endif %} {% if frames %} <div id="traceback"> <h2>Traceback <span class="commands">{% if not is_email %}<a href="#" onclick="return switchPastebinFriendly(this);">Switch to copy-and-paste view</a></span>{% endif %}</h2> {% autoescape off %} <div id="browserTraceback"> <ul class="traceback"> {% for frame in frames %} <li class="frame {{ frame.type }}"> <code>{{ frame.filename|escape }}</code> in <code>{{ frame.function|escape }}</code> {% if frame.context_line %} <div class="context" id="c{{ frame.id }}"> {% if frame.pre_context and not is_email %} <ol start="{{ frame.pre_context_lineno }}" class="pre-context" id="pre{{ frame.id }}">{% for line in frame.pre_context %}<li onclick="toggle('pre{{ frame.id }}', 'post{{ frame.id }}')"><pre>{{ line|escape }}</pre></li>{% endfor %}</ol> {% endif %} <ol start="{{ frame.lineno }}" class="context-line"><li onclick="toggle('pre{{ frame.id }}', 'post{{ frame.id }}')"><pre>{{ frame.context_line|escape }}</pre>{% if not is_email %} <span>...</span>{% endif %}</li></ol> {% if frame.post_context and not is_email %} <ol start='{{ frame.lineno|add:"1" }}' class="post-context" id="post{{ frame.id }}">{% for line in frame.post_context %}<li onclick="toggle('pre{{ frame.id }}', 'post{{ frame.id }}')"><pre>{{ line|escape }}</pre></li>{% endfor %}</ol> {% endif %} </div> {% endif %} {% if frame.vars %} <div class="commands"> {% if is_email %} <h2>Local Vars</h2> {% else %} <a href="#" onclick="return varToggle(this, '{{ frame.id }}')"><span>&#x25b6;</span> Local vars</a> {% endif %} </div> <table class="vars" id="v{{ frame.id }}"> <thead> <tr> <th>Variable</th> <th>Value</th> </tr> </thead> <tbody> {% for var in frame.vars|dictsort:"0" %} <tr> <td>{{ var.0|force_escape }}</td> <td class="code"><pre>{{ var.1 }}</pre></td> </tr> {% endfor %} </tbody> </table> {% endif %} </li> {% endfor %} </ul> </div> {% endautoescape %} <form action="http://dpaste.com/" name="pasteform" id="pasteform" method="post"> {% if not is_email %} <div id="pastebinTraceback" class="pastebin"> <input type="hidden" name="language" value="PythonConsole"> <input type="hidden" name="title" value="{{ exception_type|escape }}{% if request %} at {{ request.path_info|escape }}{% endif %}"> <input type="hidden" name="source" value="Django Dpaste Agent"> <input type="hidden" name="poster" value="Django"> <textarea name="content" id="traceback_area" cols="140" rows="25"> Environment: {% if request %} Request Method: {{ request.META.REQUEST_METHOD }} Request URL: {{ request.build_absolute_uri|escape }} {% endif %} Django Version: {{ django_version_info }} Python Version: {{ sys_version_info }} Installed Applications: {{ settings.INSTALLED_APPS|pprint }} Installed Middleware: {{ settings.MIDDLEWARE_CLASSES|pprint }} {% if template_does_not_exist %}Template Loader Error: {% if loader_debug_info %}Django tried loading these templates, in this order: {% for loader in loader_debug_info %}Using loader {{ loader.loader }}: {% for t in loader.templates %}{{ t.name }} (File {% if t.exists %}exists{% else %}does not exist{% endif %}) {% endfor %}{% endfor %} {% else %}Django couldn't find any templates because your TEMPLATE_LOADERS setting is empty! {% endif %} {% endif %}{% if template_info %} Template error: In template {{ template_info.name }}, error at line {{ template_info.line }} {{ template_info.message }}{% for source_line in template_info.source_lines %}{% ifequal source_line.0 template_info.line %} {{ source_line.0 }} : {{ template_info.before }} {{ template_info.during }} {{ template_info.after }} {% else %} {{ source_line.0 }} : {{ source_line.1 }} {% endifequal %}{% endfor %}{% endif %} Traceback: {% for frame in frames %}File "{{ frame.filename|escape }}" in {{ frame.function|escape }} {% if frame.context_line %} {{ frame.lineno }}. {{ frame.context_line|escape }}{% endif %} {% endfor %} Exception Type: {{ exception_type|escape }}{% if request %} at {{ request.path_info|escape }}{% endif %} Exception Value: {{ exception_value|force_escape }} </textarea> <br><br> <input type="submit" value="Share this traceback on a public Web site"> </div> </form> </div> {% endif %} {% endif %} <div id="requestinfo"> <h2>Request information</h2> {% if request %} <h3 id="get-info">GET</h3> {% if request.GET %} <table class="req"> <thead> <tr> <th>Variable</th> <th>Value</th> </tr> </thead> <tbody> {% for var in request.GET.items %} <tr> <td>{{ var.0 }}</td> <td class="code"><pre>{{ var.1|pprint }}</pre></td> </tr> {% endfor %} </tbody> </table> {% else %} <p>No GET data</p> {% endif %} <h3 id="post-info">POST</h3> {% if filtered_POST %} <table class="req"> <thead> <tr> <th>Variable</th> <th>Value</th> </tr> </thead> <tbody> {% for var in filtered_POST.items %} <tr> <td>{{ var.0 }}</td> <td class="code"><pre>{{ var.1|pprint }}</pre></td> </tr> {% endfor %} </tbody> </table> {% else %} <p>No POST data</p> {% endif %} <h3 id="files-info">FILES</h3> {% if request.FILES %} <table class="req"> <thead> <tr> <th>Variable</th> <th>Value</th> </tr> </thead> <tbody> {% for var in request.FILES.items %} <tr> <td>{{ var.0 }}</td> <td class="code"><pre>{{ var.1|pprint }}</pre></td> </tr> {% endfor %} </tbody> </table> {% else %} <p>No FILES data</p> {% endif %} <h3 id="cookie-info">COOKIES</h3> {% if request.COOKIES %} <table class="req"> <thead> <tr> <th>Variable</th> <th>Value</th> </tr> </thead> <tbody> {% for var in request.COOKIES.items %} <tr> <td>{{ var.0 }}</td> <td class="code"><pre>{{ var.1|pprint }}</pre></td> </tr> {% endfor %} </tbody> </table> {% else %} <p>No cookie data</p> {% endif %} <h3 id="meta-info">META</h3> <table class="req"> <thead> <tr> <th>Variable</th> <th>Value</th> </tr> </thead> <tbody> {% for var in request.META.items|dictsort:"0" %} <tr> <td>{{ var.0 }}</td> <td class="code"><pre>{{ var.1|pprint }}</pre></td> </tr> {% endfor %} </tbody> </table> {% else %} <p>Request data not supplied</p> {% endif %} <h3 id="settings-info">Settings</h3> <h4>Using settings module <code>{{ settings.SETTINGS_MODULE }}</code></h4> <table class="req"> <thead> <tr> <th>Setting</th> <th>Value</th> </tr> </thead> <tbody> {% for var in settings.items|dictsort:"0" %} <tr> <td>{{ var.0 }}</td> <td class="code"><pre>{{ var.1|pprint }}</pre></td> </tr> {% endfor %} </tbody> </table> </div> {% if not is_email %} <div id="explanation"> <p> You're seeing this error because you have <code>DEBUG = True</code> in your Django settings file. Change that to <code>False</code>, and Django will display a standard 500 page. </p> </div> {% endif %} </body> </html> """ TECHNICAL_500_TEXT_TEMPLATE = """{% firstof exception_type 'Report' %}{% if request %} at {{ request.path_info }}{% endif %} {% firstof exception_value 'No exception supplied' %} {% if request %} Request Method: {{ request.META.REQUEST_METHOD }} Request URL: {{ request.build_absolute_uri }}{% endif %} Django Version: {{ django_version_info }} Python Executable: {{ sys_executable }} Python Version: {{ sys_version_info }} Python Path: {{ sys_path }} Server time: {{server_time|date:"r"}} Installed Applications: {{ settings.INSTALLED_APPS|pprint }} Installed Middleware: {{ settings.MIDDLEWARE_CLASSES|pprint }} {% if template_does_not_exist %}Template loader Error: {% if loader_debug_info %}Django tried loading these templates, in this order: {% for loader in loader_debug_info %}Using loader {{ loader.loader }}: {% for t in loader.templates %}{{ t.name }} (File {% if t.exists %}exists{% else %}does not exist{% endif %}) {% endfor %}{% endfor %} {% else %}Django couldn't find any templates because your TEMPLATE_LOADERS setting is empty! {% endif %} {% endif %}{% if template_info %} Template error: In template {{ template_info.name }}, error at line {{ template_info.line }} {{ template_info.message }}{% for source_line in template_info.source_lines %}{% ifequal source_line.0 template_info.line %} {{ source_line.0 }} : {{ template_info.before }} {{ template_info.during }} {{ template_info.after }} {% else %} {{ source_line.0 }} : {{ source_line.1 }} {% endifequal %}{% endfor %}{% endif %}{% if frames %} Traceback: {% for frame in frames %}File "{{ frame.filename }}" in {{ frame.function }} {% if frame.context_line %} {{ frame.lineno }}. {{ frame.context_line }}{% endif %} {% endfor %} {% if exception_type %}Exception Type: {{ exception_type }}{% if request %} at {{ request.path_info }}{% endif %} {% if exception_value %}Exception Value: {{ exception_value }}{% endif %}{% endif %}{% endif %} {% if request %}Request information: GET:{% for k, v in request.GET.items %} {{ k }} = {{ v|stringformat:"r" }}{% empty %} No GET data{% endfor %} POST:{% for k, v in filtered_POST.items %} {{ k }} = {{ v|stringformat:"r" }}{% empty %} No POST data{% endfor %} FILES:{% for k, v in request.FILES.items %} {{ k }} = {{ v|stringformat:"r" }}{% empty %} No FILES data{% endfor %} COOKIES:{% for k, v in request.COOKIES.items %} {{ k }} = {{ v|stringformat:"r" }}{% empty %} No cookie data{% endfor %} META:{% for k, v in request.META.items|dictsort:"0" %} {{ k }} = {{ v|stringformat:"r" }}{% endfor %} {% else %}Request data not supplied {% endif %} Settings: Using settings module {{ settings.SETTINGS_MODULE }}{% for k, v in settings.items|dictsort:"0" %} {{ k }} = {{ v|stringformat:"r" }}{% endfor %} You're seeing this error because you have DEBUG = True in your Django settings file. Change that to False, and Django will display a standard 500 page. """ TECHNICAL_404_TEMPLATE = """ <!DOCTYPE html> <html lang="en"> <head> <meta http-equiv="content-type" content="text/html; charset=utf-8"> <title>Page not found at {{ request.path_info|escape }}</title> <meta name="robots" content="NONE,NOARCHIVE"> <style type="text/css"> html * { padding:0; margin:0; } body * { padding:10px 20px; } body * * { padding:0; } body { font:small sans-serif; background:#eee; } body>div { border-bottom:1px solid #ddd; } h1 { font-weight:normal; margin-bottom:.4em; } h1 span { font-size:60%; color:#666; font-weight:normal; } table { border:none; border-collapse: collapse; width:100%; } td, th { vertical-align:top; padding:2px 3px; } th { width:12em; text-align:right; color:#666; padding-right:.5em; } #info { background:#f6f6f6; } #info ol { margin: 0.5em 4em; } #info ol li { font-family: monospace; } #summary { background: #ffc; } #explanation { background:#eee; border-bottom: 0px none; } </style> </head> <body> <div id="summary"> <h1>Page not found <span>(404)</span></h1> <table class="meta"> <tr> <th>Request Method:</th> <td>{{ request.META.REQUEST_METHOD }}</td> </tr> <tr> <th>Request URL:</th> <td>{{ request.build_absolute_uri|escape }}</td> </tr> </table> </div> <div id="info"> {% if urlpatterns %} <p> Using the URLconf defined in <code>{{ urlconf }}</code>, Django tried these URL patterns, in this order: </p> <ol> {% for pattern in urlpatterns %} <li> {% for pat in pattern %} {{ pat.regex.pattern }} {% if forloop.last and pat.name %}[name='{{ pat.name }}']{% endif %} {% endfor %} </li> {% endfor %} </ol> <p>The current URL, <code>{{ request_path|escape }}</code>, didn't match any of these.</p> {% else %} <p>{{ reason }}</p> {% endif %} </div> <div id="explanation"> <p> You're seeing this error because you have <code>DEBUG = True</code> in your Django settings file. Change that to <code>False</code>, and Django will display a standard 404 page. </p> </div> </body> </html> """ EMPTY_URLCONF_TEMPLATE = """ <!DOCTYPE html> <html lang="en"><head> <meta http-equiv="content-type" content="text/html; charset=utf-8"> <meta name="robots" content="NONE,NOARCHIVE"><title>Welcome to Django</title> <style type="text/css"> html * { padding:0; margin:0; } body * { padding:10px 20px; } body * * { padding:0; } body { font:small sans-serif; } body>div { border-bottom:1px solid #ddd; } h1 { font-weight:normal; } h2 { margin-bottom:.8em; } h2 span { font-size:80%; color:#666; font-weight:normal; } h3 { margin:1em 0 .5em 0; } h4 { margin:0 0 .5em 0; font-weight: normal; } table { border:1px solid #ccc; border-collapse: collapse; width:100%; background:white; } tbody td, tbody th { vertical-align:top; padding:2px 3px; } thead th { padding:1px 6px 1px 3px; background:#fefefe; text-align:left; font-weight:normal; font-size:11px; border:1px solid #ddd; } tbody th { width:12em; text-align:right; color:#666; padding-right:.5em; } ul { margin-left: 2em; margin-top: 1em; } #summary { background: #e0ebff; } #summary h2 { font-weight: normal; color: #666; } #explanation { background:#eee; } #instructions { background:#f6f6f6; } #summary table { border:none; background:transparent; } </style> </head> <body> <div id="summary"> <h1>It worked!</h1> <h2>Congratulations on your first Django-powered page.</h2> </div> <div id="instructions"> <p>Of course, you haven't actually done any work yet. Here's what to do next:</p> <ul> <li>If you plan to use a database, edit the <code>DATABASES</code> setting in <code>{{ project_name }}/settings.py</code>.</li> <li>Start your first app by running <code>python manage.py startapp [appname]</code>.</li> </ul> </div> <div id="explanation"> <p> You're seeing this message because you have <code>DEBUG = True</code> in your Django settings file and you haven't configured any URLs. Get to work! </p> </div> </body></html> """
38.343217
251
0.594784
2c487bd5efd19f9918ffc7db43580efe51e6a283
845
py
Python
bluebottle/projects/migrations/0039_add_project_image_group_permissions.py
terrameijar/bluebottle
b4f5ba9c4f03e678fdd36091b29240307ea69ffd
[ "BSD-3-Clause" ]
10
2015-05-28T18:26:40.000Z
2021-09-06T10:07:03.000Z
bluebottle/projects/migrations/0039_add_project_image_group_permissions.py
terrameijar/bluebottle
b4f5ba9c4f03e678fdd36091b29240307ea69ffd
[ "BSD-3-Clause" ]
762
2015-01-15T10:00:59.000Z
2022-03-31T15:35:14.000Z
bluebottle/projects/migrations/0039_add_project_image_group_permissions.py
terrameijar/bluebottle
b4f5ba9c4f03e678fdd36091b29240307ea69ffd
[ "BSD-3-Clause" ]
9
2015-02-20T13:19:30.000Z
2022-03-08T14:09:17.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.10.8 on 2017-09-15 11:58 from __future__ import unicode_literals from django.db import migrations from bluebottle.utils.utils import update_group_permissions def add_group_permissions(apps, schema_editor): group_perms = { 'Anonymous': { 'perms': ('api_read_projectimage',) }, 'Authenticated': { 'perms': ( 'api_read_projectimage', 'api_add_own_projectimage', 'api_change_own_projectimage', 'api_delete_own_projectimage', ) } } update_group_permissions('projects', group_perms, apps) class Migration(migrations.Migration): dependencies = [ ('projects', '0038_auto_20170915_1358'), ] operations = [ migrations.RunPython(add_group_permissions) ]
23.472222
77
0.639053
f38a9550ad41fe79e75d1e72c47974f90854d360
10,469
py
Python
src/livestreamer/stream/hls_playlist.py
jaccarmac/livestreamer
ab80dbd6560f6f9835865b2fc9f9c6015aee5658
[ "BSD-2-Clause", "MIT" ]
3,614
2015-01-01T08:07:27.000Z
2022-03-20T00:31:07.000Z
src/livestreamer/stream/hls_playlist.py
kviktor/livestreamer
ab80dbd6560f6f9835865b2fc9f9c6015aee5658
[ "BSD-2-Clause", "MIT" ]
1,028
2015-01-02T03:38:38.000Z
2021-08-06T16:17:48.000Z
src/livestreamer/stream/hls_playlist.py
kviktor/livestreamer
ab80dbd6560f6f9835865b2fc9f9c6015aee5658
[ "BSD-2-Clause", "MIT" ]
795
2015-01-02T06:12:04.000Z
2022-03-27T23:41:53.000Z
import re from binascii import unhexlify from collections import namedtuple from itertools import starmap try: from urlparse import urljoin except ImportError: from urllib.parse import urljoin __all__ = ["load", "M3U8Parser"] # EXT-X-BYTERANGE ByteRange = namedtuple("ByteRange", "range offset") # EXT-X-KEY Key = namedtuple("Key", "method uri iv key_format key_format_versions") # EXT-X-MAP Map = namedtuple("Map", "uri byterange") # EXT-X-MEDIA Media = namedtuple("Media", "uri type group_id language name default " "autoselect forced characteristics") # EXT-X-START Start = namedtuple("Start", "time_offset precise") # EXT-X-STREAM-INF StreamInfo = namedtuple("StreamInfo", "bandwidth program_id codecs resolution " "audio video subtitles") # EXT-X-I-FRAME-STREAM-INF IFrameStreamInfo = namedtuple("IFrameStreamInfo", "bandwidth program_id " "codecs resolution video") Playlist = namedtuple("Playlist", "uri stream_info media is_iframe") Resolution = namedtuple("Resolution", "width height") Segment = namedtuple("Segment", "uri duration title key discontinuity " "byterange date map") ATTRIBUTE_REGEX = (r"([A-Z\-]+)=(\d+\.\d+|0x[0-9A-z]+|\d+x\d+|\d+|" r"\"(.+?)\"|[0-9A-z\-]+)") class M3U8(object): def __init__(self): self.is_endlist = False self.is_master = False self.allow_cache = None self.discontinuity_sequence = None self.iframes_only = None self.media_sequence = None self.playlist_type = None self.target_duration = None self.start = None self.version = None self.media = [] self.playlists = [] self.segments = [] class M3U8Parser(object): def __init__(self, base_uri=None): self.base_uri = base_uri def create_stream_info(self, streaminf, cls=None): program_id = streaminf.get("PROGRAM-ID") if program_id: program_id = int(program_id) bandwidth = streaminf.get("BANDWIDTH") if bandwidth: bandwidth = int(bandwidth) resolution = streaminf.get("RESOLUTION") if resolution: resolution = self.parse_resolution(resolution) codecs = streaminf.get("CODECS") if codecs: codecs = codecs.split(",") else: codecs = [] if cls == IFrameStreamInfo: return IFrameStreamInfo(bandwidth, program_id, codecs, resolution, streaminf.get("VIDEO")) else: return StreamInfo(bandwidth, program_id, codecs, resolution, streaminf.get("AUDIO"), streaminf.get("VIDEO"), streaminf.get("SUBTITLES")) def split_tag(self, line): match = re.match("#(?P<tag>[\w-]+)(:(?P<value>.+))?", line) if match: return match.group("tag"), match.group("value").strip() return None, None def parse_attributes(self, value): def map_attribute(key, value, quoted): return (key, quoted or value) attr = re.findall(ATTRIBUTE_REGEX, value) return dict(starmap(map_attribute, attr)) def parse_bool(self, value): return value == "YES" def parse_byterange(self, value): match = re.match("(?P<range>\d+)(@(?P<offset>.+))?", value) if match: return ByteRange(int(match.group("range")), int(match.group("offset") or 0)) def parse_extinf(self, value): match = re.match("(?P<duration>\d+(\.\d+)?)(,(?P<title>.+))?", value) if match: return float(match.group("duration")), match.group("title") def parse_hex(self, value): value = value[2:] if len(value) % 2: value = "0" + value return unhexlify(value) def parse_resolution(self, value): match = re.match("(\d+)x(\d+)", value) if match: width, height = int(match.group(1)), int(match.group(2)) else: width, height = 0, 0 return Resolution(width, height) def parse_tag(self, line, transform=None): tag, value = self.split_tag(line) if transform: value = transform(value) return value def parse_line(self, lineno, line): if lineno == 0 and not line.startswith("#EXTM3U"): raise ValueError("Missing #EXTM3U header") if not line.startswith("#"): if self.state.pop("expect_segment", None): byterange = self.state.pop("byterange", None) extinf = self.state.pop("extinf", (0, None)) date = self.state.pop("date", None) map_ = self.state.get("map") key = self.state.get("key") segment = Segment(self.uri(line), extinf[0], extinf[1], key, self.state.pop("discontinuity", False), byterange, date, map_) self.m3u8.segments.append(segment) elif self.state.pop("expect_playlist", None): streaminf = self.state.pop("streaminf", {}) stream_info = self.create_stream_info(streaminf) playlist = Playlist(self.uri(line), stream_info, [], False) self.m3u8.playlists.append(playlist) elif line.startswith("#EXTINF"): self.state["expect_segment"] = True self.state["extinf"] = self.parse_tag(line, self.parse_extinf) elif line.startswith("#EXT-X-BYTERANGE"): self.state["expect_segment"] = True self.state["byterange"] = self.parse_tag(line, self.parse_byterange) elif line.startswith("#EXT-X-TARGETDURATION"): self.m3u8.target_duration = self.parse_tag(line, int) elif line.startswith("#EXT-X-MEDIA-SEQUENCE"): self.m3u8.media_sequence = self.parse_tag(line, int) elif line.startswith("#EXT-X-KEY"): attr = self.parse_tag(line, self.parse_attributes) iv = attr.get("IV") if iv: iv = self.parse_hex(iv) self.state["key"] = Key(attr.get("METHOD"), self.uri(attr.get("URI")), iv, attr.get("KEYFORMAT"), attr.get("KEYFORMATVERSIONS")) elif line.startswith("#EXT-X-PROGRAM-DATE-TIME"): self.state["date"] = self.parse_tag(line) elif line.startswith("#EXT-X-ALLOW-CACHE"): self.m3u8.allow_cache = self.parse_tag(line, self.parse_bool) elif line.startswith("#EXT-X-STREAM-INF"): self.state["streaminf"] = self.parse_tag(line, self.parse_attributes) self.state["expect_playlist"] = True elif line.startswith("#EXT-X-PLAYLIST-TYPE"): self.m3u8.playlist_type = self.parse_tag(line) elif line.startswith("#EXT-X-ENDLIST"): self.m3u8.is_endlist = True elif line.startswith("#EXT-X-MEDIA"): attr = self.parse_tag(line, self.parse_attributes) media = Media(self.uri(attr.get("URI")), attr.get("TYPE"), attr.get("GROUP-ID"), attr.get("LANGUAGE"), attr.get("NAME"), self.parse_bool(attr.get("DEFAULT")), self.parse_bool(attr.get("AUTOSELECT")), self.parse_bool(attr.get("FORCED")), attr.get("CHARACTERISTICS")) self.m3u8.media.append(media) elif line.startswith("#EXT-X-DISCONTINUITY"): self.state["discontinuity"] = True self.state["map"] = None elif line.startswith("#EXT-X-DISCONTINUITY-SEQUENCE"): self.m3u8.discontinuity_sequence = self.parse_tag(line, int) elif line.startswith("#EXT-X-I-FRAMES-ONLY"): self.m3u8.iframes_only = True elif line.startswith("#EXT-X-MAP"): attr = self.parse_tag(line, self.parse_attributes) byterange = self.parse_byterange(attr.get("BYTERANGE", "")) self.state["map"] = Map(attr.get("URI"), byterange) elif line.startswith("#EXT-X-I-FRAME-STREAM-INF"): attr = self.parse_tag(line, self.parse_attributes) streaminf = self.state.pop("streaminf", attr) stream_info = self.create_stream_info(streaminf, IFrameStreamInfo) playlist = Playlist(self.uri(attr.get("URI")), stream_info, [], True) self.m3u8.playlists.append(playlist) elif line.startswith("#EXT-X-VERSION"): self.m3u8.version = self.parse_tag(line, int) elif line.startswith("#EXT-X-START"): attr = self.parse_tag(line, self.parse_attributes) start = Start(attr.get("TIME-OFFSET"), self.parse_bool(attr.get("PRECISE", "NO"))) self.m3u8.start = start def parse(self, data): self.state = {} self.m3u8 = M3U8() for lineno, line in enumerate(filter(bool, data.splitlines())): self.parse_line(lineno, line) # Associate Media entries with each Playlist for playlist in self.m3u8.playlists: for media_type in ("audio", "video", "subtitles"): group_id = getattr(playlist.stream_info, media_type, None) if group_id: for media in filter(lambda m: m.group_id == group_id, self.m3u8.media): playlist.media.append(media) self.m3u8.is_master = not not self.m3u8.playlists return self.m3u8 def uri(self, uri): if uri and uri.startswith("http"): return uri elif self.base_uri and uri: return urljoin(self.base_uri, uri) else: return uri def load(data, base_uri=None, parser=M3U8Parser): """Attempts to parse a M3U8 playlist from a string of data. If specified, *base_uri* is the base URI that relative URIs will be joined together with, otherwise relative URIs will be as is. If specified, *parser* can be a M3U8Parser subclass to be used to parse the data. """ return parser(base_uri).parse(data)
37.389286
81
0.568918
0b383b28a1c709e0258f40b6e8d78a74eac39eea
2,852
py
Python
models/exercise/plot_two_strain_ts.py
tethig/sismid
6104195619ae2ddbd91921872ffde2b7c83b01ac
[ "CC-BY-4.0", "MIT" ]
null
null
null
models/exercise/plot_two_strain_ts.py
tethig/sismid
6104195619ae2ddbd91921872ffde2b7c83b01ac
[ "CC-BY-4.0", "MIT" ]
null
null
null
models/exercise/plot_two_strain_ts.py
tethig/sismid
6104195619ae2ddbd91921872ffde2b7c83b01ac
[ "CC-BY-4.0", "MIT" ]
1
2022-02-21T09:05:32.000Z
2022-02-21T09:05:32.000Z
################################################################### # # Basic plot for two-strain SIR model: # Time series given some initial conditions #################################################################### import sys import csv import numpy as np import matplotlib as mpl mpl.use('TkAgg') from matplotlib.font_manager import FontProperties import matplotlib.pyplot as plt from two_strain import * # Run parameters run_num = 1 # sys.argv[1] end_time = 100*365 output_interval = 1.0 step_size = 0.1 # Strain parameters, including initial conditions beta = np.array([5, 5])/7.0 epsilon = 0.1 gamma = np.array([1, 1])/7.0 mu = 1/(10*365.0) alpha = np.array([0.5, 1.]) a = np.array([1., 2.5]) omega = 2*np.pi/365. obs_sd = 0.01 NSS = 0.2 NIS = 1e-3 NRS = 0.02 NRI = 0.0 NSI = 1e-3 NSR = 0.02 NIR = 0.0 # Organize and run simulation params = np.array([gamma, mu, alpha, a, omega, beta, epsilon]) SI = np.array([NSS, NIS, NRS, NRI, NSI, NSR, NIR]) ic = np.array([NSS, NIS, NRS, NRI, NSI, NSR, NIR, 1-np.sum(SI)]) output = run_two_strain(end_time, output_interval, step_size, params, ic) # Save output (NIS+NIR, NSI+NRI) to csv and plot infecteds = np.asarray([output[:, 1] + output[:, 6], output[:, 3] + output[:, 4]]) times = np.arange(0,infecteds.shape[1]) infecteds_t = np.vstack((times, infecteds)) filename = 'infecteds_' + str(run_num) + '.csv' with open(filename, 'w') as csvfile: writer = csv.writer(csvfile) writer.writerow(['times', 'I1', 'I2']) writer.writerows(infecteds_t.T) # Add observation error if present if obs_sd > 0: errors = np.random.normal(1, obs_sd, infecteds.shape) infecteds_obs = infecteds*errors filename = 'infecteds_obs_' + str(run_num) + '.csv' with open(filename, 'w') as csvfile: writer = csv.writer(csvfile) writer.writerow(['times', 'I1', 'I2']) writer.writerows(infecteds_t.T) plt.subplot(3, 1, 1) plt.plot(output[:, 0], 'b-', label=r'$N_{SS}$') plt.plot(output[:, 2], 'g-', label=r'$N_{RS}$') plt.plot(output[:, 5], 'r-', label=r'$N_{SR}$') plt.plot(output[:, 7], 'c-', label=r'$N_{RR}$') plt.xlabel('Time') plt.ylabel('Uninfected') plt.legend(loc=1, prop=FontProperties(size='smaller')) plt.subplot(3, 1, 2) plt.plot(output[:, 1], 'b-', label=r'$N_{IS}$') plt.plot(output[:, 6], 'g-', label=r'$N_{IR}$') plt.plot((output[:, 1]+a[0]*output[:, 6]), 'r-', label=r'$I_1$') plt.xlabel('Time') plt.ylabel('Infected 1') plt.legend(loc=1, prop=FontProperties(size='smaller')) plt.subplot(3, 1, 3) plt.plot(output[:, 4], 'b-', label=r'$N_{SI}$') plt.plot(output[:, 3], 'g-', label=r'$N_{RI}$') plt.plot((output[:, 4]+a[1]*output[:, 3]), 'r-', label=r'$I_2$') plt.xlabel('Time') plt.ylabel('Infected 2') plt.legend(loc=1, prop=FontProperties(size='smaller')) plt.savefig("time_series_" + str(run_num) + ".png") plt.show() plt.close()
31.688889
87
0.613955
5bcabe4cef7c793bd6dcd6a32bdc96ec647b7f5e
11,147
py
Python
torchknickknacks/modelutils.py
AlGoulas/torchknickknacks
d7c70b7af9845ab24bd0f8d4d0e230918bac7144
[ "MIT" ]
4
2021-11-23T15:15:07.000Z
2022-01-31T14:37:16.000Z
torchknickknacks/modelutils.py
AlGoulas/torchknickknacks
d7c70b7af9845ab24bd0f8d4d0e230918bac7144
[ "MIT" ]
null
null
null
torchknickknacks/modelutils.py
AlGoulas/torchknickknacks
d7c70b7af9845ab24bd0f8d4d0e230918bac7144
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from collections import OrderedDict from functools import partial from pathlib import Path import pickle import torch def get_model_params(model, params_to_get = None, detach = True): '''Extracts the parameters, names, and 'requires gradient' status from a model Input ----- model: class instance based on the base class torch.nn.Module params_to_get: list of str, default=None, specifying the names of the parameters to be extracted If None, then all parameters and names of parameters from the model will be extracted detach: bool, default True, detach the tensor from the computational graph Output ------ params_name: list, contaning one str for each extracted parameter params_values: list, containg one tensor corresponding to each parameter. NOTE: The tensor is detached from the computation graph req_grad: list, containing one Boolean variable for each parameter denoting the requires_grad status of the tensor/parameter of the model ''' params_names = [] params_values = [] req_grad = [] for name, param in zip(model.named_parameters(), model.parameters()): if params_to_get is not None: if name[0] in params_to_get: params_names.append(name[0]) if detach is True: params_values.append(param.detach().clone()) elif detach is False: params_values.append(param.clone()) req_grad.append(param.requires_grad) else: params_names.append(name[0]) if detach is True: params_values.append(param.detach().clone()) elif detach is False: params_values.append(param.clone()) req_grad.append(param.requires_grad) return params_values, params_names, req_grad def freeze_params(model, params_to_freeze = None, freeze = True): '''Freeze or unfreeze the parametrs of a model Input ----- model: class instance based on the base class torch.nn.Module params_to_freeze: list of str specifying the names of the params to be frozen or unfrozen freeze: bool, default True, specifying the freeze or unfreeze of model params Output ------ model: class instance based on the base class torch.nn.Module with changed requires_grad param for the anmes params in params_to_freeze (freeze = requires_grad is False unfreeze = requires_grad is True) ''' for name, param in zip(model.named_parameters(), model.parameters()): if params_to_freeze is not None: if name[0] in params_to_freeze: param.requires_grad = True if freeze is False else False else: param.requires_grad = True if freeze is False else False def delete_layers(model, del_ids = []): '''Delete layers from model Input ----- model: model to be modified del_ids: list, default [], of int the modules/layers that will be deleted NOTE: 0, 1... denotes the 1st, 2nd etc layer Output ------ model: model with deleted modules/layers that is an instance of torch.nn.modules.container.Sequential ''' children = [c for i,c in enumerate(model.named_children()) if i not in del_ids] model = torch.nn.Sequential( OrderedDict(children) ) return model def add_layers(model, modules = []): '''Add layers/modules to torch.nn.modules.container.Sequential Input ----- model: instance of class of base class torch.nn.Module modules: list of dict each dict has key:value pairs { 'name': str 'position': int 'module': torch.nn.Module } with: name: str, name to be added in the nn.modules.container.Sequential position: int, [0,..N], with N>0, also -1, where N the total nr of modules in the torch.nn.modules.container.Sequential -1 denotes the module that will be appended at the end module: torch.nn.Module Output ------ model: model with added modules/layers that is an instance of torch.nn.modules.container.Sequential ''' all_positions = [m['position'] for m in modules] current_children = [c for c in model.named_children()] children = [] children_idx = 0 iterations = len(current_children) + len(all_positions) if -1 in all_positions: iterations -= 1 for i in range(iterations): if i not in all_positions: children.append(current_children[children_idx]) children_idx += 1 else: idx = all_positions.index(i) d = modules[idx] children.append((d['name'], d['module'])) if -1 in all_positions: idx = all_positions.index(-1) d = modules[idx] children.append((d['name'], d['module'])) model = torch.nn.Sequential( OrderedDict(children) ) return model class Recorder(): '''Get input, output or parameters to a module/layer by registering forward or backward hooks Input ----- module: a module of a class in torch.nn.modules record_input: bool, default False, deciding if input to module will be recorded record_output: bool, default False, deciding if output to module will be recorded record_params: bool, default False, deciding if params of module will be recorded params_to_get: list of str, default None, specifying the parameters to be recorded from the module (if None all parameters are recorded) NOTE: meaningful only if record_params backward: bool, default False, deciding if a forward or backward hook will be registered and the recprding will be performed accordingly custom_fn: function, default None, to be executed in the forward or backward pass. It must have the following signature: custom_fn(module, output, input, **kwars) with kwars optional The signature follows the signature of functions to be registered in hooks. See for more details: https://pytorch.org/docs/stable/generated/torch.nn.modules.module.register_module_forward_hook.html save_to: str, default None, specifying a path to a folder for all recordings to be saved. NOTE: recodrings are saved with filename: recording_0, recording_1, recording_N **kwargs: if keyword args are specified they will be passed as to the custom_fn The attribute recording contains the output, input or params of a module ''' def __init__(self, module, record_input = False, record_output = False, record_params = False, params_to_get = None, backward = False, custom_fn = None, save_to = None, **kwargs): self.params_to_get = params_to_get self.kwargs = kwargs if kwargs else None if save_to: self.counter = 0#if path is specified, keep a counter self.save_to = save_to if record_input is True: fn = partial(self._fn_in_out_params, record_what = 'input') elif record_output is True: fn = partial(self._fn_in_out_params, record_what = 'output') elif record_params is True: fn = partial(self._fn_in_out_params, record_what = 'params') if custom_fn is not None: fn = self._custom_wrapper self.custom_fn = custom_fn if backward is False: self.hook = module.register_forward_hook(fn) elif backward is True: self.hook = module.register_full_backward_hook(fn) def _fn_in_out_params(self, module, input, output, record_what = None): att = getattr(self, 'save_to', None) if att is None: if record_what == 'input': self.recording = input elif record_what == 'output': self.recording = output elif record_what == 'params': params = get_model_params(module, params_to_get = self.params_to_get)[0] self.recording = params else: name = 'recording_' + str(self.counter) filename = Path(self.save_to) / name self.counter += 1 with open(filename, 'wb') as handle: if record_what == 'input': pickle.dump(input, handle, protocol = pickle.HIGHEST_PROTOCOL) elif record_what == 'output': pickle.dump(output, handle, protocol = pickle.HIGHEST_PROTOCOL) elif record_what == 'params': params = get_model_params(module, params_to_get = self.params_to_get)[0] pickle.dump(params, handle, protocol = pickle.HIGHEST_PROTOCOL) def _custom_wrapper(self, module, input, output): if self.kwargs: res = self.custom_fn(module, input, output, **self.kwargs) else: res = self.custom_fn(module, input, output) att = getattr(self, 'save_to', None) if res and att is None: self.recording = res elif res and att: name = 'recording_' + str(self.counter) filename = Path(self.save_to) / name self.counter += 1 with open(filename, 'wb') as handle: pickle.dump(res, handle, protocol = pickle.HIGHEST_PROTOCOL) def close(self): self.hook.remove() att = getattr(self, 'counter', None) if att: self.counter = 0 def get_all_layers(model): ''' Get all the children (layers) from a model, even the ones that are nested Input ----- model: class instance based on the base class torch.nn.Module Output ------ all_layers: list of all layers of the model Adapted from: https://stackoverflow.com/questions/54846905/pytorch-get-all-layers-of-model ''' children = list(model.children()) all_layers = [] if not children:#if model has no children model is last child return model else: # Look for children from children to the last child for child in children: try: all_layers.extend(get_all_layers(child)) except TypeError: all_layers.append(get_all_layers(child)) return all_layers
35.613419
107
0.592805
e67522cbe4a624d8b939ea0fcff67b2bce6b424a
100
py
Python
run4it/api/user/__init__.py
andraune/Run4IT_BackEnd
a481427a0d1189a1f08c42e7ac1b452af6bbfc8d
[ "MIT" ]
1
2022-03-29T06:11:20.000Z
2022-03-29T06:11:20.000Z
run4it/api/user/__init__.py
andraune/run4it_backend
a481427a0d1189a1f08c42e7ac1b452af6bbfc8d
[ "MIT" ]
null
null
null
run4it/api/user/__init__.py
andraune/run4it_backend
a481427a0d1189a1f08c42e7ac1b452af6bbfc8d
[ "MIT" ]
null
null
null
# add this to force db migrate to detect models from .model import User, UserConfirmation # noqa
33.333333
50
0.76
1ab20f8f07f603c9b01d3f21024cb55b03532396
4,776
py
Python
lib/game/bot.py
Pavivenkatesan/kivy-tictactoe
bca0a9753017402ddd49a1c3552f1a97a820a653
[ "MIT" ]
null
null
null
lib/game/bot.py
Pavivenkatesan/kivy-tictactoe
bca0a9753017402ddd49a1c3552f1a97a820a653
[ "MIT" ]
null
null
null
lib/game/bot.py
Pavivenkatesan/kivy-tictactoe
bca0a9753017402ddd49a1c3552f1a97a820a653
[ "MIT" ]
null
null
null
import random import numpy as np from lib.game.player import Player from itertools import product class Bot(Player): state_space = [[' ', ' ', ' '], [' ', ' ', ' '], [' ', ' ', ' ']] # Initializing state values each_player = ['X', 'O', ' '] states_dictionary = {} # listing all possible states states = [[list(i[0:3]), list(i[3:6]), list(i[6:10])] for i in product(each_player, repeat=9)] Total_moves = 9 print("Total number of actions = ", Total_moves) # getting Total number of states Total_states = len(states) # Intializing agent intial value as 0 sv_O = np.full(Total_states, 0.0) # Training file sv_O = np.loadtxt('lib/game/trained_O.txt', dtype=np.float64) # Determining the current state value and determining the win def cur_state(state_space): if (state_space[0][0] == state_space[0][1] and state_space[0][1] == state_space[0][2] and state_space[0][ 0] is not ' '): return state_space[0][0], "Done" if (state_space[1][0] == state_space[1][1] and state_space[1][1] == state_space[1][2] and state_space[1][ 0] is not ' '): return state_space[1][0], "Done" if (state_space[2][0] == state_space[2][1] and state_space[2][1] == state_space[2][2] and state_space[2][ 0] is not ' '): return state_space[2][0], "Done" if (state_space[0][0] == state_space[1][0] and state_space[1][0] == state_space[2][0] and state_space[0][ 0] is not ' '): return state_space[0][0], "Done" if (state_space[0][1] == state_space[1][1] and state_space[1][1] == state_space[2][1] and state_space[0][ 1] is not ' '): return state_space[0][1], "Done" if (state_space[0][2] == state_space[1][2] and state_space[1][2] == state_space[2][2] and state_space[0][ 2] is not ' '): return state_space[0][2], "Done" if (state_space[0][0] == state_space[1][1] and state_space[1][1] == state_space[2][2] and state_space[0][ 0] is not ' '): return state_space[1][1], "Done" if (state_space[2][0] == state_space[1][1] and state_space[1][1] == state_space[0][2] and state_space[2][ 0] is not ' '): return state_space[1][1], "Done" # if none of the above is true there must be a draw draw = 0 for i in range(3): for j in range(3): if state_space[i][j] is ' ': draw = 1 if draw is 0: return None, "Draw" return None, "Not Done" # Defining the state values for agent O for i in range(Total_states): states_dictionary[i] = states[i] won_by, _ = cur_state(states_dictionary[i]) if won_by == 'X': sv_O[i] = -1 elif won_by == 'O': sv_O[i] = 1 def check_draw(self, sv): draw = 0 for i in range(3): for j in range(3): if sv[i][j] is ' ': draw = 1 if draw is 0: return 0, "Draw" def play(self, sv, each_player, cell): if sv[int((cell - 1) / 3)][(cell - 1) % 3] is ' ': sv[int((cell - 1) / 3)][(cell - 1) % 3] = each_player else: cell = int(input(" Choose again, Cell is not empty: ")) sv.play(sv, each_player, cell) # Defining new state function: which traverse over rows and columns and returns new state def new(self, state): ns = [[' ', ' ', ' '], [' ', ' ', ' '], [' ', ' ', ' ']] for i in range(3): for j in range(3): ns[i][j] = state[i][j] return ns def get_Predicted_Values(self, sv): if(self.check_draw(sv)): return 0 print("The current state :" + str(sv)) actions = [] curr_state_values = [] empty_cells = [] csv = list(self.states_dictionary.keys())[list(self.states_dictionary.values()).index(self.state_space)] for i in range(3): for j in range(3): if sv[i][j] is ' ': empty_cells.append(i * 3 + (j + 1)) for empty_cell in empty_cells: actions.append(empty_cell) new_state = self.new(sv) self.play(new_state, "O", empty_cell) next_sid = list(self.states_dictionary.keys())[list(self.states_dictionary.values()).index(new_state)] curr_state_values.append(self.sv_O[next_sid]) print('Possible Action moves = ' + str(actions)) print('Action Move values = ' + str(curr_state_values)) best_move_id = np.argmax(curr_state_values) best_move = actions[best_move_id] return best_move
37.606299
114
0.54062
b6373fd0b2398b1af4945c8a787113cc4ab4cd35
9,175
py
Python
cartography/intel/aws/ec2/tgw.py
sckevmit/cartography
fefb63b5ec97986dcc29038331d0e5b027b95d5f
[ "Apache-2.0" ]
2,322
2019-03-02T01:07:20.000Z
2022-03-31T20:39:12.000Z
cartography/intel/aws/ec2/tgw.py
sckevmit/cartography
fefb63b5ec97986dcc29038331d0e5b027b95d5f
[ "Apache-2.0" ]
462
2019-03-07T18:38:11.000Z
2022-03-31T14:55:20.000Z
cartography/intel/aws/ec2/tgw.py
sckevmit/cartography
fefb63b5ec97986dcc29038331d0e5b027b95d5f
[ "Apache-2.0" ]
246
2019-03-03T02:39:23.000Z
2022-02-24T09:46:38.000Z
import logging from typing import Dict from typing import List import boto3 import botocore.exceptions import neo4j from .util import get_botocore_config from cartography.util import aws_handle_regions from cartography.util import run_cleanup_job from cartography.util import timeit logger = logging.getLogger(__name__) @timeit @aws_handle_regions def get_transit_gateways(boto3_session: boto3.session.Session, region: str) -> List[Dict]: client = boto3_session.client('ec2', region_name=region, config=get_botocore_config()) data: List[Dict] = [] try: data = client.describe_transit_gateways()["TransitGateways"] except botocore.exceptions.ClientError as e: # https://boto3.amazonaws.com/v1/documentation/api/latest/guide/error-handling.html#parsing-error-responses-and-catching-exceptions-from-aws-services logger.warning( "Could not retrieve Transit Gateways due to boto3 error %s: %s. Skipping.", e.response['Error']['Code'], e.response['Error']['Message'], ) return data @timeit @aws_handle_regions def get_tgw_attachments(boto3_session: boto3.session.Session, region: str) -> List[Dict]: client = boto3_session.client('ec2', region_name=region, config=get_botocore_config()) tgw_attachments: List[Dict] = [] try: paginator = client.get_paginator('describe_transit_gateway_attachments') for page in paginator.paginate(): tgw_attachments.extend(page['TransitGatewayAttachments']) except botocore.exceptions.ClientError as e: logger.warning( "Could not retrieve Transit Gateway Attachments due to boto3 error %s: %s. Skipping.", e.response['Error']['Code'], e.response['Error']['Message'], ) return tgw_attachments @timeit @aws_handle_regions def get_tgw_vpc_attachments(boto3_session: boto3.session.Session, region: str) -> List[Dict]: client = boto3_session.client('ec2', region_name=region, config=get_botocore_config()) tgw_vpc_attachments: List[Dict] = [] try: paginator = client.get_paginator('describe_transit_gateway_vpc_attachments') for page in paginator.paginate(): tgw_vpc_attachments.extend(page['TransitGatewayVpcAttachments']) except botocore.exceptions.ClientError as e: logger.warning( "Could not retrieve Transit Gateway VPC Attachments due to boto3 error %s: %s. Skipping.", e.response['Error']['Code'], e.response['Error']['Message'], ) return tgw_vpc_attachments @timeit def load_transit_gateways( neo4j_session: neo4j.Session, data: List[Dict], region: str, current_aws_account_id: str, update_tag: int, ) -> None: ingest_transit_gateway = """ MERGE (ownerAccount:AWSAccount {id: {OwnerId}}) ON CREATE SET ownerAccount.firstseen = timestamp(), ownerAccount.foreign = true SET ownerAccount.lastupdated = {update_tag} MERGE (tgw:AWSTransitGateway {id: {ARN}}) ON CREATE SET tgw.firstseen = timestamp(), tgw.arn = {ARN} SET tgw.tgw_id = {TgwId}, tgw.ownerid = {OwnerId}, tgw.state = {State}, tgw.description = {Description}, tgw.region = {Region}, tgw.lastupdated = {update_tag} WITH tgw MERGE (ownerAccount)-[r:RESOURCE]->(tgw) ON CREATE SET r.firstseen = timestamp() SET r.lastupdated = {update_tag} """ for tgw in data: tgw_id = tgw["TransitGatewayId"] neo4j_session.run( ingest_transit_gateway, TgwId=tgw_id, ARN=tgw["TransitGatewayArn"], Description=tgw.get("Description"), Region=region, AWS_ACCOUNT_ID=current_aws_account_id, OwnerId=tgw["OwnerId"], State=tgw["State"], update_tag=update_tag, ) _attach_shared_transit_gateway( neo4j_session, tgw, region, current_aws_account_id, update_tag, ) @timeit def _attach_shared_transit_gateway( neo4j_session: neo4j.Session, tgw: Dict, region: str, current_aws_account_id: str, update_tag: int, ) -> None: attach_tgw = """ MERGE (tgw:AWSTransitGateway {id: {ARN}}) ON CREATE SET tgw.firstseen = timestamp() SET tgw.lastupdated = {update_tag} WITH tgw MATCH (currentAccount:AWSAccount{id: {AWS_ACCOUNT_ID}}) MERGE (tgw)-[s:SHARED_WITH]->(currentAccount) ON CREATE SET s.firstseen = timestamp() SET s.lastupdated = {update_tag} """ if tgw["OwnerId"] != current_aws_account_id: neo4j_session.run( attach_tgw, ARN=tgw["TransitGatewayArn"], TransitGatewayId=tgw["TransitGatewayId"], AWS_ACCOUNT_ID=current_aws_account_id, update_tag=update_tag, ) @timeit def load_tgw_attachments( neo4j_session: neo4j.Session, data: List[Dict], region: str, current_aws_account_id: str, update_tag: int, ) -> None: ingest_transit_gateway = """ MERGE (tgwa:AWSTransitGatewayAttachment{id: {TgwAttachmentId}}) ON CREATE SET tgwa.firstseen = timestamp() SET tgwa.region = {Region}, tgwa.resource_type = {ResourceType}, tgwa.state = {State}, tgwa.lastupdated = {update_tag} WITH tgwa MATCH (awsAccount:AWSAccount {id: {AWS_ACCOUNT_ID}}) MERGE (awsAccount)-[r:RESOURCE]->(tgwa) ON CREATE SET r.firstseen = timestamp() SET r.lastupdated = {update_tag} WITH tgwa MATCH (tgw:AWSTransitGateway {tgw_id: {TransitGatewayId}}) MERGE (tgwa)-[attach:ATTACHED_TO]->(tgw) ON CREATE SET attach.firstseen = timestamp() SET attach.lastupdated = {update_tag} """ for tgwa in data: tgwa_id = tgwa["TransitGatewayAttachmentId"] neo4j_session.run( ingest_transit_gateway, TgwAttachmentId=tgwa_id, TransitGatewayId=tgwa["TransitGatewayId"], ResourceId=tgwa.get("ResourceId"), Region=region, AWS_ACCOUNT_ID=current_aws_account_id, ResourceType=tgwa.get("ResourceType"), State=tgwa["State"], update_tag=update_tag, ) if tgwa.get("VpcId"): # only attach if the TGW attachment is a VPC TGW attachment _attach_tgw_vpc_attachment_to_vpc_subnets( neo4j_session, tgwa, region, current_aws_account_id, update_tag, ) @timeit def _attach_tgw_vpc_attachment_to_vpc_subnets( neo4j_session: neo4j.Session, tgw_vpc_attachment: Dict, region: str, current_aws_account_id: str, update_tag: int, ) -> None: """ Attach a VPC Transit Gateway Attachment to the VPC and and subnets """ attach_vpc_tgw_attachment_to_vpc = """ MERGE (vpc:AWSVpc {id: {VpcId}}) ON CREATE SET vpc.firstseen = timestamp() SET vpc.lastupdated = {update_tag} WITH vpc MATCH (tgwa:AWSTransitGatewayAttachment {id: {TgwAttachmentId}}) MERGE (vpc)-[r:RESOURCE]->(tgwa) ON CREATE SET r.firstseen = timestamp() SET r.lastupdated = {update_tag} """ attach_vpc_tgw_attachment_to_subnet = """ MERGE (sub:EC2Subnet {subnetid: {SubnetId}}) ON CREATE SET sub.firstseen = timestamp() SET sub.lastupdated = {update_tag} WITH sub MATCH (tgwa:AWSTransitGatewayAttachment {id: {TgwAttachmentId}}) MERGE (tgwa)-[p:PART_OF_SUBNET]->(sub) ON CREATE SET p.firstseen = timestamp() SET p.lastupdated = {update_tag} """ neo4j_session.run( attach_vpc_tgw_attachment_to_vpc, VpcId=tgw_vpc_attachment["VpcId"], TgwAttachmentId=tgw_vpc_attachment["TransitGatewayAttachmentId"], update_tag=update_tag, ) for subnet_id in tgw_vpc_attachment["SubnetIds"]: neo4j_session.run( attach_vpc_tgw_attachment_to_subnet, SubnetId=subnet_id, TgwAttachmentId=tgw_vpc_attachment["TransitGatewayAttachmentId"], update_tag=update_tag, ) @timeit def cleanup_transit_gateways(neo4j_session: neo4j.Session, common_job_parameters: Dict) -> None: run_cleanup_job('aws_import_tgw_cleanup.json', neo4j_session, common_job_parameters) def sync_transit_gateways( neo4j_session: neo4j.Session, boto3_session: boto3.session.Session, regions: List[str], current_aws_account_id: str, update_tag: int, common_job_parameters: Dict, ) -> None: for region in regions: logger.info("Syncing AWS Transit Gateways for region '%s' in account '%s'.", region, current_aws_account_id) tgws = get_transit_gateways(boto3_session, region) load_transit_gateways(neo4j_session, tgws, region, current_aws_account_id, update_tag) logger.debug( "Syncing AWS Transit Gateway Attachments for region '%s' in account '%s'.", region, current_aws_account_id, ) tgw_attachments = get_tgw_attachments(boto3_session, region) tgw_vpc_attachments = get_tgw_vpc_attachments(boto3_session, region) load_tgw_attachments( neo4j_session, tgw_attachments + tgw_vpc_attachments, region, current_aws_account_id, update_tag, ) cleanup_transit_gateways(neo4j_session, common_job_parameters)
35.288462
157
0.680981
e33ca7fc699ca6cc1f3e064db2ddb7b2fe8db069
2,119
py
Python
purdue/models/dining.py
ScriptedButton/BoilerBot
80419d075cc51f5d90652070b851334bd9382eaa
[ "Apache-2.0" ]
2
2021-08-05T04:25:45.000Z
2021-08-05T05:55:24.000Z
purdue/models/dining.py
ScriptedButton/BoilerBot
80419d075cc51f5d90652070b851334bd9382eaa
[ "Apache-2.0" ]
null
null
null
purdue/models/dining.py
ScriptedButton/BoilerBot
80419d075cc51f5d90652070b851334bd9382eaa
[ "Apache-2.0" ]
null
null
null
import aiohttp class Dining: def __init__(self): import purdue.models self._LOCATION_URL = "https://api.hfs.purdue.edu/menus/v2/locations" self._locations: list[purdue.models.Location] = list() def get_location(self, name): for location in self.locations: if location.name == name: return location async def load(self): import purdue.models async with aiohttp.ClientSession() as session: async with session.get(self._LOCATION_URL) as response: response_json = await response.json() for location in response_json.get("Location"): location_obj = purdue.models.Location( id=location.get("LocationId"), name=location.get("Name"), formal_name=location.get("FormalName"), phone_number=location.get("PhoneNumber"), latitude=location.get("Latitude"), longitude=location.get("Longitude"), short_name=location.get("ShortName"), url=location.get("Url"), google_place_id=location.get("GooglePlaceId"), type=location.get("Type"), transact_mobile_order_id=location.get("TransactMobileOrderId"), address=purdue.models.Address( street=location.get("Address").get("Street"), city=location.get("Address").get("City"), state=location.get("Address").get("State"), zip_code=location.get("Address").get("ZipCode"), country=location.get("Address").get("Country"), country_code=location.get("Address").get("CountryCode") ), meals=None ) self.locations.append(location_obj) @property def locations(self): return self._locations
45.085106
87
0.515809
9de4c90e5df54335c98bdebe28bfc1ceb315924c
5,296
py
Python
app/auth/authorisation.py
dudikbender/geocoder-api
3879f7729fcc7658f6ae75e65e187af4667cc393
[ "MIT" ]
null
null
null
app/auth/authorisation.py
dudikbender/geocoder-api
3879f7729fcc7658f6ae75e65e187af4667cc393
[ "MIT" ]
null
null
null
app/auth/authorisation.py
dudikbender/geocoder-api
3879f7729fcc7658f6ae75e65e187af4667cc393
[ "MIT" ]
null
null
null
from fastapi import Depends, APIRouter, HTTPException, Security, status from fastapi.security.http import HTTPAuthorizationCredentials, HTTPBearer, HTTPBasic, HTTPBasicCredentials from fastapi.security import OAuth2PasswordBearer, OAuth2PasswordRequestForm import os from dotenv import find_dotenv, load_dotenv import pandas as pd from pandas import json_normalize import json import requests from passlib.context import CryptContext from datetime import datetime, timedelta from typing import Optional from jose import JWTError, jwt from app.utils.schema import Token, TokenData, User, UserInDB env_loc = find_dotenv('.env') load_dotenv(env_loc) api_key = os.environ.get('AIRTABLE_API_KEY') app_auth = APIRouter() # Define the auth scheme and access token URL # token_schema = HTTPBearer(scheme_name='Authorization Bearer Token') For API TOKEN option auth_security = HTTPBasic() #oauth2_scheme = OAuth2PasswordBearer(tokenUrl="auth/token") pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto") # Settings for encryption SECRET_KEY = os.environ.get('SECRET_KEY') ALGORITHM = os.environ.get('ALGORITHM') ACCESS_TOKEN_EXPIRE_MINUTES = int(os.environ.get('ACCESS_TOKEN_EXPIRE_MINUTES')) def create_password_hash(password): return pwd_context.hash(password) def verify_password(plain_password, password_hash): return pwd_context.verify(plain_password, password_hash) def get_all_users(): url = f'https://api.airtable.com/v0/appe7KAdke2PXikpW/Users' headers = {'Authorization': f'Bearer {api_key}'} response = requests.get(url, headers=headers).json() user_list = [] for record in response['records']: fields = record['fields'] fields['id'] = record['id'] user_list.append(fields) df = json_normalize(user_list) return df def get_user(username: str): user_df = get_all_users() user = user_df[user_df.username == username] if len(user) == 0: print('Username either does not exist or is misspelled.') return False else: user_data = json.loads(user.to_json(orient='records'))[0] return UserInDB(**user_data) def authenticate_user(username, password): # First, retrieve the user by the email provided user = get_user(username) if not user: return False # If present, verify password against password hash in database password_hash = user.hashed_password if not verify_password(password, password_hash): return False return user # Deprecated token authorization flow - keeping for reference '''@app_auth.post('/') async def login(token: HTTPAuthorizationCredentials = Security(api_key_schema)): if token.dict()['credentials'] != app_key: raise HTTPException(status_code=401, detail='Api key is not correct.') else: return token.dict()['credentials']''' # Create access token, required for OAuth2 flow def create_access_token(data: dict, expires_delta: Optional[timedelta] = None): to_encode = data.copy() if expires_delta: expire = datetime.utcnow() + expires_delta else: expire = datetime.utcnow() + timedelta(minutes=15) to_encode.update({"exp": expire}) encoded_jwt = jwt.encode(to_encode, SECRET_KEY, algorithm=ALGORITHM) return encoded_jwt # OAuth2 Scheme - Decrypt the token and retrieve the username from payload '''async def get_current_user(token: str = Depends(oauth2_scheme)): credentials_exception = HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Could not validate credentials", headers={"WWW-Authenticate": "Bearer"}, ) try: payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM]) username: str = payload.get("sub") if username is None: raise credentials_exception token_data = TokenData(username=username) except JWTError: raise credentials_exception user = get_user(username=token_data.username) if user is None: raise credentials_exception return user''' # HTTP Basic scheme async def get_current_user(credentials: str = Depends(auth_security)): credentials_exception = HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Could not validate credentials", headers={"WWW-Authenticate": "Bearer"}, ) try: username = credentials.username password = credentials.password user = authenticate_user(username, password) if username is None: raise credentials_exception except: raise credentials_exception return user # Endpoint for token authorisation @app_auth.post("/token") async def login_for_access_token(form_data: HTTPBasicCredentials = Depends(auth_security)): user = authenticate_user(form_data.username, form_data.password) if not user: raise HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Incorrect username or password", headers={"WWW-Authenticate": "Bearer"}, ) access_token_expires = timedelta(minutes=ACCESS_TOKEN_EXPIRE_MINUTES) access_token = create_access_token( data={"sub": user.username}, expires_delta=access_token_expires ) return {"access_token": access_token, "token_type": "bearer"}
37.560284
107
0.723943
dfd4401bce065b834531e06ceb2b277c34c88178
983
py
Python
Algorithms_easy/1271. Hexspeak.py
VinceW0/Leetcode_Python_solutions
09e9720afce21632372431606ebec4129eb79734
[ "Xnet", "X11" ]
4
2020-08-11T20:45:15.000Z
2021-03-12T00:33:34.000Z
Algorithms_easy/1271. Hexspeak.py
VinceW0/Leetcode_Python_solutions
09e9720afce21632372431606ebec4129eb79734
[ "Xnet", "X11" ]
null
null
null
Algorithms_easy/1271. Hexspeak.py
VinceW0/Leetcode_Python_solutions
09e9720afce21632372431606ebec4129eb79734
[ "Xnet", "X11" ]
null
null
null
""" 1271. Hexspeak Easy A decimal number can be converted to its Hexspeak representation by first converting it to an uppercase hexadecimal string, then replacing all occurrences of the digit 0 with the letter O, and the digit 1 with the letter I. Such a representation is valid if and only if it consists only of the letters in the set {"A", "B", "C", "D", "E", "F", "I", "O"}. Given a string num representing a decimal integer N, return the Hexspeak representation of N if it is valid, otherwise return "ERROR". Example 1: Input: num = "257" Output: "IOI" Explanation: 257 is 101 in hexadecimal. Example 2: Input: num = "3" Output: "ERROR" Constraints: 1 <= N <= 10^12 There are no leading zeros in the given string. All answers must be in uppercase letters. """ class Solution: def toHexspeak(self, num: str) -> str: s = hex(int(num)).upper()[2:].replace('0', 'O').replace('1', 'I') return 'ERROR' if any(c.isdigit() for c in s) else s
28.911765
355
0.682604
79521fcbfb967e650cb7e2059d63cc45c8045a9e
1,202
py
Python
config.py
marcdjulien/govindex
18740206e54aecfb4193e910e5076ee504229779
[ "MIT" ]
null
null
null
config.py
marcdjulien/govindex
18740206e54aecfb4193e910e5076ee504229779
[ "MIT" ]
null
null
null
config.py
marcdjulien/govindex
18740206e54aecfb4193e910e5076ee504229779
[ "MIT" ]
null
null
null
# -*- encoding: utf-8 -*- """ Copyright (c) 2019 - present AppSeed.us """ import os from decouple import config class Config(object): basedir = os.path.abspath(os.path.dirname(__file__)) SECRET_KEY = config('SECRET_KEY', default='sdnfogui3wn') SQLALCHEMY_DATABASE_URI = config('SQLALCHEMY_DATABASE_URI', default='sqlite:///test-3.db') SQLALCHEMY_TRACK_MODIFICATIONS = False class ProductionConfig(Config): DEBUG = False # Security SESSION_COOKIE_HTTPONLY = True REMEMBER_COOKIE_HTTPONLY = True REMEMBER_COOKIE_DURATION = 3600 # PostgreSQL database SQLALCHEMY_DATABASE_URI = '{}://{}:{}@{}:{}/{}'.format( config('DB_ENGINE' , default='postgresql' ), config('DB_USERNAME' , default='appseed' ), config('DB_PASS' , default='pass' ), config('DB_HOST' , default='localhost' ), config('DB_PORT' , default=5432 ), config('DB_NAME' , default='appseed-flask' ) ) class DebugConfig(Config): DEBUG = True SQLALCHEMY_ECHO = True # Load all possible configurations config_dict = { 'Production': ProductionConfig, 'Debug' : DebugConfig }
28.619048
94
0.633943
16c07bd40b0480b995a6c42232cd9d87a3c15660
442
py
Python
explorer/notes/migrations/0013_auto_20191126_1408.py
UPstartDeveloper/explorer_buddy
467fa77307a588645e7a9fd269ae13b6b24d4efc
[ "MIT" ]
null
null
null
explorer/notes/migrations/0013_auto_20191126_1408.py
UPstartDeveloper/explorer_buddy
467fa77307a588645e7a9fd269ae13b6b24d4efc
[ "MIT" ]
22
2019-12-05T01:10:16.000Z
2022-03-12T00:06:51.000Z
explorer/notes/migrations/0013_auto_20191126_1408.py
UPstartDeveloper/explorer_buddy
467fa77307a588645e7a9fd269ae13b6b24d4efc
[ "MIT" ]
null
null
null
# Generated by Django 2.2.5 on 2019-11-26 22:08 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('notes', '0012_auto_20191126_1142'), ] operations = [ migrations.AlterField( model_name='note', name='media', field=models.FileField(blank=True, help_text='Optional image to add to note.', upload_to='image/'), ), ]
23.263158
111
0.61086
5971161ca781f643c9d23acb275b3795886ab8a3
8,952
py
Python
reaction_completer/completer.py
CederGroupHub/ReactionCompleter
6b20a9a4ffdf19e0d51c99901d104d8f737ce762
[ "MIT" ]
null
null
null
reaction_completer/completer.py
CederGroupHub/ReactionCompleter
6b20a9a4ffdf19e0d51c99901d104d8f737ce762
[ "MIT" ]
null
null
null
reaction_completer/completer.py
CederGroupHub/ReactionCompleter
6b20a9a4ffdf19e0d51c99901d104d8f737ce762
[ "MIT" ]
null
null
null
import logging from functools import reduce from operator import or_ import sympy from sympy import Matrix, symbols from reaction_completer.errors import ( StupidRecipe, TooManyPrecursors, TooFewPrecursors) from reaction_completer.formatting import simplify_print from reaction_completer.material import MaterialInformation __author__ = 'Haoyan Huo' __maintainer__ = 'Haoyan Huo' __email__ = 'haoyan.huo@lbl.gov' class ReactionCompleter(object): def __init__(self, precursors: [MaterialInformation], target: MaterialInformation, target_min_nv=2): """ A reaction completer that takes a set of precursors and a target, then calculates the possible reactions, using sympy for symbolic derivation. :param precursors: List of precursors. :type precursors: list(MaterialInformation) :param target: The target material. :type target: MaterialInformation :param target_min_nv: """ self.precursors = precursors self.target = target self.target_min_nv = target_min_nv self._precursor_candidates = [] self._decomposition_chemicals = {} self._exchange_chemicals = {} self._linear_eq = {} self._inspect_target() self._prepare_precursors() self._setup_linear_equation() def _inspect_target(self): """ Prepare the target material into a ready-to-use structure. """ if len(self.target.nv_elements) < self.target_min_nv: raise StupidRecipe( 'Target must have more than 1 non volatile elements, got %r: %s' % (self.target.nv_elements, self.target.material_formula)) def _prepare_precursors(self): # find the set of precursors seen_precursors = set() for precursor in self.precursors: # Skip precursors that are seen if precursor.material_formula in seen_precursors: continue seen_precursors.add(precursor.material_formula) if precursor.all_elements_dict == self.target.all_elements_dict: # TODO: we need a smarter comparison raise StupidRecipe('Precursor list contains target') if len(precursor.all_elements) == 0: logging.debug( 'Skipping empty precursor %s: %s', precursor.material_formula) continue excessive = precursor.nv_elements - self.target.nv_elements if len(excessive) > 0: logging.debug( 'Skipping precursor %s because it ' 'has excessive chemical elements %r', precursor.material_formula, excessive) continue self._precursor_candidates.append(precursor) self._decomposition_chemicals.update(precursor.decompose_chemicals) self._exchange_chemicals.update(self.target.exchange_chemicals) if len(self._precursor_candidates) == 0: raise StupidRecipe('Precursor candidates is empty') # check for equality precursors_nv_elements = reduce( or_, [x.nv_elements for x in self._precursor_candidates]) missing_elements = self.target.nv_elements - precursors_nv_elements if len(missing_elements) > 0: raise StupidRecipe( 'Precursor candidates do not ' 'provide non volatile elements: %r' % missing_elements) def _setup_linear_equation(self): all_elements = reduce( or_, [x.all_elements for x in self._precursor_candidates] + [self.target.all_elements] + [set(x) for x in self._exchange_chemicals.values()] + [set(x) for x in self._decomposition_chemicals.values()]) all_elements = sorted(list(all_elements)) # Create the symbols that will be used for linear eq. chemical_symbols = '' for i in range(len(self._precursor_candidates)): chemical_symbols += 'p%d, ' % i for i in range(len(self._decomposition_chemicals)): chemical_symbols += 'r%d, ' % i for i in range(len(self._exchange_chemicals)): chemical_symbols += 'e%d, ' % i chemical_symbols += 't' chemical_symbols = symbols(chemical_symbols) coefficient_matrix = [] which_side = [] def fill_row(material_elements): row = [material_elements.get(element, 0) for element in all_elements] coefficient_matrix.append(row) for precursor in self._precursor_candidates: fill_row(precursor.all_elements_dict) which_side.append('fl') for chemical in sorted(self._decomposition_chemicals): fill_row(self._decomposition_chemicals[chemical]) which_side.append('dr') for chemical in sorted(self._exchange_chemicals): fill_row(self._exchange_chemicals[chemical]) which_side.append('dl') target_elements = self.target.all_elements_dict target_vector = [target_elements.get(i, 0) for i in all_elements] coefficient_matrix = Matrix(coefficient_matrix).T target_vector = Matrix(target_vector) self._linear_eq.update({ 'chemical_symbols': chemical_symbols, 'coefficient_matrix': coefficient_matrix, 'target_vector': target_vector, 'which_side': which_side, 'all_elements': all_elements, }) def _render_reaction(self, solution: tuple): balanced = { 'left': {}, 'right': {self.target.material_formula: '1'} } solution = list(solution) which_side = self._linear_eq['which_side'] precursor_solutions = solution[:len(self._precursor_candidates)] precursor_side = which_side[:len(self._precursor_candidates)] del solution[:len(self._precursor_candidates)] del which_side[:len(self._precursor_candidates)] decomposition_solutions = solution[:len(self._decomposition_chemicals)] decomposition_side = which_side[:len(self._decomposition_chemicals)] del solution[:len(self._decomposition_chemicals)] del which_side[:len(self._decomposition_chemicals)] exchange_solutions = solution.copy() exchange_side = which_side.copy() def decide_side_value(s, val): if s[0] == 'f': if s[1] == 'l': return 'left', val elif s[1] == 'r': return 'right', -val elif s[0] == 'd': if not isinstance(val, sympy.Float): value_zero = val.evalf( subs={x: 0.001 for x in val.free_symbols}) value_negative = float(value_zero) < 0 else: value_negative = float(val) < 0 if s[1] == 'l': return ('left', val) if not value_negative else ('right', -val) elif s[1] == 'r': return ('right', -val) if value_negative else ('left', val) for precursor, amount, side in zip( self._precursor_candidates, precursor_solutions, precursor_side): material_formula = precursor.material_formula side, value = decide_side_value(side, amount) value_s = simplify_print(value) if value_s != '0': balanced[side][material_formula] = value_s for chemical, amount, side in zip( sorted(self._decomposition_chemicals), decomposition_solutions, decomposition_side): side, value = decide_side_value(side, amount) value_s = simplify_print(value) if value_s != '0': balanced[side][chemical] = value_s for chemical, amount, side in zip( sorted(self._exchange_chemicals), exchange_solutions, exchange_side): side, value = decide_side_value(side, amount) value_s = simplify_print(value) if value_s != '0': balanced[side][chemical] = value_s return balanced def compute_reactions(self): try: a = self._linear_eq['coefficient_matrix'] b = self._linear_eq['target_vector'] solution, params = a.gauss_jordan_solve(b) if len(params) > 0: raise TooManyPrecursors( 'Too many precursors to balance %r ==> %r' % ( [x.material_formula for x in self.precursors], self.target.material_formula)) solution = solution.T[:1, :] except ValueError: raise TooFewPrecursors('Too few precursors to balance') return self._render_reaction(solution)
37.3
100
0.607797