hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
482dddc4b95b4877167dc37f7f640ecf5a8978b8
13,304
py
Python
zfs/dnode.py
hiliev/py-zfs-recovery
ec3bb3316b28b91c197993d8c0a0803d4ab39605
[ "BSD-3-Clause" ]
14
2017-07-09T19:25:14.000Z
2020-07-18T11:58:36.000Z
zfs/dnode.py
hiliev/py-zfs-recovery
ec3bb3316b28b91c197993d8c0a0803d4ab39605
[ "BSD-3-Clause" ]
8
2018-03-24T08:58:47.000Z
2021-01-20T17:18:37.000Z
zfs/dnode.py
hiliev/py-zfs-recovery
ec3bb3316b28b91c197993d8c0a0803d4ab39605
[ "BSD-3-Clause" ]
2
2018-03-17T23:16:35.000Z
2018-04-14T10:06:04.000Z
# Copyright (c) 2017 Hristo Iliev <github@hiliev.eu> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import struct, datetime from zfs.blockptr import BlockPtr from zfs.obj_desc import DMU_TYPE_DESC BLKPTR_OFFSET = 64 class BonusDataset: def __init__(self, data): (self.ds_dir_obj, self.ds_prev_snap_obj, self.ds_prev_snap_txg, self.ds_prev_next_obj, self.ds_snapnames_zapobj, self.ds_num_children, self.ds_creation_time, self.ds_creation_txg, self.ds_deadlist_obj, self.ds_used_bytes, self.ds_compressed_bytes, self.ds_uncompressed_bytes, self.ds_unique_bytes, self.ds_fsid_guid, self.ds_guid, self.ds_restoring) = struct.unpack("=16Q", data[:16*8]) self.bptr = BlockPtr() self.bptr.parse(data[16*8:16*8+128]) def __str__(self): fields = [ 'ds_dir_obj', 'ds_prev_snap_obj', 'ds_prev_snap_txg', 'ds_prev_next_obj', 'ds_snapnames_zapobj', 'ds_num_children', 'ds_creation_time', 'ds_creation_txg', 'ds_deadlist_obj', 'ds_used_bytes', 'ds_compressed_bytes', 'ds_uncompressed_bytes', 'ds_unique_bytes', 'ds_fsid_guid', 'ds_guid', 'ds_restoring', 'ds_bp' ] fmt = ' '.join([f + '={}' for f in fields]) return fmt.format( self.ds_dir_obj, self.ds_prev_snap_obj, self.ds_prev_snap_txg, self.ds_prev_next_obj, self.ds_snapnames_zapobj, self.ds_num_children, self.ds_creation_time, self.ds_creation_txg, self.ds_deadlist_obj, self.ds_used_bytes, self.ds_compressed_bytes, self.ds_uncompressed_bytes, self.ds_unique_bytes, self.ds_fsid_guid, self.ds_guid, self.ds_restoring, self.bptr ) class BonusDirectory: def __init__(self, data): ( self.dd_creation_time, self.dd_head_dataset_obj, self.dd_parent_obj, self.dd_clone_parent_obj, self.dd_child_dir_zapobj, self.dd_used_bytes, self.dd_compressed_bytes, self.dd_uncompressed_bytes, self.dd_quota, self.dd_reserved, self.dd_props_zapobj ) = struct.unpack("=11Q", data[:11*8]) def __str__(self): fields = [ 'dd_creation_time', 'dd_head_dataset_obj', 'dd_parent_obj', 'dd_clone_parent_obj', 'dd_child_dir_zapobj', 'dd_used_bytes', 'dd_compressed_bytes', 'dd_uncompressed_bytes', 'dd_quota', 'dd_reserved', 'dd_props_zapobj', ] fmt = ' '.join([f+'={}' for f in fields]) return fmt.format( self.dd_creation_time, self.dd_head_dataset_obj, self.dd_parent_obj, self.dd_clone_parent_obj, self.dd_child_dir_zapobj, self.dd_used_bytes, self.dd_compressed_bytes, self.dd_uncompressed_bytes, self.dd_quota, self.dd_reserved, self.dd_props_zapobj ) class BonusZnode: def __init__(self, data): ( self.zp_atime, self.zp_atime_ns, self.zp_mtime, self.zp_mtime_ns, self.zp_ctime, self.zp_ctime_ns, self.zp_crtime, self.zp_crtime_ns, self.zp_gen, self.zp_mode, self.zp_size, self.zp_parent, self.zp_links, self.zp_xattr, self.zp_rdev, self.zp_flags, self.zp_uid, self.zp_gid ) = struct.unpack("=18Q", data[:18*8]) self.zp_inline_content = data[264:] def size(self): return self.zp_size def mtime(self): return self.zp_mtime def mode(self): return self.zp_mode def uid(self): return self.zp_uid def gid(self): return self.zp_gid def __str__(self): fields = [ 'zp_atime', 'zp_atime_ns', 'zp_mtime', 'zp_mtime_ns', 'zp_ctime', 'zp_ctime_ns', 'zp_crtime', 'zp_crtime_ns', 'zp_gen', 'zp_mode', 'zp_size', 'zp_parent', 'zp_links', 'zp_xattr', 'zp_rdev', 'zp_flags', 'zp_uid', 'zp_gid' ] fmt = ' '.join([f+'={}' for f in fields]) return fmt.format( self.zp_atime, self.zp_atime_ns, self.zp_mtime, self.zp_mtime_ns, self.zp_ctime, self.zp_ctime_ns, self.zp_crtime, self.zp_crtime_ns, self.zp_gen, self.zp_mode, self.zp_size, self.zp_parent, self.zp_links, self.zp_xattr, self.zp_rdev, self.zp_flags, self.zp_uid, self.zp_gid ) class BonusSysAttr: def __init__(self, objset, data): if objset is None: return; try: SA_MAGIC=0x2F505A (magic,layoutid,hdrsz,l) = struct.unpack("=IBBH",data[0:8]) if not (magic == SA_MAGIC): print("[-] Error: SA_MAGIC wrong") hdrsz *= 2 if layoutid == 3: print("Symlink") lenidx = 0 if (hdrsz < 8): hdrsz = 8 ptr = hdrsz #ptr = 8 #skip sa_hdr_phys_t for f in objset._sa._lay[str(layoutid)]: l = f['len'] b = data[ptr:ptr+l] v = None if (l == 16): (v0,v1) = struct.unpack("=QQ",b) v = [v0,v1]; elif (l == 8): v, = struct.unpack("=Q",b) elif (l == 4): v, = struct.unpack("=I",b) elif (l == 0): l, = struct.unpack("=H",data[6+lenidx*2:6+lenidx*2+2]) lenidx += 1 if (f['name'] == "zpl_dacl_aces"): pass elif (f['name'] == "zpl_symlink"): v = data[ptr:ptr+l] #ptr = len(data) ptr += l setattr(self,f['name'], v); n = f['name'].replace("zpl_","zp_"); setattr(self,n, v); self.zp_inline_content = None #ZFS_OLD_ZNODE_PHYS_SIZE=0x108 #if (len(data) > ZFS_OLD_ZNODE_PHYS_SIZE): self.zp_inline_content = data[ptr:] except: pass def size(self): return self.zpl_size def mtime(self): try: return self.zpl_mtime[0] except: return datetime.datetime.now().timestamp() def mode(self): return self.zpl_mode def uid(self): return self.zpl_uid def gid(self): return self.zpl_gid def __str__(self): pass DNODE_FLAG_USED_BYTES=(1 << 0) class DNode: def __init__(self, data=None, objset=None): self._data = None self._type = None # uint8_t 1 self._indblkshift = None # uint8_t 1 self._nlevels = None # uint8_t 1 self._nblkptr = None # uint8_t 1 self._bonustype = None # uint8_t 1 self._checksum = None # uint8_t 1 self._compress = None # uint8_t 1 self._flags = None # uint8_t 1 self._datablkszsec = None # uint16_t 2 self._bonuslen = None # uint16_t 2 self._extra_slots = None # uint8_t 1 self._pad2 = None # uint8_t[4] 4 self._maxblkid = None # uint64_t 8 self._used = None # uint64_t 8 self._pad3 = None # uint64_t[4] 32 self._blkptr = None # blkptr_t[N] @64 self._bonus = None # uint8_t[BONUSLEN] self._datablksize = None self._objset = objset if data is not None: self.parse(data) def parse(self, data): if len(data) < 512: raise ValueError("Data is too small") # Save data for dumping purposes self._data = data[:] (self._type, self._indblkshift, self._nlevels, self._nblkptr, self._bonustype, self._checksum, self._compress, self._flags, self._datablkszsec, self._bonuslen, self._extra_slots, self._maxblkid, self._used) = struct.unpack("=8B2HB3xQQ32x", data[:BLKPTR_OFFSET]) if self._type == 0: return # Object type > 100 (or even 53) is probably due to data error elif self._type > 100: if self._type==196: # on linux 196 is "zap" with "bonustype dataset" pass else: self._invalidate() return self._blkptr = [] if self._nblkptr > 3: # More than three block pointers is a sign of data error self._invalidate() return self._used = self._used << 9 if not self._flags & DNODE_FLAG_USED_BYTES else self._used; self._datablksize = self._datablkszsec << 9 ptr = BLKPTR_OFFSET for bn in range(self._nblkptr): b = BlockPtr(data=data[ptr:ptr+128]) self._blkptr.append(b) ptr += 128 bonus_data = data[ptr:ptr+self._bonuslen] if self._bonuslen and self._bonustype == 12: self._bonus = BonusDirectory(bonus_data) elif self._bonuslen and self._bonustype == 16: self._bonus = BonusDataset(bonus_data) elif self._bonuslen and self._bonustype == 17: self._bonus = BonusZnode(bonus_data) elif self._bonuslen and self._bonustype == 0x2c: self._bonus = BonusSysAttr(self._objset, bonus_data) else: self._bonus = bonus_data @property def blkptrs(self): return self._blkptr @property def maxblkid(self): return self._maxblkid @property def bonus(self): return self._bonus @property def type(self): return self._type @property def levels(self): return self._nlevels @property def datablksize(self): return self._datablksize @property def indblkshift(self): return self._indblkshift def dump_data(self, file_path): with open(file_path, 'wb') as f: f.write(self._data) def _invalidate(self): self._type = None def __str__(self): if self._type is None: return "<invalid dnode>" elif self._type == 0: return "<unallocated dnode>" try: if self._type == 196: dmu_type = "zap" else: dmu_type = DMU_TYPE_DESC[self._type] except IndexError: dmu_type = "unk_{}".format(self._type) bptrs = " ".join(["blkptr[{}]={}".format(i, v) for i, v in enumerate(self._blkptr)]) bonus = " bonus[{}]".format(self._bonuslen) if self._bonuslen else "" if self._bonustype in [12, 16]: bonus += "=[{}]".format(self._bonus) return "[{}] {}B {}L/{} {}{}".format(dmu_type, self._maxblkid+1, self._nlevels, 1 << self._indblkshift, bptrs, bonus) @staticmethod def from_bptr(vdev, bptr, dvas=(0, 1), objset=None): data = None for dva in dvas: data,c = vdev.read_block(bptr, dva=dva) if data and c: break if data is None: return None dn = DNode(objset=objset) dn.parse(data) return dn
33.094527
120
0.555848
8bc8473479b2f60615ebf15d36671f935a2ea859
5,391
py
Python
tests/components/test_class_RunTask.py
aimakerspace/Synergos
ce972f6b031535e82be6724f42118c33f90e9189
[ "Apache-2.0" ]
null
null
null
tests/components/test_class_RunTask.py
aimakerspace/Synergos
ce972f6b031535e82be6724f42118c33f90e9189
[ "Apache-2.0" ]
null
null
null
tests/components/test_class_RunTask.py
aimakerspace/Synergos
ce972f6b031535e82be6724f42118c33f90e9189
[ "Apache-2.0" ]
3
2021-11-25T03:26:52.000Z
2022-01-24T09:48:37.000Z
#!/usr/bin/env python #################### # Required Modules # #################### # Generic/Built-in import logging # Libs # Custom from synergos.endpoints import RUN_ENDPOINTS from conftest import ( PROJECT_KEY, EXPT_KEY_1, EXPT_KEY_2, check_resp_structure, check_availability_in_single_archive, check_availability_in_bulk_archives ) ################## # Configurations # ################## ################### # Tests - RunTask # ################### # def test_RunTask_generate_bulk_url(init_params, experiment_task): # bulk_url = EXPERIMENT_ENDPOINTS.EXPERIMENTS.substitute( # **PROJECT_KEY, # **init_params # ) # assert experiment_task._generate_bulk_url(**PROJECT_KEY) == bulk_url # def test_RunTask_generate_single_url(init_params, experiment_task): # single_url_1 = EXPERIMENT_ENDPOINTS.EXPERIMENT.substitute( # **init_params, # **EXPT_KEY_1 # ) # assert (experiment_task._generate_single_url(**EXPT_KEY_1) == single_url_1) # single_url_2 = EXPERIMENT_ENDPOINTS.EXPERIMENT.substitute( # **init_params, # **EXPT_KEY_2 # ) # assert (experiment_task._generate_single_url(**EXPT_KEY_2) == single_url_2) # def test_RunTask_create(experiment_task, payloads): # expt_payloads = payloads['experiment'] # for payload in expt_payloads: # create_resp = experiment_task.create(**payload) # check_resp_structure(resp=create_resp) # check_availability_in_single_archive( # payload=payload, # archive=create_resp['data'] # ) # def test_RunTask_read_all(experiment_task, payloads): # read_all_resp = experiment_task.read_all(**PROJECT_KEY) # check_resp_structure(read_all_resp) # expt_payloads = payloads['experiment'] # check_availability_in_bulk_archives( # payloads=expt_payloads, # archives=read_all_resp['data'] # ) # def test_RunTask_read(experiment_task, payloads): # read_resp_1 = experiment_task.read(**EXPT_KEY_1) # check_resp_structure(read_resp_1) # check_availability_in_single_archive( # payload=payloads['experiment'][0], # archive=read_resp_1['data'] # ) # read_resp_2 = experiment_task.read(**EXPT_KEY_2) # check_resp_structure(read_resp_2) # check_availability_in_single_archive( # payload=payloads['experiment'][1], # archive=read_resp_2['data'] # ) # def test_RunTask_update(experiment_task, payloads): # modified_payload_1 = { # 'model': [ # { # "activation": "sigmoid", # "is_input": True, # "l_type": "Linear", # "structure": { # "bias": True, # "in_features": 20, # "out_features": 10 # } # }, # { # "activation": "sigmoid", # "is_input": False, # "l_type": "Linear", # "structure": { # "bias": True, # "in_features": 10, # "out_features": 1 # } # } # ] # } # update_resp_1 = experiment_task.update(**EXPT_KEY_1, **modified_payload_1) # check_resp_structure(update_resp_1) # check_availability_in_single_archive( # payload=modified_payload_1, # archive=update_resp_1['data'] # ) # reverse_resp_1 = experiment_task.update(**payloads['experiment'][0]) # check_resp_structure(reverse_resp_1) # check_availability_in_single_archive( # payload=payloads['experiment'][0], # archive=reverse_resp_1['data'] # ) # modified_payload_2 = { # 'model': [ # { # "activation": "relu", # "is_input": True, # "l_type": "Linear", # "structure": { # "bias": False, # "in_features": 15, # "out_features": 1 # } # } # ] # } # update_resp_2 = experiment_task.update(**EXPT_KEY_2, **modified_payload_2) # check_resp_structure(update_resp_2) # check_availability_in_single_archive( # payload=modified_payload_2, # archive=update_resp_2['data'] # ) # reverse_resp_2 = experiment_task.update(**payloads['experiment'][1]) # check_resp_structure(reverse_resp_2) # check_availability_in_single_archive( # payload=payloads['experiment'][1], # archive=reverse_resp_2['data'] # ) # def test_RunTask_delete(experiment_task, payloads): # delete_resp_1 = experiment_task.delete(**EXPT_KEY_1) # check_resp_structure(delete_resp_1) # check_availability_in_single_archive( # payload=payloads['experiment'][0], # archive=delete_resp_1['data'] # ) # retrieved_expts = experiment_task.read_all(**PROJECT_KEY)['data'] # assert len(retrieved_expts) == 1 # delete_resp_2 = experiment_task.delete(**EXPT_KEY_2) # check_resp_structure(delete_resp_2) # check_availability_in_single_archive( # payload=payloads['experiment'][1], # archive=delete_resp_2['data'] # ) # retrieved_expts = experiment_task.read_all(**PROJECT_KEY)['data'] # assert len(retrieved_expts) == 0
31.16185
81
0.595993
44eb9fe7b537f9bee8a249581408d34ca23f575a
904
py
Python
venv/bin/rst2xetex.py
RyanHelgoth/CMPUT404-Lab5
82424bf5a9b80ff186bd69d224457c8b70a3bdf3
[ "Apache-2.0" ]
null
null
null
venv/bin/rst2xetex.py
RyanHelgoth/CMPUT404-Lab5
82424bf5a9b80ff186bd69d224457c8b70a3bdf3
[ "Apache-2.0" ]
null
null
null
venv/bin/rst2xetex.py
RyanHelgoth/CMPUT404-Lab5
82424bf5a9b80ff186bd69d224457c8b70a3bdf3
[ "Apache-2.0" ]
null
null
null
#!/home/student/Lab5/CMPUT404-Lab5/venv/bin/python3 # $Id: rst2xetex.py 7847 2015-03-17 17:30:47Z milde $ # Author: Guenter Milde # Copyright: This module has been placed in the public domain. """ A minimal front end to the Docutils Publisher, producing Lua/XeLaTeX code. """ try: import locale locale.setlocale(locale.LC_ALL, '') except: pass from docutils.core import publish_cmdline description = ('Generates LaTeX documents from standalone reStructuredText ' 'sources for compilation with the Unicode-aware TeX variants ' 'XeLaTeX or LuaLaTeX. ' 'Reads from <source> (default is stdin) and writes to ' '<destination> (default is stdout). See ' '<http://docutils.sourceforge.net/docs/user/latex.html> for ' 'the full reference.') publish_cmdline(writer_name='xetex', description=description)
32.285714
77
0.675885
a247aaffc90e1800c4f0b1cccef3ee92807bd07e
533
py
Python
listparser/helpers/enums.py
riccardorestagno/BuzzFeed-Reddit-Bot
8c8b3c9da3e56c26565aaab2058036f55adebb0d
[ "MIT" ]
7
2017-09-27T14:17:39.000Z
2019-09-23T05:52:03.000Z
listparser/helpers/enums.py
riccardorestagno/list-parser-bot
8c8b3c9da3e56c26565aaab2058036f55adebb0d
[ "MIT" ]
null
null
null
listparser/helpers/enums.py
riccardorestagno/list-parser-bot
8c8b3c9da3e56c26565aaab2058036f55adebb0d
[ "MIT" ]
6
2017-09-06T17:54:42.000Z
2019-09-13T20:35:49.000Z
from enum import Enum class ArticleType(Enum): All = 1 Business_Insider = 2 BuzzFeed = 3 CollegeHumor = 4 Cracked = 5 Polygon = 6 Screen_Rant = 7 def convert_enum_to_string(enum): return enum.name.replace("_", " ") def convert_string_to_articletype_enum(string): return ArticleType[string.replace(" ", "_")] def string_in_enum_list(enum_list, string): for enum in enum_list: if enum.name.replace("_", " ") == string.replace("_", " "): return True return False
19.035714
67
0.641651
bcd8bc74dd751569eae9af852f336b9b06fec985
8,311
py
Python
cotk/dataloader/sentence_classification.py
ZhihongShao/cotk
252ebc20c9ce175327e3721a9ddbdbb0bffd2744
[ "Apache-2.0" ]
null
null
null
cotk/dataloader/sentence_classification.py
ZhihongShao/cotk
252ebc20c9ce175327e3721a9ddbdbb0bffd2744
[ "Apache-2.0" ]
null
null
null
cotk/dataloader/sentence_classification.py
ZhihongShao/cotk
252ebc20c9ce175327e3721a9ddbdbb0bffd2744
[ "Apache-2.0" ]
null
null
null
"""Dataloader for language generation""" from collections import Counter from itertools import chain import numpy as np # from .._utils.unordered_hash import UnorderedSha256 from .._utils.file_utils import get_resource_file_path from .._utils import hooks from .dataloader import LanguageProcessingBase from ..metric import MetricChain, AccuracyMetric # pylint: disable=W0223 class SentenceClassification(LanguageProcessingBase): r"""Base class for sentence classification datasets. This is an abstract class. Arguments:{ARGUMENTS} Attributes:{ATTRIBUTES} """ ARGUMENTS = LanguageProcessingBase.ARGUMENTS ATTRIBUTES = LanguageProcessingBase.ATTRIBUTES def get_batch(self, key, indexes): '''Get a batch of specified `indexes`. Arguments: key (str): must be contained in `key_name` indexes (list): a list of specified indexes Returns: (dict): A dict at least contains: * sent_length(:class:`numpy.array`): A 1-d array, the length of sentence in each batch. Size: `[batch_size]` * sent(:class:`numpy.array`): A 2-d padding array containing id of words. Only provide valid words. `unk_id` will be used if a word is not valid. Size: `[batch_size, max(sent_length)]` * label(:class:`numpy.array`): A 1-d array, the label of sentence in each batch. * sent_allvocabs(:class:`numpy.array`): A 2-d padding array containing id of words. Provide both valid and invalid words. Size: `[batch_size, max(sent_length)]` Examples: >>> # all_vocab_list = ["<pad>", "<unk>", "<go>", "<eos>", "how", "are", "you", >>> # "hello", "i", "am", "fine"] >>> # vocab_size = 9 >>> # vocab_list = ["<pad>", "<unk>", "<go>", "<eos>", "how", "are", "you", "hello", "i"] >>> dataloader.get_batch('train', [0, 1, 2]) { "sent": numpy.array([ [2, 4, 5, 6, 3, 0], # first sentence: <go> how are you <eos> <pad> [2, 7, 3, 0, 0, 0], # second sentence: <go> hello <eos> <pad> <pad> <pad> [2, 7, 8, 1, 1, 3] # third sentence: <go> hello i <unk> <unk> <eos> ]), "label": numpy.array([1, 2, 0]) # label of sentences "sent_length": numpy.array([5, 3, 6]), # length of sentences "sent_allvocabs": numpy.array([ [2, 4, 5, 6, 3, 0], # first sentence: <go> how are you <eos> <pad> [2, 7, 3, 0, 0, 0], # second sentence: <go> hello <eos> <pad> <pad> <pad> [2, 7, 8, 9, 10, 3] # third sentence: <go> hello i am fine <eos> ]), } ''' if key not in self.key_name: raise ValueError("No set named %s." % key) res = {} batch_size = len(indexes) res["sent_length"] = np.array( \ list(map(lambda i: len(self.data[key]['sent'][i]), indexes))) res_sent = res["sent"] = np.zeros( \ (batch_size, np.max(res["sent_length"])), dtype=int) res["label"] = np.zeros(batch_size, dtype=int) for i, j in enumerate(indexes): sentence = self.data[key]['sent'][j] res["sent"][i, :len(sentence)] = sentence res["label"][i] = self.data[key]['label'][j] res["sent_allvocabs"] = res_sent.copy() res_sent[res_sent >= self.valid_vocab_len] = self.unk_id return res def get_metric(self, prediction_key="prediction"): '''Get metrics for accuracy. In other words, this function provides metrics for sentence classification task. It contains: * :class:`.metric.AccuracyMetric` Arguments: prediction_key (str): The key of prediction over sentences. Refer to :class:`.metric.AccuracyMetric`. Default: ``prediction``. Returns: A :class:`.metric.MetricChain` object. ''' metric = MetricChain() metric.add_metric(AccuracyMetric(self, \ label_key='label', \ prediction_key=prediction_key)) return metric class SST(SentenceClassification): '''A dataloader for preprocessed SST dataset. Arguments: file_id (str): a str indicates the source of SST dataset. file_type (str): a str indicates the type of SST dataset. Default: "SST" valid_vocab_times (int): A cut-off threshold of valid tokens. All tokens appear not less than `min_vocab_times` in **training set** will be marked as valid words. Default: 10. max_sent_length (int): All sentences longer than `max_sent_length` will be shortened to first `max_sent_length` tokens. Default: 50. invalid_vocab_times (int): A cut-off threshold of invalid tokens. All tokens appear not less than `invalid_vocab_times` in the **whole dataset** (except valid words) will be marked as invalid words. Otherwise, they are unknown words, both in training or testing stages. Default: 0 (No unknown words). Refer to :class:`.LanguageProcessingBase` for attributes and methods. References: [1] http://images.cocodataset.org/annotations/annotations_trainval2017.zip [2] Lin T Y, Maire M, Belongie S, et al. Microsoft COCO: Common Objects in Context. ECCV 2014. ''' @hooks.hook_dataloader def __init__(self, file_id, min_vocab_times=10, \ max_sent_length=50, invalid_vocab_times=0): self._file_id = file_id self._file_path = get_resource_file_path(file_id) self._min_vocab_times = min_vocab_times self._max_sent_length = max_sent_length self._invalid_vocab_times = invalid_vocab_times super(SST, self).__init__() def _load_data(self): r'''Loading dataset, invoked by `LanguageProcessingBase.__init__` ''' def parseline(line): label = int(line[1]) line = line.split(')') sent = [x.split(' ')[-1].lower() for x in line if x != ''] return (label, sent) origin_data = {} for key in self.key_name: f_file = open("%s/%s.txt" % (self._file_path, key), 'r', encoding='utf-8') origin_data[key] = {} _origin_data = list( \ map(parseline, f_file.readlines())) origin_data[key]['sent'] = list( \ map(lambda line: line[1], _origin_data)) origin_data[key]['label'] = list( \ map(lambda line: line[0], _origin_data)) raw_vocab_list = list(chain(*(origin_data['train']['sent']))) # Important: Sort the words preventing the index changes between # different runs vocab = sorted(Counter(raw_vocab_list).most_common(), \ key=lambda pair: (-pair[1], pair[0])) left_vocab = list( \ filter( \ lambda x: x[1] >= self._min_vocab_times, \ vocab)) vocab_list = self.ext_vocab + list(map(lambda x: x[0], left_vocab)) valid_vocab_len = len(vocab_list) valid_vocab_set = set(vocab_list) for key in self.key_name: if key == 'train': continue raw_vocab_list.extend(list(chain(*(origin_data[key]['sent'])))) vocab = sorted(Counter(raw_vocab_list).most_common(), \ key=lambda pair: (-pair[1], pair[0])) left_vocab = list( \ filter( \ lambda x: x[1] >= self._invalid_vocab_times and x[0] not in valid_vocab_set, \ vocab)) vocab_list.extend(list(map(lambda x: x[0], left_vocab))) print("valid vocab list length = %d" % valid_vocab_len) print("vocab list length = %d" % len(vocab_list)) word2id = {w: i for i, w in enumerate(vocab_list)} def line2id(line): return ([self.go_id] + \ list(map(lambda word: word2id[word] if word in word2id else self.unk_id, line)) \ + [self.eos_id])[:self._max_sent_length] data = {} data_size = {} for key in self.key_name: data[key] = {} data[key]['sent'] = list(map(line2id, origin_data[key]['sent'])) data[key]['label'] = origin_data[key]['label'] data_size[key] = len(data[key]['sent']) vocab = list(chain(*(origin_data[key]['sent']))) vocab_num = len(vocab) oov_num = len( \ list( \ filter( \ lambda word: word not in word2id, \ vocab))) invalid_num = len( \ list( \ filter( \ lambda word: word not in valid_vocab_set, \ vocab))) - oov_num length = list( \ map(len, origin_data[key]['sent'])) cut_num = np.sum( \ np.maximum( \ np.array(length) - \ self._max_sent_length + \ 1, \ 0)) print( \ "%s set. invalid rate: %f, unknown rate: %f, max length before cut: %d, cut word rate: %f" % \ (key, invalid_num / vocab_num, oov_num / vocab_num, max(length), cut_num / vocab_num)) return vocab_list, valid_vocab_len, data, data_size def tokenize(self, sentence): r'''Convert sentence(str) to list of token(str) Arguments: sentence (str) Returns: sent (list): list of token(str) ''' return [x.split(' ')[-1].lower() for x in sentence if x != '']
35.216102
98
0.658405
f7b1393de898449000c60dd88afaf04c6ad5bc11
11,648
py
Python
config/settings/base.py
veglez/my-wallet
80b3811d13a3aa8d211b50b0fe37f015ffd5393c
[ "MIT" ]
null
null
null
config/settings/base.py
veglez/my-wallet
80b3811d13a3aa8d211b50b0fe37f015ffd5393c
[ "MIT" ]
null
null
null
config/settings/base.py
veglez/my-wallet
80b3811d13a3aa8d211b50b0fe37f015ffd5393c
[ "MIT" ]
null
null
null
""" Base settings to build other settings files upon. """ from pathlib import Path import environ ROOT_DIR = Path(__file__).resolve(strict=True).parent.parent.parent # mywallet/ APPS_DIR = ROOT_DIR / "mywallet" env = environ.Env() READ_DOT_ENV_FILE = env.bool("DJANGO_READ_DOT_ENV_FILE", default=False) if READ_DOT_ENV_FILE: # OS environment variables take precedence over variables from .env env.read_env(str(ROOT_DIR / ".env")) # GENERAL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#debug DEBUG = env.bool("DJANGO_DEBUG", False) # Local time zone. Choices are # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # though not all of them may be available with every OS. # In Windows, this must be set to your system time zone. TIME_ZONE = "America/Mexico_City" # https://docs.djangoproject.com/en/dev/ref/settings/#language-code LANGUAGE_CODE = "en-us" # https://docs.djangoproject.com/en/dev/ref/settings/#site-id SITE_ID = 1 # https://docs.djangoproject.com/en/dev/ref/settings/#use-i18n USE_I18N = True # https://docs.djangoproject.com/en/dev/ref/settings/#use-l10n USE_L10N = True # https://docs.djangoproject.com/en/dev/ref/settings/#use-tz USE_TZ = True # https://docs.djangoproject.com/en/dev/ref/settings/#locale-paths LOCALE_PATHS = [str(ROOT_DIR / "locale")] # DATABASES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#databases DATABASES = {"default": env.db("DATABASE_URL")} DATABASES["default"]["ATOMIC_REQUESTS"] = True # URLS # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#root-urlconf ROOT_URLCONF = "config.urls" # https://docs.djangoproject.com/en/dev/ref/settings/#wsgi-application WSGI_APPLICATION = "config.wsgi.application" # APPS # ------------------------------------------------------------------------------ DJANGO_APPS = [ "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.sessions", "django.contrib.sites", "django.contrib.messages", "django.contrib.staticfiles", # "django.contrib.humanize", # Handy template tags "django.contrib.admin", "django.forms", ] THIRD_PARTY_APPS = [ "crispy_forms", "allauth", "allauth.account", "allauth.socialaccount", "rest_framework", "rest_framework.authtoken", "corsheaders", ] LOCAL_APPS = [ "mywallet.users.apps.UsersConfig", # Your stuff: custom apps go here ] # https://docs.djangoproject.com/en/dev/ref/settings/#installed-apps INSTALLED_APPS = DJANGO_APPS + THIRD_PARTY_APPS + LOCAL_APPS # MIGRATIONS # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#migration-modules MIGRATION_MODULES = {"sites": "mywallet.contrib.sites.migrations"} # AUTHENTICATION # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#authentication-backends AUTHENTICATION_BACKENDS = [ "django.contrib.auth.backends.ModelBackend", "allauth.account.auth_backends.AuthenticationBackend", ] # https://docs.djangoproject.com/en/dev/ref/settings/#auth-user-model AUTH_USER_MODEL = "users.User" # https://docs.djangoproject.com/en/dev/ref/settings/#login-redirect-url LOGIN_REDIRECT_URL = "users:redirect" # https://docs.djangoproject.com/en/dev/ref/settings/#login-url LOGIN_URL = "account_login" # PASSWORDS # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#password-hashers PASSWORD_HASHERS = [ # https://docs.djangoproject.com/en/dev/topics/auth/passwords/#using-argon2-with-django "django.contrib.auth.hashers.Argon2PasswordHasher", "django.contrib.auth.hashers.PBKDF2PasswordHasher", "django.contrib.auth.hashers.PBKDF2SHA1PasswordHasher", "django.contrib.auth.hashers.BCryptSHA256PasswordHasher", ] # https://docs.djangoproject.com/en/dev/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { "NAME": "django.contrib.auth.password_validation.UserAttributeSimilarityValidator" }, {"NAME": "django.contrib.auth.password_validation.MinimumLengthValidator"}, {"NAME": "django.contrib.auth.password_validation.CommonPasswordValidator"}, {"NAME": "django.contrib.auth.password_validation.NumericPasswordValidator"}, ] # MIDDLEWARE # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#middleware MIDDLEWARE = [ "django.middleware.security.SecurityMiddleware", "corsheaders.middleware.CorsMiddleware", "whitenoise.middleware.WhiteNoiseMiddleware", "django.contrib.sessions.middleware.SessionMiddleware", "django.middleware.locale.LocaleMiddleware", "django.middleware.common.CommonMiddleware", "django.middleware.csrf.CsrfViewMiddleware", "django.contrib.auth.middleware.AuthenticationMiddleware", "django.contrib.messages.middleware.MessageMiddleware", "django.middleware.common.BrokenLinkEmailsMiddleware", "django.middleware.clickjacking.XFrameOptionsMiddleware", ] # STATIC # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#static-root STATIC_ROOT = str(ROOT_DIR / "staticfiles") # https://docs.djangoproject.com/en/dev/ref/settings/#static-url STATIC_URL = "/static/" # https://docs.djangoproject.com/en/dev/ref/contrib/staticfiles/#std:setting-STATICFILES_DIRS STATICFILES_DIRS = [str(APPS_DIR / "static")] # https://docs.djangoproject.com/en/dev/ref/contrib/staticfiles/#staticfiles-finders STATICFILES_FINDERS = [ "django.contrib.staticfiles.finders.FileSystemFinder", "django.contrib.staticfiles.finders.AppDirectoriesFinder", ] # MEDIA # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#media-root MEDIA_ROOT = str(APPS_DIR / "media") # https://docs.djangoproject.com/en/dev/ref/settings/#media-url MEDIA_URL = "/media/" # TEMPLATES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#templates TEMPLATES = [ { # https://docs.djangoproject.com/en/dev/ref/settings/#std:setting-TEMPLATES-BACKEND "BACKEND": "django.template.backends.django.DjangoTemplates", # https://docs.djangoproject.com/en/dev/ref/settings/#template-dirs "DIRS": [str(APPS_DIR / "templates")], "OPTIONS": { # https://docs.djangoproject.com/en/dev/ref/settings/#template-loaders # https://docs.djangoproject.com/en/dev/ref/templates/api/#loader-types "loaders": [ "django.template.loaders.filesystem.Loader", "django.template.loaders.app_directories.Loader", ], # https://docs.djangoproject.com/en/dev/ref/settings/#template-context-processors "context_processors": [ "django.template.context_processors.debug", "django.template.context_processors.request", "django.contrib.auth.context_processors.auth", "django.template.context_processors.i18n", "django.template.context_processors.media", "django.template.context_processors.static", "django.template.context_processors.tz", "django.contrib.messages.context_processors.messages", "mywallet.utils.context_processors.settings_context", ], }, } ] # https://docs.djangoproject.com/en/dev/ref/settings/#form-renderer FORM_RENDERER = "django.forms.renderers.TemplatesSetting" # http://django-crispy-forms.readthedocs.io/en/latest/install.html#template-packs CRISPY_TEMPLATE_PACK = "bootstrap4" # FIXTURES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#fixture-dirs FIXTURE_DIRS = (str(APPS_DIR / "fixtures"),) # SECURITY # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#session-cookie-httponly SESSION_COOKIE_HTTPONLY = True # https://docs.djangoproject.com/en/dev/ref/settings/#csrf-cookie-httponly CSRF_COOKIE_HTTPONLY = True # https://docs.djangoproject.com/en/dev/ref/settings/#secure-browser-xss-filter SECURE_BROWSER_XSS_FILTER = True # https://docs.djangoproject.com/en/dev/ref/settings/#x-frame-options X_FRAME_OPTIONS = "DENY" # EMAIL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#email-backend EMAIL_BACKEND = env( "DJANGO_EMAIL_BACKEND", default="django.core.mail.backends.smtp.EmailBackend", ) # https://docs.djangoproject.com/en/dev/ref/settings/#email-timeout EMAIL_TIMEOUT = 5 # ADMIN # ------------------------------------------------------------------------------ # Django Admin URL. ADMIN_URL = "admin/" # https://docs.djangoproject.com/en/dev/ref/settings/#admins ADMINS = [("""veglez""", "veglez94@gmail.com")] # https://docs.djangoproject.com/en/dev/ref/settings/#managers MANAGERS = ADMINS # LOGGING # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#logging # See https://docs.djangoproject.com/en/dev/topics/logging for # more details on how to customize your logging configuration. LOGGING = { "version": 1, "disable_existing_loggers": False, "formatters": { "verbose": { "format": "%(levelname)s %(asctime)s %(module)s " "%(process)d %(thread)d %(message)s" } }, "handlers": { "console": { "level": "DEBUG", "class": "logging.StreamHandler", "formatter": "verbose", } }, "root": {"level": "INFO", "handlers": ["console"]}, } # django-allauth # ------------------------------------------------------------------------------ ACCOUNT_ALLOW_REGISTRATION = env.bool("DJANGO_ACCOUNT_ALLOW_REGISTRATION", True) # https://django-allauth.readthedocs.io/en/latest/configuration.html ACCOUNT_AUTHENTICATION_METHOD = "username" # https://django-allauth.readthedocs.io/en/latest/configuration.html ACCOUNT_EMAIL_REQUIRED = True # https://django-allauth.readthedocs.io/en/latest/configuration.html ACCOUNT_EMAIL_VERIFICATION = "mandatory" # https://django-allauth.readthedocs.io/en/latest/configuration.html ACCOUNT_ADAPTER = "mywallet.users.adapters.AccountAdapter" # https://django-allauth.readthedocs.io/en/latest/configuration.html SOCIALACCOUNT_ADAPTER = "mywallet.users.adapters.SocialAccountAdapter" # django-rest-framework # ------------------------------------------------------------------------------- # django-rest-framework - https://www.django-rest-framework.org/api-guide/settings/ REST_FRAMEWORK = { "DEFAULT_AUTHENTICATION_CLASSES": ( "rest_framework.authentication.SessionAuthentication", "rest_framework.authentication.TokenAuthentication", ), "DEFAULT_PERMISSION_CLASSES": ("rest_framework.permissions.IsAuthenticated",), } # django-cors-headers - https://github.com/adamchainz/django-cors-headers#setup CORS_URLS_REGEX = r"^/api/.*$" # Your stuff... # ------------------------------------------------------------------------------
40.585366
93
0.633156
a486585e5392da2ae42464bacfcb2dfd11f22c90
159
py
Python
libs/youzan/__init__.py
fovegage/python3-youzan-pay
793cfad34e2d64b365c0732f30509d1676847b5b
[ "MIT" ]
15
2019-01-19T15:11:59.000Z
2019-10-22T04:23:24.000Z
libs/youzan/__init__.py
fovegage/python3-youzan-pay
793cfad34e2d64b365c0732f30509d1676847b5b
[ "MIT" ]
null
null
null
libs/youzan/__init__.py
fovegage/python3-youzan-pay
793cfad34e2d64b365c0732f30509d1676847b5b
[ "MIT" ]
5
2019-03-29T17:05:49.000Z
2019-07-27T16:01:58.000Z
# -*- coding: utf-8 -*- # @Time : 2019/1/18 9:20 # @Author : fovegage # @Email : fovegage@gmail.com # @File : __init__.py.py # @Software: PyCharm
26.5
32
0.566038
0a5e97b7c380da694314b89ea1d07ceb8cf99ed0
553
py
Python
ballometer/sht.py
wipfli/ballometer
db86abe4f9dd541c96c58110579ae9dec729d119
[ "MIT" ]
null
null
null
ballometer/sht.py
wipfli/ballometer
db86abe4f9dd541c96c58110579ae9dec729d119
[ "MIT" ]
6
2020-09-26T06:42:30.000Z
2021-02-17T17:12:47.000Z
ballometer/sht.py
wipfli/ballometer
db86abe4f9dd541c96c58110579ae9dec729d119
[ "MIT" ]
null
null
null
try: import busio import adafruit_sht31d except ImportError: pass class SHT: def __init__(self): self._sensor = adafruit_sht31d.SHT31D(i2c_bus=busio.I2C(24, 23)) @property def temperature(self): '''returns the temperature in Kelvin''' T = self._sensor.temperature # deg C return round(T + 273.15, 2) # K @property def humidity(self): '''returns the relative humidity in percent''' RH = self._sensor.relative_humidity # percent return round(RH, 1) # percent
24.043478
72
0.627486
fe0db2fa8304a336b480b95e9e8c73ba6f47d1c9
12,119
py
Python
baselines/ecbp/agents/buffer/kbps_process.py
MouseHu/emdqn
ba907e959f21dd0b5a17117accccae9c82a79a3b
[ "MIT" ]
null
null
null
baselines/ecbp/agents/buffer/kbps_process.py
MouseHu/emdqn
ba907e959f21dd0b5a17117accccae9c82a79a3b
[ "MIT" ]
null
null
null
baselines/ecbp/agents/buffer/kbps_process.py
MouseHu/emdqn
ba907e959f21dd0b5a17117accccae9c82a79a3b
[ "MIT" ]
1
2021-04-26T13:55:47.000Z
2021-04-26T13:55:47.000Z
import numpy as np from sklearn.neighbors import BallTree, KDTree import os from baselines.ecbp.agents.buffer.lru_knn_gpu_ps import LRU_KNN_GPU_PS from baselines.ecbp.agents.buffer.lru_knn_ps import LRU_KNN_PS import gc from baselines.deepq.experiments.atari.knn_cuda_fixmem import knn as knn_cuda_fixmem import copy from heapq import * import logging from baselines.ecbp.agents.buffer.hash_pqueue import HashPQueue import threading from multiprocessing import Process from multiprocessing import Lock, Event from multiprocessing import Manager class KernelBasedPriorSweepProcess(Process): def __init__(self, num_actions, buffer_size, latent_dim, hash_dim, conn, gamma=0.99): super(KernelBasedPriorSweepProcess, self).__init__() self.num_actions = num_actions self.gamma = gamma self.rmax = 100000 self.logger = logging.getLogger("ecbp") self.sa_explore = 10 self.max_iter = 1000000 self.run_sweep = True self.num_iters = 0 self.conn = conn self.buffer_size = buffer_size self.latent_dim = latent_dim self.hash_dim = hash_dim # self.queue_lock = Lock() self.pqueue = HashPQueue() self.b = 0.0001 self.h = 0.0001 self.knn_dist = None self.knn_ind = None self.sequence = [] def log(self, *args, logtype='debug', sep=' '): getattr(self.logger, logtype)(sep.join(str(a) for a in args)) def grow_model(self, sa_pair): # grow model index_t, action_t, reward_t, z_tp1, done_t = sa_pair index_tp1, _, _ = self.peek(z_tp1) if index_tp1 < 0: index_tp1, override = self.ec_buffer.add_node(z_tp1) self.log("add node", index_tp1, logtype='debug') if override: self.pqueue.remove(index_tp1) # if (index_t, action_t) not in self.ec_buffer.prev_id[index_tp1]: self.log("add edge", index_t, action_t, index_tp1, logtype='debug') sa_count = self.ec_buffer.add_edge(index_t, index_tp1, action_t, reward_t, done_t) coeff = np.exp(-np.array(self.knn_dist).reshape(-1) / self.b) self.log("coeff", coeff.shape, coeff) self.ec_buffer.pseudo_count[index_t][action_t] = {} self.ec_buffer.pseudo_reward[index_t, action_t] = 0 # self.ec_buffer.pseudo_prev[index_tp1] = {} assert index_t in self.knn_ind, "self should be a neighbour of self" for i, s in enumerate(self.knn_ind): for sp in self.ec_buffer.next_id[s][action_t].keys(): dist = self.ec_buffer.distance(self.ec_buffer.states[sp], self.ec_buffer.states[sp] + self.ec_buffer.states[index_t] - self.ec_buffer.states[s]) reweight = np.exp(-np.array(dist).squeeze() / self.h) weighted_count = reweight * coeff[i] * self.ec_buffer.next_id[s][action_t][sp] try: self.ec_buffer.pseudo_count[index_t][action_t][sp] += weighted_count except KeyError: self.ec_buffer.pseudo_count[index_t][action_t][sp] = weighted_count self.ec_buffer.pseudo_prev[sp][(index_t, action_t)] = 1 self.ec_buffer.pseudo_reward[index_t, action_t] += weighted_count * self.ec_buffer.reward[ s, action_t] if index_t == s: continue for sp in self.ec_buffer.next_id[index_t][action_t].keys(): dist = self.ec_buffer.distance(self.ec_buffer.states[sp], self.ec_buffer.states[sp] + self.ec_buffer.states[s] - self.ec_buffer.states[index_t]) reweight = np.exp(-np.array(dist).squeeze() / self.h) weighted_count = reweight * coeff[i] * self.ec_buffer.next_id[index_t][action_t][sp] try: self.ec_buffer.pseudo_count[s][action_t][sp] += reweight * coeff[i] except KeyError: self.ec_buffer.pseudo_count[s][action_t][sp] = weighted_count self.ec_buffer.pseudo_prev[sp][(s, action_t)] = 1 self.ec_buffer.pseudo_reward[s, action_t] += reweight * coeff[i] * self.ec_buffer.reward[ index_t, action_t] if sa_count > self.sa_explore: self.ec_buffer.internal_value[index_t, action_t] = 0 return index_tp1, sa_count # def grow_model(self, sa_pair): # grow model # index_t, action_t, reward_t, z_tp1, done_t = sa_pair # index_tp1, _, _ = self.ec_buffer.peek(z_tp1) # # self.log("finish peek") # if index_tp1 < 0: # index_tp1, override = self.ec_buffer.add_node(z_tp1) # # self.log("add node", index_tp1, logtype='debug') # if override: # self.pqueue.remove(index_tp1) # # # if (index_t, action_t) not in self.ec_buffer.prev_id[index_tp1]: # self.log("add edge", index_t, action_t, index_tp1, logtype='debug') # sa_count = self.ec_buffer.add_edge(index_t, index_tp1, action_t, reward_t, done_t) # self.ec_buffer.pseudo_count[index_t][action_t] = self.ec_buffer.pseudo_count[index_t][action_t] # self.ec_buffer.pseudo_count[index_t][action_t] = self.ec_buffer.next_id[index_t][action_t] # # self.pseudo_count = [[{} for __ in range(num_actions)] for _ in range(capacity)] # self.ec_buffer.pseudo_reward[index_t,action_t] = reward_t*sum(self.ec_buffer.pseudo_count[index_t][action_t].values()) # self.ec_buffer.pseudo_prev[index_tp1] = {x:1 for x in self.ec_buffer.prev_id[index_tp1]} # # if sa_coun t > self.sa_explore: # # self.ec_buffer.internal_value[index_t, action_t] = 0 # return index_tp1, sa_count def observe(self, sa_pair): # self.update_enough.wait(timeout=1000) # self.log("ps pqueue len", len(self.pqueue)) # grow model index_tp1, count_t = self.grow_model(sa_pair) # update current value index_t, action_t, reward_t, z_tp1, done_t = sa_pair self.sequence.append(index_t) self.log("self neighbour", index_t, self.knn_ind) assert index_t in self.knn_ind, "self should be a neighbor of self" for index in self.knn_ind: # self.log("q before observe", self.ec_buffer.external_value[index, :],index,action_t) self.update_q_value(index, action_t) # self.log("q after observe", self.ec_buffer.external_value[index, :], index, action_t) self.ec_buffer.state_value_v[index_t] = np.nanmax(self.ec_buffer.external_value[index_t, :]) priority = abs( self.ec_buffer.state_value_v[index_t] - np.nan_to_num(self.ec_buffer.state_value_u[index_t], copy=True)) if priority > 1e-7: self.pqueue.push(priority, index_t) if done_t: self.update_sequence() # self.iters_per_step = 0 # self.update_enough.clear() self.conn.send((2, index_tp1)) def backup(self): # recursive backup self.num_iters += 1 if len(self.pqueue) > 0: priority, index = self.pqueue.pop() delta_u = self.ec_buffer.state_value_v[index] - np.nan_to_num(self.ec_buffer.state_value_u[index], copy=True) self.ec_buffer.state_value_u[index] = self.ec_buffer.state_value_v[index] self.log("backup node", index, "priority", priority, "new value", self.ec_buffer.state_value_v[index], "delta", delta_u) for sa_pair in self.ec_buffer.pseudo_prev[index].keys(): state_tm1, action_tm1 = sa_pair # self.log("update s,a,s',delta", state_tm1, action_tm1, index, delta_u) # self.log("q before backup",self.ec_buffer.external_value[state_tm1,:],state_tm1,action_tm1) self.update_q_value_backup(state_tm1, action_tm1, index, delta_u) self.ec_buffer.state_value_v[state_tm1] = np.nanmax(self.ec_buffer.external_value[state_tm1, :]) # self.log("q after backup", self.ec_buffer.external_value[index, :], state_tm1,action_tm1) priority = abs( self.ec_buffer.state_value_v[state_tm1] - np.nan_to_num( self.ec_buffer.state_value_u[state_tm1], copy=True)) if priority > 1e-7: self.pqueue.push(priority, state_tm1) if self.num_iters % 100000 == 0: self.log("backup count", self.num_iters) def update_sequence(self): # to make sure that the final signal can be fast propagate through the state, # we need a sequence update like episodic control for p, s in enumerate(self.sequence): # self.pqueue.push(p + self.rmax, s) self.ec_buffer.newly_added[s] = False self.sequence = [] # self.ec_buffer.build_tree() def update_q_value(self, state, action): n_sa = sum(self.ec_buffer.pseudo_count[state][action].values()) if n_sa < 1e-7: return r_smooth = np.nan_to_num(self.ec_buffer.pseudo_reward[state, action] / n_sa) # n_sasp = sum([coeff[i] * self.ec_buffer.next_id[s][action].get(state_tp1, 0) for i, s in enumerate(self.ind)]) self.ec_buffer.external_value[state, action] = r_smooth for state_tp1 in self.ec_buffer.pseudo_count[state][action].keys(): value_tp1 = np.nan_to_num(self.ec_buffer.state_value_u[state_tp1]) trans_p = self.ec_buffer.pseudo_count[state][action][state_tp1] / n_sa self.ec_buffer.external_value[state, action] += trans_p * self.gamma * value_tp1 def update_q_value_backup(self, state, action, state_tp1, delta_u): n_sa = sum(self.ec_buffer.pseudo_count[state][action].values()) if n_sa < 1e-7: return n_sasp = self.ec_buffer.pseudo_count[state][action].get(state_tp1, 0) trans_p = n_sasp / n_sa assert 0 <= trans_p <= 1, "nsa{} nsap{} trans{}".format(n_sa, n_sasp, trans_p) if np.isnan(self.ec_buffer.external_value[state, action]): self.ec_buffer.external_value[state, action] = 0 self.ec_buffer.external_value[state, action] += self.gamma * trans_p * delta_u def peek(self, state): ind = self.ec_buffer.peek(state) return ind def run(self): self.ec_buffer = LRU_KNN_GPU_PS(self.buffer_size, self.hash_dim, 'game', 0, self.num_actions) while self.run_sweep: self.backup() self.recv_msg() def retrieve_q_value(self, obj): z, knn = obj extrinsic_qs, intrinsic_qs, find = self.ec_buffer.act_value_ec(z, knn) self.conn.send((0, (extrinsic_qs, intrinsic_qs, find))) def peek_node(self, obj): z = obj ind, knn_dist, knn_ind = self.ec_buffer.peek(z) knn_dist = np.array(knn_dist).reshape(-1).tolist() knn_ind = np.array(knn_ind).reshape(-1).tolist() if ind == -1: ind, _ = self.ec_buffer.add_node(z) knn_dist = [0] + knn_dist knn_ind = [ind] + knn_ind self.log("add node for first ob ", ind) self.knn_dist = knn_dist self.knn_ind = knn_ind self.conn.send((1, ind)) def recv_msg(self): # 0 —— retrieve q values # 1 —— peek or add node # 2 —— observe # 3 —— kill while self.conn.poll(): msg, obj = self.conn.recv() if msg == 0: self.retrieve_q_value(obj) elif msg == 1: self.peek_node(obj) elif msg == 2: self.observe(obj) elif msg == 3: self.run_sweep = False self.conn.send((3, True)) else: raise NotImplementedError
48.09127
128
0.607063
0cfe22f9d15cdaff879f4d0346f39ad2ad365f7a
1,828
py
Python
zz-practice/learn.py
aloneZERO/Py-Party
d9f1daf0a4e35269159741b2dbbd905e8823c3bb
[ "Apache-2.0" ]
3
2017-04-05T02:10:55.000Z
2018-02-07T08:27:47.000Z
zz-practice/learn.py
aloneZERO/Py-Party
d9f1daf0a4e35269159741b2dbbd905e8823c3bb
[ "Apache-2.0" ]
null
null
null
zz-practice/learn.py
aloneZERO/Py-Party
d9f1daf0a4e35269159741b2dbbd905e8823c3bb
[ "Apache-2.0" ]
3
2018-02-07T06:09:49.000Z
2020-08-06T08:50:13.000Z
#!python3 # coding: utf-8 import copy import time import utils import zz_info import zz_data # 燥起来 def fk_zz(session, section): batchId = 1 jid = section['jid'] # 章节序号 section_status = zz_info.getSectionStatus(session, jid) last_time = int(section_status['learned_time']) while True: learned_time = int(section_status['learned_time']) total_time = int(section_status['total_time']) if section_status['status']: print('该章节已修行完毕:'+section['title'], end='\n\n') return else: if not last_time is learned_time: print('\r修行进度:'+section['title']+' {:.2f}%'.format(learned_time*100/total_time)) last_time = learned_time batchId = batchId + 1 # 延迟15秒(模拟学习,时间不够会出错) time.sleep(15) learn_header = copy.deepcopy(zz_data.learn_header) learn_payload = copy.deepcopy(zz_data.learn_payload) learn_header['Referer'] = learn_header['Referer'].format(jid) learn_payload['c0-e2'] = learn_payload['c0-e2'].format(jid) learn_payload['page'] = learn_payload['page'].format(jid) learn_payload['batchId'] = batchId learn_payload['scriptSessionId'] = utils.genSSIdBySession(session) # TODO 测试点:学习请求参数 # print( str(learn_payload) ) r = session.post( url = zz_data.learn_url, data = learn_payload, headers = learn_header ) r.encoding = 'UTF-8' # TODO 测试点:学习请求响应信息 # print(r.text) if r.text.find('flag:1') is -1: print(section['title']+' 走火入魔啦~~~') else: print(section['title']+': 又修行了15秒!') section_status = zz_info.getSectionStatus(session, section['jid']) batchId += 1 # 修行开始 def toBeImmortal(session): print("您已进入修行模式~:") all_chapter = zz_info.getAllChapter(session) for chapter in all_chapter: print(chapter['title']+' '+'*'*100) sections = chapter['sections'] for section in sections: fk_zz(session, section) print('您已完成全部修行~!')
23.74026
84
0.696389
b6127f69d52ee25a88e79da8fabd9ade26267d3d
2,218
py
Python
runs/nodes/start_ansible_hosts.py
Ruilkyu/kubernetes_start
9e88a7f1c64899454af8f9be1dd9653ba435e21f
[ "Apache-2.0" ]
2
2020-07-24T14:19:57.000Z
2020-08-10T18:30:08.000Z
runs/nodes/start_ansible_hosts.py
Ruilkyu/kubernetes_start
9e88a7f1c64899454af8f9be1dd9653ba435e21f
[ "Apache-2.0" ]
null
null
null
runs/nodes/start_ansible_hosts.py
Ruilkyu/kubernetes_start
9e88a7f1c64899454af8f9be1dd9653ba435e21f
[ "Apache-2.0" ]
1
2021-07-09T10:29:11.000Z
2021-07-09T10:29:11.000Z
""" 时间:2020/6/12 作者:lurui 功能:根据提供的nodes模块列表生成nodes的ansible模块的nodes_hosts文件 时间:2020/6/17 作者:lurui 修改:基路径 basedir = os.path.dirname(os.path.dirname(os.getcwd())),改为调用者路径 basedir = os.path.abspath('.') 时间:2020/8/11 作者:lurui 修改:node名称由k8s-node-{0}-{1}改为三位k8s-node-{0}-{1}-{2} """ import os import configparser def start_ansible_hosts(): basedir = os.path.abspath('.') config = configparser.ConfigParser() # config.read(basedir + '/cfg/ssh.ini') config.read(basedir + '/cfg/config.ini') port = config['SSH']['port'] clusterdns = config['RELATED_IP']['cluster_dns'] clustercidr = config['RELATED_IP']['cluster_cidr'] nodes_list = basedir + '/cfg/nodes.txt' try: nodes_list_fh = open(nodes_list, mode="r", encoding='utf-8') except FileNotFoundError: os.mknod(nodes_list) nodes_list_fh = open(nodes_list, mode="r", encoding='utf-8') if os.path.exists(basedir + '/ansible/hosts/nodes_hosts'): os.remove(basedir + '/ansible/hosts/nodes_hosts') if not os.path.exists(basedir + '/ansible/hosts'): os.makedirs(basedir + '/ansible/hosts') nodes_ansible_hosts_data = '' nodes_ansible_hosts_data = nodes_ansible_hosts_data + "[all:vars]" + "\n" nodes_ansible_hosts_data = nodes_ansible_hosts_data + "ansible_ssh_port={0}".format(port) + "\n" + "\n" nodes_ansible_hosts_data = nodes_ansible_hosts_data + "[nodes]" + "\n" try: for k in nodes_list_fh.readlines(): result = k.strip("\n").split(".") first = result[1] second = result[2] third = result[3] v = k.strip("\n") nodes_ansible_hosts_data += v + " node_name=k8s-node-{0}-{1}-{2} ".format(first, second, third) + "node_ip={0} ".format( v) + "cluster_dns={0} ".format(clusterdns) + "cluster_cidr={0}".format(clustercidr) + "\n" except Exception as e: print(e) try: location = basedir + '/ansible/hosts/nodes_hosts' file = open(location, 'a') resultdate = "" resultdate = nodes_ansible_hosts_data file.write(resultdate) file.close() except Exception as e: print(e) # start_ansible_hosts()
31.239437
132
0.628494
e04fde7f4b9f1708638975d82aabe46b633fe549
3,691
py
Python
speakInOut/autho/forms.py
pvgupta24/inout
621309cf9a2ff83a0d5aa8c4dd490daa42ed8484
[ "MIT" ]
null
null
null
speakInOut/autho/forms.py
pvgupta24/inout
621309cf9a2ff83a0d5aa8c4dd490daa42ed8484
[ "MIT" ]
7
2020-06-06T00:01:29.000Z
2022-02-10T11:07:34.000Z
speakInOut/autho/forms.py
pvgupta24/inout
621309cf9a2ff83a0d5aa8c4dd490daa42ed8484
[ "MIT" ]
2
2020-02-11T14:44:32.000Z
2020-02-21T17:39:04.000Z
from datetime import date from django import forms from django.contrib.auth.models import User from django.contrib.auth import authenticate def validate_username_available(username): """ validator that throws an error if the given username already exists.""" if User.objects.filter(username__icontains=username).count(): raise forms.ValidationError("This email is already registered") def validate_username_exists(username): """ validator that throws an error if the given username doesn't exists.""" if not User.objects.filter(username__icontains=username).count(): raise forms.ValidationError("This email does not exist") def setup_field(field, placeholder=None): """ This configures the given field to play nice with the bootstrap theme. Additionally, you can add an additional argument to set a placeholder text on the field. """ field.widget.attrs['class'] = 'form-control' if placeholder is not None: field.widget.attrs['placeholder'] = placeholder class BasicForm(forms.Form): def disable_field(self, field): """ marks field as disabled :param field: name of the field """ self.fields[field].widget.attrs['disabled'] = "" def mark_error(self, field, description): """ Marks the given field as errous. The given description is displayed when the form it generated :param field: name of the field :param description: The error description """ self._errors[field] = self.error_class([description]) del self.cleaned_data[field] def clear_errors(self): self._errors = {} class LoginForm(BasicForm): email = forms.EmailField(max_length=50,validators=[validate_username_exists]) setup_field(email,'Enter Email here') password = forms.CharField(max_length=50,widget=forms.PasswordInput()) setup_field(password,'Enter password here') def clean(self): """ This is to make sure the password is valid for the given email. """ cleaned_data = super(LoginForm,self).clean() username = cleaned_data.get('email') password = cleaned_data.get('password') if username and password: user = authenticate(username=username, password=password) if user is None: self.mark_error('password', 'Incorrect password') return cleaned_data class AccountRegisterForm(BasicForm): firstname = forms.CharField(label='First Name',max_length=50) setup_field(firstname,'Enter first name here') lastname = forms.CharField(label='Last Name', max_length=50) setup_field(lastname, 'Enter last name here') email = forms.EmailField(max_length=50, validators=[validate_username_available]) setup_field(email, 'Enter email here') password_first = forms.CharField(label='Password', min_length=1, max_length=50, widget=forms.PasswordInput()) setup_field(password_first, "Enter password here") password_second = forms.CharField(label='', min_length=1, max_length=50, widget=forms.PasswordInput()) setup_field(password_second, "Enter password again") def clean(self): """This is to make sure both passwords fields have the same values in them. If they don't mark them as erroneous.""" cleaned_data = super(AccountRegisterForm, self).clean() password_first = cleaned_data.get('password_first') password_second = cleaned_data.get('password_second') if password_first and password_second and password_first!=password_second: self.mark_error('password_second','Passwords do not match') return cleaned_data
39.688172
113
0.700352
af97b87f78d6be6188dd49ac209d7c977566241e
1,637
py
Python
src/microprobe/model/__init__.py
rbertran/microprobe
232b60aad88b3541de1a962d6da924b234cd521c
[ "Apache-2.0" ]
2
2019-11-20T18:29:02.000Z
2019-11-20T18:29:05.000Z
src/microprobe/model/__init__.py
rbertran/microprobe
232b60aad88b3541de1a962d6da924b234cd521c
[ "Apache-2.0" ]
null
null
null
src/microprobe/model/__init__.py
rbertran/microprobe
232b60aad88b3541de1a962d6da924b234cd521c
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 IBM Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """:mod:`microprobe.model` package """ # Futures # Built-in modules # Third party modules # Own modules from __future__ import absolute_import from microprobe.utils.logger import get_logger # Local modules # Constants LOG = get_logger(__name__) __all__ = ["GenericModel"] # Functions # Classes class GenericModel(object): """GenericModel Class Base class to represent different types of models. """ def __init__(self, name, description): """ :param name: :param description: """ super(GenericModel, self).__init__() self._name = name self._description = description @property def name(self): """Name of the model (:class:`str`).""" return self._name @property def description(self): """Description of the model (:class:`str`).""" return self._description def __str__(self): """x.__str__() <==> str(x)""" return "%s(%s, %s)" % ( self.__class__.__name__, self.name, self.description )
22.736111
74
0.66402
7b86db4dbd3572486f9a0516ee817d64e96f086d
900
py
Python
examples/new_theme.py
jojoelfe/napari
b52a136dad392c091b0008c0b8d7fcc5ef460f66
[ "BSD-3-Clause" ]
7
2018-07-03T17:35:46.000Z
2018-11-07T15:48:58.000Z
examples/new_theme.py
maweigert/napari
48cdf4d1c4bcf6f76603e90b1c0c7498e2aba6c0
[ "BSD-3-Clause" ]
120
2018-09-04T22:05:13.000Z
2019-03-02T01:13:57.000Z
examples/new_theme.py
maweigert/napari
48cdf4d1c4bcf6f76603e90b1c0c7498e2aba6c0
[ "BSD-3-Clause" ]
8
2018-09-04T21:48:26.000Z
2019-01-29T04:48:30.000Z
""" New theme ========= Displays an image and sets the theme to new custom theme. """ from skimage import data import napari from napari.utils.theme import available_themes, get_theme, register_theme # create the viewer with an image viewer = napari.view_image(data.astronaut(), rgb=True, name='astronaut') # List themes print('Originally themes', available_themes()) blue_theme = get_theme('dark', False) blue_theme.name = "blue" blue_theme.icon = ( 'rgb(0, 255, 255)' # you can provide colors as rgb(XXX, YYY, ZZZ) ) blue_theme.background = 28, 31, 48 # or as tuples blue_theme.foreground = [45, 52, 71] # or as list blue_theme.primary = '#50586c' # or as hexes blue_theme.current = 'orange' # or as color name register_theme('blue', blue_theme) # List themes print('New themes', available_themes()) # Set theme viewer.theme = 'blue' if __name__ == '__main__': napari.run()
22.5
74
0.71
ec78a08a317a2190aff7c791d5928b6fab18eb7e
3,367
py
Python
tests/test_sonnendach_reference.py
timtroendle/possibility-for-electricity-autarky
a3d3c99ef90bbccd7232e2170317a259a77661d3
[ "MIT" ]
11
2018-11-12T14:00:19.000Z
2021-11-16T19:00:34.000Z
tests/test_sonnendach_reference.py
timtroendle/possibility-for-electricity-autarky
a3d3c99ef90bbccd7232e2170317a259a77661d3
[ "MIT" ]
8
2020-04-14T15:54:58.000Z
2020-10-23T12:59:59.000Z
tests/test_sonnendach_reference.py
timtroendle/possibility-for-electricity-autarky
a3d3c99ef90bbccd7232e2170317a259a77661d3
[ "MIT" ]
4
2019-03-21T01:44:01.000Z
2021-06-20T03:16:51.000Z
"""Test whether our estimations are close to the ones from sonnendach.ch""" import os from pathlib import Path import pytest import rasterio import rasterio.mask from rasterstats import zonal_stats import fiona from src.technical_eligibility import Eligibility ROOT_DIR = Path(os.path.abspath(__file__)).parent.parent PATH_TO_CATEGORIES = ROOT_DIR / "build" / "technically-eligible-land.tif" PATH_TO_AREAS = ROOT_DIR / "build" / "technically-eligible-area-km2.tif" PATH_TO_ENERGY_YIELD = ROOT_DIR / "build" / "technically-eligible-electricity-yield-pv-prio-twh.tif" PATH_TO_NUTS = ROOT_DIR / "build" / "administrative-borders-nuts.gpkg" PATH_TO_SONNENDACH_AREA_ESTIMATE = ROOT_DIR / "data" / "automatic" / "sonnendach" /\ "total-rooftop-area-km2.txt" PATH_TO_SONNENDACH_YIELD_ESTIMATE = ROOT_DIR / "data" / "automatic" / "sonnendach" /\ "total-yield-twh.txt" @pytest.mark.skipif(not PATH_TO_AREAS.exists(), reason="Eligible area raster data not available.") @pytest.mark.skipif(not PATH_TO_NUTS.exists(), reason="Switzerland shape not available.") @pytest.mark.skipif(not PATH_TO_SONNENDACH_AREA_ESTIMATE.exists(), reason="Sonnendach area estimation not available.") def test_switzerland_rooftop_area(): with open(PATH_TO_SONNENDACH_AREA_ESTIMATE, "r") as f_sonnendach_estimate: sonnendach_estimate = float(f_sonnendach_estimate.readline()) with fiona.open(PATH_TO_NUTS.as_posix(), "r", layer="nuts0") as shapefile: switzerland = [feature["geometry"] for feature in shapefile if feature["properties"]["country_code"] == "CHE"] assert len(switzerland) == 1 with rasterio.open(PATH_TO_AREAS.as_posix()) as src: transform = src.transform areas = src.read(1) with rasterio.open(PATH_TO_CATEGORIES.as_posix()) as src: categories = src.read(1) areas[categories != Eligibility.ROOFTOP_PV] = 0 zs = zonal_stats(switzerland, areas, affine=transform, stats="sum", nodata=-999) our_estimate = zs[0]["sum"] assert our_estimate == pytest.approx(sonnendach_estimate, 0.02) # 2% tolerance @pytest.mark.skipif(not PATH_TO_ENERGY_YIELD.exists(), reason="Eligible energy yield raster data not available.") @pytest.mark.skipif(not PATH_TO_NUTS.exists(), reason="Switzerland shape not available.") @pytest.mark.skipif( not PATH_TO_SONNENDACH_YIELD_ESTIMATE.exists(), reason="Sonnendach yield estimation not available.") def test_switzerland_energy_yield(): with open(PATH_TO_SONNENDACH_YIELD_ESTIMATE, "r") as f_sonnendach_estimate: sonnendach_estimate = float(f_sonnendach_estimate.readline()) with fiona.open(PATH_TO_NUTS.as_posix(), "r", layer="nuts0") as shapefile: switzerland = [feature["geometry"] for feature in shapefile if feature["properties"]["country_code"] == "CHE"] assert len(switzerland) == 1 with rasterio.open(PATH_TO_ENERGY_YIELD.as_posix()) as src: transform = src.transform energy_yield = src.read(1) with rasterio.open(PATH_TO_CATEGORIES.as_posix()) as src: categories = src.read(1) energy_yield[categories != Eligibility.ROOFTOP_PV] = 0 zs = zonal_stats(switzerland, energy_yield, affine=transform, stats="sum", nodata=-999) our_estimate = zs[0]["sum"] assert our_estimate <= sonnendach_estimate assert our_estimate == pytest.approx(sonnendach_estimate, 0.10) # 10% tolerance
51.8
118
0.743689
48eea26ba1f209704c1d838bee10e952b77ebf98
2,577
py
Python
dims.py
vkopey/Thread-turning-simulator
9622d6294ddec56bb5e48db2a7b2ff52f2399467
[ "MIT" ]
null
null
null
dims.py
vkopey/Thread-turning-simulator
9622d6294ddec56bb5e48db2a7b2ff52f2399467
[ "MIT" ]
1
2018-06-28T10:46:44.000Z
2019-05-20T11:17:14.000Z
dims.py
vkopey/Thread-turning-simulator
9622d6294ddec56bb5e48db2a7b2ff52f2399467
[ "MIT" ]
1
2019-07-16T18:32:51.000Z
2019-07-16T18:32:51.000Z
# -*- coding: utf-8 -*- from math import atan, degrees, tan class Dim: "Клас описує поняття розміру" n=0.0 #номінальний розмір ei=0.0 #нижнє відхилення es=0.0 #верхнє відхилення v=0.0 #дійсне значення def __init__(self,n,ei,es,doc): "конструктор" self.n=n self.ei=ei self.es=es self.__doc__=doc.decode('utf-8') def min(self): "повертає мінімальний розмір" return self.n+self.ei def max(self): "повертає максимальний розмір" return self.n+self.es zn80={'D':Dim(80,-0.5,0.5,"зовнішній діаметр труби ніпеля"), 'D1':Dim(76.5,-0.5,0.5,"зовнішній діаметр упорного торця"), 'd3':Dim(25.0,-0.6,0.6,"внутрішній діаметр ніпеля"), 'd4':Dim(36.0,-0.6,0.6,"внутрішній діаметр муфти"), 'L2':Dim(240.0,0.0,0.0,"довжина муфти*"), 'dsr':Dim(60.080,0.0,0.0,"середній діаметр різьби в основній площині"), 'd5':Dim(66.674,0.0,0.0,"діаметр більшої основи конуса ніпеля*"), 'd6':Dim(47.674,0.0,0.0,"діаметр меншої основи конуса ніпеля*"), 'l3':Dim(76.0,-2.0,0,"довжина конуса ніпеля"), 'd7':Dim(68.3,-0.6,0.6,"діаметр конічної виточки в площині торця муфти"), 'd8':Dim(61.422,0.0,0.0,"внутрішній діаметр різьби в площині торця муфти*"), 'l4':Dim(82.0,0.0,0.0,"відстань від торця до кінця різьби з повним профілем муфти (не менше)"), 'P':Dim(5.080,0.0,0.0,"крок різьби паралельно осі різьби"), 'fi':Dim(atan(0.25/2),0.0,0.0,"кут нахилу (рад.)"), 'H':Dim(4.376,0.0,0.0,"висота гострокутного профілю"), 'h1':Dim(2.993,0.0,0.0,"висота профілю різьби"), 'h':Dim(2.626,0.0,0.0,"робоча висота профілю"), 'l':Dim(0.875,0.0,0.0,"висота зрізу вершин"), 'f':Dim(0.508,0.0,0.0,"відтин впадини"), 'a':Dim(1.016,0.0,0.0,"площадка*"), 'r':Dim(0.508,0.0,0.0,"радіус заокруглень впадин*"), 'r_':Dim(0.38,0.0,0.0,"радіус спряжень (не більше)"), 'lsr':Dim(15.875,0.0,0.0,"відстань від торця муфти/ніпеля до основної площини")} class ZN: pass d=ZN() for key,value in zn80.iteritems(): setattr(d,key,value.n) # допоміжні параметри: h=tan(d.fi)*(d.l4-d.lsr) d._r=d.dsr/2-h # радіус середнього діаметра в площині l4 (менший радіус конуса муфти) x1,y1 = -d.H/2, 0 # вектор переміщення в 0,0 сер діам різця ніпеля x2,y2 = -d.H/2+tan(d.fi)*d.P/2, d.P/2 # -//- муфти d._v1 = x1+d._r, y1+d.l3-d.l4, 0 # поч положення різця ніпеля d._v2 = x2+d._r, y2+d.l3-d.l4, 0 # поч положення різця муфти if __name__=='__main__': print d.d3 #print d.d3.__doc__
39.646154
100
0.611176
ddec13a88098a0f7c5f31472189a870dfa84115a
32,262
py
Python
safe_relay_service/relay/tasks.py
CirclesUBI/safe-relay-service
e6844e2b92316ddc099d5b39711487a6e46d5a93
[ "MIT" ]
2
2020-10-19T09:59:11.000Z
2021-02-04T12:26:12.000Z
safe_relay_service/relay/tasks.py
CirclesUBI/safe-relay-service
e6844e2b92316ddc099d5b39711487a6e46d5a93
[ "MIT" ]
24
2019-12-11T14:43:38.000Z
2022-03-01T12:37:24.000Z
safe_relay_service/relay/tasks.py
CirclesUBI/safe-relay-service
e6844e2b92316ddc099d5b39711487a6e46d5a93
[ "MIT" ]
null
null
null
from datetime import timedelta from typing import List from django.conf import settings from django.utils import timezone from celery import app from celery.utils.log import get_task_logger from ethereum.utils import check_checksum, checksum_encode, mk_contract_address from redis.exceptions import LockError from gnosis.eth import EthereumClientProvider, TransactionAlreadyImported from gnosis.eth.constants import NULL_ADDRESS from safe_relay_service.gas_station.gas_station import GasStationProvider from .models import (SafeContract, SafeCreation, SafeCreation2, SafeFunding, SafeMultisigTx) from .repositories.redis_repository import RedisRepository from .services import (Erc20EventsServiceProvider, FundingServiceProvider, NotificationServiceProvider, SafeCreationServiceProvider, TransactionServiceProvider, CirclesService, GraphQLService) from .services.safe_creation_service import NotEnoughFundingForCreation logger = get_task_logger(__name__) # Lock timeout of 2 minutes (just in the case that the application hangs to avoid a redis deadlock) LOCK_TIMEOUT = 60 * 2 @app.shared_task(bind=True, max_retries=3, soft_time_limit=LOCK_TIMEOUT) def fund_deployer_task(self, safe_address: str, retry: bool = True) -> None: """ Check if user has sent enough ether or tokens to the safe account If every condition is met ether is sent to the deployer address and `check_deployer_funded_task` is called to check that that tx is mined If everything goes well in SafeFunding `safe_funded=True` and `deployer_funded_tx_hash=tx_hash` are set :param safe_address: safe account :param retry: if True, retries are allowed, otherwise don't retry """ safe_contract = SafeContract.objects.get(address=safe_address) try: safe_creation = SafeCreation.objects.get(safe=safe_address) except SafeCreation.DoesNotExist: deploy_create2_safe_task.delay(safe_address) return deployer_address = safe_creation.deployer payment = safe_creation.payment # These asserts just to make sure we are not wasting money assert check_checksum(safe_address) assert check_checksum(deployer_address) assert checksum_encode(mk_contract_address(sender=deployer_address, nonce=0)) == safe_address assert payment > 0 redis = RedisRepository().redis with redis.lock('locks:fund_deployer_task', timeout=LOCK_TIMEOUT): ethereum_client = EthereumClientProvider() safe_funding, _ = SafeFunding.objects.get_or_create(safe=safe_contract) # Nothing to do if everything is funded and mined if safe_funding.is_all_funded(): logger.debug('Nothing to do here for safe %s. Is all funded', safe_address) return # If receipt exists already, let's check if safe_funding.deployer_funded_tx_hash and not safe_funding.deployer_funded: logger.debug('Safe %s deployer has already been funded. Checking tx_hash %s', safe_address, safe_funding.deployer_funded_tx_hash) check_deployer_funded_task.delay(safe_address) elif not safe_funding.deployer_funded: confirmations = settings.SAFE_FUNDING_CONFIRMATIONS last_block_number = ethereum_client.current_block_number assert (last_block_number - confirmations) > 0 if safe_creation.payment_token and safe_creation.payment_token != NULL_ADDRESS: safe_balance = ethereum_client.erc20.get_balance(safe_address, safe_creation.payment_token) else: safe_balance = ethereum_client.get_balance(safe_address, last_block_number - confirmations) if safe_balance >= payment: logger.info('Found %d balance for safe=%s', safe_balance, safe_address) safe_funding.safe_funded = True safe_funding.save() # Check deployer has no eth. This should never happen balance = ethereum_client.get_balance(deployer_address) if balance: logger.error('Deployer=%s for safe=%s has eth already (%d wei)', deployer_address, safe_address, balance) else: logger.info('Safe=%s. Transferring deployment-cost=%d to deployer=%s', safe_address, safe_creation.wei_deploy_cost(), deployer_address) tx_hash = FundingServiceProvider().send_eth_to(deployer_address, safe_creation.wei_deploy_cost(), retry=True) if tx_hash: tx_hash = tx_hash.hex() logger.info('Safe=%s. Transferred deployment-cost=%d to deployer=%s with tx-hash=%s', safe_address, safe_creation.wei_deploy_cost(), deployer_address, tx_hash) safe_funding.deployer_funded_tx_hash = tx_hash safe_funding.save() logger.debug('Safe=%s deployer has just been funded. tx_hash=%s', safe_address, tx_hash) check_deployer_funded_task.apply_async((safe_address,), countdown=20) else: logger.error('Cannot send payment=%d to deployer safe=%s', payment, deployer_address) if retry: raise self.retry(countdown=30) else: logger.info('Not found required balance=%d for safe=%s', payment, safe_address) if retry: raise self.retry(countdown=30) @app.shared_task(bind=True, soft_time_limit=LOCK_TIMEOUT, max_retries=settings.SAFE_CHECK_DEPLOYER_FUNDED_RETRIES, default_retry_delay=settings.SAFE_CHECK_DEPLOYER_FUNDED_DELAY) def check_deployer_funded_task(self, safe_address: str, retry: bool = True) -> None: """ Check the `deployer_funded_tx_hash`. If receipt can be retrieved, in SafeFunding `deployer_funded=True`. If not, after the number of retries `deployer_funded_tx_hash=None` :param safe_address: safe account :param retry: if True, retries are allowed, otherwise don't retry """ try: redis = RedisRepository().redis with redis.lock(f"tasks:check_deployer_funded_task:{safe_address}", blocking_timeout=1, timeout=LOCK_TIMEOUT): ethereum_client = EthereumClientProvider() logger.debug('Starting check deployer funded task for safe=%s', safe_address) safe_funding = SafeFunding.objects.get(safe=safe_address) deployer_funded_tx_hash = safe_funding.deployer_funded_tx_hash if safe_funding.deployer_funded: logger.warning('Tx-hash=%s for safe %s is already checked', deployer_funded_tx_hash, safe_address) return elif not deployer_funded_tx_hash: logger.error('No deployer_funded_tx_hash for safe=%s', safe_address) return logger.debug('Checking safe=%s deployer tx-hash=%s', safe_address, deployer_funded_tx_hash) if ethereum_client.get_transaction_receipt(deployer_funded_tx_hash): logger.info('Found transaction to deployer of safe=%s with receipt=%s', safe_address, deployer_funded_tx_hash) safe_funding.deployer_funded = True safe_funding.save() else: logger.debug('Not found transaction receipt for tx-hash=%s', deployer_funded_tx_hash) # If no more retries if not retry or (self.request.retries == self.max_retries): safe_creation = SafeCreation.objects.get(safe=safe_address) balance = ethereum_client.get_balance(safe_creation.deployer) if balance >= safe_creation.wei_deploy_cost(): logger.warning('Safe=%s. Deployer=%s. Cannot find transaction receipt with tx-hash=%s, ' 'but balance is there. This should never happen', safe_address, safe_creation.deployer, deployer_funded_tx_hash) safe_funding.deployer_funded = True safe_funding.save() else: logger.error('Safe=%s. Deployer=%s. Transaction receipt with tx-hash=%s not mined after %d ' 'retries. Setting `deployer_funded_tx_hash` back to `None`', safe_address, safe_creation.deployer, deployer_funded_tx_hash, self.request.retries) safe_funding.deployer_funded_tx_hash = None safe_funding.save() else: logger.debug('Retry finding transaction receipt %s', deployer_funded_tx_hash) if retry: raise self.retry(countdown=self.request.retries * 10 + 15) # More countdown every retry except LockError: logger.info('check_deployer_funded_task is locked for safe=%s', safe_address) @app.shared_task(soft_time_limit=LOCK_TIMEOUT) def deploy_safes_task(retry: bool = True) -> None: """ Deploy pending safes (deployer funded and tx-hash checked). Then raw creation tx is sent to the ethereum network. If something goes wrong (maybe a reorg), `deployer_funded` will be set False again and `check_deployer_funded_task` is called again. :param retry: if True, retries are allowed, otherwise don't retry """ try: redis = RedisRepository().redis with redis.lock("tasks:deploy_safes_task", blocking_timeout=1, timeout=LOCK_TIMEOUT): ethereum_client = EthereumClientProvider() logger.debug('Starting deploy safes task') pending_to_deploy = SafeFunding.objects.pending_just_to_deploy() logger.debug('%d safes pending to deploy', len(pending_to_deploy)) for safe_funding in pending_to_deploy: safe_contract = safe_funding.safe safe_address = safe_contract.address safe_creation = SafeCreation.objects.get(safe=safe_contract) safe_deployed_tx_hash = safe_funding.safe_deployed_tx_hash if not safe_deployed_tx_hash: # Deploy the Safe try: creation_tx_hash = ethereum_client.send_raw_transaction(safe_creation.signed_tx) if creation_tx_hash: creation_tx_hash = creation_tx_hash.hex() logger.info('Safe=%s creation tx has just been sent to the network with tx-hash=%s', safe_address, creation_tx_hash) safe_funding.safe_deployed_tx_hash = creation_tx_hash safe_funding.save() except TransactionAlreadyImported: logger.warning("Safe=%s transaction was already imported by the node", safe_address) safe_funding.safe_deployed_tx_hash = safe_creation.tx_hash safe_funding.save() except ValueError: # Usually "ValueError: {'code': -32000, 'message': 'insufficient funds for gas*price+value'}" # A reorg happened logger.warning("Safe=%s was affected by reorg, let's check again receipt for tx-hash=%s", safe_address, safe_funding.deployer_funded_tx_hash, exc_info=True) safe_funding.deployer_funded = False safe_funding.save() check_deployer_funded_task.apply_async((safe_address,), {'retry': retry}, countdown=20) else: # Check if safe proxy deploy transaction has already been sent to the network logger.debug('Safe=%s creation tx has already been sent to the network with tx-hash=%s', safe_address, safe_deployed_tx_hash) if ethereum_client.check_tx_with_confirmations(safe_deployed_tx_hash, settings.SAFE_FUNDING_CONFIRMATIONS): logger.info('Safe=%s was deployed', safe_funding.safe.address) safe_funding.safe_deployed = True safe_funding.save() # Send creation notification send_create_notification.delay(safe_address, safe_creation.owners) elif (safe_funding.modified + timedelta(minutes=10) < timezone.now() and not ethereum_client.get_transaction_receipt(safe_deployed_tx_hash)): # A reorg happened logger.warning('Safe=%s deploy tx=%s was not found after 10 minutes. Trying deploying again...', safe_funding.safe.address, safe_deployed_tx_hash) safe_funding.safe_deployed_tx_hash = None safe_funding.save() except LockError: pass @app.shared_task(bind=True, soft_time_limit=LOCK_TIMEOUT, max_retries=3) def deploy_create2_safe_task(self, safe_address: str, retry: bool = True) -> None: """ Check if user has sent enough ether or tokens to the safe account If every condition is met safe is deployed :param safe_address: safe account :param retry: if True, retries are allowed, otherwise don't retry """ assert check_checksum(safe_address) redis = RedisRepository().redis lock_name = f'locks:deploy_create2_safe:{safe_address}' try: with redis.lock(lock_name, blocking_timeout=1, timeout=LOCK_TIMEOUT): try: SafeCreationServiceProvider().deploy_create2_safe_tx(safe_address) except NotEnoughFundingForCreation: if retry: raise self.retry(countdown=30) except LockError: logger.warning('Cannot get lock={} for deploying safe={}'.format(lock_name, safe_address)) @app.shared_task(soft_time_limit=LOCK_TIMEOUT) def check_create2_deployed_safes_task() -> None: """ Check if create2 safes were deployed and store the `blockNumber` if there are enough confirmations """ try: redis = RedisRepository().redis with redis.lock('tasks:check_create2_deployed_safes_task', blocking_timeout=1, timeout=LOCK_TIMEOUT): ethereum_client = EthereumClientProvider() confirmations = 6 current_block_number = ethereum_client.current_block_number for safe_creation2 in SafeCreation2.objects.pending_to_check(): safe_address = safe_creation2.safe_id ethereum_tx = TransactionServiceProvider().create_or_update_ethereum_tx(safe_creation2.tx_hash) if ethereum_tx and ethereum_tx.block_id is not None: block_number = ethereum_tx.block_id if (current_block_number - block_number) >= confirmations: logger.info('Safe=%s with tx-hash=%s was confirmed in block-number=%d', safe_address, safe_creation2.tx_hash, block_number) safe_creation2.block_number = block_number safe_creation2.save(update_fields=['block_number']) else: # If safe was not included in any block after 30 minutes (mempool limit is 30 minutes) # try to increase a little the gas price if safe_creation2.modified + timedelta(minutes=30) < timezone.now(): logger.warning('Safe=%s with tx-hash=%s was not deployed after 30 minutes. ' 'Increasing the gas price', safe_address, safe_creation2.tx_hash) safe_creation2 = SafeCreationServiceProvider().deploy_again_create2_safe_tx(safe_address) logger.warning('Safe=%s has a new tx-hash=%s with increased gas price.', safe_address, safe_creation2.tx_hash) for safe_creation2 in SafeCreation2.objects.not_deployed().filter( created__gte=timezone.now() - timedelta(days=10)): deploy_create2_safe_task.delay(safe_creation2.safe.address, retry=False) except LockError: pass @app.shared_task(soft_time_limit=300) def send_create_notification(safe_address: str, owners: List[str]) -> None: """ Send create notification to owner :param safe_address: Address of the safe created :param owners: List of owners of the safe """ logger.info('Safe=%s creation ended, sending notification to %s', safe_address, owners) return NotificationServiceProvider().send_create_notification(safe_address, owners) @app.shared_task(soft_time_limit=300) def check_balance_of_accounts_task() -> bool: """ Checks if balance of relayer accounts (tx sender, safe funder) are less than the configured threshold :return: True if every account have enough ether, False otherwise """ balance_warning_wei = settings.SAFE_ACCOUNTS_BALANCE_WARNING addresses = FundingServiceProvider().funder_account.address, TransactionServiceProvider().tx_sender_account.address ethereum_client = EthereumClientProvider() result = True for address in addresses: balance_wei = ethereum_client.get_balance(address) if balance_wei <= balance_warning_wei: logger.error('Relayer account=%s current balance=%d . Balance must be greater than %d', address, balance_wei, balance_warning_wei) result = False return result @app.shared_task(soft_time_limit=60 * 30) def find_erc_20_721_transfers_task() -> int: """ Find and process internal txs for existing safes :return: Number of safes processed """ number_safes = 0 try: redis = RedisRepository().redis with redis.lock('tasks:find_internal_txs_task', blocking_timeout=1, timeout=60 * 30): number_safes = Erc20EventsServiceProvider().process_all() logger.info('Find ERC20/721 task processed %d safes', number_safes) except LockError: pass return number_safes @app.shared_task(soft_time_limit=60) def check_pending_transactions() -> int: """ Find txs that have not been mined after a while and resend again :return: Number of pending transactions """ number_txs = 0 try: redis = RedisRepository().redis with redis.lock('tasks:check_pending_transactions', blocking_timeout=1, timeout=60): tx_not_mined_alert = settings.SAFE_TX_NOT_MINED_ALERT_MINUTES multisig_txs = SafeMultisigTx.objects.pending( older_than=tx_not_mined_alert * 60 ).select_related( 'ethereum_tx' ) for multisig_tx in multisig_txs: gas_price = GasStationProvider().get_gas_prices().fast old_fee = multisig_tx.ethereum_tx.fee ethereum_tx = TransactionServiceProvider().resend(gas_price, multisig_tx) if ethereum_tx: logger.error('Safe=%s - Tx with tx-hash=%s and safe-tx-hash=%s has not been mined after ' 'a while, created=%s. Sent again with tx-hash=%s. Old fee=%d and new fee=%d', multisig_tx.safe_id, multisig_tx.ethereum_tx_id, multisig_tx.safe_tx_hash, multisig_tx.created, ethereum_tx.tx_hash, old_fee, ethereum_tx.fee) else: logger.error('Safe=%s - Tx with tx-hash=%s and safe-tx-hash=%s has not been mined after ' 'a while, created=%s', multisig_tx.safe_id, multisig_tx.ethereum_tx_id, multisig_tx.safe_tx_hash, multisig_tx.created) number_txs += 1 except LockError: pass return number_txs @app.shared_task(soft_time_limit=60) def check_and_update_pending_transactions() -> int: """ Check if pending txs have been mined and update them :return: Number of pending transactions """ number_txs = 0 try: redis = RedisRepository().redis with redis.lock('tasks:check_and_update_pending_transactions', blocking_timeout=1, timeout=60): transaction_service = TransactionServiceProvider() multisig_txs = SafeMultisigTx.objects.pending(older_than=150).select_related('ethereum_tx') for multisig_tx in multisig_txs: ethereum_tx = transaction_service.create_or_update_ethereum_tx(multisig_tx.ethereum_tx_id) if ethereum_tx and ethereum_tx.block_id: if ethereum_tx.success: logger.info('Safe=%s - Tx with tx-hash=%s was mined on block=%d ', multisig_tx.safe_id, ethereum_tx.tx_hash, ethereum_tx.block_id) else: logger.error('Safe=%s - Tx with tx-hash=%s was mined on block=%d and failed', multisig_tx.safe_id, ethereum_tx.tx_hash, ethereum_tx.block_id) number_txs += 1 except LockError: pass return number_txs @app.shared_task(bind=True, soft_time_limit=LOCK_TIMEOUT, max_retries=6) def begin_circles_onboarding_task(self, safe_address: str) -> None: """ Starts a multi-step onboarding task for Circles users which 1. funds deploys a Gnosis Safe for them 2. funds the deployment of their Token. :param safe_address: Address of the safe to-be-created """ assert check_checksum(safe_address) redis = RedisRepository().redis lock_name = f'locks:begin_circles_onboarding_task:{safe_address}' try: with redis.lock(lock_name, blocking_timeout=1, timeout=LOCK_TIMEOUT): ethereum_client = EthereumClientProvider() # Do nothing if Token is already deployed if CirclesService(ethereum_client).is_token_deployed(safe_address): logger.info('Token is already deployed for {}'.format(safe_address)) return logger.info('No token found, start onboarding for Circles Safe {}'.format(safe_address)) # Deploy Safe when it does not exist yet safe_creation2 = SafeCreation2.objects.get(safe=safe_address) if not safe_creation2.tx_hash: logger.info('Safe does not exist yet, start deploying it {}'.format(safe_address)) circles_onboarding_safe_task.delay(safe_address) else: logger.info('Safe exists, we are done with safe {}'.format(safe_address)) except LockError: pass @app.shared_task(bind=True, soft_time_limit=LOCK_TIMEOUT, max_retries=3) def circles_onboarding_safe_task(self, safe_address: str) -> None: """ Check if create2 Safe has enough incoming trust connections to fund and deploy it :param safe_address: Address of the safe to-be-created """ assert check_checksum(safe_address) try: redis = RedisRepository().redis lock_name = f'locks:circles_onboarding_safe_task:{safe_address}' with redis.lock(lock_name, blocking_timeout=1, timeout=LOCK_TIMEOUT): logger.info('Check deploying Safe .. {}'.format(safe_address)) try: SafeCreationServiceProvider().deploy_create2_safe_tx(safe_address) except SafeCreation2.DoesNotExist: pass except NotEnoughFundingForCreation: logger.info('Safe does not have enough fund for deployment, ' 'check trust connections {}'.format(safe_address)) # If we have enough trust connections, fund safe if GraphQLService().check_trust_connections(safe_address): logger.info('Fund Safe deployment for {}'.format(safe_address)) ethereum_client = EthereumClientProvider() safe_creation = SafeCreation2.objects.get(safe=safe_address) # Estimate costs of safe creation safe_deploy_cost = safe_creation.wei_estimated_deploy_cost() logger.info('Estimating %d for safe creation', safe_deploy_cost) # Estimate costs of token creation transaction_service = TransactionServiceProvider() token_deploy_cost = transaction_service.estimate_circles_signup_tx(safe_address) logger.info('Estimating %d for token deployment', token_deploy_cost) # Find total onboarding costs payment = safe_deploy_cost + token_deploy_cost # Get current safe balance safe_balance = ethereum_client.get_balance(safe_address) logger.info('Found %d balance for token deployment of safe=%s. Required=%d', safe_balance, safe_address, payment) if safe_balance >= payment: logger.info('Onboarding is already funded {}'.format(safe_address)) return FundingServiceProvider().send_eth_to(safe_address, payment, gas=24000) # Retry later to check for enough funding and successful deployment raise self.retry(countdown=30) else: logger.info('Not enough trust connections for funding deployment {}'.format(safe_address)) except LockError: pass @app.shared_task(bind=True, soft_time_limit=LOCK_TIMEOUT, max_retries=6) def begin_circles_onboarding_organization_task(self, safe_address: str, owner_address: str) -> None: """ Starts a multi-step onboarding task for Circles organizations which 1. funds deploys a Gnosis Safe for them 2. funds the deployment of their Organization. :param safe_address: Address of the safe to-be-created :param owner_address: Address of the first safe owner """ assert check_checksum(safe_address) assert check_checksum(owner_address) redis = RedisRepository().redis lock_name = f'locks:begin_circles_onboarding_organization_task:{safe_address}' try: with redis.lock(lock_name, blocking_timeout=1, timeout=LOCK_TIMEOUT): logger.info('Start onboarding for Circles Organization Safe {}'.format(safe_address)) # Deploy Safe when it does not exist yet safe_creation2 = SafeCreation2.objects.get(safe=safe_address) if not safe_creation2.tx_hash: logger.info('Safe does not exist yet, start deploying it {}'.format(safe_address)) circles_onboarding_organization_safe_task.delay(safe_address, owner_address) # Retry later to check for signup funding raise self.retry(countdown=30) else: logger.info('Safe exists, start funding organizationSignup for {}'.format(safe_address)) # Fund deployment when Organization does not exist yet circles_onboarding_organization_signup_task.delay(safe_address) except LockError: pass @app.shared_task(soft_time_limit=LOCK_TIMEOUT, max_retries=3) def circles_onboarding_organization_safe_task(safe_address: str, owner_address: str) -> None: """ Check if create2 Safe is being created by a trusted user :param safe_address: Address of the safe to-be-created :param owner_address: Address of the first safe owner """ assert check_checksum(safe_address) assert check_checksum(owner_address) try: redis = RedisRepository().redis lock_name = f'locks:circles_onboarding_organization_safe_task:{safe_address}' with redis.lock(lock_name, blocking_timeout=1, timeout=LOCK_TIMEOUT): logger.info('Check deploying Safe for organization .. {}'.format(safe_address)) try: SafeCreationServiceProvider().deploy_create2_safe_tx(safe_address) except SafeCreation2.DoesNotExist: pass except NotEnoughFundingForCreation: logger.info('Safe does not have enough fund for deployment, ' 'check owner {}'.format(owner_address)) # If we have enough trust connections, fund safe if GraphQLService().check_trust_connections_by_user(owner_address): logger.info('Fund Safe deployment for {}'.format(safe_address)) safe_creation = SafeCreation2.objects.get(safe=safe_address) safe_deploy_cost = safe_creation.wei_estimated_deploy_cost() FundingServiceProvider().send_eth_to(safe_address, safe_deploy_cost, gas=24000) else: logger.info('Owner {} does not have a deployed safe'.format(owner_address)) except LockError: pass @app.shared_task(soft_time_limit=LOCK_TIMEOUT) def circles_onboarding_organization_signup_task(safe_address: str) -> None: """ Check if Organization Safe is already registered in the Hub, if not, fund it :param safe_address: Address of the created safe """ assert check_checksum(safe_address) # Additional funds for organization deployments (it should at least cover # one `trust` method call) next to the `organizationSignup` method ADDITIONAL_START_FUNDS = 100000000000000 try: redis = RedisRepository().redis lock_name = f'locks:circles_onboarding_organization_signup_task:{safe_address}' with redis.lock(lock_name, blocking_timeout=1, timeout=LOCK_TIMEOUT): logger.info('Fund organizationSignup task for {}'.format(safe_address)) ethereum_client = EthereumClientProvider() # Do nothing if account already exists in Hub if CirclesService(ethereum_client).is_organization_deployed(safe_address): logger.info('Organization is already deployed for {}'.format(safe_address)) return # Do nothing if the signup is already funded transaction_service = TransactionServiceProvider() # Sum `organizationSignup` and additional `trust` transactions # costs as the organization needs to trust at least one user in the # beginning to receive more funds payment = transaction_service.estimate_circles_organization_signup_tx(safe_address) + ADDITIONAL_START_FUNDS safe_balance = ethereum_client.get_balance(safe_address) logger.info('Found %d balance for organization deployment of safe=%s. Required=%d', safe_balance, safe_address, payment) if safe_balance >= payment: logger.info('Organization is already funded {}'.format(safe_address)) return # Otherwise fund deployment logger.info('Fund Organization {}'.format(safe_address)) FundingServiceProvider().send_eth_to( safe_address, payment - safe_balance, gas=30000, retry=True ) except LockError: pass
51.209524
120
0.632044
7ff83a28c7570b23d121fa730b8ac7d7d99015bd
5,291
py
Python
tests/test_django_models.py
rubickcz/django-choice-enumfields
1b11115eb0631c156a788ce9b1b207f672b9a0e9
[ "MIT" ]
null
null
null
tests/test_django_models.py
rubickcz/django-choice-enumfields
1b11115eb0631c156a788ce9b1b207f672b9a0e9
[ "MIT" ]
null
null
null
tests/test_django_models.py
rubickcz/django-choice-enumfields
1b11115eb0631c156a788ce9b1b207f672b9a0e9
[ "MIT" ]
null
null
null
# -- encoding: UTF-8 -- from django.core.exceptions import ValidationError from django.db import connection import pytest from .enums import Color, IntegerEnum, LabeledEnum, StateFlow, StateFlowAnyFirst, SubIntegerEnum, Taste, ZeroEnum from .models import MyModel @pytest.mark.django_db def test_field_value(): m = MyModel(color=Color.RED) m.save() assert m.color == Color.RED m = MyModel.objects.filter(color=Color.RED)[0] assert m.color == Color.RED # Passing the value should work the same way as passing the enum assert Color.RED.value == 'r' m = MyModel.objects.filter(color='r')[0] assert m.color == Color.RED with pytest.raises(ValueError): MyModel.objects.filter(color='xx')[0] @pytest.mark.django_db def test_db_value(): m = MyModel(color=Color.RED) m.save() cursor = connection.cursor() cursor.execute('SELECT color FROM %s WHERE id = %%s' % MyModel._meta.db_table, [m.pk]) assert cursor.fetchone()[0] == Color.RED.value @pytest.mark.django_db def test_enum_int_field_validators(): if not hasattr(connection.ops, 'integer_field_range'): return pytest.skip('Needs connection.ops.integer_field_range') # Make sure that integer_field_range returns a range. # This is needed to make SQLite emulate a "real" db orig_method = connection.ops.integer_field_range connection.ops.integer_field_range = (lambda *args: (-100, 100)) m = MyModel(color=Color.RED) # Uncache validators property of taste_int for f in m._meta.fields: if f.name == 'taste_int': if 'validators' in f.__dict__: del f.__dict__['validators'] # Run the validators m.full_clean() # Revert integer_field_range method connection.ops.integer_field_range = orig_method @pytest.mark.django_db def test_zero_enum_loads(): # Verifies that we can save and load enums with the value of 0 (zero). m = MyModel(zero_field=ZeroEnum.ZERO, color=Color.GREEN) m.save() assert m.zero_field == ZeroEnum.ZERO m = MyModel.objects.get(id=m.id) assert m.zero_field == ZeroEnum.ZERO @pytest.mark.django_db def test_int_enum(): m = MyModel(int_enum=IntegerEnum.A, color=Color.RED) m.save() m = MyModel.objects.get(id=m.id) assert m.int_enum == IntegerEnum.A assert isinstance(m.int_enum, IntegerEnum) def test_serialization(): from django.core.serializers.python import Serializer as PythonSerializer m = MyModel(color=Color.RED, taste=Taste.SALTY) ser = PythonSerializer() ser.serialize([m]) fields = ser.getvalue()[0]["fields"] assert fields["color"] == m.color.value assert fields["taste"] == m.taste.value @pytest.mark.django_db def test_nonunique_label(): obj = MyModel.objects.create( color=Color.BLUE, labeled_enum=LabeledEnum.FOOBAR ) assert obj.labeled_enum is LabeledEnum.FOOBAR obj = MyModel.objects.get(pk=obj.pk) assert obj.labeled_enum is LabeledEnum.FOOBAR def test_sub_enum_field(): with pytest.raises(ValidationError): MyModel(color=Color.RED, int_enum=IntegerEnum.A, sub_int_enum=SubIntegerEnum.D).full_clean() MyModel(color=Color.RED, int_enum=IntegerEnum.C).full_clean() MyModel(color=Color.RED, int_enum=IntegerEnum.A, sub_int_enum=SubIntegerEnum.C).full_clean() MyModel(color=Color.RED, int_enum=IntegerEnum.B, sub_int_enum=SubIntegerEnum.C).full_clean() MyModel(color=Color.RED, int_enum=IntegerEnum.B, sub_int_enum=SubIntegerEnum.D).full_clean() MyModel(color=Color.RED).full_clean() @pytest.mark.django_db def test_next_states_enum_field(): model = MyModel.objects.create(color=Color.RED) with pytest.raises(ValidationError): # invalid transition from START to END model.any_first_state = StateFlowAnyFirst.END model.full_clean() model.any_first_state = StateFlowAnyFirst.PROCESSING model.full_clean() # does not update initial value of any_first_state field model.save(update_fields=['color']) with pytest.raises(ValidationError): # invalid transition from START to END model.any_first_state = StateFlowAnyFirst.END model.full_clean() # initial values of fields during save are updated model.any_first_state = StateFlowAnyFirst.PROCESSING model.save() model.any_first_state = StateFlowAnyFirst.END model.full_clean() model.state = StateFlow.PROCESSING model.save(update_fields=['state']) assert model.state is StateFlow.PROCESSING # field values are updated correctly from model loaded from db model_from_db = MyModel.objects.get(pk=model.pk) model_from_db.any_first_state = StateFlowAnyFirst.END model_from_db.full_clean() with pytest.raises(ValidationError): # invalid transition from PROCESSING to START model_from_db.any_first_state = StateFlowAnyFirst.START model_from_db.full_clean() MyModel(color=Color.RED, any_first_state=StateFlowAnyFirst.END).full_clean() def test_initial_enum_field(): MyModel(color=Color.RED, state=StateFlow.START).full_clean() with pytest.raises(ValidationError): # END is not initial state MyModel(color=Color.RED, state=StateFlow.END).full_clean()
32.066667
113
0.715933
ad88045039f95387b537725e9f8512ac9d311d45
14,542
py
Python
homeassistant/helpers/entity_component.py
wanman/home-assistant
633aaed22b0de0129d1e72e23bcd974b9ce13656
[ "Apache-2.0" ]
null
null
null
homeassistant/helpers/entity_component.py
wanman/home-assistant
633aaed22b0de0129d1e72e23bcd974b9ce13656
[ "Apache-2.0" ]
1
2017-03-10T22:17:06.000Z
2017-03-10T22:17:06.000Z
homeassistant/helpers/entity_component.py
wanman/home-assistant
633aaed22b0de0129d1e72e23bcd974b9ce13656
[ "Apache-2.0" ]
null
null
null
"""Helpers for components that manage entities.""" import asyncio from datetime import timedelta from homeassistant import config as conf_util from homeassistant.bootstrap import ( async_prepare_setup_platform, async_prepare_setup_component) from homeassistant.const import ( ATTR_ENTITY_ID, CONF_SCAN_INTERVAL, CONF_ENTITY_NAMESPACE, DEVICE_DEFAULT_NAME) from homeassistant.core import callback, valid_entity_id from homeassistant.exceptions import HomeAssistantError from homeassistant.loader import get_component from homeassistant.helpers import config_per_platform, discovery from homeassistant.helpers.entity import async_generate_entity_id from homeassistant.helpers.event import async_track_time_interval from homeassistant.helpers.service import extract_entity_ids from homeassistant.util.async import ( run_callback_threadsafe, run_coroutine_threadsafe) DEFAULT_SCAN_INTERVAL = timedelta(seconds=15) class EntityComponent(object): """Helper class that will help a component manage its entities.""" def __init__(self, logger, domain, hass, scan_interval=DEFAULT_SCAN_INTERVAL, group_name=None): """Initialize an entity component.""" self.logger = logger self.hass = hass self.domain = domain self.entity_id_format = domain + '.{}' self.scan_interval = scan_interval self.group_name = group_name self.entities = {} self.group = None self.config = None self._platforms = { 'core': EntityPlatform(self, domain, self.scan_interval, None), } self.async_add_entities = self._platforms['core'].async_add_entities self.add_entities = self._platforms['core'].add_entities def setup(self, config): """Set up a full entity component. Loads the platforms from the config and will listen for supported discovered platforms. """ run_coroutine_threadsafe( self.async_setup(config), self.hass.loop ).result() @asyncio.coroutine def async_setup(self, config): """Set up a full entity component. Loads the platforms from the config and will listen for supported discovered platforms. This method must be run in the event loop. """ self.config = config # Look in config for Domain, Domain 2, Domain 3 etc and load them tasks = [] for p_type, p_config in config_per_platform(config, self.domain): tasks.append(self._async_setup_platform(p_type, p_config)) if tasks: yield from asyncio.wait(tasks, loop=self.hass.loop) # Generic discovery listener for loading platform dynamically # Refer to: homeassistant.components.discovery.load_platform() @callback def component_platform_discovered(platform, info): """Callback to load a platform.""" self.hass.async_add_job( self._async_setup_platform(platform, {}, info)) discovery.async_listen_platform( self.hass, self.domain, component_platform_discovered) def extract_from_service(self, service, expand_group=True): """Extract all known entities from a service call. Will return all entities if no entities specified in call. Will return an empty list if entities specified but unknown. """ return run_callback_threadsafe( self.hass.loop, self.async_extract_from_service, service, expand_group ).result() def async_extract_from_service(self, service, expand_group=True): """Extract all known entities from a service call. Will return all entities if no entities specified in call. Will return an empty list if entities specified but unknown. This method must be run in the event loop. """ if ATTR_ENTITY_ID not in service.data: return list(self.entities.values()) return [self.entities[entity_id] for entity_id in extract_entity_ids(self.hass, service, expand_group) if entity_id in self.entities] @asyncio.coroutine def _async_setup_platform(self, platform_type, platform_config, discovery_info=None): """Setup a platform for this component. This method must be run in the event loop. """ platform = yield from async_prepare_setup_platform( self.hass, self.config, self.domain, platform_type) if platform is None: return # Config > Platform > Component scan_interval = (platform_config.get(CONF_SCAN_INTERVAL) or getattr(platform, 'SCAN_INTERVAL', None) or self.scan_interval) entity_namespace = platform_config.get(CONF_ENTITY_NAMESPACE) key = (platform_type, scan_interval, entity_namespace) if key not in self._platforms: self._platforms[key] = EntityPlatform( self, platform_type, scan_interval, entity_namespace) entity_platform = self._platforms[key] try: self.logger.info("Setting up %s.%s", self.domain, platform_type) if getattr(platform, 'async_setup_platform', None): yield from platform.async_setup_platform( self.hass, platform_config, entity_platform.async_add_entities, discovery_info ) else: yield from self.hass.loop.run_in_executor( None, platform.setup_platform, self.hass, platform_config, entity_platform.add_entities, discovery_info ) self.hass.config.components.add( '{}.{}'.format(self.domain, platform_type)) except Exception: # pylint: disable=broad-except self.logger.exception( 'Error while setting up platform %s', platform_type) def add_entity(self, entity, platform=None, update_before_add=False): """Add entity to component.""" return run_coroutine_threadsafe( self.async_add_entity(entity, platform, update_before_add), self.hass.loop ).result() @asyncio.coroutine def async_add_entity(self, entity, platform=None, update_before_add=False): """Add entity to component. This method must be run in the event loop. """ if entity is None or entity in self.entities.values(): return False entity.hass = self.hass # update/init entity data if update_before_add: if hasattr(entity, 'async_update'): yield from entity.async_update() else: yield from self.hass.loop.run_in_executor(None, entity.update) if getattr(entity, 'entity_id', None) is None: object_id = entity.name or DEVICE_DEFAULT_NAME if platform is not None and platform.entity_namespace is not None: object_id = '{} {}'.format(platform.entity_namespace, object_id) entity.entity_id = async_generate_entity_id( self.entity_id_format, object_id, self.entities.keys()) # Make sure it is valid in case an entity set the value themselves if entity.entity_id in self.entities: raise HomeAssistantError( 'Entity id already exists: {}'.format(entity.entity_id)) elif not valid_entity_id(entity.entity_id): raise HomeAssistantError( 'Invalid entity id: {}'.format(entity.entity_id)) self.entities[entity.entity_id] = entity if hasattr(entity, 'async_added_to_hass'): yield from entity.async_added_to_hass() yield from entity.async_update_ha_state() return True def update_group(self): """Set up and/or update component group.""" run_callback_threadsafe( self.hass.loop, self.async_update_group).result() @asyncio.coroutine def async_update_group(self): """Set up and/or update component group. This method must be run in the event loop. """ if self.group is None and self.group_name is not None: group = get_component('group') self.group = yield from group.Group.async_create_group( self.hass, self.group_name, self.entities.keys(), user_defined=False ) elif self.group is not None: yield from self.group.async_update_tracked_entity_ids( self.entities.keys()) def reset(self): """Remove entities and reset the entity component to initial values.""" run_coroutine_threadsafe(self.async_reset(), self.hass.loop).result() @asyncio.coroutine def async_reset(self): """Remove entities and reset the entity component to initial values. This method must be run in the event loop. """ tasks = [platform.async_reset() for platform in self._platforms.values()] if tasks: yield from asyncio.wait(tasks, loop=self.hass.loop) self._platforms = { 'core': self._platforms['core'] } self.entities = {} self.config = None if self.group is not None: yield from self.group.async_stop() self.group = None def prepare_reload(self): """Prepare reloading this entity component.""" return run_coroutine_threadsafe( self.async_prepare_reload(), loop=self.hass.loop).result() @asyncio.coroutine def async_prepare_reload(self): """Prepare reloading this entity component. This method must be run in the event loop. """ try: conf = yield from \ conf_util.async_hass_config_yaml(self.hass) except HomeAssistantError as err: self.logger.error(err) return None conf = yield from async_prepare_setup_component( self.hass, conf, self.domain) if conf is None: return None yield from self.async_reset() return conf class EntityPlatform(object): """Keep track of entities for a single platform and stay in loop.""" def __init__(self, component, platform, scan_interval, entity_namespace): """Initalize the entity platform.""" self.component = component self.platform = platform self.scan_interval = scan_interval self.entity_namespace = entity_namespace self.platform_entities = [] self._async_unsub_polling = None self._process_updates = asyncio.Lock(loop=component.hass.loop) def add_entities(self, new_entities, update_before_add=False): """Add entities for a single platform.""" if update_before_add: for entity in new_entities: entity.update() run_coroutine_threadsafe( self.async_add_entities(list(new_entities), False), self.component.hass.loop ).result() @asyncio.coroutine def async_add_entities(self, new_entities, update_before_add=False): """Add entities for a single platform async. This method must be run in the event loop. """ # handle empty list from component/platform if not new_entities: return tasks = [self._async_process_entity(entity, update_before_add) for entity in new_entities] yield from asyncio.wait(tasks, loop=self.component.hass.loop) yield from self.component.async_update_group() if self._async_unsub_polling is not None or \ not any(entity.should_poll for entity in self.platform_entities): return self._async_unsub_polling = async_track_time_interval( self.component.hass, self._update_entity_states, self.scan_interval ) @asyncio.coroutine def _async_process_entity(self, new_entity, update_before_add): """Add entities to StateMachine.""" ret = yield from self.component.async_add_entity( new_entity, self, update_before_add=update_before_add ) if ret: self.platform_entities.append(new_entity) @asyncio.coroutine def async_reset(self): """Remove all entities and reset data. This method must be run in the event loop. """ if not self.platform_entities: return tasks = [entity.async_remove() for entity in self.platform_entities] yield from asyncio.wait(tasks, loop=self.component.hass.loop) if self._async_unsub_polling is not None: self._async_unsub_polling() self._async_unsub_polling = None @asyncio.coroutine def _update_entity_states(self, now): """Update the states of all the polling entities. To protect from flooding the executor, we will update async entities in parallel and other entities sequential. This method must be run in the event loop. """ if self._process_updates.locked(): self.component.logger.warning( "Updating %s %s took longer than the scheduled update " "interval %s", self.platform, self.component.domain, self.scan_interval) return with (yield from self._process_updates): tasks = [] to_update = [] for entity in self.platform_entities: if not entity.should_poll: continue update_coro = entity.async_update_ha_state(True) if hasattr(entity, 'async_update'): tasks.append( self.component.hass.loop.create_task(update_coro)) else: to_update.append(update_coro) for update_coro in to_update: try: yield from update_coro except Exception: # pylint: disable=broad-except self.component.logger.exception( 'Error while update entity from %s in %s', self.platform, self.component.domain) if tasks: yield from asyncio.wait(tasks, loop=self.component.hass.loop)
35.99505
79
0.630587
ae69c11f416f244d870439628fed39cdddb017f3
11,010
py
Python
frappe/core/doctype/user/test_user.py
ektai/frappe3
44aa948b4d5a0d729eacfb3dabdc9c8894ae1799
[ "MIT" ]
null
null
null
frappe/core/doctype/user/test_user.py
ektai/frappe3
44aa948b4d5a0d729eacfb3dabdc9c8894ae1799
[ "MIT" ]
null
null
null
frappe/core/doctype/user/test_user.py
ektai/frappe3
44aa948b4d5a0d729eacfb3dabdc9c8894ae1799
[ "MIT" ]
null
null
null
# Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors # MIT License. See license.txt from __future__ import unicode_literals import frappe, unittest from frappe.model.delete_doc import delete_doc from frappe.utils.data import today, add_to_date from frappe import _dict from frappe.limits import update_limits, clear_limit from frappe.utils import get_url from frappe.core.doctype.user.user import get_total_users from frappe.core.doctype.user.user import MaxUsersReachedError, test_password_strength from frappe.core.doctype.user.user import extract_mentions import requests test_records = frappe.get_test_records('User') class TestUser(unittest.TestCase): def tearDown(self): # disable password strength test frappe.db.set_value("System Settings", "System Settings", "enable_password_policy", 0) frappe.db.set_value("System Settings", "System Settings", "minimum_password_score", "") def test_user_type(self): new_user = frappe.get_doc(dict(doctype='User', email='test-for-type@ektai.mail', first_name='Tester')).insert() self.assertEqual(new_user.user_type, 'Website User') # social login userid for frappe self.assertTrue(new_user.social_logins[0].userid) self.assertEqual(new_user.social_logins[0].provider, "frappe") # role with desk access new_user.add_roles('_Test Role 2') new_user.save() self.assertEqual(new_user.user_type, 'System User') # clear role new_user.roles = [] new_user.save() self.assertEqual(new_user.user_type, 'Website User') # role without desk access new_user.add_roles('_Test Role 4') new_user.save() self.assertEqual(new_user.user_type, 'Website User') delete_contact(new_user.name) frappe.delete_doc('User', new_user.name) def test_delete(self): frappe.get_doc("User", "test@ektai.mail").add_roles("_Test Role 2") self.assertRaises(frappe.LinkExistsError, delete_doc, "Role", "_Test Role 2") frappe.db.sql("""delete from `tabHas Role` where role='_Test Role 2'""") delete_doc("Role","_Test Role 2") if frappe.db.exists("User", "_test@ektai.mail"): delete_contact("_test@ektai.mail") delete_doc("User", "_test@ektai.mail") user = frappe.copy_doc(test_records[1]) user.email = "_test@ektai.mail" user.insert() frappe.get_doc({"doctype": "ToDo", "description": "_Test"}).insert() delete_contact("_test@ektai.mail") delete_doc("User", "_test@ektai.mail") self.assertTrue(not frappe.db.sql("""select * from `tabToDo` where owner=%s""", ("_test@ektai.mail",))) from frappe.core.doctype.role.test_role import test_records as role_records frappe.copy_doc(role_records[1]).insert() def test_get_value(self): self.assertEqual(frappe.db.get_value("User", "test@ektai.mail"), "test@ektai.mail") self.assertEqual(frappe.db.get_value("User", {"email":"test@ektai.mail"}), "test@ektai.mail") self.assertEqual(frappe.db.get_value("User", {"email":"test@ektai.mail"}, "email"), "test@ektai.mail") self.assertEqual(frappe.db.get_value("User", {"email":"test@ektai.mail"}, ["first_name", "email"]), ("_Test", "test@ektai.mail")) self.assertEqual(frappe.db.get_value("User", {"email":"test@ektai.mail", "first_name": "_Test"}, ["first_name", "email"]), ("_Test", "test@ektai.mail")) test_user = frappe.db.sql("select * from tabUser where name='test@ektai.mail'", as_dict=True)[0] self.assertEqual(frappe.db.get_value("User", {"email":"test@ektai.mail"}, "*", as_dict=True), test_user) self.assertEqual(frappe.db.get_value("User", "xxxtest@ektai.mail"), None) frappe.db.set_value("Website Settings", "Website Settings", "_test", "_test_val") self.assertEqual(frappe.db.get_value("Website Settings", None, "_test"), "_test_val") self.assertEqual(frappe.db.get_value("Website Settings", "Website Settings", "_test"), "_test_val") def test_high_permlevel_validations(self): user = frappe.get_meta("User") self.assertTrue("roles" in [d.fieldname for d in user.get_high_permlevel_fields()]) me = frappe.get_doc("User", "testperm@ektai.mail") me.remove_roles("System Manager") frappe.set_user("testperm@ektai.mail") me = frappe.get_doc("User", "testperm@ektai.mail") self.assertRaises(frappe.PermissionError, me.add_roles, "System Manager") frappe.set_user("Administrator") me = frappe.get_doc("User", "testperm@ektai.mail") me.add_roles("System Manager") self.assertTrue("System Manager" in [d.role for d in me.get("roles")]) def test_user_limit_for_site(self): update_limits({'users': get_total_users()}) # reload site config from frappe import _dict frappe.local.conf = _dict(frappe.get_site_config()) # Create a new user user = frappe.new_doc('User') user.email = 'test_max_users@ektai.mail' user.first_name = 'Test_max_user' self.assertRaises(MaxUsersReachedError, user.add_roles, 'System Manager') if frappe.db.exists('User', 'test_max_users@ektai.mail'): delete_contact('test_max_users@ektai.mail') frappe.delete_doc('User', 'test_max_users@ektai.mail') # Clear the user limit clear_limit('users') def test_user_limit_for_site_with_simultaneous_sessions(self): clear_limit('users') # make sure this user counts user = frappe.get_doc('User', 'test@ektai.mail') user.add_roles('Website Manager') user.save() update_limits({'users': get_total_users()}) user.simultaneous_sessions = user.simultaneous_sessions + 1 self.assertRaises(MaxUsersReachedError, user.save) # Clear the user limit clear_limit('users') # def test_deny_multiple_sessions(self): # from frappe.installer import update_site_config # clear_limit('users') # # # allow one session # user = frappe.get_doc('User', 'test@ektai.mail') # user.simultaneous_sessions = 1 # user.new_password = 'Eastern_43A1W' # user.save() # # def test_request(conn): # value = conn.get_value('User', 'first_name', {'name': 'test@ektai.mail'}) # self.assertTrue('first_name' in value) # # from frappe.frappeclient import FrappeClient # update_site_config('deny_multiple_sessions', 0) # # conn1 = FrappeClient(get_url(), "test@ektai.mail", "Eastern_43A1W", verify=False) # test_request(conn1) # # conn2 = FrappeClient(get_url(), "test@ektai.mail", "Eastern_43A1W", verify=False) # test_request(conn2) # # update_site_config('deny_multiple_sessions', 1) # conn3 = FrappeClient(get_url(), "test@ektai.mail", "Eastern_43A1W", verify=False) # test_request(conn3) # # # first connection should fail # test_request(conn1) def test_site_expiry(self): user = frappe.get_doc('User', 'test@ektai.mail') user.enabled = 1 user.new_password = 'Eastern_43A1W' user.save() update_limits({'expiry': add_to_date(today(), days=-1), 'support_email': 'support@ektai.mail'}) frappe.local.conf = _dict(frappe.get_site_config()) frappe.db.commit() res = requests.post(get_url(), params={'cmd': 'login', 'usr': 'test@ektai.mail', 'pwd': 'Eastern_43A1W', 'device': 'desktop'}) # While site is expired status code returned is 417 Failed Expectation self.assertEqual(res.status_code, 417) clear_limit("expiry") frappe.local.conf = _dict(frappe.get_site_config()) def test_delete_user(self): new_user = frappe.get_doc(dict(doctype='User', email='test-for-delete@ektai.mail', first_name='Tester Delete User')).insert() self.assertEqual(new_user.user_type, 'Website User') # role with desk access new_user.add_roles('_Test Role 2') new_user.save() self.assertEqual(new_user.user_type, 'System User') comm = frappe.get_doc({ "doctype":"Communication", "subject": "To check user able to delete even if linked with communication", "content": "To check user able to delete even if linked with communication", "sent_or_received": "Sent", "user": new_user.name }) comm.insert(ignore_permissions=True) delete_contact(new_user.name) frappe.delete_doc('User', new_user.name) self.assertFalse(frappe.db.exists('User', new_user.name)) def test_deactivate_additional_users(self): update_limits({'users': get_total_users()+1}) if not frappe.db.exists("User", "test_deactivate_additional_users@ektai.mail"): user = frappe.new_doc('User') user.email = 'test_deactivate_additional_users@ektai.mail' user.first_name = 'Test Deactivate Additional Users' user.add_roles("System Manager") #update limits update_limits({"users": get_total_users()-1}) self.assertEqual(frappe.db.get_value("User", "test_deactivate_additional_users@ektai.mail", "enabled"), 0) if frappe.db.exists("User", "test_deactivate_additional_users@ektai.mail"): delete_contact('test_deactivate_additional_users@ektai.mail') frappe.delete_doc('User', 'test_deactivate_additional_users@ektai.mail') # Clear the user limit clear_limit('users') def test_password_strength(self): # Test Password without Password Strenth Policy frappe.db.set_value("System Settings", "System Settings", "enable_password_policy", 0) # password policy is disabled, test_password_strength should be ignored result = test_password_strength("test_password") self.assertFalse(result.get("feedback", None)) # Test Password with Password Strenth Policy Set frappe.db.set_value("System Settings", "System Settings", "enable_password_policy", 1) frappe.db.set_value("System Settings", "System Settings", "minimum_password_score", 2) # Score 1; should now fail result = test_password_strength("bee2ve") self.assertEqual(result['feedback']['password_policy_validation_passed'], False) # Score 4; should pass result = test_password_strength("Eastern_43A1W") self.assertEqual(result['feedback']['password_policy_validation_passed'], True) def test_comment_mentions(self): comment = ''' <span class="mention" data-id="test.comment@ektai.mail" data-value="Test" data-denotation-char="@"> <span><span class="ql-mention-denotation-char">@</span>Test</span> </span> ''' self.assertEqual(extract_mentions(comment)[0], "test.comment@ektai.mail") comment = ''' <div> Testing comment, <span class="mention" data-id="test.comment@ektai.mail" data-value="Test" data-denotation-char="@"> <span><span class="ql-mention-denotation-char">@</span>Test</span> </span> please check </div> ''' self.assertEqual(extract_mentions(comment)[0], "test.comment@ektai.mail") comment = ''' <div> Testing comment for <span class="mention" data-id="test_user@ektai.mail" data-value="Test" data-denotation-char="@"> <span><span class="ql-mention-denotation-char">@</span>Test</span> </span> and <span class="mention" data-id="test.again@example1.com" data-value="Test" data-denotation-char="@"> <span><span class="ql-mention-denotation-char">@</span>Test</span> </span> please check </div> ''' self.assertEqual(extract_mentions(comment)[0], "test_user@ektai.mail") self.assertEqual(extract_mentions(comment)[1], "test.again@example1.com") def delete_contact(user): frappe.db.sql("DELETE FROM `tabContact` WHERE `email_id`= %s", user)
36.098361
108
0.726703
4308dec371ea1e409bbedd65c18c9ae2a20e36e1
4,239
py
Python
toppra/constraint/canonical_conic.py
shintarokkk/toppra
1a7be8feb68fec91459d6dc625f0114692dac885
[ "MIT" ]
null
null
null
toppra/constraint/canonical_conic.py
shintarokkk/toppra
1a7be8feb68fec91459d6dc625f0114692dac885
[ "MIT" ]
1
2020-06-01T21:27:23.000Z
2020-06-01T21:27:23.000Z
toppra/constraint/canonical_conic.py
shintarokkk/toppra
1a7be8feb68fec91459d6dc625f0114692dac885
[ "MIT" ]
2
2020-04-06T16:22:25.000Z
2020-06-12T00:45:10.000Z
from .constraint import Constraint from .constraint import ConstraintType, DiscretizationType import numpy as np class CanonicalConicConstraint(Constraint): """Base class for all canonical conic constraints. A canonical conic constraint is one with the following form .. math:: (a[i] + da[i]) u + (b[i] + db[i]) x + (c[i] + dc[i]) \leq 0, \\\\ [da[i, j], db[i, j], dc[i, j]]^\top = P[i, j] u, \|u\|_2 \leq 1, where P[i, j] is a 3x3 matrix. Notice that by setting P[i, j] to the zero matrix, Constraints of this form can be translated to conic-quadratic constraints. This transformation can be found in [1]. The resulting conic-quadratic constraint is given below .. math:: a[i, j]u + b[i, j]x + c[i, j] + \|P[i, j]^T [u, x, 1]^T \|_2 \leq 0, where i is the stage index, and j is the constraint index. Refs: ---- [1] Ben-Tal, A., & Nemirovski, A. (2001). Lectures on modern convex optimization: analysis, algorithms, and engineering applications (Vol. 2). Siam. """ def __init__(self): self.constraint_type = ConstraintType.CanonicalConic self.discretization_type = DiscretizationType.Collocation self.n_extra_vars = 0 self.dof = -1 self._format_string = "" def compute_constraint_params(self, path, gridpoints): raise NotImplementedError class RobustCanonicalLinearConstraint(CanonicalConicConstraint): """The simple canonical conic constraint. This constraint can be seen as a more robust version of a CanonicalLinear constraint. In particular, the perturbations term, [\Delta a[i, j], \Delta b[i, j], \Delta c[i, j]] is assumed to lie in a centered ellipsoid: .. math:: [\Delta a[i, j], \Delta b[i, j], \Delta c[i, j]]^\\top = diag(ru, rx, rc) \mathbf e, where \|\mathbf e\|_2 \leq 1. Parameters ---------- cnst: :class:`~toppra.constraint.CanonicalLinearConstraint` The base constraint to robustify. ellipsoid_axes_lengths: (3,)array Lengths of the axes of the perturbation ellipsoid. Must all be non-negative. discretization_scheme: :class:`~.constraint.DiscretizationType` Constraint discretization scheme to use. """ def __init__(self, cnst, ellipsoid_axes_lengths, discretization_scheme=DiscretizationType.Collocation): super(RobustCanonicalLinearConstraint, self).__init__() self.dof = cnst.get_dof() assert cnst.get_constraint_type() == ConstraintType.CanonicalLinear self.set_discretization_type(discretization_scheme) if np.any(np.r_[ellipsoid_axes_lengths] < 0): raise ValueError("Perturbation must be non-negative. Input {:}".format(ellipsoid_axes_lengths)) self.base_constraint = cnst self.ellipsoid_axes_lengths = ellipsoid_axes_lengths self._format_string += " Robust constraint generated from a canonical linear constraint\n" def compute_constraint_params(self, path, gridpoints): self.base_constraint.set_discretization_type(self.discretization_type) a_, b_, c_, F_, g_, u_, _ = self.base_constraint.compute_constraint_params(path, gridpoints) N = len(gridpoints) - 1 if self.base_constraint.identical: d = F_.shape[0] # number of rows else: d = F_.shape[1] a = np.zeros((N + 1, d + 2)) b = np.zeros((N + 1, d + 2)) c = np.zeros((N + 1, d + 2)) if self.base_constraint.identical: for i in range(len(gridpoints)): a[i, :d] = F_.dot(a_[i]) b[i, :d] = F_.dot(b_[i]) c[i, :d] = F_.dot(c_[i]) - g_ a[i, d:] = [1, -1] c[i, d:] = [- u_[i, 1], u_[i, 0]] else: for i in range(len(gridpoints)): a[i, :d] = F_[i].dot(a_[i]) b[i, :d] = F_[i].dot(b_[i]) c[i, :d] = F_[i].dot(c_[i]) - g_[i] a[i, d:] = [1, -1] c[i, d:] = [- u_[i, 1], u_[i, 0]] P = np.zeros((N + 1, d + 2, 3, 3)) diag_ = np.diag(self.ellipsoid_axes_lengths) P[:] = diag_ return a, b, c, P
37.513274
107
0.601085
5c31d0d6747a3adf2a53b70769120350e9d3eaea
28,920
py
Python
source/file_utils.py
ohadrozen/inferbert
2e450aba894937e5769dcf028e4a8a597991fe43
[ "Apache-2.0" ]
null
null
null
source/file_utils.py
ohadrozen/inferbert
2e450aba894937e5769dcf028e4a8a597991fe43
[ "Apache-2.0" ]
1
2021-08-22T08:10:10.000Z
2021-08-23T02:38:23.000Z
source/file_utils.py
ohadrozen/inferbert
2e450aba894937e5769dcf028e4a8a597991fe43
[ "Apache-2.0" ]
2
2021-08-22T08:13:31.000Z
2021-08-22T08:19:29.000Z
""" Utilities for working with the local dataset cache. This file is adapted from the AllenNLP library at https://github.com/allenai/allennlp Copyright by the AllenNLP authors. """ import fnmatch import json import logging import os import shutil import sys import tarfile import tempfile from contextlib import contextmanager from functools import partial, wraps from hashlib import sha256 from pathlib import Path from typing import Dict, Optional, Union from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import requests from filelock import FileLock from tqdm import tqdm # from transformers import __version__ __version__ = '3.0.1' logger = logging.getLogger(__name__) # pylint: disable=invalid-name try: USE_TF = os.environ.get("USE_TF", "AUTO").upper() USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper() if USE_TORCH in ("1", "ON", "YES", "AUTO") and USE_TF not in ("1", "ON", "YES"): import torch _torch_available = True # pylint: disable=invalid-name logger.info("PyTorch version {} available.".format(torch.__version__)) else: logger.info("Disabling PyTorch because USE_TF is set") _torch_available = False except ImportError: _torch_available = False # pylint: disable=invalid-name try: USE_TF = os.environ.get("USE_TF", "AUTO").upper() USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper() if USE_TF in ("1", "ON", "YES", "AUTO") and USE_TORCH not in ("1", "ON", "YES"): import tensorflow as tf assert hasattr(tf, "__version__") and int(tf.__version__[0]) >= 2 _tf_available = True # pylint: disable=invalid-name logger.info("TensorFlow version {} available.".format(tf.__version__)) else: logger.info("Disabling Tensorflow because USE_TORCH is set") _tf_available = False except (ImportError, AssertionError): _tf_available = False # pylint: disable=invalid-name try: from torch.hub import _get_torch_home torch_cache_home = _get_torch_home() except ImportError: torch_cache_home = os.path.expanduser( os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch")) ) try: import torch_xla.core.xla_model as xm # noqa: F401 if _torch_available: _torch_tpu_available = True # pylint: disable= else: _torch_tpu_available = False except ImportError: _torch_tpu_available = False try: import psutil # noqa: F401 _psutil_available = True except ImportError: _psutil_available = False try: import py3nvml # noqa: F401 _py3nvml_available = True except ImportError: _py3nvml_available = False try: from apex import amp # noqa: F401 _has_apex = True except ImportError: _has_apex = False default_cache_path = os.path.join(torch_cache_home, "transformers") PYTORCH_PRETRAINED_BERT_CACHE = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path) PYTORCH_TRANSFORMERS_CACHE = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE) TRANSFORMERS_CACHE = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE) WEIGHTS_NAME = "pytorch_model.bin" TF2_WEIGHTS_NAME = "tf_model.h5" TF_WEIGHTS_NAME = "model.ckpt" CONFIG_NAME = "config.json" MODEL_CARD_NAME = "modelcard.json" MULTIPLE_CHOICE_DUMMY_INPUTS = [[[0], [1]], [[0], [1]]] DUMMY_INPUTS = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] DUMMY_MASK = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] S3_BUCKET_PREFIX = "https://s3.amazonaws.com/models.huggingface.co/bert" CLOUDFRONT_DISTRIB_PREFIX = "https://cdn.huggingface.co" def is_torch_available(): return _torch_available def is_tf_available(): return _tf_available def is_torch_tpu_available(): return _torch_tpu_available def is_psutil_available(): return _psutil_available def is_py3nvml_available(): return _py3nvml_available def is_apex_available(): return _has_apex def add_start_docstrings(*docstr): def docstring_decorator(fn): fn.__doc__ = "".join(docstr) + (fn.__doc__ if fn.__doc__ is not None else "") return fn return docstring_decorator def add_start_docstrings_to_callable(*docstr): def docstring_decorator(fn): class_name = ":class:`~transformers.{}`".format(fn.__qualname__.split(".")[0]) intro = " The {} forward method, overrides the :func:`__call__` special method.".format(class_name) note = r""" .. note:: Although the recipe for forward pass needs to be defined within this function, one should call the :class:`Module` instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them. """ fn.__doc__ = intro + note + "".join(docstr) + (fn.__doc__ if fn.__doc__ is not None else "") return fn return docstring_decorator def add_end_docstrings(*docstr): def docstring_decorator(fn): fn.__doc__ = fn.__doc__ + "".join(docstr) return fn return docstring_decorator PT_TOKEN_CLASSIFICATION_SAMPLE = r""" Example:: >>> from transformers import {tokenizer_class}, {model_class} >>> import torch >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}') >>> model = {model_class}.from_pretrained('{checkpoint}') >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> labels = torch.tensor([1] * inputs["input_ids"].size(1)).unsqueeze(0) # Batch size 1 >>> outputs = model(**inputs, labels=labels) >>> loss, scores = outputs[:2] """ PT_QUESTION_ANSWERING_SAMPLE = r""" Example:: >>> from transformers import {tokenizer_class}, {model_class} >>> import torch >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}') >>> model = {model_class}.from_pretrained('{checkpoint}') >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> start_positions = torch.tensor([1]) >>> end_positions = torch.tensor([3]) >>> outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) >>> loss, start_scores, end_scores = outputs[:3] """ PT_SEQUENCE_CLASSIFICATION_SAMPLE = r""" Example:: >>> from transformers import {tokenizer_class}, {model_class} >>> import torch >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}') >>> model = {model_class}.from_pretrained('{checkpoint}') >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 >>> outputs = model(**inputs, labels=labels) >>> loss, logits = outputs[:2] """ PT_MASKED_LM_SAMPLE = r""" Example:: >>> from transformers import {tokenizer_class}, {model_class} >>> import torch >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}') >>> model = {model_class}.from_pretrained('{checkpoint}') >>> input_ids = tokenizer("Hello, my dog is cute", return_tensors="pt")["input_ids"] >>> outputs = model(input_ids, labels=input_ids) >>> loss, prediction_scores = outputs[:2] """ PT_BASE_MODEL_SAMPLE = r""" Example:: >>> from transformers import {tokenizer_class}, {model_class} >>> import torch >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}') >>> model = {model_class}.from_pretrained('{checkpoint}') >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple """ PT_MULTIPLE_CHOICE_SAMPLE = r""" Example:: >>> from transformers import {tokenizer_class}, {model_class} >>> import torch >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}') >>> model = {model_class}.from_pretrained('{checkpoint}') >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> choice0 = "It is eaten with a fork and a knife." >>> choice1 = "It is eaten while held in the hand." >>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1 >>> encoding = tokenizer([[prompt, prompt], [choice0, choice1]], return_tensors='pt', padding=True) >>> outputs = model(**{{k: v.unsqueeze(0) for k,v in encoding.items()}}, labels=labels) # batch size is 1 >>> # the linear classifier still needs to be trained >>> loss, logits = outputs[:2] """ PT_CAUSAL_LM_SAMPLE = r""" Example:: >>> import torch >>> from transformers import {tokenizer_class}, {model_class} >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}') >>> model = {model_class}.from_pretrained('{checkpoint}') >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs, labels=inputs["input_ids"]) >>> loss, logits = outputs[:2] """ TF_TOKEN_CLASSIFICATION_SAMPLE = r""" Example:: >>> from transformers import {tokenizer_class}, {model_class} >>> import tensorflow as tf >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}') >>> model = {model_class}.from_pretrained('{checkpoint}') >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") >>> input_ids = inputs["input_ids"] >>> inputs["labels"] = tf.reshape(tf.constant([1] * tf.size(input_ids).numpy()), (-1, tf.size(input_ids))) # Batch size 1 >>> outputs = model(inputs) >>> loss, scores = outputs[:2] """ TF_QUESTION_ANSWERING_SAMPLE = r""" Example:: >>> from transformers import {tokenizer_class}, {model_class} >>> import tensorflow as tf >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}') >>> model = {model_class}.from_pretrained('{checkpoint}') >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" >>> input_dict = tokenizer(question, text, return_tensors='tf') >>> start_scores, end_scores = model(input_dict) >>> all_tokens = tokenizer.convert_ids_to_tokens(input_dict["input_ids"].numpy()[0]) >>> answer = ' '.join(all_tokens[tf.math.argmax(start_scores, 1)[0] : tf.math.argmax(end_scores, 1)[0]+1]) """ TF_SEQUENCE_CLASSIFICATION_SAMPLE = r""" Example:: >>> from transformers import {tokenizer_class}, {model_class} >>> import tensorflow as tf >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}') >>> model = {model_class}.from_pretrained('{checkpoint}') >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") >>> inputs["labels"] = tf.reshape(tf.constant(1), (-1, 1)) # Batch size 1 >>> outputs = model(inputs) >>> loss, logits = outputs[:2] """ TF_MASKED_LM_SAMPLE = r""" Example:: >>> from transformers import {tokenizer_class}, {model_class} >>> import tensorflow as tf >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}') >>> model = {model_class}.from_pretrained('{checkpoint}') >>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1 >>> outputs = model(input_ids) >>> prediction_scores = outputs[0] """ TF_BASE_MODEL_SAMPLE = r""" Example:: >>> from transformers import {tokenizer_class}, {model_class} >>> import tensorflow as tf >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}') >>> model = {model_class}.from_pretrained('{checkpoint}') >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") >>> outputs = model(inputs) >>> last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple """ TF_MULTIPLE_CHOICE_SAMPLE = r""" Example:: >>> from transformers import {tokenizer_class}, {model_class} >>> import tensorflow as tf >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}') >>> model = {model_class}.from_pretrained('{checkpoint}') >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> choice0 = "It is eaten with a fork and a knife." >>> choice1 = "It is eaten while held in the hand." >>> encoding = tokenizer([[prompt, prompt], [choice0, choice1]], return_tensors='tf', padding=True) >>> inputs = {{k: tf.expand_dims(v, 0) for k, v in encoding.items()}} >>> outputs = model(inputs) # batch size is 1 >>> # the linear classifier still needs to be trained >>> logits = outputs[0] """ TF_CAUSAL_LM_SAMPLE = r""" Example:: >>> from transformers import {tokenizer_class}, {model_class} >>> import tensorflow as tf >>> tokenizer = {tokenizer_class}.from_pretrained('{checkpoint}') >>> model = {model_class}.from_pretrained('{checkpoint}') >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") >>> outputs = model(inputs) >>> logits = outputs[0] """ def add_code_sample_docstrings(*docstr, tokenizer_class=None, checkpoint=None): def docstring_decorator(fn): model_class = fn.__qualname__.split(".")[0] is_tf_class = model_class[:2] == "TF" if "SequenceClassification" in model_class: code_sample = TF_SEQUENCE_CLASSIFICATION_SAMPLE if is_tf_class else PT_SEQUENCE_CLASSIFICATION_SAMPLE elif "QuestionAnswering" in model_class: code_sample = TF_QUESTION_ANSWERING_SAMPLE if is_tf_class else PT_QUESTION_ANSWERING_SAMPLE elif "TokenClassification" in model_class: code_sample = TF_TOKEN_CLASSIFICATION_SAMPLE if is_tf_class else PT_TOKEN_CLASSIFICATION_SAMPLE elif "MultipleChoice" in model_class: code_sample = TF_MULTIPLE_CHOICE_SAMPLE if is_tf_class else PT_MULTIPLE_CHOICE_SAMPLE elif "MaskedLM" in model_class: code_sample = TF_MASKED_LM_SAMPLE if is_tf_class else PT_MASKED_LM_SAMPLE elif "LMHead" in model_class: code_sample = TF_CAUSAL_LM_SAMPLE if is_tf_class else PT_CAUSAL_LM_SAMPLE elif "Model" in model_class: code_sample = TF_BASE_MODEL_SAMPLE if is_tf_class else PT_BASE_MODEL_SAMPLE else: raise ValueError(f"Docstring can't be built for model {model_class}") built_doc = code_sample.format(model_class=model_class, tokenizer_class=tokenizer_class, checkpoint=checkpoint) fn.__doc__ = (fn.__doc__ or "") + "".join(docstr) + built_doc return fn return docstring_decorator def is_remote_url(url_or_filename): parsed = urlparse(url_or_filename) return parsed.scheme in ("http", "https") def hf_bucket_url(model_id: str, filename: str, use_cdn=True) -> str: """ Resolve a model identifier, and a file name, to a HF-hosted url on either S3 or Cloudfront (a Content Delivery Network, or CDN). Cloudfront is replicated over the globe so downloads are way faster for the end user (and it also lowers our bandwidth costs). However, it is more aggressively cached by default, so may not always reflect the latest changes to the underlying file (default TTL is 24 hours). In terms of client-side caching from this library, even though Cloudfront relays the ETags from S3, using one or the other (or switching from one to the other) will affect caching: cached files are not shared between the two because the cached file's name contains a hash of the url. """ endpoint = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX legacy_format = "/" not in model_id if legacy_format: return f"{endpoint}/{model_id}-{filename}" else: return f"{endpoint}/{model_id}/{filename}" def url_to_filename(url, etag=None): """ Convert `url` into a hashed filename in a repeatable way. If `etag` is specified, append its hash to the url's, delimited by a period. If the url ends with .h5 (Keras HDF5 weights) adds '.h5' to the name so that TF 2.0 can identify it as a HDF5 file (see https://github.com/tensorflow/tensorflow/blob/00fad90125b18b80fe054de1055770cfb8fe4ba3/tensorflow/python/keras/engine/network.py#L1380) """ url_bytes = url.encode("utf-8") url_hash = sha256(url_bytes) filename = url_hash.hexdigest() if etag: etag_bytes = etag.encode("utf-8") etag_hash = sha256(etag_bytes) filename += "." + etag_hash.hexdigest() if url.endswith(".h5"): filename += ".h5" return filename def filename_to_url(filename, cache_dir=None): """ Return the url and etag (which may be ``None``) stored for `filename`. Raise ``EnvironmentError`` if `filename` or its stored metadata do not exist. """ if cache_dir is None: cache_dir = TRANSFORMERS_CACHE if isinstance(cache_dir, Path): cache_dir = str(cache_dir) cache_path = os.path.join(cache_dir, filename) if not os.path.exists(cache_path): raise EnvironmentError("file {} not found".format(cache_path)) meta_path = cache_path + ".json" if not os.path.exists(meta_path): raise EnvironmentError("file {} not found".format(meta_path)) with open(meta_path, encoding="utf-8") as meta_file: metadata = json.load(meta_file) url = metadata["url"] etag = metadata["etag"] return url, etag def cached_path( url_or_filename, cache_dir=None, force_download=False, proxies=None, resume_download=False, user_agent: Union[Dict, str, None] = None, extract_compressed_file=False, force_extract=False, local_files_only=False, ) -> Optional[str]: """ Given something that might be a URL (or might be a local path), determine which. If it's a URL, download the file and cache it, and return the path to the cached file. If it's already a local path, make sure the file exists and then return the path. Args: cache_dir: specify a cache directory to save the file to (overwrite the default cache dir). force_download: if True, re-dowload the file even if it's already cached in the cache dir. resume_download: if True, resume the download if incompletly recieved file is found. user_agent: Optional string or dict that will be appended to the user-agent on remote requests. extract_compressed_file: if True and the path point to a zip or tar file, extract the compressed file in a folder along the archive. force_extract: if True when extract_compressed_file is True and the archive was already extracted, re-extract the archive and overide the folder where it was extracted. Return: None in case of non-recoverable file (non-existent or inaccessible url + no cache on disk). Local path (string) otherwise """ if cache_dir is None: cache_dir = TRANSFORMERS_CACHE if isinstance(url_or_filename, Path): url_or_filename = str(url_or_filename) if isinstance(cache_dir, Path): cache_dir = str(cache_dir) if is_remote_url(url_or_filename): # URL, so get it from the cache (downloading if necessary) output_path = get_from_cache( url_or_filename, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, user_agent=user_agent, local_files_only=local_files_only, ) elif os.path.exists(url_or_filename): # File, and it exists. output_path = url_or_filename elif urlparse(url_or_filename).scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(url_or_filename)) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(url_or_filename)) if extract_compressed_file: if not is_zipfile(output_path) and not tarfile.is_tarfile(output_path): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" output_dir, output_file = os.path.split(output_path) output_extract_dir_name = output_file.replace(".", "-") + "-extracted" output_path_extracted = os.path.join(output_dir, output_extract_dir_name) if os.path.isdir(output_path_extracted) and os.listdir(output_path_extracted) and not force_extract: return output_path_extracted # Prevent parallel extractions lock_path = output_path + ".lock" with FileLock(lock_path): shutil.rmtree(output_path_extracted, ignore_errors=True) os.makedirs(output_path_extracted) if is_zipfile(output_path): with ZipFile(output_path, "r") as zip_file: zip_file.extractall(output_path_extracted) zip_file.close() elif tarfile.is_tarfile(output_path): tar_file = tarfile.open(output_path) tar_file.extractall(output_path_extracted) tar_file.close() else: raise EnvironmentError("Archive format of {} could not be identified".format(output_path)) return output_path_extracted return output_path def http_get(url, temp_file, proxies=None, resume_size=0, user_agent: Union[Dict, str, None] = None): ua = "transformers/{}; python/{}".format(__version__, sys.version.split()[0]) if is_torch_available(): ua += "; torch/{}".format(torch.__version__) if is_tf_available(): ua += "; tensorflow/{}".format(tf.__version__) if isinstance(user_agent, dict): ua += "; " + "; ".join("{}/{}".format(k, v) for k, v in user_agent.items()) elif isinstance(user_agent, str): ua += "; " + user_agent headers = {"user-agent": ua} if resume_size > 0: headers["Range"] = "bytes=%d-" % (resume_size,) response = requests.get(url, stream=True, proxies=proxies, headers=headers) if response.status_code == 416: # Range not satisfiable return content_length = response.headers.get("Content-Length") total = resume_size + int(content_length) if content_length is not None else None progress = tqdm( unit="B", unit_scale=True, total=total, initial=resume_size, desc="Downloading", disable=bool(logger.getEffectiveLevel() == logging.NOTSET), ) for chunk in response.iter_content(chunk_size=1024): if chunk: # filter out keep-alive new chunks progress.update(len(chunk)) temp_file.write(chunk) progress.close() def get_from_cache( url, cache_dir=None, force_download=False, proxies=None, etag_timeout=10, resume_download=False, user_agent: Union[Dict, str, None] = None, local_files_only=False, ) -> Optional[str]: """ Given a URL, look for the corresponding file in the local cache. If it's not there, download it. Then return the path to the cached file. Return: None in case of non-recoverable file (non-existent or inaccessible url + no cache on disk). Local path (string) otherwise """ if cache_dir is None: cache_dir = TRANSFORMERS_CACHE if isinstance(cache_dir, Path): cache_dir = str(cache_dir) os.makedirs(cache_dir, exist_ok=True) etag = None if not local_files_only: try: response = requests.head(url, allow_redirects=True, proxies=proxies, timeout=etag_timeout) if response.status_code == 200: etag = response.headers.get("ETag") except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass filename = url_to_filename(url, etag) # get cache path to put the file cache_path = os.path.join(cache_dir, filename) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(cache_path): return cache_path else: matching_files = [ file for file in fnmatch.filter(os.listdir(cache_dir), filename + ".*") if not file.endswith(".json") and not file.endswith(".lock") ] if len(matching_files) > 0: return os.path.join(cache_dir, matching_files[-1]) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( "Cannot find the requested files in the cached path and outgoing traffic has been" " disabled. To enable model look-ups and downloads online, set 'local_files_only'" " to False." ) return None # From now on, etag is not None. if os.path.exists(cache_path) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. lock_path = cache_path + ".lock" with FileLock(lock_path): # If the download just completed while the lock was activated. if os.path.exists(cache_path) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: incomplete_path = cache_path + ".incomplete" @contextmanager def _resumable_file_manager(): with open(incomplete_path, "a+b") as f: yield f temp_file_manager = _resumable_file_manager if os.path.exists(incomplete_path): resume_size = os.stat(incomplete_path).st_size else: resume_size = 0 else: temp_file_manager = partial(tempfile.NamedTemporaryFile, dir=cache_dir, delete=False) resume_size = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: logger.info("%s not found in cache or force_download set to True, downloading to %s", url, temp_file.name) http_get(url, temp_file, proxies=proxies, resume_size=resume_size, user_agent=user_agent) logger.info("storing %s in cache at %s", url, cache_path) os.replace(temp_file.name, cache_path) logger.info("creating metadata file for %s", cache_path) meta = {"url": url, "etag": etag} meta_path = cache_path + ".json" with open(meta_path, "w") as meta_file: json.dump(meta, meta_file) return cache_path class cached_property(property): """ Descriptor that mimics @property but caches output in member variable. From tensorflow_datasets Built-in in functools from Python 3.8. """ def __get__(self, obj, objtype=None): # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute") attr = "__cached_" + self.fget.__name__ cached = getattr(obj, attr, None) if cached is None: cached = self.fget(obj) setattr(obj, attr, cached) return cached def torch_required(func): # Chose a different decorator name than in tests so it's clear they are not the same. @wraps(func) def wrapper(*args, **kwargs): if is_torch_available(): return func(*args, **kwargs) else: raise ImportError(f"Method `{func.__name__}` requires PyTorch.") return wrapper def tf_required(func): # Chose a different decorator name than in tests so it's clear they are not the same. @wraps(func) def wrapper(*args, **kwargs): if is_tf_available(): return func(*args, **kwargs) else: raise ImportError(f"Method `{func.__name__}` requires TF.") return wrapper
35.747837
144
0.651418
13dd948606273f5c9bd67c58e2c9a1062f4d2422
2,078
py
Python
main.py
Noel-jediknight/full-stackwebapp
0628b9aac90bde9fdacd94e81fc64e7fd4a905cf
[ "MIT" ]
null
null
null
main.py
Noel-jediknight/full-stackwebapp
0628b9aac90bde9fdacd94e81fc64e7fd4a905cf
[ "MIT" ]
null
null
null
main.py
Noel-jediknight/full-stackwebapp
0628b9aac90bde9fdacd94e81fc64e7fd4a905cf
[ "MIT" ]
null
null
null
from fastapi import FastAPI from pydantic import BaseModel from fastapi.encoders import jsonable_encoder from fastapi.middleware.cors import CORSMiddleware app=FastAPI() origin=["*"] app.add_middleware( CORSMiddleware, allow_origins=origin, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) class todolist(BaseModel): item:int chore:str class delitem(BaseModel): item:int class Name(BaseModel): person_name:str age:int @app.get("/") def basic(): return "Hello world" @app.get("/info") def info(): #info={"Name":"Noel","srn":"PES2UG20CS446","fun fact":"You are alive(for now)"} #return info name="Noel" SRN="PES2UG20CS446" funfact="You are alive(for now)" return(name,SRN,funfact) @app.get("/date") def return_date(): res={"date":"today"} return "today is 4th" @app.post("/name") def name(name_var: Name): name_encoded=jsonable_encoder(name_var) pname= name_encoded['person_name'] with open("names.txt","a") as f: f.write('{}\n'.format(pname)) f.write("\n") age= name_encoded['age'] print(age) print(type(age)) return "Hello "+pname todo={} @app.post("/todolist") def ITEM(item_var: todolist): item_encoded=jsonable_encoder(item_var) itemno= item_encoded['item'] choreno= item_encoded['chore'] #with open("todo.txt","a") as file: # file.write('{}{}\n'.format(itemno,choreno)) todo[itemno]=choreno print (todo) return(todo) @app.put("/todolist") def ITEM(item_var: todolist): item_encoded=jsonable_encoder(item_var) itemno= item_encoded['item'] choreno= item_encoded['chore'] todo.update({itemno:choreno}) return(todo) @app.delete("/todolist") def ITEM(item_var: delitem): item_encoded=jsonable_encoder(item_var) itemno= item_encoded['item'] del todo[itemno] return(todo) @app.get("/todolist") def mystuff(): return(todo)
21.645833
84
0.621752
01424a92b3efca6a1e14ffbcfb50d4a140fd3beb
2,683
py
Python
python/dnd-character/dnd_character_test.py
ropable/exercism
9dde2a7952badec03428b5f9dfb8499a7ce55458
[ "MIT" ]
9
2020-12-12T03:29:33.000Z
2021-08-11T13:08:06.000Z
python/dnd-character/dnd_character_test.py
ropable/exercism
9dde2a7952badec03428b5f9dfb8499a7ce55458
[ "MIT" ]
null
null
null
python/dnd-character/dnd_character_test.py
ropable/exercism
9dde2a7952badec03428b5f9dfb8499a7ce55458
[ "MIT" ]
1
2020-11-02T10:40:06.000Z
2020-11-02T10:40:06.000Z
import unittest from dnd_character import Character, modifier # Tests adapted from `problem-specifications//canonical-data.json` class DndCharacterTest(unittest.TestCase): def test_ability_modifier_for_score_3_is_n4(self): self.assertEqual(modifier(3), -4) def test_ability_modifier_for_score_4_is_n3(self): self.assertEqual(modifier(4), -3) def test_ability_modifier_for_score_5_is_n3(self): self.assertEqual(modifier(5), -3) def test_ability_modifier_for_score_6_is_n2(self): self.assertEqual(modifier(6), -2) def test_ability_modifier_for_score_7_is_n2(self): self.assertEqual(modifier(7), -2) def test_ability_modifier_for_score_8_is_n1(self): self.assertEqual(modifier(8), -1) def test_ability_modifier_for_score_9_is_n1(self): self.assertEqual(modifier(9), -1) def test_ability_modifier_for_score_10_is_0(self): self.assertEqual(modifier(10), 0) def test_ability_modifier_for_score_11_is_0(self): self.assertEqual(modifier(11), 0) def test_ability_modifier_for_score_12_is_1(self): self.assertEqual(modifier(12), 1) def test_ability_modifier_for_score_13_is_1(self): self.assertEqual(modifier(13), 1) def test_ability_modifier_for_score_14_is_2(self): self.assertEqual(modifier(14), 2) def test_ability_modifier_for_score_15_is_2(self): self.assertEqual(modifier(15), 2) def test_ability_modifier_for_score_16_is_3(self): self.assertEqual(modifier(16), 3) def test_ability_modifier_for_score_17_is_3(self): self.assertEqual(modifier(17), 3) def test_ability_modifier_for_score_18_is_4(self): self.assertEqual(modifier(18), 4) def test_random_ability_is_within_range(self): score = Character().ability() self.assertIs(score >= 3 and score <= 18, True) def test_random_character_is_valid(self): Char = Character() self.assertIs(Char.strength >= 3 and Char.strength <= 18, True) self.assertIs(Char.dexterity >= 3 and Char.dexterity <= 18, True) self.assertIs(Char.constitution >= 3 and Char.constitution <= 18, True) self.assertIs(Char.intelligence >= 3 and Char.intelligence <= 18, True) self.assertIs(Char.wisdom >= 3 and Char.wisdom <= 18, True) self.assertIs(Char.charisma >= 3 and Char.charisma <= 18, True) self.assertIs(Char.hitpoints == 10 + modifier(Char.constitution), True) def test_each_ability_is_only_calculated_once(self): Char = Character() self.assertIs(Char.strength == Char.strength, True) if __name__ == "__main__": unittest.main()
34.397436
79
0.712262
718c42d009346e9ead6e3efcc8e562b69d7bfeb5
5,824
py
Python
intersight/models/hyperflex_feature_limit_entry_ref.py
sdnit-se/intersight-python
551f7685c0f76bb8af60ec83ffb6f9672d49a4ae
[ "Apache-2.0" ]
21
2018-03-29T14:20:35.000Z
2021-10-13T05:11:41.000Z
intersight/models/hyperflex_feature_limit_entry_ref.py
sdnit-se/intersight-python
551f7685c0f76bb8af60ec83ffb6f9672d49a4ae
[ "Apache-2.0" ]
14
2018-01-30T15:45:46.000Z
2022-02-23T14:23:21.000Z
intersight/models/hyperflex_feature_limit_entry_ref.py
sdnit-se/intersight-python
551f7685c0f76bb8af60ec83ffb6f9672d49a4ae
[ "Apache-2.0" ]
18
2018-01-03T15:09:56.000Z
2021-07-16T02:21:54.000Z
# coding: utf-8 """ Cisco Intersight OpenAPI specification. The Cisco Intersight OpenAPI specification. OpenAPI spec version: 1.0.9-1461 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class HyperflexFeatureLimitEntryRef(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'object_type': 'str', 'moid': 'str', 'selector': 'str' } attribute_map = { 'object_type': 'ObjectType', 'moid': 'Moid', 'selector': 'Selector' } def __init__(self, object_type=None, moid=None, selector=None): """ HyperflexFeatureLimitEntryRef - a model defined in Swagger """ self._object_type = None self._moid = None self._selector = None if object_type is not None: self.object_type = object_type if moid is not None: self.moid = moid if selector is not None: self.selector = selector @property def object_type(self): """ Gets the object_type of this HyperflexFeatureLimitEntryRef. The Object Type of the referenced REST resource. :return: The object_type of this HyperflexFeatureLimitEntryRef. :rtype: str """ return self._object_type @object_type.setter def object_type(self, object_type): """ Sets the object_type of this HyperflexFeatureLimitEntryRef. The Object Type of the referenced REST resource. :param object_type: The object_type of this HyperflexFeatureLimitEntryRef. :type: str """ self._object_type = object_type @property def moid(self): """ Gets the moid of this HyperflexFeatureLimitEntryRef. The Moid of the referenced REST resource. :return: The moid of this HyperflexFeatureLimitEntryRef. :rtype: str """ return self._moid @moid.setter def moid(self, moid): """ Sets the moid of this HyperflexFeatureLimitEntryRef. The Moid of the referenced REST resource. :param moid: The moid of this HyperflexFeatureLimitEntryRef. :type: str """ self._moid = moid @property def selector(self): """ Gets the selector of this HyperflexFeatureLimitEntryRef. An OData $filter expression which describes the REST resource to be referenced. This field may be set instead of 'moid' by clients. If 'moid' is set this field is ignored. If 'selector' is set and 'moid' is empty/absent from the request, Intersight will determine the Moid of the resource matching the filter expression and populate it in the MoRef that is part of the object instance being inserted/updated to fulfill the REST request. An error is returned if the filter matches zero or more than one REST resource. An example filter string is: Serial eq '3AA8B7T11'. :return: The selector of this HyperflexFeatureLimitEntryRef. :rtype: str """ return self._selector @selector.setter def selector(self, selector): """ Sets the selector of this HyperflexFeatureLimitEntryRef. An OData $filter expression which describes the REST resource to be referenced. This field may be set instead of 'moid' by clients. If 'moid' is set this field is ignored. If 'selector' is set and 'moid' is empty/absent from the request, Intersight will determine the Moid of the resource matching the filter expression and populate it in the MoRef that is part of the object instance being inserted/updated to fulfill the REST request. An error is returned if the filter matches zero or more than one REST resource. An example filter string is: Serial eq '3AA8B7T11'. :param selector: The selector of this HyperflexFeatureLimitEntryRef. :type: str """ self._selector = selector def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, HyperflexFeatureLimitEntryRef): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
32
576
0.613839
33193c222f5dc20ab18e2323fba2f18d48e98f1e
1,031
py
Python
examples/sharepoint/connect_with_client_certificate_adal.py
theodoriss/Office365-REST-Python-Client
3bd7a62dadcd3f0a0aceeaff7584fff3fd44886e
[ "MIT" ]
544
2016-08-04T17:10:16.000Z
2022-03-31T07:17:20.000Z
examples/sharepoint/connect_with_client_certificate_adal.py
theodoriss/Office365-REST-Python-Client
3bd7a62dadcd3f0a0aceeaff7584fff3fd44886e
[ "MIT" ]
438
2016-10-11T12:24:22.000Z
2022-03-31T19:30:35.000Z
examples/sharepoint/connect_with_client_certificate_adal.py
theodoriss/Office365-REST-Python-Client
3bd7a62dadcd3f0a0aceeaff7584fff3fd44886e
[ "MIT" ]
202
2016-08-22T19:29:40.000Z
2022-03-30T20:26:15.000Z
import os from office365.runtime.auth.token_response import TokenResponse from office365.sharepoint.client_context import ClientContext from tests import test_site_url, test_tenant cert_settings = { 'client_id': '51d03106-4726-442c-86db-70b32fa7547f', 'thumbprint': "6B36FBFC86FB1C019EB6496494B9195E6D179DDB", 'certificate_path': '{0}/selfsigncert.pem'.format(os.path.dirname(__file__)) } def acquire_token(): import adal authority_url = 'https://login.microsoftonline.com/{0}'.format(test_tenant) auth_ctx = adal.AuthenticationContext(authority_url) with open(cert_settings['certificate_path'], 'r') as file: key = file.read() json_token = auth_ctx.acquire_token_with_client_certificate( test_site_url, cert_settings['client_id'], key, cert_settings['thumbprint']) return TokenResponse(**json_token) ctx = ClientContext(test_site_url).with_access_token(acquire_token) current_web = ctx.web.get().execute_query() print("{0}".format(current_web.url))
34.366667
80
0.748788
163e86af2291e497d8ba576bef3d6ff2a3505314
3,364
py
Python
tests/test_visitors/test_ast/test_naming/conftest.py
sourya/wemake-python-styleguide
313a11a62fac2fb2067252db4e6a6530e070e382
[ "MIT" ]
null
null
null
tests/test_visitors/test_ast/test_naming/conftest.py
sourya/wemake-python-styleguide
313a11a62fac2fb2067252db4e6a6530e070e382
[ "MIT" ]
null
null
null
tests/test_visitors/test_ast/test_naming/conftest.py
sourya/wemake-python-styleguide
313a11a62fac2fb2067252db4e6a6530e070e382
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import pytest # Imports: import_alias = """ import os as {0} """ from_import_alias = """ from os import path as {0} """ # Function names: function_name = 'def {0}(): ...' method_name = """ class Input(object): def {0}(self): ... """ # Function arguments: function_argument = 'def test(arg, {0}): ...' method_argument = """ class Input(object): def validate(self, {0}): ... """ function_keyword_argument = 'def test(arg, {0}=None): ...' method_keyword_argument = """ class Input(object): def validate(self, {0}=None): ... """ function_args_argument = 'def test(arg, *{0}): ...' function_kwargs_argument = 'def test(arg, **{0}): ...' method_args_argument = """ class Input(object): def validate(self, *{0}): ... """ method_kwargs_argument = """ class Input(object): def validate(self, **{0}): ... """ function_kwonly_argument = """ def test(*, {0}): ... """ function_kwonly_default_argument = """ def test(*, {0}=True): ... """ method_kwonly_argument = """ class Input(object): def test(self, *, {0}=True): ... """ lambda_argument = 'lambda {0}: ...' # Class attributes: static_attribute = """ class Test: {0} = None """ static_typed_attribute = """ class Test: {0}: int = None """ static_typed_annotation = """ class Test: {0}: int """ instance_attribute = """ class Test(object): def __init__(self): self.{0} = 123 """ instance_typed_attribute = """ class Test(object): def __init__(self): self.{0}: int = 123 """ # Variables: variable_def = """ {0} = 'test' """ variable_typed_def = """ {0}: str = 'test' """ variable_typed = """ {0}: str """ # See: https://github.com/wemake-services/wemake-python-styleguide/issues/405 unpacking_variables = """ first.attr, {0} = range(2) """ unpacking_star_variables = """ first, *{0} = range(2) """ for_variable = """ def container(): for {0} in []: ... """ for_star_variable = """ def container(): for index, *{0} in []: ... """ with_variable = """ def container(): with open('test.py') as {0}: ... """ with_star_variable = """ def container(): with open('test.py') as (first, *{0}): ... """ exception = """ try: 1 / 0 except Exception as {0}: raise """ # Fixtures: @pytest.fixture(params=[ # Imports: import_alias, from_import_alias, # Function names, we don't use async function because we generate them: function_name, method_name, # Function arguments: function_argument, method_argument, function_keyword_argument, method_keyword_argument, function_args_argument, function_kwargs_argument, method_args_argument, method_kwargs_argument, function_kwonly_argument, function_kwonly_default_argument, method_kwonly_argument, lambda_argument, # Class attributes: static_attribute, static_typed_attribute, static_typed_annotation, instance_attribute, instance_typed_attribute, # Variables: variable_def, variable_typed_def, variable_typed, unpacking_variables, unpacking_star_variables, for_variable, for_star_variable, with_variable, with_star_variable, exception, ]) def naming_template(request): """Parametrized fixture that contains all possible naming templates.""" return request.param
16.904523
77
0.629905
160a4f7fca5245668abdd7575e192c7737797fdb
1,497
py
Python
src/cltl/backend/api/backend.py
leolani/cltl-backend
4ecc6227f9d48e40b9f59e6d78e0fcee9cdadbd4
[ "MIT" ]
null
null
null
src/cltl/backend/api/backend.py
leolani/cltl-backend
4ecc6227f9d48e40b9f59e6d78e0fcee9cdadbd4
[ "MIT" ]
null
null
null
src/cltl/backend/api/backend.py
leolani/cltl-backend
4ecc6227f9d48e40b9f59e6d78e0fcee9cdadbd4
[ "MIT" ]
null
null
null
import logging from cltl.backend.api.microphone import Microphone from cltl.backend.api.text_to_speech import TextToSpeech logger = logging.getLogger(__name__) class Backend: """ Abstract Backend on which all Backends are based Exposes :class:`~cltl.backend.api.microphone.Microphone` Parameters ---------- microphone: Microphone Backend :class:`~cltl.backend.api.microphone.Microphone` """ def __init__(self, microphone: Microphone): self._microphone = microphone def __enter__(self): self.start() return self def __exit__(self, exc_type, exc_val, exc_tb): self.stop() def start(self): if self._microphone: self._microphone.start() def stop(self): self._stop_safe(self._microphone) def _stop_safe(self, component): if component: try: component.stop() except: logger.exception("Failed to stop " + str(component)) @property def microphone(self) -> Microphone: """ Reference to :class:`~cltl.backend.api.microphone.Microphone` Returns ------- Microphone """ return self._microphone @property def text_to_speech(self) -> TextToSpeech: """ Reference to :class:`~cltl.backend.api.text_to_speech.TextToSpeech` Returns ------- TextToSpeech """ return self._text_to_speech
22.343284
75
0.602538
27354d423aba4087b35fa36658a151f96ee42882
1,395
py
Python
tests/compas/datastructures/test_mesh_operations.py
mpopescu/compas
55f259607deea501f862cbaea79bd97d7e56ead6
[ "MIT" ]
null
null
null
tests/compas/datastructures/test_mesh_operations.py
mpopescu/compas
55f259607deea501f862cbaea79bd97d7e56ead6
[ "MIT" ]
9
2019-09-11T08:53:19.000Z
2019-09-16T08:35:39.000Z
tests/compas/datastructures/test_mesh_operations.py
Licini/compas
34f65adb3d0abc3f403312ffba62aa76f3376292
[ "MIT" ]
null
null
null
import pytest from compas.datastructures import Mesh from compas.datastructures import mesh_insert_vertex_on_edge from compas.datastructures import mesh_substitute_vertex_in_faces @pytest.fixture def mesh_0(): vertices = [ [1.0, 0.0, 0.0], [1.0, 2.0, 0.0], [0.0, 1.0, 0.0], [2.0, 1.0, 0.0], [0.0, 0.0, 0.0] ] faces = [ [0, 1, 2], [0, 3, 1] ] return Mesh.from_vertices_and_faces(vertices, faces) def test_insert_vertex_on_edge(mesh_0): mesh_insert_vertex_on_edge(mesh_0, 0, 1) assert len(mesh_0.face_vertices(0)) == 4 assert len(mesh_0.face_vertices(1)) == 4 assert mesh_0.face_vertex_descendant(0, 0) == 5 assert mesh_0.face_vertex_descendant(1, 1) == 5 mesh_insert_vertex_on_edge(mesh_0, 0, 2, 4) assert len(mesh_0.face_vertices(0)) == 5 assert mesh_0.face_vertex_descendant(0, 2) == 4 def test_mesh_substitute_vertex_in_faces(mesh_0): mesh_substitute_vertex_in_faces(mesh_0, 0, 4) assert 4 in mesh_0.face_vertices(0) assert 0 not in mesh_0.face_vertices(0) assert 4 in mesh_0.face_vertices(1) assert 0 not in mesh_0.face_vertices(1) mesh_substitute_vertex_in_faces(mesh_0, 4, 0, [1]) assert 4 in mesh_0.face_vertices(0) assert 0 not in mesh_0.face_vertices(0) assert 0 in mesh_0.face_vertices(1) assert 4 not in mesh_0.face_vertices(1)
29.0625
65
0.683154
e224e6f09fa3c1b650494125a75b61b08462eaf3
76
py
Python
src/__tests__/integration/failures/setup_test.py
jest-community/jest-pytest
b197b0b31e3ca5c411202d97583cbd2d2b0b92e9
[ "MIT" ]
37
2018-05-22T07:17:26.000Z
2022-03-03T13:14:46.000Z
src/__tests__/integration/failures/setup_test.py
jondot/jest-pytest
b197b0b31e3ca5c411202d97583cbd2d2b0b92e9
[ "MIT" ]
34
2018-05-22T07:19:40.000Z
2022-03-11T23:21:03.000Z
src/__tests__/integration/failures/setup_test.py
jondot/jest-pytest
b197b0b31e3ca5c411202d97583cbd2d2b0b92e9
[ "MIT" ]
8
2018-05-30T20:05:26.000Z
2021-02-19T14:17:05.000Z
def setup_module(module): wtf def test_something(): assert 1 == 1
10.857143
25
0.644737
a6a784da76db769a97ee3f032c89939167918c1a
7,898
py
Python
sdk/python/pulumi_azure_native/costmanagement/v20190401preview/get_budget.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/costmanagement/v20190401preview/get_budget.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/costmanagement/v20190401preview/get_budget.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs __all__ = [ 'GetBudgetResult', 'AwaitableGetBudgetResult', 'get_budget', ] @pulumi.output_type class GetBudgetResult: """ A budget resource. """ def __init__(__self__, amount=None, category=None, current_spend=None, e_tag=None, filter=None, id=None, name=None, notifications=None, time_grain=None, time_period=None, type=None): if amount and not isinstance(amount, float): raise TypeError("Expected argument 'amount' to be a float") pulumi.set(__self__, "amount", amount) if category and not isinstance(category, str): raise TypeError("Expected argument 'category' to be a str") pulumi.set(__self__, "category", category) if current_spend and not isinstance(current_spend, dict): raise TypeError("Expected argument 'current_spend' to be a dict") pulumi.set(__self__, "current_spend", current_spend) if e_tag and not isinstance(e_tag, str): raise TypeError("Expected argument 'e_tag' to be a str") pulumi.set(__self__, "e_tag", e_tag) if filter and not isinstance(filter, dict): raise TypeError("Expected argument 'filter' to be a dict") pulumi.set(__self__, "filter", filter) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if notifications and not isinstance(notifications, dict): raise TypeError("Expected argument 'notifications' to be a dict") pulumi.set(__self__, "notifications", notifications) if time_grain and not isinstance(time_grain, str): raise TypeError("Expected argument 'time_grain' to be a str") pulumi.set(__self__, "time_grain", time_grain) if time_period and not isinstance(time_period, dict): raise TypeError("Expected argument 'time_period' to be a dict") pulumi.set(__self__, "time_period", time_period) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter def amount(self) -> float: """ The total amount of cost to track with the budget """ return pulumi.get(self, "amount") @property @pulumi.getter def category(self) -> str: """ The category of the budget, whether the budget tracks cost or usage. """ return pulumi.get(self, "category") @property @pulumi.getter(name="currentSpend") def current_spend(self) -> 'outputs.CurrentSpendResponse': """ The current amount of cost which is being tracked for a budget. """ return pulumi.get(self, "current_spend") @property @pulumi.getter(name="eTag") def e_tag(self) -> Optional[str]: """ eTag of the resource. To handle concurrent update scenario, this field will be used to determine whether the user is updating the latest version or not. """ return pulumi.get(self, "e_tag") @property @pulumi.getter def filter(self) -> Optional['outputs.ReportConfigFilterResponse']: """ May be used to filter budgets. """ return pulumi.get(self, "filter") @property @pulumi.getter def id(self) -> str: """ Resource Id. """ return pulumi.get(self, "id") @property @pulumi.getter def name(self) -> str: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter def notifications(self) -> Optional[Mapping[str, 'outputs.NotificationResponse']]: """ Dictionary of notifications associated with the budget. Budget can have up to five notifications. """ return pulumi.get(self, "notifications") @property @pulumi.getter(name="timeGrain") def time_grain(self) -> str: """ The time covered by a budget. Tracking of the amount will be reset based on the time grain. """ return pulumi.get(self, "time_grain") @property @pulumi.getter(name="timePeriod") def time_period(self) -> 'outputs.BudgetTimePeriodResponse': """ Has start and end date of the budget. The start date must be first of the month and should be less than the end date. Budget start date must be on or after June 1, 2017. Future start date should not be more than three months. Past start date should be selected within the timegrain period. There are no restrictions on the end date. """ return pulumi.get(self, "time_period") @property @pulumi.getter def type(self) -> str: """ Resource type. """ return pulumi.get(self, "type") class AwaitableGetBudgetResult(GetBudgetResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetBudgetResult( amount=self.amount, category=self.category, current_spend=self.current_spend, e_tag=self.e_tag, filter=self.filter, id=self.id, name=self.name, notifications=self.notifications, time_grain=self.time_grain, time_period=self.time_period, type=self.type) def get_budget(budget_name: Optional[str] = None, scope: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetBudgetResult: """ A budget resource. :param str budget_name: Budget Name. :param str scope: The scope associated with budget operations. This includes '/subscriptions/{subscriptionId}/' for subscription scope, '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}' for resourceGroup scope, '/providers/Microsoft.Billing/billingAccounts/{billingAccountId}' for Billing Account scope, '/providers/Microsoft.Billing/billingAccounts/{billingAccountId}/departments/{departmentId}' for Department scope, '/providers/Microsoft.Billing/billingAccounts/{billingAccountId}/enrollmentAccounts/{enrollmentAccountId}' for EnrollmentAccount scope, '/providers/Microsoft.Management/managementGroups/{managementGroupId}' for Management Group scope, '/providers/Microsoft.Billing/billingAccounts/{billingAccountId}/billingProfiles/{billingProfileId}' for billingProfile scope, 'providers/Microsoft.Billing/billingAccounts/{billingAccountId}/invoiceSections/{invoiceSectionId}' for invoiceSection scope. """ __args__ = dict() __args__['budgetName'] = budget_name __args__['scope'] = scope if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:costmanagement/v20190401preview:getBudget', __args__, opts=opts, typ=GetBudgetResult).value return AwaitableGetBudgetResult( amount=__ret__.amount, category=__ret__.category, current_spend=__ret__.current_spend, e_tag=__ret__.e_tag, filter=__ret__.filter, id=__ret__.id, name=__ret__.name, notifications=__ret__.notifications, time_grain=__ret__.time_grain, time_period=__ret__.time_period, type=__ret__.type)
40.091371
929
0.660167
db1bbfc702a77182b67dfc3bd80978d3f5c3cb38
5,653
py
Python
flask_monitoringdashboard/controllers/endpoints.py
mcknz-gy/Flask-MonitoringDashboard
c3126971ce4af6abb3bbf763f042bc0a6dfb48b2
[ "MIT" ]
630
2018-03-03T23:52:07.000Z
2022-03-30T10:55:46.000Z
flask_monitoringdashboard/controllers/endpoints.py
mcknz-gy/Flask-MonitoringDashboard
c3126971ce4af6abb3bbf763f042bc0a6dfb48b2
[ "MIT" ]
292
2018-03-05T11:27:57.000Z
2022-03-28T23:05:48.000Z
flask_monitoringdashboard/controllers/endpoints.py
mcknz-gy/Flask-MonitoringDashboard
c3126971ce4af6abb3bbf763f042bc0a6dfb48b2
[ "MIT" ]
146
2018-03-22T09:53:36.000Z
2022-02-03T08:13:50.000Z
import datetime from numpy import median from sqlalchemy import and_ from flask_monitoringdashboard import config from flask_monitoringdashboard.core import cache from flask_monitoringdashboard.core.colors import get_color from flask_monitoringdashboard.core.measurement import add_decorator from flask_monitoringdashboard.core.timezone import to_local_datetime, to_utc_datetime from flask_monitoringdashboard.core.utils import simplify from flask_monitoringdashboard.database import Request from flask_monitoringdashboard.database.count_group import count_requests_group, get_value from flask_monitoringdashboard.database.data_grouped import ( get_endpoint_data_grouped, get_user_data_grouped, get_version_data_grouped, ) from flask_monitoringdashboard.database.endpoint import ( get_last_requested, get_endpoints, get_endpoint_by_name, update_endpoint, ) from flask_monitoringdashboard.database.versions import get_first_requests def get_endpoint_overview(session): """ :param session: session for the database :return: A list of properties for each endpoint that is found in the database """ week_ago = datetime.datetime.utcnow() - datetime.timedelta(days=7) now_local = to_local_datetime(datetime.datetime.utcnow()) today_local = now_local.replace(hour=0, minute=0, second=0, microsecond=0) today_utc = to_utc_datetime(today_local) # First flush last requested info to db cache.flush_cache() error_hits_criterion = and_(Request.status_code >= 400, Request.status_code < 600) hits_today = count_requests_group(session, Request.time_requested > today_utc) hits_today_errors = count_requests_group( session, and_(Request.time_requested > today_utc, error_hits_criterion) ) hits_week = count_requests_group(session, Request.time_requested > week_ago) hits_week_errors = count_requests_group( session, and_(Request.time_requested > week_ago, error_hits_criterion) ) hits = count_requests_group(session) median_today = get_endpoint_data_grouped(session, median, Request.time_requested > today_utc) median_week = get_endpoint_data_grouped(session, median, Request.time_requested > week_ago) median_overall = get_endpoint_data_grouped(session, median) access_times = get_last_requested(session) return [ { 'id': endpoint.id, 'name': endpoint.name, 'monitor': endpoint.monitor_level, 'color': get_color(endpoint.name), 'hits-today': get_value(hits_today, endpoint.id), 'hits-today-errors': get_value(hits_today_errors, endpoint.id), 'hits-week': get_value(hits_week, endpoint.id), 'hits-week-errors': get_value(hits_week_errors, endpoint.id), 'hits-overall': get_value(hits, endpoint.id), 'median-today': get_value(median_today, endpoint.id), 'median-week': get_value(median_week, endpoint.id), 'median-overall': get_value(median_overall, endpoint.id), 'last-accessed': get_value(access_times, endpoint.name, default=None), } for endpoint in get_endpoints(session) ] def get_endpoint_users(session, endpoint_id, users): """ :param session: session for the database :param endpoint_id: id for the endpoint :param users: a list of users to be filtered on :return: a list of dicts with the performance of each user """ times = get_user_data_grouped( session, lambda x: simplify(x, 100), Request.endpoint_id == endpoint_id ) first_requests = get_first_requests(session, endpoint_id) return [ { 'user': u, 'date': get_value(first_requests, u), 'values': get_value(times, u), 'color': get_color(u), } for u in users ] def get_endpoint_versions(session, endpoint_id, versions): """ :param session: session for the database :param endpoint_id: id for the endpoint :param versions: a list of version to be filtered on :return: a list of dicts with the performance of each version """ times = get_version_data_grouped( session, lambda x: simplify(x, 100), Request.endpoint_id == endpoint_id ) first_requests = get_first_requests(session, endpoint_id) return [ { 'version': v, 'date': get_value(first_requests, v), 'values': get_value(times, v), 'color': get_color(v), } for v in versions ] def get_api_performance(session, endpoints): """ :param session: session for the database :param endpoints: a list of endpoints, encoded by their name :return: for every endpoint in endpoints, a list with the performance """ db_endpoints = [get_endpoint_by_name(session, end) for end in endpoints] data = get_endpoint_data_grouped(session, lambda x: simplify(x, 10)) return [ {'name': end.name, 'values': get_value(data, end.id, default=[])} for end in db_endpoints ] def set_endpoint_rule(session, endpoint_name, monitor_level): """ :param session: session for the database :param endpoint_name: name of the endpoint :param monitor_level: integer, representing the monitoring-level """ update_endpoint(session, endpoint_name, value=monitor_level) # Remove wrapper original = getattr(config.app.view_functions[endpoint_name], 'original', None) if original: config.app.view_functions[endpoint_name] = original session.commit() add_decorator(get_endpoint_by_name(session, endpoint_name))
37.190789
97
0.708473
769795123dd5ccc1d63a649d5fb3be723f16222f
721
py
Python
lib/config.py
PaulMndn/VRMLbot
c0e688d6f3458e1298b1ee613238a96a98a38e4f
[ "MIT" ]
null
null
null
lib/config.py
PaulMndn/VRMLbot
c0e688d6f3458e1298b1ee613238a96a98a38e4f
[ "MIT" ]
null
null
null
lib/config.py
PaulMndn/VRMLbot
c0e688d6f3458e1298b1ee613238a96a98a38e4f
[ "MIT" ]
null
null
null
import json from pathlib import Path import logging __all__ = [ "get_config" ] log = logging.getLogger(__name__) class Config: def __init__(self): self._path = Path("config.json") if not self._path.exists(): log.critical("No config file found. Exiting.") raise FileNotFoundError("Config file not found in root folder") with open(str(self._path), "r") as f: self._data = json.load(f) self.token = self._data.get("token", None) self.dev = self._data.get("dev", None) self.debug_guilds = self._data.get("debug_guilds", None) self.admin_id = self._data.get("admin_id", None) def get_config(): return Config()
27.730769
75
0.619972
2f591bbccdc11f47fdcdfb2e0df4ac161f9f7092
644
py
Python
cms/test_utils/project/sampleapp/cms_app.py
tonatos/django-cms
96003df57c2dc0215bf109dc74a85aa0c798d1b4
[ "BSD-3-Clause" ]
1
2016-08-23T16:20:29.000Z
2016-08-23T16:20:29.000Z
cms/test_utils/project/sampleapp/cms_app.py
tonatos/django-cms
96003df57c2dc0215bf109dc74a85aa0c798d1b4
[ "BSD-3-Clause" ]
null
null
null
cms/test_utils/project/sampleapp/cms_app.py
tonatos/django-cms
96003df57c2dc0215bf109dc74a85aa0c798d1b4
[ "BSD-3-Clause" ]
null
null
null
from cms.app_base import CMSApp from cms.test_utils.project.sampleapp.menu import SampleAppMenu from cms.apphook_pool import apphook_pool from django.utils.translation import ugettext_lazy as _ class SampleApp(CMSApp): name = _("Sample App") urls = ["cms.test_utils.project.sampleapp.urls"] menus = [SampleAppMenu] apphook_pool.register(SampleApp) class NamespacedApp(CMSApp): name = _("Namespaced App") urls = [ "cms.test_utils.project.sampleapp.ns_urls", "cms.test_utils.project.sampleapp.urls" ] menus = [SampleAppMenu] app_name = 'namespaced_app_ns' apphook_pool.register(NamespacedApp)
26.833333
63
0.740683
baa62633a661cb44923880e25c832e5a0b84c950
1,405
py
Python
tests/test_response.py
MoonMoon1919/peyton
950f426332496de75ef26d196e67d7e469f805bc
[ "MIT" ]
1
2020-09-20T21:16:32.000Z
2020-09-20T21:16:32.000Z
tests/test_response.py
MoonMoon1919/peyton
950f426332496de75ef26d196e67d7e469f805bc
[ "MIT" ]
2
2021-05-04T14:43:13.000Z
2021-06-02T14:12:23.000Z
tests/test_response.py
MoonMoon1919/peyton
950f426332496de75ef26d196e67d7e469f805bc
[ "MIT" ]
null
null
null
""".""" import base64 import json import sys from os import path import pytest from peyton.response import Response sys.path.append(path.dirname(path.dirname(path.abspath(__file__)))) def test_response_obj(): resp = Response(status_code=200, headers={}, body={"message": "received GET"}) j = resp.to_json() assert resp.statusCode == 200 assert type(resp.statusCode) == int assert resp.headers == {} assert type(resp.headers) == dict assert resp.isBase64Encoded == False assert type(resp.isBase64Encoded) == bool assert resp.body["message"] == "received GET" assert type(resp.body) == dict # Test output of to_json() assert type(j["body"]) == str def test_body_type(): """Tests that response object balks on improper type for body.""" with pytest.raises(TypeError): resp = Response(status_code=200, headers={}, body="hello world") def test_status_code_type(): """Tests that response object balks on improper type for status_code.""" with pytest.raises(TypeError): resp = Response(status_code="foo", headers={}, body={"message": "received GET"}) def test_base64_encoding(): resp = Response( status_code=200, headers={}, body={"message": "received GET"}, base64_encode=True, ) resp = resp.to_json() assert resp["body"] == b"eyJtZXNzYWdlIjogInJlY2VpdmVkIEdFVCJ9"
24.649123
88
0.666904
35d53641baad4fa7fac3f826f2666679065384ec
460
py
Python
25.py
fptitsyn/task-17
7345255b2b614d0b91431a8d91b40b2f4d22c5ac
[ "MIT" ]
null
null
null
25.py
fptitsyn/task-17
7345255b2b614d0b91431a8d91b40b2f4d22c5ac
[ "MIT" ]
null
null
null
25.py
fptitsyn/task-17
7345255b2b614d0b91431a8d91b40b2f4d22c5ac
[ "MIT" ]
null
null
null
if __name__ == "__main__": path = input("Enter a path to file: ") with open(path, "r", encoding="utf-8") as f: a = [int(i) for i in f] count = 0 max_dif = 0 for i in range(len(a) - 1): for j in range(i + 1, len(a)): if ((a[i] - a[j]) % 46 == 0) and ((a[i] % 13 == 0) or (a[j] % 13 == 0)): count += 1 max_dif = max(max_dif, a[i] - a[j]) print(count, max_dif)
28.75
85
0.430435
8f4ec104650079836329c92bf19518149ae7d1c3
26,507
py
Python
python/tvm/relay/transform/transform.py
akosik-anyvision/incubator-tvm
e1b11712ac09c32614483d24a4c7e0245ee4cb4b
[ "Apache-2.0" ]
9
2019-12-17T08:03:54.000Z
2022-01-19T02:34:23.000Z
python/tvm/relay/transform/transform.py
akosik-anyvision/incubator-tvm
e1b11712ac09c32614483d24a4c7e0245ee4cb4b
[ "Apache-2.0" ]
2
2020-06-18T21:15:42.000Z
2020-06-24T17:38:37.000Z
python/tvm/relay/transform/transform.py
akosik-anyvision/incubator-tvm
e1b11712ac09c32614483d24a4c7e0245ee4cb4b
[ "Apache-2.0" ]
3
2020-10-04T20:30:18.000Z
2022-01-24T18:03:52.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-argument, missing-docstring, unused-import """ Relay pass transformation infrastructure. """ import types import inspect import functools import warnings import tvm.ir from tvm import te from tvm.runtime import ndarray as _nd from tvm import relay from . import _ffi_api def build_config(opt_level=2, required_pass=None, disabled_pass=None, trace=None): """Configure the build behavior by setting config variables. This function will be deprecated in TVM v0.7. Instead, we should directly use tvm.transform.PassContext. Parameters ---------- opt_level: int, optional Optimization level. The optimization pass name and level are as the following: .. code-block:: python OPT_PASS_LEVEL = { "SimplifyInference": 0, "OpFusion": 1, "FoldConstant": 2, "FoldScaleAxis": 3, "AlterOpLayout": 3, "CanonicalizeOps": 3, "CanonicalizeCast": 3, "EliminateCommonSubexpr": 3, "CombineParallelConv2D": 4, "CombineParallelDense": 4, "FastMath": 4 } required_pass: set of str, optional Optimization passes that are required regardless of optimization level. disabled_pass: set of str, optional Optimization passes to be disabled during optimization. trace: Callable[[IRModule, PassInfo, bool], None] A tracing function for debugging or introspection. Returns ------- pass_context: PassContext The pass context for optimizations. """ warnings.warn("relay.build_config will be deprecated. Please use \ tvm.transform.PassContext directly", DeprecationWarning) return tvm.transform.PassContext(opt_level, required_pass, disabled_pass, trace) @tvm._ffi.register_object("relay.FunctionPass") class FunctionPass(tvm.ir.transform.Pass): """A pass that works on each tvm.relay.Function in a module. A function pass class should be created through `function_pass`. """ def InferType(): """Infer the type of an expr. Returns ------- ret : tvm.transform.Pass The registered type inference pass. """ return _ffi_api.InferType() def FoldScaleAxis(): """Fold the scaling of axis into weights of conv2d/dense. This pass will invoke both forward and backward scale folding. Returns ------- ret : tvm.transform.Pass The registered pass to fold expressions. Note ---- Internally, we will call backward_fold_scale_axis before using forward_fold_scale_axis as backward folding targets the common conv->bn pattern. """ return _ffi_api.FoldScaleAxis() def BackwardFoldScaleAxis(): """Backward fold axis scaling into weights of conv2d/dense. Returns ------- ret : tvm.transform.Pass The registered pass to backward fold expressions. Note ---- It is recommended to call backward_fold_scale_axis before using forward_fold_scale_axis as backward folding targets the common conv->bn pattern. """ return _ffi_api.BackwardFoldScaleAxis() def RemoveUnusedFunctions(entry_functions=None): """Remove unused global relay functions in a relay module. Parameters ---------- entry_functions: list[string] The set of entry functions to start from. Returns ------- ret : tvm.transform.Pass The registered pass to remove unused functions. """ if entry_functions is None: entry_functions = ['main'] return _ffi_api.RemoveUnusedFunctions(entry_functions) def ForwardFoldScaleAxis(): """Fold the scaling of axis into weights of conv2d/dense. Returns ------- ret : tvm.transform.Pass The registered pass to forward fold expressions. Note ---- It is recommended to call backward_fold_scale_axis before using forward_fold_scale_axis, as backward folding targets the common conv->bn pattern. """ return _ffi_api.ForwardFoldScaleAxis() def SimplifyInference(): """Simplify the data-flow graph for inference phase. An simplified expression which is semantically equal to the input expression will be returned. Returns ------- ret: tvm.transform.Pass The registered pass to perform operator simplification. """ return _ffi_api.SimplifyInference() def FastMath(): """ Converts the expensive non linear functions to their fast but approximate counterparts. Returns ------- ret: tvm.transform.Pass The registered pass to perform fast math operations. """ return _ffi_api.FastMath() def CanonicalizeOps(): """Canonicalize special operators to basic operators. This can simplify followed analysis, e.g. expanding bias_add to expand_dims and broadcast_add. Returns ------- ret: tvm.transform.Pass The registered pass performing the canonicalization. """ return _ffi_api.CanonicalizeOps() def DeadCodeElimination(inline_once=False): """Remove expressions that do not have any users (dead code). Parameters ---------- inline_once: Optional[Bool] Whether to inline binding that occurs only once. Returns ------- ret: tvm.transform.Pass The registered pass that eliminates the dead code in a Relay program. """ return _ffi_api.DeadCodeElimination(inline_once) def LazyGradientInit(): """Reduces memory usage of gradient tensors Parameters ---------- Returns ------- ret: tvm.transform.Pass A pass which delays and/or reduces memory allocation, by lazily allocating 0 or one filled tensors. """ return _ffi_api.LazyGradientInit() def FoldConstant(): """Fold the constant expressions in a Relay program. Returns ------- ret : tvm.transform.Pass The registered pass for constant folding. """ return _ffi_api.FoldConstant() def FuseOps(fuse_opt_level=-1): """Fuse operators in an expr to a larger operator according to some rules. Parameters ---------- fuse_opt_level : int The level of fuse optimization. -1 indicates that the level will be inferred from pass context. Returns ------- ret : tvm.transform.Pass The registered pass for operator fusion. """ return _ffi_api.FuseOps(fuse_opt_level) def CombineParallelConv2D(min_num_branches=3): """Combine multiple conv2d operators into one. Parameters ---------- min_num_branches : int The minimum number of required parallel branches for performing this optimization. Returns ------- ret: tvm.transform.Pass The registered pass that combines parallel conv2d operators. """ return _ffi_api.CombineParallelConv2D(min_num_branches) def CombineParallelDense(min_num_branches=3): """Combine multiple dense operators into one. For example: .. code-block data / \ dense (2,2) dense (2,2) | | elemwise/bcast (2,2) elemwise/bcast (2,2) Would become: .. code-block data | batch_matmul+elemwise/bcast (2,2,2) Parameters ---------- min_num_branches : int The minimum number of required parallel branches for performing this optimization. Returns ------- ret: tvm.transform.Pass The registered pass that combines parallel dense operators. """ return _ffi_api.CombineParallelDense(min_num_branches) def AlterOpLayout(): """Alternate the layouts of operators or replace primitive operators with other expressions. This pass can be used for computing convolution in custom layouts or other general weight pre-transformation. Returns ------- ret : tvm.transform.Pass The registered pass that alters the layout of operators. """ return _ffi_api.AlterOpLayout() def ConvertLayout(desired_layouts): """ Given a dest layout, this pass transforms the expr such that most of the ops input data layout is changed to the dest layout. In ideal situation, there are only 2 layout transforms, one at the start and one at the end. This pass is not a part of relay.build and is expected to be called between framework-relay parser and relay.build call. This is very helpful for hardware backends that support/prefer only type of data layout. RFC - https://discuss.tvm.ai/t/layout-conversion-pass/4009 This pass uses most of the AlterOpLayout and InferCorrectLayout infrastructure. We can define new layouts for conv2d ops for now. Most of the other operators try to adapt to their input layout using the InferCorrectLayout infrastructure. Parameters ---------- desired_layouts : map of op_name to list of layouts Specify a mapping of operator names to a list of layouts to convert to, in the order defined by the operator. An example for nn.conv2d could be: {"nn.conv2d", ["NHWC", "OHWI]}, where the first item in the list specifies the data layout and the second specifies the kernel layout. Returns ------- pass: FunctionPass The pass. """ return _ffi_api.ConvertLayout(desired_layouts) def Legalize(legalize_map_attr_name="FTVMLegalize"): """Legalizes an expression with another expression. This pass can be used to replace an expr with another expr for target dependent optimizations. For example, one expr, though semnatically equivalent to the other, can have better performance on a target. This pass can be used to legalize the expr in a target-dependent manner. Parameters ---------- legalize_map_attr_name : str The Op's attr name which corresponds to the legalize rule function. Returns ------- ret : tvm.transform.Pass The registered pass that rewrites an expr. """ return _ffi_api.Legalize(legalize_map_attr_name) def MergeComposite(pattern_table): """Merge multiple operators into a single composite relay function. Parameters ---------- pattern_table : List[Tuple[str, tvm.relay.dataflow_pattern.DFPattern, Function]] A list of (pattern_name, pattern, check) tuples. The order of the patterns in the list will determine the order of priority in which they are matched. 'check' is a function to check whether an extracted pattern matches. It can be implemented by pattern writer but if not specified it will always return True. Returns ------- ret : tvm.transform.Pass The registered pass that merges operators into a single composite relay function. """ pattern_names = [] patterns = [] checks = [] for tup in pattern_table: if len(tup) == 2: pattern_name, pattern = tup check = lambda extract: True elif len(tup) == 3: pattern_name, pattern, check = tup pattern_names.append(pattern_name) patterns.append(pattern) checks.append(check) return _ffi_api.MergeComposite(pattern_names, patterns, *checks) def MergeCompilerRegions(): """Merge together compiler regions. Returns ------- ret : tvm.transform.Pass The registered pass that merges compiler regions. """ return _ffi_api.MergeCompilerRegions() def RewriteAnnotatedOps(fallback_device): """Rewrite the annotated program where annotation operators, e.g. `on_deivce`, mark which device an expression should be scheduled to. This pass helps heterogeneous execution where different operators may need to be allocated on various devices. Parameters ---------- fallback_device : int The fallback device type. It is also used as the default device for operators with no annotated device. Returns ------- ret: tvm.transform.Pass The registered pass that rewrites an expression with annotated `on_device` operators. """ return _ffi_api.RewriteDeviceAnnotation(fallback_device) def ToANormalForm(): """Turn Graph Normal Form expression into A Normal Form Expression. The scope of the root expression is the global scope. The scope of any non root expression is the least common ancestor of all it's scope. Values are ordered by post-DFS order in each scope. Returns ------- ret: Union[tvm.transform.Pass, tvm.relay.Expr] The registered pass that transforms an expression into A Normal Form. """ return _ffi_api.ToANormalForm() def ToCPS(expr, mod=None): """ Turn expression into continuation passing style(CPS). Every intermediate compute will be passed to a continuation. Returns ------- result: tvm.transform.Pass The registered pass that transforms an expression into CPS. """ return _ffi_api.to_cps(expr, mod) def EtaExpand(expand_constructor=False, expand_global_var=False): """Add abstraction over a constructor or global variable bound to a function Parameters ---------- expand_constructor: bool Whether to expand constructors. expand_global_var: bool Whether to expand global variables. Returns ------- ret: tvm.transform.Pass The registered pass that eta expands an expression. """ return _ffi_api.EtaExpand(expand_constructor, expand_global_var) def ToGraphNormalForm(): """Turn a Relay program in A Normal Form into Graph Normal Form Returns ------- ret : tvm.transform.Pass The registered pass that transforms an expression into Graph Normal Form. """ return _ffi_api.ToGraphNormalForm() def EliminateCommonSubexpr(fskip=None): """Eliminate common subexpressions. Parameters ---------- fskip: Callable The callback function that decides whether an expression should be skipped. Returns ------- ret : tvm.transform.Pass The registered pass that eliminates common subexpressions. """ return _ffi_api.EliminateCommonSubexpr(fskip) def PartialEvaluate(): """Evaluate the static fragment of the code. Note ---- This transformation could be either `Module -> Module` or `Expr -> Expr`. It will directly transform the input expression to a new one if the target expression is provided. Otherwise, it will rely on the pass manager to carry out transformation. Returns ------- ret: tvm.transform.Pass The registered pass that performs partial evaluation on an expression. """ return _ffi_api.PartialEvaluate() def CanonicalizeCast(): """ Canonicalize cast expressions to make operator fusion more efficient. Returns ------- ret : tvm.transform.Pass The registered pass that canonicalizes cast expression. """ return _ffi_api.CanonicalizeCast() def LambdaLift(): """ Lift the closure to global function. Returns ------- ret : tvm.transform.Pass The registered pass that lifts the lambda function. """ return _ffi_api.LambdaLift() def PartitionGraph(): """Partition a Relay program into regions that can be executed on different backends. Returns ------- ret: tvm.transform.Pass The registered pass that partitions the Relay program. """ return _ffi_api.PartitionGraph() def AnnotateTarget(targets): """Annotate ops in an experession with a provied compiler/target and then use it for codegen. Parameters ---------- targets : str or List[str] The list of target compilers used for codegen. Returns ------- ret : tvm.transform.Pass The annotated pass that wrapps ops with subgraph_start and subgraph_end. """ if isinstance(targets, str): targets = [targets] return _ffi_api.AnnotateTarget([tvm.runtime.container.String(t) for t in targets]) def Inline(): """Perform inlining on the given Relay IR module. The global functions that are marked as `inline` should be always inlined. A cost model will be needed in the future to decide if it is profitable to inline the function. Returns ------- ret: tvm.transform.Pass The registered pass that performs inlining for a Relay IR module. """ return _ffi_api.Inline() def gradient(expr, mod=None, mode='higher_order'): """ Transform the input function, returning a function that calculate the original result, paired with gradient of the input. Parameters ---------- expr : tvm.relay.Expr The input expression, which is a Function or a GlobalVar. mod : Optional[tvm.IRModule] mode : Optional[String] The mode of the automatic differentiation algorithm. 'first_order' only works on first order code, but will not produce reference nor closure. 'higher_order' works on all code using reference and closure. Returns ------- expr : tvm.relay.Expr The transformed expression. """ if mode == 'first_order': return _ffi_api.first_order_gradient(expr, mod) if mode == 'higher_order': return _ffi_api.gradient(expr, mod) raise Exception('unknown mode') def to_cps(func, mod=None): """ Turn expression into CPS expression. Every intermediate compute will be passed to a continuation. Parameters ---------- func: tvm.relay.Function The input function. mod: Optional[tvm.IRModule] The global module. Returns ------- result: tvm.relay.Function The output function. """ use_mod = mod if mod is not None else tvm.ir.IRModule() return _ffi_api.to_cps(func, use_mod) def un_cps(func): """ Turn an cps function into a Function without the continuation argument. Note that this will not give the exact same interface as before cps: If the input/output is higher order, they will still be in cps form. Parameters ---------- func: tvm.relay.Function The input function Returns ------- result: tvm.relay.Function The output function """ return _ffi_api.un_cps(func) def _wrap_class_function_pass(pass_cls, pass_info): """Wrap a python class as function pass""" class PyFunctionPass(FunctionPass): """Internal wrapper class to create a class instance.""" def __init__(self, *args, **kwargs): # initialize handle in cass pass_cls creation failed.fg self.handle = None inst = pass_cls(*args, **kwargs) # it is important not to capture self to # avoid a cyclic dependency def _pass_func(func, mod, ctx): return inst.transform_function(func, mod, ctx) self.__init_handle_by_constructor__( _ffi_api.MakeFunctionPass, _pass_func, pass_info) self._inst = inst def __getattr__(self, name): # fall back to instance attribute if there is not any return self._inst.__getattribute__(name) functools.update_wrapper(PyFunctionPass.__init__, pass_cls.__init__) PyFunctionPass.__name__ = pass_cls.__name__ PyFunctionPass.__doc__ = pass_cls.__doc__ PyFunctionPass.__module__ = pass_cls.__module__ return PyFunctionPass def function_pass(pass_func=None, opt_level=None, name=None, required=None): """Decorate a function pass. This function returns a callback when pass_func is provided. Otherwise, it returns the created function pass using the given optimization function. Parameters ---------- pass_func : Optional[Callable[(Function, Module, PassContext) -> Function]] The transformation function or class. opt_level : int The optimization level of this module pass. name : Optional[str] The name of the function pass. The name could be empty. In this case, the name of the optimization function will be used as the pass name. required : Optional[List[str]] The list of passes that the module pass is dependent on. Returns ------- create_function_pass : Union[Callable, FunctionPass] A decorator will be returned if pass_func is not provided, otherwise return the decorated result. The returned decorator has two behaviors depending on the input: A new FunctionPass will be returned when we decorate a pass function. A new FunctionPass class will be returned when we decorate a class type. Examples -------- The following code block decorates a function pass class. .. code-block:: python @relay.transform.function_pass(opt_level=1) class TestReplaceFunc: def __init__(self, new_func): self.new_func = new_func def transform_function(self, func, mod, ctx): # just for demo purposes # transform func to new_func return self.new_func x = relay.var("x", shape=(10, 20)) f1 = relay.Function([x], x) f2 = relay.Function([x], relay.log(x)) # fpass is now a special pass that replaces every # function to f1 fpass = TestReplaceFunc(f1) # now every function in input_mod is replaced by f1 res_mod = fpass(input_mod) The following code creates a function pass by decorating a user defined transform function. .. code-block:: python @relay.transform.function_pass(opt_level=2) def transform(func, mod, ctx): # my transformations here. return func function_pass = transform assert isinstance(function_pass, transform.FunctionPass) assert function_pass.info.opt_level == 2 # Given a module m, the optimization could be invoked as the follwoing: updated_mod = function_pass(m) # Now constant folding should have been applied to every function in # the provided module m. And the updated module will be returned. """ if opt_level is None: raise ValueError("Please provide opt_level for the funtion pass.") required = required if required else [] if not isinstance(required, (list, tuple)): raise TypeError("Required is expected to be the type of " + "list/tuple.") def create_function_pass(pass_arg): """Internal function that creates a function pass""" fname = name if name else pass_arg.__name__ info = tvm.transform.PassInfo(opt_level, fname, required) if inspect.isclass(pass_arg): return _wrap_class_function_pass(pass_arg, info) if not isinstance(pass_arg, (types.FunctionType, types.LambdaType)): raise TypeError("pass_func must be a callable for Module pass") return _ffi_api.MakeFunctionPass(pass_arg, info) if pass_func: return create_function_pass(pass_func) return create_function_pass @function_pass(opt_level=1) class ChangeBatch: """ Change the batch size. Parameters ---------- data: Dict[relay.Var, int] A dictionary of all the params to change. The keys are all params, and the values are which dimension hold the batch. batch_size: int The batch size to change to. Returns ------- pass: FunctionPass The pass. """ def __init__(self, data, batch_size=16): self.data = data self.batch_size = batch_size def transform_function(self, func, mod, ctx): func = relay.Function(func.params, func.body, None, func.type_params, func.attrs) change_batch = self class ChangeBatchMutator(tvm.relay.ExprMutator): def visit_var(self, var): if var in change_batch.data: ty = var.type_annotation new_shape = list(ty.shape) new_shape[change_batch.data[var]] = change_batch.batch_size return relay.Var(var.name_hint, relay.TensorType(new_shape, ty.dtype)) return var return ChangeBatchMutator().visit(func) def DenseToSparse(weight_name, weight_shape): """ Rewrite qualified ```nn.dense operation``` to ```nn.sparse_dense``` This pass is used in ```data_dep_optimization.bsr_dense``` Parameters of this pass is generated by ```analysis.sparse_dense.process_params``` Parameters ---------- weight_name: Array[String] Names of weights which qualified sparse contrains weight_shape: Array[Array[IntImm]] Weights shape in BSR format. Returns ------- ret : tvm.transform.Pass The registered DenseToSparse pass. """ return _ffi_api.DenseToSparse(weight_name, weight_shape) def SimplifyFCTranspose(target_weight_name): """ Rewrite ```y = nn.dense(x, transpose(w, [1, 0]))``` to ```y = nn.dense(x, wt)``` This pass is used in ```data_dep_optimization.simplify_fc_transpose``` Parameters ---------- weight_name: Array[String] Names of weights which qualified ```y = nn.dense(x, transpose(w, [1, 0]))``` This parameter is generated by ```analysis.search_fc_transpose``` function Returns ------- ret : tvm.transform.Pass The registered SimplifyFCTranspose pass. """ return _ffi_api.SimplifyFCTranspose(target_weight_name)
29.985294
100
0.664315
04d0524c6466fca5fc05e30dd5b36db0d1461df7
1,693
py
Python
Ensemble Methods/RandomForest_Classification.py
AbuBakkar32/ML-DL-NLP-TP-FE-MP
2525b6b32fc1876e65643b8c221ffda591981623
[ "MIT" ]
2
2020-10-20T10:35:31.000Z
2020-11-19T14:08:05.000Z
Ensemble Methods/RandomForest_Classification.py
AbuBakkar32/ML-DL-NLP-TP-FE-MP
2525b6b32fc1876e65643b8c221ffda591981623
[ "MIT" ]
null
null
null
Ensemble Methods/RandomForest_Classification.py
AbuBakkar32/ML-DL-NLP-TP-FE-MP
2525b6b32fc1876e65643b8c221ffda591981623
[ "MIT" ]
null
null
null
#Import Libraries import matplotlib.pyplot as plt import pandas as pd import numpy as np dataset = pd.read_csv('BankNote_Authentication.csv') X = dataset.iloc[:, [0,1]].values y = dataset.iloc[:, 4].values from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0) from sklearn.ensemble import RandomForestClassifier rf_c = RandomForestClassifier(n_estimators = 200, random_state = 2) rf_c.fit(X_train, y_train) from sklearn.metrics import accuracy_score y_pred_test = rf_c.predict(X_test) test_acc = accuracy_score(y_test, y_pred_test) print(test_acc) from matplotlib.colors import ListedColormap import numpy as np #Define Variables clf = rf_c h = 0.01 X_plot, z_plot = X_test, y_test #Standard Template to draw graph x_min, x_max = X_plot[:, 0].min() - 1, X_plot[:, 0].max() + 1 y_min, y_max = X_plot[:, 1].min() - 1, X_plot[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh Z = clf.predict(np.array([xx.ravel(), yy.ravel()]).T) Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, alpha = 0.7, cmap = ListedColormap(('red', 'green'))) for i, j in enumerate(np.unique(z_plot)): plt.scatter(X_plot[z_plot == j, 0], X_plot[z_plot == j, 1], c = ['red', 'green'][i], cmap = ListedColormap(('red', 'green')), label = j) #X[:, 0], X[:, 1] plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.title('Random Forest Classification') plt.xlabel('variance') plt.ylabel('skewness') plt.legend() plt.show()
29.701754
93
0.683993
b7a56a7dc0f607168fc269e4845fedbb9b650d86
21,176
bzl
Python
third_party/repositories/scala_2_13.bzl
renovate-bot/rules_scala
6e37eac5194d535f59c4a2f363e67207fd004aca
[ "Apache-2.0" ]
326
2016-02-24T18:28:10.000Z
2022-03-30T08:51:08.000Z
third_party/repositories/scala_2_13.bzl
renovate-bot/rules_scala
6e37eac5194d535f59c4a2f363e67207fd004aca
[ "Apache-2.0" ]
1,157
2016-02-24T04:26:27.000Z
2022-03-31T05:59:14.000Z
third_party/repositories/scala_2_13.bzl
renovate-bot/rules_scala
6e37eac5194d535f59c4a2f363e67207fd004aca
[ "Apache-2.0" ]
262
2016-02-24T18:29:21.000Z
2022-03-24T21:39:20.000Z
artifacts = { "io_bazel_rules_scala_scala_library": { "artifact": "org.scala-lang:scala-library:2.13.6", "sha256": "f19ed732e150d3537794fd3fe42ee18470a3f707efd499ecd05a99e727ff6c8a", }, "io_bazel_rules_scala_scala_compiler": { "artifact": "org.scala-lang:scala-compiler:2.13.6", "sha256": "310d263d622a3d016913e94ee00b119d270573a5ceaa6b21312d69637fd9eec1", }, "io_bazel_rules_scala_scala_reflect": { "artifact": "org.scala-lang:scala-reflect:2.13.6", "sha256": "f713593809b387c60935bb9a940dfcea53bd0dbf8fdc8d10739a2896f8ac56fa", }, "io_bazel_rules_scala_scala_parallel_collections": { "artifact": "org.scala-lang.modules:scala-parallel-collections_2.13:0.2.0", "sha256": "d15f22f1308b98e9ac52a3d1ac8d582d548d6d852b1116cbdf5a50f431246ed1", }, # "io_bazel_rules_scala_scalatest": { "artifact": "org.scalatest:scalatest_2.13:3.1.2", "sha256": "94b636ce8dc2caed3069069c97b94538e60e9a400833fb8086c8271978ad2c21", }, "io_bazel_rules_scala_scalactic": { "artifact": "org.scalactic:scalactic_2.13:3.1.2", "sha256": "6977c34cabeacca7c0d8f3be0c3f5644ddd922b4af7c32d5a59ca561807e728d", }, "io_bazel_rules_scala_scala_xml": { "artifact": "org.scala-lang.modules:scala-xml_2.13:1.3.0", "sha256": "6d96d45a7fc6fc7ab69bdbac841b48cf67ab109f048c8db375ae4effae524f39", }, "io_bazel_rules_scala_scala_parser_combinators": { "artifact": "org.scala-lang.modules:scala-parser-combinators_2.13:1.1.2", "sha256": "5c285b72e6dc0a98e99ae0a1ceeb4027dab9adfa441844046bd3f19e0efdcb54", }, "org_scalameta_common": { "artifact": "org.scalameta:common_2.13:4.3.24", "sha256": "bb8ffbca69b42417aa5d3c73d4434b73dbbeb66748abc44a024090ff3aa38bd3", "deps": [ "@com_lihaoyi_sourcecode", "@io_bazel_rules_scala_scala_library", ], }, "org_scalameta_fastparse": { "artifact": "org.scalameta:fastparse_2.13:1.0.1", "sha256": "b43b99244d5b51948daf1467083b3850dc2727c604de98dc426dec14244fd18e", "deps": [ "@com_lihaoyi_sourcecode", "@io_bazel_rules_scala_scala_library", "@org_scalameta_fastparse_utils", ], }, "org_scalameta_fastparse_utils": { "artifact": "org.scalameta:fastparse-utils_2.13:1.0.1", "sha256": "9d650543903836684a808bb4c5ff775a4cae4b38c3a47ce946b572237fde340f", "deps": [ "@com_lihaoyi_sourcecode", "@io_bazel_rules_scala_scala_library", ], }, "org_scala_lang_modules_scala_collection_compat": { "artifact": "org.scala-lang.modules:scala-collection-compat_2.13:2.2.0", "sha256": "7f601d3a6d699433ddaf549ffa1441dcbe00bc95f4035add9776772053e9f93f", "deps": [ "@io_bazel_rules_scala_scala_library", ], }, "org_scalameta_parsers": { "artifact": "org.scalameta:parsers_2.13:4.3.24", "sha256": "5faebb22a064f38a4be19fdadb288dc771c1e362d0c4d2f46546f08e4f43c091", "deps": [ "@io_bazel_rules_scala_scala_library", "@org_scalameta_trees", ], }, "org_scalameta_scalafmt_core": { "artifact": "org.scalameta:scalafmt-core_2.13:2.7.4", "sha256": "873d98275f75b67c1e01094a24bafb29a588b7d05fdc508d3b1ba02f08d0c0d8", "deps": [ "@com_geirsson_metaconfig_core", "@com_geirsson_metaconfig_typesafe_config", "@io_bazel_rules_scala_scala_library", "@io_bazel_rules_scala_scala_reflect", "@org_scalameta_scalameta", "@org_scala_lang_modules_scala_collection_compat", "@io_bazel_rules_scala_scala_parallel_collections", ], }, "org_scalameta_scalameta": { "artifact": "org.scalameta:scalameta_2.13:4.3.24", "sha256": "d73eaf491eb588a2bd78aeba443e62bc95f1a368051d9e81607192c88fa4c61c", "deps": [ "@io_bazel_rules_scala_scala_library", "@org_scala_lang_scalap", "@org_scalameta_parsers", ], }, "org_scalameta_trees": { "artifact": "org.scalameta:trees_2.13:4.3.24", "sha256": "d49d2b085ae62e9317dd2a4e8b14be5b1ecbec2db392fa81cab86ad2bd7c2c68", "deps": [ "@com_thesamet_scalapb_scalapb_runtime", "@io_bazel_rules_scala_scala_library", "@org_scalameta_common", "@org_scalameta_fastparse", ], }, "org_typelevel_paiges_core": { "artifact": "org.typelevel:paiges-core_2.13:0.2.4", "sha256": "1f55b6f90e370a1c18f7350f6925626b5cde69b17560bd2e2a33137780b210df", "deps": [ "@io_bazel_rules_scala_scala_library", ], }, "com_typesafe_config": { "artifact": "com.typesafe:config:1.3.3", "sha256": "b5f1d6071f1548d05be82f59f9039c7d37a1787bd8e3c677e31ee275af4a4621", }, "org_scala_lang_scalap": { "artifact": "org.scala-lang:scalap:2.13.6", "sha256": "bbfa4ab0603f510b16114371a35b9c34d20946edfc1aa8f3fd31014b9f06b5b1", "deps": [ "@io_bazel_rules_scala_scala_compiler", ], }, "com_thesamet_scalapb_lenses": { "artifact": "com.thesamet.scalapb:lenses_2.13:0.9.0", "sha256": "10830d6511fc21b997c4acdde6f6700e87ee6791cbe6278f5acd7b352670a88f", "deps": [ "@io_bazel_rules_scala_scala_library", ], }, "com_thesamet_scalapb_scalapb_runtime": { "artifact": "com.thesamet.scalapb:scalapb-runtime_2.13:0.9.0", "sha256": "10830d6511fc21b997c4acdde6f6700e87ee6791cbe6278f5acd7b352670a88f", "deps": [ "@com_google_protobuf_protobuf_java", "@com_lihaoyi_fastparse", "@com_thesamet_scalapb_lenses", "@io_bazel_rules_scala_scala_library", ], }, "com_lihaoyi_fansi": { "artifact": "com.lihaoyi:fansi_2.13:0.2.9", "sha256": "c347b6452152cf55d401090d3d3c230d96a5f9b6792d1bdb9b760e0d5187ed30", "deps": [ "@com_lihaoyi_sourcecode", "@io_bazel_rules_scala_scala_library", ], }, "com_lihaoyi_fastparse": { "artifact": "com.lihaoyi:fastparse_2.13:2.1.3", "sha256": "5064d3984aab8c48d2dbd6285787ac5c6d84a6bebfc02c6d431ce153cf91dec1", "deps": [ "@com_lihaoyi_sourcecode", ], }, "com_lihaoyi_pprint": { "artifact": "com.lihaoyi:pprint_2.13:0.6.0", "sha256": "6bc908b7acb825bc0ce1148a1a417ab1b75335c98749e6e2d2ad3d09604e3701", "deps": [ "@com_lihaoyi_fansi", "@com_lihaoyi_sourcecode", "@io_bazel_rules_scala_scala_library", ], }, "com_lihaoyi_sourcecode": { "artifact": "com.lihaoyi:sourcecode_2.13:0.1.7", "sha256": "6371a79bfd1125ccf0dbf3278c178f3554a50507975f4a182abb973044f24945", "deps": [ "@io_bazel_rules_scala_scala_library", ], }, "com_google_protobuf_protobuf_java": { "artifact": "com.google.protobuf:protobuf-java:3.10.0", "sha256": "161d7d61a8cb3970891c299578702fd079646e032329d6c2cabf998d191437c9", }, "com_geirsson_metaconfig_core": { "artifact": "com.geirsson:metaconfig-core_2.13:0.9.10", "sha256": "2ee1f3ee60e4c5e3de63ab9bfe52be2c4f319552b7afedbc20c5097fc26fdc8c", "deps": [ "@com_lihaoyi_pprint", "@io_bazel_rules_scala_scala_library", "@org_typelevel_paiges_core", "@org_scala_lang_modules_scala_collection_compat", ], }, "com_geirsson_metaconfig_typesafe_config": { "artifact": "com.geirsson:metaconfig-typesafe-config_2.13:0.9.10", "sha256": "bd3698fed4af61d03b9b70783dfaa457e664eae234ca1b83f2580552d1306e39", "deps": [ "@com_geirsson_metaconfig_core", "@com_typesafe_config", "@io_bazel_rules_scala_scala_library", "@org_scala_lang_modules_scala_collection_compat", ], }, "io_bazel_rules_scala_org_openjdk_jmh_jmh_core": { "artifact": "org.openjdk.jmh:jmh-core:1.20", "sha256": "1688db5110ea6413bf63662113ed38084106ab1149e020c58c5ac22b91b842ca", }, "io_bazel_rules_scala_org_openjdk_jmh_jmh_generator_asm": { "artifact": "org.openjdk.jmh:jmh-generator-asm:1.20", "sha256": "2dd4798b0c9120326310cda3864cc2e0035b8476346713d54a28d1adab1414a5", }, "io_bazel_rules_scala_org_openjdk_jmh_jmh_generator_reflection": { "artifact": "org.openjdk.jmh:jmh-generator-reflection:1.20", "sha256": "57706f7c8278272594a9afc42753aaf9ba0ba05980bae0673b8195908d21204e", }, "io_bazel_rules_scala_org_ows2_asm_asm": { "artifact": "org.ow2.asm:asm:6.1.1", "sha256": "dd3b546415dd4bade2ebe3b47c7828ab0623ee2336604068e2d81023f9f8d833", }, "io_bazel_rules_scala_net_sf_jopt_simple_jopt_simple": { "artifact": "net.sf.jopt-simple:jopt-simple:4.6", "sha256": "3fcfbe3203c2ea521bf7640484fd35d6303186ea2e08e72f032d640ca067ffda", }, "io_bazel_rules_scala_org_apache_commons_commons_math3": { "artifact": "org.apache.commons:commons-math3:3.6.1", "sha256": "1e56d7b058d28b65abd256b8458e3885b674c1d588fa43cd7d1cbb9c7ef2b308", }, "io_bazel_rules_scala_junit_junit": { "artifact": "junit:junit:4.12", "sha256": "59721f0805e223d84b90677887d9ff567dc534d7c502ca903c0c2b17f05c116a", }, "io_bazel_rules_scala_org_hamcrest_hamcrest_core": { "artifact": "org.hamcrest:hamcrest-core:1.3", "sha256": "66fdef91e9739348df7a096aa384a5685f4e875584cce89386a7a47251c4d8e9", }, "io_bazel_rules_scala_org_specs2_specs2_common": { "artifact": "org.specs2:specs2-common_2.13:4.10.3", "sha256": "51636fb6a904b3c807de0673f283a971379c9886e03aedbecbf5d787b22346b0", "deps": [ "@io_bazel_rules_scala_org_specs2_specs2_fp", ], }, "io_bazel_rules_scala_org_specs2_specs2_core": { "artifact": "org.specs2:specs2-core_2.13:4.10.3", "sha256": "9cc55eb11781c9b77689cf8175795fad34b060718b04a225fffb0613a181256b", "deps": [ "@io_bazel_rules_scala_org_specs2_specs2_common", "@io_bazel_rules_scala_org_specs2_specs2_matcher", ], }, "io_bazel_rules_scala_org_specs2_specs2_fp": { "artifact": "org.specs2:specs2-fp_2.13:4.10.3", "sha256": "48a908b345c93a3387ddd157ab338686513f450c7dd8afe0f32b6edc7ff15239", }, "io_bazel_rules_scala_org_specs2_specs2_matcher": { "artifact": "org.specs2:specs2-matcher_2.13:4.10.3", "sha256": "754465f58dad8f59b3bb299d5dc127027bf0c0c9ad25250260fc95abd705363b", "deps": [ "@io_bazel_rules_scala_org_specs2_specs2_common", ], }, "io_bazel_rules_scala_org_specs2_specs2_junit": { "artifact": "org.specs2:specs2-junit_2.13:4.10.3", "sha256": "49c4e7cf5483aada90852314983fc046f72092da1a4e7900ace6574444f581ea", "deps": [ "@io_bazel_rules_scala_org_specs2_specs2_core", ], }, "scala_proto_rules_scalapb_plugin": { "artifact": "com.thesamet.scalapb:compilerplugin_2.13:0.9.7", "sha256": "ac29c2f01b0b1e39c4226915000505643d586234d586247e1fd97133e20bcc60", }, "scala_proto_rules_protoc_bridge": { "artifact": "com.thesamet.scalapb:protoc-bridge_2.13:0.7.14", "sha256": "0704f2379374205e7130018e3df6b3d50a4d330c3e447ca39b5075ecb4c93cd1", }, "scala_proto_rules_scalapb_runtime": { "artifact": "com.thesamet.scalapb:scalapb-runtime_2.13:0.9.7", "sha256": "8026485011c53d35eb427ac5c09ed34c283b355d8a6363eae68b3f165bee34a0", }, "scala_proto_rules_scalapb_runtime_grpc": { "artifact": "com.thesamet.scalapb:scalapb-runtime-grpc_2.13:0.9.7", "sha256": "950984d4a3b21925d3156dd98cddb4e7c2f429aad81aa25bb5a3792d41fd7c76", }, "scala_proto_rules_scalapb_lenses": { "artifact": "com.thesamet.scalapb:lenses_2.13:0.9.7", "sha256": "5f43b371b2738a81eff129fd2071ce3e5b3aa30909de90e6bb6e25c3de6c312d", }, "scala_proto_rules_scalapb_fastparse": { "artifact": "com.lihaoyi:fastparse_2.13:2.1.3", "sha256": "5064d3984aab8c48d2dbd6285787ac5c6d84a6bebfc02c6d431ce153cf91dec1", }, "scala_proto_rules_grpc_core": { "artifact": "io.grpc:grpc-core:1.24.0", "sha256": "8fc900625a9330b1c155b5423844d21be0a5574fe218a63170a16796c6f7880e", }, "scala_proto_rules_grpc_api": { "artifact": "io.grpc:grpc-api:1.24.0", "sha256": "553978366e04ee8ddba64afde3b3cf2ac021a2f3c2db2831b6491d742b558598", }, "scala_proto_rules_grpc_stub": { "artifact": "io.grpc:grpc-stub:1.24.0", "sha256": "eaa9201896a77a0822e26621b538c7154f00441a51c9b14dc9e1ec1f2acfb815", }, "scala_proto_rules_grpc_protobuf": { "artifact": "io.grpc:grpc-protobuf:1.24.0", "sha256": "88cd0838ea32893d92cb214ea58908351854ed8de7730be07d5f7d19025dd0bc", }, "scala_proto_rules_grpc_netty": { "artifact": "io.grpc:grpc-netty:1.24.0", "sha256": "8478333706ba442a354c2ddb8832d80a5aef71016e8a9cf07e7bf6e8c298f042", }, "scala_proto_rules_grpc_context": { "artifact": "io.grpc:grpc-context:1.24.0", "sha256": "1f0546e18789f7445d1c5a157010a11bc038bbb31544cdb60d9da3848efcfeea", }, "scala_proto_rules_perfmark_api": { "artifact": "io.perfmark:perfmark-api:0.17.0", "sha256": "816c11409b8a0c6c9ce1cda14bed526e7b4da0e772da67c5b7b88eefd41520f9", }, "scala_proto_rules_guava": { "artifact": "com.google.guava:guava:26.0-android", "sha256": "1d044ebb866ef08b7d04e998b4260c9b52fab6e6d6b68d207859486bb3686cd5", }, "scala_proto_rules_google_instrumentation": { "artifact": "com.google.instrumentation:instrumentation-api:0.3.0", "sha256": "671f7147487877f606af2c7e39399c8d178c492982827305d3b1c7f5b04f1145", }, "scala_proto_rules_netty_codec": { "artifact": "io.netty:netty-codec:4.1.32.Final", "sha256": "dbd6cea7d7bf5a2604e87337cb67c9468730d599be56511ed0979aacb309f879", }, "scala_proto_rules_netty_codec_http": { "artifact": "io.netty:netty-codec-http:4.1.32.Final", "sha256": "db2c22744f6a4950d1817e4e1a26692e53052c5d54abe6cceecd7df33f4eaac3", }, "scala_proto_rules_netty_codec_socks": { "artifact": "io.netty:netty-codec-socks:4.1.32.Final", "sha256": "fe2f2e97d6c65dc280623dcfd24337d8a5c7377049c120842f2c59fb83d7408a", }, "scala_proto_rules_netty_codec_http2": { "artifact": "io.netty:netty-codec-http2:4.1.32.Final", "sha256": "4d4c6cfc1f19efb969b9b0ae6cc977462d202867f7dcfee6e9069977e623a2f5", }, "scala_proto_rules_netty_handler": { "artifact": "io.netty:netty-handler:4.1.32.Final", "sha256": "07d9756e48b5f6edc756e33e8b848fb27ff0b1ae087dab5addca6c6bf17cac2d", }, "scala_proto_rules_netty_buffer": { "artifact": "io.netty:netty-buffer:4.1.32.Final", "sha256": "8ac0e30048636bd79ae205c4f9f5d7544290abd3a7ed39d8b6d97dfe3795afc1", }, "scala_proto_rules_netty_transport": { "artifact": "io.netty:netty-transport:4.1.32.Final", "sha256": "175bae0d227d7932c0c965c983efbb3cf01f39abe934f5c4071d0319784715fb", }, "scala_proto_rules_netty_resolver": { "artifact": "io.netty:netty-resolver:4.1.32.Final", "sha256": "9b4a19982047a95ea4791a7ad7ad385c7a08c2ac75f0a3509cc213cb32a726ae", }, "scala_proto_rules_netty_common": { "artifact": "io.netty:netty-common:4.1.32.Final", "sha256": "cc993e660f8f8e3b033f1d25a9e2f70151666bdf878d460a6508cb23daa696dc", }, "scala_proto_rules_netty_handler_proxy": { "artifact": "io.netty:netty-handler-proxy:4.1.32.Final", "sha256": "10d1081ed114bb0e76ebbb5331b66a6c3189cbdefdba232733fc9ca308a6ea34", }, "scala_proto_rules_opencensus_api": { "artifact": "io.opencensus:opencensus-api:0.22.1", "sha256": "62a0503ee81856ba66e3cde65dee3132facb723a4fa5191609c84ce4cad36127", }, "scala_proto_rules_opencensus_impl": { "artifact": "io.opencensus:opencensus-impl:0.22.1", "sha256": "9e8b209da08d1f5db2b355e781b9b969b2e0dab934cc806e33f1ab3baed4f25a", }, "scala_proto_rules_disruptor": { "artifact": "com.lmax:disruptor:3.4.2", "sha256": "f412ecbb235c2460b45e63584109723dea8d94b819c78c9bfc38f50cba8546c0", }, "scala_proto_rules_opencensus_impl_core": { "artifact": "io.opencensus:opencensus-impl-core:0.22.1", "sha256": "04607d100e34bacdb38f93c571c5b7c642a1a6d873191e25d49899668514db68", }, "scala_proto_rules_opencensus_contrib_grpc_metrics": { "artifact": "io.opencensus:opencensus-contrib-grpc-metrics:0.22.1", "sha256": "3f6f4d5bd332c516282583a01a7c940702608a49ed6e62eb87ef3b1d320d144b", }, "io_bazel_rules_scala_mustache": { "artifact": "com.github.spullara.mustache.java:compiler:0.8.18", "sha256": "ddabc1ef897fd72319a761d29525fd61be57dc25d04d825f863f83cc89000e66", }, "io_bazel_rules_scala_guava": { "artifact": "com.google.guava:guava:21.0", "sha256": "972139718abc8a4893fa78cba8cf7b2c903f35c97aaf44fa3031b0669948b480", }, "libthrift": { "artifact": "org.apache.thrift:libthrift:0.8.0", "sha256": "adea029247c3f16e55e29c1708b897812fd1fe335ac55fe3903e5d2f428ef4b3", }, "io_bazel_rules_scala_scrooge_core": { "artifact": "com.twitter:scrooge-core_2.13:21.2.0", "sha256": "a93f179b96e13bd172e5164c587a3645122f45f6d6370304e06d52e2ab0e456f", }, "io_bazel_rules_scala_scrooge_generator": { "artifact": "com.twitter:scrooge-generator_2.13:21.2.0", "sha256": "1293391da7df25497cad7c56cf8ecaeb672496a548d144d7a2a1cfcf748bed6c", "runtime_deps": [ "@io_bazel_rules_scala_guava", "@io_bazel_rules_scala_mustache", "@io_bazel_rules_scala_scopt", ], }, "io_bazel_rules_scala_util_core": { "artifact": "com.twitter:util-core_2.13:21.2.0", "sha256": "da8e149b8f0646316787b29f6e254250da10b4b31d9a96c32e42f613574678cd", }, "io_bazel_rules_scala_util_logging": { "artifact": "com.twitter:util-logging_2.13:21.2.0", "sha256": "90bd8318329907dcf7e161287473e27272b38ee6857e9d56ee8a1958608cc49d", }, "io_bazel_rules_scala_javax_annotation_api": { "artifact": "javax.annotation:javax.annotation-api:1.3.2", "sha256": "e04ba5195bcd555dc95650f7cc614d151e4bcd52d29a10b8aa2197f3ab89ab9b", }, "io_bazel_rules_scala_scopt": { "artifact": "com.github.scopt:scopt_2.13:4.0.0-RC2", "sha256": "07c1937cba53f7509d2ac62a0fc375943a3e0fef346625414c15d41b5a6cfb34", }, # test only "com_twitter__scalding_date": { "testonly": True, "artifact": "com.twitter:scalding-date_2.13:0.17.0", "sha256": "973a7198121cc8dac9eeb3f325c93c497fe3b682f68ba56e34c1b210af7b15b4", }, "org_typelevel__cats_core": { "testonly": True, "artifact": "org.typelevel:cats-core_2.13:2.2.0", "sha256": "6058d02418e4eb5f1919a1156d63d2d1b93f2c6190b1a1806ee2b73f8726a923", }, "com_google_guava_guava_21_0_with_file": { "testonly": True, "artifact": "com.google.guava:guava:21.0", "sha256": "972139718abc8a4893fa78cba8cf7b2c903f35c97aaf44fa3031b0669948b480", }, "com_github_jnr_jffi_native": { "testonly": True, "artifact": "com.github.jnr:jffi:jar:native:1.2.17", "sha256": "4eb582bc99d96c8df92fc6f0f608fd123d278223982555ba16219bf8be9f75a9", }, "org_apache_commons_commons_lang_3_5": { "testonly": True, "artifact": "org.apache.commons:commons-lang3:3.5", "sha256": "8ac96fc686512d777fca85e144f196cd7cfe0c0aec23127229497d1a38ff651c", }, "org_springframework_spring_core": { "testonly": True, "artifact": "org.springframework:spring-core:5.1.5.RELEASE", "sha256": "f771b605019eb9d2cf8f60c25c050233e39487ff54d74c93d687ea8de8b7285a", }, "org_springframework_spring_tx": { "testonly": True, "artifact": "org.springframework:spring-tx:5.1.5.RELEASE", "sha256": "666f72b73c7e6b34e5bb92a0d77a14cdeef491c00fcb07a1e89eb62b08500135", "deps": [ "@org_springframework_spring_core", ], }, "com_google_guava_guava_21_0": { "testonly": True, "artifact": "com.google.guava:guava:21.0", "sha256": "972139718abc8a4893fa78cba8cf7b2c903f35c97aaf44fa3031b0669948b480", "deps": [ "@org_springframework_spring_core", ], }, # TODO: fix misleading artifact group in id "org_spire_math_kind_projector": { "testonly": True, "artifact": "org.typelevel:kind-projector_2.13:0.10.3", "sha256": "b5d60c8bc8f1333e2deac17d72d41bb59c53283a67ff3a613189746ce97ac8ad", }, }
44.301255
85
0.683368
d769de84a83511c3ada6e7084748282c60c417a8
1,554
py
Python
openslides_backend/action/mixins/sequential_numbers_mixin.py
MJJojo97/openslides-backend
af0d1edb0070e352d46f285a1ba0bbe3702d49ae
[ "MIT" ]
null
null
null
openslides_backend/action/mixins/sequential_numbers_mixin.py
MJJojo97/openslides-backend
af0d1edb0070e352d46f285a1ba0bbe3702d49ae
[ "MIT" ]
null
null
null
openslides_backend/action/mixins/sequential_numbers_mixin.py
MJJojo97/openslides-backend
af0d1edb0070e352d46f285a1ba0bbe3702d49ae
[ "MIT" ]
null
null
null
from typing import Any, Dict, Optional from datastore.shared.util import DeletedModelsBehaviour from ...models.models import Model from ...services.datastore.interface import DatastoreService from ...shared.filters import FilterOperator from ..generics.create import CreateAction from ..util.typing import ActionResultElement class SequentialNumbersMixin(CreateAction): datastore: DatastoreService model: Model def get_sequential_number(self, meeting_id: int) -> int: """ Creates a sequential number, unique per meeting and returns it """ filter = FilterOperator("meeting_id", "=", meeting_id) number = self.datastore.max( collection=self.model.collection, filter=filter, field="sequential_number", get_deleted_models=DeletedModelsBehaviour.ALL_MODELS, ) number = 1 if number is None else number + 1 return number def update_instance(self, instance: Dict[str, Any]) -> Dict[str, Any]: instance = super().update_instance(instance) instance["sequential_number"] = self.get_sequential_number( instance["meeting_id"] ) return instance def create_action_result_element( self, instance: Dict[str, Any] ) -> Optional[ActionResultElement]: result = super().create_action_result_element(instance) if result is None: result = {"id": instance["id"]} result["sequential_number"] = instance["sequential_number"] return result
33.06383
74
0.675032
dd8af5a30761dc3b22e0a7380d4676f81b8d963f
3,665
py
Python
keystone/tests/unit/common/test_json_home.py
ferag/keystone
af1c1a822a8dfdd543c6e4d48264f5b8be2bdfc7
[ "Apache-2.0" ]
615
2015-01-07T12:32:52.000Z
2022-03-24T03:49:47.000Z
keystone/tests/unit/common/test_json_home.py
ferag/keystone
af1c1a822a8dfdd543c6e4d48264f5b8be2bdfc7
[ "Apache-2.0" ]
11
2015-04-13T18:52:40.000Z
2021-08-21T06:13:05.000Z
keystone/tests/unit/common/test_json_home.py
ferag/keystone
af1c1a822a8dfdd543c6e4d48264f5b8be2bdfc7
[ "Apache-2.0" ]
696
2015-01-15T00:31:07.000Z
2022-03-16T09:56:00.000Z
# Copyright 2014 IBM Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import copy from testtools import matchers from keystone.common import json_home from keystone.tests import unit class JsonHomeTest(unit.BaseTestCase): def test_build_v3_resource_relation(self): resource_name = self.getUniqueString() relation = json_home.build_v3_resource_relation(resource_name) exp_relation = ( 'https://docs.openstack.org/api/openstack-identity/3/rel/%s' % resource_name) self.assertThat(relation, matchers.Equals(exp_relation)) def test_build_v3_extension_resource_relation(self): extension_name = self.getUniqueString() extension_version = self.getUniqueString() resource_name = self.getUniqueString() relation = json_home.build_v3_extension_resource_relation( extension_name, extension_version, resource_name) exp_relation = ( 'https://docs.openstack.org/api/openstack-identity/3/ext/%s/%s/rel' '/%s' % (extension_name, extension_version, resource_name)) self.assertThat(relation, matchers.Equals(exp_relation)) def test_build_v3_parameter_relation(self): parameter_name = self.getUniqueString() relation = json_home.build_v3_parameter_relation(parameter_name) exp_relation = ( 'https://docs.openstack.org/api/openstack-identity/3/param/%s' % parameter_name) self.assertThat(relation, matchers.Equals(exp_relation)) def test_build_v3_extension_parameter_relation(self): extension_name = self.getUniqueString() extension_version = self.getUniqueString() parameter_name = self.getUniqueString() relation = json_home.build_v3_extension_parameter_relation( extension_name, extension_version, parameter_name) exp_relation = ( 'https://docs.openstack.org/api/openstack-identity/3/ext/%s/%s/' 'param/%s' % (extension_name, extension_version, parameter_name)) self.assertThat(relation, matchers.Equals(exp_relation)) def test_translate_urls(self): href_rel = self.getUniqueString() href = self.getUniqueString() href_template_rel = self.getUniqueString() href_template = self.getUniqueString() href_vars = {self.getUniqueString(): self.getUniqueString()} original_json_home = { 'resources': { href_rel: {'href': href}, href_template_rel: { 'href-template': href_template, 'href-vars': href_vars} } } new_json_home = copy.deepcopy(original_json_home) new_prefix = self.getUniqueString() json_home.translate_urls(new_json_home, new_prefix) exp_json_home = { 'resources': { href_rel: {'href': new_prefix + href}, href_template_rel: { 'href-template': new_prefix + href_template, 'href-vars': href_vars} } } self.assertThat(new_json_home, matchers.Equals(exp_json_home))
39.836957
79
0.669577
7a1f99210397f2ae05e6dd7c838a92a560064cee
1,359
py
Python
tools/vis_result.py
Wang-hao-thu/PatchCore_anomaly_detection
ac4068c8fa6f50d4252385258096b7dc85d1abc5
[ "Apache-2.0" ]
null
null
null
tools/vis_result.py
Wang-hao-thu/PatchCore_anomaly_detection
ac4068c8fa6f50d4252385258096b7dc85d1abc5
[ "Apache-2.0" ]
null
null
null
tools/vis_result.py
Wang-hao-thu/PatchCore_anomaly_detection
ac4068c8fa6f50d4252385258096b7dc85d1abc5
[ "Apache-2.0" ]
null
null
null
import sys import numpy as np from tqdm import tqdm import math result_file = sys.argv[1] tmp_file = sys.argv[2] def get_result(result_file): f1 = open(result_file,'r') f2 = open(tmp_file, 'w') neg = {} neg_score = [] pos = {} pos_score = [] for line in tqdm(f1.readlines()): img_path, label, score = line.strip().split(' ') if int(label) == 0: neg_score.append(float(score)) neg.update({str(score):img_path}) else: pos_score.append(float(score)) pos.update({str(score):img_path}) neg_score = np.array(neg_score) neg_shunxu = sorted(neg_score,reverse=True) pos_score = np.array(pos_score) for rate in [0.5,0.2,0.1,0.05,0.01,0.005,0.001]: threshold = neg_shunxu[int(rate * len(neg_shunxu))] recall = sum(pos_score > threshold) print(f"fp:{rate:.5f} ({math.ceil(rate * len(neg_shunxu))}/{len(neg_score)}) recall: {recall / len(pos_score):.3f} ({recall}/{len(pos_score)}) threshold: {threshold}") threshold = 2.5 recall = sum(pos_score > threshold) print(f"{recall}/{len(pos_score)}") for i in range(245): score = str(neg_shunxu[i]) image_name = neg[score] f2.write(image_name+' ' + '0' + '\n') def main(): get_result(result_file) if __name__ == "__main__": main()
31.604651
180
0.599706
550d9e9f229436152f59e9964ea113498c82323a
199
py
Python
scripts/quest/q25712s.py
lynsone/swordie
7e9d564c1f2659a87e01c376089e1ee0a3842c5b
[ "MIT" ]
2
2020-08-25T06:55:19.000Z
2021-03-15T14:37:34.000Z
scripts/quest/q25712s.py
lynsone/swordie
7e9d564c1f2659a87e01c376089e1ee0a3842c5b
[ "MIT" ]
null
null
null
scripts/quest/q25712s.py
lynsone/swordie
7e9d564c1f2659a87e01c376089e1ee0a3842c5b
[ "MIT" ]
3
2020-08-25T06:55:25.000Z
2020-12-01T13:07:43.000Z
# q25712s - Kaiser 4th job advancement if chr.getJob() == 6111: sm.jobAdvance(6112) sm.completeQuest(25712) else: sm.sendSayOkay("You're currently not a third job Kaiser.") sm.dispose()
22.111111
62
0.698492
ac526175783c68a4b74dfc5e1a6c400e53681113
527
py
Python
posts/admin.py
TrueDi1905/yatube
074fac97a47332933f35350a95f661903aac014f
[ "BSD-3-Clause" ]
null
null
null
posts/admin.py
TrueDi1905/yatube
074fac97a47332933f35350a95f661903aac014f
[ "BSD-3-Clause" ]
null
null
null
posts/admin.py
TrueDi1905/yatube
074fac97a47332933f35350a95f661903aac014f
[ "BSD-3-Clause" ]
null
null
null
from django.contrib import admin from .models import Post, Group class PostAdmin(admin.ModelAdmin): list_display = ("pk", "text", "pub_date", "author") search_fields = ("text",) list_filter = ("pub_date",) empty_value_display = "-пусто-" class GroupAdmin(admin.ModelAdmin): list_display = ("title", "description") search_fields = ("title", "description") list_filter = ("title",) empty_value_display = "-пусто-" admin.site.register(Post, PostAdmin) admin.site.register(Group, GroupAdmin)
23.954545
55
0.688805
b29fb056f35e93eb001de809ee138d9e3c8ce362
3,382
py
Python
word-ranking/web/db.py
sironitomas/october-challenge
b12807779a7c73c54f9af06f7ec2826197cff721
[ "MIT" ]
null
null
null
word-ranking/web/db.py
sironitomas/october-challenge
b12807779a7c73c54f9af06f7ec2826197cff721
[ "MIT" ]
null
null
null
word-ranking/web/db.py
sironitomas/october-challenge
b12807779a7c73c54f9af06f7ec2826197cff721
[ "MIT" ]
null
null
null
import hashlib import mysql.connector from mysql.connector import errorcode DB_NAME = 'ranking' def connect(): try: cnx = mysql.connector.connect(user='root', password='my-strong-password', host='db') return cnx except mysql.connector.Error as err: if err.errno == errorcode.ER_ACCESS_DENIED_ERROR: print("Something is wrong with your user name or password") elif err.errno == errorcode.ER_BAD_DB_ERROR: print("Database does not exist") else: print(err) else: cnx.close() def create_database(cursor, DB_NAME): try: cursor.execute( "CREATE DATABASE {} DEFAULT CHARACTER SET 'utf8'".format(DB_NAME)) except mysql.connector.Error as err: print("Failed creating database: {}".format(err)) exit(1) def create_tables(): TABLES = {} TABLES['allwords'] = ("CREATE TABLE `allwords` (" " `hash` varchar(32) NOT NULL," " `word` varchar(64) NOT NULL," " `count` int(10) NOT NULL," " PRIMARY KEY (`hash`)" ") ENGINE=InnoDB") cnx = connect() cursor = cnx.cursor() try: cursor.execute("USE {}".format(DB_NAME)) except mysql.connector.Error as err: print("Database {} does not exists.".format(DB_NAME)) if err.errno == errorcode.ER_BAD_DB_ERROR: create_database(cursor, DB_NAME) print("Database {} created successfully.".format(DB_NAME)) cnx.database = DB_NAME else: print(err) exit(1) for table_name in TABLES: table_description = TABLES[table_name] try: print("Creating table {}: ".format(table_name), end='') cursor.execute(table_description) except mysql.connector.Error as err: if err.errno == errorcode.ER_TABLE_EXISTS_ERROR: print("already exists.") else: print(err.msg) else: print("OK") cursor.close() cnx.close() def save_words(new_words): cnx = connect() cursor = cnx.cursor() cursor.execute("USE {}".format(DB_NAME)) query = "SELECT word, count FROM allwords" cursor.execute(query) current_words_dict = {} for (word, count) in cursor: current_words_dict[word] = count new_words_dict = {} for i in new_words: word = i['word'] count = i['count'] new_words_dict[word] = count inserts = [] updates = [] for word, count in new_words_dict.items(): res = hashlib.md5(word.encode()) md5sum = res.hexdigest() if word in current_words_dict: new_count = count + current_words_dict[word] query = "UPDATE allwords SET count={} WHERE hash=\"{}\"".format( new_count, md5sum) updates.append(query) else: query = "INSERT INTO allwords VALUES (\"{}\", \"{}\", {})".format( md5sum, word, count) inserts.append(query) for query in updates: cursor.execute(query) for query in inserts: cursor.execute(query) cnx.commit() cursor.close() cnx.close()
29.408696
78
0.548788
b8e17d0eaa53977700877ff30422099e1e1f8299
780
py
Python
manage.py
chenke91/ihaveablog
64000723589d3f5a074bd09f045cb5d6c3daf6dd
[ "MIT" ]
null
null
null
manage.py
chenke91/ihaveablog
64000723589d3f5a074bd09f045cb5d6c3daf6dd
[ "MIT" ]
null
null
null
manage.py
chenke91/ihaveablog
64000723589d3f5a074bd09f045cb5d6c3daf6dd
[ "MIT" ]
null
null
null
#!/Users/ck-air/dev/ihaveablog/venv3/bin/python import os from flask.ext.script import Manager, Shell from flask.ext.migrate import Migrate, MigrateCommand from app import create_app, db from app.models import User, Blog, Category app = create_app(os.getenv('BLOG_CONFIG') or 'default') manager = Manager(app) migrate = Migrate(app, db) def make_shell_context(): return dict(app=app, db=db, User=User, Blog=Blog, Category=Category) manager.add_command('shell', Shell(make_context=make_shell_context)) manager.add_command('db', MigrateCommand) @manager.command def test(): '''run the unit test''' import unittest tests = unittest.TestLoader().discover('tests') unittest.TextTestRunner(verbosity=2).run(tests) if __name__ == '__main__': manager.run()
26.896552
72
0.746154
5ee089dbbb0b974d7955276679d6ebc5157e57af
56,516
py
Python
src/azure-cli/azure/cli/command_modules/network/tests/latest/test_private_endpoint_commands.py
xhl873/azure-cli
6448a3437b7139c29a77ba2cb0f592d2f2146afc
[ "MIT" ]
null
null
null
src/azure-cli/azure/cli/command_modules/network/tests/latest/test_private_endpoint_commands.py
xhl873/azure-cli
6448a3437b7139c29a77ba2cb0f592d2f2146afc
[ "MIT" ]
null
null
null
src/azure-cli/azure/cli/command_modules/network/tests/latest/test_private_endpoint_commands.py
xhl873/azure-cli
6448a3437b7139c29a77ba2cb0f592d2f2146afc
[ "MIT" ]
null
null
null
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- import os import time import unittest from azure.cli.testsdk import ( ScenarioTest, ResourceGroupPreparer, StorageAccountPreparer) from azure.cli.core.util import parse_proxy_resource_id, CLIError from azure.cli.command_modules.keyvault.tests.latest.test_keyvault_commands import _create_keyvault from azure.cli.command_modules.rdbms.tests.latest.test_rdbms_commands import ServerPreparer from azure.cli.command_modules.batch.tests.latest.batch_preparers import BatchAccountPreparer, BatchScenarioMixin class NetworkPrivateLinkKeyVaultScenarioTest(ScenarioTest): @ResourceGroupPreparer(name_prefix='cli_test_keyvault_plr') def test_private_link_resource_keyvault(self, resource_group): self.kwargs.update({ 'kv': self.create_random_name('cli-test-kv-plr-', 24), 'loc': 'centraluseuap', 'rg': resource_group }) _create_keyvault(self, self.kwargs, additional_args='--enable-soft-delete') self.cmd('network private-link-resource list ' '--name {kv} ' '-g {rg} ' '--type microsoft.keyvault/vaults', checks=self.check('@[0].properties.groupId', 'vault')) @ResourceGroupPreparer(name_prefix='cli_test_keyvault_pe') def test_private_endpoint_connection_keyvault(self, resource_group): self.kwargs.update({ 'kv': self.create_random_name('cli-test-kv-pe-', 24), 'loc': 'centraluseuap', 'vnet': self.create_random_name('cli-vnet-', 24), 'subnet': self.create_random_name('cli-subnet-', 24), 'pe': self.create_random_name('cli-pe-', 24), 'pe_connection': self.create_random_name('cli-pec-', 24), 'rg': resource_group }) # Prepare vault and network keyvault = _create_keyvault(self, self.kwargs, additional_args='--enable-soft-delete').get_output_in_json() self.kwargs['kv_id'] = keyvault['id'] self.cmd('network vnet create ' '-n {vnet} ' '-g {rg} ' '-l {loc} ' '--subnet-name {subnet}', checks=self.check('length(newVNet.subnets)', 1)) self.cmd('network vnet subnet update ' '-n {subnet} ' '--vnet-name {vnet} ' '-g {rg} ' '--disable-private-endpoint-network-policies true', checks=self.check('privateEndpointNetworkPolicies', 'Disabled')) # Create a private endpoint connection pe = self.cmd('network private-endpoint create ' '-g {rg} ' '-n {pe} ' '--vnet-name {vnet} ' '--subnet {subnet} ' '-l {loc} ' '--connection-name {pe_connection} ' '--private-connection-resource-id {kv_id} ' '--group-id vault').get_output_in_json() self.kwargs['pe_id'] = pe['id'] # Show the connection at vault side keyvault = self.cmd('keyvault show -n {kv}', checks=self.check('length(properties.privateEndpointConnections)', 1)).get_output_in_json() self.kwargs['kv_pe_id'] = keyvault['properties']['privateEndpointConnections'][0]['id'] print(self.kwargs['kv_pe_id']) self.cmd('network private-endpoint-connection show ' '--id {kv_pe_id}', checks=self.check('id', '{kv_pe_id}')) self.kwargs['kv_pe_name'] = self.kwargs['kv_pe_id'].split('/')[-1] self.cmd('network private-endpoint-connection show ' '--resource-name {kv} ' '-g {rg} ' '--name {kv_pe_name} ' '--type microsoft.keyvault/vaults', checks=self.check('name', '{kv_pe_name}')) self.cmd('network private-endpoint-connection show ' '--resource-name {kv} ' '-g {rg} ' '-n {kv_pe_name} ' '--type microsoft.keyvault/vaults', checks=self.check('name', '{kv_pe_name}')) # Try running `set-policy` on the linked vault self.kwargs['policy_id'] = keyvault['properties']['accessPolicies'][0]['objectId'] self.cmd('keyvault set-policy ' '-g {rg} ' '-n {kv} ' '--object-id {policy_id} ' '--certificate-permissions get list', checks=self.check('length(properties.accessPolicies[0].permissions.certificates)', 2)) # Test approval/rejection self.kwargs.update({ 'approval_desc': 'You are approved!', 'rejection_desc': 'You are rejected!' }) self.cmd('network private-endpoint-connection reject ' '--id {kv_pe_id} ' '--description "{rejection_desc}"', checks=[ self.check('properties.privateLinkServiceConnectionState.status', 'Rejected'), self.check('properties.privateLinkServiceConnectionState.description', '{rejection_desc}'), self.check('properties.provisioningState', 'Succeeded') ]) self.cmd('network private-endpoint-connection show --id {kv_pe_id}', checks=self.check('properties.provisioningState', 'Succeeded')) self.cmd('network private-endpoint-connection approve ' '--resource-name {kv} ' '--name {kv_pe_name} ' '-g {rg} ' '--type microsoft.keyvault/vaults ' '--description "{approval_desc}"', checks=[ self.check('properties.privateLinkServiceConnectionState.status', 'Approved'), self.check('properties.privateLinkServiceConnectionState.description', '{approval_desc}'), self.check('properties.provisioningState', 'Succeeded') ]) self.cmd('network private-endpoint-connection show --id {kv_pe_id}', checks=self.check('properties.provisioningState', 'Succeeded')) self.cmd('network private-endpoint-connection list --id {kv_id}', checks=self.check('length(@)', 1)) self.cmd('network private-endpoint-connection delete --id {kv_pe_id} -y') class NetworkPrivateLinkStorageAccountScenarioTest(ScenarioTest): @ResourceGroupPreparer(name_prefix='cli_test_sa_plr') @StorageAccountPreparer(name_prefix='saplr', kind='StorageV2', sku='Standard_LRS') def test_private_link_resource_storage_account(self, storage_account): self.kwargs.update({ 'sa': storage_account }) self.cmd('network private-link-resource list --name {sa} -g {rg} --type Microsoft.Storage/storageAccounts', checks=[ self.check('length(@)', 6)]) @ResourceGroupPreparer(name_prefix='cli_test_sa_pe') @StorageAccountPreparer(name_prefix='saplr', kind='StorageV2') def test_private_endpoint_connection_storage_account(self, storage_account): from msrestazure.azure_exceptions import CloudError self.kwargs.update({ 'sa': storage_account, 'loc': 'eastus', 'vnet': self.create_random_name('cli-vnet-', 24), 'subnet': self.create_random_name('cli-subnet-', 24), 'pe': self.create_random_name('cli-pe-', 24), 'pe_connection': self.create_random_name('cli-pec-', 24), }) # Prepare network self.cmd('network vnet create -n {vnet} -g {rg} -l {loc} --subnet-name {subnet}', checks=self.check('length(newVNet.subnets)', 1)) self.cmd('network vnet subnet update -n {subnet} --vnet-name {vnet} -g {rg} ' '--disable-private-endpoint-network-policies true', checks=self.check('privateEndpointNetworkPolicies', 'Disabled')) # Create a private endpoint connection pr = self.cmd('storage account private-link-resource list --account-name {sa} -g {rg}').get_output_in_json() self.kwargs['group_id'] = pr[0]['groupId'] storage = self.cmd('storage account show -n {sa} -g {rg}').get_output_in_json() self.kwargs['sa_id'] = storage['id'] private_endpoint = self.cmd( 'network private-endpoint create -g {rg} -n {pe} --vnet-name {vnet} --subnet {subnet} -l {loc} ' '--connection-name {pe_connection} --private-connection-resource-id {sa_id} ' '--group-id blob').get_output_in_json() self.assertEqual(private_endpoint['name'], self.kwargs['pe']) self.assertEqual(private_endpoint['privateLinkServiceConnections'][0]['name'], self.kwargs['pe_connection']) self.assertEqual(private_endpoint['privateLinkServiceConnections'][0]['privateLinkServiceConnectionState']['status'], 'Approved') self.assertEqual(private_endpoint['privateLinkServiceConnections'][0]['provisioningState'], 'Succeeded') self.assertEqual(private_endpoint['privateLinkServiceConnections'][0]['groupIds'][0], self.kwargs['group_id']) self.kwargs['pe_id'] = private_endpoint['privateLinkServiceConnections'][0]['id'] # Show the connection at storage account storage = self.cmd('storage account show -n {sa} -g {rg}').get_output_in_json() self.assertIn('privateEndpointConnections', storage) self.assertEqual(len(storage['privateEndpointConnections']), 1) self.assertEqual(storage['privateEndpointConnections'][0]['privateLinkServiceConnectionState']['status'], 'Approved') self.kwargs['sa_pec_id'] = storage['privateEndpointConnections'][0]['id'] self.kwargs['sa_pec_name'] = storage['privateEndpointConnections'][0]['name'] self.cmd('network private-endpoint-connection show --name {sa_pec_name} -g {rg} --resource-name {sa} --type Microsoft.Storage/storageAccounts', checks=self.check('id', '{sa_pec_id}')) # cannot approve it from auto-approved state # self.cmd('network private-endpoint-connection approve --name {sa_pec_name} -g {rg} --resource-name {sa} --type Microsoft.Storage/storageAccounts', # checks=[self.check('properties.privateLinkServiceConnectionState.status', 'Approved')]) self.cmd('network private-endpoint-connection reject --name {sa_pec_name} -g {rg} --resource-name {sa} --type Microsoft.Storage/storageAccounts', checks=[self.check('properties.privateLinkServiceConnectionState.status', 'Rejected')]) self.cmd('network private-endpoint-connection list --id {sa_pec_id}', checks=self.check('length(@)', 1)) self.cmd('network private-endpoint-connection delete --id {sa_pec_id} -y') class NetworkPrivateLinkACRScenarioTest(ScenarioTest): @ResourceGroupPreparer(name_prefix='cli_test_sa_plr') def test_private_link_resource_acr(self): self.kwargs.update({ 'registry_name': self.create_random_name('testreg', 20) }) result = self.cmd('acr create --name {registry_name} --resource-group {rg} --sku premium').get_output_in_json() self.kwargs['registry_id'] = result['id'] self.cmd('network private-link-resource list --id {registry_id}', checks=[ self.check('length(@)', 1)]) @ResourceGroupPreparer(location='centraluseuap') def test_private_endpoint_connection_acr(self, resource_group): self.kwargs.update({ 'registry_name': self.create_random_name('testreg', 20), 'vnet_name': self.create_random_name('testvnet', 20), 'subnet_name': self.create_random_name('testsubnet', 20), 'endpoint_name': self.create_random_name('priv_endpoint', 25), 'endpoint_conn_name': self.create_random_name('priv_endpointconn', 25), 'second_endpoint_name': self.create_random_name('priv_endpoint', 25), 'second_endpoint_conn_name': self.create_random_name('priv_endpointconn', 25), 'description_msg': 'somedescription' }) # create subnet with disabled endpoint network policies self.cmd('network vnet create -g {rg} -n {vnet_name} --subnet-name {subnet_name}') self.cmd('network vnet subnet update -g {rg} --vnet-name {vnet_name} --name {subnet_name} --disable-private-endpoint-network-policies true') result = self.cmd('acr create --name {registry_name} --resource-group {rg} --sku premium').get_output_in_json() self.kwargs['registry_id'] = result['id'] # add an endpoint and approve it result = self.cmd( 'network private-endpoint create -n {endpoint_name} -g {rg} --subnet {subnet_name} --vnet-name {vnet_name} ' '--private-connection-resource-id {registry_id} --group-id registry --connection-name {endpoint_conn_name} --manual-request').get_output_in_json() self.assertTrue(self.kwargs['endpoint_name'].lower() in result['name'].lower()) result = self.cmd( 'network private-endpoint-connection list -g {rg} --name {registry_name} --type Microsoft.ContainerRegistry/registries').get_output_in_json() self.kwargs['endpoint_request'] = result[0]['name'] self.cmd( 'network private-endpoint-connection approve -g {rg} --resource-name {registry_name} -n {endpoint_request} --description {description_msg} --type Microsoft.ContainerRegistry/registries', checks=[ self.check('properties.privateLinkServiceConnectionState.status', 'Approved'), self.check('properties.privateLinkServiceConnectionState.description', '{description_msg}') ]) # add an endpoint and then reject it self.cmd( 'network private-endpoint create -n {second_endpoint_name} -g {rg} --subnet {subnet_name} --vnet-name {vnet_name} --private-connection-resource-id {registry_id} --group-id registry --connection-name {second_endpoint_conn_name} --manual-request') result = self.cmd('network private-endpoint-connection list -g {rg} --name {registry_name} --type Microsoft.ContainerRegistry/registries').get_output_in_json() # the connection request name starts with the registry / resource name self.kwargs['second_endpoint_request'] = [conn['name'] for conn in result if self.kwargs['second_endpoint_name'].lower() in conn['properties']['privateEndpoint']['id'].lower()][0] self.cmd( 'network private-endpoint-connection reject -g {rg} --resource-name {registry_name} -n {second_endpoint_request} --description {description_msg} --type Microsoft.ContainerRegistry/registries', checks=[ self.check('properties.privateLinkServiceConnectionState.status', 'Rejected'), self.check('properties.privateLinkServiceConnectionState.description', '{description_msg}') ]) # list endpoints self.cmd('network private-endpoint-connection list -g {rg} -n {registry_name} --type Microsoft.ContainerRegistry/registries', checks=[ self.check('length(@)', '2'), ]) # remove endpoints self.cmd( 'network private-endpoint-connection delete -g {rg} --resource-name {registry_name} -n {second_endpoint_request} --type Microsoft.ContainerRegistry/registries -y') time.sleep(30) self.cmd('network private-endpoint-connection list -g {rg} -n {registry_name} --type Microsoft.ContainerRegistry/registries', checks=[ self.check('length(@)', '1'), ]) self.cmd('network private-endpoint-connection show -g {rg} --resource-name {registry_name} -n {endpoint_request} --type Microsoft.ContainerRegistry/registries', checks=[ self.check('properties.privateLinkServiceConnectionState.status', 'Approved'), self.check('properties.privateLinkServiceConnectionState.description', '{description_msg}'), self.check('name', '{endpoint_request}') ]) self.cmd('network private-endpoint-connection delete -g {rg} --resource-name {registry_name} -n {endpoint_request} --type Microsoft.ContainerRegistry/registries -y') class NetworkPrivateLinkPrivateLinkScopeScenarioTest(ScenarioTest): @ResourceGroupPreparer(location='eastus') def test_private_endpoint_connection_private_link_scope(self, resource_group, resource_group_location): self.kwargs.update({ 'rg': resource_group, 'scope': 'clitestscopename', 'assigned_app': 'assigned_app', 'assigned_ws': 'assigned_ws', 'workspace': self.create_random_name('clitest', 20), 'app': self.create_random_name('clitest', 20), 'vnet': self.create_random_name('cli-vnet-', 24), 'subnet': self.create_random_name('cli-subnet-', 24), 'pe': self.create_random_name('cli-pe-', 24), 'pe_connection': self.create_random_name('cli-pec-', 24), 'loc': resource_group_location }) self.cmd('monitor private-link-scope create -n {scope} -g {rg}', checks=[ self.check('name', '{scope}') ]) self.cmd('monitor private-link-scope update -n {scope} -g {rg} --tags tag1=d1', checks=[ self.check('tags.tag1', 'd1') ]) self.cmd('monitor private-link-scope show -n {scope} -g {rg}', checks=[ self.check('tags.tag1', 'd1') ]) self.cmd('monitor private-link-scope list -g {rg}', checks=[ self.check('length(@)', 1) ]) self.cmd('monitor private-link-scope list') workspace_id = self.cmd('monitor log-analytics workspace create -n {workspace} -g {rg} -l {loc}').get_output_in_json()['id'] self.kwargs.update({ 'workspace_id': workspace_id }) self.cmd('monitor private-link-scope scoped-resource create -g {rg} -n {assigned_ws} --linked-resource {workspace_id} --scope-name {scope}', checks=[ self.check('name', '{assigned_ws}') ]) self.cmd('monitor private-link-scope scoped-resource list -g {rg} --scope-name {scope}', checks=[ self.check('length(@)', 1) ]) self.cmd('network private-link-resource list --name {scope} -g {rg} --type microsoft.insights/privateLinkScopes', checks=[ self.check('length(@)', 1) ]) # Prepare network self.cmd('network vnet create -n {vnet} -g {rg} -l {loc} --subnet-name {subnet}', checks=self.check('length(newVNet.subnets)', 1)) self.cmd('network vnet subnet update -n {subnet} --vnet-name {vnet} -g {rg} ' '--disable-private-endpoint-network-policies true', checks=self.check('privateEndpointNetworkPolicies', 'Disabled')) # Create a private endpoint connection pr = self.cmd('monitor private-link-scope private-link-resource list --scope-name {scope} -g {rg}').get_output_in_json() self.kwargs['group_id'] = pr[0]['groupId'] private_link_scope = self.cmd('monitor private-link-scope show -n {scope} -g {rg}').get_output_in_json() self.kwargs['scope_id'] = private_link_scope['id'] private_endpoint = self.cmd( 'network private-endpoint create -g {rg} -n {pe} --vnet-name {vnet} --subnet {subnet} -l {loc} ' '--connection-name {pe_connection} --private-connection-resource-id {scope_id} ' '--group-id {group_id}').get_output_in_json() self.assertEqual(private_endpoint['name'], self.kwargs['pe']) self.assertEqual(private_endpoint['privateLinkServiceConnections'][0]['name'], self.kwargs['pe_connection']) self.assertEqual( private_endpoint['privateLinkServiceConnections'][0]['privateLinkServiceConnectionState']['status'], 'Approved') self.assertEqual(private_endpoint['privateLinkServiceConnections'][0]['provisioningState'], 'Succeeded') self.assertEqual(private_endpoint['privateLinkServiceConnections'][0]['groupIds'][0], self.kwargs['group_id']) self.kwargs['pe_id'] = private_endpoint['privateLinkServiceConnections'][0]['id'] # Show the connection at monitor private-link-scope private_endpoint_connections = self.cmd('monitor private-link-scope show --name {scope} -g {rg}').get_output_in_json()['privateEndpointConnections'] self.assertEqual(len(private_endpoint_connections), 1) self.assertEqual(private_endpoint_connections[0]['privateLinkServiceConnectionState']['status'], 'Approved') self.kwargs['scope_pec_id'] = private_endpoint_connections[0]['id'] self.kwargs['scope_pec_name'] = private_endpoint_connections[0]['name'] self.cmd('network private-endpoint-connection show --resource-name {scope} -g {rg} --name {scope_pec_name} --type microsoft.insights/privateLinkScopes', checks=self.check('id', '{scope_pec_id}')) self.cmd('network private-endpoint-connection reject --resource-name {scope} -g {rg} --name {scope_pec_name} --type microsoft.insights/privateLinkScopes', checks=[self.check('properties.privateLinkServiceConnectionState.status', 'Rejected')]) self.cmd('network private-endpoint-connection list --name {scope} -g {rg} --type microsoft.insights/privateLinkScopes', checks=[self.check('length(@)', 1)]) self.cmd('network private-endpoint-connection delete --id {scope_pec_id} -y') self.cmd('monitor private-link-scope show --name {scope} -g {rg}', checks=[ self.check('privateEndpointConnections', None) ]) self.cmd('monitor private-link-scope scoped-resource delete -g {rg} -n {assigned_app} --scope-name {scope} -y') self.cmd('monitor private-link-scope scoped-resource list -g {rg} --scope-name {scope}', checks=[ self.check('length(@)', 1) ]) self.cmd('monitor private-link-scope delete -n {scope} -g {rg} -y') with self.assertRaisesRegexp(SystemExit, '3'): self.cmd('monitor private-link-scope show -n {scope} -g {rg}') class NetworkPrivateLinkRDBMSScenarioTest(ScenarioTest): @ResourceGroupPreparer() @ServerPreparer(engine_type='mariadb') def test_mariadb_private_link_scenario(self, resource_group, server, database_engine): print(server) self._test_private_link_resource(resource_group, server, 'Microsoft.DBforMariaDB/servers', 'mariadbServer') self._test_private_endpoint_connection(resource_group, server, database_engine, 'Microsoft.DBforMariaDB/servers') @ResourceGroupPreparer() @ServerPreparer(engine_type='mysql') def test_mysql_private_link_scenario(self, resource_group, server, database_engine): self._test_private_link_resource(resource_group, server, 'Microsoft.DBforMySQL/servers', 'mysqlServer') self._test_private_endpoint_connection(resource_group, server, database_engine, 'Microsoft.DBforMySQL/servers') @ResourceGroupPreparer() @ServerPreparer(engine_type='postgres') def test_postgres_private_link_scenario(self, resource_group, server, database_engine): self._test_private_link_resource(resource_group, server, 'Microsoft.DBforPostgreSQL/servers', 'postgresqlServer') self._test_private_endpoint_connection(resource_group, server, database_engine, 'Microsoft.DBforPostgreSQL/servers') def _test_private_link_resource(self, resource_group, server, database_engine, group_id): result = self.cmd('network private-link-resource list -g {} --name {} --type {}' .format(resource_group, server, database_engine)).get_output_in_json() self.assertEqual(result[0]['properties']['groupId'], group_id) def _test_private_endpoint_connection(self, resource_group, server, database_engine, rp_type): loc = 'westus' vnet = self.create_random_name('cli-vnet-', 24) subnet = self.create_random_name('cli-subnet-', 24) pe_name_auto = self.create_random_name('cli-pe-', 24) pe_name_manual_approve = self.create_random_name('cli-pe-', 24) pe_name_manual_reject = self.create_random_name('cli-pe-', 24) pe_connection_name_auto = self.create_random_name('cli-pec-', 24) pe_connection_name_manual_approve = self.create_random_name('cli-pec-', 24) pe_connection_name_manual_reject = self.create_random_name('cli-pec-', 24) # Prepare network and disable network policies self.cmd('network vnet create -n {} -g {} -l {} --subnet-name {}' .format(vnet, resource_group, loc, subnet), checks=self.check('length(newVNet.subnets)', 1)) self.cmd('network vnet subnet update -n {} --vnet-name {} -g {} ' '--disable-private-endpoint-network-policies true' .format(subnet, vnet, resource_group), checks=self.check('privateEndpointNetworkPolicies', 'Disabled')) # Get Server Id and Group Id result = self.cmd('{} server show -g {} -n {}' .format(database_engine, resource_group, server)).get_output_in_json() server_id = result['id'] result = self.cmd('network private-link-resource list -g {} -n {} --type {}' .format(resource_group, server, rp_type)).get_output_in_json() group_id = result[0]['properties']['groupId'] approval_description = 'You are approved!' rejection_description = 'You are rejected!' expectedError = 'Private Endpoint Connection Status is not Pending' # Testing Auto-Approval workflow # Create a private endpoint connection private_endpoint = self.cmd('network private-endpoint create -g {} -n {} --vnet-name {} --subnet {} -l {} ' '--connection-name {} --private-connection-resource-id {} ' '--group-id {}' .format(resource_group, pe_name_auto, vnet, subnet, loc, pe_connection_name_auto, server_id, group_id)).get_output_in_json() self.assertEqual(private_endpoint['name'], pe_name_auto) self.assertEqual(private_endpoint['privateLinkServiceConnections'][0]['name'], pe_connection_name_auto) self.assertEqual(private_endpoint['privateLinkServiceConnections'][0]['privateLinkServiceConnectionState']['status'], 'Approved') self.assertEqual(private_endpoint['privateLinkServiceConnections'][0]['provisioningState'], 'Succeeded') self.assertEqual(private_endpoint['privateLinkServiceConnections'][0]['groupIds'][0], group_id) # Get Private Endpoint Connection Name and Id result = self.cmd('{} server show -g {} -n {}' .format(database_engine, resource_group, server)).get_output_in_json() self.assertEqual(len(result['privateEndpointConnections']), 1) self.assertEqual(result['privateEndpointConnections'][0]['properties']['privateLinkServiceConnectionState']['status'], 'Approved') server_pec_id = result['privateEndpointConnections'][0]['id'] result = parse_proxy_resource_id(server_pec_id) server_pec_name = result['child_name_1'] self.cmd('network private-endpoint-connection show --resource-name {} -g {} --name {} --type {}' .format(server, resource_group, server_pec_name, rp_type), checks=[ self.check('id', server_pec_id), self.check('properties.privateLinkServiceConnectionState.status', 'Approved'), self.check('properties.provisioningState', 'Ready') ]) with self.assertRaisesRegexp(CLIError, expectedError): self.cmd('network private-endpoint-connection approve --resource-name {} -g {} --name {} --description "{}" --type {}' .format(server, resource_group, server_pec_name, approval_description, rp_type)) with self.assertRaisesRegexp(CLIError, expectedError): self.cmd('network private-endpoint-connection reject --resource-name {} -g {} --name {} --description "{}" --type {}' .format(server, resource_group, server_pec_name, rejection_description, rp_type)) self.cmd('network private-endpoint-connection delete --id {} -y' .format(server_pec_id)) # Testing Manual-Approval workflow [Approval] # Create a private endpoint connection private_endpoint = self.cmd('network private-endpoint create -g {} -n {} --vnet-name {} --subnet {} -l {} ' '--connection-name {} --private-connection-resource-id {} ' '--group-id {} --manual-request' .format(resource_group, pe_name_manual_approve, vnet, subnet, loc, pe_connection_name_manual_approve, server_id, group_id)).get_output_in_json() self.assertEqual(private_endpoint['name'], pe_name_manual_approve) self.assertEqual(private_endpoint['manualPrivateLinkServiceConnections'][0]['name'], pe_connection_name_manual_approve) self.assertEqual(private_endpoint['manualPrivateLinkServiceConnections'][0]['privateLinkServiceConnectionState']['status'], 'Pending') self.assertEqual(private_endpoint['manualPrivateLinkServiceConnections'][0]['provisioningState'], 'Succeeded') self.assertEqual(private_endpoint['manualPrivateLinkServiceConnections'][0]['groupIds'][0], group_id) # Get Private Endpoint Connection Name and Id result = self.cmd('{} server show -g {} -n {}' .format(database_engine, resource_group, server)).get_output_in_json() self.assertEqual(len(result['privateEndpointConnections']), 1) self.assertEqual(result['privateEndpointConnections'][0]['properties']['privateLinkServiceConnectionState']['status'], 'Pending') server_pec_id = result['privateEndpointConnections'][0]['id'] result = parse_proxy_resource_id(server_pec_id) server_pec_name = result['child_name_1'] self.cmd('network private-endpoint-connection show --resource-name {} -g {} --name {} --type {}' .format(server, resource_group, server_pec_name, rp_type), checks=[ self.check('id', server_pec_id), self.check('properties.privateLinkServiceConnectionState.status', 'Pending'), self.check('properties.provisioningState', 'Ready') ]) self.cmd('network private-endpoint-connection approve --resource-name {} -g {} --name {} --description "{}" --type {}' .format(server, resource_group, server_pec_name, approval_description, rp_type), checks=[ self.check('properties.privateLinkServiceConnectionState.status', 'Approved'), self.check('properties.privateLinkServiceConnectionState.description', approval_description), self.check('properties.provisioningState', 'Ready') ]) with self.assertRaisesRegexp(CLIError, expectedError): self.cmd('network private-endpoint-connection reject --resource-name {} -g {} --name {} --description "{}" --type {}' .format(server, resource_group, server_pec_name, rejection_description, rp_type)) self.cmd('network private-endpoint-connection delete --id {} -y' .format(server_pec_id)) # Testing Manual-Approval workflow [Rejection] # Create a private endpoint connection private_endpoint = self.cmd('network private-endpoint create -g {} -n {} --vnet-name {} --subnet {} -l {} ' '--connection-name {} --private-connection-resource-id {} ' '--group-id {} --manual-request true' .format(resource_group, pe_name_manual_reject, vnet, subnet, loc, pe_connection_name_manual_reject, server_id, group_id)).get_output_in_json() self.assertEqual(private_endpoint['name'], pe_name_manual_reject) self.assertEqual(private_endpoint['manualPrivateLinkServiceConnections'][0]['name'], pe_connection_name_manual_reject) self.assertEqual(private_endpoint['manualPrivateLinkServiceConnections'][0]['privateLinkServiceConnectionState']['status'], 'Pending') self.assertEqual(private_endpoint['manualPrivateLinkServiceConnections'][0]['provisioningState'], 'Succeeded') self.assertEqual(private_endpoint['manualPrivateLinkServiceConnections'][0]['groupIds'][0], group_id) # Get Private Endpoint Connection Name and Id result = self.cmd('{} server show -g {} -n {}' .format(database_engine, resource_group, server)).get_output_in_json() self.assertEqual(len(result['privateEndpointConnections']), 1) self.assertEqual(result['privateEndpointConnections'][0]['properties']['privateLinkServiceConnectionState']['status'], 'Pending') server_pec_id = result['privateEndpointConnections'][0]['id'] result = parse_proxy_resource_id(server_pec_id) server_pec_name = result['child_name_1'] self.cmd('network private-endpoint-connection show --resource-name {} -g {} --name {} --type {}' .format(server, resource_group, server_pec_name, rp_type), checks=[ self.check('id', server_pec_id), self.check('properties.privateLinkServiceConnectionState.status', 'Pending'), self.check('properties.provisioningState', 'Ready') ]) self.cmd('network private-endpoint-connection reject --resource-name {} -g {} --name {} --description "{}" --type {}' .format(server, resource_group, server_pec_name, rejection_description, rp_type), checks=[ self.check('properties.privateLinkServiceConnectionState.status', 'Rejected'), self.check('properties.privateLinkServiceConnectionState.description', rejection_description), self.check('properties.provisioningState', 'Ready') ]) with self.assertRaisesRegexp(CLIError, expectedError): self.cmd('network private-endpoint-connection approve --resource-name {} -g {} --name {} --description "{}" --type {}' .format(server, resource_group, server_pec_name, approval_description, rp_type)) self.cmd('network private-endpoint-connection list --name {} -g {} --type {}' .format(server, resource_group, rp_type)) self.cmd('network private-endpoint-connection delete --id {} -y' .format(server_pec_id)) class NetworkPrivateLinkBatchAccountScenarioTest(ScenarioTest): def _get_test_data_file(self, filename): filepath = os.path.join(os.path.dirname(os.path.realpath(__file__)), filename) self.assertTrue(os.path.isfile(filepath), 'File {} does not exist.'.format(filepath)) return filepath # Currently private-link-resource and private-endpoint-connection are whitelist only features so scenario tests are limited @ResourceGroupPreparer(location='westcentralus') def test_private_link_resource_batch_account(self, resource_group, batch_account_name='testplinksbatch'): self.kwargs.update({ 'vnet_name': self.create_random_name('testvnet', 20), 'subnet_name': self.create_random_name('testsubnet', 20), 'second_endpoint_name': self.create_random_name('priv_endpoint', 25), 'second_endpoint_conn_name': self.create_random_name('priv_endpointconn', 25), 'approval_desc': 'You are approved!', 'rejection_desc': 'You are rejected!', 'rg': resource_group, 'acc_n': batch_account_name, 'loc': 'westcentralus' }) account = self.cmd('batch account create -g {rg} -n {acc_n} -l {loc} --public-network-access disabled').assert_with_checks([ self.check('name', '{acc_n}'), self.check('location', '{loc}'), self.check('resourceGroup', '{rg}')]).get_output_in_json() self.kwargs['acc_id'] = account['id'] # create subnet with disabled endpoint network policies self.cmd('network vnet create -g {rg} -n {vnet_name} --subnet-name {subnet_name}') self.cmd('network vnet subnet update -g {rg} --vnet-name {vnet_name} --name {subnet_name} --disable-private-endpoint-network-policies true') # add an endpoint and then reject it self.cmd( 'network private-endpoint create ' '-n {second_endpoint_name} ' '-g {rg} ' '--subnet {subnet_name} ' '--vnet-name {vnet_name} ' '--private-connection-resource-id {acc_id} ' '--group-ids batchAccount ' '--connection-name {second_endpoint_conn_name} ' '--manual-request').get_output_in_json() private_endpoints = self.cmd('network private-endpoint-connection list --name {acc_n} --resource-group {rg} --type Microsoft.Batch/batchAccounts', checks=[ self.check('length(@)', 1) ]).get_output_in_json() self.cmd('batch account show --name {acc_n} --resource-group {rg}', checks=[ self.check('length(privateEndpointConnections[*])', 1), self.check('privateEndpointConnections[0].id', private_endpoints[0]['id']) ]) self.kwargs['pe_id'] = private_endpoints[0]["id"] self.kwargs['pe_name'] = private_endpoints[0]['name'] self.cmd( 'network private-endpoint-connection approve --resource-name {acc_n} --name {pe_name} --resource-group {rg} --type Microsoft.Batch/batchAccounts ' '--description "{approval_desc}"') self.cmd( 'network private-endpoint-connection show --resource-name {acc_n} --name {pe_name} --resource-group {rg} --type Microsoft.Batch/batchAccounts', checks=[ self.check('name', '{pe_name}'), self.check('properties.privateLinkServiceConnectionState.status', 'Approved'), self.check('properties.privateLinkServiceConnectionState.description', '{approval_desc}')]) self.cmd('network private-endpoint-connection reject --resource-name {acc_n} --name {pe_name} --resource-group {rg} --type Microsoft.Batch/batchAccounts ' '--description "{rejection_desc}"') self.cmd('network private-endpoint-connection show --id {pe_id}', checks=[ self.check('id', '{pe_id}'), self.check('properties.privateLinkServiceConnectionState.status', 'Rejected'), self.check('properties.privateLinkServiceConnectionState.description', '{rejection_desc}')]) # Test delete self.cmd('network private-endpoint-connection delete --id {pe_id} -y') self.cmd('network private-endpoint delete -n {second_endpoint_name} -g {rg}') class NetworkPrivateLinkCosmosDBScenarioTest(ScenarioTest): @ResourceGroupPreparer(name_prefix='cli_test_cosmosdb_plr') def test_private_link_resource_cosmosdb(self, resource_group): self.kwargs.update({ 'acc': self.create_random_name('cli-test-cosmosdb-plr-', 28), 'loc': 'centraluseuap' }) self.cmd('az cosmosdb create -n {acc} -g {rg}') self.cmd('network private-link-resource list --name {acc} --resource-group {rg} --type Microsoft.DocumentDB/databaseAccounts', checks=[self.check('length(@)', 1), self.check('[0].properties.groupId', 'Sql')]) @ResourceGroupPreparer(name_prefix='cli_test_cosmosdb_pe') def test_private_endpoint_connection_cosmosdb(self, resource_group): self.kwargs.update({ 'acc': self.create_random_name('cli-test-cosmosdb-pe-', 28), 'loc': 'centraluseuap', 'vnet': self.create_random_name('cli-vnet-', 24), 'subnet': self.create_random_name('cli-subnet-', 24), 'pe': self.create_random_name('cli-pe-', 24), 'pe_connection': self.create_random_name('cli-pec-', 24) }) # Prepare cosmos db account and network account = self.cmd('az cosmosdb create -n {acc} -g {rg}').get_output_in_json() self.kwargs['acc_id'] = account['id'] self.cmd('network vnet create -n {vnet} -g {rg} -l {loc} --subnet-name {subnet}', checks=self.check('length(newVNet.subnets)', 1)) self.cmd('network vnet subnet update -n {subnet} --vnet-name {vnet} -g {rg} ' '--disable-private-endpoint-network-policies true', checks=self.check('privateEndpointNetworkPolicies', 'Disabled')) # Create a private endpoint connection pe = self.cmd('network private-endpoint create -g {rg} -n {pe} --vnet-name {vnet} --subnet {subnet} -l {loc} ' '--connection-name {pe_connection} --private-connection-resource-id {acc_id} ' '--group-id Sql').get_output_in_json() self.kwargs['pe_id'] = pe['id'] self.kwargs['pe_name'] = self.kwargs['pe_id'].split('/')[-1] # Show the connection at cosmos db side results = self.kwargs['pe_id'].split('/') self.kwargs[ 'pec_id'] = '/subscriptions/{0}/resourceGroups/{1}/providers/Microsoft.DocumentDB/databaseAccounts/{2}/privateEndpointConnections/{3}'.format( results[2], results[4], self.kwargs['acc'], results[-1]) self.cmd('network private-endpoint-connection show --id {pec_id}', checks=self.check('id', '{pec_id}')) self.cmd( 'network private-endpoint-connection show --resource-name {acc} --name {pe_name} --resource-group {rg} --type Microsoft.DocumentDB/databaseAccounts', checks=self.check('name', '{pe_name}')) self.cmd('network private-endpoint-connection show --resource-name {acc} -n {pe_name} -g {rg} --type Microsoft.DocumentDB/databaseAccounts', checks=self.check('name', '{pe_name}')) # Test approval/rejection self.kwargs.update({ 'approval_desc': 'You are approved!', 'rejection_desc': 'You are rejected!' }) self.cmd( 'network private-endpoint-connection approve --resource-name {acc} --resource-group {rg} --name {pe_name} --type Microsoft.DocumentDB/databaseAccounts ' '--description "{approval_desc}"', checks=[ self.check('properties.privateLinkServiceConnectionState.status', 'Approved'), self.check('properties.privateLinkServiceConnectionState.description', '{approval_desc}') ]) self.cmd('network private-endpoint-connection reject --id {pec_id} ' '--description "{rejection_desc}"', checks=[ self.check('properties.privateLinkServiceConnectionState.status', 'Rejected'), self.check('properties.privateLinkServiceConnectionState.description', '{rejection_desc}') ]) self.cmd('network private-endpoint-connection list --name {acc} --resource-group {rg} --type Microsoft.DocumentDB/databaseAccounts', checks=[ self.check('length(@)', 1) ]) # Test delete self.cmd('network private-endpoint-connection delete --id {pec_id} -y') class NetworkPrivateLinkEventGridScenarioTest(ScenarioTest): def setUp(self): super(NetworkPrivateLinkEventGridScenarioTest, self).setUp() self.cmd('extension add -n eventgrid') def tearDown(self): self.cmd('extension remove -n eventgrid') super(NetworkPrivateLinkEventGridScenarioTest, self).tearDown() @ResourceGroupPreparer(name_prefix='cli_test_event_grid_plr') def test_private_link_resource_event_grid(self, resource_group): self.kwargs.update({ 'topic_name': self.create_random_name(prefix='cli', length=40), 'domain_name': self.create_random_name(prefix='cli', length=40), 'location': 'centraluseuap', 'rg': resource_group }) scope_id = self.cmd( 'az eventgrid topic create --name {topic_name} --resource-group {rg} --location {location} --public-network-access disabled', checks=[ self.check('type', 'Microsoft.EventGrid/topics'), self.check('name', self.kwargs['topic_name']), self.check('provisioningState', 'Succeeded'), self.check('sku', {'name': 'Basic'}), self.check('publicNetworkAccess', 'Disabled'), self.check('identity.principalId', None), self.check('identity.tenantId', None), self.check('identity.type', None), self.check('identity.userAssignedIdentities', None) ]).get_output_in_json()['id'] self.kwargs.update({ 'scope_id': scope_id }) self.cmd( 'network private-link-resource list --id {scope_id}', checks=[self.check('length(@)', 1), self.check('[0].properties.groupId', 'topic')]) domain_id = self.cmd('az eventgrid domain create --name {domain_name} --resource-group {rg} --location {location} --public-network-access disabled',).get_output_in_json()['id'] self.kwargs.update({ 'domain_id': domain_id }) self.cmd( 'network private-link-resource list --id {domain_id}', checks=[self.check('length(@)', 1), self.check('[0].properties.groupId', 'domain')]) @ResourceGroupPreparer(name_prefix='cli_test_event_grid_pec', location='centraluseuap') @ResourceGroupPreparer(name_prefix='cli_test_event_grid_pec', parameter_name='resource_group_2', location='centraluseuap') def test_private_endpoint_connection_event_grid_topic(self, resource_group, resource_group_2): self.kwargs.update({ 'resource_group_net': resource_group_2, 'vnet_name': self.create_random_name(prefix='cli', length=20), 'subnet_name': self.create_random_name(prefix='cli', length=20), 'private_endpoint_name': self.create_random_name(prefix='cli', length=20), 'connection_name': self.create_random_name(prefix='cli', length=20), 'topic_name': self.create_random_name(prefix='cli', length=40), 'location': 'centraluseuap', 'approval_description': 'You are approved!', 'rejection_description': 'You are rejected!', 'rg': resource_group }) self.cmd('az network vnet create --resource-group {resource_group_net} --location {location} --name {vnet_name} --address-prefix 10.0.0.0/16') self.cmd('az network vnet subnet create --resource-group {resource_group_net} --vnet-name {vnet_name} --name {subnet_name} --address-prefixes 10.0.0.0/24') self.cmd('az network vnet subnet update --resource-group {resource_group_net} --vnet-name {vnet_name} --name {subnet_name} --disable-private-endpoint-network-policies true') scope = self.cmd('az eventgrid topic create --name {topic_name} --resource-group {rg} --location {location} --public-network-access disabled', checks=[ self.check('type', 'Microsoft.EventGrid/topics'), self.check('name', self.kwargs['topic_name']), self.check('provisioningState', 'Succeeded'), self.check('sku', {'name': 'Basic'}), self.check('publicNetworkAccess', 'Disabled'), self.check('identity.principalId', None), self.check('identity.tenantId', None), self.check('identity.type', None), self.check('identity.userAssignedIdentities', None) ]).get_output_in_json()['id'] self.kwargs.update({ 'scope': scope, }) # Create private endpoint self.cmd('az network private-endpoint create --resource-group {resource_group_net} --name {private_endpoint_name} --vnet-name {vnet_name} --subnet {subnet_name} --private-connection-resource-id {scope} --location {location} --group-ids topic --connection-name {connection_name}') server_pec_id = self.cmd('az eventgrid topic show --name {topic_name} --resource-group {rg}').get_output_in_json()['privateEndpointConnections'][0]['id'] result = parse_proxy_resource_id(server_pec_id) server_pec_name = result['child_name_1'] self.kwargs.update({ 'server_pec_name': server_pec_name, }) self.cmd('az network private-endpoint-connection list --resource-group {rg} --name {topic_name} --type Microsoft.EventGrid/topics', checks=[ self.check('length(@)', 1) ]) self.cmd('az network private-endpoint-connection show --resource-group {rg} --resource-name {topic_name} --name {server_pec_name} --type Microsoft.EventGrid/topics') self.cmd('az network private-endpoint-connection approve --resource-group {rg} --resource-name {topic_name} ' '--name {server_pec_name} --type Microsoft.EventGrid/topics --description "{approval_description}"', checks=[ self.check('properties.privateLinkServiceConnectionState.status', 'Approved'), self.check('properties.privateLinkServiceConnectionState.description', '{approval_description}') ]) self.cmd('az network private-endpoint-connection reject --resource-group {rg} --resource-name {topic_name} ' '--name {server_pec_name} --type Microsoft.EventGrid/topics --description "{rejection_description}"', checks=[ self.check('properties.privateLinkServiceConnectionState.status', 'Rejected'), self.check('properties.privateLinkServiceConnectionState.description', '{rejection_description}') ]) self.cmd('az network private-endpoint-connection delete --resource-group {rg} --resource-name {topic_name} --name {server_pec_name} --type Microsoft.EventGrid/topics -y') self.cmd('az network private-endpoint delete --resource-group {resource_group_net} --name {private_endpoint_name}') self.cmd('az network vnet subnet delete --resource-group {resource_group_net} --vnet-name {vnet_name} --name {subnet_name}') self.cmd('az network vnet delete --resource-group {resource_group_net} --name {vnet_name}') self.cmd('az eventgrid topic delete --name {topic_name} --resource-group {rg}') @ResourceGroupPreparer(name_prefix='cli_test_event_grid_pec', location='centraluseuap') @ResourceGroupPreparer(name_prefix='cli_test_event_grid_pec', parameter_name='resource_group_2', location='centraluseuap') def test_private_endpoint_connection_event_grid_domain(self, resource_group, resource_group_2): self.kwargs.update({ 'resource_group_net': resource_group_2, 'vnet_name': self.create_random_name(prefix='cli', length=20), 'subnet_name': self.create_random_name(prefix='cli', length=20), 'private_endpoint_name': self.create_random_name(prefix='cli', length=20), 'connection_name': self.create_random_name(prefix='cli', length=20), 'domain_name': self.create_random_name(prefix='cli', length=40), 'location': 'centraluseuap', 'approval_description': 'You are approved!', 'rejection_description': 'You are rejected!', 'rg': resource_group }) self.cmd('az network vnet create --resource-group {resource_group_net} --location {location} --name {vnet_name} --address-prefix 10.0.0.0/16') self.cmd('az network vnet subnet create --resource-group {resource_group_net} --vnet-name {vnet_name} --name {subnet_name} --address-prefixes 10.0.0.0/24') self.cmd('az network vnet subnet update --resource-group {resource_group_net} --vnet-name {vnet_name} --name {subnet_name} --disable-private-endpoint-network-policies true') scope = self.cmd('az eventgrid domain create --name {domain_name} --resource-group {rg} --location {location} --public-network-access disabled', checks=[ self.check('type', 'Microsoft.EventGrid/domains'), self.check('name', self.kwargs['domain_name']), self.check('provisioningState', 'Succeeded'), self.check('sku', {'name': 'Basic'}), self.check('publicNetworkAccess', 'Disabled'), self.check('identity.principalId', None), self.check('identity.tenantId', None), self.check('identity.type', None), self.check('identity.userAssignedIdentities', None) ]).get_output_in_json()['id'] self.kwargs.update({ 'scope': scope, }) # Create private endpoint self.cmd('az network private-endpoint create --resource-group {resource_group_net} --name {private_endpoint_name} --vnet-name {vnet_name} --subnet {subnet_name} --private-connection-resource-id {scope} --location {location} --group-ids domain --connection-name {connection_name}') server_pec_id = self.cmd('az eventgrid domain show --name {domain_name} --resource-group {rg}').get_output_in_json()['privateEndpointConnections'][0]['id'] result = parse_proxy_resource_id(server_pec_id) server_pec_name = result['child_name_1'] self.kwargs.update({ 'server_pec_name': server_pec_name, }) self.cmd('az network private-endpoint-connection list --resource-group {rg} --name {domain_name} --type Microsoft.EventGrid/domains', checks=[ self.check('length(@)', 1) ]) self.cmd('az network private-endpoint-connection show --resource-group {rg} --resource-name {domain_name} --name {server_pec_name} --type Microsoft.EventGrid/domains') self.cmd('az network private-endpoint-connection approve --resource-group {rg} --resource-name {domain_name} ' '--name {server_pec_name} --type Microsoft.EventGrid/domains --description "{approval_description}"', checks=[ self.check('properties.privateLinkServiceConnectionState.status', 'Approved'), self.check('properties.privateLinkServiceConnectionState.description', '{approval_description}') ]) self.cmd('az network private-endpoint-connection reject --resource-group {rg} --resource-name {domain_name} ' '--name {server_pec_name} --type Microsoft.EventGrid/domains --description "{rejection_description}"', checks=[ self.check('properties.privateLinkServiceConnectionState.status', 'Rejected'), self.check('properties.privateLinkServiceConnectionState.description', '{rejection_description}') ]) self.cmd('az network private-endpoint-connection delete --resource-group {rg} --resource-name {domain_name} --name {server_pec_name} --type Microsoft.EventGrid/domains -y') self.cmd('az network private-endpoint delete --resource-group {resource_group_net} --name {private_endpoint_name}') self.cmd('az network vnet subnet delete --resource-group {resource_group_net} --vnet-name {vnet_name} --name {subnet_name}') self.cmd('az network vnet delete --resource-group {resource_group_net} --name {vnet_name}') self.cmd('az eventgrid domain delete --name {domain_name} --resource-group {rg}') if __name__ == '__main__': unittest.main()
59.742072
288
0.638297
1bb3d6b3f7da8eb0b604dbd27453b5db60c085be
467
py
Python
config.py
McMvMc/lsm_mike
7c62d9e1ef9a60bbd5de04b4481485c3b9648359
[ "MIT" ]
null
null
null
config.py
McMvMc/lsm_mike
7c62d9e1ef9a60bbd5de04b4481485c3b9648359
[ "MIT" ]
null
null
null
config.py
McMvMc/lsm_mike
7c62d9e1ef9a60bbd5de04b4481485c3b9648359
[ "MIT" ]
null
null
null
import os BASE_DIR = os.path.dirname(os.path.abspath(__file__)) # Shapenet config SHAPENET_VOX = { 32: os.path.join(BASE_DIR, 'data/shapenet_release/voxels/modelVoxels32'), 64: os.path.join(BASE_DIR, 'data/shapenet_release/voxels/modelVoxels64') } SHAPENET_IM = os.path.join(BASE_DIR, 'data/shapenet_release/renders') CUSTOM_SHAPENET_IM = os.path.join(BASE_DIR, 'data/rendered_images') CUSTOM_SPLIT_JSON = os.path.join(BASE_DIR, 'data/custom_split.json')
31.133333
77
0.770878
cefa31a5e12ced83854b7b7013c4e93fd3b2152c
11,785
py
Python
jishaku/shim/paginator_200.py
danrfq/jishaku
d1d10e80a729b169c3c86eecbb0403ea30d4f414
[ "MIT" ]
1
2022-01-07T10:43:20.000Z
2022-01-07T10:43:20.000Z
jishaku/shim/paginator_200.py
danrfq/jishaku
d1d10e80a729b169c3c86eecbb0403ea30d4f414
[ "MIT" ]
null
null
null
jishaku/shim/paginator_200.py
danrfq/jishaku
d1d10e80a729b169c3c86eecbb0403ea30d4f414
[ "MIT" ]
1
2022-03-15T02:21:39.000Z
2022-03-15T02:21:39.000Z
# -*- coding: utf-8 -*- """ jishaku.paginators (shim for discord.py 2.0.0) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Paginator-related tools and interfaces for Jishaku. :copyright: (c) 2021 Devon (Gorialis) R :license: MIT, see LICENSE for more details. """ import asyncio import discord from discord import ui from discord.ext import commands from jishaku.shim.paginator_base import EMOJI_DEFAULT class PaginatorInterface(ui.View): # pylint: disable=too-many-instance-attributes """ A message and reaction based interface for paginators. This allows users to interactively navigate the pages of a Paginator, and supports live output. An example of how to use this with a standard Paginator: .. code:: python3 from discord.ext import commands from jishaku.paginators import PaginatorInterface # In a command somewhere... # Paginators need to have a reduced max_size to accommodate the extra text added by the interface. paginator = commands.Paginator(max_size=1900) # Populate the paginator with some information for line in range(100): paginator.add_line(f"Line {line + 1}") # Create and send the interface. # The 'owner' field determines who can interact with this interface. If it's None, anyone can use it. interface = PaginatorInterface(ctx.bot, paginator, owner=ctx.author) await interface.send_to(ctx) # send_to creates a task and returns control flow. # It will raise if the interface can't be created, e.g., if there's no reaction permission in the channel. # Once the interface has been sent, line additions have to be done asynchronously, so the interface can be updated. await interface.add_line("My, the Earth sure is full of things!") # You can also check if it's closed using the 'closed' property. if not interface.closed: await interface.add_line("I'm still here!") """ def __init__(self, bot: commands.Bot, paginator: commands.Paginator, **kwargs): if not isinstance(paginator, commands.Paginator): raise TypeError('paginator must be a commands.Paginator instance') self._display_page = 0 self.bot = bot self.message = None self.paginator = paginator self.owner = kwargs.pop('owner', None) self.emojis = kwargs.pop('emoji', EMOJI_DEFAULT) self.timeout_length = kwargs.pop('timeout', 7200) self.delete_message = kwargs.pop('delete_message', False) self.sent_page_reactions = False self.task: asyncio.Task = None self.send_lock: asyncio.Event = asyncio.Event() self.close_exception: Exception = None if self.page_size > self.max_page_size: raise ValueError( f'Paginator passed has too large of a page size for this interface. ' f'({self.page_size} > {self.max_page_size})' ) super().__init__(timeout=self.timeout_length) @property def pages(self): """ Returns the paginator's pages without prematurely closing the active page. """ # protected access has to be permitted here to not close the paginator's pages # pylint: disable=protected-access paginator_pages = list(self.paginator._pages) if len(self.paginator._current_page) > 1: paginator_pages.append('\n'.join(self.paginator._current_page) + '\n' + (self.paginator.suffix or '')) # pylint: enable=protected-access return paginator_pages @property def page_count(self): """ Returns the page count of the internal paginator. """ return len(self.pages) @property def display_page(self): """ Returns the current page the paginator interface is on. """ self._display_page = max(0, min(self.page_count - 1, self._display_page)) return self._display_page @display_page.setter def display_page(self, value): """ Sets the current page the paginator is on. Automatically pushes values inbounds. """ self._display_page = max(0, min(self.page_count - 1, value)) max_page_size = 2000 @property def page_size(self) -> int: """ A property that returns how large a page is, calculated from the paginator properties. If this exceeds `max_page_size`, an exception is raised upon instantiation. """ page_count = self.page_count return self.paginator.max_size + len(f'\nPage {page_count}/{page_count}') @property def send_kwargs(self) -> dict: """ A property that returns the kwargs forwarded to send/edit when updating the page. As this must be compatible with both `discord.TextChannel.send` and `discord.Message.edit`, it should be a dict containing 'content', 'embed' or both. """ content = self.pages[self.display_page] return {'content': content, 'view': self} def update_view(self): """ Updates view buttons to correspond to current interface state. This is used internally. """ self.button_start.label = f"1 \u200b {self.emojis.start}" self.button_previous.label = self.emojis.back self.button_current.label = str(self.display_page + 1) self.button_next.label = self.emojis.forward self.button_last.label = f"{self.emojis.end} \u200b {self.page_count}" self.button_close.label = f"{self.emojis.close} \u200b Close paginator" async def add_line(self, *args, **kwargs): """ A proxy function that allows this PaginatorInterface to remain locked to the last page if it is already on it. """ display_page = self.display_page page_count = self.page_count self.paginator.add_line(*args, **kwargs) new_page_count = self.page_count if display_page + 1 == page_count: # To keep position fixed on the end, update position to new last page and update message. self._display_page = new_page_count # Unconditionally set send lock to try and guarantee page updates on unfocused pages self.send_lock.set() async def send_to(self, destination: discord.abc.Messageable): """ Sends a message to the given destination with this interface. This automatically creates the response task for you. """ self.message = await destination.send(**self.send_kwargs) self.send_lock.set() if self.task: self.task.cancel() self.task = self.bot.loop.create_task(self.wait_loop()) return self @property def closed(self): """ Is this interface closed? """ if not self.task: return False return self.task.done() async def send_lock_delayed(self): """ A coroutine that returns 1 second after the send lock has been released This helps reduce release spam that hits rate limits quickly """ gathered = await self.send_lock.wait() self.send_lock.clear() await asyncio.sleep(1) return gathered async def wait_loop(self): """ Waits on a loop for updates to the interface. This should not be called manually - it is handled by `send_to`. """ try: # pylint: disable=too-many-nested-blocks while not self.bot.is_closed(): await asyncio.wait_for(self.send_lock_delayed(), timeout=self.timeout_length) self.update_view() try: await self.message.edit(**self.send_kwargs) except discord.NotFound: # something terrible has happened return except (asyncio.CancelledError, asyncio.TimeoutError) as exception: self.close_exception = exception if self.bot.is_closed(): # Can't do anything about the messages, so just close out to avoid noisy error return # If the message was already deleted, this part is unnecessary if not self.message: return if self.delete_message: await self.message.delete() else: await self.message.edit(view=None) async def interaction_check(self, interaction: discord.Interaction): """Check that determines whether this interaction should be honored""" return interaction.user.id in [211756205721255947, 714731543309844561] @ui.button(label="1 \u200b \N{BLACK LEFT-POINTING DOUBLE TRIANGLE WITH VERTICAL BAR}", style=discord.ButtonStyle.secondary) async def button_start(self, interaction: discord.Interaction, button: ui.Button): # pylint: disable=unused-argument """Button to send interface to first page""" self._display_page = 0 self.update_view() await interaction.response.edit_message(**self.send_kwargs) @ui.button(label="\N{BLACK LEFT-POINTING TRIANGLE}", style=discord.ButtonStyle.secondary) async def button_previous(self, interaction: discord.Interaction, button: ui.Button): # pylint: disable=unused-argument """Button to send interface to previous page""" self._display_page -= 1 self.update_view() await interaction.response.edit_message(**self.send_kwargs) @ui.button(label="1", style=discord.ButtonStyle.primary) async def button_current(self, interaction: discord.Interaction, button: ui.Button): # pylint: disable=unused-argument """Button to refresh the interface""" self.update_view() await interaction.response.edit_message(**self.send_kwargs) @ui.button(label="\N{BLACK RIGHT-POINTING TRIANGLE}", style=discord.ButtonStyle.secondary) async def button_next(self, interaction: discord.Interaction, button: ui.Button): # pylint: disable=unused-argument """Button to send interface to next page""" self._display_page += 1 self.update_view() await interaction.response.edit_message(**self.send_kwargs) @ui.button(label="\N{BLACK RIGHT-POINTING DOUBLE TRIANGLE WITH VERTICAL BAR} \u200b 1", style=discord.ButtonStyle.secondary) async def button_last(self, interaction: discord.Interaction, button: ui.Button): # pylint: disable=unused-argument """Button to send interface to last page""" self._display_page = self.page_count - 1 self.update_view() await interaction.response.edit_message(**self.send_kwargs) @ui.button(label="\N{BLACK SQUARE FOR STOP} \u200b Close paginator", style=discord.ButtonStyle.danger) async def button_close(self, interaction: discord.Interaction, button: ui.Button): # pylint: disable=unused-argument """Button to close the interface""" message = self.message self.message = None self.task.cancel() self.stop() await message.delete() class PaginatorEmbedInterface(PaginatorInterface): """ A subclass of :class:`PaginatorInterface` that encloses content in an Embed. """ def __init__(self, *args, **kwargs): self._embed = kwargs.pop('embed', None) or discord.Embed() super().__init__(*args, **kwargs) @property def send_kwargs(self) -> dict: self._embed.description = self.pages[self.display_page] return {'embed': self._embed, 'view': self} max_page_size = 2048 @property def page_size(self) -> int: return self.paginator.max_size
35.39039
128
0.645057
2376fdbd509cb848005c870c62619ae40f85d028
37,892
py
Python
neutron/tests/unit/agent/linux/test_ovs_lib.py
bradleyjones/neutron
d283e23d7658162f911240bf6a4e707e3709093a
[ "Apache-2.0" ]
null
null
null
neutron/tests/unit/agent/linux/test_ovs_lib.py
bradleyjones/neutron
d283e23d7658162f911240bf6a4e707e3709093a
[ "Apache-2.0" ]
null
null
null
neutron/tests/unit/agent/linux/test_ovs_lib.py
bradleyjones/neutron
d283e23d7658162f911240bf6a4e707e3709093a
[ "Apache-2.0" ]
null
null
null
# Copyright 2012, VMware, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import collections import mock from oslo_serialization import jsonutils import testtools from neutron.agent.linux import ovs_lib from neutron.agent.linux import utils from neutron.common import exceptions from neutron.openstack.common import uuidutils from neutron.plugins.common import constants from neutron.tests import base from neutron.tests import tools OVS_LINUX_KERN_VERS_WITHOUT_VXLAN = "3.12.0" class OFCTLParamListMatcher(object): def _parse(self, params): actions_pos = params.find('actions') return set(params[:actions_pos].split(',')), params[actions_pos:] def __init__(self, params): self.expected = self._parse(params) def __eq__(self, other): return self.expected == self._parse(other) def __str__(self): return 'ovs-ofctl parameters: %s, "%s"' % self.expected __repr__ = __str__ class OVS_Lib_Test(base.BaseTestCase): """A test suite to exercise the OVS libraries shared by Neutron agents. Note: these tests do not actually execute ovs-* utilities, and thus can run on any system. That does, however, limit their scope. """ def setUp(self): super(OVS_Lib_Test, self).setUp() self.BR_NAME = "br-int" self.br = ovs_lib.OVSBridge(self.BR_NAME) self.execute = mock.patch.object( utils, "execute", spec=utils.execute).start() @property def TO(self): return "--timeout=%s" % self.br.vsctl_timeout def _vsctl_args(self, *args): cmd = ['ovs-vsctl', self.TO, '--oneline', '--format=json', '--'] cmd += args return cmd def _vsctl_mock(self, *args): cmd = self._vsctl_args(*args) return mock.call(cmd, run_as_root=True, log_fail_as_error=False) def _verify_vsctl_mock(self, *args): cmd = self._vsctl_args(*args) self.execute.assert_called_once_with(cmd, run_as_root=True, log_fail_as_error=False) def test_vifport(self): """Create and stringify vif port, confirm no exceptions.""" pname = "vif1.0" ofport = 5 vif_id = uuidutils.generate_uuid() mac = "ca:fe:de:ad:be:ef" # test __init__ port = ovs_lib.VifPort(pname, ofport, vif_id, mac, self.br) self.assertEqual(port.port_name, pname) self.assertEqual(port.ofport, ofport) self.assertEqual(port.vif_id, vif_id) self.assertEqual(port.vif_mac, mac) self.assertEqual(port.switch.br_name, self.BR_NAME) # test __str__ str(port) def test_set_controller(self): controller_names = ['tcp:127.0.0.1:6633', 'tcp:172.17.16.10:5555'] self.br.set_controller(controller_names) self._verify_vsctl_mock('set-controller', self.BR_NAME, 'tcp:127.0.0.1:6633', 'tcp:172.17.16.10:5555') def test_del_controller(self): self.br.del_controller() self._verify_vsctl_mock('del-controller', self.BR_NAME) def test_get_controller(self): self.execute.return_value = ( 'tcp:127.0.0.1:6633\\ntcp:172.17.16.10:5555') names = self.br.get_controller() self.assertEqual(names, ['tcp:127.0.0.1:6633', 'tcp:172.17.16.10:5555']) self._verify_vsctl_mock('get-controller', self.BR_NAME) def test_set_secure_mode(self): self.br.set_secure_mode() self._verify_vsctl_mock('set-fail-mode', self.BR_NAME, 'secure') def test_set_protocols(self): protocols = 'OpenFlow13' self.br.set_protocols(protocols) self._verify_vsctl_mock('set', 'Bridge', self.BR_NAME, "protocols=%s" % protocols) def test_create(self): self.br.add_bridge(self.BR_NAME) self.br.create() def test_destroy(self): self.br.delete_bridge(self.BR_NAME) self.br.destroy() def test_reset_bridge(self): self.br.destroy() self.br.create() self.br.reset_bridge() def _build_timeout_opt(self, exp_timeout): return "--timeout=%d" % exp_timeout if exp_timeout else self.TO def test_replace_port(self): pname = "tap5" self.br.replace_port(pname) self._verify_vsctl_mock("--if-exists", "del-port", pname, "--", "add-port", self.BR_NAME, pname) def test_replace_port_with_attrs(self): pname = "tap5" self.br.replace_port(pname, ('type', 'internal'), ('external_ids:iface-status', 'active')) self._verify_vsctl_mock("--if-exists", "del-port", pname, "--", "add-port", self.BR_NAME, pname, "--", "set", "Interface", pname, "type=internal", "external_ids:iface-status=active") def _test_delete_port(self, exp_timeout=None): pname = "tap5" self.br.delete_port(pname) self._verify_vsctl_mock("--if-exists", "del-port", self.BR_NAME, pname) def test_delete_port(self): self._test_delete_port() def test_call_command_non_default_timeput(self): # This test is only for verifying a non-default timeout # is correctly applied. Does not need to be repeated for # every ovs_lib method new_timeout = 5 self.br.vsctl_timeout = new_timeout self._test_delete_port(new_timeout) def test_add_flow(self): ofport = "99" vid = 4000 lsw_id = 18 cidr = '192.168.1.0/24' flow_dict_1 = collections.OrderedDict([ ('priority', 2), ('dl_src', 'ca:fe:de:ad:be:ef'), ('actions', 'strip_vlan,output:0')]) flow_dict_2 = collections.OrderedDict([ ('priority', 1), ('actions', 'normal')]) flow_dict_3 = collections.OrderedDict([ ('priority', 2), ('actions', 'drop')]) flow_dict_4 = collections.OrderedDict([ ('priority', 2), ('in_port', ofport), ('actions', 'drop')]) flow_dict_5 = collections.OrderedDict([ ('priority', 4), ('in_port', ofport), ('dl_vlan', vid), ('actions', "strip_vlan,set_tunnel:%s,normal" % (lsw_id))]) flow_dict_6 = collections.OrderedDict([ ('priority', 3), ('tun_id', lsw_id), ('actions', "mod_vlan_vid:%s,output:%s" % (vid, ofport))]) flow_dict_7 = collections.OrderedDict([ ('priority', 4), ('nw_src', cidr), ('proto', 'arp'), ('actions', 'drop')]) self.br.add_flow(**flow_dict_1) self.br.add_flow(**flow_dict_2) self.br.add_flow(**flow_dict_3) self.br.add_flow(**flow_dict_4) self.br.add_flow(**flow_dict_5) self.br.add_flow(**flow_dict_6) self.br.add_flow(**flow_dict_7) expected_calls = [ self._ofctl_mock("add-flows", self.BR_NAME, '-', process_input=OFCTLParamListMatcher( "hard_timeout=0,idle_timeout=0," "priority=2,dl_src=ca:fe:de:ad:be:ef," "actions=strip_vlan,output:0")), self._ofctl_mock("add-flows", self.BR_NAME, '-', process_input=OFCTLParamListMatcher( "hard_timeout=0,idle_timeout=0," "priority=1,actions=normal")), self._ofctl_mock("add-flows", self.BR_NAME, '-', process_input=OFCTLParamListMatcher( "hard_timeout=0,idle_timeout=0," "priority=2,actions=drop")), self._ofctl_mock("add-flows", self.BR_NAME, '-', process_input=OFCTLParamListMatcher( "hard_timeout=0,idle_timeout=0,priority=2," "in_port=%s,actions=drop" % ofport)), self._ofctl_mock("add-flows", self.BR_NAME, '-', process_input=OFCTLParamListMatcher( "hard_timeout=0,idle_timeout=0," "priority=4,dl_vlan=%s,in_port=%s," "actions=strip_vlan,set_tunnel:%s,normal" % (vid, ofport, lsw_id))), self._ofctl_mock("add-flows", self.BR_NAME, '-', process_input=OFCTLParamListMatcher( "hard_timeout=0,idle_timeout=0,priority=3," "tun_id=%s,actions=mod_vlan_vid:%s," "output:%s" % (lsw_id, vid, ofport))), self._ofctl_mock("add-flows", self.BR_NAME, '-', process_input=OFCTLParamListMatcher( "hard_timeout=0,idle_timeout=0,priority=4," "nw_src=%s,arp,actions=drop" % cidr)), ] self.execute.assert_has_calls(expected_calls) def _ofctl_args(self, cmd, *args): cmd = ['ovs-ofctl', cmd] cmd += args return cmd def _ofctl_mock(self, cmd, *args, **kwargs): cmd = self._ofctl_args(cmd, *args) return mock.call(cmd, run_as_root=True, **kwargs) def _verify_ofctl_mock(self, cmd, *args, **kwargs): cmd = self._ofctl_args(cmd, *args) return self.execute.assert_called_once_with(cmd, run_as_root=True, **kwargs) def test_add_flow_timeout_set(self): flow_dict = collections.OrderedDict([ ('priority', 1), ('hard_timeout', 1000), ('idle_timeout', 2000), ('actions', 'normal')]) self.br.add_flow(**flow_dict) self._verify_ofctl_mock( "add-flows", self.BR_NAME, '-', process_input="hard_timeout=1000,idle_timeout=2000,priority=1," "actions=normal") def test_add_flow_default_priority(self): flow_dict = collections.OrderedDict([('actions', 'normal')]) self.br.add_flow(**flow_dict) self._verify_ofctl_mock( "add-flows", self.BR_NAME, '-', process_input="hard_timeout=0,idle_timeout=0,priority=1," "actions=normal") def _test_get_port_ofport(self, ofport, expected_result): pname = "tap99" self.br.vsctl_timeout = 0 # Don't waste precious time retrying self.execute.return_value = self._encode_ovs_json( ['ofport'], [[ofport]]) self.assertEqual(self.br.get_port_ofport(pname), expected_result) self._verify_vsctl_mock("--columns=ofport", "list", "Interface", pname) def test_get_port_ofport_succeeds_for_valid_ofport(self): self._test_get_port_ofport(6, 6) def test_get_port_ofport_returns_invalid_ofport_for_non_int(self): self._test_get_port_ofport([], ovs_lib.INVALID_OFPORT) def test_get_port_ofport_returns_invalid_for_invalid(self): self._test_get_port_ofport(ovs_lib.INVALID_OFPORT, ovs_lib.INVALID_OFPORT) def test_get_datapath_id(self): datapath_id = '"0000b67f4fbcc149"' self.execute.return_value = self._encode_ovs_json(['datapath_id'], [[datapath_id]]) self.assertEqual(self.br.get_datapath_id(), datapath_id) self._verify_vsctl_mock("--columns=datapath_id", "list", "Bridge", self.BR_NAME) def test_count_flows(self): self.execute.return_value = 'ignore\nflow-1\n' # counts the number of flows as total lines of output - 2 self.assertEqual(self.br.count_flows(), 1) self._verify_ofctl_mock("dump-flows", self.BR_NAME, process_input=None) def test_delete_flow(self): ofport = "5" lsw_id = 40 vid = 39 self.br.delete_flows(in_port=ofport) self.br.delete_flows(tun_id=lsw_id) self.br.delete_flows(dl_vlan=vid) expected_calls = [ self._ofctl_mock("del-flows", self.BR_NAME, '-', process_input="in_port=" + ofport), self._ofctl_mock("del-flows", self.BR_NAME, '-', process_input="tun_id=%s" % lsw_id), self._ofctl_mock("del-flows", self.BR_NAME, '-', process_input="dl_vlan=%s" % vid), ] self.execute.assert_has_calls(expected_calls) def test_delete_flow_with_priority_set(self): params = {'in_port': '1', 'priority': '1'} self.assertRaises(exceptions.InvalidInput, self.br.delete_flows, **params) def test_dump_flows(self): table = 23 nxst_flow = "NXST_FLOW reply (xid=0x4):" flows = "\n".join([" cookie=0x0, duration=18042.514s, table=0, " "n_packets=6, n_bytes=468, " "priority=2,in_port=1 actions=drop", " cookie=0x0, duration=18027.562s, table=0, " "n_packets=0, n_bytes=0, " "priority=3,in_port=1,dl_vlan=100 " "actions=mod_vlan_vid:1,NORMAL", " cookie=0x0, duration=18044.351s, table=0, " "n_packets=9, n_bytes=594, priority=1 " "actions=NORMAL", " cookie=0x0, " "duration=18044.211s, table=23, n_packets=0, " "n_bytes=0, priority=0 actions=drop"]) flow_args = '\n'.join([nxst_flow, flows]) run_ofctl = mock.patch.object(self.br, 'run_ofctl').start() run_ofctl.side_effect = [flow_args] retflows = self.br.dump_flows_for_table(table) self.assertEqual(flows, retflows) def test_dump_flows_ovs_dead(self): table = 23 run_ofctl = mock.patch.object(self.br, 'run_ofctl').start() run_ofctl.side_effect = [''] retflows = self.br.dump_flows_for_table(table) self.assertEqual(None, retflows) def test_mod_flow_with_priority_set(self): params = {'in_port': '1', 'priority': '1'} self.assertRaises(exceptions.InvalidInput, self.br.mod_flow, **params) def test_mod_flow_no_actions_set(self): params = {'in_port': '1'} self.assertRaises(exceptions.InvalidInput, self.br.mod_flow, **params) def test_add_tunnel_port(self): pname = "tap99" local_ip = "1.1.1.1" remote_ip = "9.9.9.9" ofport = 6 command = ["--may-exist", "add-port", self.BR_NAME, pname] command.extend(["--", "set", "Interface", pname]) command.extend(["type=gre", "options:df_default=true", "options:remote_ip=" + remote_ip, "options:local_ip=" + local_ip, "options:in_key=flow", "options:out_key=flow"]) # Each element is a tuple of (expected mock call, return_value) expected_calls_and_values = [ (self._vsctl_mock(*command), None), (self._vsctl_mock("--columns=ofport", "list", "Interface", pname), self._encode_ovs_json(['ofport'], [[ofport]])), ] tools.setup_mock_calls(self.execute, expected_calls_and_values) self.assertEqual( self.br.add_tunnel_port(pname, remote_ip, local_ip), ofport) tools.verify_mock_calls(self.execute, expected_calls_and_values) def test_add_vxlan_fragmented_tunnel_port(self): pname = "tap99" local_ip = "1.1.1.1" remote_ip = "9.9.9.9" ofport = 6 vxlan_udp_port = "9999" dont_fragment = False command = ["--may-exist", "add-port", self.BR_NAME, pname] command.extend(["--", "set", "Interface", pname]) command.extend(["type=" + constants.TYPE_VXLAN, "options:dst_port=" + vxlan_udp_port, "options:df_default=false", "options:remote_ip=" + remote_ip, "options:local_ip=" + local_ip, "options:in_key=flow", "options:out_key=flow"]) # Each element is a tuple of (expected mock call, return_value) expected_calls_and_values = [ (self._vsctl_mock(*command), None), (self._vsctl_mock("--columns=ofport", "list", "Interface", pname), self._encode_ovs_json(['ofport'], [[ofport]])), ] tools.setup_mock_calls(self.execute, expected_calls_and_values) self.assertEqual( self.br.add_tunnel_port(pname, remote_ip, local_ip, constants.TYPE_VXLAN, vxlan_udp_port, dont_fragment), ofport) tools.verify_mock_calls(self.execute, expected_calls_and_values) def test_add_patch_port(self): pname = "tap99" peer = "bar10" ofport = 6 # Each element is a tuple of (expected mock call, return_value) command = ["--may-exist", "add-port", self.BR_NAME, pname] command.extend(["--", "set", "Interface", pname]) command.extend(["type=patch", "options:peer=" + peer]) expected_calls_and_values = [ (self._vsctl_mock(*command), None), (self._vsctl_mock("--columns=ofport", "list", "Interface", pname), self._encode_ovs_json(['ofport'], [[ofport]])) ] tools.setup_mock_calls(self.execute, expected_calls_and_values) self.assertEqual(self.br.add_patch_port(pname, peer), ofport) tools.verify_mock_calls(self.execute, expected_calls_and_values) def _test_get_vif_ports(self, is_xen=False): pname = "tap99" ofport = 6 ofport_data = self._encode_ovs_json(['ofport'], [[ofport]]) vif_id = uuidutils.generate_uuid() mac = "ca:fe:de:ad:be:ef" id_field = 'xs-vif-uuid' if is_xen else 'iface-id' external_ids = ('{"data":[[["map",[["attached-mac","%(mac)s"],' '["%(id_field)s","%(vif)s"],' '["iface-status","active"]]]]],' '"headings":["external_ids"]}' % { 'mac': mac, 'vif': vif_id, 'id_field': id_field}) # Each element is a tuple of (expected mock call, return_value) expected_calls_and_values = [ (self._vsctl_mock("list-ports", self.BR_NAME), "%s\n" % pname), (self._vsctl_mock("--columns=external_ids", "list", "Interface", pname), external_ids), (self._vsctl_mock("--columns=ofport", "list", "Interface", pname), ofport_data), ] if is_xen: expected_calls_and_values.append( (mock.call(["xe", "vif-param-get", "param-name=other-config", "param-key=nicira-iface-id", "uuid=" + vif_id], run_as_root=True), vif_id) ) tools.setup_mock_calls(self.execute, expected_calls_and_values) ports = self.br.get_vif_ports() self.assertEqual(1, len(ports)) self.assertEqual(ports[0].port_name, pname) self.assertEqual(ports[0].ofport, ofport) self.assertEqual(ports[0].vif_id, vif_id) self.assertEqual(ports[0].vif_mac, mac) self.assertEqual(ports[0].switch.br_name, self.BR_NAME) tools.verify_mock_calls(self.execute, expected_calls_and_values) def _encode_ovs_json(self, headings, data): # See man ovs-vsctl(8) for the encoding details. r = {"data": [], "headings": headings} for row in data: ovs_row = [] r["data"].append(ovs_row) for cell in row: if isinstance(cell, (str, int, list)): ovs_row.append(cell) elif isinstance(cell, dict): ovs_row.append(["map", cell.items()]) elif isinstance(cell, set): ovs_row.append(["set", cell]) else: raise TypeError('%r not int, str, list, set or dict' % type(cell)) return jsonutils.dumps(r) def _test_get_vif_port_set(self, is_xen): if is_xen: id_key = 'xs-vif-uuid' else: id_key = 'iface-id' headings = ['name', 'external_ids', 'ofport'] data = [ # A vif port on this bridge: ['tap99', {id_key: 'tap99id', 'attached-mac': 'tap99mac'}, 1], # A vif port on this bridge not yet configured ['tap98', {id_key: 'tap98id', 'attached-mac': 'tap98mac'}, []], # Another vif port on this bridge not yet configured ['tap97', {id_key: 'tap97id', 'attached-mac': 'tap97mac'}, ['set', []]], # Non-vif port on this bridge: ['bogus', {}, 2], ] # Each element is a tuple of (expected mock call, return_value) expected_calls_and_values = [ (self._vsctl_mock("list-ports", self.BR_NAME), 'tap99\\ntun22'), (self._vsctl_mock("--if-exists", "--columns=name,external_ids,ofport", "list", "Interface", 'tap99', 'tun22'), self._encode_ovs_json(headings, data)), ] tools.setup_mock_calls(self.execute, expected_calls_and_values) if is_xen: get_xapi_iface_id = mock.patch.object(self.br, 'get_xapi_iface_id').start() get_xapi_iface_id.return_value = 'tap99id' port_set = self.br.get_vif_port_set() self.assertEqual(set(['tap99id']), port_set) tools.verify_mock_calls(self.execute, expected_calls_and_values) if is_xen: get_xapi_iface_id.assert_called_once_with('tap99id') def test_get_vif_ports_nonxen(self): self._test_get_vif_ports(is_xen=False) def test_get_vif_ports_xen(self): self._test_get_vif_ports(is_xen=True) def test_get_vif_port_set_nonxen(self): self._test_get_vif_port_set(False) def test_get_vif_port_set_xen(self): self._test_get_vif_port_set(True) def test_get_vif_ports_list_ports_error(self): expected_calls_and_values = [ (self._vsctl_mock("list-ports", self.BR_NAME), RuntimeError()), ] tools.setup_mock_calls(self.execute, expected_calls_and_values) self.assertRaises(RuntimeError, self.br.get_vif_ports) tools.verify_mock_calls(self.execute, expected_calls_and_values) def test_get_vif_port_set_list_ports_error(self): expected_calls_and_values = [ (self._vsctl_mock("list-ports", self.BR_NAME), RuntimeError()), ] tools.setup_mock_calls(self.execute, expected_calls_and_values) self.assertRaises(RuntimeError, self.br.get_vif_port_set) tools.verify_mock_calls(self.execute, expected_calls_and_values) def test_get_vif_port_set_list_interface_error(self): expected_calls_and_values = [ (self._vsctl_mock("list-ports", self.BR_NAME), 'tap99\n'), (self._vsctl_mock("--if-exists", "--columns=name,external_ids,ofport", "list", "Interface", "tap99"), RuntimeError()), ] tools.setup_mock_calls(self.execute, expected_calls_and_values) self.assertRaises(RuntimeError, self.br.get_vif_port_set) tools.verify_mock_calls(self.execute, expected_calls_and_values) def test_get_port_tag_dict(self): headings = ['name', 'tag'] data = [ ['int-br-eth2', set()], ['patch-tun', set()], ['qr-76d9e6b6-21', 1], ['tapce5318ff-78', 1], ['tape1400310-e6', 1], ] # Each element is a tuple of (expected mock call, return_value) expected_calls_and_values = [ (self._vsctl_mock("list-ports", self.BR_NAME), '\\n'.join((iface for iface, tag in data))), (self._vsctl_mock("--columns=name,tag", "list", "Port"), self._encode_ovs_json(headings, data)), ] tools.setup_mock_calls(self.execute, expected_calls_and_values) port_tags = self.br.get_port_tag_dict() self.assertEqual( port_tags, {u'int-br-eth2': [], u'patch-tun': [], u'qr-76d9e6b6-21': 1, u'tapce5318ff-78': 1, u'tape1400310-e6': 1} ) def test_clear_db_attribute(self): pname = "tap77" self.br.clear_db_attribute("Port", pname, "tag") self._verify_vsctl_mock("clear", "Port", pname, "tag") def _test_iface_to_br(self, exp_timeout=None): iface = 'tap0' br = 'br-int' if exp_timeout: self.br.vsctl_timeout = exp_timeout self.execute.return_value = 'br-int' self.assertEqual(self.br.get_bridge_for_iface(iface), br) self._verify_vsctl_mock("iface-to-br", iface) def test_iface_to_br(self): self._test_iface_to_br() def test_iface_to_br_non_default_timeout(self): new_timeout = 5 self._test_iface_to_br(new_timeout) def test_iface_to_br_handles_ovs_vsctl_exception(self): iface = 'tap0' self.execute.side_effect = Exception self.assertIsNone(self.br.get_bridge_for_iface(iface)) self._verify_vsctl_mock("iface-to-br", iface) def test_delete_all_ports(self): with mock.patch.object(self.br, 'get_port_name_list', return_value=['port1']) as get_port: with mock.patch.object(self.br, 'delete_port') as delete_port: self.br.delete_ports(all_ports=True) get_port.assert_called_once_with() delete_port.assert_called_once_with('port1') def test_delete_neutron_ports(self): port1 = ovs_lib.VifPort('tap1234', 1, uuidutils.generate_uuid(), 'ca:fe:de:ad:be:ef', 'br') port2 = ovs_lib.VifPort('tap5678', 2, uuidutils.generate_uuid(), 'ca:ee:de:ad:be:ef', 'br') with mock.patch.object(self.br, 'get_vif_ports', return_value=[port1, port2]) as get_ports: with mock.patch.object(self.br, 'delete_port') as delete_port: self.br.delete_ports(all_ports=False) get_ports.assert_called_once_with() delete_port.assert_has_calls([ mock.call('tap1234'), mock.call('tap5678') ]) def test_delete_neutron_ports_list_error(self): expected_calls_and_values = [ (self._vsctl_mock("list-ports", self.BR_NAME), RuntimeError()), ] tools.setup_mock_calls(self.execute, expected_calls_and_values) self.assertRaises(RuntimeError, self.br.delete_ports, all_ports=False) tools.verify_mock_calls(self.execute, expected_calls_and_values) def _test_get_bridges(self, exp_timeout=None): bridges = ['br-int', 'br-ex'] if exp_timeout: self.br.vsctl_timeout = exp_timeout self.execute.return_value = 'br-int\\nbr-ex\n' self.assertEqual(self.br.get_bridges(), bridges) self._verify_vsctl_mock("list-br") def test_get_bridges(self): self._test_get_bridges() def test_get_bridges_not_default_timeout(self): self._test_get_bridges(5) def test_get_local_port_mac_succeeds(self): with mock.patch('neutron.agent.linux.ip_lib.IpLinkCommand', return_value=mock.Mock(address='foo')): self.assertEqual('foo', self.br.get_local_port_mac()) def test_get_local_port_mac_raises_exception_for_missing_mac(self): with mock.patch('neutron.agent.linux.ip_lib.IpLinkCommand', return_value=mock.Mock(address=None)): with testtools.ExpectedException(Exception): self.br.get_local_port_mac() def _test_get_vif_port_by_id(self, iface_id, data, br_name=None, extra_calls_and_values=None): headings = ['external_ids', 'name', 'ofport'] # Each element is a tuple of (expected mock call, return_value) expected_calls_and_values = [ (self._vsctl_mock("--columns=external_ids,name,ofport", "find", "Interface", 'external_ids:iface-id=%s' % iface_id, 'external_ids:attached-mac!=""'), self._encode_ovs_json(headings, data))] if data: if not br_name: br_name = self.BR_NAME # Only the last information list in 'data' is used, so if more # than one vif is described in data, the rest must be declared # in the argument 'expected_calls_and_values'. if extra_calls_and_values: expected_calls_and_values.extend(extra_calls_and_values) expected_calls_and_values.append( (self._vsctl_mock("iface-to-br", data[-1][headings.index('name')]), br_name)) tools.setup_mock_calls(self.execute, expected_calls_and_values) vif_port = self.br.get_vif_port_by_id(iface_id) tools.verify_mock_calls(self.execute, expected_calls_and_values) return vif_port def _assert_vif_port(self, vif_port, ofport=None, mac=None): if not ofport or ofport == -1 or not mac: self.assertIsNone(vif_port, "Got %s" % vif_port) return self.assertEqual('tap99id', vif_port.vif_id) self.assertEqual(mac, vif_port.vif_mac) self.assertEqual('tap99', vif_port.port_name) self.assertEqual(ofport, vif_port.ofport) def _test_get_vif_port_by_id_with_data(self, ofport=None, mac=None): external_ids = [["iface-id", "tap99id"], ["iface-status", "active"], ["attached-mac", mac]] data = [[["map", external_ids], "tap99", ofport if ofport else ["set", []]]] vif_port = self._test_get_vif_port_by_id('tap99id', data) self._assert_vif_port(vif_port, ofport, mac) def test_get_vif_by_port_id_with_ofport(self): self._test_get_vif_port_by_id_with_data( ofport=1, mac="aa:bb:cc:dd:ee:ff") def test_get_vif_by_port_id_without_ofport(self): self._test_get_vif_port_by_id_with_data(mac="aa:bb:cc:dd:ee:ff") def test_get_vif_by_port_id_with_invalid_ofport(self): self._test_get_vif_port_by_id_with_data( ofport=-1, mac="aa:bb:cc:dd:ee:ff") def test_get_vif_by_port_id_with_no_data(self): self.assertIsNone(self._test_get_vif_port_by_id('whatever', [])) def test_get_vif_by_port_id_different_bridge(self): external_ids = [["iface-id", "tap99id"], ["iface-status", "active"]] data = [[["map", external_ids], "tap99", 1]] self.assertIsNone(self._test_get_vif_port_by_id('tap99id', data, "br-ext")) def test_get_vif_by_port_id_multiple_vifs(self): external_ids = [["iface-id", "tap99id"], ["iface-status", "active"], ["attached-mac", "de:ad:be:ef:13:37"]] data = [[["map", external_ids], "dummytap", 1], [["map", external_ids], "tap99", 1337]] extra_calls_and_values = [ (self._vsctl_mock("iface-to-br", "dummytap"), "br-ext")] vif_port = self._test_get_vif_port_by_id( 'tap99id', data, extra_calls_and_values=extra_calls_and_values) self._assert_vif_port(vif_port, ofport=1337, mac="de:ad:be:ef:13:37") class TestDeferredOVSBridge(base.BaseTestCase): def setUp(self): super(TestDeferredOVSBridge, self).setUp() self.br = mock.Mock() self.mocked_do_action_flows = mock.patch.object( self.br, 'do_action_flows').start() self.add_flow_dict1 = dict(in_port=11, actions='drop') self.add_flow_dict2 = dict(in_port=12, actions='drop') self.mod_flow_dict1 = dict(in_port=21, actions='drop') self.mod_flow_dict2 = dict(in_port=22, actions='drop') self.del_flow_dict1 = dict(in_port=31) self.del_flow_dict2 = dict(in_port=32) def test_right_allowed_passthroughs(self): expected_passthroughs = ('add_port', 'add_tunnel_port', 'delete_port') self.assertEqual(expected_passthroughs, ovs_lib.DeferredOVSBridge.ALLOWED_PASSTHROUGHS) def _verify_mock_call(self, expected_calls): self.mocked_do_action_flows.assert_has_calls(expected_calls) self.assertEqual(len(expected_calls), len(self.mocked_do_action_flows.mock_calls)) def test_apply_on_exit(self): expected_calls = [ mock.call('add', [self.add_flow_dict1]), mock.call('mod', [self.mod_flow_dict1]), mock.call('del', [self.del_flow_dict1]), ] with ovs_lib.DeferredOVSBridge(self.br) as deferred_br: deferred_br.add_flow(**self.add_flow_dict1) deferred_br.mod_flow(**self.mod_flow_dict1) deferred_br.delete_flows(**self.del_flow_dict1) self._verify_mock_call([]) self._verify_mock_call(expected_calls) def test_apply_on_exit_with_errors(self): try: with ovs_lib.DeferredOVSBridge(self.br) as deferred_br: deferred_br.add_flow(**self.add_flow_dict1) deferred_br.mod_flow(**self.mod_flow_dict1) deferred_br.delete_flows(**self.del_flow_dict1) raise Exception() except Exception: self._verify_mock_call([]) else: self.fail('Exception would be reraised') def test_apply(self): expected_calls = [ mock.call('add', [self.add_flow_dict1]), mock.call('mod', [self.mod_flow_dict1]), mock.call('del', [self.del_flow_dict1]), ] with ovs_lib.DeferredOVSBridge(self.br) as deferred_br: deferred_br.add_flow(**self.add_flow_dict1) deferred_br.mod_flow(**self.mod_flow_dict1) deferred_br.delete_flows(**self.del_flow_dict1) self._verify_mock_call([]) deferred_br.apply_flows() self._verify_mock_call(expected_calls) self._verify_mock_call(expected_calls) def test_apply_order(self): expected_calls = [ mock.call('del', [self.del_flow_dict1, self.del_flow_dict2]), mock.call('mod', [self.mod_flow_dict1, self.mod_flow_dict2]), mock.call('add', [self.add_flow_dict1, self.add_flow_dict2]), ] order = 'del', 'mod', 'add' with ovs_lib.DeferredOVSBridge(self.br, order=order) as deferred_br: deferred_br.add_flow(**self.add_flow_dict1) deferred_br.mod_flow(**self.mod_flow_dict1) deferred_br.delete_flows(**self.del_flow_dict1) deferred_br.delete_flows(**self.del_flow_dict2) deferred_br.add_flow(**self.add_flow_dict2) deferred_br.mod_flow(**self.mod_flow_dict2) self._verify_mock_call(expected_calls) def test_apply_full_ordered(self): expected_calls = [ mock.call('add', [self.add_flow_dict1]), mock.call('mod', [self.mod_flow_dict1]), mock.call('del', [self.del_flow_dict1, self.del_flow_dict2]), mock.call('add', [self.add_flow_dict2]), mock.call('mod', [self.mod_flow_dict2]), ] with ovs_lib.DeferredOVSBridge(self.br, full_ordered=True) as deferred_br: deferred_br.add_flow(**self.add_flow_dict1) deferred_br.mod_flow(**self.mod_flow_dict1) deferred_br.delete_flows(**self.del_flow_dict1) deferred_br.delete_flows(**self.del_flow_dict2) deferred_br.add_flow(**self.add_flow_dict2) deferred_br.mod_flow(**self.mod_flow_dict2) self._verify_mock_call(expected_calls) def test_getattr_unallowed_attr(self): with ovs_lib.DeferredOVSBridge(self.br) as deferred_br: self.assertEqual(self.br.add_port, deferred_br.add_port) def test_getattr_unallowed_attr_failure(self): with ovs_lib.DeferredOVSBridge(self.br) as deferred_br: self.assertRaises(AttributeError, getattr, deferred_br, 'failure')
41.276688
79
0.585533
4d10f8ccb8cbb1532421acb13fc98a381c8d61c5
2,354
py
Python
api/resources/webapp/swipes.py
jimbunny/wedding-invitation
a3648454e1105d9362f95d9f6e69055a7522e15b
[ "MIT" ]
null
null
null
api/resources/webapp/swipes.py
jimbunny/wedding-invitation
a3648454e1105d9362f95d9f6e69055a7522e15b
[ "MIT" ]
null
null
null
api/resources/webapp/swipes.py
jimbunny/wedding-invitation
a3648454e1105d9362f95d9f6e69055a7522e15b
[ "MIT" ]
null
null
null
#!/usr/bin/env python #-*- coding:utf-8 -*- # author:jingtongyu # datetime:2020/6/7 10:14 下午 # software: PyCharm from flask_restful import Resource from flask_restful.reqparse import RequestParser from common import code, pretty_result import os import json from werkzeug.datastructures import FileStorage root = os.path.abspath(os.path.join(os.getcwd())) filePath = r'./downloads/swipe/' if not os.path.exists(filePath): os.makedirs(filePath) class SwipesResource(Resource): """ swipe list资源类 """ def __init__(self): self.parser = RequestParser() def get(self): """ 工具函数: 获取本地图片流 :param img_local_path:文件单张图片的本地绝对路径 :return: 图片流 """ data = [] # for i in os.listdir(filePath): # url = config.domain + "/api/v1/admin/image?_type=swipe&id=" + i.split(".")[0] # data.append({"name": i, "redirectUrl": url, "carouselUrl": url}) with open(os.path.join(root, "data", "template", "swipe.json"), 'r', encoding="utf8") as load_f: load_dict = json.load(load_f) return pretty_result(code.OK, data=load_dict.get("data"), msg='Get swipes picture successful!') def put(self): """ 工具函数: 获取本地图片流 :param img_local_path:文件单张图片的本地绝对路径 :return: 图片流 """ self.parser.add_argument("picture", type=FileStorage, location='files', action='append', help='picture is required') self.parser.add_argument("removeList", type=str, required=True, location="form", help='removelist is required') args = self.parser.parse_args() removeList = args.removeList.split(",") if args.picture: for item in args.picture: if item.filename in removeList: continue new_fname = filePath + str(item.filename) + '.png' item.save(new_fname) for i in os.listdir(filePath): if i in removeList: old_fname = filePath + i if os.path.exists(old_fname): os.remove(old_fname) else: print(str(i) + " the file does not exist") return pretty_result(code.OK, msg='Update swipes picture successful!')
33.628571
119
0.578165
2b064e8d58479f14479e97b1f6926b30f218605f
10,646
py
Python
babyai/rl/algos/base.py
m-smith/babyai
deb79a8171eaf3c7e1e131a49e92caaf89eecd8d
[ "BSD-3-Clause" ]
411
2019-02-13T13:57:10.000Z
2022-03-15T22:47:27.000Z
babyai/rl/algos/base.py
m-smith/babyai
deb79a8171eaf3c7e1e131a49e92caaf89eecd8d
[ "BSD-3-Clause" ]
47
2019-02-19T17:23:35.000Z
2021-05-05T15:16:03.000Z
babyai/rl/algos/base.py
m-smith/babyai
deb79a8171eaf3c7e1e131a49e92caaf89eecd8d
[ "BSD-3-Clause" ]
100
2019-02-13T23:35:25.000Z
2022-02-10T17:58:25.000Z
from abc import ABC, abstractmethod import torch import numpy from babyai.rl.format import default_preprocess_obss from babyai.rl.utils import DictList, ParallelEnv from babyai.rl.utils.supervised_losses import ExtraInfoCollector class BaseAlgo(ABC): """The base class for RL algorithms.""" def __init__(self, envs, acmodel, num_frames_per_proc, discount, lr, gae_lambda, entropy_coef, value_loss_coef, max_grad_norm, recurrence, preprocess_obss, reshape_reward, aux_info): """ Initializes a `BaseAlgo` instance. Parameters: ---------- envs : list a list of environments that will be run in parallel acmodel : torch.Module the model num_frames_per_proc : int the number of frames collected by every process for an update discount : float the discount for future rewards lr : float the learning rate for optimizers gae_lambda : float the lambda coefficient in the GAE formula ([Schulman et al., 2015](https://arxiv.org/abs/1506.02438)) entropy_coef : float the weight of the entropy cost in the final objective value_loss_coef : float the weight of the value loss in the final objective max_grad_norm : float gradient will be clipped to be at most this value recurrence : int the number of steps the gradient is propagated back in time preprocess_obss : function a function that takes observations returned by the environment and converts them into the format that the model can handle reshape_reward : function a function that shapes the reward, takes an (observation, action, reward, done) tuple as an input aux_info : list a list of strings corresponding to the name of the extra information retrieved from the environment for supervised auxiliary losses """ # Store parameters self.env = ParallelEnv(envs) self.acmodel = acmodel self.acmodel.train() self.num_frames_per_proc = num_frames_per_proc self.discount = discount self.lr = lr self.gae_lambda = gae_lambda self.entropy_coef = entropy_coef self.value_loss_coef = value_loss_coef self.max_grad_norm = max_grad_norm self.recurrence = recurrence self.preprocess_obss = preprocess_obss or default_preprocess_obss self.reshape_reward = reshape_reward self.aux_info = aux_info # Store helpers values self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.num_procs = len(envs) self.num_frames = self.num_frames_per_proc * self.num_procs assert self.num_frames_per_proc % self.recurrence == 0 # Initialize experience values shape = (self.num_frames_per_proc, self.num_procs) self.obs = self.env.reset() self.obss = [None]*(shape[0]) self.memory = torch.zeros(shape[1], self.acmodel.memory_size, device=self.device) self.memories = torch.zeros(*shape, self.acmodel.memory_size, device=self.device) self.mask = torch.ones(shape[1], device=self.device) self.masks = torch.zeros(*shape, device=self.device) self.actions = torch.zeros(*shape, device=self.device, dtype=torch.int) self.values = torch.zeros(*shape, device=self.device) self.rewards = torch.zeros(*shape, device=self.device) self.advantages = torch.zeros(*shape, device=self.device) self.log_probs = torch.zeros(*shape, device=self.device) if self.aux_info: self.aux_info_collector = ExtraInfoCollector(self.aux_info, shape, self.device) # Initialize log values self.log_episode_return = torch.zeros(self.num_procs, device=self.device) self.log_episode_reshaped_return = torch.zeros(self.num_procs, device=self.device) self.log_episode_num_frames = torch.zeros(self.num_procs, device=self.device) self.log_done_counter = 0 self.log_return = [0] * self.num_procs self.log_reshaped_return = [0] * self.num_procs self.log_num_frames = [0] * self.num_procs def collect_experiences(self): """Collects rollouts and computes advantages. Runs several environments concurrently. The next actions are computed in a batch mode for all environments at the same time. The rollouts and advantages from all environments are concatenated together. Returns ------- exps : DictList Contains actions, rewards, advantages etc as attributes. Each attribute, e.g. `exps.reward` has a shape (self.num_frames_per_proc * num_envs, ...). k-th block of consecutive `self.num_frames_per_proc` frames contains data obtained from the k-th environment. Be careful not to mix data from different environments! logs : dict Useful stats about the training process, including the average reward, policy loss, value loss, etc. """ for i in range(self.num_frames_per_proc): # Do one agent-environment interaction preprocessed_obs = self.preprocess_obss(self.obs, device=self.device) with torch.no_grad(): model_results = self.acmodel(preprocessed_obs, self.memory * self.mask.unsqueeze(1)) dist = model_results['dist'] value = model_results['value'] memory = model_results['memory'] extra_predictions = model_results['extra_predictions'] action = dist.sample() obs, reward, done, env_info = self.env.step(action.cpu().numpy()) if self.aux_info: env_info = self.aux_info_collector.process(env_info) # env_info = self.process_aux_info(env_info) # Update experiences values self.obss[i] = self.obs self.obs = obs self.memories[i] = self.memory self.memory = memory self.masks[i] = self.mask self.mask = 1 - torch.tensor(done, device=self.device, dtype=torch.float) self.actions[i] = action self.values[i] = value if self.reshape_reward is not None: self.rewards[i] = torch.tensor([ self.reshape_reward(obs_, action_, reward_, done_) for obs_, action_, reward_, done_ in zip(obs, action, reward, done) ], device=self.device) else: self.rewards[i] = torch.tensor(reward, device=self.device) self.log_probs[i] = dist.log_prob(action) if self.aux_info: self.aux_info_collector.fill_dictionaries(i, env_info, extra_predictions) # Update log values self.log_episode_return += torch.tensor(reward, device=self.device, dtype=torch.float) self.log_episode_reshaped_return += self.rewards[i] self.log_episode_num_frames += torch.ones(self.num_procs, device=self.device) for i, done_ in enumerate(done): if done_: self.log_done_counter += 1 self.log_return.append(self.log_episode_return[i].item()) self.log_reshaped_return.append(self.log_episode_reshaped_return[i].item()) self.log_num_frames.append(self.log_episode_num_frames[i].item()) self.log_episode_return *= self.mask self.log_episode_reshaped_return *= self.mask self.log_episode_num_frames *= self.mask # Add advantage and return to experiences preprocessed_obs = self.preprocess_obss(self.obs, device=self.device) with torch.no_grad(): next_value = self.acmodel(preprocessed_obs, self.memory * self.mask.unsqueeze(1))['value'] for i in reversed(range(self.num_frames_per_proc)): next_mask = self.masks[i+1] if i < self.num_frames_per_proc - 1 else self.mask next_value = self.values[i+1] if i < self.num_frames_per_proc - 1 else next_value next_advantage = self.advantages[i+1] if i < self.num_frames_per_proc - 1 else 0 delta = self.rewards[i] + self.discount * next_value * next_mask - self.values[i] self.advantages[i] = delta + self.discount * self.gae_lambda * next_advantage * next_mask # Flatten the data correctly, making sure that # each episode's data is a continuous chunk exps = DictList() exps.obs = [self.obss[i][j] for j in range(self.num_procs) for i in range(self.num_frames_per_proc)] # In commments below T is self.num_frames_per_proc, P is self.num_procs, # D is the dimensionality # T x P x D -> P x T x D -> (P * T) x D exps.memory = self.memories.transpose(0, 1).reshape(-1, *self.memories.shape[2:]) # T x P -> P x T -> (P * T) x 1 exps.mask = self.masks.transpose(0, 1).reshape(-1).unsqueeze(1) # for all tensors below, T x P -> P x T -> P * T exps.action = self.actions.transpose(0, 1).reshape(-1) exps.value = self.values.transpose(0, 1).reshape(-1) exps.reward = self.rewards.transpose(0, 1).reshape(-1) exps.advantage = self.advantages.transpose(0, 1).reshape(-1) exps.returnn = exps.value + exps.advantage exps.log_prob = self.log_probs.transpose(0, 1).reshape(-1) if self.aux_info: exps = self.aux_info_collector.end_collection(exps) # Preprocess experiences exps.obs = self.preprocess_obss(exps.obs, device=self.device) # Log some values keep = max(self.log_done_counter, self.num_procs) log = { "return_per_episode": self.log_return[-keep:], "reshaped_return_per_episode": self.log_reshaped_return[-keep:], "num_frames_per_episode": self.log_num_frames[-keep:], "num_frames": self.num_frames, "episodes_done": self.log_done_counter, } self.log_done_counter = 0 self.log_return = self.log_return[-self.num_procs:] self.log_reshaped_return = self.log_reshaped_return[-self.num_procs:] self.log_num_frames = self.log_num_frames[-self.num_procs:] return exps, log @abstractmethod def update_parameters(self): pass
41.585938
104
0.63235
408681ed1131d64e85e852faab94916533f5ad3a
6,171
py
Python
setup.py
tescalada/npyscreen-restructure
0833bbbdec18439182f102d2147f3756fa98aadd
[ "BSD-2-Clause" ]
2
2015-01-12T14:47:19.000Z
2018-10-03T09:27:22.000Z
setup.py
tescalada/npyscreen-restructure
0833bbbdec18439182f102d2147f3756fa98aadd
[ "BSD-2-Clause" ]
null
null
null
setup.py
tescalada/npyscreen-restructure
0833bbbdec18439182f102d2147f3756fa98aadd
[ "BSD-2-Clause" ]
1
2020-03-20T20:19:33.000Z
2020-03-20T20:19:33.000Z
#!/usr/bin/env python from distutils.core import setup setup( name="npyscreen", version="4.2.0", description="Writing user interfaces without all that ugly mucking about in hyperspace", author="Nicholas Cole", author_email="n@npcole.com", url="http://www.npcole.com/npyscreen/", packages=['npyscreen'], license='New BSD License', classifiers= [ 'Development Status :: 5 - Production/Stable', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Environment :: Console', 'Operating System :: POSIX', 'Environment :: Console :: Curses', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Topic :: Terminals' ], long_description = """This library provides a framework for developing console applications using Python and curses. This framework should be powerful enough to create everything from quick, simple programs to complex, multi-screen applications. It is designed to make doing the simple tasks very quick and to take much of the pain out of writing larger applications. There is a very wide variety of default widgets - everything from simple text fields to more complex tree and grid views. I have used versions of this library for private scripts and small applications for around ten years. As a result, it is fairly mature. Documentation is online at http://npyscreen.readthedocs.org Please report bugs or make feature requests using the bug-tracker at http://code.google.com/p/npyscreen. There is a mailing list available at https://groups.google.com/forum/?fromgroups#!forum/npyscreen/ *Latest Changes*: Version 4.2.0 introduces the ability of Grid widgets to highlight the whole line that the cursor is on (user request). Version 4.1.0 introduces support for hvc consoles (thanks to wu.fuheng@********* for the bug report). Title widgets can now define a when_cursor_moved() method directly on themselves that will be called as expected by the contained entry_widget during its edit loop (user request). Version 4.0.0 introduces a new version scheme. Due to a packaging error in the 3.0 release series some users were having problems obtaining the latest version. This is most easily fixed with a new major version release. Version 3.10 MultiLineEditable, MultiLineEditableTitle, MultiLineEditableBoxed classes added, allowing the user to edit lists of items. See EXAMPLE-MultilineEditable for an example. Version 3.6 Title.. widgets should now resize properly. Menu items can now be specified with arguments and keywords. Version 3.5 when_value_edited defined on Title.. widgets now work as users expect. Version 3.4 Fixed bugs in Title.. widgets and in the App classes. Version 3.3 and the subsequent minor releases fix some bugs, mainly related to changes caused by allowing resized forms. Version 3.2 adds CheckboxBare - a checkbox without a label. Added at user request. Version 3.0 *IMPORTANT* The version number has changed to version 3.0. This is because newer versions of pip distinguish between pre-release and released versions, and this will allow more flexibility in future releases. A version '2.0' might have caused confusion at this stage. Version 3.0 fixes the specification of max_width values for titled widgets (Thanks to Phil Rich for the bug report). Please report any further problems. Version 2.0pre90 introduces a new BufferPager and TitleBufferPager class. (User request, suggested by dennis@wsec.be) Version 2.0pre88 *IMPORTANT* This version supports resizing the terminal. Read the documentation for more detail about how to disable this feature if you need to. It has been implemented in a way that should be compatible with existing code. New code can make the resizing even more flexible. Version 2.0pre87 Updates the documentation and contains various bug fixes. Version 2.0pre85 and 2.0pre86 are both bugfix releases. Version 2.0pre84 introduces an experimental system for editing lists of options. See documentation for details. Version 2.0pre83 multi-line checkbox widgets are now possible. These can also be used as contained widgets within the multiselect class. See documentation for details. Version 2.0pre82 changes the menu system and allows menu items to be given keyboard shortcuts. Version 2.0pre81 introduces FilenameCombo, TitleFilenameCombo. Version 2.0pre79 is a bugfix release. Version 2.0pre76 further improves the handling of mouse events on compatible terminals. Version 2.0pre75 improves the handling of the mouse on compatible terminals. Version 2.0pre74 corrects one minor bug and introduces makes box widgets behave slightly more predictably (.editable attribute now linked to that of the contained widget. Version 2.0pre73 corrects two bugs - thanks to Lasse for his help in finding them and offering patches. Version 2.0pre71 new tree classes introduced. Bug fixes. Version 2.0pre70 introduces the MLTreeMultiSelect class. Version 2.0pre69 fixes and tidies up some of the new tree classes. There is an API change assocatied with this, noted in the documentation, though backward compatibility should have been maintained. Version 2.0pre68 setting a form's .editing attribute to False now causes it to exit immediately, even if a widget is still being edited. Version 2.0pre67 fixes minor bugs. Version 2.0pre65 fixes several bugs. All textboxes now honour the .hidden attribute. The major side effect of this is that tree classes are now easier to write. Version 2.0pre64 extends multi-page support and includes revision to the documentation. Version 2.0pre63 adds initial support for multi-page forms. See documentation on the FormMultiPage class for details. Version 2.0pre57 fixes color support - it should now be possible to display a terminal with a different color background. Text widgets have some additional color options. Version 2.0pre52 fixes compatibility with python2.6, 3.0 and 3.1. All other versions should be unaffected. Version 2.0pre50 enables basic mouse support. Note that the Apple terminal does not handle mouse events correctly. """ )
44.395683
250
0.782531
61b329c60719060cb97b0371435619ab5d833da5
14,416
py
Python
src/dynamodb_encryption_sdk/structures.py
robin-aws/aws-dynamodb-encryption-python
25c7c3d80bfbe0deb661b4beb86f61b8b2f8545e
[ "Apache-2.0" ]
57
2018-08-23T00:32:37.000Z
2022-03-24T20:59:01.000Z
src/dynamodb_encryption_sdk/structures.py
robin-aws/aws-dynamodb-encryption-python
25c7c3d80bfbe0deb661b4beb86f61b8b2f8545e
[ "Apache-2.0" ]
91
2018-08-06T17:32:28.000Z
2022-03-31T10:23:02.000Z
src/dynamodb_encryption_sdk/structures.py
robin-aws/aws-dynamodb-encryption-python
25c7c3d80bfbe0deb661b4beb86f61b8b2f8545e
[ "Apache-2.0" ]
38
2018-10-17T12:02:37.000Z
2022-02-13T02:53:14.000Z
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. """Common structures used by the DynamoDB Encryption Client.""" import copy import attr import six from dynamodb_encryption_sdk.exceptions import InvalidArgumentError from dynamodb_encryption_sdk.internal.identifiers import ReservedAttributes from dynamodb_encryption_sdk.internal.validators import dictionary_validator, iterable_validator from .identifiers import CryptoAction try: # Python 3.5.0 and 3.5.1 have incompatible typing modules from typing import Dict, Iterable, List, Optional, Set, Text # noqa pylint: disable=unused-import except ImportError: # pragma: no cover # We only actually need these imports when running the mypy checks pass __all__ = ("EncryptionContext", "AttributeActions", "TableIndex", "TableInfo") def _validate_attribute_values_are_ddb_items(instance, attribute, value): # pylint: disable=unused-argument """Validate that dictionary values in ``value`` match the structure of DynamoDB JSON items. .. note:: We are not trying to validate the full structure of the item with this validator. This is just meant to verify that the values roughly match the correct format. """ for data in value.values(): if len(list(data.values())) != 1: raise TypeError('"{}" values do not look like DynamoDB items'.format(attribute.name)) @attr.s(init=False) class EncryptionContext(object): # pylint: disable=too-few-public-methods """Additional information about an encryption request. :param str table_name: Table name :param str partition_key_name: Name of primary index partition attribute :param str sort_key_name: Name of primary index sort attribute :param dict attributes: Plaintext item attributes as a DynamoDB JSON dictionary :param dict material_description: Material description to use with this request """ table_name = attr.ib( validator=attr.validators.optional(attr.validators.instance_of(six.string_types)), default=None ) partition_key_name = attr.ib( validator=attr.validators.optional(attr.validators.instance_of(six.string_types)), default=None ) sort_key_name = attr.ib( validator=attr.validators.optional(attr.validators.instance_of(six.string_types)), default=None ) attributes = attr.ib( repr=False, validator=(dictionary_validator(six.string_types, dict), _validate_attribute_values_are_ddb_items), default=attr.Factory(dict), ) material_description = attr.ib( validator=dictionary_validator(six.string_types, six.string_types), converter=copy.deepcopy, default=attr.Factory(dict), ) def __init__( self, table_name=None, # type: Optional[Text] partition_key_name=None, # type: Optional[Text] sort_key_name=None, # type: Optional[Text] attributes=None, # type: Optional[Dict[Text, Dict]] material_description=None, # type: Optional[Dict[Text, Text]] ): # noqa=D107 # type: (...) -> None # Workaround pending resolution of attrs/mypy interaction. # https://github.com/python/mypy/issues/2088 # https://github.com/python-attrs/attrs/issues/215 if attributes is None: attributes = {} if material_description is None: material_description = {} self.table_name = table_name self.partition_key_name = partition_key_name self.sort_key_name = sort_key_name self.attributes = attributes self.material_description = material_description attr.validate(self) @attr.s(init=False) class AttributeActions(object): """Configuration resource used to determine what action should be taken for a specific attribute. :param CryptoAction default_action: Action to take if no specific action is defined in ``attribute_actions`` :param dict attribute_actions: Dictionary mapping attribute names to specific actions """ default_action = attr.ib(validator=attr.validators.instance_of(CryptoAction), default=CryptoAction.ENCRYPT_AND_SIGN) attribute_actions = attr.ib( validator=dictionary_validator(six.string_types, CryptoAction), default=attr.Factory(dict) ) def __init__( self, default_action=CryptoAction.ENCRYPT_AND_SIGN, # type: Optional[CryptoAction] attribute_actions=None, # type: Optional[Dict[Text, CryptoAction]] ): # noqa=D107 # type: (...) -> None # Workaround pending resolution of attrs/mypy interaction. # https://github.com/python/mypy/issues/2088 # https://github.com/python-attrs/attrs/issues/215 if attribute_actions is None: attribute_actions = {} self.default_action = default_action self.attribute_actions = attribute_actions attr.validate(self) self.__attrs_post_init__() def __attrs_post_init__(self): # () -> None """Determine if any actions should ever be taken with this configuration and record that for reference.""" for attribute in ReservedAttributes: if attribute.value in self.attribute_actions: raise ValueError('No override behavior can be set for reserved attribute "{}"'.format(attribute.value)) # Enums are not hashable, but their names are unique _unique_actions = {self.default_action.name} _unique_actions.update({action.name for action in self.attribute_actions.values()}) no_actions = _unique_actions == {CryptoAction.DO_NOTHING.name} self.take_no_actions = no_actions # attrs confuses pylint: disable=attribute-defined-outside-init def action(self, attribute_name): # (text) -> CryptoAction """Determine the correct :class:`CryptoAction` to apply to a supplied attribute based on this config. :param str attribute_name: Attribute for which to determine action """ return self.attribute_actions.get(attribute_name, self.default_action) def copy(self): # () -> AttributeActions """Return a new copy of this object.""" return AttributeActions(default_action=self.default_action, attribute_actions=self.attribute_actions.copy()) def set_index_keys(self, *keys): """Set the appropriate action for the specified indexed attribute names. .. warning:: If you have already set a custom action for any of these attributes, this will raise an error. .. code:: Default Action -> Index Key Action DO_NOTHING -> DO_NOTHING SIGN_ONLY -> SIGN_ONLY ENCRYPT_AND_SIGN -> SIGN_ONLY :param str *keys: Attribute names to treat as indexed :raises InvalidArgumentError: if a custom action was previously set for any specified attributes """ for key in keys: index_action = min(self.action(key), CryptoAction.SIGN_ONLY) try: if self.attribute_actions[key] is not index_action: raise InvalidArgumentError( 'Cannot overwrite a previously requested action on indexed attribute: "{}"'.format(key) ) except KeyError: self.attribute_actions[key] = index_action def contains_action(self, action): # (CryptoAction) -> bool """Determine if the specified action is a possible action from this configuration. :param CryptoAction action: Action to look for """ return action is self.default_action or action in self.attribute_actions.values() def __add__(self, other): # (AttributeActions) -> AttributeActions """Merge two AttributeActions objects into a new instance, applying the dominant action in each discovered case. """ default_action = self.default_action + other.default_action all_attributes = set(self.attribute_actions.keys()).union(set(other.attribute_actions.keys())) attribute_actions = {} for attribute in all_attributes: attribute_actions[attribute] = max(self.action(attribute), other.action(attribute)) return AttributeActions(default_action=default_action, attribute_actions=attribute_actions) @attr.s(init=False) class TableIndex(object): # pylint: disable=too-few-public-methods """Describes a table index. :param str partition: Name of the partition attribute :param str sort: Name of the sort attribute (optional) """ partition = attr.ib(validator=attr.validators.instance_of(six.string_types)) sort = attr.ib(validator=attr.validators.optional(attr.validators.instance_of(six.string_types)), default=None) def __init__(self, partition, sort=None): # noqa=D107 # type: (Text, Optional[Text]) -> None # Workaround pending resolution of attrs/mypy interaction. # https://github.com/python/mypy/issues/2088 # https://github.com/python-attrs/attrs/issues/215 self.partition = partition self.sort = sort attr.validate(self) self.__attrs_post_init__() def __attrs_post_init__(self): """Set the ``attributes`` attribute for ease of access later.""" self.attributes = set([self.partition]) # attrs confuses pylint: disable=attribute-defined-outside-init if self.sort is not None: self.attributes.add(self.sort) @classmethod def from_key_schema(cls, key_schema): # type: (Iterable[Dict[Text, Text]]) -> TableIndex """Build a TableIndex from the key schema returned by DescribeTable. .. code:: [ { "KeyType": "HASH"|"RANGE", "AttributeName": "" }, ] :param list key_schema: KeySchema from DescribeTable response :returns: New TableIndex that describes the provided schema :rtype: TableIndex """ index = {key["KeyType"]: key["AttributeName"] for key in key_schema} return cls(partition=index["HASH"], sort=index.get("RANGE", None)) @attr.s(init=False) class TableInfo(object): """Describes a DynamoDB table. :param str name: Table name :param bool all_encrypting_secondary_indexes: Should we allow secondary index attributes to be encrypted? :param TableIndex primary_index: Description of primary index :param secondary_indexes: Set of TableIndex objects describing any secondary indexes :type secondary_indexes: list(TableIndex) """ name = attr.ib(validator=attr.validators.instance_of(six.string_types)) _primary_index = attr.ib(validator=attr.validators.optional(attr.validators.instance_of(TableIndex)), default=None) _secondary_indexes = attr.ib(validator=attr.validators.optional(iterable_validator(list, TableIndex)), default=None) def __init__( self, name, # type: Text primary_index=None, # type: Optional[TableIndex] secondary_indexes=None, # type: Optional[List[TableIndex]] ): # noqa=D107 # type: (...) -> None # Workaround pending resolution of attrs/mypy interaction. # https://github.com/python/mypy/issues/2088 # https://github.com/python-attrs/attrs/issues/215 self.name = name self._primary_index = primary_index self._secondary_indexes = secondary_indexes attr.validate(self) @property def primary_index(self): # type: () -> TableIndex """Return the primary TableIndex. :returns: primary index description :rtype: TableIndex :raises AttributeError: if primary index is unknown """ if self._primary_index is None: raise AttributeError("Indexes unknown. Run refresh_indexed_attributes") return self._primary_index @property def secondary_indexes(self): # type: () -> List[TableIndex] """Return the primary TableIndex. :returns: secondary index descriptions :rtype: TableIndex :raises AttributeError: if secondary indexes are unknown """ if self._secondary_indexes is None: raise AttributeError("Indexes unknown. Run refresh_indexed_attributes") return self._secondary_indexes def protected_index_keys(self): # type: () -> Set[Text] """Provide a set containing the names of all indexed attributes that must not be encrypted.""" return self.primary_index.attributes @property def encryption_context_values(self): # type: () -> Dict[Text, Text] """Build parameters needed to inform an EncryptionContext constructor about this table. :rtype: dict """ values = {"table_name": self.name} if self.primary_index is not None: values.update( {"partition_key_name": self.primary_index.partition, "sort_key_name": self.primary_index.sort} ) return values def refresh_indexed_attributes(self, client): """Use the provided boto3 DynamoDB client to determine all indexes for this table. :param client: Pre-configured boto3 DynamoDB client :type client: botocore.client.BaseClient """ table = client.describe_table(TableName=self.name)["Table"] self._primary_index = TableIndex.from_key_schema(table["KeySchema"]) self._secondary_indexes = [] for group in ("LocalSecondaryIndexes", "GlobalSecondaryIndexes"): try: for index in table[group]: self._secondary_indexes.append(TableIndex.from_key_schema(index["KeySchema"])) except KeyError: pass # Not all tables will have secondary indexes.
40.608451
120
0.676332
283f63bbe2faed5ef8c161dc156746ce3e623287
1,169
py
Python
pyapprox/sys_utilities.py
ConnectedSystems/pyapprox
4f405654c707cba83d211f327c0f0fdbc95efa29
[ "MIT" ]
26
2019-12-16T02:21:15.000Z
2022-03-17T09:59:18.000Z
pyapprox/sys_utilities.py
ConnectedSystems/pyapprox
4f405654c707cba83d211f327c0f0fdbc95efa29
[ "MIT" ]
9
2020-03-03T03:04:55.000Z
2021-08-19T22:50:42.000Z
pyapprox/sys_utilities.py
ConnectedSystems/pyapprox
4f405654c707cba83d211f327c0f0fdbc95efa29
[ "MIT" ]
7
2020-03-02T03:49:17.000Z
2021-02-17T02:07:53.000Z
import sys, os import pkg_resources import importlib import numpy as np def trace_error_with_msg(msg, e: Exception): exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] print(msg) print(f'Failed with error: {e}') details = f""" Error type: {exc_type} file/location: {fname} | {exc_tb.tb_lineno} """ print(details) def hash_array(array, decimals=None): r""" Hash an array for dictionary or set based lookup Parameters ---------- array : np.ndarray The integer array to hash Returns ------- key : integer The hash value of the array """ #assert array.ndim==1 #array = np.ascontiguousarray(array) #array.flags.writeable = False # return hash(array.data) if decimals is not None: array = np.around(array, decimals) # return hash(array.tostring()) return hash(array.tobytes()) def package_available(name): pkg_available = True try: mod = importlib.import_module(name) except (ModuleNotFoundError, ImportError): pkg_available = False return pkg_available
22.480769
64
0.644996
ce377857ff0550c9ba921f1ca78d79f68791948e
12,004
py
Python
python/ray/util/actor_pool.py
mgelbart/ray
4cec2286572e368a4bd64aae467751a384eff62d
[ "Apache-2.0" ]
22
2018-05-08T05:52:34.000Z
2020-04-01T10:09:55.000Z
python/ray/util/actor_pool.py
mgelbart/ray
4cec2286572e368a4bd64aae467751a384eff62d
[ "Apache-2.0" ]
51
2018-05-17T05:55:28.000Z
2020-03-18T06:49:49.000Z
python/ray/util/actor_pool.py
mgelbart/ray
4cec2286572e368a4bd64aae467751a384eff62d
[ "Apache-2.0" ]
10
2018-04-27T10:50:59.000Z
2020-02-24T02:41:43.000Z
import ray from ray.util.annotations import PublicAPI @PublicAPI(stability="beta") class ActorPool: """Utility class to operate on a fixed pool of actors. Arguments: actors (list): List of Ray actor handles to use in this pool. Examples: >>> import ray >>> from ray.util.actor_pool import ActorPool >>> @ray.remote # doctest: +SKIP >>> class Actor: # doctest: +SKIP ... ... # doctest: +SKIP >>> a1, a2 = Actor.remote(), Actor.remote() # doctest: +SKIP >>> pool = ActorPool([a1, a2]) # doctest: +SKIP >>> print(list(pool.map(lambda a, v: a.double.remote(v), # doctest: +SKIP ... [1, 2, 3, 4]))) # doctest: +SKIP [2, 4, 6, 8] """ def __init__(self, actors): # actors to be used self._idle_actors = list(actors) # get actor from future self._future_to_actor = {} # get future from index self._index_to_future = {} # next task to do self._next_task_index = 0 # next task to return self._next_return_index = 0 # next work depending when actors free self._pending_submits = [] def map(self, fn, values): """Apply the given function in parallel over the actors and values. This returns an ordered iterator that will return results of the map as they finish. Note that you must iterate over the iterator to force the computation to finish. Arguments: fn (func): Function that takes (actor, value) as argument and returns an ObjectRef computing the result over the value. The actor will be considered busy until the ObjectRef completes. values (list): List of values that fn(actor, value) should be applied to. Returns: Iterator over results from applying fn to the actors and values. Examples: >>> from ray.util.actor_pool import ActorPool >>> pool = ActorPool(...) # doctest: +SKIP >>> print(list(pool.map(lambda a, v: a.double.remote(v), ... [1, 2, 3, 4]))) # doctest: +SKIP [2, 4, 6, 8] """ # Ignore/Cancel all the previous submissions # by calling `has_next` and `gen_next` repeteadly. while self.has_next(): try: self.get_next(timeout=0) except TimeoutError: pass for v in values: self.submit(fn, v) while self.has_next(): yield self.get_next() def map_unordered(self, fn, values): """Similar to map(), but returning an unordered iterator. This returns an unordered iterator that will return results of the map as they finish. This can be more efficient that map() if some results take longer to compute than others. Arguments: fn (func): Function that takes (actor, value) as argument and returns an ObjectRef computing the result over the value. The actor will be considered busy until the ObjectRef completes. values (list): List of values that fn(actor, value) should be applied to. Returns: Iterator over results from applying fn to the actors and values. Examples: >>> from ray.util.actor_pool import ActorPool >>> pool = ActorPool(...) # doctest: +SKIP >>> print(list(pool.map_unordered(lambda a, v: a.double.remote(v), ... [1, 2, 3, 4]))) # doctest: +SKIP [6, 2, 4, 8] """ # Ignore/Cancel all the previous submissions # by calling `has_next` and `gen_next_unordered` repeteadly. while self.has_next(): try: self.get_next_unordered(timeout=0) except TimeoutError: pass for v in values: self.submit(fn, v) while self.has_next(): yield self.get_next_unordered() def submit(self, fn, value): """Schedule a single task to run in the pool. This has the same argument semantics as map(), but takes on a single value instead of a list of values. The result can be retrieved using get_next() / get_next_unordered(). Arguments: fn (func): Function that takes (actor, value) as argument and returns an ObjectRef computing the result over the value. The actor will be considered busy until the ObjectRef completes. value (object): Value to compute a result for. Examples: >>> from ray.util.actor_pool import ActorPool >>> pool = ActorPool(...) # doctest: +SKIP >>> pool.submit(lambda a, v: a.double.remote(v), 1) # doctest: +SKIP >>> pool.submit(lambda a, v: a.double.remote(v), 2) # doctest: +SKIP >>> print(pool.get_next(), pool.get_next()) # doctest: +SKIP 2, 4 """ if self._idle_actors: actor = self._idle_actors.pop() future = fn(actor, value) future_key = tuple(future) if isinstance(future, list) else future self._future_to_actor[future_key] = (self._next_task_index, actor) self._index_to_future[self._next_task_index] = future self._next_task_index += 1 else: self._pending_submits.append((fn, value)) def has_next(self): """Returns whether there are any pending results to return. Returns: True if there are any pending results not yet returned. Examples: >>> from ray.util.actor_pool import ActorPool >>> pool = ActorPool(...) # doctest: +SKIP >>> pool.submit(lambda a, v: a.double.remote(v), 1) # doctest: +SKIP >>> print(pool.has_next()) # doctest: +SKIP True >>> print(pool.get_next()) # doctest: +SKIP 2 >>> print(pool.has_next()) # doctest: +SKIP False """ return bool(self._future_to_actor) def get_next(self, timeout=None): """Returns the next pending result in order. This returns the next result produced by submit(), blocking for up to the specified timeout until it is available. Returns: The next result. Raises: TimeoutError if the timeout is reached. Examples: >>> from ray.util.actor_pool import ActorPool >>> pool = ActorPool(...) # doctest: +SKIP >>> pool.submit(lambda a, v: a.double.remote(v), 1) # doctest: +SKIP >>> print(pool.get_next()) # doctest: +SKIP 2 """ if not self.has_next(): raise StopIteration("No more results to get") if self._next_return_index >= self._next_task_index: raise ValueError( "It is not allowed to call get_next() after get_next_unordered()." ) future = self._index_to_future[self._next_return_index] if timeout is not None: res, _ = ray.wait([future], timeout=timeout) if not res: raise TimeoutError("Timed out waiting for result") del self._index_to_future[self._next_return_index] self._next_return_index += 1 future_key = tuple(future) if isinstance(future, list) else future i, a = self._future_to_actor.pop(future_key) self._return_actor(a) return ray.get(future) def get_next_unordered(self, timeout=None): """Returns any of the next pending results. This returns some result produced by submit(), blocking for up to the specified timeout until it is available. Unlike get_next(), the results are not always returned in same order as submitted, which can improve performance. Returns: The next result. Raises: TimeoutError if the timeout is reached. Examples: >>> from ray.util.actor_pool import ActorPool >>> pool = ActorPool(...) # doctest: +SKIP >>> pool.submit(lambda a, v: a.double.remote(v), 1) # doctest: +SKIP >>> pool.submit(lambda a, v: a.double.remote(v), 2) # doctest: +SKIP >>> print(pool.get_next_unordered()) # doctest: +SKIP 4 >>> print(pool.get_next_unordered()) # doctest: +SKIP 2 """ if not self.has_next(): raise StopIteration("No more results to get") # TODO(ekl) bulk wait for performance res, _ = ray.wait(list(self._future_to_actor), num_returns=1, timeout=timeout) if res: [future] = res else: raise TimeoutError("Timed out waiting for result") i, a = self._future_to_actor.pop(future) self._return_actor(a) del self._index_to_future[i] self._next_return_index = max(self._next_return_index, i + 1) return ray.get(future) def _return_actor(self, actor): self._idle_actors.append(actor) if self._pending_submits: self.submit(*self._pending_submits.pop(0)) def has_free(self): """Returns whether there are any idle actors available. Returns: True if there are any idle actors and no pending submits. Examples: >>> @ray.remote # doctest: +SKIP >>> class Actor: # doctest: +SKIP ... ... # doctest: +SKIP >>> a1 = Actor.remote() # doctest: +SKIP >>> pool = ActorPool(a1) # doctest: +SKIP >>> pool.submit(lambda a, v: a.double.remote(v), 1) # doctest: +SKIP >>> print(pool.has_free()) # doctest: +SKIP False >>> print(pool.get_next()) # doctest: +SKIP 2 >>> print(pool.has_free()) # doctest: +SKIP True """ return len(self._idle_actors) > 0 and len(self._pending_submits) == 0 def pop_idle(self): """Removes an idle actor from the pool. Returns: An idle actor if one is available. None if no actor was free to be removed. Examples: >>> @ray.remote # doctest: +SKIP >>> class Actor: # doctest: +SKIP ... ... # doctest: +SKIP >>> a1 = Actor.remote() # doctest: +SKIP >>> pool = ActorPool([a1]) # doctest: +SKIP >>> pool.submit(lambda a, v: a.double.remote(v), 1) # doctest: +SKIP >>> print(pool.pop_idle()) # doctest: +SKIP None >>> print(pool.get_next()) # doctest: +SKIP 2 >>> print(pool.pop_idle()) # doctest: +SKIP <ptr to a1> """ if self.has_free(): return self._idle_actors.pop() return None def push(self, actor): """Pushes a new actor into the current list of idle actors. Examples: >>> @ray.remote # doctest: +SKIP >>> class Actor: # doctest: +SKIP ... ... # doctest: +SKIP >>> a1, b1 = Actor.remote(), Actor.remote() # doctest: +SKIP >>> pool = ActorPool([a1]) # doctest: +SKIP >>> pool.submit(lambda a, v: a.double.remote(v), 1) # doctest: +SKIP >>> print(pool.get_next()) # doctest: +SKIP 2 >>> pool2 = ActorPool([b1]) # doctest: +SKIP >>> pool2.push(pool.pop_idle()) # doctest: +SKIP """ busy_actors = [] if self._future_to_actor.values(): _, busy_actors = zip(*self._future_to_actor.values()) if actor in self._idle_actors or actor in busy_actors: raise ValueError("Actor already belongs to current ActorPool") else: self._idle_actors.append(actor)
37.630094
86
0.559064
174942b28e48f699f26a4c51d2add9385d44e6c5
213
py
Python
dayrolling.py
ClownMonster/StockPrediction_MLmodel_python
ea5562ce377422f072b6907e7547a44483d1e81e
[ "MIT" ]
null
null
null
dayrolling.py
ClownMonster/StockPrediction_MLmodel_python
ea5562ce377422f072b6907e7547a44483d1e81e
[ "MIT" ]
null
null
null
dayrolling.py
ClownMonster/StockPrediction_MLmodel_python
ea5562ce377422f072b6907e7547a44483d1e81e
[ "MIT" ]
null
null
null
''' Prints the data rolling back of 7days from the day need to visualize ''' from ProcessedDataframe import trainData def mean_data(): train_df = trainData() d = train_df.rolling(7).mean() return d
19.363636
69
0.704225
93f393308f448c848b1d173bb51bfb0997d32ef1
2,074
py
Python
{{cookiecutter.project_name}}/{{cookiecutter.project_name}}_api/api/schemas.py
frank2411/cookiecutter_flasktemplate
fc80827f0f7e7b87679790c8c1d9094518576b5b
[ "Apache-2.0" ]
null
null
null
{{cookiecutter.project_name}}/{{cookiecutter.project_name}}_api/api/schemas.py
frank2411/cookiecutter_flasktemplate
fc80827f0f7e7b87679790c8c1d9094518576b5b
[ "Apache-2.0" ]
null
null
null
{{cookiecutter.project_name}}/{{cookiecutter.project_name}}_api/api/schemas.py
frank2411/cookiecutter_flasktemplate
fc80827f0f7e7b87679790c8c1d9094518576b5b
[ "Apache-2.0" ]
null
null
null
import uuid from marshmallow_sqlalchemy.fields import Related from sqlalchemy.orm.exc import NoResultFound class FixedRelated(Related): # pragma: no cover default_error_messages = { "invalid": "Could not deserialize related value {value!r}; " "expected a dictionary with keys {keys!r}", "not_found": "Related Object doesn't exist in DB", "invalid_uuid": "Not a valid UUID." } def _deserialize(self, value, *args, **kwargs): """Deserialize a serialized value to a model instance. If the parent schema is transient, create a new (transient) instance. Otherwise, attempt to find an existing instance in the database. :param value: The value to deserialize. """ if not isinstance(value, dict): if len(self.related_keys) != 1: keys = [prop.key for prop in self.related_keys] raise self.make_error("invalid", value=value, keys=keys) value = {self.related_keys[0].key: value} if self.transient: return self.related_model(**value) if self.related_model.id.type.__str__() == "UUID": try: uuid.UUID(value["id"]) except (ValueError, AttributeError, TypeError) as error: raise self.make_error("invalid_uuid") from error try: result = self._get_existing_instance( self.session.query(self.related_model), value ) except NoResultFound: # The related-object DNE in the DB, but we still want to deserialize it # ...perhaps we want to add it to the DB later raise self.make_error("not_found") return result def _serialize(self, value, attr, obj): ret = {prop.key: getattr(value, prop.key, None) for prop in self.related_keys} # Little hack to prevent errors in uuid deserialization if isinstance(ret["id"], uuid.UUID): ret["id"] = str(ret["id"]) return ret if len(ret) > 1 else list(ret.values())[0]
37.709091
86
0.613308
29e9f493ea18f72f4489a55151f43dbc9521b162
743
py
Python
257. Binary Tree Paths.py
patrick-luo/Leet-Code
989ec20c1069ce93e1d0e9ae4a4dfc59b1b1622a
[ "MIT" ]
null
null
null
257. Binary Tree Paths.py
patrick-luo/Leet-Code
989ec20c1069ce93e1d0e9ae4a4dfc59b1b1622a
[ "MIT" ]
null
null
null
257. Binary Tree Paths.py
patrick-luo/Leet-Code
989ec20c1069ce93e1d0e9ae4a4dfc59b1b1622a
[ "MIT" ]
null
null
null
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def binaryTreePaths(self, root): """ :type root: TreeNode :rtype: List[str] """ def dfs(root, path, res): if root is None: return path.append(str(root.val)) if root.left is None and root.right is None: res.append('->'.join(path)) else: dfs(root.left, path, res) dfs(root.right, path, res) path.pop() res = list() dfs(root, list(), res) return res
26.535714
56
0.475101
25409d1814f7cde0a2f0b58785c4d633be3a806e
557
py
Python
koroviev/utils.py
Egnod/koroviev
aea948c54177357ae7e2101541221d2d907f6aeb
[ "MIT" ]
null
null
null
koroviev/utils.py
Egnod/koroviev
aea948c54177357ae7e2101541221d2d907f6aeb
[ "MIT" ]
2
2020-09-13T21:12:27.000Z
2020-09-13T21:13:44.000Z
koroviev/utils.py
Egnod/koroviev
aea948c54177357ae7e2101541221d2d907f6aeb
[ "MIT" ]
null
null
null
from functools import wraps from typing import Callable from termcolor import cprint def config_file_required(func: Callable) -> Callable: """Decorator for cli methods with required exists config file in project.""" @wraps(func) def wrapper(self, *args, **kwargs) -> None: if not self._cfg_exist: cprint( "Error: config file does not exists. It looks like the project is not initialized.", "red", ) else: func(self, *args, **kwargs) return wrapper
25.318182
100
0.610413
568b4976bd8436dcb87f814d5247ce80a282e67a
838
py
Python
tiers/helpers.py
appsembler/django-tiers
7c59be2a31a767e1917bc4296c1c986427e35b8a
[ "MIT" ]
2
2017-04-10T19:50:35.000Z
2021-08-13T09:00:07.000Z
tiers/helpers.py
appsembler/django-tiers
7c59be2a31a767e1917bc4296c1c986427e35b8a
[ "MIT" ]
28
2017-03-07T19:47:15.000Z
2022-03-30T13:12:26.000Z
tiers/helpers.py
appsembler/django-tiers
7c59be2a31a767e1917bc4296c1c986427e35b8a
[ "MIT" ]
null
null
null
from .app_settings import settings def is_equal_or_sub_url(request_url, checked_url): """Stupidly simple method to check for URLs equality""" if request_url == checked_url: return True request_url = request_url.rstrip('/') checked_url = checked_url.rstrip('/') return request_url.startswith(checked_url) def is_white_listed_url(url): """Checks if the URL is whitelisted for non-redirect.""" if url == '/': # Homepage is not whitelisted. return False white_listed_urls = settings.redirect_white_list() if settings.expired_redirect_url(): white_listed_urls.append(settings.expired_redirect_url()) for white_listed_url in white_listed_urls: if is_equal_or_sub_url(request_url=url, checked_url=white_listed_url): return True return False
28.896552
78
0.711217
6c31da8ae5a2a72ce531b9e961a8b1da09e37fd5
893
py
Python
examples/frameworks/fire/fire_grouping_cmd.py
thepycoder/clearml
717edba8c2b39fb7486bd2aba9ca0294f309b4c3
[ "Apache-2.0" ]
2,097
2019-06-11T14:36:25.000Z
2020-12-21T03:52:59.000Z
examples/frameworks/fire/fire_grouping_cmd.py
thepycoder/clearml
717edba8c2b39fb7486bd2aba9ca0294f309b4c3
[ "Apache-2.0" ]
247
2019-06-11T15:10:26.000Z
2020-12-21T17:34:32.000Z
examples/frameworks/fire/fire_grouping_cmd.py
thepycoder/clearml
717edba8c2b39fb7486bd2aba9ca0294f309b4c3
[ "Apache-2.0" ]
256
2019-06-11T14:36:28.000Z
2020-12-18T08:32:47.000Z
# ClearML - Example of Python Fire integration, with commands grouped inside classes # from clearml import Task import fire class Other(object): def status(self): return "Other" class IngestionStage(object): def __init__(self): self.other = Other() def run(self): return "Ingesting! Nom nom nom..." def hello(self, hello_str): return hello_str class DigestionStage(object): def run(self, volume=1): return " ".join(["Burp!"] * volume) def status(self): return "Satiated." class Pipeline(object): def __init__(self): self.ingestion = IngestionStage() self.digestion = DigestionStage() def run(self): self.ingestion.run() self.digestion.run() if __name__ == "__main__": Task.init(project_name="examples", task_name="Fire grouping command") fire.Fire(Pipeline)
19.844444
84
0.641657
9ce54c4c1c026777bee52e1b27565a7d0d969d1a
186
py
Python
suave/urls.py
radiosilence/django-suave
19eb23de0589bdce68f91d580c53da179835ed90
[ "MIT" ]
null
null
null
suave/urls.py
radiosilence/django-suave
19eb23de0589bdce68f91d580c53da179835ed90
[ "MIT" ]
1
2020-09-25T07:00:39.000Z
2020-09-28T06:51:09.000Z
suave/urls.py
radiosilence/django-suave
19eb23de0589bdce68f91d580c53da179835ed90
[ "MIT" ]
null
null
null
from django.conf.urls.defaults import patterns, url urlpatterns = patterns('suave.views', url(r'^(?P<url>[-\w\/]+)/$', 'page', name='page'), url(r'^$', 'page', name='page'), )
23.25
54
0.586022
c2906c8a3833780f8269a7eabf7eda1e474622f8
5,694
py
Python
pywikibot/families/wiktionary_family.py
xqt/pwb
9a4fe27138f32952e533256195849d05855df0b0
[ "MIT" ]
null
null
null
pywikibot/families/wiktionary_family.py
xqt/pwb
9a4fe27138f32952e533256195849d05855df0b0
[ "MIT" ]
1
2021-12-08T16:29:41.000Z
2021-12-08T16:29:41.000Z
pywikibot/families/wiktionary_family.py
xqt/pwb
9a4fe27138f32952e533256195849d05855df0b0
[ "MIT" ]
2
2022-01-04T04:10:38.000Z
2022-01-04T04:18:18.000Z
"""Family module for Wiktionary.""" # # (C) Pywikibot team, 2005-2022 # # Distributed under the terms of the MIT license. # from pywikibot import family from pywikibot.tools import classproperty # The Wikimedia family that is known as Wiktionary class Family(family.SubdomainFamily, family.WikimediaFamily): """Family class for Wiktionary.""" name = 'wiktionary' closed_wikis = [ # https://noc.wikimedia.org/conf/highlight.php?file=dblists/closed.dblist 'aa', 'ab', 'ak', 'as', 'av', 'bh', 'bi', 'bm', 'bo', 'ch', 'cr', 'dz', 'ik', 'mh', 'pi', 'rm', 'rn', 'sc', 'sn', 'to', 'tw', 'xh', 'yo', 'za', ] removed_wikis = [ # https://noc.wikimedia.org/conf/highlight.php?file=dblists/deleted.dblist 'als', 'ba', 'dk', 'mo', 'tlh', 'tokipona', ] languages_by_size = [ 'en', 'fr', 'mg', 'zh', 'ru', 'de', 'es', 'sh', 'sv', 'nl', 'el', 'pl', 'ku', 'lt', 'it', 'ca', 'fi', 'ta', 'hu', 'tr', 'io', 'hy', 'ko', 'ja', 'pt', 'kn', 'vi', 'sr', 'th', 'hi', 'ro', 'no', 'et', 'id', 'cs', 'ml', 'my', 'uz', 'li', 'or', 'eo', 'te', 'fa', 'gl', 'skr', 'ar', 'oc', 'jv', 'az', 'eu', 'uk', 'br', 'ast', 'da', 'is', 'lo', 'simple', 'bn', 'la', 'hr', 'fj', 'tg', 'ky', 'sk', 'bg', 'wa', 'sg', 'ur', 'shn', 'ps', 'cy', 'vo', 'sl', 'om', 'he', 'af', 'zh-min-nan', 'mnw', 'scn', 'tl', 'pa', 'sw', 'fy', 'lmo', 'nn', 'ka', 'lv', 'ms', 'min', 'sq', 'nds', 'co', 'mn', 'pnb', 'lb', 'bs', 'nah', 'yue', 'sa', 'kk', 'km', 'diq', 'vec', 'be', 'tk', 'mk', 'sm', 'nia', 'hsb', 'ks', 'shy', 'su', 'gd', 'ga', 'bcl', 'mr', 'gom', 'an', 'wo', 'mni', 'ia', 'ang', 'mt', 'fo', 'sd', 'tt', 'gn', 'ie', 'so', 'csb', 'ug', 'si', 'st', 'roa-rup', 'hif', 'tpi', 'kl', 'zu', 'ha', 'mi', 'ay', 'jbo', 'yi', 'ln', 'gu', 'na', 'gv', 'kw', 'am', 'ne', 'rw', 'ts', 'qu', 'ss', 'iu', 'chr', 'dv', 'ti', 'tn', ] category_redirect_templates = { '_default': (), 'ar': ('تحويل تصنيف',), 'zh': ('分类重定向',), } # Global bot allowed languages on # https://meta.wikimedia.org/wiki/BPI#Current_implementation # & https://meta.wikimedia.org/wiki/Special:WikiSets/2 cross_allowed = [ 'af', 'am', 'an', 'ang', 'ar', 'ast', 'ay', 'az', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'chr', 'co', 'cs', 'csb', 'cy', 'da', 'dv', 'el', 'eo', 'es', 'et', 'eu', 'fa', 'fi', 'fj', 'fo', 'fy', 'ga', 'gd', 'gl', 'gn', 'gu', 'gv', 'ha', 'hsb', 'hu', 'hy', 'ia', 'id', 'ie', 'io', 'iu', 'jbo', 'jv', 'ka', 'kk', 'kl', 'km', 'kn', 'ko', 'ks', 'ku', 'kw', 'ky', 'la', 'lb', 'ln', 'lo', 'lt', 'lv', 'mg', 'mi', 'mk', 'ml', 'mn', 'ms', 'mt', 'my', 'na', 'nah', 'nds', 'ne', 'nl', 'nn', 'no', 'oc', 'om', 'or', 'pa', 'pnb', 'ps', 'pt', 'qu', 'roa-rup', 'rw', 'sa', 'scn', 'sd', 'sg', 'sh', 'si', 'simple', 'sk', 'sl', 'sm', 'so', 'sq', 'sr', 'ss', 'st', 'su', 'sv', 'sw', 'ta', 'te', 'tg', 'th', 'ti', 'tk', 'tl', 'tn', 'tpi', 'tr', 'ts', 'tt', 'ug', 'uk', 'ur', 'uz', 'vec', 'vi', 'vo', 'wa', 'wo', 'yi', 'zh', 'zh-min-nan', 'zu', ] # Which languages have a special order for putting interlanguage links, # and what order is it? If a language is not in interwiki_putfirst, # alphabetical order on language code is used. For languages that are in # interwiki_putfirst, interwiki_putfirst is checked first, and # languages are put in the order given there. All other languages are # put after those, in code-alphabetical order. alphabetic_sv = [ 'aa', 'af', 'ak', 'als', 'an', 'roa-rup', 'ast', 'gn', 'ay', 'az', 'id', 'ms', 'bm', 'zh-min-nan', 'jv', 'su', 'mt', 'bi', 'bo', 'bs', 'br', 'ca', 'cs', 'ch', 'sn', 'co', 'za', 'cy', 'da', 'de', 'na', 'mh', 'et', 'ang', 'en', 'es', 'eo', 'eu', 'to', 'fr', 'fy', 'fo', 'ga', 'gv', 'sm', 'gd', 'gl', 'hr', 'io', 'ia', 'ie', 'ik', 'xh', 'is', 'zu', 'it', 'kl', 'csb', 'kw', 'rw', 'rn', 'sw', 'ky', 'ku', 'la', 'lv', 'lb', 'lt', 'li', 'ln', 'jbo', 'hu', 'mg', 'mi', 'mo', 'my', 'fj', 'nah', 'nl', 'cr', 'no', 'nn', 'hsb', 'oc', 'om', 'ug', 'uz', 'nds', 'pl', 'pt', 'ro', 'rm', 'qu', 'sg', 'sc', 'st', 'tn', 'sq', 'scn', 'simple', 'ss', 'sk', 'sl', 'so', 'sh', 'fi', 'sv', 'tl', 'tt', 'vi', 'tpi', 'tr', 'tw', 'vo', 'wa', 'wo', 'ts', 'yo', 'el', 'av', 'ab', 'ba', 'be', 'bg', 'mk', 'mn', 'ru', 'sr', 'tg', 'uk', 'kk', 'hy', 'yi', 'he', 'ur', 'ar', 'tk', 'sd', 'fa', 'ha', 'ps', 'dv', 'ks', 'ne', 'pi', 'bh', 'mr', 'sa', 'hi', 'as', 'bn', 'pa', 'pnb', 'gu', 'or', 'ta', 'te', 'kn', 'ml', 'si', 'th', 'lo', 'dz', 'ka', 'ti', 'am', 'chr', 'iu', 'km', 'zh', 'ja', 'ko', 'shn', ] @classproperty def interwiki_putfirst(cls): cls.interwiki_putfirst = { 'da': cls.alphabetic, 'en': cls.alphabetic, 'et': cls.alphabetic, 'fi': cls.alphabetic, 'fy': cls.fyinterwiki, 'he': ['en'], 'hu': ['en'], 'ms': cls.alphabetic_revised, 'pl': cls.alphabetic_revised, 'sv': cls.alphabetic_sv, 'simple': cls.alphabetic, } return cls.interwiki_putfirst interwiki_on_one_line = ['pl'] interwiki_attop = ['pl'] # Subpages for documentation. # TODO: List is incomplete, to be completed for missing languages. doc_subpages = { '_default': (('/doc', ), ['en'] ), 'ar': ('/شرح', '/doc'), 'sr': ('/док', ), }
44.834646
82
0.429575
b8e7cd240993cbbcd8fa96eba4a15e7823668348
218
py
Python
Curso Python/Mundo 1/Modulo2/Desafios/Desafios 2/des006.py
catabimbas/Curso-Python
72549952db77fa9b0ea3746b83f94592e3fdeb30
[ "MIT" ]
null
null
null
Curso Python/Mundo 1/Modulo2/Desafios/Desafios 2/des006.py
catabimbas/Curso-Python
72549952db77fa9b0ea3746b83f94592e3fdeb30
[ "MIT" ]
null
null
null
Curso Python/Mundo 1/Modulo2/Desafios/Desafios 2/des006.py
catabimbas/Curso-Python
72549952db77fa9b0ea3746b83f94592e3fdeb30
[ "MIT" ]
null
null
null
numbase = int(input('Digite um valor: ')) duble = numbase * 2 triple = numbase * 3 rq = numbase ** 0.5 print('O dobro do valor: {} \nO triplo do valor: {} \nA raiz quadrada do valor: {:.2f}'.format(duble, triple, rq))
36.333333
114
0.646789
e9b4672409bab981632228bb65e76e1ec77b7c67
2,254
py
Python
Solutions/Problem_061.py
PraneethJain/Project-Euler
54fe34da444803ea55c49e4a4cda3ad6d4bca3b8
[ "MIT" ]
2
2022-03-11T21:31:52.000Z
2022-03-11T21:37:14.000Z
Solutions/Problem_061.py
PraneethJain/Project-Euler-100
54fe34da444803ea55c49e4a4cda3ad6d4bca3b8
[ "MIT" ]
null
null
null
Solutions/Problem_061.py
PraneethJain/Project-Euler-100
54fe34da444803ea55c49e4a4cda3ad6d4bca3b8
[ "MIT" ]
1
2022-03-07T12:55:36.000Z
2022-03-07T12:55:36.000Z
from time import time def triangular_check(t: int) -> bool: n = ((8 * t + 1) ** 0.5 - 1) / 2 return n == int(n) def square_check(s: int) -> bool: n = s**0.5 return n == int(n) def pentagonal_check(p: int) -> bool: n = (1 + (24 * p + 1) ** 0.5) / 6 return n == int(n) def hexagonal_check(h: int) -> bool: n = (1 + (8 * h + 1) ** 0.5) / 4 return n == int(n) def heptagonal_check(h: int) -> bool: n = (3 + (40 * h + 9) ** 0.5) / 10 return n == int(n) def octagonal_check(o: int) -> bool: n = (2 + (12 * o + 4) ** 0.5) / 6 return n == int(n) t1 = time() octagonal_nums = [i for i in range(10**3, 10**4) if octagonal_check(i)] all_set = set( [ i for i in range(10**3, 10**4) if any( [ triangular_check(i), square_check(i), pentagonal_check(i), hexagonal_check(i), heptagonal_check(i), octagonal_check(i), ] ) ] ) listoflists = [] for n1 in octagonal_nums: for n2 in all_set: if str(n1)[-2:] == str(n2)[:2]: for n3 in all_set: if str(n2)[-2:] == str(n3)[:2]: for n4 in all_set: if str(n3)[-2:] == str(n4)[:2]: for n5 in all_set: if str(n4)[-2:] == str(n5)[:2] and str(n5)[2] != "0": n6 = int(str(n5)[-2:] + str(n1)[:2]) listoflists.append([n1, n2, n3, n4, n5, n6]) for L in listoflists: ans = 0 for ele in L: if heptagonal_check(ele): ans += ele L.remove(ele) for ele in L: if hexagonal_check(ele): ans += ele L.remove(ele) for ele in L: if pentagonal_check(ele): ans += ele L.remove(ele) for ele in L: if square_check(ele): ans += ele L.remove(ele) for ele in L: if triangular_check(ele): ans += ele L.remove(ele) if len(L) == 1: print(ans + L[0]) print(f"Process completed in {time()-t1}s") raise SystemExit
25.044444
85
0.43567
dea183ba25f7dec8fcde5b8cc82c1e977ac4e87f
19,134
py
Python
python/ccxt/coinone.py
KaceyBolman/ccxt
d34a0651b209ac77453f05c4ce31883f0cd2d6b8
[ "MIT" ]
1
2018-07-31T12:27:28.000Z
2018-07-31T12:27:28.000Z
python/ccxt/coinone.py
rerefreshing/ccxt
7c50f338dcb282c0aee4d69a1ac4ca47255fdf15
[ "MIT" ]
null
null
null
python/ccxt/coinone.py
rerefreshing/ccxt
7c50f338dcb282c0aee4d69a1ac4ca47255fdf15
[ "MIT" ]
2
2019-03-14T15:17:46.000Z
2019-09-08T19:26:04.000Z
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from ccxt.base.exchange import Exchange import base64 import hashlib import json from ccxt.base.errors import ExchangeError from ccxt.base.errors import InvalidOrder from ccxt.base.errors import OrderNotFound from ccxt.base.errors import ExchangeNotAvailable class coinone (Exchange): def describe(self): return self.deep_extend(super(coinone, self).describe(), { 'id': 'coinone', 'name': 'CoinOne', 'countries': ['KR'], # Korea 'rateLimit': 667, 'version': 'v2', 'has': { 'CORS': False, 'createMarketOrder': False, 'fetchTickers': True, 'fetchOrder': True, }, 'urls': { 'logo': 'https://user-images.githubusercontent.com/1294454/38003300-adc12fba-323f-11e8-8525-725f53c4a659.jpg', 'api': 'https://api.coinone.co.kr', 'www': 'https://coinone.co.kr', 'doc': 'https://doc.coinone.co.kr', }, 'requiredCredentials': { 'apiKey': True, 'secret': True, }, 'api': { 'public': { 'get': [ 'orderbook/', 'trades/', 'ticker/', ], }, 'private': { 'post': [ 'account/btc_deposit_address/', 'account/balance/', 'account/daily_balance/', 'account/user_info/', 'account/virtual_account/', 'order/cancel_all/', 'order/cancel/', 'order/limit_buy/', 'order/limit_sell/', 'order/complete_orders/', 'order/limit_orders/', 'order/order_info/', 'transaction/auth_number/', 'transaction/history/', 'transaction/krw/history/', 'transaction/btc/', 'transaction/coin/', ], }, }, 'markets': { 'BCH/KRW': {'id': 'bch', 'symbol': 'BCH/KRW', 'base': 'BCH', 'quote': 'KRW', 'baseId': 'bch', 'quoteId': 'krw'}, 'BTC/KRW': {'id': 'btc', 'symbol': 'BTC/KRW', 'base': 'BTC', 'quote': 'KRW', 'baseId': 'btc', 'quoteId': 'krw'}, 'BTG/KRW': {'id': 'btg', 'symbol': 'BTG/KRW', 'base': 'BTG', 'quote': 'KRW', 'baseId': 'btg', 'quoteId': 'krw'}, 'ETC/KRW': {'id': 'etc', 'symbol': 'ETC/KRW', 'base': 'ETC', 'quote': 'KRW', 'baseId': 'etc', 'quoteId': 'krw'}, 'ETH/KRW': {'id': 'eth', 'symbol': 'ETH/KRW', 'base': 'ETH', 'quote': 'KRW', 'baseId': 'eth', 'quoteId': 'krw'}, 'IOTA/KRW': {'id': 'iota', 'symbol': 'IOTA/KRW', 'base': 'IOTA', 'quote': 'KRW', 'baseId': 'iota', 'quoteId': 'krw'}, 'LTC/KRW': {'id': 'ltc', 'symbol': 'LTC/KRW', 'base': 'LTC', 'quote': 'KRW', 'baseId': 'ltc', 'quoteId': 'krw'}, 'OMG/KRW': {'id': 'omg', 'symbol': 'OMG/KRW', 'base': 'OMG', 'quote': 'KRW', 'baseId': 'omg', 'quoteId': 'krw'}, 'QTUM/KRW': {'id': 'qtum', 'symbol': 'QTUM/KRW', 'base': 'QTUM', 'quote': 'KRW', 'baseId': 'qtum', 'quoteId': 'krw'}, 'XRP/KRW': {'id': 'xrp', 'symbol': 'XRP/KRW', 'base': 'XRP', 'quote': 'KRW', 'baseId': 'xrp', 'quoteId': 'krw'}, 'EOS/KRW': {'id': 'eos', 'symbol': 'EOS/KRW', 'base': 'EOS', 'quote': 'KRW', 'baseId': 'eos', 'quoteId': 'krw'}, 'DATA/KRW': {'id': 'data', 'symbol': 'DATA/KRW', 'base': 'DATA', 'quote': 'KRW', 'baseId': 'data', 'quoteId': 'krw'}, 'ZIL/KRW': {'id': 'zil', 'symbol': 'ZIL/KRW', 'base': 'ZIL', 'quote': 'KRW', 'baseId': 'zil', 'quoteId': 'krw'}, 'KNC/KRW': {'id': 'knc', 'symbol': 'KNC/KRW', 'base': 'KNC', 'quote': 'KRW', 'baseId': 'knc', 'quoteId': 'krw'}, 'ZRX/KRW': {'id': 'zrx', 'symbol': 'ZRX/KRW', 'base': 'ZRX', 'quote': 'KRW', 'baseId': 'zrx', 'quoteId': 'krw'}, }, 'fees': { 'trading': { 'tierBased': True, 'percentage': True, 'taker': 0.001, 'maker': 0.001, 'tiers': { 'taker': [ [0, 0.001], [100000000, 0.0009], [1000000000, 0.0008], [5000000000, 0.0007], [10000000000, 0.0006], [20000000000, 0.0005], [30000000000, 0.0004], [40000000000, 0.0003], [50000000000, 0.0002], ], 'maker': [ [0, 0.001], [100000000, 0.0008], [1000000000, 0.0006], [5000000000, 0.0004], [10000000000, 0.0002], [20000000000, 0], [30000000000, 0], [40000000000, 0], [50000000000, 0], ], }, }, }, 'exceptions': { '405': ExchangeNotAvailable, '104': OrderNotFound, }, }) def fetch_balance(self, params={}): response = self.privatePostAccountBalance() result = {'info': response} balances = self.omit(response, [ 'errorCode', 'result', 'normalWallets', ]) ids = list(balances.keys()) for i in range(0, len(ids)): id = ids[i] balance = balances[id] code = id.upper() if id in self.currencies_by_id: code = self.currencies_by_id[id]['code'] free = float(balance['avail']) total = float(balance['balance']) used = total - free account = { 'free': free, 'used': used, 'total': total, } result[code] = account return self.parse_balance(result) def fetch_order_book(self, symbol, limit=None, params={}): market = self.market(symbol) response = self.publicGetOrderbook(self.extend({ 'currency': market['id'], 'format': 'json', }, params)) return self.parse_order_book(response, None, 'bid', 'ask', 'price', 'qty') def fetch_tickers(self, symbols=None, params={}): self.load_markets() response = self.publicGetTicker(self.extend({ 'currency': 'all', 'format': 'json', }, params)) result = {} tickers = response ids = list(tickers.keys()) for i in range(0, len(ids)): id = ids[i] symbol = id market = None if id in self.markets_by_id: market = self.markets_by_id[id] symbol = market['symbol'] ticker = tickers[id] result[symbol] = self.parse_ticker(ticker, market) return result def fetch_ticker(self, symbol, params={}): market = self.market(symbol) response = self.publicGetTicker(self.extend({ 'currency': market['id'], 'format': 'json', }, params)) return self.parse_ticker(response, market) def parse_ticker(self, ticker, market=None): timestamp = self.milliseconds() last = self.safe_float(ticker, 'last') previousClose = self.safe_float(ticker, 'yesterday_last') change = None if last is not None and previousClose is not None: change = previousClose - last symbol = market['symbol'] if (market is not None) else None return { 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': self.safe_float(ticker, 'high'), 'low': self.safe_float(ticker, 'low'), 'bid': None, 'bidVolume': None, 'ask': None, 'askVolume': None, 'vwap': None, 'open': self.safe_float(ticker, 'first'), 'close': last, 'last': last, 'previousClose': previousClose, 'change': change, 'percentage': None, 'average': None, 'baseVolume': self.safe_float(ticker, 'volume'), 'quoteVolume': None, 'info': ticker, } def parse_trade(self, trade, market=None): timestamp = int(trade['timestamp']) * 1000 symbol = market['symbol'] if (market is not None) else None return { 'id': None, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'order': None, 'symbol': symbol, 'type': None, 'side': None, 'price': self.safe_float(trade, 'price'), 'amount': self.safe_float(trade, 'qty'), 'fee': None, 'info': trade, } def fetch_trades(self, symbol, since=None, limit=None, params={}): market = self.market(symbol) response = self.publicGetTrades(self.extend({ 'currency': market['id'], 'period': 'hour', 'format': 'json', }, params)) return self.parse_trades(response['completeOrders'], market, since, limit) def create_order(self, symbol, type, side, amount, price=None, params={}): if type != 'limit': raise ExchangeError(self.id + ' allows limit orders only') self.load_markets() request = { 'price': price, 'currency': self.market_id(symbol), 'qty': amount, } method = 'privatePostOrder' + self.capitalize(type) + self.capitalize(side) response = getattr(self, method)(self.extend(request, params)) id = self.safe_string(response, 'orderId') timestamp = self.milliseconds() cost = price * amount order = { 'info': response, 'id': id, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': None, 'symbol': symbol, 'type': type, 'side': side, 'price': price, 'cost': cost, 'average': None, 'amount': amount, 'filled': None, 'remaining': amount, 'status': 'open', 'fee': None, } self.orders[id] = order return order def fetch_order(self, id, symbol=None, params={}): self.load_markets() result = None market = None if symbol is None: if id in self.orders: market = self.market(self.orders[id]['symbol']) else: raise ExchangeError(self.id + ' fetchOrder() requires a symbol argument for order ids missing in the .orders cache(the order was created with a different instance of self class or within a different run of self code).') else: market = self.market(symbol) try: response = self.privatePostOrderOrderInfo(self.extend({ 'order_id': id, 'currency': market['id'], }, params)) result = self.parse_order(response) self.orders[id] = result except Exception as e: if isinstance(e, OrderNotFound): if id in self.orders: self.orders[id]['status'] = 'canceled' result = self.orders[id] else: raise e else: raise e return result def parse_order_status(self, status): statuses = { 'live': 'open', 'partially_filled': 'open', 'filled': 'closed', } if status in statuses: return statuses[status] return status def parse_order(self, order, market=None): info = self.safe_value(order, 'info') id = self.safe_string(info, 'orderId') timestamp = int(info['timestamp']) * 1000 status = self.safe_string(order, 'status') status = self.parse_order_status(status) cost = None side = self.safe_string(info, 'type') if side.find('ask') >= 0: side = 'sell' else: side = 'buy' price = self.safe_float(info, 'price') amount = self.safe_float(info, 'qty') remaining = self.safe_float(info, 'remainQty') filled = None if amount is not None: if remaining is not None: filled = amount - remaining if price is not None: cost = price * amount currency = self.safe_string(info, 'currency') fee = { 'currency': currency, 'cost': self.safe_float(info, 'fee'), 'rate': self.safe_float(info, 'feeRate'), } symbol = None if market is None: marketId = currency.lower() if marketId in self.markets_by_id: market = self.markets_by_id[marketId] if market is not None: symbol = market['symbol'] result = { 'info': order, 'id': id, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': None, 'symbol': symbol, 'type': 'limit', 'side': side, 'price': price, 'cost': cost, 'amount': amount, 'filled': filled, 'remaining': remaining, 'status': status, 'fee': fee, } return result def cancel_order(self, id, symbol=None, params={}): order = self.safe_value(self.orders, id) amount = None price = None side = None if order is None: if symbol is None: # eslint-disable-next-line quotes raise InvalidOrder(self.id + " cancelOrder could not find the order id " + id + " in orders cache. The order was probably created with a different instance of self class earlier. The `symbol` argument is missing. To cancel the order, pass a symbol argument and {'price': 12345, 'qty': 1.2345, 'is_ask': 0} in the params argument of cancelOrder.") price = self.safe_float(params, 'price') if price is None: # eslint-disable-next-line quotes raise InvalidOrder(self.id + " cancelOrder could not find the order id " + id + " in orders cache. The order was probably created with a different instance of self class earlier. The `price` parameter is missing. To cancel the order, pass a symbol argument and {'price': 12345, 'qty': 1.2345, 'is_ask': 0} in the params argument of cancelOrder.") amount = self.safe_float(params, 'qty') if amount is None: # eslint-disable-next-line quotes raise InvalidOrder(self.id + " cancelOrder could not find the order id " + id + " in orders cache. The order was probably created with a different instance of self class earlier. The `qty`(amount) parameter is missing. To cancel the order, pass a symbol argument and {'price': 12345, 'qty': 1.2345, 'is_ask': 0} in the params argument of cancelOrder.") side = self.safe_float(params, 'is_ask') if side is None: # eslint-disable-next-line quotes raise InvalidOrder(self.id + " cancelOrder could not find the order id " + id + " in orders cache. The order was probably created with a different instance of self class earlier. The `is_ask`(side) parameter is missing. To cancel the order, pass a symbol argument and {'price': 12345, 'qty': 1.2345, 'is_ask': 0} in the params argument of cancelOrder.") else: price = order['price'] amount = order['amount'] side = 0 if (order['side'] == 'buy') else 1 symbol = order['symbol'] request = { 'order_id': id, 'price': price, 'qty': amount, 'is_ask': side, 'currency': self.market_id(symbol), } self.orders[id]['status'] = 'canceled' return self.privatePostOrderCancel(self.extend(request, params)) def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): request = self.implode_params(path, params) query = self.omit(params, self.extract_params(path)) url = self.urls['api'] + '/' if api == 'public': url += request if query: url += '?' + self.urlencode(query) else: self.check_required_credentials() url += self.version + '/' + request nonce = str(self.nonce()) json = self.json(self.extend({ 'access_token': self.apiKey, 'nonce': nonce, }, params)) payload = base64.b64encode(self.encode(json)) body = self.decode(payload) secret = self.secret.upper() signature = self.hmac(payload, self.encode(secret), hashlib.sha512) headers = { 'content-type': 'application/json', 'X-COINONE-PAYLOAD': payload, 'X-COINONE-SIGNATURE': signature, } return {'url': url, 'method': method, 'body': body, 'headers': headers} def handle_errors(self, code, reason, url, method, headers, body): if (body[0] == '{') or (body[0] == '['): response = json.loads(body) if 'result' in response: result = response['result'] if result != 'success': # # { "errorCode": "405", "status": "maintenance", "result": "error"} # code = self.safe_string(response, 'errorCode') feedback = self.id + ' ' + self.json(response) exceptions = self.exceptions if code in exceptions: raise exceptions[code](feedback) else: raise ExchangeError(feedback) else: raise ExchangeError(self.id + ' ' + body)
42.238411
369
0.485001
d1a1a77ce30f26ad3b65e414739e76dcb4c53333
7,824
py
Python
api/src/opentrons/drivers/utils.py
anuwrag/opentrons
28c8d76a19e367c6bd38f5290faaa32abf378715
[ "Apache-2.0" ]
null
null
null
api/src/opentrons/drivers/utils.py
anuwrag/opentrons
28c8d76a19e367c6bd38f5290faaa32abf378715
[ "Apache-2.0" ]
null
null
null
api/src/opentrons/drivers/utils.py
anuwrag/opentrons
28c8d76a19e367c6bd38f5290faaa32abf378715
[ "Apache-2.0" ]
null
null
null
import binascii import logging import time from typing import Dict, Optional, Mapping, Iterable, Sequence import re from opentrons.drivers.types import ( Temperature, PlateTemperature, RPM, HeaterShakerLabwareLatchStatus, ) log = logging.getLogger(__name__) # Number of digits after the decimal point for temperatures being sent # to/from Temp-Deck TEMPDECK_GCODE_ROUNDING_PRECISION = 0 TC_GCODE_ROUNDING_PRECISION = 2 HS_GCODE_ROUNDING_PRECISION = 2 KEY_VALUE_REGEX = re.compile(r"((?P<key>\S+):(?P<value>\S+))") class ParseError(Exception): def __init__(self, error_message: str, parse_source: str) -> None: self.error_message = error_message self.parse_source = parse_source super().__init__( f"ParseError(error_message={error_message}, parse_source={parse_source})" ) def parse_string_value_from_substring(substring: str) -> str: """ Returns the ascii value in the expected string "N:aa11bb22", where "N" is the key, and "aa11bb22" is string value to be returned """ try: value = substring.split(":")[1] return str(value) except (ValueError, IndexError, TypeError, AttributeError): log.exception("Unexpected arg to parse_string_value_from_substring:") raise ParseError( error_message="Unexpected arg to parse_string_value_from_substring", parse_source=substring, ) def parse_temperature_response( temperature_string: str, rounding_val: int, zero_target_is_unset: bool = False ) -> Temperature: """Parse a standard temperature response from a module temperature_string: The string from the module after decoding rounding_val: A value to round to zero_target_is_unset: Whether or not to treat a 0 target temperature as indicating that the module is regulating around the target temperature 0C (which the tempdeck and thermocycler are capable of) or that the module does not currently have a target temperature set and is not regulating (as the heater/shaker does - it has a resistive heater rather than a thermoelectric cooler, and therefore cannot regulate on a temperature below ambient). Example input: "T:none C:25""" data = parse_key_values(temperature_string) try: target = parse_optional_number(data["T"], rounding_val) if zero_target_is_unset and target == 0.0: target = None return Temperature(current=parse_number(data["C"], rounding_val), target=target) except KeyError: raise ParseError( error_message="Unexpected argument to parse_temperature_response", parse_source=temperature_string, ) def parse_rpm_response(rpm_string: str) -> RPM: """Example input: T:1233 C:212""" data = parse_key_values(rpm_string) try: target: Optional[int] = int(parse_number(data["T"], 0)) if target == 0: target = None return RPM( current=int(parse_number(data["C"], 0)), target=target, ) except KeyError: raise ParseError( error_message="Unexpected argument to parse_rpm_response", parse_source=rpm_string, ) def parse_labware_latch_status_response( status_string: str, ) -> HeaterShakerLabwareLatchStatus: """Example format: STATUS:IDLE_OPEN""" status_vals = parse_key_values(status_string) try: return HeaterShakerLabwareLatchStatus[status_vals["STATUS"]] except KeyError: raise ParseError( error_message="Unexpected argument to parse_labware_latch_status_response", parse_source=status_string, ) def parse_plate_temperature_response( temperature_string: str, rounding_val: int ) -> PlateTemperature: """Example input: "T:none C:25 H:123""" data = parse_key_values(temperature_string) try: return PlateTemperature( current=parse_number(data["C"], rounding_val), target=parse_optional_number(data["T"], rounding_val), hold=parse_optional_number(data["H"], rounding_val), ) except KeyError: raise ParseError( error_message="Unexpected argument to parse_plate_temperature_response", parse_source=temperature_string, ) def parse_hs_device_information(device_info_string: str) -> Dict[str, str]: """Parse the device information block from a heater/shaker, which has a slightly different set of keys for its entries Example: "HW:A FW:21.2.1 SerialNo:TCA020B" """ res = parse_key_values(device_info_string) keymap = {"HW": "model", "FW": "version", "SerialNo": "serial"} try: return {keymap[key]: res[key] for key in keymap.keys()} except KeyError as e: raise ParseError( error_message=f"Missing key '{str(e)} in parse_hs_device_information", parse_source=device_info_string, ) def parse_device_information(device_info_string: str) -> Dict[str, str]: """ Parse the modules's device information response. Example response from temp-deck: "serial:aa11 model:bb22 version:cc33" """ res = parse_key_values(device_info_string) try: return {key: res[key] for key in ["model", "version", "serial"]} except KeyError as e: raise ParseError( error_message=f"Missing key '{str(e)}' in parse_device_information", parse_source=device_info_string, ) def parse_key_values(value: str) -> Dict[str, str]: """Convert string in the format: 'key1:value1 key2:value2' to dict {'key1': 'value1', 'key2': 'value2'} """ res = { g.groupdict()["key"]: g.groupdict()["value"] for g in KEY_VALUE_REGEX.finditer(value) } return res def parse_optional_number(value: str, rounding_val: int) -> Optional[float]: """Convert number to float. 'none' will be converted to None""" return None if value == "none" else parse_number(value, rounding_val) def parse_number(value: str, rounding_val: int) -> float: """Convert string to float.""" try: return round(float(value), rounding_val) except ValueError: raise ParseError( error_message="Unexpected argument to parse_number", parse_source=value ) class AxisMoveTimestamp: """Keeps track of the last time axes were known to move""" def __init__(self, axis_iter: Sequence[str]): self._moved_at: Dict[str, Optional[float]] = {ax: None for ax in axis_iter} def mark_moved(self, axis_iter: Sequence[str]) -> None: """Indicate that a set of axes just moved""" now = time.monotonic() self._moved_at.update({ax: now for ax in axis_iter}) def time_since_moved(self) -> Mapping[str, Optional[float]]: """Get a mapping of the time since each known axis moved""" now = time.monotonic() return {ax: now - val if val else None for ax, val, in self._moved_at.items()} def reset_moved(self, axis_iter: Iterable[str]) -> None: """Reset the clocks for a set of axes""" self._moved_at.update({ax: None for ax in axis_iter}) def string_to_hex(val: str, min_length: int = 0) -> str: """ Create a hex representation of val. The end of the result will be padded with "0" until min_length is reached. Args: val: The string to convert. min_length: The minimum length of result. "0" will be used as padding. Default is no minimum length and no padding. Returns: Hex string """ hex_string = binascii.hexlify(val.encode()).decode() hex_string_length = len(hex_string) if hex_string_length < min_length: return hex_string + "0" * (min_length - hex_string_length) return hex_string
34.017391
88
0.672163
e1c3ffda62a818e29b5e89cd39616b7dc04db044
631
py
Python
Suanfa/01_abc.py
ivitan/LearnPython
f7c1c8f450f5cbcbd8cabe03711c5e0d81dfdee3
[ "MIT" ]
1
2020-02-05T12:13:31.000Z
2020-02-05T12:13:31.000Z
Suanfa/01_abc.py
ivitan/LearnPython
f7c1c8f450f5cbcbd8cabe03711c5e0d81dfdee3
[ "MIT" ]
null
null
null
Suanfa/01_abc.py
ivitan/LearnPython
f7c1c8f450f5cbcbd8cabe03711c5e0d81dfdee3
[ "MIT" ]
null
null
null
# a+b+c=100,a**2+b**2=c**2,a,b,c为自然数,求a,b,c # 每台机器的总时间不同,但是执行基本运算数大体相同 #T(n) = n^3 * 2 import time start_time = time.time() # 枚举a,b,c # 时间复杂度 T = 1000 * 1000 * 1000 * 2 # for a in range(0,1001): # for b in range(0,1001): # for c in range(0,1001): # if a+b+c==1000 and a**2+b**2==c**2: # print("a,b,c:%d,%d,%d" % (a,b,c)) # 枚举a,b # 时间复杂度 T = 1000 * 1000 * 2 for a in range(0,1001): for b in range(0,1001): c = 1000 - a- b if a+b+c==1000 and a**2+b**2==c**2: print("a,b,c:%d,%d,%d" % (a,b,c)) end_time = time.time() print("time:%d" % (end_time - start_time))
26.291667
51
0.502377
fed675391e037a1554b29fb2cdba756a27ac6bee
2,358
py
Python
tests/neighbors/test_nng.py
cthoyt/kiez
25f9f103ed51d4084e10f7ac532bb24183fe3894
[ "BSD-3-Clause" ]
13
2021-07-22T12:35:07.000Z
2022-02-15T04:35:17.000Z
tests/neighbors/test_nng.py
cthoyt/kiez
25f9f103ed51d4084e10f7ac532bb24183fe3894
[ "BSD-3-Clause" ]
10
2021-07-23T11:20:32.000Z
2022-02-06T12:59:06.000Z
tests/neighbors/test_nng.py
cthoyt/kiez
25f9f103ed51d4084e10f7ac532bb24183fe3894
[ "BSD-3-Clause" ]
2
2021-07-23T10:53:57.000Z
2021-09-01T01:14:37.000Z
import numpy as np import pytest from kiez.neighbors import NNG from numpy.testing import assert_array_equal rng = np.random.RandomState(2) def test_wrong_metric(): with pytest.raises(ValueError) as exc_info: NNG(metric="jibberish") assert "Unknown" in exc_info def test_wrong_dir(n_samples=20, n_features=5): source = rng.rand(n_samples, n_features) with pytest.raises(TypeError) as exc_info: nng = NNG(index_dir=1) nng.fit(source) assert "NNG requires" in exc_info def test_right_dir(tmp_path, n_samples=20, n_features=5): source = rng.rand(n_samples, n_features) target = rng.rand(n_samples, n_features) nng = NNG(index_dir=str(tmp_path)) nng.fit(source, target) assert nng is not None def test_none_dir(n_samples=20, n_features=5): source = rng.rand(n_samples, n_features) target = rng.rand(n_samples, n_features) nng = NNG(index_dir=None) nng.fit(source, target) assert nng is not None def test_self_query(n_samples=20, n_features=5, n_neighbors=5): source = rng.rand(n_samples, n_features) nng = NNG(index_dir=None, n_candidates=n_neighbors, epsilon=0.00001) nng.fit(source, source) d, i = nng.kneighbors() i2 = nng.kneighbors(return_distance=False) assert_array_equal(i, i2) def test_query(n_samples=20, n_features=5, n_neighbors=5): source = rng.rand(n_samples, n_features) target = rng.rand(n_samples, n_features) nng = NNG(index_dir=None, n_candidates=n_neighbors, epsilon=0.00001) nng.fit(source, target) d, i = nng.kneighbors( query=source[ :5, ] ) i2 = nng.kneighbors( query=source[ :5, ], return_distance=False, ) assert_array_equal(i, i2) def test_sqeuclidean(n_samples=20, n_features=5, n_neighbors=5): source = rng.rand(n_samples, n_features) target = rng.rand(n_samples, n_features) nng1 = NNG(index_dir=None, n_candidates=n_neighbors, metric="sqeuclidean") nng1.fit(source, target) d, i = nng1.kneighbors( query=source[ :5, ] ) nng2 = NNG(index_dir=None, n_candidates=n_neighbors) nng2.fit(source, target) i2 = nng2.kneighbors( query=source[ :5, ], return_distance=False, ) assert_array_equal(i, i2)
27.418605
78
0.664122
084f71e11e3585460d164349e7b713c8e9ce8313
1,468
py
Python
src/programy/triggers/excepter.py
cdoebler1/AIML2
ee692ec5ea3794cd1bc4cc8ec2a6b5e5c20a0d6a
[ "MIT" ]
345
2016-11-23T22:37:04.000Z
2022-03-30T20:44:44.000Z
src/programy/triggers/excepter.py
MikeyBeez/program-y
00d7a0c7d50062f18f0ab6f4a041068e119ef7f0
[ "MIT" ]
275
2016-12-07T10:30:28.000Z
2022-02-08T21:28:33.000Z
src/programy/triggers/excepter.py
VProgramMist/modified-program-y
f32efcafafd773683b3fe30054d5485fe9002b7d
[ "MIT" ]
159
2016-11-28T18:59:30.000Z
2022-03-20T18:02:44.000Z
""" Copyright (c) 2016-2020 Keith Sterling http://www.keithsterling.com Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from programy.triggers.trigger import Trigger from programy.context import ClientContext from programy.utils.console.console import outputLog class ExceptionTrigger(Trigger): def __init__(self): Trigger.__init__(self) def trigger(self, client_context: ClientContext = None, additional=None): raise Exception("This trigger also exceptions")
50.62069
120
0.792916
210d1a32ae551d82397d81b39c2b980ce2da5647
792
py
Python
tests/functional/manifests/test_manifest.py
miohtama/ape
622deb25076d33de0edb3a23449ccdc04c3288cd
[ "Apache-2.0" ]
null
null
null
tests/functional/manifests/test_manifest.py
miohtama/ape
622deb25076d33de0edb3a23449ccdc04c3288cd
[ "Apache-2.0" ]
null
null
null
tests/functional/manifests/test_manifest.py
miohtama/ape
622deb25076d33de0edb3a23449ccdc04c3288cd
[ "Apache-2.0" ]
null
null
null
import pytest # type: ignore import requests from hypothesis import HealthCheck, given, settings from hypothesis_jsonschema import from_schema # type: ignore from ape.types.manifest import PackageManifest ETHPM_MANIFEST_SCHEMA_URI = ( "https://raw.githubusercontent.com/ethpm/ethpm-spec/master/spec/v3.spec.json" ) @pytest.mark.xfail(reason="Schema is poorly formed") @pytest.mark.fuzzing @given(manifest_dict=from_schema(requests.get(ETHPM_MANIFEST_SCHEMA_URI).json())) @settings(suppress_health_check=(HealthCheck.too_slow,)) def test_manifest_parsing(manifest_dict): manifest = PackageManifest.from_dict(manifest_dict) assert manifest.to_dict() == manifest_dict def test_example_manifests(manifest): assert PackageManifest.from_dict(manifest).to_dict() == manifest
33
81
0.804293
e6c4eb2aa0f85e7fdc96c30c22d55fdf2284c58d
22,597
py
Python
evennia/commands/default/general.py
FreeDelete-Software/ALPACAS-evennia
dd95de145ea31391238dc03d61b14b6b31a5b715
[ "BSD-3-Clause" ]
null
null
null
evennia/commands/default/general.py
FreeDelete-Software/ALPACAS-evennia
dd95de145ea31391238dc03d61b14b6b31a5b715
[ "BSD-3-Clause" ]
null
null
null
evennia/commands/default/general.py
FreeDelete-Software/ALPACAS-evennia
dd95de145ea31391238dc03d61b14b6b31a5b715
[ "BSD-3-Clause" ]
null
null
null
""" General Character commands usually available to all characters """ import re from django.conf import settings from evennia.utils import utils from evennia.typeclasses.attributes import NickTemplateInvalid COMMAND_DEFAULT_CLASS = utils.class_from_module(settings.COMMAND_DEFAULT_CLASS) # limit symbol import for API __all__ = ( "CmdHome", "CmdLook", "CmdNick", "CmdInventory", "CmdSetDesc", "CmdGet", "CmdDrop", "CmdGive", "CmdSay", "CmdWhisper", "CmdPose", "CmdAccess", ) class CmdHome(COMMAND_DEFAULT_CLASS): """ move to your character's home location Usage: home Teleports you to your home location. """ key = "home" locks = "cmd:perm(home) or perm(Builder)" arg_regex = r"$" def func(self): """Implement the command""" caller = self.caller home = caller.home if not home: caller.msg("You have no home!") elif home == caller.location: caller.msg("You are already home!") else: caller.msg("There's no place like home ...") caller.move_to(home) class CmdLook(COMMAND_DEFAULT_CLASS): """ look at location or object Usage: look look <obj> look *<account> Observes your location or objects in your vicinity. """ key = "look" aliases = ["l", "ls"] locks = "cmd:all()" arg_regex = r"\s|$" def func(self): """ Handle the looking. """ caller = self.caller if not self.args: target = caller.location if not target: caller.msg("You have no location to look at!") return else: target = caller.search(self.args) if not target: return desc = caller.at_look(target) # add the type=look to the outputfunc to make it # easy to separate this output in client. self.msg(text=(desc, {"type": "look"}), options=None) class CmdNick(COMMAND_DEFAULT_CLASS): """ define a personal alias/nick by defining a string to match and replace it with another on the fly Usage: nick[/switches] <string> [= [replacement_string]] nick[/switches] <template> = <replacement_template> nick/delete <string> or number nicks Switches: inputline - replace on the inputline (default) object - replace on object-lookup account - replace on account-lookup list - show all defined aliases (also "nicks" works) delete - remove nick by index in /list clearall - clear all nicks Examples: nick hi = say Hello, I'm Sarah! nick/object tom = the tall man nick build $1 $2 = create/drop $1;$2 nick tell $1 $2=page $1=$2 nick tm?$1=page tallman=$1 nick tm\=$1=page tallman=$1 A 'nick' is a personal string replacement. Use $1, $2, ... to catch arguments. Put the last $-marker without an ending space to catch all remaining text. You can also use unix-glob matching for the left-hand side <string>: * - matches everything ? - matches 0 or 1 single characters [abcd] - matches these chars in any order [!abcd] - matches everything not among these chars \= - escape literal '=' you want in your <string> Note that no objects are actually renamed or changed by this command - your nicks are only available to you. If you want to permanently add keywords to an object for everyone to use, you need build privileges and the alias command. """ key = "nick" switch_options = ("inputline", "object", "account", "list", "delete", "clearall") aliases = ["nickname", "nicks"] locks = "cmd:all()" def parse(self): """ Support escaping of = with \= """ super(CmdNick, self).parse() args = (self.lhs or "") + (" = %s" % self.rhs if self.rhs else "") parts = re.split(r"(?<!\\)=", args, 1) self.rhs = None if len(parts) < 2: self.lhs = parts[0].strip() else: self.lhs, self.rhs = [part.strip() for part in parts] self.lhs = self.lhs.replace("\=", "=") def func(self): """Create the nickname""" def _cy(string): "add color to the special markers" return re.sub(r"(\$[0-9]+|\*|\?|\[.+?\])", r"|Y\1|n", string) caller = self.caller switches = self.switches nicktypes = [switch for switch in switches if switch in ("object", "account", "inputline")] specified_nicktype = bool(nicktypes) nicktypes = nicktypes if specified_nicktype else ["inputline"] nicklist = ( utils.make_iter(caller.nicks.get(category="inputline", return_obj=True) or []) + utils.make_iter(caller.nicks.get(category="object", return_obj=True) or []) + utils.make_iter(caller.nicks.get(category="account", return_obj=True) or []) ) if "list" in switches or self.cmdstring in ("nicks",): if not nicklist: string = "|wNo nicks defined.|n" else: table = self.styled_table("#", "Type", "Nick match", "Replacement") for inum, nickobj in enumerate(nicklist): _, _, nickvalue, replacement = nickobj.value table.add_row( str(inum + 1), nickobj.db_category, _cy(nickvalue), _cy(replacement) ) string = "|wDefined Nicks:|n\n%s" % table caller.msg(string) return if "clearall" in switches: caller.nicks.clear() caller.account.nicks.clear() caller.msg("Cleared all nicks.") return if "delete" in switches or "del" in switches: if not self.args or not self.lhs: caller.msg("usage nick/delete <nick> or <#num> ('nicks' for list)") return # see if a number was given arg = self.args.lstrip("#") oldnicks = [] if arg.isdigit(): # we are given a index in nicklist delindex = int(arg) if 0 < delindex <= len(nicklist): oldnicks.append(nicklist[delindex - 1]) else: caller.msg("Not a valid nick index. See 'nicks' for a list.") return else: if not specified_nicktype: nicktypes = ("object", "account", "inputline") for nicktype in nicktypes: oldnicks.append(caller.nicks.get(arg, category=nicktype, return_obj=True)) oldnicks = [oldnick for oldnick in oldnicks if oldnick] if oldnicks: for oldnick in oldnicks: nicktype = oldnick.category nicktypestr = "%s-nick" % nicktype.capitalize() _, _, old_nickstring, old_replstring = oldnick.value caller.nicks.remove(old_nickstring, category=nicktype) caller.msg( "%s removed: '|w%s|n' -> |w%s|n." % (nicktypestr, old_nickstring, old_replstring) ) else: caller.msg("No matching nicks to remove.") return if not self.rhs and self.lhs: # check what a nick is set to strings = [] if not specified_nicktype: nicktypes = ("object", "account", "inputline") for nicktype in nicktypes: nicks = [ nick for nick in utils.make_iter( caller.nicks.get(category=nicktype, return_obj=True) ) if nick ] for nick in nicks: _, _, nick, repl = nick.value if nick.startswith(self.lhs): strings.append( "{}-nick: '{}' -> '{}'".format(nicktype.capitalize(), nick, repl) ) if strings: caller.msg("\n".join(strings)) else: caller.msg("No nicks found matching '{}'".format(self.lhs)) return if not self.rhs and self.lhs: # check what a nick is set to strings = [] if not specified_nicktype: nicktypes = ("object", "account", "inputline") for nicktype in nicktypes: if nicktype == "account": obj = account else: obj = caller nicks = utils.make_iter(obj.nicks.get(category=nicktype, return_obj=True)) for nick in nicks: _, _, nick, repl = nick.value if nick.startswith(self.lhs): strings.append( "{}-nick: '{}' -> '{}'".format(nicktype.capitalize(), nick, repl) ) if strings: caller.msg("\n".join(strings)) else: caller.msg("No nicks found matching '{}'".format(self.lhs)) return if not self.rhs and self.lhs: # check what a nick is set to strings = [] if not specified_nicktype: nicktypes = ("object", "account", "inputline") for nicktype in nicktypes: if nicktype == "account": obj = account else: obj = caller nicks = utils.make_iter(obj.nicks.get(category=nicktype, return_obj=True)) for nick in nicks: _, _, nick, repl = nick.value if nick.startswith(self.lhs): strings.append( "{}-nick: '{}' -> '{}'".format(nicktype.capitalize(), nick, repl) ) if strings: caller.msg("\n".join(strings)) else: caller.msg("No nicks found matching '{}'".format(self.lhs)) return if not self.args or not self.lhs: caller.msg("Usage: nick[/switches] nickname = [realname]") return # setting new nicks nickstring = self.lhs replstring = self.rhs if replstring == nickstring: caller.msg("No point in setting nick same as the string to replace...") return # check so we have a suitable nick type errstring = "" string = "" for nicktype in nicktypes: nicktypestr = "%s-nick" % nicktype.capitalize() old_nickstring = None old_replstring = None oldnick = caller.nicks.get(key=nickstring, category=nicktype, return_obj=True) if oldnick: _, _, old_nickstring, old_replstring = oldnick.value if replstring: # creating new nick errstring = "" if oldnick: if replstring == old_replstring: string += "\nIdentical %s already set." % nicktypestr.lower() else: string += "\n%s '|w%s|n' updated to map to '|w%s|n'." % ( nicktypestr, old_nickstring, replstring, ) else: string += "\n%s '|w%s|n' mapped to '|w%s|n'." % ( nicktypestr, nickstring, replstring, ) try: caller.nicks.add(nickstring, replstring, category=nicktype) except NickTemplateInvalid: caller.msg( "You must use the same $-markers both in the nick and in the replacement." ) return elif old_nickstring and old_replstring: # just looking at the nick string += "\n%s '|w%s|n' maps to '|w%s|n'." % ( nicktypestr, old_nickstring, old_replstring, ) errstring = "" string = errstring if errstring else string caller.msg(_cy(string)) class CmdInventory(COMMAND_DEFAULT_CLASS): """ view inventory Usage: inventory inv Shows your inventory. """ key = "inventory" aliases = ["inv", "i"] locks = "cmd:all()" arg_regex = r"$" def func(self): """check inventory""" items = self.caller.contents if not items: string = "You are not carrying anything." else: from evennia.utils.ansi import raw as raw_ansi table = self.styled_table(border="header") for item in items: table.add_row(f"|C{item.name}|n", "{}|n".format(utils.crop(raw_ansi(item.db.desc or ""), width=50) or "")) string = f"|wYou are carrying:\n{table}" self.caller.msg(string) class CmdGet(COMMAND_DEFAULT_CLASS): """ pick up something Usage: get <obj> Picks up an object from your location and puts it in your inventory. """ key = "get" aliases = "grab" locks = "cmd:all();view:perm(Developer);read:perm(Developer)" arg_regex = r"\s|$" def func(self): """implements the command.""" caller = self.caller if not self.args: caller.msg("Get what?") return obj = caller.search(self.args, location=caller.location) if not obj: return if caller == obj: caller.msg("You can't get yourself.") return if not obj.access(caller, "get"): if obj.db.get_err_msg: caller.msg(obj.db.get_err_msg) else: caller.msg("You can't get that.") return # calling at_before_get hook method if not obj.at_before_get(caller): return success = obj.move_to(caller, quiet=True) if not success: caller.msg("This can't be picked up.") else: caller.msg("You pick up %s." % obj.name) caller.location.msg_contents( "%s picks up %s." % (caller.name, obj.name), exclude=caller ) # calling at_get hook method obj.at_get(caller) class CmdDrop(COMMAND_DEFAULT_CLASS): """ drop something Usage: drop <obj> Lets you drop an object from your inventory into the location you are currently in. """ key = "drop" locks = "cmd:all()" arg_regex = r"\s|$" def func(self): """Implement command""" caller = self.caller if not self.args: caller.msg("Drop what?") return # Because the DROP command by definition looks for items # in inventory, call the search function using location = caller obj = caller.search( self.args, location=caller, nofound_string="You aren't carrying %s." % self.args, multimatch_string="You carry more than one %s:" % self.args, ) if not obj: return # Call the object script's at_before_drop() method. if not obj.at_before_drop(caller): return success = obj.move_to(caller.location, quiet=True) if not success: caller.msg("This couldn't be dropped.") else: caller.msg("You drop %s." % (obj.name,)) caller.location.msg_contents("%s drops %s." % (caller.name, obj.name), exclude=caller) # Call the object script's at_drop() method. obj.at_drop(caller) class CmdGive(COMMAND_DEFAULT_CLASS): """ give away something to someone Usage: give <inventory obj> <to||=> <target> Gives an items from your inventory to another character, placing it in their inventory. """ key = "give" rhs_split = ("=", " to ") # Prefer = delimiter, but allow " to " usage. locks = "cmd:all()" arg_regex = r"\s|$" def func(self): """Implement give""" caller = self.caller if not self.args or not self.rhs: caller.msg("Usage: give <inventory object> = <target>") return to_give = caller.search( self.lhs, location=caller, nofound_string="You aren't carrying %s." % self.lhs, multimatch_string="You carry more than one %s:" % self.lhs, ) target = caller.search(self.rhs) if not (to_give and target): return if target == caller: caller.msg("You keep %s to yourself." % to_give.key) return if not to_give.location == caller: caller.msg("You are not holding %s." % to_give.key) return # calling at_before_give hook method if not to_give.at_before_give(caller, target): return # give object success = to_give.move_to(target, quiet=True) if not success: caller.msg("This could not be given.") else: caller.msg("You give %s to %s." % (to_give.key, target.key)) target.msg("%s gives you %s." % (caller.key, to_give.key)) # Call the object script's at_give() method. to_give.at_give(caller, target) class CmdSetDesc(COMMAND_DEFAULT_CLASS): """ describe yourself Usage: setdesc <description> Add a description to yourself. This will be visible to people when they look at you. """ key = "setdesc" locks = "cmd:all()" arg_regex = r"\s|$" def func(self): """add the description""" if not self.args: self.caller.msg("You must add a description.") return self.caller.db.desc = self.args.strip() self.caller.msg("You set your description.") class CmdSay(COMMAND_DEFAULT_CLASS): """ speak as your character Usage: say <message> Talk to those in your current location. """ key = "say" aliases = ['"', "'"] locks = "cmd:all()" def func(self): """Run the say command""" caller = self.caller if not self.args: caller.msg("Say what?") return speech = self.args # Calling the at_before_say hook on the character speech = caller.at_before_say(speech) # If speech is empty, stop here if not speech: return # Call the at_after_say hook on the character caller.at_say(speech, msg_self=True) class CmdWhisper(COMMAND_DEFAULT_CLASS): """ Speak privately as your character to another Usage: whisper <character> = <message> whisper <char1>, <char2> = <message> Talk privately to one or more characters in your current location, without others in the room being informed. """ key = "whisper" locks = "cmd:all()" def func(self): """Run the whisper command""" caller = self.caller if not self.lhs or not self.rhs: caller.msg("Usage: whisper <character> = <message>") return receivers = [recv.strip() for recv in self.lhs.split(",")] receivers = [caller.search(receiver) for receiver in set(receivers)] receivers = [recv for recv in receivers if recv] speech = self.rhs # If the speech is empty, abort the command if not speech or not receivers: return # Call a hook to change the speech before whispering speech = caller.at_before_say(speech, whisper=True, receivers=receivers) # no need for self-message if we are whispering to ourselves (for some reason) msg_self = None if caller in receivers else True caller.at_say(speech, msg_self=msg_self, receivers=receivers, whisper=True) class CmdPose(COMMAND_DEFAULT_CLASS): """ strike a pose Usage: pose <pose text> pose's <pose text> Example: pose is standing by the wall, smiling. -> others will see: Tom is standing by the wall, smiling. Describe an action being taken. The pose text will automatically begin with your name. """ key = "pose" aliases = [":", "emote"] locks = "cmd:all()" def parse(self): """ Custom parse the cases where the emote starts with some special letter, such as 's, at which we don't want to separate the caller's name and the emote with a space. """ args = self.args if args and not args[0] in ["'", ",", ":"]: args = " %s" % args.strip() self.args = args def func(self): """Hook function""" if not self.args: msg = "What do you want to do?" self.caller.msg(msg) else: msg = "%s%s" % (self.caller.name, self.args) self.caller.location.msg_contents(text=(msg, {"type": "pose"}), from_obj=self.caller) class CmdAccess(COMMAND_DEFAULT_CLASS): """ show your current game access Usage: access This command shows you the permission hierarchy and which permission groups you are a member of. """ key = "access" aliases = ["groups", "hierarchy"] locks = "cmd:all()" arg_regex = r"$" def func(self): """Load the permission groups""" caller = self.caller hierarchy_full = settings.PERMISSION_HIERARCHY string = "\n|wPermission Hierarchy|n (climbing):\n %s" % ", ".join(hierarchy_full) if self.caller.account.is_superuser: cperms = "<Superuser>" pperms = "<Superuser>" else: cperms = ", ".join(caller.permissions.all()) pperms = ", ".join(caller.account.permissions.all()) string += "\n|wYour access|n:" string += "\nCharacter |c%s|n: %s" % (caller.key, cperms) if hasattr(caller, "account"): string += "\nAccount |c%s|n: %s" % (caller.account.key, pperms) caller.msg(string)
30.870219
102
0.531575
5a3c1b9dfdee1fe3834941cb5507d1dd51fd40c9
2,670
py
Python
vendor/github.com/google/go-jsonnet/cpp-jsonnet/case_studies/micromanage/cmds.py
BenHall/kubeless
398d0ee779d848655cf34dd28739f68a2f7bac8a
[ "Apache-2.0" ]
null
null
null
vendor/github.com/google/go-jsonnet/cpp-jsonnet/case_studies/micromanage/cmds.py
BenHall/kubeless
398d0ee779d848655cf34dd28739f68a2f7bac8a
[ "Apache-2.0" ]
null
null
null
vendor/github.com/google/go-jsonnet/cpp-jsonnet/case_studies/micromanage/cmds.py
BenHall/kubeless
398d0ee779d848655cf34dd28739f68a2f7bac8a
[ "Apache-2.0" ]
null
null
null
# Copyright 2015 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import glob import os # E.g. replace Simon's cat with 'Simon'\''s cat'. def escape(s): return "'%s'" % s.replace("'", "'\"'\"'") def file_glob(given_glob, to, prefix): dirs = [] files = [] lp = len(prefix) for f in glob.glob(given_glob): if os.path.isdir(f): more_files = file_glob('%s/*' % f, to, prefix) files += more_files else: files.append((f, to + f[lp:])) return files def compile_command_to_bash(cmd): if isinstance(cmd, basestring): return [cmd] elif cmd['kind'] == 'LiteralFile': return [ 'echo -n %s > %s' % (escape(cmd['content']), escape(cmd['to'])), 'chmod -v %s %s' % (cmd['filePermissions'], escape(cmd['to'])), 'chown -v %s.%s %s' % (cmd['owner'], cmd['group'], escape(cmd['to'])), ] elif cmd['kind'] == 'CopyFile': files = file_glob(cmd['from'], cmd['to'], os.path.dirname(cmd['from'])) dirs = set([os.path.dirname(f[1]) for f in files]) - {cmd['to']} lines = [] for d in dirs: lines += [ 'mkdir -v -p %s' % escape(d), 'chmod -v %s %s' % (cmd['dirPermissions'], escape(d)), 'chown -v %s.%s %s' % (cmd['owner'], cmd['group'], escape(d)), ] for f in files: with open (f[0], "r") as stream: content = stream.read() lines += [ 'echo -n %s > %s' % (escape(content), escape(f[1])), 'chmod -v %s %s' % (cmd['filePermissions'], escape(f[1])), 'chown -v %s.%s %s' % (cmd['owner'], cmd['group'], escape(f[1])), ] return lines elif cmd['kind'] == 'EnsureDir': return [ 'mkdir -v -p %s' % escape(cmd['dir']), 'chmod -v %s %s' % (cmd['dirPermissions'], escape(cmd['dir'])), 'chown -v %s.%s %s' % (cmd['owner'], cmd['group'], escape(cmd['dir'])), ] else: raise RuntimeError('Did not recognize image command kind: ' + cmd['kind'])
37.605634
83
0.535581
f672e10e77cb7db9e9f6da86f0db261d28e178f1
3,428
py
Python
app/gws/plugin/ows_provider/wfs/provider.py
gbd-consult/gbd-websuite
7212f41081c04614fdb4641e902d4de3424da8c5
[ "Apache-2.0" ]
3
2020-07-24T10:10:18.000Z
2022-03-16T10:22:04.000Z
app/gws/plugin/ows_provider/wfs/provider.py
gbd-consult/gbd-websuite
7212f41081c04614fdb4641e902d4de3424da8c5
[ "Apache-2.0" ]
28
2020-03-03T17:35:58.000Z
2021-07-12T12:05:47.000Z
app/gws/plugin/ows_provider/wfs/provider.py
gbd-consult/gbd-websuite
7212f41081c04614fdb4641e902d4de3424da8c5
[ "Apache-2.0" ]
1
2021-02-22T14:32:10.000Z
2021-02-22T14:32:10.000Z
"""WFS provider.""" import gws import gws.base.metadata import gws.base.ows import gws.lib.extent import gws.lib.gis import gws.lib.ows import gws.lib.shape import gws.types as t from . import caps """ References wfs 1.0.0: http://portal.opengeospatial.org/files/?artifact_id=7176 Sec 13.7.3 wfs 1.1.0: http://portal.opengeospatial.org/files/?artifact_id=8339 Sec 14.7.3 wfs 2.0.0: http://docs.opengeospatial.org/is/09-025r2/09-025r2.html Sec 11.1.3 see also https://docs.geoserver.org/latest/en/user/services/wfs/basics.html """ class Config(gws.base.ows.provider.Config): pass class Object(gws.base.ows.provider.Object): protocol = gws.OwsProtocol.WFS def configure(self): cc = caps.parse(self.get_capabilities()) self.metadata = self.require_child(gws.base.metadata.Object, cc.metadata) self.version = cc.version self.operations = cc.operations self.source_layers = cc.source_layers self.supported_crs = cc.supported_crs def find_features(self, args): # first, find features within the bounds of given shapes, # then, filter features precisely # this is more performant than WFS spatial ops (at least for qgis) # and also works without spatial ops support on the provider side bounds = args.bounds shape = None if args.shapes: map_tolerance = 0 if args.tolerance: n, u = args.tolerance map_tolerance = n * (args.resolution or 1) if u == 'px' else n shape = gws.lib.shape.union(args.shapes).tolerance_polygon(map_tolerance) bounds = shape.bounds our_crs = bounds.crs source_crs = self.source_crs or gws.lib.gis.best_crs(our_crs, self.supported_crs) bbox = gws.lib.extent.transform(bounds.extent, our_crs, source_crs) axis = gws.lib.gis.best_axis(source_crs, self.invert_axis_crs, gws.OwsProtocol.WFS, self.version) invert_axis = axis == 'yx' params = {} if invert_axis: bbox = gws.lib.gis.invert_bbox(bbox) params['BBOX'] = bbox if args.source_layer_names: params['TYPENAMES' if self.version >= '2.0.0' else 'TYPENAME'] = args.source_layer_names if args.limit: params['COUNT' if self.version >= '2.0.0' else 'MAXFEATURES'] = args.limit params['SRSNAME'] = source_crs params['VERSION'] = self.version params = gws.merge(params, args.get('params')) text = gws.lib.ows.request.get_text(**self.operation_args(gws.OwsVerb.GetFeature, params=params)) features = gws.lib.ows.formats.read(text, crs=source_crs, invert_axis=invert_axis) if features is None: gws.log.error(f'WFS response not parsed, params={params!r}') return [] if not shape: return features flt = [] for f in features: if not f.shape: continue f.transform_to(our_crs) if f.shape.intersects(shape): flt.append(f) if len(flt) != len(features): gws.log.debug(f'WFS filter before={len(features)} after={len(flt)}') return flt ## def create(root: gws.IRoot, cfg: gws.Config, parent: gws.Node = None, shared: bool = False) -> Object: return root.create_object(Object, cfg, parent, shared)
30.882883
105
0.630105
269d367974809d79cdaf648e542db28d3c0ae879
6,612
py
Python
yosys_spde_flow/postprocess_yosys_edif.py
antmicro/yosys-SpDE-flow
8c337d736b19e5927811dcada7b9aea9b31fe4c6
[ "Apache-2.0" ]
null
null
null
yosys_spde_flow/postprocess_yosys_edif.py
antmicro/yosys-SpDE-flow
8c337d736b19e5927811dcada7b9aea9b31fe4c6
[ "Apache-2.0" ]
null
null
null
yosys_spde_flow/postprocess_yosys_edif.py
antmicro/yosys-SpDE-flow
8c337d736b19e5927811dcada7b9aea9b31fe4c6
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 import argparse from pathlib import Path import re def convert_lut_init_to_hex(val: str) -> str: """Converts EDIF decimal and hexadecimal notation to hexadecimal for SpDE. Args: val (str): value in decimal or hexadecimal notation (i.e. ``16'hABCD``) Returns: str: string containing only hexadecimal number, without ``0x`` prefix (i.e. "ABCD") """ if "'" not in val: return str(format(int(val), 'x')).upper() else: return str(val.split("'h")[1]).upper() def find_closing_bracket(line: str, openbracketid: int) -> int: """Returns the index of the closing bracket for a given opening bracket. Looks for the closing bracket in string for an opening bracket that is pointed by the ``openbracketid``. Args: line (str) : a single line from the EDIF file openbracketid (int): the index of the opening bracket for which the closing bracket should be found Returns: int: index for the closing bracket or -1 if not found """ opencount = 0 finid = openbracketid for c in line[openbracketid:]: if c == '(': opencount += 1 elif c == ')': opencount -= 1 if opencount == 0: return finid finid += 1 return -1 def fix_array_line(line: str, arraysizes: dict) -> str: """Converts array notation from Yosys EDIF to notation acceptable by SpDE. Arrays in EDIF file from Yosys are declared in a form:: (array (rename EDIF_ARR_NAME "verilog_name(maxid:minid)")") WIDTH) and the members of array are accessed with:: (member EDIF_ARR_NAME MEMBER_ID) This format is unacceptable for SpDE - it accepts only wires, so this function converts every declaration and member access with wire-based implementation. Args: line (str) : a single line from the EDIF file arraysizes (dict): a dict mapping array name to its size. It is a helper argument that stores the sizes from arrays from declaration so they can be used in index recalculation in converting member accesses Yields: str: Function yields lines that are produced during conversion of declarations and accesses """ arrayregex = r'\(array\s*\(rename\s*(?P<name>[A-Za-z_$][A-Za-z0-9_$]*)\s*\"(?P<verilogname>[A-Za-z_$][A-Za-z0-9_$]*)\s*\((?P<left>[0-9]+)\s*:\s*(?P<right>[0-9]+)\s*\)\"\)\s*(?P<edifsize>[0-9]+)\s*\)' # noqa: E501 arrayid = line.find('(array ') if arrayid != -1: # extract whole array declaration closing = find_closing_bracket(line, arrayid) + 1 tocut = line[arrayid:closing] arraydef = re.match(arrayregex, tocut) if not arraydef: raise Exception( 'Array declaration format not supported: '.format(tocut)) left = int(arraydef.group('left')) right = int(arraydef.group('right')) numelements = (left if left > right else right) + 1 variable_base = arraydef.group('name') orig_var = arraydef.group('verilogname') if variable_base in arraysizes: raise Exception( 'There is already an array with name "{}" declared'.format( variable_base)) arraysizes[variable_base] = numelements if left == right == 0: entrydef = '(rename {} "{}({})")'.format( variable_base, orig_var, 0) newline = line.replace(tocut, entrydef) yield newline else: for i in range(numelements): entrydef = '(rename {}_{}_ "{}({})")'.format( variable_base, i, orig_var, i) newline = line.replace(tocut, entrydef) yield newline else: memberid = line.find('(member ') if memberid != -1: closing = find_closing_bracket(line, memberid) + 1 tocut = line[memberid:closing] tokens = tocut.split(' ') variable_base = tokens[1] index = int(tokens[2][:-1]) entrydef = '{}_{}_'.format( variable_base, arraysizes[variable_base] - index - 1) newline = line.replace(tocut, entrydef) yield newline else: yield line if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("input", help="EDIF file containing the design", type=Path) parser.add_argument("output", help="Output EDIF file", type=Path) args = parser.parse_args() luttype = -1 lutlines = [] with open(args.input, 'r') as infile: # since definition of the LUT cells are multi-line, this needs to # be handled this way for line in infile: if '(instance ' in line: # new instance in EDIF luttype = -1 elif '(cellRef LUT' in line: s = '(cellRef LUT' # the new instance is LUT numloc = line.find(s) + len(s) luttype = int(line[numloc:].split(' ')[0]) elif '(property INIT' in line and luttype > 0: intpre = '(integer ' # look for integer field for INIT initdef = line.find(intpre) if initdef == -1: # otherwise look for string field intpre = '(string "' initdef = line.find(intpre) # remove the ending characters for field initdefdel = '")' if intpre == '(string "' else ')' initdefend = line.find(initdefdel, initdef) # extract the number in decimal or hexadecimal notation num = line[initdef + len(intpre):initdefend] # compute pure hexadecimal notation newval = convert_lut_init_to_hex(num) # add updated LUT INIT value line = line.replace( line[initdef:initdefend + len(initdefdel)], '(string "{}")'.format(newval)) lutlines.append(line) lines = [] arraysizes = {} for line in lutlines: for newline in fix_array_line(line, arraysizes): lines.append(newline) with open(args.output, 'w') as outfile: outfile.writelines(lines)
35.934783
217
0.553085
e86a83da2e2e4e6aed077e21c19f23f2e56d8b0a
11,340
py
Python
built-in/TensorFlow/Official/cv/image_classification/ResNet50_ID0360_for_TensorFlow2.X/tensorflow/tf2_common/training/utils.py
Ascend/modelzoo
f018cfed33dbb1cc2110b9ea2e233333f71cc509
[ "Apache-2.0" ]
12
2020-12-13T08:34:24.000Z
2022-03-20T15:17:17.000Z
built-in/TensorFlow/Official/cv/image_classification/ResNet50_ID0360_for_TensorFlow2.X/tensorflow/tf2_common/training/utils.py
Ascend/modelzoo
f018cfed33dbb1cc2110b9ea2e233333f71cc509
[ "Apache-2.0" ]
1
2022-01-20T03:11:05.000Z
2022-01-20T06:53:39.000Z
built-in/TensorFlow/Official/cv/image_classification/ResNet50_ID0360_for_TensorFlow2.X/tensorflow/tf2_common/training/utils.py
Ascend/modelzoo
f018cfed33dbb1cc2110b9ea2e233333f71cc509
[ "Apache-2.0" ]
2
2021-07-10T12:40:46.000Z
2021-12-17T07:55:15.000Z
#!/usr/bin/env python # coding=utf-8 # Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Some layered modules/functions to help users writing custom training loop.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import inspect import six import tensorflow as tf def create_loop_fn(step_fn): """Creates a multiple steps function driven by the python while loop. Args: step_fn: A function which takes `iterator` as input. Returns: A callable defined as the `loop_fn` defination below. """ def loop_fn(iterator, num_steps, state=None, reduce_fn=None): """A loop function with multiple steps. Args: iterator: A nested structure of tf.data `Iterator` or `DistributedIterator`. num_steps: The number of steps in the loop. If `num_steps==-1`, will iterate until exausting the iterator. state: An optional initial state before running the loop. reduce_fn: a callable defined as `def reduce_fn(state, value)`, where `value` is the outputs from `step_fn`. Returns: The updated state. """ try: step = 0 while (num_steps == -1 or step < num_steps): outputs = step_fn(iterator) if reduce_fn is not None: state = reduce_fn(state, outputs) step += 1 return state except (StopIteration, tf.errors.OutOfRangeError): return state return loop_fn def create_tf_while_loop_fn(step_fn): """Create a multiple steps function driven by tf.while_loop on the host. Args: step_fn: A function which takes `iterator` as input. Returns: A callable defined as the `loop_fn` defination below. """ @tf.function def loop_fn(iterator, num_steps): """A loop function with multiple steps. Args: iterator: A nested structure of tf.data `Iterator` or `DistributedIterator`. num_steps: The number of steps in the loop. Must be a tf.Tensor. """ if not isinstance(num_steps, tf.Tensor): raise ValueError("`num_steps` should be an `tf.Tensor`. Python object " "may cause retracing.") for _ in tf.range(num_steps): step_fn(iterator) return loop_fn def make_distributed_dataset(strategy, dataset_or_fn, *args, **kwargs): """A helper function to create distributed dataset. Args: strategy: An instance of `tf.distribute.Strategy`. dataset_or_fn: A instance of `tf.data.Dataset` or a function which takes an `tf.distribute.InputContext` as input and returns a `tf.data.Dataset`. If it is a function, it could optionally have an argument named `input_context` which is `tf.distribute.InputContext` argument type. *args: The list of arguments to be passed to dataset_or_fn. **kwargs: Any keyword arguments to be passed. Returns: A distributed Dataset. """ if strategy is None: strategy = tf.distribute.get_strategy() if isinstance(dataset_or_fn, tf.data.Dataset): return strategy.experimental_distribute_dataset(dataset_or_fn) if not callable(dataset_or_fn): raise ValueError("`dataset_or_fn` should be either callable or an instance " "of `tf.data.Dataset`") def dataset_fn(ctx): """Wrapped dataset function for creating distributed dataset..""" # If `dataset_or_fn` is a function and has `input_context` as argument # names, pass `ctx` as the value of `input_context` when calling # `dataset_or_fn`. Otherwise `ctx` will not be used when calling # `dataset_or_fn`. if six.PY3: argspec = inspect.getfullargspec(dataset_or_fn) else: argspec = inspect.getargspec(dataset_or_fn) args_names = argspec.args if "input_context" in args_names: kwargs["input_context"] = ctx ds = dataset_or_fn(*args, **kwargs) return ds return strategy.experimental_distribute_datasets_from_function(dataset_fn) class SummaryManager(object): """A class manages writing summaries.""" def __init__(self, summary_writer, summary_fn, global_step=None, summary_interval=None): """Construct a summary manager object. Args: summary_writer: A `tf.summary.SummaryWriter` instance for writing summaries. summary_fn: A callable defined as `def summary_fn(name, tensor, step=None)`, which describes the summary operation. global_step: A `tf.Variable` instance for checking the current global step value, in case users want to save summaries every N steps. summary_interval: An integer, indicates the minimum step interval between two summaries. """ if summary_writer is not None: self._summary_writer = summary_writer self._enabled = True else: self._summary_writer = tf.summary.create_noop_writer() self._enabled = False self._summary_fn = summary_fn if global_step is None: self._global_step = tf.summary.experimental.get_step() else: self._global_step = global_step if summary_interval is not None: if self._global_step is None: raise ValueError("`summary_interval` is not None, but no `global_step` " "can be obtained ") self._last_summary_step = self._global_step.numpy() self._summary_interval = summary_interval @property def summary_interval(self): return self._summary_interval @property def summary_writer(self): """Returns the underlying summary writer.""" return self._summary_writer def write_summaries(self, items, always_write=True): """Write a bulk of summaries. Args: items: a dictionary of `Tensors` for writing summaries. always_write: An optional boolean. If `True`, the manager will always write summaries unless the summaries have been written for the same step. Otherwise the manager will only write the summaries if the interval between summaries are larger than `summary_interval`. Returns: A boolean indicates whether the summaries are written or not. """ # TODO(rxsang): Support writing summaries with nested structure, so users # can split the summaries into different directories for nicer visualization # in Tensorboard, like train and eval metrics. if not self._enabled: return False if self._summary_interval is not None: current_step = self._global_step.numpy() if current_step == self._last_summary_step: return False if not always_write and current_step < (self._last_summary_step + self._summary_interval): return False self._last_summary_step = current_step with self._summary_writer.as_default(): for name, tensor in items.items(): self._summary_fn(name, tensor, step=self._global_step) return True @six.add_metaclass(abc.ABCMeta) class Trigger(object): """An abstract class representing a "trigger" for some event.""" @abc.abstractmethod def __call__(self, value: float, force_trigger=False): """Maybe trigger the event based on the given value. Args: value: the value for triggering. force_trigger: Whether the trigger is forced triggered. Returns: `True` if the trigger is triggered on the given `value`, and `False` otherwise. """ @abc.abstractmethod def reset(self): """Reset states in the trigger.""" class IntervalTrigger(Trigger): """Triggers on every fixed interval.""" def __init__(self, interval, start=0): """Constructs the IntervalTrigger. Args: interval: The triggering interval. start: An initial value for the trigger. """ self._interval = interval self._last_trigger_value = start def __call__(self, value, force_trigger=False): """Maybe trigger the event based on the given value. Args: value: the value for triggering. force_trigger: If True, the trigger will be forced triggered unless the last trigger value is equal to `value`. Returns: `True` if the trigger is triggered on the given `value`, and `False` otherwise. """ if force_trigger and value != self._last_trigger_value: self._last_trigger_value = value return True if self._interval and self._interval > 0: if value >= self._last_trigger_value + self._interval: self._last_trigger_value = value return True return False def reset(self): """See base class.""" self._last_trigger_value = 0 class EpochHelper(object): """A Helper class to handle epochs in Customized Training Loop.""" def __init__(self, epoch_steps, global_step): """Constructs the EpochHelper. Args: epoch_steps: An integer indicates how many steps in an epoch. global_step: A `tf.Variable` instance indicates the current global step. """ self._epoch_steps = epoch_steps self._global_step = global_step self._current_epoch = None self._epoch_start_step = None self._in_epoch = False def epoch_begin(self): """Returns whether a new epoch should begin.""" if self._in_epoch: return False current_step = self._global_step.numpy() self._epoch_start_step = current_step self._current_epoch = current_step // self._epoch_steps self._in_epoch = True return True def epoch_end(self): """Returns whether the current epoch should end.""" if not self._in_epoch: raise ValueError("`epoch_end` can only be called inside an epoch") current_step = self._global_step.numpy() epoch = current_step // self._epoch_steps if epoch > self._current_epoch: self._in_epoch = False return True return False @property def batch_index(self): """Index of the next batch within the current epoch.""" return self._global_step.numpy() - self._epoch_start_step @property def current_epoch(self): return self._current_epoch
32.4
80
0.686684
dfc6fcd167a6937d6eb27e24f74ee74f81447e32
655
py
Python
tests/regression_test/markdown_snippets.py
plaflamme/mdbook-plantuml
f6814b44cbddf856ef2120557a4ff3c1cf72f19f
[ "MIT" ]
null
null
null
tests/regression_test/markdown_snippets.py
plaflamme/mdbook-plantuml
f6814b44cbddf856ef2120557a4ff3c1cf72f19f
[ "MIT" ]
null
null
null
tests/regression_test/markdown_snippets.py
plaflamme/mdbook-plantuml
f6814b44cbddf856ef2120557a4ff3c1cf72f19f
[ "MIT" ]
null
null
null
class Snippet: def __init__(self, code): self.plantuml_code = code.strip() self.markdown = "```plantuml\n{}\n```".format(self.plantuml_code) ab_class_diagram = Snippet("""\ @startuml A --|> B @enduml """) cd_class_diagram = Snippet("""\ @startuml C --|> D @enduml """) ditaa = Snippet("""\ @startditaa +--------+ +-------+ +-------+ | +---+ ditaa +--> | | | Text | +-------+ |diagram| |Document| |!magic!| | | | {d}| | | | | +---+----+ +-------+ +-------+ : ^ | Lots of work | +-------------------------+ @endditaa """)
19.264706
73
0.381679
7fe2bbaa096002ac6b37c5634f64f7e10284e0ab
3,810
py
Python
fastai/collab.py
fish5421/fastai_update
c3dbdfba59512b5004093119f7676f224eb1d15c
[ "Apache-2.0" ]
1
2019-12-18T22:49:21.000Z
2019-12-18T22:49:21.000Z
fastai/collab.py
fish5421/fastai_update
c3dbdfba59512b5004093119f7676f224eb1d15c
[ "Apache-2.0" ]
null
null
null
fastai/collab.py
fish5421/fastai_update
c3dbdfba59512b5004093119f7676f224eb1d15c
[ "Apache-2.0" ]
1
2019-01-12T17:43:19.000Z
2019-01-12T17:43:19.000Z
"Module support for Collaborative Filtering" from .torch_core import * from .basic_train import * from .data import * from .layers import * __all__ = ['CollabFilteringDataset', 'EmbeddingDotBias', 'get_collab_learner'] @dataclass class CollabFilteringDataset(DatasetBase): "Base dataset for collaborative filtering." user:Series item:Series ratings:np.ndarray def __post_init__(self): self.user_ids = np.array(self.user.cat.codes, dtype=np.int64) self.item_ids = np.array(self.item.cat.codes, dtype=np.int64) def __len__(self)->int: return len(self.ratings) def __getitem__(self, idx:int)->Tuple[Tuple[int,int],float]: return (self.user_ids[idx],self.item_ids[idx]), self.ratings[idx] @property def c(self) -> int: return 1 @property def n_user(self)->int: return len(self.user.cat.categories) @property def n_item(self)->int: return len(self.item.cat.categories) @classmethod def from_df(cls, rating_df:DataFrame, pct_val:float=0.2, user_name:Optional[str]=None, item_name:Optional[str]=None, rating_name:Optional[str]=None) -> Tuple['ColabFilteringDataset','ColabFilteringDataset']: "Split a given dataframe in a training and validation set." if user_name is None: user_name = rating_df.columns[0] if item_name is None: item_name = rating_df.columns[1] if rating_name is None: rating_name = rating_df.columns[2] user = rating_df[user_name] item = rating_df[item_name] ratings = np.array(rating_df[rating_name], dtype=np.float32) idx = np.random.permutation(len(ratings)) if pct_val is None: return cls(user, item, ratings) cut = int(pct_val * len(ratings)) return (cls(user[idx[cut:]], item[idx[cut:]], ratings[idx[cut:]]), cls(user[idx[:cut]], item[idx[:cut]], ratings[idx[:cut]])) @classmethod def from_csv(cls, csv_name:str, **kwargs) -> Tuple['ColabFilteringDataset','ColabFilteringDataset']: "Split a given table in a csv in a training and validation set." df = pd.read_csv(csv_name) return cls.from_df(df, **kwargs) class EmbeddingDotBias(nn.Module): "Base model for callaborative filtering." def __init__(self, n_factors:int, n_users:int, n_items:int, min_score:float=None, max_score:float=None): super().__init__() self.min_score,self.max_score = min_score,max_score (self.u_weight, self.i_weight, self.u_bias, self.i_bias) = [get_embedding(*o) for o in [ (n_users, n_factors), (n_items, n_factors), (n_users,1), (n_items,1) ]] def forward(self, users:LongTensor, items:LongTensor) -> Tensor: dot = self.u_weight(users)* self.i_weight(items) res = dot.sum(1) + self.u_bias(users).squeeze() + self.i_bias(items).squeeze() if self.min_score is None: return res return torch.sigmoid(res) * (self.max_score-self.min_score) + self.min_score def get_collab_learner(ratings:DataFrame, n_factors:int, pct_val:float=0.2, user_name:Optional[str]=None, item_name:Optional[str]=None, rating_name:Optional[str]=None, test:DataFrame=None, metrics=None, min_score:float=None, max_score:float=None, loss_fn:LossFunction=F.mse_loss, **kwargs) -> Learner: "Create a Learner for collaborative filtering." datasets = list(CollabFilteringDataset.from_df(ratings, pct_val, user_name, item_name, rating_name)) if test is not None: datasets.append(CollabFilteringDataset.from_df(test, None, user_name, item_name, rating_name)) data = DataBunch.create(*datasets, **kwargs) model = EmbeddingDotBias(n_factors, datasets[0].n_user, datasets[0].n_item, min_score, max_score) return Learner(data, model, loss_fn=loss_fn, metrics=metrics)
47.625
120
0.693176
40ade410d871b79f8a7d9178ba86c69eff8a674c
4,377
py
Python
gunicorn/app/django_wsgi.py
chalkchisel/gunicorn
4d87f1696202fcf1f54dbaee1d86bb2638865f34
[ "MIT" ]
null
null
null
gunicorn/app/django_wsgi.py
chalkchisel/gunicorn
4d87f1696202fcf1f54dbaee1d86bb2638865f34
[ "MIT" ]
null
null
null
gunicorn/app/django_wsgi.py
chalkchisel/gunicorn
4d87f1696202fcf1f54dbaee1d86bb2638865f34
[ "MIT" ]
null
null
null
# -*- coding: utf-8 - # # This file is part of gunicorn released under the MIT license. # See the NOTICE for more information. """ module used to build the django wsgi application """ import os import re import sys import time try: from io import StringIO from imp import reload except ImportError: from StringIO import StringIO from django.conf import settings from django.core.management.validation import get_validation_errors from django.utils import translation try: from django.core.servers.basehttp import get_internal_wsgi_application django14 = True except ImportError: from django.core.handlers.wsgi import WSGIHandler django14 = False from gunicorn import util def make_wsgi_application(): # validate models s = StringIO() if not getattr(settings, "DISABLE_GUNICORN_VALIDATION", False) and get_validation_errors(s): s.seek(0) error = s.read() sys.stderr.write("One or more models did not validate:\n%s" % error) sys.stderr.flush() sys.exit(1) translation.activate(settings.LANGUAGE_CODE) if django14: return get_internal_wsgi_application() return WSGIHandler() def reload_django_settings(): mod = util.import_module(os.environ['DJANGO_SETTINGS_MODULE']) # reload module reload(mod) # reload settings. # USe code from django.settings.Settings module. # Settings that should be converted into tuples if they're mistakenly entered # as strings. tuple_settings = ("INSTALLED_APPS", "TEMPLATE_DIRS") for setting in dir(mod): if setting == setting.upper(): setting_value = getattr(mod, setting) if setting in tuple_settings and type(setting_value) == str: setting_value = (setting_value,) # In case the user forgot the comma. setattr(settings, setting, setting_value) # Expand entries in INSTALLED_APPS like "django.contrib.*" to a list # of all those apps. new_installed_apps = [] for app in settings.INSTALLED_APPS: if app.endswith('.*'): app_mod = util.import_module(app[:-2]) appdir = os.path.dirname(app_mod.__file__) app_subdirs = os.listdir(appdir) name_pattern = re.compile(r'[a-zA-Z]\w*') for d in sorted(app_subdirs): if (name_pattern.match(d) and os.path.isdir(os.path.join(appdir, d))): new_installed_apps.append('%s.%s' % (app[:-2], d)) else: new_installed_apps.append(app) setattr(settings, "INSTALLED_APPS", new_installed_apps) if hasattr(time, 'tzset') and settings.TIME_ZONE: # When we can, attempt to validate the timezone. If we can't find # this file, no check happens and it's harmless. zoneinfo_root = '/usr/share/zoneinfo' if (os.path.exists(zoneinfo_root) and not os.path.exists(os.path.join(zoneinfo_root, *(settings.TIME_ZONE.split('/'))))): raise ValueError("Incorrect timezone setting: %s" % settings.TIME_ZONE) # Move the time zone info into os.environ. See ticket #2315 for why # we don't do this unconditionally (breaks Windows). os.environ['TZ'] = settings.TIME_ZONE time.tzset() # Settings are configured, so we can set up the logger if required if getattr(settings, 'LOGGING_CONFIG', False): # First find the logging configuration function ... logging_config_path, logging_config_func_name = settings.LOGGING_CONFIG.rsplit('.', 1) logging_config_module = util.import_module(logging_config_path) logging_config_func = getattr(logging_config_module, logging_config_func_name) # ... then invoke it with the logging settings logging_config_func(settings.LOGGING) def make_command_wsgi_application(admin_mediapath): reload_django_settings() try: from django.core.servers.basehttp import AdminMediaHandler return AdminMediaHandler(make_wsgi_application(), admin_mediapath) except ImportError: return make_wsgi_application()
36.475
98
0.64085
2848ad32094cfe2ff7340ab3e1ecb3055657b743
2,566
py
Python
neo/rawio/tests/test_neuralynxrawio.py
lkoelman/python-neo
6b0454519b4ead6605d3ce4100a07c33f57df830
[ "BSD-3-Clause" ]
1
2020-01-13T16:06:56.000Z
2020-01-13T16:06:56.000Z
neo/rawio/tests/test_neuralynxrawio.py
lkoelman/python-neo
6b0454519b4ead6605d3ce4100a07c33f57df830
[ "BSD-3-Clause" ]
8
2018-06-02T11:46:10.000Z
2018-09-04T15:51:45.000Z
src/neo/neo/rawio/tests/test_neuralynxrawio.py
grg2rsr/SeqPeelSort
58a207976fb33a50ea8e42b70d7da73b03474f42
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # needed for python 3 compatibility from __future__ import unicode_literals, print_function, division, absolute_import import unittest from neo.rawio.neuralynxrawio import NeuralynxRawIO from neo.rawio.tests.common_rawio_test import BaseTestRawIO import logging logging.getLogger().setLevel(logging.INFO) class TestNeuralynxRawIO(BaseTestRawIO, unittest.TestCase, ): rawioclass = NeuralynxRawIO entities_to_test = [ 'Cheetah_v5.5.1/original_data', 'Cheetah_v5.6.3/original_data', 'Cheetah_v5.7.4/original_data', ] files_to_download = [ 'Cheetah_v5.5.1/original_data/CheetahLogFile.txt', 'Cheetah_v5.5.1/original_data/CheetahLostADRecords.txt', 'Cheetah_v5.5.1/original_data/Events.nev', 'Cheetah_v5.5.1/original_data/STet3a.nse', 'Cheetah_v5.5.1/original_data/STet3b.nse', 'Cheetah_v5.5.1/original_data/Tet3a.ncs', 'Cheetah_v5.5.1/original_data/Tet3b.ncs', 'Cheetah_v5.5.1/plain_data/STet3a.txt', 'Cheetah_v5.5.1/plain_data/STet3b.txt', 'Cheetah_v5.5.1/plain_data/Tet3a.txt', 'Cheetah_v5.5.1/plain_data/Tet3b.txt', 'Cheetah_v5.5.1/plain_data/Events.txt', 'Cheetah_v5.5.1/README.txt', 'Cheetah_v5.6.3/original_data/CheetahLogFile.txt', 'Cheetah_v5.6.3/original_data/CheetahLostADRecords.txt', 'Cheetah_v5.6.3/original_data/Events.nev', 'Cheetah_v5.6.3/original_data/CSC1.ncs', 'Cheetah_v5.6.3/original_data/CSC2.ncs', 'Cheetah_v5.6.3/original_data/TT1.ntt', 'Cheetah_v5.6.3/original_data/TT2.ntt', 'Cheetah_v5.6.3/original_data/VT1.nvt', 'Cheetah_v5.6.3/plain_data/Events.txt', 'Cheetah_v5.6.3/plain_data/CSC1.txt', 'Cheetah_v5.6.3/plain_data/CSC2.txt', 'Cheetah_v5.6.3/plain_data/TT1.txt', 'Cheetah_v5.6.3/plain_data/TT2.txt', 'Cheetah_v5.7.4/original_data/CSC1.ncs', 'Cheetah_v5.7.4/original_data/CSC2.ncs', 'Cheetah_v5.7.4/original_data/CSC3.ncs', 'Cheetah_v5.7.4/original_data/CSC4.ncs', 'Cheetah_v5.7.4/original_data/CSC5.ncs', 'Cheetah_v5.7.4/original_data/Events.nev', 'Cheetah_v5.7.4/plain_data/CSC1.txt', 'Cheetah_v5.7.4/plain_data/CSC2.txt', 'Cheetah_v5.7.4/plain_data/CSC3.txt', 'Cheetah_v5.7.4/plain_data/CSC4.txt', 'Cheetah_v5.7.4/plain_data/CSC5.txt', 'Cheetah_v5.7.4/plain_data/Events.txt', 'Cheetah_v5.7.4/README.txt'] if __name__ == "__main__": unittest.main()
38.298507
82
0.676539
e9be373f642f905e409db864c3453e849257f2ed
19,928
py
Python
loewieec_sync_hk/bk20170427/sale.py
lester-lees/extra_addons_hk
edd2c2595146bc9c99b75a2d0831a93f940fa55c
[ "Apache-2.0" ]
null
null
null
loewieec_sync_hk/bk20170427/sale.py
lester-lees/extra_addons_hk
edd2c2595146bc9c99b75a2d0831a93f940fa55c
[ "Apache-2.0" ]
null
null
null
loewieec_sync_hk/bk20170427/sale.py
lester-lees/extra_addons_hk
edd2c2595146bc9c99b75a2d0831a93f940fa55c
[ "Apache-2.0" ]
null
null
null
# -*- encoding: utf-8 -*- from openerp.osv import fields,osv import datetime from openpyxl.reader.excel import load_workbook import os import re from openerp import tools class product_tmalljd(osv.osv): _name = "product.tmalljd" #_inherits = {'product.product': 'product_id'} def _get_ean13(self, cr, uid, ids, field_name, arg, context=None): result = {} for line in self.pool.get('product.tmalljd').browse(cr, uid, ids, context=context): if line.erp_product_id : result[line.id] = line.erp_product_id.ean13 or line.erp_product_id.default_code return result def _get_stock(self, cr, uid, ids, field_name, arg, context=None): result = {} domain_products = [('location_id','=',38)] quants = self.pool.get('stock.quant').read_group(cr, uid, domain_products, ['product_id', 'qty'], ['product_id'], context=context) quants = dict(map(lambda x: (x['product_id'][0], x['qty']), quants)) for line in self.pool.get('product.tmalljd').browse(cr, uid, ids, context=context): id = line.id if line.erp_product_id : pid = line.erp_product_id.id result[id] = quants.get(pid, 0.0) else: result[id] = 0 return result _columns = { 'erp_product_id': fields.many2one('product.product','ERP Name'), 'erp_ean13': fields.char('ERP_EAN13'), #fields.function(_get_ean13,type='char',string='ERP_EAN13'), 'erp_stock': fields.float('ERP_Stock'),#fields.function(_get_stock,type='float',string='ERP库存'), 'ec_shop_id': fields.many2one('loewieec.shop', u'店铺'), 'ec_num_iid': fields.char(u'电商数字编码'), 'ec_sku_id': fields.char(u'SKU编码'), 'ec_title':fields.char(u'商品标题'), 'ec_price':fields.float(u'售价'), 'ec_color':fields.char(u'颜色'), 'ec_ean13': fields.char(u'条形码'), 'ec_brand': fields.char(u'品牌'), 'ec_qty': fields.integer(u'EC数量'), 'ec_outer_code': fields.char(u'商家外部编码'), 'ec_product_name': fields.char(u'产品名称'), 'ec_product_id': fields.char(u'EC产品ID'), 'ec_num_custom':fields.char(u'海关代码'), } class loewieec_error(osv.osv): _name = "loewieec.error" _columns = { 'shop_id': fields.many2one('loewieec.shop', u'店铺'), 'name': fields.char(u'错误信息'), } class sale_order_line(osv.osv): _inherit = "sale.order.line" _columns = { 'logistic_sent': fields.related('coe_no', 'logistic_sent', type='boolean', string=u'已同步运单?',readonly=True), 'coe_no': fields.many2one('sale.coe',string=u'COE单号'), 'tmi_jdi_no': fields.char(string=u'电商单号'), 'buyer_nick': fields.char(u'买家昵称'), 'pay_time': fields.datetime(u'EC支付时间'), 'create_time_tmjd': fields.datetime(u'EC创建时间'), } def copy_sale_order_line(self, cr, uid, ids, context=None): for line in self.pool.get('sale.order.line').browse(cr, uid, ids, context=context): line.copy() class sale_order(osv.osv): _name = "sale.order" _inherit = "sale.order" _columns = { 'express_ids': fields.related('order_line', 'coe_no', type='many2one', relation='sale.coe', string=u'TMI_JDI收货人'), 'tmi_jdi_nos': fields.related('order_line', 'tmi_jdi_no', type='char', string='TMI_JDI_NO'), 'selected': fields.boolean('Selected'), 'shop_id': fields.many2one('loewieec.shop', string=u"EC店铺名", readonly=True), 'sale_code': fields.char(u'EC单号', readonly=True), 'tid': fields.char(u'交易单号', readonly=True), 'buyer_nick': fields.char(u'买家昵称'), 'order_state': fields.selection([ ('WAIT_SELLER_SEND_GOODS', u'等待卖家发货'), ('WAIT_BUYER_CONFIRM_GOODS', u'等待买家确认收货'), ('TRADE_FINISHED', u'交易成功'), ('TRADE_CLOSED', u'交易关闭'), ], u'订单状态'), } def update_orders_seller_memo(self, cr, uid, ids, context=None): sale_order_obj = self.pool.get('sale.order').browse(cr,uid,ids[0],context=context) shop = sale_order_obj.shop_id if not shop : return False if shop.code == 'JDI' : raise osv.except_osv(u'错误',u'''JDI京东国际订单无需更新备注''') return False statement = "select tmi_jdi_no from sale_order_line where order_id=%d group by tmi_jdi_no" % ids[0] cr.execute(statement) tids = [item[0] for item in cr.fetchall()] if not tids : return False return shop.update_orders_seller_memo(context=context, tids=tids) def delete_lines_of_tmijdi_no(self, cr, uid, ids, context=None): # 完整删除 天猫京东 订单的 行 sale_order_obj = self.pool.get('sale.order').browse(cr,uid,ids[0],context=context) note = sale_order_obj.note or '' tmijdi_nos = note.strip().split(',') tmijdi_no_list = [] for tmijdi_no in tmijdi_nos: if tmijdi_no.strip() != '': tmijdi_no_list.append( tmijdi_no.strip() ) statement = "delete from sale_order_line where order_id=%d and tmi_jdi_no in (%s)" % ( ids[0], ("'" + """','""".join(tmijdi_no_list) + "'") ) cr.execute(statement) val = val1 = 0.0 cur = sale_order_obj.pricelist_id.currency_id for line in sale_order_obj.order_line: val1 += line.price_subtotal val += self._amount_line_tax(cr, uid, line, context=context) cur_obj = self.pool.get('res.currency') amount_tax = cur_obj.round(cr, uid, cur, val) amount_untaxed = cur_obj.round(cr, uid, cur, val1) amount_total = amount_untaxed + amount_tax sale_order_obj.write({'amount_tax':amount_tax, 'amount_untaxed': amount_untaxed,'amount_total':amount_total}) def delete_multi_gift_lines(self, cr, uid, ids, context=None): sale_order_obj = self.pool.get('sale.order').browse(cr,uid,ids[0],context=context) gift_product_id = sale_order_obj.shop_id.gift_product_id.id coe_list = [] delete_list = [] for line in sale_order_obj.order_line.filtered(lambda r: r.product_id.id == gift_product_id): if line.coe_no.name in coe_list : delete_list.append( line.coe_no.name ) line.unlink() else: coe_list.append(line.coe_no.name) if delete_list : log = sale_order_obj.note or '' sale_order_obj.note = u"删除了以下运单号的重复赠品行:" + chr(10) + ','.join(delete_list) + chr(10) + log def delete_no_coeno_lines(self, cr, uid, ids, context=None): statement = "(select s.id from sale_order_line s left join sale_coe c on s.coe_no=c.id where s.order_id=%d and trim(c.name) not like 'EL%sHK') union (select id from sale_order_line where order_id=%d and coe_no is Null)" % (ids[0], '%', ids[0]) cr.execute(statement) line_ids = [ item[0] for item in cr.fetchall() ] sale_line_obj = self.pool.get('sale.order.line').unlink(cr,uid, line_ids,context=context) def update_waybill_no(self, cr, uid, ids, context=None): sale_order_obj = self.pool.get('sale.order').browse(cr,uid,ids[0],context=context) shop = sale_order_obj.shop_id if not shop : return False if shop.code == 'JDI' : return shop.jdi_order_delivery(salesorder=sale_order_obj, context=context) return shop.update_tmall_waybill(context=context, salesorder=sale_order_obj) def view_express_data(self, cr, uid, ids, context=None): sale_order_obj = self.pool.get('sale.order').browse(cr,uid,ids[0],context=context) if not sale_order_obj : raise osv.except_osv(u'Sale order 错误',u'''请先保存销售单草稿''') return False sale_order_line_ids = self.pool.get('sale.order.line').search(cr,uid,[('order_id','=',ids[0])],context=context) if len(sale_order_line_ids)< 1: return False eids = self.pool.get('sale.order.line').read(cr,uid,sale_order_line_ids,['coe_no'],context=context) express_ids = [ eid['coe_no'] and eid['coe_no'][0] for eid in eids ] customer_id = sale_order_obj.partner_id.id sale_coe_obj = self.pool.get('sale.coe') platform = sale_order_obj.shop_id.code if len(express_ids)>0: for express_obj in sale_coe_obj.browse(cr,uid,express_ids,context=context): express_obj.sale_id = ids[0] express_obj.customer = customer_id mod_obj = self.pool.get('ir.model.data') act_obj = self.pool.get('ir.actions.act_window') result = mod_obj.get_object_reference(cr, uid, 'loewieec_sync_hk', 'action_loewieec_salecoe') id = result and result[1] or False result = act_obj.read(cr, uid, [id], context=context)[0] result['domain'] = [('id','in',express_ids)] result['res_id'] = express_ids result['context'] = {'default_sale_id':ids[0],'default_customer':customer_id} return result class sale_coe(osv.osv): _name = "sale.coe" _columns = { 'logistic_sent': fields.boolean(u'已同步运单?',default=False, readonly=True, copy=False), 'sale_id': fields.many2one('sale.order', string='Sales Order', readonly=True, states={'draft': [('readonly', False)]} , copy=False), 'picking_id': fields.many2one('stock.picking',string='Picing Order', readonly=True, states={'draft': [('readonly', False)]}, copy=False), 'customer': fields.many2one('res.partner',string=u'客户', readonly=True, states={'draft': [('readonly', False)]}, copy=False), 'tmi_jdi_no': fields.char(string='TMI JDI NO', readonly=True, states={'draft': [('readonly', False)]}), 'name':fields.char(string='COE NO', readonly=True, states={'draft': [('readonly', False)]}), 'receive_name': fields.char(string='Receive Name', readonly=True, states={'draft': [('readonly', False)]}), 'tel': fields.char(string='Cell Phone', readonly=True, states={'draft': [('readonly', False)]}), 'telephone': fields.char(string='Telephone', readonly=True, states={'draft': [('readonly', False)]}), 'province': fields.char(string='Province', readonly=True, states={'draft': [('readonly', False)]}), 'city': fields.char(string='City', readonly=True, states={'draft': [('readonly', False)]}), 'county': fields.char(string='County', readonly=True, states={'draft': [('readonly', False)]}), 'address': fields.char(string='Address', readonly=True, states={'draft': [('readonly', False)]}), 'zip': fields.char(string='Zip', readonly=True, states={'draft': [('readonly', False)]}), 'class_desc': fields.char(string='Desc',default=u'None', readonly=True, states={'draft': [('readonly', False)]}), 'qty': fields.integer(string='Quantity', default=1, readonly=True, states={'draft': [('readonly', False)]}), 'price': fields.float(string='Fee',default=50, readonly=True, states={'draft': [('readonly', False)]}), 'weight': fields.float(string='Weight',default=0.2, readonly=True, states={'draft': [('readonly', False)]}), 'state': fields.selection([('draft',u'草稿'),('done',u'完成')],string='State',default='draft'), } class stock_move(osv.osv): _inherit = "stock.move" def _get_coe_no(self, cr, uid, ids, field_name, arg, context=None): result = {} for move in self.pool.get('stock.move').browse(cr, uid, ids, context=context): result[move.id] = move.procurement_id.sale_line_id.coe_no.id return result _columns = { #'sale_order_line': fields.function(_get_sale_order_line, type='char',string='Sales Line'), 'coe_no': fields.function(_get_coe_no,type='many2one',relation='sale.coe',string='COE NO'), } class stock_picking(osv.osv): _inherit = "stock.picking" def get_full_path(self, cr, uid, path): # sanitize ath path = re.sub('[.]', '', path) path = path.strip('/\\') return os.path.join(tools.config.filestore(cr.dbname), path) def import_moves_from_excel(self, cr, uid, ids, context=None): attachment_obj = self.pool.get('ir.attachment') attachment_id = attachment_obj.search(cr,uid,[('res_id', '=', ids[0])], context=context) if len(attachment_id)<1: return False attach = attachment_obj.browse(cr,uid,attachment_id[0],context=context) fname = attach.store_fname display_name = attach.name if not fname : return False fname = self.get_full_path(cr, uid, fname) wb = load_workbook(filename=fname) #ws = wb.get_sheet_by_name("Sheet1") ws = wb.get_sheet_by_name(wb.get_sheet_names()[0]) highest_row = ws.get_highest_row() highest_col = ws.get_highest_column() title_name = ws.cell(row = 0,column = 0).value title_quantity = ws.cell(row = 0,column = 1).value if highest_col < 2 or title_name != "name" or title_quantity != "quantity": raise osv.except_osv(u'Excel错误',u'''文件:%s 格式不正确.''' % display_name) row_start = 1 lines = [] product_obj = self.pool.get('product.product') while row_start < highest_row : name = ws.cell(row=row_start,column=0).value name = name.strip() qty_tmp = ws.cell(row=row_start,column=1) quantity = qty_tmp.get_original_value() or 1 product_ids = product_obj.search(cr, uid, [('name_template','=',name)], context=context) if not product_ids : raise osv.except_osv(u'产品名错误',u'''没有产品: %s 。''' % name) lines.append((product_ids[0],quantity)) row_start += 1 picking_obj = self.pool.get('stock.picking').browse(cr,uid,ids[0],context=context) picking_type = picking_obj.picking_type_id vals = { 'product_id': 0, 'product_uom_qty':1, 'location_dest_id':picking_type.default_location_dest_id.id, 'location_id': picking_type.default_location_src_id.id, 'company_id': picking_obj.company_id.id, 'date':datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), 'date_expected':(datetime.datetime.now() + datetime.timedelta(3)).strftime("%Y-%m-%d %H:%M:%S"), 'invoice_state':'none', 'name':'-', 'procure_method':'make_to_stock', 'state':'draft', 'product_uom':1, 'weight_uom_id':1, 'picking_id': ids[0], } move_obj = self.pool.get('stock.move') for line in lines : vals_move = vals.copy() vals_move.update({'product_id':line[0], 'product_uom_qty':line[1]}) move_obj.create(cr, uid, vals_move, context=context) def view_express_data(self, cr, uid, ids, context=None): stock_picking_obj = self.pool.get('stock.picking').browse(cr,uid,ids[0],context=context) if not stock_picking_obj.sale_id : raise osv.except_osv(u'stock.picking 错误',u'''没有销售单与此仓库单有关联''') return False order_id = stock_picking_obj.sale_id.id partner_id = stock_picking_obj.partner_id.id sale_order_line_ids = self.pool.get('sale.order.line').search(cr,uid,[('order_id','=',order_id)],context=context) if len(sale_order_line_ids)< 1: return False eids = self.pool.get('sale.order.line').read(cr,uid,sale_order_line_ids,['coe_no'],context=context) express_ids = [ eid['coe_no'] and eid['coe_no'][0] for eid in eids ] if len(express_ids) < 1: raise osv.except_osv(u'stock.picking 错误',u'''没有快递信息''') return False sale_coe_obj = self.pool.get('sale.coe') for express_obj in sale_coe_obj.browse(cr,uid,express_ids,context=context): if not express_obj.picking_id: express_obj.picking_id = ids[0] mod_obj = self.pool.get('ir.model.data') act_obj = self.pool.get('ir.actions.act_window') result = mod_obj.get_object_reference(cr, uid, 'loewieec_sync_hk', 'action_loewieec_salecoe') id = result and result[1] or False result = act_obj.read(cr, uid, [id], context=context)[0] result['domain'] = [('id','in', express_ids)] result['res_id'] = express_ids result['context'] = {'default_sale_id':order_id,'default_customer':partner_id,'default_picking_id':ids[0]} return result def create_return_lines_from_coe_no(self, cr, uid, ids, context=None): picking = self.browse(cr, uid, ids[0], context=context) coenos = picking.note or '' if not coenos : return coenos = coenos.strip().split(',') coe_list = [] for coe in coenos: coe = coe.strip() if coe != '' : coe_list.append( coe ) statement = "select s.product_id, s.product_uom_qty, c.name from sale_order_line s left join sale_coe c on s.coe_no=c.id where s.state='done' and s.coe_no in (select id from sale_coe where name in (%s))" % ("'" + """','""".join(coe_list) + "'") cr.execute(statement) res = cr.fetchall() vals_move = { 'create_uid':uid, 'product_id': 0, #, 'product_uom_qty':0, 'location_dest_id':12, 'location_id':9, 'company_id':1, 'date':datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), 'date_expected':(datetime.datetime.now() + datetime.timedelta(3)).strftime("%Y-%m-%d %H:%M:%S"), 'invoice_state':'none', 'name':'-', 'procure_method':'make_to_stock', 'state':'draft', 'product_uom':1, 'weight_uom_id':1, 'picking_id': ids[0], } move_obj = self.pool.get('stock.move') for line in res: val = vals_move.copy() val.update({'product_id':line[0],'product_uom_qty':line[1],'name':line[2]}) move_obj.create(cr,uid,val,context=context) return True def do_unreserve_no_coe_lines(self, cr, uid, ids, context=None): picking = self.browse(cr, uid, ids[0], context=context) if picking.state != 'partially_available': return quant_obj = self.pool.get("stock.quant") move_obj = self.pool.get("stock.move") #waiting_ids = move_obj.search(cr,uid,[('picking_id','=',ids[0]),('state','=','confirmed')],context=context) coe_list = [] #for move_unreserved in move_obj.browse(cr,uid,waiting_ids,context=context): for move_unreserved in picking.move_lines.filtered(lambda r: r.state == 'confirmed'): if move_unreserved.coe_no not in coe_list : coe_list.append(move_unreserved.coe_no) #assigned_ids = move_obj.search(cr,uid,[('picking_id','=',ids[0]),('state','=','assigned')],context=context) #for move in move_obj.browse(cr,uid,assigned_ids,context=context) : for move in picking.move_lines.filtered(lambda r: r.state == 'assigned'): if move.coe_no not in coe_list : continue quant_obj.quants_unreserve(cr, uid, move, context=context) ancestors = [] move2 = move while move2: ancestors += [x.id for x in move2.move_orig_ids] move2 = not move2.move_orig_ids and move2.split_from or False if ancestors: move.write({'state': 'waiting'}) else: move.write({'state': 'confirmed'})
46.344186
255
0.601666
bc4163dbbfffdf72c7aabe4a148a133b86b79c2c
96,001
py
Python
tlux/plot.py
tchlux/tlux
873cf3b1cf1466863f0fb95f23afe149ff89ad79
[ "MIT" ]
1
2022-03-30T18:43:25.000Z
2022-03-30T18:43:25.000Z
tlux/plot.py
tchlux/tlux
873cf3b1cf1466863f0fb95f23afe149ff89ad79
[ "MIT" ]
null
null
null
tlux/plot.py
tchlux/tlux
873cf3b1cf1466863f0fb95f23afe149ff89ad79
[ "MIT" ]
null
null
null
# This module serves to provide a simplified interface to *offline* # python plotly plotting. The user can produce plots without ever # interacting directly with the dictionary objects that plotly # expects. This module currently supports 2D and 3D scatter plots with # numerical axes, histograms, subplots (with varying numbers of plots # in each row), animations, box-plots, and plot annotations. # # Required packages: # random, numbers, os, webbrowser, sys, re, tempfile # numpy # scipy # # Imports nested in appropriate functions: # import plotly # from scipy.spatial import ConvexHull # from scipy.spatial import Delaunay # # INSTALLATION: # # Installation requires a SPECIFIC VERSION OF PLOTLY. Here is the # standard set of packages required for usage: # # pip install scipy # pip install numpy # pip install plotly==2.0.15 # # This package will not work with newer versions of plotly because # they changed the underlying storage data types for figures. # Any plotly update for this body of code is unlikely. # # # USAGE: # # The available (user accessible) functions are: # # plot.Plot -- The primary class for holding / creating plots. # plot.multiplot -- A mechanism for plotting multiple Plot # objects in the same window. # plot.create_html -- A function for generating a local HTML file # from a figure object (in Plotly terms). # plot.iplot -- A convenience wrapper for generating # interactive plots in a Jupyter notebook with # multiplot functionality as well. # # -------------------------------------------------------------------- # DEVELOPER COMMENTS # # TODO: Plot.add_zero_line(func) # TODO: Plot.add_frame(..., persist=True) # TODO: Adding multiple frames where the first has no edges and the # rest have edges causes all frames to look like first. # # -------------------------------------------------------------------- import random, numbers, os, webbrowser, sys, re, tempfile import numpy as np NOTEBOOK_MODE = False # Jupyter notebook mode PLOT_MARGIN = 50 # In pixels PLOT_POINTS = 1000 # Number of samples BRIGHTNESS_RANGE = 0.6 # For default shading of points RANDOM_SEED = 0 # Seed used for new color generation MIN_PALETTE_COLORS = 40 # Number of palette entries to create PREVIOUS_FILE_NAMES = [] # <- for tracking auto-append. DEFAULT_CAMERA_POSITION = dict( up=dict(x=0, y=0, z=1), center=dict(x=0, y=0, z=0), eye=dict(x=-1.0, y=-2.0, z=0.7) ) # ^^ When vieiwing 3D plots. # Save the color palette for plotting a gradient # PALETTE SOURCE: colorlover as cl # PALETTE SOURCE: np.array(cl.to_numeric(cl.scales['11']['div']['Spectral']))[::-1] DEFAULT_GRADIENT = np.array([[ 94., 79., 162.], [ 50., 136., 189.], [ 102., 194., 165.], [ 171., 221., 164.], [ 230., 245., 152.], [ 255., 255., 191.], [ 254., 224., 139.], [ 253., 174., 97.], [ 244., 109., 67.], [ 213., 62., 79.], [ 158., 1., 66.]]) # PALETTE SOURCE: colorlover as cl # PALETTE SOURCE: np.array(cl.to_numeric(cl.scales['5']['qual']['Set2'])) PALETTE = np.array([[ 102., 194., 165.], [ 252., 141., 98.], [ 141., 160., 203.], [ 231., 138., 195.], [ 166., 216., 84.]]) PALETTE = PALETTE**2 PALETTE = PALETTE / np.max(PALETTE) * 255 # Re-order the palette so that the colors appear better PALETTE = np.concatenate((PALETTE[1:], [PALETTE[0]])) # Expand the palette using random combinations of existing colors random.seed(RANDOM_SEED) palette_size = len(PALETTE) for i in range(MIN_PALETTE_COLORS - palette_size): # Create lots of extra colors c = np.array([random.choice(PALETTE[:palette_size,0]), random.choice(PALETTE[:palette_size,1]), random.choice(PALETTE[:palette_size,2])]) # Add this new random color to the palette PALETTE = np.concatenate( (PALETTE, [c]), axis=0 ) # Re-seed the random number generator so that it is not tainted random.seed() # ================================================================== # SameAs Decorator # # Decorator that copies the documentation and arguemnts of another # function (specified as input). Useful for making decorators (:P) # Optional "mention_usage" updates documentation when True to disclose # the name of the function being wrapped (and the reuse of signature). # # USAGE: # # @same_as(<func_to_copy>) # def <function_to_decorate>(...): # ... # # OR # # <function> = same_as(<func_to_copy>)(<function_to_decorate>) # def same_as(to_copy, mention_usage=False): import inspect # Create a function that takes one argument, a function to be # decorated. This will be called by python when decorating. def decorator_handler(func): if hasattr(func, "__name__"): original_name = func.__name__ else: original_name = str(func) # Set the documentation string for this new function documentation = inspect.getdoc(to_copy) if documentation == None: documentation = inspect.getcomments(to_copy) # Store the documentation and signature into the wrapped function if hasattr(to_copy, "__name__"): func.__name__ = to_copy.__name__ if mention_usage: documentation = ( "\nThe function '%s' has been decorated with the signature "+ "of '%s'. (likely for aliasing / decoration)\n\n")%( original_name, to_copy.__name__) + documentation # Try copying the signature if possible try: func.__signature__ = inspect.signature(to_copy) except ValueError: pass # Finalize by copying documentation func.__doc__ = documentation return func # Return the decorator handler return decorator_handler # Class that serves as an interface to the standard "data & layout" # containers that need to be managed in order to produce Plotly plots. # This class uses the offline modes of plotly to produce local HTML # files rather than the standard web-based ones. This class also # attempts to strip web-related features (such as the Plotly logo) # from the upper-right hand corner plot interface. # # All functionality is encapsulated in the "Plot.add" command, which # allows for all standard plotly options to be controlled in the # construction of data, along with the "Plot.plot" command, which # allows for all standard plotly options that control layout. # # Additional methods that are effectively decorated versions of the # "add" command include: # add_histogram -- For quickly creating vertically oriented or # horizontally oriented histograms. # add_function -- For passing a function and automatically # sampling it across a meshgrid and plotting. # add_region -- For drawing convex regions in 2D by providing # a boolean function that is True inside the # region and False outside of the region. # add_annotation -- For adding text descriptions with arrows over # points of interest in an existing plot. # # The "plot" function is also capable of appending to existing HTML # files by setting the keyword argument "append=True". This is nice # for producing a single scrollable multi-page HTML report of plots. # # The "multiplot" function, provided in this module (not part of the # 'Plot' class), allows for the produciton of single pages that # contain multiple plots. See documentation of "multiplot" for more # detials. # # # Initialization controls for a Plot can be changed at any point by # setting the named attribute of the Plot class instantiation. They are: # # AXIS CONTROL # title -- The title of this plot. # x_title -- The x-axis title for this plot. # y_title -- The y-axis title for this plot. # z_title -- The z-axis title for this plot. # # PLOT CONTROL # mode -- The default plotly plot mode to be used. # palette -- A numpy array (N rows, 3 columns) of ordered plot # series colors. # # FONT CONTROL # font_family -- The family of font used for axes. # font_color -- The color of the font used for axes. # font_size -- The size of the font used for axes. class Plot: def __init__(self, title="", x_title="x", y_title="y", z_title="z", mode="markers", palette=PALETTE, font_family=None, font_color=None, font_size=None): self.title = title self.x_title = x_title self.y_title = y_title self.z_title = z_title self.x_min_max = [float('inf'), -float('inf')] self.y_min_max = [float('inf'), -float('inf')] self.z_min_max = [float('inf'), -float('inf')] # Specific booleans for tracking internal state self.is_3d = False self.to_reverse = [] # Data for tracking default plot settings self.color_num = -1 self.data = list() self.annotations = list() self.mode = mode self.palette = palette self.palette_size = len(palette) # Font settings self.font_family = font_family self.font_color = font_color self.font_size = font_size # Return an appropriate face color of a simplex given the simplex, # data z values, and either (color index and opaicty, or a list of # colors associated with each data value. def _simp_color(self, simp, z, color_ind=None, opacity=1.0, colors=None): shift = max(z) scale = shift - min(z) has_none = type(None) in (type(v) for v in z[simp]) if (scale > 0) and (not has_none): # If colors were provided, then average them to produce out color if type(colors) != type(None): # Return the color if there is only one. if (type(colors) == str): return colors # Get the color of each node in the simplex as a numpy array colors = [colors[i] for i in simp] # colors = [(colors if type(colors) == str else colors[i]) for i in simp] colors = [c[c.index('(')+1:c.index(')')].split(',') for c in colors] colors = np.array([list(map(float,c)) for c in colors]) if colors.shape[1] != 4: colors = np.concatenate(( colors,np.ones(shape=(colors.shape[0],1))), axis=1) # return the average color of points in the simplex return 'rgba(%f,%f,%f,%f)'%tuple(np.sum(colors,axis=0) / len(simp)) else: simp_avg = sum(z[simp]) / len(simp) brightness = (1.0-BRIGHTNESS_RANGE/2) + ((simp_avg - shift) / scale) * BRIGHTNESS_RANGE else: brightness = 1.0 return self.color(color_ind, brightness, opacity) # Prepare all annotations for the type of plot being presented. def _clean_annotations(self, annotations): if not self.is_3d: for a in annotations: a.pop('z', '') else: for a in annotations: if type(a['z']) == type(None): a['z'] = 0 a.pop("axref","") a.pop("ayref","") return annotations # Prepares all the data sets to be plotted in whatever dimension # is highest (2 or 3). Creates 3D meshes for all surfaces. Should # be stable if called multiple times, but this code is still in # development stage. def _clean_data(self, data): from scipy.spatial import Delaunay from scipy.spatial.qhull import QhullError # Remove the extra color attribute stored for easy access # any_heatmaps = any(d.get("type","") == "heatmap" for d in data) for d in data: d.pop("color","") if d["type"] == "heatmap": d.pop("marker","") d.pop("mode","") if d["type"] == "box": d.pop("text","") # d.pop("line","") # d.pop("fill","") # d.pop("fillcolor","") # if any_heatmaps: # pass # Remove all references to 3D layout if this is a 2D plot if not self.is_3d: # 2D PLOT SETUP for d in data: d.pop('z','') # WARNING: I COMMENTED THESE, NOT SURE WHY THEY'RE THERE # d.pop('hoverinfo','') # d.pop('text','') # Special case for plotting histograms if d['type'] == 'histogram': if type(d.get('y','')) == type(None): d.pop('y','') if type(d.get('x','')) == type(None): d.pop('x','') d.pop('line','') d.pop('mode','') d.pop('fill','') d['opacity'] = d['marker'].pop('opacity','') d['marker'].pop('symbol','') d['marker'].pop('size','') d['marker']['color'] = d.pop('fillcolor','') if d['type'] == 'box': d['line'].pop('dash','') d.pop('mode','') d.pop('fill','') d.pop('layout','') else: # 3D PLOT SETUP for ind,d in enumerate(data): # Add z values to all scatters that may have been added if d['type'] == 'scatter': d['z'] = np.zeros(len(d['x'])) d['type'] = 'scatter3d' if d['marker']['size'] == None: d['marker']['size'] = 5 # Convert fill and / or lines into surfaces conv_2d = (not self.is_3d) and ('lines' in d['mode']) if (d.get('fill','') == 'toself') or conv_2d: print("WARNING: Converting 2D to 3D automatically.") d['type'] = 'surface' # Get the opacity of the surface if d.get('fill','') != None: d['opacity'] = float(d['fillcolor'].split(',')[-1].strip(')')) else: d['opacity'] = float(d['line']['color'].split(',')[-1].strip(')')) # If user wants a surface, construct one! # (plotly default surfaces are not very cooperative) if ('surface' in d['type']): points_2D = np.vstack([d['x'], d['y']]).T try: mesh = Delaunay(points_2D) simps = mesh.simplices # Compute the diameter of all simplices. simp_diameters = {} for i in range(len(simps)): simp_pts = mesh.points[simps[i]] center = simp_pts.mean(axis=0) diameter = np.linalg.norm(center-simp_pts, axis=1).max() simp_diameters[i] = diameter diameters = list(simp_diameters.values()) hull_indices = set(np.unique(mesh.convex_hull)) # Filter out simplices with irregularly large diameter # that are on the convex hull of the data. diameter_50, diameter_95 = np.percentile(diameters, [50,95]) max_diameter = diameter_50 + 2*(diameter_95-diameter_50) for i in range(len(simps)): if ((simp_diameters[i] > max_diameter) and (len(set(simps[i]) & hull_indices) > 0)): simp_diameters.pop(i) simps = simps[sorted(simp_diameters)] # Add the plotly expected values. d['type'] = 'mesh3d' d['i'] = simps[:,0] d['j'] = simps[:,1] d['k'] = simps[:,2] # Generate face colors with average simplex z-coordinate d['facecolor'] = list(map( lambda simp: self._simp_color( simp, d['z'], ind, d['marker']['opacity'], d['marker']['color']), simps )) if 'opacity' not in d: d['opacity'] = d['marker']['opacity'] d.pop('marker','') d.pop('mode','') d.pop('text','') except QhullError: d['type'] = 'scatter3d' if 'mode' not in d: d['mode'] = 'lines' # Pop out the unnecessary attributes for 3D plots d.pop('fill','') d.pop('fillcolor','') if 'line' not in d.get('mode',''): d.pop('line','') # Manage plotly reverse order bug (only happens with "tonext[xy]") def _reorder_data(self, data): start = end = None # Cycle through the elements of data for i,tr in enumerate(self.to_reverse): if (tr and start==None): start = i if (not tr and start!=None): end = i+1 # Reverse that group of plot series data[start:end] = data[start:end][::-1] start = end = None # Reverse the final group when self.to_reverse[-1] == True if (start!=None): end = len(data) data[start:end] = data[start:end][::-1] # self.to_reverse = [False] * len(data) # Fix the fills that should be left alone for d in data: if ("toprev" in str(d.get("fill",""))): d["fill"] = d["fill"].replace("toprev","tonext") # =================================== # User accessible functions # =================================== # Interface to the automatic palette-based color scheme for this # plot. This method produces an rgb string compatible with # standard plotly "rgba(%i,%i,%i,%f)"%(<red>,<green>,<blue>,<alpha>). # # This method takes the following arguments: # Arg Name (Default) -- Description # # number (None) -- Index in the palette of the desired color. # brightness (1.0) -- Value ranging from 0.0 to 1.0 that can # be used to produces shades of the same color. # alpha (1.0) -- Opacity of the color produced. Note, 0.0 # for this argument will cause the color # to be invisible. # color (None) -- String ".*([0-9]+,[0-9]+,[0-9][,0-9\.]*).*", # list, tuple, or numpy array meant to be # converted into the standard rgba string. def color(self, number=None, brightness=1.0, alpha=None, color=None): # If the user only passed a color, swap for convenience. if (type(number) == tuple): number, color = None, number # Otherwise assume a number was sent. if type(color) == type(None): if (number == None): number = self.color_num if (number < len(self.palette)): # If we have fewer entries than the palette size c = self.palette[number] else: # Otherwise we have to create a new palette entry c = np.array([random.choice(self.palette[:self.palette_size,0]), random.choice(self.palette[:self.palette_size,1]), random.choice(self.palette[:self.palette_size,2])]) # Add this new random color to the palette self.palette = np.concatenate( (self.palette, [c]), axis=0 ) elif type(color) == str: # Get the color as a list of numbers c = color[color.index('(')+1:color.index(')')].split(',') # Make sure the color only has [red, green, blue, alpha] c = np.array(list(map(float,c))) if (len(c) > 3) and (type(alpha) == type(None)): alpha = c[-1] c = c[:3] elif (type(color) == tuple or type(color) == list or type(color) == np.ndarray): c = np.array(color[:3]) if (len(color) > 3) and (type(alpha) == type(None)): alpha=color[-1] else: raise(Exception("ERROR: Color must either be a string, tuple, list, or numpy array.")) # Define a default alpha if necessary if type(alpha) == type(None): alpha = 1.0 # Apply the brightness to the color c = c*brightness c = np.where(c > 255, 255, c) c = np.where(c < 0, 0, c) # Return the color as a plotly color string return 'rgba(%i,%i,%i,%f)'%(tuple(c)+(alpha,)) # Decorated "add" function that automatically attempts to # find the edge of a convex 2D region given a function that is # True inside and False outside. Uses a meshgrid of "plot_points" # points in order to approximate the boundary of the region. # # name -- The string name of the series being added # func -- A function that, given a single (x,y) point # returns True or False. # min_max_x -- A length-2 iterable for the x-range over which # to apply the meshgrid. # min_max_y -- A length-2 iterable for the y-range over which # to apply the meshgrid. # plot_points -- The number of plot points in the # meshgrid. Higher numbers will yield more precise # boundaries for the region. # ... <standard "add" arguments with adjusted defaults> ... def add_region(self, name, func, min_max_x=None, min_max_y=None, plot_points=PLOT_POINTS, mode="lines", opacity=0.1, fill="toself", line_width=0, nonconvex=True, **kwargs): from scipy.spatial import ConvexHull if self.is_3d: raise(Exception("ERROR: Regions only work for 2D plots.")) if type(min_max_x) == type(None): min_max_x = self.x_min_max.copy() if type(min_max_y) == type(None): min_max_y = self.y_min_max.copy() if max(map(abs,min_max_x+min_max_y)) == float('inf'): raise(Exception("ERROR: Invalid x or y range.")) # Round up the number of plot points per axis plot_points = int(plot_points**(0.5) + 0.5) # Calculate the mesh grid of x and y values x_vals = (np.linspace(*min_max_x, num=plot_points),) y_vals = (np.linspace(*min_max_y, num=plot_points),) x,y = np.meshgrid(x_vals, y_vals) test_pts = np.vstack((x.flatten(), y.flatten())).T in_region = np.array([func(pt) for pt in test_pts]) region_pts = test_pts[in_region] if nonconvex: opacity *= 3 self.add(name, region_pts[:,0], region_pts[:,1], mode='markers', symbol='square', opacity=opacity, marker_line_width=0, marker_size=10,**kwargs) else: # Try reducing to the set of convex hull points for the region # and plotting that, if it fails simply print an error message. hull_pts = region_pts[ConvexHull(region_pts).vertices] self.add(name, hull_pts[:,0], hull_pts[:,1], mode=mode, opacity=opacity, fill=fill, line_width=line_width, **kwargs) # Decorated "add" function that automatically generates the # response values for a given "func" over a meshgrid using # "plot_points" points (works for 2D or 3D plotting depending on # how many "min_max..." ranges are provided). # # name -- The string name of the series being added # func -- A function that, given a single (x[,y]) point # returns a numeric type object. # min_max_x -- A length-2 iterable for the x-range over which # to apply the meshgrid. # min_max_y -- A length-2 iterable for the y-range over which # to apply the meshgrid. (only provided for 3D) # grid_lines -- Whether or not to add lines whose intersections # show where plot points were placed (only works # for 3D plotting). # plot_points -- The number of plot points in the meshgrid. # vectorized -- True if the provided function can be provided a # matrix of points as row-vectors for faster execution. # # ... <standard "add" arguments with adjusted defaults> ... def add_function(self, name, func=None, min_max_x=None, min_max_y=[], x_vals=None, y_vals=None, grid_lines=True, plot_points=PLOT_POINTS, vectorized=False, mode=None, plot_type=None, use_gradient=None, **kwargs): if (len(min_max_y) > 0): self.is_3d = True elif ((x_vals is not None) and (x_vals.shape[1] == 2)): self.is_3d = True # If we have two control axes, square root the plot points if self.is_3d: plot_points = int(plot_points**(0.5) + 0.5) # If no y was provided, set it to default value if len(min_max_y) == 0: min_max_y = [0.0,0.0] if mode == None: plot_type = 'surface' # Set the gradient for 3d plots. if (use_gradient is None) and ("color" not in kwargs): use_gradient = True else: if mode == None: mode = 'lines' # If x_vals are not provided, then generate some. if (x_vals is None): assert (min_max_x is not None), "Expected either 'x_vals' or 'min_max_x' to be provided." # Convert the minimum and maximum values into floats. min_max_x = (float(min_max_x[0]), float(min_max_x[1])) # Generate the input points x_vals = (np.linspace(*min_max_x, num=plot_points),) if self.is_3d: x_vals += (np.linspace(*min_max_y, num=plot_points),) x_vals = tuple(x.flatten() for x in np.meshgrid(*x_vals)) x_on_grid = True else: # If x_vals are provided, use those instead. x_vals = np.asarray(x_vals) if (len(x_vals.shape) == 1): x_vals = x_vals.reshape((-1,1)) assert (x_vals.shape[1] in {1,2}), f"Expected 1 or 2 dimensions in 'x_vals', received {x_vals.shape[1]}." x_vals = x_vals.T x_on_grid = False if ((y_vals is None) and (func is not None)): assert (func is not None), "Expected either 'func' or 'y_vals' to be provided." # Get the response values if vectorized: # Try vectorizing the function evaluation response = list(func(np.vstack(x_vals).T)) else: # Otherwise evaluate the function one point at a time response = [func(x[0] if len(x) == 1 else x) for x in np.vstack(x_vals).T] try: # Make sure all "None" values are in brackets while None in response: response[response.index(None)] = [None] except ValueError: raise(Exception("The provided function returned a non-numeric value.")) response = np.array(response, dtype=float).flatten() else: y_vals = np.asarray(y_vals) assert ((len(y_vals.shape) == 1) or (y_vals.shape[1] == 1)), "Expected 1 dimension in 'y_vals', received {y_vals.shape[1]}." y_vals = y_vals.flatten() response = y_vals if "hoverinfo" not in kwargs: kwargs["hoverinfo"] = "name+x+y"+("+z" if self.is_3d else "") # Call the standard plot function self.add(name, *x_vals, response, mode=mode, plot_type=plot_type, use_gradient=use_gradient, **kwargs) # If this is a 3D surface plot and grid_lines=True, add grid lines if (self.is_3d and plot_type == 'surface') and grid_lines: opacity = kwargs.get("opacity",1.0) line_width = kwargs.get("line_width",1.0) line_color = kwargs.get("line_color",'rgb(0,0,0)') if (x_on_grid): for row in range(plot_points): x = x_vals[0][row*plot_points:(row+1)*plot_points] y = x_vals[1][row*plot_points:(row+1)*plot_points] z = response[row*plot_points:(row+1)*plot_points] self.add("", x,y,z, show_in_legend=False, group=name+" (lines)", mode="lines", line_width=line_width, opacity=opacity, color=line_color, hoverinfo="none") indices = np.arange(plot_points)*plot_points + row x = x_vals[0][indices] y = x_vals[1][indices] z = response[indices] self.add("", x,y,z, show_in_legend=False, group=name+" (lines)", mode="lines", line_width=line_width, opacity=opacity, color=line_color, hoverinfo="none") else: # Create a triangulation of the points and add lines # around the simplices? That should probably not happen. pass @same_as(add_function, mention_usage=True) def add_func(self, *args, **kwargs): return self.add_function(*args, **kwargs) # Decorated "add" function that automatically sets the options # necessary for plotting an N-bin PDF histogram of a given set of # values. By default the bars are separated along "bar_spacing" # axis, and the area of all bars together adds to 1. # # name -- The string name of the series being added # values -- A list of ints or floats. # bar_spacing -- "x" if the x-axis should be bins and y-axis # probabilities, "y" for transposing the setup. # num_bins -- The number of evenly spaced bins to use when # generating the histogram. # start -- The (inclusive) lower bound for the bins. # end -- The (exclusive) upper bound for the bins. # padding -- The amount of spacing on the min and max sides # of the histogram that is produced. # histnorm -- Standard plotly "histnorm" argument, can be # "probability" or "count" most commonly. # barmode -- Standard plotly "barmode" argument. When set to # "", plotly default will be used where # multi-series histograms will be non-overlapping. # When set "overlay", histogram series can overlap. # opacity -- See "add" function. def add_histogram(self, name, values, start_end=(None,None), bar_spacing="x", num_bins=100, padding=0.03, opacity=0.7, histnorm='count', marker_line_width=1, barmode='overlay', **kwargs): # Check for errors in usage. if bar_spacing not in ("x", "y"): raise(Exception("ERROR: Invalid 'bar_spacing', only 'x' or 'y' are acceptable.")) if num_bins <= 0: raise(Exception("ERROR: Invalid 'num_bins', must be a positive integer.")) if len(values) == 0: raise(Exception("ERROR: Empty list passed in for 'values'.")) start, end = start_end values_name = bar_spacing + "_values" autobin = "autobin" + bar_spacing bins = bar_spacing + "bins" self.histogram_barmode = barmode # Calculate the range of the histogram hist_start_val = min(values) hist_end_val = max(values) if type(start) != type(None): hist_start_val = start if type(end) != type(None): hist_end_val = end # Update the range, start, and end values (to have padding) hist_value_range = hist_end_val - hist_start_val hist_start_val -= hist_value_range * padding hist_end_val += hist_value_range * padding # Provide necessary keyword arguments (that the user has not already) if (values_name not in kwargs): kwargs[values_name] = values kwargs['histnorm'] = histnorm if (autobin not in kwargs): kwargs[autobin] = False if (bins not in kwargs): bin_settings = dict( start=hist_start_val, end=hist_end_val, size=(hist_value_range - hist_value_range*padding)/num_bins ) kwargs[bins] = bin_settings # Store the correct extrema to be used for plotting min_max = getattr(self, bar_spacing+"_min_max").copy() min_max[0] = min(hist_start_val, min_max[0]) min_max[1] = max(hist_end_val, min_max[1]) # Call the 'add' function with updated arguments self.add(name, plot_type='histogram', opacity=opacity, **kwargs) # Make sure min_max were not wrongly changed, use the extrema # of the desired bins as the range, not the extrema of values getattr(self, bar_spacing+"_min_max")[0] = min_max[0] getattr(self, bar_spacing+"_min_max")[1] = min_max[1] # Decorated "add" function that automatically sets the options # necessary for plotting a series of box plots of a given set of # values. # # name -- The string name of the series being added # box_values -- The list of lists of values for each box. # box_locations -- The x (or y) location of each box. # orientation -- 'v' -> vertical boxes # 'h' -> horizontal boxes # box_mean -- 'sd' -> overlays a standard deviation diamond # -- True -> adds a dashed line for the mean to the box # -- False -> only shows the standard quartiles and median # show_labels -- True -> Show the labels for the box locations # -- False -> Hide the labels for the box locations # def add_box(self, name, box_values, box_locations=None, orientation="v", box_mean=True, show_labels=True, **kwargs): # By default, the x values are just the name of the box if box_locations == None: box_locations = [name] * len(box_values) # Check for type errors (because this function requires lists) if (type(box_locations) != list): box_locations = list(box_locations) if (type(box_values) != list): box_values = list(box_values) # Convert x and y to double array format if not provided that way if type(box_values[0]) != list: box_values = [[v] for v in box_values] if type(box_locations[0]) != list: box_locations = [[v] for v in box_locations] # Handle the creation of appropriate x and y arrays for box # plots depending on the orientation that the user wants. box_locations = [l*len(v) for (l,v) in zip(box_locations,box_values)] if (orientation == "v"): # Flatten the lists x_values = sum(box_locations, []) y_values = sum(box_values, []) elif (orientation == "h"): # Flatten the lists x_values = sum(box_values, []) y_values = sum(box_locations, []) else: raise(Exception("ERROR: Only 'v' and 'h' are permissable box orientations.")) self.add(name, x_values, y_values, plot_type="box", mode="lines", orientation=orientation, **kwargs) # Primary function for simplifying the interface to plotly # plotting. This single generic function can be used as a # full-fledged interface for generating standard plotly "data" # dictionary object. It can be used for both 2D and 3D plotting, # and allows for control of all aspects of plot styling. # # STANDARD ARGUMENTS: The combination of these that is provided # determines whether a 2D or 3D plot is produced. "x_values" are # optional because histograms may only have y-values given. For # most standard usage, (x,y) will be given for 2D, (x,y,z) for 3D. # # name -- Name of the series to be plotted # x_values -- The x-values associated with the series # y_values -- The y-values associated with the series # z_values -- The z-values associated with the series # # HIGH-LEVEL STYLING: # mode -- The plotly series mode, "lines", "markers", # "text", or combinations with a "+" between. # plot_type -- The plotly plot_type, "scatter[3d]" for plots # of lines and dots, "surface" for 3D surfaces, # "histogram" for producing histograms. # group -- The legend-series group name. This is used # for the simultaneous hide/show of multiple # series. This will cause increased legend spacing. # show_in_legend -- True or False for if this series should show # in the legend. Currently plotly legends do # *not* support 3D surfaces in legends. # shade -- True or False if the given data series should # be shaded with different brightnesses based # on magnitude. # use_gradient -- True or False if a gradient coloring should # be applied to the given data series. # palette -- The palette to use when creating a gradient # of colors for the "use_gradient" option. # text -- A list of the text strings that should be # shown for each data point when a user hovers # with their mouse over that data point. # # LOW-LEVEL STYLING: # color -- The series color as a tuple/list/array of # (<red>,<green>,<blue>[,<alpha>]) # rgb in [0,255], alpha in [0,1] # opacity -- Transparency constant for series color, 0 is # completely transparent, 1 is completely opaque. # this value is overwritten if "color" has 4 numbers. # line_color -- The color of the line for this series # line_width -- The width of the line for this series # fill -- Almost exactly the plotly "fill" argument, # options include "toprevy" "tozeroy" "toself" # and the same for x. If "tonext[xy]" is used, # the legened will be reversed. (plotly bug) # fill_color -- The color to use for the fill if active. # fill_opacity -- The opacity of the fill color. # symbol -- The marker symbol, standard plotly. "circle", # "square", and a lot more on their website. # dash -- Standard plotly "dash" option. "solid", "dot", # "dash", or "1px,2px,5px[,[0-9]*px]*" list of lengths # marker_size -- The size (in pixels) of markers # marker_colors -- The color of markers # marker_line_width -- The width of the bounding line of markers # marker_line_color -- The color of the bounding line of markers # hoverinfo -- The information displayed when the user's # mouse hovers over the plot. Options include # "x" "y" "z" "text" "name", combined with "+" # # ... <any additional plotly data-dictionary args> ... def add(self, name, x_values=None, y_values=None, z_values=None, mode=None, plot_type=None, group=None, show_in_legend=True, shade=False, use_gradient=None, palette=DEFAULT_GRADIENT, text=None, color=None, opacity=1.0, line_color=None, line_width=None, fill=None, fill_color=None, fill_opacity=0.6, symbol='circle', dash=None, marker_size=None, marker_colors=None, marker_line_width=0, marker_line_color='rgba(50,50,50,0.8)', hoverinfo='name+x+y+z', frame=None, **kwargs): # Convert the x, y (and z) values into numpy arrays and # store 'values' for creating marker colors based on magnitude if type(x_values) != type(None): # WARNING: Plotly allows for string "x" values for some plots. try: x_values = np.asarray(x_values, dtype=float) except ValueError: pass # Get the "values" as the 'x'. values = x_values no_none = [v for v in x_values if isinstance(v,numbers.Number)] if len(no_none) != 0: self.x_min_max = [min(min(no_none), self.x_min_max[0]), max(max(no_none), self.x_min_max[1])] if type(y_values) != type(None): y_values = np.asarray(y_values, dtype=float) values = y_values no_none = [v for v in y_values if isinstance(v,numbers.Number)] if len(no_none) != 0: self.y_min_max = [min(min(no_none), self.y_min_max[0]), max(max(no_none), self.y_min_max[1])] if type(z_values) != type(None): self.is_3d = True z_values = np.asarray(z_values, dtype=float) values = z_values no_none = [v for v in z_values if isinstance(v,numbers.Number)] if len(no_none) != 0: self.z_min_max = [min(min(no_none), self.z_min_max[0]), max(max(no_none), self.z_min_max[1])] # Make a nice pretty gradient of color if use_gradient and (len(values) > 1): marker_colors = color_data(values, palette) # Define z-values if none were given and we need them, and plot type if self.is_3d: if plot_type == None: plot_type = 'scatter3d' if type(z_values) == type(None): z_values = np.zeros(len(x_values)) # Define text for all the data points if (hoverinfo != None) and ("text" in hoverinfo) and (text == None): # hoverinfo = None # text = None # WARNING: Sometimes this is causing problems where # the hoverinfo labels do not update on scroll, it # looks like another bug in the python plotly. text = ["%s: %s<br>%s: %s<br>%s: %s"%( self.x_title,x, self.y_title,y, self.z_title,z) for (x,y,z) in zip(x_values,y_values,z_values)] else: if plot_type == None: plot_type = 'scatter' # Process mode if type(mode) == type(None): mode = self.mode # Set the color if none was provided if type(color) == type(None): if (frame != None) and any((name == d["name"]) for d in self.data): for d in self.data[::-1]: if d["name"] == name: color = d["color"] else: self.color_num += 1 color = self.color(self.color_num, alpha=opacity) else: # WARNING (removed): Cancel shading if a color was provided. # shade = False # Automatically convert integer color numbers into colors. if (type(color) == int): color = self.color(color, alpha=opacity) # Automatically convert tuple colors to color strings. if (type(color) == tuple) and (len(color) in {3,4}): color = ("rgba" if len(color) == 4 else "rgb") + str(color) if type(line_color) == type(None): line_color = color if type(fill_color) == type(None): fill_color = self.color(color=color, alpha=fill_opacity) else: fill_color = self.color(color=fill_color) if not marker_colors: if shade: marker_colors = [] no_none = [v for v in values if v != None] if len(no_none) > 1: shift = min(no_none) scale = max(no_none) - shift if scale == 0: scale = 1.0 for v in values: if not isinstance(v,numbers.Number): raise(Exception(( "ERROR: '%s' not permitted. Only "+ "numbers are allowed as values.")%(v))) brightness = ((1.0-BRIGHTNESS_RANGE/2) + ((v - shift) / scale) * BRIGHTNESS_RANGE) marker_colors.append( self.color(color=color, brightness=brightness, alpha=opacity) ) else: marker_colors = color else: marker_colors = color # Special plotly failure mode, need to reverse data for # 'tonext' to actually mean 'next' instead of 'previous'. This # bug has been reported, but no one in the plotly community is # addressing it (or even noticing it) as a problem. self.to_reverse.append((type(fill) == str) and ("tonext" in fill)) # print("Using color:", color) # Now add the standard plotly "data" object to local storage self.data.append(dict( type = plot_type, name = name, x = x_values, y = y_values, z = z_values, hoverinfo = hoverinfo, text = text, color = color, # Set up the marker style marker = dict( # Generate colors based on point magnitude # color = color if ("lines" in mode) else marker_colors, color = marker_colors, size = marker_size, opacity = opacity, symbol = symbol, line = dict( width = marker_line_width, color = marker_line_color )), line = dict( width = line_width, color = line_color, dash = dash ), mode = mode, fill = fill, fillcolor = fill_color, legendgroup = group, showlegend = show_in_legend )) # Update the newly created dictionary with any custom user settings self.data[-1].update(kwargs) # If the user is preparing for an animation, the store the # frame number associated with this data dictionary. if type(frame) != type(None): self.data[-1]["frame"] = str(frame) # Add an annotation to the plot. These will be text boxes # stationed in the absolute foreground of the plot, disregarding # occlusion in 3D plots. # # STANDARD ARGUMENTS # text -- The text to display in the annotation. # x -- The x coordinate of the arrow for the annotation # y -- The y coordinate of the arrow for the annotation # z -- The z coordinate (if applicable) of the arrow for the annotation # # ANNOTATION CONTROL # ax -- The x screen pixels offset for the anntation box (+ is right) # ay -- The y screen pixels offset for the annotaiton box (+ is down) # opacity -- The transparency of the entire annotation # textangle -- The angle of the annotation (and bounding box) # align -- The alignment of text within the annotation box # xanchor -- The box-x anchor point for the extending arrow # yanchor -- The box-y anchor point for the extending arrow # # FONT CONTROL # font_family -- The family of font used in the annotation # font_color -- The color of the font used in the annotation # font_size -- The size of the font used in the annotation # # BORDER CONTROL # border_color -- The color of the border of the annotation box # border_width -- The thickness of the border of the annotation box # border_pad -- The padding between the annotation text and box # bg_color -- The background color of the annotation box # # ARROW CONTROL # show_arrow -- Whether or not to show an arrow at all # arrow_color -- The color of the arrow # arrow_size -- The size of the arrow head # arrow_width -- The width of the arrow line # arrow_head -- The type of arrow head. 0 -> None, 1-5 -> Arrows, # 6 -> Dot, 7 -> Box, >7 -> None # # ... <any additional plotly annotation-dictionary args> ... def add_annotation(self, text, x, y, z=None, ax=None, ay=None, axref=None, ayref=None, opacity=0.8, text_angle=0, align="left", x_anchor="center", y_anchor="bottom", font_family="Arial", font_color="#0a0a0a", font_size=12, border_color="#1a1a1a", border_width=0, border_pad=4, bg_color="#f0f0f0", show_arrow=True, arrow_color="#666", arrow_size=1, arrow_width=1, arrow_head=7, **kwargs): # # Assign default ax and ay references based on provided info # if (ax != None) and (axref == None) and (z == None): axref = "x" # if (ay != None) and (ayref == None) and (z == None): ayref = "y" # Add computed values for the annotation x and y if show_arrow: if ax == None: ax = 10 if ay == None: ay = -20 else: if ax == None: ax = 0 if ay == None: ay = 0 # Add the annotation self.annotations.append(dict( text=text, # Target location x = x, y = y, z = z, ax = ax, ay = ay, axref = axref, ayref = ayref, # Annotation text control opacity = opacity, textangle = text_angle, align = align, # Anchor and shift xanchor = x_anchor, yanchor = y_anchor, xshift = 0, yshift = 0, # Font font = dict( family = font_family, color = font_color, size = font_size ), # Border control bordercolor = border_color, borderwidth = border_width, borderpad = border_pad, bgcolor = bg_color, # Arrow control showarrow = show_arrow, arrowcolor = arrow_color, arrowsize = arrow_size, arrowwidth = arrow_width, arrowhead = arrow_head, )) self.annotations[-1].update(kwargs) # Second part to the simplified plotly interface. This creates the # layout-dictionary object and (optionally) produces the HTML and # opens a browser to view the plot. # # COMMON ARGUMENTS: # title -- Title to display for this plot. (can include # HTML line break <br> and bold <b>text</b>) # x_range -- The range of x-values to default to displaying, # automatically determined by data if possible # y_range -- The range of y-values to default to displaying, # automatically determined by data if possible # z_range -- The range of z-values to default to displaying, # automatically determined by data if possible # fixed -- False if plotly should automatically rescale the # plot when series are hidden/shown, True if # plotly should not rescale on hide/show. # show_legend -- True if the legend should be included. # # LAYOUT CONTROL: # layout -- Update to be performed to the plotly # layout-dictionary that is generated. # aspect_mode -- For 3D plotting, standard plotly. # legend -- Legend settings, like the font and location. # scene_settings -- Standard plotly, for updating the "scene" # dictionary for 3D plotting. # axis_settings -- Controls for each of the axes. Include # things like showgrid, zeroline, showline, # showticklabels (all boolean) or ticks="<str>", # type = "log", "date", "category". # For customizing just one, use # "x_axis_settings", "y_axis_settings", etc. # hovermode -- Setting for how to display hover tips, default # for 2D data is closest x. Use "closest" otherwise. # camera_position -- A dictionary of dictionaries of x,y,z # values, "up" is relative up vector, "center" # is the point about which a 3D plot rotates, # and "eye" is the camera coordinate. # # OUTPUT CONTROL: # html -- True if "create_html" should be called. # file_name -- See "create_html". # show -- See "create_html". # append -- See "create_html". # height -- The height of the plot in pixels # width -- The width of the plot in pixels # # ANIMATION CONTROLS: # loop_duration -- Length in seconds of full play cycle. # bounce -- True if "play" should go start -> end -> start # transition -- Type of transition for data options include: # "linear", "cubic", "quad", "exp", "bounce" # "elastic", "sin", (all have "-in-out" too) # data_easing -- True if data should ease, False if not. # redraw -- True if the plot and legend should be # redrawn every time the frame changes. # This will cause the slider to lock (plotly bug). # slider_transition -- Type of transition for slider, same # options as "transition". # initial_frame -- The initial frame label to display. # frame_label -- The prefix before the frame label. # show_frame_label -- Whether or not to show a frame label. # show_slider_labels -- Whether or not to show labels under # slider positions (disable for long labels) # show_play_pause -- Whether or not to show the play and pause buttons. # autoplay -- Whether or not to autoplay on-load in browser. # loop -- Whether or not the animtation should # loop when playing, otherwise 1 play -> 1 loop. # loop_pause -- The pause in seconds between animation loops. # # See more details at: https://github.com/plotly/plotly.js/blob/master/src/plots/animation_attributes.js # # ... <any additional plotly.offline.plot keyword arguments> ... def plot(self, title=None, x_range=None, y_range=None, z_range=None, fixed=True, show_legend=True, layout={}, aspect_mode='cube', legend={}, scene_settings={}, axis_settings={}, x_axis_settings={}, y_axis_settings={}, z_axis_settings={}, hovermode="closest", camera_position=DEFAULT_CAMERA_POSITION, html=True, file_name=None, show=True, append=False, height=None, width=None, loop_duration=5, bounce=False, transition="linear", data_easing=False, redraw=False, slider_transition="linear", initial_frame=None, frame_label="Frame: ", show_frame_label=True, show_slider_labels=True, show_play_pause=True, autoplay=False, loop=False, loop_pause=0, **kwargs): # Update title, and all plot axis ranges if title == None: title = self.title if (fixed and x_range == None and max(map(abs,self.x_min_max)) != float('inf')): x_width = self.x_min_max[1] - self.x_min_max[0] x_range = [self.x_min_max[0] - 0.05*x_width, self.x_min_max[1] + 0.05*x_width] if ((x_axis_settings.get("type","") == "log") or (axis_settings.get("type","") == "log") and (x_range[0] > 0)): x_range = [np.log10(x_range[0]), np.log10(x_range[1])] if (fixed and y_range == None and max(map(abs,self.y_min_max)) != float('inf')): y_width = self.y_min_max[1] - self.y_min_max[0] y_range = [self.y_min_max[0] - 0.05*y_width, self.y_min_max[1] + 0.05*y_width] if ((y_axis_settings.get("type","") == "log") or (axis_settings.get("type","") == "log") and (y_range[0] > 0)): y_range = [np.log10(y_range[0]), np.log10(y_range[1])] if (fixed and z_range == None and max(map(abs,self.z_min_max)) != float('inf')): z_width = self.z_min_max[1] - self.z_min_max[0] z_range = [self.z_min_max[0] - 0.05*z_width, self.z_min_max[1] + 0.05*z_width] if ((z_axis_settings.get("type","") == "log") or (axis_settings.get("type","") == "log") and (z_range[0] > 0)): z_range = [np.log10(z_range[0]), np.log10(z_range[1])] # Set up a legend font legend_font = dict( family = self.font_family, color = self.font_color, size = (max(self.font_size - 4,2) if ( type(self.font_size) != type(None)) else None), ) if ("font" in legend): legend_font.update(legend["font"]) legend["font"] = legend_font # Set up a title font title_font = dict( family = self.font_family, color = self.font_color, size = (self.font_size + 2) if (type(self.font_size) == int) else self.font_size, ) # Generate the layout (titles and legend) plot_layout = dict( title = title, titlefont = title_font, showlegend = show_legend, legend = legend, margin = dict(t=PLOT_MARGIN,b=PLOT_MARGIN,l=10+PLOT_MARGIN,r=PLOT_MARGIN), ) # Set width, height, and compensate for plotly spacing aroung SVG if type(width) != type(None): # width += 139 plot_layout.update(dict(width=width)) if type(height) != type(None): # height += 159 plot_layout.update(dict(height=height)) # Transfer the "hovermode" property. if type(hovermode) != type(None): plot_layout.update(dict(hovermode=hovermode)) # Set the barmode for histograms if necessary if (hasattr(self, 'histogram_barmode') and len(self.histogram_barmode) > 0): plot_layout['barmode'] = self.histogram_barmode # Clean all annotations so they are ready for plotting annotations = [a.copy() for a in self.annotations] self._clean_annotations(annotations) # Setup the title and tick fonts dictionary fonts_dict = dict( titlefont = dict( family = self.font_family, color = self.font_color, size = self.font_size, ), tickfont = dict( family = self.font_family, color = self.font_color, size = (max(self.font_size - 4,2) if ( type(self.font_size) != type(None)) else None), ) ) # Update axis_settings with things from fonts that it doesn't have. fonts_dict.update(axis_settings) axis_settings = fonts_dict # Update all axes with the global axis settings x_axis_settings.update(axis_settings) y_axis_settings.update(axis_settings) z_axis_settings.update(axis_settings) # Setup for the axes of the plot scene = dict( xaxis = dict(title = self.x_title, range=x_range, **x_axis_settings), yaxis = dict(title = self.y_title, range=y_range, **y_axis_settings), zaxis = dict(title = self.z_title, range=z_range, **z_axis_settings), ) # Setup the plot layout (different for 2D and 3D plots) if not self.is_3d: plot_layout.update(scene) plot_layout.pop('zaxis') plot_layout.update(dict(annotations=annotations)) else: scene['aspectmode'] = aspect_mode scene['camera'] = camera_position scene.update(scene_settings) scene.update(dict(annotations=annotations)) plot_layout['scene'] = scene # Update the plot layout with any specific user settings given plot_layout.update(layout) # Make sure all the data entries are prepared to be plotted # Make a deep copy of the locally stored data that can be # cleaned and prepared for plotting (without risk of deleting # information that may be necessary for re-plotting) data = [d.copy() for d in self.data] self._clean_data(data) # Manage plotly reverse order bug (only happens with "tonext_") self._reorder_data(data) # Check for animation (if the user wanted it) if any("frame" in d for d in data): if any("frame" not in d for d in data): raise(Exception("\n Partial animations are not allowed.\n Either all series must have 'frame' or none of them.")) # Make a call to handle generating the aniation figure fig = _animate(data, plot_layout, loop_duration, bounce, transition, data_easing, redraw, slider_transition, initial_frame, frame_label, show_play_pause, show_frame_label) else: # Generate the figure with a standard mechanism fig = dict(data=data, layout=plot_layout) # Create the html file and show in browser if appropriate if html: create_html(fig, file_name, show, append, show_slider_labels, autoplay, loop, loop_pause, **kwargs) # Return the figure return fig @same_as(plot, mention_usage=True) def show(self, *args, **kwargs): return self.plot(*args, **kwargs) # This function is a light wrapper for "plot" that automatically # sets axis settings for def graph(self, *args, show_grid=True, show_ticks=False, show_line=False, show_zero_line=False, show_legend=False, show_titles=False, **kwargs): # Set the axis labels if (not show_titles) and ("x_title" not in kwargs) and ("y_title" not in kwargs): self.x_title = "" self.y_title = "" # Set the default axis settings axis_settings = dict(showgrid=show_grid, showticklabels=show_ticks, showline=show_line, zeroline=show_zero_line) if "axis_settings" in kwargs: kwargs["axis_settings"].update(axis_settings) else: kwargs["axis_settings"] = axis_settings # Update "show_legend" kwargs["show_legend"] = show_legend return self.plot(*args, **kwargs) # Light wrapper for "add" which is designed to place graphical nodes. def add_node(self, name, x, y, *args, symbol="circle", display=True, white=True, size=30, hoverinfo="name", marker_line_color="rgba(0,0,0,1))", marker_line_width=2, label=False, label_y_offset=1, label_x_offset=0, **kwargs): # Disable "white" mode if color was provided if ("color" in kwargs) and (type(kwargs["color"]) != type(None)): white = False # Set to a default color if desired if white: kwargs["color"] = "rgba(255,255,255,1)" # Set the defaults for some other plotting arguments if ("text" not in kwargs): kwargs["text"] = name if ("marker_size" not in kwargs): kwargs["marker_size"] = size # Remove the marker line and color if not displayed if not display: marker_line_width = 0 kwargs["color"] = self.color( color=kwargs.get("color","(0,0,0)"), alpha=0) # Store the output of the addition. output = self.add(name, [x], [y], *args, symbol=symbol, marker_line_width=marker_line_width, marker_line_color=marker_line_color, hoverinfo=hoverinfo, **kwargs) # Add a label if that is desired (after so it's on top). if label: self.add_node(name+"_label", x+label_x_offset, y+label_y_offset, mode="text", text=name, hoverinfo="skip") # Return the output. return output # Wrapper for "plot" that draws lines between nodes in a sequence. def add_edge(self, nodes, color="rgba(0,0,0,1)", mode="lines", *args, **kwargs): x = [] y = [] # Default to adding a fill (if color is specified) if ("fill_color" in kwargs): if ("fill" not in kwargs): kwargs["fill"] = "toself" # Create a local function that says when a frame matches matches_frame = lambda d: ("frame" not in kwargs) or ( ("frame" in d) and (d["frame"] == str(kwargs["frame"]))) # Now find the nodes to draw between for _ in range(len(nodes)): for d in self.data: if (d["name"] == nodes[0]): # Skip data that does not match this frame if not matches_frame(d): continue # Track the coordinates x += list(d["x"]) y += list(d["y"]) # Cycle the list nodes = nodes[1:] + [nodes[0]] break # If we don't find a matching node, break else: break kwargs["hoverinfo"] = "skip" output = self.add("", x, y, mode=mode, color=color, *args, **kwargs) # Cycle that new element to the front of data so that it is # rendered underneath all nodes. for i in range(len(self.data)): if (self.data[i]["name"] in nodes) and matches_frame(self.data[i]): self.data.insert(i, self.data.pop(-1)) break return output # Functions for manipulation produces plots # =================================================== # Convenience function for generating interactive plots in a Jupyter # notebook. Provide either a single plot or a list of plots as would # be given to "plot.multiplot" to create interactive visuals. def iplot(plot, *args, html=False, show=True, **kwargs): # Set notebook mode for this session if it has not been set. global NOTEBOOK_MODE import plotly if not NOTEBOOK_MODE: plotly.offline.init_notebook_mode() NOTEBOOK_MODE = True # Disable the generation of HTML strings. kwargs['html'] = html kwargs['show'] = show # Get the figure for plotting. if (type(plot) == Plot): fig = plot.plot(*args, **kwargs) else: fig = multiplot(plot, *args, **kwargs) # Create an interactive plot in Jupyter. if show: plotly.offline.iplot(fig, show_link=False) # Return the figure. return fig # Generates the HTML file and fixes some javascript so that the # plot does not have unwanted buttons and links. # # fig -- A plotly figure-dictionary, with all necessary keys. # file_name -- The name of the output file to generate. # show -- True if the output file should be opened in a # webbrowser after writing is complete. # append -- True if this HTML code should be appended to # "file_name" if it already exists. This creates a # scrollable page, where each plot takes a full screen. # show_slider_labels -- Hack for removing the labels from the slider # bar that must be done on the HTML. # autoplay -- Hack for preventing plot animation from # automatically playing once it is loaded. # loop -- Hack for making animations automatically # repeat by modifying raw javascript "animate". # loop_pause -- Amount of time waited before looping an # animation in seconds. # # ... <any additional plotly.offline.plot keyword arguments> ... def create_html(fig, file_name=None, show=True, append=False, show_slider_labels=True, autoplay=False, loop=True, loop_pause=0, **kwargs): # Handle the creation of a file if (type(file_name) == type(None)): if append and (len(PREVIOUS_FILE_NAMES) > 0): file_name = PREVIOUS_FILE_NAMES[-1] else: with tempfile.NamedTemporaryFile( mode="w", suffix=".html", delete=False) as f: file_name = f.name # Add 'html' extension if necessary. if (file_name[-len('.html'):] != ".html"): file_name += ".html" # Load the pypi package "plotly" that interfaces with plotly.js # only once this is called, otherwise it slows down the import import plotly # Store the old file contents if we are appending if (append and os.path.exists(file_name)): with open(file_name) as f: old_contents = f.read() else: old_contents = "" # Check for appending to file if (not append): print("Creating plot at", end=" ") else: print("Appending plot at", end=" ") # Generate the plot offline plotly.offline.plot(fig, filename=file_name, auto_open=False, show_link=False, **kwargs) # Remove unnecessary modebar buttons and the plotly logo link with open(file_name) as f: file_string = f.read() file_string = file_string.replace( 'displaylogo:!0', 'displaylogo:!1') file_string = file_string.replace( 'modeBarButtonsToRemove:[]', 'modeBarButtonsToRemove:["sendDataToCloud", "select2d", "lasso2d"]') file_string += "\n\n" # Prevent animated plots from auto-playing if the user wants if (not autoplay): file_string = re.sub("\\.then\\(function\\(\\)\\{Plotly\\.animate\\(\\'[0-9a-zA-Z-]*\\'\\)\\;\\}\\)", "", file_string) # autoplay_substitution = "" else: print("WARNING: Cannot control transitions using autoplay.") # autoplay_substitution = '.then(function(){Plotly.animate([null], {"frame": {"duration": 0, "redraw": false}, "mode": "immediate", "transition": {"duration": 0}})})' # Cause animation to loop if the user wants if loop: # Add a global parameter storage at the top of the file file_string = file_string.replace("*/\n!","*/\nvar ap=[];\n!") # Name the x.animate function for internal reference and store # the function parameters passed into the global variable file_string = file_string.replace("x.animate=function(t,e,r){","x.animate=function af(t,e,r){ap=[t,e,r];") # Add a recursive call at the end of the conclusion of the animate function file_string = file_string.replace("}else c()","}else {c();setTimeout(function(){af(ap[0],ap[1],ap[2]);},"+str(1000*loop_pause)+");}") # Remove the slider label group if necessary by adding CSS that hides it if not show_slider_labels: extra_css = '<style type="text/css"> g.slider-labels { display: none; } </style>' file_string += extra_css # If appending, put the old contents back in front of the new if append: file_string = old_contents + file_string # Write the contents to the file with open(file_name, "w") as f: f.write(file_string) # Update the global list of previously used file names PREVIOUS_FILE_NAMES.append(file_name) if len(PREVIOUS_FILE_NAMES) > 1: PREVIOUS_FILE_NAMES.pop(0) print("file '%s'"%file_name) # Open the plot in a webbrowser if the user wants that if show: webbrowser.open("file://"+os.path.abspath(file_name)) return file_name # Make multiple plots fit onto one browser window, options for sharing # axes as well for naming purposes. Mixed plot types allowed too! # Supports different number of columns per row, but no other mismatch # # plots -- A 2D list of plots in the desired grid layout. Rows # can have varying numbers of plots, columns cannot. # x_domains -- A 2D list of pairs (3D list) each pair is [start,end] # where 0 <= start < end <= 1. This controls the width # of each column of plots. Same 2D shape as "plots". # y_domains -- A 2D list of pairs (3D list) each pair is [start,end] # where 0 <= start < end <= 1. This controls the width # of each row of plots. Same 2D shape as "plots". # shared_y -- True if the y-axis is shared for plots in same row. # shared_x -- True if the x-axis is shared for plots in same column. # gap -- The amount of space between the plots. # specs -- A 2D list (same shape as "plots") of dictionaries # representing plotly subplots "specs". Mostly for # telling plotly which plots are 3D and which are 2D. # html -- True if "create_html" should be called. # show -- See "create_html". # append -- See "create_html". # # ... <any additional plotly.offline.plot keyword arguments> ... def multiplot(plots, x_domains=None, y_domains=None, html=True, show=True, append=False, specs=None, shared_y=False, shared_x=False, legend=None, show_legend=True, gap=0.12, height=None, width=None, layout=None, **kwargs): # Load the pypi package "plotly" that interfaces with plotly.js # only once this is called, otherwise it slows down the import import plotly # Make sure the plots array is 2D try: plots[0][0] except: plots = [plots] # Convert given plots into figures (if figures were not given for r in plots: for c in range(len(r)): if type(r[c]) == Plot: r[c] = r[c].plot(html=False, show=False, show_legend=show_legend) # Count the number of rows and columns rows = len(plots) cols = [len(r) for r in plots] max_cols = max(c for c in cols) # Generate/Process the specs if type(specs) != type(None): try: specs[0][0] except: specs = [specs] else: specs = [[None]*max_cols for r in range(rows)] for r,row in enumerate(plots): for c,plot in enumerate(row): if type(plot) == type(None): continue sample_data = plots[r][c]['data'][0] specs[r][c] = {"is_3d": ('z' in sample_data)} # Generate the x and y domains if they are not provided by the user if x_domains == None: x_domains = [] for r in range(rows): plot_width = (1 - (cols[r]-1)*gap) / cols[r] x_domains.append( [[c*(plot_width+gap), c*(plot_width+gap) + plot_width] for c in range(cols[r])]) if y_domains == None: plot_height = (1 - (rows-1)*gap) / rows y_domains = [[r*(plot_height+gap), r*(plot_height+gap) + plot_height] for r in range(rows)] # Identify the number of dimensions provided in x an y domains, if # too few, then make sure it is the same shape as the plots try: x_domains[0][0][0] except TypeError: x_domains = [x_domains for r in range(rows)] try: y_domains[0][0][0] except TypeError: y_domains = [[y_domains[r]]*cols[r] for r in range(rows)] # Fix y-domains so that they are specified from bottom to top flipped_y = [] gap = y_domains[1][0][0] - y_domains[0][0][1] if len(y_domains) > 1 else 0 for r in range(rows): start = 0.0 if r == 0 else flipped_y[-1][1] + gap plot_width = y_domains[rows-r-1][0][1] - y_domains[rows-r-1][0][0] flipped_y.append([start, start+plot_width]) y_domains = [[flipped_y[r]]*cols[len(cols)-1-r] for r in range(rows)][::-1] # Generate the holder for the multiplot fig = plotly.tools.make_subplots(rows=rows, cols=max_cols, specs=specs, shared_yaxes=shared_y, shared_xaxes=shared_x) # Generate the multi plot! counter_2d = 0 counter_3d = 0 for r,row in enumerate(plots): for c,plot in enumerate(row): # Allows for empty spaces if type(plot) == type(None): continue count = 0 # Otherwise, continue assuming we have a figure! for d in plot['data']: count += 1 # # Only add traces that are not redundant (same trace for different frames) # if not any((d['name'] == f['name']) for f in fig['data']): fig.append_trace(d, r+1, c+1) # Add frames to the record for this figure if ('frames' in plot): if ('frames' in fig): if (len(plot['frames']) != len(fig['frames'])): raise(Exception("Each subplot must have same number of frames for multiplot animation.")) for i,f_src in enumerate(plot['frames']): for d in f_src['data']: # Update the x-axis and y-axis of the frame d['xaxis'] = fig['data'][-1]['xaxis'] d['yaxis'] = fig['data'][-1]['yaxis'] fig['frames'][i]['data'] += [d] else: if (r != 0) or (c != 0): raise(Exception("Each subplot must have same number of frames for multiplot animation.")) fig['frames'] = plot['frames'] for f_src in fig['frames']: for i,d in enumerate(f_src['data']): d['xaxis'] = fig['data'][-1]['xaxis'] d['yaxis'] = fig['data'][-1]['yaxis'] # Extract the annotations for this plot plot_annotations = plot['layout'].pop('annotations',[]) # Handle 3D and 2D differently if specs[r][c]['is_3d']: counter_3d += 1 scene_name = 'scene' + str(counter_3d) fig['layout'][scene_name].update(plot['layout']['scene']) fig['layout'][scene_name]['domain']['x'] = x_domains[r][c] fig['layout'][scene_name]['domain']['y'] = y_domains[r][c] else: counter_2d += 1 x_name = 'xaxis'+str(counter_2d) y_name = 'yaxis'+str(counter_2d) # For shared axes, only add the first entry of column or row # Update the domains as specified by the user if (not shared_x) or (r == 0): fig['layout'][x_name].update(plot['layout'].pop('xaxis')) fig['layout'][x_name]['domain'] = x_domains[r][c] if (not shared_y) or (c == 0): fig['layout'][y_name].update(plot['layout'].pop('yaxis')) fig['layout'][y_name]['domain'] = y_domains[r][c] for a in plot_annotations: a['xref'] = "x" + str(counter_2d) a['yref'] = "y" + str(counter_2d) fig['layout']['annotations'] = fig['layout'].get( 'annotations',[]) + [a] # Ensure that no axis layouts make it into the plot that shouldn't plot['layout'].pop('xaxis','') plot['layout'].pop('yaxis','') fig['layout'].update(plot['layout']) # Return the annotations to the plot now that the figure # has been updated (and is not at risk of overwriting annotations) if len(plot_annotations) > 0: plot['layout']['annotations'] = plot_annotations # Remove the 'scene' if there is one left over if specs[r][c]['is_3d']: fig['layout'].pop('scene','') # Set the height and width properties, compensate for plotly spacing aroung SVG if type(width) != type(None): width += 139 fig["layout"].update(dict(width=width)) if type(height) != type(None): height += 159 fig["layout"].update(dict(height=height)) # Set up the legend if that was provided. if (legend is not None): fig["layout"].update(dict(legend=legend)) # Transfer any layout settings. if (layout is not None): fig['layout'].update(layout) # Create the html plot if the user wants that (pass extra arguments) if html: create_html(fig, show=show, append=append, **kwargs) # Return the figure to be plotted return fig # ================================================= # Helper functions needed for this module # ================================================= # Given some data, color the data according to a palette with uniform # interpolation between the colors in the palette from the minimum # value provided to the maximimum value provided def color_data(values, palette=DEFAULT_GRADIENT, opacity=1.0): no_none = [v for v in values if type(v) != type(None)] shift = min(no_none) scale = (max(no_none) - shift) * 1.11 if (scale == 0): scale = 1.0 def color(value): if value == None: return None # Generate the index as a float (for interpolating) index = len(palette) * (value-shift) / scale # Get the exact colors on either side of this index lower = int(index) upper = lower + 1 if (lower > len(palette)-1): lower = len(palette)-1 if (upper > len(palette)-1): upper = len(palette)-1 index -= lower # Interpolate between the lower and upper colors c = tuple(palette[lower]*(1-index) + palette[upper]*(index)) # Return the interpolated color. return 'rgba(%i,%i,%i,%f)'%(c+(opacity,)) return list(map(color, values)) # Given a color string, convert it into an array of numbers def color_string_to_array(color_string): colors = color_string[color_string.index('(')+1: color_string.index(')')].split(',') color = list(map(float,colors)) if len(color) == 3: color += [1.0] if len(color) != 4: raise(Exception("Bad number of elements in color string.")) return np.array(color) # Private function for use only by the "plot" function. See the # descriptions of input arguments at "def plot". def _animate(data, plot_layout, loop_duration, bounce, transition, data_easing, redraw, slider_transition, initial_frame, frame_label, show_play_pause, show_frame_label): # Get a list of all frame names frame_names = [] for d in data: if d["frame"] not in frame_names: frame_names.append(d["frame"]) transition_duration = (loop_duration / len(frame_names)) * 1000 # Get a list of names and their legend groups (make sure that all # data series have a legend group and avoid conflicts) names_and_groups = {} all_groups = [] for d in data: if d["legendgroup"] not in all_groups: all_groups.append(d["legendgroup"]) for i,d in enumerate(data): if (d["legendgroup"] == None): if d["name"] not in names_and_groups: group = d["name"] number = 1 new_group = lambda: "%s %s"%(group,number) while group in all_groups: name = new_group() number += 1 all_groups.append(group) names_and_groups[d["name"]] = group d["legendgroup"] = names_and_groups[d["name"]] # Remove "None" from the list of groups if None in all_groups: all_groups.remove(None) # Construct a universal legend group for all time steps details = [] for group in all_groups: names = [] for d in data: if (d["legendgroup"] == group) and (d["name"] not in names): names.append(d["name"]) for d in data: if(d["legendgroup"] == group) and (d["name"] in names): det = d.copy() # Remove all displayable data from the details for val in ["x", "y", "z"]: if val in det: det[val] = [None] if "text" in det: det["text"] = None det.pop("frame") details.append(det) names.remove(d["name"]) if (len(names) == 0): break # Organize all of the data by frame list_data_dicts = [[d for d in data if (d["frame"] == fn)] for fn in frame_names] annotations = plot_layout.pop("annotations",[]) non_framed = [a for a in annotations if "frame" not in a] annotations = [a for a in annotations if "frame" in a] plot_layout["annotations"] = non_framed # Initialize a figure figure = {"data":[], "layout":plot_layout, "frames":[]} # Pick the initial value for the animation if necessary if type(initial_frame) == type(None): initial_frame = frame_names[0] if show_play_pause: # Controls the list of elements transitioned through when "Play" # is pressed. {"redraw": True} causes the slider to stop working. # "transition" controls the movement of data points, NOT the slider. # "[None]" forces a pause, which requires 'immediate" and 0 duration. slider_menu = [{ 'buttons': [ {'args': [frame_names + (frame_names[::-1] if bounce else []), {'frame': {'duration': transition_duration, 'redraw': redraw}, 'fromcurrent': True, 'transition': {'duration': transition_duration if data_easing else 0, 'easing': transition}}], 'label': 'Play', 'method': 'animate'}, {'args': [[None], {'frame': {'duration': 0, 'redraw': redraw}, 'mode': 'immediate', 'transition': {'duration': 0}}], 'label':'Pause', 'method':'animate'}], 'direction': 'left', 'pad': {'r': 10, 't': 85}, 'showactive': True, 'type': 'buttons', 'x': 0.1, 'y': 0, 'xanchor': 'right', 'yanchor': 'top' }] # Initialize a holder for 'updatemenus' if it doesn't exist if "updatemenus" not in figure["layout"]: figure['layout']['updatemenus'] = [] # Add the menu to the figure layout figure['layout']['updatemenus'] += slider_menu # "transition" controls the animation of the slider. sliders_dict = { # 'active': 0, 'yanchor': 'top', 'xanchor': 'left', 'currentvalue': { 'font': {'size': 16}, 'prefix': frame_label, 'visible': show_frame_label, 'xanchor': 'right' }, 'transition': {'duration': transition_duration, 'easing': slider_transition}, 'pad': {'b': 10, 't': 50 if max(map(len,frame_names)) < 20 else 65}, 'len': 0.9 if show_play_pause else 1, 'x': 0.1 if show_play_pause else 0, 'y': 0, 'steps': [] } # make frames for el,data_dicts in zip(frame_names, list_data_dicts): frame = {'data': [], 'name': el} # Animate a plot if el == frame_names[0]: for d in data_dicts: f_data = d.copy() f_data.pop("frame","") f_data["showlegend"] = False # Generate data dicts in the usual way. figure['data'].append(f_data) for d in details: figure['data'].append(d.copy()) # Add all data dicts for this step to the frame data for d in data_dicts: f_data = d.copy() f_data.pop("frame","") f_data["showlegend"] = False frame['data'].append(f_data) for d in details: frame['data'].append(d.copy()) layout = {"annotations":[]} for a in annotations: if (a["frame"] == el): layout["annotations"].append( a ) frame["layout"] = layout figure['frames'].append(frame) # Controls what happens when this element of the slider is # clicked. The first duration is for the data, the second is # for the slider. slider_step = {'args': [[el], {'frame': {'duration': transition_duration, 'easing':transition, 'redraw': redraw}, 'transition': {'duration': transition_duration if data_easing else 0, 'easing': slider_transition}} ], 'label': el, 'method': 'animate'} sliders_dict['steps'].append(slider_step) figure['layout']['sliders'] = [sliders_dict] return figure # ================================================ # Example Usage of This Plotly Interface # ================================================ if __name__ == "__main__": print() print("Creating a demonstration of most of the available (and useful) features!") print() # Testing code for the plotting interface fun = lambda x: np.sum(x**2) / 10 # fun = lambda x: x[-1]*x[-2] x = np.linspace(-10,10,100) y = x**2 / 10 # Simple straight forward 2D plotting. plot = Plot("2D Plotting Different Types") # Adding a 2D function plot.add_func("Test Func 2D", fun,[-10,10], opacity=0.5, dash="dot") # Adding lines with dots plot.add("V Line", [0,0], [min(y), max(y)], mode="lines+markers") # Adding a filled region plot.add("Square", [-2,-2,2,2], [5,10,10,5], opacity=0.8, mode="none", fill="toself") # Adding lines in arbitrary directions plot.add("H Line", [-5,5], [1,1], mode="lines+markers", symbol='square', dash="1px,3px,1px") plot.add("H Line 2", [-5,5], [2,2], mode="lines") plot.add_annotation("2D Annotation", 10+.1, 10-.1, ax=9, ay=2, arrow_head=2, y_anchor="top") plot1 = plot # 3D plotting plot = Plot("3D Title","X Axis", "Y Axis", "Z Axis") rand_x = list(range(-5,6,2)) rand_y = np.random.randint(-3,4,size=6) rand_z = np.random.randint(3,8,size=6) # Adding a 3D line plot.add("3D Line", rand_x, rand_y, rand_z, mode='lines') dens = 5 x, y = np.meshgrid(np.linspace(-5,5,dens), np.linspace(-5,5,dens)) x = x.flatten() y = y.flatten() fun = lambda x: -.3*x[1] + 1/2*x[0] + 1 z = np.array(list(map(fun, zip(x,y)))) # Adding a 3D function, and demonstrating different marker styles plot.add("3D Above", x, y, z+1.5, marker_size=3, marker_line_width=1, group="Small") plot.add("3D Below", x, y, z-1.5, marker_size=2, marker_line_width=1, group="Small") plot.add("3D B Next", x, y, z-1, marker_size=5, opacity=0.7, marker_line_width=1, group="Big" ) plot.add("3D A Next", x, y, z+1, marker_size=7, opacity=0.4, marker_line_width=1, group="Big") plot.add_func("3D Surface", fun, [min(x),max(x)], [min(y),max(y)], opacity=0.7, use_gradient=True) x_val, y_val = x[-5], y[-5] plot.add_annotation("3D Annotation", x_val, y_val, fun([x_val,y_val])+1.5, ax=-15) plot2 = plot # Adding a histogram, notice they don't have the same ranges and # that will reflect in their respective bin sizes. plot3 = Plot("Using 'multiplot'", "x stuff", "y stuff") plot3.add_histogram("Histogram Series 1", np.random.normal(0,3,size=(400,))) plot3.add_histogram("Histogram Series 2", np.random.normal(15,1, size=(200,))) plot3.add_annotation("Histogram annotation", 0, 0.005) # Render the plots in the browser. plot1.plot(show=False) # Demonstrate how to put a full-screen plot beneath the first. plot2.plot(title="'append=True' Plotting", append=True, show=False) # Demonstrate allowing plotly to auto-scale when series are # activated and deactivated (try turning off Histogram Series 1) plot3.plot(title="'fixed=False' Plotting", fixed=False, append=True, show=False) # Showing multiple plots on one screen, a grid layout with the # option for varying numbers of elements on each row. multiplot([[plot1, plot2],[plot3]], gap=0.1, append=True, show=False) # Add an example of two plots being animated side-by-side p1 = Plot("","Plot 1") p2 = Plot("Animation Plotting","Plot 2") # x values for each plot x = [-2,-1,0.01,1,2,3] for f in range(10): # Add the first plot series y = list(map(lambda v: v**2 - f*v, x)) p1.add("f1", x, y, color=p1.color(0), mode='markers+lines', shade=False, frame=f) # Add the second plot series y = np.array(list(map(lambda v: v**(3) + f*v, x))) p2.add("f2", x, y, color=p2.color(1), mode='markers+lines', shade=False, frame=f) p1 = p1.plot(data_easing=True, bounce=True, html=False, loop_duration=2.5) p2 = p2.plot(data_easing=True, bounce=True, html=False, loop_duration=2.5) multiplot([[p1, p2]], append=True) # This is an example of how to control the legend (flat, bottom). # legend = dict( # xanchor = "center", # yanchor = "top", # x = .5, # y = -.15, # orientation = "h", # ) # layout_settings = dict( # margin = dict(l=60, t=30, b=30), # )
47.407901
174
0.552307
62ef09918a71ef82c9aa1c534062a67a20b1108d
2,397
py
Python
test/pcdcp_test/PCDCPParser_test.py
usgs/geomag-algorithms
a83a0e36bed9307828e37b9130c25dbc26dd1bc9
[ "CC0-1.0" ]
49
2015-10-06T17:57:20.000Z
2022-01-12T18:40:17.000Z
test/pcdcp_test/PCDCPParser_test.py
usgs/geomag-algorithms
a83a0e36bed9307828e37b9130c25dbc26dd1bc9
[ "CC0-1.0" ]
229
2015-01-26T20:10:36.000Z
2022-03-12T00:46:33.000Z
test/pcdcp_test/PCDCPParser_test.py
alejandrodelcampillo/geomag-algorithms
43a734d63a8eb2a696f14237e0054e21d36de7c3
[ "CC0-1.0" ]
44
2015-03-03T16:18:18.000Z
2021-11-06T17:07:38.000Z
"""Tests for the PCDCP Parser class.""" from numpy.testing import assert_equal from geomagio.pcdcp import PCDCPParser PCDCP_EXAMPLE = """ BOU 2015 001 01-Jan-15 HEZF 0.01nT File Version 2.00 0000 2086167 -5707 4745737 5237768 0001 2086190 -5664 4745737 5237777 0002 2086213 -5638 4745741 5237787 0003 2086239 -5632 4745739 5237796 0004 2086198 -5626 4745743 5237786 0005 2086228 -5600 4745728 5237784 0006 2086242 -5578 4745725 5237787 0007 2086258 -5552 4745726 5237792 0008 2086278 -5571 4745734 5237808 """ PCDCP_EXAMPLE_SECOND = """ BOU 2015 001 01-Jan-15 HEZF 0.001nT File Version 2.00 00000 20861520 -57095 47457409 52377630 00001 20861533 -57096 47457397 52377650 00002 20861554 -57077 47457391 52377650 00003 20861578 -57068 47457389 52377680 00004 20861600 -57068 47457384 52377660 00005 20861640 -57047 47457388 52377690 00006 20861654 -57039 47457378 52377650 00007 20861699 -57026 47457377 52377690 00008 20861721 -56995 47457365 52377680 00009 20861743 -56977 47457350 52377680 00010 20861750 -56968 47457349 52377690 """ def test_parse_header(): """pcdcp_test.PCDCPParser_test.test_parse_header() Call the _parse_header method with a header. Verify the header name and value are split at the correct column. """ parser = PCDCPParser() parser._parse_header( "BOU 2015 001 01-Jan-15 HEZF 0.01nT" + " File Version 2.00" ) assert_equal(parser.header["date"], "01-Jan-15") assert_equal(parser.header["station"], "BOU") assert_equal(parser.header["year"], "2015") assert_equal(parser.header["yearday"], "001") assert_equal(parser.header["resolution"], "0.01nT") def test_parse_header_sec(): """pcdcp_test.PCDCPParser_test.test_parse_header_sec() Call the _parse_header method with a pcdcp seconds file '.raw' header. Verify the header name and value are split correctly. """ parser = PCDCPParser() parser._parse_header( "BOU 2015 001 01-Jan-15 HEZF 0.001nT" + " File Version 2.00" ) assert_equal(parser.header["date"], "01-Jan-15") assert_equal(parser.header["station"], "BOU") assert_equal(parser.header["year"], "2015") assert_equal(parser.header["yearday"], "001") assert_equal(parser.header["resolution"], "0.001nT")
34.242857
73
0.696704
14880d2bd31abddf7da5875bf48154396645072e
10,283
py
Python
rcnn/soft_nms.py
Edward-Sun/TSP-Detection
da63a9f23053df22629d1ad1e2c93e548689ba84
[ "Apache-2.0" ]
37
2021-10-12T13:05:00.000Z
2022-03-22T02:13:02.000Z
rcnn/soft_nms.py
Edward-Sun/TSP-Detection
da63a9f23053df22629d1ad1e2c93e548689ba84
[ "Apache-2.0" ]
2
2021-11-01T09:19:55.000Z
2021-12-16T07:31:11.000Z
rcnn/soft_nms.py
Edward-Sun/TSP-Detection
da63a9f23053df22629d1ad1e2c93e548689ba84
[ "Apache-2.0" ]
1
2021-10-15T00:40:17.000Z
2021-10-15T00:40:17.000Z
# This implementation is from # https://github.com/facebookresearch/detectron2/pull/1183 import torch import numpy as np from detectron2.structures import Boxes, RotatedBoxes, pairwise_iou, pairwise_iou_rotated def soft_nms(boxes, scores, method, gaussian_sigma, linear_threshold, prune_threshold, topk_per_image): """ Performs soft non-maximum suppression algorithm on axis aligned boxes Args: boxes (Tensor[N, 5]): boxes where NMS will be performed. They are expected to be in (x_ctr, y_ctr, width, height, angle_degrees) format scores (Tensor[N]): scores for each one of the boxes method (str): one of ['gaussian', 'linear', 'hard'] see paper for details. users encouraged not to use "hard", as this is the same nms available elsewhere in detectron2 gaussian_sigma (float): parameter for Gaussian penalty function linear_threshold (float): iou threshold for applying linear decay. Nt from the paper re-used as threshold for standard "hard" nms prune_threshold (float): boxes with scores below this threshold are pruned at each iteration. Dramatically reduces computation time. Authors use values in [10e-4, 10e-2] Returns: tuple(Tensor, Tensor): [0]: int64 tensor with the indices of the elements that have been kept by Soft NMS, sorted in decreasing order of scores [1]: float tensor with the re-scored scores of the elements that were kept """ return _soft_nms_np( boxes, scores, method, gaussian_sigma, linear_threshold, prune_threshold, topk_per_image, ) def batched_soft_nms( boxes, scores, idxs, method, gaussian_sigma, linear_threshold, prune_threshold, topk_per_image ): """ Performs soft non-maximum suppression in a batched fashion. Each index value correspond to a category, and NMS will not be applied between elements of different categories. Args: boxes (Tensor[N, 4]): boxes where NMS will be performed. They are expected to be in (x1, y1, x2, y2) format scores (Tensor[N]): scores for each one of the boxes idxs (Tensor[N]): indices of the categories for each one of the boxes. method (str): one of ['gaussian', 'linear', 'hard'] see paper for details. users encouraged not to use "hard", as this is the same nms available elsewhere in detectron2 gaussian_sigma (float): parameter for Gaussian penalty function linear_threshold (float): iou threshold for applying linear decay. Nt from the paper re-used as threshold for standard "hard" nms prune_threshold (float): boxes with scores below this threshold are pruned at each iteration. Dramatically reduces computation time. Authors use values in [10e-4, 10e-2] Returns: tuple(Tensor, Tensor): [0]: int64 tensor with the indices of the elements that have been kept by Soft NMS, sorted in decreasing order of scores [1]: float tensor with the re-scored scores of the elements that were kept """ if boxes.numel() == 0: return ( torch.empty((0,), dtype=torch.int64, device=boxes.device), torch.empty((0,), dtype=torch.float32, device=scores.device), ) # strategy: in order to perform NMS independently per class. # we add an offset to all the boxes. The offset is dependent # only on the class idx, and is large enough so that boxes # from different classes do not overlap max_coordinate = boxes.max() offsets = idxs.to(boxes) * (max_coordinate + 1) boxes_for_nms = boxes + offsets[:, None] return soft_nms( boxes_for_nms, scores, method, gaussian_sigma, linear_threshold, prune_threshold, topk_per_image ) def _soft_nms( box_class, pairwise_iou_func, boxes, scores, method, gaussian_sigma, linear_threshold, prune_threshold, topk_per_image, ): """ Soft non-max suppression algorithm. Implementation of [Soft-NMS -- Improving Object Detection With One Line of Codec] (https://arxiv.org/abs/1704.04503) Args: box_class (cls): one of Box, RotatedBoxes pairwise_iou_func (func): one of pairwise_iou, pairwise_iou_rotated boxes (Tensor[N, ?]): boxes where NMS will be performed if Boxes, in (x1, y1, x2, y2) format if RotatedBoxes, in (x_ctr, y_ctr, width, height, angle_degrees) format scores (Tensor[N]): scores for each one of the boxes method (str): one of ['gaussian', 'linear', 'hard'] see paper for details. users encouraged not to use "hard", as this is the same nms available elsewhere in detectron2 gaussian_sigma (float): parameter for Gaussian penalty function linear_threshold (float): iou threshold for applying linear decay. Nt from the paper re-used as threshold for standard "hard" nms prune_threshold (float): boxes with scores below this threshold are pruned at each iteration. Dramatically reduces computation time. Authors use values in [10e-4, 10e-2] Returns: tuple(Tensor, Tensor): [0]: int64 tensor with the indices of the elements that have been kept by Soft NMS, sorted in decreasing order of scores [1]: float tensor with the re-scored scores of the elements that were kept """ boxes = boxes.clone() scores = scores.clone() idxs = torch.arange(scores.size()[0]) idxs_out = [] scores_out = [] while scores.numel() > 0: top_idx = torch.argmax(scores) idxs_out.append(idxs[top_idx].item()) scores_out.append(scores[top_idx].item()) top_box = boxes[top_idx] ious = pairwise_iou_func(box_class(top_box.unsqueeze(0)), box_class(boxes))[0] if method == "linear": decay = torch.ones_like(ious) decay_mask = ious > linear_threshold decay[decay_mask] = 1 - ious[decay_mask] elif method == "gaussian": decay = torch.exp(-torch.pow(ious, 2) / gaussian_sigma) elif method == "hard": # standard NMS decay = (ious < linear_threshold).float() else: raise NotImplementedError("{} soft nms method not implemented.".format(method)) scores *= decay keep = scores > prune_threshold keep[top_idx] = False boxes = boxes[keep] scores = scores[keep] idxs = idxs[keep] return torch.tensor(idxs_out).to(boxes.device), torch.tensor(scores_out).to(scores.device) def pairwise_iou_np(boxes1, boxes2): area1 = (boxes1[:, 2] - boxes1[:, 0]) * (boxes1[:, 3] - boxes1[:, 1]) area2 = (boxes2[:, 2] - boxes2[:, 0]) * (boxes2[:, 3] - boxes2[:, 1]) x_inter_2 = np.minimum(boxes1[:, 2], boxes2[:, 2]) x_inter_1 = np.maximum(boxes1[:, 0], boxes2[:, 0]) y_inter_2 = np.minimum(boxes1[:, 3], boxes2[:, 3]) y_inter_1 = np.maximum(boxes1[:, 1], boxes2[:, 1]) inter = np.maximum(y_inter_2 - y_inter_1, 0) * np.maximum(x_inter_2 - x_inter_1, 0) # handle empty boxes iou = inter / (area1 + area2 - inter + 1e-9) return iou.reshape(1, -1) def _soft_nms_np( boxes, scores, method, gaussian_sigma, linear_threshold, prune_threshold, topk_per_image, ): """ Soft non-max suppression algorithm. Implementation of [Soft-NMS -- Improving Object Detection With One Line of Codec] (https://arxiv.org/abs/1704.04503) Args: boxes (Tensor[N, ?]): boxes where NMS will be performed if Boxes, in (x1, y1, x2, y2) format if RotatedBoxes, in (x_ctr, y_ctr, width, height, angle_degrees) format scores (Tensor[N]): scores for each one of the boxes method (str): one of ['gaussian', 'linear', 'hard'] see paper for details. users encouraged not to use "hard", as this is the same nms available elsewhere in detectron2 gaussian_sigma (float): parameter for Gaussian penalty function linear_threshold (float): iou threshold for applying linear decay. Nt from the paper re-used as threshold for standard "hard" nms prune_threshold (float): boxes with scores below this threshold are pruned at each iteration. Dramatically reduces computation time. Authors use values in [10e-4, 10e-2] Returns: tuple(Tensor, Tensor): [0]: int64 tensor with the indices of the elements that have been kept by Soft NMS, sorted in decreasing order of scores [1]: float tensor with the re-scored scores of the elements that were kept """ device = boxes.device boxes = boxes.clone().cpu().data.numpy() scores = scores.clone().cpu().data.numpy() idxs = np.arange(scores.shape[0]) idxs_out = [] scores_out = [] while scores.size > 0 and len(idxs_out) < topk_per_image: top_idx = np.argmax(scores) idxs_out.append(idxs[top_idx].item()) scores_out.append(scores[top_idx].item()) top_box = boxes[top_idx] ious = pairwise_iou_np(np.expand_dims(top_box, 0), boxes)[0] if method == "linear": decay = np.ones_like(ious) decay_mask = ious > linear_threshold decay[decay_mask] = 1 - ious[decay_mask] elif method == "gaussian": decay = np.exp(-np.power(ious, 2) / gaussian_sigma) elif method == "hard": # standard NMS decay = (ious < linear_threshold).float() else: raise NotImplementedError("{} soft nms method not implemented.".format(method)) scores *= decay keep = scores > prune_threshold keep[top_idx] = False boxes = boxes[keep] scores = scores[keep] idxs = idxs[keep] return torch.tensor(idxs_out).to(device), torch.tensor(scores_out).to(device)
38.513109
104
0.628805
aae32588d2b21a44e3915afa734fae6da4153001
2,020
py
Python
color_detect.py
prityushchandra/image-processing
73d975a355b7d382c67f1b39e09e4c5b952155fb
[ "MIT" ]
null
null
null
color_detect.py
prityushchandra/image-processing
73d975a355b7d382c67f1b39e09e4c5b952155fb
[ "MIT" ]
null
null
null
color_detect.py
prityushchandra/image-processing
73d975a355b7d382c67f1b39e09e4c5b952155fb
[ "MIT" ]
null
null
null
#!/usr/bin/env python import numpy as np import cv2 def nothing(x): pass def get_frame(cap, scaling_factor): # Capture the frame from video capture object ret, frame = cap.read() # Resize the input frame frame = cv2.resize(frame, None, fx=scaling_factor, fy=scaling_factor, interpolation=cv2.INTER_AREA) return frame if __name__=='__main__': cap = cv2.VideoCapture(0) scaling_factor = 0.5 def greenCircleDetect(): #ret, frame = cap.read() #hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) lower_blue = np.array([36, 0, 0]) upper_blue = np.array([86, 255, 255]) mask = cv2.inRange(hsv, lower_blue, upper_blue) contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) cv2.drawContours(frame, contours, -1, (255, 255, 0)) #cv2.imshow('frame', frame) #cv2.imshow('green_output', mask) def blueCircleDetect(): #ret, frame = cap.read() #hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) lower_blue = np.array([62, 146, 51]) upper_blue = np.array([179, 255, 100]) mask = cv2.inRange(hsv, lower_blue, upper_blue) contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) cv2.drawContours(frame, contours, -1, (0, 255, 0)) #cv2.imshow('frame', frame) #cv2.imshow('blue_output', mask) def redCircleDetect(): #ret, frame = cap.read() #hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) lower_blue = np.array([0, 166, 52]) upper_blue = np.array([179, 255, 255]) mask = cv2.inRange(hsv, lower_blue, upper_blue) contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) cv2.drawContours(frame, contours, -1, (0, 255, 0)) #cv2.imshow('frame', frame) #cv2.imshow('red_output', mask) while True: frame = get_frame(cap, scaling_factor)##scaling factor is defined as size of window you want hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) greenCircleDetect() redCircleDetect() blueCircleDetect() cv2.imshow('frame', frame) key=cv2.waitKey(1) if key==27: break cap.release() cv2.destroyAllWindows()
23.218391
93
0.70099
66e8c5cf923b39e66acd9eff65148a7742949b13
4,502
py
Python
sympy/geometry/tests/test_parabola.py
STALKER2010/sympy-bleeding-edge
81233029a9a30866747f6da2c0e9604d1681d474
[ "BSD-3-Clause" ]
8
2019-05-29T09:38:30.000Z
2021-01-20T03:36:59.000Z
sympy/geometry/tests/test_parabola.py
STALKER2010/sympy-bleeding-edge
81233029a9a30866747f6da2c0e9604d1681d474
[ "BSD-3-Clause" ]
12
2021-03-09T03:01:16.000Z
2022-03-11T23:59:36.000Z
sympy/geometry/tests/test_parabola.py
STALKER2010/sympy-bleeding-edge
81233029a9a30866747f6da2c0e9604d1681d474
[ "BSD-3-Clause" ]
1
2018-10-22T09:17:11.000Z
2018-10-22T09:17:11.000Z
from __future__ import division from sympy import Rational, oo, sqrt from sympy import Line, Point, Point2D, Parabola, Segment2D, Ray2D from sympy import Circle, Ellipse from sympy.utilities.pytest import raises def test_parabola_geom(): p1 = Point(0, 0) p2 = Point(3, 7) p3 = Point(0, 4) p4 = Point(6, 0) d1 = Line(Point(4, 0), Point(4, 9)) d2 = Line(Point(7, 6), Point(3, 6)) d3 = Line(Point(4, 0), slope=oo) d4 = Line(Point(7, 6), slope=0) half = Rational(1, 2) pa1 = Parabola(None, d2) pa2 = Parabola(directrix=d1) pa3 = Parabola(p1, d1) pa4 = Parabola(p2, d2) pa5 = Parabola(p2, d4) pa6 = Parabola(p3, d2) pa7 = Parabola(p2, d1) pa8 = Parabola(p4, d1) pa9 = Parabola(p4, d3) raises(ValueError, lambda: Parabola(Point(7, 8, 9), Line(Point(6, 7), Point(7, 7)))) raises(NotImplementedError, lambda: Parabola(Point(7, 8), Line(Point(3, 7), Point(2, 9)))) raises(ValueError, lambda: Parabola(Point(0, 2), Line(Point(7, 2), Point(6, 2)))) raises(ValueError, lambda: Parabola(Point(7, 8), Point(3, 8))) # Basic Stuff assert pa1.focus == Point(0, 0) assert pa2 == pa3 assert pa4 != pa7 assert pa6 != pa7 assert pa6.focus == Point2D(0, 4) assert pa6.focal_length == 1 assert pa6.p_parameter == -1 assert pa6.vertex == Point2D(0, 5) assert pa6.eccentricity == 1 assert pa7.focus == Point2D(3, 7) assert pa7.focal_length == half assert pa7.p_parameter == -half assert pa7.vertex == Point2D(7*half, 7) assert pa4.focal_length == half assert pa4.p_parameter == half assert pa4.vertex == Point2D(3, 13*half) assert pa8.focal_length == 1 assert pa8.p_parameter == 1 assert pa8.vertex == Point2D(5, 0) assert pa4.focal_length == pa5.focal_length assert pa4.p_parameter == pa5.p_parameter assert pa4.vertex == pa5.vertex assert pa4.equation() == pa5.equation() assert pa8.focal_length == pa9.focal_length assert pa8.p_parameter == pa9.p_parameter assert pa8.vertex == pa9.vertex assert pa8.equation() == pa9.equation() def test_parabola_intersection(): l1 = Line(Point(1, -2), Point(-1,-2)) l2 = Line(Point(1, 2), Point(-1,2)) l3 = Line(Point(1, 0), Point(-1,0)) p1 = Point(0,0) p2 = Point(0, -2) p3 = Point(120, -12) parabola1 = Parabola(p1, l1) # parabola with parabola assert parabola1.intersection(parabola1) == [parabola1] assert parabola1.intersection(Parabola(p1, l2)) == [Point2D(-2, 0), Point2D(2, 0)] assert parabola1.intersection(Parabola(p2, l3)) == [Point2D(0, -1)] assert parabola1.intersection(Parabola(Point(16, 0), l1)) == [Point2D(8, 15)] assert parabola1.intersection(Parabola(Point(0, 16), l1)) == [Point2D(-6, 8), Point2D(6, 8)] assert parabola1.intersection(Parabola(p3, l3)) == [] # parabola with point assert parabola1.intersection(p1) == [] assert parabola1.intersection(Point2D(0, -1)) == [Point2D(0, -1)] assert parabola1.intersection(Point2D(4, 3)) == [Point2D(4, 3)] # parabola with line assert parabola1.intersection(Line(Point2D(-7, 3), Point(12, 3))) == [Point2D(-4, 3), Point2D(4, 3)] assert parabola1.intersection(Line(Point(-4, -1), Point(4, -1))) == [Point(0, -1)] assert parabola1.intersection(Line(Point(2, 0), Point(0, -2))) == [Point2D(2, 0)] # parabola with segment assert parabola1.intersection(Segment2D((-4, -5), (4, 3))) == [Point2D(0, -1), Point2D(4, 3)] assert parabola1.intersection(Segment2D((0, -5), (0, 6))) == [Point2D(0, -1)] assert parabola1.intersection(Segment2D((-12, -65), (14, -68))) == [] # parabola with ray assert parabola1.intersection(Ray2D((-4, -5), (4, 3))) == [Point2D(0, -1), Point2D(4, 3)] assert parabola1.intersection(Ray2D((0, 7), (1, 14))) == [Point2D(14 + 2*sqrt(57), 105 + 14*sqrt(57))] assert parabola1.intersection(Ray2D((0, 7), (0, 14))) == [] # parabola with ellipse/circle assert parabola1.intersection(Circle(p1, 2)) == [Point2D(-2, 0), Point2D(2, 0)] assert parabola1.intersection(Circle(p2, 1)) == [Point2D(0, -1), Point2D(0, -1)] assert parabola1.intersection(Ellipse(p2, 2, 1)) == [Point2D(0, -1), Point2D(0, -1)] assert parabola1.intersection(Ellipse(Point(0, 19), 5, 7)) == [] assert parabola1.intersection(Ellipse((0, 3), 12, 4)) == \ [Point2D(0, -1), Point2D(0, -1), Point2D(-4*sqrt(17)/3, 59/9), Point2D(4*sqrt(17)/3, 59/9)]
41.302752
106
0.624611
7ac0f449eda3f698bfee0ac3d4d7f93b8ccf5cf1
1,693
py
Python
boa3/model/builtin/interop/storage/findoptionstype.py
OnBlockIO/neo3-boa
cb317292a67532a52ed26f2b0f0f7d0b10ac5f5f
[ "Apache-2.0" ]
null
null
null
boa3/model/builtin/interop/storage/findoptionstype.py
OnBlockIO/neo3-boa
cb317292a67532a52ed26f2b0f0f7d0b10ac5f5f
[ "Apache-2.0" ]
null
null
null
boa3/model/builtin/interop/storage/findoptionstype.py
OnBlockIO/neo3-boa
cb317292a67532a52ed26f2b0f0f7d0b10ac5f5f
[ "Apache-2.0" ]
null
null
null
from typing import Any, Dict from boa3.model.symbol import ISymbol from boa3.model.type.itype import IType from boa3.model.type.primitive.inttype import IntType class FindOptionsType(IntType): """ A class used to represent Neo interop FindOptions type """ def __init__(self): super().__init__() self._identifier = 'FindOptions' @property def default_value(self) -> Any: from boa3.builtin.interop.storage import FindOptions return FindOptions.NONE @classmethod def build(cls, value: Any = None) -> IType: if cls._is_type_of(value) or value is None: from boa3.model.builtin.interop.interop import Interop return Interop.FindOptionsType @classmethod def _is_type_of(cls, value: Any): from boa3.builtin.interop.storage import FindOptions return isinstance(value, (FindOptions, FindOptionsType, type(int))) @property def symbols(self) -> Dict[str, ISymbol]: """ Gets the class symbols of this type :return: a dictionary that maps each symbol in the module with its name """ from boa3.builtin.interop.storage import FindOptions from boa3.model.variable import Variable return {name: Variable(self) for name in FindOptions.__members__.keys()} def get_value(self, symbol_id) -> Any: """ Gets the literal value of a symbol :return: the value if this type has this symbol. None otherwise. """ if symbol_id in self.symbols: from boa3.builtin.interop.storage import FindOptions return FindOptions.__members__[symbol_id] return None
30.232143
80
0.665092
8905441b8c521a2ebe6e6b46473d058d86c843f9
13,326
py
Python
app/functions/kf_evaluator.py
klehman-rally/kingfisher
e5f0eff0fcc596b15d799d67f20e7e6e54ea7d2e
[ "BSD-3-Clause" ]
null
null
null
app/functions/kf_evaluator.py
klehman-rally/kingfisher
e5f0eff0fcc596b15d799d67f20e7e6e54ea7d2e
[ "BSD-3-Clause" ]
null
null
null
app/functions/kf_evaluator.py
klehman-rally/kingfisher
e5f0eff0fcc596b15d799d67f20e7e6e54ea7d2e
[ "BSD-3-Clause" ]
null
null
null
import sys, os import base64 import json from datetime import datetime from itertools import chain from app.helpers.pubsub import publish ############################################################################################################################# WEBHOOK_NOGO_TOPIC = os.getenv('KF_WEBHOOK_NOGO') WEBHOOK_READY_TOPIC = os.getenv('KF_WEBHOOK_READY') ############################################################################################################################# def kf_evaluateOCM(data, context): """ Background Cloud Function to be triggered by Pub/Sub. Args: data (dict): The dictionary with data specific to this type of event. context (google.cloud.functions.Context): The Cloud Functions event metadata. The package pulled out of data has these keys: message_id action payload conditions webhooks processed_timestamp From the kingfisher DB items queried from the webhook table have: 0 1 2 3 4 5 id sub_id name target_url object_types(list) conditions(list of ids) items queried from the condition table have: 0 1 2 3 4 5 id sub_id attribute_uuid attribute_name operator value' """ if not 'data' in data: print("Missing top level 'data' element in data parameter, no data published to output topic.") return package = json.loads(base64.b64decode(data['data']).decode('utf-8')) #print(f'keys for the provided message {repr(list(package.keys()))}') message_id = package.get('message_id') action = package.get('action') payload = json.loads(package.get('payload')) conditions = json.loads(package.get('conditions')) webhooks = json.loads(package.get('webhooks')) object_type = payload['object_type'] print(f'message_id: {message_id} action: {action} object_type: {object_type}') #print(f'payload is a {type(payload)}') #print(f'payload has these keys {list(payload.keys())}') #payload keys: ['action', 'subscription_id', 'ref', 'detail_link', 'object_type', 'changes', 'state', 'project'] if action.lower() not in ['created', 'updated']: print(f'Ignoring OCM action: {action} for message_id: {message_id}') return print(f'webhooks -> {webhooks}') print(f'conditions -> {conditions}') relevant_webhooks = getRelevantWebhooks(webhooks, object_type) if not relevant_webhooks: print(f'message_id: {message_id} no relevant webhooks for object_type: {object_type}') return None print(f'message_id: {message_id} relevant_webhooks: {repr(relevant_webhooks)}') relevant_conditions = getRelevantConditions(relevant_webhooks, conditions) print(f'message_id: {message_id} relevant_conditions: {repr(relevant_conditions)}') condition = evaluateItemAgainstConditions(payload, relevant_conditions) endpoint = {} for webhook in relevant_webhooks: disqualified = False for cond_id in webhook[-1]: # all conditions specified by webhook must be true or the webhook is disqualified if condition[cond_id]['status'] != True: disqualified = True message_dict = { "message_id" : message_id, "action" : action, "webhook" : webhook, "payload" : json.dumps(payload), "processed_timestamp" : datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S"), } if disqualified: message_dict['conditions'] = condition topic_name = WEBHOOK_NOGO_TOPIC try: future = publish(topic_name, message_dict) result = future.result(timeout=10) print(f'Published message -- {message_id} topic: WEBHOOK_NOGO result: {result}') except Exception as exception: print('Encountered error while publishing -- message_id: {message_id} topic: WEBHOOK_NOGO exception: {exception}') continue if webhook[3] not in endpoint: # A payload only gets fired on its target once per OCM endpoint[webhook[3]] = 1 # to ensure the above statement, cache the target endpoint topic_name = WEBHOOK_READY_TOPIC try: message_dict['attempts'] = 0 message_dict['eligible'] = 1000 # artificially low timestamp value future = publish(topic_name, message_dict) result = future.result(timeout=10) print('Published message -- {message_id} topic: WEBHOOK_READY result: {result}') except Exception as exception: print('Encountered error while publishing -- {message_id} topic: WEBHOOK_READY exception: {exception}') ############################################################################################################################# def getRelevantWebhooks(webhooks, object_type): """ Given a list of webhooks (show structure of a webhook) and a object_type value return the set of webhooks where object_type is in the webhook item ix 4 or whose webhook item 4 list is empty """ relevant_webhooks = [wh for wh in webhooks if object_type in wh[4] or len(wh[4]) == 0 ] # wh[4] is the list of object_types return relevant_webhooks ############################################################################################################################# def getRelevantConditions(webhooks, conditions): """ Given a sequence of webhook items and sequence of conditions identify and return the conditions that match the condition ids in each webhook """ conds = [wh[-1]for wh in webhooks] # wh[-1] is a list of integers where each integer is the id value of a condition cond_ids = list(set(chain(*conds))) relevant_conds = [cond for cond in conditions if cond[0] in cond_ids] return relevant_conds ############################################################################################################################# def evaluateItemAgainstConditions(payload, relevant_conditions): """ Given a payload (dict) in which there is a 'state' key with a sub-dict with attr_name : attr_value pairs and a relevant_conditions sequence """ condition = {} for cond in relevant_conditions: cond_id, sub_id, condition_attr_uuid, condition_attr_name, condition_relation, condition_value = cond attribute = payload['state'][condition_attr_uuid] #attr_value = payload['state'][condition_attr_uuid]['value']['value'] attr_value = 'no such value key in attribute' if 'value' in attribute: attr_value = attribute['value'] if attr_value and isinstance(attr_value, dict): if 'value' in attr_value: attr_value = attr_value['value'] elif 'name' in attr_value: attr_value = attr_value['name'] expression = f'{condition_attr_name}({attr_value}) {condition_relation} {condition_value}' status = isQualified(payload, cond) print(f'{expression} ? {status}') condition[cond_id] = {'condition' : expression, 'status' : status} return condition ############################################################################################################################# """ from the Pigeon Webhooks API documentation Operators The required fields in an Expression depend on the Operator. ------------ The following operators require both a Value and exactly one of AttributeID or AttributeName. Operator Description = Equal != Not equal < Less than <= Less than or equal > Greater than >= Greater than or equal changed-to Value changed to changed-from Value changed from ------------ The following operators require an AttributeID or AttributeName, and a Value that is an Array of individual values. Operator Description ~ "Equals one of". Matches when the object's value for the attribute is equal to one of the values given in the Expression !~ "Equals none of". Matches when the object's value for the attribute is not equal to any of the values given in the Expression ----------- The following operators require only an AttributeID or AttributeName (no Value) Operator Description has The object has some (non-null) value for the attribute !has The object does not have the attribute, or its value is null changed The value of the attribute was changed on the object """ def isEqual(ocm_attr_value, expression_value): return ocm_attr_value == expression_value def isNotEqual(ocm_attr_value, expression_value): return ocm_attr_value != expression_value def isLessThan(ocm_attr_value, expression_value): return ocm_attr_value < expression_value def isLessThanOrEqual(ocm_attr_value, expression_value): return ocm_attr_value <= expression_value def isGreaterThan(ocm_attr_value, expression_value): return ocm_attr_value > expression_value def isGreaterThanOrEqual(ocm_attr_value, expression_value): return ocm_attr_value >= expression_value # def isChangedTo(ocm, ocm_attr_id, expression_value): # return False # def isChangedFrom(ocm, ocm_attr_id, expression_value): # return False def isOneOf(ocm_attr_value, expression_value): return ocm_attr_value in expression_value # "cast" expression_value to a list def isNotOneOf(ocm_attr_value, expression_value): return ocm_attr_value not in expression_value # "cast" expression_value to a list # def hasSomeValue(ocm, ocm_attr_id, expression_value): # return False # def hasNoValue(ocm, ocm_attr_id, expression_value): # return False expression_eval = {'=' : isEqual, '!=' : isNotEqual, '<' : isLessThan, '<=' : isLessThanOrEqual, '>' : isGreaterThan, '>=' : isGreaterThanOrEqual, # 'changed-to' : isChangedTo, # 'changed-from' : isChangedFrom, # expressions that take an attribute_id|name and a list of possible values '~' : isOneOf, '!~' : isNotOneOf, # expressions that take just an attribute_id|name # 'has' : hasSomeValue, # '!has' : hasNoValue, # 'changed' : valueWasChanged } def isQualified(ocm, condition): #ocm keys: ['action', 'subscription_id', 'ref', 'detail_link', 'object_type', 'changes', 'state', 'project'] cond_id, sub_id, condition_attr_uuid, condition_attr_name, condition_relation, condition_value = condition state = ocm['state'] changes = ocm['changes'] var_info = state[condition_attr_uuid] attr_value = var_info['value'] if attr_value and isinstance(attr_value, dict): if 'value' in attr_value: attr_value = attr_value['value'] elif 'name' in attr_value: attr_value = attr_value['name'] try: condition_value = int(condition_value) # in case condition_value except: pass # alternative to above is to attempt a rough determination of the type of the attr_value and coerce condition_value to same #if attr_value and isinstance(attr_value, int) # if condition_value: # try: # condition_value = int(condition_value) # except: # pass #elif attr_value and isinstance(attr_value, float) # if condition_value: # try: # condition_value = float(condition_value) # except: # pass print(f'{condition_attr_name}({attr_value}) {condition_relation} {condition_value} ?') if condition_relation not in ['changed-to', 'changed-from', 'has', '!has', 'changed']: if not attr_value: return False take = expression_eval[condition_relation](attr_value, condition_value) return take if condition_relation == 'changed-to': ac = [changes[attr_uuid]['value'] for attr_uuid in changes.keys() if attr_uuid == condition_attr_uuid] if not ac: return False else: return ac[0] == condition_value elif condition_relation == 'changed-from': ac = [changes[attr_uuid]['old_value'] for attr_uuid in changes.keys() if attr_uuid == condition_attr_uuid] if not ac: return False else: return ac[0] == condition_value elif condition_relation == 'has': return attr_value != None elif condition_relation == '!has': return attr_value == None else: # must be 'changed' ac = [changes[attr_uuid]['value'] for attr_uuid in changes.keys() if attr_uuid == condition_attr_uuid] return len(ac) > 0
41.385093
130
0.597629
61cef6b38bd76a0c904df8b01ba97efc25c2eed7
4,550
py
Python
open_spiel/python/algorithms/external_sampling_mccfr_test.py
Limmen/open_spiel
2d4d7b783a9161e2c4c90f70dec29d6982fac6c1
[ "Apache-2.0" ]
1
2021-12-31T01:45:58.000Z
2021-12-31T01:45:58.000Z
open_spiel/python/algorithms/external_sampling_mccfr_test.py
Limmen/open_spiel
2d4d7b783a9161e2c4c90f70dec29d6982fac6c1
[ "Apache-2.0" ]
null
null
null
open_spiel/python/algorithms/external_sampling_mccfr_test.py
Limmen/open_spiel
2d4d7b783a9161e2c4c90f70dec29d6982fac6c1
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for open_spiel.python.algorithms.cfr.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import absltest import numpy as np from open_spiel.python.algorithms import exploitability from open_spiel.python.algorithms import external_sampling_mccfr import pyspiel SEED = 39823987 class ExternalSamplingMCCFRTest(absltest.TestCase): def test_external_sampling_leduc_2p_simple(self): np.random.seed(SEED) game = pyspiel.load_game("leduc_poker") es_solver = external_sampling_mccfr.ExternalSamplingSolver( game, external_sampling_mccfr.AverageType.SIMPLE) for _ in range(10): es_solver.iteration() conv = exploitability.nash_conv(game, es_solver.average_policy()) print("Leduc2P, conv = {}".format(conv)) self.assertLess(conv, 5) # ensure that to_tabular() works on the returned policy and # the tabular policy is equivalent tabular_policy = es_solver.average_policy().to_tabular() conv2 = exploitability.nash_conv(game, tabular_policy) self.assertEqual(conv, conv2) def test_external_sampling_leduc_2p_full(self): np.random.seed(SEED) game = pyspiel.load_game("leduc_poker") es_solver = external_sampling_mccfr.ExternalSamplingSolver( game, external_sampling_mccfr.AverageType.FULL) for _ in range(10): es_solver.iteration() conv = exploitability.nash_conv(game, es_solver.average_policy()) print("Leduc2P, conv = {}".format(conv)) self.assertLess(conv, 5) def test_external_sampling_kuhn_2p_simple(self): np.random.seed(SEED) game = pyspiel.load_game("kuhn_poker") es_solver = external_sampling_mccfr.ExternalSamplingSolver( game, external_sampling_mccfr.AverageType.SIMPLE) for _ in range(10): es_solver.iteration() conv = exploitability.nash_conv(game, es_solver.average_policy()) print("Kuhn2P, conv = {}".format(conv)) self.assertLess(conv, 1) def test_external_sampling_kuhn_2p_full(self): np.random.seed(SEED) game = pyspiel.load_game("kuhn_poker") es_solver = external_sampling_mccfr.ExternalSamplingSolver( game, external_sampling_mccfr.AverageType.FULL) for _ in range(10): es_solver.iteration() conv = exploitability.nash_conv(game, es_solver.average_policy()) print("Kuhn2P, conv = {}".format(conv)) self.assertLess(conv, 1) # Liar's dice takes too long, so disable this test. Leave code for reference. # pylint: disable=g-unreachable-test-method def disabled_test_external_sampling_liars_dice_2p_simple(self): np.random.seed(SEED) game = pyspiel.load_game("liars_dice") es_solver = external_sampling_mccfr.ExternalSamplingSolver( game, external_sampling_mccfr.AverageType.SIMPLE) for _ in range(1): es_solver.iteration() conv = exploitability.nash_conv(game, es_solver.average_policy()) print("Liar's dice, conv = {}".format(conv)) self.assertLess(conv, 2) def test_external_sampling_kuhn_3p_simple(self): np.random.seed(SEED) game = pyspiel.load_game("kuhn_poker", {"players": 3}) es_solver = external_sampling_mccfr.ExternalSamplingSolver( game, external_sampling_mccfr.AverageType.SIMPLE) for _ in range(10): es_solver.iteration() conv = exploitability.nash_conv(game, es_solver.average_policy()) print("Kuhn3P, conv = {}".format(conv)) self.assertLess(conv, 2) def test_external_sampling_kuhn_3p_full(self): np.random.seed(SEED) game = pyspiel.load_game("kuhn_poker", {"players": 3}) es_solver = external_sampling_mccfr.ExternalSamplingSolver( game, external_sampling_mccfr.AverageType.FULL) for _ in range(10): es_solver.iteration() conv = exploitability.nash_conv(game, es_solver.average_policy()) print("Kuhn3P, conv = {}".format(conv)) self.assertLess(conv, 2) if __name__ == "__main__": absltest.main()
38.235294
79
0.741978
4f0530765db952e51b16d15b3d9e6d875317f870
3,871
py
Python
nova/db/sqlalchemy/migrate_repo/versions/070_untie_nova_network_models.py
russellb/nova
99c2e02b44a1012c8e26fc7658dc40ec4620a1ee
[ "Apache-2.0" ]
null
null
null
nova/db/sqlalchemy/migrate_repo/versions/070_untie_nova_network_models.py
russellb/nova
99c2e02b44a1012c8e26fc7658dc40ec4620a1ee
[ "Apache-2.0" ]
null
null
null
nova/db/sqlalchemy/migrate_repo/versions/070_untie_nova_network_models.py
russellb/nova
99c2e02b44a1012c8e26fc7658dc40ec4620a1ee
[ "Apache-2.0" ]
null
null
null
# Copyright 2011 OpenStack LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from sqlalchemy import MetaData, Table from migrate import ForeignKeyConstraint from nova import log as logging meta = MetaData() LOG = logging.getLogger(__name__) def upgrade(migrate_engine): # Upgrade operations go here. Don't create your own engine; # bind migrate_engine to your metadata meta.bind = migrate_engine dialect = migrate_engine.url.get_dialect().name if dialect.startswith('sqlite'): return instances = Table('instances', meta, autoload=True) networks = Table('networks', meta, autoload=True) vifs = Table('virtual_interfaces', meta, autoload=True) fixed_ips = Table('fixed_ips', meta, autoload=True) floating_ips = Table('floating_ips', meta, autoload=True) try: fkeys = list(fixed_ips.c.network_id.foreign_keys) if fkeys: fkey_name = fkeys[0].constraint.name ForeignKeyConstraint(columns=[fixed_ips.c.network_id], refcolumns=[networks.c.id], name=fkey_name).drop() fkeys = list(fixed_ips.c.virtual_interface_id.foreign_keys) if fkeys: fkey_name = fkeys[0].constraint.name ForeignKeyConstraint(columns=[fixed_ips.c.virtual_interface_id], refcolumns=[vifs.c.id], name=fkey_name).drop() fkeys = list(fixed_ips.c.instance_id.foreign_keys) if fkeys: fkey_name = fkeys[0].constraint.name ForeignKeyConstraint(columns=[fixed_ips.c.instance_id], refcolumns=[instances.c.id], name=fkey_name).drop() fkeys = list(floating_ips.c.fixed_ip_id.foreign_keys) if fkeys: fkey_name = fkeys[0].constraint.name ForeignKeyConstraint(columns=[floating_ips.c.fixed_ip_id], refcolumns=[fixed_ips.c.id], name=fkey_name).drop() except Exception: LOG.error(_("foreign key constraint couldn't be removed")) raise def downgrade(migrate_engine): # Operations to reverse the above upgrade go here. meta.bind = migrate_engine dialect = migrate_engine.url.get_dialect().name if dialect.startswith('sqlite'): return instances = Table('instances', meta, autoload=True) networks = Table('networks', meta, autoload=True) vifs = Table('virtual_interfaces', meta, autoload=True) fixed_ips = Table('fixed_ips', meta, autoload=True) floating_ips = Table('floating_ips', meta, autoload=True) try: ForeignKeyConstraint(columns=[fixed_ips.c.network_id], refcolumns=[networks.c.id]).create() ForeignKeyConstraint(columns=[fixed_ips.c.virtual_interface_id], refcolumns=[vifs.c.id]).create() ForeignKeyConstraint(columns=[fixed_ips.c.instance_id], refcolumns=[instances.c.id]).create() ForeignKeyConstraint(columns=[floating_ips.c.fixed_ip_id], refcolumns=[fixed_ips.c.id]).create() except Exception: LOG.error(_("foreign key constraint couldn't be added")) raise
38.71
78
0.633686
9b1f80e3a404c4cdcde8be748c8de57a9799d0c6
123
py
Python
AI/data/constants.py
yast-ia/YastAI
f5a05841126da4acd9b7250c5bf6f627ac1703d5
[ "MIT" ]
1
2020-08-23T22:00:17.000Z
2020-08-23T22:00:17.000Z
AI/data/constants.py
sborquez/her2bdl
f9ac9ef19bf5023f3f9d15bef663d3b1a0c92c81
[ "MIT" ]
null
null
null
AI/data/constants.py
sborquez/her2bdl
f9ac9ef19bf5023f3f9d15bef663d3b1a0c92c81
[ "MIT" ]
1
2020-08-23T18:34:12.000Z
2020-08-23T18:34:12.000Z
""" Data and dataset constants ========================== Collections of variables for datasets and data processing. """
15.375
58
0.593496
8338a6379b1b37687901146fdc48795c6c581e40
1,922
py
Python
filelists/fileCheck.py
cbaeck1/T2KWP
e3682bee5b96d049d66c586910d34d802ab47637
[ "BSD-3-Clause" ]
null
null
null
filelists/fileCheck.py
cbaeck1/T2KWP
e3682bee5b96d049d66c586910d34d802ab47637
[ "BSD-3-Clause" ]
null
null
null
filelists/fileCheck.py
cbaeck1/T2KWP
e3682bee5b96d049d66c586910d34d802ab47637
[ "BSD-3-Clause" ]
null
null
null
import os import glob def load_filepaths_and_text(filename, split="|"): with open(filename, encoding='utf-8-sig') as f: filepaths_and_text = [line.strip().split(split) for line in f] return filepaths_and_text # 전체 datapath = '/mnt/d/data' # sample #datapath = '' filepaths = [ 'korean_public_wav/korean_public_wav_orgin.txt' ] wavpaths = [ 'selvas_wav' ] filepathsCnt = [0,0,0] wavpathsCnt = [0,0,0] ''' filepaths = [ 'korean_public_wav/korean_public_wav.txt', 'korean_public_wav/korean_public_wav_orgin.txt', 'kss_wav/kss_wav.txt', 'kss/kss_wav_origin.txt', 'selvas_wav/selvas_wav.txt', 'selvas_wav/selvas_wav_origin.txt' ] # 전체, 존재, 존재하지 않음 filepathsCnt = [0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0] wavpathsCnt = [0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0] ''' # 문서기준으로 파일 존재여부 확인 iPosition = 0 for filepath in filepaths: filepaths_and_texts = load_filepaths_and_text(os.path.join(datapath, filepath)) with open(os.path.join(datapath, filepath + '.new'), 'w', encoding='utf-8') as f: for file_text in filepaths_and_texts: filepathsCnt[iPosition] += 1 if os.path.isfile(file_text[0]): filepathsCnt[iPosition+1] += 1 #print(file_text[0]) listStr = '|'.join(file_text) #f.write('{}|{}|{}|{}\n'.format(file_text[0], file_text[1], file_text[2], file_text[3])) f.write('{}\n'.format(listStr)) else: filepathsCnt[iPosition+2] += 1 print(file_text[0] + ' not exists!') iPosition += 3 print(filepathsCnt) # 파일기준으로 문서에 있는지 확인 # iPosition = 0 # for wavpath in wavpaths: # wav_paths = glob.glob(os.path.join(wavpath, 'wav_16000', '*', '*.wav')) # with open(os.path.join(datapath, filepath + '.wavnew'), 'w', encoding='utf-8') as f: # for wav_path in wav_paths: # wav_filename = os.path.basename(wav_path)
28.264706
104
0.623309
d5bda19c7a2b5a9682bc2d0353117bf95c47fe6b
7,661
py
Python
test/tools_Fitting_FitData.py
jjacob/DailyPythonScripts
cd6c515c6242d1f3b44e97c8ad05946721b6a36a
[ "Apache-2.0" ]
null
null
null
test/tools_Fitting_FitData.py
jjacob/DailyPythonScripts
cd6c515c6242d1f3b44e97c8ad05946721b6a36a
[ "Apache-2.0" ]
null
null
null
test/tools_Fitting_FitData.py
jjacob/DailyPythonScripts
cd6c515c6242d1f3b44e97c8ad05946721b6a36a
[ "Apache-2.0" ]
null
null
null
''' Created on 31 Oct 2012 @author: kreczko ''' import unittest from tools.Fitting import FitData, FitDataCollection from rootpy.plotting import Hist import numpy as np from tools.hist_utilities import adjust_overflow_to_limit N_bkg1 = 9000 N_signal = 1000 N_bkg1_obs = 10000 N_signal_obs = 2000 N_data = N_bkg1_obs + N_signal_obs mu1, mu2, sigma1, sigma2 = 100, 140, 15, 5 x1 = mu1 + sigma1 * np.random.randn( N_bkg1 ) x2 = mu2 + sigma2 * np.random.randn( N_signal ) x1_obs = mu1 + sigma1 * np.random.randn( N_bkg1_obs ) x2_obs = mu2 + sigma2 * np.random.randn( N_signal_obs ) x3 = mu2 + sigma1 * np.random.randn( N_bkg1 ) x4 = mu1 + sigma2 * np.random.randn( N_signal ) x3_obs = mu2 + sigma1 * np.random.randn( N_bkg1_obs ) x4_obs = mu1 + sigma2 * np.random.randn( N_signal_obs ) x_min = 40 x_max = 200 data_scale = 1.2 N_data = N_data * data_scale class Test( unittest.TestCase ): def setUp( self ): # create histograms h_bkg1_1 = Hist( 100, 40, 200, title = 'Background' ) h_signal_1 = h_bkg1_1.Clone( title = 'Signal' ) h_data_1 = h_bkg1_1.Clone( title = 'Data' ) h_bkg1_2 = h_bkg1_1.Clone( title = 'Background' ) h_signal_2 = h_bkg1_1.Clone( title = 'Signal' ) h_data_2 = h_bkg1_1.Clone( title = 'Data' ) # fill the histograms with our distributions map( h_bkg1_1.Fill, x1 ) map( h_signal_1.Fill, x2 ) map( h_data_1.Fill, x1_obs ) map( h_data_1.Fill, x2_obs ) map( h_bkg1_2.Fill, x3 ) map( h_signal_2.Fill, x4 ) map( h_data_2.Fill, x3_obs ) map( h_data_2.Fill, x4_obs ) h_data_1.Scale(data_scale) h_data_2.Scale(data_scale) self.histograms_1 = {'signal': h_signal_1, 'bkg1': h_bkg1_1} self.histograms_2 = {'signal': h_signal_2, 'bkg1': h_bkg1_2} self.histograms_3 = {'var1': h_signal_1, 'bkg1': h_bkg1_1} self.fit_data_1 = FitData( h_data_1, self.histograms_1, fit_boundaries = ( x_min, x_max )) self.fit_data_2 = FitData( h_data_2, self.histograms_2, fit_boundaries = ( x_min, x_max )) self.fit_data_3 = FitData( h_data_1, self.histograms_3, fit_boundaries = ( x_min, x_max )) self.collection_1 = FitDataCollection() self.collection_1.add( self.fit_data_1, 'signal region' ) self.collection_1.add( self.fit_data_2, 'control region' ) self.collection_1.set_normalisation_constraints({'bkg1': 0.5}) self.collection_2 = FitDataCollection() self.collection_2.add( self.fit_data_1 ) self.collection_2.add( self.fit_data_2 ) self.collection_2.set_normalisation_constraints({'bkg1': 0.5}) self.single_collection = FitDataCollection() self.single_collection.add( self.fit_data_1 ) self.single_collection.set_normalisation_constraints({'bkg1': 0.5}) self.non_simultaneous_fit_collection = FitDataCollection() self.non_simultaneous_fit_collection.add( self.fit_data_1 ) self.non_simultaneous_fit_collection.add( self.fit_data_3 ) self.h_data = h_data_1 self.h_bkg1 = h_bkg1_1 self.h_signal = h_signal_1 def tearDown( self ): pass def test_is_valid_for_simultaneous_fit( self ): self.assertTrue( self.collection_1.is_valid_for_simultaneous_fit(), msg = 'has_same_n_samples: ' + str(self.collection_1.has_same_n_samples) + ', has_same_n_data: ' + str(self.collection_1.has_same_n_data) ) self.assertTrue( self.collection_2.is_valid_for_simultaneous_fit(), msg = 'has_same_n_samples: ' + str(self.collection_1.has_same_n_samples) + ', has_same_n_data: ' + str(self.collection_1.has_same_n_data) ) self.assertFalse( self.non_simultaneous_fit_collection.is_valid_for_simultaneous_fit() ) def test_samples( self ): samples = sorted( self.histograms_1.keys() ) samples_from_fit_data = sorted( self.fit_data_1.samples ) samples_from_fit_data_collection = self.collection_1.mc_samples() self.assertEqual( samples, samples_from_fit_data ) self.assertEqual( samples, samples_from_fit_data_collection ) def test_normalisation( self ): normalisation = {name:adjust_overflow_to_limit(histogram, x_min, x_max).Integral() for name, histogram in self.histograms_1.iteritems()} normalisation_from_fit_data = self.fit_data_1.normalisation normalisation_from_single_collection = self.single_collection.mc_normalisation() normalisation_from_collection = self.collection_1.mc_normalisation( 'signal region' ) normalisation_from_collection_1 = self.collection_1.mc_normalisation()['signal region'] for sample in normalisation.keys(): self.assertEqual( normalisation[sample], normalisation_from_fit_data[sample] ) self.assertEqual( normalisation[sample], normalisation_from_single_collection[sample] ) self.assertEqual( normalisation[sample], normalisation_from_collection[sample] ) self.assertEqual( normalisation[sample], normalisation_from_collection_1[sample] ) # data normalisation normalisation = self.h_data.integral( overflow = True ) normalisation_from_fit_data = self.fit_data_1.n_data() normalisation_from_single_collection = self.single_collection.n_data() normalisation_from_collection = self.collection_1.n_data( 'signal region' ) normalisation_from_collection_1 = self.collection_1.n_data()['signal region'] self.assertEqual( normalisation, normalisation_from_fit_data ) self.assertEqual( normalisation, normalisation_from_single_collection ) self.assertEqual( normalisation, normalisation_from_collection ) self.assertEqual( normalisation, normalisation_from_collection_1 ) self.assertAlmostEqual(normalisation, self.collection_1.max_n_data(), delta = 1 ) def test_real_data( self ): real_data = self.fit_data_1.real_data_histogram() self.assertEqual( self.h_data.integral( overflow = True ), real_data.Integral() ) def test_overwrite_warning( self ): c = FitDataCollection() c.add( self.fit_data_1, 'var1' ) self.assertRaises( UserWarning, c.add, ( self.fit_data_1, 'var1' ) ) def test_vectors( self ): h_signal = adjust_overflow_to_limit( self.h_signal, x_min, x_max ) h_signal.Scale(1/h_signal.Integral()) h_bkg1 = adjust_overflow_to_limit( self.h_bkg1, x_min, x_max ) h_bkg1.Scale(1/h_bkg1.Integral()) signal = list( h_signal.y() ) bkg1 = list( h_bkg1.y() ) v_from_fit_data = self.fit_data_1.vectors v_from_single_collection = self.single_collection.vectors() # v_from_collection = self.collection_1.vectors( 'signal region' ) # v_from_collection_1 = self.collection_1.vectors()['signal region'] self.assertEqual(signal, v_from_fit_data['signal']) self.assertEqual(bkg1, v_from_fit_data['bkg1']) self.assertEqual(signal, v_from_single_collection['signal']) self.assertEqual(bkg1, v_from_single_collection['bkg1']) def test_constraints(self): constraint_from_single_collection = self.single_collection.constraints()['bkg1'] self.assertEqual(0.5, constraint_from_single_collection) if __name__ == "__main__": # import sys;sys.argv = ['', 'Test.testTemplates'] unittest.main()
45.064706
216
0.679154
0ef56fbbc445a2a295097b6922f77a19ccba8e0e
26,635
py
Python
src/folio_migration_tools/migration_tasks/loans_migrator.py
chadmcinnis/folio_migration_tools
39ee044a713a34c323324a956e3e8b54ee05c194
[ "MIT" ]
null
null
null
src/folio_migration_tools/migration_tasks/loans_migrator.py
chadmcinnis/folio_migration_tools
39ee044a713a34c323324a956e3e8b54ee05c194
[ "MIT" ]
null
null
null
src/folio_migration_tools/migration_tasks/loans_migrator.py
chadmcinnis/folio_migration_tools
39ee044a713a34c323324a956e3e8b54ee05c194
[ "MIT" ]
null
null
null
import copy import csv import json import logging import sys import time import traceback from datetime import datetime from datetime import timedelta from datetime import timezone from typing import Optional from urllib.error import HTTPError import requests from dateutil import parser as du_parser from folio_uuid.folio_namespaces import FOLIONamespaces from pydantic import BaseModel from folio_migration_tools.circulation_helper import CirculationHelper from folio_migration_tools.custom_dict import InsensitiveDictReader from folio_migration_tools.helper import Helper from folio_migration_tools.library_configuration import FileDefinition from folio_migration_tools.library_configuration import LibraryConfiguration from folio_migration_tools.migration_report import MigrationReport from folio_migration_tools.migration_tasks.migration_task_base import MigrationTaskBase from folio_migration_tools.report_blurbs import Blurbs from folio_migration_tools.transaction_migration.legacy_loan import LegacyLoan from folio_migration_tools.transaction_migration.transaction_result import ( TransactionResult, ) class LoansMigrator(MigrationTaskBase): class TaskConfiguration(BaseModel): name: str utc_difference: int migration_task_type: str open_loans_file: FileDefinition fallback_service_point_id: str starting_row: Optional[int] = 1 item_files: Optional[list[FileDefinition]] = [] patron_files: Optional[list[FileDefinition]] = [] @staticmethod def get_object_type() -> FOLIONamespaces: return FOLIONamespaces.loans def __init__( self, task_configuration: TaskConfiguration, library_config: LibraryConfiguration, ): csv.register_dialect("tsv", delimiter="\t") self.migration_report = MigrationReport() self.valid_legacy_loans = [] super().__init__(library_config, task_configuration) self.circulation_helper = CirculationHelper( self.folio_client, task_configuration.fallback_service_point_id, self.migration_report, ) with open( self.folder_structure.legacy_records_folder / task_configuration.open_loans_file.file_name, "r", encoding="utf-8", ) as loans_file: self.semi_valid_legacy_loans = list( self.load_and_validate_legacy_loans( InsensitiveDictReader(loans_file, dialect="tsv") ) ) logging.info( "Loaded and validated %s loans in file", len(self.semi_valid_legacy_loans), ) if any(self.task_configuration.item_files) or any(self.task_configuration.patron_files): self.valid_legacy_loans = list(self.check_barcodes()) logging.info( "Loaded and validated %s loans against barcodes", len(self.valid_legacy_loans), ) else: logging.info( "No item or user files supplied. Not validating against" "previously migrated objects" ) self.valid_legacy_loans = self.semi_valid_legacy_loans self.patron_item_combos = set() self.t0 = time.time() self.num_duplicate_loans = 0 self.skipped_since_already_added = 0 self.processed_items = set() self.failed = {} self.num_legacy_loans_processed = 0 self.failed_and_not_dupe = {} logging.info("Starting row is %s", task_configuration.starting_row) logging.info("Init completed") def do_work(self): logging.info("Starting") if self.task_configuration.starting_row > 1: logging.info(f"Skipping {(self.task_configuration.starting_row-1)} records") for num_loans, legacy_loan in enumerate( self.valid_legacy_loans[self.task_configuration.starting_row :], start=1 ): t0_migration = time.time() self.migration_report.add_general_statistics("Processed loans") try: self.checkout_single_loan(legacy_loan) except Exception as ee: logging.exception( f"Error in row {num_loans} Item barcode: {legacy_loan.item_barcode} " f"Patron barcode: {legacy_loan.patron_barcode} {ee}" ) if num_loans % 25 == 0: logging.info(f"{timings(self.t0, t0_migration, num_loans)} {num_loans}") def checkout_single_loan(self, legacy_loan: LegacyLoan): """Checks a legacy loan out. Retries once if it fails. Args: legacy_loan (LegacyLoan): The Legacy loan """ res_checkout = self.circulation_helper.check_out_by_barcode(legacy_loan) if res_checkout.was_successful: self.migration_report.add(Blurbs.Details, "Checked out on first try") self.set_renewal_count(legacy_loan, res_checkout) self.set_new_status(legacy_loan, res_checkout) elif res_checkout.should_be_retried: res_checkout2 = self.handle_checkout_failure(legacy_loan, res_checkout) if res_checkout2.was_successful and res_checkout2.folio_loan: self.migration_report.add(Blurbs.Details, "Checked out on second try") logging.info("Checked out on second try") self.set_renewal_count(legacy_loan, res_checkout2) self.set_new_status(legacy_loan, res_checkout2) elif legacy_loan.item_barcode not in self.failed: self.failed[legacy_loan.item_barcode] = legacy_loan logging.error("Failed on second try: %s", res_checkout2.error_message) self.migration_report.add( Blurbs.Details, f"Second failure: {res_checkout2.migration_report_message}", ) elif not res_checkout.should_be_retried: logging.error("Failed first time. No retries: %s", res_checkout.error_message) self.migration_report.add( Blurbs.Details, f"Failed 1st time. No retries: {res_checkout.migration_report_message}", ) def set_new_status(self, legacy_loan: LegacyLoan, res_checkout: TransactionResult): """Updates checkout loans with their destination statuses Args: legacy_loan (LegacyLoan): _description_ res_checkout (TransactionResult): _description_ """ # set new statuses if legacy_loan.next_item_status == "Declared lost": self.declare_lost(res_checkout.folio_loan) elif legacy_loan.next_item_status == "Claimed returned": self.claim_returned(res_checkout.folio_loan) elif legacy_loan.next_item_status not in ["Available", "", "Checked out"]: self.set_item_status(legacy_loan) def set_renewal_count(self, legacy_loan: LegacyLoan, res_checkout: TransactionResult): if legacy_loan.renewal_count > 0: self.update_open_loan(res_checkout.folio_loan, legacy_loan) self.migration_report.add_general_statistics("Updated renewal count for loan") def wrap_up(self): for k, v in self.failed.items(): self.failed_and_not_dupe[k] = [v.to_dict()] self.migration_report.set( Blurbs.GeneralStatistics, "Failed loans", len(self.failed_and_not_dupe) ) self.migration_report.set( Blurbs.GeneralStatistics, "Total Rows in file", self.num_legacy_loans_processed, ) self.write_failed_loans_to_file() with open(self.folder_structure.migration_reports_file, "w+") as report_file: report_file.write("# Loans migration results \n") report_file.write(f"Time Finished: {datetime.isoformat(datetime.now(timezone.utc))}\n") self.migration_report.write_migration_report(report_file) def write_failed_loans_to_file(self): csv_columns = [ "due_date", "item_barcode", "next_item_status", "out_date", "patron_barcode", "renewal_count", ] with open(self.folder_structure.failed_recs_path, "w+") as failed_loans_file: writer = csv.DictWriter(failed_loans_file, fieldnames=csv_columns, dialect="tsv") writer.writeheader() for _k, failed_loan in self.failed_and_not_dupe.items(): writer.writerow(failed_loan[0]) def check_barcodes(self): user_barcodes = set() item_barcodes = set() self.circulation_helper.load_migrated_item_barcodes( item_barcodes, self.task_configuration.item_files, self.folder_structure ) self.circulation_helper.load_migrated_user_barcodes( user_barcodes, self.task_configuration.patron_files, self.folder_structure ) for loan in self.semi_valid_legacy_loans: has_item_barcode = loan.item_barcode in item_barcodes has_patron_barcode = loan.patron_barcode in user_barcodes if has_item_barcode and has_patron_barcode: self.migration_report.add_general_statistics( "Loans verified against migrated user and item" ) yield loan else: self.migration_report.add( Blurbs.DiscardedLoans, f"Loans discarded. Had migrated item barcode: {has_item_barcode}. " f"Had migrated user barcode: {has_patron_barcode}", ) if not has_item_barcode: Helper.log_data_issue( "", "Loan without matched item barcode", json.dumps(loan.to_dict()) ) if not has_patron_barcode: Helper.log_data_issue( "", "Loan without matched patron barcode", json.dumps(loan.to_dict()), ) def load_and_validate_legacy_loans(self, loans_reader): num_bad = 0 logging.info("Validating legacy loans in file...") for legacy_loan_count, legacy_loan_dict in enumerate(loans_reader): try: legacy_loan = LegacyLoan( legacy_loan_dict, self.task_configuration.utc_difference, legacy_loan_count, ) if any(legacy_loan.errors): num_bad += 1 self.migration_report.add_general_statistics("Discarded Loans") for error in legacy_loan.errors: self.migration_report.add( Blurbs.DiscardedLoans, f"{error[0]} - {error[1]}" ) else: yield legacy_loan except ValueError as ve: logging.exception(ve) logging.info( f"Done validating {legacy_loan_count} legacy loans with {num_bad} rotten apples" ) if num_bad / legacy_loan_count > 0.5: q = num_bad / legacy_loan_count logging.error("%s percent of loans failed to validate.", (q * 100)) self.migration_report.log_me() logging.critical("Halting...") sys.exit(1) def handle_checkout_failure( self, legacy_loan, folio_checkout: TransactionResult ) -> TransactionResult: """Determines what can be done about a previously failed transaction Args: legacy_loan (_type_): The legacy loan folio_checkout (TransactionResult): The results from the prevous transaction Returns: TransactionResult: A modified TransactionResult based on the result from the handling """ folio_checkout.should_be_retried = False if folio_checkout.error_message == "5XX": return folio_checkout if folio_checkout.error_message.startswith( "No patron with barcode" ) or folio_checkout.error_message.startswith("Patron barcode already detected"): return folio_checkout elif folio_checkout.error_message.startswith("No item with barcode"): return folio_checkout elif folio_checkout.error_message.startswith( "Cannot check out item that already has an open loan" ): return folio_checkout elif folio_checkout.error_message.startswith("Aged to lost for item"): return self.handle_aged_to_lost_item(legacy_loan) elif folio_checkout.error_message == "Declared lost": return folio_checkout elif folio_checkout.error_message.startswith("Cannot check out to inactive user"): return self.checkout_to_inactice_user(legacy_loan) else: self.migration_report.add( Blurbs.Details, f"Other checkout failure: {folio_checkout.error_message}", ) # First failure. Add to list of failed loans if legacy_loan.item_barcode not in self.failed: self.failed[legacy_loan.item_barcode] = legacy_loan else: logging.debug( f"Loan already in failed. item barcode {legacy_loan.item_barcode} " f"Patron barcode: {legacy_loan.patron_barcode}" ) self.failed_and_not_dupe[legacy_loan.item_barcode] = [ legacy_loan, self.failed[legacy_loan.item_barcode], ] logging.info( f"Duplicate loans (or failed twice) Item barcode: " f"{legacy_loan.item_barcode} Patron barcode: {legacy_loan.patron_barcode}" ) self.migration_report.add(Blurbs.Details, "Duplicate loans (or failed twice)") del self.failed[legacy_loan.item_barcode] return TransactionResult(False, False, "", "", "") def checkout_to_inactice_user(self, legacy_loan) -> TransactionResult: logging.info("Cannot check out to inactive user. Activating and trying again") user = self.get_user_by_barcode(legacy_loan.patron_barcode) expiration_date = user.get("expirationDate", datetime.isoformat(datetime.now())) user["expirationDate"] = datetime.isoformat(datetime.now() + timedelta(days=1)) self.activate_user(user) logging.debug("Successfully Activated user") res = self.circulation_helper.check_out_by_barcode(legacy_loan) # checkout_and_update self.migration_report.add(Blurbs.Details, res.migration_report_message) self.deactivate_user(user, expiration_date) logging.debug("Successfully Deactivated user again") self.migration_report.add(Blurbs.Details, "Handled inactive users") return res def handle_aged_to_lost_item(self, legacy_loan) -> TransactionResult: logging.debug("Setting Available") legacy_loan.next_item_status = "Available" self.set_item_status(legacy_loan) res_checkout = self.circulation_helper.check_out_by_barcode(legacy_loan) legacy_loan.next_item_status = "Aged to lost" self.set_item_status(legacy_loan) s = "Successfully Checked out Aged to lost item and put the status back" logging.info(s) self.migration_report.add(Blurbs.Details, s) return res_checkout def update_open_loan(self, folio_loan: dict, legacy_loan: LegacyLoan): due_date = du_parser.isoparse(str(legacy_loan.due_date)) out_date = du_parser.isoparse(str(legacy_loan.out_date)) renewal_count = legacy_loan.renewal_count # TODO: add logging instead of print out try: loan_to_put = copy.deepcopy(folio_loan) del loan_to_put["metadata"] loan_to_put["dueDate"] = due_date.isoformat() loan_to_put["loanDate"] = out_date.isoformat() loan_to_put["renewalCount"] = renewal_count url = f"{self.folio_client.okapi_url}/circulation/loans/{loan_to_put['id']}" req = requests.put( url, headers=self.folio_client.okapi_headers, data=json.dumps(loan_to_put), ) if req.status_code == 422: error_message = json.loads(req.text)["errors"][0]["message"] s = f"Update open loan error: {error_message} {req.status_code}" self.migration_report.add(Blurbs.Details, s) logging.error(s) return False elif req.status_code in [201, 204]: self.migration_report.add( Blurbs.Details, f"Successfully updated open loan ({req.status_code})", ) return True else: self.migration_report.add( Blurbs.Details, f"Update open loan error http status: {req.status_code}", ) req.raise_for_status() logging.debug("Updating open loan was successful") return True except HTTPError as exception: logging.error( f"{req.status_code} PUT FAILED Extend loan to {loan_to_put['dueDate']}" f"\t {url}\t{json.dumps(loan_to_put)}" ) traceback.print_exc() logging.error(exception) return False def handle_previously_failed_loans(self, loan): if loan["item_id"] in self.failed: s = "Loan succeeded but failed previously. Removing from failed " logging.info(s) del self.failed[loan["item_id"]] def declare_lost(self, folio_loan): declare_lost_url = f"/circulation/loans/{folio_loan['id']}/declare-item-lost" logging.debug(f"Declare lost url:{declare_lost_url}") due_date = du_parser.isoparse(folio_loan["dueDate"]) data = { "declaredLostDateTime": datetime.isoformat(due_date + timedelta(days=1)), "comment": "Created at migration. Date is due date + 1 day", "servicePointId": str(self.task_configuration.fallback_service_point_id), } logging.debug(f"Declare lost data: {json.dumps(data, indent=4)}") if self.folio_put_post(declare_lost_url, data, "POST", "Declare item as lost"): self.migration_report.add(Blurbs.Details, "Successfully declared loan as lost") else: logging.error(f"Unsuccessfully declared loan {folio_loan} as lost") self.migration_report.add(Blurbs.Details, "Unsuccessfully declared loan as lost") # TODO: Exception handling def claim_returned(self, folio_loan): claim_returned_url = f"/circulation/loans/{folio_loan['id']}/claim-item-returned" logging.debug(f"Claim returned url:{claim_returned_url}") due_date = du_parser.isoparse(folio_loan["dueDate"]) data = { "itemClaimedReturnedDateTime": datetime.isoformat(due_date + timedelta(days=1)), "comment": "Created at migration. Date is due date + 1 day", } logging.debug(f"Claim returned data:\t{json.dumps(data)}") if self.folio_put_post(claim_returned_url, data, "POST", "Declare item as lost"): self.migration_report.add( Blurbs.Details, "Successfully declared loan as Claimed returned" ) else: logging.error(f"Unsuccessfully declared loan {folio_loan} as Claimed returned") self.migration_report.add( Blurbs.Details, f"Unsuccessfully declared loan {folio_loan} as Claimed returned", ) # TODO: Exception handling def set_item_status(self, legacy_loan: LegacyLoan): try: # Get Item by barcode, update status. item_path = f'item-storage/items?query=(barcode=="{legacy_loan.item_barcode}")' item_url = f"{self.folio_client.okapi_url}/{item_path}" resp = requests.get(item_url, headers=self.folio_client.okapi_headers) resp.raise_for_status() data = resp.json() folio_item = data["items"][0] folio_item["status"]["name"] = legacy_loan.next_item_status if self.update_item(folio_item): self.migration_report.add( Blurbs.Details, f"Successfully set item status to {legacy_loan.next_item_status}", ) logging.debug( f"Successfully set item with barcode " f"{legacy_loan.item_barcode} to {legacy_loan.next_item_status}" ) else: if legacy_loan.item_barcode not in self.failed: self.failed[legacy_loan.item_barcode] = legacy_loan logging.error( f"Error when setting item with barcode " f"{legacy_loan.item_barcode} to {legacy_loan.next_item_status}" ) self.migration_report.add( Blurbs.Details, f"Error setting item status to {legacy_loan.next_item_status}", ) except Exception as ee: logging.error( f"{resp.status_code} when trying to set item with barcode " f"{legacy_loan.item_barcode} to {legacy_loan.next_item_status} {ee}" ) raise ee def activate_user(self, user): user["active"] = True self.update_user(user) self.migration_report.add(Blurbs.Details, "Successfully activated user") def deactivate_user(self, user, expiration_date): user["expirationDate"] = expiration_date user["active"] = False self.update_user(user) self.migration_report.add(Blurbs.Details, "Successfully deactivated user") def update_item(self, item): url = f'/item-storage/items/{item["id"]}' return self.folio_put_post(url, item, "PUT", "Update item") def update_user(self, user): url = f'/users/{user["id"]}' self.folio_put_post(url, user, "PUT", "Update user") def get_user_by_barcode(self, barcode): url = f'{self.folio_client.okapi_url}/users?query=(barcode=="{barcode}")' resp = requests.get(url, headers=self.folio_client.okapi_headers) resp.raise_for_status() data = resp.json() return data["users"][0] def folio_put_post(self, url, data_dict, verb, action_description=""): full_url = f"{self.folio_client.okapi_url}{url}" try: if verb == "PUT": resp = requests.put( full_url, headers=self.folio_client.okapi_headers, data=json.dumps(data_dict), ) elif verb == "POST": resp = requests.post( full_url, headers=self.folio_client.okapi_headers, data=json.dumps(data_dict), ) else: raise Exception("Bad verb") if resp.status_code == 422: error_message = json.loads(resp.text)["errors"][0]["message"] logging.error(error_message) self.migration_report.add( Blurbs.Details, f"{action_description} error: {error_message}" ) resp.raise_for_status() elif resp.status_code in [201, 204]: self.migration_report.add( Blurbs.Details, f"Successfully {action_description} ({resp.status_code})", ) else: self.migration_report.add( Blurbs.Details, f"{action_description} error. http status: {resp.status_code}", ) resp.raise_for_status() return True except HTTPError as exception: logging.error(f"{resp.status_code}. {verb} FAILED for {url}") traceback.print_exc() logging.info(exception) return False def change_due_date(self, folio_loan, legacy_loan): try: api_path = f"{folio_loan['id']}/change-due-date" api_url = f"{self.folio_client.okapi_url}/circulation/loans/{api_path}" body = {"dueDate": du_parser.isoparse(str(legacy_loan.due_date)).isoformat()} req = requests.post( api_url, headers=self.folio_client.okapi_headers, data=json.dumps(body) ) if req.status_code == 422: error_message = json.loads(req.text)["errors"][0]["message"] self.migration_report.add( Blurbs.Details, f"Change due date error: {error_message}" ) logging.info( f"{error_message}\t", ) self.migration_report.add(Blurbs.Details, error_message) return False elif req.status_code == 201: self.migration_report.add( Blurbs.Details, f"Successfully changed due date ({req.status_code})" ) return True, json.loads(req.text), None elif req.status_code == 204: self.migration_report.add( Blurbs.Details, f"Successfully changed due date ({req.status_code})" ) return True, None, None else: self.migration_report.add( Blurbs.Details, f"Update open loan error http status: {req.status_code}", ) req.raise_for_status() except HTTPError as exception: logging.info( f"{req.status_code} POST FAILED Change Due Date to {api_url}\t{json.dumps(body)})" ) traceback.print_exc() logging.info(exception) return False, None, None def timings(t0, t0func, num_objects): avg = num_objects / (time.time() - t0) elapsed = time.time() - t0 elapsed_func = time.time() - t0func return ( f"Total objects: {num_objects}\tTotal elapsed: {elapsed:.2f}\t" f"Average per object: {avg:.2f}\tElapsed this time: {elapsed_func:.2f}" )
44.317804
99
0.610325
77278587fed394619dab0cb9d6f09fc8409af44f
516
py
Python
constants.py
tchayintr/cfparser-service
8a28a572c1570efc845cfe5786cb9730f111d777
[ "Apache-2.0" ]
null
null
null
constants.py
tchayintr/cfparser-service
8a28a572c1570efc845cfe5786cb9730f111d777
[ "Apache-2.0" ]
1
2020-05-18T04:43:32.000Z
2020-05-18T04:43:32.000Z
constants.py
tchayintr/cfparser-service
8a28a572c1570efc845cfe5786cb9730f111d777
[ "Apache-2.0" ]
null
null
null
# for app APP_DEFAULT_BRACKETS_FORMAT = '[]' APP_DEFAULT_DELIMITER_PARSED_TREE = '▏' # U+258F (Left one eighth block) APP_DEFAULT_DELIMITER_PROB = '▁' # U+2581 (Lower one eighth block) APP_DEFAULT_JSONIFY_KEY_RESULT = 'result' APP_DEFAULT_LOG_DIR = 'log' APP_DEFAULT_MODEL_PATH = 'models/main/cfparser-app.model' APP_DEFAULT_PCFG_FORMAT = 'pcfg' APP_DEFAULT_ROOT_NONTERMINAL = 'S' APP_DEFAULT_SAMPLE_FORMAT = '{}{}{}{}' APP_DEFAULT_UNUSED_NONTERMINAL = 'UNUSED' APP_DEFAULT_VITERBI_MODEL = 'viterbi'
36.857143
77
0.763566
5faaf916b74178a25c45da68d435aa335f5db106
11,956
py
Python
airflow/operators/s3_to_hive_operator.py
dmnpignaud/incubator-airflow
9b5d2f6f6ca5f81e94169f1fd49e4372d0e88bfb
[ "Apache-2.0" ]
2
2018-11-07T10:02:34.000Z
2018-11-07T10:03:40.000Z
airflow/airflow/operators/s3_to_hive_operator.py
kira-lin/ve450-airflow-on-k8s
f28e8b468568c8623134db5a1a8757860788799f
[ "Apache-2.0" ]
1
2018-11-05T21:12:08.000Z
2019-07-26T21:00:05.000Z
airflow/airflow/operators/s3_to_hive_operator.py
kira-lin/ve450-airflow-on-k8s
f28e8b468568c8623134db5a1a8757860788799f
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from builtins import next from builtins import zip from tempfile import NamedTemporaryFile from airflow.utils.file import TemporaryDirectory import gzip import bz2 import tempfile import os from airflow.exceptions import AirflowException from airflow.hooks.S3_hook import S3Hook from airflow.hooks.hive_hooks import HiveCliHook from airflow.models import BaseOperator from airflow.utils.decorators import apply_defaults from airflow.utils.compression import uncompress_file class S3ToHiveTransfer(BaseOperator): """ Moves data from S3 to Hive. The operator downloads a file from S3, stores the file locally before loading it into a Hive table. If the ``create`` or ``recreate`` arguments are set to ``True``, a ``CREATE TABLE`` and ``DROP TABLE`` statements are generated. Hive data types are inferred from the cursor's metadata from. Note that the table generated in Hive uses ``STORED AS textfile`` which isn't the most efficient serialization format. If a large amount of data is loaded and/or if the tables gets queried considerably, you may want to use this operator only to stage the data into a temporary table before loading it into its final destination using a ``HiveOperator``. :param s3_key: The key to be retrieved from S3. (templated) :type s3_key: str :param field_dict: A dictionary of the fields name in the file as keys and their Hive types as values :type field_dict: dict :param hive_table: target Hive table, use dot notation to target a specific database. (templated) :type hive_table: str :param create: whether to create the table if it doesn't exist :type create: bool :param recreate: whether to drop and recreate the table at every execution :type recreate: bool :param partition: target partition as a dict of partition columns and values. (templated) :type partition: dict :param headers: whether the file contains column names on the first line :type headers: bool :param check_headers: whether the column names on the first line should be checked against the keys of field_dict :type check_headers: bool :param wildcard_match: whether the s3_key should be interpreted as a Unix wildcard pattern :type wildcard_match: bool :param delimiter: field delimiter in the file :type delimiter: str :param aws_conn_id: source s3 connection :type aws_conn_id: str :param hive_cli_conn_id: destination hive connection :type hive_cli_conn_id: str :param input_compressed: Boolean to determine if file decompression is required to process headers :type input_compressed: bool :param tblproperties: TBLPROPERTIES of the hive table being created :type tblproperties: dict :param select_expression: S3 Select expression :type select_expression: str """ template_fields = ('s3_key', 'partition', 'hive_table') template_ext = () ui_color = '#a0e08c' @apply_defaults def __init__( self, s3_key, field_dict, hive_table, delimiter=',', create=True, recreate=False, partition=None, headers=False, check_headers=False, wildcard_match=False, aws_conn_id='aws_default', hive_cli_conn_id='hive_cli_default', input_compressed=False, tblproperties=None, select_expression=None, *args, **kwargs): super(S3ToHiveTransfer, self).__init__(*args, **kwargs) self.s3_key = s3_key self.field_dict = field_dict self.hive_table = hive_table self.delimiter = delimiter self.create = create self.recreate = recreate self.partition = partition self.headers = headers self.check_headers = check_headers self.wildcard_match = wildcard_match self.hive_cli_conn_id = hive_cli_conn_id self.aws_conn_id = aws_conn_id self.input_compressed = input_compressed self.tblproperties = tblproperties self.select_expression = select_expression if (self.check_headers and not (self.field_dict is not None and self.headers)): raise AirflowException("To check_headers provide " + "field_dict and headers") def execute(self, context): # Downloading file from S3 self.s3 = S3Hook(aws_conn_id=self.aws_conn_id) self.hive = HiveCliHook(hive_cli_conn_id=self.hive_cli_conn_id) self.log.info("Downloading S3 file") if self.wildcard_match: if not self.s3.check_for_wildcard_key(self.s3_key): raise AirflowException("No key matches {0}" .format(self.s3_key)) s3_key_object = self.s3.get_wildcard_key(self.s3_key) else: if not self.s3.check_for_key(self.s3_key): raise AirflowException( "The key {0} does not exists".format(self.s3_key)) s3_key_object = self.s3.get_key(self.s3_key) root, file_ext = os.path.splitext(s3_key_object.key) if (self.select_expression and self.input_compressed and file_ext.lower() != '.gz'): raise AirflowException("GZIP is the only compression " + "format Amazon S3 Select supports") with TemporaryDirectory(prefix='tmps32hive_') as tmp_dir,\ NamedTemporaryFile(mode="wb", dir=tmp_dir, suffix=file_ext) as f: self.log.info("Dumping S3 key {0} contents to local file {1}" .format(s3_key_object.key, f.name)) if self.select_expression: option = {} if self.headers: option['FileHeaderInfo'] = 'USE' if self.delimiter: option['FieldDelimiter'] = self.delimiter input_serialization = {'CSV': option} if self.input_compressed: input_serialization['CompressionType'] = 'GZIP' content = self.s3.select_key( bucket_name=s3_key_object.bucket_name, key=s3_key_object.key, expression=self.select_expression, input_serialization=input_serialization ) f.write(content.encode("utf-8")) else: s3_key_object.download_fileobj(f) f.flush() if self.select_expression or not self.headers: self.log.info("Loading file %s into Hive", f.name) self.hive.load_file( f.name, self.hive_table, field_dict=self.field_dict, create=self.create, partition=self.partition, delimiter=self.delimiter, recreate=self.recreate, tblproperties=self.tblproperties) else: # Decompressing file if self.input_compressed: self.log.info("Uncompressing file %s", f.name) fn_uncompressed = uncompress_file(f.name, file_ext, tmp_dir) self.log.info("Uncompressed to %s", fn_uncompressed) # uncompressed file available now so deleting # compressed file to save disk space f.close() else: fn_uncompressed = f.name # Testing if header matches field_dict if self.check_headers: self.log.info("Matching file header against field_dict") header_list = self._get_top_row_as_list(fn_uncompressed) if not self._match_headers(header_list): raise AirflowException("Header check failed") # Deleting top header row self.log.info("Removing header from file %s", fn_uncompressed) headless_file = ( self._delete_top_row_and_compress(fn_uncompressed, file_ext, tmp_dir)) self.log.info("Headless file %s", headless_file) self.log.info("Loading file %s into Hive", headless_file) self.hive.load_file(headless_file, self.hive_table, field_dict=self.field_dict, create=self.create, partition=self.partition, delimiter=self.delimiter, recreate=self.recreate, tblproperties=self.tblproperties) def _get_top_row_as_list(self, file_name): with open(file_name, 'rt') as f: header_line = f.readline().strip() header_list = header_line.split(self.delimiter) return header_list def _match_headers(self, header_list): if not header_list: raise AirflowException("Unable to retrieve header row from file") field_names = self.field_dict.keys() if len(field_names) != len(header_list): self.log.warning("Headers count mismatch" "File headers:\n {header_list}\n" "Field names: \n {field_names}\n" .format(**locals())) return False test_field_match = [h1.lower() == h2.lower() for h1, h2 in zip(header_list, field_names)] if not all(test_field_match): self.log.warning("Headers do not match field names" "File headers:\n {header_list}\n" "Field names: \n {field_names}\n" .format(**locals())) return False else: return True def _delete_top_row_and_compress( self, input_file_name, output_file_ext, dest_dir): # When output_file_ext is not defined, file is not compressed open_fn = open if output_file_ext.lower() == '.gz': open_fn = gzip.GzipFile elif output_file_ext.lower() == '.bz2': open_fn = bz2.BZ2File os_fh_output, fn_output = \ tempfile.mkstemp(suffix=output_file_ext, dir=dest_dir) with open(input_file_name, 'rb') as f_in,\ open_fn(fn_output, 'wb') as f_out: f_in.seek(0) next(f_in) for line in f_in: f_out.write(line) return fn_output
41.950877
78
0.588658
a9a7302bf2bdc1e18b089f25ec17e63f11337e81
22
py
Python
Python/BackgroundApp/BackgroundApp/PythonHome/WinRTExtension.zip/WinRT/__init__.py
Carlosgm02/UWP-Languages
b5653c8f452b204645e3b6276caa95de2432f77e
[ "MIT" ]
6
2019-10-30T08:41:15.000Z
2021-02-24T09:20:46.000Z
Python/BackgroundApp/BackgroundApp/PythonHome/WinRTExtension.zip/WinRT/__init__.py
carlosgm02/uwp-languages
b5653c8f452b204645e3b6276caa95de2432f77e
[ "MIT" ]
null
null
null
Python/BackgroundApp/BackgroundApp/PythonHome/WinRTExtension.zip/WinRT/__init__.py
carlosgm02/uwp-languages
b5653c8f452b204645e3b6276caa95de2432f77e
[ "MIT" ]
null
null
null
from _winrt import *
11
21
0.727273
7cb2c249267e795cb5962e9a7f6364578468c89d
4,781
py
Python
subaru_calcs.py
mikeireland/opticstools
8ce59ee9016e871e92c412a9beb908f2354319b6
[ "MIT" ]
null
null
null
subaru_calcs.py
mikeireland/opticstools
8ce59ee9016e871e92c412a9beb908f2354319b6
[ "MIT" ]
null
null
null
subaru_calcs.py
mikeireland/opticstools
8ce59ee9016e871e92c412a9beb908f2354319b6
[ "MIT" ]
null
null
null
"""Some diffraction calculations for the RHEA slit feed. Computes the overlap between a diffraction limited beam and the RHEA IFU, averaging over a user-defined array of pointing offsets in lenslet units. Overlaps are computed both at the microlens plane and the fiber plane, demonstrating self-consistency. In the case of the laboratory calculations, I assume that the coupling is the average of the coupling over all angles, i.e. that the output of a multi-mode fiber can be considered as an incoherent sum over all input angles. Central lenslet mean coupling = 0.292 Edge/top lenslet mean couplings = [0.012,0.028,0.012,0.028]. Sum=0.080 Corner lenslet mean coupling = [0.002,0.010,0.010,0.010]. Sum=0.032 Total coupling = 0.404. In the lab, with a smaller "pupil" from the SM28 fiber: 0.064 0.049 * 4 0.0369 * 4 Total Coupling = 0.407 For multi-mode fiber inputs... 50 microns: 29.5% 38 microns: 32.7% """ from __future__ import division, print_function import numpy as np import matplotlib.pyplot as plt import opticstools as ot import pdb from scipy.ndimage.interpolation import shift plt.ion() #Firstly, define a fiber beam wave = 0.74e-6 #0.65e-6 m_pix = 0.1e-6 core_diam = 3.5e-6 numerical_aperture = 0.13 sz = 1024 llet_f = 4.64 * 1.1 #Lenslet focal length in mm llet_w = 1.0 #Lenslet width in mm nf = 20 nf = 1 f_ratios = np.linspace(1150,1150,nf) obstruct = 0.25 #Fiber offset. offset = 0.0e-6; label = 'Perfect Alignment' #offset = 1.0e-6; label = '1 micron offset' #offset = 2.0e-6; label = '2 microns offset' #Offset of the lenslet in mm llet_offsets=np.array( [[0,0]]) nx = 10 x = (np.arange(nx) + 0.5)/20.0 #Single-sided x = (np.arange(nx) + 0.5 - nx//2)/10.0 #Dual-sided xy = np.meshgrid(x,x) llet_offsets = np.rollaxis(np.array([xy[0],xy[1]]),0,3).reshape(nx*nx,2) plotit = False #Now a calculation that mimics the pup_size_microns_physical_mm = 1.45/300*7.2 pup_size_lab = 50e-3 #or 9e-3 #pup_size_lab = 38e-3 #Trying to maximise flux. #Set non-None for this "special" calculation. lab_pup_scale = pup_size_lab/pup_size_microns_physical_mm #lab_pup_scale = None #---- rad_pix = wave/(sz*m_pix) #Metres per pixel in the lenslet plane. m_pix_llet = rad_pix*llet_f/1e3 V = ot.compute_v_number(wave, core_diam/2, numerical_aperture) #Compute the fiber mode for the fundumental fib_mode = ot.mode_2d(V, core_diam/2, j=0, n=0, sampling=m_pix, sz=sz) #Compute the far field distribution for this fiber fib_angle = np.real(np.fft.fftshift(np.fft.fft2(np.fft.fftshift(fib_mode)))) #Offset the fiber mode to account for misalignments. fib_mode = shift(fib_mode.real,(offset/m_pix,0), order=1) #Create a variable "mode" which is the fiber mode in the lenslet plane. llet = ot.square(sz, llet_w/rad_pix/llet_f) mode = llet * fib_angle fib_llet_loss = np.sum(mode**2)/np.sum(fib_angle**2) couplings1 = [] couplings2 = [] #Loop through all lenslet offsets (up to +/- half a lenslet) and input #system focal ratios, computing coupling. for llet_offset in llet_offsets: for f_ratio in f_ratios: l_d_pix = f_ratio*wave/m_pix_llet pup_diam_pix = sz/l_d_pix #The input pupil, which changes its size dependent on focal ratio. pup = ot.circle(sz, pup_diam_pix) - ot.circle(sz, pup_diam_pix*obstruct) #"Special" calculation of lab pupil... if lab_pup_scale: pup = ot.circle(sz, pup_diam_pix*lab_pup_scale) #Create a psf, shift it by the offset and truncate. psf = np.real(np.fft.fftshift(np.fft.fft2(np.fft.fftshift(pup)))) psf = shift(psf, llet_offset*llet_w/rad_pix/llet_f, order=1) psf_trunc = psf * llet #Compute the loss associated with this truncation. llet_loss = np.sum(psf_trunc**2)/np.sum(psf**2) #The PSF at the fiber is complex in general psf_fiber = np.fft.fftshift(np.fft.fft2(np.fft.fftshift(psf_trunc))) #Couplings1 is coupling "at the microlens array", not taking into account lenslet loss. couplings1.append(np.sum(psf*mode)**2/np.sum(psf**2)/np.sum(mode**2)*fib_llet_loss) #Couplings2 is coupling "at the fiber", taking into account the lenslet loss. couplings2.append(np.abs(np.sum(psf_fiber*fib_mode))**2/np.sum(np.abs(psf_fiber)**2)/np.sum(fib_mode**2)*llet_loss) #plt.clf() couplings1 = np.array(couplings1).reshape(len(llet_offsets), len(f_ratios)) couplings2 = np.array(couplings2).reshape(len(llet_offsets), len(f_ratios)) print(np.mean(couplings1)) #plt.plot(f_ratios,couplings1,label='Total Coupling') if plotit: plt.plot(f_ratios,np.mean(couplings2, axis=1),label=label) plt.xlabel('Input focal ratio') plt.ylabel('Central Fiber Coupling') plt.axis([700,1650,0,.7])
33.907801
123
0.707174
d353da20297433d5db69b68c540afb54826baa6d
2,232
py
Python
tests/parsing/test_summary.py
mralext20/avwx-engine
4eabc2a4a08cd931d6f0fab7590ea09390af43e2
[ "MIT" ]
30
2015-09-08T20:38:41.000Z
2019-03-10T07:10:47.000Z
tests/parsing/test_summary.py
mralext20/avwx-engine
4eabc2a4a08cd931d6f0fab7590ea09390af43e2
[ "MIT" ]
13
2019-11-18T17:03:54.000Z
2021-09-04T03:53:55.000Z
tests/parsing/test_summary.py
mralext20/avwx-engine
4eabc2a4a08cd931d6f0fab7590ea09390af43e2
[ "MIT" ]
16
2019-11-18T01:55:49.000Z
2021-09-20T03:22:58.000Z
""" Test summary functions """ # library import unittest # module from avwx import structs from avwx.parsing import summary class TestSummary(unittest.TestCase): """Test summary functions""" def test_metar(self): """Tests that METAR translations are summarized in the proper order""" self.assertEqual( summary.metar( structs.MetarTrans( altimeter="29.92 inHg (1013 hPa)", clouds="Broken layer at 1500ft (Cumulonimbus) - Reported AGL", dewpoint="-1°C (30°F)", remarks={}, temperature="3°C (37°F)", visibility="3sm (4.8km)", wind="N-360 (variable 340 to 020) at 12kt gusting to 20kt", wx_codes="Heavy Rain", ) ), ( "Winds N-360 (variable 340 to 020) at 12kt gusting to 20kt, " "Vis 3sm, Temp 3°C, Dew -1°C, Alt 29.92 inHg, " "Heavy Rain, Broken layer at 1500ft (Cumulonimbus)" ), ) def test_taf(self): """Tests that TAF line translations are summarized in the proper order""" self.assertEqual( summary.taf( structs.TafLineTrans( altimeter="29.92 inHg (1013 hPa)", clouds="Broken layer at 1500ft (Cumulonimbus) - Reported AGL", icing="Light icing from 10000ft to 15000ft", turbulence="Occasional moderate turbulence in clouds from 5500ft to 8500ft", visibility="3sm (4.8km)", wind_shear="Wind shear 2000ft from 070 at 40kt", wind="N-360 at 12kt gusting to 20kt", wx_codes="Heavy Rain", ) ), ( "Winds N-360 at 12kt gusting to 20kt, Vis 3sm, Alt 29.92 inHg, " "Heavy Rain, Broken layer at 1500ft (Cumulonimbus), " "Wind shear 2000ft from 070 at 40kt, " "Occasional moderate turbulence in clouds from 5500ft to 8500ft, " "Light icing from 10000ft to 15000ft" ), )
36.590164
96
0.512545