hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
163fa95d3fb127b7b15a5db2c0a0882c6a667bb8
5,536
py
Python
ml-agents/mlagents/trainers/tests/test_learn.py
Iceman3/ml-agents
eb2a4a19450c6b8f2bfc1fe6ade10c518652f299
[ "Apache-2.0" ]
5
2019-02-01T04:53:19.000Z
2021-02-17T21:27:56.000Z
ml-agents/mlagents/trainers/tests/test_learn.py
AdriDmgz/ml-agents
608fdcf4ff39aa94675ff6fc27f4941f96b53f6a
[ "Apache-2.0" ]
4
2020-09-26T00:51:48.000Z
2022-02-10T01:28:32.000Z
ml-agents-0.15.1/ml-agents/mlagents/trainers/tests/test_learn.py
StandInTheRiver/Pong_AI
481e2af4a96377c257a6aa5559d8b7230c432bad
[ "MIT" ]
4
2020-03-05T15:29:26.000Z
2020-03-05T16:50:06.000Z
import pytest from unittest.mock import MagicMock, patch, mock_open from mlagents.trainers import learn from mlagents.trainers.trainer_controller import TrainerController from mlagents.trainers.learn import parse_command_line from mlagents_envs.exception import UnityEnvironmentException def basic_options(extra_args=None): extra_args = extra_args or {} args = ["basic_path"] if extra_args: args += [f"{k}={v}" for k, v in extra_args.items()] return parse_command_line(args) @patch("mlagents.trainers.learn.TrainerFactory") @patch("mlagents.trainers.learn.SamplerManager") @patch("mlagents.trainers.learn.SubprocessEnvManager") @patch("mlagents.trainers.learn.create_environment_factory") @patch("mlagents.trainers.learn.load_config") def test_run_training( load_config, create_environment_factory, subproc_env_mock, sampler_manager_mock, trainer_factory_mock, ): mock_env = MagicMock() mock_env.external_brain_names = [] mock_env.academy_name = "TestAcademyName" create_environment_factory.return_value = mock_env trainer_config_mock = MagicMock() load_config.return_value = trainer_config_mock mock_init = MagicMock(return_value=None) with patch.object(TrainerController, "__init__", mock_init): with patch.object(TrainerController, "start_learning", MagicMock()): learn.run_training(0, basic_options()) mock_init.assert_called_once_with( trainer_factory_mock.return_value, "./models/ppo", "./summaries", "ppo", 50000, None, False, 0, sampler_manager_mock.return_value, None, ) @patch("mlagents.trainers.learn.SamplerManager") @patch("mlagents.trainers.learn.SubprocessEnvManager") @patch("mlagents.trainers.learn.create_environment_factory") @patch("mlagents.trainers.learn.load_config") def test_docker_target_path( load_config, create_environment_factory, subproc_env_mock, sampler_manager_mock ): mock_env = MagicMock() mock_env.external_brain_names = [] mock_env.academy_name = "TestAcademyName" create_environment_factory.return_value = mock_env trainer_config_mock = MagicMock() load_config.return_value = trainer_config_mock options_with_docker_target = basic_options({"--docker-target-name": "dockertarget"}) mock_init = MagicMock(return_value=None) with patch.object(TrainerController, "__init__", mock_init): with patch.object(TrainerController, "start_learning", MagicMock()): learn.run_training(0, options_with_docker_target) mock_init.assert_called_once() assert mock_init.call_args[0][1] == "/dockertarget/models/ppo" assert mock_init.call_args[0][2] == "/dockertarget/summaries" def test_bad_env_path(): with pytest.raises(UnityEnvironmentException): learn.create_environment_factory( env_path="/foo/bar", docker_target_name=None, no_graphics=True, seed=None, start_port=8000, env_args=None, ) @patch("builtins.open", new_callable=mock_open, read_data="{}") def test_commandline_args(mock_file): # No args raises with pytest.raises(SystemExit): parse_command_line([]) # Test with defaults opt = parse_command_line(["mytrainerpath"]) assert opt.trainer_config == {} assert opt.env_path is None assert opt.curriculum_config is None assert opt.sampler_config is None assert opt.keep_checkpoints == 5 assert opt.lesson == 0 assert opt.load_model is False assert opt.run_id == "ppo" assert opt.save_freq == 50000 assert opt.seed == -1 assert opt.train_model is False assert opt.base_port == 5005 assert opt.num_envs == 1 assert opt.docker_target_name is None assert opt.no_graphics is False assert opt.debug is False assert opt.env_args is None full_args = [ "mytrainerpath", "--env=./myenvfile", "--curriculum=./mycurriculum", "--sampler=./mysample", "--keep-checkpoints=42", "--lesson=3", "--load", "--run-id=myawesomerun", "--save-freq=123456", "--seed=7890", "--train", "--base-port=4004", "--num-envs=2", "--docker-target-name=mydockertarget", "--no-graphics", "--debug", ] opt = parse_command_line(full_args) assert opt.trainer_config == {} assert opt.env_path == "./myenvfile" assert opt.curriculum_config == {} assert opt.sampler_config == {} assert opt.keep_checkpoints == 42 assert opt.lesson == 3 assert opt.load_model is True assert opt.run_id == "myawesomerun" assert opt.save_freq == 123456 assert opt.seed == 7890 assert opt.train_model is True assert opt.base_port == 4004 assert opt.num_envs == 2 assert opt.docker_target_name == "mydockertarget" assert opt.no_graphics is True assert opt.debug is True @patch("builtins.open", new_callable=mock_open, read_data="{}") def test_env_args(mock_file): full_args = [ "mytrainerpath", "--env=./myenvfile", "--env-args", # Everything after here will be grouped in a list "--foo=bar", "--blah", "baz", "100", ] opt = parse_command_line(full_args) assert opt.env_args == ["--foo=bar", "--blah", "baz", "100"]
32.564706
88
0.664559
bd7f07f9964941d1342a62952379c19611dcfedc
2,644
py
Python
tests/configs/o3-timing-mp-ruby.py
hyu-iot/gem5
aeccc8bd8e9a86f96fc7a6f40d978f8494337fc5
[ "BSD-3-Clause" ]
765
2015-01-14T16:17:04.000Z
2022-03-28T07:46:28.000Z
tests/configs/o3-timing-mp-ruby.py
hyu-iot/gem5
aeccc8bd8e9a86f96fc7a6f40d978f8494337fc5
[ "BSD-3-Clause" ]
30
2015-01-01T21:49:38.000Z
2021-04-20T19:01:54.000Z
tests/configs/o3-timing-mp-ruby.py
hyu-iot/gem5
aeccc8bd8e9a86f96fc7a6f40d978f8494337fc5
[ "BSD-3-Clause" ]
807
2015-01-06T09:55:38.000Z
2022-03-30T10:23:36.000Z
# Copyright (c) 2006-2007 The Regents of The University of Michigan # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import m5 from m5.objects import * nb_cores = 4 cpus = [ DerivO3CPU(cpu_id=i) for i in range(nb_cores) ] import ruby_config ruby_memory = ruby_config.generate("TwoLevel_SplitL1UnifiedL2.rb", nb_cores) # system simulated system = System(cpu = cpus, physmem = ruby_memory, membus = SystemXBar(), mem_mode = "timing", clk_domain = SrcClockDomain(clock = '1GHz')) # Create a seperate clock domain for components that should run at # CPUs frequency system.cpu_clk_domain = SrcClockDomain(clock = '2GHz') for cpu in cpus: # create the interrupt controller cpu.createInterruptController() cpu.connectBus(system.membus) # All cpus are associated with cpu_clk_domain cpu.clk_domain = system.cpu_clk_domain # connect memory to membus system.physmem.port = system.membus.mem_side_ports # Connect the system port for loading of binaries etc system.system_port = system.membus.cpu_side_ports # ----------------------- # run simulation # ----------------------- root = Root(full_system = False, system = system) root.system.mem_mode = 'timing'
41.3125
76
0.759077
50659ccc0411109d3ba877a0ecda7ab7ff30e7e5
149
py
Python
reference/upload/models.py
FanJingithub/performer
9b4eec771a65a72f712c34f70de844ed9ce67475
[ "Apache-1.1" ]
null
null
null
reference/upload/models.py
FanJingithub/performer
9b4eec771a65a72f712c34f70de844ed9ce67475
[ "Apache-1.1" ]
null
null
null
reference/upload/models.py
FanJingithub/performer
9b4eec771a65a72f712c34f70de844ed9ce67475
[ "Apache-1.1" ]
null
null
null
from django.db import models class Img(models.Model): id = models.AutoField(primary_key = True) img = models.ImageField(upload_to = "img")
21.285714
46
0.711409
88468cf6f8a6ff216787c4a3133a6d093ef96a38
3,158
py
Python
chapter03/template_with_demo/template_with_demo/settings.py
Tomtao626/django
fe945063593b4bfe82d74842f728b854b501a294
[ "Apache-2.0" ]
null
null
null
chapter03/template_with_demo/template_with_demo/settings.py
Tomtao626/django
fe945063593b4bfe82d74842f728b854b501a294
[ "Apache-2.0" ]
null
null
null
chapter03/template_with_demo/template_with_demo/settings.py
Tomtao626/django
fe945063593b4bfe82d74842f728b854b501a294
[ "Apache-2.0" ]
null
null
null
""" Django settings for template_with_demo project. Generated by 'django-admin startproject' using Django 2.0.2. For more information on this file, see https://docs.djangoproject.com/en/2.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'w%_vx7u(io%%rbr_kx+qwhqoz%_6st6s5h!i04#qbzzmz#5@57' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'template_with_demo.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR,"templates")], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'template_with_demo.wsgi.application' # Database # https://docs.djangoproject.com/en/2.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.0/howto/static-files/ STATIC_URL = '/static/'
26.099174
91
0.701077
f3a97299cae29889258d94eadbc27a9ad68f7aa7
2,097
py
Python
benchmarks/logs/microbenchmarks/single_regex/runpyspark.py
rahulyesantharao/tuplex
03733a57ccb5a3770eecaf1c3adcfb520ed82138
[ "Apache-2.0" ]
778
2021-06-30T03:40:43.000Z
2022-03-28T20:40:20.000Z
benchmarks/logs/microbenchmarks/single_regex/runpyspark.py
rahulyesantharao/tuplex
03733a57ccb5a3770eecaf1c3adcfb520ed82138
[ "Apache-2.0" ]
41
2021-07-05T17:55:56.000Z
2022-03-31T15:27:19.000Z
benchmarks/logs/microbenchmarks/single_regex/runpyspark.py
rahulyesantharao/tuplex
03733a57ccb5a3770eecaf1c3adcfb520ed82138
[ "Apache-2.0" ]
39
2021-07-01T02:40:33.000Z
2022-03-30T21:46:55.000Z
import time import argparse import json import os import glob import sys import re parser = argparse.ArgumentParser(description="Apache data cleaning + join") parser.add_argument( "--path", type=str, dest="data_path", default="../../test/resources/2000.01.01.txt", help="path or pattern to log data", ) parser.add_argument( "--ip_blacklist_path", type=str, dest="ip_blacklist_path", default="../../test/resources/bad_ips_all.txt", ) parser.add_argument( "--pipeline_type", type=str, dest="pipeline_type", choices=["spark_regex"], default="spark_regex", help="whether to use the regex clean function or the string strip based one", ) args = parser.parse_args() # save the run configuration output_path = f"spark_output_{args.pipeline_type}" # get the input files perf_paths = [args.data_path] if not os.path.isfile(args.data_path): file_paths = sorted(glob.glob(os.path.join(args.data_path, "*.*.*.txt"))) perf_paths = file_paths if not perf_paths: print("found no log data to process, abort.") sys.exit(1) # import spark startup_time = 0 tstart = time.time() import pyspark from pyspark.sql import SparkSession, Row from pyspark.sql.functions import udf, col, column, regexp_extract from pyspark.sql.types import ( StructType, StructField, IntegerType, StringType, FloatType, BooleanType, ) spark = SparkSession.builder.appName("apacheLogs").getOrCreate() startup_time = time.time() - tstart print("PySpark startup time: {}".format(startup_time)) # open file tstart = time.time() df = ( spark.read.text(perf_paths) .select( regexp_extract("value", r'^(\S+) \S+ \S+ \[[\w:/]+\s[+\-]\d{4}\] "\S+ \S+\s*\S*\s*" \d{3} \S+', 1).alias("ip"), ) ) df.select( ["ip"] ).write.csv( output_path, mode="overwrite", sep=",", header=True, escape='"', nullValue="\u0000", # emptyValue="\u0000", ) job_time = time.time() - tstart print("Pyspark job time: {} s".format(job_time)) print(json.dumps({"startupTime": startup_time, "jobTime": job_time}))
22.548387
119
0.667144
5e0432cc1e648bfb264e721ad9bccd4da94bcf0b
7,546
py
Python
swig/python/scripts/gdal_proximity.py
gajgeospatial/gdal-3.1.0
ac735c543bbdb0bfa6c817920a852e38faf84645
[ "Apache-2.0" ]
null
null
null
swig/python/scripts/gdal_proximity.py
gajgeospatial/gdal-3.1.0
ac735c543bbdb0bfa6c817920a852e38faf84645
[ "Apache-2.0" ]
null
null
null
swig/python/scripts/gdal_proximity.py
gajgeospatial/gdal-3.1.0
ac735c543bbdb0bfa6c817920a852e38faf84645
[ "Apache-2.0" ]
1
2020-07-24T11:11:37.000Z
2020-07-24T11:11:37.000Z
#!/usr/bin/env python3 # ****************************************************************************** # $Id: gdal_proximity.py 428d6fbc987332afb0ba6c7b6913390f7386e864 2020-01-17 22:19:28 +0100 Even Rouault $ # # Name: gdalproximity # Project: GDAL Python Interface # Purpose: Application for computing raster proximity maps. # Author: Frank Warmerdam, warmerdam@pobox.com # # ****************************************************************************** # Copyright (c) 2008, Frank Warmerdam # Copyright (c) 2009-2011, Even Rouault <even dot rouault at spatialys.com> # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # ****************************************************************************** import os.path import sys from osgeo import gdal def Usage(): print(""" gdal_proximity.py srcfile dstfile [-srcband n] [-dstband n] [-of format] [-co name=value]* [-ot Byte/Int16/Int32/Float32/etc] [-values n,n,n] [-distunits PIXEL/GEO] [-maxdist n] [-nodata n] [-use_input_nodata YES/NO] [-fixed-buf-val n] [-q] """) sys.exit(1) def DoesDriverHandleExtension(drv, ext): exts = drv.GetMetadataItem(gdal.DMD_EXTENSIONS) return exts is not None and exts.lower().find(ext.lower()) >= 0 def GetExtension(filename): ext = os.path.splitext(filename)[1] if ext.startswith('.'): ext = ext[1:] return ext def GetOutputDriversFor(filename): drv_list = [] ext = GetExtension(filename) for i in range(gdal.GetDriverCount()): drv = gdal.GetDriver(i) if (drv.GetMetadataItem(gdal.DCAP_CREATE) is not None or drv.GetMetadataItem(gdal.DCAP_CREATECOPY) is not None) and \ drv.GetMetadataItem(gdal.DCAP_RASTER) is not None: if ext and DoesDriverHandleExtension(drv, ext): drv_list.append(drv.ShortName) else: prefix = drv.GetMetadataItem(gdal.DMD_CONNECTION_PREFIX) if prefix is not None and filename.lower().startswith(prefix.lower()): drv_list.append(drv.ShortName) # GMT is registered before netCDF for opening reasons, but we want # netCDF to be used by default for output. if ext.lower() == 'nc' and not drv_list and \ drv_list[0].upper() == 'GMT' and drv_list[1].upper() == 'NETCDF': drv_list = ['NETCDF', 'GMT'] return drv_list def GetOutputDriverFor(filename): drv_list = GetOutputDriversFor(filename) ext = GetExtension(filename) if not drv_list: if not ext: return 'GTiff' else: raise Exception("Cannot guess driver for %s" % filename) elif len(drv_list) > 1: print("Several drivers matching %s extension. Using %s" % (ext if ext else '', drv_list[0])) return drv_list[0] # ============================================================================= # Mainline # ============================================================================= frmt = None creation_options = [] options = [] src_filename = None src_band_n = 1 dst_filename = None dst_band_n = 1 creation_type = 'Float32' quiet_flag = 0 gdal.AllRegister() argv = gdal.GeneralCmdLineProcessor(sys.argv) if argv is None: sys.exit(0) # Parse command line arguments. i = 1 while i < len(argv): arg = argv[i] if arg == '-of' or arg == '-f': i = i + 1 frmt = argv[i] elif arg == '-co': i = i + 1 creation_options.append(argv[i]) elif arg == '-ot': i = i + 1 creation_type = argv[i] elif arg == '-maxdist': i = i + 1 options.append('MAXDIST=' + argv[i]) elif arg == '-values': i = i + 1 options.append('VALUES=' + argv[i]) elif arg == '-distunits': i = i + 1 options.append('DISTUNITS=' + argv[i]) elif arg == '-nodata': i = i + 1 options.append('NODATA=' + argv[i]) elif arg == '-use_input_nodata': i = i + 1 options.append('USE_INPUT_NODATA=' + argv[i]) elif arg == '-fixed-buf-val': i = i + 1 options.append('FIXED_BUF_VAL=' + argv[i]) elif arg == '-srcband': i = i + 1 src_band_n = int(argv[i]) elif arg == '-dstband': i = i + 1 dst_band_n = int(argv[i]) elif arg == '-q' or arg == '-quiet': quiet_flag = 1 elif src_filename is None: src_filename = argv[i] elif dst_filename is None: dst_filename = argv[i] else: Usage() i = i + 1 if src_filename is None or dst_filename is None: Usage() # ============================================================================= # Open source file # ============================================================================= src_ds = gdal.Open(src_filename) if src_ds is None: print('Unable to open %s' % src_filename) sys.exit(1) srcband = src_ds.GetRasterBand(src_band_n) # ============================================================================= # Try opening the destination file as an existing file. # ============================================================================= try: driver = gdal.IdentifyDriver(dst_filename) if driver is not None: dst_ds = gdal.Open(dst_filename, gdal.GA_Update) dstband = dst_ds.GetRasterBand(dst_band_n) else: dst_ds = None except: dst_ds = None # ============================================================================= # Create output file. # ============================================================================= if dst_ds is None: if frmt is None: frmt = GetOutputDriverFor(dst_filename) drv = gdal.GetDriverByName(frmt) dst_ds = drv.Create(dst_filename, src_ds.RasterXSize, src_ds.RasterYSize, 1, gdal.GetDataTypeByName(creation_type), creation_options) dst_ds.SetGeoTransform(src_ds.GetGeoTransform()) dst_ds.SetProjection(src_ds.GetProjectionRef()) dstband = dst_ds.GetRasterBand(1) # ============================================================================= # Invoke algorithm. # ============================================================================= if quiet_flag: prog_func = None else: prog_func = gdal.TermProgress_nocb gdal.ComputeProximity(srcband, dstband, options, callback=prog_func) srcband = None dstband = None src_ds = None dst_ds = None
31.053498
107
0.548635
c49167ddeb8c571692b115df5b8b67b46a44bbde
5,057
py
Python
NETCDF scripts/GIMMS NDVI/gimms_ndvi.py
DangoMelon0701/PyRemote-Sensing
fa12545b89c937baf5f1be39a4b2f4eebf714a9a
[ "MIT" ]
1
2019-12-18T22:01:20.000Z
2019-12-18T22:01:20.000Z
NETCDF scripts/GIMMS NDVI/gimms_ndvi.py
DangoMelon0701/PyRemote-Sensing
fa12545b89c937baf5f1be39a4b2f4eebf714a9a
[ "MIT" ]
null
null
null
NETCDF scripts/GIMMS NDVI/gimms_ndvi.py
DangoMelon0701/PyRemote-Sensing
fa12545b89c937baf5f1be39a4b2f4eebf714a9a
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Tue May 16 01:05:05 2017 @author: gerar """ import matplotlib.pyplot as plt import matplotlib as mpl from osgeo import gdal,osr import numpy as np import os, time, math #%% def plot_data(data,cbar=0,save_img=0,name='image',norm = 0): plot,axs = plt.subplots() if norm == 1: norm = mpl.colors.Normalize(vmin=-0.5, vmax=0.5) cmap = mpl.cm.get_cmap('jet') raw_data = axs.imshow(data,interpolation="gaussian",cmap=cmap,norm=norm) else: raw_data = axs.imshow(data,interpolation="gaussian",cmap='Greens') if cbar == 1: cbar = plot.colorbar(raw_data) if save_img == 1: plt.savefig("{}.png".format(name),dpi=1000,bbox_inches='tight') #%% class Gdal_netcdf(object): def __init__(self,gdal_file): self.gdal_file = gdal.Open(gdal_file) self.sub_ds = self.gdal_file.GetSubDatasets() self.sds_ndvi = gdal.Open(self.sub_ds[0][0]) def get_ndvi(self,subdataset,band_number): data = subdataset.GetRasterBand(band_number) no_data_value = data.GetMetadata()['ndvi_missing_value'] fill_value = self.gdal_file.GetMetadata()['_fill_val'] ndvi_data = data.ReadAsArray().astype(float) ndvi_data[np.where(ndvi_data == float(no_data_value))]=0 ndvi_data[np.where(ndvi_data == float(fill_value))]=np.nan return ndvi_data/10000 def get_pixel_number(self,origin,resolution,coords): return np.abs(np.divide(np.subtract(coords,origin),resolution)) def get_lat_lon_corner(self,origin,resolution,pixels): return np.add(origin,np.multiply(pixels,resolution)) def create_tiff(self,raster_band,raster_out,data,ul_lat,ul_lon,lr_lat,lr_lon): originX = float(raster_band.GetMetadata()['WesternmostLongitude']) originY = float(raster_band.GetMetadata()['NorthernmostLatitude']) cols = raster_band.RasterXSize rows = raster_band.RasterYSize pixelWidth = (max( float(raster_band.GetMetadata()['WesternmostLongitude']), float(raster_band.GetMetadata()['EasternmostLongitude']))-min( float(raster_band.GetMetadata()['WesternmostLongitude']), float(raster_band.GetMetadata()['EasternmostLongitude'])))/cols pixelHeight = -1*(max( float(raster_band.GetMetadata()['SouthernmostLatitude']), float(raster_band.GetMetadata()['NorthernmostLatitude']))-min( float(raster_band.GetMetadata()['SouthernmostLatitude']), float(raster_band.GetMetadata()['NorthernmostLatitude'])))/rows #Encuentro la ubicacion de las coordenadas en numero de pixel #para la caja definida por los lr/ul lat/lon y_ul, x_ul = [int(math.ceil(x)) for x in self.get_pixel_number( (originY,originX),(pixelHeight,pixelWidth), (ul_lat,ul_lon))]#(0,-82.5)) y_lr, x_lr = [int(math.ceil(x)) for x in self.get_pixel_number( (originY,originX),(pixelHeight,pixelWidth), (lr_lat,lr_lon))]#(-20,-68)) map_yUL,map_xUL = self.get_lat_lon_corner( (originY,originX),(pixelHeight,pixelWidth),(y_ul,x_ul)) #Genero el tiff de salida driver = gdal.GetDriverByName('GTiff') outRaster = driver.Create(raster_out, int(x_lr-x_ul), int(y_lr-y_ul), 1, gdal.GDT_Float32) outRaster.SetGeoTransform((map_xUL-pixelWidth/2, pixelWidth, 0, map_yUL-pixelHeight/2, 0, pixelHeight)) outband = outRaster.GetRasterBand(1) outband.WriteArray(data[y_ul:y_lr,x_ul:x_lr]) outRasterSRS = osr.SpatialReference() outRasterSRS.ImportFromEPSG(4326) outRaster.SetProjection(outRasterSRS.ExportToWkt()) outband.FlushCache() def main(self,path,offset=0): for band in range(1,self.sds_ndvi.RasterCount+1): ndvi_data = self.get_ndvi(self.sds_ndvi,band) self.create_tiff(self.sds_ndvi, os.path.join(path,'ndvi_peru_band{}.tif'.format(band+offset*12)), ndvi_data,0,-82.5,-20,-68) def del_variables(self): del self.gdal_file,self.sds_ndvi,self.sub_ds #%% if __name__ == '__main__': tif_dir = os.path.join(os.getcwd(),'TIF_Data') if not os.path.exists(tif_dir): os.mkdir(tif_dir) files_list = [] for files in os.listdir(os.getcwd()): if files.endswith('.nc4'): files_list.append(files) print 'Comenzando el proceso' start_time = time.time() for num,net_cdf in enumerate(files_list): temp = Gdal_netcdf(net_cdf) temp.main(tif_dir,num) temp.del_variables print 'Archivo {} terminado'.format(net_cdf) print 'Proceso terminado en {} segundos\n'.format(round(time.time() - start_time,2)) # de 0 a -20 lat #de -82.5 a -68 lon
44.359649
112
0.627052
47ac7c0c8eb4f65921e63b52a7bee135ed1bc759
2,823
py
Python
classifier/utils.py
bendikbo/SSED
fdd0e74d419687bc8cba65341d7248ca6ccd1a4e
[ "MIT" ]
null
null
null
classifier/utils.py
bendikbo/SSED
fdd0e74d419687bc8cba65341d7248ca6ccd1a4e
[ "MIT" ]
null
null
null
classifier/utils.py
bendikbo/SSED
fdd0e74d419687bc8cba65341d7248ca6ccd1a4e
[ "MIT" ]
null
null
null
import torch import matplotlib.pyplot as plt import numpy as np import pathlib np.random.seed(0) torch.manual_seed(0) # Allow torch/cudnn to optimize/analyze the input/output shape of convolutions # To optimize forward/backward pass. # This will increase model throughput for fixed input shape to the network torch.backends.cudnn.benchmark = True # Cudnn is not deterministic by default. Set this to True if you want # to be sure to reproduce your results torch.backends.cudnn.deterministic = True def to_cuda(elements): """ Transfers every object in elements to GPU VRAM if available. elements can be a object or list/tuple of objects """ if torch.cuda.is_available(): if type(elements) == tuple or type(elements) == list: return [x.cuda() for x in elements] return elements.cuda() return elements def plot_loss(loss_dict: dict, label: str = None, fmt="-"): """ Args: loss_dict: a dictionary where keys are the global step and values are the given loss / accuracy label: a string to use as label in plot legend """ global_steps = list(loss_dict.keys()) loss = list(loss_dict.values()) plt.plot(global_steps, loss, fmt, label=label) def save_checkpoint(state_dict: dict, filepath: pathlib.Path, is_best: bool, max_keep: int = 1): """ Saves state_dict to filepath. Deletes old checkpoints as time passes. If is_best is toggled, saves a checkpoint to best.ckpt """ filepath.parent.mkdir(exist_ok=True, parents=True) list_path = filepath.parent.joinpath("latest_checkpoint") torch.save(state_dict, filepath) if is_best: torch.save(state_dict, filepath.parent.joinpath("best.ckpt")) previous_checkpoints = get_previous_checkpoints(filepath.parent) if filepath.name not in previous_checkpoints: previous_checkpoints = [filepath.name] + previous_checkpoints if len(previous_checkpoints) > max_keep: for ckpt in previous_checkpoints[max_keep:]: path = filepath.parent.joinpath(ckpt) if path.exists(): path.unlink() previous_checkpoints = previous_checkpoints[:max_keep] with open(list_path, 'w') as fp: fp.write("\n".join(previous_checkpoints)) def get_previous_checkpoints(directory: pathlib.Path) -> list: assert directory.is_dir() list_path = directory.joinpath("latest_checkpoint") list_path.touch(exist_ok=True) with open(list_path) as fp: ckpt_list = fp.readlines() return [_.strip() for _ in ckpt_list] def load_best_checkpoint(directory: pathlib.Path): filepath = directory.joinpath("best.ckpt") if not filepath.is_file(): return None return torch.load(directory.joinpath("best.ckpt"))
34.851852
103
0.690755
c38a5eeec4c636853576264d7db7f889387424ba
549
py
Python
src/mailer/backend.py
jaap3/django-mailer
ae0475c580a2217508b5aae2c71394c1936cdf5e
[ "MIT" ]
466
2015-01-04T02:28:54.000Z
2022-03-31T20:23:18.000Z
src/mailer/backend.py
jaap3/django-mailer
ae0475c580a2217508b5aae2c71394c1936cdf5e
[ "MIT" ]
129
2015-01-03T10:43:07.000Z
2022-03-11T17:07:33.000Z
src/mailer/backend.py
jaap3/django-mailer
ae0475c580a2217508b5aae2c71394c1936cdf5e
[ "MIT" ]
144
2015-01-29T20:19:38.000Z
2022-02-13T19:48:37.000Z
from __future__ import unicode_literals from django.conf import settings from django.core.mail.backends.base import BaseEmailBackend from mailer.models import Message class DbBackend(BaseEmailBackend): def send_messages(self, email_messages): # allow for a custom batch size MESSAGES_BATCH_SIZE = getattr(settings, "MAILER_MESSAGES_BATCH_SIZE", None) messages = Message.objects.bulk_create([ Message(email=email) for email in email_messages ], MESSAGES_BATCH_SIZE) return len(messages)
27.45
83
0.741348
21345947a462e640f56e04061a2d75224a1fdabb
5,368
py
Python
no-std-compat-custom/generate.py
peterwilli/nostdcompat_patcher
be5d0f5e17497f96fc67dc3e6d56abd589e1b889
[ "MIT" ]
null
null
null
no-std-compat-custom/generate.py
peterwilli/nostdcompat_patcher
be5d0f5e17497f96fc67dc3e6d56abd589e1b889
[ "MIT" ]
null
null
null
no-std-compat-custom/generate.py
peterwilli/nostdcompat_patcher
be5d0f5e17497f96fc67dc3e6d56abd589e1b889
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 from collections import namedtuple from dataclasses import dataclass, field import argparse import os import re import subprocess import sys Namespace = namedtuple("Namespace", "name module") @dataclass class Module: unstable: bool cfgs: list = field(default_factory=list) # Parse arguments parser = argparse.ArgumentParser( description="Generate a std compatibility module" ) parser.add_argument("--src", help=( "Specify the location of the rust source code. The default is " "`$(rustc --print sysroot)/lib/rustlib/src/rust/library`" )) args = parser.parse_args() if args.src is None: output = subprocess.run(["rustc", "--print", "sysroot"], stdout=subprocess.PIPE, stderr=subprocess.PIPE) args.src = os.path.join(output.stdout.decode("utf-8").strip(), "lib", "rustlib", "src", "rust", "library") # Read files modules_regex = re.compile( r"^(?:\S.*)?pub\s+(?:mod\s+|use\s+(?:[a-zA-Z_][a-zA-Z0-9_]*::)*)" r"([a-zA-Z_][a-zA-Z0-9_]*);", re.MULTILINE ) def modules(crate): """ Return a dictionary of all modules and whether they appear unstable or not. """ root = os.path.join(args.src, crate, "src") lib = os.path.join(root, "lib.rs") with open(lib) as f: contents = f.read() modules = dict() for match in modules_regex.finditer(contents): module = match.group(1) unstable = False path = os.path.join(root, module + ".rs") if not os.path.isfile(path): path = os.path.join(root, module, "mod.rs") try: with open(path, "r") as f: unstable = "#![unstable" in f.read() if unstable: print( f"Module '{module}' from '{crate}' appears unstable", file=sys.stderr ) except OSError as e: print(e, file=sys.stderr) pass modules[module] = Module(unstable) return modules def generate(module, *namespaces): """ Generate code for any module, given its name and which namespaces it appears under and whether it's unstable or not. """ out = f"pub mod {module} {{\n" if module == "prelude": return None for namespace in namespaces: out += " " cfgs = [] if namespace.name != "core": cfgs.append(f"feature = \"{namespace.name}\"") if namespace.module.unstable: cfgs.append("feature = \"unstable\"") cfgs += namespace.module.cfgs if len(cfgs) == 1: out += f"#[cfg({cfgs[0]})] " elif len(cfgs) > 1: out += "#[cfg(all(" + ", ".join(cfgs) + "))] " out += f"pub use __{namespace.name}::{module}::*;\n" if module == "collections": prefix = ( " #[cfg(all(" "feature = \"alloc\", " "feature = \"compat_hash\"" "))] pub use hashbrown::" ) out += ( prefix + "HashMap;\n" + prefix + "HashSet;\n" ) elif module == "sync": prefix = ( " #[cfg(all(" "feature = \"alloc\", " "feature = \"compat_sync\"" "))] pub use spin::" ) out += ( prefix + "Mutex;\n" + prefix + "MutexGuard;\n" + prefix + "Once;\n" + prefix + "RwLock;\n" + prefix + "RwLockReadGuard;\n" + prefix + "RwLockWriteGuard;\n" ) out += "}" return out # Main logic core = modules("core") alloc = modules("alloc") # Module overrides core["lazy"].unstable = True alloc["sync"].cfgs.append("not(target_os = \"none\")") alloc["task"].cfgs.append("not(target_os = \"none\")") generated = {} core_keys = set(core.keys()) alloc_keys = set(alloc.keys()) # Appearing in both for module in core_keys & alloc_keys: generated[module] = generate( module, Namespace("core", core[module]), Namespace("alloc", alloc[module]), ) # Only in core for module in core_keys - alloc_keys: generated[module] = generate( module, Namespace("core", core[module]), ) # Only in alloc for module in alloc_keys - core_keys: generated[module] = generate( module, Namespace("alloc", alloc[module]), ) # Complete module overrides generated["prelude"] = """pub mod prelude { pub mod v1 { // Prelude pub use __core::prelude::v1::*; #[cfg(all(feature = "alloc", feature = "unstable"))] pub use __alloc::prelude::v1::*; #[cfg(all(feature = "alloc", not(feature = "unstable")))] pub use __alloc::{ borrow::ToOwned, boxed::Box, // UNSTABLE: slice::SliceConcatExt, string::String, string::ToString, vec::Vec, }; // Other imports #[cfg(feature = "alloc")] pub use __alloc::{format, vec}; #[cfg(feature = "compat_macros")] pub use crate::{print, println, eprint, eprintln, dbg}; } }""" print("""//! Generated by generate.py located at the repository root //! ./generate.py > src/generated.rs""") for module in sorted(generated.items(), key=lambda i: i[0]): print(module[1])
26.44335
80
0.540611
c947bf6492a8eab627f60283a3d7e4036105e1fc
1,633
py
Python
oscar_ecomenv/Scripts/enhancer.py
PamilerinId/Ecommerce-Boiler
1d706f88c8c828e86309793cb33ea102f385bf2f
[ "Apache-2.0" ]
null
null
null
oscar_ecomenv/Scripts/enhancer.py
PamilerinId/Ecommerce-Boiler
1d706f88c8c828e86309793cb33ea102f385bf2f
[ "Apache-2.0" ]
null
null
null
oscar_ecomenv/Scripts/enhancer.py
PamilerinId/Ecommerce-Boiler
1d706f88c8c828e86309793cb33ea102f385bf2f
[ "Apache-2.0" ]
null
null
null
#!c:\users\pi\documents\batcave\web\ecommerce\oscar_ecomenv\scripts\python.exe # # The Python Imaging Library # $Id$ # # this demo script creates four windows containing an image and a slider. # drag the slider to modify the image. # import sys if sys.version_info[0] > 2: import tkinter else: import Tkinter as tkinter from PIL import Image, ImageTk, ImageEnhance # # enhancer widget class Enhance(tkinter.Frame): def __init__(self, master, image, name, enhancer, lo, hi): tkinter.Frame.__init__(self, master) # set up the image self.tkim = ImageTk.PhotoImage(image.mode, image.size) self.enhancer = enhancer(image) self.update("1.0") # normalize # image window tkinter.Label(self, image=self.tkim).pack() # scale s = tkinter.Scale(self, label=name, orient=tkinter.HORIZONTAL, from_=lo, to=hi, resolution=0.01, command=self.update) s.set(self.value) s.pack() def update(self, value): self.value = float(value) self.tkim.paste(self.enhancer.enhance(self.value)) # # main if len(sys.argv) != 2: print("Usage: enhancer file") sys.exit(1) root = tkinter.Tk() im = Image.open(sys.argv[1]) im.thumbnail((200, 200)) Enhance(root, im, "Color", ImageEnhance.Color, 0.0, 4.0).pack() Enhance(tkinter.Toplevel(), im, "Sharpness", ImageEnhance.Sharpness, -2.0, 2.0).pack() Enhance(tkinter.Toplevel(), im, "Brightness", ImageEnhance.Brightness, -1.0, 3.0).pack() Enhance(tkinter.Toplevel(), im, "Contrast", ImageEnhance.Contrast, -1.0, 3.0).pack() root.mainloop()
25.123077
88
0.652786
97161da1ce2a3741ff22beffdfffdf165f1c21ae
8,346
py
Python
test/test_request_params.py
eduramirezh/pyinaturalist
e5da7ced7fae31f27310868bdb2d349bdff8e0d4
[ "MIT" ]
null
null
null
test/test_request_params.py
eduramirezh/pyinaturalist
e5da7ced7fae31f27310868bdb2d349bdff8e0d4
[ "MIT" ]
null
null
null
test/test_request_params.py
eduramirezh/pyinaturalist
e5da7ced7fae31f27310868bdb2d349bdff8e0d4
[ "MIT" ]
null
null
null
import pytest from datetime import date, datetime from dateutil.tz import gettz from unittest.mock import patch from pyinaturalist.request_params import ( convert_bool_params, convert_datetime_params, convert_list_params, convert_observation_fields, convert_pagination_params, get_interval_ranges, preprocess_request_body, preprocess_request_params, strip_empty_values, validate_ids, validate_multiple_choice_param, validate_multiple_choice_params, ) TEST_PARAMS = { 'is_active': False, 'only_id': 'true', 'preferred_place_id': [1, 2], 'rank': ['phylum', 'class'], 'q': '', 'locale': None, 'parent_id': 1, 'observation_fields': {1: 'value'}, } def test_convert_bool_params(): params = convert_bool_params(TEST_PARAMS) assert params['is_active'] == 'false' assert params['only_id'] == 'true' # Test some recognized date(time) formats, with and without TZ info, in date and non-date params @pytest.mark.parametrize( 'param, value, expected', [ ('created_d1', '19951231T235959', '1995-12-31T23:59:59-08:00'), ('created_d2', '2008-08-08 08:08:08Z', '2008-08-08T08:08:08+00:00'), ('created_on', '2010-10-10 10:10:10-05:00', '2010-10-10T10:10:10-05:00'), ('created_on', 'Jan 1 2000', '2000-01-01T00:00:00-08:00'), ('d1', '19970716', '1997-07-16T00:00:00-07:00'), ('q', date(1954, 2, 5), '1954-02-05'), ('q', datetime(1954, 2, 5), '1954-02-05T00:00:00-08:00'), ('q', 'not a datetime', 'not a datetime'), ], ) @patch('pyinaturalist.converters.tzlocal', return_value=gettz('US/Pacific')) def test_convert_datetime_params(tzlocal, param, value, expected): converted = convert_datetime_params({param: value}) assert converted[param] == expected # Test both int and string lists def test_convert_list_params(): params = convert_list_params(TEST_PARAMS) assert params['preferred_place_id'] == '1,2' assert params['rank'] == 'phylum,class' def test_convert_observation_fields(): params = convert_observation_fields(TEST_PARAMS) assert params['observation_field_values_attributes'] == [ {'observation_field_id': 1, 'value': 'value'} ] def test_convert_pagination_params(): params = convert_pagination_params({'per_page': 100}) assert params['per_page'] == 100 params = convert_pagination_params({'per_page': 100, 'count_only': True}) assert params['per_page'] == 0 assert 'count_only' not in params params = convert_pagination_params({'per_page': 100, 'count_only': False}) assert params['per_page'] == 100 assert 'count_only' not in params def test_get_interval_ranges__monthly(): expected_ranges = [ (datetime(2020, 1, 1, 0, 0), datetime(2020, 1, 31, 0, 0)), (datetime(2020, 2, 1, 0, 0), datetime(2020, 2, 29, 0, 0)), (datetime(2020, 3, 1, 0, 0), datetime(2020, 3, 31, 0, 0)), (datetime(2020, 4, 1, 0, 0), datetime(2020, 4, 30, 0, 0)), (datetime(2020, 5, 1, 0, 0), datetime(2020, 5, 31, 0, 0)), (datetime(2020, 6, 1, 0, 0), datetime(2020, 6, 30, 0, 0)), (datetime(2020, 7, 1, 0, 0), datetime(2020, 7, 31, 0, 0)), (datetime(2020, 8, 1, 0, 0), datetime(2020, 8, 31, 0, 0)), (datetime(2020, 9, 1, 0, 0), datetime(2020, 9, 30, 0, 0)), (datetime(2020, 10, 1, 0, 0), datetime(2020, 10, 31, 0, 0)), (datetime(2020, 11, 1, 0, 0), datetime(2020, 11, 30, 0, 0)), (datetime(2020, 12, 1, 0, 0), datetime(2020, 12, 31, 0, 0)), ] ranges = get_interval_ranges(datetime(2020, 1, 1), datetime(2020, 12, 31), 'monthly') assert ranges == expected_ranges def test_get_interval_ranges__yearly(): expected_ranges = [ (datetime(2010, 1, 1, 0, 0), datetime(2010, 12, 31, 0, 0)), (datetime(2011, 1, 1, 0, 0), datetime(2011, 12, 31, 0, 0)), (datetime(2012, 1, 1, 0, 0), datetime(2012, 12, 31, 0, 0)), (datetime(2013, 1, 1, 0, 0), datetime(2013, 12, 31, 0, 0)), (datetime(2014, 1, 1, 0, 0), datetime(2014, 12, 31, 0, 0)), (datetime(2015, 1, 1, 0, 0), datetime(2015, 12, 31, 0, 0)), (datetime(2016, 1, 1, 0, 0), datetime(2016, 12, 31, 0, 0)), (datetime(2017, 1, 1, 0, 0), datetime(2017, 12, 31, 0, 0)), (datetime(2018, 1, 1, 0, 0), datetime(2018, 12, 31, 0, 0)), (datetime(2019, 1, 1, 0, 0), datetime(2019, 12, 31, 0, 0)), (datetime(2020, 1, 1, 0, 0), datetime(2020, 12, 31, 0, 0)), ] ranges = get_interval_ranges(datetime(2010, 1, 1), datetime(2020, 1, 1), 'yearly') assert ranges == expected_ranges def test_get_interval_ranges__invalid(): with pytest.raises(ValueError): get_interval_ranges(datetime(2020, 1, 1), datetime(2020, 12, 31), 'daily') def test_strip_empty_params(): params = strip_empty_values(TEST_PARAMS) assert len(params) == 6 assert 'q' not in params and 'locale' not in params assert 'is_active' in params and 'only_id' in params @pytest.mark.parametrize( 'value, expected', [ ('1', '1'), (1, '1'), ('1,2,3', '1,2,3'), ([1, 2, 3], '1,2,3'), ([1e5, 2e5], '100000,200000'), ], ) def test_validate_ids(value, expected): assert validate_ids(value) == expected def test_validate_ids__invalid(): with pytest.raises(ValueError): validate_ids('not a number') # This is just here so that tests will fail if one of the conversion steps is removed @patch('pyinaturalist.request_params.convert_bool_params') @patch('pyinaturalist.request_params.convert_datetime_params') @patch('pyinaturalist.request_params.convert_list_params') @patch('pyinaturalist.request_params.strip_empty_values') def test_preprocess_request_params(mock_bool, mock_datetime, mock_list, mock_strip): preprocess_request_params({'id': 1}) assert all([mock_bool.called, mock_datetime.called, mock_list.called, mock_strip.called]) @patch('pyinaturalist.request_params.convert_bool_params') @patch('pyinaturalist.request_params.convert_datetime_params') @patch('pyinaturalist.request_params.convert_list_params') @patch('pyinaturalist.request_params.strip_empty_values') def test_preprocess_request_body(mock_bool, mock_datetime, mock_list, mock_strip): preprocess_request_body({'id': 1}) assert all([mock_bool.called, mock_datetime.called, mock_list.called, mock_strip.called]) def test_validate_multiple_choice_param(): params = { 'param1': 'valid_str', 'param2': 'invalid_str', } choices = ['str1', 'str2', 'valid_str'] validated_params = validate_multiple_choice_param(params, 'param1', choices) assert params == validated_params with pytest.raises(ValueError): validate_multiple_choice_param(params, 'param2', choices) @pytest.mark.parametrize( 'params', [ {'csi': 'LC'}, {'csi': ['EW', 'EX']}, {'geoprivacy': 'open'}, {'iconic_taxa': 'Animalia'}, {'identifications': 'most_agree'}, {'license': 'CC-BY-NC'}, {'rank': 'order'}, {'quality_grade': 'research'}, {'search_on': 'tags'}, {'geoprivacy': ['open', 'obscured']}, {'geoprivacy': 'open', 'iconic_taxa': 'Animalia', 'license': 'CC-BY-NC'}, ], ) def test_validate_multiple_choice_params(params): # If valid, no exception should not be raised validate_multiple_choice_params(params) # If invalid, an exception should be raised with pytest.raises(ValueError): validate_multiple_choice_params({k: 'Invalid_value' for k in params}) # A valid + invalid value should also raise an exception def append_invalid_value(value): return [*value, 'Invalid_value'] if isinstance(value, list) else [value, 'Invalid_value'] with pytest.raises(ValueError): validate_multiple_choice_params({k: append_invalid_value(v) for k, v in params.items()}) @pytest.mark.parametrize( 'params, expected_value', [ ({'identifications': 'most agree'}, 'most_agree'), ({'interval': 'month of year'}, 'month_of_year'), ], ) def test_validate_multiple_choice_params__normalization(params, expected_value): validated_params = validate_multiple_choice_params(params) value = next(iter(validated_params.values())) assert value == expected_value
36.445415
97
0.65121
25d5b6f9f09e5535afb21fa46a7b3ba4b3001bad
3,781
py
Python
contrib/macdeploy/custom_dsstore.py
prapun77/FiatCoin
06244ab8fdf4f2d7ba76067403c554892034ca7b
[ "MIT" ]
null
null
null
contrib/macdeploy/custom_dsstore.py
prapun77/FiatCoin
06244ab8fdf4f2d7ba76067403c554892034ca7b
[ "MIT" ]
null
null
null
contrib/macdeploy/custom_dsstore.py
prapun77/FiatCoin
06244ab8fdf4f2d7ba76067403c554892034ca7b
[ "MIT" ]
null
null
null
#!/usr/bin/env python # Copyright (c) 2013-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. from __future__ import division,print_function,unicode_literals import biplist from ds_store import DSStore from mac_alias import Alias import sys output_file = sys.argv[1] package_name_ns = sys.argv[2] ds = DSStore.open(output_file, 'w+') ds['.']['bwsp'] = { 'ShowStatusBar': False, 'WindowBounds': b'{{300, 280}, {500, 343}}', 'ContainerShowSidebar': False, 'SidebarWidth': 0, 'ShowTabView': False, 'PreviewPaneVisibility': False, 'ShowToolbar': False, 'ShowSidebar': False, 'ShowPathbar': True } icvp = { 'gridOffsetX': 0.0, 'textSize': 12.0, 'viewOptionsVersion': 1, 'backgroundImageAlias': b'\x00\x00\x00\x00\x02\x1e\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd1\x94\\\xb0H+\x00\x05\x00\x00\x00\x98\x0fbackground.tiff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x99\xd19\xb0\xf8\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\x00\x00\r\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0b.background\x00\x00\x10\x00\x08\x00\x00\xd1\x94\\\xb0\x00\x00\x00\x11\x00\x08\x00\x00\xd19\xb0\xf8\x00\x00\x00\x01\x00\x04\x00\x00\x00\x98\x00\x0e\x00 \x00\x0f\x00b\x00a\x00c\x00k\x00g\x00r\x00o\x00u\x00n\x00d\x00.\x00t\x00i\x00f\x00f\x00\x0f\x00\x02\x00\x00\x00\x12\x00\x1c/.background/background.tiff\x00\x14\x01\x06\x00\x00\x00\x00\x01\x06\x00\x02\x00\x00\x0cMacintosh HD\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xce\x97\xab\xc3H+\x00\x00\x01\x88[\x88\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02u\xab\x8d\xd1\x94\\\xb0devrddsk\xff\xff\xff\xff\x00\x00\t \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x07bitcoin\x00\x00\x10\x00\x08\x00\x00\xce\x97\xab\xc3\x00\x00\x00\x11\x00\x08\x00\x00\xd1\x94\\\xb0\x00\x00\x00\x01\x00\x14\x01\x88[\x88\x00\x16\xa9\t\x00\x08\xfaR\x00\x08\xfaQ\x00\x02d\x8e\x00\x0e\x00\x02\x00\x00\x00\x0f\x00\x1a\x00\x0c\x00M\x00a\x00c\x00i\x00n\x00t\x00o\x00s\x00h\x00 \x00H\x00D\x00\x13\x00\x01/\x00\x00\x15\x00\x02\x00\x14\xff\xff\x00\x00\xff\xff\x00\x00', 'backgroundColorBlue': 1.0, 'iconSize': 96.0, 'backgroundColorGreen': 1.0, 'arrangeBy': 'none', 'showIconPreview': True, 'gridSpacing': 100.0, 'gridOffsetY': 0.0, 'showItemInfo': False, 'labelOnBottom': True, 'backgroundType': 2, 'backgroundColorRed': 1.0 } alias = Alias.from_bytes(icvp['backgroundImageAlias']) alias.volume.name = package_name_ns alias.volume.posix_path = '/Volumes/' + package_name_ns alias.volume.disk_image_alias.target.filename = package_name_ns + '.temp.dmg' alias.volume.disk_image_alias.target.carbon_path = 'Macintosh HD:Users:\x00ateccoinuser:\x00Documents:\x00ateccoin:\x00ateccoin:\x00' + package_name_ns + '.temp.dmg' alias.volume.disk_image_alias.target.posix_path = 'Users/ateccoinuser/Documents/ateccoin/ateccoin/' + package_name_ns + '.temp.dmg' alias.target.carbon_path = package_name_ns + ':.background:\x00background.tiff' icvp['backgroundImageAlias'] = biplist.Data(alias.to_bytes()) ds['.']['icvp'] = icvp ds['.']['vSrn'] = ('long', 1) ds['Applications']['Iloc'] = (370, 156) ds['ateccoin-Qt.app']['Iloc'] = (128, 156) ds.flush() ds.close()
61.983607
1,817
0.72785
253bb298f41ee630c67aa58ffba2d92a3373ce2d
33,914
py
Python
wagtail/search/tests/test_elasticsearch5_backend.py
wgarlock/wagtail
1bfc13952f5ffc0e40a4435d15a5aefd70984430
[ "BSD-3-Clause" ]
2
2021-03-18T21:41:05.000Z
2021-03-18T21:41:08.000Z
wagtail/search/tests/test_elasticsearch5_backend.py
wgarlock/wagtail
1bfc13952f5ffc0e40a4435d15a5aefd70984430
[ "BSD-3-Clause" ]
1
2021-03-06T11:44:33.000Z
2021-11-26T16:51:19.000Z
wagtail/search/tests/test_elasticsearch5_backend.py
wgarlock/wagtail
1bfc13952f5ffc0e40a4435d15a5aefd70984430
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- import datetime import json from unittest import mock from django.db.models import Q from django.test import TestCase from elasticsearch.serializer import JSONSerializer from wagtail.search.backends.elasticsearch5 import Elasticsearch5SearchBackend from wagtail.search.query import MATCH_ALL, Phrase from wagtail.tests.search import models from .elasticsearch_common_tests import ElasticsearchCommonSearchBackendTests class TestElasticsearch5SearchBackend(ElasticsearchCommonSearchBackendTests, TestCase): backend_path = 'wagtail.search.backends.elasticsearch5' class TestElasticsearch5SearchQuery(TestCase): def assertDictEqual(self, a, b): default = JSONSerializer().default self.assertEqual( json.dumps(a, sort_keys=True, default=default), json.dumps(b, sort_keys=True, default=default) ) query_compiler_class = Elasticsearch5SearchBackend.query_compiler_class def test_simple(self): # Create a query query_compiler = self.query_compiler_class(models.Book.objects.all(), "Hello") # Check it expected_result = {'bool': { 'filter': {'match': {'content_type': 'searchtests.Book'}}, 'must': {'multi_match': {'query': 'Hello', 'fields': ['_all', '_partials']}} }} self.assertDictEqual(query_compiler.get_query(), expected_result) def test_match_all(self): # Create a query query_compiler = self.query_compiler_class(models.Book.objects.all(), MATCH_ALL) # Check it expected_result = {'bool': { 'filter': {'match': {'content_type': 'searchtests.Book'}}, 'must': {'match_all': {}} }} self.assertDictEqual(query_compiler.get_query(), expected_result) def test_and_operator(self): # Create a query query_compiler = self.query_compiler_class(models.Book.objects.all(), "Hello", operator='and') # Check it expected_result = {'bool': { 'filter': {'match': {'content_type': 'searchtests.Book'}}, 'must': {'multi_match': {'query': 'Hello', 'fields': ['_all', '_partials'], 'operator': 'and'}} }} self.assertDictEqual(query_compiler.get_query(), expected_result) def test_filter(self): # Create a query query_compiler = self.query_compiler_class(models.Book.objects.filter(title="Test"), "Hello") # Check it expected_result = {'bool': {'filter': [ {'match': {'content_type': 'searchtests.Book'}}, {'term': {'title_filter': 'Test'}} ], 'must': {'multi_match': {'query': 'Hello', 'fields': ['_all', '_partials']}}}} self.assertDictEqual(query_compiler.get_query(), expected_result) def test_and_filter(self): # Create a query query_compiler = self.query_compiler_class(models.Book.objects.filter(title="Test", publication_date=datetime.date(2017, 10, 18)), "Hello") # Check it expected_result = {'bool': {'filter': [ {'match': {'content_type': 'searchtests.Book'}}, {'bool': {'must': [{'term': {'publication_date_filter': '2017-10-18'}}, {'term': {'title_filter': 'Test'}}]}} ], 'must': {'multi_match': {'query': 'Hello', 'fields': ['_all', '_partials']}}}} # Make sure field filters are sorted (as they can be in any order which may cause false positives) query = query_compiler.get_query() field_filters = query['bool']['filter'][1]['bool']['must'] field_filters[:] = sorted(field_filters, key=lambda f: list(f['term'].keys())[0]) self.assertDictEqual(query, expected_result) def test_or_filter(self): # Create a query query_compiler = self.query_compiler_class(models.Book.objects.filter(Q(title="Test") | Q(publication_date=datetime.date(2017, 10, 18))), "Hello") # Make sure field filters are sorted (as they can be in any order which may cause false positives) query = query_compiler.get_query() field_filters = query['bool']['filter'][1]['bool']['should'] field_filters[:] = sorted(field_filters, key=lambda f: list(f['term'].keys())[0]) # Check it expected_result = {'bool': {'filter': [ {'match': {'content_type': 'searchtests.Book'}}, {'bool': {'should': [{'term': {'publication_date_filter': '2017-10-18'}}, {'term': {'title_filter': 'Test'}}]}} ], 'must': {'multi_match': {'query': 'Hello', 'fields': ['_all', '_partials']}}}} self.assertDictEqual(query, expected_result) def test_negated_filter(self): # Create a query query_compiler = self.query_compiler_class(models.Book.objects.exclude(publication_date=datetime.date(2017, 10, 18)), "Hello") # Check it expected_result = {'bool': {'filter': [ {'match': {'content_type': 'searchtests.Book'}}, {'bool': {'mustNot': {'term': {'publication_date_filter': '2017-10-18'}}}} ], 'must': {'multi_match': {'query': 'Hello', 'fields': ['_all', '_partials']}}}} self.assertDictEqual(query_compiler.get_query(), expected_result) def test_fields(self): # Create a query query_compiler = self.query_compiler_class(models.Book.objects.all(), "Hello", fields=['title']) # Check it expected_result = {'bool': { 'filter': {'match': {'content_type': 'searchtests.Book'}}, 'must': {'match': {'title': {'query': 'Hello'}}} }} self.assertDictEqual(query_compiler.get_query(), expected_result) def test_fields_with_and_operator(self): # Create a query query_compiler = self.query_compiler_class(models.Book.objects.all(), "Hello", fields=['title'], operator='and') # Check it expected_result = {'bool': { 'filter': {'match': {'content_type': 'searchtests.Book'}}, 'must': {'match': {'title': {'query': 'Hello', 'operator': 'and'}}} }} self.assertDictEqual(query_compiler.get_query(), expected_result) def test_multiple_fields(self): # Create a query query_compiler = self.query_compiler_class(models.Book.objects.all(), "Hello", fields=['title', 'content']) # Check it expected_result = {'bool': { 'filter': {'match': {'content_type': 'searchtests.Book'}}, 'must': {'multi_match': {'fields': ['title', 'content'], 'query': 'Hello'}} }} self.assertDictEqual(query_compiler.get_query(), expected_result) def test_multiple_fields_with_and_operator(self): # Create a query query_compiler = self.query_compiler_class( models.Book.objects.all(), "Hello", fields=['title', 'content'], operator='and' ) # Check it expected_result = {'bool': { 'filter': {'match': {'content_type': 'searchtests.Book'}}, 'must': {'multi_match': {'fields': ['title', 'content'], 'query': 'Hello', 'operator': 'and'}} }} self.assertDictEqual(query_compiler.get_query(), expected_result) def test_exact_lookup(self): # Create a query query_compiler = self.query_compiler_class(models.Book.objects.filter(title__exact="Test"), "Hello") # Check it expected_result = {'bool': {'filter': [ {'match': {'content_type': 'searchtests.Book'}}, {'term': {'title_filter': 'Test'}} ], 'must': {'multi_match': {'query': 'Hello', 'fields': ['_all', '_partials']}}}} self.assertDictEqual(query_compiler.get_query(), expected_result) def test_none_lookup(self): # Create a query query_compiler = self.query_compiler_class(models.Book.objects.filter(title=None), "Hello") # Check it expected_result = {'bool': {'filter': [ {'match': {'content_type': 'searchtests.Book'}}, {'bool': {'mustNot': {'exists': {'field': 'title_filter'}}}} ], 'must': {'multi_match': {'query': 'Hello', 'fields': ['_all', '_partials']}}}} self.assertDictEqual(query_compiler.get_query(), expected_result) def test_isnull_true_lookup(self): # Create a query query_compiler = self.query_compiler_class(models.Book.objects.filter(title__isnull=True), "Hello") # Check it expected_result = {'bool': {'filter': [ {'match': {'content_type': 'searchtests.Book'}}, {'bool': {'mustNot': {'exists': {'field': 'title_filter'}}}} ], 'must': {'multi_match': {'query': 'Hello', 'fields': ['_all', '_partials']}}}} self.assertDictEqual(query_compiler.get_query(), expected_result) def test_isnull_false_lookup(self): # Create a query query_compiler = self.query_compiler_class(models.Book.objects.filter(title__isnull=False), "Hello") # Check it expected_result = {'bool': {'filter': [ {'match': {'content_type': 'searchtests.Book'}}, {'exists': {'field': 'title_filter'}} ], 'must': {'multi_match': {'query': 'Hello', 'fields': ['_all', '_partials']}}}} self.assertDictEqual(query_compiler.get_query(), expected_result) def test_startswith_lookup(self): # Create a query query_compiler = self.query_compiler_class(models.Book.objects.filter(title__startswith="Test"), "Hello") # Check it expected_result = {'bool': {'filter': [ {'match': {'content_type': 'searchtests.Book'}}, {'prefix': {'title_filter': 'Test'}} ], 'must': {'multi_match': {'query': 'Hello', 'fields': ['_all', '_partials']}}}} self.assertDictEqual(query_compiler.get_query(), expected_result) def test_gt_lookup(self): # This also tests conversion of python dates to strings # Create a query query_compiler = self.query_compiler_class( models.Book.objects.filter(publication_date__gt=datetime.datetime(2014, 4, 29)), "Hello" ) # Check it expected_result = {'bool': {'filter': [ {'match': {'content_type': 'searchtests.Book'}}, {'range': {'publication_date_filter': {'gt': '2014-04-29'}}} ], 'must': {'multi_match': {'query': 'Hello', 'fields': ['_all', '_partials']}}}} self.assertDictEqual(query_compiler.get_query(), expected_result) def test_lt_lookup(self): # Create a query query_compiler = self.query_compiler_class( models.Book.objects.filter(publication_date__lt=datetime.datetime(2014, 4, 29)), "Hello" ) # Check it expected_result = {'bool': {'filter': [ {'match': {'content_type': 'searchtests.Book'}}, {'range': {'publication_date_filter': {'lt': '2014-04-29'}}} ], 'must': {'multi_match': {'query': 'Hello', 'fields': ['_all', '_partials']}}}} self.assertDictEqual(query_compiler.get_query(), expected_result) def test_gte_lookup(self): # Create a query query_compiler = self.query_compiler_class( models.Book.objects.filter(publication_date__gte=datetime.datetime(2014, 4, 29)), "Hello" ) # Check it expected_result = {'bool': {'filter': [ {'match': {'content_type': 'searchtests.Book'}}, {'range': {'publication_date_filter': {'gte': '2014-04-29'}}} ], 'must': {'multi_match': {'query': 'Hello', 'fields': ['_all', '_partials']}}}} self.assertDictEqual(query_compiler.get_query(), expected_result) def test_lte_lookup(self): # Create a query query_compiler = self.query_compiler_class( models.Book.objects.filter(publication_date__lte=datetime.datetime(2014, 4, 29)), "Hello" ) # Check it expected_result = {'bool': {'filter': [ {'match': {'content_type': 'searchtests.Book'}}, {'range': {'publication_date_filter': {'lte': '2014-04-29'}}} ], 'must': {'multi_match': {'query': 'Hello', 'fields': ['_all', '_partials']}}}} self.assertDictEqual(query_compiler.get_query(), expected_result) def test_range_lookup(self): start_date = datetime.datetime(2014, 4, 29) end_date = datetime.datetime(2014, 8, 19) # Create a query query_compiler = self.query_compiler_class( models.Book.objects.filter(publication_date__range=(start_date, end_date)), "Hello" ) # Check it expected_result = {'bool': {'filter': [ {'match': {'content_type': 'searchtests.Book'}}, {'range': {'publication_date_filter': {'gte': '2014-04-29', 'lte': '2014-08-19'}}} ], 'must': {'multi_match': {'query': 'Hello', 'fields': ['_all', '_partials']}}}} self.assertDictEqual(query_compiler.get_query(), expected_result) def test_custom_ordering(self): # Create a query query_compiler = self.query_compiler_class( models.Book.objects.order_by('publication_date'), "Hello", order_by_relevance=False ) # Check it expected_result = [{'publication_date_filter': 'asc'}] self.assertDictEqual(query_compiler.get_sort(), expected_result) def test_custom_ordering_reversed(self): # Create a query query_compiler = self.query_compiler_class( models.Book.objects.order_by('-publication_date'), "Hello", order_by_relevance=False ) # Check it expected_result = [{'publication_date_filter': 'desc'}] self.assertDictEqual(query_compiler.get_sort(), expected_result) def test_custom_ordering_multiple(self): # Create a query query_compiler = self.query_compiler_class( models.Book.objects.order_by('publication_date', 'number_of_pages'), "Hello", order_by_relevance=False ) # Check it expected_result = [{'publication_date_filter': 'asc'}, {'number_of_pages_filter': 'asc'}] self.assertDictEqual(query_compiler.get_sort(), expected_result) def test_phrase_query(self): # Create a query query_compiler = self.query_compiler_class(models.Book.objects.all(), Phrase("Hello world")) # Check it expected_result = {'multi_match': {'fields': ['_all', '_partials'], 'query': "Hello world", 'type': 'phrase'}} self.assertDictEqual(query_compiler.get_inner_query(), expected_result) def test_phrase_query_single_field(self): # Create a query query_compiler = self.query_compiler_class(models.Book.objects.all(), Phrase("Hello world"), fields=['title']) # Check it expected_result = {'match_phrase': {'title': "Hello world"}} self.assertDictEqual(query_compiler.get_inner_query(), expected_result) class TestElasticsearch5SearchResults(TestCase): fixtures = ['search'] def assertDictEqual(self, a, b): default = JSONSerializer().default self.assertEqual( json.dumps(a, sort_keys=True, default=default), json.dumps ) def get_results(self): backend = Elasticsearch5SearchBackend({}) query_compiler = mock.MagicMock() query_compiler.queryset = models.Book.objects.all() query_compiler.get_query.return_value = 'QUERY' query_compiler.get_sort.return_value = None return backend.results_class(backend, query_compiler) def construct_search_response(self, results): return { '_shards': {'failed': 0, 'successful': 5, 'total': 5}, 'hits': { 'hits': [ { '_id': 'searchtests_book:' + str(result), '_index': 'wagtail', '_score': 1, '_type': 'searchtests_book', 'fields': { 'pk': [str(result)], } } for result in results ], 'max_score': 1, 'total': len(results) }, 'timed_out': False, 'took': 2 } @mock.patch('elasticsearch.Elasticsearch.search') def test_basic_search(self, search): search.return_value = self.construct_search_response([]) results = self.get_results() list(results) # Performs search search.assert_any_call( body={'query': 'QUERY'}, _source=False, stored_fields='pk', index='wagtail__searchtests_book', scroll='2m', size=100 ) @mock.patch('elasticsearch.Elasticsearch.search') def test_get_single_item(self, search): # Need to return something to prevent index error search.return_value = self.construct_search_response([1]) results = self.get_results() results[10] # Performs search search.assert_any_call( from_=10, body={'query': 'QUERY'}, _source=False, stored_fields='pk', index='wagtail__searchtests_book', size=1 ) @mock.patch('elasticsearch.Elasticsearch.search') def test_slice_results(self, search): search.return_value = self.construct_search_response([]) results = self.get_results()[1:4] list(results) # Performs search search.assert_any_call( from_=1, body={'query': 'QUERY'}, _source=False, stored_fields='pk', index='wagtail__searchtests_book', size=3 ) @mock.patch('elasticsearch.Elasticsearch.search') def test_slice_results_multiple_times(self, search): search.return_value = self.construct_search_response([]) results = self.get_results()[10:][:10] list(results) # Performs search search.assert_any_call( from_=10, body={'query': 'QUERY'}, _source=False, stored_fields='pk', index='wagtail__searchtests_book', size=10 ) @mock.patch('elasticsearch.Elasticsearch.search') def test_slice_results_and_get_item(self, search): # Need to return something to prevent index error search.return_value = self.construct_search_response([1]) results = self.get_results()[10:] results[10] # Performs search search.assert_any_call( from_=20, body={'query': 'QUERY'}, _source=False, stored_fields='pk', index='wagtail__searchtests_book', size=1 ) @mock.patch('elasticsearch.Elasticsearch.search') def test_result_returned(self, search): search.return_value = self.construct_search_response([1]) results = self.get_results() self.assertEqual(results[0], models.Book.objects.get(id=1)) @mock.patch('elasticsearch.Elasticsearch.search') def test_len_1(self, search): search.return_value = self.construct_search_response([1]) results = self.get_results() self.assertEqual(len(results), 1) @mock.patch('elasticsearch.Elasticsearch.search') def test_len_2(self, search): search.return_value = self.construct_search_response([1, 2]) results = self.get_results() self.assertEqual(len(results), 2) @mock.patch('elasticsearch.Elasticsearch.search') def test_duplicate_results(self, search): # Duplicates will not be removed search.return_value = self.construct_search_response([1, 1]) results = list(self.get_results()) # Must cast to list so we only create one query self.assertEqual(len(results), 2) self.assertEqual(results[0], models.Book.objects.get(id=1)) self.assertEqual(results[1], models.Book.objects.get(id=1)) @mock.patch('elasticsearch.Elasticsearch.search') def test_result_order(self, search): search.return_value = self.construct_search_response( [1, 2, 3] ) results = list(self.get_results()) # Must cast to list so we only create one query self.assertEqual(results[0], models.Book.objects.get(id=1)) self.assertEqual(results[1], models.Book.objects.get(id=2)) self.assertEqual(results[2], models.Book.objects.get(id=3)) @mock.patch('elasticsearch.Elasticsearch.search') def test_result_order_2(self, search): search.return_value = self.construct_search_response( [3, 2, 1] ) results = list(self.get_results()) # Must cast to list so we only create one query self.assertEqual(results[0], models.Book.objects.get(id=3)) self.assertEqual(results[1], models.Book.objects.get(id=2)) self.assertEqual(results[2], models.Book.objects.get(id=1)) class TestElasticsearch5Mapping(TestCase): fixtures = ['search'] def assertDictEqual(self, a, b): default = JSONSerializer().default self.assertEqual( json.dumps(a, sort_keys=True, default=default), json.dumps(b, sort_keys=True, default=default) ) def setUp(self): # Create ES mapping self.es_mapping = Elasticsearch5SearchBackend.mapping_class(models.Book) # Create ES document self.obj = models.Book.objects.get(id=4) def test_get_document_type(self): self.assertEqual(self.es_mapping.get_document_type(), 'searchtests_book') def test_get_mapping(self): # Build mapping mapping = self.es_mapping.get_mapping() # Check expected_result = { 'searchtests_book': { 'properties': { 'pk': {'type': 'keyword', 'store': True, 'include_in_all': False}, 'content_type': {'type': 'keyword', 'include_in_all': False}, '_partials': {'analyzer': 'edgengram_analyzer', 'search_analyzer': 'standard', 'include_in_all': False, 'type': 'text'}, 'title': {'type': 'text', 'boost': 2.0, 'include_in_all': True, 'analyzer': 'edgengram_analyzer', 'search_analyzer': 'standard'}, 'title_edgengrams': {'type': 'text', 'include_in_all': False, 'analyzer': 'edgengram_analyzer', 'search_analyzer': 'standard'}, 'title_filter': {'type': 'keyword', 'include_in_all': False}, 'authors': { 'type': 'nested', 'properties': { 'name': {'type': 'text', 'include_in_all': True}, 'name_edgengrams': {'analyzer': 'edgengram_analyzer', 'include_in_all': False, 'search_analyzer': 'standard', 'type': 'text'}, 'date_of_birth_filter': {'type': 'date', 'include_in_all': False}, }, }, 'authors_filter': {'type': 'integer', 'include_in_all': False}, 'publication_date_filter': {'type': 'date', 'include_in_all': False}, 'number_of_pages_filter': {'type': 'integer', 'include_in_all': False}, 'tags': { 'type': 'nested', 'properties': { 'name': {'type': 'text', 'include_in_all': True}, 'slug_filter': {'type': 'keyword', 'include_in_all': False}, }, }, 'tags_filter': {'type': 'integer', 'include_in_all': False} } } } self.assertDictEqual(mapping, expected_result) def test_get_document_id(self): self.assertEqual(self.es_mapping.get_document_id(self.obj), 'searchtests_book:' + str(self.obj.pk)) def test_get_document(self): # Get document document = self.es_mapping.get_document(self.obj) # Sort partials if '_partials' in document: document['_partials'].sort() # Check expected_result = { 'pk': '4', 'content_type': ["searchtests.Book"], '_partials': ['J. R. R. Tolkien', 'The Fellowship of the Ring', 'The Fellowship of the Ring'], 'title': 'The Fellowship of the Ring', 'title_edgengrams': 'The Fellowship of the Ring', 'title_filter': 'The Fellowship of the Ring', 'authors': [ { 'name': 'J. R. R. Tolkien', 'name_edgengrams': 'J. R. R. Tolkien', 'date_of_birth_filter': datetime.date(1892, 1, 3) } ], 'authors_filter': [2], 'publication_date_filter': datetime.date(1954, 7, 29), 'number_of_pages_filter': 423, 'tags': [], 'tags_filter': [] } self.assertDictEqual(document, expected_result) class TestElasticsearch5MappingInheritance(TestCase): fixtures = ['search'] def assertDictEqual(self, a, b): default = JSONSerializer().default self.assertEqual( json.dumps(a, sort_keys=True, default=default), json.dumps(b, sort_keys=True, default=default) ) def setUp(self): # Create ES mapping self.es_mapping = Elasticsearch5SearchBackend.mapping_class(models.Novel) self.obj = models.Novel.objects.get(id=4) def test_get_document_type(self): self.assertEqual(self.es_mapping.get_document_type(), 'searchtests_book_searchtests_novel') def test_get_mapping(self): # Build mapping mapping = self.es_mapping.get_mapping() # Check expected_result = { 'searchtests_book_searchtests_novel': { 'properties': { # New 'searchtests_novel__setting': {'type': 'text', 'include_in_all': True, 'analyzer': 'edgengram_analyzer', 'search_analyzer': 'standard'}, 'searchtests_novel__protagonist': { 'type': 'nested', 'properties': { 'name': {'type': 'text', 'boost': 0.5, 'include_in_all': True}, 'novel_id_filter': {'type': 'integer', 'include_in_all': False} } }, 'searchtests_novel__protagonist_id_filter': {'type': 'integer', 'include_in_all': False}, 'searchtests_novel__characters': { 'type': 'nested', 'properties': { 'name': {'type': 'text', 'boost': 0.25, 'include_in_all': True} } }, # Inherited 'pk': {'type': 'keyword', 'store': True, 'include_in_all': False}, 'content_type': {'type': 'keyword', 'include_in_all': False}, '_partials': {'analyzer': 'edgengram_analyzer', 'search_analyzer': 'standard', 'include_in_all': False, 'type': 'text'}, 'title': {'type': 'text', 'boost': 2.0, 'include_in_all': True, 'analyzer': 'edgengram_analyzer', 'search_analyzer': 'standard'}, 'title_edgengrams': {'type': 'text', 'include_in_all': False, 'analyzer': 'edgengram_analyzer', 'search_analyzer': 'standard'}, 'title_filter': {'type': 'keyword', 'include_in_all': False}, 'authors': { 'type': 'nested', 'properties': { 'name': {'type': 'text', 'include_in_all': True}, 'name_edgengrams': {'analyzer': 'edgengram_analyzer', 'include_in_all': False, 'search_analyzer': 'standard', 'type': 'text'}, 'date_of_birth_filter': {'type': 'date', 'include_in_all': False}, }, }, 'authors_filter': {'type': 'integer', 'include_in_all': False}, 'publication_date_filter': {'type': 'date', 'include_in_all': False}, 'number_of_pages_filter': {'type': 'integer', 'include_in_all': False}, 'tags': { 'type': 'nested', 'properties': { 'name': {'type': 'text', 'include_in_all': True}, 'slug_filter': {'type': 'keyword', 'include_in_all': False}, }, }, 'tags_filter': {'type': 'integer', 'include_in_all': False} } } } self.assertDictEqual(mapping, expected_result) def test_get_document_id(self): # This must be tests_searchtest instead of 'tests_searchtest_tests_searchtestchild' # as it uses the contents base content type name. # This prevents the same object being accidentally indexed twice. self.assertEqual(self.es_mapping.get_document_id(self.obj), 'searchtests_book:' + str(self.obj.pk)) def test_get_document(self): # Build document document = self.es_mapping.get_document(self.obj) # Sort partials if '_partials' in document: document['_partials'].sort() # Sort characters if 'searchtests_novel__characters' in document: document['searchtests_novel__characters'].sort(key=lambda c: c['name']) # Check expected_result = { # New 'searchtests_novel__setting': "Middle Earth", 'searchtests_novel__protagonist': { 'name': "Frodo Baggins", 'novel_id_filter': 4 }, 'searchtests_novel__protagonist_id_filter': 8, 'searchtests_novel__characters': [ { 'name': "Bilbo Baggins" }, { 'name': "Frodo Baggins" }, { 'name': "Gandalf" } ], # Changed 'content_type': ["searchtests.Novel", "searchtests.Book"], '_partials': ['J. R. R. Tolkien', 'Middle Earth', 'The Fellowship of the Ring', 'The Fellowship of the Ring'], # Inherited 'pk': '4', 'title': 'The Fellowship of the Ring', 'title_edgengrams': 'The Fellowship of the Ring', 'title_filter': 'The Fellowship of the Ring', 'authors': [ { 'name': 'J. R. R. Tolkien', 'name_edgengrams': 'J. R. R. Tolkien', 'date_of_birth_filter': datetime.date(1892, 1, 3) } ], 'authors_filter': [2], 'publication_date_filter': datetime.date(1954, 7, 29), 'number_of_pages_filter': 423, 'tags': [], 'tags_filter': [] } self.assertDictEqual(document, expected_result) @mock.patch('wagtail.search.backends.elasticsearch5.Elasticsearch') class TestBackendConfiguration(TestCase): def test_default_settings(self, Elasticsearch): Elasticsearch5SearchBackend(params={}) Elasticsearch.assert_called_with( hosts=[ { 'host': 'localhost', 'port': 9200, 'url_prefix': '', 'use_ssl': False, 'verify_certs': False, 'http_auth': None } ], timeout=10 ) def test_hosts(self, Elasticsearch): Elasticsearch5SearchBackend(params={ 'HOSTS': [ { 'host': '127.0.0.1', 'port': 9300, 'use_ssl': True, 'verify_certs': True, } ] }) Elasticsearch.assert_called_with( hosts=[ { 'host': '127.0.0.1', 'port': 9300, 'use_ssl': True, 'verify_certs': True, } ], timeout=10 ) def test_urls(self, Elasticsearch): # This test backwards compatibility with old URLS setting Elasticsearch5SearchBackend(params={ 'URLS': [ 'http://localhost:12345', 'https://127.0.0.1:54321', 'http://username:password@elasticsearch.mysite.com', 'https://elasticsearch.mysite.com/hello', ], }) Elasticsearch.assert_called_with( hosts=[ { 'host': 'localhost', 'port': 12345, 'url_prefix': '', 'use_ssl': False, 'verify_certs': False, 'http_auth': None, }, { 'host': '127.0.0.1', 'port': 54321, 'url_prefix': '', 'use_ssl': True, 'verify_certs': True, 'http_auth': None, }, { 'host': 'elasticsearch.mysite.com', 'port': 80, 'url_prefix': '', 'use_ssl': False, 'verify_certs': False, 'http_auth': ('username', 'password') }, { 'host': 'elasticsearch.mysite.com', 'port': 443, 'url_prefix': '/hello', 'use_ssl': True, 'verify_certs': True, 'http_auth': None, }, ], timeout=10 )
40.518519
156
0.561361
6b0154c0b158e31bab477fbb3149186a51065ec1
135
py
Python
pyipip/__init__.py
georgexsh/pyipip
48f3ab44f11ad2cd41a478f08bfdccedcecf2247
[ "MIT" ]
24
2017-10-12T11:20:13.000Z
2020-12-08T15:22:03.000Z
pyipip/__init__.py
georgexsh/pyipip
48f3ab44f11ad2cd41a478f08bfdccedcecf2247
[ "MIT" ]
null
null
null
pyipip/__init__.py
georgexsh/pyipip
48f3ab44f11ad2cd41a478f08bfdccedcecf2247
[ "MIT" ]
3
2018-10-26T03:19:53.000Z
2020-12-08T08:28:23.000Z
__version__ = '0.1.1' import logging logging.getLogger(__name__).addHandler(logging.NullHandler()) from .ipipdb import IPIPDatabase
16.875
61
0.792593
e0be7ca7eb91acd58c62cfd8ccf75db991592b0c
3,031
py
Python
osclib/list_command.py
okurz/osc-plugin-factory
37499194ce23e426f8be8860437b29f9d97dd533
[ "MIT" ]
null
null
null
osclib/list_command.py
okurz/osc-plugin-factory
37499194ce23e426f8be8860437b29f9d97dd533
[ "MIT" ]
null
null
null
osclib/list_command.py
okurz/osc-plugin-factory
37499194ce23e426f8be8860437b29f9d97dd533
[ "MIT" ]
null
null
null
from osc import oscerr from osclib.request_splitter import RequestSplitter class ListCommand: SOURCE_PROJECT_STRIP = [ 'SUSE:SLE-12:', 'SUSE:SLE-12-', 'openSUSE:Leap:' 'openSUSE:', 'home:', ] def __init__(self, api): self.api = api def perform(self, packages=None, supersede=False): """ Perform the list command """ if supersede: self.api.dispatch_open_requests(packages) requests = self.api.get_open_requests() requests_ignored = self.api.get_ignored_requests() splitter = RequestSplitter(self.api, requests, in_ring=True) splitter.filter_add('./action[@type="change_devel"]') change_devel_requests = splitter.filter_only() splitter.reset() splitter.filter_add('./action[not(@type="add_role" or @type="change_devel")]') splitter.group_by('./action/target/@devel_project') splitter.split() is_factory = self.api.project != 'openSUSE:Factory' for group in sorted(splitter.grouped.keys()): print group for request in splitter.grouped[group]['requests']: request_id = int(request.get('id')) action = request.find('action') target_package = action.find('target').get('package') ring = action.find('target').get('ring') if action.get('type') == 'delete': ring += ' (delete request)' line = 'sr#{}: {:<30} -> {:<12}'.format(request_id, target_package, ring) if is_factory and action.find('source') != None: source_project = action.find('source').get('project') source_project = self.project_strip(source_project) line += ' ({})'.format(source_project) if request_id in requests_ignored: line += '\n ignored: ' + str(requests_ignored[request_id]) print ' ', line if len(splitter.other): non_ring_packages = [] for request in splitter.other: non_ring_packages.append(request.find('./action/target').get('package')) print 'Not in a ring:', ' '.join(sorted(non_ring_packages)) if len(change_devel_requests): print '\nChange devel requests:' for request in change_devel_requests: target_package = request.find('./action/target').get('package') url = self.api.makeurl(['request', 'show', request.get('id')]) print('- request({}): {}'.format(target_package, url)) def project_strip(self, source_project): home = source_project.startswith('home:') for prefix in self.SOURCE_PROJECT_STRIP: if source_project.startswith(prefix): source_project = source_project[len(prefix):] if home: source_project = '~' + source_project return source_project
35.658824
89
0.574728
dd0a8003be5f3b27893818b05a86cd2c1f10ca50
9,971
py
Python
monai/data/decathlon_datalist.py
Spenhouet/MONAI
fb66ba0625c3a64ba7cdba9811a9997b336e3702
[ "Apache-2.0" ]
null
null
null
monai/data/decathlon_datalist.py
Spenhouet/MONAI
fb66ba0625c3a64ba7cdba9811a9997b336e3702
[ "Apache-2.0" ]
null
null
null
monai/data/decathlon_datalist.py
Spenhouet/MONAI
fb66ba0625c3a64ba7cdba9811a9997b336e3702
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 - 2021 MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import warnings from pathlib import Path from typing import Dict, List, Optional, Sequence, Union, overload from monai.config import KeysCollection from monai.data.utils import partition_dataset, select_cross_validation_folds from monai.utils import ensure_tuple @overload def _compute_path(base_dir: str, element: str, check_path: bool = False) -> str: ... @overload def _compute_path(base_dir: str, element: List[str], check_path: bool = False) -> List[str]: ... def _compute_path(base_dir, element, check_path=False): """ Args: base_dir: the base directory of the dataset. element: file path(s) to append to directory. check_path: if `True`, only compute when the result is an existing path. Raises: TypeError: When ``element`` contains a non ``str``. TypeError: When ``element`` type is not in ``Union[list, str]``. """ def _join_path(base_dir: str, item: str): result = os.path.normpath(os.path.join(base_dir, item)) if check_path and not os.path.exists(result): # if not an existing path, don't join with base dir return item return result if isinstance(element, str): return _join_path(base_dir, element) if isinstance(element, list): for e in element: if not isinstance(e, str): return element return [_join_path(base_dir, e) for e in element] return element def _append_paths(base_dir: str, is_segmentation: bool, items: List[Dict]) -> List[Dict]: """ Args: base_dir: the base directory of the dataset. is_segmentation: whether the datalist is for segmentation task. items: list of data items, each of which is a dict keyed by element names. Raises: TypeError: When ``items`` contains a non ``dict``. """ for item in items: if not isinstance(item, dict): raise TypeError(f"Every item in items must be a dict but got {type(item).__name__}.") for k, v in item.items(): if k == "image" or is_segmentation and k == "label": item[k] = _compute_path(base_dir, v, check_path=False) else: # for other items, auto detect whether it's a valid path item[k] = _compute_path(base_dir, v, check_path=True) return items def load_decathlon_datalist( data_list_file_path: str, is_segmentation: bool = True, data_list_key: str = "training", base_dir: Optional[str] = None, ) -> List[Dict]: """Load image/label paths of decathlon challenge from JSON file Json file is similar to what you get from http://medicaldecathlon.com/ Those dataset.json files Args: data_list_file_path: the path to the json file of datalist. is_segmentation: whether the datalist is for segmentation task, default is True. data_list_key: the key to get a list of dictionary to be used, default is "training". base_dir: the base directory of the dataset, if None, use the datalist directory. Raises: ValueError: When ``data_list_file_path`` does not point to a file. ValueError: When ``data_list_key`` is not specified in the data list file. Returns a list of data items, each of which is a dict keyed by element names, for example: .. code-block:: [ {'image': '/workspace/data/chest_19.nii.gz', 'label': 0}, {'image': '/workspace/data/chest_31.nii.gz', 'label': 1} ] """ if not os.path.isfile(data_list_file_path): raise ValueError(f"Data list file {data_list_file_path} does not exist.") with open(data_list_file_path) as json_file: json_data = json.load(json_file) if data_list_key not in json_data: raise ValueError(f'Data list {data_list_key} not specified in "{data_list_file_path}".') expected_data = json_data[data_list_key] if data_list_key == "test": expected_data = [{"image": i} for i in expected_data] if base_dir is None: base_dir = os.path.dirname(data_list_file_path) return _append_paths(base_dir, is_segmentation, expected_data) def load_decathlon_properties(data_property_file_path: str, property_keys: Union[Sequence[str], str]) -> Dict: """Load the properties from the JSON file contains data property with specified `property_keys`. Args: data_property_file_path: the path to the JSON file of data properties. property_keys: expected keys to load from the JSON file, for example, we have these keys in the decathlon challenge: `name`, `description`, `reference`, `licence`, `tensorImageSize`, `modality`, `labels`, `numTraining`, `numTest`, etc. """ if not os.path.isfile(data_property_file_path): raise ValueError(f"Data property file {data_property_file_path} does not exist.") with open(data_property_file_path) as json_file: json_data = json.load(json_file) properties = {} for key in ensure_tuple(property_keys): if key not in json_data: raise KeyError(f"key {key} is not in the data property file.") properties[key] = json_data[key] return properties def check_missing_files( datalist: List[Dict], keys: KeysCollection, root_dir: Optional[Union[Path, str]] = None, allow_missing_keys: bool = False, ): """Checks whether some files in the Decathlon datalist are missing. It would be helpful to check missing files before a heavy training run. Args: datalist: a list of data items, every item is a dictionary. ususally generated by `load_decathlon_datalist` API. keys: expected keys to check in the datalist. root_dir: if not None, provides the root dir for the relative file paths in `datalist`. allow_missing_keys: whether allow missing keys in the datalist items. if False, raise exception if missing. default to False. Returns: A list of missing filenames. """ missing_files = [] for item in datalist: for k in ensure_tuple(keys): if k not in item: if not allow_missing_keys: raise ValueError(f"key `{k}` is missing in the datalist item: {item}") continue for f in ensure_tuple(item[k]): if not isinstance(f, (str, Path)): raise ValueError(f"filepath of key `{k}` must be a string or a list of strings, but got: {f}.") if isinstance(root_dir, (str, Path)): f = os.path.join(root_dir, f) if not os.path.exists(f): missing_files.append(f) return missing_files def create_cross_validation_datalist( datalist: List[Dict], nfolds: int, train_folds: Union[Sequence[int], int], val_folds: Union[Sequence[int], int], train_key: str = "training", val_key: str = "validation", filename: Optional[Union[Path, str]] = None, shuffle: bool = True, seed: int = 0, check_missing: bool = False, keys: Optional[KeysCollection] = None, root_dir: Optional[str] = None, allow_missing_keys: bool = False, raise_error: bool = True, ): """ Utility to create new Decathlon style datalist based on cross validation partition. Args: datalist: loaded list of dictionaries for all the items to partition. nfolds: number of the kfold split. train_folds: indices of folds for training part. val_folds: indices of folds for validation part. train_key: the key of train part in the new datalist, defaults to "training". val_key: the key of validation part in the new datalist, defaults to "validation". filename: if not None and ends with ".json", save the new datalist into JSON file. shuffle: whether to shuffle the datalist before partition, defaults to `True`. seed: if `shuffle` is True, set the random seed, defaults to `0`. check_missing: whether to check all the files specified by `keys` are existing. keys: if not None and check_missing_files is True, the expected keys to check in the datalist. root_dir: if not None, provides the root dir for the relative file paths in `datalist`. allow_missing_keys: if check_missing_files is `True`, whether allow missing keys in the datalist items. if False, raise exception if missing. default to False. raise_error: when found missing files, if `True`, raise exception and stop, if `False`, print warining. """ if check_missing and keys is not None: files = check_missing_files(datalist, keys, root_dir, allow_missing_keys) if files: msg = f"some files of the datalist are missing: {files}" if raise_error: raise ValueError(msg) warnings.warn(msg) data = partition_dataset(data=datalist, num_partitions=nfolds, shuffle=shuffle, seed=seed) train_list = select_cross_validation_folds(partitions=data, folds=train_folds) val_list = select_cross_validation_folds(partitions=data, folds=val_folds) ret = {train_key: train_list, val_key: val_list} if isinstance(filename, (str, Path)): json.dump(ret, open(filename, "w"), indent=4) return ret
39.884
115
0.667536
2b4f28a5015e0a1c8214f3c80389e414ab7f4f0b
7,315
py
Python
xp/tests/var_expansion.py
druths/xp
a4f66ae3551fc0b5c66ece816a8276bd7b7e3ccf
[ "Apache-2.0" ]
46
2016-03-05T22:56:04.000Z
2021-12-27T22:25:08.000Z
xp/tests/var_expansion.py
druths/xp
a4f66ae3551fc0b5c66ece816a8276bd7b7e3ccf
[ "Apache-2.0" ]
15
2016-03-05T04:19:00.000Z
2021-01-29T05:00:24.000Z
xp/tests/var_expansion.py
druths/xp
a4f66ae3551fc0b5c66ece816a8276bd7b7e3ccf
[ "Apache-2.0" ]
11
2016-02-22T19:38:41.000Z
2021-11-06T00:55:01.000Z
""" Copyright 2016 Derek Ruths Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import unittest from xp.pipeline import get_pipeline, expand_variables, PIPELINE_PREFIX_VARNAME, ParseException, USE_FILE_PREFIX import xp.pipeline as pipeline import os, os.path import shutil BASE_PATH = os.path.dirname(__file__) def get_complete_filename(fname): return os.path.join(BASE_PATH,'pipelines',fname) class InnerVarExpansionTestCase(unittest.TestCase): """ This tests the functionality of the expand_variables function. """ def test_basic1(self): context = {'var1':'hello'} cwd = '.' exval = expand_variables('$var1.txt',context,cwd,None,None,-1) self.assertEquals(exval,'hello.txt') exval = expand_variables('${var1}.txt',context,cwd,None,None,-1) self.assertEquals(exval,'hello.txt') exval = expand_variables('hello_$var1.txt',context,cwd,None,None,-1) self.assertEquals(exval,'hello_hello.txt') def test_multvars1(self): context = {'var1':'hello', 'foobar':'test'} cwd = '.' exval = expand_variables('${var1}_$foobar.txt',context,cwd,None,None,-1) self.assertEquals(exval,'hello_test.txt') exval = expand_variables('${var1}_${foobar}.txt',context,cwd,None,None,-1) self.assertEquals(exval,'hello_test.txt') exval = expand_variables('echo $var1 $foobar',context,cwd,None,None,-1) self.assertEquals(exval,'echo hello test') def test_pipeline_fxn1(self): context = {'var1':'hello', PIPELINE_PREFIX_VARNAME:'/foo/bar_'} cwd = '.' exval = expand_variables('touch $PLN(test1.txt)',context,cwd,None,None,-1) self.assertEquals(exval,'touch /foo/bar_test1.txt') exval = expand_variables('touch $PLN($var1.txt)',context,cwd,None,None,-1) self.assertEquals(exval,'touch /foo/bar_hello.txt') exval = expand_variables('touch $PLN(${var1}.txt)',context,cwd,None,None,-1) self.assertEquals(exval,'touch /foo/bar_hello.txt') def test_shell_fxn1(self): context = {'var1':'hello'} cwd = '.' exval = expand_variables('touch $(echo hi)',context,cwd,None,None,-1) self.assertEquals(exval,'touch hi') def test_shell_fxn_newline_error1(self): context = {'var1':'hello'} cwd = '.' raised_exc = False try: expand_variables('touch $(ls None,-1)',context,cwd,None,-1) except Exception: raised_exc = True self.assertTrue(raised_exc,'inline shell functions should fail on output containing newlines') def test_escape1(self): context = {'var1':'hello'} cwd = '.' exval = expand_variables('\$var1.txt',context,cwd,None,None,-1) self.assertEquals(exval,'$var1.txt') exval = expand_variables('\${var1.txt',context,cwd,None,None,-1) self.assertEquals(exval,'${var1.txt') exval = expand_variables('\${var1}.txt',context,cwd,None,None,-1) self.assertEquals(exval,'${var1}.txt') exval = expand_variables('hello_$var1.txt',context,cwd,None,None,-1) self.assertEquals(exval,'hello_hello.txt') def test_invalid_escape1(self): context = {'var1':'hello'} cwd = '.' try: exval = expand_variables(r'\n',context,cwd,None,None,-1) self.fail('\\n should raise a ParseException') except ParseException as e: pass except: self.fail('\\n should raise a ParseException') def test_grep_error(self): cmd = """grep -o '/article/[^"]+' $PLN(lists_html/\$TAG.*) > $PLN(article_lists/\$TAG.txt)""" cwd = '.' context = {PIPELINE_PREFIX_VARNAME:'/foo/bar_'} exval = expand_variables(cmd,context,cwd,None,None,-1) # this should get here without an exception... class VarExpansionTestCase(unittest.TestCase): def test_varexpand1(self): """ This test case checks: - basic variable expansion - basic pipeline filename expansion - nested pipeline filename expansion """ p = get_pipeline(get_complete_filename('varexpand1'),default_prefix=USE_FILE_PREFIX) p.unmark_all_tasks(recur=True) p.run() # check the output self.assertTrue(os.path.exists(get_complete_filename('hello_world.txt'))) self.assertTrue(os.path.exists(get_complete_filename('varexpand1_pln_expand1.txt'))) self.assertTrue(os.path.exists(get_complete_filename('varexpand1_hello.txt'))) self.assertTrue(os.path.exists(get_complete_filename('varexpand1_pytest.dat'))) os.remove(get_complete_filename('hello_world.txt')) os.remove(get_complete_filename('varexpand1_pln_expand1.txt')) os.remove(get_complete_filename('varexpand1_hello.txt')) os.remove(get_complete_filename('varexpand1_pytest.dat')) p.unmark_all_tasks(recur=True) def test_used_pln_expand1(self): """ This test and pln_expand2 (the next one) concerns the rather nuanced interpretation of using another pipeline. Only those tasks in the used pipeline are invoked that are in the dependency chain for the tasks in the present pipeline. """ p = get_pipeline(get_complete_filename('sdir_prefix2'),default_prefix=USE_FILE_PREFIX) p.unmark_all_tasks(recur=True) p.run() # check the output self.assertTrue(os.path.exists(get_complete_filename(os.path.join('sdir_foo2','bar','hello_world.txt')))) shutil.rmtree(get_complete_filename('sdir_foo2')) p.unmark_all_tasks(recur=True) def test_used_pln_expand2(self): p = get_pipeline(get_complete_filename('sdir_prefix3'),default_prefix=USE_FILE_PREFIX) p.unmark_all_tasks(recur=True) p.run() # check the output self.assertTrue(os.path.exists(get_complete_filename(os.path.join('sdir_foo2','bar','hello_world.txt')))) self.assertTrue(os.path.exists(get_complete_filename(os.path.join('sdir_foo','bar','hello_world.txt')))) shutil.rmtree(get_complete_filename('sdir_foo')) shutil.rmtree(get_complete_filename('sdir_foo2')) p.unmark_all_tasks(recur=True) def test_plnref_varexpand1(self): """ This test case checks: - basic variable expansion - basic pipeline filename expansion - nested pipeline filename expansion """ p = get_pipeline(get_complete_filename('plnref_varexpand1'),default_prefix=USE_FILE_PREFIX) context = p.get_context() self.assertTrue(context['VAR1'],'test') self.assertTrue(context['VAR2'],'varexpand1_test_xyz')
36.758794
113
0.658783
6ac0a7f41c0ab8be5494b68086c795f0d67364cf
1,802
py
Python
lesson2/13Strings.py
katyduncan/pythonintro
facf3c623a0634b3cf1e117959aba810b126aeed
[ "MIT" ]
null
null
null
lesson2/13Strings.py
katyduncan/pythonintro
facf3c623a0634b3cf1e117959aba810b126aeed
[ "MIT" ]
null
null
null
lesson2/13Strings.py
katyduncan/pythonintro
facf3c623a0634b3cf1e117959aba810b126aeed
[ "MIT" ]
null
null
null
print("hello") print('hello') welcome_message = "Hello, welcome to Udacity!" print(welcome_message) # pet_halibut = "Why should I be tarred with the epithet "loony" merely because I have a pet halibut?"" # SyntaxError: invalid syntax pet_halibut = 'Why should I be tarred with the epithet "loony" merely because I have a pet halibut?' salesman = '"I think you\'re an encyclopedia salesman"' this_string = "Simon's skateboard is in the garage." print(this_string) # Combine strings with + first_word = "Hello" second_word = "There" print(first_word + " " + second_word) print(first_word[0]) print(first_word[1]) # Repeat strings with * word = "Hello" print(word * 5) # Length function udacity_length = len("Udacity") print(udacity_length) print(len("ababa") / len("ab")) # QUIZ # TODO: Fix this string! # ford_quote = 'Whether you think you can, or you think you can't--you're right.' ford_quote = 'Whether you think you can, or you think you can\'t--you\'re right.' # TODO: print a log message using the variables above. # The message should have the same format as this one: # "Yogesh accessed the site http://petshop.com/pets/reptiles/pythons at 16:20." username = "Kinari" timestamp = "04:50" url = "http://petshop.com/pets/mammals/cats" message = username + " accessed the site " + url + " at " + timestamp + "." print(message) # Quiz len() given_name = "William" middle_names = "Bradley" family_name = "Pitt" #todo: calculate how long this name is full_name = given_name + " " + middle_names + " " + family_name name_length = len(full_name) print (name_length) # Now we check to make sure that the name fits within the driving license character limit # Nothing you need to do here driving_license_character_limit = 28 print(name_length <= driving_license_character_limit) len(835)
27.723077
103
0.72919
881f6050a73d1923bde296c36e06c49823cae75c
13,682
py
Python
cls_model_zoo/densenet.py
MaybeShewill-CV/image-classification-tensorflow
1587fa7acfaba6d33fb07c2c25248570c5d41927
[ "MIT" ]
4
2021-03-24T13:39:10.000Z
2021-12-16T16:49:22.000Z
cls_model_zoo/densenet.py
MaybeShewill-CV/image-classification-tensorflow
1587fa7acfaba6d33fb07c2c25248570c5d41927
[ "MIT" ]
null
null
null
cls_model_zoo/densenet.py
MaybeShewill-CV/image-classification-tensorflow
1587fa7acfaba6d33fb07c2c25248570c5d41927
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # @Time : 2021/3/25 下午1:25 # @Author : MaybeShewill-CV # @Site : https://github.com/MaybeShewill-CV/image-classification-tensorflow # @File : densenet.py # @IDE: PyCharm """ DenseNet model """ import time import numpy as np import tensorflow as tf from cls_model_zoo import cnn_basenet from cls_model_zoo import loss from local_utils import config_utils class DenseNet(cnn_basenet.CNNBaseModel): """ densenet model for image classification """ def __init__(self, phase, cfg): """ :param phase: :param cfg: """ super(DenseNet, self).__init__() self._cfg = cfg self._phase = phase self._is_training = self._is_net_for_training() self._block_nums = self._cfg.MODEL.DENSENET.BLOCK_NUMS self._densenet_size = cfg.MODEL.DENSENET.NET_SIZE self._block_depths = self._get_block_sizes() self._growth_rate = self._cfg.MODEL.DENSENET.GROWTH_RATE self._with_bc = self._cfg.MODEL.DENSENET.ENABLE_BC self._bc_theta = self._cfg.MODEL.DENSENET.BC_THETA self._composite_channels = self._cfg.MODEL.DENSENET.COMPOSITE_CHANNELS self._loss_type = self._cfg.SOLVER.LOSS_TYPE.lower() self._loss_func = getattr(loss, '{:s}_loss'.format(self._loss_type)) self._class_nums = self._cfg.DATASET.NUM_CLASSES self._weights_decay = self._cfg.SOLVER.WEIGHT_DECAY self._enable_dropout = self._cfg.TRAIN.DROPOUT.ENABLE if self._enable_dropout: self._dropout_keep_prob = self._cfg.TRAIN.DROPOUT.KEEP_PROB self._enable_label_smooth = self._cfg.TRAIN.LABEL_SMOOTH.ENABLE if self._enable_label_smooth: self._smooth_value = self._cfg.TRAIN.LABEL_SMOOTH.SMOOTH_VALUE else: self._smooth_value = 0.0 def __str__(self): """ :return: """ encoder_info = 'A densenet with net size: {:d} block nums: ' \ '{:d} growth rate: {:d} block depth: {:d}'. \ format(self._densenet_size, self._block_nums, self._growth_rate, self._block_depths) return encoder_info def _is_net_for_training(self): """ if the net is used for training or not :return: """ if isinstance(self._phase, tf.Tensor): phase = self._phase else: phase = tf.constant(self._phase, dtype=tf.string) return tf.equal(phase, tf.constant('train', dtype=tf.string)) def _get_block_sizes(self): """ :return: """ densenet_name = 'densenet-{:d}'.format(self._densenet_size) block_sizes = { 'densenet-121': [6, 12, 24, 16], 'densenet-169': [6, 12, 32, 32], 'densenet-201': [6, 12, 48, 32], 'densenet-264': [6, 12, 64, 48], } try: return block_sizes[densenet_name] except KeyError: raise RuntimeError('Wrong densenet name, only ' '[densenet-18, densenet-34, densenet-50, ' 'densenet-101, densenet-152] supported') def _densenet_conv_block(self, input_tensor, k_size, output_channels, name, stride=1, padding='VALID', need_bn=True, use_bias=False): """ :param input_tensor: :param k_size: :param output_channels: :param name: :param stride: :param padding: :param need_bn: :param use_bias: :return: """ with tf.variable_scope(name_or_scope=name): result = self.conv2d( inputdata=input_tensor, out_channel=output_channels, kernel_size=k_size, padding=padding, stride=stride, use_bias=use_bias, name='conv' ) if need_bn: result = self.layerbn(inputdata=result, is_training=self._is_training, name='bn', scale=False) result = self.relu(inputdata=result, name='densenet_conv_block_output') return result def _composite_conv(self, inputdata, out_channel, name): """ Implement the composite function mentioned in DenseNet paper :param inputdata: :param out_channel: :param name: :return: """ with tf.variable_scope(name): output = self.layerbn(inputdata=inputdata, is_training=self._is_training, name='bn_1') output = self.relu(output, name='relu_1') if self._with_bc: output = self.conv2d( inputdata=output, out_channel=self._composite_channels, kernel_size=1, padding='SAME', stride=1, use_bias=False, name='conv_1' ) output = self.layerbn(inputdata=output, is_training=self._is_training, name='bn_2') output = self.relu(inputdata=output, name='relu_2') output = self.conv2d( inputdata=output, out_channel=out_channel, kernel_size=3, stride=1, padding='SAME', use_bias=False, name='conv_2') else: output = self.conv2d( inputdata=output, out_channel=out_channel, kernel_size=3, stride=1, padding='SAME', use_bias=False, name='conv_2') return output def _denseconnect_layers(self, inputdata, name): """ Mainly implement the equation (2) in DenseNet paper concatenate the dense block feature maps :param inputdata: :param name: :return: """ with tf.variable_scope(name): conv_out = self._composite_conv( inputdata=inputdata, name='composite_conv', out_channel=self._growth_rate ) concate_cout = tf.concat( values=[conv_out, inputdata], axis=3, name='concatenate' ) return concate_cout def _transition_layers(self, inputdata, name): """ Mainly implement the Pooling layer mentioned in DenseNet paper :param inputdata: :param name: :return: """ input_channels = inputdata.get_shape().as_list()[3] with tf.variable_scope(name): # First batch norm output = self.layerbn(inputdata=inputdata, is_training=self._is_training, name='bn') # Second 1*1 conv if self._with_bc: out_channels = int(input_channels * self._bc_theta) else: out_channels = input_channels output = self.conv2d( inputdata=output, out_channel=out_channels, kernel_size=1, stride=1, use_bias=False, name='conv' ) # Third average pooling output = self.avgpooling( inputdata=output, kernel_size=2, stride=2, name='avgpool' ) return output def _dense_block(self, inputdata, name, block_depth): """ Mainly implement the dense block mentioned in DenseNet figure 1 :param inputdata: :param name: :param block_depth: :return: """ block_input = inputdata with tf.variable_scope(name): for i in range(block_depth): block_layer_name = '{:s}_layer_{:d}'.format(name, i + 1) block_input = self._denseconnect_layers( inputdata=block_input, name=block_layer_name ) return block_input def _build_net(self, input_tensor, name, reuse=False): """ :param input_tensor: :param name: :param reuse: :return: """ with tf.variable_scope(name_or_scope=name, reuse=reuse): conv1 = self._densenet_conv_block( input_tensor=input_tensor, k_size=7, output_channels=2 * self._growth_rate, stride=2, padding='SAME', need_bn=True, use_bias=False, name='conv1' ) max_pool1 = self.maxpooling(inputdata=conv1, kernel_size=3, stride=2, padding='SAME', name='max_pool1') dense_block_input = max_pool1 # Second apply dense block stage for dense_block_nums in range(self._block_nums): dense_block_name = 'Dense_Block_{:d}'.format(dense_block_nums + 1) # dense connectivity dense_block_out = self._dense_block( inputdata=dense_block_input, name=dense_block_name, block_depth=self._block_depths[dense_block_nums] ) if dense_block_nums == self._block_nums - 1: break # apply the trainsition part dense_block_out = self._transition_layers( inputdata=dense_block_out, name=dense_block_name ) dense_block_input = dense_block_out output_tensor = self.globalavgpooling( inputdata=dense_block_out, name='global_average_pooling' ) if self._enable_dropout: output_tensor = tf.cond( self._is_training, true_fn=lambda: self.dropout( inputdata=output_tensor, keep_prob=self._dropout_keep_prob, name='dropout_train' ), false_fn=lambda: tf.identity(output_tensor, name='dropout_test') ) output_tensor = self.fullyconnect( inputdata=output_tensor, out_dim=self._class_nums, name='final_logits' ) return output_tensor def inference(self, input_tensor, name, reuse=False): """ :param input_tensor: :param name: :param reuse: :return: """ logits = self._build_net( input_tensor=input_tensor, name=name, reuse=reuse ) return logits def compute_loss(self, input_tensor, label, name, reuse=False): """ :param input_tensor: :param label: :param name: :param reuse: :return: """ logits = self._build_net( input_tensor=input_tensor, name=name, reuse=reuse ) with tf.variable_scope('densenet_loss', reuse=reuse): ret = self._loss_func( logits=logits, label_tensor=label, weight_decay=self._weights_decay, l2_vars=tf.trainable_variables(), use_label_smooth=self._enable_label_smooth, lb_smooth_value=self._smooth_value, class_nums=self._class_nums, ) return ret def get_model(phase, cfg): """ :param phase: :param cfg: :return: """ return DenseNet(phase=phase, cfg=cfg) def _stats_graph(graph): """ :param graph: :return: """ flops = tf.profiler.profile(graph, options=tf.profiler.ProfileOptionBuilder.float_operation()) params = tf.profiler.profile(graph, options=tf.profiler.ProfileOptionBuilder.trainable_variables_parameter()) print('FLOPs: {}; Trainable params: {}'.format(flops.total_float_ops, params.total_parameters)) return def _inference_time_profile(): """ :return: """ tf.reset_default_graph() cfg = config_utils.get_config(config_file_path='./config/ilsvrc_2012_densenet.yaml') test_input_tensor = tf.placeholder(dtype=tf.float32, shape=[1, 224, 224, 3], name='test_input') test_label_tensor = tf.placeholder(dtype=tf.int32, shape=[1], name='test_label') model = get_model(phase='train', cfg=cfg) test_result = model.compute_loss( input_tensor=test_input_tensor, label=test_label_tensor, name='DenseNet', reuse=False ) tmp_logits = model.inference(input_tensor=test_input_tensor, name='DenseNet', reuse=True) print(test_result) print(tmp_logits) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) test_input = np.random.random((1, 224, 224, 3)).astype(np.float32) t_start = time.time() loop_times = 5000 for i in range(loop_times): _ = sess.run(tmp_logits, feed_dict={test_input_tensor: test_input}) t_cost = time.time() - t_start print('Cost time: {:.5f}s'.format(t_cost / loop_times)) print('Inference time: {:.5f} fps'.format(loop_times / t_cost)) print('Complete') def _model_profile(): """ :return: """ tf.reset_default_graph() cfg = config_utils.get_config(config_file_path='./config/ilsvrc_2012_densenet.yaml') test_input_tensor = tf.placeholder(dtype=tf.float32, shape=[1, 224, 224, 3], name='test_input') model = get_model(phase='test', cfg=cfg) _ = model.inference(input_tensor=test_input_tensor, name='DenseNet', reuse=False) with tf.Session() as sess: _stats_graph(sess.graph) print('Complete') if __name__ == '__main__': """ test code """ _model_profile() _inference_time_profile()
32.732057
115
0.571115
7efe91aae3deedf2efdf46b70ade6a3bdf7749da
2,598
py
Python
solvate/__init__.py
michaltykac/SolvateAminoAcids
cde6364a1ab9f4188975e1e4ea7296d6655cc6a9
[ "BSD-3-Clause" ]
1
2020-12-08T16:24:33.000Z
2020-12-08T16:24:33.000Z
solvate/__init__.py
michaltykac/SolvateAminoAcids
cde6364a1ab9f4188975e1e4ea7296d6655cc6a9
[ "BSD-3-Clause" ]
null
null
null
solvate/__init__.py
michaltykac/SolvateAminoAcids
cde6364a1ab9f4188975e1e4ea7296d6655cc6a9
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: UTF-8 -*- # \file __init__.py # \brief This file initialises the package. # # This file firstly denotes this folder as containing python package and secondly it makes some of the solvate # parts easily accessible. # # Copyright by the Authors and individual contributors. All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: # 1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. # 2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. # 3) Neither the name of Michal Tykac nor the names of this code's contributors may be used to endorse or promote products derived from this software without specific prior written permission. # # This software is provided by the copyright holder and contributors "as is" and any express or implied warranties, including, but not limitted to, the implied warranties of merchantibility and fitness for a particular purpose are disclaimed. In no event shall the copyright owner or the contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limitted to, procurement of substitute goods or services, loss of use, data or profits, or business interuption) however caused and on any theory of liability, whether in contract, strict liability or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage. # # \author Michal Tykac # \author Lada Biedermannová # \author Jiří Černý # \version 0.1.0 # \date DEC 2020 ###################################################### from solvate.solvate_globals import globalSettings from solvate.solvate_log import startLog, endLog from solvate.solvate_structures import parseInputCoordinates from solvate.solvate_structures import getAllFragmentFragments from solvate.solvate_structures import getAllResidueFragments from solvate.solvate_structures import combineAndAddWaters from solvate.solvate_structures import writeOutStructures from solvate.solvate_matchFragments import matchFragments from solvate.solvate_predictWaters import predictWaters from solvate.solvate_predictWaters import removeClashes from solvate.solvate_predictWaters import clusterWaters
74.228571
760
0.789838
aa465ebf62cb9434237fe46c28253e3398e6213b
1,842
py
Python
tests/test_det_city_council.py
Anphisa/city-scrapers
d8daf6c7a8207efc209277c017faffda430b2ef3
[ "MIT" ]
null
null
null
tests/test_det_city_council.py
Anphisa/city-scrapers
d8daf6c7a8207efc209277c017faffda430b2ef3
[ "MIT" ]
null
null
null
tests/test_det_city_council.py
Anphisa/city-scrapers
d8daf6c7a8207efc209277c017faffda430b2ef3
[ "MIT" ]
null
null
null
from datetime import datetime import pytest # noqa from freezegun import freeze_time from tests.utils import file_response from city_scrapers.constants import COMMITTEE, TENTATIVE from city_scrapers.spiders.det_city_council import DetCityCouncilSpider freezer = freeze_time('2019-02-22') freezer.start() test_response = file_response( 'files/det_city_council.html', url='https://detroitmi.gov/events/public-health-and-safety-standing-committee-02-25-19' ) spider = DetCityCouncilSpider() item = spider.parse_event_page(test_response) freezer.stop() def test_title(): assert item['title'] == 'Public Health and Safety Standing Committee' def test_description(): assert item['description'] == '' def test_start(): assert item['start'] == datetime(2019, 2, 25, 10, 0) def test_end(): assert item['end'] == datetime(2019, 2, 25, 13, 0) def test_time_notes(): assert item['time_notes'] == 'Estimated 3 hour duration' def test_id(): assert item['id' ] == 'det_city_council/201902251000/x/public_health_and_safety_standing_committee' def test_status(): assert item['status'] == TENTATIVE def test_location(): assert item['location'] == { 'name': 'Committee of the Whole Room', 'address': '2 Woodward Avenue, Suite 1300 Detroit, MI 48226' } def test_source(): assert item[ 'source' ] == 'https://detroitmi.gov/events/public-health-and-safety-standing-committee-02-25-19' def test_links(): assert item['links'] == [{ 'href': 'https://detroitmi.gov/sites/detroitmi.localhost/files/events/2019-02/cal%202-25-19%20PHS.pdf', # noqa 'title': 'cal 2-25-19 PHS.pdf' }] def test_all_day(): assert item['all_day'] is False def test_classification(): assert item['classification'] == COMMITTEE
23.316456
115
0.689468
164ee4a5debd7665d2804744119f59832d1c50f7
4,774
py
Python
landbosse/model/Manager.py
jp5000/LandBOSSE
88b471fa71e0ee17a35ee8a2843a256b04483865
[ "Apache-2.0" ]
null
null
null
landbosse/model/Manager.py
jp5000/LandBOSSE
88b471fa71e0ee17a35ee8a2843a256b04483865
[ "Apache-2.0" ]
null
null
null
landbosse/model/Manager.py
jp5000/LandBOSSE
88b471fa71e0ee17a35ee8a2843a256b04483865
[ "Apache-2.0" ]
null
null
null
import traceback import math from .ManagementCost import ManagementCost from .FoundationCost import FoundationCost from .SubstationCost import SubstationCost from .GridConnectionCost import GridConnectionCost from .SitePreparationCost import SitePreparationCost from .CollectionCost import Cable, Array, ArraySystem from .ErectionCost import ErectionCost from .DevelopmentCost import DevelopmentCost class Manager: """ The Manager class distributes input and output dictionaries among the various modules. It maintains the hierarchical dictionary structure. """ def __init__(self, input_dict, output_dict): """ This initializer sets up the instance variables of: self.cost_modules: A list of cost module instances. Each of the instances must implement the method input_output. self.input_dict: A placeholder for the inputs dictionary self.output_dict: A placeholder for the output dictionary """ self.input_dict = input_dict self.output_dict = output_dict def execute_landbosse(self, project_name): try: # Create weather window that will be used for all tasks (window for entire project; selected to restrict to seasons and hours specified) weather_data_user_input = self.input_dict['weather_window'] season_construct = self.input_dict['season_construct'] time_construct = self.input_dict['time_construct'] daily_operational_hours = self.input_dict['hour_day'][time_construct] # Filtered window. Restrict to the seasons and hours specified. filtered_weather_window = weather_data_user_input.loc[(weather_data_user_input['Season'].isin(season_construct)) & (weather_data_user_input['Time window'] == time_construct)] filtered_weather_window = filtered_weather_window[0:(math.ceil(self.input_dict['construct_duration'] * 30 * daily_operational_hours))] # Rename weather data to specify types self.input_dict['weather_window'] = filtered_weather_window self.input_dict['weather_data_user_input'] = weather_data_user_input foundation_cost = FoundationCost(input_dict=self.input_dict, output_dict=self.output_dict, project_name=project_name) foundation_cost.run_module() roads_cost = SitePreparationCost(input_dict=self.input_dict, output_dict=self.output_dict, project_name=project_name) roads_cost.run_module() substation_cost = SubstationCost(input_dict=self.input_dict, output_dict=self.output_dict, project_name=project_name) substation_cost.run_module() transdist_cost = GridConnectionCost(input_dict=self.input_dict, output_dict=self.output_dict, project_name=project_name) transdist_cost.run_module() collection_cost = ArraySystem(input_dict=self.input_dict, output_dict=self.output_dict, project_name=project_name) collection_cost.run_module() development_cost = DevelopmentCost(input_dict=self.input_dict, output_dict=self.output_dict, project_name=project_name) development_cost.run_module() erection_cost_output_dict = dict() erection_cost = ErectionCost( input_dict=self.input_dict, output_dict=self.output_dict, project_name=project_name ) erection_cost.run_module() self.output_dict['erection_cost'] = erection_cost_output_dict total_costs = self.output_dict['total_collection_cost'] total_costs = total_costs.append(self.output_dict['total_road_cost'], sort=False) total_costs = total_costs.append(self.output_dict['total_transdist_cost'], sort=False) total_costs = total_costs.append(self.output_dict['total_substation_cost'], sort=False) total_costs = total_costs.append(self.output_dict['total_foundation_cost'], sort=False) total_costs = total_costs.append(self.output_dict['total_erection_cost'], sort=False) total_costs = total_costs.append(self.output_dict['total_development_cost'],sort=False) self.input_dict['project_value_usd'] = total_costs.sum(numeric_only=True)[0] self.input_dict['foundation_cost_usd'] = self.output_dict['total_foundation_cost'].sum(numeric_only=True)[0] management_cost = ManagementCost(input_dict=self.input_dict, output_dict=self.output_dict, project_name=project_name) management_cost.run_module() return 0 except Exception: traceback.print_exc() return 1 # module did not run successfully
49.216495
186
0.711982
0113a7da0a7f538dcd9ddec7f84e0dcb1d625851
1,679
py
Python
warbler.py/analyze/2.0-audio.py
braycarlson/warbler.py
6746dc6479c9360811634c2d627606d788538d7e
[ "MIT" ]
null
null
null
warbler.py/analyze/2.0-audio.py
braycarlson/warbler.py
6746dc6479c9360811634c2d627606d788538d7e
[ "MIT" ]
null
null
null
warbler.py/analyze/2.0-audio.py
braycarlson/warbler.py
6746dc6479c9360811634c2d627606d788538d7e
[ "MIT" ]
1
2022-03-31T21:44:03.000Z
2022-03-31T21:44:03.000Z
import numpy as np import shutil import matplotlib.pyplot as plt from parameters import Parameters from path import DATA, SEGMENT from pathlib import Path from scipy.io import wavfile from spectrogram.axes import SpectrogramAxes from spectrogram.plot import ( create_luscinia_spectrogram, # create_spectrogram ) from vocalseg.utils import ( butter_bandpass_filter, int16tofloat32 ) # Print without truncation np.set_printoptions(threshold=np.inf) # Parameters file = SEGMENT.joinpath('parameters.json') parameters = Parameters(file) def main(): parameters.n_fft = 4096 parameters.hop_length_ms = 1 parameters.win_length_ms = 5 parameters.ref_level_db = 50 parameters.pre = 0.97 parameters.min_level_db = -50 parameters.butter_lowcut = 1500 parameters.butter_highcut = 10000 # path = DATA.joinpath('LLbLg_STE2017/wav/STE01.1_LLbLg2017.wav') path = DATA.joinpath('RbRY_STE2017/wav/STE01_RbRY2017.wav') create_luscinia_spectrogram(path, parameters) plt.savefig( path.stem, bbox_inches='tight', pad_inches=0.5 ) plt.show() plt.close() rate, data = wavfile.read(path) data = butter_bandpass_filter( int16tofloat32(data), parameters.butter_lowcut, parameters.butter_highcut, rate ) original = 'original' + '_' + path.name filtered = 'filtered' + '_' + path.name Path(original).unlink(missing_ok=True) Path(filtered).unlink(missing_ok=True) # Copy the original .wav shutil.copy(path, original) # Save the filtered .wav wavfile.write(filtered, rate, data) if __name__ == '__main__': main()
22.386667
69
0.702204
d8634d6c20ecfc527c1cd54fbee7e97302c6a7a9
2,363
py
Python
examples/example_asr.py
maciekszul/python-meegkit
a26e66b362d16c8865c13c488c588400719bae7d
[ "BSD-3-Clause" ]
80
2018-02-13T13:51:09.000Z
2022-03-31T19:35:09.000Z
examples/example_asr.py
maciekszul/python-meegkit
a26e66b362d16c8865c13c488c588400719bae7d
[ "BSD-3-Clause" ]
56
2019-03-13T14:55:42.000Z
2022-01-10T15:40:41.000Z
examples/example_asr.py
maciekszul/python-meegkit
a26e66b362d16c8865c13c488c588400719bae7d
[ "BSD-3-Clause" ]
23
2018-06-29T07:24:19.000Z
2022-03-21T09:25:51.000Z
""" ASR example =========== Denoise data using Artifact Subspace Reconstruction. Uses meegkit.ASR(). """ import os import numpy as np import matplotlib.pyplot as plt from meegkit.asr import ASR from meegkit.utils.matrix import sliding_window # THIS_FOLDER = os.path.dirname(os.path.abspath(__file__)) raw = np.load(os.path.join('..', 'tests', 'data', 'eeg_raw.npy')) sfreq = 250 ############################################################################### # Calibration and processing # ----------------------------------------------------------------------------- # Train on a clean portion of data asr = ASR(method='euclid') train_idx = np.arange(0 * sfreq, 30 * sfreq, dtype=int) _, sample_mask = asr.fit(raw[:, train_idx]) # Apply filter using sliding (non-overlapping) windows X = sliding_window(raw, window=int(sfreq), step=int(sfreq)) Y = np.zeros_like(X) for i in range(X.shape[1]): Y[:, i, :] = asr.transform(X[:, i, :]) raw = X.reshape(8, -1) # reshape to (n_chans, n_times) clean = Y.reshape(8, -1) ############################################################################### # Plot the results # ----------------------------------------------------------------------------- # # Data was trained on a 40s window from 5s to 45s onwards (gray filled area). # The algorithm then removes portions of this data with high amplitude # artifacts before running the calibration (hatched area = good). times = np.arange(raw.shape[-1]) / sfreq f, ax = plt.subplots(8, sharex=True, figsize=(8, 5)) for i in range(8): ax[i].fill_between(train_idx / sfreq, 0, 1, color='grey', alpha=.3, transform=ax[i].get_xaxis_transform(), label='calibration window') ax[i].fill_between(train_idx / sfreq, 0, 1, where=sample_mask.flat, transform=ax[i].get_xaxis_transform(), facecolor='none', hatch='...', edgecolor='k', label='selected window') ax[i].plot(times, raw[i], lw=.5, label='before ASR') ax[i].plot(times, clean[i], label='after ASR', lw=.5) ax[i].set_ylim([-50, 50]) ax[i].set_ylabel(f'ch{i}') ax[i].set_yticks([]) ax[i].set_xlabel('Time (s)') ax[0].legend(fontsize='small', bbox_to_anchor=(1.04, 1), borderaxespad=0) plt.subplots_adjust(hspace=0, right=0.75) plt.suptitle('Before/after ASR') plt.show()
35.80303
79
0.562844
77247a05d3243a9bc9e82e0852a5cf50bd457a0a
37,083
py
Python
great_expectations/execution_engine/sqlalchemy_execution_engine.py
vikramaditya91/great_expectations
4ebcdc0414bec3cf336b43cc54ca63bddb05bac3
[ "Apache-2.0" ]
null
null
null
great_expectations/execution_engine/sqlalchemy_execution_engine.py
vikramaditya91/great_expectations
4ebcdc0414bec3cf336b43cc54ca63bddb05bac3
[ "Apache-2.0" ]
null
null
null
great_expectations/execution_engine/sqlalchemy_execution_engine.py
vikramaditya91/great_expectations
4ebcdc0414bec3cf336b43cc54ca63bddb05bac3
[ "Apache-2.0" ]
null
null
null
import copy import datetime import logging import traceback from pathlib import Path from typing import Any, Dict, Iterable, List, Optional, Tuple, Union from urllib.parse import urlparse from packaging.version import parse as parse_version from great_expectations._version import get_versions # isort:skip __version__ = get_versions()["version"] # isort:skip del get_versions # isort:skip from great_expectations.core import IDDict from great_expectations.core.batch import BatchMarkers, BatchSpec from great_expectations.core.batch_spec import ( RuntimeDataBatchSpec, RuntimeQueryBatchSpec, SqlAlchemyDatasourceBatchSpec, ) from great_expectations.core.util import convert_to_json_serializable from great_expectations.exceptions import ( DatasourceKeyPairAuthBadPassphraseError, ExecutionEngineError, GreatExpectationsError, InvalidBatchSpecError, InvalidConfigError, ) from great_expectations.execution_engine import ExecutionEngine from great_expectations.execution_engine.execution_engine import MetricDomainTypes from great_expectations.execution_engine.sqlalchemy_batch_data import ( SqlAlchemyBatchData, ) from great_expectations.expectations.row_conditions import parse_condition_to_sqlalchemy from great_expectations.util import filter_properties_dict, import_library_module from great_expectations.validator.validation_graph import MetricConfiguration logger = logging.getLogger(__name__) try: import sqlalchemy as sa except ImportError: sa = None try: from sqlalchemy.engine import reflection from sqlalchemy.engine.default import DefaultDialect from sqlalchemy.engine.url import URL from sqlalchemy.exc import OperationalError from sqlalchemy.sql import Select from sqlalchemy.sql.elements import TextClause, quoted_name except ImportError: reflection = None DefaultDialect = None Select = None TextClause = None quoted_name = None OperationalError = None try: import psycopg2 import sqlalchemy.dialects.postgresql.psycopg2 as sqlalchemy_psycopg2 except (ImportError, KeyError): sqlalchemy_psycopg2 = None try: import sqlalchemy_redshift.dialect except ImportError: sqlalchemy_redshift = None try: import snowflake.sqlalchemy.snowdialect if sa: # Sometimes "snowflake-sqlalchemy" fails to self-register in certain environments, so we do it explicitly. # (see https://stackoverflow.com/questions/53284762/nosuchmoduleerror-cant-load-plugin-sqlalchemy-dialectssnowflake) sa.dialects.registry.register("snowflake", "snowflake.sqlalchemy", "dialect") except (ImportError, KeyError, AttributeError): snowflake = None try: import pybigquery.sqlalchemy_bigquery # Sometimes "pybigquery.sqlalchemy_bigquery" fails to self-register in certain environments, so we do it explicitly. # (see https://stackoverflow.com/questions/53284762/nosuchmoduleerror-cant-load-plugin-sqlalchemy-dialectssnowflake) sa.dialects.registry.register( "bigquery", "pybigquery.sqlalchemy_bigquery", "BigQueryDialect" ) try: getattr(pybigquery.sqlalchemy_bigquery, "INTEGER") bigquery_types_tuple = None except AttributeError: # In older versions of the pybigquery driver, types were not exported, so we use a hack logger.warning( "Old pybigquery driver version detected. Consider upgrading to 0.4.14 or later." ) from collections import namedtuple BigQueryTypes = namedtuple( "BigQueryTypes", sorted(pybigquery.sqlalchemy_bigquery._type_map) ) bigquery_types_tuple = BigQueryTypes(**pybigquery.sqlalchemy_bigquery._type_map) except (ImportError, AttributeError): bigquery_types_tuple = None pybigquery = None def _get_dialect_type_module(dialect): """Given a dialect, returns the dialect type, which is defines the engine/system that is used to communicates with the database/database implementation. Currently checks for RedShift/BigQuery dialects""" if dialect is None: logger.warning( "No sqlalchemy dialect found; relying in top-level sqlalchemy types." ) return sa try: # Redshift does not (yet) export types to top level; only recognize base SA types if isinstance(dialect, sqlalchemy_redshift.dialect.RedshiftDialect): return dialect.sa except (TypeError, AttributeError): pass # Bigquery works with newer versions, but use a patch if we had to define bigquery_types_tuple try: if ( isinstance( dialect, pybigquery.sqlalchemy_bigquery.BigQueryDialect, ) and bigquery_types_tuple is not None ): return bigquery_types_tuple except (TypeError, AttributeError): pass return dialect class SqlAlchemyExecutionEngine(ExecutionEngine): def __init__( self, name=None, credentials=None, data_context=None, engine=None, connection_string=None, url=None, batch_data_dict=None, create_temp_table=True, **kwargs, # These will be passed as optional parameters to the SQLAlchemy engine, **not** the ExecutionEngine ): """Builds a SqlAlchemyExecutionEngine, using a provided connection string/url/engine/credentials to access the desired database. Also initializes the dialect to be used and configures usage statistics. Args: name (str): \ The name of the SqlAlchemyExecutionEngine credentials: \ If the Execution Engine is not provided, the credentials can be used to build the Execution Engine. If the Engine is provided, it will be used instead data_context (DataContext): \ An object representing a Great Expectations project that can be used to access Expectation Suites and the Project Data itself engine (Engine): \ A SqlAlchemy Engine used to set the SqlAlchemyExecutionEngine being configured, useful if an Engine has already been configured and should be reused. Will override Credentials if provided. connection_string (string): \ If neither the engines nor the credentials have been provided, a connection string can be used to access the data. This will be overridden by both the engine and credentials if those are provided. url (string): \ If neither the engines, the credentials, nor the connection_string have been provided, a url can be used to access the data. This will be overridden by all other configuration options if any are provided. """ super().__init__(name=name, batch_data_dict=batch_data_dict) self._name = name self._credentials = credentials self._connection_string = connection_string self._url = url self._create_temp_table = create_temp_table if engine is not None: if credentials is not None: logger.warning( "Both credentials and engine were provided during initialization of SqlAlchemyExecutionEngine. " "Ignoring credentials." ) self.engine = engine elif credentials is not None: self.engine = self._build_engine(credentials=credentials, **kwargs) elif connection_string is not None: self.engine = sa.create_engine(connection_string, **kwargs) elif url is not None: self.drivername = urlparse(url).scheme self.engine = sa.create_engine(url, **kwargs) else: raise InvalidConfigError( "Credentials or an engine are required for a SqlAlchemyExecutionEngine." ) # Get the dialect **for purposes of identifying types** if self.engine.dialect.name.lower() in [ "postgresql", "mysql", "sqlite", "oracle", "mssql", ]: # These are the officially included and supported dialects by sqlalchemy self.dialect_module = import_library_module( module_name="sqlalchemy.dialects." + self.engine.dialect.name ) elif self.engine.dialect.name.lower() == "snowflake": self.dialect_module = import_library_module( module_name="snowflake.sqlalchemy.snowdialect" ) elif self.engine.dialect.name.lower() == "redshift": self.dialect_module = import_library_module( module_name="sqlalchemy_redshift.dialect" ) elif self.engine.dialect.name.lower() == "bigquery": self.dialect_module = import_library_module( module_name="pybigquery.sqlalchemy_bigquery" ) else: self.dialect_module = None if self.engine and self.engine.dialect.name.lower() in [ "sqlite", "mssql", "snowflake", "mysql", ]: # sqlite/mssql temp tables only persist within a connection so override the engine self.engine = self.engine.connect() # Send a connect event to provide dialect type if data_context is not None and getattr( data_context, "_usage_statistics_handler", None ): handler = data_context._usage_statistics_handler handler.send_usage_message( event="execution_engine.sqlalchemy.connect", event_payload={ "anonymized_name": handler._execution_engine_anonymizer.anonymize( self.name ), "sqlalchemy_dialect": self.engine.name, }, success=True, ) # Gather the call arguments of the present function (and add the "class_name"), filter out the Falsy values, # and set the instance "_config" variable equal to the resulting dictionary. self._config = { "name": name, "credentials": credentials, "data_context": data_context, "engine": engine, "connection_string": connection_string, "url": url, "batch_data_dict": batch_data_dict, "module_name": self.__class__.__module__, "class_name": self.__class__.__name__, } self._config.update(kwargs) filter_properties_dict(properties=self._config, inplace=True) @property def credentials(self): return self._credentials @property def connection_string(self): return self._connection_string @property def url(self): return self._url def _build_engine(self, credentials, **kwargs) -> "sa.engine.Engine": """ Using a set of given credentials, constructs an Execution Engine , connecting to a database using a URL or a private key path. """ # Update credentials with anything passed during connection time drivername = credentials.pop("drivername") schema_name = credentials.pop("schema_name", None) if schema_name is not None: logger.warning( "schema_name specified creating a URL with schema is not supported. Set a default " "schema on the user connecting to your database." ) create_engine_kwargs = kwargs connect_args = credentials.pop("connect_args", None) if connect_args: create_engine_kwargs["connect_args"] = connect_args if "private_key_path" in credentials: options, create_engine_kwargs = self._get_sqlalchemy_key_pair_auth_url( drivername, credentials ) else: options = sa.engine.url.URL(drivername, **credentials) self.drivername = drivername engine = sa.create_engine(options, **create_engine_kwargs) return engine def _get_sqlalchemy_key_pair_auth_url( self, drivername: str, credentials: dict ) -> Tuple["sa.engine.url.URL", Dict]: """ Utilizing a private key path and a passphrase in a given credentials dictionary, attempts to encode the provided values into a private key. If passphrase is incorrect, this will fail and an exception is raised. Args: drivername(str) - The name of the driver class credentials(dict) - A dictionary of database credentials used to access the database Returns: a tuple consisting of a url with the serialized key-pair authentication, and a dictionary of engine kwargs. """ from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives import serialization private_key_path = credentials.pop("private_key_path") private_key_passphrase = credentials.pop("private_key_passphrase") with Path(private_key_path).expanduser().resolve().open(mode="rb") as key: try: p_key = serialization.load_pem_private_key( key.read(), password=private_key_passphrase.encode() if private_key_passphrase else None, backend=default_backend(), ) except ValueError as e: if "incorrect password" in str(e).lower(): raise DatasourceKeyPairAuthBadPassphraseError( datasource_name="SqlAlchemyDatasource", message="Decryption of key failed, was the passphrase incorrect?", ) from e else: raise e pkb = p_key.private_bytes( encoding=serialization.Encoding.DER, format=serialization.PrivateFormat.PKCS8, encryption_algorithm=serialization.NoEncryption(), ) credentials_driver_name = credentials.pop("drivername", None) create_engine_kwargs = {"connect_args": {"private_key": pkb}} return ( sa.engine.url.URL(drivername or credentials_driver_name, **credentials), create_engine_kwargs, ) def get_compute_domain( self, domain_kwargs: Dict, domain_type: Union[str, MetricDomainTypes], accessor_keys: Optional[Iterable[str]] = None, ) -> Tuple[Select, dict, dict]: """Uses a given batch dictionary and domain kwargs to obtain a SqlAlchemy column object. Args: domain_kwargs (dict) - A dictionary consisting of the domain kwargs specifying which data to obtain domain_type (str or MetricDomainTypes) - an Enum value indicating which metric domain the user would like to be using, or a corresponding string value representing it. String types include "identity", "column", "column_pair", "table" and "other". Enum types include capitalized versions of these from the class MetricDomainTypes. accessor_keys (str iterable) - keys that are part of the compute domain but should be ignored when describing the domain and simply transferred with their associated values into accessor_domain_kwargs. Returns: SqlAlchemy column """ # Extracting value from enum if it is given for future computation domain_type = MetricDomainTypes(domain_type) batch_id = domain_kwargs.get("batch_id") if batch_id is None: # We allow no batch id specified if there is only one batch if self.active_batch_data: data_object = self.active_batch_data else: raise GreatExpectationsError( "No batch is specified, but could not identify a loaded batch." ) else: if batch_id in self.loaded_batch_data_dict: data_object = self.loaded_batch_data_dict[batch_id] else: raise GreatExpectationsError( f"Unable to find batch with batch_id {batch_id}" ) compute_domain_kwargs = copy.deepcopy(domain_kwargs) accessor_domain_kwargs = dict() if "table" in domain_kwargs and domain_kwargs["table"] is not None: # TODO: Add logic to handle record_set_name once implemented # (i.e. multiple record sets (tables) in one batch if domain_kwargs["table"] != data_object.selectable.name: selectable = sa.Table( domain_kwargs["table"], sa.MetaData(), schema_name=data_object._schema_name, ) else: selectable = data_object.selectable elif "query" in domain_kwargs: raise ValueError( "query is not currently supported by SqlAlchemyExecutionEngine" ) else: selectable = data_object.selectable if ( "row_condition" in domain_kwargs and domain_kwargs["row_condition"] is not None ): condition_parser = domain_kwargs["condition_parser"] if condition_parser == "great_expectations__experimental__": parsed_condition = parse_condition_to_sqlalchemy( domain_kwargs["row_condition"] ) selectable = sa.select( "*", from_obj=selectable, whereclause=parsed_condition ) else: raise GreatExpectationsError( "SqlAlchemyExecutionEngine only supports the great_expectations condition_parser." ) # Warning user if accessor keys are in any domain that is not of type table, will be ignored if ( domain_type != MetricDomainTypes.TABLE and accessor_keys is not None and len(list(accessor_keys)) > 0 ): logger.warning( "Accessor keys ignored since Metric Domain Type is not 'table'" ) if domain_type == MetricDomainTypes.TABLE: if accessor_keys is not None and len(list(accessor_keys)) > 0: for key in accessor_keys: accessor_domain_kwargs[key] = compute_domain_kwargs.pop(key) if len(domain_kwargs.keys()) > 0: # Warn user if kwarg not "normal". unexpected_keys: set = set(compute_domain_kwargs.keys()).difference( { "batch_id", "table", "row_condition", "condition_parser", } ) if len(unexpected_keys) > 0: unexpected_keys_str: str = ", ".join( map(lambda element: f'"{element}"', unexpected_keys) ) logger.warning( f'Unexpected key(s) {unexpected_keys_str} found in domain_kwargs for domain type "{domain_type.value}".' ) return selectable, compute_domain_kwargs, accessor_domain_kwargs # If user has stated they want a column, checking if one is provided, and elif domain_type == MetricDomainTypes.COLUMN: if "column" in compute_domain_kwargs: # Checking if case- sensitive and using appropriate name if self.active_batch_data.use_quoted_name: accessor_domain_kwargs["column"] = quoted_name( compute_domain_kwargs.pop("column") ) else: accessor_domain_kwargs["column"] = compute_domain_kwargs.pop( "column" ) else: # If column not given raise GreatExpectationsError( "Column not provided in compute_domain_kwargs" ) # Else, if column pair values requested elif domain_type == MetricDomainTypes.COLUMN_PAIR: # Ensuring column_A and column_B parameters provided if ( "column_A" in compute_domain_kwargs and "column_B" in compute_domain_kwargs ): if self.active_batch_data.use_quoted_name: # If case matters... accessor_domain_kwargs["column_A"] = quoted_name( compute_domain_kwargs.pop("column_A") ) accessor_domain_kwargs["column_B"] = quoted_name( compute_domain_kwargs.pop("column_B") ) else: accessor_domain_kwargs["column_A"] = compute_domain_kwargs.pop( "column_A" ) accessor_domain_kwargs["column_B"] = compute_domain_kwargs.pop( "column_B" ) else: raise GreatExpectationsError( "column_A or column_B not found within compute_domain_kwargs" ) # Checking if table or identity or other provided, column is not specified. If it is, warning the user elif domain_type == MetricDomainTypes.MULTICOLUMN: if "columns" in compute_domain_kwargs: # If columns exist accessor_domain_kwargs["columns"] = compute_domain_kwargs.pop("columns") # Filtering if identity elif domain_type == MetricDomainTypes.IDENTITY: # If we would like our data to become a single column if "column" in compute_domain_kwargs: if self.active_batch_data.use_quoted_name: selectable = sa.select( [sa.column(quoted_name(compute_domain_kwargs["column"]))] ).select_from(selectable) else: selectable = sa.select( [sa.column(compute_domain_kwargs["column"])] ).select_from(selectable) # If we would like our data to now become a column pair elif ("column_A" in compute_domain_kwargs) and ( "column_B" in compute_domain_kwargs ): if self.active_batch_data.use_quoted_name: selectable = sa.select( [ sa.column(quoted_name(compute_domain_kwargs["column_A"])), sa.column(quoted_name(compute_domain_kwargs["column_B"])), ] ).select_from(selectable) else: selectable = sa.select( [ sa.column(compute_domain_kwargs["column_A"]), sa.column(compute_domain_kwargs["column_B"]), ] ).select_from(selectable) else: # If we would like our data to become a multicolumn if "columns" in compute_domain_kwargs: if self.active_batch_data.use_quoted_name: # Building a list of column objects used for sql alchemy selection to_select = [ sa.column(quoted_name(col)) for col in compute_domain_kwargs["columns"] ] selectable = sa.select(to_select).select_from(selectable) else: to_select = [ sa.column(col) for col in compute_domain_kwargs["columns"] ] selectable = sa.select(to_select).select_from(selectable) # Letting selectable fall through return selectable, compute_domain_kwargs, accessor_domain_kwargs def resolve_metric_bundle( self, metric_fn_bundle: Iterable[Tuple[MetricConfiguration, Any, dict, dict]], ) -> dict: """For every metric in a set of Metrics to resolve, obtains necessary metric keyword arguments and builds bundles of the metrics into one large query dictionary so that they are all executed simultaneously. Will fail if bundling the metrics together is not possible. Args: metric_fn_bundle (Iterable[Tuple[MetricConfiguration, Callable, dict]): \ A Dictionary containing a MetricProvider's MetricConfiguration (its unique identifier), its metric provider function (the function that actually executes the metric), and the arguments to pass to the metric provider function. metrics (Dict[Tuple, Any]): \ A dictionary of metrics defined in the registry and corresponding arguments Returns: A dictionary of metric names and their corresponding now-queried values. """ resolved_metrics = dict() # We need a different query for each domain (where clause). queries: Dict[Tuple, dict] = dict() for ( metric_to_resolve, engine_fn, compute_domain_kwargs, accessor_domain_kwargs, metric_provider_kwargs, ) in metric_fn_bundle: if not isinstance(compute_domain_kwargs, IDDict): compute_domain_kwargs = IDDict(compute_domain_kwargs) domain_id = compute_domain_kwargs.to_id() if domain_id not in queries: queries[domain_id] = { "select": [], "ids": [], "domain_kwargs": compute_domain_kwargs, } queries[domain_id]["select"].append( engine_fn.label(metric_to_resolve.metric_name) ) queries[domain_id]["ids"].append(metric_to_resolve.id) for query in queries.values(): selectable, compute_domain_kwargs, _ = self.get_compute_domain( query["domain_kwargs"], domain_type=MetricDomainTypes.IDENTITY.value ) assert len(query["select"]) == len(query["ids"]) try: res = self.engine.execute( sa.select(query["select"]).select_from(selectable) ).fetchall() logger.debug( f"SqlAlchemyExecutionEngine computed {len(res[0])} metrics on domain_id {IDDict(compute_domain_kwargs).to_id()}" ) except OperationalError as oe: exception_message: str = "An SQL execution Exception occurred. " exception_traceback: str = traceback.format_exc() exception_message += f'{type(oe).__name__}: "{str(oe)}". Traceback: "{exception_traceback}".' logger.error(exception_message) raise ExecutionEngineError(message=exception_message) assert ( len(res) == 1 ), "all bundle-computed metrics must be single-value statistics" assert len(query["ids"]) == len( res[0] ), "unexpected number of metrics returned" for idx, id in enumerate(query["ids"]): resolved_metrics[id] = convert_to_json_serializable(res[0][idx]) return resolved_metrics ### Splitter methods for partitioning tables ### def _split_on_whole_table(self, table_name: str, batch_identifiers: dict): """'Split' by returning the whole table""" # return sa.column(column_name) == batch_identifiers[column_name] return 1 == 1 def _split_on_column_value( self, table_name: str, column_name: str, batch_identifiers: dict ): """Split using the values in the named column""" return sa.column(column_name) == batch_identifiers[column_name] def _split_on_converted_datetime( self, table_name: str, column_name: str, batch_identifiers: dict, date_format_string: str = "%Y-%m-%d", ): """Convert the values in the named column to the given date_format, and split on that""" return ( sa.func.strftime( date_format_string, sa.column(column_name), ) == batch_identifiers[column_name] ) def _split_on_divided_integer( self, table_name: str, column_name: str, divisor: int, batch_identifiers: dict ): """Divide the values in the named column by `divisor`, and split on that""" return ( sa.cast(sa.column(column_name) / divisor, sa.Integer) == batch_identifiers[column_name] ) def _split_on_mod_integer( self, table_name: str, column_name: str, mod: int, batch_identifiers: dict ): """Divide the values in the named column by `divisor`, and split on that""" return sa.column(column_name) % mod == batch_identifiers[column_name] def _split_on_multi_column_values( self, table_name: str, column_names: List[str], batch_identifiers: dict ): """Split on the joint values in the named columns""" return sa.and_( *[ sa.column(column_name) == column_value for column_name, column_value in batch_identifiers.items() ] ) def _split_on_hashed_column( self, table_name: str, column_name: str, hash_digits: int, batch_identifiers: dict, ): """Split on the hashed value of the named column""" return ( sa.func.right(sa.func.md5(sa.column(column_name)), hash_digits) == batch_identifiers[column_name] ) ### Sampling methods ### # _sample_using_limit # _sample_using_random # _sample_using_mod # _sample_using_a_list # _sample_using_md5 def _sample_using_random( self, p: float = 0.1, ): """Take a random sample of rows, retaining proportion p Note: the Random function behaves differently on different dialects of SQL """ return sa.func.random() < p def _sample_using_mod( self, column_name, mod: int, value: int, ): """Take the mod of named column, and only keep rows that match the given value""" return sa.column(column_name) % mod == value def _sample_using_a_list( self, column_name: str, value_list: list, ): """Match the values in the named column against value_list, and only keep the matches""" return sa.column(column_name).in_(value_list) def _sample_using_md5( self, column_name: str, hash_digits: int = 1, hash_value: str = "f", ): """Hash the values in the named column, and split on that""" return ( sa.func.right( sa.func.md5(sa.cast(sa.column(column_name), sa.Text)), hash_digits ) == hash_value ) def _build_selectable_from_batch_spec(self, batch_spec) -> Union[Select, str]: table_name: str = batch_spec["table_name"] if "splitter_method" in batch_spec: splitter_fn = getattr(self, batch_spec["splitter_method"]) split_clause = splitter_fn( table_name=table_name, batch_identifiers=batch_spec["batch_identifiers"], **batch_spec["splitter_kwargs"], ) else: split_clause = True if "sampling_method" in batch_spec: if batch_spec["sampling_method"] == "_sample_using_limit": # SQLalchemy's semantics for LIMIT are different than normal WHERE clauses, # so the business logic for building the query needs to be different. if self.engine.dialect.name.lower() == "oracle": # limit doesn't compile properly for oracle so we will append rownum to query string later raw_query = ( sa.select("*") .select_from( sa.table( table_name, schema=batch_spec.get("schema_name", None) ) ) .where(split_clause) ) query = str( raw_query.compile( self.engine, compile_kwargs={"literal_binds": True} ) ) query += "\nAND ROWNUM <= %d" % batch_spec["sampling_kwargs"]["n"] return query else: return ( sa.select("*") .select_from( sa.table( table_name, schema=batch_spec.get("schema_name", None) ) ) .where(split_clause) .limit(batch_spec["sampling_kwargs"]["n"]) ) else: sampler_fn = getattr(self, batch_spec["sampling_method"]) return ( sa.select("*") .select_from( sa.table(table_name, schema=batch_spec.get("schema_name", None)) ) .where( sa.and_( split_clause, sampler_fn(**batch_spec["sampling_kwargs"]), ) ) ) return ( sa.select("*") .select_from( sa.table(table_name, schema=batch_spec.get("schema_name", None)) ) .where(split_clause) ) def get_batch_data_and_markers( self, batch_spec: BatchSpec ) -> Tuple[Any, BatchMarkers]: if not isinstance( batch_spec, (SqlAlchemyDatasourceBatchSpec, RuntimeQueryBatchSpec) ): raise InvalidBatchSpecError( f"""SqlAlchemyExecutionEngine accepts batch_spec only of type SqlAlchemyDatasourceBatchSpec or RuntimeQueryBatchSpec (illegal type "{str(type(batch_spec))}" was received). """ ) batch_data: SqlAlchemyBatchData batch_markers: BatchMarkers = BatchMarkers( { "ge_load_time": datetime.datetime.now(datetime.timezone.utc).strftime( "%Y%m%dT%H%M%S.%fZ" ) } ) temp_table_name: Optional[str] if "bigquery_temp_table" in batch_spec: temp_table_name = batch_spec.get("bigquery_temp_table") else: temp_table_name = None source_table_name = batch_spec.get("table_name", None) source_schema_name = batch_spec.get("schema_name", None) if isinstance(batch_spec, RuntimeQueryBatchSpec): # query != None is already checked when RuntimeQueryBatchSpec is instantiated query: str = batch_spec.query batch_spec.query = "SQLQuery" batch_data = SqlAlchemyBatchData( execution_engine=self, query=query, temp_table_name=temp_table_name, create_temp_table=batch_spec.get( "create_temp_table", self._create_temp_table ), source_table_name=source_table_name, source_schema_name=source_schema_name, ) elif isinstance(batch_spec, SqlAlchemyDatasourceBatchSpec): if self.engine.dialect.name.lower() == "oracle": selectable: str = self._build_selectable_from_batch_spec( batch_spec=batch_spec ) else: selectable: Select = self._build_selectable_from_batch_spec( batch_spec=batch_spec ) batch_data = SqlAlchemyBatchData( execution_engine=self, selectable=selectable, temp_table_name=temp_table_name, create_temp_table=batch_spec.get( "create_temp_table", self._create_temp_table ), source_table_name=source_table_name, source_schema_name=source_schema_name, ) return batch_data, batch_markers
40.750549
136
0.590621
cb4d4e5b8f5ab2bb45d02cea8a41f97cfbadc7f8
5,223
py
Python
android_complex.py
govind794/Python-Appium-Automation
093165480332f0fc05dde679a859cee2feccdae1
[ "MIT" ]
null
null
null
android_complex.py
govind794/Python-Appium-Automation
093165480332f0fc05dde679a859cee2feccdae1
[ "MIT" ]
null
null
null
android_complex.py
govind794/Python-Appium-Automation
093165480332f0fc05dde679a859cee2feccdae1
[ "MIT" ]
null
null
null
import os import unittest from appium import webdriver from appium.webdriver.common.touch_action import TouchAction from appium.webdriver.common.multi_action import MultiAction from time import sleep # Returns abs path relative to this file and not cwd PATH = lambda p: os.path.abspath( os.path.join(os.path.dirname(__file__), p) ) class ComplexAndroidTests(unittest.TestCase): def setUp(self): desired_caps = {} desired_caps['platformName'] = 'Android' desired_caps['platformVersion'] = '4.2' desired_caps['deviceName'] = 'emulator-5554' desired_caps['app'] = PATH( '../../..//AppiumSandbox/app/com.aefyr.sai_2020-06-19.apk' ) self.driver = webdriver.Remote('http://localhost:4723/wd/hub', desired_caps) def tearDown(self): self.driver.quit() def test_find_elements(self): # pause a moment, so xml generation can occur sleep(2) els = self.driver.find_elements_by_xpath('//android.widget.TextView') self.assertEqual('Split APKs Installer', els[0].text) el = self.driver.find_element_by_xpath('//android.widget.TextView[contains(@text, "Animat")]') self.assertEqual('Animation', el.text) el = self.driver.find_element_by_accessibility_id("App") el.click() els = self.driver.find_elements_by_android_uiautomator('new UiSelector().clickable(true)') # there are more, but at least 10 visible self.assertLess(10, len(els)) # the list includes 2 before the main visible elements self.assertEqual('Action Bar', els[2].text) els = self.driver.find_elements_by_xpath('//android.widget.TextView') self.assertLess(10, len(els)) self.assertEqual('Action Bar', els[1].text) def test_scroll(self): sleep(2) els = self.driver.find_elements_by_xpath('android.widget.Button') self.driver.scroll(els[7], els[3]) el = self.driver.find_element_by_accessibility_id('Views') def test_smiley_face(self): # just for the fun of it. # this doesn't really assert anything. self.driver.find_element_by_accessibility_id('Graphics').click() els = self.driver.find_elements_by_class_name('android.widget.TextView') self.driver.scroll(els[len(els)-1], els[0]) el = None try: el = self.driver.find_element_by_accessibility_id('Touch Paint') except Exception as e: els = self.driver.find_elements_by_class_name('android.widget.TextView') self.driver.scroll(els[len(els)-1], els[0]) if el is None: el = self.driver.find_element_by_accessibility_id('Touch Paint') el.click() # paint e1 = TouchAction() e1.press(x=150, y=100).release() e2 = TouchAction() e2.press(x=250, y=100).release() smile = TouchAction() smile.press(x=110, y=200) \ .move_to(x=1, y=1) \ .move_to(x=1, y=1) \ .move_to(x=1, y=1) \ .move_to(x=1, y=1) \ .move_to(x=1, y=1) \ .move_to(x=2, y=1) \ .move_to(x=2, y=1) \ .move_to(x=2, y=1) \ .move_to(x=2, y=1) \ .move_to(x=2, y=1) \ .move_to(x=3, y=1) \ .move_to(x=3, y=1) \ .move_to(x=3, y=1) \ .move_to(x=3, y=1) \ .move_to(x=3, y=1) \ .move_to(x=4, y=1) \ .move_to(x=4, y=1) \ .move_to(x=4, y=1) \ .move_to(x=4, y=1) \ .move_to(x=4, y=1) \ .move_to(x=5, y=1) \ .move_to(x=5, y=1) \ .move_to(x=5, y=1) \ .move_to(x=5, y=1) \ .move_to(x=5, y=1) \ .move_to(x=5, y=0) \ .move_to(x=5, y=0) \ .move_to(x=5, y=0) \ .move_to(x=5, y=0) \ .move_to(x=5, y=0) \ .move_to(x=5, y=0) \ .move_to(x=5, y=0) \ .move_to(x=5, y=0) \ .move_to(x=5, y=-1) \ .move_to(x=5, y=-1) \ .move_to(x=5, y=-1) \ .move_to(x=5, y=-1) \ .move_to(x=5, y=-1) \ .move_to(x=4, y=-1) \ .move_to(x=4, y=-1) \ .move_to(x=4, y=-1) \ .move_to(x=4, y=-1) \ .move_to(x=4, y=-1) \ .move_to(x=3, y=-1) \ .move_to(x=3, y=-1) \ .move_to(x=3, y=-1) \ .move_to(x=3, y=-1) \ .move_to(x=3, y=-1) \ .move_to(x=2, y=-1) \ .move_to(x=2, y=-1) \ .move_to(x=2, y=-1) \ .move_to(x=2, y=-1) \ .move_to(x=2, y=-1) \ .move_to(x=1, y=-1) \ .move_to(x=1, y=-1) \ .move_to(x=1, y=-1) \ .move_to(x=1, y=-1) \ .move_to(x=1, y=-1) smile.release() ma = MultiAction(self.driver) ma.add(e1, e2, smile) ma.perform() # so you can see it sleep(10) if __name__ == '__main__': suite = unittest.TestLoader().loadTestsFromTestCase(ComplexAndroidTests) unittest.TextTestRunner(verbosity=2).run(suite)
32.64375
102
0.529198
7e4d7f3b009cccdbe2d7489cc9b3f8c5c3da1723
10,226
py
Python
snorkel/learning/structure/synthetic.py
Conengmo/snorkel
36868e8a84de19b94e1c4b8eceaa64969a61a46b
[ "Apache-2.0" ]
30
2019-08-22T19:27:59.000Z
2022-03-13T22:03:15.000Z
snorkel/learning/structure/synthetic.py
Conengmo/snorkel
36868e8a84de19b94e1c4b8eceaa64969a61a46b
[ "Apache-2.0" ]
2
2019-08-22T16:51:58.000Z
2022-03-21T02:59:18.000Z
snorkel/learning/structure/synthetic.py
Conengmo/snorkel
36868e8a84de19b94e1c4b8eceaa64969a61a46b
[ "Apache-2.0" ]
31
2019-08-22T19:28:08.000Z
2022-03-23T12:50:49.000Z
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from builtins import * from numbskull import NumbSkull from numbskull.inference import FACTORS from numbskull.numbskulltypes import Weight, Variable, Factor, FactorToVar import numpy as np import random import scipy.sparse as sparse from snorkel.learning import GenerativeModel, GenerativeModelWeights def generate_model(n, dep_density, class_prior=False, lf_propensity=False, lf_prior=False, lf_class_propensity=False, dep_similar=False, dep_reinforcing=False, dep_fixing=False, dep_exclusive=False, force_dep=False): weights = GenerativeModelWeights(n) for i in range(n): weights.lf_accuracy[i] = 1.1 - 0.2 * random.random() if class_prior: weights.class_prior = random.choice((-1.0, -2.0)) if lf_propensity: for i in range(n): weights.lf_propensity[i] = random.choice((-1.0, -2.0)) if lf_prior: for i in range(n): weights.lf_prior[i] = random.choice((1.0, -1.0)) if lf_class_propensity: for i in range(n): weights.lf_class_propensity[i] = random.choice((1.0, -1.0)) if dep_similar: for i in range(n): for j in range(i+1, n): if random.random() < dep_density: weights.dep_similar[i, j] = 0.25 if dep_fixing: for i in range(n): for j in range(i+1, n): if random.random() < dep_density: if random.random() < 0.5: weights.dep_fixing[i, j] = 0.25 else: weights.dep_fixing[j, i] = 0.25 if dep_reinforcing: for i in range(n): for j in range(i+1, n): if random.random() < dep_density: if random.random() < 0.5: weights.dep_reinforcing[i, j] = 0.25 else: weights.dep_reinforcing[j, i] = 0.25 if dep_exclusive: for i in range(n): for j in range(i+1, n): if random.random() < dep_density: weights.dep_exclusive[i, j] = 0.25 if force_dep and weights.dep_similar.getnnz() == 0 and weights.dep_fixing.getnnz() == 0 \ and weights.dep_reinforcing.getnnz() == 0 and weights.dep_exclusive.getnnz() == 0: return generate_model(n, dep_density, class_prior=class_prior, lf_propensity=lf_propensity, lf_prior=lf_prior, lf_class_propensity=lf_class_propensity, dep_similar=dep_similar, dep_fixing=dep_fixing, dep_reinforcing=dep_reinforcing, dep_exclusive=dep_exclusive, force_dep=True) else: return weights def generate_label_matrix(weights, m): # Compilation # Weights n_weights = 1 if weights.class_prior != 0.0 else 0 n_weights += weights.n for optional_name in GenerativeModel.optional_names: for i in range(weights.n): if getattr(weights, optional_name)[i] != 0.0: n_weights += 1 for dep_name in GenerativeModel.dep_names: for i in range(weights.n): for j in range(weights.n): if getattr(weights, dep_name)[i, j] != 0.0: n_weights += 1 weight = np.zeros(n_weights, Weight) for i in range(len(weight)): weight[i]['isFixed'] = True if weights.class_prior != 0.0: weight[0]['initialValue'] = np.float64(weights.class_prior) w_off = 1 else: w_off = 0 for i in range(weights.n): weight[w_off + i]['initialValue'] = np.float64(weights.lf_accuracy[i]) w_off += weights.n for optional_name in GenerativeModel.optional_names: for i in range(weights.n): if getattr(weights, optional_name)[i] != 0.0: weight[w_off]['initialValue'] = np.float64(getattr(weights, optional_name)[i]) w_off += 1 for dep_name in GenerativeModel.dep_names: for i in range(weights.n): for j in range(weights.n): if getattr(weights, dep_name)[i, j] != 0.0: weight[w_off]['initialValue'] = np.float64(getattr(weights, dep_name)[i, j]) w_off += 1 # Variables variable = np.zeros(1 + weights.n, Variable) variable[0]['isEvidence'] = 0 variable[0]['initialValue'] = 0 variable[0]["dataType"] = 0 variable[0]["cardinality"] = 2 for i in range(weights.n): variable[1 + i]['isEvidence'] = 0 variable[1 + i]['initialValue'] = 0 variable[1 + i]["dataType"] = 0 variable[1 + i]["cardinality"] = 3 # Factors and FactorToVar n_edges = 1 if weights.class_prior != 0.0 else 0 n_edges += 2 * weights.n for optional_name in GenerativeModel.optional_names: for i in range(weights.n): if getattr(weights, optional_name)[i] != 0.0: if optional_name == 'lf_prior' or optional_name == 'lf_propensity': n_edges += 1 elif optional_name == 'lf_class_propensity': n_edges += 2 else: raise ValueError() for dep_name in GenerativeModel.dep_names: for i in range(weights.n): for j in range(weights.n): if getattr(weights, dep_name)[i, j] != 0.0: if dep_name == 'dep_similar' or dep_name == 'dep_exclusive': n_edges += 2 elif dep_name == 'dep_fixing' or dep_name == 'dep_reinforcing': n_edges += 3 else: raise ValueError() factor = np.zeros(n_weights, Factor) ftv = np.zeros(n_edges, FactorToVar) if weights.class_prior != 0.0: factor[0]["factorFunction"] = FACTORS["DP_GEN_CLASS_PRIOR"] factor[0]["weightId"] = 0 factor[0]["featureValue"] = 1 factor[0]["arity"] = 1 factor[0]["ftv_offset"] = 0 ftv[0]["vid"] = 0 f_off = 1 ftv_off = 1 else: f_off = 0 ftv_off = 0 for i in range(weights.n): factor[f_off + i]["factorFunction"] = FACTORS["DP_GEN_LF_ACCURACY"] factor[f_off + i]["weightId"] = f_off + i factor[f_off + i]["featureValue"] = 1 factor[f_off + i]["arity"] = 2 factor[f_off + i]["ftv_offset"] = ftv_off + 2 * i ftv[ftv_off + 2 * i]["vid"] = 0 ftv[ftv_off + 2 * i + 1]["vid"] = 1 + i f_off += weights.n ftv_off += 2 * weights.n for i in range(weights.n): if weights.lf_prior[i] != 0.0: factor[f_off]["factorFunction"] = FACTORS["DP_GEN_LF_PRIOR"] factor[f_off]["weightId"] = f_off factor[f_off]["featureValue"] = 1 factor[f_off]["arity"] = 1 factor[f_off]["ftv_offset"] = ftv_off ftv[ftv_off]["vid"] = 1 + i f_off += 1 ftv_off += 1 for i in range(weights.n): if weights.lf_propensity[i] != 0.0: factor[f_off]["factorFunction"] = FACTORS["DP_GEN_LF_PROPENSITY"] factor[f_off]["weightId"] = f_off factor[f_off]["featureValue"] = 1 factor[f_off]["arity"] = 1 factor[f_off]["ftv_offset"] = ftv_off ftv[ftv_off]["vid"] = 1 + i f_off += 1 ftv_off += 1 for i in range(weights.n): if weights.lf_class_propensity[i] != 0.0: factor[f_off]["factorFunction"] = FACTORS["DP_GEN_LF_CLASS_PROPENSITY"] factor[f_off]["weightId"] = f_off factor[f_off]["featureValue"] = 1 factor[f_off]["arity"] = 2 factor[f_off]["ftv_offset"] = ftv_off ftv[ftv_off]["vid"] = 0 ftv[ftv_off + 1]["vid"] = 1 + i f_off += 1 ftv_off += 2 for dep_name in GenerativeModel.dep_names: for i in range(weights.n): for j in range(weights.n): if getattr(weights, dep_name)[i, j] != 0.0: if dep_name == 'dep_similar' or dep_name == 'dep_exclusive': factor[f_off]["factorFunction"] = FACTORS["DP_GEN_DEP_SIMILAR"] if dep_name == 'dep_similar' else FACTORS["DP_GEN_DEP_EXCLUSIVE"] factor[f_off]["weightId"] = f_off factor[f_off]["featureValue"] = 1 factor[f_off]["arity"] = 2 factor[f_off]["ftv_offset"] = ftv_off ftv[ftv_off]["vid"] = 1 + i ftv[ftv_off + 1]["vid"] = 1 + j f_off += 1 ftv_off += 2 elif dep_name == 'dep_fixing' or dep_name == 'dep_reinforcing': factor[f_off]["factorFunction"] = FACTORS["DP_GEN_DEP_FIXING"] if dep_name == 'dep_fixing' else FACTORS["DP_GEN_DEP_REINFORCING"] factor[f_off]["weightId"] = f_off factor[f_off]["featureValue"] = 1 factor[f_off]["arity"] = 3 factor[f_off]["ftv_offset"] = ftv_off ftv[ftv_off]["vid"] = 0 ftv[ftv_off + 1]["vid"] = 1 + i ftv[ftv_off + 2]["vid"] = 1 + j f_off += 1 ftv_off += 3 else: raise ValueError() # Domain mask domain_mask = np.zeros(1 + weights.n, np.bool) # Instantiates factor graph ns = NumbSkull(n_inference_epoch=100, quiet=True) ns.loadFactorGraph(weight, variable, factor, ftv, domain_mask, n_edges) fg = ns.getFactorGraph() y = np.ndarray((m,), np.int64) L = sparse.lil_matrix((m, weights.n), dtype=np.int64) for i in range(m): fg.burnIn(10, False) y[i] = 1 if fg.var_value[0, 0] == 0 else -1 for j in range(weights.n): if fg.var_value[0, 1 + j] != 2: L[i, j] = 1 if fg.var_value[0, 1 + j] == 0 else -1 return y, L.tocsr()
36.784173
153
0.544886
f9ce7965fc605e9ddf8f3c4d93f561a8b964f060
4,235
py
Python
app/models.py
daktari01/sama_automated_incentive_app
2b49d504191a10067aa1de4637180c6bc7924054
[ "MIT" ]
null
null
null
app/models.py
daktari01/sama_automated_incentive_app
2b49d504191a10067aa1de4637180c6bc7924054
[ "MIT" ]
null
null
null
app/models.py
daktari01/sama_automated_incentive_app
2b49d504191a10067aa1de4637180c6bc7924054
[ "MIT" ]
null
null
null
# app/models.py from flask_login import UserMixin from werkzeug.security import generate_password_hash, check_password_hash from app import db, login_manager class Employee(UserMixin, db.Model): """ Create Employee table """ # Ensures table will be named in plural and not in singular # as in the name of the model __tablename__ = 'employees' id = db.Column(db.Integer, primary_key=True) emp_number = db.Column(db.String(10), index=True, unique=True) username = db.Column(db.String(60), index=True, unique=True) emp_name = db.Column(db.String(100), index=True) password_hash = db.Column(db.String(128)) subproject_id = db.Column(db.Integer, db.ForeignKey('projects.id')) role_id = db.Column(db.Integer, db.ForeignKey('roles.id')) is_admin = db.Column(db.Boolean, default=False) attendances = db.relationship('Attendance', backref='employee', lazy='dynamic') incentives = db.relationship('Incentive', backref='employee', lazy='dynamic') @property def password(self): """ Prevent password from being accessed """ raise AttributeError('Password is not readable.') @password.setter def password(self, password): """ Set password to a hashed password """ self.password_hash = generate_password_hash(password) def verify_password(self, password): """ Check if hashed password matches actual password """ return check_password_hash(self.password_hash, password) def __repr__(self): return '<Employee: {}>'.format(self.username) # Set up user_loader @login_manager.user_loader def load_user(user_id): return Employee.query.get(int(user_id)) class Role(db.Model): """ Create a Role table """ __tablename__ = 'roles' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(60), unique=True) description = db.Column(db.String(200)) employees = db.relationship('Employee', backref='role', lazy='dynamic') def __repr__(self): return '<Role: {}>'.format(self.name) class Project(db.Model): """ Create a Project table """ __tablename__ = 'projects' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(60), unique=True) employee_id = db.Column(db.Integer, db.ForeignKey('employees.id')) description = db.Column(db.String(200)) subprojects = db.relationship('Subproject', backref='project', lazy='dynamic') class Subproject(db.Model): """ Create a Subproject class """ __tablename__ = 'subprojects' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(60), unique=True) description = db.Column(db.String(200)) project_id = db.Column(db.Integer, db.ForeignKey('projects.id')) employees = db.relationship('Employee', backref='subproject', lazy='dynamic') incentives = db.relationship('Incentive', backref='subproject', lazy='dynamic') def __repr__(self): return '<Subproject: {}>'.format(self.name) class Attendance(db.Model): """ Create an Attendance class """ __tablename__ = 'attendances' id = db.Column(db.Integer, primary_key=True) employee_id = db.Column(db.Integer, db.ForeignKey('employees.id')) leave_days = db.Column(db.Integer) days_present = db.Column(db.Integer) percentage_attendance = db.Column(db.Integer) incentives = db.relationship('Incentive', backref='attendance', lazy='dynamic') class Incentive(db.Model): """ Create an Incentive table """ __tablename__ = 'incentives' id = db.Column(db.Integer, primary_key=True) employee_id = db.Column(db.Integer, db.ForeignKey('employees.id')) subproject_id = db.Column(db.Integer, db.ForeignKey('subprojects.id')) attendances_id = db.Column(db.Integer, db.ForeignKey('attendances.id')) production = db.Column(db.Integer) av_qa_score = db.Column(db.Integer) total_points = db.Column(db.Integer) amount = db.Column(db.Float)
31.842105
83
0.64817
c011af72cef762f7ecaedb6f5e6e3cd2971c945c
2,552
py
Python
main.py
iandraves/AutoDocs
164fb03f7c2c956008b969a43ec2b72b81d239c0
[ "MIT" ]
null
null
null
main.py
iandraves/AutoDocs
164fb03f7c2c956008b969a43ec2b72b81d239c0
[ "MIT" ]
null
null
null
main.py
iandraves/AutoDocs
164fb03f7c2c956008b969a43ec2b72b81d239c0
[ "MIT" ]
null
null
null
import urllib.request import datetime import threading import os import shutil import requests from bs4 import BeautifulSoup ARG_TYPES = [ 'Affirmatives', 'Case Negatives', 'Counterplans', 'Disadvantages', 'Impact Files', 'Kritik Answers', 'Kritiks', 'Politics', 'Theory', 'Topicality' ] PREFIX_URL = "https://openev.debatecoaches.org/" def feedback(file_name): print(f"Downloading: {file_name}") def download(num, urls): # Fetching raw HTML response = requests.get(urls[num]) # Parse HTML and save to BeautifulSoup object soup = BeautifulSoup(response.text, "html.parser") # Downloading and categorizing files span_links = soup.findAll("span", {"class": "wikiexternallink"}) for span_link in span_links: download_url = span_link.find("a").get("href").replace(" ", "%20") file_name = download_url.rsplit('/', 1)[-1].replace("%20", " ") if os.path.splitext(file_name)[1] != ".docx": pass else: feedback(file_name) urllib.request.urlretrieve( download_url, os.path.join(f"./downloads/{num + 1}. {ARG_TYPES[num]}", file_name)) def main(): # Removing folders if they already exist if os.path.isdir(f"./downloads/"): shutil.rmtree(f"./downloads/") # Creating respective folders os.mkdir("./downloads/") for num, arg in enumerate(ARG_TYPES): os.mkdir(f"./downloads/{num + 1}. {arg}") # Getting current debate year current_year = datetime.date.today().year current_month = datetime.date.today().month if current_month >= 1 and current_month < 8: current_year -= 1 debate_year = str(current_year) # Generating URLs urls = [ f"{PREFIX_URL}{debate_year}/Affirmatives", f"{PREFIX_URL}{debate_year}/Case%20Negatives", f"{PREFIX_URL}{debate_year}/Counterplans", f"{PREFIX_URL}{debate_year}/Disadvantages", f"{PREFIX_URL}{debate_year}/Impact%20Files", f"{PREFIX_URL}{debate_year}/Kritik%20Answers", f"{PREFIX_URL}{debate_year}/Kritiks", f"{PREFIX_URL}{debate_year}/Politics", f"{PREFIX_URL}{debate_year}/Theory", f"{PREFIX_URL}{debate_year}/Topicality" ] # Creating download threads threads = [threading.Thread(target=download, args=(i, urls,)) for i in range(len(ARG_TYPES))] for thread in threads: thread.start() for thread in threads: thread.join() if __name__ == "__main__": main()
27.73913
98
0.634404
c23cc3d44d741552be4b5789de4f88afe6fee089
3,921
py
Python
train.py
crazyleg/lateral_research
e186d218cd4b3ac3770e9fa375bc57133e4dafe5
[ "MIT" ]
null
null
null
train.py
crazyleg/lateral_research
e186d218cd4b3ac3770e9fa375bc57133e4dafe5
[ "MIT" ]
null
null
null
train.py
crazyleg/lateral_research
e186d218cd4b3ac3770e9fa375bc57133e4dafe5
[ "MIT" ]
null
null
null
import torch from torch import optim from torch import nn import torchvision from tqdm import tqdm import torchvision.transforms as transforms from torch.autograd import Variable from model import Net USE_CUDA = True if torch.cuda.is_available() else False device = torch.device("cuda" if USE_CUDA else "cpu") class AddGaussianNoise(object): def __init__(self, mean=0., std=1.): self.std = std self.mean = mean def __call__(self, tensor): return tensor + torch.randn(tensor.size()) * self.std + self.mean def __repr__(self): return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std) if __name__ == '__main__': transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), AddGaussianNoise(0., 0.5)]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=4) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=16) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') net = Net() net = net.to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.5) for epoch in range(10): # loop over the dataset multiple times running_loss = 0.0 net.train() for i, data in enumerate(trainloader, 0): # get the inputs; data is a list of [inputs, labels] inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # print statistics correct = 0 total = 0 net.eval() net = net.to(device) with torch.no_grad(): for data in testloader: images, labels = data images, labels = images.to(device), labels.to(device) outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % ( 100 * correct / total)) print('Finished Training') PATH = './cifar_net_n06.pth' torch.save(net.state_dict(), PATH) # print('Start lateral learning') # # net.set_lateral_mode(True) # with torch.no_grad(): # for i, data in tqdm(enumerate(trainloader, 0)): # inputs, labels = data # outputs = net(inputs) # # print('Finished lateral learning') # net.set_lateral_mode(False) # # # PATH = './cifar_net.pth' # torch.save(net.state_dict(), PATH) # # correct = 0 # total = 0 # with torch.no_grad(): # for data in testloader: # images, labels = data # outputs = net(images) # _, predicted = torch.max(outputs.data, 1) # total += labels.size(0) # correct += (predicted == labels).sum().item() # # print('Accuracy of the network on the 10000 test images: %d %%' % ( # 100 * correct / total)) # See PyCharm help at https://www.jetbrains.com/help/pycharm/
32.675
90
0.563377
31c6fd7680b5d7d78ac075f6515e3b8ffe3c2647
2,003
py
Python
funvert.py
dmoney/funvert
89895301a1f4583450aa184560916dc7238d4ac5
[ "MIT" ]
1
2019-01-16T22:39:42.000Z
2019-01-16T22:39:42.000Z
funvert.py
dmoney/funvert
89895301a1f4583450aa184560916dc7238d4ac5
[ "MIT" ]
8
2018-11-30T13:59:10.000Z
2018-12-26T03:43:18.000Z
funvert.py
dmoney/funvert
89895301a1f4583450aa184560916dc7238d4ac5
[ "MIT" ]
null
null
null
# funvert.py # A hack to enable calling functions as if they were methods # # Author: Dustin King (cathodion@gmail.com) # Grown from this tweet by Zygmunt Zając: # https://twitter.com/zygmuntzajac/status/685161914117296128 import inspect def stackFrameContext(depth): context = {} # depth + 1 because 0 is the context of the calling function frame = inspect.stack()[depth + 1].frame # add global and local variables from the appropriate context context.update(frame.f_globals) context.update(frame.f_locals) return context class Funverted: def __init__(self, obj): self._obj=obj def __getattr__(self, name): try: return getattr(self._obj, name) except AttributeError: globprop = stackFrameContext(1).get(name, None) if callable(globprop): return lambda *args, **kwargs: funvert(globprop(self._obj, *args, **kwargs)) else: raise def __str__(self): return str(self._obj) def __add__(self, rhs): return self._obj + rhs def __radd__(self, lhs): return lhs + self._obj def __sub__(self, rhs): return self._obj - rhs def __rsub__(self, lhs): return lhs - self._obj def __mul__(self, rhs): return self._obj * rhs def __rmul__(self, lhs): return lhs * self._obj def __truediv__(self, rhs): return self._obj / rhs def __rtruediv__(self, lhs): return lhs / self._obj def __floordiv__(self, rhs): return self._obj // rhs def __rfloordiv__(self, lhs): return lhs // self._obj def __mod__(self, rhs): return self._obj % rhs def __rmod__(self, lhs): return lhs % self._obj def funvert(obj): if isinstance(obj, Funverted): return obj else: return Funverted(obj) if __name__ == '__main__': from test_funvert import TestFunvert import unittest unittest.main()
23.022989
92
0.623565
e0eec29a839da29bca1406ca84ab0e37307335b7
4,308
py
Python
common/contrail_services.py
vkolli/5.0_contrail-test
1793f169a94100400a1b2fafbad21daf5aa4d48a
[ "Apache-2.0" ]
null
null
null
common/contrail_services.py
vkolli/5.0_contrail-test
1793f169a94100400a1b2fafbad21daf5aa4d48a
[ "Apache-2.0" ]
1
2021-06-01T22:18:29.000Z
2021-06-01T22:18:29.000Z
common/contrail_services.py
vkolli/5.0_contrail-test
1793f169a94100400a1b2fafbad21daf5aa4d48a
[ "Apache-2.0" ]
null
null
null
CONTRAIL_SERVICES_CONTAINER_MAP = { 'api-server': ['config_api', 'contrail-config-api'], 'schema': ['config_schema', 'contrail-schema-transformer'], 'svc-monitor': ['config_svcmonitor', 'contrail-svcmonitor'], 'device-manager': ['config_devicemgr', 'contrail-devicemgr'], 'control': ['control_control', 'k8s_contrail-control'], 'dns': ['control_dns', 'contrail-dns'], 'named': ['control_named', 'contrail-named'], 'analytics-api': ['analytics_api', 'contrail-analytics-api'], 'alarm-gen': ['analytics_alarm-gen', 'contrail-alarm-gen'], 'query-engine': ['analytics_query-engine', 'contrail-query-engine'], 'topology': ['analytics_topology', 'contrail-topology'], 'collector': ['analytics_collector', 'contrail-collector'], 'snmp-collector': ['analytics_snmp-collector', 'contrail-snmp-collector'], 'agent': ['contrail-agent', 'vrouter-agent', 'contrail-vrouter-agent'], 'webui': ['webui_web', 'contrail-webui_'], 'webui-middleware': ['webui_job', 'contrail-webui-middleware'], 'config-rabbitmq': ['configdatabase_rabbitmq', 'rabbitmq'], 'config-zookeeper': ['configdatabase_zookeeper', 'contrail-config-zookeeper'], 'config-cassandra': ['configdatabase_cassandra', 'contrail-configdb'], 'analytics-kafka': ['analyticsdatabase_kafka', 'contrail-kafka'], 'analytics-zookeeper': ['analyticsdatabase_zookeeper', 'contrail-analytics-zookeeper'], 'analytics-cassandra': ['analyticsdatabase_cassandra', 'contrail-analyticsdb'], 'nova': ['nova_api', 'nova-api-osapi'], 'nova-compute': ['nova_compute', 'nova-compute'], 'nova-conductor': ['nova_conductor', 'nova-conductor'], 'nova-scheduler': ['nova_scheduler', 'nova-scheduler'], 'glance': ['glance_api', 'glance-api'], 'rabbitmq': ['rabbitmq'], 'haproxy': ['haproxy'], 'keystone': ['keystone-api', 'keystone'], 'neutron': ['neutron', 'neutron-server'], 'mysql': ['mariadb'], 'redis': ['webui_redis', 'webui-redis','redis'], 'vrouter-nodemgr': ['vrouter_nodemgr', 'vrouter-nodemgr'], 'config-nodemgr': ['config_nodemgr', 'config-nodemgr'], 'analytics-nodemgr': ['analytics_nodemgr', 'analytics-nodemgr'], 'control-nodemgr': ['control_nodemgr', 'control-nodemgr'], 'analyticsdb-nodemgr': ['analyticsdatabase_nodemgr', 'analyticsdb-nodemgr'], 'contrail-kube-manager': ['contrail-kube-manager', 'kubemanager'], 'kube-apiserver': ['kube-apiserver'] } CONTRAIL_PODS_SERVICES_MAP = { 'vrouter' : ['vrouter-nodemgr', 'agent'], 'control' : ['control-nodemgr', 'control', 'named', 'dns'], 'config' : ['config-nodemgr', 'api-server', 'schema', 'svc-monitor', 'device-manager'], 'config-database' : ['config-cassandra', 'config-zookeeper', 'config-rabbitmq'], 'analytics' : ['analytics-nodemgr', 'analytics-api', 'collector', 'query-engine', 'alarm-gen', 'snmp-collector', 'topology'], 'analytics-database' : ['analytics-cassandra', 'analyticsdb-nodemgr', 'analytics-zookeeper', 'analytics-kafka'], 'webui' : ['webui', 'webui-middleware', 'redis'], 'kubernetes' : ['contrail-kube-manager'], } BackupImplementedServices = ["schema", "svc-monitor", "device-manager", "contrail-kube-manager"] ServiceHttpPortMap = { "agent" : 8085, "control" : 8083, "collector" : 8089, "query-engine" : 8091, "analytics-api" : 8090, "dns" : 8092, "api-server" : 8084, "schema" : 8087, "svc-monitor" : 8088, "device-manager" : 8096, "analytics-nodemgr" : 8104, "vrouter-nodemgr" : 8102, "control-nodemgr" : 8101, "analyticsdb-nodemgr" : 8103, "config-nodemgr" : 8100, "alarm-gen" : 5995, "snmp-collector" : 5920, "topology" : 5921, "contrail-kube-manager" : 8108, }
41.825243
78
0.571495
e5a346c1a83c320475fb3fc8f4228dff05b1df34
1,312
py
Python
app/__init__.py
k-koech/flask-blog
8bab442ef644b239e1d7e8bbff3eb4fc93e4cbdc
[ "MIT" ]
null
null
null
app/__init__.py
k-koech/flask-blog
8bab442ef644b239e1d7e8bbff3eb4fc93e4cbdc
[ "MIT" ]
null
null
null
app/__init__.py
k-koech/flask-blog
8bab442ef644b239e1d7e8bbff3eb4fc93e4cbdc
[ "MIT" ]
null
null
null
from operator import truediv from flask import Flask from flask_bootstrap import Bootstrap from config import config_options from flask_sqlalchemy import SQLAlchemy from flask_bcrypt import Bcrypt from flask_login import LoginManager from flask_mail import Mail login_manager = LoginManager() login_manager.session_protection = 'strong' login_manager.login_view = 'auth.login' bcrypt = Bcrypt() bootstrap = Bootstrap() db = SQLAlchemy() mail = Mail() def create_app(config_name): app = Flask(__name__) db.init_app(app) login_manager.init_app(app) bcrypt.init_app(app) app.config.update( MAIL_USE_SSL = True, MAIL_SERVER = 'smtp.gmail.com', MAIL_PORT = 465, MAIL_USE_TLS = False, MAIL_USERNAME = "kalambanidouglas@gmail.com", MAIL_PASSWORD ="kalambani97!") mail.init_app(app) # Creating the app configurations app.config.from_object(config_options[config_name]) # Initializing flask extensions bootstrap.init_app(app) # authenticating from .auth import auth as auth_blueprint app.register_blueprint(auth_blueprint,url_prefix = '/authenticate') # Will add the views and forms # Registering the blueprint from .main import main as main_blueprint app.register_blueprint(main_blueprint) return app
23.428571
71
0.743902
08871a96b177e2a92074c4dc27c0dc78d6f9d9b7
1,591
py
Python
elasticsearch/helpers/__init__.py
shub1095/elasticsearch-py
778c7e4ac000b51ced7c9a1a588200ec395e40ca
[ "Apache-2.0" ]
1
2021-09-02T14:50:53.000Z
2021-09-02T14:50:53.000Z
elasticsearch/helpers/__init__.py
shub1095/elasticsearch-py
778c7e4ac000b51ced7c9a1a588200ec395e40ca
[ "Apache-2.0" ]
null
null
null
elasticsearch/helpers/__init__.py
shub1095/elasticsearch-py
778c7e4ac000b51ced7c9a1a588200ec395e40ca
[ "Apache-2.0" ]
1
2020-08-04T11:42:43.000Z
2020-08-04T11:42:43.000Z
# Licensed to Elasticsearch B.V. under one or more contributor # license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright # ownership. Elasticsearch B.V. licenses this file to you under # the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import sys from .errors import BulkIndexError, ScanError from .actions import expand_action, streaming_bulk, bulk, parallel_bulk from .actions import scan, reindex from .actions import _chunk_actions, _process_bulk_chunk __all__ = [ "BulkIndexError", "ScanError", "expand_action", "streaming_bulk", "bulk", "parallel_bulk", "scan", "reindex", "_chunk_actions", "_process_bulk_chunk", ] try: # Asyncio only supported on Python 3.6+ if sys.version_info < (3, 6): raise ImportError from .._async.helpers import ( async_scan, async_bulk, async_reindex, async_streaming_bulk, ) __all__ += ["async_scan", "async_bulk", "async_reindex", "async_streaming_bulk"] except (ImportError, SyntaxError): pass
30.018868
84
0.717788
3d6ae22389d206d8b0cfad1741c4df689a01752f
8,304
py
Python
tests/core/full_node/test_transactions.py
zcomputerwiz/replaceme-blockchain
b6dfc3ff502e0cb6b7b5fbc566c7fb9ae559757a
[ "Apache-2.0" ]
null
null
null
tests/core/full_node/test_transactions.py
zcomputerwiz/replaceme-blockchain
b6dfc3ff502e0cb6b7b5fbc566c7fb9ae559757a
[ "Apache-2.0" ]
null
null
null
tests/core/full_node/test_transactions.py
zcomputerwiz/replaceme-blockchain
b6dfc3ff502e0cb6b7b5fbc566c7fb9ae559757a
[ "Apache-2.0" ]
null
null
null
import asyncio from secrets import token_bytes from typing import Optional import pytest from replaceme.consensus.block_record import BlockRecord from replaceme.consensus.block_rewards import calculate_base_farmer_reward, calculate_pool_reward from replaceme.full_node.full_node_api import FullNodeAPI from replaceme.protocols import full_node_protocol from replaceme.simulator.simulator_protocol import FarmNewBlockProtocol from replaceme.types.peer_info import PeerInfo from replaceme.util.ints import uint16, uint32 from tests.setup_nodes import self_hostname, setup_simulators_and_wallets from tests.time_out_assert import time_out_assert @pytest.fixture(scope="module") def event_loop(): loop = asyncio.get_event_loop() yield loop class TestTransactions: @pytest.fixture(scope="function") async def wallet_node(self): async for _ in setup_simulators_and_wallets(1, 1, {}): yield _ @pytest.fixture(scope="function") async def two_wallet_nodes(self): async for _ in setup_simulators_and_wallets(1, 2, {}): yield _ @pytest.fixture(scope="function") async def three_nodes_two_wallets(self): async for _ in setup_simulators_and_wallets(3, 2, {}): yield _ @pytest.mark.asyncio async def test_wallet_coinbase(self, wallet_node): num_blocks = 5 full_nodes, wallets = wallet_node full_node_api = full_nodes[0] full_node_server = full_node_api.server wallet_node, server_2 = wallets[0] wallet = wallet_node.wallet_state_manager.main_wallet ph = await wallet.get_new_puzzlehash() await server_2.start_client(PeerInfo(self_hostname, uint16(full_node_server._port)), None) for i in range(num_blocks): await full_node_api.farm_new_transaction_block(FarmNewBlockProtocol(ph)) funds = sum( [calculate_pool_reward(uint32(i)) + calculate_base_farmer_reward(uint32(i)) for i in range(1, num_blocks)] ) # funds += calculate_base_farmer_reward(0) await asyncio.sleep(2) print(await wallet.get_confirmed_balance(), funds) await time_out_assert(10, wallet.get_confirmed_balance, funds) @pytest.mark.asyncio async def test_tx_propagation(self, three_nodes_two_wallets): num_blocks = 5 full_nodes, wallets = three_nodes_two_wallets wallet_0, wallet_server_0 = wallets[0] wallet_1, wallet_server_1 = wallets[1] full_node_api_0 = full_nodes[0] server_0 = full_node_api_0.server full_node_api_1 = full_nodes[1] server_1 = full_node_api_1.server full_node_api_2 = full_nodes[2] server_2 = full_node_api_2.server ph = await wallet_0.wallet_state_manager.main_wallet.get_new_puzzlehash() ph1 = await wallet_1.wallet_state_manager.main_wallet.get_new_puzzlehash() # # wallet0 <-> sever0 <-> server1 <-> server2 <-> wallet1 # await wallet_server_0.start_client(PeerInfo(self_hostname, uint16(server_0._port)), None) await server_0.start_client(PeerInfo(self_hostname, uint16(server_1._port)), None) await server_1.start_client(PeerInfo(self_hostname, uint16(server_2._port)), None) await wallet_server_1.start_client(PeerInfo(self_hostname, uint16(server_2._port)), None) for i in range(num_blocks): await full_node_api_0.farm_new_transaction_block(FarmNewBlockProtocol(ph)) funds = sum( [calculate_pool_reward(uint32(i)) + calculate_base_farmer_reward(uint32(i)) for i in range(1, num_blocks)] ) await time_out_assert(10, wallet_0.wallet_state_manager.main_wallet.get_confirmed_balance, funds) async def peak_height(fna: FullNodeAPI): peak: Optional[BlockRecord] = fna.full_node.blockchain.get_peak() if peak is None: return -1 peak_height = peak.height return peak_height await time_out_assert(10, peak_height, num_blocks, full_node_api_1) await time_out_assert(10, peak_height, num_blocks, full_node_api_2) tx = await wallet_0.wallet_state_manager.main_wallet.generate_signed_transaction(10, ph1, 0) await wallet_0.wallet_state_manager.main_wallet.push_transaction(tx) await time_out_assert( 10, full_node_api_0.full_node.mempool_manager.get_spendbundle, tx.spend_bundle, tx.name, ) await time_out_assert( 10, full_node_api_1.full_node.mempool_manager.get_spendbundle, tx.spend_bundle, tx.name, ) await time_out_assert( 10, full_node_api_2.full_node.mempool_manager.get_spendbundle, tx.spend_bundle, tx.name, ) # Farm another block for i in range(1, 8): await full_node_api_1.farm_new_transaction_block(FarmNewBlockProtocol(token_bytes())) funds = sum( [ calculate_pool_reward(uint32(i)) + calculate_base_farmer_reward(uint32(i)) for i in range(1, num_blocks + 1) ] ) print(f"Funds: {funds}") await time_out_assert( 10, wallet_0.wallet_state_manager.main_wallet.get_confirmed_balance, (funds - 10), ) await time_out_assert(15, wallet_1.wallet_state_manager.main_wallet.get_confirmed_balance, 10) @pytest.mark.asyncio async def test_mempool_tx_sync(self, three_nodes_two_wallets): num_blocks = 5 full_nodes, wallets = three_nodes_two_wallets wallet_0, wallet_server_0 = wallets[0] full_node_api_0 = full_nodes[0] server_0 = full_node_api_0.server full_node_api_1 = full_nodes[1] server_1 = full_node_api_1.server full_node_api_2 = full_nodes[2] server_2 = full_node_api_2.server ph = await wallet_0.wallet_state_manager.main_wallet.get_new_puzzlehash() # wallet0 <-> sever0 <-> server1 await wallet_server_0.start_client(PeerInfo(self_hostname, uint16(server_0._port)), None) await server_0.start_client(PeerInfo(self_hostname, uint16(server_1._port)), None) for i in range(num_blocks): await full_node_api_0.farm_new_transaction_block(FarmNewBlockProtocol(ph)) all_blocks = await full_node_api_0.get_all_full_blocks() for block in all_blocks: await full_node_api_2.full_node.respond_block(full_node_protocol.RespondBlock(block)) funds = sum( [calculate_pool_reward(uint32(i)) + calculate_base_farmer_reward(uint32(i)) for i in range(1, num_blocks)] ) await time_out_assert(10, wallet_0.wallet_state_manager.main_wallet.get_confirmed_balance, funds) tx = await wallet_0.wallet_state_manager.main_wallet.generate_signed_transaction(10, token_bytes(), 0) await wallet_0.wallet_state_manager.main_wallet.push_transaction(tx) await time_out_assert( 10, full_node_api_0.full_node.mempool_manager.get_spendbundle, tx.spend_bundle, tx.name, ) await time_out_assert( 10, full_node_api_1.full_node.mempool_manager.get_spendbundle, tx.spend_bundle, tx.name, ) await time_out_assert( 10, full_node_api_2.full_node.mempool_manager.get_spendbundle, None, tx.name, ) # make a final connection. # wallet0 <-> sever0 <-> server1 <-> server2 await server_1.start_client(PeerInfo(self_hostname, uint16(server_2._port)), None) await time_out_assert( 10, full_node_api_0.full_node.mempool_manager.get_spendbundle, tx.spend_bundle, tx.name, ) await time_out_assert( 10, full_node_api_1.full_node.mempool_manager.get_spendbundle, tx.spend_bundle, tx.name, ) await time_out_assert( 10, full_node_api_2.full_node.mempool_manager.get_spendbundle, tx.spend_bundle, tx.name, )
37.405405
118
0.672206
fb64a87cce04841bf26a33f35ea792cae66a26a1
602
py
Python
docstrings-to-markdown/regex.py
buddheshwarnathkeshari/Neural_Net_Using_NumPy
c83e4f8a752e8f5b76b09e8137a99dec13129b93
[ "MIT" ]
null
null
null
docstrings-to-markdown/regex.py
buddheshwarnathkeshari/Neural_Net_Using_NumPy
c83e4f8a752e8f5b76b09e8137a99dec13129b93
[ "MIT" ]
null
null
null
docstrings-to-markdown/regex.py
buddheshwarnathkeshari/Neural_Net_Using_NumPy
c83e4f8a752e8f5b76b09e8137a99dec13129b93
[ "MIT" ]
null
null
null
# Extract class or function along with its docstring # Docstring will be captured in group 1 and group 0 contains the whole class or function along with its docstring. DEF_WITH_DOCS_REGEX = r'((def|class).*((\s*->\s*.*)|):\n\s*"""(\n\s*.*?)*""")' # Given a docstring, identity each part, i.e, parameters and return values. # Note: This regex works only with numpy style docstrings. # Part Captured Group # Description 1 # Parameters 3 # Returns 6 IDENTIFY_EACH_PART_REGEX = r'"""\n\s*(.*\s*)*?(Parameters\s*-*\s*((.*\s*)*?))?(Returns\s*-*\s*(.*\s*)*?)?"""'
50.166667
114
0.61794
227d61559daafd75ff56e86d9e37e2fe0ac56c1a
3,019
py
Python
scripts/save_google_sheets.py
pydicom/sendit
cc5ef13a37525d73643885e35709d68a35881905
[ "MIT" ]
6
2017-07-16T03:21:08.000Z
2021-03-07T11:27:44.000Z
scripts/save_google_sheets.py
pydicom/sendit
cc5ef13a37525d73643885e35709d68a35881905
[ "MIT" ]
16
2017-06-06T00:19:17.000Z
2019-03-25T15:34:21.000Z
scripts/save_google_sheets.py
pydicom/sendit
cc5ef13a37525d73643885e35709d68a35881905
[ "MIT" ]
7
2017-11-05T19:03:01.000Z
2019-07-21T19:29:13.000Z
#!/bin/env python # Command line script to get GB/day from manager, then save to google sheet. from som.api.google.sheets import Client from datetime import datetime, timedelta import subprocess import argparse import json import os import sys def get_parser(): parser = argparse.ArgumentParser( description="Sendit: save GB-day to Google Sheets") parser.add_argument("--sheet_id", dest='sheet_id', help="alpha-numerical string that is id for sheet", type=str, required=True) parser.add_argument("--days", dest='days', help="number of days to ask for metric (default is 1)", type=int, default=1) # Compare two images (a similarity tree) parser.add_argument('--save', dest='save', help="required flag to save new row (otherwise prints sheet)", default=False, action='store_true') return parser def main(): parser = get_parser() try: args = parser.parse_args() except: sys.exit(0) command = ["python", "manage.py", "summary_metrics", "--days", str(args.days)] process = subprocess.Popen(command, stdout=subprocess.PIPE) result,error = process.communicate() if isinstance(result,bytes): result = result.decode('utf-8') result = json.loads(result) gb_day = result["gb_per_day"] secrets = os.environ.get('GOOGLE_SHEETS_CREDENTIALS') if secrets is None: print("Please export client secrets file name at GOOGLE_SHEETS_CREDENTIALS") sys.exit(1) cli = Client() # Define date range for metric start_date = (datetime.now() - timedelta(days=args.days)).strftime("%m/%d/%Y") end_date = datetime.now().strftime("%m/%d/%Y") # Get previous values values = cli.read_spreadsheet(sheet_id=args.sheet_id, range_name="A:E") # Only update if we are sure about values required = ['pipeline', 'start_date', 'end_date', 'G/day GetIt', 'G/day SendIt'] for h in range(len(required)): if required[h] != values[0][h]: print("Warning, sheet is possibly changed.") print("Required: %s" %",".join(required)) print("Found: %s" %",".join(values[0])) sys.exit(0) # Create row, append # pipeline start_date end_date G/day GetIt G/day SendIt # Define new row, add row = [1, # pipeline start_date, # start_date end_date, # end_date None, # G/day GetIt gb_day] # G/day SendIt values.append(row) for row in values: print(' '.join([str(x) for x in row])) # Update sheet if args.save is True: print("Saving result to sheet %s" %args.sheet_id) result = cli.write_spreadsheet(args.sheet_id, values, range_name="A:E") if __name__ == '__main__': main()
29.028846
87
0.585956
ce103a92585cc540f17388411e4c5182176dcea5
5,934
py
Python
configs/deepim/ycbvPbrSO/FlowNet512_1.5AugCosyAAEGray_AggressiveV2_Flat_ycbvPbr_SO/FlowNet512_1.5AugCosyAAEGray_AggressiveV2_Flat_Pbr_01_02MasterChefCan_bop_test.py
THU-DA-6D-Pose-Group/self6dpp
c267cfa55e440e212136a5e9940598720fa21d16
[ "Apache-2.0" ]
33
2021-12-15T07:11:47.000Z
2022-03-29T08:58:32.000Z
configs/deepim/ycbvPbrSO/FlowNet512_1.5AugCosyAAEGray_AggressiveV2_Flat_ycbvPbr_SO/FlowNet512_1.5AugCosyAAEGray_AggressiveV2_Flat_Pbr_01_02MasterChefCan_bop_test.py
THU-DA-6D-Pose-Group/self6dpp
c267cfa55e440e212136a5e9940598720fa21d16
[ "Apache-2.0" ]
3
2021-12-15T11:39:54.000Z
2022-03-29T07:24:23.000Z
configs/deepim/ycbvPbrSO/FlowNet512_1.5AugCosyAAEGray_AggressiveV2_Flat_ycbvPbr_SO/FlowNet512_1.5AugCosyAAEGray_AggressiveV2_Flat_Pbr_01_02MasterChefCan_bop_test.py
THU-DA-6D-Pose-Group/self6dpp
c267cfa55e440e212136a5e9940598720fa21d16
[ "Apache-2.0" ]
null
null
null
_base_ = ["../../../_base_/deepim_base.py"] OUTPUT_DIR = "output/deepim/ycbvPbrSO/FlowNet512_1.5AugCosyAAEGray_AggressiveV2_Flat_ycbvPbr_SO/01_02MasterChefCan" INPUT = dict( COLOR_AUG_PROB=0.8, COLOR_AUG_TYPE="code", COLOR_AUG_CODE=( "Sequential([" # Sometimes(0.5, PerspectiveTransform(0.05)), # Sometimes(0.5, CropAndPad(percent=(-0.05, 0.1))), # Sometimes(0.5, Affine(scale=(1.0, 1.2))), "Sometimes(0.5, CoarseDropout( p=0.2, size_percent=0.05) )," "Sometimes(0.4, GaussianBlur((0., 3.)))," "Sometimes(0.3, pillike.EnhanceSharpness(factor=(0., 50.)))," "Sometimes(0.3, pillike.EnhanceContrast(factor=(0.2, 50.)))," "Sometimes(0.5, pillike.EnhanceBrightness(factor=(0.1, 6.)))," "Sometimes(0.3, pillike.EnhanceColor(factor=(0., 20.)))," "Sometimes(0.5, Add((-25, 25), per_channel=0.3))," "Sometimes(0.3, Invert(0.2, per_channel=True))," "Sometimes(0.5, Multiply((0.6, 1.4), per_channel=0.5))," "Sometimes(0.5, Multiply((0.6, 1.4)))," "Sometimes(0.1, AdditiveGaussianNoise(scale=10, per_channel=True))," "Sometimes(0.5, iaa.contrast.LinearContrast((0.5, 2.2), per_channel=0.3))," "Sometimes(0.5, Grayscale(alpha=(0.0, 1.0)))," # maybe remove for det "], random_order=True)" # cosy+aae ), ZOOM_ENLARGE_SCALE=1.5, BBOX_TYPE_TEST="from_pose", # from_pose | est | gt | gt_aug (TODO) INIT_POSE_TYPE_TRAIN=["gt_noise"], # gt_noise | random | canonical NOISE_ROT_STD_TRAIN=(15, 10, 5, 2.5, 1.25), # randomly choose one NOISE_TRANS_STD_TRAIN=[(0.01, 0.01, 0.05), (0.01, 0.01, 0.01), (0.005, 0.005, 0.01)], INIT_POSE_TYPE_TEST="est", # gt_noise | est | canonical ) SOLVER = dict( IMS_PER_BATCH=32, TOTAL_EPOCHS=80, LR_SCHEDULER_NAME="flat_and_anneal", ANNEAL_METHOD="cosine", # "cosine" ANNEAL_POINT=0.72, # REL_STEPS=(0.3125, 0.625, 0.9375), OPTIMIZER_CFG=dict(_delete_=True, type="Ranger", lr=1e-4, weight_decay=0), WEIGHT_DECAY=0.0, WARMUP_FACTOR=0.001, WARMUP_ITERS=1000, ) DATASETS = dict( TRAIN=("ycbv_002_master_chef_can_train_pbr",), TEST=("ycbv_bop_test",), INIT_POSE_FILES_TEST=( "datasets/BOP_DATASETS/ycbv/test/init_poses/resnest50d_AugCosyAAEGray_BG05_visib10_mlBCE_DoubleMask_ycbvPbr100e_SO_ycbv_test_GdrnPose_with_yolov4_pbr_bbox.json", ), INIT_POSE_THR=0.3, DET_THR=0.3, SYM_OBJS=[ "002_master_chef_can", "024_bowl", "025_mug", "036_wood_block", "040_large_marker", "051_large_clamp", "052_extra_large_clamp", "061_foam_brick", ], # ycbv_bop ) DATALOADER = dict( # Number of data loading threads NUM_WORKERS=4, FILTER_VISIB_THR=0.1, FILTER_EMPTY_DETS=True, # filter images with empty detections ) MODEL = dict( LOAD_DETS_TEST=False, LOAD_POSES_TEST=True, PIXEL_MEAN=[0.0, 0.0, 0.0], PIXEL_STD=[255.0, 255.0, 255.0], DEEPIM=dict( NAME="DeepIM_FlowNet", # used module file name (define different model types) TASK="refine", # refine | init | init+refine NUM_CLASSES=21, # only valid for class aware N_ITER_TRAIN=4, N_ITER_TRAIN_WARM_EPOCH=4, # linearly increase the refine iter from 1 to N_ITER_TRAIN until this epoch N_ITER_TEST=4, ## backbone BACKBONE=dict( PRETRAINED="pretrained_models/flownet/flownets_EPE1.951.pth.tar", INIT_CFG=dict( type="FlowNetS", # [im_ren, im_obs] in_channels=6, use_bn=False, out_flow_level="flow4", out_concat4=True, ), INPUT_H=512, # use squared image to easily combined with gdrn INPUT_W=512, INPUT_MASK=False, ), FLAT_OP="flatten", ## pose head for delta R/T POSE_HEAD=dict( ROT_TYPE="ego_rot6d", # {ego|allo}_{quat|rot6d} INIT_CFG=dict( type="FC_RotTransHead", in_dim=1024 * 8 * 8, # should match FLAT_OP num_layers=2, feat_dim=256, norm="GN", # BN | GN | none num_gn_groups=32, act="gelu", # relu | lrelu | silu (swish) | gelu | mish ), ), # mask head MASK_HEAD=dict( INIT_CFG=dict( type="ConvOutHead", in_dim=770, num_feat_layers=0, # only output layer feat_dim=256, feat_kernel_size=3, norm="GN", num_gn_groups=32, act="gelu", out_kernel_size=3, ), ), LOSS_CFG=dict( # point matching loss ---------------- PM_LOSS_SYM=True, # use symmetric PM loss PM_NORM_BY_EXTENT=False, # 1. / extent.max(1, keepdim=True)[0] # if False, the trans loss is in point matching loss PM_R_ONLY=False, # only do R loss in PM PM_DISENTANGLE_T=False, # disentangle R/T PM_DISENTANGLE_Z=True, # disentangle R/xy/z PM_T_USE_POINTS=True, # PM_LW=1.0, # mask loss -------------------- MASK_CLASS_AWARE=False, MASK_LOSS_TYPE="BCE", # L1 | BCE | CE MASK_LOSS_GT="trunc", # trunc | visib | obj (not supported yet) MASK_LW=1.0, # flow loss ------------------ FLOW_LOSS_TYPE="L1", # L1 | L2 FLOW_LW=0.1, ), ), ) VAL = dict( DATASET_NAME="ycbv", SPLIT_TYPE="", SCRIPT_PATH="lib/pysixd/scripts/eval_pose_results_more.py", TARGETS_FILENAME="test_targets_bop19.json", ERROR_TYPES="mspd,mssd,vsd,reS,teS,reteS,ad", USE_BOP=True, # whether to use bop toolkit )
36.62963
169
0.572801
212bd9e272226cf0bcae9d332c5c3dbeddf53ad9
19,780
py
Python
tests/components/lovelace/test_init.py
XRyu/home-assistant
c9c707e368be159f0138a40d21fdea7a2a650ffe
[ "Apache-2.0" ]
null
null
null
tests/components/lovelace/test_init.py
XRyu/home-assistant
c9c707e368be159f0138a40d21fdea7a2a650ffe
[ "Apache-2.0" ]
null
null
null
tests/components/lovelace/test_init.py
XRyu/home-assistant
c9c707e368be159f0138a40d21fdea7a2a650ffe
[ "Apache-2.0" ]
null
null
null
"""Test the Lovelace initialization.""" import os import unittest from unittest.mock import patch from tempfile import mkdtemp import pytest from ruamel.yaml import YAML from homeassistant.exceptions import HomeAssistantError from homeassistant.setup import async_setup_component from homeassistant.components.websocket_api.const import TYPE_RESULT from homeassistant.components.lovelace import (load_yaml, migrate_config, save_yaml, UnsupportedYamlError) TEST_YAML_A = """\ title: My Awesome Home # Include external resources resources: - url: /local/my-custom-card.js type: js - url: /local/my-webfont.css type: css # Exclude entities from "Unused entities" view excluded_entities: - weblink.router views: # View tab title. - title: Example # Optional unique id for direct access /lovelace/${id} id: example # Optional background (overwrites the global background). background: radial-gradient(crimson, skyblue) # Each view can have a different theme applied. theme: dark-mode # The cards to show on this view. cards: # The filter card will filter entities for their state - type: entity-filter entities: - device_tracker.paulus - device_tracker.anne_there state_filter: - 'home' card: type: glance title: People that are home # The picture entity card will represent an entity with a picture - type: picture-entity image: https://www.home-assistant.io/images/default-social.png entity: light.bed_light # Specify a tab icon if you want the view tab to be an icon. - icon: mdi:home-assistant # Title of the view. Will be used as the tooltip for tab icon title: Second view cards: - id: test type: entities title: Test card # Entities card will take a list of entities and show their state. - type: entities # Title of the entities card title: Example # The entities here will be shown in the same order as specified. # Each entry is an entity ID or a map with extra options. entities: - light.kitchen - switch.ac - entity: light.living_room # Override the name to use name: LR Lights # The markdown card will render markdown text. - type: markdown title: Lovelace content: > Welcome to your **Lovelace UI**. """ TEST_YAML_B = """\ title: Home views: - title: Dashboard id: dashboard icon: mdi:home cards: - id: testid type: vertical-stack cards: - type: picture-entity entity: group.sample name: Sample image: /local/images/sample.jpg tap_action: toggle """ # Test data that can not be loaded as YAML TEST_BAD_YAML = """\ title: Home views: - title: Dashboard icon: mdi:home cards: - id: testid type: vertical-stack """ # Test unsupported YAML TEST_UNSUP_YAML = """\ title: Home views: - title: Dashboard icon: mdi:home cards: !include cards.yaml """ class TestYAML(unittest.TestCase): """Test lovelace.yaml save and load.""" def setUp(self): """Set up for tests.""" self.tmp_dir = mkdtemp() self.yaml = YAML(typ='rt') def tearDown(self): """Clean up after tests.""" for fname in os.listdir(self.tmp_dir): os.remove(os.path.join(self.tmp_dir, fname)) os.rmdir(self.tmp_dir) def _path_for(self, leaf_name): return os.path.join(self.tmp_dir, leaf_name+".yaml") def test_save_and_load(self): """Test saving and loading back.""" fname = self._path_for("test1") save_yaml(fname, self.yaml.load(TEST_YAML_A)) data = load_yaml(fname) assert data == self.yaml.load(TEST_YAML_A) def test_overwrite_and_reload(self): """Test that we can overwrite an existing file and read back.""" fname = self._path_for("test3") save_yaml(fname, self.yaml.load(TEST_YAML_A)) save_yaml(fname, self.yaml.load(TEST_YAML_B)) data = load_yaml(fname) assert data == self.yaml.load(TEST_YAML_B) def test_load_bad_data(self): """Test error from trying to load unserialisable data.""" fname = self._path_for("test5") with open(fname, "w") as fh: fh.write(TEST_BAD_YAML) with pytest.raises(HomeAssistantError): load_yaml(fname) def test_add_id(self): """Test if id is added.""" fname = self._path_for("test6") with patch('homeassistant.components.lovelace.load_yaml', return_value=self.yaml.load(TEST_YAML_A)), \ patch('homeassistant.components.lovelace.save_yaml'): data = migrate_config(fname) assert 'id' in data['views'][0]['cards'][0] assert 'id' in data['views'][1] def test_id_not_changed(self): """Test if id is not changed if already exists.""" fname = self._path_for("test7") with patch('homeassistant.components.lovelace.load_yaml', return_value=self.yaml.load(TEST_YAML_B)): data = migrate_config(fname) assert data == self.yaml.load(TEST_YAML_B) async def test_deprecated_lovelace_ui(hass, hass_ws_client): """Test lovelace_ui command.""" await async_setup_component(hass, 'lovelace') client = await hass_ws_client(hass) with patch('homeassistant.components.lovelace.load_config', return_value={'hello': 'world'}): await client.send_json({ 'id': 5, 'type': 'frontend/lovelace_config', }) msg = await client.receive_json() assert msg['id'] == 5 assert msg['type'] == TYPE_RESULT assert msg['success'] assert msg['result'] == {'hello': 'world'} async def test_deprecated_lovelace_ui_not_found(hass, hass_ws_client): """Test lovelace_ui command cannot find file.""" await async_setup_component(hass, 'lovelace') client = await hass_ws_client(hass) with patch('homeassistant.components.lovelace.load_config', side_effect=FileNotFoundError): await client.send_json({ 'id': 5, 'type': 'frontend/lovelace_config', }) msg = await client.receive_json() assert msg['id'] == 5 assert msg['type'] == TYPE_RESULT assert msg['success'] is False assert msg['error']['code'] == 'file_not_found' async def test_deprecated_lovelace_ui_load_err(hass, hass_ws_client): """Test lovelace_ui command cannot find file.""" await async_setup_component(hass, 'lovelace') client = await hass_ws_client(hass) with patch('homeassistant.components.lovelace.load_config', side_effect=HomeAssistantError): await client.send_json({ 'id': 5, 'type': 'frontend/lovelace_config', }) msg = await client.receive_json() assert msg['id'] == 5 assert msg['type'] == TYPE_RESULT assert msg['success'] is False assert msg['error']['code'] == 'load_error' async def test_lovelace_ui(hass, hass_ws_client): """Test lovelace_ui command.""" await async_setup_component(hass, 'lovelace') client = await hass_ws_client(hass) with patch('homeassistant.components.lovelace.load_config', return_value={'hello': 'world'}): await client.send_json({ 'id': 5, 'type': 'lovelace/config', }) msg = await client.receive_json() assert msg['id'] == 5 assert msg['type'] == TYPE_RESULT assert msg['success'] assert msg['result'] == {'hello': 'world'} async def test_lovelace_ui_not_found(hass, hass_ws_client): """Test lovelace_ui command cannot find file.""" await async_setup_component(hass, 'lovelace') client = await hass_ws_client(hass) with patch('homeassistant.components.lovelace.load_config', side_effect=FileNotFoundError): await client.send_json({ 'id': 5, 'type': 'lovelace/config', }) msg = await client.receive_json() assert msg['id'] == 5 assert msg['type'] == TYPE_RESULT assert msg['success'] is False assert msg['error']['code'] == 'file_not_found' async def test_lovelace_ui_load_err(hass, hass_ws_client): """Test lovelace_ui command load error.""" await async_setup_component(hass, 'lovelace') client = await hass_ws_client(hass) with patch('homeassistant.components.lovelace.load_config', side_effect=HomeAssistantError): await client.send_json({ 'id': 5, 'type': 'lovelace/config', }) msg = await client.receive_json() assert msg['id'] == 5 assert msg['type'] == TYPE_RESULT assert msg['success'] is False assert msg['error']['code'] == 'load_error' async def test_lovelace_ui_load_json_err(hass, hass_ws_client): """Test lovelace_ui command load error.""" await async_setup_component(hass, 'lovelace') client = await hass_ws_client(hass) with patch('homeassistant.components.lovelace.load_config', side_effect=UnsupportedYamlError): await client.send_json({ 'id': 5, 'type': 'lovelace/config', }) msg = await client.receive_json() assert msg['id'] == 5 assert msg['type'] == TYPE_RESULT assert msg['success'] is False assert msg['error']['code'] == 'unsupported_error' async def test_lovelace_get_card(hass, hass_ws_client): """Test get_card command.""" await async_setup_component(hass, 'lovelace') client = await hass_ws_client(hass) yaml = YAML(typ='rt') with patch('homeassistant.components.lovelace.load_yaml', return_value=yaml.load(TEST_YAML_A)): await client.send_json({ 'id': 5, 'type': 'lovelace/config/card/get', 'card_id': 'test', }) msg = await client.receive_json() assert msg['id'] == 5 assert msg['type'] == TYPE_RESULT assert msg['success'] assert msg['result'] == 'id: test\ntype: entities\ntitle: Test card\n' async def test_lovelace_get_card_not_found(hass, hass_ws_client): """Test get_card command cannot find card.""" await async_setup_component(hass, 'lovelace') client = await hass_ws_client(hass) yaml = YAML(typ='rt') with patch('homeassistant.components.lovelace.load_yaml', return_value=yaml.load(TEST_YAML_A)): await client.send_json({ 'id': 5, 'type': 'lovelace/config/card/get', 'card_id': 'not_found', }) msg = await client.receive_json() assert msg['id'] == 5 assert msg['type'] == TYPE_RESULT assert msg['success'] is False assert msg['error']['code'] == 'card_not_found' async def test_lovelace_get_card_bad_yaml(hass, hass_ws_client): """Test get_card command bad yaml.""" await async_setup_component(hass, 'lovelace') client = await hass_ws_client(hass) with patch('homeassistant.components.lovelace.load_yaml', side_effect=HomeAssistantError): await client.send_json({ 'id': 5, 'type': 'lovelace/config/card/get', 'card_id': 'testid', }) msg = await client.receive_json() assert msg['id'] == 5 assert msg['type'] == TYPE_RESULT assert msg['success'] is False assert msg['error']['code'] == 'load_error' async def test_lovelace_update_card(hass, hass_ws_client): """Test update_card command.""" await async_setup_component(hass, 'lovelace') client = await hass_ws_client(hass) yaml = YAML(typ='rt') with patch('homeassistant.components.lovelace.load_yaml', return_value=yaml.load(TEST_YAML_A)), \ patch('homeassistant.components.lovelace.save_yaml') \ as save_yaml_mock: await client.send_json({ 'id': 5, 'type': 'lovelace/config/card/update', 'card_id': 'test', 'card_config': 'id: test\ntype: glance\n', }) msg = await client.receive_json() result = save_yaml_mock.call_args_list[0][0][1] assert result.mlget(['views', 1, 'cards', 0, 'type'], list_ok=True) == 'glance' assert msg['id'] == 5 assert msg['type'] == TYPE_RESULT assert msg['success'] async def test_lovelace_update_card_not_found(hass, hass_ws_client): """Test update_card command cannot find card.""" await async_setup_component(hass, 'lovelace') client = await hass_ws_client(hass) yaml = YAML(typ='rt') with patch('homeassistant.components.lovelace.load_yaml', return_value=yaml.load(TEST_YAML_A)): await client.send_json({ 'id': 5, 'type': 'lovelace/config/card/update', 'card_id': 'not_found', 'card_config': 'id: test\ntype: glance\n', }) msg = await client.receive_json() assert msg['id'] == 5 assert msg['type'] == TYPE_RESULT assert msg['success'] is False assert msg['error']['code'] == 'card_not_found' async def test_lovelace_update_card_bad_yaml(hass, hass_ws_client): """Test update_card command bad yaml.""" await async_setup_component(hass, 'lovelace') client = await hass_ws_client(hass) yaml = YAML(typ='rt') with patch('homeassistant.components.lovelace.load_yaml', return_value=yaml.load(TEST_YAML_A)), \ patch('homeassistant.components.lovelace.yaml_to_object', side_effect=HomeAssistantError): await client.send_json({ 'id': 5, 'type': 'lovelace/config/card/update', 'card_id': 'test', 'card_config': 'id: test\ntype: glance\n', }) msg = await client.receive_json() assert msg['id'] == 5 assert msg['type'] == TYPE_RESULT assert msg['success'] is False assert msg['error']['code'] == 'save_error' async def test_lovelace_add_card(hass, hass_ws_client): """Test add_card command.""" await async_setup_component(hass, 'lovelace') client = await hass_ws_client(hass) yaml = YAML(typ='rt') with patch('homeassistant.components.lovelace.load_yaml', return_value=yaml.load(TEST_YAML_A)), \ patch('homeassistant.components.lovelace.save_yaml') \ as save_yaml_mock: await client.send_json({ 'id': 5, 'type': 'lovelace/config/card/add', 'view_id': 'example', 'card_config': 'id: test\ntype: added\n', }) msg = await client.receive_json() result = save_yaml_mock.call_args_list[0][0][1] assert result.mlget(['views', 0, 'cards', 2, 'type'], list_ok=True) == 'added' assert msg['id'] == 5 assert msg['type'] == TYPE_RESULT assert msg['success'] async def test_lovelace_add_card_position(hass, hass_ws_client): """Test add_card command.""" await async_setup_component(hass, 'lovelace') client = await hass_ws_client(hass) yaml = YAML(typ='rt') with patch('homeassistant.components.lovelace.load_yaml', return_value=yaml.load(TEST_YAML_A)), \ patch('homeassistant.components.lovelace.save_yaml') \ as save_yaml_mock: await client.send_json({ 'id': 5, 'type': 'lovelace/config/card/add', 'view_id': 'example', 'position': 0, 'card_config': 'id: test\ntype: added\n', }) msg = await client.receive_json() result = save_yaml_mock.call_args_list[0][0][1] assert result.mlget(['views', 0, 'cards', 0, 'type'], list_ok=True) == 'added' assert msg['id'] == 5 assert msg['type'] == TYPE_RESULT assert msg['success'] async def test_lovelace_move_card_position(hass, hass_ws_client): """Test move_card command.""" await async_setup_component(hass, 'lovelace') client = await hass_ws_client(hass) yaml = YAML(typ='rt') with patch('homeassistant.components.lovelace.load_yaml', return_value=yaml.load(TEST_YAML_A)), \ patch('homeassistant.components.lovelace.save_yaml') \ as save_yaml_mock: await client.send_json({ 'id': 5, 'type': 'lovelace/config/card/move', 'card_id': 'test', 'new_position': 2, }) msg = await client.receive_json() result = save_yaml_mock.call_args_list[0][0][1] assert result.mlget(['views', 1, 'cards', 2, 'title'], list_ok=True) == 'Test card' assert msg['id'] == 5 assert msg['type'] == TYPE_RESULT assert msg['success'] async def test_lovelace_move_card_view(hass, hass_ws_client): """Test move_card to view command.""" await async_setup_component(hass, 'lovelace') client = await hass_ws_client(hass) yaml = YAML(typ='rt') with patch('homeassistant.components.lovelace.load_yaml', return_value=yaml.load(TEST_YAML_A)), \ patch('homeassistant.components.lovelace.save_yaml') \ as save_yaml_mock: await client.send_json({ 'id': 5, 'type': 'lovelace/config/card/move', 'card_id': 'test', 'new_view_id': 'example', }) msg = await client.receive_json() result = save_yaml_mock.call_args_list[0][0][1] assert result.mlget(['views', 0, 'cards', 2, 'title'], list_ok=True) == 'Test card' assert msg['id'] == 5 assert msg['type'] == TYPE_RESULT assert msg['success'] async def test_lovelace_move_card_view_position(hass, hass_ws_client): """Test move_card to view with position command.""" await async_setup_component(hass, 'lovelace') client = await hass_ws_client(hass) yaml = YAML(typ='rt') with patch('homeassistant.components.lovelace.load_yaml', return_value=yaml.load(TEST_YAML_A)), \ patch('homeassistant.components.lovelace.save_yaml') \ as save_yaml_mock: await client.send_json({ 'id': 5, 'type': 'lovelace/config/card/move', 'card_id': 'test', 'new_view_id': 'example', 'new_position': 1, }) msg = await client.receive_json() result = save_yaml_mock.call_args_list[0][0][1] assert result.mlget(['views', 0, 'cards', 1, 'title'], list_ok=True) == 'Test card' assert msg['id'] == 5 assert msg['type'] == TYPE_RESULT assert msg['success'] async def test_lovelace_delete_card(hass, hass_ws_client): """Test delete_card command.""" await async_setup_component(hass, 'lovelace') client = await hass_ws_client(hass) yaml = YAML(typ='rt') with patch('homeassistant.components.lovelace.load_yaml', return_value=yaml.load(TEST_YAML_A)), \ patch('homeassistant.components.lovelace.save_yaml') \ as save_yaml_mock: await client.send_json({ 'id': 5, 'type': 'lovelace/config/card/delete', 'card_id': 'test', }) msg = await client.receive_json() result = save_yaml_mock.call_args_list[0][0][1] cards = result.mlget(['views', 1, 'cards'], list_ok=True) assert len(cards) == 2 assert cards[0]['title'] == 'Example' assert msg['id'] == 5 assert msg['type'] == TYPE_RESULT assert msg['success']
32.802653
74
0.616936
f2651455888c2486a80df24399e5cd210f4e42c6
784
py
Python
qemu/ui/keycodemapdb/tests/test.py
WUSTL-CSPL/RT-TEE
aafb3e9ff6c6e744c6bce1e42bcb198e1063efcc
[ "MIT" ]
60
2020-10-14T07:11:48.000Z
2022-02-14T23:00:51.000Z
qemu/ui/keycodemapdb/tests/test.py
WUSTL-CSPL/RT-TEE
aafb3e9ff6c6e744c6bce1e42bcb198e1063efcc
[ "MIT" ]
8
2020-10-19T02:17:19.000Z
2022-01-15T05:52:46.000Z
qemu/ui/keycodemapdb/tests/test.py
WUSTL-CSPL/RT-TEE
aafb3e9ff6c6e744c6bce1e42bcb198e1063efcc
[ "MIT" ]
18
2022-03-19T04:41:04.000Z
2022-03-31T03:32:12.000Z
# Keycode Map Generator Python Tests # # Copyright 2017 Pierre Ossman for Cendio AB # # This file is dual license under the terms of the GPLv2 or later # and 3-clause BSD licenses. import osx2win32 import osx2win32_name import osx2xkb import osx2xkb_name import html2win32 import html2win32_name import osx import osx_name assert osx2win32.code_map_osx_to_win32[0x1d] == 0x30 assert osx2win32_name.name_map_osx_to_win32[0x1d] == "VK_0" assert osx2xkb.code_map_osx_to_xkb[0x1d] == "AE10" assert osx2xkb_name.name_map_osx_to_xkb[0x1d] == "AE10" assert html2win32.code_map_html_to_win32["ControlLeft"] == 0x11 assert html2win32_name.name_map_html_to_win32["ControlLeft"] == "VK_CONTROL" assert osx.code_table_osx[0x1d] == 0x3b; assert osx_name.name_table_osx[0x1d] == "Control";
25.290323
76
0.802296
914c8f84150041fe47b5a9ab2a6dbd6cdedcdcbf
1,435
bzl
Python
ThirdParty/MicrosoftML/Microsoft.Ml.bzl
andwak/sentiment-analysis
26b3d6988982238808e8acb2f7fd7eb1c0fda3d1
[ "MIT" ]
null
null
null
ThirdParty/MicrosoftML/Microsoft.Ml.bzl
andwak/sentiment-analysis
26b3d6988982238808e8acb2f7fd7eb1c0fda3d1
[ "MIT" ]
null
null
null
ThirdParty/MicrosoftML/Microsoft.Ml.bzl
andwak/sentiment-analysis
26b3d6988982238808e8acb2f7fd7eb1c0fda3d1
[ "MIT" ]
null
null
null
package(default_visibility = [ "//visibility:public" ]) load("@io_bazel_rules_dotnet//dotnet:defs.bzl", "core_import_library") core_import_library( name = "MicrosoftMLAssemblies", src = "lib/netstandard2.0/Microsoft.ML.dll", version = "1.7.1", deps = [ "MicrosoftMLAssembliesCore", "MicrosoftMLAssembliesData", "MicrosoftMLAssembliesKMeansClustering", "MicrosoftMLAssembliesPCA", "MicrosoftMLAssembliesStandardTrainers", "MicrosoftMLAssembliesTransforms", ] ) core_import_library( name = "MicrosoftMLAssembliesCore", src = "lib/netstandard2.0/Microsoft.ML.Core.dll", version = "1.7.1", ) core_import_library( name = "MicrosoftMLAssembliesData", src = "lib/netstandard2.0/Microsoft.ML.Data.dll", version = "1.7.1", ) core_import_library( name = "MicrosoftMLAssembliesKMeansClustering", src = "lib/netstandard2.0/Microsoft.ML.KMeansClustering.dll", version = "1.7.1", ) core_import_library( name = "MicrosoftMLAssembliesPCA", src = "lib/netstandard2.0/Microsoft.ML.PCA.dll", version = "1.7.1", ) core_import_library( name = "MicrosoftMLAssembliesStandardTrainers", src = "lib/netstandard2.0/Microsoft.ML.StandardTrainers.dll", version = "1.7.1", ) core_import_library( name = "MicrosoftMLAssembliesTransforms", src = "lib/netstandard2.0/Microsoft.ML.Transforms.dll", version = "1.7.1", )
27.596154
70
0.694077
212ffa7e30ec5c42606a96845c98c9ba2bc6563b
1,966
py
Python
venv1/Lib/site-packages/tensorflow/contrib/kernel_methods/python/mappers/dense_kernel_mapper.py
Soum-Soum/Tensorflow_Face_Finder
fec6c15d2df7012608511ad87f4b55731bf99478
[ "Apache-2.0", "MIT" ]
6
2022-02-04T18:12:24.000Z
2022-03-21T23:57:12.000Z
Lib/site-packages/tensorflow/contrib/kernel_methods/python/mappers/dense_kernel_mapper.py
shfkdroal/Robot-Learning-in-Mixed-Adversarial-and-Collaborative-Settings
1fa4cd6a566c8745f455fc3d2273208f21f88ced
[ "bzip2-1.0.6" ]
1
2021-05-20T00:58:04.000Z
2021-05-20T00:58:04.000Z
Lib/site-packages/tensorflow/contrib/kernel_methods/python/mappers/dense_kernel_mapper.py
shfkdroal/Robot-Learning-in-Mixed-Adversarial-and-Collaborative-Settings
1fa4cd6a566c8745f455fc3d2273208f21f88ced
[ "bzip2-1.0.6" ]
1
2022-02-08T03:53:23.000Z
2022-02-08T03:53:23.000Z
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """API class for dense (approximate) kernel mappers. See ./random_fourier_features.py for a concrete instantiation of this class. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import six class InvalidShapeError(Exception): """Exception thrown when a tensor's shape deviates from an expected shape.""" @six.add_metaclass(abc.ABCMeta) class DenseKernelMapper(object): """Abstract class for a kernel mapper that maps dense inputs to dense outputs. This class is abstract. Users should not create instances of this class. """ __metaclass__ = abc.ABCMeta @abc.abstractmethod def map(self, input_tensor): """Main Dense-Tensor-In-Dense-Tensor-Out (DTIDTO) map method. Should be implemented by subclasses. Args: input_tensor: The dense input tensor to be mapped using the (approximate) kernel mapper. """ raise NotImplementedError('map is not implemented for {}.'.format(self)) @abc.abstractproperty def name(self): """Returns the name of the kernel mapper.""" pass @abc.abstractproperty def output_dim(self): """Returns the output dimension of the mapping.""" pass
32.766667
81
0.693286
26f123430f1fe4ff13e1b1add4abc3c4fc4cf87a
6,918
py
Python
tensorflow_datasets/core/features/class_label_feature.py
atksh/datasets
814058b31ebd99e418114016d60ab4d6f8f82070
[ "Apache-2.0" ]
null
null
null
tensorflow_datasets/core/features/class_label_feature.py
atksh/datasets
814058b31ebd99e418114016d60ab4d6f8f82070
[ "Apache-2.0" ]
null
null
null
tensorflow_datasets/core/features/class_label_feature.py
atksh/datasets
814058b31ebd99e418114016d60ab4d6f8f82070
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2019 The TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ClassLabel feature.""" import os import six import tensorflow as tf from tensorflow_datasets.core import api_utils from tensorflow_datasets.core.features import feature class ClassLabel(feature.Tensor): """`FeatureConnector` for integer class labels.""" @api_utils.disallow_positional_args def __init__(self, num_classes=None, names=None, names_file=None): """Constructs a ClassLabel FeatureConnector. There are 3 ways to define a ClassLabel, which correspond to the 3 arguments: * `num_classes`: create 0 to (num_classes-1) labels * `names`: a list of label strings * `names_file`: a file containing the list of labels. Note: On python2, the strings are encoded as utf-8. Args: num_classes: `int`, number of classes. All labels must be < num_classes. names: `list<str>`, string names for the integer classes. The order in which the names are provided is kept. names_file: `str`, path to a file with names for the integer classes, one per line. """ super(ClassLabel, self).__init__(shape=(), dtype=tf.int64) self._num_classes = None self._str2int = None self._int2str = None # The label is explicitly set as undefined (no label defined) if not sum(bool(a) for a in (num_classes, names, names_file)): return if sum(bool(a) for a in (num_classes, names, names_file)) != 1: raise ValueError( "Only a single argument of ClassLabel() should be provided." ) if num_classes: self._num_classes = num_classes else: self.names = names or _load_names_from_file(names_file) @property def num_classes(self): return self._num_classes @property def names(self): if not self._int2str: return [tf.compat.as_text(str(i)) for i in range(self._num_classes)] return list(self._int2str) @names.setter def names(self, new_names): int2str = [tf.compat.as_text(name) for name in new_names] # Names can only be defined once if self._int2str is not None and self._int2str != int2str: raise ValueError( "Trying to overwrite already defined ClassLabel names. Previous: {} " ", new: {}".format(self._int2str, int2str) ) # Set-up [new] names self._int2str = int2str self._str2int = {name: i for i, name in enumerate(self._int2str)} if len(self._int2str) != len(self._str2int): raise ValueError( "Some label names are duplicated. Each label name should be unique." ) # If num_classes has been defined, ensure that num_classes and names match num_classes = len(self._str2int) if self._num_classes is None: self._num_classes = num_classes elif self._num_classes != num_classes: raise ValueError( "ClassLabel number of names do not match the defined num_classes. " "Got {} names VS {} num_classes".format(num_classes, self._num_classes) ) def str2int(self, str_value): """Conversion class name string => integer.""" str_value = tf.compat.as_text(str_value) if self._str2int: return self._str2int[str_value] # No names provided, try to integerize failed_parse = False try: int_value = int(str_value) except ValueError: failed_parse = True if failed_parse or not 0 <= int_value < self._num_classes: raise ValueError("Invalid string class label %s" % str_value) return int_value def int2str(self, int_value): """Conversion integer => class name string.""" if self._int2str: # Maybe should support batched np array/eager tensors, to allow things # like # out_ids = model(inputs) # labels = cifar10.info.features['label'].int2str(out_ids) return self._int2str[int_value] # No names provided, return str(int) if not 0 <= int_value < self._num_classes: raise ValueError("Invalid integer class label %d" % int_value) return tf.compat.as_text(str(int_value)) def encode_example(self, example_data): if self._num_classes is None: raise ValueError( "Trying to use ClassLabel feature with undefined number of class. " "Please set ClassLabel.names or num_classes." ) # If a string is given, convert to associated integer if isinstance(example_data, six.string_types): example_data = self.str2int(example_data) # Allowing -1 to mean no label. if not -1 <= example_data < self._num_classes: raise ValueError( "Class label %d greater than configured num_classes %d" % (example_data, self._num_classes) ) return example_data def save_metadata(self, data_dir, feature_name=None): """See base class for details.""" # Save names if defined if self._str2int is not None: names_filepath = _get_names_filepath(data_dir, feature_name) _write_names_to_file(names_filepath, self.names) def load_metadata(self, data_dir, feature_name=None): """See base class for details.""" # Restore names if defined names_filepath = _get_names_filepath(data_dir, feature_name) if tf.io.gfile.exists(names_filepath): self.names = _load_names_from_file(names_filepath) def _additional_repr_info(self): return {"num_classes": self.num_classes} def _get_names_filepath(data_dir, feature_name): return os.path.join(data_dir, "{}.labels.txt".format(feature_name)) def _load_names_from_file(names_filepath): with tf.io.gfile.GFile(names_filepath, "r") as f: return [ name.strip() for name in tf.compat.as_text(f.read()).split("\n") if name.strip() # Filter empty names ] def _write_names_to_file(names_filepath, names): with tf.io.gfile.GFile(names_filepath, "w") as f: f.write("\n".join(names) + "\n")
36.603175
87
0.640214
84944a045e580baa3c9462c745933c74f30b2632
118
py
Python
code/exampleStrats/random60.py
SeanLossef/carykh-prisoners-dilemma-tournament
5da4571aa684edc780c950db32da4896d0118870
[ "MIT" ]
null
null
null
code/exampleStrats/random60.py
SeanLossef/carykh-prisoners-dilemma-tournament
5da4571aa684edc780c950db32da4896d0118870
[ "MIT" ]
null
null
null
code/exampleStrats/random60.py
SeanLossef/carykh-prisoners-dilemma-tournament
5da4571aa684edc780c950db32da4896d0118870
[ "MIT" ]
null
null
null
import random def strategy(history, memory): if random.random() < 0.60: return 0, None return 1, None
19.666667
30
0.635593
d73b9af0a3d698a69beeca9bca5960d7505c0675
200
py
Python
mpf/exceptions/driver_limits_error.py
Scottacus64/mpf
fcfb6c5698b9c7d8bf0eb64b021aaa389ea6478a
[ "MIT" ]
163
2015-01-25T02:19:50.000Z
2022-03-26T12:00:28.000Z
mpf/exceptions/driver_limits_error.py
Scottacus64/mpf
fcfb6c5698b9c7d8bf0eb64b021aaa389ea6478a
[ "MIT" ]
1,086
2015-03-23T19:53:17.000Z
2022-03-24T20:46:11.000Z
mpf/exceptions/driver_limits_error.py
Scottacus64/mpf
fcfb6c5698b9c7d8bf0eb64b021aaa389ea6478a
[ "MIT" ]
148
2015-01-28T02:31:39.000Z
2022-03-22T13:54:01.000Z
"""A request was made to drive the driver outside its configured limits.""" class DriverLimitsError(AssertionError): """A request was made to drive the driver outside its configured limits."""
28.571429
79
0.75
f43d2b85476f625317394c36615df0d6ddb70db1
3,371
py
Python
alerts/webhooks.py
rh-cssre/glitchtip-backend
ae12fbd54532cff5fd3d7a72631ba18625bbf1de
[ "MIT" ]
null
null
null
alerts/webhooks.py
rh-cssre/glitchtip-backend
ae12fbd54532cff5fd3d7a72631ba18625bbf1de
[ "MIT" ]
null
null
null
alerts/webhooks.py
rh-cssre/glitchtip-backend
ae12fbd54532cff5fd3d7a72631ba18625bbf1de
[ "MIT" ]
null
null
null
from typing import List, TYPE_CHECKING, Optional from dataclasses import dataclass, asdict import requests if TYPE_CHECKING: from issues.models import Issue from .models import Notification @dataclass class WebhookAttachmentField: title: str value: str short: bool @dataclass class WebhookAttachment: title: str title_link: str text: str image_url: Optional[str] = None color: Optional[str] = None fields: Optional[List[WebhookAttachmentField]] = None mrkdown_in: Optional[List[str]] = None @dataclass class MSTeamsSection: """ Similar to WebhookAttachment but for MS Teams https://docs.microsoft.com/en-us/microsoftteams/platform/webhooks-and-connectors/how-to/connectors-using?tabs=cURL """ activityTitle: str activitySubtitle: str @dataclass class WebhookPayload: alias: str text: str attachments: List[WebhookAttachment] sections: List[MSTeamsSection] def send_webhook( url: str, message: str, attachments: List[WebhookAttachment] = [], sections: List[MSTeamsSection] = [], ): data = WebhookPayload( alias="GlitchTip", text=message, attachments=attachments, sections=sections ) response = requests.post(url, json=asdict(data)) return response def send_issue_as_webhook(url, issues: List["Issue"], issue_count: int = 1): """ Notification about issues via webhook. url: Webhook URL issues: This should be only the issues to send as attachment issue_count - total issues, may be greater than len(issues) """ attachments: List[WebhookAttachment] = [] sections: List[MSTeamsSection] = [] for issue in issues: fields = [ WebhookAttachmentField( title="Project", value=issue.project.name, short=True, ) ] environment = issue.tags.get("environment") if environment: fields.append( WebhookAttachmentField( title="Environment", value=environment[0], short=True, ) ) release = issue.tags.get("release") if release: fields.append( WebhookAttachmentField( title="Release", value=release[0], short=False, ) ) attachments.append( WebhookAttachment( mrkdown_in=["text"], title=str(issue), title_link=issue.get_detail_url(), text=issue.culprit, color=issue.get_hex_color(), fields=fields, ) ) sections.append( MSTeamsSection( activityTitle=str(issue), activitySubtitle=f"[View Issue {issue.short_id_display}]({issue.get_detail_url()})", ) ) message = "GlitchTip Alert" if issue_count > 1: message += f" ({issue_count} issues)" return send_webhook(url, message, attachments, sections) def send_webhook_notification(notification: "Notification", url: str): issue_count = notification.issues.count() issues = notification.issues.all()[:3] # Show no more than three send_issue_as_webhook(url, issues, issue_count)
27.631148
118
0.602492
5ab37bfba31cca4a20ba456e47ff3749cf973674
3,229
py
Python
examples/basic_operations/update_expanded_text_ad.py
arammaliachi/google-ads-python
a4fe89567bd43eb784410523a6306b5d1dd9ee67
[ "Apache-2.0" ]
1
2021-04-09T04:28:47.000Z
2021-04-09T04:28:47.000Z
examples/basic_operations/update_expanded_text_ad.py
arammaliachi/google-ads-python
a4fe89567bd43eb784410523a6306b5d1dd9ee67
[ "Apache-2.0" ]
null
null
null
examples/basic_operations/update_expanded_text_ad.py
arammaliachi/google-ads-python
a4fe89567bd43eb784410523a6306b5d1dd9ee67
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This example updates an expanded text ad. To get expanded text ads, run get_expanded_text_ads.py. """ import argparse import sys import uuid from google.ads.google_ads.client import GoogleAdsClient from google.ads.google_ads.errors import GoogleAdsException from google.api_core import protobuf_helpers # [START update_expanded_text_ad] def main(client, customer_id, ad_id): ad_service = client.get_service("AdService", version="v6") ad_operation = client.get_type("AdOperation", version="v6") # Update ad operation. ad = ad_operation.update ad.resource_name = ad_service.ad_path(customer_id, ad_id) ad.expanded_text_ad.headline_part1 = ( f"Cruise to Pluto {str(uuid.uuid4())[:8]}" ) ad.expanded_text_ad.headline_part2 = "Tickets on sale now" ad.expanded_text_ad.description = "Best space cruise ever." ad.final_urls.append("http://www.example.com") ad.final_mobile_urls.append("http://www.example.com/mobile") fm = protobuf_helpers.field_mask(None, ad) ad_operation.update_mask.CopyFrom(fm) # Updates the ad. try: ad_response = ad_service.mutate_ads(customer_id, [ad_operation]) except GoogleAdsException as ex: print( f'Request with ID "{ex.request_id}" failed with status ' f'"{ex.error.code().name}" and includes the following errors:' ) for error in ex.failure.errors: print(f'\tError with message "{error.message}".') if error.location: for field_path_element in error.location.field_path_elements: print(f"\t\tOn field: {field_path_element.field_name}") sys.exit(1) print( f'Ad with resource name "{ad_response.results[0].resource_name}" ' "was updated." ) # [END update_expanded_text_ad] if __name__ == "__main__": # GoogleAdsClient will read the google-ads.yaml configuration file in the # home directory if none is specified. google_ads_client = GoogleAdsClient.load_from_storage() parser = argparse.ArgumentParser( description=( "Updates the specified expanded text ad, " "for the given customer ID." ) ) # The following argument(s) should be provided to run the example. parser.add_argument( "-c", "--customer_id", type=str, required=True, help="The Google Ads customer ID.", ) parser.add_argument( "-i", "--ad_id", type=str, required=True, help="The ad ID." ) args = parser.parse_args() main(google_ads_client, args.customer_id, args.ad_id)
33.28866
77
0.683493
addb316947f31f9ea20843e3b293d324a45781e5
1,347
py
Python
college-predictor/data_prep.py
paulliwali/basketball-stats
d73a12eb7944665225d5ca2a3b41be8856c08114
[ "MIT" ]
null
null
null
college-predictor/data_prep.py
paulliwali/basketball-stats
d73a12eb7944665225d5ca2a3b41be8856c08114
[ "MIT" ]
1
2019-11-28T16:54:17.000Z
2019-11-28T16:54:17.000Z
college-predictor/data_prep.py
paulliwali/Basketball-Stats
d73a12eb7944665225d5ca2a3b41be8856c08114
[ "MIT" ]
null
null
null
import pandas import scipy import numpy import csv import os import sklearn.preprocessing def rescaleData(X, Y): # Rescale the input data to a range between 0 to 1 scaler = sklearn.preprocessing.MinMaxScaler(feature_range=(0,1)) rescaledX = scaler.fit_transform(X) return rescaledX def stardardizeData(X, Y): # Stardardize the input data to a Gaussian distribution with mean of 0 # and std.dev of 1 scaler = sklearn.preprocessing.StandardScaler().fit(X) standardX = scaler.transform(X) return standardX def commentHighSchoolPlayers(datafile): # Run through the input datafiles and comment lines where players have 0s in all the # statistical categories dir = os.path.dirname(__file__) datafilepath = os.path.join(dir, 'data', datafile) newdatafilepath = os.path.join(dir, 'data', 'working', datafile) r = csv.reader(open(datafilepath, 'r')) lines = list(r) for rows in lines: if rows.count('0') > 10: rows[0] = "#" + str(rows[0]) elif "Did Not Attend College" in rows: rows[0] = '#' + str(rows[0]) elif "College Not Found" in rows: rows[0] = '#' + str(rows[0]) else: next print(rows) writer = csv.writer(open(newdatafilepath, 'w', newline='')) writer.writerows(lines) return
31.325581
88
0.650334
edb94dcd99f9ec9d34c1b2511b6ba708b5924519
10,701
py
Python
functions/framework.py
aswad32/fbscrapper
3c5a198c4b4a9ed5d52b9fcf9d71ecb74fc58ad0
[ "Apache-2.0" ]
1
2020-02-02T18:05:03.000Z
2020-02-02T18:05:03.000Z
functions/framework.py
aswad32/fbscrapper
3c5a198c4b4a9ed5d52b9fcf9d71ecb74fc58ad0
[ "Apache-2.0" ]
null
null
null
functions/framework.py
aswad32/fbscrapper
3c5a198c4b4a9ed5d52b9fcf9d71ecb74fc58ad0
[ "Apache-2.0" ]
null
null
null
from bs4 import BeautifulSoup from urlparse import parse_qs, urlparse import moment import database import utility img_skip_regex = ['-PAXP-deijE.gif', 'p32x32', '-pz5JhcNQ9P.png'] ''' Params: @based_postid: not applicable for search query result and can be leave as '' string @content: based content element for each post @validateExists: in some case you just to ignore validation you can set it to False @postToGroupMethod: 1 @query_string: Search keyword ''' def loadPost(based_postid, content, validateExists, postToGroupMethod, query_string): profile_element = content.find('a', { 'class': '_5pb8' }) # in case of scraping personal account feed, profile element are missing on post # skip it if occurs if profile_element is None: return 404 fbid_url = profile_element['data-hovercard'] fbid = utility.getFbId(fbid_url) profile_link = profile_element['href'] profile_picture = profile_element.find('img')['src'] profile_name_element = content.find('span', { 'class': 'fwb'}) profile_name = profile_name_element.find('a').getText().encode('utf-8') link_date_post_element = content.find('span', { 'class': 'fsm' }) post_link = link_date_post_element.find('a')['href'] #in case of user sharing image or videos, usually there are two postid, #we need to use the postid being capture originally by the system rather than the postid for image / video #to get the number of shares and likes if not based_postid == '': post_id = based_postid else: post_id = utility.getPostId(post_link) print post_id if validateExists: # make sure skip the rest of the process if the data already existed # if more than 10 data existed on straight loop break the loop end the process if database.postExists(post_id): return None date_post = link_date_post_element.find('abbr')['data-utime'] if not date_post == "": post_created_time = moment.unix(float(date_post), utc=True).date else: post_created_time = "" posted_to_name = "" posted_to_link = "" if postToGroupMethod == 1: posted_to_element = profile_name_element.find('a', { 'class': '_wpv'}) posted_to_name, posted_to_link = loadPostToGroupLayoutNormal(posted_to_element) elif postToGroupMethod == 2: posted_to_main_element = content.find('span', { 'class': 'fcg'}) posted_to_name, posted_to_link = loadPostToGroupLayoutShared(posted_to_main_element) user_content = content.find('div', { 'class': 'userContent' }) if user_content is None: return 404 status_message = user_content.find_all('p') post_message = "" if not status_message is None: for msg in status_message: post_message += msg.getText().encode('ascii', 'ignore') # facebook will hide extra message and it's located inside div(class='text_exposed_show') text_exposed = user_content.find('div', { 'class': 'text_exposed_show'}) if not text_exposed is None: status_message_extra = text_exposed.find_all('p') if not status_message_extra is None: for msg in status_message_extra: post_message += msg.getText().encode('ascii', 'ignore') post_message = post_message.replace('...', '') # retrieve facebook video post video = { "direct_url": "", "embed_url": "" } if 'videos' in post_link: post_video_direct_url, post_video_embed_url = utility.buildEmbedVideoUrl(post_id) video = { "direct_url": post_video_direct_url, "embed_url": post_video_embed_url } # Start loading attachment, # Here we scrap information about: # 1. A post that sharing another profile post message # 2. A post that sharing another profile post message with external link # 3. A post that sharing external link based_attachment_element = content.find('div', { 'class': '_3x-2'}) post_personal_attach, post_img_attachment = loadAttachment(based_attachment_element) textContent = post_message + ' ' + post_personal_attach['message'] + ' ' + post_personal_attach['attachment']['description'] hashtag = utility.buildHashtag(textContent) user_post = { "fbid": str(fbid), "profile_name": str(profile_name), "profile_link": str(profile_link), "profile_picture": str(profile_picture), "postid": str(post_id), "link": str(post_link), "posted_to": { "name": str(posted_to_name), "link": str(posted_to_link) }, "created_time": post_created_time, "message": post_message, "attachment_shared": post_personal_attach, "attachment_img": post_img_attachment, "attachment_video": video, "connections": { "likes": { "count": 0, "profiles": [] }, "shares": { "count": 0, "profiles": [] }, "comments": { "count": 0, "story": [] } }, "query_string": query_string, "hashtag": hashtag } return user_post def loadPostToGroupLayoutShared(element): posted_to_name = "" posted_to_link = "" if not element is None: posted_to_element = element.find_all('a', { 'class': 'profileLink'}) posted_to_element_text = element.getText().encode('ascii', 'ignore') # this is hackaround to find out either this is # a facebook post to a group or not if 'group' in posted_to_element_text: if len(posted_to_element) == 2: posted_to_name = posted_to_element[1].getText().encode('ascii', 'ignore') posted_to_link = posted_to_element[1]['href'] return posted_to_name, posted_to_link def loadPostToGroupLayoutNormal(element): posted_to_name = "" posted_to_link = "" if not element is None: posted_to_name = element.getText().encode('utf-8') posted_to_link = element['href'] return posted_to_name, posted_to_link def loadAttachment(based_attachment_element): if not based_attachment_element is None: based_element = based_attachment_element.find('div', {'class': '_5r69'}) if not based_element is None: owner_element = based_element.find('span', { 'class': 'fwb'}) if not owner_element is None: owner_name = owner_element.getText().encode('ascii', 'ignore').strip() owner_account = (owner_element.find('a')['href']).encode('ascii', 'ignore').strip() owner_fbid_url = owner_element.find('a')['data-hovercard'] owner_fbid = utility.getFbId(owner_fbid_url) else: owner_name = "" owner_account = "" owner_fbid = "" time_element = based_element.find('div', {'class': '_5pcp'}) if not time_element is None: time_post = str(time_element.find('abbr')['data-utime']) #update time epoch to utc datetime created_time = moment.unix(float(time_post), utc=True).date else: created_time = "" #post_link_element post_link_element = based_element.find('a', {'class': '_5pcq'}) if not post_link_element is None: share_post_link = post_link_element['href'].encode('ascii', 'ignore').strip() share_post_id = utility.getPostId(share_post_link) else: share_post_link = "" share_post_id = "" post_element = based_element.find('div', { 'class': '_5pco' }) if not post_element is None: post_element_paragraph = post_element.find_all('p') posts = "" for msg in post_element_paragraph: posts += msg.getText().encode('ascii', 'ignore').strip() # facebook will hide extra message and it's located inside div(class='text_exposed_show') text_exposed = based_element.find('div', { 'class': 'text_exposed_show'}) if not text_exposed is None: posts_extra = text_exposed.find_all('p') for msg in posts_extra: posts += msg.getText().encode('ascii', 'ignore').strip() posts = posts.replace('...', '') else: posts = "" # retrieve facebook video post video = { "direct_url": "", "embed_url": "" } if 'videos' in share_post_link: print "share post id", share_post_id post_video_direct_url, post_video_embed_url = utility.buildEmbedVideoUrl(share_post_id) video = { "direct_url": post_video_direct_url, "embed_url": post_video_embed_url } # retrieve attachment link external_attachment = externalAttachment(based_element) post_personal_attach = { "owner" : { "fbid": str(owner_fbid), "name": str(owner_name), "account": str(owner_account) }, "postid": str(share_post_id), "created_time": created_time, "message": str(posts), "link": str(share_post_link), "attachment_video": video, "attachment": external_attachment } else: #in case the post only contains external web link attachment external_attachment = externalAttachment(based_attachment_element) post_personal_attach = { "owner" : { "fbid": "", "name": "", "account": "" }, "created_time": "", "message": "", "link": "", "postid": "", "attachment_video": { "direct_url": "", "embed_url": "" }, "attachment": external_attachment } #get the share picture post_img_element = based_attachment_element.find_all('img', {'class': 'img'}) post_img_attachment = imgAttachment(post_img_element) return post_personal_attach, post_img_attachment def externalAttachment(basedElement): attachment_title = "" attachment_link = "" attachment_desc = "" attachment_source = "" externalElement = basedElement.find('div', { 'class': '_6m3' }) if not externalElement is None: title = externalElement.find('div', { 'class': '_6m6'}) attachment_title = title.getText().encode('ascii', 'ignore').strip() attachment_link_element = externalElement.findNext('a', {'class': '_52c6'}) if not attachment_link_element is None: attachment_link = attachment_link_element['href'].encode('ascii', 'ignore').strip() attachment_desc_element = externalElement.find('div', {'class': '_6m7'}) if not attachment_desc_element is None: attachment_desc = attachment_desc_element.getText().encode('ascii', 'ignore').strip() attachment_source = externalElement.find('div', {'class': '_59tj'}).getText().encode('ascii', 'ignore').strip() return { "title": str(attachment_title) , "description": str(attachment_desc), "link": str(attachment_link) , "source": str(attachment_source) } def imgAttachment(imgElement): post_img_attachment = [] if not imgElement is None: for img in imgElement: img_src = str(img['src']) if not any(x in img_src for x in img_skip_regex): post_img_attachment.append(str(img['src'])) return post_img_attachment ''' Check the layout for type of account that do the post permalinkPost = pages stream_pagelet = personal pagelet_group_mall = group ''' def checkLayoutAccount(based): postElement = None element = [ {'selector': 'class', 'name': 'permalinkPost'}, {'selector': 'id', 'name': 'stream_pagelet'}, {'selector': 'id', 'name':'pagelet_group_mall'} ] for el in element: postElement = based.find('div', { el['selector'] : el['name'] }) if not postElement is None: break; return postElement
30.838617
125
0.704514
fb2b18842dfb1e82da76bdada64b0e997ac999e3
10,393
py
Python
adafruit_dht.py
michaellass/Adafruit_CircuitPython_DHT
35cc6b451822e3a0f77f21a6f109cb843d660887
[ "MIT" ]
73
2020-05-02T13:48:27.000Z
2022-03-26T13:15:10.000Z
adafruit_dht.py
michaellass/Adafruit_CircuitPython_DHT
35cc6b451822e3a0f77f21a6f109cb843d660887
[ "MIT" ]
null
null
null
adafruit_dht.py
michaellass/Adafruit_CircuitPython_DHT
35cc6b451822e3a0f77f21a6f109cb843d660887
[ "MIT" ]
50
2020-05-15T13:57:28.000Z
2022-03-30T14:03:33.000Z
# The MIT License (MIT) # # Copyright (c) 2017 Mike McWethy for Adafruit Industries # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. """ :mod:`adafruit_dhtlib` ====================== CircuitPython support for the DHT11 and DHT22 temperature and humidity devices. * Author(s): Mike McWethy """ import array import time from digitalio import DigitalInOut, Pull, Direction _USE_PULSEIO = False try: from pulseio import PulseIn _USE_PULSEIO = True except ImportError: pass # This is OK, we'll try to bitbang it! __version__ = "0.0.0-auto.0" __repo__ = "https://github.com/adafruit/Adafruit_CircuitPython_DHT.git" class DHTBase: """ base support for DHT11 and DHT22 devices """ __hiLevel = 51 def __init__(self, dht11, pin, trig_wait): """ :param boolean dht11: True if device is DHT11, otherwise DHT22. :param ~board.Pin pin: digital pin used for communication :param int trig_wait: length of time to hold trigger in LOW state (microseconds) """ self._dht11 = dht11 self._pin = pin self._trig_wait = trig_wait self._last_called = 0 self._humidity = None self._temperature = None # We don't use a context because linux-based systems are sluggish # and we're better off having a running process if _USE_PULSEIO: self.pulse_in = PulseIn(self._pin, 81, True) def _pulses_to_binary(self, pulses, start, stop): """Takes pulses, a list of transition times, and converts them to a 1's or 0's. The pulses array contains the transition times. pulses starts with a low transition time followed by a high transistion time. then a low followed by a high and so on. The low transition times are ignored. Only the high transition times are used. If the high transition time is greater than __hiLevel, that counts as a bit=1, if the high transition time is less that __hiLevel, that counts as a bit=0. start is the starting index in pulses to start converting stop is the index to convert upto but not including Returns an integer containing the converted 1 and 0 bits """ binary = 0 hi_sig = False for bit_inx in range(start, stop): if hi_sig: bit = 0 if pulses[bit_inx] > self.__hiLevel: bit = 1 binary = binary << 1 | bit hi_sig = not hi_sig return binary def _get_pulses_pulseio(self): """ _get_pulses implements the communication protcol for DHT11 and DHT22 type devices. It sends a start signal of a specific length and listens and measures the return signal lengths. return pulses (array.array uint16) contains alternating high and low transition times starting with a low transition time. Normally pulses will have 81 elements for the DHT11/22 type devices. """ pulses = array.array("H") if _USE_PULSEIO: # The DHT type device use a specialize 1-wire protocol # The microprocessor first sends a LOW signal for a # specific length of time. Then the device sends back a # series HIGH and LOW signals. The length the HIGH signals # represents the device values. self.pulse_in.pause() self.pulse_in.clear() self.pulse_in.resume(self._trig_wait) # loop until we get the return pulse we need or # time out after 1/4 second time.sleep(0.25) self.pulse_in.pause() while self.pulse_in: pulses.append(self.pulse_in.popleft()) return pulses def _get_pulses_bitbang(self): """ _get_pulses implements the communication protcol for DHT11 and DHT22 type devices. It sends a start signal of a specific length and listens and measures the return signal lengths. return pulses (array.array uint16) contains alternating high and low transition times starting with a low transition time. Normally pulses will have 81 elements for the DHT11/22 type devices. """ pulses = array.array("H") with DigitalInOut(self._pin) as dhtpin: # we will bitbang if no pulsein capability transitions = [] # Signal by setting pin high, then low, and releasing dhtpin.direction = Direction.OUTPUT dhtpin.value = True time.sleep(0.1) dhtpin.value = False time.sleep(0.001) timestamp = time.monotonic() # take timestamp dhtval = True # start with dht pin true because its pulled up dhtpin.direction = Direction.INPUT dhtpin.pull = Pull.UP while time.monotonic() - timestamp < 0.25: if dhtval != dhtpin.value: dhtval = not dhtval # we toggled transitions.append(time.monotonic()) # save the timestamp # convert transtions to microsecond delta pulses: # use last 81 pulses transition_start = max(1, len(transitions) - 81) for i in range(transition_start, len(transitions)): pulses_micro_sec = int(1000000 * (transitions[i] - transitions[i - 1])) pulses.append(min(pulses_micro_sec, 65535)) return pulses def measure(self): """ measure runs the communications to the DHT11/22 type device. if successful, the class properties temperature and humidity will return the reading returned from the device. Raises RuntimeError exception for checksum failure and for insuffcient data returned from the device (try again) """ delay_between_readings = 2 # 2 seconds per read according to datasheet # Initiate new reading if this is the first call or if sufficient delay # If delay not sufficient - return previous reading. # This allows back to back access for temperature and humidity for same reading if ( self._last_called == 0 or (time.monotonic() - self._last_called) > delay_between_readings ): self._last_called = time.monotonic() new_temperature = 0 new_humidity = 0 if _USE_PULSEIO: pulses = self._get_pulses_pulseio() else: pulses = self._get_pulses_bitbang() # print(len(pulses), "pulses:", [x for x in pulses]) if len(pulses) < 10: # Probably a connection issue! raise RuntimeError("DHT sensor not found, check wiring") if len(pulses) < 80: # We got *some* data just not 81 bits raise RuntimeError("A full buffer was not returned. Try again.") buf = array.array("B") for byte_start in range(0, 80, 16): buf.append(self._pulses_to_binary(pulses, byte_start, byte_start + 16)) if self._dht11: # humidity is 1 byte new_humidity = buf[0] # temperature is 1 byte new_temperature = buf[2] else: # humidity is 2 bytes new_humidity = ((buf[0] << 8) | buf[1]) / 10 # temperature is 2 bytes # MSB is sign, bits 0-14 are magnitude) new_temperature = (((buf[2] & 0x7F) << 8) | buf[3]) / 10 # set sign if buf[2] & 0x80: new_temperature = -new_temperature # calc checksum chk_sum = 0 for b in buf[0:4]: chk_sum += b # checksum is the last byte if chk_sum & 0xFF != buf[4]: # check sum failed to validate raise RuntimeError("Checksum did not validate. Try again.") if new_humidity < 0 or new_humidity > 100: # We received unplausible data raise RuntimeError("Received unplausible data. Try again.") self._temperature = new_temperature self._humidity = new_humidity @property def temperature(self): """ temperature current reading. It makes sure a reading is available Raises RuntimeError exception for checksum failure and for insuffcient data returned from the device (try again) """ self.measure() return self._temperature @property def humidity(self): """ humidity current reading. It makes sure a reading is available Raises RuntimeError exception for checksum failure and for insuffcient data returned from the device (try again) """ self.measure() return self._humidity class DHT11(DHTBase): """ Support for DHT11 device. :param ~board.Pin pin: digital pin used for communication """ def __init__(self, pin): super().__init__(True, pin, 18000) class DHT22(DHTBase): """ Support for DHT22 device. :param ~board.Pin pin: digital pin used for communication """ def __init__(self, pin): super().__init__(False, pin, 1000)
37.930657
88
0.617531
b6cced92ce364ebca69881dafc073db4f18cce7f
538
py
Python
setup.py
stephleighton/placentagen
968685955fce7ca5503a85713113f62c1e5c74a4
[ "Apache-2.0" ]
2
2018-04-04T21:53:45.000Z
2019-05-28T22:13:26.000Z
setup.py
stephleighton/placentagen
968685955fce7ca5503a85713113f62c1e5c74a4
[ "Apache-2.0" ]
31
2018-03-14T01:43:19.000Z
2020-07-23T21:23:27.000Z
setup.py
stephleighton/placentagen
968685955fce7ca5503a85713113f62c1e5c74a4
[ "Apache-2.0" ]
6
2018-04-29T23:42:48.000Z
2021-09-14T01:33:53.000Z
from setuptools import setup, find_packages with open('README.md') as f: readme = f.read() with open('LICENSE') as f: license = f.read() setup( name='placentagen', version='0.1.0', packages=find_packages('source', exclude=['tests', 'tests.*', 'docs']), package_dir={'': 'source'}, url='https://github.com/alysclark/placentagen.git', license=license, author='Alys Clark', author_email='alys.clark@auckland.ac.nz', test_suite='nose.collector', tests_require=['nose'], description='' )
24.454545
75
0.643123
04709cefc48ed91ca43a65e304bf53e03fc7d435
4,486
py
Python
face_lib/detection.py
cyy0523xc/face_lib
cc873b8ca466e06424c36e4712e8cae80d9f11c9
[ "MIT" ]
null
null
null
face_lib/detection.py
cyy0523xc/face_lib
cc873b8ca466e06424c36e4712e8cae80d9f11c9
[ "MIT" ]
null
null
null
face_lib/detection.py
cyy0523xc/face_lib
cc873b8ca466e06424c36e4712e8cae80d9f11c9
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # face detetion # Author: alex # Created Time: 2018年12月09日 星期日 11时19分47秒 import numpy as np import cv2 from cv2 import dnn import dlib from .resource import predictor_5_point_model_location, \ predictor_68_point_model_location, \ cnn_face_detector_model_location, \ face_recognition_model_location, \ dnn_prototxt_location, dnn_caffemodel_location, \ haarcascade_frontalface_location class conf: """config for dnn""" in_width = 300 in_height = 300 threshold = 0.6 # 置信度阀值 # support algo hog_detector = dlib.get_frontal_face_detector() haar_detector = cv2.CascadeClassifier(haarcascade_frontalface_location()) cnn_detector = None dnn_detector = None # predictor = dlib.shape_predictor(predictor_68_point_model_location()) face_encoder = dlib.face_recognition_model_v1(face_recognition_model_location()) def set_threshold(threshold): conf.threshold = threshold def set_cnn_model(model_path: str = None): global cnn_detector if model_path == None: model_path = cnn_face_detector_model_location() cnn_detector = dlib.cnn_face_detection_model_v1(model_path) def set_dnn_model(model_path: str = None, prototxt_path: str = None): global dnn_detector if model_path is None: model_path = dnn_caffemodel_location() prototxt_path = dnn_prototxt_location() dnn_detector = dnn.readNetFromCaffe(prototxt_path, model_path) def set_predictor(use_small=False): global predictor if use_small: predictor = dlib.shape_predictor(predictor_5_point_model_location()) else: predictor = dlib.shape_predictor(predictor_68_point_model_location()) def detect(img, model='dnn', number_of_times_to_upsample=1): """face detection, 人脸检测 Args: img: 图片对象 model: 支持的识别算法: hog, cnn, haar, dnn Returns: [(left, top, right, bottom)]: 每个人脸的左上角坐标和右下角坐标 [confidence]: 每个人脸的置信度,注意该参数对于cnn和dnn才有意义 see: https://www.learnopencv.com/face-detection-opencv-dlib-and-deep-learning-c-python/ """ if model == 'hog': rects = hog_detector(img, number_of_times_to_upsample) rects = [(r.left(), r.top(), r.right(), r.bottom()) for r in rects] return rects, [1]*len(rects) elif model == 'cnn': if cnn_detector is None: set_cnn_model() tmp_rects = cnn_detector(img, number_of_times_to_upsample) rects = [(r.rect.left(), r.rect.top(), r.rect.right(), r.rect.bottom()) for r in tmp_rects] confidences = [r.confidence for r in tmp_rects] return rects, confidences elif model == 'haar': rects = haar_detector.detectMultiScale(img) rects = [(x1, y1, x1+w, y1+h) for x1, y1, w, h in rects] return rects, [1]*len(rects) # 默认使用dnn if dnn_detector is None: set_dnn_model() cols = img.shape[1] rows = img.shape[0] blob = dnn.blobFromImage(img, 1.0, (conf.in_width, conf.in_height), (104, 177, 123), False, False) rects, confidences = [], [] dnn_detector.setInput(blob) detections = dnn_detector.forward() for i in range(detections.shape[2]): confidence = detections[0, 0, i, 2] if confidence < conf.threshold: continue left = int(detections[0, 0, i, 3] * cols) top = int(detections[0, 0, i, 4] * rows) right = int(detections[0, 0, i, 5] * cols) bottom = int(detections[0, 0, i, 6] * rows) rects.append((left, top, right, bottom)) confidences.append(confidence) return rects, confidences def landmarks(img, rects): rects = [format_dlib_rect(rect) for rect in rects] return [predictor(img, rect) for rect in rects] def encode(img, rects, num_jitters=1): rects = [format_dlib_rect(rect) for rect in rects] landmarks = [predictor(img, rect) for rect in rects] return [np.array(face_encoder.compute_face_descriptor(img, landmark, num_jitters)) for landmark in landmarks] def distance(face_encodings, face_to_compare): if len(face_encodings) == 0: return np.empty((0)) return np.linalg.norm(face_encodings - face_to_compare, axis=1) def format_dlib_rect(rect): left, top, right, bottom = rect return dlib.rectangle(left, top, right, bottom) def format_out_rect(rects): return [(min(x1, x2), min(y1, y2), max(x1, x2), max(y1, y2)) for x1, y1, x2, y2 in rects]
30.937931
91
0.669193
92e236b451053aefc37bae946dc56093dca0280d
1,195
py
Python
genomics_geek/messages/migrations/0001_initial.py
genomics-geek/genomics-geek.com
ba24be4a0e3d569859a5378d4e7054d58c88728e
[ "MIT" ]
null
null
null
genomics_geek/messages/migrations/0001_initial.py
genomics-geek/genomics-geek.com
ba24be4a0e3d569859a5378d4e7054d58c88728e
[ "MIT" ]
null
null
null
genomics_geek/messages/migrations/0001_initial.py
genomics-geek/genomics-geek.com
ba24be4a0e3d569859a5378d4e7054d58c88728e
[ "MIT" ]
1
2019-05-16T03:54:21.000Z
2019-05-16T03:54:21.000Z
# Generated by Django 2.0.8 on 2018-09-16 16:00 from django.db import migrations, models import django.utils.timezone import model_utils.fields class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Message', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', model_utils.fields.AutoCreatedField(default=django.utils.timezone.now, editable=False, verbose_name='created')), ('modified', model_utils.fields.AutoLastModifiedField(default=django.utils.timezone.now, editable=False, verbose_name='modified')), ('name', models.CharField(max_length=255)), ('email', models.EmailField(max_length=254)), ('subject', models.CharField(max_length=255)), ('text', models.TextField()), ('read', models.BooleanField(default=False)), ], options={ 'verbose_name': 'Message', 'verbose_name_plural': 'Messages', }, ), ]
35.147059
147
0.595816
f222f9caced948d34bc17cfda16b2bf7c0f65d31
6,485
py
Python
predict.py
saileshpuranam/DSND----Image-Classifier-Deep-Learning
ea472161670a1a2586f55be4f766be9b287ee761
[ "FTL" ]
null
null
null
predict.py
saileshpuranam/DSND----Image-Classifier-Deep-Learning
ea472161670a1a2586f55be4f766be9b287ee761
[ "FTL" ]
null
null
null
predict.py
saileshpuranam/DSND----Image-Classifier-Deep-Learning
ea472161670a1a2586f55be4f766be9b287ee761
[ "FTL" ]
null
null
null
import argparse import image_utils import network_utils import torch from math import ceil from train import check_gpu from torchvision import models import json import numpy as np import PIL # Function arg_parser() parses keyword arguments from the command line def arg_parser(): # Define a parser parser = argparse.ArgumentParser(description="Neural Network Settings") # Point towards image for prediction parser.add_argument('--image', type=str, help='Point to impage file for prediction.', required=True) # Load checkpoint created by train.py parser.add_argument('--checkpoint', type=str, help='Point to checkpoint file as str.', required=True) # Specify top-k parser.add_argument('--top_k', type=int, help='Choose top K matches as int.') # Import category names parser.add_argument('--category_names', type=str, help='Mapping from categories to real names.') # Add GPU Option to parser parser.add_argument('--gpu', action="store_true", help='Use GPU + Cuda for calculations') # Parse args args = parser.parse_args() return args # Function load_checkpoint(checkpoint_path) loads our saved deep learning model from checkpoint def load_checkpoint(checkpoint_path): # Load the saved file checkpoint = torch.load("my_checkpoint.pth") # Load Defaults if none specified if checkpoint['architecture'] == 'vgg16': model = models.vgg16(pretrained=True) model.name = "vgg16" else: exec("model = models.{}(pretrained=True)".checkpoint['architecture']) model.name = checkpoint['architecture'] # Freeze parameters so we don't backprop through them for param in model.parameters(): param.requires_grad = False # Load stuff from checkpoint model.class_to_idx = checkpoint['class_to_idx'] model.classifier = checkpoint['classifier'] model.load_state_dict(checkpoint['state_dict']) return model # Function process_image(image_path) performs cropping, scaling of image for our model def process_image(image_path): test_image = PIL.Image.open(image_path) # Get original dimensions orig_width, orig_height = test_image.size # Find shorter size and create settings to crop shortest side to 256 if orig_width < orig_height: resize_size=[256, 256**600] else: resize_size=[256**600, 256] test_image.thumbnail(size=resize_size) # Find pixels to crop on to create 224x224 image center = orig_width/4, orig_height/4 left, top, right, bottom = center[0]-(244/2), center[1]-(244/2), center[0]+(244/2), center[1]+(244/2) test_image = test_image.crop((left, top, right, bottom)) # Converrt to numpy - 244x244 image w/ 3 channels (RGB) np_image = np.array(test_image)/255 # Divided by 255 because imshow() expects integers (0:1)!! # Normalize each color channel normalise_means = [0.485, 0.456, 0.406] normalise_std = [0.229, 0.224, 0.225] np_image = (np_image-normalise_means)/normalise_std # Set the color to the first channel np_image = np_image.transpose(2, 0, 1) return np_image def predict(image_tensor, model, device, cat_to_name, top_k): ''' Predict the class (or classes) of an image using a trained deep learning model. image_path: string. Path to image, directly to image and not to folder. model: pytorch neural network. top_k: integer. The top K classes to be calculated outputs top k probabilities and corresponding top_labels ''' # check top_k if type(top_k) == type(None): top_k = 5 print("Top K not specified, assuming K=5.") # Set model to evaluate model.to('cpu') model.eval(); # Convert image from numpy to torch torch_image = torch.from_numpy(np.expand_dims(image_tensor, axis=0)).type(torch.FloatTensor) # Find probabilities (results) by passing through the function (note the log softmax means that its on a log scale) log_probs = model.forward(torch_image) # Convert to linear scale linear_probs = torch.exp(log_probs) # Find the top 5 results top_probs, top_labels = linear_probs.topk(top_k) # Detatch all of the details top_probs = np.array(top_probs.detach())[0] # This is not the correct way to do it but the correct way isnt working thanks to cpu/gpu issues so I don't care. top_labels = np.array(top_labels.detach())[0] # Convert to classes idx_to_class = {val: key for key, val in model.class_to_idx.items()} top_labels = [idx_to_class[lab] for lab in top_labels] top_flowers = [cat_to_name[lab] for lab in top_labels] return top_probs, top_labels, top_flowers def print_probability(probs, flowers): """ Converts two lists into a dictionary to print on screen """ for i, j in enumerate(zip(flowers, probs)): print ("Rank {}:".format(i+1), "Flower: {}, liklihood: {}%".format(j[1], ceil(j[0]*100))) # ============================================================================= # Main Function # ============================================================================= def main(): """ Executing relevant functions """ # Get Keyword Args for Prediction args = arg_parser() # Load categories to names json file with open(args.category_names, 'r') as f: cat_to_name = json.load(f) # Load model trained with train.py model = load_checkpoint(args.checkpoint) # Process Image image_tensor = process_image(args.image) # Check for GPU device = check_gpu(gpu_arg=args.gpu); # Use `processed_image` to predict the top K most likely classes top_probs, top_labels, top_flowers = predict(image_tensor, model, device, cat_to_name, args.top_k) # Print out probabilities print_probability(top_flowers, top_probs) # Run Program if __name__ == '__main__': main()
32.752525
161
0.614649
6586eeee94092ce9f1feb1e8bc2282caaa308c7a
4,650
py
Python
anyway/widgets/urban_widgets/injured_accidents_with_pedestrians_widget.py
atalyaalon/anyway
0ddcd1d587de3bb65c528affcef5b6bd1dcaca71
[ "MIT" ]
null
null
null
anyway/widgets/urban_widgets/injured_accidents_with_pedestrians_widget.py
atalyaalon/anyway
0ddcd1d587de3bb65c528affcef5b6bd1dcaca71
[ "MIT" ]
78
2017-06-20T09:25:11.000Z
2021-08-01T05:48:08.000Z
anyway/widgets/urban_widgets/injured_accidents_with_pedestrians_widget.py
atalyaalon/anyway
0ddcd1d587de3bb65c528affcef5b6bd1dcaca71
[ "MIT" ]
null
null
null
import logging from typing import Dict from sqlalchemy import func, or_ from sqlalchemy.sql.elements import and_ from flask_babel import _ from anyway.request_params import RequestParams from anyway.app_and_db import db from anyway.backend_constants import InjurySeverity, InjuredType from anyway.widgets.widget_utils import add_empty_keys_to_gen_two_level_dict, gen_entity_labels from anyway.models import NewsFlash, InvolvedMarkerView from anyway.widgets.widget import register from anyway.widgets.urban_widgets.urban_widget import UrbanWidget @register class InjuredAccidentsWithPedestriansWidget(UrbanWidget): name: str = "injured_accidents_with_pedestrians" def validate_parameters(self, yishuv_name, street1_hebrew): # TODO: validate each parameter and display message accordingly return ( yishuv_name is not None and street1_hebrew is not None and self.request_params.years_ago is not None ) def convert_to_dict(self, query_results): res = {} for query_result in query_results: if query_result.injury_severity not in res: res[query_result.injury_severity] = {} if query_result.accident_year not in res[query_result.injury_severity]: res[query_result.injury_severity][query_result.accident_year] = 0 res[query_result.injury_severity][query_result.accident_year] += query_result.count return res def __init__(self, request_params: RequestParams): super().__init__(request_params, type(self).name) self.rank = 18 self.information = "Injured and killed pedestrians by severity and year" def generate_items(self) -> None: try: yishuv_name = self.request_params.location_info.get("yishuv_name") street1_hebrew = self.request_params.location_info.get("street1_hebrew") if not self.validate_parameters(yishuv_name, street1_hebrew): logging.exception( f"Could not validate parameters for {NewsFlash} : {self.request_params.news_flash_obj.id}" ) return None query = ( db.session.query(InvolvedMarkerView) .with_entities( InvolvedMarkerView.accident_year, InvolvedMarkerView.injury_severity, func.count().label("count"), ) .filter(InvolvedMarkerView.accident_yishuv_name == yishuv_name) .filter( InvolvedMarkerView.injury_severity.in_( [ InjurySeverity.KILLED.value, InjurySeverity.SEVERE_INJURED.value, InjurySeverity.LIGHT_INJURED.value, ] ) ) .filter(InvolvedMarkerView.injured_type == InjuredType.PEDESTRIAN.value) .filter( or_( InvolvedMarkerView.street1_hebrew == street1_hebrew, InvolvedMarkerView.street2_hebrew == street1_hebrew, ) ) .filter( and_( InvolvedMarkerView.accident_timestamp >= self.request_params.start_time, InvolvedMarkerView.accident_timestamp <= self.request_params.end_time, ) ) .group_by(InvolvedMarkerView.accident_year, InvolvedMarkerView.injury_severity) ) self.items = add_empty_keys_to_gen_two_level_dict( self.convert_to_dict(query.all()), InjurySeverity.codes(), list( range( self.request_params.start_time.year, self.request_params.end_time.year + 1 ) ), ) except Exception as e: logging.error(f"InjuredAccidentsWithPedestriansWidget.generate_items(): {e}") raise Exception(e) @staticmethod def localize_items(request_params: RequestParams, items: Dict) -> Dict: items["data"]["text"] = { "title": f"נפגעים הולכי רגל ב- {request_params.location_text}", "labels": gen_entity_labels(InjurySeverity), } return items # adding calls to _() for pybabel extraction _("Injured and killed pedestrians by severity and year")
40.434783
111
0.595054
2ce649a0eb2d5b6cb6464fcd822bfae1b9ef666a
856
py
Python
utils/insertionsort.py
enlighter/algorithms
e8ecf918235933dd1bb384a5fa9ecc995c5bc73d
[ "MIT" ]
1
2015-05-11T13:54:10.000Z
2015-05-11T13:54:10.000Z
utils/insertionsort.py
enlighter/algorithms
e8ecf918235933dd1bb384a5fa9ecc995c5bc73d
[ "MIT" ]
null
null
null
utils/insertionsort.py
enlighter/algorithms
e8ecf918235933dd1bb384a5fa9ecc995c5bc73d
[ "MIT" ]
null
null
null
from operator import lt as less_than_operator from operator import gt as greater_than_operator def insertion_sort(array: list, desc: bool = False): n = len(array) array = array.copy() if desc: comparison_operator = less_than_operator else: comparison_operator = greater_than_operator # array[0:1] subsection is always sorted by default, so 0th iteration is redundant here for i in range(1, n): item = array[i] j = i - 1 while j >= 0 and comparison_operator(array[j], item): # print('Looping, j=', j) array[j + 1] = array[j] j = j - 1 # print(array) array[j+1] = item return array if __name__ == '__main__': test_list = [3, 6, 8, 24, 7, 11, 16] sorted_list = insertion_sort(test_list, desc=True) print(sorted_list)
27.612903
91
0.610981
583146f48d2c1ef1de943d6ec1f48af23a358ab5
4,229
py
Python
airflow/contrib/operators/jira_operator.py
suensummit/airflow
37a342d0e96a91ce2d34085e225a4e86f54c4e21
[ "Apache-2.0" ]
1
2021-11-04T20:11:58.000Z
2021-11-04T20:11:58.000Z
airflow/contrib/operators/jira_operator.py
suensummit/airflow
37a342d0e96a91ce2d34085e225a4e86f54c4e21
[ "Apache-2.0" ]
20
2017-04-18T19:47:46.000Z
2020-01-13T04:19:24.000Z
airflow/contrib/operators/jira_operator.py
suensummit/airflow
37a342d0e96a91ce2d34085e225a4e86f54c4e21
[ "Apache-2.0" ]
2
2018-09-15T07:13:01.000Z
2021-03-26T07:27:38.000Z
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from airflow.contrib.hooks.jira_hook import JIRAError, JiraHook from airflow.exceptions import AirflowException from airflow.models import BaseOperator from airflow.utils.decorators import apply_defaults class JiraOperator(BaseOperator): """ JiraOperator to interact and perform action on Jira issue tracking system. This operator is designed to use Jira Python SDK: http://jira.readthedocs.io :param jira_conn_id: reference to a pre-defined Jira Connection :type jira_conn_id: str :param jira_method: method name from Jira Python SDK to be called :type jira_method: str :param jira_method_args: required method parameters for the jira_method. (templated) :type jira_method_args: dict :param result_processor: function to further process the response from Jira :type result_processor: function :param get_jira_resource_method: function or operator to get jira resource on which the provided jira_method will be executed :type get_jira_resource_method: function """ template_fields = ("jira_method_args",) @apply_defaults def __init__(self, jira_conn_id='jira_default', jira_method=None, jira_method_args=None, result_processor=None, get_jira_resource_method=None, *args, **kwargs): super().__init__(*args, **kwargs) self.jira_conn_id = jira_conn_id self.method_name = jira_method self.jira_method_args = jira_method_args self.result_processor = result_processor self.get_jira_resource_method = get_jira_resource_method def execute(self, context): try: if self.get_jira_resource_method is not None: # if get_jira_resource_method is provided, jira_method will be executed on # resource returned by executing the get_jira_resource_method. # This makes all the provided methods of JIRA sdk accessible and usable # directly at the JiraOperator without additional wrappers. # ref: http://jira.readthedocs.io/en/latest/api.html if isinstance(self.get_jira_resource_method, JiraOperator): resource = self.get_jira_resource_method.execute(**context) else: resource = self.get_jira_resource_method(**context) else: # Default method execution is on the top level jira client resource hook = JiraHook(jira_conn_id=self.jira_conn_id) resource = hook.client # Current Jira-Python SDK (1.0.7) has issue with pickling the jira response. # ex: self.xcom_push(context, key='operator_response', value=jira_response) # This could potentially throw error if jira_result is not picklable jira_result = getattr(resource, self.method_name)(**self.jira_method_args) if self.result_processor: return self.result_processor(context, jira_result) return jira_result except JIRAError as jira_error: raise AirflowException("Failed to execute jiraOperator, error: %s" % str(jira_error)) except Exception as e: raise AirflowException("Jira operator error: %s" % str(e))
44.989362
90
0.677938
324007e0012b6f3eba8dbc0445f0671c212d9283
957
py
Python
ci/travis/build-multinode-image.py
mickelliu/ray
9cec28d439aca3458d9207379447251aa7b97e4f
[ "Apache-2.0" ]
2
2021-11-02T19:00:37.000Z
2022-01-22T01:33:01.000Z
ci/travis/build-multinode-image.py
mickelliu/ray
9cec28d439aca3458d9207379447251aa7b97e4f
[ "Apache-2.0" ]
null
null
null
ci/travis/build-multinode-image.py
mickelliu/ray
9cec28d439aca3458d9207379447251aa7b97e4f
[ "Apache-2.0" ]
null
null
null
import argparse import os import shutil import subprocess import tempfile def build_multinode_image(source_image: str, target_image: str): """Build docker image from source_image. This docker image will contain packages needed for the fake multinode docker cluster to work. """ tempdir = tempfile.mkdtemp() dockerfile = os.path.join(tempdir, "Dockerfile") with open(dockerfile, "wt") as f: f.write(f"FROM {source_image}\n") f.write("RUN sudo apt update\n") f.write("RUN sudo apt install -y openssh-server\n") subprocess.check_output( f"docker build -t {target_image} .", shell=True, cwd=tempdir) shutil.rmtree(tempdir) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("source_image", type=str) parser.add_argument("target_image", type=str) args = parser.parse_args() build_multinode_image(args.source_image, args.target_image)
27.342857
73
0.703239
9ef57793a6f5e66651cc0bc4f01a3448c56dd3ae
2,518
py
Python
mysql/__init__.py
renxinqiang/SpiderComment
30df130e77a2dfca5d8fc219082386603f1f11ec
[ "MIT" ]
1
2021-07-28T13:37:55.000Z
2021-07-28T13:37:55.000Z
mysql/__init__.py
renxinqiang/SpiderComment
30df130e77a2dfca5d8fc219082386603f1f11ec
[ "MIT" ]
null
null
null
mysql/__init__.py
renxinqiang/SpiderComment
30df130e77a2dfca5d8fc219082386603f1f11ec
[ "MIT" ]
1
2018-07-03T08:04:57.000Z
2018-07-03T08:04:57.000Z
#!/usr/local/bin/python3 import config import log import pymysql class MySql: __host = '' __user = '' __pass = '' __db = '' __port = '' __charset = '' __connect = '' __cursor = '' def __init__(self): self.__host = config.MYSQL['host'] self.__user = config.MYSQL['user'] self.__pass = config.MYSQL['password'] self.__db = config.MYSQL['db'] self.__port = config.MYSQL['port'] self.__charset = config.MYSQL['charset'] self.__mysql_connect() pass # 链接 def __mysql_connect(self): if not self.__connect: try: self.__connect = pymysql.connect(self.__host, self.__user, self.__pass, self.__db, charset = self.__charset) self.__cursor = self.__connect.cursor() except: log.Log().write_log(__class__, 'Connect MySql Faild!!!') pass # 游标 def __exec(self, sql=''): if not sql: return False try: self.__cursor.execute(sql) return self.__cursor except: log.Log().write_log(__class__, 'Cursor Sql Faild!!!') # 查找所有 def find_all(self, sql=''): if not sql: return False cursor = self.__exec(sql) return cursor.fetchall() # 查找一个 def find_one(self, sql=''): if not sql: return False cursor = self.__exec(sql) return cursor.fetchone() # 查找几个 def find_mony(self, sql='', size=0): if not sql or size is 0: return False cursor = self.__exec(sql) return cursor.fetchmany(sql, size) # 插入 def insert_sql(self,sql=''): if not sql: return False self.__exec(sql) self.__commit_sql() return True # 更新 def update_sql(self,sql=''): if not sql: return False self.__exec(sql) self.__commit_sql() return True # 删除操作 def delete_sql(self,sql=''): if not sql: return False self.__exec(sql) self.__commit_sql() return True # 执行语句 def __commit_sql(self): try: self.__connect.commit() except: self.__connect.rollback() log.Log().write_log(__class__,'Commit Sql Faild!!!') def __enter__(self): return self # 关闭 def close_connect(self): self.__cursor.close() self.__connect.close()
22.684685
124
0.533757
21f248a799930f423bafd6a552c83b59266ccee4
1,767
py
Python
google-datacatalog-rdbms-connector/setup.py
jason-h-35/datacatalog-connectors-rdbms
226f29f8d5568da6f588ffd09ba85a4daf73bc10
[ "Apache-2.0" ]
46
2020-04-27T21:55:50.000Z
2022-02-06T04:34:06.000Z
google-datacatalog-rdbms-connector/setup.py
jason-h-35/datacatalog-connectors-rdbms
226f29f8d5568da6f588ffd09ba85a4daf73bc10
[ "Apache-2.0" ]
45
2020-05-20T21:09:04.000Z
2022-03-24T00:14:30.000Z
google-datacatalog-rdbms-connector/setup.py
mesmacosta/datacatalog-connectors-rdbms
226f29f8d5568da6f588ffd09ba85a4daf73bc10
[ "Apache-2.0" ]
47
2020-05-02T14:48:06.000Z
2022-03-28T22:12:22.000Z
#!/usr/bin/python # # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import setuptools release_status = 'Development Status :: 4 - Beta' with open('README.md') as readme_file: readme = readme_file.read() setuptools.setup( name='google-datacatalog-rdbms-connector', version='0.12.1', author='Google LLC', description= 'Commons library for ingesting RDBMS metadata into Google Cloud Data Catalog', packages=setuptools.find_packages(where='./src'), namespace_packages=['google', 'google.datacatalog_connectors'], package_dir={'': 'src'}, include_package_data=True, install_requires=('pandas>=1.1.4,<1.2.0', 'gcsfs', 'google-datacatalog-connectors-commons>=0.6.0<0.7.0', 'schema'), setup_requires=('pytest-runner'), tests_require=('mock==3.0.5', 'pytest', 'pytest-cov', 'google-datacatalog-connectors-commons-test>=0.7.0<0.8.0'), classifiers=[ release_status, 'Programming Language :: Python :: 3.7', 'Operating System :: OS Independent', 'Topic :: Internet', ], long_description=readme, long_description_content_type='text/markdown', platforms='Posix; MacOS X; Windows', )
35.34
82
0.679117
bb0ff5f54547ccdf63a205d4ee9f376634014c23
6,138
py
Python
tests/test_normal_compute_add_prob.py
broadinstitute/millipede
4b6a61027e559a6953fabee138b074afc4164489
[ "Apache-2.0" ]
12
2021-11-09T17:19:32.000Z
2022-02-27T17:41:59.000Z
tests/test_normal_compute_add_prob.py
broadinstitute/millipede
4b6a61027e559a6953fabee138b074afc4164489
[ "Apache-2.0" ]
1
2021-11-19T18:26:34.000Z
2021-11-29T18:12:21.000Z
tests/test_normal_compute_add_prob.py
broadinstitute/millipede
4b6a61027e559a6953fabee138b074afc4164489
[ "Apache-2.0" ]
1
2022-02-28T15:18:53.000Z
2022-02-28T15:18:53.000Z
import math from types import SimpleNamespace import pytest import torch from common import assert_close from torch import zeros from millipede import NormalLikelihoodSampler def get_sample(gamma, included_covariates, log_h_ratio): P = len(gamma) sample = SimpleNamespace(gamma=torch.tensor(gamma).bool(), add_prob=zeros(P), _i_prob=zeros(P), _idx=0, weight=0.0) sample._active = torch.nonzero(sample.gamma).squeeze(-1) if len(included_covariates) > 0: sample._activeb = torch.cat([sample._active, torch.tensor(included_covariates)]) sample._log_h_ratio = log_h_ratio return sample def check_gammas(sampler, included_covariates, P, compute_log_factor_ratio): # TEST GAMMA = 0 0 0 sample = get_sample([0] * P, included_covariates, sampler.log_h_ratio) log_odds = sampler._compute_add_prob(sample) for p in range(P): assert_close(compute_log_factor_ratio([p], []), log_odds[p], atol=1.0e-7) # TEST GAMMA = 1 0 0 sample = get_sample([1] + [0] * (P - 1), included_covariates, sampler.log_h_ratio) log_odds = sampler._compute_add_prob(sample) assert_close(compute_log_factor_ratio([0], []), log_odds[0], atol=1.0e-7) for p in range(1, P): assert_close(compute_log_factor_ratio([0, p], [0]), log_odds[p], atol=1.0e-7) # TEST GAMMA = 1 1 0 sample = get_sample([1, 1] + [0] * (P - 2), included_covariates, sampler.log_h_ratio) log_odds = sampler._compute_add_prob(sample) assert_close(compute_log_factor_ratio([0, 1], [1]), log_odds[0], atol=1.0e-7) assert_close(compute_log_factor_ratio([0, 1], [0]), log_odds[1], atol=1.0e-7) for p in range(2, P): assert_close(compute_log_factor_ratio([0, 1, p], [0, 1]), log_odds[p], atol=1.0e-7) # TEST GAMMA = 1 1 1 sample = get_sample([1, 1, 1] + [0] * (P - 3), included_covariates, sampler.log_h_ratio) log_odds = sampler._compute_add_prob(sample) assert_close(compute_log_factor_ratio([0, 1, 2], [1, 2]), log_odds[0], atol=1.0e-7) assert_close(compute_log_factor_ratio([0, 1, 2], [0, 2]), log_odds[1], atol=1.0e-7) assert_close(compute_log_factor_ratio([0, 1, 2], [0, 1]), log_odds[2], atol=1.0e-7) for p in range(3, P): assert_close(compute_log_factor_ratio([0, 1, 2, p], [0, 1, 2]), log_odds[p], atol=1.0e-7) @pytest.mark.parametrize("P", [4, 7]) @pytest.mark.parametrize("P_assumed", [0, 1, 2]) @pytest.mark.parametrize("precompute_XX", [False, True]) @pytest.mark.parametrize("include_intercept", [False, True]) def test_isotropic_compute_add_log_prob(P, P_assumed, precompute_XX, include_intercept, N=11, tau=0.47, tau_intercept=0.11): X = torch.randn(N, P).double() X_assumed = torch.randn(N, P_assumed).double() if P_assumed > 0 else None Y = X[:, 0] + 0.2 * torch.randn(N).double() S = 1.0 if include_intercept else (torch.randn(P) / 100).exp().double() / P sampler = NormalLikelihoodSampler(X, Y, X_assumed=X_assumed, S=S, c=0.0, tau=tau, tau_intercept=tau_intercept, include_intercept=include_intercept, precompute_XX=precompute_XX, prior="isotropic") included_covariates = [] if P_assumed > 0: X = torch.cat([X, X_assumed], dim=-1) included_covariates = list(range(P, P + P_assumed)) if include_intercept: included_covariates.append(P + P_assumed) else: if include_intercept: included_covariates.append(P) if include_intercept: X = torch.cat([X, X.new_ones(X.size(0), 1)], dim=-1) YY = sampler.YY Z = sampler.Z def compute_log_factor(ind): ind.extend(included_covariates) precision = tau * torch.eye(len(ind)) if include_intercept: precision[-1, -1] = tau_intercept F = torch.inverse(X[:, ind].t() @ X[:, ind] + precision) ZFZ = (torch.mv(F, Z[ind]) * Z[ind]).sum(0) return -0.5 * N * (YY - ZFZ).log() + 0.5 * F.logdet() def compute_log_factor_ratio(ind1, ind0): added_idx = list(set(ind1) - set(ind0))[0] log_h_ratio = sampler.log_h_ratio[added_idx] if isinstance(sampler.log_h_ratio, torch.Tensor) \ else sampler.log_h_ratio return compute_log_factor(ind1) - compute_log_factor(ind0) + log_h_ratio + 0.5 * math.log(tau) check_gammas(sampler, included_covariates, P, compute_log_factor_ratio) @pytest.mark.parametrize("P", [4, 7]) @pytest.mark.parametrize("P_assumed", [0, 1, 2]) @pytest.mark.parametrize("precompute_XX", [False, True]) @pytest.mark.parametrize("include_intercept", [True, False]) def test_gprior_compute_add_log_prob(P, P_assumed, precompute_XX, include_intercept, N=11): X = torch.randn(N, P).double() X_assumed = torch.randn(N, P_assumed).double() if P_assumed > 0 else None Y = X[:, 0] + 0.2 * torch.randn(N).double() sampler = NormalLikelihoodSampler(X, Y, X_assumed=X_assumed, S=1.0, tau=0.0, c=0.73, include_intercept=include_intercept, precompute_XX=precompute_XX, prior="gprior") included_covariates = [] if P_assumed > 0: X = torch.cat([X, X_assumed], dim=-1) included_covariates = list(range(P, P + P_assumed)) if include_intercept: included_covariates.append(P + P_assumed) else: if include_intercept: included_covariates.append(P) if include_intercept: X = torch.cat([X, X.new_ones(X.size(0), 1)], dim=-1) YY = sampler.YY Z = sampler.Z def compute_log_factor(ind): ind.extend(included_covariates) F = torch.inverse(X[:, ind].t() @ X[:, ind]) ZFZ = (torch.mv(F, Z[ind]) * Z[ind]).sum(0) return -0.5 * N * (YY - sampler.c_one_c * ZFZ).log() def compute_log_factor_ratio(ind1, ind0): return compute_log_factor(ind1) - compute_log_factor(ind0) + sampler.log_h_ratio - sampler.log_one_c_sqrt check_gammas(sampler, included_covariates, P, compute_log_factor_ratio)
42.041096
113
0.642229
442647ddbc4fe4b81c93f24276b50135d79f0b32
794
py
Python
examples/server/python/config.py
jeremykenedy/satellizer
6b0c6bde4eead23b8479bea3970bdbb08600dc07
[ "MIT" ]
null
null
null
examples/server/python/config.py
jeremykenedy/satellizer
6b0c6bde4eead23b8479bea3970bdbb08600dc07
[ "MIT" ]
null
null
null
examples/server/python/config.py
jeremykenedy/satellizer
6b0c6bde4eead23b8479bea3970bdbb08600dc07
[ "MIT" ]
null
null
null
import os DEBUG = True TOKEN_SECRET = os.environ.get('SECRET_KEY') or 'hard to guess string''keyboard cat' FACEBOOK_SECRET = os.environ.get('FACEBOOK_SECRET') or 'Facebook Client Secret' FOURSQUARE_SECRET = os.environ.get('FOURSQUARE_SECRET') or 'Foursquare Client Secret' GOOGLE_SECRET = os.environ.get('GOOGLE_SECRET') or 'Google Client Secret' LINKEDIN_SECRET = os.environ.get('LINKEDIN_SECRET') or 'LinkedIn Client Secret' TWITTER_CONSUMER_KEY = os.environ.get('TWITTER_CONSUMER_KEY') or 'Twitter Consumer Secret' TWITTER_CONSUMER_SECRET = os.environ.get('TWITTER_CONSUMER_SECRET') or 'Twitter Consumer Secret' TWITTER_CALLBACK_URL = os.environ.get('TWITTER_CALLBACK_URL') or 'http://localhost:3000' SQLALCHEMY_DATABASE_URI = os.environ.get('SQLALCHEMY_DATABASE_URI') or 'sqlite:///app.db'
66.166667
96
0.799748
2a59b74197f64db3e9f069af49c52e8decab9d27
538
py
Python
.circleci/build_count.py
shubham-goel/pytorch3d
e5e6e90af6f81b3eccb35bbdfdc7e64ec6a4df21
[ "BSD-3-Clause" ]
6
2021-02-09T05:58:53.000Z
2021-11-01T03:28:40.000Z
.circleci/build_count.py
shubham-goel/pytorch3d
e5e6e90af6f81b3eccb35bbdfdc7e64ec6a4df21
[ "BSD-3-Clause" ]
null
null
null
.circleci/build_count.py
shubham-goel/pytorch3d
e5e6e90af6f81b3eccb35bbdfdc7e64ec6a4df21
[ "BSD-3-Clause" ]
2
2021-03-12T07:00:39.000Z
2021-04-12T09:47:36.000Z
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. """ Print the number of nightly builds """ from collections import Counter import yaml conf = yaml.safe_load(open("config.yml")) jobs = conf["workflows"]["build_and_test"]["jobs"] def jobtype(job): if isinstance(job, str): return job if len(job) == 1: [name] = job.keys() return name return "MULTIPLE PARTS" for i, j in Counter(map(jobtype, jobs)).items(): print(i, j) print() print(len(jobs))
17.933333
71
0.64684
0ba1f88167566b39f5a9035a5a28f217e6de0ba9
23,332
py
Python
bth5/dataset.py
Quansight/bitemporal-h5
faa323e25521381e3d770f48aa089ede1c7406fe
[ "BSD-3-Clause" ]
3
2019-09-13T18:41:09.000Z
2019-09-14T02:58:49.000Z
bth5/dataset.py
Quansight/bitemporal-h5
faa323e25521381e3d770f48aa089ede1c7406fe
[ "BSD-3-Clause" ]
5
2019-09-05T14:21:59.000Z
2019-10-10T18:41:52.000Z
bth5/dataset.py
Quansight/bitemporal-h5
faa323e25521381e3d770f48aa089ede1c7406fe
[ "BSD-3-Clause" ]
2
2020-02-11T18:52:58.000Z
2021-04-17T15:39:04.000Z
"""The main bitemporal data set interface""" import datetime import posixpath from collections.abc import Iterable import functools import h5py import numpy as np import numba as nb import json class DatasetView(h5py.Dataset): r""" Views a ``h5py.Dataset`` as a dtype of your choice. Examples -------- >>> with h5py.File(temp_h5, 'w') as f: ... orig_dset = f['/'].create_dataset('example', shape=(), dtype=np.dtype('V8')) ... id = orig_dset.id ... dset = DatasetView(id, dtype='<M8[D]') ... dset[...] = np.datetime64("2019-09-18") ... orig_dset[...] array(b'\xED\x46\x00\x00\x00\x00\x00\x00', dtype='|V8') """ def __init__(self, id, dtype=None): super().__init__(id) file_dtype = ( None if "NUMPY_DTYPE" not in self.attrs else _dtype_from_descr(json.loads(self.attrs["NUMPY_DTYPE"])) ) if ( (file_dtype is not None) and (dtype is not None) and np.dtype(dtype) != file_dtype ): raise ValueError("Dtype in file doesn't match specified dtype.") elif ("NUMPY_DTYPE" not in self.attrs) and (dtype is None): raise ValueError("dtype not specified and not in file.") if file_dtype is not None: dtype = file_dtype else: self.attrs["NUMPY_DTYPE"] = json.dumps(np.dtype(dtype).descr) self._actual_dtype = np.dtype(dtype) @property def dtype(self): return self._actual_dtype def __getitem__(self, k): if isinstance(k, str): dt = np.dtype(self.dtype.fields[k][0]) return super().__getitem__(k).view(dt) else: return super().__getitem__(k).view(self.dtype) def __setitem__(self, k, v): if isinstance(k, str): dt1 = np.dtype(self.dtype.fields[k][0]) dt2 = np.dtype(super().dtype.fields[k][0]) v = np.asarray(v, dtype=dt1) super().__setitem__(k, v.view(dt2)) else: v = np.asarray(v, dtype=self.dtype) super().__setitem__(k, v.view(super().dtype)) def _dtype_from_descr(dtype): if len(dtype) == 1 and dtype[0][0] == "": dtype = np.dtype(dtype) else: dtype = np.lib.format.descr_to_dtype(dtype) return dtype @nb.jit(nopython=True, nogil=True) def _argunique_last(keys): """ Deduplicates values w.r.t keys passed in. Does the same as ``np.unique``, but keeping the last element instead of the first, and returning the index. Parameters ---------- values: numpy.ndarray The ids to deduplicate. keys: numpy.ndarray The key with which to deduplicate. Examples -------- >>> keys = np.array([1, 2, 1], dtype=np.intp) >>> _argunique_last(keys) array([1, 2]) """ a = {} b = [] j = np.intp(0) for i in range(len(keys)): k = keys[i] if k in a: old_idx = a[k] b[old_idx] = i a[k] = j else: b.append(i) a[k] = j j += 1 ret = np.array(b, dtype=np.intp) ret.sort() return ret def _wrap_deduplicate(f): """ Wraps a functions so it de-duplicates the data with respect to the valid times. """ @functools.wraps(f) def wrapped(*a, **kw): ret = f(*a, **kw) if ret.ndim > 0: # A view is okay here since we only care about the hash. # Plus, Numba doesn't support datetime64 hashes. dedup_ids = _argunique_last(ret["valid_time"].view(np.int64)) ret = ret[dedup_ids] return ret return wrapped NAT = np.datetime64("nat") TIME_DTYPE = np.dtype("<M8[us]") TIDX_DTYPE = np.dtype( [ ("transaction_time", TIME_DTYPE), ("start_valid_time", TIME_DTYPE), ("end_valid_time", TIME_DTYPE), ("start_idx", "<u8"), ("end_idx", "<u8"), ] ) def _ensure_groups(handle, path): """ Makes sure a path exists, returning the final group object. Parameters ---------- handle : h5py.File The file handle in which to ensure the group. path : str The group to ensure inside the file. Examples -------- >>> with h5py.File(temp_h5, 'w') as f: ... _ensure_groups(f, '/potato') ... '/potato' in f <HDF5 group "/potato" (0 members)> True """ # this assumes the path is an abspath group = handle["/"] # the file handle is the root group. heirarchy = path[1:].split("/") for name in heirarchy: if not name: # handle double slashes, // continue elif name in group: group = group[name] else: group = group.create_group(name) return group def _transform_dt(dt): """ Replaces all datetime64s inside a dtype with ``|V8``, an opaque 8-byte bitfield. Parameters ---------- dt: np.dtype The dtype to transform Examples -------- >>> _transform_dt(np.dtype('int8')) dtype('int8') >>> _transform_dt(np.dtype('<M8')) dtype('V8') >>> _transform_dt(np.dtype(('<M8', (5, 5)))) dtype(('V8', (5, 5))) >>> _transform_dt(np.dtype([('a', '<M8'), ('b', 'int8')])) dtype([('a', 'V8'), ('b', 'i1')]) """ if dt.fields is not None: dt_out = {"names": [], "formats": [], "offsets": []} for field, dt_inner in dt.fields.items(): dt_out["names"].append(field) dt_out["formats"].append(_transform_dt(dt_inner[0])) dt_out["offsets"].append(dt_inner[1]) return np.dtype(dt_out) if dt.subdtype is not None: return np.dtype((_transform_dt(dt.subdtype[0]), dt.subdtype[1])) return np.dtype("V8") if dt.kind in "Mm" else dt def _check_index_dtype(k): """ Check the dtype of the index. Parameters ---------- k: slice or array_like Index into an array Examples -------- >>> _check_index_dtype(0) dtype('int64') >>> _check_index_dtype(np.datetime64(0, 'ms')) dtype('<M8[ms]') >>> _check_index_dtype(slice(5, 8)) dtype('int64') """ if not isinstance(k, slice): if hasattr(k, "__len__") and len(k) == 0: return np.intp return np.asarray(k).dtype arr = [v for v in (k.start, k.stop, k.step) if v is not None] return _check_index_dtype(arr) class _Indexer: """ Turns a function or method into an indexer. Examples -------- >>> def f(k): ... return k >>> i = _Indexer(f) >>> i[1] 1 >>> i[5:8] slice(5, 8, None) """ def __init__(self, reader): self._reader = reader if hasattr(reader, "__doc__"): self.__doc__ = reader.__doc__ def __get__(self, obj, otype=None): if obj is not None: reader = self._reader.__get__(obj, otype) return type(self)(reader) return self def __getitem__(self, k): return self._reader(k) class Dataset: """ Represents a bitemporal dataset as a memory-mapped structure stored in HDF5. Examples -------- >>> ds = bth5.Dataset(temp_h5, '/path/to/group', mode='a', value_dtype=np.float64) >>> with ds: ... ds.write(np.datetime64("2018-06-21 12:26:47"), 2.0) >>> # Write happens here. >>> with ds: ... ds.valid_times[:] array([(0, '2018-06-21T12:26:47.000000', 2.)], dtype=[('transaction_id', '<u8'), ('valid_time', '<M8[us]'), ('value', '<f8')]) """ def __init__(self, filename, path, mode="r", value_dtype=None): """ Creates a :obj:`Dataset`. Parameters ---------- filename : str The path to the h5 file, on disk. path : str The path to the group within the HDF5 file. mode : str The mode to open a file with. value_dtype: str, optional The dtype of the value that is attached to """ if not posixpath.isabs(path): raise ValueError( path + "must be a posix absolute path, i.e. " "start with a leading '/'." ) self.filename = filename self.path = path self.closed = True self._mode = mode self._handle = None self._staged_data = None if value_dtype is not None: self._dtype = np.dtype( [ ("transaction_id", "<u8"), ("valid_time", TIME_DTYPE), ("value", value_dtype), ] ) else: with self: self._dtype = self._dtype_from_file() self._file_dtype = None if self._dtype is None: raise ValueError("Must specify dtype on first transaction.") def _dtype_from_file(self): if self._dataset_name not in self._group: return None ds = DatasetView(self._group[self._dataset_name].id) return ds.dtype @property def dtype(self): """ The dtype of this dataset. """ return self._dtype @property def file_dtype(self): """ The dtype stored in the file. """ if self._file_dtype is None: self._file_dtype = _transform_dt(self.dtype) return self._file_dtype @dtype.setter def dtype(self, value): self._dtype = value def open(self, mode="r", **kwargs): """Opens the file for various operations""" # check that we should open the dataset if not self.closed: if self._mode == mode: return # already open in the same mode! else: raise IOError("attempted to reopen dataset in new mode") # open the dataset and return self._handle = h5py.File(self.filename, mode) self.closed = False self._mode = mode self._group_name = self.path self._dataset_name = "dataset" self._transaction_idx_name = "transaction_index" self._group = _ensure_groups(self._handle, self._group_name) if "w" in mode or "a" in mode: self._staged_data = [] @property def _dataset(self): if self._dataset_name not in self._group: self._group.create_dataset( self._dataset_name, dtype=_transform_dt(self.dtype), maxshape=(None,), shape=(0,), ) id = self._group[self._dataset_name].id return DatasetView(id, dtype=self.dtype) @property def _transaction_index(self): if self._transaction_idx_name not in self._group: self._group.create_dataset( self._transaction_idx_name, dtype=_transform_dt(TIDX_DTYPE), maxshape=(None,), shape=(0,), ) id = self._group[self._transaction_idx_name].id return DatasetView(id, dtype=TIDX_DTYPE) def close(self): """Close the current file handle.""" ds = self._dataset tidx = self._transaction_index # write the staged data if self._staged_data: n = len(self._staged_data) data = np.empty(n, dtype=self.dtype) data[:] = self._staged_data # 1. Mergesort is stable # 2. Faster on almost sorted data sorted_idx = np.argsort(data["valid_time"], kind="mergesort") # set transaction id tid = len(tidx) data["transaction_id"][:] = tid # write dataset m = ds.len() ds.resize((m + n,)) ds[m:] = data[sorted_idx] tidx.resize((tid + 1,)) now = np.datetime64(datetime.datetime.utcnow()) tidx[-1] = (now, data["valid_time"][0], data["valid_time"][-1], m, m + n) # now close the file self._handle.close() self._handle = None self.closed = True # self._mode does not need to be reset, so that the file can be reopened self._group_name = self._group = None self._dataset_name = None self._staged_data = None def __enter__(self): if self.closed: mode = self._mode or "r" self.open(mode=mode) return self def __exit__(self, exc_type, exc_value, traceback): self.close() def write(self, valid_time, value): """ Appends data to a dataset. Examples -------- >>> with bth5.open(temp_h5, '/', mode='w', value_dtype=np.int64) as ds: ... ds.write(np.datetime64("2018-06-21 12:26:47"), 1.0) ... ds.write(np.datetime64("2018-06-21 12:26:49"), 2.0) ... ds.write([ ... np.datetime64("2018-06-21 12:26:51"), ... np.datetime64("2018-06-21 12:26:53"), ... ], [3.0, 4.0]) >>> with bth5.open(temp_h5, '/', mode='r', value_dtype=np.int64) as ds: ... ds.records[:] array([(0, '2018-06-21T12:26:47.000000', 1), (0, '2018-06-21T12:26:49.000000', 2), (0, '2018-06-21T12:26:51.000000', 3), (0, '2018-06-21T12:26:53.000000', 4)], dtype=[('transaction_id', '<u8'), ('valid_time', '<M8[us]'), ('value', '<i8')]) """ if self.closed or self._mode not in ("w", "a"): raise RuntimeError("dataset must be open to write data to it.") if isinstance(valid_time, Iterable): for v, d in zip(valid_time, value): self.write(v, d) return data = (-1, valid_time, value) self._staged_data.append(data) def interpolate_values(self, interp_times): """Interpolates the values at the given valid times.""" interp_times = np.asarray(interp_times).astype(TIME_DTYPE) min_time, max_time = np.min(interp_times), np.max(interp_times) considered_records = self._extend_valid_times[min_time:max_time] sorted_idx = np.argsort(considered_records, kind="mergesort") considered_records = considered_records[sorted_idx] x = considered_records["valid_time"].view(np.int64) y = considered_records["value"] return np.interp(interp_times.view(np.int64), x, y) def _search_valid_transactions(self, k): if not isinstance(k, slice): k = slice(k, k, None) ds = self._dataset tidx = self._transaction_index mask = np.ones(tidx.shape, dtype=np.bool_) if k.start is not None: mask |= tidx["start_valid_time"] >= k.start if k.stop is not None: mask |= tidx["end_valid_time"] <= k.stop idxs = np.nonzero(mask) return self.transaction_idx[ np.min(idxs, initial=0) : np.max(idxs, initial=0) + 1 ] @_wrap_deduplicate def _index_valid_time(self, k, extend=False): """ Indexes into the dataset by valid time. Examples -------- >>> with bth5.open(temp_h5, '/', mode='w', value_dtype=np.int64) as ds: ... ds.write(np.datetime64("2018-06-21 12:26:47"), 2.0) ... ds.write(np.datetime64("2018-06-21 12:26:49"), 2.0) >>> with bth5.open(temp_h5, '/', mode='r', value_dtype=np.int64) as ds: ... ds.valid_times[:] ... ds.valid_times[np.datetime64("2018-06-21 12:26:47"):np.datetime64("2018-06-21 12:26:48")] ... ds.valid_times[np.datetime64("2018-06-21 12:26:48"):] ... ds.valid_times[:np.datetime64("2018-06-21 12:26:48")] ... ds.valid_times[np.datetime64("2018-06-21 12:26:49")] array([(0, '2018-06-21T12:26:47.000000', 2), (0, '2018-06-21T12:26:49.000000', 2)], dtype=[('transaction_id', '<u8'), ('valid_time', '<M8[us]'), ('value', '<i8')]) array([(0, '2018-06-21T12:26:47.000000', 2)], dtype=[('transaction_id', '<u8'), ('valid_time', '<M8[us]'), ('value', '<i8')]) array([(0, '2018-06-21T12:26:49.000000', 2)], dtype=[('transaction_id', '<u8'), ('valid_time', '<M8[us]'), ('value', '<i8')]) array([(0, '2018-06-21T12:26:47.000000', 2)], dtype=[('transaction_id', '<u8'), ('valid_time', '<M8[us]'), ('value', '<i8')]) (0, '2018-06-21T12:26:49.000000', 2) >>> with bth5.open(temp_h5, '/', mode='r', value_dtype=np.int64) as ds: ... ds.valid_times[np.datetime64("2018-06-21 12:26:48")] Traceback (most recent call last): ... ValueError: The specified date was not found in the dataset, use interpolate_value. """ ds = self._search_valid_transactions(k) ds = ds[np.argsort(ds["valid_time"], kind="mergesort")] sort_field = ds["valid_time"] if isinstance(k, slice): if k.step is not None: raise ValueError( "Stepping is not supported with indexing, use interpolate_values." ) if not extend: start_idx, end_idx = ( ( np.searchsorted(sort_field, k.start) if k.start is not None else None ), ( np.searchsorted(sort_field, k.stop) if k.stop is not None else None ), ) else: start_idx, end_idx = ( ( np.searchsorted(sort_field, k.start, side="right") - 1 if k.start is not None else None ), ( np.searchsorted(sort_field, k.stop, side="left") + 1 if k.stop is not None else None ), ) return ds[start_idx:end_idx] else: possible_idx = np.searchsorted(sort_field, k) if sort_field[possible_idx] == k: return ds[possible_idx] else: raise ValueError( "The specified date was not found in the dataset, use interpolate_value." ) @_wrap_deduplicate def _index_by(self, field, k, multi=False): sort_field = self._dataset[field] if multi and not isinstance(k, slice): k = slice(k, k, None) if k.step is not None: raise ValueError( "Stepping is not supported with indexing, use interpolate_values." ) start_idx = ( np.searchsorted(sort_field, k.start) if k.start is not None else None ) end_idx = ( np.searchsorted(sort_field, k.stop, side="right") if k.stop is not None else None ) return self._dataset[start_idx:end_idx] def _construct_indexer(key, multi=False): def reader(self, k): return self._index_by(key, k, multi=multi) return _Indexer(reader) def _index_extended_valid_time(self, k): return self._index_valid_time(k, extend=True) def _transaction_times(self, k): """ Index into the transaction index by transaction time. Examples -------- >>> with bth5.open(temp_h5, '/', mode='w', value_dtype=np.int64) as ds: ... ds.write(np.datetime64("2018-06-21 12:26:47"), 2.0) ... ds.write(np.datetime64("2018-06-21 12:26:49"), 2.0) >>> with bth5.open(temp_h5, '/', mode='r', value_dtype=np.int64) as ds: ... ds.transaction_times[:] # doctest: +SKIP array([('2019-09-19T10:32:00.210817', '2018-06-21T12:26:47.000000', '2018-06-21T12:26:49.000000', 0, 2)], dtype=[('transaction_time', '<M8[us]'), ('start_valid_time', '<M8[us]'), ('end_valid_time', '<M8[us]'), ('start_idx', '<u8'), ('end_idx', '<u8')]) """ tidx = self._transaction_index sort_field = tidx["transaction_time"] if isinstance(k, slice): if k.step is not None: raise ValueError( "Stepping is not supported with indexing, use interpolate_values." ) start_idx, end_idx = ( (np.searchsorted(sort_field, k.start) if k.start is not None else None), (np.searchsorted(sort_field, k.stop) if k.stop is not None else None), ) return tidx[start_idx:end_idx] else: possible_idx = np.searchsorted(sort_field, k) if sort_field[possible_idx] == k: return tidx[possible_idx] else: raise ValueError( "The specified date was not found in the dataset, use interpolate_value." ) valid_times = _Indexer(_index_valid_time) _extend_valid_times = _Indexer(_index_extended_valid_time) transaction_times = _Indexer(_transaction_times) transaction_idx = _construct_indexer("transaction_id", multi=True) transaction_idx.__doc__ = """Indexes into the dataset by transaction ID.""" def _records(self, k): """ Index into the dataset by record ID. Examples -------- >>> with bth5.open(temp_h5, '/', mode='w', value_dtype=np.int64) as ds: ... ds.write(np.datetime64("2018-06-21 12:26:47"), 2.0) ... ds.write(np.datetime64("2018-06-21 12:26:49"), 2.0) >>> with bth5.open(temp_h5, '/', mode='r', value_dtype=np.int64) as ds: ... ds.records[:] # doctest: +SKIP array([('2019-09-19T10:32:00.210817', '2018-06-21T12:26:47.000000', '2018-06-21T12:26:49.000000', 0, 2)], dtype=[('transaction_time', '<M8[us]'), ('start_valid_time', '<M8[us]'), ('end_valid_time', '<M8[us]'), ('start_idx', '<u8'), ('end_idx', '<u8')]) """ return self._dataset[k] def _transactions(self, k): """ Index into the transaction index by transaction ID. Examples -------- >>> with bth5.open(temp_h5, '/', mode='w', value_dtype=np.int64) as ds: ... ds.write(np.datetime64("2018-06-21 12:26:47"), 2.0) ... ds.write(np.datetime64("2018-06-21 12:26:49"), 2.0) >>> with bth5.open(temp_h5, '/', mode='r', value_dtype=np.int64) as ds: ... ds.transactions[:] # doctest: +SKIP array([('2019-09-30T13:52:44.216755', '2018-06-21T12:26:47.000000', '2018-06-21T12:26:49.000000', 0, 2)], dtype=[('transaction_time', '<M8[us]'), ('start_valid_time', '<M8[us]'), ('end_valid_time', '<M8[us]'), ('start_idx', '<u8'), ('end_idx', '<u8')]) """ return self._transaction_index[k] records = _Indexer(_records) transactions = _Indexer(_transactions) def open(filename, path, mode="r", value_dtype=None, **kwargs): """Opens a bitemporal HDF5 dataset.""" ds = Dataset(filename, path, value_dtype=value_dtype) ds.open(mode, **kwargs) return ds
32.815752
160
0.537888
6cad27739adaf7a08393c070871bbb785a61ae5b
12,577
py
Python
tests/tools/assigner/actions/balancemodules/test_rackaware.py
akashvacher/kafka-tools
0d98bbefc1105851b7b7203de4f6c68d9c097730
[ "Apache-2.0" ]
578
2016-05-05T05:18:15.000Z
2022-03-23T07:18:07.000Z
tests/tools/assigner/actions/balancemodules/test_rackaware.py
akashvacher/kafka-tools
0d98bbefc1105851b7b7203de4f6c68d9c097730
[ "Apache-2.0" ]
94
2016-04-29T23:25:38.000Z
2022-02-07T17:16:16.000Z
tests/tools/assigner/actions/balancemodules/test_rackaware.py
akashvacher/kafka-tools
0d98bbefc1105851b7b7203de4f6c68d9c097730
[ "Apache-2.0" ]
150
2016-04-29T16:33:20.000Z
2022-03-14T10:05:48.000Z
import sys import unittest from argparse import Namespace from collections import deque from mock import call, patch from ..fixtures import set_up_cluster, set_up_subparser from kafka.tools.exceptions import BalanceException from kafka.tools.models.broker import Broker from kafka.tools.assigner.actions.balance import ActionBalance from kafka.tools.assigner.actions.balancemodules.rackaware import (ActionBalanceRackAware, check_partition_swappable, racks_for_replica_list, difference_in_size_to_last_partition) class ActionBalanceRackAwareTests(unittest.TestCase): def setUp(self): self.cluster = set_up_cluster() self.cluster.topics['testTopic1'].partitions[0].size = 1000 self.cluster.topics['testTopic1'].partitions[1].size = 1000 self.cluster.topics['testTopic2'].partitions[0].size = 2000 self.cluster.topics['testTopic2'].partitions[1].size = 2000 (self.parser, self.subparsers) = set_up_subparser() self.args = Namespace(exclude_topics=[]) def test_configure_args(self): ActionBalance.configure_args(self.subparsers) sys.argv = ['kafka-assigner', 'balance', '-t', 'rackaware'] parsed_args = self.parser.parse_args() assert parsed_args.action == 'balance' def test_init_broker_deque(self): action = ActionBalanceRackAware(self.args, self.cluster) assert set(action._random_brokers) == set(self.cluster.brokers.values()) def test_check_partition_swappable_already_exists(self): b1 = self.cluster.brokers[1] b2 = self.cluster.brokers[2] replicas_a = [b1, b2] replicas_b = [b2, b1] assert check_partition_swappable(replicas_a, replicas_b, 0) is False assert check_partition_swappable(replicas_b, replicas_a, 0) is False def test_check_partition_swappable_racks_collide(self): b1 = self.cluster.brokers[1] b2 = self.cluster.brokers[2] b3 = Broker('brokerhost3.example.com', id=3) b4 = Broker('brokerhost4.example.com', id=4) b2.rack = "a" b3.rack = "a" b4.rack = "b" replicas_a = [b1, b2] replicas_b = [b3, b4] assert check_partition_swappable(replicas_a, replicas_b, 0) is False assert check_partition_swappable(replicas_b, replicas_a, 0) is False def test_check_partition_swappable_racks_ok(self): b1 = self.cluster.brokers[1] b2 = self.cluster.brokers[2] b3 = Broker('brokerhost3.example.com', id=3) b4 = Broker('brokerhost4.example.com', id=4) b2.rack = "a" b3.rack = "b" b4.rack = "b" replicas_a = [b1, b2] replicas_b = [b3, b4] assert check_partition_swappable(replicas_a, replicas_b, 0) is True assert check_partition_swappable(replicas_b, replicas_a, 0) is True def test_racks_for_replica_list_nopos(self): b1 = self.cluster.brokers[1] b2 = self.cluster.brokers[2] assert racks_for_replica_list([b1, b2]) == ["a", "b"] def test_racks_for_replica_list_pos(self): b1 = self.cluster.brokers[1] b2 = self.cluster.brokers[2] assert racks_for_replica_list([b1, b2], 1) == ["a"] def test_difference_in_size_larger(self): partitions = [self.cluster.topics['testTopic1'].partitions[0], self.cluster.topics['testTopic1'].partitions[1]] partitions[0].size = 1000 partitions[1].size = 2000 p = self.cluster.topics['testTopic2'].partitions[0] p.size = 3000 assert difference_in_size_to_last_partition(p, partitions) == 1000 def test_difference_in_size_smaller(self): partitions = [self.cluster.topics['testTopic1'].partitions[0], self.cluster.topics['testTopic1'].partitions[1]] partitions[0].size = 1000 partitions[1].size = 2000 p = self.cluster.topics['testTopic2'].partitions[0] p.size = 1000 assert difference_in_size_to_last_partition(p, partitions) == 1000 def test_difference_in_size_empty_list(self): partitions = [] p = self.cluster.topics['testTopic2'].partitions[0] p.size = 1000 assert difference_in_size_to_last_partition(p, partitions) == float("inf") def test_try_pick_new_broker_skipself(self): b1 = self.cluster.brokers[1] b2 = self.cluster.brokers[2] b3 = Broker('brokerhost3.example.com', id=3) self.cluster.add_broker(b3) b3.rack = "a" action = ActionBalanceRackAware(self.args, self.cluster) # Firmly order the deque action._random_brokers = deque([b1, b2, b3]) newbroker = action._try_pick_new_broker(self.cluster.topics['testTopic1'].partitions[0], 0) assert newbroker == b3 assert action._random_brokers == deque([b1, b2, b3]) def test_try_pick_new_broker_failed(self): action = ActionBalanceRackAware(self.args, self.cluster) self.assertRaises(BalanceException, action._try_pick_new_broker, self.cluster.topics['testTopic1'].partitions[0], 0) def test_try_pick_new_broker(self): b1 = self.cluster.brokers[1] b2 = self.cluster.brokers[2] b3 = Broker('brokerhost3.example.com', id=3) self.cluster.add_broker(b3) b3.rack = "b" action = ActionBalanceRackAware(self.args, self.cluster) # Firmly order the deque action._random_brokers = deque([b3, b1, b2]) newbroker = action._try_pick_new_broker(self.cluster.topics['testTopic1'].partitions[0], 1) assert newbroker == b3 assert action._random_brokers == deque([b1, b2, b3]) def test_try_pick_swap_partition_none(self): action = ActionBalanceRackAware(self.args, self.cluster) small_partitions = [self.cluster.topics['testTopic1'].partitions[0], self.cluster.topics['testTopic1'].partitions[1]] large_partitions = [self.cluster.topics['testTopic2'].partitions[0]] p = self.cluster.topics['testTopic2'].partitions[1] small_partitions[0].size = 1000 small_partitions[1].size = 2000 large_partitions[0].size = 4000 p.size = 3000 assert action._try_pick_swap_partition(p, 0, small_partitions, large_partitions) is None @patch('kafka.tools.assigner.actions.balancemodules.rackaware.check_partition_swappable') def test_try_pick_swap_partitions_nosmall(self, mock_check): action = ActionBalanceRackAware(self.args, self.cluster) small_partitions = [] large_partitions = [self.cluster.topics['testTopic2'].partitions[0]] p = self.cluster.topics['testTopic2'].partitions[1] large_partitions[0].size = 4000 p.size = 3000 mock_check.return_value = True assert action._try_pick_swap_partition(p, 0, small_partitions, large_partitions) == self.cluster.topics['testTopic2'].partitions[0] @patch('kafka.tools.assigner.actions.balancemodules.rackaware.check_partition_swappable') def test_try_pick_swap_partitions_nolarge(self, mock_check): action = ActionBalanceRackAware(self.args, self.cluster) large_partitions = [] small_partitions = [self.cluster.topics['testTopic2'].partitions[0]] p = self.cluster.topics['testTopic2'].partitions[1] small_partitions[0].size = 1000 p.size = 3000 mock_check.return_value = True assert action._try_pick_swap_partition(p, 0, small_partitions, large_partitions) == self.cluster.topics['testTopic2'].partitions[0] @patch('kafka.tools.assigner.actions.balancemodules.rackaware.check_partition_swappable') def test_try_pick_swap_partition_full(self, mock_check): action = ActionBalanceRackAware(self.args, self.cluster) small_partitions = [self.cluster.topics['testTopic1'].partitions[0], self.cluster.topics['testTopic1'].partitions[1]] large_partitions = [self.cluster.topics['testTopic2'].partitions[0]] p = self.cluster.topics['testTopic2'].partitions[1] small_partitions[0].size = 1000 small_partitions[1].size = 2000 large_partitions[0].size = 4000 p.size = 3000 mock_check.side_effect = [False, False, True] target = action._try_pick_swap_partition(p, 0, small_partitions, large_partitions) b1 = self.cluster.brokers[1] b2 = self.cluster.brokers[2] mock_check.assert_has_calls([call([b1, b2], [b2, b1], 0), call([b1, b2], [b2, b1], 0), call([b1, b2], [b1, b2], 0)]) assert target == self.cluster.topics['testTopic1'].partitions[0] def test_get_sorted_list(self): action = ActionBalanceRackAware(self.args, self.cluster) p1 = self.cluster.topics['testTopic1'].partitions[0] p2 = self.cluster.topics['testTopic1'].partitions[1] p3 = self.cluster.topics['testTopic2'].partitions[0] p4 = self.cluster.topics['testTopic2'].partitions[1] p1.size = 1000 p2.size = 6000 p3.size = 3000 p4.size = 4000 assert action._get_sorted_partition_list_at_pos(0) == [p1, p3, p4, p2] def test_get_sorted_list_missing_replica(self): action = ActionBalanceRackAware(self.args, self.cluster) p1 = self.cluster.topics['testTopic1'].partitions[0] p2 = self.cluster.topics['testTopic1'].partitions[1] p3 = self.cluster.topics['testTopic2'].partitions[0] p4 = self.cluster.topics['testTopic2'].partitions[1] p1.size = 1000 p2.size = 6000 p3.size = 3000 p4.size = 4000 p1.replicas = [self.cluster.brokers[1]] assert action._get_sorted_partition_list_at_pos(0) == [p3, p4, p2] @patch.object(ActionBalanceRackAware, '_try_pick_swap_partition') def test_process_partitions_at_pos_nochange(self, mock_pick): action = ActionBalanceRackAware(self.args, self.cluster) action._process_partitions_at_pos(0) mock_pick.assert_not_called() @patch.object(ActionBalanceRackAware, '_try_pick_swap_partition') def test_process_partitions_at_pos_swap_partition(self, mock_pick): action = ActionBalanceRackAware(self.args, self.cluster) b1 = self.cluster.brokers[1] b2 = self.cluster.brokers[2] b3 = Broker('brokerhost3.example.com', id=3) b4 = Broker('brokerhost4.example.com', id=4) self.cluster.add_broker(b3) self.cluster.add_broker(b4) b3.rack = "a" b4.rack = "c" self.cluster.topics['testTopic2'].partitions[0].swap_replicas(b2, b3) self.cluster.topics['testTopic1'].partitions[1].swap_replicas(b1, b4) mock_pick.return_value = self.cluster.topics['testTopic1'].partitions[1] action._process_partitions_at_pos(0) assert self.cluster.topics['testTopic1'].partitions[1].replicas == [b3, b4] assert self.cluster.topics['testTopic2'].partitions[0].replicas == [b2, b1] @patch.object(ActionBalanceRackAware, '_try_pick_swap_partition') @patch.object(ActionBalanceRackAware, '_try_pick_new_broker') def test_process_partitions_at_pos_swap_broker(self, mock_broker, mock_pick): action = ActionBalanceRackAware(self.args, self.cluster) b1 = self.cluster.brokers[1] b2 = self.cluster.brokers[2] b3 = Broker('brokerhost3.example.com', id=3) b4 = Broker('brokerhost4.example.com', id=4) self.cluster.add_broker(b3) self.cluster.add_broker(b4) b3.rack = "a" b4.rack = "c" self.cluster.topics['testTopic2'].partitions[0].swap_replicas(b2, b3) self.cluster.topics['testTopic1'].partitions[1].swap_replicas(b1, b4) mock_pick.return_value = None mock_broker.return_value = b2 action._process_partitions_at_pos(0) assert self.cluster.topics['testTopic1'].partitions[1].replicas == [b2, b4] assert self.cluster.topics['testTopic2'].partitions[0].replicas == [b2, b1] def test_process_cluster_single_rack(self): action = ActionBalanceRackAware(self.args, self.cluster) self.cluster.brokers[2].rack = "a" self.assertRaises(BalanceException, action.process_cluster) @patch.object(ActionBalanceRackAware, '_process_partitions_at_pos') def test_process_cluster(self, mock_process): action = ActionBalanceRackAware(self.args, self.cluster) action.process_cluster() mock_process.assert_has_calls([call(0), call(1)])
45.90146
141
0.674406
52cabc43bb488be047e0b39249cb019bf620677f
1,690
py
Python
brax/tests/dto_test.py
teruyuki-yamasaki/brax
9e9a782523e94a792cda6c655de6df7f0d3b72ad
[ "Apache-2.0" ]
1
2021-09-30T06:23:26.000Z
2021-09-30T06:23:26.000Z
brax/tests/dto_test.py
teruyuki-yamasaki/brax
9e9a782523e94a792cda6c655de6df7f0d3b72ad
[ "Apache-2.0" ]
1
2021-06-18T14:57:49.000Z
2021-06-18T14:57:49.000Z
brax/tests/dto_test.py
isabella232/brax
02682dee8be5476121d5629eaf411ecbad1aa2da
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 The Brax Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Training tests dor direct trajectory optimization.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging # Dependency imports from absl.testing import absltest from absl.testing import parameterized from flax import serialization import jax from brax import envs from brax.training import dto def run_test(seed): env_name = 'ant' eval_frequency = 10 episode_length = 1000 action_repeat = 1 learning_rate = 1 num_envs = 1 max_gradient_norm = 0.2 env_fn = envs.create_fn(env_name) inference, params, metrics = dto.train( environment_fn=env_fn, log_frequency=eval_frequency, episode_length=episode_length, action_repeat=action_repeat, learning_rate=learning_rate, num_envs=num_envs, max_gradient_norm=max_gradient_norm, seed=seed) return inference, params, metrics, env_fn class TrainingTest(parameterized.TestCase): def testTraining(self): _, _, metrics, _ = run_test(seed=0) logging.info(metrics) if __name__ == '__main__': absltest.main()
26
74
0.75503
63cc66ee53e09d5a3a884f56812a7db47f081a74
1,500
py
Python
grr/server/grr_response_server/flows/general/artifact_fallbacks_test.py
4ndygu/grr
cfc725b5ee3a2626ac4cdae7fb14471612da4522
[ "Apache-2.0" ]
null
null
null
grr/server/grr_response_server/flows/general/artifact_fallbacks_test.py
4ndygu/grr
cfc725b5ee3a2626ac4cdae7fb14471612da4522
[ "Apache-2.0" ]
null
null
null
grr/server/grr_response_server/flows/general/artifact_fallbacks_test.py
4ndygu/grr
cfc725b5ee3a2626ac4cdae7fb14471612da4522
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python """Tests for grr.server.flows.general.artifact_fallbacks.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from grr_response_core.lib import flags from grr_response_core.lib.rdfvalues import paths as rdf_paths from grr_response_server.flows.general import artifact_fallbacks from grr.test_lib import action_mocks from grr.test_lib import db_test_lib from grr.test_lib import flow_test_lib from grr.test_lib import test_lib from grr.test_lib import vfs_test_lib @db_test_lib.DualDBTest class TestSystemRootSystemDriveFallbackFlow(flow_test_lib.FlowTestsBaseclass): def testSystemRootFallback(self): client_id = self.SetupClient(0) with vfs_test_lib.VFSOverrider(rdf_paths.PathSpec.PathType.OS, vfs_test_lib.ClientVFSHandlerFixture): client_mock = action_mocks.ListDirectoryClientMock() session_id = flow_test_lib.TestFlowHelper( artifact_fallbacks.SystemRootSystemDriveFallbackFlow.__name__, client_mock, client_id=client_id, token=self.token, artifact_name="WindowsEnvironmentVariableSystemRoot") results = flow_test_lib.GetFlowResults(client_id, session_id) self.assertLen(results, 1) self.assertEqual(str(results[0].registry_data.GetValue()), r"C:\WINDOWS") def main(argv): # Run the full test suite test_lib.main(argv) if __name__ == "__main__": flags.StartMain(main)
32.608696
79
0.77
6f7044ac254193cc664728c584d90e555365ff70
1,358
py
Python
onlineDFS.py
shubham-11700069/Python
9ea7dcbe6d9050453357a0c56815ce2371f9364e
[ "Apache-2.0" ]
null
null
null
onlineDFS.py
shubham-11700069/Python
9ea7dcbe6d9050453357a0c56815ce2371f9364e
[ "Apache-2.0" ]
null
null
null
onlineDFS.py
shubham-11700069/Python
9ea7dcbe6d9050453357a0c56815ce2371f9364e
[ "Apache-2.0" ]
null
null
null
# Python program to print DFS traversal from a # given given graph from collections import defaultdict # This class represents a directed graph using # adjacency list representation class Graph: # Constructor def __init__(self): # default dictionary to store graph self.graph = defaultdict(list) # function to add an edge to graph def addEdge(self,u,v): self.graph[u].append(v) # A function used by DFS def DFSUtil(self,v,visited): # Mark the current node as visited and print it visited[v]= True print v, # Recur for all the vertices adjacent to this vertex for i in self.graph[v]: if visited[i] == False: self.DFSUtil(i, visited) # The function to do DFS traversal. It uses # recursive DFSUtil() def DFS(self,v): # Mark all the vertices as not visited visited = [False]*(len(self.graph)) # Call the recursive helper function to print # DFS traversal self.DFSUtil(v,visited) # Driver code # Create a graph given in the above diagram g = Graph() g.addEdge(0, 1) g.addEdge(0, 2) g.addEdge(1, 2) g.addEdge(2, 0) g.addEdge(2, 3) g.addEdge(3, 3) print "Following is DFS from (starting from vertex 2)" g.DFS(2)
24.25
61
0.606038
9ccca357f65c4009afc748454e59cb90d1e653c1
1,460
py
Python
alembic/versions/bc442d63d7d3_move_forward_current_value_for_heron.py
sanger/baracoda
27fbba64293d2d8f952dc35a32f47597b9f4908f
[ "MIT" ]
null
null
null
alembic/versions/bc442d63d7d3_move_forward_current_value_for_heron.py
sanger/baracoda
27fbba64293d2d8f952dc35a32f47597b9f4908f
[ "MIT" ]
225
2020-04-17T15:20:29.000Z
2022-03-31T06:13:44.000Z
alembic/versions/bc442d63d7d3_move_forward_current_value_for_heron.py
sanger/baracoda
27fbba64293d2d8f952dc35a32f47597b9f4908f
[ "MIT" ]
1
2021-03-01T10:19:15.000Z
2021-03-01T10:19:15.000Z
"""Move forward current value for heron Revision ID: bc442d63d7d3 Revises: a32c725ae353 Create Date: 2021-10-13 14:07:48.425000 """ from alembic import op import os # revision identifiers, used by Alembic. revision = "bc442d63d7d3" down_revision = "a32c725ae353" branch_labels = None depends_on = None def __DANGER_restart_sequence_with(value): if os.environ.get("CONFIRM_HERON_SEQUENCE_RESTART") is None: description = ( "'This migration is potentially destructive. Update the value for RESTART WITH" "to a known unused value and set the environment variable " "CONFIRM_HERON_SEQUENCE_RESTART to confirm you want to apply this migration.'" ) raise ValueError(description) # Last value in database is 2564197, we want to move forward past this value op.execute(f"ALTER SEQUENCE heron RESTART WITH { value };") def upgrade(): # Last value in database is 2564197, we want to move forward past this value __DANGER_restart_sequence_with(2564300) def downgrade(): # Actual value in Baracoda is 2156143, but if we rollback we can leave a bit of space # Please retrieve a sensible value and edit if you plan to downgrade description = ( "\nPlease substitute this exception with a line in python like: \n" "__DANGER_restart_sequence_with(<newvalue>)\n" "where <newvalue> is a SAFE value you estimate.\n" ) raise Exception(description)
33.181818
91
0.717808
632a3fa753d43551674690c2e70078b3fe48cf14
16
py
Python
doodah/__init__.py
Scaremonger/doodah
f4d8c4aaa7b3f46e183b1a661ecac6f35d83ae30
[ "MIT" ]
null
null
null
doodah/__init__.py
Scaremonger/doodah
f4d8c4aaa7b3f46e183b1a661ecac6f35d83ae30
[ "MIT" ]
null
null
null
doodah/__init__.py
Scaremonger/doodah
f4d8c4aaa7b3f46e183b1a661ecac6f35d83ae30
[ "MIT" ]
null
null
null
name = "doodah"
8
15
0.625
f9722d2c0c2fc1d26a1f270368ee7124add9618f
1,391
py
Python
config.py
gumato/Personal-Blog
d65e328f1aaa484eb2f560908d57265452f4b62d
[ "Unlicense", "MIT" ]
null
null
null
config.py
gumato/Personal-Blog
d65e328f1aaa484eb2f560908d57265452f4b62d
[ "Unlicense", "MIT" ]
null
null
null
config.py
gumato/Personal-Blog
d65e328f1aaa484eb2f560908d57265452f4b62d
[ "Unlicense", "MIT" ]
null
null
null
import os class Config: ''' General configuration parent class ''' SECRET_KEY = 'gumeshi1' SQLALCHEMY_DATABASE_URI = 'postgresql+psycopg2://pricilla:1234@localhost/blog' UPLOADED_PHOTOS_DEST ='app/static/photos' # email configurations MAIL_SERVER = 'smtp.googlemail.com' MAIL_PORT = 587 MAIL_USE_TLS = True MAIL_USERNAME = os.environ.get("MAIL_USERNAME") MAIL_PASSWORD = os.environ.get("MAIL_PASSWORD") # SUBJECT_PREFIX = 'Personal Blog' # SENDER_EMAIL = 'gumatopricilla22@gmail.com' # simple mde configurations SIMPLEMDE_JS_IIFE = True SIMPLEMDE_USE_CDN = True class TestConfig(Config): SQLALCHEMY_DATABASE_URI = 'postgresql+psycopg2://pricilla:1234@localhost/blog_test' class ProdConfig(Config): ''' Production configuration child class Args: Config: The parent configuration class with General configuration settings ''' pass # SQLALCHEMY_DATABASE_URI = os.environ.get("DATABASE_URL") class DevConfig(Config): ''' Development configuration child class Args: Config: The parent configuration class with General configuration settings ''' SQLALCHEMY_DATABASE_URI = 'postgresql+psycopg2://pricilla:1234@localhost/blog' DEBUG = True config_options = { 'development':DevConfig, 'production':ProdConfig, 'test':TestConfig }
26.245283
87
0.70381
5ef54b38f3c13b0b374d2169da6d6bdc0d69f889
59,361
py
Python
snpdb/views/views.py
SACGF/variantgrid
515195e2f03a0da3a3e5f2919d8e0431babfd9c9
[ "RSA-MD" ]
5
2021-01-14T03:34:42.000Z
2022-03-07T15:34:18.000Z
snpdb/views/views.py
SACGF/variantgrid
515195e2f03a0da3a3e5f2919d8e0431babfd9c9
[ "RSA-MD" ]
551
2020-10-19T00:02:38.000Z
2022-03-30T02:18:22.000Z
snpdb/views/views.py
SACGF/variantgrid
515195e2f03a0da3a3e5f2919d8e0431babfd9c9
[ "RSA-MD" ]
null
null
null
import itertools import json import logging from collections import OrderedDict, defaultdict from typing import Iterable import pandas as pd from celery.result import AsyncResult from django.conf import settings from django.contrib import messages from django.contrib.auth.models import User, Group from django.core.exceptions import PermissionDenied, ImproperlyConfigured from django.db.utils import IntegrityError from django.forms.models import inlineformset_factory, ALL_FIELDS from django.forms.widgets import TextInput from django.http.response import HttpResponse, HttpResponseRedirect, HttpResponseServerError, JsonResponse from django.shortcuts import get_object_or_404, render, redirect from django.urls.base import reverse from django.views.decorators.cache import cache_page from django.views.decorators.http import require_POST from django.views.decorators.vary import vary_on_cookie from django_messages.models import Message from global_login_required import login_not_required from guardian.shortcuts import get_objects_for_group, get_objects_for_user from termsandconditions.decorators import terms_required from analysis.analysis_templates import get_sample_analysis from analysis.forms import AnalysisOutputNodeChoiceForm from analysis.models import AnalysisTemplate, SampleStats, SampleStatsPassingFilter from annotation.forms import GeneCountTypeChoiceForm from annotation.manual_variant_entry import create_manual_variants, can_create_variants from annotation.models import AnnotationVersion from annotation.models.models import ManualVariantEntryCollection, VariantAnnotationVersion from annotation.models.models_gene_counts import GeneValueCountCollection, \ GeneCountType, SampleAnnotationVersionVariantSource, CohortGeneCounts from classification.classification_stats import get_grouped_classification_counts from classification.models.clinvar_export_sync import clinvar_export_sync from classification.views.classification_datatables import ClassificationColumns from genes.custom_text_gene_list import create_custom_text_gene_list from genes.forms import CustomGeneListForm, UserGeneListForm, GeneAndTranscriptForm from genes.models import GeneListCategory, CustomTextGeneList, GeneList from library.constants import WEEK_SECS, HOUR_SECS from library.django_utils import add_save_message, get_model_fields, set_form_read_only from library.guardian_utils import assign_permission_to_user_and_groups, DjangoPermission from library.keycloak import Keycloak from library.utils import full_class_name, import_class, rgb_invert from ontology.models import OntologyTerm from patients.forms import PatientForm from patients.models import Patient, Clinician from patients.views import get_patient_upload_csv from snpdb import forms from snpdb.bam_file_path import get_example_replacements from snpdb.forms import SampleChoiceForm, VCFChoiceForm, \ UserSettingsOverrideForm, UserForm, UserContactForm, SampleForm, TagForm, SettingsInitialGroupPermissionForm, \ OrganizationForm, LabForm, LabUserSettingsOverrideForm, OrganizationUserSettingsOverrideForm from snpdb.graphs import graphcache from snpdb.graphs.allele_frequency_graph import AlleleFrequencyHistogramGraph from snpdb.graphs.chromosome_density_graph import SampleChromosomeDensityGraph from snpdb.graphs.chromosome_intervals_graph import ChromosomeIntervalsGraph from snpdb.graphs.homozygosity_percent_graph import HomozygosityPercentGraph from snpdb.import_status import set_vcf_and_samples_import_status from snpdb.models import CachedGeneratedFile, VariantGridColumn, UserSettings, \ VCF, UserTagColors, CustomColumnsCollection, CustomColumn, Cohort, \ CohortSample, GenomicIntervalsCollection, Sample, UserDataPrefix, UserGridConfig, \ get_igv_data, SampleLocusCount, UserContact, Tag, Wiki, Organization, GenomeBuild, \ Trio, AbstractNodeCountSettings, CohortGenotypeCollection, UserSettingsOverride, NodeCountSettingsCollection, Lab, \ LabUserSettingsOverride, OrganizationUserSettingsOverride, LabHead, SomalierRelatePairs, \ VariantZygosityCountCollection, VariantZygosityCountForVCF, ClinVarKey, AvatarDetails from snpdb.models.models_enums import ProcessingStatus, ImportStatus, BuiltInFilters from snpdb.tasks.soft_delete_tasks import soft_delete_vcfs from snpdb.utils import LabNotificationBuilder from upload.uploaded_file_type import retry_upload_pipeline @terms_required def index(request): if Clinician.user_is_clinician(request.user): return redirect('clinician_login') return render(request, 'index.html') def data(request): return render(request, 'snpdb/data/data.html') def maps(request): return render(request, 'maps.html') def get_writable_class_object(user, class_name, primary_key): klass = import_class(class_name) name = klass.__name__ obj = klass.objects.get(pk=primary_key) if not obj.can_write(user): write_perm = DjangoPermission.perm(obj, DjangoPermission.WRITE) msg = f"You do not have permission {write_perm} needed to modify {name}" raise PermissionDenied(msg) return obj, name def get_writable_class_objects(user, class_name): klass = import_class(class_name) name = klass.__name__ write_perm = DjangoPermission.perm(klass, DjangoPermission.WRITE) qs = get_objects_for_user(user, write_perm, klass=klass, accept_global_perms=False) return qs, name def group_permissions(request, class_name, primary_key): obj, name = get_writable_class_object(request.user, class_name, primary_key) try: # If object has "get_permission_object" it can delegate it. permission_obj = obj.get_permission_object() perm_obj_name = permission_obj.__class__.__name__ except AttributeError: # Default is use itself permission_obj = obj perm_obj_name = name permission_forms = get_group_permission_forms(request, permission_obj) if request.method == 'POST': valid = all([pf.is_valid() for pf in permission_forms]) if valid: for pf in permission_forms: pf.save() add_save_message(request, valid, f"{perm_obj_name} group permissions") get_listing_url = getattr(obj, "get_listing_url", None) if get_listing_url: delete_redirect_url = get_listing_url() else: delete_redirect_url = "/" context = {'permission_forms': permission_forms, 'class_name': class_name, 'name': name, 'perm_obj_name': perm_obj_name, 'permission_obj': permission_obj, 'instance': obj, 'delete_redirect_url': delete_redirect_url} return render(request, 'snpdb/data/group_permissions.html', context) @require_POST def group_permissions_object_delete(request, class_name, primary_key): if class_name == 'snpdb.models.VCF': # TODO: Hack? Make some class object? soft_delete_vcfs(request.user, primary_key) else: obj, _ = get_writable_class_object(request.user, class_name, primary_key) try: obj.delete() except IntegrityError as ie: pks = ", ".join(str(o.pk) for o in ie.args[1]) error_message = f"{ie.args[0]}: {pks}" return HttpResponseServerError(content=error_message) return HttpResponse() def bulk_group_permissions(request, class_name): qs, name = get_writable_class_objects(request.user, class_name) groups = list(request.user.groups.all().order_by("name")) objects_and_forms = [] for obj in qs: permission_forms = get_group_permission_forms(request, obj, groups=groups) objects_and_forms.append((obj, permission_forms)) if request.method == 'POST': all_forms = [] for _, permission_forms in objects_and_forms: all_forms.extend(permission_forms) valid = all([pf.is_valid() for pf in all_forms]) if valid: for pf in all_forms: pf.save() add_save_message(request, valid, f"{name} group permissions") context = {"name": name, "groups": groups, "objects_and_forms": objects_and_forms} return render(request, 'snpdb/data/bulk_group_permissions.html', context) def _get_vcf_sample_stats(vcf, klass): """ Count is het + hom """ ss_fields = ("sample_id", "sample__name", "variant_count", "ref_count", "het_count", "hom_count", "unk_count") ss_values_qs = klass.objects.filter(sample__vcf=vcf).order_by("sample").values(*ss_fields) sample_stats_het_hom_count = {} sample_names = [] sample_zygosities = defaultdict(list) for value_dict in ss_values_qs: sample_id = value_dict.pop("sample_id") sample_names.append(value_dict.pop("sample__name")) value_dict.pop("variant_count") sample_stats_het_hom_count[sample_id] = value_dict["het_count"] + value_dict["hom_count"] for k, v in value_dict.items(): sample_zygosities[k].append(v) return sample_stats_het_hom_count, sample_names, tuple(sample_zygosities.items()) def view_vcf(request, vcf_id): vcf = VCF.get_for_user(request.user, vcf_id) # I couldn't get prefetch_related_objects([vcf], "sample_set__samplestats") to work - so storing in a dict sample_stats_het_hom_count, sample_names, sample_zygosities = _get_vcf_sample_stats(vcf, SampleStats) sample_stats_pass_het_hom_count, _, sample_zygosities_pass = _get_vcf_sample_stats(vcf, SampleStatsPassingFilter) VCFSampleFormSet = inlineformset_factory(VCF, Sample, extra=0, can_delete=False, fields=["vcf_sample_name", "name", "patient", "specimen", "bam_file_path"], widgets=SampleForm.Meta.widgets) post = request.POST or None vcf_form = forms.VCFForm(post, instance=vcf) samples_form = VCFSampleFormSet(post, instance=vcf) for form in samples_form.forms: form.fields["vcf_sample_name"].disabled = True requires_user_input = vcf.import_status == ImportStatus.REQUIRES_USER_INPUT reload_vcf = False if request.method == 'POST': valid = all(f.is_valid() for f in [vcf_form, samples_form]) if valid: vcf = vcf_form.save() reload_vcf = requires_user_input and vcf.genome_build samples_form.save() add_save_message(request, valid, "VCF") try: # Some legacy data was too hard to fix and relies on being re-imported _ = vcf.cohort _ = vcf.cohort.cohort_genotype_collection except (Cohort.DoesNotExist, CohortGenotypeCollection.DoesNotExist): messages.add_message(request, messages.ERROR, "This legacy VCF is missing data and needs to be reloaded.") if reload_vcf: set_vcf_and_samples_import_status(vcf, ImportStatus.IMPORTING) retry_upload_pipeline(vcf.uploadedvcf.uploaded_file.uploadpipeline) vcf_form = forms.VCFForm(post, instance=vcf) # Reload as import status has changed messages.add_message(request, messages.INFO, "Reloading VCF") for warning, _ in vcf.get_warnings(): messages.add_message(request, messages.WARNING, warning, extra_tags='import-message') has_write_permission = vcf.can_write(request.user) if not has_write_permission: messages.add_message(request, messages.WARNING, "You can view but not modify this data.") variant_zygosity_count_collections = {} for vzcc in VariantZygosityCountCollection.objects.all(): vzc_vcf = VariantZygosityCountForVCF.objects.filter(vcf=vcf, collection=vzcc).first() variant_zygosity_count_collections[vzcc] = vzc_vcf context = { 'vcf': vcf, 'sample_stats_het_hom_count': sample_stats_het_hom_count, 'sample_stats_pass_het_hom_count': sample_stats_pass_het_hom_count, 'sample_names': sample_names, 'sample_zygosities': sample_zygosities, 'vcf_form': vcf_form, 'samples_form': samples_form, 'patient_form': PatientForm(user=request.user), # blank 'has_write_permission': has_write_permission, 'can_download_vcf': (not settings.VCF_DOWNLOAD_ADMIN_ONLY) or request.user.is_superuser, "variant_zygosity_count_collections": variant_zygosity_count_collections, } return render(request, 'snpdb/data/view_vcf.html', context) def get_patient_upload_csv_for_vcf(request, pk): vcf = VCF.get_for_user(request.user, pk) sample_qs = vcf.sample_set.all() filename = f"vcf_{pk}_patient_upload" return get_patient_upload_csv(filename, sample_qs) def view_sample(request, sample_id): sample = Sample.get_for_user(request.user, sample_id) has_write_permission = sample.can_write(request.user) form = forms.SampleForm(request.POST or None, instance=sample) if not has_write_permission: set_form_read_only(form) messages.add_message(request, messages.WARNING, "You can view but not modify this data.") if request.method == 'POST': if not has_write_permission: raise PermissionDenied("Can't modify public data") valid = form.is_valid() if valid: form.save() add_save_message(request, valid, "Sample") sample_locus_count = list(SampleLocusCount.objects.filter(sample=sample).order_by("locus_count")) igv_data = get_igv_data(request.user, genome_build=sample.genome_build) patient_form = PatientForm(user=request.user) # blank related_samples = None if settings.SOMALIER.get("enabled"): related_samples = SomalierRelatePairs.get_for_sample(sample).order_by("relate") context = {'sample': sample, 'samples': [sample], 'sample_locus_count': sample_locus_count, 'form': form, 'patient_form': patient_form, 'cohorts': cohorts, 'has_write_permission': has_write_permission, 'igv_data': igv_data, "related_samples": related_samples} return render(request, 'snpdb/data/view_sample.html', context) def sample_variants_tab(request, sample_id): sample = Sample.get_for_user(request.user, sample_id) analysis = None error_message = None if settings.ANALYSIS_TEMPLATES_AUTO_SAMPLE: try: analysis_template = AnalysisTemplate.objects.get(name=settings.ANALYSIS_TEMPLATES_AUTO_SAMPLE) analysis = get_sample_analysis(sample, analysis_template) except AnalysisTemplate.DoesNotExist: error_message = f"Analysis Template '{settings.ANALYSIS_TEMPLATES_AUTO_SAMPLE}' does not exist!" else: error_message = "settings.ANALYSIS_TEMPLATES_AUTO_SAMPLE not set. Talk to your administrator" if error_message: messages.add_message(request, messages.ERROR, error_message) context = { 'sample': sample, "analysis": analysis, 'output_node_form': AnalysisOutputNodeChoiceForm(analysis=analysis) } return render(request, 'snpdb/data/sample_variants_tab.html', context) def sample_variants_gene_detail(request, sample_id, gene_symbol): sample = Sample.get_for_user(request.user, sample_id) context = {'sample': sample, 'sample_ids': [sample.pk], 'gene_symbol': gene_symbol, "datatable_config": ClassificationColumns(request)} return render(request, 'snpdb/data/sample_variants_gene_detail.html', context) def sample_graphs_tab(request, sample_id): sample = Sample.get_for_user(request.user, sample_id) context = {'sample': sample} return render(request, 'snpdb/data/sample_graphs_tab.html', context) def get_group_permission_forms(request, obj, groups=None): if groups is None: groups = request.user.groups.all().order_by("name") return [forms.GroupPermissionForm(request.POST or None, obj=obj, group=group) for group in groups] def sample_permissions_tab(request, sample_id): sample = Sample.get_for_user(request.user, sample_id) context = {'sample': sample, 'class_name': full_class_name(Sample)} return render(request, 'snpdb/data/sample_permissions_tab.html', context) def view_genomic_intervals(request, genomic_intervals_collection_id): gic = get_object_or_404(GenomicIntervalsCollection, pk=genomic_intervals_collection_id) if not request.user.has_perm('view_genomicintervalscollection', gic): raise PermissionDenied() form = forms.GenomicIntervalsCollectionForm(request.POST or None, instance=gic) if request.method == "POST": valid = form.is_valid() if valid: gic = form.save() add_save_message(request, valid, "Genomic Intervals") if gic.genome_build is None: msg = "Unable to automatically set build, please select manually." messages.add_message(request, messages.WARNING, msg, extra_tags='import-message') context = {'gic': gic, 'form': form, "has_write_permission": gic.can_write(request.user)} return render(request, 'snpdb/data/view_genomic_intervals.html', context) @require_POST def cached_generated_file_delete(request): cgf_id = request.POST["cgf_id"] cgf = get_object_or_404(CachedGeneratedFile, pk=cgf_id) cgf.delete() return HttpResponse() def vcfs(request): context = { "form": VCFChoiceForm(), } return render(request, 'snpdb/data/vcfs.html', context=context) def samples(request): groups = request.user.groups.values_list("name", flat=True) groups_str = ', '.join(groups) num_groups = len(groups) if num_groups > 1: group_info = f"(or owned by one of your groups: {groups_str})" elif num_groups: group_info = f"(or owned by your group: {groups_str})" else: group_info = '' context = { "form": SampleChoiceForm(), "group_info": group_info, } return render(request, 'snpdb/data/samples.html', context=context) def bed_files(request): return render(request, 'snpdb/data/bed_files.html') @require_POST def messages_bulk_delete(request): messages_str = request.POST['message_ids'] message_ids = json.loads(messages_str) user_messages_qs = Message.objects.filter(recipient=request.user) user_messages_qs.filter(pk__in=message_ids).delete() return HttpResponse() def manual_variant_entry(request): if can_create_variants(request.user): form = forms.ManualVariantEntryForm(request.POST or None, user=request.user) if request.method == 'POST': valid = form.is_valid() if valid: variants_text = form.cleaned_data['variants_text'] genome_build_pk = form.cleaned_data['genome_build'] genome_build = GenomeBuild.objects.get(pk=genome_build_pk) create_manual_variants(request.user, genome_build, variants_text) form = forms.ManualVariantEntryForm(None, user=request.user) # Reset form add_save_message(request, valid, "Manually entered variants") else: form = None messages.add_message(request, messages.INFO, "Manual variant entry has been disabled by an admin.") mvec_qs = ManualVariantEntryCollection.objects.order_by("-id") context = {"form": form, "mvec_qs": mvec_qs} return render(request, 'snpdb/data/manual_variant_entry.html', context=context) @require_POST def set_user_row_config(request): """ This is set from jqgrid.html setRowChangeCallbacks when changing grid rows """ grid_name = request.POST["grid_name"] grid_rows = int(request.POST["grid_rows"]) UserGridConfig.objects.update_or_create(user=request.user, grid_name=grid_name, defaults={"rows": grid_rows}) return HttpResponse() @require_POST def set_user_data_grid_config(request): """ This is set from user_data_grid_filter.html, should contain either filter_level+checked or filter_name """ grid_name = request.POST["grid_name"] user_grid_config = UserGridConfig.get(request.user, grid_name) filter_level = request.POST.get("filter_level") if filter_level: checked = json.loads(request.POST["checked"]) if filter_level == 'groups': user_grid_config.show_group_data = checked elif filter_level == 'incomplete': user_grid_config.show_incomplete_data = checked elif filter_level == 'hidden': user_grid_config.show_hidden_data = checked else: msg = f"Unknown value for filter_level: '{filter_level}'" raise ValueError(msg) else: user_grid_config.filter_name = request.POST["filter_name"] user_grid_config.save() return HttpResponse() def view_user_settings(request): user = request.user user_contact = UserContact.get_for_user(user) action = request.POST.get('action') if request.POST else None post = request.POST or None if not action else None user_form = UserForm(post, instance=user) user_contact_form = UserContactForm(post, instance=user_contact) user_settings = UserSettings.get_for_user(user) override_source, override_values = user_settings.get_override_source_and_values_before_user() user_settings_override = UserSettingsOverride.objects.get(user=user) user_settings_override_form = UserSettingsOverrideForm(post, instance=user_settings_override) labs_by_group_name = {l.group_name: l for l in Lab.valid_labs_qs(user)} group_initial_perm_forms = {} if settings.USER_SETTINGS_SHOW_GROUPS: read_groups, write_groups = user_settings.initial_perm_read_and_write_groups for group in user.groups.all().order_by('name'): initial = {"read": group in read_groups, "write": group in write_groups} group_initial_perm_forms[group] = SettingsInitialGroupPermissionForm(request.POST or None, initial=initial, settings_override=user_settings_override, group=group) if request.method == "POST": all_valid = True action = request.POST.get('action') if action == 'password-reset': keycloak = Keycloak() keycloak.change_password(user) messages.add_message(request, level=messages.INFO, message='Password reset email sent', extra_tags='save-message') else: if not settings.USE_OIDC: if user_form.is_valid(): user = user_form.save() else: all_valid = False for form in itertools.chain([user_contact_form, user_settings_override_form], group_initial_perm_forms.values()): if form.is_valid(): form.save() else: all_valid = False add_save_message(request, all_valid, "User Settings") context = { 'user': user, 'user_form': user_form, 'user_contact_form': user_contact_form, 'user_settings_form': user_settings_override_form, 'group_initial_perm_forms': group_initial_perm_forms, 'accounts_email': settings.ACCOUNTS_EMAIL, 'account_manage_url': settings.OIDC_USER_SERVICES, 'override_source': override_source, 'override_values': override_values, 'labs_by_group_name': labs_by_group_name, 'avatar_details': AvatarDetails.avatar_for(user) } return render(request, 'snpdb/settings/view_user_settings.html', context) def user_settings_node_counts_tab(request): user_settings_override = UserSettingsOverride.objects.get_or_create(user=request.user)[0] return _settings_override_node_counts_tab(request, user_settings_override) def lab_settings_node_counts_tab(request, pk): lab = get_object_or_404(Lab, pk=pk) has_write_permission = lab.can_write(request.user) if has_write_permission is False: _add_read_only_settings_message(request, [lab]) lab_settings_override = LabUserSettingsOverride.objects.get_or_create(lab=lab)[0] return _settings_override_node_counts_tab(request, lab_settings_override, has_write_permission=has_write_permission) def organization_settings_node_counts_tab(request, pk): organization = get_object_or_404(Organization, pk=pk) has_write_permission = organization.can_write(request.user) if has_write_permission is False: _add_read_only_settings_message(request, organization.lab_set.all()) org_settings_override = OrganizationUserSettingsOverride.objects.get_or_create(organization=organization)[0] return _settings_override_node_counts_tab(request, org_settings_override, has_write_permission=has_write_permission) def _settings_override_node_counts_tab(request, settings_override, has_write_permission=True): # This calls _analysis_settings_node_counts_tab with a FakeAnalysis object that # handles loading/saving a global one against User settings objects instead of analysis class FakeAnalysis: def set_node_count_types(self, node_counts_array): collection, _ = NodeCountSettingsCollection.objects.get_or_create(settings=settings_override) AbstractNodeCountSettings.save_count_configs_from_array(collection.nodecountsettings_set, node_counts_array) def get_node_count_types(self): try: node_count_config = settings_override.nodecountsettingscollection node_count_filters = node_count_config.get_node_count_filters() except: node_count_filters = BuiltInFilters.DEFAULT_NODE_COUNT_FILTERS return AbstractNodeCountSettings.get_types_from_labels(node_count_filters) fake_analysis = FakeAnalysis() from analysis.views.views import _analysis_settings_node_counts_tab # Circular import return _analysis_settings_node_counts_tab(request, fake_analysis, pass_analysis_settings=False, has_write_permission=has_write_permission) def view_user(request, pk): user = get_object_or_404(User, pk=pk) user_contact = UserContact.get_for_user(user) context = {"user": user, 'user_contact': user_contact} return render(request, 'snpdb/settings/view_user.html', context) def _add_read_only_settings_message(request, lab_list: Iterable[Lab]): """ lab_list: labs where lab heads can modify settings """ lab_heads_qs = LabHead.objects.filter(lab__in=lab_list).distinct() lab_head_names = ", ".join([str(lh.user) for lh in lab_heads_qs]) if lab_head_names: lab_head_msg = f" or lab heads: {lab_head_names}" else: lab_head_msg = "" read_only_message = f"Only administrators{lab_head_msg} can modify these settings" messages.add_message(request, messages.INFO, read_only_message) def view_lab(request, pk): lab = get_object_or_404(Lab, pk=pk) lab_form = LabForm(request.POST or None, instance=lab) lab_settings_override = LabUserSettingsOverride.objects.get_or_create(lab=lab)[0] override_fields = set(get_model_fields(LabUserSettingsOverride)) - {"id", "settingsoverride_ptr", "lab"} parent_overrides = UserSettings.get_settings_overrides(organization=lab.organization) override_source, override_values = UserSettings.get_override_source_and_values(override_fields, parent_overrides) settings_overrides = parent_overrides + [lab_settings_override] read_groups, write_groups = UserSettings.get_initial_perm_read_and_write_groups([lab.group], settings_overrides) initial = {"read": lab.group in read_groups, "write": lab.group in write_groups} group_initial_perm_form = None if settings.USER_SETTINGS_SHOW_GROUPS: group_initial_perm_form = SettingsInitialGroupPermissionForm(request.POST or None, initial=initial, settings_override=lab_settings_override, group=lab.group) lab_settings_override_form = LabUserSettingsOverrideForm(request.POST or None, instance=lab_settings_override) has_write_permission = lab.can_write(request.user) all_forms = [form for form in [lab_form, group_initial_perm_form, lab_settings_override_form] if form] if request.method == "POST": lab.check_can_write(request.user) if debug_method := request.POST.get("debug_method"): if "Test Slack" == debug_method: if not lab.slack_webhook: messages.add_message(request, messages.ERROR, "Slack URL not configured correctly") else: #try: notification_builder = LabNotificationBuilder(lab=lab, message="Testing Slack Integration", notification_type=LabNotificationBuilder.NotificationType.SLACK_ONLY) notification_builder.add_header(f"{settings.SITE_NAME} -> Slack Integration Test") notification_builder.add_markdown("If you can see this, then integration has worked! :smile:") notification_builder.send() messages.add_message(request, messages.SUCCESS, "Message sent, check your Slack to confirm") #except: # report_exc_info() # messages.add_message(request, messages.ERROR, "Unable to send test notification") return redirect(reverse('view_lab', kwargs={"pk":pk})) else: raise ValueError(f"Un-supported debug method {debug_method}") else: all_valid = True for form in all_forms: if form.is_valid(): form.save() else: all_valid = False add_save_message(request, all_valid, "Lab Settings") if has_write_permission is False: for form in all_forms: set_form_read_only(form) # we just hide the form now # _add_read_only_settings_message(request, [lab]) if settings.VARIANT_CLASSIFICATION_STATS_USE_SHARED: visibility = "Shared" else: visibility = f"Created" context = { "lab": lab, "visibility": visibility, "is_member": lab.is_member(request.user) or request.user.is_superuser, "lab_form": lab_form, 'settings_override_form': lab_settings_override_form, 'group_initial_perm_form': group_initial_perm_form, 'override_source': override_source, 'override_values': override_values, 'has_write_permission': has_write_permission, 'clinvar_export_enabled': clinvar_export_sync.is_enabled } return render(request, 'snpdb/settings/view_lab.html', context) def view_clinvar_key(request, pk: str): clinvar_key = get_object_or_404(ClinVarKey, pk=pk) clinvar_key.check_user_can_access(request.user) return render(request, 'snpdb/settings/clinvar_key.html', { 'clinvar_key': clinvar_key, 'labs': Lab.objects.filter(clinvar_key=clinvar_key).order_by('name') }) def view_organization(request, pk): organization = get_object_or_404(Organization, pk=pk) organization_form = OrganizationForm(request.POST or None, instance=organization) org_settings_override = OrganizationUserSettingsOverride.objects.get_or_create(organization=organization)[0] override_fields = set(get_model_fields(OrganizationUserSettingsOverride)) - {"id", "settingsoverride_ptr", "organization"} parent_overrides = UserSettings.get_settings_overrides() override_source, override_values = UserSettings.get_override_source_and_values(override_fields, parent_overrides) org_settings_override_form = OrganizationUserSettingsOverrideForm(request.POST or None, instance=org_settings_override) all_forms = [organization_form, org_settings_override_form] if request.method == "POST": organization.check_can_write(request.user) all_valid = True for form in all_forms: if form.is_valid(): form.save() else: all_valid = False add_save_message(request, all_valid, "Organization Settings") has_write_permission = organization.can_write(request.user) if has_write_permission is False: for form in all_forms: set_form_read_only(form) # put on individual tabs now # _add_read_only_settings_message(request, organization.lab_set.all()) context = { "organization": organization, "is_member": organization.is_member(request.user) or request.user.is_superuser, "organization_form": organization_form, 'settings_override_form': org_settings_override_form, 'override_source': override_source, 'override_values': override_values, 'has_write_permission': has_write_permission, } return render(request, 'snpdb/settings/view_organization.html', context) def custom_columns(request): context = {} form = forms.CustomColumnsCollectionForm(request.POST or None, user=request.user) if request.method == "POST": if form.is_valid(): ccc = form.save() return HttpResponseRedirect(reverse("view_custom_columns", kwargs={"custom_columns_collection_id": ccc.pk})) add_save_message(request, False, "Columns", created=True) context["form"] = form return render(request, 'snpdb/settings/custom_columns.html', context) # Based on code from http://j-syk.com/weblog/2012/10/18/jquery-sortables-ajax-django/ def view_custom_columns(request, custom_columns_collection_id): ccc = CustomColumnsCollection.get_for_user(request.user, custom_columns_collection_id) custom_columns_qs = VariantGridColumn.objects.filter(customcolumn__custom_columns_collection=ccc) my_columns = list(custom_columns_qs.order_by("customcolumn__sort_order")) available_columns = list(VariantGridColumn.objects.exclude(grid_column_name__in=my_columns)) variant_grid_columns = {} for vgc in VariantGridColumn.objects.all(): variant_grid_columns[vgc.pk] = vgc has_write_permission = ccc.can_write(request.user) if not has_write_permission: msg = "You do not have permission to edit these columns. " \ "If you wish to customise them, click 'clone' and modify the copy" messages.add_message(request, messages.WARNING, msg) if request.method == "POST": ccc.check_can_write(request.user) if name := request.POST.get("name"): ccc.name = name ccc.save() elif my_columns_str := request.POST.get("columns"): def update_user_columns(id_list, active): for i, col in enumerate(id_list): column = variant_grid_columns[col] CustomColumn.objects.update_or_create(custom_columns_collection=ccc, column=column, defaults={"sort_order": i}) # Delete any not in id_list CustomColumn.objects.filter(custom_columns_collection=ccc).exclude(column__in=id_list).delete() my_columns_list = my_columns_str.split(',') if my_columns_str else [] active = 'my_columns' in request.POST update_user_columns(my_columns_list, active) return HttpResponse() # Nobody ever looks at this context_dict = { 'available_columns_list': available_columns, 'my_columns_list': my_columns, 'custom_columns': ccc, 'has_write_permission': has_write_permission, } return render(request, 'snpdb/settings/view_custom_columns.html', context_dict) def tag_settings(request): form = forms.CreateTagForm(request.POST or None) if request.method == "POST": valid = form.is_valid() if valid: tag_name = form.cleaned_data['tag'] name = f"Tag {tag_name}" try: Tag.objects.create(pk=tag_name) except: valid = False else: name = "Tag" add_save_message(request, valid, name, created=True) user_tag_styles, user_tag_colors = UserTagColors.get_tag_styles_and_colors(request.user) context_dict = {'form': form, 'user_tag_styles': user_tag_styles, 'user_tag_colors': user_tag_colors} return render(request, 'snpdb/settings/tag_settings.html', context_dict) @require_POST def set_user_tag_color(request): tag = request.POST['tag'] rgb = request.POST['rgb'] (utc, _) = UserTagColors.objects.get_or_create(user=request.user, tag_id=tag) utc.rgb = rgb utc.save() logging.info("saved %s", utc) return HttpResponse() def igv_integration(request): widgets = {"prefix": TextInput(attrs={'placeholder': 'from...'}), "replacement": TextInput(attrs={'placeholder': 'to...'})} UserDataPrefixFormSet = inlineformset_factory(User, UserDataPrefix, can_delete=True, fields=ALL_FIELDS, widgets=widgets, max_num=10, extra=3, ) formset = UserDataPrefixFormSet(request.POST or None, instance=request.user) if request.method == "POST": valid = formset.is_valid() if valid: formset.save() add_save_message(request, valid, "IGV Integration") context_dict = {'user': request.user, 'formset': formset, 'example_replacements': get_example_replacements(request.user)} return render(request, 'snpdb/settings/igv_integration.html', context_dict) def cohorts(request): user_settings = UserSettings.get_for_user(request.user) initial = {'genome_build': user_settings.default_genome_build} form = forms.CreateCohortForm(request.POST or None, initial=initial) if request.method == "POST": valid = form.is_valid() if valid: cohort = form.save() assign_permission_to_user_and_groups(request.user, cohort) return HttpResponseRedirect(reverse('view_cohort', kwargs={'cohort_id': cohort.pk})) else: add_save_message(request, valid, "Cohort", created=True) context = {"form": form} return render(request, 'snpdb/patients/cohorts.html', context) def view_cohort_details_tab(request, cohort_id): cohort = Cohort.get_for_user(request.user, cohort_id) context = {"cohort": cohort, "has_write_permission": cohort.can_write(request.user)} return render(request, 'snpdb/patients/view_cohort_details_tab.html', context) def view_cohort(request, cohort_id): cohort = Cohort.get_for_user(request.user, cohort_id) if cohort.vcf: return redirect('view_vcf', vcf_id=cohort.vcf.pk) try: cohort_genotype_collection = cohort.cohort_genotype_collection except CohortGenotypeCollection.DoesNotExist: cohort_genotype_collection = None form = forms.CohortForm(request.POST or None, instance=cohort) if request.method == "POST": if valid := form.is_valid(): cohort = form.save() add_save_message(request, valid, "Cohort") sample_form = SampleChoiceForm(genome_build=cohort.genome_build) sample_form.fields['sample'].required = False context = {"form": form, "sample_form": sample_form, "cohort": cohort, "cohort_genotype_collection": cohort_genotype_collection, "has_write_permission": cohort.can_write(request.user)} return render(request, 'snpdb/patients/view_cohort.html', context) def cohort_sample_edit(request, cohort_id): cohort = Cohort.get_for_user(request.user, cohort_id) if request.method == "POST": cohort_op = request.POST['cohort_op'] sample_ids_str = request.POST['sample_ids'] sample_ids = json.loads(sample_ids_str) if cohort_op == 'add': for sample_id in sample_ids: cohort.add_sample(sample_id) elif cohort_op == 'remove': for sample_id in sample_ids: try: cohort_sample = CohortSample.objects.get(cohort=cohort, sample_id=sample_id) cohort_sample.delete() logging.info("Removed: %s", sample_id) except CohortSample.DoesNotExist: pass else: raise ValueError(f"Unknown cohort_op '{cohort_op}'") return HttpResponse() def cohort_hotspot(request, cohort_id): cohort = Cohort.get_for_user(request.user, cohort_id) form = GeneAndTranscriptForm(genome_build=cohort.genome_build) try: cohort_genotype_collection = cohort.cohort_genotype_collection except Exception as e: cohort_genotype_collection = None logging.error(e) context = {"cohort": cohort, "cohort_genotype_collection": cohort_genotype_collection, "form": form} return render(request, 'snpdb/patients/cohort_hotspot.html', context) def cohort_gene_counts(request, cohort_id): cohort = Cohort.get_for_user(request.user, cohort_id) COHORT_CUSTOM_GENE_LIST = f"__QC_COVERAGE_CUSTOM_GENE_LIST__{request.user}" # We only want to keep 1 per user custom_text_gene_list, _ = CustomTextGeneList.objects.get_or_create(name=COHORT_CUSTOM_GENE_LIST) custom_gene_list_form = CustomGeneListForm(request.POST or None, initial={"custom_gene_list_text": custom_text_gene_list.text}) if custom_gene_list_form.is_valid(): custom_text_gene_list.text = custom_gene_list_form.cleaned_data['custom_gene_list_text'] custom_text_gene_list.save() create_custom_text_gene_list(custom_text_gene_list, request.user, GeneListCategory.QC_COVERAGE_CUSTOM_TEXT, hidden=True) gene_list_id = custom_text_gene_list.gene_list.pk else: gene_list_id = None context = {"cohort": cohort, 'gene_list_id': gene_list_id, 'gene_list_form': UserGeneListForm(), 'custom_gene_list_form': custom_gene_list_form, 'gene_count_type_choice_form': GeneCountTypeChoiceForm()} return render(request, 'snpdb/patients/cohort_gene_counts.html', context) def cohort_gene_counts_matrix(request, cohort_id, gene_count_type_id, gene_list_id): cohort = Cohort.get_for_user(request.user, cohort_id) gene_count_type = GeneCountType.objects.get(pk=gene_count_type_id) gene_list = GeneList.get_for_user(request.user, gene_list_id) samples = list(cohort.get_samples()) annotation_version = AnnotationVersion.latest(cohort.genome_build) variant_annotation_version = annotation_version.variant_annotation_version cgc, created = CohortGeneCounts.objects.get_or_create(variant_annotation_version=variant_annotation_version, gene_count_type=gene_count_type, cohort=cohort, cohort_version=cohort.version) graph_kwargs = {"cohort_id": cohort_id, "gene_count_type_id": gene_count_type_id, "gene_list_id": gene_list_id} redirect_url = reverse("cohort_gene_counts_matrix", kwargs=graph_kwargs) if created or (cgc.processing_status not in ProcessingStatus.FINISHED_STATES): celery_task = cgc.launch_task() wait_for_task_kwargs = {"celery_task": celery_task, "sleep_ms": 2000, "redirect_url": redirect_url} wait_url = reverse("wait_for_task", kwargs=wait_for_task_kwargs) return HttpResponseRedirect(wait_url) else: if cgc.processing_status == ProcessingStatus.SUCCESS: return sample_gene_matrix(request, variant_annotation_version, samples, gene_list, gene_count_type) else: raise ValueError(f"{cgc} had ProcessingStatus: {cgc.processing_status}") def trios(request): context = {} return render(request, 'snpdb/patients/trios.html', context) def view_trio(request, pk): trio = Trio.get_for_user(request.user, pk) context = {"trio": trio, "has_write_permission": trio.cohort.can_write(request.user)} return render(request, 'snpdb/patients/view_trio.html', context) @login_not_required def sample_gene_matrix(request, variant_annotation_version, samples, gene_list, gene_count_type, highlight_gene_symbols=None): """ highlight_gene_symbols - put these genes 1st """ # 19/07/18 - Plotly can't display a categorical color map. See: https://github.com/plotly/plotly.js/issues/1747 # So just doing as HTML table if gene_list: genes = gene_list.get_genes(variant_annotation_version.gene_annotation_release) gene_symbols = set(gene_list.get_gene_names()) else: # This was originally designed around a gene list, but now we need to support no gene list (only when uses # variant classifications) genes = [] gene_symbols = [] qs = gene_count_type.get_variant_queryset(variant_annotation_version) GS_PATH = "variantannotation__transcript_version__gene_version__gene_symbol" qs = qs.filter(**{GS_PATH + "__isnull": False}) for gene, gene_symbol in qs.values_list("variantannotation__gene", GS_PATH).distinct(): genes.append(gene) gene_symbols.append(gene_symbol) gene_values = list(gene_count_type.genevalue_set.all().order_by("id")) default_color = "#d9d9d9" default_text = "" empty_gene_value = list(filter(lambda x: x.use_as_empty_value, gene_values)) if len(empty_gene_value) == 1: default_color = empty_gene_value[0].rgb phenotypes = ["Age", "HPO", "OMIM"] highlight_gene_labels = [] other_gene_labels = [] gene_links_lookup = OrderedDict() for gene_symbol in sorted(gene_symbols): gene_classes_list = ["gene-label", gene_symbol] highlight = highlight_gene_symbols and gene_symbol in highlight_gene_symbols if highlight: gene_classes_list.append("highlight-gene") gene_classes = ' '.join(gene_classes_list) if request.user.is_authenticated: # Only display links to logged in users url = reverse('view_gene_symbol', kwargs={"gene_symbol": gene_symbol}) gene_symbol_text = f'<a class="{gene_classes}" href="{url}">{gene_symbol}</a>' else: gene_symbol_text = f"<span class='{gene_classes}'>{gene_symbol}</span>" if highlight: highlight_gene_labels.append(gene_symbol_text) else: other_gene_labels.append(gene_symbol_text) gene_links_lookup[gene_symbol] = gene_symbol_text matrix_rows = phenotypes + highlight_gene_labels + other_gene_labels color_df = pd.DataFrame(index=matrix_rows, dtype='O') text_df = pd.DataFrame(index=matrix_rows) sample_names = [] used_sample_names = set() for i, sample in enumerate(samples): try: can_access = False if request.user.is_authenticated: # Only display links to logged in users try: Sample.get_for_user(request.user, sample.pk) # Throws exception can_access = True except (Sample.DoesNotExist, PermissionDenied): pass source = SampleAnnotationVersionVariantSource.objects.get(sample=sample, variant_annotation_version=variant_annotation_version) gvcc = GeneValueCountCollection.objects.get(source=source, gene_count_type=gene_count_type) gvc_qs = gvcc.genevaluecount_set.filter(gene__in=genes) sample_code = "%03d" % i if can_access: view_sample_url = reverse('view_sample', kwargs={'sample_id': sample.pk}) sample_link = f'<a href="{view_sample_url}">{sample.name}</a>' if sample_link in used_sample_names: uniq_sample_name = sample.name + "_" + sample_code sample_link = f'<a href="{view_sample_url}">{uniq_sample_name}</a>' sample_name = sample_link else: sample_name = "S" + sample_code sample_names.append(sample_name) used_sample_names.add(sample_name) color_df[sample_name] = default_color color_df.loc["Age", sample_name] = '#FFFFFF' color_df.loc["HPO", sample_name] = '#FFFFFF' color_df.loc["OMIM", sample_name] = '#FFFFFF' text_df[sample_name] = default_text if sample.patient: try: # Check you have Patient permissions patient = Patient.get_for_user(request.user, sample.patient.pk) def format_ontology(ontology_term): return f"<div title='{ontology_term}'>{ontology_term.name}</div>" hpo, omim = OntologyTerm.split_hpo_and_omim(patient.get_ontology_term_ids()) hpo_text = " ".join(map(format_ontology, hpo)) omim_text = " ".join(map(format_ontology, omim)) try: age = sample.specimen.age_at_collection_date except: age = None text_df.loc["Age", sample_name] = age or '' text_df.loc["HPO", sample_name] = hpo_text text_df.loc["OMIM", sample_name] = omim_text except PermissionDenied: pass except Patient.DoesNotExist: pass FIELDS = ["gene__geneversion__gene_symbol", "value__rgb", "value__show_counts", "count"] for gene_symbol, rgb, show_counts, count in gvc_qs.values_list(*FIELDS): gene_link = gene_links_lookup[gene_symbol] color_df.loc[gene_link, sample_name] = rgb if show_counts: text_df.loc[gene_link, sample_name] = count except (SampleAnnotationVersionVariantSource.DoesNotExist, GeneValueCountCollection.DoesNotExist): pass def set_style(s): color_series = color_df[s.name] styles = [] for color in color_series: styles.append(f"color: {rgb_invert(color)}; background-color: {color};") return styles style = text_df.style.apply(set_style) style = style.set_table_attributes('class="sample-gene-matrix"') text_table_html = style.render() context = {"text_table_html": text_table_html, "gene_values": gene_values} return render(request, 'snpdb/patients/cohort_gene_counts_matrix.html', context) def cohort_sort(request, cohort_id): cohort = Cohort.get_for_user(request.user, cohort_id) if request.method == "POST": cohort_samples_str = request.POST.get("cohort_samples") cohort_samples_ids = cohort_samples_str.split(',') if cohort_samples_str else [] cohort_samples = [] for i, cs_id in enumerate(cohort_samples_ids): cohort_sample = CohortSample.objects.get(pk=cs_id, cohort=cohort) cohort_sample.sort_order = i cohort_sample.save() cohort_samples.append(cohort_sample) else: cohort_samples = cohort.get_cohort_samples() context = {'cohort': cohort, 'cohort_samples': cohort_samples} return render(request, 'snpdb/patients/cohort_sort.html', context) def help_static_page(request, page_name): """ This embeds static pages in a help template """ context = {"page_name": page_name} return render(request, 'snpdb/help/help_static_page.html', context) def ajax_hello_world(request, data:str): return render(request, 'snpdb/ajax_hello_world.html', {'data': data}) def staff_only(request): return render(request, 'snpdb/staff_only.html') @cache_page(WEEK_SECS) def tag_autocomplete_form(request): """ This is an absolutely minimal HTML to create a Tag autocomplete form (used for load()) """ context = {"tag_form": TagForm()} return render(request, 'snpdb/tag_autocomplete_form.html', context) def wait_for_task(request, celery_task, sleep_ms, redirect_url): async_result = AsyncResult(celery_task) if async_result.successful(): return HttpResponseRedirect(redirect_url) kwargs = {"celery_task": celery_task, "sleep_ms": sleep_ms, "redirect_url": redirect_url} url = reverse("wait_for_task", kwargs=kwargs) context = {"url": url, "sleep_ms": sleep_ms, "async_result": async_result} return render(request, 'snpdb/wait_for_task.html', context) @require_POST def wiki_save(request, class_name, unique_keyword, unique_value): wiki = Wiki.get_or_create(class_name, unique_keyword, unique_value) markdown = request.POST["markdown"] wiki.check_user_edit_permission(request.user) # Throws 403 wiki.markdown = markdown wiki.last_edited_by = request.user wiki.save() return JsonResponse({}) def labs(request): # Use short names is available short_names_qs = Organization.objects.filter(short_name__isnull=False) name_to_short_name = dict(short_names_qs.values_list("name", "short_name")) if settings.VARIANT_CLASSIFICATION_STATS_USE_SHARED: org_field = "classification__lab__organization__name" state_field = "classification__lab__state" show_unclassified = False else: org_field = "lab__organization__name" state_field = "lab__state" show_unclassified = True vc_org_data_json = get_grouped_classification_counts( user=request.user, field=org_field, max_groups=15, field_labels=name_to_short_name, show_unclassified=show_unclassified) vc_state_data_json = get_grouped_classification_counts( user=request.user, field=state_field, max_groups=15, show_unclassified=show_unclassified) active_organizations = Organization.objects.filter(active=True).order_by('name') organization_labs = {} for org in active_organizations: if settings.VARIANT_CLASSIFICATION_STATS_USE_SHARED: org_labs = org.sharing_labs else: org_labs = org.classifying_labs if org_labs: organization_labs[org] = list(org_labs) lab_list = [l for ll in organization_labs.values() for l in ll] context = { "organization_labs": organization_labs, "labs": lab_list, "shared_classifications": settings.VARIANT_CLASSIFICATION_STATS_USE_SHARED, "vc_org_data": vc_org_data_json, "vc_state_data": vc_state_data_json, "show_unclassified": show_unclassified, } return render(request, "snpdb/labs.html", context) @login_not_required @cache_page(4 * HOUR_SECS) def public_global_sample_gene_matrix(request): # No auth required - rendered w/o links etc return global_sample_gene_matrix(request) @cache_page(HOUR_SECS) @vary_on_cookie def user_global_sample_gene_matrix(request): # global_sample_gene_matrix is rendered differently for external/logged in users # So keep as separate views so we can cache them return global_sample_gene_matrix(request) def global_sample_gene_matrix(request): gene_count_type = GeneCountType.objects.get(pk=settings.PUBLIC_SAMPLE_GENE_MATRIX_TYPE) gene_list_id = settings.PUBLIC_SAMPLE_GENE_MATRIX_GENE_LIST_ID if gene_list_id: gene_list = GeneList.objects.get(pk=gene_list_id) else: gene_list = None if gene_count_type.uses_classifications is False: raise PermissionDenied("settings.PUBLIC_SAMPLE_GENE_MATRIX_GENE_LIST_ID must be set " "if GeneCountType.uses_classifications is False") if settings.PUBLIC_SAMPLE_GENE_MATRIX_SHOW_PRIVATE_SAMPLES: sample_qs = Sample.objects.filter(import_status=ImportStatus.SUCCESS) else: public = Group.objects.get(name='public') read_perm = DjangoPermission.perm(Sample, DjangoPermission.READ) sample_qs = get_objects_for_group(public, read_perm, Sample) if gene_count_type.uses_classifications: vc_qs = gene_count_type.get_classification_qs() sample_qs = sample_qs.filter(classification__in=vc_qs) genome_build_name = settings.PUBLIC_SAMPLE_GENE_MATRIX_GENOME_BUILD if genome_build_name is None: try: genome_build = GenomeBuild.builds_with_annotation().get() except GenomeBuild.MultipleObjectsReturned: msg = f"settings.PUBLIC_SAMPLE_GENE_MATRIX_GENOME_BUILD must be set when there are multiple genome builds" raise ImproperlyConfigured(msg) else: genome_build = GenomeBuild.get_name_or_alias(genome_build_name) samples_list = list(sample_qs.filter(vcf__genome_build=genome_build).order_by("name").distinct()) variant_annotation_version = VariantAnnotationVersion.latest(genome_build) highlight_gene_symbols = settings.PUBLIC_SAMPLE_GENE_MATRIX_HIGHLIGHT_GENE_SYMBOLS return sample_gene_matrix(request, variant_annotation_version, samples_list, gene_list, gene_count_type, highlight_gene_symbols=highlight_gene_symbols) def genomic_intervals_graph(request, genomic_intervals_collection_id): graph_class_name = full_class_name(ChromosomeIntervalsGraph) cached_graph = graphcache.async_graph(graph_class_name, genomic_intervals_collection_id) return HttpResponseRedirect(reverse("cached_generated_file_check", kwargs={"cgf_id": cached_graph.id})) def chrom_density_graph(request, sample_id, cmap): graph_class_name = full_class_name(SampleChromosomeDensityGraph) cached_graph = graphcache.async_graph(graph_class_name, cmap, sample_id) return HttpResponseRedirect(reverse("cached_generated_file_check", kwargs={"cgf_id": cached_graph.id})) def homozygosity_graph(request, sample_id, cmap): graph_class_name = full_class_name(HomozygosityPercentGraph) cached_graph = graphcache.async_graph(graph_class_name, cmap, sample_id) return HttpResponseRedirect(reverse("cached_generated_file_check", kwargs={"cgf_id": cached_graph.id})) def sample_allele_frequency_histogram_graph(request, sample_id, min_read_depth): graph_class_name = full_class_name(AlleleFrequencyHistogramGraph) cached_graph = graphcache.async_graph(graph_class_name, sample_id, min_read_depth) return HttpResponseRedirect(reverse("cached_generated_file_check", kwargs={"cgf_id": cached_graph.id}))
42.736501
181
0.695356
c664a5fe622028749e714ccdbca7d601898d7830
1,575
py
Python
share/rpcauth/rpcauth.py
proteanx/Bitcorn-Test
87e0245c1cbbb1a662ae0f3a3a9411bbe308ab0f
[ "MIT" ]
25
2019-01-05T05:00:11.000Z
2021-05-03T03:54:07.000Z
share/rpcauth/rpcauth.py
Mattras007/BITCORN-1
47a5cdf7fa559aeeacf23f7d0191ba832561260b
[ "MIT" ]
17
2019-07-12T22:10:09.000Z
2021-04-07T17:15:26.000Z
share/rpcauth/rpcauth.py
Mattras007/BITCORN-1
47a5cdf7fa559aeeacf23f7d0191ba832561260b
[ "MIT" ]
17
2019-06-09T20:46:37.000Z
2021-12-31T08:44:19.000Z
#!/usr/bin/env python3 # Copyright (c) 2015-2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. from argparse import ArgumentParser from base64 import urlsafe_b64encode from binascii import hexlify from getpass import getpass from os import urandom import hmac def generate_salt(size): """Create size byte hex salt""" return hexlify(urandom(size)).decode() def generate_password(): """Create 32 byte b64 password""" return urlsafe_b64encode(urandom(32)).decode('utf-8') def password_to_hmac(salt, password): m = hmac.new(bytearray(salt, 'utf-8'), bytearray(password, 'utf-8'), 'SHA256') return m.hexdigest() def main(): parser = ArgumentParser(description='Create login credentials for a JSON-RPC user') parser.add_argument('username', help='the username for authentication') parser.add_argument('password', help='leave empty to generate a random password or specify "-" to prompt for password', nargs='?') args = parser.parse_args() if not args.password: args.password = generate_password() elif args.password == '-': args.password = getpass() # Create 16 byte hex salt salt = generate_salt(16) password_hmac = password_to_hmac(salt, args.password) print('String to be appended to bitcorn.conf:') print('rpcauth={0}:{1}${2}'.format(args.username, salt, password_hmac)) print('Your password:\n{0}'.format(args.password)) if __name__ == '__main__': main()
33.510638
134
0.714286
8b602875b973d8dd85a95eca7bd8d359dca659ac
4,329
py
Python
benchmark/startQiskit3054.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startQiskit3054.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startQiskit3054.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
# qubit number=4 # total number=46 import cirq import qiskit from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import BasicAer, execute, transpile from pprint import pprint from qiskit.test.mock import FakeVigo from math import log2 import numpy as np import networkx as nx def bitwise_xor(s: str, t: str) -> str: length = len(s) res = [] for i in range(length): res.append(str(int(s[i]) ^ int(t[i]))) return ''.join(res[::-1]) def bitwise_dot(s: str, t: str) -> str: length = len(s) res = 0 for i in range(length): res += int(s[i]) * int(t[i]) return str(res % 2) def build_oracle(n: int, f) -> QuantumCircuit: # implement the oracle O_f # NOTE: use multi_control_toffoli_gate ('noancilla' mode) # https://qiskit.org/documentation/_modules/qiskit/aqua/circuits/gates/multi_control_toffoli_gate.html # https://quantumcomputing.stackexchange.com/questions/3943/how-do-you-implement-the-toffoli-gate-using-only-single-qubit-and-cnot-gates # https://quantumcomputing.stackexchange.com/questions/2177/how-can-i-implement-an-n-bit-toffoli-gate controls = QuantumRegister(n, "ofc") target = QuantumRegister(1, "oft") oracle = QuantumCircuit(controls, target, name="Of") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) oracle.mct(controls, target[0], None, mode='noancilla') for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() return oracle def make_circuit(n:int,f) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n,"qc") classical = ClassicalRegister(n, "qm") prog = QuantumCircuit(input_qubit, classical) prog.h(input_qubit[3]) # number=23 prog.rx(-0.6848671984825748,input_qubit[1]) # number=26 prog.cz(input_qubit[0],input_qubit[3]) # number=24 prog.h(input_qubit[3]) # number=25 prog.h(input_qubit[3]) # number=37 prog.cz(input_qubit[0],input_qubit[3]) # number=38 prog.h(input_qubit[3]) # number=39 prog.cx(input_qubit[0],input_qubit[3]) # number=30 prog.cx(input_qubit[0],input_qubit[3]) # number=40 prog.x(input_qubit[3]) # number=41 prog.cx(input_qubit[0],input_qubit[3]) # number=42 prog.cx(input_qubit[0],input_qubit[3]) # number=32 prog.h(input_qubit[3]) # number=33 prog.cz(input_qubit[0],input_qubit[3]) # number=34 prog.h(input_qubit[3]) # number=35 prog.cx(input_qubit[0],input_qubit[3]) # number=15 prog.h(input_qubit[1]) # number=2 prog.h(input_qubit[2]) # number=3 prog.h(input_qubit[3]) # number=4 prog.y(input_qubit[3]) # number=12 prog.h(input_qubit[0]) # number=5 oracle = build_oracle(n-1, f) prog.append(oracle.to_gate(),[input_qubit[i] for i in range(n-1)]+[input_qubit[n-1]]) prog.h(input_qubit[1]) # number=6 prog.h(input_qubit[2]) # number=7 prog.cx(input_qubit[3],input_qubit[0]) # number=20 prog.cx(input_qubit[3],input_qubit[0]) # number=43 prog.z(input_qubit[3]) # number=44 prog.cx(input_qubit[3],input_qubit[0]) # number=45 prog.h(input_qubit[0]) # number=27 prog.cz(input_qubit[3],input_qubit[0]) # number=28 prog.h(input_qubit[0]) # number=29 prog.h(input_qubit[3]) # number=8 prog.h(input_qubit[0]) # number=9 prog.y(input_qubit[2]) # number=10 prog.h(input_qubit[1]) # number=36 prog.y(input_qubit[2]) # number=11 # circuit end for i in range(n): prog.measure(input_qubit[i], classical[i]) return prog if __name__ == '__main__': a = "111" b = "0" f = lambda rep: bitwise_xor(bitwise_dot(a, rep), b) prog = make_circuit(4,f) backend = BasicAer.get_backend('qasm_simulator') sample_shot =8000 info = execute(prog, backend=backend, shots=sample_shot).result().get_counts() backend = FakeVigo() circuit1 = transpile(prog,backend,optimization_level=2) writefile = open("../data/startQiskit3054.csv","w") print(info,file=writefile) print("results end", file=writefile) print(circuit1.__len__(),file=writefile) print(circuit1,file=writefile) writefile.close()
35.195122
140
0.652345
457dff2b35d00ac433a60602f68ecd7b62142bbe
885
py
Python
vegeta/create_targets.py
killthrush/piccolo-daimao
ff4cbeca1a371307c9b89839d453f1e510f3b269
[ "MIT" ]
null
null
null
vegeta/create_targets.py
killthrush/piccolo-daimao
ff4cbeca1a371307c9b89839d453f1e510f3b269
[ "MIT" ]
null
null
null
vegeta/create_targets.py
killthrush/piccolo-daimao
ff4cbeca1a371307c9b89839d453f1e510f3b269
[ "MIT" ]
null
null
null
import sys import random import uuid # Generate some random targets for Vegeta to obliterate if len(sys.argv) > 2: num_targets = int(sys.argv[1]) target_server = sys.argv[2] print "Generating {} random targets for server {}...".format(num_targets, target_server) random_content = [] with open('./random_targets.txt', 'w') as targets_file: for i in range(0, num_targets): with open("./random{}".format(i), 'w') as body_file: content = "key={}&value={}".format(uuid.uuid4(), random.randint(-10000, 10000)) body_file.write(content) targets_file.write("POST http://{}:3333/increment\n".format(target_server)) targets_file.write("@./random{}\n".format(i)) targets_file.write("\n") print "Done." else: print "This program requires <num_targets> followed by <target_server>. Exiting."
35.4
93
0.642938
4684bf40094bf4d86fcbffe4d645a6ce59db551d
6,132
py
Python
pyzoo/zoo/examples/ray_on_spark/parameter_server/async_parameter_server.py
limn2o4/analytics-zoo
78d6ce10976a7e1320ff5ebdf431db93a439ec56
[ "Apache-2.0" ]
2,970
2017-06-08T00:24:43.000Z
2022-03-30T12:14:55.000Z
pyzoo/zoo/examples/ray_on_spark/parameter_server/async_parameter_server.py
limn2o4/analytics-zoo
78d6ce10976a7e1320ff5ebdf431db93a439ec56
[ "Apache-2.0" ]
3,530
2017-05-09T08:29:10.000Z
2022-03-21T02:11:45.000Z
pyzoo/zoo/examples/ray_on_spark/parameter_server/async_parameter_server.py
limn2o4/analytics-zoo
78d6ce10976a7e1320ff5ebdf431db93a439ec56
[ "Apache-2.0" ]
972
2017-05-09T07:03:50.000Z
2022-03-23T07:48:48.000Z
# This file is adapted from https://github.com/ray-project/ray/blob # /master/examples/parameter_server/async_parameter_server.py # # Copyright 2018 Analytics Zoo Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os import time from zoo.examples.ray_on_spark.parameter_server import model import ray from zoo.orca import init_orca_context, stop_orca_context from zoo.orca import OrcaContext os.environ["LANG"] = "C.UTF-8" parser = argparse.ArgumentParser(description="Run the asynchronous parameter " "server example.") parser.add_argument('--cluster_mode', type=str, default="local", help='The mode for the Spark cluster. local or yarn.') parser.add_argument("--num_workers", default=4, type=int, help="The number of workers to use.") parser.add_argument("--iterations", default=50, type=int, help="Iteration time.") parser.add_argument("--executor_cores", type=int, default=8, help="The number of driver's cpu cores you want to use." "You can change it depending on your own cluster setting.") parser.add_argument("--executor_memory", type=str, default="10g", help="The size of slave(executor)'s memory you want to use." "You can change it depending on your own cluster setting.") parser.add_argument("--driver_memory", type=str, default="2g", help="The size of driver's memory you want to use." "You can change it depending on your own cluster setting.") parser.add_argument("--driver_cores", type=int, default=8, help="The number of driver's cpu cores you want to use." "You can change it depending on your own cluster setting.") parser.add_argument("--extra_executor_memory_for_ray", type=str, default="20g", help="The extra executor memory to store some data." "You can change it depending on your own cluster setting.") parser.add_argument("--object_store_memory", type=str, default="4g", help="The memory to store data on local." "You can change it depending on your own cluster setting.") @ray.remote class ParameterServer(object): def __init__(self, keys, values): # These values will be mutated, so we must create a copy that is not # backed by the object store. values = [value.copy() for value in values] self.weights = dict(zip(keys, values)) def push(self, keys, values): for key, value in zip(keys, values): self.weights[key] += value def pull(self, keys): return [self.weights[key] for key in keys] @ray.remote def worker_task(ps, worker_index, batch_size=50): # Download MNIST. print("Worker " + str(worker_index)) mnist = model.download_mnist_retry(seed=worker_index) # Initialize the model. net = model.SimpleCNN() keys = net.get_weights()[0] while True: # Get the current weights from the parameter server. weights = ray.get(ps.pull.remote(keys)) net.set_weights(keys, weights) # Compute an update and push it to the parameter server. xs, ys = mnist.train.next_batch(batch_size) gradients = net.compute_update(xs, ys) ps.push.remote(keys, gradients) if __name__ == "__main__": args = parser.parse_args() cluster_mode = args.cluster_mode if cluster_mode == "yarn": sc = init_orca_context(cluster_mode=cluster_mode, cores=args.executor_cores, memory=args.executor_memory, init_ray_on_spark=True, num_executors=args.num_workers, driver_memory=args.driver_memory, driver_cores=args.driver_cores, extra_executor_memory_for_ray=args.extra_executor_memory_for_ray, object_store_memory=args.object_store_memory, additional_archive="MNIST_data.zip#MNIST_data") ray_ctx = OrcaContext.get_ray_context() elif cluster_mode == "local": sc = init_orca_context(cores=args.driver_cores) ray_ctx = OrcaContext.get_ray_context() else: print("init_orca_context failed. cluster_mode should be either 'local' or 'yarn' but got " + cluster_mode) # Create a parameter server with some random weights. net = model.SimpleCNN() all_keys, all_values = net.get_weights() ps = ParameterServer.remote(all_keys, all_values) # Start some training tasks. worker_tasks = [worker_task.remote(ps, i) for i in range(args.num_workers)] # Download MNIST. mnist = model.download_mnist_retry() print("Begin iteration") i = 0 while i < args.iterations: # Get and evaluate the current model. print("-----Iteration" + str(i) + "------") current_weights = ray.get(ps.pull.remote(all_keys)) net.set_weights(all_keys, current_weights) test_xs, test_ys = mnist.test.next_batch(1000) accuracy = net.compute_accuracy(test_xs, test_ys) print("Iteration {}: accuracy is {}".format(i, accuracy)) i += 1 time.sleep(1) ray_ctx.stop() stop_orca_context()
42.881119
98
0.638617
04d9469b3db916e41521633fe04c13b6ba731923
57,665
py
Python
test/functional/test_framework/mininode.py
ThomasTail/gamecoin
158cbc119e07c5c885ee41b916ed658239655ac0
[ "MIT" ]
1
2021-05-04T21:01:14.000Z
2021-05-04T21:01:14.000Z
test/functional/test_framework/mininode.py
ThomasTail/gamecoin
158cbc119e07c5c885ee41b916ed658239655ac0
[ "MIT" ]
null
null
null
test/functional/test_framework/mininode.py
ThomasTail/gamecoin
158cbc119e07c5c885ee41b916ed658239655ac0
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2010 ArtForz -- public domain half-a-node # Copyright (c) 2012 Jeff Garzik # Copyright (c) 2010-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Bitcoin P2P network half-a-node. This python code was modified from ArtForz' public domain half-a-node, as found in the mini-node branch of http://github.com/jgarzik/pynode. NodeConn: an object which manages p2p connectivity to a bitcoin node NodeConnCB: a base class that describes the interface for receiving callbacks with network messages from a NodeConn CBlock, CTransaction, CBlockHeader, CTxIn, CTxOut, etc....: data structures that should map to corresponding structures in bitcoin/primitives msg_block, msg_tx, msg_headers, etc.: data structures that represent network messages ser_*, deser_*: functions that handle serialization/deserialization """ import asyncore from codecs import encode from collections import defaultdict import copy import hashlib from io import BytesIO import logging import random import socket import struct import sys import time from threading import RLock, Thread import gamecoin_scrypt from test_framework.siphash import siphash256 from test_framework.util import hex_str_to_bytes, bytes_to_hex_str, wait_until BIP0031_VERSION = 60000 MY_VERSION = 80014 # past bip-31 for ping/pong MY_SUBVERSION = b"/python-mininode-tester:0.0.3/" MY_RELAY = 1 # from version 70001 onwards, fRelay should be appended to version messages (BIP37) MAX_INV_SZ = 50000 MAX_BLOCK_BASE_SIZE = 1000000 COIN = 100000000 # 1 btc in satoshis NODE_NETWORK = (1 << 0) NODE_GETUTXO = (1 << 1) NODE_BLOOM = (1 << 2) NODE_WITNESS = (1 << 3) NODE_UNSUPPORTED_SERVICE_BIT_5 = (1 << 5) NODE_UNSUPPORTED_SERVICE_BIT_7 = (1 << 7) logger = logging.getLogger("TestFramework.mininode") # Keep our own socket map for asyncore, so that we can track disconnects # ourselves (to workaround an issue with closing an asyncore socket when # using select) mininode_socket_map = dict() # One lock for synchronizing all data access between the networking thread (see # NetworkThread below) and the thread running the test logic. For simplicity, # NodeConn acquires this lock whenever delivering a message to a NodeConnCB, # and whenever adding anything to the send buffer (in send_message()). This # lock should be acquired in the thread running the test logic to synchronize # access to any data shared with the NodeConnCB or NodeConn. mininode_lock = RLock() # Serialization/deserialization tools def sha256(s): return hashlib.new('sha256', s).digest() def ripemd160(s): return hashlib.new('ripemd160', s).digest() def hash256(s): return sha256(sha256(s)) def ser_compact_size(l): r = b"" if l < 253: r = struct.pack("B", l) elif l < 0x10000: r = struct.pack("<BH", 253, l) elif l < 0x100000000: r = struct.pack("<BI", 254, l) else: r = struct.pack("<BQ", 255, l) return r def deser_compact_size(f): nit = struct.unpack("<B", f.read(1))[0] if nit == 253: nit = struct.unpack("<H", f.read(2))[0] elif nit == 254: nit = struct.unpack("<I", f.read(4))[0] elif nit == 255: nit = struct.unpack("<Q", f.read(8))[0] return nit def deser_string(f): nit = deser_compact_size(f) return f.read(nit) def ser_string(s): return ser_compact_size(len(s)) + s def deser_uint256(f): r = 0 for i in range(8): t = struct.unpack("<I", f.read(4))[0] r += t << (i * 32) return r def ser_uint256(u): rs = b"" for i in range(8): rs += struct.pack("<I", u & 0xFFFFFFFF) u >>= 32 return rs def uint256_from_str(s): r = 0 t = struct.unpack("<IIIIIIII", s[:32]) for i in range(8): r += t[i] << (i * 32) return r def uint256_from_compact(c): nbytes = (c >> 24) & 0xFF v = (c & 0xFFFFFF) << (8 * (nbytes - 3)) return v def deser_vector(f, c): nit = deser_compact_size(f) r = [] for i in range(nit): t = c() t.deserialize(f) r.append(t) return r # ser_function_name: Allow for an alternate serialization function on the # entries in the vector (we use this for serializing the vector of transactions # for a witness block). def ser_vector(l, ser_function_name=None): r = ser_compact_size(len(l)) for i in l: if ser_function_name: r += getattr(i, ser_function_name)() else: r += i.serialize() return r def deser_uint256_vector(f): nit = deser_compact_size(f) r = [] for i in range(nit): t = deser_uint256(f) r.append(t) return r def ser_uint256_vector(l): r = ser_compact_size(len(l)) for i in l: r += ser_uint256(i) return r def deser_string_vector(f): nit = deser_compact_size(f) r = [] for i in range(nit): t = deser_string(f) r.append(t) return r def ser_string_vector(l): r = ser_compact_size(len(l)) for sv in l: r += ser_string(sv) return r def deser_int_vector(f): nit = deser_compact_size(f) r = [] for i in range(nit): t = struct.unpack("<i", f.read(4))[0] r.append(t) return r def ser_int_vector(l): r = ser_compact_size(len(l)) for i in l: r += struct.pack("<i", i) return r # Deserialize from a hex string representation (eg from RPC) def FromHex(obj, hex_string): obj.deserialize(BytesIO(hex_str_to_bytes(hex_string))) return obj # Convert a binary-serializable object to hex (eg for submission via RPC) def ToHex(obj): return bytes_to_hex_str(obj.serialize()) # Objects that map to bitcoind objects, which can be serialized/deserialized class CAddress(object): def __init__(self): self.nServices = 1 self.pchReserved = b"\x00" * 10 + b"\xff" * 2 self.ip = "0.0.0.0" self.port = 0 def deserialize(self, f): self.nServices = struct.unpack("<Q", f.read(8))[0] self.pchReserved = f.read(12) self.ip = socket.inet_ntoa(f.read(4)) self.port = struct.unpack(">H", f.read(2))[0] def serialize(self): r = b"" r += struct.pack("<Q", self.nServices) r += self.pchReserved r += socket.inet_aton(self.ip) r += struct.pack(">H", self.port) return r def __repr__(self): return "CAddress(nServices=%i ip=%s port=%i)" % (self.nServices, self.ip, self.port) MSG_WITNESS_FLAG = 1<<30 class CInv(object): typemap = { 0: "Error", 1: "TX", 2: "Block", 1|MSG_WITNESS_FLAG: "WitnessTx", 2|MSG_WITNESS_FLAG : "WitnessBlock", 4: "CompactBlock" } def __init__(self, t=0, h=0): self.type = t self.hash = h def deserialize(self, f): self.type = struct.unpack("<i", f.read(4))[0] self.hash = deser_uint256(f) def serialize(self): r = b"" r += struct.pack("<i", self.type) r += ser_uint256(self.hash) return r def __repr__(self): return "CInv(type=%s hash=%064x)" \ % (self.typemap[self.type], self.hash) class CBlockLocator(object): def __init__(self): self.nVersion = MY_VERSION self.vHave = [] def deserialize(self, f): self.nVersion = struct.unpack("<i", f.read(4))[0] self.vHave = deser_uint256_vector(f) def serialize(self): r = b"" r += struct.pack("<i", self.nVersion) r += ser_uint256_vector(self.vHave) return r def __repr__(self): return "CBlockLocator(nVersion=%i vHave=%s)" \ % (self.nVersion, repr(self.vHave)) class COutPoint(object): def __init__(self, hash=0, n=0): self.hash = hash self.n = n def deserialize(self, f): self.hash = deser_uint256(f) self.n = struct.unpack("<I", f.read(4))[0] def serialize(self): r = b"" r += ser_uint256(self.hash) r += struct.pack("<I", self.n) return r def __repr__(self): return "COutPoint(hash=%064x n=%i)" % (self.hash, self.n) class CTxIn(object): def __init__(self, outpoint=None, scriptSig=b"", nSequence=0): if outpoint is None: self.prevout = COutPoint() else: self.prevout = outpoint self.scriptSig = scriptSig self.nSequence = nSequence def deserialize(self, f): self.prevout = COutPoint() self.prevout.deserialize(f) self.scriptSig = deser_string(f) self.nSequence = struct.unpack("<I", f.read(4))[0] def serialize(self): r = b"" r += self.prevout.serialize() r += ser_string(self.scriptSig) r += struct.pack("<I", self.nSequence) return r def __repr__(self): return "CTxIn(prevout=%s scriptSig=%s nSequence=%i)" \ % (repr(self.prevout), bytes_to_hex_str(self.scriptSig), self.nSequence) class CTxOut(object): def __init__(self, nValue=0, scriptPubKey=b""): self.nValue = nValue self.scriptPubKey = scriptPubKey def deserialize(self, f): self.nValue = struct.unpack("<q", f.read(8))[0] self.scriptPubKey = deser_string(f) def serialize(self): r = b"" r += struct.pack("<q", self.nValue) r += ser_string(self.scriptPubKey) return r def __repr__(self): return "CTxOut(nValue=%i.%08i scriptPubKey=%s)" \ % (self.nValue // COIN, self.nValue % COIN, bytes_to_hex_str(self.scriptPubKey)) class CScriptWitness(object): def __init__(self): # stack is a vector of strings self.stack = [] def __repr__(self): return "CScriptWitness(%s)" % \ (",".join([bytes_to_hex_str(x) for x in self.stack])) def is_null(self): if self.stack: return False return True class CTxInWitness(object): def __init__(self): self.scriptWitness = CScriptWitness() def deserialize(self, f): self.scriptWitness.stack = deser_string_vector(f) def serialize(self): return ser_string_vector(self.scriptWitness.stack) def __repr__(self): return repr(self.scriptWitness) def is_null(self): return self.scriptWitness.is_null() class CTxWitness(object): def __init__(self): self.vtxinwit = [] def deserialize(self, f): for i in range(len(self.vtxinwit)): self.vtxinwit[i].deserialize(f) def serialize(self): r = b"" # This is different than the usual vector serialization -- # we omit the length of the vector, which is required to be # the same length as the transaction's vin vector. for x in self.vtxinwit: r += x.serialize() return r def __repr__(self): return "CTxWitness(%s)" % \ (';'.join([repr(x) for x in self.vtxinwit])) def is_null(self): for x in self.vtxinwit: if not x.is_null(): return False return True class CTransaction(object): def __init__(self, tx=None): if tx is None: self.nVersion = 1 self.vin = [] self.vout = [] self.wit = CTxWitness() self.nLockTime = 0 self.sha256 = None self.hash = None else: self.nVersion = tx.nVersion self.vin = copy.deepcopy(tx.vin) self.vout = copy.deepcopy(tx.vout) self.nLockTime = tx.nLockTime self.sha256 = tx.sha256 self.hash = tx.hash self.wit = copy.deepcopy(tx.wit) def deserialize(self, f): self.nVersion = struct.unpack("<i", f.read(4))[0] self.vin = deser_vector(f, CTxIn) flags = 0 if len(self.vin) == 0: flags = struct.unpack("<B", f.read(1))[0] # Not sure why flags can't be zero, but this # matches the implementation in bitcoind if (flags != 0): self.vin = deser_vector(f, CTxIn) self.vout = deser_vector(f, CTxOut) else: self.vout = deser_vector(f, CTxOut) if flags != 0: self.wit.vtxinwit = [CTxInWitness() for i in range(len(self.vin))] self.wit.deserialize(f) self.nLockTime = struct.unpack("<I", f.read(4))[0] self.sha256 = None self.hash = None def serialize_without_witness(self): r = b"" r += struct.pack("<i", self.nVersion) r += ser_vector(self.vin) r += ser_vector(self.vout) r += struct.pack("<I", self.nLockTime) return r # Only serialize with witness when explicitly called for def serialize_with_witness(self): flags = 0 if not self.wit.is_null(): flags |= 1 r = b"" r += struct.pack("<i", self.nVersion) if flags: dummy = [] r += ser_vector(dummy) r += struct.pack("<B", flags) r += ser_vector(self.vin) r += ser_vector(self.vout) if flags & 1: if (len(self.wit.vtxinwit) != len(self.vin)): # vtxinwit must have the same length as vin self.wit.vtxinwit = self.wit.vtxinwit[:len(self.vin)] for i in range(len(self.wit.vtxinwit), len(self.vin)): self.wit.vtxinwit.append(CTxInWitness()) r += self.wit.serialize() r += struct.pack("<I", self.nLockTime) return r # Regular serialization is without witness -- must explicitly # call serialize_with_witness to include witness data. def serialize(self): return self.serialize_without_witness() # Recalculate the txid (transaction hash without witness) def rehash(self): self.sha256 = None self.calc_sha256() # We will only cache the serialization without witness in # self.sha256 and self.hash -- those are expected to be the txid. def calc_sha256(self, with_witness=False): if with_witness: # Don't cache the result, just return it return uint256_from_str(hash256(self.serialize_with_witness())) if self.sha256 is None: self.sha256 = uint256_from_str(hash256(self.serialize_without_witness())) self.hash = encode(hash256(self.serialize())[::-1], 'hex_codec').decode('ascii') def is_valid(self): self.calc_sha256() for tout in self.vout: if tout.nValue < 0 or tout.nValue > 21000000 * COIN: return False return True def __repr__(self): return "CTransaction(nVersion=%i vin=%s vout=%s wit=%s nLockTime=%i)" \ % (self.nVersion, repr(self.vin), repr(self.vout), repr(self.wit), self.nLockTime) class CBlockHeader(object): def __init__(self, header=None): if header is None: self.set_null() else: self.nVersion = header.nVersion self.hashPrevBlock = header.hashPrevBlock self.hashMerkleRoot = header.hashMerkleRoot self.nTime = header.nTime self.nBits = header.nBits self.nNonce = header.nNonce self.sha256 = header.sha256 self.hash = header.hash self.scrypt256 = header.scrypt256 self.calc_sha256() def set_null(self): self.nVersion = 1 self.hashPrevBlock = 0 self.hashMerkleRoot = 0 self.nTime = 0 self.nBits = 0 self.nNonce = 0 self.sha256 = None self.hash = None self.scrypt256 = None def deserialize(self, f): self.nVersion = struct.unpack("<i", f.read(4))[0] self.hashPrevBlock = deser_uint256(f) self.hashMerkleRoot = deser_uint256(f) self.nTime = struct.unpack("<I", f.read(4))[0] self.nBits = struct.unpack("<I", f.read(4))[0] self.nNonce = struct.unpack("<I", f.read(4))[0] self.sha256 = None self.hash = None self.scrypt256 = None def serialize(self): r = b"" r += struct.pack("<i", self.nVersion) r += ser_uint256(self.hashPrevBlock) r += ser_uint256(self.hashMerkleRoot) r += struct.pack("<I", self.nTime) r += struct.pack("<I", self.nBits) r += struct.pack("<I", self.nNonce) return r def calc_sha256(self): if self.sha256 is None: r = b"" r += struct.pack("<i", self.nVersion) r += ser_uint256(self.hashPrevBlock) r += ser_uint256(self.hashMerkleRoot) r += struct.pack("<I", self.nTime) r += struct.pack("<I", self.nBits) r += struct.pack("<I", self.nNonce) self.sha256 = uint256_from_str(hash256(r)) self.hash = encode(hash256(r)[::-1], 'hex_codec').decode('ascii') self.scrypt256 = uint256_from_str(gamecoin_scrypt.getPoWHash(r)) def rehash(self): self.sha256 = None self.scrypt256 = None self.calc_sha256() return self.sha256 def __repr__(self): return "CBlockHeader(nVersion=%i hashPrevBlock=%064x hashMerkleRoot=%064x nTime=%s nBits=%08x nNonce=%08x)" \ % (self.nVersion, self.hashPrevBlock, self.hashMerkleRoot, time.ctime(self.nTime), self.nBits, self.nNonce) class CBlock(CBlockHeader): def __init__(self, header=None): super(CBlock, self).__init__(header) self.vtx = [] def deserialize(self, f): super(CBlock, self).deserialize(f) self.vtx = deser_vector(f, CTransaction) def serialize(self, with_witness=False): r = b"" r += super(CBlock, self).serialize() if with_witness: r += ser_vector(self.vtx, "serialize_with_witness") else: r += ser_vector(self.vtx) return r # Calculate the merkle root given a vector of transaction hashes @classmethod def get_merkle_root(cls, hashes): while len(hashes) > 1: newhashes = [] for i in range(0, len(hashes), 2): i2 = min(i+1, len(hashes)-1) newhashes.append(hash256(hashes[i] + hashes[i2])) hashes = newhashes return uint256_from_str(hashes[0]) def calc_merkle_root(self): hashes = [] for tx in self.vtx: tx.calc_sha256() hashes.append(ser_uint256(tx.sha256)) return self.get_merkle_root(hashes) def calc_witness_merkle_root(self): # For witness root purposes, the hash of the # coinbase, with witness, is defined to be 0...0 hashes = [ser_uint256(0)] for tx in self.vtx[1:]: # Calculate the hashes with witness data hashes.append(ser_uint256(tx.calc_sha256(True))) return self.get_merkle_root(hashes) def is_valid(self): self.calc_sha256() target = uint256_from_compact(self.nBits) if self.scrypt256 > target: return False for tx in self.vtx: if not tx.is_valid(): return False if self.calc_merkle_root() != self.hashMerkleRoot: return False return True def solve(self): self.rehash() target = uint256_from_compact(self.nBits) while self.scrypt256 > target: self.nNonce += 1 self.rehash() def __repr__(self): return "CBlock(nVersion=%i hashPrevBlock=%064x hashMerkleRoot=%064x nTime=%s nBits=%08x nNonce=%08x vtx=%s)" \ % (self.nVersion, self.hashPrevBlock, self.hashMerkleRoot, time.ctime(self.nTime), self.nBits, self.nNonce, repr(self.vtx)) class CUnsignedAlert(object): def __init__(self): self.nVersion = 1 self.nRelayUntil = 0 self.nExpiration = 0 self.nID = 0 self.nCancel = 0 self.setCancel = [] self.nMinVer = 0 self.nMaxVer = 0 self.setSubVer = [] self.nPriority = 0 self.strComment = b"" self.strStatusBar = b"" self.strReserved = b"" def deserialize(self, f): self.nVersion = struct.unpack("<i", f.read(4))[0] self.nRelayUntil = struct.unpack("<q", f.read(8))[0] self.nExpiration = struct.unpack("<q", f.read(8))[0] self.nID = struct.unpack("<i", f.read(4))[0] self.nCancel = struct.unpack("<i", f.read(4))[0] self.setCancel = deser_int_vector(f) self.nMinVer = struct.unpack("<i", f.read(4))[0] self.nMaxVer = struct.unpack("<i", f.read(4))[0] self.setSubVer = deser_string_vector(f) self.nPriority = struct.unpack("<i", f.read(4))[0] self.strComment = deser_string(f) self.strStatusBar = deser_string(f) self.strReserved = deser_string(f) def serialize(self): r = b"" r += struct.pack("<i", self.nVersion) r += struct.pack("<q", self.nRelayUntil) r += struct.pack("<q", self.nExpiration) r += struct.pack("<i", self.nID) r += struct.pack("<i", self.nCancel) r += ser_int_vector(self.setCancel) r += struct.pack("<i", self.nMinVer) r += struct.pack("<i", self.nMaxVer) r += ser_string_vector(self.setSubVer) r += struct.pack("<i", self.nPriority) r += ser_string(self.strComment) r += ser_string(self.strStatusBar) r += ser_string(self.strReserved) return r def __repr__(self): return "CUnsignedAlert(nVersion %d, nRelayUntil %d, nExpiration %d, nID %d, nCancel %d, nMinVer %d, nMaxVer %d, nPriority %d, strComment %s, strStatusBar %s, strReserved %s)" \ % (self.nVersion, self.nRelayUntil, self.nExpiration, self.nID, self.nCancel, self.nMinVer, self.nMaxVer, self.nPriority, self.strComment, self.strStatusBar, self.strReserved) class CAlert(object): def __init__(self): self.vchMsg = b"" self.vchSig = b"" def deserialize(self, f): self.vchMsg = deser_string(f) self.vchSig = deser_string(f) def serialize(self): r = b"" r += ser_string(self.vchMsg) r += ser_string(self.vchSig) return r def __repr__(self): return "CAlert(vchMsg.sz %d, vchSig.sz %d)" \ % (len(self.vchMsg), len(self.vchSig)) class PrefilledTransaction(object): def __init__(self, index=0, tx = None): self.index = index self.tx = tx def deserialize(self, f): self.index = deser_compact_size(f) self.tx = CTransaction() self.tx.deserialize(f) def serialize(self, with_witness=False): r = b"" r += ser_compact_size(self.index) if with_witness: r += self.tx.serialize_with_witness() else: r += self.tx.serialize_without_witness() return r def serialize_with_witness(self): return self.serialize(with_witness=True) def __repr__(self): return "PrefilledTransaction(index=%d, tx=%s)" % (self.index, repr(self.tx)) # This is what we send on the wire, in a cmpctblock message. class P2PHeaderAndShortIDs(object): def __init__(self): self.header = CBlockHeader() self.nonce = 0 self.shortids_length = 0 self.shortids = [] self.prefilled_txn_length = 0 self.prefilled_txn = [] def deserialize(self, f): self.header.deserialize(f) self.nonce = struct.unpack("<Q", f.read(8))[0] self.shortids_length = deser_compact_size(f) for i in range(self.shortids_length): # shortids are defined to be 6 bytes in the spec, so append # two zero bytes and read it in as an 8-byte number self.shortids.append(struct.unpack("<Q", f.read(6) + b'\x00\x00')[0]) self.prefilled_txn = deser_vector(f, PrefilledTransaction) self.prefilled_txn_length = len(self.prefilled_txn) # When using version 2 compact blocks, we must serialize with_witness. def serialize(self, with_witness=False): r = b"" r += self.header.serialize() r += struct.pack("<Q", self.nonce) r += ser_compact_size(self.shortids_length) for x in self.shortids: # We only want the first 6 bytes r += struct.pack("<Q", x)[0:6] if with_witness: r += ser_vector(self.prefilled_txn, "serialize_with_witness") else: r += ser_vector(self.prefilled_txn) return r def __repr__(self): return "P2PHeaderAndShortIDs(header=%s, nonce=%d, shortids_length=%d, shortids=%s, prefilled_txn_length=%d, prefilledtxn=%s" % (repr(self.header), self.nonce, self.shortids_length, repr(self.shortids), self.prefilled_txn_length, repr(self.prefilled_txn)) # P2P version of the above that will use witness serialization (for compact # block version 2) class P2PHeaderAndShortWitnessIDs(P2PHeaderAndShortIDs): def serialize(self): return super(P2PHeaderAndShortWitnessIDs, self).serialize(with_witness=True) # Calculate the BIP 152-compact blocks shortid for a given transaction hash def calculate_shortid(k0, k1, tx_hash): expected_shortid = siphash256(k0, k1, tx_hash) expected_shortid &= 0x0000ffffffffffff return expected_shortid # This version gets rid of the array lengths, and reinterprets the differential # encoding into indices that can be used for lookup. class HeaderAndShortIDs(object): def __init__(self, p2pheaders_and_shortids = None): self.header = CBlockHeader() self.nonce = 0 self.shortids = [] self.prefilled_txn = [] self.use_witness = False if p2pheaders_and_shortids != None: self.header = p2pheaders_and_shortids.header self.nonce = p2pheaders_and_shortids.nonce self.shortids = p2pheaders_and_shortids.shortids last_index = -1 for x in p2pheaders_and_shortids.prefilled_txn: self.prefilled_txn.append(PrefilledTransaction(x.index + last_index + 1, x.tx)) last_index = self.prefilled_txn[-1].index def to_p2p(self): if self.use_witness: ret = P2PHeaderAndShortWitnessIDs() else: ret = P2PHeaderAndShortIDs() ret.header = self.header ret.nonce = self.nonce ret.shortids_length = len(self.shortids) ret.shortids = self.shortids ret.prefilled_txn_length = len(self.prefilled_txn) ret.prefilled_txn = [] last_index = -1 for x in self.prefilled_txn: ret.prefilled_txn.append(PrefilledTransaction(x.index - last_index - 1, x.tx)) last_index = x.index return ret def get_siphash_keys(self): header_nonce = self.header.serialize() header_nonce += struct.pack("<Q", self.nonce) hash_header_nonce_as_str = sha256(header_nonce) key0 = struct.unpack("<Q", hash_header_nonce_as_str[0:8])[0] key1 = struct.unpack("<Q", hash_header_nonce_as_str[8:16])[0] return [ key0, key1 ] # Version 2 compact blocks use wtxid in shortids (rather than txid) def initialize_from_block(self, block, nonce=0, prefill_list = [0], use_witness = False): self.header = CBlockHeader(block) self.nonce = nonce self.prefilled_txn = [ PrefilledTransaction(i, block.vtx[i]) for i in prefill_list ] self.shortids = [] self.use_witness = use_witness [k0, k1] = self.get_siphash_keys() for i in range(len(block.vtx)): if i not in prefill_list: tx_hash = block.vtx[i].sha256 if use_witness: tx_hash = block.vtx[i].calc_sha256(with_witness=True) self.shortids.append(calculate_shortid(k0, k1, tx_hash)) def __repr__(self): return "HeaderAndShortIDs(header=%s, nonce=%d, shortids=%s, prefilledtxn=%s" % (repr(self.header), self.nonce, repr(self.shortids), repr(self.prefilled_txn)) class BlockTransactionsRequest(object): def __init__(self, blockhash=0, indexes = None): self.blockhash = blockhash self.indexes = indexes if indexes != None else [] def deserialize(self, f): self.blockhash = deser_uint256(f) indexes_length = deser_compact_size(f) for i in range(indexes_length): self.indexes.append(deser_compact_size(f)) def serialize(self): r = b"" r += ser_uint256(self.blockhash) r += ser_compact_size(len(self.indexes)) for x in self.indexes: r += ser_compact_size(x) return r # helper to set the differentially encoded indexes from absolute ones def from_absolute(self, absolute_indexes): self.indexes = [] last_index = -1 for x in absolute_indexes: self.indexes.append(x-last_index-1) last_index = x def to_absolute(self): absolute_indexes = [] last_index = -1 for x in self.indexes: absolute_indexes.append(x+last_index+1) last_index = absolute_indexes[-1] return absolute_indexes def __repr__(self): return "BlockTransactionsRequest(hash=%064x indexes=%s)" % (self.blockhash, repr(self.indexes)) class BlockTransactions(object): def __init__(self, blockhash=0, transactions = None): self.blockhash = blockhash self.transactions = transactions if transactions != None else [] def deserialize(self, f): self.blockhash = deser_uint256(f) self.transactions = deser_vector(f, CTransaction) def serialize(self, with_witness=False): r = b"" r += ser_uint256(self.blockhash) if with_witness: r += ser_vector(self.transactions, "serialize_with_witness") else: r += ser_vector(self.transactions) return r def __repr__(self): return "BlockTransactions(hash=%064x transactions=%s)" % (self.blockhash, repr(self.transactions)) # Objects that correspond to messages on the wire class msg_version(object): command = b"version" def __init__(self): self.nVersion = MY_VERSION self.nServices = 1 self.nTime = int(time.time()) self.addrTo = CAddress() self.addrFrom = CAddress() self.nNonce = random.getrandbits(64) self.strSubVer = MY_SUBVERSION self.nStartingHeight = -1 self.nRelay = MY_RELAY def deserialize(self, f): self.nVersion = struct.unpack("<i", f.read(4))[0] if self.nVersion == 10300: self.nVersion = 300 self.nServices = struct.unpack("<Q", f.read(8))[0] self.nTime = struct.unpack("<q", f.read(8))[0] self.addrTo = CAddress() self.addrTo.deserialize(f) if self.nVersion >= 106: self.addrFrom = CAddress() self.addrFrom.deserialize(f) self.nNonce = struct.unpack("<Q", f.read(8))[0] self.strSubVer = deser_string(f) else: self.addrFrom = None self.nNonce = None self.strSubVer = None self.nStartingHeight = None if self.nVersion >= 209: self.nStartingHeight = struct.unpack("<i", f.read(4))[0] else: self.nStartingHeight = None if self.nVersion >= 70001: # Relay field is optional for version 70001 onwards try: self.nRelay = struct.unpack("<b", f.read(1))[0] except: self.nRelay = 0 else: self.nRelay = 0 def serialize(self): r = b"" r += struct.pack("<i", self.nVersion) r += struct.pack("<Q", self.nServices) r += struct.pack("<q", self.nTime) r += self.addrTo.serialize() r += self.addrFrom.serialize() r += struct.pack("<Q", self.nNonce) r += ser_string(self.strSubVer) r += struct.pack("<i", self.nStartingHeight) r += struct.pack("<b", self.nRelay) return r def __repr__(self): return 'msg_version(nVersion=%i nServices=%i nTime=%s addrTo=%s addrFrom=%s nNonce=0x%016X strSubVer=%s nStartingHeight=%i nRelay=%i)' \ % (self.nVersion, self.nServices, time.ctime(self.nTime), repr(self.addrTo), repr(self.addrFrom), self.nNonce, self.strSubVer, self.nStartingHeight, self.nRelay) class msg_verack(object): command = b"verack" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return b"" def __repr__(self): return "msg_verack()" class msg_addr(object): command = b"addr" def __init__(self): self.addrs = [] def deserialize(self, f): self.addrs = deser_vector(f, CAddress) def serialize(self): return ser_vector(self.addrs) def __repr__(self): return "msg_addr(addrs=%s)" % (repr(self.addrs)) class msg_alert(object): command = b"alert" def __init__(self): self.alert = CAlert() def deserialize(self, f): self.alert = CAlert() self.alert.deserialize(f) def serialize(self): r = b"" r += self.alert.serialize() return r def __repr__(self): return "msg_alert(alert=%s)" % (repr(self.alert), ) class msg_inv(object): command = b"inv" def __init__(self, inv=None): if inv is None: self.inv = [] else: self.inv = inv def deserialize(self, f): self.inv = deser_vector(f, CInv) def serialize(self): return ser_vector(self.inv) def __repr__(self): return "msg_inv(inv=%s)" % (repr(self.inv)) class msg_getdata(object): command = b"getdata" def __init__(self, inv=None): self.inv = inv if inv != None else [] def deserialize(self, f): self.inv = deser_vector(f, CInv) def serialize(self): return ser_vector(self.inv) def __repr__(self): return "msg_getdata(inv=%s)" % (repr(self.inv)) class msg_getblocks(object): command = b"getblocks" def __init__(self): self.locator = CBlockLocator() self.hashstop = 0 def deserialize(self, f): self.locator = CBlockLocator() self.locator.deserialize(f) self.hashstop = deser_uint256(f) def serialize(self): r = b"" r += self.locator.serialize() r += ser_uint256(self.hashstop) return r def __repr__(self): return "msg_getblocks(locator=%s hashstop=%064x)" \ % (repr(self.locator), self.hashstop) class msg_tx(object): command = b"tx" def __init__(self, tx=CTransaction()): self.tx = tx def deserialize(self, f): self.tx.deserialize(f) def serialize(self): return self.tx.serialize_without_witness() def __repr__(self): return "msg_tx(tx=%s)" % (repr(self.tx)) class msg_witness_tx(msg_tx): def serialize(self): return self.tx.serialize_with_witness() class msg_block(object): command = b"block" def __init__(self, block=None): if block is None: self.block = CBlock() else: self.block = block def deserialize(self, f): self.block.deserialize(f) def serialize(self): return self.block.serialize() def __repr__(self): return "msg_block(block=%s)" % (repr(self.block)) # for cases where a user needs tighter control over what is sent over the wire # note that the user must supply the name of the command, and the data class msg_generic(object): def __init__(self, command, data=None): self.command = command self.data = data def serialize(self): return self.data def __repr__(self): return "msg_generic()" class msg_witness_block(msg_block): def serialize(self): r = self.block.serialize(with_witness=True) return r class msg_getaddr(object): command = b"getaddr" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return b"" def __repr__(self): return "msg_getaddr()" class msg_ping_prebip31(object): command = b"ping" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return b"" def __repr__(self): return "msg_ping() (pre-bip31)" class msg_ping(object): command = b"ping" def __init__(self, nonce=0): self.nonce = nonce def deserialize(self, f): self.nonce = struct.unpack("<Q", f.read(8))[0] def serialize(self): r = b"" r += struct.pack("<Q", self.nonce) return r def __repr__(self): return "msg_ping(nonce=%08x)" % self.nonce class msg_pong(object): command = b"pong" def __init__(self, nonce=0): self.nonce = nonce def deserialize(self, f): self.nonce = struct.unpack("<Q", f.read(8))[0] def serialize(self): r = b"" r += struct.pack("<Q", self.nonce) return r def __repr__(self): return "msg_pong(nonce=%08x)" % self.nonce class msg_mempool(object): command = b"mempool" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return b"" def __repr__(self): return "msg_mempool()" class msg_sendheaders(object): command = b"sendheaders" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return b"" def __repr__(self): return "msg_sendheaders()" # getheaders message has # number of entries # vector of hashes # hash_stop (hash of last desired block header, 0 to get as many as possible) class msg_getheaders(object): command = b"getheaders" def __init__(self): self.locator = CBlockLocator() self.hashstop = 0 def deserialize(self, f): self.locator = CBlockLocator() self.locator.deserialize(f) self.hashstop = deser_uint256(f) def serialize(self): r = b"" r += self.locator.serialize() r += ser_uint256(self.hashstop) return r def __repr__(self): return "msg_getheaders(locator=%s, stop=%064x)" \ % (repr(self.locator), self.hashstop) # headers message has # <count> <vector of block headers> class msg_headers(object): command = b"headers" def __init__(self): self.headers = [] def deserialize(self, f): # comment in bitcoind indicates these should be deserialized as blocks blocks = deser_vector(f, CBlock) for x in blocks: self.headers.append(CBlockHeader(x)) def serialize(self): blocks = [CBlock(x) for x in self.headers] return ser_vector(blocks) def __repr__(self): return "msg_headers(headers=%s)" % repr(self.headers) class msg_reject(object): command = b"reject" REJECT_MALFORMED = 1 def __init__(self): self.message = b"" self.code = 0 self.reason = b"" self.data = 0 def deserialize(self, f): self.message = deser_string(f) self.code = struct.unpack("<B", f.read(1))[0] self.reason = deser_string(f) if (self.code != self.REJECT_MALFORMED and (self.message == b"block" or self.message == b"tx")): self.data = deser_uint256(f) def serialize(self): r = ser_string(self.message) r += struct.pack("<B", self.code) r += ser_string(self.reason) if (self.code != self.REJECT_MALFORMED and (self.message == b"block" or self.message == b"tx")): r += ser_uint256(self.data) return r def __repr__(self): return "msg_reject: %s %d %s [%064x]" \ % (self.message, self.code, self.reason, self.data) class msg_feefilter(object): command = b"feefilter" def __init__(self, feerate=0): self.feerate = feerate def deserialize(self, f): self.feerate = struct.unpack("<Q", f.read(8))[0] def serialize(self): r = b"" r += struct.pack("<Q", self.feerate) return r def __repr__(self): return "msg_feefilter(feerate=%08x)" % self.feerate class msg_sendcmpct(object): command = b"sendcmpct" def __init__(self): self.announce = False self.version = 1 def deserialize(self, f): self.announce = struct.unpack("<?", f.read(1))[0] self.version = struct.unpack("<Q", f.read(8))[0] def serialize(self): r = b"" r += struct.pack("<?", self.announce) r += struct.pack("<Q", self.version) return r def __repr__(self): return "msg_sendcmpct(announce=%s, version=%lu)" % (self.announce, self.version) class msg_cmpctblock(object): command = b"cmpctblock" def __init__(self, header_and_shortids = None): self.header_and_shortids = header_and_shortids def deserialize(self, f): self.header_and_shortids = P2PHeaderAndShortIDs() self.header_and_shortids.deserialize(f) def serialize(self): r = b"" r += self.header_and_shortids.serialize() return r def __repr__(self): return "msg_cmpctblock(HeaderAndShortIDs=%s)" % repr(self.header_and_shortids) class msg_getblocktxn(object): command = b"getblocktxn" def __init__(self): self.block_txn_request = None def deserialize(self, f): self.block_txn_request = BlockTransactionsRequest() self.block_txn_request.deserialize(f) def serialize(self): r = b"" r += self.block_txn_request.serialize() return r def __repr__(self): return "msg_getblocktxn(block_txn_request=%s)" % (repr(self.block_txn_request)) class msg_blocktxn(object): command = b"blocktxn" def __init__(self): self.block_transactions = BlockTransactions() def deserialize(self, f): self.block_transactions.deserialize(f) def serialize(self): r = b"" r += self.block_transactions.serialize() return r def __repr__(self): return "msg_blocktxn(block_transactions=%s)" % (repr(self.block_transactions)) class msg_witness_blocktxn(msg_blocktxn): def serialize(self): r = b"" r += self.block_transactions.serialize(with_witness=True) return r class NodeConnCB(object): """Callback and helper functions for P2P connection to a bitcoind node. Individual testcases should subclass this and override the on_* methods if they want to alter message handling behaviour. """ def __init__(self): # Track whether we have a P2P connection open to the node self.connected = False self.connection = None # Track number of messages of each type received and the most recent # message of each type self.message_count = defaultdict(int) self.last_message = {} # A count of the number of ping messages we've sent to the node self.ping_counter = 1 # deliver_sleep_time is helpful for debugging race conditions in p2p # tests; it causes message delivery to sleep for the specified time # before acquiring the global lock and delivering the next message. self.deliver_sleep_time = None # Remember the services our peer has advertised self.peer_services = None # Message receiving methods def deliver(self, conn, message): """Receive message and dispatch message to appropriate callback. We keep a count of how many of each message type has been received and the most recent message of each type. Optionally waits for deliver_sleep_time before dispatching message. """ deliver_sleep = self.get_deliver_sleep_time() if deliver_sleep is not None: time.sleep(deliver_sleep) with mininode_lock: try: command = message.command.decode('ascii') self.message_count[command] += 1 self.last_message[command] = message getattr(self, 'on_' + command)(conn, message) except: print("ERROR delivering %s (%s)" % (repr(message), sys.exc_info()[0])) raise def set_deliver_sleep_time(self, value): with mininode_lock: self.deliver_sleep_time = value def get_deliver_sleep_time(self): with mininode_lock: return self.deliver_sleep_time # Callback methods. Can be overridden by subclasses in individual test # cases to provide custom message handling behaviour. def on_open(self, conn): self.connected = True def on_close(self, conn): self.connected = False self.connection = None def on_addr(self, conn, message): pass def on_alert(self, conn, message): pass def on_block(self, conn, message): pass def on_blocktxn(self, conn, message): pass def on_cmpctblock(self, conn, message): pass def on_feefilter(self, conn, message): pass def on_getaddr(self, conn, message): pass def on_getblocks(self, conn, message): pass def on_getblocktxn(self, conn, message): pass def on_getdata(self, conn, message): pass def on_getheaders(self, conn, message): pass def on_headers(self, conn, message): pass def on_mempool(self, conn): pass def on_pong(self, conn, message): pass def on_reject(self, conn, message): pass def on_sendcmpct(self, conn, message): pass def on_sendheaders(self, conn, message): pass def on_tx(self, conn, message): pass def on_inv(self, conn, message): want = msg_getdata() for i in message.inv: if i.type != 0: want.inv.append(i) if len(want.inv): conn.send_message(want) def on_ping(self, conn, message): if conn.ver_send > BIP0031_VERSION: conn.send_message(msg_pong(message.nonce)) def on_verack(self, conn, message): conn.ver_recv = conn.ver_send self.verack_received = True def on_version(self, conn, message): if message.nVersion >= 209: conn.send_message(msg_verack()) conn.ver_send = min(MY_VERSION, message.nVersion) if message.nVersion < 209: conn.ver_recv = conn.ver_send conn.nServices = message.nServices # Connection helper methods def add_connection(self, conn): self.connection = conn def wait_for_disconnect(self, timeout=60): test_function = lambda: not self.connected wait_until(test_function, timeout=timeout, lock=mininode_lock) # Message receiving helper methods def wait_for_block(self, blockhash, timeout=60): test_function = lambda: self.last_message.get("block") and self.last_message["block"].block.rehash() == blockhash wait_until(test_function, timeout=timeout, lock=mininode_lock) def wait_for_getdata(self, timeout=60): test_function = lambda: self.last_message.get("getdata") wait_until(test_function, timeout=timeout, lock=mininode_lock) def wait_for_getheaders(self, timeout=60): test_function = lambda: self.last_message.get("getheaders") wait_until(test_function, timeout=timeout, lock=mininode_lock) def wait_for_inv(self, expected_inv, timeout=60): """Waits for an INV message and checks that the first inv object in the message was as expected.""" if len(expected_inv) > 1: raise NotImplementedError("wait_for_inv() will only verify the first inv object") test_function = lambda: self.last_message.get("inv") and \ self.last_message["inv"].inv[0].type == expected_inv[0].type and \ self.last_message["inv"].inv[0].hash == expected_inv[0].hash wait_until(test_function, timeout=timeout, lock=mininode_lock) def wait_for_verack(self, timeout=60): test_function = lambda: self.message_count["verack"] wait_until(test_function, timeout=timeout, lock=mininode_lock) # Message sending helper functions def send_message(self, message): if self.connection: self.connection.send_message(message) else: logger.error("Cannot send message. No connection to node!") def send_and_ping(self, message): self.send_message(message) self.sync_with_ping() # Sync up with the node def sync_with_ping(self, timeout=60): self.send_message(msg_ping(nonce=self.ping_counter)) test_function = lambda: self.last_message.get("pong") and self.last_message["pong"].nonce == self.ping_counter wait_until(test_function, timeout=timeout, lock=mininode_lock) self.ping_counter += 1 # The actual NodeConn class # This class provides an interface for a p2p connection to a specified node class NodeConn(asyncore.dispatcher): messagemap = { b"version": msg_version, b"verack": msg_verack, b"addr": msg_addr, b"alert": msg_alert, b"inv": msg_inv, b"getdata": msg_getdata, b"getblocks": msg_getblocks, b"tx": msg_tx, b"block": msg_block, b"getaddr": msg_getaddr, b"ping": msg_ping, b"pong": msg_pong, b"headers": msg_headers, b"getheaders": msg_getheaders, b"reject": msg_reject, b"mempool": msg_mempool, b"feefilter": msg_feefilter, b"sendheaders": msg_sendheaders, b"sendcmpct": msg_sendcmpct, b"cmpctblock": msg_cmpctblock, b"getblocktxn": msg_getblocktxn, b"blocktxn": msg_blocktxn } MAGIC_BYTES = { "mainnet": b"\xfb\xc0\xb6\xdb", # mainnet "testnet3": b"\xfc\xc1\xb7\xdc", # testnet3 "regtest": b"\xfa\xbf\xb5\xda", # regtest } def __init__(self, dstaddr, dstport, rpc, callback, net="regtest", services=NODE_NETWORK, send_version=True): asyncore.dispatcher.__init__(self, map=mininode_socket_map) self.dstaddr = dstaddr self.dstport = dstport self.create_socket(socket.AF_INET, socket.SOCK_STREAM) self.sendbuf = b"" self.recvbuf = b"" self.ver_send = 209 self.ver_recv = 209 self.last_sent = 0 self.state = "connecting" self.network = net self.cb = callback self.disconnect = False self.nServices = 0 if send_version: # stuff version msg into sendbuf vt = msg_version() vt.nServices = services vt.addrTo.ip = self.dstaddr vt.addrTo.port = self.dstport vt.addrFrom.ip = "0.0.0.0" vt.addrFrom.port = 0 self.send_message(vt, True) logger.info('Connecting to Gamecoin Node: %s:%d' % (self.dstaddr, self.dstport)) try: self.connect((dstaddr, dstport)) except: self.handle_close() self.rpc = rpc def handle_connect(self): if self.state != "connected": logger.debug("Connected & Listening: %s:%d" % (self.dstaddr, self.dstport)) self.state = "connected" self.cb.on_open(self) def handle_close(self): logger.debug("Closing connection to: %s:%d" % (self.dstaddr, self.dstport)) self.state = "closed" self.recvbuf = b"" self.sendbuf = b"" try: self.close() except: pass self.cb.on_close(self) def handle_read(self): t = self.recv(8192) if len(t) > 0: self.recvbuf += t self.got_data() def readable(self): return True def writable(self): with mininode_lock: pre_connection = self.state == "connecting" length = len(self.sendbuf) return (length > 0 or pre_connection) def handle_write(self): with mininode_lock: # asyncore does not expose socket connection, only the first read/write # event, thus we must check connection manually here to know when we # actually connect if self.state == "connecting": self.handle_connect() if not self.writable(): return try: sent = self.send(self.sendbuf) except: self.handle_close() return self.sendbuf = self.sendbuf[sent:] def got_data(self): try: while True: if len(self.recvbuf) < 4: return if self.recvbuf[:4] != self.MAGIC_BYTES[self.network]: raise ValueError("got garbage %s" % repr(self.recvbuf)) if self.ver_recv < 209: if len(self.recvbuf) < 4 + 12 + 4: return command = self.recvbuf[4:4+12].split(b"\x00", 1)[0] msglen = struct.unpack("<i", self.recvbuf[4+12:4+12+4])[0] checksum = None if len(self.recvbuf) < 4 + 12 + 4 + msglen: return msg = self.recvbuf[4+12+4:4+12+4+msglen] self.recvbuf = self.recvbuf[4+12+4+msglen:] else: if len(self.recvbuf) < 4 + 12 + 4 + 4: return command = self.recvbuf[4:4+12].split(b"\x00", 1)[0] msglen = struct.unpack("<i", self.recvbuf[4+12:4+12+4])[0] checksum = self.recvbuf[4+12+4:4+12+4+4] if len(self.recvbuf) < 4 + 12 + 4 + 4 + msglen: return msg = self.recvbuf[4+12+4+4:4+12+4+4+msglen] th = sha256(msg) h = sha256(th) if checksum != h[:4]: raise ValueError("got bad checksum " + repr(self.recvbuf)) self.recvbuf = self.recvbuf[4+12+4+4+msglen:] if command in self.messagemap: f = BytesIO(msg) t = self.messagemap[command]() t.deserialize(f) self.got_message(t) else: logger.warning("Received unknown command from %s:%d: '%s' %s" % (self.dstaddr, self.dstport, command, repr(msg))) raise ValueError("Unknown command: '%s'" % (command)) except Exception as e: logger.exception('got_data:', repr(e)) raise def send_message(self, message, pushbuf=False): if self.state != "connected" and not pushbuf: raise IOError('Not connected, no pushbuf') self._log_message("send", message) command = message.command data = message.serialize() tmsg = self.MAGIC_BYTES[self.network] tmsg += command tmsg += b"\x00" * (12 - len(command)) tmsg += struct.pack("<I", len(data)) if self.ver_send >= 209: th = sha256(data) h = sha256(th) tmsg += h[:4] tmsg += data with mininode_lock: self.sendbuf += tmsg self.last_sent = time.time() def got_message(self, message): if message.command == b"version": if message.nVersion <= BIP0031_VERSION: self.messagemap[b'ping'] = msg_ping_prebip31 if self.last_sent + 30 * 60 < time.time(): self.send_message(self.messagemap[b'ping']()) self._log_message("receive", message) self.cb.deliver(self, message) def _log_message(self, direction, msg): if direction == "send": log_message = "Send message to " elif direction == "receive": log_message = "Received message from " log_message += "%s:%d: %s" % (self.dstaddr, self.dstport, repr(msg)[:500]) if len(log_message) > 500: log_message += "... (msg truncated)" logger.debug(log_message) def disconnect_node(self): self.disconnect = True class NetworkThread(Thread): def run(self): while mininode_socket_map: # We check for whether to disconnect outside of the asyncore # loop to workaround the behavior of asyncore when using # select disconnected = [] for fd, obj in mininode_socket_map.items(): if obj.disconnect: disconnected.append(obj) [ obj.handle_close() for obj in disconnected ] asyncore.loop(0.1, use_poll=True, map=mininode_socket_map, count=1) logger.debug("Network thread closing") # An exception we can raise if we detect a potential disconnect # (p2p or rpc) before the test is complete class EarlyDisconnectError(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value)
31.069504
262
0.598405
8b9f3acf691ea145032f365fbb3c01e724da8cfb
163
py
Python
tests/model_control/detailed/transf_Integration/model_control_one_enabled_Integration_Lag1Trend_Seasonal_DayOfWeek_SVR.py
shaido987/pyaf
b9afd089557bed6b90b246d3712c481ae26a1957
[ "BSD-3-Clause" ]
377
2016-10-13T20:52:44.000Z
2022-03-29T18:04:14.000Z
tests/model_control/detailed/transf_Integration/model_control_one_enabled_Integration_Lag1Trend_Seasonal_DayOfWeek_SVR.py
ysdede/pyaf
b5541b8249d5a1cfdc01f27fdfd99b6580ed680b
[ "BSD-3-Clause" ]
160
2016-10-13T16:11:53.000Z
2022-03-28T04:21:34.000Z
tests/model_control/detailed/transf_Integration/model_control_one_enabled_Integration_Lag1Trend_Seasonal_DayOfWeek_SVR.py
ysdede/pyaf
b5541b8249d5a1cfdc01f27fdfd99b6580ed680b
[ "BSD-3-Clause" ]
63
2017-03-09T14:51:18.000Z
2022-03-27T20:52:57.000Z
import tests.model_control.test_ozone_custom_models_enabled as testmod testmod.build_model( ['Integration'] , ['Lag1Trend'] , ['Seasonal_DayOfWeek'] , ['SVR'] );
40.75
90
0.760736
12e9d58db28ae45a1cc66c35922036f9ec14ccc0
20,833
py
Python
managesf/controllers/root.py
softwarefactory-project/managesf
7018d041291f50b90e782ca31d0cfc67abd10170
[ "Apache-2.0" ]
1
2018-08-02T23:30:03.000Z
2018-08-02T23:30:03.000Z
managesf/controllers/root.py
softwarefactory-project/managesf
7018d041291f50b90e782ca31d0cfc67abd10170
[ "Apache-2.0" ]
1
2021-12-13T18:24:10.000Z
2021-12-13T20:10:39.000Z
managesf/controllers/root.py
softwarefactory-project/managesf
7018d041291f50b90e782ca31d0cfc67abd10170
[ "Apache-2.0" ]
null
null
null
# Copyright (C) 2014 eNovance SAS <licensing@enovance.com> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import base64 import logging from urllib.parse import unquote from pecan import conf from pecan import expose from pecan import abort from pecan.rest import RestController from pecan import request, response from stevedore import driver from managesf.controllers import localuser, introspection from managesf.controllers import SFuser from managesf.services import base from managesf.services import exceptions from managesf import policy from managesf import DEFAULT_SERVICES from managesf.controllers.api.v2 import resources as v2_resources from managesf.controllers.api.v2 import configurations as v2_configurations from managesf.api.v2.managers import resource_manager logger = logging.getLogger(__name__) LOGERRORMSG = "Unable to process client request, failed with "\ "unhandled error: %s" CLIENTERRORMSG = "Unable to process your request, failed with "\ "unhandled error (server side): %s" # TODO: add detail (detail arg or abort function) for all abort calls. # instanciate service plugins SF_SERVICES = [] SERVICES = {} def load_services(): try: if conf.services: services = conf.services else: services = DEFAULT_SERVICES msg = 'No service configured, loading: %s' % DEFAULT_SERVICES logger.info(msg) except AttributeError: services = DEFAULT_SERVICES msg = 'Obsolete conf file, loading default: %s' % DEFAULT_SERVICES logger.info(msg) for service in services: try: plugin = driver.DriverManager(namespace='managesf.service', name=service, invoke_on_load=True, invoke_args=(conf,)).driver SF_SERVICES.append(plugin) SERVICES[service] = plugin logger.info('%s plugin loaded successfully' % service) except Exception as e: logger.error('Could not load service %s: %s' % (service, e)) def _decode_project_name(name): if name.startswith('==='): try: n = base64.urlsafe_b64decode(name.encode()[3:]) return n.decode('utf8') except Exception: return name[3:] return name class SFManager: user = SFuser.SFUserManager() sfmanager = SFManager() def is_admin(user): return base.RoleManager.is_admin(user) def report_unhandled_error(exp): logger.exception(LOGERRORMSG % str(exp)) response.status = 500 return CLIENTERRORMSG % str(exp) # TODO move to utils and use resources rather than gerrit for groups def authorize(rule_name, target): if not request.remote_user: request.remote_user = request.headers.get('X-Remote-User') credentials = {'username': request.remote_user, 'groups': []} # OpenID Connect authentication if request.headers.get("OIDC_CLAIM_groups", None) is not None: for group in request.headers.get('OIDC_CLAIM_groups').split(','): # it seems like keycloak prefixes groups with /, remove it if group.startswith('/'): credentials['groups'].append(group[1:]) else: credentials['groups'].append(group) # gerrit based else: if request.remote_user: code_reviews = [s for s in SF_SERVICES if isinstance(s, base.BaseCodeReviewServicePlugin)] if code_reviews: user_groups = code_reviews[0].project.get_user_groups( request.remote_user) credentials['groups'] = [grp['name'] for grp in user_groups] return policy.authorize(rule_name, target, credentials) class LocalUserController(RestController): @expose('json') def post(self, username): _policy = 'managesf.localuser:create_update' if not authorize(_policy, target={'username': username}): return abort(401, detail='Failure to comply with policy %s' % _policy) infos = request.json if request.content_length else {} try: ret = localuser.update_user(username, infos) except (localuser.InvalidInfosInput, localuser.BadUserInfos) as e: abort(400, detail=str(e)) except Exception as e: return report_unhandled_error(e) if isinstance(ret, dict): # user created - set correct status code response.status = 201 return ret @expose('json') def get(self, username): _policy = 'managesf.localuser:get' if not authorize(_policy, target={'username': username}): return abort(401, detail='Failure to comply with policy %s' % _policy) try: ret = localuser.get_user(username) except localuser.UserNotFound as e: abort(404, detail=str(e)) except Exception as e: return report_unhandled_error(e) return ret @expose('json') def delete(self, username): _policy = 'managesf.localuser:delete' if not authorize(_policy, target={'username': username}): return abort(401, detail='Failure to comply with policy %s' % _policy) try: ret = localuser.delete_user(username) except localuser.UserNotFound as e: abort(404, detail=str(e)) except Exception as e: return report_unhandled_error(e) return ret class LocalUserBindController(RestController): log = logging.getLogger("BindController") @expose('json') def get(self): _policy = 'managesf.localuser:bind' authorization = request.headers.get('Authorization', None) if not authorization: abort(401, detail="Authentication header missing") try: username, password = localuser.decode(authorization) except localuser.DecodeError: self.log.warning("Authorization decoding error") abort(401, detail="Wrong authorization header") if not authorize(_policy, target={'username': username}): self.log.error(u"%s: policy error" % username) return abort(401, detail='Failure to comply with policy %s' % _policy) try: ret = localuser.bind_user(authorization) except (localuser.BindForbidden, localuser.UserNotFound) as e: self.log.warning(u"%s: UserNotFound or Forbidden" % username) abort(401, detail=str(e)) except Exception as e: self.log.exception(u"%s: couldn't bind user" % username) return report_unhandled_error(e) if not ret: self.log.exception(u"%s: Authentication failed" % username) abort(401, detail="Authentication failed") self.log.info(u"%s: binding success" % username) return ret class ServicesUsersController(RestController): def _remove_non_updatable_fields(self, infos): forbidden = sum([s.user.check_forbidden_fields(**infos) for s in SF_SERVICES], []) msg = 'The following fields cannot be updated: %s, discarding them' logger.debug(msg % str(forbidden)) return dict((u, infos[u]) for u in infos.keys() if u not in forbidden and infos[u] is not None) def _update(self, user_id, infos): sfmanager.user.update(user_id, username=infos.get('username'), email=infos.get('email'), fullname=infos.get('full_name'), idp_sync=infos.get('idp_sync')) for service in SF_SERVICES: s_id = sfmanager.user.mapping.get_service_mapping( service.service_name, user_id) if s_id: try: service.user.update(uid=s_id, **infos) except exceptions.UnavailableActionError: pass else: full_name = infos.get('full_name') username = infos.get('username') ssh_keys = infos.get('ssh_keys', []) email = infos.get('email') cauth_id = infos.get('external_id') try: s_id = service.user.create(username=username, email=email, full_name=full_name, ssh_keys=ssh_keys, cauth_id=cauth_id) sfmanager.user.mapping.set(user_id, service.service_name, s_id) except exceptions.UnavailableActionError: pass @expose('json') def put(self, id=None, email=None, username=None): _policy = 'managesf.user:update' infos = request.json if request.content_length else {} # the JSON payload is only for data to update. _email = request.GET.get('email') if _email: _email = unquote(_email) _username = request.GET.get('username') if _username: _username = unquote(_username) d_id = request.GET.get('id') if not d_id and (_email or _username): logger.debug('[update] looking for %s %s ...' % (_email, _username)) d_id = sfmanager.user.get(username=_username, email=_email).get('id') logger.debug('found %s %s with id %s' % (_email, _username, d_id)) if not d_id: response.status = 404 return u = _username or sfmanager.user.get(d_id).get('username') if not authorize(_policy, target={'username': u}): return abort(401, detail='Failure to comply with policy %s' % _policy) sanitized = self._remove_non_updatable_fields(infos) logger.debug('[update] sanitized request %r to %r' % (infos, sanitized)) if not sanitized: if sanitized != infos: msg = 'You tried to update immutable fields' else: msg = 'Nothing to do' abort(400, detail=msg) try: self._update(d_id, sanitized) response.status = 200 return {'updated_fields': sanitized} except Exception as e: return report_unhandled_error(e) @expose('json') def post(self): _policy = 'managesf.user:create' infos = request.json if request.content_length else {} if not infos or not infos.get('username'): abort(400, detail=u'Incomplete user information: %r' % infos) if not authorize(_policy, target={'username': infos.get('username')}): return abort(401, detail='Failure to comply with policy %s' % _policy) try: known_user = None if infos.get('external_id', -1) != -1: known_user = sfmanager.user.get(cauth_id=infos['external_id']) if known_user: msg = (u'found user #%(id)s %(username)s (%(email)s) ' u'by cauth ID #%(cauth_id)s, user needs update') logger.debug(msg % known_user) u = known_user['id'] clean_infos = self._remove_non_updatable_fields(infos) if known_user.get('idp_sync'): self._update(u, clean_infos) else: logger.info("Skipping user information update because" "idp_sync is disabled") # if we still cannot find it, let's create it if not known_user: u = sfmanager.user.create(username=infos['username'], email=infos['email'], fullname=infos['full_name'], cauth_id=infos.get('external_id')) self._create_user_in_services(u, infos) except Exception as e: return report_unhandled_error(e) # TODO(mhu) later, this should return the local id and the user data response.status = 201 def _create_user_in_services(self, user_id, infos): for service in SF_SERVICES: try: s_id = service.user.get(username=infos.get('username')) if s_id: msg = u'[%s] user %s exists, skipping creation' logger.debug(msg % (service.service_name, infos.get('username'))) mapped = sfmanager.user.mapping.get_user_mapping( service.service_name, s_id) if not mapped: sfmanager.user.mapping.set(user_id, service.service_name, s_id) msg = u'[%s] user %s mapped to id %s' logger.debug(msg % (service.service_name, infos.get('username'), s_id)) else: full_name = infos.get('full_name') username = infos.get('username') ssh_keys = infos.get('ssh_keys', []) email = infos.get('email') cauth_id = infos.get('external_id') s_id = service.user.create(username=username, email=email, full_name=full_name, ssh_keys=ssh_keys, cauth_id=cauth_id) # we might have a mapping, but to a wrong user id in the # service (because the user existed before but was removed # directly from the service, for example) mapped = sfmanager.user.mapping.get_service_mapping( service.service_name, user_id) if mapped and mapped != s_id: msg = u'[%s] user %s wrongly mapped to id %s, removing' logger.debug(msg % (service.service_name, infos.get('username'), mapped)) sfmanager.user.mapping.delete(user_id, service.service_name, mapped) sfmanager.user.mapping.set(user_id, service.service_name, s_id) msg = u'[%s] user %s mapped to %s id %s' logger.debug(msg % (service.service_name, infos.get('username'), service.service_name, s_id)) except exceptions.UnavailableActionError: pass @expose('json') def get(self, **kwargs): _policy = 'managesf.user:get' if not authorize(_policy, target={'username': kwargs.get('username')}): return abort(401, detail='Failure to comply with policy %s' % _policy) return sfmanager.user.get(**kwargs) @expose() def delete(self, id=None, email=None, username=None): _policy = 'managesf.user:delete' if not authorize(_policy, target={'username': username}): return abort(401, detail='Failure to comply with policy %s' % _policy) d_id = id if not d_id and (email or username): logger.debug(u'[delete] looking for %s %s' % (email, username)) d_id = sfmanager.user.get(username=username, email=email).get('id') if not d_id: response.status = 404 return logger.debug(u'found %s %s with id %s' % (email, username, d_id)) try: for service in SF_SERVICES: try: service.user.delete(username=username) sfmanager.user.mapping.delete(d_id, service.service_name) except exceptions.UnavailableActionError: pass sfmanager.user.delete(id=d_id) except Exception as e: return report_unhandled_error(e) response.status = 204 class HooksController(RestController): def get_project_by_repo(self, reponame): for _, project in resource_manager.resources.get().get( 'resources', {}).get('projects', {}).items(): for repo in project.get('source-repositories', []): if reponame in repo: return project return None @expose('json') def post(self, hook_name): """Trigger hook {hook_name}.""" _policy = 'managesf.hooks:trigger' if not authorize(_policy, target={}): return abort(401, detail='Failure to comply with policy %s' % _policy) change = request.json if request.content_length else {} # Get hook engine configuration for project project_name = change.get('project') if not project_name: return abort(400, detail=u"Hooks: Invalid change %s" % change) project = self.get_project_by_repo(project_name) if not project: logger.info("Hooks: Repository %s is not part of any project" % change.get('project')) return abort(204, detail=u"No issue-tracker defined") hook = project.get('issue-tracker') status = 200 try: msg = getattr(SERVICES[hook].hooks, hook_name)(**change) except Exception as e: status = 400 msg = str(e) logger.error(u"[%s] hook %s failed with %s" % ( hook, hook_name, msg)) response.status = status return {'msg': msg} load_services() # API v2 - will be in its own file hierarchy once dependencies are sorted out class V2Controller(object): # Mimic api v1 and replace endpoints incrementally user = LocalUserController() bind = LocalUserBindController() about = introspection.IntrospectionController() services_users = ServicesUsersController() hooks = HooksController() resources = v2_resources.ResourcesRootController() configurations = v2_configurations.ConfigurationController() class RootController(object): def __init__(self, *args, **kwargs): try: # just try to get the api config _ = conf.api.v2 # noQA self.v2 = V2Controller() except AttributeError: # TODO have a generic blank REST controller that returns # 'Not Implemented' error code logger.info('API v2 is not configured, skipping endpoint.') self.v2 = RestController() self.user = LocalUserController() self.bind = LocalUserBindController() self.about = introspection.IntrospectionController() self.services_users = ServicesUsersController() self.hooks = HooksController()
40.531128
79
0.541881
c3912c15824e85f0f06cfc039795fbcc19e022a8
11,032
py
Python
trove/extensions/mgmt/instances/models.py
ISCAS-VDI/trove-base
6a13b8771f8c9f259577e79d12355f9142964169
[ "Apache-2.0" ]
null
null
null
trove/extensions/mgmt/instances/models.py
ISCAS-VDI/trove-base
6a13b8771f8c9f259577e79d12355f9142964169
[ "Apache-2.0" ]
null
null
null
trove/extensions/mgmt/instances/models.py
ISCAS-VDI/trove-base
6a13b8771f8c9f259577e79d12355f9142964169
[ "Apache-2.0" ]
null
null
null
# Copyright 2012 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import datetime from oslo_log import log as logging from trove.common import cfg from trove.common import exception from trove.common.i18n import _ from trove.common import remote from trove.common import utils from trove.extensions.mysql import models as mysql_models from trove.instance import models as imodels from trove.instance import models as instance_models from trove.instance.models import load_instance, InstanceServiceStatus from trove import rpc LOG = logging.getLogger(__name__) CONF = cfg.CONF def load_mgmt_instances(context, deleted=None, client=None, include_clustered=None): if not client: client = remote.create_nova_client(context) try: mgmt_servers = client.rdservers.list() except AttributeError: mgmt_servers = client.servers.list(search_opts={'all_tenants': 1}) LOG.info(_("Found %d servers in Nova") % len(mgmt_servers if mgmt_servers else [])) args = {} if deleted is not None: args['deleted'] = deleted if not include_clustered: args['cluster_id'] = None db_infos = instance_models.DBInstance.find_all(**args) instances = MgmtInstances.load_status_from_existing(context, db_infos, mgmt_servers) return instances def load_mgmt_instance(cls, context, id, include_deleted): try: instance = load_instance(cls, context, id, needs_server=True, include_deleted=include_deleted) client = remote.create_nova_client(context) try: server = client.rdservers.get(instance.server_id) except AttributeError: server = client.servers.get(instance.server_id) if hasattr(server, 'host'): instance.server.host = server.host elif hasattr(server, 'hostId'): instance.server.host = server.hostId if hasattr(server, 'deleted'): instance.server.deleted = server.deleted if hasattr(server, 'deleted_at'): instance.server.deleted_at = server.deleted_at if hasattr(server, 'local_id'): instance.server.local_id = server.local_id assert instance.server is not None except Exception as e: LOG.error(e) instance = load_instance(cls, context, id, needs_server=False, include_deleted=include_deleted) return instance class SimpleMgmtInstance(imodels.BaseInstance): def __init__(self, context, db_info, server, datastore_status): super(SimpleMgmtInstance, self).__init__(context, db_info, server, datastore_status) @property def status(self): if self.deleted: return imodels.InstanceStatus.SHUTDOWN return super(SimpleMgmtInstance, self).status @property def deleted(self): return self.db_info.deleted @property def deleted_at(self): return self.db_info.deleted_at @classmethod def load(cls, context, id, include_deleted=False): return load_mgmt_instance(cls, context, id, include_deleted) @property def task_description(self): return self.db_info.task_description class DetailedMgmtInstance(SimpleMgmtInstance): def __init__(self, *args, **kwargs): super(DetailedMgmtInstance, self).__init__(*args, **kwargs) self.volume = None self.volume_used = None self.volume_total = None self.root_history = None @classmethod def load(cls, context, id, include_deleted=False): instance = load_mgmt_instance(cls, context, id, include_deleted) client = remote.create_cinder_client(context) try: instance.volume = client.volumes.get(instance.volume_id) except Exception: instance.volume = None # Populate the volume_used attribute from the guest agent. instance_models.load_guest_info(instance, context, id) instance.root_history = mysql_models.RootHistory.load(context=context, instance_id=id) return instance class MgmtInstance(imodels.Instance): def get_diagnostics(self): return self.get_guest().get_diagnostics() def stop_db(self): return self.get_guest().stop_db() def get_hwinfo(self): return self.get_guest().get_hwinfo() def rpc_ping(self): return self.get_guest().rpc_ping() class MgmtInstances(imodels.Instances): @staticmethod def load_status_from_existing(context, db_infos, servers): def load_instance(context, db, status, server=None): return SimpleMgmtInstance(context, db, server, status) if context is None: raise TypeError("Argument context not defined.") find_server = imodels.create_server_list_matcher(servers) instances = imodels.Instances._load_servers_status(load_instance, context, db_infos, find_server) _load_servers(instances, find_server) return instances def _load_servers(instances, find_server): for instance in instances: db = instance.db_info instance.server = None try: server = find_server(db.id, db.compute_instance_id) instance.server = server except Exception as ex: LOG.error(ex) return instances def publish_exist_events(transformer, admin_context): notifier = rpc.get_notifier("taskmanager") notifications = transformer() # clear out admin_context.auth_token so it does not get logged admin_context.auth_token = None for notification in notifications: notifier.info(admin_context, "trove.instance.exists", notification) class NotificationTransformer(object): def __init__(self, **kwargs): pass @staticmethod def _get_audit_period(): now = datetime.datetime.now() audit_start = utils.isotime( now - datetime.timedelta( seconds=CONF.exists_notification_interval), subsecond=True) audit_end = utils.isotime(now, subsecond=True) return audit_start, audit_end def _get_service_id(self, datastore_manager, id_map): if datastore_manager in id_map: datastore_manager_id = id_map[datastore_manager] else: datastore_manager_id = cfg.UNKNOWN_SERVICE_ID LOG.error(_("Datastore ID for Manager (%s) is not configured") % datastore_manager) return datastore_manager_id def transform_instance(self, instance, audit_start, audit_end): payload = { 'audit_period_beginning': audit_start, 'audit_period_ending': audit_end, 'created_at': instance.created, 'display_name': instance.name, 'instance_id': instance.id, 'instance_name': instance.name, 'instance_type_id': instance.flavor_id, 'launched_at': instance.created, 'nova_instance_id': instance.server_id, 'region': CONF.region, 'state_description': instance.status.lower(), 'state': instance.status.lower(), 'tenant_id': instance.tenant_id } payload['service_id'] = self._get_service_id( instance.datastore_version.manager, CONF.notification_service_id) return payload def __call__(self): audit_start, audit_end = NotificationTransformer._get_audit_period() messages = [] db_infos = instance_models.DBInstance.find_all(deleted=False) for db_info in db_infos: try: service_status = InstanceServiceStatus.find_by( instance_id=db_info.id) except exception.ModelNotFoundError: # There is a small window of opportunity during when the db # resource for an instance exists, but no InstanceServiceStatus # for it has yet been created. We skip sending the notification # message for all such instances. These instance are too new # and will get picked up the next round of notifications. LOG.debug("InstanceServiceStatus not found for %s. " "Will wait to send notification." % db_info.id) continue instance = SimpleMgmtInstance(None, db_info, None, service_status) message = self.transform_instance(instance, audit_start, audit_end) messages.append(message) return messages class NovaNotificationTransformer(NotificationTransformer): def __init__(self, **kwargs): super(NovaNotificationTransformer, self).__init__(**kwargs) self.context = kwargs['context'] self.nova_client = remote.create_admin_nova_client(self.context) self._flavor_cache = {} def _lookup_flavor(self, flavor_id): if flavor_id in self._flavor_cache: LOG.debug("Flavor cache hit for %s" % flavor_id) return self._flavor_cache[flavor_id] # fetch flavor resource from nova LOG.info(_("Flavor cache miss for %s") % flavor_id) flavor = self.nova_client.flavors.get(flavor_id) self._flavor_cache[flavor_id] = flavor.name if flavor else 'unknown' return self._flavor_cache[flavor_id] def __call__(self): audit_start, audit_end = NotificationTransformer._get_audit_period() instances = load_mgmt_instances(self.context, deleted=False, client=self.nova_client) messages = [] for instance in filter( lambda inst: inst.status != 'SHUTDOWN' and inst.server, instances): message = { 'instance_type': self._lookup_flavor(instance.flavor_id), 'user_id': instance.server.user_id } message.update(self.transform_instance(instance, audit_start, audit_end)) messages.append(message) return messages
38.708772
79
0.636784
419826e81b30122854ca3b0f340e66f8fbe9669f
151
py
Python
inheritance/players_and_monsters_exe/blade_knight.py
PetkoAndreev/Python-OOP
2cc3094940cdf078f0ee60be938e883f843766e4
[ "MIT" ]
1
2021-05-27T07:59:17.000Z
2021-05-27T07:59:17.000Z
inheritance/players_and_monsters_exe/blade_knight.py
PetkoAndreev/Python-OOP
2cc3094940cdf078f0ee60be938e883f843766e4
[ "MIT" ]
null
null
null
inheritance/players_and_monsters_exe/blade_knight.py
PetkoAndreev/Python-OOP
2cc3094940cdf078f0ee60be938e883f843766e4
[ "MIT" ]
null
null
null
from dark_knight import DarkKnight class BladeKnight(DarkKnight): def __init__(self, username, level): super().__init__(username, level)
21.571429
41
0.735099
ded99a14b3f0ee4df778fb60b1baebb998bb804c
4,482
py
Python
cryptotoolkits/ui/cryptowidgets.py
eliiik/CryptoToolkits
788270dc95485416849ab34e18f438c6006b311e
[ "MIT" ]
null
null
null
cryptotoolkits/ui/cryptowidgets.py
eliiik/CryptoToolkits
788270dc95485416849ab34e18f438c6006b311e
[ "MIT" ]
null
null
null
cryptotoolkits/ui/cryptowidgets.py
eliiik/CryptoToolkits
788270dc95485416849ab34e18f438c6006b311e
[ "MIT" ]
null
null
null
from lib2to3.pgen2 import token import ipywidgets as widgets def create_slider(name, in_value, in_min, in_max, in_step, in_format): return widgets.FloatSlider( value=in_value, min=in_min, max=in_max, step=in_step, description=name+": ", disabled=False, continuous_update=True, orientation='horizontal', readout=True, readout_format=in_format, ) def create_range_slider(name, in_value, in_min, in_max): return create_slider(name, in_value, in_min, in_max, 0.01, ".2f") def create_token_slider(token_name, token_default_price=10, token_max_price=100): return create_range_slider(token_name, token_default_price, 0, token_max_price) def create_01_float_slider(name, in_value): return create_range_slider(name, in_value, 0, 1) class Token(object): def __init__(self, token_name, token_price) -> None: self._token_name = token_name self._token_price = token_price @property def token(self): return self._token_name @property def price(self): return self._token_price class BorrowToken(Token): def __init__(self, token_name, token_amount=0, token_default_price=10, token_max_price=100, borrow_apr=-0.06) -> None: super().__init__(token_name, token_default_price) self._amount = token_amount self._token_max_price = token_max_price self._borrow_apr = borrow_apr self.token_widget = None self.view = None self.ui_widgets = {} self.create_view() def create_view(self): self.token_widget = create_token_slider(self.token, self.price, self._token_max_price) self.token_amount_widget = create_range_slider("Amount", self._amount, 0, 100000) self.token_borrow_apr = create_slider("Borrow APR", self._borrow_apr, -0.2, 0.4, 0.001, ".3f") token_view = widgets.HBox([self.token_widget, self.token_amount_widget]) self.view = widgets.VBox([token_view, self.token_borrow_apr]) self.ui_widgets["b"+self.token+"_price"] = self.token_widget self.ui_widgets["b"+self.token+"_amount"] = self.token_amount_widget self.ui_widgets["b"+self.token+"_apr"] = self.token_borrow_apr class SupplyToken(Token): def __init__(self, token_name, token_amount=0, token_default_price=10, token_max_price=100, token_collat_factor=0.7, token_liquid_factor=0.8, supply_apr=0.07) -> None: super().__init__(token_name, token_default_price) self._amount = token_amount self._token_max_price = token_max_price self._token_collat_factor = token_collat_factor self._token_liquid_factor = token_liquid_factor self._supply_apr = supply_apr self.token_widget = None self.view = None self.ui_widgets = {} self.create_view() def create_view(self): self.token_widget = create_token_slider(self.token, self.price, self._token_max_price) self.token_amount_widget = create_range_slider("Amount", self._amount, 0, 100000) self.token_collat_widget = create_01_float_slider("Col. Factor", self._token_collat_factor) self.token_liquid_widget = create_01_float_slider("Liquid Factor", self._token_liquid_factor) self.token_supply_apr = create_slider("Supply APR", self._supply_apr, 0, 0.4, 0.001, ".3f") token_view = widgets.HBox([self.token_widget, self.token_amount_widget]) factor_view = widgets.HBox([self.token_collat_widget, self.token_liquid_widget]) self.view = widgets.VBox([token_view, factor_view, self.token_supply_apr]) self.ui_widgets["s"+self.token+"_price"] = self.token_widget self.ui_widgets["s"+self.token+"_amount"] = self.token_amount_widget self.ui_widgets["s"+self.token+"_collat"] = self.token_collat_widget self.ui_widgets["s"+self.token+"_liquid"] = self.token_liquid_widget self.ui_widgets["s"+self.token+"_apr"] = self.token_supply_apr def create_token_accordion(tokens, title): views = [i.view for i in tokens] w = widgets.VBox(views) return widgets.Accordion([w], titles=[title])
44.376238
102
0.652834
0523b779399c1991cee415084e500e9f8b15dbcc
1,480
py
Python
matrix/kronecker.py
wesselb/matrix
ba343d69945d7cbc67330d01a87eee363ce5d408
[ "MIT" ]
3
2021-07-30T17:38:08.000Z
2021-11-21T04:41:40.000Z
matrix/kronecker.py
wesselb/matrix
ba343d69945d7cbc67330d01a87eee363ce5d408
[ "MIT" ]
null
null
null
matrix/kronecker.py
wesselb/matrix
ba343d69945d7cbc67330d01a87eee363ce5d408
[ "MIT" ]
null
null
null
import lab as B from lab.shape import Shape from .matrix import AbstractMatrix, repr_format from .util import dtype_str, indent __all__ = ["Kronecker"] class Kronecker(AbstractMatrix): """Kronecker product. The data type of a Kronecker product is the data type of the left matrix in the product. Attributes: left (matrix): Left matrix in the product. right (matrix): Right matrix in the product. cholesky (:class:`.kronecker.Kronecker` or None): Cholesky decomposition of the matrix, once it has been computed. dense (matrix or None): Dense version of the matrix, once it has been computed. Args: left (matrix): Left matrix in the product. right (matrix): Right matrix in the product. """ def __init__(self, left, right): self.left = left self.right = right self.cholesky = None self.dense = None def __str__(self): return ( f"<Kronecker product:" f" batch={Shape(*B.shape_batch(self))}," f" shape={Shape(*B.shape_matrix(self))}," f" dtype={dtype_str(self)}>" ) def __repr__(self): return ( str(self)[:-1] + "\n" + f" left=" + indent(repr_format(self.left), " " * 6).strip() + "\n" + f" right=" + indent(repr_format(self.right), " " * 7).strip() + ">" )
27.407407
80
0.558784
5cca01befd3d3dc6049fc3a5b81f716f582345b5
3,488
py
Python
baselines/ppo2/runner.py
LanxinL/baselines
e167dde99a4609910724fd7817e18ba9a54e3f94
[ "MIT" ]
null
null
null
baselines/ppo2/runner.py
LanxinL/baselines
e167dde99a4609910724fd7817e18ba9a54e3f94
[ "MIT" ]
null
null
null
baselines/ppo2/runner.py
LanxinL/baselines
e167dde99a4609910724fd7817e18ba9a54e3f94
[ "MIT" ]
null
null
null
import numpy as np from baselines.common.runners import AbstractEnvRunner from collections import deque class Runner(AbstractEnvRunner): """ We use this object to make a mini batch of experiences __init__: - Initialize the runner run(): - Make a mini batch """ def __init__(self, *, env, model, nsteps, gamma, lam): super().__init__(env=env, model=model, nsteps=nsteps) # Lambda used in GAE (General Advantage Estimation) self.lam = lam # Discount rate self.gamma = gamma self.reward_history = {} def run(self): # Here, we init the lists that will contain the mb of experiences mb_obs, mb_rewards, mb_actions, mb_values, mb_dones, mb_neglogpacs = [],[],[],[],[],[] mb_states = self.states epinfos = [] # For n in range number of steps for _ in range(self.nsteps): # Given observations, get action value and neglopacs # We already have self.obs because Runner superclass run self.obs[:] = env.reset() on init actions, values, self.states, neglogpacs = self.model.step(self.obs, S=self.states, M=self.dones) mb_obs.append(self.obs.copy()) mb_actions.append(actions) mb_values.append(values) mb_neglogpacs.append(neglogpacs) mb_dones.append(self.dones) # Take actions in env and look the results # Infos contains a ton of useful informations self.obs[:], rewards, self.dones, infos = self.env.step(actions) for i,info in enumerate(infos): maybeepinfo = info.get('episode') if maybeepinfo: epinfos.append(maybeepinfo) if i not in self.reward_history.keys(): self.reward_history[i] = deque(maxlen=100) self.reward_history[i].extend([maybeepinfo['r']]) mb_rewards.append(rewards) #batch of steps to batch of rollouts mb_obs = np.asarray(mb_obs, dtype=self.obs.dtype) mb_rewards = np.asarray(mb_rewards, dtype=np.float32) mb_actions = np.asarray(mb_actions) mb_values = np.asarray(mb_values, dtype=np.float32) mb_neglogpacs = np.asarray(mb_neglogpacs, dtype=np.float32) mb_dones = np.asarray(mb_dones, dtype=np.bool) last_values = self.model.value(self.obs, S=self.states, M=self.dones) # discount/bootstrap off value fn mb_returns = np.zeros_like(mb_rewards) mb_advs = np.zeros_like(mb_rewards) lastgaelam = 0 for t in reversed(range(self.nsteps)): if t == self.nsteps - 1: nextnonterminal = 1.0 - self.dones nextvalues = last_values else: nextnonterminal = 1.0 - mb_dones[t+1] nextvalues = mb_values[t+1] delta = mb_rewards[t] + self.gamma * nextvalues * nextnonterminal - mb_values[t] mb_advs[t] = lastgaelam = delta + self.gamma * self.lam * nextnonterminal * lastgaelam mb_returns = mb_advs + mb_values return (*map(sf01, (mb_obs, mb_returns, mb_dones, mb_actions, mb_values, mb_neglogpacs)), mb_states, epinfos) # obs, returns, masks, actions, values, neglogpacs, states = runner.run() def sf01(arr): """ swap and then flatten axes 0 and 1 """ s = arr.shape return arr.swapaxes(0, 1).reshape(s[0] * s[1], *s[2:])
42.024096
109
0.607798
c053be01d3c765715bc87ea778944f61768748e9
784
py
Python
custom_components/iaquk/const.py
SovakPaleny/ha-iaquk
34b14e8aad076e164c85d7ae761f7049801ebf54
[ "MIT" ]
null
null
null
custom_components/iaquk/const.py
SovakPaleny/ha-iaquk
34b14e8aad076e164c85d7ae761f7049801ebf54
[ "MIT" ]
null
null
null
custom_components/iaquk/const.py
SovakPaleny/ha-iaquk
34b14e8aad076e164c85d7ae761f7049801ebf54
[ "MIT" ]
null
null
null
"""Constants for calculate IAQ UK index.""" # Base component constants DOMAIN = "iaquk" VERSION = "1.2.0" ISSUE_URL = "https://github.com/Limych/ha-iaquk/issues" ATTRIBUTION = None DATA_IAQUK = 'iaquk' SUPPORT_LIB_URL = "https://github.com/Limych/iaquk/issues/new/choose" CONF_SOURCES = "sources" CONF_TEMPERATURE = "temperature" CONF_HUMIDITY = "humidity" CONF_CO2 = "co2" CONF_TVOC = "tvoc" CONF_PM = "pm" CONF_NO2 = "no2" CONF_CO = "co" CONF_HCHO = "hcho" # Formaldehyde ATTR_SOURCES_SET = 'sources_set' ATTR_SOURCES_USED = 'sources_used' LEVEL_EXCELLENT = "Excellent" LEVEL_GOOD = "Good" LEVEL_FAIR = "Fair" LEVEL_POOR = "Poor" LEVEL_INADEQUATE = "Inadequate" UNIT_PPM = { 'ppm': 1, 'ppb': 0.001, } UNIT_PPB = { 'ppb': 1, 'ppm': 1000, } UNIT_MGM3 = 'µg/m3'
19.6
69
0.695153
106f57f21ca5295a42c0f0ac4fdf4b9af33a2aff
688
py
Python
apiv2/migrations/0002_Formulas_manytomany_in_formula_index.py
deka108/meas_deka
9646b04b878f325ade0a59e41bfcb10ab962d753
[ "Apache-2.0" ]
null
null
null
apiv2/migrations/0002_Formulas_manytomany_in_formula_index.py
deka108/meas_deka
9646b04b878f325ade0a59e41bfcb10ab962d753
[ "Apache-2.0" ]
1
2018-06-19T16:27:31.000Z
2018-06-21T02:57:03.000Z
apiv2/migrations/0002_Formulas_manytomany_in_formula_index.py
deka108/mathqa-server
9646b04b878f325ade0a59e41bfcb10ab962d753
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.10.2 on 2017-03-15 02:29 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): replaces = [('apiv2', '0002_Formula_manytomany_in_formula_index'), ('apiv2', '0003_Remove_docsids_in_formulaindex')] dependencies = [ ('apiv2', '0001_initial'), ] operations = [ migrations.AddField( model_name='formulaindex', name='formulas', field=models.ManyToManyField(to=b'apiv2.Formula'), ), migrations.RemoveField( model_name='formulaindex', name='docsids', ), ]
25.481481
120
0.62064
8e5208231cfb7eba4100c2c9d24fa3ea6776ba89
2,613
py
Python
tests/test_database.py
aryan040501/wikilabels
ea110da2b969cc978a0f288c4da6250dc9d67e72
[ "MIT" ]
15
2015-07-16T17:56:43.000Z
2018-08-20T14:59:16.000Z
tests/test_database.py
aryan040501/wikilabels
ea110da2b969cc978a0f288c4da6250dc9d67e72
[ "MIT" ]
122
2015-06-10T15:58:11.000Z
2018-08-16T14:56:23.000Z
tests/test_database.py
aryan040501/wikilabels
ea110da2b969cc978a0f288c4da6250dc9d67e72
[ "MIT" ]
27
2015-07-15T22:12:35.000Z
2018-08-06T23:10:28.000Z
from wikilabels.database import db import os item1 = {'wiki': "cawiki", 'name': "ching", 'form': "chan", 'view': "bivicyt", 'labels_per_task': 1, 'task_per_task': 50, 'active': True, 'info_url': "https://www.mediawiki.org/wiki/ORES#Edit_quality"} dbs = db.DB( 1, 5, database=os.getenv('WIKILABELS_DATABASE', "wikilabels"), host=os.getenv('WIKILABELS_DATABASE_HOST', "localhost"), user=os.getenv('WIKILABELS_DATABASE_USER', "wikilabels"), password=os.getenv('WIKILABELS_DATABASE_PASSWORD', "wikilabels-admin")) user = 608705 def test_campaign_create(): assert dbs.campaigns.create(item1.get('wiki'), item1.get('name'), item1.get('form'), item1.get('view'), item1.get('labels_per_task'), item1.get('task_per_task'), item1.get('active'), item1.get('info_url')) def test_campaign_checkwikiexists(): assert dbs.campaigns.wiki_name_exists(item1.get('wiki'), item1.get('name')) def test_campaign_getitems(): assert dbs.campaigns.get(1) def test_campaign_statsfor(): assert dbs.campaigns.stats_for(1) def test_campaign_hasopentasks(): assert dbs.campaigns.has_open_tasks(1, user) def test_campaign_forwiki(): assert dbs.campaigns.for_wiki('enwiki') def test_campaign_foruser(): assert dbs.campaigns.for_user(608705) def test_campaign_wikis(): assert dbs.campaigns.wikis() def test_campaign_users(): assert dbs.campaigns.users(1) def test_labels_upsertupdate(): assert dbs.labels.upsert(1, 608705, '{"damaging": true, "good-faith": true}') def test_labels_CRUD(): assert dbs.labels.insert(3, user, '{"damaging": true, "good-faith": true}') assert dbs.labels.update(3, user, '{"damaging": false, "good-faith": true}') assert dbs.labels.clear_data(3, user) def tests_worksets_get(): assert dbs.worksets.get(1) def tests_worksets_statsfor(): assert dbs.worksets.stats_for(1) def tests_worksets_forcampaign(): assert dbs.worksets.for_campaign(1) def tests_worksets_foruser(): assert dbs.worksets.for_user(user) def test_worksets_openworksetsforuser(): assert dbs.worksets.open_workset_for_user(1, user) def test_worksets_assign(): assert dbs.worksets.assign(2, user) def test_worksets_users(): assert dbs.worksets.users() def test_worksets_abandon(): assert dbs.worksets.abandon(1, user) def test_worksets_abandontask(): assert dbs.worksets.abandon_task(1, user, 1)
25.125
79
0.666667
2aa1e1c74089046d3244cc2d99d767a9136db0c6
583
py
Python
lego/apps/users/migrations/0021_auto_20190829_1632.py
ollfkaih/lego
b15aacaf09efe90e7f984d25b0e7bddbe12647e8
[ "MIT" ]
45
2017-10-24T12:09:06.000Z
2021-11-03T21:21:03.000Z
lego/apps/users/migrations/0021_auto_20190829_1632.py
ollfkaih/lego
b15aacaf09efe90e7f984d25b0e7bddbe12647e8
[ "MIT" ]
980
2017-10-24T12:29:07.000Z
2022-03-31T04:04:31.000Z
lego/apps/users/migrations/0021_auto_20190829_1632.py
wahello/lego
a0b02f3abc997fe96326e9c9c05b49847170041b
[ "MIT" ]
23
2018-04-11T16:34:22.000Z
2021-11-23T12:28:30.000Z
# Generated by Django 2.1.11 on 2019-08-29 16:32 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [("users", "0020_abakusgroup_show_badge")] operations = [ migrations.AlterField( model_name="user", name="first_name", field=models.CharField(max_length=50, verbose_name="first name"), ), migrations.AlterField( model_name="user", name="last_name", field=models.CharField(max_length=30, verbose_name="last name"), ), ]
26.5
77
0.610635
e383f5c019e78399635383d6117ffcf9bebf2acb
887
py
Python
Singleton/interface.py
sirajirasajiki/design_pattern_python
4879469bdb36848f3919f447e0e23f4f240bc27b
[ "MIT" ]
null
null
null
Singleton/interface.py
sirajirasajiki/design_pattern_python
4879469bdb36848f3919f447e0e23f4f240bc27b
[ "MIT" ]
null
null
null
Singleton/interface.py
sirajirasajiki/design_pattern_python
4879469bdb36848f3919f447e0e23f4f240bc27b
[ "MIT" ]
1
2020-03-27T08:28:49.000Z
2020-03-27T08:28:49.000Z
from abc import * class Mahjong(metaclass=ABCMeta): __mahjong = None __score = [25000] * 4 @classmethod def get_instance(cls): if not hasattr(cls, "_instance"): cls._instance = cls() else: cls._instance.input = input return cls._instance @classmethod def get_score(cls): return cls.__score @classmethod def score_calculation(cls, add_list): """ 点数の計算を行う。 減るときは-とする :param add_list:計算リスト """ cls.__score = [a + b for a, b in zip(cls.__score, add_list)] if __name__ == '__main__': a = Mahjong().get_instance() b = Mahjong().get_instance() if a is b: print('同じオブジェクト') else: print('異なるオブジェクト') print(a.get_score()) a.score_calculation([0,8000, -8000, 0]) print(a.get_score()) print(b.get_score())
20.627907
68
0.569335
acd2ce34cf0339b53891a02b486bb288228ca6ee
936
py
Python
Python/Ejercicios/Trenes.py
Camiloasc1/OperativeSystemsUNAL
a07bfc235789b7a8848280a549a6b2c9602e61b5
[ "MIT" ]
null
null
null
Python/Ejercicios/Trenes.py
Camiloasc1/OperativeSystemsUNAL
a07bfc235789b7a8848280a549a6b2c9602e61b5
[ "MIT" ]
null
null
null
Python/Ejercicios/Trenes.py
Camiloasc1/OperativeSystemsUNAL
a07bfc235789b7a8848280a549a6b2c9602e61b5
[ "MIT" ]
null
null
null
import random import thread import threading import time def tren(i, route, pL): cStation = None # In garage while True: for nStation in route: nStation[1].acquire() if cStation == None: # Depart == None pL.acquire() print "Train", i, "from", "-garage-", "to", nStation[0] pL.release() else: cStation[1].release() pL.acquire() print "Train", i, "from", cStation[0], "to", nStation[0] pL.release() cStation = nStation time.sleep(5 + random.randint(1, 3)) # Travel + Stop # Ready to next def main(): route = [("'" + str(i) + "'", threading.BoundedSemaphore(2)) for i in xrange(5)] pL = threading.Lock() for i in xrange(8): thread.start_new_thread(tren, (i, route, pL)) while True: time.sleep(5) main()
27.529412
84
0.508547
06a770061257201d20bc3f238d405e21461c1dde
6,127
py
Python
examples/plot_nested-cv.py
AdirthaBorgohain/MAPIE
f5ae6d33c9def18eab46f9f375a95e18fb7affc1
[ "BSD-3-Clause" ]
null
null
null
examples/plot_nested-cv.py
AdirthaBorgohain/MAPIE
f5ae6d33c9def18eab46f9f375a95e18fb7affc1
[ "BSD-3-Clause" ]
null
null
null
examples/plot_nested-cv.py
AdirthaBorgohain/MAPIE
f5ae6d33c9def18eab46f9f375a95e18fb7affc1
[ "BSD-3-Clause" ]
null
null
null
""" =========================================================== Nested cross-validation for estimating prediction intervals =========================================================== This example compares non-nested and nested cross-validation strategies for estimating prediction intervals with :class:`mapie.estimators.MapieRegressor`. In the regular sequential method, a cross-validation parameter search is carried out over the entire training set. The model with the set of parameters that gives the best score is then used in MAPIE to estimate the prediction intervals associated with the predictions. A limitation of this method is that residuals used by MAPIE are computed on the validation dataset, which can be subject to overfitting as far as hyperparameter tuning is concerned. This fools MAPIE into being slightly too optimistic with confidence intervals. To solve this problem, an alternative option is to perform a nested cross-validation parameter search directly within the MAPIE estimator on each *out-of-fold* dataset. For each testing fold used by MAPIE to store residuals, an internal cross-validation occurs on the training fold, optimizing hyperparameters. This ensures that residuals seen by MAPIE are never seen by the algorithm beforehand. However, this method is much heavier computationally since it results in :math:`N * P` calculations, where *N* is the number of *out-of-fold* models and *P* the number of parameter search cross-validations, versus :math:`N + P` for the non-nested approach. Here, we compare the two strategies on the Boston dataset. We use the Random Forest Regressor as a base regressor for the CV+ strategy. For the sake of light computation, we adopt a RandomizedSearchCV parameter search strategy with a low number of iterations and with a reproducible random state. The two approaches give slightly different predictions with the nested CV approach estimating slightly larger prediction interval widths by a few percents at most (apart from a handful of exceptions). For this example, the two approaches result in identical scores and identical effective coverages. In the general case, the recommended approach is to use nested cross-validation, since it does not underestimate residuals and hence prediction intervals. However, in this particular example, effective coverages of both nested and non-nested methods are the same. """ import matplotlib.pyplot as plt from scipy.stats import randint from sklearn.datasets import load_boston from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split from sklearn.model_selection import RandomizedSearchCV from sklearn.metrics import mean_squared_error from mapie.estimators import MapieRegressor from mapie.metrics import coverage_score # Load the Boston data X_boston, y_boston = load_boston(return_X_y=True) # Split the data into training and test sets. X_train, X_test, y_train, y_test = train_test_split( X_boston, y_boston, test_size=0.2, random_state=42 ) # Define the Random Forest model as base regressor with parameter ranges. rf_model = RandomForestRegressor(random_state=59, verbose=0) rf_params = { "max_depth": randint(2, 30), "n_estimators": randint(10, 1e3) } # Cross-validation and prediction-interval parameters. cv = 5 n_iter = 5 alpha = 0.05 random_state = 59 # Non-nested approach with the CV+ strategy using the Random Forest model. cv_obj = RandomizedSearchCV( rf_model, param_distributions=rf_params, n_iter=n_iter, cv=cv, scoring="neg_root_mean_squared_error", return_train_score=True, verbose=0, random_state=random_state, n_jobs=-1, ) cv_obj.fit(X_train, y_train) best_est = cv_obj.best_estimator_ mapie_non_nested = MapieRegressor( best_est, method="plus", cv=cv, ensemble=True, n_jobs=-1 ) mapie_non_nested.fit(X_train, y_train) y_pred_non_nested, y_pis_non_nested = mapie_non_nested.predict( X_test, alpha=alpha ) widths_non_nested = y_pis_non_nested[:, 1, 0] - y_pis_non_nested[:, 0, 0] coverage_non_nested = coverage_score( y_test, y_pis_non_nested[:, 0, 0], y_pis_non_nested[:, 1, 0] ) score_non_nested = mean_squared_error( y_test, y_pred_non_nested, squared=False ) # Nested approach with the CV+ strategy using the Random Forest model. cv_obj = RandomizedSearchCV( rf_model, param_distributions=rf_params, n_iter=n_iter, cv=cv, scoring="neg_root_mean_squared_error", return_train_score=True, verbose=0, random_state=random_state, n_jobs=-1, ) mapie_nested = MapieRegressor( cv_obj, method="plus", cv=cv, ensemble=True ) mapie_nested.fit(X_train, y_train) y_pred_nested, y_pis_nested = mapie_nested.predict(X_test, alpha=alpha) widths_nested = y_pis_nested[:, 1, 0] - y_pis_nested[:, 0, 0] coverage_nested = coverage_score( y_test, y_pis_nested[:, 0, 0], y_pis_nested[:, 1, 0] ) score_nested = mean_squared_error(y_test, y_pred_nested, squared=False) # Print scores and effective coverages. print( "Scores and effective coverages for the CV+ strategy using the " "Random Forest model." ) print( "Score on the test set for the non-nested and nested CV approaches: ", f"{score_non_nested: .3f}, {score_nested: .3f}" ) print( "Effective coverage on the test set for the non-nested " "and nested CV approaches: ", f"{coverage_non_nested: .3f}, {coverage_nested: .3f}" ) # Compare prediction interval widths. fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(13, 6)) min_x = 14.5 max_x = 16.0 ax1.set_xlabel("Prediction interval width using the nested CV approach") ax1.set_ylabel("Prediction interval width using the non-nested CV approach") ax1.set_xlim([min_x, max_x]) ax1.set_ylim([min_x, max_x]) ax1.scatter(widths_nested, widths_non_nested) ax1.plot([min_x, max_x], [min_x, max_x], ls="--", color="k") ax2.axvline(x=0, color="r", lw=2) ax2.set_xlabel( "[width(non-nested CV) - width(nested CV)] / width(non-nested CV)" ) ax2.set_ylabel("Counts") ax2.hist( (widths_non_nested - widths_nested)/widths_non_nested, bins=15, edgecolor="black" ) plt.show()
35.212644
78
0.754366
abc6b2686ff15a150bf2f3eb8e9596cf90a4afb1
4,154
py
Python
im2scene/giraffev3/config.py
fireofearth/giraffe
ac3e0ec197dfc2b5d6c95e2971582dd596a671d2
[ "MIT" ]
null
null
null
im2scene/giraffev3/config.py
fireofearth/giraffe
ac3e0ec197dfc2b5d6c95e2971582dd596a671d2
[ "MIT" ]
null
null
null
im2scene/giraffev3/config.py
fireofearth/giraffe
ac3e0ec197dfc2b5d6c95e2971582dd596a671d2
[ "MIT" ]
null
null
null
import os from im2scene.discriminator import discriminator_dict from im2scene.giraffev3 import models, training, rendering from copy import deepcopy import numpy as np def get_model(cfg, device=None, len_dataset=0, **kwargs): ''' Returns the giraffe model. Args: cfg (dict): imported yaml config device (device): pytorch device len_dataset (int): length of dataset ''' decoder = cfg['model']['decoder'] discriminator = cfg['model']['discriminator'] generator = cfg['model']['generator'] background_generator = cfg['model']['background_generator'] decoder_kwargs = cfg['model']['decoder_kwargs'] discriminator_kwargs = cfg['model']['discriminator_kwargs'] generator_kwargs = cfg['model']['generator_kwargs'] background_generator_kwargs = \ cfg['model']['background_generator_kwargs'] bounding_box_generator = cfg['model']['bounding_box_generator'] bounding_box_generator_kwargs = \ cfg['model']['bounding_box_generator_kwargs'] neural_renderer = cfg['model']['neural_renderer'] neural_renderer_kwargs = cfg['model']['neural_renderer_kwargs'] z_dim = cfg['model']['z_dim'] z_dim_bg = cfg['model']['z_dim_bg'] img_size = cfg['data']['img_size'] # Load always the decoder decoder = models.decoder_dict[decoder]( z_dim=z_dim, **decoder_kwargs ) if discriminator is not None: discriminator = discriminator_dict[discriminator]( img_size=img_size, **discriminator_kwargs) if background_generator is not None: background_generator = \ models.background_generator_dict[background_generator]( z_dim=z_dim_bg, **background_generator_kwargs) if bounding_box_generator is not None: bounding_box_generator = \ models.bounding_box_generator_dict[bounding_box_generator]( z_dim=z_dim, **bounding_box_generator_kwargs) if neural_renderer is not None: neural_renderer = models.neural_renderer_dict[neural_renderer]( z_dim=z_dim, img_size=img_size, **neural_renderer_kwargs ) if generator is not None: generator = models.generator_dict[generator]( device, z_dim=z_dim, z_dim_bg=z_dim_bg, decoder=decoder, background_generator=background_generator, bounding_box_generator=bounding_box_generator, neural_renderer=neural_renderer, **generator_kwargs) if cfg['test']['take_generator_average']: generator_test = deepcopy(generator) else: generator_test = None model = models.GIRAFFE( device=device, discriminator=discriminator, generator=generator, generator_test=generator_test, ) return model def get_trainer(model, optimizer, optimizer_d, cfg, device, **kwargs): ''' Returns the trainer object. Args: model (nn.Module): the GIRAFFE model optimizer (optimizer): generator optimizer object optimizer_d (optimizer): discriminator optimizer object cfg (dict): imported yaml config device (device): pytorch device ''' out_dir = cfg['training']['out_dir'] vis_dir = os.path.join(out_dir, 'vis') overwrite_visualization = cfg['training']['overwrite_visualization'] multi_gpu = cfg['training']['multi_gpu'] n_eval_iterations = ( cfg['training']['n_eval_images'] // cfg['training']['batch_size']) fid_file = cfg['data']['fid_file'] assert(fid_file is not None) fid_dict = np.load(fid_file) trainer = training.Trainer( model, optimizer, optimizer_d, device=device, vis_dir=vis_dir, overwrite_visualization=overwrite_visualization, multi_gpu=multi_gpu, fid_dict=fid_dict, n_eval_iterations=n_eval_iterations, ) return trainer def get_renderer(model, cfg, device, **kwargs): ''' Returns the renderer object. Args: model (nn.Module): GIRAFFE model cfg (dict): imported yaml config device (device): pytorch device ''' renderer = rendering.Renderer( model, device=device,) return renderer
34.907563
77
0.679827
fd72f02dcd19de728f32cc6d7d84197051e453e9
1,089
py
Python
setup.py
xmurobi/pymarketstore
6a38f140ab8b37b35e122b895655b1512b4b3f9f
[ "Apache-2.0" ]
null
null
null
setup.py
xmurobi/pymarketstore
6a38f140ab8b37b35e122b895655b1512b4b3f9f
[ "Apache-2.0" ]
null
null
null
setup.py
xmurobi/pymarketstore
6a38f140ab8b37b35e122b895655b1512b4b3f9f
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python import ast import re from setuptools import setup _version_re = re.compile(r'__version__\s+=\s+(.*)') with open('pymarketstore/__init__.py', 'rb') as f: version = str(ast.literal_eval(_version_re.search( f.read().decode('utf-8')).group(1))) with open('README.md') as readme_file: README = readme_file.read() setup( name='pymarketstore2', version=version, description='Marketstore python driver', long_description=README, long_description_content_type='text/markdown', author='Alpaca', author_email='oss@alpaca.markets', url='https://github.com/xmurobi/pymarketstore', keywords='database,pandas,financial,timeseries', packages=['pymarketstore', ], install_requires=[ 'msgpack-python', 'numpy', 'requests', 'pandas', 'six', 'urllib3', 'pytest', 'websocket-client', ], tests_require=[ 'pytest', 'pytest-cov', 'coverage>=4.4.1', 'mock>=1.0.1' ], setup_requires=['pytest-runner', 'flake8'], )
23.170213
54
0.615243
4fec63034415a2591ce653992c702e338bc47a6e
3,795
py
Python
tensorflow_datasets/image/aflw2k3d.py
sourcery-ai-bot/datasets
b623ab0abf3f03bacf6a7ba22c8d37bf76a4db28
[ "Apache-2.0" ]
1
2021-05-10T10:41:27.000Z
2021-05-10T10:41:27.000Z
tensorflow_datasets/image/aflw2k3d.py
sourcery-ai-bot/datasets
b623ab0abf3f03bacf6a7ba22c8d37bf76a4db28
[ "Apache-2.0" ]
null
null
null
tensorflow_datasets/image/aflw2k3d.py
sourcery-ai-bot/datasets
b623ab0abf3f03bacf6a7ba22c8d37bf76a4db28
[ "Apache-2.0" ]
1
2021-07-04T11:07:35.000Z
2021-07-04T11:07:35.000Z
# coding=utf-8 # Copyright 2021 The TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """AFLW2000-3D Dataset.""" import os import numpy as np import tensorflow.compat.v2 as tf import tensorflow_datasets.public_api as tfds _DESCRIPTION = """\ AFLW2000-3D is a dataset of 2000 images that have been annotated with image-level 68-point 3D facial landmarks. This dataset is typically used for evaluation of 3D facial landmark detection models. The head poses are very diverse and often hard to be detected by a cnn-based face detector. The 2D landmarks are skipped in this dataset, since some of the data are not consistent to 21 points, as the original paper mentioned. """ _CITATION = """\ @article{DBLP:journals/corr/ZhuLLSL15, author = {Xiangyu Zhu and Zhen Lei and Xiaoming Liu and Hailin Shi and Stan Z. Li}, title = {Face Alignment Across Large Poses: {A} 3D Solution}, journal = {CoRR}, volume = {abs/1511.07212}, year = {2015}, url = {http://arxiv.org/abs/1511.07212}, archivePrefix = {arXiv}, eprint = {1511.07212}, timestamp = {Mon, 13 Aug 2018 16:48:23 +0200}, biburl = {https://dblp.org/rec/bib/journals/corr/ZhuLLSL15}, bibsource = {dblp computer science bibliography, https://dblp.org} } """ class Aflw2k3d(tfds.core.GeneratorBasedBuilder): """AFLW2000-3D dataset.""" VERSION = tfds.core.Version("1.0.0") def _info(self): return tfds.core.DatasetInfo( builder=self, description=_DESCRIPTION, features=tfds.features.FeaturesDict({ "image": tfds.features.Image( shape=(450, 450, 3), encoding_format="jpeg"), "landmarks_68_3d_xy_normalized": tfds.features.Tensor(shape=(68, 2), dtype=tf.float32), "landmarks_68_3d_z": tfds.features.Tensor(shape=(68, 1), dtype=tf.float32), }), homepage= "http://www.cbsr.ia.ac.cn/users/xiangyuzhu/projects/3DDFA/main.htm", citation=_CITATION, ) def _split_generators(self, dl_manager): extracted_path = dl_manager.download_and_extract( "http://www.cbsr.ia.ac.cn/users/xiangyuzhu/projects/3DDFA/Database/AFLW2000-3D.zip" ) return [ tfds.core.SplitGenerator( name=tfds.Split.TRAIN, gen_kwargs={ "image_dir_path": os.path.join(extracted_path, "AFLW2000"), }), ] def _generate_examples(self, image_dir_path): image_files = tf.io.gfile.glob( pattern=os.path.join(image_dir_path, "image0*.jpg")) label_files = [s.replace("jpg", "mat") for s in image_files] for image_file, label_file in zip(image_files, label_files): with tf.io.gfile.GFile(label_file, "rb") as f: mat = tfds.core.lazy_imports.scipy.io.loadmat(f) landmarks_68_3d_xyz = mat["pt3d_68"].T.astype(np.float32) landmarks_68_3d_xy_normalized = landmarks_68_3d_xyz[..., 0:2] / 450.0 landmarks_68_3d_z = landmarks_68_3d_xyz[..., 2:] yield os.path.basename(image_file), { "image": image_file, "landmarks_68_3d_xy_normalized": landmarks_68_3d_xy_normalized, "landmarks_68_3d_z": landmarks_68_3d_z, }
36.142857
91
0.667194
140dd3656cadce1d57cbb4214c9db1855c3c83f3
177
py
Python
FWCore/Integration/python/test/unscheduled_fail_on_output_Rethrow_cfg.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
852
2015-01-11T21:03:51.000Z
2022-03-25T21:14:00.000Z
FWCore/Integration/python/test/unscheduled_fail_on_output_Rethrow_cfg.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
30,371
2015-01-02T00:14:40.000Z
2022-03-31T23:26:05.000Z
FWCore/Integration/python/test/unscheduled_fail_on_output_Rethrow_cfg.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
3,240
2015-01-02T05:53:18.000Z
2022-03-31T17:24:21.000Z
import FWCore.ParameterSet.Config as cms from FWCore.Integration.test.unscheduled_fail_on_output_cfg import process process.options.Rethrow = cms.untracked.vstring('NotFound')
35.4
74
0.853107
1833a95d7f1e41e9c2d6e82f19f20e8779c03752
13,163
py
Python
rpython/translator/platform/__init__.py
ctrl-shift-make/pypy
6d2f7a78baa8d4d2f94f5fb709f697a560b45f4e
[ "Apache-2.0", "OpenSSL" ]
333
2015-08-08T18:03:38.000Z
2022-03-22T18:13:12.000Z
rpython/translator/platform/__init__.py
ctrl-shift-make/pypy
6d2f7a78baa8d4d2f94f5fb709f697a560b45f4e
[ "Apache-2.0", "OpenSSL" ]
7
2020-02-16T16:49:05.000Z
2021-11-26T09:00:56.000Z
rpython/translator/platform/__init__.py
ctrl-shift-make/pypy
6d2f7a78baa8d4d2f94f5fb709f697a560b45f4e
[ "Apache-2.0", "OpenSSL" ]
55
2015-08-16T02:41:30.000Z
2022-03-20T20:33:35.000Z
"""Platform-specific support for compiling/executing C sources.""" import py, os, sys from rpython.tool.runsubprocess import run_subprocess as _run_subprocess from rpython.tool.udir import udir from rpython.tool.version import rpythonroot from rpython.tool.ansi_print import AnsiLogger log = AnsiLogger("platform") class CompilationError(Exception): def __init__(self, out, err): self.out = out.replace('\r\n', '\n') self.err = err.replace('\r\n', '\n') def __repr__(self): if self.err: attr = 'err' else: attr = 'out' text = getattr(self, attr).replace('\n', '\n\t') return 'CompilationError(%s="""\n\t%s""")' % (attr, text) __str__ = __repr__ class ExecutionResult(object): def __init__(self, returncode, out, err): self.returncode = returncode self.out = out.replace('\r\n', '\n') self.err = err.replace('\r\n', '\n') def __repr__(self): return "<ExecutionResult retcode=%d>" % (self.returncode,) class Platform(object): name = "abstract platform" c_environ = None # which branch to check out in get_external.py externals_branch='default' # where to put the externals, as an absolute path externals = str(py.path.local(__file__).parts()[-5] / 'externals') relevant_environ = () log_errors = True so_prefixes = ('',) extra_libs = () def __init__(self, cc): if self.__class__ is Platform: raise TypeError("You should not instantiate Platform class directly") self.cc = cc def compile(self, cfiles, eci, outputfilename=None, standalone=True): ofiles = self._compile_o_files(cfiles, eci, standalone) return self._finish_linking(ofiles, eci, outputfilename, standalone) def _all_cfiles(self, cfiles, eci): seen = set() result = [] for cfile in list(cfiles) + list(eci.separate_module_files): cfile = py.path.local(cfile) if cfile not in seen: seen.add(cfile) result.append(cfile) return result def _compile_o_files(self, cfiles, eci, standalone=True): cfiles = self._all_cfiles(cfiles, eci) compile_args = self._compile_args_from_eci(eci, standalone) ofiles = [] for cfile in cfiles: # Windows hack: use masm for files ending in .asm if str(cfile).lower().endswith('.asm'): ofiles.append(self._compile_c_file(self.masm, cfile, [])) else: ofiles.append(self._compile_c_file(self.cc, cfile, compile_args)) return ofiles def execute(self, executable, args=None, env=None, compilation_info=None): if env is None: env = os.environ.copy() else: env = env.copy() # On Windows, %SystemRoot% must be present for most programs to start if (os.name == 'nt' and "SystemRoot" not in env and "SystemRoot" in os.environ): env["SystemRoot"] = os.environ["SystemRoot"] # Set LD_LIBRARY_PATH on posix platforms if os.name == 'posix' and compilation_info is not None: library_path = ':'.join([str(i) for i in compilation_info.library_dirs]) if sys.platform == 'darwin': env['DYLD_LIBRARY_PATH'] = library_path else: env['LD_LIBRARY_PATH'] = library_path returncode, stdout, stderr = _run_subprocess(str(executable), args, env) return ExecutionResult(returncode, stdout, stderr) def gen_makefile(self, cfiles, eci, exe_name=None, path=None, shared=False, headers_to_precompile=[], no_precompile_cfiles = [], profopt=False, config=None): raise NotImplementedError("Pure abstract baseclass") def __repr__(self): return '<%s cc=%s>' % (self.__class__.__name__, self.cc) def __hash__(self): return hash(self.__class__.__name__) def __ne__(self, other): return not self == other def __eq__(self, other): return (self.__class__ is other.__class__ and self.__dict__ == other.__dict__) def key(self): bits = [self.__class__.__name__, 'cc=%r' % self.cc] for varname in self.relevant_environ: bits.append('%s=%r' % (varname, os.environ.get(varname))) # adding sys.maxint to disambiguate windows bits.append('%s=%r' % ('sys.maxint', sys.maxint)) return ' '.join(bits) # some helpers which seem to be cross-platform enough def _execute_c_compiler(self, cc, args, outname, cwd=None): #log.execute(cc + ' ' + ' '.join(args)) # 'cc' can also contain some options for the C compiler; # e.g. it can be "gcc -m32". We handle it by splitting on ' '. cclist = cc.split() cc = cclist[0] args = cclist[1:] + args returncode, stdout, stderr = _run_subprocess(cc, args, self.c_environ, cwd) self._handle_error(returncode, stdout, stderr, outname) def _handle_error(self, returncode, stdout, stderr, outname): if returncode != 0: errorfile = outname.new(ext='errors') errorfile.write(stderr, 'wb') if self.log_errors: stderrlines = stderr.splitlines() for line in stderrlines: log.Error(line) # ^^^ don't use ERROR, because it might actually be fine. # Also, ERROR confuses lib-python/conftest.py. raise CompilationError(stdout, stderr) else: if self.log_errors: for line in stderr.splitlines(): log.WARNING(line) def _make_o_file(self, cfile, ext): """Create an object file name under the udir for a .c file""" ofile = cfile.new(ext=ext) if ofile.relto(udir): return ofile assert ofile.relto(rpythonroot), ( "%r should be relative to either %r or %r" % ( ofile, rpythonroot, udir)) ofile = udir.join(ofile.relto(rpythonroot)) ofile.dirpath().ensure(dir=True) return ofile def preprocess_include_dirs(self, include_dirs): if 'PYPY_LOCALBASE' in os.environ: dirs = list(self._preprocess_include_dirs(include_dirs)) return [os.environ['PYPY_LOCALBASE'] + '/include'] + dirs return self._preprocess_include_dirs(include_dirs) def _preprocess_include_dirs(self, include_dirs): return include_dirs def _compile_args_from_eci(self, eci, standalone): include_dirs = self.preprocess_include_dirs(eci.include_dirs) args = self._includedirs(include_dirs) if standalone: extra = self.standalone_only else: extra = self.get_shared_only_compile_flags() cflags = list(self.cflags) + list(extra) return (cflags + list(eci.compile_extra) + args) def get_shared_only_compile_flags(self): return tuple(self.shared_only) def preprocess_library_dirs(self, library_dirs): if 'PYPY_LOCALBASE' in os.environ: dirs = list(self._preprocess_library_dirs(library_dirs)) return [os.environ['PYPY_LOCALBASE'] + '/lib'] + dirs return self._preprocess_library_dirs(library_dirs) def _preprocess_library_dirs(self, library_dirs): return library_dirs def _link_args_from_eci(self, eci, standalone): library_dirs = self.preprocess_library_dirs(eci.library_dirs) library_dirs = self._libdirs(library_dirs) libraries = self._libs(eci.libraries) link_files = self._linkfiles(eci.link_files) export_flags = self._exportsymbols_link_flags() return (library_dirs + list(self.link_flags) + export_flags + link_files + list(eci.link_extra) + libraries + list(self.extra_libs)) def _exportsymbols_link_flags(self): return [] def _finish_linking(self, ofiles, eci, outputfilename, standalone): if outputfilename is None: outputfilename = ofiles[0].purebasename if ofiles: dirname = ofiles[0].dirpath() else: dirname = udir.join('module_cache') exe_name = dirname.join(outputfilename, abs=True) if standalone: if self.exe_ext: exe_name += '.' + self.exe_ext else: exe_name += '.' + self.so_ext if eci.use_cpp_linker: cc_link = 'g++' # XXX hard-coded so far else: cc_link = self.cc largs = self._link_args_from_eci(eci, standalone) return self._link(cc_link, ofiles, largs, standalone, exe_name) # below are some detailed information for platforms def include_dirs_for_libffi(self): dirs = self._include_dirs_for_libffi() if 'PYPY_LOCALBASE' in os.environ: return [os.environ['PYPY_LOCALBASE'] + '/include'] + dirs return dirs def library_dirs_for_libffi(self): dirs = self._library_dirs_for_libffi() if 'PYPY_LOCALBASE' in os.environ: return [os.environ['PYPY_LOCALBASE'] + '/lib'] + dirs return dirs def _include_dirs_for_libffi(self): raise NotImplementedError("Needs to be overwritten") def _library_dirs_for_libffi(self): raise NotImplementedError("Needs to be overwritten") def check___thread(self): return True if sys.platform.startswith('linux'): from rpython.translator.platform.linux import Linux, LinuxPIC import platform # Only required on armhf and mips{,el}, not armel. But there's no way to # detect armhf without shelling out if (platform.architecture()[0] == '64bit' or platform.machine().startswith( ('arm', 'm68k', 'mips', 'parisc', 'ppc', 'sh4'))): host_factory = LinuxPIC else: host_factory = Linux elif sys.platform == 'darwin': from rpython.translator.platform.darwin import Darwin_i386, Darwin_x86_64, Darwin_PowerPC import platform assert platform.machine() in ('Power Macintosh', 'i386', 'x86_64') if platform.machine() == 'Power Macintosh': host_factory = Darwin_PowerPC elif sys.maxint <= 2147483647: host_factory = Darwin_i386 else: host_factory = Darwin_x86_64 elif "gnukfreebsd" in sys.platform: from rpython.translator.platform.freebsd import GNUkFreebsd, GNUkFreebsd_64 import platform if platform.architecture()[0] == '32bit': host_factory = GNUkFreebsd else: host_factory = GNUkFreebsd_64 elif "freebsd" in sys.platform: from rpython.translator.platform.freebsd import Freebsd, Freebsd_64 import platform if platform.architecture()[0] == '32bit': host_factory = Freebsd else: host_factory = Freebsd_64 elif sys.platform.startswith('netbsd'): from rpython.translator.platform.netbsd import Netbsd, Netbsd_64 import platform if platform.architecture()[0] == '32bit': host_factory = Netbsd else: host_factory = Netbsd_64 elif "openbsd" in sys.platform: from rpython.translator.platform.openbsd import OpenBSD, OpenBSD_64 import platform if platform.architecture()[0] == '32bit': host_factory = OpenBSD else: host_factory = OpenBSD_64 elif sys.platform.startswith('gnu'): from rpython.translator.platform.hurd import Hurd import platform if platform.architecture()[0] == '32bit': host_factory = Hurd else: host_factory = Hurd_64 elif os.name == 'nt': from rpython.translator.platform.windows import Windows, Windows_x64 import platform if platform.architecture()[0] == '32bit': host_factory = Windows else: host_factory = Windows_x64 elif sys.platform == 'cygwin': from rpython.translator.platform.cygwin import Cygwin, Cygwin64 import platform if platform.architecture()[0] == '32bit': host_factory = Cygwin else: host_factory = Cygwin64 else: raise ValueError('unknown sys.platform "%s"', sys.platform) platform = host = host_factory() def pick_platform(new_platform, cc): if new_platform == 'host': return host_factory(cc) elif new_platform == 'arm': from rpython.translator.platform.arm import ARM return ARM(cc) else: raise ValueError("platform = %s" % (new_platform,)) def set_platform(new_platform, cc): global platform platform = pick_platform(new_platform, cc) if not platform: raise ValueError("pick_platform(%r, %s) failed"%(new_platform, cc)) log.msg("Set platform with %r cc=%s, using cc=%r, version=%r" % (new_platform, cc, getattr(platform, 'cc','Unknown'), getattr(platform, 'version','Unknown'), )) if new_platform == 'host': global host host = platform def is_host_build(): return host == platform
36.261708
93
0.625389
e48c2e6954e12e04eecb6bd633c7887078957ca7
1,087
py
Python
tis/nets.py
gditzler/tis-experiment
8972707820f4f0a0e4b9779dedf396ce31bbe5c9
[ "MIT" ]
null
null
null
tis/nets.py
gditzler/tis-experiment
8972707820f4f0a0e4b9779dedf396ce31bbe5c9
[ "MIT" ]
null
null
null
tis/nets.py
gditzler/tis-experiment
8972707820f4f0a0e4b9779dedf396ce31bbe5c9
[ "MIT" ]
null
null
null
import numpy as np import tensorflow from tensorflow.keras.datasets import mnist from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout from tensorflow.keras.utils import to_categorical def NeuralNetwork(X, Y): num_classes = len(np.unique(Y)) Y_train = to_categorical(Y, num_classes) X_train = X # Set the input shape input_shape = (X.shape[1],) # Create the model model = Sequential() model.add(Dense(128, input_shape=input_shape, activation='relu')) model.add(Dense(256, activation='relu')) #model.add(Dropout(0.5)) model.add(Dense(64, activation='relu')) #model.add(Dropout(0.5)) model.add(Dense(num_classes, activation='softmax')) # Configure the model and start training model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(X_train, Y_train, epochs=1000, batch_size=256, verbose=0, validation_split=0.2) return model
30.194444
69
0.654094
d02ee68158eb7897da7f8d349db40e4f8c491699
10,882
py
Python
src/models/model_builder.py
ZIZUN/korean_extractive_summarization
9290de7f6d7c7771f63269956b4c122cb52a0681
[ "MIT" ]
3
2021-12-03T20:01:59.000Z
2021-12-04T14:07:48.000Z
src/models/model_builder.py
ZIZUN/korean_extractive_summarization
9290de7f6d7c7771f63269956b4c122cb52a0681
[ "MIT" ]
null
null
null
src/models/model_builder.py
ZIZUN/korean_extractive_summarization
9290de7f6d7c7771f63269956b4c122cb52a0681
[ "MIT" ]
null
null
null
import copy import torch import torch.nn as nn from transformers import BertModel, BertConfig, AutoModel, RobertaConfig, AutoConfig from torch.nn.init import xavier_uniform_ from models.decoder import TransformerDecoder from models.encoder import Classifier, ExtTransformerEncoder from models.optimizers import Optimizer def build_optim(args, model, checkpoint): """ Build optimizer """ if checkpoint is not None: optim = checkpoint['optim'] #[0] ['optims'] [0] 원래 ['optim'][0]이었는데 오류남 saved_optimizer_state_dict = optim.optimizer.state_dict() optim.optimizer.load_state_dict(saved_optimizer_state_dict) if args.visible_gpus != '-1': for state in optim.optimizer.state.values(): for k, v in state.items(): if torch.is_tensor(v): state[k] = v.cuda() if (optim.method == 'adam') and (len(optim.optimizer.state) < 1): raise RuntimeError( "Error: loaded Adam optimizer from existing model" + " but optimizer state is empty") else: optim = Optimizer( args.optim, args.lr, args.max_grad_norm, beta1=args.beta1, beta2=args.beta2, decay_method='noam', warmup_steps=args.warmup_steps) optim.set_parameters(list(model.named_parameters())) return optim def build_optim_bert(args, model, checkpoint): """ Build optimizer """ if checkpoint is not None: optim = checkpoint['optims'][0] saved_optimizer_state_dict = optim.optimizer.state_dict() optim.optimizer.load_state_dict(saved_optimizer_state_dict) if args.visible_gpus != '-1': for state in optim.optimizer.state.values(): for k, v in state.items(): if torch.is_tensor(v): state[k] = v.cuda() if (optim.method == 'adam') and (len(optim.optimizer.state) < 1): raise RuntimeError( "Error: loaded Adam optimizer from existing model" + " but optimizer state is empty") else: optim = Optimizer( args.optim, args.lr_bert, args.max_grad_norm, beta1=args.beta1, beta2=args.beta2, decay_method='noam', warmup_steps=args.warmup_steps_bert) params = [(n, p) for n, p in list(model.named_parameters()) if n.startswith('bert.model')] optim.set_parameters(params) return optim def build_optim_dec(args, model, checkpoint): """ Build optimizer """ if checkpoint is not None: optim = checkpoint['optims'][1] saved_optimizer_state_dict = optim.optimizer.state_dict() optim.optimizer.load_state_dict(saved_optimizer_state_dict) if args.visible_gpus != '-1': for state in optim.optimizer.state.values(): for k, v in state.items(): if torch.is_tensor(v): state[k] = v.cuda() if (optim.method == 'adam') and (len(optim.optimizer.state) < 1): raise RuntimeError( "Error: loaded Adam optimizer from existing model" + " but optimizer state is empty") else: optim = Optimizer( args.optim, args.lr_dec, args.max_grad_norm, beta1=args.beta1, beta2=args.beta2, decay_method='noam', warmup_steps=args.warmup_steps_dec) params = [(n, p) for n, p in list(model.named_parameters()) if not n.startswith('bert.model')] optim.set_parameters(params) return optim def get_generator(vocab_size, dec_hidden_size, device): gen_func = nn.LogSoftmax(dim=-1) generator = nn.Sequential( nn.Linear(dec_hidden_size, vocab_size), gen_func ) generator.to(device) return generator class Bert(nn.Module): def __init__(self, large, temp_dir, finetune=False): super(Bert, self).__init__() # if(large): # self.model = BertModel.from_pretrained('bert-large-uncased', cache_dir=temp_dir) # else: # self.model = BertModel.from_pretrained("monologg/kobert", cache_dir=temp_dir) self.model = AutoModel.from_pretrained('klue/roberta-large') self.finetune = finetune def forward(self, x, segs, mask): if(self.finetune): # top_vec, _ = self.model(x, token_type_ids=segs, attention_mask=mask) # outputs = self.model(x, token_type_ids=segs, attention_mask=mask) # print(x.shape, segs.shape, mask.shape) outputs = self.model(input_ids=x)#, token_type_ids=segs)# attention_mask=mask) top_vec = outputs.last_hidden_state else: self.eval() with torch.no_grad(): # top_vec, _ = self.model(x, token_type_ids=segs, attention_mask=mask) outputs = self.model(x)#, token_type_ids=segs, attention_mask=mask) top_vec = outputs.last_hidden_state return top_vec class ExtSummarizer(nn.Module): def __init__(self, args, device, checkpoint): super(ExtSummarizer, self).__init__() self.args = args self.device = device self.bert = Bert(args.large, args.temp_dir, args.finetune_bert) self.ext_layer = ExtTransformerEncoder(self.bert.model.config.hidden_size, args.ext_ff_size, args.ext_heads, args.ext_dropout, args.ext_layers) if (args.encoder == 'baseline'): bert_config = AutoConfig(self.bert.model.config.vocab_size, hidden_size=args.ext_hidden_size, num_hidden_layers=args.ext_layers, num_attention_heads=args.ext_heads, intermediate_size=args.ext_ff_size) self.bert.model = BertModel(bert_config) self.ext_layer = Classifier(self.bert.model.config.hidden_size) if(args.max_pos>512): my_pos_embeddings = nn.Embedding(args.max_pos, self.bert.model.config.hidden_size) my_pos_embeddings.weight.data[:512] = self.bert.model.embeddings.position_embeddings.weight.data my_pos_embeddings.weight.data[512:] = self.bert.model.embeddings.position_embeddings.weight.data[-1][None,:].repeat(args.max_pos-512,1) self.bert.model.embeddings.position_embeddings = my_pos_embeddings if checkpoint is not None: self.load_state_dict(checkpoint['model'], strict=True) else: if args.param_init != 0.0: for p in self.ext_layer.parameters(): p.data.uniform_(-args.param_init, args.param_init) if args.param_init_glorot: for p in self.ext_layer.parameters(): if p.dim() > 1: xavier_uniform_(p) self.to(device) def forward(self, src, segs, clss, mask_src, mask_cls): top_vec = self.bert(src, segs, mask_src) # print(top_vec) sents_vec = top_vec[torch.arange(top_vec.size(0)).unsqueeze(1), clss] sents_vec = sents_vec * mask_cls[:, :, None].float() sent_scores = self.ext_layer(sents_vec, mask_cls).squeeze(-1) return sent_scores, mask_cls class AbsSummarizer(nn.Module): def __init__(self, args, device, checkpoint=None, bert_from_extractive=None): super(AbsSummarizer, self).__init__() self.args = args self.device = device self.bert = Bert(args.large, args.temp_dir, args.finetune_bert) if bert_from_extractive is not None: self.bert.model.load_state_dict( dict([(n[11:], p) for n, p in bert_from_extractive.items() if n.startswith('bert.model')]), strict=True) if (args.encoder == 'baseline'): bert_config = BertConfig(self.bert.model.config.vocab_size, hidden_size=args.enc_hidden_size, num_hidden_layers=args.enc_layers, num_attention_heads=8, intermediate_size=args.enc_ff_size, hidden_dropout_prob=args.enc_dropout, attention_probs_dropout_prob=args.enc_dropout) self.bert.model = BertModel(bert_config) if(args.max_pos>512): my_pos_embeddings = nn.Embedding(args.max_pos, self.bert.model.config.hidden_size) my_pos_embeddings.weight.data[:512] = self.bert.model.embeddings.position_embeddings.weight.data my_pos_embeddings.weight.data[512:] = self.bert.model.embeddings.position_embeddings.weight.data[-1][None,:].repeat(args.max_pos-512,1) self.bert.model.embeddings.position_embeddings = my_pos_embeddings self.vocab_size = self.bert.model.config.vocab_size tgt_embeddings = nn.Embedding(self.vocab_size, self.bert.model.config.hidden_size, padding_idx=0) if (self.args.share_emb): tgt_embeddings.weight = copy.deepcopy(self.bert.model.embeddings.word_embeddings.weight) self.decoder = TransformerDecoder( self.args.dec_layers, self.args.dec_hidden_size, heads=self.args.dec_heads, d_ff=self.args.dec_ff_size, dropout=self.args.dec_dropout, embeddings=tgt_embeddings) self.generator = get_generator(self.vocab_size, self.args.dec_hidden_size, device) self.generator[0].weight = self.decoder.embeddings.weight if checkpoint is not None: self.load_state_dict(checkpoint['model'], strict=True) else: for module in self.decoder.modules(): if isinstance(module, (nn.Linear, nn.Embedding)): module.weight.data.normal_(mean=0.0, std=0.02) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() for p in self.generator.parameters(): if p.dim() > 1: xavier_uniform_(p) else: p.data.zero_() if(args.use_bert_emb): tgt_embeddings = nn.Embedding(self.vocab_size, self.bert.model.config.hidden_size, padding_idx=0) tgt_embeddings.weight = copy.deepcopy(self.bert.model.embeddings.word_embeddings.weight) self.decoder.embeddings = tgt_embeddings self.generator[0].weight = self.decoder.embeddings.weight self.to(device) def forward(self, src, tgt, segs, clss, mask_src, mask_tgt, mask_cls): top_vec = self.bert(src, segs, mask_src) dec_state = self.decoder.init_decoder_state(src, top_vec) decoder_outputs, state = self.decoder(tgt[:, :-1], top_vec, dec_state) return decoder_outputs, None
42.84252
147
0.625161
82c7155ec7cf2e6608b690a57c7e3c4e1ac2af97
1,074
py
Python
tools/flip-wkt/run.py
crosscompute/crosscompute-examples
b341994d9353206fe0ee6b69688e70999bc2196e
[ "MIT" ]
6
2015-12-18T15:54:24.000Z
2021-05-19T17:30:39.000Z
tools/flip-wkt/run.py
crosscompute/crosscompute-examples
b341994d9353206fe0ee6b69688e70999bc2196e
[ "MIT" ]
7
2016-04-22T16:31:08.000Z
2022-02-07T17:54:46.000Z
tools/flip-wkt/run.py
crosscompute/crosscompute-examples
b341994d9353206fe0ee6b69688e70999bc2196e
[ "MIT" ]
7
2016-04-20T21:03:57.000Z
2022-02-04T16:45:35.000Z
from invisibleroads_macros_geometry import flip_xy, transform_geometries from os.path import join from pandas import read_csv from shapely import wkt from shapely.errors import WKTReadingError from sys import argv def get_wkt_columns(table): try: row = table.iloc[0] except IndexError: return [] wkt_columns = [] for column in table.columns: try: wkt.loads(row[column]) except (AttributeError, UnicodeEncodeError, WKTReadingError): pass else: wkt_columns.append(column) return wkt_columns def flip_geometry_wkts(geometry_wkts): geometries = [wkt.loads(x) for x in geometry_wkts] geometries = transform_geometries(geometries, flip_xy) return [x.wkt for x in geometries] if __name__ == '__main__': input_folder, output_folder = argv[1:3] t = read_csv(join(input_folder, 'geometries.csv')) for wkt_column in get_wkt_columns(t): t[wkt_column] = flip_geometry_wkts(t[wkt_column]) t.to_csv(join(output_folder, 'geometries.csv'), index=False)
29.027027
72
0.700186