hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
d4d848217b89b74f8954cb11200a1df6ecb41ded
4,423
py
Python
legacy_notebooks/data-engineering-1.1.0/Python/classic/includes/main/python/operations.py
david-lyle/databricks-notebooks
7acc142d4e397b92031ee6ab8332f26e290c4d91
[ "Apache-2.0" ]
null
null
null
legacy_notebooks/data-engineering-1.1.0/Python/classic/includes/main/python/operations.py
david-lyle/databricks-notebooks
7acc142d4e397b92031ee6ab8332f26e290c4d91
[ "Apache-2.0" ]
null
null
null
legacy_notebooks/data-engineering-1.1.0/Python/classic/includes/main/python/operations.py
david-lyle/databricks-notebooks
7acc142d4e397b92031ee6ab8332f26e290c4d91
[ "Apache-2.0" ]
1
2022-02-15T08:10:55.000Z
2022-02-15T08:10:55.000Z
# Databricks notebook source from delta.tables import DeltaTable from pyspark.sql import DataFrame from pyspark.sql.functions import ( col, current_timestamp, from_json, from_unixtime, lag, lead, lit, mean, stddev, max, ) from typing import List from pyspark.sql.session import SparkSession from pyspark.sql.window import Window # COMMAND ---------- def batch_writer( dataframe: DataFrame, partition_column: str, exclude_columns: List = [], mode: str = "append", ) -> DataFrame: return ( dataframe.drop( *exclude_columns ) # This uses Python argument unpacking (https://docs.python.org/3/tutorial/controlflow.html#unpacking-argument-lists) .write.format("delta") .mode(mode) .partitionBy(partition_column) ) # COMMAND ---------- def generate_clean_and_quarantine_dataframes( dataframe: DataFrame, ) -> (DataFrame, DataFrame): return ( dataframe.filter("device_id IS NOT NULL"), dataframe.filter("device_id IS NULL"), ) # COMMAND ---------- # TODO def read_batch_bronze() -> DataFrame: return # FILL_THIS_IN # COMMAND ---------- def read_batch_delta(deltaPath: str) -> DataFrame: return spark.read.format("delta").load(deltaPath) # COMMAND ---------- def read_batch_raw(rawPath: str) -> DataFrame: kafka_schema = "value STRING" return spark.read.format("text").schema(kafka_schema).load(rawPath) # COMMAND ---------- def transform_bronze(bronze: DataFrame, quarantine: bool = False) -> DataFrame: json_schema = """ time TIMESTAMP, name STRING, device_id STRING, steps INTEGER, day INTEGER, month INTEGER, hour INTEGER """ bronzeAugmentedDF = bronze.withColumn( "nested_json", from_json(col("value"), json_schema) ) silver_health_tracker = bronzeAugmentedDF.select("value", "nested_json.*") if not quarantine: silver_health_tracker = silver_health_tracker.select( "value", col("device_id").cast("integer").alias("device_id"), "steps", col("time").alias("eventtime"), "name", col("time").cast("date").alias("p_eventdate"), ) else: silver_health_tracker = silver_health_tracker.select( "value", "device_id", "steps", col("time").alias("eventtime"), "name", col("time").cast("date").alias("p_eventdate"), ) return silver_health_tracker # COMMAND ---------- def repair_quarantined_records( spark: SparkSession, bronzeTable: str, userTable: str ) -> DataFrame: bronzeQuarantinedDF = spark.read.table(bronzeTable).filter("status = 'quarantined'") bronzeQuarTransDF = transform_bronze(bronzeQuarantinedDF, quarantine=True).alias( "quarantine" ) health_tracker_user_df = spark.read.table(userTable).alias("user") repairDF = bronzeQuarTransDF.join( health_tracker_user_df, bronzeQuarTransDF.device_id == health_tracker_user_df.user_id, ) silverCleanedDF = repairDF.select( col("quarantine.value").alias("value"), col("user.device_id").cast("INTEGER").alias("device_id"), col("quarantine.steps").alias("steps"), col("quarantine.eventtime").alias("eventtime"), col("quarantine.name").alias("name"), col("quarantine.eventtime").cast("date").alias("p_eventdate"), ) return silverCleanedDF # COMMAND ---------- def transform_raw(raw: DataFrame) -> DataFrame: return raw.select( lit("files.training.databricks.com").alias("datasource"), current_timestamp().alias("ingesttime"), lit("new").alias("status"), "value", current_timestamp().cast("date").alias("p_ingestdate"), ) # COMMAND ---------- def update_bronze_table_status( spark: SparkSession, bronzeTablePath: str, dataframe: DataFrame, status: str ) -> bool: bronzeTable = DeltaTable.forPath(spark, bronzePath) dataframeAugmented = dataframe.withColumn("status", lit(status)) update_match = "bronze.value = dataframe.value" update = {"status": "dataframe.status"} ( bronzeTable.alias("bronze") .merge(dataframeAugmented.alias("dataframe"), update_match) .whenMatchedUpdate(set=update) .execute() ) return True
26.171598
127
0.634863
be2a6ebbe3e99733f2253fb60480747b997838c3
56,971
py
Python
editing files/Portable Python 3.2.5.1/App/Lib/site-packages/pandas/core/panel.py
mattl1598/testing
cd8124773b83a07301c507ffbb9ccaafbfe7a274
[ "Unlicense" ]
null
null
null
editing files/Portable Python 3.2.5.1/App/Lib/site-packages/pandas/core/panel.py
mattl1598/testing
cd8124773b83a07301c507ffbb9ccaafbfe7a274
[ "Unlicense" ]
1
2018-04-15T22:59:15.000Z
2018-04-15T22:59:15.000Z
editing files/Portable Python 3.2.5.1/App/Lib/site-packages/pandas/core/panel.py
mattl1598/Project-Mochachino
cd8124773b83a07301c507ffbb9ccaafbfe7a274
[ "Unlicense" ]
null
null
null
""" Contains data structures designed for manipulating panel (3-dimensional) data """ # pylint: disable=E1103,W0231,W0212,W0621 import operator import sys import numpy as np from pandas.core.common import (PandasError, _mut_exclusive, _try_sort, _default_index, _infer_dtype_from_scalar, notnull) from pandas.core.categorical import Factor from pandas.core.index import (Index, MultiIndex, _ensure_index, _get_combined_index) from pandas.core.indexing import _maybe_droplevels, _is_list_like from pandas.core.internals import (BlockManager, create_block_manager_from_arrays, create_block_manager_from_blocks) from pandas.core.series import Series from pandas.core.frame import DataFrame from pandas.core.generic import NDFrame from pandas.util import py3compat from pandas.util.decorators import deprecate, Appender, Substitution import pandas.core.common as com import pandas.core.nanops as nanops import pandas.lib as lib def _ensure_like_indices(time, panels): """ Makes sure that time and panels are conformable """ n_time = len(time) n_panel = len(panels) u_panels = np.unique(panels) # this sorts! u_time = np.unique(time) if len(u_time) == n_time: time = np.tile(u_time, len(u_panels)) if len(u_panels) == n_panel: panels = np.repeat(u_panels, len(u_time)) return time, panels def panel_index(time, panels, names=['time', 'panel']): """ Returns a multi-index suitable for a panel-like DataFrame Parameters ---------- time : array-like Time index, does not have to repeat panels : array-like Panel index, does not have to repeat names : list, optional List containing the names of the indices Returns ------- multi_index : MultiIndex Time index is the first level, the panels are the second level. Examples -------- >>> years = list(range(1960,1963)) >>> panels = ['A', 'B', 'C'] >>> panel_idx = panel_index(years, panels) >>> panel_idx MultiIndex([(1960, 'A'), (1961, 'A'), (1962, 'A'), (1960, 'B'), (1961, 'B'), (1962, 'B'), (1960, 'C'), (1961, 'C'), (1962, 'C')], dtype=object) or >>> import numpy as np >>> years = np.repeat(list(range(1960,1963)), 3) >>> panels = np.tile(['A', 'B', 'C'], 3) >>> panel_idx = panel_index(years, panels) >>> panel_idx MultiIndex([(1960, 'A'), (1960, 'B'), (1960, 'C'), (1961, 'A'), (1961, 'B'), (1961, 'C'), (1962, 'A'), (1962, 'B'), (1962, 'C')], dtype=object) """ time, panels = _ensure_like_indices(time, panels) time_factor = Factor.from_array(time) panel_factor = Factor.from_array(panels) labels = [time_factor.labels, panel_factor.labels] levels = [time_factor.levels, panel_factor.levels] return MultiIndex(levels, labels, sortorder=None, names=names) class PanelError(Exception): pass def _arith_method(func, name): # work only for scalars def f(self, other): if not np.isscalar(other): raise ValueError('Simple arithmetic with %s can only be ' 'done with scalar values' % self._constructor.__name__) return self._combine(other, func) f.__name__ = name return f def _comp_method(func, name): def na_op(x, y): try: result = func(x, y) except TypeError: xrav = x.ravel() result = np.empty(x.size, dtype=x.dtype) if isinstance(y, np.ndarray): yrav = y.ravel() mask = notnull(xrav) & notnull(yrav) result[mask] = func(np.array(list(xrav[mask])), np.array(list(yrav[mask]))) else: mask = notnull(xrav) result[mask] = func(np.array(list(xrav[mask])), y) if func == operator.ne: # pragma: no cover np.putmask(result, -mask, True) else: np.putmask(result, -mask, False) result = result.reshape(x.shape) return result @Appender('Wrapper for comparison method %s' % name) def f(self, other): if isinstance(other, self._constructor): return self._compare_constructor(other, func) elif isinstance(other, (self._constructor_sliced, DataFrame, Series)): raise Exception("input needs alignment for this object [%s]" % self._constructor) else: return self._combine_const(other, na_op) f.__name__ = name return f class Panel(NDFrame): """ Represents wide format panel data, stored as 3-dimensional array Parameters ---------- data : ndarray (items x major x minor), or dict of DataFrames items : Index or array-like axis=1 major_axis : Index or array-like axis=1 minor_axis : Index or array-like axis=2 dtype : dtype, default None Data type to force, otherwise infer copy : boolean, default False Copy data from inputs. Only affects DataFrame / 2d ndarray input """ _AXIS_ORDERS = ['items', 'major_axis', 'minor_axis'] _AXIS_NUMBERS = dict([(a, i) for i, a in enumerate(_AXIS_ORDERS)]) _AXIS_ALIASES = { 'major': 'major_axis', 'minor': 'minor_axis' } _AXIS_NAMES = dict([(i, a) for i, a in enumerate(_AXIS_ORDERS)]) _AXIS_SLICEMAP = { 'major_axis': 'index', 'minor_axis': 'columns' } _AXIS_LEN = len(_AXIS_ORDERS) # major _default_stat_axis = 1 # info axis _het_axis = 0 _info_axis = _AXIS_ORDERS[_het_axis] items = lib.AxisProperty(0) major_axis = lib.AxisProperty(1) minor_axis = lib.AxisProperty(2) @property def _constructor(self): return type(self) # return the type of the slice constructor _constructor_sliced = DataFrame def _construct_axes_dict(self, axes=None, **kwargs): """ return an axes dictionary for myself """ d = dict([(a, getattr(self, a)) for a in (axes or self._AXIS_ORDERS)]) d.update(kwargs) return d @staticmethod def _construct_axes_dict_from(self, axes, **kwargs): """ return an axes dictionary for the passed axes """ d = dict([(a, ax) for a, ax in zip(self._AXIS_ORDERS, axes)]) d.update(kwargs) return d def _construct_axes_dict_for_slice(self, axes=None, **kwargs): """ return an axes dictionary for myself """ d = dict([(self._AXIS_SLICEMAP[a], getattr(self, a)) for a in (axes or self._AXIS_ORDERS)]) d.update(kwargs) return d __add__ = _arith_method(operator.add, '__add__') __sub__ = _arith_method(operator.sub, '__sub__') __truediv__ = _arith_method(operator.truediv, '__truediv__') __floordiv__ = _arith_method(operator.floordiv, '__floordiv__') __mul__ = _arith_method(operator.mul, '__mul__') __pow__ = _arith_method(operator.pow, '__pow__') __radd__ = _arith_method(operator.add, '__radd__') __rmul__ = _arith_method(operator.mul, '__rmul__') __rsub__ = _arith_method(lambda x, y: y - x, '__rsub__') __rtruediv__ = _arith_method(lambda x, y: y / x, '__rtruediv__') __rfloordiv__ = _arith_method(lambda x, y: y // x, '__rfloordiv__') __rpow__ = _arith_method(lambda x, y: y ** x, '__rpow__') if not py3compat.PY3: __div__ = _arith_method(operator.div, '__div__') __rdiv__ = _arith_method(lambda x, y: y / x, '__rdiv__') def __init__(self, data=None, items=None, major_axis=None, minor_axis=None, copy=False, dtype=None): self._init_data( data=data, items=items, major_axis=major_axis, minor_axis=minor_axis, copy=copy, dtype=dtype) def _init_data(self, data, copy, dtype, **kwargs): """ generate ND initialization; axes are passed as required objects to __init__ """ if data is None: data = {} passed_axes = [kwargs.get(a) for a in self._AXIS_ORDERS] axes = None if isinstance(data, BlockManager): if any(x is not None for x in passed_axes): axes = [x if x is not None else y for x, y in zip(passed_axes, data.axes)] mgr = data elif isinstance(data, dict): mgr = self._init_dict(data, passed_axes, dtype=dtype) copy = False dtype = None elif isinstance(data, (np.ndarray, list)): mgr = self._init_matrix(data, passed_axes, dtype=dtype, copy=copy) copy = False dtype = None else: # pragma: no cover raise PandasError('Panel constructor not properly called!') NDFrame.__init__(self, mgr, axes=axes, copy=copy, dtype=dtype) @classmethod def _from_axes(cls, data, axes): # for construction from BlockManager if isinstance(data, BlockManager): return cls(data) else: d = cls._construct_axes_dict_from(cls, axes, copy=False) return cls(data, **d) def _init_dict(self, data, axes, dtype=None): from pandas.util.compat import OrderedDict haxis = axes.pop(self._het_axis) # prefilter if haxis passed if haxis is not None: haxis = _ensure_index(haxis) data = OrderedDict((k, v) for k, v in data.items() if k in haxis) else: ks = list(data.keys()) if not isinstance(data,OrderedDict): ks = _try_sort(ks) haxis = Index(ks) for k, v in data.items(): if isinstance(v, dict): data[k] = self._constructor_sliced(v) # extract axis for remaining axes & create the slicemap raxes = [self._extract_axis(self, data, axis=i) if a is None else a for i, a in enumerate(axes)] raxes_sm = self._extract_axes_for_slice(self, raxes) # shallow copy arrays = [] haxis_shape = [len(a) for a in raxes] for h in haxis: v = values = data.get(h) if v is None: values = np.empty(haxis_shape, dtype=dtype) values.fill(np.nan) elif isinstance(v, self._constructor_sliced): d = raxes_sm.copy() d['copy'] = False v = v.reindex(**d) if dtype is not None: v = v.astype(dtype) values = v.values arrays.append(values) return self._init_arrays(arrays, haxis, [haxis] + raxes) def _init_arrays(self, arrays, arr_names, axes): return create_block_manager_from_arrays(arrays, arr_names, axes) @property def shape(self): return [len(getattr(self, a)) for a in self._AXIS_ORDERS] @classmethod def from_dict(cls, data, intersect=False, orient='items', dtype=None): """ Construct Panel from dict of DataFrame objects Parameters ---------- data : dict {field : DataFrame} intersect : boolean Intersect indexes of input DataFrames orient : {'items', 'minor'}, default 'items' The "orientation" of the data. If the keys of the passed dict should be the items of the result panel, pass 'items' (default). Otherwise if the columns of the values of the passed DataFrame objects should be the items (which in the case of mixed-dtype data you should do), instead pass 'minor' Returns ------- Panel """ from pandas.util.compat import OrderedDict,OrderedDefaultdict orient = orient.lower() if orient == 'minor': new_data = OrderedDefaultdict(dict) for col, df in data.items(): for item, s in df.items(): new_data[item][col] = s data = new_data elif orient != 'items': # pragma: no cover raise ValueError('only recognize items or minor for orientation') d = cls._homogenize_dict(cls, data, intersect=intersect, dtype=dtype) ks = list(d['data'].keys()) if not isinstance(d['data'],OrderedDict): ks = list(sorted(ks)) d[cls._info_axis] = Index(ks) return cls(**d) def __getitem__(self, key): if isinstance(getattr(self, self._info_axis), MultiIndex): return self._getitem_multilevel(key) return super(Panel, self).__getitem__(key) def _getitem_multilevel(self, key): info = getattr(self, self._info_axis) loc = info.get_loc(key) if isinstance(loc, (slice, np.ndarray)): new_index = info[loc] result_index = _maybe_droplevels(new_index, key) slices = [loc] + [slice(None) for x in range( self._AXIS_LEN - 1)] new_values = self.values[slices] d = self._construct_axes_dict(self._AXIS_ORDERS[1:]) d[self._info_axis] = result_index result = self._constructor(new_values, **d) return result else: return self._get_item_cache(key) def _init_matrix(self, data, axes, dtype=None, copy=False): values = self._prep_ndarray(self, data, copy=copy) if dtype is not None: try: values = values.astype(dtype) except Exception: raise ValueError('failed to cast to %s' % dtype) shape = values.shape fixed_axes = [] for i, ax in enumerate(axes): if ax is None: ax = _default_index(shape[i]) else: ax = _ensure_index(ax) fixed_axes.append(ax) return create_block_manager_from_blocks([ values ], fixed_axes) #---------------------------------------------------------------------- # Array interface def __array__(self, dtype=None): return self.values def __array_wrap__(self, result): d = self._construct_axes_dict(self._AXIS_ORDERS, copy=False) return self._constructor(result, **d) #---------------------------------------------------------------------- # Comparison methods def _indexed_same(self, other): return all([getattr(self, a).equals(getattr(other, a)) for a in self._AXIS_ORDERS]) def _compare_constructor(self, other, func): if not self._indexed_same(other): raise Exception('Can only compare identically-labeled ' 'same type objects') new_data = {} for col in getattr(self, self._info_axis): new_data[col] = func(self[col], other[col]) d = self._construct_axes_dict(copy=False) return self._constructor(data=new_data, **d) # boolean operators __and__ = _arith_method(operator.and_, '__and__') __or__ = _arith_method(operator.or_, '__or__') __xor__ = _arith_method(operator.xor, '__xor__') def __neg__(self): return -1 * self def __invert__(self): return -1 * self # Comparison methods __eq__ = _comp_method(operator.eq, '__eq__') __ne__ = _comp_method(operator.ne, '__ne__') __lt__ = _comp_method(operator.lt, '__lt__') __gt__ = _comp_method(operator.gt, '__gt__') __le__ = _comp_method(operator.le, '__le__') __ge__ = _comp_method(operator.ge, '__ge__') eq = _comp_method(operator.eq, 'eq') ne = _comp_method(operator.ne, 'ne') gt = _comp_method(operator.gt, 'gt') lt = _comp_method(operator.lt, 'lt') ge = _comp_method(operator.ge, 'ge') le = _comp_method(operator.le, 'le') #---------------------------------------------------------------------- # Magic methods def __str__(self): """ Return a string representation for a particular Panel Invoked by str(df) in both py2/py3. Yields Bytestring in Py2, Unicode String in py3. """ if py3compat.PY3: return self.__unicode__() return self.__bytes__() def __bytes__(self): """ Return a string representation for a particular Panel Invoked by bytes(df) in py3 only. Yields a bytestring in both py2/py3. """ encoding = com.get_option("display.encoding") return self.__unicode__().encode(encoding, 'replace') def __unicode__(self): """ Return a string representation for a particular Panel Invoked by unicode(df) in py2 only. Yields a Unicode String in both py2/py3. """ class_name = str(self.__class__) shape = self.shape dims = 'Dimensions: %s' % ' x '.join( ["%d (%s)" % (s, a) for a, s in zip(self._AXIS_ORDERS, shape)]) def axis_pretty(a): v = getattr(self, a) if len(v) > 0: return '%s axis: %s to %s' % (a.capitalize(), com.pprint_thing(v[0]), com.pprint_thing(v[-1])) else: return '%s axis: None' % a.capitalize() output = '\n'.join( [class_name, dims] + [axis_pretty(a) for a in self._AXIS_ORDERS]) return output def __repr__(self): """ Return a string representation for a particular Panel Yields Bytestring in Py2, Unicode String in py3. """ return str(self) def __iter__(self): return iter(getattr(self, self._info_axis)) def iteritems(self): for h in getattr(self, self._info_axis): yield h, self[h] # Name that won't get automatically converted to items by 2to3. items is # already in use for the first axis. iterkv = iteritems def _get_plane_axes(self, axis): """ get my plane axes: these are already (as compared with higher level planes), as we are returning a DataFrame axes """ axis = self._get_axis_name(axis) if axis == 'major_axis': index = self.minor_axis columns = self.items if axis == 'minor_axis': index = self.major_axis columns = self.items elif axis == 'items': index = self.major_axis columns = self.minor_axis return index, columns def _wrap_array(self, arr, axes, copy=False): d = self._construct_axes_dict_from(self, axes, copy=copy) return self._constructor(arr, **d) fromDict = from_dict def to_sparse(self, fill_value=None, kind='block'): """ Convert to SparsePanel Parameters ---------- fill_value : float, default NaN kind : {'block', 'integer'} Returns ------- y : SparseDataFrame """ from pandas.core.sparse import SparsePanel frames = dict(self.iterkv()) return SparsePanel(frames, items=self.items, major_axis=self.major_axis, minor_axis=self.minor_axis, default_kind=kind, default_fill_value=fill_value) def to_excel(self, path, na_rep=''): """ Write each DataFrame in Panel to a separate excel sheet Parameters ---------- excel_writer : string or ExcelWriter object File path or existing ExcelWriter na_rep : string, default '' Missing data representation """ from pandas.io.parsers import ExcelWriter writer = ExcelWriter(path) for item, df in self.items(): name = str(item) df.to_excel(writer, name, na_rep=na_rep) writer.save() # TODO: needed? def keys(self): return list(getattr(self, self._info_axis)) def _get_values(self): self._consolidate_inplace() return self._data.as_matrix() values = property(fget=_get_values) #---------------------------------------------------------------------- # Getting and setting elements def get_value(self, *args): """ Quickly retrieve single value at (item, major, minor) location Parameters ---------- item : item label (panel item) major : major axis label (panel item row) minor : minor axis label (panel item column) Returns ------- value : scalar value """ # require an arg for each axis assert(len(args) == self._AXIS_LEN) # hm, two layers to the onion frame = self._get_item_cache(args[0]) return frame.get_value(*args[1:]) def set_value(self, *args): """ Quickly set single value at (item, major, minor) location Parameters ---------- item : item label (panel item) major : major axis label (panel item row) minor : minor axis label (panel item column) value : scalar Returns ------- panel : Panel If label combo is contained, will be reference to calling Panel, otherwise a new object """ # require an arg for each axis and the value assert(len(args) == self._AXIS_LEN + 1) try: frame = self._get_item_cache(args[0]) frame.set_value(*args[1:]) return self except KeyError: axes = self._expand_axes(args) d = self._construct_axes_dict_from(self, axes, copy=False) result = self.reindex(**d) args = list(args) likely_dtype, args[-1] = _infer_dtype_from_scalar(args[-1]) made_bigger = not np.array_equal( axes[0], getattr(self, self._info_axis)) # how to make this logic simpler? if made_bigger: com._possibly_cast_item(result, args[0], likely_dtype) return result.set_value(*args) def _box_item_values(self, key, values): d = self._construct_axes_dict_for_slice(self._AXIS_ORDERS[1:]) return self._constructor_sliced(values, **d) def __getattr__(self, name): """After regular attribute access, try looking up the name of an item. This allows simpler access to items for interactive use.""" if name in getattr(self, self._info_axis): return self[name] raise AttributeError("'%s' object has no attribute '%s'" % (type(self).__name__, name)) def _slice(self, slobj, axis=0, raise_on_error=False): new_data = self._data.get_slice(slobj, axis=axis, raise_on_error=raise_on_error) return self._constructor(new_data) def __setitem__(self, key, value): shape = tuple(self.shape) if isinstance(value, self._constructor_sliced): value = value.reindex( **self._construct_axes_dict_for_slice(self._AXIS_ORDERS[1:])) mat = value.values elif isinstance(value, np.ndarray): assert(value.shape == shape[1:]) mat = np.asarray(value) elif np.isscalar(value): dtype, value = _infer_dtype_from_scalar(value) mat = np.empty(shape[1:], dtype=dtype) mat.fill(value) else: raise TypeError('Cannot set item of type: %s' % str(type(value))) mat = mat.reshape(tuple([1]) + shape[1:]) NDFrame._set_item(self, key, mat) def pop(self, item): """ Return item slice from panel and delete from panel Parameters ---------- key : object Must be contained in panel's items Returns ------- y : DataFrame """ return NDFrame.pop(self, item) def __getstate__(self): "Returned pickled representation of the panel" return self._data def __setstate__(self, state): # old Panel pickle if isinstance(state, BlockManager): self._data = state elif len(state) == 4: # pragma: no cover self._unpickle_panel_compat(state) else: # pragma: no cover raise ValueError('unrecognized pickle') self._item_cache = {} def _unpickle_panel_compat(self, state): # pragma: no cover "Unpickle the panel" _unpickle = com._unpickle_array vals, items, major, minor = state items = _unpickle(items) major = _unpickle(major) minor = _unpickle(minor) values = _unpickle(vals) wp = Panel(values, items, major, minor) self._data = wp._data def conform(self, frame, axis='items'): """ Conform input DataFrame to align with chosen axis pair. Parameters ---------- frame : DataFrame axis : {'items', 'major', 'minor'} Axis the input corresponds to. E.g., if axis='major', then the frame's columns would be items, and the index would be values of the minor axis Returns ------- DataFrame """ axes = self._get_plane_axes(axis) return frame.reindex(**self._extract_axes_for_slice(self, axes)) def reindex(self, major=None, minor=None, method=None, major_axis=None, minor_axis=None, copy=True, **kwargs): """ Conform panel to new axis or axes Parameters ---------- major : Index or sequence, default None Can also use 'major_axis' keyword items : Index or sequence, default None minor : Index or sequence, default None Can also use 'minor_axis' keyword method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap copy : boolean, default True Return a new object, even if the passed indexes are the same Returns ------- Panel (new object) """ result = self major = _mut_exclusive(major, major_axis) minor = _mut_exclusive(minor, minor_axis) al = self._AXIS_LEN # only allowing multi-index on Panel (and not > dims) if (method is None and not self._is_mixed_type and al <= 3): items = kwargs.get('items') if com._count_not_none(items, major, minor) == 3: try: return self._reindex_multi(items, major, minor) except: pass if major is not None: result = result._reindex_axis(major, method, al - 2, copy) if minor is not None: result = result._reindex_axis(minor, method, al - 1, copy) for i, a in enumerate(self._AXIS_ORDERS[0:al - 2]): a = kwargs.get(a) if a is not None: result = result._reindex_axis(a, method, i, copy) if result is self and copy: raise ValueError('Must specify at least one axis') return result def _reindex_multi(self, items, major, minor): a0, a1, a2 = len(items), len(major), len(minor) values = self.values new_values = np.empty((a0, a1, a2), dtype=values.dtype) new_items, indexer0 = self.items.reindex(items) new_major, indexer1 = self.major_axis.reindex(major) new_minor, indexer2 = self.minor_axis.reindex(minor) if indexer0 is None: indexer0 = list(range(len(new_items))) if indexer1 is None: indexer1 = list(range(len(new_major))) if indexer2 is None: indexer2 = list(range(len(new_minor))) for i, ind in enumerate(indexer0): com.take_2d_multi(values[ind], (indexer1, indexer2), out=new_values[i]) return Panel(new_values, items=new_items, major_axis=new_major, minor_axis=new_minor) def reindex_axis(self, labels, axis=0, method=None, level=None, copy=True): """Conform Panel to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False Parameters ---------- index : array-like, optional New labels / index to conform to. Preferably an Index object to avoid duplicating data axis : {0, 1} 0 -> index (rows) 1 -> columns method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None Method to use for filling holes in reindexed DataFrame pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap copy : boolean, default True Return a new object, even if the passed indexes are the same level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns ------- reindexed : Panel """ self._consolidate_inplace() return self._reindex_axis(labels, method, axis, copy) def reindex_like(self, other, method=None): """ return an object with matching indicies to myself Parameters ---------- other : Panel method : string or None Returns ------- reindexed : Panel """ d = other._construct_axes_dict(method=method) return self.reindex(**d) def dropna(self, axis=0, how='any'): """ Drop 2D from panel, holding passed axis constant Parameters ---------- axis : int, default 0 Axis to hold constant. E.g. axis=1 will drop major_axis entries having a certain amount of NA data how : {'all', 'any'}, default 'any' 'any': one or more values are NA in the DataFrame along the axis. For 'all' they all must be. Returns ------- dropped : Panel """ axis = self._get_axis_number(axis) values = self.values mask = com.notnull(values) for ax in reversed(sorted(set(range(3)) - set([axis]))): mask = mask.sum(ax) per_slice = np.prod(values.shape[:axis] + values.shape[axis + 1:]) if how == 'all': cond = mask > 0 else: cond = mask == per_slice new_ax = self._get_axis(axis)[cond] return self.reindex_axis(new_ax, axis=axis) def _combine(self, other, func, axis=0): if isinstance(other, Panel): return self._combine_panel(other, func) elif isinstance(other, DataFrame): return self._combine_frame(other, func, axis=axis) elif np.isscalar(other): return self._combine_const(other, func) def _combine_const(self, other, func): new_values = func(self.values, other) d = self._construct_axes_dict() return self._constructor(new_values, **d) def _combine_frame(self, other, func, axis=0): index, columns = self._get_plane_axes(axis) axis = self._get_axis_number(axis) other = other.reindex(index=index, columns=columns) if axis == 0: new_values = func(self.values, other.values) elif axis == 1: new_values = func(self.values.swapaxes(0, 1), other.values.T) new_values = new_values.swapaxes(0, 1) elif axis == 2: new_values = func(self.values.swapaxes(0, 2), other.values) new_values = new_values.swapaxes(0, 2) return self._constructor(new_values, self.items, self.major_axis, self.minor_axis) def _combine_panel(self, other, func): items = self.items + other.items major = self.major_axis + other.major_axis minor = self.minor_axis + other.minor_axis # could check that everything's the same size, but forget it this = self.reindex(items=items, major=major, minor=minor) other = other.reindex(items=items, major=major, minor=minor) result_values = func(this.values, other.values) return self._constructor(result_values, items, major, minor) def fillna(self, value=None, method=None): """ Fill NaN values using the specified method. Member Series / TimeSeries are filled separately. Parameters ---------- value : any kind (should be same type as array) Value to use to fill holes (e.g. 0) method : {'backfill', 'bfill', 'pad', 'ffill', None}, default 'pad' Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap Returns ------- y : DataFrame See also -------- DataFrame.reindex, DataFrame.asfreq """ if value is None: if method is None: raise ValueError('must specify a fill method or value') result = {} for col, s in self.iterkv(): result[col] = s.fillna(method=method, value=value) return self._constructor.from_dict(result) else: if method is not None: raise ValueError('cannot specify both a fill method and value') new_data = self._data.fillna(value) return self._constructor(new_data) def ffill(self): return self.fillna(method='ffill') def bfill(self): return self.fillna(method='bfill') def major_xs(self, key, copy=True): """ Return slice of panel along major axis Parameters ---------- key : object Major axis label copy : boolean, default False Copy data Returns ------- y : DataFrame index -> minor axis, columns -> items """ return self.xs(key, axis=self._AXIS_LEN - 2, copy=copy) def minor_xs(self, key, copy=True): """ Return slice of panel along minor axis Parameters ---------- key : object Minor axis label copy : boolean, default False Copy data Returns ------- y : DataFrame index -> major axis, columns -> items """ return self.xs(key, axis=self._AXIS_LEN - 1, copy=copy) def xs(self, key, axis=1, copy=True): """ Return slice of panel along selected axis Parameters ---------- key : object Label axis : {'items', 'major', 'minor}, default 1/'major' Returns ------- y : ndim(self)-1 """ axis = self._get_axis_number(axis) if axis == 0: data = self[key] if copy: data = data.copy() return data self._consolidate_inplace() axis_number = self._get_axis_number(axis) new_data = self._data.xs(key, axis=axis_number, copy=copy) return self._constructor_sliced(new_data) _xs = xs def _ixs(self, i, axis=0): # for compatibility with .ix indexing # Won't work with hierarchical indexing yet key = self._get_axis(axis)[i] # xs cannot handle a non-scalar key, so just reindex here if _is_list_like(key): return self.reindex(**{ self._get_axis_name(axis) : key }) return self.xs(key, axis=axis) def groupby(self, function, axis='major'): """ Group data on given axis, returning GroupBy object Parameters ---------- function : callable Mapping function for chosen access axis : {'major', 'minor', 'items'}, default 'major' Returns ------- grouped : PanelGroupBy """ from pandas.core.groupby import PanelGroupBy axis = self._get_axis_number(axis) return PanelGroupBy(self, function, axis=axis) def swapaxes(self, axis1='major', axis2='minor', copy=True): """ Interchange axes and swap values axes appropriately Returns ------- y : Panel (new object) """ i = self._get_axis_number(axis1) j = self._get_axis_number(axis2) if i == j: raise ValueError('Cannot specify the same axis') mapping = {i: j, j: i} new_axes = (self._get_axis(mapping.get(k, k)) for k in range(self._AXIS_LEN)) new_values = self.values.swapaxes(i, j) if copy: new_values = new_values.copy() return self._constructor(new_values, *new_axes) def transpose(self, *args, **kwargs): """ Permute the dimensions of the Panel Parameters ---------- items : int or one of {'items', 'major', 'minor'} major : int or one of {'items', 'major', 'minor'} minor : int or one of {'items', 'major', 'minor'} copy : boolean, default False Make a copy of the underlying data. Mixed-dtype data will always result in a copy Examples -------- >>> p.transpose(2, 0, 1) >>> p.transpose(2, 0, 1, copy=True) Returns ------- y : Panel (new object) """ # construct the args args = list(args) for a in self._AXIS_ORDERS: if not a in kwargs: try: kwargs[a] = args.pop(0) except (IndexError): raise ValueError( "not enough arguments specified to transpose!") axes = [self._get_axis_number(kwargs[a]) for a in self._AXIS_ORDERS] # we must have unique axes if len(axes) != len(set(axes)): raise ValueError('Must specify %s unique axes' % self._AXIS_LEN) new_axes = self._construct_axes_dict_from( self, [self._get_axis(x) for x in axes]) new_values = self.values.transpose(tuple(axes)) if kwargs.get('copy') or (len(args) and args[-1]): new_values = new_values.copy() return self._constructor(new_values, **new_axes) def to_frame(self, filter_observations=True): """ Transform wide format into long (stacked) format as DataFrame Parameters ---------- filter_observations : boolean, default True Drop (major, minor) pairs without a complete set of observations across all the items Returns ------- y : DataFrame """ _, N, K = self.shape if filter_observations: mask = com.notnull(self.values).all(axis=0) # size = mask.sum() selector = mask.ravel() else: # size = N * K selector = slice(None, None) data = {} for item in self.items: data[item] = self[item].values.ravel()[selector] major_labels = np.arange(N).repeat(K)[selector] # Anyone think of a better way to do this? np.repeat does not # do what I want minor_labels = np.arange(K).reshape(1, K)[np.zeros(N, dtype=int)] minor_labels = minor_labels.ravel()[selector] maj_name = self.major_axis.name or 'major' min_name = self.minor_axis.name or 'minor' index = MultiIndex(levels=[self.major_axis, self.minor_axis], labels=[major_labels, minor_labels], names=[maj_name, min_name]) return DataFrame(data, index=index, columns=self.items) to_long = deprecate('to_long', to_frame) toLong = deprecate('toLong', to_frame) def filter(self, items): """ Restrict items in panel to input list Parameters ---------- items : sequence Returns ------- y : Panel """ intersection = self.items.intersection(items) return self.reindex(items=intersection) def apply(self, func, axis='major'): """ Apply Parameters ---------- func : numpy function Signature should match numpy.{sum, mean, var, std} etc. axis : {'major', 'minor', 'items'} fill_value : boolean, default True Replace NaN values with specified first Returns ------- result : DataFrame or Panel """ i = self._get_axis_number(axis) result = np.apply_along_axis(func, i, self.values) return self._wrap_result(result, axis=axis) def _reduce(self, op, axis=0, skipna=True): axis_name = self._get_axis_name(axis) axis_number = self._get_axis_number(axis_name) f = lambda x: op(x, axis=axis_number, skipna=skipna) result = f(self.values) axes = self._get_plane_axes(axis_name) if result.ndim == 2 and axis_name != self._info_axis: result = result.T return self._constructor_sliced(result, **self._extract_axes_for_slice(self, axes)) def _wrap_result(self, result, axis): axis = self._get_axis_name(axis) axes = self._get_plane_axes(axis) if result.ndim == 2 and axis != self._info_axis: result = result.T # do we have reduced dimensionalility? if self.ndim == result.ndim: return self._constructor(result, **self._construct_axes_dict()) elif self.ndim == result.ndim + 1: return self._constructor_sliced(result, **self._extract_axes_for_slice(self, axes)) raise PandasError("invalid _wrap_result [self->%s] [result->%s]" % (self.ndim, result.ndim)) def count(self, axis='major'): """ Return number of observations over requested axis. Parameters ---------- axis : {'items', 'major', 'minor'} or {0, 1, 2} Returns ------- count : DataFrame """ i = self._get_axis_number(axis) values = self.values mask = np.isfinite(values) result = mask.sum(axis=i) return self._wrap_result(result, axis) def shift(self, lags, axis='major'): """ Shift major or minor axis by specified number of leads/lags. Drops periods right now compared with DataFrame.shift Parameters ---------- lags : int axis : {'major', 'minor'} Returns ------- shifted : Panel """ values = self.values items = self.items major_axis = self.major_axis minor_axis = self.minor_axis if lags > 0: vslicer = slice(None, -lags) islicer = slice(lags, None) elif lags == 0: vslicer = islicer = slice(None) else: vslicer = slice(-lags, None) islicer = slice(None, lags) axis = self._get_axis_name(axis) if axis == 'major_axis': values = values[:, vslicer, :] major_axis = major_axis[islicer] elif axis == 'minor_axis': values = values[:, :, vslicer] minor_axis = minor_axis[islicer] else: raise ValueError('Invalid axis') return self._constructor(values, items=items, major_axis=major_axis, minor_axis=minor_axis) def truncate(self, before=None, after=None, axis='major'): """Function truncates a sorted Panel before and/or after some particular values on the requested axis Parameters ---------- before : date Left boundary after : date Right boundary axis : {'major', 'minor', 'items'} Returns ------- Panel """ axis = self._get_axis_name(axis) index = self._get_axis(axis) beg_slice, end_slice = index.slice_locs(before, after) new_index = index[beg_slice:end_slice] return self.reindex(**{axis: new_index}) def join(self, other, how='left', lsuffix='', rsuffix=''): """ Join items with other Panel either on major and minor axes column Parameters ---------- other : Panel or list of Panels Index should be similar to one of the columns in this one how : {'left', 'right', 'outer', 'inner'} How to handle indexes of the two objects. Default: 'left' for joining on index, None otherwise * left: use calling frame's index * right: use input frame's index * outer: form union of indexes * inner: use intersection of indexes lsuffix : string Suffix to use from left frame's overlapping columns rsuffix : string Suffix to use from right frame's overlapping columns Returns ------- joined : Panel """ from pandas.tools.merge import concat if isinstance(other, Panel): join_major, join_minor = self._get_join_index(other, how) this = self.reindex(major=join_major, minor=join_minor) other = other.reindex(major=join_major, minor=join_minor) merged_data = this._data.merge(other._data, lsuffix, rsuffix) return self._constructor(merged_data) else: if lsuffix or rsuffix: raise ValueError('Suffixes not supported when passing ' 'multiple panels') if how == 'left': how = 'outer' join_axes = [self.major_axis, self.minor_axis] elif how == 'right': raise ValueError('Right join not supported with multiple ' 'panels') else: join_axes = None return concat([self] + list(other), axis=0, join=how, join_axes=join_axes, verify_integrity=True) def update(self, other, join='left', overwrite=True, filter_func=None, raise_conflict=False): """ Modify Panel in place using non-NA values from passed Panel, or object coercible to Panel. Aligns on items Parameters ---------- other : Panel, or object coercible to Panel join : How to join individual DataFrames {'left', 'right', 'outer', 'inner'}, default 'left' overwrite : boolean, default True If True then overwrite values for common keys in the calling panel filter_func : callable(1d-array) -> 1d-array<boolean>, default None Can choose to replace values other than NA. Return True for values that should be updated raise_conflict : bool If True, will raise an error if a DataFrame and other both contain data in the same place. """ if not isinstance(other, self._constructor): other = self._constructor(other) axis = self._info_axis axis_values = getattr(self, axis) other = other.reindex(**{axis: axis_values}) for frame in axis_values: self[frame].update(other[frame], join, overwrite, filter_func, raise_conflict) def _get_join_index(self, other, how): if how == 'left': join_major, join_minor = self.major_axis, self.minor_axis elif how == 'right': join_major, join_minor = other.major_axis, other.minor_axis elif how == 'inner': join_major = self.major_axis.intersection(other.major_axis) join_minor = self.minor_axis.intersection(other.minor_axis) elif how == 'outer': join_major = self.major_axis.union(other.major_axis) join_minor = self.minor_axis.union(other.minor_axis) return join_major, join_minor # miscellaneous data creation @staticmethod def _extract_axes(self, data, axes, **kwargs): """ return a list of the axis indicies """ return [self._extract_axis(self, data, axis=i, **kwargs) for i, a in enumerate(axes)] @staticmethod def _extract_axes_for_slice(self, axes): """ return the slice dictionary for these axes """ return dict([(self._AXIS_SLICEMAP[i], a) for i, a in zip(self._AXIS_ORDERS[self._AXIS_LEN - len(axes):], axes)]) @staticmethod def _prep_ndarray(self, values, copy=True): if not isinstance(values, np.ndarray): values = np.asarray(values) # NumPy strings are a pain, convert to object if issubclass(values.dtype.type, str): values = np.array(values, dtype=object, copy=True) else: if copy: values = values.copy() assert(values.ndim == self._AXIS_LEN) return values @staticmethod def _homogenize_dict(self, frames, intersect=True, dtype=None): """ Conform set of _constructor_sliced-like objects to either an intersection of indices / columns or a union. Parameters ---------- frames : dict intersect : boolean, default True Returns ------- dict of aligned results & indicies """ from pandas.util.compat import OrderedDict result = dict() if isinstance(frames,OrderedDict): # caller differs dict/ODict, presered type result = OrderedDict() adj_frames = OrderedDict() for k, v in frames.items(): if isinstance(v, dict): adj_frames[k] = self._constructor_sliced(v) else: adj_frames[k] = v axes = self._AXIS_ORDERS[1:] axes_dict = dict([(a, ax) for a, ax in zip(axes, self._extract_axes( self, adj_frames, axes, intersect=intersect))]) reindex_dict = dict( [(self._AXIS_SLICEMAP[a], axes_dict[a]) for a in axes]) reindex_dict['copy'] = False for key, frame in adj_frames.items(): if frame is not None: result[key] = frame.reindex(**reindex_dict) else: result[key] = None axes_dict['data'] = result return axes_dict @staticmethod def _extract_axis(self, data, axis=0, intersect=False): index = None if len(data) == 0: index = Index([]) elif len(data) > 0: raw_lengths = [] indexes = [] have_raw_arrays = False have_frames = False for v in list(data.values()): if isinstance(v, self._constructor_sliced): have_frames = True indexes.append(v._get_axis(axis)) elif v is not None: have_raw_arrays = True raw_lengths.append(v.shape[axis]) if have_frames: index = _get_combined_index(indexes, intersect=intersect) if have_raw_arrays: lengths = list(set(raw_lengths)) if len(lengths) > 1: raise ValueError('ndarrays must match shape on axis %d' % axis) if have_frames: if lengths[0] != len(index): raise AssertionError('Length of data and index must match') else: index = Index(np.arange(lengths[0])) if index is None: index = Index([]) return _ensure_index(index) @classmethod def _add_aggregate_operations(cls): """ add the operations to the cls; evaluate the doc strings again """ # doc strings substitors _agg_doc = """ Wrapper method for %s Parameters ---------- other : """ + "%s or %s" % (cls._constructor_sliced.__name__, cls.__name__) + """ axis : {""" + ', '.join(cls._AXIS_ORDERS) + "}" + """ Axis to broadcast over Returns ------- """ + cls.__name__ + "\n" def _panel_arith_method(op, name): @Substitution(op) @Appender(_agg_doc) def f(self, other, axis=0): return self._combine(other, op, axis=axis) f.__name__ = name return f cls.add = _panel_arith_method(operator.add, 'add') cls.subtract = cls.sub = _panel_arith_method(operator.sub, 'subtract') cls.multiply = cls.mul = _panel_arith_method(operator.mul, 'multiply') try: cls.divide = cls.div = _panel_arith_method(operator.div, 'divide') except AttributeError: # pragma: no cover # Python 3 cls.divide = cls.div = _panel_arith_method( operator.truediv, 'divide') _agg_doc = """ Return %(desc)s over requested axis Parameters ---------- axis : {""" + ', '.join(cls._AXIS_ORDERS) + "} or {" + ', '.join([str(i) for i in range(cls._AXIS_LEN)]) + """} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns ------- %(outname)s : """ + cls._constructor_sliced.__name__ + "\n" _na_info = """ NA/null values are %s. If all values are NA, result will be NA""" @Substitution(desc='sum', outname='sum') @Appender(_agg_doc) def sum(self, axis='major', skipna=True): return self._reduce(nanops.nansum, axis=axis, skipna=skipna) cls.sum = sum @Substitution(desc='mean', outname='mean') @Appender(_agg_doc) def mean(self, axis='major', skipna=True): return self._reduce(nanops.nanmean, axis=axis, skipna=skipna) cls.mean = mean @Substitution(desc='unbiased variance', outname='variance') @Appender(_agg_doc) def var(self, axis='major', skipna=True): return self._reduce(nanops.nanvar, axis=axis, skipna=skipna) cls.var = var @Substitution(desc='unbiased standard deviation', outname='stdev') @Appender(_agg_doc) def std(self, axis='major', skipna=True): return self.var(axis=axis, skipna=skipna).apply(np.sqrt) cls.std = std @Substitution(desc='unbiased skewness', outname='skew') @Appender(_agg_doc) def skew(self, axis='major', skipna=True): return self._reduce(nanops.nanskew, axis=axis, skipna=skipna) cls.skew = skew @Substitution(desc='product', outname='prod') @Appender(_agg_doc) def prod(self, axis='major', skipna=True): return self._reduce(nanops.nanprod, axis=axis, skipna=skipna) cls.prod = prod @Substitution(desc='compounded percentage', outname='compounded') @Appender(_agg_doc) def compound(self, axis='major', skipna=True): return (1 + self).prod(axis=axis, skipna=skipna) - 1 cls.compound = compound @Substitution(desc='median', outname='median') @Appender(_agg_doc) def median(self, axis='major', skipna=True): return self._reduce(nanops.nanmedian, axis=axis, skipna=skipna) cls.median = median @Substitution(desc='maximum', outname='maximum') @Appender(_agg_doc) def max(self, axis='major', skipna=True): return self._reduce(nanops.nanmax, axis=axis, skipna=skipna) cls.max = max @Substitution(desc='minimum', outname='minimum') @Appender(_agg_doc) def min(self, axis='major', skipna=True): return self._reduce(nanops.nanmin, axis=axis, skipna=skipna) cls.min = min Panel._add_aggregate_operations() WidePanel = Panel LongPanel = DataFrame def _monotonic(arr): return not (arr[1:] < arr[:-1]).any() def install_ipython_completers(): # pragma: no cover """Register the Panel type with IPython's tab completion machinery, so that it knows about accessing column names as attributes.""" from IPython.utils.generics import complete_object @complete_object.when_type(Panel) def complete_dataframe(obj, prev_completions): return prev_completions + [c for c in list(obj.keys()) if isinstance(c, str) and py3compat.isidentifier(c)] # Importing IPython brings in about 200 modules, so we want to avoid it unless # we're in IPython (when those modules are loaded anyway). if "IPython" in sys.modules: # pragma: no cover try: install_ipython_completers() except Exception: pass
33.219242
129
0.574169
75e0f56e6d618a191e5680cda8b169179ac4901c
445
py
Python
Chapter03/multi_plot.py
allen-zqh/plotly
bcaf0930901e77db07245b63bff049eb75893416
[ "MIT" ]
null
null
null
Chapter03/multi_plot.py
allen-zqh/plotly
bcaf0930901e77db07245b63bff049eb75893416
[ "MIT" ]
null
null
null
Chapter03/multi_plot.py
allen-zqh/plotly
bcaf0930901e77db07245b63bff049eb75893416
[ "MIT" ]
1
2021-02-04T06:56:18.000Z
2021-02-04T06:56:18.000Z
import plotly as py import plotly.graph_objs as go # ----------pre def pyplt = py.offline.plot x = list('ABCDEF') trace1 = go.Scatter( x=x, y=[1.5, 1, 1.3, 0.7, 0.8, 0.9], name='line' ) trace2 = go.Bar( x=x, y=[1, 0.5, 0.7, -1.2, 0.3, 0.4], name = 'bar' ) data = [trace1, trace2] layout = dict(title = 'Bar-Line Demo') fig = dict(data=data,layout=layout) pyplt(data, filename='tmp/bar-line.html', show_link=False)
16.481481
58
0.58427
0689919610308dd0d732bac841c7b08afc742905
12,802
py
Python
training/coach_restyle_psp.py
jscarlson/restyle-encoder
8b0c97a6e44ad244efe7bd77f80d7201817c314c
[ "MIT" ]
null
null
null
training/coach_restyle_psp.py
jscarlson/restyle-encoder
8b0c97a6e44ad244efe7bd77f80d7201817c314c
[ "MIT" ]
null
null
null
training/coach_restyle_psp.py
jscarlson/restyle-encoder
8b0c97a6e44ad244efe7bd77f80d7201817c314c
[ "MIT" ]
null
null
null
import os import matplotlib import matplotlib.pyplot as plt matplotlib.use('Agg') import torch from torch import nn from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter import torch.nn.functional as F from utils import common, train_utils from criteria import id_loss, w_norm, moco_loss from configs import data_configs from datasets.images_dataset import ImagesDataset from criteria.lpips.lpips import LPIPS from models.psp import pSp from training.ranger import Ranger from utils.wandb_utils import WBLogger class Coach: def __init__(self, opts): self.opts = opts self.global_step = 0 self.device = 'cuda:0' self.opts.device = self.device self.wb_logger = WBLogger(self.opts) # Initialize network self.net = pSp(self.opts).to(self.device) # Estimate latent_avg via dense sampling if latent_avg is not available if self.net.latent_avg is None: self.net.latent_avg = self.net.decoder.mean_latent(int(1e5))[0].detach() # get the image corresponding to the latent average self.avg_image = self.net(self.net.latent_avg.unsqueeze(0), input_code=True, randomize_noise=False, return_latents=False, average_code=True)[0] self.avg_image = self.avg_image.to(self.device).float().detach() if self.opts.dataset_type == "cars_encode": self.avg_image = self.avg_image[:, 32:224, :] common.tensor2im(self.avg_image).save(os.path.join(self.opts.exp_dir, 'avg_image.jpg')) # Initialize loss if self.opts.id_lambda > 0 and self.opts.moco_lambda > 0: raise ValueError('Both ID and MoCo loss have lambdas > 0! Please select only one to have non-zero lambda!') self.mse_loss = nn.MSELoss().to(self.device).eval() if self.opts.lpips_lambda > 0: self.lpips_loss = LPIPS(net_type='alex').to(self.device).eval() if self.opts.id_lambda > 0: self.id_loss = id_loss.IDLoss().to(self.device).eval() if self.opts.w_norm_lambda > 0: self.w_norm_loss = w_norm.WNormLoss(start_from_latent_avg=self.opts.start_from_latent_avg) if self.opts.moco_lambda > 0: self.moco_loss = moco_loss.MocoLoss() # Initialize optimizer self.optimizer = self.configure_optimizers() # Initialize dataset self.train_dataset, self.test_dataset = self.configure_datasets() self.train_dataloader = DataLoader(self.train_dataset, batch_size=self.opts.batch_size, shuffle=True, num_workers=int(self.opts.workers), drop_last=True) self.test_dataloader = DataLoader(self.test_dataset, batch_size=self.opts.test_batch_size, shuffle=False, num_workers=int(self.opts.test_workers), drop_last=True) # Initialize logger log_dir = os.path.join(opts.exp_dir, 'logs') os.makedirs(log_dir, exist_ok=True) self.logger = SummaryWriter(log_dir=log_dir) # Initialize checkpoint dir self.checkpoint_dir = os.path.join(opts.exp_dir, 'checkpoints') os.makedirs(self.checkpoint_dir, exist_ok=True) self.best_val_loss = None if self.opts.save_interval is None: self.opts.save_interval = self.opts.max_steps def perform_train_iteration_on_batch(self, x, y): y_hat, latent = None, None loss_dict, id_logs = None, None y_hats = {idx: [] for idx in range(x.shape[0])} for iter in range(self.opts.n_iters_per_batch): if iter == 0: avg_image_for_batch = self.avg_image.unsqueeze(0).repeat(x.shape[0], 1, 1, 1) x_input = torch.cat([x, avg_image_for_batch], dim=1) y_hat, latent = self.net.forward(x_input, latent=None, return_latents=True) else: y_hat_clone = y_hat.clone().detach().requires_grad_(True) latent_clone = latent.clone().detach().requires_grad_(True) x_input = torch.cat([x, y_hat_clone], dim=1) y_hat, latent = self.net.forward(x_input, latent=latent_clone, return_latents=True) if self.opts.dataset_type == "cars_encode": y_hat = y_hat[:, :, 32:224, :] loss, loss_dict, id_logs = self.calc_loss(x, y, y_hat, latent) loss.backward() # store intermediate outputs for idx in range(x.shape[0]): y_hats[idx].append([y_hat[idx], id_logs[idx]['diff_target']]) return y_hats, loss_dict, id_logs def train(self): self.net.train() while self.global_step < self.opts.max_steps: for batch_idx, batch in enumerate(self.train_dataloader): self.optimizer.zero_grad() x, y = batch x, y = x.to(self.device).float(), y.to(self.device).float() y_hats, loss_dict, id_logs = self.perform_train_iteration_on_batch(x, y) self.optimizer.step() # Logging related if self.global_step % self.opts.image_interval == 0 or (self.global_step < 1000 and self.global_step % 25 == 0): self.parse_and_log_images(id_logs, x, y, y_hats, title='images/train') if self.global_step % self.opts.board_interval == 0: self.print_metrics(loss_dict, prefix='train') self.log_metrics(loss_dict, prefix='train') # Log images of first batch to wandb if self.global_step % 1000 == 0: self.wb_logger.log_images_to_wandb(x, y, y_hats, id_logs, prefix="train", step=self.global_step, opts=self.opts) # Validation related val_loss_dict = None if self.global_step % self.opts.val_interval == 0 or self.global_step == self.opts.max_steps: val_loss_dict = self.validate() if val_loss_dict and (self.best_val_loss is None or val_loss_dict['loss'] < self.best_val_loss): self.best_val_loss = val_loss_dict['loss'] self.checkpoint_me(val_loss_dict, is_best=True) if self.global_step % self.opts.save_interval == 0 or self.global_step == self.opts.max_steps: if val_loss_dict is not None: self.checkpoint_me(val_loss_dict, is_best=False) else: self.checkpoint_me(loss_dict, is_best=False) if self.global_step == self.opts.max_steps: print('OMG, finished training!') break self.global_step += 1 def perform_val_iteration_on_batch(self, x, y): y_hat, latent = None, None cur_loss_dict, id_logs = None, None y_hats = {idx: [] for idx in range(x.shape[0])} for iter in range(self.opts.n_iters_per_batch): if iter == 0: avg_image_for_batch = self.avg_image.unsqueeze(0).repeat(x.shape[0], 1, 1, 1) x_input = torch.cat([x, avg_image_for_batch], dim=1) else: x_input = torch.cat([x, y_hat], dim=1) y_hat, latent = self.net.forward(x_input, latent=latent, return_latents=True) if self.opts.dataset_type == "cars_encode": y_hat = y_hat[:, :, 32:224, :] loss, cur_loss_dict, id_logs = self.calc_loss(x, y, y_hat, latent) # store intermediate outputs for idx in range(x.shape[0]): y_hats[idx].append([y_hat[idx], id_logs[idx]['diff_target']]) return y_hats, cur_loss_dict, id_logs def validate(self): self.net.eval() agg_loss_dict = [] for batch_idx, batch in enumerate(self.test_dataloader): x, y = batch with torch.no_grad(): x, y = x.to(self.device).float(), y.to(self.device).float() y_hats, cur_loss_dict, id_logs = self.perform_val_iteration_on_batch(x, y) agg_loss_dict.append(cur_loss_dict) # Logging related self.parse_and_log_images(id_logs, x, y, y_hats, title='images/test', subscript='{:04d}'.format(batch_idx)) # Log images of first batch to wandb self.wb_logger.log_images_to_wandb(x, y, y_hats, id_logs, prefix="test", step=self.global_step, opts=self.opts) # For first step just do sanity test on small amount of data if self.global_step == 0 and batch_idx >= 4: self.net.train() return None # Do not log, inaccurate in first batch loss_dict = train_utils.aggregate_loss_dict(agg_loss_dict) self.log_metrics(loss_dict, prefix='test') self.print_metrics(loss_dict, prefix='test') self.net.train() return loss_dict def checkpoint_me(self, loss_dict, is_best): save_name = 'best_model.pt' if is_best else 'iteration_{}.pt'.format(self.global_step) save_dict = self.__get_save_dict() checkpoint_path = os.path.join(self.checkpoint_dir, save_name) torch.save(save_dict, checkpoint_path) with open(os.path.join(self.checkpoint_dir, 'timestamp.txt'), 'a') as f: if is_best: f.write('**Best**: Step - {}, Loss - {:.3f} \n{}\n'.format(self.global_step, self.best_val_loss, loss_dict)) else: f.write('Step - {}, \n{}\n'.format(self.global_step, loss_dict)) def configure_optimizers(self): params = list(self.net.encoder.parameters()) if self.opts.train_decoder: params += list(self.net.decoder.parameters()) if self.opts.optim_name == 'adam': optimizer = torch.optim.Adam(params, lr=self.opts.learning_rate) else: optimizer = Ranger(params, lr=self.opts.learning_rate) return optimizer def configure_datasets(self): if self.opts.dataset_type not in data_configs.DATASETS.keys(): raise Exception('{} is not a valid dataset_type'.format(self.opts.dataset_type)) print('Loading dataset for {}'.format(self.opts.dataset_type)) dataset_args = data_configs.DATASETS[self.opts.dataset_type] transforms_dict = dataset_args['transforms'](self.opts).get_transforms() train_dataset = ImagesDataset(source_root=dataset_args['train_source_root'], target_root=dataset_args['train_target_root'], source_transform=transforms_dict['transform_source'], target_transform=transforms_dict['transform_gt_train'], opts=self.opts) test_dataset = ImagesDataset(source_root=dataset_args['test_source_root'], target_root=dataset_args['test_target_root'], source_transform=transforms_dict['transform_source'], target_transform=transforms_dict['transform_test'], opts=self.opts) self.wb_logger.log_dataset_wandb(train_dataset, dataset_name="Train") self.wb_logger.log_dataset_wandb(test_dataset, dataset_name="Test") print("Number of training samples: {}".format(len(train_dataset))) print("Number of test samples: {}".format(len(test_dataset))) return train_dataset, test_dataset def calc_loss(self, x, y, y_hat, latent): loss_dict = {} loss = 0.0 id_logs = None if self.opts.id_lambda > 0: loss_id, sim_improvement, id_logs = self.id_loss(y_hat, y, x) loss_dict['loss_id'] = float(loss_id) loss_dict['id_improve'] = float(sim_improvement) loss = loss_id * self.opts.id_lambda if self.opts.l2_lambda > 0: loss_l2 = F.mse_loss(y_hat, y) loss_dict['loss_l2'] = float(loss_l2) loss += loss_l2 * self.opts.l2_lambda if self.opts.lpips_lambda > 0: loss_lpips = self.lpips_loss(y_hat, y) loss_dict['loss_lpips'] = float(loss_lpips) loss += loss_lpips * self.opts.lpips_lambda if self.opts.w_norm_lambda > 0: loss_w_norm = self.w_norm_loss(latent, self.net.latent_avg) loss_dict['loss_w_norm'] = float(loss_w_norm) loss += loss_w_norm * self.opts.w_norm_lambda if self.opts.moco_lambda > 0: loss_moco, sim_improvement, id_logs = self.moco_loss(y_hat, y, x) loss_dict['loss_moco'] = float(loss_moco) loss_dict['id_improve'] = float(sim_improvement) loss += loss_moco * self.opts.moco_lambda loss_dict['loss'] = float(loss) return loss, loss_dict, id_logs def log_metrics(self, metrics_dict, prefix): for key, value in metrics_dict.items(): self.logger.add_scalar('{}/{}'.format(prefix, key), value, self.global_step) self.wb_logger.log(prefix, metrics_dict, self.global_step) def print_metrics(self, metrics_dict, prefix): print('Metrics for {}, step {}'.format(prefix, self.global_step)) for key, value in metrics_dict.items(): print('\t{} = '.format(key), value) def parse_and_log_images(self, id_logs, x, y, y_hat, title, subscript=None, display_count=2): im_data = [] for i in range(display_count): if type(y_hat) == dict: output_face = [ [common.tensor2im(y_hat[i][iter_idx][0]), y_hat[i][iter_idx][1]] for iter_idx in range(len(y_hat[i])) ] else: output_face = [common.tensor2im(y_hat[i])] cur_im_data = { 'input_face': common.tensor2im(x[i]), 'target_face': common.tensor2im(y[i]), 'output_face': output_face, } if id_logs is not None: for key in id_logs[i]: cur_im_data[key] = id_logs[i][key] im_data.append(cur_im_data) self.log_images(title, im_data=im_data, subscript=subscript) def log_images(self, name, im_data, subscript=None, log_latest=False): fig = common.vis_faces(im_data) step = self.global_step if log_latest: step = 0 if subscript: path = os.path.join(self.logger.log_dir, name, '{}_{:04d}.jpg'.format(subscript, step)) else: path = os.path.join(self.logger.log_dir, name, '{:04d}.jpg'.format(step)) os.makedirs(os.path.dirname(path), exist_ok=True) fig.savefig(path) plt.close(fig) def __get_save_dict(self): save_dict = { 'state_dict': self.net.state_dict(), 'opts': vars(self.opts), 'latent_avg': self.net.latent_avg } return save_dict
37.652941
117
0.712467
a630dda8d40c9978d79ca686bc04c07c8e46e47d
526
py
Python
bardolph/controller/routine.py
al-fontes-jr/bardolph
209bba49765c729d8f1479903593043cef274aab
[ "Apache-2.0" ]
null
null
null
bardolph/controller/routine.py
al-fontes-jr/bardolph
209bba49765c729d8f1479903593043cef274aab
[ "Apache-2.0" ]
16
2020-06-15T11:04:10.000Z
2022-03-28T05:39:10.000Z
bardolph/controller/routine.py
al-fontes-jr/bardolph
209bba49765c729d8f1479903593043cef274aab
[ "Apache-2.0" ]
1
2020-06-24T02:01:04.000Z
2020-06-24T02:01:04.000Z
class Routine: def __init__(self, name, address=0): self._name = name self._address = address self._params = [] @property def name(self): return self._name @property def params(self): return self._params def add_param(self, name): self._params.append(name) def has_param(self, name): return name in self._params def set_address(self, address): self._address = address def get_address(self): return self._address
20.230769
40
0.604563
41e1a86f0c0820c472ad13f5daab6036bc45179a
7,153
py
Python
backend/database/wrapper/stats/global_stats_wrapper.py
wildermuthn/DistributedReplays
7fe6ab9f30a47be033779309546bbc9d1343402b
[ "Apache-2.0" ]
null
null
null
backend/database/wrapper/stats/global_stats_wrapper.py
wildermuthn/DistributedReplays
7fe6ab9f30a47be033779309546bbc9d1343402b
[ "Apache-2.0" ]
null
null
null
backend/database/wrapper/stats/global_stats_wrapper.py
wildermuthn/DistributedReplays
7fe6ab9f30a47be033779309546bbc9d1343402b
[ "Apache-2.0" ]
null
null
null
import json import logging import sys import os from sqlalchemy import func path = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..', '..', '..')) print(path) sys.path.append(path) from backend.blueprints.spa_api.errors.errors import CalculatedError from backend.database.objects import PlayerGame, Game, Playlist from backend.database.wrapper.query_filter_builder import QueryFilterBuilder from backend.database.wrapper.rank_wrapper import get_rank_tier from backend.database.wrapper.stats.shared_stats_wrapper import SharedStatsWrapper from backend.utils.checks import ignore_filtering, is_local_dev logger = logging.getLogger(__name__) GLOBAL_STATS_PLAYLISTS = [Playlist.UNRANKED_DUELS, Playlist.UNRANKED_DOUBLES, Playlist.UNRANKED_STANDARD, Playlist.UNRANKED_CHAOS, Playlist.RANKED_DUELS, Playlist.RANKED_DOUBLES, Playlist.RANKED_SOLO_STANDARD, Playlist.RANKED_STANDARD, Playlist.RANKED_DROPSHOT, Playlist.RANKED_HOOPS, Playlist.RANKED_RUMBLE, Playlist.RANKED_SNOW_DAY] GLOBAL_STATS_PLAYLISTS = [int(p.value) for p in GLOBAL_STATS_PLAYLISTS] class GlobalStatWrapper(SharedStatsWrapper): """ A database wrapper for global stats. Acts additionally on global stats in addition to player stats """ def __init__(self): super().__init__() # this Object needs to be pooled per a session so only one is used at a time self.base_query = QueryFilterBuilder().with_relative_start_time( days_ago=self.get_timeframe()).with_safe_checking().sticky() def get_global_stats(self, sess, with_rank=True): """ :return: A list of stats by rank for every field. """ if with_rank: ranks = list(range(20)) else: ranks = [0] playlist_results = {} for playlist in GLOBAL_STATS_PLAYLISTS: results = {} for column, q in zip(self.get_player_stat_list(), self.get_player_stat_query()): column_results = [] # set the column result self.base_query.clean().with_stat_query([PlayerGame.player, q.label('avg')]) for rank in ranks: result = self._get_global_stats_result(self.base_query, playlist, rank, sess, with_rank=with_rank) column_results.append({'mean': self.float_maybe(result[0]), 'std': self.float_maybe(result[1])}) results[column.get_field_name()] = column_results playlist_results[playlist] = results return playlist_results def _get_global_stats_result(self, query, playlist, rank, session, with_rank=True): if with_rank: query = query.with_rank(rank) if not ignore_filtering(): query.with_playlists([playlist]) query = query.build_query(session) query = query.group_by(PlayerGame.player) if ignore_filtering(): query = query.subquery() else: query = query.filter(PlayerGame.game != "").filter(PlayerGame.time_in_game > 0).having( func.count(PlayerGame.player) > 5).subquery() return session.query(func.avg(query.c.avg), func.stddev_samp(query.c.avg)).first() def get_global_stats_by_rank(self, session, query_filter: QueryFilterBuilder, stats_query, stds_query, player_rank=None, redis=None, ids=None, playlist=13): """ Returns the global stats based on the rank of a player. Does modify the query_filter only setting rank. :param session: Session :param query_filter: a query filter. :param stats_query: A list of global stats :param stds_query: A list of global stats for standard deviations :param player_rank: The player that stats are associated with. Uses unranked if rank is not found :param redis: The local cache :return: """ if ids is None: # Set the correct rank index if player_rank is not None: if isinstance(player_rank, dict) or isinstance(player_rank, list): rank_index = get_rank_tier(player_rank, playlist=playlist) else: rank_index = player_rank else: rank_index = 0 stat_list = self.get_player_stat_list() # Check to see if we have redis available (it usually is) if redis is not None: stat_string = redis.get('global_stats') # Check to see if the key exists and if so load it if stat_string is not None: stats_dict = json.loads(stat_string) if playlist is not None: playlist = str(playlist) if playlist not in stats_dict: raise CalculatedError(404, 'Playlist does not exist in global stats') stats_dict = stats_dict[playlist] global_stats = [] global_stds = [] for stat in stat_list: if stat.get_field_name() in stats_dict: global_stats.append(stats_dict[stat.get_field_name()][rank_index]['mean']) global_stds.append(stats_dict[stat.get_field_name()][rank_index]['std']) else: global_stats.append(1) global_stds.append(1) return global_stats, global_stds if is_local_dev(): rank_index = 0 stats = self.get_global_stats(session, with_rank=False) global_stats = [stats[stat.get_field_name()][rank_index]['mean'] for stat in stat_list] global_stds = [stats[stat.get_field_name()][rank_index]['std'] for stat in stat_list] return global_stats, global_stds raise CalculatedError(500, "Global stats unavailable or have not been calculated yet.") else: query_filter.clean().with_replay_ids(ids) return (query_filter.with_stat_query(stats_query).build_query(session).first(), query_filter.with_stat_query(stds_query).build_query(session).first()) @staticmethod def get_timeframe(): """Returns the number of days we accept old stats""" try: from flask import current_app return current_app.config['STAT_DAY_LIMIT'] except: return 30 * 6 if __name__ == '__main__': from backend.database.startup import startup engine, Session = startup() sess = Session() try: result = GlobalStatWrapper().get_global_stats(sess) print(result) except KeyboardInterrupt: sess.close() finally: # result = engine.execute() sess.close()
42.325444
118
0.603243
054090dffbc5be3069d9a0b53a5dc267a9433c5e
3,510
py
Python
pyzoo/zoo/examples/automl/plugin_model_demo.py
pinggao18/analytics-zoo
30a50e7f93770cb833e4ab99439d5210e2489e86
[ "Apache-2.0" ]
null
null
null
pyzoo/zoo/examples/automl/plugin_model_demo.py
pinggao18/analytics-zoo
30a50e7f93770cb833e4ab99439d5210e2489e86
[ "Apache-2.0" ]
1
2021-01-20T15:41:01.000Z
2021-01-20T15:41:01.000Z
pyzoo/zoo/examples/automl/plugin_model_demo.py
pinggao18/analytics-zoo
30a50e7f93770cb833e4ab99439d5210e2489e86
[ "Apache-2.0" ]
1
2020-12-21T11:48:49.000Z
2020-12-21T11:48:49.000Z
# # Copyright 2018 Analytics Zoo Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either exp' # ress or implied. # See the License for the specific language governing permissions and # limitations under the License. # from zoo.automl.search import SearchEngineFactory from zoo.automl.model import ModelBuilder import torch import torch.nn as nn from zoo.automl.config.recipe import Recipe from ray import tune import pandas as pd import numpy as np from zoo.orca import init_orca_context def model_creator(config): """Returns a torch.nn.Module object.""" return nn.Linear(1, config.get("hidden_size", 1)) def optimizer_creator(model, config): """Returns optimizer defined upon the model parameters.""" return torch.optim.SGD(model.parameters(), lr=config.get("lr", 1e-2)) def loss_creator(config): return nn.MSELoss() class SimpleRecipe(Recipe): def __init__(self): super().__init__() self.num_samples = 2 def search_space(self, all_available_features): return { "lr": tune.uniform(0.001, 0.01), "batch_size": tune.choice([32, 64]) } def get_data(): def get_linear_data(a, b, size): x = np.arange(0, 10, 10 / size, dtype=np.float32) y = a*x + b return x, y train_x, train_y = get_linear_data(2, 5, 1000) df = pd.DataFrame({'x': train_x, 'y': train_y}) val_x, val_y = get_linear_data(2, 5, 400) val_df = pd.DataFrame({'x': val_x, 'y': val_y}) return df, val_df if __name__ == "__main__": # 1. the way to enable auto tuning model from creators. init_orca_context(init_ray_on_spark=True) modelBuilder = ModelBuilder.from_pytorch(model_creator=model_creator, optimizer_creator=optimizer_creator, loss_creator=loss_creator) searcher = SearchEngineFactory.create_engine(backend="ray", logs_dir="~/zoo_automl_logs", resources_per_trial={"cpu": 2}, name="demo") # pass input data, modelbuilder and recipe into searcher.compile. Note that if user doesn't pass # feature transformer, the default identity feature transformer will be used. df, val_df = get_data() searcher.compile(df, modelBuilder, recipe=SimpleRecipe(), feature_cols=["x"], target_col="y", validation_df=val_df) searcher.run() best_trials = searcher.get_best_trials(k=1) print(best_trials[0].config) # 2. you can also use the model builder with a fix config model = modelBuilder.build(config={ "lr": 1e-2, # used in optimizer_creator "batch_size": 32, # used in data_creator }) val_result = model.fit_eval(x=df[["x"]], y=df[["y"]], validation_data=(val_df[["x"]], val_df["y"]), epochs=1) print(val_result)
33.75
100
0.611396
78b9a1633ea4c7e0d724b867a7057f5af2a35cf9
2,652
py
Python
interviewcake/greedy-algorithm/practices/apple_stocks.py
callmekungfu/daily
aacea65ba5d276ea54e171a59e9fd05365a3bf44
[ "MIT" ]
null
null
null
interviewcake/greedy-algorithm/practices/apple_stocks.py
callmekungfu/daily
aacea65ba5d276ea54e171a59e9fd05365a3bf44
[ "MIT" ]
null
null
null
interviewcake/greedy-algorithm/practices/apple_stocks.py
callmekungfu/daily
aacea65ba5d276ea54e171a59e9fd05365a3bf44
[ "MIT" ]
null
null
null
''' # Writing programming interview questions hasn't made me rich yet ... so I might give up and start trading Apple stocks all day instead. First, I wanna know how much money I could have made yesterday if I'd been trading Apple stocks all day. So I grabbed Apple's stock prices from yesterday and put them in a list called stock_prices, where: The indices are the time (in minutes) past trade opening time, which was 9:30am local time. The values are the price (in US dollars) of one share of Apple stock at that time. So if the stock cost $500 at 10:30am, that means stock_prices[60] = 500. Write an efficient function that takes stock_prices and returns the best profit I could have made from one purchase and one sale of one share of Apple stock yesterday. For example: stock_prices = [10, 7, 5, 8, 11, 9] get_max_profit(stock_prices) # Returns 6 (buying for $5 and selling for $11) No "shorting"—you need to buy before you can sell. Also, you can't buy and sell in the same time step—at least 1 minute has to pass. ''' # My Solution def get_max_profit(stock_prices): max_profit = stock_prices[1] - stock_prices[0] lowest_price = stock_prices[0] for price in stock_prices: if price < lowest_price: lowest_price = price elif price - lowest_price > max_profit: max_profit = price - lowest_price return max_profit # Given solution def get_max_profit(stock_prices): if len(stock_prices) < 2: raise ValueError('Getting a profit requires at least 2 prices') # We'll greedily update min_price and max_profit, so we initialize # them to the first price and the first possible profit min_price = stock_prices[0] max_profit = stock_prices[1] - stock_prices[0] # Start at the second (index 1) time # We can't sell at the first time, since we must buy first, # and we can't buy and sell at the same time! # If we started at index 0, we'd try to buy *and* sell at time 0. # This would give a profit of 0, which is a problem if our # max_profit is supposed to be *negative*--we'd return 0. for current_time in range(1, len(stock_prices)): current_price = stock_prices[current_time] # See what our profit would be if we bought at the # min price and sold at the current price potential_profit = current_price - min_price # Update max_profit if we can do better max_profit = max(max_profit, potential_profit) # Update min_price so it's always # the lowest price we've seen so far min_price = min(min_price, current_price) return max_profit # Test code stock_prices = [10, 8, 7, 6, 5, 4] print(get_max_profit(stock_prices))
38.434783
132
0.725867
1075df8371410f31b25c674f9a1443a922c6ad95
2,395
py
Python
speech/setup.py
rodrigodias27/google-cloud-python
7d1161f70744c0dbbe67a3f472ea95667eaafe50
[ "Apache-2.0" ]
null
null
null
speech/setup.py
rodrigodias27/google-cloud-python
7d1161f70744c0dbbe67a3f472ea95667eaafe50
[ "Apache-2.0" ]
null
null
null
speech/setup.py
rodrigodias27/google-cloud-python
7d1161f70744c0dbbe67a3f472ea95667eaafe50
[ "Apache-2.0" ]
null
null
null
# Copyright 2016 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import io import os from setuptools import find_packages from setuptools import setup PACKAGE_ROOT = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(PACKAGE_ROOT, 'README.rst')) as file_obj: README = file_obj.read() # NOTE: This is duplicated throughout and we should try to # consolidate. SETUP_BASE = { 'author': 'Google Cloud Platform', 'author_email': 'googleapis-publisher@google.com', 'scripts': [], 'url': 'https://github.com/GoogleCloudPlatform/google-cloud-python', 'license': 'Apache 2.0', 'platforms': 'Posix; MacOS X; Windows', 'include_package_data': True, 'zip_safe': False, 'classifiers': [ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Topic :: Internet', ], } REQUIREMENTS = [ 'google-cloud-core >= 0.25.0, < 0.26dev', 'google-gax >= 0.15.13, < 0.16dev', 'googleapis-common-protos[grpc] >= 1.5.2, < 2.0dev', ] setup( name='google-cloud-speech', version='0.27.0', description='Python Client for Google Cloud Speech', long_description=README, namespace_packages=[ 'google', 'google.cloud', 'google.cloud.gapic', 'google.cloud.gapic.speech', 'google.cloud.proto', 'google.cloud.proto.speech', ], packages=find_packages(exclude=('tests*',)), install_requires=REQUIREMENTS, **SETUP_BASE )
31.103896
74
0.655532
4b7e58f3a5193b6c5409dbb2da2b428a17be2b53
239
py
Python
erri/python/lesson_26/tableau.py
TGITS/programming-workouts
799e805ccf3fd0936ec8ac2417f7193b8e9bcb55
[ "MIT" ]
null
null
null
erri/python/lesson_26/tableau.py
TGITS/programming-workouts
799e805ccf3fd0936ec8ac2417f7193b8e9bcb55
[ "MIT" ]
16
2020-05-30T12:38:13.000Z
2022-02-19T09:23:31.000Z
erri/python/lesson_26/tableau.py
TGITS/programming-workouts
799e805ccf3fd0936ec8ac2417f7193b8e9bcb55
[ "MIT" ]
null
null
null
def séparation_positif_negatif(tableau): t_positif = [] t_negatif = [] for elt in tableau: if elt < 0: t_negatif.append(elt) else: t_positif.append(elt) return t_positif, t_negatif
19.916667
40
0.58159
0ab78bf08db78f0b0c3a4fb5de8765a80b08a439
6,549
py
Python
tests/test_df_profiler.py
XD-DENG/Optimus
13e7b180f0970addae77cafe128bd2a93be138a2
[ "Apache-2.0" ]
1
2020-09-22T13:04:37.000Z
2020-09-22T13:04:37.000Z
tests/test_df_profiler.py
rafaelang/Optimus
809088f41588c968b2e30210f98a494a497b07ff
[ "Apache-2.0" ]
null
null
null
tests/test_df_profiler.py
rafaelang/Optimus
809088f41588c968b2e30210f98a494a497b07ff
[ "Apache-2.0" ]
null
null
null
from pyspark.sql.types import * from optimus import Optimus from optimus.helpers.json import json_enconding from optimus.helpers.functions import deep_sort import unittest from pyspark.ml.linalg import Vectors, VectorUDT, DenseVector import numpy as np nan = np.nan import datetime from pyspark.sql import functions as F from optimus.profiler.profiler import Profiler null = None true = True p= Profiler() op = Optimus(master='local') source_df=op.create.df([('names', StringType(), True),('height(ft)', ShortType(), True),('function', StringType(), True),('rank', ByteType(), True),('age', IntegerType(), True),('weight(t)', FloatType(), True),('japanese name', ArrayType(StringType(),True), True),('last position seen', StringType(), True),('date arrival', StringType(), True),('last date seen', StringType(), True),('attributes', ArrayType(FloatType(),True), True),('Date Type', DateType(), True),('timestamp', TimestampType(), True),('Cybertronian', BooleanType(), True),('function(binary)', BinaryType(), True),('NullType', NullType(), True)], [('Optimus', -28, 'Leader', 10, 5000000, 4.300000190734863, ['Inochi', 'Convoy'], '19.442735,-99.201111', '1980/04/10', '2016/09/10', [8.53439998626709, 4300.0], datetime.date(2016, 9, 10), datetime.datetime(2014, 6, 24, 0, 0), True, bytearray(b'Leader'), None), ('bumbl#ebéé ', 17, 'Espionage', 7, 5000000, 2.0, ['Bumble', 'Goldback'], '10.642707,-71.612534', '1980/04/10', '2015/08/10', [5.334000110626221, 2000.0], datetime.date(2015, 8, 10), datetime.datetime(2014, 6, 24, 0, 0), True, bytearray(b'Espionage'), None), ('ironhide&', 26, 'Security', 7, 5000000, 4.0, ['Roadbuster'], '37.789563,-122.400356', '1980/04/10', '2014/07/10', [7.924799919128418, 4000.0], datetime.date(2014, 6, 24), datetime.datetime(2014, 6, 24, 0, 0), True, bytearray(b'Security'), None), ('Jazz', 13, 'First Lieutenant', 8, 5000000, 1.7999999523162842, ['Meister'], '33.670666,-117.841553', '1980/04/10', '2013/06/10', [3.962399959564209, 1800.0], datetime.date(2013, 6, 24), datetime.datetime(2014, 6, 24, 0, 0), True, bytearray(b'First Lieutenant'), None), ('Megatron', None, 'None', 10, 5000000, 5.699999809265137, ['Megatron'], None, '1980/04/10', '2012/05/10', [None, 5700.0], datetime.date(2012, 5, 10), datetime.datetime(2014, 6, 24, 0, 0), True, bytearray(b'None'), None), ('Metroplex_)^$', 300, 'Battle Station', 8, 5000000, None, ['Metroflex'], None, '1980/04/10', '2011/04/10', [91.44000244140625, None], datetime.date(2011, 4, 10), datetime.datetime(2014, 6, 24, 0, 0), True, bytearray(b'Battle Station'), None), (None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None)]) class Test_df_profiler(unittest.TestCase): maxDiff = None @staticmethod def test_columns_agg(): actual_df =p.columns_agg(source_df,'*') actual_df =json_enconding(actual_df) expected_value =json_enconding({'names': {'count_uniques': 5, 'min': 'Jazz', 'max': 'ironhide&', 'count_na': 1, 'stddev': None, 'kurtosis': None, 'mean': None, 'skewness': None, 'sum': None, 'variance': None, 'zeros': 0}, 'height(ft)': {'count_uniques': 5, 'min': -28, 'max': 300, 'count_na': 2, 'stddev': 132.66612, 'kurtosis': 0.13863, 'mean': 65.6, 'skewness': 1.4049, 'sum': 328, 'variance': 17600.3, 'zeros': 0, 'percentile': {'0.75': 26, '0.95': 300, '0.05': -28, '0.25': 13, '0.5': 17}, 'hist': [{'count': 4.0, 'lower': -28.0, 'upper': 54.0}, {'count': 0.0, 'lower': 54.0, 'upper': 136.0}, {'count': 0.0, 'lower': 136.0, 'upper': 218.0}, {'count': 0.0, 'lower': 218.0, 'upper': 300.0}]}, 'function': {'count_uniques': 6, 'min': 'Battle Station', 'max': 'Security', 'count_na': 1, 'stddev': None, 'kurtosis': None, 'mean': None, 'skewness': None, 'sum': None, 'variance': None, 'zeros': 0}, 'rank': {'count_uniques': 3, 'min': 7, 'max': 10, 'count_na': 1, 'stddev': 1.36626, 'kurtosis': -1.5, 'mean': 8.33333, 'skewness': 0.3818, 'sum': 50, 'variance': 1.86667, 'zeros': 0, 'percentile': {'0.75': 10, '0.95': 10, '0.05': 7, '0.25': 7, '0.5': 8}, 'hist': [{'count': 4.0, 'lower': 7.0, 'upper': 8.5}, {'count': 0.0, 'lower': 8.5, 'upper': 10.0}]}, 'age': {'count_uniques': 1, 'min': 5000000, 'max': 5000000, 'count_na': 1, 'stddev': 0.0, 'kurtosis': nan, 'mean': 5000000.0, 'skewness': nan, 'sum': 30000000, 'variance': 0.0, 'zeros': 0, 'percentile': {'0.75': 5000000, '0.95': 5000000, '0.05': 5000000, '0.25': 5000000, '0.5': 5000000}, 'hist': [{'count': 6, 'lower': 5000000, 'upper': 5000001}]}, 'weight(t)': {'count_uniques': 5, 'min': 1.8, 'max': 5.7, 'count_na': 2, 'stddev': 1.64712, 'kurtosis': -1.43641, 'mean': 3.56, 'skewness': 0.06521, 'sum': 17.8, 'variance': 2.713, 'zeros': 0, 'percentile': {'0.75': 4.300000190734863, '0.95': 5.699999809265137, '0.05': 1.7999999523162842, '0.25': 2.0, '0.5': 4.0}, 'hist': [{'count': 1.0, 'lower': 1.8, 'upper': 2.78}, {'count': 0.0, 'lower': 2.78, 'upper': 3.75}, {'count': 2.0, 'lower': 3.75, 'upper': 4.73}, {'count': 1.0, 'lower': 4.73, 'upper': 5.7}]}, 'japanese name': {'count_uniques': 6, 'min': ['Bumble', 'Goldback'], 'max': ['Roadbuster'], 'count_na': 1}, 'last position seen': {'count_uniques': 4, 'min': '10.642707,-71.612534', 'max': '37.789563,-122.400356', 'count_na': 3, 'stddev': None, 'kurtosis': None, 'mean': None, 'skewness': None, 'sum': None, 'variance': None, 'zeros': 0}, 'date arrival': {'count_uniques': 1, 'min': '1980/04/10', 'max': '1980/04/10', 'count_na': 1, 'stddev': None, 'kurtosis': None, 'mean': None, 'skewness': None, 'sum': None, 'variance': None, 'zeros': 0}, 'last date seen': {'count_uniques': 6, 'min': '2011/04/10', 'max': '2016/09/10', 'count_na': 1, 'stddev': None, 'kurtosis': None, 'mean': None, 'skewness': None, 'sum': None, 'variance': None, 'zeros': 0}, 'attributes': {'count_uniques': 6, 'min': [None, 5700.0], 'max': [91.44000244140625, None], 'count_na': 1}, 'Date Type': {'count_uniques': 6, 'min': datetime.date(2011, 4, 10), 'max': datetime.date(2016, 9, 10), 'count_na': 1}, 'timestamp': {'count_uniques': 1, 'min': datetime.datetime(2014, 6, 24, 0, 0), 'max': datetime.datetime(2014, 6, 24, 0, 0), 'count_na': 1}, 'Cybertronian': {'count_uniques': 1, 'min': 1, 'max': 1, 'count_na': 1}, 'function(binary)': {'count_uniques': 6, 'min': bytearray(b'Battle Station'), 'max': bytearray(b'Security'), 'count_na': 1}, 'NullType': {'count_uniques': 0, 'min': None, 'max': None, 'count_na': 7}, 'p_count_na': 100.0, 'p_count_uniques': 0.0, 'range': 3.9000000000000004, 'median': 4.0, 'interquartile_range': 2.3000001907348633, 'coef_variation': 0.46267, 'mad': 1.7}) assert(expected_value == actual_df)
261.96
3,674
0.636128
e0aa9347ca7b1c4e39758c1da9173321b499d5cc
3,009
py
Python
tests/performance_benchmarking/island_benchmarks.py
nolanstr/bingo_multi_stage
7a88c4f5c59268d0612664be5864765db2edad51
[ "Apache-2.0" ]
null
null
null
tests/performance_benchmarking/island_benchmarks.py
nolanstr/bingo_multi_stage
7a88c4f5c59268d0612664be5864765db2edad51
[ "Apache-2.0" ]
null
null
null
tests/performance_benchmarking/island_benchmarks.py
nolanstr/bingo_multi_stage
7a88c4f5c59268d0612664be5864765db2edad51
[ "Apache-2.0" ]
null
null
null
import timeit import unittest.mock as mock import numpy as np from bingo.symbolic_regression.agraph.crossover import AGraphCrossover from bingo.symbolic_regression.agraph.mutation import AGraphMutation from bingo.symbolic_regression.agraph.generator import AGraphGenerator from bingo.symbolic_regression.agraph.component_generator \ import ComponentGenerator from bingo.symbolic_regression.explicit_regression import ExplicitRegression, \ ExplicitTrainingData from bingo.evolutionary_algorithms.age_fitness import AgeFitnessEA from bingo.evaluation.evaluation import Evaluation from bingo.evolutionary_optimizers.island import Island from bingo.local_optimizers.continuous_local_opt \ import ContinuousLocalOptimization from benchmark_data import StatsPrinter POP_SIZE = 128 STACK_SIZE = 64 MUTATION_PROBABILITY = 0.4 CROSSOVER_PROBABILITY = 0.4 NUM_POINTS = 100 START = -10 STOP = 10 ERROR_TOLERANCE = 10e-9 SEED = 20 def init_x_vals(start, stop, num_points): return np.linspace(start, stop, num_points).reshape([-1, 1]) def equation_eval(x): return x**2 + 3.5*x**3 def init_island(): np.random.seed(15) x = init_x_vals(START, STOP, NUM_POINTS) y = equation_eval(x) training_data = ExplicitTrainingData(x, y) component_generator = ComponentGenerator(x.shape[1]) component_generator.add_operator(2) component_generator.add_operator(3) component_generator.add_operator(4) crossover = AGraphCrossover() mutation = AGraphMutation(component_generator) agraph_generator = AGraphGenerator(STACK_SIZE, component_generator) fitness = ExplicitRegression(training_data=training_data) local_opt_fitness = ContinuousLocalOptimization(fitness, algorithm='lm') evaluator = Evaluation(local_opt_fitness) ea_algorithm = AgeFitnessEA(evaluator, agraph_generator, crossover, mutation, MUTATION_PROBABILITY, CROSSOVER_PROBABILITY, POP_SIZE) island = Island(ea_algorithm, agraph_generator, POP_SIZE) return island TEST_ISLAND = init_island() class IslandStatsPrinter(StatsPrinter): def __init__(self): super().__init__() self._output = ["-"*24+":::: REGRESSION BENCHMARKS ::::" + "-"*23, self._header_format_string.format("NAME", "MEAN", "STD", "MIN", "MAX"), "-"*78] def explicit_regression_benchmark(): island = init_island() while island.get_best_individual().fitness > ERROR_TOLERANCE: island._execute_generational_step() def do_benchmarking(): printer = IslandStatsPrinter() printer.add_stats("Explicit Regression", timeit.repeat(explicit_regression_benchmark, number=4, repeat=4)) printer.print() if __name__ == "__main__": do_benchmarking()
31.34375
79
0.691924
6806288512e88d9c4050366bae98ab17cdaf2c0c
2,346
py
Python
filter.py
jcomeauictx/mitmproxy
6d09f5dcad7becb40f2048b2678079b34ca3ea6b
[ "MIT" ]
null
null
null
filter.py
jcomeauictx/mitmproxy
6d09f5dcad7becb40f2048b2678079b34ca3ea6b
[ "MIT" ]
null
null
null
filter.py
jcomeauictx/mitmproxy
6d09f5dcad7becb40f2048b2678079b34ca3ea6b
[ "MIT" ]
null
null
null
#!/usr/bin/python 'https://stackoverflow.com/a/45044199/493161' import os, time LOGDIR = os.getenv('LOGDIR') or os.path.join('var', 'log', 'mitmproxy') HOME = os.path.expanduser('~') CONFDIR = os.getenv('CONFDIR') or os.path.join(HOME, '.mitmproxy') def response(flow): ''' Log response to a unique log for these host-port combinations ''' clientfilter = [] filterfile = os.path.join(CONFDIR, 'clientfilter.txt') if os.path.exists(filterfile): with open(filterfile) as infile: clientfilter = [line.rstrip() for line in infile.readlines()] print(f'clientfilter: {clientfilter}') fromaddr = flow.client_conn.address fromhost = fromaddr[0] fromport = str(fromaddr[1]) tohost = flow.request.host if clientfilter and fromhost not in clientfilter: print(f'***** KILLING CONNECTION FROM {fromhost} *****') flow.kill() toport = str(flow.request.port) unixtime = str(int(time.time())) logname = '_'.join((fromhost, tohost, unixtime)) logdir = os.path.join(LOGDIR, 'traffic', tohost) os.makedirs(logdir, exist_ok=True) logpath = os.path.join(logdir, logname) with open(logpath, 'a') as logfile: print(f'Request from {fromhost}:{fromport} to' f' {tohost}:{toport}', file=logfile) print(f'Headers:', file=logfile) print(f'{flow.request.method} {flow.request.path}' f' {flow.request.http_version}', file=logfile) for k, v in flow.request.headers.items(): value=' '.join(v.split()) print(f'{k}: {value}', file=logfile) print(file=logfile) print('Request body:', file=logfile) print(flow.request.content.decode(), file=logfile) print(file=logfile) print(f'Response from {tohost}:{toport} to' f' {fromhost}:{fromport}', file=logfile) print(f'Headers:', file=logfile) reason = flow.response.reason or '' print(f'{flow.response.http_version} {flow.response.status_code}' f' {reason}', file=logfile) for k, v in flow.response.headers.items(): value=' '.join(v.split()) print(f'{k}: {value}', file=logfile) print(file=logfile) print('Response payload:', file=logfile) print(flow.response.content.decode(), file=logfile)
41.157895
73
0.618926
d496e5724c70bd6b2b270eda0302ccf1ea71827c
19,976
py
Python
dynamic_rest/viewsets.py
sagargp/dynamic-rest
116dccb5e3c32b2dd9009f0700d5fa5f2a187c23
[ "MIT" ]
null
null
null
dynamic_rest/viewsets.py
sagargp/dynamic-rest
116dccb5e3c32b2dd9009f0700d5fa5f2a187c23
[ "MIT" ]
null
null
null
dynamic_rest/viewsets.py
sagargp/dynamic-rest
116dccb5e3c32b2dd9009f0700d5fa5f2a187c23
[ "MIT" ]
1
2018-10-22T20:55:42.000Z
2018-10-22T20:55:42.000Z
"""This module contains custom viewset classes.""" from django.core.exceptions import ObjectDoesNotExist from django.http import QueryDict from django.utils import six from rest_framework import exceptions, status, viewsets from rest_framework.exceptions import ValidationError from rest_framework.renderers import BrowsableAPIRenderer from rest_framework.response import Response from dynamic_rest.conf import settings from dynamic_rest.filters import DynamicFilterBackend, DynamicSortingFilter from dynamic_rest.metadata import DynamicMetadata from dynamic_rest.pagination import DynamicPageNumberPagination from dynamic_rest.processors import SideloadingProcessor from dynamic_rest.utils import is_truthy UPDATE_REQUEST_METHODS = ('PUT', 'PATCH', 'POST') DELETE_REQUEST_METHOD = 'DELETE' class QueryParams(QueryDict): """ Extension of Django's QueryDict. Instantiated from a DRF Request object, and returns a mutable QueryDict subclass. Also adds methods that might be useful for our usecase. """ def __init__(self, query_params, *args, **kwargs): if hasattr(query_params, 'urlencode'): query_string = query_params.urlencode() else: assert isinstance( query_params, (six.string_types, six.binary_type) ) query_string = query_params kwargs['mutable'] = True super(QueryParams, self).__init__(query_string, *args, **kwargs) def add(self, key, value): """ Method to accept a list of values and append to flat list. QueryDict.appendlist(), if given a list, will append the list, which creates nested lists. In most cases, we want to be able to pass in a list (for convenience) but have it appended into a flattened list. TODO: Possibly throw an error if add() is used on a non-list param. """ if isinstance(value, list): for val in value: self.appendlist(key, val) else: self.appendlist(key, value) class WithDynamicViewSetMixin(object): """A viewset that can support dynamic API features. Attributes: features: A list of features supported by the viewset. meta: Extra data that is added to the response by the DynamicRenderer. """ DEBUG = 'debug' SIDELOADING = 'sideloading' INCLUDE = 'include[]' EXCLUDE = 'exclude[]' FILTER = 'filter{}' SORT = 'sort[]' PAGE = settings.PAGE_QUERY_PARAM PER_PAGE = settings.PAGE_SIZE_QUERY_PARAM # TODO: add support for `sort{}` pagination_class = DynamicPageNumberPagination metadata_class = DynamicMetadata features = ( DEBUG, INCLUDE, EXCLUDE, FILTER, PAGE, PER_PAGE, SORT, SIDELOADING ) meta = None filter_backends = (DynamicFilterBackend, DynamicSortingFilter) def initialize_request(self, request, *args, **kargs): """ Override DRF initialize_request() method to swap request.GET (which is aliased by request.query_params) with a mutable instance of QueryParams, and to convert request MergeDict to a subclass of dict for consistency (MergeDict is not a subclass of dict) """ def handle_encodings(request): """ WSGIRequest does not support Unicode values in the query string. WSGIRequest handling has a history of drifting behavior between combinations of Python versions, Django versions and DRF versions. Django changed its QUERY_STRING handling here: https://goo.gl/WThXo6. DRF 3.4.7 changed its behavior here: https://goo.gl/0ojIIO. """ try: return QueryParams(request.GET) except UnicodeEncodeError: pass s = request.environ.get('QUERY_STRING', '') try: s = s.encode('utf-8') except UnicodeDecodeError: pass return QueryParams(s) request.GET = handle_encodings(request) request = super(WithDynamicViewSetMixin, self).initialize_request( request, *args, **kargs ) try: # Django<1.9, DRF<3.2 # MergeDict doesn't have the same API as dict. # Django has deprecated MergeDict and DRF is moving away from # using it - thus, were comfortable replacing it with a QueryDict # This will allow the data property to have normal dict methods. from django.utils.datastructures import MergeDict if isinstance(request._full_data, MergeDict): data_as_dict = request.data.dicts[0] for d in request.data.dicts[1:]: data_as_dict.update(d) request._full_data = data_as_dict except: pass return request def get_renderers(self): """Optionally block Browsable API rendering. """ renderers = super(WithDynamicViewSetMixin, self).get_renderers() if settings.ENABLE_BROWSABLE_API is False: return [ r for r in renderers if not isinstance(r, BrowsableAPIRenderer) ] else: return renderers def get_request_feature(self, name): """Parses the request for a particular feature. Arguments: name: A feature name. Returns: A feature parsed from the URL if the feature is supported, or None. """ if '[]' in name: # array-type return self.request.query_params.getlist( name) if name in self.features else None elif '{}' in name: # object-type (keys are not consistent) return self._extract_object_params( name) if name in self.features else {} else: # single-type return self.request.query_params.get( name) if name in self.features else None def _extract_object_params(self, name): """ Extract object params, return as dict """ params = self.request.query_params.lists() params_map = {} prefix = name[:-1] offset = len(prefix) for name, value in params: if name.startswith(prefix): if name.endswith('}'): name = name[offset:-1] elif name.endswith('}[]'): # strip off trailing [] # this fixes an Ember queryparams issue name = name[offset:-3] else: # malformed argument like: # filter{foo=bar raise exceptions.ParseError( '"%s" is not a well-formed filter key.' % name ) else: continue params_map[name] = value return params_map def get_queryset(self, queryset=None): """ Returns a queryset for this request. Arguments: queryset: Optional root-level queryset. """ serializer = self.get_serializer() return getattr(self, 'queryset', serializer.Meta.model.objects.all()) def get_request_fields(self): """Parses the INCLUDE and EXCLUDE features. Extracts the dynamic field features from the request parameters into a field map that can be passed to a serializer. Returns: A nested dict mapping serializer keys to True (include) or False (exclude). """ if hasattr(self, '_request_fields'): return self._request_fields include_fields = self.get_request_feature(self.INCLUDE) exclude_fields = self.get_request_feature(self.EXCLUDE) request_fields = {} for fields, include in( (include_fields, True), (exclude_fields, False)): if fields is None: continue for field in fields: field_segments = field.split('.') num_segments = len(field_segments) current_fields = request_fields for i, segment in enumerate(field_segments): last = i == num_segments - 1 if segment: if last: current_fields[segment] = include else: if segment not in current_fields: current_fields[segment] = {} current_fields = current_fields[segment] elif not last: # empty segment must be the last segment raise exceptions.ParseError( '"%s" is not a valid field.' % field ) self._request_fields = request_fields return request_fields def get_request_debug(self): debug = self.get_request_feature(self.DEBUG) return is_truthy(debug) if debug is not None else None def get_request_sideloading(self): sideloading = self.get_request_feature(self.SIDELOADING) return is_truthy(sideloading) if sideloading is not None else None def is_update(self): if ( self.request and self.request.method.upper() in UPDATE_REQUEST_METHODS ): return True else: return False def is_delete(self): if ( self.request and self.request.method.upper() == DELETE_REQUEST_METHOD ): return True else: return False def get_serializer(self, *args, **kwargs): if 'request_fields' not in kwargs: kwargs['request_fields'] = self.get_request_fields() if 'sideloading' not in kwargs: kwargs['sideloading'] = self.get_request_sideloading() if 'debug' not in kwargs: kwargs['debug'] = self.get_request_debug() if 'envelope' not in kwargs: kwargs['envelope'] = True if self.is_update(): kwargs['include_fields'] = '*' return super( WithDynamicViewSetMixin, self ).get_serializer( *args, **kwargs ) def paginate_queryset(self, *args, **kwargs): if self.PAGE in self.features: # make sure pagination is enabled if ( self.PER_PAGE not in self.features and self.PER_PAGE in self.request.query_params ): # remove per_page if it is disabled self.request.query_params[self.PER_PAGE] = None return super( WithDynamicViewSetMixin, self ).paginate_queryset( *args, **kwargs ) return None def _prefix_inex_params(self, request, feature, prefix): values = self.get_request_feature(feature) if not values: return del request.query_params[feature] request.query_params.add( feature, [prefix + val for val in values] ) def list_related(self, request, pk=None, field_name=None): """Fetch related object(s), as if sideloaded (used to support link objects). This method gets mapped to `/<resource>/<pk>/<field_name>/` by DynamicRouter for all DynamicRelationField fields. Generally, this method probably shouldn't be overridden. An alternative implementation would be to generate reverse queries. For an exploration of that approach, see: https://gist.github.com/ryochiji/54687d675978c7d96503 """ # Explicitly disable support filtering. Applying filters to this # endpoint would require us to pass through sideload filters, which # can have unintended consequences when applied asynchronously. if self.get_request_feature(self.FILTER): raise ValidationError( 'Filtering is not enabled on relation endpoints.' ) # Prefix include/exclude filters with field_name so it's scoped to # the parent object. field_prefix = field_name + '.' self._prefix_inex_params(request, self.INCLUDE, field_prefix) self._prefix_inex_params(request, self.EXCLUDE, field_prefix) # Filter for parent object, include related field. self.request.query_params.add('filter{pk}', pk) self.request.query_params.add(self.INCLUDE, field_prefix) # Get serializer and field. serializer = self.get_serializer() field = serializer.fields.get(field_name) if field is None: raise ValidationError('Unknown field: "%s".' % field_name) # Query for root object, with related field prefetched queryset = self.get_queryset() queryset = self.filter_queryset(queryset) obj = queryset.first() if not obj: return Response("Not found", status=404) # Serialize the related data. Use the field's serializer to ensure # it's configured identically to the sideload case. serializer = field.get_serializer(envelope=True) try: # TODO(ryo): Probably should use field.get_attribute() but that # seems to break a bunch of things. Investigate later. serializer.instance = getattr(obj, field.source) except ObjectDoesNotExist: # See: # http://jsonapi.org/format/#fetching-relationships-responses-404 # This is a case where the "link URL exists but the relationship # is empty" and therefore must return a 200. return Response({}, status=200) return Response(serializer.data) def get_extra_filters(self, request): # Override this method to enable addition of extra filters # (i.e., a Q()) so custom filters can be added to the queryset without # running into https://code.djangoproject.com/ticket/18437 # which, without this, would mean that filters added to the queryset # after this is called may not behave as expected. return None class DynamicModelViewSet(WithDynamicViewSetMixin, viewsets.ModelViewSet): ENABLE_BULK_PARTIAL_CREATION = settings.ENABLE_BULK_PARTIAL_CREATION ENABLE_BULK_UPDATE = settings.ENABLE_BULK_UPDATE def _get_bulk_payload(self, request): plural_name = self.get_serializer_class().get_plural_name() if isinstance(request.data, list): return request.data elif plural_name in request.data and len(request.data) == 1: return request.data[plural_name] return None def _bulk_update(self, data, partial=False): # Restrict the update to the filtered queryset. serializer = self.get_serializer( self.filter_queryset(self.get_queryset()), data=data, many=True, partial=partial ) serializer.is_valid(raise_exception=True) self.perform_update(serializer) return Response(serializer.data, status=status.HTTP_200_OK) def update(self, request, *args, **kwargs): """Either update a single or many model instances. Use list to indicate bulk update. Examples: PATCH /dogs/1/ { 'fur': 'white' } PATCH /dogs/ { 'dogs': [ {'id': 1, 'fur': 'white'}, {'id': 2, 'fur': 'black'}, {'id': 3, 'fur': 'yellow'} ] } PATCH /dogs/?filter{fur.contains}=brown [ {'id': 3, 'fur': 'gold'} ] """ if self.ENABLE_BULK_UPDATE: partial = 'partial' in kwargs bulk_payload = self._get_bulk_payload(request) if bulk_payload: return self._bulk_update(bulk_payload, partial) return super(DynamicModelViewSet, self).update(request, *args, **kwargs) def _create_many(self, data): items = [] errors = [] result = {} serializers = [] for entry in data: serializer = self.get_serializer(data=entry) try: serializer.is_valid(raise_exception=True) except exceptions.ValidationError as e: errors.append({ 'detail': str(e), 'source': entry }) else: if self.ENABLE_BULK_PARTIAL_CREATION: self.perform_create(serializer) items.append( serializer.to_representation(serializer.instance)) else: serializers.append(serializer) if not self.ENABLE_BULK_PARTIAL_CREATION and not errors: for serializer in serializers: self.perform_create(serializer) items.append( serializer.to_representation(serializer.instance)) # Populate serialized data to the result. result = SideloadingProcessor( self.get_serializer(), items ).data # Include errors if any. if errors: result['errors'] = errors code = (status.HTTP_201_CREATED if not errors else status.HTTP_400_BAD_REQUEST) return Response(result, status=code) def create(self, request, *args, **kwargs): """ Either create a single or many model instances in bulk using the Serializer's many=True ability from Django REST >= 2.2.5. The data can be represented by the serializer name (single or plural forms), dict or list. Examples: POST /dogs/ { "name": "Fido", "age": 2 } POST /dogs/ { "dog": { "name": "Lucky", "age": 3 } } POST /dogs/ { "dogs": [ {"name": "Fido", "age": 2}, {"name": "Lucky", "age": 3} ] } POST /dogs/ [ {"name": "Fido", "age": 2}, {"name": "Lucky", "age": 3} ] """ bulk_payload = self._get_bulk_payload(request) if bulk_payload: return self._create_many(bulk_payload) return super(DynamicModelViewSet, self).create( request, *args, **kwargs) def _destroy_many(self, data): instances = self.get_queryset().filter( id__in=[d['id'] for d in data] ).distinct() for instance in instances: self.check_object_permissions(self.request, instance) self.perform_destroy(instance) return Response(status=status.HTTP_204_NO_CONTENT) def destroy(self, request, *args, **kwargs): """ Either delete a single or many model instances in bulk DELETE /dogs/ { "dogs": [ {"id": 1}, {"id": 2} ] } DELETE /dogs/ [ {"id": 1}, {"id": 2} ] """ bulk_payload = self._get_bulk_payload(request) if bulk_payload: return self._destroy_many(bulk_payload) lookup_url_kwarg = self.lookup_url_kwarg or self.lookup_field if lookup_url_kwarg not in kwargs: # assume that it is a poorly formatted bulk request return Response(status=status.HTTP_405_METHOD_NOT_ALLOWED) return super(DynamicModelViewSet, self).destroy( request, *args, **kwargs )
34.560554
79
0.579095
e7b927fe8c62b162f5d2ea94d699fcae7b414a28
4,901
py
Python
optimus/engines/functions.py
Pcosmin/Optimus
ef3306d1b752bbfb1959ddb9103786acb8e9b9ba
[ "Apache-2.0" ]
1
2020-09-22T13:04:37.000Z
2020-09-22T13:04:37.000Z
optimus/engines/functions.py
rafaelang/Optimus
809088f41588c968b2e30210f98a494a497b07ff
[ "Apache-2.0" ]
null
null
null
optimus/engines/functions.py
rafaelang/Optimus
809088f41588c968b2e30210f98a494a497b07ff
[ "Apache-2.0" ]
null
null
null
# Aggregations from optimus.engines.base.functions import Functions def min(series): return Functions.min(series) def max(series): return Functions.max(series) def kurtosis(series): return series.functions.kurtosis() # return Functions.kurtosis(series) def skew(series): return series.functions.skew() # return Functions.kurtosis(series) def mean(series): return Functions.mean(series) def mad(series, *args): return Functions.mad(series, *args) def mode(series): return Functions.mode(series) def std(series): return Functions.std(series) def sum(series): return Functions.sum(series) def var(series): return Functions.var(series) # Math def abs(series): return Functions.abs(series) def exp(series): return series.functions.exp() def sqrt(series): return series.functions.sqrt() def mod(series, other): return Functions.mod(series, other) def pow(series, other): return Functions.pow(series, other) def floor(series): return series.functions.floor() def ceil(series): return series.functions.ceil() def round(series, decimals): return Functions.round(series, decimals) def range(series): return series.functions.range() def radians(series): return series.functions.radian() def degrees(series): return series.functions.degrees() def ln(series): return series.functions.ln() def log(series): return series.functions.log() # Trigonometrics def sin(series): return series.functions.sin() def cos(series): return series.functions.cos() def tan(series): return series.functions.tan() def asin(series): return series.functions.asin() def acos(series): return series.functions.acos() def atan(series): return series.functions.atan() def sinh(series): return series.functions.sinh() def cosh(series): return series.functions.cosh() def tanh(series): return series.functions.tanh() def asinh(series): return series.functions.asinh() def acosh(series): return series.functions.acosh() def atanh(series): return series.functions.atanh() # strings def lower(series): return Functions.lower(series) def upper(series): return Functions.upper(series) def extract(series): return Functions.extract(series) def slice(series): return Functions.slice(series) def percentile(series, *args): return Functions.percentile(series, *args) def proper(series): return Functions.proper(series) def trim(series): return Functions.trim(series) def remove_white_spaces(series): return Functions.remove_white_spaces(series) def len(series): return Functions.len(series) def find(series): return Functions.find(series) def rfind(series): return Functions.rfind(series) def left(series): return Functions.left(series) def right(series): return Functions.right(series) def starts_with(series): return Functions.starts_with(series) def ends_with(series): return Functions.ends_with(series) def char(series): return Functions.char(series) def unicode(series): return Functions.unicode(series) def exact(series): return Functions.exact(series) # dates def date_format(series, current_format=None, output_format=None): return series.functions.date_format(current_format=current_format, output_format=output_format) def year(series, format): return Functions.year(series, format) def month(series, format): return Functions.month(series, format) def day(series, format): return Functions.day(series, format) def hour(series, format): return Functions.hour(series, format) def minute(series, format): return Functions.minute(series, format) def second(series, format): return Functions.second(series, format) def weekday(series, format): return Functions.weekday(series, format) def years_between(series, date_format): return series.functions.years_between(date_format) # other def count_na(series): return Functions.count_na(series) def count_zeros(series): return Functions.count_zeros(series) def count_uniques(series, *args): return Functions.count_uniques(series, *args) def unique(series, *args): return Functions.unique(series, *args) def replace_string(series, *args): return series.functions.replace_string(*args) def replace_words(series, *args): return Functions.replace_words(series, *args) def replace_match(series, *args): return Functions.replace_match(series, *args) def remove_special_chars(series, *args): return series.functions.remove_special_chars() # return Functions.remove_special_chars(series, *args) def remove_accents(series): return series.functions.remove_accents() def clip(series, lower_bound, upper_bound): return series.functions.clip(lower_bound, upper_bound)
16.282392
99
0.725566
c8f6dc79e3b8698a8966084a2852180d5ee19050
9,072
py
Python
mlks/runner/run_http.py
ddsky/keras-machine-learning-framework
049ee78984f2f61165ff67506b0ced74b2928be9
[ "MIT" ]
1
2020-11-10T09:00:54.000Z
2020-11-10T09:00:54.000Z
mlks/runner/run_http.py
ddsky/keras-machine-learning-framework
049ee78984f2f61165ff67506b0ced74b2928be9
[ "MIT" ]
null
null
null
mlks/runner/run_http.py
ddsky/keras-machine-learning-framework
049ee78984f2f61165ff67506b0ced74b2928be9
[ "MIT" ]
null
null
null
# Machine Learning Keras Suite # # The base http server for debugging purposes # # Author: Björn Hempel <bjoern@hempel.li> # Date: 13.10.2019 # Web: https://github.com/bjoern-hempel/machine-learning-keras-suite # # LICENSE # # MIT License # # Copyright (c) 2019 Björn Hempel <bjoern@hempel.li> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import ssl import click import os import sys from http.server import HTTPServer from mlks.http.simple_http_request_handler import SimpleHTTPRequestHandler from mlks.helper.filesystem import get_root_project_path, get_formatted_file_size, get_changed_date, get_database class HttpRunner: @staticmethod def POST_prediction_hook(argument, upload_data): # only flower and food models are allowed in that moment if argument not in ['flower', 'food']: raise AssertionError('Unsupported model type "%s".' % argument) # get file to evaluate evaluation_file = upload_data['upload_path'] evaluation_file_web = upload_data['upload_path_web'] prediction_array = HttpRunner.get_fake_prediction_array(argument) print(prediction_array) prediction_class = prediction_array['prediction_class'] prediction_accuracy = prediction_array['prediction_accuracy'] prediction_overview_array = prediction_array['prediction_array'] return_value = { 'evaluated_file': evaluation_file, 'graph_file': evaluation_file, 'evaluated_file_web': evaluation_file_web, 'graph_file_web': evaluation_file_web, 'prediction_overview_array': prediction_overview_array, 'prediction_class': prediction_class, 'prediction_accuracy': prediction_accuracy, 'prediction_time': 0.1 } return return_value @staticmethod def GET_prediction_get_model_hook(argument): return HttpRunner.get_model_data(argument) @staticmethod def POST_prediction_get_model_hook(argument): return HttpRunner.get_model_data(argument) @staticmethod def get_model_data(argument): if argument not in SimpleHTTPRequestHandler.allowed_model_types: raise AssertionError('Unknown model type "%s"' % argument) model_path = 'C:/Users/bjoern/data/processed/flower_10/flower_10_1.inceptionv3.best.17-0.95.h5' model_name = os.path.basename(model_path) model_size = get_formatted_file_size(model_path) if os.path.isfile(model_path) else '121.12 MB' model_classes = 12 model_learning_epochs = 20 model_date = get_changed_date(model_path) if os.path.isfile(model_path) else '2019-10-20T11:54:25.125386+00:00' model_version = '1.02' return { 'model_name': model_name, 'model_size': model_size, 'model_classes': model_classes, 'model_learning_epochs': model_learning_epochs, 'model_date': model_date, 'model_version': model_version } @staticmethod @click.command() @click.option('--data-path', '-d', required=True, type=str) @click.option('--port', '-p', required=False, type=int, default=8080, show_default=True) @click.option('--port-ssl', '-p', required=False, type=int, default=4443, show_default=True) @click.option('--bind_ip', '-i', required=False, type=str, default='0.0.0.0', show_default=True) def run(data_path, port, port_ssl, bind_ip): """This scripts starts a simple demo http service for testing purpose.""" try: SimpleHTTPRequestHandler.set_hook('POST_prediction', { 'lambda': HttpRunner.POST_prediction_hook, 'arguments': [] }) SimpleHTTPRequestHandler.set_hook('POST_prediction_get_model', { 'lambda': HttpRunner.POST_prediction_get_model_hook, 'arguments': [] }) SimpleHTTPRequestHandler.set_hook('GET_prediction_get_model', { 'lambda': HttpRunner.GET_prediction_get_model_hook, 'arguments': [] }) SimpleHTTPRequestHandler.set_property('root_data_path', data_path) SimpleHTTPRequestHandler.set_property('root_data_path_web', '/') SimpleHTTPRequestHandler.set_property('root_project_path', get_root_project_path()) use_ssl = False port = port_ssl if use_ssl else port httpd = HTTPServer((bind_ip, port), SimpleHTTPRequestHandler) print('Webserver started on port %s:%d..' % (bind_ip, port)) # activate ssl (openssl req -newkey rsa:2048 -new -nodes -keyout key.pem -out csr.pem) if use_ssl: httpd.socket = ssl.wrap_socket( httpd.socket, keyfile='./key.pem', certfile='./csr.pem', server_side=True ) httpd.serve_forever() except KeyboardInterrupt: print('^C received, shutting down the web server') httpd.socket.close() @staticmethod def get_fake_prediction_array(model_type): prediction_array = { 'flower': { 'prediction_class': 'dahlia', 'prediction_accuracy': 94.21, 'prediction_array': [ { 'class_name': 'dahlia', 'predicted_value': 0.9421 }, { 'class_name': 'sunflower', 'predicted_value': 0.0309 }, { 'class_name': 'rose', 'predicted_value': 0.0162 }, { 'class_name': 'coneflower', 'predicted_value': 0.0084 }, { 'class_name': 'daisy', 'predicted_value': 0.0010 } ] }, 'food': { 'prediction_class': 'pizza', 'prediction_accuracy': 94.21, 'prediction_array': [ { 'class_name': 'pizza', 'predicted_value': 0.9421 }, { 'class_name': 'burger', 'predicted_value': 0.0309 }, { 'class_name': 'salad', 'predicted_value': 0.0162 }, { 'class_name': 'brownies', 'predicted_value': 0.0084 }, { 'class_name': 'martini_on_the_rock', 'predicted_value': 0.0011 }, { 'class_name': 'dogs', 'predicted_value': 0.0010 }, { 'class_name': 'dog', 'predicted_value': 0.0009 }, { 'class_name': 'hot dogs', 'predicted_value': 0.0008 }, { 'class_name': 'hot dog', 'predicted_value': 0.0007 }, { 'class_name': 'hotdog', 'predicted_value': 0.0006 }, { 'class_name': 'cola', 'predicted_value': 0.0006 } ] } } if model_type not in prediction_array: return [] return prediction_array[model_type] def run(): http_runner = HttpRunner() http_runner.run()
37.958159
119
0.554563
0da0f34900c917f7b6f4a901b36a3959b02d4254
41,966
py
Python
src/python/pants/engine/internals/graph.py
g-cassie/pants
b73fe2816c62d265975122234013c08df9f9f4dd
[ "Apache-2.0" ]
null
null
null
src/python/pants/engine/internals/graph.py
g-cassie/pants
b73fe2816c62d265975122234013c08df9f9f4dd
[ "Apache-2.0" ]
null
null
null
src/python/pants/engine/internals/graph.py
g-cassie/pants
b73fe2816c62d265975122234013c08df9f9f4dd
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import annotations import functools import itertools import logging import os.path from dataclasses import dataclass from pathlib import PurePath from typing import Dict, Iterable, List, NamedTuple, Optional, Sequence, Set, Tuple, Type from pants.base.exceptions import ResolveError from pants.base.specs import ( AddressSpecs, AscendantAddresses, FilesystemLiteralSpec, FilesystemSpecs, Specs, ) from pants.engine.addresses import ( Address, Addresses, AddressInput, BuildFileAddress, UnparsedAddressInputs, ) from pants.engine.collection import Collection from pants.engine.fs import ( EMPTY_SNAPSHOT, Digest, MergeDigests, PathGlobs, Paths, Snapshot, SpecsSnapshot, ) from pants.engine.internals.target_adaptor import TargetAdaptor from pants.engine.rules import Get, MultiGet, collect_rules, rule from pants.engine.target import ( Dependencies, DependenciesRequest, ExplicitlyProvidedDependencies, FieldSet, FieldSetsPerTarget, FieldSetsPerTargetRequest, GeneratedSources, GenerateSourcesRequest, HydratedSources, HydrateSourcesRequest, InferDependenciesRequest, InferredDependencies, InjectDependenciesRequest, InjectedDependencies, NoApplicableTargetsBehavior, RegisteredTargetTypes, SecondaryOwnerMixin, Sources, SourcesPaths, SourcesPathsRequest, SpecialCasedDependencies, Subtargets, Target, TargetRootsToFieldSets, TargetRootsToFieldSetsRequest, Targets, TransitiveTargets, TransitiveTargetsRequest, UnexpandedTargets, UnrecognizedTargetTypeException, WrappedTarget, generate_subtarget, generate_subtarget_address, ) from pants.engine.unions import UnionMembership from pants.option.global_options import GlobalOptions, OwnersNotFoundBehavior from pants.source.filespec import matches_filespec from pants.util.docutil import doc_url from pants.util.logging import LogLevel from pants.util.ordered_set import FrozenOrderedSet, OrderedSet logger = logging.getLogger(__name__) # ----------------------------------------------------------------------------------------------- # Address -> Target(s) # ----------------------------------------------------------------------------------------------- @rule async def resolve_unexpanded_targets(addresses: Addresses) -> UnexpandedTargets: wrapped_targets = await MultiGet(Get(WrappedTarget, Address, a) for a in addresses) return UnexpandedTargets(wrapped_target.target for wrapped_target in wrapped_targets) @rule async def generate_subtargets(address: Address) -> Subtargets: if address.is_file_target: raise ValueError(f"Cannot generate file Targets for a file Address: {address}") wrapped_build_target = await Get(WrappedTarget, Address, address) build_target = wrapped_build_target.target if not build_target.has_field(Dependencies) or not build_target.has_field(Sources): # If a target type does not support dependencies, we do not split it, as that would prevent # the BUILD target from depending on its splits. return Subtargets(build_target, ()) # Generate a subtarget per source. paths = await Get(SourcesPaths, SourcesPathsRequest(build_target[Sources])) wrapped_subtargets = await MultiGet( Get( WrappedTarget, Address, generate_subtarget_address(address, full_file_name=subtarget_file), ) for subtarget_file in paths.files ) return Subtargets(build_target, tuple(wt.target for wt in wrapped_subtargets)) @rule async def resolve_target( address: Address, registered_target_types: RegisteredTargetTypes, union_membership: UnionMembership, ) -> WrappedTarget: if address.is_file_target: build_target = await Get(WrappedTarget, Address, address.maybe_convert_to_build_target()) subtarget = generate_subtarget( build_target.target, full_file_name=address.filename, union_membership=union_membership ) return WrappedTarget(subtarget) target_adaptor = await Get(TargetAdaptor, Address, address) target_type = registered_target_types.aliases_to_types.get(target_adaptor.type_alias, None) if target_type is None: raise UnrecognizedTargetTypeException( target_adaptor.type_alias, registered_target_types, address=address ) target = target_type(target_adaptor.kwargs, address, union_membership=union_membership) return WrappedTarget(target) @rule async def resolve_targets(targets: UnexpandedTargets) -> Targets: # Split out and expand any BUILD targets. other_targets = [] build_targets = [] for target in targets: if not target.address.is_file_target: build_targets.append(target) else: other_targets.append(target) build_targets_subtargets = await MultiGet( Get(Subtargets, Address, bt.address) for bt in build_targets ) # Zip the subtargets back to the BUILD targets and replace them. # NB: If a target had no subtargets, we use the original. expanded_targets = OrderedSet(other_targets) expanded_targets.update( target for subtargets in build_targets_subtargets for target in (subtargets.subtargets if subtargets.subtargets else (subtargets.base,)) ) return Targets(expanded_targets) # ----------------------------------------------------------------------------------------------- # TransitiveTargets # ----------------------------------------------------------------------------------------------- class CycleException(Exception): def __init__(self, subject: Address, path: Tuple[Address, ...]) -> None: path_string = "\n".join((f"-> {a}" if a == subject else f" {a}") for a in path) super().__init__( f"The dependency graph contained a cycle:\n{path_string}\n\nTo fix this, first verify " "if your code has an actual import cycle. If it does, you likely need to re-architect " "your code to avoid the cycle.\n\nIf there is no cycle in your code, then you may need " "to use more granular targets. Split up the problematic targets into smaller targets " "with more granular `sources` fields so that you can adjust the `dependencies` fields " "to avoid introducing a cycle.\n\nAlternatively, use Python dependency inference " "(`--python-infer-imports`), rather than explicit `dependencies`. Pants will infer " "dependencies on specific files, rather than entire targets. This extra precision " "means that you will only have cycles if your code actually does have cycles in it." ) self.subject = subject self.path = path def _detect_cycles( roots: Tuple[Address, ...], dependency_mapping: Dict[Address, Tuple[Address, ...]] ) -> None: path_stack: OrderedSet[Address] = OrderedSet() visited: Set[Address] = set() def maybe_report_cycle(address: Address) -> None: # NB: File-level dependencies are cycle tolerant. if address.is_file_target or address not in path_stack: return # The path of the cycle is shorter than the entire path to the cycle: if the suffix of # the path representing the cycle contains a file dep, it is ignored. in_cycle = False for path_address in path_stack: if in_cycle and path_address.is_file_target: # There is a file address inside the cycle: do not report it. return elif in_cycle: # Not a file address. continue else: # We're entering the suffix of the path that contains the cycle if we've reached # the address in question. in_cycle = path_address == address # If we did not break out early, it's because there were no file addresses in the cycle. raise CycleException(address, (*path_stack, address)) def visit(address: Address): if address in visited: maybe_report_cycle(address) return path_stack.add(address) visited.add(address) for dep_address in dependency_mapping[address]: visit(dep_address) path_stack.remove(address) for root in roots: visit(root) if path_stack: raise AssertionError( f"The stack of visited nodes should have been empty at the end of recursion, " f"but it still contained: {path_stack}" ) @rule(desc="Resolve transitive targets") async def transitive_targets(request: TransitiveTargetsRequest) -> TransitiveTargets: """Find all the targets transitively depended upon by the target roots. This uses iteration, rather than recursion, so that we can tolerate dependency cycles. Unlike a traditional BFS algorithm, we batch each round of traversals via `MultiGet` for improved performance / concurrency. """ roots_as_targets = await Get(Targets, Addresses(request.roots)) visited: OrderedSet[Target] = OrderedSet() queued = FrozenOrderedSet(roots_as_targets) dependency_mapping: Dict[Address, Tuple[Address, ...]] = {} while queued: direct_dependencies = await MultiGet( Get( Targets, DependenciesRequest( tgt.get(Dependencies), include_special_cased_deps=request.include_special_cased_deps, ), ) for tgt in queued ) dependency_mapping.update( zip( (t.address for t in queued), (tuple(t.address for t in deps) for deps in direct_dependencies), ) ) queued = FrozenOrderedSet(itertools.chain.from_iterable(direct_dependencies)).difference( visited ) visited.update(queued) # NB: We use `roots_as_targets` to get the root addresses, rather than `request.roots`. This # is because expanding from the `Addresses` -> `Targets` may have resulted in generated # subtargets being used, so we need to use `roots_as_targets` to have this expansion. _detect_cycles(tuple(t.address for t in roots_as_targets), dependency_mapping) # Apply any transitive excludes (`!!` ignores). transitive_excludes: FrozenOrderedSet[Target] = FrozenOrderedSet() unevaluated_transitive_excludes = [] for t in (*roots_as_targets, *visited): unparsed = t.get(Dependencies).unevaluated_transitive_excludes if unparsed.values: unevaluated_transitive_excludes.append(unparsed) if unevaluated_transitive_excludes: nested_transitive_excludes = await MultiGet( Get(Targets, UnparsedAddressInputs, unparsed) for unparsed in unevaluated_transitive_excludes ) transitive_excludes = FrozenOrderedSet( itertools.chain.from_iterable(excludes for excludes in nested_transitive_excludes) ) return TransitiveTargets( tuple(roots_as_targets), FrozenOrderedSet(visited.difference(transitive_excludes)) ) # ----------------------------------------------------------------------------------------------- # Find the owners of a file # ----------------------------------------------------------------------------------------------- class InvalidOwnersOfArgs(Exception): pass @dataclass(frozen=True) class OwnersRequest: """A request for the owners of a set of file paths.""" sources: Tuple[str, ...] owners_not_found_behavior: OwnersNotFoundBehavior = OwnersNotFoundBehavior.ignore class Owners(Collection[Address]): pass @rule(desc="Find which targets own certain files") async def find_owners(owners_request: OwnersRequest) -> Owners: # Determine which of the sources are live and which are deleted. sources_paths = await Get(Paths, PathGlobs(owners_request.sources)) live_files = FrozenOrderedSet(sources_paths.files) deleted_files = FrozenOrderedSet(s for s in owners_request.sources if s not in live_files) live_dirs = FrozenOrderedSet(os.path.dirname(s) for s in live_files) deleted_dirs = FrozenOrderedSet(os.path.dirname(s) for s in deleted_files) # Walk up the buildroot looking for targets that would conceivably claim changed sources. # For live files, we use expanded Targets, which have file level precision but which are # only created for existing files. For deleted files we use UnexpandedTargets, which have # the original declared glob. live_candidate_specs = tuple(AscendantAddresses(directory=d) for d in live_dirs) deleted_candidate_specs = tuple(AscendantAddresses(directory=d) for d in deleted_dirs) live_candidate_tgts, deleted_candidate_tgts = await MultiGet( Get(Targets, AddressSpecs(live_candidate_specs)), Get(UnexpandedTargets, AddressSpecs(deleted_candidate_specs)), ) matching_addresses: OrderedSet[Address] = OrderedSet() unmatched_sources = set(owners_request.sources) for live in (True, False): candidate_tgts: Sequence[Target] if live: candidate_tgts = live_candidate_tgts sources_set = live_files else: candidate_tgts = deleted_candidate_tgts sources_set = deleted_files build_file_addresses = await MultiGet( Get(BuildFileAddress, Address, tgt.address) for tgt in candidate_tgts ) for candidate_tgt, bfa in zip(candidate_tgts, build_file_addresses): matching_files = set( matches_filespec(candidate_tgt.get(Sources).filespec, paths=sources_set) ) # Also consider secondary ownership, meaning it's not a `Sources` field with primary # ownership, but the target still should match the file. We can't use `tgt.get()` # because this is a mixin, and there technically may be >1 field. secondary_owner_fields = tuple( field # type: ignore[misc] for field in candidate_tgt.field_values.values() if isinstance(field, SecondaryOwnerMixin) ) for secondary_owner_field in secondary_owner_fields: matching_files.update( matches_filespec(secondary_owner_field.filespec, paths=sources_set) ) if not matching_files and bfa.rel_path not in sources_set: continue unmatched_sources -= matching_files matching_addresses.add(candidate_tgt.address) if ( unmatched_sources and owners_request.owners_not_found_behavior != OwnersNotFoundBehavior.ignore ): _log_or_raise_unmatched_owners( [PurePath(path) for path in unmatched_sources], owners_request.owners_not_found_behavior ) return Owners(matching_addresses) # ----------------------------------------------------------------------------------------------- # Specs -> Addresses # ----------------------------------------------------------------------------------------------- def _log_or_raise_unmatched_owners( file_paths: Sequence[PurePath], owners_not_found_behavior: OwnersNotFoundBehavior, ignore_option: Optional[str] = None, ) -> None: option_msg = ( f"\n\nIf you would like to ignore un-owned files, please pass `{ignore_option}`." if ignore_option else "" ) if len(file_paths) == 1: prefix = ( f"No owning targets could be found for the file `{file_paths[0]}`.\n\n" f"Please check that there is a BUILD file in the parent directory " f"{file_paths[0].parent} with a target whose `sources` field includes the file." ) else: prefix = ( f"No owning targets could be found for the files {sorted(map(str, file_paths))}`.\n\n" f"Please check that there are BUILD files in each file's parent directory with a " f"target whose `sources` field includes the file." ) msg = ( f"{prefix} See {doc_url('targets')} for more information on target definitions." f"\n\nYou may want to run `./pants tailor` to autogenerate your BUILD files. See " f"{doc_url('create-initial-build-files')}.{option_msg}" ) if owners_not_found_behavior == OwnersNotFoundBehavior.warn: logger.warning(msg) else: raise ResolveError(msg) @rule async def addresses_from_filesystem_specs( filesystem_specs: FilesystemSpecs, global_options: GlobalOptions ) -> Addresses: """Find the owner(s) for each FilesystemSpec. Every returned address will be a generated subtarget, meaning that each address will have exactly one file in its `sources` field. """ owners_not_found_behavior = global_options.options.owners_not_found_behavior paths_per_include = await MultiGet( Get( Paths, PathGlobs, filesystem_specs.path_globs_for_spec( spec, owners_not_found_behavior.to_glob_match_error_behavior() ), ) for spec in filesystem_specs.includes ) owners_per_include = await MultiGet( Get(Owners, OwnersRequest(sources=paths.files)) for paths in paths_per_include ) addresses: Set[Address] = set() for spec, owners in zip(filesystem_specs.includes, owners_per_include): if ( owners_not_found_behavior != OwnersNotFoundBehavior.ignore and isinstance(spec, FilesystemLiteralSpec) and not owners ): _log_or_raise_unmatched_owners( [PurePath(str(spec))], global_options.options.owners_not_found_behavior, ignore_option="--owners-not-found-behavior=ignore", ) addresses.update(owners) return Addresses(sorted(addresses)) @rule(desc="Find targets from input specs", level=LogLevel.DEBUG) async def resolve_addresses_from_specs(specs: Specs) -> Addresses: from_address_specs, from_filesystem_specs = await MultiGet( Get(Addresses, AddressSpecs, specs.address_specs), Get(Addresses, FilesystemSpecs, specs.filesystem_specs), ) # We use a set to dedupe because it's possible to have the same address from both an address # and filesystem spec. return Addresses(sorted({*from_address_specs, *from_filesystem_specs})) # ----------------------------------------------------------------------------------------------- # SourcesSnapshot # ----------------------------------------------------------------------------------------------- @rule(desc="Find all sources from input specs", level=LogLevel.DEBUG) async def resolve_specs_snapshot(specs: Specs, global_options: GlobalOptions) -> SpecsSnapshot: """Resolve all files matching the given specs. Address specs will use their `Sources` field, and Filesystem specs will use whatever args were given. Filesystem specs may safely refer to files with no owning target. """ targets = await Get(Targets, AddressSpecs, specs.address_specs) all_hydrated_sources = await MultiGet( Get(HydratedSources, HydrateSourcesRequest(tgt[Sources])) for tgt in targets if tgt.has_field(Sources) ) filesystem_specs_digest = ( await Get( Digest, PathGlobs, specs.filesystem_specs.to_path_globs( global_options.options.owners_not_found_behavior.to_glob_match_error_behavior() ), ) if specs.filesystem_specs else None ) # NB: We merge into a single snapshot to avoid the same files being duplicated if they were # covered both by address specs and filesystem specs. digests = [hydrated_sources.snapshot.digest for hydrated_sources in all_hydrated_sources] if filesystem_specs_digest: digests.append(filesystem_specs_digest) result = await Get(Snapshot, MergeDigests(digests)) return SpecsSnapshot(result) # ----------------------------------------------------------------------------------------------- # Resolve the Sources field # ----------------------------------------------------------------------------------------------- class AmbiguousCodegenImplementationsException(Exception): """Exception for when there are multiple codegen implementations and it is ambiguous which to use.""" def __init__( self, generators: Iterable[Type["GenerateSourcesRequest"]], *, for_sources_types: Iterable[Type["Sources"]], ) -> None: bulleted_list_sep = "\n * " all_same_generator_paths = ( len(set((generator.input, generator.output) for generator in generators)) == 1 ) example_generator = list(generators)[0] input = example_generator.input.__name__ if all_same_generator_paths: output = example_generator.output.__name__ possible_generators = sorted(generator.__name__ for generator in generators) super().__init__( f"Multiple of the registered code generators can generate {output} from {input}. " "It is ambiguous which implementation to use.\n\nPossible implementations:" f"{bulleted_list_sep}{bulleted_list_sep.join(possible_generators)}" ) else: possible_output_types = sorted( generator.output.__name__ for generator in generators if issubclass(generator.output, tuple(for_sources_types)) ) possible_generators_with_output = [ f"{generator.__name__} -> {generator.output.__name__}" for generator in sorted(generators, key=lambda generator: generator.output.__name__) ] super().__init__( f"Multiple of the registered code generators can generate one of " f"{possible_output_types} from {input}. It is ambiguous which implementation to " f"use. This can happen when the call site requests too many different output types " f"from the same original protocol sources.\n\nPossible implementations with their " f"output type: {bulleted_list_sep}" f"{bulleted_list_sep.join(possible_generators_with_output)}" ) @rule(desc="Hydrate the `sources` field") async def hydrate_sources( request: HydrateSourcesRequest, global_options: GlobalOptions, union_membership: UnionMembership, ) -> HydratedSources: sources_field = request.field # First, find if there are any code generators for the input `sources_field`. This will be used # to determine if the sources_field is valid or not. # We could alternatively use `sources_field.can_generate()`, but we want to error if there are # 2+ generators due to ambiguity. generate_request_types = union_membership.get(GenerateSourcesRequest) relevant_generate_request_types = [ generate_request_type for generate_request_type in generate_request_types if isinstance(sources_field, generate_request_type.input) and issubclass(generate_request_type.output, request.for_sources_types) ] if request.enable_codegen and len(relevant_generate_request_types) > 1: raise AmbiguousCodegenImplementationsException( relevant_generate_request_types, for_sources_types=request.for_sources_types ) generate_request_type = next(iter(relevant_generate_request_types), None) # Now, determine if any of the `for_sources_types` may be used, either because the # sources_field is a direct subclass or can be generated into one of the valid types. def compatible_with_sources_field(valid_type: Type[Sources]) -> bool: is_instance = isinstance(sources_field, valid_type) can_be_generated = ( request.enable_codegen and generate_request_type is not None and issubclass(generate_request_type.output, valid_type) ) return is_instance or can_be_generated sources_type = next( ( valid_type for valid_type in request.for_sources_types if compatible_with_sources_field(valid_type) ), None, ) if sources_type is None: return HydratedSources(EMPTY_SNAPSHOT, sources_field.filespec, sources_type=None) # Now, hydrate the `globs`. Even if we are going to use codegen, we will need the original # protocol sources to be hydrated. path_globs = sources_field.path_globs(global_options.options.files_not_found_behavior) snapshot = await Get(Snapshot, PathGlobs, path_globs) sources_field.validate_resolved_files(snapshot.files) # Finally, return if codegen is not in use; otherwise, run the relevant code generator. if not request.enable_codegen or generate_request_type is None: return HydratedSources(snapshot, sources_field.filespec, sources_type=sources_type) wrapped_protocol_target = await Get(WrappedTarget, Address, sources_field.address) generated_sources = await Get( GeneratedSources, GenerateSourcesRequest, generate_request_type(snapshot, wrapped_protocol_target.target), ) return HydratedSources( generated_sources.snapshot, sources_field.filespec, sources_type=sources_type ) @rule(desc="Resolve `sources` field file names") async def resolve_source_paths( request: SourcesPathsRequest, global_options: GlobalOptions ) -> SourcesPaths: sources_field = request.field path_globs = sources_field.path_globs(global_options.options.files_not_found_behavior) paths = await Get(Paths, PathGlobs, path_globs) sources_field.validate_resolved_files(paths.files) return SourcesPaths(files=paths.files, dirs=paths.dirs) # ----------------------------------------------------------------------------------------------- # Resolve addresses, including the Dependencies field # ----------------------------------------------------------------------------------------------- class ParsedDependencies(NamedTuple): addresses: List[AddressInput] ignored_addresses: List[AddressInput] class TransitiveExcludesNotSupportedError(ValueError): def __init__( self, *, bad_value: str, address: Address, registered_target_types: Sequence[Type[Target]], union_membership: UnionMembership, ) -> None: applicable_target_types = sorted( target_type.alias for target_type in registered_target_types if ( target_type.class_has_field(Dependencies, union_membership=union_membership) and target_type.class_get_field( Dependencies, union_membership=union_membership ).supports_transitive_excludes ) ) super().__init__( f"Bad value '{bad_value}' in the `dependencies` field for {address}. " "Transitive excludes with `!!` are not supported for this target type. Did you mean " "to use a single `!` for a direct exclude?\n\nTransitive excludes work with these " f"target types: {applicable_target_types}" ) @rule async def determine_explicitly_provided_dependencies( request: DependenciesRequest, union_membership: UnionMembership, registered_target_types: RegisteredTargetTypes, global_options: GlobalOptions, ) -> ExplicitlyProvidedDependencies: parse = functools.partial( AddressInput.parse, relative_to=request.field.address.spec_path, subproject_roots=global_options.options.subproject_roots, ) addresses: List[AddressInput] = [] ignored_addresses: List[AddressInput] = [] for v in request.field.value or (): is_ignore = v.startswith("!") if is_ignore: # Check if it's a transitive exclude, rather than a direct exclude. if v.startswith("!!"): if not request.field.supports_transitive_excludes: raise TransitiveExcludesNotSupportedError( bad_value=v, address=request.field.address, registered_target_types=registered_target_types.types, union_membership=union_membership, ) v = v[2:] else: v = v[1:] result = parse(v) if is_ignore: ignored_addresses.append(result) else: addresses.append(result) parsed_includes = await MultiGet(Get(Address, AddressInput, ai) for ai in addresses) parsed_ignores = await MultiGet(Get(Address, AddressInput, ai) for ai in ignored_addresses) return ExplicitlyProvidedDependencies( FrozenOrderedSet(sorted(parsed_includes)), FrozenOrderedSet(sorted(parsed_ignores)) ) @rule(desc="Resolve direct dependencies") async def resolve_dependencies( request: DependenciesRequest, union_membership: UnionMembership, global_options: GlobalOptions ) -> Addresses: explicitly_provided = await Get(ExplicitlyProvidedDependencies, DependenciesRequest, request) # Inject any dependencies. This is determined by the `request.field` class. For example, if # there is a rule to inject for FortranDependencies, then FortranDependencies and any subclass # of FortranDependencies will use that rule. inject_request_types = union_membership.get(InjectDependenciesRequest) injected = await MultiGet( Get(InjectedDependencies, InjectDependenciesRequest, inject_request_type(request.field)) for inject_request_type in inject_request_types if isinstance(request.field, inject_request_type.inject_for) ) inference_request_types = union_membership.get(InferDependenciesRequest) inferred: Tuple[InferredDependencies, ...] = () if inference_request_types: # Dependency inference is solely determined by the `Sources` field for a Target, so we # re-resolve the original target to inspect its `Sources` field, if any. wrapped_tgt = await Get(WrappedTarget, Address, request.field.address) sources_field = wrapped_tgt.target.get(Sources) relevant_inference_request_types = [ inference_request_type for inference_request_type in inference_request_types if isinstance(sources_field, inference_request_type.infer_from) ] inferred = await MultiGet( Get( InferredDependencies, InferDependenciesRequest, inference_request_type(sources_field), ) for inference_request_type in relevant_inference_request_types ) # If this is a BUILD target, or no dependency inference implementation can infer dependencies on # a file address's sibling files, then we inject dependencies on all the BUILD target's # generated subtargets. subtarget_addresses: Tuple[Address, ...] = () no_sibling_file_deps_inferrable = not inferred or all( inferred_deps.sibling_dependencies_inferrable is False for inferred_deps in inferred ) if not request.field.address.is_file_target or no_sibling_file_deps_inferrable: subtargets = await Get( Subtargets, Address, request.field.address.maybe_convert_to_build_target() ) subtarget_addresses = tuple( t.address for t in subtargets.subtargets if t.address != request.field.address ) # If the target has `SpecialCasedDependencies`, such as the `archive` target having # `files` and `packages` fields, then we possibly include those too. We don't want to always # include those dependencies because they should often be excluded from the result due to # being handled elsewhere in the calling code. special_cased: Tuple[Address, ...] = () if request.include_special_cased_deps: wrapped_tgt = await Get(WrappedTarget, Address, request.field.address) # Unlike normal, we don't use `tgt.get()` because there may be >1 subclass of # SpecialCasedDependencies. special_cased_fields = tuple( field for field in wrapped_tgt.target.field_values.values() if isinstance(field, SpecialCasedDependencies) ) # We can't use the normal `Get(Addresses, UnparsedAddressInputs)` due to a graph cycle. special_cased = await MultiGet( Get( Address, AddressInput, AddressInput.parse( addr, relative_to=request.field.address.spec_path, subproject_roots=global_options.options.subproject_roots, ), ) for special_cased_field in special_cased_fields for addr in special_cased_field.to_unparsed_address_inputs().values ) result = { addr for addr in ( *subtarget_addresses, *explicitly_provided.includes, *itertools.chain.from_iterable(injected), *itertools.chain.from_iterable(inferred), *special_cased, ) if addr not in explicitly_provided.ignores } return Addresses(sorted(result)) @rule(desc="Resolve addresses") async def resolve_unparsed_address_inputs( request: UnparsedAddressInputs, global_options: GlobalOptions ) -> Addresses: addresses = await MultiGet( Get( Address, AddressInput, AddressInput.parse( v, relative_to=request.relative_to, subproject_roots=global_options.options.subproject_roots, ), ) for v in request.values ) return Addresses(addresses) # ----------------------------------------------------------------------------------------------- # Find applicable field sets # ----------------------------------------------------------------------------------------------- class NoApplicableTargetsException(Exception): def __init__( self, targets: Iterable[Target], specs: Specs, union_membership: UnionMembership, *, applicable_target_types: Iterable[Type[Target]], goal_description: str, ) -> None: applicable_target_aliases = sorted( {target_type.alias for target_type in applicable_target_types} ) inapplicable_target_aliases = sorted({tgt.alias for tgt in targets}) bulleted_list_sep = "\n * " msg = ( "No applicable files or targets matched." if inapplicable_target_aliases else "No files or targets specified." ) msg += ( f" {goal_description.capitalize()} works " f"with these target types:\n{bulleted_list_sep}" f"{bulleted_list_sep.join(applicable_target_aliases)}\n\n" ) # Explain what was specified, if relevant. if inapplicable_target_aliases: if bool(specs.filesystem_specs) and bool(specs.address_specs): specs_description = " files and targets with " elif bool(specs.filesystem_specs): specs_description = " files with " elif bool(specs.address_specs): specs_description = " targets with " else: specs_description = " " msg += ( f"However, you only specified{specs_description}these target types:\n" f"{bulleted_list_sep}{bulleted_list_sep.join(inapplicable_target_aliases)}\n\n" ) # Add a remedy. # # We sometimes suggest using `./pants filedeps` to find applicable files. However, this # command only works if at least one of the targets has a Sources field. # # NB: Even with the "secondary owners" mechanism - used by target types like `pex_binary` # and `python_awslambda` to still work with file args - those targets will not show the # associated files when using filedeps. filedeps_goal_works = any( tgt.class_has_field(Sources, union_membership) for tgt in applicable_target_types ) pants_filter_command = ( f"./pants filter --target-type={','.join(applicable_target_aliases)} ::" ) remedy = ( f"Please specify relevant files and/or targets. Run `{pants_filter_command}` to " "find all applicable targets in your project" ) if filedeps_goal_works: remedy += ( f", or run `{pants_filter_command} | xargs ./pants filedeps` to find all " "applicable files." ) else: remedy += "." msg += remedy super().__init__(msg) @classmethod def create_from_field_sets( cls, targets: Iterable[Target], specs: Specs, union_membership: UnionMembership, registered_target_types: RegisteredTargetTypes, *, field_set_types: Iterable[type[FieldSet]], goal_description: str, ) -> NoApplicableTargetsException: applicable_target_types = { target_type for field_set_type in field_set_types for target_type in field_set_type.applicable_target_types( registered_target_types.types, union_membership ) } return cls( targets, specs, union_membership, applicable_target_types=applicable_target_types, goal_description=goal_description, ) class TooManyTargetsException(Exception): def __init__(self, targets: Iterable[Target], *, goal_description: str) -> None: bulleted_list_sep = "\n * " addresses = sorted(tgt.address.spec for tgt in targets) super().__init__( f"{goal_description.capitalize()} only works with one valid target, but was given " f"multiple valid targets:{bulleted_list_sep}{bulleted_list_sep.join(addresses)}\n\n" "Please select one of these targets to run." ) class AmbiguousImplementationsException(Exception): """A target has multiple valid FieldSets, but a goal expects there to be one FieldSet.""" def __init__( self, target: Target, field_sets: Iterable[FieldSet], *, goal_description: str, ) -> None: # TODO: improve this error message. A better error message would explain to users how they # can resolve the issue. possible_field_sets_types = sorted(field_set.__class__.__name__ for field_set in field_sets) bulleted_list_sep = "\n * " super().__init__( f"Multiple of the registered implementations for {goal_description} work for " f"{target.address} (target type {repr(target.alias)}). It is ambiguous which " "implementation to use.\n\nPossible implementations:" f"{bulleted_list_sep}{bulleted_list_sep.join(possible_field_sets_types)}" ) @rule async def find_valid_field_sets_for_target_roots( request: TargetRootsToFieldSetsRequest, specs: Specs, union_membership: UnionMembership, registered_target_types: RegisteredTargetTypes, ) -> TargetRootsToFieldSets: # NB: This must be in an `await Get`, rather than the rule signature, to avoid a rule graph # issue. targets = await Get(Targets, Specs, specs) field_sets_per_target = await Get( FieldSetsPerTarget, FieldSetsPerTargetRequest(request.field_set_superclass, targets) ) targets_to_applicable_field_sets = {} for tgt, field_sets in zip(targets, field_sets_per_target.collection): if field_sets: targets_to_applicable_field_sets[tgt] = field_sets # Possibly warn or error if no targets were applicable. if not targets_to_applicable_field_sets: no_applicable_exception = NoApplicableTargetsException.create_from_field_sets( targets, specs, union_membership, registered_target_types, field_set_types=union_membership[request.field_set_superclass], goal_description=request.goal_description, ) if request.no_applicable_targets_behavior == NoApplicableTargetsBehavior.error: raise no_applicable_exception if request.no_applicable_targets_behavior == NoApplicableTargetsBehavior.warn: logger.warning(str(no_applicable_exception)) result = TargetRootsToFieldSets(targets_to_applicable_field_sets) if not request.expect_single_field_set: return result if len(result.targets) > 1: raise TooManyTargetsException(result.targets, goal_description=request.goal_description) if len(result.field_sets) > 1: raise AmbiguousImplementationsException( result.targets[0], result.field_sets, goal_description=request.goal_description ) return result @rule def find_valid_field_sets( request: FieldSetsPerTargetRequest, union_membership: UnionMembership ) -> FieldSetsPerTarget: field_set_types = union_membership.get(request.field_set_superclass) return FieldSetsPerTarget( ( field_set_type.create(target) for field_set_type in field_set_types if field_set_type.is_applicable(target) ) for target in request.targets ) def rules(): return collect_rules()
40.351923
100
0.654315
beb95d0398c0bb7d1bc8a17754c715dd4dc6da5f
112
py
Python
.history/ClassFiles/Control Flow/Elif_20210101185036.py
minefarmer/Comprehensive-Python
f97b9b83ec328fc4e4815607e6a65de90bb8de66
[ "Unlicense" ]
null
null
null
.history/ClassFiles/Control Flow/Elif_20210101185036.py
minefarmer/Comprehensive-Python
f97b9b83ec328fc4e4815607e6a65de90bb8de66
[ "Unlicense" ]
null
null
null
.history/ClassFiles/Control Flow/Elif_20210101185036.py
minefarmer/Comprehensive-Python
f97b9b83ec328fc4e4815607e6a65de90bb8de66
[ "Unlicense" ]
null
null
null
''' elif Statements Used to check multiple expressions for True conditions. if(Condition1): '''
8.615385
55
0.651786
4899933dab6ffbb06a04fa8b8ab65777d7398302
381
py
Python
raspsocket.py
2dadsgn/smart-vase-sensor-raspberry
54051dec478dd94d3a4e04772a1a50c842b687ff
[ "Apache-2.0" ]
null
null
null
raspsocket.py
2dadsgn/smart-vase-sensor-raspberry
54051dec478dd94d3a4e04772a1a50c842b687ff
[ "Apache-2.0" ]
null
null
null
raspsocket.py
2dadsgn/smart-vase-sensor-raspberry
54051dec478dd94d3a4e04772a1a50c842b687ff
[ "Apache-2.0" ]
null
null
null
import socket import json def invio_dati(dati, ip): #connessione al server s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((ip,1238)) #trasformo in oggetto json # invio dati s.send(bytes("#123abc", "utf-8")) s.send(bytes(dati, "utf-8")) #messaggio per connesione riuscita msg = s.recv(1024) print(msg.decode("utf-8"))
18.142857
57
0.645669
d119ccb372ef7486083ae82040aab93bfc5fe853
927
py
Python
test/test_item_number_type_dto.py
Dangl-IT/avacloud-client-python
66f555096bbbc87d02d02e4e2dfb0c6accb18f95
[ "RSA-MD" ]
1
2019-01-12T18:10:24.000Z
2019-01-12T18:10:24.000Z
test/test_item_number_type_dto.py
Dangl-IT/avacloud-client-python
66f555096bbbc87d02d02e4e2dfb0c6accb18f95
[ "RSA-MD" ]
null
null
null
test/test_item_number_type_dto.py
Dangl-IT/avacloud-client-python
66f555096bbbc87d02d02e4e2dfb0c6accb18f95
[ "RSA-MD" ]
null
null
null
# coding: utf-8 """ AVACloud API 1.17.3 AVACloud API specification # noqa: E501 OpenAPI spec version: 1.17.3 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import avacloud_client_python from avacloud_client_python.models.item_number_type_dto import ItemNumberTypeDto # noqa: E501 from avacloud_client_python.rest import ApiException class TestItemNumberTypeDto(unittest.TestCase): """ItemNumberTypeDto unit test stubs""" def setUp(self): pass def tearDown(self): pass def testItemNumberTypeDto(self): """Test ItemNumberTypeDto""" # FIXME: construct object with mandatory attributes with example values # model = avacloud_client_python.models.item_number_type_dto.ItemNumberTypeDto() # noqa: E501 pass if __name__ == '__main__': unittest.main()
22.609756
102
0.719525
275a94d0640c159ccd4012eaf0de555538e3df06
2,096
py
Python
docs/conf.py
euanrussano/tinyshop
263280258e55351c833064889ee847ce137dd4d3
[ "MIT" ]
null
null
null
docs/conf.py
euanrussano/tinyshop
263280258e55351c833064889ee847ce137dd4d3
[ "MIT" ]
null
null
null
docs/conf.py
euanrussano/tinyshop
263280258e55351c833064889ee847ce137dd4d3
[ "MIT" ]
null
null
null
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) import os import sys import django sys.path.insert(0, os.path.abspath('..')) os.environ['DJANGO_SETTINGS_MODULE'] = 'tinyshop.settings' django.setup() # -- Project information ----------------------------------------------------- project = 'Tiny Shop' copyright = '2021, Euan Russano' author = 'Euan Russano' # The full version, including alpha/beta/rc tags release = '1.0' # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static']
34.933333
79
0.670324
bb33ffa3044b171376a992e241fd21a6a52096c8
1,020
py
Python
linkit-project/linkit/urls.py
OIrabor24/Reddit-Clone-RestAPI
001660c2523244b411804cab70f0c92e2228de65
[ "MIT" ]
null
null
null
linkit-project/linkit/urls.py
OIrabor24/Reddit-Clone-RestAPI
001660c2523244b411804cab70f0c92e2228de65
[ "MIT" ]
null
null
null
linkit-project/linkit/urls.py
OIrabor24/Reddit-Clone-RestAPI
001660c2523244b411804cab70f0c92e2228de65
[ "MIT" ]
null
null
null
"""linkit URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/4.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from posts import views urlpatterns = [ path('admin/', admin.site.urls), path('api/posts', views.PostList.as_view()), path('api/posts/<int:pk>', views.PostRetrieveDestroy.as_view()), path('api/posts/<int:pk>/vote', views.VoteCreate.as_view()), path('api-auth/', include('rest_framework.urls')), ]
39.230769
77
0.701961
2f228cde794b127e59c3fca3d5ac0602bcca1644
396
py
Python
exercicios/ex028.py
RaquelBotelhoof/Python-curso-em-video
919b2f44e85647c096c6b734c991635f1bfd1af9
[ "MIT" ]
null
null
null
exercicios/ex028.py
RaquelBotelhoof/Python-curso-em-video
919b2f44e85647c096c6b734c991635f1bfd1af9
[ "MIT" ]
null
null
null
exercicios/ex028.py
RaquelBotelhoof/Python-curso-em-video
919b2f44e85647c096c6b734c991635f1bfd1af9
[ "MIT" ]
null
null
null
from random import randint from time import sleep computador = randint(0, 5) print('-=-'*20) print('Vou pensar em um número de 0 a 5. Tente adivinhar... ') print('-=-'*20) jogador = int(input('Em qual número eu pensei?')) print('PROCESSANDO...') sleep(3) if jogador == computador: print('Você acertou, me VENCEU!! Parabéns') else: print('Eu VENCI. O número era {} '.format(computador))
24.75
62
0.676768
8674f3643a69b6982cdbd02d05135198ce509c1f
5,671
py
Python
tools_webrtc/version_updater/update_version.py
jickykung/webrtc_src
a18cad9c099d8fe7fd5ac91d4adfd468a1ac95e7
[ "BSD-3-Clause" ]
null
null
null
tools_webrtc/version_updater/update_version.py
jickykung/webrtc_src
a18cad9c099d8fe7fd5ac91d4adfd468a1ac95e7
[ "BSD-3-Clause" ]
null
null
null
tools_webrtc/version_updater/update_version.py
jickykung/webrtc_src
a18cad9c099d8fe7fd5ac91d4adfd468a1ac95e7
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # Copyright (c) 2020 The WebRTC project authors. All Rights Reserved. # # Use of this source code is governed by a BSD-style license # that can be found in the LICENSE file in the root of the source # tree. An additional intellectual property rights grant can be found # in the file PATENTS. All contributing project authors may # be found in the AUTHORS file in the root of the source tree. """Script to auto-update the WebRTC source version in call/version.cc""" import argparse import datetime import logging import os import re import subprocess import sys def FindSrcDirPath(): """Returns the abs path to the src/ dir of the project.""" src_dir = os.path.dirname(os.path.abspath(__file__)) while os.path.basename(src_dir) != 'src': src_dir = os.path.normpath(os.path.join(src_dir, os.pardir)) return src_dir UPDATE_BRANCH_NAME = 'webrtc_version_update' CHECKOUT_SRC_DIR = FindSrcDirPath() def _RemovePreviousUpdateBranch(): active_branch, branches = _GetBranches() if active_branch == UPDATE_BRANCH_NAME: active_branch = 'master' if UPDATE_BRANCH_NAME in branches: logging.info('Removing previous update branch (%s)', UPDATE_BRANCH_NAME) subprocess.check_call(['git', 'checkout', active_branch]) subprocess.check_call(['git', 'branch', '-D', UPDATE_BRANCH_NAME]) logging.info('No branch to remove') def _GetLastAuthor(): """Returns a string with the author of the last commit.""" author = subprocess.check_output(['git', 'log', '-1', '--pretty=format:"%an"']).splitlines() return author def _GetBranches(): """Returns a tuple (active, branches). 'active' is a string with name of the currently active branch, while 'branches' is the list of all branches. """ lines = subprocess.check_output(['git', 'branch']).splitlines() branches = [] active = '' for line in lines: if '*' in line: # The assumption is that the first char will always be the '*'. active = line[1:].strip() branches.append(active) else: branch = line.strip() if branch: branches.append(branch) return active, branches def _CreateUpdateBranch(): logging.info('Creating update branch: %s', UPDATE_BRANCH_NAME) subprocess.check_call(['git', 'checkout', '-b', UPDATE_BRANCH_NAME]) def _UpdateWebRTCVersion(filename): with open(filename) as f: content = f.read() d = datetime.datetime.utcnow() # pylint: disable=line-too-long new_content = re.sub( r'WebRTC source stamp [0-9]{4}-[0-9]{2}-[0-9]{2}T[0-9]{2}:[0-9]{2}:[0-9]{2}', r'WebRTC source stamp %02d-%02d-%02dT%02d:%02d:%02d' % (d.year, d.month, d.day, d.hour, d.minute, d.second), content, flags=re.MULTILINE) # pylint: enable=line-too-long with open(filename, 'w') as f: f.write(new_content) def _IsTreeClean(): stdout = subprocess.check_output(['git', 'status', '--porcelain']) if len(stdout) == 0: return True return False def _LocalCommit(): logging.info('Committing changes locally.') d = datetime.datetime.utcnow() git_author = subprocess.check_output(['git', 'config', 'user.email']).strip() commit_msg = ('Update WebRTC code version (%02d-%02d-%02dT%02d:%02d:%02d).' '\n\nBug: None') commit_msg = commit_msg % (d.year, d.month, d.day, d.hour, d.minute, d.second) subprocess.check_call(['git', 'add', '--update', '.']) subprocess.check_call(['git', 'commit', '-m', commit_msg]) def _UploadCL(commit_queue_mode): """Upload the committed changes as a changelist to Gerrit. commit_queue_mode: - 2: Submit to commit queue. - 1: Run trybots but do not submit to CQ. - 0: Skip CQ, upload only. """ cmd = ['git', 'cl', 'upload', '--force', '--bypass-hooks', '--cc=""', '--bypass-watchlist'] if commit_queue_mode >= 2: logging.info('Sending the CL to the CQ...') cmd.extend(['-o', 'label=Bot-Commit+1']) cmd.extend(['-o', 'label=Commit-Queue+2']) elif commit_queue_mode >= 1: logging.info('Starting CQ dry run...') cmd.extend(['-o', 'label=Commit-Queue+1']) subprocess.check_call(cmd) def main(): logging.basicConfig(level=logging.INFO) p = argparse.ArgumentParser() p.add_argument('--clean', action='store_true', default=False, help='Removes any previous local update branch.') opts = p.parse_args() if opts.clean: _RemovePreviousUpdateBranch() if _GetLastAuthor() == 'webrtc-version-updater': logging.info('Last commit is a version change, skipping CL.') return 0 version_filename = os.path.join(CHECKOUT_SRC_DIR, 'call', 'version.cc') _CreateUpdateBranch() _UpdateWebRTCVersion(version_filename) if _IsTreeClean(): logging.info('No WebRTC version change detected, skipping CL.') else: _LocalCommit() logging.info('Uploading CL...') _UploadCL(2) return 0 if __name__ == '__main__': sys.exit(main())
33.358824
85
0.585787
a9b590618c1fefa51d964c6ae70708512d20a395
1,169
py
Python
django-payments-instamojo/setup.py
FadedCoder/Teeshood
4d0659ba1ece52ca9579582165fadc095770ad37
[ "BSD-3-Clause" ]
null
null
null
django-payments-instamojo/setup.py
FadedCoder/Teeshood
4d0659ba1ece52ca9579582165fadc095770ad37
[ "BSD-3-Clause" ]
null
null
null
django-payments-instamojo/setup.py
FadedCoder/Teeshood
4d0659ba1ece52ca9579582165fadc095770ad37
[ "BSD-3-Clause" ]
1
2021-12-02T18:49:31.000Z
2021-12-02T18:49:31.000Z
from setuptools import setup setup(name='django-payments-instamojo', version='0.1.3', description='Instamojo Provider for django-payments', url='http://github.com/FadedCoder/django-payments-instamojo', author='Soham Sen', author_email='contact@sohamsen.me', maintainer='Soham Sen', license='BSD License', packages=['django_payments_instamojo'], long_description=open('README.md').read(), include_package_data=True, zip_safe=False, keywords='django,payments,ecommerce,saleor,delivery', classifiers=[ 'Environment :: Web Environment', 'Framework :: Django', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Topic :: Software Development :: Libraries :: Application Frameworks', 'Topic :: Software Development :: Libraries :: Python Modules' ], )
38.966667
81
0.620188
280fffebf95edfd9a8b494a76e7782865780262f
6,741
py
Python
custom_jinja_filters.py
276793422/attack-website
9be8abbb8d77c3c73243cae2689f1af9725d19f9
[ "Apache-2.0" ]
327
2018-11-22T07:01:30.000Z
2022-03-30T09:25:02.000Z
custom_jinja_filters.py
276793422/attack-website
9be8abbb8d77c3c73243cae2689f1af9725d19f9
[ "Apache-2.0" ]
239
2019-02-11T13:47:44.000Z
2022-03-30T06:20:47.000Z
custom_jinja_filters.py
276793422/attack-website
9be8abbb8d77c3c73243cae2689f1af9725d19f9
[ "Apache-2.0" ]
111
2019-01-25T12:58:56.000Z
2022-03-30T09:25:04.000Z
#!/usr/bin/env python import json import markdown import re import os from modules import site_config # Template for HTML references inside of STIX data reference_marker_template = ("<span onclick=scrollToRef('scite-{}') " "id=\"scite-ref-{}-a\" class=\"scite" "-citeref-number\" " "data-reference=\"{}\"><sup><a href=\"{}\" " "target=\"_blank\" data-hasqtip=\"{}\" " "aria-describedby=\"qtip-{}\">[{}]</a></sup></span>") reference_marker_template_no_url = ("<span onclick=scrollToRef('scite-{}') " "id=\"scite-ref-{}-a\" " "class=\"scite-citeref-number\" " "data-reference=\"{}\">" "<sup>[{}]</sup></span>") # Pelican settings global variable pelican_settings = {} pelican_settings_f = os.path.join(site_config.data_directory, "pelican_settings.json") with open(pelican_settings_f, "r", encoding='utf8') as json_f: pelican_settings = json.load(json_f) # Custom Jinja Filters def remove_whitespace(word): return ''.join(word.split(" ")) def escape_spaces(word): return '%20'.join(word.split(" ")) def clean_path(path): """ remove index.html from end of a path, add / if not at beginning """ path = path.split("index.html")[0] if not path.startswith("/"): path = "/" + path if not path.endswith("/"): path += "/" return path def flatten_tree(root): """ get a flattened tree of the "paths" of all children of a tree of objects. used in sidenav """ ret = [] if root["path"]: ret.append(root["path"]) for child in root["children"]: ret = ret + flatten_tree(child) return ret def clean_stix_data(data): """ Clean stix data from unwanted characters """ return data.replace("\n", "")\ .replace("{", "{{")\ .replace("}", "}}")\ .replace("”","\"")\ .replace("“","\"") def get_citations(data): """ Given a description, find all of the citations """ p = re.compile('\(Citation: (.*?)\)') return p.findall(data) def get_html_citation(citations, citation_name): """ Given a citation name and the citation list, replace the html link with the citation name and update the list with the current number plus one """ global reference_marker_template global reference_marker_template_no_url citation = citations.get(citation_name) reference_html = "" if citation: ref_number = None if citation.get('number'): ref_number = citation['number'] else: ref_number = citations['current_number'] + 1 citations['current_number'] = ref_number citation['number'] = ref_number if not citation.get('url'): reference_html = reference_marker_template_no_url.format(ref_number,ref_number,citation_name,ref_number) else: reference_html = reference_marker_template.format(ref_number,ref_number,citation_name,citation['url'],ref_number - 1, ref_number - 1, ref_number) return reference_html def update_citations(data, citations): """ Given a data string and the citation list, update citations with the citation names that are held in string """ citation_template = "(Citation: {})" citation_names = get_citations(data) for citation_name in citation_names: replace_string = get_html_citation(citations, citation_name) if replace_string: data = data.replace(citation_template.format(citation_name), replace_string) return data def remove_citations(data): """ Remove citations from strings """ # Get citations names to remove from string citation_names = get_citations(data) for citation_name in citation_names: data = data.replace("(Citation: " + citation_name + ")","") return data def filter_urls(data): """Filters out URLs to return path and not domain""" if not pelican_settings["no_stix_link_replacement"]: if "https://attack.mitre.org/groups/" in data: data = data.replace( "https://attack.mitre.org/groups/", "/groups/") if "https://attack.mitre.org/software/" in data: data = data.replace( "https://attack.mitre.org/software/", "/software/") if "https://attack.mitre.org/techniques/" in data: data = data.replace( "https://attack.mitre.org/techniques/", "/techniques/") if "https://attack.mitre.org/technique/" in data: data = data.replace( "https://attack.mitre.org/technique/", "/techniques/") return data def stixToHTML(data, citations, firstParagraphOnly): """ Clean output of STIX content. params: data (required, string), the STIX description to format citations (optional, object), if not None, add citation markers to the data. firstParagraphOnly (optional, boolean), if true, only return the first paragraph of the data in question. """ # Replace data from markdown format data = markdown.markdown(data) # Replace url links data = filter_urls(data) # Get first paragraph from data if firstParagraphOnly: data = data.split('</p>')[0] + '</p>' if data.startswith("<p>") and data.endswith("</p>"): data = data[3:-4] if citations: # Update citations data = update_citations(data, citations) else: # Remove citations data = remove_citations(data) data = clean_stix_data(data) return data current_version_permalink = None def permalink(link): """convert from a link to a permalink of that link, e.g /x/y => /versions/v6/x/y uses data/versions.json's current object to determine what the current version is for the permalink """ global current_version_permalink # load the current version permalink if not current_version_permalink: with open(os.path.join("data", "versions.json"), "r", encoding='utf8') as f: currentVersion = json.load(f)["current"] current_version_permalink = currentVersion["path"] if "path" in currentVersion else currentVersion["name"].split(".")[0] current_version_permalink = "/versions/" + current_version_permalink # remove index.html from the end link = link.split("index.html")[0] if link.endswith("index.html") else link # strip index.html from path return current_version_permalink + "/" + link
35.293194
157
0.612965
b3faf9b915462d3f0505f23278314f9f82ba3cd2
772
py
Python
habitacion_main/urls.py
RamirezJosue/habitacion-service
5e67e7401c5a1515856165d3879c9472d8f486d9
[ "MIT" ]
null
null
null
habitacion_main/urls.py
RamirezJosue/habitacion-service
5e67e7401c5a1515856165d3879c9472d8f486d9
[ "MIT" ]
null
null
null
habitacion_main/urls.py
RamirezJosue/habitacion-service
5e67e7401c5a1515856165d3879c9472d8f486d9
[ "MIT" ]
null
null
null
"""habitacion_main URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url from django.contrib import admin urlpatterns = [ url(r'^admin/', admin.site.urls), ]
35.090909
79
0.707254
0abdcdfd5207f83bcde2d6b9e5f082ea55ebbfeb
3,403
py
Python
intersight/models/storage_local_disk.py
gumpcraca/intersight-python
780e6703c739f329084beacbbf2ad7a6a2e59b2b
[ "Apache-2.0" ]
null
null
null
intersight/models/storage_local_disk.py
gumpcraca/intersight-python
780e6703c739f329084beacbbf2ad7a6a2e59b2b
[ "Apache-2.0" ]
null
null
null
intersight/models/storage_local_disk.py
gumpcraca/intersight-python
780e6703c739f329084beacbbf2ad7a6a2e59b2b
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Intersight REST API This is Intersight REST API OpenAPI spec version: 1.0.9-255 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class StorageLocalDisk(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'slot_number': 'int' } attribute_map = { 'slot_number': 'SlotNumber' } def __init__(self, slot_number=None): """ StorageLocalDisk - a model defined in Swagger """ self._slot_number = None if slot_number is not None: self.slot_number = slot_number @property def slot_number(self): """ Gets the slot_number of this StorageLocalDisk. Specifies the slot number of the disk to be referenced. As this is a policy object, this slot number may or may not be valid depending on the number of disks in the associated server :return: The slot_number of this StorageLocalDisk. :rtype: int """ return self._slot_number @slot_number.setter def slot_number(self, slot_number): """ Sets the slot_number of this StorageLocalDisk. Specifies the slot number of the disk to be referenced. As this is a policy object, this slot number may or may not be valid depending on the number of disks in the associated server :param slot_number: The slot_number of this StorageLocalDisk. :type: int """ self._slot_number = slot_number def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, StorageLocalDisk): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
27.007937
193
0.566559
85ffa2f1e82b35e8538c7ac057df575cce10608a
7,883
py
Python
wbb/__main__.py
Noobie-uwu/itsuki-bot
019a5b5c872f426ac0d8154c7a215ea7880727c9
[ "MIT" ]
null
null
null
wbb/__main__.py
Noobie-uwu/itsuki-bot
019a5b5c872f426ac0d8154c7a215ea7880727c9
[ "MIT" ]
null
null
null
wbb/__main__.py
Noobie-uwu/itsuki-bot
019a5b5c872f426ac0d8154c7a215ea7880727c9
[ "MIT" ]
1
2022-02-03T08:01:00.000Z
2022-02-03T08:01:00.000Z
""" MIT License Copyright (c) 2021 TheHamkerCat Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import asyncio import importlib import re import uvloop from pyrogram import filters, idle from pyrogram.types import InlineKeyboardButton, InlineKeyboardMarkup from wbb import BOT_NAME, BOT_USERNAME, aiohttpsession, app from wbb.modules import ALL_MODULES from wbb.modules.sudoers import bot_sys_stats from wbb.utils import paginate_modules loop = asyncio.get_event_loop() HELPABLE = {} async def start_bot(): global COMMANDS_COUNT for module in ALL_MODULES: imported_module = importlib.import_module("wbb.modules." + module) if ( hasattr(imported_module, "__MODULE__") and imported_module.__MODULE__ ): imported_module.__MODULE__ = imported_module.__MODULE__ if ( hasattr(imported_module, "__HELP__") and imported_module.__HELP__ ): HELPABLE[imported_module.__MODULE__.lower()] = imported_module bot_modules = "" j = 1 for i in ALL_MODULES: if j == 4: bot_modules += "|{:<15}|\n".format(i) j = 0 else: bot_modules += "|{:<15}".format(i) j += 1 print("+===============================================================+") print("| WBB |") print("+===============+===============+===============+===============+") print(bot_modules) print("+===============+===============+===============+===============+") print(f"[INFO]: BOT STARTED AS {BOT_NAME}!") await idle() await aiohttpsession.close() @app.on_message(filters.command(["help", "start"])) async def help_command(_, message): if message.chat.type != "private": keyboard = InlineKeyboardMarkup( [ [ InlineKeyboardButton( text="Help", url=f"t.me/{BOT_USERNAME}?start=help", ), InlineKeyboardButton( text="Support", url="t.me/quintessential_support" ), ], ] ) await message.reply("Yo Hello there!", reply_markup=keyboard) return keyboard = InlineKeyboardMarkup( [ [ InlineKeyboardButton( text="Commands", callback_data="bot_commands" ), InlineKeyboardButton( text="Repo 🛠", url="https://github.com/thehamkercat/WilliamButcherBot", ), ], [ InlineKeyboardButton( text="System Stats 🖥", callback_data="stats_callback" ), InlineKeyboardButton(text="Support", url="t.me/quintessential_support"), ], [ InlineKeyboardButton( text="Add Me To Your Group", url=f"http://t.me/{BOT_USERNAME}?startgroup=new", ) ], ] ) await message.reply( f"Hey there! My name is Itsuki Nakano[.](https://telegra.ph/file/fcd62d551e72a68142733.jpg) I can manage your group with lots of useful features, feel free to add me to your group.", reply_markup=keyboard, ) async def help_parser(name, keyboard=None): if not keyboard: keyboard = InlineKeyboardMarkup(paginate_modules(0, HELPABLE, "help")) return ( """Hello {first_name}! My name is Itsuki Nakano! I'm a group management bot with some usefule features. You can choose an option below, by clicking a button. Also you can ask anything in Support Group. General command are: - /start: Start the bot - /help: Give this message""".format( first_name=name, bot_name=BOT_NAME, ), keyboard, ) @app.on_callback_query(filters.regex("bot_commands")) async def commands_callbacc(_, CallbackQuery): text, keyboard = await help_parser(CallbackQuery.from_user.mention) await app.send_message( CallbackQuery.message.chat.id, text=text, reply_markup=keyboard ) await CallbackQuery.message.delete() @app.on_callback_query(filters.regex("stats_callback")) async def stats_callbacc(_, CallbackQuery): text = await bot_sys_stats() await app.answer_callback_query(CallbackQuery.id, text, show_alert=True) @app.on_callback_query(filters.regex(r"help_(.*?)")) async def help_button(client, query): mod_match = re.match(r"help_module\((.+?)\)", query.data) prev_match = re.match(r"help_prev\((.+?)\)", query.data) next_match = re.match(r"help_next\((.+?)\)", query.data) back_match = re.match(r"help_back", query.data) create_match = re.match(r"help_create", query.data) top_text = f""" Hello {query.from_user.first_name}! My name is {BOT_NAME}! I'm a group management bot with some usefule features. You can choose an option below, by clicking a button. Also you can ask anything in Support Group. General command are: - /start: Start the bot - /help: Give this message """ if mod_match: module = mod_match.group(1) text = ( "{} **{}**:\n".format( "Here is the help for", HELPABLE[module].__MODULE__ ) + HELPABLE[module].__HELP__ ) await query.message.edit( text=text, reply_markup=InlineKeyboardMarkup( [[InlineKeyboardButton("back", callback_data="help_back")]] ), disable_web_page_preview=True, ) elif prev_match: curr_page = int(prev_match.group(1)) await query.message.edit( text=top_text, reply_markup=InlineKeyboardMarkup( paginate_modules(curr_page - 1, HELPABLE, "help") ), disable_web_page_preview=True, ) elif next_match: next_page = int(next_match.group(1)) await query.message.edit( text=top_text, reply_markup=InlineKeyboardMarkup( paginate_modules(next_page + 1, HELPABLE, "help") ), disable_web_page_preview=True, ) elif back_match: await query.message.edit( text=top_text, reply_markup=InlineKeyboardMarkup( paginate_modules(0, HELPABLE, "help") ), disable_web_page_preview=True, ) elif create_match: text, keyboard = await help_parser(query) await query.message.edit( text=text, reply_markup=keyboard, disable_web_page_preview=True ) return await client.answer_callback_query(query.id) if __name__ == "__main__": uvloop.install() loop.run_until_complete(start_bot())
33.832618
190
0.60104
1a2a0a5ce7fdc44f8f8b3f74bd19927cc6a9331f
577
py
Python
ch02/question_5.py
dhrey112/IntroToPython_Deitel
7ecbff931d05c467ad64da0bd829f79fedf729ba
[ "MIT" ]
null
null
null
ch02/question_5.py
dhrey112/IntroToPython_Deitel
7ecbff931d05c467ad64da0bd829f79fedf729ba
[ "MIT" ]
null
null
null
ch02/question_5.py
dhrey112/IntroToPython_Deitel
7ecbff931d05c467ad64da0bd829f79fedf729ba
[ "MIT" ]
null
null
null
# TODO: 5. (Circle Area, Diameter and Circumference) For a circle of radius 2, # display the diameter, circumference and area. Use the value 3.14159 for π. # Use the following formulas (r is the radius): diameter = 2r, circumference # = 2πr and area = πr . [In a later chapter, we’ll introduce Python’s math # module which contains a higher-precision representation of π.] pi = 3.14159 radius = 2 diameter = 2 * radius circumference = 2 * radius * pi area = pi * (radius ** 2) print('Diameter =', diameter) print('Circumference =', circumference) print('Area =', area)
32.055556
78
0.707106
bd5334171211e832df27ed93c383fb929905b971
16,290
py
Python
tests/components/homekit/test_type_media_players.py
twrecked/core
d3ae8a938cdea9b6e0d443c91c37ac3dbbd459ab
[ "Apache-2.0" ]
2
2021-09-13T21:44:02.000Z
2021-12-17T21:20:51.000Z
tests/components/homekit/test_type_media_players.py
twrecked/core
d3ae8a938cdea9b6e0d443c91c37ac3dbbd459ab
[ "Apache-2.0" ]
5
2021-02-08T20:55:25.000Z
2022-03-12T00:51:18.000Z
tests/components/homekit/test_type_media_players.py
twrecked/core
d3ae8a938cdea9b6e0d443c91c37ac3dbbd459ab
[ "Apache-2.0" ]
2
2020-11-04T07:40:01.000Z
2021-09-13T21:44:03.000Z
"""Test different accessory types: Media Players.""" from homeassistant.components.homekit.const import ( ATTR_VALUE, CONF_FEATURE_LIST, FEATURE_ON_OFF, FEATURE_PLAY_PAUSE, FEATURE_PLAY_STOP, FEATURE_TOGGLE_MUTE, ) from homeassistant.components.homekit.type_media_players import ( MediaPlayer, TelevisionMediaPlayer, ) from homeassistant.components.media_player import DEVICE_CLASS_TV from homeassistant.components.media_player.const import ( ATTR_INPUT_SOURCE, ATTR_INPUT_SOURCE_LIST, ATTR_MEDIA_VOLUME_LEVEL, ATTR_MEDIA_VOLUME_MUTED, DOMAIN, ) from homeassistant.const import ( ATTR_DEVICE_CLASS, ATTR_ENTITY_ID, ATTR_SUPPORTED_FEATURES, EVENT_HOMEASSISTANT_START, STATE_IDLE, STATE_OFF, STATE_ON, STATE_PAUSED, STATE_PLAYING, STATE_STANDBY, ) from homeassistant.core import CoreState from homeassistant.helpers import entity_registry from tests.common import async_mock_service async def test_media_player_set_state(hass, hk_driver, events): """Test if accessory and HA are updated accordingly.""" config = { CONF_FEATURE_LIST: { FEATURE_ON_OFF: None, FEATURE_PLAY_PAUSE: None, FEATURE_PLAY_STOP: None, FEATURE_TOGGLE_MUTE: None, } } entity_id = "media_player.test" hass.states.async_set( entity_id, None, {ATTR_SUPPORTED_FEATURES: 20873, ATTR_MEDIA_VOLUME_MUTED: False}, ) await hass.async_block_till_done() acc = MediaPlayer(hass, hk_driver, "MediaPlayer", entity_id, 2, config) await acc.run_handler() await hass.async_block_till_done() assert acc.aid == 2 assert acc.category == 8 # Switch assert acc.chars[FEATURE_ON_OFF].value is False assert acc.chars[FEATURE_PLAY_PAUSE].value is False assert acc.chars[FEATURE_PLAY_STOP].value is False assert acc.chars[FEATURE_TOGGLE_MUTE].value is False hass.states.async_set(entity_id, STATE_ON, {ATTR_MEDIA_VOLUME_MUTED: True}) await hass.async_block_till_done() assert acc.chars[FEATURE_ON_OFF].value is True assert acc.chars[FEATURE_TOGGLE_MUTE].value is True hass.states.async_set(entity_id, STATE_OFF) await hass.async_block_till_done() assert acc.chars[FEATURE_ON_OFF].value is False hass.states.async_set(entity_id, STATE_ON) await hass.async_block_till_done() assert acc.chars[FEATURE_ON_OFF].value is True hass.states.async_set(entity_id, STATE_STANDBY) await hass.async_block_till_done() assert acc.chars[FEATURE_ON_OFF].value is False hass.states.async_set(entity_id, STATE_PLAYING) await hass.async_block_till_done() assert acc.chars[FEATURE_PLAY_PAUSE].value is True assert acc.chars[FEATURE_PLAY_STOP].value is True hass.states.async_set(entity_id, STATE_PAUSED) await hass.async_block_till_done() assert acc.chars[FEATURE_PLAY_PAUSE].value is False hass.states.async_set(entity_id, STATE_IDLE) await hass.async_block_till_done() assert acc.chars[FEATURE_PLAY_STOP].value is False # Set from HomeKit call_turn_on = async_mock_service(hass, DOMAIN, "turn_on") call_turn_off = async_mock_service(hass, DOMAIN, "turn_off") call_media_play = async_mock_service(hass, DOMAIN, "media_play") call_media_pause = async_mock_service(hass, DOMAIN, "media_pause") call_media_stop = async_mock_service(hass, DOMAIN, "media_stop") call_toggle_mute = async_mock_service(hass, DOMAIN, "volume_mute") await hass.async_add_executor_job( acc.chars[FEATURE_ON_OFF].client_update_value, True ) await hass.async_block_till_done() assert call_turn_on assert call_turn_on[0].data[ATTR_ENTITY_ID] == entity_id assert len(events) == 1 assert events[-1].data[ATTR_VALUE] is None await hass.async_add_executor_job( acc.chars[FEATURE_ON_OFF].client_update_value, False ) await hass.async_block_till_done() assert call_turn_off assert call_turn_off[0].data[ATTR_ENTITY_ID] == entity_id assert len(events) == 2 assert events[-1].data[ATTR_VALUE] is None await hass.async_add_executor_job( acc.chars[FEATURE_PLAY_PAUSE].client_update_value, True ) await hass.async_block_till_done() assert call_media_play assert call_media_play[0].data[ATTR_ENTITY_ID] == entity_id assert len(events) == 3 assert events[-1].data[ATTR_VALUE] is None await hass.async_add_executor_job( acc.chars[FEATURE_PLAY_PAUSE].client_update_value, False ) await hass.async_block_till_done() assert call_media_pause assert call_media_pause[0].data[ATTR_ENTITY_ID] == entity_id assert len(events) == 4 assert events[-1].data[ATTR_VALUE] is None await hass.async_add_executor_job( acc.chars[FEATURE_PLAY_STOP].client_update_value, True ) await hass.async_block_till_done() assert call_media_play assert call_media_play[1].data[ATTR_ENTITY_ID] == entity_id assert len(events) == 5 assert events[-1].data[ATTR_VALUE] is None await hass.async_add_executor_job( acc.chars[FEATURE_PLAY_STOP].client_update_value, False ) await hass.async_block_till_done() assert call_media_stop assert call_media_stop[0].data[ATTR_ENTITY_ID] == entity_id assert len(events) == 6 assert events[-1].data[ATTR_VALUE] is None await hass.async_add_executor_job( acc.chars[FEATURE_TOGGLE_MUTE].client_update_value, True ) await hass.async_block_till_done() assert call_toggle_mute assert call_toggle_mute[0].data[ATTR_ENTITY_ID] == entity_id assert call_toggle_mute[0].data[ATTR_MEDIA_VOLUME_MUTED] is True assert len(events) == 7 assert events[-1].data[ATTR_VALUE] is None await hass.async_add_executor_job( acc.chars[FEATURE_TOGGLE_MUTE].client_update_value, False ) await hass.async_block_till_done() assert call_toggle_mute assert call_toggle_mute[1].data[ATTR_ENTITY_ID] == entity_id assert call_toggle_mute[1].data[ATTR_MEDIA_VOLUME_MUTED] is False assert len(events) == 8 assert events[-1].data[ATTR_VALUE] is None async def test_media_player_television(hass, hk_driver, events, caplog): """Test if television accessory and HA are updated accordingly.""" entity_id = "media_player.television" # Supports 'select_source', 'volume_step', 'turn_on', 'turn_off', # 'volume_mute', 'volume_set', 'pause' hass.states.async_set( entity_id, None, { ATTR_DEVICE_CLASS: DEVICE_CLASS_TV, ATTR_SUPPORTED_FEATURES: 3469, ATTR_MEDIA_VOLUME_MUTED: False, ATTR_INPUT_SOURCE_LIST: ["HDMI 1", "HDMI 2", "HDMI 3", "HDMI 4"], }, ) await hass.async_block_till_done() acc = TelevisionMediaPlayer(hass, hk_driver, "MediaPlayer", entity_id, 2, None) await acc.run_handler() await hass.async_block_till_done() assert acc.aid == 2 assert acc.category == 31 # Television assert acc.char_active.value == 0 assert acc.char_remote_key.value == 0 assert acc.char_input_source.value == 0 assert acc.char_mute.value is False hass.states.async_set(entity_id, STATE_ON, {ATTR_MEDIA_VOLUME_MUTED: True}) await hass.async_block_till_done() assert acc.char_active.value == 1 assert acc.char_mute.value is True hass.states.async_set(entity_id, STATE_OFF) await hass.async_block_till_done() assert acc.char_active.value == 0 hass.states.async_set(entity_id, STATE_ON) await hass.async_block_till_done() assert acc.char_active.value == 1 hass.states.async_set(entity_id, STATE_STANDBY) await hass.async_block_till_done() assert acc.char_active.value == 0 hass.states.async_set(entity_id, STATE_ON, {ATTR_INPUT_SOURCE: "HDMI 2"}) await hass.async_block_till_done() assert acc.char_input_source.value == 1 hass.states.async_set(entity_id, STATE_ON, {ATTR_INPUT_SOURCE: "HDMI 3"}) await hass.async_block_till_done() assert acc.char_input_source.value == 2 hass.states.async_set(entity_id, STATE_ON, {ATTR_INPUT_SOURCE: "HDMI 5"}) await hass.async_block_till_done() assert acc.char_input_source.value == 0 assert caplog.records[-2].levelname == "WARNING" # Set from HomeKit call_turn_on = async_mock_service(hass, DOMAIN, "turn_on") call_turn_off = async_mock_service(hass, DOMAIN, "turn_off") call_media_play = async_mock_service(hass, DOMAIN, "media_play") call_media_pause = async_mock_service(hass, DOMAIN, "media_pause") call_media_play_pause = async_mock_service(hass, DOMAIN, "media_play_pause") call_toggle_mute = async_mock_service(hass, DOMAIN, "volume_mute") call_select_source = async_mock_service(hass, DOMAIN, "select_source") call_volume_up = async_mock_service(hass, DOMAIN, "volume_up") call_volume_down = async_mock_service(hass, DOMAIN, "volume_down") call_volume_set = async_mock_service(hass, DOMAIN, "volume_set") await hass.async_add_executor_job(acc.char_active.client_update_value, 1) await hass.async_block_till_done() assert call_turn_on assert call_turn_on[0].data[ATTR_ENTITY_ID] == entity_id assert len(events) == 1 assert events[-1].data[ATTR_VALUE] is None await hass.async_add_executor_job(acc.char_active.client_update_value, 0) await hass.async_block_till_done() assert call_turn_off assert call_turn_off[0].data[ATTR_ENTITY_ID] == entity_id assert len(events) == 2 assert events[-1].data[ATTR_VALUE] is None await hass.async_add_executor_job(acc.char_remote_key.client_update_value, 11) await hass.async_block_till_done() assert call_media_play_pause assert call_media_play_pause[0].data[ATTR_ENTITY_ID] == entity_id assert len(events) == 3 assert events[-1].data[ATTR_VALUE] is None hass.states.async_set(entity_id, STATE_PLAYING) await hass.async_block_till_done() await hass.async_add_executor_job(acc.char_remote_key.client_update_value, 11) await hass.async_block_till_done() assert call_media_pause assert call_media_pause[0].data[ATTR_ENTITY_ID] == entity_id assert len(events) == 4 assert events[-1].data[ATTR_VALUE] is None await hass.async_add_executor_job(acc.char_remote_key.client_update_value, 10) await hass.async_block_till_done() assert len(events) == 4 assert events[-1].data[ATTR_VALUE] is None hass.states.async_set(entity_id, STATE_PAUSED) await hass.async_block_till_done() await hass.async_add_executor_job(acc.char_remote_key.client_update_value, 11) await hass.async_block_till_done() assert call_media_play assert call_media_play[0].data[ATTR_ENTITY_ID] == entity_id assert len(events) == 5 assert events[-1].data[ATTR_VALUE] is None await hass.async_add_executor_job(acc.char_mute.client_update_value, True) await hass.async_block_till_done() assert call_toggle_mute assert call_toggle_mute[0].data[ATTR_ENTITY_ID] == entity_id assert call_toggle_mute[0].data[ATTR_MEDIA_VOLUME_MUTED] is True assert len(events) == 6 assert events[-1].data[ATTR_VALUE] is None await hass.async_add_executor_job(acc.char_mute.client_update_value, False) await hass.async_block_till_done() assert call_toggle_mute assert call_toggle_mute[1].data[ATTR_ENTITY_ID] == entity_id assert call_toggle_mute[1].data[ATTR_MEDIA_VOLUME_MUTED] is False assert len(events) == 7 assert events[-1].data[ATTR_VALUE] is None await hass.async_add_executor_job(acc.char_input_source.client_update_value, 1) await hass.async_block_till_done() assert call_select_source assert call_select_source[0].data[ATTR_ENTITY_ID] == entity_id assert call_select_source[0].data[ATTR_INPUT_SOURCE] == "HDMI 2" assert len(events) == 8 assert events[-1].data[ATTR_VALUE] is None await hass.async_add_executor_job(acc.char_volume_selector.client_update_value, 0) await hass.async_block_till_done() assert call_volume_up assert call_volume_up[0].data[ATTR_ENTITY_ID] == entity_id assert len(events) == 9 assert events[-1].data[ATTR_VALUE] is None await hass.async_add_executor_job(acc.char_volume_selector.client_update_value, 1) await hass.async_block_till_done() assert call_volume_down assert call_volume_down[0].data[ATTR_ENTITY_ID] == entity_id assert len(events) == 10 assert events[-1].data[ATTR_VALUE] is None await hass.async_add_executor_job(acc.char_volume.client_update_value, 20) await hass.async_block_till_done() assert call_volume_set[0] assert call_volume_set[0].data[ATTR_ENTITY_ID] == entity_id assert call_volume_set[0].data[ATTR_MEDIA_VOLUME_LEVEL] == 20 assert len(events) == 11 assert events[-1].data[ATTR_VALUE] is None async def test_media_player_television_basic(hass, hk_driver, events, caplog): """Test if basic television accessory and HA are updated accordingly.""" entity_id = "media_player.television" # Supports turn_on', 'turn_off' hass.states.async_set( entity_id, None, {ATTR_DEVICE_CLASS: DEVICE_CLASS_TV, ATTR_SUPPORTED_FEATURES: 384}, ) await hass.async_block_till_done() acc = TelevisionMediaPlayer(hass, hk_driver, "MediaPlayer", entity_id, 2, None) await acc.run_handler() await hass.async_block_till_done() assert acc.chars_tv == [] assert acc.chars_speaker == [] assert acc.support_select_source is False hass.states.async_set(entity_id, STATE_ON, {ATTR_MEDIA_VOLUME_MUTED: True}) await hass.async_block_till_done() assert acc.char_active.value == 1 hass.states.async_set(entity_id, STATE_OFF) await hass.async_block_till_done() assert acc.char_active.value == 0 hass.states.async_set(entity_id, STATE_ON, {ATTR_INPUT_SOURCE: "HDMI 3"}) await hass.async_block_till_done() assert acc.char_active.value == 1 assert not caplog.messages or "Error" not in caplog.messages[-1] async def test_media_player_television_supports_source_select_no_sources( hass, hk_driver, events, caplog ): """Test if basic tv that supports source select but is missing a source list.""" entity_id = "media_player.television" # Supports turn_on', 'turn_off' hass.states.async_set( entity_id, None, {ATTR_DEVICE_CLASS: DEVICE_CLASS_TV, ATTR_SUPPORTED_FEATURES: 3469}, ) await hass.async_block_till_done() acc = TelevisionMediaPlayer(hass, hk_driver, "MediaPlayer", entity_id, 2, None) await acc.run_handler() await hass.async_block_till_done() assert acc.support_select_source is False async def test_tv_restore(hass, hk_driver, events): """Test setting up an entity from state in the event registry.""" hass.state = CoreState.not_running registry = await entity_registry.async_get_registry(hass) registry.async_get_or_create( "media_player", "generic", "1234", suggested_object_id="simple", device_class=DEVICE_CLASS_TV, ) registry.async_get_or_create( "media_player", "generic", "9012", suggested_object_id="all_info_set", capabilities={ ATTR_INPUT_SOURCE_LIST: ["HDMI 1", "HDMI 2", "HDMI 3", "HDMI 4"], }, supported_features=3469, device_class=DEVICE_CLASS_TV, ) hass.bus.async_fire(EVENT_HOMEASSISTANT_START, {}) await hass.async_block_till_done() acc = TelevisionMediaPlayer( hass, hk_driver, "MediaPlayer", "media_player.simple", 2, None ) assert acc.category == 31 assert acc.chars_tv == [] assert acc.chars_speaker == [] assert acc.support_select_source is False assert not hasattr(acc, "char_input_source") acc = TelevisionMediaPlayer( hass, hk_driver, "MediaPlayer", "media_player.all_info_set", 2, None ) assert acc.category == 31 assert acc.chars_tv == ["RemoteKey"] assert acc.chars_speaker == [ "Name", "Active", "VolumeControlType", "VolumeSelector", "Volume", ] assert acc.support_select_source is True assert acc.char_input_source is not None
36.119734
86
0.728668
96a110795685bc9ebd8d91200db74ff19c4486ec
1,133
py
Python
setup.py
armgilles/jitenshea
65c04dfda5b10e93d7f0674e96bfa91ed42d0755
[ "MIT" ]
null
null
null
setup.py
armgilles/jitenshea
65c04dfda5b10e93d7f0674e96bfa91ed42d0755
[ "MIT" ]
null
null
null
setup.py
armgilles/jitenshea
65c04dfda5b10e93d7f0674e96bfa91ed42d0755
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import setuptools with open("README.md") as fobj: LONG_DESCRIPTION = fobj.read() INSTALL_REQUIRES = ["pandas", "requests", "psycopg2-binary", "luigi", 'sqlalchemy', 'lxml', 'xgboost', 'daiquiri', 'flask-restplus', 'sh', 'scikit-learn', 'tables'] setuptools.setup( name='jitenshea', version='0.1', license='BSD', url='https://github.com/garaud/jitenshea', packages=setuptools.find_packages(), include_package_data=True, install_requires=INSTALL_REQUIRES, extras_require={'dev': ['pytest', 'pytest-sugar', 'ipython', 'ipdb']}, author="Damien Garaud", author_email='damien.garaud@gmail.com', description="Bicycle-sharing data analysis", long_description=LONG_DESCRIPTION, classifiers=[ "Development Status :: 3 - Alpha", "Intended Audience :: Developers", "Topic :: Scientific/Engineering", "Operating System :: OS Independent", "Programming Language :: Python", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", ] )
29.815789
83
0.622242
036a47d8cb38e5cb916e0b23dd2ea6071f8dffc7
16,683
py
Python
analysis/dimensionalty_sim/neurons.py
htem/cb2_project_analysis
a677cbadc7e3bf0074975a94ed1d06b4801899c0
[ "MIT" ]
null
null
null
analysis/dimensionalty_sim/neurons.py
htem/cb2_project_analysis
a677cbadc7e3bf0074975a94ed1d06b4801899c0
[ "MIT" ]
null
null
null
analysis/dimensionalty_sim/neurons.py
htem/cb2_project_analysis
a677cbadc7e3bf0074975a94ed1d06b4801899c0
[ "MIT" ]
null
null
null
import random import math import copy import numpy as np import logging import collections logger = logging.getLogger(__name__) class GranuleCell(): def __init__( self, # num_mfs, # num_dendrite, claws, claw_weights=None, # act_threshold, # grc_act_on_failure_rate, # grc_act_off_failure_rate, # max_weight=255, # act_lv=0.01, ): self.activations = [] self.inputs = [] # self.act_threshold = act_threshold # self.max_weight = max_weight # self.output_weight = int(max_weight/2) # self.grc_act_on_failure_rate = grc_act_on_failure_rate # self.grc_act_off_failure_rate = grc_act_off_failure_rate # if act_threshold < 1: # act_threshold = act_threshold*num_dendrite # self.act_threshold = act_threshold self.claws = claws # while len(self.claws) < num_dendrite: # mf_id = random.randint(0, num_mfs-1) # if mf_id not in self.claws: # self.claws.append(mf_id) # self.claws.sort() # print(self.claws) self.claws.sort() if claw_weights: self.claw_weights = claw_weights assert False, "Untested" else: self.claw_weights = [1]*len(self.claws) self.activated = False self.act_lv_scale = 1 self.broken = False # self.act_lv = act_lv def activate( self, pattern, # grc_act_off_failure_rate=None, ): if self.broken: self.activations.append(0) self.activated = False return False sum = 0.0 for i, claw in enumerate(self.claws): sum += pattern[claw] self.inputs.append(sum) if sum >= self.act_lv_scale: activated = True self.activations.append(1) else: activated = False self.activations.append(0) self.activated = activated return activated def train(self, input_mfs, output): act = False act = self.activate(input_mfs, grc_act_off_failure_rate=0) if act: if output: self.output_weight = min( self.output_weight+1, self.max_weight) else: self.output_weight = max( self.output_weight-1, 0) def reset(self): self.inputs = [] self.activations = [] def calibrate_activation_level(self, act_lv): self.inputs.sort() idx = int((1-act_lv)*len(self.inputs)) if self.inputs[idx] == 0: # print(self.inputs) print(self.claws) # scale = 1.0 / self.inputs[idx] # self.act_lv_scale = scale self.act_lv_scale = self.inputs[idx] class MossyFiber(): def __init__(self, mf_id): self.mf_id = mf_id self.activations = [] pass def reset(self): self.activations = [] def activate(self, pattern): self.activations.append(pattern[self.mf_id]) class Simulation(): def __init__( self, input_graph, # num_grc=None, # num_mfs=None, # num_dendrite=None, # grc_act_threshold=None, # grc_act_on_failure_rate=0, # grc_act_off_failure_rate=0, # max_synapse_weight=255, # min_train_it=15000, min_eval_it=5000, # default_input_noise=0.05, # default_decoder_error_margin=0.10, # n_evaluate_sampling=1, # evaluate_sampling_majority=False, ): self.num_mfs = len(input_graph.mfs) self.num_grcs = len(input_graph.grcs) self.min_eval_it = min_eval_it self.init_mfs() self.init_grcs(input_graph) self.failure_rate = None def reset(self): for grc in self.grcs: grc.reset() for mf in self.mfs: mf.reset() # random.seed(0) def init_mfs(self): self.mfs = [] for i in range(self.num_mfs): self.mfs.append(MossyFiber(mf_id=i)) def init_grcs(self, input_graph): self.grcs = [] mapping = {} counter = 0 for mf_id, mf in input_graph.mfs.items(): mapping[mf_id] = counter counter += 1 for grc_id, grc in input_graph.grcs.items(): claws = [mapping[mf_id] for mf_id, _ in grc.edges] self.grcs.append( GranuleCell( claws=claws, ) ) def set_failure_rate(self, failure_rate, seed): random.seed(seed) for grc in self.grcs: grc.broken = True if random.random() < failure_rate else False def generate_patterns( self, count, type='random', # independent_noise=0, ): patterns = [] # outputs = [] pattern_len = self.num_mfs for i in range(count): if type == 'random': b = [None]*pattern_len for k in range(pattern_len): b[k] = random.random() elif type == 'gaussian': mu, sigma = 0.5, 0.2 # mean and standard deviation b = np.random.normal(mu, sigma, pattern_len) output = random.randint(0, 1) # outputs.append(output) patterns.append((b, output)) return patterns def add_input_noise(cls, pattern, input_noise, scaled_noise=False): if input_noise > 0: pattern = copy.deepcopy(pattern) if scaled_noise: p0 = 1-input_noise for i in range(len(pattern)): r = random.random() pattern[i] = pattern[i]*p0 + r*input_noise else: for i in range(len(pattern)): if random.random() < input_noise: pattern[i] = random.random() return pattern def train( self, patterns, n_iteration=None, # input_noise=None, seed=0 ): if n_iteration is None: n_iteration = len(patterns)*10 # if n_iteration < self.min_train_it: # n_iteration = self.min_train_it # if input_noise is None: # input_noise = self.default_input_noise # stats activated_grcs = 0 random.seed(seed) for i in range(n_iteration): # print(patterns[random.randint(0, len(patterns)-1)]) ind = random.randint(0, len(patterns)-1) # print(ind) # print(patterns[ind]) pattern, output = patterns[ind] pattern = self.add_input_noise(pattern, input_noise) for grc in self.grcs: grc.train(pattern, output) if grc.activated: activated_grcs += 1 # if i % 1000 == 0: # print(f'{i}..') activated_grcs_level = activated_grcs / len(self.grcs) / n_iteration logger.debug(f'activated_grcs_level: {activated_grcs_level} ({activated_grcs / n_iteration} grcs out of {len(self.grcs)})') def encode(self, input_pattern, out_array=None): if out_array is None: out_array = np.empty(len(self.grcs), dtype=np.uint8) for i, grc in enumerate(self.grcs): if grc.activate(input_pattern): out_array[i] = 1 else: out_array[i] = 0 return out_array def evaluate( self, patterns, n_iteration=None, no_random=False, # input_noise=None, # decoder_error_margin=None, seed=0, calibrate_activation_level=False, # output_act_lv=False, ): if n_iteration is None: n_iteration = 10*len(patterns) n_iteration = max(self.min_eval_it, n_iteration) if no_random: n_iteration = len(patterns) self.reset() # for grc in self.grcs[0:20]: # print(f'len: {len(grc.claws)}, scale: {grc.act_lv_scale:.2f}') random.seed(seed) for i in range(n_iteration): if no_random: pattern, output = patterns[i] else: pattern, output = patterns[random.randint(0, len(patterns)-1)] self.set_mfs_pattern(pattern) for grc in self.grcs: act = grc.activate(pattern) if calibrate_activation_level is not False: self.calibrate_grc_activation_level(calibrate_activation_level) return def print_grc_weights(self, count=200): weights = [] for i, grc in enumerate(self.grcs): weights.append(grc.output_weight) if i > count: break print(weights) def set_mfs_pattern(self, pattern): for mf in self.mfs: mf.activate(pattern) def get_mfs_activities(self): # ret = [] # for mf in self.mfs: # ret.append(mf.activations) for mf in self.mfs: xlen = len(self.mfs) ylen = len(mf.activations) break ret = np.empty((ylen, xlen), dtype=np.float32) for i, mf in enumerate(self.mfs): for j, val in enumerate(mf.activations): ret[j][i] = val return ret def get_grc_activities(self): # ret = [] # for grc in self.grcs: # ret.append(grc.activations) # return ret for mf in self.grcs: xlen = len(self.grcs) ylen = len(mf.activations) break ret = np.empty((ylen, xlen), dtype=np.uint8) for i, mf in enumerate(self.grcs): for j, val in enumerate(mf.activations): ret[j][i] = val return ret def calibrate_grc_activation_level(self, act_lv=None): if act_lv is None: act_lv = self.act_lv for grc in self.grcs: grc.calibrate_activation_level(act_lv) def add_noise_patterns( self, patterns, prob, n, seed=None, scaled_noise=False): if seed is not None: random.seed(seed) out_arr = [] for pattern_output in patterns: # print(pattern_output) pattern, output = pattern_output for i in range(n): new_pattern = self.add_input_noise(pattern, prob, scaled_noise) out_arr.append((new_pattern, output)) return out_arr def print_grc_act_lv_scale(self): # scales = [] # for grc in self.grcs: # scales.append(grc.act_lv_scale) # print(scales) print([grc.act_lv_scale for grc in self.grcs]) from collections import defaultdict import itertools def count_redundancy(g): pos = 0 grcs_claws = [] mf_to_grcs = defaultdict(set) for grc_id, dendrite_count in enumerate(g.dendrite_counts): claws = [] for j in range(dendrite_count): mf_id = g.dendrite_mf_map[pos] pos += 1 claws.append(mf_id) mf_to_grcs[mf_id].add(grc_id) grcs_claws.append(set(claws)) nshares = defaultdict(int) for mf_id, grcs in mf_to_grcs.items(): for pair in itertools.combinations(grcs, 2): nshare = len(grcs_claws[pair[0]] & grcs_claws[pair[1]]) nshares[nshare] += 1 for n in sorted(nshares.keys()): print(f'{n}: {nshares[n]/len(g.dendrite_counts)}') # count_redundancy(sim_lite) def generate_binary_patterns(pattern_len, count, f): patterns = [] # np.random.seed(seed) # random.seed(seed) threshold = int(pattern_len*f+0.5) base = np.zeros(pattern_len, dtype=np.uint8) base[0:threshold] = 1 for i in range(count): np.random.shuffle(base) b = base.copy() output = random.randint(0, 1) patterns.append((b, output)) return patterns # def add_input_noise(pattern, input_noise): # if input_noise > 0: # pattern = copy.deepcopy(pattern) # for i in range(len(pattern)): # if random.random() < input_noise: # # pattern[i] = not pattern[i] # pattern[i] = random.random() # return pattern # def add_noise_binary_patterns(pattern, prob, f=None, n=1, seed=0): # if f is None: # f = pattern.sum() / len(pattern) # ones = [] # zeros = [] # for i, b in enumerate(pattern): # if b: # ones.append(i) # else: # zeros.append(i) # ones = np.array(ones, dtype=np.uint32) # zeros = np.array(zeros, dtype=np.uint32) # ret = [] # num_flips = int(prob*f*len(pattern)+.5) # for i in range(n): # new_pat = pattern.copy() # np.random.shuffle(ones) # for j in range(num_flips): # new_pat[ones[j]] = 0 # np.random.shuffle(zeros) # for j in range(num_flips): # new_pat[zeros[j]] = 1 # ret.append(new_pat) # return ret def add_noise_binary_patterns(pattern, prob, f=None, n=1, seed=0): if f is None: f = pattern.sum() / len(pattern) ret = [] for i in range(n): noisy_pattern = copy.deepcopy(pattern) for i in range(len(noisy_pattern)): if random.random() < prob: r = random.random() if r < f: noisy_pattern[i] = 1 else: noisy_pattern[i] = 0 ret.append(noisy_pattern) return ret def generate_random_pattern(pattern_len, type='random'): b = [None]*pattern_len for k in range(pattern_len): b[k] = random.random() return b def make_noisy_patterns_float( patterns, prob, n, seed=None, scaled_noise=False, signal_mask=None): if signal_mask: assert not scaled_noise if seed is not None: random.seed(seed) out_arr = [] for pattern_output in patterns: # print(pattern_output) pattern, output = pattern_output for i in range(n): new_pattern = add_input_noise_float(pattern, prob, scaled_noise, signal_mask) out_arr.append((new_pattern, output)) return out_arr def add_input_noise_float( pattern, input_noise, scaled_noise=False, signal_mask=None): if input_noise > 0: pattern = copy.deepcopy(pattern) if scaled_noise: p0 = 1-input_noise for i in range(len(pattern)): r = random.random() pattern[i] = pattern[i]*p0 + r*input_noise elif signal_mask: for i in range(len(pattern)): if not signal_mask[i]: if random.random() < input_noise: pattern[i] = random.random() else: for i in range(len(pattern)): if random.random() < input_noise: pattern[i] = random.random() return pattern def add_noise_to_core_patterns( patterns, prob, n, seed=None): if seed: random.seed(seed) np.random.seed(seed) out_arr = [] pattern_len = len(patterns[0][0]) assert pattern_len <= 65535 noise_mask_len = int(prob*pattern_len+0.5) noise_mask = np.zeros(pattern_len, dtype=np.uint8) noise_mask[0:noise_mask_len] = 1 for pattern_output in patterns: pattern, output = pattern_output np.random.shuffle(noise_mask) for i in range(n): random_pat = copy.deepcopy(pattern) for j in range(pattern_len): if noise_mask[j]: random_pat[j] = random.random() out_arr.append((random_pat, output)) return out_arr # def add_noise_to_core_patterns( # patterns, prob, n, # seed=0): # random.seed(seed) # np.random.seed(seed) # out_arr = [] # pattern_len = len(patterns[0][0]) # core_len = int(pattern_len*(1-prob)) # random_core_indices = [k for k in range(pattern_len)] # assert pattern_len <= 65535 # random_core_indices = np.array(random_core_indices, dtype=np.uint16) # for pattern_output in patterns: # pattern, output = pattern_output # np.random.shuffle(random_core_indices) # for i in range(n): # random_pat = generate_random_pattern(pattern_len) # for j in range(core_len): # random_pat[random_core_indices[j]] = pattern[j] # out_arr.append((random_pat, output)) # return out_arr
30.837338
131
0.556195
b18b95973d20e571990f73a94bf956ca8e68f980
3,614
py
Python
lec22/step5.py
christophernhill-dev/fall-2021-12.010
5b417379d436896c6c20886780a93a4876797a1c
[ "MIT" ]
2
2021-09-09T19:50:06.000Z
2021-09-16T19:09:02.000Z
lec22/step5.py
christophernhill-dev/fall-2021-12.010
5b417379d436896c6c20886780a93a4876797a1c
[ "MIT" ]
null
null
null
lec22/step5.py
christophernhill-dev/fall-2021-12.010
5b417379d436896c6c20886780a93a4876797a1c
[ "MIT" ]
8
2021-12-02T02:15:45.000Z
2021-12-02T20:30:39.000Z
#!/usr/bin/env python # # From N processes, each with their own id (rank), use MPI library to report # each process rank, total number of processes and the name of the host machine # on which the process resides. # from mpi4py import MPI import numpy as np import matplotlib.pyplot as plt comm = MPI.COMM_WORLD rank = comm.Get_rank() size = comm.Get_size() host = MPI.Get_processor_name() print('I am rank','%4d'%(rank),'of',size,'executing on',host) # # Have all the processes send a message to the # one lower rank process, except for rank 0 which # sends to the highest rank process. # send_message='Hello from rank %d'%(rank) msg_dest=rank-1 msg_srce=rank+1 if rank == 0: msg_dest=size-1 if rank == size-1: msg_srce=0 comm.send(send_message,dest=msg_dest) recv_message=comm.recv(source=msg_srce) print( 'I just sent "%s" to %4d'%(send_message,msg_dest) ) print( 'I just received "%s" from %4d'%(recv_message,msg_srce) ) # # Lets divide a 1d array of larr mesh points across the ranks, # such that each rank has matching number of points within # 1. Each divided part has nh halo points at each end that hold # copies of points from its neighbors (rank-1 and rank+1). # nh=2 # halo width larr=10000 larr=size*100 rem=larr%size nbase=int(larr/size) if rank < rem: myl=nbase+1 mygstart=rank*(myl) mygend=mygstart+myl-1 else: myl=nbase mygstart=rank*(myl)+rem mygend=mygstart+myl-1 total_len=comm.allreduce(myl,op=MPI.SUM) print( 'Rank %4d local array section length %d'%(rank,myl) ) print( 'Rank %4d total array length %d'%(rank,total_len) ) mysec=np.zeros(myl+nh*2) i0loh_indices=[*range(0,nh)] i0hih_indices=[*range(myl+nh,myl+2*nh)] i0sec_indices=[*range(nh,myl+nh)] comm.Barrier() print( 'Rank %4d local section is %6d to %6d'%(rank,mygstart,mygend) ) # # Each rank writes rank number to the local sections of mysec # and then sends and receives updates from neighbors # if nh > myl: print('ERROR: nh must be less than myl') mysec[i0sec_indices]=rank i0rm1=rank-1 i0rp1=rank+1 if rank == 0: i0rm1=size-1 if rank == size-1: i0rp1=0 # Send to my n-1 side and receive from my n+1 side comm.send(mysec[i0sec_indices][0:nh],dest=i0rm1) mysec[i0hih_indices]=comm.recv(source=i0rp1) # Send to my n+1 side and receive from my n-1 side comm.send(mysec[i0sec_indices][-nh:],dest=i0rp1) mysec[i0loh_indices]=comm.recv(source=i0rm1) # # Now lets check what is in each section # print('Rank %4d mysec values ='%(rank),mysec) def halo(fld,isec,im1,ip1,ihi,ilo,nh): comm.send(fld[isec][0:nh],dest=im1) fld[ihi]=comm.recv(source=ip1) comm.send(fld[isec][-nh:],dest=ip1) fld[ilo]=comm.recv(source=im1) # # OK now lets start thinking about a numerical problem # - we will use several variables # 1. field values and the first and second derivatives in x # 2. grid locations # 3. diffusion coefficient # 4. initial conditions # 5. timestep, domain size # Set parameters Lx=1. dx=Lx/larr rdx=1./dx dt=5. # 1. setting initial conditions # Lets create an array of grid locations xc=np.zeros(myl+nh*2) xc[i0sec_indices]=( np.linspace(mygstart,mygend,myl)+0.5 )*dx print('Rank %4d xc values ='%(rank),xc) halo(xc,i0sec_indices,i0rm1,i0rp1,i0hih_indices,i0loh_indices,nh) print('Rank %4d xc values ='%(rank),xc) phi_init=np.zeros(myl+nh*2) phi_init[i0sec_indices]=np.exp( -50.*(xc[i0sec_indices]/Lx-1./2.)**2 ) print('Rank %4d phi_init values ='%(rank),phi_init) halo(phi_init,i0sec_indices,i0rm1,i0rp1,i0hih_indices,i0loh_indices,nh) print('Rank %4d phi_init values ='%(rank),phi_init) plt.plot(phi_init) plt.savefig('phi_init_rank%d.png'%(rank)) MPI.Finalize()
27.378788
80
0.722745
b996966f5ee392d24ca229934e33b5e27ce1dd77
104
py
Python
src/api/pdi/domain/lookup/LookupDto.py
ahmetcagriakca/pythondataintegrator
079b968d6c893008f02c88dbe34909a228ac1c7b
[ "MIT" ]
1
2020-12-18T21:37:28.000Z
2020-12-18T21:37:28.000Z
src/api/pdi/domain/lookup/LookupDto.py
ahmetcagriakca/pythondataintegrator
079b968d6c893008f02c88dbe34909a228ac1c7b
[ "MIT" ]
null
null
null
src/api/pdi/domain/lookup/LookupDto.py
ahmetcagriakca/pythondataintegrator
079b968d6c893008f02c88dbe34909a228ac1c7b
[ "MIT" ]
1
2020-12-18T21:37:31.000Z
2020-12-18T21:37:31.000Z
from dataclasses import dataclass @dataclass class LookupDto: Id: int = None Name: int = None
13
33
0.701923
f5670e1a09cbf4be4de71a208d20f78092619f65
5,794
py
Python
scripts/penta10test.py
emathew1/MPI_3DCompact
1945eabdc240e8754c9ea356ba954683dee0149f
[ "MIT" ]
2
2021-01-14T21:13:53.000Z
2022-01-16T23:03:43.000Z
scripts/penta10test.py
emathew1/MPI_3DCompact
1945eabdc240e8754c9ea356ba954683dee0149f
[ "MIT" ]
null
null
null
scripts/penta10test.py
emathew1/MPI_3DCompact
1945eabdc240e8754c9ea356ba954683dee0149f
[ "MIT" ]
3
2018-11-17T21:24:57.000Z
2020-08-02T03:19:42.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Feb 10 21:24:14 2019 @author: edwin """ # %% import numpy as np import matplotlib.pyplot as plt #%% N = 25 A = np.zeros((N,N)) B = np.zeros((N,N)) #Interior points #Penta 10 beta = 1.0/20.0; alpha = 1.0/2.0; a = 17.0/12.0; b = 101.0/150.0; c = 1.0/100.0; #Tri6 #beta = 0; #alpha = 1.0/3.0; #a = 14.0/9.0; #b = 1.0/9.0; #c = 0.0/100.0; #Point 0, N-1 #Penta 10 #beta1 = 28.0; #alpha1 = 16.0; #a1 = -1181.0/280.0; #b1 = -892.0/35.0; #c1 = 77.0/5.0; #d1 = 56.0/3.0; #e1 = -35.0/6.0; #f1 = 28.0/15.0; #g1 = -7.0/15.0; #h1 = 8.0/105.0; #i1 = -1.0/168.0; #j1 = 0.0 #Tri 10 beta1 = 0; alpha1 = 9.0; a1 = -2485.0/649.0; b1 = -1809.0/280.0; c1 = 18.0/1.0; d1 = -14.0/1.0; e1 = 21.0/2.0; f1 = -63.0/10.0; g1 = 14.0/5.0; h1 = -6.0/7.0; i1 = 9.0/56.0; j1 = -1.0/72.0; #Penta 8 #beta1 = 15.0; #alpha1 = 8.0; #a1 = -79.0/20.0; #b1 = -77.0/5.0; #c1 = 55.0/4.0; #d1 = 20.0/3.0; #e1 = -5.0/4.0; #f1 = 1.0/5.0; #g1 = -1.0/60.0; #h1 = -0.0/7.0; #i1 = 0.0/56.0; #j1 = -0.0/72.0; #Tri 6 #beta1 = 0; #alpha1 = 5.0; #a1 = -197.0/60.0; #b1 = -5.0/12.0; #c1 = 5.0/1.0; #d1 = -5.0/3.0; #e1 = 5.0/12.0; #f1 = -1.0/20.0; #g1 = 0.0#14.0/5.0; #h1 = 0.0#-6.0/7.0; #i1 = 0.0# 9.0/56.0; #j1 = 0.0#-1.0/72.0; #Point 1, N-2 #Penta 10 beta2 = 5.0/3.0; alpha2_1 = 1.0/21.0; alpha2_2 = 3.0; a2 = -544.0/2581.0; b2 = -39.0/20.0; c2 = -17.0/20.0; d2 = 95.0/36.0; e2 = 5.0/12.0; f2 = -1.0/20.0; g2 = 1.0/180.0; h2 = -1.0/2940.0; #Tri6 #beta2 = 0.0; #alpha2_1 = 1.0/8.0; #alpha2_2 = 3.0/4.0; #a2 = -43/96.0; #b2 = -5.0/6.0; #c2 = 9.0/8.0; #d2 = 1.0/6.0; #e2 = -1.0/96.0; #f2 = 0.0#-1.0/20.0; #g2 = 0.0# 1.0/180.0; #h2 = 0.0#-1.0/2940.0; #Penta6 #beta2 = 0.0; #alpha2_1 = 1.0/8.0; #alpha2_2 = 3.0/4.0; #a2 = -43/96.0; #b2 = -5.0/6.0; #c2 = 9.0/8.0; #d2 = 1.0/6.0; #e2 = -1.0/96.0; #f2 = 0.0#-1.0/20.0; #g2 = 0.0# 1.0/180.0; #h2 = 0.0#-1.0/2940.0; #Point 2, N-3 #Penta 10 #beta3_1 = 1.0/90.0; #beta3_2 = 1.0; #alpha3_1 = 4.0/15.0; #alpha3_2 = 8.0/9.0; #a3 = -34.0/675.0; #b3 = -127.0/225.0; #c3 = -7.0/12.0; #d3 = 20.0/27.0; #e3 = 4.0/9.0; #f3 = 1.0/75.0; #g3 = -1.0/2700.0; #h3 = 0 #i3 = 0 #Tri 10 #beta3_1 = 0/90.0; #beta3_2 = 0.0; #alpha3_1 = 1.0/7.0; #alpha3_2 = 1.0; #a3 = -1.0/168.0; #b3 = -433.0/980.0; #c3 = -19.0/20.0; #d3 = 21.0/20.0; #e3 = 5.0/12.0; #f3 = -1.0/20.0; #g3 = 1.0/60.0; #h3 = -1.0/420.0 #i3 = 1.0/5880.0 #Tri 6 interior #beta3_1 = 0.0; #beta3_2 = 0.0; #alpha3_1 = 1.0/3.0; #alpha3_2 = 1.0/3.0; #a3 = -1.0/9.0/4.0; #b3 = -14/9.0/2; #c3 = 0.0; #d3 = 14/9/2.0; #e3 = 1/9/4.0; #f3 = 0; #g3 = 0; #h3 = 0 #i3 = 0 #Penta 8 interior beta3_1 = 1.0/36.0; beta3_2 = 1.0/36.0; alpha3_1 = 4.0/9.0; alpha3_2 = 4.0/9.0; a3 = -25.0/54.0/4.0; b3 = -40.0/27.0/2.0; c3 = 0.0; d3 = 40.0/27.0/2.0; e3 = 25.0/54.0/4.0; f3 = 0; g3 = 0; h3 = 0 i3 = 0 for i in range(0,N): A[i,i] = 1 for i in range(0,N-1): A[i,i+1] = alpha A[i+1,i] = alpha B[i,i+1] = a/2 B[i+1,i] = -a/2 for i in range(0,N-2): A[i,i+2] = beta A[i+2,i] = beta B[i,i+2] = b/4 B[i+2,i] = -b/4 for i in range(0,N-3): B[i,i+3] = c/6 B[i+3,i] = -c/6 Bperiodic = np.copy(B) Aperiodic = np.copy(A) Bperiodic[0,-1] = -a/2 Bperiodic[0,-2] = -b/4 Bperiodic[0,-3] = -c/6 Bperiodic[1,-1] = -b/4 Bperiodic[1,-2] = -c/6 Bperiodic[2,-1] = -c/6 Bperiodic[-1,0] = a/2 Bperiodic[-1,1] = b/4 Bperiodic[-1,2] = c/6 Bperiodic[-2,0] = b/4 Bperiodic[-2,1] = c/6 Bperiodic[-3,0] = c/6 Aperiodic[0,-1] = alpha Aperiodic[0,-2] = beta Aperiodic[1,-1] = beta Aperiodic[-1,0] = alpha Aperiodic[-1,1] = beta Aperiodic[-2,0] = beta B[0,0] = a1 B[0,1] = b1 B[0,2] = c1 B[0,3] = d1 B[0,4] = e1 B[0,5] = f1 B[0,6] = g1 B[0,7] = h1 B[0,8] = i1 B[0,9] = j1 B[-1,-1] = -a1 B[-1,-2] = -b1 B[-1,-3] = -c1 B[-1,-4] = -d1 B[-1,-5] = -e1 B[-1,-6] = -f1 B[-1,-7] = -g1 B[-1,-8] = -h1 B[-1,-9] = -i1 B[-1,-10]= -j1 B[1,0] = a2 B[1,1] = b2 B[1,2] = c2 B[1,3] = d2 B[1,4] = e2 B[1,5] = f2 B[1,6] = g2 B[1,7] = h2 B[-2,-1] = -a2 B[-2,-2] = -b2 B[-2,-3] = -c2 B[-2,-4] = -d2 B[-2,-5] = -e2 B[-2,-6] = -f2 B[-2,-7] = -g2 B[-2,-8] = -h2 B[2,0] = a3 B[2,1] = b3 B[2,2] = c3 B[2,3] = d3 B[2,4] = e3 B[2,5] = f3 B[2,6] = g3 B[2,7] = h3 B[2,8] = i3 B[-3,-1] = -a3 B[-3,-2] = -b3 B[-3,-3] = -c3 B[-3,-4] = -d3 B[-3,-5] = -e3 B[-3,-6] = -f3 B[-3,-7] = -g3 B[-3,-8] = -h3 B[-3,-9] = -i3 A[0,1] = alpha1 A[0,2] = beta1 A[-1,-2] = alpha1 A[-1,-3] = beta1 A[1,0] = alpha2_1 A[1,2] = alpha2_2 A[1,3] = beta2 A[-2, -1] = alpha2_1 A[-2, -3] = alpha2_2 A[-2, -4] = beta2 A[2,0] = beta3_1 A[2,1] = alpha3_1 A[2,3] = alpha3_2 A[2,4] = beta3_2 A[-3, -1] = beta3_1 A[-3, -2] = alpha3_1 A[-3, -4] = alpha3_2 A[-3, -5] = beta3_2 x = np.zeros((N,1)) xperiodic = np.zeros((N,1)) for i in range(0,N): x[i] = np.sin((float(i)/float(N-1))*2.0*np.pi) xperiodic[i] = np.sin((float(i)/float(N))*2.0*np.pi) # %% dx = 2.0*np.pi/(N-1) dxp = 2.0*np.pi/N RHS = (1/dx)*np.matmul(B,x) RHSperiodic = (1/dxp)*np.matmul(Bperiodic,xperiodic) #%% y = np.linalg.solve(A,RHS) yperiodic = np.linalg.solve(Aperiodic, RHSperiodic)
16.843023
56
0.427856
7d08331d8a5c2cd91a3a93971be64ee733bca531
981
py
Python
src/calendar_export.py
soxidus/Boardgame-Bot
6c54ce090b0ddb3f41431c4d17e6b89523f817d8
[ "MIT" ]
null
null
null
src/calendar_export.py
soxidus/Boardgame-Bot
6c54ce090b0ddb3f41431c4d17e6b89523f817d8
[ "MIT" ]
1
2020-07-05T19:36:12.000Z
2020-07-05T19:36:12.000Z
src/calendar_export.py
soxidus/Boardgame-Bot
6c54ce090b0ddb3f41431c4d17e6b89523f817d8
[ "MIT" ]
null
null
null
from icalendar import Calendar, Event from datetime import datetime from os import remove from parse_strings import generate_uuid_32 def create_ics_file(title, date): calendar = Calendar() calendar.add('prodid', '-//Meeple - Auto-Ical//') calendar.add('version', '2.0') gamenight_event = Event() gamenight_event.add('dtstamp', datetime.now()) gamenight_event.add('summary', title) gamenight_event.add('description', 'Created by Meeple the boardgame bot') gamenight_event.add('dtstart', datetime.strptime(str(date) + " 19", "%Y-%m-%d 00:00:00 %H")) gamenight_event.add('dtend', datetime.strptime(str(date) + " 23", "%Y-%m-%d 00:00:00 %H")) calendar.add_component(gamenight_event) filename = 'cal-' + generate_uuid_32() + '.ics' with open(filename, 'wb') as my_file: my_file.write(calendar.to_ical()) return filename def delete_ics_file(filename): try: remove(filename) except OSError: pass
30.65625
96
0.678899
ced4760658fbef993e0b2f4523353a3e1caca2e2
2,598
py
Python
tests/tests.py
qureshizawar/CUDA-quartic-solver
97a24e5e1818b51c6bd3ac6fc9728f1dc2a3743b
[ "MIT" ]
6
2020-04-27T15:34:08.000Z
2022-02-23T06:34:18.000Z
tests/tests.py
qureshizawar/CUDA-quartic-solver
97a24e5e1818b51c6bd3ac6fc9728f1dc2a3743b
[ "MIT" ]
null
null
null
tests/tests.py
qureshizawar/CUDA-quartic-solver
97a24e5e1818b51c6bd3ac6fc9728f1dc2a3743b
[ "MIT" ]
2
2020-05-05T11:45:48.000Z
2021-07-21T06:33:51.000Z
import numpy as np import QuarticSolver def test1(): eps = 1e-5 correct_minimum = -2 N = 1<<9 A = np.ones(N)*2 B = np.ones(N)*-4 C = np.ones(N)*-22 D = np.ones(N)*24 E = np.ones(N)*2 minimum = QuarticSolver.QuarticMinimum(A,B,C,D,E,True) res = np.sum(minimum)/N assert abs(res-correct_minimum)<eps N = 1<<13 A = np.ones(N)*2 B = np.ones(N)*-4 C = np.ones(N)*-22 D = np.ones(N)*24 E = np.ones(N)*2 minimum = QuarticSolver.QuarticMinimum(A,B,C,D,E,True) res = np.sum(minimum)/N assert abs(res-correct_minimum)<eps N = 1<<20 A = np.ones(N)*2 B = np.ones(N)*-4 C = np.ones(N)*-22 D = np.ones(N)*24 E = np.ones(N)*2 minimum = QuarticSolver.QuarticMinimum(A,B,C,D,E,True) res = np.sum(minimum)/N assert abs(res-correct_minimum)<eps def test2(): eps = 1e-5 correct_minimum = -0.5688 N = 1<<9 A = np.ones(N)*14 B = np.ones(N)*-11 C = np.ones(N)*51 D = np.ones(N)*79 E = np.ones(N)*1 minimum = QuarticSolver.QuarticMinimum(A,B,C,D,E,True) res = np.sum(minimum)/N assert abs(res-correct_minimum)<eps N = 1<<13 A = np.ones(N)*14 B = np.ones(N)*-11 C = np.ones(N)*51 D = np.ones(N)*79 E = np.ones(N)*1 minimum = QuarticSolver.QuarticMinimum(A,B,C,D,E,True) res = np.sum(minimum)/N assert abs(res-correct_minimum)<eps N = 1<<20 A = np.ones(N)*14 B = np.ones(N)*-11 C = np.ones(N)*51 D = np.ones(N)*79 E = np.ones(N)*1 minimum = QuarticSolver.QuarticMinimum(A,B,C,D,E,True) res = np.sum(minimum)/N assert abs(res-correct_minimum)<eps def test3(): eps = 1e-5 correct_minimum = -21.75 N = 1<<9 A = np.ones(N)*3 B = np.ones(N)*87 C = np.ones(N)*0 D = np.ones(N)*0 E = np.ones(N)*0 minimum = QuarticSolver.QuarticMinimum(A,B,C,D,E,True) res = np.sum(minimum)/N assert abs(res-correct_minimum)<eps N = 1<<13 A = np.ones(N)*3 B = np.ones(N)*87 C = np.ones(N)*0 D = np.ones(N)*0 E = np.ones(N)*0 minimum = QuarticSolver.QuarticMinimum(A,B,C,D,E,True) res = np.sum(minimum)/N assert abs(res-correct_minimum)<eps N = 1<<20 A = np.ones(N)*3 B = np.ones(N)*87 C = np.ones(N)*0 D = np.ones(N)*0 E = np.ones(N)*0 minimum = QuarticSolver.QuarticMinimum(A,B,C,D,E,True) res = np.sum(minimum)/N assert abs(res-correct_minimum)<eps if __name__=='__main__': QuarticSolver.dry_run(1<<20) test1() test2() test3() print('all test passed!')
20.951613
58
0.563895
c3d827db7800a3fecaef90199b3f9326d68cb7c2
4,179
py
Python
flearn/trainers/fedprox.py
xiby/FedProx
e9423634e7d01bcc72df614dd941ffdd3d1266b5
[ "MIT" ]
371
2019-01-26T01:15:53.000Z
2022-03-29T17:41:41.000Z
flearn/trainers/fedprox.py
xiby/FedProx
e9423634e7d01bcc72df614dd941ffdd3d1266b5
[ "MIT" ]
24
2019-04-19T12:22:05.000Z
2022-02-09T23:29:38.000Z
flearn/trainers/fedprox.py
xiby/FedProx
e9423634e7d01bcc72df614dd941ffdd3d1266b5
[ "MIT" ]
115
2019-07-02T04:11:14.000Z
2022-03-19T16:57:00.000Z
import numpy as np from tqdm import trange, tqdm import tensorflow as tf from .fedbase import BaseFedarated from flearn.optimizer.pgd import PerturbedGradientDescent from flearn.utils.tf_utils import process_grad, process_sparse_grad class Server(BaseFedarated): def __init__(self, params, learner, dataset): print('Using Federated prox to Train') self.inner_opt = PerturbedGradientDescent(params['learning_rate'], params['mu']) super(Server, self).__init__(params, learner, dataset) def train(self): '''Train using Federated Proximal''' print('Training with {} workers ---'.format(self.clients_per_round)) for i in range(self.num_rounds): # test model if i % self.eval_every == 0: stats = self.test() # have set the latest model for all clients stats_train = self.train_error_and_loss() tqdm.write('At round {} accuracy: {}'.format(i, np.sum(stats[3])*1.0/np.sum(stats[2]))) # testing accuracy tqdm.write('At round {} training accuracy: {}'.format(i, np.sum(stats_train[3])*1.0/np.sum(stats_train[2]))) tqdm.write('At round {} training loss: {}'.format(i, np.dot(stats_train[4], stats_train[2])*1.0/np.sum(stats_train[2]))) model_len = process_grad(self.latest_model).size global_grads = np.zeros(model_len) client_grads = np.zeros(model_len) num_samples = [] local_grads = [] for c in self.clients: num, client_grad = c.get_grads(model_len) local_grads.append(client_grad) num_samples.append(num) global_grads = np.add(global_grads, client_grad * num) global_grads = global_grads * 1.0 / np.sum(np.asarray(num_samples)) difference = 0 for idx in range(len(self.clients)): difference += np.sum(np.square(global_grads - local_grads[idx])) difference = difference * 1.0 / len(self.clients) tqdm.write('gradient difference: {}'.format(difference)) indices, selected_clients = self.select_clients(i, num_clients=self.clients_per_round) # uniform sampling np.random.seed(i) # make sure that the stragglers are the same for FedProx and FedAvg active_clients = np.random.choice(selected_clients, round(self.clients_per_round * (1 - self.drop_percent)), replace=False) csolns = [] # buffer for receiving client solutions self.inner_opt.set_params(self.latest_model, self.client_model) for idx, c in enumerate(selected_clients.tolist()): # communicate the latest model c.set_params(self.latest_model) total_iters = int(self.num_epochs * c.num_samples / self.batch_size)+2 # randint(low,high)=[low,high) # solve minimization locally if c in active_clients: soln, stats = c.solve_inner(num_epochs=self.num_epochs, batch_size=self.batch_size) else: #soln, stats = c.solve_iters(num_iters=np.random.randint(low=1, high=total_iters), batch_size=self.batch_size) soln, stats = c.solve_inner(num_epochs=np.random.randint(low=1, high=self.num_epochs), batch_size=self.batch_size) # gather solutions from client csolns.append(soln) # track communication cost self.metrics.update(rnd=i, cid=c.id, stats=stats) # update models self.latest_model = self.aggregate(csolns) self.client_model.set_params(self.latest_model) # final test model stats = self.test() stats_train = self.train_error_and_loss() self.metrics.accuracies.append(stats) self.metrics.train_accuracies.append(stats_train) tqdm.write('At round {} accuracy: {}'.format(self.num_rounds, np.sum(stats[3])*1.0/np.sum(stats[2]))) tqdm.write('At round {} training accuracy: {}'.format(self.num_rounds, np.sum(stats_train[3])*1.0/np.sum(stats_train[2])))
48.034483
136
0.627423
e7e03a2b70a5f153fb24837a79529dacab8727e7
24,720
py
Python
zerver/webhooks/bitbucket2/tests.py
coderkoala/zulipnew
8aa03dc71948559cde7b436a72a182f8680f7b47
[ "Apache-2.0" ]
4
2019-06-04T09:06:53.000Z
2019-06-04T09:07:47.000Z
zerver/webhooks/bitbucket2/tests.py
BackGroundC/zulip
2bd6d275a70a7683986edc72fa8585726e976604
[ "Apache-2.0" ]
null
null
null
zerver/webhooks/bitbucket2/tests.py
BackGroundC/zulip
2bd6d275a70a7683986edc72fa8585726e976604
[ "Apache-2.0" ]
1
2020-02-06T13:56:40.000Z
2020-02-06T13:56:40.000Z
# -*- coding: utf-8 -*- from mock import MagicMock, patch from zerver.lib.test_classes import WebhookTestCase class Bitbucket2HookTests(WebhookTestCase): STREAM_NAME = 'bitbucket2' URL_TEMPLATE = "/api/v1/external/bitbucket2?stream={stream}&api_key={api_key}" FIXTURE_DIR_NAME = 'bitbucket2' EXPECTED_TOPIC = u"Repository name" EXPECTED_TOPIC_PR_EVENTS = u"Repository name / PR #1 new commit" EXPECTED_TOPIC_ISSUE_EVENTS = u"Repository name / Issue #1 Bug" EXPECTED_TOPIC_BRANCH_EVENTS = u"Repository name / master" def test_bitbucket2_on_push_event(self) -> None: commit_info = u'* first commit ([84b96ad](https://bitbucket.org/kolaszek/repository-name/commits/84b96adc644a30fd6465b3d196369d880762afed))' expected_message = u"kolaszek [pushed](https://bitbucket.org/kolaszek/repository-name/branch/master) 1 commit to branch master.\n\n{}".format(commit_info) self.send_and_test_stream_message('push', self.EXPECTED_TOPIC_BRANCH_EVENTS, expected_message) def test_bitbucket2_on_push_commits_multiple_committers(self) -> None: commit_info = u'* first commit ([84b96ad](https://bitbucket.org/kolaszek/repository-name/commits/84b96adc644a30fd6465b3d196369d880762afed))\n' expected_message = u"""kolaszek [pushed](https://bitbucket.org/kolaszek/repository-name/branch/master) 3 commits to branch master. Commits by zbenjamin (2) and kolaszek (1).\n\n{}* first commit ([84b96ad](https://bitbucket.org/kolaszek/repository-name/commits/84b96adc644a30fd6465b3d196369d880762afed))""".format(commit_info*2) self.send_and_test_stream_message('push_multiple_committers', self.EXPECTED_TOPIC_BRANCH_EVENTS, expected_message) def test_bitbucket2_on_push_commits_multiple_committers_with_others(self) -> None: commit_info = u'* first commit ([84b96ad](https://bitbucket.org/kolaszek/repository-name/commits/84b96adc644a30fd6465b3d196369d880762afed))\n' expected_message = u"""kolaszek [pushed](https://bitbucket.org/kolaszek/repository-name/branch/master) 10 commits to branch master. Commits by james (3), Brendon (2), Tomasz (2) and others (3).\n\n{}* first commit ([84b96ad](https://bitbucket.org/kolaszek/repository-name/commits/84b96adc644a30fd6465b3d196369d880762afed))""".format(commit_info*9) self.send_and_test_stream_message('push_multiple_committers_with_others', self.EXPECTED_TOPIC_BRANCH_EVENTS, expected_message) def test_bitbucket2_on_push_commits_multiple_committers_filtered_by_branches(self) -> None: self.url = self.build_webhook_url(branches='master,development') commit_info = u'* first commit ([84b96ad](https://bitbucket.org/kolaszek/repository-name/commits/84b96adc644a30fd6465b3d196369d880762afed))\n' expected_message = u"""kolaszek [pushed](https://bitbucket.org/kolaszek/repository-name/branch/master) 3 commits to branch master. Commits by zbenjamin (2) and kolaszek (1).\n\n{}* first commit ([84b96ad](https://bitbucket.org/kolaszek/repository-name/commits/84b96adc644a30fd6465b3d196369d880762afed))""".format(commit_info*2) self.send_and_test_stream_message('push_multiple_committers', self.EXPECTED_TOPIC_BRANCH_EVENTS, expected_message) def test_bitbucket2_on_push_commits_multiple_committers_with_others_filtered_by_branches(self) -> None: self.url = self.build_webhook_url(branches='master,development') commit_info = u'* first commit ([84b96ad](https://bitbucket.org/kolaszek/repository-name/commits/84b96adc644a30fd6465b3d196369d880762afed))\n' expected_message = u"""kolaszek [pushed](https://bitbucket.org/kolaszek/repository-name/branch/master) 10 commits to branch master. Commits by james (3), Brendon (2), Tomasz (2) and others (3).\n\n{}* first commit ([84b96ad](https://bitbucket.org/kolaszek/repository-name/commits/84b96adc644a30fd6465b3d196369d880762afed))""".format(commit_info*9) self.send_and_test_stream_message('push_multiple_committers_with_others', self.EXPECTED_TOPIC_BRANCH_EVENTS, expected_message) def test_bitbucket2_on_push_event_filtered_by_branches(self) -> None: self.url = self.build_webhook_url(branches='master,development') commit_info = u'* first commit ([84b96ad](https://bitbucket.org/kolaszek/repository-name/commits/84b96adc644a30fd6465b3d196369d880762afed))' expected_message = u"kolaszek [pushed](https://bitbucket.org/kolaszek/repository-name/branch/master) 1 commit to branch master.\n\n{}".format(commit_info) self.send_and_test_stream_message('push', self.EXPECTED_TOPIC_BRANCH_EVENTS, expected_message) def test_bitbucket2_on_push_commits_above_limit_event(self) -> None: commit_info = '* a ([6f161a7](https://bitbucket.org/kolaszek/repository-name/commits/6f161a7bced94430ac8947d87dbf45c6deee3fb0))\n' expected_message = u"kolaszek [pushed](https://bitbucket.org/kolaszek/repository-name/branches/compare/6f161a7bced94430ac8947d87dbf45c6deee3fb0..1221f2fda6f1e3654b09f1f3a08390e4cb25bb48) 5 commits to branch master. Commits by Tomasz (5).\n\n{}[and more commit(s)]".format( (commit_info * 5), ) self.send_and_test_stream_message('push_commits_above_limit', self.EXPECTED_TOPIC_BRANCH_EVENTS, expected_message) def test_bitbucket2_on_push_commits_above_limit_filtered_by_branches(self) -> None: self.url = self.build_webhook_url(branches='master,development') commit_info = '* a ([6f161a7](https://bitbucket.org/kolaszek/repository-name/commits/6f161a7bced94430ac8947d87dbf45c6deee3fb0))\n' expected_message = u"kolaszek [pushed](https://bitbucket.org/kolaszek/repository-name/branches/compare/6f161a7bced94430ac8947d87dbf45c6deee3fb0..1221f2fda6f1e3654b09f1f3a08390e4cb25bb48) 5 commits to branch master. Commits by Tomasz (5).\n\n{}[and more commit(s)]".format( (commit_info * 5), ) self.send_and_test_stream_message('push_commits_above_limit', self.EXPECTED_TOPIC_BRANCH_EVENTS, expected_message) def test_bitbucket2_on_force_push_event(self) -> None: expected_message = u"kolaszek [force pushed](https://bitbucket.org/kolaszek/repository-name/branch/master) to branch master. Head is now 25f93d22b719e2d678a7ad5ee0ef0d1fcdf39c12." self.send_and_test_stream_message('force_push', self.EXPECTED_TOPIC_BRANCH_EVENTS, expected_message) def test_bitbucket2_on_force_push_event_filtered_by_branches(self) -> None: self.url = self.build_webhook_url(branches='master,development') expected_message = u"kolaszek [force pushed](https://bitbucket.org/kolaszek/repository-name/branch/master) to branch master. Head is now 25f93d22b719e2d678a7ad5ee0ef0d1fcdf39c12." self.send_and_test_stream_message('force_push', self.EXPECTED_TOPIC_BRANCH_EVENTS, expected_message) def test_bitbucket2_on_remove_branch_event(self) -> None: expected_message = u"kolaszek deleted branch master." self.send_and_test_stream_message('remove_branch', self.EXPECTED_TOPIC_BRANCH_EVENTS, expected_message) def test_bitbucket2_on_fork_event(self) -> None: expected_message = u"User Tomasz(login: kolaszek) forked the repository into [kolaszek/repository-name2](https://bitbucket.org/kolaszek/repository-name2)." self.send_and_test_stream_message('fork', self.EXPECTED_TOPIC, expected_message) def test_bitbucket2_on_commit_comment_created_event(self) -> None: expected_message = u"kolaszek [commented](https://bitbucket.org/kolaszek/repository-name/commits/32c4ea19aa3af10acd08e419e2c354941a365d74#comment-3354963) on [32c4ea1](https://bitbucket.org/kolaszek/repository-name/commits/32c4ea19aa3af10acd08e419e2c354941a365d74):\n~~~ quote\nNice fix!\n~~~" self.send_and_test_stream_message('commit_comment_created', self.EXPECTED_TOPIC, expected_message) def test_bitbucket2_on_commit_status_changed_event(self) -> None: expected_message = u"[System mybuildtool](https://my-build-tool.com/builds/MY-PROJECT/BUILD-777) changed status of [9fec847](https://bitbucket.org/kolaszek/repository-name/commits/9fec847784abb10b2fa567ee63b85bd238955d0e) to SUCCESSFUL." self.send_and_test_stream_message('commit_status_changed', self.EXPECTED_TOPIC, expected_message) def test_bitbucket2_on_issue_created_event(self) -> None: expected_message = u"kolaszek created [Issue #1](https://bitbucket.org/kolaszek/repository-name/issues/2/bug) (assigned to kolaszek):\n\n~~~ quote\nSuch a bug\n~~~" self.send_and_test_stream_message('issue_created', self.EXPECTED_TOPIC_ISSUE_EVENTS, expected_message) def test_bitbucket2_on_issue_created_with_custom_topic_in_url(self) -> None: self.url = self.build_webhook_url(topic="notifications") expected_topic = u"notifications" expected_message = u"kolaszek created [Issue #1 Bug](https://bitbucket.org/kolaszek/repository-name/issues/2/bug) (assigned to kolaszek):\n\n~~~ quote\nSuch a bug\n~~~" self.send_and_test_stream_message('issue_created', expected_topic, expected_message) def test_bitbucket2_on_issue_updated_event(self) -> None: expected_message = u"kolaszek updated [Issue #1](https://bitbucket.org/kolaszek/repository-name/issues/2/bug)." self.send_and_test_stream_message('issue_updated', self.EXPECTED_TOPIC_ISSUE_EVENTS, expected_message) def test_bitbucket2_on_issue_commented_event(self) -> None: expected_message = u"kolaszek [commented](https://bitbucket.org/kolaszek/repository-name/issues/2#comment-28973596) on [Issue #1](https://bitbucket.org/kolaszek/repository-name/issues/2/bug)." self.send_and_test_stream_message('issue_commented', self.EXPECTED_TOPIC_ISSUE_EVENTS, expected_message) def test_bitbucket2_on_issue_commented_with_custom_topic_in_url(self) -> None: self.url = self.build_webhook_url(topic="notifications") expected_topic = u"notifications" expected_message = u"kolaszek [commented](https://bitbucket.org/kolaszek/repository-name/issues/2#comment-28973596) on [Issue #1 Bug](https://bitbucket.org/kolaszek/repository-name/issues/2/bug)." self.send_and_test_stream_message('issue_commented', expected_topic, expected_message) def test_bitbucket2_on_pull_request_created_event(self) -> None: expected_message = u"kolaszek created [PR #1](https://bitbucket.org/kolaszek/repository-name/pull-requests/1) (assigned to tkolek) from `new-branch` to `master`:\n\n~~~ quote\ndescription\n~~~" kwargs = { "HTTP_X_EVENT_KEY": 'pullrequest:created' } self.send_and_test_stream_message('pull_request_created_or_updated', self.EXPECTED_TOPIC_PR_EVENTS, expected_message, **kwargs) def test_bitbucket2_on_pull_request_created_with_custom_topic_in_url(self) -> None: self.url = self.build_webhook_url(topic="notifications") expected_topic = u"notifications" expected_message = u"kolaszek created [PR #1 new commit](https://bitbucket.org/kolaszek/repository-name/pull-requests/1) (assigned to tkolek) from `new-branch` to `master`:\n\n~~~ quote\ndescription\n~~~" kwargs = { "HTTP_X_EVENT_KEY": 'pullrequest:created' } self.send_and_test_stream_message('pull_request_created_or_updated', expected_topic, expected_message, **kwargs) def test_bitbucket2_on_pull_request_updated_event(self) -> None: expected_message = u"kolaszek updated [PR #1](https://bitbucket.org/kolaszek/repository-name/pull-requests/1) (assigned to tkolek) from `new-branch` to `master`:\n\n~~~ quote\ndescription\n~~~" kwargs = { "HTTP_X_EVENT_KEY": 'pullrequest:updated' } self.send_and_test_stream_message('pull_request_created_or_updated', self.EXPECTED_TOPIC_PR_EVENTS, expected_message, **kwargs) def test_bitbucket2_on_pull_request_approved_event(self) -> None: expected_message = u"kolaszek approved [PR #1](https://bitbucket.org/kolaszek/repository-name/pull-requests/1)." kwargs = { "HTTP_X_EVENT_KEY": 'pullrequest:approved' } self.send_and_test_stream_message('pull_request_approved_or_unapproved', self.EXPECTED_TOPIC_PR_EVENTS, expected_message, **kwargs) def test_bitbucket2_on_pull_request_approved_with_custom_topic_in_url(self) -> None: self.url = self.build_webhook_url(topic="notifications") expected_topic = u"notifications" expected_message = u"kolaszek approved [PR #1 new commit](https://bitbucket.org/kolaszek/repository-name/pull-requests/1)." kwargs = { "HTTP_X_EVENT_KEY": 'pullrequest:approved' } self.send_and_test_stream_message('pull_request_approved_or_unapproved', expected_topic, expected_message, **kwargs) def test_bitbucket2_on_pull_request_unapproved_event(self) -> None: expected_message = u"kolaszek unapproved [PR #1](https://bitbucket.org/kolaszek/repository-name/pull-requests/1)." kwargs = { "HTTP_X_EVENT_KEY": 'pullrequest:unapproved' } self.send_and_test_stream_message('pull_request_approved_or_unapproved', self.EXPECTED_TOPIC_PR_EVENTS, expected_message, **kwargs) def test_bitbucket2_on_pull_request_declined_event(self) -> None: expected_message = u"kolaszek rejected [PR #1](https://bitbucket.org/kolaszek/repository-name/pull-requests/1)." kwargs = { "HTTP_X_EVENT_KEY": 'pullrequest:rejected' } self.send_and_test_stream_message('pull_request_fulfilled_or_rejected', self.EXPECTED_TOPIC_PR_EVENTS, expected_message, **kwargs) def test_bitbucket2_on_pull_request_fulfilled_event(self) -> None: expected_message = u"kolaszek merged [PR #1](https://bitbucket.org/kolaszek/repository-name/pull-requests/1)." kwargs = { "HTTP_X_EVENT_KEY": 'pullrequest:fulfilled' } self.send_and_test_stream_message('pull_request_fulfilled_or_rejected', self.EXPECTED_TOPIC_PR_EVENTS, expected_message, **kwargs) def test_bitbucket2_on_pull_request_comment_created_event(self) -> None: expected_message = u"kolaszek [commented](https://bitbucket.org/kolaszek/repository-name/pull-requests/3/_/diff#comment-20576503) on [PR #1](https://bitbucket.org/kolaszek/repository-name/pull-requests/3):\n\n~~~ quote\nComment1\n~~~" kwargs = { "HTTP_X_EVENT_KEY": 'pullrequest:comment_created' } self.send_and_test_stream_message('pull_request_comment_action', self.EXPECTED_TOPIC_PR_EVENTS, expected_message, **kwargs) def test_bitbucket2_on_pull_request_comment_created_with_custom_topic_in_url(self) -> None: self.url = self.build_webhook_url(topic="notifications") expected_topic = u"notifications" expected_message = u"kolaszek [commented](https://bitbucket.org/kolaszek/repository-name/pull-requests/3/_/diff#comment-20576503) on [PR #1 new commit](https://bitbucket.org/kolaszek/repository-name/pull-requests/3):\n\n~~~ quote\nComment1\n~~~" kwargs = { "HTTP_X_EVENT_KEY": 'pullrequest:comment_created' } self.send_and_test_stream_message('pull_request_comment_action', expected_topic, expected_message, **kwargs) def test_bitbucket2_on_pull_request_comment_updated_event(self) -> None: expected_message = u"kolaszek updated a [comment](https://bitbucket.org/kolaszek/repository-name/pull-requests/3/_/diff#comment-20576503) on [PR #1](https://bitbucket.org/kolaszek/repository-name/pull-requests/3):\n\n~~~ quote\nComment1\n~~~" kwargs = { "HTTP_X_EVENT_KEY": 'pullrequest:comment_updated' } self.send_and_test_stream_message('pull_request_comment_action', self.EXPECTED_TOPIC_PR_EVENTS, expected_message, **kwargs) def test_bitbucket2_on_pull_request_comment_updated_with_custom_topic_in_url(self) -> None: self.url = self.build_webhook_url(topic="notifications") expected_topic = u"notifications" expected_message = u"kolaszek updated a [comment](https://bitbucket.org/kolaszek/repository-name/pull-requests/3/_/diff#comment-20576503) on [PR #1 new commit](https://bitbucket.org/kolaszek/repository-name/pull-requests/3):\n\n~~~ quote\nComment1\n~~~" kwargs = { "HTTP_X_EVENT_KEY": 'pullrequest:comment_updated' } self.send_and_test_stream_message('pull_request_comment_action', expected_topic, expected_message, **kwargs) def test_bitbucket2_on_pull_request_comment_deleted_event(self) -> None: expected_message = u"kolaszek deleted a [comment](https://bitbucket.org/kolaszek/repository-name/pull-requests/3/_/diff#comment-20576503) on [PR #1](https://bitbucket.org/kolaszek/repository-name/pull-requests/3):\n\n~~~ quote\nComment1\n~~~" kwargs = { "HTTP_X_EVENT_KEY": 'pullrequest:comment_deleted' } self.send_and_test_stream_message('pull_request_comment_action', self.EXPECTED_TOPIC_PR_EVENTS, expected_message, **kwargs) def test_bitbucket2_on_repo_updated_event(self) -> None: expected_message = u"eeshangarg changed the website of the **new-name** repo to **http://zulipchat.com**.\neeshangarg changed the name of the **new-name** repo from **test-repo** to **new-name**.\neeshangarg changed the language of the **new-name** repo to **python**.\neeshangarg changed the full name of the **new-name** repo from **webhooktest/test-repo** to **webhooktest/new-name**.\neeshangarg changed the description of the **new-name** repo to **Random description.**" expected_topic = u"new-name" kwargs = {"HTTP_X_EVENT_KEY": 'repo:updated'} self.send_and_test_stream_message('repo_updated', expected_topic, expected_message, **kwargs) def test_bitbucket2_on_push_one_tag_event(self) -> None: expected_message = u"kolaszek pushed tag [a](https://bitbucket.org/kolaszek/repository-name/commits/tag/a)." kwargs = { "HTTP_X_EVENT_KEY": 'pullrequest:push' } self.send_and_test_stream_message('push_one_tag', self.EXPECTED_TOPIC, expected_message, **kwargs) def test_bitbucket2_on_push_remove_tag_event(self) -> None: expected_message = u"kolaszek removed tag [a](https://bitbucket.org/kolaszek/repository-name/commits/tag/a)." kwargs = { "HTTP_X_EVENT_KEY": 'pullrequest:push' } self.send_and_test_stream_message('push_remove_tag', self.EXPECTED_TOPIC, expected_message, **kwargs) def test_bitbucket2_on_push_more_than_one_tag_event(self) -> None: expected_message = u"kolaszek pushed tag [{name}](https://bitbucket.org/kolaszek/repository-name/commits/tag/{name})." kwargs = { "HTTP_X_EVENT_KEY": 'pullrequest:push' } self.send_and_test_stream_message('push_more_than_one_tag', **kwargs) msg = self.get_last_message() self.do_test_topic(msg, self.EXPECTED_TOPIC) self.do_test_message(msg, expected_message.format(name='b')) msg = self.get_second_to_last_message() self.do_test_topic(msg, self.EXPECTED_TOPIC) self.do_test_message(msg, expected_message.format(name='a')) def test_bitbucket2_on_more_than_one_push_event(self) -> None: kwargs = { "HTTP_X_EVENT_KEY": 'pullrequest:push' } self.send_and_test_stream_message('more_than_one_push_event', **kwargs) msg = self.get_second_to_last_message() self.do_test_message(msg, 'kolaszek [pushed](https://bitbucket.org/kolaszek/repository-name/branch/master) 1 commit to branch master.\n\n* first commit ([84b96ad](https://bitbucket.org/kolaszek/repository-name/commits/84b96adc644a30fd6465b3d196369d880762afed))') self.do_test_topic(msg, self.EXPECTED_TOPIC_BRANCH_EVENTS) msg = self.get_last_message() self.do_test_message(msg, 'kolaszek pushed tag [a](https://bitbucket.org/kolaszek/repository-name/commits/tag/a).') self.do_test_topic(msg, self.EXPECTED_TOPIC) def test_bitbucket2_on_more_than_one_push_event_filtered_by_branches(self) -> None: self.url = self.build_webhook_url(branches='master,development') kwargs = { "HTTP_X_EVENT_KEY": 'pullrequest:push' } self.send_and_test_stream_message('more_than_one_push_event', **kwargs) msg = self.get_second_to_last_message() self.do_test_message(msg, 'kolaszek [pushed](https://bitbucket.org/kolaszek/repository-name/branch/master) 1 commit to branch master.\n\n* first commit ([84b96ad](https://bitbucket.org/kolaszek/repository-name/commits/84b96adc644a30fd6465b3d196369d880762afed))') self.do_test_topic(msg, self.EXPECTED_TOPIC_BRANCH_EVENTS) msg = self.get_last_message() self.do_test_message(msg, 'kolaszek pushed tag [a](https://bitbucket.org/kolaszek/repository-name/commits/tag/a).') self.do_test_topic(msg, self.EXPECTED_TOPIC) def test_bitbucket2_on_more_than_one_push_event_filtered_by_branches_ignore(self) -> None: self.url = self.build_webhook_url(branches='changes,development') kwargs = { "HTTP_X_EVENT_KEY": 'pullrequest:push' } expected_message = u"kolaszek pushed tag [a](https://bitbucket.org/kolaszek/repository-name/commits/tag/a)." self.send_and_test_stream_message('more_than_one_push_event', self.EXPECTED_TOPIC, expected_message, **kwargs) @patch('zerver.webhooks.bitbucket2.view.check_send_webhook_message') def test_bitbucket2_on_push_event_filtered_by_branches_ignore( self, check_send_webhook_message_mock: MagicMock) -> None: self.url = self.build_webhook_url(branches='changes,devlopment') payload = self.get_body('push') result = self.client_post(self.url, payload, content_type="application/json") self.assertFalse(check_send_webhook_message_mock.called) self.assert_json_success(result) @patch('zerver.webhooks.bitbucket2.view.check_send_webhook_message') def test_bitbucket2_on_push_commits_above_limit_filtered_by_branches_ignore( self, check_send_webhook_message_mock: MagicMock) -> None: self.url = self.build_webhook_url(branches='changes,devlopment') payload = self.get_body('push_commits_above_limit') result = self.client_post(self.url, payload, content_type="application/json") self.assertFalse(check_send_webhook_message_mock.called) self.assert_json_success(result) @patch('zerver.webhooks.bitbucket2.view.check_send_webhook_message') def test_bitbucket2_on_force_push_event_filtered_by_branches_ignore( self, check_send_webhook_message_mock: MagicMock) -> None: self.url = self.build_webhook_url(branches='changes,devlopment') payload = self.get_body('force_push') result = self.client_post(self.url, payload, content_type="application/json") self.assertFalse(check_send_webhook_message_mock.called) self.assert_json_success(result) @patch('zerver.webhooks.bitbucket2.view.check_send_webhook_message') def test_bitbucket2_on_push_multiple_committers_filtered_by_branches_ignore( self, check_send_webhook_message_mock: MagicMock) -> None: self.url = self.build_webhook_url(branches='changes,devlopment') payload = self.get_body('push_multiple_committers') result = self.client_post(self.url, payload, content_type="application/json") self.assertFalse(check_send_webhook_message_mock.called) self.assert_json_success(result) @patch('zerver.webhooks.bitbucket2.view.check_send_webhook_message') def test_bitbucket2_on_push_multiple_committers_with_others_filtered_by_branches_ignore( self, check_send_webhook_message_mock: MagicMock) -> None: self.url = self.build_webhook_url(branches='changes,devlopment') payload = self.get_body('push_multiple_committers_with_others') result = self.client_post(self.url, payload, content_type="application/json") self.assertFalse(check_send_webhook_message_mock.called) self.assert_json_success(result) @patch('zerver.webhooks.bitbucket2.view.check_send_webhook_message') def test_bitbucket2_on_push_without_changes_ignore( self, check_send_webhook_message_mock: MagicMock) -> None: payload = self.get_body('push_without_changes') result = self.client_post(self.url, payload, content_type="application/json") self.assertFalse(check_send_webhook_message_mock.called) self.assert_json_success(result)
74.234234
484
0.748139
2c256f28237f5f6a1f9f0f05d71f079c61c83d44
377
py
Python
examples/pygame_display/display_layouts_shapes_test.py
FoamyGuy/Foamyguy_CircuitPython_DisplayIO_Inflater
c86d50c8727b4912d94c56226b58a35ccddb815d
[ "MIT", "MIT-0", "Unlicense" ]
3
2020-06-29T19:00:23.000Z
2021-05-06T21:56:07.000Z
examples/pygame_display/display_layouts_shapes_test.py
FoamyGuy/circuitpython_display_layouts
d4380236d0613af8b77aaeeeb8d71dbd0a14dbd7
[ "MIT" ]
null
null
null
examples/pygame_display/display_layouts_shapes_test.py
FoamyGuy/circuitpython_display_layouts
d4380236d0613af8b77aaeeeb8d71dbd0a14dbd7
[ "MIT" ]
null
null
null
from display_layouts.absolute_layout import AbsoluteLayout from blinka_displayio_pygamedisplay import PyGameDisplay import os os.chdir("..") display = PyGameDisplay(width=800, height=600) f = open("layouts/shapes_test.json", "r") layout_str = f.read() f.close() main_layout = AbsoluteLayout(display, layout_str) display.show(main_layout.view) while display.running: pass
25.133333
58
0.793103
291456277e62caedd9a2f001ed22f5c7892803a3
11,832
py
Python
config/settings/base.py
developertoentrepreneur/d2e-share-splitter
3dc406c726a801b507aa0b049fce8a2ab5d1bf2d
[ "MIT" ]
null
null
null
config/settings/base.py
developertoentrepreneur/d2e-share-splitter
3dc406c726a801b507aa0b049fce8a2ab5d1bf2d
[ "MIT" ]
5
2022-01-09T07:40:38.000Z
2022-02-12T19:38:54.000Z
config/settings/base.py
developertoentrepreneur/d2e_share_splitter
3dc406c726a801b507aa0b049fce8a2ab5d1bf2d
[ "MIT" ]
null
null
null
""" Base settings to build other settings files upon. """ from pathlib import Path import environ ROOT_DIR = Path(__file__).resolve(strict=True).parent.parent.parent # d2e_share_splitter/ APPS_DIR = ROOT_DIR / "d2e_share_splitter" env = environ.Env() READ_DOT_ENV_FILE = env.bool("DJANGO_READ_DOT_ENV_FILE", default=False) if READ_DOT_ENV_FILE: # OS environment variables take precedence over variables from .env env.read_env(str(ROOT_DIR / ".env")) # GENERAL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#debug DEBUG = env.bool("DJANGO_DEBUG", False) # Local time zone. Choices are # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # though not all of them may be available with every OS. # In Windows, this must be set to your system time zone. TIME_ZONE = "UTC" # https://docs.djangoproject.com/en/dev/ref/settings/#language-code LANGUAGE_CODE = "en-us" # https://docs.djangoproject.com/en/dev/ref/settings/#site-id SITE_ID = 1 # https://docs.djangoproject.com/en/dev/ref/settings/#use-i18n USE_I18N = True # https://docs.djangoproject.com/en/dev/ref/settings/#use-l10n USE_L10N = True # https://docs.djangoproject.com/en/dev/ref/settings/#use-tz USE_TZ = True # https://docs.djangoproject.com/en/dev/ref/settings/#locale-paths LOCALE_PATHS = [str(ROOT_DIR / "locale")] # DATABASES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#databases DATABASES = {"default": env.db("DATABASE_URL")} DATABASES["default"]["ATOMIC_REQUESTS"] = True # https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-DEFAULT_AUTO_FIELD DEFAULT_AUTO_FIELD = "django.db.models.BigAutoField" # URLS # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#root-urlconf ROOT_URLCONF = "config.urls" # https://docs.djangoproject.com/en/dev/ref/settings/#wsgi-application WSGI_APPLICATION = "config.wsgi.application" # APPS # ------------------------------------------------------------------------------ DJANGO_APPS = [ "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.sessions", "django.contrib.sites", "django.contrib.messages", "django.contrib.staticfiles", # "django.contrib.humanize", # Handy template tags "django.contrib.admin", "django.forms", ] THIRD_PARTY_APPS = [ "crispy_forms", "crispy_bootstrap5", "allauth", "allauth.account", "allauth.socialaccount", "rest_framework", "rest_framework.authtoken", "corsheaders", ] LOCAL_APPS = [ "d2e_share_splitter.users", "d2e_share_splitter.shareconf", "d2e_share_splitter.sharecontributions", ] # https://docs.djangoproject.com/en/dev/ref/settings/#installed-apps INSTALLED_APPS = DJANGO_APPS + THIRD_PARTY_APPS + LOCAL_APPS # MIGRATIONS # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#migration-modules MIGRATION_MODULES = {"sites": "d2e_share_splitter.contrib.sites.migrations"} # AUTHENTICATION # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#authentication-backends AUTHENTICATION_BACKENDS = [ "django.contrib.auth.backends.ModelBackend", "allauth.account.auth_backends.AuthenticationBackend", ] # https://docs.djangoproject.com/en/dev/ref/settings/#auth-user-model AUTH_USER_MODEL = "users.User" # https://docs.djangoproject.com/en/dev/ref/settings/#login-redirect-url LOGIN_REDIRECT_URL = "users:redirect" # https://docs.djangoproject.com/en/dev/ref/settings/#login-url LOGIN_URL = "account_login" # PASSWORDS # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#password-hashers PASSWORD_HASHERS = [ # https://docs.djangoproject.com/en/dev/topics/auth/passwords/#using-argon2-with-django "django.contrib.auth.hashers.Argon2PasswordHasher", "django.contrib.auth.hashers.PBKDF2PasswordHasher", "django.contrib.auth.hashers.PBKDF2SHA1PasswordHasher", "django.contrib.auth.hashers.BCryptSHA256PasswordHasher", ] # https://docs.djangoproject.com/en/dev/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { "NAME": "django.contrib.auth.password_validation.UserAttributeSimilarityValidator" }, {"NAME": "django.contrib.auth.password_validation.MinimumLengthValidator"}, {"NAME": "django.contrib.auth.password_validation.CommonPasswordValidator"}, {"NAME": "django.contrib.auth.password_validation.NumericPasswordValidator"}, ] # MIDDLEWARE # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#middleware MIDDLEWARE = [ "django.middleware.security.SecurityMiddleware", "corsheaders.middleware.CorsMiddleware", "django.contrib.sessions.middleware.SessionMiddleware", "django.middleware.locale.LocaleMiddleware", "django.middleware.common.CommonMiddleware", "django.middleware.csrf.CsrfViewMiddleware", "django.contrib.auth.middleware.AuthenticationMiddleware", "django.contrib.messages.middleware.MessageMiddleware", "django.middleware.common.BrokenLinkEmailsMiddleware", "django.middleware.clickjacking.XFrameOptionsMiddleware", ] # STATIC # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#static-root STATIC_ROOT = str(ROOT_DIR / "staticfiles") # https://docs.djangoproject.com/en/dev/ref/settings/#static-url STATIC_URL = "/static/" # https://docs.djangoproject.com/en/dev/ref/contrib/staticfiles/#std:setting-STATICFILES_DIRS STATICFILES_DIRS = [str(APPS_DIR / "static")] # https://docs.djangoproject.com/en/dev/ref/contrib/staticfiles/#staticfiles-finders STATICFILES_FINDERS = [ "django.contrib.staticfiles.finders.FileSystemFinder", "django.contrib.staticfiles.finders.AppDirectoriesFinder", ] # MEDIA # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#media-root MEDIA_ROOT = str(APPS_DIR / "media") # https://docs.djangoproject.com/en/dev/ref/settings/#media-url MEDIA_URL = "/media/" # TEMPLATES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#templates TEMPLATES = [ { # https://docs.djangoproject.com/en/dev/ref/settings/#std:setting-TEMPLATES-BACKEND "BACKEND": "django.template.backends.django.DjangoTemplates", # https://docs.djangoproject.com/en/dev/ref/settings/#template-dirs "DIRS": [str(APPS_DIR / "templates")], "OPTIONS": { # https://docs.djangoproject.com/en/dev/ref/settings/#template-loaders # https://docs.djangoproject.com/en/dev/ref/templates/api/#loader-types "loaders": [ "django.template.loaders.filesystem.Loader", "django.template.loaders.app_directories.Loader", ], # https://docs.djangoproject.com/en/dev/ref/settings/#template-context-processors "context_processors": [ "django.template.context_processors.debug", "django.template.context_processors.request", "django.contrib.auth.context_processors.auth", "django.template.context_processors.i18n", "django.template.context_processors.media", "django.template.context_processors.static", "django.template.context_processors.tz", "django.contrib.messages.context_processors.messages", ], }, } ] # https://docs.djangoproject.com/en/dev/ref/settings/#form-renderer FORM_RENDERER = "django.forms.renderers.TemplatesSetting" # http://django-crispy-forms.readthedocs.io/en/latest/install.html#template-packs CRISPY_TEMPLATE_PACK = "bootstrap5" CRISPY_ALLOWED_TEMPLATE_PACKS = "bootstrap5" # FIXTURES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#fixture-dirs FIXTURE_DIRS = (str(APPS_DIR / "fixtures"),) # SECURITY # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#session-cookie-httponly SESSION_COOKIE_HTTPONLY = True # https://docs.djangoproject.com/en/dev/ref/settings/#csrf-cookie-httponly CSRF_COOKIE_HTTPONLY = True # https://docs.djangoproject.com/en/dev/ref/settings/#secure-browser-xss-filter SECURE_BROWSER_XSS_FILTER = True # https://docs.djangoproject.com/en/dev/ref/settings/#x-frame-options X_FRAME_OPTIONS = "DENY" # EMAIL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#email-backend EMAIL_BACKEND = env( "DJANGO_EMAIL_BACKEND", default="django.core.mail.backends.smtp.EmailBackend", ) # https://docs.djangoproject.com/en/dev/ref/settings/#email-timeout EMAIL_TIMEOUT = 5 # ADMIN # ------------------------------------------------------------------------------ # Django Admin URL. ADMIN_URL = "admin/" # https://docs.djangoproject.com/en/dev/ref/settings/#admins ADMINS = [("""Alvaro Lloret""", "alvaro@developertoentrepreneur.com")] # https://docs.djangoproject.com/en/dev/ref/settings/#managers MANAGERS = ADMINS # LOGGING # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#logging # See https://docs.djangoproject.com/en/dev/topics/logging for # more details on how to customize your logging configuration. LOGGING = { "version": 1, "disable_existing_loggers": False, "formatters": { "verbose": { "format": "%(levelname)s %(asctime)s %(module)s " "%(process)d %(thread)d %(message)s" } }, "handlers": { "console": { "level": "DEBUG", "class": "logging.StreamHandler", "formatter": "verbose", } }, "root": {"level": "INFO", "handlers": ["console"]}, } # django-allauth # ------------------------------------------------------------------------------ ACCOUNT_ALLOW_REGISTRATION = env.bool("DJANGO_ACCOUNT_ALLOW_REGISTRATION", True) # https://django-allauth.readthedocs.io/en/latest/configuration.html ACCOUNT_AUTHENTICATION_METHOD = "username" # https://django-allauth.readthedocs.io/en/latest/configuration.html ACCOUNT_EMAIL_REQUIRED = True # https://django-allauth.readthedocs.io/en/latest/configuration.html ACCOUNT_EMAIL_VERIFICATION = "mandatory" # https://django-allauth.readthedocs.io/en/latest/configuration.html ACCOUNT_ADAPTER = "d2e_share_splitter.users.adapters.AccountAdapter" # https://django-allauth.readthedocs.io/en/latest/configuration.html SOCIALACCOUNT_ADAPTER = "d2e_share_splitter.users.adapters.SocialAccountAdapter" # django-rest-framework # ------------------------------------------------------------------------------- # django-rest-framework - https://www.django-rest-framework.org/api-guide/settings/ REST_FRAMEWORK = { "DEFAULT_AUTHENTICATION_CLASSES": ( "rest_framework.authentication.SessionAuthentication", "rest_framework.authentication.TokenAuthentication", ), "DEFAULT_PERMISSION_CLASSES": ("rest_framework.permissions.IsAuthenticated",), } # django-cors-headers - https://github.com/adamchainz/django-cors-headers#setup CORS_URLS_REGEX = r"^/api/.*$" # Your stuff... # ------------------------------------------------------------------------------
40.8
93
0.6381
e787d7b6d1a5ad8394e9f39f539b91c427ba9272
7,507
py
Python
Classifier/preproc/soldability_mean_diff_median_by_session.py
leonardoads/RecSys-cariris
98098bb072d3ab8f1faed248f350472c62cb199b
[ "Apache-2.0" ]
null
null
null
Classifier/preproc/soldability_mean_diff_median_by_session.py
leonardoads/RecSys-cariris
98098bb072d3ab8f1faed248f350472c62cb199b
[ "Apache-2.0" ]
null
null
null
Classifier/preproc/soldability_mean_diff_median_by_session.py
leonardoads/RecSys-cariris
98098bb072d3ab8f1faed248f350472c62cb199b
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- #Para cada linha que representa uma click de uma SESSÃO em um ITEM, inserir o dado de clicks dados na mesma CATEGORIA do item em questão #INPUT #clicks_proc_basico.dat #SESSION, DAY, MONTH, YEAR, TIME, ITEM, CATEGORY, SOLDABILITY #1, 7, 4, 2014, 10.85, 214536502, 0, 2,56 #1, 7, 4, 2014, 10.9, 214536500, 0, 8,5 #1, 7, 4, 2014, 10.9, 214536506, 0 22,37 #1, 7, 4, 2014, 10.95, 214577561, 0 1,44 #OUTPUT - clicks-soldability_mean_by_session.dat #8.64 #8.64 #8.64 #8.64 #OUTPUT - clicks-soldability_mean_diff_by_session.dat #6.08 #-0.14 #13.73 #-7.20 #OUTPUT - clicks-soldability_mean_by_session.dat #5.53 #5.53 #5.53 #5.53 #no caso de o arquivo estar dividido em partes #path - local do diretorio #pattern_filename - padrao do nome das partes do arquivo #match_numeric - qual parte do padrao deve ser substituido pelo diferenciador da parte #list_index - lista de diferenciador das partes def read_file_parts(path, pattern_filename, match_numeric, list_index): list_temp = [] for i in list_index: print "Reading file:", pattern_filename.replace(match_numeric, str(i)) arq = open(path + pattern_filename.replace(match_numeric, str(i)), "r") list_temp = list_temp + arq.readlines() arq.close() return list_temp def read_single_file(filename): lines = "" print "Reading file:", filename arq = open(filename, "r") lines = arq.readlines() return lines #já salva as linhas com a nova coluna def calculate_and_store_soldability_mean(session, lista_linhas, arq_w_sold_mean, index_soldability_column): soldabilities = [] for linhaSplit in lista_linhas: soldability = linhaSplit[index_soldability_column] soldabilities.append(soldability) soldability_mean = list_mean(soldabilities) string_soldability_mean = str(soldability_mean).split(".")[0] + "." + str(soldability_mean).split(".")[1][0:2] for s in range(len(soldabilities)): arq_w_sold_mean.write(string_soldability_mean + "\n") def calculate_and_store_soldability_median(session, lista_linhas, arq_w_sold_median, index_soldability_column): soldabilities = [] for linhaSplit in lista_linhas: soldability = linhaSplit[index_soldability_column] soldabilities.append(soldability) soldability_median = list_median(soldabilities) if("." in str(soldability_median)): string_soldability_median = str(soldability_median).split(".")[0] + "." + str(soldability_median).split(".")[1][0:2] else: string_soldability_median = str(soldability_median) for s in range(len(soldabilities)): arq_w_sold_median.write(string_soldability_median + "\n") #já salva as linhas com a nova coluna def calculate_and_store_soldability_mean_diff(session, lista_linhas, arq_w_sold_mean_diff, index_soldability_column): soldabilities = [] for linhaSplit in lista_linhas: soldability = linhaSplit[index_soldability_column] soldabilities.append(soldability) soldability_mean = list_mean(soldabilities) string_soldability_mean_diff = [] for linhaSplit in lista_linhas: soldab = linhaSplit[index_soldability_column] diff = float(soldab) - float(soldability_mean) string_diff = str(diff).split(".")[0] + "." + str(diff).split(".")[1][0:2] arq_w_sold_mean_diff.write(string_diff + "\n") def list_mean(number_list): soma = 0.0 for num in number_list: soma = soma + float(num) return (soma / len(number_list) ) def list_median(number_list): list_temp = sort(number_list) if(len(list_temp) % 2 == 0): return( ( float(list_temp[len(list_temp) / 2]) + (float(list_temp[ (len(list_temp) / 2) - 1 ]))) / 2 ) else: return (list_temp[len(list_temp) / 2]) def sort(array): less = [] equal = [] greater = [] if len(array) > 1: pivot = array[0] for x in array: if x < pivot: less.append(x) if x == pivot: equal.append(x) if x > pivot: greater.append(x) # Don't forget to return something! return sort(less)+equal+sort(greater) # Just use the + operator to join lists # Note that you want equal ^^^^^ not pivot else: # You need to hande the part at the end of the recursion - when you only have one element in your array, just return the array. return array #metodo nativo JOIN nao junta int com string :( def join(sep, lista): string = "" for i in lista: string = string + str(i) + sep return string[:-1] def c_bind(colunas1, colunas2): new_lines = [] if(not len(colunas1) == len(colunas2)): return "COLUMNS DON'T HAVE THE SAME LENGTH" index = 0 for a in range(len(colunas1)): new_lines.append(colunas1[index].replace("\n","") + "," + colunas2[index].replace("\n","")) index = index + 1 return new_lines import os import sys #to clicks or test? apply_to = sys.argv[1] #init path = "/".join(os.path.dirname(os.path.realpath(__file__)).split("/")[0:-2]) + "/Data/" print "Loading CLICKS data" linhas = read_file_parts(path, apply_to + "-proc-basico/" + apply_to + "-proc-basico-parteX.dat", "X", [1,2,3,4,5,6]) print len(linhas), "lines loaded" print "Loading SOLDABILITY column data" linhas_soldability = read_single_file(path + "columns/" + apply_to + "-column-soldability.dat") print len(linhas_soldability), "lines loaded" arq_w_sold_mean = open(path + "columns/" + apply_to + "-soldability_mean_by_session.dat", "w") arq_w_sold_median = open(path + "columns/" + apply_to + "-soldability_median_by_session.dat", "w") arq_w_sold_mean_diff = open(path + "columns/" + apply_to + "-soldability_mean_diff_by_session.dat", "w") linhas = c_bind(linhas, linhas_soldability) ########################################################### ## Este trecho permite uma rapida iteração por sessões ## ## quando é necessário comparar elas. Se lembre que elas ## ## estão juntas no arquivo. TalesBoy :) ## ########################################################### session_id_anterior = linhas[0].split(",")[0] lista_linhas_por_id = [] #apenas para poder registrar as linhas da ultima sessão linhas.append("0,0,0,0,0.0,0,0") conta_linhas = 0 percent_done = 0 total = 0 for linha in linhas: total = total + 1 conta_linhas = conta_linhas + 1 linhaSplit = linha.replace("\n","").split(",") session_id = linhaSplit[0] if(session_id != session_id_anterior): calculate_and_store_soldability_mean(session_id_anterior, lista_linhas_por_id, arq_w_sold_mean, 7) calculate_and_store_soldability_median(session_id_anterior, lista_linhas_por_id, arq_w_sold_median, 7) calculate_and_store_soldability_mean_diff(session_id_anterior, lista_linhas_por_id, arq_w_sold_mean_diff, 7) lista_linhas_por_id = [] session_id_anterior = session_id lista_linhas_por_id.append(linhaSplit) else: lista_linhas_por_id.append(linhaSplit) #apenas para dar print no andamento do script if (len(linhas) == conta_linhas): percent_done = 100 conta_linhas = 0 #print datetime.datetime.now().time().hour, datetime.datetime.now().minute print "Done:", (str(percent_done) + "%") elif ((len(linhas) / 100) == conta_linhas): percent_done = percent_done + 1 conta_linhas = 0 #print datetime.datetime.now().time().hour, datetime.datetime.now().minute print "Done:", (str(percent_done) + "%") ########################################## ## FIM DO TRECHO DESCRITO ANTERIORMENTE ## ########################################## print total - 1, "lines saved" arq_w_sold_mean.close() arq_w_sold_median.close() arq_w_sold_mean_diff.close()
30.148594
138
0.693752
909ab756a049cb4304e094a00950ea6251074485
2,597
py
Python
freenit/decorators.py
Dervish13/backend-1
c94231df3e7f3f6440e96d786d581e504de8cb33
[ "BSD-2-Clause" ]
3
2020-01-10T09:43:24.000Z
2022-01-17T20:54:37.000Z
freenit/decorators.py
Dervish13/backend-1
c94231df3e7f3f6440e96d786d581e504de8cb33
[ "BSD-2-Clause" ]
4
2020-01-31T12:12:56.000Z
2021-01-13T12:37:23.000Z
freenit/decorators.py
Dervish13/backend-1
c94231df3e7f3f6440e96d786d581e504de8cb33
[ "BSD-2-Clause" ]
3
2019-11-18T15:28:24.000Z
2022-01-21T11:32:45.000Z
def FreenitAPI(app): class route: def __init__(self, route, tags=["object"], many=False, responses={}): self.app = app self.route = route self.tags = tags self.many = many self.responses = responses def __call__(self, cls): origGet = getattr(cls, "get", None) origPost = getattr(cls, "post", None) origPatch = getattr(cls, "patch", None) origDelete = getattr(cls, "delete", None) getSuffix = " list" if self.many else "" app = self.app responses = self.responses class Wrapped(cls): if callable(origGet): anotated_model = origGet.__annotations__.get("return") model = responses.get("get") or anotated_model deco = app.get( self.route, summary=f"Get {self.tags[0]}{getSuffix}", response_model=model, tags=self.tags, ) get = deco(origGet) if callable(origPost): anotated_model = origPost.__annotations__.get("return") model = responses.get("post") or anotated_model deco = self.app.post( self.route, summary=f"Create {self.tags[0]}", response_model=model, tags=self.tags, ) post = deco(origPost) if callable(origPatch): anotated_model = origPatch.__annotations__.get("return") model = responses.get("patch") or anotated_model deco = self.app.patch( self.route, summary=f"Edit {self.tags[0]}", response_model=model, tags=self.tags, ) patch = deco(origPatch) if callable(origDelete): anotated_model = origDelete.__annotations__.get("return") model = responses.get("delete") or anotated_model deco = self.app.delete( self.route, summary=f"Destroy {self.tags[0]}", response_model=model, tags=self.tags, ) delete = deco(origDelete) return Wrapped return route
40.578125
77
0.447054
ef381104cb69f3f3309d19fca1c19002b2366924
176
py
Python
PythonExercicios/Mundo 1/3_operadores_aritimeticos/ex015.py
GuilhermoCampos/Curso-Python3-curso-em-video
723767bc6069e9c1fa9e28fe412e694f9eb8d05e
[ "MIT" ]
null
null
null
PythonExercicios/Mundo 1/3_operadores_aritimeticos/ex015.py
GuilhermoCampos/Curso-Python3-curso-em-video
723767bc6069e9c1fa9e28fe412e694f9eb8d05e
[ "MIT" ]
null
null
null
PythonExercicios/Mundo 1/3_operadores_aritimeticos/ex015.py
GuilhermoCampos/Curso-Python3-curso-em-video
723767bc6069e9c1fa9e28fe412e694f9eb8d05e
[ "MIT" ]
null
null
null
d = int(input('Quantos dias alugados?:')) km = float(input('Quantos de kilometros percorridos?: ')) t = (km * 0.15) + (d * 60) print('O total a ser pago é R${:.2f}'.format(t))
35.2
57
0.619318
2a6c3c8ac55a736f80f545f3b71054284c5c3673
2,385
py
Python
rasa/run.py
orcaformation/chatbot_widget
cdbc0db5103a5a701878804ba183d5448823c798
[ "Apache-2.0" ]
37
2019-06-07T07:39:00.000Z
2022-01-27T08:32:57.000Z
rasa/run.py
orcaformation/chatbot_widget
cdbc0db5103a5a701878804ba183d5448823c798
[ "Apache-2.0" ]
93
2020-10-22T10:41:26.000Z
2022-03-01T13:34:43.000Z
rasa/run.py
orcaformation/chatbot_widget
cdbc0db5103a5a701878804ba183d5448823c798
[ "Apache-2.0" ]
65
2019-05-21T12:16:53.000Z
2022-02-23T10:54:15.000Z
import logging import typing from typing import Dict, Text import rasa.shared.utils.common from rasa.shared.utils.cli import print_warning from rasa.shared.constants import DOCS_BASE_URL from rasa.core.lock_store import LockStore logger = logging.getLogger(__name__) if typing.TYPE_CHECKING: from rasa.core.agent import Agent def run( model: Text, endpoints: Text, connector: Text = None, credentials: Text = None, **kwargs: Dict, ): """Runs a Rasa model. Args: model: Path to model archive. endpoints: Path to endpoints file. connector: Connector which should be use (overwrites `credentials` field). credentials: Path to channel credentials file. **kwargs: Additional arguments which are passed to `rasa.core.run.serve_application`. """ import rasa.core.run import rasa.nlu.run from rasa.core.utils import AvailableEndpoints _endpoints = AvailableEndpoints.read_endpoints(endpoints) if not connector and not credentials: connector = "rest" print_warning( f"No chat connector configured, falling back to the " f"REST input channel. To connect your bot to another channel, " f"read the docs here: {DOCS_BASE_URL}/messaging-and-voice-channels" ) kwargs = rasa.shared.utils.common.minimal_kwargs( kwargs, rasa.core.run.serve_application ) rasa.core.run.serve_application( model, channel=connector, credentials=credentials, endpoints=_endpoints, **kwargs, ) def create_agent(model: Text, endpoints: Text = None) -> "Agent": from rasa.core.tracker_store import TrackerStore from rasa.core.utils import AvailableEndpoints from rasa.core.agent import Agent from rasa.core.brokers.broker import EventBroker import rasa.utils.common _endpoints = AvailableEndpoints.read_endpoints(endpoints) _broker = rasa.utils.common.run_in_loop(EventBroker.create(_endpoints.event_broker)) _tracker_store = TrackerStore.create(_endpoints.tracker_store, event_broker=_broker) _lock_store = LockStore.create(_endpoints.lock_store) return Agent.load( model, generator=_endpoints.nlg, tracker_store=_tracker_store, lock_store=_lock_store, action_endpoint=_endpoints.action, )
29.444444
88
0.69979
a8c2ac58d6fb17f5df9788a4b1f438a26e58f7c7
117,274
py
Python
transformers/src/transformers/pipelines.py
jordiclive/ControlPrefixes
b647f68bf0c7e771f847c4a51e5f22af2ac95699
[ "Apache-1.1" ]
26
2021-11-23T09:01:32.000Z
2022-03-25T11:34:15.000Z
transformers/src/transformers/pipelines.py
jordiclive/ControlPrefixes
b647f68bf0c7e771f847c4a51e5f22af2ac95699
[ "Apache-1.1" ]
3
2021-12-10T17:43:23.000Z
2022-03-18T11:37:19.000Z
transformers/src/transformers/pipelines.py
jordiclive/ControlPrefixes
b647f68bf0c7e771f847c4a51e5f22af2ac95699
[ "Apache-1.1" ]
5
2021-12-19T03:22:08.000Z
2022-02-14T04:41:04.000Z
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import csv import json import os import pickle import sys import uuid from abc import ABC, abstractmethod from contextlib import contextmanager from itertools import chain from os.path import abspath, exists from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Sequence, Tuple, Union from uuid import UUID import numpy as np from .configuration_auto import AutoConfig from .configuration_utils import PretrainedConfig from .data import SquadExample, squad_convert_examples_to_features from .file_utils import add_end_docstrings, is_tf_available, is_torch_available from .modelcard import ModelCard from .tokenization_auto import AutoTokenizer from .tokenization_bert import BasicTokenizer from .tokenization_utils import PreTrainedTokenizer from .tokenization_utils_base import BatchEncoding, PaddingStrategy from .utils import logging if is_tf_available(): import tensorflow as tf from .modeling_tf_auto import ( TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForQuestionAnswering, TFAutoModelForSeq2SeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, ) if is_torch_available(): import torch from .modeling_auto import ( MODEL_FOR_MASKED_LM_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, ) if TYPE_CHECKING: from .modeling_tf_utils import TFPreTrainedModel from .modeling_utils import PreTrainedModel logger = logging.get_logger(__name__) def get_framework(model=None): """ Select framework (TensorFlow or PyTorch) to use. Args: model (:obj:`str`, :class:`~transformers.PreTrainedModel` or :class:`~transformers.TFPreTrainedModel`, `optional`): If both frameworks are installed, picks the one corresponding to the model passed (either a model class or the model name). If no specific model is provided, defaults to using PyTorch. """ if is_tf_available() and is_torch_available() and model is not None and not isinstance(model, str): # Both framework are available but the user supplied a model class instance. # Try to guess which framework to use from the model classname framework = "tf" if model.__class__.__name__.startswith("TF") else "pt" elif not is_tf_available() and not is_torch_available(): raise RuntimeError( "At least one of TensorFlow 2.0 or PyTorch should be installed. " "To install TensorFlow 2.0, read the instructions at https://www.tensorflow.org/install/ " "To install PyTorch, read the instructions at https://pytorch.org/." ) else: # framework = 'tf' if is_tf_available() else 'pt' framework = "pt" if is_torch_available() else "tf" return framework class PipelineException(Exception): """ Raised by a :class:`~transformers.Pipeline` when handling __call__. Args: task (:obj:`str`): The task of the pipeline. model (:obj:`str`): The model used by the pipeline. reason (:obj:`str`): The error message to display. """ def __init__(self, task: str, model: str, reason: str): super().__init__(reason) self.task = task self.model = model class ArgumentHandler(ABC): """ Base interface for handling arguments for each :class:`~transformers.pipelines.Pipeline`. """ @abstractmethod def __call__(self, *args, **kwargs): raise NotImplementedError() class DefaultArgumentHandler(ArgumentHandler): """ Default argument parser handling parameters for each :class:`~transformers.pipelines.Pipeline`. """ @staticmethod def handle_kwargs(kwargs: Dict) -> List: if len(kwargs) == 1: output = list(kwargs.values()) else: output = list(chain(kwargs.values())) return DefaultArgumentHandler.handle_args(output) @staticmethod def handle_args(args: Sequence[Any]) -> List[str]: # Only one argument, let's do case by case if len(args) == 1: if isinstance(args[0], str): return [args[0]] elif not isinstance(args[0], list): return list(args) else: return args[0] # Multiple arguments (x1, x2, ...) elif len(args) > 1: if all([isinstance(arg, str) for arg in args]): return list(args) # If not instance of list, then it should instance of iterable elif isinstance(args, Iterable): return list(chain.from_iterable(chain(args))) else: raise ValueError( "Invalid input type {}. Pipeline supports Union[str, Iterable[str]]".format(type(args)) ) else: return [] def __call__(self, *args, **kwargs): if len(kwargs) > 0 and len(args) > 0: raise ValueError("Pipeline cannot handle mixed args and kwargs") if len(kwargs) > 0: return DefaultArgumentHandler.handle_kwargs(kwargs) else: return DefaultArgumentHandler.handle_args(args) class PipelineDataFormat: """ Base class for all the pipeline supported data format both for reading and writing. Supported data formats currently includes: - JSON - CSV - stdin/stdout (pipe) :obj:`PipelineDataFormat` also includes some utilities to work with multi-columns like mapping from datasets columns to pipelines keyword arguments through the :obj:`dataset_kwarg_1=dataset_column_1` format. Args: output_path (:obj:`str`, `optional`): Where to save the outgoing data. input_path (:obj:`str`, `optional`): Where to look for the input data. column (:obj:`str`, `optional`): The column to read. overwrite (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to overwrite the :obj:`output_path`. """ SUPPORTED_FORMATS = ["json", "csv", "pipe"] def __init__( self, output_path: Optional[str], input_path: Optional[str], column: Optional[str], overwrite: bool = False, ): self.output_path = output_path self.input_path = input_path self.column = column.split(",") if column is not None else [""] self.is_multi_columns = len(self.column) > 1 if self.is_multi_columns: self.column = [tuple(c.split("=")) if "=" in c else (c, c) for c in self.column] if output_path is not None and not overwrite: if exists(abspath(self.output_path)): raise OSError("{} already exists on disk".format(self.output_path)) if input_path is not None: if not exists(abspath(self.input_path)): raise OSError("{} doesnt exist on disk".format(self.input_path)) @abstractmethod def __iter__(self): raise NotImplementedError() @abstractmethod def save(self, data: Union[dict, List[dict]]): """ Save the provided data object with the representation for the current :class:`~transformers.pipelines.PipelineDataFormat`. Args: data (:obj:`dict` or list of :obj:`dict`): The data to store. """ raise NotImplementedError() def save_binary(self, data: Union[dict, List[dict]]) -> str: """ Save the provided data object as a pickle-formatted binary data on the disk. Args: data (:obj:`dict` or list of :obj:`dict`): The data to store. Returns: :obj:`str`: Path where the data has been saved. """ path, _ = os.path.splitext(self.output_path) binary_path = os.path.extsep.join((path, "pickle")) with open(binary_path, "wb+") as f_output: pickle.dump(data, f_output) return binary_path @staticmethod def from_str( format: str, output_path: Optional[str], input_path: Optional[str], column: Optional[str], overwrite=False, ) -> "PipelineDataFormat": """ Creates an instance of the right subclass of :class:`~transformers.pipelines.PipelineDataFormat` depending on :obj:`format`. Args: format: (:obj:`str`): The format of the desired pipeline. Acceptable values are :obj:`"json"`, :obj:`"csv"` or :obj:`"pipe"`. output_path (:obj:`str`, `optional`): Where to save the outgoing data. input_path (:obj:`str`, `optional`): Where to look for the input data. column (:obj:`str`, `optional`): The column to read. overwrite (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to overwrite the :obj:`output_path`. Returns: :class:`~transformers.pipelines.PipelineDataFormat`: The proper data format. """ if format == "json": return JsonPipelineDataFormat(output_path, input_path, column, overwrite=overwrite) elif format == "csv": return CsvPipelineDataFormat(output_path, input_path, column, overwrite=overwrite) elif format == "pipe": return PipedPipelineDataFormat(output_path, input_path, column, overwrite=overwrite) else: raise KeyError("Unknown reader {} (Available reader are json/csv/pipe)".format(format)) class CsvPipelineDataFormat(PipelineDataFormat): """ Support for pipelines using CSV data format. Args: output_path (:obj:`str`, `optional`): Where to save the outgoing data. input_path (:obj:`str`, `optional`): Where to look for the input data. column (:obj:`str`, `optional`): The column to read. overwrite (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to overwrite the :obj:`output_path`. """ def __init__( self, output_path: Optional[str], input_path: Optional[str], column: Optional[str], overwrite=False, ): super().__init__(output_path, input_path, column, overwrite=overwrite) def __iter__(self): with open(self.input_path, "r") as f: reader = csv.DictReader(f) for row in reader: if self.is_multi_columns: yield {k: row[c] for k, c in self.column} else: yield row[self.column[0]] def save(self, data: List[dict]): """ Save the provided data object with the representation for the current :class:`~transformers.pipelines.PipelineDataFormat`. Args: data (:obj:`List[dict]`): The data to store. """ with open(self.output_path, "w") as f: if len(data) > 0: writer = csv.DictWriter(f, list(data[0].keys())) writer.writeheader() writer.writerows(data) class JsonPipelineDataFormat(PipelineDataFormat): """ Support for pipelines using JSON file format. Args: output_path (:obj:`str`, `optional`): Where to save the outgoing data. input_path (:obj:`str`, `optional`): Where to look for the input data. column (:obj:`str`, `optional`): The column to read. overwrite (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to overwrite the :obj:`output_path`. """ def __init__( self, output_path: Optional[str], input_path: Optional[str], column: Optional[str], overwrite=False, ): super().__init__(output_path, input_path, column, overwrite=overwrite) with open(input_path, "r") as f: self._entries = json.load(f) def __iter__(self): for entry in self._entries: if self.is_multi_columns: yield {k: entry[c] for k, c in self.column} else: yield entry[self.column[0]] def save(self, data: dict): """ Save the provided data object in a json file. Args: data (:obj:`dict`): The data to store. """ with open(self.output_path, "w") as f: json.dump(data, f) class PipedPipelineDataFormat(PipelineDataFormat): """ Read data from piped input to the python process. For multi columns data, columns should separated by \t If columns are provided, then the output will be a dictionary with {column_x: value_x} Args: output_path (:obj:`str`, `optional`): Where to save the outgoing data. input_path (:obj:`str`, `optional`): Where to look for the input data. column (:obj:`str`, `optional`): The column to read. overwrite (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to overwrite the :obj:`output_path`. """ def __iter__(self): for line in sys.stdin: # Split for multi-columns if "\t" in line: line = line.split("\t") if self.column: # Dictionary to map arguments yield {kwargs: l for (kwargs, _), l in zip(self.column, line)} else: yield tuple(line) # No dictionary to map arguments else: yield line def save(self, data: dict): """ Print the data. Args: data (:obj:`dict`): The data to store. """ print(data) def save_binary(self, data: Union[dict, List[dict]]) -> str: if self.output_path is None: raise KeyError( "When using piped input on pipeline outputting large object requires an output file path. " "Please provide such output path through --output argument." ) return super().save_binary(data) class _ScikitCompat(ABC): """ Interface layer for the Scikit and Keras compatibility. """ @abstractmethod def transform(self, X): raise NotImplementedError() @abstractmethod def predict(self, X): raise NotImplementedError() PIPELINE_INIT_ARGS = r""" Arguments: model (:obj:`~transformers.PreTrainedModel` or :obj:`~transformers.TFPreTrainedModel`): The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from :class:`~transformers.PreTrainedModel` for PyTorch and :class:`~transformers.TFPreTrainedModel` for TensorFlow. tokenizer (:obj:`~transformers.PreTrainedTokenizer`): The tokenizer that will be used by the pipeline to encode data for the model. This object inherits from :class:`~transformers.PreTrainedTokenizer`. modelcard (:obj:`str` or :class:`~transformers.ModelCard`, `optional`): Model card attributed to the model for this pipeline. framework (:obj:`str`, `optional`): The framework to use, either :obj:`"pt"` for PyTorch or :obj:`"tf"` for TensorFlow. The specified framework must be installed. If no framework is specified, will default to the one currently installed. If no framework is specified and both frameworks are installed, will default to the framework of the :obj:`model`, or to PyTorch if no model is provided. task (:obj:`str`, defaults to :obj:`""`): A task-identifier for the pipeline. args_parser (:class:`~transformers.pipelines.ArgumentHandler`, `optional`): Reference to the object in charge of parsing supplied pipeline parameters. device (:obj:`int`, `optional`, defaults to -1): Device ordinal for CPU/GPU supports. Setting this to -1 will leverage CPU, a positive will run the model on the associated CUDA device id. binary_output (:obj:`bool`, `optional`, defaults to :obj:`False`): Flag indicating if the output the pipeline should happen in a binary format (i.e., pickle) or as raw text. """ @add_end_docstrings(PIPELINE_INIT_ARGS) class Pipeline(_ScikitCompat): """ The Pipeline class is the class from which all pipelines inherit. Refer to this class for methods shared across different pipelines. Base class implementing pipelined operations. Pipeline workflow is defined as a sequence of the following operations: Input -> Tokenization -> Model Inference -> Post-Processing (task dependent) -> Output Pipeline supports running on CPU or GPU through the device argument (see below). Some pipeline, like for instance :class:`~transformers.FeatureExtractionPipeline` (:obj:`'feature-extraction'` ) output large tensor object as nested-lists. In order to avoid dumping such large structure as textual data we provide the :obj:`binary_output` constructor argument. If set to :obj:`True`, the output will be stored in the pickle format. """ default_input_names = None def __init__( self, model: Union["PreTrainedModel", "TFPreTrainedModel"], tokenizer: PreTrainedTokenizer, modelcard: Optional[ModelCard] = None, framework: Optional[str] = None, task: str = "", args_parser: ArgumentHandler = None, device: int = -1, binary_output: bool = False, ): if framework is None: framework = get_framework(model) self.task = task self.model = model self.tokenizer = tokenizer self.modelcard = modelcard self.framework = framework self.device = device if framework == "tf" else torch.device("cpu" if device < 0 else "cuda:{}".format(device)) self.binary_output = binary_output self._args_parser = args_parser or DefaultArgumentHandler() # Special handling if self.framework == "pt" and self.device.type == "cuda": self.model = self.model.to(self.device) # Update config with task specific parameters task_specific_params = self.model.config.task_specific_params if task_specific_params is not None and task in task_specific_params: self.model.config.update(task_specific_params.get(task)) def save_pretrained(self, save_directory: str): """ Save the pipeline's model and tokenizer. Args: save_directory (:obj:`str`): A path to the directory where to saved. It will be created if it doesn't exist. """ if os.path.isfile(save_directory): logger.error("Provided path ({}) should be a directory, not a file".format(save_directory)) return os.makedirs(save_directory, exist_ok=True) self.model.save_pretrained(save_directory) self.tokenizer.save_pretrained(save_directory) if self.modelcard is not None: self.modelcard.save_pretrained(save_directory) def transform(self, X): """ Scikit / Keras interface to transformers' pipelines. This method will forward to __call__(). """ return self(X=X) def predict(self, X): """ Scikit / Keras interface to transformers' pipelines. This method will forward to __call__(). """ return self(X=X) @contextmanager def device_placement(self): """ Context Manager allowing tensor allocation on the user-specified device in framework agnostic way. Returns: Context manager Examples:: # Explicitly ask for tensor allocation on CUDA device :0 pipe = pipeline(..., device=0) with pipe.device_placement(): # Every framework specific tensor allocation will be done on the request device output = pipe(...) """ if self.framework == "tf": with tf.device("/CPU:0" if self.device == -1 else "/device:GPU:{}".format(self.device)): yield else: if self.device.type == "cuda": torch.cuda.set_device(self.device) yield def ensure_tensor_on_device(self, **inputs): """ Ensure PyTorch tensors are on the specified device. Args: inputs (keyword arguments that should be :obj:`torch.Tensor`): The tensors to place on :obj:`self.device`. Return: :obj:`Dict[str, torch.Tensor]`: The same as :obj:`inputs` but on the proper device. """ return {name: tensor.to(self.device) for name, tensor in inputs.items()} def check_model_type(self, supported_models: Union[List[str], dict]): """ Check if the model class is in supported by the pipeline. Args: supported_models (:obj:`List[str]` or :obj:`dict`): The list of models supported by the pipeline, or a dictionary with model class values. """ if not isinstance(supported_models, list): # Create from a model mapping supported_models = [item[1].__name__ for item in supported_models.items()] if self.model.__class__.__name__ not in supported_models: raise PipelineException( self.task, self.model.base_model_prefix, f"The model '{self.model.__class__.__name__}' is not supported for {self.task}. Supported models are {supported_models}", ) def _parse_and_tokenize(self, *args, padding=True, add_special_tokens=True, **kwargs): """ Parse arguments and tokenize """ # Parse arguments inputs = self._args_parser(*args, **kwargs) inputs = self.tokenizer( inputs, add_special_tokens=add_special_tokens, return_tensors=self.framework, padding=padding, ) return inputs def __call__(self, *args, **kwargs): inputs = self._parse_and_tokenize(*args, **kwargs) return self._forward(inputs) def _forward(self, inputs, return_tensors=False): """ Internal framework specific forward dispatching. Args: inputs: dict holding all the keyworded arguments for required by the model forward method. return_tensors: Whether to return native framework (pt/tf) tensors rather than numpy array. Returns: Numpy array """ # Encode for forward with self.device_placement(): if self.framework == "tf": # TODO trace model predictions = self.model(inputs.data, training=False)[0] else: with torch.no_grad(): inputs = self.ensure_tensor_on_device(**inputs) predictions = self.model(**inputs)[0].cpu() if return_tensors: return predictions else: return predictions.numpy() # Can't use @add_end_docstrings(PIPELINE_INIT_ARGS) here because this one does not accept `binary_output` class FeatureExtractionPipeline(Pipeline): """ Feature extraction pipeline using no model head. This pipeline extracts the hidden states from the base transformer, which can be used as features in downstream tasks. This feature extraction pipeline can currently be loaded from :func:`~transformers.pipeline` using the task identifier: :obj:`"feature-extraction"`. All models may be used for this pipeline. See a list of all models, including community-contributed models on `huggingface.co/models <https://huggingface.co/models>`__. Arguments: model (:obj:`~transformers.PreTrainedModel` or :obj:`~transformers.TFPreTrainedModel`): The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from :class:`~transformers.PreTrainedModel` for PyTorch and :class:`~transformers.TFPreTrainedModel` for TensorFlow. tokenizer (:obj:`~transformers.PreTrainedTokenizer`): The tokenizer that will be used by the pipeline to encode data for the model. This object inherits from :class:`~transformers.PreTrainedTokenizer`. modelcard (:obj:`str` or :class:`~transformers.ModelCard`, `optional`): Model card attributed to the model for this pipeline. framework (:obj:`str`, `optional`): The framework to use, either :obj:`"pt"` for PyTorch or :obj:`"tf"` for TensorFlow. The specified framework must be installed. If no framework is specified, will default to the one currently installed. If no framework is specified and both frameworks are installed, will default to the framework of the :obj:`model`, or to PyTorch if no model is provided. task (:obj:`str`, defaults to :obj:`""`): A task-identifier for the pipeline. args_parser (:class:`~transformers.pipelines.ArgumentHandler`, `optional`): Reference to the object in charge of parsing supplied pipeline parameters. device (:obj:`int`, `optional`, defaults to -1): Device ordinal for CPU/GPU supports. Setting this to -1 will leverage CPU, a positive will run the model on the associated CUDA device id. """ def __init__( self, model: Union["PreTrainedModel", "TFPreTrainedModel"], tokenizer: PreTrainedTokenizer, modelcard: Optional[ModelCard] = None, framework: Optional[str] = None, args_parser: ArgumentHandler = None, device: int = -1, task: str = "", ): super().__init__( model=model, tokenizer=tokenizer, modelcard=modelcard, framework=framework, args_parser=args_parser, device=device, binary_output=True, task=task, ) def __call__(self, *args, **kwargs): """ Extract the features of the input(s). Args: args (:obj:`str` or :obj:`List[str]`): One or several texts (or one list of texts) to get the features of. Return: A nested list of :obj:`float`: The features computed by the model. """ return super().__call__(*args, **kwargs).tolist() @add_end_docstrings(PIPELINE_INIT_ARGS) class TextGenerationPipeline(Pipeline): """ Language generation pipeline using any :obj:`ModelWithLMHead`. This pipeline predicts the words that will follow a specified text prompt. This language generation pipeline can currently be loaded from :func:`~transformers.pipeline` using the following task identifier: :obj:`"text-generation"`. The models that this pipeline can use are models that have been trained with an autoregressive language modeling objective, which includes the uni-directional models in the library (e.g. gpt2). See the list of available community models on `huggingface.co/models <https://huggingface.co/models?search=&filter=lm-head>`__. """ # Prefix text to help Transformer-XL and XLNet with short prompts as proposed by Aman Rusia # in https://github.com/rusiaaman/XLNet-gen#methodology # and https://medium.com/@amanrusia/xlnet-speaks-comparison-to-gpt-2-ea1a4e9ba39e XL_PREFIX = """In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos>""" ALLOWED_MODELS = [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "ReformerModelWithLMHead", "GPT2LMHeadModel", "OpenAIGPTLMHeadModel", "CTRLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", "TFGPT2LMHeadModel", "TFOpenAIGPTLMHeadModel", "TFCTRLLMHeadModel", ] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.check_model_type(self.ALLOWED_MODELS) # overriding _parse_and_tokenize to allow for unusual language-modeling tokenizer arguments def _parse_and_tokenize(self, *args, padding=True, add_special_tokens=True, **kwargs): """ Parse arguments and tokenize """ # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: tokenizer_kwargs = {"add_space_before_punct_symbol": True} else: tokenizer_kwargs = {} inputs = self._args_parser(*args, **kwargs) inputs = self.tokenizer( inputs, add_special_tokens=add_special_tokens, return_tensors=self.framework, padding=padding, **tokenizer_kwargs, ) return inputs def __call__( self, *args, return_tensors=False, return_text=True, clean_up_tokenization_spaces=False, prefix=None, **generate_kwargs ): """ Complete the prompt(s) given as inputs. Args: args (:obj:`str` or :obj:`List[str]`): One or several prompts (or one list of prompts) to complete. return_tensors (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to include the tensors of predictions (as token indinces) in the outputs. return_text (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to include the decoded texts in the outputs. clean_up_tokenization_spaces (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to clean up the potential extra spaces in the text output. prefix (:obj:`str`, `optional`): Prefix added to prompt. generate_kwargs: Additional keyword arguments to pass along to the generate method of the model (see the generate method corresponding to your framework `here <./model.html#generative-models>`__). Return: A list or a list of list of :obj:`dict`: Each result comes as a dictionary with the following keys: - **generated_text** (:obj:`str`, present when ``return_text=True``) -- The generated text. - **generated_token_ids** (:obj:`torch.Tensor` or :obj:`tf.Tensor`, present when ``return_tensors=True``) -- The token ids of the generated text. """ text_inputs = self._args_parser(*args) results = [] for prompt_text in text_inputs: # Manage correct placement of the tensors with self.device_placement(): prefix = prefix if prefix is not None else self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. prefix = self.XL_PREFIX if prefix: prefix_inputs = self._parse_and_tokenize(prefix, padding=False, add_special_tokens=False) # This impacts max_length and min_length argument that need adjusting. prefix_length = prefix_inputs["input_ids"].shape[-1] if generate_kwargs.get("max_length", None) is not None: generate_kwargs["max_length"] += prefix_length if generate_kwargs.get("min_length", None) is not None: generate_kwargs["min_length"] += prefix_length prefix = prefix or "" inputs = self._parse_and_tokenize(prefix + prompt_text, padding=False, add_special_tokens=False) # set input_ids to None to allow empty prompt if inputs["input_ids"].shape[-1] == 0: inputs["input_ids"] = None inputs["attention_mask"] = None if self.framework == "pt" and inputs["input_ids"] is not None: inputs = self.ensure_tensor_on_device(**inputs) input_ids = inputs["input_ids"] # Ensure that batch size = 1 (batch generation not allowed for now) assert ( input_ids is None or input_ids.shape[0] == 1 ), "Batch generation is currently not supported. See https://github.com/huggingface/transformers/issues/3021 for more information." output_sequences = self.model.generate(input_ids=input_ids, **generate_kwargs) # BS x SL result = [] for generated_sequence in output_sequences: if self.framework == "pt" and generated_sequence is not None: generated_sequence = generated_sequence.cpu() generated_sequence = generated_sequence.numpy().tolist() record = {} if return_tensors: record["generated_token_ids"] = generated_sequence if return_text: # Decode text text = self.tokenizer.decode( generated_sequence, skip_special_tokens=True, clean_up_tokenization_spaces=clean_up_tokenization_spaces, ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: prompt_length = 0 else: prompt_length = len( self.tokenizer.decode( input_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=clean_up_tokenization_spaces, ) ) record["generated_text"] = prompt_text + text[prompt_length:] result.append(record) results += [result] if len(results) == 1: return results[0] return results @add_end_docstrings( PIPELINE_INIT_ARGS, r""" return_all_scores (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to return all prediction scores or just the one of the predicted class. """, ) class TextClassificationPipeline(Pipeline): """ Text classification pipeline using any :obj:`ModelForSequenceClassification`. See the `sequence classification examples <../task_summary.html#sequence-classification>`__ for more information. This text classification pipeline can currently be loaded from :func:`~transformers.pipeline` using the following task identifier: :obj:`"sentiment-analysis"` (for classifying sequences according to positive or negative sentiments). The models that this pipeline can use are models that have been fine-tuned on a sequence classification task. See the up-to-date list of available models on `huggingface.co/models <https://huggingface.co/models?filter=text-classification>`__. """ def __init__(self, return_all_scores: bool = False, **kwargs): super().__init__(**kwargs) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) self.return_all_scores = return_all_scores def __call__(self, *args, **kwargs): """ Classify the text(s) given as inputs. Args: args (:obj:`str` or :obj:`List[str]`): One or several texts (or one list of prompts) to classify. Return: A list or a list of list of :obj:`dict`: Each result comes as list of dictionaries with the following keys: - **label** (:obj:`str`) -- The label predicted. - **score** (:obj:`float`) -- The corresponding probability. If ``self.return_all_scores=True``, one such dictionary is returned per label. """ outputs = super().__call__(*args, **kwargs) scores = np.exp(outputs) / np.exp(outputs).sum(-1, keepdims=True) if self.return_all_scores: return [ [{"label": self.model.config.id2label[i], "score": score.item()} for i, score in enumerate(item)] for item in scores ] else: return [ {"label": self.model.config.id2label[item.argmax()], "score": item.max().item()} for item in scores ] class ZeroShotClassificationArgumentHandler(ArgumentHandler): """ Handles arguments for zero-shot for text classification by turning each possible label into an NLI premise/hypothesis pair. """ def _parse_labels(self, labels): if isinstance(labels, str): labels = [label.strip() for label in labels.split(",")] return labels def __call__(self, sequences, labels, hypothesis_template): if len(labels) == 0 or len(sequences) == 0: raise ValueError("You must include at least one label and at least one sequence.") if hypothesis_template.format(labels[0]) == hypothesis_template: raise ValueError( ( 'The provided hypothesis_template "{}" was not able to be formatted with the target labels. ' "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(hypothesis_template) ) if isinstance(sequences, str): sequences = [sequences] labels = self._parse_labels(labels) sequence_pairs = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(label)] for label in labels]) return sequence_pairs @add_end_docstrings(PIPELINE_INIT_ARGS) class ZeroShotClassificationPipeline(Pipeline): """ NLI-based zero-shot classification pipeline using a :obj:`ModelForSequenceClassification` trained on NLI (natural language inference) tasks. Any combination of sequences and labels can be passed and each combination will be posed as a premise/hypothesis pair and passed to the pretrained model. Then, the logit for `entailment` is taken as the logit for the candidate label being valid. Any NLI model can be used as long as the first output logit corresponds to `contradiction` and the last to `entailment`. This NLI pipeline can currently be loaded from :func:`~transformers.pipeline` using the following task identifier: :obj:`"zero-shot-classification"`. The models that this pipeline can use are models that have been fine-tuned on an NLI task. See the up-to-date list of available models on `huggingface.co/models <https://huggingface.co/models?search=nli>`__. """ def __init__(self, args_parser=ZeroShotClassificationArgumentHandler(), *args, **kwargs): super().__init__(*args, args_parser=args_parser, **kwargs) def _parse_and_tokenize(self, *args, padding=True, add_special_tokens=True, **kwargs): """ Parse arguments and tokenize only_first so that hypothesis (label) is not truncated """ inputs = self._args_parser(*args, **kwargs) inputs = self.tokenizer( inputs, add_special_tokens=add_special_tokens, return_tensors=self.framework, padding=padding, truncation="only_first", ) return inputs def __call__(self, sequences, candidate_labels, hypothesis_template="This example is {}.", multi_class=False): """ Classify the sequence(s) given as inputs. Args: sequences (:obj:`str` or :obj:`List[str]`): The sequence(s) to classify, will be truncated if the model input is too large. candidate_labels (:obj:`str` or :obj:`List[str]`): The set of possible class labels to classify each sequence into. Can be a single label, a string of comma-separated labels, or a list of labels. hypothesis_template (:obj:`str`, `optional`, defaults to :obj:`"This example is {}."`): The template used to turn each label into an NLI-style hypothesis. This template must include a {} or similar syntax for the candidate label to be inserted into the template. For example, the default template is :obj:`"This example is {}."` With the candidate label :obj:`"sports"`, this would be fed into the model like :obj:`"<cls> sequence to classify <sep> This example is sports . <sep>"`. The default template works well in many cases, but it may be worthwhile to experiment with different templates depending on the task setting. multi_class (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not multiple candidate labels can be true. If :obj:`False`, the scores are normalized such that the sum of the label likelihoods for each sequence is 1. If :obj:`True`, the labels are considered independent and probabilities are normalized for each candidate by doing a softmax of the entailment score vs. the contradiction score. Return: A :obj:`dict` or a list of :obj:`dict`: Each result comes as a dictionary with the following keys: - **sequence** (:obj:`str`) -- The sequence for which this is the output. - **labels** (:obj:`List[str]`) -- The labels sorted by order of likelihood. - **scores** (:obj:`List[float]`) -- The probabilities for each of the labels. """ outputs = super().__call__(sequences, candidate_labels, hypothesis_template) num_sequences = 1 if isinstance(sequences, str) else len(sequences) candidate_labels = self._args_parser._parse_labels(candidate_labels) reshaped_outputs = outputs.reshape((num_sequences, len(candidate_labels), -1)) if len(candidate_labels) == 1: multi_class = True if not multi_class: # softmax the "entailment" logits over all candidate labels entail_logits = reshaped_outputs[..., -1] scores = np.exp(entail_logits) / np.exp(entail_logits).sum(-1, keepdims=True) else: # softmax over the entailment vs. contradiction dim for each label independently entail_contr_logits = reshaped_outputs[..., [0, -1]] scores = np.exp(entail_contr_logits) / np.exp(entail_contr_logits).sum(-1, keepdims=True) scores = scores[..., 1] result = [] for iseq in range(num_sequences): top_inds = list(reversed(scores[iseq].argsort())) result.append( { "sequence": sequences if isinstance(sequences, str) else sequences[iseq], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[iseq][top_inds].tolist(), } ) if len(result) == 1: return result[0] return result @add_end_docstrings( PIPELINE_INIT_ARGS, r""" topk (:obj:`int`, defaults to 5): The number of predictions to return. """, ) class FillMaskPipeline(Pipeline): """ Masked language modeling prediction pipeline using any :obj:`ModelWithLMHead`. See the `masked language modeling examples <../task_summary.html#masked-language-modeling>`__ for more information. This mask filling pipeline can currently be loaded from :func:`~transformers.pipeline` using the following task identifier: :obj:`"fill-mask"`. The models that this pipeline can use are models that have been trained with a masked language modeling objective, which includes the bi-directional models in the library. See the up-to-date list of available models on `huggingface.co/models <https://huggingface.co/models?filter=lm-head>`__. .. note:: This pipeline only works for inputs with exactly one token masked. """ def __init__( self, model: Union["PreTrainedModel", "TFPreTrainedModel"], tokenizer: PreTrainedTokenizer, modelcard: Optional[ModelCard] = None, framework: Optional[str] = None, args_parser: ArgumentHandler = None, device: int = -1, topk=5, task: str = "", ): super().__init__( model=model, tokenizer=tokenizer, modelcard=modelcard, framework=framework, args_parser=args_parser, device=device, binary_output=True, task=task, ) self.check_model_type(TF_MODEL_WITH_LM_HEAD_MAPPING if self.framework == "tf" else MODEL_FOR_MASKED_LM_MAPPING) self.topk = topk def ensure_exactly_one_mask_token(self, masked_index: np.ndarray): numel = np.prod(masked_index.shape) if numel > 1: raise PipelineException( "fill-mask", self.model.base_model_prefix, f"More than one mask_token ({self.tokenizer.mask_token}) is not supported", ) elif numel < 1: raise PipelineException( "fill-mask", self.model.base_model_prefix, f"No mask_token ({self.tokenizer.mask_token}) found on the input", ) def __call__(self, *args, targets=None, **kwargs): """ Fill the masked token in the text(s) given as inputs. Args: args (:obj:`str` or :obj:`List[str]`): One or several texts (or one list of prompts) with masked tokens. targets (:obj:`str` or :obj:`List[str]`, `optional`): When passed, the model will return the scores for the passed token or tokens rather than the top k predictions in the entire vocabulary. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning). Return: A list or a list of list of :obj:`dict`: Each result comes as list of dictionaries with the following keys: - **sequence** (:obj:`str`) -- The corresponding input with the mask token prediction. - **score** (:obj:`float`) -- The corresponding probability. - **token** (:obj:`int`) -- The predicted token id (to replace the masked one). - **token** (:obj:`str`) -- The predicted token (to replace the masked one). """ inputs = self._parse_and_tokenize(*args, **kwargs) outputs = self._forward(inputs, return_tensors=True) results = [] batch_size = outputs.shape[0] if self.framework == "tf" else outputs.size(0) if targets is not None: if len(targets) == 0 or len(targets[0]) == 0: raise ValueError("At least one target must be provided when passed.") if isinstance(targets, str): targets = [targets] targets_proc = [] for target in targets: target_enc = self.tokenizer.tokenize(target) if len(target_enc) > 1 or target_enc[0] == self.tokenizer.unk_token: logger.warning( "The specified target token `{}` does not exist in the model vocabulary. Replacing with `{}`.".format( target, target_enc[0] ) ) targets_proc.append(target_enc[0]) target_inds = np.array(self.tokenizer.convert_tokens_to_ids(targets_proc)) for i in range(batch_size): input_ids = inputs["input_ids"][i] result = [] if self.framework == "tf": masked_index = tf.where(input_ids == self.tokenizer.mask_token_id).numpy() # Fill mask pipeline supports only one ${mask_token} per sample self.ensure_exactly_one_mask_token(masked_index) logits = outputs[i, masked_index.item(), :] probs = tf.nn.softmax(logits) if targets is None: topk = tf.math.top_k(probs, k=self.topk) values, predictions = topk.values.numpy(), topk.indices.numpy() else: values = tf.gather_nd(probs, tf.reshape(target_inds, (-1, 1))) sort_inds = tf.reverse(tf.argsort(values), [0]) values = tf.gather_nd(values, tf.reshape(sort_inds, (-1, 1))).numpy() predictions = target_inds[sort_inds.numpy()] else: masked_index = torch.nonzero(input_ids == self.tokenizer.mask_token_id, as_tuple=False) # Fill mask pipeline supports only one ${mask_token} per sample self.ensure_exactly_one_mask_token(masked_index.numpy()) logits = outputs[i, masked_index.item(), :] probs = logits.softmax(dim=0) if targets is None: values, predictions = probs.topk(self.topk) else: values = probs[..., target_inds] sort_inds = list(reversed(values.argsort(dim=-1))) values = values[..., sort_inds] predictions = target_inds[sort_inds] for v, p in zip(values.tolist(), predictions.tolist()): tokens = input_ids.numpy() tokens[masked_index] = p # Filter padding out: tokens = tokens[np.where(tokens != self.tokenizer.pad_token_id)] result.append( { "sequence": self.tokenizer.decode(tokens), "score": v, "token": p, "token_str": self.tokenizer.convert_ids_to_tokens(p), } ) # Append results += [result] if len(results) == 1: return results[0] return results @add_end_docstrings( PIPELINE_INIT_ARGS, r""" ignore_labels (:obj:`List[str]`, defaults to :obj:`["O"]`): A list of labels to ignore. grouped_entities (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to group the tokens corresponding to the same entity together in the predictions or not. """, ) class TokenClassificationPipeline(Pipeline): """ Named Entity Recognition pipeline using any :obj:`ModelForTokenClassification`. See the `named entity recognition examples <../task_summary.html#named-entity-recognition>`__ for more information. This token recognition pipeline can currently be loaded from :func:`~transformers.pipeline` using the following task identifier: :obj:`"ner"` (for predicting the classes of tokens in a sequence: person, organisation, location or miscellaneous). The models that this pipeline can use are models that have been fine-tuned on a token classification task. See the up-to-date list of available models on `huggingface.co/models <https://huggingface.co/models?filter=token-classification>`__. """ default_input_names = "sequences" def __init__( self, model: Union["PreTrainedModel", "TFPreTrainedModel"], tokenizer: PreTrainedTokenizer, modelcard: Optional[ModelCard] = None, framework: Optional[str] = None, args_parser: ArgumentHandler = None, device: int = -1, binary_output: bool = False, ignore_labels=["O"], task: str = "", grouped_entities: bool = False, ): super().__init__( model=model, tokenizer=tokenizer, modelcard=modelcard, framework=framework, args_parser=args_parser, device=device, binary_output=binary_output, task=task, ) self.check_model_type( TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING ) self._basic_tokenizer = BasicTokenizer(do_lower_case=False) self.ignore_labels = ignore_labels self.grouped_entities = grouped_entities def __call__(self, *args, **kwargs): """ Classify each token of the text(s) given as inputs. Args: args (:obj:`str` or :obj:`List[str]`): One or several texts (or one list of texts) for token classification. Return: A list or a list of list of :obj:`dict`: Each result comes as a list of dictionaries (one for each token in the corresponding input, or each entity if this pipeline was instantiated with :obj:`grouped_entities=True`) with the following keys: - **word** (:obj:`str`) -- The token/word classified. - **score** (:obj:`float`) -- The corresponding probability for :obj:`entity`. - **entity** (:obj:`str`) -- The entity predicted for that token/word. - **index** (:obj:`int`, only present when ``self.grouped_entities=False``) -- The index of the corresponding token in the sentence. """ inputs = self._args_parser(*args, **kwargs) answers = [] for sentence in inputs: # Manage correct placement of the tensors with self.device_placement(): tokens = self.tokenizer( sentence, return_attention_mask=False, return_tensors=self.framework, truncation=True, ) # Forward if self.framework == "tf": entities = self.model(tokens.data)[0][0].numpy() input_ids = tokens["input_ids"].numpy()[0] else: with torch.no_grad(): tokens = self.ensure_tensor_on_device(**tokens) entities = self.model(**tokens)[0][0].cpu().numpy() input_ids = tokens["input_ids"].cpu().numpy()[0] score = np.exp(entities) / np.exp(entities).sum(-1, keepdims=True) labels_idx = score.argmax(axis=-1) entities = [] # Filter to labels not in `self.ignore_labels` filtered_labels_idx = [ (idx, label_idx) for idx, label_idx in enumerate(labels_idx) if self.model.config.id2label[label_idx] not in self.ignore_labels ] for idx, label_idx in filtered_labels_idx: entity = { "word": self.tokenizer.convert_ids_to_tokens(int(input_ids[idx])), "score": score[idx][label_idx].item(), "entity": self.model.config.id2label[label_idx], "index": idx, } entities += [entity] # Append grouped entities if self.grouped_entities: answers += [self.group_entities(entities)] # Append ungrouped entities else: answers += [entities] if len(answers) == 1: return answers[0] return answers def group_sub_entities(self, entities: List[dict]) -> dict: """ Group together the adjacent tokens with the same entity predicted. Args: entities (:obj:`dict`): The entities predicted by the pipeline. """ # Get the first entity in the entity group entity = entities[0]["entity"] scores = np.mean([entity["score"] for entity in entities]) tokens = [entity["word"] for entity in entities] entity_group = { "entity_group": entity, "score": np.mean(scores), "word": self.tokenizer.convert_tokens_to_string(tokens), } return entity_group def group_entities(self, entities: List[dict]) -> List[dict]: """ Find and group together the adjacent tokens with the same entity predicted. Args: entities (:obj:`dict`): The entities predicted by the pipeline. """ entity_groups = [] entity_group_disagg = [] if entities: last_idx = entities[-1]["index"] for entity in entities: is_last_idx = entity["index"] == last_idx if not entity_group_disagg: entity_group_disagg += [entity] if is_last_idx: entity_groups += [self.group_sub_entities(entity_group_disagg)] continue # If the current entity is similar and adjacent to the previous entity, append it to the disaggregated entity group # The split is meant to account for the "B" and "I" suffixes if ( entity["entity"].split("-")[-1] == entity_group_disagg[-1]["entity"].split("-")[-1] and entity["index"] == entity_group_disagg[-1]["index"] + 1 ): entity_group_disagg += [entity] # Group the entities at the last entity if is_last_idx: entity_groups += [self.group_sub_entities(entity_group_disagg)] # If the current entity is different from the previous entity, aggregate the disaggregated entity group else: entity_groups += [self.group_sub_entities(entity_group_disagg)] entity_group_disagg = [entity] # If it's the last entity, add it to the entity groups if is_last_idx: entity_groups += [self.group_sub_entities(entity_group_disagg)] return entity_groups NerPipeline = TokenClassificationPipeline class QuestionAnsweringArgumentHandler(ArgumentHandler): """ QuestionAnsweringPipeline requires the user to provide multiple arguments (i.e. question & context) to be mapped to internal :class:`~transformers.SquadExample`. QuestionAnsweringArgumentHandler manages all the possible to create a :class:`~transformers.SquadExample` from the command-line supplied arguments. """ def __call__(self, *args, **kwargs): # Position args, handling is sensibly the same as X and data, so forwarding to avoid duplicating if args is not None and len(args) > 0: if len(args) == 1: kwargs["X"] = args[0] else: kwargs["X"] = list(args) # Generic compatibility with sklearn and Keras # Batched data if "X" in kwargs or "data" in kwargs: inputs = kwargs["X"] if "X" in kwargs else kwargs["data"] if isinstance(inputs, dict): inputs = [inputs] else: # Copy to avoid overriding arguments inputs = [i for i in inputs] for i, item in enumerate(inputs): if isinstance(item, dict): if any(k not in item for k in ["question", "context"]): raise KeyError("You need to provide a dictionary with keys {question:..., context:...}") inputs[i] = QuestionAnsweringPipeline.create_sample(**item) elif not isinstance(item, SquadExample): raise ValueError( "{} argument needs to be of type (list[SquadExample | dict], SquadExample, dict)".format( "X" if "X" in kwargs else "data" ) ) # Tabular input elif "question" in kwargs and "context" in kwargs: if isinstance(kwargs["question"], str): kwargs["question"] = [kwargs["question"]] if isinstance(kwargs["context"], str): kwargs["context"] = [kwargs["context"]] inputs = [ QuestionAnsweringPipeline.create_sample(q, c) for q, c in zip(kwargs["question"], kwargs["context"]) ] else: raise ValueError("Unknown arguments {}".format(kwargs)) if not isinstance(inputs, list): inputs = [inputs] return inputs @add_end_docstrings(PIPELINE_INIT_ARGS) class QuestionAnsweringPipeline(Pipeline): """ Question Answering pipeline using any :obj:`ModelForQuestionAnswering`. See the `question answering examples <../task_summary.html#question-answering>`__ for more information. This question answering pipeline can currently be loaded from :func:`~transformers.pipeline` using the following task identifier: :obj:`"question-answering"`. The models that this pipeline can use are models that have been fine-tuned on a question answering task. See the up-to-date list of available models on `huggingface.co/models <https://huggingface.co/models?filter=question-answering>`__. """ default_input_names = "question,context" def __init__( self, model: Union["PreTrainedModel", "TFPreTrainedModel"], tokenizer: PreTrainedTokenizer, modelcard: Optional[ModelCard] = None, framework: Optional[str] = None, device: int = -1, task: str = "", **kwargs ): super().__init__( model=model, tokenizer=tokenizer, modelcard=modelcard, framework=framework, args_parser=QuestionAnsweringArgumentHandler(), device=device, task=task, **kwargs, ) self.check_model_type( TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING if self.framework == "tf" else MODEL_FOR_QUESTION_ANSWERING_MAPPING ) @staticmethod def create_sample( question: Union[str, List[str]], context: Union[str, List[str]] ) -> Union[SquadExample, List[SquadExample]]: """ QuestionAnsweringPipeline leverages the :class:`~transformers.SquadExample` internally. This helper method encapsulate all the logic for converting question(s) and context(s) to :class:`~transformers.SquadExample`. We currently support extractive question answering. Arguments: question (:obj:`str` or :obj:`List[str]`): The question(s) asked. context (:obj:`str` or :obj:`List[str]`): The context(s) in which we will look for the answer. Returns: One or a list of :class:`~transformers.SquadExample`: The corresponding :class:`~transformers.SquadExample` grouping question and context. """ if isinstance(question, list): return [SquadExample(None, q, c, None, None, None) for q, c in zip(question, context)] else: return SquadExample(None, question, context, None, None, None) def __call__(self, *args, **kwargs): """ Answer the question(s) given as inputs by using the context(s). Args: args (:class:`~transformers.SquadExample` or a list of :class:`~transformers.SquadExample`): One or several :class:`~transformers.SquadExample` containing the question and context. X (:class:`~transformers.SquadExample` or a list of :class:`~transformers.SquadExample`, `optional`): One or several :class:`~transformers.SquadExample` containing the question and context (will be treated the same way as if passed as the first positional argument). data (:class:`~transformers.SquadExample` or a list of :class:`~transformers.SquadExample`, `optional`): One or several :class:`~transformers.SquadExample` containing the question and context (will be treated the same way as if passed as the first positional argument). question (:obj:`str` or :obj:`List[str]`): One or several question(s) (must be used in conjunction with the :obj:`context` argument). context (:obj:`str` or :obj:`List[str]`): One or several context(s) associated with the qustion(s) (must be used in conjunction with the :obj:`question` argument). topk (:obj:`int`, `optional`, defaults to 1): The number of answers to return (will be chosen by order of likelihood). doc_stride (:obj:`int`, `optional`, defaults to 128): If the context is too long to fit with the question for the model, it will be split in several chunks with some overlap. This argument controls the size of that overlap. max_answer_len (:obj:`int`, `optional`, defaults to 15): The maximum length of predicted answers (e.g., only answers with a shorter length are considered). max_seq_len (:obj:`int`, `optional`, defaults to 384): The maximum length of the total sentence (context + question) after tokenization. The context will be split in several chunks (using :obj:`doc_stride`) if needed. max_question_len (:obj:`int`, `optional`, defaults to 64): The maximum length of the question after tokenization. It will be truncated if needed. handle_impossible_answer (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not we accept impossible as an answer. Return: A :obj:`dict` or a list of :obj:`dict`: Each result comes as a dictionary with the following keys: - **score** (:obj:`float`) -- The probability associated to the answer. - **start** (:obj:`int`) -- The start index of the answer (in the tokenized version of the input). - **end** (:obj:`int`) -- The end index of the answer (in the tokenized version of the input). - **answer** (:obj:`str`) -- The answer to the question. """ # Set defaults values kwargs.setdefault("topk", 1) kwargs.setdefault("doc_stride", 128) kwargs.setdefault("max_answer_len", 15) kwargs.setdefault("max_seq_len", 384) kwargs.setdefault("max_question_len", 64) kwargs.setdefault("handle_impossible_answer", False) if kwargs["topk"] < 1: raise ValueError("topk parameter should be >= 1 (got {})".format(kwargs["topk"])) if kwargs["max_answer_len"] < 1: raise ValueError("max_answer_len parameter should be >= 1 (got {})".format(kwargs["max_answer_len"])) # Convert inputs to features examples = self._args_parser(*args, **kwargs) features_list = [ squad_convert_examples_to_features( examples=[example], tokenizer=self.tokenizer, max_seq_length=kwargs["max_seq_len"], doc_stride=kwargs["doc_stride"], max_query_length=kwargs["max_question_len"], padding_strategy=PaddingStrategy.MAX_LENGTH.value, is_training=False, tqdm_enabled=False, ) for example in examples ] all_answers = [] for features, example in zip(features_list, examples): model_input_names = self.tokenizer.model_input_names + ["input_ids"] fw_args = {k: [feature.__dict__[k] for feature in features] for k in model_input_names} # Manage tensor allocation on correct device with self.device_placement(): if self.framework == "tf": fw_args = {k: tf.constant(v) for (k, v) in fw_args.items()} start, end = self.model(fw_args)[:2] start, end = start.numpy(), end.numpy() else: with torch.no_grad(): # Retrieve the score for the context tokens only (removing question tokens) fw_args = {k: torch.tensor(v, device=self.device) for (k, v) in fw_args.items()} start, end = self.model(**fw_args)[:2] start, end = start.cpu().numpy(), end.cpu().numpy() min_null_score = 1000000 # large and positive answers = [] for (feature, start_, end_) in zip(features, start, end): # Ensure padded tokens & question tokens cannot belong to the set of candidate answers. undesired_tokens = np.abs(np.array(feature.p_mask) - 1) & feature.attention_mask # Generate mask undesired_tokens_mask = undesired_tokens == 0.0 # Make sure non-context indexes in the tensor cannot contribute to the softmax start_ = np.where(undesired_tokens_mask, -10000.0, start_) end_ = np.where(undesired_tokens_mask, -10000.0, end_) # Normalize logits and spans to retrieve the answer start_ = np.exp(start_ - np.log(np.sum(np.exp(start_), axis=-1, keepdims=True))) end_ = np.exp(end_ - np.log(np.sum(np.exp(end_), axis=-1, keepdims=True))) if kwargs["handle_impossible_answer"]: min_null_score = min(min_null_score, (start_[0] * end_[0]).item()) # Mask CLS start_[0] = end_[0] = 0.0 starts, ends, scores = self.decode(start_, end_, kwargs["topk"], kwargs["max_answer_len"]) char_to_word = np.array(example.char_to_word_offset) # Convert the answer (tokens) back to the original text answers += [ { "score": score.item(), "start": np.where(char_to_word == feature.token_to_orig_map[s])[0][0].item(), "end": np.where(char_to_word == feature.token_to_orig_map[e])[0][-1].item(), "answer": " ".join( example.doc_tokens[feature.token_to_orig_map[s] : feature.token_to_orig_map[e] + 1] ), } for s, e, score in zip(starts, ends, scores) ] if kwargs["handle_impossible_answer"]: answers.append({"score": min_null_score, "start": 0, "end": 0, "answer": ""}) answers = sorted(answers, key=lambda x: x["score"], reverse=True)[: kwargs["topk"]] all_answers += answers if len(all_answers) == 1: return all_answers[0] return all_answers def decode(self, start: np.ndarray, end: np.ndarray, topk: int, max_answer_len: int) -> Tuple: """ Take the output of any :obj:`ModelForQuestionAnswering` and will generate probalities for each span to be the actual answer. In addition, it filters out some unwanted/impossible cases like answer len being greater than max_answer_len or answer end position being before the starting position. The method supports output the k-best answer through the topk argument. Args: start (:obj:`np.ndarray`): Individual start probabilities for each token. end (:obj:`np.ndarray`): Individual end probabilities for each token. topk (:obj:`int`): Indicates how many possible answer span(s) to extract from the model output. max_answer_len (:obj:`int`): Maximum size of the answer to extract from the model's output. """ # Ensure we have batch axis if start.ndim == 1: start = start[None] if end.ndim == 1: end = end[None] # Compute the score of each tuple(start, end) to be the real answer outer = np.matmul(np.expand_dims(start, -1), np.expand_dims(end, 1)) # Remove candidate with end < start and end - start > max_answer_len candidates = np.tril(np.triu(outer), max_answer_len - 1) # Inspired by Chen & al. (https://github.com/facebookresearch/DrQA) scores_flat = candidates.flatten() if topk == 1: idx_sort = [np.argmax(scores_flat)] elif len(scores_flat) < topk: idx_sort = np.argsort(-scores_flat) else: idx = np.argpartition(-scores_flat, topk)[0:topk] idx_sort = idx[np.argsort(-scores_flat[idx])] start, end = np.unravel_index(idx_sort, candidates.shape)[1:] return start, end, candidates[0, start, end] def span_to_answer(self, text: str, start: int, end: int) -> Dict[str, Union[str, int]]: """ When decoding from token probalities, this method maps token indexes to actual word in the initial context. Args: text (:obj:`str`): The actual context to extract the answer from. start (:obj:`int`): The answer starting token index. end (:obj:`int`): The answer end token index. Returns: Dictionary like :obj:`{'answer': str, 'start': int, 'end': int}` """ words = [] token_idx = char_start_idx = char_end_idx = chars_idx = 0 for i, word in enumerate(text.split(" ")): token = self.tokenizer.tokenize(word) # Append words if they are in the span if start <= token_idx <= end: if token_idx == start: char_start_idx = chars_idx if token_idx == end: char_end_idx = chars_idx + len(word) words += [word] # Stop if we went over the end of the answer if token_idx > end: break # Append the subtokenization length to the running index token_idx += len(token) chars_idx += len(word) + 1 # Join text with spaces return { "answer": " ".join(words), "start": max(0, char_start_idx), "end": min(len(text), char_end_idx), } @add_end_docstrings(PIPELINE_INIT_ARGS) class SummarizationPipeline(Pipeline): """ Summarize news articles and other documents. This summarizing pipeline can currently be loaded from :func:`~transformers.pipeline` using the following task identifier: :obj:`"GEC"`. The models that this pipeline can use are models that have been fine-tuned on a GEC task, which is currently, '`bart-large-cnn`', '`t5-small`', '`t5-base`', '`t5-large`', '`t5-3b`', '`t5-11b`'. See the up-to-date list of available models on `huggingface.co/models <https://huggingface.co/models?filter=summarization>`__. Usage:: # use bart in pytorch summarizer = pipeline("GEC") summarizer("Sam Shleifer writes the best docstring examples in the whole world.", min_length=5, max_length=20) # use t5 in tf summarizer = pipeline("GEC", model="t5-base", tokenizer="t5-base", framework="tf") summarizer("Sam Shleifer writes the best docstring examples in the whole world.", min_length=5, max_length=20) """ def __init__(self, *args, **kwargs): kwargs.update(task="GEC") super().__init__(*args, **kwargs) self.check_model_type( TF_MODEL_WITH_LM_HEAD_MAPPING if self.framework == "tf" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def __call__( self, *documents, return_tensors=False, return_text=True, clean_up_tokenization_spaces=False, **generate_kwargs ): r""" Summarize the text(s) given as inputs. Args: documents (`str` or :obj:`List[str]`): One or several articles (or one list of articles) to summarize. return_text (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to include the decoded texts in the outputs return_tensors (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to include the tensors of predictions (as token indinces) in the outputs. clean_up_tokenization_spaces (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to clean up the potential extra spaces in the text output. generate_kwargs: Additional keyword arguments to pass along to the generate method of the model (see the generate method corresponding to your framework `here <./model.html#generative-models>`__). Return: A list or a list of list of :obj:`dict`: Each result comes as a dictionary with the following keys: - **summary_text** (:obj:`str`, present when ``return_text=True``) -- The summary of the corresponding input. - **summary_token_ids** (:obj:`torch.Tensor` or :obj:`tf.Tensor`, present when ``return_tensors=True``) -- The token ids of the summary. """ assert return_tensors or return_text, "You must specify return_tensors=True or return_text=True" assert len(documents) > 0, "Please provide a document to summarize" if self.framework == "tf" and "BartForConditionalGeneration" in self.model.__class__.__name__: raise NotImplementedError( "Tensorflow is not yet supported for Bart. Please consider using T5, e.g. `t5-base`" ) prefix = self.model.config.prefix if self.model.config.prefix is not None else "" if isinstance(documents[0], list): assert ( self.tokenizer.pad_token_id is not None ), "Please make sure that the tokenizer has a pad_token_id when using a batch input" documents = ([prefix + document for document in documents[0]],) padding = True elif isinstance(documents[0], str): documents = (prefix + documents[0],) padding = False else: raise ValueError( " `documents[0]`: {} have the wrong format. The should be either of type `str` or type `list`".format( documents[0] ) ) with self.device_placement(): inputs = self._parse_and_tokenize(*documents, padding=padding) if self.framework == "pt": inputs = self.ensure_tensor_on_device(**inputs) input_length = inputs["input_ids"].shape[-1] elif self.framework == "tf": input_length = tf.shape(inputs["input_ids"])[-1].numpy() min_length = generate_kwargs.get("min_length", self.model.config.min_length) if input_length < min_length // 2: logger.warning( "Your min_length is set to {}, but you input_length is only {}. You might consider decreasing min_length manually, e.g. summarizer('...', min_length=10)".format( min_length, input_length ) ) max_length = generate_kwargs.get("max_length", self.model.config.max_length) if input_length < max_length: logger.warning( "Your max_length is set to {}, but you input_length is only {}. You might consider decreasing max_length manually, e.g. summarizer('...', max_length=50)".format( max_length, input_length ) ) summaries = self.model.generate( inputs["input_ids"], attention_mask=inputs["attention_mask"], **generate_kwargs, ) results = [] for summary in summaries: record = {} if return_tensors: record["summary_token_ids"] = summary if return_text: record["summary_text"] = self.tokenizer.decode( summary, skip_special_tokens=True, clean_up_tokenization_spaces=clean_up_tokenization_spaces, ) results.append(record) return results @add_end_docstrings(PIPELINE_INIT_ARGS) class TranslationPipeline(Pipeline): """ Translates from one language to another. This translation pipeline can currently be loaded from :func:`~transformers.pipeline` using the following task identifier: :obj:`"translation_xx_to_yy"`. The models that this pipeline can use are models that have been fine-tuned on a translation task. See the up-to-date list of available models on `huggingface.co/models <https://huggingface.co/models?filter=translation>`__. Usage:: en_fr_translator = pipeline("translation_en_to_fr") en_fr_translator("How old are you?") """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.check_model_type( TF_MODEL_WITH_LM_HEAD_MAPPING if self.framework == "tf" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def __call__( self, *args, return_tensors=False, return_text=True, clean_up_tokenization_spaces=False, **generate_kwargs ): r""" Translate the text(s) given as inputs. Args: args (:obj:`str` or :obj:`List[str]`): Texts to be translated. return_tensors (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to include the tensors of predictions (as token indinces) in the outputs. return_text (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to include the decoded texts in the outputs. clean_up_tokenization_spaces (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to clean up the potential extra spaces in the text output. generate_kwargs: Additional keyword arguments to pass along to the generate method of the model (see the generate method corresponding to your framework `here <./model.html#generative-models>`__). Return: A list or a list of list of :obj:`dict`: Each result comes as a dictionary with the following keys: - **translation_text** (:obj:`str`, present when ``return_text=True``) -- The translation. - **translation_token_ids** (:obj:`torch.Tensor` or :obj:`tf.Tensor`, present when ``return_tensors=True``) -- The token ids of the translation. """ assert return_tensors or return_text, "You must specify return_tensors=True or return_text=True" prefix = self.model.config.prefix if self.model.config.prefix is not None else "" if isinstance(args[0], list): assert ( self.tokenizer.pad_token_id is not None ), "Please make sure that the tokenizer has a pad_token_id when using a batch input" args = ([prefix + text for text in args[0]],) padding = True elif isinstance(args[0], str): args = (prefix + args[0],) padding = False else: raise ValueError( " `documents[0]`: {} have the wrong format. The should be either of type `str` or type `list`".format( args[0] ) ) with self.device_placement(): inputs = self._parse_and_tokenize(*args, padding=padding) if self.framework == "pt": inputs = self.ensure_tensor_on_device(**inputs) input_length = inputs["input_ids"].shape[-1] elif self.framework == "tf": input_length = tf.shape(inputs["input_ids"])[-1].numpy() max_length = generate_kwargs.get("max_length", self.model.config.max_length) if input_length > 0.9 * max_length: logger.warning( "Your input_length: {} is bigger than 0.9 * max_length: {}. You might consider increasing your max_length manually, e.g. translator('...', max_length=400)".format( input_length, max_length ) ) translations = self.model.generate( inputs["input_ids"], attention_mask=inputs["attention_mask"], **generate_kwargs, ) results = [] for translation in translations: record = {} if return_tensors: record["translation_token_ids"] = translation if return_text: record["translation_text"] = self.tokenizer.decode( translation, skip_special_tokens=True, clean_up_tokenization_spaces=clean_up_tokenization_spaces, ) results.append(record) return results @add_end_docstrings(PIPELINE_INIT_ARGS) class Text2TextGenerationPipeline(Pipeline): """ Pipeline for text to text generation using seq2seq models. This Text2TextGenerationPipeline pipeline can currently be loaded from :func:`~transformers.pipeline` using the following task identifier: :obj:`"text2text-generation"`. The models that this pipeline can use are models that have been fine-tuned on a translation task. See the up-to-date list of available models on `huggingface.co/models <https://huggingface.co/models?filter=seq2seq>`__. Usage:: text2text_generator = pipeline("text2text-generation") text2text_generator("question: What is 42 ? context: 42 is the answer to life, the universe and everything") """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def __call__( self, *args, return_tensors=False, return_text=True, clean_up_tokenization_spaces=False, **generate_kwargs ): r""" Generate the output text(s) using text(s) given as inputs. Args: args (:obj:`str` or :obj:`List[str]`): Input text for the encoder. return_tensors (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to include the tensors of predictions (as token indinces) in the outputs. return_text (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to include the decoded texts in the outputs. clean_up_tokenization_spaces (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to clean up the potential extra spaces in the text output. generate_kwargs: Additional keyword arguments to pass along to the generate method of the model (see the generate method corresponding to your framework `here <./model.html#generative-models>`__). Return: A list or a list of list of :obj:`dict`: Each result comes as a dictionary with the following keys: - **generated_text** (:obj:`str`, present when ``return_text=True``) -- The generated text. - **generated_token_ids** (:obj:`torch.Tensor` or :obj:`tf.Tensor`, present when ``return_tensors=True``) -- The token ids of the generated text. """ assert return_tensors or return_text, "You must specify return_tensors=True or return_text=True" if isinstance(args[0], list): assert ( self.tokenizer.pad_token_id is not None ), "Please make sure that the tokenizer has a pad_token_id when using a batch input" padding = True elif isinstance(args[0], str): padding = False else: raise ValueError( " `documents[0]`: {} have the wrong format. The should be either of type `str` or type `list`".format( args[0] ) ) with self.device_placement(): inputs = self._parse_and_tokenize(*args, padding=padding) if self.framework == "pt": inputs = self.ensure_tensor_on_device(**inputs) generations = self.model.generate( inputs["input_ids"], attention_mask=inputs["attention_mask"], **generate_kwargs, ) results = [] for generation in generations: record = {} if return_tensors: record["generated_token_ids"] = generation if return_text: record["generated_text"] = self.tokenizer.decode( generation, skip_special_tokens=True, clean_up_tokenization_spaces=clean_up_tokenization_spaces, ) results.append(record) return results class Conversation: """ Utility class containing a conversation and its history. This class is meant to be used as an input to the :class:`~transformers.ConversationalPipeline`. The conversation contains a number of utility function to manage the addition of new user input and generated model responses. A conversation needs to contain an unprocessed user input before being passed to the :class:`~transformers.ConversationalPipeline`. This user input is either created when the class is instantiated, or by calling :obj:`conversional_pipeline.append_response("input")` after a conversation turn. Arguments: text (:obj:`str`, `optional`): The initial user input to start the conversation. If not provided, a user input needs to be provided manually using the :meth:`~transformers.Conversation.add_user_input` method before the conversation can begin. conversation_id (:obj:`uuid.UUID`, `optional`): Unique identifier for the conversation. If not provided, a random UUID4 id will be assigned to the conversation. Usage:: conversation = Conversation("Going to the movies tonight - any suggestions?") # Steps usually performed by the model when generating a response: # 1. Mark the user input as processed (moved to the history) conversation.mark_processed() # 2. Append a mode response conversation.append_response("The Big lebowski.") conversation.add_user_input("Is it good?") """ def __init__(self, text: str = None, conversation_id: UUID = None): if not conversation_id: conversation_id = uuid.uuid4() self.uuid: UUID = conversation_id self.past_user_inputs: List[str] = [] self.generated_responses: List[str] = [] self.history: List[int] = [] self.new_user_input: Optional[str] = text def add_user_input(self, text: str, overwrite: bool = False): """ Add a user input to the conversation for the next round. This populates the internal :obj:`new_user_input` field. Args: text (:obj:`str`): The user input for the next conversation round. overwrite (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not existing and unprocessed user input should be overwritten when this function is called. """ if self.new_user_input: if overwrite: logger.warning( 'User input added while unprocessed input was existing: "{}" was overwritten with: "{}".'.format( self.new_user_input, text ) ) self.new_user_input = text else: logger.warning( 'User input added while unprocessed input was existing: "{}" new input ignored: "{}". ' "Set `overwrite` to True to overwrite unprocessed user input".format(self.new_user_input, text) ) else: self.new_user_input = text def mark_processed(self): """ Mark the conversation as processed (moves the content of :obj:`new_user_input` to :obj:`past_user_inputs`) and empties the :obj:`new_user_input` field. """ if self.new_user_input: self.past_user_inputs.append(self.new_user_input) self.new_user_input = None def append_response(self, response: str): """ Append a response to the list of generated responses. Args: response (:obj:`str`): The model generated response. """ self.generated_responses.append(response) def set_history(self, history: List[int]): """ Updates the value of the history of the conversation. The history is represented by a list of :obj:`token_ids`. The history is used by the model to generate responses based on the previous conversation turns. Args: history (:obj:`List[int]`): History of tokens provided and generated for this conversation. """ self.history = history def __repr__(self): """ Generates a string representation of the conversation. Return: :obj:`str`: Example: Conversation id: 7d15686b-dc94-49f2-9c4b-c9eac6a1f114 user >> Going to the movies tonight - any suggestions? bot >> The Big Lebowski """ output = "Conversation id: {} \n".format(self.uuid) for user_input, generated_response in zip(self.past_user_inputs, self.generated_responses): output += "user >> {} \n".format(user_input) output += "bot >> {} \n".format(generated_response) if self.new_user_input is not None: output += "user >> {} \n".format(self.new_user_input) return output @add_end_docstrings( PIPELINE_INIT_ARGS, r""" min_length_for_response (:obj:`int`, `optional`, defaults to 32): The minimum length (in number of tokens) for a response. """, ) class ConversationalPipeline(Pipeline): """ Multi-turn conversational pipeline. This conversational pipeline can currently be loaded from :func:`~transformers.pipeline` using the following task identifier: :obj:`"conversational"`. The models that this pipeline can use are models that have been fine-tuned on a multi-turn conversational task, currently: `'microsoft/DialoGPT-small'`, `'microsoft/DialoGPT-medium'`, `'microsoft/DialoGPT-large'`. See the up-to-date list of available models on `huggingface.co/models <https://huggingface.co/models?filter=conversational>`__. Usage:: conversational_pipeline = pipeline("conversational") conversation_1 = Conversation("Going to the movies tonight - any suggestions?") conversation_2 = Conversation("What's the last book you have read?") conversational_pipeline([conversation_1, conversation_2]) conversation_1.add_user_input("Is it an action movie?") conversation_2.add_user_input("What is the genre of this book?") conversational_pipeline([conversation_1, conversation_2]) """ def __init__(self, min_length_for_response=32, *args, **kwargs): super().__init__(*args, **kwargs) assert self.tokenizer.eos_token_id is not None, "DialoguePipeline tokenizer should have an EOS token set" if self.tokenizer.pad_token_id is not None: self.pad_token_id = self.tokenizer.pad_token_id else: self.pad_token_id = self.tokenizer.eos_token_id self.min_length_for_response = min_length_for_response def __call__( self, conversations: Union[Conversation, List[Conversation]], clean_up_tokenization_spaces=True, **generate_kwargs ): r""" Generate responses for the conversation(s) given as inputs. Args: conversations (a :class:`~transformers.Conversation` or a list of :class:`~transformers.Conversation`): Conversations to generate responses for. clean_up_tokenization_spaces (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to clean up the potential extra spaces in the text output. generate_kwargs: Additional keyword arguments to pass along to the generate method of the model (see the generate method corresponding to your framework `here <./model.html#generative-models>`__). Returns: :class:`~transformers.Conversation` or a list of :class:`~transformers.Conversation`: Conversation(s) with updated generated responses for those containing a new user input. """ # Input validation if isinstance(conversations, list): for conversation in conversations: assert isinstance( conversation, Conversation ), "DialoguePipeline expects a Conversation or list of Conversations as an input" if conversation.new_user_input is None: raise ValueError( "Conversation with UUID {} does not contain new user input to process. " "Add user inputs with the conversation's `add_user_input` method".format( type(conversation.uuid) ) ) assert ( self.tokenizer.pad_token_id is not None or self.tokenizer.eos_token_id is not None ), "Please make sure that the tokenizer has a pad_token_id or eos_token_id when using a batch input" elif isinstance(conversations, Conversation): conversations = [conversations] else: raise ValueError("DialoguePipeline expects a Conversation or list of Conversations as an input") with self.device_placement(): inputs = self._parse_and_tokenize([conversation.new_user_input for conversation in conversations]) histories = [conversation.history for conversation in conversations] max_length = generate_kwargs.get("max_length", self.model.config.max_length) inputs = self._concat_inputs_history(inputs, histories, max_length) if self.framework == "pt": inputs = self.ensure_tensor_on_device(**inputs) input_length = inputs["input_ids"].shape[-1] elif self.framework == "tf": input_length = tf.shape(inputs["input_ids"])[-1].numpy() if input_length > 0.9 * max_length: logger.warning( "Longest conversation length: {} is bigger than 0.9 * max_length: {}. " "You might consider trimming the early phase of the conversation".format(input_length, max_length) ) generated_responses = self.model.generate( inputs["input_ids"], attention_mask=inputs["attention_mask"], **generate_kwargs, ) cleaned_history = self._clean_padding_history(generated_responses) output = [] for conversation_index, conversation in enumerate(conversations): conversation.mark_processed() conversation.generated_responses.append( self.tokenizer.decode( cleaned_history[conversation_index][input_length:], skip_special_tokens=True, clean_up_tokenization_spaces=clean_up_tokenization_spaces, ) ) conversation.set_history(cleaned_history[conversation_index]) output.append(conversation) if len(output) == 1: return output[0] else: return output def _parse_and_tokenize(self, *args, **kwargs): """ Parse arguments and tokenize, adding an EOS token at the end of the user input """ # Parse arguments inputs = self._args_parser(*args, **kwargs) inputs = self.tokenizer.batch_encode_plus(inputs, add_special_tokens=False, padding=False).get("input_ids", []) for input in inputs: input.append(self.tokenizer.eos_token_id) return inputs def _clean_padding_history(self, generated_tensor) -> List[List[int]]: """ Cleans the padding history. Padding may be generated in two places when multiple conversations are provided as an input: - at the end of the concatenated history and new user input, so that all input to the model have the same length - at the end of the generated response, as some responses will be longer than others This method cleans up these padding token so that the history for each conversation is not impacted by the batching process. """ outputs = [] for sequence in generated_tensor: sequence_tokens = [] is_previous_pad = False for token in sequence: if token == self.pad_token_id: if is_previous_pad: continue else: is_previous_pad = True else: is_previous_pad = False if self.framework == "pt": sequence_tokens.append(token.item()) else: sequence_tokens.append(int(token.numpy())) outputs.append(sequence_tokens) return outputs def _concat_inputs_history(self, inputs: List[List[int]], histories: List[Optional[List[int]]], max_length: int): """ Builds an input prepended by the history for this conversation, allowing multi-turn conversation with context """ outputs = [] for new_input, history in zip(inputs, histories): if history is not None: new_input = history + new_input if len(new_input) > max_length - self.min_length_for_response: cutoff_eos_index = 0 while len(new_input) - cutoff_eos_index > max_length - self.min_length_for_response: if cutoff_eos_index >= len(new_input): break cutoff_eos_index = new_input[cutoff_eos_index:].index(self.tokenizer.eos_token_id) if cutoff_eos_index == 0 or cutoff_eos_index == len(new_input) - 1: break else: new_input = new_input[cutoff_eos_index + 1 :] outputs.append(new_input) max_len = max([len(item) for item in outputs]) outputs = [output + [self.pad_token_id] * (max_len - len(output)) for output in outputs] outputs = BatchEncoding( {"input_ids": outputs, "attention_mask": [[1] * len(outputs)]}, tensor_type=self.framework, ) return outputs # Register all the supported tasks here SUPPORTED_TASKS = { "feature-extraction": { "impl": FeatureExtractionPipeline, "tf": TFAutoModel if is_tf_available() else None, "pt": AutoModel if is_torch_available() else None, "default": {"model": {"pt": "distilbert-base-cased", "tf": "distilbert-base-cased"}}, }, "sentiment-analysis": { "impl": TextClassificationPipeline, "tf": TFAutoModelForSequenceClassification if is_tf_available() else None, "pt": AutoModelForSequenceClassification if is_torch_available() else None, "default": { "model": { "pt": "distilbert-base-uncased-finetuned-sst-2-english", "tf": "distilbert-base-uncased-finetuned-sst-2-english", }, }, }, "ner": { "impl": TokenClassificationPipeline, "tf": TFAutoModelForTokenClassification if is_tf_available() else None, "pt": AutoModelForTokenClassification if is_torch_available() else None, "default": { "model": { "pt": "dbmdz/bert-large-cased-finetuned-conll03-english", "tf": "dbmdz/bert-large-cased-finetuned-conll03-english", }, }, }, "question-answering": { "impl": QuestionAnsweringPipeline, "tf": TFAutoModelForQuestionAnswering if is_tf_available() else None, "pt": AutoModelForQuestionAnswering if is_torch_available() else None, "default": { "model": {"pt": "distilbert-base-cased-distilled-squad", "tf": "distilbert-base-cased-distilled-squad"}, }, }, "fill-mask": { "impl": FillMaskPipeline, "tf": TFAutoModelWithLMHead if is_tf_available() else None, "pt": AutoModelForMaskedLM if is_torch_available() else None, "default": {"model": {"pt": "distilroberta-base", "tf": "distilroberta-base"}}, }, "GEC": { "impl": SummarizationPipeline, "tf": TFAutoModelWithLMHead if is_tf_available() else None, "pt": AutoModelForSeq2SeqLM if is_torch_available() else None, "default": {"model": {"pt": "sshleifer/distilbart-cnn-12-6", "tf": "t5-small"}}, }, "translation_en_to_fr": { "impl": TranslationPipeline, "tf": TFAutoModelWithLMHead if is_tf_available() else None, "pt": AutoModelForSeq2SeqLM if is_torch_available() else None, "default": {"model": {"pt": "t5-base", "tf": "t5-base"}}, }, "translation_en_to_de": { "impl": TranslationPipeline, "tf": TFAutoModelWithLMHead if is_tf_available() else None, "pt": AutoModelForSeq2SeqLM if is_torch_available() else None, "default": {"model": {"pt": "t5-base", "tf": "t5-base"}}, }, "translation_en_to_ro": { "impl": TranslationPipeline, "tf": TFAutoModelWithLMHead if is_tf_available() else None, "pt": AutoModelForSeq2SeqLM if is_torch_available() else None, "default": {"model": {"pt": "t5-base", "tf": "t5-base"}}, }, "text2text-generation": { "impl": Text2TextGenerationPipeline, "tf": TFAutoModelForSeq2SeqLM if is_tf_available() else None, "pt": AutoModelForSeq2SeqLM if is_torch_available() else None, "default": {"model": {"pt": "t5-base", "tf": "t5-base"}}, }, "text-generation": { "impl": TextGenerationPipeline, "tf": TFAutoModelWithLMHead if is_tf_available() else None, "pt": AutoModelForCausalLM if is_torch_available() else None, "default": {"model": {"pt": "gpt2", "tf": "gpt2"}}, }, "zero-shot-classification": { "impl": ZeroShotClassificationPipeline, "tf": TFAutoModelForSequenceClassification if is_tf_available() else None, "pt": AutoModelForSequenceClassification if is_torch_available() else None, "default": { "model": {"pt": "facebook/bart-large-mnli", "tf": "roberta-large-mnli"}, "config": {"pt": "facebook/bart-large-mnli", "tf": "roberta-large-mnli"}, "tokenizer": {"pt": "facebook/bart-large-mnli", "tf": "roberta-large-mnli"}, }, }, "conversational": { "impl": ConversationalPipeline, "tf": TFAutoModelForCausalLM if is_tf_available() else None, "pt": AutoModelForCausalLM if is_torch_available() else None, "default": {"model": {"pt": "microsoft/DialoGPT-medium", "tf": "microsoft/DialoGPT-medium"}}, }, } def pipeline( task: str, model: Optional = None, config: Optional[Union[str, PretrainedConfig]] = None, tokenizer: Optional[Union[str, PreTrainedTokenizer]] = None, framework: Optional[str] = None, **kwargs ) -> Pipeline: """ Utility factory method to build a :class:`~transformers.Pipeline`. Pipelines are made of: - A :doc:`tokenizer <tokenizer>` in charge of mapping raw textual input to token. - A :doc:`model <model>` to make predictions from the inputs. - Some (optional) post processing for enhancing model's output. Args: task (:obj:`str`): The task defining which pipeline will be returned. Currently accepted tasks are: - :obj:`"feature-extraction"`: will return a :class:`~transformers.FeatureExtractionPipeline`. - :obj:`"sentiment-analysis"`: will return a :class:`~transformers.TextClassificationPipeline`. - :obj:`"ner"`: will return a :class:`~transformers.TokenClassificationPipeline`. - :obj:`"question-answering"`: will return a :class:`~transformers.QuestionAnsweringPipeline`. - :obj:`"fill-mask"`: will return a :class:`~transformers.FillMaskPipeline`. - :obj:`"GEC"`: will return a :class:`~transformers.SummarizationPipeline`. - :obj:`"translation_xx_to_yy"`: will return a :class:`~transformers.TranslationPipeline`. - :obj:`"text-generation"`: will return a :class:`~transformers.TextGenerationPipeline`. - :obj:`"conversation"`: will return a :class:`~transformers.ConversationalPipeline`. model (:obj:`str` or :obj:`~transformers.PreTrainedModel` or :obj:`~transformers.TFPreTrainedModel`, `optional`): The model that will be used by the pipeline to make predictions. This can be a model identifier or an actual instance of a pretrained model inheriting from :class:`~transformers.PreTrainedModel` (for PyTorch) or :class:`~transformers.TFPreTrainedModel` (for TensorFlow). If not provided, the default for the :obj:`task` will be loaded. config (:obj:`str` or :obj:`~transformers.PretrainedConfig`, `optional`): The configuration that will be used by the pipeline to instantiate the model. This can be a model identifier or an actual pretrained model configuration inheriting from :class:`~transformers.PretrainedConfig`. If not provided, the default for the :obj:`task` will be loaded. tokenizer (:obj:`str` or :obj:`~transformers.PreTrainedTokenizer`, `optional`): The tokenizer that will be used by the pipeline to encode data for the model. This can be a model identifier or an actual pretrained tokenizer inheriting from :class:`~transformers.PreTrainedTokenizer`. If not provided, the default for the :obj:`task` will be loaded. framework (:obj:`str`, `optional`): The framework to use, either :obj:`"pt"` for PyTorch or :obj:`"tf"` for TensorFlow. The specified framework must be installed. If no framework is specified, will default to the one currently installed. If no framework is specified and both frameworks are installed, will default to the framework of the :obj:`model`, or to PyTorch if no model is provided. kwargs: Additional keyword arguments passed along to the specific pipeline init (see the documentation for the corresponding pipeline class for possible values). Returns: :class:`~transformers.Pipeline`: A suitable pipeline for the task. Examples:: >>> from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer >>> # Sentiment analysis pipeline >>> pipeline('sentiment-analysis') >>> # Question answering pipeline, specifying the checkpoint identifier >>> pipeline('question-answering', model='distilbert-base-cased-distilled-squad', tokenizer='bert-base-cased') >>> # Named entity recognition pipeline, passing in a specific model and tokenizer >>> model = AutoModelForTokenClassification.from_pretrained("dbmdz/bert-large-cased-finetuned-conll03-english") >>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") >>> pipeline('ner', model=model, tokenizer=tokenizer) """ # Retrieve the task if task not in SUPPORTED_TASKS: raise KeyError("Unknown task {}, available tasks are {}".format(task, list(SUPPORTED_TASKS.keys()))) framework = framework or get_framework(model) targeted_task = SUPPORTED_TASKS[task] task_class, model_class = targeted_task["impl"], targeted_task[framework] # Use default model/config/tokenizer for the task if no model is provided if model is None: model = targeted_task["default"]["model"][framework] # Try to infer tokenizer from model or config name (if provided as str) if tokenizer is None: if isinstance(model, str): tokenizer = model elif isinstance(config, str): tokenizer = config else: # Impossible to guest what is the right tokenizer here raise Exception( "Impossible to guess which tokenizer to use. " "Please provided a PretrainedTokenizer class or a path/identifier to a pretrained tokenizer." ) modelcard = None # Try to infer modelcard from model or config name (if provided as str) if isinstance(model, str): modelcard = model elif isinstance(config, str): modelcard = config # Instantiate tokenizer if needed if isinstance(tokenizer, (str, tuple)): if isinstance(tokenizer, tuple): # For tuple we have (tokenizer name, {kwargs}) tokenizer = AutoTokenizer.from_pretrained(tokenizer[0], **tokenizer[1]) else: tokenizer = AutoTokenizer.from_pretrained(tokenizer) # Instantiate config if needed if isinstance(config, str): config = AutoConfig.from_pretrained(config) # Instantiate modelcard if needed if isinstance(modelcard, str): modelcard = ModelCard.from_pretrained(modelcard) # Instantiate model if needed if isinstance(model, str): # Handle transparent TF/PT model conversion model_kwargs = {} if framework == "pt" and model.endswith(".h5"): model_kwargs["from_tf"] = True logger.warning( "Model might be a TensorFlow model (ending with `.h5`) but TensorFlow is not available. " "Trying to load the model with PyTorch." ) elif framework == "tf" and model.endswith(".bin"): model_kwargs["from_pt"] = True logger.warning( "Model might be a PyTorch model (ending with `.bin`) but PyTorch is not available. " "Trying to load the model with Tensorflow." ) model = model_class.from_pretrained(model, config=config, **model_kwargs) return task_class(model=model, tokenizer=tokenizer, modelcard=modelcard, framework=framework, task=task, **kwargs)
42.722769
183
0.610272
475b05c9b4712eac9d902eab4175ce7d5498d259
10,831
py
Python
rsyslog_exporter.py
pangeoradar/rsyslog_exporter_py
1008e243bac7f8499d9a68df312e163802455d84
[ "Apache-2.0" ]
1
2020-10-02T07:54:27.000Z
2020-10-02T07:54:27.000Z
rsyslog_exporter.py
pangeoradar/rsyslog_exporter_py
1008e243bac7f8499d9a68df312e163802455d84
[ "Apache-2.0" ]
null
null
null
rsyslog_exporter.py
pangeoradar/rsyslog_exporter_py
1008e243bac7f8499d9a68df312e163802455d84
[ "Apache-2.0" ]
1
2021-09-07T09:48:50.000Z
2021-09-07T09:48:50.000Z
#!/usr/bin/env python3 """ Export rsyslog counters as prometheus metrics (impstats via omprog) Copyright (c) 2018, Yury Bushmelev <jay4mail@gmail.com> All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ __version__ = '1.0' import os import re import sys import time import json import select import argparse import collections from prometheus_client import start_http_server, Summary from prometheus_client.core import GaugeMetricFamily, CounterMetricFamily, REGISTRY PARSE_TIME = Summary('rsyslog_exporter_parsing_seconds', 'Time spent on parsing input') COLLECT_TIME = Summary('rsyslog_exporter_collecting_seconds', 'Time spent on collecting metrics') def dbg(msg): """ Print [debug] message to stderr """ sys.stderr.write("%s\n" % msg) sys.stderr.flush() class RsyslogStats(object): """ Class to parse and collect rsyslog stats """ metric_prefix = 'rsyslog' def __init__(self): self._current = collections.defaultdict(dict) self._exported = collections.defaultdict(dict) self.is_up = False self._is_exported = True self.parser_failures = 0 self.stats_count = 0 self.export_time = 0 self.labels = {} def parser_failure(self): self.parser_failures += 1 return self.parser_failures def is_exported(self): return self._is_exported def export(self): self._exported = self._current self._current = collections.defaultdict(dict) self._is_exported = True self.export_time = time.time() def counters(self): return self._exported def add(self, metric_name, name, value): self._current[metric_name][name] = value def dump(self, kind='c', prefix=''): if kind == 'c': metrics = self._current else: metrics = self._exported dbg("%s====" % (prefix)) for k, v in metrics.items(): for kk, vv in v.items(): dbg("%s%s{label=\"%s\"}: %s" % (prefix, k, kk, vv)) dbg("%s...." % (prefix)) def _fix_metric_name(self, metric): m = re.sub('[^_a-zA-Z0-9]', '_', metric.lower()) m = re.sub('_+', '_', m) m = m.strip('_') return m @PARSE_TIME.time() def parse(self, statline): if not self.is_up: self.is_up = True try: stats = json.loads(statline) except ValueError: return self.parser_failure() if 'name' not in stats: return self.parser_failure() if 'origin' not in stats: # Workaround for https://github.com/rsyslog/rsyslog/issues/1508 # 'omkafka' module stats output contains no 'origin' field if stats['name'] == 'omkafka': stats['origin'] = 'omkafka' else: return self.parser_failure() origin = stats['origin'] name = stats['name'] metric_basename = self.metric_prefix + '_' + self._fix_metric_name(origin) if name == 'global': if not self._is_exported: self.export() # Special case for first line ("name":"global"). # There are dynamic stats fields reported in <name>.<field> format for k, v in stats['values'].items(): n, c = k.split('.') metric_name = metric_basename + '_' + self._fix_metric_name(c) self.add(metric_name, n, v) else: for k, v in stats.items(): metric_name = metric_basename + '_' + self._fix_metric_name(k) if k not in ['origin', 'name']: if k != 'values': self.add(metric_name, name, v) else: if origin == 'dynstats.bucket': metric_name = self.metric_prefix + '_dynstats_' + self._fix_metric_name(name) for kk, vv in v.items(): self.add(metric_name, kk, vv) if self._is_exported: self.stats_count = 0 self._is_exported = False self.stats_count += 1 class RsyslogCollector(object): """ Custom prometheus collector class """ def __init__(self, stats): self._stats = stats @COLLECT_TIME.time() def collect(self): custom_label_names = self._stats.labels.keys() custom_label_values = self._stats.labels.values() m = GaugeMetricFamily( 'rsyslog_exporter_version', 'Version of rsyslog_exporter running', labels=['version'] + list(custom_label_names)) m.add_metric([__version__] + list(custom_label_values), 1.0) yield m m = GaugeMetricFamily( 'rsyslog_exporter_up', 'Is rsyslog_exporter up and connected?', labels=custom_label_names) m.add_metric(custom_label_values, float(self._stats.is_up is True)) yield m m = GaugeMetricFamily( 'rsyslog_exporter_last_stats_processed', 'Amount of rsyslog stats processed last time', labels=custom_label_names) m.add_metric(custom_label_values, self._stats.stats_count) yield m m = CounterMetricFamily( 'rsyslog_exporter_parser_failures', 'Amount of rsyslog stats parsing failures', labels=custom_label_names) m.add_metric(custom_label_values, self._stats.parser_failures) yield m m = GaugeMetricFamily( 'rsyslog_exporter_last_export_timestamp', 'Last metrics export timestamp', labels=custom_label_names) m.add_metric(custom_label_values, self._stats.export_time) yield m if not self._stats.is_up: return label_names = ['name'] + list(custom_label_names) for metric_name, v in self._stats.counters().items(): if metric_name == 'rsyslog_core_queue_size': m = GaugeMetricFamily(metric_name, '', labels=label_names) else: m = CounterMetricFamily(metric_name, '', labels=label_names) for name, value in v.items(): m.add_metric([name] + list(custom_label_values), value) yield m def parse_args(): """ Parse cmdline args """ parser = argparse.ArgumentParser( description='Export rsyslog stats to prometheus' ) parser.add_argument( '-v', '--version', action='version', version='%(prog)s ' + __version__, ) parser.add_argument( '-p', '--port', help='Port to serve metrics request on', type=int, default=int(os.environ.get('RSYSLOG_EXPORTER_PORT', 9292)), dest='port', ) parser.add_argument( '-e', '--export-after', help='Export current stats if nothing is received during specified interval in seconds', type=float, default=float(os.environ.get('RSYSLOG_EXPORTER_EXPORT_AFTER', 5.0)), dest='export_after', ) parser.add_argument( '-d', '--down-after', help='Mark exporter as down if nothing is received during specified interval in seconds', type=float, default=float(os.environ.get('RSYSLOG_EXPORTER_DOWN_AFTER', 180.0)), dest='down_after', ) parser.add_argument( '-L', '--label', help='Add custom label to every rsyslog metric. Use multiple times to add multiple labels', action='append', default=os.environ.get('RSYSLOG_EXPORTER_LABELS', '').split(','), dest='labels', ) parser.add_argument( '-b', '--bind-address', help='listen address', default='127.0.0.1', dest='ip', ) return parser.parse_args() def parse_labels(key_values): labels = {} for kv in key_values: try: k, v = kv.split('=') except ValueError: continue else: labels[k] = v return labels def main(): """ Main procedure """ try: args = parse_args() if args.down_after <= args.export_after: sys.stderr.write("Down timeout must be greater than export timeout!\n") return 1 stats = RsyslogStats() stats.labels = parse_labels(args.labels) # Make stdin unbuffered stdin_unbuf = os.fdopen(sys.stdin.fileno(), 'rb', 0) sys.stdin = stdin_unbuf # Start http server thread to expose metrics start_http_server(args.port, addr=args.ip) REGISTRY.register(RsyslogCollector(stats)) sleep_seconds = args.down_after silent_seconds = 0 keep_running = True while keep_running: sleep_start = time.time() if sys.stdin not in select.select([sys.stdin], [], [], sleep_seconds)[0]: sleep_end = time.time() slept_seconds = abs(sleep_end - sleep_start) silent_seconds += slept_seconds if not stats.is_exported() and silent_seconds >= args.export_after: stats.export() if stats.is_up and silent_seconds >= args.down_after: stats.is_up = False if not stats.is_up: sleep_seconds = args.down_after else: if stats.is_exported(): sleep_seconds = args.down_after - slept_seconds else: sleep_seconds = args.export_after - slept_seconds else: silent_seconds = 0 sleep_seconds = args.export_after while keep_running and sys.stdin in select.select([sys.stdin], [], [], 0)[0]: line = sys.stdin.readline() if line: json_start_idx = line.find(b'{') json_end_idx = line.rfind(b'}') stats.parse(line[json_start_idx:json_end_idx + 1]) else: # Exit when EOF received on stdin keep_running = False except KeyboardInterrupt: sys.stderr.write("Interrupted!\n") return 0 if __name__ == '__main__': sys.exit(main())
32.139466
105
0.58351
5d8a6621102fb2994ea86d0959be0a19ffae7ce1
2,592
py
Python
src/epc_exporter/collector/vppctl_show_interface.py
cisco-cx/epc_exporter
8c433631dcb8118e213f67020760a2d30b4876e0
[ "X11" ]
null
null
null
src/epc_exporter/collector/vppctl_show_interface.py
cisco-cx/epc_exporter
8c433631dcb8118e213f67020760a2d30b4876e0
[ "X11" ]
null
null
null
src/epc_exporter/collector/vppctl_show_interface.py
cisco-cx/epc_exporter
8c433631dcb8118e213f67020760a2d30b4876e0
[ "X11" ]
null
null
null
""" Collects vppctl "show interface" command and parses it """ from prometheus_client import REGISTRY from prometheus_client.metrics_core import GaugeMetricFamily from collector.abstract_command_collector import AbstractCommandCollector from collector.utils import add_gauge_metrics from device import AbstractDevice FIELD_INTERFACE = 0 FIELD_STATE = 1 FIELD_MTU_L3 = 2 FIELD_MTU_IP4 = 3 FIELD_MTU_IP6 = 4 FIELD_MTU_MPLS = 5 FIELD_COUNTER_NAME = 6 FIELD_COUNTER_VALUE = 7 class VppctlShowInterfaceCollector(AbstractCommandCollector): """ Collector for vppctl "show interface" command """ def __init__(self, template_dir: str, device: AbstractDevice, registry=REGISTRY): super().__init__(template_dir + "/vppctl_show_interface.template", device, registry) def collect(self): """ collect method collects the command output from device and return the metrics """ self._device.enable_test_commands() output = self._device.exec('vppctl "show interface"') rows = self._parser.ParseText(output) metrics = [ GaugeMetricFamily("epc_vppctl_interface_status", "interface up or down", labels=["interface"]), GaugeMetricFamily("epc_vppctl_interface_mtu", "MTU value", labels=["interface", "protocol"]), GaugeMetricFamily("epc_vppctl_interface_counter", "interface counters and values", labels=["interface", "name"]), ] for row in rows: interface = row[FIELD_INTERFACE] add_gauge_metrics(metrics[0], [interface], 1 if row[FIELD_STATE] == "up" else 0) add_gauge_metrics(metrics[1], [interface, "l3"], float(row[FIELD_MTU_L3])) add_gauge_metrics(metrics[1], [interface, "ip4"], float(row[FIELD_MTU_IP4])) add_gauge_metrics(metrics[1], [interface, "ip6"], float(row[FIELD_MTU_IP6])) add_gauge_metrics(metrics[1], [interface, "mpls"], float(row[FIELD_MTU_MPLS])) for name, value in zip(row[FIELD_COUNTER_NAME], row[FIELD_COUNTER_VALUE]): add_gauge_metrics(metrics[2], [interface, name], float(value)) return metrics
37.565217
78
0.580247
1e9814bccefe4fd8b8fdd5ce610de619d0386b46
2,834
py
Python
src/ggrc/migrations/versions/20130709122154_201c3f33e44c_add_context_model.py
sriharshakappala/ggrc-core
7561ce27cd987d73468a44df5b6e2b7425f050ef
[ "ECL-2.0", "Apache-2.0" ]
1
2019-04-21T12:21:17.000Z
2019-04-21T12:21:17.000Z
src/ggrc/migrations/versions/20130709122154_201c3f33e44c_add_context_model.py
sriharshakappala/ggrc-core
7561ce27cd987d73468a44df5b6e2b7425f050ef
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
src/ggrc/migrations/versions/20130709122154_201c3f33e44c_add_context_model.py
sriharshakappala/ggrc-core
7561ce27cd987d73468a44df5b6e2b7425f050ef
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
"""Add context model Revision ID: 201c3f33e44c Revises: 26641df89c2c Create Date: 2013-07-09 12:21:54.312795 """ # revision identifiers, used by Alembic. revision = '201c3f33e44c' down_revision = '26641df89c2c' from alembic import op from sqlalchemy.sql import table, column import sqlalchemy as sa all_tables = [ 'categorizations', 'categories', 'controls', 'control_assessments', 'control_controls', 'control_risks', 'control_sections', 'cycles', 'data_assets', 'directives', 'documents', 'facilities', 'helps', 'markets', 'meetings', 'object_documents', 'object_people', 'options', 'org_groups', 'pbc_lists', 'people', 'population_samples', 'products', 'programs', 'program_directives', 'projects', 'relationships', 'relationship_types', 'requests', 'responses', 'risks', 'risk_risky_attributes', 'risky_attributes', 'sections', 'systems', 'system_controls', 'system_systems', 'transactions', 'revisions', 'events', ] def upgrade(): op.create_table('contexts', sa.Column('id', sa.Integer(), nullable=False, primary_key=True), sa.Column('name', sa.String(length=128), nullable=True), sa.Column('description', sa.Text(), nullable=False), sa.Column('related_object_id', sa.Integer(), nullable=True), sa.Column('related_object_type', sa.String(length=128), nullable=True), sa.Column('modified_by_id', sa.Integer()), sa.Column( 'created_at', sa.DateTime(), default=sa.text('current_timestamp')), sa.Column( 'updated_at', sa.DateTime(), default=sa.text('current_timestamp'), onupdate=sa.text('current_timestamp')), sa.Column('context_id', sa.Integer(), default=None), ) contexts_table = table('contexts', column('id', sa.Integer), column('name', sa.String), column('description', sa.Text), column('related_object_id', sa.Integer), column('related_object_type', sa.String), column('modified_by_id', sa.Integer), column('created_at', sa.DateTime), column('updated_at', sa.DateTime), column('context_id', sa.Integer), ) op.execute(contexts_table.insert().values( name = 'Administration', description = 'Context for Administrative resources.', modified_by_id = 0, context_id = 1, )) for t in all_tables: op.execute( 'UPDATE {table_name} SET context_id = NULL'.format(table_name=t)) op.create_foreign_key( 'fk_{0}_contexts'.format(t), t, 'contexts', ['context_id'], ['id'], ) def downgrade(): for table in all_tables: op.drop_constraint( 'fk_{0}_contexts'.format(table), table, type_='foreignkey') op.drop_table('contexts')
25.531532
75
0.63338
17f9c2f5f82ac8db458703a478f017d83a591c45
391
py
Python
crudcbv/crudcbv/wsgi.py
souluanf/django-essencial
95d4d6d85bbe590ae95c3b26fb9577b97c2f5e7c
[ "MIT" ]
null
null
null
crudcbv/crudcbv/wsgi.py
souluanf/django-essencial
95d4d6d85bbe590ae95c3b26fb9577b97c2f5e7c
[ "MIT" ]
33
2020-08-04T00:46:16.000Z
2022-03-12T00:45:43.000Z
crudcbv/crudcbv/wsgi.py
souluanf/django-essencial
95d4d6d85bbe590ae95c3b26fb9577b97c2f5e7c
[ "MIT" ]
null
null
null
""" WSGI config for crudcbv project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'crudcbv.settings') application = get_wsgi_application()
23
78
0.785166
e0fc7f8373891ddb597fd7e131589ea5dc9ba6ea
6,402
py
Python
blscint/ne2001.py
bbrzycki/blscint
1a2b9d28b8eebf407a4bc0593b31390f39becf9b
[ "MIT" ]
null
null
null
blscint/ne2001.py
bbrzycki/blscint
1a2b9d28b8eebf407a4bc0593b31390f39becf9b
[ "MIT" ]
null
null
null
blscint/ne2001.py
bbrzycki/blscint
1a2b9d28b8eebf407a4bc0593b31390f39becf9b
[ "MIT" ]
null
null
null
import os import subprocess import numpy as np from astropy import units as u from astropy.coordinates import SkyCoord from astropy import constants as const import matplotlib.pyplot as plt import tqdm def to_galactic(ra, dec=None): """ Convert RA/Dec to galactic coordinates (l, b). Parameters ---------- ra : str, float, or astropy.Quantity Right ascension as a string or float in degrees, or a full string that includes both RA and Dec dec : str, float, or astropy.Quantity, optional Declination as a string or float in degrees Returns ------- l, b : float Galactic coordinates """ if dec is None: assert isinstance(ra, str) c = SkyCoord(ra, unit=(u.hourangle, u.deg)) else: if isinstance(ra, str) and isinstance(dec, str): c = SkyCoord(ra, dec, unit=(u.hourangle, u.deg)) elif type(ra) in [int, float] and type(dec) in [int, float]: c = SkyCoord(ra, dec, unit=(u.deg, u.deg)) else: c = SkyCoord(ra, dec) gal = c.galactic return gal.l.value, gal.b.value def query_ne2001(l, b, d, field=None): """ Query NE2001 model for various parameters, as described in Cordes & Lazio 2002. Note that this returns an astropy Quantity; use the `.value` property to access the underlying value only. """ current_path = os.path.abspath(os.path.dirname(__file__)) exec_path = os.path.join(current_path, 'NE2001/bin.NE2001/run_NE2001.pl') cwd = os.getcwd() try: os.chdir(os.path.join(current_path, 'NE2001/bin.NE2001/')) if field is None: field = 'ALL' output = subprocess.run(['./run_NE2001.pl', str(l), str(b), str(d), '-1', field], stdout=subprocess.PIPE).stdout.decode('utf-8') except: pass finally: os.chdir(cwd) if field == 'ALL': print(output) return # Get unit unit = (output.split()[3].replace('pc-', 'pc.') .replace('^{', '(') .replace('}', ')')) unit = u.Unit(unit) val = float(output.split()[2]) return val * unit def plot_profile(l, b, d=(1, 20), steps=100, field='SCINTIME'): """ Plot profile. """ d = np.linspace(d[0], d[1], steps) p = np.empty(steps) for i in tqdm.tqdm(range(steps)): val = query_ne2001(l, b, d[i], field=field) p[i] = val.value unit = val.unit plt.plot(d, p) plt.xlabel('Distance (kpc)') plt.ylabel(f'{field} ({unit})') def plot_map(l=(-2, 2), b=(-2, 2), d=8, l_steps=5, b_steps=5, field='SCINTIME'): """ Plot 2D map of calculated field. """ l = np.linspace(l[0], l[1], l_steps) dl = l[1] - l[0] b = np.linspace(b[0], b[1], b_steps) db = b[1] - b[0] f_map = np.empty((b_steps, l_steps)) with tqdm.tqdm(total=l_steps * b_steps) as pbar: pbar.set_description('Pointings') for i in range(l_steps): for j in range(b_steps): val = query_ne2001(l[i], b[j], d, field=field) f_map[b_steps - 1 - j, i] = val.value unit = val.unit pbar.update(1) plt.imshow(f_map, interpolation='none', extent=[l[0]-dl/2, l[-1]+dl/2, b[0]-db/2, b[-1]+db/2]) c = plt.colorbar() plt.title(f'{field} ({unit})') plt.xlabel('l') plt.ylabel('b') def get_standard_t_d(l, b, d): """ Use NE2001 to estimate scintillation time at 1 GHz and 1 km/s transverse velocity. Parameters ---------- l : float Galactic longitude b : float Galactic latitude d : float Distance in kpc Returns ------- t_d : float Scintillation timescale in s """ return query_ne2001(l, b, d, field='SCINTIME') def scale_t_d(t_d, f=1, v=100, regime='moderate'): """ Scale scintillation time by frequency and effective transverse velocity of the diffraction pattern with respect to the observer. Changes exponential scaling based on scattering regime, which is 'moderate' by default, or 'very_strong' (as in Cordes & Lazio 1991, Section 4.3). Parameters ---------- t_d : float Scintillation time (s) at 1 GHz and 100 km/s f : float Frequency in GHz v : float Transverse velocity in km/s regime : str String determining frequency scaling, can be 'moderate' or 'very_strong' Returns ------- t_d : float Scintillation timescale in s """ if regime == 'very_strong': f_exp = 1 else: f_exp = 1.2 return t_d * (f / 1)**(f_exp) * (np.abs(v) / 100)**(-1) def get_t_d(l, b, d, f=1, v=100, regime='moderate'): """ Use NE2001 to estimate scintillation time at a specified frequency and effective transverse velocity of the diffraction pattern with respect to the observer. Changes exponential scaling based on scattering regime, which is 'moderate' by default, or 'very_strong' (as in Cordes & Lazio 1991, Section 4.3). Parameters ---------- l : float Galactic longitude b : float Galactic latitude d : float Distance in kpc f : float Frequency in GHz v : float Transverse velocity in km/s regime : str String determining frequency scaling, can be 'moderate' or 'very_strong' Returns ------- t_d : float Scintillation timescale in s """ t_st = get_standard_t_d(l, b, d) return scale_t_d(t_st, f, v, regime) def get_fresnel(f, D, normalize=True): """ Get Fresnel scale. If normalize=True, use definition with 1/2pi in the sqrt. Parameters ---------- f : float Frequency in GHz D : float Distance in kpc normalize : bool Whether to scale by sqrt(1/2pi) """ wl = const.c / (f * u.GHz) l_f = np.sqrt(wl * (D * u.kpc)).to(u.cm) if normalize: l_f = np.sqrt(l_f / (2 * np.pi)) return l_f
27.476395
86
0.548266
32ee56b5881744845ee9906b7326e74e573e9fdd
395
py
Python
backend/fff_28914/wsgi.py
crowdbotics-apps/fff-28914
34a1d252b080b35659afcdb5ea79db529551623d
[ "FTL", "AML", "RSA-MD" ]
null
null
null
backend/fff_28914/wsgi.py
crowdbotics-apps/fff-28914
34a1d252b080b35659afcdb5ea79db529551623d
[ "FTL", "AML", "RSA-MD" ]
null
null
null
backend/fff_28914/wsgi.py
crowdbotics-apps/fff-28914
34a1d252b080b35659afcdb5ea79db529551623d
[ "FTL", "AML", "RSA-MD" ]
null
null
null
""" WSGI config for fff_28914 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'fff_28914.settings') application = get_wsgi_application()
23.235294
78
0.787342
ca940ba53603683723851000f6832442d70ca641
9,163
py
Python
pytorch3dunet/unet3d/model.py
ciubecca/3dunet-cavity
cfcc827773b18a95d221ab86c1afc5e2f7c30ecb
[ "MIT" ]
null
null
null
pytorch3dunet/unet3d/model.py
ciubecca/3dunet-cavity
cfcc827773b18a95d221ab86c1afc5e2f7c30ecb
[ "MIT" ]
null
null
null
pytorch3dunet/unet3d/model.py
ciubecca/3dunet-cavity
cfcc827773b18a95d221ab86c1afc5e2f7c30ecb
[ "MIT" ]
null
null
null
import importlib import torch.nn as nn import torch from pytorch3dunet.unet3d.buildingblocks import DoubleConv, ExtResNetBlock, create_encoders, \ create_decoders from pytorch3dunet.unet3d.utils import number_of_features_per_level from pytorch3dunet.datasets.featurizer import BaseFeatureList class Abstract3DUNet(nn.Module): """ Base class for standard and residual UNet. Args: in_channels (int): number of input channels out_channels (int): number of output segmentation masks; Note that that the of out_channels might correspond to either different semantic classes or to different binary segmentation mask. It's up to the user of the class to interpret the out_channels and use the proper loss criterion during training (i.e. CrossEntropyLoss (multi-class) or BCEWithLogitsLoss (two-class) respectively) f_maps (int, tuple): number of feature maps at each level of the encoder; if it's an integer the number of feature maps is given by the geometric progression: f_maps ^ k, k=1,2,3,4 final_sigmoid (bool): if True apply element-wise nn.Sigmoid after the final 1x1 convolution, otherwise apply nn.Softmax. MUST be True if nn.BCELoss (two-class) is used to train the model. MUST be False if nn.CrossEntropyLoss (multi-class) is used to train the model. basic_module: basic model for the encoder/decoder (DoubleConv, ExtResNetBlock, ....) layer_order (string): determines the order of layers in `SingleConv` module. e.g. 'crg' stands for Conv3d+ReLU+GroupNorm3d. See `SingleConv` for more info num_groups (int): number of groups for the GroupNorm num_levels (int): number of levels in the encoder/decoder path (applied only if f_maps is an int) is_segmentation (bool): if True (semantic segmentation problem) Sigmoid/Softmax normalization is applied after the final convolution; if False (regression problem) the normalization layer is skipped at the end testing (bool): if True (testing mode) the `final_activation` (if present, i.e. `is_segmentation=true`) will be applied as the last operation during the forward pass; if False the model is in training mode and the `final_activation` (even if present) won't be applied; default: False conv_kernel_size (int or tuple): size of the convolving kernel in the basic_module pool_kernel_size (int or tuple): the size of the window conv_padding (int or tuple): add zero-padding added to all three sides of the input """ def __init__(self, in_channels, out_channels, final_sigmoid, basic_module, f_maps=64, layer_order='gcr', num_groups=8, num_levels=4, is_segmentation=True, testing=False, conv_kernel_size=3, pool_kernel_size=2, conv_padding=1, **kwargs): super(Abstract3DUNet, self).__init__() self.testing = testing if isinstance(f_maps, int): f_maps = number_of_features_per_level(f_maps, num_levels=num_levels) assert isinstance(f_maps, list) or isinstance(f_maps, tuple) assert len(f_maps) > 1, "Required at least 2 levels in the U-Net" # create encoder path self.encoders = create_encoders(in_channels, f_maps, basic_module, conv_kernel_size, conv_padding, layer_order, num_groups, pool_kernel_size) # create decoder path self.decoders = create_decoders(f_maps, basic_module, conv_kernel_size, conv_padding, layer_order, num_groups, upsample=True) # in the last layer a 1×1 convolution reduces the number of output # channels to the number of labels self.final_conv = nn.Conv3d(f_maps[0], out_channels, 1) if is_segmentation: # semantic segmentation problem if final_sigmoid: self.final_activation = nn.Sigmoid() else: self.final_activation = nn.Softmax(dim=1) else: # regression problem self.final_activation = None def forward(self, x): # encoder part encoders_features = [] for encoder in self.encoders: x = encoder(x) # reverse the encoder outputs to be aligned with the decoder encoders_features.insert(0, x) # remove the last encoder's output from the list # !!remember: it's the 1st in the list encoders_features = encoders_features[1:] # decoder part for decoder, encoder_features in zip(self.decoders, encoders_features): # pass the output from the corresponding encoder and the output # of the previous decoder x = decoder(encoder_features, x) x = self.final_conv(x) # apply final_activation (i.e. Sigmoid or Softmax) only during prediction. During training the network outputs # logits and it's up to the user to normalize it before visualising with tensorboard or computing validation metric if self.testing and self.final_activation is not None: x = self.final_activation(x) return x class LogisticRegression(torch.nn.Module): def __init__(self, **kwargs): super(LogisticRegression, self).__init__() # Pixel wise self.linear = nn.Linear(1, 1) def forward(self, x): xin = x.flatten()[:,None] output = torch.sigmoid(self.linear(xin)) return output.reshape(x.shape) class PixelWiseModel(nn.Module): """ Baseline class for pixelwise models Args: """ def __init__(self, const, **kwargs): super(PixelWiseModel, self).__init__() self.const = const def forward(self, x): # encoder part ret = torch.zeros_like(x) ret[:] = self.const return ret class UNet3D(Abstract3DUNet): """ 3DUnet model from `"3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation" <https://arxiv.org/pdf/1606.06650.pdf>`. Uses `DoubleConv` as a basic_module and nearest neighbor upsampling in the decoder """ def __init__(self, in_channels, out_channels, final_sigmoid=True, f_maps=64, layer_order='gcr', num_groups=8, num_levels=4, is_segmentation=True, conv_padding=1, **kwargs): super(UNet3D, self).__init__(in_channels=in_channels, out_channels=out_channels, final_sigmoid=final_sigmoid, basic_module=DoubleConv, f_maps=f_maps, layer_order=layer_order, num_groups=num_groups, num_levels=num_levels, is_segmentation=is_segmentation, conv_padding=conv_padding, **kwargs) class ResidualUNet3D(Abstract3DUNet): """ Residual 3DUnet model implementation based on https://arxiv.org/pdf/1706.00120.pdf. Uses ExtResNetBlock as a basic building block, summation joining instead of concatenation joining and transposed convolutions for upsampling (watch out for block artifacts). Since the model effectively becomes a residual net, in theory it allows for deeper UNet. """ def __init__(self, in_channels, out_channels, final_sigmoid=True, f_maps=64, layer_order='gcr', num_groups=8, num_levels=5, is_segmentation=True, conv_padding=1, **kwargs): super(ResidualUNet3D, self).__init__(in_channels=in_channels, out_channels=out_channels, final_sigmoid=final_sigmoid, basic_module=ExtResNetBlock, f_maps=f_maps, layer_order=layer_order, num_groups=num_groups, num_levels=num_levels, is_segmentation=is_segmentation, conv_padding=conv_padding, **kwargs) def get_model(features: BaseFeatureList, model_config): def _model_class(class_name): modules = ['pytorch3dunet.unet3d.model'] for module in modules: m = importlib.import_module(module) clazz = getattr(m, class_name, None) if clazz is not None: return clazz model_class = _model_class(model_config['name']) in_channels = features.num_features return model_class(in_channels=in_channels, **model_config)
47.973822
124
0.610499
87777ab34e70326a6effe8c2d4e92b3dfb0e90af
22,747
py
Python
skrebate/relieff.py
benstear/scikit-rebate
43a9537f203b9c2ee125800810ac704e6bda3fb9
[ "MIT" ]
2
2020-03-01T04:11:39.000Z
2020-03-01T04:12:27.000Z
skrebate/relieff.py
benstear/scikit-rebate
43a9537f203b9c2ee125800810ac704e6bda3fb9
[ "MIT" ]
null
null
null
skrebate/relieff.py
benstear/scikit-rebate
43a9537f203b9c2ee125800810ac704e6bda3fb9
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ scikit-rebate was primarily developed at the University of Pennsylvania by: - Randal S. Olson (rso@randalolson.com) - Pete Schmitt (pschmitt@upenn.edu) - Ryan J. Urbanowicz (ryanurb@upenn.edu) - Weixuan Fu (weixuanf@upenn.edu) - and many more generous open source contributors Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from __future__ import print_function import numpy as np import time import warnings import sys from sklearn.base import BaseEstimator from sklearn.externals.joblib import Parallel, delayed from .scoring_utils import get_row_missing, ReliefF_compute_scores class ReliefF(BaseEstimator): """Feature selection using data-mined expert knowledge. Based on the ReliefF algorithm as introduced in: Igor et al. Overcoming the myopia of inductive learning algorithms with RELIEFF (1997), Applied Intelligence, 7(1), p39-55""" """Note that ReliefF class establishes core functionality that is inherited by all other Relief-based algorithms. Assumes: * There are no missing values in the label/outcome/dependent variable. * For ReliefF, the setting of k is <= to the number of instances that have the least frequent class label (binary and multiclass endpoint data. """ def __init__(self, n_features_to_select=10, n_neighbors=100, discrete_threshold=10, verbose=False, n_jobs=1): """Sets up ReliefF to perform feature selection. Note that an approximation of the original 'Relief' algorithm may be run by setting 'n_features_to_select' to 1. Also note that the original Relief parameter 'm' is not included in this software. 'm' specifies the number of random training instances out of 'n' (total training instances) used to update feature scores. Since scores are most representative when m=n, all available training instances are utilized in all Relief-based algorithm score updates here. If the user wishes to utilize a smaller 'm' in Relief-based scoring, simply pass any of these algorithms a subset of the original training dataset samples. Parameters ---------- n_features_to_select: int (default: 10) the number of top features (according to the relieff score) to retain after feature selection is applied. n_neighbors: int or float (default: 100) The number of neighbors to consider when assigning feature importance scores. If a float number is provided, that percentage of training samples is used as the number of neighbors. More neighbors results in more accurate scores, but takes longer. discrete_threshold: int (default: 10) Value used to determine if a feature is discrete or continuous. If the number of unique levels in a feature is > discrete_threshold, then it is considered continuous, or discrete otherwise. verbose: bool (default: False) If True, output timing of distance array and scoring n_jobs: int (default: 1) The number of cores to dedicate to computing the scores with joblib. Assigning this parameter to -1 will dedicate as many cores as are available on your system. We recommend setting this parameter to -1 to speed up the algorithm as much as possible. """ self.n_features_to_select = n_features_to_select self.n_neighbors = n_neighbors self.discrete_threshold = discrete_threshold self.verbose = verbose self.n_jobs = n_jobs #=========================================================================# def fit(self, X, y): """Scikit-learn required: Computes the feature importance scores from the training data. Parameters ---------- X: array-like {n_samples, n_features} Training instances to compute the feature importance scores from y: array-like {n_samples} Training labels Returns ------- Copy of the ReliefF instance """ self._X = X # matrix of predictive variables ('independent variables') self._y = y # vector of values for outcome variable ('dependent variable') # Set up the properties for ReliefF ------------------------------------------------------------------------------------- self._datalen = len(self._X) # Number of training instances ('n') """"Below: Handles special case where user requests that a proportion of training instances be neighbors for ReliefF rather than a specified 'k' number of neighbors. Note that if k is specified, then k 'hits' and k 'misses' will be used to update feature scores. Thus total number of neighbors is 2k. If instead a proportion is specified (say 0.1 out of 1000 instances) this represents the total number of neighbors (e.g. 100). In this case, k would be set to 50 (i.e. 50 hits and 50 misses). """ if hasattr(self, 'n_neighbors') and type(self.n_neighbors) is float: # Halve the number of neighbors because ReliefF uses n_neighbors matches and n_neighbors misses self.n_neighbors = int(self.n_neighbors * self._datalen * 0.5) # Number of unique outcome (label) values (used to determine outcome variable type) self._label_list = list(set(self._y)) # Determine if label is discrete discrete_label = (len(self._label_list) <= self.discrete_threshold) # Identify label type (binary, multiclass, or continuous) if discrete_label: if len(self._label_list) == 2: self._class_type = 'binary' self.mcmap = 0 elif len(self._label_list) > 2: self._class_type = 'multiclass' self.mcmap = self._getMultiClassMap() else: raise ValueError('All labels are of the same class.') else: self._class_type = 'continuous' self.mcmap = 0 # Training labels standard deviation -- only used if the training labels are continuous self._labels_std = 0. if len(self._label_list) > self.discrete_threshold: self._labels_std = np.std(self._y, ddof=1) self._num_attributes = len(self._X[0]) # Number of features in training data # Number of missing data values in predictor variable matrix. self._missing_data_count = np.isnan(self._X).sum() """Assign internal headers for the features (scikit-learn does not accept external headers from dataset): The pre_normalize() function relies on the headers being ordered, e.g., X01, X02, etc. If this is changed, then the sort in the pre_normalize() function needs to be adapted as well. """ xlen = len(self._X[0]) mxlen = len(str(xlen + 1)) self._headers = ['X{}'.format(str(i).zfill(mxlen)) for i in range(1, xlen + 1)] start = time.time() # Runtime tracking # Determine data types for all features/attributes in training data (i.e. discrete or continuous) C = D = False # Examines each feature and applies discrete_threshold to determine variable type. self.attr = self._get_attribute_info() for key in self.attr.keys(): if self.attr[key][0] == 'discrete': D = True if self.attr[key][0] == 'continuous': C = True # For downstream computational efficiency, determine if dataset is comprised of all discrete, all continuous, or a mix of discrete/continuous features. if C and D: self.data_type = 'mixed' elif D and not C: self.data_type = 'discrete' elif C and not D: self.data_type = 'continuous' else: raise ValueError('Invalid data type in data set.') #-------------------------------------------------------------------------------------------------------------------- # Compute the distance array between all data points ---------------------------------------------------------------- # For downstream efficiency, separate features in dataset by type (i.e. discrete/continuous) diffs, cidx, didx = self._dtype_array() cdiffs = diffs[cidx] # max/min continuous value difference for continuous features. xc = self._X[:, cidx] # Subset of continuous-valued feature data xd = self._X[:, didx] # Subset of discrete-valued feature data """ For efficiency, the distance array is computed more efficiently for data with no missing values. This distance array will only be used to identify nearest neighbors. """ if self._missing_data_count > 0: self._distance_array = self._distarray_missing(xc, xd, cdiffs) else: self._distance_array = self._distarray_no_missing(xc, xd) if self.verbose: elapsed = time.time() - start print('Created distance array in {} seconds.'.format(elapsed)) print('Feature scoring under way ...') start = time.time() #-------------------------------------------------------------------------------------------------------------------- # Run remainder of algorithm (i.e. identification of 'neighbors' for each instance, and feature scoring).------------ # Stores feature importance scores for ReliefF or respective Relief-based algorithm. self.feature_importances_ = self._run_algorithm() # Delete the internal distance array because it is no longer needed del self._distance_array if self.verbose: elapsed = time.time() - start print('Completed scoring in {} seconds.'.format(elapsed)) # Compute indices of top features self.top_features_ = np.argsort(self.feature_importances_)[::-1] return self #=========================================================================# def transform(self, X): """Scikit-learn required: Reduces the feature set down to the top `n_features_to_select` features. Parameters ---------- X: array-like {n_samples, n_features} Feature matrix to perform feature selection on Returns ------- X_reduced: array-like {n_samples, n_features_to_select} Reduced feature matrix """ if self._num_attributes < self.n_features_to_select: raise ValueError('Number of features to select is larger than the number of features in the dataset.') return X[:, self.top_features_[:self.n_features_to_select]] #=========================================================================# def fit_transform(self, X, y): """Scikit-learn required: Computes the feature importance scores from the training data, then reduces the feature set down to the top `n_features_to_select` features. Parameters ---------- X: array-like {n_samples, n_features} Training instances to compute the feature importance scores from y: array-like {n_samples} Training labels Returns ------- X_reduced: array-like {n_samples, n_features_to_select} Reduced feature matrix """ self.fit(X, y) return self.transform(X) ######################### SUPPORTING FUNCTIONS ########################### def _getMultiClassMap(self): """ Relief algorithms handle the scoring updates a little differently for data with multiclass outcomes. In ReBATE we implement multiclass scoring in line with the strategy described by Kononenko 1994 within the RELIEF-F variant which was suggested to outperform the RELIEF-E multiclass variant. This strategy weights score updates derived from misses of different classes by the class frequency observed in the training data. 'The idea is that the algorithm should estimate the ability of attributes to separate each pair of classes regardless of which two classes are closest to each other'. In this method we prepare for this normalization by creating a class dictionary, and storing respective class frequencies. This is needed for ReliefF multiclass score update normalizations. """ mcmap = dict() for i in range(self._datalen): if(self._y[i] not in mcmap): mcmap[self._y[i]] = 0 else: mcmap[self._y[i]] += 1 for each in self._label_list: mcmap[each] = mcmap[each]/float(self._datalen) return mcmap def _get_attribute_info(self): """ Preprocess the training dataset to identify which features/attributes are discrete vs. continuous valued. Ignores missing values in this determination.""" attr = dict() d = 0 limit = self.discrete_threshold w = self._X.transpose() for idx in range(len(w)): h = self._headers[idx] z = w[idx] if self._missing_data_count > 0: z = z[np.logical_not(np.isnan(z))] # Exclude any missing values from consideration zlen = len(np.unique(z)) if zlen <= limit: attr[h] = ('discrete', 0, 0, 0, 0) d += 1 else: mx = np.max(z) mn = np.min(z) sd = np.std(z) attr[h] = ('continuous', mx, mn, mx - mn, sd) # For each feature/attribute we store (type, max value, min value, max min difference, average, standard deviation) - the latter three values are set to zero if feature is discrete. return attr def _distarray_no_missing(self, xc, xd): """Distance array calculation for data with no missing values. The 'pdist() function outputs a condense distance array, and squareform() converts this vector-form distance vector to a square-form, redundant distance matrix. *This could be a target for saving memory in the future, by not needing to expand to the redundant square-form matrix. """ from scipy.spatial.distance import pdist, squareform #------------------------------------------# def pre_normalize(x): """Normalizes continuous features so they are in the same range (0 to 1)""" idx = 0 # goes through all named features (doesn really need to) this method is only applied to continuous features for i in sorted(self.attr.keys()): if self.attr[i][0] == 'discrete': continue cmin = self.attr[i][2] diff = self.attr[i][3] x[:, idx] -= cmin x[:, idx] /= diff idx += 1 return x #------------------------------------------# if self.data_type == 'discrete': # discrete features only return squareform(pdist(self._X, metric='hamming')) elif self.data_type == 'mixed': # mix of discrete and continuous features d_dist = squareform(pdist(xd, metric='hamming')) # Cityblock is also known as Manhattan distance c_dist = squareform(pdist(pre_normalize(xc), metric='cityblock')) return np.add(d_dist, c_dist) / self._num_attributes else: #continuous features only #xc = pre_normalize(xc) return squareform(pdist(pre_normalize(xc), metric='cityblock')) #==================================================================# def _dtype_array(self): """Return mask for discrete(0)/continuous(1) attributes and their indices. Return array of max/min diffs of attributes.""" attrtype = [] attrdiff = [] for key in self._headers: if self.attr[key][0] == 'continuous': attrtype.append(1) else: attrtype.append(0) attrdiff.append(self.attr[key][3]) attrtype = np.array(attrtype) cidx = np.where(attrtype == 1)[0] didx = np.where(attrtype == 0)[0] attrdiff = np.array(attrdiff) return attrdiff, cidx, didx #==================================================================# def _distarray_missing(self, xc, xd, cdiffs): """Distance array calculation for data with missing values""" cindices = [] dindices = [] # Get Boolean mask locating missing values for continuous and discrete features separately. These correspond to xc and xd respectively. for i in range(self._datalen): cindices.append(np.where(np.isnan(xc[i]))[0]) dindices.append(np.where(np.isnan(xd[i]))[0]) if self.n_jobs != 1: dist_array = Parallel(n_jobs=self.n_jobs)(delayed(get_row_missing)( xc, xd, cdiffs, index, cindices, dindices) for index in range(self._datalen)) else: # For each instance calculate distance from all other instances (in non-redundant manner) (i.e. computes triangle, and puts zeros in for rest to form square). dist_array = [get_row_missing(xc, xd, cdiffs, index, cindices, dindices) for index in range(self._datalen)] return np.array(dist_array) #==================================================================# ############################# ReliefF ############################################ def _find_neighbors(self, inst): """ Identify k nearest hits and k nearest misses for given instance. This is accomplished differently based on the type of endpoint (i.e. binary, multiclass, and continuous). """ # Make a vector of distances between target instance (inst) and all others dist_vect = [] for j in range(self._datalen): if inst != j: locator = [inst, j] if inst < j: locator.reverse() dist_vect.append(self._distance_array[locator[0]][locator[1]]) else: # Ensures that target instance is never selected as neighbor. dist_vect.append(sys.maxsize) dist_vect = np.array(dist_vect) # Identify neighbors------------------------------------------------------- """ NN for Binary Endpoints: """ if self._class_type == 'binary': nn_list = [] match_count = 0 miss_count = 0 for nn_index in np.argsort(dist_vect): if self._y[inst] == self._y[nn_index]: # Hit neighbor identified if match_count >= self.n_neighbors: continue nn_list.append(nn_index) match_count += 1 else: # Miss neighbor identified if miss_count >= self.n_neighbors: continue nn_list.append(nn_index) miss_count += 1 if match_count >= self.n_neighbors and miss_count >= self.n_neighbors: break elif self._class_type == 'multiclass': nn_list = [] match_count = 0 miss_count = dict.fromkeys(self._label_list, 0) for nn_index in np.argsort(dist_vect): if self._y[inst] == self._y[nn_index]: # Hit neighbor identified if match_count >= self.n_neighbors: continue nn_list.append(nn_index) match_count += 1 else: for label in self._label_list: if self._y[nn_index] == label: if miss_count[label] >= self.n_neighbors: continue nn_list.append(nn_index) miss_count[label] += 1 if match_count >= self.n_neighbors and all(v >= self.n_neighbors for v in miss_count.values()): break else: nn_list = [] match_count = 0 miss_count = 0 for nn_index in np.argsort(dist_vect): if abs(self._y[inst]-self._y[nn_index]) < self._labels_std: # Hit neighbor identified if match_count >= self.n_neighbors: continue nn_list.append(nn_index) match_count += 1 else: # Miss neighbor identified if miss_count >= self.n_neighbors: continue nn_list.append(nn_index) miss_count += 1 if match_count >= self.n_neighbors and miss_count >= self.n_neighbors: break return np.array(nn_list) def _run_algorithm(self): """ Runs nearest neighbor (NN) identification and feature scoring to yield ReliefF scores. """ # Find nearest neighbors NNlist = map(self._find_neighbors, range(self._datalen)) # Feature scoring - using identified nearest neighbors nan_entries = np.isnan(self._X) # boolean mask for missing data values # Call the scoring method for the ReliefF algorithm scores = np.sum(Parallel(n_jobs=self.n_jobs)(delayed( ReliefF_compute_scores)(instance_num, self.attr, nan_entries, self._num_attributes, self.mcmap, NN, self._headers, self._class_type, self._X, self._y, self._labels_std, self.data_type) for instance_num, NN in zip(range(self._datalen), NNlist)), axis=0) return np.array(scores)
48.192797
189
0.596254
c689b156e7da8035b67df3f949de85a2bff3c663
4,770
py
Python
denorm/join.py
rivethealth/denorm
c9b9070730e3cc7fbe78927d34db7ffa384aed42
[ "MIT" ]
11
2021-03-29T14:27:48.000Z
2022-01-01T00:31:40.000Z
denorm/join.py
rivethealth/denorm
c9b9070730e3cc7fbe78927d34db7ffa384aed42
[ "MIT" ]
null
null
null
denorm/join.py
rivethealth/denorm
c9b9070730e3cc7fbe78927d34db7ffa384aed42
[ "MIT" ]
null
null
null
""" Procedures: * ID__refresh - Perform refresh - When consistency is deferred * ID__setup - Create the temporary tables - When consistency is deferred * ID__chg1__SOURCE - Process changes * ID__chg2__SOURCE - Process changes Tables: * BASE (existing) - Table to watch - Existing - Triggers * ID__del__SOURCE - Record deletes * ID__ins__SOURCE - Record inserts * ID__upd__SOURCE - Record updates * TARGET (existing) - Table to populate * ID__iterate__SOURCE - Queue changes for iteration - When iteration is used * ID__lock - Value lock Temp tables: * ID__key - Keys to update - When consistency is deferred * ID__refresh - Fire constraint trigger at end of transaction - When consistency is deferred - Triggers: * join (deferred) - Perform refresh """ import dataclasses import typing from pg_sql import SqlId, sql_list from .format import format from .formats.join import ( JOIN_DATA_JSON_FORMAT, JoinConfig, JoinConsistency, JoinJoinMode, ) from .join_async import create_queue from .join_change import create_change from .join_common import JoinTarget, Key, Structure from .join_defer import DeferredKeys, create_refresh_function, create_setup_function from .join_key import KeyResolver, TargetRefresh from .join_lock import create_lock_table from .join_plain_target import JoinPlainTarget from .join_refresh_function import ( create_refresh_function as create_table_refresh_function, ) from .join_table_target import JoinTableTarget from .resource import ResourceFactory from .string import indent @dataclasses.dataclass class JoinIo: config: ResourceFactory[typing.TextIO] output: ResourceFactory[typing.TextIO] def create_join(io: JoinIo): schema = JOIN_DATA_JSON_FORMAT.load(io.config) with io.output() as f: for statement in _statements(schema): print(f"{statement};\n", file=f) def _target(config: JoinConfig) -> JoinTarget: if config.target_table: return JoinTableTarget(config.target_table, config.target_query) else: return JoinPlainTarget(config.target_query) def _statements(config: JoinConfig): structure = Structure(config.schema, config.id) target = _target(config) key = target.key() if key is None: definition = f"SELECT {sql_list(f'NULL::{column.type} AS {column.sql}' for column in config.key)}" names = [column.name for column in config.key] key = Key(definition=definition, names=names) if config.lock: yield from create_lock_table( structure=structure, key=key, target=config.target_table ) refresh_action = TargetRefresh( key=key.names, setup=config.setup, structure=structure, lock=config.lock, target=target, ) if config.consistency == JoinConsistency.DEFERRED: yield from create_refresh_function( id=config.id, structure=structure, refresh=refresh_action, ) yield from create_setup_function( structure=structure, id=config.id, target=config.target_table, key=key, ) for table_id, table in config.tables.items(): if table.join_mode != JoinJoinMode.ASYNC: continue resolver = KeyResolver( action=refresh_action, context=config.context, key=key.names, structure=structure, table_id=table.join, tables=config.tables, ) yield from create_queue( context=config.context, id=config.id, resolver=resolver, structure=structure, table_id=table_id, tables=config.tables, ) for table_id, table in config.tables.items(): if config.consistency == JoinConsistency.DEFERRED: action = DeferredKeys(key=key.names, structure=structure) elif config.consistency == JoinConsistency.IMMEDIATE: action = refresh_action resolver = KeyResolver( action=action, context=config.context, key=key.names, structure=structure, table_id=table_id, tables=config.tables, ) if table.refresh_function: yield from create_table_refresh_function( resolver=resolver, structure=structure, table=table, table_id=table_id, ) if table.name is not None: yield from create_change( id=config.id, resolver=resolver, structure=structure, table=table, table_id=table_id, )
28.058824
106
0.651363
e71f63f121b46b78c175cccd5d0d5e53185e4126
4,090
py
Python
game/content/ghplots/dd_combatmission.py
fmunoz-geo/gearhead-caramel
315835481d543420826439245be01460fe6dd81b
[ "Apache-2.0" ]
74
2015-03-09T00:33:09.000Z
2022-02-25T20:28:27.000Z
game/content/ghplots/dd_combatmission.py
fmunoz-geo/gearhead-caramel
315835481d543420826439245be01460fe6dd81b
[ "Apache-2.0" ]
108
2017-12-30T20:26:12.000Z
2021-01-16T12:37:00.000Z
game/content/ghplots/dd_combatmission.py
CartoonFan/gearhead-caramel
61995f382923695176ab7a65253f42e849e0c4d7
[ "Apache-2.0" ]
61
2018-03-03T09:55:31.000Z
2022-03-18T17:28:33.000Z
import random import game.content.gharchitecture import game.content.ghterrain import game.content.ghwaypoints import gears import pbge from game import teams, ghdialogue from game.content import adventureseed from game.content.adventureseed import MAIN_OBJECTIVE_VALUE from game.content.plotutility import CargoContainer from game.ghdialogue import context from pbge.dialogue import ContextTag, Offer, Reply from pbge.plots import Plot from . import missionbuilder # Mission Objectives: # - Defeat Enemy Commander # - Destroy Structure # - Defend Location # - Capture Location # - Rescue Survivors # - Recover Cargo # - Extract Team # - Scout Location # - Patrol Checkpoints class CombatMissionSeed(missionbuilder.BuildAMissionSeed): OBJECTIVE_TAGS = (missionbuilder.BAMO_DEFEAT_COMMANDER,missionbuilder.BAMO_RESPOND_TO_DISTRESS_CALL,missionbuilder.BAMO_EXTRACT_ALLIED_FORCES) CRIME_TAGS = ("DZDCM_DO_CRIMES",) def __init__(self, camp, name, metroscene, return_wp, enemy_faction=None, allied_faction=None, include_war_crimes=False, **kwargs): # Determine 2 to 3 objectives for the mission. if include_war_crimes: objs = random.sample(self.OBJECTIVE_TAGS+self.CRIME_TAGS,2) else: objs = random.sample(self.OBJECTIVE_TAGS,2) self.crimes_happened = False super(CombatMissionSeed, self).__init__(camp, name, metroscene=metroscene, return_wp=return_wp, rank=max(camp.pc.renown + 1, 10), objectives=objs, win_message="You have completed the mission.", enemy_faction=enemy_faction, allied_faction=allied_faction, **kwargs) # ************************* # *** DZDCM_DO_CRIMES *** # ************************* class EliminateWitnesses( Plot ): LABEL = "DZDCM_DO_CRIMES" active = True scope = "LOCALE" def custom_init( self, nart ): myscene = self.elements["LOCALE"] self.register_element("ROOM",pbge.randmaps.rooms.FuzzyRoom(5,5),dident="LOCALE") team2 = self.register_element("_eteam",teams.Team(enemies=(myscene.player_team,)),dident="ROOM") myace = gears.selector.generate_ace(self.rank,self.elements.get("ALLIED_FACTION"),myscene.environment) team2.contents.append(myace) self.register_element("_commander",myace.get_pilot()) self.obj = adventureseed.MissionObjective("Defeat {}".format(myace.get_pilot()), MAIN_OBJECTIVE_VALUE) self.adv.objectives.append(self.obj) self.intro_ready = True return True def _eteam_ACTIVATETEAM(self,camp): if self.intro_ready: npc = self.elements["_commander"] ghdialogue.start_conversation(camp,camp.pc,npc,cue=ghdialogue.ATTACK_STARTER) self.intro_ready = False self.adv.crimes_happened = True def _commander_offers(self,camp): mylist = list() myfac = self.elements["ALLIED_FACTION"] mylist.append(Offer("Hold your fire- I'm not an enemy! You were sent by {}, weren't you?! I know about their secret agenda, and they're trying to keep the word from getting out...".format(myfac), context=ContextTag([context.ATTACK,]))) mylist.append(Offer("Very well, you've made it clear what side you're on. [CHALLENGE]", context=ContextTag([context.CHALLENGE,]))) mylist.append(Offer("They've been taken over by extremists; {} is no longer taking orders from {}. I was ordered to attack a village, but refused... now they're after me. Be careful, they're going to come after you too.".format(myfac,myfac.parent_faction.name), context=ContextTag([context.COMBAT_INFO,]), data={"subject":"Secret Agenda"}, effect=self._get_info)) return mylist def _get_info(self,camp): self.obj.failed = True self.elements["_eteam"].retreat(camp) camp.dole_xp(100) def t_ENDCOMBAT(self,camp): myteam = self.elements["_eteam"] if len(myteam.get_members_in_play(camp)) < 1: self.obj.win(camp,100)
43.052632
269
0.685086
b60aad2dc5606d775a649d751248abfca83646cc
2,267
py
Python
src/streamlink/plugins/teleclubzoom.py
sn4kebite/streamlink
054b760ce7e9f43451eed08e9f39de440c3e5add
[ "BSD-2-Clause" ]
5
2017-03-21T19:43:17.000Z
2018-10-03T14:04:29.000Z
src/streamlink/plugins/teleclubzoom.py
sn4kebite/streamlink
054b760ce7e9f43451eed08e9f39de440c3e5add
[ "BSD-2-Clause" ]
7
2016-10-13T23:29:31.000Z
2018-06-28T14:04:32.000Z
src/streamlink/plugins/teleclubzoom.py
sn4kebite/streamlink
054b760ce7e9f43451eed08e9f39de440c3e5add
[ "BSD-2-Clause" ]
2
2021-02-09T14:29:21.000Z
2021-05-28T11:10:34.000Z
import logging import re from urllib.parse import urlparse from streamlink.exceptions import PluginError from streamlink.plugin import Plugin from streamlink.plugin.api import validate from streamlink.plugin.api.utils import itertags from streamlink.stream import HLSStream from streamlink.utils import update_scheme log = logging.getLogger(__name__) class TeleclubZoom(Plugin): _url_re = re.compile(r'https?://(?:www\.)?teleclubzoom\.ch') API_URL = 'https://{netloc}/webservice/http/rest/client/live/play/{id}' PLAYLIST_URL = 'https://{netloc}/{app}/ngrp:{name}_all/playlist.m3u8' _api_schema = validate.Schema( { 'playStreamName': validate.text, 'cdnHost': validate.text, 'streamProperties': { validate.optional('server'): validate.text, validate.optional('name'): validate.text, 'application': validate.text, } } ) @classmethod def can_handle_url(cls, url): return cls._url_re.match(url) is not None def _get_streams(self): iframe_url = None page = self.session.http.get(self.url) for a in itertags(page.text, 'a'): if a.attributes.get('class') == 'play-live': iframe_url = update_scheme(self.url, a.attributes['data-url']) break if not iframe_url: raise PluginError('Could not find iframe.') parsed = urlparse(iframe_url) path_list = parsed.path.split('/') if len(path_list) != 6: # only support a known iframe url style, # the video id might be on a different spot if the url changes raise PluginError('unsupported iframe URL: {0}'.format(iframe_url)) res = self.session.http.get( self.API_URL.format(netloc=parsed.netloc, id=path_list[4])) data = self.session.http.json(res, schema=self._api_schema) log.trace('{0!r}'.format(data)) url = self.PLAYLIST_URL.format( app=data['streamProperties']['application'], name=data['playStreamName'], netloc=data['cdnHost'], ) return HLSStream.parse_variant_playlist(self.session, url) __plugin__ = TeleclubZoom
31.929577
79
0.628584
c4cd9b73e0550731f508851880869c9e375d93b5
4,540
py
Python
skrf/vi/sa.py
sdurant/scikit-rf
09161b879c1a52a1bc2e2df89f2656c97136c39b
[ "BSD-3-Clause" ]
null
null
null
skrf/vi/sa.py
sdurant/scikit-rf
09161b879c1a52a1bc2e2df89f2656c97136c39b
[ "BSD-3-Clause" ]
null
null
null
skrf/vi/sa.py
sdurant/scikit-rf
09161b879c1a52a1bc2e2df89f2656c97136c39b
[ "BSD-3-Clause" ]
null
null
null
''' .. module:: skrf.vi.sa ================================================================= Spectrum Analyzers (:mod:`skrf.vi.sa`) ================================================================= .. autosummary:: :toctree: generated/ HP8500 ''' import numpy as npy import visa from visa import GpibInstrument from ..frequency import Frequency from ..network import Network from .. import mathFunctions as mf class HP8500(GpibInstrument): ''' HP8500's series Spectrum Analyzers Examples ----------- Get trace, and store in a Network object >>> from skrf.vi.sa import HP >>> my_sa = HP() # default address is 18 >>> trace = my_sa.get_ntwk() Activate single sweep mode, get a trace, return to continuous sweep >>> my_sa.single_sweep() >>> my_sa.sweep() >>> trace_a = my_sa.trace_a >>> my_sa.cont_sweep() ''' def __init__(self, address=18, *args, **kwargs): ''' Initializer Parameters -------------- address : int GPIB address \*args, \*\*kwargs : passed to ``visa.GpibInstrument.__init__`` ''' GpibInstrument.__init__(self,'GPIB::'+str(address),*args,**kwargs) @property def frequency(self): ''' ''' f = Frequency(self.f_start, self.f_stop, len(self.trace_a),'hz') f.unit = 'ghz' return f def get_ntwk(self, trace='a', goto_local=False, *args, **kwargs): ''' Get a trace and return the data in a :class:`~skrf.network.Network` format This will save instrument stage to reg 1, activate single sweep mode, sweep, save data, then recal state from reg 1. Returning the data in a the form of a :class:`~skrf.network.Network` allows all the plotting methods and IO functions of that class to be used. Not all the methods of Network make sense for this type of data (scalar), but we assume the user is knows this. Parameters ------------ trace : ['a', 'b'] save trace 'a' or trace 'b' goto_local : Boolean Go to local mode after taking a sweep \*args,\*\*kwargs : passed to :func:`~skrf.network.Network.__init__` ''' trace = trace.lower() if trace not in ['a','b']: raise ValueError('\'trace\' should be \'a\' or \'b\'') self.save_state() self.single_sweep() self.sweep() #TODO: ask if magnitude is in linear (LN) or log (LG) mode if trace== 'a': s = self.trace_a elif trace == 'b': s = self.trace_b self.recall_state() s = mf.db_2_magnitude(npy.array(s)) freq = self.frequency n = Network(s=s, frequency=freq, z0=1, *args, **kwargs) if goto_local: self.goto_local() return n @property def f_start(self): ''' starting frequency ''' return float(self.ask('fa?')) @property def f_stop(self): ''' stopping frequency ''' return float(self.ask('fb?')) @property def trace_a(self): ''' trace 'a' ''' return self.ask_for_values("tra?") @property def trace_b(self): ''' trace 'b' ''' return self.ask_for_values("trb?") def sweep(self): ''' trigger a sweep, return when done ''' self.write('ts') return self.ask('done?') def single_sweep(self): ''' Activate single sweep mode ''' self.write('sngls') def cont_sweep(self): ''' Activate continuous sweep mode ''' self.write('conts') def goto_local(self): ''' Switches from remote to local control ''' pass#visa.vpp43.gpib_control_ren(self.vi,0) def save_state(self, reg_n=1): ''' Save current state to a given register ''' self.write('saves %i'%reg_n) def recall_state(self, reg_n=1): ''' Recall current state to a given register ''' self.write('rcls %i'%reg_n)
25.795455
83
0.488326
1f6d3e781bb35273713c7eeb3b1d94fc59095fdd
3,421
py
Python
models/mobilenetv2.py
cmuspencerlo/pytorch_cifar
d1bbdd73af54df60bbf15d4b672644e2098b857c
[ "MIT" ]
1
2018-07-24T15:39:10.000Z
2018-07-24T15:39:10.000Z
models/mobilenetv2.py
cmuspencerlo/pytorch_cifar
d1bbdd73af54df60bbf15d4b672644e2098b857c
[ "MIT" ]
null
null
null
models/mobilenetv2.py
cmuspencerlo/pytorch_cifar
d1bbdd73af54df60bbf15d4b672644e2098b857c
[ "MIT" ]
null
null
null
import torch import torch.nn as nn import torch.nn.functional as F class Bottleneck(nn.Module): # Inverted part: in_planes < planes => in_planes def __init__(self, in_planes, target_planes, expansion, stride): super(Bottleneck, self).__init__() self.stride = stride planes = in_planes * expansion self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) # depthwise conv self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, groups=planes, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, target_planes, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(target_planes) self.shortcut = nn.Sequential() # Only shortcut when H and W are the same if stride == 1 and in_planes != target_planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, target_planes, kernel_size=1, bias=False), nn.BatchNorm2d(target_planes)) def forward(self, x): out = F.relu6(self.bn1(self.conv1(x))) out = F.relu6(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) out = out + self.shortcut(x) if self.stride == 1 else out return out class MobileNetV2(nn.Module): # (expansion, target_planes, num_blocks, stride) cfg = [(1, 16, 1, 1), (6, 24, 2, 1), (6, 32, 3, 2), (6, 64, 4, 2), (6, 96, 3, 1), (6, 160, 3, 2), (6, 320, 1, 1)] def __init__(self, num_classes=10): super(MobileNetV2, self).__init__() self.in_planes = 32 self.conv1 = nn.Conv2d(3, self.in_planes, kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(32) def _make_layers(): layers = [] for (expansion, target_planes, num_blocks, stride) in self.cfg: strides = [stride] + [1] * (num_blocks - 1) for stride in strides: layers.append(Bottleneck(self.in_planes, target_planes, expansion, stride)) self.in_planes = target_planes return nn.Sequential(*layers) self.layers = _make_layers() self.conv2 = nn.Conv2d(self.in_planes, 1280, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm2d(1280) self.conv3 = nn.Conv2d(1280, num_classes, kernel_size=1, bias=True) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layers(out) out = F.relu(self.bn2(self.conv2(out))) out = F.avg_pool2d(out, 2) # GENIUS! out = out.view(out.size(0), -1, 1, 1) # (batch, channel, 1, 1) out = self.conv3(out) out = out.view(out.size(0), -1) return out def test(): device = 'cuda' net = MobileNetV2() cnt = 0 for name, param in net.named_parameters(): if 'weight' in name and 'shortcut' not in name and 'bn' not in name: cnt += 1 # print(name) # print(cnt) net = net.to(device) y = net(torch.randn(1, 3, 32, 32).to(device)) print(y.size()) # net = torch.nn.DataParallel(net) # reset params for m in net.modules(): if 'Conv2d' in type(m).__name__: print(type(m)) m.reset_parameters() # test()
35.635417
114
0.576732
e07cf338fafc1fd3a45fb50f4a46821bf2fd745e
9,191
py
Python
bnn_hmc/utils/models.py
DionysisChristopoulos/google-research
7f59ef421beef32ca16c2a7215be74f7eba01a0f
[ "Apache-2.0" ]
23,901
2018-10-04T19:48:53.000Z
2022-03-31T21:27:42.000Z
bnn_hmc/utils/models.py
DionysisChristopoulos/google-research
7f59ef421beef32ca16c2a7215be74f7eba01a0f
[ "Apache-2.0" ]
891
2018-11-10T06:16:13.000Z
2022-03-31T10:42:34.000Z
bnn_hmc/utils/models.py
admariner/google-research
7cee4b22b925581d912e8d993625c180da2a5a4f
[ "Apache-2.0" ]
6,047
2018-10-12T06:31:02.000Z
2022-03-31T13:59:28.000Z
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """CNN haiku models.""" from typing import Tuple import haiku as hk import jax import jax.numpy as jnp import functools Batch = Tuple[jnp.ndarray, jnp.ndarray] _DEFAULT_BN_CONFIG = { "decay_rate": 0.9, "eps": 1e-5, "create_scale": True, "create_offset": True } def make_lenet5_fn(data_info): num_classes = data_info["num_classes"] def lenet_fn(batch, is_training): """Network inspired by LeNet-5.""" x, _ = batch cnn = hk.Sequential([ hk.Conv2D(output_channels=6, kernel_shape=5, padding="SAME"), jax.nn.relu, hk.MaxPool(window_shape=3, strides=2, padding="VALID"), hk.Conv2D(output_channels=16, kernel_shape=5, padding="SAME"), jax.nn.relu, hk.MaxPool(window_shape=3, strides=2, padding="VALID"), hk.Conv2D(output_channels=120, kernel_shape=5, padding="SAME"), jax.nn.relu, hk.MaxPool(window_shape=3, strides=2, padding="VALID"), hk.Flatten(), hk.Linear(84), jax.nn.relu, hk.Linear(num_classes), ]) return cnn(x) return lenet_fn he_normal = hk.initializers.VarianceScaling(2.0, "fan_in", "truncated_normal") class FeatureResponseNorm(hk.Module): def __init__(self, eps=1e-6, name="frn"): super().__init__(name=name) self.eps = eps def __call__(self, x, **unused_kwargs): del unused_kwargs par_shape = (1, 1, 1, x.shape[-1]) # [1,1,1,C] tau = hk.get_parameter("tau", par_shape, x.dtype, init=jnp.zeros) beta = hk.get_parameter("beta", par_shape, x.dtype, init=jnp.zeros) gamma = hk.get_parameter("gamma", par_shape, x.dtype, init=jnp.ones) nu2 = jnp.mean(jnp.square(x), axis=[1, 2], keepdims=True) x = x * jax.lax.rsqrt(nu2 + self.eps) y = gamma * x + beta z = jnp.maximum(y, tau) return z def _resnet_layer(inputs, num_filters, normalization_layer, kernel_size=3, strides=1, activation=lambda x: x, use_bias=True, is_training=True): x = inputs x = hk.Conv2D( num_filters, kernel_size, stride=strides, padding="same", w_init=he_normal, with_bias=use_bias)( x) x = normalization_layer()(x, is_training=is_training) x = activation(x) return x def make_resnet_fn( num_classes, depth, normalization_layer, width = 16, use_bias = True, activation=jax.nn.relu, ): num_res_blocks = (depth - 2) // 6 if (depth - 2) % 6 != 0: raise ValueError("depth must be 6n+2 (e.g. 20, 32, 44).") def forward(batch, is_training): num_filters = width x, _ = batch x = _resnet_layer( x, num_filters=num_filters, activation=activation, use_bias=use_bias, normalization_layer=normalization_layer) for stack in range(3): for res_block in range(num_res_blocks): strides = 1 if stack > 0 and res_block == 0: # first layer but not first stack strides = 2 # downsample y = _resnet_layer( x, num_filters=num_filters, strides=strides, activation=activation, use_bias=use_bias, is_training=is_training, normalization_layer=normalization_layer) y = _resnet_layer( y, num_filters=num_filters, use_bias=use_bias, is_training=is_training, normalization_layer=normalization_layer) if stack > 0 and res_block == 0: # first layer but not first stack # linear projection residual shortcut connection to match changed dims x = _resnet_layer( x, num_filters=num_filters, kernel_size=1, strides=strides, use_bias=use_bias, is_training=is_training, normalization_layer=normalization_layer) x = activation(x + y) num_filters *= 2 x = hk.AvgPool((8, 8, 1), 8, "VALID")(x) x = hk.Flatten()(x) logits = hk.Linear(num_classes, w_init=he_normal)(x) return logits return forward def make_resnet20_fn(data_info, activation=jax.nn.relu): num_classes = data_info["num_classes"] def normalization_layer(): hk.BatchNorm(**_DEFAULT_BN_CONFIG) return make_resnet_fn( num_classes, depth=20, normalization_layer=normalization_layer, activation=activation) def make_resnet20_frn_fn(data_info, activation=jax.nn.relu): num_classes = data_info["num_classes"] return make_resnet_fn( num_classes, depth=20, normalization_layer=FeatureResponseNorm, activation=activation) def make_cnn_lstm(data_info, max_features=20000, embedding_size=128, cell_size=128, num_filters=64, kernel_size=5, pool_size=4, use_swish=False, use_maxpool=True): """CNN LSTM architecture for the IMDB dataset.""" num_classes = data_info["num_classes"] def forward(batch, is_training): x, _ = batch batch_size = x.shape[0] x = hk.Embed(vocab_size=max_features, embed_dim=embedding_size)(x) x = hk.Conv1D( output_channels=num_filters, kernel_shape=kernel_size, padding="VALID")( x) if use_swish: x = jax.nn.swish(x) else: x = jax.nn.relu(x) if use_maxpool: x = hk.MaxPool( window_shape=pool_size, strides=pool_size, padding="VALID", channel_axis=2)( x) x = jnp.moveaxis(x, 1, 0)[:, :] #[T, B, F] lstm_layer = hk.LSTM(hidden_size=cell_size) init_state = lstm_layer.initial_state(batch_size) x, state = hk.static_unroll(lstm_layer, x, init_state) x = x[-1] logits = hk.Linear(num_classes)(x) return logits return forward def make_smooth_cnn_lstm(data_info, max_features=20000, embedding_size=128, cell_size=128, num_filters=64, kernel_size=5, pool_size=4): num_classes = data_info["num_classes"] return make_cnn_lstm( num_classes, max_features, embedding_size, cell_size, num_filters, kernel_size, pool_size, use_swish=True, use_maxpool=False) def make_mlp(layer_dims, output_dim): def forward(batch, is_training): x, _ = batch x = hk.Flatten()(x) for layer_dim in layer_dims: x = hk.Linear(layer_dim)(x) x = jax.nn.relu(x) x = hk.Linear(output_dim)(x) return x return forward def make_mlp_regression(data_info, output_dim=2, layer_dims=[100, 100]): return make_mlp(layer_dims, output_dim) def make_mlp_regression_small(data_info): return make_mlp([50], 2) def make_mlp_classification(data_info, layer_dims=[256, 256]): num_classes = data_info["num_classes"] return make_mlp(layer_dims, num_classes) def make_logistic_regression(data_info): num_classes = data_info["num_classes"] return make_mlp([], num_classes) def get_model(model_name, data_info, **kwargs): _MODEL_FNS = { "lenet": make_lenet5_fn, "resnet20": make_resnet20_fn, "resnet20_frn": make_resnet20_frn_fn, "resnet20_frn_swish": functools.partial(make_resnet20_frn_fn, activation=jax.nn.swish), "cnn_lstm": make_cnn_lstm, "smooth_cnn_lstm": make_smooth_cnn_lstm, "mlp_regression": make_mlp_regression, "mlp_regression_small": make_mlp_regression_small, "mlp_classification": make_mlp_classification, "logistic_regression": make_logistic_regression, } net_fn = _MODEL_FNS[model_name](data_info, **kwargs) net = hk.transform_with_state(net_fn) return net.apply, net.init
28.811912
80
0.632249
a1f114d31cc00af22fd6b712a43bae5a0d112afd
609
py
Python
products/migrations/0002_order_owner.py
dariothornhill/product_api
fbbe07733c3cc0f9ef35b1d36c2183d03ef9e6a7
[ "MIT" ]
null
null
null
products/migrations/0002_order_owner.py
dariothornhill/product_api
fbbe07733c3cc0f9ef35b1d36c2183d03ef9e6a7
[ "MIT" ]
null
null
null
products/migrations/0002_order_owner.py
dariothornhill/product_api
fbbe07733c3cc0f9ef35b1d36c2183d03ef9e6a7
[ "MIT" ]
null
null
null
# Generated by Django 3.1.4 on 2022-03-07 12:46 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('products', '0001_initial'), ] operations = [ migrations.AddField( model_name='order', name='owner', field=models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, to='accounts.customuser'), preserve_default=False, ), ]
26.478261
118
0.660099
302327b5564fe98b79f13cdaa51c641249417002
18,470
py
Python
lemur/tests/test_certificates.py
bunjiboys/lemur
b5fd8020055d8af07bd6f82f4dd38246dca8d0c5
[ "Apache-2.0" ]
null
null
null
lemur/tests/test_certificates.py
bunjiboys/lemur
b5fd8020055d8af07bd6f82f4dd38246dca8d0c5
[ "Apache-2.0" ]
2
2020-04-03T09:28:20.000Z
2020-04-04T04:56:35.000Z
lemur/tests/test_certificates.py
bunjiboys/lemur
b5fd8020055d8af07bd6f82f4dd38246dca8d0c5
[ "Apache-2.0" ]
null
null
null
from __future__ import unicode_literals # at top of module import json import pytest import datetime import arrow from freezegun import freeze_time from cryptography import x509 from lemur.certificates.views import * # noqa from lemur.tests.vectors import VALID_ADMIN_HEADER_TOKEN, VALID_USER_HEADER_TOKEN, CSR_STR, \ INTERNAL_VALID_LONG_STR, INTERNAL_VALID_SAN_STR, PRIVATE_KEY_STR def test_get_or_increase_name(session, certificate): from lemur.certificates.models import get_or_increase_name assert get_or_increase_name('test name') == 'test-name' assert get_or_increase_name(certificate.name) == '{0}-1'.format(certificate.name) certificate.name = 'test-cert-11111111' assert get_or_increase_name(certificate.name) == 'test-cert-11111111-1' certificate.name = 'test-cert-11111111-1' assert get_or_increase_name('test-cert-11111111-1') == 'test-cert-11111111-2' def test_get_certificate_primitives(certificate): from lemur.certificates.service import get_certificate_primitives names = [x509.DNSName(x.name) for x in certificate.domains] data = { 'common_name': certificate.cn, 'owner': certificate.owner, 'authority': certificate.authority, 'description': certificate.description, 'extensions': { 'sub_alt_names': x509.SubjectAlternativeName(names) }, 'destinations': [], 'roles': [], 'validity_end': arrow.get(2021, 5, 7), 'validity_start': arrow.get(2016, 10, 30), 'country': 'US', 'location': 'A place', 'organization': 'Example', 'organizational_unit': 'Operations', 'state': 'CA' } with freeze_time(datetime.date(year=2016, month=10, day=30)): primitives = get_certificate_primitives(certificate) assert len(primitives) == 23 def test_certificate_edit_schema(session): from lemur.certificates.schemas import CertificateEditInputSchema input_data = {'owner': 'bob@example.com'} data, errors = CertificateEditInputSchema().load(input_data) assert len(data['notifications']) == 3 def test_authority_key_identifier_schema(): from lemur.schemas import AuthorityKeyIdentifierSchema input_data = { 'useKeyIdentifier': True, 'useAuthorityCert': True } data, errors = AuthorityKeyIdentifierSchema().load(input_data) assert sorted(data) == sorted({ 'use_key_identifier': True, 'use_authority_cert': True }) assert not errors data, errors = AuthorityKeyIdentifierSchema().dumps(data) assert sorted(data) == sorted(json.dumps(input_data)) assert not errors def test_certificate_info_access_schema(): from lemur.schemas import CertificateInfoAccessSchema input_data = {'includeAIA': True} data, errors = CertificateInfoAccessSchema().load(input_data) assert not errors assert data == {'include_aia': True} data, errors = CertificateInfoAccessSchema().dump(data) assert not errors assert data == input_data def test_subject_key_identifier_schema(): from lemur.schemas import SubjectKeyIdentifierSchema input_data = {'includeSKI': True} data, errors = SubjectKeyIdentifierSchema().load(input_data) assert not errors assert data == {'include_ski': True} data, errors = SubjectKeyIdentifierSchema().dump(data) assert not errors assert data == input_data def test_extension_schema(client): from lemur.certificates.schemas import ExtensionSchema input_data = { 'keyUsage': { 'useKeyEncipherment': True, 'useDigitalSignature': True }, 'extendedKeyUsage': { 'useServerAuthentication': True }, 'subjectKeyIdentifier': { 'includeSKI': True } } data, errors = ExtensionSchema().load(input_data) assert not errors data, errors = ExtensionSchema().dump(data) assert not errors def test_certificate_input_schema(client, authority): from lemur.certificates.schemas import CertificateInputSchema input_data = { 'commonName': 'test.example.com', 'owner': 'jim@example.com', 'authority': {'id': authority.id}, 'description': 'testtestest', 'validityEnd': arrow.get(2016, 11, 9).isoformat(), 'validityStart': arrow.get(2015, 11, 9).isoformat() } data, errors = CertificateInputSchema().load(input_data) assert not errors assert data['authority'].id == authority.id # make sure the defaults got set assert data['common_name'] == 'test.example.com' assert data['country'] == 'US' assert data['location'] == 'Los Gatos' assert len(data.keys()) == 17 def test_certificate_input_with_extensions(client, authority): from lemur.certificates.schemas import CertificateInputSchema input_data = { 'commonName': 'test.example.com', 'owner': 'jim@example.com', 'authority': {'id': authority.id}, 'description': 'testtestest', 'extensions': { 'keyUsage': { 'digital_signature': True }, 'extendedKeyUsage': { 'useClientAuthentication': True, 'useServerAuthentication': True }, 'subjectKeyIdentifier': { 'includeSKI': True }, 'subAltNames': { 'names': [ {'nameType': 'DNSName', 'value': 'test.example.com'} ] } } } data, errors = CertificateInputSchema().load(input_data) assert not errors def test_certificate_out_of_range_date(client, authority): from lemur.certificates.schemas import CertificateInputSchema input_data = { 'commonName': 'test.example.com', 'owner': 'jim@example.com', 'authority': {'id': authority.id}, 'description': 'testtestest', 'validityYears': 100 } data, errors = CertificateInputSchema().load(input_data) assert errors input_data['validityStart'] = '2017-04-30T00:12:34.513631' data, errors = CertificateInputSchema().load(input_data) assert errors input_data['validityEnd'] = '2018-04-30T00:12:34.513631' data, errors = CertificateInputSchema().load(input_data) assert errors def test_certificate_valid_years(client, authority): from lemur.certificates.schemas import CertificateInputSchema input_data = { 'commonName': 'test.example.com', 'owner': 'jim@example.com', 'authority': {'id': authority.id}, 'description': 'testtestest', 'validityYears': 2 } data, errors = CertificateInputSchema().load(input_data) assert not errors def test_certificate_valid_dates(client, authority): from lemur.certificates.schemas import CertificateInputSchema input_data = { 'commonName': 'test.example.com', 'owner': 'jim@example.com', 'authority': {'id': authority.id}, 'description': 'testtestest', 'validityStart': '2020-01-01T00:00:00', 'validityEnd': '2020-01-01T00:00:01' } data, errors = CertificateInputSchema().load(input_data) assert not errors def test_create_basic_csr(client): from cryptography import x509 from cryptography.hazmat.backends import default_backend from lemur.certificates.service import create_csr csr_config = dict( common_name='example.com', organization='Example, Inc.', organizational_unit='Operations', country='US', state='CA', location='A place', owner='joe@example.com', key_type='RSA2048', extensions=dict(names=dict(sub_alt_names=x509.SubjectAlternativeName([x509.DNSName('test.example.com'), x509.DNSName('test2.example.com')]))) ) csr, pem = create_csr(**csr_config) csr = x509.load_pem_x509_csr(csr.encode('utf-8'), default_backend()) for name in csr.subject: assert name.value in csr_config.values() def test_get_name_from_arn(client): from lemur.certificates.service import get_name_from_arn arn = 'arn:aws:iam::11111111:server-certificate/mycertificate' assert get_name_from_arn(arn) == 'mycertificate' def test_get_account_number(client): from lemur.certificates.service import get_account_number arn = 'arn:aws:iam::11111111:server-certificate/mycertificate' assert get_account_number(arn) == '11111111' def test_mint_certificate(issuer_plugin, authority): from lemur.certificates.service import mint cert_body, private_key, chain = mint(authority=authority, csr=CSR_STR) assert cert_body == INTERNAL_VALID_LONG_STR, INTERNAL_VALID_SAN_STR def test_create_certificate(issuer_plugin, authority, user): from lemur.certificates.service import create cert = create(authority=authority, csr=CSR_STR, owner='joe@example.com', creator=user['user']) assert str(cert.not_after) == '2040-01-01T20:30:52+00:00' assert str(cert.not_before) == '2015-06-26T20:30:52+00:00' assert cert.issuer == 'Example' assert cert.name == 'long.lived.com-Example-20150626-20400101' cert = create(authority=authority, csr=CSR_STR, owner='joe@example.com', name='ACustomName1', creator=user['user']) assert cert.name == 'ACustomName1' def test_reissue_certificate(issuer_plugin, authority, certificate): from lemur.certificates.service import reissue_certificate new_cert = reissue_certificate(certificate) assert new_cert def test_create_csr(): from lemur.certificates.service import create_csr csr, private_key = create_csr(owner='joe@example.com', common_name='ACommonName', organization='test', organizational_unit='Meters', country='US', state='CA', location='Here', key_type='RSA2048') assert csr assert private_key extensions = {'sub_alt_names': {'names': x509.SubjectAlternativeName([x509.DNSName('AnotherCommonName')])}} csr, private_key = create_csr(owner='joe@example.com', common_name='ACommonName', organization='test', organizational_unit='Meters', country='US', state='CA', location='Here', extensions=extensions, key_type='RSA2048') assert csr assert private_key def test_import(user): from lemur.certificates.service import import_certificate cert = import_certificate(body=INTERNAL_VALID_LONG_STR, chain=INTERNAL_VALID_SAN_STR, private_key=PRIVATE_KEY_STR, creator=user['user']) assert str(cert.not_after) == '2040-01-01T20:30:52+00:00' assert str(cert.not_before) == '2015-06-26T20:30:52+00:00' assert cert.issuer == 'Example' assert cert.name == 'long.lived.com-Example-20150626-20400101-2' cert = import_certificate(body=INTERNAL_VALID_LONG_STR, chain=INTERNAL_VALID_SAN_STR, private_key=PRIVATE_KEY_STR, owner='joe@example.com', name='ACustomName2', creator=user['user']) assert cert.name == 'ACustomName2' def test_upload(user): from lemur.certificates.service import upload cert = upload(body=INTERNAL_VALID_LONG_STR, chain=INTERNAL_VALID_SAN_STR, private_key=PRIVATE_KEY_STR, owner='joe@example.com', creator=user['user']) assert str(cert.not_after) == '2040-01-01T20:30:52+00:00' assert str(cert.not_before) == '2015-06-26T20:30:52+00:00' assert cert.issuer == 'Example' assert cert.name == 'long.lived.com-Example-20150626-20400101-3' cert = upload(body=INTERNAL_VALID_LONG_STR, chain=INTERNAL_VALID_SAN_STR, private_key=PRIVATE_KEY_STR, owner='joe@example.com', name='ACustomName', creator=user['user']) assert 'ACustomName' in cert.name # verify upload with a private key as a str def test_upload_private_key_str(user): from lemur.certificates.service import upload cert = upload(body=INTERNAL_VALID_LONG_STR, chain=INTERNAL_VALID_SAN_STR, private_key=PRIVATE_KEY_STR, owner='joe@example.com', name='ACustomName', creator=user['user']) assert cert @pytest.mark.parametrize("token,status", [ (VALID_USER_HEADER_TOKEN, 200), (VALID_ADMIN_HEADER_TOKEN, 200), ('', 401) ]) def test_certificate_get_private_key(client, token, status): assert client.get(api.url_for(Certificates, certificate_id=1), headers=token).status_code == status @pytest.mark.parametrize("token,status", [ (VALID_USER_HEADER_TOKEN, 200), (VALID_ADMIN_HEADER_TOKEN, 200), ('', 401) ]) def test_certificate_get(client, token, status): assert client.get(api.url_for(Certificates, certificate_id=1), headers=token).status_code == status def test_certificate_get_body(client): response_body = client.get(api.url_for(Certificates, certificate_id=1), headers=VALID_USER_HEADER_TOKEN).json assert response_body['serial'] == '1001' assert response_body['serialHex'] == '3E9' @pytest.mark.parametrize("token,status", [ (VALID_USER_HEADER_TOKEN, 405), (VALID_ADMIN_HEADER_TOKEN, 405), ('', 405) ]) def test_certificate_post(client, token, status): assert client.post(api.url_for(Certificates, certificate_id=1), data={}, headers=token).status_code == status @pytest.mark.parametrize("token,status", [ (VALID_USER_HEADER_TOKEN, 400), (VALID_ADMIN_HEADER_TOKEN, 400), ('', 401) ]) def test_certificate_put(client, token, status): assert client.put(api.url_for(Certificates, certificate_id=1), data={}, headers=token).status_code == status def test_certificate_put_with_data(client, certificate, issuer_plugin): resp = client.put(api.url_for(Certificates, certificate_id=certificate.id), data=json.dumps({'owner': 'bob@example.com', 'description': 'test', 'notify': True}), headers=VALID_ADMIN_HEADER_TOKEN) assert resp.status_code == 200 @pytest.mark.parametrize("token,status", [ (VALID_USER_HEADER_TOKEN, 405), (VALID_ADMIN_HEADER_TOKEN, 405), ('', 405) ]) def test_certificate_delete(client, token, status): assert client.delete(api.url_for(Certificates, certificate_id=1), headers=token).status_code == status @pytest.mark.parametrize("token,status", [ (VALID_USER_HEADER_TOKEN, 405), (VALID_ADMIN_HEADER_TOKEN, 405), ('', 405) ]) def test_certificate_patch(client, token, status): assert client.patch(api.url_for(Certificates, certificate_id=1), data={}, headers=token).status_code == status @pytest.mark.parametrize("token,status", [ (VALID_USER_HEADER_TOKEN, 200), (VALID_ADMIN_HEADER_TOKEN, 200), ('', 401) ]) def test_certificates_get(client, token, status): assert client.get(api.url_for(CertificatesList), headers=token).status_code == status @pytest.mark.parametrize("token,status", [ (VALID_USER_HEADER_TOKEN, 400), (VALID_ADMIN_HEADER_TOKEN, 400), ('', 401) ]) def test_certificates_post(client, token, status): assert client.post(api.url_for(CertificatesList), data={}, headers=token).status_code == status @pytest.mark.parametrize("token,status", [ (VALID_USER_HEADER_TOKEN, 405), (VALID_ADMIN_HEADER_TOKEN, 405), ('', 405) ]) def test_certificates_put(client, token, status): assert client.put(api.url_for(CertificatesList), data={}, headers=token).status_code == status @pytest.mark.parametrize("token,status", [ (VALID_USER_HEADER_TOKEN, 405), (VALID_ADMIN_HEADER_TOKEN, 405), ('', 405) ]) def test_certificates_delete(client, token, status): assert client.delete(api.url_for(CertificatesList), headers=token).status_code == status @pytest.mark.parametrize("token,status", [ (VALID_USER_HEADER_TOKEN, 405), (VALID_ADMIN_HEADER_TOKEN, 405), ('', 405) ]) def test_certificates_patch(client, token, status): assert client.patch(api.url_for(CertificatesList), data={}, headers=token).status_code == status @pytest.mark.parametrize("token,status", [ (VALID_USER_HEADER_TOKEN, 405), (VALID_ADMIN_HEADER_TOKEN, 405), ('', 405) ]) def test_certificate_credentials_post(client, token, status): assert client.post(api.url_for(CertificatePrivateKey, certificate_id=1), data={}, headers=token).status_code == status @pytest.mark.parametrize("token,status", [ (VALID_USER_HEADER_TOKEN, 405), (VALID_ADMIN_HEADER_TOKEN, 405), ('', 405) ]) def test_certificate_credentials_put(client, token, status): assert client.put(api.url_for(CertificatePrivateKey, certificate_id=1), data={}, headers=token).status_code == status @pytest.mark.parametrize("token,status", [ (VALID_USER_HEADER_TOKEN, 405), (VALID_ADMIN_HEADER_TOKEN, 405), ('', 405) ]) def test_certificate_credentials_delete(client, token, status): assert client.delete(api.url_for(CertificatePrivateKey, certificate_id=1), headers=token).status_code == status @pytest.mark.parametrize("token,status", [ (VALID_USER_HEADER_TOKEN, 405), (VALID_ADMIN_HEADER_TOKEN, 405), ('', 405) ]) def test_certificate_credentials_patch(client, token, status): assert client.patch(api.url_for(CertificatePrivateKey, certificate_id=1), data={}, headers=token).status_code == status @pytest.mark.parametrize("token,status", [ (VALID_USER_HEADER_TOKEN, 405), (VALID_ADMIN_HEADER_TOKEN, 405), ('', 405) ]) def test_certificates_upload_get(client, token, status): assert client.get(api.url_for(CertificatesUpload), headers=token).status_code == status @pytest.mark.parametrize("token,status", [ (VALID_USER_HEADER_TOKEN, 400), (VALID_ADMIN_HEADER_TOKEN, 400), ('', 401) ]) def test_certificates_upload_post(client, token, status): assert client.post(api.url_for(CertificatesUpload), data={}, headers=token).status_code == status @pytest.mark.parametrize("token,status", [ (VALID_USER_HEADER_TOKEN, 405), (VALID_ADMIN_HEADER_TOKEN, 405), ('', 405) ]) def test_certificates_upload_put(client, token, status): assert client.put(api.url_for(CertificatesUpload), data={}, headers=token).status_code == status @pytest.mark.parametrize("token,status", [ (VALID_USER_HEADER_TOKEN, 405), (VALID_ADMIN_HEADER_TOKEN, 405), ('', 405) ]) def test_certificates_upload_delete(client, token, status): assert client.delete(api.url_for(CertificatesUpload), headers=token).status_code == status @pytest.mark.parametrize("token,status", [ (VALID_USER_HEADER_TOKEN, 405), (VALID_ADMIN_HEADER_TOKEN, 405), ('', 405) ]) def test_certificates_upload_patch(client, token, status): assert client.patch(api.url_for(CertificatesUpload), data={}, headers=token).status_code == status
34.330855
199
0.702761
26b6ea5d100e0a9ba888bab2fd97ebc25f28cf49
20
py
Python
noisefilter/noisefilter/__init__.py
itsMagondu/IoTNeuralNetworks
7ba2098866966a55541019028b16301cfcf94b6b
[ "MIT" ]
null
null
null
noisefilter/noisefilter/__init__.py
itsMagondu/IoTNeuralNetworks
7ba2098866966a55541019028b16301cfcf94b6b
[ "MIT" ]
1
2021-06-11T04:40:55.000Z
2021-06-11T04:40:55.000Z
noisefilter/noisefilter/__init__.py
itsMagondu/IoTNeuralNetworks
7ba2098866966a55541019028b16301cfcf94b6b
[ "MIT" ]
null
null
null
""" noisefilter """
10
19
0.55
1bc5a4afd1ad436f13d23aa1cb38ddbd70beedf3
336
py
Python
pyeccodes/defs/grib2/local_98_26_def.py
ecmwf/pyeccodes
dce2c72d3adcc0cb801731366be53327ce13a00b
[ "Apache-2.0" ]
7
2020-04-14T09:41:17.000Z
2021-08-06T09:38:19.000Z
pyeccodes/defs/grib2/local_98_26_def.py
ecmwf/pyeccodes
dce2c72d3adcc0cb801731366be53327ce13a00b
[ "Apache-2.0" ]
null
null
null
pyeccodes/defs/grib2/local_98_26_def.py
ecmwf/pyeccodes
dce2c72d3adcc0cb801731366be53327ce13a00b
[ "Apache-2.0" ]
3
2020-04-30T12:44:48.000Z
2020-12-15T08:40:26.000Z
import pyeccodes.accessors as _ def load(h): h.add(_.Unsigned('referenceDate', 4)) h.add(_.Unsigned('climateDateFrom', 4)) h.add(_.Unsigned('climateDateTo', 4)) h.alias('local.referenceDate', 'referenceDate') h.alias('local.climateDateFrom', 'climateDateFrom') h.alias('local.climateDateTo', 'climateDateTo')
28
55
0.693452
1b3ca629462aaf91b1bf5699b31cab7dad5540ee
172
py
Python
regions/io/ds9/setup_package.py
lpsinger/regions
55cb07f3ae54759637ba26d35bfcdf6043b825fb
[ "BSD-3-Clause" ]
1
2020-02-26T05:46:07.000Z
2020-02-26T05:46:07.000Z
regions/io/ds9/setup_package.py
lpsinger/regions
55cb07f3ae54759637ba26d35bfcdf6043b825fb
[ "BSD-3-Clause" ]
null
null
null
regions/io/ds9/setup_package.py
lpsinger/regions
55cb07f3ae54759637ba26d35bfcdf6043b825fb
[ "BSD-3-Clause" ]
null
null
null
# Licensed under a 3-clause BSD style license - see LICENSE.rst def get_package_data(): parser_test = ['data/*.reg'] return {'regions.io.ds9.tests': parser_test}
24.571429
63
0.697674
d5aedbe41a8cadacde6aa6991d0ab041e1aed957
3,727
py
Python
python/8.web/2.Django/mysql_demo/userapp/models.py
lotapp/BaseCode
0255f498e1fe67ed2b3f66c84c96e44ef1f7d320
[ "Apache-2.0" ]
25
2018-06-13T08:13:44.000Z
2020-11-19T14:02:11.000Z
python/8.web/2.Django/mysql_demo/userapp/models.py
lotapp/BaseCode
0255f498e1fe67ed2b3f66c84c96e44ef1f7d320
[ "Apache-2.0" ]
null
null
null
python/8.web/2.Django/mysql_demo/userapp/models.py
lotapp/BaseCode
0255f498e1fe67ed2b3f66c84c96e44ef1f7d320
[ "Apache-2.0" ]
13
2018-06-13T08:13:38.000Z
2022-01-06T06:45:07.000Z
from django.db import models import uuid # editable=False # 快递公司表(一) # https://www.kuaidi100.com/query?type=&postid= # https://sp0.baidu.com/9_Q4sjW91Qh3otqbppnN2DJv/pae/channel/data/asyncqury?appid=4001&com=huitongkuaidi&nu=71330102164040 class Express(models.Model): # 快递编号 ecode = models.CharField(max_length=20, blank=True, verbose_name="快递编号") # 公司名(创建索引) # 顺丰快递、圆通快递、韵达快递、中通快递、申通快递、百世快递、天天快递、邮政EMS、 # 京东物流、德邦快递、优速快递、安能快递、快捷快递、其他快递 ename = models.CharField(max_length=10, db_index=True, verbose_name="快递名称") # 快递100的快递类型 etype = models.CharField(max_length=20, default="other", verbose_name="快递100对应的类型") # 快递显示顺序(默认都是9,以后可能用到) esort = models.SmallIntegerField(default=9, blank=True, verbose_name="快递排序") # 创建时间 auto_now_add:当对象第一次被创建时自动设置当前时间 createtime = models.DateTimeField(auto_now_add=True, verbose_name="创建时间") # 更新时间 auto_now:每次保存对象时自动设置该字段为当前时间 updatetime = models.DateTimeField(auto_now=True, verbose_name="修改时间") # 数据状态(0:访客/冻结,1:正常,99:删除 datastatus = models.SmallIntegerField(default=1, verbose_name="数据状态", help_text="默认为1,99代表数据被删除") class Meta: # 表名默认为app名_小写类名 # db_table = "express" # Express在admin管理页面显示为啥 verbose_name = "快递公司" # 单数显示 verbose_name_plural = verbose_name # 复数显示 # 买家寄过来的物流信息(多) class ExpressOrder(models.Model): # 物流id(创建索引) express_num = models.CharField(max_length=40, db_index=True, verbose_name="物流编号", help_text="您的物流信息") # 快递对象(物流信息和快递公司是多对一的关系)PS:数据库中就是一个指向快递公司表的外键 # models.CASCADE:级联删除(以前的默认值)eg:快递公司删除,则对应的快递订单都删除 express = models.ForeignKey("Express", on_delete=models.CASCADE) # 创建时间 auto_now_add:当对象第一次被创建时自动设置当前时间 createtime = models.DateTimeField(auto_now_add=True, verbose_name="创建时间") # 更新时间 auto_now:每次保存对象时自动设置该字段为当前时间 updatetime = models.DateTimeField(auto_now=True, verbose_name="修改时间") # 数据状态(0:访客/冻结,1:正常,99:删除 datastatus = models.SmallIntegerField(default=1, verbose_name="数据状态", help_text="默认为1,99代表数据被删除") class Meta: verbose_name = "物流信息" # 单数显示 verbose_name_plural = verbose_name # 复数显示 class FileInfo(models.Model): # 文件对应的md5码 file_md5 = models.CharField(max_length=32, verbose_name="文件MD5", help_text="同一文件MD5相同") # file_url =models.FilePathField(path="/files",verbose_name="上传文件") # 创建时间 auto_now_add:当对象第一次被创建时自动设置当前时间 createtime = models.DateTimeField(auto_now_add=True, verbose_name="创建时间") # 更新时间 auto_now:每次保存对象时自动设置该字段为当前时间 updatetime = models.DateTimeField(auto_now=True, verbose_name="修改时间") # 数据状态(0:访客/冻结,1:正常,99:删除 datastatus = models.SmallIntegerField(default=1, verbose_name="数据状态", help_text="默认为1,99代表数据被删除") class Meta: verbose_name = "文件信息" # 单数显示 verbose_name_plural = verbose_name # 复数显示 # 买家订单 class Order(models.Model): # 用户订单id(索引)自动生成 editable=False order_id = models.UUIDField(db_index=True, default=uuid.uuid4, verbose_name="订单编号", help_text="该编号是系统自动生成") # files = models. # 创建时间 auto_now_add:当对象第一次被创建时自动设置当前时间 createtime = models.DateTimeField(auto_now_add=True, verbose_name="创建时间") # 更新时间 auto_now:每次保存对象时自动设置该字段为当前时间 updatetime = models.DateTimeField(auto_now=True, verbose_name="修改时间") # 数据状态(0:访客/冻结,1:正常,99:删除 datastatus = models.SmallIntegerField(default=1, verbose_name="数据状态", help_text="默认为1,99代表数据被删除") class Meta: verbose_name = "买家订单" # 单数显示 verbose_name_plural = verbose_name # 复数显示 # from django.db import connection # print(connection.queries[-1]) # QuerySet的query属性查看转化成的sql语句 # xx.objects.all().query # 查看日志开启的状态和log文件路径 # show variables like '%general_log%';
35.160377
122
0.718004
e313a8ecd15386e09a4727c1b2de0ad136a51fa9
791
py
Python
setup.py
npinto/py-lars
2c6991f42e7ad266cf8c2b684fc6dc71e298c09c
[ "MIT" ]
3
2018-11-27T19:08:45.000Z
2019-12-10T01:27:32.000Z
setup.py
npinto/py-lars
2c6991f42e7ad266cf8c2b684fc6dc71e298c09c
[ "MIT" ]
null
null
null
setup.py
npinto/py-lars
2c6991f42e7ad266cf8c2b684fc6dc71e298c09c
[ "MIT" ]
2
2019-11-17T22:47:08.000Z
2019-12-10T01:26:45.000Z
import setuptools setuptools.setup( name='lmj.lars', version='0.2', namespace_packages=['lmj'], packages=setuptools.find_packages(), author='Leif Johnson', author_email='leif@leifjohnson.net', description='An implementation of Least Angle Regression', long_description=open('README.md').read(), license='MIT', keywords=('regression ' 'sparse ' 'regularized ' ), url='http://github.com/lmjohns3/py-lars', classifiers=[ 'Development Status :: 3 - Alpha', 'Environment :: Console', 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', ], )
29.296296
62
0.595449
741166f76313ba4129cbd320c0cfce033b8e4c31
4,503
py
Python
tests/clvm/test_chialisp_deserialization.py
zcomputerwiz/silicoin-light-wallet
1cdc3784effec229cc841a04655078b1d9913d33
[ "Apache-2.0" ]
null
null
null
tests/clvm/test_chialisp_deserialization.py
zcomputerwiz/silicoin-light-wallet
1cdc3784effec229cc841a04655078b1d9913d33
[ "Apache-2.0" ]
null
null
null
tests/clvm/test_chialisp_deserialization.py
zcomputerwiz/silicoin-light-wallet
1cdc3784effec229cc841a04655078b1d9913d33
[ "Apache-2.0" ]
null
null
null
from unittest import TestCase from silicoin.types.blockchain_format.program import Program, INFINITE_COST from silicoin.util.byte_types import hexstr_to_bytes from silicoin.wallet.puzzles.load_clvm import load_clvm DESERIALIZE_MOD = load_clvm("chialisp_deserialisation.clvm", package_or_requirement="silicoin.wallet.puzzles") def serialized_atom_overflow(size): if size == 0: size_blob = b"\x80" elif size < 0x40: size_blob = bytes([0x80 | size]) elif size < 0x2000: size_blob = bytes([0xC0 | (size >> 8), (size >> 0) & 0xFF]) elif size < 0x100000: size_blob = bytes([0xE0 | (size >> 16), (size >> 8) & 0xFF, (size >> 0) & 0xFF]) elif size < 0x8000000: size_blob = bytes( [ 0xF0 | (size >> 24), (size >> 16) & 0xFF, (size >> 8) & 0xFF, (size >> 0) & 0xFF, ] ) elif size < 0x400000000: size_blob = bytes( [ 0xF8 | (size >> 32), (size >> 24) & 0xFF, (size >> 16) & 0xFF, (size >> 8) & 0xFF, (size >> 0) & 0xFF, ] ) else: size_blob = bytes( [ 0xFC | ((size >> 40) & 0xFF), (size >> 32) & 0xFF, (size >> 24) & 0xFF, (size >> 16) & 0xFF, (size >> 8) & 0xFF, (size >> 0) & 0xFF, ] ) extra_str = "01" * 1000 return size_blob.hex() + extra_str class TestClvmNativeDeserialization(TestCase): """ Test clvm deserialization done from within the clvm """ def test_deserialization_simple_list(self): # ("hello" "friend") b = hexstr_to_bytes("ff8568656c6c6fff86667269656e6480") cost, output = DESERIALIZE_MOD.run_with_cost(INFINITE_COST, [b]) print(cost, output) prog = Program.to(output) assert prog == Program.from_bytes(b) def test_deserialization_password_coin(self): # (i (= (sha256 2) (q 0x2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824)) (c (q 51) (c 5 (c (q 100) (q ())))) (q "wrong password")) # noqa b = hexstr_to_bytes( "ff04ffff0affff0bff0280ffff01ffa02cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b98248080ffff05ffff01ff3380ffff05ff05ffff05ffff01ff6480ffff01ff8080808080ffff01ff8e77726f6e672070617373776f72648080" # noqa ) # noqa cost, output = DESERIALIZE_MOD.run_with_cost(INFINITE_COST, [b]) print(cost, output) prog = Program.to(output) assert prog == Program.from_bytes(b) def test_deserialization_large_numbers(self): # '(99999999999999999999999999999999999999999999999999999999999999999 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -99999999999999999999999999999999999999999999999999999999999999999999999999999)' # noqa b = hexstr_to_bytes( "ff9c00f316271c7fc3908a8bef464e3945ef7a253609ffffffffffffffffffb00fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffa1ff22ea0179500526edb610f148ec0c614155678491902d6000000000000000000180" # noqa ) # noqa cost, output = DESERIALIZE_MOD.run_with_cost(INFINITE_COST, [b]) print(cost, output) prog = Program.to(output) assert prog == Program.from_bytes(b) def test_overflow_atoms(self): b = hexstr_to_bytes(serialized_atom_overflow(0xFFFFFFFF)) try: cost, output = DESERIALIZE_MOD.run_with_cost(INFINITE_COST, [b]) except Exception: assert True else: assert False b = hexstr_to_bytes(serialized_atom_overflow(0x3FFFFFFFF)) try: cost, output = DESERIALIZE_MOD.run_with_cost(INFINITE_COST, [b]) except Exception: assert True else: assert False b = hexstr_to_bytes(serialized_atom_overflow(0xFFFFFFFFFF)) try: cost, output = DESERIALIZE_MOD.run_with_cost(INFINITE_COST, [b]) except Exception: assert True else: assert False b = hexstr_to_bytes(serialized_atom_overflow(0x1FFFFFFFFFF)) try: cost, output = DESERIALIZE_MOD.run_with_cost(INFINITE_COST, [b]) except Exception: assert True else: assert False
39.156522
264
0.621586
9f1ecd9efb0bc6cb507fd1adf15e8040bb7ea8c9
2,309
py
Python
tests/test_specqp.py
Shipilin/specqp
c96c6f9476d871d73f7aa1fb7aeb3a435c9013a9
[ "MIT" ]
null
null
null
tests/test_specqp.py
Shipilin/specqp
c96c6f9476d871d73f7aa1fb7aeb3a435c9013a9
[ "MIT" ]
null
null
null
tests/test_specqp.py
Shipilin/specqp
c96c6f9476d871d73f7aa1fb7aeb3a435c9013a9
[ "MIT" ]
null
null
null
from matplotlib import pyplot as plt import unittest import specqp as sp import numpy as np class TestHelpers(unittest.TestCase): def test_is_iterable(self): self.assertTrue(sp.helpers.is_iterable([1, 2, 3])) self.assertTrue(sp.helpers.is_iterable((1, 2, 3))) arr = np.ndarray(range(10)) self.assertTrue(sp.helpers.is_iterable(arr)) self.assertTrue(sp.helpers.is_iterable((1, 2, 3))) self.assertFalse(sp.helpers.is_iterable(1)) self.assertTrue(1) def doniachtest(): x = np.linspace(714.96, 702.16, 61, endpoint=True) amp, cen, gfwhm, lfwhm, reverse = 6.34, 709.0, 2, 0.91, None y = sp.fitter.Fitter.doniach_sunjic(x[::-1], amp, cen, gfwhm, lfwhm) y2 = np.ones_like(x) plt.plot(x[::-1], y, x, y2) plt.gca().invert_xaxis() plt.show() def shirleytest(): x = np.linspace(714.96, 702.16, 61, endpoint=True) y = [ 4.09974404e+00, 4.08549832e+00, 4.11214206e+00, 4.28109103e+00, 4.33858583e+00, 4.30001600e+00, 4.39268917e+00, 4.42246841e+00, 4.47486802e+00, 4.64455287e+00, 4.62125260e+00, 4.69875220e+00, 4.84191329e+00, 4.87371621e+00, 4.98736202e+00, 5.07505199e+00, 5.19087346e+00, 5.30921453e+00, 5.49130539e+00, 5.51066229e+00, 5.74675252e+00, 5.84502480e+00, 5.98661014e+00, 6.08369061e+00, 6.02580387e+00, 6.03721805e+00, 6.05379939e+00, 6.03497040e+00, 6.07546793e+00, 6.10429531e+00, 6.10463926e+00, 6.24841625e+00, 6.28337866e+00, 6.44102544e+00, 6.63068309e+00, 6.93672212e+00, 7.44953607e+00, 8.41378979e+00, 9.26994881e+00, 9.90373540e+00, 1.11497680e+01, 1.30781155e+01, 1.41555031e+01, 1.05690210e+01, 4.93501040e+00, 2.07736362e+00, 1.04520877e+00, 6.44288914e-01, 4.23492241e-01, 2.90737482e-01, 2.09998400e-01, 1.35570309e-01, 7.20444729e-02, 4.51847704e-02, 2.30283155e-02, 1.71252600e-02, -5.35914254e-03, -4.77763558e-02, -4.07294833e-02, -6.35178371e-02, -7.82834746e-02] sh = sp.fitter.Fitter.shirley(x, y, 0.01, tolerance=1e-5, maxiter=10, asymmetry=None) plt.plot(x, y, x, sh) plt.gca().invert_xaxis() plt.show() shirleytest() # if __name__ == '__main__': # unittest.main()
41.232143
89
0.631009
c1701e7921e1b79fac6277fa23627a59abb09b4d
7,622
py
Python
SMBcorr/merra_hybrid_cumulative.py
SmithB/SMBcorr
7c35cf8383058986fd82b28beab3c5580f9f8667
[ "MIT" ]
null
null
null
SMBcorr/merra_hybrid_cumulative.py
SmithB/SMBcorr
7c35cf8383058986fd82b28beab3c5580f9f8667
[ "MIT" ]
null
null
null
SMBcorr/merra_hybrid_cumulative.py
SmithB/SMBcorr
7c35cf8383058986fd82b28beab3c5580f9f8667
[ "MIT" ]
1
2020-08-06T19:48:52.000Z
2020-08-06T19:48:52.000Z
#!/usr/bin/env python u""" merra_hybrid_cumulative.py Written by Tyler Sutterley (10/2019) Calculates cumulative anomalies of MERRA-2 hybrid surface mass balance products MERRA-2 Hybrid model outputs provided by Brooke Medley at GSFC CALLING SEQUENCE: python merra_hybrid_cumulative.py --directory=<path> --region=gris \ --mean=1980,1995 --product=p_minus_e COMMAND LINE OPTIONS: -D X, --directory=X: Working data directory -R X, --region=X: Region to interpolate (gris, ais) --mean: Start and end year of mean (separated by commas) --product: MERRA-2 hybrid product to calculate p_minus_e: Precipitation minus Evaporation melt: Snowmelt -M X, --mode=X: Local permissions mode of the directories and files PYTHON DEPENDENCIES: numpy: Scientific Computing Tools For Python https://numpy.org https://numpy.org/doc/stable/user/numpy-for-matlab-users.html netCDF4: Python interface to the netCDF C library https://unidata.github.io/netcdf4-python/netCDF4/index.html UPDATE HISTORY: Written 10/2019 """ from __future__ import print_function import sys import os import re import time import getopt import netCDF4 import numpy as np #-- PURPOSE: read and interpolate MERRA-2 hybrid surface mass balance variables def merra_hybrid_cumulative(base_dir, REGION, DIRECTORY=None, VARIABLE='p_minus_e', RANGE=None, MODE=0o775): #-- set the input netCDF4 file for the variable of interest if VARIABLE in ('p_minus_e','melt'): hybrid_file = 'm2_hybrid_p_minus_e_melt_{0}.nc'.format(REGION.lower()) #-- Open the MERRA-2 Hybrid NetCDF file for reading fileID = netCDF4.Dataset(os.path.join(base_dir,hybrid_file), 'r') #-- Get data from each netCDF variable and remove singleton dimensions fd = {} DATA = np.squeeze(fileID.variables[VARIABLE][:].copy()) fd['x'] = fileID.variables['x'][:,:].copy() fd['y'] = fileID.variables['y'][:,:].copy() fd['time'] = fileID.variables['time'][:].copy() #-- invalid data value fill_value = np.float(fileID.variables[VARIABLE]._FillValue) #-- input shape of MERRA-2 Hybrid firn data nt,nx,ny = np.shape(DATA) #-- close the NetCDF files fileID.close() #-- time is year decimal at time step 5 days time_step = 5.0/365.25 #-- indices of specified ice mask i,j = np.nonzero(DATA[0,:,:] != fill_value) valid_count = len(DATA[0,i,j]) #-- calculate mean period for MERRA-2 tt, = np.nonzero((fd['time'] >= RANGE[0]) & (fd['time'] < (RANGE[1]+1))) MEAN = np.mean(DATA[tt,:,:], axis=0) #-- cumulative mass anomalies calculated by removing mean balance flux fd[VARIABLE] = np.full((nt,nx,ny),fill_value) CUMULATIVE = np.zeros((valid_count)) #-- Writing output cumulative anomalies to netcdf file for t in range(nt): #-- calculating cumulative anomalies for time t CUMULATIVE += (DATA[t,i,j] - MEAN[i,j]) fd[VARIABLE][t,i,j] = CUMULATIVE.copy() #-- set directory to base directory if None if DIRECTORY is None: DIRECTORY = os.path.expanduser(base_dir) #-- create output directory if non-existent if not os.access(DIRECTORY, os.F_OK): os.makedirs(DIRECTORY,MODE) #-- output MERRA-2 data file for cumulative data FILE = 'm2_hybrid_{0}_cumul_{1}.nc'.format(VARIABLE,REGION.lower()) #-- opening NetCDF file for writing fileID = netCDF4.Dataset(os.path.join(DIRECTORY,FILE),'w',format="NETCDF4") #-- Defining the NetCDF dimensions fileID.createDimension('x', nx) fileID.createDimension('y', ny) fileID.createDimension('time', nt) #-- python dictionary with netCDF4 variables nc = {} #-- defining the NetCDF variables nc['x'] = fileID.createVariable('x', fd['x'].dtype, ('x','y',)) nc['y'] = fileID.createVariable('y', fd['y'].dtype, ('x','y',)) nc['time'] = fileID.createVariable('time', fd['time'].dtype, ('time',)) nc[VARIABLE] = fileID.createVariable(VARIABLE, fd[VARIABLE].dtype, ('time','x','y',), fill_value=fill_value, zlib=True) #-- filling NetCDF variables for key,val in fd.items(): nc[key][:] = val.copy() #-- Defining attributes for x and y coordinates nc['x'].long_name = 'polar stereographic x coordinate, 12.5km resolution' nc['x'].units = 'meters' nc['y'].long_name = 'polar stereographic y coordinate, 12.5km resolution' nc['y'].units = 'meters' #-- Defining attributes for dataset if (VARIABLE == 'p_minus_e'): nc[VARIABLE].long_name = ('MERRA-2 hybrid ' 'precipitation-minus-evaporation (net accumulation)') nc[VARIABLE].units = 'meters of ice equivalent per year' nc[VARIABLE].comment = ('developed using a degree-day model from our ' 'MERRA-2 hybrid skin temperature product and MARv3.5.2 meltwater ' 'for 1980-2019') elif (VARIABLE == 'melt'): nc[VARIABLE].long_name = ('MERRA-2 meltwater, calibrated to ' 'MARv3.5.2 melt') nc[VARIABLE].units = 'meters of ice equivalent per year' #-- Defining attributes for date nc['time'].long_name = 'time, 5-daily resolution' nc['time'].units = 'decimal years, 5-daily resolution' #-- global variable of NetCDF file fileID.TITLE = ('Cumulative anomalies in MERRA-2 Hybrid variables relative ' 'to {0:4d}-{1:4d}').format(*RANGE) fileID.date_created = time.strftime('%Y-%m-%d',time.localtime()) #-- Closing the NetCDF file fileID.close() os.chmod(os.path.join(DIRECTORY,FILE), MODE) #-- PURPOSE: help module to describe the optional input parameters def usage(): print('\nHelp: {}'.format(os.path.basename(sys.argv[0]))) print(' -D X, --directory=X\tWorking data directory') print(' -O X, --output=X\tOutput working data directory') print(' -R X, --region=X\tRegion of firn model to interpolate') print(' --mean\t\t\tStart and end year of mean (separated by commas)') print(' --product\t\tMERRA-2 hybrid product to calculate') print('\tp_minus_e: Precipitation minus Evaporation\n\tmelt: Snowmelt') print(' -M X, --mode=X\t\tPermission mode of directories and files\n') #-- Main program that calls merra_hybrid_cumulative() def main(): #-- Read the system arguments listed after the program lopt = ['help','directory=','output=','region=','mean=','product=','mode='] optlist,arglist = getopt.getopt(sys.argv[1:], 'hD:O:R:M:', lopt) #-- data directory base_dir = os.getcwd() DIRECTORY = None #-- region of firn model REGION = 'gris' #-- surface mass balance product PRODUCTS = ['p_minus_e','melt'] #-- start and end year of mean RANGE = [1980,1995] #-- permissions mode MODE = 0o775 #-- extract parameters for opt, arg in optlist: if opt in ('-h','--help'): usage() sys.exit() elif opt in ("-D","--directory"): base_dir = os.path.expanduser(arg) elif opt in ("-O","--output"): DIRECTORY = os.path.expanduser(arg) elif opt in ("-R","--region"): REGION = arg.lower() elif opt in ("--product"): PRODUCTS = arg.split(',') elif opt in ("--mean"): RANGE = np.array(arg.split(','),dtype=np.int) elif opt in ("-M","--mode"): MODE = int(arg,8) #-- run program with parameters for p in PRODUCTS: merra_hybrid_cumulative(base_dir, REGION, DIRECTORY=DIRECTORY, VARIABLE=p, RANGE=RANGE, MODE=MODE) #-- run main program if __name__ == '__main__': main()
38.887755
80
0.64445
28ec71432af154ad56ec5eeaa11e6c658125123f
2,301
py
Python
tests/test_main.py
SiriusKoan/shorten-url-with-kv
55d108a263441cc17dbec2ce3c8419b4b4ea111d
[ "MIT" ]
3
2022-02-16T09:11:39.000Z
2022-03-25T06:07:34.000Z
tests/test_main.py
SiriusKoan/shorten-url-with-kv
55d108a263441cc17dbec2ce3c8419b4b4ea111d
[ "MIT" ]
null
null
null
tests/test_main.py
SiriusKoan/shorten-url-with-kv
55d108a263441cc17dbec2ce3c8419b4b4ea111d
[ "MIT" ]
null
null
null
import unittest from time import sleep from flask import url_for from app import create_app from tests.helper import TestModel, generate_test_data from app.KV import kv class IndexPageTest(TestModel): def setUp(self) -> None: super().setUp() self.route = url_for("main.index_page") self.url_ok = {"old": "https://example.com", "new": "ex"} self.url_bad_characters = {"old": "https://example.com", "new": "%%%$123"} self.url_bad_empty = {"old": "https://example.com"} def test_get_with_no_auth(self): res = self.get() self.assertEqual(res.status_code, 200) self.assertIn(b"Login", res.data) self.assertIn(b"Register", res.data) def test_get_with_auth(self): res = self.get(login="user") self.assertEqual(res.status_code, 200) self.assertIn(b"Dashboard", res.data) def test_post_ok(self): res = self.post(data=self.url_ok) self.assertEqual(res.status_code, 200) self.assertIn(b"Successfully add this record.", res.data) def test_post_bad_characters(self): res = self.post(data=self.url_bad_characters) self.assertEqual(res.status_code, 200) self.assertIn(b"Bad characters in the field.", res.data) def test_post_bad_empty(self): res = self.post(data=self.url_bad_empty) self.assertEqual(res.status_code, 200) self.assertIn(b"This field is required.", res.data) class RedirectPageTest(unittest.TestCase): def setUp(self) -> None: self.app = create_app("testing") self.client = self.app.test_client() self.app_context = self.app.app_context() self.app_context.push() generate_test_data() kv.write("https://google.com", "test1") kv.write("https://github.com", "gh") self.route_ok = "/test1" self.route_not_found = "/wrong" def tearDown(self) -> None: kv.delete("test1") kv.delete("gh") if self.app_context is not None: self.app_context.pop() def test_ok(self): res = self.client.get(self.route_ok) self.assertEqual(res.status_code, 302) def test_not_found(self): res = self.client.get(self.route_not_found) self.assertEqual(res.status_code, 404)
33.347826
82
0.640591
2206b5e2acbf468c863b2ce261116c9742613306
2,030
py
Python
tests/gold_tests/logging/all_headers_sanitizer.py
zhaorun/trafficserver
757256129811441f29eea288b1d7e19bc54fab9c
[ "Apache-2.0" ]
1
2019-10-28T04:36:50.000Z
2019-10-28T04:36:50.000Z
tests/gold_tests/logging/all_headers_sanitizer.py
zhaorun/trafficserver
757256129811441f29eea288b1d7e19bc54fab9c
[ "Apache-2.0" ]
3
2017-09-22T19:18:56.000Z
2021-06-21T18:07:14.000Z
tests/gold_tests/logging/all_headers_sanitizer.py
zhaorun/trafficserver
757256129811441f29eea288b1d7e19bc54fab9c
[ "Apache-2.0" ]
null
null
null
''' Sanitize the ATS-generated custom log file from the all_headers test. ''' # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import re rexl = [] rexl.append((re.compile(r"\{\{Date\}\:\{[^}]*\}\}"), "({__DATE__}}")) rexl.append((re.compile(r"\{\{Expires\}\:\{[^}]*\}\}"), "({__EXPIRES__}}")) rexl.append((re.compile(r"\{\{Last-Modified\}\:\{[^}]*\}\}"), "({__LAST_MODIFIED__}}")) rexl.append((re.compile(r"\{\{Server\}\:\{ATS/[0-9.]*\}\}"), "({__ATS_SERVER__}}")) rexl.append((re.compile(r"\{\{Server\}\:\{ECS [^}]*\}\}"), "({__ECS_SERVER__}}")) rexl.append((re.compile(r"\{\{Via\}\:\{[^}]*\}\}"), "({__VIA__}}")) rexl.append((re.compile(r"\{\{Server\}\:\{ApacheTrafficServer/[0-9.]*\}\}"), "({__ATS2_SERVER__}}")) rexl.append((re.compile(r"\{\{Age\}\:\{[0-9]*\}\}"), "({__AGE__}}")) rexl.append((re.compile(r"\:" + sys.argv[1]), "__TS_PORT__")) # 1st and only argument is TS client port # Handle inconsistencies which I think are caused by different revisions of the standard Python http.server.HTTPServer class. rexl.append((re.compile(r'\{"359670651[^"]*"\}'), '{"{359670651__WEIRD__}"}')) rexl.append((re.compile(r'\{\{Accept-Ranges\}:\{bytes\}\}'), '')) for line in sys.stdin: for rex, subStr in rexl: line = rex.sub(subStr, line) print(line)
46.136364
125
0.660591
42502579a4714e6479681b4e839e55fc4ca4cac4
569
py
Python
tests/testapp/models.py
vaibhavantil2/detail-personalized-feed
1fc74a5c8c514c4979fa08257eea5a95924e82bd
[ "MIT" ]
15
2019-02-16T12:17:30.000Z
2022-03-27T20:11:49.000Z
tests/testapp/models.py
vaibhavantil2/detail-personalized-feed
1fc74a5c8c514c4979fa08257eea5a95924e82bd
[ "MIT" ]
7
2019-05-10T08:27:14.000Z
2021-04-26T15:19:06.000Z
tests/testapp/models.py
andreynovikov/django-rated-reviews
ccb24f5412bf5c831f79120c32e1cd51ddca5fe8
[ "MIT" ]
8
2019-11-07T21:05:10.000Z
2021-08-03T06:59:37.000Z
""" Reviews may be attached to any object. See the review documentation for more information. """ from django.db import models class Article(models.Model): headline = models.CharField(max_length=100) body = models.TextField() pub_date = models.DateField() def __str__(self): return self.headline class Product(models.Model): title = models.CharField(max_length=250) price = models.DecimalField(max_digits=6, decimal_places=2) enable_reviews = models.BooleanField(default=True) def __str__(self): return self.title
22.76
71
0.717047
3aefc7d439093a8b34008210a604f60c5756b826
728
py
Python
vaassdk/src/vaas/config.py
yilanyun/vaas-sdk-python
ea4cc94e8d75a07a7dec8da67977443a3f00eff8
[ "Apache-2.0" ]
null
null
null
vaassdk/src/vaas/config.py
yilanyun/vaas-sdk-python
ea4cc94e8d75a07a7dec8da67977443a3f00eff8
[ "Apache-2.0" ]
1
2021-06-11T06:48:05.000Z
2021-06-11T06:48:05.000Z
vaassdk/src/vaas/config.py
yilanyun/vaas-sdk-python
ea4cc94e8d75a07a7dec8da67977443a3f00eff8
[ "Apache-2.0" ]
2
2021-06-11T06:44:57.000Z
2021-06-23T08:34:22.000Z
# encoding: utf-8 # 联系一览获取access_key、access_token ACCESS_KEY = '' # 一览提供的渠道ak ACCESS_TOKEN = '' # 一览提供的渠道token PKG_NAME = '' # 应用包名 PLATFORM = 1 # 接入方式 # 请求url FEED = '/video/feed' # feed流 CHANNELS = '/video/channels' # 频道 RELATION = '/video/relation' # 频道相关 DETAIL = '/video/getvideos' # 视频详情 CPINFO = '/video/cpinfo' # 作者详情 CPVIDOES = '/video/cpvideos' # 作者视频 PLAY = '/vaas/video/play' # 播放 # 以下常量不需要修改 HOST_PROD = 'http://api.yilanvaas.cn' # 线上正式域名(播放接口除外) HOST_PROD_PLAY = 'http://play.yilanvaas.cn' # 线上正式域名(播放接口) HOST_DATA = 'http://data.1lan.tv/log?ts=%d&access_key=%s&udid=%s&m=%s' # 上报相关域名 DATA_BEGION = '13149876' DATA_END = '98761314' CONNECT_TIMEOUT = 5 READ_TIMEOUT = 10 DEFAULT_MAX_RETRY_TIMES = 2
28
80
0.688187
6b1af921694d4f3da65562cf4b2c89a44fc320a7
22,101
py
Python
cmstack/cmlang/antlr_generator/lexer.py
he-actlab/cdstack
38f605cfa299bf97b5875a19f9fd811a2671d56f
[ "Apache-2.0" ]
null
null
null
cmstack/cmlang/antlr_generator/lexer.py
he-actlab/cdstack
38f605cfa299bf97b5875a19f9fd811a2671d56f
[ "Apache-2.0" ]
null
null
null
cmstack/cmlang/antlr_generator/lexer.py
he-actlab/cdstack
38f605cfa299bf97b5875a19f9fd811a2671d56f
[ "Apache-2.0" ]
null
null
null
# Generated from /home/kinzers/projects/cmstack.code/cmstack/cmlang/antlr_generator/CMLang.g4 by ANTLR 4.7.2 from antlr4 import * from io import StringIO from typing.io import TextIO import sys def serializedATN(): with StringIO() as buf: buf.write("\3\u608b\ua72a\u8133\ub9ed\u417c\u3be7\u7786\u5964\2C") buf.write("\u0217\b\1\4\2\t\2\4\3\t\3\4\4\t\4\4\5\t\5\4\6\t\6\4\7") buf.write("\t\7\4\b\t\b\4\t\t\t\4\n\t\n\4\13\t\13\4\f\t\f\4\r\t\r") buf.write("\4\16\t\16\4\17\t\17\4\20\t\20\4\21\t\21\4\22\t\22\4\23") buf.write("\t\23\4\24\t\24\4\25\t\25\4\26\t\26\4\27\t\27\4\30\t\30") buf.write("\4\31\t\31\4\32\t\32\4\33\t\33\4\34\t\34\4\35\t\35\4\36") buf.write("\t\36\4\37\t\37\4 \t \4!\t!\4\"\t\"\4#\t#\4$\t$\4%\t%") buf.write("\4&\t&\4\'\t\'\4(\t(\4)\t)\4*\t*\4+\t+\4,\t,\4-\t-\4.") buf.write("\t.\4/\t/\4\60\t\60\4\61\t\61\4\62\t\62\4\63\t\63\4\64") buf.write("\t\64\4\65\t\65\4\66\t\66\4\67\t\67\48\t8\49\t9\4:\t:") buf.write("\4;\t;\4<\t<\4=\t=\4>\t>\4?\t?\4@\t@\4A\tA\4B\tB\4C\t") buf.write("C\4D\tD\4E\tE\4F\tF\4G\tG\4H\tH\4I\tI\4J\tJ\4K\tK\4L\t") buf.write("L\4M\tM\4N\tN\3\2\3\2\3\3\3\3\3\4\3\4\3\5\3\5\3\6\3\6") buf.write("\3\7\3\7\3\b\3\b\3\t\3\t\3\n\3\n\3\13\3\13\3\f\3\f\3\r") buf.write("\3\r\3\16\3\16\3\17\3\17\3\20\3\20\3\21\3\21\3\22\3\22") buf.write("\3\22\3\22\3\23\3\23\3\23\3\23\3\23\3\23\3\24\3\24\3\24") buf.write("\3\24\3\25\3\25\3\25\3\25\3\25\3\26\3\26\3\26\3\26\3\26") buf.write("\3\26\3\26\3\26\3\27\3\27\3\27\3\27\3\27\3\27\3\30\3\30") buf.write("\3\30\3\30\3\30\3\30\3\30\3\31\3\31\3\31\3\31\3\31\3\31") buf.write("\3\32\3\32\3\32\3\32\3\32\3\32\3\33\3\33\3\33\3\33\3\33") buf.write("\3\33\3\33\3\34\3\34\3\34\3\34\3\34\3\34\3\34\3\34\3\34") buf.write("\3\34\3\35\3\35\3\35\3\35\3\35\3\35\3\35\3\35\3\35\3\35") buf.write("\3\36\3\36\3\36\3\36\3\36\3\36\3\37\3\37\3\37\3\37\3\37") buf.write("\3 \3 \3 \3!\3!\3!\3\"\3\"\3\"\3#\3#\3$\3$\3$\3$\3$\3") buf.write("$\3%\3%\3%\3%\3%\3%\3%\3&\3&\3&\3&\3&\3&\3&\3&\3&\3\'") buf.write("\3\'\3\'\3\'\3(\3(\3(\3(\3(\3(\3)\3)\3)\3)\3*\3*\3*\3") buf.write("*\3*\3*\3*\3+\3+\3+\3,\3,\3,\3,\3,\3,\3-\3-\3-\3-\3-\3") buf.write(".\3.\3.\3.\3.\3.\3.\3/\3/\3/\3\60\3\60\3\60\3\61\3\61") buf.write("\3\61\3\62\3\62\3\62\3\63\3\63\3\63\3\63\3\63\3\63\3\63") buf.write("\3\63\3\63\3\63\3\64\3\64\3\64\3\65\3\65\3\66\3\66\7\66") buf.write("\u0180\n\66\f\66\16\66\u0183\13\66\3\66\3\66\3\67\3\67") buf.write("\3\67\7\67\u018a\n\67\f\67\16\67\u018d\13\67\38\38\78") buf.write("\u0191\n8\f8\168\u0194\138\38\68\u0197\n8\r8\168\u0198") buf.write("\58\u019b\n8\39\39\39\69\u01a0\n9\r9\169\u01a1\3:\3:\3") buf.write(":\6:\u01a7\n:\r:\16:\u01a8\3;\3;\3;\6;\u01ae\n;\r;\16") buf.write(";\u01af\3<\3<\5<\u01b4\n<\3<\3<\3=\3=\5=\u01ba\n=\3>\3") buf.write(">\3?\6?\u01bf\n?\r?\16?\u01c0\3?\3?\3@\3@\5@\u01c7\n@") buf.write("\3@\5@\u01ca\n@\3@\3@\3A\3A\3A\3A\7A\u01d2\nA\fA\16A\u01d5") buf.write("\13A\3A\3A\3A\3A\3A\3B\3B\3B\3B\7B\u01e0\nB\fB\16B\u01e3") buf.write("\13B\3B\3B\3C\3C\3D\3D\3E\3E\3F\3F\3G\3G\3H\3H\3I\5I\u01f4") buf.write("\nI\3I\3I\3I\3I\5I\u01fa\nI\3J\3J\5J\u01fe\nJ\3J\3J\3") buf.write("K\6K\u0203\nK\rK\16K\u0204\3L\3L\6L\u0209\nL\rL\16L\u020a") buf.write("\3M\3M\5M\u020f\nM\3M\6M\u0212\nM\rM\16M\u0213\3N\3N\4") buf.write("\u0181\u01d3\2O\3\3\5\4\7\5\t\6\13\7\r\b\17\t\21\n\23") buf.write("\13\25\f\27\r\31\16\33\17\35\20\37\21!\22#\23%\24\'\25") buf.write(")\26+\27-\30/\31\61\32\63\33\65\34\67\359\36;\37= ?!A") buf.write("\"C#E$G%I&K\'M(O)Q*S+U,W-Y.[/]\60_\61a\62c\63e\64g\65") buf.write("i\66k\67m8o9q:s;u<w=y>{?}@\177A\u0081B\u0083C\u0085\2") buf.write("\u0087\2\u0089\2\u008b\2\u008d\2\u008f\2\u0091\2\u0093") buf.write("\2\u0095\2\u0097\2\u0099\2\u009b\2\3\2\17\4\2QQqq\4\2") buf.write("ZZzz\4\2DDdd\4\2\13\13\"\"\4\2\f\f\17\17\5\2C\\aac|\3") buf.write("\2\63;\3\2\62;\3\2\629\5\2\62;CHch\3\2\62\63\4\2GGgg\4") buf.write("\2--//\2\u0221\2\3\3\2\2\2\2\5\3\2\2\2\2\7\3\2\2\2\2\t") buf.write("\3\2\2\2\2\13\3\2\2\2\2\r\3\2\2\2\2\17\3\2\2\2\2\21\3") buf.write("\2\2\2\2\23\3\2\2\2\2\25\3\2\2\2\2\27\3\2\2\2\2\31\3\2") buf.write("\2\2\2\33\3\2\2\2\2\35\3\2\2\2\2\37\3\2\2\2\2!\3\2\2\2") buf.write("\2#\3\2\2\2\2%\3\2\2\2\2\'\3\2\2\2\2)\3\2\2\2\2+\3\2\2") buf.write("\2\2-\3\2\2\2\2/\3\2\2\2\2\61\3\2\2\2\2\63\3\2\2\2\2\65") buf.write("\3\2\2\2\2\67\3\2\2\2\29\3\2\2\2\2;\3\2\2\2\2=\3\2\2\2") buf.write("\2?\3\2\2\2\2A\3\2\2\2\2C\3\2\2\2\2E\3\2\2\2\2G\3\2\2") buf.write("\2\2I\3\2\2\2\2K\3\2\2\2\2M\3\2\2\2\2O\3\2\2\2\2Q\3\2") buf.write("\2\2\2S\3\2\2\2\2U\3\2\2\2\2W\3\2\2\2\2Y\3\2\2\2\2[\3") buf.write("\2\2\2\2]\3\2\2\2\2_\3\2\2\2\2a\3\2\2\2\2c\3\2\2\2\2e") buf.write("\3\2\2\2\2g\3\2\2\2\2i\3\2\2\2\2k\3\2\2\2\2m\3\2\2\2\2") buf.write("o\3\2\2\2\2q\3\2\2\2\2s\3\2\2\2\2u\3\2\2\2\2w\3\2\2\2") buf.write("\2y\3\2\2\2\2{\3\2\2\2\2}\3\2\2\2\2\177\3\2\2\2\2\u0081") buf.write("\3\2\2\2\2\u0083\3\2\2\2\3\u009d\3\2\2\2\5\u009f\3\2\2") buf.write("\2\7\u00a1\3\2\2\2\t\u00a3\3\2\2\2\13\u00a5\3\2\2\2\r") buf.write("\u00a7\3\2\2\2\17\u00a9\3\2\2\2\21\u00ab\3\2\2\2\23\u00ad") buf.write("\3\2\2\2\25\u00af\3\2\2\2\27\u00b1\3\2\2\2\31\u00b3\3") buf.write("\2\2\2\33\u00b5\3\2\2\2\35\u00b7\3\2\2\2\37\u00b9\3\2") buf.write("\2\2!\u00bb\3\2\2\2#\u00bd\3\2\2\2%\u00c1\3\2\2\2\'\u00c7") buf.write("\3\2\2\2)\u00cb\3\2\2\2+\u00d0\3\2\2\2-\u00d8\3\2\2\2") buf.write("/\u00de\3\2\2\2\61\u00e5\3\2\2\2\63\u00eb\3\2\2\2\65\u00f1") buf.write("\3\2\2\2\67\u00f8\3\2\2\29\u0102\3\2\2\2;\u010c\3\2\2") buf.write("\2=\u0112\3\2\2\2?\u0117\3\2\2\2A\u011a\3\2\2\2C\u011d") buf.write("\3\2\2\2E\u0120\3\2\2\2G\u0122\3\2\2\2I\u0128\3\2\2\2") buf.write("K\u012f\3\2\2\2M\u0138\3\2\2\2O\u013c\3\2\2\2Q\u0142\3") buf.write("\2\2\2S\u0146\3\2\2\2U\u014d\3\2\2\2W\u0150\3\2\2\2Y\u0156") buf.write("\3\2\2\2[\u015b\3\2\2\2]\u0162\3\2\2\2_\u0165\3\2\2\2") buf.write("a\u0168\3\2\2\2c\u016b\3\2\2\2e\u016e\3\2\2\2g\u0178\3") buf.write("\2\2\2i\u017b\3\2\2\2k\u017d\3\2\2\2m\u0186\3\2\2\2o\u019a") buf.write("\3\2\2\2q\u019c\3\2\2\2s\u01a3\3\2\2\2u\u01aa\3\2\2\2") buf.write("w\u01b3\3\2\2\2y\u01b9\3\2\2\2{\u01bb\3\2\2\2}\u01be\3") buf.write("\2\2\2\177\u01c9\3\2\2\2\u0081\u01cd\3\2\2\2\u0083\u01db") buf.write("\3\2\2\2\u0085\u01e6\3\2\2\2\u0087\u01e8\3\2\2\2\u0089") buf.write("\u01ea\3\2\2\2\u008b\u01ec\3\2\2\2\u008d\u01ee\3\2\2\2") buf.write("\u008f\u01f0\3\2\2\2\u0091\u01f9\3\2\2\2\u0093\u01fd\3") buf.write("\2\2\2\u0095\u0202\3\2\2\2\u0097\u0206\3\2\2\2\u0099\u020c") buf.write("\3\2\2\2\u009b\u0215\3\2\2\2\u009d\u009e\7*\2\2\u009e") buf.write("\4\3\2\2\2\u009f\u00a0\7+\2\2\u00a0\6\3\2\2\2\u00a1\u00a2") buf.write("\7}\2\2\u00a2\b\3\2\2\2\u00a3\u00a4\7\177\2\2\u00a4\n") buf.write("\3\2\2\2\u00a5\u00a6\7.\2\2\u00a6\f\3\2\2\2\u00a7\u00a8") buf.write("\7]\2\2\u00a8\16\3\2\2\2\u00a9\u00aa\7_\2\2\u00aa\20\3") buf.write("\2\2\2\u00ab\u00ac\7<\2\2\u00ac\22\3\2\2\2\u00ad\u00ae") buf.write("\7-\2\2\u00ae\24\3\2\2\2\u00af\u00b0\7/\2\2\u00b0\26\3") buf.write("\2\2\2\u00b1\u00b2\7,\2\2\u00b2\30\3\2\2\2\u00b3\u00b4") buf.write("\7\61\2\2\u00b4\32\3\2\2\2\u00b5\u00b6\7\'\2\2\u00b6\34") buf.write("\3\2\2\2\u00b7\u00b8\7>\2\2\u00b8\36\3\2\2\2\u00b9\u00ba") buf.write("\7@\2\2\u00ba \3\2\2\2\u00bb\u00bc\7A\2\2\u00bc\"\3\2") buf.write("\2\2\u00bd\u00be\7k\2\2\u00be\u00bf\7p\2\2\u00bf\u00c0") buf.write("\7v\2\2\u00c0$\3\2\2\2\u00c1\u00c2\7h\2\2\u00c2\u00c3") buf.write("\7n\2\2\u00c3\u00c4\7q\2\2\u00c4\u00c5\7c\2\2\u00c5\u00c6") buf.write("\7v\2\2\u00c6&\3\2\2\2\u00c7\u00c8\7u\2\2\u00c8\u00c9") buf.write("\7v\2\2\u00c9\u00ca\7t\2\2\u00ca(\3\2\2\2\u00cb\u00cc") buf.write("\7d\2\2\u00cc\u00cd\7q\2\2\u00cd\u00ce\7q\2\2\u00ce\u00cf") buf.write("\7n\2\2\u00cf*\3\2\2\2\u00d0\u00d1\7e\2\2\u00d1\u00d2") buf.write("\7q\2\2\u00d2\u00d3\7o\2\2\u00d3\u00d4\7r\2\2\u00d4\u00d5") buf.write("\7n\2\2\u00d5\u00d6\7g\2\2\u00d6\u00d7\7z\2\2\u00d7,\3") buf.write("\2\2\2\u00d8\u00d9\7k\2\2\u00d9\u00da\7p\2\2\u00da\u00db") buf.write("\7r\2\2\u00db\u00dc\7w\2\2\u00dc\u00dd\7v\2\2\u00dd.\3") buf.write("\2\2\2\u00de\u00df\7q\2\2\u00df\u00e0\7w\2\2\u00e0\u00e1") buf.write("\7v\2\2\u00e1\u00e2\7r\2\2\u00e2\u00e3\7w\2\2\u00e3\u00e4") buf.write("\7v\2\2\u00e4\60\3\2\2\2\u00e5\u00e6\7u\2\2\u00e6\u00e7") buf.write("\7v\2\2\u00e7\u00e8\7c\2\2\u00e8\u00e9\7v\2\2\u00e9\u00ea") buf.write("\7g\2\2\u00ea\62\3\2\2\2\u00eb\u00ec\7r\2\2\u00ec\u00ed") buf.write("\7c\2\2\u00ed\u00ee\7t\2\2\u00ee\u00ef\7c\2\2\u00ef\u00f0") buf.write("\7o\2\2\u00f0\64\3\2\2\2\u00f1\u00f2\7u\2\2\u00f2\u00f3") buf.write("\7r\2\2\u00f3\u00f4\7t\2\2\u00f4\u00f5\7k\2\2\u00f5\u00f6") buf.write("\7p\2\2\u00f6\u00f7\7i\2\2\u00f7\66\3\2\2\2\u00f8\u00f9") buf.write("\7t\2\2\u00f9\u00fa\7g\2\2\u00fa\u00fb\7u\2\2\u00fb\u00fc") buf.write("\7g\2\2\u00fc\u00fd\7t\2\2\u00fd\u00fe\7x\2\2\u00fe\u00ff") buf.write("\7q\2\2\u00ff\u0100\7k\2\2\u0100\u0101\7t\2\2\u01018\3") buf.write("\2\2\2\u0102\u0103\7e\2\2\u0103\u0104\7q\2\2\u0104\u0105") buf.write("\7o\2\2\u0105\u0106\7r\2\2\u0106\u0107\7q\2\2\u0107\u0108") buf.write("\7p\2\2\u0108\u0109\7g\2\2\u0109\u010a\7p\2\2\u010a\u010b") buf.write("\7v\2\2\u010b:\3\2\2\2\u010c\u010d\7k\2\2\u010d\u010e") buf.write("\7p\2\2\u010e\u010f\7f\2\2\u010f\u0110\7g\2\2\u0110\u0111") buf.write("\7z\2\2\u0111<\3\2\2\2\u0112\u0113\7h\2\2\u0113\u0114") buf.write("\7n\2\2\u0114\u0115\7q\2\2\u0115\u0116\7y\2\2\u0116>\3") buf.write("\2\2\2\u0117\u0118\7\60\2\2\u0118\u0119\7,\2\2\u0119@") buf.write("\3\2\2\2\u011a\u011b\7\60\2\2\u011b\u011c\7^\2\2\u011c") buf.write("B\3\2\2\2\u011d\u011e\7\60\2\2\u011e\u011f\7\61\2\2\u011f") buf.write("D\3\2\2\2\u0120\u0121\7`\2\2\u0121F\3\2\2\2\u0122\u0123") buf.write("\7d\2\2\u0123\u0124\7t\2\2\u0124\u0125\7g\2\2\u0125\u0126") buf.write("\7c\2\2\u0126\u0127\7m\2\2\u0127H\3\2\2\2\u0128\u0129") buf.write("\7t\2\2\u0129\u012a\7g\2\2\u012a\u012b\7v\2\2\u012b\u012c") buf.write("\7w\2\2\u012c\u012d\7t\2\2\u012d\u012e\7p\2\2\u012eJ\3") buf.write("\2\2\2\u012f\u0130\7h\2\2\u0130\u0131\7w\2\2\u0131\u0132") buf.write("\7p\2\2\u0132\u0133\7e\2\2\u0133\u0134\7v\2\2\u0134\u0135") buf.write("\7k\2\2\u0135\u0136\7q\2\2\u0136\u0137\7p\2\2\u0137L\3") buf.write("\2\2\2\u0138\u0139\7h\2\2\u0139\u013a\7q\2\2\u013a\u013b") buf.write("\7t\2\2\u013bN\3\2\2\2\u013c\u013d\7y\2\2\u013d\u013e") buf.write("\7j\2\2\u013e\u013f\7k\2\2\u013f\u0140\7n\2\2\u0140\u0141") buf.write("\7g\2\2\u0141P\3\2\2\2\u0142\u0143\7g\2\2\u0143\u0144") buf.write("\7p\2\2\u0144\u0145\7f\2\2\u0145R\3\2\2\2\u0146\u0147") buf.write("\7i\2\2\u0147\u0148\7n\2\2\u0148\u0149\7q\2\2\u0149\u014a") buf.write("\7d\2\2\u014a\u014b\7c\2\2\u014b\u014c\7n\2\2\u014cT\3") buf.write("\2\2\2\u014d\u014e\7k\2\2\u014e\u014f\7h\2\2\u014fV\3") buf.write("\2\2\2\u0150\u0151\7e\2\2\u0151\u0152\7n\2\2\u0152\u0153") buf.write("\7g\2\2\u0153\u0154\7c\2\2\u0154\u0155\7t\2\2\u0155X\3") buf.write("\2\2\2\u0156\u0157\7g\2\2\u0157\u0158\7n\2\2\u0158\u0159") buf.write("\7u\2\2\u0159\u015a\7g\2\2\u015aZ\3\2\2\2\u015b\u015c") buf.write("\7g\2\2\u015c\u015d\7n\2\2\u015d\u015e\7u\2\2\u015e\u015f") buf.write("\7g\2\2\u015f\u0160\7k\2\2\u0160\u0161\7h\2\2\u0161\\") buf.write("\3\2\2\2\u0162\u0163\7>\2\2\u0163\u0164\7?\2\2\u0164^") buf.write("\3\2\2\2\u0165\u0166\7@\2\2\u0166\u0167\7?\2\2\u0167`") buf.write("\3\2\2\2\u0168\u0169\7?\2\2\u0169\u016a\7?\2\2\u016ab") buf.write("\3\2\2\2\u016b\u016c\7#\2\2\u016c\u016d\7?\2\2\u016dd") buf.write("\3\2\2\2\u016e\u016f\7v\2\2\u016f\u0170\7t\2\2\u0170\u0171") buf.write("\7c\2\2\u0171\u0172\7p\2\2\u0172\u0173\7u\2\2\u0173\u0174") buf.write("\7r\2\2\u0174\u0175\7q\2\2\u0175\u0176\7u\2\2\u0176\u0177") buf.write("\7g\2\2\u0177f\3\2\2\2\u0178\u0179\7\60\2\2\u0179\u017a") buf.write("\7)\2\2\u017ah\3\2\2\2\u017b\u017c\7=\2\2\u017cj\3\2\2") buf.write("\2\u017d\u0181\7$\2\2\u017e\u0180\13\2\2\2\u017f\u017e") buf.write("\3\2\2\2\u0180\u0183\3\2\2\2\u0181\u0182\3\2\2\2\u0181") buf.write("\u017f\3\2\2\2\u0182\u0184\3\2\2\2\u0183\u0181\3\2\2\2") buf.write("\u0184\u0185\7$\2\2\u0185l\3\2\2\2\u0186\u018b\5\u0085") buf.write("C\2\u0187\u018a\5\u0085C\2\u0188\u018a\5\u0089E\2\u0189") buf.write("\u0187\3\2\2\2\u0189\u0188\3\2\2\2\u018a\u018d\3\2\2\2") buf.write("\u018b\u0189\3\2\2\2\u018b\u018c\3\2\2\2\u018cn\3\2\2") buf.write("\2\u018d\u018b\3\2\2\2\u018e\u0192\5\u0087D\2\u018f\u0191") buf.write("\5\u0089E\2\u0190\u018f\3\2\2\2\u0191\u0194\3\2\2\2\u0192") buf.write("\u0190\3\2\2\2\u0192\u0193\3\2\2\2\u0193\u019b\3\2\2\2") buf.write("\u0194\u0192\3\2\2\2\u0195\u0197\7\62\2\2\u0196\u0195") buf.write("\3\2\2\2\u0197\u0198\3\2\2\2\u0198\u0196\3\2\2\2\u0198") buf.write("\u0199\3\2\2\2\u0199\u019b\3\2\2\2\u019a\u018e\3\2\2\2") buf.write("\u019a\u0196\3\2\2\2\u019bp\3\2\2\2\u019c\u019d\7\62\2") buf.write("\2\u019d\u019f\t\2\2\2\u019e\u01a0\5\u008bF\2\u019f\u019e") buf.write("\3\2\2\2\u01a0\u01a1\3\2\2\2\u01a1\u019f\3\2\2\2\u01a1") buf.write("\u01a2\3\2\2\2\u01a2r\3\2\2\2\u01a3\u01a4\7\62\2\2\u01a4") buf.write("\u01a6\t\3\2\2\u01a5\u01a7\5\u008dG\2\u01a6\u01a5\3\2") buf.write("\2\2\u01a7\u01a8\3\2\2\2\u01a8\u01a6\3\2\2\2\u01a8\u01a9") buf.write("\3\2\2\2\u01a9t\3\2\2\2\u01aa\u01ab\7\62\2\2\u01ab\u01ad") buf.write("\t\4\2\2\u01ac\u01ae\5\u008fH\2\u01ad\u01ac\3\2\2\2\u01ae") buf.write("\u01af\3\2\2\2\u01af\u01ad\3\2\2\2\u01af\u01b0\3\2\2\2") buf.write("\u01b0v\3\2\2\2\u01b1\u01b4\5y=\2\u01b2\u01b4\5\u0095") buf.write("K\2\u01b3\u01b1\3\2\2\2\u01b3\u01b2\3\2\2\2\u01b4\u01b5") buf.write("\3\2\2\2\u01b5\u01b6\7k\2\2\u01b6x\3\2\2\2\u01b7\u01ba") buf.write("\5\u0091I\2\u01b8\u01ba\5\u0093J\2\u01b9\u01b7\3\2\2\2") buf.write("\u01b9\u01b8\3\2\2\2\u01baz\3\2\2\2\u01bb\u01bc\7?\2\2") buf.write("\u01bc|\3\2\2\2\u01bd\u01bf\t\5\2\2\u01be\u01bd\3\2\2") buf.write("\2\u01bf\u01c0\3\2\2\2\u01c0\u01be\3\2\2\2\u01c0\u01c1") buf.write("\3\2\2\2\u01c1\u01c2\3\2\2\2\u01c2\u01c3\b?\2\2\u01c3") buf.write("~\3\2\2\2\u01c4\u01c6\7\17\2\2\u01c5\u01c7\7\f\2\2\u01c6") buf.write("\u01c5\3\2\2\2\u01c6\u01c7\3\2\2\2\u01c7\u01ca\3\2\2\2") buf.write("\u01c8\u01ca\7\f\2\2\u01c9\u01c4\3\2\2\2\u01c9\u01c8\3") buf.write("\2\2\2\u01ca\u01cb\3\2\2\2\u01cb\u01cc\b@\2\2\u01cc\u0080") buf.write("\3\2\2\2\u01cd\u01ce\7\61\2\2\u01ce\u01cf\7,\2\2\u01cf") buf.write("\u01d3\3\2\2\2\u01d0\u01d2\13\2\2\2\u01d1\u01d0\3\2\2") buf.write("\2\u01d2\u01d5\3\2\2\2\u01d3\u01d4\3\2\2\2\u01d3\u01d1") buf.write("\3\2\2\2\u01d4\u01d6\3\2\2\2\u01d5\u01d3\3\2\2\2\u01d6") buf.write("\u01d7\7,\2\2\u01d7\u01d8\7\61\2\2\u01d8\u01d9\3\2\2\2") buf.write("\u01d9\u01da\bA\2\2\u01da\u0082\3\2\2\2\u01db\u01dc\7") buf.write("\61\2\2\u01dc\u01dd\7\61\2\2\u01dd\u01e1\3\2\2\2\u01de") buf.write("\u01e0\n\6\2\2\u01df\u01de\3\2\2\2\u01e0\u01e3\3\2\2\2") buf.write("\u01e1\u01df\3\2\2\2\u01e1\u01e2\3\2\2\2\u01e2\u01e4\3") buf.write("\2\2\2\u01e3\u01e1\3\2\2\2\u01e4\u01e5\bB\2\2\u01e5\u0084") buf.write("\3\2\2\2\u01e6\u01e7\t\7\2\2\u01e7\u0086\3\2\2\2\u01e8") buf.write("\u01e9\t\b\2\2\u01e9\u0088\3\2\2\2\u01ea\u01eb\t\t\2\2") buf.write("\u01eb\u008a\3\2\2\2\u01ec\u01ed\t\n\2\2\u01ed\u008c\3") buf.write("\2\2\2\u01ee\u01ef\t\13\2\2\u01ef\u008e\3\2\2\2\u01f0") buf.write("\u01f1\t\f\2\2\u01f1\u0090\3\2\2\2\u01f2\u01f4\5\u0095") buf.write("K\2\u01f3\u01f2\3\2\2\2\u01f3\u01f4\3\2\2\2\u01f4\u01f5") buf.write("\3\2\2\2\u01f5\u01fa\5\u0097L\2\u01f6\u01f7\5\u0095K\2") buf.write("\u01f7\u01f8\7\60\2\2\u01f8\u01fa\3\2\2\2\u01f9\u01f3") buf.write("\3\2\2\2\u01f9\u01f6\3\2\2\2\u01fa\u0092\3\2\2\2\u01fb") buf.write("\u01fe\5\u0095K\2\u01fc\u01fe\5\u0091I\2\u01fd\u01fb\3") buf.write("\2\2\2\u01fd\u01fc\3\2\2\2\u01fe\u01ff\3\2\2\2\u01ff\u0200") buf.write("\5\u0099M\2\u0200\u0094\3\2\2\2\u0201\u0203\5\u0089E\2") buf.write("\u0202\u0201\3\2\2\2\u0203\u0204\3\2\2\2\u0204\u0202\3") buf.write("\2\2\2\u0204\u0205\3\2\2\2\u0205\u0096\3\2\2\2\u0206\u0208") buf.write("\7\60\2\2\u0207\u0209\5\u0089E\2\u0208\u0207\3\2\2\2\u0209") buf.write("\u020a\3\2\2\2\u020a\u0208\3\2\2\2\u020a\u020b\3\2\2\2") buf.write("\u020b\u0098\3\2\2\2\u020c\u020e\t\r\2\2\u020d\u020f\t") buf.write("\16\2\2\u020e\u020d\3\2\2\2\u020e\u020f\3\2\2\2\u020f") buf.write("\u0211\3\2\2\2\u0210\u0212\5\u0089E\2\u0211\u0210\3\2") buf.write("\2\2\u0212\u0213\3\2\2\2\u0213\u0211\3\2\2\2\u0213\u0214") buf.write("\3\2\2\2\u0214\u009a\3\2\2\2\u0215\u0216\t\16\2\2\u0216") buf.write("\u009c\3\2\2\2\32\2\u0181\u0189\u018b\u0192\u0198\u019a") buf.write("\u01a1\u01a8\u01af\u01b3\u01b9\u01c0\u01c6\u01c9\u01d3") buf.write("\u01e1\u01f3\u01f9\u01fd\u0204\u020a\u020e\u0213\3\b\2") buf.write("\2") return buf.getvalue() class CMLangLexer(Lexer): atn = ATNDeserializer().deserialize(serializedATN()) decisionsToDFA = [ DFA(ds, i) for i, ds in enumerate(atn.decisionToState) ] T__0 = 1 T__1 = 2 T__2 = 3 T__3 = 4 T__4 = 5 T__5 = 6 T__6 = 7 T__7 = 8 T__8 = 9 T__9 = 10 T__10 = 11 T__11 = 12 T__12 = 13 T__13 = 14 T__14 = 15 T__15 = 16 T__16 = 17 T__17 = 18 T__18 = 19 T__19 = 20 T__20 = 21 INPUT = 22 OUTPUT = 23 STATE = 24 PARAMETER = 25 SPRING = 26 RESERVOIR = 27 COMPONENT = 28 INDEX = 29 FLOW = 30 ARRAYMUL = 31 ARRAYDIV = 32 ARRAYRDIV = 33 POW = 34 BREAK = 35 RETURN = 36 FUNCTION = 37 FOR = 38 WHILE = 39 END = 40 GLOBAL = 41 IF = 42 CLEAR = 43 ELSE = 44 ELSEIF = 45 LE_OP = 46 GE_OP = 47 EQ_OP = 48 NE_OP = 49 TRANSPOSE = 50 NCTRANSPOSE = 51 SEMI = 52 STRING_LITERAL = 53 IDENTIFIER = 54 DECIMAL_INTEGER = 55 OCT_INTEGER = 56 HEX_INTEGER = 57 BIN_INTEGER = 58 IMAG_NUMBER = 59 FLOAT_NUMBER = 60 EQ = 61 WHITESPACE = 62 NEWLINE = 63 BLOCKCOMMENT = 64 LINECOMMENT = 65 channelNames = [ u"DEFAULT_TOKEN_CHANNEL", u"HIDDEN" ] modeNames = [ "DEFAULT_MODE" ] literalNames = [ "<INVALID>", "'('", "')'", "'{'", "'}'", "','", "'['", "']'", "':'", "'+'", "'-'", "'*'", "'/'", "'%'", "'<'", "'>'", "'?'", "'int'", "'float'", "'str'", "'bool'", "'complex'", "'input'", "'output'", "'state'", "'param'", "'spring'", "'reservoir'", "'component'", "'index'", "'flow'", "'.*'", "'.\\'", "'./'", "'^'", "'break'", "'return'", "'function'", "'for'", "'while'", "'end'", "'global'", "'if'", "'clear'", "'else'", "'elseif'", "'<='", "'>='", "'=='", "'!='", "'transpose'", "'.''", "';'", "'='" ] symbolicNames = [ "<INVALID>", "INPUT", "OUTPUT", "STATE", "PARAMETER", "SPRING", "RESERVOIR", "COMPONENT", "INDEX", "FLOW", "ARRAYMUL", "ARRAYDIV", "ARRAYRDIV", "POW", "BREAK", "RETURN", "FUNCTION", "FOR", "WHILE", "END", "GLOBAL", "IF", "CLEAR", "ELSE", "ELSEIF", "LE_OP", "GE_OP", "EQ_OP", "NE_OP", "TRANSPOSE", "NCTRANSPOSE", "SEMI", "STRING_LITERAL", "IDENTIFIER", "DECIMAL_INTEGER", "OCT_INTEGER", "HEX_INTEGER", "BIN_INTEGER", "IMAG_NUMBER", "FLOAT_NUMBER", "EQ", "WHITESPACE", "NEWLINE", "BLOCKCOMMENT", "LINECOMMENT" ] ruleNames = [ "T__0", "T__1", "T__2", "T__3", "T__4", "T__5", "T__6", "T__7", "T__8", "T__9", "T__10", "T__11", "T__12", "T__13", "T__14", "T__15", "T__16", "T__17", "T__18", "T__19", "T__20", "INPUT", "OUTPUT", "STATE", "PARAMETER", "SPRING", "RESERVOIR", "COMPONENT", "INDEX", "FLOW", "ARRAYMUL", "ARRAYDIV", "ARRAYRDIV", "POW", "BREAK", "RETURN", "FUNCTION", "FOR", "WHILE", "END", "GLOBAL", "IF", "CLEAR", "ELSE", "ELSEIF", "LE_OP", "GE_OP", "EQ_OP", "NE_OP", "TRANSPOSE", "NCTRANSPOSE", "SEMI", "STRING_LITERAL", "IDENTIFIER", "DECIMAL_INTEGER", "OCT_INTEGER", "HEX_INTEGER", "BIN_INTEGER", "IMAG_NUMBER", "FLOAT_NUMBER", "EQ", "WHITESPACE", "NEWLINE", "BLOCKCOMMENT", "LINECOMMENT", "NONDIGIT", "NON_ZERO_DIGIT", "DIGIT", "OCT_DIGIT", "HEX_DIGIT", "BIN_DIGIT", "POINT_FLOAT", "EXPONENT_FLOAT", "INT_PART", "FRACTION", "EXPONENT", "SIGN" ] grammarFileName = "CMLang.g4" def __init__(self, input=None, output:TextIO = sys.stdout): super().__init__(input, output) self.checkVersion("4.7.2") self._interp = LexerATNSimulator(self, self.atn, self.decisionsToDFA, PredictionContextCache()) self._actions = None self._predicates = None
59.894309
108
0.564183
843987cccbfc20ee98b71faa5dcf3f69e893db92
6,220
py
Python
SUSYBSMAnalysis/HSCP/test/BuildHSCParticles/HSCParticleProducer_cfg.py
SWuchterl/cmssw
769b4a7ef81796579af7d626da6039dfa0347b8e
[ "Apache-2.0" ]
6
2017-09-08T14:12:56.000Z
2022-03-09T23:57:01.000Z
SUSYBSMAnalysis/HSCP/test/BuildHSCParticles/HSCParticleProducer_cfg.py
SWuchterl/cmssw
769b4a7ef81796579af7d626da6039dfa0347b8e
[ "Apache-2.0" ]
545
2017-09-19T17:10:19.000Z
2022-03-07T16:55:27.000Z
SUSYBSMAnalysis/HSCP/test/BuildHSCParticles/HSCParticleProducer_cfg.py
SWuchterl/cmssw
769b4a7ef81796579af7d626da6039dfa0347b8e
[ "Apache-2.0" ]
14
2017-10-04T09:47:21.000Z
2019-10-23T18:04:45.000Z
import FWCore.ParameterSet.Config as cms process = cms.Process("HSCPAnalysis") #The following parameters need to be provided #isSignal, isBckg, isData, isSkimmedSample, GTAG, InputFileList #isSignal = True #isBckg = False #isData = False #isSkimmedSample = False #GTAG = 'START72_V1::All' process.load("FWCore.MessageService.MessageLogger_cfi") process.load('Configuration.Geometry.GeometryExtended2015Reco_cff') process.load('Configuration.StandardSequences.MagneticField_cff') process.load("Configuration.StandardSequences.FrontierConditions_GlobalTag_cff") process.load('Configuration.StandardSequences.Services_cff') process.options = cms.untracked.PSet( wantSummary = cms.untracked.bool(True), SkipEvent = cms.untracked.vstring('ProductNotFound'), ) process.MessageLogger.cerr.FwkReport.reportEvery = 1000 process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) process.source = cms.Source("PoolSource", fileNames = InputFileList, inputCommands = cms.untracked.vstring("keep *", "drop *_MEtoEDMConverter_*_*") ) if(isSignal): process.source.duplicateCheckMode = cms.untracked.string("noDuplicateCheck") #for i in range(0,25): # process.source.fileNames.extend(["file:/afs/cern.ch/user/q/querten/workspace/public/14_08_12_Run2HSCP/CMSSW_7_2_X_2014-08-18-0200/src/SUSYBSMAnalysis/HSCP/test/BuildHSCParticles/Signals/../../../../../SampleProd/FARM_RECO/outputs/gluino1TeV_RECO_%04i.root" % i]) process.GlobalTag.globaltag = GTAG process.HSCPTuplePath = cms.Path() ######################################################################## #Run the Skim sequence if necessary if(not isSkimmedSample): process.nEventsBefSkim = cms.EDProducer("EventCountProducer") process.load('Configuration.Skimming.PDWG_EXOHSCP_cff') process.load('HLTrigger.HLTfilters.hltHighLevel_cfi') process.HSCPTrigger = process.hltHighLevel.clone() process.HSCPTrigger.TriggerResultsTag = cms.InputTag( "TriggerResults", "", "HLT" ) process.HSCPTrigger.andOr = cms.bool( True ) #OR process.HSCPTrigger.throw = cms.bool( False ) if(isData): process.HSCPTrigger.HLTPaths = [ "HLT_*_dEdx*", "HLT_Mu40_eta2p1*", "HLT_Mu50_eta2p1*", "HLT_HT650_*", "HLT_MET80_*", "HLT_L2Mu*MET*", "HLT_L2Mu*NoBPTX*", "HLT_PFMET150_*", ] elif(isBckg): #to be updated to Run2 Triggers, in the meanwhile keep all of them to study trigger efficiency process.HSCPTrigger.HLTPaths = ["*"] else: #do not apply trigger filter on signal process.HSCPTrigger.HLTPaths = ["*"] process.HSCPTuplePath += process.nEventsBefSkim + process.HSCPTrigger + process.exoticaHSCPSeq ######################################################################## #Run the HSCP EDM-tuple Sequence on skimmed sample process.nEventsBefEDM = cms.EDProducer("EventCountProducer") process.load("SUSYBSMAnalysis.HSCP.HSCParticleProducerFromSkim_cff") process.HSCPTuplePath += process.nEventsBefEDM + process.HSCParticleProducerSeq ######################################################################## # Only for MC samples, save skimmed genParticles if(isSignal or isBckg): process.load("PhysicsTools.HepMCCandAlgos.genParticles_cfi") process.load("SimGeneral.HepPDTESSource.pythiapdt_cfi") process.allGenParticles = cms.EDProducer("GenParticleProducer", saveBarCodes = cms.untracked.bool(False), src = cms.InputTag("VtxSmeared"), abortOnUnknownPDGCode = cms.untracked.bool(False) ) process.genParticles = cms.EDFilter("GenParticleSelector", filter = cms.bool(False), src = cms.InputTag("allGenParticles"), cut = cms.string('charge != 0 & pt > 5.0'), stableOnly = cms.bool(True) ) process.HSCPTuplePath += process.allGenParticles + process.genParticles ######################################################################## #make the pool output process.Out = cms.OutputModule("PoolOutputModule", outputCommands = cms.untracked.vstring( "drop *", "keep EventAux_*_*_*", "keep LumiSummary_*_*_*", "keep edmMergeableCounter_*_*_*", "keep GenRunInfoProduct_*_*_*", "keep *_genParticles_*_HSCPAnalysis", "keep GenEventInfoProduct_generator_*_*", "keep *_offlinePrimaryVertices_*_*", "keep SiStripClusteredmNewDetSetVector_generalTracksSkim_*_*", "keep SiPixelClusteredmNewDetSetVector_generalTracksSkim_*_*", "keep *_TrackRefitter_*_*", "keep *_standAloneMuons_*_*", "keep *_globalMuons_*_*", "keep *_muonsSkim_*_*", "keep edmTriggerResults_TriggerResults_*_*", "keep *_ak5PFJetsPt15__*", "keep recoPFMETs_pfMet__*", "keep *_HSCParticleProducer_*_*", "keep *_HSCPIsolation01__*", "keep *_HSCPIsolation03__*", "keep *_HSCPIsolation05__*", "keep *_dedx*_*_HSCPAnalysis", "keep *_muontiming_*_HSCPAnalysis", "keep triggerTriggerEvent_hltTriggerSummaryAOD_*_*", "keep *_RefitMTSAMuons_*_*", "keep *_MTMuons_*_*", "keep *_MTSAMuons_*_*", "keep *_MTmuontiming_*_*", "keep *_refittedStandAloneMuons_*_*", "keep *_offlineBeamSpot_*_*", "drop *_offlineBeamSpot_*_HSCPAnalysis", #no need to save the BS from this process "keep *_MuonSegmentProducer_*_*", "drop TrajectorysToOnerecoTracksAssociation_TrackRefitter__", "drop recoTrackExtras_*_*_*", "keep recoTrackExtras_TrackRefitter_*_*", "drop TrackingRecHitsOwned_*Muon*_*_*", "keep *_g4SimHits_StoppedParticles*_*", "keep PileupSummaryInfos_addPileupInfo_*_*" ), fileName = cms.untracked.string('HSCP.root'), SelectEvents = cms.untracked.PSet( SelectEvents = cms.vstring('') ), ) if(isBckg or isData): process.Out.SelectEvents.SelectEvents = cms.vstring('HSCPTuplePath') ######################################################################## #schedule the sequence process.endPath1 = cms.EndPath(process.Out) process.schedule = cms.Schedule(process.HSCPTuplePath, process.endPath1)
38.875
266
0.661093
df520e80fdd85bb1b608cd4fbf064c83355308b1
3,329
py
Python
openfl/models/inference_only_model_wrapper.py
brandon-edwards/OpenFederatedLearning
379e1207f2e69b14ab5552e998bd3190363d6ecf
[ "Apache-2.0" ]
1
2021-07-01T03:40:52.000Z
2021-07-01T03:40:52.000Z
openfl/models/inference_only_model_wrapper.py
brandon-edwards/OpenFederatedLearning
379e1207f2e69b14ab5552e998bd3190363d6ecf
[ "Apache-2.0" ]
null
null
null
openfl/models/inference_only_model_wrapper.py
brandon-edwards/OpenFederatedLearning
379e1207f2e69b14ab5552e998bd3190363d6ecf
[ "Apache-2.0" ]
null
null
null
# Copyright (C) 2020 Intel Corporation # Licensed subject to the terms of the separately executed evaluation license agreement between Intel Corporation and you. from openfl.models.flmodel import FLModel from openfl.flplan import init_object class InferenceOnlyModelWrapper(FLModel): """Model class wrapper for Federated Learning to enable inferencing on the model using run_inference_from_flplan with minimal requirements on the base_model. Those requirements on the base model are as follows: A python class providing access to your model, with two required instance methods. Please populate argument defaults where appropriate to allow for the optimal configuration, and document to allow users to understand how to customize. Particularly relevant, will be that your model infer_volume method processes images according to our assumption on input and output shapes (see below). The required instance methods are as follows: def __init__(self, *args, **kwargs): ''' Instantiates a properly configured model object, including population of all model weights from a model serialization file. Args: ... Kwargs: ... Returns: None ''' raise NotImplementedError() def infer_volume(self, X): ''' Perform model inference on a volume of data. Args: X (numpy array): Input volume to perform inference on, containing channels for all scan modalities required for the model task. The expected input shape can be either: (num_channels is the number of scanning modalities used by the model) - channels first - (num_samples, num_channels,coronal_axis_dim, sagittal_axis_dim, transversal_axis_dim) - or channels last - (num_samples,coronal_axis_dim, sagittal_axis_dim, transversal_axis_dim, num_channels) Returns: (numpy array): Model output for the input volume. The output shape is as follows: (num_samples, coronal_axis_dim, sagittal_axis_dim, transversal_axis_dim) ''' raise NotImplementedError() """ def __init__(self, data, base_model): """Initializer Args: data (child class of fldata): Object to provide inference data loader. base_model: Base model satisfying requirements above """ super(InferenceOnlyModelWrapper, self).__init__(data=data) self.infer_batch = base_model.infer_volume # If base_model has implemented FLModel methods below, we expose them # to be used to populate model weights outside of the model init if desired. # FIXME: Dependency on knowlege of FLModel object here # Should we instead dynamically transfer methods? for method_name in ['get_tensor_dict', 'set_tensor_dict', 'load_native']: if hasattr(base_model, method_name): setattr(self, method_name, getattr(base_model, method_name))
36.988889
122
0.634425
c215c4e7f8d43e829eccf39245bc16c75be0cd2e
192
py
Python
test/tests/os_test.py
kevinxucs/pyston
bdb87c1706ac74a0d15d9bc2bae53798678a5f14
[ "Apache-2.0" ]
1
2015-11-06T03:39:51.000Z
2015-11-06T03:39:51.000Z
test/tests/os_test.py
kevinxucs/pyston
bdb87c1706ac74a0d15d9bc2bae53798678a5f14
[ "Apache-2.0" ]
null
null
null
test/tests/os_test.py
kevinxucs/pyston
bdb87c1706ac74a0d15d9bc2bae53798678a5f14
[ "Apache-2.0" ]
null
null
null
# allow-warning: converting unicode literal to str # currently broken: # import os.path import os r1 = os.urandom(8) r2 = os.urandom(8) print len(r1), len(r2), type(r1), type(r2), r1 == r2
17.454545
52
0.682292
2bd7b7bb556c43fc7c963d719a7ae3a88dbb9bb5
14,110
py
Python
Protheus_WebApp/Modules/SIGACTB/CTBA161TESTCASE.py
98llm/tir-script-samples
0bff8393b79356aa562e9e6512c11ee6e039b177
[ "MIT" ]
17
2018-09-24T17:27:08.000Z
2021-09-16T19:09:46.000Z
Protheus_WebApp/Modules/SIGACTB/CTBA161TESTCASE.py
98llm/tir-script-samples
0bff8393b79356aa562e9e6512c11ee6e039b177
[ "MIT" ]
4
2018-09-24T17:30:32.000Z
2022-01-03T11:39:30.000Z
Protheus_WebApp/Modules/SIGACTB/CTBA161TESTCASE.py
98llm/tir-script-samples
0bff8393b79356aa562e9e6512c11ee6e039b177
[ "MIT" ]
18
2019-06-07T17:41:34.000Z
2022-01-31T18:17:31.000Z
from tir import Webapp import unittest class CTBA161(unittest.TestCase): @classmethod def setUpClass(inst): inst.oHelper = Webapp() inst.oHelper.Setup("SIGACTB", "01/01/2019", "T1", "D MG 01", "34") inst.oHelper.Program("CTBA161") ######################################### # Inclusão de Visão - Sintetica - MODO TRADICIONAL ######################################### def test_CTBA161_001(self): self.oHelper.WaitShow("Cadastro Visao Gerencial") self.oHelper.SetKey("F12") self.oHelper.SetValue("Modo de Exibicao ?", "Tradicional") self.oHelper.SetButton("OK") self.oHelper.SetButton("Incluir") self.oHelper.SetBranch("D MG 01 ") self.oHelper.SetValue("CTS_CODPLA", "T01") # OrdemAut = self.oHelper.GetValue("CTS_ORDEM") # EntiGerenAut = self.oHelper.GetValue("CTS_CONTAG") # self.oHelper.CheckResult("CTS_ORDEM", OrdemAut) # self.oHelper.CheckResult("CTS_CONTAG", EntiGerenAut) self.oHelper.SetValue("CTS_CTASUP", "") self.oHelper.SetValue("CTS_DESCCG", "ENTIDADE TIR 01 INCLUIR") self.oHelper.SetValue("CTS_DETHCG", "TIR") self.oHelper.SetValue("CTS_NORMAL", "2 - Credito") self.oHelper.SetValue("CTS_COLUNA", "0") self.oHelper.SetValue("CTS_CLASSE", "1 - Sintetica") self.oHelper.SetValue("CTS_NOME", "TIR INCS") self.oHelper.SetValue("CTS_VISENT", "1 - Sim") self.oHelper.SetValue("CTS_FATSLD", "1 - Mantem") self.oHelper.SetValue("CTS_TOTVIS", "1 - Sim") self.oHelper.CheckView("Identificadores") self.oHelper.ClickCheckBox("Total Geral") self.oHelper.SetButton("Salvar") self.oHelper.SetButton("Cancelar") chave = "T01" # VISUALIZANDO REGISTROS PRREENCHIDOS self.oHelper.SearchBrowse(f"D MG 01 {chave}", key=1, index=True) self.oHelper.SetButton("Visualizar") self.oHelper.CheckResult("CTS_CODPLA", "T01") # self.oHelper.CheckResult("CTS_ORDEM", OrdemAut) # self.oHelper.CheckResult("CTS_CONTAG", EntiGerenAut) self.oHelper.CheckResult("CTS_CTASUP", "") self.oHelper.CheckResult("CTS_DESCCG", "ENTIDADE TIR 01 INCLUIR") self.oHelper.CheckResult("CTS_DETHCG", "TIR") self.oHelper.CheckResult("CTS_NORMAL", "2 - Credito") self.oHelper.CheckResult("CTS_COLUNA", "0") self.oHelper.CheckResult("CTS_CLASSE", "1 - Sintetica") self.oHelper.CheckResult("CTS_NOME", "TIR INCS") self.oHelper.CheckResult("CTS_VISENT", "1 - Sim") self.oHelper.CheckResult("CTS_FATSLD", "1 - Mantem") self.oHelper.CheckResult("CTS_TOTVIS", "1 - Sim") self.oHelper.SetButton("Cancelar") self.oHelper.AssertTrue() ##################################################### # Alterar Planilha com Observação - Alterar Cadastro ##################################################### def test_CTBA161_002(self): chave = "T020000000001001" self.oHelper.SearchBrowse(f"D MG 01 {chave}", key=1, index=True) self.oHelper.SetButton("Outras Ações", "Alterar Cadastro") self.oHelper.SetValue("CVE_DESCRI", "TIR ALT3") self.oHelper.SetValue("CVE_OBS", "TIR OBSER") self.oHelper.CheckResult("CVE_DESCRI", "TIR ALT3") self.oHelper.CheckResult("CVE_OBS", "TIR OBSER") self.oHelper.SetButton("Salvar") self.oHelper.AssertTrue() ##################################################### # Alterar visão de analitica para sintetica - modo tradicional ##################################################### def test_CTBA161_003(self): chave = "T050000000001001" self.oHelper.SearchBrowse(f"D MG 01 {chave}", key=1, index=True) self.oHelper.SetButton("Alterar") self.oHelper.SetValue("CTS_DESCCG", "ALTERADO") self.oHelper.SetValue("CTS_CLASSE", "1 - Sintetica") self.oHelper.SetValue("CTS_VISENT", "1 - Sim") self.oHelper.SetValue("CTS_FATSLD", "1 - Mantem") self.oHelper.SetValue("CTS_TOTVIS", "1 - Sim") self.oHelper.ClickCheckBox("Total Geral") self.oHelper.SetButton("Confirmar") self.oHelper.SearchBrowse(f"D MG 01 {chave}", key=1, index=True) ### # visualizando dados ### self.oHelper.SetButton("Visualizar") self.oHelper.CheckResult("CTS_DESCCG", "ALTERADO") self.oHelper.CheckResult("CTS_CLASSE", "1 - Sintetica") self.oHelper.CheckResult("CTS_VISENT", "1 - Sim") self.oHelper.CheckResult("CTS_FATSLD", "1 - Mantem") self.oHelper.CheckResult("CTS_TOTVIS", "1 - Sim") self.oHelper.SetButton("Confirmar") self.oHelper.AssertTrue() ##################################################### ## Exclusão de visão Gerencial - MODO TRADICIONAL ##################################################### def test_CTBA161_004(self): chave = "T030000000001001" self.oHelper.SearchBrowse(f"D MG 01 {chave}", key=1, index=True) self.oHelper.SetButton("Outras Ações", "Excluir") self.oHelper.SetButton("Confirmar") self.oHelper.SearchBrowse(f"D MG 01 {chave}", key=1, index=True) self.oHelper.SetButton("Visualizar") self.oHelper.CheckResult("CTS_DESCCG", "TIR EXCLUSAO") self.oHelper.SetButton("Confirmar") self.oHelper.AssertFalse() ##################################################### ## Exportar estrutura, visão gerencial ##################################################### def test_CTBA161_005(self): chave = "T000000000001001" self.oHelper.SearchBrowse(f"D MG 01 {chave}", key=1, index=True) self.oHelper.SetButton("Outras Ações","Exp. Estrutura") self.oHelper.SetValue("Estrutura de visao ?","\\baseline\\visaotir.cve") self.oHelper.SetButton("Ok") self.oHelper.WaitShow("Exportacao gerada com sucesso") self.oHelper.SetButton("Ok") self.oHelper.AssertTrue() ##################################################### ## importar estrutura, visão gerencial ##################################################### def test_CTBA161_006(self): #self.oHelper.WaitShow("Cadastro Visao Gerencial") #self.oHelper.SetKey("F12") #self.oHelper.SetValue("Modo de Exibicao ?", "Arvore") #self.oHelper.SetButton("OK") self.oHelper.SetButton("Outras Ações","Imp. Estrutura") self.oHelper.SetBranch("D MG 01 ") self.oHelper.SetValue("Estrutura de visao ?","\\baseline\\tirImport.cve") self.oHelper.SetButton("Ok") self.oHelper.SetValue("CVE_CODIGO","T07") self.oHelper.SetValue("CVE_DESCRI","TIR IMPORTADO") self.oHelper.SetValue("CVE_OBS","TIR") self.oHelper.SetButton("Salvar") self.oHelper.WaitShow("Importacao finalizada com sucesso") self.oHelper.SetButton("Fechar") ##aguardar automação - implementação possivelmente futura de clicar com direito em arvores ANALITICAS #self.oHelper.SetButton("Visualizar") #self.oHelper.ClickTree("TIR IMPORTADO") #self.oHelper.ClickTree("00000000000000000005-TIR ARVORE") #self.oHelper.ClickLabel("00000000000000000006 - TIR ANALITICO TIR") #self.oHelper.ClickIcon("Close") self.oHelper.AssertTrue() ######################################### # Inclusão de Visão - Analitica - MODO ARVORE ######################################### def test_CTBA161_007(self): # Variaveis para verificar codigo gerado automaticamente self.oHelper.WaitShow("Cadastro Visao Gerencial") self.oHelper.SetKey("F12") self.oHelper.SetValue("Modo de Exibicao ?", "Arvore") self.oHelper.SetButton("OK") self.oHelper.SetButton("Incluir") self.oHelper.SetBranch("D MG 01 ") self.oHelper.WaitShow("Cadastro Visao Gerencial - INCLUIR") self.oHelper.SetValue("CVE_CODIGO","T04") self.oHelper.SetFocus("CVE_DESCRI") self.oHelper.SetValue("CVE_DESCRI","TIR INC ARVORE") self.oHelper.SetFocus("CVE_OBS") self.oHelper.SetValue("CVE_OBS","TIR OBS") self.oHelper.SetButton("Salvar") ##Node da visão Gerencial self.oHelper.ClickTree("TIR INC ARVORE",right_click=True) self.oHelper.CheckView("Incluir",element_type="str") self.oHelper.ClickMenuPopUpItem("Incluir") self.oHelper.WaitShow("Conta Gerencial - Inclusao") cEntidGerAut=self.oHelper.GetValue("CVF_CONTAG") cORDEMAut=self.oHelper.GetValue("CVF_ORDEM") self.oHelper.CheckResult("CVF_CONTAG",cEntidGerAut) self.oHelper.CheckResult("CVF_ORDEM",cORDEMAut) self.oHelper.SetValue("CVF_CLASSE","1 - Sintetica") self.oHelper.SetValue("CVF_DESCCG","TIR ARVORE") self.oHelper.SetValue("CVF_NORMAL","2 - Credito") self.oHelper.SetValue("CVF_COLUNA","0 - Nenhuma") self.oHelper.ClickCheckBox("Total Geral") self.oHelper.SetValue("CVF_TOTVIS", "1 - Sim") self.oHelper.SetValue("CVF_VISENT", "1 - Sim") self.oHelper.SetValue("CVF_FATSLD", "1 - Matem") #self.oHelper.SetValue("CVF_DETHCG","") self.oHelper.SetValue("CVF_TPVALO", "D - Padrao D/C") ##self.oHelper.SetValue("CVF_PICTUR", "") self.oHelper.SetButton("Confirmar") ##Node da entidade gerencial, criando analitica self.oHelper.ClickTree(cEntidGerAut+"-TIR ARVORE",right_click=True) #self.oHelper.CheckView("Incluir",element_type="str") self.oHelper.ClickMenuPopUpItem("Incluir") self.oHelper.WaitShow("Conta Gerencial - Inclusao") cEntidGerAut2 = self.oHelper.GetValue("CVF_CONTAG") cORDEMAut2 = self.oHelper.GetValue("CVF_ORDEM") self.oHelper.CheckResult("CVF_CONTAG",cEntidGerAut2) self.oHelper.CheckResult("CVF_ORDEM",cORDEMAut2) self.oHelper.SetValue("CVF_CLASSE","2 - Analitica") self.oHelper.CheckResult("CVF_CTASUP",cEntidGerAut) self.oHelper.SetValue("CVF_DESCCG","TIR ANALITICO") self.oHelper.SetValue("CVF_NORMAL","1 - Debito") self.oHelper.SetValue("CVF_TOTVIS", "2 - Nao") self.oHelper.SetValue("CVF_VISENT", "1 - Sim") self.oHelper.SetValue("CVF_FATSLD", "1 - Matem") self.oHelper.SetValue("CVF_DETHCG","TIR") self.oHelper.SetValue("CVF_TPVALO", "D - Padrao D/C") self.oHelper.SetButton("Confirmar") ####ABRIR TASK PARA AUTOMAÇÃO/AGUARDAR RESOLUÇAO #self.oHelper.ClickIcon("Alterar") #self.oHelper.SetValue("CTS_CT1INI","000000002 ",grid=True,row=1) #self.oHelper.SetValue("CTS_CT1FIM","000000002 ",grid=True,row=1) #self.oHelper.SetValue("CTS_IDENTI","1 - Soma",grid=True,row=1) #self.oHelper.SetButton("Confirmar") #self.oHelper.SetButton("X") #self.oHelper.SetButton("Cancelar") self.oHelper.AssertTrue() ##################################################### ## Modificações estrutura - MODO Arvore, completa com estrutura ##################################################### def test_CTBA161_008(self): self.oHelper.WaitShow("Cadastro Visao Gerencial") self.oHelper.SetKey("F12") self.oHelper.SetValue("Modo de Exibicao ?", "Arvore") self.oHelper.SetButton("OK") chave = "T06" self.oHelper.SearchBrowse(f"D MG 01 {chave}", key=1, index=True) self.oHelper.SetButton("Alterar") ##Alterando estrutura sintetica #como era # self.oHelper.ClickTree("00000000000000000010-TIR ARVORE") # self.oHelper.CheckView("") # self.oHelper.ClickTree("00000000000000000011-TIR SINT",right_click=True) ## #alteração sugerida pela task ca-2467 self.oHelper.ClickTree(" 00000000000000000010-TIR ARVORE> 00000000000000000011-TIR SINT",right_click=True) self.oHelper.CheckView("Alterar",element_type="str") self.oHelper.ClickMenuPopUpItem("Alterar") self.oHelper.WaitShow("Conta Gerencial - Alteracao") self.oHelper.SetValue("CVF_DESCCG","TIR SINT ALTERADO") self.oHelper.SetButton("Confirmar") #exclusão de uma entidade sintetica com duas analiticas uma com conta atreladas self.oHelper.WaitShow("Conta Gerencial") self.oHelper.ClickTree("00000000000000000010-TIR ARVORE") self.oHelper.ClickTree("00000000000000000011-TIR SINT ALTERADO",right_click=True) self.oHelper.CheckView("Excluir",element_type="str") self.oHelper.ClickMenuPopUpItem("Excluir") self.oHelper.CheckHelp("Confirma exclusao da conta gerencial","Ok") #exclusão estrutura restante sintetica self.oHelper.ClickTree("00000000000000000010-TIR ARVORE",right_click=True) self.oHelper.CheckView("Excluir",element_type="str") self.oHelper.ClickMenuPopUpItem("Excluir") self.oHelper.CheckHelp("Confirma exclusao da conta gerencial (serao excluidas todas as contas dependentes).","Ok") #self.oHelper.TearDown() self.oHelper.AssertTrue() #testes exploratório fechando pelo botão "close", para testes não executar por enquanto ##def test_CTBA161_009(self): ##self.oHelper.WaitShow("Cadastro Visao Gerencial") ##self.oHelper.SetKey("F12") ##self.oHelper.SetValue("Modo de Exibicao ?", "Arvore") ##self.oHelper.SetButton("OK") #chave = "1660000000001001" #chave = "T04" #self.oHelper.SearchBrowse(f"D MG 01 {chave}", key=1, index=True) #self.oHelper.SetButton("Visualizar") #self.oHelper.WaitShow("Visao Gerencial") #self.oHelper.SetButton("x") #Tentativa com Close x,X #self.oHelper.ClickIcon("x") #Tentativa com x, X, Close #self.oHelper.AssertTrue() @classmethod def tearDownClass(inst): inst.oHelper.TearDown() if __name__ == '__main__': unittest.main()
41.622419
122
0.614033
cd0711e8ba003df48d328efb409420523f09b14f
5,288
py
Python
lanenet_model/lanenet_discriminative_loss.py
aiLibrary/lanenet-lane-detection
6abedbe1ba6da2e6f6e3935c6d26bd79c55a0d45
[ "Apache-2.0" ]
2
2018-11-05T01:31:06.000Z
2019-02-02T08:03:24.000Z
lanenet_model/lanenet_discriminative_loss.py
aiLibrary/lanenet-lane-detection
6abedbe1ba6da2e6f6e3935c6d26bd79c55a0d45
[ "Apache-2.0" ]
null
null
null
lanenet_model/lanenet_discriminative_loss.py
aiLibrary/lanenet-lane-detection
6abedbe1ba6da2e6f6e3935c6d26bd79c55a0d45
[ "Apache-2.0" ]
2
2020-04-10T08:55:33.000Z
2021-07-07T06:22:29.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # @Time : 18-5-11 下午3:48 # @Author : Luo Yao # @Site : http://icode.baidu.com/repos/baidu/personal-code/Luoyao # @File : lanenet_discriminative_loss.py # @IDE: PyCharm Community Edition """ 实现LaneNet的Discriminative Loss函数 """ import tensorflow as tf def discriminative_loss_single( prediction, correct_label, feature_dim, label_shape, delta_v, delta_d, param_var, param_dist, param_reg): """ 论文equ(1)提到的实例分割损失函数 :param prediction: inference of network :param correct_label: instance label :param feature_dim: feature dimension of prediction :param label_shape: shape of label :param delta_v: cut off variance distance :param delta_d: cut off cluster distance :param param_var: weight for intra cluster variance :param param_dist: weight for inter cluster distances :param param_reg: weight regularization """ # 像素对齐为一行 correct_label = tf.reshape( correct_label, [ label_shape[1] * label_shape[0]]) reshaped_pred = tf.reshape( prediction, [ label_shape[1] * label_shape[0], feature_dim]) # 统计实例个数 unique_labels, unique_id, counts = tf.unique_with_counts(correct_label) counts = tf.cast(counts, tf.float32) num_instances = tf.size(unique_labels) # 计算pixel embedding均值向量 segmented_sum = tf.unsorted_segment_sum( reshaped_pred, unique_id, num_instances) mu = tf.div(segmented_sum, tf.reshape(counts, (-1, 1))) mu_expand = tf.gather(mu, unique_id) # 计算公式的loss(var) distance = tf.norm(tf.subtract(mu_expand, reshaped_pred), axis=1) distance = tf.subtract(distance, delta_v) distance = tf.clip_by_value(distance, 0., distance) distance = tf.square(distance) l_var = tf.unsorted_segment_sum(distance, unique_id, num_instances) l_var = tf.div(l_var, counts) l_var = tf.reduce_sum(l_var) l_var = tf.divide(l_var, tf.cast(num_instances, tf.float32)) # 计算公式的loss(dist) mu_interleaved_rep = tf.tile(mu, [num_instances, 1]) mu_band_rep = tf.tile(mu, [1, num_instances]) mu_band_rep = tf.reshape( mu_band_rep, (num_instances * num_instances, feature_dim)) mu_diff = tf.subtract(mu_band_rep, mu_interleaved_rep) # 去除掩模上的零点 intermediate_tensor = tf.reduce_sum(tf.abs(mu_diff), axis=1) zero_vector = tf.zeros(1, dtype=tf.float32) bool_mask = tf.not_equal(intermediate_tensor, zero_vector) mu_diff_bool = tf.boolean_mask(mu_diff, bool_mask) mu_norm = tf.norm(mu_diff_bool, axis=1) mu_norm = tf.subtract(2. * delta_d, mu_norm) mu_norm = tf.clip_by_value(mu_norm, 0., mu_norm) mu_norm = tf.square(mu_norm) l_dist = tf.reduce_mean(mu_norm) # 计算原始Discriminative Loss论文中提到的正则项损失 l_reg = tf.reduce_mean(tf.norm(mu, axis=1)) # 合并损失按照原始Discriminative Loss论文中提到的参数合并 param_scale = 1. l_var = param_var * l_var l_dist = param_dist * l_dist l_reg = param_reg * l_reg loss = param_scale * (l_var + l_dist + l_reg) return loss, l_var, l_dist, l_reg def discriminative_loss(prediction, correct_label, feature_dim, image_shape, delta_v, delta_d, param_var, param_dist, param_reg): """ 按照论文的思想迭代计算loss损失 :return: discriminative loss and its three components """ def cond(label, batch, out_loss, out_var, out_dist, out_reg, i): return tf.less(i, tf.shape(batch)[0]) def body(label, batch, out_loss, out_var, out_dist, out_reg, i): disc_loss, l_var, l_dist, l_reg = discriminative_loss_single( prediction[i], correct_label[i], feature_dim, image_shape, delta_v, delta_d, param_var, param_dist, param_reg) out_loss = out_loss.write(i, disc_loss) out_var = out_var.write(i, l_var) out_dist = out_dist.write(i, l_dist) out_reg = out_reg.write(i, l_reg) return label, batch, out_loss, out_var, out_dist, out_reg, i + 1 # TensorArray is a data structure that support dynamic writing output_ta_loss = tf.TensorArray(dtype=tf.float32, size=0, dynamic_size=True) output_ta_var = tf.TensorArray(dtype=tf.float32, size=0, dynamic_size=True) output_ta_dist = tf.TensorArray(dtype=tf.float32, size=0, dynamic_size=True) output_ta_reg = tf.TensorArray(dtype=tf.float32, size=0, dynamic_size=True) _, _, out_loss_op, out_var_op, out_dist_op, out_reg_op, _ = tf.while_loop( cond, body, [ correct_label, prediction, output_ta_loss, output_ta_var, output_ta_dist, output_ta_reg, 0]) out_loss_op = out_loss_op.stack() out_var_op = out_var_op.stack() out_dist_op = out_dist_op.stack() out_reg_op = out_reg_op.stack() disc_loss = tf.reduce_mean(out_loss_op) l_var = tf.reduce_mean(out_var_op) l_dist = tf.reduce_mean(out_dist_op) l_reg = tf.reduce_mean(out_reg_op) return disc_loss, l_var, l_dist, l_reg
34.337662
122
0.648638
1e801ab7a3e0231506df234e64493ccf2222ed75
4,258
py
Python
workalendar/tests/test_registry_europe.py
mr-shovel/workalendar
969386e68d258afc49ee875af7ebe6ac606c7ab3
[ "MIT" ]
null
null
null
workalendar/tests/test_registry_europe.py
mr-shovel/workalendar
969386e68d258afc49ee875af7ebe6ac606c7ab3
[ "MIT" ]
null
null
null
workalendar/tests/test_registry_europe.py
mr-shovel/workalendar
969386e68d258afc49ee875af7ebe6ac606c7ab3
[ "MIT" ]
null
null
null
from unittest import TestCase from ..europe import ( Austria, Belgium, Bulgaria, Croatia, Cyprus, CzechRepublic, Estonia, Denmark, Finland, France, # FranceAlsaceMoselle, # TODO: Should we add it to the registry? Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Monaco, Netherlands, Norway, Poland, Portugal, Romania, Russia, Slovakia, Slovenia, Spain, # Catalonia, # TODO: Add it to registry Sweden, UnitedKingdom, UnitedKingdomNorthernIreland, ) # Switzerland from ..europe import ( Switzerland, Aargau, AppenzellInnerrhoden, AppenzellAusserrhoden, Bern, BaselLandschaft, BaselStadt, Fribourg, Geneva, Glarus, Graubunden, Jura, Luzern, Neuchatel, Nidwalden, Obwalden, StGallen, Schaffhausen, Solothurn, Schwyz, Thurgau, Ticino, Uri, Vaud, Valais, Zug, Zurich ) # Germany from ..europe import ( Germany, BadenWurttemberg, Bavaria, Berlin, Brandenburg, Bremen, Hamburg, Hesse, MecklenburgVorpommern, LowerSaxony, NorthRhineWestphalia, RhinelandPalatinate, Saarland, Saxony, SaxonyAnhalt, SchleswigHolstein, Thuringia ) from ..registry import registry classes = (v for k, v in registry.region_registry.items()) classes = list(classes) GERMANY_REGION_CLASSES = ( BadenWurttemberg, Bavaria, Berlin, Brandenburg, Bremen, Hamburg, Hesse, MecklenburgVorpommern, LowerSaxony, NorthRhineWestphalia, RhinelandPalatinate, Saarland, Saxony, SaxonyAnhalt, SchleswigHolstein, Thuringia ) SWITZERLAND_REGION_CLASSES = ( Aargau, AppenzellInnerrhoden, AppenzellAusserrhoden, Bern, BaselLandschaft, BaselStadt, Fribourg, Geneva, Glarus, Graubunden, Jura, Luzern, Neuchatel, Nidwalden, Obwalden, StGallen, Schaffhausen, Solothurn, Schwyz, Thurgau, Ticino, Uri, Vaud, Valais, Zug, Zurich ) class RegistryEurope(TestCase): def test_europe(self): self.assertIn(Austria, classes) self.assertIn(Belgium, classes) self.assertIn(Bulgaria, classes) self.assertIn(Croatia, classes) self.assertIn(Cyprus, classes) self.assertIn(CzechRepublic, classes) self.assertIn(Estonia, classes) self.assertIn(Denmark, classes) self.assertIn(Finland, classes) self.assertIn(France, classes) self.assertIn(Greece, classes) self.assertIn(Hungary, classes) self.assertIn(Iceland, classes) self.assertIn(Ireland, classes) self.assertIn(Italy, classes) self.assertIn(Latvia, classes) self.assertIn(Lithuania, classes) self.assertIn(Luxembourg, classes) self.assertIn(Malta, classes) self.assertIn(Monaco, classes) self.assertIn(Netherlands, classes) self.assertIn(Norway, classes) self.assertIn(Poland, classes) self.assertIn(Portugal, classes) self.assertIn(Romania, classes) self.assertIn(Russia, classes) self.assertIn(Slovakia, classes) self.assertIn(Slovenia, classes) self.assertIn(Spain, classes) self.assertIn(Sweden, classes) self.assertIn(Switzerland, classes) self.assertIn(Vaud, classes) self.assertIn(Geneva, classes) self.assertIn(UnitedKingdom, classes) self.assertIn(UnitedKingdomNorthernIreland, classes) # Germany & Länders self.assertIn(Germany, classes) for klass in GERMANY_REGION_CLASSES: self.assertIn(klass, classes) for klass in SWITZERLAND_REGION_CLASSES: self.assertIn(klass, classes) def test_germany_subregion(self): # Get all the subregions classes = (v for k, v in registry.get_subregions('DE').items()) classes = list(classes) for klass in GERMANY_REGION_CLASSES: self.assertIn(klass, classes) def test_switzerland_subregion(self): # Get all the subregions classes = (v for k, v in registry.get_subregions('CH').items()) classes = list(classes) for klass in SWITZERLAND_REGION_CLASSES: self.assertIn(klass, classes) def test_slovenia_code(self): # Source: https://github.com/peopledoc/workalendar/pull/291 self.assertEqual(registry.region_registry['SI'], Slovenia)
38.017857
79
0.696336
3912aed56d820c1f18029cf5906e025a30525f97
3,983
py
Python
src/client/ServerLogin.py
UnluckyAj/FaceRecognitionApp
6da12360159368231a0a9773fded4365e8479890
[ "MIT" ]
null
null
null
src/client/ServerLogin.py
UnluckyAj/FaceRecognitionApp
6da12360159368231a0a9773fded4365e8479890
[ "MIT" ]
null
null
null
src/client/ServerLogin.py
UnluckyAj/FaceRecognitionApp
6da12360159368231a0a9773fded4365e8479890
[ "MIT" ]
null
null
null
import socket address = ("192.168.43.67", 5000) s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind(address) s.listen(10000) flag=0 print("Server Running...") global course global sem global stream while True: try: client, address = s.accept() print("Client arrived " , address) client_data = client.recv(2048) ## print("a") client_data_s = client_data.decode("utf-8") print(client_data_s) ## print("b") client_data=client_data_s.split("/") ## print("c") print(client_data) if(str(client_data[0])=="Login"): import mysql.connector cnx = mysql.connector.connect(user='root', password='adi', host='127.0.0.1', database='project') if(cnx): cursor=cnx.cursor() try: q=("select password from sregister where email=%s") data=(client_data[1],) cursor.execute(q,data) result=cursor.fetchone() print(result[0]) print(client_data[1]) if(result[0]==client_data[2]): server_data='1' server_data = server_data.encode("utf-8") client.send(server_data) else: server_data='0' server_data=server_data.encode("utf-8") client.send(server_data) break except Exception as e: print( type(e)) cnx.commit() elif(str(client_data[0])=="LoginSuccessful"): server_data='1' server_data = server_data.encode("utf-8") client.send(server_data) course=client_data[1] sem=client_data[2] stream=client_data[3] elif(client_data[0]=="Department"): server_data='1' ## print(server_data) server_data = server_data.encode("utf-8") client.send(server_data) course=client_data[1] sem=client_data[2] stream=client_data[3] elif(str(client_data[0])=="Image"): server_data='1' server_data = server_data.encode("utf-8") client.send(server_data) ## print("aashish") filename = open('input.jpg', 'wb') while True: strng = client.recv(512) if not strng: flag=1 break filename.write(strng) ## print("out of loop") filename.close() if(course!="" and sem!="" and stream!=""): from traineer import Trainee Trainee(course,sem,stream) from detector import detect tup=detect(stream,client).detection() from datalist import database global tup1 tup1=database(tup[0],tup[1],tup[2]).WOL() elif(str(client_data[0])=="Request"): print("request") print(tup1) server_data = '1' server_data = server_data.encode("utf-8") client.send(server_data) server_data = str(tup1).encode("utf-8") client.send(server_data) elif(str(client_data[0]) == "End"): server_data = '1' server_data = server_data.encode("utf-8") client.send(server_data) strng = client.recv(1024) if(strng != ""): from final import Final_att Final_att(strng) print(strng) ## s.close() print('End') else: print("Error") except Exception as e: print( type(e), " - ", str(e) )
30.638462
108
0.476274
1f5e804946fdb37e4835f510aa63c6b50e537ee4
1,002
py
Python
axformer/noam_opt.py
sytelus/axformer
2492582f0e37a1edaa21f3c9f88ce1bbee91c90f
[ "MIT" ]
null
null
null
axformer/noam_opt.py
sytelus/axformer
2492582f0e37a1edaa21f3c9f88ce1bbee91c90f
[ "MIT" ]
null
null
null
axformer/noam_opt.py
sytelus/axformer
2492582f0e37a1edaa21f3c9f88ce1bbee91c90f
[ "MIT" ]
null
null
null
import torch class NoamOpt: "Optim wrapper that implements rate." def __init__(self, model_size, factor, warmup, optimizer): self.optimizer = optimizer self._step = 0 self.warmup = warmup self.factor = factor self.model_size = model_size self._rate = 0 def step(self): "Update parameters and rate" self._step += 1 rate = self.rate() for p in self.optimizer.param_groups: p['lr'] = rate self._rate = rate self.optimizer.step() def rate(self, step = None): "Implement `lrate` above" if step is None: step = self._step return self.factor * \ (self.model_size ** (-0.5) * min(step ** (-0.5), step * self.warmup ** (-1.5))) def get_std_opt(model): return NoamOpt(model.src_embed[0].d_model, 2, 4000, torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9))
31.3125
84
0.546906
5017c317102e57f3ed27052dcd2797bbdd349b87
657
py
Python
blog/migrations/0002_tag.py
greener2/simple-blog
ca37e5d22c704713b0c447afd9bfeba4232600e8
[ "MIT" ]
null
null
null
blog/migrations/0002_tag.py
greener2/simple-blog
ca37e5d22c704713b0c447afd9bfeba4232600e8
[ "MIT" ]
5
2021-03-18T23:18:36.000Z
2021-09-22T18:30:27.000Z
blog/migrations/0002_tag.py
greener2/simple-blog
ca37e5d22c704713b0c447afd9bfeba4232600e8
[ "MIT" ]
null
null
null
# Generated by Django 3.0.2 on 2020-02-02 15:28 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('blog', '0001_initial'), ] operations = [ migrations.CreateModel( name='Tag', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=24)), ('posts', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='tags', to='blog.Post')), ], ), ]
28.565217
127
0.598174
73ab612033c0e432631323e9e229012fd9c116f8
94
py
Python
zunzun/signals/__init__.py
aprezcuba24/zunzun
cc294d9dfb84695be0ed1425cf946a0f4ea644a9
[ "MIT" ]
null
null
null
zunzun/signals/__init__.py
aprezcuba24/zunzun
cc294d9dfb84695be0ed1425cf946a0f4ea644a9
[ "MIT" ]
null
null
null
zunzun/signals/__init__.py
aprezcuba24/zunzun
cc294d9dfb84695be0ed1425cf946a0f4ea644a9
[ "MIT" ]
null
null
null
from .signal import Signal # noqa from .listerner_connector import ListenerConnector # noqa
31.333333
58
0.808511
61e7af7de7b9d6b03a0490cd6442e0ad786ef650
5,457
py
Python
pydocmd/document.py
Pandinosaurus/pydoc-markdown
38a6b48edfc132586aef7b5a71c5fccce62a9518
[ "MIT" ]
null
null
null
pydocmd/document.py
Pandinosaurus/pydoc-markdown
38a6b48edfc132586aef7b5a71c5fccce62a9518
[ "MIT" ]
null
null
null
pydocmd/document.py
Pandinosaurus/pydoc-markdown
38a6b48edfc132586aef7b5a71c5fccce62a9518
[ "MIT" ]
null
null
null
# Copyright (c) 2017 Niklas Rosenstein # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. """ This module implements the structural representation of an API documentation in separate documents and symbolic names. The final documentation is rendered from this structured representation. """ from __future__ import print_function import os class Section(object): """ A section represents a part of a #Document. It contains Markdown-formatted content that will be rendered into a file at some point. # Attributes doc (Document): The document that the section belongs to. identifier (str, None): The globally unique identifier of the section. This identifier usually matches the name of the element that the section describes (eg. a class or function) and will be used for cross-referencing. title (str, None): The title of the section. If specified, it will be rendered before `section.content` and the header-size will depend on the `section.depth`. depth (int): The depth of the section, defaults to 1. Currently only affects the header-size that is rendered for the `section.title`. content (str): The Markdown-formatted content of the section. """ def __init__(self, doc, identifier=None, title=None, depth=1, content=None, header_type='html'): self.doc = doc self.identifier = identifier self.title = title self.depth = depth self.content = content if content is not None else '*Nothing to see here.*' self.header_type = header_type def render(self, stream): """ Render the section into *stream*. """ if self.header_type == 'html': print('<h{depth} id="{id}">{title}</h{depth}>\n' .format(depth=self.depth, id=self.identifier, title=self.title), file=stream) elif self.header_type == 'markdown': print('\n' + ('#' * self.depth), self.title, file=stream) else: raise ValueError('Invalid header type: %s' % self.header_type) print(self.content, file=stream) @property def index(self): """ Returns the #Index that this section is associated with, accessed via `section.document`. """ return self.document.index class Document(object): """ Represents a single document that may contain several #Section#s. Every document *must* have a relative URL associated with it. # Attributes index (Index): The index that the document belongs to. url (str): The relative URL of the document. """ def __init__(self, index, url): self.index = index self.url = url self.sections = [] class Index(object): """ The index manages all documents and sections globally. It keeps track of the symbolic names allocated for the sections to be able to link to them from other sections. # Attributes documents (dict): sections (dict): """ def __init__(self): self.documents = {} self.sections = {} def new_document(self, filename, url=None): """ Create a new document. # Arguments filename (str): The filename of the document. Must end with `.md`. url (str): The relative URL of the document. If omitted, will be automatically deduced from *filename* (same without the `.md` suffix). # Raises ValueError: If *filename* does not end with `.md`. ValueError: If *filename* is not a relative path. ValueError: If a document with the specified *filename* already exists. """ if not filename.endswith('.md'): raise ValueError('filename must end with `.md`') if os.path.isabs(filename): raise ValueError('filename must be relative') if filename in self.documents: raise ValueError( 'document filename {!r} already used'.format(filename)) if not url: url = filename[:-3] doc = Document(self, url) self.documents[filename] = doc return doc def new_section(self, doc, *args, **kwargs): """ Create a new section in the specified document. The arguments for this method match the parameters for the #Section constructor. # Raises ValueError: If the section identifier is already used. """ section = Section(doc, *args, **kwargs) if section.identifier: if section.identifier in self.sections: raise ValueError('section identifier {!r} already used' .format(section.identifier)) self.sections[section.identifier] = section doc.sections.append(section) return section
34.537975
98
0.70295
9ee29657571df689b1b48a83f181d031e4d91d21
3,820
py
Python
app/fedcv/object_detection/data/coco/coco_base.py
ray-ruisun/FedML
24ff30d636bb70f64e94e9ca205375033597d3dd
[ "Apache-2.0" ]
null
null
null
app/fedcv/object_detection/data/coco/coco_base.py
ray-ruisun/FedML
24ff30d636bb70f64e94e9ca205375033597d3dd
[ "Apache-2.0" ]
null
null
null
app/fedcv/object_detection/data/coco/coco_base.py
ray-ruisun/FedML
24ff30d636bb70f64e94e9ca205375033597d3dd
[ "Apache-2.0" ]
null
null
null
import os from abc import ABC from pathlib import Path, PurePath from typing import Literal from torch.utils.data import Dataset from .utils import _download_file, _extract_file class COCOBase(Dataset, ABC): root_dir: PurePath annotations_zip_path: PurePath train_zip_path: PurePath val_zip_path: PurePath test_zip_path: PurePath annotations_path: PurePath images_path: PurePath instances_path: PurePath downloaded: bool def __init__(self, root_dir: str = "../../data/coco/", download_dataset: bool = False, year: Literal['2014', '2017'] = '2017', split: Literal['train', 'val', 'test'] = 'train') -> None: """ An abstract class for COCO based datasets Args: root_dir: The path to the COCO images and annotations download_dataset: Specify whether to download the dataset if not present year: The year of the COCO dataset to use (2014, 2017) split: The split of the data to be used (train, val, test) """ self.root_dir = Path('{root}/{year}'.format(root=root_dir, year=year)) self.annotations_zip_path = Path('{root}/annotations_trainval{year}.zip'.format(root=self.root_dir, year=year)) self.train_zip_path = Path('{root}/train{year}.zip'.format(root=self.root_dir, year=year)) self.val_zip_path = Path('{root}/val{year}.zip'.format(root=self.root_dir, year=year)) self.test_zip_path = Path('{root}/test{year}.zip'.format(root=self.root_dir, year=year)) self.annotations_path = Path('{root}/annotations'.format(root=self.root_dir)) self.images_path = Path('{root}/{split}{year}'.format(root=self.root_dir, split=split, year=year)) self.instances_path = Path( '{root}/annotations/instances_{split}{year}.json'.format(root=self.root_dir, split=split, year=year)) if download_dataset and (not os.path.exists(self.images_path) or not os.path.exists(self.annotations_path)): self._download_dataset(year, split) def _download_dataset(self, year: Literal['2014', '2017'], split: Literal['train', 'test', 'val']) -> None: """ Downloads the dataset from COCO website. Args: year: The year of the dataset to download split: The split of the dataset to download """ files = { 'annotations': { 'name': 'Train-Val {} Annotations'.format(year), 'file_path': self.annotations_zip_path, 'url': 'http://images.cocodataset.org/annotations/annotations_trainval{}.zip'.format(year), 'unit': 'MB' }, 'train': { 'name': 'Train {} Dataset'.format(year), 'file_path': self.train_zip_path, 'url': 'http://images.cocodataset.org/zips/train{}.zip'.format(year), 'unit': 'GB' }, 'val': { 'name': 'Validation {} Dataset'.format(year), 'file_path': self.val_zip_path, 'url': 'http://images.cocodataset.org/zips/val{}.zip'.format(year), 'unit': 'GB' }, 'test': { 'name': 'Test {} Dataset'.format(year), 'file_path': self.test_zip_path, 'url': 'http://images.cocodataset.org/zips/test{}.zip'.format(year), 'unit': 'GB' } } if split == 'train' or split == 'val': _download_file(**files['annotations']) _extract_file(files['annotations']['file_path'], self.root_dir) _download_file(**files[split]) _extract_file(files[split]['file_path'], self.root_dir) self.downloaded = True
42.921348
119
0.587958
73d43188f3d5e4cd8ff0a46f8866e98d730decb4
3,210
py
Python
python/tests/test_load.py
JX7P/libucl
d1cf4e9783fa96b9399f6585e2dc9a42e4d64746
[ "BSD-2-Clause" ]
1,301
2015-01-01T10:42:07.000Z
2022-03-21T08:00:14.000Z
python/tests/test_load.py
JX7P/libucl
d1cf4e9783fa96b9399f6585e2dc9a42e4d64746
[ "BSD-2-Clause" ]
137
2015-01-04T18:15:11.000Z
2022-03-21T20:46:58.000Z
python/tests/test_load.py
JX7P/libucl
d1cf4e9783fa96b9399f6585e2dc9a42e4d64746
[ "BSD-2-Clause" ]
161
2015-01-04T14:15:23.000Z
2022-03-20T04:11:01.000Z
from .compat import unittest import ucl class LoadTest(unittest.TestCase): def test_no_args(self): with self.assertRaises(TypeError): ucl.load() def test_multi_args(self): with self.assertRaises(TypeError): ucl.load(0,0) def test_none(self): self.assertEqual(ucl.load(None), None) def test_null(self): data = "a: null" valid = { "a" : None } self.assertEqual(ucl.load(data), valid) def test_int(self): data = "a : 1" valid = { "a" : 1 } self.assertEqual(ucl.load(data), valid) def test_braced_int(self): data = "{a : 1}" valid = { "a" : 1 } self.assertEqual(ucl.load(data), valid) def test_nested_int(self): data = "a : { b : 1 }" valid = { "a" : { "b" : 1 } } self.assertEqual(ucl.load(data), valid) def test_str(self): data = "a : b" valid = { "a" : "b" } self.assertEqual(ucl.load(data), valid) def test_float(self): data = "a : 1.1" valid = {"a" : 1.1} self.assertEqual(ucl.load(data), valid) def test_boolean(self): data = ( "a : True;" \ "b : False" ) valid = { "a" : True, "b" : False } self.assertEqual(ucl.load(data), valid) def test_empty_ucl(self): self.assertEqual(ucl.load("{}"), {}) def test_single_brace(self): self.assertEqual(ucl.load("{"), {}) def test_single_back_brace(self): self.assertEqual(ucl.load("}"), {}) def test_single_square_forward(self): self.assertEqual(ucl.load("["), []) def test_invalid_ucl(self): with self.assertRaisesRegex(ValueError, "unfinished key$"): ucl.load('{ "var"') def test_comment_ignored(self): self.assertEqual(ucl.load("{/*1*/}"), {}) def test_1_in(self): valid = { 'key1': [ 'value', 'value2', 'value;', 1.0, -0xdeadbeef, '0xdeadbeef.1', '0xreadbeef', -1e-10, 1, True, False, True, ] } with open("../tests/basic/1.in", "r") as in1: self.assertEqual(ucl.load(in1.read()), valid) def test_every_type(self): data = ("""{ "key1": value; "key2": value2; "key3": "value;" "key4": 1.0, "key5": -0xdeadbeef "key6": 0xdeadbeef.1 "key7": 0xreadbeef "key8": -1e-10, "key9": 1 "key10": true "key11": no "key12": yes }""") valid = { 'key1': 'value', 'key2': 'value2', 'key3': 'value;', 'key4': 1.0, 'key5': -3735928559, 'key6': '0xdeadbeef.1', 'key7': '0xreadbeef', 'key8': -1e-10, 'key9': 1, 'key10': True, 'key11': False, 'key12': True, } self.assertEqual(ucl.load(data), valid)
26.097561
67
0.454206
b0c7760b11b2683ba4aab32370a67187d81a986b
12,060
py
Python
pyinfrabox/tests/test_json.py
fspaniol/InfraBox-cli
da174cf4b189e8acd889a7b1de09fa56350ee984
[ "Apache-2.0" ]
null
null
null
pyinfrabox/tests/test_json.py
fspaniol/InfraBox-cli
da174cf4b189e8acd889a7b1de09fa56350ee984
[ "Apache-2.0" ]
null
null
null
pyinfrabox/tests/test_json.py
fspaniol/InfraBox-cli
da174cf4b189e8acd889a7b1de09fa56350ee984
[ "Apache-2.0" ]
null
null
null
import unittest from pyinfrabox import ValidationError from pyinfrabox.infrabox import validate_json class TestDockerCompose(unittest.TestCase): def raises_expect(self, data, expected): try: validate_json(data) assert False except ValidationError as e: self.assertEqual(e.message, expected) def test_version(self): self.raises_expect({}, "#: property 'version' is required") self.raises_expect({'version': 'asd', 'jobs': []}, "#version: must be an int") self.raises_expect({'version': '1', 'jobs': []}, "#version: must be an int") self.raises_expect({'version': 2, 'jobs': []}, "#version: unsupported version") def test_jobs(self): self.raises_expect({'version': 1, 'jobs': 'asd'}, "#jobs: must be an array") self.raises_expect({'version': 1, 'jobs': [{}]}, "#jobs[0]: does not contain a 'type'") def test_empty_jobs(self): validate_json({'version': 1, 'jobs': []}) def test_dep_defined_later(self): d = { "version": 1, "jobs": [{ "type": "docker", "name": "source", "docker_file": "Dockerfile", "resources": {"limits": {"cpu": 1, "memory": 1024}}, "build_only": False, "depends_on": ["compile"] }, { "type": "docker", "name": "compile", "docker_file": "Dockerfile", "build_only": False, "resources": {"limits": {"cpu": 1, "memory": 1024}}, }] } self.raises_expect(d, "#jobs[0].depends_on: Job 'compile' not found") def test_dep_not_found(self): d = { "version": 1, "jobs": [{ "type": "docker", "name": "compile", "docker_file": "test/Dockerfile_benchmarks", "resources": {"limits": {"cpu": 1, "memory": 1024}}, "build_only": False, "depends_on": ["not_found"] }] } self.raises_expect(d, "#jobs[0].depends_on: Job 'not_found' not found") def test_deps_must_be_unique(self): d = { "version": 1, "jobs": [{ "type": "docker", "name": "source", "docker_file": "Dockerfile", "build_only": False, "resources": {"limits": {"cpu": 1, "memory": 1024}}, }, { "type": "docker", "name": "compile", "docker_file": "Dockerfile", "build_only": False, "resources": {"limits": {"cpu": 1, "memory": 1024}}, "depends_on": ["source", "source"] }] } self.raises_expect(d, "#jobs[1].depends_on: 'source' duplicate dependencies") def test_duplicate_job_name(self): d = { "version": 1, "jobs": [{ "type": "docker", "name": "compile", "docker_file": "test/Dockerfile_benchmarks", "build_only": False, "resources": {"limits": {"cpu": 1, "memory": 1024}}, }, { "type": "docker", "name": "compile", "docker_file": "test/Dockerfile_benchmarks", "resources": {"limits": {"cpu": 1, "memory": 1024}}, "build_only": False, "depends_on": ["compile"] }] } self.raises_expect(d, "#jobs[1].name: Job name 'compile' already exists") def test_dependency_conditions(self): d = { "version": 1, "jobs": [{ "type": "docker", "name": "compile", "docker_file": "test/Dockerfile_benchmarks", "build_only": False, "resources": {"limits": {"cpu": 1, "memory": 1024}}, }, { "type": "docker", "name": "compile2", "docker_file": "test/Dockerfile_benchmarks", "resources": {"limits": {"cpu": 1, "memory": 1024}}, "build_only": False, "depends_on": [{"job": "compile", "on": True}] }] } self.raises_expect(d, "#jobs[1].depends_on[0].on: must be a list") d['jobs'][1]['depends_on'] = [{"job": "compile", "on": []}] self.raises_expect(d, "#jobs[1].depends_on[0].on: must not be empty") d['jobs'][1]['depends_on'] = [{"job": "compile", "on": [True]}] self.raises_expect(d, "#jobs[1].depends_on[0].on: True is not a valid value") d['jobs'][1]['depends_on'] = [{"job": "compile", "on": ["not valid"]}] self.raises_expect(d, "#jobs[1].depends_on[0].on: not valid is not a valid value") d['jobs'][1]['depends_on'] = [{"job": "not-valid", "on": ["*"]}] self.raises_expect(d, "#jobs[1].depends_on: Job 'not-valid' not found") d['jobs'][1]['depends_on'] = [{"job": "compile", "on": ["error", "error"]}] self.raises_expect(d, "#jobs[1].depends_on[0].on: error used twice") def test_empty_dep_array(self): d = { "version": 1, "jobs": [{ "type": "docker", "name": "compile", "docker_file": "test/Dockerfile_benchmarks", "resources": {"limits": {"cpu": 1, "memory": 1024}}, "build_only": False, "depends_on": [] }] } self.raises_expect(d, "#jobs[0].depends_on: must not be empty") def test_invalid_name(self): d = { "version": 1, "jobs": [{ "type": "docker", "name": "../blub", "docker_file": "Dockerfile", "build_only": False, "resources": {"limits": {"cpu": 1, "memory": 1024}}, }] } self.raises_expect(d, "#jobs[0].name: '../blub' not a valid value") d = { "version": 1, "jobs": [{ "type": "docker", "name": "blub'", "docker_file": "Dockerfile", "build_only": False, "resources": {"limits": {"cpu": 1, "memory": 1024}}, }] } self.raises_expect(d, "#jobs[0].name: 'blub\'' not a valid value") def test_may_not_depend_on_itself(self): d = { "version": 1, "jobs": [{ "type": "docker", "name": "compile", "docker_file": "Dockerfile", "resources": {"limits": {"cpu": 1, "memory": 1024}}, "build_only": False, "depends_on": ["compile"] }] } self.raises_expect(d, "#jobs[0]: Job 'compile' may not depend on itself") def test_may_not_create_jobs(self): d = { "version": 1, "jobs": [{ "type": "docker", "name": "Create Jobs", "docker_file": "test/Dockerfile_benchmarks", "build_only": False, "resources": {"limits": {"cpu": 1, "memory": 1024}}, }] } self.raises_expect(d, "#jobs[0].name: 'Create Jobs' not a valid value") def test_environment(self): d = { "version": 1, "jobs": [{ "type": "docker", "name": "test", "docker_file": "Dockerfile", "resources": {"limits": {"cpu": 1, "memory": 1024}}, "environment": None }] } self.raises_expect(d, "#jobs[0].environment: must be an object") d['jobs'][0]['environment'] = [] self.raises_expect(d, "#jobs[0].environment: must be an object") d['jobs'][0]['environment'] = {'key': 123} self.raises_expect(d, "#jobs[0].environment.key: must be a string or object") d['jobs'][0]['environment'] = {'key': {}} self.raises_expect(d, "#jobs[0].environment.key: must contain a $secret") d['jobs'][0]['environment'] = {'key': {'$secret': None}} self.raises_expect(d, "#jobs[0].environment.key.$secret: is not a string") d['jobs'][0]['environment'] = {} validate_json(d) def test_deployments(self): d = { "version": 1, "jobs": [{ "type": "docker", "name": "test", "docker_file": "Dockerfile", "resources": {"limits": {"cpu": 1, "memory": 1024}}, "deployments": None }] } self.raises_expect(d, "#jobs[0].deployments: must be an array") d['jobs'][0]['deployments'] = [] self.raises_expect(d, "#jobs[0].deployments: must not be empty") d['jobs'][0]['deployments'] = [{}] self.raises_expect(d, "#jobs[0].deployments[0]: does not contain a 'type'") d['jobs'][0]['deployments'] = [{'type': 'unknown'}] self.raises_expect(d, "#jobs[0].deployments[0]: type 'unknown' not supported") d['jobs'][0]['deployments'] = [{'type': 'docker-registry', 'host': 'hostname', 'repository': 'repo', 'username': 'user', 'password': 'value'}] self.raises_expect(d, "#jobs[0].deployments[0].password: must be an object") d['jobs'][0]['deployments'] = [{'type': 'docker-registry', 'host': 'hostname', 'repository': 'repo', 'username': 'user', 'password': {'$secret': 'blub'}}] validate_json(d) def test_build_arguments(self): d = { "version": 1, "jobs": [{ "type": "docker", "name": "test", "docker_file": "Dockerfile", "resources": {"limits": {"cpu": 1, "memory": 1024}}, "build_arguments": None }] } self.raises_expect(d, "#jobs[0].build_arguments: must be an object") d['jobs'][0]['build_arguments'] = [] self.raises_expect(d, "#jobs[0].build_arguments: must be an object") d['jobs'][0]['build_arguments'] = {'key': 123} self.raises_expect(d, "#jobs[0].build_arguments.key: is not a string") d['jobs'][0]['build_arguments'] = {'key': {}} self.raises_expect(d, "#jobs[0].build_arguments.key: is not a string") d['jobs'][0]['build_arguments'] = {} validate_json(d) def test_valid(self): d = { "version": 1, "jobs": [{ "type": "docker", "name": "compile", "docker_file": "test/Dockerfile_benchmarks", "build_only": False, "resources": {"limits": {"cpu": 1, "memory": 1024}}, }, { "type": "docker", "name": "benchmark_server", "docker_file": "test/Dockerfile_benchmarks", "resources": {"limits": {"cpu": 1, "memory": 1024}}, "build_only": False, "depends_on": ["compile"] }, { "type": "docker", "name": "test_server", "docker_file": "test/Dockerfile_test_server", "resources": {"limits": {"cpu": 1, "memory": 1024}}, "build_only": False, "depends_on": ["compile"] }] } validate_json(d) def test_repository(self): d = { "version": 1, "jobs": [{ "type": "docker", "name": "compile", "docker_file": "test/Dockerfile_benchmarks", "repository" : { "full_history": True, "clone": False, "submodules": True }, "resources": {"limits": {"cpu": 1, "memory": 1024}}, "build_only": False }] } validate_json(d)
35.470588
108
0.461609
fa9e0c876314653054d6f30dec3f6f20c7c828bf
6,277
py
Python
OParcels/fibres_OP.py
SalishSeaCast/analysis-jose
9eed549f0e3117de69c54c162307f16bf4fe0af3
[ "Apache-2.0" ]
null
null
null
OParcels/fibres_OP.py
SalishSeaCast/analysis-jose
9eed549f0e3117de69c54c162307f16bf4fe0af3
[ "Apache-2.0" ]
null
null
null
OParcels/fibres_OP.py
SalishSeaCast/analysis-jose
9eed549f0e3117de69c54c162307f16bf4fe0af3
[ "Apache-2.0" ]
null
null
null
import sys import xarray as xr import numpy as np import os import yaml import math from datetime import datetime, timedelta from parcels import FieldSet, Field, VectorField, ParticleSet, JITParticle, ErrorCode, ParcelsRandom, Variable sys.path.append('/home/jvalenti/MOAD/analysis-jose/notebooks/parcels') from Kernels_biofilm import DeleteParticle, Buoyancy, AdvectionRK4_3D, Stokes_drift, Beaching, Unbeaching from OP_functions_biofilm import * def fibers_OP(config,local=0,restart=0): param = load_config(config) #Definitions start = datetime(param['startdate']['year'], param['startdate']['month'], param['startdate']['day']) #Start date Tmax = param['param']['length'] # Set Time length [days] dt = param['param']['dt'] #toggle between - or + to pick backwards or forwards N = param['param']['N'] # number of deploying locations n = param['param']['n'] # 1000 # number of particles per location dmin = param['param']['dmin'] #minimum depth dd = param['param']['dd'] #max depth difference from dmin name = param['file']['name'] #name output file dtp = param['param']['dtp'] #how often particle released in hours # Define paths paths = path(local) #Set outfall coordinates (Modify to choose other deploying location) coord=xr.open_dataset(paths['coords'],decode_times=False) outf_lat=coord['nav_lat'][445,304] outf_lon=coord['nav_lon'][445,304] clon, clat = [float(outf_lon)],[float(outf_lat)] duration = timedelta(days=Tmax) x_offset, y_offset, z = p_deploy(N,n,dmin,dd) #Set deploy locations lon = np.zeros([N,n]) lat = np.zeros([N,n]) for i in range(N): lon[i,:]=(clon[i] + x_offset[i,:]) lat[i,:]=(clat[i] + y_offset[i,:]) #Set start date time and the name of the output file daterange = [start+timedelta(days=i) for i in range(Tmax)] fn = name + '_'.join(d.strftime('%Y%m%d')+'_1n' for d in [start, start+duration]) + '.nc' outfile = os.path.join(paths['out'], fn) ####BUILD FIELDS FOR SIMULATION###### #Fill in the list of variables that you want to use as fields varlist=['U','V','W','R'] filenames,variables,dimensions=filename_set(start,Tmax,varlist,local) field_set=FieldSet.from_nemo(filenames, variables, dimensions, allow_time_extrapolation=True) varlist=['US','VS','WL'] filenames,variables,dimensions=filename_set(start,Tmax,varlist,local) us = Field.from_netcdf(filenames['US'], variables['US'], dimensions,allow_time_extrapolation=True) vs = Field.from_netcdf(filenames['VS'], variables['VS'], dimensions,allow_time_extrapolation=True) wl = Field.from_netcdf(filenames['WL'], variables['WL'], dimensions,allow_time_extrapolation=True) field_set.add_field(us) field_set.add_field(vs) field_set.add_field(wl) field_set.add_vector_field(VectorField("stokes", us, vs, wl)) filenames,variables,dimensions=filename_set(start,Tmax,['Bathy'],local) Bth = Field.from_netcdf(filenames['Bathy'], variables['Bathy'], dimensions,allow_time_extrapolation=True) field_set.add_field(Bth) MPParticle = particle_maker(param) ######RUN OCEAN PARCELS WITH DEFINED PARTICLE AND PRESET FIELDS if restart==1: name_temp=find_temp(paths['out']) os.system(f"cd {paths['out']} && parcels_convert_npydir_to_netcdf {name_temp}") outfile=newest(paths['out']) pset = ParticleSet.from_particlefile(field_set, MPParticle,outfile) else: pset = ParticleSet.from_list(field_set, MPParticle, lon=lon, lat=lat, depth=z, repeatdt = timedelta(hours=dtp)) k_sink = pset.Kernel(Buoyancy) k_waves = pset.Kernel(Stokes_drift) k_beach = pset.Kernel(Beaching) k_unbeach = pset.Kernel(Unbeaching) pset.execute(AdvectionRK4_3D + k_sink + k_waves + k_beach + k_unbeach, runtime=duration, dt=dt, output_file=pset.ParticleFile(name=outfile, outputdt=timedelta(hours=1)), recovery={ErrorCode.ErrorOutOfBounds: DeleteParticle}) def load_config(config_yaml): with open(config_yaml[0]) as f: config = yaml.safe_load(f) return config def particle_maker(config): #Define particle properties class MPParticle(JITParticle): if 'ro' in config['particle']: ro = Variable('ro', initial = config['particle']['ro']) # config['particle']['ro'] if 'diameter' in config['particle']: diameter = Variable('diameter', initial = config['particle']['diameter']) if 'length' in config['particle']: length = Variable('length', initial = config['particle']['length']) if 'Lb' in config['particle']: Lb = Variable('Lb', initial = config['particle']['Lb']) #days needed in days for particle to have 67% probability of beaching if in beaching zone (500m) if 'Db' in config['particle']: Db = Variable('Db', initial = config['particle']['Db']) #Distance at which particles can randomly beach. if 'Ub' in config['particle']: Ub = Variable('Ub', initial = config['particle']['Ub']) #days to have 67% probability of unbeaching if 'beached' in config['particle']: beached = Variable('beached', initial = 0) if 'Ws' in config['particle']: Ws = Variable('Ws', initial = config['particle']['Ws']) #200m/dia if 'tau' in config['particle']: tau = Variable('tau', initial = 0) # track age particle return MPParticle def find_temp(rootdir): dirs=[] for file in os.listdir(rootdir): d = os.path.join(rootdir, file) if os.path.isdir(d): dirs.append(d) temp=sorted(dirs, key=lambda x: os.path.getctime(x), reverse=True)[:1][0] return temp[-12:] def newest(path): files = os.listdir(path) paths = [os.path.join(path, basename) for basename in files] return max(paths, key=os.path.getctime) if __name__=="__main__": try: config,restart = sys.argv[1:] config = [str(config)] except ValueError: pass try: config = sys.argv[1:] restart=0 except : print('Something went wrong') fibers_OP(config,restart)
42.412162
165
0.653656
82dadb590040265c035e6b84d2fdcdc1963acafc
4,977
py
Python
kolibri/core/device/models.py
mrpau/kolibri
94ed5887ec083398e55ee5a291df6d09c062bfe1
[ "MIT" ]
null
null
null
kolibri/core/device/models.py
mrpau/kolibri
94ed5887ec083398e55ee5a291df6d09c062bfe1
[ "MIT" ]
null
null
null
kolibri/core/device/models.py
mrpau/kolibri
94ed5887ec083398e55ee5a291df6d09c062bfe1
[ "MIT" ]
null
null
null
import platform import time from uuid import uuid4 from django.conf import settings from django.core.cache import cache from django.db import models from morango.models import UUIDField from .utils import LANDING_PAGE_LEARN from .utils import LANDING_PAGE_SIGN_IN from kolibri.core.auth.models import Facility from kolibri.core.auth.models import FacilityUser from kolibri.plugins.app.utils import interface device_permissions_fields = ["is_superuser", "can_manage_content"] class DevicePermissions(models.Model): """ This class stores metadata about device permissions for FacilityUsers. """ user = models.OneToOneField( FacilityUser, on_delete=models.CASCADE, related_name="devicepermissions", blank=False, null=False, primary_key=True, ) is_superuser = models.BooleanField(default=False) can_manage_content = models.BooleanField(default=False) DEVICE_SETTINGS_CACHE_KEY = "device_settings_cache_key" class DeviceSettingsManager(models.Manager): def get(self, **kwargs): if DEVICE_SETTINGS_CACHE_KEY not in cache: model = super(DeviceSettingsManager, self).get(**kwargs) cache.set(DEVICE_SETTINGS_CACHE_KEY, model, 600) else: model = cache.get(DEVICE_SETTINGS_CACHE_KEY) return model def get_device_hostname(): # Get the device hostname to set it as the default value of name field in # DeviceSettings model hostname = platform.node() # make sure the default name does not exceed max length of the field return hostname[:50] def app_is_enabled(): return interface.enabled class DeviceSettings(models.Model): """ This class stores data about settings particular to this device """ LANDING_PAGE_CHOICES = [ (LANDING_PAGE_SIGN_IN, "Sign-in page"), (LANDING_PAGE_LEARN, "Learn page"), ] objects = DeviceSettingsManager() is_provisioned = models.BooleanField(default=False) language_id = models.CharField( max_length=15, default=settings.LANGUAGE_CODE, blank=True, null=True ) default_facility = models.ForeignKey( Facility, on_delete=models.SET_NULL, blank=True, null=True ) landing_page = models.CharField( max_length=7, choices=LANDING_PAGE_CHOICES, default=LANDING_PAGE_SIGN_IN ) allow_guest_access = models.BooleanField(default=True) allow_peer_unlisted_channel_import = models.BooleanField(default=False) allow_learner_unassigned_resource_access = models.BooleanField(default=True) name = models.CharField(max_length=50, default=get_device_hostname) allow_other_browsers_to_connect = models.BooleanField(default=app_is_enabled) def save(self, *args, **kwargs): self.pk = 1 self.full_clean() super(DeviceSettings, self).save(*args, **kwargs) cache.set(DEVICE_SETTINGS_CACHE_KEY, self, 600) CONTENT_CACHE_KEY_CACHE_KEY = "content_cache_key" class ContentCacheKey(models.Model): """ This class stores a cache key for content models that should be updated whenever the content metadata stored on the device changes. """ key = models.IntegerField(default=time.time) def save(self, *args, **kwargs): self.pk = 1 super(ContentCacheKey, self).save(*args, **kwargs) @classmethod def update_cache_key(cls): cache_key, created = cls.objects.get_or_create() cache_key.key = time.time() cache_key.save() cache.set(CONTENT_CACHE_KEY_CACHE_KEY, cache_key.key, 5000) return cache_key @classmethod def get_cache_key(cls): key = cache.get(CONTENT_CACHE_KEY_CACHE_KEY) if key is None: try: cache_key = cls.objects.get() except cls.DoesNotExist: cache_key = cls.update_cache_key() key = cache_key.key cache.set(CONTENT_CACHE_KEY_CACHE_KEY, key, 5000) return key APP_KEY_CACHE_KEY = "app_key" class DeviceAppKey(models.Model): """ This class stores a key that is checked to make sure that a webview is making requests from a privileged device (i.e. from inside an app-wrapper webview) """ key = UUIDField(default=uuid4) def save(self, *args, **kwargs): self.pk = 1 super(DeviceAppKey, self).save(*args, **kwargs) @classmethod def update_app_key(cls): app_key, created = cls.objects.get_or_create() app_key.key = uuid4() app_key.save() cache.set(APP_KEY_CACHE_KEY, app_key.key, 5000) return app_key @classmethod def get_app_key(cls): key = cache.get(APP_KEY_CACHE_KEY) if key is None: try: app_key = cls.objects.get() except cls.DoesNotExist: app_key = cls.update_app_key() key = app_key.key cache.set(APP_KEY_CACHE_KEY, key, 5000) return key
29.625
81
0.683142
5f3555eb3b96ead2cda9bcad92065c6a596f3e9a
1,531
py
Python
[Kaleido-subs]/Completed/Granblue Fantasy Season 2 [BD]/GBF2BD_06.py
LightArrowsEXE/Encoding-Projects
4ea96a5b25a7710f615ada5ff25949c496492b53
[ "MIT" ]
57
2019-01-31T17:32:46.000Z
2022-03-23T05:46:51.000Z
[Kaleido-subs]/Completed/Granblue Fantasy Season 2 [BD]/GBF2BD_06.py
LightArrowsEXE/Encoding-Projects
4ea96a5b25a7710f615ada5ff25949c496492b53
[ "MIT" ]
null
null
null
[Kaleido-subs]/Completed/Granblue Fantasy Season 2 [BD]/GBF2BD_06.py
LightArrowsEXE/Encoding-Projects
4ea96a5b25a7710f615ada5ff25949c496492b53
[ "MIT" ]
12
2019-04-30T06:16:13.000Z
2022-03-14T16:15:07.000Z
from typing import Any, Dict, Tuple import vapoursynth as vs from lvsfunc.misc import source from vardautomation import FileInfo, PresetAAC, PresetBD, VPath from project_module import chain, encode core = vs.core # Sources JP_BD = FileInfo(r'BDMV/GRANBLUE_FANTASY_SEASON2_3/BDMV/STREAM/00002.m2ts', (None, -27), idx=lambda x: source(x, force_lsmas=True, cachedir=''), preset=[PresetBD, PresetAAC]) JP_BD.name_file_final = VPath(fr"premux/{JP_BD.name} (Premux).mkv") JP_BD.a_src_cut = VPath(f"{JP_BD.name}_cut.aac") JP_BD.do_qpfile = True zones: Dict[Tuple[int, int], Dict[str, Any]] = { # Zones for x265 (6105, 6443): {'b': 0.75}, (9429, 9870): {'b': 0.75}, (15544, 15802): {'b': 0.75}, (26423, 26806): {'b': 0.75}, (28250, 28786): {'b': 0.75}, (29909, 30180): {'b': 0.75}, } if __name__ == '__main__': filtered = chain.filterchain(JP_BD.clip_cut) encode.Encoder(JP_BD, filtered).run(zones=zones) elif __name__ == '__vapoursynth__': filtered = chain.filterchain(JP_BD.clip_cut) if not isinstance(filtered, vs.VideoNode): raise RuntimeError("Multiple output nodes were set when `vspipe` only expected one") else: filtered.set_output(0) else: JP_BD.clip_cut.set_output(0) FILTERED = chain.filterchain(JP_BD.clip_cut) if not isinstance(FILTERED, vs.VideoNode): for i, clip_filtered in enumerate(FILTERED, start=1): # type: ignore clip_filtered.set_output(i) else: FILTERED.set_output(1)
33.282609
92
0.667538
7965d7fc2b3450155e47320165654538f4547481
467
py
Python
social/posts/forms.py
vyahello/social-media
77cabf08dee1da0eb4e5c277391d92b7d829b67d
[ "MIT" ]
null
null
null
social/posts/forms.py
vyahello/social-media
77cabf08dee1da0eb4e5c277391d92b7d829b67d
[ "MIT" ]
2
2022-02-07T09:44:15.000Z
2022-03-22T16:43:18.000Z
social/posts/forms.py
vyahello/social-media
77cabf08dee1da0eb4e5c277391d92b7d829b67d
[ "MIT" ]
null
null
null
from django import forms from posts import models class PostForm(forms.ModelForm): class Meta: fields = ("message", "group") model = models.Post def __init__(self, *args, **kwargs): user = kwargs.pop("user", None) super().__init__(*args, **kwargs) if user is not None: self.fields["group"].queryset = models.Group.objects.filter( pk__in=user.groups.values_list("group__pk") )
27.470588
72
0.595289
eee7b6197909f52db2915549517c44ba1620cd3a
8,303
py
Python
official/vision/beta/losses/retinanet_losses.py
hjkim-haga/TF-OD-API
22ac477ff4dfb93fe7a32c94b5f0b1e74330902b
[ "Apache-2.0" ]
1
2021-05-22T12:50:50.000Z
2021-05-22T12:50:50.000Z
official/vision/beta/losses/retinanet_losses.py
DemonDamon/mask-detection-based-on-tf2odapi
192ae544169c1230c21141c033800aa1bd94e9b6
[ "MIT" ]
null
null
null
official/vision/beta/losses/retinanet_losses.py
DemonDamon/mask-detection-based-on-tf2odapi
192ae544169c1230c21141c033800aa1bd94e9b6
[ "MIT" ]
null
null
null
# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Losses used for detection models.""" # Import libraries import tensorflow as tf def focal_loss(logits, targets, alpha, gamma): """Compute the focal loss between `logits` and the golden `target` values. Focal loss = -(1-pt)^gamma * log(pt) where pt is the probability of being classified to the true class. Args: logits: A float32 tensor of size [batch, d_1, ..., d_k, n_classes]. targets: A float32 tensor of size [batch, d_1, ..., d_k, n_classes]. alpha: A float32 scalar multiplying alpha to the loss from positive examples and (1-alpha) to the loss from negative examples. gamma: A float32 scalar modulating loss from hard and easy examples. Returns: loss: A float32 Tensor of size [batch, d_1, ..., d_k, n_classes] representing normalized loss on the prediction map. """ with tf.name_scope('focal_loss'): positive_label_mask = tf.equal(targets, 1.0) cross_entropy = ( tf.nn.sigmoid_cross_entropy_with_logits(labels=targets, logits=logits)) probs = tf.sigmoid(logits) probs_gt = tf.where(positive_label_mask, probs, 1.0 - probs) # With small gamma, the implementation could produce NaN during back prop. modulator = tf.pow(1.0 - probs_gt, gamma) loss = modulator * cross_entropy weighted_loss = tf.where(positive_label_mask, alpha * loss, (1.0 - alpha) * loss) return weighted_loss class FocalLoss(tf.keras.losses.Loss): """Implements a Focal loss for classification problems. Reference: [Focal Loss for Dense Object Detection](https://arxiv.org/abs/1708.02002). """ def __init__(self, alpha, gamma, num_classes, reduction=tf.keras.losses.Reduction.AUTO, name=None): """Initializes `FocalLoss`. Args: alpha: The `alpha` weight factor for binary class imbalance. gamma: The `gamma` focusing parameter to re-weight loss. num_classes: Number of foreground classes. reduction: (Optional) Type of `tf.keras.losses.Reduction` to apply to loss. Default value is `AUTO`. `AUTO` indicates that the reduction option will be determined by the usage context. For almost all cases this defaults to `SUM_OVER_BATCH_SIZE`. When used with `tf.distribute.Strategy`, outside of built-in training loops such as `tf.keras` `compile` and `fit`, using `AUTO` or `SUM_OVER_BATCH_SIZE` will raise an error. Please see this custom training [tutorial]( https://www.tensorflow.org/tutorials/distribute/custom_training) for more details. name: Optional name for the op. Defaults to 'retinanet_class_loss'. """ self._num_classes = num_classes self._alpha = alpha self._gamma = gamma super(FocalLoss, self).__init__(reduction=reduction, name=name) def call(self, y_true, y_pred): """Invokes the `FocalLoss`. Args: y_true: Ordered Dict with level to [batch, height, width, num_anchors]. for example, {3: tf.Tensor(shape=[32, 512, 512, 9], dtype=tf.float32), 4: tf.Tensor([shape=32, 256, 256, 9, dtype=tf.float32])} y_pred: Ordered Dict with level to [batch, height, width, num_anchors * num_classes]. for example, {3: tf.Tensor(shape=[32, 512, 512, 9], dtype=tf.int64), 4: tf.Tensor(shape=[32, 256, 256, 9 * 21], dtype=tf.int64)} Returns: Summed loss float `Tensor`. """ flattened_cls_outputs = [] flattened_labels = [] batch_size = None for level in y_pred.keys(): cls_output = y_pred[level] label = y_true[level] if batch_size is None: batch_size = cls_output.shape[0] or tf.shape(cls_output)[0] flattened_cls_outputs.append( tf.reshape(cls_output, [batch_size, -1, self._num_classes])) flattened_labels.append(tf.reshape(label, [batch_size, -1])) cls_outputs = tf.concat(flattened_cls_outputs, axis=1) labels = tf.concat(flattened_labels, axis=1) cls_targets_one_hot = tf.one_hot(labels, self._num_classes) return focal_loss( tf.cast(cls_outputs, dtype=tf.float32), tf.cast(cls_targets_one_hot, dtype=tf.float32), self._alpha, self._gamma) def get_config(self): config = { 'alpha': self._alpha, 'gamma': self._gamma, 'num_classes': self._num_classes, } base_config = super(FocalLoss, self).get_config() return dict(list(base_config.items()) + list(config.items())) class RetinanetBoxLoss(tf.keras.losses.Loss): """RetinaNet box Huber loss.""" def __init__(self, delta, reduction=tf.keras.losses.Reduction.AUTO, name=None): """Initializes `RetinanetBoxLoss`. Args: delta: A float, the point where the Huber loss function changes from a quadratic to linear. reduction: (Optional) Type of `tf.keras.losses.Reduction` to apply to loss. Default value is `AUTO`. `AUTO` indicates that the reduction option will be determined by the usage context. For almost all cases this defaults to `SUM_OVER_BATCH_SIZE`. When used with `tf.distribute.Strategy`, outside of built-in training loops such as `tf.keras` `compile` and `fit`, using `AUTO` or `SUM_OVER_BATCH_SIZE` will raise an error. Please see this custom training [tutorial]( https://www.tensorflow.org/tutorials/distribute/custom_training) for more details. name: Optional name for the op. Defaults to 'retinanet_class_loss'. """ self._huber_loss = tf.keras.losses.Huber( delta=delta, reduction=tf.keras.losses.Reduction.NONE) self._delta = delta super(RetinanetBoxLoss, self).__init__(reduction=reduction, name=name) def call(self, y_true, y_pred): """Computes box detection loss. Computes total detection loss including box and class loss from all levels. Args: y_true: Ordered Dict with level to [batch, height, width, num_anchors * 4] for example, {3: tf.Tensor(shape=[32, 512, 512, 9 * 4], dtype=tf.float32), 4: tf.Tensor([shape=32, 256, 256, 9 * 4, dtype=tf.float32])} y_pred: Ordered Dict with level to [batch, height, width, num_anchors * 4]. for example, {3: tf.Tensor(shape=[32, 512, 512, 9 * 4], dtype=tf.int64), 4: tf.Tensor(shape=[32, 256, 256, 9 * 4], dtype=tf.int64)} Returns: an integer tensor representing total box regression loss. """ # Sums all positives in a batch for normalization and avoids zero # num_positives_sum, which would lead to inf loss during training flattened_box_outputs = [] flattened_labels = [] batch_size = None for level in y_pred.keys(): box_output = y_pred[level] label = y_true[level] if batch_size is None: batch_size = box_output.shape[0] or tf.shape(box_output)[0] flattened_box_outputs.append(tf.reshape(box_output, [batch_size, -1, 4])) flattened_labels.append(tf.reshape(label, [batch_size, -1, 4])) box_outputs = tf.concat(flattened_box_outputs, axis=1) labels = tf.concat(flattened_labels, axis=1) loss = self._huber_loss(labels, box_outputs) return loss def get_config(self): config = { 'delta': self._delta, } base_config = super(RetinanetBoxLoss, self).get_config() return dict(list(base_config.items()) + list(config.items()))
40.111111
81
0.652174
cfabc4d57fa1ca098aa4fddb4193795b253f3cfc
179
py
Python
numplates/owners/admin.py
Jurevic/numplates
c53dc5e32a0d597a1fbc5e4567f735113310e0b9
[ "MIT" ]
null
null
null
numplates/owners/admin.py
Jurevic/numplates
c53dc5e32a0d597a1fbc5e4567f735113310e0b9
[ "MIT" ]
null
null
null
numplates/owners/admin.py
Jurevic/numplates
c53dc5e32a0d597a1fbc5e4567f735113310e0b9
[ "MIT" ]
null
null
null
from django.contrib import admin from.models import Owner class OwnerAdmin(admin.ModelAdmin): fields = ['first_name', 'last_name'] admin.site.register(Owner, OwnerAdmin)
16.272727
40
0.759777
a3a2cdcd16aa3ef2b7d3f1917f2fcd51d2ee1798
19,626
py
Python
leo/plugins/free_layout.py
drmikecrowe/leo-editor
16d8e1e8564799496c7a90c5d3cc85461deca7e7
[ "MIT" ]
null
null
null
leo/plugins/free_layout.py
drmikecrowe/leo-editor
16d8e1e8564799496c7a90c5d3cc85461deca7e7
[ "MIT" ]
null
null
null
leo/plugins/free_layout.py
drmikecrowe/leo-editor
16d8e1e8564799496c7a90c5d3cc85461deca7e7
[ "MIT" ]
null
null
null
#@+leo-ver=5-thin #@+node:ekr.20120419093256.10048: * @file ../plugins/free_layout.py #@+<< docstring >> #@+node:ekr.20110319161401.14467: ** << docstring >> (free_layout.py) """ Free layout =========== Adds flexible panel layout through context menus on the handles between panels. Uses NestedSplitter, a more intelligent QSplitter, from leo.plugins.nested_splitter Requires Qt. Commands (bindable with @settings-->@keys-->@shortcuts): free-layout-load Open context menu for loading a different layout, conventient keyboard shortcut target. free-layout-restore Use the layout this outline had when it was opened. free-layout-zoom Zoom or unzoom the current pane """ #@-<< docstring >> # Written by Terry Brown. #@+<< imports >> #@+node:tbrown.20110203111907.5520: ** << imports >> (free_layout.py) import leo.core.leoGlobals as g from leo.core.leoQt import QtWidgets, QtCore if QtWidgets: from leo.plugins.nested_splitter import NestedSplitter # NestedSplitterChoice import json #@-<< imports >> #@+others #@+node:tbrown.20110203111907.5521: ** free_layout:init def init(): '''Return True if the free_layout plugin can be loaded.''' return g.app.gui.guiName() == "qt" #@+node:ekr.20110318080425.14389: ** class FreeLayoutController class FreeLayoutController(object): """Glue between Leo and the NestedSplitter gui widget. All Leo aware code should be in here, none in NestedSplitter. *ALSO* implements the provider interface for NestedSplitter, in ns_provides, ns_provide, ns_context, ns_do_context, which NestedSplitter uses as callbacks to populate splitter-handle context-menu and the empty pane Action button menu: see (ctrl-click this URL) file://{{g.getBaseDirectory(c)}}/LeoPyRef.leo#Code-->Qt%20gui-->@file%20../plugins/nested_splitter.py-->class%20NestedSplitter%20(QSplitter)-->register_provider ns_provides tell NestedSplitter which Action button items we can provide ns_provide provide the advertised service when an Action button item we advertised is selected ns_context tell NestedSplitter which splitter-handle context-menu items we can provide ns_do_context provide the advertised service when a splitter-handle context-menu item we advertised is selected """ #@+others #@+node:ekr.20110318080425.14390: *3* flc.ctor def __init__(self, c): '''Ctor for FreeLayoutController class.''' # g.trace('(FreeLayoutController)',c) # ,g.callers(files=True)) # if hasattr(c,'free_layout'): # return self.c = c # c.free_layout = self # To be removed # g.registerHandler('after-create-leo-frame',self.bindControllers) # attach to an outline g.registerHandler('after-create-leo-frame', self.init) # now that the outline's set up (plugins etc.), load layout for # outline, can't do that sooner as plugins must be loaded first # to provide their widgets in panels etc. g.registerHandler('after-create-leo-frame2', self.loadLayouts) # self.init() #@+node:tbrown.20110203111907.5522: *3* flc.init def init(self, tag, keys): """Attach to an outline and - add tags to widgets to indicate that they're essential (tree, body, log-window-tabs) and - tag the log-window-tabs widget as the place to put widgets from free-laout panes which are closed - register this FreeLayoutController as a provider of menu items for NestedSplitter """ c = self.c if c != keys.get('c'): return # g.trace(c.frame.title) # Careful: we could be unit testing. splitter = self.get_top_splitter() # A NestedSplitter. if not splitter: # g.trace('no splitter!') return None # by default NestedSplitter's context menus are disabled, needed # once to globally enable them NestedSplitter.enabled = True # when NestedSplitter disposes of children, it will either close # them, or move them to another designated widget. Here we set # up two designated widgets logTabWidget = splitter.findChild(QtWidgets.QWidget, "logTabWidget") splitter.root.holders['_is_from_tab'] = logTabWidget splitter.root.holders['_is_permanent'] = 'TOP' # allow body and tree widgets to be "removed" to tabs on the log tab panel bodyWidget = splitter.findChild(QtWidgets.QFrame, "bodyFrame") bodyWidget._is_from_tab = "Body" treeWidget = splitter.findChild(QtWidgets.QFrame, "outlineFrame") treeWidget._is_from_tab = "Tree" # also the other tabs will have _is_from_tab set on them by the # offer_tabs menu callback above # if the log tab panel is removed, move it back to the top splitter logWidget = splitter.findChild(QtWidgets.QFrame, "logFrame") logWidget._is_permanent = True # tag core Leo components (see ns_provides) splitter.findChild(QtWidgets.QWidget, "outlineFrame")._ns_id = '_leo_pane:outlineFrame' splitter.findChild(QtWidgets.QWidget, "logFrame")._ns_id = '_leo_pane:logFrame' splitter.findChild(QtWidgets.QWidget, "bodyFrame")._ns_id = '_leo_pane:bodyFrame' splitter.register_provider(self) splitter.splitterClicked_connect(self.splitter_clicked) #@+node:tbrown.20120119080604.22982: *3* flc.embed (FreeLayoutController) def embed(self): """called from ns_do_context - embed layout in outline's @settings, an alternative to the Load/Save named layout system """ # Careful: we could be unit testing. top_splitter = self.get_top_splitter() if not top_splitter: return c = self.c layout = top_splitter.get_saveable_layout() nd = g.findNodeAnywhere(c, "@data free-layout-layout") if not nd: settings = g.findNodeAnywhere(c, "@settings") if not settings: settings = c.rootPosition().insertAfter() settings.h = "@settings" nd = settings.insertAsNthChild(0) nd.h = "@data free-layout-layout" nd.b = json.dumps(layout, indent=4) nd = nd.parent() if not nd or nd.h != "@settings": g.es("WARNING: @data free-layout-layout node is not " "under an active @settings node") c.redraw() #@+node:ekr.20160424035257.1: *3* flc.get_main_splitter & helper def get_main_splitter(self, w=None): ''' Return the splitter the main splitter, or None. The main splitter is a NestedSplitter that contains the body pane. Yes, the user could delete the secondary splitter but if so, there is not much we can do here. ''' trace = False and not g.unitTesting top = self.get_top_splitter() if top: w = top.find_child(QtWidgets.QWidget, "bodyFrame") while w: if isinstance(w, NestedSplitter): if trace: g.trace('found splitter', id(w)) return w w = w.parent() if trace: g.trace('not found') return None #@+node:ekr.20160424035254.1: *3* flc.get_secondary_splitter & helper def get_secondary_splitter(self): ''' Return the secondary splitter, if it exists. The secondary splitter contains the outline pane. Yes, the user could delete the outline pane, but if so, there is not much we can do here. ''' trace = False and not g.unitTesting top = self.get_top_splitter() if top: w = top.find_child(QtWidgets.QWidget, 'outlineFrame') while w: if isinstance(w, NestedSplitter): if trace: g.trace('found splitter', id(w)) return w w = w.parent() if trace: g.trace('not found') return None #@+node:tbrown.20110621120042.22914: *3* flc.get_top_splitter def get_top_splitter(self): '''Return the top splitter of c.frame.top.''' # Careful: we could be unit testing. f = self.c.frame if hasattr(f, 'top') and f.top: return f.top.findChild(NestedSplitter).top() else: return None #@+node:ekr.20120419095424.9927: *3* flc.loadLayouts (sets wrap=True) def loadLayouts(self, tag, keys, reloading=False): """loadLayouts - Load the outlines layout :Parameters: - `tag`: from hook event - `keys`: from hook event - `reloading`: True if this is not the initial load, see below When called from the `after-create-leo-frame2` hook this defaults to False. When called from the `resotre-layout` command, this is set True, and the layout the outline had *when first loaded* is restored. Useful if you want to temporarily switch to a different layout and then back, without having to remember the original layouts name. """ c = self.c if not (g.app and g.app.db): return # Can happen when running from the Leo bridge. d = g.app.db.get('ns_layouts', {}) if c != keys.get('c'): return # g.trace(c.frame.title) layout = c.config.getData("free-layout-layout") if layout: layout = json.loads('\n'.join(layout)) name = c.db.get('_ns_layout') if name: # g.trace('Layout:',name,'reloading',reloading) if reloading: name = c.free_layout.original_layout c.db['_ns_layout'] = name else: c.free_layout.original_layout = name if layout: g.es("NOTE: embedded layout in @settings/@data free-layout-layout " "overrides saved layout " + name) else: layout = d.get(name) # EKR: Create commands that will load each layout. if d: for name in sorted(d.keys()): def func(event, c=c, d=d, name=name): layout = d.get(name) if layout: c.free_layout.get_top_splitter().load_layout(layout) else: g.trace('no layout', name) commandName = 'free-layout-load-%s' % name.strip().lower().replace(' ', '-') c.k.registerCommand(commandName, func) # Careful: we could be unit testing or in the Leo bridge. if layout: splitter = c.free_layout.get_top_splitter() if splitter: splitter.load_layout(layout) #@+node:tbrown.20110628083641.11730: *3* flc.ns_context def ns_context(self): ans = [ ('Embed layout', '_fl_embed_layout'), ('Save layout', '_fl_save_layout'), ] d = g.app.db.get('ns_layouts', {}) if d: ans.append({'Load layout': [(k, '_fl_load_layout:' + k) for k in d]}) ans.append({'Delete layout': [(k, '_fl_delete_layout:' + k) for k in d]}) ans.append(('Forget layout', '_fl_forget_layout:')) ans.append(('Restore initial layout', '_fl_restore_layout:')) ans.append(('Restore default layout', '_fl_restore_default:')) ans.append(('Help for this menu', '_fl_help:')) return ans #@+node:tbrown.20110628083641.11732: *3* flc.ns_do_context (FreeLayoutController) def ns_do_context(self, id_, splitter, index): if id_.startswith('_fl_embed_layout'): self.embed() return True if id_.startswith('_fl_restore_default'): self.get_top_splitter().load_layout( {'content': [{'content': ['_leo_pane:outlineFrame', '_leo_pane:logFrame'], 'orientation': 1, 'sizes': [509, 275]}, '_leo_pane:bodyFrame'], 'orientation': 2, 'sizes': [216, 216]}) if id_.startswith('_fl_help'): self.c.putHelpFor(__doc__) # g.handleUrl("http://leoeditor.com/") return True if id_ == '_fl_save_layout': if self.c.config.getData("free-layout-layout"): g.es("WARNING: embedded layout in @settings/@data free-layout-layout " "will override saved layout") layout = self.get_top_splitter().get_saveable_layout() name = g.app.gui.runAskOkCancelStringDialog(self.c, title="Save layout", message="Name for layout?", ) if name: self.c.db['_ns_layout'] = name d = g.app.db.get('ns_layouts', {}) d[name] = layout # make sure g.app.db's __set_item__ is hit so it knows to save g.app.db['ns_layouts'] = d return True if id_.startswith('_fl_load_layout:'): if self.c.config.getData("free-layout-layout"): g.es("WARNING: embedded layout in @settings/@data free-layout-layout " "will override saved layout") name = id_.split(':', 1)[1] self.c.db['_ns_layout'] = name layout = g.app.db['ns_layouts'][name] self.get_top_splitter().load_layout(layout) return True if id_.startswith('_fl_delete_layout:'): name = id_.split(':', 1)[1] if ('yes' == g.app.gui.runAskYesNoCancelDialog(self.c, "Really delete Layout?", "Really permanently delete the layout '%s'?" % name) ): d = g.app.db.get('ns_layouts', {}) del d[name] # make sure g.app.db's __set_item__ is hit so it knows to save g.app.db['ns_layouts'] = d if '_ns_layout' in self.c.db: del self.c.db['_ns_layout'] return True if id_.startswith('_fl_forget_layout:'): if '_ns_layout' in self.c.db: del self.c.db['_ns_layout'] return True if id_.startswith('_fl_restore_layout:'): self.loadLayouts("reload", {'c': self.c}, reloading=True) return True return False #@+node:tbrown.20110628083641.11724: *3* flc.ns_provide def ns_provide(self, id_): if id_.startswith('_leo_tab:'): id_ = id_.split(':', 1)[1] logTabWidget = self.get_top_splitter().find_child(QtWidgets.QWidget, "logTabWidget") for n in range(logTabWidget.count()): if logTabWidget.tabText(n) == id_: w = logTabWidget.widget(n) w.setHidden(False) w._is_from_tab = logTabWidget.tabText(n) w.setMinimumSize(20, 20) return w # didn't find it, maybe it's already in a splitter return 'USE_EXISTING' if id_.startswith('_leo_pane:'): id_ = id_.split(':', 1)[1] w = self.get_top_splitter().find_child(QtWidgets.QWidget, id_) if w: w.setHidden(False) # may be from Tab holder w.setMinimumSize(20, 20) return w return None #@+node:tbrown.20110627201141.11745: *3* flc.ns_provides def ns_provides(self): ans = [] # list of things in tab widget logTabWidget = self.get_top_splitter().find_child(QtWidgets.QWidget, "logTabWidget") for n in range(logTabWidget.count()): text = str(logTabWidget.tabText(n)) # not QString if text in ('Body', 'Tree'): continue # handled below if text == 'Log': # if Leo can't find Log in tab pane, it creates another continue ans.append((text, '_leo_tab:' + text)) ans.append(('Tree', '_leo_pane:outlineFrame')) ans.append(('Body', '_leo_pane:bodyFrame')) ans.append(('Tab pane', '_leo_pane:logFrame')) return ans #@+node:tbnorth.20160510122413.1: *3* flc.splitter_clicked def splitter_clicked(self, splitter, handle, event, release, double): """ splitter_clicked - middle click release will zoom adjacent body / tree panes :param NestedSplitter splitter: splitter containing clicked handle :param NestedSplitterHandle handle: clicked handle :param QMouseEvent event: mouse event for click :param bool release: was it a Press or Release event :param bool double: was it a double click event """ if not release or event.button() != QtCore.Qt.MidButton: return if splitter.root.zoomed: # unzoom if *any* handle clicked splitter.zoom_toggle() return before = splitter.widget(splitter.indexOf(handle) - 1) after = splitter.widget(splitter.indexOf(handle)) for pane in before, after: if pane.objectName() == 'bodyFrame': pane.setFocus() splitter.zoom_toggle() return if pane.objectName() == 'outlineFrame': pane.setFocus() splitter.zoom_toggle(local=True) return #@-others #@+node:ekr.20160416065221.1: ** commands: free_layout.py #@+node:tbrown.20140524112944.32658: *3* @g.command free-layout-context-menu @g.command('free-layout-context-menu') def free_layout_context_menu(event): """free_layout_context_menu - open free layout's context menu, using the first divider of the top splitter for context, for now. """ c = event.get('c') splitter = c.free_layout.get_top_splitter() handle = splitter.handle(1) handle.splitter_menu(handle.rect().topLeft()) #@+node:tbrown.20130403081644.25265: *3* @g.command free-layout-restore @g.command('free-layout-restore') def free_layout_restore(event): """free_layout_restore - restore layout outline had when it was loaded """ c = event.get('c') c.free_layout.loadLayouts('reload', {'c': c}, reloading=True) #@+node:tbrown.20131111194858.29876: *3* @g.command free-layout-load @g.command('free-layout-load') def free_layout_load(event): """free_layout_load - load layout from menu """ c = event.get('c') d = g.app.db.get('ns_layouts', {}) menu = QtWidgets.QMenu(c.frame.top) for k in d: menu.addAction(k) pos = c.frame.top.window().frameGeometry().center() action = menu.exec_(pos) if action is None: return name = str(action.text()) c.db['_ns_layout'] = name # layout = g.app.db['ns_layouts'][name] layouts = g.app.db.get('ns_layouts', {}) layout = layouts.get(name) if layout: c.free_layout.get_top_splitter().load_layout(layout) #@+node:tbrown.20140522153032.32658: *3* @g.command free-layout-zoom @g.command('free-layout-zoom') def free_layout_zoom(event): """free_layout_zoom - (un)zoom the current pane. """ c = event.get('c') c.free_layout.get_top_splitter().zoom_toggle() #@+node:ekr.20160327060009.1: *3* free_layout:register_provider def register_provider(c, provider_instance): '''Register the provider instance with the top splitter.''' # Careful: c.free_layout may not exist during unit testing. if c and hasattr(c, 'free_layout'): splitter = c.free_layout.get_top_splitter() if splitter: splitter.register_provider(provider_instance) #@-others #@@language python #@@tabwidth -4 #@@pagewidth 70 #@-leo
42.572668
164
0.60695
a1b8f360cda662c5c6b0cc23a487b3d11c4b68d4
12,052
py
Python
readthedocs/embed/views.py
mehrdad-khojastefar/readthedocs.org
b958bb8d04c454324d612345890b13af54a19eb6
[ "MIT" ]
2,092
2019-06-29T07:47:30.000Z
2022-03-31T14:54:59.000Z
readthedocs/embed/views.py
mehrdad-khojastefar/readthedocs.org
b958bb8d04c454324d612345890b13af54a19eb6
[ "MIT" ]
2,389
2019-06-29T04:22:55.000Z
2022-03-31T22:57:49.000Z
readthedocs/embed/views.py
mehrdad-khojastefar/readthedocs.org
b958bb8d04c454324d612345890b13af54a19eb6
[ "MIT" ]
1,185
2019-06-29T21:49:31.000Z
2022-03-30T09:57:15.000Z
"""Views for the embed app.""" import functools import json import re from django.shortcuts import get_object_or_404 from django.template.defaultfilters import slugify from django.utils.functional import cached_property from docutils.nodes import make_id from pyquery import PyQuery as PQ # noqa from rest_framework import status from rest_framework.renderers import BrowsableAPIRenderer, JSONRenderer from rest_framework.response import Response from rest_framework.views import APIView import structlog from readthedocs.api.v2.mixins import CachedResponseMixin from readthedocs.api.v2.permissions import IsAuthorizedToViewVersion from readthedocs.builds.constants import EXTERNAL from readthedocs.core.resolver import resolve from readthedocs.core.unresolver import unresolve from readthedocs.core.utils.extend import SettingsOverrideObject from readthedocs.embed.utils import recurse_while_none, clean_links from readthedocs.projects.models import Project from readthedocs.storage import build_media_storage log = structlog.get_logger(__name__) def escape_selector(selector): """Escape special characters from the section id.""" regex = re.compile(r'(!|"|#|\$|%|\'|\(|\)|\*|\+|\,|\.|\/|\:|\;|\?|@)') ret = re.sub(regex, r'\\\1', selector) return ret class EmbedAPIBase(CachedResponseMixin, APIView): # pylint: disable=line-too-long """ Embed a section of content from any Read the Docs page. Returns headers and content that matches the queried section. ### Arguments We support two different ways to query the API: * project (required) * version (required) * doc or path (required) * section or: * url (with fragment) (required) ### Example - GET https://readthedocs.org/api/v2/embed/?project=requestsF&version=latest&doc=index&section=User%20Guide&path=/index.html - GET https://readthedocs.org/api/v2/embed/?url=https://docs.readthedocs.io/en/latest/features.html%23github-bitbucket-and-gitlab-integration # Current Request """ # noqa permission_classes = [IsAuthorizedToViewVersion] renderer_classes = [JSONRenderer, BrowsableAPIRenderer] @functools.lru_cache(maxsize=1) def _get_project(self): if self.unresolved_url: project_slug = self.unresolved_url.project.slug else: project_slug = self.request.GET.get('project') return get_object_or_404(Project, slug=project_slug) @functools.lru_cache(maxsize=1) def _get_version(self): if self.unresolved_url: version_slug = self.unresolved_url.version_slug else: version_slug = self.request.GET.get('version', 'latest') project = self._get_project() return get_object_or_404(project.versions.all(), slug=version_slug) @cached_property def unresolved_url(self): url = self.request.GET.get('url') if not url: return None return unresolve(url) def get(self, request): """Handle the get request.""" project = self._get_project() version = self._get_version() url = request.GET.get('url') path = request.GET.get('path', '') doc = request.GET.get('doc') section = request.GET.get('section') if url: unresolved = self.unresolved_url path = unresolved.filename section = unresolved.fragment elif not path and not doc: return Response( { 'error': ( 'Invalid Arguments. ' 'Please provide "url" or "section" and "path" GET arguments.' ) }, status=status.HTTP_400_BAD_REQUEST ) # Generate the docname from path # by removing the ``.html`` extension and trailing ``/``. if path: doc = re.sub(r'(.+)\.html$', r'\1', path.strip('/')) response = do_embed( project=project, version=version, doc=doc, section=section, path=path, url=url, ) if not response: return Response( { 'error': ( "Can't find content for section: " f"doc={doc} path={path} section={section}" ) }, status=status.HTTP_404_NOT_FOUND ) log.info( 'EmbedAPI successful response.', project_slug=project.slug, version_slug=version.slug, doc=doc, section=section, path=path, url=url, referer=request.META.get('HTTP_REFERER'), hoverxref_version=request.META.get('HTTP_X_HOVERXREF_VERSION'), ) return Response(response) class EmbedAPI(SettingsOverrideObject): _default_class = EmbedAPIBase def do_embed(*, project, version, doc=None, path=None, section=None, url=None): """Get the embed response from a document section.""" if not url: external = version.type == EXTERNAL url = resolve( project=project, version_slug=version.slug, filename=path or doc, external=external, ) content = None headers = None if version.is_sphinx_type: file_content = _get_doc_content( project=project, version=version, doc=doc, ) if not file_content: return None content, headers, section = parse_sphinx( content=file_content, section=section, url=url, ) else: # TODO: this should read from the html file itself, # we don't have fjson files for mkdocs. file_content = _get_doc_content( project=project, version=version, doc=doc, ) content, headers, section = parse_mkdocs( content=file_content, section=section, url=url, ) if content is None: return None return { 'content': content, 'headers': headers, 'url': url, 'meta': { 'project': project.slug, 'version': version.slug, 'doc': doc, 'section': section, }, } def _get_doc_content(project, version, doc): storage_path = project.get_storage_path( 'json', version_slug=version.slug, include_file=False, version_type=version.type, ) file_path = build_media_storage.join( storage_path, f'{doc}.fjson'.lstrip('/'), ) try: with build_media_storage.open(file_path) as file: return json.load(file) except Exception: # noqa log.warning('Unable to read file.', file_path=file_path) return None def parse_sphinx(content, section, url): """Get the embed content for the section.""" body = content.get('body') toc = content.get('toc') if not content or not body or not toc: return (None, None, section) headers = [ recurse_while_none(element) for element in PQ(toc)('a') ] if not section and headers: # If no section is sent, return the content of the first one # TODO: This will always be the full page content, # lets do something smarter here section = list(headers[0].keys())[0].lower() if not section: return [], headers, None body_obj = PQ(body) escaped_section = escape_selector(section) elements_id = [ escaped_section, slugify(escaped_section), make_id(escaped_section), f'module-{escaped_section}', ] query_result = [] for element_id in elements_id: if not element_id: continue try: query_result = body_obj(f'#{element_id}') if query_result: break except Exception: # noqa log.info( 'Failed to query section.', url=url, element_id=element_id, ) if not query_result: selector = f':header:contains("{escaped_section}")' query_result = body_obj(selector).parent() # Handle ``dt`` special cases if len(query_result) == 1 and query_result[0].tag == 'dt': parent = query_result.parent() if 'glossary' in parent.attr('class'): # Sphinx HTML structure for term glossary puts the ``id`` in the # ``dt`` element with the title of the term. In this case, we # need to return the next sibling which contains the definition # of the term itself. # Structure: # <dl class="glossary docutils"> # <dt id="term-definition">definition</dt> # <dd>Text definition for the term</dd> # ... # </dl> query_result = query_result.next() elif 'citation' in parent.attr('class'): # Sphinx HTML structure for sphinxcontrib-bibtex puts the ``id`` in the # ``dt`` element with the title of the cite. In this case, we # need to return the next sibling which contains the cite itself. # Structure: # <dl class="citation"> # <dt id="cite-id"><span><a>Title of the cite</a></span></dt> # <dd>Content of the cite</dd> # ... # </dl> query_result = query_result.next() else: # Sphinx HTML structure for definition list puts the ``id`` # the ``dt`` element, instead of the ``dl``. This makes # the backend to return just the title of the definition. If we # detect this case, we return the parent (the whole ``dl``) # Structure: # <dl class="confval"> # <dt id="confval-config"> # <code class="descname">config</code> # <a class="headerlink" href="#confval-config">¶</a></dt> # <dd><p>Text with a description</p></dd> # </dl> query_result = parent def dump(obj): """Handle API-based doc HTML.""" if obj[0].tag in ['span', 'h2']: return obj.parent().outerHtml() return obj.outerHtml() ret = [ dump(clean_links(obj, url)) for obj in query_result ] return ret, headers, section def parse_mkdocs(content, section, url): # pylint: disable=unused-argument """Get the embed content for the section.""" ret = [] headers = [] if not content or not content.get('content'): return (None, None, section) body = content['content'] for element in PQ(body)('h2'): headers.append(recurse_while_none(element)) if not section and headers: # If no section is sent, return the content of the first one section = list(headers[0].keys())[0].lower() if section: body_obj = PQ(body) escaped_section = escape_selector(section) section_list = body_obj( ':header:contains("{title}")'.format(title=str(escaped_section))) for num in range(len(section_list)): header2 = section_list.eq(num) # h2_title = h2.text().strip() # section_id = h2.attr('id') h2_content = "" next_p = header2.next() while next_p: if next_p[0].tag == 'h2': break h2_html = next_p.outerHtml() if h2_html: h2_content += "\n%s\n" % h2_html next_p = next_p.next() if h2_content: ret.append(h2_content) # ret.append({ # 'id': section_id, # 'title': h2_title, # 'content': h2_content, # }) return (ret, headers, section)
30.982005
145
0.574842
831b1599417d24275ead0fcf071d1d67c4568792
1,267
py
Python
Ene-Jun-2021/perez-sanchez-jose-jahir/Practica1/Practica_1.py
bryanbalderas/DAS_Sistemas
1e31f088c0de7134471025a5730b0abfc19d936e
[ "MIT" ]
41
2017-09-26T09:36:32.000Z
2022-03-19T18:05:25.000Z
Ene-Jun-2021/perez-sanchez-jose-jahir/Practica1/Practica_1.py
bryanbalderas/DAS_Sistemas
1e31f088c0de7134471025a5730b0abfc19d936e
[ "MIT" ]
67
2017-09-11T05:06:12.000Z
2022-02-14T04:44:04.000Z
Ene-Jun-2021/perez-sanchez-jose-jahir/Practica1/Practica_1.py
bryanbalderas/DAS_Sistemas
1e31f088c0de7134471025a5730b0abfc19d936e
[ "MIT" ]
210
2017-09-01T00:10:08.000Z
2022-03-19T18:05:12.000Z
class Vehiculo(): random = 0 def __init__(self,velocidad_maxima, kilometraje, capacidad): self.velocidad_maxima = velocidad_maxima self.kilometraje = kilometraje self.capacidad = capacidad def tarifa(self,capacidad): tarifa_i = self.capacidad*100 return tarifa_i def __str__(self): return f"El Vehiculo tiene una velocidad maxima de: {self.velocidad_maxima}, un kilometraje de: {self.kilometraje} y una capacidad de: {self.capacidad}" class Autobus(Vehiculo): def __init__(self,velocidad_maxima, kilometraje, capacidad): super().__init__(velocidad_maxima, kilometraje, capacidad) def __str__(self): return f"Soy un autobus! -> velocidad maxima {self.velocidad_maxima}, kilometraje {self.kilometraje}, capacidad {self.capacidad} " if __name__ == "__main__": lista = [ Vehiculo(100,30000,4), Autobus(80,40000,30), Vehiculo(180,10000,6), Autobus(60,50000,20), Vehiculo(180,20000,2), Autobus(90,40000,25) ] for x in lista: if isinstance(x, Autobus): manten = x.tarifa(x.capacidad)*0.1 tarifa_real = x.tarifa(x.capacidad)+manten print(x,tarifa_real)
31.675
160
0.642463
61461c3d522664432e08c7671725b2c22db930ca
4,431
py
Python
carla/src/ros-bridge/carla_ad_agent/src/carla_ad_agent/carla_ad_agent.py
jaypatravali/VirtualFastKeyboardFurious_carla
cf68e7ea7d0436b38b8f7bb3fb1dbeffb6812c97
[ "MIT" ]
null
null
null
carla/src/ros-bridge/carla_ad_agent/src/carla_ad_agent/carla_ad_agent.py
jaypatravali/VirtualFastKeyboardFurious_carla
cf68e7ea7d0436b38b8f7bb3fb1dbeffb6812c97
[ "MIT" ]
1
2020-06-05T15:31:31.000Z
2020-06-05T15:31:31.000Z
carla/src/ros-bridge/carla_ad_agent/src/carla_ad_agent/carla_ad_agent.py
jaypatravali/VirtualFastKeyboardFurious_carla
cf68e7ea7d0436b38b8f7bb3fb1dbeffb6812c97
[ "MIT" ]
1
2020-12-14T07:04:08.000Z
2020-12-14T07:04:08.000Z
#!/usr/bin/env python # # Copyright (c) 2020 Intel Corporation # # This work is licensed under the terms of the MIT license. # For a copy, see <https://opensource.org/licenses/MIT>. # """ A basic AD agent using CARLA waypoints """ import sys import rospy from nav_msgs.msg import Path from std_msgs.msg import Float64 from carla_msgs.msg import CarlaEgoVehicleInfo, CarlaEgoVehicleControl from basic_agent import BasicAgent class CarlaAdAgent(object): """ A basic AD agent using CARLA waypoints """ def __init__(self, role_name, target_speed, avoid_risk): """ Constructor """ self._route_assigned = False self._global_plan = None self._agent = None self._target_speed = target_speed rospy.on_shutdown(self.on_shutdown) # wait for ego vehicle vehicle_info = None try: vehicle_info = rospy.wait_for_message( "/carla/{}/vehicle_info".format(role_name), CarlaEgoVehicleInfo) except rospy.ROSException: rospy.logerr("Timeout while waiting for world info!") sys.exit(1) self._route_subscriber = rospy.Subscriber( "/carla/{}/waypoints".format(role_name), Path, self.path_updated) self._target_speed_subscriber = rospy.Subscriber( "/carla/{}/target_speed".format(role_name), Float64, self.target_speed_updated) self.vehicle_control_publisher = rospy.Publisher( "/carla/{}/vehicle_control_cmd".format(role_name), CarlaEgoVehicleControl, queue_size=1) self._agent = BasicAgent(role_name, vehicle_info.id, # pylint: disable=no-member avoid_risk) def on_shutdown(self): """ callback on shutdown """ rospy.loginfo("Shutting down, stopping ego vehicle...") if self._agent: self.vehicle_control_publisher.publish(self._agent.emergency_stop()) def target_speed_updated(self, target_speed): """ callback on new target speed """ rospy.loginfo("New target speed received: {}".format(target_speed.data)) self._target_speed = target_speed.data def path_updated(self, path): """ callback on new route """ rospy.loginfo("New plan with {} waypoints received.".format(len(path.poses))) if self._agent: self.vehicle_control_publisher.publish(self._agent.emergency_stop()) self._global_plan = path self._route_assigned = False def run_step(self): """ Execute one step of navigation. """ control = CarlaEgoVehicleControl() control.steer = 0.0 control.throttle = 0.0 control.brake = 0.0 control.hand_brake = False if not self._agent: rospy.loginfo("Waiting for ego vehicle...") return control if not self._route_assigned and self._global_plan: rospy.loginfo("Assigning plan...") self._agent._local_planner.set_global_plan( # pylint: disable=protected-access self._global_plan.poses) self._route_assigned = True else: control, finished = self._agent.run_step(self._target_speed) if finished: self._global_plan = None self._route_assigned = False return control def run(self): """ Control loop :return: """ r = rospy.Rate(10) while not rospy.is_shutdown(): if self._global_plan: control = self.run_step() if control: control.steer = -control.steer self.vehicle_control_publisher.publish(control) else: try: r.sleep() except rospy.ROSInterruptException: pass def main(): """ main function :return: """ rospy.init_node('carla_ad_agent', anonymous=True) role_name = rospy.get_param("~role_name", "ego_vehicle") target_speed = rospy.get_param("~target_speed", 20) avoid_risk = rospy.get_param("~avoid_risk", True) controller = CarlaAdAgent(role_name, target_speed, avoid_risk) try: controller.run() finally: del controller rospy.loginfo("Done") if __name__ == "__main__": main()
29.738255
100
0.606409