hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
3afcf1619450fb2f8358266e12d53d04f162c5bd
6,262
py
Python
src/m5r_nested_loops_in_graphics.py
fernerme/14_LoopsWithinLoops
da23e6f1ee2e88cc695ff5202094f9ce404dccb4
[ "MIT" ]
null
null
null
src/m5r_nested_loops_in_graphics.py
fernerme/14_LoopsWithinLoops
da23e6f1ee2e88cc695ff5202094f9ce404dccb4
[ "MIT" ]
null
null
null
src/m5r_nested_loops_in_graphics.py
fernerme/14_LoopsWithinLoops
da23e6f1ee2e88cc695ff5202094f9ce404dccb4
[ "MIT" ]
null
null
null
""" This project demonstrates NESTED LOOPS (i.e., loops within loops) in the context of TWO-DIMENSIONAL GRAPHICS. Authors: David Mutchler, Valerie Galluzzi, Mark Hays, Amanda Stouder, their colleagues and Melina Ferner. """ # DONE: 1. PUT YOUR NAME IN THE ABOVE LINE. import rosegraphics as rg def main(): """ Calls the other functions to demonstrate them. """ nested_loops_in_graphics_example() def nested_loops_in_graphics_example(): """ Demonstrates nested loops in a TWO-DIMENSIONAL GRAPHICS example. """ width = 800 height = 600 title = 'Rectangles and Triangles of Circles' window = rg.RoseWindow(width, height, title) window.continue_on_mouse_click('Click to run Example 1.') # ------------------------------------------------------------------ starting_point = rg.Point(50, 50) # ------------------------------------------------------------------ # ------------------------------------------------------------------ # First set of circles # ------------------------------------------------------------------ radius = 20 starting_circle = rg.Circle(starting_point, radius) rectangle_of_circles(window, starting_circle.clone(), 4, 12) window.continue_on_mouse_click('Click to run Example 2.') # ------------------------------------------------------------------ # Second set of circles # ------------------------------------------------------------------ starting_circle.move_by(180, 400) rectangle_of_circles(window, starting_circle.clone(), 14, 2) window.continue_on_mouse_click('Click to run Example 3.') # ------------------------------------------------------------------ # Third and last set of circles # ------------------------------------------------------------------ starting_circle.move_by(200, -400) triangle_of_circles(window, starting_circle.clone(), 8) window.close_on_mouse_click() # ---------------------------------------------------------------------- # DONE: 2. # *** Unless your instructor directs you otherwise, # watch the video # nested_loops_in_GRAPHICS.mp4 # in Preparation for Session 18 # ** NOW ** # As the video proceeds, LOOK AT THE CODE BELOW. # It is the same as the video. # (Pause the video when it completes the following problem.) # # *** USE THE VIDEO to understand the TECHNIQUE used in this example. # # AFTER you have watched the video, asking questions as needed, # and you feel that you understand the TECHNIQUE it presents, THEN: # # *** Change the TO DO above to DONE. *** # ---------------------------------------------------------------------- def rectangle_of_circles(window, circle, m, n): """ Draws an m x n rectangle of circles (i.e. m columns and n rows) on the given rg.RoseWindow. The given rg.Circle specifies: - The position of the upper-left circle drawn and also - The radius that all the circles have. After drawing each circle, pauses briefly (0.1 second). Preconditions: :type window: rg.RoseWindow :type circle: rg.Circle :type m: int :type n: int and m and n are small, positive integers. """ original_x = circle.center.x original_y = circle.center.y radius = circle.radius x = original_x y = original_y for i in range(n): # Loop through the rows for j in range(m): # Loop through the columns new_circle = rg.Circle(rg.Point(x, y), radius) new_circle.attach_to(window) window.render(0.1) x = x + (2 * radius) # Move x to the right, for next circle y = y + 2 * radius # Move y down, for the next row of circles x = original_x # Reset x to the left-edge, for the next row # ---------------------------------------------------------------------- # DONE: 3. # *** Unless your instructor directs you otherwise, # watch the video # nested_loops_in_GRAPHICS.mp4 # in Preparation for Session 18 # ** NOW ** # As the video proceeds, LOOK AT THE CODE BELOW. # It is the same as the video. # (Continue the video from where you paused it in the previous problem.) # # *** USE THE VIDEO to understand the TECHNIQUE used in this example. # # AFTER you have watched the video, asking questions as needed, # and you feel that you understand the TECHNIQUE it presents, THEN: # # *** Change the TO DO above to DONE. *** # ---------------------------------------------------------------------- def triangle_of_circles(window, circle, n): """ Draws an n x n right-triangle of circles (1 circle in the top row, 2 in the next row, etc., until n rows) on the given rg.RoseWindow. The given rg.Circle specifies: - The position of the upper-left circle drawn and also - The radius that all the circles have. After drawing each circle, pauses briefly (0.1 second). Preconditions: :type window: rg.RoseWindow :type circle: rg.Circle :type n: int and m is a small, positive integer. """ # ------------------------------------------------------------------ # NOTE: The solution below is IDENTICAL to the rectangle_of_circles # solution except that the INNER loop has j+1 instead of m. # Make sure you understand why this works! # ------------------------------------------------------------------ original_x = circle.center.x original_y = circle.center.y radius = circle.radius x = original_x y = original_y for j in range(n): # Loop through the rows for _ in range(j + 1): # Loop through the columns new_circle = rg.Circle(rg.Point(x, y), radius) new_circle.attach_to(window.initial_canvas) window.render(0.1) x = x + (2 * radius) # Move x to the right, for next circle y = y + 2 * radius # Move y down, for the next row of circles x = original_x # Reset x to the left-edge, for the next row # ---------------------------------------------------------------------- # Calls main to start the ball rolling. # ---------------------------------------------------------------------- main()
36.406977
77
0.535931
25c8825f6edc8271426c0b35b27260056a947621
3,379
py
Python
homeassistant/components/rfxtrx/device_trigger.py
DoctorU/core
5b218d7e1c4164e32d41473977459cbaf23adf42
[ "Apache-2.0" ]
7
2019-08-15T13:36:58.000Z
2020-03-18T10:46:29.000Z
homeassistant/components/rfxtrx/device_trigger.py
DoctorU/core
5b218d7e1c4164e32d41473977459cbaf23adf42
[ "Apache-2.0" ]
87
2020-07-15T13:43:35.000Z
2022-03-23T07:43:10.000Z
homeassistant/components/rfxtrx/device_trigger.py
winning1120xx/home-assistant
53d4c0ce2d374b5e97bbdc37742656c27adf8eea
[ "Apache-2.0" ]
7
2018-10-04T10:12:45.000Z
2021-12-29T20:55:40.000Z
"""Provides device automations for RFXCOM RFXtrx.""" from __future__ import annotations import voluptuous as vol from homeassistant.components.automation import ( AutomationActionType, AutomationTriggerInfo, ) from homeassistant.components.device_automation import DEVICE_TRIGGER_BASE_SCHEMA from homeassistant.components.device_automation.exceptions import ( InvalidDeviceAutomationConfig, ) from homeassistant.components.homeassistant.triggers import event as event_trigger from homeassistant.components.rfxtrx.const import EVENT_RFXTRX_EVENT from homeassistant.const import ( ATTR_DEVICE_ID, CONF_DEVICE_ID, CONF_DOMAIN, CONF_PLATFORM, CONF_TYPE, ) from homeassistant.core import CALLBACK_TYPE, HomeAssistant from homeassistant.helpers.typing import ConfigType from . import DOMAIN from .helpers import async_get_device_object CONF_SUBTYPE = "subtype" CONF_TYPE_COMMAND = "command" CONF_TYPE_STATUS = "status" TRIGGER_SELECTION = { CONF_TYPE_COMMAND: "COMMANDS", CONF_TYPE_STATUS: "STATUS", } TRIGGER_TYPES = [ CONF_TYPE_COMMAND, CONF_TYPE_STATUS, ] TRIGGER_SCHEMA = DEVICE_TRIGGER_BASE_SCHEMA.extend( { vol.Required(CONF_TYPE): vol.In(TRIGGER_TYPES), vol.Required(CONF_SUBTYPE): str, } ) async def async_get_triggers(hass: HomeAssistant, device_id: str) -> list[dict]: """List device triggers for RFXCOM RFXtrx devices.""" device = async_get_device_object(hass, device_id) triggers = [] for conf_type in TRIGGER_TYPES: data = getattr(device, TRIGGER_SELECTION[conf_type], {}) for command in data.values(): triggers.append( { CONF_PLATFORM: "device", CONF_DEVICE_ID: device_id, CONF_DOMAIN: DOMAIN, CONF_TYPE: conf_type, CONF_SUBTYPE: command, } ) return triggers async def async_validate_trigger_config(hass, config): """Validate config.""" config = TRIGGER_SCHEMA(config) device = async_get_device_object(hass, config[CONF_DEVICE_ID]) action_type = config[CONF_TYPE] sub_type = config[CONF_SUBTYPE] commands = getattr(device, TRIGGER_SELECTION[action_type], {}) if config[CONF_SUBTYPE] not in commands.values(): raise InvalidDeviceAutomationConfig( f"Subtype {sub_type} not found in device triggers {commands}" ) return config async def async_attach_trigger( hass: HomeAssistant, config: ConfigType, action: AutomationActionType, automation_info: AutomationTriggerInfo, ) -> CALLBACK_TYPE: """Attach a trigger.""" config = TRIGGER_SCHEMA(config) event_data = {ATTR_DEVICE_ID: config[CONF_DEVICE_ID]} if config[CONF_TYPE] == CONF_TYPE_COMMAND: event_data["values"] = {"Command": config[CONF_SUBTYPE]} elif config[CONF_TYPE] == CONF_TYPE_STATUS: event_data["values"] = {"Status": config[CONF_SUBTYPE]} event_config = event_trigger.TRIGGER_SCHEMA( { event_trigger.CONF_PLATFORM: "event", event_trigger.CONF_EVENT_TYPE: EVENT_RFXTRX_EVENT, event_trigger.CONF_EVENT_DATA: event_data, } ) return await event_trigger.async_attach_trigger( hass, event_config, action, automation_info, platform_type="device" )
29.640351
82
0.702279
b290808c6fa5e40545fcb9fb90c86297b422b089
1,412
py
Python
pytorch_lightning/metrics/regression/ssim.py
lyuxingjian/pytorch-lightning
576afd59f3456eb06fb8805ed65a24b41c428a3e
[ "Apache-2.0" ]
1
2021-03-25T22:39:21.000Z
2021-03-25T22:39:21.000Z
pytorch_lightning/metrics/regression/ssim.py
lyuxingjian/pytorch-lightning
576afd59f3456eb06fb8805ed65a24b41c428a3e
[ "Apache-2.0" ]
null
null
null
pytorch_lightning/metrics/regression/ssim.py
lyuxingjian/pytorch-lightning
576afd59f3456eb06fb8805ed65a24b41c428a3e
[ "Apache-2.0" ]
null
null
null
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Optional, Sequence from torchmetrics import SSIM as _SSIM from pytorch_lightning.utilities.deprecation import deprecated class SSIM(_SSIM): @deprecated(target=_SSIM, ver_deprecate="1.3.0", ver_remove="1.5.0") def __init__( self, kernel_size: Sequence[int] = (11, 11), sigma: Sequence[float] = (1.5, 1.5), reduction: str = "elementwise_mean", data_range: Optional[float] = None, k1: float = 0.01, k2: float = 0.03, compute_on_step: bool = True, dist_sync_on_step: bool = False, process_group: Optional[Any] = None, ): """ This implementation refers to :class:`~torchmetrics.SSIM`. .. deprecated:: Use :class:`~torchmetrics.SSIM`. Will be removed in v1.5.0. """
33.619048
74
0.674221
d86f161535d08da32811579e68d103a3a76a15e7
1,413
py
Python
PYQT/pyqt_18_menuaction_trigger.py
dogancantorun8/python-application
3ef972e52bb6950108cde36974ceaf5c3cde3667
[ "MIT" ]
null
null
null
PYQT/pyqt_18_menuaction_trigger.py
dogancantorun8/python-application
3ef972e52bb6950108cde36974ceaf5c3cde3667
[ "MIT" ]
null
null
null
PYQT/pyqt_18_menuaction_trigger.py
dogancantorun8/python-application
3ef972e52bb6950108cde36974ceaf5c3cde3667
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Fri Mar 26 18:47:15 2021 @author: dogancan """ #Menu barda her action ile oluşan sinyalimi trigger ile yakalayacağım import sys from PyQt5.QtWidgets import * from PyQt5.Qt import * class MainWindow(QMainWindow): def __init__(self): super().__init__() self.resize(640, 480) self.filePopup = QMenu('File', self) self.menuBar().addMenu(self.filePopup) self.editPopup = self.menuBar().addMenu('Edit') self.openAction = self.filePopup.addAction('&Open') self.openAction.triggered.connect(self.openActionHandler) #Open aksiyonu icin trigger connect oluşturdum self.closeAction = self.filePopup.addAction('&Close') self.closeAction.triggered.connect(self.closeActionHandler) self.cutAction = self.editPopup.addAction('&Cut', self.cutActionHandler) self.copyAction = self.editPopup.addAction('&Copy', self.copyActionHandler) self.pasteAction = self.editPopup.addAction('&Paste', self.pasteActionHandler) def openActionHandler(self): print('Open') def closeActionHandler(self): self.close() def cutActionHandler(self): print('Cut') def copyActionHandler(self): print('Copy') def pasteActionHandler(self): print('Paste') app = QApplication(sys.argv) mainWindow = MainWindow() mainWindow.show() app.exec()
26.660377
114
0.679406
6dc9d8f8865f95629c56d480eff719f30eebb16c
665
py
Python
qsiprep/__about__.py
arokem/qsiprep
f0a12fa002ea99cad97f2b5e40c1517d0569e14c
[ "BSD-3-Clause" ]
36
2019-04-07T18:53:15.000Z
2021-04-04T10:35:54.000Z
qsiprep/__about__.py
arokem/qsiprep
f0a12fa002ea99cad97f2b5e40c1517d0569e14c
[ "BSD-3-Clause" ]
178
2019-02-27T16:36:06.000Z
2021-04-06T12:48:38.000Z
qsiprep/__about__.py
arokem/qsiprep
f0a12fa002ea99cad97f2b5e40c1517d0569e14c
[ "BSD-3-Clause" ]
20
2019-04-05T19:17:26.000Z
2021-03-25T14:47:32.000Z
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: """ Base module variables """ from ._version import get_versions __version__ = get_versions()['version'] del get_versions __packagename__ = 'qsiprep' __copyright__ = 'Copyright 2019, Brain Behavior Laboratory, University of Pennsylvania' __credits__ = ('Contributors: please check the ``.zenodo.json`` file at the top-level folder' 'of the repository') __url__ = 'https://github.com/pennbbl/qsiprep' DOWNLOAD_URL = ( 'https://github.com/pennbbl/{name}/archive/{ver}.tar.gz'.format( name=__packagename__, ver=__version__))
35
93
0.709774
fd37883bf984a6fdfcf374fbe97bb966f776787d
5,151
py
Python
airflow/contrib/operators/gcs_operator.py
shrutimantri/airflow
61eaaacd20ab0f743786df895cf8f232b3b2a48c
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
15
2017-04-06T09:01:50.000Z
2021-10-02T13:54:31.000Z
airflow/contrib/operators/gcs_operator.py
shrutimantri/airflow
61eaaacd20ab0f743786df895cf8f232b3b2a48c
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
26
2019-08-05T13:44:11.000Z
2022-03-30T10:06:18.000Z
airflow/contrib/operators/gcs_operator.py
shrutimantri/airflow
61eaaacd20ab0f743786df895cf8f232b3b2a48c
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
21
2017-08-20T03:01:05.000Z
2021-09-07T06:47:51.000Z
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from airflow.contrib.hooks.gcs_hook import GoogleCloudStorageHook from airflow.models import BaseOperator from airflow.utils.decorators import apply_defaults from airflow.version import version class GoogleCloudStorageCreateBucketOperator(BaseOperator): """ Creates a new bucket. Google Cloud Storage uses a flat namespace, so you can't create a bucket with a name that is already in use. .. seealso:: For more information, see Bucket Naming Guidelines: https://cloud.google.com/storage/docs/bucketnaming.html#requirements :param bucket_name: The name of the bucket. (templated) :type bucket_name: str :param resource: An optional dict with parameters for creating the bucket. For information on available parameters, see Cloud Storage API doc: https://cloud.google.com/storage/docs/json_api/v1/buckets/insert :type resource: dict :param storage_class: This defines how objects in the bucket are stored and determines the SLA and the cost of storage (templated). Values include - ``MULTI_REGIONAL`` - ``REGIONAL`` - ``STANDARD`` - ``NEARLINE`` - ``COLDLINE``. If this value is not specified when the bucket is created, it will default to STANDARD. :type storage_class: str :param location: The location of the bucket. (templated) Object data for objects in the bucket resides in physical storage within this region. Defaults to US. .. seealso:: https://developers.google.com/storage/docs/bucket-locations :type location: str :param project_id: The ID of the GCP Project. (templated) :type project_id: str :param labels: User-provided labels, in key/value pairs. :type labels: dict :param google_cloud_storage_conn_id: The connection ID to use when connecting to Google cloud storage. :type google_cloud_storage_conn_id: str :param delegate_to: The account to impersonate, if any. For this to work, the service account making the request must have domain-wide delegation enabled. :type delegate_to: str The following Operator would create a new bucket ``test-bucket`` with ``MULTI_REGIONAL`` storage class in ``EU`` region .. code-block:: python CreateBucket = GoogleCloudStorageCreateBucketOperator( task_id='CreateNewBucket', bucket_name='test-bucket', storage_class='MULTI_REGIONAL', location='EU', labels={'env': 'dev', 'team': 'airflow'}, google_cloud_storage_conn_id='airflow-service-account' ) """ template_fields = ('bucket_name', 'storage_class', 'location', 'project_id') ui_color = '#f0eee4' @apply_defaults def __init__(self, bucket_name, resource=None, storage_class='MULTI_REGIONAL', location='US', project_id=None, labels=None, google_cloud_storage_conn_id='google_cloud_default', delegate_to=None, *args, **kwargs): super(GoogleCloudStorageCreateBucketOperator, self).__init__(*args, **kwargs) self.bucket_name = bucket_name self.resource = resource self.storage_class = storage_class self.location = location self.project_id = project_id self.labels = labels self.google_cloud_storage_conn_id = google_cloud_storage_conn_id self.delegate_to = delegate_to def execute(self, context): if self.labels is not None: self.labels.update( {'airflow-version': 'v' + version.replace('.', '-').replace('+', '-')} ) hook = GoogleCloudStorageHook( google_cloud_storage_conn_id=self.google_cloud_storage_conn_id, delegate_to=self.delegate_to ) hook.create_bucket(bucket_name=self.bucket_name, resource=self.resource, storage_class=self.storage_class, location=self.location, project_id=self.project_id, labels=self.labels)
39.022727
86
0.650165
9ba1c1f715455233bd1f6adc0c087a244e74281b
16,061
py
Python
sacred/initialize.py
ssudholt/sacred
6fb05b1ee1b7706b44c3ebd852e1e234841ea2ce
[ "MIT" ]
null
null
null
sacred/initialize.py
ssudholt/sacred
6fb05b1ee1b7706b44c3ebd852e1e234841ea2ce
[ "MIT" ]
null
null
null
sacred/initialize.py
ssudholt/sacred
6fb05b1ee1b7706b44c3ebd852e1e234841ea2ce
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding=utf-8 from __future__ import division, print_function, unicode_literals import os from collections import OrderedDict, defaultdict from copy import copy, deepcopy from sacred.config import (ConfigDict, chain_evaluate_config_scopes, dogmatize, load_config_file, undogmatize) from sacred.config.config_summary import ConfigSummary from sacred.host_info import get_host_info from sacred.randomness import create_rnd, get_seed from sacred.run import Run from sacred.utils import (convert_to_nested_dict, create_basic_stream_logger, get_by_dotted_path, is_prefix, rel_path, iterate_flattened, set_by_dotted_path, recursive_update, iter_prefixes, join_paths, NamedConfigNotFoundError, ConfigAddedError) class Scaffold(object): def __init__(self, config_scopes, subrunners, path, captured_functions, commands, named_configs, config_hooks, generate_seed): self.config_scopes = config_scopes self.named_configs = named_configs self.subrunners = subrunners self.path = path self.generate_seed = generate_seed self.config_hooks = config_hooks self.config_updates = {} self.named_configs_to_use = [] self.config = {} self.fallback = None self.presets = {} self.fixture = None # TODO: rename self.logger = None self.seed = None self.rnd = None self._captured_functions = captured_functions self.commands = commands self.config_mods = None self.summaries = [] self.captured_args = {join_paths(cf.prefix, n) for cf in self._captured_functions for n in cf.signature.arguments} self.captured_args.add('__doc__') # allow setting the config docstring def set_up_seed(self, rnd=None): if self.seed is not None: return self.seed = self.config.get('seed') if self.seed is None: self.seed = get_seed(rnd) self.rnd = create_rnd(self.seed) if self.generate_seed: self.config['seed'] = self.seed if 'seed' in self.config and 'seed' in self.config_mods.added: self.config_mods.modified.add('seed') self.config_mods.added -= {'seed'} # Hierarchically set the seed of proper subrunners for subrunner_path, subrunner in reversed(list( self.subrunners.items())): if is_prefix(self.path, subrunner_path): subrunner.set_up_seed(self.rnd) def gather_fallbacks(self): fallback = {'_log': self.logger} for sr_path, subrunner in self.subrunners.items(): if self.path and is_prefix(self.path, sr_path): path = sr_path[len(self.path):].strip('.') set_by_dotted_path(fallback, path, subrunner.config) else: set_by_dotted_path(fallback, sr_path, subrunner.config) # dogmatize to make the subrunner configurations read-only self.fallback = dogmatize(fallback) self.fallback.revelation() def run_named_config(self, config_name): if os.path.isfile(config_name): nc = ConfigDict(load_config_file(config_name)) else: if config_name not in self.named_configs: raise NamedConfigNotFoundError( named_config=config_name, available_named_configs=tuple(self.named_configs.keys())) nc = self.named_configs[config_name] cfg = nc(fixed=self.get_config_updates_recursive(), preset=self.presets, fallback=self.fallback) return undogmatize(cfg) def set_up_config(self): self.config, self.summaries = chain_evaluate_config_scopes( self.config_scopes, fixed=self.config_updates, preset=self.config, fallback=self.fallback) self.get_config_modifications() def run_config_hooks(self, config, command_name, logger): final_cfg_updates = {} for ch in self.config_hooks: cfg_upup = ch(deepcopy(config), command_name, logger) if cfg_upup: recursive_update(final_cfg_updates, cfg_upup) recursive_update(final_cfg_updates, self.config_updates) return final_cfg_updates def get_config_modifications(self): self.config_mods = ConfigSummary( added={key for key, value in iterate_flattened(self.config_updates)}) for cfg_summary in self.summaries: self.config_mods.update_from(cfg_summary) def get_config_updates_recursive(self): config_updates = self.config_updates.copy() for sr_path, subrunner in self.subrunners.items(): if not is_prefix(self.path, sr_path): continue update = subrunner.get_config_updates_recursive() if update: config_updates[rel_path(self.path, sr_path)] = update return config_updates def get_fixture(self): if self.fixture is not None: return self.fixture def get_fixture_recursive(runner): for sr_path, subrunner in runner.subrunners.items(): # I am not sure if it is necessary to trigger all subrunner.get_fixture() get_fixture_recursive(subrunner) sub_fix = copy(subrunner.config) sub_path = sr_path if is_prefix(self.path, sub_path): sub_path = sr_path[len(self.path):].strip('.') # Note: This might fail if we allow non-dict fixtures set_by_dotted_path(self.fixture, sub_path, sub_fix) self.fixture = copy(self.config) get_fixture_recursive(self) return self.fixture def finalize_initialization(self, run): # look at seed again, because it might have changed during the # configuration process if 'seed' in self.config: self.seed = self.config['seed'] self.rnd = create_rnd(self.seed) for cfunc in self._captured_functions: cfunc.logger = self.logger.getChild(cfunc.__name__) cfunc.config = get_by_dotted_path(self.get_fixture(), cfunc.prefix, default={}) seed = get_seed(self.rnd) cfunc.rnd = create_rnd(seed) cfunc.run = run if not run.force: self._warn_about_suspicious_changes() def _warn_about_suspicious_changes(self): for add in sorted(self.config_mods.added): if not set(iter_prefixes(add)).intersection(self.captured_args): if self.path: add = join_paths(self.path, add) raise ConfigAddedError(add, config=self.config) else: self.logger.warning('Added new config entry: "%s"' % add) for key, (type_old, type_new) in self.config_mods.typechanged.items(): if type_old in (int, float) and type_new in (int, float): continue self.logger.warning( 'Changed type of config entry "%s" from %s to %s' % (key, type_old.__name__, type_new.__name__)) for cfg_summary in self.summaries: for key in cfg_summary.ignored_fallbacks: self.logger.warning( 'Ignored attempt to set value of "%s", because it is an ' 'ingredient.' % key ) def __repr__(self): return "<Scaffold: '{}'>".format(self.path) def get_configuration(scaffolding): config = {} for sc_path, scaffold in reversed(list(scaffolding.items())): if not scaffold.config: continue if sc_path: set_by_dotted_path(config, sc_path, scaffold.config) else: config.update(scaffold.config) return config def distribute_named_configs(scaffolding, named_configs): for ncfg in named_configs: if os.path.exists(ncfg): scaffolding[''].use_named_config(ncfg) else: path, _, cfg_name = ncfg.rpartition('.') if path not in scaffolding: raise KeyError('Ingredient for named config "{}" not found' .format(ncfg)) scaffolding[path].use_named_config(cfg_name) def initialize_logging(experiment, scaffolding, log_level=None): if experiment.logger is None: root_logger = create_basic_stream_logger() else: root_logger = experiment.logger for sc_path, scaffold in scaffolding.items(): if sc_path: scaffold.logger = root_logger.getChild(sc_path) else: scaffold.logger = root_logger # set log level if log_level is not None: try: lvl = int(log_level) except ValueError: lvl = log_level root_logger.setLevel(lvl) return root_logger, root_logger.getChild(experiment.path) def create_scaffolding(experiment, sorted_ingredients): scaffolding = OrderedDict() for ingredient in sorted_ingredients[:-1]: scaffolding[ingredient] = Scaffold( config_scopes=ingredient.configurations, subrunners=OrderedDict([(scaffolding[m].path, scaffolding[m]) for m in ingredient.ingredients]), path=ingredient.path, captured_functions=ingredient.captured_functions, commands=ingredient.commands, named_configs=ingredient.named_configs, config_hooks=ingredient.config_hooks, generate_seed=False) scaffolding[experiment] = Scaffold( experiment.configurations, subrunners=OrderedDict([(scaffolding[m].path, scaffolding[m]) for m in experiment.ingredients]), path='', captured_functions=experiment.captured_functions, commands=experiment.commands, named_configs=experiment.named_configs, config_hooks=experiment.config_hooks, generate_seed=True) scaffolding_ret = OrderedDict([ (sc.path, sc) for sc in scaffolding.values() ]) if len(scaffolding_ret) != len(scaffolding): raise ValueError( 'The pathes of the ingredients are not unique. ' '{}'.format([s.path for s in scaffolding]) ) return scaffolding_ret def gather_ingredients_topological(ingredient): sub_ingredients = defaultdict(int) for sub_ing, depth in ingredient.traverse_ingredients(): sub_ingredients[sub_ing] = max(sub_ingredients[sub_ing], depth) return sorted(sub_ingredients, key=lambda x: -sub_ingredients[x]) def get_config_modifications(scaffolding): config_modifications = ConfigSummary() for sc_path, scaffold in scaffolding.items(): config_modifications.update_add(scaffold.config_mods, path=sc_path) return config_modifications def get_command(scaffolding, command_path): path, _, command_name = command_path.rpartition('.') if path not in scaffolding: raise KeyError('Ingredient for command "%s" not found.' % command_path) if command_name in scaffolding[path].commands: return scaffolding[path].commands[command_name] else: if path: raise KeyError('Command "%s" not found in ingredient "%s"' % (command_name, path)) else: raise KeyError('Command "%s" not found' % command_name) def find_best_match(path, prefixes): """Find the Ingredient that shares the longest prefix with path.""" path_parts = path.split('.') for p in prefixes: if len(p) <= len(path_parts) and p == path_parts[:len(p)]: return '.'.join(p), '.'.join(path_parts[len(p):]) return '', path def distribute_presets(prefixes, scaffolding, config_updates): for path, value in iterate_flattened(config_updates): scaffold_name, suffix = find_best_match(path, prefixes) scaff = scaffolding[scaffold_name] set_by_dotted_path(scaff.presets, suffix, value) def distribute_config_updates(prefixes, scaffolding, config_updates): for path, value in iterate_flattened(config_updates): scaffold_name, suffix = find_best_match(path, prefixes) scaff = scaffolding[scaffold_name] set_by_dotted_path(scaff.config_updates, suffix, value) def get_scaffolding_and_config_name(named_config, scaffolding): if os.path.exists(named_config): path, cfg_name = '', named_config else: path, _, cfg_name = named_config.rpartition('.') if path not in scaffolding: raise KeyError('Ingredient for named config "{}" not found' .format(named_config)) scaff = scaffolding[path] return scaff, cfg_name def create_run(experiment, command_name, config_updates=None, named_configs=(), force=False, log_level=None): sorted_ingredients = gather_ingredients_topological(experiment) scaffolding = create_scaffolding(experiment, sorted_ingredients) # get all split non-empty prefixes sorted from deepest to shallowest prefixes = sorted([s.split('.') for s in scaffolding if s != ''], reverse=True, key=lambda p: len(p)) # --------- configuration process ------------------- # Phase 1: Config updates config_updates = config_updates or {} config_updates = convert_to_nested_dict(config_updates) root_logger, run_logger = initialize_logging(experiment, scaffolding, log_level) distribute_config_updates(prefixes, scaffolding, config_updates) # Phase 2: Named Configs for ncfg in named_configs: scaff, cfg_name = get_scaffolding_and_config_name(ncfg, scaffolding) scaff.gather_fallbacks() ncfg_updates = scaff.run_named_config(cfg_name) distribute_presets(prefixes, scaffolding, ncfg_updates) for ncfg_key, value in iterate_flattened(ncfg_updates): set_by_dotted_path(config_updates, join_paths(scaff.path, ncfg_key), value) distribute_config_updates(prefixes, scaffolding, config_updates) # Phase 3: Normal config scopes for scaffold in scaffolding.values(): scaffold.gather_fallbacks() scaffold.set_up_config() # update global config config = get_configuration(scaffolding) # run config hooks config_hook_updates = scaffold.run_config_hooks( config, command_name, run_logger) recursive_update(scaffold.config, config_hook_updates) # Phase 4: finalize seeding for scaffold in reversed(list(scaffolding.values())): scaffold.set_up_seed() # partially recursive config = get_configuration(scaffolding) config_modifications = get_config_modifications(scaffolding) # ---------------------------------------------------- experiment_info = experiment.get_experiment_info() host_info = get_host_info() main_function = get_command(scaffolding, command_name) pre_runs = [pr for ing in sorted_ingredients for pr in ing.pre_run_hooks] post_runs = [pr for ing in sorted_ingredients for pr in ing.post_run_hooks] run = Run(config, config_modifications, main_function, copy(experiment.observers), root_logger, run_logger, experiment_info, host_info, pre_runs, post_runs, experiment.captured_out_filter) if hasattr(main_function, 'unobserved'): run.unobserved = main_function.unobserved run.force = force for scaffold in scaffolding.values(): scaffold.finalize_initialization(run=run) return run
37.879717
79
0.63676
332fa38fd11aedc458012100fbd8988c347edf4a
3,786
py
Python
tests/test_forms.py
zgrzebnickij/demo-cookiecutter-flask
3031c447dbaa3e819c1638cae79e83ee5869e292
[ "MIT" ]
null
null
null
tests/test_forms.py
zgrzebnickij/demo-cookiecutter-flask
3031c447dbaa3e819c1638cae79e83ee5869e292
[ "MIT" ]
null
null
null
tests/test_forms.py
zgrzebnickij/demo-cookiecutter-flask
3031c447dbaa3e819c1638cae79e83ee5869e292
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """Test forms.""" import json import pytest from my_flask_app.public.forms import LoginForm from my_flask_app.user.forms import RegisterForm from my_flask_app.quiz.forms import QuizForm class TestRegisterForm: """Register form.""" def test_validate_user_already_registered(self, user): """Enter username that is already registered.""" form = RegisterForm( username=user.username, email="foo@bar.com", password="example", confirm="example", ) assert form.validate() is False assert "Username already registered" in form.username.errors def test_validate_email_already_registered(self, user): """Enter email that is already registered.""" form = RegisterForm( username="unique", email=user.email, password="example", confirm="example" ) assert form.validate() is False assert "Email already registered" in form.email.errors def test_validate_success(self, db): """Register with success.""" form = RegisterForm( username="newusername", email="new@test.test", password="example", confirm="example", ) assert form.validate() is True class TestLoginForm: """Login form.""" def test_validate_success(self, user): """Login successful.""" user.set_password("example") user.save() form = LoginForm(username=user.username, password="example") assert form.validate() is True assert form.user == user def test_validate_unknown_username(self, db): """Unknown username.""" form = LoginForm(username="unknown", password="example") assert form.validate() is False assert "Unknown username" in form.username.errors assert form.user is None def test_validate_invalid_password(self, user): """Invalid password.""" user.set_password("example") user.save() form = LoginForm(username=user.username, password="wrongpassword") assert form.validate() is False assert "Invalid password" in form.password.errors def test_validate_inactive_user(self, user): """Inactive user.""" user.active = False user.set_password("example") user.save() # Correct username and password, but user is not activated form = LoginForm(username=user.username, password="example") assert form.validate() is False assert "User not activated" in form.username.errors class TestQuizForm: """Quiz form.""" def test_validate(self, user, guestions_fake): """Enter username that is already registered.""" form = QuizForm( questions=json.dumps(guestions_fake), answer_1="blabla", answer_2="blabla", answer_3="blabla", answer_4="blabla", answer_5="blabla" ) assert form.validate() is True def test_validate_false(self, user, guestions_fake): """Enter username that is already registered.""" form = QuizForm( questions=json.dumps(guestions_fake), answer_1=1, answer_2="blabla", answer_3="blabla", answer_4=False, answer_5="blabla" ) assert form.validate() is False def test_validate_missing_field(self, user, guestions_fake): """Enter username that is already registered.""" form = QuizForm( questions=json.dumps(guestions_fake), answer_1=1, answer_2="blabla", answer_4=False, answer_5="blabla" ) assert form.validate() is False
31.032787
86
0.611463
190d4d0a410af4b2b2ebc029c68997a285b61532
55
py
Python
T31-09/program.py
maa76/SSof-Project1920
9b4ad9ac41a648c425fcfcd49cd52ff84e528bde
[ "MIT" ]
2
2019-11-20T19:26:07.000Z
2019-11-22T00:42:23.000Z
T31-09/program.py
maa76/SSof-Project1920
9b4ad9ac41a648c425fcfcd49cd52ff84e528bde
[ "MIT" ]
2
2019-11-28T05:21:24.000Z
2019-11-28T05:21:58.000Z
T31-09/program.py
maa76/SSof-Project1920
9b4ad9ac41a648c425fcfcd49cd52ff84e528bde
[ "MIT" ]
25
2019-11-27T01:40:56.000Z
2019-12-04T23:38:59.000Z
a = b if a: c = 1 else: c = 2 d = function(c)
6.875
15
0.418182
ab78a8113b48fe977d0a57d0a78b72bb21361ab9
424
py
Python
myapp/urls.py
free20064u/flower
fa8dd4b522ede930baf8cd4e533c869ebf9cf009
[ "MIT" ]
null
null
null
myapp/urls.py
free20064u/flower
fa8dd4b522ede930baf8cd4e533c869ebf9cf009
[ "MIT" ]
null
null
null
myapp/urls.py
free20064u/flower
fa8dd4b522ede930baf8cd4e533c869ebf9cf009
[ "MIT" ]
null
null
null
from django.contrib import admin from django.urls import path from . import views urlpatterns = [ path('', views.index, name='index'), path('flower/<slug:slug>/', views.detail, name='detail'), path('tags/<slug:slug>/', views.tags, name='tags'), path('create/', views.create, name='create'), path('edit/<int:pk>', views.edit, name='edit'), path('delete/<int:pk>', views.delete, name='delete'), ]
26.5
61
0.636792
04ca57b4959f9b6db41df9fa689259c924e50df2
2,281
py
Python
tests/codebase/test_no_request_host.py
timgates42/bokeh
fb8b07b838f4d07d520cfe899779a11bc89f3c77
[ "BSD-3-Clause" ]
1
2015-01-31T14:42:39.000Z
2015-01-31T14:42:39.000Z
tests/codebase/test_no_request_host.py
timgates42/bokeh
fb8b07b838f4d07d520cfe899779a11bc89f3c77
[ "BSD-3-Clause" ]
1
2021-05-08T06:24:26.000Z
2021-05-08T06:24:26.000Z
tests/codebase/test_no_request_host.py
timgates42/bokeh
fb8b07b838f4d07d520cfe899779a11bc89f3c77
[ "BSD-3-Clause" ]
1
2020-01-21T12:03:58.000Z
2020-01-21T12:03:58.000Z
#----------------------------------------------------------------------------- # Copyright (c) 2012 - 2017, Anaconda, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Boilerplate #----------------------------------------------------------------------------- import pytest ; pytest #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Standard library imports import io from os.path import relpath from subprocess import check_output # Bokeh imports from . import TOP_PATH #----------------------------------------------------------------------------- # Tests #----------------------------------------------------------------------------- @pytest.mark.codebase def test_no_request_host(): ''' It is not safe for the Bokeh codebase to use request.host in any way. This test ensures "request.host" does not appear in any file. ''' errors = collect_errors() assert len(errors) == 0, "request.host usage issues:\n%s" % "\n".join(errors) #----------------------------------------------------------------------------- # Support #----------------------------------------------------------------------------- message = "File contains refers to 'request.host': %s, line %s." def collect_errors(): errors = [] def test_this_file(fname, test_file): for line_no, line in enumerate(test_file, 1): if "request.host" in line.split("#")[0]: errors.append((message, fname, line_no)) paths = check_output(["git", "ls-files"]).decode('utf-8').split("\n") for path in paths: if not path: continue if not path.endswith(".py"): continue if not path.startswith("bokeh/server"): continue with io.open(path, 'r', encoding='utf-8') as file: test_this_file(path, file) return [ msg % (relpath(fname, TOP_PATH), line_no) for (msg, fname, line_no) in errors ]
33.057971
92
0.421745
4c85af7e61d2499ea536be0285b6c72459d9f90f
567
py
Python
database/connection.py
apoveda25/graphql-python-server
eb7b911aa1116327120b857beb17da3e30523e74
[ "Apache-2.0" ]
4
2020-06-20T11:54:04.000Z
2021-09-07T11:41:32.000Z
database/connection.py
apoveda25/graphql-python-server
eb7b911aa1116327120b857beb17da3e30523e74
[ "Apache-2.0" ]
null
null
null
database/connection.py
apoveda25/graphql-python-server
eb7b911aa1116327120b857beb17da3e30523e74
[ "Apache-2.0" ]
null
null
null
import os from arango import ArangoClient class Connection: def __init__(self): self.ARANGODB_HOSTS = os.getenv("ARANGODB_HOSTS") self.ARANGODB_DATABASE = os.getenv("ARANGODB_DATABASE") self.ARANGODB_USER = os.getenv("ARANGODB_USER") self.ARANGODB_PASSWORD = os.getenv("ARANGODB_PASSWORD") self.client = ArangoClient(hosts=os.getenv("ARANGODB_HOSTS")) self.conn = self.client.db( self.ARANGODB_DATABASE, username=self.ARANGODB_USER, password=self.ARANGODB_PASSWORD, )
31.5
69
0.670194
3fed2e08c81b4b02d93ca25e9ab64fa98fb7e411
602
py
Python
main_loop.py
ivanpeng/craigslist-housing
98a197dd77a7c42a5b2423748f75563e1e6a8fc8
[ "MIT-0" ]
null
null
null
main_loop.py
ivanpeng/craigslist-housing
98a197dd77a7c42a5b2423748f75563e1e6a8fc8
[ "MIT-0" ]
1
2021-06-01T22:55:54.000Z
2021-06-01T22:55:54.000Z
main_loop.py
ivanpeng/craigslist-housing
98a197dd77a7c42a5b2423748f75563e1e6a8fc8
[ "MIT-0" ]
null
null
null
from scraper import do_scrape import settings import time import sys import traceback import random if __name__ == "__main__": while True: print("{}: Starting scrape cycle".format(time.ctime())) try: do_scrape() except KeyboardInterrupt: print("Exiting....") sys.exit(1) except Exception as exc: print("Error with the scraping:", sys.exc_info()[0]) traceback.print_exc() else: print("{}: Successfully finished scraping".format(time.ctime())) time.sleep(settings.SLEEP_INTERVAL)
28.666667
76
0.606312
304695852b0b5fd66e48ee196c630d7c80ea5ebd
336
py
Python
backend/sandbox/todos/models/__init__.py
MMotionMan/django-edw
0f686429d29e0f40409a3b2318664973b2844c08
[ "BSD-3-Clause" ]
4
2019-09-18T05:51:12.000Z
2020-10-23T08:50:00.000Z
backend/sandbox/todos/models/__init__.py
Vvvnukova/django-edw
18397c2e6e2d7ddebad4d83ffee16425e7ac4e9f
[ "BSD-3-Clause" ]
10
2020-04-29T11:46:44.000Z
2022-03-11T23:38:27.000Z
backend/sandbox/todos/models/__init__.py
Vvvnukova/django-edw
18397c2e6e2d7ddebad4d83ffee16425e7ac4e9f
[ "BSD-3-Clause" ]
13
2020-04-09T07:49:48.000Z
2022-03-02T07:06:28.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals # import default models from django-edw to materialize them from edw.models.defaults import mapping from edw.models.defaults.customer import Customer from edw.models.defaults.term import Term from edw.models.defaults.data_mart import DataMart from todos import Todo
22.4
59
0.803571
414af702abfff71e4d4570e34cd194d11de8682c
2,564
py
Python
examples/simo/simo.res50.scratch.imagenet.224size.256bs.200e/config.py
poodarchu/SelfSup
29f7d338bef20f927bb0898f2c98da4f14b60ab1
[ "Apache-2.0" ]
42
2020-12-07T07:03:05.000Z
2022-03-23T12:56:13.000Z
examples/simo/simo.res50.scratch.imagenet.224size.256bs.200e/config.py
Megvii-BaseDetection/SelfSup
29f7d338bef20f927bb0898f2c98da4f14b60ab1
[ "Apache-2.0" ]
1
2020-12-07T12:59:16.000Z
2020-12-08T06:25:37.000Z
examples/simo/simo.res50.scratch.imagenet.224size.256bs.200e/config.py
poodarchu/SelfSup
29f7d338bef20f927bb0898f2c98da4f14b60ab1
[ "Apache-2.0" ]
3
2021-04-22T10:56:29.000Z
2021-10-21T08:46:33.000Z
import os.path as osp import torchvision.transforms as transforms from cvpods.configs.base_classification_config import BaseClassificationConfig _config_dict = dict( MODEL=dict( WEIGHTS="", AS_PRETRAIN=True, RESNETS=dict( DEPTH=50, NUM_CLASSES=1000, NORM="SyncBN", OUT_FEATURES=["linear"], STRIDE_IN_1X1=False, # default true for msra models ZERO_INIT_RESIDUAL=True, # default false, use true for all subsequent models ), CLR=dict( ALPHA=256, K=256, DIM=128, TAU=0.2, MLP=True, NORM="SyncBN", MOMENTUM=0.999, ), ), DATASETS=dict( TRAIN=("imagenet_train", ), TEST=("imagenet_val", ), ), DATALOADER=dict(NUM_WORKERS=6, ), SOLVER=dict( LR_SCHEDULER=dict( NAME="WarmupCosineLR", MAX_EPOCH=200, WARMUP_ITERS=10, EPOCH_WISE=False, # update lr in epoch / step ), OPTIMIZER=dict( NAME="SGD", LARS=dict( ENABLED=False, EPS=1e-8, TRUST_COEF=1e-3, ), BASE_LR=0.03, MOMENTUM=0.9, WEIGHT_DECAY=1e-4, WEIGHT_DECAY_NORM=1e-4, ), CHECKPOINT_PERIOD=10, IMS_PER_BATCH=256, IMS_PER_DEVICE=32, ), INPUT=dict( AUG=dict( TRAIN_PIPELINES=[ ("RepeatList", dict(transforms=[ ("Torch_Compose", transforms.Compose([ transforms.RandomResizedCrop(224, scale=(0.2, 1.)), transforms.RandomApply([ transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.8), ])), ("GaussianBlur", dict(sigma=[.1, 2.], p=0.5)), ("Torch_Compose", transforms.Compose([ transforms.RandomGrayscale(p=0.2), transforms.RandomHorizontalFlip(), ])) ], repeat_times=2)), ], ) ), OUTPUT_DIR=osp.join( '/data/Outputs/model_logs/cvpods_playground/SelfSup', osp.split(osp.realpath(__file__))[0].split("SelfSup/")[-1])) class MoCoV2Config(BaseClassificationConfig): def __init__(self): super(MoCoV2Config, self).__init__() self._register_configuration(_config_dict) config = MoCoV2Config()
29.813953
89
0.50351
34e7f02af5db91d7d20d50a4bc59431be42e73be
5,837
py
Python
groot_ansible/__init__.py
stonier/groot_ansible
670eb1e3f03dcb68bbf5204abc474b40f1cc44bc
[ "BSD-3-Clause" ]
2
2020-02-12T01:35:48.000Z
2021-04-01T22:44:25.000Z
groot_ansible/__init__.py
stonier/groot_ansible
670eb1e3f03dcb68bbf5204abc474b40f1cc44bc
[ "BSD-3-Clause" ]
7
2017-02-03T03:50:09.000Z
2020-05-04T17:22:16.000Z
groot_ansible/__init__.py
stonier/groot_ansible
670eb1e3f03dcb68bbf5204abc474b40f1cc44bc
[ "BSD-3-Clause" ]
null
null
null
# # License: BSD # https://raw.githubusercontent.com/stonier/groot_ansible/devel/LICENSE # ############################################################################## # Documentation ############################################################################## """ Python wrapped ansible scripts for installing and updating systems for various use cases. """ ############################################################################## # Imports ############################################################################## import argparse from . import common from . import console from . import ros from . import update from . import testies from . import workstation ############################################################################## # Constants ############################################################################## __version__ = '0.4.2' ############################################################################## # Main ############################################################################## def version_string(): return console.cyan + "Version" + console.reset + " : " + console.yellow + __version__ + console.reset def main(args=None): """ Entry point to the console 'groot-ansible' tool. """ try: parser = argparse.ArgumentParser( description=console.green + "A python frontend to groot playbooks." + console.reset, epilog=console.bold + console.white + "And his noodly appendage reached forth to tickle the blessed...\n" + console.reset, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('-v', '--version', action='version', version=version_string()) subparsers = parser.add_subparsers(title='commands', help='valid commands for groot-ansible interactions') update.add_subparser(subparsers) testies.add_subparser(subparsers) common.add_generic_subparser(subparsers, name="bootstrap/pc", playbook_name="bootstrap-pc", short_description="bootstrap a pc/laptop for development", description="Standard ubuntu development workstation", become_sudo=True) workstation.add_subparser(subparsers) common.add_generic_subparser(subparsers, name="os/ubuntu", playbook_name="os-ubuntu", short_description="useful non-core packages for ubuntu", description="Extra packages and configuration for the core of a basic development environment", become_sudo=True) common.add_generic_subparser(subparsers, name="os/kubuntu", playbook_name="os-kubuntu", short_description="kubuntu desktop packages and configuration", description="Add the kubuntu (full) desktop environment to an ubuntu installation", become_sudo=True) common.add_generic_subparser(subparsers, name="os/system76", playbook_name="os-system76", short_description="drivers from system76 for ubuntu", description="System76 environment setup/install/update", become_sudo=True) common.add_generic_subparser(subparsers, name="devel/git", playbook_name="devel-git", short_description="git binaries, modules and configuration", description="Git binaries, modules (lfs) and user configuration", become_sudo=True) common.add_generic_subparser(subparsers, name="devel/powerline", playbook_name="devel-powerline", short_description="powerline in the shell for the user", description="Setup powerline in the shell for the user", become_sudo=True) ros.add_subparser(subparsers) common.add_generic_subparser(subparsers, name="devel/ros2", playbook_name="devel-ros2", short_description="ros2 environment for ubuntu", description="ROS 2 environment setup/install/update", become_sudo=True) common.add_generic_subparser(subparsers, name="extras/chrome", playbook_name="extras-chrome", short_description="google chrome for ubuntu", description="Google chrome setup/install/update", become_sudo=True) common.add_generic_subparser(subparsers, name="extras/snorriheim", playbook_name="extras-snorriheim", short_description="snorriheim ppa and packages", description="Snorriheim's PPA and packages for ubuntu", become_sudo=True) options = parser.parse_args(args) # options, unused_unknown_args = parser.parse_known_args(args) options.func(options) # relay arg parsing to the subparser configured `set_defaults` function callback except KeyboardInterrupt: print('Interrupted by user!')
50.756522
134
0.49032
2961ba3e105c7a451f911c19bb7b18567804341e
2,055
py
Python
code/test_fastsimplexordatastore.py
JustinCappos/uppir
2a2fc435d5e21138f7f4543c6b3588d6529f4619
[ "Apache-2.0" ]
null
null
null
code/test_fastsimplexordatastore.py
JustinCappos/uppir
2a2fc435d5e21138f7f4543c6b3588d6529f4619
[ "Apache-2.0" ]
null
null
null
code/test_fastsimplexordatastore.py
JustinCappos/uppir
2a2fc435d5e21138f7f4543c6b3588d6529f4619
[ "Apache-2.0" ]
null
null
null
# this is a bunch of macro tests. If everything passes, there is no output. import fastsimplexordatastore size = 64 letterxordatastore = fastsimplexordatastore.XORDatastore(size, 16) startpos = 0 for char in range(ord("A"), ord("Q")): # put 1K of those chars in... letterxordatastore.set_data(startpos, chr(char) * size) startpos = startpos + size # can read data out... assert(letterxordatastore.get_data(size, 1) == 'B') # let's create a bitstring that uses A, C, and P. bitstring = chr(int('10100000', 2)) + chr(int('00000001',2)) xorresult = letterxordatastore.produce_xor_from_bitstring(bitstring) assert(xorresult[0] == 'R') letterxordatastore.set_data(10,"Hello there") mystring = letterxordatastore.get_data(9,13) assert(mystring == 'AHello thereA') letterxordatastore.set_data(1,"Hello there"*size) mystring = letterxordatastore.get_data(size*2 - (size*2 %11) + 1,11) assert(mystring == "Hello there") # let's try to read the last bytes of data mystring = letterxordatastore.get_data(size*15,size) try: letterxordatastore = fastsimplexordatastore.XORDatastore(127, 16) except TypeError: pass else: print "Was allowed to use a block size that isn't a multiple of 64" try: letterxordatastore.set_data(size*16, "hi") except TypeError: pass else: print "Was allowed to write past the end of the datastore" try: letterxordatastore.set_data(size*16, 1) except TypeError: pass else: print "Was allowed to read past the end of the datastore" for blockcount in [9,15,16]: letterxordatastore = fastsimplexordatastore.XORDatastore(size, blockcount) # is a 0 block the right size? assert( len(letterxordatastore.produce_xor_from_bitstring(chr(0)*2)) == size ) try: letterxordatastore.produce_xor_from_bitstring(chr(0)*1) except TypeError: pass else: print "didn't detect incorrect (short) bitstring length" try: letterxordatastore.produce_xor_from_bitstring(chr(0)*3) except TypeError: pass else: print "didn't detect incorrect (long) bitstring length"
22.582418
80
0.734793
66e96af05eb71dffdc797a7e43ac1a1a2c74529a
63,814
py
Python
pandas/core/internals/managers.py
rogererens/pandas
6812842d3653e93f9191a59446b1b4b19c77c428
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "ECL-2.0", "BSD-3-Clause" ]
null
null
null
pandas/core/internals/managers.py
rogererens/pandas
6812842d3653e93f9191a59446b1b4b19c77c428
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "ECL-2.0", "BSD-3-Clause" ]
null
null
null
pandas/core/internals/managers.py
rogererens/pandas
6812842d3653e93f9191a59446b1b4b19c77c428
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "ECL-2.0", "BSD-3-Clause" ]
null
null
null
from collections import defaultdict from functools import partial import itertools import operator import re from typing import Dict, List, Optional, Sequence, Tuple, TypeVar, Union import numpy as np from pandas._libs import Timedelta, Timestamp, internals as libinternals, lib from pandas._typing import ArrayLike, DtypeObj, Label from pandas.util._validators import validate_bool_kwarg from pandas.core.dtypes.cast import ( find_common_type, infer_dtype_from_scalar, maybe_convert_objects, maybe_promote, ) from pandas.core.dtypes.common import ( _NS_DTYPE, is_datetimelike_v_numeric, is_extension_array_dtype, is_list_like, is_numeric_v_string_like, is_scalar, ) from pandas.core.dtypes.concat import concat_compat from pandas.core.dtypes.dtypes import ExtensionDtype from pandas.core.dtypes.generic import ABCExtensionArray, ABCSeries from pandas.core.dtypes.missing import isna import pandas.core.algorithms as algos from pandas.core.arrays.sparse import SparseDtype from pandas.core.base import PandasObject from pandas.core.indexers import maybe_convert_indices from pandas.core.indexes.api import Index, ensure_index from pandas.core.internals.blocks import ( Block, CategoricalBlock, DatetimeTZBlock, ExtensionBlock, ObjectValuesExtensionBlock, _extend_blocks, _merge_blocks, _safe_reshape, get_block_type, make_block, ) from pandas.core.internals.concat import ( # all for concatenate_block_managers combine_concat_plans, concatenate_join_units, get_mgr_concatenation_plan, is_uniform_join_units, ) from pandas.io.formats.printing import pprint_thing # TODO: flexible with index=None and/or items=None T = TypeVar("T", bound="BlockManager") class BlockManager(PandasObject): """ Core internal data structure to implement DataFrame, Series, etc. Manage a bunch of labeled 2D mixed-type ndarrays. Essentially it's a lightweight blocked set of labeled data to be manipulated by the DataFrame public API class Attributes ---------- shape ndim axes values items Methods ------- set_axis(axis, new_labels) copy(deep=True) get_dtype_counts get_dtypes apply(func, axes, block_filter_fn) get_bool_data get_numeric_data get_slice(slice_like, axis) get(label) iget(loc) take(indexer, axis) reindex_axis(new_labels, axis) reindex_indexer(new_labels, indexer, axis) delete(label) insert(loc, label, value) set(label, value) Parameters ---------- blocks: Sequence of Block axes: Sequence of Index do_integrity_check: bool, default True Notes ----- This is *not* a public API class """ __slots__ = [ "axes", "blocks", "_ndim", "_shape", "_known_consolidated", "_is_consolidated", "_blknos", "_blklocs", ] _blknos: np.ndarray _blklocs: np.ndarray def __init__( self, blocks: Sequence[Block], axes: Sequence[Index], do_integrity_check: bool = True, ): self.axes = [ensure_index(ax) for ax in axes] self.blocks: Tuple[Block, ...] = tuple(blocks) for block in blocks: if self.ndim != block.ndim: raise AssertionError( f"Number of Block dimensions ({block.ndim}) must equal " f"number of axes ({self.ndim})" ) if do_integrity_check: self._verify_integrity() # Populate known_consolidate, blknos, and blklocs lazily self._known_consolidated = False self._blknos = None self._blklocs = None @classmethod def from_blocks(cls, blocks: List[Block], axes: List[Index]): """ Constructor for BlockManager and SingleBlockManager with same signature. """ return cls(blocks, axes, do_integrity_check=False) @property def blknos(self): """ Suppose we want to find the array corresponding to our i'th column. blknos[i] identifies the block from self.blocks that contains this column. blklocs[i] identifies the column of interest within self.blocks[self.blknos[i]] """ if self._blknos is None: # Note: these can be altered by other BlockManager methods. self._rebuild_blknos_and_blklocs() return self._blknos @property def blklocs(self): """ See blknos.__doc__ """ if self._blklocs is None: # Note: these can be altered by other BlockManager methods. self._rebuild_blknos_and_blklocs() return self._blklocs def make_empty(self: T, axes=None) -> T: """ return an empty BlockManager with the items axis of len 0 """ if axes is None: axes = [Index([])] + self.axes[1:] # preserve dtype if possible if self.ndim == 1: assert isinstance(self, SingleBlockManager) # for mypy blk = self.blocks[0] arr = blk.values[:0] nb = blk.make_block_same_class(arr, placement=slice(0, 0), ndim=1) blocks = [nb] else: blocks = [] return type(self).from_blocks(blocks, axes) def __nonzero__(self) -> bool: return True # Python3 compat __bool__ = __nonzero__ @property def shape(self) -> Tuple[int, ...]: return tuple(len(ax) for ax in self.axes) @property def ndim(self) -> int: return len(self.axes) def set_axis(self, axis: int, new_labels: Index) -> None: # Caller is responsible for ensuring we have an Index object. old_len = len(self.axes[axis]) new_len = len(new_labels) if new_len != old_len: raise ValueError( f"Length mismatch: Expected axis has {old_len} elements, new " f"values have {new_len} elements" ) self.axes[axis] = new_labels @property def _is_single_block(self) -> bool: if self.ndim == 1: return True if len(self.blocks) != 1: return False blk = self.blocks[0] return blk.mgr_locs.is_slice_like and blk.mgr_locs.as_slice == slice( 0, len(self), 1 ) def _rebuild_blknos_and_blklocs(self) -> None: """ Update mgr._blknos / mgr._blklocs. """ new_blknos = np.empty(self.shape[0], dtype=np.int64) new_blklocs = np.empty(self.shape[0], dtype=np.int64) new_blknos.fill(-1) new_blklocs.fill(-1) for blkno, blk in enumerate(self.blocks): rl = blk.mgr_locs new_blknos[rl.indexer] = blkno new_blklocs[rl.indexer] = np.arange(len(rl)) if (new_blknos == -1).any(): # TODO: can we avoid this? it isn't cheap raise AssertionError("Gaps in blk ref_locs") self._blknos = new_blknos self._blklocs = new_blklocs @property def items(self) -> Index: return self.axes[0] def _get_counts(self, f): """ return a dict of the counts of the function in BlockManager """ self._consolidate_inplace() counts = dict() for b in self.blocks: v = f(b) counts[v] = counts.get(v, 0) + b.shape[0] return counts def get_dtype_counts(self): return self._get_counts(lambda b: b.dtype.name) def get_dtypes(self): dtypes = np.array([blk.dtype for blk in self.blocks]) return algos.take_1d(dtypes, self.blknos, allow_fill=False) def __getstate__(self): block_values = [b.values for b in self.blocks] block_items = [self.items[b.mgr_locs.indexer] for b in self.blocks] axes_array = list(self.axes) extra_state = { "0.14.1": { "axes": axes_array, "blocks": [ dict(values=b.values, mgr_locs=b.mgr_locs.indexer) for b in self.blocks ], } } # First three elements of the state are to maintain forward # compatibility with 0.13.1. return axes_array, block_values, block_items, extra_state def __setstate__(self, state): def unpickle_block(values, mgr_locs): return make_block(values, placement=mgr_locs) if isinstance(state, tuple) and len(state) >= 4 and "0.14.1" in state[3]: state = state[3]["0.14.1"] self.axes = [ensure_index(ax) for ax in state["axes"]] self.blocks = tuple( unpickle_block(b["values"], b["mgr_locs"]) for b in state["blocks"] ) else: raise NotImplementedError("pre-0.14.1 pickles are no longer supported") self._post_setstate() def _post_setstate(self) -> None: self._is_consolidated = False self._known_consolidated = False self._rebuild_blknos_and_blklocs() def __len__(self) -> int: return len(self.items) def __repr__(self) -> str: output = type(self).__name__ for i, ax in enumerate(self.axes): if i == 0: output += f"\nItems: {ax}" else: output += f"\nAxis {i}: {ax}" for block in self.blocks: output += f"\n{pprint_thing(block)}" return output def _verify_integrity(self) -> None: mgr_shape = self.shape tot_items = sum(len(x.mgr_locs) for x in self.blocks) for block in self.blocks: if block._verify_integrity and block.shape[1:] != mgr_shape[1:]: construction_error(tot_items, block.shape[1:], self.axes) if len(self.items) != tot_items: raise AssertionError( "Number of manager items must equal union of " f"block items\n# manager items: {len(self.items)}, # " f"tot_items: {tot_items}" ) def reduce(self, func, *args, **kwargs): # If 2D, we assume that we're operating column-wise if self.ndim == 1: # we'll be returning a scalar blk = self.blocks[0] return func(blk.values, *args, **kwargs) res = {} for blk in self.blocks: bres = func(blk.values, *args, **kwargs) if np.ndim(bres) == 0: # EA assert blk.shape[0] == 1 new_res = zip(blk.mgr_locs.as_array, [bres]) else: assert bres.ndim == 1, bres.shape assert blk.shape[0] == len(bres), (blk.shape, bres.shape, args, kwargs) new_res = zip(blk.mgr_locs.as_array, bres) nr = dict(new_res) assert not any(key in res for key in nr) res.update(nr) return res def apply(self: T, f, filter=None, **kwargs) -> T: """ Iterate over the blocks, collect and create a new BlockManager. Parameters ---------- f : str or callable Name of the Block method to apply. filter : list, if supplied, only call the block if the filter is in the block Returns ------- BlockManager """ result_blocks = [] # fillna: Series/DataFrame is responsible for making sure value is aligned # filter kwarg is used in replace-* family of methods if filter is not None: filter_locs = set(self.items.get_indexer_for(filter)) if len(filter_locs) == len(self.items): # All items are included, as if there were no filtering filter = None else: kwargs["filter"] = filter_locs self._consolidate_inplace() if f == "where": align_copy = True if kwargs.get("align", True): align_keys = ["other", "cond"] else: align_keys = ["cond"] elif f == "putmask": align_copy = False if kwargs.get("align", True): align_keys = ["new", "mask"] else: align_keys = ["mask"] else: align_keys = [] # TODO(EA): may interfere with ExtensionBlock.setitem for blocks # with a .values attribute. aligned_args = { k: kwargs[k] for k in align_keys if not isinstance(kwargs[k], ABCExtensionArray) and hasattr(kwargs[k], "values") } for b in self.blocks: if filter is not None: if not b.mgr_locs.isin(filter_locs).any(): result_blocks.append(b) continue if aligned_args: b_items = self.items[b.mgr_locs.indexer] for k, obj in aligned_args.items(): axis = obj._info_axis_number kwargs[k] = obj.reindex(b_items, axis=axis, copy=align_copy) if callable(f): applied = b.apply(f, **kwargs) else: applied = getattr(b, f)(**kwargs) result_blocks = _extend_blocks(applied, result_blocks) if len(result_blocks) == 0: return self.make_empty(self.axes) return type(self).from_blocks(result_blocks, self.axes) def quantile( self, axis: int = 0, consolidate: bool = True, transposed: bool = False, interpolation="linear", qs=None, numeric_only=None, ) -> "BlockManager": """ Iterate over blocks applying quantile reduction. This routine is intended for reduction type operations and will do inference on the generated blocks. Parameters ---------- axis: reduction axis, default 0 consolidate: bool, default True. Join together blocks having same dtype transposed: bool, default False we are holding transposed data interpolation : type of interpolation, default 'linear' qs : a scalar or list of the quantiles to be computed numeric_only : ignored Returns ------- BlockManager """ # Series dispatches to DataFrame for quantile, which allows us to # simplify some of the code here and in the blocks assert self.ndim >= 2 if consolidate: self._consolidate_inplace() def get_axe(block, qs, axes): # Because Series dispatches to DataFrame, we will always have # block.ndim == 2 from pandas import Float64Index if is_list_like(qs): ax = Float64Index(qs) else: ax = axes[0] return ax axes, blocks = [], [] for b in self.blocks: block = b.quantile(axis=axis, qs=qs, interpolation=interpolation) axe = get_axe(b, qs, axes=self.axes) axes.append(axe) blocks.append(block) # note that some DatetimeTZ, Categorical are always ndim==1 ndim = {b.ndim for b in blocks} assert 0 not in ndim, ndim if 2 in ndim: new_axes = list(self.axes) # multiple blocks that are reduced if len(blocks) > 1: new_axes[1] = axes[0] # reset the placement to the original for b, sb in zip(blocks, self.blocks): b.mgr_locs = sb.mgr_locs else: new_axes[axis] = Index(np.concatenate([ax.values for ax in axes])) if transposed: new_axes = new_axes[::-1] blocks = [ b.make_block(b.values.T, placement=np.arange(b.shape[1])) for b in blocks ] return type(self)(blocks, new_axes) # single block, i.e. ndim == {1} values = concat_compat([b.values for b in blocks]) # compute the orderings of our original data if len(self.blocks) > 1: indexer = np.empty(len(self.axes[0]), dtype=np.intp) i = 0 for b in self.blocks: for j in b.mgr_locs: indexer[j] = i i = i + 1 values = values.take(indexer) return SingleBlockManager( make_block(values, ndim=1, placement=np.arange(len(values))), axes[0], fastpath=True, ) def isna(self, func) -> "BlockManager": return self.apply("apply", func=func) def where(self, **kwargs) -> "BlockManager": return self.apply("where", **kwargs) def setitem(self, indexer, value) -> "BlockManager": return self.apply("setitem", indexer=indexer, value=value) def putmask(self, **kwargs): return self.apply("putmask", **kwargs) def diff(self, n: int, axis: int) -> "BlockManager": return self.apply("diff", n=n, axis=axis) def interpolate(self, **kwargs) -> "BlockManager": return self.apply("interpolate", **kwargs) def shift(self, **kwargs) -> "BlockManager": return self.apply("shift", **kwargs) def fillna(self, **kwargs) -> "BlockManager": return self.apply("fillna", **kwargs) def downcast(self) -> "BlockManager": return self.apply("downcast") def astype( self, dtype, copy: bool = False, errors: str = "raise" ) -> "BlockManager": return self.apply("astype", dtype=dtype, copy=copy, errors=errors) def convert( self, copy: bool = True, datetime: bool = True, numeric: bool = True, timedelta: bool = True, coerce: bool = False, ) -> "BlockManager": return self.apply( "convert", copy=copy, datetime=datetime, numeric=numeric, timedelta=timedelta, coerce=coerce, ) def replace(self, value, **kwargs) -> "BlockManager": assert np.ndim(value) == 0, value return self.apply("replace", value=value, **kwargs) def replace_list( self, src_list, dest_list, inplace: bool = False, regex: bool = False ) -> "BlockManager": """ do a list replace """ inplace = validate_bool_kwarg(inplace, "inplace") # figure out our mask a-priori to avoid repeated replacements values = self.as_array() def comp(s, regex=False): """ Generate a bool array by perform an equality check, or perform an element-wise regular expression matching """ if isna(s): return isna(values) if isinstance(s, (Timedelta, Timestamp)) and getattr(s, "tz", None) is None: return _compare_or_regex_search( maybe_convert_objects(values), s.asm8, regex ) return _compare_or_regex_search(values, s, regex) masks = [comp(s, regex) for s in src_list] result_blocks = [] src_len = len(src_list) - 1 for blk in self.blocks: # its possible to get multiple result blocks here # replace ALWAYS will return a list rb = [blk if inplace else blk.copy()] for i, (s, d) in enumerate(zip(src_list, dest_list)): # TODO: assert/validate that `d` is always a scalar? new_rb: List[Block] = [] for b in rb: m = masks[i][b.mgr_locs.indexer] convert = i == src_len result = b._replace_coerce( mask=m, to_replace=s, value=d, inplace=inplace, convert=convert, regex=regex, ) if m.any() or convert: new_rb = _extend_blocks(result, new_rb) else: new_rb.append(b) rb = new_rb result_blocks.extend(rb) bm = type(self).from_blocks(result_blocks, self.axes) bm._consolidate_inplace() return bm def is_consolidated(self) -> bool: """ Return True if more than one block with the same dtype """ if not self._known_consolidated: self._consolidate_check() return self._is_consolidated def _consolidate_check(self) -> None: dtypes = [blk.dtype for blk in self.blocks if blk._can_consolidate] self._is_consolidated = len(dtypes) == len(set(dtypes)) self._known_consolidated = True @property def is_mixed_type(self) -> bool: # Warning, consolidation needs to get checked upstairs self._consolidate_inplace() return len(self.blocks) > 1 @property def is_numeric_mixed_type(self) -> bool: # Warning, consolidation needs to get checked upstairs self._consolidate_inplace() return all(block.is_numeric for block in self.blocks) @property def any_extension_types(self) -> bool: """Whether any of the blocks in this manager are extension blocks""" return any(block.is_extension for block in self.blocks) @property def is_view(self) -> bool: """ return a boolean if we are a single block and are a view """ if len(self.blocks) == 1: return self.blocks[0].is_view # It is technically possible to figure out which blocks are views # e.g. [ b.values.base is not None for b in self.blocks ] # but then we have the case of possibly some blocks being a view # and some blocks not. setting in theory is possible on the non-view # blocks w/o causing a SettingWithCopy raise/warn. But this is a bit # complicated return False def get_bool_data(self, copy: bool = False) -> "BlockManager": """ Parameters ---------- copy : bool, default False Whether to copy the blocks """ self._consolidate_inplace() return self.combine([b for b in self.blocks if b.is_bool], copy) def get_numeric_data(self, copy: bool = False) -> "BlockManager": """ Parameters ---------- copy : bool, default False Whether to copy the blocks """ self._consolidate_inplace() return self.combine([b for b in self.blocks if b.is_numeric], copy) def combine(self, blocks: List[Block], copy: bool = True) -> "BlockManager": """ return a new manager with the blocks """ if len(blocks) == 0: return self.make_empty() # FIXME: optimization potential indexer = np.sort(np.concatenate([b.mgr_locs.as_array for b in blocks])) inv_indexer = lib.get_reverse_indexer(indexer, self.shape[0]) new_blocks = [] for b in blocks: b = b.copy(deep=copy) b.mgr_locs = algos.take_1d( inv_indexer, b.mgr_locs.as_array, axis=0, allow_fill=False ) new_blocks.append(b) axes = list(self.axes) axes[0] = self.items.take(indexer) return type(self).from_blocks(new_blocks, axes) def get_slice(self, slobj: slice, axis: int = 0) -> "BlockManager": if axis == 0: new_blocks = self._slice_take_blocks_ax0(slobj) elif axis == 1: _slicer = [slice(None)] * (axis + 1) _slicer[axis] = slobj slicer = tuple(_slicer) new_blocks = [blk.getitem_block(slicer) for blk in self.blocks] else: raise IndexError("Requested axis not found in manager") new_axes = list(self.axes) new_axes[axis] = new_axes[axis][slobj] bm = type(self)(new_blocks, new_axes, do_integrity_check=False) return bm def __contains__(self, item) -> bool: return item in self.items @property def nblocks(self) -> int: return len(self.blocks) def copy(self: T, deep=True) -> T: """ Make deep or shallow copy of BlockManager Parameters ---------- deep : bool or string, default True If False, return shallow copy (do not copy data) If 'all', copy data and a deep copy of the index Returns ------- BlockManager """ # this preserves the notion of view copying of axes if deep: # hit in e.g. tests.io.json.test_pandas def copy_func(ax): return ax.copy(deep=True) if deep == "all" else ax.view() new_axes = [copy_func(ax) for ax in self.axes] else: new_axes = list(self.axes) res = self.apply("copy", deep=deep) res.axes = new_axes return res def as_array(self, transpose: bool = False) -> np.ndarray: """ Convert the blockmanager data into an numpy array. Parameters ---------- transpose : bool, default False If True, transpose the return array, Returns ------- arr : ndarray """ if len(self.blocks) == 0: arr = np.empty(self.shape, dtype=float) return arr.transpose() if transpose else arr if self._is_single_block and self.blocks[0].is_datetimetz: # TODO(Block.get_values): Make DatetimeTZBlock.get_values # always be object dtype. Some callers seem to want the # DatetimeArray (previously DTI) arr = self.blocks[0].get_values(dtype=object) elif self._is_single_block or not self.is_mixed_type: arr = np.asarray(self.blocks[0].get_values()) else: arr = self._interleave() return arr.transpose() if transpose else arr def _interleave(self) -> np.ndarray: """ Return ndarray from blocks with specified item order Items must be contained in the blocks """ dtype = _interleaved_dtype(self.blocks) # TODO: https://github.com/pandas-dev/pandas/issues/22791 # Give EAs some input on what happens here. Sparse needs this. if isinstance(dtype, SparseDtype): dtype = dtype.subtype elif is_extension_array_dtype(dtype): dtype = "object" result = np.empty(self.shape, dtype=dtype) itemmask = np.zeros(self.shape[0]) for blk in self.blocks: rl = blk.mgr_locs result[rl.indexer] = blk.get_values(dtype) itemmask[rl.indexer] = 1 if not itemmask.all(): raise AssertionError("Some items were not contained in blocks") return result def to_dict(self, copy: bool = True): """ Return a dict of str(dtype) -> BlockManager Parameters ---------- copy : bool, default True Returns ------- values : a dict of dtype -> BlockManager Notes ----- This consolidates based on str(dtype) """ self._consolidate_inplace() bd: Dict[str, List[Block]] = {} for b in self.blocks: bd.setdefault(str(b.dtype), []).append(b) return {dtype: self.combine(blocks, copy=copy) for dtype, blocks in bd.items()} def fast_xs(self, loc: int): """ get a cross sectional for a given location in the items ; handle dups return the result, is *could* be a view in the case of a single block """ if len(self.blocks) == 1: return self.blocks[0].iget((slice(None), loc)) items = self.items # non-unique (GH4726) if not items.is_unique: result = self._interleave() if self.ndim == 2: result = result.T return result[loc] # unique dtype = _interleaved_dtype(self.blocks) n = len(items) if is_extension_array_dtype(dtype): # we'll eventually construct an ExtensionArray. result = np.empty(n, dtype=object) else: result = np.empty(n, dtype=dtype) for blk in self.blocks: # Such assignment may incorrectly coerce NaT to None # result[blk.mgr_locs] = blk._slice((slice(None), loc)) for i, rl in enumerate(blk.mgr_locs): result[rl] = blk.iget((i, loc)) if isinstance(dtype, ExtensionDtype): result = dtype.construct_array_type()._from_sequence(result, dtype=dtype) return result def consolidate(self) -> "BlockManager": """ Join together blocks having same dtype Returns ------- y : BlockManager """ if self.is_consolidated(): return self bm = type(self)(self.blocks, self.axes) bm._is_consolidated = False bm._consolidate_inplace() return bm def _consolidate_inplace(self) -> None: if not self.is_consolidated(): self.blocks = tuple(_consolidate(self.blocks)) self._is_consolidated = True self._known_consolidated = True self._rebuild_blknos_and_blklocs() def get(self, item): """ Return values for selected item (ndarray or BlockManager). """ if self.items.is_unique: if not isna(item): loc = self.items.get_loc(item) else: indexer = np.arange(len(self.items))[isna(self.items)] # allow a single nan location indexer if not is_scalar(indexer): if len(indexer) == 1: loc = indexer.item() else: raise ValueError("cannot label index with a null key") return self.iget(loc) else: if isna(item): raise TypeError("cannot label index with a null key") indexer = self.items.get_indexer_for([item]) return self.reindex_indexer( new_axis=self.items[indexer], indexer=indexer, axis=0, allow_dups=True ) def iget(self, i: int) -> "SingleBlockManager": """ Return the data as a SingleBlockManager. """ block = self.blocks[self.blknos[i]] values = block.iget(self.blklocs[i]) # shortcut for select a single-dim from a 2-dim BM return SingleBlockManager( block.make_block_same_class( values, placement=slice(0, len(values)), ndim=1 ), self.axes[1], fastpath=True, ) def delete(self, item): """ Delete selected item (items if non-unique) in-place. """ indexer = self.items.get_loc(item) is_deleted = np.zeros(self.shape[0], dtype=np.bool_) is_deleted[indexer] = True ref_loc_offset = -is_deleted.cumsum() is_blk_deleted = [False] * len(self.blocks) if isinstance(indexer, int): affected_start = indexer else: affected_start = is_deleted.nonzero()[0][0] for blkno, _ in _fast_count_smallints(self.blknos[affected_start:]): blk = self.blocks[blkno] bml = blk.mgr_locs blk_del = is_deleted[bml.indexer].nonzero()[0] if len(blk_del) == len(bml): is_blk_deleted[blkno] = True continue elif len(blk_del) != 0: blk.delete(blk_del) bml = blk.mgr_locs blk.mgr_locs = bml.add(ref_loc_offset[bml.indexer]) # FIXME: use Index.delete as soon as it uses fastpath=True self.axes[0] = self.items[~is_deleted] self.blocks = tuple( b for blkno, b in enumerate(self.blocks) if not is_blk_deleted[blkno] ) self._rebuild_blknos_and_blklocs() def set(self, item: Label, value): """ Set new item in-place. Notes ----- Does not consolidate. Adds new Block if not contained in the current items Index. """ try: loc = self.items.get_loc(item) except KeyError: # This item wasn't present, just insert at end self.insert(len(self.items), item, value) return self.iset(loc, value) def iset(self, loc: Union[int, slice, np.ndarray], value): """ Set new item in-place. Does not consolidate. Adds new Block if not contained in the current set of items """ # FIXME: refactor, clearly separate broadcasting & zip-like assignment # can prob also fix the various if tests for sparse/categorical if self._blklocs is None and self.ndim > 1: self._rebuild_blknos_and_blklocs() value_is_extension_type = is_extension_array_dtype(value) # categorical/sparse/datetimetz if value_is_extension_type: def value_getitem(placement): return value else: if value.ndim == self.ndim - 1: value = _safe_reshape(value, (1,) + value.shape) def value_getitem(placement): return value else: def value_getitem(placement): return value[placement.indexer] if value.shape[1:] != self.shape[1:]: raise AssertionError( "Shape of new values must be compatible with manager shape" ) if lib.is_integer(loc): # We have 6 tests where loc is _not_ an int. # In this case, get_blkno_placements will yield only one tuple, # containing (self._blknos[loc], BlockPlacement(slice(0, 1, 1))) loc = [loc] # Accessing public blknos ensures the public versions are initialized blknos = self.blknos[loc] blklocs = self.blklocs[loc].copy() unfit_mgr_locs = [] unfit_val_locs = [] removed_blknos = [] for blkno, val_locs in libinternals.get_blkno_placements(blknos, group=True): blk = self.blocks[blkno] blk_locs = blklocs[val_locs.indexer] if blk.should_store(value): blk.set(blk_locs, value_getitem(val_locs)) else: unfit_mgr_locs.append(blk.mgr_locs.as_array[blk_locs]) unfit_val_locs.append(val_locs) # If all block items are unfit, schedule the block for removal. if len(val_locs) == len(blk.mgr_locs): removed_blknos.append(blkno) else: self._blklocs[blk.mgr_locs.indexer] = -1 blk.delete(blk_locs) self._blklocs[blk.mgr_locs.indexer] = np.arange(len(blk)) if len(removed_blknos): # Remove blocks & update blknos accordingly is_deleted = np.zeros(self.nblocks, dtype=np.bool_) is_deleted[removed_blknos] = True new_blknos = np.empty(self.nblocks, dtype=np.int64) new_blknos.fill(-1) new_blknos[~is_deleted] = np.arange(self.nblocks - len(removed_blknos)) self._blknos = algos.take_1d( new_blknos, self._blknos, axis=0, allow_fill=False ) self.blocks = tuple( blk for i, blk in enumerate(self.blocks) if i not in set(removed_blknos) ) if unfit_val_locs: unfit_mgr_locs = np.concatenate(unfit_mgr_locs) unfit_count = len(unfit_mgr_locs) new_blocks: List[Block] = [] if value_is_extension_type: # This code (ab-)uses the fact that sparse blocks contain only # one item. new_blocks.extend( make_block( values=value, ndim=self.ndim, placement=slice(mgr_loc, mgr_loc + 1), ) for mgr_loc in unfit_mgr_locs ) self._blknos[unfit_mgr_locs] = np.arange(unfit_count) + len(self.blocks) self._blklocs[unfit_mgr_locs] = 0 else: # unfit_val_locs contains BlockPlacement objects unfit_val_items = unfit_val_locs[0].append(unfit_val_locs[1:]) new_blocks.append( make_block( values=value_getitem(unfit_val_items), ndim=self.ndim, placement=unfit_mgr_locs, ) ) self._blknos[unfit_mgr_locs] = len(self.blocks) self._blklocs[unfit_mgr_locs] = np.arange(unfit_count) self.blocks += tuple(new_blocks) # Newly created block's dtype may already be present. self._known_consolidated = False def insert(self, loc: int, item, value, allow_duplicates: bool = False): """ Insert item at selected position. Parameters ---------- loc : int item : hashable value : array_like allow_duplicates: bool If False, trying to insert non-unique item will raise """ if not allow_duplicates and item in self.items: # Should this be a different kind of error?? raise ValueError(f"cannot insert {item}, already exists") if not isinstance(loc, int): raise TypeError("loc must be int") # insert to the axis; this could possibly raise a TypeError new_axis = self.items.insert(loc, item) if value.ndim == self.ndim - 1 and not is_extension_array_dtype(value): value = _safe_reshape(value, (1,) + value.shape) block = make_block(values=value, ndim=self.ndim, placement=slice(loc, loc + 1)) for blkno, count in _fast_count_smallints(self.blknos[loc:]): blk = self.blocks[blkno] if count == len(blk.mgr_locs): blk.mgr_locs = blk.mgr_locs.add(1) else: new_mgr_locs = blk.mgr_locs.as_array.copy() new_mgr_locs[new_mgr_locs >= loc] += 1 blk.mgr_locs = new_mgr_locs # Accessing public blklocs ensures the public versions are initialized if loc == self.blklocs.shape[0]: # np.append is a lot faster, let's use it if we can. self._blklocs = np.append(self._blklocs, 0) self._blknos = np.append(self._blknos, len(self.blocks)) else: self._blklocs = np.insert(self._blklocs, loc, 0) self._blknos = np.insert(self._blknos, loc, len(self.blocks)) self.axes[0] = new_axis self.blocks += (block,) self._known_consolidated = False if len(self.blocks) > 100: self._consolidate_inplace() def reindex_axis( self, new_index, axis: int, method=None, limit=None, fill_value=None, copy: bool = True, ): """ Conform block manager to new index. """ new_index = ensure_index(new_index) new_index, indexer = self.axes[axis].reindex( new_index, method=method, limit=limit ) return self.reindex_indexer( new_index, indexer, axis=axis, fill_value=fill_value, copy=copy ) def reindex_indexer( self: T, new_axis, indexer, axis: int, fill_value=None, allow_dups: bool = False, copy: bool = True, ) -> T: """ Parameters ---------- new_axis : Index indexer : ndarray of int64 or None axis : int fill_value : object, default None allow_dups : bool, default False copy : bool, default True pandas-indexer with -1's only. """ if indexer is None: if new_axis is self.axes[axis] and not copy: return self result = self.copy(deep=copy) result.axes = list(self.axes) result.axes[axis] = new_axis return result self._consolidate_inplace() # some axes don't allow reindexing with dups if not allow_dups: self.axes[axis]._can_reindex(indexer) if axis >= self.ndim: raise IndexError("Requested axis not found in manager") if axis == 0: new_blocks = self._slice_take_blocks_ax0(indexer, fill_tuple=(fill_value,)) else: new_blocks = [ blk.take_nd( indexer, axis=axis, fill_tuple=( fill_value if fill_value is not None else blk.fill_value, ), ) for blk in self.blocks ] new_axes = list(self.axes) new_axes[axis] = new_axis return type(self).from_blocks(new_blocks, new_axes) def _slice_take_blocks_ax0(self, slice_or_indexer, fill_tuple=None): """ Slice/take blocks along axis=0. Overloaded for SingleBlock Returns ------- new_blocks : list of Block """ allow_fill = fill_tuple is not None sl_type, slobj, sllen = _preprocess_slice_or_indexer( slice_or_indexer, self.shape[0], allow_fill=allow_fill ) if self._is_single_block: blk = self.blocks[0] if sl_type in ("slice", "mask"): return [blk.getitem_block(slobj, new_mgr_locs=slice(0, sllen))] elif not allow_fill or self.ndim == 1: if allow_fill and fill_tuple[0] is None: _, fill_value = maybe_promote(blk.dtype) fill_tuple = (fill_value,) return [ blk.take_nd( slobj, axis=0, new_mgr_locs=slice(0, sllen), fill_tuple=fill_tuple, ) ] if sl_type in ("slice", "mask"): blknos = self.blknos[slobj] blklocs = self.blklocs[slobj] else: blknos = algos.take_1d( self.blknos, slobj, fill_value=-1, allow_fill=allow_fill ) blklocs = algos.take_1d( self.blklocs, slobj, fill_value=-1, allow_fill=allow_fill ) # When filling blknos, make sure blknos is updated before appending to # blocks list, that way new blkno is exactly len(blocks). # # FIXME: mgr_groupby_blknos must return mgr_locs in ascending order, # pytables serialization will break otherwise. blocks = [] for blkno, mgr_locs in libinternals.get_blkno_placements(blknos, group=True): if blkno == -1: # If we've got here, fill_tuple was not None. fill_value = fill_tuple[0] blocks.append( self._make_na_block(placement=mgr_locs, fill_value=fill_value) ) else: blk = self.blocks[blkno] # Otherwise, slicing along items axis is necessary. if not blk._can_consolidate: # A non-consolidatable block, it's easy, because there's # only one item and each mgr loc is a copy of that single # item. for mgr_loc in mgr_locs: newblk = blk.copy(deep=False) newblk.mgr_locs = slice(mgr_loc, mgr_loc + 1) blocks.append(newblk) else: blocks.append( blk.take_nd( blklocs[mgr_locs.indexer], axis=0, new_mgr_locs=mgr_locs, fill_tuple=None, ) ) return blocks def _make_na_block(self, placement, fill_value=None): if fill_value is None: fill_value = np.nan block_shape = list(self.shape) block_shape[0] = len(placement) dtype, fill_value = infer_dtype_from_scalar(fill_value) block_values = np.empty(block_shape, dtype=dtype) block_values.fill(fill_value) return make_block(block_values, placement=placement) def take(self, indexer, axis: int = 1, verify: bool = True, convert: bool = True): """ Take items along any axis. """ self._consolidate_inplace() indexer = ( np.arange(indexer.start, indexer.stop, indexer.step, dtype="int64") if isinstance(indexer, slice) else np.asanyarray(indexer, dtype="int64") ) n = self.shape[axis] if convert: indexer = maybe_convert_indices(indexer, n) if verify: if ((indexer == -1) | (indexer >= n)).any(): raise Exception("Indices must be nonzero and less than the axis length") new_labels = self.axes[axis].take(indexer) return self.reindex_indexer( new_axis=new_labels, indexer=indexer, axis=axis, allow_dups=True ) def equals(self, other) -> bool: self_axes, other_axes = self.axes, other.axes if len(self_axes) != len(other_axes): return False if not all(ax1.equals(ax2) for ax1, ax2 in zip(self_axes, other_axes)): return False self._consolidate_inplace() other._consolidate_inplace() if len(self.blocks) != len(other.blocks): return False # canonicalize block order, using a tuple combining the mgr_locs # then type name because there might be unconsolidated # blocks (say, Categorical) which can only be distinguished by # the iteration order def canonicalize(block): return (block.mgr_locs.as_array.tolist(), block.dtype.name) self_blocks = sorted(self.blocks, key=canonicalize) other_blocks = sorted(other.blocks, key=canonicalize) return all( block.equals(oblock) for block, oblock in zip(self_blocks, other_blocks) ) def unstack(self, unstacker_func, fill_value) -> "BlockManager": """ Return a BlockManager with all blocks unstacked.. Parameters ---------- unstacker_func : callable A (partially-applied) ``pd.core.reshape._Unstacker`` class. fill_value : Any fill_value for newly introduced missing values. Returns ------- unstacked : BlockManager """ n_rows = self.shape[-1] dummy = unstacker_func(np.empty((0, 0)), value_columns=self.items) new_columns = dummy.get_new_columns() new_index = dummy.get_new_index() new_blocks: List[Block] = [] columns_mask: List[np.ndarray] = [] for blk in self.blocks: blocks, mask = blk._unstack( partial(unstacker_func, value_columns=self.items[blk.mgr_locs.indexer]), new_columns, n_rows, fill_value, ) new_blocks.extend(blocks) columns_mask.extend(mask) new_columns = new_columns[columns_mask] bm = BlockManager(new_blocks, [new_columns, new_index]) return bm class SingleBlockManager(BlockManager): """ manage a single block with """ ndim = 1 _is_consolidated = True _known_consolidated = True __slots__ = () def __init__( self, block: Block, axis: Union[Index, List[Index]], do_integrity_check: bool = False, fastpath: bool = False, ): assert isinstance(block, Block), type(block) if isinstance(axis, list): if len(axis) != 1: raise ValueError( "cannot create SingleBlockManager with more than 1 axis" ) axis = axis[0] # passed from constructor, single block, single axis if fastpath: self.axes = [axis] else: self.axes = [ensure_index(axis)] self.blocks = tuple([block]) @classmethod def from_blocks( cls, blocks: List[Block], axes: List[Index] ) -> "SingleBlockManager": """ Constructor for BlockManager and SingleBlockManager with same signature. """ assert len(blocks) == 1 assert len(axes) == 1 return cls(blocks[0], axes[0], do_integrity_check=False, fastpath=True) @classmethod def from_array(cls, array: ArrayLike, index: Index) -> "SingleBlockManager": """ Constructor for if we have an array that is not yet a Block. """ block = make_block(array, placement=slice(0, len(index)), ndim=1) return cls(block, index, fastpath=True) def _post_setstate(self): pass @property def _block(self) -> Block: return self.blocks[0] @property def _blknos(self): """ compat with BlockManager """ return None @property def _blklocs(self): """ compat with BlockManager """ return None def get_slice(self, slobj: slice, axis: int = 0) -> "SingleBlockManager": if axis >= self.ndim: raise IndexError("Requested axis not found in manager") blk = self._block array = blk._slice(slobj) block = blk.make_block_same_class(array, placement=range(len(array))) return type(self)(block, self.index[slobj], fastpath=True) @property def index(self) -> Index: return self.axes[0] @property def dtype(self) -> DtypeObj: return self._block.dtype def get_dtype_counts(self): return {self.dtype.name: 1} def get_dtypes(self) -> np.ndarray: return np.array([self._block.dtype]) def external_values(self): """The array that Series.values returns""" return self._block.external_values() def internal_values(self): """The array that Series._values returns""" return self._block.internal_values() @property def _can_hold_na(self) -> bool: return self._block._can_hold_na def is_consolidated(self) -> bool: return True def _consolidate_check(self): pass def _consolidate_inplace(self): pass def delete(self, item): """ Delete single item from SingleBlockManager. Ensures that self.blocks doesn't become empty. """ loc = self.items.get_loc(item) self._block.delete(loc) self.axes[0] = self.axes[0].delete(loc) def fast_xs(self, loc): """ fast path for getting a cross-section return a view of the data """ raise NotImplementedError("Use series._values[loc] instead") def concat(self, to_concat, new_axis: Index) -> "SingleBlockManager": """ Concatenate a list of SingleBlockManagers into a single SingleBlockManager. Used for pd.concat of Series objects with axis=0. Parameters ---------- to_concat : list of SingleBlockManagers new_axis : Index of the result Returns ------- SingleBlockManager """ non_empties = [x for x in to_concat if len(x) > 0] # check if all series are of the same block type: if len(non_empties) > 0: blocks = [obj.blocks[0] for obj in non_empties] if len({b.dtype for b in blocks}) == 1: new_block = blocks[0].concat_same_type(blocks) else: values = [x.values for x in blocks] values = concat_compat(values) new_block = make_block(values, placement=slice(0, len(values), 1)) else: values = [x._block.values for x in to_concat] values = concat_compat(values) new_block = make_block(values, placement=slice(0, len(values), 1)) mgr = SingleBlockManager(new_block, new_axis) return mgr # -------------------------------------------------------------------- # Constructor Helpers def create_block_manager_from_blocks(blocks, axes): try: if len(blocks) == 1 and not isinstance(blocks[0], Block): # if blocks[0] is of length 0, return empty blocks if not len(blocks[0]): blocks = [] else: # It's OK if a single block is passed as values, its placement # is basically "all items", but if there're many, don't bother # converting, it's an error anyway. blocks = [ make_block(values=blocks[0], placement=slice(0, len(axes[0]))) ] mgr = BlockManager(blocks, axes) mgr._consolidate_inplace() return mgr except ValueError as e: blocks = [getattr(b, "values", b) for b in blocks] tot_items = sum(b.shape[0] for b in blocks) construction_error(tot_items, blocks[0].shape[1:], axes, e) def create_block_manager_from_arrays(arrays, names, axes): try: blocks = form_blocks(arrays, names, axes) mgr = BlockManager(blocks, axes) mgr._consolidate_inplace() return mgr except ValueError as e: construction_error(len(arrays), arrays[0].shape, axes, e) def construction_error(tot_items, block_shape, axes, e=None): """ raise a helpful message about our construction """ passed = tuple(map(int, [tot_items] + list(block_shape))) # Correcting the user facing error message during dataframe construction if len(passed) <= 2: passed = passed[::-1] implied = tuple(len(ax) for ax in axes) # Correcting the user facing error message during dataframe construction if len(implied) <= 2: implied = implied[::-1] if passed == implied and e is not None: raise e if block_shape[0] == 0: raise ValueError("Empty data passed with indices specified.") raise ValueError(f"Shape of passed values is {passed}, indices imply {implied}") # ----------------------------------------------------------------------- def form_blocks(arrays, names, axes): # put "leftover" items in float bucket, where else? # generalize? items_dict = defaultdict(list) extra_locs = [] names_idx = ensure_index(names) if names_idx.equals(axes[0]): names_indexer = np.arange(len(names_idx)) else: assert names_idx.intersection(axes[0]).is_unique names_indexer = names_idx.get_indexer_for(axes[0]) for i, name_idx in enumerate(names_indexer): if name_idx == -1: extra_locs.append(i) continue k = names[name_idx] v = arrays[name_idx] block_type = get_block_type(v) items_dict[block_type.__name__].append((i, k, v)) blocks = [] if len(items_dict["FloatBlock"]): float_blocks = _multi_blockify(items_dict["FloatBlock"]) blocks.extend(float_blocks) if len(items_dict["ComplexBlock"]): complex_blocks = _multi_blockify(items_dict["ComplexBlock"]) blocks.extend(complex_blocks) if len(items_dict["TimeDeltaBlock"]): timedelta_blocks = _multi_blockify(items_dict["TimeDeltaBlock"]) blocks.extend(timedelta_blocks) if len(items_dict["IntBlock"]): int_blocks = _multi_blockify(items_dict["IntBlock"]) blocks.extend(int_blocks) if len(items_dict["DatetimeBlock"]): datetime_blocks = _simple_blockify(items_dict["DatetimeBlock"], _NS_DTYPE) blocks.extend(datetime_blocks) if len(items_dict["DatetimeTZBlock"]): dttz_blocks = [ make_block(array, klass=DatetimeTZBlock, placement=[i]) for i, _, array in items_dict["DatetimeTZBlock"] ] blocks.extend(dttz_blocks) if len(items_dict["BoolBlock"]): bool_blocks = _simple_blockify(items_dict["BoolBlock"], np.bool_) blocks.extend(bool_blocks) if len(items_dict["ObjectBlock"]) > 0: object_blocks = _simple_blockify(items_dict["ObjectBlock"], np.object_) blocks.extend(object_blocks) if len(items_dict["CategoricalBlock"]) > 0: cat_blocks = [ make_block(array, klass=CategoricalBlock, placement=[i]) for i, _, array in items_dict["CategoricalBlock"] ] blocks.extend(cat_blocks) if len(items_dict["ExtensionBlock"]): external_blocks = [ make_block(array, klass=ExtensionBlock, placement=[i]) for i, _, array in items_dict["ExtensionBlock"] ] blocks.extend(external_blocks) if len(items_dict["ObjectValuesExtensionBlock"]): external_blocks = [ make_block(array, klass=ObjectValuesExtensionBlock, placement=[i]) for i, _, array in items_dict["ObjectValuesExtensionBlock"] ] blocks.extend(external_blocks) if len(extra_locs): shape = (len(extra_locs),) + tuple(len(x) for x in axes[1:]) # empty items -> dtype object block_values = np.empty(shape, dtype=object) block_values.fill(np.nan) na_block = make_block(block_values, placement=extra_locs) blocks.append(na_block) return blocks def _simple_blockify(tuples, dtype): """ return a single array of a block that has a single dtype; if dtype is not None, coerce to this dtype """ values, placement = _stack_arrays(tuples, dtype) # TODO: CHECK DTYPE? if dtype is not None and values.dtype != dtype: # pragma: no cover values = values.astype(dtype) block = make_block(values, placement=placement) return [block] def _multi_blockify(tuples, dtype=None): """ return an array of blocks that potentially have different dtypes """ # group by dtype grouper = itertools.groupby(tuples, lambda x: x[2].dtype) new_blocks = [] for dtype, tup_block in grouper: values, placement = _stack_arrays(list(tup_block), dtype) block = make_block(values, placement=placement) new_blocks.append(block) return new_blocks def _stack_arrays(tuples, dtype): # fml def _asarray_compat(x): if isinstance(x, ABCSeries): return x._values else: return np.asarray(x) def _shape_compat(x): if isinstance(x, ABCSeries): return (len(x),) else: return x.shape placement, names, arrays = zip(*tuples) first = arrays[0] shape = (len(arrays),) + _shape_compat(first) stacked = np.empty(shape, dtype=dtype) for i, arr in enumerate(arrays): stacked[i] = _asarray_compat(arr) return stacked, placement def _interleaved_dtype(blocks: Sequence[Block]) -> Optional[DtypeObj]: """ Find the common dtype for `blocks`. Parameters ---------- blocks : List[Block] Returns ------- dtype : np.dtype, ExtensionDtype, or None None is returned when `blocks` is empty. """ if not len(blocks): return None return find_common_type([b.dtype for b in blocks]) def _consolidate(blocks): """ Merge blocks having same dtype, exclude non-consolidating blocks """ # sort by _can_consolidate, dtype gkey = lambda x: x._consolidate_key grouper = itertools.groupby(sorted(blocks, key=gkey), gkey) new_blocks = [] for (_can_consolidate, dtype), group_blocks in grouper: merged_blocks = _merge_blocks( list(group_blocks), dtype=dtype, _can_consolidate=_can_consolidate ) new_blocks = _extend_blocks(merged_blocks, new_blocks) return new_blocks def _compare_or_regex_search(a, b, regex=False): """ Compare two array_like inputs of the same shape or two scalar values Calls operator.eq or re.search, depending on regex argument. If regex is True, perform an element-wise regex matching. Parameters ---------- a : array_like or scalar b : array_like or scalar regex : bool, default False Returns ------- mask : array_like of bool """ if not regex: op = lambda x: operator.eq(x, b) else: op = np.vectorize( lambda x: bool(re.search(b, x)) if isinstance(x, str) else False ) is_a_array = isinstance(a, np.ndarray) is_b_array = isinstance(b, np.ndarray) if is_datetimelike_v_numeric(a, b) or is_numeric_v_string_like(a, b): # GH#29553 avoid deprecation warnings from numpy result = False else: result = op(a) if is_scalar(result) and (is_a_array or is_b_array): type_names = [type(a).__name__, type(b).__name__] if is_a_array: type_names[0] = f"ndarray(dtype={a.dtype})" if is_b_array: type_names[1] = f"ndarray(dtype={b.dtype})" raise TypeError( f"Cannot compare types {repr(type_names[0])} and {repr(type_names[1])}" ) return result def _fast_count_smallints(arr): """Faster version of set(arr) for sequences of small numbers.""" counts = np.bincount(arr.astype(np.int_)) nz = counts.nonzero()[0] return np.c_[nz, counts[nz]] def _preprocess_slice_or_indexer(slice_or_indexer, length, allow_fill): if isinstance(slice_or_indexer, slice): return ( "slice", slice_or_indexer, libinternals.slice_len(slice_or_indexer, length), ) elif ( isinstance(slice_or_indexer, np.ndarray) and slice_or_indexer.dtype == np.bool_ ): return "mask", slice_or_indexer, slice_or_indexer.sum() else: indexer = np.asanyarray(slice_or_indexer, dtype=np.int64) if not allow_fill: indexer = maybe_convert_indices(indexer, length) return "fancy", indexer, len(indexer) def concatenate_block_managers(mgrs_indexers, axes, concat_axis, copy): """ Concatenate block managers into one. Parameters ---------- mgrs_indexers : list of (BlockManager, {axis: indexer,...}) tuples axes : list of Index concat_axis : int copy : bool """ concat_plans = [ get_mgr_concatenation_plan(mgr, indexers) for mgr, indexers in mgrs_indexers ] concat_plan = combine_concat_plans(concat_plans, concat_axis) blocks = [] for placement, join_units in concat_plan: if len(join_units) == 1 and not join_units[0].indexers: b = join_units[0].block values = b.values if copy: values = values.copy() else: values = values.view() b = b.make_block_same_class(values, placement=placement) elif is_uniform_join_units(join_units): b = join_units[0].block.concat_same_type( [ju.block for ju in join_units], placement=placement ) else: b = make_block( concatenate_join_units(join_units, concat_axis, copy=copy), placement=placement, ) blocks.append(b) return BlockManager(blocks, axes)
31.513086
88
0.572743
2fa76ec53e525e1b2bbdb7bf1a5c16531a789e89
106,194
py
Python
pytests/powertest.py
GeertBosch/mongo
884d232473dca72e0872f0e540d4c3108c1e0b3d
[ "Apache-2.0" ]
null
null
null
pytests/powertest.py
GeertBosch/mongo
884d232473dca72e0872f0e540d4c3108c1e0b3d
[ "Apache-2.0" ]
null
null
null
pytests/powertest.py
GeertBosch/mongo
884d232473dca72e0872f0e540d4c3108c1e0b3d
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python """Powercycle test. Tests robustness of mongod to survive multiple powercycle events. Client & server side powercycle test script. This script can be run against any host which is reachable via ssh. Note - the remote hosts should be running bash shell (this script may fail otherwise). There are no assumptions on the server what is the current deployment of MongoDB. For Windows the assumption is that Cygwin is installed. The server needs these utilities: - python 2.7 or higher - sshd - rsync This script will either download a MongoDB tarball or use an existing setup. """ from __future__ import print_function import atexit import collections import copy import datetime import distutils.spawn # pylint: disable=no-name-in-module import json import importlib import logging import optparse import os import pipes import posixpath import random import re import shlex import shutil import signal import stat import string import sys import tarfile import tempfile import threading import time import traceback import urlparse import zipfile import psutil import pymongo import requests import yaml # The subprocess32 module is untested on Windows and thus isn't recommended for use, even when it's # installed. See https://github.com/google/python-subprocess32/blob/3.2.7/README.md#usage. if os.name == "posix" and sys.version_info[0] == 2: try: import subprocess32 as subprocess except ImportError: import warnings warnings.warn(("Falling back to using the subprocess module because subprocess32 isn't" " available. When using the subprocess module, a child process may" " trigger an invalid free(). See SERVER-22219 for more details."), RuntimeWarning) import subprocess # type: ignore else: import subprocess # Get relative imports to work when the package is not installed on the PYTHONPATH. if __name__ == "__main__" and __package__ is None: sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) # See https://docs.python.org/2/library/sys.html#sys.platform _IS_WINDOWS = sys.platform == "win32" or sys.platform == "cygwin" _IS_LINUX = sys.platform.startswith("linux") _IS_DARWIN = sys.platform == "darwin" def _try_import(module, name=None): """Attempt to import a module and add it as a global variable. If the import fails, then this function doesn't trigger an exception. """ try: module_name = module if not name else name globals()[module_name] = importlib.import_module(module) except ImportError: pass # These modules are used on the 'client' side. _try_import("buildscripts.aws_ec2", "aws_ec2") _try_import("buildscripts.remote_operations", "remote_operations") if _IS_WINDOWS: # These modules are used on both sides for dumping python stacks. import win32api import win32event # These modules are used on the 'server' side. _try_import("ntsecuritycon") _try_import("pywintypes") _try_import("win32file") _try_import("win32security") _try_import("win32service") _try_import("win32serviceutil") # pylint: disable=too-many-lines __version__ = "0.1" LOGGER = logging.getLogger(__name__) REPORT_JSON = {} # type: ignore REPORT_JSON_FILE = "" REPORT_JSON_SUCCESS = False EXIT_YML = {"exit_code": 0} # type: ignore EXIT_YML_FILE = None def local_exit(code): """Capture exit code and invoke sys.exit.""" EXIT_YML["exit_code"] = code sys.exit(code) def exit_handler(): """Exit handler to generate report.json, kill spawned processes, delete temporary files.""" if REPORT_JSON: LOGGER.debug("Exit handler: Updating report file %s", REPORT_JSON_FILE) try: test_start = REPORT_JSON["results"][0]["start"] test_end = int(time.time()) test_time = test_end - test_start if REPORT_JSON_SUCCESS: failures = 0 status = "pass" exit_code = 0 else: failures = 1 status = "fail" exit_code = 1 REPORT_JSON["failures"] = failures REPORT_JSON["results"][0]["status"] = status REPORT_JSON["results"][0]["exit_code"] = exit_code REPORT_JSON["results"][0]["end"] = test_end REPORT_JSON["results"][0]["elapsed"] = test_time with open(REPORT_JSON_FILE, "w") as jstream: json.dump(REPORT_JSON, jstream) LOGGER.debug("Exit handler: report file contents %s", REPORT_JSON) except: # pylint: disable=bare-except pass if EXIT_YML_FILE: LOGGER.debug("Exit handler: Saving exit file %s", EXIT_YML_FILE) try: with open(EXIT_YML_FILE, "w") as yaml_stream: yaml.safe_dump(EXIT_YML, yaml_stream) except: # pylint: disable=bare-except pass LOGGER.debug("Exit handler: Killing processes") try: Processes.kill_all() except: # pylint: disable=bare-except pass LOGGER.debug("Exit handler: Cleaning up temporary files") try: NamedTempFile.delete_all() except: # pylint: disable=bare-except pass def register_signal_handler(handler): """Register the signal handler.""" def _handle_set_event(event_handle, handler): """Event object handler that will dump the stacks of all threads for Windows.""" while True: try: # Wait for task time out to dump stacks. ret = win32event.WaitForSingleObject(event_handle, win32event.INFINITE) if ret != win32event.WAIT_OBJECT_0: LOGGER.error("_handle_set_event WaitForSingleObject failed: %d", ret) return except win32event.error as err: LOGGER.error("Exception from win32event.WaitForSingleObject with error: %s", err) else: handler(None, None) if _IS_WINDOWS: # Create unique event_name. event_name = "Global\\Mongo_Python_{:d}".format(os.getpid()) LOGGER.debug("Registering event %s", event_name) try: security_attributes = None manual_reset = False initial_state = False task_timeout_handle = win32event.CreateEvent(security_attributes, manual_reset, initial_state, event_name) except win32event.error as err: LOGGER.error("Exception from win32event.CreateEvent with error: %s", err) return # Register to close event object handle on exit. atexit.register(win32api.CloseHandle, task_timeout_handle) # Create thread. event_handler_thread = threading.Thread(target=_handle_set_event, kwargs={ "event_handle": task_timeout_handle, "handler": handler }, name="windows_event_handler_thread") event_handler_thread.daemon = True event_handler_thread.start() else: # Otherwise register a signal handler for SIGUSR1. signal_num = signal.SIGUSR1 signal.signal(signal_num, handler) def dump_stacks_and_exit(signum, frame): # pylint: disable=unused-argument """Provide a handler that will dump the stacks of all threads.""" LOGGER.info("Dumping stacks!") sb = [] frames = sys._current_frames() # pylint: disable=protected-access sb.append("Total threads: {}\n".format(len(frames))) sb.append("") for thread_id in frames: stack = frames[thread_id] sb.append("Thread {}:".format(thread_id)) sb.append("".join(traceback.format_stack(stack))) LOGGER.info("".join(sb)) if _IS_WINDOWS: exit_handler() os._exit(1) # pylint: disable=protected-access else: sys.exit(1) def child_processes(parent_pid): """Return a list of all child processes for a pid.""" # The child processes cannot be obtained from the parent on Windows from psutil. See # https://stackoverflow.com/questions/30220732/python-psutil-not-showing-all-child-processes child_procs = [] while psutil.pid_exists(parent_pid): try: child_procs = [p for p in psutil.process_iter(attrs=["pid"]) if parent_pid == p.ppid()] break except psutil.NoSuchProcess: pass for proc in child_procs: proc_children = child_processes(proc.pid) if proc_children: child_procs += proc_children return list(set(child_procs)) def kill_process(pid, kill_children=True): """Kill a process, and optionally it's children, by it's pid. Returns 0 if successful.""" try: parent = psutil.Process(pid) except psutil.NoSuchProcess: LOGGER.warn("Could not kill process %d, as it no longer exists", pid) return 0 procs = [parent] if kill_children: procs += child_processes(pid) for proc in procs: try: LOGGER.debug("Killing process '%s' pid %d", proc.name(), proc.pid) proc.kill() except psutil.NoSuchProcess: LOGGER.warn("Could not kill process %d, as it no longer exists", pid) _, alive = psutil.wait_procs(procs, timeout=30, callback=None) if alive: for proc in alive: LOGGER.error("Process %d still alive!", proc.pid) return 0 def kill_processes(procs, kill_children=True): """Kill a list of processes and optionally it's children.""" for proc in procs: LOGGER.debug("Starting kill of parent process %d", proc.pid) kill_process(proc.pid, kill_children=kill_children) ret = proc.wait() LOGGER.debug("Finished kill of parent process %d has return code of %d", proc.pid, ret) def get_extension(filename): """Return the extension of a file.""" return os.path.splitext(filename)[-1] def executable_extension(): """Return executable file extension.""" if _IS_WINDOWS: return ".exe" return "" def abs_path(path): """Return absolute path for 'path'. Raises an exception on failure.""" if _IS_WINDOWS: # Get the Windows absolute path. cmd = "cygpath -wa {}".format(path) ret, output = execute_cmd(cmd, use_file=True) if ret: raise Exception("Command \"{}\" failed with code {} and output message: {}".format( cmd, ret, output)) return output.rstrip() return os.path.abspath(os.path.normpath(path)) def symlink_dir(source_dir, dest_dir): """Symlink the 'dest_dir' to 'source_dir'.""" if _IS_WINDOWS: win32file.CreateSymbolicLink( # pylint: disable=undefined-variable dest_dir, source_dir, win32file.SYMBOLIC_LINK_FLAG_DIRECTORY) # pylint: disable=undefined-variable else: os.symlink(source_dir, dest_dir) def get_bin_dir(root_dir): """Locate the 'bin' directory within 'root_dir' tree.""" for root, dirs, _ in os.walk(root_dir): if "bin" in dirs: return os.path.join(root, "bin") return None def create_temp_executable_file(cmds): """Create an executable temporary file containing 'cmds'. Returns file name.""" temp_file_name = NamedTempFile.create(suffix=".sh", directory="tmp") with NamedTempFile.get(temp_file_name) as temp_file: temp_file.write(cmds) os_st = os.stat(temp_file_name) os.chmod(temp_file_name, os_st.st_mode | stat.S_IXUSR | stat.S_IXGRP | stat.S_IXOTH) return temp_file_name def start_cmd(cmd, use_file=False): """Start command and returns proc instance from Popen.""" orig_cmd = "" # Multi-commands need to be written to a temporary file to execute on Windows. # This is due to complications with invoking Bash in Windows. if use_file: orig_cmd = cmd temp_file = create_temp_executable_file(cmd) # The temporary file name will have '\' on Windows and needs to be converted to '/'. cmd = "bash -c {}".format(temp_file.replace("\\", "/")) # If 'cmd' is specified as a string, convert it to a list of strings. if isinstance(cmd, str): cmd = shlex.split(cmd) if use_file: LOGGER.debug("Executing '%s', tempfile contains: %s", cmd, orig_cmd) else: LOGGER.debug("Executing '%s'", cmd) proc = subprocess.Popen(cmd, close_fds=True) LOGGER.debug("Spawned process %s pid %d", psutil.Process(proc.pid).name(), proc.pid) return proc def execute_cmd(cmd, use_file=False): """Execute command and returns return_code, output from command.""" orig_cmd = "" # Multi-commands need to be written to a temporary file to execute on Windows. # This is due to complications with invoking Bash in Windows. if use_file: orig_cmd = cmd temp_file = create_temp_executable_file(cmd) # The temporary file name will have '\' on Windows and needs to be converted to '/'. cmd = "bash -c {}".format(temp_file.replace("\\", "/")) # If 'cmd' is specified as a string, convert it to a list of strings. if isinstance(cmd, str): cmd = shlex.split(cmd) if use_file: LOGGER.debug("Executing '%s', tempfile contains: %s", cmd, orig_cmd) else: LOGGER.debug("Executing '%s'", cmd) try: proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) output, _ = proc.communicate() error_code = proc.returncode if error_code: output = "Error executing cmd {}: {}".format(cmd, output) finally: if use_file: os.remove(temp_file) return error_code, output def get_user_host(user_host): """Return a tuple (user, host) from the user_host string.""" if "@" in user_host: return tuple(user_host.split("@")) return None, user_host def parse_options(options): """Parse options and returns a dict. Since there are options which can be specifed with a short('-') or long ('--') form, we preserve that in key map as {option_name: (value, form)}. """ options_map = collections.defaultdict(list) opts = shlex.split(options) for opt in opts: # Handle options which could start with "-" or "--". if opt.startswith("-"): opt_idx = 2 if opt[1] == "-" else 1 opt_form = opt[:opt_idx] eq_idx = opt.find("=") if eq_idx == -1: opt_name = opt[opt_idx:] options_map[opt_name] = (None, opt_form) else: opt_name = opt[opt_idx:eq_idx] options_map[opt_name] = (opt[eq_idx + 1:], opt_form) opt_name = None elif opt_name: options_map[opt_name] = (opt, opt_form) return options_map def download_file(url, file_name, download_retries=5): """Return True if download was successful, raise error if download fails.""" LOGGER.info("Downloading %s to %s", url, file_name) while download_retries > 0: with requests.Session() as session: adapter = requests.adapters.HTTPAdapter(max_retries=download_retries) session.mount(url, adapter) response = session.get(url, stream=True) response.raise_for_status() with open(file_name, "wb") as file_handle: try: for block in response.iter_content(1024 * 1000): file_handle.write(block) except requests.exceptions.ChunkedEncodingError as err: download_retries -= 1 if download_retries == 0: raise Exception("Incomplete download for URL {}: {}".format(url, err)) continue # Check if file download was completed. if "Content-length" in response.headers: url_content_length = int(response.headers["Content-length"]) file_size = os.path.getsize(file_name) # Retry download if file_size has an unexpected size. if url_content_length != file_size: download_retries -= 1 if download_retries == 0: raise Exception("Downloaded file size ({} bytes) doesn't match content length" "({} bytes) for URL {}".format(file_size, url_content_length, url)) continue return True raise Exception("Unknown download problem for {} to file {}".format(url, file_name)) def install_tarball(tarball, root_dir): """Unzip and install 'tarball' into 'root_dir'.""" LOGGER.info("Installing %s to %s", tarball, root_dir) output = "" extensions = [".msi", ".tgz", ".zip"] ext = get_extension(tarball) if ext == ".tgz": with tarfile.open(tarball, "r:gz") as tar_handle: tar_handle.extractall(path=root_dir) output = "Unzipped {} to {}: {}".format(tarball, root_dir, tar_handle.getnames()) ret = 0 elif ext == ".zip": with zipfile.ZipFile(tarball, "r") as zip_handle: zip_handle.extractall(root_dir) output = "Unzipped {} to {}: {}".format(tarball, root_dir, zip_handle.namelist()) ret = 0 elif ext == ".msi": if not _IS_WINDOWS: raise Exception("Unsupported platform for MSI install") tmp_dir = tempfile.mkdtemp(dir="c:\\") # Change the ownership to $USER: as ssh over Cygwin does not preserve privileges # (see https://cygwin.com/ml/cygwin/2004-09/msg00087.html). cmds = """ msiexec /a {tarball} /qn TARGETDIR="{tmp_dir}" /l msi.log ; if [ $? -ne 0 ]; then echo "msiexec failed to extract from {tarball}" ; echo See msi.log ; exit 1 ; fi ; mv "{tmp_dir}"/* "{root_dir}" ; chown -R $USER: "{root_dir}" ; chmod -R 777 "{root_dir}" ; winsysdir=c:/Windows/System32 ; pushd "{root_dir}/System64" ; for dll in * ; do if [ ! -f $winsysdir/$dll ]; then echo "File $winsysdir/$dll does not exist, copying from $(pwd)" ; cp $dll $winsysdir/ ; else echo "File $winsysdir/$dll already exists" ; fi ; done ; popd ; """.format( # pylint: disable=bad-continuation tarball=tarball, tmp_dir=tmp_dir, root_dir=root_dir) ret, output = execute_cmd(cmds, use_file=True) shutil.rmtree(tmp_dir) else: raise Exception("Unsupported file extension to unzip {}," " supported extensions are {}".format(tarball, extensions)) LOGGER.debug(output) if ret: raise Exception("Failed to install tarball {}, {}".format(tarball, output)) def chmod_x_binaries(bin_dir): """Change all file permissions in 'bin_dir' to executable for everyone.""" files = os.listdir(bin_dir) LOGGER.debug("chmod +x %s %s", bin_dir, files) for dir_file in files: bin_file = os.path.join(bin_dir, dir_file) os_st = os.stat(bin_file) os.chmod(bin_file, os_st.st_mode | stat.S_IXUSR | stat.S_IXGRP | stat.S_IXOTH) def chmod_w_file(chmod_file): """Change the permission for 'chmod_file' to '+w' for everyone.""" LOGGER.debug("chmod +w %s", chmod_file) if _IS_WINDOWS: # The os package cannot set the directory to '+w', so we use win32security. # See https://stackoverflow.com/ # questions/12168110/setting-folder-permissions-in-windows-using-python # pylint: disable=undefined-variable,unused-variable user, domain, sec_type = win32security.LookupAccountName("", "Everyone") file_sd = win32security.GetFileSecurity(chmod_file, win32security.DACL_SECURITY_INFORMATION) dacl = file_sd.GetSecurityDescriptorDacl() dacl.AddAccessAllowedAce(win32security.ACL_REVISION, ntsecuritycon.FILE_GENERIC_WRITE, user) file_sd.SetSecurityDescriptorDacl(1, dacl, 0) win32security.SetFileSecurity(chmod_file, win32security.DACL_SECURITY_INFORMATION, file_sd) # pylint: enable=undefined-variable,unused-variable else: os.chmod(chmod_file, os.stat(chmod_file) | stat.S_IWUSR | stat.S_IWGRP | stat.S_IWOTH) def set_windows_bootstatuspolicy(): """For Windows hosts that are physical, this prevents boot to prompt after failure.""" LOGGER.info("Setting bootstatuspolicy to ignoreallfailures & boot timeout to 5 seconds") cmds = """ echo 'Setting bootstatuspolicy to ignoreallfailures & boot timeout to 5 seconds' ; bcdedit /set {default} bootstatuspolicy ignoreallfailures ; bcdedit /set {current} bootstatuspolicy ignoreallfailures ; bcdedit /timeout 5""" ret, output = execute_cmd(cmds, use_file=True) return ret, output def install_mongod(bin_dir=None, tarball_url="latest", root_dir=None): """Set up 'root_dir'/bin to contain MongoDB binaries. If 'bin_dir' is specified, then symlink it to 'root_dir'/bin. Otherwise, download 'tarball_url' and symlink it's bin to 'root_dir'/bin. If 'bin_dir' is specified, skip download and create symlink from 'bin_dir' to 'root_dir'/bin. """ LOGGER.debug("install_mongod: %s %s %s", bin_dir, tarball_url, root_dir) # Create 'root_dir', if it does not exist. root_bin_dir = os.path.join(root_dir, "bin") if not os.path.isdir(root_dir): LOGGER.info("install_mongod: creating %s", root_dir) os.makedirs(root_dir) # Symlink the 'bin_dir', if it's specified, to 'root_bin_dir' if bin_dir and os.path.isdir(bin_dir): symlink_dir(bin_dir, root_bin_dir) return if tarball_url == "latest": # TODO SERVER-31021: Support all platforms. if _IS_WINDOWS: # MSI default: # https://fastdl.mongodb.org/win32/mongodb-win32-x86_64-2008plus-ssl-latest-signed.msi tarball_url = ( "https://fastdl.mongodb.org/win32/mongodb-win32-x86_64-2008plus-ssl-latest.zip") elif _IS_LINUX: tarball_url = "https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-latest.tgz" tarball = os.path.split(urlparse.urlsplit(tarball_url).path)[-1] download_file(tarball_url, tarball) install_tarball(tarball, root_dir) chmod_x_binaries(get_bin_dir(root_dir)) # Symlink the bin dir from the tarball to 'root_bin_dir'. # Since get_bin_dir returns an abolute path, we need to remove 'root_dir' tarball_bin_dir = get_bin_dir(root_dir).replace("{}/".format(root_dir), "") LOGGER.debug("Symlink %s to %s", tarball_bin_dir, root_bin_dir) symlink_dir(tarball_bin_dir, root_bin_dir) def print_uptime(): """Print the last time the system was booted, and the uptime (in seconds).""" boot_time_epoch = psutil.boot_time() boot_time = datetime.datetime.fromtimestamp(boot_time_epoch).strftime('%Y-%m-%d %H:%M:%S.%f') uptime = int(time.time() - boot_time_epoch) LOGGER.info("System was last booted %s, up %d seconds", boot_time, uptime) def call_remote_operation(local_ops, remote_python, script_name, client_args, operation): """Call the remote operation and returns tuple (ret, ouput).""" client_call = "{} {} {} {}".format(remote_python, script_name, client_args, operation) ret, output = local_ops.shell(client_call) return ret, output def is_instance_running(ret, aws_status): """Return true if instance is in a running state.""" return ret == 0 and aws_status.state["Name"] == "running" class Processes(object): """Class to create and kill spawned processes.""" _PROC_LIST = [] # type: ignore @classmethod def create(cls, cmds): """Create a spawned process.""" proc = start_cmd(cmds, use_file=True) cls._PROC_LIST.append(proc) @classmethod def kill(cls, proc): """Kill a spawned process and all it's children.""" kill_processes([proc], kill_children=True) cls._PROC_LIST.remove(proc) @classmethod def kill_all(cls): """Kill all spawned processes.""" procs = copy.copy(cls._PROC_LIST) for proc in procs: cls.kill(proc) class NamedTempFile(object): """Class to control temporary files.""" _FILE_MAP = {} # type: ignore _DIR_LIST = [] # type: ignore @classmethod def create(cls, directory=None, suffix=""): """Create a temporary file, and optional directory, and returns the file name.""" if directory and not os.path.isdir(directory): LOGGER.debug("Creating temporary directory %s", directory) os.makedirs(directory) cls._DIR_LIST.append(directory) temp_file = tempfile.NamedTemporaryFile(suffix=suffix, dir=directory, delete=False) cls._FILE_MAP[temp_file.name] = temp_file return temp_file.name @classmethod def get(cls, name): """Get temporary file object. Raises an exception if the file is unknown.""" if name not in cls._FILE_MAP: raise Exception("Unknown temporary file {}.".format(name)) return cls._FILE_MAP[name] @classmethod def delete(cls, name): """Delete temporary file. Raises an exception if the file is unknown.""" if name not in cls._FILE_MAP: raise Exception("Unknown temporary file {}.".format(name)) if not os.path.exists(name): LOGGER.debug("Temporary file %s no longer exists", name) del cls._FILE_MAP[name] return try: os.remove(name) except (IOError, OSError) as err: LOGGER.warn("Unable to delete temporary file %s with error %s", name, err) if not os.path.exists(name): del cls._FILE_MAP[name] @classmethod def delete_dir(cls, directory): """Delete temporary directory. Raises an exception if the directory is unknown.""" if directory not in cls._DIR_LIST: raise Exception("Unknown temporary directory {}.".format(directory)) if not os.path.exists(directory): LOGGER.debug("Temporary directory %s no longer exists", directory) cls._DIR_LIST.remove(directory) return try: shutil.rmtree(directory) except (IOError, OSError) as err: LOGGER.warn("Unable to delete temporary directory %s with error %s", directory, err) if not os.path.exists(directory): cls._DIR_LIST.remove(directory) @classmethod def delete_all(cls): """Delete all temporary files and directories.""" for name in list(cls._FILE_MAP): cls.delete(name) for directory in cls._DIR_LIST: cls.delete_dir(directory) class ProcessControl(object): """Process control class. Control processes either by name or a list of pids. If name is supplied, then all matching pids are controlled. """ def __init__(self, name=None, pids=None): """Provide either 'name' or 'pids' to control the process.""" if not name and not pids: raise Exception("Either 'process_name' or 'pids' must be specifed") self.name = name self.pids = [] if pids: self.pids = pids self.procs = [] def get_pids(self): """Return list of process ids for process 'self.name'.""" if not self.name: return self.pids self.pids = [] for proc in psutil.process_iter(): if proc.name() == self.name: self.pids.append(proc.pid) return self.pids def get_name(self): """Return process name or name of first running process from pids.""" if not self.name: for pid in self.get_pids(): proc = psutil.Process(pid) if psutil.pid_exists(pid): self.name = proc.name() break return self.name def get_procs(self): """Return a list of 'proc' for the associated pids.""" procs = [] for pid in self.get_pids(): procs.append(psutil.Process(pid)) return procs def is_running(self): """Return true if any process is running that either matches on name or pids.""" for pid in self.get_pids(): if psutil.pid_exists(pid): return True return False def kill(self): """Kill all running processes that match the list of pids.""" if self.is_running(): for proc in self.get_procs(): try: proc.kill() except psutil.NoSuchProcess: LOGGER.info("Could not kill process with pid %d, as it no longer exists", proc.pid) # pylint: disable=undefined-variable,unused-variable class WindowsService(object): """Windows service control class.""" def __init__(self, name, bin_path, bin_options, start_type=None): """Initialize WindowsService.""" self.name = name self.bin_name = os.path.basename(bin_path) self.bin_path = bin_path self.bin_options = bin_options if start_type is not None: self.start_type = start_type else: self.start_type = win32service.SERVICE_DEMAND_START self.pids = [] self._states = { win32service.SERVICE_CONTINUE_PENDING: "continue pending", win32service.SERVICE_PAUSE_PENDING: "pause pending", win32service.SERVICE_PAUSED: "paused", win32service.SERVICE_RUNNING: "running", win32service.SERVICE_START_PENDING: "start pending", win32service.SERVICE_STOPPED: "stopped", win32service.SERVICE_STOP_PENDING: "stop pending", } def create(self): """Create service, if not installed. Return (code, output) tuple.""" if self.status() in self._states.values(): return 1, "Service '{}' already installed, status: {}".format(self.name, self.status()) try: win32serviceutil.InstallService(pythonClassString="Service.{}".format( self.name), serviceName=self.name, displayName=self.name, startType=self.start_type, exeName=self.bin_path, exeArgs=self.bin_options) ret = 0 output = "Service '{}' created".format(self.name) except pywintypes.error as err: ret = err.winerror output = "{}: {}".format(err[1], err[2]) return ret, output def update(self): """Update installed service. Return (code, output) tuple.""" if self.status() not in self._states.values(): return 1, "Service update '{}' status: {}".format(self.name, self.status()) try: win32serviceutil.ChangeServiceConfig(pythonClassString="Service.{}".format( self.name), serviceName=self.name, displayName=self.name, startType=self.start_type, exeName=self.bin_path, exeArgs=self.bin_options) ret = 0 output = "Service '{}' updated".format(self.name) except pywintypes.error as err: ret = err.winerror output = "{}: {}".format(err[1], err[2]) return ret, output def delete(self): """Delete service. Return (code, output) tuple.""" if self.status() not in self._states.values(): return 1, "Service delete '{}' status: {}".format(self.name, self.status()) try: win32serviceutil.RemoveService(serviceName=self.name) ret = 0 output = "Service '{}' deleted".format(self.name) except pywintypes.error as err: ret = err.winerror output = "{}: {}".format(err[1], err[2]) return ret, output def start(self): """Start service. Return (code, output) tuple.""" if self.status() not in self._states.values(): return 1, "Service start '{}' status: {}".format(self.name, self.status()) try: win32serviceutil.StartService(serviceName=self.name) ret = 0 output = "Service '{}' started".format(self.name) except pywintypes.error as err: ret = err.winerror output = "{}: {}".format(err[1], err[2]) proc = ProcessControl(name=self.bin_name) self.pids = proc.get_pids() return ret, output def stop(self): """Stop service. Return (code, output) tuple.""" self.pids = [] if self.status() not in self._states.values(): return 1, "Service '{}' status: {}".format(self.name, self.status()) try: win32serviceutil.StopService(serviceName=self.name) ret = 0 output = "Service '{}' stopped".format(self.name) except pywintypes.error as err: ret = err.winerror output = "{}: {}".format(err[1], err[2]) return ret, output def status(self): """Return state of the service as a string.""" try: # QueryServiceStatus returns a tuple: # (scvType, svcState, svcControls, err, svcErr, svcCP, svcWH) # See https://msdn.microsoft.com/en-us/library/windows/desktop/ms685996(v=vs.85).aspx scv_type, svc_state, svc_controls, err, svc_err, svc_cp, svc_wh = ( win32serviceutil.QueryServiceStatus(serviceName=self.name)) if svc_state in self._states: return self._states[svc_state] return "unknown" except pywintypes.error: return "not installed" def get_pids(self): """Return list of pids for service.""" return self.pids # pylint: enable=undefined-variable,unused-variable class PosixService(object): """Service control on POSIX systems. Simulates service control for background processes which fork themselves, i.e., mongod with '--fork'. """ def __init__(self, name, bin_path, bin_options): """Initialize PosixService.""" self.name = name self.bin_path = bin_path self.bin_name = os.path.basename(bin_path) self.bin_options = bin_options self.pids = [] def create(self): # pylint: disable=no-self-use """Simulate create service. Returns (code, output) tuple.""" return 0, None def update(self): # pylint: disable=no-self-use """Simulate update service. Returns (code, output) tuple.""" return 0, None def delete(self): # pylint: disable=no-self-use """Simulate delete service. Returns (code, output) tuple.""" return 0, None def start(self): """Start process. Returns (code, output) tuple.""" cmd = "{} {}".format(self.bin_path, self.bin_options) ret, output = execute_cmd(cmd) if not ret: proc = ProcessControl(name=self.bin_name) self.pids = proc.get_pids() return ret, output def stop(self): """Stop process. Returns (code, output) tuple.""" proc = ProcessControl(name=self.bin_name) proc.kill() self.pids = [] return 0, None def status(self): """Return status of service.""" if self.get_pids(): return "running" return "stopped" def get_pids(self): """Return list of pids for process.""" return self.pids class MongodControl(object): # pylint: disable=too-many-instance-attributes """Control mongod process.""" def __init__( # pylint: disable=too-many-arguments self, bin_dir, db_path, log_path, port, options=None): """Initialize MongodControl.""" self.process_name = "mongod{}".format(executable_extension()) self.bin_dir = bin_dir if self.bin_dir: self.bin_path = os.path.join(self.bin_dir, self.process_name) if not os.path.isfile(self.bin_path): LOGGER.error("File %s does not exist.", self.bin_path) else: self.bin_path = None self.options_map = parse_options(options) self.db_path = db_path self.set_mongod_option("dbpath", db_path) self.log_path = log_path self.set_mongod_option("logpath", log_path) self.set_mongod_option("logappend") self.port = port self.set_mongod_option("port", port) self.set_mongod_option("bind_ip", "0.0.0.0") if _IS_WINDOWS: self.set_mongod_option("service") self._service = WindowsService else: self.set_mongod_option("fork") self._service = PosixService # After mongod has been installed, self.bin_path is defined. if self.bin_path: self.service = self._service("mongod-powertest", self.bin_path, self.mongod_options()) def set_mongod_option(self, option, option_value=None, option_form="--"): """Set mongod command line option.""" self.options_map[option] = (option_value, option_form) def get_mongod_option(self, option): """Return tuple of (value, form).""" return self.options_map[option] def get_mongod_service(self): """Return the service object used to control mongod.""" return self.service def mongod_options(self): """Return string of mongod options, which can be used when invoking mongod.""" opt_string = "" for opt_name in self.options_map: opt_val, opt_form = self.options_map[opt_name] opt_string += " {}{}".format(opt_form, opt_name) if opt_val: opt_string += " {}".format(opt_val) return opt_string def install(self, root_dir, tarball_url): """Return tuple (ret, ouput).""" # Install mongod, if 'root_dir' does not exist. if os.path.isdir(root_dir): LOGGER.warning("Root dir %s already exists", root_dir) else: install_mongod(bin_dir=self.bin_dir, tarball_url=tarball_url, root_dir=root_dir) self.bin_dir = get_bin_dir(root_dir) if not self.bin_dir: ret, output = execute_cmd("ls -lR '{}'".format(root_dir), use_file=True) LOGGER.debug(output) return 1, "No bin dir can be found under {}".format(root_dir) self.bin_path = os.path.join(self.bin_dir, self.process_name) # We need to instantiate the Service when installing, since the bin_path # is only known after install_mongod runs. self.service = self._service("mongod-powertest", self.bin_path, self.mongod_options()) ret, output = self.service.create() return ret, output def uninstall(self): """Return tuple (ret, ouput).""" return self.service.delete() @staticmethod def cleanup(root_dir): """Return tuple (ret, ouput).""" shutil.rmtree(root_dir, ignore_errors=True) return 0, None def start(self): """Return tuple (ret, ouput).""" return self.service.start() def update(self): """Return tuple (ret, ouput).""" return self.service.update() def stop(self): """Return tuple (ret, ouput).""" return self.service.stop() def status(self): """Return status of the process.""" return self.service.status() def get_pids(self): """Return list of pids for process.""" return self.service.get_pids() def verify_remote_access(remote_op): """Exit if the remote host is not accessible and save result to YML file.""" if not remote_op.access_established(): code, output = remote_op.access_info() LOGGER.error("Exiting, unable to establish access (%d): %s", code, output) EXIT_YML["ec2_ssh_failure"] = output local_exit(code) class LocalToRemoteOperations(object): """Local operations handler class for sending commands to the remote host. Return (return code, output). """ def __init__( # pylint: disable=too-many-arguments self, user_host, retries=2, retry_sleep=30, ssh_connection_options=None, ssh_options=None, shell_binary="/bin/bash", use_shell=False): """Initialize LocalToRemoteOperations.""" self.remote_op = remote_operations.RemoteOperations( # pylint: disable=undefined-variable user_host=user_host, ssh_connection_options=ssh_connection_options, ssh_options=ssh_options, retries=retries, retry_sleep=retry_sleep, debug=True, shell_binary=shell_binary, use_shell=use_shell) def shell(self, cmds, remote_dir=None): """Return tuple (ret, output) from performing remote shell operation.""" return self.remote_op.shell(cmds, remote_dir) def copy_from(self, files, remote_dir=None): """Return tuple (ret, output) from performing remote copy_to operation.""" return self.remote_op.copy_from(files, remote_dir) def copy_to(self, files, remote_dir=None): """Return tuple (ret, output) from performing remote copy_from operation.""" return self.remote_op.copy_to(files, remote_dir) def access_established(self): """Return True if remote access has been established.""" return self.remote_op.access_established() def access_info(self): """Return the return code and output buffer from initial access attempt(s).""" return self.remote_op.access_info() def remote_handler(options, operations): # pylint: disable=too-many-branches,too-many-locals,too-many-statements """Remote operations handler executes all remote operations on the remote host. These operations are invoked on the remote host's copy of this script. Only one operation can be performed at a time. """ # Set 'root_dir' to absolute path. root_dir = abs_path(options.root_dir) if not operations: raise ValueError("No remote operation specified.") print_uptime() LOGGER.info("Operations to perform %s", operations) host = options.host if options.host else "localhost" host_port = "{}:{}".format(host, options.port) if options.repl_set: options.mongod_options = "{} --replSet {}".format(options.mongod_options, options.repl_set) # For MongodControl, the file references should be fully specified. if options.mongodb_bin_dir: bin_dir = abs_path(options.mongodb_bin_dir) else: bin_dir = get_bin_dir(root_dir) db_path = abs_path(options.db_path) log_path = abs_path(options.log_path) mongod = MongodControl(bin_dir=bin_dir, db_path=db_path, log_path=log_path, port=options.port, options=options.mongod_options) mongo_client_opts = get_mongo_client_args(host=host, port=options.port, options=options) # Perform the sequence of operations specified. If any operation fails # then return immediately. for operation in operations: # This is the internal "crash" mechanism, which is executed on the remote host. if operation == "crash_server": ret, output = internal_crash(options.remote_sudo, options.crash_option) # An internal crash on Windows is not immediate try: LOGGER.info("Waiting after issuing internal crash!") time.sleep(30) except IOError: pass elif operation == "kill_mongod": # Unconditional kill of mongod ret, output = kill_mongod() elif operation == "install_mongod": ret, output = mongod.install(root_dir, options.tarball_url) LOGGER.info(output) # Create mongod's dbpath, if it does not exist. if not os.path.isdir(db_path): os.makedirs(db_path) # Create mongod's logpath directory, if it does not exist. log_dir = os.path.dirname(log_path) if not os.path.isdir(log_dir): os.makedirs(log_dir) # Windows special handling. if _IS_WINDOWS: # The os package cannot set the directory to '+w' # See https://docs.python.org/2/library/os.html#os.chmod chmod_w_file(db_path) chmod_w_file(log_dir) # Disable boot prompt after system crash. ret, output = set_windows_bootstatuspolicy() LOGGER.info(output) elif operation == "start_mongod": # Always update the service before starting, as options might have changed. ret, output = mongod.update() LOGGER.info(output) ret, output = mongod.start() LOGGER.info(output) if ret: LOGGER.error("Failed to start mongod on port %d: %s", options.port, output) return ret LOGGER.info("Started mongod running on port %d pid %s", options.port, mongod.get_pids()) mongo = pymongo.MongoClient(**mongo_client_opts) LOGGER.info("Server buildinfo: %s", mongo.admin.command("buildinfo")) LOGGER.info("Server serverStatus: %s", mongo.admin.command("serverStatus")) if options.repl_set: ret = mongo_reconfig_replication(mongo, host_port, options.repl_set) ret = 0 if not ret else 1 elif operation == "stop_mongod": ret, output = mongod.stop() LOGGER.info(output) ret = wait_for_mongod_shutdown(mongod) elif operation == "shutdown_mongod": mongo = pymongo.MongoClient(**mongo_client_opts) try: mongo.admin.command("shutdown", force=True) except pymongo.errors.AutoReconnect: pass ret = wait_for_mongod_shutdown(mongod) elif operation == "rsync_data": ret, output = rsync(options.db_path, options.rsync_dest, options.rsync_exclude_files) LOGGER.info(output) elif operation == "seed_docs": mongo = pymongo.MongoClient(**mongo_client_opts) ret = mongo_seed_docs(mongo, options.db_name, options.collection_name, options.seed_doc_num) elif operation == "validate_collections": mongo = pymongo.MongoClient(**mongo_client_opts) ret = mongo_validate_collections(mongo) elif operation == "insert_canary": mongo = pymongo.MongoClient(**mongo_client_opts) ret = mongo_insert_canary(mongo, options.db_name, options.collection_name, options.canary_doc) elif operation == "validate_canary": mongo = pymongo.MongoClient(**mongo_client_opts) ret = mongo_validate_canary(mongo, options.db_name, options.collection_name, options.canary_doc) elif operation == "set_fcv": mongo = pymongo.MongoClient(**mongo_client_opts) try: ret = mongo.admin.command("setFeatureCompatibilityVersion", options.fcv_version) ret = 0 if ret["ok"] == 1 else 1 except pymongo.errors.OperationFailure as err: LOGGER.error(err.message) ret = err.code elif operation == "remove_lock_file": lock_file = os.path.join(options.db_path, "mongod.lock") ret = 0 if os.path.exists(lock_file): LOGGER.debug("Deleting mongod lockfile %s", lock_file) try: os.remove(lock_file) except (IOError, OSError) as err: LOGGER.warn("Unable to delete mongod lockfile %s with error %s", lock_file, err) ret = err.code else: LOGGER.error("Unsupported remote option specified '%s'", operation) ret = 1 if ret: return ret return 0 def rsync(src_dir, dest_dir, exclude_files=None): """Rsync 'src_dir' to 'dest_dir'.""" # Note rsync on Windows requires a Unix-style directory. exclude_options = "" exclude_str = "" if exclude_files: exclude_str = " (excluding {})".format(exclude_files) if isinstance(exclude_files, str): exclude_files = [exclude_files] for exclude_file in exclude_files: exclude_options = "{} --exclude '{}'".format(exclude_options, exclude_file) LOGGER.info("Rsync'ing %s to %s%s", src_dir, dest_dir, exclude_str) if not distutils.spawn.find_executable("rsync"): return 1, "No rsync exists on the host, not rsync'ing" cmds = "rsync -va --delete --quiet {} {} {}".format(exclude_options, src_dir, dest_dir) ret, output = execute_cmd(cmds) return ret, output def kill_mongod(): """Kill all mongod processes uncondtionally.""" if _IS_WINDOWS: cmds = "taskkill /f /im mongod.exe" else: cmds = "pkill -9 mongod" ret, output = execute_cmd(cmds, use_file=True) return ret, output def internal_crash(use_sudo=False, crash_option=None): """Internally crash the host this excutes on.""" # Windows can use NotMyFault to immediately crash itself, if it's been installed. # See https://docs.microsoft.com/en-us/sysinternals/downloads/notmyfault # Otherwise it's better to use an external mechanism instead. if _IS_WINDOWS: cmds = crash_option if crash_option else "shutdown /r /f /t 0" ret, output = execute_cmd(cmds, use_file=True) return ret, output else: # These operations simulate a console boot and require root privileges, see: # - http://www.linuxjournal.com/content/rebooting-magic-way # - https://www.mjmwired.net/kernel/Documentation/sysrq.txt # These file operations could be performed natively, # however since they require root (or sudo), we prefer to do them # in a subprocess call to isolate them and not require the invocation # of this script to be with sudo. # Code to perform natively: # with open("/proc/sys/kernel/sysrq", "w") as f: # f.write("1\n") # with open("/proc/sysrq-trigger", "w") as f: # f.write("b\n") sudo = "/usr/bin/sudo" if use_sudo else "" cmds = """ echo "Server crashing now" | {sudo} wall ; echo 1 | {sudo} tee /proc/sys/kernel/sysrq ; echo b | {sudo} tee /proc/sysrq-trigger""".format(sudo=sudo) ret, output = execute_cmd(cmds, use_file=True) LOGGER.debug(output) return 1, "Crash did not occur" def crash_server_or_kill_mongod( # pylint: disable=too-many-arguments,,too-many-locals options, crash_canary, canary_port, local_ops, script_name, client_args): """Crash server or kill mongod and optionally write canary doc. Return tuple (ret, output).""" crash_wait_time = options.crash_wait_time + random.randint(0, options.crash_wait_time_jitter) message_prefix = "Killing mongod" if options.crash_method == "kill" else "Crashing server" LOGGER.info("%s in %d seconds", message_prefix, crash_wait_time) time.sleep(crash_wait_time) if options.crash_method == "mpower": # Provide time for power to dissipate by sleeping 10 seconds before turning it back on. crash_func = local_ops.shell crash_args = [ """ echo 0 > /dev/{crash_option} ; sleep 10 ; echo 1 > /dev/{crash_option}""".format(crash_option=options.crash_option) ] local_ops = LocalToRemoteOperations(user_host=options.ssh_crash_user_host, ssh_connection_options=options.ssh_crash_option, shell_binary="/bin/sh") verify_remote_access(local_ops) elif options.crash_method == "internal" or options.crash_method == "kill": crash_cmd = "crash_server" if options.crash_method == "internal" else "kill_mongod" if options.canary == "remote": # The crash canary function executes remotely, only if the # crash_method is 'internal'. canary = "--mongodPort {} --docForCanary \"{}\"".format(canary_port, crash_canary["args"][3]) canary_cmd = "insert_canary" else: canary = "" canary_cmd = "" crash_func = local_ops.shell crash_args = [ "{} {} --remoteOperation {} {} {} {}".format(options.remote_python, script_name, client_args, canary, canary_cmd, crash_cmd) ] elif options.crash_method == "aws_ec2": ec2 = aws_ec2.AwsEc2() # pylint: disable=undefined-variable crash_func = ec2.control_instance crash_args = ["force-stop", options.instance_id, 600, True] else: message = "Unsupported crash method '{}' provided".format(options.crash_method) LOGGER.error(message) return 1, message # Invoke the crash canary function, right before crashing the server. if crash_canary and options.canary == "local": crash_canary["function"](*crash_canary["args"]) ret, output = crash_func(*crash_args) LOGGER.info(output) return ret, output def wait_for_mongod_shutdown(mongod_control, timeout=120): """Wait for for mongod to shutdown; return 0 if shutdown occurs within 'timeout', else 1.""" start = time.time() status = mongod_control.status() while status != "stopped": if time.time() - start >= timeout: LOGGER.error("The mongod process has not stopped, current status is %s", status) return 1 LOGGER.info("Waiting for mongod process to stop, current status is %s ", status) time.sleep(3) status = mongod_control.status() LOGGER.info("The mongod process has stopped") # We wait a bit, since files could still be flushed to disk, which was causing # rsync "file has vanished" errors. time.sleep(5) return 0 def get_mongo_client_args(host=None, port=None, options=None, server_selection_timeout_ms=600000, socket_timeout_ms=600000): """Return keyword arg dict used in PyMongo client.""" # Set the default serverSelectionTimeoutMS & socketTimeoutMS to 10 minutes. mongo_args = { "serverSelectionTimeoutMS": server_selection_timeout_ms, "socketTimeoutMS": socket_timeout_ms } if host: mongo_args["host"] = host if port: mongo_args["port"] = port # Set the writeConcern if hasattr(options, "write_concern"): mongo_args.update(yaml.safe_load(options.write_concern)) # Set the readConcernLevel if hasattr(options, "read_concern_level") and options.read_concern_level: mongo_args["readConcernLevel"] = options.read_concern_level return mongo_args def mongo_shell( # pylint: disable=too-many-arguments mongo_path, work_dir, host_port, mongo_cmds, retries=5, retry_sleep=5): """Start mongo_path from work_dir, connecting to host_port and executes mongo_cmds.""" cmds = "cd {}; echo {} | {} {}".format( pipes.quote(work_dir), pipes.quote(mongo_cmds), pipes.quote(mongo_path), host_port) attempt_num = 0 while True: ret, output = execute_cmd(cmds, use_file=True) if not ret: break attempt_num += 1 if attempt_num > retries: break time.sleep(retry_sleep) return ret, output def mongod_wait_for_primary(mongo, timeout=60, sleep_interval=3): """Return True if mongod primary is available in replica set, within the specified timeout.""" start = time.time() while not mongo.admin.command("isMaster")["ismaster"]: time.sleep(sleep_interval) if time.time() - start >= timeout: return False return True def mongo_reconfig_replication(mongo, host_port, repl_set): """Reconfigure the mongod replica set. Return 0 if successful.""" # TODO: Rework reconfig logic as follows: # 1. Start up mongod in standalone # 2. Delete the config doc # 3. Stop mongod # 4. Start mongod # When reconfiguring the replica set, due to a switch in ports # it can only be done using force=True, as the node will not come up as Primary. # The side affect of using force=True are large jumps in the config # version, which after many reconfigs may exceed the 'int' value. LOGGER.info("Reconfiguring replication %s %s", host_port, repl_set) database = pymongo.database.Database(mongo, "local") system_replset = database.get_collection("system.replset") # Check if replica set has already been initialized if not system_replset or not system_replset.find_one(): rs_config = {"_id": repl_set, "members": [{"_id": 0, "host": host_port}]} ret = mongo.admin.command("replSetInitiate", rs_config) LOGGER.info("Replication initialized: %s %s", ret, rs_config) else: # Wait until replication is initialized. while True: try: ret = mongo.admin.command("replSetGetConfig") if ret["ok"] != 1: LOGGER.error("Failed replSetGetConfig: %s", ret) return 1 rs_config = ret["config"] # We only reconfig if there is a change to 'host'. if rs_config["members"][0]["host"] != host_port: # With force=True, version is ignored. # rs_config["version"] = rs_config["version"] + 1 rs_config["members"][0]["host"] = host_port ret = mongo.admin.command("replSetReconfig", rs_config, force=True) if ret["ok"] != 1: LOGGER.error("Failed replSetReconfig: %s", ret) return 1 LOGGER.info("Replication reconfigured: %s", ret) break except pymongo.errors.AutoReconnect: pass except pymongo.errors.OperationFailure as err: # src/mongo/base/error_codes.err: error_code("NotYetInitialized", 94) if err.code != 94: LOGGER.error("Replication failed to initialize: %s", ret) return 1 primary_available = mongod_wait_for_primary(mongo) LOGGER.debug("isMaster: %s", mongo.admin.command("isMaster")) LOGGER.debug("replSetGetStatus: %s", mongo.admin.command("replSetGetStatus")) return 0 if ret["ok"] == 1 and primary_available else 1 def mongo_seed_docs(mongo, db_name, coll_name, num_docs): """Seed a collection with random document values.""" def rand_string(max_length=1024): """Return random string of random length.""" return ''.join(random.choice(string.letters) for _ in range(random.randint(1, max_length))) LOGGER.info("Seeding DB '%s' collection '%s' with %d documents, %d already exist", db_name, coll_name, num_docs, mongo[db_name][coll_name].count()) random.seed() base_num = 100000 bulk_num = min(num_docs, 10000) bulk_loops = num_docs / bulk_num for _ in xrange(bulk_loops): num_coll_docs = mongo[db_name][coll_name].count() if num_coll_docs >= num_docs: break mongo[db_name][coll_name].insert_many( [{"x": random.randint(0, base_num), "doc": rand_string(1024)} for _ in xrange(bulk_num)]) LOGGER.info("After seeding there are %d documents in the collection", mongo[db_name][coll_name].count()) return 0 def mongo_validate_collections(mongo): """Validate the mongo collections, return 0 if all are valid.""" LOGGER.info("Validating all collections") invalid_colls = [] ebusy_colls = [] for db_name in mongo.database_names(): for coll in mongo[db_name].list_collections(filter={"type": "collection"}): coll_name = coll["name"] res = mongo[db_name].command({"validate": coll_name, "full": True}) LOGGER.info("Validating %s %s: %s", db_name, coll_name, res) ebusy = "EBUSY" in res["errors"] or "EBUSY" in res["warnings"] if not res["valid"]: invalid_colls.append(coll_name) elif ebusy: ebusy_colls.append(coll_name) if ebusy_colls: LOGGER.warning("EBUSY collections: %s", ebusy_colls) if invalid_colls: LOGGER.error("Invalid collections: %s", ebusy_colls) return 0 if not invalid_colls else 1 def mongo_validate_canary(mongo, db_name, coll_name, doc): """Validate a canary document, return 0 if the document exists.""" if not doc: return 0 LOGGER.info("Validating canary document using %s.%s.find_one(%s)", db_name, coll_name, doc) return 0 if mongo[db_name][coll_name].find_one(doc) else 1 def mongo_insert_canary(mongo, db_name, coll_name, doc): """Insert a canary document with 'j' True, return 0 if successful.""" LOGGER.info("Inserting canary document using %s.%s.insert_one(%s)", db_name, coll_name, doc) coll = mongo[db_name][coll_name].with_options( write_concern=pymongo.write_concern.WriteConcern(j=True)) res = coll.insert_one(doc) return 0 if res.inserted_id else 1 def new_resmoke_config(config_file, new_config_file, test_data, eval_str=""): """Create 'new_config_file', from 'config_file', with an update from 'test_data'.""" new_config = { "executor": { "config": {"shell_options": {"eval": eval_str, "global_vars": {"TestData": test_data}}} } } with open(config_file, "r") as yaml_stream: config = yaml.load(yaml_stream) config.update(new_config) with open(new_config_file, "w") as yaml_stream: yaml.safe_dump(config, yaml_stream) def resmoke_client( # pylint: disable=too-many-arguments work_dir, mongo_path, host_port, js_test, resmoke_suite, repeat_num=1, no_wait=False, log_file=None): """Start resmoke client from work_dir, connecting to host_port and executes js_test.""" log_output = ">> {} 2>&1".format(log_file) if log_file else "" cmds = ("cd {}; " "python buildscripts/resmoke.py" " --mongo {}" " --suites {}" " --shellConnString mongodb://{}" " --continueOnFailure" " --repeat {}" " {}" " {}".format( pipes.quote(work_dir), pipes.quote(mongo_path), pipes.quote(resmoke_suite), host_port, repeat_num, pipes.quote(js_test), log_output)) ret, output = None, None if no_wait: Processes.create(cmds) else: ret, output = execute_cmd(cmds, use_file=True) return ret, output def main(): # pylint: disable=too-many-branches,too-many-locals,too-many-statements """Execute Main program.""" # pylint: disable=global-statement global REPORT_JSON global REPORT_JSON_FILE global REPORT_JSON_SUCCESS global EXIT_YML_FILE global EXIT_YML # pylint: enable=global-statement atexit.register(exit_handler) register_signal_handler(dump_stacks_and_exit) parser = optparse.OptionParser(usage=""" %prog [options] MongoDB Powercycle test Examples: Server is running as single node replica set connected to mFi mPower, outlet1: python powertest.py --sshUserHost 10.4.1.54 --rootDir pt-mmap --replSet power --crashMethod mpower --crashOption output1 --sshCrashUserHost admin@10.4.100.2 --sshCrashOption "-oKexAlgorithms=+diffie-hellman-group1-sha1 -i /Users/jonathan/.ssh/mFi.pem" --mongodOptions "--storageEngine mmapv1" Linux server running in AWS, testing nojournal: python powertest.py --sshUserHost ec2-user@52.4.173.196 --sshConnection "-i $HOME/.ssh/JAkey.pem" --rootDir pt-nojournal --mongodOptions "--nojournal" """) test_options = optparse.OptionGroup(parser, "Test Options") crash_options = optparse.OptionGroup(parser, "Crash Options") mongodb_options = optparse.OptionGroup(parser, "MongoDB Options") mongod_options = optparse.OptionGroup(parser, "mongod Options") client_options = optparse.OptionGroup(parser, "Client Options") program_options = optparse.OptionGroup(parser, "Program Options") # Test options test_options.add_option("--sshUserHost", dest="ssh_user_host", help="Server ssh user/host, i.e., user@host (REQUIRED)", default=None) default_ssh_connection_options = ("-o ServerAliveCountMax=10" " -o ServerAliveInterval=6" " -o StrictHostKeyChecking=no" " -o ConnectTimeout=10" " -o ConnectionAttempts=20") test_options.add_option("--sshConnection", dest="ssh_connection_options", help="Server ssh additional connection options, i.e., '-i ident.pem'" " which are added to '{}'".format(default_ssh_connection_options), default=None) test_options.add_option("--testLoops", dest="num_loops", help="Number of powercycle loops to run [default: %default]", type="int", default=10) test_options.add_option("--testTime", dest="test_time", help="Time to run test (in seconds), overrides --testLoops", type="int", default=0) test_options.add_option("--rsync", dest="rsync_data", help="Rsync data directory between mongod stop and start", action="store_true", default=False) test_options.add_option("--rsyncExcludeFiles", dest="rsync_exclude_files", help="Files excluded from rsync of the data directory", action="append", default=None) test_options.add_option("--backupPathBefore", dest="backup_path_before", help="Path where the db_path is backed up before crash recovery," " defaults to '<rootDir>/data-beforerecovery'", default=None) test_options.add_option("--backupPathAfter", dest="backup_path_after", help="Path where the db_path is backed up after crash recovery," " defaults to '<rootDir>/data-afterrecovery'", default=None) validate_locations = ["local", "remote"] test_options.add_option("--validate", dest="validate_collections", help="Run validate on all collections after mongod restart after" " a powercycle. Choose from {} to specify where the" " validate runs.".format(validate_locations), choices=validate_locations, default=None) canary_locations = ["local", "remote"] test_options.add_option("--canary", dest="canary", help="Generate and validate canary document between powercycle" " events. Choose from {} to specify where the canary is" " generated from. If the 'crashMethod' is not 'internal" " then this option must be 'local'.".format(canary_locations), choices=canary_locations, default=None) test_options.add_option("--docForCanary", dest="canary_doc", help=optparse.SUPPRESS_HELP, default="") test_options.add_option("--seedDocNum", dest="seed_doc_num", help="Number of documents to seed the default collection [default:" " %default]", type="int", default=0) test_options.add_option("--dbName", dest="db_name", help=optparse.SUPPRESS_HELP, default="power") test_options.add_option("--collectionName", dest="collection_name", help=optparse.SUPPRESS_HELP, default="cycle") test_options.add_option("--writeConcern", dest="write_concern", help="mongo (shell) CRUD client writeConcern, i.e.," " '{\"w\": \"majority\"}' [default: '%default']", default="{}") test_options.add_option("--readConcernLevel", dest="read_concern_level", help="mongo (shell) CRUD client readConcernLevel, i.e.," "'majority'", default=None) # Crash options crash_methods = ["aws_ec2", "internal", "kill", "mpower"] crash_options.add_option("--crashMethod", dest="crash_method", choices=crash_methods, help="Crash methods: {} [default: '%default']." " Select 'aws_ec2' to force-stop/start an AWS instance." " Select 'internal' to crash the remote server through an" " internal command, i.e., sys boot (Linux) or notmyfault (Windows)." " Select 'kill' to perform an unconditional kill of mongod," " which will keep the remote server running." " Select 'mpower' to use the mFi mPower to cutoff power to" " the remote server.".format(crash_methods), default="internal") aws_address_types = [ "private_ip_address", "public_ip_address", "private_dns_name", "public_dns_name" ] crash_options.add_option("--crashOption", dest="crash_option", help="Secondary argument for the following --crashMethod:" " 'aws_ec2': specify EC2 'address_type', which is one of {} and" " defaults to 'public_ip_address'." " 'mpower': specify output<num> to turn" " off/on, i.e., 'output1' (REQUIRED)." " 'internal': for Windows, optionally specify a crash method," " i.e., 'notmyfault/notmyfaultc64.exe" " -accepteula crash 1'".format(aws_address_types), default=None) crash_options.add_option("--instanceId", dest="instance_id", help="The instance ID of an AWS EC2 host. If specified, this instance" " will be started after a crash, if it is not in a running state." " This is required if --crashOption is 'aws_ec2'.", default=None) crash_options.add_option("--crashWaitTime", dest="crash_wait_time", help="Time, in seconds, to wait before issuing crash [default:" " %default]", type="int", default=30) crash_options.add_option("--jitterForCrashWaitTime", dest="crash_wait_time_jitter", help="The maximum time, in seconds, to be added to --crashWaitTime," " as a uniform distributed random value, [default: %default]", type="int", default=10) crash_options.add_option("--sshCrashUserHost", dest="ssh_crash_user_host", help="The crash host's user@host for performing the crash.", default=None) crash_options.add_option("--sshCrashOption", dest="ssh_crash_option", help="The crash host's ssh connection options, i.e., '-i ident.pem'", default=None) # MongoDB options mongodb_options.add_option("--downloadUrl", dest="tarball_url", help="URL of tarball to test, if unspecifed latest tarball will be" " used", default="latest") mongodb_options.add_option("--rootDir", dest="root_dir", help="Root directory, on remote host, to install tarball and data" " directory [default: 'mongodb-powertest-<epochSecs>']", default=None) mongodb_options.add_option("--mongodbBinDir", dest="mongodb_bin_dir", help="Directory, on remote host, containing mongoDB binaries," " overrides bin from tarball in --downloadUrl", default=None) mongodb_options.add_option("--dbPath", dest="db_path", help="Data directory to use, on remote host, if unspecified" " it will be '<rootDir>/data/db'", default=None) mongodb_options.add_option("--logPath", dest="log_path", help="Log path, on remote host, if unspecified" " it will be '<rootDir>/log/mongod.log'", default=None) # mongod options mongod_options.add_option("--replSet", dest="repl_set", help="Name of mongod single node replica set, if unpsecified mongod" " defaults to standalone node", default=None) # The current host used to start and connect to mongod. Not meant to be specified # by the user. mongod_options.add_option("--mongodHost", dest="host", help=optparse.SUPPRESS_HELP, default=None) # The current port used to start and connect to mongod. Not meant to be specified # by the user. mongod_options.add_option("--mongodPort", dest="port", help=optparse.SUPPRESS_HELP, type="int", default=None) # The ports used on the 'server' side when in standard or secret mode. mongod_options.add_option("--mongodUsablePorts", dest="usable_ports", nargs=2, help="List of usable ports to be used by mongod for" " standard and secret modes, [default: %default]", type="int", default=[27017, 37017]) mongod_options.add_option("--mongodOptions", dest="mongod_options", help="Additional mongod options", default="") mongod_options.add_option("--fcv", dest="fcv_version", help="Set the FeatureCompatibilityVersion of mongod.", default=None) mongod_options.add_option("--removeLockFile", dest="remove_lock_file", help="If specified, the mongod.lock file will be deleted after a" " powercycle event, before mongod is started. This is a" " workaround for mongod failing start with MMAPV1 (See" " SERVER-15109).", action="store_true", default=False) # Client options mongo_path = distutils.spawn.find_executable("mongo", os.getcwd() + os.pathsep + os.environ["PATH"]) client_options.add_option("--mongoPath", dest="mongo_path", help="Path to mongo (shell) executable, if unspecifed, mongo client" " is launched from the current directory.", default=mongo_path) client_options.add_option("--mongoRepoRootDir", dest="mongo_repo_root_dir", help="Root directory of mongoDB repository, defaults to current" " directory.", default=None) client_options.add_option("--crudClient", dest="crud_client", help="The path to the CRUD client script on the local host" " [default: '%default'].", default="jstests/hooks/crud_client.js") with_external_server = "buildscripts/resmokeconfig/suites/with_external_server.yml" client_options.add_option("--configCrudClient", dest="config_crud_client", help="The path to the CRUD client configuration YML file on the" " local host. This is the resmoke.py suite file. If unspecified," " a default configuration YML file (%default) will be used that" " provides a mongo (shell) DB connection to a running mongod.", default=with_external_server) client_options.add_option("--numCrudClients", dest="num_crud_clients", help="The number of concurrent CRUD clients to run" " [default: '%default'].", type="int", default=1) client_options.add_option("--numFsmClients", dest="num_fsm_clients", help="The number of concurrent FSM clients to run" " [default: '%default'].", type="int", default=0) client_options.add_option("--fsmWorkloadFiles", dest="fsm_workload_files", help="A list of the FSM workload files to execute. More than one" " file can be specified either in a comma-delimited string," " or by specifying this option more than once. If unspecified," " then all FSM workload files are executed.", action="append", default=[]) client_options.add_option("--fsmWorkloadBlacklistFiles", dest="fsm_workload_blacklist_files", help="A list of the FSM workload files to blacklist. More than one" " file can be specified either in a comma-delimited string," " or by specifying this option more than once. Note the" " file name is the basename, i.e., 'distinct.js'.", action="append", default=[]) # Program options program_options.add_option("--configFile", dest="config_file", help="YAML configuration file of program options." " Option values are mapped to command line option names." " The command line option overrides any specified options" " from this file.", default=None) program_options.add_option("--saveConfigOptions", dest="save_config_options", help="Save the program options to a YAML configuration file." " If this options is specified the program only saves" " the configuration file and exits.", default=None) program_options.add_option("--reportJsonFile", dest="report_json_file", help="Create or update the specified report file upon program" " exit.", default=None) program_options.add_option("--exitYamlFile", dest="exit_yml_file", help="If specified, create a YAML file on exit containing" " exit code.", default=None) program_options.add_option("--remotePython", dest="remote_python", help="The python intepreter to use on the remote host" " [default: '%default']." " To be able to use a python virtual environment," " which has already been provisioned on the remote" " host, specify something similar to this:" " 'source venv/bin/activate; python'", default="python") program_options.add_option("--remoteSudo", dest="remote_sudo", help="Use sudo on the remote host for priveleged operations." " [default: %default]." " For non-Windows systems, in order to perform privileged" " operations on the remote host, specify this, if the" " remote user is not able to perform root operations.", action="store_true", default=False) log_levels = ["debug", "info", "warning", "error"] program_options.add_option("--logLevel", dest="log_level", choices=log_levels, help="The log level. Accepted values are: {}." " [default: '%default'].".format(log_levels), default="info") program_options.add_option("--logFile", dest="log_file", help="The destination file for the log output. Defaults to stdout.", default=None) program_options.add_option("--version", dest="version", help="Display this program's version", action="store_true", default=False) # Remote options, include commands and options sent from client to server under test. # These are 'internal' options, not meant to be directly specifed. # More than one remote operation can be provided and they are specified in the program args. program_options.add_option("--remoteOperation", dest="remote_operation", help=optparse.SUPPRESS_HELP, action="store_true", default=False) program_options.add_option("--rsyncDest", dest="rsync_dest", help=optparse.SUPPRESS_HELP, default=None) parser.add_option_group(test_options) parser.add_option_group(crash_options) parser.add_option_group(client_options) parser.add_option_group(mongodb_options) parser.add_option_group(mongod_options) parser.add_option_group(program_options) options, args = parser.parse_args() logging.basicConfig(format="%(asctime)s %(levelname)s %(message)s", level=logging.ERROR, filename=options.log_file) logging.getLogger(__name__).setLevel(options.log_level.upper()) logging.Formatter.converter = time.gmtime LOGGER.info("powertest.py invocation: %s", " ".join(sys.argv)) # Command line options override the config file options. config_options = None if options.config_file: with open(options.config_file) as ystream: config_options = yaml.safe_load(ystream) LOGGER.info("Loading config file %s with options %s", options.config_file, config_options) # Load the options specified in the config_file parser.set_defaults(**config_options) options, args = parser.parse_args() # Disable this option such that the remote side does not load a config_file. options.config_file = None config_options["config_file"] = None if options.save_config_options: # Disable this option such that the remote side does not save the config options. save_config_options = options.save_config_options options.save_config_options = None save_options = {} for opt_group in parser.option_groups: for opt in opt_group.option_list: if getattr(options, opt.dest, None) != opt.default: save_options[opt.dest] = getattr(options, opt.dest, None) LOGGER.info("Config options being saved %s", save_options) with open(save_config_options, "w") as ystream: yaml.safe_dump(save_options, ystream, default_flow_style=False) sys.exit(0) script_name = os.path.basename(__file__) # Print script name and version. if options.version: print("{}:{}".format(script_name, __version__)) sys.exit(0) if options.exit_yml_file: EXIT_YML_FILE = options.exit_yml_file # Disable this option such that the remote side does not generate exit_yml_file options.exit_yml_file = None if options.report_json_file: REPORT_JSON_FILE = options.report_json_file if REPORT_JSON_FILE and os.path.exists(REPORT_JSON_FILE): with open(REPORT_JSON_FILE) as jstream: REPORT_JSON = json.load(jstream) else: REPORT_JSON = { "failures": 0, "results": [{ "status": "fail", "test_file": __name__, "exit_code": 0, "elapsed": 0, "start": int(time.time()), "end": int(time.time()) }] } LOGGER.debug("Updating/creating report JSON %s", REPORT_JSON) # Disable this option such that the remote side does not generate report.json options.report_json_file = None # Setup the crash options if options.crash_method == "mpower" and options.crash_option is None: parser.error("Missing required argument --crashOption for crashMethod '{}'".format( options.crash_method)) if options.crash_method == "aws_ec2": if not options.instance_id: parser.error("Missing required argument --instanceId for crashMethod '{}'".format( options.crash_method)) address_type = "public_ip_address" if options.crash_option: address_type = options.crash_option if address_type not in aws_address_types: parser.error("Invalid crashOption address_type '{}' specified for crashMethod" " 'aws_ec2', specify one of {}".format(address_type, aws_address_types)) # Initialize the mongod options # Note - We use posixpath for Windows client to Linux server scenarios. if not options.root_dir: options.root_dir = "mongodb-powertest-{}".format(int(time.time())) if not options.db_path: options.db_path = posixpath.join(options.root_dir, "data", "db") if not options.log_path: options.log_path = posixpath.join(options.root_dir, "log", "mongod.log") mongod_options_map = parse_options(options.mongod_options) set_fcv_cmd = "set_fcv" if options.fcv_version is not None else "" remove_lock_file_cmd = "remove_lock_file" if options.remove_lock_file else "" # Error out earlier if these options are not properly specified write_concern = yaml.safe_load(options.write_concern) options.canary_doc = yaml.safe_load(options.canary_doc) # Invoke remote_handler if remote_operation is specified. # The remote commands are program args. if options.remote_operation: ret = remote_handler(options, args) # Exit here since the local operations are performed after this. local_exit(ret) # Required option for non-remote commands. if options.ssh_user_host is None and not options.remote_operation: parser.error("Missing required argument --sshUserHost") secret_port = options.usable_ports[1] standard_port = options.usable_ports[0] seed_docs = "seed_docs" if options.seed_doc_num else "" if options.rsync_data: rsync_cmd = "rsync_data" backup_path_before = options.backup_path_before if not backup_path_before: backup_path_before = "{}/data-beforerecovery".format(options.root_dir) backup_path_after = options.backup_path_after if not backup_path_after: backup_path_after = "{}/data-afterrecovery".format(options.root_dir) else: rsync_cmd = "" rsync_opt = "" # Setup the mongo client, mongo_path is required if there are local clients. if (options.num_crud_clients > 0 or options.num_fsm_clients > 0 or options.validate_collections == "local"): if not options.mongo_path: LOGGER.error("mongoPath must be specified") local_exit(1) if not os.path.isfile(options.mongo_path): LOGGER.error("mongoPath %s does not exist", options.mongo_path) local_exit(1) mongo_path = os.path.abspath(os.path.normpath(options.mongo_path)) # Setup the CRUD & FSM clients. if not os.path.isfile(options.config_crud_client): LOGGER.error("configCrudClient %s does not exist", options.config_crud_client) local_exit(1) with_external_server = "buildscripts/resmokeconfig/suites/with_external_server.yml" fsm_client = "jstests/libs/fsm_serial_client.js" fsm_workload_files = [] for fsm_workload_file in options.fsm_workload_files: fsm_workload_files += fsm_workload_file.replace(" ", "").split(",") fsm_workload_blacklist_files = [] for fsm_workload_blacklist_file in options.fsm_workload_blacklist_files: fsm_workload_blacklist_files += fsm_workload_blacklist_file.replace(" ", "").split(",") read_concern_level = options.read_concern_level if write_concern and not read_concern_level: read_concern_level = "local" crud_test_data = {} if read_concern_level: crud_test_data["defaultReadConcernLevel"] = read_concern_level if write_concern: crud_test_data["defaultWriteConcern"] = write_concern if read_concern_level or write_concern: eval_str = "load('jstests/libs/override_methods/set_read_and_write_concerns.js');" else: eval_str = "" fsm_test_data = copy.deepcopy(crud_test_data) fsm_test_data["fsmDbBlacklist"] = [options.db_name] if fsm_workload_files: fsm_test_data["workloadFiles"] = fsm_workload_files if fsm_workload_blacklist_files: fsm_test_data["workloadBlacklistFiles"] = fsm_workload_blacklist_files crud_test_data["dbName"] = options.db_name # Setup the mongo_repo_root. if options.mongo_repo_root_dir: mongo_repo_root_dir = options.mongo_repo_root_dir else: mongo_repo_root_dir = os.getcwd() if not os.path.isdir(mongo_repo_root_dir): LOGGER.error("mongoRepoRoot %s does not exist", mongo_repo_root_dir) local_exit(1) # Setup the validate_collections option. if options.validate_collections == "remote": validate_collections_cmd = "validate_collections" else: validate_collections_cmd = "" # Setup the validate_canary option. if options.canary and "nojournal" in mongod_options_map: LOGGER.error("Cannot create and validate canary documents if the mongod option" " '--nojournal' is used.") local_exit(1) internal_crash_options = ["internal", "kill"] if options.canary == "remote" and options.crash_method not in internal_crash_options: parser.error("The option --canary can only be specified as 'remote' if --crashMethod" " is one of {}".format(internal_crash_options)) orig_canary_doc = canary_doc = "" validate_canary_cmd = "" # Set the Pymongo connection timeout to 1 hour for canary insert & validation. one_hour_ms = 60 * 60 * 1000 # The remote mongod host comes from the ssh_user_host, # which may be specified as user@host. ssh_user_host = options.ssh_user_host ssh_user, ssh_host = get_user_host(ssh_user_host) mongod_host = ssh_host ssh_connection_options = "{} {}".format(default_ssh_connection_options, options.ssh_connection_options if options.ssh_connection_options else "") # For remote operations requiring sudo, force pseudo-tty allocation, # see https://stackoverflow.com/questions/10310299/proper-way-to-sudo-over-ssh. # Note - the ssh option RequestTTY was added in OpenSSH 5.9, so we use '-tt'. ssh_options = "-tt" if options.remote_sudo else None # Establish EC2 connection if an instance_id is specified. if options.instance_id: ec2 = aws_ec2.AwsEc2() # pylint: disable=undefined-variable # Determine address_type if not using 'aws_ec2' crash_method. if options.crash_method != "aws_ec2": address_type = "public_ip_address" ret, aws_status = ec2.control_instance(mode="status", image_id=options.instance_id) if not is_instance_running(ret, aws_status): LOGGER.error("AWS instance is not running: %d %s", ret, aws_status) local_exit(1) if (ssh_host == aws_status.private_ip_address or ssh_host == aws_status.private_dns_name): address_type = "private_ip_address" # Instantiate the local handler object. local_ops = LocalToRemoteOperations(user_host=ssh_user_host, ssh_connection_options=ssh_connection_options, ssh_options=ssh_options, use_shell=True) verify_remote_access(local_ops) # Bootstrap the remote host with this script. ret, output = local_ops.copy_to(__file__) if ret: LOGGER.error("Cannot access remote system %s", output) local_exit(1) # Pass client_args to the remote script invocation. client_args = "" for option in parser._get_all_options(): # pylint: disable=protected-access if option.dest: option_value = getattr(options, option.dest, None) if option_value != option.default: # The boolean options do not require the option_value. if isinstance(option_value, bool): option_value = "" # Quote the non-default option values from the invocation of this script, # if they have spaces, or quotes, such that they can be safely passed to the # remote host's invocation of this script. elif isinstance(option_value, str) and re.search("\"|'| ", option_value): option_value = "'{}'".format(option_value) # The tuple, list or set options need to be changed to a string. elif isinstance(option_value, (tuple, list, set)): option_value = " ".join(map(str, option_value)) client_args = "{} {} {}".format(client_args, option.get_opt_string(), option_value) LOGGER.info("%s %s", __file__, client_args) # Remote install of MongoDB. ret, output = call_remote_operation(local_ops, options.remote_python, script_name, client_args, "--remoteOperation install_mongod") LOGGER.info("****install_mongod: %d %s****", ret, output) if ret: local_exit(ret) # test_time option overrides num_loops. if options.test_time: options.num_loops = 999999 else: options.test_time = 999999 loop_num = 0 start_time = int(time.time()) test_time = 0 # ======== Main loop for running the powercycle test========: # 1. Rsync the database (optional, post-crash, pre-recovery) # 2. Start mongod on the secret port and wait for it to recover # 3 Validate collections (optional) # 4. Validate canary (optional) # 5. Stop mongod # 6. Rsync the database (optional, post-recovery) # 7. Start mongod on the standard port # 8. Start mongo (shell) & FSM clients # 9. Generate canary document (optional) # 10. Crash the server # 11. Exit loop if one of these occurs: # a. Loop time or loop number exceeded # b. Any step fails # ========= while True: loop_num += 1 LOGGER.info("****Starting test loop %d test time %d seconds****", loop_num, test_time) temp_client_files = [] validate_canary_local = False if options.canary and loop_num > 1: if options.canary == "remote": canary_opt = "--docForCanary \"{}\"".format(canary_doc) validate_canary_cmd = "validate_canary" if options.canary else "" else: validate_canary_local = True else: canary_opt = "" # Since rsync requires Posix style paths, we do not use os.path.join to # construct the rsync destination directory. if rsync_cmd: rsync_opt = "--rsyncDest {}".format(backup_path_before) # Optionally, rsync the pre-recovery database. # Start monogd on the secret port. # Optionally validate collections, validate the canary and seed the collection. remote_operation = ("--remoteOperation" " {rsync_opt}" " {canary_opt}" " --mongodHost {host}" " --mongodPort {port}" " {rsync_cmd}" " {remove_lock_file_cmd}" " start_mongod" " {set_fcv_cmd}" " {validate_collections_cmd}" " {validate_canary_cmd}" " {seed_docs}").format( rsync_opt=rsync_opt, canary_opt=canary_opt, host=mongod_host, port=secret_port, rsync_cmd=rsync_cmd, remove_lock_file_cmd=remove_lock_file_cmd, set_fcv_cmd=set_fcv_cmd if loop_num == 1 else "", validate_collections_cmd=validate_collections_cmd, validate_canary_cmd=validate_canary_cmd, seed_docs=seed_docs if loop_num == 1 else "") ret, output = call_remote_operation(local_ops, options.remote_python, script_name, client_args, remote_operation) rsync_text = "rsync_data beforerecovery & " if options.rsync_data else "" LOGGER.info("****%sstart mongod: %d %s****", rsync_text, ret, output) if ret: local_exit(ret) # Optionally validate canary document locally. if validate_canary_local: mongo = pymongo.MongoClient(**get_mongo_client_args( host=mongod_host, port=secret_port, server_selection_timeout_ms=one_hour_ms, socket_timeout_ms=one_hour_ms)) ret = mongo_validate_canary(mongo, options.db_name, options.collection_name, canary_doc) LOGGER.info("Local canary validation: %d", ret) if ret: local_exit(ret) # Optionally, run local validation of collections. if options.validate_collections == "local": host_port = "{}:{}".format(mongod_host, secret_port) new_config_file = NamedTempFile.create(suffix=".yml", directory="tmp") temp_client_files.append(new_config_file) validation_test_data = {"skipValidationOnNamespaceNotFound": True} new_resmoke_config(with_external_server, new_config_file, validation_test_data) ret, output = resmoke_client(mongo_repo_root_dir, mongo_path, host_port, "jstests/hooks/run_validate_collections.js", new_config_file) LOGGER.info("Local collection validation: %d %s", ret, output) if ret: local_exit(ret) # Shutdown mongod on secret port. remote_op = ("--remoteOperation" " --mongodPort {}" " shutdown_mongod").format(secret_port) ret, output = call_remote_operation(local_ops, options.remote_python, script_name, client_args, remote_op) LOGGER.info("****shutdown_mongod: %d %s****", ret, output) if ret: local_exit(ret) # Since rsync requires Posix style paths, we do not use os.path.join to # construct the rsync destination directory. if rsync_cmd: rsync_opt = "--rsyncDest {}".format(backup_path_after) # Optionally, rsync the post-recovery database. # Start monogd on the standard port. remote_op = ("--remoteOperation" " {}" " --mongodHost {}" " --mongodPort {}" " {}" " start_mongod").format(rsync_opt, mongod_host, standard_port, rsync_cmd) ret, output = call_remote_operation(local_ops, options.remote_python, script_name, client_args, remote_op) rsync_text = "rsync_data afterrecovery & " if options.rsync_data else "" LOGGER.info("****%s start mongod: %d %s****", rsync_text, ret, output) if ret: local_exit(ret) # Start CRUD clients host_port = "{}:{}".format(mongod_host, standard_port) for i in xrange(options.num_crud_clients): if options.config_crud_client == with_external_server: crud_config_file = NamedTempFile.create(suffix=".yml", directory="tmp") crud_test_data["collectionName"] = "{}-{}".format(options.collection_name, i) new_resmoke_config(with_external_server, crud_config_file, crud_test_data, eval_str) else: crud_config_file = options.config_crud_client _, _ = resmoke_client(work_dir=mongo_repo_root_dir, mongo_path=mongo_path, host_port=host_port, js_test=options.crud_client, resmoke_suite=crud_config_file, repeat_num=100, no_wait=True, log_file="crud_{}.log".format(i)) if options.num_crud_clients: LOGGER.info("****Started %d CRUD client(s)****", options.num_crud_clients) # Start FSM clients for i in xrange(options.num_fsm_clients): fsm_config_file = NamedTempFile.create(suffix=".yml", directory="tmp") fsm_test_data["dbNamePrefix"] = "fsm-{}".format(i) # Do collection validation only for the first FSM client. fsm_test_data["validateCollections"] = True if i == 0 else False new_resmoke_config(with_external_server, fsm_config_file, fsm_test_data, eval_str) _, _ = resmoke_client(work_dir=mongo_repo_root_dir, mongo_path=mongo_path, host_port=host_port, js_test=fsm_client, resmoke_suite=fsm_config_file, repeat_num=100, no_wait=True, log_file="fsm_{}.log".format(i)) if options.num_fsm_clients: LOGGER.info("****Started %d FSM client(s)****", options.num_fsm_clients) # Crash the server. A pre-crash canary document is optionally written to the DB. crash_canary = {} if options.canary: canary_doc = {"x": time.time()} orig_canary_doc = copy.deepcopy(canary_doc) mongo = pymongo.MongoClient(**get_mongo_client_args( host=mongod_host, port=standard_port, server_selection_timeout_ms=one_hour_ms, socket_timeout_ms=one_hour_ms)) crash_canary["function"] = mongo_insert_canary crash_canary["args"] = [mongo, options.db_name, options.collection_name, canary_doc] ret, output = crash_server_or_kill_mongod(options, crash_canary, standard_port, local_ops, script_name, client_args) # For internal crashes 'ret' is non-zero, because the ssh session unexpectedly terminates. if options.crash_method != "internal" and ret: raise Exception("Crash of server failed: {}".format(output)) if options.crash_method != "kill": # Wait a bit after sending command to crash the server to avoid connecting to the # server before the actual crash occurs. time.sleep(10) # Kill any running clients and cleanup temporary files. Processes.kill_all() for temp_file in temp_client_files: NamedTempFile.delete(temp_file) instance_running = True if options.instance_id: ret, aws_status = ec2.control_instance(mode="status", image_id=options.instance_id) LOGGER.info("AWS EC2 instance status: %d %s****", ret, aws_status) instance_running = is_instance_running(ret, aws_status) # The EC2 instance address changes if the instance is restarted. if options.crash_method == "aws_ec2" or not instance_running: ret, aws_status = ec2.control_instance(mode="start", image_id=options.instance_id, wait_time_secs=600, show_progress=True) LOGGER.info("Start instance: %d %s****", ret, aws_status) if ret: raise Exception("Start instance failed: {}".format(aws_status)) if not hasattr(aws_status, address_type): raise Exception("Cannot determine address_type {} from AWS EC2 status {}".format( address_type, aws_status)) ssh_host = getattr(aws_status, address_type) if ssh_user is None: ssh_user_host = ssh_host else: ssh_user_host = "{}@{}".format(ssh_user, ssh_host) mongod_host = ssh_host # Reestablish remote access after crash. local_ops = LocalToRemoteOperations(user_host=ssh_user_host, ssh_connection_options=ssh_connection_options, ssh_options=ssh_options, use_shell=True) verify_remote_access(local_ops) canary_doc = copy.deepcopy(orig_canary_doc) test_time = int(time.time()) - start_time LOGGER.info("****Completed test loop %d test time %d seconds****", loop_num, test_time) if loop_num == options.num_loops or test_time >= options.test_time: break REPORT_JSON_SUCCESS = True local_exit(0) if __name__ == "__main__": main()
43.010936
113
0.613782
61b09e993c2d7f01b552752e9be78daa17510132
1,825
py
Python
Command Line Interface Version/generatorCore.py
mmble/password_generator
54c9c6b82ca29ad5d5840b3bcf44e638a1581198
[ "Apache-2.0" ]
1
2019-09-25T13:33:22.000Z
2019-09-25T13:33:22.000Z
Command Line Interface Version/generatorCore.py
mmacq/password_generator
54c9c6b82ca29ad5d5840b3bcf44e638a1581198
[ "Apache-2.0" ]
null
null
null
Command Line Interface Version/generatorCore.py
mmacq/password_generator
54c9c6b82ca29ad5d5840b3bcf44e638a1581198
[ "Apache-2.0" ]
null
null
null
import random import string debugmode = False def debug(str): if debugmode: for i in str: print(i) setsOfCharacters = { 3: string.ascii_lowercase, 2: string.digits, 1: string.punctuation, 0: string.ascii_uppercase, } def printWarning(infoString=""): print("[Warning] "+infoString) def generateRandomString(str, len): return "".join(random.SystemRandom().choice(str) for _ in range(len)) # Function for generating string with random character def generateRandomCharacters(stringLength=0, options=0): def generateFormula(stringLength, sets=[]): numberOfSets = len(sets) setsTogether = "".join(sets) eachSetsCharacter = [] if stringLength < numberOfSets: printWarning( "Length of the password is to short to include all types of the characters.") return generateRandomString(setsTogether, stringLength) else: stringLength -= len(sets) tempStringLength = stringLength for i in range(0, numberOfSets): debug([i,random.randint(0, len(sets[i])), sets[i][0], tempStringLength]) randomCharacter = random.SystemRandom().choice(sets[i]) eachSetsCharacter.append([randomCharacter, random.randint(0,tempStringLength)]) tempStringLength += 1 debug([eachSetsCharacter]) result = generateRandomString(setsTogether,stringLength) for i in eachSetsCharacter: result = result[:i[1]] + i[0] + result[i[1]:] debug([setsTogether, result]) return result chosenStrings = [] tempOptions = options for i in range(3, 0-1, -1): if tempOptions >= 2 ** i: tempOptions = tempOptions-2**i chosenStrings.append(setsOfCharacters[i]) if len(chosenStrings) == 0: print("You did not choose any set of characters.") return generateFormula(stringLength, chosenStrings)
28.968254
87
0.688767
2a75bf3aba95545cee02082e6b02f77d45865b6d
155,320
py
Python
apps/rss_feeds/models.py
sictiru/NewsBlur
3fb3bd1962439d14ea725b34a3d8c7cedc569876
[ "MIT" ]
null
null
null
apps/rss_feeds/models.py
sictiru/NewsBlur
3fb3bd1962439d14ea725b34a3d8c7cedc569876
[ "MIT" ]
null
null
null
apps/rss_feeds/models.py
sictiru/NewsBlur
3fb3bd1962439d14ea725b34a3d8c7cedc569876
[ "MIT" ]
null
null
null
import difflib import requests import datetime import time import random import re import math import mongoengine as mongo import zlib import hashlib import redis import pymongo import HTMLParser import urlparse from collections import defaultdict from operator import itemgetter from bson.objectid import ObjectId from BeautifulSoup import BeautifulSoup from pyes.exceptions import NotFoundException # from nltk.collocations import TrigramCollocationFinder, BigramCollocationFinder, TrigramAssocMeasures, BigramAssocMeasures from django.db import models from django.db import IntegrityError from django.conf import settings from django.db.models.query import QuerySet from django.db.utils import DatabaseError from django.core.urlresolvers import reverse from django.contrib.auth.models import User from django.contrib.sites.models import Site from django.template.defaultfilters import slugify from django.utils.encoding import smart_str, smart_unicode from mongoengine.queryset import OperationError, Q, NotUniqueError from mongoengine.base import ValidationError from vendor.timezones.utilities import localtime_for_timezone from apps.rss_feeds.tasks import UpdateFeeds, PushFeeds, ScheduleCountTagsForUser from apps.rss_feeds.text_importer import TextImporter from apps.search.models import SearchStory, SearchFeed from apps.statistics.rstats import RStats from utils import json_functions as json from utils import feedfinder_forman from utils import feedfinder_pilgrim from utils import urlnorm from utils import log as logging from utils.fields import AutoOneToOneField from utils.feed_functions import levenshtein_distance from utils.feed_functions import timelimit, TimeoutError from utils.feed_functions import relative_timesince from utils.feed_functions import seconds_timesince from utils.story_functions import strip_tags, htmldiff, strip_comments, strip_comments__lxml from utils.story_functions import prep_for_search from utils.story_functions import create_imageproxy_signed_url ENTRY_NEW, ENTRY_UPDATED, ENTRY_SAME, ENTRY_ERR = range(4) class Feed(models.Model): feed_address = models.URLField(max_length=764, db_index=True) feed_address_locked = models.NullBooleanField(default=False, blank=True, null=True) feed_link = models.URLField(max_length=1000, default="", blank=True, null=True) feed_link_locked = models.BooleanField(default=False) hash_address_and_link = models.CharField(max_length=64, unique=True) feed_title = models.CharField(max_length=255, default="[Untitled]", blank=True, null=True) is_push = models.NullBooleanField(default=False, blank=True, null=True) active = models.BooleanField(default=True, db_index=True) num_subscribers = models.IntegerField(default=-1) active_subscribers = models.IntegerField(default=-1, db_index=True) premium_subscribers = models.IntegerField(default=-1) active_premium_subscribers = models.IntegerField(default=-1) branch_from_feed = models.ForeignKey('Feed', blank=True, null=True, db_index=True) last_update = models.DateTimeField(db_index=True) next_scheduled_update = models.DateTimeField() last_story_date = models.DateTimeField(null=True, blank=True) fetched_once = models.BooleanField(default=False) known_good = models.BooleanField(default=False) has_feed_exception = models.BooleanField(default=False, db_index=True) has_page_exception = models.BooleanField(default=False, db_index=True) has_page = models.BooleanField(default=True) exception_code = models.IntegerField(default=0) errors_since_good = models.IntegerField(default=0) min_to_decay = models.IntegerField(default=0) days_to_trim = models.IntegerField(default=90) creation = models.DateField(auto_now_add=True) etag = models.CharField(max_length=255, blank=True, null=True) last_modified = models.DateTimeField(null=True, blank=True) stories_last_month = models.IntegerField(default=0) average_stories_per_month = models.IntegerField(default=0) last_load_time = models.IntegerField(default=0) favicon_color = models.CharField(max_length=6, null=True, blank=True) favicon_not_found = models.BooleanField(default=False) s3_page = models.NullBooleanField(default=False, blank=True, null=True) s3_icon = models.NullBooleanField(default=False, blank=True, null=True) search_indexed = models.NullBooleanField(default=None, null=True, blank=True) class Meta: db_table="feeds" ordering=["feed_title"] # unique_together=[('feed_address', 'feed_link')] def __unicode__(self): if not self.feed_title: self.feed_title = "[Untitled]" self.save() return "%s%s: %s - %s/%s/%s" % ( self.pk, (" [B: %s]" % self.branch_from_feed.pk if self.branch_from_feed else ""), self.feed_title, self.num_subscribers, self.active_subscribers, self.active_premium_subscribers, ) @property def title(self): title = self.feed_title or "[Untitled]" if self.active_premium_subscribers >= 1: title = "%s*" % title[:29] return title @property def log_title(self): return self.__unicode__() @property def permalink(self): return "%s/site/%s/%s" % (settings.NEWSBLUR_URL, self.pk, slugify(self.feed_title.lower()[:50])) @property def favicon_url(self): if settings.BACKED_BY_AWS['icons_on_s3'] and self.s3_icon: return "https://s3.amazonaws.com/%s/%s.png" % (settings.S3_ICONS_BUCKET_NAME, self.pk) return reverse('feed-favicon', kwargs={'feed_id': self.pk}) @property def favicon_url_fqdn(self): if settings.BACKED_BY_AWS['icons_on_s3'] and self.s3_icon: return self.favicon_url return "http://%s%s" % ( Site.objects.get_current().domain, self.favicon_url ) @property def s3_pages_key(self): return "%s.gz.html" % self.pk @property def s3_icons_key(self): return "%s.png" % self.pk @property def unread_cutoff(self): if self.active_premium_subscribers > 0: return datetime.datetime.utcnow() - datetime.timedelta(days=settings.DAYS_OF_UNREAD) return datetime.datetime.utcnow() - datetime.timedelta(days=settings.DAYS_OF_UNREAD_FREE) @property def story_hashes_in_unread_cutoff(self): r = redis.Redis(connection_pool=settings.REDIS_STORY_HASH_POOL) current_time = int(time.time() + 60*60*24) unread_cutoff = self.unread_cutoff.strftime('%s') story_hashes = r.zrevrangebyscore('zF:%s' % self.pk, current_time, unread_cutoff) return story_hashes @classmethod def generate_hash_address_and_link(cls, feed_address, feed_link): if not feed_address: feed_address = "" if not feed_link: feed_link = "" return hashlib.sha1(feed_address+feed_link).hexdigest() @property def is_newsletter(self): return self.feed_address.startswith('newsletter:') or self.feed_address.startswith('http://newsletter:') def canonical(self, full=False, include_favicon=True): feed = { 'id': self.pk, 'feed_title': self.feed_title, 'feed_address': self.feed_address, 'feed_link': self.feed_link, 'num_subscribers': self.num_subscribers, 'updated': relative_timesince(self.last_update), 'updated_seconds_ago': seconds_timesince(self.last_update), 'last_story_date': self.last_story_date, 'last_story_seconds_ago': seconds_timesince(self.last_story_date), 'stories_last_month': self.stories_last_month, 'average_stories_per_month': self.average_stories_per_month, 'min_to_decay': self.min_to_decay, 'subs': self.num_subscribers, 'is_push': self.is_push, 'is_newsletter': self.is_newsletter, 'fetched_once': self.fetched_once, 'search_indexed': self.search_indexed, 'not_yet_fetched': not self.fetched_once, # Legacy. Doh. 'favicon_color': self.favicon_color, 'favicon_fade': self.favicon_fade(), 'favicon_border': self.favicon_border(), 'favicon_text_color': self.favicon_text_color(), 'favicon_fetching': self.favicon_fetching, 'favicon_url': self.favicon_url, 's3_page': self.s3_page, 's3_icon': self.s3_icon, } if include_favicon: try: feed_icon = MFeedIcon.objects.get(feed_id=self.pk) feed['favicon'] = feed_icon.data except MFeedIcon.DoesNotExist: pass if self.has_page_exception or self.has_feed_exception: feed['has_exception'] = True feed['exception_type'] = 'feed' if self.has_feed_exception else 'page' feed['exception_code'] = self.exception_code elif full: feed['has_exception'] = False feed['exception_type'] = None feed['exception_code'] = self.exception_code if not self.has_page: feed['disabled_page'] = True if full: feed['average_stories_per_month'] = self.average_stories_per_month feed['tagline'] = self.data.feed_tagline feed['feed_tags'] = json.decode(self.data.popular_tags) if self.data.popular_tags else [] feed['feed_authors'] = json.decode(self.data.popular_authors) if self.data.popular_authors else [] return feed def save(self, *args, **kwargs): if not self.last_update: self.last_update = datetime.datetime.utcnow() if not self.next_scheduled_update: self.next_scheduled_update = datetime.datetime.utcnow() self.fix_google_alerts_urls() feed_address = self.feed_address or "" feed_link = self.feed_link or "" self.hash_address_and_link = self.generate_hash_address_and_link(feed_address, feed_link) max_feed_title = Feed._meta.get_field('feed_title').max_length if len(self.feed_title) > max_feed_title: self.feed_title = self.feed_title[:max_feed_title] max_feed_address = Feed._meta.get_field('feed_address').max_length if len(feed_address) > max_feed_address: self.feed_address = feed_address[:max_feed_address] max_feed_link = Feed._meta.get_field('feed_link').max_length if len(feed_link) > max_feed_link: self.feed_link = feed_link[:max_feed_link] try: super(Feed, self).save(*args, **kwargs) except IntegrityError, e: logging.debug(" ---> ~FRFeed save collision (%s), checking dupe hash..." % e) feed_address = self.feed_address or "" feed_link = self.feed_link or "" hash_address_and_link = self.generate_hash_address_and_link(feed_address, feed_link) logging.debug(" ---> ~FRNo dupes, checking hash collision: %s" % hash_address_and_link) duplicate_feeds = Feed.objects.filter(hash_address_and_link=hash_address_and_link) if not duplicate_feeds: duplicate_feeds = Feed.objects.filter(feed_address=self.feed_address, feed_link=self.feed_link) if not duplicate_feeds: # Feed has been deleted. Just ignore it. logging.debug(" ***> Changed to: %s - %s: %s" % (self.feed_address, self.feed_link, duplicate_feeds)) logging.debug(' ***> [%-30s] Feed deleted (%s).' % (self.log_title[:30], self.pk)) return for duplicate_feed in duplicate_feeds: if duplicate_feed.pk != self.pk: logging.debug(" ---> ~FRFound different feed (%s), merging %s in..." % (duplicate_feeds[0], self.pk)) feed = Feed.get_by_id(merge_feeds(duplicate_feeds[0].pk, self.pk)) return feed else: logging.debug(" ---> ~FRFeed is its own dupe? %s == %s" % (self, duplicate_feeds)) except DatabaseError, e: logging.debug(" ---> ~FBFeed update failed, no change: %s / %s..." % (kwargs.get('update_fields', None), e)) pass return self @classmethod def index_all_for_search(cls, offset=0, subscribers=2): if not offset: SearchFeed.create_elasticsearch_mapping(delete=True) last_pk = cls.objects.latest('pk').pk for f in xrange(offset, last_pk, 1000): print " ---> %s / %s (%.2s%%)" % (f, last_pk, float(f)/last_pk*100) feeds = Feed.objects.filter(pk__in=range(f, f+1000), active=True, active_subscribers__gte=subscribers)\ .values_list('pk') for feed_id, in feeds: Feed.objects.get(pk=feed_id).index_feed_for_search() def index_feed_for_search(self): if self.num_subscribers > 1 and not self.branch_from_feed and not self.is_newsletter: SearchFeed.index(feed_id=self.pk, title=self.feed_title, address=self.feed_address, link=self.feed_link, num_subscribers=self.num_subscribers) def index_stories_for_search(self): if self.search_indexed: return self.search_indexed = True self.save() stories = MStory.objects(story_feed_id=self.pk) for story in stories: story.index_story_for_search() def sync_redis(self): return MStory.sync_feed_redis(self.pk) def expire_redis(self, r=None): if not r: r = redis.Redis(connection_pool=settings.REDIS_STORY_HASH_POOL) # if not r2: # r2 = redis.Redis(connection_pool=settings.REDIS_STORY_HASH_POOL2) r.expire('F:%s' % self.pk, settings.DAYS_OF_STORY_HASHES*24*60*60) # r2.expire('F:%s' % self.pk, settings.DAYS_OF_STORY_HASHES*24*60*60) r.expire('zF:%s' % self.pk, settings.DAYS_OF_STORY_HASHES*24*60*60) # r2.expire('zF:%s' % self.pk, settings.DAYS_OF_STORY_HASHES*24*60*60) @classmethod def low_volume_feeds(cls, feed_ids, stories_per_month=30): try: stories_per_month = int(stories_per_month) except ValueError: stories_per_month = 30 feeds = Feed.objects.filter(pk__in=feed_ids, average_stories_per_month__lte=stories_per_month).only('pk') return [f.pk for f in feeds] @classmethod def autocomplete(self, prefix, limit=5): results = SearchFeed.query(prefix) feed_ids = [result.feed_id for result in results[:5]] # results = SearchQuerySet().autocomplete(address=prefix).order_by('-num_subscribers')[:limit] # # if len(results) < limit: # results += SearchQuerySet().autocomplete(title=prefix).order_by('-num_subscribers')[:limit-len(results)] # return feed_ids @classmethod def find_or_create(cls, feed_address, feed_link, defaults=None, **kwargs): feeds = cls.objects.filter(feed_address=feed_address, feed_link=feed_link) if feeds: return feeds[0], False if feed_link and feed_link.endswith('/'): feeds = cls.objects.filter(feed_address=feed_address, feed_link=feed_link[:-1]) if feeds: return feeds[0], False try: feed = cls.objects.get(feed_address=feed_address, feed_link=feed_link) return feed, False except cls.DoesNotExist: feed = cls(**defaults) feed.save() return feed, True @classmethod def merge_feeds(cls, *args, **kwargs): return merge_feeds(*args, **kwargs) def fix_google_alerts_urls(self): if (self.feed_address.startswith('http://user/') and '/state/com.google/alerts/' in self.feed_address): match = re.match(r"http://user/(\d+)/state/com.google/alerts/(\d+)", self.feed_address) if match: user_id, alert_id = match.groups() self.feed_address = "http://www.google.com/alerts/feeds/%s/%s" % (user_id, alert_id) @classmethod def schedule_feed_fetches_immediately(cls, feed_ids, user_id=None): if settings.DEBUG: logging.info(" ---> ~SN~FMSkipping the scheduling immediate fetch of ~SB%s~SN feeds (in DEBUG)..." % len(feed_ids)) return if user_id: user = User.objects.get(pk=user_id) logging.user(user, "~SN~FMScheduling immediate fetch of ~SB%s~SN feeds..." % len(feed_ids)) else: logging.debug(" ---> ~SN~FMScheduling immediate fetch of ~SB%s~SN feeds..." % len(feed_ids)) if len(feed_ids) > 100: logging.debug(" ---> ~SN~FMFeeds scheduled: %s" % feed_ids) day_ago = datetime.datetime.now() - datetime.timedelta(days=1) feeds = Feed.objects.filter(pk__in=feed_ids) for feed in feeds: if feed.active_subscribers <= 0: feed.count_subscribers() if not feed.active or feed.next_scheduled_update < day_ago: feed.schedule_feed_fetch_immediately(verbose=False) @property def favicon_fetching(self): return bool(not (self.favicon_not_found or self.favicon_color)) @classmethod def get_feed_from_url(cls, url, create=True, aggressive=False, fetch=True, offset=0, user=None, interactive=False): feed = None without_rss = False original_url = url if url and url.startswith('newsletter:'): return cls.objects.get(feed_address=url) if url and re.match('(https?://)?twitter.com/\w+/?', url): without_rss = True if url and re.match(r'(https?://)?(www\.)?facebook.com/\w+/?$', url): without_rss = True if url and 'youtube.com/user/' in url: username = re.search('youtube.com/user/(\w+)', url).group(1) url = "http://gdata.youtube.com/feeds/base/users/%s/uploads" % username without_rss = True if url and 'youtube.com/channel/' in url: channel_id = re.search('youtube.com/channel/([-_\w]+)', url).group(1) url = "https://www.youtube.com/feeds/videos.xml?channel_id=%s" % channel_id without_rss = True if url and 'youtube.com/feeds' in url: without_rss = True if url and 'youtube.com/playlist' in url: without_rss = True def criteria(key, value): if aggressive: return {'%s__icontains' % key: value} else: return {'%s' % key: value} def by_url(address): feed = cls.objects.filter( branch_from_feed=None ).filter(**criteria('feed_address', address)).order_by('-num_subscribers') if not feed: duplicate_feed = DuplicateFeed.objects.filter(**criteria('duplicate_address', address)) if duplicate_feed and len(duplicate_feed) > offset: feed = [duplicate_feed[offset].feed] if not feed and aggressive: feed = cls.objects.filter( branch_from_feed=None ).filter(**criteria('feed_link', address)).order_by('-num_subscribers') return feed @timelimit(10) def _feedfinder_forman(url): found_feed_urls = feedfinder_forman.find_feeds(url) return found_feed_urls @timelimit(10) def _feedfinder_pilgrim(url): found_feed_urls = feedfinder_pilgrim.feeds(url) return found_feed_urls # Normalize and check for feed_address, dupes, and feed_link url = urlnorm.normalize(url) if not url: logging.debug(" ---> ~FRCouldn't normalize url: ~SB%s" % url) return feed = by_url(url) found_feed_urls = [] if interactive: import pdb; pdb.set_trace() # Create if it looks good if feed and len(feed) > offset: feed = feed[offset] else: try: found_feed_urls = _feedfinder_forman(url) except TimeoutError: logging.debug(' ---> Feed finder timed out...') found_feed_urls = [] if not found_feed_urls: try: found_feed_urls = _feedfinder_pilgrim(url) except TimeoutError: logging.debug(' ---> Feed finder old timed out...') found_feed_urls = [] if len(found_feed_urls): feed_finder_url = found_feed_urls[0] logging.debug(" ---> Found feed URLs for %s: %s" % (url, found_feed_urls)) feed = by_url(feed_finder_url) if feed and len(feed) > offset: feed = feed[offset] logging.debug(" ---> Feed exists (%s), updating..." % (feed)) feed = feed.update() elif create: logging.debug(" ---> Feed doesn't exist, creating: %s" % (feed_finder_url)) feed = cls.objects.create(feed_address=feed_finder_url) feed = feed.update() elif without_rss: logging.debug(" ---> Found without_rss feed: %s / %s" % (url, original_url)) feed = cls.objects.create(feed_address=url, feed_link=original_url) feed = feed.update(requesting_user_id=user.pk if user else None) # Check for JSON feed if not feed and fetch and create: try: r = requests.get(url) except (requests.ConnectionError, requests.models.InvalidURL): r = None if r and 'application/json' in r.headers.get('Content-Type'): feed = cls.objects.create(feed_address=url) feed = feed.update() # Still nothing? Maybe the URL has some clues. if not feed and fetch and len(found_feed_urls): feed_finder_url = found_feed_urls[0] feed = by_url(feed_finder_url) if not feed and create: feed = cls.objects.create(feed_address=feed_finder_url) feed = feed.update() elif feed and len(feed) > offset: feed = feed[offset] # Not created and not within bounds, so toss results. if isinstance(feed, QuerySet): logging.debug(" ---> ~FRNot created and not within bounds, tossing: ~SB%s" % feed) return return feed @classmethod def task_feeds(cls, feeds, queue_size=12, verbose=True): if not feeds: return r = redis.Redis(connection_pool=settings.REDIS_FEED_UPDATE_POOL) if isinstance(feeds, Feed): if verbose: logging.debug(" ---> ~SN~FBTasking feed: ~SB%s" % feeds) feeds = [feeds.pk] elif verbose: logging.debug(" ---> ~SN~FBTasking ~SB~FC%s~FB~SN feeds..." % len(feeds)) if isinstance(feeds, QuerySet): feeds = [f.pk for f in feeds] r.srem('queued_feeds', *feeds) now = datetime.datetime.now().strftime("%s") p = r.pipeline() for feed_id in feeds: p.zadd('tasked_feeds', feed_id, now) p.execute() # for feed_ids in (feeds[pos:pos + queue_size] for pos in xrange(0, len(feeds), queue_size)): for feed_id in feeds: UpdateFeeds.apply_async(args=(feed_id,), queue='update_feeds') @classmethod def drain_task_feeds(cls): r = redis.Redis(connection_pool=settings.REDIS_FEED_UPDATE_POOL) tasked_feeds = r.zrange('tasked_feeds', 0, -1) logging.debug(" ---> ~FRDraining %s tasked feeds..." % len(tasked_feeds)) r.sadd('queued_feeds', *tasked_feeds) r.zremrangebyrank('tasked_feeds', 0, -1) errored_feeds = r.zrange('error_feeds', 0, -1) logging.debug(" ---> ~FRDraining %s errored feeds..." % len(errored_feeds)) r.sadd('queued_feeds', *errored_feeds) r.zremrangebyrank('error_feeds', 0, -1) def update_all_statistics(self, has_new_stories=False, force=False): recount = not self.counts_converted_to_redis count_extra = False if random.random() < 0.01 or not self.data.popular_tags or not self.data.popular_authors: count_extra = True self.count_subscribers(recount=recount) self.calculate_last_story_date() if force or has_new_stories or count_extra: self.save_feed_stories_last_month() if force or (has_new_stories and count_extra): self.save_popular_authors() self.save_popular_tags() self.save_feed_story_history_statistics() def calculate_last_story_date(self): last_story_date = None try: latest_story = MStory.objects( story_feed_id=self.pk ).limit(1).order_by('-story_date').only('story_date').first() if latest_story: last_story_date = latest_story.story_date except MStory.DoesNotExist: pass if not last_story_date or seconds_timesince(last_story_date) < 0: last_story_date = datetime.datetime.now() if last_story_date != self.last_story_date: self.last_story_date = last_story_date self.save(update_fields=['last_story_date']) @classmethod def setup_feeds_for_premium_subscribers(cls, feed_ids): logging.info(" ---> ~SN~FMScheduling immediate premium setup of ~SB%s~SN feeds..." % len(feed_ids)) feeds = Feed.objects.filter(pk__in=feed_ids) for feed in feeds: feed.setup_feed_for_premium_subscribers() def setup_feed_for_premium_subscribers(self): self.count_subscribers() self.set_next_scheduled_update() def check_feed_link_for_feed_address(self): @timelimit(10) def _1(): feed_address = None feed = self found_feed_urls = [] try: logging.debug(" ---> Checking: %s" % self.feed_address) found_feed_urls = feedfinder_forman.find_feeds(self.feed_address) if found_feed_urls: feed_address = found_feed_urls[0] except KeyError: pass if not len(found_feed_urls) and self.feed_link: found_feed_urls = feedfinder_forman.find_feeds(self.feed_link) if len(found_feed_urls) and found_feed_urls[0] != self.feed_address: feed_address = found_feed_urls[0] if feed_address: if any(ignored_domain in feed_address for ignored_domain in [ 'feedburner.com/atom.xml', 'feedburner.com/feed/', 'feedsportal.com', ]): logging.debug(" ---> Feed points to 'Wierdo' or 'feedsportal', ignoring.") return False, self try: self.feed_address = feed_address feed = self.save() feed.count_subscribers() feed.schedule_feed_fetch_immediately() feed.has_feed_exception = False feed.active = True feed = feed.save() except IntegrityError: original_feed = Feed.objects.get(feed_address=feed_address, feed_link=self.feed_link) original_feed.has_feed_exception = False original_feed.active = True original_feed.save() merge_feeds(original_feed.pk, self.pk) return feed_address, feed if self.feed_address_locked: return False, self try: feed_address, feed = _1() except TimeoutError, e: logging.debug(' ---> [%-30s] Feed address check timed out...' % (self.log_title[:30])) self.save_feed_history(505, 'Timeout', e) feed = self feed_address = None return bool(feed_address), feed def save_feed_history(self, status_code, message, exception=None, date=None): fetch_history = MFetchHistory.add(feed_id=self.pk, fetch_type='feed', code=int(status_code), date=date, message=message, exception=exception) if status_code not in (200, 304): self.errors_since_good += 1 self.count_errors_in_history('feed', status_code, fetch_history=fetch_history) self.set_next_scheduled_update() elif self.has_feed_exception or self.errors_since_good: self.errors_since_good = 0 self.has_feed_exception = False self.active = True self.save() def save_page_history(self, status_code, message, exception=None, date=None): fetch_history = MFetchHistory.add(feed_id=self.pk, fetch_type='page', code=int(status_code), date=date, message=message, exception=exception) if status_code not in (200, 304): self.count_errors_in_history('page', status_code, fetch_history=fetch_history) elif self.has_page_exception or not self.has_page: self.has_page_exception = False self.has_page = True self.active = True self.save() def save_raw_feed(self, raw_feed, fetch_date): MFetchHistory.add(feed_id=self.pk, fetch_type='raw_feed', code=200, message=raw_feed, date=fetch_date) def count_errors_in_history(self, exception_type='feed', status_code=None, fetch_history=None): if not fetch_history: fetch_history = MFetchHistory.feed(self.pk) fh = fetch_history[exception_type + '_fetch_history'] non_errors = [h for h in fh if h['status_code'] and int(h['status_code']) in (200, 304)] errors = [h for h in fh if h['status_code'] and int(h['status_code']) not in (200, 304)] if len(non_errors) == 0 and len(errors) > 1: self.active = True if exception_type == 'feed': self.has_feed_exception = True # self.active = False # No longer, just geometrically fetch elif exception_type == 'page': self.has_page_exception = True self.exception_code = status_code or int(errors[0]) self.save() elif self.exception_code > 0: self.active = True self.exception_code = 0 if exception_type == 'feed': self.has_feed_exception = False elif exception_type == 'page': self.has_page_exception = False self.save() logging.debug(' ---> [%-30s] ~FBCounting any errors in history: %s (%s non errors)' % (self.log_title[:30], len(errors), len(non_errors))) return errors, non_errors def count_redirects_in_history(self, fetch_type='feed', fetch_history=None): logging.debug(' ---> [%-30s] Counting redirects in history...' % (self.log_title[:30])) if not fetch_history: fetch_history = MFetchHistory.feed(self.pk) fh = fetch_history[fetch_type+'_fetch_history'] redirects = [h for h in fh if h['status_code'] and int(h['status_code']) in (301, 302)] non_redirects = [h for h in fh if h['status_code'] and int(h['status_code']) not in (301, 302)] return redirects, non_redirects @property def original_feed_id(self): if self.branch_from_feed: return self.branch_from_feed.pk else: return self.pk @property def counts_converted_to_redis(self): SUBSCRIBER_EXPIRE_DATE = datetime.datetime.now() - datetime.timedelta(days=settings.SUBSCRIBER_EXPIRE) subscriber_expire = int(SUBSCRIBER_EXPIRE_DATE.strftime('%s')) r = redis.Redis(connection_pool=settings.REDIS_FEED_SUB_POOL) total_key = "s:%s" % self.original_feed_id premium_key = "sp:%s" % self.original_feed_id last_recount = r.zscore(total_key, -1) # Need to subtract this extra when counting subs last_recount = r.zscore(premium_key, -1) # Need to subtract this extra when counting subs # Check for expired feeds with no active users who would have triggered a cleanup if last_recount and last_recount > subscriber_expire: return True elif last_recount: logging.info(" ---> [%-30s] ~SN~FBFeed has expired redis subscriber counts (%s < %s), clearing..." % ( self.log_title[:30], last_recount, subscriber_expire)) r.delete(total_key, -1) r.delete(premium_key, -1) return False def count_subscribers(self, recount=True, verbose=False): if recount or not self.counts_converted_to_redis: from apps.profile.models import Profile Profile.count_feed_subscribers(feed_id=self.pk) SUBSCRIBER_EXPIRE_DATE = datetime.datetime.now() - datetime.timedelta(days=settings.SUBSCRIBER_EXPIRE) subscriber_expire = int(SUBSCRIBER_EXPIRE_DATE.strftime('%s')) now = int(datetime.datetime.now().strftime('%s')) r = redis.Redis(connection_pool=settings.REDIS_FEED_SUB_POOL) total = 0 active = 0 premium = 0 active_premium = 0 # Include all branched feeds in counts feed_ids = [f['id'] for f in Feed.objects.filter(branch_from_feed=self.original_feed_id).values('id')] feed_ids.append(self.original_feed_id) feed_ids = list(set(feed_ids)) if self.counts_converted_to_redis: # For each branched feed, count different subscribers for feed_id in feed_ids: pipeline = r.pipeline() # now+1 ensures `-1` flag will be corrected for later with - 1 total_key = "s:%s" % feed_id premium_key = "sp:%s" % feed_id pipeline.zcard(total_key) pipeline.zcount(total_key, subscriber_expire, now+1) pipeline.zcard(premium_key) pipeline.zcount(premium_key, subscriber_expire, now+1) results = pipeline.execute() # -1 due to counts_converted_to_redis using key=-1 for last_recount date total += max(0, results[0] - 1) active += max(0, results[1] - 1) premium += max(0, results[2] - 1) active_premium += max(0, results[3] - 1) original_num_subscribers = self.num_subscribers original_active_subs = self.active_subscribers original_premium_subscribers = self.premium_subscribers original_active_premium_subscribers = self.active_premium_subscribers logging.info(" ---> [%-30s] ~SN~FBCounting subscribers from ~FCredis~FB: ~FMt:~SB~FM%s~SN a:~SB%s~SN p:~SB%s~SN ap:~SB%s ~SN~FC%s" % (self.log_title[:30], total, active, premium, active_premium, "(%s branches)" % (len(feed_ids)-1) if len(feed_ids)>1 else "")) else: from apps.reader.models import UserSubscription subs = UserSubscription.objects.filter(feed__in=feed_ids) original_num_subscribers = self.num_subscribers total = subs.count() active_subs = UserSubscription.objects.filter( feed__in=feed_ids, active=True, user__profile__last_seen_on__gte=SUBSCRIBER_EXPIRE_DATE ) original_active_subs = self.active_subscribers active = active_subs.count() premium_subs = UserSubscription.objects.filter( feed__in=feed_ids, active=True, user__profile__is_premium=True ) original_premium_subscribers = self.premium_subscribers premium = premium_subs.count() active_premium_subscribers = UserSubscription.objects.filter( feed__in=feed_ids, active=True, user__profile__is_premium=True, user__profile__last_seen_on__gte=SUBSCRIBER_EXPIRE_DATE ) original_active_premium_subscribers = self.active_premium_subscribers active_premium = active_premium_subscribers.count() logging.debug(" ---> [%-30s] ~SN~FBCounting subscribers from ~FYpostgres~FB: ~FMt:~SB~FM%s~SN a:~SB%s~SN p:~SB%s~SN ap:~SB%s" % (self.log_title[:30], total, active, premium, active_premium)) # If any counts have changed, save them self.num_subscribers = total self.active_subscribers = active self.premium_subscribers = premium self.active_premium_subscribers = active_premium if (self.num_subscribers != original_num_subscribers or self.active_subscribers != original_active_subs or self.premium_subscribers != original_premium_subscribers or self.active_premium_subscribers != original_active_premium_subscribers): if original_premium_subscribers == -1 or original_active_premium_subscribers == -1: self.save() else: self.save(update_fields=['num_subscribers', 'active_subscribers', 'premium_subscribers', 'active_premium_subscribers']) if verbose: if self.num_subscribers <= 1: print '.', else: print "\n %s> %s subscriber%s: %s" % ( '-' * min(self.num_subscribers, 20), self.num_subscribers, '' if self.num_subscribers == 1 else 's', self.feed_title, ), def _split_favicon_color(self): color = self.favicon_color if color: splitter = lambda s, p: [s[i:i+p] for i in range(0, len(s), p)] red, green, blue = splitter(color[:6], 2) return red, green, blue return None, None, None def favicon_fade(self): red, green, blue = self._split_favicon_color() if red and green and blue: fade_red = hex(min(int(red, 16) + 35, 255))[2:].zfill(2) fade_green = hex(min(int(green, 16) + 35, 255))[2:].zfill(2) fade_blue = hex(min(int(blue, 16) + 35, 255))[2:].zfill(2) return "%s%s%s" % (fade_red, fade_green, fade_blue) def favicon_border(self): red, green, blue = self._split_favicon_color() if red and green and blue: fade_red = hex(min(int(int(red, 16) * .75), 255))[2:].zfill(2) fade_green = hex(min(int(int(green, 16) * .75), 255))[2:].zfill(2) fade_blue = hex(min(int(int(blue, 16) * .75), 255))[2:].zfill(2) return "%s%s%s" % (fade_red, fade_green, fade_blue) def favicon_text_color(self): # Color format: {r: 1, g: .5, b: 0} def contrast(color1, color2): lum1 = luminosity(color1) lum2 = luminosity(color2) if lum1 > lum2: return (lum1 + 0.05) / (lum2 + 0.05) else: return (lum2 + 0.05) / (lum1 + 0.05) def luminosity(color): r = color['red'] g = color['green'] b = color['blue'] val = lambda c: c/12.92 if c <= 0.02928 else math.pow(((c + 0.055)/1.055), 2.4) red = val(r) green = val(g) blue = val(b) return 0.2126 * red + 0.7152 * green + 0.0722 * blue red, green, blue = self._split_favicon_color() if red and green and blue: color = { 'red': int(red, 16) / 256.0, 'green': int(green, 16) / 256.0, 'blue': int(blue, 16) / 256.0, } white = { 'red': 1, 'green': 1, 'blue': 1, } grey = { 'red': 0.5, 'green': 0.5, 'blue': 0.5, } if contrast(color, white) > contrast(color, grey): return 'white' else: return 'black' def save_feed_stories_last_month(self, verbose=False): month_ago = datetime.datetime.utcnow() - datetime.timedelta(days=30) stories_last_month = MStory.objects(story_feed_id=self.pk, story_date__gte=month_ago).count() if self.stories_last_month != stories_last_month: self.stories_last_month = stories_last_month self.save(update_fields=['stories_last_month']) if verbose: print " ---> %s [%s]: %s stories last month" % (self.feed_title, self.pk, self.stories_last_month) def save_feed_story_history_statistics(self, current_counts=None): """ Fills in missing months between earlier occurances and now. Save format: [('YYYY-MM, #), ...] Example output: [(2010-12, 123), (2011-01, 146)] """ now = datetime.datetime.utcnow() min_year = now.year total = 0 month_count = 0 if not current_counts: current_counts = self.data.story_count_history and json.decode(self.data.story_count_history) if isinstance(current_counts, dict): current_counts = current_counts['months'] if not current_counts: current_counts = [] # Count stories, aggregate by year and month. Map Reduce! map_f = """ function() { var date = (this.story_date.getFullYear()) + "-" + (this.story_date.getMonth()+1); var hour = this.story_date.getUTCHours(); var day = this.story_date.getDay(); emit(this.story_hash, {'month': date, 'hour': hour, 'day': day}); } """ reduce_f = """ function(key, values) { return values; } """ dates = defaultdict(int) hours = defaultdict(int) days = defaultdict(int) results = MStory.objects(story_feed_id=self.pk).map_reduce(map_f, reduce_f, output='inline') for result in results: dates[result.value['month']] += 1 hours[int(result.value['hour'])] += 1 days[int(result.value['day'])] += 1 year = int(re.findall(r"(\d{4})-\d{1,2}", result.value['month'])[0]) if year < min_year and year > 2000: min_year = year # Add on to existing months, always amending up, never down. (Current month # is guaranteed to be accurate, since trim_feeds won't delete it until after # a month. Hacker News can have 1,000+ and still be counted.) for current_month, current_count in current_counts: year = int(re.findall(r"(\d{4})-\d{1,2}", current_month)[0]) if current_month not in dates or dates[current_month] < current_count: dates[current_month] = current_count if year < min_year and year > 2000: min_year = year # Assemble a list with 0's filled in for missing months, # trimming left and right 0's. months = [] start = False for year in range(min_year, now.year+1): for month in range(1, 12+1): if datetime.datetime(year, month, 1) < now: key = u'%s-%s' % (year, month) if dates.get(key) or start: start = True months.append((key, dates.get(key, 0))) total += dates.get(key, 0) if dates.get(key, 0) > 0: month_count += 1 # Only count months that have stories for the average original_story_count_history = self.data.story_count_history self.data.story_count_history = json.encode({'months': months, 'hours': hours, 'days': days}) if self.data.story_count_history != original_story_count_history: self.data.save(update_fields=['story_count_history']) original_average_stories_per_month = self.average_stories_per_month if not total or not month_count: self.average_stories_per_month = 0 else: self.average_stories_per_month = int(round(total / float(month_count))) if self.average_stories_per_month != original_average_stories_per_month: self.save(update_fields=['average_stories_per_month']) def save_classifier_counts(self): from apps.analyzer.models import MClassifierTitle, MClassifierAuthor, MClassifierFeed, MClassifierTag def calculate_scores(cls, facet): map_f = """ function() { emit(this["%s"], { pos: this.score>0 ? this.score : 0, neg: this.score<0 ? Math.abs(this.score) : 0 }); } """ % (facet) reduce_f = """ function(key, values) { var result = {pos: 0, neg: 0}; values.forEach(function(value) { result.pos += value.pos; result.neg += value.neg; }); return result; } """ scores = [] res = cls.objects(feed_id=self.pk).map_reduce(map_f, reduce_f, output='inline') for r in res: facet_values = dict([(k, int(v)) for k,v in r.value.iteritems()]) facet_values[facet] = r.key if facet_values['pos'] + facet_values['neg'] >= 1: scores.append(facet_values) scores = sorted(scores, key=lambda v: v['neg'] - v['pos']) return scores scores = {} for cls, facet in [(MClassifierTitle, 'title'), (MClassifierAuthor, 'author'), (MClassifierTag, 'tag'), (MClassifierFeed, 'feed_id')]: scores[facet] = calculate_scores(cls, facet) if facet == 'feed_id' and scores[facet]: scores['feed'] = scores[facet] del scores['feed_id'] elif not scores[facet]: del scores[facet] if scores: self.data.feed_classifier_counts = json.encode(scores) self.data.save() return scores @property def user_agent(self): feed_parts = urlparse.urlparse(self.feed_address) if feed_parts.netloc.find('.tumblr.com') != -1: # Certain tumblr feeds will redirect to tumblr's login page when fetching. # A known workaround is using facebook's user agent. return 'facebookexternalhit/1.0 (+http://www.facebook.com/externalhit_uatext.php)' ua = ('NewsBlur Feed Fetcher - %s subscriber%s - %s ' '(Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_3) ' 'AppleWebKit/537.36 (KHTML, like Gecko) ' 'Chrome/56.0.2924.87 Safari/537.36)' % ( self.num_subscribers, 's' if self.num_subscribers != 1 else '', self.permalink, )) return ua @property def fake_user_agent(self): ua = "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.12; rv:49.0) Gecko/20100101 Firefox/49.0" return ua def fetch_headers(self, fake=False): headers = { 'User-Agent': self.user_agent if not fake else self.fake_user_agent, 'Accept': 'application/atom+xml, application/rss+xml, application/xml;q=0.8, text/xml;q=0.6, */*;q=0.2', 'Accept-Encoding': 'gzip, deflate', } return headers def update(self, **kwargs): try: from utils import feed_fetcher except ImportError, e: logging.info(" ***> ~BR~FRImportError: %s" % e) return r = redis.Redis(connection_pool=settings.REDIS_FEED_UPDATE_POOL) original_feed_id = int(self.pk) options = { 'verbose': kwargs.get('verbose'), 'timeout': 10, 'single_threaded': kwargs.get('single_threaded', True), 'force': kwargs.get('force'), 'force_fp': kwargs.get('force_fp'), 'compute_scores': kwargs.get('compute_scores', True), 'mongodb_replication_lag': kwargs.get('mongodb_replication_lag', None), 'fake': kwargs.get('fake'), 'quick': kwargs.get('quick'), 'updates_off': kwargs.get('updates_off'), 'debug': kwargs.get('debug'), 'fpf': kwargs.get('fpf'), 'feed_xml': kwargs.get('feed_xml'), 'requesting_user_id': kwargs.get('requesting_user_id', None) } if getattr(settings, 'TEST_DEBUG', False): print " ---> Testing feed fetch: %s" % self.log_title # options['force_fp'] = True # No, why would this be needed? original_feed_address = self.feed_address original_feed_link = self.feed_link self.feed_address = self.feed_address.replace("%(NEWSBLUR_DIR)s", settings.NEWSBLUR_DIR) if self.feed_link: self.feed_link = self.feed_link.replace("%(NEWSBLUR_DIR)s", settings.NEWSBLUR_DIR) if self.feed_address != original_feed_address or self.feed_link != original_feed_link: self.save(update_fields=['feed_address', 'feed_link']) if self.is_newsletter: feed = self.update_newsletter_icon() else: disp = feed_fetcher.Dispatcher(options, 1) disp.add_jobs([[self.pk]]) feed = disp.run_jobs() if feed: feed = Feed.get_by_id(feed.pk) if feed: feed.last_update = datetime.datetime.utcnow() feed.set_next_scheduled_update() r.zadd('fetched_feeds_last_hour', feed.pk, int(datetime.datetime.now().strftime('%s'))) if not feed or original_feed_id != feed.pk: logging.info(" ---> ~FRFeed changed id, removing %s from tasked_feeds queue..." % original_feed_id) r.zrem('tasked_feeds', original_feed_id) r.zrem('error_feeds', original_feed_id) if feed: r.zrem('tasked_feeds', feed.pk) r.zrem('error_feeds', feed.pk) return feed def update_newsletter_icon(self): from apps.rss_feeds.icon_importer import IconImporter icon_importer = IconImporter(self) icon_importer.save() return self @classmethod def get_by_id(cls, feed_id, feed_address=None): try: feed = Feed.objects.get(pk=feed_id) return feed except Feed.DoesNotExist: # Feed has been merged after updating. Find the right feed. duplicate_feeds = DuplicateFeed.objects.filter(duplicate_feed_id=feed_id) if duplicate_feeds: return duplicate_feeds[0].feed if feed_address: duplicate_feeds = DuplicateFeed.objects.filter(duplicate_address=feed_address) if duplicate_feeds: return duplicate_feeds[0].feed @classmethod def get_by_name(cls, query, limit=1): results = SearchFeed.query(query) feed_ids = [result.feed_id for result in results] if limit == 1: return Feed.get_by_id(feed_ids[0]) else: return [Feed.get_by_id(f) for f in feed_ids][:limit] def add_update_stories(self, stories, existing_stories, verbose=False, updates_off=False): ret_values = dict(new=0, updated=0, same=0, error=0) error_count = self.error_count new_story_hashes = [s.get('story_hash') for s in stories] if settings.DEBUG or verbose: logging.debug(" ---> [%-30s] ~FBChecking ~SB%s~SN new/updated against ~SB%s~SN stories" % ( self.log_title[:30], len(stories), len(existing_stories.keys()))) @timelimit(2) def _1(story, story_content, existing_stories, new_story_hashes): existing_story, story_has_changed = self._exists_story(story, story_content, existing_stories, new_story_hashes) return existing_story, story_has_changed for story in stories: if verbose: logging.debug(" ---> [%-30s] ~FBChecking ~SB%s~SN / ~SB%s" % ( self.log_title[:30], story.get('title'), story.get('guid'))) story_content = story.get('story_content') if error_count: story_content = strip_comments__lxml(story_content) else: story_content = strip_comments(story_content) story_tags = self.get_tags(story) story_link = self.get_permalink(story) replace_story_date = False try: existing_story, story_has_changed = _1(story, story_content, existing_stories, new_story_hashes) except TimeoutError, e: logging.debug(' ---> [%-30s] ~SB~FRExisting story check timed out...' % (self.log_title[:30])) existing_story = None story_has_changed = False if existing_story is None: if settings.DEBUG and False: logging.debug(' ---> New story in feed (%s - %s): %s' % (self.feed_title, story.get('title'), len(story_content))) s = MStory(story_feed_id = self.pk, story_date = story.get('published'), story_title = story.get('title'), story_content = story_content, story_author_name = story.get('author'), story_permalink = story_link, story_guid = story.get('guid'), story_tags = story_tags ) try: s.save() ret_values['new'] += 1 s.publish_to_subscribers() except (IntegrityError, OperationError), e: ret_values['error'] += 1 if settings.DEBUG: logging.info(' ---> [%-30s] ~SN~FRIntegrityError on new story: %s - %s' % (self.feed_title[:30], story.get('guid'), e)) if self.search_indexed: s.index_story_for_search() elif existing_story and story_has_changed and not updates_off and ret_values['updated'] < 3: # update story original_content = None try: if existing_story and existing_story.id: try: existing_story = MStory.objects.get(id=existing_story.id) except ValidationError: existing_story, _ = MStory.find_story(existing_story.story_feed_id, existing_story.id, original_only=True) elif existing_story and existing_story.story_hash: existing_story, _ = MStory.find_story(existing_story.story_feed_id, existing_story.story_hash, original_only=True) else: raise MStory.DoesNotExist except (MStory.DoesNotExist, OperationError), e: ret_values['error'] += 1 if verbose: logging.info(' ---> [%-30s] ~SN~FROperation on existing story: %s - %s' % (self.feed_title[:30], story.get('guid'), e)) continue if existing_story.story_original_content_z: original_content = zlib.decompress(existing_story.story_original_content_z) elif existing_story.story_content_z: original_content = zlib.decompress(existing_story.story_content_z) # print 'Type: %s %s' % (type(original_content), type(story_content)) if story_content and len(story_content) > 10: if "<code" in story_content: # Don't mangle stories with code, just use new story_content_diff = story_content else: story_content_diff = htmldiff(smart_unicode(original_content), smart_unicode(story_content)) else: story_content_diff = original_content # logging.debug("\t\tDiff: %s %s %s" % diff.getStats()) # logging.debug("\t\tDiff content: %s" % diff.getDiff()) # if existing_story.story_title != story.get('title'): # logging.debug('\tExisting title / New: : \n\t\t- %s\n\t\t- %s' % (existing_story.story_title, story.get('title'))) if existing_story.story_hash != story.get('story_hash'): self.update_story_with_new_guid(existing_story, story.get('guid')) if verbose: logging.debug('- Updated story in feed (%s - %s): %s / %s' % (self.feed_title, story.get('title'), len(story_content_diff), len(story_content))) existing_story.story_feed = self.pk existing_story.story_title = story.get('title') existing_story.story_content = story_content_diff existing_story.story_latest_content = story_content existing_story.story_original_content = original_content existing_story.story_author_name = story.get('author') existing_story.story_permalink = story_link existing_story.story_guid = story.get('guid') existing_story.story_tags = story_tags existing_story.original_text_z = None # Reset Text view cache # Do not allow publishers to change the story date once a story is published. # Leads to incorrect unread story counts. if replace_story_date: existing_story.story_date = story.get('published') # Really shouldn't do this. existing_story.extract_image_urls(force=True) try: existing_story.save() ret_values['updated'] += 1 except (IntegrityError, OperationError): ret_values['error'] += 1 if verbose: logging.info(' ---> [%-30s] ~SN~FRIntegrityError on updated story: %s' % (self.feed_title[:30], story.get('title')[:30])) except ValidationError: ret_values['error'] += 1 if verbose: logging.info(' ---> [%-30s] ~SN~FRValidationError on updated story: %s' % (self.feed_title[:30], story.get('title')[:30])) if self.search_indexed: existing_story.index_story_for_search() else: ret_values['same'] += 1 if verbose: logging.debug("Unchanged story (%s): %s / %s " % (story.get('story_hash'), story.get('guid'), story.get('title'))) return ret_values def update_story_with_new_guid(self, existing_story, new_story_guid): from apps.reader.models import RUserStory from apps.social.models import MSharedStory existing_story.remove_from_redis() existing_story.remove_from_search_index() old_hash = existing_story.story_hash new_hash = MStory.ensure_story_hash(new_story_guid, self.pk) RUserStory.switch_hash(feed=self, old_hash=old_hash, new_hash=new_hash) shared_stories = MSharedStory.objects.filter(story_feed_id=self.pk, story_hash=old_hash) for story in shared_stories: story.story_guid = new_story_guid story.story_hash = new_hash try: story.save() except NotUniqueError: # Story is already shared, skip. pass def save_popular_tags(self, feed_tags=None, verbose=False): if not feed_tags: all_tags = MStory.objects(story_feed_id=self.pk, story_tags__exists=True).item_frequencies('story_tags') feed_tags = sorted([(k, v) for k, v in all_tags.items() if int(v) > 0], key=itemgetter(1), reverse=True)[:25] popular_tags = json.encode(feed_tags) if verbose: print "Found %s tags: %s" % (len(feed_tags), popular_tags) # TODO: This len() bullshit will be gone when feeds move to mongo # On second thought, it might stay, because we don't want # popular tags the size of a small planet. I'm looking at you # Tumblr writers. if len(popular_tags) < 1024: if self.data.popular_tags != popular_tags: self.data.popular_tags = popular_tags self.data.save(update_fields=['popular_tags']) return tags_list = [] if feed_tags and isinstance(feed_tags, unicode): tags_list = json.decode(feed_tags) if len(tags_list) >= 1: self.save_popular_tags(tags_list[:-1]) def save_popular_authors(self, feed_authors=None): if not feed_authors: authors = defaultdict(int) for story in MStory.objects(story_feed_id=self.pk).only('story_author_name'): authors[story.story_author_name] += 1 feed_authors = sorted([(k, v) for k, v in authors.items() if k], key=itemgetter(1), reverse=True)[:20] popular_authors = json.encode(feed_authors) if len(popular_authors) < 1023: if self.data.popular_authors != popular_authors: self.data.popular_authors = popular_authors self.data.save(update_fields=['popular_authors']) return if len(feed_authors) > 1: self.save_popular_authors(feed_authors=feed_authors[:-1]) @classmethod def trim_old_stories(cls, start=0, verbose=True, dryrun=False, total=0): now = datetime.datetime.now() month_ago = now - datetime.timedelta(days=settings.DAYS_OF_STORY_HASHES) feed_count = Feed.objects.latest('pk').pk for feed_id in xrange(start, feed_count): if feed_id % 1000 == 0: print "\n\n -------------------------- %s (%s deleted so far) --------------------------\n\n" % (feed_id, total) try: feed = Feed.objects.get(pk=feed_id) except Feed.DoesNotExist: continue if feed.active_subscribers <= 0 and (not feed.last_story_date or feed.last_story_date < month_ago): months_ago = 6 if feed.last_story_date: months_ago = int((now - feed.last_story_date).days / 30.0) cutoff = max(1, 6 - months_ago) if dryrun: print " DRYRUN: %s cutoff - %s" % (cutoff, feed) else: total += MStory.trim_feed(feed=feed, cutoff=cutoff, verbose=verbose) else: if dryrun: print " DRYRUN: %s/%s cutoff - %s" % (cutoff, feed.story_cutoff, feed) else: total += feed.trim_feed(verbose=verbose) print " ---> Deleted %s stories in total." % total @property def story_cutoff(self): cutoff = 500 if self.active_subscribers <= 0: cutoff = 25 elif self.active_premium_subscribers < 1: cutoff = 100 elif self.active_premium_subscribers <= 2: cutoff = 200 elif self.active_premium_subscribers <= 5: cutoff = 300 elif self.active_premium_subscribers <= 10: cutoff = 350 elif self.active_premium_subscribers <= 15: cutoff = 400 elif self.active_premium_subscribers <= 20: cutoff = 450 if self.active_subscribers and self.average_stories_per_month < 5 and self.stories_last_month < 5: cutoff /= 2 if self.active_premium_subscribers <= 1 and self.average_stories_per_month <= 1 and self.stories_last_month <= 1: cutoff /= 2 r = redis.Redis(connection_pool=settings.REDIS_FEED_READ_POOL) pipeline = r.pipeline() read_stories_per_week = [] now = datetime.datetime.now() for weeks_back in range(2*int(math.floor(settings.DAYS_OF_STORY_HASHES/7))): weeks_ago = now - datetime.timedelta(days=7*weeks_back) week_of_year = weeks_ago.strftime('%Y-%U') feed_read_key = "fR:%s:%s" % (self.pk, week_of_year) pipeline.get(feed_read_key) read_stories_per_week = pipeline.execute() read_stories_last_month = sum([int(rs) for rs in read_stories_per_week if rs]) if read_stories_last_month == 0: original_cutoff = cutoff cutoff = min(cutoff, 10) try: logging.debug(" ---> [%-30s] ~FBTrimming down to ~SB%s (instead of %s)~SN stories (~FM%s~FB)" % (self.log_title[:30], cutoff, original_cutoff, self.last_story_date.strftime("%Y-%m-%d") if self.last_story_date else "No last story date")) except ValueError, e: logging.debug(" ***> [%-30s] Error trimming: %s" % (self.log_title[:30], e)) pass if getattr(settings, 'OVERRIDE_STORY_COUNT_MAX', None): cutoff = settings.OVERRIDE_STORY_COUNT_MAX return cutoff def trim_feed(self, verbose=False, cutoff=None): if not cutoff: cutoff = self.story_cutoff return MStory.trim_feed(feed=self, cutoff=cutoff, verbose=verbose) def purge_feed_stories(self, update=True): MStory.purge_feed_stories(feed=self, cutoff=self.story_cutoff) if update: self.update() def purge_author(self, author): all_stories = MStory.objects.filter(story_feed_id=self.pk) author_stories = MStory.objects.filter(story_feed_id=self.pk, story_author_name__iexact=author) logging.debug(" ---> Deleting %s of %s stories in %s by '%s'." % (author_stories.count(), all_stories.count(), self, author)) author_stories.delete() def purge_tag(self, tag): all_stories = MStory.objects.filter(story_feed_id=self.pk) tagged_stories = MStory.objects.filter(story_feed_id=self.pk, story_tags__icontains=tag) logging.debug(" ---> Deleting %s of %s stories in %s by '%s'." % (tagged_stories.count(), all_stories.count(), self, tag)) tagged_stories.delete() # @staticmethod # def clean_invalid_ids(): # history = MFeedFetchHistory.objects(status_code=500, exception__contains='InvalidId:') # urls = set() # for h in history: # u = re.split('InvalidId: (.*?) is not a valid ObjectId\\n$', h.exception)[1] # urls.add((h.feed_id, u)) # # for f, u in urls: # print "db.stories.remove({\"story_feed_id\": %s, \"_id\": \"%s\"})" % (f, u) def get_stories(self, offset=0, limit=25, force=False): stories_db = MStory.objects(story_feed_id=self.pk)[offset:offset+limit] stories = self.format_stories(stories_db, self.pk) return stories @classmethod def find_feed_stories(cls, feed_ids, query, order="newest", offset=0, limit=25): story_ids = SearchStory.query(feed_ids=feed_ids, query=query, order=order, offset=offset, limit=limit) stories_db = MStory.objects( story_hash__in=story_ids ).order_by('-story_date' if order == "newest" else 'story_date') stories = cls.format_stories(stories_db) return stories @classmethod def query_popularity(cls, query, limit, order='newest'): popularity = {} seen_feeds = set() feed_title_to_id = dict() # Collect stories, sort by feed story_ids = SearchStory.global_query(query, order=order, offset=0, limit=limit) for story_hash in story_ids: feed_id, story_id = MStory.split_story_hash(story_hash) feed = Feed.get_by_id(feed_id) if not feed: continue if feed.feed_title in seen_feeds: feed_id = feed_title_to_id[feed.feed_title] else: feed_title_to_id[feed.feed_title] = feed_id seen_feeds.add(feed.feed_title) if feed_id not in popularity: # feed.update_all_statistics() # classifiers = feed.save_classifier_counts() well_read_score = feed.well_read_score() popularity[feed_id] = { 'feed_title': feed.feed_title, 'feed_url': feed.feed_link, 'num_subscribers': feed.num_subscribers, 'feed_id': feed.pk, 'story_ids': [], 'authors': {}, 'read_pct': well_read_score['read_pct'], 'reader_count': well_read_score['reader_count'], 'story_count': well_read_score['story_count'], 'reach_score': well_read_score['reach_score'], 'share_count': well_read_score['share_count'], 'ps': 0, 'ng': 0, 'classifiers': json.decode(feed.data.feed_classifier_counts), } if popularity[feed_id]['classifiers']: for classifier in popularity[feed_id]['classifiers'].get('feed', []): if int(classifier['feed_id']) == int(feed_id): popularity[feed_id]['ps'] = classifier['pos'] popularity[feed_id]['ng'] = -1 * classifier['neg'] popularity[feed_id]['story_ids'].append(story_hash) sorted_popularity = sorted(popularity.values(), key=lambda x: x['reach_score'], reverse=True) # Extract story authors from feeds for feed in sorted_popularity: story_ids = feed['story_ids'] stories_db = MStory.objects(story_hash__in=story_ids) stories = cls.format_stories(stories_db) for story in stories: story['story_permalink'] = story['story_permalink'][:250] if story['story_authors'] not in feed['authors']: feed['authors'][story['story_authors']] = { 'name': story['story_authors'], 'count': 0, 'ps': 0, 'ng': 0, 'tags': {}, 'stories': [], } author = feed['authors'][story['story_authors']] seen = False for seen_story in author['stories']: if seen_story['url'] == story['story_permalink']: seen = True break else: author['stories'].append({ 'title': story['story_title'], 'url': story['story_permalink'], 'date': story['story_date'], }) author['count'] += 1 if seen: continue # Don't recount tags if feed['classifiers']: for classifier in feed['classifiers'].get('author', []): if classifier['author'] == author['name']: author['ps'] = classifier['pos'] author['ng'] = -1 * classifier['neg'] for tag in story['story_tags']: if tag not in author['tags']: author['tags'][tag] = {'name': tag, 'count': 0, 'ps': 0, 'ng': 0} author['tags'][tag]['count'] += 1 if feed['classifiers']: for classifier in feed['classifiers'].get('tag', []): if classifier['tag'] == tag: author['tags'][tag]['ps'] = classifier['pos'] author['tags'][tag]['ng'] = -1 * classifier['neg'] sorted_authors = sorted(feed['authors'].values(), key=lambda x: x['count']) feed['authors'] = sorted_authors # pprint(sorted_popularity) return sorted_popularity def well_read_score(self): from apps.reader.models import UserSubscription from apps.social.models import MSharedStory # Average percentage of stories read vs published across recently active subscribers r = redis.Redis(connection_pool=settings.REDIS_STORY_HASH_POOL) p = r.pipeline() shared_stories = MSharedStory.objects(story_feed_id=self.pk).count() subscribing_users = UserSubscription.objects.filter(feed_id=self.pk).values('user_id') subscribing_user_ids = [sub['user_id'] for sub in subscribing_users] for user_id in subscribing_user_ids: user_rs = "RS:%s:%s" % (user_id, self.pk) p.scard(user_rs) counts = p.execute() counts = [c for c in counts if c > 0] reader_count = len(counts) story_count = MStory.objects(story_feed_id=self.pk, story_date__gte=self.unread_cutoff).count() if reader_count and story_count: average_pct = (sum(counts) / float(reader_count)) / float(story_count) else: average_pct = 0 reach_score = average_pct * reader_count * story_count return {'read_pct': average_pct, 'reader_count': reader_count, 'reach_score': reach_score, 'story_count': story_count, 'share_count': shared_stories} @classmethod def xls_query_popularity(cls, queries, limit): import xlsxwriter from xlsxwriter.utility import xl_rowcol_to_cell if isinstance(queries, unicode): queries = [q.strip() for q in queries.split(',')] title = 'NewsBlur-%s.xlsx' % slugify('-'.join(queries)) workbook = xlsxwriter.Workbook(title) bold = workbook.add_format({'bold': 1}) date_format = workbook.add_format({'num_format': 'mmm d yyyy'}) unread_format = workbook.add_format({'font_color': '#E0E0E0'}) for query in queries: worksheet = workbook.add_worksheet(query) row = 1 col = 0 worksheet.write(0, col, 'Publisher', bold) worksheet.set_column(col, col, 15); col += 1 worksheet.write(0, col, 'Feed URL', bold) worksheet.set_column(col, col, 20); col += 1 worksheet.write(0, col, 'Reach score', bold) worksheet.write_comment(0, col, 'Feeds are sorted based on this score. It\'s simply the # of readers * # of stories in the past 30 days * the percentage of stories that are actually read.') worksheet.set_column(col, col, 9); col += 1 worksheet.write(0, col, '# subs', bold) worksheet.write_comment(0, col, 'Total number of subscribers on NewsBlur, not necessarily active') worksheet.set_column(col, col, 5); col += 1 worksheet.write(0, col, '# readers', bold) worksheet.write_comment(0, col, 'Total number of active subscribers who have read a story from the feed in the past 30 days.') worksheet.set_column(col, col, 8); col += 1 worksheet.write(0, col, "read pct", bold) worksheet.write_comment(0, col, "Of the active subscribers reading this feed in the past 30 days, this is the percentage of stories the average subscriber reads. Values over 100 pct signify that the feed has many shared stories, which throws off the number slightly but not significantly.") worksheet.set_column(col, col, 8); col += 1 worksheet.write(0, col, '# stories 30d', bold) worksheet.write_comment(0, col, "It's important to ignore feeds that haven't published anything in the last 30 days, which is why this is part of the Reach Score.") worksheet.set_column(col, col, 10); col += 1 worksheet.write(0, col, '# shared', bold) worksheet.write_comment(0, col, 'Number of stories from this feed that were shared on NewsBlur. This is a strong signal of interest although it is not included in the Reach Score.') worksheet.set_column(col, col, 7); col += 1 worksheet.write(0, col, '# feed pos', bold) worksheet.write_comment(0, col, 'Number of times this feed was trained with a thumbs up. Users use training to hide stories they don\'t want to see while highlighting those that they do.') worksheet.set_column(col, col, 8); col += 1 worksheet.write(0, col, '# feed neg', bold) worksheet.write_comment(0, col, 'Number of times this feed was trained with a thumbs down. Users use training to hide stories they don\'t want to see while highlighting those that they do.') worksheet.set_column(col, col, 8); col += 1 worksheet.write(0, col, 'Author', bold) worksheet.set_column(col, col, 15); col += 1 worksheet.write(0, col, '# author pos', bold) worksheet.write_comment(0, col, 'Number of times this author was trained with a thumbs up. Users use training to hide stories they don\'t want to see while highlighting those that they do.') worksheet.set_column(col, col, 10); col += 1 worksheet.write(0, col, '# author neg', bold) worksheet.write_comment(0, col, 'Number of times this author was trained with a thumbs down. Users use training to hide stories they don\'t want to see while highlighting those that they do.') worksheet.set_column(col, col, 10); col += 1 worksheet.write(0, col, 'Story title', bold) worksheet.set_column(col, col, 30); col += 1 worksheet.write(0, col, 'Story URL', bold) worksheet.set_column(col, col, 20); col += 1 worksheet.write(0, col, 'Story date', bold) worksheet.set_column(col, col, 10); col += 1 worksheet.write(0, col, 'Tag', bold) worksheet.set_column(col, col, 15); col += 1 worksheet.write(0, col, 'Tag count', bold) worksheet.write_comment(0, col, 'Number of times this tag is used in other stories that also contain the search query.') worksheet.set_column(col, col, 8); col += 1 worksheet.write(0, col, '# tag pos', bold) worksheet.write_comment(0, col, 'Number of times this tag was trained with a thumbs up. Users use training to hide stories they don\'t want to see while highlighting those that they do.') worksheet.set_column(col, col, 7); col += 1 worksheet.write(0, col, '# tag neg', bold) worksheet.write_comment(0, col, 'Number of times this tag was trained with a thumbs down. Users use training to hide stories they don\'t want to see while highlighting those that they do.') worksheet.set_column(col, col, 7); col += 1 popularity = cls.query_popularity(query, limit=limit) for feed in popularity: col = 0 worksheet.write(row, col, feed['feed_title']); col += 1 worksheet.write_url(row, col, feed.get('feed_url') or ""); col += 1 worksheet.conditional_format(row, col, row, col+8, {'type': 'cell', 'criteria': '==', 'value': 0, 'format': unread_format}) worksheet.write(row, col, "=%s*%s*%s" % ( xl_rowcol_to_cell(row, col+2), xl_rowcol_to_cell(row, col+3), xl_rowcol_to_cell(row, col+4), )); col += 1 worksheet.write(row, col, feed['num_subscribers']); col += 1 worksheet.write(row, col, feed['reader_count']); col += 1 worksheet.write(row, col, feed['read_pct']); col += 1 worksheet.write(row, col, feed['story_count']); col += 1 worksheet.write(row, col, feed['share_count']); col += 1 worksheet.write(row, col, feed['ps']); col += 1 worksheet.write(row, col, feed['ng']); col += 1 for author in feed['authors']: row += 1 worksheet.conditional_format(row, col, row, col+2, {'type': 'cell', 'criteria': '==', 'value': 0, 'format': unread_format}) worksheet.write(row, col, author['name']) worksheet.write(row, col+1, author['ps']) worksheet.write(row, col+2, author['ng']) for story in author['stories']: worksheet.write(row, col+3, story['title']) worksheet.write_url(row, col+4, story['url']) worksheet.write_datetime(row, col+5, story['date'], date_format) row += 1 for tag in author['tags'].values(): worksheet.conditional_format(row, col+7, row, col+9, {'type': 'cell', 'criteria': '==', 'value': 0, 'format': unread_format}) worksheet.write(row, col+6, tag['name']) worksheet.write(row, col+7, tag['count']) worksheet.write(row, col+8, tag['ps']) worksheet.write(row, col+9, tag['ng']) row += 1 workbook.close() return title def find_stories(self, query, order="newest", offset=0, limit=25): story_ids = SearchStory.query(feed_ids=[self.pk], query=query, order=order, offset=offset, limit=limit) stories_db = MStory.objects( story_hash__in=story_ids ).order_by('-story_date' if order == "newest" else 'story_date') stories = self.format_stories(stories_db, self.pk) return stories @classmethod def format_stories(cls, stories_db, feed_id=None, include_permalinks=False): stories = [] for story_db in stories_db: story = cls.format_story(story_db, feed_id, include_permalinks=include_permalinks) stories.append(story) return stories @classmethod def format_story(cls, story_db, feed_id=None, text=False, include_permalinks=False, show_changes=False): if isinstance(story_db.story_content_z, unicode): story_db.story_content_z = story_db.story_content_z.decode('base64') story_content = '' latest_story_content = None has_changes = False if (not show_changes and hasattr(story_db, 'story_latest_content_z') and story_db.story_latest_content_z): latest_story_content = smart_unicode(zlib.decompress(story_db.story_latest_content_z)) if story_db.story_content_z: story_content = smart_unicode(zlib.decompress(story_db.story_content_z)) if '<ins' in story_content or '<del' in story_content: has_changes = True if not show_changes and latest_story_content: story_content = latest_story_content story_title = story_db.story_title blank_story_title = False if not story_title: blank_story_title = True if story_content: story_title = strip_tags(story_content) if not story_title and story_db.story_permalink: story_title = story_db.story_permalink if story_title and len(story_title) > 80: story_title = story_title[:80] + '...' story = {} story['story_hash'] = getattr(story_db, 'story_hash', None) story['story_tags'] = story_db.story_tags or [] story['story_date'] = story_db.story_date.replace(tzinfo=None) story['story_timestamp'] = story_db.story_date.strftime('%s') story['story_authors'] = story_db.story_author_name or "" story['story_title'] = story_title if blank_story_title: story['story_title_blank'] = True story['story_content'] = story_content story['story_permalink'] = story_db.story_permalink story['image_urls'] = story_db.image_urls story['secure_image_urls']= cls.secure_image_urls(story_db.image_urls) story['secure_image_thumbnails']= cls.secure_image_thumbnails(story_db.image_urls) story['story_feed_id'] = feed_id or story_db.story_feed_id story['has_modifications']= has_changes story['comment_count'] = story_db.comment_count if hasattr(story_db, 'comment_count') else 0 story['comment_user_ids'] = story_db.comment_user_ids if hasattr(story_db, 'comment_user_ids') else [] story['share_count'] = story_db.share_count if hasattr(story_db, 'share_count') else 0 story['share_user_ids'] = story_db.share_user_ids if hasattr(story_db, 'share_user_ids') else [] story['guid_hash'] = story_db.guid_hash if hasattr(story_db, 'guid_hash') else None if hasattr(story_db, 'source_user_id'): story['source_user_id'] = story_db.source_user_id story['id'] = story_db.story_guid or story_db.story_date if hasattr(story_db, 'starred_date'): story['starred_date'] = story_db.starred_date if hasattr(story_db, 'user_tags'): story['user_tags'] = story_db.user_tags if hasattr(story_db, 'user_notes'): story['user_notes'] = story_db.user_notes if hasattr(story_db, 'highlights'): story['highlights'] = story_db.highlights if hasattr(story_db, 'shared_date'): story['shared_date'] = story_db.shared_date if hasattr(story_db, 'comments'): story['comments'] = story_db.comments if hasattr(story_db, 'user_id'): story['user_id'] = story_db.user_id if include_permalinks and hasattr(story_db, 'blurblog_permalink'): story['blurblog_permalink'] = story_db.blurblog_permalink() if text: soup = BeautifulSoup(story['story_content']) text = ''.join(soup.findAll(text=True)) text = re.sub(r'\n+', '\n\n', text) text = re.sub(r'\t+', '\t', text) story['text'] = text return story @classmethod def secure_image_urls(cls, urls): signed_urls = [create_imageproxy_signed_url(settings.IMAGES_URL, settings.IMAGES_SECRET_KEY, url) for url in urls] return dict(zip(urls, signed_urls)) @classmethod def secure_image_thumbnails(cls, urls, size=192): signed_urls = [create_imageproxy_signed_url(settings.IMAGES_URL, settings.IMAGES_SECRET_KEY, url, size) for url in urls] return dict(zip(urls, signed_urls)) def get_tags(self, entry): fcat = [] if entry.has_key('tags'): for tcat in entry.tags: term = None if hasattr(tcat, 'label') and tcat.label: term = tcat.label elif hasattr(tcat, 'term') and tcat.term: term = tcat.term if not term or "CDATA" in term: continue qcat = term.strip() if ',' in qcat or '/' in qcat: qcat = qcat.replace(',', '/').split('/') else: qcat = [qcat] for zcat in qcat: tagname = zcat.lower() while ' ' in tagname: tagname = tagname.replace(' ', ' ') tagname = tagname.strip() if not tagname or tagname == ' ': continue fcat.append(tagname) fcat = [strip_tags(t)[:250] for t in fcat[:12]] return fcat @classmethod def get_permalink(cls, entry): link = entry.get('link') if not link: links = entry.get('links') if links: link = links[0].get('href') if not link: link = entry.get('id') return link def _exists_story(self, story, story_content, existing_stories, new_story_hashes): story_in_system = None story_has_changed = False story_link = self.get_permalink(story) existing_stories_hashes = existing_stories.keys() story_pub_date = story.get('published') # story_published_now = story.get('published_now', False) # start_date = story_pub_date - datetime.timedelta(hours=8) # end_date = story_pub_date + datetime.timedelta(hours=8) for existing_story in existing_stories.values(): content_ratio = 0 # existing_story_pub_date = existing_story.story_date # print 'Story pub date: %s %s' % (story_published_now, story_pub_date) if isinstance(existing_story.id, unicode): # Correcting a MongoDB bug existing_story.story_guid = existing_story.id if story.get('story_hash') == existing_story.story_hash: story_in_system = existing_story elif (story.get('story_hash') in existing_stories_hashes and story.get('story_hash') != existing_story.story_hash): # Story already exists but is not this one continue elif (existing_story.story_hash in new_story_hashes and story.get('story_hash') != existing_story.story_hash): # Story coming up later continue if 'story_latest_content_z' in existing_story: existing_story_content = smart_unicode(zlib.decompress(existing_story.story_latest_content_z)) elif 'story_latest_content' in existing_story: existing_story_content = existing_story.story_latest_content elif 'story_content_z' in existing_story: existing_story_content = smart_unicode(zlib.decompress(existing_story.story_content_z)) elif 'story_content' in existing_story: existing_story_content = existing_story.story_content else: existing_story_content = u'' # Title distance + content distance, checking if story changed story_title_difference = abs(levenshtein_distance(story.get('title'), existing_story.story_title)) title_ratio = difflib.SequenceMatcher(None, story.get('title', ""), existing_story.story_title).ratio() if title_ratio < .75: continue story_timedelta = existing_story.story_date - story_pub_date if abs(story_timedelta.days) >= 1: continue seq = difflib.SequenceMatcher(None, story_content, existing_story_content) similiar_length_min = 1000 if (existing_story.story_permalink == story_link and existing_story.story_title == story.get('title')): similiar_length_min = 20 if (seq and story_content and len(story_content) > similiar_length_min and existing_story_content and seq.real_quick_ratio() > .9 and seq.quick_ratio() > .95): content_ratio = seq.ratio() if story_title_difference > 0 and content_ratio > .98: story_in_system = existing_story if story_title_difference > 0 or content_ratio < 1.0: if settings.DEBUG: logging.debug(" ---> Title difference - %s/%s (%s): %s" % (story.get('title'), existing_story.story_title, story_title_difference, content_ratio)) story_has_changed = True break # More restrictive content distance, still no story match if not story_in_system and content_ratio > .98: if settings.DEBUG: logging.debug(" ---> Content difference - %s/%s (%s): %s" % (story.get('title'), existing_story.story_title, story_title_difference, content_ratio)) story_in_system = existing_story story_has_changed = True break if story_in_system and not story_has_changed: if story_content != existing_story_content: if settings.DEBUG: logging.debug(" ---> Content difference - %s (%s)/%s (%s)" % (story.get('title'), len(story_content), existing_story.story_title, len(existing_story_content))) story_has_changed = True if story_link != existing_story.story_permalink: if settings.DEBUG: logging.debug(" ---> Permalink difference - %s/%s" % (story_link, existing_story.story_permalink)) story_has_changed = True # if story_pub_date != existing_story.story_date: # story_has_changed = True break # if story_has_changed or not story_in_system: # print 'New/updated story: %s' % (story), return story_in_system, story_has_changed def get_next_scheduled_update(self, force=False, verbose=True, premium_speed=False): if self.min_to_decay and not force and not premium_speed: return self.min_to_decay if premium_speed: self.active_premium_subscribers += 1 spd = self.stories_last_month / 30.0 subs = (self.active_premium_subscribers + ((self.active_subscribers - self.active_premium_subscribers) / 10.0)) # Calculate sub counts: # SELECT COUNT(*) FROM feeds WHERE active_premium_subscribers > 10 AND stories_last_month >= 30; # SELECT COUNT(*) FROM feeds WHERE active_premium_subscribers > 1 AND active_premium_subscribers < 10 AND stories_last_month >= 30; # SELECT COUNT(*) FROM feeds WHERE active_premium_subscribers = 1 AND stories_last_month >= 30; # SpD > 1 Subs > 10: t = 6 # 4267 * 1440/6 = 1024080 # SpD > 1 Subs > 1: t = 15 # 18973 * 1440/15 = 1821408 # SpD > 1 Subs = 1: t = 60 # 65503 * 1440/60 = 1572072 # SELECT COUNT(*) FROM feeds WHERE active_premium_subscribers > 1 AND stories_last_month < 30 AND stories_last_month > 0; # SELECT COUNT(*) FROM feeds WHERE active_premium_subscribers = 1 AND stories_last_month < 30 AND stories_last_month > 0; # SpD < 1 Subs > 1: t = 60 # 77618 * 1440/60 = 1862832 # SpD < 1 Subs = 1: t = 60 * 12 # 282186 * 1440/(60*12) = 564372 # SELECT COUNT(*) FROM feeds WHERE active_premium_subscribers > 1 AND stories_last_month = 0; # SELECT COUNT(*) FROM feeds WHERE active_subscribers > 0 AND active_premium_subscribers <= 1 AND stories_last_month = 0; # SpD = 0 Subs > 1: t = 60 * 3 # 30158 * 1440/(60*3) = 241264 # SpD = 0 Subs = 1: t = 60 * 24 # 514131 * 1440/(60*24) = 514131 if spd >= 1: if subs >= 10: total = 6 elif subs > 1: total = 15 else: total = 45 elif spd > 0: if subs > 1: total = 60 - (spd * 60) else: total = 60*12 - (spd * 60*12) elif spd == 0: if subs > 1: total = 60 * 6 elif subs == 1: total = 60 * 12 else: total = 60 * 24 months_since_last_story = seconds_timesince(self.last_story_date) / (60*60*24*30) total *= max(1, months_since_last_story) # updates_per_day_delay = 3 * 60 / max(.25, ((max(0, self.active_subscribers)**.2) # * (self.stories_last_month**0.25))) # if self.active_premium_subscribers > 0: # updates_per_day_delay /= min(self.active_subscribers+self.active_premium_subscribers, 4) # updates_per_day_delay = int(updates_per_day_delay) # Lots of subscribers = lots of updates # 24 hours for 0 subscribers. # 4 hours for 1 subscriber. # .5 hours for 2 subscribers. # .25 hours for 3 subscribers. # 1 min for 10 subscribers. # subscriber_bonus = 6 * 60 / max(.167, max(0, self.active_subscribers)**3) # if self.premium_subscribers > 0: # subscriber_bonus /= min(self.active_subscribers+self.premium_subscribers, 5) # subscriber_bonus = int(subscriber_bonus) if self.is_push: fetch_history = MFetchHistory.feed(self.pk) if len(fetch_history['push_history']): total = total * 12 # 4 hour max for premiums, 48 hour max for free if subs >= 1: total = min(total, 60*4*1) else: total = min(total, 60*24*2) # Craigslist feeds get 6 hours minimum if 'craigslist' in self.feed_address: total = max(total, 60*6) if verbose: logging.debug(" ---> [%-30s] Fetched every %s min - Subs: %s/%s/%s Stories/day: %s" % ( self.log_title[:30], total, self.num_subscribers, self.active_subscribers, self.active_premium_subscribers, spd)) return total def set_next_scheduled_update(self, verbose=False, skip_scheduling=False): r = redis.Redis(connection_pool=settings.REDIS_FEED_UPDATE_POOL) total = self.get_next_scheduled_update(force=True, verbose=verbose) error_count = self.error_count if error_count: total = total * error_count total = min(total, 60*24*7) if verbose: logging.debug(' ---> [%-30s] ~FBScheduling feed fetch geometrically: ' '~SB%s errors. Time: %s min' % ( self.log_title[:30], self.errors_since_good, total)) random_factor = random.randint(0, total) / 4 next_scheduled_update = datetime.datetime.utcnow() + datetime.timedelta( minutes = total + random_factor) original_min_to_decay = self.min_to_decay self.min_to_decay = total delta = self.next_scheduled_update - datetime.datetime.now() minutes_to_next_fetch = (delta.seconds + (delta.days * 24 * 3600)) / 60 if minutes_to_next_fetch > self.min_to_decay or not skip_scheduling: self.next_scheduled_update = next_scheduled_update if self.active_subscribers >= 1: r.zadd('scheduled_updates', self.pk, self.next_scheduled_update.strftime('%s')) r.zrem('tasked_feeds', self.pk) r.srem('queued_feeds', self.pk) updated_fields = ['last_update', 'next_scheduled_update'] if self.min_to_decay != original_min_to_decay: updated_fields.append('min_to_decay') self.save(update_fields=updated_fields) @property def error_count(self): r = redis.Redis(connection_pool=settings.REDIS_FEED_UPDATE_POOL) fetch_errors = int(r.zscore('error_feeds', self.pk) or 0) return fetch_errors + self.errors_since_good def schedule_feed_fetch_immediately(self, verbose=True): r = redis.Redis(connection_pool=settings.REDIS_FEED_UPDATE_POOL) if not self.num_subscribers: logging.debug(' ---> [%-30s] Not scheduling feed fetch immediately, no subs.' % (self.log_title[:30])) return if verbose: logging.debug(' ---> [%-30s] Scheduling feed fetch immediately...' % (self.log_title[:30])) self.next_scheduled_update = datetime.datetime.utcnow() r.zadd('scheduled_updates', self.pk, self.next_scheduled_update.strftime('%s')) return self.save() def setup_push(self): from apps.push.models import PushSubscription try: push = self.push except PushSubscription.DoesNotExist: self.is_push = False else: self.is_push = push.verified self.save() def queue_pushed_feed_xml(self, xml, latest_push_date_delta=None): r = redis.Redis(connection_pool=settings.REDIS_FEED_UPDATE_POOL) queue_size = r.llen("push_feeds") if latest_push_date_delta: latest_push_date_delta = "%s" % str(latest_push_date_delta).split('.', 2)[0] if queue_size > 1000: self.schedule_feed_fetch_immediately() else: logging.debug(' ---> [%-30s] [%s] ~FB~SBQueuing pushed stories, last pushed %s...' % (self.log_title[:30], self.pk, latest_push_date_delta)) self.set_next_scheduled_update() PushFeeds.apply_async(args=(self.pk, xml), queue='push_feeds') # def calculate_collocations_story_content(self, # collocation_measures=TrigramAssocMeasures, # collocation_finder=TrigramCollocationFinder): # stories = MStory.objects.filter(story_feed_id=self.pk) # story_content = ' '.join([s.story_content for s in stories if s.story_content]) # return self.calculate_collocations(story_content, collocation_measures, collocation_finder) # # def calculate_collocations_story_title(self, # collocation_measures=BigramAssocMeasures, # collocation_finder=BigramCollocationFinder): # stories = MStory.objects.filter(story_feed_id=self.pk) # story_titles = ' '.join([s.story_title for s in stories if s.story_title]) # return self.calculate_collocations(story_titles, collocation_measures, collocation_finder) # # def calculate_collocations(self, content, # collocation_measures=TrigramAssocMeasures, # collocation_finder=TrigramCollocationFinder): # content = re.sub(r'&#8217;', '\'', content) # content = re.sub(r'&amp;', '&', content) # try: # content = unicode(BeautifulStoneSoup(content, # convertEntities=BeautifulStoneSoup.HTML_ENTITIES)) # except ValueError, e: # print "ValueError, ignoring: %s" % e # content = re.sub(r'</?\w+\s+[^>]*>', '', content) # content = re.split(r"[^A-Za-z-'&]+", content) # # finder = collocation_finder.from_words(content) # finder.apply_freq_filter(3) # best = finder.nbest(collocation_measures.pmi, 10) # phrases = [' '.join(phrase) for phrase in best] # # return phrases # class FeedCollocations(models.Model): # feed = models.ForeignKey(Feed) # phrase = models.CharField(max_length=500) class FeedData(models.Model): feed = AutoOneToOneField(Feed, related_name='data') feed_tagline = models.CharField(max_length=1024, blank=True, null=True) story_count_history = models.TextField(blank=True, null=True) feed_classifier_counts = models.TextField(blank=True, null=True) popular_tags = models.CharField(max_length=1024, blank=True, null=True) popular_authors = models.CharField(max_length=2048, blank=True, null=True) def save(self, *args, **kwargs): if self.feed_tagline and len(self.feed_tagline) >= 1000: self.feed_tagline = self.feed_tagline[:1000] try: super(FeedData, self).save(*args, **kwargs) except (IntegrityError, OperationError): if hasattr(self, 'id') and self.id: self.delete() except DatabaseError, e: # Nothing updated logging.debug(" ---> ~FRNothing updated in FeedData (%s): %s" % (self.feed, e)) pass class MFeedIcon(mongo.Document): feed_id = mongo.IntField(primary_key=True) color = mongo.StringField(max_length=6) data = mongo.StringField() icon_url = mongo.StringField() not_found = mongo.BooleanField(default=False) meta = { 'collection' : 'feed_icons', 'allow_inheritance' : False, } @classmethod def get_feed(cls, feed_id, create=True): try: feed_icon = cls.objects.read_preference(pymongo.ReadPreference.PRIMARY)\ .get(feed_id=feed_id) except cls.DoesNotExist: if create: feed_icon = cls.objects.create(feed_id=feed_id) else: feed_icon = None return feed_icon def save(self, *args, **kwargs): if self.icon_url: self.icon_url = unicode(self.icon_url) try: return super(MFeedIcon, self).save(*args, **kwargs) except (IntegrityError, OperationError): # print "Error on Icon: %s" % e if hasattr(self, '_id'): self.delete() class MFeedPage(mongo.Document): feed_id = mongo.IntField(primary_key=True) page_data = mongo.BinaryField() meta = { 'collection': 'feed_pages', 'allow_inheritance': False, } def save(self, *args, **kwargs): if self.page_data: self.page_data = zlib.compress(self.page_data) return super(MFeedPage, self).save(*args, **kwargs) def page(self): return zlib.decompress(self.page_data) @classmethod def get_data(cls, feed_id): data = None feed_page = cls.objects(feed_id=feed_id) if feed_page: page_data_z = feed_page[0].page_data if page_data_z: data = zlib.decompress(page_data_z) if not data: dupe_feed = DuplicateFeed.objects.filter(duplicate_feed_id=feed_id) if dupe_feed: feed = dupe_feed[0].feed feed_page = MFeedPage.objects.filter(feed_id=feed.pk) if feed_page: page_data_z = feed_page[0].page_data if page_data_z: data = zlib.decompress(feed_page[0].page_data) return data class MStory(mongo.Document): '''A feed item''' story_feed_id = mongo.IntField() story_date = mongo.DateTimeField() story_title = mongo.StringField(max_length=1024) story_content = mongo.StringField() story_content_z = mongo.BinaryField() story_original_content = mongo.StringField() story_original_content_z = mongo.BinaryField() story_latest_content = mongo.StringField() story_latest_content_z = mongo.BinaryField() original_text_z = mongo.BinaryField() original_page_z = mongo.BinaryField() story_content_type = mongo.StringField(max_length=255) story_author_name = mongo.StringField() story_permalink = mongo.StringField() story_guid = mongo.StringField() story_hash = mongo.StringField() image_urls = mongo.ListField(mongo.StringField(max_length=1024)) story_tags = mongo.ListField(mongo.StringField(max_length=250)) comment_count = mongo.IntField() comment_user_ids = mongo.ListField(mongo.IntField()) share_count = mongo.IntField() share_user_ids = mongo.ListField(mongo.IntField()) meta = { 'collection': 'stories', 'indexes': [('story_feed_id', '-story_date'), {'fields': ['story_hash'], 'unique': True, 'types': False, }], 'ordering': ['-story_date'], 'allow_inheritance': False, 'cascade': False, 'strict': False, } RE_STORY_HASH = re.compile(r"^(\d{1,10}):(\w{6})$") RE_RS_KEY = re.compile(r"^RS:(\d+):(\d+)$") @property def guid_hash(self): return hashlib.sha1(self.story_guid).hexdigest()[:6] @classmethod def guid_hash_unsaved(self, guid): return hashlib.sha1(guid).hexdigest()[:6] @property def feed_guid_hash(self): return "%s:%s" % (self.story_feed_id, self.guid_hash) @classmethod def feed_guid_hash_unsaved(cls, feed_id, guid): return "%s:%s" % (feed_id, cls.guid_hash_unsaved(guid)) @property def decoded_story_title(self): h = HTMLParser.HTMLParser() return h.unescape(self.story_title) def save(self, *args, **kwargs): story_title_max = MStory._fields['story_title'].max_length story_content_type_max = MStory._fields['story_content_type'].max_length self.story_hash = self.feed_guid_hash self.extract_image_urls() if self.story_content: self.story_content_z = zlib.compress(smart_str(self.story_content)) self.story_content = None if self.story_original_content: self.story_original_content_z = zlib.compress(smart_str(self.story_original_content)) self.story_original_content = None if self.story_latest_content: self.story_latest_content_z = zlib.compress(smart_str(self.story_latest_content)) self.story_latest_content = None if self.story_title and len(self.story_title) > story_title_max: self.story_title = self.story_title[:story_title_max] if self.story_content_type and len(self.story_content_type) > story_content_type_max: self.story_content_type = self.story_content_type[:story_content_type_max] super(MStory, self).save(*args, **kwargs) self.sync_redis() return self def delete(self, *args, **kwargs): self.remove_from_redis() self.remove_from_search_index() super(MStory, self).delete(*args, **kwargs) def publish_to_subscribers(self): try: r = redis.Redis(connection_pool=settings.REDIS_PUBSUB_POOL) r.publish("%s:story" % (self.story_feed_id), '%s,%s' % (self.story_hash, self.story_date.strftime('%s'))) except redis.ConnectionError: logging.debug(" ***> [%-30s] ~BMRedis is unavailable for real-time." % (Feed.get_by_id(self.story_feed_id).title[:30],)) @classmethod def purge_feed_stories(cls, feed, cutoff, verbose=True): stories = cls.objects(story_feed_id=feed.pk) logging.debug(" ---> Deleting %s stories from %s" % (stories.count(), feed)) if stories.count() > cutoff*1.25: logging.debug(" ***> ~FRToo many stories in %s, not purging..." % (feed)) return stories.delete() @classmethod def index_all_for_search(cls, offset=0): if not offset: SearchStory.create_elasticsearch_mapping(delete=True) last_pk = Feed.objects.latest('pk').pk for f in xrange(offset, last_pk, 1000): print " ---> %s / %s (%.2s%%)" % (f, last_pk, float(f)/last_pk*100) feeds = Feed.objects.filter(pk__in=range(f, f+1000), active=True, active_subscribers__gte=1)\ .values_list('pk') for feed_id, in feeds: stories = cls.objects.filter(story_feed_id=feed_id) for story in stories: story.index_story_for_search() def index_story_for_search(self): story_content = self.story_content or "" if self.story_content_z: story_content = zlib.decompress(self.story_content_z) SearchStory.index(story_hash=self.story_hash, story_title=self.story_title, story_content=prep_for_search(story_content), story_tags=self.story_tags, story_author=self.story_author_name, story_feed_id=self.story_feed_id, story_date=self.story_date) def remove_from_search_index(self): try: SearchStory.remove(self.story_hash) except NotFoundException: pass @classmethod def trim_feed(cls, cutoff, feed_id=None, feed=None, verbose=True): extra_stories_count = 0 if not feed_id and not feed: return extra_stories_count if not feed_id: feed_id = feed.pk if not feed: feed = feed_id stories = cls.objects( story_feed_id=feed_id ).only('story_date').order_by('-story_date') if stories.count() > cutoff: logging.debug(' ---> [%-30s] ~FMFound %s stories. Trimming to ~SB%s~SN...' % (unicode(feed)[:30], stories.count(), cutoff)) try: story_trim_date = stories[cutoff].story_date if story_trim_date == stories[0].story_date: # Handle case where every story is the same time story_trim_date = story_trim_date - datetime.timedelta(seconds=1) except IndexError, e: logging.debug(' ***> [%-30s] ~BRError trimming feed: %s' % (unicode(feed)[:30], e)) return extra_stories_count extra_stories = cls.objects(story_feed_id=feed_id, story_date__lte=story_trim_date) extra_stories_count = extra_stories.count() shared_story_count = 0 for story in extra_stories: if story.share_count: shared_story_count += 1 extra_stories_count -= 1 continue story.delete() if verbose: existing_story_count = cls.objects(story_feed_id=feed_id).count() logging.debug(" ---> Deleted %s stories, %s (%s shared) left." % ( extra_stories_count, existing_story_count, shared_story_count)) return extra_stories_count @classmethod def find_story(cls, story_feed_id=None, story_id=None, story_hash=None, original_only=False): from apps.social.models import MSharedStory original_found = False if story_hash: story_id = story_hash story_hash = cls.ensure_story_hash(story_id, story_feed_id) if not story_feed_id: story_feed_id, _ = cls.split_story_hash(story_hash) if isinstance(story_id, ObjectId): story = cls.objects(id=story_id).limit(1).first() else: story = cls.objects(story_hash=story_hash).limit(1).first() if story: original_found = True if not story and not original_only: story = MSharedStory.objects.filter(story_feed_id=story_feed_id, story_hash=story_hash).limit(1).first() if not story and not original_only: story = MStarredStory.objects.filter(story_feed_id=story_feed_id, story_hash=story_hash).limit(1).first() return story, original_found @classmethod def find_by_id(cls, story_ids): from apps.social.models import MSharedStory count = len(story_ids) multiple = isinstance(story_ids, list) or isinstance(story_ids, tuple) stories = list(cls.objects(id__in=story_ids)) if len(stories) < count: shared_stories = list(MSharedStory.objects(id__in=story_ids)) stories.extend(shared_stories) if not multiple: stories = stories[0] return stories @classmethod def find_by_story_hashes(cls, story_hashes): from apps.social.models import MSharedStory count = len(story_hashes) multiple = isinstance(story_hashes, list) or isinstance(story_hashes, tuple) stories = list(cls.objects(story_hash__in=story_hashes)) if len(stories) < count: hashes_found = [s.story_hash for s in stories] remaining_hashes = list(set(story_hashes) - set(hashes_found)) story_feed_ids = [h.split(':')[0] for h in remaining_hashes] shared_stories = list(MSharedStory.objects(story_feed_id__in=story_feed_ids, story_hash__in=remaining_hashes)) stories.extend(shared_stories) if not multiple: stories = stories[0] return stories @classmethod def ensure_story_hash(cls, story_id, story_feed_id): if not cls.RE_STORY_HASH.match(story_id): story_id = "%s:%s" % (story_feed_id, hashlib.sha1(story_id).hexdigest()[:6]) return story_id @classmethod def split_story_hash(cls, story_hash): matches = cls.RE_STORY_HASH.match(story_hash) if matches: groups = matches.groups() return groups[0], groups[1] return None, None @classmethod def split_rs_key(cls, rs_key): matches = cls.RE_RS_KEY.match(rs_key) if matches: groups = matches.groups() return groups[0], groups[1] return None, None @classmethod def story_hashes(cls, story_ids): story_hashes = [] for story_id in story_ids: story_hash = cls.ensure_story_hash(story_id) if not story_hash: continue story_hashes.append(story_hash) return story_hashes def sync_redis(self, r=None): if not r: r = redis.Redis(connection_pool=settings.REDIS_STORY_HASH_POOL) # if not r2: # r2 = redis.Redis(connection_pool=settings.REDIS_STORY_HASH_POOL2) UNREAD_CUTOFF = datetime.datetime.now() - datetime.timedelta(days=settings.DAYS_OF_STORY_HASHES) if self.id and self.story_date > UNREAD_CUTOFF: feed_key = 'F:%s' % self.story_feed_id r.sadd(feed_key, self.story_hash) r.expire(feed_key, settings.DAYS_OF_STORY_HASHES*24*60*60) # r2.sadd(feed_key, self.story_hash) # r2.expire(feed_key, settings.DAYS_OF_STORY_HASHES*24*60*60) r.zadd('z' + feed_key, self.story_hash, time.mktime(self.story_date.timetuple())) r.expire('z' + feed_key, settings.DAYS_OF_STORY_HASHES*24*60*60) # r2.zadd('z' + feed_key, self.story_hash, time.mktime(self.story_date.timetuple())) # r2.expire('z' + feed_key, settings.DAYS_OF_STORY_HASHES*24*60*60) def remove_from_redis(self, r=None): if not r: r = redis.Redis(connection_pool=settings.REDIS_STORY_HASH_POOL) # if not r2: # r2 = redis.Redis(connection_pool=settings.REDIS_STORY_HASH_POOL2) if self.id: r.srem('F:%s' % self.story_feed_id, self.story_hash) # r2.srem('F:%s' % self.story_feed_id, self.story_hash) r.zrem('zF:%s' % self.story_feed_id, self.story_hash) # r2.zrem('zF:%s' % self.story_feed_id, self.story_hash) @classmethod def sync_feed_redis(cls, story_feed_id): r = redis.Redis(connection_pool=settings.REDIS_STORY_HASH_POOL) # r2 = redis.Redis(connection_pool=settings.REDIS_STORY_HASH_POOL2) UNREAD_CUTOFF = datetime.datetime.now() - datetime.timedelta(days=settings.DAYS_OF_STORY_HASHES) feed = Feed.get_by_id(story_feed_id) stories = cls.objects.filter(story_feed_id=story_feed_id, story_date__gte=UNREAD_CUTOFF) r.delete('F:%s' % story_feed_id) # r2.delete('F:%s' % story_feed_id) r.delete('zF:%s' % story_feed_id) # r2.delete('zF:%s' % story_feed_id) logging.info(" ---> [%-30s] ~FMSyncing ~SB%s~SN stories to redis" % (feed and feed.log_title[:30] or story_feed_id, stories.count())) p = r.pipeline() # p2 = r2.pipeline() for story in stories: story.sync_redis(r=p) p.execute() # p2.execute() def count_comments(self): from apps.social.models import MSharedStory params = { 'story_guid': self.story_guid, 'story_feed_id': self.story_feed_id, } comments = MSharedStory.objects.filter(has_comments=True, **params).only('user_id') shares = MSharedStory.objects.filter(**params).only('user_id') self.comment_count = comments.count() self.comment_user_ids = [c['user_id'] for c in comments] self.share_count = shares.count() self.share_user_ids = [s['user_id'] for s in shares] self.save() def extract_image_urls(self, force=False, text=False): if self.image_urls and not force and not text: return self.image_urls story_content = None if not text: story_content = self.story_content if not story_content and self.story_content_z: story_content = zlib.decompress(self.story_content_z) elif text: if self.original_text_z: story_content = zlib.decompress(self.original_text_z) if not story_content: return try: soup = BeautifulSoup(story_content) except ValueError: if not text: return self.extract_image_urls(force=force, text=True) else: return images = soup.findAll('img') if not images: if not text: return self.extract_image_urls(force=force, text=True) else: return image_urls = self.image_urls if not image_urls: image_urls = [] for image in images: image_url = image.get('src') if not image_url: continue if image_url and len(image_url) >= 1024: continue image_urls.append(image_url) if not image_urls: if not text: return self.extract_image_urls(force=force, text=True) else: return if text: urls = [] for url in image_urls: if 'http://' in url[1:] or 'https://' in url[1:]: continue urls.append(url) image_urls = urls ordered_image_urls = [] for image_url in list(set(image_urls)): if 'feedburner' in image_url: ordered_image_urls.append(image_url) else: ordered_image_urls.insert(0, image_url) image_urls = ordered_image_urls if len(image_urls): self.image_urls = [u for u in image_urls if u] return self.image_urls def fetch_original_text(self, force=False, request=None, debug=False): original_text_z = self.original_text_z if not original_text_z or force: feed = Feed.get_by_id(self.story_feed_id) ti = TextImporter(self, feed=feed, request=request, debug=debug) original_doc = ti.fetch(return_document=True) original_text = original_doc.get('content') if original_doc else None self.extract_image_urls(force=force, text=True) self.save() else: logging.user(request, "~FYFetching ~FGoriginal~FY story text, ~SBfound.") original_text = zlib.decompress(original_text_z) return original_text def fetch_original_page(self, force=False, request=None, debug=False): from apps.rss_feeds.page_importer import PageImporter if not self.original_page_z or force: feed = Feed.get_by_id(self.story_feed_id) importer = PageImporter(request=request, feed=feed, story=self) original_page = importer.fetch_story() else: logging.user(request, "~FYFetching ~FGoriginal~FY story page, ~SBfound.") original_page = zlib.decompress(self.original_page_z) return original_page class MStarredStory(mongo.DynamicDocument): """Like MStory, but not inherited due to large overhead of _cls and _type in mongoengine's inheritance model on every single row.""" user_id = mongo.IntField(unique_with=('story_guid',)) starred_date = mongo.DateTimeField() story_feed_id = mongo.IntField() story_date = mongo.DateTimeField() story_title = mongo.StringField(max_length=1024) story_content = mongo.StringField() story_content_z = mongo.BinaryField() story_original_content = mongo.StringField() story_original_content_z = mongo.BinaryField() original_text_z = mongo.BinaryField() story_content_type = mongo.StringField(max_length=255) story_author_name = mongo.StringField() story_permalink = mongo.StringField() story_guid = mongo.StringField() story_hash = mongo.StringField() story_tags = mongo.ListField(mongo.StringField(max_length=250)) user_notes = mongo.StringField() user_tags = mongo.ListField(mongo.StringField(max_length=128)) highlights = mongo.ListField(mongo.StringField(max_length=1024)) image_urls = mongo.ListField(mongo.StringField(max_length=1024)) meta = { 'collection': 'starred_stories', 'indexes': [('user_id', '-starred_date'), ('user_id', 'story_feed_id'), ('user_id', 'story_hash'), 'story_feed_id'], 'ordering': ['-starred_date'], 'allow_inheritance': False, 'strict': False, } def __unicode__(self): try: user = User.objects.get(pk=self.user_id) username = user.username except User.DoesNotExist: username = '[deleted]' return "%s: %s (%s)" % (username, self.story_title[:20], self.story_feed_id) def save(self, *args, **kwargs): if self.story_content: self.story_content_z = zlib.compress(self.story_content) self.story_content = None if self.story_original_content: self.story_original_content_z = zlib.compress(self.story_original_content) self.story_original_content = None self.story_hash = self.feed_guid_hash return super(MStarredStory, self).save(*args, **kwargs) @classmethod def find_stories(cls, query, user_id, tag=None, offset=0, limit=25, order="newest"): stories_db = cls.objects( Q(user_id=user_id) & (Q(story_title__icontains=query) | Q(story_author_name__icontains=query) | Q(story_tags__icontains=query)) ) if tag: stories_db = stories_db.filter(user_tags__contains=tag) stories_db = stories_db.order_by('%sstarred_date' % ('-' if order == "newest" else ""))[offset:offset+limit] stories = Feed.format_stories(stories_db) return stories @classmethod def find_stories_by_user_tag(cls, user_tag, user_id, offset=0, limit=25): stories_db = cls.objects( Q(user_id=user_id), Q(user_tags__icontains=user_tag) ).order_by('-starred_date')[offset:offset+limit] stories = Feed.format_stories(stories_db) return stories @classmethod def trim_old_stories(cls, stories=10, days=90, dryrun=False): print " ---> Fetching starred story counts..." stats = settings.MONGODB.newsblur.starred_stories.aggregate([{ "$group": { "_id": "$user_id", "stories": {"$sum": 1}, }, }, { "$match": { "stories": {"$gte": stories} }, }]) month_ago = datetime.datetime.now() - datetime.timedelta(days=days) user_ids = list(stats) user_ids = sorted(user_ids, key=lambda x:x['stories'], reverse=True) print " ---> Found %s users with more than %s starred stories" % (len(user_ids), stories) total = 0 for stat in user_ids: try: user = User.objects.select_related('profile').get(pk=stat['_id']) except User.DoesNotExist: user = None if user and (user.profile.is_premium or user.profile.last_seen_on > month_ago): continue total += stat['stories'] username = "%s (%s)" % (user and user.username or " - ", stat['_id']) print " ---> %19.19s: %-20.20s %s stories" % (user and user.profile.last_seen_on or "Deleted", username, stat['stories']) if not dryrun and stat['_id']: cls.objects.filter(user_id=stat['_id']).delete() elif not dryrun and stat['_id'] == 0: print " ---> Deleting unstarred stories (user_id = 0)" cls.objects.filter(user_id=stat['_id']).delete() print " ---> Deleted %s stories in total." % total @property def guid_hash(self): return hashlib.sha1(self.story_guid).hexdigest()[:6] @property def feed_guid_hash(self): return "%s:%s" % (self.story_feed_id or "0", self.guid_hash) def fetch_original_text(self, force=False, request=None, debug=False): original_text_z = self.original_text_z feed = Feed.get_by_id(self.story_feed_id) if not original_text_z or force: ti = TextImporter(self, feed=feed, request=request, debug=debug) original_text = ti.fetch() else: logging.user(request, "~FYFetching ~FGoriginal~FY story text, ~SBfound.") original_text = zlib.decompress(original_text_z) return original_text def fetch_original_page(self, force=False, request=None, debug=False): return None class MStarredStoryCounts(mongo.Document): user_id = mongo.IntField() tag = mongo.StringField(max_length=128) feed_id = mongo.IntField() is_highlights = mongo.BooleanField() slug = mongo.StringField(max_length=128) count = mongo.IntField(default=0) meta = { 'collection': 'starred_stories_counts', 'indexes': ['user_id'], 'ordering': ['tag'], 'allow_inheritance': False, } def __unicode__(self): if self.tag: return "Tag: %s (%s)" % (self.tag, self.count) elif self.feed_id: return "Feed: %s (%s)" % (self.feed_id, self.count) elif self.is_highlights: return "Highlights: %s (%s)" % (self.is_highlights, self.count) return "%s/%s/%s" % (self.tag, self.feed_id, self.is_highlights) @property def rss_url(self, secret_token=None): if self.feed_id: return if not secret_token: user = User.objects.select_related('profile').get(pk=self.user_id) secret_token = user.profile.secret_token slug = self.slug if self.slug else "" return "%s/reader/starred_rss/%s/%s/%s" % (settings.NEWSBLUR_URL, self.user_id, secret_token, slug) @classmethod def user_counts(cls, user_id, include_total=False, try_counting=True): counts = cls.objects.filter(user_id=user_id) counts = sorted([{'tag': c.tag, 'count': c.count, 'is_highlights': c.is_highlights, 'feed_address': c.rss_url, 'feed_id': c.feed_id} for c in counts], key=lambda x: (x.get('tag', '') or '').lower()) total = 0 feed_total = 0 for c in counts: if not c['tag'] and not c['feed_id'] and not c['is_highlights']: total = c['count'] if c['feed_id']: feed_total += c['count'] if try_counting and (total != feed_total or not len(counts)): user = User.objects.get(pk=user_id) logging.user(user, "~FC~SBCounting~SN saved stories (%s total vs. %s counted)..." % (total, feed_total)) cls.count_for_user(user_id) return cls.user_counts(user_id, include_total=include_total, try_counting=False) if include_total: return counts, total return counts @classmethod def schedule_count_tags_for_user(cls, user_id): ScheduleCountTagsForUser.apply_async(kwargs=dict(user_id=user_id)) @classmethod def count_for_user(cls, user_id, total_only=False): user_tags = [] user_feeds = [] highlights = 0 if not total_only: cls.objects(user_id=user_id).delete() try: user_tags = cls.count_tags_for_user(user_id) highlights = cls.count_highlights_for_user(user_id) user_feeds = cls.count_feeds_for_user(user_id) except pymongo.errors.OperationFailure, e: logging.debug(" ---> ~FBOperationError on mongo: ~SB%s" % e) total_stories_count = MStarredStory.objects(user_id=user_id).count() cls.objects(user_id=user_id, tag=None, feed_id=None, is_highlights=None).update_one(set__count=total_stories_count, upsert=True) return dict(total=total_stories_count, tags=user_tags, feeds=user_feeds, highlights=highlights) @classmethod def count_tags_for_user(cls, user_id): all_tags = MStarredStory.objects(user_id=user_id, user_tags__exists=True).item_frequencies('user_tags') user_tags = sorted([(k, v) for k, v in all_tags.items() if int(v) > 0 and k], key=lambda x: x[0].lower(), reverse=True) for tag, count in dict(user_tags).items(): cls.objects(user_id=user_id, tag=tag, slug=slugify(tag)).update_one(set__count=count, upsert=True) return user_tags @classmethod def count_highlights_for_user(cls, user_id): highlighted_count = MStarredStory.objects(user_id=user_id, highlights__exists=True, __raw__={"$where": "this.highlights.length > 0"}).count() cls.objects(user_id=user_id, is_highlights=True, slug="highlights").update_one(set__count=highlighted_count, upsert=True) return highlighted_count @classmethod def count_feeds_for_user(cls, user_id): all_feeds = MStarredStory.objects(user_id=user_id).item_frequencies('story_feed_id') user_feeds = dict([(k, v) for k, v in all_feeds.items() if v]) # Clean up None'd and 0'd feed_ids, so they can be counted against the total if user_feeds.get(None, False): user_feeds[0] = user_feeds.get(0, 0) user_feeds[0] += user_feeds.get(None) del user_feeds[None] if user_feeds.get(0, False): user_feeds[-1] = user_feeds.get(0, 0) del user_feeds[0] too_many_feeds = False if len(user_feeds) < 1000 else True for feed_id, count in user_feeds.items(): if too_many_feeds and count <= 1: continue cls.objects(user_id=user_id, feed_id=feed_id, slug="feed:%s" % feed_id).update_one(set__count=count, upsert=True) return user_feeds @classmethod def adjust_count(cls, user_id, feed_id=None, tag=None, highlights=None, amount=0): params = dict(user_id=user_id) if feed_id: params['feed_id'] = feed_id if tag: params['tag'] = tag if highlights: params['is_highlights'] = True cls.objects(**params).update_one(inc__count=amount, upsert=True) try: story_count = cls.objects.get(**params) except cls.MultipleObjectsReturned: story_count = cls.objects(**params).first() if story_count and story_count.count <= 0: story_count.delete() class MSavedSearch(mongo.Document): user_id = mongo.IntField() query = mongo.StringField(max_length=1024) feed_id = mongo.StringField() slug = mongo.StringField(max_length=128) meta = { 'collection': 'saved_searches', 'indexes': ['user_id', {'fields': ['user_id', 'feed_id', 'query'], 'unique': True, 'types': False, }], 'ordering': ['query'], 'allow_inheritance': False, } @property def rss_url(self, secret_token=None): if not secret_token: user = User.objects.select_related('profile').get(pk=self.user_id) secret_token = user.profile.secret_token slug = self.slug if self.slug else "" return "%s/reader/saved_search/%s/%s/%s" % (settings.NEWSBLUR_URL, self.user_id, secret_token, slug) @classmethod def user_searches(cls, user_id): searches = cls.objects.filter(user_id=user_id) searches = sorted([{'query': s.query, 'feed_address': s.rss_url, 'feed_id': s.feed_id, } for s in searches], key=lambda x: (x.get('query', '') or '').lower()) return searches @classmethod def save_search(cls, user_id, feed_id, query): user = User.objects.get(pk=user_id) params = dict(user_id=user_id, feed_id=feed_id, query=query, slug=slugify(query)) try: saved_search = cls.objects.get(**params) logging.user(user, "~FRSaved search already exists: ~SB%s" % query) except cls.DoesNotExist: logging.user(user, "~FCCreating a saved search: ~SB%s~SN/~SB%s" % (feed_id, query)) saved_search = cls.objects.create(**params) return saved_search @classmethod def delete_search(cls, user_id, feed_id, query): user = User.objects.get(pk=user_id) params = dict(user_id=user_id, feed_id=feed_id, query=query) try: saved_search = cls.objects.get(**params) logging.user(user, "~FCDeleting saved search: ~SB%s" % query) saved_search.delete() except cls.DoesNotExist: logging.user(user, "~FRCan't delete saved search, missing: ~SB%s~SN/~SB%s" % (feed_id, query)) except cls.MultipleObjectsReturned: logging.user(user, "~FRFound multiple saved searches, deleting: ~SB%s~SN/~SB%s" % (feed_id, query)) cls.objects(**params).delete() class MFetchHistory(mongo.Document): feed_id = mongo.IntField(unique=True) feed_fetch_history = mongo.DynamicField() page_fetch_history = mongo.DynamicField() push_history = mongo.DynamicField() raw_feed_history = mongo.DynamicField() meta = { 'db_alias': 'nbanalytics', 'collection': 'fetch_history', 'allow_inheritance': False, } @classmethod def feed(cls, feed_id, timezone=None, fetch_history=None): if not fetch_history: try: fetch_history = cls.objects.read_preference(pymongo.ReadPreference.PRIMARY)\ .get(feed_id=feed_id) except cls.DoesNotExist: fetch_history = cls.objects.create(feed_id=feed_id) history = {} for fetch_type in ['feed_fetch_history', 'page_fetch_history', 'push_history']: history[fetch_type] = getattr(fetch_history, fetch_type) if not history[fetch_type]: history[fetch_type] = [] for f, fetch in enumerate(history[fetch_type]): date_key = 'push_date' if fetch_type == 'push_history' else 'fetch_date' history[fetch_type][f] = { date_key: localtime_for_timezone(fetch[0], timezone).strftime("%Y-%m-%d %H:%M:%S"), 'status_code': fetch[1], 'message': fetch[2] } return history @classmethod def add(cls, feed_id, fetch_type, date=None, message=None, code=None, exception=None): if not date: date = datetime.datetime.now() try: fetch_history = cls.objects.read_preference(pymongo.ReadPreference.PRIMARY)\ .get(feed_id=feed_id) except cls.DoesNotExist: fetch_history = cls.objects.create(feed_id=feed_id) if fetch_type == 'feed': history = fetch_history.feed_fetch_history or [] elif fetch_type == 'page': history = fetch_history.page_fetch_history or [] elif fetch_type == 'push': history = fetch_history.push_history or [] elif fetch_type == 'raw_feed': history = fetch_history.raw_feed_history or [] history = [[date, code, message]] + history any_exceptions = any([c for d, c, m in history if c not in [200, 304]]) if any_exceptions: history = history[:25] elif fetch_type == 'raw_feed': history = history[:10] else: history = history[:5] if fetch_type == 'feed': fetch_history.feed_fetch_history = history elif fetch_type == 'page': fetch_history.page_fetch_history = history elif fetch_type == 'push': fetch_history.push_history = history elif fetch_type == 'raw_feed': fetch_history.raw_feed_history = history fetch_history.save() if fetch_type == 'feed': RStats.add('feed_fetch') return cls.feed(feed_id, fetch_history=fetch_history) class DuplicateFeed(models.Model): duplicate_address = models.CharField(max_length=764, db_index=True) duplicate_link = models.CharField(max_length=764, null=True, db_index=True) duplicate_feed_id = models.CharField(max_length=255, null=True, db_index=True) feed = models.ForeignKey(Feed, related_name='duplicate_addresses') def __unicode__(self): return "%s: %s / %s" % (self.feed, self.duplicate_address, self.duplicate_link) def canonical(self): return { 'duplicate_address': self.duplicate_address, 'duplicate_link': self.duplicate_link, 'duplicate_feed_id': self.duplicate_feed_id, 'feed_id': self.feed_id } def save(self, *args, **kwargs): max_address = DuplicateFeed._meta.get_field('duplicate_address').max_length if len(self.duplicate_address) > max_address: self.duplicate_address = self.duplicate_address[:max_address] max_link = DuplicateFeed._meta.get_field('duplicate_link').max_length if self.duplicate_link and len(self.duplicate_link) > max_link: self.duplicate_link = self.duplicate_link[:max_link] super(DuplicateFeed, self).save(*args, **kwargs) def merge_feeds(original_feed_id, duplicate_feed_id, force=False): from apps.reader.models import UserSubscription from apps.social.models import MSharedStory if original_feed_id == duplicate_feed_id: logging.info(" ***> Merging the same feed. Ignoring...") return original_feed_id try: original_feed = Feed.objects.get(pk=original_feed_id) duplicate_feed = Feed.objects.get(pk=duplicate_feed_id) except Feed.DoesNotExist: logging.info(" ***> Already deleted feed: %s" % duplicate_feed_id) return original_feed_id heavier_dupe = original_feed.num_subscribers < duplicate_feed.num_subscribers branched_original = original_feed.branch_from_feed and not duplicate_feed.branch_from_feed if (heavier_dupe or branched_original) and not force: original_feed, duplicate_feed = duplicate_feed, original_feed original_feed_id, duplicate_feed_id = duplicate_feed_id, original_feed_id if branched_original: original_feed.feed_address = duplicate_feed.feed_address logging.info(" ---> Feed: [%s - %s] %s - %s" % (original_feed_id, duplicate_feed_id, original_feed, original_feed.feed_link)) logging.info(" Orig ++> %s: (%s subs) %s / %s %s" % (original_feed.pk, original_feed.num_subscribers, original_feed.feed_address, original_feed.feed_link, " [B: %s]" % original_feed.branch_from_feed.pk if original_feed.branch_from_feed else "")) logging.info(" Dupe --> %s: (%s subs) %s / %s %s" % (duplicate_feed.pk, duplicate_feed.num_subscribers, duplicate_feed.feed_address, duplicate_feed.feed_link, " [B: %s]" % duplicate_feed.branch_from_feed.pk if duplicate_feed.branch_from_feed else "")) original_feed.branch_from_feed = None user_subs = UserSubscription.objects.filter(feed=duplicate_feed).order_by('-pk') for user_sub in user_subs: user_sub.switch_feed(original_feed, duplicate_feed) def delete_story_feed(model, feed_field='feed_id'): duplicate_stories = model.objects(**{feed_field: duplicate_feed.pk}) # if duplicate_stories.count(): # logging.info(" ---> Deleting %s %s" % (duplicate_stories.count(), model)) duplicate_stories.delete() delete_story_feed(MStory, 'story_feed_id') delete_story_feed(MFeedPage, 'feed_id') try: DuplicateFeed.objects.create( duplicate_address=duplicate_feed.feed_address, duplicate_link=duplicate_feed.feed_link, duplicate_feed_id=duplicate_feed.pk, feed=original_feed ) except (IntegrityError, OperationError), e: logging.info(" ***> Could not save DuplicateFeed: %s" % e) # Switch this dupe feed's dupe feeds over to the new original. duplicate_feeds_duplicate_feeds = DuplicateFeed.objects.filter(feed=duplicate_feed) for dupe_feed in duplicate_feeds_duplicate_feeds: dupe_feed.feed = original_feed dupe_feed.duplicate_feed_id = duplicate_feed.pk dupe_feed.save() logging.debug(' ---> Dupe subscribers (%s): %s, Original subscribers (%s): %s' % (duplicate_feed.pk, duplicate_feed.num_subscribers, original_feed.pk, original_feed.num_subscribers)) if duplicate_feed.pk != original_feed.pk: duplicate_feed.delete() else: logging.debug(" ***> Duplicate feed is the same as original feed. Panic!") logging.debug(' ---> Deleted duplicate feed: %s/%s' % (duplicate_feed, duplicate_feed_id)) original_feed.branch_from_feed = None original_feed.count_subscribers() original_feed.save() logging.debug(' ---> Now original subscribers: %s' % (original_feed.num_subscribers)) MSharedStory.switch_feed(original_feed_id, duplicate_feed_id) return original_feed_id def rewrite_folders(folders, original_feed, duplicate_feed): new_folders = [] for k, folder in enumerate(folders): if isinstance(folder, int): if folder == duplicate_feed.pk: # logging.info(" ===> Rewrote %s'th item: %s" % (k+1, folders)) new_folders.append(original_feed.pk) else: new_folders.append(folder) elif isinstance(folder, dict): for f_k, f_v in folder.items(): new_folders.append({f_k: rewrite_folders(f_v, original_feed, duplicate_feed)}) return new_folders
45.375402
302
0.569862
3ba998266f9548b51dffe46f2188ee66b2f350f7
5,626
py
Python
src/gtk-client/client.py
lalaveine/VoiceAssistant
3742de4b305ba0e9bd34f3a9914a20ec64e17397
[ "MIT" ]
null
null
null
src/gtk-client/client.py
lalaveine/VoiceAssistant
3742de4b305ba0e9bd34f3a9914a20ec64e17397
[ "MIT" ]
3
2021-02-08T20:33:39.000Z
2021-06-02T00:00:21.000Z
src/gtk-client/client.py
lalaveine/VoiceAssistant
3742de4b305ba0e9bd34f3a9914a20ec64e17397
[ "MIT" ]
1
2020-04-17T18:40:09.000Z
2020-04-17T18:40:09.000Z
import gi gi.require_version('Gtk', '3.0') from gi.repository import Gtk # import model from src.model.datamanager import SupportedApplications # DBus from pydbus import SessionBus import threading class DBusService(object): """ <node> <interface name='org.LinuxAssistantClient'> <method name='probe_connection'> <arg type='b' name='response' direction='out'/> </method> <method name='print_text'> <arg type='s' name='text' direction='in'/> <arg type='b' name='is_user' direction='in'/> </method> <method name='echo_string'> <arg type='s' name='a' direction='in'/> <arg type='s' name='response' direction='out'/> </method> <method name='quit'/> </interface> </node> """ def probe_connection(self): return True def print_text(self, text, is_user): print("Print text") if is_user is True: add_row(text, "right") else: add_row(text, "left") def echo_string(self, s): """returns whatever is passed to it""" return s class Handler: def add_app_button_clicked(self, *args): print("Add command") add_app_dialog.show_all() response = add_app_dialog.run() name_entry = builder.get_object("add_app_name_entry") command_entry = builder.get_object("add_command_entry") if response == -10: print("Apply") SupportedApplications.add_entry(name_entry.get_text(), command_entry.get_text()) draw_table(True) name_entry.set_text("") command_entry.set_text("") def edit_app_button_clicked(self, *args): print("edit command") name_entry = builder.get_object("edit_app_name_entry") command_entry = builder.get_object("edit_command_entry") (model, iter) = select.get_selected() print((model[iter][0])) name_entry.set_text((model[iter][0])) command_entry.set_text((model[iter][1])) edit_app_dialog.show_all() response = edit_app_dialog.run() if response == -10: print("Apply") SupportedApplications.edit_entry((model[iter][0]), name_entry.get_text(), command_entry.get_text()) draw_table(True) name_entry.set_text("") command_entry.set_text("") def remove_app_button_clicked(self, *args): print("remove command") (model, iter) = select.get_selected() SupportedApplications.remove_entry((model[iter][0])) draw_table(True) def on_record_button_clicked(self, *args): thread = threading.Thread(target=server.wakeup_call) thread.daemon = True thread.start() def on_dialog_delete_event(self, dialog, event): dialog.hide() return True def on_response(self, dialog, response_id): dialog.hide() def on_tree_selection_changed(selection): model, treeiter = selection.get_selected() if treeiter is not None: print("You selected", model[treeiter][0]) def main_window_destroy(self, *args): Gtk.main_quit() def get_app_list_store(): store = Gtk.ListStore(str, str) app_list = SupportedApplications.select().order_by(SupportedApplications.app_name) for app in app_list: store.append([app.app_name, app.terminal_command]) return store # def draw_table(redraw=False): # store = get_app_list_store() # # app_list_treeview.set_model(store) # # renderer = Gtk.CellRendererText() # # if not redraw: # column_app = Gtk.TreeViewColumn("Приложение", renderer, text=0) # app_list_treeview.append_column(column_app) # # column_command = Gtk.TreeViewColumn("Команда", renderer, text=1) # app_list_treeview.append_column(column_command) def add_row(text, text_alignment): row = Gtk.ListBoxRow() gtkbox = Gtk.Box(orientation=Gtk.Orientation.HORIZONTAL) row.add(gtkbox) if text_alignment is "right": message = Gtk.Label(text, xalign=1) elif text_alignment is "left": message = Gtk.Label(text, xalign=0) gtkbox.pack_start(message, True, True, 0) assistant_listbox.add(row) assistant_listbox.show_all() if __name__ == '__main__': builder = Gtk.Builder() builder.add_from_file("client1.glade") builder.connect_signals(Handler()) main_window = builder.get_object("main_window") # add_app_dialog = builder.get_object("add_app_dialog") # edit_app_dialog = builder.get_object("edit_app_dialog") # app_list_treeview = builder.get_object("app_list_treeview") server_status_label = builder.get_object("server_status_label") assistant_listbox = builder.get_object("assistant_listbox") # select = app_list_treeview.get_selection() # select.connect("changed", Handler.on_tree_selection_changed) # draw_table() client_bus = SessionBus() client_bus.publish("org.LinuxAssistantClient", DBusService()) server_bus = SessionBus() is_server_running = False try: server = server_bus.get("org.LinuxAssistantServer") is_server_running = server.client_init() except: print("Server is not running") if is_server_running is True: server_status_label.set_text("Server is running") else: server_status_label.set_text("Server is not running") main_window.show_all() Gtk.main()
29.925532
111
0.635087
ae00a3d8222dce0e1279e4f7e14ff28cd42bb78d
4,024
py
Python
graphql_compiler/schema_generation/sqlalchemy/__init__.py
manesioz/graphql-compiler
b23be9c4a8e26f8c82e741625e04f7c9ac2e623b
[ "Apache-2.0" ]
null
null
null
graphql_compiler/schema_generation/sqlalchemy/__init__.py
manesioz/graphql-compiler
b23be9c4a8e26f8c82e741625e04f7c9ac2e623b
[ "Apache-2.0" ]
null
null
null
graphql_compiler/schema_generation/sqlalchemy/__init__.py
manesioz/graphql-compiler
b23be9c4a8e26f8c82e741625e04f7c9ac2e623b
[ "Apache-2.0" ]
null
null
null
# Copyright 2019-present Kensho Technologies, LLC. from ...schema.schema_info import SQLAlchemySchemaInfo from ..graphql_schema import get_graphql_schema_from_schema_graph from .edge_descriptors import get_join_descriptors_from_edge_descriptors from .schema_graph_builder import get_sqlalchemy_schema_graph def get_sqlalchemy_schema_info( vertex_name_to_table, direct_edges, dialect, class_to_field_type_overrides=None ): """Return a SQLAlchemySchemaInfo from the metadata. Relational databases are supported by compiling to SQLAlchemy core as an intermediate language, and then relying on SQLAlchemy's compilation of the dialect-specific SQL string to query the target database. Constructing the SQLAlchemySchemaInfo class, which contains all the info required to compile SQL queries, requires the use of SQLAlchemy Table objects representing underlying SQL tables. These can be autogenerated from a SQL database through the reflect() method in a SQLAlchemy Metadata object. It is also possible to construct the SQLAlchemy Table objects by using the class's init method and specifying the needed metadata. If you choose to use the the latter manner, make sure to properly define the optional schema and primary_key fields since the compiler relies on these to compile GraphQL to SQL. Args: vertex_name_to_table: dict, str -> SQLAlchemy Table. This dictionary is used to generate the GraphQL objects in the schema in the SQLAlchemySchemaInfo. Each SQLAlchemyTable will be represented as a GraphQL object. The GraphQL object names are the dictionary keys. The fields of the GraphQL objects will be inferred from the columns of the underlying tables. The fields will have the same name as the underlying columns and columns with unsupported types, (SQL types with no matching GraphQL type), will be ignored. direct_edges: dict, str-> DirectEdgeDescriptor. The traversal of a direct edge gets compiled to a SQL join in graphql_to_sql(). Therefore, each DirectEdgeDescriptor not only specifies the source and destination GraphQL objects, but also which columns to use to use when generating a SQL join between the underlying source and destination tables. The names of the edges are the keys in the dictionary and the edges will be rendered as vertex fields named out_<edgeName> and in_<edgeName> in the source and destination GraphQL objects respectively. The direct edge names must not conflict with the GraphQL object names. dialect: sqlalchemy.engine.interfaces.Dialect, specifying the dialect we are compiling to (e.g. sqlalchemy.dialects.mssql.dialect()). class_to_field_type_overrides: optional dict, class name -> {field name -> field type}, (string -> {string -> GraphQLType}). Used to override the type of a field in the class where it's first defined and all the class's subclasses. Returns: SQLAlchemySchemaInfo containing the full information needed to compile SQL queries. """ schema_graph = get_sqlalchemy_schema_graph(vertex_name_to_table, direct_edges) graphql_schema, type_equivalence_hints = get_graphql_schema_from_schema_graph( schema_graph, class_to_field_type_overrides=class_to_field_type_overrides, hidden_classes=set(), ) join_descriptors = get_join_descriptors_from_edge_descriptors(direct_edges) return SQLAlchemySchemaInfo( graphql_schema, type_equivalence_hints, dialect, vertex_name_to_table, join_descriptors )
60.969697
100
0.69334
ca45cbe6be7d553e55704f730055f27d85a044e6
2,771
py
Python
src/ext/glbinding/codegeneration/scripts/gen_types.py
carl-221b/gen_planete
89cf1096363c8f1e1ee0de3221e3cd5057862391
[ "MIT" ]
null
null
null
src/ext/glbinding/codegeneration/scripts/gen_types.py
carl-221b/gen_planete
89cf1096363c8f1e1ee0de3221e3cd5057862391
[ "MIT" ]
null
null
null
src/ext/glbinding/codegeneration/scripts/gen_types.py
carl-221b/gen_planete
89cf1096363c8f1e1ee0de3221e3cd5057862391
[ "MIT" ]
1
2021-07-01T07:45:44.000Z
2021-07-01T07:45:44.000Z
from binding import * from classes.Type import * REGULAR_TYPE_INTEGRATIONS = { "GLextension" : [ "hashable", "streamable" ], "GLboolean" : [ "streamable" ], "GLenum" : [ "hashable", "streamable", "addable", "comparable" ] } BITFIELD_TYPE_INTEGRATIONS = [ "hashable", "bitfieldStreamable", "bitOperatable"] TYPE_INTEGRATIONS = [ "addable", "bitOperatable", "bitfieldStreamable", "comparable", "hashable", "streamable"] def integrationMap(integrationList): return { integration: (integration in integrationList) for integration in TYPE_INTEGRATIONS} def typeIntegrationMap(type): return integrationMap(REGULAR_TYPE_INTEGRATIONS[type.name] if type.name in REGULAR_TYPE_INTEGRATIONS else []) # ToDo: move this to Type class? (as well as convert an multiline convert) enum_classes = [ "GLenum" ] def convertTypedefLine(line, name): if not line.startswith("typedef"): return line else: return "using " + name + " = " + line[8:].replace(name, "") def multilineConvertTypedef(type): return "\n".join([ convertTypedefLine(line, type.name) for line in type.value.split('\n') ]) def convertTypedef(type): if '\n' in type.value: return multilineConvertTypedef(type) t = parseType(type) if type.name in enum_classes: return "enum class " + type.name + " : " + t + ";" if not type.value.startswith("typedef"): return t elif type.name == "GLboolean": return "// Import of GLboolean is an include" else: return "using " + type.name + " = " + t + ";" def convertType(type): return convertTypedef(type).replace(" ;", ";").replace("( *)", "(*)").replace("(*)", "(GL_APIENTRY *)") def genTypeContexts(types, bitfGroups): typeContexts = [{"identifier": "GLextension", "definition": "enum class GLextension : int;", "integrations": integrationMap([ "hashable", "streamable" ]), "hasIntegrations": True}] for type in types: #TODO-LW: explicitly sort types and bitfGroups integrations = typeIntegrationMap(type) typeContexts.append({"identifier": type.name, "definition": convertType(type), "integrations": integrations, "hasIntegrations": any(integrations.values()) }) for bitf in bitfGroups: integrations = integrationMap(BITFIELD_TYPE_INTEGRATIONS) typeContexts.append({"identifier": bitf.name, "definition": "enum class {} : unsigned int;".format(bitf.name), "integrations": integrations, "hasIntegrations": any(integrations.values()) }) return typeContexts
34.6375
113
0.619632
ffb0402c174027e873efa47a34380cb1763f72e2
1,278
py
Python
negociant/trader/app/algoTrading/testRpc.py
XilinJia/Negociant
53a0c0b4f40bd6d3ea1955745360f78dacfc71c1
[ "MIT" ]
null
null
null
negociant/trader/app/algoTrading/testRpc.py
XilinJia/Negociant
53a0c0b4f40bd6d3ea1955745360f78dacfc71c1
[ "MIT" ]
null
null
null
negociant/trader/app/algoTrading/testRpc.py
XilinJia/Negociant
53a0c0b4f40bd6d3ea1955745360f78dacfc71c1
[ "MIT" ]
null
null
null
# encoding: UTF-8 from __future__ import print_function from time import sleep from six.moves import input from negociant.rpc import RpcClient from negociant.trader.vtConstant import OFFSET_OPEN, DIRECTION_LONG ######################################################################## class TestClient(RpcClient): """""" #---------------------------------------------------------------------- def __init__(self, reqAddress, subAddress): """Constructor""" super(TestClient, self).__init__(reqAddress, subAddress) #---------------------------------------------------------------------- def callback(self, topic, data): """回调函数实现""" print(('client received topic:', topic, ', data:', data)) if __name__ == '__main__': reqAddress = 'tcp://localhost:8899' subAddress = 'tcp://localhost:9988' tc = TestClient(reqAddress, subAddress) tc.subscribeTopic('') tc.start() setting = { 'templateName': u'BestLimit 最优限价', 'vtSymbol': 'rb1810.SHFE', 'volume': 10, 'direction': DIRECTION_LONG, 'offset': OFFSET_OPEN } algoName = tc.addAlgo(setting) print(u'启动算法,实例名', algoName) sleep(5) tc.stopAlgo(algoName) print(u'停止算法') input()
26.081633
75
0.525039
2176898c80a71ef6f0281730220c32c7980d9609
5,725
py
Python
sympy/physics/mechanics/tests/test_jointsmethod.py
nashalex/sympy
aec3e6512be46f0558f5dbcf2b4d723496c91649
[ "BSD-3-Clause" ]
8,323
2015-01-02T15:51:43.000Z
2022-03-31T13:13:19.000Z
sympy/physics/mechanics/tests/test_jointsmethod.py
nashalex/sympy
aec3e6512be46f0558f5dbcf2b4d723496c91649
[ "BSD-3-Clause" ]
15,102
2015-01-01T01:33:17.000Z
2022-03-31T22:53:13.000Z
sympy/physics/mechanics/tests/test_jointsmethod.py
nashalex/sympy
aec3e6512be46f0558f5dbcf2b4d723496c91649
[ "BSD-3-Clause" ]
4,490
2015-01-01T17:48:07.000Z
2022-03-31T17:24:05.000Z
from sympy import symbols, Matrix, cos, sin, expand, trigsimp from sympy.physics.mechanics import (PinJoint, JointsMethod, Body, KanesMethod, PrismaticJoint, LagrangesMethod, inertia) from sympy.physics.vector import dynamicsymbols, ReferenceFrame from sympy.testing.pytest import raises t = dynamicsymbols._t # type: ignore def test_jointsmethod(): P = Body('P') C = Body('C') Pin = PinJoint('P1', P, C) C_ixx, g = symbols('C_ixx g') theta, omega = dynamicsymbols('theta_P1, omega_P1') P.apply_force(g*P.y) method = JointsMethod(P, Pin) assert method.frame == P.frame assert method.bodies == [C, P] assert method.loads == [(P.masscenter, g*P.frame.y)] assert method.q == [theta] assert method.u == [omega] assert method.kdes == [omega - theta.diff()] soln = method.form_eoms() assert soln == Matrix([[-C_ixx*omega.diff()]]) assert method.forcing_full == Matrix([[omega], [0]]) assert method.mass_matrix_full == Matrix([[1, 0], [0, C_ixx]]) assert isinstance(method.method, KanesMethod) def test_jointmethod_duplicate_coordinates_speeds(): P = Body('P') C = Body('C') T = Body('T') q, u = dynamicsymbols('q u') P1 = PinJoint('P1', P, C, q) P2 = PrismaticJoint('P2', C, T, q) raises(ValueError, lambda: JointsMethod(P, P1, P2)) P1 = PinJoint('P1', P, C, speeds=u) P2 = PrismaticJoint('P2', C, T, speeds=u) raises(ValueError, lambda: JointsMethod(P, P1, P2)) P1 = PinJoint('P1', P, C, q, u) P2 = PrismaticJoint('P2', C, T, q, u) raises(ValueError, lambda: JointsMethod(P, P1, P2)) def test_complete_simple_double_pendulum(): q1, q2 = dynamicsymbols('q1 q2') u1, u2 = dynamicsymbols('u1 u2') m, l, g = symbols('m l g') C = Body('C') # ceiling PartP = Body('P', mass=m) PartR = Body('R', mass=m) J1 = PinJoint('J1', C, PartP, speeds=u1, coordinates=q1, child_joint_pos=-l*PartP.x, parent_axis=C.z, child_axis=PartP.z) J2 = PinJoint('J2', PartP, PartR, speeds=u2, coordinates=q2, child_joint_pos=-l*PartR.x, parent_axis=PartP.z, child_axis=PartR.z) PartP.apply_force(m*g*C.x) PartR.apply_force(m*g*C.x) method = JointsMethod(C, J1, J2) method.form_eoms() assert expand(method.mass_matrix_full) == Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 2*l**2*m*cos(q2) + 3*l**2*m, l**2*m*cos(q2) + l**2*m], [0, 0, l**2*m*cos(q2) + l**2*m, l**2*m]]) assert trigsimp(method.forcing_full) == trigsimp(Matrix([[u1], [u2], [-g*l*m*(sin(q1 + q2) + sin(q1)) - g*l*m*sin(q1) + l**2*m*(2*u1 + u2)*u2*sin(q2)], [-g*l*m*sin(q1 + q2) - l**2*m*u1**2*sin(q2)]])) def test_two_dof_joints(): q1, q2, u1, u2 = dynamicsymbols('q1 q2 u1 u2') m, c1, c2, k1, k2 = symbols('m c1 c2 k1 k2') W = Body('W') B1 = Body('B1', mass=m) B2 = Body('B2', mass=m) J1 = PrismaticJoint('J1', W, B1, coordinates=q1, speeds=u1) J2 = PrismaticJoint('J2', B1, B2, coordinates=q2, speeds=u2) W.apply_force(k1*q1*W.x, reaction_body=B1) W.apply_force(c1*u1*W.x, reaction_body=B1) B1.apply_force(k2*q2*W.x, reaction_body=B2) B1.apply_force(c2*u2*W.x, reaction_body=B2) method = JointsMethod(W, J1, J2) method.form_eoms() MM = method.mass_matrix forcing = method.forcing rhs = MM.LUsolve(forcing) assert expand(rhs[0]) == expand((-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2)/m) assert expand(rhs[1]) == expand((k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 * c2 * u2) / m) def test_simple_pedulum(): l, m, g = symbols('l m g') C = Body('C') b = Body('b', mass=m) q = dynamicsymbols('q') P = PinJoint('P', C, b, speeds=q.diff(t), coordinates=q, child_joint_pos = -l*b.x, parent_axis=C.z, child_axis=b.z) b.potential_energy = - m * g * l * cos(q) method = JointsMethod(C, P) method.form_eoms(LagrangesMethod) rhs = method.rhs() assert rhs[1] == -g*sin(q)/l def test_chaos_pendulum(): #https://www.pydy.org/examples/chaos_pendulum.html mA, mB, lA, lB, IAxx, IBxx, IByy, IBzz, g = symbols('mA, mB, lA, lB, IAxx, IBxx, IByy, IBzz, g') theta, phi, omega, alpha = dynamicsymbols('theta phi omega alpha') A = ReferenceFrame('A') B = ReferenceFrame('B') rod = Body('rod', mass=mA, frame=A, central_inertia=inertia(A, IAxx, IAxx, 0)) plate = Body('plate', mass=mB, frame=B, central_inertia=inertia(B, IBxx, IByy, IBzz)) C = Body('C') J1 = PinJoint('J1', C, rod, coordinates=theta, speeds=omega, child_joint_pos=-lA*rod.z, parent_axis=C.y, child_axis=rod.y) J2 = PinJoint('J2', rod, plate, coordinates=phi, speeds=alpha, parent_joint_pos=(lB-lA)*rod.z, parent_axis=rod.z, child_axis=plate.z) rod.apply_force(mA*g*C.z) plate.apply_force(mB*g*C.z) method = JointsMethod(C, J1, J2) method.form_eoms() MM = method.mass_matrix forcing = method.forcing rhs = MM.LUsolve(forcing) xd = (-2 * IBxx * alpha * omega * sin(phi) * cos(phi) + 2 * IByy * alpha * omega * sin(phi) * cos(phi) - g * lA * mA * sin(theta) - g * lB * mB * sin(theta)) / (IAxx + IBxx * sin(phi)**2 + IByy * cos(phi)**2 + lA**2 * mA + lB**2 * mB) assert (rhs[0] - xd).simplify() == 0 xd = (IBxx - IByy) * omega**2 * sin(phi) * cos(phi) / IBzz assert (rhs[1] - xd).simplify() == 0
40.316901
115
0.566463
cbc969e92385375d3eda007a1721770fc41e30c5
92
py
Python
files/action_plugins/__init__.py
exastro-playbook-collection/setup_paragen
4c6778fe5ca649019f1758c02acff3bf920b4b17
[ "Apache-2.0" ]
null
null
null
files/action_plugins/__init__.py
exastro-playbook-collection/setup_paragen
4c6778fe5ca649019f1758c02acff3bf920b4b17
[ "Apache-2.0" ]
null
null
null
files/action_plugins/__init__.py
exastro-playbook-collection/setup_paragen
4c6778fe5ca649019f1758c02acff3bf920b4b17
[ "Apache-2.0" ]
null
null
null
# -*- coding: UTF-8 -*- # action plugins はansible上にパッケージではないですが # テストのために、パッケージの形でテストができます
18.4
39
0.73913
7cbd361f5e6b82a6ce070264edbe9179ad08ff0b
6,254
py
Python
test/util/bitcoin-util-test.py
zahidaliayub/globaltoken
9fb33c559e995714d0a3f36b16e8e80ceafb5ae3
[ "MIT" ]
null
null
null
test/util/bitcoin-util-test.py
zahidaliayub/globaltoken
9fb33c559e995714d0a3f36b16e8e80ceafb5ae3
[ "MIT" ]
null
null
null
test/util/bitcoin-util-test.py
zahidaliayub/globaltoken
9fb33c559e995714d0a3f36b16e8e80ceafb5ae3
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright 2014 BitPay Inc. # Copyright 2016-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test framework for bitcoin utils. Runs automatically during `make check`. Can also be run manually.""" import argparse import binascii import configparser import difflib import json import logging import os import pprint import subprocess import sys def main(): config = configparser.ConfigParser() config.read_file(open(os.path.dirname(__file__) + "/../config.ini")) parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('-v', '--verbose', action='store_true') args = parser.parse_args() verbose = args.verbose if verbose: level = logging.DEBUG else: level = logging.ERROR formatter = '%(asctime)s - %(levelname)s - %(message)s' # Add the format/level to the logger logging.basicConfig(format=formatter, level=level) bctester(config["environment"]["SRCDIR"] + "/test/util/data", "bitcoin-util-test.json", config["environment"]) def bctester(testDir, input_basename, buildenv): """ Loads and parses the input file, runs all tests and reports results""" input_filename = testDir + "/" + input_basename raw_data = open(input_filename).read() input_data = json.loads(raw_data) failed_testcases = [] for testObj in input_data: try: bctest(testDir, testObj, buildenv) logging.info("PASSED: " + testObj["description"]) except: logging.info("FAILED: " + testObj["description"]) failed_testcases.append(testObj["description"]) if failed_testcases: error_message = "FAILED_TESTCASES:\n" error_message += pprint.pformat(failed_testcases, width=400) logging.error(error_message) sys.exit(1) else: sys.exit(0) def bctest(testDir, testObj, buildenv): """Runs a single test, comparing output and RC to expected output and RC. Raises an error if input can't be read, executable fails, or output/RC are not as expected. Error is caught by bctester() and reported. """ # Get the exec names and arguments execprog = buildenv["BUILDDIR"] + "/src/" + testObj['exec'] + buildenv["EXEEXT"] execargs = testObj['args'] execrun = [execprog] + execargs # Read the input data (if there is any) stdinCfg = None inputData = None if "input" in testObj: filename = testDir + "/" + testObj['input'] inputData = open(filename).read() stdinCfg = subprocess.PIPE # Read the expected output data (if there is any) outputFn = None outputData = None if "output_cmp" in testObj: outputFn = testObj['output_cmp'] outputType = os.path.splitext(outputFn)[1][1:] # output type from file extension (determines how to compare) try: outputData = open(testDir + "/" + outputFn).read() except: logging.error("Output file " + outputFn + " can not be opened") raise if not outputData: logging.error("Output data missing for " + outputFn) raise Exception # Run the test proc = subprocess.Popen(execrun, stdin=stdinCfg, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) try: outs = proc.communicate(input=inputData) except OSError: logging.error("OSError, Failed to execute " + execprog) raise if outputData: data_mismatch, formatting_mismatch = False, False # Parse command output and expected output try: a_parsed = parse_output(outs[0], outputType) except Exception as e: logging.error('Error parsing command output as %s: %s' % (outputType, e)) raise try: b_parsed = parse_output(outputData, outputType) except Exception as e: logging.error('Error parsing expected output %s as %s: %s' % (outputFn, outputType, e)) raise # Compare data if a_parsed != b_parsed: logging.error("Output data mismatch for " + outputFn + " (format " + outputType + ")") data_mismatch = True # Compare formatting if outs[0] != outputData: error_message = "Output formatting mismatch for " + outputFn + ":\n" error_message += "".join(difflib.context_diff(outputData.splitlines(True), outs[0].splitlines(True), fromfile=outputFn, tofile="returned")) logging.error(error_message) formatting_mismatch = True assert not data_mismatch and not formatting_mismatch # Compare the return code to the expected return code wantRC = 0 if "return_code" in testObj: wantRC = testObj['return_code'] if proc.returncode != wantRC: logging.error("Return code mismatch for " + outputFn) raise Exception if "error_txt" in testObj: want_error = testObj["error_txt"] # Compare error text # TODO: ideally, we'd compare the strings exactly and also assert # That stderr is empty if no errors are expected. However, globaltoken-tx # emits DISPLAY errors when running as a windows application on # linux through wine. Just assert that the expected error text appears # somewhere in stderr. if want_error not in outs[1]: logging.error("Error mismatch:\n" + "Expected: " + want_error + "\nReceived: " + outs[1].rstrip()) raise Exception def parse_output(a, fmt): """Parse the output according to specified format. Raise an error if the output can't be parsed.""" if fmt == 'json': # json: compare parsed data return json.loads(a) elif fmt == 'hex': # hex: parse and compare binary data return binascii.a2b_hex(a.strip()) else: raise NotImplementedError("Don't know how to compare %s" % fmt) if __name__ == '__main__': main()
36.788235
125
0.629677
e477859829d1b5d0a076e425df7cc6a7898fc127
2,143
py
Python
demo_pipline.py
sokunmin/pytorch-video-pipeline
6252c396eb7f704d3c9b07ff0021b079340bc995
[ "MIT" ]
null
null
null
demo_pipline.py
sokunmin/pytorch-video-pipeline
6252c396eb7f704d3c9b07ff0021b079340bc995
[ "MIT" ]
null
null
null
demo_pipline.py
sokunmin/pytorch-video-pipeline
6252c396eb7f704d3c9b07ff0021b079340bc995
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 from pathlib import Path import argparse import logging import json import cv2 import time from watchdog.streams.streams_plugin import StreamPipeline from watchdog.utils.decoder import ConfigDecoder, Profiler def main(): parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('-c', '--config', metavar="FILE", default=Path(__file__).parent / 'cfg_bak.json', help='path to configuration JSON file') parser.add_argument('-l', '--log', metavar="FILE", help='output a MOT Challenge format log (e.g. eval/results/mot17-04.txt)') args = parser.parse_args() # set up logging logging.basicConfig(format='%(asctime)s [%(levelname)8s] %(message)s', datefmt='%Y-%m-%d %H:%M:%S') logger = logging.getLogger(StreamPipeline.__name__) logger.setLevel(logging.DEBUG) # load config file with open(args.config) as cfg_file: config = json.load(cfg_file, cls=ConfigDecoder) log = None pipeline = StreamPipeline() pipeline.init(config) cv2.namedWindow("Video", cv2.WINDOW_AUTOSIZE) logger.info('Starting video capture ...') pipeline.exec() try: with Profiler('app') as prof: start_time = time.time() dt_avg = 0 while cv2.getWindowProperty("Video", 0) >= 0: if not pipeline.empty(): tiled_image = pipeline.read() dt = time.time() - start_time start_time = time.time() dt_avg = .9 * dt_avg + .1 * dt fps = 1 / dt_avg cv2.putText(tiled_image, str(round(fps, 1)) + ' fps', (0, 100), cv2.FONT_HERSHEY_SIMPLEX, .75, (255, 255, 255), 2) cv2.imshow('Video', tiled_image) if cv2.waitKey(1) & 0xFF == 27: break finally: if log is not None: log.close() pipeline.quit() cv2.destroyAllWindows() if __name__ == '__main__': main()
32.469697
103
0.574428
e473d814c59a16314587fb6aefd52a4dee21d028
40,336
py
Python
tests/test_metadata_wrangler.py
NYPL-Simplified/circulation
1ea3eb81d9c8e3121b0fc0e1a40ac42956c29084
[ "Apache-2.0" ]
16
2016-06-27T18:09:37.000Z
2021-12-07T15:20:52.000Z
tests/test_metadata_wrangler.py
NYPL-Simplified/circulation
1ea3eb81d9c8e3121b0fc0e1a40ac42956c29084
[ "Apache-2.0" ]
809
2016-01-25T15:41:05.000Z
2022-03-29T16:12:38.000Z
tests/test_metadata_wrangler.py
NYPL-Simplified/circulation
1ea3eb81d9c8e3121b0fc0e1a40ac42956c29084
[ "Apache-2.0" ]
19
2016-05-06T16:18:50.000Z
2021-05-01T06:33:18.000Z
"""Tests of the Monitors and CoverageProviders associated with the metadata wrangler. """ import datetime import feedparser import pytest from core.config import ( CannotLoadConfiguration, Configuration, temp_config, ) from core.coverage import ( CoverageFailure, ) from core.model import ( CoverageRecord, DataSource, ExternalIntegration, Hyperlink, Identifier, LicensePool, Timestamp, ) from core.opds_import import MockMetadataWranglerOPDSLookup from core.testing import ( MockRequestsResponse, AlwaysSuccessfulCoverageProvider, ) from core.util.datetime_helpers import ( datetime_utc, utc_now, ) from core.util.http import BadResponseException from core.util.opds_writer import OPDSFeed from api.metadata_wrangler import ( BaseMetadataWranglerCoverageProvider, MetadataUploadCoverageProvider, MetadataWranglerCollectionReaper, MetadataWranglerCollectionRegistrar, MWAuxiliaryMetadataMonitor, MWCollectionUpdateMonitor, ) from api.testing import MonitorTest from core.testing import DatabaseTest from . import sample_data class InstrumentedMWCollectionUpdateMonitor(MWCollectionUpdateMonitor): def __init__(self, *args, **kwargs): super(InstrumentedMWCollectionUpdateMonitor, self).__init__(*args, **kwargs) self.imports = [] def import_one_feed(self, timestamp, url): self.imports.append((timestamp, url)) return super(InstrumentedMWCollectionUpdateMonitor, self).import_one_feed(timestamp, url) class TestMWCollectionUpdateMonitor(MonitorTest): def setup_method(self): super(TestMWCollectionUpdateMonitor, self).setup_method() self._external_integration( ExternalIntegration.METADATA_WRANGLER, ExternalIntegration.METADATA_GOAL, username='abc', password='def', url=self._url ) self.collection = self._collection( protocol=ExternalIntegration.BIBLIOTHECA, external_account_id='lib' ) self.lookup = MockMetadataWranglerOPDSLookup.from_config( self._db, self.collection ) self.monitor = InstrumentedMWCollectionUpdateMonitor( self._db, self.collection, self.lookup ) def test_monitor_requires_authentication(self): class Mock(object): authenticated = False self.monitor.lookup = Mock() with pytest.raises(Exception) as excinfo: self.monitor.run_once(self.ts) assert "no authentication credentials" in str(excinfo.value) def test_import_one_feed(self): data = sample_data('metadata_updates_response.opds', 'opds') self.lookup.queue_response( 200, {'content-type' : OPDSFeed.ACQUISITION_FEED_TYPE}, data ) next_links, editions, timestamp = self.monitor.import_one_feed( None, None ) # The 'next' links found in the OPDS feed are returned. assert ['http://next-link/'] == next_links # Insofar as is possible, all <entry> tags are converted into # Editions. assert ['9781594632556'] == [x.primary_identifier.identifier for x in editions] # The earliest time found in the OPDS feed is returned as a # candidate for the Monitor's timestamp. assert datetime_utc(2016, 9, 20, 19, 37, 2) == timestamp def test_empty_feed_stops_import(self): # We don't follow the 'next' link of an empty feed. data = sample_data('metadata_updates_empty_response.opds', 'opds') self.lookup.queue_response( 200, {'content-type' : OPDSFeed.ACQUISITION_FEED_TYPE}, data ) new_timestamp = self.monitor.run() # We could have followed the 'next' link, but we chose not to. assert [(None, None)] == self.monitor.imports assert 1 == len(self.lookup.requests) # Since there were no <entry> tags, the timestamp's finish # date was set to the <updated> date of the feed itself, minus # one day (to avoid race conditions). assert (datetime_utc(2016, 9, 19, 19, 37, 10) == self.monitor.timestamp().finish) def test_run_once(self): # Setup authentication and Metadata Wrangler details. lp = self._licensepool( None, data_source_name=DataSource.BIBLIOTHECA, collection=self.collection ) lp.identifier.type = Identifier.BIBLIOTHECA_ID isbn = Identifier.parse_urn(self._db, 'urn:isbn:9781594632556')[0] lp.identifier.equivalent_to( DataSource.lookup(self._db, DataSource.BIBLIOTHECA), isbn, 1 ) assert [] == lp.identifier.links assert [] == lp.identifier.measurements # Queue some data to be found. responses = ( 'metadata_updates_response.opds', 'metadata_updates_empty_response.opds', ) for filename in responses: data = sample_data(filename, 'opds') self.lookup.queue_response( 200, {'content-type' : OPDSFeed.ACQUISITION_FEED_TYPE}, data ) timestamp = self.ts new_timestamp = self.monitor.run_once(timestamp) # We have a new value to use for the Monitor's timestamp -- the # earliest date seen in the last OPDS feed that contained # any entries. assert datetime_utc(2016, 9, 20, 19, 37, 2) == new_timestamp.finish assert "Editions processed: 1" == new_timestamp.achievements # Normally run_once() doesn't update the monitor's timestamp, # but this implementation does, so that work isn't redone if # run_once() crashes or the monitor is killed. assert new_timestamp.finish == self.monitor.timestamp().finish # The original Identifier has information from the # mock Metadata Wrangler. mw_source = DataSource.lookup(self._db, DataSource.METADATA_WRANGLER) assert 3 == len(lp.identifier.links) [quality] = lp.identifier.measurements assert mw_source == quality.data_source # Check the URLs we processed. url1, url2 = [x[0] for x in self.lookup.requests] # The first URL processed was the default one for the # MetadataWranglerOPDSLookup. assert self.lookup.get_collection_url(self.lookup.UPDATES_ENDPOINT) == url1 # The second URL processed was whatever we saw in the 'next' link. assert "http://next-link/" == url2 # Since that URL didn't contain any new imports, we didn't process # its 'next' link, http://another-next-link/. def test_no_changes_means_no_timestamp_update(self): before = utc_now() self.monitor.timestamp().finish = before # We're going to ask the metadata wrangler for updates, but # there will be none -- not even a feed-level update data = sample_data('metadata_updates_empty_response_no_feed_timestamp.opds', 'opds') self.lookup.queue_response( 200, {'content-type' : OPDSFeed.ACQUISITION_FEED_TYPE}, data ) new_timestamp = self.monitor.run_once(self.ts) # run_once() returned a TimestampData referencing the original # timestamp, and the Timestamp object was not updated. assert before == new_timestamp.finish assert before == self.monitor.timestamp().finish # If timestamp.finish is None before the update is run, and # there are no updates, the timestamp will be set # to None. self.monitor.timestamp().finish = None self.lookup.queue_response( 200, {'content-type' : OPDSFeed.ACQUISITION_FEED_TYPE}, data ) new_timestamp = self.monitor.run_once(self.ts) assert Timestamp.CLEAR_VALUE == new_timestamp.finish def test_no_import_loop(self): # We stop processing a feed's 'next' link if it links to a URL we've # already seen. data = sample_data('metadata_updates_response.opds', 'opds') self.lookup.queue_response( 200, {'content-type' : OPDSFeed.ACQUISITION_FEED_TYPE}, data ) data = data.replace(b"http://next-link/", b"http://different-link/") self.lookup.queue_response( 200, {'content-type' : OPDSFeed.ACQUISITION_FEED_TYPE}, data ) # This introduces a loop. data = data.replace(b"http://next-link/", b"http://next-link/") self.lookup.queue_response( 200, {'content-type' : OPDSFeed.ACQUISITION_FEED_TYPE}, data ) new_timestamp = self.monitor.run_once(self.ts) # Even though all these pages had the same content, we kept # processing them until we encountered a 'next' link we had # seen before; then we stopped. first, second, third = self.monitor.imports assert (None, None) == first assert (None, 'http://next-link/') == second assert (None, 'http://different-link/') == third assert datetime_utc(2016, 9, 20, 19, 37, 2) == new_timestamp.finish def test_get_response(self): class Mock(MockMetadataWranglerOPDSLookup): def __init__(self): self.last_timestamp = None self.urls = [] def updates(self, timestamp): self.last_timestamp = timestamp return MockRequestsResponse( 200, {"content-type": OPDSFeed.ACQUISITION_FEED_TYPE} ) def _get(self, _url): self.urls.append(_url) return MockRequestsResponse( 200, {"content-type": OPDSFeed.ACQUISITION_FEED_TYPE} ) # If you pass in None for the URL, it passes the timestamp into # updates() lookup = Mock() monitor = MWCollectionUpdateMonitor( self._db, self.collection, lookup ) timestamp = object() response = monitor.get_response(timestamp=timestamp, url=None) assert 200 == response.status_code assert timestamp == lookup.last_timestamp assert [] == lookup.urls # If you pass in a URL, the timestamp is ignored and # the URL is passed into _get(). lookup = Mock() monitor = MWCollectionUpdateMonitor( self._db, self.collection, lookup ) response = monitor.get_response(timestamp=None, url='http://now used/') assert 200 == response.status_code assert None == lookup.last_timestamp assert ['http://now used/'] == lookup.urls class TestMWAuxiliaryMetadataMonitor(MonitorTest): def setup_method(self): super(TestMWAuxiliaryMetadataMonitor, self).setup_method() self._external_integration( ExternalIntegration.METADATA_WRANGLER, ExternalIntegration.METADATA_GOAL, username='abc', password='def', url=self._url ) self.collection = self._collection( protocol=ExternalIntegration.OVERDRIVE, external_account_id='lib' ) self.lookup = MockMetadataWranglerOPDSLookup.from_config( self._db, self.collection ) provider = AlwaysSuccessfulCoverageProvider(self._db) self.monitor = MWAuxiliaryMetadataMonitor( self._db, self.collection, lookup=self.lookup, provider=provider ) def test_monitor_requires_authentication(self): class Mock(object): authenticated = False self.monitor.lookup = Mock() with pytest.raises(Exception) as excinfo: self.monitor.run_once(self.ts) assert "no authentication credentials" in str(excinfo.value) def prep_feed_identifiers(self): ignored = self._identifier() # Create an Overdrive ID to match the one in the feed. overdrive = self._identifier( identifier_type=Identifier.OVERDRIVE_ID, foreign_id='4981c34f-d518-48ff-9659-2601b2b9bdc1' ) # Create an ISBN to match the one in the feed. isbn = self._identifier( identifier_type=Identifier.ISBN, foreign_id='9781602835740' ) # Create a Axis 360 ID equivalent to the other ISBN in the feed. axis_360 = self._identifier( identifier_type=Identifier.AXIS_360_ID, foreign_id='fake' ) axis_360_isbn = self._identifier( identifier_type=Identifier.ISBN, foreign_id='9781569478295' ) axis_source = DataSource.lookup(self._db, DataSource.AXIS_360) axis_360.equivalent_to(axis_source, axis_360_isbn, 1) self._db.commit() # Put all of the identifiers in the collection. for identifier in [overdrive, isbn, axis_360]: self._edition( data_source_name=axis_source.name, with_license_pool=True, identifier_type=identifier.type, identifier_id=identifier.identifier, collection=self.collection, ) return overdrive, isbn, axis_360 def test_get_identifiers(self): overdrive, isbn, axis_360 = self.prep_feed_identifiers() data = sample_data('metadata_data_needed_response.opds', 'opds') self.lookup.queue_response( 200, {'content-type' : OPDSFeed.ACQUISITION_FEED_TYPE}, data ) identifiers, next_links = self.monitor.get_identifiers() # The expected identifiers are returned, including the mapped axis_360 # identifier. assert sorted([overdrive, axis_360, isbn]) == sorted(identifiers) assert ['http://next-link'] == next_links def test_run_once(self): overdrive, isbn, axis_360 = self.prep_feed_identifiers() # Give one of the identifiers a full work. self._work(presentation_edition=overdrive.primarily_identifies[0]) # And another identifier a work without entries. w = self._work(presentation_edition=isbn.primarily_identifies[0]) w.simple_opds_entry = w.verbose_opds_entry = None # Queue some response feeds. feed1 = sample_data('metadata_data_needed_response.opds', 'opds') feed2 = sample_data('metadata_data_needed_empty_response.opds', 'opds') for feed in [feed1, feed2]: self.lookup.queue_response( 200, {'content-type' : OPDSFeed.ACQUISITION_FEED_TYPE}, feed ) progress = self.monitor.run_once(self.ts) # Only the identifier with a work has been given coverage. assert "Identifiers processed: 1" == progress.achievements # The TimestampData returned by run_once() does not include # any timing information -- that will be applied by run(). assert None == progress.start assert None == progress.finish record = CoverageRecord.lookup( overdrive, self.monitor.provider.data_source, operation=self.monitor.provider.operation ) assert record for identifier in [axis_360, isbn]: record = CoverageRecord.lookup( identifier, self.monitor.provider.data_source, operation=self.monitor.provider.operation ) assert None == record class MetadataWranglerCoverageProviderTest(DatabaseTest): def create_provider(self, **kwargs): lookup = MockMetadataWranglerOPDSLookup.from_config(self._db, self.collection) return self.TEST_CLASS(self.collection, lookup, **kwargs) def setup_method(self): super(MetadataWranglerCoverageProviderTest, self).setup_method() self.integration = self._external_integration( ExternalIntegration.METADATA_WRANGLER, goal=ExternalIntegration.METADATA_GOAL, url=self._url, username='abc', password='def' ) self.source = DataSource.lookup(self._db, DataSource.METADATA_WRANGLER) self.collection = self._collection( protocol=ExternalIntegration.BIBLIOTHECA, external_account_id='lib' ) self.provider = self.create_provider() self.lookup_client = self.provider.lookup_client def opds_feed_identifiers(self): """Creates three Identifiers to use for testing with sample OPDS files.""" # An identifier directly represented in the OPDS response. valid_id = self._identifier(foreign_id='2020110') # An identifier mapped to an identifier represented in the OPDS # response. source = DataSource.lookup(self._db, DataSource.AXIS_360) mapped_id = self._identifier( identifier_type=Identifier.AXIS_360_ID, foreign_id='0015187876' ) equivalent_id = self._identifier( identifier_type=Identifier.ISBN, foreign_id='9781936460236' ) mapped_id.equivalent_to(source, equivalent_id, 1) # An identifier that's not represented in the OPDS response. lost_id = self._identifier() return valid_id, mapped_id, lost_id class TestBaseMetadataWranglerCoverageProvider(MetadataWranglerCoverageProviderTest): class Mock(BaseMetadataWranglerCoverageProvider): SERVICE_NAME = "Mock" DATA_SOURCE_NAME = DataSource.OVERDRIVE TEST_CLASS = Mock def test_must_be_authenticated(self): """CannotLoadConfiguration is raised if you try to create a metadata wrangler coverage provider that can't authenticate with the metadata wrangler. """ class UnauthenticatedLookupClient(object): authenticated = False with pytest.raises(CannotLoadConfiguration) as excinfo: self.Mock(self.collection, UnauthenticatedLookupClient()) assert "Authentication for the Library Simplified Metadata Wrangler " in str(excinfo.value) def test_input_identifier_types(self): """Verify all the different types of identifiers we send to the metadata wrangler. """ assert ( set([ Identifier.OVERDRIVE_ID, Identifier.BIBLIOTHECA_ID, Identifier.AXIS_360_ID, Identifier.ONECLICK_ID, Identifier.URI, ]) == set(BaseMetadataWranglerCoverageProvider.INPUT_IDENTIFIER_TYPES)) def test_create_identifier_mapping(self): # Most identifiers map to themselves. overdrive = self._identifier(Identifier.OVERDRIVE_ID) # But Axis 360 and 3M identifiers map to equivalent ISBNs. axis = self._identifier(Identifier.AXIS_360_ID) threem = self._identifier(Identifier.THREEM_ID) isbn_axis = self._identifier(Identifier.ISBN) isbn_threem = self._identifier(Identifier.ISBN) who_says = DataSource.lookup(self._db, DataSource.AXIS_360) axis.equivalent_to(who_says, isbn_axis, 1) threem.equivalent_to(who_says, isbn_threem, 1) mapping = self.provider.create_identifier_mapping([overdrive, axis, threem]) assert overdrive == mapping[overdrive] assert axis == mapping[isbn_axis] assert threem == mapping[isbn_threem] def test_coverage_records_for_unhandled_items_include_collection(self): # NOTE: This could be made redundant by adding test coverage to # CoverageProvider.process_batch_and_handle_results in core. data = sample_data('metadata_sync_response.opds', 'opds') self.lookup_client.queue_response( 200, {'content-type': OPDSFeed.ACQUISITION_FEED_TYPE}, data ) identifier = self._identifier() self.provider.process_batch_and_handle_results([identifier]) [record] = identifier.coverage_records assert CoverageRecord.TRANSIENT_FAILURE == record.status assert self.provider.data_source == record.data_source assert self.provider.operation == record.operation assert self.provider.collection == record.collection class TestMetadataWranglerCollectionRegistrar(MetadataWranglerCoverageProviderTest): TEST_CLASS = MetadataWranglerCollectionRegistrar def test_constants(self): # This CoverageProvider runs Identifiers through the 'lookup' # endpoint and marks success with CoverageRecords that have # the IMPORT_OPERATION operation. assert self.provider.lookup_client.lookup == self.provider.api_method assert CoverageRecord.IMPORT_OPERATION == self.TEST_CLASS.OPERATION def test_process_batch(self): """End-to-end test of the registrar's process_batch() implementation. """ data = sample_data('metadata_sync_response.opds', 'opds') self.lookup_client.queue_response( 200, {'content-type': OPDSFeed.ACQUISITION_FEED_TYPE}, data ) valid_id, mapped_id, lost_id = self.opds_feed_identifiers() results = self.provider.process_batch( [valid_id, mapped_id, lost_id] ) # The Identifier that resulted in a 200 message was returned. # # The Identifier that resulted in a 201 message was returned. # # The Identifier that was ignored by the server was not # returned. # # The Identifier that was not requested but was sent back by # the server anyway was ignored. assert sorted([valid_id, mapped_id]) == sorted(results) def test_process_batch_errors(self): """When errors are raised during batch processing, an exception is raised and no CoverageRecords are created. """ # This happens if the 'server' sends data with the wrong media # type. self.lookup_client.queue_response( 200, {'content-type': 'json/application'}, '{ "title": "It broke." }' ) id1 = self._identifier() id2 = self._identifier() with pytest.raises(BadResponseException) as excinfo: self.provider.process_batch([id1, id2]) assert 'Wrong media type' in str(excinfo.value) assert [] == id1.coverage_records assert [] == id2.coverage_records # Of if the 'server' sends an error response code. self.lookup_client.queue_response( 500, {'content-type': OPDSFeed.ACQUISITION_FEED_TYPE}, 'Internal Server Error' ) with pytest.raises(BadResponseException) as excinfo: self.provider.process_batch([id1, id2]) assert "Got status code 500" in str(excinfo.value) assert [] == id1.coverage_records assert [] == id2.coverage_records # If a message comes back with an unexpected status, a # CoverageFailure is created. data = sample_data('unknown_message_status_code.opds', 'opds') valid_id = self.opds_feed_identifiers()[0] self.lookup_client.queue_response( 200, {'content-type': OPDSFeed.ACQUISITION_FEED_TYPE}, data ) [result] = self.provider.process_batch([valid_id]) assert True == isinstance(result, CoverageFailure) assert valid_id == result.obj assert '418: Mad Hatter' == result.exception # The OPDS importer didn't know which Collection to associate # with this CoverageFailure, but the CoverageProvider does, # and it set .collection appropriately. assert self.provider.collection == result.collection def test_items_that_need_coverage_excludes_unavailable_items(self): """A LicensePool that's not actually available doesn't need coverage. """ edition, pool = self._edition( with_license_pool=True, collection=self.collection, identifier_type=Identifier.BIBLIOTHECA_ID ) pool.licenses_owned = 0 assert 0 == self.provider.items_that_need_coverage().count() # Open-access titles _do_ need coverage. pool.open_access = True assert [pool.identifier] == self.provider.items_that_need_coverage().all() def test_items_that_need_coverage_removes_reap_records_for_relicensed_items(self): """A LicensePool that's not actually available doesn't need coverage. """ edition, pool = self._edition( with_license_pool=True, collection=self.collection, identifier_type=Identifier.BIBLIOTHECA_ID ) identifier = pool.identifier original_coverage_records = list(identifier.coverage_records) # This identifier was reaped... cr = self._coverage_record( pool.identifier, self.provider.data_source, operation=CoverageRecord.REAP_OPERATION, collection=self.collection ) assert ( set(original_coverage_records + [cr]) == set(identifier.coverage_records)) # ... but then it was relicensed. pool.licenses_owned = 10 assert [identifier] == self.provider.items_that_need_coverage().all() # The now-inaccurate REAP record has been removed. assert original_coverage_records == identifier.coverage_records def test_identifier_covered_in_one_collection_not_covered_in_another(self): edition, pool = self._edition( with_license_pool=True, collection=self.collection, identifier_type=Identifier.BIBLIOTHECA_ID ) identifier = pool.identifier other_collection = self._collection() # This Identifier needs coverage. qu = self.provider.items_that_need_coverage() assert [identifier] == qu.all() # Adding coverage for an irrelevant collection won't fix that. cr = self._coverage_record( pool.identifier, self.provider.data_source, operation=self.provider.OPERATION, collection=other_collection ) assert [identifier] == qu.all() # Adding coverage for the relevant collection will. cr = self._coverage_record( pool.identifier, self.provider.data_source, operation=self.provider.OPERATION, collection=self.provider.collection ) assert [] == qu.all() def test_identifier_reaped_from_one_collection_covered_in_another(self): """An Identifier can be reaped from one collection but still need coverage in another. """ edition, pool = self._edition( with_license_pool=True, collection=self.collection, identifier_type=Identifier.BIBLIOTHECA_ID ) identifier = pool.identifier other_collection = self._collection() # This identifier was reaped from other_collection, but not # from self.provider.collection. cr = self._coverage_record( pool.identifier, self.provider.data_source, operation=CoverageRecord.REAP_OPERATION, collection=other_collection ) # It still needs to be covered in self.provider.collection. assert [identifier] == self.provider.items_that_need_coverage().all() def test_items_that_need_coverage_respects_cutoff(self): """Verify that this coverage provider respects the cutoff_time argument. """ edition, pool = self._edition( with_license_pool=True, collection=self.collection, identifier_type=Identifier.BIBLIOTHECA_ID ) cr = self._coverage_record( pool.identifier, self.provider.data_source, operation=self.provider.OPERATION, collection=self.collection ) # We have a coverage record already, so this book doesn't show # up in items_that_need_coverage items = self.provider.items_that_need_coverage().all() assert [] == items # But if we send a cutoff_time that's later than the time # associated with the coverage record... one_hour_from_now = ( utc_now() + datetime.timedelta(seconds=3600) ) provider_with_cutoff = self.create_provider( cutoff_time=one_hour_from_now ) # The book starts showing up in items_that_need_coverage. assert ([pool.identifier] == provider_with_cutoff.items_that_need_coverage().all()) def test_items_that_need_coverage_respects_count_as_covered(self): # Here's a coverage record with a transient failure. edition, pool = self._edition( with_license_pool=True, collection=self.collection, identifier_type=Identifier.OVERDRIVE_ID, ) cr = self._coverage_record( pool.identifier, self.provider.data_source, operation=self.provider.operation, status=CoverageRecord.TRANSIENT_FAILURE, collection=self.collection ) # Ordinarily, a transient failure does not count as coverage. [needs_coverage] = self.provider.items_that_need_coverage().all() assert needs_coverage == pool.identifier # But if we say that transient failure counts as coverage, it # does count. assert ([] == self.provider.items_that_need_coverage( count_as_covered=CoverageRecord.TRANSIENT_FAILURE ).all()) def test_isbn_covers_are_imported_from_mapped_identifiers(self): # Now that we pass ISBN equivalents instead of Bibliotheca identifiers # to the Metadata Wrangler, they're not getting covers. Let's confirm # that the problem isn't on the Circulation Manager import side of things. # Create a Bibliotheca identifier with a license pool. source = DataSource.lookup(self._db, DataSource.BIBLIOTHECA) identifier = self._identifier(identifier_type=Identifier.BIBLIOTHECA_ID) LicensePool.for_foreign_id( self._db, source, identifier.type, identifier.identifier, collection=self.provider.collection ) # Create an ISBN and set it equivalent. isbn = self._identifier(identifier_type=Identifier.ISBN) isbn.identifier = '9781594632556' identifier.equivalent_to(source, isbn, 1) opds = sample_data('metadata_isbn_response.opds', 'opds') self.provider.lookup_client.queue_response( 200, {'content-type': 'application/atom+xml;profile=opds-catalog;kind=acquisition'}, opds ) result = self.provider.process_item(identifier) # The lookup is successful assert result == identifier # The appropriate cover links are transferred. identifier_uris = [l.resource.url for l in identifier.links if l.rel in [Hyperlink.IMAGE, Hyperlink.THUMBNAIL_IMAGE]] expected = [ 'http://book-covers.nypl.org/Content%20Cafe/ISBN/9781594632556/cover.jpg', 'http://book-covers.nypl.org/scaled/300/Content%20Cafe/ISBN/9781594632556/cover.jpg' ] assert sorted(identifier_uris) == sorted(expected) # The ISBN doesn't get any information. assert isbn.links == [] class MetadataWranglerCollectionManagerTest(DatabaseTest): def setup_method(self): super(MetadataWranglerCollectionManagerTest, self).setup_method() self.integration = self._external_integration( ExternalIntegration.METADATA_WRANGLER, goal=ExternalIntegration.METADATA_GOAL, url=self._url, username='abc', password='def' ) self.source = DataSource.lookup(self._db, DataSource.METADATA_WRANGLER) self.collection = self._collection( protocol=ExternalIntegration.BIBLIOTHECA, external_account_id='lib' ) self.lookup = MockMetadataWranglerOPDSLookup.from_config( self._db, collection=self.collection ) class TestMetadataWranglerCollectionReaper(MetadataWranglerCoverageProviderTest): TEST_CLASS = MetadataWranglerCollectionReaper def test_constants(self): # This CoverageProvider runs Identifiers through the 'remove' # endpoint and marks success with CoverageRecords that have # the REAP_OPERATION operation. assert CoverageRecord.REAP_OPERATION == self.TEST_CLASS.OPERATION assert self.provider.lookup_client.remove == self.provider.api_method def test_items_that_need_coverage(self): """The reaper only returns identifiers with no-longer-licensed license_pools that have been synced with the Metadata Wrangler. """ # Create an item that was imported into the Wrangler-side # collection but no longer has any owned licenses covered_unlicensed_lp = self._licensepool( None, open_access=False, set_edition_as_presentation=True, collection=self.collection ) covered_unlicensed_lp.update_availability(0, 0, 0, 0) cr = self._coverage_record( covered_unlicensed_lp.presentation_edition, self.source, operation=CoverageRecord.IMPORT_OPERATION, collection=self.provider.collection, ) # Create an unsynced item that doesn't have any licenses uncovered_unlicensed_lp = self._licensepool(None, open_access=False) uncovered_unlicensed_lp.update_availability(0, 0, 0, 0) # And an unsynced item that has licenses. licensed_lp = self._licensepool(None, open_access=False) # Create an open access license pool open_access_lp = self._licensepool(None) items = self.provider.items_that_need_coverage().all() assert 1 == len(items) # Items that are licensed are ignored. assert licensed_lp.identifier not in items # Items with open access license pools are ignored. assert open_access_lp.identifier not in items # Items that haven't been synced with the Metadata Wrangler are # ignored, even if they don't have licenses. assert uncovered_unlicensed_lp.identifier not in items # Only synced items without owned licenses are returned. assert [covered_unlicensed_lp.identifier] == items # Items that had unsuccessful syncs are not returned. cr.status = CoverageRecord.TRANSIENT_FAILURE assert [] == self.provider.items_that_need_coverage().all() def test_process_batch(self): data = sample_data('metadata_reaper_response.opds', 'opds') self.lookup_client.queue_response( 200, {'content-type': OPDSFeed.ACQUISITION_FEED_TYPE}, data ) valid_id, mapped_id, lost_id = self.opds_feed_identifiers() results = self.provider.process_batch([valid_id, mapped_id, lost_id]) # The valid_id and mapped_id were handled successfully. # The server ignored lost_id, so nothing happened to it, # and the server sent a fourth ID we didn't ask for, # which we ignored. assert sorted(results) == sorted([valid_id, mapped_id]) def test_finalize_batch(self): # Metadata Wrangler sync coverage records are deleted from the db # when the the batch is finalized if the item has been reaped. # Create an identifier that has been imported and one that's # been reaped. sync_cr = self._coverage_record( self._edition(), self.source, operation=CoverageRecord.IMPORT_OPERATION, collection=self.provider.collection ) reaped_cr = self._coverage_record( self._edition(), self.source, operation=CoverageRecord.REAP_OPERATION, collection=self.provider.collection ) # Create coverage records for an Identifier that has been both synced # and reaped. doubly_covered = self._edition() doubly_sync_record = self._coverage_record( doubly_covered, self.source, operation=CoverageRecord.IMPORT_OPERATION, collection=self.provider.collection ) doubly_reap_record = self._coverage_record( doubly_covered, self.source, operation=CoverageRecord.REAP_OPERATION, collection=self.provider.collection, ) self.provider.finalize_batch() remaining_records = self._db.query(CoverageRecord).all() # The syncing record has been deleted from the database assert doubly_sync_record not in remaining_records assert (sorted([sync_cr, reaped_cr, doubly_reap_record], key=lambda x: x.id) == sorted(remaining_records, key=lambda x: x.id)) class TestMetadataUploadCoverageProvider(DatabaseTest): def create_provider(self, **kwargs): upload_client = MockMetadataWranglerOPDSLookup.from_config(self._db, self.collection) return MetadataUploadCoverageProvider( self.collection, upload_client, **kwargs ) def setup_method(self): super(TestMetadataUploadCoverageProvider, self).setup_method() self.integration = self._external_integration( ExternalIntegration.METADATA_WRANGLER, goal=ExternalIntegration.METADATA_GOAL, url=self._url, username='abc', password='def' ) self.source = DataSource.lookup(self._db, DataSource.METADATA_WRANGLER) self.collection = self._collection( protocol=ExternalIntegration.BIBLIOTHECA, external_account_id='lib' ) self.provider = self.create_provider() def test_items_that_need_coverage_only_finds_transient_failures(self): """Verify that this coverage provider only covers items that have transient failure CoverageRecords. """ edition, pool = self._edition( with_license_pool=True, collection=self.collection, identifier_type=Identifier.BIBLIOTHECA_ID ) # We don't have a CoverageRecord yet, so the book doesn't show up. items = self.provider.items_that_need_coverage().all() assert [] == items cr = self._coverage_record( pool.identifier, self.provider.data_source, operation=self.provider.OPERATION, collection=self.collection ) # With a successful or persistent failure CoverageRecord, it still doesn't show up. cr.status = CoverageRecord.SUCCESS items = self.provider.items_that_need_coverage().all() assert [] == items cr.status = CoverageRecord.PERSISTENT_FAILURE items = self.provider.items_that_need_coverage().all() assert [] == items # But with a transient failure record it does. cr.status = CoverageRecord.TRANSIENT_FAILURE items = self.provider.items_that_need_coverage().all() assert [edition.primary_identifier] == items def test_process_batch_uploads_metadata(self): class MockMetadataClient(object): metadata_feed = None authenticated = True def canonicalize_author_name(self, identifier, working_display_name): return working_display_name def add_with_metadata(self, feed): self.metadata_feed = feed metadata_client = MockMetadataClient() provider = MetadataUploadCoverageProvider( self.collection, metadata_client ) edition, pool = self._edition( with_license_pool=True, collection=self.collection, identifier_type=Identifier.BIBLIOTHECA_ID ) work = pool.calculate_work() # This identifier has no Work. no_work = self._identifier() results = provider.process_batch([pool.identifier, no_work]) # An OPDS feed of metadata was sent to the metadata wrangler. assert metadata_client.metadata_feed != None feed = feedparser.parse(str(metadata_client.metadata_feed)) urns = [entry.get("id") for entry in feed.get("entries", [])] # Only the identifier work a work ends up in the feed. assert [pool.identifier.urn] == urns # There are two results: the identifier with a work and a CoverageFailure. assert 2 == len(results) assert pool.identifier in results [failure] = [r for r in results if isinstance(r, CoverageFailure)] assert no_work == failure.obj
39.352195
101
0.661146
eb5d6df3e4dd75914649c2b248a64a65b2bc2d43
84
py
Python
codebase/evaluate_MAE_td.py
Mikeriess/ML4PM_Temp_losses
6b31c33c942c2473f237d5e29153aebc2921be47
[ "MIT" ]
null
null
null
codebase/evaluate_MAE_td.py
Mikeriess/ML4PM_Temp_losses
6b31c33c942c2473f237d5e29153aebc2921be47
[ "MIT" ]
null
null
null
codebase/evaluate_MAE_td.py
Mikeriess/ML4PM_Temp_losses
6b31c33c942c2473f237d5e29153aebc2921be47
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Sat Jul 24 13:41:39 2021 @author: Mike """
10.5
35
0.559524
1a2cfdfaa89a3aa207f3f0ecd3181b0266f86bb9
7,677
py
Python
raster_processing.py
mweissbacher/xView2_FDNY
50116734606a743946baf4f63a70b49473634ecc
[ "MIT" ]
6
2020-07-21T01:00:43.000Z
2021-12-22T07:30:56.000Z
raster_processing.py
mweissbacher/xView2_FDNY
50116734606a743946baf4f63a70b49473634ecc
[ "MIT" ]
null
null
null
raster_processing.py
mweissbacher/xView2_FDNY
50116734606a743946baf4f63a70b49473634ecc
[ "MIT" ]
1
2020-07-20T21:35:26.000Z
2020-07-20T21:35:26.000Z
from itertools import product import random import string import subprocess import fiona import numpy as np import rasterio import rasterio.merge import rasterio.warp import rasterio.plot from rasterio import windows from rasterio.features import shapes from shapely.geometry import shape from shapely.geometry.polygon import Polygon from shapely.ops import cascaded_union from osgeo import gdal from tqdm import tqdm from handler import * from pathlib import Path def reproject(in_file, dest_file, in_crs, dest_crs='EPSG:4326'): """ Re-project images :param in_file: path to file to be reprojected :param dest_file: path to write re-projected image :param in_crs: crs of input file -- only valid if image does not contain crs in metadata :param dest_crs: destination crs :return: path to re-projected image """ input_raster = gdal.Open(str(in_file)) if input_raster.GetSpatialRef() is not None: in_crs = input_raster.GetSpatialRef() if in_crs is None: raise ValueError('No CRS set') # TODO: Change the resolution based on the lowest resolution in the inputs gdal.Warp(str(dest_file), input_raster, dstSRS=dest_crs, srcSRS=in_crs, xRes=6e-06, yRes=6e-06) return Path(dest_file).resolve() def create_mosaic(in_files, out_file): """ Creates mosaic from in_files. :param in_files: list of paths to input files :param out_file: path to output mosaic :return: path to output file """ # This is some hacky, dumb shit # There is a limit on how many file descriptors we can have open at once # So we will up that limit for a bit and then set it back if os.name == 'posix': import resource soft, hard = resource.getrlimit(resource.RLIMIT_NOFILE) if len(in_files) >= soft: resource.setrlimit(resource.RLIMIT_NOFILE, (len(in_files) * 2, hard)) elif os.name == 'nt': import win32file soft = win32file._getmaxstdio() if len(in_files) >= soft: win32file._setmaxstdio(len(in_files) * 2) file_objs = [] for file in in_files: src = rasterio.open(file) file_objs.append(src) mosaic, out_trans = rasterio.merge.merge(file_objs) out_meta = src.meta.copy() out_meta.update({"driver": "GTiff", "height": mosaic.shape[1], "width": mosaic.shape[2], "transform": out_trans } ) with rasterio.open(out_file, "w", **out_meta) as dest: dest.write(mosaic) # Reset soft limit if os.name == 'posix': import resource soft, hard = resource.getrlimit(resource.RLIMIT_NOFILE) if len(in_files) >= soft: resource.setrlimit(resource.RLIMIT_NOFILE, (len(in_files) * 2, hard)) elif os.name == 'nt': import win32file soft = win32file._getmaxstdio() if len(in_files) >= soft: win32file._setmaxstdio(len(in_files) * 2) return Path(out_file).resolve() def get_intersect(*args): """ Computes intersect of input rasters. :param args: list of files to compute :return: tuple of intersect in (left, bottom, right, top) """ # TODO: Calculate real intersection. left = [] bottom = [] right = [] top = [] for arg in args: raster = rasterio.open(arg) left.append(raster.bounds[0]) bottom.append(raster.bounds[1]) right.append(raster.bounds[2]) top.append(raster.bounds[3]) intersect = (max(left), max(bottom), min(right), min(top)) return intersect def check_dims(arr, w, h): """ Check dimensions of output tiles and pad :param arr: numpy array :param w: tile width :param h: tile height :return: tile of same dimensions specified """ dims = arr.shape if dims[1] != w or dims[2] != h: result = np.zeros((arr.shape[0],w,h)).astype(arr.dtype) result[:arr.shape[0],:arr.shape[1],:arr.shape[2]] = arr else: result = arr return result def create_chips(in_raster, out_dir, intersect, tile_width=1024, tile_height=1024): """ Creates chips from mosaic that fall inside the intersect :param in_raster: mosaic to create chips from :param out_dir: path to write chips :param intersect: bounds of chips to create :param tile_width: width of tiles to chip :param tile_height: height of tiles to chip :return: list of path to chips """ def get_intersect_win(rio_obj): """ Calculate rasterio window from intersect :param rio_obj: rasterio dataset :return: window of intersect """ xy_ul = rasterio.transform.rowcol(rio_obj.transform, intersect[0], intersect[3]) xy_lr = rasterio.transform.rowcol(rio_obj.transform, intersect[2], intersect[1]) int_window = rasterio.windows.Window(xy_ul[1], xy_ul[0], abs(xy_ul[1] - xy_lr[1]), abs(xy_ul[0] - xy_lr[0])) return int_window def get_tiles(ds, width, height): """ Create chip tiles generator :param ds: rasterio dataset :param width: tile width :param height: tile height :return: generator of rasterio windows and transforms for each tile to be created """ intersect_window = get_intersect_win(ds) offsets = product(range(intersect_window.col_off, intersect_window.width + intersect_window.col_off, width), range(intersect_window.row_off, intersect_window.height + intersect_window.row_off, height)) for col_off, row_off in offsets: window = windows.Window(col_off=col_off, row_off=row_off, width=width, height=height).intersection(intersect_window) transform = windows.transform(window, ds.transform) yield window, transform chips = [] with rasterio.open(in_raster) as inds: meta = inds.meta.copy() for idx, (window, transform) in enumerate(tqdm(get_tiles(inds, tile_width, tile_height))): meta['transform'] = transform meta['width'], meta['height'] = tile_width, tile_height output_filename = f'{idx}_{out_dir.parts[-1]}.tif' outpath = out_dir.joinpath(output_filename) with rasterio.open(outpath, 'w', **meta) as outds: chip_arr = inds.read(window=window) out_arr = check_dims(chip_arr, tile_width, tile_height) assert(out_arr.shape[1] == tile_width) assert(out_arr.shape[2] == tile_height) outds.write(out_arr) chips.append(outpath.resolve()) return chips def create_shapefile(in_files, out_shapefile, dest_crs): polygons = [] for idx, f in enumerate(in_files): src = rasterio.open(f) crs = src.crs transform = src.transform bnd = src.read(1) polys = list(shapes(bnd, transform=transform)) for geom, val in polys: if val == 0: continue polygons.append((Polygon(shape(geom)), val)) shp_schema = { 'geometry': 'Polygon', 'properties': {'dmg': 'int'} } # Write out all the multipolygons to the same file with fiona.open(out_shapefile, 'w', 'ESRI Shapefile', shp_schema, dest_crs) as shp: for polygon, px_val in polygons: shp.write({ 'geometry': mapping(polygon), 'properties': {'dmg': int(px_val)} }) ####
29.988281
128
0.621076
160a4b29974d272ee5c28b164c06d23de5eb9fdf
122
py
Python
wsgi.py
Mirror-Score/playstore-app-data
51ca1f0ad769adf07a2bd220a1c73ae36d3a2a78
[ "MIT" ]
null
null
null
wsgi.py
Mirror-Score/playstore-app-data
51ca1f0ad769adf07a2bd220a1c73ae36d3a2a78
[ "MIT" ]
null
null
null
wsgi.py
Mirror-Score/playstore-app-data
51ca1f0ad769adf07a2bd220a1c73ae36d3a2a78
[ "MIT" ]
null
null
null
#!/usr/bin/env python from main import create_app app = create_app() if __name__ == "__main__": app.run(debug=True)
15.25
27
0.696721
7be9f5c5c7f29801152ef7f95d6be33506fdcd78
1,277
py
Python
sharpy-sc2/sharpy/plans/tactics/terran/continue_building.py
ProfessorQu/Sharpy-Bot
a8bf7ebbed113f5bf0f6891c9ca45fac9edfb26e
[ "MIT" ]
48
2019-11-25T20:02:27.000Z
2022-02-28T00:16:21.000Z
sharpy-sc2/sharpy/plans/tactics/terran/continue_building.py
ProfessorQu/Sharpy-Bot
a8bf7ebbed113f5bf0f6891c9ca45fac9edfb26e
[ "MIT" ]
48
2020-03-10T17:08:04.000Z
2022-02-22T08:21:12.000Z
sharpy-sc2/sharpy/plans/tactics/terran/continue_building.py
ProfessorQu/Sharpy-Bot
a8bf7ebbed113f5bf0f6891c9ca45fac9edfb26e
[ "MIT" ]
25
2019-12-01T18:14:54.000Z
2022-03-24T01:14:53.000Z
import sc2 from sharpy.plans.acts import ActBase from sc2 import UnitTypeId, AbilityId from sc2.unit import Unit REACTORS = {UnitTypeId.BARRACKSREACTOR, UnitTypeId.FACTORYREACTOR, UnitTypeId.STARPORTREACTOR, UnitTypeId.REACTOR} TECHLABS = {UnitTypeId.BARRACKSTECHLAB, UnitTypeId.FACTORYTECHLAB, UnitTypeId.STARPORTTECHLAB, UnitTypeId.TECHLAB} TECHLABS_AND_REACTORS = REACTORS.union(TECHLABS) class ContinueBuilding(ActBase): async def execute(self) -> bool: building: Unit buildings = self.ai.structures.not_ready.exclude_type(TECHLABS_AND_REACTORS) scv_constructing = self.ai.units.filter(lambda unit: unit.is_constructing_scv) if buildings.amount > scv_constructing.amount: for building in buildings: if self.knowledge.unit_values.build_time(building.type_id) > 0 and not scv_constructing.closer_than( building.radius + 0.5, building ): self.knowledge.print(f"[Building continue] {building.type_id} {building.position}") workers = self.roles.free_workers() if workers.exists: scv = workers.closest_to(building) scv(AbilityId.SMART, building) return True
44.034483
116
0.68285
5d53fe3be68f8dc2ffde3e0bfe584f498dd05366
4,079
py
Python
S3Backup/__init__.py
mgoodfellow/s3-backup
b0079a9fa11722e0961d60a96359b8fe7e50d6a1
[ "MIT" ]
3
2015-06-30T19:55:50.000Z
2016-11-17T23:02:07.000Z
S3Backup/__init__.py
mgoodfellow/s3-backup
b0079a9fa11722e0961d60a96359b8fe7e50d6a1
[ "MIT" ]
1
2015-08-27T19:23:25.000Z
2015-09-07T20:56:52.000Z
S3Backup/__init__.py
mgoodfellow/s3-backup
b0079a9fa11722e0961d60a96359b8fe7e50d6a1
[ "MIT" ]
null
null
null
""" The MIT License (MIT) Copyright (c) 2015 Mike Goodfellow Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import logging from S3Backup import config_loader from time import strftime, gmtime import boto.ses logger = logging.getLogger(name='S3BackupTool') class S3BackupTool: def __init__(self, config_file="config.json"): logger.info('Initialising...') try: self.CONFIGURATION, self.PLANS = config_loader.config_setup(config_file) except Exception, e: logger.fatal('Failed to load configuration: %s', e) raise e logger.info('Loaded configuration') def run_plans(self): if len(self.PLANS) == 0: logger.warn('No plans to execute') return counter = 1 for plan in self.PLANS: logger.info('Executing plan %d of %d', counter, len(self.PLANS)) try: updated, output_file = plan.run() self.__send_success_email(plan, updated, output_file) except Exception, e: logger.error('Failed to run plan: %s', e) self.__send_failure_email(plan, e) counter += 1 logger.info('Finished running backup plans') def __send_success_email(self, plan, updated, output_file): subject = '[S3-Backup] [SUCCESS] - Plan: %s' % plan.name body = 'The backup plan, %s, run at %s was SUCCESSFUL\n\n' % ( plan.name, strftime("%a, %d %b %Y %H:%M:%S +0000", gmtime())) if updated: body += 'The backup set had changed, so a new backup was uploaded: %s' % output_file else: body += 'The backup set had not changed. No new backup uploaded' self.__send_status_email(subject, body) def __send_failure_email(self, plan, exception): subject = '[S3-Backup] [FAILURE] - Plan: %s' % plan.name body = 'The backup plan, %s, run at %s was a FAILURE\n\n' % ( plan.name, strftime("%a, %d %b %Y %H:%M:%S +0000", gmtime())) body += '\n\nDetailed failure information:\n\n%s' % exception self.__send_status_email(subject, body) def __send_status_email(self, subject, body): if self.CONFIGURATION['EMAIL_FROM'] is None or self.CONFIGURATION['EMAIL_TO'] is None: logger.debug('Email not provided, so status update not sent') return conn = boto.ses.connect_to_region( self.CONFIGURATION['AWS_REGION'], aws_access_key_id=self.CONFIGURATION['AWS_KEY'], aws_secret_access_key=self.CONFIGURATION['AWS_SECRET']) try: conn.send_email( self.CONFIGURATION['EMAIL_FROM'], subject, body, [self.CONFIGURATION['EMAIL_TO']]) except Exception, e: logger.error('Failed to send email to {0:s} with subject {1:s}'.format(self.CONFIGURATION['EMAIL_TO'], subject), e)
37.081818
114
0.629076
30b6f9ffa64f3c7b0161914dfb0d2a9486f41104
9,202
py
Python
modin/engines/base/io/file_dispatcher.py
palash247/modin
3f1e275b67a760f09db6944600c4b7f5e601cbde
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
modin/engines/base/io/file_dispatcher.py
palash247/modin
3f1e275b67a760f09db6944600c4b7f5e601cbde
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
modin/engines/base/io/file_dispatcher.py
palash247/modin
3f1e275b67a760f09db6944600c4b7f5e601cbde
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# Licensed to Modin Development Team under one or more contributor license agreements. # See the NOTICE file distributed with this work for additional information regarding # copyright ownership. The Modin Development Team licenses this file to you under the # Apache License, Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. """ Module houses `FileDispatcher` class. `FileDispatcher` can be used as abstract base class for dispatchers of specific file formats or for direct files processing. """ import os import re from modin.config import Backend S3_ADDRESS_REGEX = re.compile("[sS]3://(.*?)/(.*)") NOT_IMPLEMENTED_MESSAGE = "Implement in children classes!" class FileDispatcher: """ Class handles util functions for reading data from different kinds of files. Notes ----- `_read`, `deploy`, `parse` and `materialize` are abstract methods and should be implemented in the child classes (functions signatures can differ between child classes). """ frame_cls = None frame_partition_cls = None query_compiler_cls = None @classmethod def read(cls, *args, **kwargs): """ Read data according passed `args` and `kwargs`. Parameters ---------- *args : iterable Positional arguments to be passed into `_read` function. **kwargs : dict Keywords arguments to be passed into `_read` function. Returns ------- query_compiler : BaseQueryCompiler Query compiler with imported data for further processing. Notes ----- `read` is high-level function that calls specific for defined backend, engine and dispatcher class `_read` function with passed parameters and performs some postprocessing work on the resulting query_compiler object. """ query_compiler = cls._read(*args, **kwargs) # TODO (devin-petersohn): Make this section more general for non-pandas kernel # implementations. if Backend.get() == "Pandas": import pandas as kernel_lib elif Backend.get() == "Cudf": import cudf as kernel_lib else: raise NotImplementedError("FIXME") if hasattr(query_compiler, "dtypes") and any( isinstance(t, kernel_lib.CategoricalDtype) for t in query_compiler.dtypes ): dtypes = query_compiler.dtypes return query_compiler.astype( { t: dtypes[t] for t in dtypes.index if isinstance(dtypes[t], kernel_lib.CategoricalDtype) } ) return query_compiler @classmethod def _read(cls, *args, **kwargs): """ Perform reading of the data from file. Should be implemented in the child class. Parameters ---------- *args : iterable Positional arguments of the function. **kwargs : dict Keywords arguments of the function. """ raise NotImplementedError(NOT_IMPLEMENTED_MESSAGE) @classmethod def get_path(cls, file_path): """ Process `file_path` in accordance to it's type. Parameters ---------- file_path : str String that represents the path to the file (paths to S3 buckets are also acceptable). Returns ------- str Updated or verified `file_path` parameter. Notes ----- if `file_path` is an S3 bucket, parameter will be returned as is, otherwise absolute path will be returned. """ if S3_ADDRESS_REGEX.search(file_path): return file_path else: return os.path.abspath(file_path) @classmethod def file_open(cls, file_path, mode="rb", compression="infer"): """ Get the file handle from `file_path`. Parameters ---------- file_path : str String that represents the path to the file (paths to S3 buckets are also acceptable). mode : str, default: "rb" String, which defines which mode file should be open. compression : str, default: "infer" File compression name (acceptable values are "gzip", "bz2", "xz" and "zip"). Returns ------- file-like file-like object of the `file_path`. """ if isinstance(file_path, str): match = S3_ADDRESS_REGEX.search(file_path) if match is not None: if file_path[0] == "S": file_path = "{}{}".format("s", file_path[1:]) import s3fs as S3FS from botocore.exceptions import NoCredentialsError s3fs = S3FS.S3FileSystem(anon=False) try: return s3fs.open(file_path) except NoCredentialsError: s3fs = S3FS.S3FileSystem(anon=True) return s3fs.open(file_path) elif compression == "gzip": import gzip return gzip.open(file_path, mode=mode) elif compression == "bz2": import bz2 return bz2.BZ2File(file_path, mode=mode) elif compression == "xz": import lzma return lzma.LZMAFile(file_path, mode=mode) elif compression == "zip": import zipfile zf = zipfile.ZipFile(file_path, mode=mode.replace("b", "")) if zf.mode == "w": return zf elif zf.mode == "r": zip_names = zf.namelist() if len(zip_names) == 1: f = zf.open(zip_names.pop()) return f elif len(zip_names) == 0: raise ValueError( "Zero files found in ZIP file {}".format(file_path) ) else: raise ValueError( "Multiple files found in ZIP file." " Only one file per ZIP: {}".format(zip_names) ) return open(file_path, mode=mode) @classmethod def file_size(cls, f): """ Get the size of file associated with file handle `f`. Parameters ---------- f : file-like object File-like object, that should be used to get file size. Returns ------- int File size in bytes. """ cur_pos = f.tell() f.seek(0, os.SEEK_END) size = f.tell() f.seek(cur_pos, os.SEEK_SET) return size @classmethod def file_exists(cls, file_path): """ Check if `file_path` exists. Parameters ---------- file_path : str String that represents the path to the file (paths to S3 buckets are also acceptable). Returns ------- bool Whether file exists or not. """ if isinstance(file_path, str): match = S3_ADDRESS_REGEX.search(file_path) if match is not None: if file_path[0] == "S": file_path = "{}{}".format("s", file_path[1:]) import s3fs as S3FS from botocore.exceptions import NoCredentialsError s3fs = S3FS.S3FileSystem(anon=False) exists = False try: exists = s3fs.exists(file_path) or exists except NoCredentialsError: pass s3fs = S3FS.S3FileSystem(anon=True) return exists or s3fs.exists(file_path) return os.path.exists(file_path) @classmethod def deploy(cls, func, args, num_returns): # noqa: PR01 """ Deploy remote task. Should be implemented in the task class (for example in the `RayTask`). """ raise NotImplementedError(NOT_IMPLEMENTED_MESSAGE) def parse(self, func, args, num_returns): # noqa: PR01 """ Parse file's data in the worker process. Should be implemented in the parser class (for example in the `PandasCSVParser`). """ raise NotImplementedError(NOT_IMPLEMENTED_MESSAGE) @classmethod def materialize(cls, obj_id): # noqa: PR01 """ Get results from worker. Should be implemented in the task class (for example in the `RayTask`). """ raise NotImplementedError(NOT_IMPLEMENTED_MESSAGE)
32.747331
95
0.561726
dbe7dc436b36245298011a914f879e22b2cfb56f
633
py
Python
Courses/Python/Django/Digging into Django/4.Users/2.User Authentication/4.8 Registration URL/main/urls.py
kamranhossain/CodeSchoolExercises
5d6cd08fd669a85cfddbd8f061fbce4b7dc6e2f5
[ "MIT" ]
null
null
null
Courses/Python/Django/Digging into Django/4.Users/2.User Authentication/4.8 Registration URL/main/urls.py
kamranhossain/CodeSchoolExercises
5d6cd08fd669a85cfddbd8f061fbce4b7dc6e2f5
[ "MIT" ]
null
null
null
Courses/Python/Django/Digging into Django/4.Users/2.User Authentication/4.8 Registration URL/main/urls.py
kamranhossain/CodeSchoolExercises
5d6cd08fd669a85cfddbd8f061fbce4b7dc6e2f5
[ "MIT" ]
null
null
null
from django.conf.urls import url from django.conf import settings from django.views import static from . import views urlpatterns = [ url(r'^$', views.home, name = 'home'), url(r'^([0-9]+)/$', views.detail, name = 'detail'), url(r'^post_location/$', views.post_location, name = 'post_location'), url(r'^user/(\w+)/$', views.profile, name='profile'), url(r'^login/$', views.login_view, name='login'), url(r'^register/$', views.register, name='register'), ] if settings.DEBUG: urlpatterns += [ url(r'^media/(?P<path>.*)$', static.serve, {'document_root': settings.MEDIA_ROOT,}), ]
30.142857
74
0.619273
fad43869044b6474cdb25191dd0f7c41e7d335ea
13,365
py
Python
pycxsimulator.py
itbergl/PyCX
b5cc24454f37102388eb3181dbded6015e23a45c
[ "BSD-2-Clause-FreeBSD" ]
176
2019-12-18T11:44:28.000Z
2022-03-27T09:09:33.000Z
pycxsimulator.py
itbergl/PyCX
b5cc24454f37102388eb3181dbded6015e23a45c
[ "BSD-2-Clause-FreeBSD" ]
2
2020-03-29T00:51:25.000Z
2020-07-19T11:08:32.000Z
pycxsimulator.py
itbergl/PyCX
b5cc24454f37102388eb3181dbded6015e23a45c
[ "BSD-2-Clause-FreeBSD" ]
56
2019-12-18T19:04:12.000Z
2022-03-22T09:35:33.000Z
## "pycxsimulator.py" ## Dynamic, interactive simulation GUI for PyCX ## ## Project website: ## https://github.com/hsayama/PyCX ## ## Initial development by: ## Chun Wong ## email@chunwong.net ## ## Revisions by: ## Hiroki Sayama ## sayama@binghamton.edu ## ## Copyright 2012 Chun Wong ## Copyright 2012-2019 Hiroki Sayama ## ## Simulation control & GUI extensions ## Copyright 2013 Przemyslaw Szufel & Bogumil Kaminski ## {pszufe, bkamins}@sgh.waw.pl ## ## Fixing errors due to "the grid and pack problem" by: ## Toshihiro Tanizawa ## tanizawa@ee.kochi-ct.ac.jp ## began at 2016-06-15(Wed) 17:10:17 ## fixed grid() and pack() problem on 2016-06-21(Tue) 18:29:40 ## ## various bug fixes and updates by Steve Morgan on 3/28/2020 import matplotlib #System check added by Steve Morgan import platform #SM 3/28/2020 if platform.system() == 'Windows': #SM 3/28/2020 backend = 'TkAgg' #SM 3/28/2020 else: #SM 3/28/2020 backend = 'Qt5Agg' #SM 3/28/2020 matplotlib.use(backend) #SM 3/28/2020 import matplotlib.pyplot as plt #SM 3/28/2020 ## version check added by Hiroki Sayama on 01/08/2019 import sys if sys.version_info[0] == 3: # Python 3 from tkinter import * from tkinter.ttk import Notebook else: # Python 2 from Tkinter import * from ttk import Notebook ## suppressing matplotlib deprecation warnings (especially with subplot) by Hiroki Sayama on 06/29/2020 import warnings warnings.filterwarnings("ignore", category = matplotlib.cbook.MatplotlibDeprecationWarning) class GUI: # Constructor def __init__(self, title='PyCX Simulator', interval=0, stepSize=1, parameterSetters=[]): ## all GUI variables moved to inside constructor by Hiroki Sayama 10/09/2018 self.titleText = title self.timeInterval = interval self.stepSize = stepSize self.parameterSetters = parameterSetters self.varEntries = {} self.statusStr = "" self.running = False self.modelFigure = None self.currentStep = 0 # initGUI() removed by Hiroki Sayama 10/09/2018 #create root window self.rootWindow = Tk() self.statusText = StringVar(self.rootWindow, value=self.statusStr) # at this point, statusStr = "" # added "self.rootWindow" above by Hiroki Sayama 10/09/2018 self.setStatusStr("Simulation not yet started") self.rootWindow.wm_title(self.titleText) # titleText = 'PyCX Simulator' self.rootWindow.protocol('WM_DELETE_WINDOW', self.quitGUI) self.rootWindow.geometry('450x300') self.rootWindow.columnconfigure(0, weight=1) self.rootWindow.rowconfigure(0, weight=1) self.notebook = Notebook(self.rootWindow) # self.notebook.grid(row=0,column=0,padx=2,pady=2,sticky='nswe') # commented out by toshi on 2016-06-21(Tue) 18:30:25 self.notebook.pack(side=TOP, padx=2, pady=2) # added "self.rootWindow" by Hiroki Sayama 10/09/2018 self.frameRun = Frame(self.rootWindow) self.frameSettings = Frame(self.rootWindow) self.frameParameters = Frame(self.rootWindow) self.frameInformation = Frame(self.rootWindow) self.notebook.add(self.frameRun,text="Run") self.notebook.add(self.frameSettings,text="Settings") self.notebook.add(self.frameParameters,text="Parameters") self.notebook.add(self.frameInformation,text="Info") self.notebook.pack(expand=NO, fill=BOTH, padx=5, pady=5 ,side=TOP) # self.notebook.grid(row=0, column=0, padx=5, pady=5, sticky='nswe') # commented out by toshi on 2016-06-21(Tue) 18:31:02 self.status = Label(self.rootWindow, width=40,height=3, relief=SUNKEN, bd=1, textvariable=self.statusText) # self.status.grid(row=1,column=0,padx=5,pady=5,sticky='nswe') # commented out by toshi on 2016-06-21(Tue) 18:31:17 self.status.pack(side=TOP, fill=X, padx=5, pady=5, expand=NO) # ----------------------------------- # frameRun # ----------------------------------- # buttonRun self.runPauseString = StringVar(self.rootWindow) # added "self.rootWindow" by Hiroki Sayama 10/09/2018 self.runPauseString.set("Run") self.buttonRun = Button(self.frameRun,width=30,height=2,textvariable=self.runPauseString,command=self.runEvent) self.buttonRun.pack(side=TOP, padx=5, pady=5) self.showHelp(self.buttonRun,"Runs the simulation (or pauses the running simulation)") # buttonStep self.buttonStep = Button(self.frameRun,width=30,height=2,text='Step Once',command=self.stepOnce) self.buttonStep.pack(side=TOP, padx=5, pady=5) self.showHelp(self.buttonStep,"Steps the simulation only once") # buttonReset self.buttonReset = Button(self.frameRun,width=30,height=2,text='Reset',command=self.resetModel) self.buttonReset.pack(side=TOP, padx=5, pady=5) self.showHelp(self.buttonReset,"Resets the simulation") # ----------------------------------- # frameSettings # ----------------------------------- can = Canvas(self.frameSettings) lab = Label(can, width=25,height=1,text="Step size ", justify=LEFT, anchor=W,takefocus=0) lab.pack(side='left') self.stepScale = Scale(can,from_=1, to=50, resolution=1,command=self.changeStepSize,orient=HORIZONTAL, width=25,length=150) self.stepScale.set(self.stepSize) self.showHelp(self.stepScale,"Skips model redraw during every [n] simulation steps\nResults in a faster model run.") self.stepScale.pack(side='left') can.pack(side='top') can = Canvas(self.frameSettings) lab = Label(can, width=25,height=1,text="Step visualization delay in ms ", justify=LEFT, anchor=W,takefocus=0) lab.pack(side='left') self.stepDelay = Scale(can,from_=0, to=max(2000,self.timeInterval), resolution=10,command=self.changeStepDelay,orient=HORIZONTAL, width=25,length=150) self.stepDelay.set(self.timeInterval) self.showHelp(self.stepDelay,"The visualization of each step is delays by the given number of milliseconds.") self.stepDelay.pack(side='left') can.pack(side='top') # -------------------------------------------- # frameInformation # -------------------------------------------- scrollInfo = Scrollbar(self.frameInformation) self.textInformation = Text(self.frameInformation, width=45,height=13,bg='lightgray',wrap=WORD,font=("Courier",10)) scrollInfo.pack(side=RIGHT, fill=Y) self.textInformation.pack(side=LEFT,fill=BOTH,expand=YES) scrollInfo.config(command=self.textInformation.yview) self.textInformation.config(yscrollcommand=scrollInfo.set) # -------------------------------------------- # ParameterSetters # -------------------------------------------- for variableSetter in self.parameterSetters: can = Canvas(self.frameParameters) lab = Label(can, width=25,height=1,text=variableSetter.__name__+" ",anchor=W,takefocus=0) lab.pack(side='left') ent = Entry(can, width=11) ent.insert(0, str(variableSetter())) if variableSetter.__doc__ != None and len(variableSetter.__doc__) > 0: self.showHelp(ent,variableSetter.__doc__.strip()) ent.pack(side='left') can.pack(side='top') self.varEntries[variableSetter]=ent if len(self.parameterSetters) > 0: self.buttonSaveParameters = Button(self.frameParameters,width=50,height=1, command=self.saveParametersCmd,text="Save parameters to the running model",state=DISABLED) self.showHelp(self.buttonSaveParameters, "Saves the parameter values.\nNot all values may take effect on a running model\nA model reset might be required.") self.buttonSaveParameters.pack(side='top',padx=5,pady=5) self.buttonSaveParametersAndReset = Button(self.frameParameters,width=50,height=1, command=self.saveParametersAndResetCmd,text="Save parameters to the model and reset the model") self.showHelp(self.buttonSaveParametersAndReset,"Saves the given parameter values and resets the model") self.buttonSaveParametersAndReset.pack(side='top',padx=5,pady=5) # <<<<< Init >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> def setStatusStr(self,newStatus): self.statusStr = newStatus self.statusText.set(self.statusStr) # model control functions for changing parameters def changeStepSize(self,val): self.stepSize = int(val) def changeStepDelay(self,val): self.timeInterval= int(val) def saveParametersCmd(self): for variableSetter in self.parameterSetters: variableSetter(float(self.varEntries[variableSetter].get())) self.setStatusStr("New parameter values have been set") def saveParametersAndResetCmd(self): self.saveParametersCmd() self.resetModel() # <<<< runEvent >>>>> # This event is envoked when "Run" button is clicked. def runEvent(self): self.running = not self.running if self.running: self.rootWindow.after(self.timeInterval,self.stepModel) self.runPauseString.set("Pause") self.buttonStep.configure(state=DISABLED) self.buttonReset.configure(state=DISABLED) if len(self.parameterSetters) > 0: self.buttonSaveParameters.configure(state=NORMAL) self.buttonSaveParametersAndReset.configure(state=DISABLED) else: self.runPauseString.set("Continue Run") self.buttonStep.configure(state=NORMAL) self.buttonReset.configure(state=NORMAL) if len(self.parameterSetters) > 0: self.buttonSaveParameters.configure(state=NORMAL) self.buttonSaveParametersAndReset.configure(state=NORMAL) def stepModel(self): if self.running: self.modelStepFunc() self.currentStep += 1 self.setStatusStr("Step "+str(self.currentStep)) self.status.configure(foreground='black') if (self.currentStep) % self.stepSize == 0: self.drawModel() self.rootWindow.after(int(self.timeInterval*1.0/self.stepSize),self.stepModel) def stepOnce(self): self.running = False self.runPauseString.set("Continue Run") self.modelStepFunc() self.currentStep += 1 self.setStatusStr("Step "+str(self.currentStep)) self.drawModel() if len(self.parameterSetters) > 0: self.buttonSaveParameters.configure(state=NORMAL) def resetModel(self): self.running = False self.runPauseString.set("Run") self.modelInitFunc() self.currentStep = 0; self.setStatusStr("Model has been reset") self.drawModel() def drawModel(self): plt.ion() #SM 3/26/2020 if self.modelFigure == None or self.modelFigure.canvas.manager.window == None: self.modelFigure = plt.figure() #SM 3/26/2020 self.modelDrawFunc() self.modelFigure.canvas.manager.window.update() plt.show() # bug fix by Hiroki Sayama in 2016 #SM 3/26/2020 def start(self,func=[]): if len(func)==3: self.modelInitFunc = func[0] self.modelDrawFunc = func[1] self.modelStepFunc = func[2] if (self.modelStepFunc.__doc__ != None and len(self.modelStepFunc.__doc__)>0): self.showHelp(self.buttonStep,self.modelStepFunc.__doc__.strip()) if (self.modelInitFunc.__doc__ != None and len(self.modelInitFunc.__doc__)>0): self.textInformation.config(state=NORMAL) self.textInformation.delete(1.0, END) self.textInformation.insert(END, self.modelInitFunc.__doc__.strip()) self.textInformation.config(state=DISABLED) self.modelInitFunc() self.drawModel() self.rootWindow.mainloop() def quitGUI(self): self.running = False # HS 06/29/2020 self.rootWindow.quit() plt.close('all') # HS 06/29/2020 self.rootWindow.destroy() def showHelp(self, widget,text): def setText(self): self.statusText.set(text) self.status.configure(foreground='blue') def showHelpLeave(self): self.statusText.set(self.statusStr) self.status.configure(foreground='black') widget.bind("<Enter>", lambda e : setText(self)) widget.bind("<Leave>", lambda e : showHelpLeave(self))
43.676471
150
0.609502
b06d64cfac07e3ef798f197aa90d29e9f650f419
384
py
Python
0x06-python-classes/102-main.py
gogomillan/holbertonschool-higher_level_programming
1549ffc4fdc284271684321ff6edd882a314193a
[ "MIT" ]
null
null
null
0x06-python-classes/102-main.py
gogomillan/holbertonschool-higher_level_programming
1549ffc4fdc284271684321ff6edd882a314193a
[ "MIT" ]
null
null
null
0x06-python-classes/102-main.py
gogomillan/holbertonschool-higher_level_programming
1549ffc4fdc284271684321ff6edd882a314193a
[ "MIT" ]
null
null
null
#!/usr/bin/python3 Square = __import__('102-square').Square s_5 = Square(5) s_6 = Square(6) if s_5 < s_6: print("Square 5 < Square 6") if s_5 <= s_6: print("Square 5 <= Square 6") if s_5 == s_6: print("Square 5 == Square 6") if s_5 != s_6: print("Square 5 != Square 6") if s_5 > s_6: print("Square 5 > Square 6") if s_5 >= s_6: print("Square 5 >= Square 6")
20.210526
40
0.588542
7ced26e6a014b482cbfb42342d6605c24196ad73
484
py
Python
p1.py
Morwar22/BigData
7f97bc50b9566fb3a323e856c677d91fe54fd2ac
[ "Apache-2.0" ]
null
null
null
p1.py
Morwar22/BigData
7f97bc50b9566fb3a323e856c677d91fe54fd2ac
[ "Apache-2.0" ]
null
null
null
p1.py
Morwar22/BigData
7f97bc50b9566fb3a323e856c677d91fe54fd2ac
[ "Apache-2.0" ]
null
null
null
import sys from pyspark import SparkConf, SparkContext import re word = sys.argv[1] conf = SparkConf().setAppName('WordCount') sc = SparkContext(conf=conf) def spliter(line): return re.sub(r'\W+', ' ', line).split() def searcher(line): if word in line: return {line, ''} sc.textFile('input.txt') rdd = sc.parallelize() rdd = rdd.map(spliter()) rdd = rdd.filter(searcher()) rdd = rdd.reduceByKey() \ .saveAsTextFile("output.txt")
17.925926
45
0.628099
05edfe145308bdca1eae849098a222bc20709c49
108
py
Python
config.py
anserion/pyFlaskNotebook
cac9d3615aa264928eb2bed01a3d06657c05e3ee
[ "Apache-2.0" ]
null
null
null
config.py
anserion/pyFlaskNotebook
cac9d3615aa264928eb2bed01a3d06657c05e3ee
[ "Apache-2.0" ]
null
null
null
config.py
anserion/pyFlaskNotebook
cac9d3615aa264928eb2bed01a3d06657c05e3ee
[ "Apache-2.0" ]
null
null
null
CSRF_ENABLED = True SECRET_KEY = '1234567890' flask_port=8080 good_name = 'yandex' good_password = '123456'
18
25
0.777778
12fd0487f71feb342ac5c0fcb7c08ab66dd4f7ed
2,418
py
Python
pytest_testrail_api_client/test_rail.py
Slamnlc/test-rail-client
56ed9fb5d6ad0128458709ebebce6b6b51782a9f
[ "MIT" ]
null
null
null
pytest_testrail_api_client/test_rail.py
Slamnlc/test-rail-client
56ed9fb5d6ad0128458709ebebce6b6b51782a9f
[ "MIT" ]
null
null
null
pytest_testrail_api_client/test_rail.py
Slamnlc/test-rail-client
56ed9fb5d6ad0128458709ebebce6b6b51782a9f
[ "MIT" ]
null
null
null
from pytest_testrail_api_client.api.cases_api import CasesApi from pytest_testrail_api_client.api.congif_api import ConfigsApi from pytest_testrail_api_client.api.milestones_api import MilestonesApi from pytest_testrail_api_client.api.plans_api import PlansApi from pytest_testrail_api_client.api.project_api import ProjectApi from pytest_testrail_api_client.api.results_api import ResultsApi from pytest_testrail_api_client.api.runs_api import RunsApi from pytest_testrail_api_client.api.sections_api import SectionsApi from pytest_testrail_api_client.api.service_api import ServiceApi from pytest_testrail_api_client.api.small_api import TestsApi, StatusesApi, CaseTypesApi, TemplatesApi, CaseFieldsApi, \ ResultsFieldsApi, PrioritiesApi, SharedStepsApi, ReportsApi from pytest_testrail_api_client.api.suites_api import SuitesApi from pytest_testrail_api_client.api.user_api import UsersApi from pytest_testrail_api_client.modules.session import Session class TestRail(Session): @property def projects(self): return ProjectApi(self) @property def tests(self): return TestsApi(self) @property def cases(self): return CasesApi(self) @property def statuses(self): return StatusesApi(self) @property def users(self): return UsersApi(self) @property def configs(self): return ConfigsApi(self) @property def case_types(self): return CaseTypesApi(self) @property def suites(self): return SuitesApi(self) @property def templates(self): return TemplatesApi(self) @property def case_fields(self): return CaseFieldsApi(self) @property def results_fields(self): return ResultsFieldsApi(self) @property def priorities(self): return PrioritiesApi(self) @property def sections(self): return SectionsApi(self) @property def milestones(self): return MilestonesApi(self) @property def plans(self): return PlansApi(self) @property def results(self): return ResultsApi(self) @property def runs(self): return RunsApi(self) @property def service(self): return ServiceApi(self) @property def shared_steps(self): return SharedStepsApi(self) @property def reports(self): return ReportsApi(self)
24.673469
120
0.724152
f0561afc1493802722cefe55909fe00579e94918
1,291
py
Python
examples/cbc_iris.py
ChristophRaab/prototorch_models
75a39f5b03110a56b3d93ee00b3397858f4222a3
[ "MIT" ]
4
2021-05-05T07:27:11.000Z
2021-12-24T08:01:45.000Z
examples/cbc_iris.py
ChristophRaab/prototorch_models
75a39f5b03110a56b3d93ee00b3397858f4222a3
[ "MIT" ]
6
2021-05-06T09:49:37.000Z
2021-11-15T10:43:09.000Z
examples/cbc_iris.py
ChristophRaab/prototorch_models
75a39f5b03110a56b3d93ee00b3397858f4222a3
[ "MIT" ]
5
2021-05-12T14:16:35.000Z
2021-10-20T14:21:42.000Z
"""CBC example using the Iris dataset.""" import argparse import prototorch as pt import pytorch_lightning as pl import torch if __name__ == "__main__": # Command-line arguments parser = argparse.ArgumentParser() parser = pl.Trainer.add_argparse_args(parser) args = parser.parse_args() # Dataset train_ds = pt.datasets.Iris(dims=[0, 2]) # Reproducibility pl.utilities.seed.seed_everything(seed=42) # Dataloaders train_loader = torch.utils.data.DataLoader(train_ds, batch_size=32) # Hyperparameters hparams = dict( distribution=[1, 0, 3], margin=0.1, proto_lr=0.01, bb_lr=0.01, ) # Initialize the model model = pt.models.CBC( hparams, components_initializer=pt.initializers.SSCI(train_ds, noise=0.01), reasonings_iniitializer=pt.initializers. PurePositiveReasoningsInitializer(), ) # Callbacks vis = pt.models.VisCBC2D(data=train_ds, title="CBC Iris Example", resolution=100, axis_off=True) # Setup trainer trainer = pl.Trainer.from_argparse_args( args, callbacks=[vis], ) # Training loop trainer.fit(model, train_loader)
23.907407
74
0.618125
77fe3789578913372badcb0e2b8089644a790749
21,489
py
Python
google/cloud/compute_v1/services/region_target_http_proxies/transports/rest.py
vam-google/python-compute
799f2f55e5e205317862a17ca7ed548ce2ca66e5
[ "Apache-2.0" ]
null
null
null
google/cloud/compute_v1/services/region_target_http_proxies/transports/rest.py
vam-google/python-compute
799f2f55e5e205317862a17ca7ed548ce2ca66e5
[ "Apache-2.0" ]
null
null
null
google/cloud/compute_v1/services/region_target_http_proxies/transports/rest.py
vam-google/python-compute
799f2f55e5e205317862a17ca7ed548ce2ca66e5
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import warnings from typing import Callable, Dict, Optional, Sequence, Tuple from google.api_core import gapic_v1 # type: ignore from google.api_core import exceptions as core_exceptions # type: ignore from google.auth import credentials as ga_credentials # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore import grpc # type: ignore from google.auth.transport.requests import AuthorizedSession from google.cloud.compute_v1.types import compute from .base import RegionTargetHttpProxiesTransport, DEFAULT_CLIENT_INFO class RegionTargetHttpProxiesRestTransport(RegionTargetHttpProxiesTransport): """REST backend transport for RegionTargetHttpProxies. The RegionTargetHttpProxies API. This class defines the same methods as the primary client, so the primary client can load the underlying transport implementation and call it. It sends JSON representations of protocol buffers over HTTP/1.1 """ def __init__( self, *, host: str = "compute.googleapis.com", credentials: ga_credentials.Credentials = None, credentials_file: str = None, scopes: Sequence[str] = None, client_cert_source_for_mtls: Callable[[], Tuple[bytes, bytes]] = None, quota_project_id: Optional[str] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional(Sequence[str])): A list of scopes. This argument is ignored if ``channel`` is provided. client_cert_source_for_mtls (Callable[[], Tuple[bytes, bytes]]): Client certificate to configure mutual TLS HTTP channel. It is ignored if ``channel`` is provided. quota_project_id (Optional[str]): An optional project to use for billing and quota. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. """ # Run the base constructor # TODO(yon-mg): resolve other ctor params i.e. scopes, quota, etc. # TODO: When custom host (api_endpoint) is set, `scopes` must *also* be set on the # credentials object super().__init__( host=host, credentials=credentials, client_info=client_info, ) self._session = AuthorizedSession( self._credentials, default_host=self.DEFAULT_HOST ) if client_cert_source_for_mtls: self._session.configure_mtls_channel(client_cert_source_for_mtls) self._prep_wrapped_messages(client_info) def delete( self, request: compute.DeleteRegionTargetHttpProxyRequest, *, metadata: Sequence[Tuple[str, str]] = (), ) -> compute.Operation: r"""Call the delete method over HTTP. Args: request (~.compute.DeleteRegionTargetHttpProxyRequest): The request object. A request message for RegionTargetHttpProxies.Delete. See the method description for details. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: ~.compute.Operation: Represents an Operation resource. Google Compute Engine has three Operation resources: - `Global </compute/docs/reference/rest/{$api_version}/globalOperations>`__ \* `Regional </compute/docs/reference/rest/{$api_version}/regionOperations>`__ \* `Zonal </compute/docs/reference/rest/{$api_version}/zoneOperations>`__ You can use an operation resource to manage asynchronous API requests. For more information, read Handling API responses. Operations can be global, regional or zonal. - For global operations, use the ``globalOperations`` resource. - For regional operations, use the ``regionOperations`` resource. - For zonal operations, use the ``zonalOperations`` resource. For more information, read Global, Regional, and Zonal Resources. (== resource_for {$api_version}.globalOperations ==) (== resource_for {$api_version}.regionOperations ==) (== resource_for {$api_version}.zoneOperations ==) """ # TODO(yon-mg): need to handle grpc transcoding and parse url correctly # current impl assumes basic case of grpc transcoding url = "https://{host}/compute/v1/projects/{project}/regions/{region}/targetHttpProxies/{target_http_proxy}".format( host=self._host, project=request.project, region=request.region, target_http_proxy=request.target_http_proxy, ) # TODO(yon-mg): handle nested fields corerctly rather than using only top level fields # not required for GCE query_params = {} if compute.DeleteRegionTargetHttpProxyRequest.request_id in request: query_params["requestId"] = request.request_id # TODO(yon-mg): further discussion needed whether 'python truthiness' is appropriate here # discards default values # TODO(yon-mg): add test for proper url encoded strings query_params = ["{k}={v}".format(k=k, v=v) for k, v in query_params.items()] url += "?{}".format("&".join(query_params)).replace(" ", "+") # Send the request headers = dict(metadata) headers["Content-Type"] = "application/json" response = self._session.delete(url, headers=headers,) # In case of error, raise the appropriate core_exceptions.GoogleAPICallError exception # subclass. if response.status_code >= 400: raise core_exceptions.from_http_response(response) # Return the response return compute.Operation.from_json(response.content, ignore_unknown_fields=True) def get( self, request: compute.GetRegionTargetHttpProxyRequest, *, metadata: Sequence[Tuple[str, str]] = (), ) -> compute.TargetHttpProxy: r"""Call the get method over HTTP. Args: request (~.compute.GetRegionTargetHttpProxyRequest): The request object. A request message for RegionTargetHttpProxies.Get. See the method description for details. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: ~.compute.TargetHttpProxy: Represents a Target HTTP Proxy resource. Google Compute Engine has two Target HTTP Proxy resources: - `Global </compute/docs/reference/rest/{$api_version}/targetHttpProxies>`__ \* `Regional </compute/docs/reference/rest/{$api_version}/regionTargetHttpProxies>`__ A target HTTP proxy is a component of GCP HTTP load balancers. - targetHttpProxies are used by external HTTP load balancers and Traffic Director. \* regionTargetHttpProxies are used by internal HTTP load balancers. Forwarding rules reference a target HTTP proxy, and the target proxy then references a URL map. For more information, read Using Target Proxies and Forwarding rule concepts. (== resource_for {$api_version}.targetHttpProxies ==) (== resource_for {$api_version}.regionTargetHttpProxies ==) """ # TODO(yon-mg): need to handle grpc transcoding and parse url correctly # current impl assumes basic case of grpc transcoding url = "https://{host}/compute/v1/projects/{project}/regions/{region}/targetHttpProxies/{target_http_proxy}".format( host=self._host, project=request.project, region=request.region, target_http_proxy=request.target_http_proxy, ) # TODO(yon-mg): handle nested fields corerctly rather than using only top level fields # not required for GCE query_params = {} # TODO(yon-mg): further discussion needed whether 'python truthiness' is appropriate here # discards default values # TODO(yon-mg): add test for proper url encoded strings query_params = ["{k}={v}".format(k=k, v=v) for k, v in query_params.items()] url += "?{}".format("&".join(query_params)).replace(" ", "+") # Send the request headers = dict(metadata) headers["Content-Type"] = "application/json" response = self._session.get(url, headers=headers,) # In case of error, raise the appropriate core_exceptions.GoogleAPICallError exception # subclass. if response.status_code >= 400: raise core_exceptions.from_http_response(response) # Return the response return compute.TargetHttpProxy.from_json( response.content, ignore_unknown_fields=True ) def insert( self, request: compute.InsertRegionTargetHttpProxyRequest, *, metadata: Sequence[Tuple[str, str]] = (), ) -> compute.Operation: r"""Call the insert method over HTTP. Args: request (~.compute.InsertRegionTargetHttpProxyRequest): The request object. A request message for RegionTargetHttpProxies.Insert. See the method description for details. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: ~.compute.Operation: Represents an Operation resource. Google Compute Engine has three Operation resources: - `Global </compute/docs/reference/rest/{$api_version}/globalOperations>`__ \* `Regional </compute/docs/reference/rest/{$api_version}/regionOperations>`__ \* `Zonal </compute/docs/reference/rest/{$api_version}/zoneOperations>`__ You can use an operation resource to manage asynchronous API requests. For more information, read Handling API responses. Operations can be global, regional or zonal. - For global operations, use the ``globalOperations`` resource. - For regional operations, use the ``regionOperations`` resource. - For zonal operations, use the ``zonalOperations`` resource. For more information, read Global, Regional, and Zonal Resources. (== resource_for {$api_version}.globalOperations ==) (== resource_for {$api_version}.regionOperations ==) (== resource_for {$api_version}.zoneOperations ==) """ # Jsonify the request body body = compute.TargetHttpProxy.to_json( request.target_http_proxy_resource, including_default_value_fields=False, use_integers_for_enums=False, ) # TODO(yon-mg): need to handle grpc transcoding and parse url correctly # current impl assumes basic case of grpc transcoding url = "https://{host}/compute/v1/projects/{project}/regions/{region}/targetHttpProxies".format( host=self._host, project=request.project, region=request.region, ) # TODO(yon-mg): handle nested fields corerctly rather than using only top level fields # not required for GCE query_params = {} if compute.InsertRegionTargetHttpProxyRequest.request_id in request: query_params["requestId"] = request.request_id # TODO(yon-mg): further discussion needed whether 'python truthiness' is appropriate here # discards default values # TODO(yon-mg): add test for proper url encoded strings query_params = ["{k}={v}".format(k=k, v=v) for k, v in query_params.items()] url += "?{}".format("&".join(query_params)).replace(" ", "+") # Send the request headers = dict(metadata) headers["Content-Type"] = "application/json" response = self._session.post(url, headers=headers, data=body,) # In case of error, raise the appropriate core_exceptions.GoogleAPICallError exception # subclass. if response.status_code >= 400: raise core_exceptions.from_http_response(response) # Return the response return compute.Operation.from_json(response.content, ignore_unknown_fields=True) def list( self, request: compute.ListRegionTargetHttpProxiesRequest, *, metadata: Sequence[Tuple[str, str]] = (), ) -> compute.TargetHttpProxyList: r"""Call the list method over HTTP. Args: request (~.compute.ListRegionTargetHttpProxiesRequest): The request object. A request message for RegionTargetHttpProxies.List. See the method description for details. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: ~.compute.TargetHttpProxyList: A list of TargetHttpProxy resources. """ # TODO(yon-mg): need to handle grpc transcoding and parse url correctly # current impl assumes basic case of grpc transcoding url = "https://{host}/compute/v1/projects/{project}/regions/{region}/targetHttpProxies".format( host=self._host, project=request.project, region=request.region, ) # TODO(yon-mg): handle nested fields corerctly rather than using only top level fields # not required for GCE query_params = {} if compute.ListRegionTargetHttpProxiesRequest.filter in request: query_params["filter"] = request.filter if compute.ListRegionTargetHttpProxiesRequest.max_results in request: query_params["maxResults"] = request.max_results if compute.ListRegionTargetHttpProxiesRequest.order_by in request: query_params["orderBy"] = request.order_by if compute.ListRegionTargetHttpProxiesRequest.page_token in request: query_params["pageToken"] = request.page_token if compute.ListRegionTargetHttpProxiesRequest.return_partial_success in request: query_params["returnPartialSuccess"] = request.return_partial_success # TODO(yon-mg): further discussion needed whether 'python truthiness' is appropriate here # discards default values # TODO(yon-mg): add test for proper url encoded strings query_params = ["{k}={v}".format(k=k, v=v) for k, v in query_params.items()] url += "?{}".format("&".join(query_params)).replace(" ", "+") # Send the request headers = dict(metadata) headers["Content-Type"] = "application/json" response = self._session.get(url, headers=headers,) # In case of error, raise the appropriate core_exceptions.GoogleAPICallError exception # subclass. if response.status_code >= 400: raise core_exceptions.from_http_response(response) # Return the response return compute.TargetHttpProxyList.from_json( response.content, ignore_unknown_fields=True ) def set_url_map( self, request: compute.SetUrlMapRegionTargetHttpProxyRequest, *, metadata: Sequence[Tuple[str, str]] = (), ) -> compute.Operation: r"""Call the set url map method over HTTP. Args: request (~.compute.SetUrlMapRegionTargetHttpProxyRequest): The request object. A request message for RegionTargetHttpProxies.SetUrlMap. See the method description for details. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: ~.compute.Operation: Represents an Operation resource. Google Compute Engine has three Operation resources: - `Global </compute/docs/reference/rest/{$api_version}/globalOperations>`__ \* `Regional </compute/docs/reference/rest/{$api_version}/regionOperations>`__ \* `Zonal </compute/docs/reference/rest/{$api_version}/zoneOperations>`__ You can use an operation resource to manage asynchronous API requests. For more information, read Handling API responses. Operations can be global, regional or zonal. - For global operations, use the ``globalOperations`` resource. - For regional operations, use the ``regionOperations`` resource. - For zonal operations, use the ``zonalOperations`` resource. For more information, read Global, Regional, and Zonal Resources. (== resource_for {$api_version}.globalOperations ==) (== resource_for {$api_version}.regionOperations ==) (== resource_for {$api_version}.zoneOperations ==) """ # Jsonify the request body body = compute.UrlMapReference.to_json( request.url_map_reference_resource, including_default_value_fields=False, use_integers_for_enums=False, ) # TODO(yon-mg): need to handle grpc transcoding and parse url correctly # current impl assumes basic case of grpc transcoding url = "https://{host}/compute/v1/projects/{project}/regions/{region}/targetHttpProxies/{target_http_proxy}/setUrlMap".format( host=self._host, project=request.project, region=request.region, target_http_proxy=request.target_http_proxy, ) # TODO(yon-mg): handle nested fields corerctly rather than using only top level fields # not required for GCE query_params = {} if compute.SetUrlMapRegionTargetHttpProxyRequest.request_id in request: query_params["requestId"] = request.request_id # TODO(yon-mg): further discussion needed whether 'python truthiness' is appropriate here # discards default values # TODO(yon-mg): add test for proper url encoded strings query_params = ["{k}={v}".format(k=k, v=v) for k, v in query_params.items()] url += "?{}".format("&".join(query_params)).replace(" ", "+") # Send the request headers = dict(metadata) headers["Content-Type"] = "application/json" response = self._session.post(url, headers=headers, data=body,) # In case of error, raise the appropriate core_exceptions.GoogleAPICallError exception # subclass. if response.status_code >= 400: raise core_exceptions.from_http_response(response) # Return the response return compute.Operation.from_json(response.content, ignore_unknown_fields=True) __all__ = ("RegionTargetHttpProxiesRestTransport",)
42.636905
133
0.620457
e9a532e1726db68d039d760dd3b54b47eb888e61
3,038
py
Python
tfts/models/unet.py
leilin-research/Time-series-prediction
97ca6a7525e2c6329276b66ece1747124da8ab42
[ "MIT" ]
552
2019-07-23T10:17:49.000Z
2022-03-23T13:37:46.000Z
tfts/models/unet.py
leilin-research/Time-series-prediction
97ca6a7525e2c6329276b66ece1747124da8ab42
[ "MIT" ]
12
2020-05-16T04:22:09.000Z
2022-03-23T13:38:45.000Z
tfts/models/unet.py
leilin-research/Time-series-prediction
97ca6a7525e2c6329276b66ece1747124da8ab42
[ "MIT" ]
122
2019-09-09T11:34:19.000Z
2022-03-16T08:06:24.000Z
# -*- coding: utf-8 -*- # @author: Longxing Tan, tanlongxing888@163.com # @date: 2020-03 # paper: # other implementations: https://www.kaggle.com/super13579/u-net-1d-cnn-with-pytorch # https://www.kaggle.com/kmat2019/u-net-1d-cnn-with-keras import tensorflow as tf from tensorflow.keras.layers import (Input, AveragePooling1D, Add, UpSampling1D, Concatenate, Lambda) from ..layers.unet_layer import * params = {} class Unet(object): def __init__(self, custom_model_params): self.params = params.update(custom_model_params) self.AvgPool1D1 = AveragePooling1D(pool_size=2) self.AvgPool1D2 = AveragePooling1D(pool_size=4) self.encoder = Encoder() self.decoder = Decoder() def __call__(self, x, predict_seq_length, training=True): pool1 = self.AvgPool1D1(x) pool2 = self.AvgPool1D2(x) encoder_output = self.encoder([x, pool1, pool2]) decoder_output = self.decoder(encoder_output, predict_seq_length=predict_seq_length) return decoder_output class Encoder(object): def __init__(self): pass def __call__(self, input_tensor, units=64, kernel_size=2, depth=2): x, pool1, pool2 = input_tensor x = conv_br(x, units, kernel_size, 1, 1) # => batch_size * sequence_length * units for i in range(depth): x = re_block(x, units, kernel_size, 1, 1) out_0 = x # => batch_size * sequence_length * units x = conv_br(x, units * 2, kernel_size, 2, 1) for i in range(depth): x = re_block(x, units * 2, kernel_size, 1,1) out_1 = x # => batch_size * sequence/2 * units*2 x = Concatenate()([x, pool1]) x = conv_br(x, units * 3, kernel_size, 2, 1) for i in range(depth): x = re_block(x, units * 3, kernel_size, 1, 1) out_2 = x # => batch_size * sequence/2, units*3 x = Concatenate()([x, pool2]) x = conv_br(x, units * 4, kernel_size, 4, 1) for i in range(depth): x = re_block(x, units * 4, kernel_size, 1, 1) return [out_0, out_1, out_2, x] class Decoder(object): def __init__(self): pass def __call__(self, input_tensor, units=64, kernel_size=2, predict_seq_length=1): out_0, out_1, out_2, x = input_tensor x = UpSampling1D(4)(x) x = Concatenate()([x, out_2]) x = conv_br(x, units * 3, kernel_size, 1, 1) x = UpSampling1D(2)(x) x = Concatenate()([x, out_1]) x = conv_br(x, units * 2, kernel_size, 1, 1) x = UpSampling1D(2)(x) x = Concatenate()([x, out_0]) x = conv_br(x, units, kernel_size, 1, 1) # regression x = Conv1D(1, kernel_size=kernel_size, strides=1, padding="same")(x) out = Activation("sigmoid")(x) out = Lambda(lambda x: 12 * x)(out) out = AveragePooling1D(strides=4)(out) # Todo: just a tricky way to change the batch*input_seq*1 -> batch_out_seq*1, need a more general way return out
34.134831
149
0.608953
aa8ec542359b0a0fe2a05427b160679349e8a35c
1,532
py
Python
cancontroller/caniot/message/message.py
lucasdietrich/caniot-pycontroller
c8ec4a9831dc294086ff194bc09a8d9c23758848
[ "MIT" ]
null
null
null
cancontroller/caniot/message/message.py
lucasdietrich/caniot-pycontroller
c8ec4a9831dc294086ff194bc09a8d9c23758848
[ "MIT" ]
null
null
null
cancontroller/caniot/message/message.py
lucasdietrich/caniot-pycontroller
c8ec4a9831dc294086ff194bc09a8d9c23758848
[ "MIT" ]
null
null
null
from __future__ import annotations import struct from cancontroller.caniot.models import MsgId, DeviceId, BufferType from abc import ABC import can class CaniotMessage(ABC): """ Represent a caniot message """ @property def arbitration_id(self): return int(self.msgid) def __init__(self, msgid: MsgId, buffer: BufferType = None): if buffer is None: buffer = [] self.msgid = msgid assert len(buffer) <= 8 self.buffer = list(buffer) def __repr__(self): return f"{self.msgid} : {self.buffer}" def get_arbitration_id(self): return self.msgid @classmethod def from_can(cls, canmsg: can.Message) -> CaniotMessage: return CaniotMessage( msgid=MsgId.from_int(canmsg.arbitration_id, extended=False), buffer=canmsg.data ) def can(self) -> can.Message: return can.Message(arbitration_id=int(self.arbitration_id), is_extended_id=False, data=self.buffer) def is_response_of(self, query: CaniotMessage): return self.msgid.is_response_of(query.msgid) class ErrorMessage(CaniotMessage): def get_error(self) -> int: if len(self.buffer) < 4: print("Invalid CANIOT ERROR FRAME") return 0 else: err, = struct.unpack("<i", bytearray(self.buffer[:4])) return err def __repr__(self): return f"{self.msgid} : {self.get_error():04X}"
24.709677
72
0.607702
e0c8c88c58852d7e53775d211e5ad5d165fed193
8,522
py
Python
wagtail/wagtailusers/forms.py
edrex/wagtail
dc1b51a5be1a57f6cb1b90507eea6ab7f2e1affe
[ "BSD-3-Clause" ]
null
null
null
wagtail/wagtailusers/forms.py
edrex/wagtail
dc1b51a5be1a57f6cb1b90507eea6ab7f2e1affe
[ "BSD-3-Clause" ]
null
null
null
wagtail/wagtailusers/forms.py
edrex/wagtail
dc1b51a5be1a57f6cb1b90507eea6ab7f2e1affe
[ "BSD-3-Clause" ]
null
null
null
from django import forms from django.contrib.auth.forms import UserCreationForm as BaseUserCreationForm from django.utils.translation import ugettext_lazy as _ from django.contrib.auth import get_user_model from django.contrib.auth.models import Group, Permission from wagtail.wagtailcore import hooks from wagtail.wagtailusers.models import UserProfile from wagtail.wagtailcore.models import UserPagePermissionsProxy, GroupPagePermission User = get_user_model() # extend Django's UserCreationForm with an 'is_superuser' field class UserCreationForm(BaseUserCreationForm): required_css_class = "required" is_superuser = forms.BooleanField( label=_("Administrator"), required=False, help_text=_("If ticked, this user has the ability to manage user accounts.") ) email = forms.EmailField(required=True, label=_("Email")) first_name = forms.CharField(required=True, label=_("First Name")) last_name = forms.CharField(required=True, label=_("Last Name")) class Meta: model = User fields = ("username", "email", "first_name", "last_name", "is_superuser", "groups") widgets = { 'groups': forms.CheckboxSelectMultiple } def clean_username(self): # Method copied from parent username = self.cleaned_data["username"] try: # When called from BaseUserCreationForm, the method fails if using a AUTH_MODEL_MODEL, # This is because the following line tries to perform a lookup on # the default "auth_user" table. User._default_manager.get(username=username) except User.DoesNotExist: return username raise forms.ValidationError( self.error_messages['duplicate_username'], code='duplicate_username', ) def save(self, commit=True): user = super(UserCreationForm, self).save(commit=False) # users can access django-admin iff they are a superuser user.is_staff = user.is_superuser if commit: user.save() self.save_m2m() return user # Largely the same as django.contrib.auth.forms.UserCreationForm, but with enough subtle changes # (to make password non-required) that it isn't worth inheriting... class UserEditForm(forms.ModelForm): required_css_class = "required" error_messages = { 'duplicate_username': _("A user with that username already exists."), 'password_mismatch': _("The two password fields didn't match."), } username = forms.RegexField( label=_("Username"), max_length=30, regex=r'^[\w.@+-]+$', help_text=_("Required. 30 characters or fewer. Letters, digits and @/./+/-/_ only."), error_messages={ 'invalid': _("This value may contain only letters, numbers and @/./+/-/_ characters.") }) email = forms.EmailField(required=True, label=_("Email")) first_name = forms.CharField(required=True, label=_("First Name")) last_name = forms.CharField(required=True, label=_("Last Name")) password1 = forms.CharField( label=_("Password"), required=False, widget=forms.PasswordInput, help_text=_("Leave blank if not changing.")) password2 = forms.CharField( label=_("Password confirmation"), required=False, widget=forms.PasswordInput, help_text=_("Enter the same password as above, for verification.")) is_superuser = forms.BooleanField( label=_("Administrator"), required=False, help_text=_("Administrators have the ability to manage user accounts.") ) class Meta: model = User fields = ("username", "email", "first_name", "last_name", "is_active", "is_superuser", "groups") widgets = { 'groups': forms.CheckboxSelectMultiple } def clean_username(self): # Since User.username is unique, this check is redundant, # but it sets a nicer error message than the ORM. See #13147. username = self.cleaned_data["username"] try: User._default_manager.exclude(id=self.instance.id).get(username=username) except User.DoesNotExist: return username raise forms.ValidationError(self.error_messages['duplicate_username']) def clean_password2(self): password1 = self.cleaned_data.get("password1") password2 = self.cleaned_data.get("password2") if password1 != password2: raise forms.ValidationError( self.error_messages['password_mismatch']) return password2 def save(self, commit=True): user = super(UserEditForm, self).save(commit=False) # users can access django-admin iff they are a superuser user.is_staff = user.is_superuser if self.cleaned_data["password1"]: user.set_password(self.cleaned_data["password1"]) if commit: user.save() self.save_m2m() return user class GroupForm(forms.ModelForm): def __init__(self, *args, **kwargs): super(GroupForm, self).__init__(*args, **kwargs) self.registered_permissions = Permission.objects.none() for fn in hooks.get_hooks('register_permissions'): self.registered_permissions = self.registered_permissions | fn() self.fields['permissions'].queryset = self.registered_permissions required_css_class = "required" error_messages = { 'duplicate_name': _("A group with that name already exists."), } is_superuser = forms.BooleanField( label=_("Administrator"), required=False, help_text=_("Administrators have the ability to manage user accounts.") ) class Meta: model = Group fields = ("name", "permissions", ) def clean_name(self): # Since Group.name is unique, this check is redundant, # but it sets a nicer error message than the ORM. See #13147. name = self.cleaned_data["name"] try: Group._default_manager.exclude(id=self.instance.id).get(name=name) except Group.DoesNotExist: return name raise forms.ValidationError(self.error_messages['duplicate_name']) def save(self): # We go back to the object to read (in order to reapply) the # permissions which were set on this group, but which are not # accessible in the wagtail admin interface, as otherwise these would # be clobbered by this form. try: untouchable_permissions = self.instance.permissions.exclude(pk__in=self.registered_permissions) bool(untouchable_permissions) # force this to be evaluated, as it's about to change except ValueError: # this form is not bound; we're probably creating a new group untouchable_permissions = [] group = super(GroupForm, self).save() group.permissions.add(*untouchable_permissions) return group class GroupPagePermissionForm(forms.ModelForm): def __init__(self, *args, **kwargs): super(GroupPagePermissionForm, self).__init__(*args, **kwargs) self.fields['page'].widget = forms.HiddenInput() class Meta: model = GroupPagePermission fields = ('page', 'permission_type') class BaseGroupPagePermissionFormSet(forms.models.BaseInlineFormSet): def __init__(self, *args, **kwargs): super(BaseGroupPagePermissionFormSet, self).__init__(*args, **kwargs) self.form = GroupPagePermissionForm for form in self.forms: form.fields['DELETE'].widget = forms.HiddenInput() @property def empty_form(self): empty_form = super(BaseGroupPagePermissionFormSet, self).empty_form empty_form.fields['DELETE'].widget = forms.HiddenInput() return empty_form class NotificationPreferencesForm(forms.ModelForm): def __init__(self, *args, **kwargs): super(NotificationPreferencesForm, self).__init__(*args, **kwargs) user_perms = UserPagePermissionsProxy(self.instance.user) if not user_perms.can_publish_pages(): del self.fields['submitted_notifications'] if not user_perms.can_edit_pages(): del self.fields['approved_notifications'] del self.fields['rejected_notifications'] class Meta: model = UserProfile fields = ("submitted_notifications", "approved_notifications", "rejected_notifications")
37.377193
107
0.662873
18677e029cd98f78fd12118c7aba978ef52b2fa1
271
py
Python
1337. The K Weakest Rows in a Matrix/main.py
amanchadha/LeetCode
20dddf0616351ad399f0fa03cb6a2b5cbdd25279
[ "MIT" ]
1
2021-07-18T06:18:40.000Z
2021-07-18T06:18:40.000Z
1337. The K Weakest Rows in a Matrix/main.py
amanchadha/LeetCode
20dddf0616351ad399f0fa03cb6a2b5cbdd25279
[ "MIT" ]
null
null
null
1337. The K Weakest Rows in a Matrix/main.py
amanchadha/LeetCode
20dddf0616351ad399f0fa03cb6a2b5cbdd25279
[ "MIT" ]
3
2020-09-27T05:48:30.000Z
2021-08-13T10:07:08.000Z
class Solution: def kWeakestRows(self, mat: List[List[int]], k: int) -> List[int]: res = [] m, n = len(mat), len(mat[0]) for i in range(m): res.append((mat[i].count(1), i)) res.sort() return [e[1] for e in res[:k]]
30.111111
70
0.487085
ccc57715c94127b71f63decd96559d708d35027c
19,469
py
Python
pymeasure/instruments/keithley/keithley6221.py
carez/pymeasure
32423d20ac13ee1ae889764ff46ad83271444b93
[ "MIT" ]
153
2020-11-12T17:01:31.000Z
2022-03-29T09:54:38.000Z
pymeasure/instruments/keithley/keithley6221.py
carez/pymeasure
32423d20ac13ee1ae889764ff46ad83271444b93
[ "MIT" ]
226
2020-11-12T07:36:11.000Z
2022-03-22T08:18:26.000Z
pymeasure/instruments/keithley/keithley6221.py
carez/pymeasure
32423d20ac13ee1ae889764ff46ad83271444b93
[ "MIT" ]
85
2020-11-15T03:41:28.000Z
2022-03-25T07:14:18.000Z
# # This file is part of the PyMeasure package. # # Copyright (c) 2013-2021 PyMeasure Developers # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # import logging import time import numpy as np from pymeasure.instruments import Instrument, RangeException from pymeasure.instruments.validators import truncated_range, strict_discrete_set from .buffer import KeithleyBuffer log = logging.getLogger(__name__) log.addHandler(logging.NullHandler()) class Keithley6221(Instrument, KeithleyBuffer): """ Represents the Keithely 6221 AC and DC current source and provides a high-level interface for interacting with the instrument. .. code-block:: python keithley = Keithley6221("GPIB::1") keithley.clear() # Use the keithley as an AC source keithley.waveform_function = "square" # Set a square waveform keithley.waveform_amplitude = 0.05 # Set the amplitude in Amps keithley.waveform_offset = 0 # Set zero offset keithley.source_compliance = 10 # Set compliance (limit) in V keithley.waveform_dutycycle = 50 # Set duty cycle of wave in % keithley.waveform_frequency = 347 # Set the frequency in Hz keithley.waveform_ranging = "best" # Set optimal output ranging keithley.waveform_duration_cycles = 100 # Set duration of the waveform # Link end of waveform to Service Request status bit keithley.operation_event_enabled = 128 # OSB listens to end of wave keithley.srq_event_enabled = 128 # SRQ listens to OSB keithley.waveform_arm() # Arm (load) the waveform keithley.waveform_start() # Start the waveform keithley.adapter.wait_for_srq() # Wait for the pulse to finish keithley.waveform_abort() # Disarm (unload) the waveform keithley.shutdown() # Disables output """ ########## # OUTPUT # ########## source_enabled = Instrument.control( "OUTPut?", "OUTPut %d", """A boolean property that controls whether the source is enabled, takes values True or False. The convenience methods :meth:`~.Keithley6221.enable_source` and :meth:`~.Keithley6221.disable_source` can also be used.""", validator=strict_discrete_set, values={True: 1, False: 0}, map_values=True ) source_delay = Instrument.control( ":SOUR:DEL?", ":SOUR:DEL %g", """ A floating point property that sets a manual delay for the source after the output is turned on before a measurement is taken. When this property is set, the auto delay is turned off. Valid values are between 1e-3 [seconds] and 999999.999 [seconds].""", validator=truncated_range, values=[1e-3, 999999.999], ) output_low_grounded = Instrument.control( ":OUTP:LTE?", "OUTP:LTE %d", """ A boolean property that controls whether the low output of the triax connection is connected to earth ground (True) or is floating (False). """, validator=strict_discrete_set, values={True: 1, False: 0}, map_values=True ) ########## # SOURCE # ########## source_current = Instrument.control( ":SOUR:CURR?", ":SOUR:CURR %g", """ A floating point property that controls the source current in Amps. """, validator=truncated_range, values=[-0.105, 0.105] ) source_compliance = Instrument.control( ":SOUR:CURR:COMP?", ":SOUR:CURR:COMP %g", """A floating point property that controls the compliance of the current source in Volts. valid values are in range 0.1 [V] to 105 [V].""", validator=truncated_range, values=[0.1, 105]) source_range = Instrument.control( ":SOUR:CURR:RANG?", ":SOUR:CURR:RANG:AUTO 0;:SOUR:CURR:RANG %g", """ A floating point property that controls the source current range in Amps, which can take values between -0.105 A and +0.105 A. Auto-range is disabled when this property is set. """, validator=truncated_range, values=[-0.105, 0.105] ) source_auto_range = Instrument.control( ":SOUR:CURR:RANG:AUTO?", ":SOUR:CURR:RANG:AUTO %d", """ A boolean property that controls the auto range of the current source. Valid values are True or False. """, values={True: 1, False: 0}, map_values=True, ) ################## # WAVE FUNCTIONS # ################## waveform_function = Instrument.control( ":SOUR:WAVE:FUNC?", ":SOUR:WAVE:FUNC %s", """ A string property that controls the selected wave function. Valid values are "sine", "ramp", "square", "arbitrary1", "arbitrary2", "arbitrary3" and "arbitrary4". """, values={ "sine": "SIN", "ramp": "RAMP", "square": "SQU", "arbitrary1": "ARB1", "arbitrary2": "ARB2", "arbitrary3": "ARB3", "arbitrary4": "ARB4", }, map_values=True ) waveform_frequency = Instrument.control( ":SOUR:WAVE:FREQ?", ":SOUR:WAVE:FREQ %g", """A floating point property that controls the frequency of the waveform in Hertz. Valid values are in range 1e-3 to 1e5. """, validator=truncated_range, values=[1e-3, 1e5] ) waveform_amplitude = Instrument.control( ":SOUR:WAVE:AMPL?", ":SOUR:WAVE:AMPL %g", """A floating point property that controls the (peak) amplitude of the waveform in Amps. Valid values are in range 2e-12 to 0.105. """, validator=truncated_range, values=[2e-12, 0.105] ) waveform_offset = Instrument.control( ":SOUR:WAVE:OFFS?", ":SOUR:WAVE:OFFS %g", """A floating point property that controls the offset of the waveform in Amps. Valid values are in range -0.105 to 0.105. """, validator=truncated_range, values=[-0.105, 0.105] ) waveform_dutycycle = Instrument.control( ":SOUR:WAVE:DCYC?", ":SOUR:WAVE:DCYC %g", """A floating point property that controls the duty-cycle of the waveform in percent for the square and ramp waves. Valid values are in range 0 to 100. """, validator=truncated_range, values=[0, 100] ) waveform_duration_time = Instrument.control( ":SOUR:WAVE:DUR:TIME?", ":SOUR:WAVE:DUR:TIME %g", """A floating point property that controls the duration of the waveform in seconds. Valid values are in range 100e-9 to 999999.999. """, validator=truncated_range, values=[100e-9, 999999.999] ) waveform_duration_cycles = Instrument.control( ":SOUR:WAVE:DUR:CYCL?", ":SOUR:WAVE:DUR:CYCL %g", """A floating point property that controls the duration of the waveform in cycles. Valid values are in range 1e-3 to 99999999900. """, validator=truncated_range, values=[1e-3, 99999999900] ) def waveform_duration_set_infinity(self): """ Set the waveform duration to infinity. """ self.write(":SOUR:WAVE:DUR:TIME INF") waveform_ranging = Instrument.control( ":SOUR:WAVE:RANG?", ":SOUR:WAVE:RANG %s", """ A string property that controls the source ranging of the waveform. Valid values are "best" and "fixed". """, values={"best": "BEST", "fixed": "FIX"}, map_values=True, ) waveform_use_phasemarker = Instrument.control( ":SOUR:WAVE:PMAR:STAT?", ":SOUR:WAVE:PMAR:STAT %s", """ A boolean property that controls whether the phase marker option is turned on or of. Valid values True (on) or False (off). Other settings for the phase marker have not yet been implemented.""", values={True: 1, False: 0}, map_values=True, ) def waveform_arm(self): """ Arm the current waveform function. """ self.write(":SOUR:WAVE:ARM") def waveform_start(self): """ Start the waveform output. Must already be armed """ self.write(":SOUR:WAVE:INIT") def waveform_abort(self): """ Abort the waveform output and disarm the waveform function. """ self.write(":SOUR:WAVE:ABOR") def define_arbitary_waveform(self, datapoints, location=1): """ Define the data points for the arbitrary waveform and copy the defined waveform into the given storage location. :param datapoints: a list (or numpy array) of the data points; all values have to be between -1 and 1; 100 points maximum. :param location: integer storage location to store the waveform in. Value must be in range 1 to 4. """ # Check validity of parameters if not isinstance(datapoints, (list, np.ndarray)): raise ValueError("datapoints must be a list or numpy array") elif len(datapoints) > 100: raise ValueError("datapoints cannot be longer than 100 points") elif not all([x >= -1 and x <= 1 for x in datapoints]): raise ValueError("all data points must be between -1 and 1") if location not in [1, 2, 3, 4]: raise ValueError("location must be in [1, 2, 3, 4]") # Make list of strings datapoints = [str(x) for x in datapoints] data = ", ".join(datapoints) # Write the data points to the Keithley 6221 self.write(":SOUR:WAVE:ARB:DATA %s" % data) # Copy the written data to the specified location self.write(":SOUR:WAVE:ARB:COPY %d" % location) # Select the newly made arbitrary waveform as waveform function self.waveform_function = "arbitrary%d" % location def __init__(self, adapter, **kwargs): super(Keithley6221, self).__init__( adapter, "Keithley 6221 SourceMeter", **kwargs ) def enable_source(self): """ Enables the source of current or voltage depending on the configuration of the instrument. """ self.write("OUTPUT ON") def disable_source(self): """ Disables the source of current or voltage depending on the configuration of the instrument. """ self.write("OUTPUT OFF") def beep(self, frequency, duration): """ Sounds a system beep. :param frequency: A frequency in Hz between 65 Hz and 2 MHz :param duration: A time in seconds between 0 and 7.9 seconds """ self.write(":SYST:BEEP %g, %g" % (frequency, duration)) def triad(self, base_frequency, duration): """ Sounds a musical triad using the system beep. :param base_frequency: A frequency in Hz between 65 Hz and 1.3 MHz :param duration: A time in seconds between 0 and 7.9 seconds """ self.beep(base_frequency, duration) time.sleep(duration) self.beep(base_frequency * 5.0 / 4.0, duration) time.sleep(duration) self.beep(base_frequency * 6.0 / 4.0, duration) display_enabled = Instrument.control( ":DISP:ENAB?", ":DISP:ENAB %d", """ A boolean property that controls whether or not the display of the sourcemeter is enabled. Valid values are True and False. """, values={True: 1, False: 0}, map_values=True, ) @property def error(self): """ Returns a tuple of an error code and message from a single error. """ err = self.values(":system:error?") if len(err) < 2: err = self.read() # Try reading again code = err[0] message = err[1].replace('"', '') return (code, message) def check_errors(self): """ Logs any system errors reported by the instrument. """ code, message = self.error while code != 0: t = time.time() log.info("Keithley 6221 reported error: %d, %s" % (code, message)) code, message = self.error if (time.time() - t) > 10: log.warning("Timed out for Keithley 6221 error retrieval.") def reset(self): """ Resets the instrument and clears the queue. """ self.write("status:queue:clear;*RST;:stat:pres;:*CLS;") def trigger(self): """ Executes a bus trigger, which can be used when :meth:`~.trigger_on_bus` is configured. """ return self.write("*TRG") def trigger_immediately(self): """ Configures measurements to be taken with the internal trigger at the maximum sampling rate. """ self.write(":ARM:SOUR IMM;:TRIG:SOUR IMM;") def trigger_on_bus(self): """ Configures the trigger to detect events based on the bus trigger, which can be activated by :meth:`~.trigger`. """ self.write(":ARM:SOUR BUS;:TRIG:SOUR BUS;") def set_timed_arm(self, interval): """ Sets up the measurement to be taken with the internal trigger at a variable sampling rate defined by the interval in seconds between sampling points """ if interval > 99999.99 or interval < 0.001: raise RangeException("Keithley 6221 can only be time" " triggered between 1 mS and 1 Ms") self.write(":ARM:SOUR TIM;:ARM:TIM %.3f" % interval) def trigger_on_external(self, line=1): """ Configures the measurement trigger to be taken from a specific line of an external trigger :param line: A trigger line from 1 to 4 """ cmd = ":ARM:SOUR TLIN;:TRIG:SOUR TLIN;" cmd += ":ARM:ILIN %d;:TRIG:ILIN %d;" % (line, line) self.write(cmd) def output_trigger_on_external(self, line=1, after='DEL'): """ Configures the output trigger on the specified trigger link line number, with the option of supplying the part of the measurement after which the trigger should be generated (default to delay, which is right before the measurement) :param line: A trigger line from 1 to 4 :param after: An event string that determines when to trigger """ self.write(":TRIG:OUTP %s;:TRIG:OLIN %d;" % (after, line)) def disable_output_trigger(self): """ Disables the output trigger for the Trigger layer """ self.write(":TRIG:OUTP NONE") def shutdown(self): """ Disables the output. """ log.info("Shutting down %s." % self.name) self.disable_source() ############### # Status bits # ############### measurement_event_enabled = Instrument.control( ":STAT:MEAS:ENAB?", ":STAT:MEAS:ENAB %d", """ An integer value that controls which measurement events are registered in the Measurement Summary Bit (MSB) status bit. Refer to the Model 6220/6221 Reference Manual for more information about programming the status bits. """, cast=int, validator=truncated_range, values=[0, 65535], ) operation_event_enabled = Instrument.control( ":STAT:OPER:ENAB?", ":STAT:OPER:ENAB %d", """ An integer value that controls which operation events are registered in the Operation Summary Bit (OSB) status bit. Refer to the Model 6220/6221 Reference Manual for more information about programming the status bits. """, cast=int, validator=truncated_range, values=[0, 65535], ) questionable_event_enabled = Instrument.control( ":STAT:QUES:ENAB?", ":STAT:QUES:ENAB %d", """ An integer value that controls which questionable events are registered in the Questionable Summary Bit (QSB) status bit. Refer to the Model 6220/6221 Reference Manual for more information about programming the status bits. """, cast=int, validator=truncated_range, values=[0, 65535], ) standard_event_enabled = Instrument.control( "ESE?", "ESE %d", """ An integer value that controls which standard events are registered in the Event Summary Bit (ESB) status bit. Refer to the Model 6220/6221 Reference Manual for more information about programming the status bits. """, cast=int, validator=truncated_range, values=[0, 65535], ) srq_event_enabled = Instrument.control( "*SRE?", "*SRE %d", """ An integer value that controls which event registers trigger the Service Request (SRQ) status bit. Refer to the Model 6220/6221 Reference Manual for more information about programming the status bits. """, cast=int, validator=truncated_range, values=[0, 255], ) measurement_events = Instrument.measurement( ":STAT:MEAS?", """ An integer value that reads which measurement events have been registered in the Measurement event registers. Refer to the Model 6220/6221 Reference Manual for more information about programming the status bits. Reading this value clears the register. """, cast=int, ) operation_events = Instrument.measurement( ":STAT:OPER?", """ An integer value that reads which operation events have been registered in the Operation event registers. Refer to the Model 6220/6221 Reference Manual for more information about programming the status bits. Reading this value clears the register. """, cast=int, ) questionable_events = Instrument.measurement( ":STAT:QUES?", """ An integer value that reads which questionable events have been registered in the Questionable event registers. Refer to the Model 6220/6221 Reference Manual for more information about programming the status bits. Reading this value clears the register. """, cast=int, ) standard_events = Instrument.measurement( "*ESR?", """ An integer value that reads which standard events have been registered in the Standard event registers. Refer to the Model 6220/6221 Reference Manual for more information about programming the status bits. Reading this value clears the register. """, cast=int, )
38.552475
94
0.625045
26f3ae91c0ed02d50421d99bad1c94ac935b4564
76,211
py
Python
orttraining/orttraining/test/python/orttraining_test_orttrainer_frontend.py
vpisarev/onnxruntime
bab9b80f1f2330d3a115e0abbb4d8278c2be3f44
[ "MIT" ]
null
null
null
orttraining/orttraining/test/python/orttraining_test_orttrainer_frontend.py
vpisarev/onnxruntime
bab9b80f1f2330d3a115e0abbb4d8278c2be3f44
[ "MIT" ]
null
null
null
orttraining/orttraining/test/python/orttraining_test_orttrainer_frontend.py
vpisarev/onnxruntime
bab9b80f1f2330d3a115e0abbb4d8278c2be3f44
[ "MIT" ]
null
null
null
from functools import partial import inspect import math from distutils.version import StrictVersion from numpy.testing import assert_allclose import onnx import os import pytest import tempfile import torch import torch.nn.functional as F from onnxruntime import set_seed from onnxruntime.capi.ort_trainer import IODescription as Legacy_IODescription,\ ModelDescription as Legacy_ModelDescription,\ LossScaler as Legacy_LossScaler,\ ORTTrainer as Legacy_ORTTrainer from onnxruntime.training import _utils, amp, checkpoint, optim, orttrainer, TrainStepInfo,\ model_desc_validation as md_val,\ orttrainer_options as orttrainer_options import _test_commons,_test_helpers from onnxruntime import SessionOptions from onnxruntime.training import PropagateCastOpsStrategy ############################################################################### # Testing starts here ######################################################### ############################################################################### pytorch_110 = StrictVersion('.'.join(torch.__version__.split('.')[:2])) >= StrictVersion('1.10.0') def get_model_opset(model_onnx): for op in model_onnx.opset_import: if op.domain == '': return op.version return None @pytest.mark.parametrize("test_input", [ ({}), ({'batch': {}, 'device': {}, 'distributed': {}, 'mixed_precision': {}, 'utils': {}, '_internal_use': {}}) ]) def testORTTrainerOptionsDefaultValues(test_input): ''' Test different ways of using default values for incomplete input''' expected_values = { 'batch': { 'gradient_accumulation_steps': 1 }, 'device': { 'id': 'cuda', 'mem_limit': 0 }, 'distributed': { 'world_rank': 0, 'world_size': 1, 'local_rank': 0, 'data_parallel_size': 1, 'horizontal_parallel_size': 1, 'pipeline_parallel' : { 'pipeline_parallel_size': 1, 'num_pipeline_micro_batches':1, 'pipeline_cut_info_string': '', 'sliced_schema' : {}, 'sliced_axes' : {}, 'sliced_tensor_names': [] }, 'allreduce_post_accumulation': False, 'data_parallel_size': 1, 'horizontal_parallel_size':1, 'deepspeed_zero_optimization': { 'stage' : 0, }, 'enable_adasum': False, }, 'lr_scheduler': None, 'mixed_precision': { 'enabled': False, 'loss_scaler': None }, 'graph_transformer': { 'attn_dropout_recompute': False, 'gelu_recompute': False, 'transformer_layer_recompute': False, 'number_recompute_layers': 0, 'allow_layer_norm_mod_precision': False, 'propagate_cast_ops_config': { 'strategy': PropagateCastOpsStrategy.FLOOD_FILL, 'level': 1, 'allow': [] } }, 'utils': { 'frozen_weights': [], 'grad_norm_clip': True, 'memory_efficient_gradient': False, 'run_symbolic_shape_infer': False }, 'debug': { 'deterministic_compute': False, 'check_model_export': False, 'graph_save_paths' : { 'model_after_graph_transforms_path': '', 'model_with_gradient_graph_path': '', 'model_with_training_graph_path': '', 'model_with_training_graph_after_optimization_path': '' } }, '_internal_use': { 'enable_internal_postprocess': True, 'extra_postprocess': None, 'onnx_opset_version' : 14, 'enable_onnx_contrib_ops': True, }, 'provider_options':{}, 'session_options': None, } actual_values = orttrainer_options.ORTTrainerOptions(test_input) assert actual_values._validated_opts == expected_values @pytest.mark.parametrize("input,error_msg", [ ({'mixed_precision': {'enabled': 1}},\ "Invalid options: {'mixed_precision': [{'enabled': ['must be of boolean type']}]}") ]) def testORTTrainerOptionsInvalidMixedPrecisionEnabledSchema(input, error_msg): '''Test an invalid input based on schema validation error message''' with pytest.raises(ValueError) as e: orttrainer_options.ORTTrainerOptions(input) assert str(e.value) == error_msg @pytest.mark.parametrize("input_dict,input_dtype,output_dtype", [ ({'inputs': [('in0', [])], 'outputs': [('out0', []), ('out1', [])]},(torch.int,),(torch.float,torch.int32,)), ({'inputs': [('in0', ['batch', 2, 3])], 'outputs': [('out0', [], True)]}, (torch.int8,), (torch.int16,)), ({'inputs': [('in0', []), ('in1', [1]), ('in2', [1, 2]), ('in3', [1000, 'dyn_ax1']), ('in4', ['dyn_ax1', 'dyn_ax2', 'dyn_ax3'])], 'outputs': [('out0', [], True), ('out1', [1], False), ('out2', [1, 'dyn_ax1', 3])]}, (torch.float,torch.uint8,torch.bool,torch.double,torch.half,), (torch.float,torch.float,torch.int64)) ]) def testORTTrainerModelDescValidSchemas(input_dict, input_dtype, output_dtype): r''' Test different ways of using default values for incomplete input''' model_description = md_val._ORTTrainerModelDesc(input_dict) # Validating hard-coded learning rate description assert model_description.learning_rate.name == md_val.LEARNING_RATE_IO_DESCRIPTION_NAME assert model_description.learning_rate.shape == [1] assert model_description.learning_rate.dtype == torch.float32 # Validating model description from user for idx, i_desc in enumerate(model_description.inputs): assert isinstance(i_desc, model_description._InputDescription) assert len(i_desc) == 2 assert input_dict['inputs'][idx][0] == i_desc.name assert input_dict['inputs'][idx][1] == i_desc.shape for idx, o_desc in enumerate(model_description.outputs): assert isinstance(o_desc, model_description._OutputDescription) assert len(o_desc) == 3 assert input_dict['outputs'][idx][0] == o_desc.name assert input_dict['outputs'][idx][1] == o_desc.shape is_loss = input_dict['outputs'][idx][2] if len(input_dict['outputs'][idx]) == 3 else False assert is_loss == o_desc.is_loss # Set all_finite name and check its description model_description.all_finite = md_val.ALL_FINITE_IO_DESCRIPTION_NAME assert model_description.all_finite.name == md_val.ALL_FINITE_IO_DESCRIPTION_NAME assert model_description.all_finite.shape == [1] assert model_description.all_finite.dtype == torch.bool # Set loss_scale_input and check its description model_description.loss_scale_input = md_val.LOSS_SCALE_INPUT_IO_DESCRIPTION_NAME assert model_description.loss_scale_input.name == md_val.LOSS_SCALE_INPUT_IO_DESCRIPTION_NAME assert model_description.loss_scale_input.shape == [] assert model_description.loss_scale_input.dtype == torch.float32 # Append type to inputs/outputs tuples for idx, i_desc in enumerate(model_description.inputs): model_description.add_type_to_input_description(idx, input_dtype[idx]) for idx, o_desc in enumerate(model_description.outputs): model_description.add_type_to_output_description(idx, output_dtype[idx]) # Verify inputs/outputs tuples are replaced by the typed counterparts for idx, i_desc in enumerate(model_description.inputs): assert isinstance(i_desc, model_description._InputDescriptionTyped) assert input_dtype[idx] == i_desc.dtype for idx, o_desc in enumerate(model_description.outputs): assert isinstance(o_desc, model_description._OutputDescriptionTyped) assert output_dtype[idx] == o_desc.dtype @pytest.mark.parametrize("input_dict,error_msg", [ ({'inputs': [(True, [])], 'outputs': [(True, [])]}, "Invalid model_desc: {'inputs': [{0: ['the first element of the tuple (aka name) must be a string']}], " "'outputs': [{0: ['the first element of the tuple (aka name) must be a string']}]}"), ({'inputs': [('in1', None)], 'outputs': [('out1', None)]}, "Invalid model_desc: {'inputs': [{0: ['the second element of the tuple (aka shape) must be a list']}], " "'outputs': [{0: ['the second element of the tuple (aka shape) must be a list']}]}"), ({'inputs': [('in1', [])], 'outputs': [('out1', [], None)]}, "Invalid model_desc: {'outputs': [{0: ['the third element of the tuple (aka is_loss) must be a boolean']}]}"), ({'inputs': [('in1', [True])], 'outputs': [('out1', [True])]}, "Invalid model_desc: {'inputs': [{0: ['each shape must be either a string or integer']}], " "'outputs': [{0: ['each shape must be either a string or integer']}]}"), ({'inputs': [('in1', [])], 'outputs': [('out1', [], True), ('out2', [], True)]}, "Invalid model_desc: {'outputs': [{1: ['only one is_loss can bet set to True']}]}"), ({'inputz': [('in1', [])], 'outputs': [('out1', [], True)]}, "Invalid model_desc: {'inputs': ['required field'], 'inputz': ['unknown field']}"), ({'inputs': [('in1', [])], 'outputz': [('out1', [], True)]}, "Invalid model_desc: {'outputs': ['required field'], 'outputz': ['unknown field']}"), ]) def testORTTrainerModelDescInvalidSchemas(input_dict, error_msg): r''' Test different ways of using default values for incomplete input''' with pytest.raises(ValueError) as e: md_val._ORTTrainerModelDesc(input_dict) assert str(e.value) == error_msg def testDynamicLossScaler(): rtol = 1e-7 default_scaler = amp.loss_scaler.DynamicLossScaler() # Initial state train_step_info = orttrainer.TrainStepInfo(optim.LambConfig()) assert_allclose(default_scaler.loss_scale, float(1 << 16), rtol=rtol, err_msg="loss scale mismatch") assert default_scaler.up_scale_window == 2000 assert_allclose(default_scaler.min_loss_scale, 1.0, rtol=rtol, err_msg="min loss scale mismatch") assert_allclose(default_scaler.max_loss_scale, float( 1 << 24), rtol=rtol, err_msg="max loss scale mismatch") # Performing 9*2000 updates to cover all branches of LossScaler.update(train_step_info.all_finite=True) loss_scale = float(1 << 16) for cycles in range(1, 10): # 1999 updates without overflow produces 1999 stable steps for i in range(1, 2000): new_loss_scale = default_scaler.update(train_step_info) assert default_scaler._stable_steps_count == i assert_allclose(new_loss_scale, loss_scale, rtol=rtol, err_msg=f"loss scale mismatch at update {i}") # 2000th update without overflow doubles the loss and zero stable steps until max_loss_scale is reached new_loss_scale = default_scaler.update(train_step_info) if cycles <= 8: loss_scale *= 2 assert default_scaler._stable_steps_count == 0 assert_allclose(new_loss_scale, loss_scale, rtol=rtol, err_msg="loss scale mismatch") # After 8 cycles, loss scale should be float(1 << 16)*(2**8) assert_allclose(new_loss_scale, float(1 << 16) * (2**8), rtol=rtol, err_msg="loss scale mismatch") # After 9 cycles, loss scale reaches max_loss_scale and it is not doubled from that point on loss_scale = float(1 << 16)*(2**8) for count in range(1, 2050): new_loss_scale = default_scaler.update(train_step_info) assert default_scaler._stable_steps_count == (count % 2000) assert_allclose(new_loss_scale, loss_scale, rtol=rtol, err_msg="loss scale mismatch") # Setting train_step_info.all_finite = False to test down scaling train_step_info.all_finite = False # Performing 24 updates to half the loss scale each time loss_scale = float(1 << 16)*(2**8) for count in range(1, 25): new_loss_scale = default_scaler.update(train_step_info) loss_scale /= 2 assert default_scaler._stable_steps_count == 0 assert_allclose(new_loss_scale, loss_scale, rtol=rtol, err_msg="loss scale mismatch") # After 24 updates with gradient overflow, loss scale is 1.0 assert_allclose(new_loss_scale, 1., rtol=rtol, err_msg="loss scale mismatch") # After 25 updates, min_loss_scale is reached and loss scale is not halfed from that point on for count in range(1, 5): new_loss_scale = default_scaler.update(train_step_info) assert default_scaler._stable_steps_count == 0 assert_allclose(new_loss_scale, loss_scale, rtol=rtol, err_msg="loss scale mismatch") def testDynamicLossScalerCustomValues(): rtol = 1e-7 scaler = amp.loss_scaler.DynamicLossScaler(automatic_update=False, loss_scale=3, up_scale_window=7, min_loss_scale=5, max_loss_scale=10) assert scaler.automatic_update == False assert_allclose(scaler.loss_scale, 3, rtol=rtol, err_msg="loss scale mismatch") assert_allclose(scaler.min_loss_scale, 5, rtol=rtol, err_msg="min loss scale mismatch") assert_allclose(scaler.max_loss_scale, 10, rtol=rtol, err_msg="max loss scale mismatch") assert scaler.up_scale_window == 7 def testTrainStepInfo(): '''Test valid initializations of TrainStepInfo''' optimizer_config = optim.LambConfig() fetches=['out1','out2'] step_info = orttrainer.TrainStepInfo(optimizer_config=optimizer_config, all_finite=False, fetches=fetches, optimization_step=123, step=456) assert step_info.optimizer_config == optimizer_config assert step_info.all_finite == False assert step_info.fetches == fetches assert step_info.optimization_step == 123 assert step_info.step == 456 step_info = orttrainer.TrainStepInfo(optimizer_config) assert step_info.optimizer_config == optimizer_config assert step_info.all_finite == True assert step_info.fetches == [] assert step_info.optimization_step == 0 assert step_info.step == 0 @pytest.mark.parametrize("invalid_input", [ (-1), ('Hello'), ]) def testTrainStepInfoInvalidInput(invalid_input): '''Test invalid initialization of TrainStepInfo''' optimizer_config = optim.LambConfig() with pytest.raises(AssertionError): orttrainer.TrainStepInfo(optimizer_config=invalid_input) with pytest.raises(AssertionError): orttrainer.TrainStepInfo(optimizer_config, all_finite=invalid_input) with pytest.raises(AssertionError): orttrainer.TrainStepInfo(optimizer_config, fetches=invalid_input) with pytest.raises(AssertionError): orttrainer.TrainStepInfo(optimizer_config, optimization_step=invalid_input) with pytest.raises(AssertionError): orttrainer.TrainStepInfo(optimizer_config, step=invalid_input) @pytest.mark.parametrize("optim_name,lr,alpha,default_alpha", [ ('AdamOptimizer', .1, .2, None), ('LambOptimizer', .2, .3, None), ('SGDOptimizer', .3, .4, None), ('SGDOptimizer', .3, .4, .5) ]) def testOptimizerConfig(optim_name, lr, alpha, default_alpha): '''Test initialization of _OptimizerConfig''' defaults = {'lr': lr, 'alpha': alpha} params = [{'params': ['fc1.weight', 'fc2.weight']}] if default_alpha is not None: params[0].update({'alpha': default_alpha}) else: params[0].update({'alpha': alpha}) cfg = optim.config._OptimizerConfig( name=optim_name, params=params, defaults=defaults) assert cfg.name == optim_name rtol = 1e-07 assert_allclose(defaults['lr'], cfg.lr, rtol=rtol, err_msg="lr mismatch") # 1:1 mapping between defaults and params's hyper parameters for param in params: for k, _ in param.items(): if k != 'params': assert k in cfg.defaults, "hyper parameter {k} not present in one of the parameter params" for k, _ in cfg.defaults.items(): for param in cfg.params: assert k in param, "hyper parameter {k} not present in one of the parameter params" @pytest.mark.parametrize("optim_name,defaults,params", [ ('AdamOptimizer', {'lr': -1}, []), # invalid lr ('FooOptimizer', {'lr': 0.001}, []), # invalid name ('SGDOptimizer', [], []), # invalid type(defaults) (optim.AdamConfig, {'lr': 0.003}, []), # invalid type(name) ('AdamOptimizer', {'lr': None}, []), # missing 'lr' hyper parameter ('SGDOptimizer', {'lr': 0.004}, {}), # invalid type(params) # invalid type(params[i]) ('AdamOptimizer', {'lr': 0.005, 'alpha': 2}, [[]]), # missing 'params' at 'params' ('AdamOptimizer', {'lr': 0.005, 'alpha': 2}, [{'alpha': 1}]), # missing 'alpha' at 'defaults' ('AdamOptimizer', {'lr': 0.005}, [{'params': 'param1', 'alpha': 1}]), ]) def testOptimizerConfigInvalidInputs(optim_name, defaults, params): '''Test invalid initialization of _OptimizerConfig''' with pytest.raises(AssertionError): optim.config._OptimizerConfig( name=optim_name, params=params, defaults=defaults) def testOptimizerConfigSGD(): '''Test initialization of SGD''' cfg = optim.SGDConfig() assert cfg.name == 'SGDOptimizer' rtol = 1e-07 assert_allclose(0.001, cfg.lr, rtol=rtol, err_msg="lr mismatch") cfg = optim.SGDConfig(lr=0.002) assert_allclose(0.002, cfg.lr, rtol=rtol, err_msg="lr mismatch") # SGD does not support params with pytest.raises(AssertionError) as e: params = [{'params': ['layer1.weight'], 'lr': 0.1}] optim.SGDConfig(params=params, lr=0.002) assert_allclose(0.002, cfg.lr, rtol=rtol, err_msg="lr mismatch") assert str(e.value) == "'params' must be an empty list for SGD optimizer" def testOptimizerConfigAdam(): '''Test initialization of Adam''' cfg = optim.AdamConfig() assert cfg.name == 'AdamOptimizer' rtol = 1e-7 assert_allclose(0.001, cfg.lr, rtol=rtol, err_msg="lr mismatch") assert_allclose(0.9, cfg.alpha, rtol=rtol, err_msg="alpha mismatch") assert_allclose(0.999, cfg.beta, rtol=rtol, err_msg="beta mismatch") assert_allclose(0.0, cfg.lambda_coef, rtol=rtol, err_msg="lambda_coef mismatch") assert_allclose(1e-8, cfg.epsilon, rtol=rtol, err_msg="epsilon mismatch") assert_allclose(1.0, cfg.max_norm_clip, rtol=rtol, err_msg="max_norm_clip mismatch") assert cfg.do_bias_correction == True, "lambda_coef mismatch" assert cfg.weight_decay_mode == optim.AdamConfig.DecayMode.BEFORE_WEIGHT_UPDATE, "weight_decay_mode mismatch" def testOptimizerConfigLamb(): '''Test initialization of Lamb''' cfg = optim.LambConfig() assert cfg.name == 'LambOptimizer' rtol = 1e-7 assert_allclose(0.001, cfg.lr, rtol=rtol, err_msg="lr mismatch") assert_allclose(0.9, cfg.alpha, rtol=rtol, err_msg="alpha mismatch") assert_allclose(0.999, cfg.beta, rtol=rtol, err_msg="beta mismatch") assert_allclose(0.0, cfg.lambda_coef, rtol=rtol, err_msg="lambda_coef mismatch") assert cfg.ratio_min == float('-inf'), "ratio_min mismatch" assert cfg.ratio_max == float('inf'), "ratio_max mismatch" assert_allclose(1e-6, cfg.epsilon, rtol=rtol, err_msg="epsilon mismatch") assert_allclose(1.0, cfg.max_norm_clip, rtol=rtol, err_msg="max_norm_clip mismatch") assert cfg.do_bias_correction == False, "do_bias_correction mismatch" @pytest.mark.parametrize("optim_name", [ ('Adam'), ('Lamb') ]) def testOptimizerConfigParams(optim_name): rtol = 1e-7 params = [{'params': ['layer1.weight'], 'alpha': 0.1}] if optim_name == 'Adam': cfg = optim.AdamConfig(params=params, alpha=0.2) elif optim_name == 'Lamb': cfg = optim.LambConfig(params=params, alpha=0.2) else: raise ValueError('invalid input') assert len(cfg.params) == 1, "params should have length 1" assert_allclose(cfg.params[0]['alpha'], 0.1, rtol=rtol, err_msg="invalid lr on params[0]") @pytest.mark.parametrize("optim_name", [ ('Adam'), ('Lamb') ]) def testOptimizerConfigInvalidParams(optim_name): # lr is not supported within params with pytest.raises(AssertionError) as e: params = [{'params': ['layer1.weight'], 'lr': 0.1}] if optim_name == 'Adam': optim.AdamConfig(params=params, lr=0.2) elif optim_name == 'Lamb': optim.LambConfig(params=params, lr=0.2) else: raise ValueError('invalid input') assert str(e.value) == "'lr' is not supported inside params" def testLinearLRSchedulerCreation(): total_steps = 10 warmup = 0.05 lr_scheduler = optim.lr_scheduler.LinearWarmupLRScheduler(total_steps, warmup) # Initial state assert lr_scheduler.total_steps == total_steps assert lr_scheduler.warmup == warmup @pytest.mark.parametrize("lr_scheduler,expected_values", [ (optim.lr_scheduler.ConstantWarmupLRScheduler, [0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.0, 1.0, 1.0, 1.0]), (optim.lr_scheduler.CosineWarmupLRScheduler, [0.0, 0.9763960957919413, 0.9059835861602854, 0.7956724530494887, 0.6563036824392345,\ 0.5015739416158049, 0.34668951940611276, 0.2068719061737831, 0.09586187986225325, 0.0245691111902418]), (optim.lr_scheduler.LinearWarmupLRScheduler, [0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 0.8, 0.6, 0.4, 0.2]), (optim.lr_scheduler.PolyWarmupLRScheduler, [0.0, 0.9509018036072144, 0.9008016032064128, 0.8507014028056112, 0.8006012024048097,\ 0.750501002004008, 0.7004008016032064, 0.6503006012024048, 0.6002004008016032, 0.5501002004008015]) ]) def testLRSchedulerUpdateImpl(lr_scheduler, expected_values): # Test tolerance rtol = 1e-03 # Initial state initial_lr = 1 total_steps = 10 warmup = 0.5 optimizer_config = optim.SGDConfig(lr=initial_lr) lr_scheduler = lr_scheduler(total_steps, warmup) # First half is warmup for optimization_step in range(total_steps): # Emulate ORTTRainer.train_step() call that updates its train_step_info train_step_info = TrainStepInfo(optimizer_config=optimizer_config, optimization_step=optimization_step) lr_scheduler._step(train_step_info) lr_list = lr_scheduler.get_last_lr() assert len(lr_list) == 1 assert_allclose(lr_list[0], expected_values[optimization_step], rtol=rtol, err_msg="lr mismatch") def testInstantiateORTTrainerOptions(): session_options = SessionOptions() session_options.enable_mem_pattern = False provider_options = {'EP1': {'key':'val'}} opts = {'session_options' : session_options, 'provider_options' : provider_options} opts = orttrainer.ORTTrainerOptions(opts) assert(opts.session_options.enable_mem_pattern is False) assert(opts._validated_opts['provider_options']['EP1']['key'] == 'val') @pytest.mark.parametrize("step_fn, lr_scheduler, expected_lr_values, device", [ ('train_step', None, None, 'cuda'), ('eval_step', None, None, 'cpu'), ('train_step', optim.lr_scheduler.ConstantWarmupLRScheduler, [0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.0, 1.0, 1.0, 1.0], 'cpu'), ('train_step', optim.lr_scheduler.CosineWarmupLRScheduler, [0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 0.9045084971874737, 0.6545084971874737, 0.34549150281252633, 0.09549150281252633], 'cuda'), ('train_step', optim.lr_scheduler.LinearWarmupLRScheduler, [0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 0.8, 0.6, 0.4, 0.2], 'cpu'), ('train_step', optim.lr_scheduler.PolyWarmupLRScheduler, [0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 0.80000002, 0.60000004, 0.40000006000000005, 0.20000007999999997], 'cuda') ]) def testInstantiateORTTrainer(step_fn, lr_scheduler, expected_lr_values, device): total_steps = 1 initial_lr = 1. rtol = 1e-3 # PyTorch Transformer model as example opts = {'device' : {'id' : device}} if lr_scheduler: total_steps = 10 opts.update({'lr_scheduler' : lr_scheduler(total_steps=total_steps, warmup=0.5)}) opts = orttrainer.ORTTrainerOptions(opts) optim_config = optim.LambConfig(lr=initial_lr) model, model_desc, my_loss, batcher_fn, train_data, val_data, _ = _test_commons._load_pytorch_transformer_model(device) trainer = orttrainer.ORTTrainer(model, model_desc, optim_config, loss_fn=my_loss, options=opts) # Run a train or evaluation step if step_fn == 'eval_step': data, targets = batcher_fn(val_data, 0) elif step_fn == 'train_step': data, targets = batcher_fn(train_data, 0) else: raise ValueError('Invalid step_fn') # Export model to ONNX if step_fn == 'eval_step': step_fn = trainer.eval_step output = trainer.eval_step(data, targets) elif step_fn == 'train_step': step_fn = trainer.train_step for i in range(total_steps): output = trainer.train_step(data, targets) if lr_scheduler: lr_list = trainer.options.lr_scheduler.get_last_lr() assert_allclose(lr_list[0], expected_lr_values[i], rtol=rtol, err_msg="lr mismatch") else: raise ValueError('Invalid step_fn') assert trainer._onnx_model is not None # Check output shape after train/eval step for out, desc in zip(output, trainer.model_desc.outputs): if trainer.loss_fn and desc.is_loss: continue assert list(out.size()) == desc.shape # Check name, shape and dtype of the first len(forward.parameters) ORT graph inputs sig = inspect.signature(model.forward) for i in range(len(sig.parameters.keys())): input_name = trainer.model_desc.inputs[i][0] input_dim = trainer.model_desc.inputs[i][1] input_type = trainer.model_desc.inputs[i][2] assert trainer._onnx_model.graph.input[i].name == input_name for dim_idx, dim in enumerate(trainer._onnx_model.graph.input[i].type.tensor_type.shape.dim): assert input_dim[dim_idx] == dim.dim_value assert input_type == _utils.dtype_onnx_to_torch( trainer._onnx_model.graph.input[i].type.tensor_type.elem_type) opset = get_model_opset(trainer._onnx_model) # Check name, shape and dtype of the ORT graph outputs for i in range(len(trainer.model_desc.outputs)): output_name = trainer.model_desc.outputs[i][0] output_dim = trainer.model_desc.outputs[i][1] output_type = trainer.model_desc.outputs[i][3] assert trainer._onnx_model.graph.output[i].name == output_name for dim_idx, dim in enumerate(trainer._onnx_model.graph.output[i].type.tensor_type.shape.dim): if opset != 14: assert output_dim[dim_idx] == dim.dim_value assert output_type == _utils.dtype_onnx_to_torch( trainer._onnx_model.graph.output[i].type.tensor_type.elem_type) # Save current model as ONNX as a file file_name = os.path.join('_____temp_onnx_model.onnx') trainer.save_as_onnx(file_name) assert os.path.exists(file_name) with open(file_name, "rb") as f: bin_str = f.read() reload_onnx_model = onnx.load_model_from_string(bin_str) os.remove(file_name) # Create a new trainer from persisted ONNX model and compare with original ONNX model trainer_from_onnx = orttrainer.ORTTrainer(reload_onnx_model, model_desc, optim_config) step_fn(data, targets) assert trainer_from_onnx._onnx_model is not None assert (id(trainer_from_onnx._onnx_model) != id(trainer._onnx_model)) assert (trainer_from_onnx._onnx_model == trainer._onnx_model) assert (trainer_from_onnx._onnx_model.graph == trainer._onnx_model.graph) assert (onnx.helper.printable_graph(trainer_from_onnx._onnx_model.graph) == onnx.helper.printable_graph(trainer._onnx_model.graph)) @pytest.mark.parametrize("seed, device", [ (0, 'cpu'), (24, 'cuda') ]) def testORTDeterministicCompute(seed, device): # Common setup optim_config = optim.LambConfig() opts = orttrainer.ORTTrainerOptions({ 'debug' : { 'deterministic_compute': True }, 'device' : { 'id' : device, 'mem_limit' : 10*1024*1024 } }) # Setup for the first ORTTRainer run torch.manual_seed(seed) set_seed(seed) model, model_desc, my_loss, batcher_fn, train_data, _, _ = _test_commons._load_pytorch_transformer_model(device) first_trainer = orttrainer.ORTTrainer(model, model_desc, optim_config, loss_fn=my_loss, options=opts) data, targets = batcher_fn(train_data, 0) _ = first_trainer.train_step(data, targets) assert first_trainer._onnx_model is not None # Setup for the second ORTTRainer run torch.manual_seed(seed) set_seed(seed) model, _, _, _, _, _, _ = _test_commons._load_pytorch_transformer_model(device) second_trainer = orttrainer.ORTTrainer(model, model_desc, optim_config, loss_fn=my_loss, options=opts) _ = second_trainer.train_step(data, targets) assert second_trainer._onnx_model is not None # Compare two different instances with identical setup assert id(first_trainer._onnx_model) != id(second_trainer._onnx_model) _test_helpers.assert_onnx_weights(first_trainer, second_trainer) @pytest.mark.parametrize("seed,device,expected_loss,fetches", [ (321, 'cuda', [10.5774, 10.4403, 10.4175, 10.2886, 10.2760], False), (321, 'cuda', [10.5774, 10.4403, 10.4175, 10.2886, 10.2760], True), ]) def testORTTrainerMixedPrecisionLossScaler(seed, device, expected_loss, fetches): return # TODO: re-enable after nondeterminism on backend is fixed. update numbers rtol = 1e-3 total_steps = len(expected_loss) torch.manual_seed(seed) set_seed(seed) # Setup ORTTrainer loss_scaler = amp.DynamicLossScaler() options = orttrainer.ORTTrainerOptions({'device' : {'id' : device}, 'mixed_precision' : { 'enabled' : True, 'loss_scaler' : loss_scaler}, 'debug' : {'deterministic_compute' : True}}) model, model_desc, my_loss, batcher_fn, train_data, val_data, _ = _test_commons._load_pytorch_transformer_model(device) optim_config = optim.LambConfig(lr=0.001) trainer = orttrainer.ORTTrainer(model, model_desc, optim_config, loss_fn=my_loss, options=options) # Training loop actual_loss = [] for i in range(total_steps): data, targets = batcher_fn(train_data, i) if fetches: trainer._train_step_info.fetches=['loss'] loss = trainer.train_step(data, targets) else: loss, _ = trainer.train_step(data, targets) actual_loss.append(loss.cpu()) # Eval once just to test fetches in action val_data, val_targets = batcher_fn(val_data, 0) if fetches: trainer._train_step_info.fetches=['loss'] loss = trainer.eval_step(val_data, val_targets) trainer._train_step_info.fetches=[] loss, _ = trainer.eval_step(val_data, val_targets) # Compare loss to ground truth computed from current ORTTrainer API _test_helpers.assert_model_outputs(expected_loss, actual_loss, True, rtol=rtol) assert trainer._onnx_model is not None def _recompute_data(): device_capability_major = torch.cuda.get_device_capability()[0] if device_capability_major == 7: # V100 for Dev machine expected_loss = {12: [10.5598, 10.4591, 10.3477, 10.2726, 10.1945], 14: [10.54088, 10.498755, 10.386827, 10.338747, 10.262459]} return [ (False, False, False, 0, expected_loss), # no recompute (True, False, False, 0, expected_loss), # attn_dropout recompute (False, True, False, 0, expected_loss), # gelu recompute (False, False, True, 0, expected_loss), # transformer_layer recompute (False, False, True, 1, expected_loss), # transformer_layer recompute with 1 layer ] elif device_capability_major == 5: # M60 for CI machines expected_loss = {12: [10.5445, 10.4389, 10.3480, 10.2627, 10.2113], 14: [10.5445, 10.4389, 10.3480, 10.2627, 10.2113]} return [ (False, False, False, 0, expected_loss), # no recompute (True, False, False, 0, expected_loss), # attn_dropout recompute (False, True, False, 0, expected_loss), # gelu recompute (False, False, True, 0, expected_loss), # transformer_layer recompute (False, False, True, 1, expected_loss), # transformer_layer recompute with 1 layer ] @pytest.mark.parametrize("attn_dropout, gelu, transformer_layer, number_layers, expected_loss", _recompute_data()) def testORTTrainerRecompute(attn_dropout, gelu, transformer_layer, number_layers, expected_loss): seed = 321 device = 'cuda' rtol = 1e-3 total_steps = len(expected_loss[12]) torch.manual_seed(seed) set_seed(seed) # Setup ORTTrainer options = orttrainer.ORTTrainerOptions({'device' : {'id' : device}, 'graph_transformer' : { 'attn_dropout_recompute': attn_dropout, 'gelu_recompute': gelu, 'transformer_layer_recompute': transformer_layer, 'number_recompute_layers': number_layers }, 'debug' : {'deterministic_compute' : True}}) model, model_desc, my_loss, batcher_fn, train_data, val_data, _ = _test_commons._load_pytorch_transformer_model(device) optim_config = optim.LambConfig(lr=0.001) trainer = orttrainer.ORTTrainer(model, model_desc, optim_config, loss_fn=my_loss, options=options) # Training loop actual_loss = [] for i in range(total_steps): data, targets = batcher_fn(train_data, i) loss, _ = trainer.train_step(data, targets) actual_loss.append(loss.cpu()) # Compare loss to ground truth computed from current ORTTrainer API assert trainer._onnx_model is not None opset = get_model_opset(trainer._onnx_model) _test_helpers.assert_model_outputs(expected_loss[opset], actual_loss, True, rtol=rtol) @pytest.mark.parametrize("seed,device,gradient_accumulation_steps,total_steps,expected_loss", [ (0, 'cuda', 1, 12, [10.5368022919, 10.4146203995, 10.3635568619, 10.2650547028, 10.2284049988, 10.1304626465,\ 10.0853414536, 9.9987659454, 9.9472427368, 9.8832416534, 9.8223171234, 9.8222122192]), (42, 'cuda', 3, 12, [10.6455879211, 10.6247081757, 10.6361322403, 10.5187482834, 10.5345087051, 10.5487670898,\ 10.4833698273, 10.4600019455, 10.4535751343, 10.3774127960, 10.4144191742, 10.3757553101]), (123, 'cuda', 7, 12, [10.5353469849, 10.5261383057, 10.5240392685, 10.5013713837, 10.5678377151, 10.5452117920,\ 10.5184345245, 10.4271221161, 10.4458627701, 10.4864749908, 10.4416503906, 10.4467563629]), (321, 'cuda', 12, 12, [10.5773944855, 10.5428829193, 10.5974750519, 10.5416746140, 10.6009902954, 10.5684127808,\ 10.5759754181, 10.5636739731, 10.5613927841, 10.5825119019, 10.6031589508, 10.6199369431]), ]) def testORTTrainerGradientAccumulation(seed, device, gradient_accumulation_steps, total_steps, expected_loss): return # TODO: re-enable after nondeterminism on backend is fixed. update numbers rtol = 1e-3 torch.manual_seed(seed) set_seed(seed) # Setup ORTTrainer options = orttrainer.ORTTrainerOptions({'device' : {'id' : device}, 'batch' : {'gradient_accumulation_steps' : gradient_accumulation_steps}, 'debug' : {'deterministic_compute' : True}}) model, model_desc, my_loss, batcher_fn, train_data, _, _ = _test_commons._load_pytorch_transformer_model(device) optim_config = optim.LambConfig(lr=0.001) trainer = orttrainer.ORTTrainer(model, model_desc, optim_config, loss_fn=my_loss, options=options) # Training loop actual_loss = [] for i in range(total_steps): data, targets = batcher_fn(train_data, i) loss, _ = trainer.train_step(data, targets) actual_loss.append(loss.cpu()) # Compare legacy vs experimental APIs _test_helpers.assert_model_outputs(expected_loss, actual_loss, rtol=rtol) @pytest.mark.parametrize("dynamic_axes", [ (True), (False), ]) def testORTTrainerDynamicShape(dynamic_axes): # Common setup device = 'cuda' # Setup ORTTrainer options = orttrainer.ORTTrainerOptions({}) model, model_desc, my_loss, batcher_fn,\ train_data, _, _ = _test_commons._load_pytorch_transformer_model(device, dynamic_axes=dynamic_axes) optim_config = optim.LambConfig(lr=0.001) trainer = orttrainer.ORTTrainer(model, model_desc, optim_config, loss_fn=my_loss, options=options) # Training loop total_steps = 10 for i in range(total_steps): data, targets = batcher_fn(train_data, i) if dynamic_axes: # Forcing batches with different sizes to exercise dynamic shapes data = data[:-(i+1)] targets = targets[:-(i+1)*data.size(1)] _, _ = trainer.train_step(data, targets) assert trainer._onnx_model is not None @pytest.mark.parametrize('enable_onnx_contrib_ops', [ (True), (False), ]) def testORTTrainerInternalUseContribOps(enable_onnx_contrib_ops): # Common setup device = 'cuda' # Setup ORTTrainer options = orttrainer.ORTTrainerOptions({"_internal_use": {"enable_onnx_contrib_ops": enable_onnx_contrib_ops}}) model, model_desc, my_loss, batcher_fn,\ train_data, _, _ = _test_commons._load_pytorch_transformer_model(device) optim_config = optim.LambConfig(lr=0.001) trainer = orttrainer.ORTTrainer(model, model_desc, optim_config, loss_fn=my_loss, options=options) # Training loop data, targets = batcher_fn(train_data, 0) if not enable_onnx_contrib_ops and not pytorch_110: with pytest.raises(Exception) as e_info: _, _ = trainer.train_step(data, targets) else: _, _ = trainer.train_step(data, targets) @pytest.mark.parametrize("model_params", [ (['decoder.weight', 'transformer_encoder.layers.0.linear1.bias', 'transformer_encoder.layers.0.linear2.weight', 'transformer_encoder.layers.1.self_attn.out_proj.weight', 'transformer_encoder.layers.1.self_attn.out_proj.bias']), ]) def testORTTrainerFrozenWeights(model_params): # Common setup device = 'cuda' total_steps = 10 # Setup ORTTrainer WITHOUT frozen weights options = orttrainer.ORTTrainerOptions({}) model, model_desc, my_loss, batcher_fn,\ train_data, _, _ = _test_commons._load_pytorch_transformer_model(device) optim_config = optim.LambConfig(lr=0.001) trainer = orttrainer.ORTTrainer(model, model_desc, optim_config, loss_fn=my_loss, options=options) for i in range(total_steps): data, targets = batcher_fn(train_data, i) _, _ = trainer.train_step(data, targets) # All model_params must be in the session state assert trainer._onnx_model is not None session_state = trainer._training_session.get_state() assert all([param in session_state for param in model_params]) # Setup ORTTrainer WITH frozen weights options = orttrainer.ORTTrainerOptions({'utils' : {'frozen_weights' : model_params}}) model, _, _, _, _, _, _ = _test_commons._load_pytorch_transformer_model(device) trainer = orttrainer.ORTTrainer(model, model_desc, optim_config, loss_fn=my_loss, options=options) for i in range(total_steps): data, targets = batcher_fn(train_data, i) _, _ = trainer.train_step(data, targets) # All model_params CANNOT be in the session state assert trainer._onnx_model is not None session_state = trainer._training_session.get_state() assert not all([param in session_state for param in model_params]) @pytest.mark.parametrize("loss_scaler, optimizer_config, gradient_accumulation_steps", [ (None, optim.AdamConfig(), 1), (None, optim.LambConfig(), 1), (None, optim.SGDConfig(), 1), (amp.DynamicLossScaler(), optim.AdamConfig(), 1), (amp.DynamicLossScaler(), optim.LambConfig(), 5), #(amp.DynamicLossScaler(), optim.SGDConfig(), 1), # SGD doesnt support fp16 ]) def testORTTrainerStateDictWrapModelLossFn(loss_scaler, optimizer_config, gradient_accumulation_steps): # Common setup seed = 1 class LinearModel(torch.nn.Module): def __init__(self): super().__init__() self.linear = torch.nn.Linear(2, 4) def forward(self, y=None, x=None): if y is not None: return self.linear(x) + y else: return self.linear(x) + torch.ones(2, 4) model_desc = {'inputs' : [('x', [2, 2]), ('label', [2, ])], 'outputs' : [('loss', [], True), ('output', [2, 4])]} # Dummy data data1 = torch.randn(2, 2) label1 = torch.tensor([0, 1], dtype=torch.int64) data2 = torch.randn(2, 2) label2 = torch.tensor([0, 1], dtype=torch.int64) # Setup training based on test parameters opts = {'debug' : {'deterministic_compute': True}, 'batch' : { 'gradient_accumulation_steps' : gradient_accumulation_steps}} if loss_scaler: opts['mixed_precision'] = { 'enabled': True, 'loss_scaler': loss_scaler} opts = orttrainer.ORTTrainerOptions(opts) # Training session 1 torch.manual_seed(seed) set_seed(seed) pt_model = LinearModel() def loss_fn(x, label): return F.nll_loss(F.log_softmax(x, dim=1), label) trainer = orttrainer.ORTTrainer(pt_model, model_desc, optimizer_config, loss_fn=loss_fn, options=opts) # Check state_dict keys before train. Must be empty state_dict = trainer.state_dict() assert state_dict == {} # Train once and check initial state trainer.train_step(x=data1, label=label1) state_dict = trainer.state_dict() assert all([weight in state_dict['model']['full_precision'].keys() for weight in ['linear.bias', 'linear.weight']]) # Initialize training session 2 from state of Training 1 torch.manual_seed(seed) set_seed(seed) trainer2 = orttrainer.ORTTrainer(pt_model, model_desc, optimizer_config, loss_fn=loss_fn, options=opts) trainer2.load_state_dict(state_dict) # Verify state was loaded properly _test_commons.assert_all_states_close_ort(state_dict, trainer2._load_state_dict.args[0]) # Perform a second step in both training session 1 and 2 and verify they match trainer.train_step(x=data2, label=label2) state_dict = trainer.state_dict() trainer2.train_step(x=data2, label=label2) state_dict2 = trainer2.state_dict() _test_commons.assert_all_states_close_ort(state_dict, state_dict2) def testORTTrainerNonPickableModel(): # Common setup import threading seed = 1 class UnpickableModel(torch.nn.Module): def __init__(self): super().__init__() self.linear = torch.nn.Linear(2, 4) self._lock = threading.Lock() def forward(self, y=None, x=None): with self._lock: if y is not None: return self.linear(x) + y else: return self.linear(x) + torch.ones(2, 4) model_desc = {'inputs' : [('x', [2, 2]), ('label', [2, ])], 'outputs' : [('loss', [], True), ('output', [2, 4])]} # Dummy data data = torch.randn(2, 2) label = torch.tensor([0, 1], dtype=torch.int64) # Setup training based on test parameters opts = orttrainer.ORTTrainerOptions({'debug' : {'deterministic_compute': True}}) # Training session torch.manual_seed(seed) set_seed(seed) pt_model = UnpickableModel() def loss_fn(x, label): return F.nll_loss(F.log_softmax(x, dim=1), label) optim_config = optim.AdamConfig() trainer = orttrainer.ORTTrainer(pt_model, model_desc, optim_config, loss_fn=loss_fn, options=opts) # Train must succeed despite warning _, _ = trainer.train_step(data, label) ############################################################################### # Temporary tests comparing Legacy vs Experimental ORTTrainer APIs ############ ############################################################################### @pytest.mark.parametrize("seed,device", [ (1234, 'cuda') ]) def testORTTrainerLegacyAndExperimentalWeightsCheck(seed, device): # Common data rtol = 1e-7 total_steps = 5 # Setup for the experimental ORTTRainer run torch.manual_seed(seed) set_seed(seed) optim_config = optim.LambConfig() opts = orttrainer.ORTTrainerOptions({ 'device' : { 'id' : device }, 'debug' : { 'deterministic_compute': True }, }) model, model_desc, my_loss, batcher_fn, train_data, _, _ = _test_commons._load_pytorch_transformer_model(device) trainer = orttrainer.ORTTrainer(model, model_desc, optim_config, loss_fn=my_loss, options=opts) # Training loop for i in range(total_steps): data, targets = batcher_fn(train_data, i) _ = trainer.train_step(data, targets) # Setup for the legacy ORTTrainer run torch.manual_seed(seed) set_seed(seed) model, (model_desc, lr_desc), _, _, _, _, _ = _test_commons._load_pytorch_transformer_model(device, legacy_api=True) legacy_trainer = Legacy_ORTTrainer(model, my_loss, model_desc, "LambOptimizer", None, lr_desc, device, _use_deterministic_compute=True) # Training loop for i in range(total_steps): data, targets = batcher_fn(train_data, i) _, _ = legacy_trainer.train_step(data, targets, torch.tensor([optim_config.lr])) # Compare legacy vs experimental APIs _test_helpers.assert_legacy_onnx_weights(trainer, legacy_trainer, rtol=rtol) @pytest.mark.parametrize("seed,device", [ (321, 'cuda'), ]) def testORTTrainerLegacyAndExperimentalPrecisionLossScaler(seed, device): # Common data total_steps = 128 # Setup experimental API torch.manual_seed(seed) set_seed(seed) loss_scaler = amp.DynamicLossScaler() options = orttrainer.ORTTrainerOptions({'device' : {'id' : device}, 'mixed_precision' : { 'enabled' : True, 'loss_scaler' : loss_scaler}, 'debug' : {'deterministic_compute' : True,}}) model, model_desc, my_loss, batcher_fn, train_data, _, _ = _test_commons._load_pytorch_transformer_model(device) optim_config = optim.LambConfig(lr=0.001) trainer = orttrainer.ORTTrainer(model, model_desc, optim_config, loss_fn=my_loss, options=options) # Training loop experimental_loss = [] experimental_preds_dtype = [] for i in range(total_steps): data, targets = batcher_fn(train_data, i) exp_loss, exp_preds = trainer.train_step(data, targets) experimental_loss.append(exp_loss.cpu()) experimental_preds_dtype.append(exp_preds.dtype) # Setup legacy API torch.manual_seed(seed) set_seed(seed) model, (model_desc, lr_desc), _, _, _, _, _ = _test_commons._load_pytorch_transformer_model(device, legacy_api=True) loss_scaler = Legacy_LossScaler('ort_test_input_loss_scalar', True) legacy_trainer = Legacy_ORTTrainer(model, my_loss, model_desc, "LambOptimizer", None, lr_desc, device=device, _use_deterministic_compute=True, use_mixed_precision=True, loss_scaler=loss_scaler) # Training loop legacy_loss = [] legacy_preds_dtype = [] for i in range(total_steps): data, targets = batcher_fn(train_data, i) leg_loss, leg_preds = legacy_trainer.train_step(data, targets, torch.tensor([optim_config.lr])) legacy_loss.append(leg_loss.cpu()) legacy_preds_dtype.append(leg_preds.dtype) # Compare legacy vs experimental APIs assert experimental_preds_dtype == legacy_preds_dtype _test_helpers.assert_legacy_onnx_weights(trainer, legacy_trainer) _test_helpers.assert_model_outputs(legacy_loss, experimental_loss) @pytest.mark.parametrize("seed,device,gradient_accumulation_steps,total_steps", [ (0, 'cuda', 1, 12), (42, 'cuda', 3, 12), (123, 'cuda', 7, 12), (321, 'cuda', 12, 12), ]) def testORTTrainerLegacyAndExperimentalGradientAccumulation(seed, device, gradient_accumulation_steps, total_steps): # Common data torch.set_printoptions(precision=10) # Setup experimental API torch.manual_seed(seed) set_seed(seed) options = orttrainer.ORTTrainerOptions({'device' : {'id' : device}, 'batch' : {'gradient_accumulation_steps' : gradient_accumulation_steps}, 'debug' : {'deterministic_compute' : True}}) model, model_desc, my_loss, batcher_fn, train_data, _, _ = _test_commons._load_pytorch_transformer_model(device) optim_config = optim.LambConfig(lr=0.001) trainer = orttrainer.ORTTrainer(model, model_desc, optim_config, loss_fn=my_loss, options=options) # Training loop experimental_loss = [] for i in range(total_steps): data, targets = batcher_fn(train_data, i) exp_loss, _ = trainer.train_step(data, targets) experimental_loss.append(exp_loss.cpu()) # Setup legacy API torch.manual_seed(seed) set_seed(seed) model, (model_desc, lr_desc), _, _, _, _, _ = _test_commons._load_pytorch_transformer_model(device, legacy_api=True) legacy_trainer = Legacy_ORTTrainer(model, my_loss, model_desc, "LambOptimizer", None, lr_desc, device=device, _use_deterministic_compute=True, gradient_accumulation_steps=gradient_accumulation_steps) # Training loop legacy_loss = [] for i in range(total_steps): data, targets = batcher_fn(train_data, i) leg_loss, _ = legacy_trainer.train_step(data, targets, torch.tensor([optim_config.lr])) legacy_loss.append(leg_loss.cpu()) # Compare legacy vs experimental APIs _test_helpers.assert_model_outputs(legacy_loss, experimental_loss) @pytest.mark.parametrize("seed,device,optimizer_config,lr_scheduler, get_lr_this_step", [ (0, 'cuda', optim.AdamConfig, optim.lr_scheduler.ConstantWarmupLRScheduler, _test_commons.legacy_constant_lr_scheduler), (0, 'cuda', optim.LambConfig, optim.lr_scheduler.ConstantWarmupLRScheduler, _test_commons.legacy_constant_lr_scheduler), (0, 'cuda', optim.SGDConfig, optim.lr_scheduler.ConstantWarmupLRScheduler, _test_commons.legacy_constant_lr_scheduler), (42, 'cuda', optim.AdamConfig, optim.lr_scheduler.LinearWarmupLRScheduler, _test_commons.legacy_linear_lr_scheduler), (42, 'cuda', optim.LambConfig, optim.lr_scheduler.LinearWarmupLRScheduler, _test_commons.legacy_linear_lr_scheduler), (42, 'cuda', optim.SGDConfig, optim.lr_scheduler.LinearWarmupLRScheduler, _test_commons.legacy_linear_lr_scheduler), (123, 'cuda', optim.AdamConfig, optim.lr_scheduler.CosineWarmupLRScheduler, _test_commons.legacy_cosine_lr_scheduler), (123, 'cuda', optim.LambConfig, optim.lr_scheduler.CosineWarmupLRScheduler, _test_commons.legacy_cosine_lr_scheduler), (123, 'cuda', optim.SGDConfig, optim.lr_scheduler.CosineWarmupLRScheduler, _test_commons.legacy_cosine_lr_scheduler), (321, 'cuda', optim.AdamConfig, optim.lr_scheduler.PolyWarmupLRScheduler, _test_commons.legacy_poly_lr_scheduler), (321, 'cuda', optim.LambConfig, optim.lr_scheduler.PolyWarmupLRScheduler, _test_commons.legacy_poly_lr_scheduler), (321, 'cuda', optim.SGDConfig, optim.lr_scheduler.PolyWarmupLRScheduler, _test_commons.legacy_poly_lr_scheduler), ]) def testORTTrainerLegacyAndExperimentalLRScheduler(seed, device, optimizer_config, lr_scheduler, get_lr_this_step): # Common data total_steps = 10 lr = 0.001 warmup = 0.5 cycles = 0.5 power = 1. lr_end = 1e-7 torch.set_printoptions(precision=10) # Setup experimental API torch.manual_seed(seed) set_seed(seed) if lr_scheduler == optim.lr_scheduler.ConstantWarmupLRScheduler or lr_scheduler == optim.lr_scheduler.LinearWarmupLRScheduler: lr_scheduler = lr_scheduler(total_steps=total_steps, warmup=warmup) elif lr_scheduler == optim.lr_scheduler.CosineWarmupLRScheduler: lr_scheduler = lr_scheduler(total_steps=total_steps, warmup=warmup, cycles=cycles) elif lr_scheduler == optim.lr_scheduler.PolyWarmupLRScheduler: lr_scheduler = lr_scheduler(total_steps=total_steps, warmup=warmup, power=power, lr_end=lr_end) else: raise RuntimeError("Invalid lr_scheduler") options = orttrainer.ORTTrainerOptions({'device' : {'id' : device}, 'debug' : {'deterministic_compute' : True}, 'lr_scheduler' : lr_scheduler}) model, model_desc, my_loss, batcher_fn, train_data, _, _ = _test_commons._load_pytorch_transformer_model(device) optim_config = optimizer_config(lr=lr) trainer = orttrainer.ORTTrainer(model, model_desc, optim_config, loss_fn=my_loss, options=options) # Training loop experimental_loss = [] for i in range(total_steps): data, targets = batcher_fn(train_data, i) exp_loss, exp_preds = trainer.train_step(data, targets) experimental_loss.append(exp_loss.cpu()) # Setup legacy API torch.manual_seed(seed) set_seed(seed) if optimizer_config == optim.AdamConfig: legacy_optimizer_config = 'AdamOptimizer' elif optimizer_config == optim.LambConfig: legacy_optimizer_config = 'LambOptimizer' elif optimizer_config == optim.SGDConfig: legacy_optimizer_config = 'SGDOptimizer' else: raise RuntimeError("Invalid optimizer_config") if get_lr_this_step == _test_commons.legacy_constant_lr_scheduler or get_lr_this_step == _test_commons.legacy_linear_lr_scheduler: get_lr_this_step = partial(get_lr_this_step, initial_lr=lr, total_steps=total_steps, warmup=warmup) elif get_lr_this_step == _test_commons.legacy_cosine_lr_scheduler: get_lr_this_step = partial(get_lr_this_step, initial_lr=lr, total_steps=total_steps, warmup=warmup, cycles=cycles) elif get_lr_this_step == _test_commons.legacy_poly_lr_scheduler: get_lr_this_step = partial(get_lr_this_step, initial_lr=lr, total_steps=total_steps, warmup=warmup, power=power, lr_end=lr_end) else: raise RuntimeError("Invalid get_lr_this_step") model, (model_desc, lr_desc), _, _, _, _, _ = _test_commons._load_pytorch_transformer_model(device, legacy_api=True) legacy_trainer = Legacy_ORTTrainer(model, my_loss, model_desc, legacy_optimizer_config, None, lr_desc, device=device, _use_deterministic_compute=True, get_lr_this_step=get_lr_this_step) # Training loop legacy_loss = [] for i in range(total_steps): data, targets = batcher_fn(train_data, i) leg_loss, leg_preds = legacy_trainer.train_step(data, targets) legacy_loss.append(leg_loss.cpu()) # Compare legacy vs experimental APIs _test_helpers.assert_model_outputs(legacy_loss, experimental_loss) def testLossScalerLegacyAndExperimentalFullCycle(): info = orttrainer.TrainStepInfo(optimizer_config=optim.LambConfig(lr=0.001), all_finite=True, fetches=[], optimization_step=0, step=0) new_ls = amp.DynamicLossScaler() old_ls = Legacy_LossScaler("ort_test_input_loss_scaler", True) # Initial state train_step_info = orttrainer.TrainStepInfo(optim.LambConfig()) assert_allclose(new_ls.loss_scale, old_ls.loss_scale_) assert new_ls.up_scale_window == old_ls.up_scale_window_ assert_allclose(new_ls.min_loss_scale, old_ls.min_loss_scale_) assert_allclose(new_ls.max_loss_scale, old_ls.max_loss_scale_) # Performing 9*2000 updates to cover all branches of LossScaler.update(train_step_info.all_finite=True) for cycles in range(1, 10): # 1999 updates without overflow produces 1999 stable steps for i in range(1, 2000): new_loss_scale = new_ls.update(train_step_info) old_ls.update_loss_scale(train_step_info.all_finite) old_loss_scale = old_ls.loss_scale_ assert new_ls._stable_steps_count == old_ls.stable_steps_ assert_allclose(new_loss_scale, old_loss_scale) # 2000th update without overflow doubles the loss and zero stable steps until max_loss_scale is reached new_loss_scale = new_ls.update(train_step_info) old_ls.update_loss_scale(train_step_info.all_finite) old_loss_scale = old_ls.loss_scale_ assert new_ls._stable_steps_count == old_ls.stable_steps_ assert_allclose(new_loss_scale, old_loss_scale) # After 8 cycles, loss scale should be float(1 << 16)*(2**8) assert_allclose(new_loss_scale, old_loss_scale) # After 9 cycles, loss scale reaches max_loss_scale and it is not doubled from that point on for count in range(1, 2050): new_loss_scale = new_ls.update(train_step_info) old_ls.update_loss_scale(train_step_info.all_finite) old_loss_scale = old_ls.loss_scale_ assert new_ls._stable_steps_count == old_ls.stable_steps_ assert_allclose(new_loss_scale, old_loss_scale) # Setting train_step_info.all_finite = False to test down scaling train_step_info.all_finite = False # Performing 24 updates to half the loss scale each time for count in range(1, 25): new_loss_scale = new_ls.update(train_step_info) old_ls.update_loss_scale(train_step_info.all_finite) old_loss_scale = old_ls.loss_scale_ assert new_ls._stable_steps_count == old_ls.stable_steps_ assert_allclose(new_loss_scale, old_loss_scale) # After 24 updates with gradient overflow, loss scale is 1.0 assert_allclose(new_loss_scale, old_loss_scale) # After 25 updates, min_loss_scale is reached and loss scale is not halfed from that point on for count in range(1, 5): new_loss_scale = new_ls.update(train_step_info) old_ls.update_loss_scale(train_step_info.all_finite) old_loss_scale = old_ls.loss_scale_ assert new_ls._stable_steps_count == old_ls.stable_steps_ assert_allclose(new_loss_scale, old_loss_scale) def testLossScalerLegacyAndExperimentalRandomAllFinite(): new_ls = amp.DynamicLossScaler() old_ls = Legacy_LossScaler("ort_test_input_loss_scaler", True) # Initial state train_step_info = orttrainer.TrainStepInfo(optim.LambConfig()) assert_allclose(new_ls.loss_scale, old_ls.loss_scale_) assert new_ls.up_scale_window == old_ls.up_scale_window_ assert_allclose(new_ls.min_loss_scale, old_ls.min_loss_scale_) assert_allclose(new_ls.max_loss_scale, old_ls.max_loss_scale_) import random out = [] for _ in range(1, 64): train_step_info.all_finite = bool(random.getrandbits(1)) new_loss_scale = new_ls.update(train_step_info) old_ls.update_loss_scale(train_step_info.all_finite) old_loss_scale = old_ls.loss_scale_ assert new_ls._stable_steps_count == old_ls.stable_steps_ assert_allclose(new_loss_scale, old_loss_scale) out.append(new_loss_scale) assert new_loss_scale > 1e-7 def testORTTrainerRunSymbolicShapeInfer(): # Common data seed = 0 total_steps = 12 device = 'cuda' torch.set_printoptions(precision=10) # Setup without symbolic shape inference torch.manual_seed(seed) set_seed(seed) options = orttrainer.ORTTrainerOptions({'device' : {'id' : device}, 'debug' : {'deterministic_compute' : True}}) model, model_desc, my_loss, batcher_fn, train_data, _, _ = _test_commons._load_pytorch_transformer_model(device) optim_config = optim.LambConfig(lr=0.001) trainer = orttrainer.ORTTrainer(model, model_desc, optim_config, loss_fn=my_loss, options=options) # Training loop expected_loss = [] for i in range(total_steps): data, targets = batcher_fn(train_data, i) loss, _ = trainer.train_step(data, targets) expected_loss.append(loss.cpu()) # Setup with symbolic shape inference torch.manual_seed(seed) set_seed(seed) model, model_desc, my_loss, batcher_fn, train_data, _, _ = _test_commons._load_pytorch_transformer_model(device) optim_config = optim.LambConfig(lr=0.001) options.utils.run_symbolic_shape_infer = True trainer = orttrainer.ORTTrainer(model, model_desc, optim_config, loss_fn=my_loss, options=options) # Training loop new_loss = [] for i in range(total_steps): data, targets = batcher_fn(train_data, i) loss, _ = trainer.train_step(data, targets) new_loss.append(loss.cpu()) # Setup with symbolic shape inference in legacy API torch.manual_seed(seed) set_seed(seed) model, (model_desc, lr_desc), _, _, _, _, _ = _test_commons._load_pytorch_transformer_model(device, legacy_api=True) legacy_trainer = Legacy_ORTTrainer(model, my_loss, model_desc, "LambOptimizer", None, lr_desc, device=device, run_symbolic_shape_infer=True, _use_deterministic_compute=True) # Training loop legacy_loss = [] for i in range(total_steps): data, targets = batcher_fn(train_data, i) loss, _ = legacy_trainer.train_step(data, targets, torch.tensor([optim_config.lr])) legacy_loss.append(loss.cpu()) # Compare losses _test_helpers.assert_model_outputs(new_loss, expected_loss) _test_helpers.assert_model_outputs(legacy_loss, expected_loss) @pytest.mark.parametrize("test_input", [ ({ 'distributed': {'enable_adasum': True}, }) ]) def testORTTrainerOptionsEnabledAdasumFlag(test_input): ''' Test the enabled_adasum flag values when set enabled''' actual_values = orttrainer_options.ORTTrainerOptions(test_input) assert actual_values.distributed.enable_adasum == True @pytest.mark.parametrize("test_input", [ ({ 'distributed': {'enable_adasum': False}, }) ]) def testORTTrainerOptionsDisabledAdasumFlag(test_input): ''' Test the enabled_adasum flag values when set disabled''' actual_values = orttrainer_options.ORTTrainerOptions(test_input) assert actual_values.distributed.enable_adasum == False def testORTTrainerUnusedInput(): class UnusedInputModel(torch.nn.Module): def __init__(self): super(UnusedInputModel, self).__init__() def forward(self, x, y): return torch.mean(x) model = UnusedInputModel() model_desc = {'inputs': [('x', [1]), ('y', [1])], 'outputs': [('loss', [], True)]} optim_config = optim.LambConfig(lr=0.001) trainer = orttrainer.ORTTrainer(model, model_desc, optim_config) # Run just one step to make sure there are no iobinding errors for the unused input. try: trainer.train_step(torch.FloatTensor([1.0]), torch.FloatTensor([1.0])) except RuntimeError: pytest.fail("RuntimeError doing train_step with an unused input.") @pytest.mark.parametrize("debug_files", [ {'model_after_graph_transforms_path': 'transformed.onnx', 'model_with_gradient_graph_path': 'transformed_grad.onnx', 'model_with_training_graph_path': 'training.onnx', 'model_with_training_graph_after_optimization_path': 'training_optimized.onnx' }, {'model_after_graph_transforms_path': 'transformed.onnx', 'model_with_training_graph_path': '' }, ]) def testTrainingGraphExport(debug_files): device = 'cuda' model, model_desc, my_loss, batcher_fn, train_data, _, _ = _test_commons._load_pytorch_transformer_model(device) with tempfile.TemporaryDirectory() as tempdir: debug_paths = {} for k,v in debug_files.items(): debug_paths[k] = os.path.join(tempdir, v) opts = orttrainer.ORTTrainerOptions( { "device": {"id": device}, "debug": {"graph_save_paths": debug_paths} } ) optim_config = optim.AdamConfig() trainer = orttrainer.ORTTrainer(model, model_desc, optim_config, loss_fn=my_loss, options=opts) data, targets = batcher_fn(train_data, 0) trainer.train_step(data, targets) for k,v in debug_files.items(): path = debug_paths[k] if len(v) > 0: assert os.path.isfile(path) saved_graph = onnx.load(path).graph if k == 'model_with_training_graph_path': assert any("AdamOptimizer" in n.op_type for n in saved_graph.node) elif k == 'model_with_gradient_graph_path': assert any("Grad" in n.name for n in saved_graph.node) elif k == 'model_after_graph_transforms_path': assert any("LayerNormalization" in n.op_type for n in saved_graph.node) elif k == 'model_with_training_graph_after_optimization_path': assert any("FusedMatMul" in n.op_type for n in saved_graph.node) # remove saved file os.remove(path) else: assert not os.path.isfile(path) def _adam_max_norm_clip_data(): device_capability_major = torch.cuda.get_device_capability()[0] if device_capability_major == 7: # V100 for Dev machine return [ (0, 'cuda', 1.0, 1, 12, { 12: [10.592951, 10.067989, 9.619152, 9.245731, 8.881137, 8.578644, 8.280573, 8.063023, 7.797933, 7.486215, 7.233806, 7.011791], 14: [10.584141, 10.068119, 9.581743, 9.191472, 8.880169, 8.5352, 8.311425, 8.061202, 7.773032, 7.523009, 7.258711, 7.02805]}), (0, 'cuda', 0.1, 1, 12, { 12: [10.592951, 10.068722, 9.620503, 9.247791, 8.883972, 8.582286, 8.285027, 8.068308, 7.803638, 7.492318, 7.240352, 7.018665], 14: [10.584141, 10.068845, 9.583107, 9.193537, 8.882966, 8.538839, 8.315872, 8.066408, 7.778978, 7.529708, 7.265849, 7.035439]}), (42, 'cuda', 1.0, 1, 12, { 12: [10.647908, 10.144501, 9.672352, 9.306980, 8.956026, 8.602655, 8.351079, 8.088144, 7.867220, 7.564082, 7.289846, 7.073726], 14: [10.697515, 10.229034, 9.765422, 9.428294, 9.080612, 8.715208, 8.459574, 8.169073, 7.940211, 7.654147, 7.390446, 7.166227]}), (42, 'cuda', 0.1, 1, 12, { 12: [10.647908, 10.145191, 9.673690, 9.309031, 8.959020, 8.606632, 8.355836, 8.093478, 7.873327, 7.570731, 7.296772, 7.0809422], 14: [10.697515, 10.22967, 9.766556, 9.430037, 9.083106, 8.718601, 8.463726, 8.17396, 7.945755, 7.660188, 7.396963, 7.172944]}) ] elif device_capability_major == 5: # M60 for CI machines (Python Packaging Pipeline) return [ (0, 'cuda', 1.0, 1, 12, { 12: [10.618382, 10.08292 , 9.603334, 9.258133, 8.917768, 8.591574, 8.318401, 8.042292, 7.783608, 7.50226 , 7.236041, 7.035602], 14: [10.618382, 10.08292 , 9.603334, 9.258133, 8.917768, 8.591574, 8.318401, 8.042292, 7.783608, 7.50226 , 7.236041, 7.035602]}), (0, 'cuda', 0.1, 1, 12, { 12: [10.618382, 10.083632, 9.604639, 9.260109, 8.920504, 8.595082, 8.322799, 8.047493, 7.78929 , 7.508382, 7.242587, 7.042367], 14: [10.618382, 10.083632, 9.604639, 9.260109, 8.920504, 8.595082, 8.322799, 8.047493, 7.78929 , 7.508382, 7.242587, 7.042367]}), (42, 'cuda', 1.0, 1, 12, { 12: [10.68639 , 10.102986, 9.647681, 9.293091, 8.958928, 8.625297, 8.351107, 8.079577, 7.840723, 7.543044, 7.284141, 7.072688], 14: [10.68639 , 10.102986, 9.647681, 9.293091, 8.958928, 8.625297, 8.351107, 8.079577, 7.840723, 7.543044, 7.284141, 7.072688]}), (42, 'cuda', 0.1, 1, 12, { 12: [10.68639 , 10.103672, 9.649025, 9.295167, 8.961777, 8.629059, 8.355571, 8.084871, 7.846589, 7.549438, 7.290722, 7.079446], 14: [10.697515, 10.22967, 9.766556, 9.430037, 9.083106, 8.718601, 8.463726, 8.17396, 7.945755, 7.660188, 7.396963, 7.172944]}), ] @pytest.mark.parametrize("seed,device,max_norm_clip,gradient_accumulation_steps,total_steps,expected_loss", _adam_max_norm_clip_data()) def testORTTrainerAdamMaxNormClip(seed, device, max_norm_clip, gradient_accumulation_steps, total_steps, expected_loss): rtol = 1e-5 torch.manual_seed(seed) set_seed(seed) # Setup ORTTrainer options = orttrainer.ORTTrainerOptions({'device' : {'id' : device}, 'batch' : {'gradient_accumulation_steps' : gradient_accumulation_steps}, 'debug' : {'deterministic_compute' : True}}) model, model_desc, my_loss, batcher_fn, train_data, _, _ = _test_commons._load_pytorch_transformer_model(device) optim_config = optim.AdamConfig(lr=0.001, max_norm_clip=max_norm_clip) trainer = orttrainer.ORTTrainer(model, model_desc, optim_config, loss_fn=my_loss, options=options) # Training loop actual_loss = [] for i in range(total_steps): data, targets = batcher_fn(train_data, i) loss, _ = trainer.train_step(data, targets) actual_loss.append(loss.cpu().item()) # Compare legacy vs experimental APIs assert trainer._onnx_model is not None opset = get_model_opset(trainer._onnx_model) _test_helpers.assert_model_outputs(expected_loss[opset], actual_loss, rtol=rtol) def _lamb_max_norm_clip_data(): device_capability_major = torch.cuda.get_device_capability()[0] if device_capability_major == 7: # V100 for Dev machine return [ (0, 'cuda', 1.0, 1, 12, { 12: [10.592951, 10.487728, 10.422251, 10.350913, 10.244248, 10.213003, 10.129222, 10.095112, 10.035983, 9.974586, 9.909771, 9.874278], 14: [10.584141, 10.497192, 10.389251, 10.286045, 10.231354, 10.17018, 10.066779, 10.048138, 9.958029, 9.8908, 9.82965, 9.755484]}), (0, 'cuda', 0.1, 1, 12, { 12: [10.592951, 10.452503, 10.349832, 10.245314, 10.106587, 10.046009, 9.934781, 9.875164, 9.792067, 9.704592, 9.617104, 9.563070], 14: [10.584141, 10.461154, 10.315399, 10.178979, 10.092329, 9.999928, 9.869949, 9.824564, 9.707565, 9.61643, 9.532847, 9.439593]}), (42, 'cuda', 1.0, 1, 12, { 12: [10.647908, 10.566276, 10.476154, 10.406275, 10.311079, 10.240053, 10.196469, 10.113955, 10.117376, 10.013077, 9.930301, 9.893368], 14: [10.697515, 10.631279, 10.528757, 10.496689, 10.411219, 10.322109, 10.297314, 10.215549, 10.149698, 10.087336, 10.010884, 9.934544]}), (42, 'cuda', 0.1, 1, 12, { 12: [10.647908, 10.531957, 10.405246, 10.302971, 10.176583, 10.075583, 10.005772, 9.897825, 9.875748, 9.748932, 9.642885, 9.586762], 14: [10.697515, 10.596729, 10.457815, 10.393475, 10.277581, 10.158909, 10.108126, 10.000326, 9.912526, 9.826057, 9.727899, 9.633768]}) ] elif device_capability_major == 5: # M60 for CI machines (Python Packaging Pipeline) return [ (0, 'cuda', 1.0, 1, 12, { 12: [10.618382, 10.50222, 10.403347, 10.35298, 10.288447, 10.237399, 10.184225, 10.089048, 10.008952, 9.972644, 9.897674, 9.84524], 14: [0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4]}), (0, 'cuda', 0.1, 1, 12, { 12: [10.618382, 10.466732, 10.330871, 10.24715 , 10.150972, 10.069127, 9.98974 , 9.870169, 9.763693, 9.704323, 9.605957, 9.533117], 14: [1, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4]}), (42, 'cuda', 1.0, 1, 12, { 12: [10.68639 , 10.511692, 10.447308, 10.405255, 10.334866, 10.261473, 10.169422, 10.107138, 10.069889, 9.97798, 9.928105, 9.896435], 14: [2, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4]}), (42, 'cuda', 0.1, 1, 12, { 12: [10.68639 , 10.477489, 10.376671, 10.301725, 10.200718, 10.098477, 9.97995 , 9.890104, 9.828899, 9.713555, 9.639567, 9.589856], 14: [3, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4]}), ] @pytest.mark.parametrize("seed,device,max_norm_clip, gradient_accumulation_steps,total_steps,expected_loss", _lamb_max_norm_clip_data()) def testORTTrainerLambMaxNormClip(seed, device, max_norm_clip, gradient_accumulation_steps, total_steps, expected_loss): rtol = 1e-3 torch.manual_seed(seed) set_seed(seed) # Setup ORTTrainer options = orttrainer.ORTTrainerOptions({'device' : {'id' : device}, 'batch' : {'gradient_accumulation_steps' : gradient_accumulation_steps}, 'debug' : {'deterministic_compute' : True}}) model, model_desc, my_loss, batcher_fn, train_data, _, _ = _test_commons._load_pytorch_transformer_model(device) optim_config = optim.LambConfig(lr=0.001, max_norm_clip=max_norm_clip) trainer = orttrainer.ORTTrainer(model, model_desc, optim_config, loss_fn=my_loss, options=options) # Training loop actual_loss = [] for i in range(total_steps): data, targets = batcher_fn(train_data, i) loss, _ = trainer.train_step(data, targets) actual_loss.append(loss.cpu().item()) # Compare legacy vs experimental APIs opset = get_model_opset(trainer._onnx_model) _test_helpers.assert_model_outputs(expected_loss[opset], actual_loss, rtol=rtol)
45.993361
138
0.649473
a55506b69ec3f4c998c3ff47161bed66b5f12003
357
py
Python
scripts/remove_alpha.py
OpenVoiceOS/ovos-intent-plugin-regex
43979c767ebdb1ffc065f76cfed4c4a2f331e805
[ "Apache-2.0" ]
null
null
null
scripts/remove_alpha.py
OpenVoiceOS/ovos-intent-plugin-regex
43979c767ebdb1ffc065f76cfed4c4a2f331e805
[ "Apache-2.0" ]
null
null
null
scripts/remove_alpha.py
OpenVoiceOS/ovos-intent-plugin-regex
43979c767ebdb1ffc065f76cfed4c4a2f331e805
[ "Apache-2.0" ]
null
null
null
import fileinput from os.path import join, dirname version_file = join(dirname(dirname(__file__)), "ovos_intent_plugin_regex", "version.py") alpha_var_name = "VERSION_ALPHA" for line in fileinput.input(version_file, inplace=True): if line.startswith(alpha_var_name): print(f"{alpha_var_name} = 0") else: print(line.rstrip('\n'))
25.5
89
0.719888
62cf086f3d2c0bdef38b598f1e7ab8ac2985bd12
1,298
py
Python
maindatabase/urls.py
dragonman164/Database-for-Covid-19-Vaccination-with-API-support
b34c29414967fcdf2d9fb34ed815f5c2752694b6
[ "MIT" ]
1
2020-12-30T16:31:14.000Z
2020-12-30T16:31:14.000Z
maindatabase/urls.py
rishusingh022/Database-for-Covid-19-Vaccination-with-API-support
8d2137f06d10ca620a4fe24ffc34c410b8a78ad6
[ "MIT" ]
null
null
null
maindatabase/urls.py
rishusingh022/Database-for-Covid-19-Vaccination-with-API-support
8d2137f06d10ca620a4fe24ffc34c410b8a78ad6
[ "MIT" ]
2
2020-12-19T19:27:08.000Z
2021-01-02T07:43:39.000Z
"""databaseforvaccination URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.urls import path from django.conf.urls import url,include from .views import index,license,table,PersonList,ReportList,ManagementList,Person_without_aadhar_viewer from rest_framework.routers import DefaultRouter urlpatterns = [ path('',index,name="Index"), path('license/',license,name="license"), path('table/',table,name="table"), path('api/',PersonList.as_view(),name="API"), path('api1/',ReportList.as_view(),name="API1"), path('api2/',ManagementList.as_view(),name="API2"), url('api3/',Person_without_aadhar_viewer.as_view(),name="API3"), # path('api3/',Person_without_aadhar_viewer,name="API3") ]
37.085714
104
0.718798
d53444326b83734e65f82dda14860b6949caea4a
3,228
py
Python
backend/testScripy.py
SWTangKai/Graph2vec
4df0fa9b933eedbf87bde844151b8b1fec79f8c0
[ "MIT" ]
1
2019-02-11T07:21:56.000Z
2019-02-11T07:21:56.000Z
backend/testScripy.py
SWTangKai/Graph2vec
4df0fa9b933eedbf87bde844151b8b1fec79f8c0
[ "MIT" ]
null
null
null
backend/testScripy.py
SWTangKai/Graph2vec
4df0fa9b933eedbf87bde844151b8b1fec79f8c0
[ "MIT" ]
null
null
null
from nelib.graph import Graph from nelib.node2vec import Node2vec from nelib.forceatlas2 import ForceAtlas2 import networkx as nx import matplotlib.pyplot as plt GRAPH_PATH = './data/cora/cora_edgelist.txt' G = Graph() G.read_edgelist(GRAPH_PATH) model1 = Node2vec(G, 10, 10, 2, p=1.0, q=1.0) # model2 = Node2vec(G, 10, 10, 2, p=1.0, q=3.0) # model3 = Node2vec(G, 10, 10, 2, p=3.0, q=1.0) # plt.figure() # plt.title('model1') # nx.draw(G.G, pos=model1.vectors, with_labels=True) # plt.figure() # plt.title('model2') # nx.draw(G.G, pos=model2.vectors, with_labels=True) # plt.figure() # plt.title('model3') # nx.draw(G.G, pos=model3.vectors, with_labels=True) # plt.figure() plt.title('origin') nx.draw(G.G, node_size=5, with_labels=False) plt.show() # vec = model1.vectors # x = np.array([vec[k] for k in vec]) # plt.scatter(x[:, 0], x[:, 1]) # plt.show() # G = nx.karate_club_graph() forceatlas2 = ForceAtlas2( # Behavior alternatives outboundAttractionDistribution=False, # Dissuade hubs linLogMode=False, # NOT IMPLEMENTED # Prevent overlap (NOT IMPLEMENTED) adjustSizes=False, edgeWeightInfluence=1.0, # Performance jitterTolerance=1.0, # Tolerance barnesHutOptimize=True, barnesHutTheta=1.2, multiThreaded=False, # NOT IMPLEMENTED # Tuning scalingRatio=2.0, strongGravityMode=False, gravity=1.0, # Log verbose=False) # positions = forceatlas2.forceatlas2_networkx_layout( # G, pos=None, iterations=2000) # nx.draw_networkx(G, positions, cmap=plt.get_cmap( # 'jet'), node_size=50, with_labels=True) # plt.show() # from matplotlib import animation # fig = plt.figure(figsize=(10, 10)) # def init(): # model1 = Node2vec(G, 10, 10, 2, p=1.0, q=1.0) # global pos # pos = model1.vectors # nx.draw(G.G, pos=pos, with_labels=True) # return pos # def animate(i): # global pos # fig = plt.figure(figsize=(10, 10)) # pos = forceatlas2.forceatlas2_networkx_layout( # G.G, pos=model1.vectors, iterations=1) # nx.draw(G.G, pos=pos, with_labels=True) # return fig # ani = animation.FuncAnimation( # fig=fig, func=animate, frames=100, init_func=init, interval=20, repeat=False, blit=True) # #!/usr/bin/env python # import random # import pylab # from matplotlib.pyplot import pause # import networkx as nx # pylab.ion() # # graph = nx.Graph() # # node_number = 0 # # graph.add_node(node_number, Position=(random.randrange(0, 100), random.randrange(0, 100))) # def get_fig(): # global pos # # node_number += 1 # # graph.add_node(node_number, Position=(random.randrange(0, 100), random.randrange(0, 100))) # # graph.add_edge(node_number, random.choice(graph.nodes())) # # nx.draw(graph, pos=nx.get_node_attributes(graph,'Position')) # pos = forceatlas2.forceatlas2_networkx_layout( # G.G, pos=pos, iterations=1) # nx.draw(G.G, pos=pos, with_labels=True) # pos = model1.vectors # num_plots = 50 # pylab.show() # for i in range(num_plots): # # plt.clf() # get_fig() # pylab.draw() # pause(0.1) # print(i) #%% print(1)
25.619048
98
0.641264
9f56225c11ed3de6fdc88bde3a0fd444f7f98829
1,291
py
Python
python/example_code/acm/list_certificates.py
AkhmadRiswanda/aws-doc-sdk-examples
46dbd6e1002f4d5c056df3eb478c318501782a17
[ "Apache-2.0" ]
null
null
null
python/example_code/acm/list_certificates.py
AkhmadRiswanda/aws-doc-sdk-examples
46dbd6e1002f4d5c056df3eb478c318501782a17
[ "Apache-2.0" ]
null
null
null
python/example_code/acm/list_certificates.py
AkhmadRiswanda/aws-doc-sdk-examples
46dbd6e1002f4d5c056df3eb478c318501782a17
[ "Apache-2.0" ]
null
null
null
# Copyright 2010-2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. import boto3 # Create ACM client acm = boto3.client('acm') # List certificates with the pagination interface paginator = acm.get_paginator('list_certificates') for response in paginator.paginate(): for certificate in response['CertificateSummaryList']: print(certificate) #snippet-sourcedescription:[list_certificates.py demonstrates how to retrieve a list of certificate ARNs and domain names.] #snippet-keyword:[Python] #snippet-keyword:[AWS SDK for Python (Boto3)] #snippet-keyword:[Code Sample] #snippet-keyword:[AWS Certificate Manager] #snippet-service:[acm] #snippet-sourcetype:[full-example] #snippet-sourcedate:[2018-09-05] #snippet-sourceauthor:[walkerk1980]
34.891892
124
0.747483
aabe70edcb52d64c5942e94abef1cf4d421bbf38
237
py
Python
apps/frontend/routes.py
ilya-goldin/aiohttp-mvtiles
8e1a2c4acba8ee77caf91e191b637b1776bceee6
[ "MIT" ]
null
null
null
apps/frontend/routes.py
ilya-goldin/aiohttp-mvtiles
8e1a2c4acba8ee77caf91e191b637b1776bceee6
[ "MIT" ]
null
null
null
apps/frontend/routes.py
ilya-goldin/aiohttp-mvtiles
8e1a2c4acba8ee77caf91e191b637b1776bceee6
[ "MIT" ]
null
null
null
from .views import Handler def frontend_routes(application): """ Append frontend routes and middleware :param application: :type application: aiohttp.web.Application """ application.router.add_get("/", Handler)
21.545455
46
0.704641
0ba0feb540574a8a383ea960a5015d6e40b19be6
2,398
py
Python
nova/tests/scheduler/test_rpcapi.py
vmthunder/nova
baf05caab705c5778348d9f275dc541747b7c2de
[ "Apache-2.0" ]
2
2016-04-19T08:20:39.000Z
2021-10-03T16:00:37.000Z
nova/tests/scheduler/test_rpcapi.py
vmthunder/nova
baf05caab705c5778348d9f275dc541747b7c2de
[ "Apache-2.0" ]
9
2015-05-20T11:20:17.000Z
2017-07-27T08:21:33.000Z
nova/tests/scheduler/test_rpcapi.py
vmthunder/nova
baf05caab705c5778348d9f275dc541747b7c2de
[ "Apache-2.0" ]
13
2015-05-05T09:34:04.000Z
2017-11-08T02:03:46.000Z
# Copyright 2013 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Unit Tests for nova.scheduler.rpcapi """ import mox from oslo.config import cfg from nova import context from nova.scheduler import rpcapi as scheduler_rpcapi from nova import test CONF = cfg.CONF class SchedulerRpcAPITestCase(test.NoDBTestCase): def _test_scheduler_api(self, method, rpc_method, **kwargs): ctxt = context.RequestContext('fake_user', 'fake_project') rpcapi = scheduler_rpcapi.SchedulerAPI() self.assertIsNotNone(rpcapi.client) self.assertEqual(rpcapi.client.target.topic, CONF.scheduler_topic) expected_retval = 'foo' if rpc_method == 'call' else None expected_version = kwargs.pop('version', None) expected_fanout = kwargs.pop('fanout', None) expected_kwargs = kwargs.copy() self.mox.StubOutWithMock(rpcapi, 'client') rpcapi.client.can_send_version( mox.IsA(str)).MultipleTimes().AndReturn(True) prepare_kwargs = {} if expected_fanout: prepare_kwargs['fanout'] = True if expected_version: prepare_kwargs['version'] = expected_version rpcapi.client.prepare(**prepare_kwargs).AndReturn(rpcapi.client) rpc_method = getattr(rpcapi.client, rpc_method) rpc_method(ctxt, method, **expected_kwargs).AndReturn('foo') self.mox.ReplayAll() # NOTE(markmc): MultipleTimes() is OnceOrMore() not ZeroOrMore() rpcapi.client.can_send_version('I fool you mox') retval = getattr(rpcapi, method)(ctxt, **kwargs) self.assertEqual(retval, expected_retval) def test_select_destinations(self): self._test_scheduler_api('select_destinations', rpc_method='call', request_spec='fake_request_spec', filter_properties='fake_prop')
34.257143
78
0.69141
acac657276ab8951d297529eee32493b186e59e9
8,501
py
Python
desktop/libs/indexer/src/indexer/indexers/sql.py
sandeepreddy3647/hue-1
03981c392ef35ae52052fb94549ec3a7b7074b8d
[ "Apache-2.0" ]
null
null
null
desktop/libs/indexer/src/indexer/indexers/sql.py
sandeepreddy3647/hue-1
03981c392ef35ae52052fb94549ec3a7b7074b8d
[ "Apache-2.0" ]
null
null
null
desktop/libs/indexer/src/indexer/indexers/sql.py
sandeepreddy3647/hue-1
03981c392ef35ae52052fb94549ec3a7b7074b8d
[ "Apache-2.0" ]
null
null
null
# Licensed to Cloudera, Inc. under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. Cloudera, Inc. licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.import logging from future import standard_library standard_library.install_aliases() from builtins import object import logging import sys import urllib.request, urllib.error from django.contrib.auth.models import User from django.urls import reverse from django.utils.translation import ugettext as _ from desktop.lib import django_mako from notebook.models import make_notebook if sys.version_info[0] > 2: from urllib.parse import unquote as urllib_unquote else: from urllib import unquote as urllib_unquote LOG = logging.getLogger(__name__) try: from beeswax.server import dbms except ImportError as e: LOG.warn('Hive and HiveServer2 interfaces are not enabled') class SQLIndexer(object): def __init__(self, user, fs): self.fs = fs self.user = user def create_table_from_a_file(self, source, destination, start_time=-1): if '.' in destination['name']: database, table_name = destination['name'].split('.', 1) else: database = 'default' table_name = destination['name'] final_table_name = table_name table_format = destination['tableFormat'] source_type = source['sourceType'] columns = destination['columns'] partition_columns = destination['partitionColumns'] kudu_partition_columns = destination['kuduPartitionColumns'] comment = destination['description'] source_path = urllib_unquote(source['path']) external = not destination['useDefaultLocation'] external_path = urllib_unquote(destination['nonDefaultLocation']) load_data = destination['importData'] skip_header = destination['hasHeader'] primary_keys = destination['primaryKeys'] if destination['useCustomDelimiters']: field_delimiter = destination['customFieldDelimiter'] collection_delimiter = destination['customCollectionDelimiter'] map_delimiter = destination['customMapDelimiter'] else: field_delimiter = ',' collection_delimiter = r'\002' map_delimiter = r'\003' regexp_delimiter = destination['customRegexp'] file_format = 'TextFile' row_format = 'Delimited' serde_name = '' serde_properties = '' extra_create_properties = '' sql = '' if source['inputFormat'] == 'manual': load_data = False source['format'] = { 'quoteChar': '"', 'fieldSeparator': ',' } if table_format == 'json': row_format = 'serde' serde_name = 'org.apache.hive.hcatalog.data.JsonSerDe' elif table_format == 'regexp': row_format = 'serde' serde_name = 'org.apache.hadoop.hive.serde2.RegexSerDe' serde_properties = '"input.regex" = "%s"' % regexp_delimiter elif table_format == 'csv': if source['format']['quoteChar'] == '"': source['format']['quoteChar'] = '\\"' row_format = 'serde' serde_name = 'org.apache.hadoop.hive.serde2.OpenCSVSerde' serde_properties = '''"separatorChar" = "%(fieldSeparator)s", "quoteChar" = "%(quoteChar)s", "escapeChar" = "\\\\" ''' % source['format'] if table_format in ('parquet', 'kudu'): if load_data: table_name, final_table_name = 'hue__tmp_%s' % table_name, table_name sql += '\n\nDROP TABLE IF EXISTS `%(database)s`.`%(table_name)s`;\n' % { 'database': database, 'table_name': table_name } else: # Manual row_format = '' file_format = table_format skip_header = False if table_format == 'kudu': columns = [col for col in columns if col['name'] in primary_keys] + [col for col in columns if col['name'] not in primary_keys] if table_format == 'kudu': collection_delimiter = None map_delimiter = None if external or (load_data and table_format in ('parquet', 'kudu')): if not self.fs.isdir(external_path): # File selected external_path, external_file_name = self.fs.split(external_path) if len(self.fs.listdir(external_path)) > 1: external_path = external_path + '/%s_table' % external_file_name # If dir not just the file, create data dir and move file there. self.fs.mkdir(external_path) self.fs.rename(source_path, external_path) sql += django_mako.render_to_string("gen/create_table_statement.mako", { 'table': { 'name': table_name, 'comment': comment, 'row_format': row_format, 'field_terminator': field_delimiter, 'collection_terminator': collection_delimiter if source_type == 'hive' else None, 'map_key_terminator': map_delimiter if source_type == 'hive' else None, 'serde_name': serde_name, 'serde_properties': serde_properties, 'file_format': file_format, 'external': external or load_data and table_format in ('parquet', 'kudu'), 'path': external_path, 'skip_header': skip_header, 'primary_keys': primary_keys if table_format == 'kudu' and not load_data else [], }, 'columns': columns, 'partition_columns': partition_columns, 'kudu_partition_columns': kudu_partition_columns, 'database': database } ) if table_format in ('text', 'json', 'csv', 'regexp') and not external and load_data: form_data = { 'path': source_path, 'overwrite': False, 'partition_columns': [(partition['name'], partition['partitionValue']) for partition in partition_columns], } query_server_config = dbms.get_query_server_config(name=source_type) db = dbms.get(self.user, query_server=query_server_config) sql += "\n\n%s;" % db.load_data(database, table_name, form_data, None, generate_ddl_only=True) if load_data and table_format in ('parquet', 'kudu'): file_format = table_format if table_format == 'kudu': columns_list = ['`%s`' % col for col in primary_keys + [col['name'] for col in destination['columns'] if col['name'] not in primary_keys and col['keep']]] extra_create_properties = """PRIMARY KEY (%(primary_keys)s) PARTITION BY HASH PARTITIONS 16 STORED AS %(file_format)s TBLPROPERTIES( 'kudu.num_tablet_replicas' = '1' )""" % { 'file_format': file_format, 'primary_keys': ', '.join(primary_keys) } else: columns_list = ['*'] extra_create_properties = 'STORED AS %(file_format)s' % {'file_format': file_format} sql += '''\n\nCREATE TABLE `%(database)s`.`%(final_table_name)s`%(comment)s %(extra_create_properties)s AS SELECT %(columns_list)s FROM `%(database)s`.`%(table_name)s`;''' % { 'database': database, 'final_table_name': final_table_name, 'table_name': table_name, 'extra_create_properties': extra_create_properties, 'columns_list': ', '.join(columns_list), 'comment': ' COMMENT "%s"' % comment if comment else '' } sql += '\n\nDROP TABLE IF EXISTS `%(database)s`.`%(table_name)s`;\n' % { 'database': database, 'table_name': table_name } editor_type = 'impala' if table_format == 'kudu' else destination['sourceType'] on_success_url = reverse('metastore:describe_table', kwargs={'database': database, 'table': final_table_name}) + '?source_type=' + source_type return make_notebook( name=_('Creating table %(database)s.%(table)s') % {'database': database, 'table': final_table_name}, editor_type=editor_type, statement=sql.strip(), status='ready', database=database, on_success_url=on_success_url, last_executed=start_time, is_task=True )
37.782222
162
0.65804
4568f8779aa9e9969e9e3d6ba2b40799469fbe49
1,414
py
Python
lexical_field_method.py
margauxschmied/TATIA
a0a9fa027c33aeac962d30dca48f358f4f34e114
[ "MIT" ]
2
2022-01-15T17:43:25.000Z
2022-01-15T17:55:33.000Z
lexical_field_method.py
margauxschmied/TATIA
a0a9fa027c33aeac962d30dca48f358f4f34e114
[ "MIT" ]
null
null
null
lexical_field_method.py
margauxschmied/TATIA
a0a9fa027c33aeac962d30dca48f358f4f34e114
[ "MIT" ]
null
null
null
import pandas as pd from tqdm import trange from classifier import clean_text def clean_lexical(df): lexical = df["lexical_field"] # new_df = pd.DataFrame() for i in range(len(df)): splited = lexical[i].split(" ") l = clean_text(" ".join(set(splited))) df["lexical_field"][i] = l df.to_csv("archive/lexical_field_clean.csv") def similar(summary, lexical_field): summary = summary.split(" ") lexical_field = lexical_field.split(" ") ret = 0 for s in summary: if s in lexical_field: ret += 1 return ret # partially working version def get_similarities_counter(df, text): lexical = df["lexical_field"] genre = "" note = 0 clean_test = clean_text(text) for i in range(len(df)): tmp = similar(clean_test, lexical[i]) if note < tmp: note = tmp genre = df["genre"][i] # print(genre) return genre df = pd.read_csv("archive/lexical_field_clean.csv") # clean_lexical(df) data = pd.read_csv("archive/dataset_csv/test_data_solution.csv") sentences = data["description"].values genrePredit = "" error = 0 for i in trange(len(sentences)): genrePredit = get_similarities_counter(df, sentences[i]) if genrePredit != data["genre"][i]: error += 1 # print(genrePredit+" "+data["genre"][i]) error = (error / len(sentences)) * 100 print(error)
21.753846
64
0.628713
1fa01e469e92735696385d18fc8df5e43d6df6f1
1,333
py
Python
octavia/tests/unit/controller/healthmanager/health_drivers/test_update_base.py
sajuptpm/octavia
fde4ebe822072a79bb74497b504ca3f0a6a6518d
[ "Apache-2.0" ]
null
null
null
octavia/tests/unit/controller/healthmanager/health_drivers/test_update_base.py
sajuptpm/octavia
fde4ebe822072a79bb74497b504ca3f0a6a6518d
[ "Apache-2.0" ]
null
null
null
octavia/tests/unit/controller/healthmanager/health_drivers/test_update_base.py
sajuptpm/octavia
fde4ebe822072a79bb74497b504ca3f0a6a6518d
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 GoDaddy # Copyright (c) 2015 Rackspace # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from octavia.controller.healthmanager.health_drivers import update_base from octavia.tests.unit import base class TestHealthUpdateBase(base.TestCase): def setUp(self): super(TestHealthUpdateBase, self).setUp() self.logger = update_base.HealthUpdateBase() def test_update_health(self): self.assertRaises(NotImplementedError, self.logger.update_health, {'id': 1}) class TestStatsUpdateBase(base.TestCase): def setUp(self): super(TestStatsUpdateBase, self).setUp() self.logger = update_base.StatsUpdateBase() def test_update_stats(self): self.assertRaises(NotImplementedError, self.logger.update_stats, {'id': 1})
34.179487
75
0.72093
a5154f38b17d43531fc2cd715a7fd0861a4ece97
885
py
Python
setup.py
Serhiy-Shekhovtsov/clasp
d20024304c8fe5dc285b2b35eab9e7135a1163c3
[ "MIT" ]
110
2021-04-02T11:37:21.000Z
2022-03-28T05:58:21.000Z
setup.py
Serhiy-Shekhovtsov/clasp
d20024304c8fe5dc285b2b35eab9e7135a1163c3
[ "MIT" ]
6
2021-04-06T22:42:08.000Z
2021-08-23T18:13:54.000Z
setup.py
Bovey0809/clasp
a92acd8ed33f9b4cc53ed99501d66e41a3a0d4f6
[ "MIT" ]
18
2021-04-02T13:59:30.000Z
2022-03-08T02:39:27.000Z
from setuptools import setup, find_packages setup( name = 'bioseq-clasp', packages = find_packages(), version = '0.0.1', license='MIT', description = 'CLASP - CLIP for biosequences and their annotation data', author = 'MicPie', author_email = '', url = 'https://github.com/MicPie/clasp', keywords = [ 'artificial intelligence', 'deep learning', 'contrastive learning', 'proteomics' ], install_requires=[ 'einops>=0.3', 'torch>=1.6', 'ftfy', 'regex', 'requests', 'matplotlib' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], package_data={'': ['data/bpe_simple_vocab_16e6.txt']}, include_package_data=True )
24.583333
74
0.636158
691843a9dee40f33db5df7dbbc03fe0fd0a4087d
61,596
py
Python
tensorflow/python/framework/func_graph.py
Alavandar08/tensorflow
e0d69364ec2ad40ac97b7d41683264080f07c582
[ "Apache-2.0" ]
1
2021-04-28T08:36:49.000Z
2021-04-28T08:36:49.000Z
tensorflow/python/framework/func_graph.py
Alavandar08/tensorflow
e0d69364ec2ad40ac97b7d41683264080f07c582
[ "Apache-2.0" ]
null
null
null
tensorflow/python/framework/func_graph.py
Alavandar08/tensorflow
e0d69364ec2ad40ac97b7d41683264080f07c582
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """FuncGraph and related functionality.""" import collections as py_collections import itertools import traceback import weakref import numpy as np from tensorflow.core.framework import attr_value_pb2 from tensorflow.python.eager import context from tensorflow.python.eager import execute from tensorflow.python.eager import tape from tensorflow.python.eager.graph_only_ops import graph_placeholder from tensorflow.python.framework import auto_control_deps from tensorflow.python.framework import composite_tensor from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import indexed_slices from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_spec from tensorflow.python.framework import tensor_util from tensorflow.python.framework import type_spec from tensorflow.python.ops import array_ops from tensorflow.python.ops import handle_data_util from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import tensor_array_ops from tensorflow.python.ops import variable_scope from tensorflow.python.saved_model import save_context from tensorflow.python.util import compat from tensorflow.python.util import memory from tensorflow.python.util import nest from tensorflow.python.util import object_identity from tensorflow.python.util import tf_contextlib from tensorflow.python.util import tf_decorator from tensorflow.python.util.tf_export import tf_export ALLOWLIST_COLLECTIONS = [ ops.GraphKeys.GLOBAL_VARIABLES, ops.GraphKeys.LOCAL_VARIABLES, ops.GraphKeys.TRAINABLE_VARIABLES, variable_scope._VARSTORE_KEY, # pylint: disable=protected-access variable_scope._VARSCOPESTORE_KEY # pylint: disable=protected-access ] _EAGER_CONST_THRESHOLD = 128 class UnknownArgument(object): """Signifies an argument which is not currently handled.""" pass def convert_structure_to_signature(structure, arg_names=None): """Convert a potentially nested structure to a signature. Args: structure: Structure to convert, where top level collection is a list or a tuple. arg_names: Optional list of arguments that has equal number of elements as `structure` and is used for naming corresponding TensorSpecs. Returns: Identical structure that has TensorSpec objects instead of Tensors and UnknownArgument instead of any unsupported types. """ def encode_arg(arg, path): """A representation for this argument, for converting into signatures.""" if isinstance(arg, ops.Tensor): user_specified_name = None try: user_specified_name = compat.as_str( arg.op.get_attr("_user_specified_name")) except ValueError: pass if path and user_specified_name and user_specified_name != path[0]: # The user has explicitly named the argument differently than the name # of the function argument. name = user_specified_name else: name = "/".join(str(p) for p in path) return tensor_spec.TensorSpec(arg.shape, arg.dtype, name) if isinstance(arg, composite_tensor.CompositeTensor): # TODO(b/133606651) Do we need to inject arg_name? return arg._type_spec # pylint: disable=protected-access if isinstance(arg, resource_variable_ops.BaseResourceVariable): name = "/".join(str(p) for p in path) return resource_variable_ops.VariableSpec(arg.shape, arg.dtype, name, trainable=arg.trainable) if isinstance(arg, ( int, float, bool, str, type(None), dtypes.DType, tensor_spec.TensorSpec, type_spec.TypeSpec, )): return arg return UnknownArgument() # We are using the flattened paths to name the TensorSpecs. We need an # explicit name for them downstream. flattened = nest.flatten_with_tuple_paths(structure) if arg_names: if len(arg_names) != len(structure): raise ValueError( "Passed in arg_names don't match actual signature (%s)." % arg_names) # Replace all top-level names with their actual arg_names. If a path before # was "(2,'a',1)", it will become "(arg_names[2],'a',1)". flattened = [ ((arg_names[path[0]],) + path[1:], arg) for path, arg in flattened ] mapped = [encode_arg(arg, path) for path, arg in flattened] return nest.pack_sequence_as(structure, mapped) @tf_export("__internal__.FuncGraph", v1=[]) class FuncGraph(ops.Graph): """Graph representing a function body. Attributes: name: The name of the function. inputs: Placeholder tensors representing the inputs to this function. The tensors are in this FuncGraph. This represents "regular" inputs as well as captured inputs (i.e. the values of self.captures), with the regular inputs coming first. outputs: Tensors that will be returned by this function. The tensors are in this FuncGraph. control_outputs: Operations that must be executed before the function represented by this graph can be said to have been executed. structured_input_signature: A tuple of (args, kwargs), which are both possibly-nested python objects that were received by this function. Note that these structures might contain Python `None`s. structured_outputs: A possibly-nested python object which will be returned by this function. The Tensors in this structure are the same as those of self.outputs. Note that this structure might contain Python `None`s. variables: Variables that should be watched during function execution. outer_graph: The graph this function is defined in. May be another FuncGraph or the global default Graph. captures: Maps external tensor -> internal tensor (i.e. input placeholder). The entries are in the order they were captured. control_captures: Set of external ops on which this graph has a control dependency. seed: The graph-level random seed. capture_by_value: If True, the func graph will capture Variables by value instead of reference. """ def __init__(self, name, collections=None, capture_by_value=None): """Construct a new FuncGraph. The graph will inherit its graph key, collections, seed, and distribution strategy stack from the current context or graph. Args: name: the name of the function. collections: a dictionary of collections this FuncGraph should start with. If not specified (None), the FuncGraph will read (but not write to) the outer graph's collections that are not allowlisted, and both read and write to the outer graph's collections that are allowlisted. The current allowlisted collections are the global variables, the local variables, and the trainable variables. Defaults to None. capture_by_value: An optional boolean. If True, the func graph will capture Variables by value instead of reference. By default inherit from outer graphs, and failing that will default to False. """ super(FuncGraph, self).__init__() self.name = name self.inputs = [] self.outputs = [] self.control_outputs = [] self.control_captures = object_identity.ObjectIdentitySet() self.structured_input_signature = None self.structured_outputs = None self._weak_variables = [] self._watched_variables = object_identity.ObjectIdentityWeakSet() self.is_control_flow_graph = False outer_graph = ops.get_default_graph() self._weak_outer_graph = weakref.ref(outer_graph) while outer_graph.building_function: outer_graph = outer_graph.outer_graph # If self._weak_outer_graph is deleted, we revert to the outermost Graph # active when the FuncGraph was traced. This will not be a FuncGraph. self._fallback_outer_graph = outer_graph self._captures = py_collections.OrderedDict() # If not None, records the names of output args of this function. Used to # preserve the output names in the signature of a serialized+deserialized # function. Private at the moment mostly because it's often out of date. self._output_names = None # Maps arbitrary key -> (closure, nest of placeholders), where at function # call time the value of closure() will be used to feed the nest of # placeholders. self._deferred_captures = py_collections.OrderedDict() # Inherit capture-by-value from outer graph. if capture_by_value is not None: self.capture_by_value = capture_by_value elif self.outer_graph is not None and isinstance( self.outer_graph, FuncGraph): self.capture_by_value = self.outer_graph.capture_by_value else: self.capture_by_value = False self._building_function = True # Map from resource tensor name to last op (in program order) which uses # this tensor. Used to enforce that execution order matches program order # for resource tensors. self._last_op_using_resource_tensor = {} graph = self.outer_graph if context.executing_eagerly(): self.seed = context.global_seed() # [for tf-data user migration from TF1.0 to 2.0] seed_used keep track of # any None op_seed for random_op in the function, in which case we end up # using function seed, which could be unintended behavior for the op. self._seed_used = False else: self.seed = graph.seed self._seed_used = False # TODO(allenl): Figure out if we can remove colocation stack # specialization (currently used in cond_v2), here and in the cache key. self._colocation_stack = graph._colocation_stack.copy() # pylint: disable=protected-access if collections is None: for collection_name in graph.get_all_collection_keys(): if collection_name not in ALLOWLIST_COLLECTIONS: self._collections[collection_name] = graph.get_collection( collection_name) for collection_name in ALLOWLIST_COLLECTIONS: self._collections[collection_name] = graph.get_collection_ref( collection_name) else: self._collections = collections # Keep track of whether this FuncGraph is exportable to SavedModel. Use # `graph.mark_as_unsaveable(reason)` to mark this FuncGraph and any # dependent functions as unsaveable. self._saveable = True self._saving_errors = set() # Keep track of callbacks to run when this graph exits default scope self._scope_exit_callbacks = None def __str__(self): return "FuncGraph(name=%s, id=%s)" % (self.name, id(self)) def watch_variable(self, v): """Marks the variable v as accessed while building this graph.""" while self is not None and isinstance(self, FuncGraph): self._watched_variables.add(v) self = self.outer_graph def capture_call_time_value(self, closure, spec, key=None, default_value=None, placeholder=None): """Returns a placeholder which at call time has the value closure(). The `tf.function` supports the notion of captures, that is, it allows Python functions to have closure variables, which bind over some value outside the function. However, this name binding is "early binding" performed before the program is run, i.e., ``` @tf.function def f(): return x x = tf.constant(1) f() # returns 1 x = tf.constant(2) f() # still returns 1! ``` while in Python, name binding is performed as the program is running. ``` def f(): return x x = 1 f() # returns 1 x = 2 f() # returns 2 ``` `capture_call_time_value` allows tf.function to mimic late binding as a Python function does, by passing in a `closure` callable argument to be executed when the tf.function is invoked eagerly. E.g. ``` @tf.function def f(): return ops.get_default_graph.capture_call_time_value(lambda: x) x = tf.constant(1) f() # returns 1 x = tf.constant(2) f() # returns 2 ``` Note that a `capture_call_time_value` function itself does not work well in the saving process (since the tf.function in which it's called is not invoked eagerly) unless passed a `default_value` argument. At saving time, the `default_value` argument is returned instead. Args: closure: function which takes no arguments, to be evaluated at function call time, returning a nest of tensors compatible with `spec`. spec: nest of TypeSpec for the value to capture. key: optional. If not None, multiple calls to lazy_capture with the same key in the same graph will return the same placeholder, and the first closure will be used at function call time. default_value: optional value to return in environments that cannot safely evaluate closure. placeholder: optional. If not None, the graph will take the passed-in `placeholder` as the internal capture instead of creating a new one. This is useful when loading from a SavedModel. Returns: Nest of placeholders which, at function call time, will be fed with the result of calling closure(). Raises: ValueError: at function call time, if the return value of closure() is not compatible with `spec`. """ if key is None: key = object() if key not in self._deferred_captures: if placeholder is None: def convert_to_placeholder(s): if not isinstance(s, tensor_spec.DenseSpec): raise TypeError( "Expected a nest of `TypeSpec` objects, found %s of type %s." % (s, type(s))) return array_ops.placeholder(dtype=s.dtype, shape=s.shape) placeholder = nest.map_structure( convert_to_placeholder, spec, expand_composites=True) def wrapped_closure(): # One major case requiring returning a `default_value` is when passing a # concrete function to `save`, i.e. # serving_fn = serve_fn.get_concrete_function(...) # model.save(save_dir, signatures={"serving_default": serving_fn}) # `serving_fn` has deferred captures added through # `capture_call_time_value`. It can't be saved correctly since # `wrapped_closure` will end up executing under a default Graph instead # of FuncGraph. The user of `capture_call_time_value` also cannot # conditionally avoid this call since presence of `save_context` when # executing `wrapped_closure` is not known at tracing time of # `serving_fn`. if save_context.in_save_context() and default_value is not None: return default_value # TODO(wxinyi): raise an error if in save context but no default value. if not context.executing_eagerly(): graph = ops.get_default_graph() # In the case of control flow, we need to capture the # external_captures (deferred or not) of the body_graph (i.e. # `WhileBodyFuncGraph) in `cond_graph` (i.e. WhileCondFuncGraph) and # create the corresponding placeholders in `cond_graph` so that it # expects to receive these as arguments. However, doing so requires # having evaluated the call_time_value already (and maybe repeatedly), # so we skip adding deferred_captures to the control flow graph but # add it to its outer graph. while graph.is_control_flow_graph: graph = graph.outer_graph with graph.as_default(): ret_nest = graph.capture_call_time_value( closure, spec, key=key, default_value=default_value) else: ret_nest = closure() nest.assert_same_structure(spec, ret_nest, expand_composites=True) # This uses the tensor dtype defined in `spec` when converting values # in `ret_nest` to tensors. # pylint: disable=protected-access y = nest.map_structure(lambda s, r: s._to_components(r), spec, ret_nest, expand_composites=False) # pylint: enable=protected-access return nest.flatten(y, expand_composites=True) wrapped_closure.output_spec = spec self._deferred_captures[key] = (wrapped_closure, placeholder) return self._deferred_captures[key][1] def control_dependencies(self, control_inputs): """Handles control dependencies. FuncGraph wraps Graph's control_dependencies logic by first filtering out any external tensors / operations and storing them in the graph's control_captures member. Any consumers of this function graph must then decide how to handle the control captures. Args: control_inputs: A list of `Operation` or `Tensor` objects which must be executed or computed before running the operations defined in the context. Can also be `None` to clear the control dependencies. Returns: A context manager that specifies control dependencies for all operations constructed within the context. Raises: TypeError: If `control_inputs` is not a list of `Operation` or `Tensor` objects. """ if control_inputs is None: return super(FuncGraph, self).control_dependencies(control_inputs) filtered_control_inputs = [] for c in control_inputs: # Check for _UnreadVariable if (isinstance(c, indexed_slices.IndexedSlices) or (hasattr(c, "_handle") and hasattr(c, "op"))): c = c.op graph_element = ops._as_graph_element(c) # pylint: disable=protected-access if graph_element is None: graph_element = c if graph_element is not None and getattr( graph_element, "graph", None) is not self: self.control_captures.add(graph_element) else: filtered_control_inputs.append(graph_element) return super(FuncGraph, self).control_dependencies(filtered_control_inputs) def as_default(self): outer_cm = super(FuncGraph, self).as_default() @tf_contextlib.contextmanager def inner_cm(): """Context manager for copying distribute.Strategy scope information.""" # pylint: disable=protected-access # TODO(b/112906995, nareshmodi): distribution strategy depends on # inheriting this stack from the default graph even in eager mode. Maybe # it should be part of the eager context? This would also allow us to # remove a get_default_graph() call from the function cache lookup. graph = ops.get_default_graph() old_strategy_stack = self._distribution_strategy_stack self._distribution_strategy_stack = list( graph._distribution_strategy_stack) # We ignore device placements from any outer scopes while tracing the # function when possible, to avoid hard-coding them in the function # graph. "Default" placements come from the PartitionedCallOp's placement, # so that the same trace of the Python function may be placed on several # different devices and saved functions may be placed on new devices when # restored. # However, we need to preserve the outer device stack in the following # cases in non eager context: # 1. device stack is callable # 2. When using distribution strategy with legacy graph mode. old_device_stack = self._device_function_stack if (not context.executing_eagerly() and (device_stack_has_callable(graph._device_function_stack) or (self._distribution_strategy_stack and not ops.executing_eagerly_outside_functions()))): # Hard-code devices from device functions in the function body self._device_function_stack = graph._device_function_stack.copy() old_creator_stack = self._variable_creator_stack self._variable_creator_stack = graph._variable_creator_stack # Inherit the graph key, since this is used for matching variables in # optimizers. old_graph_key = self._graph_key self._graph_key = graph._graph_key # pylint: enable=protected-access old_scope_exit_callbacks = self._scope_exit_callbacks self._scope_exit_callbacks = [] with outer_cm as g: try: yield g finally: try: for fn in self._scope_exit_callbacks: fn() finally: self._scope_exit_callbacks = old_scope_exit_callbacks self._distribution_strategy_stack = old_strategy_stack self._device_function_stack = old_device_stack self._variable_creator_stack = old_creator_stack self._graph_key = old_graph_key return inner_cm() @property def outer_graph(self): """The Graph this FuncGraph is nested in. Functions may capture Tensors from graphs they are nested in (transitive). Returns: A Graph object. Initially set to the current default graph when the FuncGraph was created. If the previous `outer_graph` was deleted because the function that owns it was deleted, `outer_graph` is reset to the outermost default graph active when the FuncGraph was created. This FuncGraph won't have captured anything from the new `outer_graph` (and likely not from the previous setting, since that would have created a strong reference), but it is returned so that FuncGraphs always have a parent. """ current = self._weak_outer_graph() if current is None: return self._fallback_outer_graph return current @outer_graph.setter def outer_graph(self, new_outer_graph): """Sets `outer_graph` to `new_outer_graph`.""" self._weak_outer_graph = weakref.ref(new_outer_graph) @property def output_types(self): return [t.dtype for t in self.outputs] @property def output_shapes(self): return [t.shape for t in self.outputs] @property def trainable_variables(self): """A sequence of trainable variables accessed by this FuncGraph. Note that functions keep only weak references to variables. Calling the function after a variable it accesses has been deleted is an error. Returns: Sequence of trainable variables for this func graph. """ return tuple(v for v in self.variables if v.trainable) @property def variables(self): """A sequence of variables accessed by this FuncGraph. Note that functions keep only weak references to variables. Calling the function after a variable it accesses has been deleted is an error. Returns: Sequence of variables for this func graph. """ def deref(weak_v): v = weak_v() if v is None: raise AssertionError( "Called a function referencing variables which have been deleted. " "This likely means that function-local variables were created and " "not referenced elsewhere in the program. This is generally a " "mistake; consider storing variables in an object attribute on " "first call.") return v return tuple(deref(v) for v in self._weak_variables) @variables.setter def variables(self, var_list): self._weak_variables = [weakref.ref(v) for v in var_list] def _capture_by_value( self, op_type, inputs, dtypes, # pylint: disable=redefined-outer-name input_types=None, name=None, attrs=None, op_def=None, compute_device=True): # When capturing by value, do the read outside reverse_captures = dict((id(v), k) for k, v in self.captures) uncaptured_inputs = [reverse_captures.get(id(t), t) for t in inputs] with ops.init_scope(): if context.executing_eagerly(): attr_list = ("dtype", int(attrs["dtype"].type)) value, = execute.execute( compat.as_bytes(op_type), 1, uncaptured_inputs, attr_list, context.context()) else: op = ops.get_default_graph()._create_op_internal( # pylint: disable=protected-access op_type, uncaptured_inputs, dtypes, input_types, name, attrs, op_def, compute_device) value = op.outputs[0] captured_value = self.capture(value) return captured_value.op def _create_op_internal( self, op_type, inputs, dtypes=None, # pylint: disable=redefined-outer-name input_types=None, name=None, attrs=None, op_def=None, compute_device=True): """Like Graph.create_op, except handles external input tensors. This overload adds functionality to create_op to "capture" any external input tensors, i.e. tensors from the eager context or outer function graphs if this is a nested function. See `capture` for more information. Args: op_type: The `Operation` type to create. This corresponds to the `OpDef.name` field for the proto that defines the operation. inputs: A list of `Tensor` objects that will be inputs to the `Operation`. dtypes: (Optional) A list of `DType` objects that will be the types of the tensors that the operation produces. input_types: (Optional.) A list of `DType`s that will be the types of the tensors that the operation consumes. By default, uses the base `DType` of each input in `inputs`. Operations that expect reference-typed inputs must specify `input_types` explicitly. name: (Optional.) A string name for the operation. If not specified, a name is generated based on `op_type`. attrs: (Optional.) A dictionary where the key is the attribute name (a string) and the value is the respective `attr` attribute of the `NodeDef` proto that will represent the operation (an `AttrValue` proto). op_def: (Optional.) The `OpDef` proto that describes the `op_type` that the operation will have. compute_device: (Optional.) If True, device functions will be executed to compute the device property of the Operation. Returns: An `Operation` object. """ if self.capture_by_value and op_type in ["ReadVariableOp", "ResourceGather"]: return self._capture_by_value(op_type, inputs, dtypes, input_types, name, attrs, op_def, compute_device) # This capturing logic interacts poorly with control flow contexts which # want to replace inputs of ops far too late in the process. This can lead # the context to get confused and try to create an Enter for an Enter. We # can detect this here and skip the additional Enter which can confuse loop # validation logic. if op_type == "Enter" and inputs[0].op.type == "Enter": if inputs[0].op.get_attr("frame_name") == attrs["frame_name"].s: return inputs[0].op # Calling AddValue on the control flow contexts to force creation of the # backward accumulators in the original graph before we create placeholders # to capture the inputs. ctxt = ops.get_default_graph()._control_flow_context # pylint: disable=protected-access # Use a different list to avoid modifying the original inputs list. captured_inputs = [] for inp in inputs: # TPU Estimator defines a control flow context with no AddValue method. if ctxt is not None and hasattr(ctxt, "AddValue"): inp = ctxt.AddValue(inp) inp = self.capture(inp) captured_inputs.append(inp) return super(FuncGraph, self)._create_op_internal( # pylint: disable=protected-access op_type, captured_inputs, dtypes, input_types, name, attrs, op_def, compute_device) def capture(self, tensor, name=None, shape=None): """Captures `tensor` if it's external to this graph. If `tensor` is from a different graph, returns a placeholder for it. `tensor` and the placeholder will appear in self.captures, and the placeholder will appear in self.inputs. Multiple calls to this method with the same `tensor` argument will return the same placeholder. If `tensor` is from this graph, returns `tensor`. Args: tensor: Tensor. May be from this FuncGraph or a different graph. name: Optional name if a placeholder is created. shape: Optional shape if a placeholder is created. Returns: Tensor from this FuncGraph. Raises: InaccessibleTensorError: if any tensors are accessed in a manner that bypasses the mechanisms required for the data dependencies to be correctly wired. """ if isinstance(tensor, ops.EagerTensor): if name is None: name = str(ops.uid()) # Small EagerTensors are captured with Const ops if (tensor.dtype in dtypes.TF_VALUE_DTYPES and np.prod(tensor.shape) <= _EAGER_CONST_THRESHOLD): return self.capture_eager_tensor(tensor, name) # Large EagerTensors and resources are captured with Placeholder ops return self._capture_helper(tensor, name, shape) if tensor.graph is not self: if name is None: name = tensor.op.name inner_graph = tensor.graph while inner_graph is not None and isinstance(inner_graph, FuncGraph): if inner_graph is self: try: tb = tensor.op.traceback except AttributeError: tensor_traceback = "<unknown>" else: tensor_traceback_list = [] for frame in traceback.format_list(tb.get_user_frames()): tensor_traceback_list.extend( [f" {line}" for line in frame.split("\n") if line.strip()]) tensor_traceback = "\n".join(tensor_traceback_list) # Keep in sync with tfe_wrapper.cc. # TODO(b/200991648): Unify those two paths. raise errors.InaccessibleTensorError( f"{tensor!r} is out of scope and cannot be used here. Use return " "values, explicit Python locals or TensorFlow collections to " "access it.\n" "Please see https://www.tensorflow.org/guide/function#all_outputs_of_a_tffunction_must_be_return_values " "for more information.\n\n" f"{tensor!r} was defined here:\n{tensor_traceback}\n\n" f"The tensor {tensor!r} cannot be accessed from {self}, because " f"it was defined in {tensor.graph}, which is out of scope.") inner_graph = inner_graph.outer_graph return self._capture_helper(tensor, name) return tensor def _capture_helper(self, tensor, name, shape=None): capture = self._captures.get(id(tensor)) if capture is None: placeholder = _create_substitute_placeholder( tensor, name=name, dtype=tensor.dtype, shape=shape) # Record the composite device as an attribute to the placeholder. # This attribute would be propogated into the arg_attr of the FunctionDef. # Currently, a packed eager tensor is always placed on a CompositeDevice. if isinstance(tensor, ops.EagerTensor) and tensor.is_packed: placeholder.op._set_attr( # pylint: disable=protected-access "_composite_device", attr_value_pb2.AttrValue(s=compat.as_bytes(tensor.device))) self.add_capture(tensor, placeholder) else: placeholder = capture[1] tape.record_operation("captured_value", [placeholder], [tensor], backward_function=lambda x: [x], forward_function=lambda x: [x]) return placeholder @property def captures(self): """Order list of tuples containing external and internal captures.""" return self._captures.values() def add_capture(self, tensor, placeholder): """Capture a specific tensor and utilize the provided placeholder. Args: tensor: Tensor to captures. placeholder: Provided placeholder for the tensor. """ self._captures[id(tensor)] = (tensor, placeholder) self.inputs.append(placeholder) def replace_capture(self, tensor, placeholder): """Replace already existing capture.""" self._captures[id(tensor)] = (tensor, placeholder) def replace_capture_with_deferred_capture(self, tensor, closure, spec, placeholder, default_value=None): """Replaces existing capture `tensor` with a deferred capture `closure`. Caution: It is the caller's responsibility to make sure that, after calling this function, the TypeSpec of the `inputs` (i.e. internal placeholders) and the `_captured_inputs` (i.e. external captures) of a concrete function that wraps this function graph are still compatible. Thus user should pairing usage of this function with `ConcreteFunction.set_external_captures` to make sure the order still matches. For example, ``` # concrete_fn._captured_inputs == [tensor1, tensor2, tensor3] # concrete_fn.inputs == [placeholder1, placeholder2, placeholder3] # replace external capture `tensor2` with a deferred_capture, i.e., a # closure, `closure2` concrete_fn.graph.replace_capture_with_deferred_capture(tensor2, closure2, placeholder2, some_spec, some_default) concrete_fn.set_external_captures([tensor1, closure2, tensor3]) ``` Args: tensor: Tensor already captured. closure: function which takes no arguments, to be evaluated at function call time, returning a nest of tensors compatible with `spec`. spec: nest of TypeSpec for the value to capture. placeholder: the internal placeholder corresponding to the captured `tensor`. default_value: optional value to use in environments that cannot safely evaluate closure. """ if id(tensor) in self._captures: self.pop_capture(tensor) self.capture_call_time_value( closure, spec, key=id(tensor), default_value=default_value, placeholder=placeholder) def reset_captures(self, capture_list): """Set the captures with the provided list of captures & placeholder.""" self._captures = py_collections.OrderedDict() for tensor, placeholder in capture_list: self._captures[id(tensor)] = (tensor, placeholder) def pop_capture(self, tensor): """Remove the capture and return the generated placeholder.""" capture = self._captures.pop(id(tensor), None) if capture is None: return None return capture[1] def clear_captures(self): # TODO(b/115366440): Delete this method when a custom OrderedDict is added. # Clearing captures using clear() leaves some cycles around. while self._captures: self._captures.popitem() memory.dismantle_ordered_dict(self._captures) while self._deferred_captures: self._deferred_captures.popitem() memory.dismantle_ordered_dict(self._deferred_captures) def capture_distributed_variable(self, variable, placeholder): """Add given distributed variable to captures with given placeholder.""" self._captures[id(variable)] = (variable, placeholder) tape.record_operation("captured_value", [placeholder], [variable], backward_function=lambda x: [x], forward_function=lambda x: [x]) def capture_eager_tensor(self, tensor, name): capture = self._captures.get(id(tensor)) if capture is None: with ops.control_dependencies(None): constant_value = tensor_util.constant_value(tensor) if constant_value is None: # Some eager tensors, e.g. parallel tensors, are not convertible to a # single constant. We'll use a placeholder for this case. return self._capture_helper(tensor, name) graph_const = constant_op.constant(constant_value, dtype=tensor.dtype, shape=tensor.shape, name=name) self.add_capture(tensor, graph_const) else: graph_const = capture[1] tape.record_operation("captured_value", [graph_const], [tensor], backward_function=lambda x: [x], forward_function=lambda x: [x]) return graph_const def captured(self, tensor): """Check if the specified tensor has been captured.""" return id(tensor) in self._captures @property def external_captures(self): """External tensors captured by this function.""" return [c[0] for c in self._captures.values()] @property def internal_captures(self): """Placeholders in this function corresponding captured tensors.""" return [c[1] for c in self._captures.values()] @property def deferred_external_captures(self): """Ordered nest of tensors whose placeholders will be fed at call time.""" return [c[0] for c in self._deferred_captures.values()] @property def deferred_internal_captures(self): """List of nest of placeholders which at call time will be fed.""" return [c[1] for c in self._deferred_captures.values()] @property def variable_captures(self): """Map of python object ids of variables to variables which are captured.""" return { id(self._captures[id(v)][1]): v for v in self.variables if id(v) in self._captures } def mark_as_unsaveable(self, error_message): """Marks this FuncGraph as unsaveable. Any attempts to export this FuncGraph will raise an error with the specified message. Args: error_message: List or string containing the error message to be raised when saving this FuncGraph to SavedModel. """ self._saveable = False if isinstance(error_message, str): error_message = [error_message] self._saving_errors.update(error_message) @property def saveable(self): """Returns whether this FuncGraph is saveable.""" return self._saveable @property def saving_errors(self): """Returns set of errors preventing this FuncGraph from being saved.""" return self._saving_errors def _add_scope_exit_callback(self, fn): """Add a function to call when this graph exits the default scope.""" if not callable(fn): raise TypeError("fn is not callable: {}".format(fn)) if self._scope_exit_callbacks is None: raise RuntimeError( "Attempting to add a scope exit callback, but the default graph is " "not the context scope graph. Did you forget to call " "'with graph.as_default(): ...'?") self._scope_exit_callbacks.append(fn) # TODO(mdan): Too many threaded arguments. Accept an ACD ctx manager instead. def func_graph_from_py_func(name, python_func, args, kwargs, signature=None, func_graph=None, autograph=False, autograph_options=None, add_control_dependencies=True, arg_names=None, op_return_value=None, collections=None, capture_by_value=None, override_flat_arg_shapes=None, acd_record_initial_resource_uses=False): """Returns a `FuncGraph` generated from `python_func`. Args: name: an identifier for the function. python_func: the Python function to trace. args: the positional args with which the Python function should be called; ignored if a signature is provided. kwargs: the keyword args with which the Python function should be called; ignored if a signature is provided. signature: a possibly nested sequence of `TensorSpecs` specifying the shapes and dtypes of the arguments. When a signature is provided, `args` and `kwargs` are ignored, and `python_func` is traced with Tensors conforming to `signature`. If `None`, the shapes and dtypes are inferred from the inputs. func_graph: Optional. An instance of FuncGraph. If provided, we will use this graph else a new one is built and returned. autograph: whether to use autograph to compile `python_func`. See https://www.tensorflow.org/guide/autograph for more information. autograph_options: additional knobs to control when `autograph=True`. See https://www.tensorflow.org/guide/autograph for more information. add_control_dependencies: If True, automatically adds control dependencies to ensure program order matches execution order and stateful ops always execute. arg_names: Optional list of argument names, used to give input placeholders recognizable names. op_return_value: Optional. A Tensor. If set and `python_func` returns Operations, those return values will be replaced with this value. If not set, returning an Operation triggers an error. collections: a dictionary of collections this FuncGraph should start with. If not specified (None), the FuncGraph will read (but not write to) the outer graph's collections that are not allowlisted, and both read and write to the outer graph's collections that are allowlisted. The current allowlisted collections are the global variables, the local variables, and the trainable variables. Defaults to None. capture_by_value: An optional boolean. If True, the func graph will capture Variables by value instead of reference. By default inherit from outer graphs, and failing that will default to False. override_flat_arg_shapes: An optional list of instances that are either `None` or `TensorShape`. The length must match that of `nest.flatten((args, kwargs), expand_composites=True)`. The entries containing value `None` must match entries in flattened arguments containing non-tensors, while entries containing a `TensorShape` must match entries in the flattened arguments containing tensors. acd_record_initial_resource_uses: If `True` and `add_control_dependencies` is enabled, the results (those marked with AutomaticControlDependencies.mark_result) will be annotated with a private attribute, "_res_first_used_by", which points to the first nodes which used the any of the resources that the result op is using. Returns: A FuncGraph. Raises: TypeError: If any of `python_func`'s return values is neither `None`, a `Tensor` or a `tf.experimental.ExtensionType`. ValueError: If both `signature` and `override_flat_arg_shapes` are passed in. """ if op_return_value is not None: assert isinstance(op_return_value, ops.Tensor), op_return_value if func_graph is None: func_graph = FuncGraph(name, collections=collections, capture_by_value=capture_by_value) assert isinstance(func_graph, FuncGraph) if add_control_dependencies: deps_control_manager = auto_control_deps.AutomaticControlDependencies( record_initial_resource_uses=acd_record_initial_resource_uses) else: deps_control_manager = ops.NullContextmanager() with func_graph.as_default(), deps_control_manager as deps_ctx: current_scope = variable_scope.get_variable_scope() default_use_resource = current_scope.use_resource current_scope.set_use_resource(True) if signature is not None and override_flat_arg_shapes is not None: raise ValueError( "Passed both signature and override_flat_arg_shapes: %s and %s." % (signature, override_flat_arg_shapes)) if signature is not None: args = signature kwargs = {} # Creates and names placeholders for all arguments. if override_flat_arg_shapes is not None: flat_args = nest.flatten(args, expand_composites=True) arg_shapes = override_flat_arg_shapes[:len(flat_args)] kwarg_shapes = override_flat_arg_shapes[len(flat_args):] else: arg_shapes = None kwarg_shapes = None func_args = _get_defun_inputs_from_args( args, arg_names, flat_shapes=arg_shapes) func_kwargs = _get_defun_inputs_from_kwargs( kwargs, flat_shapes=kwarg_shapes) # Convert all Tensors into TensorSpecs before saving the structured inputs. # If storing pure concrete functions that are not called through polymorphic # functions, we don't have access to FunctionSpec, so we need to call the # TensorSpecs by their `arg_names` for later binding. func_graph.structured_input_signature = ( convert_structure_to_signature(func_args, arg_names), convert_structure_to_signature(func_kwargs)) flat_func_args = nest.flatten(func_args, expand_composites=True) flat_func_kwargs = nest.flatten(func_kwargs, expand_composites=True) # Temporarily set inputs to allow graph building code to inspect # them. Reassigned below. func_graph.inputs = [arg for arg in flat_func_args + flat_func_kwargs if isinstance(arg, ops.Tensor)] # Note: `nest.flatten` sorts by keys, as does `_deterministic_dict_values`. # Variables to help check whether mutation happens in calling the function # Copy the recursive list, tuple and map structure, but not base objects func_args_before = nest.pack_sequence_as(func_args, flat_func_args, expand_composites=True) func_kwargs_before = nest.pack_sequence_as( func_kwargs, flat_func_kwargs, expand_composites=True) def convert(x): """Converts a function output to a Tensor.""" if x is None: return None if op_return_value is not None and isinstance(x, ops.Operation): # TODO(b/79881896): we currently can't capture external control deps, so # this won't work if x needs to be captured (i.e. if python_func returns # captured Operations). with ops.control_dependencies([x]): x = array_ops.identity(op_return_value) elif not isinstance(x, tensor_array_ops.TensorArray): try: x = ops.convert_to_tensor_or_composite(x) except (ValueError, TypeError): raise TypeError( "To be compatible with tf.function, Python functions " "must return zero or more Tensors or ExtensionTypes or None " f"values; in compilation of {str(python_func)}, found return " f"value of type {type(x).__name__}, which is not a Tensor or " "ExtensionType.") if add_control_dependencies: x = deps_ctx.mark_as_return(x) return x try: if autograph: from tensorflow.python import autograph # pylint: disable=g-import-not-at-top _, original_func = tf_decorator.unwrap(python_func) def autograph_handler(*args, **kwargs): """Calls a converted version of original_func.""" # TODO(mdan): Push this block higher in tf.function's call stack. try: return autograph.converted_call( original_func, args, kwargs, options=autograph.ConversionOptions( recursive=True, optional_features=autograph_options, user_requested=True, )) except Exception as e: # pylint:disable=broad-except if hasattr(e, "ag_error_metadata"): raise e.ag_error_metadata.to_exception(e) else: raise # Wrapping around a decorator allows checks like tf_inspect.getargspec # to be accurate. converted_func = tf_decorator.make_decorator( original_func, autograph_handler) python_func = tf_decorator.rewrap(python_func, original_func, converted_func) else: _, original_func = tf_decorator.unwrap(python_func) func_outputs = python_func(*func_args, **func_kwargs) # invariant: `func_outputs` contains only Tensors, CompositeTensors, # TensorArrays and `None`s. func_outputs = nest.map_structure(convert, func_outputs, expand_composites=True) check_mutation(func_args_before, func_args, original_func) check_mutation(func_kwargs_before, func_kwargs, original_func) finally: current_scope.set_use_resource(default_use_resource) # Variables in `func_args`, `func_kwargs` should be explicit inputs # to the function, not captured inputs. graph_variables = list(func_graph._watched_variables) # pylint: disable=protected-access arg_variables = object_identity.ObjectIdentitySet() inputs = [] for arg in (nest.flatten(func_args, expand_composites=True) + nest.flatten(func_kwargs, expand_composites=True)): if isinstance(arg, resource_variable_ops.BaseResourceVariable): # Even if an argument variable was not used in the function, we've # already manually captured the resource Tensor when creating argument # placeholders. resource_placeholder = func_graph.pop_capture(arg.handle) if resource_placeholder is None: continue arg_variables.add(arg) inputs.append(resource_placeholder) elif isinstance(arg, ops.Tensor): inputs.append(arg) variables = [v for v in graph_variables if v not in arg_variables] func_graph.inputs = ( inputs + func_graph.internal_captures + nest.flatten( func_graph.deferred_internal_captures, expand_composites=True)) func_graph.structured_outputs = func_outputs # Returning a closed-over tensor does not trigger convert_to_tensor. func_graph.outputs.extend( func_graph.capture(x) for x in flatten(func_graph.structured_outputs) if x is not None) func_graph.variables = variables if add_control_dependencies: func_graph.control_outputs.extend(deps_control_manager.ops_which_must_run) func_graph.collective_manager_ids_used = ( deps_control_manager.collective_manager_ids_used) return func_graph def maybe_captured(tensor): """If t is a captured value placeholder, returns the original captured value. Args: tensor: Tensor. Returns: A tensor, potentially from a different Graph/FuncGraph. """ if (not isinstance(tensor, ops.EagerTensor) and tensor.op.graph.building_function and tensor.op.type == "Placeholder"): for input_t, placeholder_t in tensor.op.graph.captures: if tensor == placeholder_t: return maybe_captured(input_t) # pylint: enable=protected-access return tensor def device_stack_has_callable(device_stack): """Checks whether a device stack contains a callable.""" return any(callable(spec._device_name_or_function) # pylint: disable=protected-access for spec in device_stack.peek_objs()) def check_mutation(n1, n2, func): """Check if two list of arguments are exactly the same.""" func_name = getattr(func, "__name__", func) errmsg = ("{}() should not modify its Python input arguments." " Check if it modifies any lists or dicts passed as" " arguments. Modifying a copy is allowed.".format(func_name)) try: # TODO(mdan): Compare more robustly so that argument names can be reported. nest.assert_same_structure(n1, n2, expand_composites=True) except ValueError: raise ValueError(errmsg) for arg1, arg2 in zip(nest.flatten(n1, expand_composites=True), nest.flatten(n2, expand_composites=True)): if arg1 is not arg2: raise ValueError(errmsg) # TODO(edloper): If TensorArray becomes a CompositeTensor, then delete this. def flatten(sequence): """Like nest.flatten w/ expand_composites, but returns flow for TensorArrays. Args: sequence: A nested structure of Tensors, CompositeTensors, and TensorArrays. Returns: A list of tensors. """ flat_sequence = nest.flatten(sequence, expand_composites=True) return [ item.flow if isinstance(item, tensor_array_ops.TensorArray) else item for item in flat_sequence] # TODO(edloper): If TensorArray becomes a CompositeTensor, then delete this. def pack_sequence_as(structure, flat_sequence): """Like `nest.pack_sequence_as` but also builds TensorArrays from flows. Args: structure: The structure to pack into. May contain Tensors, CompositeTensors, or TensorArrays. flat_sequence: An iterable containing tensors. Returns: A nested structure. Raises: AssertionError if `structure` and `flat_sequence` are not compatible. """ flat_sequence = list(flat_sequence) flattened_structure = nest.flatten(structure, expand_composites=True) if len(flattened_structure) != len(flat_sequence): raise ValueError("Mismatch in element count") for i in range(len(flat_sequence)): if isinstance(flattened_structure[i], tensor_array_ops.TensorArray): flat_sequence[i] = tensor_array_ops.build_ta_with_new_flow( old_ta=flattened_structure[i], flow=flat_sequence[i]) return nest.pack_sequence_as(structure, flat_sequence, expand_composites=True) def _create_substitute_placeholder(value, name=None, dtype=None, shape=None): """Creates a placeholder for `value` and propagates shape info to it.""" # Note: setting ops.control_dependencies(None) ensures we always put # capturing placeholders outside of any control flow context. if shape is None: shape = value.shape with ops.control_dependencies(None): placeholder = graph_placeholder( dtype=dtype or value.dtype, shape=shape, name=name) handle_data_util.copy_handle_data(value, placeholder) return placeholder def _get_defun_inputs_from_args(args, names, flat_shapes=None): """Maps Python function positional args to graph-construction inputs.""" return _get_defun_inputs( args, names, structure=args, flat_shapes=flat_shapes) def _get_composite_tensor_spec(x): """Returns the TypeSpec for x if it's a composite tensor, or x otherwise.""" return (x._type_spec # pylint: disable=protected-access if isinstance(x, composite_tensor.CompositeTensor) else x) def _get_defun_inputs(args, names, structure, flat_shapes=None): """Maps python function args to graph-construction inputs. Args: args: A flat list of user-specified arguments. names: A list of strings with user-specified argument names, same length as `args`. May be `None`, in which case a generic name is used. structure: The original argument list or dictionary. flat_shapes: A flat list of values that are either `None` or instances of `TensorShape`. If provided, then length must match that of `nest.flatten(args, expand_composites=True)`; and locations where `args` are instances of `Tensor` must have a corresponding `TensorShape` in `flat_shapes`. May be `None`, in which case exact shapes are read directly from the args. Returns: Placeholders with the same structure as `structure`. Raises: RuntimeError: if `flat_shapes` is provided, but `len(flat_shapes) != len(nest.flatten(args, expand_composites=True))`. RuntimeError: if a shape from `flat_shapes` is not None for an argument that is not a `Tensor`, `TensorSpec`, or `ResourceVariable`. """ func_graph = ops.get_default_graph() function_inputs = [] if names is None: names = [None] * len(args) if flat_shapes is None: shapes_iter = itertools.repeat(None) else: len_flat_args = len(nest.flatten(args, expand_composites=True)) if len_flat_args != len(flat_shapes): raise RuntimeError( "Length of fully flat shapes (%d) must match that of " "flatten(args) (%d). args: %s, flat_shapes: %s" % (len(flat_shapes), len_flat_args, args, flat_shapes)) shapes_iter = iter(flat_shapes) for arg_value, name in zip(args, names): # Replace any composite tensors with their TypeSpecs. This is important # for ensuring that shape information that's not preserved by the TypeSpec # (such as the number of values in a SparseTensor) gets properly masked. arg_value = nest.map_structure(_get_composite_tensor_spec, arg_value) flattened = nest.flatten(arg_value, expand_composites=True) for arg in flattened: # We have a shape entry for each arg, regardless of whether it's a real # Tensor or not. For non-tensor entries it should be None. shape = next(shapes_iter) if isinstance(arg, (ops.Tensor, tensor_spec.TensorSpec)): arg_is_spec = isinstance(arg, tensor_spec.TensorSpec) if arg_is_spec and arg.name: requested_name = arg.name else: requested_name = name placeholder_shape = shape if shape is not None else arg.shape try: placeholder = graph_placeholder( arg.dtype, placeholder_shape, name=requested_name) except ValueError: # Sometimes parameter names are not valid op names, so fall back to # unnamed placeholders. placeholder = graph_placeholder(arg.dtype, placeholder_shape) if not arg_is_spec: handle_data_util.copy_handle_data(arg, placeholder) if name is not None: # Record the requested/user-specified name in case it's different than # the uniquified name, for validation when exporting signatures. placeholder.op._set_attr( # pylint: disable=protected-access "_user_specified_name", attr_value_pb2.AttrValue(s=compat.as_bytes(requested_name))) function_inputs.append(placeholder) elif isinstance(arg, (resource_variable_ops.BaseResourceVariable, resource_variable_ops.VariableSpec)): if isinstance(arg, resource_variable_ops.VariableSpec): name = arg.name or name with func_graph.outer_graph.as_default(): placeholder = graph_placeholder(dtypes.resource, arg.shape, name=name) arg = resource_variable_ops.BaseResourceVariable( name=name, shape=arg.shape, dtype=arg.dtype, handle=placeholder, handle_name=name, trainable=arg.trainable) # Capture arg variables to create placeholders for them. These will be # removed as captures after the function is traced (since otherwise we'd # just add it back with a new placeholder when the variable was # referenced). placeholder = func_graph.capture(arg.handle, name=name) placeholder.op._set_attr( # pylint: disable=protected-access "_user_specified_name", attr_value_pb2.AttrValue(s=compat.as_bytes(name))) function_inputs.append(arg) else: if shape is not None: raise RuntimeError( "Expected provided shape override to be None for arg that isn't " "a Tensor, but saw arg: '%s', shape: '%s'. args: %s" % (arg, shape, args)) function_inputs.append(arg) return nest.pack_sequence_as(structure, function_inputs, expand_composites=True) def _get_defun_inputs_from_kwargs(kwargs, flat_shapes): """Maps Python function keyword args to graph-construction inputs.""" if kwargs: names, args = zip(*sorted(kwargs.items())) else: names = [] args = [] return _get_defun_inputs( args, names, structure=kwargs, flat_shapes=flat_shapes) def dismantle_func_graph(func_graph): """Removes reference cycles in `func_graph` FuncGraph. Helpful for making sure the garbage collector doesn't need to run when the FuncGraph goes out of scope, e.g. in tests using defun with @test_util.run_in_graph_and_eager_modes(assert_no_eager_garbage=True). Args: func_graph: A `FuncGraph` object to destroy. `func_graph` is unusable after this function. """ func_graph.clear_captures() ops.dismantle_graph(func_graph) def override_func_graph_name_scope(func_graph, name_scope): func_graph._name_stack = name_scope # pylint: disable=protected-access
42.217958
119
0.685759
f98dd2e8b9d01113d626f6ef200ebc97c991b309
11,435
py
Python
scipy/misc/common.py
jiffyclub/scipy
e346aa55c0416b915148c35cc200a0ed74f85c0a
[ "BSD-3-Clause" ]
1
2020-11-07T04:53:55.000Z
2020-11-07T04:53:55.000Z
scipy/misc/common.py
jiffyclub/scipy
e346aa55c0416b915148c35cc200a0ed74f85c0a
[ "BSD-3-Clause" ]
null
null
null
scipy/misc/common.py
jiffyclub/scipy
e346aa55c0416b915148c35cc200a0ed74f85c0a
[ "BSD-3-Clause" ]
1
2019-08-13T21:23:57.000Z
2019-08-13T21:23:57.000Z
""" Functions which are common and require SciPy Base and Level 1 SciPy (special, linalg) """ from __future__ import division, print_function, absolute_import import numpy from numpy import (exp, log, asarray, arange, newaxis, hstack, product, array, zeros, eye, poly1d, r_, rollaxis, sum, fromstring, isfinite, squeeze, amax, reshape) from scipy.lib._version import NumpyVersion __all__ = ['logsumexp', 'central_diff_weights', 'derivative', 'pade', 'lena', 'ascent', 'face'] _NUMPY_170 = (NumpyVersion(numpy.__version__) >= NumpyVersion('1.7.0')) def logsumexp(a, axis=None, b=None, keepdims=False): """Compute the log of the sum of exponentials of input elements. Parameters ---------- a : array_like Input array. axis : None or int or tuple of ints, optional Axis or axes over which the sum is taken. By default `axis` is None, and all elements are summed. Tuple of ints is not accepted if NumPy version is lower than 1.7.0. .. versionadded:: 0.11.0 keepdims: bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original array. .. versionadded:: 0.15.0 b : array-like, optional Scaling factor for exp(`a`) must be of the same shape as `a` or broadcastable to `a`. .. versionadded:: 0.12.0 Returns ------- res : ndarray The result, ``np.log(np.sum(np.exp(a)))`` calculated in a numerically more stable way. If `b` is given then ``np.log(np.sum(b*np.exp(a)))`` is returned. See Also -------- numpy.logaddexp, numpy.logaddexp2 Notes ----- Numpy has a logaddexp function which is very similar to `logsumexp`, but only handles two arguments. `logaddexp.reduce` is similar to this function, but may be less stable. Examples -------- >>> from scipy.misc import logsumexp >>> a = np.arange(10) >>> np.log(np.sum(np.exp(a))) 9.4586297444267107 >>> logsumexp(a) 9.4586297444267107 With weights >>> a = np.arange(10) >>> b = np.arange(10, 0, -1) >>> logsumexp(a, b=b) 9.9170178533034665 >>> np.log(np.sum(b*np.exp(a))) 9.9170178533034647 """ a = asarray(a) # keepdims is available in numpy.sum and numpy.amax since NumPy 1.7.0 # # Because SciPy supports versions earlier than 1.7.0, we have to handle # those old versions differently if not _NUMPY_170: # When support for Numpy < 1.7.0 is dropped, this implementation can be # removed. This implementation is a bit hacky. Similarly to old NumPy's # sum and amax functions, 'axis' must be an integer or None, tuples and # lists are not supported. Although 'keepdims' is not supported by these # old NumPy's functions, this function supports it. # Solve the shape of the reduced array if axis is None: sh_keepdims = (1,) * a.ndim else: sh_keepdims = list(a.shape) sh_keepdims[axis] = 1 a_max = amax(a, axis=axis) if a_max.ndim > 0: a_max[~isfinite(a_max)] = 0 elif not isfinite(a_max): a_max = 0 if b is not None: b = asarray(b) out = log(sum(b * exp(a - reshape(a_max, sh_keepdims)), axis=axis)) else: out = log(sum(exp(a - reshape(a_max, sh_keepdims)), axis=axis)) out += a_max if keepdims: # Put back the reduced axes with size one out = reshape(out, sh_keepdims) else: # This is a more elegant implementation, requiring NumPy >= 1.7.0 a_max = amax(a, axis=axis, keepdims=True) if a_max.ndim > 0: a_max[~isfinite(a_max)] = 0 elif not isfinite(a_max): a_max = 0 if b is not None: b = asarray(b) out = log(sum(b * exp(a - a_max), axis=axis, keepdims=keepdims)) else: out = log(sum(exp(a - a_max), axis=axis, keepdims=keepdims)) if not keepdims: a_max = squeeze(a_max, axis=axis) out += a_max return out def central_diff_weights(Np, ndiv=1): """ Return weights for an Np-point central derivative. Assumes equally-spaced function points. If weights are in the vector w, then derivative is w[0] * f(x-ho*dx) + ... + w[-1] * f(x+h0*dx) Parameters ---------- Np : int Number of points for the central derivative. ndiv : int, optional Number of divisions. Default is 1. Notes ----- Can be inaccurate for large number of points. """ if Np < ndiv + 1: raise ValueError("Number of points must be at least the derivative order + 1.") if Np % 2 == 0: raise ValueError("The number of points must be odd.") from scipy import linalg ho = Np >> 1 x = arange(-ho,ho+1.0) x = x[:,newaxis] X = x**0.0 for k in range(1,Np): X = hstack([X,x**k]) w = product(arange(1,ndiv+1),axis=0)*linalg.inv(X)[ndiv] return w def derivative(func, x0, dx=1.0, n=1, args=(), order=3): """ Find the n-th derivative of a function at a point. Given a function, use a central difference formula with spacing `dx` to compute the `n`-th derivative at `x0`. Parameters ---------- func : function Input function. x0 : float The point at which `n`-th derivative is found. dx : int, optional Spacing. n : int, optional Order of the derivative. Default is 1. args : tuple, optional Arguments order : int, optional Number of points to use, must be odd. Notes ----- Decreasing the step size too small can result in round-off error. Examples -------- >>> def f(x): ... return x**3 + x**2 ... >>> derivative(f, 1.0, dx=1e-6) 4.9999999999217337 """ if order < n + 1: raise ValueError("'order' (the number of points used to compute the derivative), " "must be at least the derivative order 'n' + 1.") if order % 2 == 0: raise ValueError("'order' (the number of points used to compute the derivative) " "must be odd.") # pre-computed for n=1 and 2 and low-order for speed. if n == 1: if order == 3: weights = array([-1,0,1])/2.0 elif order == 5: weights = array([1,-8,0,8,-1])/12.0 elif order == 7: weights = array([-1,9,-45,0,45,-9,1])/60.0 elif order == 9: weights = array([3,-32,168,-672,0,672,-168,32,-3])/840.0 else: weights = central_diff_weights(order,1) elif n == 2: if order == 3: weights = array([1,-2.0,1]) elif order == 5: weights = array([-1,16,-30,16,-1])/12.0 elif order == 7: weights = array([2,-27,270,-490,270,-27,2])/180.0 elif order == 9: weights = array([-9,128,-1008,8064,-14350,8064,-1008,128,-9])/5040.0 else: weights = central_diff_weights(order,2) else: weights = central_diff_weights(order, n) val = 0.0 ho = order >> 1 for k in range(order): val += weights[k]*func(x0+(k-ho)*dx,*args) return val / product((dx,)*n,axis=0) def pade(an, m): """ Return Pade approximation to a polynomial as the ratio of two polynomials. Parameters ---------- an : (N,) array_like Taylor series coefficients. m : int The order of the returned approximating polynomials. Returns ------- p, q : Polynomial class The pade approximation of the polynomial defined by `an` is `p(x)/q(x)`. Examples -------- >>> from scipy import misc >>> e_exp = [1.0, 1.0, 1.0/2.0, 1.0/6.0, 1.0/24.0, 1.0/120.0] >>> p, q = misc.pade(e_exp, 2) >>> e_exp.reverse() >>> e_poly = np.poly1d(e_exp) Compare ``e_poly(x)`` and the pade approximation ``p(x)/q(x)`` >>> e_poly(1) 2.7166666666666668 >>> p(1)/q(1) 2.7179487179487181 """ from scipy import linalg an = asarray(an) N = len(an) - 1 n = N - m if n < 0: raise ValueError("Order of q <m> must be smaller than len(an)-1.") Akj = eye(N+1, n+1) Bkj = zeros((N+1, m), 'd') for row in range(1, m+1): Bkj[row,:row] = -(an[:row])[::-1] for row in range(m+1, N+1): Bkj[row,:] = -(an[row-m:row])[::-1] C = hstack((Akj, Bkj)) pq = linalg.solve(C, an) p = pq[:n+1] q = r_[1.0, pq[n+1:]] return poly1d(p[::-1]), poly1d(q[::-1]) def lena(): """ Get classic image processing example image, Lena, at 8-bit grayscale bit-depth, 512 x 512 size. Parameters ---------- None Returns ------- lena : ndarray Lena image Examples -------- >>> import scipy.misc >>> lena = scipy.misc.lena() >>> lena.shape (512, 512) >>> lena.max() 245 >>> lena.dtype dtype('int32') >>> import matplotlib.pyplot as plt >>> plt.gray() >>> plt.imshow(lena) >>> plt.show() """ import pickle import os fname = os.path.join(os.path.dirname(__file__),'lena.dat') f = open(fname,'rb') lena = array(pickle.load(f)) f.close() return lena def ascent(): """ Get an 8-bit grayscale bit-depth, 512 x 512 derived image for easy use in demos The image is derived from accent-to-the-top.jpg at http://www.public-domain-image.com/people-public-domain-images-pictures/ Parameters ---------- None Returns ------- ascent : ndarray convenient image to use for testing and demonstration Examples -------- >>> import scipy.misc >>> ascent = scipy.misc.ascent() >>> ascent.shape (512, 512) >>> ascent.max() 255 >>> import matplotlib.pyplot as plt >>> plt.gray() >>> plt.imshow(ascent) >>> plt.show() """ import pickle import os fname = os.path.join(os.path.dirname(__file__),'ascent.dat') with open(fname, 'rb') as f: ascent = array(pickle.load(f)) return ascent def face(gray=False): """ Get a 1024 x 768, color image of a raccoon face. raccoon-procyon-lotor.jpg at http://www.public-domain-image.com Parameters ---------- gray : bool, optional If True then return color image, otherwise return an 8-bit gray-scale Returns ------- face : ndarray image of a racoon face Examples -------- >>> import scipy.misc >>> face = scipy.misc.face() >>> face.shape (768, 1024, 3) >>> face.max() 230 >>> face.dtype dtype('uint8') >>> import matplotlib.pyplot as plt >>> plt.gray() >>> plt.imshow(face) >>> plt.show() """ import bz2 import os with open(os.path.join(os.path.dirname(__file__), 'face.dat'), 'rb') as f: rawdata = f.read() data = bz2.decompress(rawdata) face = fromstring(data, dtype='uint8') face.shape = (768, 1024, 3) if gray is True: face = (0.21 * face[:,:,0] + 0.71 * face[:,:,1] + 0.07 * face[:,:,2]).astype('uint8') return face
26.655012
93
0.562221
a49bb07d9f8d9630e4bb14589ed99d907bf87ff7
33,780
py
Python
gempy/library/astrotools.py
DBerke/DRAGONS
cecf9a03970af95126bd17a227bd5214a5d6c64b
[ "BSD-3-Clause" ]
19
2017-10-23T14:52:51.000Z
2022-03-28T04:49:00.000Z
gempy/library/astrotools.py
DBerke/DRAGONS
cecf9a03970af95126bd17a227bd5214a5d6c64b
[ "BSD-3-Clause" ]
194
2017-11-01T17:32:45.000Z
2022-03-31T21:32:59.000Z
gempy/library/astrotools.py
DBerke/DRAGONS
cecf9a03970af95126bd17a227bd5214a5d6c64b
[ "BSD-3-Clause" ]
16
2017-11-01T05:18:04.000Z
2021-12-14T23:08:57.000Z
# Copyright(c) 2006,2016-2020 Association of Universities for Research in Astronomy, Inc. """ The astroTools module contains astronomy specific utility functions """ import os import re import numpy as np from astropy import units as u def array_from_list(list_of_quantities, unit=None): """ Convert a list of Quantity objects to a numpy array. The elements of the input list must all be converted to the same units. Parameters ---------- list_of_quantities: list Quantities objects that all have equivalencies Returns ------- array: array representation of this list """ if unit is None: unit = list_of_quantities[0].unit values = [x.to(unit).value for x in list_of_quantities] # subok=True is needed to handle magnitude/log units return u.Quantity(np.array(values), unit, subok=True) def boxcar(data, operation=np.ma.median, size=1): """ "Smooth" a 1D array by applying a boxcar filter along it. Any operation can be performed, as long as it can take a sequence and return a single value. Parameters ---------- data: 1D ndarray the data to be maninpulated operation: callable function for the boxcar to use size: int the boxcar width will be 2*size+1 Returns ------- 1D ndarray: same shape as data, after the boxcar operation """ try: boxarray = np.array([operation(data[max(i-size, 0):i+size+1]) for i in range(len(data))]) except (ValueError, TypeError): # Handle things like np.logical_and boxarray = np.array([operation.reduce(data[max(i-size, 0):i+size+1]) for i in range(len(data))]) return boxarray def divide0(numerator, denominator): """ Perform division, replacing division by zero with zero. This expands on the np.divide() function by having to deal with cases where either the numerator and/or denominator might be scalars, rather than arrays, and also deals with cases where they might be integer types. Parameters ---------- numerator: float/array-like the numerator for the division denominator: float/array-like the denominator for the division Returns ------- The quotient, with instances where the denominator is zero replace by zero """ try: is_int = np.issubdtype(denominator.dtype, np.integer) except AttributeError: # denominator is a scalar if denominator == 0: try: return np.zeros(numerator.shape) except AttributeError: # numerator is also a scalar return 0 else: return numerator / denominator else: dtype = np.float32 if is_int else denominator.dtype try: out_shape = numerator.shape except: out_shape = denominator.shape else: # both are arrays so the final shape will be the one with the # higher dimensionality (if they're broadcastable) if len(out_shape) < len(denominator.shape): out_shape = denominator.shape return np.divide(numerator, denominator, out=np.zeros(out_shape, dtype=dtype), where=abs(denominator) > np.finfo(dtype).tiny) def cartesian_regions_to_slices(regions): """ Convert a sample region(s) string, consisting of a comma-separated list of (colon-or-hyphen-separated) pixel ranges into Python slice objects. These ranges may describe either multiple 1D regions or a single higher- dimensional region (with one range per axis), a distinction which is not important here. The ranges are specified in 1-indexed Cartesian pixel co-ordinates, inclusive of the upper limit, and get converted to a tuple of Python slice objects (in reverse order), suitable for indexing a :mod:`numpy` array. If regions is None or empty, the resulting slice will select the entire array. Single indices may be used (eg. '1,2'), or '*' for the whole axis, lower and/or upper limits may be omitted to use the remainder of the range (eg. '10:,:') and/or an optional step may be specified using colon syntax (eg. '1:10:2' or '1-10:2'). """ origin = 1 slices = [] ranges = parse_user_regions(regions, allow_step=True) for limits in ranges[::-1]: # reverse Cartesian order for Python nlim = len(limits) if nlim == 1: lim = int(limits[0])-origin sliceobj = slice(lim, lim+1) else: # Adjust only the lower limit for 1-based indexing since Python # ranges are exclusive: sliceobj = slice(*(int(lim)-adj if lim else None for lim, adj in zip(limits, (origin, 0, 0)))) slices.append(sliceobj) return tuple(slices) def parse_user_regions(regions, dtype=int, allow_step=False): """ Parse a string containing a list of sections into a list of tuples containing the same information Parameters ---------- regions : str comma-separated list of regions of form start:stop:step dtype : dtype string values will be coerced into this dtype, raising an error if this is not possible allow_step : bool allow a step value in the ranges? Returns ------- list of slice-like tuples with 2 or 3 values per tuple """ if not regions: return [(None, None)] elif not isinstance(regions, str): raise TypeError(f"regions must be a string or None, not '{regions}'") if isinstance(dtype, np.dtype): dtype = getattr(np, dtype.name) ranges = [] for range_ in regions.strip("[]").split(","): range_ = range_.strip() if range_ == "*": ranges.append((None, None)) continue try: values = [dtype(x) if x else None for x in range_.replace("-", ":", 1).split(":")] assert len(values) in (1, 2, 2+allow_step) if len(values) > 1 and values[0] is not None and values[1] is not None and values[0] > values[1]: values[0], values[1] = values[1], values[0] except (ValueError, AssertionError): raise ValueError(f"Failed to parse sample regions '{regions}'") ranges.append(tuple(values)) return ranges def create_mask_from_regions(points, regions=None): """ Produce a boolean mask given an array of x-values and a list of unmasked regions. The regions can be specified either as slice objects (interpreted as pixel indices in the standard python sense) or (start, end) tuples with inclusive boundaries. Parameters ---------- points : `numpy.ndarray` Input array regions : list, optional valid regions, either (start, end) or slice objects Returns ------- mask : boolean `numpy.ndarray` """ mask = np.ones_like(points, dtype=bool) if regions: for region in regions: if isinstance(region, slice): mask[region] = False else: x1 = min(points) if region[0] is None else region[0] x2 = max(points) if region[1] is None else region[1] if x1 > x2: x1, x2 = x2, x1 mask[np.logical_and(points >= x1, points <= x2)] = False return mask def get_corners(shape): """ This is a recursive function to calculate the corner indices of an array of the specified shape. :param shape: length of the dimensions of the array :type shape: tuple of ints, one for each dimension """ if not type(shape) == tuple: raise TypeError('get_corners argument is non-tuple') if len(shape) == 1: corners = [(0,), (shape[0]-1,)] else: shape_less1 = shape[1:len(shape)] corners_less1 = get_corners(shape_less1) corners = [] for corner in corners_less1: newcorner = (0,) + corner corners.append(newcorner) newcorner = (shape[0]-1,) + corner corners.append(newcorner) return corners def get_spline3_extrema(spline): """ Find the locations of the minima and maxima of a cubic spline. Parameters ---------- spline: a callable spline object Returns ------- minima, maxima: 1D arrays """ derivative = spline.derivative() try: knots = derivative.get_knots() except AttributeError: # for BSplines knots = derivative.k minima, maxima = [], [] # We take each pair of knots and map to interval [-1,1] for xm, xp in zip(knots[:-1], knots[1:]): ym, y0, yp = derivative([xm, 0.5*(xm+xp), xp]) # a*x^2 + b*x + c a = 0.5 * (ym+yp) - y0 b = 0.5 * (yp-ym) c = y0 for root in np.roots([a, b, c]): if np.isreal(root) and abs(root) <= 1: x = 0.5 * (root * (xp-xm) + (xp+xm)) # unmapped from [-1, 1] if 2*a*root + b > 0: minima.append(x) else: maxima.append(x) return np.array(minima), np.array(maxima) def transpose_if_needed(*args, transpose=False, section=slice(None)): """ This function takes a list of arrays and returns them (or a section of them), either untouched, or transposed, according to the parameter. Parameters ---------- args : sequence of arrays The input arrays. transpose : bool If True, return transposed versions. section : slice object Section of output data to return. Returns ------- list of arrays The input arrays, or their transposed versions. """ return list(None if arg is None else arg.T[section] if transpose else arg[section] for arg in args) def rotate_2d(degs): """ Little helper function to return a basic 2-D rotation matrix. :param degs: rotation amount, in degrees :type degs: float """ rads = np.radians(degs) sine = np.sin(rads) cosine = np.cos(rads) return np.array([[cosine, -sine], [sine, cosine]]) def clipped_mean(data): num_total = len(data) mean = data.mean() sigma = data.std() if num_total < 3: return mean, sigma num = num_total clipped_data = data clip = 0 while num > 0.5 * num_total: # CJS: edited this as upper limit was mean+1*sigma => bias clipped_data = data[(data < mean + 3*sigma) & (data > mean - 3*sigma)] num = len(clipped_data) if num > 0: mean = clipped_data.mean() sigma = clipped_data.std() elif clip == 0: return mean, sigma else: break clip += 1 if clip > 10: break return mean, sigma def rasextodec(string): """ Convert hh:mm:ss.sss to decimal degrees """ match_ra = re.match(r"(\d+):(\d+):(\d+\.\d+)", string) if match_ra: hours = float(match_ra.group(1)) minutes = float(match_ra.group(2)) secs = float(match_ra.group(3)) minutes += (secs/60.0) hours += (minutes/60.0) degrees = hours * 15.0 else: raise ValueError('Invalid RA string') return degrees def degsextodec(string): """ Convert [-]dd:mm:ss.sss to decimal degrees """ match_dec = re.match(r"(-*)(\d+):(\d+):(\d+\.\d+)", string) if match_dec: sign = match_dec.group(1) if sign == '-': sign = -1.0 else: sign = +1.0 degs = float(match_dec.group(2)) minutes = float(match_dec.group(3)) secs = float(match_dec.group(4)) minutes += (secs/60.0) degs += (minutes/60.0) degs *= sign else: raise ValueError('Invalid Dec string') return degs # The following functions and classes were borrowed from STSCI's spectools # package, currently under development. They might be able to be # replaced with a direct import of spectools.util if/when it is available IRAF_MODELS_MAP = {1.: 'chebyshev', 2.: 'legendre', 3.: 'spline3', 4.: 'spline1'} INVERSE_IRAF_MODELS_MAP = {'chebyshev': 1., 'legendre': 2., 'spline3': 3., 'spline1': 4.} def get_records(fname): """ Read the records of an IRAF database file ionto a python list Parameters ---------- fname: string name of an IRAF database file Returns ------- A list of records """ filehandle = open(fname) dtb = filehandle.read() filehandle.close() records = [] recs = dtb.split('begin')[1:] records = [Record(r) for r in recs] return records def get_database_string(fname): """ Read an IRAF database file Parameters ---------- fname: string name of an IRAF database file Returns ------- the database file as a string """ f = open(fname) dtb = f.read() f.close() return dtb class Record: """ A base class for all records - represents an IRAF database record Attributes ---------- recstr: string the record as a string fields: dict the fields in the record taskname: string the name of the task which created the database file """ def __init__(self, recstr): self.recstr = recstr self.fields = self.get_fields() self.taskname = self.get_task_name() def aslist(self): reclist = self.recstr.split('\n') reclist = [l.strip() for l in reclist] out = [reclist.remove(l) for l in reclist if len(l) == 0] return reclist def get_fields(self): # read record fields as an array fields = {} flist = self.aslist() numfields = len(flist) for i in range(numfields): line = flist[i] if line and line[0].isalpha(): field = line.split() if i+1 < numfields: if not flist[i+1][0].isalpha(): fields[field[0]] = self.read_array_field( flist[i:i+int(field[1])+1]) else: fields[field[0]] = " ".join(s for s in field[1:]) else: fields[field[0]] = " ".join(s for s in field[1:]) else: continue return fields def get_task_name(self): try: return self.fields['task'] except KeyError: return None def read_array_field(self, fieldlist): # Turn an iraf record array field into a numpy array fieldline = [l.split() for l in fieldlist[1:]] # take only the first 3 columns # identify writes also strings at the end of some field lines xyz = [l[:3] for l in fieldline] try: farr = np.array(xyz) except: print("Could not read array field %s" % fieldlist[0].split()[0]) return farr.astype(np.float64) class IdentifyRecord(Record): """ Represents a database record for the longslit.identify task Attributes ---------- x: array the X values of the identified features this represents values on axis1 (image rows) y: int the Y values of the identified features (image columns) z: array the values which X maps into modelname: string the function used to fit the data nterms: int degree of the polynomial which was fit to the data in IRAF this is the number of coefficients, not the order mrange: list the range of the data coeff: array function (modelname) coefficients """ def __init__(self, recstr): super().__init__(recstr) self._flatcoeff = self.fields['coefficients'].flatten() self.x = self.fields['features'][:, 0] self.y = self.get_ydata() self.z = self.fields['features'][:, 1] ####here - ref? self.zref = self.fields['features'][:, 2] self.modelname = self.get_model_name() self.nterms = self.get_nterms() self.mrange = self.get_range() self.coeff = self.get_coeff() def get_model_name(self): return IRAF_MODELS_MAP[self._flatcoeff[0]] def get_nterms(self): return self._flatcoeff[1] def get_range(self): low = self._flatcoeff[2] high = self._flatcoeff[3] return [low, high] def get_coeff(self): return self._flatcoeff[4:] def get_ydata(self): image = self.fields['image'] left = image.find('[')+1 right = image.find(']') section = image[left:right] if ',' in section: yind = image.find(',')+1 return int(image[yind:-1]) else: return int(section) #xind = image.find('[')+1 #yind = image.find(',')+1 #return int(image[yind:-1]) class FitcoordsRecord(Record): """ Represents a database record for the longslit.fitccords task Attributes ---------- modelname: string the function used to fit the data xorder: int number of terms in x yorder: int number of terms in y xbounds: list data range in x ybounds: list data range in y coeff: array function coefficients """ def __init__(self, recstr): super().__init__(recstr) self._surface = self.fields['surface'].flatten() self.modelname = IRAF_MODELS_MAP[self._surface[0]] self.xorder = self._surface[1] self.yorder = self._surface[2] self.xbounds = [self._surface[4], self._surface[5]] self.ybounds = [self._surface[6], self._surface[7]] self.coeff = self.get_coeff() def get_coeff(self): return self._surface[8:] class IDB: """ Base class for an IRAF identify database Attributes ---------- records: list a list of all `IdentifyRecord` in the database numrecords: int number of records """ def __init__(self, dtbstr): lst = self.aslist(dtbstr) self.records = [IdentifyRecord(rstr) for rstr in self.aslist(dtbstr)] self.numrecords = len(self.records) def aslist(self, dtb): # return a list of records # if the first one is a comment remove it from the list record_list = dtb.split('begin') try: rl0 = record_list[0].split('\n') except: return record_list if len(rl0) == 2 and rl0[0].startswith('#') and not rl0[1].strip(): return record_list[1:] elif len(rl0) == 1 and not rl0[0].strip(): return record_list[1:] else: return record_list class ReidentifyRecord(IDB): """ Represents a database record for the onedspec.reidentify task """ def __init__(self, databasestr): super().__init__(databasestr) self.x = np.array([r.x for r in self.records]) self.y = self.get_ydata() self.z = np.array([r.z for r in self.records]) def get_ydata(self): y = np.ones(self.x.shape) y = y * np.array([r.y for r in self.records])[:, np.newaxis] return y # This class pulls together fitcoords and identify databases into # a single entity that can be written to or read from disk files # or pyfits binary tables class SpectralDatabase: def __init__(self, database_name=None, record_name=None, binary_table=None): """ database_name is the name of the database directory on disk that contains the database files associated with record_name. For example, database_name="database", record_name="image_001" (corresponding to the first science extention in a data file called image.fits """ self.database_name = database_name self.record_name = record_name self.binary_table = binary_table self.identify_database = None self.fitcoords_database = None # Initialize from database on disk if database_name is not None and record_name is not None: if not os.path.isdir(database_name): raise OSError('Database directory %s does not exist' % database_name) # Read in identify database db_filename = "%s/id%s" % (database_name, record_name) if not os.access(db_filename, os.R_OK): raise OSError("Database file %s does not exist " \ "or cannot be accessed" % db_filename) db_str = get_database_string(db_filename) self.identify_database = IDB(db_str) # Read in fitcoords database db_filename = "%s/fc%s" % (database_name, record_name) if not os.access(db_filename, os.R_OK): raise OSError("Database file %s does not exist " \ "or cannot be accessed" % db_filename) db_str = get_database_string(db_filename) self.fitcoords_database = FitcoordsRecord(db_str) # Initialize from pyfits binary table in memory elif binary_table is not None: # Get record_name from header if not passed if record_name is not None: self.record_name = record_name else: self.record_name = binary_table.header["RECORDNM"] # Format identify information from header and table # data into a database string db_str = self._identify_db_from_table(binary_table) self.identify_database = IDB(db_str) # Format fitcoords information from header # into a database string db_str = self._fitcoords_db_from_table(binary_table) self.fitcoords_database = FitcoordsRecord(db_str) else: raise TypeError("Both database and binary table are None.") def _identify_db_from_table(self, tab): # Get feature information from table data features = tab.data nrows = len(features) nfeat = features["spectral_coord"].shape[1] ncoeff = features["fit_coefficients"].shape[1] db_str = "" for row in range(nrows): feature = features[row] # Make a dictionary to hold information gathered from # the table. This structure is not quite the same as # the fields member of the Record class, but it is the # same principle fields = {} fields["id"] = self.record_name fields["task"] = "identify" fields["image"] = "%s[*,%d]" % (self.record_name, feature["spatial_coord"]) fields["units"] = tab.header["IDUNITS"] zip_feature = np.array([feature["spectral_coord"], feature["fit_wavelength"], feature["ref_wavelength"]]) fields["features"] = zip_feature.swapaxes(0, 1) fields["function"] = tab.header["IDFUNCTN"] fields["order"] = tab.header["IDORDER"] fields["sample"] = tab.header["IDSAMPLE"] fields["naverage"] = tab.header["IDNAVER"] fields["niterate"] = tab.header["IDNITER"] reject = tab.header["IDREJECT"].split() fields["low_reject"] = float(reject[0]) fields["high_reject"] = float(reject[1]) fields["grow"] = tab.header["IDGROW"] # coefficients is a list of numbers with the following elements: # 0: model number (function type) # 1: order # 2: x min # 3: x max # 4 on: function coefficients coefficients = [] model_num = INVERSE_IRAF_MODELS_MAP[fields["function"]] coefficients.append(model_num) coefficients.append(fields["order"]) idrange = tab.header["IDRANGE"].split() coefficients.append(float(idrange[0])) coefficients.append(float(idrange[1])) fit_coeff = feature["fit_coefficients"].tolist() coefficients.extend(fit_coeff) fields["coefficients"] = np.array(coefficients).astype(np.float64) # Compose fields into a single string rec_str = "%-8s%-8s %s\n" % \ ("begin", fields["task"], fields["image"]) for field in ["id", "task", "image", "units"]: rec_str += "%-8s%-8s%s\n" % ("", field, str(fields[field])) rec_str += "%-8s%-8s %d\n" % \ ("", "features", len(fields["features"])) for feat in fields["features"]: rec_str += "%16s%10f %10f %10f\n" % \ ("", feat[0], feat[1], feat[2]) for field in ["function", "order", "sample", "naverage", "niterate", "low_reject", "high_reject", "grow"]: rec_str += "%-8s%s %s\n" % ("", field, str(fields[field])) rec_str += "%-8s%-8s %d\n" % ("", "coefficients", len(fields["coefficients"])) for coeff in fields["coefficients"]: rec_str += "%-8s%-8s%E\n" % ("", "", coeff) rec_str += "\n" db_str += rec_str return db_str def _fitcoords_db_from_table(self, tab): # Make a dictionary to hold information gathered from # the table. This structure is not quite the same as # the fields member of the Record class, but it is the # same principle fields = {} fields["begin"] = self.record_name fields["task"] = "fitcoords" fields["axis"] = tab.header["FCAXIS"] fields["units"] = tab.header["FCUNITS"] # The surface is a list of numbers with the following elements: # 0: model number (function type) # 1: x order # 2: y order # 3: cross-term type (always 1. for fitcoords) # 4. xmin # 5: xmax # 6. xmin # 7: xmax # 8 on: function coefficients surface = [] model_num = INVERSE_IRAF_MODELS_MAP[tab.header["FCFUNCTN"]] surface.append(model_num) xorder = tab.header["FCXORDER"] yorder = tab.header["FCYORDER"] surface.append(xorder) surface.append(yorder) surface.append(1.) fcxrange = tab.header["FCXRANGE"].split() surface.append(float(fcxrange[0])) surface.append(float(fcxrange[1])) fcyrange = tab.header["FCYRANGE"].split() surface.append(float(fcyrange[0])) surface.append(float(fcyrange[1])) for i in range(int(xorder)*int(yorder)): coeff = tab.header["FCCOEF%d" % i] surface.append(coeff) fields["surface"] = np.array(surface).astype(np.float64) # Compose fields into a single string db_str = "%-8s%s\n" % ("begin", fields["begin"]) for field in ["task", "axis", "units"]: db_str += "%-8s%-8s%s\n" % ("", field, str(fields[field])) db_str += "%-8s%-8s%d\n" % ("", "surface", len(fields["surface"])) for coeff in fields["surface"]: db_str += "%-8s%-8s%E\n" % ("", "", coeff) return db_str def write_to_disk(self, database_name=None, record_name=None): # Check for provided names; use names from self if not # provided as input if database_name is None and self.database_name is None: raise TypeError("No database_name provided") elif database_name is None and self.database_name is not None: database_name = self.database_name if record_name is None and self.record_name is None: raise TypeError("No record_name provided") elif record_name is None and self.record_name is not None: record_name = self.record_name # Make the directory if needed if not os.path.exists(database_name): os.mkdir(database_name) # Timestamp import datetime timestamp = str(datetime.datetime.now()) # Write identify files id_db = self.identify_database if id_db is not None: db_filename = "%s/id%s" % (database_name, record_name) db_file = open(db_filename, "w") db_file.write("# "+timestamp+"\n") for record in id_db.records: db_file.write("begin") db_file.write(record.recstr) db_file.close() # Write fitcoords files fc_db = self.fitcoords_database if fc_db is not None: db_filename = "%s/fc%s" % (database_name, record_name) db_file = open(db_filename, "w") db_file.write("# "+timestamp+"\n") db_file.write(fc_db.recstr) db_file.close() def as_binary_table(self, record_name=None): # Should this be lazy loaded? import astropy.io.fits as pf if record_name is None: record_name = self.record_name # Get the maximum number of features identified in any # record. Use this as the length of the array in the # wavelength_coord and fit_wavelength fields nfeat = max([len(record.x) for record in self.identify_database.records]) # The number of coefficients should be the same for all # records, so take the value from the first record ncoeff = self.identify_database.records[0].nterms # Get the number of rows from the number of identify records nrows = self.identify_database.numrecords # Create pyfits Columns for the table column_formats = [{"name":"spatial_coord", "format":"I"}, {"name":"spectral_coord", "format":"%dE"%nfeat}, {"name":"fit_wavelength", "format":"%dE"%nfeat}, {"name":"ref_wavelength", "format":"%dE"%nfeat}, {"name":"fit_coefficients", "format":"%dE"%ncoeff},] columns = [pf.Column(**fmt) for fmt in column_formats] # Make the empty table. Use the number of records in the # database as the number of rows table = pf.new_table(columns, nrows=nrows) # Populate the table from the records for i in range(nrows): record = self.identify_database.records[i] row = table.data[i] row["spatial_coord"] = record.y row["fit_coefficients"] = record.coeff if len(row["spectral_coord"]) != len(record.x): row["spectral_coord"][:len(record.x)] = record.x row["spectral_coord"][len(record.x):] = -999 else: row["spectral_coord"] = record.x if len(row["fit_wavelength"]) != len(record.z): row["fit_wavelength"][:len(record.z)] = record.z row["fit_wavelength"][len(record.z):] = -999 else: row["fit_wavelength"] = record.z if len(row["ref_wavelength"]) != len(record.zref): row["ref_wavelength"][:len(record.zref)] = record.zref row["ref_wavelength"][len(record.zref):] = -999 else: row["ref_wavelength"] = record.zref # Store the record name in the header table.header.update("RECORDNM", record_name) # Store other important values from the identify records in the header # These should be the same for all records, so take values # from the first record first_record = self.identify_database.records[0] table.header.update("IDUNITS", first_record.fields["units"]) table.header.update("IDFUNCTN", first_record.modelname) table.header.update("IDORDER", first_record.nterms) table.header.update("IDSAMPLE", first_record.fields["sample"]) table.header.update("IDNAVER", first_record.fields["naverage"]) table.header.update("IDNITER", first_record.fields["niterate"]) table.header.update("IDREJECT", "%s %s" % (first_record.fields["low_reject"], first_record.fields["high_reject"])) table.header.update("IDGROW", first_record.fields["grow"]) table.header.update("IDRANGE", "%s %s" % (first_record.mrange[0], first_record.mrange[1])) # Store fitcoords information in the header fc_record = self.fitcoords_database table.header.update("FCUNITS", fc_record.fields["units"]) table.header.update("FCAXIS", fc_record.fields["axis"]) table.header.update("FCFUNCTN", fc_record.modelname) table.header.update("FCXORDER", fc_record.xorder) table.header.update("FCYORDER", fc_record.yorder) table.header.update("FCXRANGE", "%s %s" % (fc_record.xbounds[0], fc_record.xbounds[1])) table.header.update("FCYRANGE", "%s %s" % (fc_record.ybounds[0], fc_record.ybounds[1])) for i in range(len(fc_record.coeff)): coeff = fc_record.coeff[i] table.header.update("FCCOEF%d" % i, coeff) ####here -- comments return table
33.915663
109
0.575281
04d8ea946da97e3a4967e6e616db1683738f0548
8,345
py
Python
tests/test_evoformer.py
yuzhiguo07/openfold
5fb0f074066387b9969578b8bf68f7e046c778af
[ "Apache-2.0" ]
1
2021-12-16T17:02:10.000Z
2021-12-16T17:02:10.000Z
tests/test_evoformer.py
yuzhiguo07/openfold
5fb0f074066387b9969578b8bf68f7e046c778af
[ "Apache-2.0" ]
null
null
null
tests/test_evoformer.py
yuzhiguo07/openfold
5fb0f074066387b9969578b8bf68f7e046c778af
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 AlQuraishi Laboratory # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import numpy as np import unittest from openfold.model.evoformer import ( MSATransition, EvoformerStack, ExtraMSAStack, ) from openfold.utils.tensor_utils import tree_map import tests.compare_utils as compare_utils from tests.config import consts if compare_utils.alphafold_is_installed(): alphafold = compare_utils.import_alphafold() import jax import haiku as hk class TestEvoformerStack(unittest.TestCase): def test_shape(self): batch_size = consts.batch_size n_seq = consts.n_seq n_res = consts.n_res c_m = consts.c_m c_z = consts.c_z c_hidden_msa_att = 12 c_hidden_opm = 17 c_hidden_mul = 19 c_hidden_pair_att = 14 c_s = consts.c_s no_heads_msa = 3 no_heads_pair = 7 no_blocks = 2 transition_n = 2 msa_dropout = 0.15 pair_stack_dropout = 0.25 inf = 1e9 eps = 1e-10 es = EvoformerStack( c_m, c_z, c_hidden_msa_att, c_hidden_opm, c_hidden_mul, c_hidden_pair_att, c_s, no_heads_msa, no_heads_pair, no_blocks, transition_n, msa_dropout, pair_stack_dropout, blocks_per_ckpt=None, inf=inf, eps=eps, ).eval() m = torch.rand((batch_size, n_seq, n_res, c_m)) z = torch.rand((batch_size, n_res, n_res, c_z)) msa_mask = torch.randint(0, 2, size=(batch_size, n_seq, n_res)) pair_mask = torch.randint(0, 2, size=(batch_size, n_res, n_res)) shape_m_before = m.shape shape_z_before = z.shape m, z, s = es( m, z, chunk_size=4, msa_mask=msa_mask, pair_mask=pair_mask ) self.assertTrue(m.shape == shape_m_before) self.assertTrue(z.shape == shape_z_before) self.assertTrue(s.shape == (batch_size, n_res, c_s)) @compare_utils.skip_unless_alphafold_installed() def test_compare(self): def run_ei(activations, masks): config = compare_utils.get_alphafold_config() c_e = config.model.embeddings_and_evoformer.evoformer ei = alphafold.model.modules.EvoformerIteration( c_e, config.model.global_config, is_extra_msa=False ) return ei(activations, masks, is_training=False) f = hk.transform(run_ei) n_res = consts.n_res n_seq = consts.n_seq activations = { "msa": np.random.rand(n_seq, n_res, consts.c_m).astype(np.float32), "pair": np.random.rand(n_res, n_res, consts.c_z).astype(np.float32), } masks = { "msa": np.random.randint(0, 2, (n_seq, n_res)).astype(np.float32), "pair": np.random.randint(0, 2, (n_res, n_res)).astype(np.float32), } params = compare_utils.fetch_alphafold_module_weights( "alphafold/alphafold_iteration/evoformer/evoformer_iteration" ) params = tree_map(lambda n: n[0], params, jax.numpy.DeviceArray) key = jax.random.PRNGKey(42) out_gt = f.apply(params, key, activations, masks) jax.tree_map(lambda x: x.block_until_ready(), out_gt) out_gt_msa = torch.as_tensor(np.array(out_gt["msa"])) out_gt_pair = torch.as_tensor(np.array(out_gt["pair"])) model = compare_utils.get_global_pretrained_openfold() out_repro_msa, out_repro_pair = model.evoformer.blocks[0]( torch.as_tensor(activations["msa"]).cuda(), torch.as_tensor(activations["pair"]).cuda(), torch.as_tensor(masks["msa"]).cuda(), torch.as_tensor(masks["pair"]).cuda(), chunk_size=4, _mask_trans=False, ) out_repro_msa = out_repro_msa.cpu() out_repro_pair = out_repro_pair.cpu() assert torch.max(torch.abs(out_repro_msa - out_gt_msa) < consts.eps) assert torch.max(torch.abs(out_repro_pair - out_gt_pair) < consts.eps) class TestExtraMSAStack(unittest.TestCase): def test_shape(self): batch_size = 2 s_t = 23 n_res = 5 c_m = 7 c_z = 11 c_hidden_msa_att = 12 c_hidden_opm = 17 c_hidden_mul = 19 c_hidden_tri_att = 16 no_heads_msa = 3 no_heads_pair = 8 no_blocks = 2 transition_n = 5 msa_dropout = 0.15 pair_stack_dropout = 0.25 inf = 1e9 eps = 1e-10 es = ExtraMSAStack( c_m, c_z, c_hidden_msa_att, c_hidden_opm, c_hidden_mul, c_hidden_tri_att, no_heads_msa, no_heads_pair, no_blocks, transition_n, msa_dropout, pair_stack_dropout, blocks_per_ckpt=None, inf=inf, eps=eps, ).eval() m = torch.rand((batch_size, s_t, n_res, c_m)) z = torch.rand((batch_size, n_res, n_res, c_z)) msa_mask = torch.randint( 0, 2, size=( batch_size, s_t, n_res, ), ) pair_mask = torch.randint( 0, 2, size=( batch_size, n_res, n_res, ), ) shape_z_before = z.shape z = es(m, z, chunk_size=4, msa_mask=msa_mask, pair_mask=pair_mask) self.assertTrue(z.shape == shape_z_before) class TestMSATransition(unittest.TestCase): def test_shape(self): batch_size = 2 s_t = 3 n_r = 5 c_m = 7 n = 11 mt = MSATransition(c_m, n) m = torch.rand((batch_size, s_t, n_r, c_m)) shape_before = m.shape m = mt(m, chunk_size=4) shape_after = m.shape self.assertTrue(shape_before == shape_after) @compare_utils.skip_unless_alphafold_installed() def test_compare(self): def run_msa_transition(msa_act, msa_mask): config = compare_utils.get_alphafold_config() c_e = config.model.embeddings_and_evoformer.evoformer msa_trans = alphafold.model.modules.Transition( c_e.msa_transition, config.model.global_config, name="msa_transition", ) act = msa_trans(act=msa_act, mask=msa_mask) return act f = hk.transform(run_msa_transition) n_res = consts.n_res n_seq = consts.n_seq msa_act = np.random.rand(n_seq, n_res, consts.c_m).astype(np.float32) msa_mask = np.ones((n_seq, n_res)).astype( np.float32 ) # no mask here either # Fetch pretrained parameters (but only from one block)] params = compare_utils.fetch_alphafold_module_weights( "alphafold/alphafold_iteration/evoformer/evoformer_iteration/" + "msa_transition" ) params = tree_map(lambda n: n[0], params, jax.numpy.DeviceArray) out_gt = f.apply(params, None, msa_act, msa_mask).block_until_ready() out_gt = torch.as_tensor(np.array(out_gt)) model = compare_utils.get_global_pretrained_openfold() out_repro = ( model.evoformer.blocks[0] .msa_transition( torch.as_tensor(msa_act, dtype=torch.float32).cuda(), mask=torch.as_tensor(msa_mask, dtype=torch.float32).cuda(), ) .cpu() ) self.assertTrue(torch.max(torch.abs(out_gt - out_repro) < consts.eps)) if __name__ == "__main__": unittest.main()
30.456204
80
0.587777
f8590b69d1f18947ff62bb19e2b8e6df74a2d161
897
py
Python
app/app.py
ShuaiGao/mini-shop-server
8a72b2d457bba8778e97637027ffa82bfa11e8a9
[ "MIT" ]
null
null
null
app/app.py
ShuaiGao/mini-shop-server
8a72b2d457bba8778e97637027ffa82bfa11e8a9
[ "MIT" ]
1
2019-07-08T12:32:29.000Z
2019-07-08T12:32:29.000Z
app/app.py
ShuaiGao/mini-shop-server
8a72b2d457bba8778e97637027ffa82bfa11e8a9
[ "MIT" ]
null
null
null
# _*_ coding: utf-8 _*_ """ Created by Allen7D on 2018/6/13. """ from datetime import date from flask import Flask as _Flask, _request_ctx_stack from flask.json import JSONEncoder as _JSONEncoder from app.libs.error_code import ServerError __author__ = 'Allen7D' class JSONEncoder(_JSONEncoder): def default(self, o): if hasattr(o, 'keys') and hasattr(o, '__getitem__'): return dict(o) if isinstance(o, date): return o.strftime('%Y-%m-%d') raise ServerError() class Flask(_Flask): json_encoder = JSONEncoder def dispatch_request(self): req = _request_ctx_stack.top.request if req.routing_exception is not None: self.raise_routing_exception(req) rule = req.url_rule if getattr(rule, 'provide_automatic_options', False) \ and req.method == 'OPTIONS': return self.make_default_options_response() return self.view_functions[rule.endpoint](**req.view_args)
24.916667
60
0.74136
4ed08162ac82aac7eabfb48be748903d7f1b6ed9
49
py
Python
src/utoolbox/util/decorator/__init__.py
thhsieh00/utoolbox-core
e46704348d60985c205a16f41788d2c185e11fb6
[ "Apache-2.0" ]
3
2020-08-21T02:34:32.000Z
2021-04-06T06:56:46.000Z
src/utoolbox/util/decorator/__init__.py
liuyenting/utoolbox-core
d1430967458204b99780c547eaca60d066490946
[ "Apache-2.0" ]
null
null
null
src/utoolbox/util/decorator/__init__.py
liuyenting/utoolbox-core
d1430967458204b99780c547eaca60d066490946
[ "Apache-2.0" ]
null
null
null
from .benchmark import * from .exceution import *
24.5
24
0.77551
1e7782350e37eb41d0db390bd5364aa153aa5afa
2,321
py
Python
tardis/montecarlo/montecarlo_numba/estimators.py
ArkaprabhaChakraborty/tardis
f52b6de55701c6880ad835ad714e911dcbe9ee96
[ "BSD-3-Clause" ]
176
2015-02-26T07:26:59.000Z
2022-03-16T18:26:22.000Z
tardis/montecarlo/montecarlo_numba/estimators.py
ArkaprabhaChakraborty/tardis
f52b6de55701c6880ad835ad714e911dcbe9ee96
[ "BSD-3-Clause" ]
1,474
2015-02-12T13:02:16.000Z
2022-03-31T09:05:54.000Z
tardis/montecarlo/montecarlo_numba/estimators.py
ArkaprabhaChakraborty/tardis
f52b6de55701c6880ad835ad714e911dcbe9ee96
[ "BSD-3-Clause" ]
434
2015-02-07T17:15:41.000Z
2022-03-23T04:49:38.000Z
from numba import njit from tardis.montecarlo.montecarlo_numba import ( njit_dict_no_parallel, ) from tardis.montecarlo.montecarlo_numba.frame_transformations import ( calc_packet_energy, calc_packet_energy_full_relativity, ) from tardis.montecarlo.montecarlo_numba.numba_config import ( ENABLE_FULL_RELATIVITY, ) @njit(**njit_dict_no_parallel) def set_estimators(r_packet, distance, numba_estimator, comov_nu, comov_energy): """ Updating the estimators """ numba_estimator.j_estimator[r_packet.current_shell_id] += ( comov_energy * distance ) numba_estimator.nu_bar_estimator[r_packet.current_shell_id] += ( comov_energy * distance * comov_nu ) @njit(**njit_dict_no_parallel) def set_estimators_full_relativity( r_packet, distance, numba_estimator, comov_nu, comov_energy, doppler_factor ): numba_estimator.j_estimator[r_packet.current_shell_id] += ( comov_energy * distance * doppler_factor ) numba_estimator.nu_bar_estimator[r_packet.current_shell_id] += ( comov_energy * distance * comov_nu * doppler_factor ) @njit(**njit_dict_no_parallel) def update_line_estimators( estimators, r_packet, cur_line_id, distance_trace, time_explosion ): """ Function to update the line estimators Parameters ---------- estimators : tardis.montecarlo.montecarlo_numba.numba_interface.Estimators r_packet : tardis.montecarlo.montecarlo_numba.r_packet.RPacket cur_line_id : int distance_trace : float time_explosion : float """ """ Actual calculation - simplified below r_interaction = math.sqrt(r_packet.r**2 + distance_trace**2 + 2 * r_packet.r * distance_trace * r_packet.mu) mu_interaction = (r_packet.mu * r_packet.r + distance_trace) / r_interaction doppler_factor = 1.0 - mu_interaction * r_interaction / ( time_explosion * C) """ if not ENABLE_FULL_RELATIVITY: energy = calc_packet_energy(r_packet, distance_trace, time_explosion) else: energy = calc_packet_energy_full_relativity(r_packet) estimators.j_blue_estimator[cur_line_id, r_packet.current_shell_id] += ( energy / r_packet.nu ) estimators.Edotlu_estimator[ cur_line_id, r_packet.current_shell_id ] += energy
30.142857
80
0.724257
2d8795b45f27630f941cdabd8467490c38e5ed85
1,514
py
Python
crabageprediction/venv/Lib/site-packages/pandas/tests/indexes/timedeltas/test_join.py
13rianlucero/CrabAgePrediction
92bc7fbe1040f49e820473e33cc3902a5a7177c7
[ "MIT" ]
28,899
2016-10-13T03:32:12.000Z
2022-03-31T21:39:05.000Z
crabageprediction/venv/Lib/site-packages/pandas/tests/indexes/timedeltas/test_join.py
13rianlucero/CrabAgePrediction
92bc7fbe1040f49e820473e33cc3902a5a7177c7
[ "MIT" ]
31,004
2016-10-12T23:22:27.000Z
2022-03-31T23:17:38.000Z
crabageprediction/venv/Lib/site-packages/pandas/tests/indexes/timedeltas/test_join.py
13rianlucero/CrabAgePrediction
92bc7fbe1040f49e820473e33cc3902a5a7177c7
[ "MIT" ]
15,149
2016-10-13T03:21:31.000Z
2022-03-31T18:46:47.000Z
import numpy as np from pandas import ( Index, Timedelta, timedelta_range, ) import pandas._testing as tm class TestJoin: def test_append_join_nondatetimeindex(self): rng = timedelta_range("1 days", periods=10) idx = Index(["a", "b", "c", "d"]) result = rng.append(idx) assert isinstance(result[0], Timedelta) # it works rng.join(idx, how="outer") def test_join_self(self, join_type): index = timedelta_range("1 day", periods=10) joined = index.join(index, how=join_type) tm.assert_index_equal(index, joined) def test_does_not_convert_mixed_integer(self): df = tm.makeCustomDataframe( 10, 10, data_gen_f=lambda *args, **kwargs: np.random.randn(), r_idx_type="i", c_idx_type="td", ) str(df) cols = df.columns.join(df.index, how="outer") joined = cols.join(df.columns) assert cols.dtype == np.dtype("O") assert cols.dtype == joined.dtype tm.assert_index_equal(cols, joined) def test_join_preserves_freq(self): # GH#32157 tdi = timedelta_range("1 day", periods=10) result = tdi[:5].join(tdi[5:], how="outer") assert result.freq == tdi.freq tm.assert_index_equal(result, tdi) result = tdi[:5].join(tdi[6:], how="outer") assert result.freq is None expected = tdi.delete(5) tm.assert_index_equal(result, expected)
28.037037
65
0.593791
fc357ca481620bd6b4f20815f5691b4a0d917c56
65
py
Python
Personal tuitorials at Home/Many_Values_to_Multiple_Variables.py
thepros847/python_programiing
d177f79d0d1f21df434bf3f8663ae6469fcf8357
[ "MIT" ]
null
null
null
Personal tuitorials at Home/Many_Values_to_Multiple_Variables.py
thepros847/python_programiing
d177f79d0d1f21df434bf3f8663ae6469fcf8357
[ "MIT" ]
null
null
null
Personal tuitorials at Home/Many_Values_to_Multiple_Variables.py
thepros847/python_programiing
d177f79d0d1f21df434bf3f8663ae6469fcf8357
[ "MIT" ]
null
null
null
x, y, z = "Orange", "Banana", "Cherry" print(x) print(y) print(z)
16.25
38
0.6
b834929b7938f26cf7bd2136ef90ddbaf64d4e03
6,089
py
Python
radiative_equilibriumModel/runModel.py
Mihir-DG/Modelling-Planetary-Climate
4699d55d6ccecc4938f9844dd658e9c40c6d07c2
[ "MIT" ]
1
2021-06-21T04:52:46.000Z
2021-06-21T04:52:46.000Z
radiative_equilibriumModel/runModel.py
Mihir-DG/Modelling-Planetary-Climate
4699d55d6ccecc4938f9844dd658e9c40c6d07c2
[ "MIT" ]
null
null
null
radiative_equilibriumModel/runModel.py
Mihir-DG/Modelling-Planetary-Climate
4699d55d6ccecc4938f9844dd658e9c40c6d07c2
[ "MIT" ]
null
null
null
import climt import sympl from sympl import AdamsBashforth import matplotlib.pyplot as plt import numpy as np import math import metpy.calc as calc from metpy.units import units import datetime import csv #Importing setup functions for profile development. from setupMain import surf_airBdry_tempDiff, radiating_pressure, net_energy_level_in_column, netFlux, heatingRate # Runs model to equilibrium ~ 260 days for maxTau = 6 [default]. # Uses net energy in atm. column as stopping criteria. def runningModel(maxTau): #Setting up system components in disequilbrium. diagnostic = climt.Frierson06LongwaveOpticalDepth(longwave_optical_depth_at_equator=maxTau, linear_optical_depth_parameter=0.1) radiation = climt.GrayLongwaveRadiation(tendencies_in_diagnostics=True) surface = climt.SlabSurface() albedo = 0.3 time_stepper = AdamsBashforth([radiation,surface]) timestep = datetime.timedelta(hours = 4) state = climt.get_default_state([radiation, diagnostic, surface]) airPressure_vertCoord = np.array(state['air_pressure_on_interface_levels']).flatten() sw_flux = 200 state.update(diagnostic(state)) state['downwelling_shortwave_flux_in_air'][:] = sw_flux state['ocean_mixed_layer_thickness'][:] = 1. state['air_temperature'][:] = 200. #Arbitrary init value diff_acceptable = 5. time = datetime.datetime(2020,1,1,0,0,0) # In months (Add 1/168 for each timedelta jump) stop = False radPres = radiating_pressure(state,diff_acceptable) radHt = radPres[1] #Creates list for assorted 0d output vars. netEn = [(net_energy_level_in_column(state,diff_acceptable))[0]] bdry_tempDiff = [surf_airBdry_tempDiff(state)] olrs = [(np.array(state['upwelling_longwave_flux_in_air']).flatten())[-1]] surfT = [(np.array(state['surface_temperature']).flatten())[0]] counter = 0 errorMargin = 0.5 #Loop to increment time while stop == False: #Updating state state.update(diagnostic(state)) diagnostics, state = time_stepper(state,timestep) state.update(diagnostics) #Updating appropriate quantities every month if counter % 42 == 0: netEn.append((net_energy_level_in_column(state,diff_acceptable))[0]) bdry_tempDiff.append(surf_airBdry_tempDiff(state)) olrs.append((np.array(state['upwelling_longwave_flux_in_air']).flatten())[-1]) surfT.append((np.array(state['surface_temperature']).flatten())[0]) # Checks breakout condition and increments time + counter. counter += 1 time = time + timestep if abs(net_energy_level_in_column(state,diff_acceptable)[0]) < errorMargin: stop = True #Calculating output quantities. timeTaken = time - datetime.datetime(2020,1,1,0,0,0) lwFluxNet, lwFluxUp, lwFluxDown = netFlux(state) heatRate = heatingRate(state) airTemperatureProf = (np.array(state['air_temperature'])).flatten() return state, timeTaken, olrs, bdry_tempDiff, netEn, surfT, lwFluxNet, lwFluxUp, lwFluxDown, heatRate, airTemperatureProf, airPressure_vertCoord def output_to_csv(timeTaken, olrs, bdry_tempDiff, netEn, surfT, lwFluxNet, lwFluxUp, lwFluxDown, heatRate, airTemperatureProf,airPressure_vertCoord): print(airPressure_vertCoord) with open('output_runModel/weekly_results.csv', mode='w') as weeklyCSV: weeklyWriter = csv.writer(weeklyCSV) weeklyWriter.writerow(olrs) weeklyWriter.writerow((np.array(bdry_tempDiff)).flatten()) weeklyWriter.writerow(surfT) weeklyWriter.writerow(netEn) weeklyWriter.writerow(airPressure_vertCoord) with open('output_runModel/equilibrium.csv', mode='w') as equilibriumCSV: equilibriumWriter = csv.writer(equilibriumCSV) equilibriumWriter.writerow(lwFluxNet) equilibriumWriter.writerow(lwFluxUp) equilibriumWriter.writerow(lwFluxDown) equilibriumWriter.writerow(heatRate) equilibriumWriter.writerow(airTemperatureProf) equilibriumWriter.writerow(str(timeTaken)) equilibriumWriter.writerow(airPressure_vertCoord) return 0. def maxTau_eqTime(): maxTaus = [0.5,1,3,6,8,10,12.5,15] out_Time = [] for maxT in maxTaus: timeTaken, olrs, bdry_tempDiff, netEn, surfT, lwFluxNet, lwFluxUp, lwFluxDown, heatRate, airTemperatureProf = runningModel(maxT) out_Time.append(timeTaken) out_Time = [float(i.days) for i in out_Time] return out_Time, maxTaus # runningModel() calls first 3 fns; does not need to be called in main() for runningModel() def main(): maxTau = 0.94 state, timeTaken, olrs, bdry_tempDiff, netEn, surfT, lwFluxNet, lwFluxUp, lwFluxDown, heatRate, airTemperatureProf, airPressure_vertCoord = runningModel(maxTau) output_to_csv(timeTaken, olrs, bdry_tempDiff, netEn, surfT, lwFluxNet, lwFluxUp, lwFluxDown, heatRate, airTemperatureProf, airPressure_vertCoord) print(state['upwelling_longwave_flux_in_air'][-1]) print(state['surface_temperature']) #outTimes, maxTaus = maxTau_eqTime() """plt.xlabel("Aggregate Atmospheric Optimal Thickness") plt.ylabel("Equilibrium Duration (Days)") #plt.scatter(maxTaus,outTimes) plt.plot(maxTaus,outTimes,color='black') plt.savefig("../../../graphs_modelling/1dradiative-eq/maxTau_eqTime.png") #plt.scatter() idealizedSurfT = 288.2 idealizedOLR = 231.76 RMS = [] maxTau_ranges = np.linspace(0,6,20) for maxTau in maxTau_ranges: planetary_albedo = 0.29 #cleaningUp() state, timeTaken, olrs, bdry_tempDiff, netEn, surfT, lwFluxNet, lwFluxUp, lwFluxDown, heatRate, airTemperatureProf = runningModel(maxTau) olr = np.array(state['upwelling_longwave_flux_in_air'][-1]).flatten()[0] surfT = np.array(state['surface_temperature']).flatten()[0] errorFunc = math.sqrt((idealizedOLR-olr)**2 + (idealizedSurfT-surfT)**2) print(errorFunc,maxTau) RMS.append(errorFunc) plt.plot(RMS) plt.savefig("RMSE_RadEq.png") plt.show() print(np.amin(RMS))""" if __name__ == '__main__': main() """ NOTE: DIFF ACCEPTABLE SET TO 5. ONLY USE radHt after reaching equilbrium. Required outs from runningModel(): 1) olr - historical 2) bdry_tempDiff - historical 3) net Energy level in atm. - historical 4) surface temp. - historical 5) upFlux - eq. 6) downFlux - eq. 7) netFlux - eq. 8) heating rate - eq. 9) air temp (p) - eq. 10) opticalDepth (p) - eq. --> MAYBE!! 11) equilibrium time """
40.324503
161
0.767614
4d0a8860b92137fe74a1fa841ebb9c256e434103
3,277
py
Python
src/main/lambda/WeatherDataIngestion.py
JFKenso/fitbit_insights
a65fb75063a6deb057e8827a0e054adc7f35645e
[ "Apache-2.0" ]
null
null
null
src/main/lambda/WeatherDataIngestion.py
JFKenso/fitbit_insights
a65fb75063a6deb057e8827a0e054adc7f35645e
[ "Apache-2.0" ]
null
null
null
src/main/lambda/WeatherDataIngestion.py
JFKenso/fitbit_insights
a65fb75063a6deb057e8827a0e054adc7f35645e
[ "Apache-2.0" ]
null
null
null
from __future__ import print_function import base64 import urllib2 import urllib import sys import json import os import boto3 from datetime import date, timedelta from boto3.dynamodb.conditions import Key, Attr from botocore.exceptions import ClientError #Declare these global variables that we'll use for the access and refresh tokens clientId = "XXX" clientSecret = "XXX" ddb = boto3.client('dynamodb') ml = boto3.client('machinelearning') #Some contants defining API error handling responses ErrorInAPI = "Error when making API call that I couldn't handle" #This makes an API call. It also catches errors and tries to deal with them def MakeAPICall(InURL): #Start the request InURL = InURL + "&client_id="+clientId+"&client_secret="+clientSecret req = urllib2.Request(InURL) #Fire off the request try: #Do the request response = urllib2.urlopen(req) #Read the response FullResponse = response.read() #Return values return True, FullResponse #Catch errors, e.g. A 401 error that signifies the need for a new access token except urllib2.URLError as e: print ("Got this HTTP error: " + str(e.code)) HTTPErrorMessage = e.read() print ("This was in the HTTP error message: " + HTTPErrorMessage) #Return that this didn't work, allowing the calling function to handle it return False, ErrorInAPI #Main part of the code def lambda_handler(event, context): FitbitUserID = "ABC" #This is the Aeris API AerisAPI = "https://api.aerisapi.com/forecasts/closest?p=-37.8136,144.9631&filter=1hr&limit=24" #Make the Profile API call APICallOK, WeatherData = MakeAPICall(AerisAPI) table = "WeatherData" if APICallOK: parsed_data = json.loads(WeatherData) weatherObjs = parsed_data['response'][0]['periods'] for period in weatherObjs: recordDateTime = str(period['validTime']) maxTempC = str(period['maxTempC']) minTempC = str(period['minTempC']) precipMM = str(period['precipMM']) humidity = str(period['humidity']) uvi = str(period['uvi']) pressureMB = str(period['pressureMB']) sky = str(period['sky']) feelslikeC = str(period['feelslikeC']) windDirDEG = str(period['windDirDEG']) windGustKPH = str(period['windGustKPH']) windSpeedKPH = str(period['windSpeedKPH']) weather = str(period['weather']) weatherPrimaryCoded = str(period['weatherPrimaryCoded']) isDay = str(period['isDay']) item = { "FitbitUserID": {"S": FitbitUserID}, "RecordDateTime": {"S": recordDateTime}, "maxTempC": {"S": maxTempC}, "minTempC": {"S": minTempC}, "precipMM": {"S": precipMM}, "humidity": {"S": humidity}, "uvi": {"S": uvi}, "pressureMB": {"S": pressureMB}, "sky": {"S": sky}, "feelslikeC": {"S": feelslikeC}, "windDirDEG": {"S": windDirDEG}, "windGustKPH": {"S": windGustKPH}, "windSpeedKPH": {"S": windSpeedKPH}, "weather": {"S": weather}, "weatherPrimaryCoded": {"S": weatherPrimaryCoded}, "isDay": {"S": isDay} } response = ddb.put_item(TableName = table, Item = item); #print("put response: " + str(response)) pass else: print( ErrorInAPI )
30.626168
97
0.657309
a99348a6e51590128f65e33baf7efc9cbf5f1e54
1,759
py
Python
Geolocation/Data/Design2a/design2a_11k_test5/pilot.0000/rp_install/lib/python2.7/site-packages/radical/pilot/agent/lm/func_exec.py
radical-experiments/iceberg_escience
e5c230a23395a71a4adf554730ea3d77f923166c
[ "MIT" ]
1
2019-05-24T02:19:29.000Z
2019-05-24T02:19:29.000Z
Geolocation/Data/Design2a/design2a_11k_test5/pilot.0000/rp_install/lib/python2.7/site-packages/radical/pilot/agent/lm/func_exec.py
radical-experiments/iceberg_escience
e5c230a23395a71a4adf554730ea3d77f923166c
[ "MIT" ]
null
null
null
Geolocation/Data/Design2a/design2a_11k_test5/pilot.0000/rp_install/lib/python2.7/site-packages/radical/pilot/agent/lm/func_exec.py
radical-experiments/iceberg_escience
e5c230a23395a71a4adf554730ea3d77f923166c
[ "MIT" ]
null
null
null
__copyright__ = "Copyright 2016, http://radical.rutgers.edu" __license__ = "MIT" from .base import LaunchMethod # ============================================================================== # class FuncExec(LaunchMethod): # -------------------------------------------------------------------------- # def __init__(self, cfg, session): LaunchMethod.__init__(self, cfg, session) # -------------------------------------------------------------------------- # def _configure(self): self.launch_command = '' self._req = rpu_Pubsub(self._session, 'func_request', rpu_PUBSUB_PUB) self._res = rpu_Pubsub(self._session, 'func_result', rpu_PUBSUB_SUB) self._res.subscribe('func_result') # -------------------------------------------------------------------------- # @classmethod def lrms_config_hook(cls, name, cfg, lrms, logger, profiler): # FIXME: - start func_exec pubsub # - start result pubsub pass # -------------------------------------------------------------------------- # def construct_command(self, cu, launch_script_hop): # NOTE: ignore thread and process counts, and expect application to do # the needful slots = cu['slots'] cud = cu['description'] task_exec = cud['executable'] task_args = cud.get('arguments') or [] task_argstr = self._create_arg_string(task_args) if task_argstr: command = "%s %s" % (task_exec, task_argstr) else: command = task_exec return command, None # ------------------------------------------------------------------------------
26.651515
80
0.429221
0d019fb014d429779bd2c59234d657150bb86fa0
530
py
Python
atcoder/abc/c199.py
tomato-300yen/coding
db6f440a96d8c83f486005c650461a69f27e3926
[ "MIT" ]
null
null
null
atcoder/abc/c199.py
tomato-300yen/coding
db6f440a96d8c83f486005c650461a69f27e3926
[ "MIT" ]
null
null
null
atcoder/abc/c199.py
tomato-300yen/coding
db6f440a96d8c83f486005c650461a69f27e3926
[ "MIT" ]
null
null
null
N = int(input()) NN = 2 * N S = input() Q = int(input()) TAB = [map(int, input().split()) for _ in range(Q)] def trans(a): return (a - N) % NN # init list_ = [i for i in range(NN)] num_flip = 0 for t, a, b in TAB: a, b = a - 1, b - 1 if t == 1: if num_flip % 2 == 1: a = trans(a) b = trans(b) list_[a], list_[b] = list_[b], list_[a] else: num_flip += 1 ans = "".join(map(lambda idx: S[idx], list_)) if num_flip % 2 == 1: ans = ans[N:] + ans[:N] print(ans)
17.666667
51
0.477358
4a4f3cf9a97abeaa410c9b1179f11e3184474b7b
240
py
Python
server.py
kleiba/pallyville
34f1ade802b6628d4fd9cbd39e729099517a4102
[ "MIT" ]
null
null
null
server.py
kleiba/pallyville
34f1ade802b6628d4fd9cbd39e729099517a4102
[ "MIT" ]
null
null
null
server.py
kleiba/pallyville
34f1ade802b6628d4fd9cbd39e729099517a4102
[ "MIT" ]
null
null
null
from http.server import * if __name__ == '__main__': host = '' port = 8080 server = HTTPServer((host, port), SimpleHTTPRequestHandler) print("Starting HTTP server on port {}.".format(port)) server.serve_forever()
21.818182
63
0.65
db63051c8be116ef07248201edecc8eca0455e61
157
py
Python
pydarknet2/darknet/exceptions.py
dapperfu/pydarknet2
0457771152d4fbb8cfb512aada62a1c7e50862af
[ "MIT" ]
2
2018-11-13T04:44:29.000Z
2019-08-06T08:25:34.000Z
pydarknet2/darknet/exceptions.py
dapperfu/pydarknet2
0457771152d4fbb8cfb512aada62a1c7e50862af
[ "MIT" ]
null
null
null
pydarknet2/darknet/exceptions.py
dapperfu/pydarknet2
0457771152d4fbb8cfb512aada62a1c7e50862af
[ "MIT" ]
null
null
null
"""Ipsum.""" class CloneException(Exception): """Clone exception.""" pass class BuildException(Exception): """Build exception.""" pass
11.214286
32
0.617834
4e3b9767ea5476ed703c9f785963bb469a3ca910
244
py
Python
utils.py
ondrejba/monte_carlo
6bea9afcfaa813c0eb494ae76f615fc483846396
[ "MIT" ]
14
2018-06-01T12:50:19.000Z
2021-01-05T22:18:26.000Z
utils.py
ondrejba/monte_carlo
6bea9afcfaa813c0eb494ae76f615fc483846396
[ "MIT" ]
null
null
null
utils.py
ondrejba/monte_carlo
6bea9afcfaa813c0eb494ae76f615fc483846396
[ "MIT" ]
5
2019-01-02T09:56:42.000Z
2022-03-11T06:10:22.000Z
def update_mean(value, mean, count): """ Update value of a streaming mean. :param value: New value. :param mean: Mean value. :param count: Number of values averaged. :return: """ return (value - mean) / (count + 1)
24.4
46
0.614754
e25c7326f751048f4e6942166f0e42514f3ef597
20,642
py
Python
zstackwoodpecker/zstackwoodpecker/operations/resource_operations.py
bgerxx/woodpecker
fdc51245945cc9be4d1f028988079213eb99b2ad
[ "Apache-2.0" ]
null
null
null
zstackwoodpecker/zstackwoodpecker/operations/resource_operations.py
bgerxx/woodpecker
fdc51245945cc9be4d1f028988079213eb99b2ad
[ "Apache-2.0" ]
null
null
null
zstackwoodpecker/zstackwoodpecker/operations/resource_operations.py
bgerxx/woodpecker
fdc51245945cc9be4d1f028988079213eb99b2ad
[ "Apache-2.0" ]
null
null
null
''' List resource API @author: Youyk ''' import apibinding.api_actions as api_actions import account_operations import apibinding.inventory as inventory import time import os import sys import traceback #Define default get resource method. default is using searchAPI, it can also be ListAPI. SEARCH_RESOURCE_METHOD = 'search' LIST_RESOURCE_METHOD = 'list' GET_RESOURCE_METHOD_BY_GET = 'get' #GET_RESOURCE_METHOD = SEARCH_RESOURCE_METHOD GET_RESOURCE_METHOD = LIST_RESOURCE_METHOD BACKUP_STORAGE = 'BackupStorage' SFTP_BACKUP_STORAGE = 'SftpBackupStorage' CEPH_BACKUP_STORAGE = 'CephBackupStorage' ZONE = 'Zone' CLUSTER = 'Cluster' PRIMARY_STORAGE = 'PrimaryStorage' CEPH_PRIMARY_STORAGE = 'CephPrimaryStorage' L2_NETWORK = 'L2Network' L2_VLAN_NETWORK = 'L2VlanNetwork' L2_VXLAN_NETWORK = 'L2VxlanNetwork' L2_VXLAN_NETWORK_POOL = 'L2VxlanNetworkPool' VNI_RANGE = 'VniRange' L3_NETWORK = 'L3Network' INSTANCE_OFFERING = 'InstanceOffering' IMAGE = 'Image' VOLUME = 'Volume' SHARE_VOLUME = 'ShareVolume' VM_INSTANCE = 'VmInstance' IP_RANGE = 'IpRange' HOST = 'Host' NETWORK_SERVICE_PROVIDER = 'NetworkServiceProvider' NETWORK_SERVICE_PROVIDER_L3_REF = 'NetworkServiceProviderL3Ref' APPLIANCE_VM = 'ApplianceVm' VIRTUALROUTER_VM = 'VirtualRouterVm' DISK_OFFERING = 'DiskOffering' ACCOUNT = 'Account' USER = 'User' PRIMARY_STORAGE = 'PrimaryStorage' SECURITY_GROUP = 'SecurityGroup' SECURITY_GROUP_RULE = 'SecurityGroupRule' VM_SECURITY_GROUP = 'VmSecurityGroup' VM_NIC = 'VmNic' PORT_FORWARDING = 'PortForwarding' MANAGEMENT_NODE = 'ManagementNode' EIP = 'Eip' VIP = 'Vip' IP_CAPACITY = 'IpCapacity' VR_OFFERING = 'VirtualRouterOffering' SYSTEM_TAG = 'SystemTag' USER_TAG = 'UserTag' VOLUME_SNAPSHOT_TREE = 'VolumeSnapshotTree' VOLUME_SNAPSHOT = 'VolumeSnapshot' LOAD_BALANCER = 'LoadBalancer' LOAD_BALANCER_LISTENER = 'LoadBalancerListener' LOCAL_STORAGE_RESOURCE_REF = 'LocalStorageResourceRef' IMAGE_STORE_BACKUP_STORAGE = 'ImageStoreBackupStorage' SCHEDULER = 'Scheduler' SCHEDULERJOB = 'SchedulerJob' SCHEDULERTRIGGER = 'SchedulerTrigger' VCENTER = 'VCenter' VCENTER_CLUSTER = 'VCenterCluster' VCENTER_BACKUP_STORAGE = 'VCenterBackupStorage' VCENTER_PRIMARY_STORAGE = 'VCenterPrimaryStorage' MONITOR_TRIGGER = 'MonitorTrigger' MONITOR_TRIGGER_ACTION = 'MonitorTriggerAction' PXE_SERVER = 'PxeServer' CHASSIS = 'Chassis' HWINFO = 'HardwareInfo' def find_item_by_uuid(inventories, uuid): for item in inventories: if item.uuid == uuid: #test_util.test_logger("Item found by UUID: %s" % uuid) return [item] #test_util.test_logger("Not found item with UUID: %s" % uuid) return None def find_item_by_name(inventories, name): for item in inventories: if item.name == name: #test_util.test_logger("Item found by name: %s" % name) return [item] #test_util.test_logger("Not found item with name: %s" % name) return None #Using List API def list_resource(resource, session_uuid=None, uuid=None, name=None): ''' Return: list by list API. ''' if resource == BACKUP_STORAGE: action = api_actions.ListBackupStorageAction() elif resource == ZONE: action = api_actions.ListZonesAction() elif resource == PRIMARY_STORAGE: action = api_actions.ListPrimaryStorageAction() elif resource == L2_NETWORK: action = api_actions.ListL2NetworkAction() elif resource == L2_VLAN_NETWORK: action = api_actions.ListL2VlanNetworkAction() elif resource == CLUSTER: action = api_actions.ListClusterAction() elif resource == L3_NETWORK: action = api_actions.ListL3NetworkAction() elif resource == INSTANCE_OFFERING: action = api_actions.ListInstanceOfferingAction() elif resource == IMAGE: action = api_actions.ListImageAction() elif resource == VOLUME: action = api_actions.ListVolumeAction() elif resource == VM_INSTANCE: action = api_actions.ListVmInstanceAction() elif resource == IP_RANGE: action = api_actions.ListIpRangeAction() elif resource == HOST: action = api_actions.ListHostAction() elif resource == NETWORK_SERVICE_PROVIDER: action = api_actions.ListNetworkServiceProviderAction() elif resource == APPLIANCE_VM: action = api_actions.ListApplianceVmAction() elif resource == DISK_OFFERING: action = api_actions.ListDiskOfferingAction() elif resource == ACCOUNT: action = api_actions.ListAccountAction() elif resource == PRIMARY_STORAGE: action = api_actions.ListPrimaryStorageAction() elif resource == SECURITY_GROUP: action = api_actions.ListSecurityGroupAction() elif resource == VM_SECURITY_GROUP: action = api_actions.ListVmNicInSecurityGroupAction() elif resource == VM_NIC: action = api_actions.ListVmNicAction() elif resource == PORT_FORWARDING: action = api_actions.ListPortForwardingRuleAction() elif resource == MANAGEMENT_NODE: action = api_actions.ListManagementNodeAction() ret = account_operations.execute_action_with_session(action, session_uuid) if uuid: return find_item_by_uuid(ret, uuid) if name: return find_item_by_name(ret, name) return ret #Using Search API def search_resource(resource, session_uuid, uuid=None, name=None): ''' Return: list by search This API was depricated. ''' if resource == BACKUP_STORAGE: action = api_actions.SearchBackupStorageAction() elif resource == ZONE: action = api_actions.SearchZoneAction() elif resource == PRIMARY_STORAGE: action = api_actions.SearchPrimaryStorageAction() elif resource == L2_NETWORK: action = api_actions.SearchL2NetworkAction() elif resource == L2_VLAN_NETWORK: action = api_actions.SearchL2VlanNetworkAction() elif resource == CLUSTER: action = api_actions.SearchClusterAction() elif resource == L3_NETWORK: action = api_actions.SearchL3NetworkAction() elif resource == INSTANCE_OFFERING: action = api_actions.SearchInstanceOfferingAction() elif resource == IMAGE: action = api_actions.SearchImageAction() elif resource == VOLUME: action = api_actions.SearchVolumeAction() elif resource == VM_INSTANCE: action = api_actions.SearchVmInstanceAction() elif resource == IP_RANGE: action = api_actions.SearchIpRangeAction() elif resource == HOST: action = api_actions.SearchHostAction() elif resource == NETWORK_SERVICE_PROVIDER: action = api_actions.SearchNetworkServiceProviderAction() elif resource == APPLIANCE_VM: action = api_actions.SearchApplianceVmAction() elif resource == DISK_OFFERING: action = api_actions.SearchDiskOfferingAction() elif resource == ACCOUNT: action = api_actions.SearchAccountAction() elif resource == PRIMARY_STORAGE: action = api_actions.SearchPrimaryStorageAction() #elif resource == SECURITY_GROUP: # action = api_actions.SearchSecurityGroupAction() #elif resource == VM_SECURITY_GROUP: # action = api_actions.SearchVmNicInSecurityGroupAction() action.sessionUuid = session_uuid action.nameOpValueTriples = [] if uuid: t = inventory.NOVTriple() t.name = 'uuid' t.op = inventory.AND_EQ t.val = uuid action.nameOpValueTriples.append(t) if name: t = inventory.NOVTriple() t.name = 'name' t.op = inventory.AND_EQ t.val = name action.nameOpValueTriples.append(t) # the time delay is because of elastic search iventory will delay 0.5s after original data was created in database. time.sleep(0.3) ret = action.run() return ret def get_resource_by_get(resource, session_uuid, uuid): ''' Return a list by get API. ''' if resource == BACKUP_STORAGE: action = api_actions.GetBackupStorageAction() elif resource == ZONE: action = api_actions.GetZoneAction() elif resource == PRIMARY_STORAGE: action = api_actions.GetPrimaryStorageAction() elif resource == L2_NETWORK: action = api_actions.GetL2NetworkAction() elif resource == L2_VLAN_NETWORK: action = api_actions.GetL2VlanNetworkAction() elif resource == CLUSTER: action = api_actions.GetClusterAction() elif resource == L3_NETWORK: action = api_actions.GetL3NetworkAction() elif resource == INSTANCE_OFFERING: action = api_actions.GetInstanceOfferingAction() elif resource == IMAGE: action = api_actions.GetImageAction() elif resource == VOLUME: action = api_actions.GetVolumeAction() elif resource == VM_INSTANCE: action = api_actions.GetVmInstanceAction() elif resource == IP_RANGE: action = api_actions.GetIpRangeAction() elif resource == HOST: action = api_actions.GetHostAction() elif resource == NETWORK_SERVICE_PROVIDER: action = api_actions.GetNetworkServiceProviderAction() elif resource == APPLIANCE_VM: action = api_actions.GetApplianceVmAction() elif resource == DISK_OFFERING: action = api_actions.GetDiskOfferingAction() elif resource == ACCOUNT: action = api_actions.GetAccountAction() elif resource == PRIMARY_STORAGE: action = api_actions.GetPrimaryStorageAction() elif resource == VR_OFFERING: action = api_actions.GetVirtualRouterOfferingAction() #elif resource == SECURITY_GROUP: # action = api_actions.GetSecurityGroupAction() #elif resource == VM_SECURITY_GROUP: # action = api_actions.GetVmNicInSecurityGroupAction() action.uuid = uuid ret = account_operations.execute_action_with_session(action, session_uuid) return ret def gen_query_conditions(name, op, value, conditions=[]): new_conditions = [{'name': name, 'op': op, 'value': value}] new_conditions.extend(conditions) return new_conditions def _gen_query_action(resource): if resource == BACKUP_STORAGE: action = api_actions.QueryBackupStorageAction() elif resource == SFTP_BACKUP_STORAGE: action = api_actions.QuerySftpBackupStorageAction() elif resource == CEPH_BACKUP_STORAGE: action = api_actions.QueryCephBackupStorageAction() elif resource == ZONE: action = api_actions.QueryZoneAction() elif resource == PRIMARY_STORAGE: action = api_actions.QueryPrimaryStorageAction() elif resource == L2_NETWORK: action = api_actions.QueryL2NetworkAction() elif resource == L2_VLAN_NETWORK: action = api_actions.QueryL2VlanNetworkAction() elif resource == L2_VXLAN_NETWORK: action = api_actions.QueryL2VxlanNetworkAction() elif resource == L2_VXLAN_NETWORK_POOL: action = api_actions.QueryL2VxlanNetworkPoolAction() elif resource == VNI_RANGE: action = api_actions.QueryVniRangeAction() elif resource == CLUSTER: action = api_actions.QueryClusterAction() elif resource == L3_NETWORK: action = api_actions.QueryL3NetworkAction() elif resource == INSTANCE_OFFERING: action = api_actions.QueryInstanceOfferingAction() elif resource == IMAGE: action = api_actions.QueryImageAction() elif resource == VOLUME: action = api_actions.QueryVolumeAction() elif resource == SHARE_VOLUME: action = api_actions.QueryShareableVolumeVmInstanceRefAction() elif resource == VM_INSTANCE: action = api_actions.QueryVmInstanceAction() elif resource == IP_RANGE: action = api_actions.QueryIpRangeAction() elif resource == HOST: action = api_actions.QueryHostAction() elif resource == NETWORK_SERVICE_PROVIDER: action = api_actions.QueryNetworkServiceProviderAction() elif resource == NETWORK_SERVICE_PROVIDER_L3_REF: action = api_actions.QueryNetworkServiceL3NetworkRefAction() elif resource == APPLIANCE_VM: action = api_actions.QueryApplianceVmAction() elif resource == VIRTUALROUTER_VM: action = api_actions.QueryVirtualRouterVmAction() elif resource == DISK_OFFERING: action = api_actions.QueryDiskOfferingAction() elif resource == ACCOUNT: action = api_actions.QueryAccountAction() elif resource == CEPH_PRIMARY_STORAGE: action = api_actions.QueryCephPrimaryStorageAction() elif resource == SECURITY_GROUP: action = api_actions.QuerySecurityGroupAction() elif resource == SECURITY_GROUP_RULE: action = api_actions.QuerySecurityGroupRuleAction() elif resource == VM_SECURITY_GROUP: action = api_actions.QueryVmNicInSecurityGroupAction() elif resource == VM_NIC: action = api_actions.QueryVmNicAction() elif resource == PORT_FORWARDING: action = api_actions.QueryPortForwardingRuleAction() elif resource == MANAGEMENT_NODE: action = api_actions.QueryManagementNodeAction() elif resource == EIP: action = api_actions.QueryEipAction() elif resource == VIP: action = api_actions.QueryVipAction() elif resource == VR_OFFERING: action = api_actions.QueryVirtualRouterOfferingAction() elif resource == SYSTEM_TAG: action = api_actions.QuerySystemTagAction() elif resource == USER_TAG: action = api_actions.QueryUserTagAction() elif resource == VOLUME_SNAPSHOT_TREE: action = api_actions.QueryVolumeSnapshotTreeAction() elif resource == VOLUME_SNAPSHOT: action = api_actions.QueryVolumeSnapshotAction() elif resource == USER: action = api_actions.QueryUserAction() elif resource == LOAD_BALANCER: action = api_actions.QueryLoadBalancerAction() elif resource == LOAD_BALANCER_LISTENER: action = api_actions.QueryLoadBalancerListenerAction() elif resource == LOCAL_STORAGE_RESOURCE_REF: action = api_actions.QueryLocalStorageResourceRefAction() elif resource == IMAGE_STORE_BACKUP_STORAGE: action = api_actions.QueryImageStoreBackupStorageAction() elif resource == SCHEDULER: action = api_actions.QuerySchedulerAction() elif resource == SCHEDULERJOB: action = api_actions.QuerySchedulerJobAction() elif resource == SCHEDULERTRIGGER: action = api_actions.QuerySchedulerTriggerAction() elif resource == VCENTER: action = api_actions.QueryVCenterAction() elif resource == VCENTER_CLUSTER: action = api_actions.QueryVCenterClusterAction() elif resource == VCENTER_BACKUP_STORAGE: action = api_actions.QueryVCenterBackupStorageAction() elif resource == VCENTER_PRIMARY_STORAGE: action = api_actions.QueryVCenterPrimaryStorageAction() elif resource == MONITOR_TRIGGER: action = api_actions.QueryMonitorTriggerAction() elif resource == MONITOR_TRIGGER_ACTION: action = api_actions.QueryMonitorTriggerActionAction() elif resource == PXE_SERVER: action = api_actions.QueryBaremetalPxeServerAction() elif resource == CHASSIS: action = api_actions.QueryBaremetalChassisAction() elif resource == HWINFO: action = api_actions.QueryBaremetalHardwareInfoAction() return action def query_resource(resource, conditions = [], session_uuid=None, count='false'): ''' Call Query API and return all matched resource. conditions could be generated by gen_query_conditions() If session_uuid is missing, we will create one for you and only live in this API. ''' action = _gen_query_action(resource) action.conditions = conditions ret = account_operations.execute_action_with_session(action, session_uuid) return ret def query_resource_count(resource, conditions = [], session_uuid=None): ''' Call Query API to return the matched resource count When count=true, it will only return the number of matched resource ''' action = _gen_query_action(resource) action.conditions = conditions action.count='true' account_operations.execute_action_with_session(action, session_uuid) return action.reply.total def query_resource_with_num(resource, conditions = [], session_uuid=None, \ start=0, limit=1000): ''' Query matched resource and return required numbers. ''' action = _gen_query_action(resource) action.conditions = conditions action.start = start action.limit = limit ret = account_operations.execute_action_with_session(action, session_uuid) return ret def query_resource_fields(resource, conditions = [], session_uuid=None, \ fields=[], start=0, limit=1000): ''' Query matched resource by returning required fields and required numbers. ''' action = _gen_query_action(resource) action.conditions = conditions action.start = start action.limit = limit action.fields = fields ret = account_operations.execute_action_with_session(action, session_uuid) return ret def get_resource(resource, session_uuid=None, uuid=None, name=None): if uuid: cond = gen_query_conditions('uuid', '=', uuid) elif name: cond = gen_query_conditions('name', '=', name) else: cond = gen_query_conditions('uuid', '!=', 'NULL') return query_resource(resource, cond, session_uuid) #if GET_RESOURCE_METHOD == LIST_RESOURCE_METHOD: # return list_resource(resource, session_uuid, uuid=uuid, name=name) #elif GET_RESOURCE_METHOD == GET_RESOURCE_METHOD_BY_GET: # if not uuid: # raise Exception('Get_Resource function error, uuid can not be None') # return get_resource_by_get(resource, session_uuid, uuid=uuid) #else: # return search_resource(resource, session_uuid, uuid=uuid, name=name) def safely_get_resource(res_name, cond = [], session_uuid = None, \ fields = None, limit = 100): ''' If there are a lot of resource (e.g. >1k), query all of them in 1 command is very dangours. It might crash ZStack, when the data is huge. ''' res_count = query_resource_count(res_name, cond, session_uuid) res_list = [] if res_count <= limit: res_list = query_resource_fields(res_name, cond, session_uuid, fields) else: curr_count = 0 while curr_count <= res_count: curr_list = query_resource_with_num(res_name, cond, \ session_uuid, fields, start=current_count, limit = limit) res_list.extend(curr_list) curr_count += limit return res_list def change_recource_owner(accountUuid, resourceUuid, session_uuid = None): action = api_actions.ChangeResourceOwnerAction() action.accountUuid = accountUuid action.resourceUuid = resourceUuid evt = account_operations.execute_action_with_session(action, session_uuid) return evt def get_resource_owner(resourceUuid, session_uuid = None): action = api_actions.GetResourceAccountAction() action.resourceUuids = resourceUuid ret = account_operations.execute_action_with_session(action, session_uuid) return ret.inventories[resourceUuid[0]].uuid def get_task_progress(apiId, session_uuid = None): action = api_actions.GetTaskProgressAction() action.apiId = apiId evt = account_operations.execute_action_with_session(action, session_uuid) return evt def get_progress(apiId, session_uuid = None): action = api_actions.GetTaskProgressAction() action.apiId = apiId evt = account_operations.execute_action_with_session(action, session_uuid) inventories = [] for ei in evt.inventories: if ei.type == 'Progress': inventories.append(ei) return inventories def enable_change_vm_password(is_enable, resourceUuid, resourceType, session_uuid = None): action = api_actions.EnableChangeVmPasswordAction() action.enable = is_enable action.resourceUuid = resourceUuid action.resourceType = resourceType evt = account_operations.execute_action_with_session(action, session_uuid) return evt
39.020794
120
0.698866
d6d5bfad115c03c01450a6641aa8a5759b13c18e
2,964
py
Python
pwass/dimsensionality_reduction/simplicial_pca.py
mberaha/ProjectedWasserstein
20d19fc49f20124762eb497031cba0918b5eaadb
[ "BSD-3-Clause" ]
1
2021-11-30T09:11:56.000Z
2021-11-30T09:11:56.000Z
pwass/dimsensionality_reduction/simplicial_pca.py
mberaha/ProjectedWasserstein
20d19fc49f20124762eb497031cba0918b5eaadb
[ "BSD-3-Clause" ]
1
2021-05-25T08:49:25.000Z
2021-05-25T08:49:25.000Z
pwass/dimsensionality_reduction/simplicial_pca.py
mberaha/ProjectedWasserstein
20d19fc49f20124762eb497031cba0918b5eaadb
[ "BSD-3-Clause" ]
null
null
null
import numpy as np from scipy.integrate import simps from pwass.dimsensionality_reduction.base_pca import PCA from pwass.spline import SplineBasis class SimplicialPCA(object): def __init__(self, nbasis, k=3, compute_spline=True, spline_basis=None): self.nbasis = nbasis self.k = k self.remove_last_col = False self.compute_spline = compute_spline self.spline_basis = spline_basis @staticmethod def clr(f_eval, grid): log_f = np.log(f_eval + 1e-30) out = log_f - simps(log_f / (grid[-1] - grid[0]), grid) return out @staticmethod def inv_clr(f_eval, grid): out = np.exp(f_eval) den = simps(out, grid) return out / den def fit(self, distribs, k): """ All the distributions must be defined on the same grid """ # TODO (@MARIO): check that the grid is the same for all # distributions if self.spline_basis is None: self.spline_basis = SplineBasis( self.k, xgrid=distribs[0].pdf_grid, nbasis=self.nbasis) self.metric = self.spline_basis.metric self._process_data(distribs) self.k = k coeff_centered = self.coeff_mat - self.bary M = np.matmul(np.dot(coeff_centered.T, coeff_centered) + np.eye(self.nbasis) * 1e-4, self.metric) eig_vals, eig_vecs = np.linalg.eig(M) eig_vals = np.real(eig_vals) + 1e-6 eig_vecs = np.real(eig_vecs) + 1e-6 eig_vecs = eig_vecs / np.sqrt( np.diag(np.matmul(np.matmul(eig_vecs.T, self.metric), eig_vecs))) aux = np.argsort(eig_vals) self.eig_vals = np.flip(np.sort(eig_vals)) self.eig_vecs = np.flip(eig_vecs[:, aux], axis=1) self.base_change = np.linalg.inv(self.eig_vecs) def transform(self, distribs): X = self.get_spline_mat(distribs) X_trans = np.matmul(X - self.bary, self.base_change.T)[:, :self.k] return X_trans def pt_from_proj(self, proj_coord): pt = np.dot(proj_coord, self.eig_vecs[:, :self.k].T) return pt def get_pdf(self, proj_coeffs): func = self.spline_basis.eval_spline(proj_coeffs, self.pdf_grid) return self.inv_clr(func, self.pdf_grid) def _process_data(self, distribs): self.pdf_grid = distribs[0].pdf_grid self.ndata = len(distribs) self.distribs = distribs self.coeff_mat = self.get_spline_mat(distribs) self.bary = np.mean(self.coeff_mat, axis=0) def get_spline_mat(self, distribs): out = np.zeros((len(distribs), self.nbasis)) for i, d in enumerate(distribs): if self.compute_spline: out[i, :] = self.spline_basis.get_spline_expansion( self.clr(d.pdf_eval, d.pdf_grid)) else: out[i, :] = d.clr_coeffs return out
32.933333
77
0.602901
380e48809a93b6c2f6dcd9ef7eb066f010f7a407
958
py
Python
Coding Problem 3.3.12.py
opalqnka/CS1301xII
bba9cf34a7f6f0d1e0d90a73b933f3a90bdb825e
[ "MIT" ]
null
null
null
Coding Problem 3.3.12.py
opalqnka/CS1301xII
bba9cf34a7f6f0d1e0d90a73b933f3a90bdb825e
[ "MIT" ]
null
null
null
Coding Problem 3.3.12.py
opalqnka/CS1301xII
bba9cf34a7f6f0d1e0d90a73b933f3a90bdb825e
[ "MIT" ]
1
2020-07-16T06:56:22.000Z
2020-07-16T06:56:22.000Z
mystery_string = "my cat your cat" #You may modify the lines of code above, but don't move them! #When you Submit your code, we'll change these lines to #assign different values to the variables. #Add some code below that will count and print how many #times the character sequence "cat" appears in mystery_string. #For example, for the string above, it would print 2. # #This one is tricky! Think carefully about for-each loops, #conditionals, and booleans. How can you track what character #you're currently looking for? We expect you'll use a loop #and a single big conditional, but there are other approaches #as well. Try to stick with the topics we've covered so far. #Add your code here! counter = 0 result = 0 for char in mystery_string: if counter <= (len(mystery_string) - 3): if char == "c" and mystery_string[counter+1] == "a" and mystery_string[counter+2]=="t": result += 1 counter += 1 print(result)
35.481481
95
0.716075
3199dbe4aad30f7ee646a64f0ef474c76c95aef1
5,995
py
Python
mayatools/geocache/exporter.py
westernx/mayatools
47c91050cb54167268d456e130ffce2d55373381
[ "BSD-3-Clause" ]
47
2015-01-07T17:38:39.000Z
2022-03-22T02:42:39.000Z
mayatools/geocache/exporter.py
westernx/mayatools
47c91050cb54167268d456e130ffce2d55373381
[ "BSD-3-Clause" ]
1
2016-04-25T09:02:57.000Z
2016-04-25T13:55:13.000Z
mayatools/geocache/exporter.py
westernx/mayatools
47c91050cb54167268d456e130ffce2d55373381
[ "BSD-3-Clause" ]
12
2015-07-13T12:32:35.000Z
2020-04-29T02:58:49.000Z
from __future__ import absolute_import import os import re import traceback from maya import cmds, mel from mayatools.playblast import screenshot from sgfs import SGFS from sgfs.commands.utils import parse_spec import metatools.deprecate import qbfutures.maya import sgpublish.commands.utils as publish_cli_utils import sgpublish.exporter.maya from .utils import export_cache def run(): import warnings warnings.warn('exporter.run moved to exporterui') from .exporterui import run run() def cache_name_from_cache_set(path): name_parts = path.split(':') name_parts[-1] = name_parts[-1].replace('cache', '_') name_parts = [re.sub(r'[\W_]+', '_', x).strip('_') for x in name_parts] name_parts[-1] = '_' + name_parts[-1] return '_'.join(name_parts).strip('_') class Exporter(sgpublish.exporter.maya.Exporter): def __init__(self): super(Exporter, self).__init__( workspace=cmds.workspace(q=True, fullName=True) or None, filename_hint=cmds.file(q=True, sceneName=True) or 'geocache.mb', publish_type='maya_geocache', ) def add_path_to_work(self, directory, to_cache): for members, name, frame_from, frame_to, world in to_cache: yield members, os.path.join(directory, name), name, frame_from, frame_to, world def export_publish(self, publish, **kwargs): # Set the path to the directory. publish.path = publish.directory kwargs['name'] = '%s - v%04d' % (publish.name, publish.version) kwargs['alembic_metadata'] = metadata = (kwargs.get('alembic_metadata') or {}).copy() metadata['sgpublish'] = { 'entity': publish.entity.minimal, 'name': publish.name, 'path': publish.path, 'type': publish.type, 'version': publish.version, } self.export(publish.directory, publish.path, **kwargs) def export(self, directory, path, to_cache, on_farm=False, as_abc=True, alembic_metadata=None, name=None): if not os.path.exists(directory): os.makedirs(directory) # Save the scene itself into the directory. src_path = cmds.file(q=True, sceneName=True) src_ext = os.path.splitext(src_path)[1] dst_path = os.path.join(directory, os.path.basename(src_path)) maya_type = 'mayaBinary' if src_ext == '.mb' else 'mayaAscii' try: cmds.file(rename=dst_path) cmds.file(save=True, type=maya_type) finally: cmds.file(rename=src_path) # Add the path. to_cache = self.add_path_to_work(path, to_cache) if on_farm: executor = qbfutures.maya.Executor( cpus=4, clone_environ=True, create_tempfile=True, ) with executor.batch('Geocache Export - %s' % (name or os.path.basename(path))) as batch: for args in to_cache: members, path, name, frame_from, frame_to, world = args batch.submit_ext(export_cache, args=args, kwargs={'as_abc': as_abc, 'alembic_metadata': alembic_metadata}, name=str(name)) try: from PyQt4 import QtGui except ImportError: print 'job', batch.futures[0].job_id else: QtGui.QMessageBox.information(None, "Submitted to Qube", "The geocache export was submitted as job %d" % batch.futures[0].job_id) if not on_farm: for args in to_cache: export_cache(*args, as_abc=as_abc, alembic_metadata=alembic_metadata) def main(argv=None): import argparse import logging log = logging.getLogger(__name__) parser = argparse.ArgumentParser() parser.add_argument('--no-world', action='store_true') parser.add_argument('--no-abc', action='store_true') parser.add_argument('-s', '--start', type=int) parser.add_argument('-e', '--end', type=int) parser.add_argument('-d', '--out-dir') publish_cli_utils.add_publisher_arguments(parser, short_flags=False, prefix=True) parser.add_argument('-l', '--list-sets', action='store_true') parser.add_argument('scene') parser.add_argument('cache_sets', nargs='*') args = parser.parse_args(argv) publisher_kwargs = publish_cli_utils.extract_publisher_kwargs(args) log.info('initializing Maya') import maya.standalone maya.standalone.initialize() log.info('loading file') cmds.file(args.scene, open=True) log.info('done loading file') cache_sets = set(cmds.ls(*(args.cache_sets or ['__cache__*']), sets=True, recursive=True, long=True) or ()) if args.list_sets: print '\n'.join(sorted(cache_sets)) return frame_from = args.start or cmds.playbackOptions(q=True, animationStartTime=True) frame_to = args.end or cmds.playbackOptions(q=True, animationEndTime=True) world = not args.no_world as_abc = not args.no_abc to_cache = [] for cache_set in cache_sets: members = cmds.sets(cache_set, q=True) name = cache_name_from_cache_set(cache_set) or 'cache' to_cache.append((members, name, frame_from, frame_to, world)) exporter = Exporter() name = os.path.splitext(os.path.basename(args.scene))[0] if 'link' in publisher_kwargs or 'template' in publisher_kwargs: if 'template' not in publisher_kwargs: publisher_kwargs['name'] = name exporter.publish(export_kwargs=dict(to_cache=to_cache, as_abc=as_abc), **publisher_kwargs) else: directory = args.out_dir or os.path.join(args.scene, '..', 'data', 'geo_cache', name) exporter.export(directory=directory, path=directory, to_cache=to_cache, as_abc=as_abc) log.info('DONE') if __name__ == '__main__': try: main() except Exception as e: traceback.print_exc() os._exit(1) else: os._exit(0)
33.870056
145
0.641868
e84345f014083de835a70bba7fc77662a2f0bb46
13,960
py
Python
extractors/i3d/i3d.py
KTaskn/MILForVideos
cf8921b3a9b133224bcefe3bc11e6b7f1c61fa82
[ "Apache-2.0" ]
null
null
null
extractors/i3d/i3d.py
KTaskn/MILForVideos
cf8921b3a9b133224bcefe3bc11e6b7f1c61fa82
[ "Apache-2.0" ]
null
null
null
extractors/i3d/i3d.py
KTaskn/MILForVideos
cf8921b3a9b133224bcefe3bc11e6b7f1c61fa82
[ "Apache-2.0" ]
null
null
null
#I3D code adapted from https://github.com/piergiaj/pytorch-i3d import torch import torch.nn as nn import torch.nn.functional as F import numpy as np class MaxPool3dSamePadding(nn.MaxPool3d): def compute_pad(self, dim, s): if s % self.stride[dim] == 0: return max(self.kernel_size[dim] - self.stride[dim], 0) else: return max(self.kernel_size[dim] - (s % self.stride[dim]), 0) def forward(self, x): # compute 'same' padding (batch, channel, t, h, w) = x.size() # print t,h,w out_t = np.ceil(float(t) / float(self.stride[0])) out_h = np.ceil(float(h) / float(self.stride[1])) out_w = np.ceil(float(w) / float(self.stride[2])) # print out_t, out_h, out_w pad_t = self.compute_pad(0, t) pad_h = self.compute_pad(1, h) pad_w = self.compute_pad(2, w) # print pad_t, pad_h, pad_w pad_t_f = pad_t // 2 pad_t_b = pad_t - pad_t_f pad_h_f = pad_h // 2 pad_h_b = pad_h - pad_h_f pad_w_f = pad_w // 2 pad_w_b = pad_w - pad_w_f pad = (pad_w_f, pad_w_b, pad_h_f, pad_h_b, pad_t_f, pad_t_b) # print x.size() # print pad x = F.pad(x, pad) return super(MaxPool3dSamePadding, self).forward(x) class Unit3D(nn.Module): def __init__(self, in_channels, output_channels, kernel_shape=(1, 1, 1), stride=(1, 1, 1), padding=0, activation_fn=F.relu, use_batch_norm=True, use_bias=False, name='unit_3d'): """Initializes Unit3D module.""" super(Unit3D, self).__init__() self._output_channels = output_channels self._kernel_shape = kernel_shape self._stride = stride self._use_batch_norm = use_batch_norm self._activation_fn = activation_fn self._use_bias = use_bias self.name = name self.padding = padding self.conv3d = nn.Conv3d(in_channels=in_channels, out_channels=self._output_channels, kernel_size=self._kernel_shape, stride=self._stride, padding=0, # we always want padding to be 0 here. We will dynamically pad based on input size in forward function bias=self._use_bias) if self._use_batch_norm: self.bn = nn.BatchNorm3d(self._output_channels, eps=0.001, momentum=0.01) def compute_pad(self, dim, s): if s % self._stride[dim] == 0: return max(self._kernel_shape[dim] - self._stride[dim], 0) else: return max(self._kernel_shape[dim] - (s % self._stride[dim]), 0) def forward(self, x): # compute 'same' padding (batch, channel, t, h, w) = x.size() # print t,h,w out_t = np.ceil(float(t) / float(self._stride[0])) out_h = np.ceil(float(h) / float(self._stride[1])) out_w = np.ceil(float(w) / float(self._stride[2])) # print out_t, out_h, out_w pad_t = self.compute_pad(0, t) pad_h = self.compute_pad(1, h) pad_w = self.compute_pad(2, w) # print pad_t, pad_h, pad_w pad_t_f = pad_t // 2 pad_t_b = pad_t - pad_t_f pad_h_f = pad_h // 2 pad_h_b = pad_h - pad_h_f pad_w_f = pad_w // 2 pad_w_b = pad_w - pad_w_f pad = (pad_w_f, pad_w_b, pad_h_f, pad_h_b, pad_t_f, pad_t_b) # print x.size() # print pad x = F.pad(x, pad) # print x.size() x = self.conv3d(x) if self._use_batch_norm: x = self.bn(x) if self._activation_fn is not None: x = self._activation_fn(x) return x class InceptionModule(nn.Module): def __init__(self, in_channels, out_channels, name): super(InceptionModule, self).__init__() self.b0 = Unit3D(in_channels=in_channels, output_channels=out_channels[0], kernel_shape=[1, 1, 1], padding=0, name=name + '/Branch_0/Conv3d_0a_1x1') self.b1a = Unit3D(in_channels=in_channels, output_channels=out_channels[1], kernel_shape=[1, 1, 1], padding=0, name=name + '/Branch_1/Conv3d_0a_1x1') self.b1b = Unit3D(in_channels=out_channels[1], output_channels=out_channels[2], kernel_shape=[3, 3, 3], name=name + '/Branch_1/Conv3d_0b_3x3') self.b2a = Unit3D(in_channels=in_channels, output_channels=out_channels[3], kernel_shape=[1, 1, 1], padding=0, name=name + '/Branch_2/Conv3d_0a_1x1') self.b2b = Unit3D(in_channels=out_channels[3], output_channels=out_channels[4], kernel_shape=[3, 3, 3], name=name + '/Branch_2/Conv3d_0b_3x3') self.b3a = MaxPool3dSamePadding(kernel_size=[3, 3, 3], stride=(1, 1, 1), padding=0) self.b3b = Unit3D(in_channels=in_channels, output_channels=out_channels[5], kernel_shape=[1, 1, 1], padding=0, name=name + '/Branch_3/Conv3d_0b_1x1') self.name = name def forward(self, x): b0 = self.b0(x) b1 = self.b1b(self.b1a(x)) b2 = self.b2b(self.b2a(x)) b3 = self.b3b(self.b3a(x)) return torch.cat([b0, b1, b2, b3], dim=1) class InceptionI3d(nn.Module): """Inception-v1 I3D architecture. The model is introduced in: Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset Joao Carreira, Andrew Zisserman https://arxiv.org/pdf/1705.07750v1.pdf. See also the Inception architecture, introduced in: Going deeper with convolutions Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich. http://arxiv.org/pdf/1409.4842v1.pdf. """ # Endpoints of the model in order. During construction, all the endpoints up # to a designated `final_endpoint` are returned in a dictionary as the # second return value. VALID_ENDPOINTS = ( 'Conv3d_1a_7x7', 'MaxPool3d_2a_3x3', 'Conv3d_2b_1x1', 'Conv3d_2c_3x3', 'MaxPool3d_3a_3x3', 'Mixed_3b', 'Mixed_3c', 'MaxPool3d_4a_3x3', 'Mixed_4b', 'Mixed_4c', 'Mixed_4d', 'Mixed_4e', 'Mixed_4f', 'MaxPool3d_5a_2x2', 'Mixed_5b', 'Mixed_5c', 'Logits', 'Predictions', ) def __init__(self, num_classes=157, spatial_squeeze=True, final_endpoint='Logits', name='inception_i3d', in_channels=3, dropout_keep_prob=0.5): """Initializes I3D model instance. Args: num_classes: The number of outputs in the logit layer (default 400, which matches the Kinetics dataset). spatial_squeeze: Whether to squeeze the spatial dimensions for the logits before returning (default True). final_endpoint: The model contains many possible endpoints. `final_endpoint` specifies the last endpoint for the model to be built up to. In addition to the output at `final_endpoint`, all the outputs at endpoints up to `final_endpoint` will also be returned, in a dictionary. `final_endpoint` must be one of InceptionI3d.VALID_ENDPOINTS (default 'Logits'). name: A string (optional). The name of this module. Raises: ValueError: if `final_endpoint` is not recognized. """ if final_endpoint not in self.VALID_ENDPOINTS: raise ValueError('Unknown final endpoint %s' % final_endpoint) super(InceptionI3d, self).__init__() self._num_classes = num_classes self._spatial_squeeze = spatial_squeeze self._final_endpoint = final_endpoint self.logits = None if self._final_endpoint not in self.VALID_ENDPOINTS: raise ValueError('Unknown final endpoint %s' % self._final_endpoint) self.end_points = {} end_point = 'Conv3d_1a_7x7' self.end_points[end_point] = Unit3D(in_channels=in_channels, output_channels=64, kernel_shape=[7, 7, 7], stride=(2, 2, 2), padding=(3, 3, 3), name=name + end_point) if self._final_endpoint == end_point: return end_point = 'MaxPool3d_2a_3x3' self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[1, 3, 3], stride=(1, 2, 2), padding=0) if self._final_endpoint == end_point: return end_point = 'Conv3d_2b_1x1' self.end_points[end_point] = Unit3D(in_channels=64, output_channels=64, kernel_shape=[1, 1, 1], padding=0, name=name + end_point) if self._final_endpoint == end_point: return end_point = 'Conv3d_2c_3x3' self.end_points[end_point] = Unit3D(in_channels=64, output_channels=192, kernel_shape=[3, 3, 3], padding=1, name=name + end_point) if self._final_endpoint == end_point: return end_point = 'MaxPool3d_3a_3x3' self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[1, 3, 3], stride=(1, 2, 2), padding=0) if self._final_endpoint == end_point: return end_point = 'Mixed_3b' self.end_points[end_point] = InceptionModule(192, [64, 96, 128, 16, 32, 32], name + end_point) if self._final_endpoint == end_point: return end_point = 'Mixed_3c' self.end_points[end_point] = InceptionModule(256, [128, 128, 192, 32, 96, 64], name + end_point) if self._final_endpoint == end_point: return end_point = 'MaxPool3d_4a_3x3' self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[3, 3, 3], stride=(2, 2, 2), padding=0) if self._final_endpoint == end_point: return end_point = 'Mixed_4b' self.end_points[end_point] = InceptionModule(128 + 192 + 96 + 64, [192, 96, 208, 16, 48, 64], name + end_point) if self._final_endpoint == end_point: return end_point = 'Mixed_4c' self.end_points[end_point] = InceptionModule(192 + 208 + 48 + 64, [160, 112, 224, 24, 64, 64], name + end_point) if self._final_endpoint == end_point: return end_point = 'Mixed_4d' self.end_points[end_point] = InceptionModule(160 + 224 + 64 + 64, [128, 128, 256, 24, 64, 64], name + end_point) if self._final_endpoint == end_point: return end_point = 'Mixed_4e' self.end_points[end_point] = InceptionModule(128 + 256 + 64 + 64, [112, 144, 288, 32, 64, 64], name + end_point) if self._final_endpoint == end_point: return end_point = 'Mixed_4f' self.end_points[end_point] = InceptionModule(112 + 288 + 64 + 64, [256, 160, 320, 32, 128, 128], name + end_point) if self._final_endpoint == end_point: return end_point = 'MaxPool3d_5a_2x2' self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[2, 2, 2], stride=(2, 2, 2), padding=0) if self._final_endpoint == end_point: return end_point = 'Mixed_5b' self.end_points[end_point] = InceptionModule(256 + 320 + 128 + 128, [256, 160, 320, 32, 128, 128], name + end_point) if self._final_endpoint == end_point: return end_point = 'Mixed_5c' self.end_points[end_point] = InceptionModule(256 + 320 + 128 + 128, [384, 192, 384, 48, 128, 128], name + end_point) if self._final_endpoint == end_point: return end_point = 'Logits' self.avg_pool = nn.AvgPool3d(kernel_size=[2, 7, 7], stride=(1, 1, 1)) self.dropout = nn.Dropout(dropout_keep_prob) self.logits = Unit3D(in_channels=384 + 384 + 128 + 128, output_channels=self._num_classes, kernel_shape=[1, 1, 1], padding=0, activation_fn=None, use_batch_norm=False, use_bias=True, name='logits') self.build() def replace_logits(self, num_classes): self._num_classes = num_classes self.logits = Unit3D(in_channels=384 + 384 + 128 + 128, output_channels=self._num_classes, kernel_shape=[1, 1, 1], padding=0, activation_fn=None, use_batch_norm=False, use_bias=True, name='logits') def build(self): for k in self.end_points.keys(): self.add_module(k, self.end_points[k]) def forward(self, x): for end_point in self.VALID_ENDPOINTS: if end_point in self.end_points: x = self._modules[end_point](x) # use _modules to work with dataparallel x = self.avg_pool(x) if self._spatial_squeeze: logits = x.squeeze(3).squeeze(3) # logits is batch X time X classes, which is what we want to work with return logits def extract_features(self, x): for end_point in self.VALID_ENDPOINTS: if end_point in self.end_points: x = self._modules[end_point](x) return self.avg_pool(x)
42.048193
134
0.569914
8dd18ba55baad86b49dfa87f477fe4fbc4dd5190
7,621
py
Python
files/intraday_cron_lambda/index.py
dwp/dataworks-aws-ingest-replica
ed5fb0ebd57334be24244c711ed72b6f9ea2b734
[ "0BSD" ]
null
null
null
files/intraday_cron_lambda/index.py
dwp/dataworks-aws-ingest-replica
ed5fb0ebd57334be24244c711ed72b6f9ea2b734
[ "0BSD" ]
95
2021-03-29T15:02:03.000Z
2022-03-28T12:20:11.000Z
files/intraday_cron_lambda/index.py
dwp/dataworks-aws-ingest-replica
ed5fb0ebd57334be24244c711ed72b6f9ea2b734
[ "0BSD" ]
1
2021-04-10T22:12:58.000Z
2021-04-10T22:12:58.000Z
import json import logging import os import time from uuid import uuid4 import base64 import ast import boto3 from boto3.dynamodb.conditions import Attr _logger = logging.getLogger() _logger.setLevel(logging.INFO) # Lambda environment vars JOB_STATUS_TABLE = os.environ["job_status_table_name"] SLACK_ALERT_ARN = os.environ["alert_topic_arn"] LAUNCH_SNS_TOPIC_ARN = os.environ["launch_topic_arn"] EMR_CONFIG_BUCKET = os.environ["emr_config_bucket"] EMR_CONFIG_PREFIX = os.environ["emr_config_folder"] COLLECTIONS_SECRET_NAME = os.environ["collections_secret_name"] # Job Statuses & values stored in DynamoDB TRIGGERED = "LAMBDA_TRIGGERED" # this lambda was triggered WAITING = "WAITING" # this lambda is waiting up to 10 minutes for another cluster DEFERRED = "DEFERRED" # this lambda timed out waiting, did not launch emr LAUNCHED = "EMR_LAUNCHED" # this lambda posted to SNS topic to launch EMR cluster PROCESSING = "EMR_PROCESSING" # emr cluster has started processing data COMPLETED = "EMR_COMPLETED" # emr cluster processed the data successfully EMR_FAILED = "EMR_FAILED" # emr cluster couldn't process data successfully LAMBDA_FAILED = "LAMBDA_FAILED" # lambda encountered an error # this lambda will not launch emr if another job is in one of these states ACTIVE_STATES = [TRIGGERED, WAITING, LAUNCHED, PROCESSING, EMR_FAILED, LAMBDA_FAILED] class PollingTimeoutError(TimeoutError): pass def get_collections_list_from_aws(secrets_client, collections_secret_name): """Parse collections returned by AWS Secrets Manager""" return [ f"{j['db']}:{j['table']}" for j in retrieve_secrets(secrets_client, collections_secret_name)[ "collections_all" ].values() ] def retrieve_secrets(secrets_client, secret_name): """Get b64 encoded secrets from AWS Secrets Manager""" response = secrets_client.get_secret_value(SecretId=secret_name) response_binary = response["SecretString"] response_decoded = base64.b64decode(response_binary).decode("utf-8") response_dict = ast.literal_eval(response_decoded) return response_dict def update_db_items(table, collections, correlation_id: str, values: dict): _logger.info(f"Updating db item: {values}") updates = {key: {"Value": value} for key, value in values.items()} for collection in collections: table.update_item( Key={ "CorrelationId": correlation_id, "Collection": collection, }, AttributeUpdates=updates, ) def check_for_running_jobs(table, collections, correlation_id): _logger.debug("Checking for running jobs") results = table.scan( FilterExpression=Attr("JobStatus").is_in(ACTIVE_STATES) & Attr("CorrelationId").ne(correlation_id) & Attr("Collection").is_in(collections), ) return results["Items"] def poll_previous_jobs(correlation_id, collections, table, timeout=300): _logger.info("Polling for previous running jobs") start_time = time.time() running_jobs = check_for_running_jobs(table, collections, correlation_id) while running_jobs: _logger.info( f"Waited {round(time.time() - start_time)}/{timeout}" f" seconds for previous collections to complete:" ) _logger.info( "\n".join( [ str({"topic": row["Collection"], "JobStatus": row["JobStatus"]}) for row in running_jobs ] ) ) if time.time() >= (start_time + timeout): update_db_items(table, collections, correlation_id, {"JobStatus": DEFERRED}) raise PollingTimeoutError( f"Polling timeout ({timeout}s), job(s) still in progress" ) time.sleep(5) running_jobs = check_for_running_jobs(table, collections, correlation_id) return True def launch_cluster( correlation_id: str, triggered_time: int, collections, sns_client, job_table, topic_arn: str, ): # Cluster takes 10~15m to provision, this provides adequate time for the pipeline # to ingest data up to the current timestamp into hbase. new_end_time = int(time.time() * 1000) cluster_overrides = json.dumps( { "s3_overrides": { "emr_launcher_config_s3_bucket": EMR_CONFIG_BUCKET, "emr_launcher_config_s3_folder": EMR_CONFIG_PREFIX, }, "additional_step_args": { "spark-submit": [ "scheduled", "--correlation_id", str(correlation_id), "--triggered_time", str(triggered_time), "--end_time", str(new_end_time), "--collections", ] + collections }, } ) _logger.info("Launching emr cluster") _logger.info("Collections: " + " ".join(collections)) _logger.debug({"Cluster Overrides": cluster_overrides}) _ = sns_client.publish( TopicArn=topic_arn, Message=cluster_overrides, Subject="Launch ingest-replica emr cluster", ) update_db_items(job_table, collections, correlation_id, {"JobStatus": LAUNCHED}) def handler(event, context): correlation_id = str(uuid4()) triggered_time = round(time.time() * 1000) _logger.info( { "correlation_id": correlation_id, "triggered_time": triggered_time, } ) sns_client = boto3.client("sns") dynamodb = boto3.resource("dynamodb") job_table = dynamodb.Table(JOB_STATUS_TABLE) secrets_client = boto3.session.Session().client(service_name="secretsmanager") collections = get_collections_list_from_aws(secrets_client, COLLECTIONS_SECRET_NAME) _logger.info({"collections": collections}) update_db_items( job_table, collections, correlation_id, {"JobStatus": TRIGGERED, "TriggeredTime": triggered_time}, ) try: update_db_items(job_table, collections, correlation_id, {"JobStatus": WAITING}) poll_previous_jobs( correlation_id=correlation_id, collections=collections, table=job_table ) launch_cluster( correlation_id=correlation_id, triggered_time=triggered_time, collections=collections, sns_client=sns_client, job_table=job_table, topic_arn=LAUNCH_SNS_TOPIC_ARN, ) except PollingTimeoutError: # Dynamodb already updated with status alert_message = json.dumps( { "severity": "High", "notification_type": "Warning", "title_text": "Intraday Cluster Launch Deferred - Previous cluster still running", } ) sns_client.publish( TargetArn=SLACK_ALERT_ARN, Message=alert_message, ) raise except Exception: # Update Dynamodb with failure status update_db_items( job_table, collections, correlation_id, {"JobStatus": LAMBDA_FAILED} ) alert_message = json.dumps( { "severity": "Critical", "notification_type": "Error", "title_text": "intraday_cron_launcher Lambda Failed", "log_with_here": "true", } ) sns_client.publish( TargetArn=SLACK_ALERT_ARN, Message=alert_message, ) raise
34.022321
98
0.638368
5789c4592b7d9e925061612cb4b2ca07d7266e12
759
py
Python
Python files/dijkstra test.py
mattl1598/testing
cd8124773b83a07301c507ffbb9ccaafbfe7a274
[ "Unlicense" ]
null
null
null
Python files/dijkstra test.py
mattl1598/testing
cd8124773b83a07301c507ffbb9ccaafbfe7a274
[ "Unlicense" ]
1
2018-04-15T22:59:15.000Z
2018-04-15T22:59:15.000Z
Python files/dijkstra test.py
mattl1598/Project-Mochachino
cd8124773b83a07301c507ffbb9ccaafbfe7a274
[ "Unlicense" ]
null
null
null
#------------------------------------------------------------------------------- # Name: module1 # Purpose: # # Author: matthewl9 # # Created: 06/03/2018 # Copyright: (c) matthewl9 2018 # Licence: <your licence> #------------------------------------------------------------------------------- import random import dijkstra #work for dictionarys not matrixes def createMatrix(adjMatrix): for x in range(9): for y in range(9): rand = random.randint(1,15) #print adjMatrix[x][y] = rand return adjMatrix def main(): w, h = 9, 9; adjMatrix = [[None for x in range(w)] for y in range(h)] adjMatrix = createMatrix(adjMatrix) print(adjMatrix) print(dijkstra.shortestPath(adjMatrix,2,7)) if __name__ == '__main__': main()
25.3
80
0.523057
76781f193212a3f2577c47e98416a4675e87446a
20,137
py
Python
openprocurement/auctions/lease/tests/base.py
antonkorobko/openprocurement.auctions.lease
56e04f2a6f3593bf2b1dd867fad7d7deec1f425a
[ "Apache-2.0" ]
null
null
null
openprocurement/auctions/lease/tests/base.py
antonkorobko/openprocurement.auctions.lease
56e04f2a6f3593bf2b1dd867fad7d7deec1f425a
[ "Apache-2.0" ]
23
2018-05-18T13:55:58.000Z
2020-01-06T18:52:48.000Z
openprocurement/auctions/lease/tests/base.py
antonkorobko/openprocurement.auctions.lease
56e04f2a6f3593bf2b1dd867fad7d7deec1f425a
[ "Apache-2.0" ]
9
2018-05-15T09:32:12.000Z
2019-04-30T09:54:47.000Z
# -*- coding: utf-8 -*- import os from base64 import b64encode from copy import deepcopy from datetime import datetime, timedelta from urllib import urlencode from uuid import uuid4 from openprocurement.auctions.core.tests.base import ( BaseWebTest as CoreBaseWebTest, BaseAuctionWebTest as CoreBaseAuctionWebTest, MOCK_CONFIG as BASE_MOCK_CONFIG ) from openprocurement.auctions.core.utils import ( apply_data_patch, get_now, SANDBOX_MODE, connection_mock_config ) from openprocurement.auctions.lease.tests.fixtures import PARTIAL_MOCK_CONFIG from openprocurement.auctions.lease.constants import ( DEFAULT_PROCUREMENT_METHOD_TYPE_LEASE ) DEFAULT_ACCELERATION = 1440 now = datetime.now() test_organization = { "name": u"Державне управління справами", "identifier": { "scheme": u"UA-EDR", "id": u"00037256", "uri": u"http://www.dus.gov.ua/" }, "address": { "countryName": u"Україна", "postalCode": u"01220", "region": u"м. Київ", "locality": u"м. Київ", "streetAddress": u"вул. Банкова, 11, корпус 1" }, "contactPoint": { "name": u"Державне управління справами", "telephone": u"0440000000" } } test_procuringEntity = test_organization.copy() test_auction_data = { "title": u"футляри до державних нагород", "lotIdentifier": u"219560", "tenderAttempts": 1, "procuringEntity": test_procuringEntity, "value": { "amount": 100, "currency": u"UAH" }, "minimalStep": { "amount": 35, "currency": u"UAH" }, "contractTerms": { "type": "lease", "leaseTerms": { "leaseDuration": "P10Y", "taxHolidays": [ { "taxHolidaysDuration": "P5M", "conditions": "conditions description", "value": { "amount": 100.0, "currency": "UAH", "valueAddedTaxIncluded": True } } ], "escalationClauses": [ { "escalationPeriodicity": "P5M", "escalationStepPercentage": 0.1055, "conditions": "conditions description" } ] } }, "items": [ { "description": u"Земля для військовослужбовців", "classification": { "scheme": "CAV-PS", "id": "04121000-2", "description": "Земельні ділянки" }, "additionalClassifications": [{ "scheme": "CPVS", "id": "PA01-7", "description": "This field is required." }], "unit": { "name": u"item", "code": u"44617100-9" }, "quantity": 5.001, "contractPeriod": { "startDate": (now + timedelta(days=2)).isoformat(), "endDate": (now + timedelta(days=5)).isoformat() }, "address": { "countryName": u"Україна", "postalCode": "79000", "region": u"м. Київ", "locality": u"м. Київ", "streetAddress": u"вул. Банкова 1" } } ], "auctionPeriod": { "startDate": (now.date() + timedelta(days=14)).isoformat() }, "procurementMethodType": DEFAULT_PROCUREMENT_METHOD_TYPE_LEASE, } if SANDBOX_MODE: test_auction_data['procurementMethodDetails'] = 'quick, accelerator={}'.format(DEFAULT_ACCELERATION) test_auction_maximum_data = deepcopy(test_auction_data) test_auction_maximum_data.update({ "title_en" : u"Cases with state awards", "title_ru" : u"футляры к государственным наградам", "description" : u"футляри до державних нагород", "description_en" : u"Cases with state awards", "description_ru" : u"футляры к государственным наградам" }) test_auction_maximum_data["items"][0].update({ "description_en" : u"Cases with state awards", "description_ru" : u"футляры к государственным наградам" }) test_features_auction_data = test_auction_data.copy() test_features_item = test_features_auction_data['items'][0].copy() test_features_item['id'] = "1" test_features_auction_data['items'] = [test_features_item] test_features_auction_data["features"] = [ { "code": "OCDS-123454-AIR-INTAKE", "featureOf": "item", "relatedItem": "1", "title": u"Потужність всмоктування", "title_en": "Air Intake", "description": u"Ефективна потужність всмоктування пилососа, в ватах (аероватах)", "enum": [ { "value": 0.1, "title": u"До 1000 Вт" }, { "value": 0.15, "title": u"Більше 1000 Вт" } ] }, { "code": "OCDS-123454-YEARS", "featureOf": "tenderer", "title": u"Років на ринку", "title_en": "Years trading", "description": u"Кількість років, які організація учасник працює на ринку", "enum": [ { "value": 0.05, "title": u"До 3 років" }, { "value": 0.1, "title": u"Більше 3 років, менше 5 років" }, { "value": 0.15, "title": u"Більше 5 років" } ] } ] base_test_bids = [ { "tenderers": [ test_organization ], "value": { "amount": 469, "currency": "UAH", "valueAddedTaxIncluded": True } }, { "tenderers": [ test_organization ], "value": { "amount": 479, "currency": "UAH", "valueAddedTaxIncluded": True } } ] test_bids = [] for i in base_test_bids: i = deepcopy(i) i.update({'qualified': True}) test_bids.append(i) test_lots = [ { 'title': 'lot title', 'description': 'lot description', 'value': test_auction_data['value'], 'minimalStep': test_auction_data['minimalStep'], } ] test_features = [ { "code": "code_item", "featureOf": "item", "relatedItem": "1", "title": u"item feature", "enum": [ { "value": 0.01, "title": u"good" }, { "value": 0.02, "title": u"best" } ] }, { "code": "code_tenderer", "featureOf": "tenderer", "title": u"tenderer feature", "enum": [ { "value": 0.01, "title": u"good" }, { "value": 0.02, "title": u"best" } ] } ] test_financial_auction_data = deepcopy(test_auction_data) test_financial_auction_data["procurementMethodType"] = DEFAULT_PROCUREMENT_METHOD_TYPE_LEASE test_financial_organization = deepcopy(test_organization) test_financial_organization['additionalIdentifiers'] = [{ "scheme": u"UA-FIN", "id": u"А01 457213" }] test_financial_bids = [] for i in test_bids: bid = deepcopy(i) bid.update({'eligible': True}) bid['tenderers'] = [test_financial_organization] test_financial_bids.append(bid) MOCK_CONFIG = connection_mock_config(PARTIAL_MOCK_CONFIG, base=BASE_MOCK_CONFIG, connector=('plugins', 'api', 'plugins', 'auctions.core', 'plugins')) class BaseWebTest(CoreBaseWebTest): """Base Web Test to test openprocurement.auctions.lease. It setups the database before each test and delete it after. """ relative_to = os.path.dirname(__file__) mock_config = MOCK_CONFIG class BaseAuctionWebTest(CoreBaseAuctionWebTest): relative_to = os.path.dirname(__file__) initial_data = test_auction_data initial_organization = test_organization mock_config = MOCK_CONFIG def go_to_rectificationPeriod_end(self): now = get_now() self.set_status('active.tendering', { "rectificationPeriod": { "startDate": (now - timedelta(days=14)).isoformat(), "endDate": (now - (timedelta(minutes=6) if SANDBOX_MODE else timedelta(days=6))).isoformat() }, "tenderPeriod": { "startDate": (now - timedelta(days=14)).isoformat(), "endDate": (now + (timedelta(minutes=1) if SANDBOX_MODE else timedelta(days=1))).isoformat() }, "enquiryPeriod": { "startDate": (now - timedelta(days=14)).isoformat(), "endDate": (now + (timedelta(minutes=1) if SANDBOX_MODE else timedelta(days=1))).isoformat() }, "auctionPeriod": { "startDate": (now + timedelta(days=1)).isoformat() } }) def set_status(self, status, extra=None): data = {'status': status} if status == 'active.tendering': data.update({ "enquiryPeriod": { "startDate": (now).isoformat(), "endDate": (now + timedelta(days=7)).isoformat() }, "rectificationPeriod": { "startDate": (now).isoformat(), "endDate": (now + timedelta(days=1)).isoformat() }, "tenderPeriod": { "startDate": (now).isoformat(), "endDate": (now + timedelta(days=7)).isoformat() } }) elif status == 'active.auction': data.update({ "enquiryPeriod": { "startDate": (now - timedelta(days=7)).isoformat(), "endDate": (now).isoformat() }, "rectificationPeriod": { "startDate": (now - timedelta(days=7)).isoformat(), "endDate": (now - timedelta(days=6)).isoformat() }, "tenderPeriod": { "startDate": (now - timedelta(days=7)).isoformat(), "endDate": (now).isoformat() }, "auctionPeriod": { "startDate": (now).isoformat() } }) if self.initial_lots: data.update({ 'lots': [ { "auctionPeriod": { "startDate": (now).isoformat() } } for i in self.initial_lots ] }) elif status == 'active.qualification': data.update({ "enquiryPeriod": { "startDate": (now - timedelta(days=8)).isoformat(), "endDate": (now - timedelta(days=1)).isoformat() }, "rectificationPeriod": { "startDate": (now - timedelta(days=8)).isoformat(), "endDate": (now - timedelta(days=6)).isoformat() }, "tenderPeriod": { "startDate": (now - timedelta(days=8)).isoformat(), "endDate": (now - timedelta(days=1)).isoformat() }, "auctionPeriod": { "startDate": (now - timedelta(days=1)).isoformat(), "endDate": (now).isoformat() }, "awardPeriod": { "startDate": (now).isoformat() } }) if self.initial_lots: data.update({ 'lots': [ { "auctionPeriod": { "startDate": (now - timedelta(days=1)).isoformat(), "endDate": (now).isoformat() } } for i in self.initial_lots ] }) elif status == 'active.awarded': data.update({ "enquiryPeriod": { "startDate": (now - timedelta(days=8)).isoformat(), "endDate": (now - timedelta(days=1)).isoformat() }, "rectificationPeriod": { "startDate": (now - timedelta(days=8)).isoformat(), "endDate": (now - timedelta(days=6)).isoformat() }, "tenderPeriod": { "startDate": (now - timedelta(days=8)).isoformat(), "endDate": (now - timedelta(days=1)).isoformat() }, "auctionPeriod": { "startDate": (now - timedelta(days=1)).isoformat(), "endDate": (now).isoformat() }, "awardPeriod": { "startDate": (now).isoformat(), "endDate": (now).isoformat() } }) if self.initial_lots: data.update({ 'lots': [ { "auctionPeriod": { "startDate": (now - timedelta(days=1)).isoformat(), "endDate": (now).isoformat() } } for i in self.initial_lots ] }) elif status == 'complete': data.update({ "enquiryPeriod": { "startDate": (now - timedelta(days=18)).isoformat(), "endDate": (now - timedelta(days=11)).isoformat() }, "rectificationPeriod": { "startDate": (now - timedelta(days=18)).isoformat(), "endDate": (now - timedelta(days=17)).isoformat() }, "tenderPeriod": { "startDate": (now - timedelta(days=18)).isoformat(), "endDate": (now - timedelta(days=11)).isoformat() }, "auctionPeriod": { "startDate": (now - timedelta(days=11)).isoformat(), "endDate": (now - timedelta(days=10)).isoformat() }, "awardPeriod": { "startDate": (now - timedelta(days=10)).isoformat(), "endDate": (now - timedelta(days=10)).isoformat() } }) if self.initial_lots: data.update({ 'lots': [ { "auctionPeriod": { "startDate": (now - timedelta(days=11)).isoformat(), "endDate": (now - timedelta(days=10)).isoformat() } } for i in self.initial_lots ] }) if extra: data.update(extra) auction = self.db.get(self.auction_id) auction.update(apply_data_patch(auction, data)) self.db.save(auction) authorization = self.app.authorization self.app.authorization = ('Basic', ('chronograph', '')) #response = self.app.patch_json('/auctions/{}'.format(self.auction_id), {'data': {'id': self.auction_id}}) response = self.app.get('/auctions/{}'.format(self.auction_id)) self.app.authorization = authorization self.assertEqual(response.status, '200 OK') self.assertEqual(response.content_type, 'application/json') return response def upload_auction_protocol(self, award): award_id = award['id'] response = self.app.post_json('/auctions/{}/awards/{}/documents?acc_token={}'.format(self.auction_id, award_id, self.auction_token), {'data': { 'title': 'auction_protocol.pdf', 'url': self.generate_docservice_url(), 'hash': 'md5:' + '0' * 32, 'format': 'application/msword', "description": "auction protocol", "documentType": 'auctionProtocol', }}) self.assertEqual(response.status, '201 Created') self.assertEqual(response.content_type, 'application/json') doc_id = response.json["data"]['id'] self.assertIn(doc_id, response.headers['Location']) self.assertEqual('auction_protocol.pdf', response.json["data"]["title"]) self.assertEqual('auctionProtocol', response.json["data"]["documentType"]) self.assertEqual('auction_owner', response.json["data"]["author"]) def post_auction_results(self): authorization = self.app.authorization self.app.authorization = ('Basic', ('auction', '')) now = get_now() auction_result = { 'bids': [ { "id": b['id'], "date": (now - timedelta(seconds=i)).isoformat(), "value": b['value'] } for i, b in enumerate(self.initial_bids) ] } response = self.app.post_json('/auctions/{}/auction'.format(self.auction_id), {'data': auction_result}) self.assertEqual(response.status, '200 OK') self.assertEqual(response.content_type, 'application/json') auction = response.json['data'] self.assertEqual('active.qualification', auction["status"]) self.first_award = auction['awards'][0] self.second_award = auction['awards'][1] self.first_award_id = self.first_award['id'] self.second_award_id = self.second_award['id'] self.app.authorization = authorization def generate_docservice_url(self): uuid = uuid4().hex key = self.app.app.registry.docservice_key keyid = key.hex_vk()[:8] signature = b64encode(key.signature("{}\0{}".format(uuid, '0' * 32))) query = {'Signature': signature, 'KeyID': keyid} return "http://localhost/get/{}?{}".format(uuid, urlencode(query)) def check_award_status(self, auction_id, award_id, target_status): response = self.app.get( '/auctions/{0}/awards/{1}'.format( auction_id, award_id)) current_status = response.json['data']['status'] self.assertEqual( current_status, target_status, "Award status {0} isn't expected. Current status: {1}".format( current_status, target_status)) def patch_award(self, award_id, status, bid_token=None): token = self.auction_token if bid_token: token = bid_token response = self.app.patch_json('/auctions/{}/awards/{}?acc_token={}'.format( self.auction_id, award_id, token ), {"data": {"status": status}}) self.assertEqual(response.status, '200 OK') self.assertEqual(response.content_type, 'application/json') return response def forbidden_patch_award(self, award_id, before_status, status): response = self.app.patch_json('/auctions/{}/awards/{}?acc_token={}'.format( self.auction_id, award_id, self.auction_token ), {"data": {"status": status}}, status=403) self.assertEqual(response.status, '403 Forbidden') self.assertEqual(response.content_type, 'application/json') self.assertEqual(response.json['errors'][0]["description"], "Can't switch award ({}) status to ({}) status".format(before_status, status)) class BaseFinancialAuctionWebTest(BaseAuctionWebTest): relative_to = os.path.dirname(__file__) initial_data = test_financial_auction_data initial_organization = test_financial_organization
35.390158
146
0.498734
1badc4a5e7f0f5b1236d514d0d9e94d563194731
397
py
Python
djangocrud/djangocrud/asgi.py
roygoswamisuvankar/Djang-Crud
83b488971b1f6e437a3c3e3b8b53c65a5e4e9db8
[ "MIT" ]
2
2021-09-24T05:38:42.000Z
2021-09-24T09:45:32.000Z
djangocrud/asgi.py
a-m4hdi/djangocrud
dce70c3e2a4bcfb5b67c9331628d3fda0fe51687
[ "MIT" ]
null
null
null
djangocrud/asgi.py
a-m4hdi/djangocrud
dce70c3e2a4bcfb5b67c9331628d3fda0fe51687
[ "MIT" ]
null
null
null
""" ASGI config for djangocrud project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'djangocrud.settings') application = get_asgi_application()
23.352941
78
0.788413
302a49b81f8a6d8ea143b5ea2fffdb21e6180ead
486
py
Python
profiles_api/migrations/0003_profilefeeditem_updated_on.py
prajilmv/profiles-rest-api
96c19ab62f59f8eeb2ca5917ac1f10133c634f7b
[ "MIT" ]
null
null
null
profiles_api/migrations/0003_profilefeeditem_updated_on.py
prajilmv/profiles-rest-api
96c19ab62f59f8eeb2ca5917ac1f10133c634f7b
[ "MIT" ]
6
2020-06-06T01:39:25.000Z
2022-02-10T14:23:41.000Z
profiles_api/migrations/0003_profilefeeditem_updated_on.py
prajilmv/profiles-rest-api
96c19ab62f59f8eeb2ca5917ac1f10133c634f7b
[ "MIT" ]
null
null
null
# Generated by Django 2.2 on 2020-04-26 12:29 from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('profiles_api', '0002_profilefeeditem'), ] operations = [ migrations.AddField( model_name='profilefeeditem', name='updated_on', field=models.DateTimeField(default=django.utils.timezone.now), preserve_default=False, ), ]
23.142857
74
0.63786
5605866908e5d7819e21f4724552b3692c098712
7,059
py
Python
homeassistant/components/saj/sensor.py
bluestripe/home-assistant
8791a48328076dd61c1f3e80c10dc54a7c8c9c18
[ "Apache-2.0" ]
2
2019-11-06T17:13:45.000Z
2019-11-06T17:13:51.000Z
homeassistant/components/saj/sensor.py
bluestripe/home-assistant
8791a48328076dd61c1f3e80c10dc54a7c8c9c18
[ "Apache-2.0" ]
2
2021-02-08T20:37:03.000Z
2021-09-08T01:23:59.000Z
homeassistant/components/saj/sensor.py
bluestripe/home-assistant
8791a48328076dd61c1f3e80c10dc54a7c8c9c18
[ "Apache-2.0" ]
null
null
null
"""SAJ solar inverter interface.""" import asyncio from datetime import date import logging import pysaj import voluptuous as vol from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.const import ( CONF_HOST, CONF_PASSWORD, CONF_TYPE, CONF_USERNAME, DEVICE_CLASS_POWER, DEVICE_CLASS_TEMPERATURE, ENERGY_KILO_WATT_HOUR, EVENT_HOMEASSISTANT_START, EVENT_HOMEASSISTANT_STOP, MASS_KILOGRAMS, POWER_WATT, TEMP_CELSIUS, TEMP_FAHRENHEIT, ) from homeassistant.core import CALLBACK_TYPE, callback import homeassistant.helpers.config_validation as cv from homeassistant.helpers.entity import Entity from homeassistant.helpers.event import async_call_later _LOGGER = logging.getLogger(__name__) MIN_INTERVAL = 5 MAX_INTERVAL = 300 UNIT_OF_MEASUREMENT_HOURS = "h" INVERTER_TYPES = ["ethernet", "wifi"] SAJ_UNIT_MAPPINGS = { "W": POWER_WATT, "kWh": ENERGY_KILO_WATT_HOUR, "h": UNIT_OF_MEASUREMENT_HOURS, "kg": MASS_KILOGRAMS, "°C": TEMP_CELSIUS, "": None, } PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Required(CONF_HOST): cv.string, vol.Optional(CONF_TYPE, default=INVERTER_TYPES[0]): vol.In(INVERTER_TYPES), vol.Inclusive(CONF_USERNAME, "credentials"): cv.string, vol.Inclusive(CONF_PASSWORD, "credentials"): cv.string, } ) async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Set up SAJ sensors.""" remove_interval_update = None wifi = config[CONF_TYPE] == INVERTER_TYPES[1] # Init all sensors sensor_def = pysaj.Sensors(wifi) # Use all sensors by default hass_sensors = [] for sensor in sensor_def: hass_sensors.append(SAJsensor(sensor)) kwargs = {} if wifi: kwargs["wifi"] = True if config.get(CONF_USERNAME) and config.get(CONF_PASSWORD): kwargs["username"] = config[CONF_USERNAME] kwargs["password"] = config[CONF_PASSWORD] try: saj = pysaj.SAJ(config[CONF_HOST], **kwargs) await saj.read(sensor_def) except pysaj.UnauthorizedException: _LOGGER.error("Username and/or password is wrong.") return except pysaj.UnexpectedResponseException as err: _LOGGER.error( "Error in SAJ, please check host/ip address. Original error: %s", err ) return async_add_entities(hass_sensors) async def async_saj(): """Update all the SAJ sensors.""" tasks = [] values = await saj.read(sensor_def) for sensor in hass_sensors: state_unknown = False if not values: # SAJ inverters are powered by DC via solar panels and thus are # offline after the sun has set. If a sensor resets on a daily # basis like "today_yield", this reset won't happen automatically. # Code below checks if today > day when sensor was last updated # and if so: set state to None. # Sensors with live values like "temperature" or "current_power" # will also be reset to None. if (sensor.per_day_basis and date.today() > sensor.date_updated) or ( not sensor.per_day_basis and not sensor.per_total_basis ): state_unknown = True task = sensor.async_update_values(unknown_state=state_unknown) if task: tasks.append(task) if tasks: await asyncio.wait(tasks) return values def start_update_interval(event): """Start the update interval scheduling.""" nonlocal remove_interval_update remove_interval_update = async_track_time_interval_backoff(hass, async_saj) def stop_update_interval(event): """Properly cancel the scheduled update.""" remove_interval_update() # pylint: disable=not-callable hass.bus.async_listen_once(EVENT_HOMEASSISTANT_START, start_update_interval) hass.bus.async_listen(EVENT_HOMEASSISTANT_STOP, stop_update_interval) @callback def async_track_time_interval_backoff(hass, action) -> CALLBACK_TYPE: """Add a listener that fires repetitively and increases the interval when failed.""" remove = None interval = MIN_INTERVAL async def interval_listener(now=None): """Handle elapsed interval with backoff.""" nonlocal interval, remove try: if await action(): interval = MIN_INTERVAL else: interval = min(interval * 2, MAX_INTERVAL) finally: remove = async_call_later(hass, interval, interval_listener) hass.async_create_task(interval_listener()) def remove_listener(): """Remove interval listener.""" if remove: remove() # pylint: disable=not-callable return remove_listener class SAJsensor(Entity): """Representation of a SAJ sensor.""" def __init__(self, pysaj_sensor): """Initialize the sensor.""" self._sensor = pysaj_sensor self._state = self._sensor.value @property def name(self): """Return the name of the sensor.""" return f"saj_{self._sensor.name}" @property def state(self): """Return the state of the sensor.""" return self._state @property def unit_of_measurement(self): """Return the unit the value is expressed in.""" return SAJ_UNIT_MAPPINGS[self._sensor.unit] @property def device_class(self): """Return the device class the sensor belongs to.""" if self.unit_of_measurement == POWER_WATT: return DEVICE_CLASS_POWER if ( self.unit_of_measurement == TEMP_CELSIUS or self._sensor.unit == TEMP_FAHRENHEIT ): return DEVICE_CLASS_TEMPERATURE @property def should_poll(self) -> bool: """SAJ sensors are updated & don't poll.""" return False @property def per_day_basis(self) -> bool: """Return if the sensors value is on daily basis or not.""" return self._sensor.per_day_basis @property def per_total_basis(self) -> bool: """Return if the sensors value is cummulative or not.""" return self._sensor.per_total_basis @property def date_updated(self) -> date: """Return the date when the sensor was last updated.""" return self._sensor.date def async_update_values(self, unknown_state=False): """Update this sensor.""" update = False if self._sensor.value != self._state: update = True self._state = self._sensor.value if unknown_state and self._state is not None: update = True self._state = None return self.async_update_ha_state() if update else None @property def unique_id(self): """Return a unique identifier for this sensor.""" return f"{self._sensor.name}"
30.166667
88
0.647825
bcfe191ae4c6eb729a4ffc010b6e0bae62bb544d
330
py
Python
spine_json_lib/data/constants.py
ivan-ah/spine-json-lib
1ea8460127f005d57af56090d2a48e6039437306
[ "MIT" ]
6
2019-12-02T15:25:57.000Z
2021-11-02T04:14:19.000Z
spine_json_lib/data/constants.py
ivan-ah/spine-json-lib
1ea8460127f005d57af56090d2a48e6039437306
[ "MIT" ]
3
2020-03-20T11:09:22.000Z
2022-02-18T10:07:26.000Z
spine_json_lib/data/constants.py
ivan-ah/spine-json-lib
1ea8460127f005d57af56090d2a48e6039437306
[ "MIT" ]
2
2019-12-02T14:56:50.000Z
2020-02-24T07:53:20.000Z
from spine_json_lib.data.spine_version_type import SpineVersion SPINE_3_7_VERSION = SpineVersion("3.7") SPINE_3_8_VERSION = SpineVersion("3.8") SPINE_LATEST_3_7_VERSION = SpineVersion("3.7.93") JSON_SPINE_TEMPLATE = "export_json_config.json" SKEL_SPINE_TEMPLATE = "export_bin_config.json" UI_SPINE_TEMPLATE = "export_png.json"
30
63
0.824242
925a183eb7dd4504a7fc1b83aefede15fbee1b41
1,672
py
Python
slam/remeshing.py
aymanesouani/slam
85ecfa392e60babf87e5a34ef66d439ba62ae243
[ "MIT" ]
6
2019-06-07T16:01:06.000Z
2020-12-04T12:43:54.000Z
slam/remeshing.py
aymanesouani/slam
85ecfa392e60babf87e5a34ef66d439ba62ae243
[ "MIT" ]
25
2020-06-22T20:42:06.000Z
2021-01-01T09:52:22.000Z
slam/remeshing.py
aymanesouani/slam
85ecfa392e60babf87e5a34ef66d439ba62ae243
[ "MIT" ]
17
2019-09-10T13:19:03.000Z
2021-12-14T15:53:49.000Z
def spherical_interpolation_nearest_neigbhor(source_spherical_mesh, target_spherical_mesh, info_to_interpolate): """ nearest neighbor interpolation between two spheres For each vertex of target_spherical_mesh, find the nearest one in source_spherical_mesh and use this vertex-level correspondence to pick values in info_to_interpolate :param source_spherical_mesh: spherical Trimesh object :param target_spherical_mesh: spherical Trimesh object :param info_to_interpolate: vector with shape[0] equal to the number of vertices in source_spherical_mesh :return: interpolated info_to_interpolate """ # This line would interpolate the reverse way (each vertex of # source_spherical_mesh, find the nearest one in target_spherical_mesh # distance, index = # target_spherical_mesh.kdtree.query(source_spherical_mesh.vertices) # import time # t0 = time.time() # the use of kdtree from trimesh is ~100x faster than the loop hereafter distance, index = \ source_spherical_mesh.kdtree.query(target_spherical_mesh.vertices) # t1 = time.time() # source_vertex_number = source_spherical_mesh.vertices.shape[0] # nn_corresp = [] # for v in target_spherical_mesh.vertices: # nn_tmp = np.argmin(np.sum(np.square( # np.tile(v, (source_vertex_number, 1)) # - source_spherical_mesh.vertices), 1)) # nn_corresp.append(nn_tmp) # t2 = time.time() # print('with kdtree :'+str(t1-t0)) # print('with loop :'+str(t2-t1)) return info_to_interpolate[index]
39.809524
76
0.687201
bb4a3b93e30e0b72719ed6c6d02436b309b40564
52,531
py
Python
python/ccxt/async_support/kraken.py
xeddmc/ccxt
9ddd88e6bbc4b2162cf45d331995bb86235d2a59
[ "MIT" ]
1
2021-07-07T10:47:28.000Z
2021-07-07T10:47:28.000Z
python/ccxt/async_support/kraken.py
xeddmc/ccxt
9ddd88e6bbc4b2162cf45d331995bb86235d2a59
[ "MIT" ]
1
2020-12-13T04:57:39.000Z
2020-12-13T04:57:39.000Z
python/ccxt/async_support/kraken.py
xeddmc/ccxt
9ddd88e6bbc4b2162cf45d331995bb86235d2a59
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from ccxt.async_support.base.exchange import Exchange # ----------------------------------------------------------------------------- try: basestring # Python 3 except NameError: basestring = str # Python 2 import base64 import hashlib import math from ccxt.base.errors import ExchangeError from ccxt.base.errors import AuthenticationError from ccxt.base.errors import PermissionDenied from ccxt.base.errors import ArgumentsRequired from ccxt.base.errors import InsufficientFunds from ccxt.base.errors import InvalidAddress from ccxt.base.errors import InvalidOrder from ccxt.base.errors import OrderNotFound from ccxt.base.errors import CancelPending from ccxt.base.errors import NotSupported from ccxt.base.errors import DDoSProtection from ccxt.base.errors import ExchangeNotAvailable from ccxt.base.errors import InvalidNonce from ccxt.base.decimal_to_precision import TRUNCATE from ccxt.base.decimal_to_precision import DECIMAL_PLACES class kraken (Exchange): def describe(self): return self.deep_extend(super(kraken, self).describe(), { 'id': 'kraken', 'name': 'Kraken', 'countries': ['US'], 'version': '0', 'rateLimit': 3000, 'certified': True, 'has': { 'createDepositAddress': True, 'fetchDepositAddress': True, 'fetchTradingFee': True, 'fetchTradingFees': True, 'CORS': False, 'fetchCurrencies': True, 'fetchTickers': True, 'fetchOHLCV': True, 'fetchOrder': True, 'fetchOpenOrders': True, 'fetchClosedOrders': True, 'fetchMyTrades': True, 'fetchWithdrawals': True, 'fetchDeposits': True, 'withdraw': True, 'fetchLedgerEntry': True, 'fetchLedger': True, }, 'marketsByAltname': {}, 'timeframes': { '1m': '1', '5m': '5', '15m': '15', '30m': '30', '1h': '60', '4h': '240', '1d': '1440', '1w': '10080', '2w': '21600', }, 'urls': { 'logo': 'https://user-images.githubusercontent.com/1294454/27766599-22709304-5ede-11e7-9de1-9f33732e1509.jpg', 'api': { 'public': 'https://api.kraken.com', 'private': 'https://api.kraken.com', 'zendesk': 'https://support.kraken.com/hc/en-us/articles/', }, 'www': 'https://www.kraken.com', 'doc': 'https://www.kraken.com/features/api', 'fees': 'https://www.kraken.com/en-us/features/fee-schedule', }, 'fees': { 'trading': { 'tierBased': True, 'percentage': True, 'taker': 0.26 / 100, 'maker': 0.16 / 100, 'tiers': { 'taker': [ [0, 0.0026], [50000, 0.0024], [100000, 0.0022], [250000, 0.0020], [500000, 0.0018], [1000000, 0.0016], [2500000, 0.0014], [5000000, 0.0012], [10000000, 0.0001], ], 'maker': [ [0, 0.0016], [50000, 0.0014], [100000, 0.0012], [250000, 0.0010], [500000, 0.0008], [1000000, 0.0006], [2500000, 0.0004], [5000000, 0.0002], [10000000, 0.0], ], }, }, # self is a bad way of hardcoding fees that change on daily basis # hardcoding is now considered obsolete, we will remove all of it eventually 'funding': { 'tierBased': False, 'percentage': False, 'withdraw': { 'BTC': 0.001, 'ETH': 0.005, 'XRP': 0.02, 'XLM': 0.00002, 'LTC': 0.02, 'DOGE': 2, 'ZEC': 0.00010, 'ICN': 0.02, 'REP': 0.01, 'ETC': 0.005, 'MLN': 0.003, 'XMR': 0.05, 'DASH': 0.005, 'GNO': 0.01, 'EOS': 0.5, 'BCH': 0.001, 'XTZ': 0.05, 'USD': 5, # if domestic wire 'EUR': 5, # if domestic wire 'CAD': 10, # CAD EFT Withdrawal 'JPY': 300, # if domestic wire }, 'deposit': { 'BTC': 0, 'ETH': 0, 'XRP': 0, 'XLM': 0, 'LTC': 0, 'DOGE': 0, 'ZEC': 0, 'ICN': 0, 'REP': 0, 'ETC': 0, 'MLN': 0, 'XMR': 0, 'DASH': 0, 'GNO': 0, 'EOS': 0, 'BCH': 0, 'XTZ': 0.05, 'USD': 5, # if domestic wire 'EUR': 0, # free deposit if EUR SEPA Deposit 'CAD': 5, # if domestic wire 'JPY': 0, # Domestic Deposit(Free, ¥5,000 deposit minimum) }, }, }, 'api': { 'zendesk': { 'get': [ # we should really refrain from putting fixed fee numbers and stop hardcoding # we will be using their web APIs to scrape all numbers from these articles '205893708-What-is-the-minimum-order-size-', '201396777-What-are-the-deposit-fees-', '201893608-What-are-the-withdrawal-fees-', ], }, 'public': { 'get': [ 'Assets', 'AssetPairs', 'Depth', 'OHLC', 'Spread', 'Ticker', 'Time', 'Trades', ], }, 'private': { 'post': [ 'AddOrder', 'AddExport', 'Balance', 'CancelOrder', 'ClosedOrders', 'DepositAddresses', 'DepositMethods', 'DepositStatus', 'ExportStatus', 'Ledgers', 'OpenOrders', 'OpenPositions', 'QueryLedgers', 'QueryOrders', 'QueryTrades', 'RetrieveExport', 'RemoveExport', 'TradeBalance', 'TradesHistory', 'TradeVolume', 'Withdraw', 'WithdrawCancel', 'WithdrawInfo', 'WithdrawStatus', ], }, }, 'commonCurrencies': { 'XBT': 'BTC', 'XDG': 'DOGE', }, 'options': { 'cacheDepositMethodsOnFetchDepositAddress': True, # will issue up to two calls in fetchDepositAddress 'depositMethods': {}, 'delistedMarketsById': {}, # cannot withdraw/deposit these 'inactiveCurrencies': ['CAD', 'USD', 'JPY', 'GBP'], }, 'exceptions': { 'EAPI:Invalid key': AuthenticationError, 'EFunding:Unknown withdraw key': ExchangeError, 'EFunding:Invalid amount': InsufficientFunds, 'EService:Unavailable': ExchangeNotAvailable, 'EDatabase:Internal error': ExchangeNotAvailable, 'EService:Busy': ExchangeNotAvailable, 'EQuery:Unknown asset': ExchangeError, 'EAPI:Rate limit exceeded': DDoSProtection, 'EOrder:Rate limit exceeded': DDoSProtection, 'EGeneral:Internal error': ExchangeNotAvailable, 'EGeneral:Temporary lockout': DDoSProtection, 'EGeneral:Permission denied': PermissionDenied, }, }) def cost_to_precision(self, symbol, cost): return self.decimal_to_precision(cost, TRUNCATE, self.markets[symbol]['precision']['price'], DECIMAL_PLACES) def fee_to_precision(self, symbol, fee): return self.decimal_to_precision(fee, TRUNCATE, self.markets[symbol]['precision']['amount'], DECIMAL_PLACES) async def fetch_min_order_amounts(self): html = await self.zendeskGet205893708WhatIsTheMinimumOrderSize() parts = html.split('<td class="wysiwyg-text-align-right">') numParts = len(parts) if numParts < 3: raise NotSupported(self.id + ' fetchMinOrderAmounts HTML page markup has changed: https://support.kraken.com/hc/en-us/articles/205893708-What-is-the-minimum-order-size-') result = {} # skip the part before the header and the header itself for i in range(2, len(parts)): part = parts[i] chunks = part.split('</td>') amountAndCode = chunks[0] if amountAndCode != 'To Be Announced': pieces = amountAndCode.split(' ') numPieces = len(pieces) if numPieces == 2: amount = float(pieces[0]) code = self.safe_currency_code(pieces[1]) result[code] = amount return result async def fetch_markets(self, params={}): response = await self.publicGetAssetPairs(params) limits = await self.fetch_min_order_amounts() keys = list(response['result'].keys()) result = [] for i in range(0, len(keys)): id = keys[i] market = response['result'][id] baseId = market['base'] quoteId = market['quote'] base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) darkpool = id.find('.d') >= 0 symbol = market['altname'] if darkpool else (base + '/' + quote) maker = None if 'fees_maker' in market: maker = float(market['fees_maker'][0][1]) / 100 precision = { 'amount': market['lot_decimals'], 'price': market['pair_decimals'], } minAmount = math.pow(10, -precision['amount']) if base in limits: minAmount = limits[base] result.append({ 'id': id, 'symbol': symbol, 'base': base, 'quote': quote, 'baseId': baseId, 'quoteId': quoteId, 'darkpool': darkpool, 'info': market, 'altname': market['altname'], 'maker': maker, 'taker': float(market['fees'][0][1]) / 100, 'active': True, 'precision': precision, 'limits': { 'amount': { 'min': minAmount, 'max': math.pow(10, precision['amount']), }, 'price': { 'min': math.pow(10, -precision['price']), 'max': None, }, 'cost': { 'min': 0, 'max': None, }, }, }) result = self.append_inactive_markets(result) self.marketsByAltname = self.index_by(result, 'altname') return result def safe_currency_code(self, currencyId, currency=None): if len(currencyId) > 3: if (currencyId.find('X') == 0) or (currencyId.find('Z') == 0): currencyId = currencyId[1:] return super(kraken, self).safe_currency_code(currencyId, currency) def append_inactive_markets(self, result): # result should be an array to append to precision = {'amount': 8, 'price': 8} costLimits = {'min': 0, 'max': None} priceLimits = {'min': math.pow(10, -precision['price']), 'max': None} amountLimits = {'min': math.pow(10, -precision['amount']), 'max': math.pow(10, precision['amount'])} limits = {'amount': amountLimits, 'price': priceLimits, 'cost': costLimits} defaults = { 'darkpool': False, 'info': None, 'maker': None, 'taker': None, 'active': False, 'precision': precision, 'limits': limits, } markets = [ # {'id': 'XXLMZEUR', 'symbol': 'XLM/EUR', 'base': 'XLM', 'quote': 'EUR', 'altname': 'XLMEUR'}, ] for i in range(0, len(markets)): result.append(self.extend(defaults, markets[i])) return result async def fetch_currencies(self, params={}): response = await self.publicGetAssets(params) # # { # "error": [], # "result": { # "ADA": {"aclass": "currency", "altname": "ADA", "decimals": 8, "display_decimals": 6}, # "BCH": {"aclass": "currency", "altname": "BCH", "decimals": 10, "display_decimals": 5}, # ... # }, # } # currencies = self.safe_value(response, 'result') ids = list(currencies.keys()) result = {} for i in range(0, len(ids)): id = ids[i] currency = currencies[id] # todo: will need to rethink the fees # see: https://support.kraken.com/hc/en-us/articles/201893608-What-are-the-withdrawal-fees- # to add support for multiple withdrawal/deposit methods and # differentiated fees for each particular method code = self.safe_currency_code(self.safe_string(currency, 'altname')) precision = self.safe_integer(currency, 'decimals') # assumes all currencies are active except those listed above active = not self.in_array(code, self.options['inactiveCurrencies']) result[code] = { 'id': id, 'code': code, 'info': currency, 'name': code, 'active': active, 'fee': None, 'precision': precision, 'limits': { 'amount': { 'min': math.pow(10, -precision), 'max': math.pow(10, precision), }, 'price': { 'min': math.pow(10, -precision), 'max': math.pow(10, precision), }, 'cost': { 'min': None, 'max': None, }, 'withdraw': { 'min': None, 'max': math.pow(10, precision), }, }, } return result async def fetch_trading_fees(self, params={}): await self.load_markets() self.check_required_credentials() response = await self.privatePostTradeVolume(params) tradedVolume = self.safe_float(response['result'], 'volume') tiers = self.fees['trading']['tiers'] taker = tiers['taker'][1] maker = tiers['maker'][1] for i in range(0, len(tiers['taker'])): if tradedVolume >= tiers['taker'][i][0]: taker = tiers['taker'][i][1] for i in range(0, len(tiers['maker'])): if tradedVolume >= tiers['maker'][i][0]: maker = tiers['maker'][i][1] return { 'info': response, 'maker': maker, 'taker': taker, } async def fetch_order_book(self, symbol, limit=None, params={}): await self.load_markets() market = self.market(symbol) if market['darkpool']: raise ExchangeError(self.id + ' does not provide an order book for darkpool symbol ' + symbol) request = { 'pair': market['id'], } if limit is not None: request['count'] = limit # 100 response = await self.publicGetDepth(self.extend(request, params)) orderbook = response['result'][market['id']] return self.parse_order_book(orderbook) def parse_ticker(self, ticker, market=None): timestamp = self.milliseconds() symbol = None if market: symbol = market['symbol'] baseVolume = float(ticker['v'][1]) vwap = float(ticker['p'][1]) quoteVolume = None if baseVolume is not None and vwap is not None: quoteVolume = baseVolume * vwap last = float(ticker['c'][0]) return { 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': float(ticker['h'][1]), 'low': float(ticker['l'][1]), 'bid': float(ticker['b'][0]), 'bidVolume': None, 'ask': float(ticker['a'][0]), 'askVolume': None, 'vwap': vwap, 'open': self.safe_float(ticker, 'o'), 'close': last, 'last': last, 'previousClose': None, 'change': None, 'percentage': None, 'average': None, 'baseVolume': baseVolume, 'quoteVolume': quoteVolume, 'info': ticker, } async def fetch_tickers(self, symbols=None, params={}): await self.load_markets() symbols = self.symbols if (symbols is None) else symbols marketIds = [] for i in range(0, len(self.symbols)): symbol = self.symbols[i] market = self.markets[symbol] if market['active'] and not market['darkpool']: marketIds.append(market['id']) request = { 'pair': ','.join(marketIds), } response = await self.publicGetTicker(self.extend(request, params)) tickers = response['result'] ids = list(tickers.keys()) result = {} for i in range(0, len(ids)): id = ids[i] market = self.markets_by_id[id] symbol = market['symbol'] ticker = tickers[id] if self.in_array(symbol, symbols): result[symbol] = self.parse_ticker(ticker, market) return result async def fetch_ticker(self, symbol, params={}): await self.load_markets() darkpool = symbol.find('.d') >= 0 if darkpool: raise ExchangeError(self.id + ' does not provide a ticker for darkpool symbol ' + symbol) market = self.market(symbol) request = { 'pair': market['id'], } response = await self.publicGetTicker(self.extend(request, params)) ticker = response['result'][market['id']] return self.parse_ticker(ticker, market) def parse_ohlcv(self, ohlcv, market=None, timeframe='1m', since=None, limit=None): return [ ohlcv[0] * 1000, float(ohlcv[1]), float(ohlcv[2]), float(ohlcv[3]), float(ohlcv[4]), float(ohlcv[6]), ] async def fetch_ohlcv(self, symbol, timeframe='1m', since=None, limit=None, params={}): await self.load_markets() market = self.market(symbol) request = { 'pair': market['id'], 'interval': self.timeframes[timeframe], } if since is not None: request['since'] = int((since - 1) / 1000) response = await self.publicGetOHLC(self.extend(request, params)) ohlcvs = response['result'][market['id']] return self.parse_ohlcvs(ohlcvs, market, timeframe, since, limit) def parse_ledger_entry_type(self, type): types = { 'trade': 'trade', 'withdrawal': 'transaction', 'deposit': 'transaction', 'transfer': 'transfer', 'margin': 'margin', } return self.safe_string(types, type, type) def parse_ledger_entry(self, item, currency=None): # # { # 'LTFK7F-N2CUX-PNY4SX': { # refid: "TSJTGT-DT7WN-GPPQMJ", # time: 1520102320.555, # type: "trade", # aclass: "currency", # asset: "XETH", # amount: "0.1087194600", # fee: "0.0000000000", # balance: "0.2855851000" # }, # ... # } # id = self.safe_string(item, 'id') direction = None account = None referenceId = self.safe_string(item, 'refid') referenceAccount = None type = self.parse_ledger_entry_type(self.safe_string(item, 'type')) code = self.safe_currency_code(self.safe_string(item, 'asset'), currency) amount = self.safe_float(item, 'amount') if amount < 0: direction = 'out' amount = abs(amount) else: direction = 'in' time = self.safe_float(item, 'time') timestamp = None if time is not None: timestamp = int(time * 1000) fee = { 'cost': self.safe_float(item, 'fee'), 'currency': code, } before = None after = self.safe_float(item, 'balance') status = 'ok' return { 'info': item, 'id': id, 'direction': direction, 'account': account, 'referenceId': referenceId, 'referenceAccount': referenceAccount, 'type': type, 'currency': code, 'amount': amount, 'before': before, 'after': after, 'status': status, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'fee': fee, } async def fetch_ledger(self, code=None, since=None, limit=None, params={}): # https://www.kraken.com/features/api#get-ledgers-info await self.load_markets() request = {} currency = None if code is not None: currency = self.currency(code) request['asset'] = currency['id'] if since is not None: request['start'] = int(since / 1000) response = await self.privatePostLedgers(self.extend(request, params)) # { error: [], # result: {ledger: {'LPUAIB-TS774-UKHP7X': { refid: "A2B4HBV-L4MDIE-JU4N3N", # time: 1520103488.314, # type: "withdrawal", # aclass: "currency", # asset: "XETH", # amount: "-0.2805800000", # fee: "0.0050000000", # balance: "0.0000051000" }, result = self.safe_value(response, 'result', {}) ledger = self.safe_value(result, 'ledger', {}) keys = list(ledger.keys()) items = [] for i in range(0, len(keys)): key = keys[i] value = ledger[key] value['id'] = key items.append(value) return self.parse_ledger(items, currency, since, limit) async def fetch_ledger_entries_by_ids(self, ids, code=None, params={}): # https://www.kraken.com/features/api#query-ledgers await self.load_markets() ids = ','.join(ids) request = self.extend({ 'id': ids, }, params) response = await self.privatePostQueryLedgers(request) # { error: [], # result: {'LPUAIB-TS774-UKHP7X': { refid: "A2B4HBV-L4MDIE-JU4N3N", # time: 1520103488.314, # type: "withdrawal", # aclass: "currency", # asset: "XETH", # amount: "-0.2805800000", # fee: "0.0050000000", # balance: "0.0000051000" }} } result = response['result'] keys = list(result.keys()) items = [] for i in range(0, len(keys)): key = keys[i] value = result[key] value['id'] = key items.append(value) return self.parse_ledger(items) async def fetch_ledger_entry(self, id, code=None, params={}): items = await self.fetch_ledger_entries_by_ids([id], code, params) return items[0] def parse_trade(self, trade, market=None): timestamp = None side = None type = None price = None amount = None id = None order = None fee = None marketId = self.safe_string(trade, 'pair') foundMarket = self.find_market_by_altname_or_id(marketId) symbol = None if foundMarket is not None: market = foundMarket elif marketId is not None: # delisted market ids go here market = self.get_delisted_market_by_id(marketId) if market is not None: symbol = market['symbol'] if 'ordertxid' in trade: order = trade['ordertxid'] id = self.safe_string_2(trade, 'id', 'postxid') timestamp = self.safe_timestamp(trade, 'time') side = trade['type'] type = trade['ordertype'] price = self.safe_float(trade, 'price') amount = self.safe_float(trade, 'vol') if 'fee' in trade: currency = None if market: currency = market['quote'] fee = { 'cost': self.safe_float(trade, 'fee'), 'currency': currency, } else: timestamp = int(trade[2] * 1000) side = 'sell' if (trade[3] == 's') else 'buy' type = 'limit' if (trade[4] == 'l') else 'market' price = float(trade[0]) amount = float(trade[1]) tradeLength = len(trade) if tradeLength > 6: id = trade[6] # artificially added as per #1794 return { 'id': id, 'order': order, 'info': trade, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': symbol, 'type': type, 'side': side, 'takerOrMaker': None, 'price': price, 'amount': amount, 'cost': price * amount, 'fee': fee, } async def fetch_trades(self, symbol, since=None, limit=None, params={}): await self.load_markets() market = self.market(symbol) id = market['id'] request = { 'pair': id, } response = await self.publicGetTrades(self.extend(request, params)) # # { # "error": [], # "result": { # "XETHXXBT": [ # ["0.032310","4.28169434",1541390792.763,"s","l",""] # ], # "last": "1541439421200678657" # } # } # result = response['result'] trades = result[id] # trades is a sorted array: last(most recent trade) goes last length = len(trades) if length <= 0: return [] lastTrade = trades[length - 1] lastTradeId = self.safe_string(result, 'last') lastTrade.append(lastTradeId) return self.parse_trades(trades, market, since, limit) async def fetch_balance(self, params={}): response = await self.privatePostBalance(params) balances = self.safe_value(response, 'result', {}) result = {'info': balances} currencyIds = list(balances.keys()) for i in range(0, len(currencyIds)): currencyId = currencyIds[i] code = self.safe_currency_code(currencyId) account = self.account() account['total'] = self.safe_float(balances, currencyId) result[code] = account return self.parse_balance(result) async def create_order(self, symbol, type, side, amount, price=None, params={}): await self.load_markets() market = self.market(symbol) request = { 'pair': market['id'], 'type': side, 'ordertype': type, 'volume': self.amount_to_precision(symbol, amount), } priceIsDefined = (price is not None) marketOrder = (type == 'market') limitOrder = (type == 'limit') shouldIncludePrice = limitOrder or (not marketOrder and priceIsDefined) if shouldIncludePrice: request['price'] = self.price_to_precision(symbol, price) response = await self.privatePostAddOrder(self.extend(request, params)) id = self.safe_value(response['result'], 'txid') if id is not None: if isinstance(id, list): length = len(id) id = id if (length > 1) else id[0] return { 'id': id, 'info': response, 'timestamp': None, 'datetime': None, 'lastTradeTimestamp': None, 'symbol': symbol, 'type': type, 'side': side, 'price': price, 'amount': amount, 'cost': None, 'average': None, 'filled': None, 'remaining': None, 'status': None, 'fee': None, 'trades': None, } def find_market_by_altname_or_id(self, id): if id in self.marketsByAltname: return self.marketsByAltname[id] elif id in self.markets_by_id: return self.markets_by_id[id] return None def get_delisted_market_by_id(self, id): if id is None: return id market = self.safe_value(self.options['delistedMarketsById'], id) if market is not None: return market baseIdStart = 0 baseIdEnd = 3 quoteIdStart = 3 quoteIdEnd = 6 if len(id) == 8: baseIdEnd = 4 quoteIdStart = 4 quoteIdEnd = 8 elif len(id) == 7: baseIdEnd = 4 quoteIdStart = 4 quoteIdEnd = 7 baseId = id[baseIdStart:baseIdEnd] quoteId = id[quoteIdStart:quoteIdEnd] base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) symbol = base + '/' + quote market = { 'symbol': symbol, 'base': base, 'quote': quote, 'baseId': baseId, 'quoteId': quoteId, } self.options['delistedMarketsById'][id] = market return market def parse_order_status(self, status): statuses = { 'pending': 'open', # order pending book entry 'open': 'open', 'closed': 'closed', 'canceled': 'canceled', 'expired': 'expired', } return self.safe_string(statuses, status, status) def parse_order(self, order, market=None): description = self.safe_value(order, 'descr', {}) side = self.safe_string(description, 'type') type = self.safe_string(description, 'ordertype') marketId = self.safe_string(description, 'pair') foundMarket = self.find_market_by_altname_or_id(marketId) symbol = None if foundMarket is not None: market = foundMarket elif marketId is not None: # delisted market ids go here market = self.get_delisted_market_by_id(marketId) timestamp = self.safe_timestamp(order, 'opentm') amount = self.safe_float(order, 'vol') filled = self.safe_float(order, 'vol_exec') remaining = amount - filled fee = None cost = self.safe_float(order, 'cost') price = self.safe_float(description, 'price') if (price is None) or (price == 0): price = self.safe_float(description, 'price2') if (price is None) or (price == 0): price = self.safe_float(order, 'price', price) average = self.safe_float(order, 'price') if market is not None: symbol = market['symbol'] if 'fee' in order: flags = order['oflags'] feeCost = self.safe_float(order, 'fee') fee = { 'cost': feeCost, 'rate': None, } if flags.find('fciq') >= 0: fee['currency'] = market['quote'] elif flags.find('fcib') >= 0: fee['currency'] = market['base'] status = self.parse_order_status(self.safe_string(order, 'status')) id = self.safe_string(order, 'id') return { 'id': id, 'info': order, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': None, 'status': status, 'symbol': symbol, 'type': type, 'side': side, 'price': price, 'cost': cost, 'amount': amount, 'filled': filled, 'average': average, 'remaining': remaining, 'fee': fee, # 'trades': self.parse_trades(order['trades'], market), } def parse_orders(self, orders, market=None, since=None, limit=None, params={}): result = [] ids = list(orders.keys()) symbol = None if market is not None: symbol = market['symbol'] for i in range(0, len(ids)): id = ids[i] order = self.extend({'id': id}, orders[id]) result.append(self.extend(self.parse_order(order, market), params)) return self.filter_by_symbol_since_limit(result, symbol, since, limit) async def fetch_order(self, id, symbol=None, params={}): await self.load_markets() response = await self.privatePostQueryOrders(self.extend({ 'trades': True, # whether or not to include trades in output(optional, default False) 'txid': id, # do not comma separate a list of ids - use fetchOrdersByIds instead # 'userref': 'optional', # restrict results to given user reference id(optional) }, params)) orders = response['result'] order = self.parse_order(self.extend({'id': id}, orders[id])) return self.extend({'info': response}, order) async def fetch_orders_by_ids(self, ids, symbol=None, params={}): await self.load_markets() response = await self.privatePostQueryOrders(self.extend({ 'trades': True, # whether or not to include trades in output(optional, default False) 'txid': ','.join(ids), # comma delimited list of transaction ids to query info about(20 maximum) }, params)) result = self.safe_value(response, 'result', {}) orders = [] orderIds = list(result.keys()) for i in range(0, len(orderIds)): id = orderIds[i] item = result[id] order = self.parse_order(self.extend({'id': id}, item)) orders.append(order) return orders async def fetch_my_trades(self, symbol=None, since=None, limit=None, params={}): await self.load_markets() request = { # 'type': 'all', # any position, closed position, closing position, no position # 'trades': False, # whether or not to include trades related to position in output # 'start': 1234567890, # starting unix timestamp or trade tx id of results(exclusive) # 'end': 1234567890, # ending unix timestamp or trade tx id of results(inclusive) # 'ofs' = result offset } if since is not None: request['start'] = int(since / 1000) response = await self.privatePostTradesHistory(self.extend(request, params)) # # { # "error": [], # "result": { # "trades": { # "GJ3NYQ-XJRTF-THZABF": { # "ordertxid": "TKH2SE-ZIF5E-CFI7LT", # "postxid": "OEN3VX-M7IF5-JNBJAM", # "pair": "XICNXETH", # "time": 1527213229.4491, # "type": "sell", # "ordertype": "limit", # "price": "0.001612", # "cost": "0.025792", # "fee": "0.000026", # "vol": "16.00000000", # "margin": "0.000000", # "misc": "" # }, # ... # }, # "count": 9760, # }, # } # trades = response['result']['trades'] ids = list(trades.keys()) for i in range(0, len(ids)): trades[ids[i]]['id'] = ids[i] result = self.parse_trades(trades, None, since, limit) if symbol is None: return result return self.filter_by_symbol(result, symbol) async def cancel_order(self, id, symbol=None, params={}): await self.load_markets() response = None try: response = await self.privatePostCancelOrder(self.extend({ 'txid': id, }, params)) except Exception as e: if self.last_http_response: if self.last_http_response.find('EOrder:Unknown order') >= 0: raise OrderNotFound(self.id + ' cancelOrder() error ' + self.last_http_response) raise e return response async def fetch_open_orders(self, symbol=None, since=None, limit=None, params={}): await self.load_markets() request = {} if since is not None: request['start'] = int(since / 1000) response = await self.privatePostOpenOrders(self.extend(request, params)) orders = self.parse_orders(response['result']['open'], None, since, limit) if symbol is None: return orders return self.filter_by_symbol(orders, symbol) async def fetch_closed_orders(self, symbol=None, since=None, limit=None, params={}): await self.load_markets() request = {} if since is not None: request['start'] = int(since / 1000) response = await self.privatePostClosedOrders(self.extend(request, params)) orders = self.parse_orders(response['result']['closed'], None, since, limit) if symbol is None: return orders return self.filter_by_symbol(orders, symbol) async def fetch_deposit_methods(self, code, params={}): await self.load_markets() currency = self.currency(code) request = { 'asset': currency['id'], } response = await self.privatePostDepositMethods(self.extend(request, params)) return response['result'] def parse_transaction_status(self, status): # IFEX transaction states statuses = { 'Initial': 'pending', 'Pending': 'pending', 'Success': 'ok', 'Settled': 'pending', 'Failure': 'failed', 'Partial': 'ok', } return self.safe_string(statuses, status, status) def parse_transaction(self, transaction, currency=None): # # fetchDeposits # # {method: "Ether(Hex)", # aclass: "currency", # asset: "XETH", # refid: "Q2CANKL-LBFVEE-U4Y2WQ", # txid: "0x57fd704dab1a73c20e24c8696099b695d596924b401b261513cfdab23…", # info: "0x615f9ba7a9575b0ab4d571b2b36b1b324bd83290", # amount: "7.9999257900", # fee: "0.0000000000", # time: 1529223212, # status: "Success" } # # fetchWithdrawals # # {method: "Ether", # aclass: "currency", # asset: "XETH", # refid: "A2BF34S-O7LBNQ-UE4Y4O", # txid: "0x288b83c6b0904d8400ef44e1c9e2187b5c8f7ea3d838222d53f701a15b5c274d", # info: "0x7cb275a5e07ba943fee972e165d80daa67cb2dd0", # amount: "9.9950000000", # fee: "0.0050000000", # time: 1530481750, # status: "Success" } # id = self.safe_string(transaction, 'refid') txid = self.safe_string(transaction, 'txid') timestamp = self.safe_timestamp(transaction, 'time') currencyId = self.safe_string(transaction, 'asset') code = self.safe_currency_code(currencyId, currency) address = self.safe_string(transaction, 'info') amount = self.safe_float(transaction, 'amount') status = self.parse_transaction_status(self.safe_string(transaction, 'status')) type = self.safe_string(transaction, 'type') # injected from the outside feeCost = self.safe_float(transaction, 'fee') if feeCost is None: if type == 'deposit': feeCost = 0 return { 'info': transaction, 'id': id, 'currency': code, 'amount': amount, 'address': address, 'tag': None, 'status': status, 'type': type, 'updated': None, 'txid': txid, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'fee': { 'currency': code, 'cost': feeCost, }, } def parse_transactions_by_type(self, type, transactions, code=None, since=None, limit=None): result = [] for i in range(0, len(transactions)): transaction = self.parse_transaction(self.extend({ 'type': type, }, transactions[i])) result.append(transaction) return self.filterByCurrencySinceLimit(result, code, since, limit) async def fetch_deposits(self, code=None, since=None, limit=None, params={}): await self.load_markets() # https://www.kraken.com/en-us/help/api#deposit-status if code is None: raise ArgumentsRequired(self.id + ' fetchDeposits requires a currency code argument') currency = self.currency(code) request = { 'asset': currency['id'], } response = await self.privatePostDepositStatus(self.extend(request, params)) # # { error: [], # result: [{method: "Ether(Hex)", # aclass: "currency", # asset: "XETH", # refid: "Q2CANKL-LBFVEE-U4Y2WQ", # txid: "0x57fd704dab1a73c20e24c8696099b695d596924b401b261513cfdab23…", # info: "0x615f9ba7a9575b0ab4d571b2b36b1b324bd83290", # amount: "7.9999257900", # fee: "0.0000000000", # time: 1529223212, # status: "Success" }]} # return self.parse_transactions_by_type('deposit', response['result'], code, since, limit) async def fetch_withdrawals(self, code=None, since=None, limit=None, params={}): await self.load_markets() # https://www.kraken.com/en-us/help/api#withdraw-status if code is None: raise ArgumentsRequired(self.id + ' fetchWithdrawals requires a currency code argument') currency = self.currency(code) request = { 'asset': currency['id'], } response = await self.privatePostWithdrawStatus(self.extend(request, params)) # # { error: [], # result: [{method: "Ether", # aclass: "currency", # asset: "XETH", # refid: "A2BF34S-O7LBNQ-UE4Y4O", # txid: "0x298c83c7b0904d8400ef43e1c9e2287b518f7ea3d838822d53f704a1565c274d", # info: "0x7cb275a5e07ba943fee972e165d80daa67cb2dd0", # amount: "9.9950000000", # fee: "0.0050000000", # time: 1530481750, # status: "Success" }]} # return self.parse_transactions_by_type('withdrawal', response['result'], code, since, limit) async def create_deposit_address(self, code, params={}): request = { 'new': 'true', } response = await self.fetch_deposit_address(code, self.extend(request, params)) address = self.safe_string(response, 'address') self.check_address(address) return { 'currency': code, 'address': address, 'info': response, } async def fetch_deposit_address(self, code, params={}): await self.load_markets() currency = self.currency(code) # eslint-disable-next-line quotes method = self.safe_string(params, 'method') if method is None: if self.options['cacheDepositMethodsOnFetchDepositAddress']: # cache depositMethods if not(code in list(self.options['depositMethods'].keys())): self.options['depositMethods'][code] = await self.fetch_deposit_methods(code) method = self.options['depositMethods'][code][0]['method'] else: raise ExchangeError(self.id + ' fetchDepositAddress() requires an extra `method` parameter. Use fetchDepositMethods("' + code + '") to get a list of available deposit methods or enable the exchange property .options["cacheDepositMethodsOnFetchDepositAddress"] = True') request = { 'asset': currency['id'], 'method': method, } response = await self.privatePostDepositAddresses(self.extend(request, params)) # overwrite methods result = response['result'] numResults = len(result) if numResults < 1: raise InvalidAddress(self.id + ' privatePostDepositAddresses() returned no addresses') address = self.safe_string(result[0], 'address') tag = self.safe_string_2(result[0], 'tag', 'memo') self.check_address(address) return { 'currency': code, 'address': address, 'tag': tag, 'info': response, } async def withdraw(self, code, amount, address, tag=None, params={}): self.check_address(address) if 'key' in params: await self.load_markets() currency = self.currency(code) request = { 'asset': currency['id'], 'amount': amount, # 'address': address, # they don't allow withdrawals to direct addresses } response = await self.privatePostWithdraw(self.extend(request, params)) return { 'info': response, 'id': response['result'], } raise ExchangeError(self.id + " withdraw requires a 'key' parameter(withdrawal key name, as set up on your account)") def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): url = '/' + self.version + '/' + api + '/' + path if api == 'public': if params: url += '?' + self.urlencode(params) elif api == 'private': self.check_required_credentials() nonce = str(self.nonce()) body = self.urlencode(self.extend({'nonce': nonce}, params)) auth = self.encode(nonce + body) hash = self.hash(auth, 'sha256', 'binary') binary = self.encode(url) binhash = self.binary_concat(binary, hash) secret = base64.b64decode(self.secret) signature = self.hmac(binhash, secret, hashlib.sha512, 'base64') headers = { 'API-Key': self.apiKey, 'API-Sign': self.decode(signature), 'Content-Type': 'application/x-www-form-urlencoded', } else: url = '/' + path url = self.urls['api'][api] + url return {'url': url, 'method': method, 'body': body, 'headers': headers} def nonce(self): return self.milliseconds() def handle_errors(self, code, reason, url, method, headers, body, response): if code == 520: raise ExchangeNotAvailable(self.id + ' ' + str(code) + ' ' + reason) # todo: rewrite self for "broad" exceptions matching if body.find('Invalid order') >= 0: raise InvalidOrder(self.id + ' ' + body) if body.find('Invalid nonce') >= 0: raise InvalidNonce(self.id + ' ' + body) if body.find('Insufficient funds') >= 0: raise InsufficientFunds(self.id + ' ' + body) if body.find('Cancel pending') >= 0: raise CancelPending(self.id + ' ' + body) if body.find('Invalid arguments:volume') >= 0: raise InvalidOrder(self.id + ' ' + body) if body[0] == '{': if not isinstance(response, basestring): if 'error' in response: numErrors = len(response['error']) if numErrors: message = self.id + ' ' + self.json(response) for i in range(0, len(response['error'])): if response['error'][i] in self.exceptions: raise self.exceptions[response['error'][i]](message) raise ExchangeError(message)
40.315426
284
0.48282
36a1ffbe9d3dab8e4e9e4dcb2377274907374ceb
1,667
py
Python
ooobuild/lo/logging/logger_pool.py
Amourspirit/ooo_uno_tmpl
64e0c86fd68f24794acc22d63d8d32ae05dd12b8
[ "Apache-2.0" ]
null
null
null
ooobuild/lo/logging/logger_pool.py
Amourspirit/ooo_uno_tmpl
64e0c86fd68f24794acc22d63d8d32ae05dd12b8
[ "Apache-2.0" ]
null
null
null
ooobuild/lo/logging/logger_pool.py
Amourspirit/ooo_uno_tmpl
64e0c86fd68f24794acc22d63d8d32ae05dd12b8
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 # # Copyright 2022 :Barry-Thomas-Paul: Moss # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http: // www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Singleton Class # this is a auto generated file generated by Cheetah # Namespace: com.sun.star.logging # Libre Office Version: 7.3 from .x_logger_pool import XLoggerPool as XLoggerPool_c8c40c41 class LoggerPool(XLoggerPool_c8c40c41): """ Singleton Class the global pool of named XLogger instances The one and only LoggerPool instance is available at a component context as value with the key /singletons/com.sun.star.logging.LoggerPool. **since** OOo 2.3 See Also: `API LoggerPool <https://api.libreoffice.org/docs/idl/ref/singletoncom_1_1sun_1_1star_1_1logging_1_1LoggerPool.html>`_ """ __ooo_ns__: str = 'com.sun.star.logging' __ooo_full_ns__: str = 'com.sun.star.logging.LoggerPool' __ooo_type_name__: str = 'singleton' _instance = None def __new__(cls, *args, **kwargs): # single instance only allowed if cls._instance is None: cls._instance = super().__new__(cls, *args, **kwargs) return cls._instance __all__ = ['LoggerPool']
30.87037
143
0.715057
e3e4a992d99a2b83c9725db27066929a025cf7fd
1,071
py
Python
data/make_traindata.py
existentmember7/cycle_gan
bab3b9d4f1e9faf7eaeb05002a1178dc1d8ccd4e
[ "MIT" ]
null
null
null
data/make_traindata.py
existentmember7/cycle_gan
bab3b9d4f1e9faf7eaeb05002a1178dc1d8ccd4e
[ "MIT" ]
null
null
null
data/make_traindata.py
existentmember7/cycle_gan
bab3b9d4f1e9faf7eaeb05002a1178dc1d8ccd4e
[ "MIT" ]
null
null
null
import glob import os import argparse parser = argparse.ArgumentParser(description='Process some parameters.') parser.add_argument('--root', type=str, default='/media/han/新增磁碟區/cy/dataset/',help='root path') args = parser.parse_args() root_dir = args.root # /media/han/新增磁碟區/cy/dataset/ _is = [1,2,3,10,12,13,22,23] _js = [6] training_label_file = open(root_dir+'train_label_new.txt', 'w') training_file_A = open(root_dir+'train_data_A_new.txt', 'w') training_file_B = open(root_dir+'train_data_B_new.txt', 'w') for i in _is: for j in _js: file_pathes = glob.glob(root_dir+'images/A/'+str(i)+'-'+str(j)+'/*.png') for path in file_pathes: lab = _is.index(int(i)) training_label_file.write(str(lab)+'\n') training_file_A.write(path+'\n') training_file_B.write(root_dir+'images/B/'+str(i)+'-'+str(j)+'/'+path.split('/')[-1]+'\n') # print(root_dir+'images/B/'+str(i)+'-'+str(j)+'/'+path.split('/')[-1]) training_label_file.close() training_file_A.close() training_file_B.close()
32.454545
102
0.647993
6d2e7fb93d1faccbcbf3d3bfe44be73a64048cd6
1,396
py
Python
data_registry/migrations/0007_auto_20210504_0825.py
open-contracting/data-registry
5a73e7f2334c6af5be23070493842b494b3e5357
[ "BSD-3-Clause" ]
null
null
null
data_registry/migrations/0007_auto_20210504_0825.py
open-contracting/data-registry
5a73e7f2334c6af5be23070493842b494b3e5357
[ "BSD-3-Clause" ]
170
2021-02-12T12:52:37.000Z
2022-03-28T14:37:05.000Z
data_registry/migrations/0007_auto_20210504_0825.py
open-contracting/data-registry
5a73e7f2334c6af5be23070493842b494b3e5357
[ "BSD-3-Clause" ]
null
null
null
# Generated by Django 3.1.6 on 2021-05-04 08:25 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('data_registry', '0006_auto_20210430_1310'), ] operations = [ migrations.AddField( model_name='task', name='order', field=models.IntegerField(blank=True, null=True), ), migrations.AddField( model_name='task', name='type', field=models.CharField(blank=True, max_length=2048, null=True), ), migrations.AlterField( model_name='collection', name='id', field=models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), ), migrations.AlterField( model_name='issue', name='id', field=models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), ), migrations.AlterField( model_name='job', name='id', field=models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), ), migrations.AlterField( model_name='task', name='id', field=models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), ), ]
31.727273
108
0.582378
002906209afc39943c982cf7af0d27b45fa12efe
269
py
Python
main.py
kuroneko1996/cyberlab
36e72b13efbe891c295143a89514296a3480bfea
[ "MIT" ]
4
2017-08-14T04:23:25.000Z
2019-09-12T06:12:37.000Z
main.py
kuroneko1996/cyberlab
36e72b13efbe891c295143a89514296a3480bfea
[ "MIT" ]
40
2017-08-14T07:23:56.000Z
2019-09-10T03:27:46.000Z
main.py
kuroneko1996/cyberlab
36e72b13efbe891c295143a89514296a3480bfea
[ "MIT" ]
3
2017-08-14T04:51:54.000Z
2022-02-13T08:48:23.000Z
import pygame from settings import * from screens.menu import main_menu def main(): pygame.init() pygame.joystick.init() display = pygame.display.set_mode((SCREEN_WIDTH, SCREEN_HEIGHT)) main_menu(display).run() if __name__ == '__main__': main()
17.933333
68
0.702602
b77d365f83da5123b469d24aaceed6f0e80297c8
2,998
py
Python
game/data/scripts/quests/510_AClansReputation/__init__.py
TheDemonLife/Lineage2Server-Interlude
d23d145db533fd899d4064026e4bc7ee45c6624a
[ "Apache-2.0" ]
10
2019-07-27T13:12:11.000Z
2022-01-15T19:13:26.000Z
game/data/scripts/quests/510_AClansReputation/__init__.py
TheDemonLife/Lineage2Server-Interlude
d23d145db533fd899d4064026e4bc7ee45c6624a
[ "Apache-2.0" ]
1
2021-08-06T12:15:01.000Z
2021-08-09T10:18:47.000Z
game/data/scripts/quests/510_AClansReputation/__init__.py
TheDemonLife/Lineage2Server-Interlude
d23d145db533fd899d4064026e4bc7ee45c6624a
[ "Apache-2.0" ]
2
2020-02-20T23:02:26.000Z
2020-11-22T09:27:51.000Z
import sys from ru.catssoftware.gameserver.model.quest import State from ru.catssoftware.gameserver.model.quest import QuestState from ru.catssoftware.gameserver.model.quest.jython import QuestJython as JQuest from ru.catssoftware.gameserver.network.serverpackets import PledgeShowInfoUpdate from ru.catssoftware.gameserver.network.serverpackets import SystemMessage qn="510_AClansReputation" # Quest NPC Valdis = 31331 # Quest Items Claw = 8767 # Reward CLAN_POINTS_REWARD = 50 # Rep Points Per Tyrannosaurus Item - need to be confirmed class Quest (JQuest) : def __init__(self,id,name,descr) : JQuest.__init__(self,id,name,descr) self.questItemIds = [Claw] def onAdvEvent (self,event,npc,player) : st = player.getQuestState(qn) if not st: return cond = st.getInt("cond") htmltext=event if event == "31331-3.htm" : if cond == 0 : st.set("cond","1") st.setState(State.STARTED) st.playSound("ItemSound.quest_accept") elif event == "31331-6.htm" : st.playSound("ItemSound.quest_finish") st.exitQuest(1) return htmltext def onTalk (self,npc,player) : htmltext = "<html><body>You are either not on a quest that involves this NPC, or you don't meet this NPC's minimum quest requirements.</body></html>" st = player.getQuestState(qn) if not st : return htmltext clan = player.getClan() npcId = npc.getNpcId() if player.getClan() == None or player.isClanLeader() == 0 : st.exitQuest(1) htmltext = "31331-0.htm" elif player.getClan().getLevel() < 5 : st.exitQuest(1) htmltext = "31331-0.htm" else : cond = st.getInt("cond") id = st.getState() if id == State.CREATED and cond == 0 : htmltext = "31331-1.htm" elif id == State.STARTED and cond == 1 : count = st.getQuestItemsCount(Claw) if not count : htmltext = "31331-4.htm" elif count >= 1 : htmltext = "31331-7.htm" # custom html st.takeItems(Claw,-1) reward = int(CLAN_POINTS_REWARD * count) clan.setReputationScore(clan.getReputationScore()+reward,True) player.sendPacket(SystemMessage(1777).addNumber(reward)) clan.broadcastToOnlineMembers(PledgeShowInfoUpdate(clan)) return htmltext def onKill(self,npc,player,isPet) : st = 0 if player.isClanLeader() : st = player.getQuestState(qn) else: clan = player.getClan() if clan: leader=clan.getLeader() if leader : pleader= leader.getPlayerInstance() if pleader : if player.isInsideRadius(pleader, 1600, 1, 0) : st = pleader.getQuestState(qn) if not st : return if st.getState() == State.STARTED : npcId=npc.getNpcId() if npcId in range(22215,22218) : st.giveItems(Claw,1) st.playSound("ItemSound.quest_itemget") return QUEST = Quest(510,qn,"A Clan's Reputation") QUEST.addStartNpc(Valdis) QUEST.addTalkId(Valdis) for npc in range(22215,22218): QUEST.addKillId(npc)
30.591837
151
0.672115
5d99773f934df36538b3a45b73e8f3f27a4e212b
9,172
py
Python
docs/conf.py
abravalheri/pyscaffoldext-pyproject
13cd647de47b90b67b37d8b9269a706fd1664ddb
[ "MIT" ]
null
null
null
docs/conf.py
abravalheri/pyscaffoldext-pyproject
13cd647de47b90b67b37d8b9269a706fd1664ddb
[ "MIT" ]
null
null
null
docs/conf.py
abravalheri/pyscaffoldext-pyproject
13cd647de47b90b67b37d8b9269a706fd1664ddb
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import os import sys import inspect import shutil __location__ = os.path.join(os.getcwd(), os.path.dirname( inspect.getfile(inspect.currentframe()))) # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.join(__location__, '../src')) # -- Run sphinx-apidoc ------------------------------------------------------ # This hack is necessary since RTD does not issue `sphinx-apidoc` before running # `sphinx-build -b html . _build/html`. See Issue: # https://github.com/rtfd/readthedocs.org/issues/1139 # DON'T FORGET: Check the box "Install your project inside a virtualenv using # setup.py install" in the RTD Advanced Settings. # Additionally it helps us to avoid running apidoc manually try: # for Sphinx >= 1.7 from sphinx.ext import apidoc except ImportError: from sphinx import apidoc output_dir = os.path.join(__location__, "api") module_dir = os.path.join(__location__, "../src/pyscaffoldext") try: shutil.rmtree(output_dir) except FileNotFoundError: pass try: import sphinx from distutils.version import LooseVersion cmd_line_template = "sphinx-apidoc -f -o {outputdir} {moduledir}" cmd_line = cmd_line_template.format(outputdir=output_dir, moduledir=module_dir) args = cmd_line.split(" ") if LooseVersion(sphinx.__version__) >= LooseVersion('1.7'): args = args[1:] apidoc.main(args) except Exception as e: print("Running `sphinx-apidoc` failed!\n{}".format(e)) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.autosummary', 'sphinx.ext.viewcode', 'sphinx.ext.coverage', 'sphinx.ext.doctest', 'sphinx.ext.ifconfig', 'sphinx.ext.mathjax', 'sphinx.ext.napoleon'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'pyscaffoldext-pyproject' copyright = u'2018, Florian Wilhelm' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '' # Is set by calling `setup.py docs` # The full version, including alpha/beta/rc tags. release = '' # Is set by calling `setup.py docs` # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. # keep_warnings = False # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". try: from pyscaffoldext.pyproject import __version__ as version except ImportError: pass else: release = version # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = "" # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'pyproject-doc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # 'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'user_guide.tex', u'pyscaffoldext-pyproject Documentation', u'Florian Wilhelm', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = "" # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- External mapping ------------------------------------------------------------ python_version = '.'.join(map(str, sys.version_info[0:2])) intersphinx_mapping = { 'sphinx': ('http://www.sphinx-doc.org/en/stable', None), 'python': ('https://docs.python.org/' + python_version, None), 'matplotlib': ('https://matplotlib.org', None), 'numpy': ('https://docs.scipy.org/doc/numpy', None), 'sklearn': ('http://scikit-learn.org/stable', None), 'pandas': ('http://pandas.pydata.org/pandas-docs/stable', None), 'scipy': ('https://docs.scipy.org/doc/scipy/reference', None), }
33.97037
85
0.705408
5a91dc202b05ee63b6769b0bbeb2d6552c010c5e
1,030
py
Python
gwinc/ifo/CE1/__init__.py
ark0015/pygwinc_clone
65396ee42e851ab7189618cabe1c12081b5d982e
[ "Unlicense" ]
null
null
null
gwinc/ifo/CE1/__init__.py
ark0015/pygwinc_clone
65396ee42e851ab7189618cabe1c12081b5d982e
[ "Unlicense" ]
null
null
null
gwinc/ifo/CE1/__init__.py
ark0015/pygwinc_clone
65396ee42e851ab7189618cabe1c12081b5d982e
[ "Unlicense" ]
1
2021-06-23T04:51:20.000Z
2021-06-23T04:51:20.000Z
from gwinc.ifo.noises import * class Newtonian(nb.Budget): """Newtonian Gravity """ name = 'Newtonian' style = dict( label='Newtonian', color='#15b01a', ) noises = [ NewtonianRayleigh, NewtonianBody, NewtonianInfrasound, ] class Coating(nb.Budget): """Coating Thermal """ name = 'Coating' style = dict( label='Coating Thermal', color='#fe0002', ) noises = [ CoatingBrownian, CoatingThermoOptic, ] class Substrate(nb.Budget): """Substrate Thermal """ name = 'Substrate' style = dict( label='Substrate Thermal', color='#fb7d07', linestyle='--', ) noises = [ SubstrateBrownian, SubstrateThermoElastic, ] class CE1(nb.Budget): name = 'Cosmic Explorer 1' noises = [ QuantumVacuum, Seismic, Newtonian, SuspensionThermal, Coating, Substrate, ExcessGas, ]
14.927536
34
0.529126
af111874f4b207262d1415e4d3f908af74bbcbc4
14,810
py
Python
venv/Lib/site-packages/statsmodels/sandbox/tsa/movstat.py
EkremBayar/bayar
aad1a32044da671d0b4f11908416044753360b39
[ "MIT" ]
6,931
2015-01-01T11:41:55.000Z
2022-03-31T17:03:24.000Z
venv/Lib/site-packages/statsmodels/sandbox/tsa/movstat.py
EkremBayar/bayar
aad1a32044da671d0b4f11908416044753360b39
[ "MIT" ]
6,137
2015-01-01T00:33:45.000Z
2022-03-31T22:53:17.000Z
venv/Lib/site-packages/statsmodels/sandbox/tsa/movstat.py
EkremBayar/bayar
aad1a32044da671d0b4f11908416044753360b39
[ "MIT" ]
2,608
2015-01-02T21:32:31.000Z
2022-03-31T07:38:30.000Z
'''using scipy signal and numpy correlate to calculate some time series statistics original developer notes see also scikits.timeseries (movstat is partially inspired by it) added 2009-08-29 timeseries moving stats are in c, autocorrelation similar to here I thought I saw moving stats somewhere in python, maybe not) TODO moving statistics - filters do not handle boundary conditions nicely (correctly ?) e.g. minimum order filter uses 0 for out of bounds value -> append and prepend with last resp. first value - enhance for nd arrays, with axis = 0 Note: Equivalence for 1D signals >>> np.all(signal.correlate(x,[1,1,1],'valid')==np.correlate(x,[1,1,1])) True >>> np.all(ndimage.filters.correlate(x,[1,1,1], origin = -1)[:-3+1]==np.correlate(x,[1,1,1])) True # multidimensional, but, it looks like it uses common filter across time series, no VAR ndimage.filters.correlate(np.vstack([x,x]),np.array([[1,1,1],[0,0,0]]), origin = 1) ndimage.filters.correlate(x,[1,1,1],origin = 1)) ndimage.filters.correlate(np.vstack([x,x]),np.array([[0.5,0.5,0.5],[0.5,0.5,0.5]]), \ origin = 1) >>> np.all(ndimage.filters.correlate(np.vstack([x,x]),np.array([[1,1,1],[0,0,0]]), origin = 1)[0]==\ ndimage.filters.correlate(x,[1,1,1],origin = 1)) True >>> np.all(ndimage.filters.correlate(np.vstack([x,x]),np.array([[0.5,0.5,0.5],[0.5,0.5,0.5]]), \ origin = 1)[0]==ndimage.filters.correlate(x,[1,1,1],origin = 1)) update 2009-09-06: cosmetic changes, rearrangements ''' import numpy as np from scipy import signal from numpy.testing import assert_array_equal, assert_array_almost_equal def expandarr(x,k): #make it work for 2D or nD with axis kadd = k if np.ndim(x) == 2: kadd = (kadd, np.shape(x)[1]) return np.r_[np.ones(kadd)*x[0],x,np.ones(kadd)*x[-1]] def movorder(x, order = 'med', windsize=3, lag='lagged'): '''moving order statistics Parameters ---------- x : ndarray time series data order : float or 'med', 'min', 'max' which order statistic to calculate windsize : int window size lag : 'lagged', 'centered', or 'leading' location of window relative to current position Returns ------- filtered array ''' #if windsize is even should it raise ValueError if lag == 'lagged': lead = windsize//2 elif lag == 'centered': lead = 0 elif lag == 'leading': lead = -windsize//2 +1 else: raise ValueError if np.isfinite(order): #if np.isnumber(order): ord = order # note: ord is a builtin function elif order == 'med': ord = (windsize - 1)/2 elif order == 'min': ord = 0 elif order == 'max': ord = windsize - 1 else: raise ValueError #return signal.order_filter(x,np.ones(windsize),ord)[:-lead] xext = expandarr(x, windsize) #np.r_[np.ones(windsize)*x[0],x,np.ones(windsize)*x[-1]] return signal.order_filter(xext,np.ones(windsize),ord)[windsize-lead:-(windsize+lead)] def check_movorder(): '''graphical test for movorder''' import matplotlib.pylab as plt x = np.arange(1,10) xo = movorder(x, order='max') assert_array_equal(xo, x) x = np.arange(10,1,-1) xo = movorder(x, order='min') assert_array_equal(xo, x) assert_array_equal(movorder(x, order='min', lag='centered')[:-1], x[1:]) tt = np.linspace(0,2*np.pi,15) x = np.sin(tt) + 1 xo = movorder(x, order='max') plt.figure() plt.plot(tt,x,'.-',tt,xo,'.-') plt.title('moving max lagged') xo = movorder(x, order='max', lag='centered') plt.figure() plt.plot(tt,x,'.-',tt,xo,'.-') plt.title('moving max centered') xo = movorder(x, order='max', lag='leading') plt.figure() plt.plot(tt,x,'.-',tt,xo,'.-') plt.title('moving max leading') # identity filter ##>>> signal.order_filter(x,np.ones(1),0) ##array([ 1., 2., 3., 4., 5., 6., 7., 8., 9.]) # median filter ##signal.medfilt(np.sin(x), kernel_size=3) ##>>> plt.figure() ##<matplotlib.figure.Figure object at 0x069BBB50> ##>>> x=np.linspace(0,3,100);plt.plot(x,np.sin(x),x,signal.medfilt(np.sin(x), kernel_size=3)) # remove old version ##def movmeanvar(x, windowsize=3, valid='same'): ## ''' ## this should also work along axis or at least for columns ## ''' ## n = x.shape[0] ## x = expandarr(x, windowsize - 1) ## takeslice = slice(windowsize-1, n + windowsize-1) ## avgkern = (np.ones(windowsize)/float(windowsize)) ## m = np.correlate(x, avgkern, 'same')#[takeslice] ## print(m.shape) ## print(x.shape) ## xm = x - m ## v = np.correlate(x*x, avgkern, 'same') - m**2 ## v1 = np.correlate(xm*xm, avgkern, valid) #not correct for var of window ###>>> np.correlate(xm*xm,np.array([1,1,1])/3.0,'valid')-np.correlate(xm*xm,np.array([1,1,1])/3.0,'valid')**2 ## return m[takeslice], v[takeslice], v1 def movmean(x, windowsize=3, lag='lagged'): '''moving window mean Parameters ---------- x : ndarray time series data windsize : int window size lag : 'lagged', 'centered', or 'leading' location of window relative to current position Returns ------- mk : ndarray moving mean, with same shape as x Notes ----- for leading and lagging the data array x is extended by the closest value of the array ''' return movmoment(x, 1, windowsize=windowsize, lag=lag) def movvar(x, windowsize=3, lag='lagged'): '''moving window variance Parameters ---------- x : ndarray time series data windsize : int window size lag : 'lagged', 'centered', or 'leading' location of window relative to current position Returns ------- mk : ndarray moving variance, with same shape as x ''' m1 = movmoment(x, 1, windowsize=windowsize, lag=lag) m2 = movmoment(x, 2, windowsize=windowsize, lag=lag) return m2 - m1*m1 def movmoment(x, k, windowsize=3, lag='lagged'): '''non-central moment Parameters ---------- x : ndarray time series data windsize : int window size lag : 'lagged', 'centered', or 'leading' location of window relative to current position Returns ------- mk : ndarray k-th moving non-central moment, with same shape as x Notes ----- If data x is 2d, then moving moment is calculated for each column. ''' windsize = windowsize #if windsize is even should it raise ValueError if lag == 'lagged': #lead = -0 + windsize #windsize//2 lead = -0# + (windsize-1) + windsize//2 sl = slice((windsize-1) or None, -2*(windsize-1) or None) elif lag == 'centered': lead = -windsize//2 #0#-1 #+ #(windsize-1) sl = slice((windsize-1)+windsize//2 or None, -(windsize-1)-windsize//2 or None) elif lag == 'leading': #lead = -windsize +1#+1 #+ (windsize-1)#//2 +1 lead = -windsize +2 #-windsize//2 +1 sl = slice(2*(windsize-1)+1+lead or None, -(2*(windsize-1)+lead)+1 or None) else: raise ValueError avgkern = (np.ones(windowsize)/float(windowsize)) xext = expandarr(x, windsize-1) #Note: expandarr increases the array size by 2*(windsize-1) #sl = slice(2*(windsize-1)+1+lead or None, -(2*(windsize-1)+lead)+1 or None) print(sl) if xext.ndim == 1: return np.correlate(xext**k, avgkern, 'full')[sl] #return np.correlate(xext**k, avgkern, 'same')[windsize-lead:-(windsize+lead)] else: print(xext.shape) print(avgkern[:,None].shape) # try first with 2d along columns, possibly ndim with axis return signal.correlate(xext**k, avgkern[:,None], 'full')[sl,:] #x=0.5**np.arange(10);xm=x-x.mean();a=np.correlate(xm,[1],'full') #x=0.5**np.arange(3);np.correlate(x,x,'same') ##>>> x=0.5**np.arange(10);xm=x-x.mean();a=np.correlate(xm,xo,'full') ## ##>>> xo=np.ones(10);d=np.correlate(xo,xo,'full') ##>>> xo ##xo=np.ones(10);d=np.correlate(xo,xo,'full') ##>>> x=np.ones(10);xo=x-x.mean();a=np.correlate(xo,xo,'full') ##>>> xo=np.ones(10);d=np.correlate(xo,xo,'full') ##>>> d ##array([ 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 9., ## 8., 7., 6., 5., 4., 3., 2., 1.]) ##def ccovf(): ## pass ## #x=0.5**np.arange(10);xm=x-x.mean();a=np.correlate(xm,xo,'full') __all__ = ['movorder', 'movmean', 'movvar', 'movmoment'] if __name__ == '__main__': print('\ncheckin moving mean and variance') nobs = 10 x = np.arange(nobs) ws = 3 ave = np.array([ 0., 1/3., 1., 2., 3., 4., 5., 6., 7., 8., 26/3., 9]) va = np.array([[ 0. , 0. ], [ 0.22222222, 0.88888889], [ 0.66666667, 2.66666667], [ 0.66666667, 2.66666667], [ 0.66666667, 2.66666667], [ 0.66666667, 2.66666667], [ 0.66666667, 2.66666667], [ 0.66666667, 2.66666667], [ 0.66666667, 2.66666667], [ 0.66666667, 2.66666667], [ 0.22222222, 0.88888889], [ 0. , 0. ]]) ave2d = np.c_[ave, 2*ave] print(movmean(x, windowsize=ws, lag='lagged')) print(movvar(x, windowsize=ws, lag='lagged')) print([np.var(x[i-ws:i]) for i in range(ws, nobs)]) m1 = movmoment(x, 1, windowsize=3, lag='lagged') m2 = movmoment(x, 2, windowsize=3, lag='lagged') print(m1) print(m2) print(m2 - m1*m1) # this implicitly also tests moment assert_array_almost_equal(va[ws-1:,0], movvar(x, windowsize=3, lag='leading')) assert_array_almost_equal(va[ws//2:-ws//2+1,0], movvar(x, windowsize=3, lag='centered')) assert_array_almost_equal(va[:-ws+1,0], movvar(x, windowsize=ws, lag='lagged')) print('\nchecking moving moment for 2d (columns only)') x2d = np.c_[x, 2*x] print(movmoment(x2d, 1, windowsize=3, lag='centered')) print(movmean(x2d, windowsize=ws, lag='lagged')) print(movvar(x2d, windowsize=ws, lag='lagged')) assert_array_almost_equal(va[ws-1:,:], movvar(x2d, windowsize=3, lag='leading')) assert_array_almost_equal(va[ws//2:-ws//2+1,:], movvar(x2d, windowsize=3, lag='centered')) assert_array_almost_equal(va[:-ws+1,:], movvar(x2d, windowsize=ws, lag='lagged')) assert_array_almost_equal(ave2d[ws-1:], movmoment(x2d, 1, windowsize=3, lag='leading')) assert_array_almost_equal(ave2d[ws//2:-ws//2+1], movmoment(x2d, 1, windowsize=3, lag='centered')) assert_array_almost_equal(ave2d[:-ws+1], movmean(x2d, windowsize=ws, lag='lagged')) from scipy import ndimage print(ndimage.filters.correlate1d(x2d, np.array([1,1,1])/3., axis=0)) #regression test check xg = np.array([ 0. , 0.1, 0.3, 0.6, 1. , 1.5, 2.1, 2.8, 3.6, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5, 19.5, 20.5, 21.5, 22.5, 23.5, 24.5, 25.5, 26.5, 27.5, 28.5, 29.5, 30.5, 31.5, 32.5, 33.5, 34.5, 35.5, 36.5, 37.5, 38.5, 39.5, 40.5, 41.5, 42.5, 43.5, 44.5, 45.5, 46.5, 47.5, 48.5, 49.5, 50.5, 51.5, 52.5, 53.5, 54.5, 55.5, 56.5, 57.5, 58.5, 59.5, 60.5, 61.5, 62.5, 63.5, 64.5, 65.5, 66.5, 67.5, 68.5, 69.5, 70.5, 71.5, 72.5, 73.5, 74.5, 75.5, 76.5, 77.5, 78.5, 79.5, 80.5, 81.5, 82.5, 83.5, 84.5, 85.5, 86.5, 87.5, 88.5, 89.5, 90.5, 91.5, 92.5, 93.5, 94.5]) assert_array_almost_equal(xg, movmean(np.arange(100), 10,'lagged')) xd = np.array([ 0.3, 0.6, 1. , 1.5, 2.1, 2.8, 3.6, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5, 19.5, 20.5, 21.5, 22.5, 23.5, 24.5, 25.5, 26.5, 27.5, 28.5, 29.5, 30.5, 31.5, 32.5, 33.5, 34.5, 35.5, 36.5, 37.5, 38.5, 39.5, 40.5, 41.5, 42.5, 43.5, 44.5, 45.5, 46.5, 47.5, 48.5, 49.5, 50.5, 51.5, 52.5, 53.5, 54.5, 55.5, 56.5, 57.5, 58.5, 59.5, 60.5, 61.5, 62.5, 63.5, 64.5, 65.5, 66.5, 67.5, 68.5, 69.5, 70.5, 71.5, 72.5, 73.5, 74.5, 75.5, 76.5, 77.5, 78.5, 79.5, 80.5, 81.5, 82.5, 83.5, 84.5, 85.5, 86.5, 87.5, 88.5, 89.5, 90.5, 91.5, 92.5, 93.5, 94.5, 95.4, 96.2, 96.9, 97.5, 98. , 98.4, 98.7, 98.9, 99. ]) assert_array_almost_equal(xd, movmean(np.arange(100), 10,'leading')) xc = np.array([ 1.36363636, 1.90909091, 2.54545455, 3.27272727, 4.09090909, 5. , 6. , 7. , 8. , 9. , 10. , 11. , 12. , 13. , 14. , 15. , 16. , 17. , 18. , 19. , 20. , 21. , 22. , 23. , 24. , 25. , 26. , 27. , 28. , 29. , 30. , 31. , 32. , 33. , 34. , 35. , 36. , 37. , 38. , 39. , 40. , 41. , 42. , 43. , 44. , 45. , 46. , 47. , 48. , 49. , 50. , 51. , 52. , 53. , 54. , 55. , 56. , 57. , 58. , 59. , 60. , 61. , 62. , 63. , 64. , 65. , 66. , 67. , 68. , 69. , 70. , 71. , 72. , 73. , 74. , 75. , 76. , 77. , 78. , 79. , 80. , 81. , 82. , 83. , 84. , 85. , 86. , 87. , 88. , 89. , 90. , 91. , 92. , 93. , 94. , 94.90909091, 95.72727273, 96.45454545, 97.09090909, 97.63636364]) assert_array_almost_equal(xc, movmean(np.arange(100), 11,'centered'))
35.859564
109
0.505874
4ee0c581b41ce500b886866ec490ed4bcd5c623f
844
py
Python
train.py
thomasbrockmeier-ams/Open3D-ML
1e362bbf133537668923905a12a15c540d9b689d
[ "MIT" ]
null
null
null
train.py
thomasbrockmeier-ams/Open3D-ML
1e362bbf133537668923905a12a15c540d9b689d
[ "MIT" ]
null
null
null
train.py
thomasbrockmeier-ams/Open3D-ML
1e362bbf133537668923905a12a15c540d9b689d
[ "MIT" ]
null
null
null
import os import ml3d as _ml3d import ml3d.tf as ml3d def main(): cfg_file = "ml3d/configs/randlanet_amsterdam3d.yml" cfg = _ml3d.utils.Config.load_from_file(cfg_file) model = ml3d.models.RandLANet(**cfg.model) cfg.dataset['dataset_path'] = "datasets/Cyclomedia_pc_verified" dataset = _ml3d.datasets.Amsterdam3D(cfg.dataset.pop('dataset_path', None), **cfg.dataset) pipeline = ml3d.pipelines.SemanticSegmentation(model=model, dataset=dataset, max_epoch=200, batch_size=1, device='gpu') ckpt_folder = "./logs/" os.makedirs(ckpt_folder, exist_ok=True) pipeline.cfg_tb = { "readme": "readme", "cmd_line": "cmd_line", "dataset": "Amsterdam3D", "model": "RandLaNet", "pipeline": "Default Pipeline", } pipeline.run_train() if __name__ == "__main__": main()
30.142857
123
0.674171
6f3d080093e541f5b2154906bbbcc9c352512046
642
py
Python
imdiff/analysis.py
jakubczaplicki/projecteuler
ab58762a65cb303f3e19cc8fc8c3d45831713719
[ "MIT" ]
null
null
null
imdiff/analysis.py
jakubczaplicki/projecteuler
ab58762a65cb303f3e19cc8fc8c3d45831713719
[ "MIT" ]
null
null
null
imdiff/analysis.py
jakubczaplicki/projecteuler
ab58762a65cb303f3e19cc8fc8c3d45831713719
[ "MIT" ]
null
null
null
# # Try to tell the difference between the images # import sys, os import cv2 import numpy def analyse(): inimg = cv2.imread('Lenna.png') outimg = cv2.imread('LennaR.png') bi, gi, ri = cv2.split(inimg) bo, go, ro = cv2.split(outimg) bi = numpy.asarray(bi) bo = numpy.asarray(bo) print bo errR = (ro - ri)**2; errG = (go - gi)**2; errB = (bo - bi)**2; n = float(inimg.size) / 3 #divide by 3 to get the number of image pixels print errB.sum() print sum(errB) MSER = errR.sum() / n MSEG = errG.sum() / n MSEB = errB.sum() / n print MSER, MSEG, MSEB #PSNR = 20*log10(255) - 10*log10(MSE) analyse()
18.882353
74
0.607477