hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
3e5adc61d48ceb1a66a453a40b2dfbc7e3b71c63
2,391
py
Python
src/components/roll_padding_2d_layer.py
morgannewellsun/Reverse-Conway
1750bf6ab96b8d6ccc1d8905264097e091adb82c
[ "Unlicense" ]
1
2022-03-13T22:44:53.000Z
2022-03-13T22:44:53.000Z
src/components/roll_padding_2d_layer.py
morgannewellsun/Reverse-Conway
1750bf6ab96b8d6ccc1d8905264097e091adb82c
[ "Unlicense" ]
null
null
null
src/components/roll_padding_2d_layer.py
morgannewellsun/Reverse-Conway
1750bf6ab96b8d6ccc1d8905264097e091adb82c
[ "Unlicense" ]
null
null
null
import tensorflow as tf class RollPadding2DLayer(tf.keras.layers.Layer): def __init__(self, padding: int): super(RollPadding2DLayer, self).__init__() self._padding = padding self._left_begin_arg = None self._left_size_arg = None self._right_begin_arg = None self._right_size_arg = None self._top_begin_arg = None self._top_size_arg = None self._bottom_begin_arg = None self._bottom_size_arg = None def build(self, input_shape): if len(input_shape) == 3: batch_begin_arg, batch_size_arg = [], [] elif len(input_shape) == 4: batch_begin_arg, batch_size_arg = [0], [-1] else: raise ValueError(f"RollPadding2DLayer recieved an input of shape {input_shape}. Dimension must be 3 or 4.") # x dimension self._left_begin_arg = tf.constant(batch_begin_arg + [0, 0, 0]) self._left_size_arg = tf.constant(batch_size_arg + [input_shape[-3], self._padding, input_shape[-1]]) self._right_begin_arg = tf.constant(batch_begin_arg + [0, input_shape[-2] - self._padding, 0]) self._right_size_arg = tf.constant(batch_size_arg + [input_shape[-3], self._padding, input_shape[-1]]) # y dimension self._top_begin_arg = tf.constant(batch_begin_arg + [0, 0, 0]) self._top_size_arg = tf.constant(batch_size_arg + [self._padding, input_shape[-2] + 2 * self._padding, input_shape[-1]]) self._bottom_begin_arg = tf.constant(batch_begin_arg + [input_shape[-3] - self._padding, 0, 0]) self._bottom_size_arg = tf.constant(batch_size_arg + [self._padding, input_shape[-2] + 2 * self._padding, input_shape[-1]]) def call(self, inputs, **kwargs): left_slice = tf.slice(inputs, self._left_begin_arg, self._left_size_arg) right_slice = tf.slice(inputs, self._right_begin_arg, self._right_size_arg) x_dim_padded_inputs = tf.concat([right_slice, inputs, left_slice], axis=-2) top_slice = tf.slice(x_dim_padded_inputs, self._top_begin_arg, self._top_size_arg) bottom_slice = tf.slice(x_dim_padded_inputs, self._bottom_begin_arg, self._bottom_size_arg) xy_dim_padded_inputs = tf.concat([bottom_slice, x_dim_padded_inputs, top_slice], axis=-3) return xy_dim_padded_inputs def get_config(self): return {"padding": self._padding}
50.87234
131
0.679214
781de0ee0a125c78df965d3af5495763cc850f0a
5,227
py
Python
assignments/assignment2/layers.py
NadyaStrogankova/dlcourse_ai
d03e3123b9f801fa3d801ab08e7327df5d48be43
[ "MIT" ]
null
null
null
assignments/assignment2/layers.py
NadyaStrogankova/dlcourse_ai
d03e3123b9f801fa3d801ab08e7327df5d48be43
[ "MIT" ]
null
null
null
assignments/assignment2/layers.py
NadyaStrogankova/dlcourse_ai
d03e3123b9f801fa3d801ab08e7327df5d48be43
[ "MIT" ]
null
null
null
import numpy as np def l2_regularization(W, reg_strength): """ Computes L2 regularization loss on weights and its gradient Arguments: W, np array - weights reg_strength - float value Returns: loss, single value - l2 regularization loss gradient, np.array same shape as W - gradient of weight by l2 loss """ # print(W.shape) loss = reg_strength * (W ** 2).sum() grad = 2 * reg_strength * W return loss, grad def softmax_with_cross_entropy(predictions, target_index): """ Computes softmax and cross-entropy loss for model predictions, including the gradient Arguments: predictions, np array, shape is either (N) or (batch_size, N) - classifier output target_index: np array of int, shape is (1) or (batch_size) - index of the true class for given sample(s) Returns: loss, single value - cross-entropy loss dprediction, np array same shape as predictions - gradient of predictions by loss value """ sm = softmax(predictions) # print("softmax count", softmax, e, "sum", sum(e).sum()) # Your final implementation shouldn't have any loops target, ti = targets(target_index, predictions.shape) loss = np.mean(-np.log(sm[ti])) dpredictions = (sm - target) / sm.shape[0] # print("predictions", predictions, "softmax", sm, "target", target, "loss", loss, "grad", dpredictions) return loss, dpredictions.reshape(predictions.shape) class Param: """ Trainable parameter of the model Captures both parameter value and the gradient """ def __init__(self, value): self.value = value self.grad = np.zeros_like(value) class ReLULayer: def __init__(self): self.param = None def forward(self, X): X_next = np.maximum(X, 0) self.param = Param(X_next) # Hint: you'll need to save some information about X # to use it later in the backward pass # raise Exception("Not implemented!") return X_next def backward(self, d_out): """ Backward pass Arguments: d_out, np array (batch_size, num_features) - gradient of loss function with respect to output Returns: d_result: np array (batch_size, num_features) - gradient with respect to input """ d_result = d_out d_result[self.param.value == 0] = 0 self.grad = d_result # print("backward", d_result, self.param.value) # Your final implementation shouldn't have any loops # raise Exception("Not implemented!") return d_result def params(self): # ReLU Doesn't have any parameters return {} class FullyConnectedLayer: def __init__(self, n_input, n_output): self.W = Param(0.001 * np.random.randn(n_input, n_output)) self.B = Param(0.001 * np.random.randn(1, n_output)) self.X = None def forward(self, X): # print(self.W.value, self.B) X_next = X.dot(self.W.value) + self.B.value # print("shapes", X_next.shape, self.W.value.shape, X) self.param = Param(X_next) self.X = Param(X) return X_next # Your final implementation shouldn't have any loops def backward(self, d_out): """ Backward pass Computes gradient with respect to input and accumulates gradients within self.W and self.B Arguments: d_out, np array (batch_size, n_output) - gradient of loss function with respect to output Returns: d_result: np array (batch_size, n_input) - gradient with respect to input """ # print(d_out, self.W.value.T) d_input = d_out.dot(self.W.value.T) self.grad = d_input # Compute both gradient with respect to input # and gradients with respect to W and B # Add gradients of W and B to their `grad` attribute self.params()['W'].grad = self.X.value.T.dot(d_out) self.params()['B'].grad = np.ones((1, d_out.shape[0])).dot(d_out) # print(d_out.shape, self.params()['B'].grad.shape) # It should be pretty similar to linear classifier from # the previous assignment return d_input def params(self): return {'W': self.W, 'B': self.B} def softmax(predictions): ''' Computes probabilities from scores Arguments: predictions, np array, shape is either (N) or (batch_size, N) - classifier output Returns: probs, np array of the same shape as predictions - probability for every class, 0..1 ''' if predictions.ndim > 1: pred_scaled = predictions.T - predictions.max(axis=1) e = np.exp(pred_scaled) sm = (e / e.sum(axis=0)).T else: pred_scaled = predictions - np.max(predictions) e = np.exp(pred_scaled) sm = np.array(e / sum(e)) # print(np.array(sm)) # Your final implementation shouldn't have any loops return sm def targets(target_index, shape): target = np.zeros(shape) ti = np.arange(len(target_index)), target_index.ravel() target[ti] = 1 return target, ti
30.213873
109
0.619476
c445c834b4ffdeac10b5abd9a8513d8b99852eec
952
py
Python
ucb_cs61A/homework/hw07/tests/ordered.py
tavaresdong/courses-notes
7fb89103bca679f5ef9b14cbc777152daac1402e
[ "MIT" ]
null
null
null
ucb_cs61A/homework/hw07/tests/ordered.py
tavaresdong/courses-notes
7fb89103bca679f5ef9b14cbc777152daac1402e
[ "MIT" ]
1
2017-07-31T08:15:26.000Z
2017-07-31T08:15:26.000Z
ucb_cs61A/homework/hw07/tests/ordered.py
tavaresdong/courses-notes
7fb89103bca679f5ef9b14cbc777152daac1402e
[ "MIT" ]
1
2019-10-06T16:52:31.000Z
2019-10-06T16:52:31.000Z
test = { 'name': 'ordered?', 'points': 1, 'suites': [ { 'cases': [ { 'code': r""" scm> (ordered? '(1 2 3 4 5)) ; True or False True """, 'hidden': False, 'locked': False }, { 'code': r""" scm> (ordered? '(1 5 2 4 3)) ; True or False False """, 'hidden': False, 'locked': False }, { 'code': r""" scm> (ordered? '(2 2)) ; True or False True """, 'hidden': False, 'locked': False }, { 'code': r""" scm> (ordered? '(1 2 2 4 3)) ; True or False False """, 'hidden': False, 'locked': False } ], 'scored': True, 'setup': r""" scm> (load 'hw07) """, 'teardown': '', 'type': 'scheme' } ] }
19.833333
55
0.320378
a53a49aeb0420bd952ba0e4c9644602416921aaf
211
py
Python
30_days/day_9_recursion.py
hsm207/hackerrank
776e2f84036b5103c5fbb4d9855568ace0cdd042
[ "Unlicense" ]
null
null
null
30_days/day_9_recursion.py
hsm207/hackerrank
776e2f84036b5103c5fbb4d9855568ace0cdd042
[ "Unlicense" ]
null
null
null
30_days/day_9_recursion.py
hsm207/hackerrank
776e2f84036b5103c5fbb4d9855568ace0cdd042
[ "Unlicense" ]
null
null
null
import sys def factorial(n): if n <= 1: return 1 else: return n * factorial(n - 1) if __name__ == "__main__": n = int(input().strip()) result = factorial(n) print(result)
14.066667
35
0.540284
38cd4cf4c7f8c78775ecfe54cb26d47f43e90e21
1,695
py
Python
examples/example_with_sound.py
bobatsar/moviepy
17028410205a56f2937011e08ae0e91971e49318
[ "MIT" ]
3
2021-03-14T09:33:36.000Z
2021-03-14T09:33:43.000Z
examples/example_with_sound.py
bobatsar/moviepy
17028410205a56f2937011e08ae0e91971e49318
[ "MIT" ]
10
2016-08-27T04:01:32.000Z
2017-10-30T06:43:49.000Z
examples/example_with_sound.py
bobatsar/moviepy
17028410205a56f2937011e08ae0e91971e49318
[ "MIT" ]
2
2020-02-19T13:16:49.000Z
2020-03-11T16:19:57.000Z
""" Description of the video: The screen is split in two parts showing Carry and Audrey at the phone, talking at the same time, because it is actually two scenes of a same movie put together. """ from moviepy.editor import * from moviepy.video.tools.drawing import color_split duration = 6 # duration of the final clip # LOAD THE MAIN SCENE # this small video contains the two scenes that we will put together. main_clip = VideoFileClip("../../videos/charadePhone.mp4") W,H = main_clip.size # MAKE THE LEFT CLIP : cut, crop, add a mask mask = color_split((2*W/3,H), p1=(W/3,H), p2=(2*W/3,0), col1=1, col2=0, grad_width=2) mask_clip = ImageClip(mask, ismask=True) clip_left = (main_clip.coreader() .subclip(0,duration) .crop( x1=60, x2=60 + 2*W/3) .set_mask(mask_clip)) # MAKE THE RIGHT CLIP : cut, crop, add a mask mask = color_split((2*W/3,H), p1=(2,H), p2=(W/3+2,0), col1=0, col2=1, grad_width=2) mask_clip = ImageClip(mask, ismask=True) clip_right = (main_clip.coreader() .subclip(21,21+duration) .crop(x1=70, x2=70+2*W/3) .set_mask(mask_clip)) # ASSEMBLE AND WRITE THE MOVIE TO A FILE cc = CompositeVideoClip([clip_right.set_pos('right').volumex(0.4), clip_left.set_pos('left').volumex(0.4)], size = (W,H)) #cc.preview() cc.write_videofile("../../biphone3.avi",fps=24, codec='mpeg4')
27.786885
71
0.545133
57e9fae5bf205bf80b84635bb9435ae7f109bad8
31,801
py
Python
cluster/juju/layers/kubernetes-worker/reactive/kubernetes_worker.py
pci/kubernetes
6a0d3c74949385494e42e5f9142925e851991ac8
[ "Apache-2.0" ]
1
2020-04-05T20:05:45.000Z
2020-04-05T20:05:45.000Z
cluster/juju/layers/kubernetes-worker/reactive/kubernetes_worker.py
pci/kubernetes
6a0d3c74949385494e42e5f9142925e851991ac8
[ "Apache-2.0" ]
null
null
null
cluster/juju/layers/kubernetes-worker/reactive/kubernetes_worker.py
pci/kubernetes
6a0d3c74949385494e42e5f9142925e851991ac8
[ "Apache-2.0" ]
1
2020-04-05T20:05:48.000Z
2020-04-05T20:05:48.000Z
#!/usr/bin/env python # Copyright 2015 The Kubernetes Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import random import shutil from shlex import split from subprocess import check_call, check_output from subprocess import CalledProcessError from socket import gethostname from charms import layer from charms.layer import snap from charms.reactive import hook from charms.reactive import set_state, remove_state, is_state from charms.reactive import when, when_any, when_not from charms.kubernetes.common import get_version from charms.kubernetes.flagmanager import FlagManager from charms.reactive.helpers import data_changed, any_file_changed from charms.templating.jinja2 import render from charmhelpers.core import hookenv, unitdata from charmhelpers.core.host import service_stop, service_restart from charmhelpers.contrib.charmsupport import nrpe # Override the default nagios shortname regex to allow periods, which we # need because our bin names contain them (e.g. 'snap.foo.daemon'). The # default regex in charmhelpers doesn't allow periods, but nagios itself does. nrpe.Check.shortname_re = '[\.A-Za-z0-9-_]+$' kubeconfig_path = '/root/cdk/kubeconfig' os.environ['PATH'] += os.pathsep + os.path.join(os.sep, 'snap', 'bin') db = unitdata.kv() @hook('upgrade-charm') def upgrade_charm(): # Trigger removal of PPA docker installation if it was previously set. set_state('config.changed.install_from_upstream') hookenv.atexit(remove_state, 'config.changed.install_from_upstream') cleanup_pre_snap_services() check_resources_for_upgrade_needed() # Remove gpu.enabled state so we can reconfigure gpu-related kubelet flags, # since they can differ between k8s versions remove_state('kubernetes-worker.gpu.enabled') kubelet_opts = FlagManager('kubelet') kubelet_opts.destroy('feature-gates') kubelet_opts.destroy('experimental-nvidia-gpus') remove_state('kubernetes-worker.cni-plugins.installed') remove_state('kubernetes-worker.config.created') remove_state('kubernetes-worker.ingress.available') set_state('kubernetes-worker.restart-needed') def check_resources_for_upgrade_needed(): hookenv.status_set('maintenance', 'Checking resources') resources = ['kubectl', 'kubelet', 'kube-proxy'] paths = [hookenv.resource_get(resource) for resource in resources] if any_file_changed(paths): set_upgrade_needed() def set_upgrade_needed(): set_state('kubernetes-worker.snaps.upgrade-needed') config = hookenv.config() previous_channel = config.previous('channel') require_manual = config.get('require-manual-upgrade') if previous_channel is None or not require_manual: set_state('kubernetes-worker.snaps.upgrade-specified') def cleanup_pre_snap_services(): # remove old states remove_state('kubernetes-worker.components.installed') # disable old services services = ['kubelet', 'kube-proxy'] for service in services: hookenv.log('Stopping {0} service.'.format(service)) service_stop(service) # cleanup old files files = [ "/lib/systemd/system/kubelet.service", "/lib/systemd/system/kube-proxy.service", "/etc/default/kube-default", "/etc/default/kubelet", "/etc/default/kube-proxy", "/srv/kubernetes", "/usr/local/bin/kubectl", "/usr/local/bin/kubelet", "/usr/local/bin/kube-proxy", "/etc/kubernetes" ] for file in files: if os.path.isdir(file): hookenv.log("Removing directory: " + file) shutil.rmtree(file) elif os.path.isfile(file): hookenv.log("Removing file: " + file) os.remove(file) # cleanup old flagmanagers FlagManager('kubelet').destroy_all() FlagManager('kube-proxy').destroy_all() @when('config.changed.channel') def channel_changed(): set_upgrade_needed() @when('kubernetes-worker.snaps.upgrade-needed') @when_not('kubernetes-worker.snaps.upgrade-specified') def upgrade_needed_status(): msg = 'Needs manual upgrade, run the upgrade action' hookenv.status_set('blocked', msg) @when('kubernetes-worker.snaps.upgrade-specified') def install_snaps(): check_resources_for_upgrade_needed() channel = hookenv.config('channel') hookenv.status_set('maintenance', 'Installing kubectl snap') snap.install('kubectl', channel=channel, classic=True) hookenv.status_set('maintenance', 'Installing kubelet snap') snap.install('kubelet', channel=channel, classic=True) hookenv.status_set('maintenance', 'Installing kube-proxy snap') snap.install('kube-proxy', channel=channel, classic=True) set_state('kubernetes-worker.snaps.installed') set_state('kubernetes-worker.restart-needed') remove_state('kubernetes-worker.snaps.upgrade-needed') remove_state('kubernetes-worker.snaps.upgrade-specified') @hook('stop') def shutdown(): ''' When this unit is destroyed: - delete the current node - stop the worker services ''' try: if os.path.isfile(kubeconfig_path): kubectl('delete', 'node', gethostname()) except CalledProcessError: hookenv.log('Failed to unregister node.') service_stop('snap.kubelet.daemon') service_stop('snap.kube-proxy.daemon') @when('docker.available') @when_not('kubernetes-worker.cni-plugins.installed') def install_cni_plugins(): ''' Unpack the cni-plugins resource ''' charm_dir = os.getenv('CHARM_DIR') # Get the resource via resource_get try: archive = hookenv.resource_get('cni') except Exception: message = 'Error fetching the cni resource.' hookenv.log(message) hookenv.status_set('blocked', message) return if not archive: hookenv.log('Missing cni resource.') hookenv.status_set('blocked', 'Missing cni resource.') return # Handle null resource publication, we check if filesize < 1mb filesize = os.stat(archive).st_size if filesize < 1000000: hookenv.status_set('blocked', 'Incomplete cni resource.') return hookenv.status_set('maintenance', 'Unpacking cni resource.') unpack_path = '{}/files/cni'.format(charm_dir) os.makedirs(unpack_path, exist_ok=True) cmd = ['tar', 'xfvz', archive, '-C', unpack_path] hookenv.log(cmd) check_call(cmd) apps = [ {'name': 'loopback', 'path': '/opt/cni/bin'} ] for app in apps: unpacked = '{}/{}'.format(unpack_path, app['name']) app_path = os.path.join(app['path'], app['name']) install = ['install', '-v', '-D', unpacked, app_path] hookenv.log(install) check_call(install) # Used by the "registry" action. The action is run on a single worker, but # the registry pod can end up on any worker, so we need this directory on # all the workers. os.makedirs('/srv/registry', exist_ok=True) set_state('kubernetes-worker.cni-plugins.installed') @when('kubernetes-worker.snaps.installed') def set_app_version(): ''' Declare the application version to juju ''' cmd = ['kubelet', '--version'] version = check_output(cmd) hookenv.application_version_set(version.split(b' v')[-1].rstrip()) @when('kubernetes-worker.snaps.installed') @when_not('kube-control.dns.available') def notify_user_transient_status(): ''' Notify to the user we are in a transient state and the application is still converging. Potentially remotely, or we may be in a detached loop wait state ''' # During deployment the worker has to start kubelet without cluster dns # configured. If this is the first unit online in a service pool waiting # to self host the dns pod, and configure itself to query the dns service # declared in the kube-system namespace hookenv.status_set('waiting', 'Waiting for cluster DNS.') @when('kubernetes-worker.snaps.installed', 'kube-control.dns.available') @when_not('kubernetes-worker.snaps.upgrade-needed') def charm_status(kube_control): '''Update the status message with the current status of kubelet.''' update_kubelet_status() def update_kubelet_status(): ''' There are different states that the kubelet can be in, where we are waiting for dns, waiting for cluster turnup, or ready to serve applications.''' services = [ 'kubelet', 'kube-proxy' ] failing_services = [] for service in services: daemon = 'snap.{}.daemon'.format(service) if not _systemctl_is_active(daemon): failing_services.append(service) if len(failing_services) == 0: hookenv.status_set('active', 'Kubernetes worker running.') else: msg = 'Waiting for {} to start.'.format(','.join(failing_services)) hookenv.status_set('waiting', msg) @when('certificates.available') def send_data(tls): '''Send the data that is required to create a server certificate for this server.''' # Use the public ip of this unit as the Common Name for the certificate. common_name = hookenv.unit_public_ip() # Create SANs that the tls layer will add to the server cert. sans = [ hookenv.unit_public_ip(), hookenv.unit_private_ip(), gethostname() ] # Create a path safe name by removing path characters from the unit name. certificate_name = hookenv.local_unit().replace('/', '_') # Request a server cert with this information. tls.request_server_cert(common_name, sans, certificate_name) @when('kube-api-endpoint.available', 'kube-control.dns.available', 'cni.available') def watch_for_changes(kube_api, kube_control, cni): ''' Watch for configuration changes and signal if we need to restart the worker services ''' servers = get_kube_api_servers(kube_api) dns = kube_control.get_dns() cluster_cidr = cni.get_config()['cidr'] if (data_changed('kube-api-servers', servers) or data_changed('kube-dns', dns) or data_changed('cluster-cidr', cluster_cidr)): set_state('kubernetes-worker.restart-needed') @when('kubernetes-worker.snaps.installed', 'kube-api-endpoint.available', 'tls_client.ca.saved', 'tls_client.client.certificate.saved', 'tls_client.client.key.saved', 'tls_client.server.certificate.saved', 'tls_client.server.key.saved', 'kube-control.dns.available', 'kube-control.auth.available', 'cni.available', 'kubernetes-worker.restart-needed') def start_worker(kube_api, kube_control, auth_control, cni): ''' Start kubelet using the provided API and DNS info.''' servers = get_kube_api_servers(kube_api) # Note that the DNS server doesn't necessarily exist at this point. We know # what its IP will eventually be, though, so we can go ahead and configure # kubelet with that info. This ensures that early pods are configured with # the correct DNS even though the server isn't ready yet. dns = kube_control.get_dns() cluster_cidr = cni.get_config()['cidr'] if cluster_cidr is None: hookenv.log('Waiting for cluster cidr.') return creds = kube_control.get_auth_credentials() data_changed('kube-control.creds', creds) # set --allow-privileged flag for kubelet set_privileged() create_config(random.choice(servers), creds) configure_worker_services(servers, dns, cluster_cidr) set_state('kubernetes-worker.config.created') restart_unit_services() update_kubelet_status() apply_node_labels() remove_state('kubernetes-worker.restart-needed') @when('cni.connected') @when_not('cni.configured') def configure_cni(cni): ''' Set worker configuration on the CNI relation. This lets the CNI subordinate know that we're the worker so it can respond accordingly. ''' cni.set_config(is_master=False, kubeconfig_path=kubeconfig_path) @when('config.changed.ingress') def toggle_ingress_state(): ''' Ingress is a toggled state. Remove ingress.available if set when toggled ''' remove_state('kubernetes-worker.ingress.available') @when('docker.sdn.configured') def sdn_changed(): '''The Software Defined Network changed on the container so restart the kubernetes services.''' restart_unit_services() update_kubelet_status() remove_state('docker.sdn.configured') @when('kubernetes-worker.config.created') @when_not('kubernetes-worker.ingress.available') def render_and_launch_ingress(): ''' If configuration has ingress RC enabled, launch the ingress load balancer and default http backend. Otherwise attempt deletion. ''' config = hookenv.config() # If ingress is enabled, launch the ingress controller if config.get('ingress'): launch_default_ingress_controller() else: hookenv.log('Deleting the http backend and ingress.') kubectl_manifest('delete', '/root/cdk/addons/default-http-backend.yaml') kubectl_manifest('delete', '/root/cdk/addons/ingress-replication-controller.yaml') # noqa hookenv.close_port(80) hookenv.close_port(443) @when('kubernetes-worker.ingress.available') def scale_ingress_controller(): ''' Scale the number of ingress controller replicas to match the number of nodes. ''' try: output = kubectl('get', 'nodes', '-o', 'name') count = len(output.splitlines()) kubectl('scale', '--replicas=%d' % count, 'rc/nginx-ingress-controller') # noqa except CalledProcessError: hookenv.log('Failed to scale ingress controllers. Will attempt again next update.') # noqa @when('config.changed.labels', 'kubernetes-worker.config.created') def apply_node_labels(): ''' Parse the labels configuration option and apply the labels to the node. ''' # scrub and try to format an array from the configuration option config = hookenv.config() user_labels = _parse_labels(config.get('labels')) # For diffing sake, iterate the previous label set if config.previous('labels'): previous_labels = _parse_labels(config.previous('labels')) hookenv.log('previous labels: {}'.format(previous_labels)) else: # this handles first time run if there is no previous labels config previous_labels = _parse_labels("") # Calculate label removal for label in previous_labels: if label not in user_labels: hookenv.log('Deleting node label {}'.format(label)) try: _apply_node_label(label, delete=True) except CalledProcessError: hookenv.log('Error removing node label {}'.format(label)) # if the label is in user labels we do nothing here, it will get set # during the atomic update below. # Atomically set a label for label in user_labels: _apply_node_label(label, overwrite=True) def arch(): '''Return the package architecture as a string. Raise an exception if the architecture is not supported by kubernetes.''' # Get the package architecture for this system. architecture = check_output(['dpkg', '--print-architecture']).rstrip() # Convert the binary result into a string. architecture = architecture.decode('utf-8') return architecture def create_config(server, creds): '''Create a kubernetes configuration for the worker unit.''' # Get the options from the tls-client layer. layer_options = layer.options('tls-client') # Get all the paths to the tls information required for kubeconfig. ca = layer_options.get('ca_certificate_path') # Create kubernetes configuration in the default location for ubuntu. create_kubeconfig('/home/ubuntu/.kube/config', server, ca, token=creds['client_token'], user='ubuntu') # Make the config dir readable by the ubuntu users so juju scp works. cmd = ['chown', '-R', 'ubuntu:ubuntu', '/home/ubuntu/.kube'] check_call(cmd) # Create kubernetes configuration in the default location for root. create_kubeconfig('/root/.kube/config', server, ca, token=creds['client_token'], user='root') # Create kubernetes configuration for kubelet, and kube-proxy services. create_kubeconfig(kubeconfig_path, server, ca, token=creds['kubelet_token'], user='kubelet') def configure_worker_services(api_servers, dns, cluster_cidr): ''' Add remaining flags for the worker services and configure snaps to use them ''' layer_options = layer.options('tls-client') ca_cert_path = layer_options.get('ca_certificate_path') server_cert_path = layer_options.get('server_certificate_path') server_key_path = layer_options.get('server_key_path') kubelet_opts = FlagManager('kubelet') kubelet_opts.add('require-kubeconfig', 'true') kubelet_opts.add('kubeconfig', kubeconfig_path) kubelet_opts.add('network-plugin', 'cni') kubelet_opts.add('v', '0') kubelet_opts.add('address', '0.0.0.0') kubelet_opts.add('port', '10250') kubelet_opts.add('cluster-dns', dns['sdn-ip']) kubelet_opts.add('cluster-domain', dns['domain']) kubelet_opts.add('anonymous-auth', 'false') kubelet_opts.add('client-ca-file', ca_cert_path) kubelet_opts.add('tls-cert-file', server_cert_path) kubelet_opts.add('tls-private-key-file', server_key_path) kubelet_opts.add('logtostderr', 'true') kube_proxy_opts = FlagManager('kube-proxy') kube_proxy_opts.add('cluster-cidr', cluster_cidr) kube_proxy_opts.add('kubeconfig', kubeconfig_path) kube_proxy_opts.add('logtostderr', 'true') kube_proxy_opts.add('v', '0') kube_proxy_opts.add('master', random.choice(api_servers), strict=True) if b'lxc' in check_output('virt-what', shell=True): kube_proxy_opts.add('conntrack-max-per-core', '0') cmd = ['snap', 'set', 'kubelet'] + kubelet_opts.to_s().split(' ') check_call(cmd) cmd = ['snap', 'set', 'kube-proxy'] + kube_proxy_opts.to_s().split(' ') check_call(cmd) def create_kubeconfig(kubeconfig, server, ca, key=None, certificate=None, user='ubuntu', context='juju-context', cluster='juju-cluster', password=None, token=None): '''Create a configuration for Kubernetes based on path using the supplied arguments for values of the Kubernetes server, CA, key, certificate, user context and cluster.''' if not key and not certificate and not password and not token: raise ValueError('Missing authentication mechanism.') # token and password are mutually exclusive. Error early if both are # present. The developer has requested an impossible situation. # see: kubectl config set-credentials --help if token and password: raise ValueError('Token and Password are mutually exclusive.') # Create the config file with the address of the master server. cmd = 'kubectl config --kubeconfig={0} set-cluster {1} ' \ '--server={2} --certificate-authority={3} --embed-certs=true' check_call(split(cmd.format(kubeconfig, cluster, server, ca))) # Delete old users cmd = 'kubectl config --kubeconfig={0} unset users' check_call(split(cmd.format(kubeconfig))) # Create the credentials using the client flags. cmd = 'kubectl config --kubeconfig={0} ' \ 'set-credentials {1} '.format(kubeconfig, user) if key and certificate: cmd = '{0} --client-key={1} --client-certificate={2} '\ '--embed-certs=true'.format(cmd, key, certificate) if password: cmd = "{0} --username={1} --password={2}".format(cmd, user, password) # This is mutually exclusive from password. They will not work together. if token: cmd = "{0} --token={1}".format(cmd, token) check_call(split(cmd)) # Create a default context with the cluster. cmd = 'kubectl config --kubeconfig={0} set-context {1} ' \ '--cluster={2} --user={3}' check_call(split(cmd.format(kubeconfig, context, cluster, user))) # Make the config use this new context. cmd = 'kubectl config --kubeconfig={0} use-context {1}' check_call(split(cmd.format(kubeconfig, context))) def launch_default_ingress_controller(): ''' Launch the Kubernetes ingress controller & default backend (404) ''' context = {} context['arch'] = arch() addon_path = '/root/cdk/addons/{}' # Render the default http backend (404) replicationcontroller manifest manifest = addon_path.format('default-http-backend.yaml') render('default-http-backend.yaml', manifest, context) hookenv.log('Creating the default http backend.') try: kubectl('apply', '-f', manifest) except CalledProcessError as e: hookenv.log(e) hookenv.log('Failed to create default-http-backend. Will attempt again next update.') # noqa hookenv.close_port(80) hookenv.close_port(443) return # Render the ingress replication controller manifest manifest = addon_path.format('ingress-replication-controller.yaml') render('ingress-replication-controller.yaml', manifest, context) hookenv.log('Creating the ingress replication controller.') try: kubectl('apply', '-f', manifest) except CalledProcessError as e: hookenv.log(e) hookenv.log('Failed to create ingress controller. Will attempt again next update.') # noqa hookenv.close_port(80) hookenv.close_port(443) return set_state('kubernetes-worker.ingress.available') hookenv.open_port(80) hookenv.open_port(443) def restart_unit_services(): '''Restart worker services.''' hookenv.log('Restarting kubelet and kube-proxy.') services = ['kube-proxy', 'kubelet'] for service in services: service_restart('snap.%s.daemon' % service) def get_kube_api_servers(kube_api): '''Return the kubernetes api server address and port for this relationship.''' hosts = [] # Iterate over every service from the relation object. for service in kube_api.services(): for unit in service['hosts']: hosts.append('https://{0}:{1}'.format(unit['hostname'], unit['port'])) return hosts def kubectl(*args): ''' Run a kubectl cli command with a config file. Returns stdout and throws an error if the command fails. ''' command = ['kubectl', '--kubeconfig=' + kubeconfig_path] + list(args) hookenv.log('Executing {}'.format(command)) return check_output(command) def kubectl_success(*args): ''' Runs kubectl with the given args. Returns True if succesful, False if not. ''' try: kubectl(*args) return True except CalledProcessError: return False def kubectl_manifest(operation, manifest): ''' Wrap the kubectl creation command when using filepath resources :param operation - one of get, create, delete, replace :param manifest - filepath to the manifest ''' # Deletions are a special case if operation == 'delete': # Ensure we immediately remove requested resources with --now return kubectl_success(operation, '-f', manifest, '--now') else: # Guard against an error re-creating the same manifest multiple times if operation == 'create': # If we already have the definition, its probably safe to assume # creation was true. if kubectl_success('get', '-f', manifest): hookenv.log('Skipping definition for {}'.format(manifest)) return True # Execute the requested command that did not match any of the special # cases above return kubectl_success(operation, '-f', manifest) @when('nrpe-external-master.available') @when_not('nrpe-external-master.initial-config') def initial_nrpe_config(nagios=None): set_state('nrpe-external-master.initial-config') update_nrpe_config(nagios) @when('kubernetes-worker.config.created') @when('nrpe-external-master.available') @when_any('config.changed.nagios_context', 'config.changed.nagios_servicegroups') def update_nrpe_config(unused=None): services = ('snap.kubelet.daemon', 'snap.kube-proxy.daemon') hostname = nrpe.get_nagios_hostname() current_unit = nrpe.get_nagios_unit_name() nrpe_setup = nrpe.NRPE(hostname=hostname) nrpe.add_init_service_checks(nrpe_setup, services, current_unit) nrpe_setup.write() @when_not('nrpe-external-master.available') @when('nrpe-external-master.initial-config') def remove_nrpe_config(nagios=None): remove_state('nrpe-external-master.initial-config') # List of systemd services for which the checks will be removed services = ('snap.kubelet.daemon', 'snap.kube-proxy.daemon') # The current nrpe-external-master interface doesn't handle a lot of logic, # use the charm-helpers code for now. hostname = nrpe.get_nagios_hostname() nrpe_setup = nrpe.NRPE(hostname=hostname) for service in services: nrpe_setup.remove_check(shortname=service) def set_privileged(): """Update the allow-privileged flag for kubelet. """ privileged = hookenv.config('allow-privileged') if privileged == 'auto': gpu_enabled = is_state('kubernetes-worker.gpu.enabled') privileged = 'true' if gpu_enabled else 'false' flag = 'allow-privileged' hookenv.log('Setting {}={}'.format(flag, privileged)) kubelet_opts = FlagManager('kubelet') kubelet_opts.add(flag, privileged) if privileged == 'true': set_state('kubernetes-worker.privileged') else: remove_state('kubernetes-worker.privileged') @when('config.changed.allow-privileged') @when('kubernetes-worker.config.created') def on_config_allow_privileged_change(): """React to changed 'allow-privileged' config value. """ set_state('kubernetes-worker.restart-needed') remove_state('config.changed.allow-privileged') @when('cuda.installed') @when('kubernetes-worker.config.created') @when_not('kubernetes-worker.gpu.enabled') def enable_gpu(): """Enable GPU usage on this node. """ config = hookenv.config() if config['allow-privileged'] == "false": hookenv.status_set( 'active', 'GPUs available. Set allow-privileged="auto" to enable.' ) return hookenv.log('Enabling gpu mode') try: # Not sure why this is necessary, but if you don't run this, k8s will # think that the node has 0 gpus (as shown by the output of # `kubectl get nodes -o yaml` check_call(['nvidia-smi']) except CalledProcessError as cpe: hookenv.log('Unable to communicate with the NVIDIA driver.') hookenv.log(cpe) return kubelet_opts = FlagManager('kubelet') if get_version('kubelet') < (1, 6): hookenv.log('Adding --experimental-nvidia-gpus=1 to kubelet') kubelet_opts.add('experimental-nvidia-gpus', '1') else: hookenv.log('Adding --feature-gates=Accelerators=true to kubelet') kubelet_opts.add('feature-gates', 'Accelerators=true') # Apply node labels _apply_node_label('gpu=true', overwrite=True) _apply_node_label('cuda=true', overwrite=True) set_state('kubernetes-worker.gpu.enabled') set_state('kubernetes-worker.restart-needed') @when('kubernetes-worker.gpu.enabled') @when_not('kubernetes-worker.privileged') @when_not('kubernetes-worker.restart-needed') def disable_gpu(): """Disable GPU usage on this node. This handler fires when we're running in gpu mode, and then the operator sets allow-privileged="false". Since we can no longer run privileged containers, we need to disable gpu mode. """ hookenv.log('Disabling gpu mode') kubelet_opts = FlagManager('kubelet') if get_version('kubelet') < (1, 6): kubelet_opts.destroy('experimental-nvidia-gpus') else: kubelet_opts.remove('feature-gates', 'Accelerators=true') # Remove node labels _apply_node_label('gpu', delete=True) _apply_node_label('cuda', delete=True) remove_state('kubernetes-worker.gpu.enabled') set_state('kubernetes-worker.restart-needed') @when('kubernetes-worker.gpu.enabled') @when('kube-control.connected') def notify_master_gpu_enabled(kube_control): """Notify kubernetes-master that we're gpu-enabled. """ kube_control.set_gpu(True) @when_not('kubernetes-worker.gpu.enabled') @when('kube-control.connected') def notify_master_gpu_not_enabled(kube_control): """Notify kubernetes-master that we're not gpu-enabled. """ kube_control.set_gpu(False) @when('kube-control.connected') def request_kubelet_and_proxy_credentials(kube_control): """ Request kubelet node authorization with a well formed kubelet user. This also implies that we are requesting kube-proxy auth. """ # The kube-cotrol interface is created to support RBAC. # At this point we might as well do the right thing and return the hostname # even if it will only be used when we enable RBAC nodeuser = 'system:node:{}'.format(gethostname()) kube_control.set_auth_request(nodeuser) @when('kube-control.auth.available') def catch_change_in_creds(kube_control): """Request a service restart in case credential updates were detected.""" creds = kube_control.get_auth_credentials() if data_changed('kube-control.creds', creds): set_state('kubernetes-worker.restart-needed') @when_not('kube-control.connected') def missing_kube_control(): """Inform the operator they need to add the kube-control relation. If deploying via bundle this won't happen, but if operator is upgrading a a charm in a deployment that pre-dates the kube-control relation, it'll be missing. """ hookenv.status_set( 'blocked', 'Relate {}:kube-control kubernetes-master:kube-control'.format( hookenv.service_name())) def _systemctl_is_active(application): ''' Poll systemctl to determine if the application is running ''' cmd = ['systemctl', 'is-active', application] try: raw = check_output(cmd) return b'active' in raw except Exception: return False def _apply_node_label(label, delete=False, overwrite=False): ''' Invoke kubectl to apply node label changes ''' hostname = gethostname() # TODO: Make this part of the kubectl calls instead of a special string cmd_base = 'kubectl --kubeconfig={0} label node {1} {2}' if delete is True: label_key = label.split('=')[0] cmd = cmd_base.format(kubeconfig_path, hostname, label_key) cmd = cmd + '-' else: cmd = cmd_base.format(kubeconfig_path, hostname, label) if overwrite: cmd = '{} --overwrite'.format(cmd) check_call(split(cmd)) def _parse_labels(labels): ''' Parse labels from a key=value string separated by space.''' label_array = labels.split(' ') sanitized_labels = [] for item in label_array: if '=' in item: sanitized_labels.append(item) else: hookenv.log('Skipping malformed option: {}'.format(item)) return sanitized_labels
36.344
101
0.689884
6617105cf3aa67f78b6b9eec23f38b5096a2bc0e
1,706
py
Python
sounds_data/fuck_fuck_data.py
MeetDevin/WebCrawler
5cd4546c1a25fbe1466fafd0fcc3f050a69b44a8
[ "Apache-2.0" ]
3
2019-03-07T03:43:17.000Z
2020-02-25T08:18:11.000Z
sounds_data/fuck_fuck_data.py
MeetDevin/ProjectX
5cd4546c1a25fbe1466fafd0fcc3f050a69b44a8
[ "Apache-2.0" ]
null
null
null
sounds_data/fuck_fuck_data.py
MeetDevin/ProjectX
5cd4546c1a25fbe1466fafd0fcc3f050a69b44a8
[ "Apache-2.0" ]
null
null
null
from PIL import Image import numpy as np import os def windows(length, window_size): start = 0 i = 0 while start < length: yield start, start + window_size, i start += int(window_size*0.5) i += 1 def fuck_data(window_size=600): files_path = 'images' for train_class in os.listdir(files_path): if train_class != 'Pica+pica': continue for pic_name in os.listdir(files_path + '/' + train_class): if os.path.isfile(files_path + '/' + train_class + '/' + pic_name): filename = files_path + '/' + train_class + '/' + pic_name save_dir = 'new_images' + '/' + train_class if not os.path.exists(save_dir): os.makedirs(save_dir) # 读取图像 old_img = np.asarray(Image.open(filename)) img = old_img.copy() img.setflags(write=True) for (start, end, i) in windows(np.shape(img)[1], window_size): if np.shape(img[:, start:end])[1] < window_size: end = np.shape(img)[1] start = end - window_size if start < 0: break save_path = save_dir + '/' + pic_name.replace('.jpg', '(' + str(i) + ')') + '.jpg' if os.path.exists(save_path): print('--exist: ', save_path) continue else: Image.fromarray(old_img[:, start:end]).save(save_path) print('save:', save_path) if __name__ == '__main__': fuck_data(600)
29.413793
102
0.481243
d52ec64321ca0ebe0f9646dff56d9449604ee953
3,158
py
Python
nikola/plugins/compile/rest/youtube.py
asmeurer/nikola
ea1c651bfed0fd6337f1d22cf8dd99899722912c
[ "MIT" ]
null
null
null
nikola/plugins/compile/rest/youtube.py
asmeurer/nikola
ea1c651bfed0fd6337f1d22cf8dd99899722912c
[ "MIT" ]
null
null
null
nikola/plugins/compile/rest/youtube.py
asmeurer/nikola
ea1c651bfed0fd6337f1d22cf8dd99899722912c
[ "MIT" ]
1
2021-07-07T11:32:42.000Z
2021-07-07T11:32:42.000Z
# -*- coding: utf-8 -*- # Copyright © 2012-2020 Roberto Alsina and others. # Permission is hereby granted, free of charge, to any # person obtaining a copy of this software and associated # documentation files (the "Software"), to deal in the # Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the # Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice # shall be included in all copies or substantial portions of # the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR # PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS # OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """YouTube directive for reStructuredText.""" from docutils import nodes from docutils.parsers.rst import Directive, directives from nikola.plugins.compile.rest import _align_choice, _align_options_base from nikola.plugin_categories import RestExtension class Plugin(RestExtension): """Plugin for the youtube directive.""" name = "rest_youtube" def set_site(self, site): """Set Nikola site.""" self.site = site directives.register_directive('youtube', Youtube) return super().set_site(site) CODE = """\ <div class="youtube-video{align}"> <iframe width="{width}" height="{height}" src="https://www.youtube-nocookie.com/embed/{yid}?rel=0&wmode=transparent" frameborder="0" allow="encrypted-media" allowfullscreen ></iframe> </div>""" class Youtube(Directive): """reST extension for inserting youtube embedded videos. Usage: .. youtube:: lyViVmaBQDg :height: 400 :width: 600 """ has_content = True required_arguments = 1 option_spec = { "width": directives.unchanged, "height": directives.unchanged, "align": _align_choice } def run(self): """Run the youtube directive.""" self.check_content() options = { 'yid': self.arguments[0], 'width': 560, 'height': 315, } options.update({k: v for k, v in self.options.items() if v}) if self.options.get('align') in _align_options_base: options['align'] = ' align-' + self.options['align'] else: options['align'] = '' return [nodes.raw('', CODE.format(**options), format='html')] def check_content(self): """Check if content exists.""" if self.content: # pragma: no cover raise self.warning("This directive does not accept content. The " "'key=value' format for options is deprecated, " "use ':key: value' instead")
32.895833
79
0.662445
063675fe71336d1faa28ddab3249b327d6aa567f
801
py
Python
Project/proj/blend.py
Zankhana1995/feature-detection-and-matching
5a67fd4495232b6f8a38899194a6c87e2275619c
[ "MIT" ]
1
2020-10-28T07:46:08.000Z
2020-10-28T07:46:08.000Z
Project/proj/blend.py
Zankhana1995/feature-detection-and-matching
5a67fd4495232b6f8a38899194a6c87e2275619c
[ "MIT" ]
null
null
null
Project/proj/blend.py
Zankhana1995/feature-detection-and-matching
5a67fd4495232b6f8a38899194a6c87e2275619c
[ "MIT" ]
null
null
null
from proj.ransac import * # this function will blend images def blend(image2, homography, minX, minY, stitchedImage): h = stitchedImage.shape[0] w = stitchedImage.shape[1] for i in range(h): for j in range(w): x1 = j - minX y1 = i - minY x2, y2 = project(x1, y1, homography) x2 = int(x2) y2 = int(y2) if x2 >= 0 and x2 < image2.shape[1] and y2 >= 0 and y2 < image2.shape[0]: if stitchedImage[i][j][0] == 0 or stitchedImage[i][j][1] == 0 or stitchedImage[i][j][2] == 0: stitchedImage[i][j] = image2[y2][x2] else: stitchedImage[i][j] = 0.5 * stitchedImage[i][j] + 0.5 * image2[y2][x2] print("blending done") return stitchedImage
36.409091
109
0.524345
49c7c03e3d7250bcb7d8e8b26d7ca2565fc4dcd7
2,659
py
Python
{{cookiecutter.python_name}}/setup.py
fcollonval/theme-cookiecutter
e95554b339bec0b4d44ee265a9d861f27e7db276
[ "BSD-3-Clause" ]
50
2019-02-21T08:11:57.000Z
2022-03-30T21:22:45.000Z
{{cookiecutter.python_name}}/setup.py
fcollonval/theme-cookiecutter
e95554b339bec0b4d44ee265a9d861f27e7db276
[ "BSD-3-Clause" ]
14
2019-07-09T11:29:32.000Z
2022-01-25T10:36:49.000Z
{{cookiecutter.python_name}}/setup.py
fcollonval/theme-cookiecutter
e95554b339bec0b4d44ee265a9d861f27e7db276
[ "BSD-3-Clause" ]
22
2019-07-09T11:30:08.000Z
2022-01-12T09:27:46.000Z
""" {{ cookiecutter.python_name }} setup """ import json import os from jupyter_packaging import ( create_cmdclass, install_npm, ensure_targets, combine_commands, skip_if_exists, ) import setuptools HERE = os.path.abspath(os.path.dirname(__file__)) # The name of the project name = "{{ cookiecutter.python_name }}" # Get our version with open(os.path.join(HERE, 'package.json')) as f: version = json.load(f)['version'] lab_path = os.path.join(HERE, name, "labextension") # Representative files that should exist after a successful build jstargets = [ os.path.join(lab_path, "package.json"), ] package_data_spec = { name: [ "*" ] } labext_name = "{{ cookiecutter.labextension_name }}" data_files_spec = [ ("share/jupyter/labextensions/%s" % labext_name, lab_path, "**"), ("share/jupyter/labextensions/%s" % labext_name, HERE, "install.json"), ] cmdclass = create_cmdclass( "jsdeps", package_data_spec=package_data_spec, data_files_spec=data_files_spec ) js_command = combine_commands( install_npm(HERE, build_cmd="build:prod", npm=["jlpm"]), ensure_targets(jstargets), ) is_repo = os.path.exists(os.path.join(HERE, '.git')) if is_repo: cmdclass['jsdeps'] = js_command else: cmdclass['jsdeps'] = skip_if_exists(jstargets, js_command) with open("README.md", "r") as fh: long_description = fh.read() setup_args = dict( name=name, version=version, url="{{ cookiecutter.repository }}", author="{{ cookiecutter.author_name }}", description="{{ cookiecutter.project_short_description }}", long_description=long_description, long_description_content_type="text/markdown", cmdclass=cmdclass, packages=setuptools.find_packages(), install_requires=[ "jupyterlab>=3.0.0,==3.*", ], zip_safe=False, include_package_data=True, python_requires=">=3.6", license="BSD-3-Clause", platforms="Linux, Mac OS X, Windows", keywords=["Jupyter", "JupyterLab"], classifiers=[ "License :: OSI Approved :: BSD License", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Framework :: Jupyter", "Framework :: Jupyter :: JupyterLab :: 3", "Framework :: Jupyter :: JupyterLab :: Extensions", "Framework :: Jupyter :: JupyterLab :: Extensions :: Prebuilt", "Framework :: Jupyter :: JupyterLab :: Extensions :: Themes", ], ) if __name__ == "__main__": setuptools.setup(**setup_args)
26.59
75
0.659646
4b82c970c0ad4a34c53bfad7f2d3db53344ec7f6
3,777
py
Python
contrib/macdeploy/custom_dsstore.py
MCLXI/AceDOrig
ccd5cfefeaedaf1df18f72855ef304c26c54afd8
[ "MIT" ]
5
2018-07-02T20:00:11.000Z
2019-08-06T13:34:58.000Z
contrib/macdeploy/custom_dsstore.py
MCLXI/AceDOrig
ccd5cfefeaedaf1df18f72855ef304c26c54afd8
[ "MIT" ]
9
2018-05-22T20:20:26.000Z
2020-02-28T09:25:32.000Z
contrib/macdeploy/custom_dsstore.py
MCLXI/AceDOrig
ccd5cfefeaedaf1df18f72855ef304c26c54afd8
[ "MIT" ]
5
2019-03-28T17:55:21.000Z
2020-05-05T16:50:08.000Z
#!/usr/bin/env python # Copyright (c) 2013-2015 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. from __future__ import division,print_function,unicode_literals import biplist from ds_store import DSStore from mac_alias import Alias import sys output_file = sys.argv[1] package_name_ns = sys.argv[2] ds = DSStore.open(output_file, 'w+') ds['.']['bwsp'] = { 'ShowStatusBar': False, 'WindowBounds': b'{{300, 280}, {500, 343}}', 'ContainerShowSidebar': False, 'SidebarWidth': 0, 'ShowTabView': False, 'PreviewPaneVisibility': False, 'ShowToolbar': False, 'ShowSidebar': False, 'ShowPathbar': True } icvp = { 'gridOffsetX': 0.0, 'textSize': 12.0, 'viewOptionsVersion': 1, 'backgroundImageAlias': b'\x00\x00\x00\x00\x02\x1e\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd1\x94\\\xb0H+\x00\x05\x00\x00\x00\x98\x0fbackground.tiff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x99\xd19\xb0\xf8\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\x00\x00\r\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0b.background\x00\x00\x10\x00\x08\x00\x00\xd1\x94\\\xb0\x00\x00\x00\x11\x00\x08\x00\x00\xd19\xb0\xf8\x00\x00\x00\x01\x00\x04\x00\x00\x00\x98\x00\x0e\x00 \x00\x0f\x00b\x00a\x00c\x00k\x00g\x00r\x00o\x00u\x00n\x00d\x00.\x00t\x00i\x00f\x00f\x00\x0f\x00\x02\x00\x00\x00\x12\x00\x1c/.background/background.tiff\x00\x14\x01\x06\x00\x00\x00\x00\x01\x06\x00\x02\x00\x00\x0cMacintosh HD\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xce\x97\xab\xc3H+\x00\x00\x01\x88[\x88\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02u\xab\x8d\xd1\x94\\\xb0devrddsk\xff\xff\xff\xff\x00\x00\t \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x07bitcoin\x00\x00\x10\x00\x08\x00\x00\xce\x97\xab\xc3\x00\x00\x00\x11\x00\x08\x00\x00\xd1\x94\\\xb0\x00\x00\x00\x01\x00\x14\x01\x88[\x88\x00\x16\xa9\t\x00\x08\xfaR\x00\x08\xfaQ\x00\x02d\x8e\x00\x0e\x00\x02\x00\x00\x00\x0f\x00\x1a\x00\x0c\x00M\x00a\x00c\x00i\x00n\x00t\x00o\x00s\x00h\x00 \x00H\x00D\x00\x13\x00\x01/\x00\x00\x15\x00\x02\x00\x14\xff\xff\x00\x00\xff\xff\x00\x00', 'backgroundColorBlue': 1.0, 'iconSize': 96.0, 'backgroundColorGreen': 1.0, 'arrangeBy': 'none', 'showIconPreview': True, 'gridSpacing': 100.0, 'gridOffsetY': 0.0, 'showItemInfo': False, 'labelOnBottom': True, 'backgroundType': 2, 'backgroundColorRed': 1.0 } alias = Alias.from_bytes(icvp['backgroundImageAlias']) alias.volume.name = package_name_ns alias.volume.posix_path = '/Volumes/' + package_name_ns alias.volume.disk_image_alias.target.filename = package_name_ns + '.temp.dmg' alias.volume.disk_image_alias.target.carbon_path = 'Macintosh HD:Users:\x00acedcoreuser:\x00Documents:\x00acedcore:\x00acedcore:\x00' + package_name_ns + '.temp.dmg' alias.volume.disk_image_alias.target.posix_path = 'Users/acedcoreuser/Documents/acedcore/acedcore/' + package_name_ns + '.temp.dmg' alias.target.carbon_path = package_name_ns + ':.background:\x00background.tiff' icvp['backgroundImageAlias'] = biplist.Data(alias.to_bytes()) ds['.']['icvp'] = icvp ds['.']['vSrn'] = ('long', 1) ds['Applications']['Iloc'] = (370, 156) ds['AceD-Qt.app']['Iloc'] = (128, 156) ds.flush() ds.close()
61.918033
1,817
0.727562
0e82af05b7446f1c5794f7aee5045491b8ee4f6e
12,915
py
Python
tests/test_geocoder.py
ravik/mapbox-baseSDK
2e24ff6e2b69db92f08f435f56021c0b65016277
[ "MIT" ]
null
null
null
tests/test_geocoder.py
ravik/mapbox-baseSDK
2e24ff6e2b69db92f08f435f56021c0b65016277
[ "MIT" ]
null
null
null
tests/test_geocoder.py
ravik/mapbox-baseSDK
2e24ff6e2b69db92f08f435f56021c0b65016277
[ "MIT" ]
null
null
null
# coding=utf-8 import json import re import responses import pytest import mapbox def test_geocoder_default_name(): """Default name is set""" geocoder = mapbox.Geocoder() assert geocoder.name == 'mapbox.places' def test_geocoder_name(): """Named dataset name is set""" geocoder = mapbox.Geocoder('mapbox.places-permanent') assert geocoder.name == 'mapbox.places-permanent' def _check_coordinate_precision(coord, precision): """Coordinate precision is <= specified number of digits""" if '.' not in coord: return True else: return len(coord.split('.')[-1]) <= precision @responses.activate def test_geocoder_forward(): """Forward geocoding works""" responses.add( responses.GET, 'https://api.mapbox.com/geocoding/v5/mapbox.places/1600%20pennsylvania%20ave%20nw.json?access_token=pk.test', match_querystring=True, body='{"query": ["1600", "pennsylvania", "ave", "nw"]}', status=200, content_type='application/json') response = mapbox.Geocoder(access_token='pk.test').forward('1600 pennsylvania ave nw') assert response.status_code == 200 assert response.json()['query'] == ["1600", "pennsylvania", "ave", "nw"] @responses.activate def test_geocoder_forward_geojson(): """Forward geocoding .geojson method works""" responses.add( responses.GET, 'https://api.mapbox.com/geocoding/v5/mapbox.places/1600%20pennsylvania%20ave%20nw.json?access_token=pk.test', match_querystring=True, body='{"query": ["1600", "pennsylvania", "ave", "nw"]}', status=200, content_type='application/json') response = mapbox.Geocoder(access_token='pk.test').forward('1600 pennsylvania ave nw') assert response.status_code == 200 assert response.geojson() == response.json() @responses.activate def test_geocoder_reverse(): """Reverse geocoding works""" lon, lat = -77.4371, 37.5227 body = json.dumps({"query": [lon, lat]}) responses.add( responses.GET, 'https://api.mapbox.com/geocoding/v5/mapbox.places/{0},{1}.json?access_token=pk.test'.format(lon, lat), match_querystring=True, body=body, status=200, content_type='application/json') response = mapbox.Geocoder(access_token='pk.test').reverse(lon=lon, lat=lat) assert response.status_code == 200 assert response.json()['query'] == [lon, lat] @responses.activate def test_geocoder_reverse_geojson(): """Reverse geocoding geojson works""" lon, lat = -77.4371, 37.5227 body = json.dumps({"query": [lon, lat]}) responses.add( responses.GET, 'https://api.mapbox.com/geocoding/v5/mapbox.places/{0},{1}.json?access_token=pk.test'.format(lon, lat), match_querystring=True, body=body, status=200, content_type='application/json') response = mapbox.Geocoder(access_token='pk.test').reverse(lon=lon, lat=lat) assert response.status_code == 200 assert response.geojson() == response.json() def test_geocoder_place_types(): """Place types are enumerated""" assert sorted(mapbox.Geocoder().place_types.items()) == [ ('address', "A street address with house number. Examples: 1600 Pennsylvania Ave NW, 1051 Market St, Oberbaumstrasse 7."), ('country', "Sovereign states and other political entities. Examples: United States, France, China, Russia."), ('district', "Second order administrative division. Only used when necessary. Examples: Tianjin, Beijing"), ('locality', "A smaller area within a place that possesses official status and boundaries. Examples: Oakleigh (Melbourne)"), ('neighborhood', 'A smaller area within a place, often without formal boundaries. Examples: Montparnasse, Downtown, Haight-Ashbury.'), ('place', "City, town, village or other municipality relevant to a country's address or postal system. Examples: Cleveland, Saratoga Springs, Berlin, Paris."), ('poi', "Places of interest including commercial venues, major landmarks, parks, and other features. Examples: Subway Restaurant, Yosemite National Park, Statue of Liberty."), ('poi.landmark', "Places of interest that are particularly notable or long-lived like parks, places of worship and museums. A strict subset of the poi place type. Examples: Yosemite National Park, Statue of Liberty."), ('postcode', "Postal code, varies by a country's postal system. Examples: 20009, CR0 3RL."), ('region', "First order administrative divisions within a country, usually provinces or states. Examples: California, Ontario, Essonne.")] def test_validate_country_codes_err(): try: mapbox.Geocoder()._validate_country_codes(('us', 'bogus')) except mapbox.InvalidCountryCodeError as err: assert str(err) == "bogus" def test_validate_country(): assert mapbox.Geocoder()._validate_country_codes( ('us', 'br')) == {'country': 'us,br'} def test_validate_place_types_err(): try: mapbox.Geocoder()._validate_place_types(('address', 'bogus')) except mapbox.InvalidPlaceTypeError as err: assert str(err) == "bogus" def test_validate_place_types(): assert mapbox.Geocoder()._validate_place_types( ('address', 'poi')) == {'types': 'address,poi'} @responses.activate def test_geocoder_forward_types(): """Type filtering of forward geocoding works""" responses.add( responses.GET, 'https://api.mapbox.com/geocoding/v5/mapbox.places/1600%20pennsylvania%20ave%20nw.json?types=address,country,place,poi.landmark,postcode,region&access_token=pk.test', match_querystring=True, body='{"query": ["1600", "pennsylvania", "ave", "nw"]}', status=200, content_type='application/json') response = mapbox.Geocoder( access_token='pk.test').forward( '1600 pennsylvania ave nw', types=('address', 'country', 'place', 'poi.landmark', 'postcode', 'region')) assert response.status_code == 200 assert response.json()['query'] == ["1600", "pennsylvania", "ave", "nw"] @responses.activate def test_geocoder_reverse_types(): """Type filtering of reverse geocoding works""" lon, lat = -77.4371, 37.5227 body = json.dumps({"query": [lon, lat]}) responses.add( responses.GET, 'https://api.mapbox.com/geocoding/v5/mapbox.places/{0},{1}.json?types=address,country,place,poi.landmark,postcode,region&access_token=pk.test'.format(lon, lat), match_querystring=True, body=body, status=200, content_type='application/json') response = mapbox.Geocoder( access_token='pk.test').reverse( lon=lon, lat=lat, types=('address', 'country', 'place', 'poi.landmark', 'postcode', 'region')) assert response.status_code == 200 assert response.json()['query'] == [lon, lat] @responses.activate def test_geocoder_forward_proximity(): """Proximity parameter works""" responses.add( responses.GET, 'https://api.mapbox.com/geocoding/v5/mapbox.places/1600%20pennsylvania%20ave%20nw.json?proximity=0.0,0.0&access_token=pk.test', match_querystring=True, body='{"query": ["1600", "pennsylvania", "ave", "nw"]}', status=200, content_type='application/json') response = mapbox.Geocoder( access_token='pk.test').forward( '1600 pennsylvania ave nw', lon=0, lat=0) assert response.status_code == 200 assert response.json()['query'] == ["1600", "pennsylvania", "ave", "nw"] @responses.activate def test_geocoder_proximity_rounding(): """Proximity parameter is rounded to 3 decimal places""" responses.add( responses.GET, 'https://api.mapbox.com/geocoding/v5/mapbox.places/1600%20pennsylvania%20ave%20nw.json', match_querystring=False, body='{"query": ["1600", "pennsylvania", "ave", "nw"]}', status=200, content_type='application/json') response = mapbox.Geocoder( access_token='pk.test').forward( '1600 pennsylvania ave nw', lon=0.123456, lat=0.987654) # check coordinate precision for proximity flag match = re.search(r'[&\?]proximity=([^&$]+)', response.url) assert match is not None for coord in re.split(r'(%2C|,)', match.group(1)): assert _check_coordinate_precision(coord, 3) @responses.activate def test_geocoder_forward_bbox(): """Bbox parameter works""" responses.add( responses.GET, 'https://api.mapbox.com/geocoding/v5/mapbox.places/washington.json?bbox=-78.3284%2C38.6039%2C-78.0428%2C38.7841&access_token=pk.test', match_querystring=True, body='{"query": ["washington"]}', status=200, content_type='application/json') response = mapbox.Geocoder( access_token='pk.test').forward( 'washington', bbox=(-78.3284,38.6039,-78.0428,38.7841)) assert response.status_code == 200 assert response.json()['query'] == ["washington"] @responses.activate def test_geocoder_forward_limit(): """Limit parameter works""" responses.add( responses.GET, 'https://api.mapbox.com/geocoding/v5/mapbox.places/washington.json?limit=3&access_token=pk.test', match_querystring=True, body='{"query": ["washington"], "features": [1, 2, 3]}', status=200, content_type='application/json') response = mapbox.Geocoder( access_token='pk.test').forward( 'washington', limit=3) assert response.status_code == 200 assert len(response.json()['features']) == 3 @responses.activate def test_geocoder_reverse_limit(): """Limit parameter works""" lon, lat = -77.4371, 37.5227 body = json.dumps({"query": [lon, lat], "features": [{'name': 'place'}]}) responses.add( responses.GET, 'https://api.mapbox.com/geocoding/v5/mapbox.places/{0},{1}.json?access_token=pk.test&limit=1&types=place'.format(lon, lat), match_querystring=True, body=body, status=200, content_type='application/json') service = mapbox.Geocoder(access_token='pk.test') response = service.reverse(lon=lon, lat=lat, limit=1, types=['place']) assert response.status_code == 200 assert len(response.json()['features']) == 1 @responses.activate def test_geocoder_reverse_limit_requires_onetype(): """Limit requires a single type""" lon, lat = -77.123456789, 37.987654321 service = mapbox.Geocoder(access_token='pk.test') with pytest.raises(mapbox.InvalidPlaceTypeError): service.reverse(lon=lon, lat=lat, limit=1) with pytest.raises(mapbox.InvalidPlaceTypeError): service.reverse(lon=lon, lat=lat, limit=1, types=['places', 'country']) @responses.activate def test_geocoder_reverse_rounding(): """Reverse geocoding parameters are rounded to 5 decimal places""" lon, lat = -77.123456789, 37.987654321 body = json.dumps({"query": [lon, lat]}) responses.add( responses.GET, re.compile('https:\/\/api\.mapbox\.com\/geocoding\/v5\/mapbox\.places\/.+\.json'), match_querystring=False, body=body, status=200, content_type='application/json') response = mapbox.Geocoder( access_token='pk.test').reverse( lon=lon, lat=lat) # check coordinate precision for reverse geocoding coordinates match = re.search(r'\/([\-\d\.\,]+)\.json', response.url) assert match is not None for coord in re.split(r'(%2C|,)', match.group(1)): assert _check_coordinate_precision(coord, 5) @responses.activate def test_geocoder_unicode(): """Forward geocoding works with non-ascii inputs Specifically, the URITemplate needs to utf-8 encode all inputs """ responses.add( responses.GET, 'https://api.mapbox.com/geocoding/v5/mapbox.places/Florian%C3%B3polis%2C%20Brazil.json?access_token=pk.test', match_querystring=True, body='{}', status=200, content_type='application/json') query = "Florianópolis, Brazil" try: query = query.decode('utf-8') # Python 2 except: pass # Python 3 response = mapbox.Geocoder(access_token='pk.test').forward(query) assert response.status_code == 200 @responses.activate def test_geocoder_forward_country(): """Country parameter of forward geocoding works""" responses.add( responses.GET, 'https://api.mapbox.com/geocoding/v5/mapbox.places/1600%20pennsylvania%20ave%20nw.json?country=us&access_token=pk.test', match_querystring=True, body='{"query": ["1600", "pennsylvania", "ave", "nw"]}', status=200, content_type='application/json') response = mapbox.Geocoder( access_token='pk.test').forward('1600 pennsylvania ave nw', country=['us']) assert response.status_code == 200
36.586402
226
0.66535
389ff68f5c61510cfd937c48b01a5f78bfd31731
8,355
py
Python
venv/lib/python3.7/site-packages/nltk/cluster/kmeans.py
VighneshHarihar/Newsify
321f5f65bb6983c0ca5a3864900b27ce36a32717
[ "MIT" ]
10
2021-05-31T07:18:08.000Z
2022-03-19T09:20:11.000Z
venv/lib/python3.7/site-packages/nltk/cluster/kmeans.py
VighneshHarihar/Newsify
321f5f65bb6983c0ca5a3864900b27ce36a32717
[ "MIT" ]
37
2020-10-20T08:30:53.000Z
2020-12-22T13:15:45.000Z
venv/lib/python3.7/site-packages/nltk/cluster/kmeans.py
VighneshHarihar/Newsify
321f5f65bb6983c0ca5a3864900b27ce36a32717
[ "MIT" ]
7
2015-09-30T03:00:44.000Z
2021-06-04T05:34:39.000Z
# Natural Language Toolkit: K-Means Clusterer # # Copyright (C) 2001-2020 NLTK Project # Author: Trevor Cohn <tacohn@cs.mu.oz.au> # URL: <http://nltk.org/> # For license information, see LICENSE.TXT import copy import random import sys try: import numpy except ImportError: pass from nltk.cluster.util import VectorSpaceClusterer class KMeansClusterer(VectorSpaceClusterer): """ The K-means clusterer starts with k arbitrary chosen means then allocates each vector to the cluster with the closest mean. It then recalculates the means of each cluster as the centroid of the vectors in the cluster. This process repeats until the cluster memberships stabilise. This is a hill-climbing algorithm which may converge to a local maximum. Hence the clustering is often repeated with random initial means and the most commonly occurring output means are chosen. """ def __init__( self, num_means, distance, repeats=1, conv_test=1e-6, initial_means=None, normalise=False, svd_dimensions=None, rng=None, avoid_empty_clusters=False, ): """ :param num_means: the number of means to use (may use fewer) :type num_means: int :param distance: measure of distance between two vectors :type distance: function taking two vectors and returing a float :param repeats: number of randomised clustering trials to use :type repeats: int :param conv_test: maximum variation in mean differences before deemed convergent :type conv_test: number :param initial_means: set of k initial means :type initial_means: sequence of vectors :param normalise: should vectors be normalised to length 1 :type normalise: boolean :param svd_dimensions: number of dimensions to use in reducing vector dimensionsionality with SVD :type svd_dimensions: int :param rng: random number generator (or None) :type rng: Random :param avoid_empty_clusters: include current centroid in computation of next one; avoids undefined behavior when clusters become empty :type avoid_empty_clusters: boolean """ VectorSpaceClusterer.__init__(self, normalise, svd_dimensions) self._num_means = num_means self._distance = distance self._max_difference = conv_test assert not initial_means or len(initial_means) == num_means self._means = initial_means assert repeats >= 1 assert not (initial_means and repeats > 1) self._repeats = repeats self._rng = rng if rng else random.Random() self._avoid_empty_clusters = avoid_empty_clusters def cluster_vectorspace(self, vectors, trace=False): if self._means and self._repeats > 1: print("Warning: means will be discarded for subsequent trials") meanss = [] for trial in range(self._repeats): if trace: print("k-means trial", trial) if not self._means or trial > 1: self._means = self._rng.sample(list(vectors), self._num_means) self._cluster_vectorspace(vectors, trace) meanss.append(self._means) if len(meanss) > 1: # sort the means first (so that different cluster numbering won't # effect the distance comparison) for means in meanss: means.sort(key=sum) # find the set of means that's minimally different from the others min_difference = min_means = None for i in range(len(meanss)): d = 0 for j in range(len(meanss)): if i != j: d += self._sum_distances(meanss[i], meanss[j]) if min_difference is None or d < min_difference: min_difference, min_means = d, meanss[i] # use the best means self._means = min_means def _cluster_vectorspace(self, vectors, trace=False): if self._num_means < len(vectors): # perform k-means clustering converged = False while not converged: # assign the tokens to clusters based on minimum distance to # the cluster means clusters = [[] for m in range(self._num_means)] for vector in vectors: index = self.classify_vectorspace(vector) clusters[index].append(vector) if trace: print("iteration") # for i in range(self._num_means): # print ' mean', i, 'allocated', len(clusters[i]), 'vectors' # recalculate cluster means by computing the centroid of each cluster new_means = list(map(self._centroid, clusters, self._means)) # measure the degree of change from the previous step for convergence difference = self._sum_distances(self._means, new_means) if difference < self._max_difference: converged = True # remember the new means self._means = new_means def classify_vectorspace(self, vector): # finds the closest cluster centroid # returns that cluster's index best_distance = best_index = None for index in range(len(self._means)): mean = self._means[index] dist = self._distance(vector, mean) if best_distance is None or dist < best_distance: best_index, best_distance = index, dist return best_index def num_clusters(self): if self._means: return len(self._means) else: return self._num_means def means(self): """ The means used for clustering. """ return self._means def _sum_distances(self, vectors1, vectors2): difference = 0.0 for u, v in zip(vectors1, vectors2): difference += self._distance(u, v) return difference def _centroid(self, cluster, mean): if self._avoid_empty_clusters: centroid = copy.copy(mean) for vector in cluster: centroid += vector return centroid / (1 + len(cluster)) else: if not len(cluster): sys.stderr.write("Error: no centroid defined for empty cluster.\n") sys.stderr.write( "Try setting argument 'avoid_empty_clusters' to True\n" ) assert False centroid = copy.copy(cluster[0]) for vector in cluster[1:]: centroid += vector return centroid / len(cluster) def __repr__(self): return "<KMeansClusterer means=%s repeats=%d>" % (self._means, self._repeats) ################################################################################# def demo(): # example from figure 14.9, page 517, Manning and Schutze from nltk.cluster import KMeansClusterer, euclidean_distance vectors = [numpy.array(f) for f in [[2, 1], [1, 3], [4, 7], [6, 7]]] means = [[4, 3], [5, 5]] clusterer = KMeansClusterer(2, euclidean_distance, initial_means=means) clusters = clusterer.cluster(vectors, True, trace=True) print("Clustered:", vectors) print("As:", clusters) print("Means:", clusterer.means()) print() vectors = [numpy.array(f) for f in [[3, 3], [1, 2], [4, 2], [4, 0], [2, 3], [3, 1]]] # test k-means using the euclidean distance metric, 2 means and repeat # clustering 10 times with random seeds clusterer = KMeansClusterer(2, euclidean_distance, repeats=10) clusters = clusterer.cluster(vectors, True) print("Clustered:", vectors) print("As:", clusters) print("Means:", clusterer.means()) print() # classify a new vector vector = numpy.array([3, 3]) print("classify(%s):" % vector, end=" ") print(clusterer.classify(vector)) print() if __name__ == "__main__": demo()
36.012931
88
0.590664
e965f9440012cbe0e542023ae99cce885454848e
3,742
py
Python
rqt_speech_status/src/rqt_speech_status/rqt_speech_status.py
mhri/mhri_tools
329bdf3bd4939aab65262b1135d07c7e866a3892
[ "Apache-2.0" ]
null
null
null
rqt_speech_status/src/rqt_speech_status/rqt_speech_status.py
mhri/mhri_tools
329bdf3bd4939aab65262b1135d07c7e866a3892
[ "Apache-2.0" ]
null
null
null
rqt_speech_status/src/rqt_speech_status/rqt_speech_status.py
mhri/mhri_tools
329bdf3bd4939aab65262b1135d07c7e866a3892
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python #-*- encoding: utf8 -*- import rospy import rospkg import os import time from qt_gui.plugin import Plugin from python_qt_binding import loadUi from python_qt_binding.QtWidgets import QWidget, QFrame, QListWidgetItem, QVBoxLayout, QHBoxLayout, QLabel, QLayout, QSizePolicy, QSpacerItem, QShortcut from python_qt_binding.QtGui import QColor, QKeySequence, QPixmap from python_qt_binding.QtCore import Qt, pyqtSignal, QSize, QObject from std_msgs.msg import Bool, String, Float64, Empty class SignalRender(QObject): renderSignal = pyqtSignal([bool]) class SpeechStatusPlugin(Plugin): def __init__(self, context): super(SpeechStatusPlugin, self).__init__(context) self.setObjectName('SpeechStatusPlugin') self._widget = QWidget() if context.serial_number() > 1: self._widget.setWindowTitle( self._widget.windowTitle() + (' (%d)' % context.serial_number())) ui_file = os.path.join(rospkg.RosPack().get_path('rqt_speech_status'), 'resource', 'speech_widget.ui') loadUi(ui_file, self._widget) context.add_widget(self._widget) file_live = os.path.join(rospkg.RosPack().get_path('rqt_speech_status'), 'resource', 'microphone.png') file_mute = os.path.join(rospkg.RosPack().get_path('rqt_speech_status'), 'resource', 'muted.png') file_silency = os.path.join(rospkg.RosPack().get_path('rqt_speech_status'), 'resource', 'silence-face.png') file_speech= os.path.join(rospkg.RosPack().get_path('rqt_speech_status'), 'resource', 'surprise-face.png') self.img_mute = QPixmap(file_mute).scaled(160, 160) self.img_live = QPixmap(file_live).scaled(160, 160) self.img_silency = QPixmap(file_silency).scaled(160, 160) self.img_speech = QPixmap(file_speech).scaled(160, 160) self._widget.imgRecognition.setPixmap(self.img_live) self._widget.imgSilency.setPixmap(self.img_silency) self.signal_render_recog_status = SignalRender() self.signal_render_recog_status.renderSignal.connect(self.render_recog_status) self.signal_render_silency_status = SignalRender() self.signal_render_silency_status.renderSignal.connect(self.render_silency_status) rospy.Subscriber('enable_recognition', Bool, self.handle_enable_recognition) rospy.Subscriber('start_of_speech', Empty, self.handle_start_speech) rospy.Subscriber('end_of_speech', Empty, self.handle_end_speech) rospy.Subscriber('silency_detected', Empty, self.handle_silency_detection) def handle_enable_recognition(self, msg): if msg.data: self.signal_render_recog_status.renderSignal.emit(True) else: self.signal_render_recog_status.renderSignal.emit(False) def handle_silency_detection(self, msg): self.signal_render_silency_status.renderSignal.emit(True) def handle_start_speech(self, msg): self.signal_render_silency_status.renderSignal.emit(False) def handle_end_speech(self, msg): self.signal_render_silency_status.renderSignal.emit(True) def render_recog_status(self, status): if status: self._widget.imgRecognition.setPixmap(self.img_live) else: self._widget.imgRecognition.setPixmap(self.img_mute) def render_silency_status(self, status): if status: self._widget.imgSilency.setPixmap(self.img_silency) else: self._widget.imgSilency.setPixmap(self.img_speech) def shutdown_plugin(self): pass def save_settings(self, plugin_settings, instance_settings): pass def restore_settings(self, plugin_settings, instance_settings): pass
39.389474
152
0.719669
9863846d419af1635f56f4e76cfdfe972c716bae
2,645
py
Python
accelbyte_py_sdk/core/_config_repository.py
encyphered/accelbyte-python-sdk
09c1e989d7251de308150fdcd3119d662ca2d205
[ "MIT" ]
null
null
null
accelbyte_py_sdk/core/_config_repository.py
encyphered/accelbyte-python-sdk
09c1e989d7251de308150fdcd3119d662ca2d205
[ "MIT" ]
null
null
null
accelbyte_py_sdk/core/_config_repository.py
encyphered/accelbyte-python-sdk
09c1e989d7251de308150fdcd3119d662ca2d205
[ "MIT" ]
null
null
null
from __future__ import annotations import json from abc import ABC, abstractmethod from os import environ from pathlib import Path from typing import Dict, Optional, Tuple, Union class ConfigRepository(ABC): @abstractmethod def get_base_url(self) -> str: pass @abstractmethod def get_client_id(self) -> str: pass @abstractmethod def get_client_secret(self) -> str: pass @abstractmethod def get_namespace(self) -> str: pass def get_client_auth(self) -> Tuple[str, str]: return self.get_client_id(), self.get_client_secret() class MyConfigRepository(ConfigRepository): def __init__( self, base_url: str, client_id: str, client_secret: str, namespace: Optional[str] = None, ) -> None: self._base_url = base_url self._client_id = client_id self._client_secret = client_secret self._namespace = namespace if namespace else "" def get_base_url(self) -> str: return self._base_url def get_client_id(self) -> str: return self._client_id def get_client_secret(self) -> str: return self._client_secret def get_namespace(self) -> str: return self._namespace class EnvironmentConfigRepository(ConfigRepository): def __init__(self): self._base_url = environ["AB_BASE_URL"] self._client_id = environ["AB_CLIENT_ID"] self._client_secret = environ["AB_CLIENT_SECRET"] self._namespace = environ["AB_NAMESPACE"] def get_base_url(self) -> str: return self._base_url def get_client_id(self) -> str: return self._client_id def get_client_secret(self) -> str: return self._client_secret def get_namespace(self) -> str: return self._namespace class JsonFileConfigRepository(ConfigRepository): def __init__(self, json_file: Union[str, Path]): if isinstance(json_file, str): json_file = Path(json_file) if not json_file.exists(): raise FileExistsError json_obj = json.loads(json_file.read_text()) self._base_url = json_obj.get("baseUrl") self._client_id = json_obj.get("clientId") self._client_secret = json_obj.get("clientSecret") self._namespace = json_obj.get("namespace") def get_base_url(self) -> str: return self._base_url def get_client_id(self) -> str: return self._client_id def get_client_secret(self) -> str: return self._client_secret def get_namespace(self) -> str: return self._namespace
25.679612
61
0.65293
c707b480d2182a0c3dfde1347e3e780eeb0c2da2
5,802
py
Python
celer/tests/test_enet.py
Badr-MOUFAD/celer
75e3a4c05a067574a7a75925e239310e97110e54
[ "BSD-3-Clause" ]
null
null
null
celer/tests/test_enet.py
Badr-MOUFAD/celer
75e3a4c05a067574a7a75925e239310e97110e54
[ "BSD-3-Clause" ]
null
null
null
celer/tests/test_enet.py
Badr-MOUFAD/celer
75e3a4c05a067574a7a75925e239310e97110e54
[ "BSD-3-Clause" ]
null
null
null
from itertools import product import pytest import numpy as np from numpy.linalg import norm from numpy.testing import (assert_allclose, assert_array_less, assert_equal) from sklearn.linear_model import ( enet_path, ElasticNet as sk_ElasticNet, ElasticNetCV as sk_ElasticNetCV) from celer import Lasso, ElasticNet, celer_path, ElasticNetCV from celer.utils.testing import build_dataset def test_raise_errors_l1_ratio(): with np.testing.assert_raises(ValueError): ElasticNet(l1_ratio=5.) with np.testing.assert_raises(NotImplementedError): ElasticNet(l1_ratio=0.) with np.testing.assert_raises(NotImplementedError): X, y = build_dataset(n_samples=30, n_features=50) y = np.sign(y) celer_path(X, y, 'logreg', l1_ratio=0.5) @pytest.mark.parametrize("sparse_X", (True, False)) def test_ElasticNet_Lasso_equivalence(sparse_X): n_samples, n_features = 50, 100 X, y = build_dataset(n_samples, n_features, sparse_X=sparse_X) alpha_max = norm(X.T@y, ord=np.inf) / n_samples alpha = alpha_max / 100. coef_lasso = Lasso(alpha=alpha).fit(X, y).coef_ coef_enet = ElasticNet(alpha=alpha, l1_ratio=1.0).fit(X, y).coef_ assert_allclose(coef_lasso, coef_enet) np.random.seed(0) weights = abs(np.random.randn(n_features)) alpha_max = norm(X.T@y / weights, ord=np.inf) / n_samples alpha = alpha_max / 100. coef_lasso = Lasso(alpha=alpha, weights=weights).fit(X, y).coef_ coef_enet = ElasticNet(alpha=alpha, l1_ratio=1.0, weights=weights).fit(X, y).coef_ assert_allclose(coef_lasso, coef_enet) @pytest.mark.parametrize("prune", (0, 1)) def test_sk_enet_path_equivalence(prune): """Test that celer_path matches sklearn enet_path.""" n_samples, n_features = 40, 80 X, y = build_dataset(n_samples, n_features, sparse_X=False) tol = 1e-14 l1_ratio = 0.7 alpha_max = norm(X.T@y, ord=np.inf) / n_samples params = dict(eps=1e-3, tol=tol, l1_ratio=l1_ratio) # one alpha alpha = alpha_max / 100. alphas1, coefs1, gaps1 = celer_path( X, y, "lasso", alphas=[alpha], prune=prune, max_iter=30, **params) alphas2, coefs2, _ = enet_path(X, y, max_iter=10000, alphas=[alpha], **params) assert_equal(alphas1, alphas2) assert_array_less(gaps1, tol * norm(y) ** 2 / n_samples) assert_allclose(coefs1, coefs2, rtol=1e-3, atol=1e-4) # many alphas n_alphas = 20 alphas1, coefs1, gaps1 = celer_path( X, y, "lasso", n_alphas=n_alphas, prune=prune, max_iter=30, **params) alphas2, coefs2, _ = enet_path(X, y, max_iter=10000, n_alphas=n_alphas, **params) assert_allclose(alphas1, alphas2) assert_array_less(gaps1, tol * norm(y) ** 2 / n_samples) assert_allclose(coefs1, coefs2, rtol=1e-3, atol=1e-4) @pytest.mark.parametrize("sparse_X, fit_intercept, positive", product([False, True], [False, True], [False, True])) def test_sk_ElasticNet_equivalence(sparse_X, fit_intercept, positive): n_samples, n_features = 30, 50 X, y = build_dataset(n_samples, n_features, sparse_X=sparse_X) params = {'l1_ratio': 0.5, 'tol': 1e-14, 'fit_intercept': fit_intercept, 'positive': positive} reg_celer = ElasticNet(**params).fit(X, y) reg_sk = sk_ElasticNet(**params).fit(X, y) assert_allclose(reg_celer.coef_, reg_sk.coef_, rtol=1e-3, atol=1e-3) if fit_intercept: assert_allclose(reg_celer.intercept_, reg_sk.intercept_) @pytest.mark.parametrize("sparse_X", (True, False)) def test_weighted_ElasticNet(sparse_X): n_samples, n_features = 30, 50 X, y = build_dataset(n_samples, n_features, sparse_X) np.random.seed(0) weights = abs(np.random.randn(n_features)) l1_ratio = .7 params = {'max_iter': 10000, 'tol': 1e-14, 'fit_intercept': False} alpha_max = norm(X.T@y / weights, ord=np.inf) / n_samples alpha = alpha_max / 100. reg_enet = ElasticNet(alpha=alpha, l1_ratio=l1_ratio, **params).fit(X, y) lmbda = alpha * l1_ratio * n_samples / (n_samples + n_features) mu = alpha * (1 - l1_ratio) X_tilde = np.vstack( (X, np.sqrt(n_samples*mu) * np.eye(n_features))) y_tilde = np.hstack((y, np.zeros(n_features))) reg_lasso = Lasso(alpha=lmbda, **params) reg_lasso.fit(X_tilde, y_tilde) assert_allclose(reg_enet.coef_, reg_lasso.coef_, rtol=1e-4, atol=1e-3) @pytest.mark.parametrize("fit_intercept", (False, True)) def test_infinite_weights(fit_intercept): n_samples, n_features = 30, 100 X, y = build_dataset(n_samples, n_features, sparse_X=False) np.random.seed(42) weights = abs(np.random.rand(n_features)) n_inf = n_features // 5 inf_indices = np.random.choice(n_features, size=n_inf, replace=False) weights[inf_indices] = np.inf reg = ElasticNet(l1_ratio=0.5, tol=1e-8, fit_intercept=fit_intercept, weights=weights) reg.fit(X, y) assert_equal(reg.coef_[inf_indices], 0) @pytest.mark.parametrize("fit_intercept", (False, True)) def test_ElasticNetCV(fit_intercept): n_samples, n_features = 30, 100 X, y = build_dataset(n_samples, n_features, sparse_X=False) params = dict(l1_ratio=[0.7, 0.8, 0.5], eps=0.05, n_alphas=10, tol=1e-10, cv=2, fit_intercept=fit_intercept, n_jobs=-1) clf = ElasticNetCV(**params) clf.fit(X, y) clf2 = sk_ElasticNetCV(**params, max_iter=10000) clf2.fit(X, y) assert_allclose( clf.mse_path_, clf2.mse_path_, rtol=1e-3, atol=1e-4) assert_allclose(clf.alpha_, clf2.alpha_) assert_allclose(clf.coef_, clf2.coef_, atol=1e-5) assert_allclose(clf.l1_ratio_, clf2.l1_ratio_, atol=1e-5) if __name__ == '__main__': pass
32.965909
86
0.677008
debdbe5c50411acf4416b1fdc303d8d6042add40
1,670
py
Python
applications/CoSimulationApplication/python_scripts/base_classes/co_simulation_convergence_criteria.py
lkusch/Kratos
e8072d8e24ab6f312765185b19d439f01ab7b27b
[ "BSD-4-Clause" ]
778
2017-01-27T16:29:17.000Z
2022-03-30T03:01:51.000Z
applications/CoSimulationApplication/python_scripts/base_classes/co_simulation_convergence_criteria.py
lkusch/Kratos
e8072d8e24ab6f312765185b19d439f01ab7b27b
[ "BSD-4-Clause" ]
6,634
2017-01-15T22:56:13.000Z
2022-03-31T15:03:36.000Z
applications/CoSimulationApplication/python_scripts/base_classes/co_simulation_convergence_criteria.py
lkusch/Kratos
e8072d8e24ab6f312765185b19d439f01ab7b27b
[ "BSD-4-Clause" ]
224
2017-02-07T14:12:49.000Z
2022-03-06T23:09:34.000Z
# Importing the Kratos Library import KratosMultiphysics as KM # CoSimulation imports import KratosMultiphysics.CoSimulationApplication.co_simulation_tools as cs_tools import KratosMultiphysics.CoSimulationApplication.colors as colors class CoSimulationConvergenceCriteria: """Baseclass for the convergence criteria used for CoSimulation Checks if convergence was achieved in a (strongly) coupled simulation """ def __init__(self, settings): self.settings = settings self.settings.RecursivelyValidateAndAssignDefaults(self._GetDefaultParameters()) self.echo_level = self.settings["echo_level"].GetInt() def Initialize(self): pass def Finalize(self): pass def InitializeSolutionStep(self): pass def FinalizeSolutionStep(self): pass def InitializeNonLinearIteration(self): pass def FinalizeNonLinearIteration(self): pass def IsConverged(self, residual, current_data): raise NotImplementedError('"IsConverged" has to be implemented in the derived class!') def PrintInfo(self): cs_tools.cs_print_info("Convergence Criteria", colors.bold(self._ClassName())) def Check(self): cs_tools.cs_print_warning("Convergence Criteria", colors.bold(self._ClassName()), 'does not implement "Check"') @classmethod def _ClassName(cls): return cls.__name__ @classmethod def _GetDefaultParameters(cls): return KM.Parameters("""{ "type" : "UNSPECIFIED", "solver" : "UNSPECIFIED", "data_name" : "UNSPECIFIED", "echo_level" : 0 }""")
29.298246
119
0.685629
3131d948edb26ef2b59ea8b15f45317018ede508
233
py
Python
run.py
rafael1717y/dashboard_flask
5eaa00d89b7d6ae46649c1e6e90c188025f7cc40
[ "Apache-2.0" ]
null
null
null
run.py
rafael1717y/dashboard_flask
5eaa00d89b7d6ae46649c1e6e90c188025f7cc40
[ "Apache-2.0" ]
null
null
null
run.py
rafael1717y/dashboard_flask
5eaa00d89b7d6ae46649c1e6e90c188025f7cc40
[ "Apache-2.0" ]
null
null
null
from config import app_config, app_active from app import create_app config = app_config[app_active] print(app_active) if __name__ == '__main__': create_app(config) config.APP.run(host=config.IP_HOST, port=config.PORT_HOST)
25.888889
62
0.781116
ad9da0cc0324bf08a7fdc13e3b3c6ddff6e66da9
5,292
py
Python
sdk/python/pulumi_aws/securityhub/invite_accepter.py
sibuthomasmathew/pulumi-aws
6351f2182eb6f693d4e09e4136c385adfa0ab674
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_aws/securityhub/invite_accepter.py
sibuthomasmathew/pulumi-aws
6351f2182eb6f693d4e09e4136c385adfa0ab674
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_aws/securityhub/invite_accepter.py
sibuthomasmathew/pulumi-aws
6351f2182eb6f693d4e09e4136c385adfa0ab674
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from .. import _utilities, _tables __all__ = ['InviteAccepter'] class InviteAccepter(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, master_id: Optional[pulumi.Input[str]] = None, __props__=None, __name__=None, __opts__=None): """ > **Note:** AWS accounts can only be associated with a single Security Hub master account. Destroying this resource will disassociate the member account from the master account. Accepts a Security Hub invitation. ## Example Usage ```python import pulumi import pulumi_aws as aws example_account = aws.securityhub.Account("exampleAccount") example_member = aws.securityhub.Member("exampleMember", account_id="123456789012", email="example@example.com", invite=True) invitee_account = aws.securityhub.Account("inviteeAccount", opts=pulumi.ResourceOptions(provider="aws.invitee")) invitee_invite_accepter = aws.securityhub.InviteAccepter("inviteeInviteAccepter", master_id=example_member.master_id, opts=pulumi.ResourceOptions(provider="aws.invitee", depends_on=[aws_securityhub_account["accepter"]])) ``` ## Import Security Hub invite acceptance can be imported using the account ID, e.g. ```sh $ pulumi import aws:securityhub/inviteAccepter:InviteAccepter example 123456789012 ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] master_id: The account ID of the master Security Hub account whose invitation you're accepting. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() if master_id is None and not opts.urn: raise TypeError("Missing required property 'master_id'") __props__['master_id'] = master_id __props__['invitation_id'] = None super(InviteAccepter, __self__).__init__( 'aws:securityhub/inviteAccepter:InviteAccepter', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, invitation_id: Optional[pulumi.Input[str]] = None, master_id: Optional[pulumi.Input[str]] = None) -> 'InviteAccepter': """ Get an existing InviteAccepter resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] invitation_id: The ID of the invitation. :param pulumi.Input[str] master_id: The account ID of the master Security Hub account whose invitation you're accepting. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["invitation_id"] = invitation_id __props__["master_id"] = master_id return InviteAccepter(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="invitationId") def invitation_id(self) -> pulumi.Output[str]: """ The ID of the invitation. """ return pulumi.get(self, "invitation_id") @property @pulumi.getter(name="masterId") def master_id(self) -> pulumi.Output[str]: """ The account ID of the master Security Hub account whose invitation you're accepting. """ return pulumi.get(self, "master_id") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
41.023256
185
0.654573
227c62391caf338482f9203fc4200531b943502d
9,016
py
Python
reo/tests/test_tiered_energy_rate_and_profiler.py
sakshi-testing-reopt/REopt_Lite_API
42040ed96998901d411ae87096420ae48cf5c01a
[ "BSD-3-Clause" ]
null
null
null
reo/tests/test_tiered_energy_rate_and_profiler.py
sakshi-testing-reopt/REopt_Lite_API
42040ed96998901d411ae87096420ae48cf5c01a
[ "BSD-3-Clause" ]
null
null
null
reo/tests/test_tiered_energy_rate_and_profiler.py
sakshi-testing-reopt/REopt_Lite_API
42040ed96998901d411ae87096420ae48cf5c01a
[ "BSD-3-Clause" ]
1
2021-05-02T05:36:37.000Z
2021-05-02T05:36:37.000Z
# ********************************************************************************* # REopt, Copyright (c) 2019-2020, Alliance for Sustainable Energy, LLC. # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, this list # of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, this # list of conditions and the following disclaimer in the documentation and/or other # materials provided with the distribution. # # Neither the name of the copyright holder nor the names of its contributors may be # used to endorse or promote products derived from this software without specific # prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE # OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED # OF THE POSSIBILITY OF SUCH DAMAGE. # ********************************************************************************* import json from django.test import TestCase from tastypie.test import ResourceTestCaseMixin class TestEnergyTiers(ResourceTestCaseMixin, TestCase): """ Tariff from Florida Light & Power (residential) with simple tiered energy rate: "energyratestructure": [[{"max": 1000, "rate": 0.07531, "adj": 0.0119, "unit": "kWh"}, {"rate": 0.09613, "adj": 0.0119, "unit": "kWh"}]] Testing with "annual_kwh": 24,000 such that the "year_one_energy_charges" should be: 12,000 kWh * (0.07531 + 0.0119) $/kWh + 12,000 kWh * (0.09613 + 0.0119) $/kWh = $ 2,342.88 """ def setUp(self): super(TestEnergyTiers, self).setUp() self.submit_url = '/v1/job/' self.results_url = '/v1/job/<run_uuid>/results/' self.post = {"Scenario": {"webtool_uuid": None, "description": "", "timeout_seconds": 295, "Site": { "land_acres": None, "longitude": -91.7337, "roof_squarefeet": None, "latitude": 35.2468, "address": "", "PV": {"max_kw": 0.0}, "Generator": {"max_kw": 0.0}, "LoadProfile": {"critical_loads_kw_is_net": False, "year": 2017, "loads_kw_is_net": True, "outage_start_hour": None, "outage_end_hour": None, "monthly_totals_kwh": [], "critical_load_pct": 0.5, "loads_kw": [], "outage_is_major_event": True, "critical_loads_kw": [], "doe_reference_name": "MidriseApartment", "annual_kwh": 24000.0}, "Storage": {"max_kwh": 0.0, "max_kw": 0.0, }, "ElectricTariff": {"add_blended_rates_to_urdb_rate": False, "wholesale_rate_us_dollars_per_kwh": 0.0, "net_metering_limit_kw": 0.0, "interconnection_limit_kw": 100000000.0, "blended_monthly_demand_charges_us_dollars_per_kw": [], "urdb_utility_name": "Florida Power & Light Co.", "urdb_label": "", "wholesale_rate_above_site_load_us_dollars_per_kwh": 0.0, "urdb_rate_name": "RS-1 Residential Service", "urdb_response": {"sector": "Residential", "startdate": 1433116800, "phasewiring": "Single Phase", "name": "RS-1 Residential Service", "enddate": 1440975600, "source": "https://www.fpl.com/rates/pdf/electric-tariff-section8.pdf", "uri": "https://openei.org/apps/USURDB/rate/view/5550d6fd5457a3187e8b4567", "label": "5550d6fd5457a3187e8b4567", "utility": "Florida Power & Light Co.", "eiaid": 6452, "sourceparent": "https://www.fpl.com/rates.html", "energyratestructure": [[{"max": 1000, "rate": 0.07531, "adj": 0.0119, "unit": "kWh"}, {"rate": 0.09613, "adj": 0.0119, "unit": "kWh"}]], "energyweekdayschedule": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "energyweekendschedule": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "fixedmonthlycharge": 7.57, "energycomments": "Adjustment: Environmental, Storm Charge, Conservation, Capacity\\r\\nRate: Base rate and fuel", "supersedes": "53a455f05257a3ff4a8d8cf2", "revisions": [1431339677, 1431340059, 1431528978, 1431529815, 1431530443, 1448395688]}, "blended_annual_demand_charges_us_dollars_per_kw": 0.0, "blended_annual_rates_us_dollars_per_kwh": 0.0, "blended_monthly_rates_us_dollars_per_kwh": []}, "Financial": {"escalation_pct": 0.026, "offtaker_discount_pct": 0.081, "value_of_lost_load_us_dollars_per_kwh": 100.0, "analysis_years": 20, "microgrid_upgrade_cost_pct": 0.3, "offtaker_tax_pct": 0.26, "om_cost_escalation_pct": 0.025}, "Wind": {"max_kw": 0.0} } } } def get_response(self, data): initial_post = self.api_client.post(self.submit_url, format='json', data=data) uuid = json.loads(initial_post.content)['run_uuid'] response = json.loads(self.api_client.get(self.results_url.replace('<run_uuid>', str(uuid))).content) return response def test_tiered_energy_rate_and_profiler(self): expected_year_one_energy_cost = 2342.88 response = self.get_response(self.post) tariff_out = response['outputs']['Scenario']['Site']['ElectricTariff'] profile_out = response['outputs']['Scenario']['Profile'] messages = response['messages'] try: self.assertEqual(tariff_out['year_one_energy_cost_us_dollars'], expected_year_one_energy_cost, "Year one energy bill ({}) does not equal expected cost ({})." .format(tariff_out['year_one_energy_cost_us_dollars'], expected_year_one_energy_cost)) self.assertGreater(profile_out['pre_setup_scenario_seconds'], 0, "Profiling results failed") self.assertGreater(profile_out['setup_scenario_seconds'], 0, "Profiling results failed") self.assertGreater(profile_out['reopt_seconds'], 0, "Profiling results failed") self.assertGreater(profile_out['reopt_bau_seconds'], 0, "Profiling results failed") self.assertGreater(profile_out['parse_run_outputs_seconds'], 0, "Profiling results failed") except Exception as e: error_msg = None if hasattr(messages, "error"): error_msg = messages.error print("test_tiered_energy_rate API error message: {}".format(error_msg)) print("Run uuid: {}".format(response['outputs']['Scenario']['run_uuid'])) raise e
91.070707
3,280
0.578971
5a2a2f242ff5861aa06b7ac8bedbea59a488a8ee
4,660
py
Python
back-propagation/bp-with-weightedCE/bp.py
shinmao/ML-_-DL
9a378454502635d6b29a7bb8e85d849da154a114
[ "MIT" ]
2
2021-09-24T02:05:15.000Z
2021-09-24T02:05:21.000Z
back-propagation/bp-with-weightedCE/bp.py
shinmao/ML-_-DL
9a378454502635d6b29a7bb8e85d849da154a114
[ "MIT" ]
null
null
null
back-propagation/bp-with-weightedCE/bp.py
shinmao/ML-_-DL
9a378454502635d6b29a7bb8e85d849da154a114
[ "MIT" ]
null
null
null
import numpy as np import sklearn.datasets as sd import matplotlib.pyplot as plt from sklearn.linear_model import Perceptron from sklearn.model_selection import train_test_split ''' dataset: X to be input with two features y to be k = 2 ''' X, y = sd.make_moons(500, noise=0.4) def plot(X1, X2, y): color = {0: 'blue', 1: 'red'} plt.title('dataset') plt.xlabel('x1') plt.ylabel('x2') for i, j, c in zip(X1, X2, y): plt.scatter(i, j, c = color[c], marker='o', s = 50, edgecolors='k', cmap = plt.cm.Spectral) plot(X[:, 0], X[:, 1], y) plt.show() def nn_plot(X, y, pfunc): xmin, xmax = X[:, 0].min() - 0.5, X[:, 0].max() + 0.5 ymin, ymax = X[:, 1].min() - 0.5, X[:, 1].max() + 0.5 steps = 0.01 xx, yy = np.meshgrid(np.arange(xmin, xmax, steps), np.arange(ymin, ymax, steps)) labels = pfunc(np.c_[xx.ravel(), yy.ravel()]) zz = labels.reshape(xx.shape) plt.contourf(xx, yy, zz, cmap = plt.cm.Spectral) plt.scatter(X[:, 0], X[:, 1], c=y, cmap = plt.cm.Spectral) plt.show() class NN(object): def __init__(self): self.input= 2 self.output = 1 self.hidden_units = 2 # weight for false negative and false positive # false negative is more serious than false positive self.fn_wt = 50 self.fp_wt = 10 np.random.seed(1) # w1 matrix from input to hidden layer 2*2 self.w1 = np.random.randn(self.input, self.hidden_units) # w2 matrix from hidden layer 2*1 self.w2 = np.random.randn(self.hidden_units, self.output) def sigmoid(self, x): return 1/(1 + np.exp(-x)) # derivation for sigmoid def deriv_sigmoid(self, x): return self.sigmoid(x)*(1 - self.sigmoid(x)) def ff(self, x): # hidden layer self.hu_sum = np.dot(self.w1.T, x.T) self.hu_output = self.sigmoid(self.hu_sum) # output layer self.output_sum = np.dot(self.w2.T, self.hu_output) self.output = self.sigmoid(self.output_sum) #print("w1: ", self.w1) #print("w2: ", self.w2) return self.output def loss(self, pred, y): m = y.shape[0] logprob = self.fn_wt * np.multiply(np.log(pred), y) + self.fp_wt * np.multiply(1-y, np.log(1 - pred)) loss = -np.sum(logprob) / m return loss def bp(self, X, y): pred = self.ff(X) m = X.shape[0] # update weight in w2 # chain rule: #output_delta = pred - y #output_delta = 100*pred + 1900* np.multiply(y, pred) - 2000*y output_delta = -50 * y + 40 * np.multiply(pred, y) + 10 * pred delta_dz = np.multiply(output_delta, self.deriv_sigmoid(self.output_sum)) self.dw2 = (1/m) * np.sum(np.multiply(self.hu_output, delta_dz), axis = 1).reshape(self.w2.shape) # update weight in w1 hidden_delta = output_delta * self.w2 * self.deriv_sigmoid(self.hu_sum) self.dw1 = (1/m) * np.dot(X.T, hidden_delta.T) def update(self, lr = 1.2): self.w1 = self.w1 - lr * self.dw1 self.w2 = self.w2 - lr * self.dw2 def train(self, X, y, it = 100): for i in range(it): y_hat = self.ff(X) los = self.loss(y_hat, y) self.bp(X, y) # update weight w1, w2 self.update() if i % 10 == 0: print("loss: ", los) def pred(self, X): y_hat = self.ff(X) y_hat = [1 if x_[0] >= 0.5 else 0 for x_ in y_hat.T] return np.array(y_hat) def score(self, pred, y): # accuracy corect_cnt = np.sum(pred == y) correct0 = 0 correct1 = 0 for i in range(len(y)): if pred[i] == y[i]: if pred[i] == 0: correct0 += 1 else: correct1 += 1 return corect_cnt / len(y), correct0, correct1 if __name__ == '__main__': # 4 fold validation tr_X, te_X, tr_y, te_y = train_test_split(X, y, test_size = 0.25) # compare linear model perceptron with neural network clf = Perceptron(tol = 1e-3, random_state= 0) clf.fit(X, y) nn_plot(X, y, lambda x : clf.predict(x)) print("Perceptron's score: ", clf.score(X, y)) model = NN() model.train(tr_X, tr_y) pred_y = model.pred(te_X) print("after train") score, score0, score1 = model.score(pred_y, te_y) nn_plot(X, y, lambda x : model.pred(x)) print("predict: ", pred_y) print("label: ", te_y) print("NN's score: ", score, score0, score1)
33.049645
109
0.549356
eb84dd42d8add97a2ed6c889cff33a520d102298
2,031
py
Python
optimism/test/testDofManager.py
btalamini/optimism
023e1b2a0b137900a7517e4c7ac5056255cf7bbe
[ "MIT" ]
null
null
null
optimism/test/testDofManager.py
btalamini/optimism
023e1b2a0b137900a7517e4c7ac5056255cf7bbe
[ "MIT" ]
1
2022-03-12T00:01:12.000Z
2022-03-12T00:01:12.000Z
optimism/test/testDofManager.py
btalamini/optimism
023e1b2a0b137900a7517e4c7ac5056255cf7bbe
[ "MIT" ]
3
2021-12-23T19:53:31.000Z
2022-03-27T23:12:03.000Z
from optimism.JaxConfig import * from optimism import Mesh from optimism.test import MeshFixture class DofManagerTest(MeshFixture.MeshFixture): def setUp(self): self.Nx = 4 self.Ny = 5 xRange = [0.,1.] yRange = [0.,1.] #self.targetDispGrad = np.array([[0.1, -0.2],[0.4, -0.1]]) self.mesh, _ = self.create_mesh_and_disp(self.Nx, self.Ny, xRange, yRange, lambda x : 0*x) Ebcs = [Mesh.EssentialBC(nodeSet='top', field=0), Mesh.EssentialBC(nodeSet='right', field=1)] self.nNodes = self.Nx*self.Ny self.nFields = 2 fieldShape = (self.nNodes, self.nFields) self.dofManager = Mesh.DofManager(self.mesh, fieldShape, Ebcs) self.nDof = self.nFields*self.nNodes U = np.zeros((self.nNodes, self.nFields)) U = U.at[:,1].set(1.0) U = U.at[self.mesh.nodeSets['top'],0].set(2.0) self.U = U.at[self.mesh.nodeSets['right'],1].set(3.0) def test_get_bc_size(self): # number of dofs from top, field 0 nEbcs = self.Nx # number of dofs from right, field 1 nEbcs += self.Ny self.assertEqual(self.dofManager.get_bc_size(), nEbcs) def test_get_unknown_size(self): # number of dofs from top, field 0 nEbcs = self.Nx # number of dofs from right, field 1 nEbcs += self.Ny self.assertEqual(self.dofManager.get_unknown_size(), self.nDof - nEbcs) def test_slice_unknowns_with_dof_indices(self): Uu = self.dofManager.get_unknown_values(self.U) Uu_x = self.dofManager.slice_unknowns_with_dof_indices(Uu, (slice(None),0) ) self.assertArrayEqual(Uu_x, np.zeros(self.Nx*(self.Ny-1))) Uu_y = self.dofManager.slice_unknowns_with_dof_indices(Uu, (slice(None),1) ) self.assertArrayEqual(Uu_y, np.ones(self.Ny*(self.Nx-1))) if __name__ == '__main__': MeshFixture.unittest.main()
33.85
84
0.597243
50be3049a3933f4303e30fc9be0b3374df11e241
118
py
Python
tests/fixtures/internal/subpackage_a/module_1.py
gitter-badger/dependenpy
db411b7bbd466b79064cbb419049f17cd3bff4c1
[ "ISC" ]
10
2020-01-08T10:42:32.000Z
2021-07-08T01:58:08.000Z
tests/fixtures/internal/subpackage_a/module_1.py
gitter-badger/dependenpy
db411b7bbd466b79064cbb419049f17cd3bff4c1
[ "ISC" ]
18
2015-03-13T11:55:49.000Z
2017-06-20T11:56:46.000Z
tests/fixtures/internal/subpackage_a/module_1.py
gitter-badger/dependenpy
db411b7bbd466b79064cbb419049f17cd3bff4c1
[ "ISC" ]
1
2019-12-10T18:32:05.000Z
2019-12-10T18:32:05.000Z
import internal.subpackage_a.subpackage_1.module_i class Class1(object): def function(self): import sys
16.857143
50
0.737288
6ba36e4304275749d37e8000ac203d05025f1129
6,578
py
Python
furniture/demo_rl.py
clvrai/furniture
ed4a905e7beb1daf3af7717d979e0ba93421077a
[ "MIT" ]
364
2019-11-20T16:28:39.000Z
2022-03-28T23:00:19.000Z
furniture/demo_rl.py
whiteBerryJ/furniture
ed4a905e7beb1daf3af7717d979e0ba93421077a
[ "MIT" ]
22
2019-11-24T08:27:22.000Z
2022-03-31T23:30:25.000Z
furniture/demo_rl.py
whiteBerryJ/furniture
ed4a905e7beb1daf3af7717d979e0ba93421077a
[ "MIT" ]
52
2019-11-21T01:01:01.000Z
2022-03-02T11:52:53.000Z
""" Demonstration for RL experiments with new environment design. This script tells you how to use our IKEA furniture assembly environment for RL experiments and design your own reward function and task. First, FurnitureExampleEnv shows you how to define a new task. * `__init__`: sets environment- and task-specific configurations * `_reset`: initializes variables when an episode is reset * `_place_objects`: specifies the initialization of furniture parts * `_get_obs`: includes more information for your task * `_step`: simulates the environment and returns observation and reward * `_compute_reward`: designs your own reward function We describe how to collect trajectories with a random policy in `main`. Please refer to `furniture/rl` for more advanced RL implementations. """ from collections import OrderedDict import numpy as np from env.furniture_baxter import FurnitureBaxterEnv from env.models import furniture_names, background_names, agent_names, furniture_name2id import env.transform_utils as T class FurnitureExampleEnv(FurnitureBaxterEnv): """ Baxter robot environment with a reaching task as an example. """ def __init__(self, config): """ Args: config: general configuration for the environment. """ ################################################### # Change @config before creating a MuJoCo scene # ################################################### # set the furniture to be always the simple blocks config.furniture_id = furniture_name2id["block"] # set subtask_ob for getting target object config.subtask_ob = True # set environment- and task-specific configurations config.max_episode_steps = 50 # create a MuJoCo environment based on @config super().__init__(config) def _reset(self, furniture_id=None, background=None): """ Resets simulation and variables to compute reward. Args: furniture_id: ID of the furniture model to reset. background: name of the background scene to reset. """ super()._reset(furniture_id, background) ########################################## # Set variables needed to compute reward # ########################################## # pick an object to reach assert self._subtask_part1 != -1 self._target_body = self._object_names[self._subtask_part1] def _place_objects(self): """ Returns the initial positions and rotations of furniture parts. Returns: xpos((float * 3) * n_obj): x,y,z position of the objects in world frame xquat((float * 4) * n_obj): quaternion of the objects """ ###################################################### # Specify initial position and rotation of each part # ###################################################### pos_init = {"1_block_l": [-0.3, -0.2, 0.05], "2_block_r": [0.1, -0.2, 0.05]} quat_init = {"1_block_l": [1, 0, 0, 0], "2_block_r": [1, 0, 0, 0]} return pos_init, quat_init def _get_obs(self): """ Returns the current observation. """ obs = super()._get_obs() return obs def _step(self, a): """ Takes a simulation step with action @a. """ # zero out left arm's action and only use right arm a[6:12] = 0 # simulate action @a ob, _, _, _ = super(FurnitureBaxterEnv, self)._step(a) # compute your own reward reward, done, info = self._compute_reward(a) # store some information for log info["right_arm_action"] = a[0:6] info["right_gripper_action"] = a[12] return ob, reward, done, info def _compute_reward(self, a): """ Computes reward for the task. """ info = {} # control penalty ctrl_penalty = self._ctrl_penalty(a) # distance-based reward hand_pos = np.array(self.sim.data.site_xpos[self.right_eef_site_id]) dist = T.l2_dist(hand_pos, self._get_pos(self._target_body)) distance_reward = -self._config.distance_reward * dist # reward for successful reaching success_reward = 0 if dist < 0.05: success_reward = self._config.success_reward # add up all rewards reward = ctrl_penalty + distance_reward + success_reward done = False # log each component of reward info["ctrl_penalty"] = ctrl_penalty info["distance_reward"] = distance_reward info["success_reward"] = success_reward return reward, done, info def main(args): """ Shows basic rollout code for simulating the environment. """ print("IKEA Furniture Assembly Environment!") # make environment following arguments from env import make_env env = make_env("FurnitureExampleEnv", args) # define a random policy def policy_action(ob): return env.action_space.sample() # define policy update def update_policy(rollout): pass # run one episode and collect transitions rollout = [] done = False observation = env.reset() ep_length = 0 # update unity rendering env.render() while not done: ep_length += 1 # sample action from policy action = policy_action(observation) # simulate environment observation, reward, done, info = env.step(action) print( "{:3d} step: reward ({:5.3f}) action ({})".format( ep_length, reward, action["default"] ) ) # update unity rendering env.render() # collect transition rollout.append({"ob": observation, "reward": reward, "done": done}) # update your network using @rollout update_policy(rollout) # close the environment instance env.close() def argsparser(): """ Returns argument parser for furniture assembly environment. """ import argparse import config.furniture as furniture_config from util import str2bool parser = argparse.ArgumentParser("Demo for IKEA Furniture Assembly Environment") parser.add_argument("--seed", type=int, default=123) parser.add_argument("--debug", type=str2bool, default=False) furniture_config.add_argument(parser) args = parser.parse_args() return args if __name__ == "__main__": args = argsparser() main(args)
29.630631
88
0.610368
f535105052079ab65987d0168ab0bea5d78c33e4
633
py
Python
information_web/info/modules/admin/__init__.py
Fulaiy/information
8b98072dffda3cbf4d30145f244ac8bf05e9cd96
[ "MIT" ]
null
null
null
information_web/info/modules/admin/__init__.py
Fulaiy/information
8b98072dffda3cbf4d30145f244ac8bf05e9cd96
[ "MIT" ]
3
2021-03-18T20:46:28.000Z
2022-01-13T00:49:07.000Z
information_web/info/modules/admin/__init__.py
Fulaiy/information
8b98072dffda3cbf4d30145f244ac8bf05e9cd96
[ "MIT" ]
null
null
null
from flask import Blueprint from flask import redirect from flask import request from flask import session from flask import url_for admin_blu = Blueprint("admin",__name__,url_prefix='/admin') from . import views @admin_blu.before_request def before_request(): # 判断如果不是登录页面的请求 if request.url.endswith(url_for("admin.admin_index")): user_id = session.get("user_id") # print(user_id,'lllllll') is_admin = session.get("is_admin",False) # print(is_admin,'oooooooooooo') if not (user_id and is_admin): # 判断当前是否有用户登录,或者是否是管理员,如果不是,直接重定向到项目主页 return redirect('/')
27.521739
59
0.693523
7f894aabb110b70f083bda11960bbc0d19f78c51
7,246
py
Python
validation/scaler_validation.py
anonymous-profet2/profet
902f8ea03a650f078a21722f5fe44ebfc5cfad41
[ "MIT" ]
1
2022-02-24T01:35:10.000Z
2022-02-24T01:35:10.000Z
validation/scaler_validation.py
anonymous-profet/profet
cbe4991eb2282db8b94f6697c68434217742dbf7
[ "MIT" ]
null
null
null
validation/scaler_validation.py
anonymous-profet/profet
cbe4991eb2282db8b94f6697c68434217742dbf7
[ "MIT" ]
13
2021-10-14T02:24:43.000Z
2022-03-14T03:16:17.000Z
# profet: validate scaler prediction model import pandas as pd import numpy as np import pickle import math from tqdm import tqdm from sklearn.metrics import mean_absolute_percentage_error, r2_score, mean_squared_error import argparse parser = argparse.ArgumentParser() parser.add_argument('--target_instance', type=str) args = parser.parse_args() # Global Variables for validation ANCHOR_INSTANCE = args.target_instance INSTANCE_LIST = ['g3s.xlarge', 'g4dn.xlarge', 'p2.xlarge', 'p3.2xlarge'] PRED_INSTANCES = [x for x in INSTANCE_LIST if x != ANCHOR_INSTANCE] ANCHOR_NAME = ANCHOR_INSTANCE[:2] SCALER_MODE = 'MinMax-2nd' # Load Dataset from anchor validation anchor_pred = pickle.load(open(f'./{ANCHOR_INSTANCE}_anchor_median.pickle', 'rb')) model_list = sorted(list(anchor_pred[0]['model'].value_counts().index)) dataset_list = sorted(list(anchor_pred[0]['dataset'].value_counts().index)) batchsize_list = sorted(list(anchor_pred[0]['batchsize'].value_counts().index)) exp_list = sorted(list(anchor_pred[0]['exp_name'].value_counts().index)) instance_index = {} for i in range(len(anchor_pred)): instance_name = [x.split('_pred')[0] for x in list(anchor_pred[i].columns) if '_pred' in x][0] instance_index[instance_name] = i # Function-1: inference_batch_dataset # This function inference scaled prediction value(0~1) from polynomial model, # then convert scaled prediction value to real latency def inference_batch_dataset(instance_name, model_name, latency_min, latency_max, size_pred, b_or_d): if b_or_d == 'batchsize': scaler_size = 256 scaler = pickle.load(open(f"./model/scaler/{SCALER_MODE}/{instance_name[:2]}/scaler_{instance_name}_{model_name}_{scaler_size}dataset_BSpred.pickle", "rb")) else: # if b_or_d == 'dataset' scaler_size = 64 scaler = pickle.load(open(f"./model/scaler/{SCALER_MODE}/{instance_name[:2]}/scaler_{instance_name}_{model_name}_{scaler_size}batchsize_DSpred.pickle", "rb")) scaled_pred = scaler.predict(np.array([size_pred]).reshape(-1, 1)) latency_pred = (scaled_pred * (latency_max - latency_min) + latency_min) latency_pred = latency_pred[0][0] return latency_pred # Function-2: scaler_validation # b_or_d: what you wan to predict (batchsize or dataset) # t_or_p: setting of min-max values (true or pred, pred is anchor prediction value) # 1. setting variables for scaler model-validation # 2. loop target instances, models, val_sizes, and exps, get values and inference for validation # (val_size is size of opposit condition of b_or_d, so if b_or_d is batchsize, val_size_list is dataset_list) # 3. convert values into dataframe, and return it def scaler_validation(anchor_pred, b_or_d, t_or_p): if b_or_d == 'batchsize': size_min = 16 size_max = 256 condition_size = 'dataset' val_size_list = dataset_list else: # if b_or_d == 'dataset' size_min = 32 size_max = 256 condition_size = 'batchsize' val_size_list = batchsize_list val_result = {} key_list = ['instance_name', 'model', 'exp_name', 'true', 'scaler_pred', 'anchor_pred', 'size_min', 'size_max', 'size_pred', 'latency_min', 'latency_max', 'b_or_d', 'b_or_d_size', 't_or_p'] for key in key_list: val_result.setdefault(key, []) for val_instance in tqdm(PRED_INSTANCES): for val_model in model_list: for val_size in val_size_list: for val_exp in exp_list: true_pred_df = anchor_pred[instance_index[val_instance]] cond = ((true_pred_df['model'] == val_model) & (true_pred_df[condition_size] == val_size) & (true_pred_df['exp_name'] == val_exp)) val_df = true_pred_df[cond] if len(val_df) != 5: continue latency_min = val_df[val_df[b_or_d] == size_min][f'{val_instance}_{t_or_p}'].values[0] latency_max = val_df[val_df[b_or_d] == size_max][f'{val_instance}_{t_or_p}'].values[0] size_pred_list = [x for x in sorted(list(val_df[b_or_d].values)) if x not in [size_min, size_max]] for size_pred in size_pred_list: latency_true = val_df[val_df[b_or_d] == size_pred][f'{val_instance}_true'].values[0] latency_anchor_pred = val_df[val_df[b_or_d] == size_pred][f'{val_instance}_pred'].values[0] latency_scaler_pred = inference_batch_dataset( val_instance, val_model, latency_min, latency_max, size_pred, b_or_d) val_result['instance_name'].append(val_instance) val_result['model'].append(val_model) val_result['exp_name'].append(val_exp) val_result['true'].append(latency_true) val_result['anchor_pred'].append(latency_anchor_pred) val_result['scaler_pred'].append(latency_scaler_pred) val_result['size_min'].append(size_min) val_result['size_max'].append(size_max) val_result['size_pred'].append(size_pred) val_result['latency_min'].append(latency_min) val_result['latency_max'].append(latency_max) val_result['b_or_d'].append(b_or_d) val_result['b_or_d_size'].append(val_size) val_result['t_or_p'].append(t_or_p) val_result_df = pd.DataFrame.from_dict(val_result, orient='columns') return val_result_df # Function-3: print_error # print MAPE, R^2, and RMSE def print_error(true, pred): print(f'MAPE: {mean_absolute_percentage_error(true, pred) * 100}') print(f'R2: {r2_score(true, pred)}') print(f'RMSE: {math.sqrt(mean_squared_error(true, pred))} us') print(f'RMSE: {math.sqrt(mean_squared_error(true, pred))/1000} ms') print() # 02-2-1. Model Validation of Scaler Prediction # - setting 1: batchsize prediction with true min-max values # - setting 2: batchsize prediction with anchor predicted min-max values # - setting 3: dataset prediction with true min-max values # - setting 4: dataset prediction with anchor predicted min-max values result_batchsize_true = scaler_validation(anchor_pred, 'batchsize', 'true') print_error(result_batchsize_true['true'], result_batchsize_true['scaler_pred']) result_batchsize_pred = scaler_validation(anchor_pred, 'batchsize', 'pred') print_error(result_batchsize_pred['true'], result_batchsize_pred['scaler_pred']) result_dataset_true = scaler_validation(anchor_pred, 'dataset', 'true') print_error(result_dataset_true['true'], result_dataset_true['scaler_pred']) result_dataset_pred = scaler_validation(anchor_pred, 'dataset', 'pred') print_error(result_dataset_pred['true'], result_dataset_pred['scaler_pred']) pickle.dump([result_batchsize_true, result_batchsize_pred, result_dataset_true, result_dataset_pred], open(f'scaler_result_{ANCHOR_NAME}_{SCALER_MODE}.pickle', 'wb'))
51.757143
166
0.669197
f2262ccf67d9f3f1af5e6938a89d8dfbf49386fe
1,332
py
Python
src/debugbar/providers/DebugProvider.py
girardinsamuel/debugbar
0a528be1b5ec06836a253264f1ae620d33eda42e
[ "MIT" ]
null
null
null
src/debugbar/providers/DebugProvider.py
girardinsamuel/debugbar
0a528be1b5ec06836a253264f1ae620d33eda42e
[ "MIT" ]
null
null
null
src/debugbar/providers/DebugProvider.py
girardinsamuel/debugbar
0a528be1b5ec06836a253264f1ae620d33eda42e
[ "MIT" ]
null
null
null
from masonite.providers import Provider from ..Debugger import Debugger from ..collectors.MessageCollector import MessageCollector from ..collectors.PythonCollector import PythonCollector from ..collectors.QueryCollector import QueryCollector from ..collectors.KeyValueCollector import KeyValueCollector from ..collectors.MeasureCollector import MeasureCollector class DebugProvider(Provider): def __init__(self, application): self.application = application def register(self): debugger = Debugger() time = MeasureCollector("Time") time.start_measure('boot') debugger.add_collector(MessageCollector()) debugger.add_collector(KeyValueCollector("Environment")) debugger.add_collector(time) # debugger.add_collector(KeyValueCollector("Request")) debugger.add_collector(QueryCollector().start_logging('masoniteorm.connection.queries')) self.application.bind('debugger', debugger) def boot(self): self.application.make('debugger').get_collector('Time').stop_measure('boot') response = self.application.make('response') if 'text/html' in response.header('Content-Type'): response.content += self.application.make('debugger').get_renderer('javascript').render() response.make_headers()
41.625
101
0.728979
c2f869ab9bf6c9baa4eed6140b34d9a67e518e80
7,155
py
Python
nltk/chat/eliza.py
SamuraiT/nltk3-alpha
18a1a0ff8697eaeeb5d3c0bc6dad251d5b8fe931
[ "Apache-2.0" ]
3
2019-04-09T22:59:33.000Z
2019-06-14T09:23:24.000Z
nltk/chat/eliza.py
guker/nltk
085399ea9d53318ae6e8568909fa55f0d905ad5a
[ "Apache-2.0" ]
null
null
null
nltk/chat/eliza.py
guker/nltk
085399ea9d53318ae6e8568909fa55f0d905ad5a
[ "Apache-2.0" ]
2
2019-10-28T01:33:22.000Z
2019-10-30T06:43:43.000Z
# Natural Language Toolkit: Eliza # # Copyright (C) 2001-2014 NLTK Project # Authors: Steven Bird <stevenbird1@gmail.com> # Edward Loper <edloper@gmail.com> # URL: <http://nltk.org/> # For license information, see LICENSE.TXT # Based on an Eliza implementation by Joe Strout <joe@strout.net>, # Jeff Epler <jepler@inetnebr.com> and Jez Higgins <mailto:jez@jezuk.co.uk>. # a translation table used to convert things you say into things the # computer says back, e.g. "I am" --> "you are" from __future__ import print_function from nltk.chat.util import Chat, reflections # a table of response pairs, where each pair consists of a # regular expression, and a list of possible responses, # with group-macros labelled as %1, %2. pairs = ( (r'I need (.*)', ( "Why do you need %1?", "Would it really help you to get %1?", "Are you sure you need %1?")), (r'Why don\'t you (.*)', ( "Do you really think I don't %1?", "Perhaps eventually I will %1.", "Do you really want me to %1?")), (r'Why can\'t I (.*)', ( "Do you think you should be able to %1?", "If you could %1, what would you do?", "I don't know -- why can't you %1?", "Have you really tried?")), (r'I can\'t (.*)', ( "How do you know you can't %1?", "Perhaps you could %1 if you tried.", "What would it take for you to %1?")), (r'I am (.*)', ( "Did you come to me because you are %1?", "How long have you been %1?", "How do you feel about being %1?")), (r'I\'m (.*)', ( "How does being %1 make you feel?", "Do you enjoy being %1?", "Why do you tell me you're %1?", "Why do you think you're %1?")), (r'Are you (.*)', ( "Why does it matter whether I am %1?", "Would you prefer it if I were not %1?", "Perhaps you believe I am %1.", "I may be %1 -- what do you think?")), (r'What (.*)', ( "Why do you ask?", "How would an answer to that help you?", "What do you think?")), (r'How (.*)', ( "How do you suppose?", "Perhaps you can answer your own question.", "What is it you're really asking?")), (r'Because (.*)', ( "Is that the real reason?", "What other reasons come to mind?", "Does that reason apply to anything else?", "If %1, what else must be true?")), (r'(.*) sorry (.*)', ( "There are many times when no apology is needed.", "What feelings do you have when you apologize?")), (r'Hello(.*)', ( "Hello... I'm glad you could drop by today.", "Hi there... how are you today?", "Hello, how are you feeling today?")), (r'I think (.*)', ( "Do you doubt %1?", "Do you really think so?", "But you're not sure %1?")), (r'(.*) friend (.*)', ( "Tell me more about your friends.", "When you think of a friend, what comes to mind?", "Why don't you tell me about a childhood friend?")), (r'Yes', ( "You seem quite sure.", "OK, but can you elaborate a bit?")), (r'(.*) computer(.*)', ( "Are you really talking about me?", "Does it seem strange to talk to a computer?", "How do computers make you feel?", "Do you feel threatened by computers?")), (r'Is it (.*)', ( "Do you think it is %1?", "Perhaps it's %1 -- what do you think?", "If it were %1, what would you do?", "It could well be that %1.")), (r'It is (.*)', ( "You seem very certain.", "If I told you that it probably isn't %1, what would you feel?")), (r'Can you (.*)', ( "What makes you think I can't %1?", "If I could %1, then what?", "Why do you ask if I can %1?")), (r'Can I (.*)', ( "Perhaps you don't want to %1.", "Do you want to be able to %1?", "If you could %1, would you?")), (r'You are (.*)', ( "Why do you think I am %1?", "Does it please you to think that I'm %1?", "Perhaps you would like me to be %1.", "Perhaps you're really talking about yourself?")), (r'You\'re (.*)', ( "Why do you say I am %1?", "Why do you think I am %1?", "Are we talking about you, or me?")), (r'I don\'t (.*)', ( "Don't you really %1?", "Why don't you %1?", "Do you want to %1?")), (r'I feel (.*)', ( "Good, tell me more about these feelings.", "Do you often feel %1?", "When do you usually feel %1?", "When you feel %1, what do you do?")), (r'I have (.*)', ( "Why do you tell me that you've %1?", "Have you really %1?", "Now that you have %1, what will you do next?")), (r'I would (.*)', ( "Could you explain why you would %1?", "Why would you %1?", "Who else knows that you would %1?")), (r'Is there (.*)', ( "Do you think there is %1?", "It's likely that there is %1.", "Would you like there to be %1?")), (r'My (.*)', ( "I see, your %1.", "Why do you say that your %1?", "When your %1, how do you feel?")), (r'You (.*)', ( "We should be discussing you, not me.", "Why do you say that about me?", "Why do you care whether I %1?")), (r'Why (.*)', ( "Why don't you tell me the reason why %1?", "Why do you think %1?" )), (r'I want (.*)', ( "What would it mean to you if you got %1?", "Why do you want %1?", "What would you do if you got %1?", "If you got %1, then what would you do?")), (r'(.*) mother(.*)', ( "Tell me more about your mother.", "What was your relationship with your mother like?", "How do you feel about your mother?", "How does this relate to your feelings today?", "Good family relations are important.")), (r'(.*) father(.*)', ( "Tell me more about your father.", "How did your father make you feel?", "How do you feel about your father?", "Does your relationship with your father relate to your feelings today?", "Do you have trouble showing affection with your family?")), (r'(.*) child(.*)', ( "Did you have close friends as a child?", "What is your favorite childhood memory?", "Do you remember any dreams or nightmares from childhood?", "Did the other children sometimes tease you?", "How do you think your childhood experiences relate to your feelings today?")), (r'(.*)\?', ( "Why do you ask that?", "Please consider whether you can answer your own question.", "Perhaps the answer lies within yourself?", "Why don't you tell me?")), (r'quit', ( "Thank you for talking with me.", "Good-bye.", "Thank you, that will be $150. Have a good day!")), (r'(.*)', ( "Please tell me more.", "Let's change focus a bit... Tell me about your family.", "Can you elaborate on that?", "Why do you say that %1?", "I see.", "Very interesting.", "%1.", "I see. And what does that tell you?", "How does that make you feel?", "How do you feel when you say that?")) ) eliza_chatbot = Chat(pairs, reflections) def eliza_chat(): print("Therapist\n---------") print("Talk to the program by typing in plain English, using normal upper-") print('and lower-case letters and punctuation. Enter "quit" when done.') print('='*72) print("Hello. How are you feeling today?") eliza_chatbot.converse() def demo(): eliza_chat() if __name__ == "__main__": demo()
29.204082
83
0.581831
c67dad9ff5cc6a872229f9b752825a6115c12720
1,647
py
Python
app/app.py
amazingguni/flask-ddd
8a789c1db96a8ad4079fdd2957f64b7af710b5b3
[ "Apache-2.0" ]
1
2022-02-06T14:00:02.000Z
2022-02-06T14:00:02.000Z
app/app.py
amazingguni/flask-ddd
8a789c1db96a8ad4079fdd2957f64b7af710b5b3
[ "Apache-2.0" ]
null
null
null
app/app.py
amazingguni/flask-ddd
8a789c1db96a8ad4079fdd2957f64b7af710b5b3
[ "Apache-2.0" ]
null
null
null
from contextlib import contextmanager import os from flask import Flask, request, render_template from flask_sqlalchemy import SQLAlchemy from flask_migrate import Migrate from flask_cors import CORS from flask_login import LoginManager from .common.event.event_dispatcher import EventDispatcher db = SQLAlchemy() login_manager = LoginManager() migrate = Migrate(db=db) dispatcher = EventDispatcher() def create_app(config_name='config.development.DevelopmentConfig'): # create and configure the app app = Flask(__name__) app.config.from_object( os.environ.get('APP_SETTINGS', config_name)) CORS(app) db.init_app(app) migrate.init_app(app) login_manager.init_app(app) @app.route('/') # pylint: disable=unused-variable def home(): return render_template('home.html.j2') from .user import views as user_views from .catalog import views as catalog_views from .admin import views as admin_views from .cart import views as cart_views from .order import views as order_views views = [user_views, catalog_views, admin_views, cart_views, order_views] register_blueprints(app, views) from .containers import Container session = db.session container = Container(app=app, session=session) app.container = container with app.app_context(): container.wire(modules=views) return app def register_blueprints(app, views): for view in views: app.register_blueprint(view.bp) @login_manager.user_loader def load_user(user_id): from .user.domain.user import User return User.query.filter(User.id == user_id).first()
26.564516
77
0.738312
8e1f64f4346da9e2a5303306ca5027b3e8f0acbf
2,322
py
Python
webapp/models/mlva.py
fasemoreakinyemi/coxbase_webapp
6217c095eff02af7356116d1eade316cc6707ca1
[ "0BSD" ]
null
null
null
webapp/models/mlva.py
fasemoreakinyemi/coxbase_webapp
6217c095eff02af7356116d1eade316cc6707ca1
[ "0BSD" ]
null
null
null
webapp/models/mlva.py
fasemoreakinyemi/coxbase_webapp
6217c095eff02af7356116d1eade316cc6707ca1
[ "0BSD" ]
null
null
null
#!/usr/bin/env python # -*- coding: iso-8859-15 -*- import os import sys from sqlalchemy import Column, ForeignKey, Integer, String, DECIMAL, Float from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import relationship from sqlalchemy import create_engine from sqlalchemy.dialects.mysql import YEAR Base = declarative_base() class plasmid(Base): __tablename__ = "Plasmid" ID = Column(Integer, nullable=False, primary_key=True) PlasmidType = Column(String(15)) class mst(Base): __tablename__ = "MST" ID = Column(Integer, nullable=False, primary_key=True) MSTType = Column(String(30)) class TypingMeta(Base): __tablename__ = "TypingMetadata" ID = Column(Integer, nullable=False, primary_key=True) ClusterType = Column(String(5)) Genotype = Column(String(10)) class SampleMetadata(Base): __tablename__ = "SampleMetadata" ID = Column(Integer, nullable=False, autoincrement=True, primary_key=True) SampleStrain = Column(String(50)) SampleYear = Column(YEAR(4)) SampleHost = Column(String(30)) SampleSource = Column(String(100)) SampleCountry = Column(String(30)) CountryProvince = Column(String(100)) Latitude = Column(DECIMAL(10,8)) Longitude = Column(DECIMAL(11,8)) PubmedID = Column(Integer()) PlasmidID = Column(Integer, ForeignKey("Plasmid.ID"), nullable=False) MSTID = Column(Integer, ForeignKey("MST.ID"), nullable=False) TypingID = Column(Integer, ForeignKey("TypingMetadata.ID"), nullable=False) MLVAID = Column(Integer, ForeignKey("MLVAProfile.ID"), nullable=False) class mlvaProfile(Base): __tablename__ = "MLVAProfile" ID = Column(Integer, nullable=False, primary_key=True) PanelType = Column(String(30), nullable=False) ms01 = Column(Float(10,2)) ms03 = Column(Float(10,2)) ms20 = Column(Float(10,2)) ms21 = Column(Float(10,2)) ms22 = Column(Float(10,2)) ms23 = Column(Float(10,2)) ms24 = Column(Float(10,2)) ms26 = Column(Float(10,2)) ms27 = Column(Float(10,2)) ms28 = Column(Float(10,2)) ms30 = Column(Float(10,2)) ms31 = Column(Float(10,2)) ms33 = Column(Float(10,2)) ms34 = Column(Float(10,2)) engine = create_engine('mysql+pymysql://burnetii:crazyburnetii@localhost/MLVA') Base.metadata.create_all(engine)
33.171429
79
0.702842
150b3b7d9330c20b9b59fe09fa5e329bdd34356b
4,014
py
Python
airflow/operators/http_operator.py
suensummit/airflow
37a342d0e96a91ce2d34085e225a4e86f54c4e21
[ "Apache-2.0" ]
5
2020-07-17T07:33:58.000Z
2022-03-02T06:23:47.000Z
airflow/operators/http_operator.py
suensummit/airflow
37a342d0e96a91ce2d34085e225a4e86f54c4e21
[ "Apache-2.0" ]
20
2017-04-18T19:47:46.000Z
2020-01-13T04:19:24.000Z
airflow/operators/http_operator.py
suensummit/airflow
37a342d0e96a91ce2d34085e225a4e86f54c4e21
[ "Apache-2.0" ]
12
2020-01-09T14:02:39.000Z
2022-01-24T07:18:51.000Z
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from typing import Any, Callable, Dict, Optional from airflow.exceptions import AirflowException from airflow.hooks.http_hook import HttpHook from airflow.models import BaseOperator from airflow.utils.decorators import apply_defaults class SimpleHttpOperator(BaseOperator): """ Calls an endpoint on an HTTP system to execute an action :param http_conn_id: The connection to run the operator against :type http_conn_id: str :param endpoint: The relative part of the full url. (templated) :type endpoint: str :param method: The HTTP method to use, default = "POST" :type method: str :param data: The data to pass. POST-data in POST/PUT and params in the URL for a GET request. (templated) :type data: For POST/PUT, depends on the content-type parameter, for GET a dictionary of key/value string pairs :param headers: The HTTP headers to be added to the GET request :type headers: a dictionary of string key/value pairs :param response_check: A check against the 'requests' response object. Returns True for 'pass' and False otherwise. :type response_check: A lambda or defined function. :param extra_options: Extra options for the 'requests' library, see the 'requests' documentation (options to modify timeout, ssl, etc.) :type extra_options: A dictionary of options, where key is string and value depends on the option that's being modified. :param log_response: Log the response (default: False) :type log_response: bool """ template_fields = ['endpoint', 'data', 'headers', ] template_ext = () ui_color = '#f4a460' @apply_defaults def __init__(self, endpoint: str, method: str = 'POST', data: Any = None, headers: Optional[Dict[str, str]] = None, response_check: Optional[Callable] = None, extra_options: Optional[Dict[str, Any]] = None, http_conn_id: str = 'http_default', log_response: bool = False, *args, **kwargs) -> None: super().__init__(*args, **kwargs) self.http_conn_id = http_conn_id self.method = method self.endpoint = endpoint self.headers = headers or {} self.data = data or {} self.response_check = response_check self.extra_options = extra_options or {} self.log_response = log_response if kwargs.get('xcom_push') is not None: raise AirflowException("'xcom_push' was deprecated, use 'BaseOperator.do_xcom_push' instead") def execute(self, context): http = HttpHook(self.method, http_conn_id=self.http_conn_id) self.log.info("Calling HTTP method") response = http.run(self.endpoint, self.data, self.headers, self.extra_options) if self.log_response: self.log.info(response.text) if self.response_check: if not self.response_check(response): raise AirflowException("Response check returned False.") return response.text
41.8125
105
0.665421
48641bfd24f313dd595fe1d1fe422b23b780a2fb
16,965
py
Python
src/reference_model/poseidon_python/poseidon_ff.py
datenlord/poseidon-spinalhdl
1e4ce3f0ae06d6c264e103629dd28a75c119a548
[ "MIT" ]
null
null
null
src/reference_model/poseidon_python/poseidon_ff.py
datenlord/poseidon-spinalhdl
1e4ce3f0ae06d6c264e103629dd28a75c119a548
[ "MIT" ]
null
null
null
src/reference_model/poseidon_python/poseidon_ff.py
datenlord/poseidon-spinalhdl
1e4ce3f0ae06d6c264e103629dd28a75c119a548
[ "MIT" ]
1
2021-12-18T08:44:10.000Z
2021-12-18T08:44:10.000Z
import random import basic import finite_field as ff import constants import os # poseidon hash function def transform_array(array): """transform array of int into array of PrimeField""" array_ff = [] for element in array: array_ff.append(ff.PrimeField(element)) return array_ff def transform_matrix(matrix): """transform int matrix into PrimeField matrix""" matrix_ff = [] for array in matrix: matrix_ff.append(transform_array(array)) return matrix_ff def s_box_ff(op1): op1.expassign(5) return op1 def s_boxes_ff(array): tmp = [] for element in array: element.expassign(5) tmp.append(element) return tmp def add_round_constants_ff(states_ff, constants_ff): for i in range(len(states_ff)): states_ff[i].addassign(constants_ff[i]) return states_ff def mds_mixing_ff(state_ff, mds_matrix_ff): new_state_ff = [] for i in range(len(state_ff)): tmp = ff.PrimeField(0) for j in range(len(state_ff)): tmp.addassign(state_ff[j].mul(mds_matrix_ff[j][i])) new_state_ff.append(tmp) return new_state_ff def sparse_mds_mixing(state_ff, w_vec, v_vec): new_state_ff = [] temp = ff.PrimeField(0) for i in range(len(state_ff)): temp.addassign(state_ff[i].mul(w_vec[i])) new_state_ff.append(temp) for i in range(len(state_ff) - 1): temp = state_ff[0].mul(v_vec[i]) temp.addassign(state_ff[i + 1]) new_state_ff.append(temp) return new_state_ff def poseidon_hash(preimage): t = len(preimage) + 1 if t not in basic.T_RANGE: print("error: the length of preimage is incorrect") exit() roundf = basic.ROUNDFULL roundp = basic.ROUNDPARTIAL[t] round_constants_ff = transform_array( constants.generate_constants(t, roundf, roundp) ) mds_matrix_ff = transform_matrix(basic.PrimeFieldOps.get_mds_matrix(t)) state_ff = transform_array(basic.PrimeFieldOps.init_state(preimage)) for i in range(int(roundf / 2)): state_ff = add_round_constants_ff( state_ff, round_constants_ff[i * t : (i + 1) * t] ) state_ff = s_boxes_ff(state_ff) state_ff = mds_mixing_ff(state_ff, mds_matrix_ff) for i in range(int(roundf / 2), int(roundf / 2 + roundp)): state_ff = add_round_constants_ff( state_ff, round_constants_ff[i * t : (i + 1) * t] ) state_ff[0] = s_box_ff(state_ff[0]) state_ff = mds_mixing_ff(state_ff, mds_matrix_ff) for i in range(int(roundf / 2 + roundp), int(roundf + roundp)): state_ff = add_round_constants_ff( state_ff, round_constants_ff[i * t : (i + 1) * t] ) state_ff = s_boxes_ff(state_ff) state_ff = mds_mixing_ff(state_ff, mds_matrix_ff) return state_ff[1].fromMont() def poseidon_hash_ff(state_ff): t = len(state_ff) if t not in basic.T_RANGE: print("error: the length of preimage is incorrect") exit() roundf = basic.ROUNDFULL roundp = basic.ROUNDPARTIAL[t] round_constants_ff = transform_array( constants.generate_constants(t, roundf, roundp) ) mds_matrix_ff = transform_matrix(basic.PrimeFieldOps.get_mds_matrix(t)) for i in range(int(roundf / 2)): state_ff = add_round_constants_ff( state_ff, round_constants_ff[i * t : (i + 1) * t] ) state_ff = s_boxes_ff(state_ff) state_ff = mds_mixing_ff(state_ff, mds_matrix_ff) for i in range(int(roundf / 2), int(roundf / 2 + roundp)): state_ff = add_round_constants_ff( state_ff, round_constants_ff[i * t : (i + 1) * t] ) state_ff[0] = s_box_ff(state_ff[0]) state_ff = mds_mixing_ff(state_ff, mds_matrix_ff) for i in range(int(roundf / 2 + roundp), int(roundf + roundp)): state_ff = add_round_constants_ff( state_ff, round_constants_ff[i * t : (i + 1) * t] ) state_ff = s_boxes_ff(state_ff) state_ff = mds_mixing_ff(state_ff, mds_matrix_ff) return state_ff[1] def poseidon_hash_opt(preimage): """optimized poseidon hash function""" t = len(preimage) + 1 assert t in basic.T_RANGE, "the length of preimage is out of range" roundf = basic.ROUNDFULL roundp = basic.ROUNDPARTIAL[t] state_ff = transform_array(basic.PrimeFieldOps.init_state(preimage)) # read constants used in optimized poseidon from files cmp_constants, pre_sparse, w_hat, v_rest = read_constants_files( t, "./poseidon_constants" ) cmp_constants_ff = transform_array(cmp_constants) pre_sparse_ff = transform_matrix(pre_sparse) sparse_w_ff = transform_matrix(w_hat) sparse_v_ff = transform_matrix(v_rest) mds_matrix_ff = transform_matrix(basic.PrimeFieldOps.get_mds_matrix(t)) # add pre round constants state_ff = add_round_constants_ff(state_ff, cmp_constants_ff[0:t]) # implement the first half full round Rf = int(roundf / 2) for i in range(Rf): state_ff = s_boxes_ff(state_ff) state_ff = add_round_constants_ff( state_ff, cmp_constants_ff[(i + 1) * t : (i + 2) * t] ) if i == (Rf - 1): state_ff = mds_mixing_ff(state_ff, pre_sparse_ff) else: state_ff = mds_mixing_ff(state_ff, mds_matrix_ff) # implement optimized partial round for i in range(roundp): state_ff[0] = s_box_ff(state_ff[0]) state_ff[0].addassign(cmp_constants_ff[(Rf + 1) * t + i]) state_ff = sparse_mds_mixing(state_ff, sparse_w_ff[i], sparse_v_ff[i]) # implement the second half full round base = (Rf + 1) * t + roundp # compressed round constants base index for i in range(Rf): state_ff = s_boxes_ff(state_ff) if i < (Rf - 1): state_ff = add_round_constants_ff( state_ff, cmp_constants_ff[base : base + t] ) base = base + t state_ff = mds_mixing_ff(state_ff, mds_matrix_ff) return state_ff[1].fromMont() def read_pre_sparse_matrix(arity, path): file_path = path + f"/pre_sparse_matrix/pre_sparse_matrix_{arity}.txt" file = open(file_path, mode="r") pre_sparse_elements = file.readlines() pre_sparse_matrix = [] for i in range(arity): pre_sparse_vec = [] for j in range(arity): pre_sparse_vec.append(int(pre_sparse_elements[i * arity + j], 16)) pre_sparse_matrix.append(pre_sparse_vec) file.close() return pre_sparse_matrix def read_sparse_matrix(arity, path): file_path = path + f"/sparse_matrix/sparse_matrix_{arity}.txt" file = open(file_path, mode="r") sparse_matrix_elements = file.readlines() # w_hat is the first column of sparse matrix. It will be directly multiplied (scalar product) with a row of state elements. w_hat = [] # v_rest contains all but the first (already included in `w_hat`). v_rest = [] for i in range(basic.ROUNDPARTIAL[arity]): w_vec = [] v_vec = [] for j in range(2 * arity - 1): element = int(sparse_matrix_elements[i * (2 * arity - 1) + j], 16) if j < arity: w_vec.append(element) else: v_vec.append(element) w_hat.append(w_vec) v_rest.append(v_vec) file.close() return w_hat, v_rest def read_constants_files(arity, path): """read constants used in optimized poseidon""" assert arity in basic.T_RANGE, "illegal parameter" # read compressed round constants from file file_path = ( path + f"/compressed_round_constants/compressed_round_constants_{arity}.txt" ) file = open(file_path, mode="r") cmp_round_constants = file.readlines() for i in range(len(cmp_round_constants)): cmp_round_constants[i] = int(cmp_round_constants[i], 16) file.close() # read pre sparse matrix from file pre_sparse_matrix = read_pre_sparse_matrix(arity, path) # read sparse matrix from file w_hat, v_rest = read_sparse_matrix(arity, path) return cmp_round_constants, pre_sparse_matrix, w_hat, v_rest def print_random_cases(cases_num, state_size): """generate random test case and print""" for i in range(cases_num): state_elements = [ff.PrimeField(pow(2, state_size - 1) - 1)] for index in range(state_size - 1): # state_elements.append(ff.PrimeField(random.randint(0, basic.P-1))) state_elements.append(ff.PrimeField(index)) print(f"random input {i}:") for element in state_elements: print(hex(element.value)) ref_output = poseidon_hash_ff(state_elements) print(f"reference output {i}:") print(f"ref_outputs[{i}] = 255'h", hex(ref_output.fromMont())) def write_random_cases(cases_num, state_size): """generate random test case and write to file""" # change directory and open target file os.mkdir("random_test_cases") os.chdir("random_test_cases") input_file = open(f"arity_{state_size}_inputs.txt", "w") output_file = open(f"arity_{state_size}_outputs.txt", "w") if state_size not in basic.T_RANGE: print("error: the length of preimage is incorrect") exit() roundf = basic.ROUNDFULL roundp = basic.ROUNDPARTIAL[state_size] round_constants_ff = transform_array( constants.generate_constants(state_size, roundf, roundp) ) mds_matrix_ff = transform_matrix(basic.PrimeFieldOps.get_mds_matrix(state_size)) for case_index in range(cases_num): state_ff = [] print(f"random input {case_index}") for index in range(state_size): state_ff.append(ff.PrimeField(random.randint(0, basic.P - 1))) input_str = "{:#066X}".format(state_ff[index].value) input_file.write(input_str[2:] + "\n") for i in range(int(roundf / 2)): state_ff = add_round_constants_ff( state_ff, round_constants_ff[i * state_size : (i + 1) * state_size] ) state_ff = s_boxes_ff(state_ff) state_ff = mds_mixing_ff(state_ff, mds_matrix_ff) for i in range(int(roundf / 2), int(roundf / 2 + roundp)): state_ff = add_round_constants_ff( state_ff, round_constants_ff[i * state_size : (i + 1) * state_size] ) state_ff[0] = s_box_ff(state_ff[0]) state_ff = mds_mixing_ff(state_ff, mds_matrix_ff) for i in range(int(roundf / 2 + roundp), int(roundf + roundp)): state_ff = add_round_constants_ff( state_ff, round_constants_ff[i * state_size : (i + 1) * state_size] ) state_ff = s_boxes_ff(state_ff) state_ff = mds_mixing_ff(state_ff, mds_matrix_ff) print(f"reference output {case_index}") output_str = "{:#066X}".format(state_ff[1].value) output_file.write(output_str[2:] + "\n") input_file.close() output_file.close() def output_mds_matrix_ff(): """get all mds_matrix in Montgomery domain and write to files""" os.mkdir("mds_matrixs_ff") os.chdir("mds_matrixs_ff") for t in basic.T_RANGE: # get mds matrix and transform to Montgomery domain mds_matrix = basic.PrimeFieldOps.get_mds_matrix(t) mds_matrix_ff = [] for element in mds_matrix: mds_matrix_ff.append(transform_array(element)) # write data to files fileobject = open("mds_matrix_ff_{}.txt".format(t), "w") for mds_vec in mds_matrix_ff: for element in mds_vec: output_str = hex(element.value) fileobject.write(output_str[2:] + "\n") fileobject.close() def output_round_constants_ff(): """get all round constants in Montgomery domain and write to files""" os.mkdir("round_constants_ff") os.chdir("round_constants_ff") for t in basic.T_RANGE: fileobject = open("round_constants_ff_{}.txt".format(t), "w") round_constants = transform_array( constants.generate_constants(t, basic.ROUNDFULL, basic.ROUNDPARTIAL[t]) ) for element in round_constants: output_str = hex(element.value) fileobject.write(output_str[2:] + "\n") fileobject.close() def output_pre_sparse_matrix_ff(): """get pre sparse matrix in Montgomery domain and write to files""" os.mkdir("./poseidon_constants/pre_sparse_matrix_ff") os.chdir("./poseidon_constants/pre_sparse_matrix_ff") for t in basic.T_RANGE: src_file = open(f"../pre_sparse_matrix/pre_sparse_matrix_{t}.txt", "r") dest_file = open(f"pre_sparse_matrix_ff_{t}.txt", "w") pre_sparse_elements = src_file.readlines() for element in pre_sparse_elements: element = ff.PrimeField(int(element, 16)) output_str = hex(element.value) dest_file.write(output_str[2:] + "\n") dest_file.close() def output_sparse_matrix_ff(): os.mkdir("./poseidon_constants/sparse_matrix_ff") os.chdir("./poseidon_constants/sparse_matrix_ff") for t in basic.T_RANGE: src_file = open(f"../sparse_matrix/sparse_matrix_{t}.txt", "r") sparse_elements = src_file.readlines() if t <= 5: dest_file = open(f"sparse_matrix_ff_{t}.txt", "w") for i in range(basic.ROUNDPARTIAL[t]): element = ff.PrimeField(int(sparse_elements[i * (2 * t - 1)], 16)) output_str = hex(element.value) dest_file.write(output_str[2:] + "\n") for j in range(t, 2 * t - 1): element = ff.PrimeField( int(sparse_elements[i * (2 * t - 1) + j], 16) ) output_str = hex(element.value) dest_file.write(output_str[2:] + "\n") for j in range(1, t): element = ff.PrimeField( int(sparse_elements[i * (2 * t - 1) + j], 16) ) output_str = hex(element.value) dest_file.write(output_str[2:] + "\n") dest_file.close() else: what_file = open(f"sparse_matrix_column_ff_{t}.txt", "w") vrest_file = open(f"sparse_matrix_row_ff_{t}.txt", "w") vec_len = 2 * t - 1 for i in range(len(sparse_elements)): element = ff.PrimeField(int(sparse_elements[i], 16)) output_str = hex(element.value) if i % vec_len == 0: what_file.write(output_str[2:] + "\n") vrest_file.write(output_str[2:] + "\n") elif i % vec_len < t: what_file.write(output_str[2:] + "\n") else: vrest_file.write(output_str[2:] + "\n") what_file.close() vrest_file.close() def output_compressed_round_constants(): """get compressed round constants in Montgomery domain and write to files""" os.mkdir("./poseidon_constants/compressed_round_constants_ff") os.chdir("./poseidon_constants/compressed_round_constants_ff") for t in basic.T_RANGE: Rf = int((basic.ROUNDFULL) / 2) roundp = basic.ROUNDPARTIAL[t] src_file = open( f"../compressed_round_constants/compressed_round_constants_{t}.txt", "r" ) constants_elements = src_file.readlines() dest_file1 = open(f"pre_round_constants_ff_{t}.txt", "w") dest_file2 = open(f"full_round_constants_ff_{t}.txt", "w") dest_file3 = open(f"partial_round_constants_ff_{t}.txt", "w") for i in range(len(constants_elements)): element = ff.PrimeField(int(constants_elements[i], 16)) output_str = hex(element.value) if i < t: dest_file1.write(output_str[2:] + "\n") elif i < (Rf + 1) * t: dest_file2.write(output_str[2:] + "\n") elif i < ((Rf + 1) * t + roundp): dest_file3.write(output_str[2:] + "\n") else: dest_file2.write(output_str[2:] + "\n") for i in range(t): dest_file2.write("0" * 64 + "\n") dest_file1.close() dest_file2.close() dest_file3.close() # print(poseidon_hash([0,1,2,3])) # print(poseidon_hash_opt([0,1,2,3]))
35.197095
128
0.603949
47a30479062d8b20a87e2e976dc8b6c2299152b5
1,515
py
Python
proteus/tests/cylinder2D/conforming_rans3p/pressureincrement_n.py
acatwithacomputer/proteus
80dfad95da6ab4d18a88a035f55c26b03540a864
[ "MIT" ]
null
null
null
proteus/tests/cylinder2D/conforming_rans3p/pressureincrement_n.py
acatwithacomputer/proteus
80dfad95da6ab4d18a88a035f55c26b03540a864
[ "MIT" ]
13
2018-02-08T23:22:59.000Z
2020-12-06T19:40:32.000Z
proteus/tests/cylinder2D/conforming_rans3p/pressureincrement_n.py
acatwithacomputer/proteus
80dfad95da6ab4d18a88a035f55c26b03540a864
[ "MIT" ]
1
2020-02-17T03:25:34.000Z
2020-02-17T03:25:34.000Z
from __future__ import absolute_import from proteus import * from proteus.default_n import * try: from .pressureincrement_p import * except: from pressureincrement_p import * triangleOptions = triangleOptions femSpaces = {0:pbasis} stepController=FixedStep numericalFluxType = PresInc.NumericalFlux matrix = LinearAlgebraTools.SparseMatrix if openTop: if useSuperlu: multilevelLinearSolver = LinearSolvers.LU levelLinearSolver = LinearSolvers.LU else: multilevelLinearSolver = KSP_petsc4py levelLinearSolver = KSP_petsc4py parallelPartitioningType = parallelPartitioningType nLayersOfOverlapForParallel = nLayersOfOverlapForParallel nonlinearSmoother = None linearSmoother = None else: linearSmoother = LinearSolvers.NavierStokesPressureCorrection # pure neumann laplacian solver multilevelLinearSolver = LinearSolvers.KSP_petsc4py levelLinearSolver = LinearSolvers.KSP_petsc4py linear_solver_options_prefix = 'phi_' multilevelNonlinearSolver = NonlinearSolvers.Newton levelNonlinearSolver = NonlinearSolvers.Newton #linear solve rtolerance linTolFac = 0.0 l_atol_res = phi_nl_atol_res tolFac = 0.0 nl_atol_res = phi_nl_atol_res nonlinearSolverConvergenceTest = 'r' levelNonlinearSolverConvergenceTest = 'r' linearSolverConvergenceTest = 'r-true' maxLineSearches=0 periodicDirichletConditions=None #conservativeFlux = {0:'point-eval'} #'point-eval','pwl-bdm-opt' conservativeFlux=None
28.055556
100
0.780858
6c189e90782a13466ef220250ae8c6def2f980b9
6,411
py
Python
low_level_simulation/devel/lib/python2.7/dist-packages/costum_msgs/msg/_GlobalSegmentResultsMsg.py
abiantorres/autonomous-vehicles-system-simulation
3f0112036b2b270f5055729c648a1310976df933
[ "Apache-2.0" ]
null
null
null
low_level_simulation/devel/lib/python2.7/dist-packages/costum_msgs/msg/_GlobalSegmentResultsMsg.py
abiantorres/autonomous-vehicles-system-simulation
3f0112036b2b270f5055729c648a1310976df933
[ "Apache-2.0" ]
null
null
null
low_level_simulation/devel/lib/python2.7/dist-packages/costum_msgs/msg/_GlobalSegmentResultsMsg.py
abiantorres/autonomous-vehicles-system-simulation
3f0112036b2b270f5055729c648a1310976df933
[ "Apache-2.0" ]
null
null
null
# This Python file uses the following encoding: utf-8 """autogenerated by genpy from costum_msgs/GlobalSegmentResultsMsg.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct class GlobalSegmentResultsMsg(genpy.Message): _md5sum = "c71ff6a13e6428908623dac9d5859650" _type = "costum_msgs/GlobalSegmentResultsMsg" _has_header = False #flag to mark the presence of a Header object _full_text = """int64 segment_index int64 n_failures float64 time_mean float64 time_stdev float64 time_max float64 time_min float64 distance_mean float64 distance_stdev float64 distance_max float64 distance_min float64 speed_mean float64 speed_stdev float64 speed_max float64 speed_min """ __slots__ = ['segment_index','n_failures','time_mean','time_stdev','time_max','time_min','distance_mean','distance_stdev','distance_max','distance_min','speed_mean','speed_stdev','speed_max','speed_min'] _slot_types = ['int64','int64','float64','float64','float64','float64','float64','float64','float64','float64','float64','float64','float64','float64'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: segment_index,n_failures,time_mean,time_stdev,time_max,time_min,distance_mean,distance_stdev,distance_max,distance_min,speed_mean,speed_stdev,speed_max,speed_min :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(GlobalSegmentResultsMsg, self).__init__(*args, **kwds) #message fields cannot be None, assign default values for those that are if self.segment_index is None: self.segment_index = 0 if self.n_failures is None: self.n_failures = 0 if self.time_mean is None: self.time_mean = 0. if self.time_stdev is None: self.time_stdev = 0. if self.time_max is None: self.time_max = 0. if self.time_min is None: self.time_min = 0. if self.distance_mean is None: self.distance_mean = 0. if self.distance_stdev is None: self.distance_stdev = 0. if self.distance_max is None: self.distance_max = 0. if self.distance_min is None: self.distance_min = 0. if self.speed_mean is None: self.speed_mean = 0. if self.speed_stdev is None: self.speed_stdev = 0. if self.speed_max is None: self.speed_max = 0. if self.speed_min is None: self.speed_min = 0. else: self.segment_index = 0 self.n_failures = 0 self.time_mean = 0. self.time_stdev = 0. self.time_max = 0. self.time_min = 0. self.distance_mean = 0. self.distance_stdev = 0. self.distance_max = 0. self.distance_min = 0. self.speed_mean = 0. self.speed_stdev = 0. self.speed_max = 0. self.speed_min = 0. def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: _x = self buff.write(_get_struct_2q12d().pack(_x.segment_index, _x.n_failures, _x.time_mean, _x.time_stdev, _x.time_max, _x.time_min, _x.distance_mean, _x.distance_stdev, _x.distance_max, _x.distance_min, _x.speed_mean, _x.speed_stdev, _x.speed_max, _x.speed_min)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: end = 0 _x = self start = end end += 112 (_x.segment_index, _x.n_failures, _x.time_mean, _x.time_stdev, _x.time_max, _x.time_min, _x.distance_mean, _x.distance_stdev, _x.distance_max, _x.distance_min, _x.speed_mean, _x.speed_stdev, _x.speed_max, _x.speed_min,) = _get_struct_2q12d().unpack(str[start:end]) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: _x = self buff.write(_get_struct_2q12d().pack(_x.segment_index, _x.n_failures, _x.time_mean, _x.time_stdev, _x.time_max, _x.time_min, _x.distance_mean, _x.distance_stdev, _x.distance_max, _x.distance_min, _x.speed_mean, _x.speed_stdev, _x.speed_max, _x.speed_min)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: end = 0 _x = self start = end end += 112 (_x.segment_index, _x.n_failures, _x.time_mean, _x.time_stdev, _x.time_max, _x.time_min, _x.distance_mean, _x.distance_stdev, _x.distance_max, _x.distance_min, _x.speed_mean, _x.speed_stdev, _x.speed_max, _x.speed_min,) = _get_struct_2q12d().unpack(str[start:end]) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill _struct_I = genpy.struct_I def _get_struct_I(): global _struct_I return _struct_I _struct_2q12d = None def _get_struct_2q12d(): global _struct_2q12d if _struct_2q12d is None: _struct_2q12d = struct.Struct("<2q12d") return _struct_2q12d
39.331288
270
0.691468
160d2c5d7e4ba03339c130df7ec53a6b82c55332
379
py
Python
robots/build/rrbot_gazebo/catkin_generated/pkg.develspace.context.pc.py
eiphy/lita
262d6ccabde8467db47278dc39574e5ea34abda2
[ "BSD-3-Clause" ]
4
2019-01-11T02:56:06.000Z
2019-03-27T14:26:25.000Z
robots/build/gazebo_ros_demos/rrbot_gazebo/catkin_generated/pkg.develspace.context.pc.py
eiphy/lita
262d6ccabde8467db47278dc39574e5ea34abda2
[ "BSD-3-Clause" ]
5
2019-01-10T11:18:54.000Z
2019-03-03T09:33:40.000Z
robots/build/rrbot_gazebo/catkin_generated/pkg.develspace.context.pc.py
eiphy/lita
262d6ccabde8467db47278dc39574e5ea34abda2
[ "BSD-3-Clause" ]
null
null
null
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else [] PROJECT_CATKIN_DEPENDS = "".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "rrbot_gazebo" PROJECT_SPACE_DIR = "/home/ei/engine/lita/robots/devel" PROJECT_VERSION = "0.1.0"
42.111111
68
0.704485
6402c400e328b52a73dd8360b5f6b9be6c249788
418
py
Python
misc/api.py
alexpickering/dota_webscraper
930c17f5563e6c778a820097517e7bb37e36bfe8
[ "MIT" ]
null
null
null
misc/api.py
alexpickering/dota_webscraper
930c17f5563e6c778a820097517e7bb37e36bfe8
[ "MIT" ]
null
null
null
misc/api.py
alexpickering/dota_webscraper
930c17f5563e6c778a820097517e7bb37e36bfe8
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 from flask import Flask, render_template app = Flask(__name__) @app.route('/') def index(): return 'This is the home page' @app.route('/heroes') def display_hero_data(): with open('heroes.csv', 'r') as f: csv_data = f.read() return render_template('heroes.html', csv_data=csv_data) @app.route('/csv.html') def display_csv_as_html(): return render_template('csv.html')
23.222222
60
0.684211
314534841262420627abaa44d23ce722192d3b0c
521
py
Python
user_scripts/merge_IEC.py
OceanNuclear/PeakFinding
dd82589201496b8c46cbd8ae28c2dabbfba7fed1
[ "MIT" ]
2
2021-10-31T08:49:18.000Z
2021-11-04T13:12:36.000Z
user_scripts/merge_IEC.py
OceanNuclear/PeakFinding
dd82589201496b8c46cbd8ae28c2dabbfba7fed1
[ "MIT" ]
null
null
null
user_scripts/merge_IEC.py
OceanNuclear/PeakFinding
dd82589201496b8c46cbd8ae28c2dabbfba7fed1
[ "MIT" ]
null
null
null
from peakfinding.spectrum import RealSpectrumInteractive, RealSpectrum import sys print(*sys.argv[1:-1]) print(sys.argv[-1]+".IEC") """ Note: inside ipython, the using * (wildcard) in sys.argv will give an UNSORTED (disorderd!) list of the files grepped by wildcard. But outside of ipython sys.argv will give a sorted sys.argv. Therefore you're encouraged to not use * in ipython. """ spectrum = RealSpectrumInteractive.from_multiple_files(*sys.argv[1:-1]) spectrum.show_sqrt_scale() spectrum.to_IEC(sys.argv[-1]+".IEC")
40.076923
130
0.765835
8c1006bdfcd28c6fff5a39d33d1988f4e7a4a521
8,121
py
Python
src/reports/report_configs.py
william-cass-wright/twl_bigcommerce_api
d674193db7dd46e1922c06d22c2da7a6aa07b8b8
[ "Apache-2.0" ]
null
null
null
src/reports/report_configs.py
william-cass-wright/twl_bigcommerce_api
d674193db7dd46e1922c06d22c2da7a6aa07b8b8
[ "Apache-2.0" ]
null
null
null
src/reports/report_configs.py
william-cass-wright/twl_bigcommerce_api
d674193db7dd46e1922c06d22c2da7a6aa07b8b8
[ "Apache-2.0" ]
null
null
null
""" ## (1) MONTHLY REPORT OF SALES FOR SALES TAX PURPOSES BY PAYMENT METHOD - using [BigCommerce Orders v2 API](https://developer.bigcommerce.com/api-reference/store-management/orders/orders/getallorders) in BigCommOrdersAPI class ## (2) MONTHLY REPORTS FOR INVENTORY VALUATION - using [BigCommerce Catalog/Products v3 API](https://developer.bigcommerce.com/api-reference/store-management/catalog/products/getproducts) in BigCommProductsAPI class ## (3) NEED A MONTHLY SALES REPORT BY CATEGORY AND BY ITEM. - using [BigCommerce Orders v2 API](https://developer.bigcommerce.com/api-reference/store-management/orders/orders/getallorders) in BigCommOrdersAPI class """ from typing import List import datetime as dt from operator import lt, gt, eq TODAY = str(dt.datetime.today()).split(" ")[0] REPORT_START_DATE = "2021-08-01" def sales_tax_report_configs() -> dict: """ report type: orders """ REPORT_TITLE = "ORDERS SUBTOTAL EX TAX BY PAYMENT METHOD" file_name = REPORT_TITLE.lower().replace(" ", "_") input_dict = {} inputs = {} inputs["type"] = "pivot_table" inputs["values"] = ["subtotal_ex_tax"] inputs["index"] = ["date_created_month"] inputs["columns"] = ["payment_method"] input_dict["ytd_pivot_by_month"] = inputs inputs = {} inputs["type"] = "data_filter" inputs["bool_arg"] = REPORT_START_DATE inputs["column"] = "date_created" inputs["bool_op"] = gt input_dict["table_modification"] = inputs inputs = {} inputs["type"] = "pivot_table" inputs["values"] = ["subtotal_ex_tax"] inputs["index"] = ["date_created_month", "date_created_date"] inputs["columns"] = ["payment_method"] input_dict["pivot_by_day_post_aug01"] = inputs inputs = {} inputs["type"] = "pivot_table" inputs["values"] = ["subtotal_ex_tax", "subtotal_inc_tax", "subtotal_tax"] inputs["index"] = ["date_created_month"] inputs["columns"] = ["payment_method"] input_dict["pivot_by_month_post_aug01"] = inputs inputs = {} inputs["type"] = "sum_on_previous_table" inputs["axis"] = 1 input_dict["sum_by_row"] = inputs inputs = {} inputs["type"] = "sum_on_previous_table" inputs["axis"] = 0 input_dict["sum_by_column"] = inputs configs = {} configs["report_title"] = REPORT_TITLE configs["export_file_name"] = f"{TODAY}_{file_name}_post_aug01" configs["input_dict"] = input_dict return configs def sales_by_category_report_configs() -> dict: """ report type: orders DONT INCLUDE BRAND OR CATEGORY COLUMNS """ REPORT_TITLE = "ORDERS SUBTOTAL EX TAX BY CATEGORY AND BRAND" file_name = REPORT_TITLE.lower().replace(" ", "_") input_dict = {} inputs = {} inputs["type"] = "pivot_table" inputs["values"] = ["subtotal_ex_tax"] inputs["index"] = ["date_created_month"] inputs["columns"] = ["category_top"] input_dict["ytd_pivot_by_brand_and_categories"] = inputs inputs = {} inputs["type"] = "pivot_table" inputs["values"] = ["subtotal_ex_tax"] inputs["index"] = ["category_top", "category_all"] inputs["columns"] = ["date_created_month"] input_dict["ytd_pivot_by_categories"] = inputs inputs = {} inputs["type"] = "data_filter" inputs["bool_arg"] = REPORT_START_DATE inputs["column"] = "date_created" inputs["bool_op"] = gt input_dict["table_modification"] = inputs inputs = {} inputs["type"] = "pivot_table" inputs["values"] = ["subtotal_ex_tax"] inputs["index"] = ["date_created_month", "date_created_date"] inputs["columns"] = ["category_top"] input_dict["pivot_by_brand_and_date"] = inputs inputs = {} inputs["type"] = "pivot_table" inputs["values"] = ["subtotal_ex_tax"] inputs["index"] = ["category_top", "category_all"] inputs["columns"] = ["date_created_month"] input_dict["pivot_by_categories"] = inputs inputs = {} inputs["type"] = "sum_on_previous_table" inputs["axis"] = 1 input_dict["sum_by_row"] = inputs inputs = {} inputs["type"] = "sum_on_previous_table" inputs["axis"] = 0 input_dict["sum_by_column"] = inputs # TODAY = str(dt.datetime.today()).split(" ")[0] configs = {} configs["report_title"] = REPORT_TITLE configs["export_file_name"] = f"{TODAY}_{file_name}_post_aug01" configs["input_dict"] = input_dict return configs def inventory_valuation_report_configs() -> dict: """ report type: product """ REPORT_TITLE = "INVENTORY VALUATION REPORT" file_name = REPORT_TITLE.lower().replace(" ", "_") input_dict = {} inputs = {} inputs["type"] = "groupby_table" inputs["values"] = ["price", "cost_price", "inventory_level", "inventory_value", "inventory_value_by_cost"] inputs["index"] = ["category_top"] inputs["aggfuncs"] = ["sum", "mean"] input_dict["groupby_category"] = inputs inputs = {} inputs["type"] = "groupby_table" inputs["values"] = ["price", "cost_price", "inventory_level", "inventory_value", "inventory_value_by_cost"] inputs["index"] = ["category_top"] inputs["aggfuncs"] = ["sum", "mean", "median", "count"] input_dict["groupby_category"] = inputs inputs = {} inputs["type"] = "groupby_table" inputs["values"] = ["price", "cost_price", "inventory_level", "inventory_value", "inventory_value_by_cost"] inputs["index"] = ["brand_name"] inputs["aggfuncs"] = "sum" input_dict["groupby_brand"] = inputs inputs = {} inputs["type"] = "groupby_table" inputs["values"] = ["price", "cost_price", "inventory_level", "inventory_value", "inventory_value_by_cost"] inputs["index"] = ["brand_name", "category_top"] inputs["aggfuncs"] = "sum" input_dict["groupby_cat_and_brand"] = inputs inputs = {} inputs["type"] = "pivot_table" inputs["values"] = ["price"] inputs["index"] = ["brand_name", "category_top", "category_all"] inputs["columns"] = ["date_created_month"] input_dict["pivot_by_price"] = inputs inputs = {} inputs["type"] = "sum_on_previous_table" inputs["axis"] = 1 input_dict["sum_by_row"] = inputs inputs = {} inputs["type"] = "sum_on_previous_table" inputs["axis"] = 0 input_dict["sum_by_column"] = inputs # TODAY = str(dt.datetime.today()).split(" ")[0] configs = {} configs["report_title"] = REPORT_TITLE configs["export_file_name"] = f"{TODAY}_{file_name}" configs["input_dict"] = input_dict return configs def collections_report_configs(collections: List[str]) -> dict: """ report type: orders """ REPORT_TITLE = "COLLECTIONS MONTHLY REPORT" file_name = REPORT_TITLE.lower().replace(" ", "_") input_dict = {} inputs = {} inputs["type"] = "pivot_table" inputs["values"] = ["subtotal_ex_tax"] inputs["index"] = ["date_created_month"] inputs["columns"] = ["sku_prefix"] input_dict["ytd_pivot_by_month"] = inputs for sku_prefix in collections: inputs = {} inputs["type"] = "data_filter" inputs["bool_arg"] = sku_prefix inputs["column"] = "sku_prefix" inputs["bool_op"] = eq input_dict[f"data_filter_{sku_prefix.lower()}"] = inputs # inputs = {} # inputs["type"] = "pivot_table" # inputs["values"] = ["price_ex_tax"] # inputs["index"] = ["sku_prefix", "sku"] # inputs["columns"] = ["date_created_month"] # input_dict[f"pivot_by_month_{sku_prefix.lower()}"] = inputs inputs = {} inputs["type"] = "groupby_table" inputs["values"] = ["price_ex_tax"] inputs["index"] = ["date_created_month", "sku_prefix", "sku"] inputs["aggfuncs"] = ["sum", "count"] input_dict[f"groupby_month_{sku_prefix.lower()}"] = inputs inputs = {} inputs["type"] = "data_reset" input_dict[f"data_reset_{sku_prefix.lower()}"] = inputs configs = {} configs["report_title"] = REPORT_TITLE configs["export_file_name"] = f"{TODAY}_{file_name}" configs["input_dict"] = input_dict return configs
31.722656
168
0.643517
65e51f301e6f0138e74121c7e450a09ca8640c97
805
py
Python
blackbelt/slack.py
apiaryio/black-belt
d28d7022605bfd0c6814e591da21729f6aa0eecf
[ "MIT" ]
3
2015-06-02T20:46:53.000Z
2019-07-16T20:15:38.000Z
blackbelt/slack.py
apiaryio/black-belt
d28d7022605bfd0c6814e591da21729f6aa0eecf
[ "MIT" ]
113
2015-01-13T15:27:51.000Z
2018-09-12T09:06:45.000Z
blackbelt/slack.py
apiaryio/black-belt
d28d7022605bfd0c6814e591da21729f6aa0eecf
[ "MIT" ]
1
2015-06-02T20:47:14.000Z
2015-06-02T20:47:14.000Z
from slacker import Slacker from blackbelt.config import config class Slack(object): def __init__(self, token=None): if not token: token = config['slack']['access_token'] slack = Slacker(token) self.slack = slack if not token: raise ValueError("Can't do things with Slack without access token. Run bb init.") self.token = token def get_user_id(self): return self.slack.auth.test().body['user_id'] def post_message(self, message, room): return self.slack.chat.post_message(room, message, username = "Black Belt", icon_emoji = ":blackbelt:") def post_message(message, room='#engine-room'): client = Slack() msg = "<@%s> %s" % (client.get_user_id(), message) client.post_message(msg, room)
30.961538
111
0.636025
789c4c8a486a3baf95018464d6d015f34de6367c
1,599
py
Python
musi/base.py
sixohsix/musi
231801895583c19375ad51f3e259c8621b1db923
[ "MIT" ]
1
2015-11-14T17:22:53.000Z
2015-11-14T17:22:53.000Z
musi/base.py
sixohsix/musi
231801895583c19375ad51f3e259c8621b1db923
[ "MIT" ]
null
null
null
musi/base.py
sixohsix/musi
231801895583c19375ad51f3e259c8621b1db923
[ "MIT" ]
null
null
null
from __future__ import print_function from types import FunctionType, ClassType import logging logging.basicConfig() log = logging.getLogger("musi") def Constant(val): def val_f(now): return val return val_f C = Constant class Buffer(object): def __init__(self): self.val = None def __call__(self, val): if val == self.val: return None self.val = val return val def print_(name, val): print("{} {}".format(name, val)) def Tap(val_f, name="tap", func=print_): def tap(now): val = val_f(now) func(name, val) return val return tap def If(test_f, true_f, false_f): def if_(now): # Note that we do NOT short-circuit test = test_f(now) true = true_f(now) false = false_f(now) return true if test > 0.0 else false return if_ def Eval(value_f): def eval_(now): return value_f(now)(now) return eval_ def song_time(now): return now class Tempo(object): def __init__(self, bpm_f, bpb): def no_zero_bpm(now): bpm = bpm_f(now) return bpm if bpm != 0.0 else 0.00000001 self.bpm_f = no_zero_bpm self.bpb = bpb def song_beats(self, now): return int(now / 60.0 * self.bpm_f(now)) def song_bars(self, now): return self.song_beats(now) / self.bpb def Duration(self, bars=0, beats=0): nbeats = float((bars * self.bpb) + beats) def duration(now): return 1.0 / (self.bpm_f(now) / nbeats / 60.0) return duration
20.240506
58
0.587242
6edd1bf80b7ff5fa9e9c82ca715154986cd56570
1,081
py
Python
legipy/parsers/legislature_list_parser.py
vermavinay8948/legipy
f82ae8db82a53fe28a193ea16d05b07316ffc5b9
[ "MIT" ]
6
2016-05-16T21:08:53.000Z
2021-06-28T16:50:08.000Z
legipy/parsers/legislature_list_parser.py
vermavinay8948/legipy
f82ae8db82a53fe28a193ea16d05b07316ffc5b9
[ "MIT" ]
6
2018-02-10T23:00:54.000Z
2021-11-17T23:09:10.000Z
legipy/parsers/legislature_list_parser.py
vermavinay8948/legipy
f82ae8db82a53fe28a193ea16d05b07316ffc5b9
[ "MIT" ]
9
2018-02-03T10:56:37.000Z
2021-04-28T12:24:41.000Z
# coding: utf-8 from __future__ import unicode_literals import re from bs4 import BeautifulSoup from legipy.common import parse_date from legipy.common import parse_roman from legipy.models.legislature import Legislature def parse_legislature_list(url, html): soup = BeautifulSoup(html, 'html5lib', from_encoding='utf-8') results = [] for leg_header in soup.find_all('h2'): text = leg_header.get_text() text = re.sub(r'\s+', ' ', text) num = parse_roman(re.search('^[MDCLXVI]+', text).group(0)) m = re.search(r'à compter du (\d{1,2}(?:er)?\s+[^\s]+\s+\d{4})', text) if m: start = parse_date(m.group(1)) end = None else: start = None end = None m = re.search(r'du (\d{1,2}(?:er)?\s+[^\s]+\s+\d{4}) ' r'au (\d{1,2}(?:er)?\s+[^\s]+\s+\d{4})', text) if m: start = parse_date(m.group(1)) end = parse_date(m.group(2)) results.append(Legislature(number=num, start=start, end=end)) return results
27.717949
78
0.565217
e34b07ce7ab6a1b37facb27b319a5e5a4a491428
22,681
py
Python
contrib/utils/perf/deploy-gce-perf-cluster.py
samyzh/ambari
ff73620da41697ed2ca9ece676f71ec9ba28a7d5
[ "Apache-2.0" ]
1,664
2015-01-03T09:35:21.000Z
2022-03-31T04:55:24.000Z
contrib/utils/perf/deploy-gce-perf-cluster.py
samyzh/ambari
ff73620da41697ed2ca9ece676f71ec9ba28a7d5
[ "Apache-2.0" ]
3,018
2015-02-19T20:16:10.000Z
2021-11-13T20:47:48.000Z
contrib/utils/perf/deploy-gce-perf-cluster.py
samyzh/ambari
ff73620da41697ed2ca9ece676f71ec9ba28a7d5
[ "Apache-2.0" ]
1,673
2015-01-06T14:14:42.000Z
2022-03-31T07:22:30.000Z
#!/usr/bin/env python """ Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import argparse import os import subprocess import sys import pprint import time import traceback import re import socket cluster_prefix = "perf" ambari_repo_file_url = "http://s3.amazonaws.com/dev.hortonworks.com/ambari/centos7/2.x/updates/2.7.1.0/ambaribn.repo" public_hostname_script = "foo" hostname_script = "foo" NUMBER_OF_AGENTS_ON_HOST = 50 class SSH: """ Ssh implementation of this """ def __init__(self, user, sshkey_file, host, command, custom_option='', errorMessage = None): self.user = user self.sshkey_file = sshkey_file self.host = host self.command = command self.errorMessage = errorMessage self.custom_option = custom_option def run(self): sshcommand = ["ssh", "-o", "ConnectTimeOut=180", "-o", "StrictHostKeyChecking=no", "-o", "BatchMode=yes", self.custom_option, "-i", self.sshkey_file, self.user + "@" + self.host, self.command] if not self.custom_option: del sshcommand[7] i = 1 while True: try: sshstat = subprocess.Popen(sshcommand, stdout=subprocess.PIPE, stderr=subprocess.PIPE) log = sshstat.communicate() if sshstat.returncode != 0: print "Executing SSH command on {0} failed: {1}".format(self.host, log) print "\nRetrying SSH command one more time!" if i >= 3: break i += 1 time.sleep(10) continue break except: print "Could not SSH to {0}, waiting for it to start".format(self.host) i += 1 time.sleep(10) if i >= 3: print "Could not execute remote ssh command: " + ' '.join(sshcommand) raise Exception("Could not connect to {0}. Giving up with erros: {1}".format(self.host, log)) errorMsg = log[1] if self.errorMessage and sshstat.returncode != 0: errorMsg = self.errorMessage + "\n" + errorMsg print "SSH command execution finished" return {"exitstatus": sshstat.returncode, "log": log, "errormsg": errorMsg} class SCP: """ SCP implementation that is thread based. The status can be returned using status val """ def __init__(self, user, sshkey_file, host, inputFile, remote, errorMessage = None): self.user = user self.sshkey_file = sshkey_file self.host = host self.inputFile = inputFile self.remote = remote self.errorMessage = errorMessage def run(self): scpcommand = ["scp", "-r", "-o", "ConnectTimeout=60", "-o", "BatchMode=yes", "-o", "StrictHostKeyChecking=no", "-i", self.sshkey_file, self.inputFile, self.user + "@" + self.host + ":" + self.remote] i = 1 while True: try: scpstat = subprocess.Popen(scpcommand, stdout=subprocess.PIPE, stderr=subprocess.PIPE) log = scpstat.communicate() if scpstat.returncode != 0: print "Executing SCP command on {0} failed: {1}".format(self.host, log) print "\nRetrying SCP command one more time!" if i >= 3: break i += 1 time.sleep(10) continue break except: print "Could not SCP to {0}, waiting for it to start".format(self.host) i += 1 time.sleep(10) if i >= 3: print "Could not execute remote scp command: " + ' '.join(scpcommand) raise Exception("Could not connect to {0}. Giving up with erros: {1}".format(self.host, log)) errorMsg = log[1] if self.errorMessage and scpstat.returncode != 0: errorMsg = self.errorMessage + "\n" + errorMsg print "SCP command execution finished" return {"exitstatus": scpstat.returncode, "log": log, "errormsg": errorMsg} # main method to parse arguments from user and start work def main(): parser = argparse.ArgumentParser( description='This script brings up a cluster with ambari installed, configured and started', epilog='Only GCE is supported as of now!' ) # options parser.add_argument('--controller', type=str, action='store', help='GCE controller ip address.') parser.add_argument('--key', type=str, action='store', help='Path to GCE ssh key.') parser.add_argument('--cluster-suffix', type=str, action='store', help='Cluster name suffix.') parser.add_argument('--agent-prefix', type=str, action='store', help='Agent name prefix.') parser.add_argument('--agents-count', type=int, action='store', help='Agents count for whole cluster (multiples of 50).') if len(sys.argv) <= 1: parser.print_help() sys.exit(-1) args = parser.parse_args() do_work(args) def do_work(args): """ Check that all required args are passed in. If so, deploy the cluster. :param args: Command line args """ if not args.controller: raise Exception("GCE controller ip address is not defined!") if not args.key: raise Exception("Path to gce ssh key is not defined!") if not args.cluster_suffix: raise Exception("Cluster name suffix is not defined!") if not args.agent_prefix: raise Exception("Agent name prefix is not defined!") if not args.agents_count: raise Exception("Agents count for whole cluster is not defined (will put 50 Agents per VM)!") deploy_cluster(args) def deploy_cluster(args): """ Process cluster deployment :param args: Command line args. """ # When dividing, need to get the ceil. number_of_nodes = ((args.agents_count - 1) / NUMBER_OF_AGENTS_ON_HOST) + 1 # In case of an error after creating VMs, can simply comment out this function to run again without creating VMs. create_vms(args, number_of_nodes) # getting list of vms information like hostname and ip address print "Getting list of virtual machines from cluster..." # Dictionary from host name to IP (server_dict, agents_dict) = get_vms_list(args) # check number of nodes in cluster to be the same as user asked print "Checking count of created nodes in cluster..." if not agents_dict or len(agents_dict) < number_of_nodes: raise Exception("Cannot bring up enough nodes. Requested {0}, but got {1}. Probably not enough resources!".format(number_of_nodes, len(agents_dict))) print "GCE cluster was successfully created!\n" # installing/starting ambari-server and ambari-agents on each host server_item = server_dict.items()[0] server_host_name = server_item[0] server_ip = server_item[1] print "==========================" print "Server Hostname: %s" % server_host_name print "Server IP: %s" % server_ip print "==========================\n" # Sort the agents by hostname into a list. sorted_agents = sort_hosts(agents_dict) pretty_print_vms(sorted_agents) print "Creating server.sh script (which will be executed on server to install/configure/start ambari-server)..." create_server_script(server_host_name) print "Creating agent.sh script (which will be executed on agent hosts to install/configure/start ambari-agent..." create_agent_script(server_host_name) time.sleep(10) prepare_server(args, server_host_name, server_ip) # If the user asks for a number of agents that is not a multiple of 50, then only create how many are needed instead # of 50 on every VM. num_agents_left_to_create = args.agents_count start_num = 1 for (hostname, ip) in sorted_agents: num_agents_on_this_host = min(num_agents_left_to_create, NUMBER_OF_AGENTS_ON_HOST) print "==========================" print "Working on VM {0} that will contain hosts {1} - {2}".format(hostname, start_num, start_num + num_agents_on_this_host - 1) # The agent multiplier config will be different on each VM. cmd_generate_multiplier_conf = "mkdir -p /etc/ambari-agent/conf/ ; printf \"start={0}\\nnum={1}\\nprefix={2}\" > /etc/ambari-agent/conf/agent-multiplier.conf".format(start_num, num_agents_on_this_host, args.agent_prefix) start_num += num_agents_on_this_host num_agents_left_to_create -= num_agents_on_this_host prepare_agent(args, hostname, ip, cmd_generate_multiplier_conf) pass print "All scripts where successfully copied and started on all hosts. " \ "\nPay attention that server.sh script need 5 minutes to finish and agent.sh need 3 minutes!" def create_vms(args, number_of_nodes): """ Request the server and VMs for the agents from GCE. :param args: Command line args :param number_of_nodes: Number of VMs to request. """ print "Creating server VM {0}-server-{1} with xxlarge nodes on centos7...".format(cluster_prefix, args.cluster_suffix) execute_command(args, args.controller, "/opt/gce-utils/gce up {0}-server-{1} 1 --centos7 --xxlarge --ex --disk-xxlarge --ssd".format(cluster_prefix, args.cluster_suffix), "Failed to create server, probably not enough resources!", "-tt") time.sleep(10) # trying to create cluster with needed params print "Creating agent VMs {0}-agent-{1} with {2} xlarge nodes on centos7...".format(cluster_prefix, args.cluster_suffix, str(number_of_nodes)) execute_command(args, args.controller, "/opt/gce-utils/gce up {0}-agent-{1} {2} --centos7 --xlarge --ex --disk-xlarge".format(cluster_prefix, args.cluster_suffix, str(number_of_nodes)), "Failed to create cluster VMs, probably not enough resources!", "-tt") # VMs are not accessible immediately time.sleep(10) def prepare_server(args, hostname, ip): remote_path = "/server.sh" local_path = "server.sh" print "Copying server.sh to {0}...".format(hostname) put_file(args, ip, local_path, remote_path, "Failed to copy file!") print "Executing remote ssh command (set correct permissions and start executing server.sh in separate process) on {0}...".format(hostname) execute_command(args, ip, "cd /; chmod 777 server.sh; nohup ./server.sh >/server.log 2>&1 &", "Install/configure/start server script failed!") def prepare_agent(args, hostname, ip, cmd_generate_multiplier_conf): remote_path = "/agent.sh" local_path = "agent.sh" print "Copying agent.sh to {0}...".format(hostname) put_file(args, ip, local_path, remote_path, "Failed to copy file!") print "Generating agent-multiplier.conf" execute_command(args, ip, cmd_generate_multiplier_conf, "Failed to generate agent-multiplier.conf on host {0}".format(hostname)) print "Executing remote ssh command (set correct permissions and start executing agent.sh in separate process) on {0}...".format(hostname) execute_command(args, ip, "cd /; chmod 777 agent.sh; nohup ./agent.sh >/agent.log 2>&1 &", "Install/configure start agent script failed!") def create_server_script(server_host_name): """ Creating server.sh script in the same dir where current script is located server.sh script will install, configure and start ambari-server and ambari-agent on host :param server_host_name: Server host name """ # ambari-server setup <options> may not work property, so doing several calls like # echo "arg=value" >> .../ambari.properties contents = "#!/bin/bash\n" + \ "yum install wget -y\n" + \ "wget -O /etc/yum.repos.d/ambari.repo {0}\n".format(ambari_repo_file_url) + \ "yum clean all; yum install git ambari-server -y\n" + \ "mkdir /home ; cd /home ; git clone https://github.com/apache/ambari.git ; cd ambari ; git checkout branch-2.5\n" + \ "cp -r /home/ambari/ambari-server/src/main/resources/stacks/PERF /var/lib/ambari-server/resources/stacks/PERF\n" + \ "cp -r /home/ambari/ambari-server/src/main/resources/stacks/PERF /var/lib/ambari-agent/cache/stacks/PERF\n" + \ "sed -i -f /home/ambari/ambari-server/src/main/resources/stacks/PERF/install_packages.sed /var/lib/ambari-server/resources/custom_actions/scripts/install_packages.py\n" + \ "sed -i -f /home/ambari/ambari-server/src/main/resources/stacks/PERF/install_packages.sed /var/lib/ambari-agent/cache/custom_actions/scripts/install_packages.py\n" + \ "\n" + \ "\n" + \ "cd /; wget http://central.maven.org/maven2/mysql/mysql-connector-java/5.1.40/mysql-connector-java-5.1.40.jar;\n" + \ "mkdir /usr/share/java; chmod 777 /usr/share/java;" + \ "cp mysql-connector-java-5.1.40.jar /usr/share/java/; chmod 777 /usr/share/java/mysql-connector-java-5.1.40.jar;\n" + \ "ln -s /usr/share/java/mysql-connector-java-5.1.40.jar /usr/share/java/mysql-connector-java.jar;\n" + \ "cd /etc/yum.repos.d/; wget http://repo.mysql.com/mysql-community-release-el6-5.noarch.rpm; rpm -ivh mysql-community-release-el6-5.noarch.rpm;" + \ "yum clean all; yum install mysql-server -y\n" + \ "sed -i -e 's/mysqld]/mysqld]\\nmax_allowed_packet=1024M\\njoin_buffer_size=512M\\nsort_buffer_size=128M\\nread_rnd_buffer_size=128M\\ninnodb_buffer_pool_size=16G" \ "\\ninnodb_file_io_threads=16\\ninnodb_thread_concurrency=32\\nkey_buffer_size=16G\\nquery_cache_limit=16M\\nquery_cache_size=512M\\nthread_cache_size=128\\ninnodb_log_buffer_size=512M/1' /etc/my.cnf\n" + \ "service mysqld start\n" + \ "mysql -uroot -e \"CREATE DATABASE ambari;\"\n" + \ "mysql -uroot -e \"SOURCE /var/lib/ambari-server/resources/Ambari-DDL-MySQL-CREATE.sql;\" ambari\n" + \ "mysql -uroot -e \"CREATE USER 'ambari'@'%' IDENTIFIED BY 'bigdata';\"\n" + \ "mysql -uroot -e \"GRANT ALL PRIVILEGES ON *.* TO 'ambari'@'%%';\"\n" + \ "mysql -uroot -e \"CREATE USER 'ambari'@'localhost' IDENTIFIED BY 'bigdata';\"\n" + \ "mysql -uroot -e \"GRANT ALL PRIVILEGES ON *.* TO 'ambari'@'localhost';\"\n" + \ "mysql -uroot -e \"CREATE USER 'ambari'@'{0}' IDENTIFIED BY 'bigdata';\"\n".format(server_host_name) + \ "mysql -uroot -e \"GRANT ALL PRIVILEGES ON *.* TO 'ambari'@'{0}';\"\n".format(server_host_name) + \ "mysql -uroot -e \"FLUSH PRIVILEGES;\"\n" + \ "\n" + \ "\n" + \ "ambari-server setup -s\n" + \ "ambari-server setup --database mysql --jdbc-db=mysql --jdbc-driver=/usr/share/java/mysql-connector-java.jar --databasehost=localhost --databaseport=3306 --databasename=ambari --databaseusername=ambari --databasepassword=bigdata\n" + \ "sed -i -e 's/=postgres/=mysql/g' /etc/ambari-server/conf/ambari.properties\n" + \ "sed -i -e 's/server.persistence.type=local/server.persistence.type=remote/g' /etc/ambari-server/conf/ambari.properties\n" + \ "sed -i -e 's/local.database.user=postgres//g' /etc/ambari-server/conf/ambari.properties\n" + \ "sed -i -e 's/server.jdbc.postgres.schema=ambari//g' /etc/ambari-server/conf/ambari.properties\n" + \ "sed -i -e 's/agent.threadpool.size.max=25/agent.threadpool.size.max=100/g' /etc/ambari-server/conf/ambari.properties\n" + \ "sed -i -e 's/client.threadpool.size.max=25/client.threadpool.size.max=65/g' /etc/ambari-server/conf/ambari.properties\n" + \ "sed -i -e 's/false/true/g' /var/lib/ambari-server/resources/stacks/PERF/1.0/metainfo.xml\n" + \ "sed -i -e 's/false/true/g' /var/lib/ambari-server/resources/stacks/PERF/2.0/metainfo.xml\n" + \ "sed -i -e 's/-Xmx2048m/-Xmx16384m/g' /var/lib/ambari-server/ambari-env.sh\n" + \ "\n" + \ "echo 'server.jdbc.driver=com.mysql.jdbc.Driver' >> /etc/ambari-server/conf/ambari.properties\n" + \ "echo 'server.jdbc.rca.url=jdbc:mysql://{0}:3306/ambari' >> /etc/ambari-server/conf/ambari.properties\n".format(server_host_name) + \ "echo 'server.jdbc.rca.driver=com.mysql.jdbc.Driver' >> /etc/ambari-server/conf/ambari.properties\n" + \ "echo 'server.jdbc.url=jdbc:mysql://{0}:3306/ambari' >> /etc/ambari-server/conf/ambari.properties\n".format(server_host_name) + \ "echo 'server.jdbc.port=3306' >> /etc/ambari-server/conf/ambari.properties\n" + \ "echo 'server.jdbc.hostname=localhost' >> /etc/ambari-server/conf/ambari.properties\n" + \ "echo 'server.jdbc.driver.path=/usr/share/java/mysql-connector-java.jar' >> /etc/ambari-server/conf/ambari.properties\n" + \ "echo 'alerts.cache.enabled=true' >> /etc/ambari-server/conf/ambari.properties\n" + \ "echo 'alerts.cache.size=100000' >> /etc/ambari-server/conf/ambari.properties\n" + \ "echo 'alerts.execution.scheduler.maxThreads=4' >> /etc/ambari-server/conf/ambari.properties\n" + \ "echo 'security.temporary.keystore.retention.minutes=180' >> /etc/ambari-server/conf/ambari.properties\n" + \ "echo 'stack.hooks.folder=stacks/PERF/1.0/hooks' >> /etc/ambari-server/conf/ambari.properties\n" + \ "\n" + \ "ambari-server start --skip-database-check\n" + \ "exit 0" with open("server.sh", "w") as f: f.write(contents) def create_agent_script(server_host_name): """ Creating agent.sh script in the same dir where current script is located agent.sh script will install, configure and start ambari-agent on host :param server_host_name: Server host name """ # TODO, instead of cloning Ambari repo on each VM, do it on the server once and distribute to all of the agents. contents = "#!/bin/bash\n" + \ "yum install wget -y\n" + \ "wget -O /etc/yum.repos.d/ambari.repo {0}\n".format(ambari_repo_file_url) + \ "yum clean all; yum install krb5-workstation git ambari-agent -y\n" + \ "mkdir /home ; cd /home; git clone https://github.com/apache/ambari.git ; cd ambari ; git checkout branch-2.5\n" + \ "cp -r /home/ambari/ambari-server/src/main/resources/stacks/PERF /var/lib/ambari-agent/cache/stacks/PERF\n" + \ "sed -i -f /var/lib/ambari-agent/cache/stacks/PERF/PythonExecutor.sed /usr/lib/ambari-agent/lib/ambari_agent/PythonExecutor.py\n" + \ "sed -i -f /var/lib/ambari-agent/cache/stacks/PERF/check_host.sed /var/lib/ambari-agent/cache/custom_actions/scripts/check_host.py\n" + \ "sed -i -e 's/hostname=localhost/hostname={0}/g' /etc/ambari-agent/conf/ambari-agent.ini\n".format(server_host_name) + \ "sed -i -e 's/agent]/agent]\\nhostname_script={0}\\npublic_hostname_script={1}\\n/1' /etc/ambari-agent/conf/ambari-agent.ini\n".format(hostname_script, public_hostname_script) + \ "python /home/ambari/ambari-agent/conf/unix/agent-multiplier.py start\n" + \ "exit 0" with open("agent.sh", "w") as f: f.write(contents) def execute_command(args, ip, cmd, fail_message, custom_option='', login='root'): """ Method to execute ssh commands via SSH class :param args: Command line args :param ip: IP to ssh to :param cmd: Command to execute :param fail_message: In case of an error, what to report :param custom_option: Custom flags :param login: Login user :return: Return execute log message """ ssh = SSH(login, args.key, ip, cmd, custom_option, fail_message) ssh_result = ssh.run() status_code = ssh_result["exitstatus"] if status_code != 0: raise Exception(ssh_result["errormsg"]) return ssh_result["log"][0] def put_file(args, ip, local_file, remote_file, fail_message, login='root'): """ Method to copy file from local to remote host via SCP class :param args: Command line args :param ip: IP to ssh to :param local_file: Path to local file :param remote_file: Path to remote file :param fail_message: In case of an error, what to report :param login: Login user. :return: Return copy log message """ scp = SCP(login, args.key, ip, local_file, remote_file, fail_message) scp_result = scp.run() status_code = scp_result["exitstatus"] if status_code != 0: raise Exception(scp_result["errormsg"]) return scp_result["log"][0] def get_vms_list(args): """ Get tuple of (x, y) where x = dictionary from single server host name to ip y = dictionary from multiple agent host names to ip :param args: Command line arguments :return: Tuple of dictionaries of hostnames and ip for server and agents. """ # Get the server. server = __get_vms_list_from_name(args, "{0}-server-{1}".format(cluster_prefix, args.cluster_suffix)) # Get the agents agents = __get_vms_list_from_name(args, "{0}-agent-{1}".format(cluster_prefix, args.cluster_suffix)) return (server, agents) def __get_vms_list_from_name(args, cluster_name): """ Method to parse "gce info {cluster-name}" command output and get hosts and ips pairs for every host in cluster :param args: Command line args :return: Mapping of VM host name to ip. """ gce_fqdb_cmd = '/opt/gce-utils/gce info {0}'.format(cluster_name) out = execute_command(args, args.controller, gce_fqdb_cmd, "Failed to get VMs list!", "-tt") lines = out.split('\n') #print "LINES=" + str(lines) if lines[0].startswith("Using profile") and not lines[1].strip(): result = {} for s in lines[4:]: # Ignore non-meaningful lines if not s: continue match = re.match(r'^ [^ ]+ ([\w\.-]*)\s+([\d\.]*).*$', s, re.M) if match: result[match.group(1)] = match.group(2) else: raise Exception('Cannot parse "{0}"'.format(s)) return result else: raise Exception('Cannot parse "{0}"'.format(lines)) def sort_hosts(hosts): """ Sort the hosts by name and take into account the numbers. :param hosts: Dictionary from host name (e.g., perf-9-test, perf-62-test), to the IP :return: Sorted list of tuples """ host_names = hosts.keys() sorted_host_tuples = [(None, None),] * len(hosts) pattern = re.compile(".*?-agent-.*?(\d+)") for host_name in host_names: m = pattern.match(host_name) if m and len(m.groups()) == 1: number = int(m.group(1)) ip = hosts[host_name] sorted_host_tuples[number - 1] = (host_name, ip) return sorted_host_tuples def pretty_print_vms(vms): """ Pretty print the VMs hostnames :param vms: List of tuples (hostname, ip) """ print "==========================" print "Hostnames of nodes in cluster:" for (hostname, ip) in vms: print hostname print "==========================\n" if __name__ == "__main__": main()
42.157993
237
0.679952
9a9e5108a78a87be32bc12fa8a574505ad7827cc
9,538
py
Python
test.py
CheungBH/yolov3-channel-and-layer-pruning
457f81386cbc54ace0ad677581e383c516305ba9
[ "Apache-2.0" ]
null
null
null
test.py
CheungBH/yolov3-channel-and-layer-pruning
457f81386cbc54ace0ad677581e383c516305ba9
[ "Apache-2.0" ]
null
null
null
test.py
CheungBH/yolov3-channel-and-layer-pruning
457f81386cbc54ace0ad677581e383c516305ba9
[ "Apache-2.0" ]
null
null
null
import argparse import json from torch.utils.data import DataLoader from models import * from utils.datasets import * from utils.utils import * def test(cfg, data, weights=None, batch_size=16, img_size=416, iou_thres=0.5, conf_thres=0.001, nms_thres=0.5, save_json=False, model=None, writer=None): # Initialize/load model and set device if model is None: device = torch_utils.select_device(opt.device) verbose = True # Initialize model model = Darknet(cfg, img_size).to(device) # Load weights attempt_download(weights) if weights.endswith('.pt'): # pytorch format model.load_state_dict(torch.load(weights, map_location=device)['model']) else: # darknet format _ = load_darknet_weights(model, weights) if torch.cuda.device_count() > 1: model = nn.DataParallel(model) else: device = next(model.parameters()).device # get model device verbose = False # Configure run data = parse_data_cfg(data) nc = int(data['classes']) # number of classes test_path = data['valid'] # path to test images names = load_classes(data['names']) # class names # Dataloader dataset = LoadImagesAndLabels(test_path, img_size, batch_size) dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=min([os.cpu_count(), batch_size, 16]), shuffle=True, pin_memory=True, collate_fn=dataset.collate_fn) seen = 0 model.eval() coco91class = coco80_to_coco91_class() s = ('%20s' + '%10s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP', 'F1') p, r, f1, mp, mr, map, mf1 = 0., 0., 0., 0., 0., 0., 0. loss = torch.zeros(3) write_tb = True jdict, stats, ap, ap_class = [], [], [], [] for batch_i, (imgs, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)): targets = targets.to(device) imgs = imgs.to(device) _, _, height, width = imgs.shape # batch size, channels, height, width # Plot images with bounding boxes if batch_i == 0 and not os.path.exists('test_batch0.jpg'): plot_images(imgs=imgs, targets=targets, paths=paths, fname='test_batch0.jpg') # Run model inf_out, train_out = model(imgs) # inference and training outputs # Compute loss if hasattr(model, 'hyp'): # if model has loss hyperparameters loss += compute_loss(train_out, targets, model)[1][:3].cpu() # GIoU, obj, cls # Run NMS output = non_max_suppression(inf_out, conf_thres=conf_thres, nms_thres=nms_thres) all_none = [None] * len(output) # if writer and write_tb: # if writer and None not in output and write_tb: outs = out2ls(output) write_tb = False plot_output(imgs, outs, writer) # Statistics per image for si, pred in enumerate(output): labels = targets[targets[:, 0] == si, 1:] nl = len(labels) tcls = labels[:, 0].tolist() if nl else [] # target class seen += 1 if pred is None: if nl: stats.append(([], torch.Tensor(), torch.Tensor(), tcls)) continue # Append to text file # with open('test.txt', 'a') as file: # [file.write('%11.5g' * 7 % tuple(x) + '\n') for x in pred] # Append to pycocotools JSON dictionary if save_json: # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ... image_id = int(Path(paths[si]).stem.split('_')[-1]) box = pred[:, :4].clone() # xyxy scale_coords(imgs[si].shape[1:], box, shapes[si]) # to original shape box = xyxy2xywh(box) # xywh box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner for di, d in enumerate(pred): jdict.append({'image_id': image_id, 'category_id': coco91class[int(d[6])], 'bbox': [floatn(x, 3) for x in box[di]], 'score': floatn(d[4], 5)}) # Clip boxes to image bounds clip_coords(pred, (height, width)) # Assign all predictions as incorrect correct = [0] * len(pred) if nl: detected = [] tcls_tensor = labels[:, 0] # target boxes tbox = xywh2xyxy(labels[:, 1:5]) tbox[:, [0, 2]] *= width tbox[:, [1, 3]] *= height # Search for correct predictions for i, (*pbox, pconf, pcls_conf, pcls) in enumerate(pred): # Break if all targets already located in image if len(detected) == nl: break # Continue if predicted class not among image classes if pcls.item() not in tcls: continue # Best iou, index between pred and targets m = (pcls == tcls_tensor).nonzero().view(-1) iou, bi = bbox_iou(pbox, tbox[m]).max(0) # If iou > threshold and class is correct mark as correct if iou > iou_thres and m[bi] not in detected: # and pcls == tcls[bi]: correct[i] = 1 detected.append(m[bi]) # Append statistics (correct, conf, pcls, tcls) stats.append((correct, pred[:, 4].cpu(), pred[:, 6].cpu(), tcls)) # Compute statistics stats = [np.concatenate(x, 0) for x in list(zip(*stats))] # to numpy if len(stats): p, r, ap, f1, ap_class = ap_per_class(*stats) mp, mr, map, mf1 = p.mean(), r.mean(), ap.mean(), f1.mean() nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class else: nt = torch.zeros(1) # Print results pf = '%20s' + '%10.3g' * 6 # print format print(pf % ('all', seen, nt.sum(), mp, mr, map, mf1)) # Print results per class if verbose and nc > 1 and len(stats): for i, c in enumerate(ap_class): print(pf % (names[c], seen, nt[c], p[i], r[i], ap[i], f1[i])) # Save JSON if save_json and map and len(jdict): try: imgIds = [int(Path(x).stem.split('_')[-1]) for x in dataset.img_files] with open('results.json', 'w') as file: json.dump(jdict, file) from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb cocoGt = COCO('../coco/annotations/instances_val2014.json') # initialize COCO ground truth api cocoDt = cocoGt.loadRes('results.json') # initialize COCO pred api cocoEval = COCOeval(cocoGt, cocoDt, 'bbox') cocoEval.params.imgIds = imgIds # [:32] # only evaluate these images cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize() map = cocoEval.stats[1] # update mAP to pycocotools mAP except: print('WARNING: missing dependency pycocotools from requirements.txt. Can not compute official COCO mAP.') # Return results maps = np.zeros(nc) + map for i, c in enumerate(ap_class): maps[c] = ap[i] return (mp, mr, map, mf1, *(loss / len(dataloader)).tolist()), maps if __name__ == '__main__': parser = argparse.ArgumentParser(prog='test.py') parser.add_argument('--cfg', type=str, default='cfg/yolov3-spp.cfg', help='cfg file path') parser.add_argument('--data', type=str, default='data/coco.data', help='coco.data file path') parser.add_argument('--weights', type=str, default='weights/yolov3-spp.weights', help='path to weights file') parser.add_argument('--batch-size', type=int, default=16, help='size of each image batch') parser.add_argument('--img-size', type=int, default=416, help='inference size (pixels)') parser.add_argument('--iou-thres', type=float, default=0.5, help='iou threshold required to qualify as detected') parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold') parser.add_argument('--nms-thres', type=float, default=0.5, help='iou threshold for non-maximum suppression') parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file') parser.add_argument('--device', default='', help='device id (i.e. 0 or 0,1) or cpu') opt = parser.parse_args() print(opt) with torch.no_grad(): test(opt.cfg, opt.data, opt.weights, opt.batch_size, opt.img_size, opt.iou_thres, opt.conf_thres, opt.nms_thres, opt.save_json)
40.760684
119
0.538373
d60a6e3b0a67d742b6a22928bbb0aeead470848d
395
py
Python
scheduler/wsgi.py
arpit456jain/Interview-Scheduler
b8b93e319c3a8a7c2ae72f8082e0ffced6e05f42
[ "MIT" ]
null
null
null
scheduler/wsgi.py
arpit456jain/Interview-Scheduler
b8b93e319c3a8a7c2ae72f8082e0ffced6e05f42
[ "MIT" ]
1
2022-03-16T19:08:43.000Z
2022-03-17T15:59:01.000Z
scheduler/wsgi.py
arpit456jain/Interview-Scheduler
b8b93e319c3a8a7c2ae72f8082e0ffced6e05f42
[ "MIT" ]
null
null
null
""" WSGI config for scheduler project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'scheduler.settings') application = get_wsgi_application()
23.235294
78
0.787342
de2570089c438f6383e1ae403d6432866bdebbd2
2,602
py
Python
test/testcontrolfile.py
Jangzq/u-postgres-tool
10578bdf338b14d63b19264a772830ef894a2b91
[ "Unlicense" ]
null
null
null
test/testcontrolfile.py
Jangzq/u-postgres-tool
10578bdf338b14d63b19264a772830ef894a2b91
[ "Unlicense" ]
null
null
null
test/testcontrolfile.py
Jangzq/u-postgres-tool
10578bdf338b14d63b19264a772830ef894a2b91
[ "Unlicense" ]
null
null
null
import unittest import logging.config import shutil from upgtool.controlfile import ControlFile from upgtool.upgexception import UPgException from upgtool import pgstruct from upgtool import upgcrc logging.config.fileConfig('cfg/logging.conf') class TestControlFile(unittest.TestCase): def setUp(self): pgstruct.load_offset_cfg('cfg/pg95-offset.dat') pgstruct.load_type_size('cfg/pg95-type.dat') upgcrc.initcrc('lib/pg_crc.so') def test_load(self): shutil.copy('test-data/pg_control', 'test-data/global/pg_control') ctrlfile = ControlFile('test-data'); self.assertTrue(ctrlfile.systemidentifier == 6145043555394211565) self.assertTrue(ctrlfile.catalog_version_no == 201504291) self.assertTrue(ctrlfile.dbstate == 1) self.assertTrue(ctrlfile.checkPoint == 301989928) self.assertTrue(ctrlfile.minRecoveryPoint == 0) self.assertTrue(ctrlfile.minRecoveryPointTLI == 0) self.assertTrue(ctrlfile.xlog_blcksz == 8192) self.assertTrue(ctrlfile.xlog_seg_size == 16777216) self.assertTrue(ctrlfile.blcksz == 8192) self.assertTrue(ctrlfile.relseg_size == 131072) print(ctrlfile.checkPointCopy.time) self.assertTrue(ctrlfile.checkPointCopy.redo == 301989928); self.assertTrue(ctrlfile.checkPointCopy.ThisTimeLineID == 1); self.assertTrue(ctrlfile.checkPointCopy.PrevTimeLineID == 1); self.assertTrue(ctrlfile.checkPointCopy.fullPageWrites == 1); self.assertTrue(ctrlfile.checkPointCopy.nextXidEpoch == 0); self.assertTrue(ctrlfile.checkPointCopy.nextXid == 789); self.assertTrue(ctrlfile.checkPointCopy.nextOid == 16437); self.assertTrue(ctrlfile.checkPointCopy.nextMulti == 1); self.assertTrue(ctrlfile.checkPointCopy.nextMultiOffset == 0); self.assertTrue(ctrlfile.checkPointCopy.oldestXid == 658); self.assertTrue(ctrlfile.checkPointCopy.oldestXidDB == 1); self.assertTrue(ctrlfile.checkPointCopy.oldestMulti == 1); self.assertTrue(ctrlfile.checkPointCopy.oldestMultiDB == 1); self.assertTrue(ctrlfile.checkPointCopy.time == 1434128134); self.assertTrue(ctrlfile.checkPointCopy.oldestCommitTs == 0); def test_crcerror(self): shutil.copy('test-data/pg_control_crcerror', 'test-data/global/pg_control') try: ctrlfile = ControlFile('test-data'); self.assertTrue(False) except UPgException: self.assertTrue(True) if __name__ == '__main__': unittest.main
44.101695
83
0.701768
2c4bce2d9c6f988b4802b85123f3b88e1466582e
1,166
py
Python
src/tashi/dfs/diskimageinterface.py
apache/tashi
87f55e4d30800c085ea786bf40c9412b816969e6
[ "Apache-2.0" ]
6
2015-02-26T22:52:15.000Z
2021-11-10T16:04:40.000Z
src/tashi/dfs/diskimageinterface.py
stroucki/tashi
6888a865c184ea80f10e70981addc73a262a81b7
[ "Apache-2.0" ]
null
null
null
src/tashi/dfs/diskimageinterface.py
stroucki/tashi
6888a865c184ea80f10e70981addc73a262a81b7
[ "Apache-2.0" ]
6
2015-06-29T19:03:20.000Z
2021-11-10T16:04:30.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. class DiskImageInterface(): def __init__(self, config): if self.__class__ is DiskImageInterface: raise NotImplementedError self.config = config def cloneImage(self, srcImage, dstImage): raise NotImplementedError def rebaseImage(self, srcImage, dstImage): raise NotImplementedError def getImageInfo(self, srcImage, dstImage): raise NotImplementedError
36.4375
62
0.77187
5c5d72655ea366d43c3f41a8ac8f7530e656aa09
2,911
py
Python
tests/whatsapp/models/test_location_message.py
infobip-community/infobip-api-python-sdk
5ffc5ab877ee1748aa29391f991c8c5324387487
[ "MIT" ]
null
null
null
tests/whatsapp/models/test_location_message.py
infobip-community/infobip-api-python-sdk
5ffc5ab877ee1748aa29391f991c8c5324387487
[ "MIT" ]
null
null
null
tests/whatsapp/models/test_location_message.py
infobip-community/infobip-api-python-sdk
5ffc5ab877ee1748aa29391f991c8c5324387487
[ "MIT" ]
null
null
null
import pytest from pydantic.error_wrappers import ValidationError from infobip_channels.whatsapp.models.body.core import MessageBody from infobip_channels.whatsapp.models.body.location_message import LocationMessageBody from tests.conftest import get_random_string from tests.whatsapp.conftest import LocationMessageBodyFactory def test_location_message_body__is_an_instance_of_message_body(): assert isinstance(LocationMessageBodyFactory.build(), MessageBody) is True @pytest.mark.parametrize( "content", [ None, "", {}, {"latitude": 42, "name": "test", "address": "address one"}, {"longitude": 120, "name": "test", "address": "address one"}, ], ) def test_when_content_is_invalid__validation_error_is_raised(content): with pytest.raises(ValidationError): LocationMessageBodyFactory.build(**{"content": content}) @pytest.mark.parametrize("latitude", [None, "", {}, -90.001, 90.0001]) def test_when_content_latitude_is_invalid__validation_error_is_raised(latitude): with pytest.raises(ValidationError): LocationMessageBodyFactory.build( **{"content": {"latitude": latitude, "longitude": 120.53}} ) @pytest.mark.parametrize("longitude", [None, "", {}, -181.0, 181.0]) def test_when_content_longitude_is_invalid__validation_error_is_raised(longitude): with pytest.raises(ValidationError): LocationMessageBodyFactory.build( **{"content": {"longitude": longitude, "latitude": -50.934}} ) @pytest.mark.parametrize("name", [{}, get_random_string(1001)]) def test_when_content_name_is_invalid__validation_error_is_raised(name): with pytest.raises(ValidationError): LocationMessageBodyFactory.build( **{"content": {"longitude": 130.5541, "latitude": -50.934, "name": name}} ) @pytest.mark.parametrize("address", [{}, get_random_string(1001)]) def test_when_content_address_is_invalid__validation_error_is_raised(address): with pytest.raises(ValidationError): LocationMessageBodyFactory.build( **{ "content": { "longitude": -165.33, "latitude": -89.205, "address": address, } } ) def test_when_input_data_is_valid__validation_error_is_not_raised(): try: LocationMessageBody( **{ "from": "441134960000", "to": "38598451987", "messageId": "a28dd97c-1ffb-4fcf-99f1-0b557ed381da", "content": { "latitude": 83, "longitude": -103, "name": "test", "address": "test", }, "callbackData": "Callback data", } ) except ValidationError: pytest.fail("Unexpected ValidationError raised")
34.247059
86
0.63449
27e1d835295f6a7aa3d544bbcb1a06eb9c089ba4
19,829
py
Python
google/cloud/videointelligence_v1beta2/services/video_intelligence_service/client.py
bingatgoogle/python-videointelligence
000e9bc7c1d1498eff75fa12e9ee4a111ebcf830
[ "Apache-2.0" ]
null
null
null
google/cloud/videointelligence_v1beta2/services/video_intelligence_service/client.py
bingatgoogle/python-videointelligence
000e9bc7c1d1498eff75fa12e9ee4a111ebcf830
[ "Apache-2.0" ]
null
null
null
google/cloud/videointelligence_v1beta2/services/video_intelligence_service/client.py
bingatgoogle/python-videointelligence
000e9bc7c1d1498eff75fa12e9ee4a111ebcf830
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from collections import OrderedDict from distutils import util import os import re from typing import Callable, Dict, Optional, Sequence, Tuple, Type, Union import pkg_resources from google.api_core import client_options as client_options_lib # type: ignore from google.api_core import exceptions as core_exceptions # type: ignore from google.api_core import gapic_v1 # type: ignore from google.api_core import retry as retries # type: ignore from google.auth import credentials as ga_credentials # type: ignore from google.auth.transport import mtls # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore from google.auth.exceptions import MutualTLSChannelError # type: ignore from google.oauth2 import service_account # type: ignore from google.api_core import operation # type: ignore from google.api_core import operation_async # type: ignore from google.cloud.videointelligence_v1beta2.types import video_intelligence from .transports.base import VideoIntelligenceServiceTransport, DEFAULT_CLIENT_INFO from .transports.grpc import VideoIntelligenceServiceGrpcTransport from .transports.grpc_asyncio import VideoIntelligenceServiceGrpcAsyncIOTransport class VideoIntelligenceServiceClientMeta(type): """Metaclass for the VideoIntelligenceService client. This provides class-level methods for building and retrieving support objects (e.g. transport) without polluting the client instance objects. """ _transport_registry = ( OrderedDict() ) # type: Dict[str, Type[VideoIntelligenceServiceTransport]] _transport_registry["grpc"] = VideoIntelligenceServiceGrpcTransport _transport_registry["grpc_asyncio"] = VideoIntelligenceServiceGrpcAsyncIOTransport def get_transport_class( cls, label: str = None, ) -> Type[VideoIntelligenceServiceTransport]: """Returns an appropriate transport class. Args: label: The name of the desired transport. If none is provided, then the first transport in the registry is used. Returns: The transport class to use. """ # If a specific transport is requested, return that one. if label: return cls._transport_registry[label] # No transport is requested; return the default (that is, the first one # in the dictionary). return next(iter(cls._transport_registry.values())) class VideoIntelligenceServiceClient(metaclass=VideoIntelligenceServiceClientMeta): """Service that implements Google Cloud Video Intelligence API.""" @staticmethod def _get_default_mtls_endpoint(api_endpoint): """Converts api endpoint to mTLS endpoint. Convert "*.sandbox.googleapis.com" and "*.googleapis.com" to "*.mtls.sandbox.googleapis.com" and "*.mtls.googleapis.com" respectively. Args: api_endpoint (Optional[str]): the api endpoint to convert. Returns: str: converted mTLS api endpoint. """ if not api_endpoint: return api_endpoint mtls_endpoint_re = re.compile( r"(?P<name>[^.]+)(?P<mtls>\.mtls)?(?P<sandbox>\.sandbox)?(?P<googledomain>\.googleapis\.com)?" ) m = mtls_endpoint_re.match(api_endpoint) name, mtls, sandbox, googledomain = m.groups() if mtls or not googledomain: return api_endpoint if sandbox: return api_endpoint.replace( "sandbox.googleapis.com", "mtls.sandbox.googleapis.com" ) return api_endpoint.replace(".googleapis.com", ".mtls.googleapis.com") DEFAULT_ENDPOINT = "videointelligence.googleapis.com" DEFAULT_MTLS_ENDPOINT = _get_default_mtls_endpoint.__func__( # type: ignore DEFAULT_ENDPOINT ) @classmethod def from_service_account_info(cls, info: dict, *args, **kwargs): """Creates an instance of this client using the provided credentials info. Args: info (dict): The service account private key info. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: VideoIntelligenceServiceClient: The constructed client. """ credentials = service_account.Credentials.from_service_account_info(info) kwargs["credentials"] = credentials return cls(*args, **kwargs) @classmethod def from_service_account_file(cls, filename: str, *args, **kwargs): """Creates an instance of this client using the provided credentials file. Args: filename (str): The path to the service account private key json file. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: VideoIntelligenceServiceClient: The constructed client. """ credentials = service_account.Credentials.from_service_account_file(filename) kwargs["credentials"] = credentials return cls(*args, **kwargs) from_service_account_json = from_service_account_file @property def transport(self) -> VideoIntelligenceServiceTransport: """Returns the transport used by the client instance. Returns: VideoIntelligenceServiceTransport: The transport used by the client instance. """ return self._transport @staticmethod def common_billing_account_path(billing_account: str,) -> str: """Returns a fully-qualified billing_account string.""" return "billingAccounts/{billing_account}".format( billing_account=billing_account, ) @staticmethod def parse_common_billing_account_path(path: str) -> Dict[str, str]: """Parse a billing_account path into its component segments.""" m = re.match(r"^billingAccounts/(?P<billing_account>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_folder_path(folder: str,) -> str: """Returns a fully-qualified folder string.""" return "folders/{folder}".format(folder=folder,) @staticmethod def parse_common_folder_path(path: str) -> Dict[str, str]: """Parse a folder path into its component segments.""" m = re.match(r"^folders/(?P<folder>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_organization_path(organization: str,) -> str: """Returns a fully-qualified organization string.""" return "organizations/{organization}".format(organization=organization,) @staticmethod def parse_common_organization_path(path: str) -> Dict[str, str]: """Parse a organization path into its component segments.""" m = re.match(r"^organizations/(?P<organization>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_project_path(project: str,) -> str: """Returns a fully-qualified project string.""" return "projects/{project}".format(project=project,) @staticmethod def parse_common_project_path(path: str) -> Dict[str, str]: """Parse a project path into its component segments.""" m = re.match(r"^projects/(?P<project>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_location_path(project: str, location: str,) -> str: """Returns a fully-qualified location string.""" return "projects/{project}/locations/{location}".format( project=project, location=location, ) @staticmethod def parse_common_location_path(path: str) -> Dict[str, str]: """Parse a location path into its component segments.""" m = re.match(r"^projects/(?P<project>.+?)/locations/(?P<location>.+?)$", path) return m.groupdict() if m else {} def __init__( self, *, credentials: Optional[ga_credentials.Credentials] = None, transport: Union[str, VideoIntelligenceServiceTransport, None] = None, client_options: Optional[client_options_lib.ClientOptions] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiates the video intelligence service client. Args: credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. transport (Union[str, VideoIntelligenceServiceTransport]): The transport to use. If set to None, a transport is chosen automatically. client_options (google.api_core.client_options.ClientOptions): Custom options for the client. It won't take effect if a ``transport`` instance is provided. (1) The ``api_endpoint`` property can be used to override the default endpoint provided by the client. GOOGLE_API_USE_MTLS_ENDPOINT environment variable can also be used to override the endpoint: "always" (always use the default mTLS endpoint), "never" (always use the default regular endpoint) and "auto" (auto switch to the default mTLS endpoint if client certificate is present, this is the default value). However, the ``api_endpoint`` property takes precedence if provided. (2) If GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is "true", then the ``client_cert_source`` property can be used to provide client certificate for mutual TLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is "false" or not set, no client certificate will be used. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. Raises: google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport creation failed for any reason. """ if isinstance(client_options, dict): client_options = client_options_lib.from_dict(client_options) if client_options is None: client_options = client_options_lib.ClientOptions() # Create SSL credentials for mutual TLS if needed. use_client_cert = bool( util.strtobool(os.getenv("GOOGLE_API_USE_CLIENT_CERTIFICATE", "false")) ) client_cert_source_func = None is_mtls = False if use_client_cert: if client_options.client_cert_source: is_mtls = True client_cert_source_func = client_options.client_cert_source else: is_mtls = mtls.has_default_client_cert_source() if is_mtls: client_cert_source_func = mtls.default_client_cert_source() else: client_cert_source_func = None # Figure out which api endpoint to use. if client_options.api_endpoint is not None: api_endpoint = client_options.api_endpoint else: use_mtls_env = os.getenv("GOOGLE_API_USE_MTLS_ENDPOINT", "auto") if use_mtls_env == "never": api_endpoint = self.DEFAULT_ENDPOINT elif use_mtls_env == "always": api_endpoint = self.DEFAULT_MTLS_ENDPOINT elif use_mtls_env == "auto": if is_mtls: api_endpoint = self.DEFAULT_MTLS_ENDPOINT else: api_endpoint = self.DEFAULT_ENDPOINT else: raise MutualTLSChannelError( "Unsupported GOOGLE_API_USE_MTLS_ENDPOINT value. Accepted " "values: never, auto, always" ) # Save or instantiate the transport. # Ordinarily, we provide the transport, but allowing a custom transport # instance provides an extensibility point for unusual situations. if isinstance(transport, VideoIntelligenceServiceTransport): # transport is a VideoIntelligenceServiceTransport instance. if credentials or client_options.credentials_file: raise ValueError( "When providing a transport instance, " "provide its credentials directly." ) if client_options.scopes: raise ValueError( "When providing a transport instance, provide its scopes " "directly." ) self._transport = transport else: Transport = type(self).get_transport_class(transport) self._transport = Transport( credentials=credentials, credentials_file=client_options.credentials_file, host=api_endpoint, scopes=client_options.scopes, client_cert_source_for_mtls=client_cert_source_func, quota_project_id=client_options.quota_project_id, client_info=client_info, always_use_jwt_access=( Transport == type(self).get_transport_class("grpc") or Transport == type(self).get_transport_class("grpc_asyncio") ), ) def annotate_video( self, request: video_intelligence.AnnotateVideoRequest = None, *, input_uri: str = None, features: Sequence[video_intelligence.Feature] = None, retry: retries.Retry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> operation.Operation: r"""Performs asynchronous video annotation. Progress and results can be retrieved through the ``google.longrunning.Operations`` interface. ``Operation.metadata`` contains ``AnnotateVideoProgress`` (progress). ``Operation.response`` contains ``AnnotateVideoResponse`` (results). Args: request (google.cloud.videointelligence_v1beta2.types.AnnotateVideoRequest): The request object. Video annotation request. input_uri (str): Input video location. Currently, only `Google Cloud Storage <https://cloud.google.com/storage/>`__ URIs are supported, which must be specified in the following format: ``gs://bucket-id/object-id`` (other URI formats return [google.rpc.Code.INVALID_ARGUMENT][google.rpc.Code.INVALID_ARGUMENT]). For more information, see `Request URIs <https://cloud.google.com/storage/docs/request-endpoints>`__. A video URI may include wildcards in ``object-id``, and thus identify multiple videos. Supported wildcards: '*' to match 0 or more characters; '?' to match 1 character. If unset, the input video should be embedded in the request as ``input_content``. If set, ``input_content`` should be unset. This corresponds to the ``input_uri`` field on the ``request`` instance; if ``request`` is provided, this should not be set. features (Sequence[google.cloud.videointelligence_v1beta2.types.Feature]): Required. Requested video annotation features. This corresponds to the ``features`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.api_core.operation.Operation: An object representing a long-running operation. The result type for the operation will be :class:`google.cloud.videointelligence_v1beta2.types.AnnotateVideoResponse` Video annotation response. Included in the response field of the Operation returned by the GetOperation call of the google::longrunning::Operations service. """ # Create or coerce a protobuf request object. # Sanity check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([input_uri, features]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a video_intelligence.AnnotateVideoRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance(request, video_intelligence.AnnotateVideoRequest): request = video_intelligence.AnnotateVideoRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if input_uri is not None: request.input_uri = input_uri if features is not None: request.features = features # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[self._transport.annotate_video] # Send the request. response = rpc(request, retry=retry, timeout=timeout, metadata=metadata,) # Wrap the response in an operation future. response = operation.from_gapic( response, self._transport.operations_client, video_intelligence.AnnotateVideoResponse, metadata_type=video_intelligence.AnnotateVideoProgress, ) # Done; return the response. return response try: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo( gapic_version=pkg_resources.get_distribution( "google-cloud-videointelligence", ).version, ) except pkg_resources.DistributionNotFound: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo() __all__ = ("VideoIntelligenceServiceClient",)
43.772627
185
0.647032
bb991f59079aa0ffb64cbd0df7ba4ea8ffa73a80
4,619
py
Python
sentry/plugins/sentry_redmine/models.py
optimal-outsource/django-sentry
1b55011f1474cde8707a9febaf0c64c8142496d2
[ "BSD-3-Clause" ]
null
null
null
sentry/plugins/sentry_redmine/models.py
optimal-outsource/django-sentry
1b55011f1474cde8707a9febaf0c64c8142496d2
[ "BSD-3-Clause" ]
null
null
null
sentry/plugins/sentry_redmine/models.py
optimal-outsource/django-sentry
1b55011f1474cde8707a9febaf0c64c8142496d2
[ "BSD-3-Clause" ]
null
null
null
""" sentry.plugins.sentry_redmine.models ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :copyright: (c) 2010 by the Sentry Team, see AUTHORS for more details. :license: BSD, see LICENSE for more details. """ from django import forms from django.core.context_processors import csrf from django.core.urlresolvers import reverse from django.db import models from django.http import HttpResponseRedirect from django.shortcuts import render_to_response from django.utils.safestring import mark_safe from sentry.models import GroupedMessage from sentry.plugins import GroupActionProvider from sentry.plugins.sentry_redmine import conf from sentry.utils import json import base64 import urllib.request, urllib.parse, urllib.error import urllib.request, urllib.error, urllib.parse class RedmineIssue(models.Model): group = models.ForeignKey(GroupedMessage) issue_id = models.PositiveIntegerField() class RedmineIssueForm(forms.Form): subject = forms.CharField(max_length=200) description = forms.CharField(widget=forms.Textarea()) class CreateRedmineIssue(GroupActionProvider): title = 'Create Redmine Issue' def actions(self, request, action_list, group): if 'redmine' not in group.data: action_list.append((self.title, self.__class__.get_url(group.pk))) return action_list def view(self, request, group): if request.POST: form = RedmineIssueForm(request.POST) if form.is_valid(): data = json.dumps({ 'key': conf.REDMINE_API_KEY, 'issue': { 'subject': form.cleaned_data['subject'], 'description': form.cleaned_data['description'], } }) url = conf.REDMINE_URL + '/projects/' + conf.REDMINE_PROJECT_SLUG + '/issues.json' req = urllib.request.Request(url, urllib.parse.urlencode({ 'key': conf.REDMINE_API_KEY, }), headers={ 'Content-type': 'application/json', }) if conf.REDMINE_USERNAME and conf.REDMINE_PASSWORD: authstring = base64.encodestring('%s:%s' % (conf.REDMINE_USERNAME, conf.REDMINE_PASSWORD))[:-1] req.add_header("Authorization", "Basic %s" % authstring) try: response = urllib.request.urlopen(req, data).read() except urllib.error.HTTPError as e: if e.code == 422: data = json.loads(e.read()) form.errors['__all__'] = 'Missing or invalid data' for message in data: for k, v in message.items(): if k in form.fields: form.errors.setdefault(k, []).append(v) else: form.errors['__all__'] += '; %s: %s' % (k, v) else: form.errors['__all__'] = 'Bad response from Redmine: %s %s' % (e.code, e.msg) except urllib.error.URLError as e: form.errors['__all__'] = 'Unable to reach Redmine host: %s' % (e.reason,) else: data = json.loads(response) RedmineIssue.objects.create(group=group, issue_id=data['issue']['id']) group.data['redmine'] = {'issue_id': data['issue']['id']} group.save() return HttpResponseRedirect(reverse('sentry-group', args=[group.pk])) else: description = 'Sentry Message: %s' % request.build_absolute_uri(group.get_absolute_url()) description += '\n\n<pre>' + (group.traceback or group.message) + '</pre>' form = RedmineIssueForm(initial={ 'subject': group.error(), 'description': description, }) global_errors = form.errors.get('__all__') BASE_TEMPLATE = "sentry/group/details.html" context = locals() context.update(csrf(request)) return render_to_response('sentry/plugins/redmine/create_issue.html', context) def tags(self, request, tags, group): if 'redmine' in group.data: issue_id = group.data['redmine']['issue_id'] tags.append(mark_safe('<a href="%s">#%s</a>' % ( '%s/issues/%s' % (conf.REDMINE_URL, issue_id), issue_id, ))) return tags
41.241071
115
0.558129
0368ea315314cad76e74e691091a5d364daf62f0
38,269
py
Python
pytests/backuptests.py
pavithra-mahamani/testrunner
d204491caa23f1fbe90505646534ed7810d96289
[ "Apache-2.0" ]
1
2020-08-31T18:51:45.000Z
2020-08-31T18:51:45.000Z
pytests/backuptests.py
pavithra-mahamani/testrunner
d204491caa23f1fbe90505646534ed7810d96289
[ "Apache-2.0" ]
null
null
null
pytests/backuptests.py
pavithra-mahamani/testrunner
d204491caa23f1fbe90505646534ed7810d96289
[ "Apache-2.0" ]
2
2020-07-24T07:12:01.000Z
2022-03-17T23:43:28.000Z
import time import unittest import uuid import crc32 from TestInput import TestInputSingleton import logger import mc_bin_client from membase.api.rest_client import RestConnection, RestHelper from membase.helper.bucket_helper import BucketOperationHelper from membase.helper.cluster_helper import ClusterOperationHelper from membase.helper.rebalance_helper import RebalanceHelper from memcached.helper.data_helper import MemcachedClientHelper from remote.remote_util import RemoteMachineShellConnection from builds.build_query import BuildQuery import testconstants import copy from basetestcase import BaseTestCase class BackupRestoreTests(BaseTestCase): input = None servers = None log = None membase = None shell = None remote_tmp_folder = None master = None def setUp(self): self.log = logger.Logger.get_logger() self.input = TestInputSingleton.input self.servers = self.input.servers self.master = self.servers[0] self.shell = RemoteMachineShellConnection(self.master) # When using custom data_paths, (smaller // sizes), creates # backup in those custom paths ( helpful when running on ec2) info = RestConnection(self.master).get_nodes_self() data_path = info.storage[0].get_data_path() self.remote_tmp_folder = None self.remote_tmp_folder = "{2}/{0}-{1}".format("backup", uuid.uuid4(), data_path) self.is_membase = False self.perm_command = "mkdir -p {0}".format(self.remote_tmp_folder) if not self.shell.is_couchbase_installed(): self.is_membase = True def common_setUp(self): ClusterOperationHelper.cleanup_cluster(self.servers) BucketOperationHelper.delete_all_buckets_or_assert(self.servers, self) for server in self.servers: shell = RemoteMachineShellConnection(server) shell.stop_membase() shell.stop_couchbase() shell.start_membase() shell.start_couchbase() RestHelper(RestConnection(server)).is_ns_server_running(timeout_in_seconds=120) shell.disconnect() def tearDown(self): for server in self.servers: self.log.info("delete remote folder @ {0}".format(self.remote_tmp_folder)) shell = RemoteMachineShellConnection(server) shell.remove_directory(self.remote_tmp_folder) shell.disconnect() def add_node_and_rebalance(self, master, servers): ClusterOperationHelper.add_all_nodes_or_assert(master, servers, self.input.membase_settings, self) rest = RestConnection(master) nodes = rest.node_statuses() otpNodeIds = [] for node in nodes: otpNodeIds.append(node.id) rebalanceStarted = rest.rebalance(otpNodeIds, []) self.assertTrue(rebalanceStarted, "unable to start rebalance on master node {0}".format(master.ip)) self.log.info('started rebalance operation on master node {0}'.format(master.ip)) rebalanceSucceeded = rest.monitorRebalance() self.assertTrue(rebalanceSucceeded, "rebalance operation for nodes: {0} was not successful".format(otpNodeIds)) self.log.info('rebalance operaton succeeded for nodes: {0}'.format(otpNodeIds)) #now remove the nodes #make sure its rebalanced and node statuses are healthy helper = RestHelper(rest) self.assertTrue(helper.is_cluster_healthy, "cluster status is not healthy") self.assertTrue(helper.is_cluster_rebalanced, "cluster is not balanced") def add_nodes_and_rebalance(self): self.add_node_and_rebalance(master=self.servers[0], servers=self.servers) def _test_backup_add_restore_bucket_body(self, bucket, delay_after_data_load, startup_flag, single_node): server = self.master rest = RestConnection(server) info = rest.get_nodes_self() size = int(info.memoryQuota * 2.0 / 3.0) if bucket == "default": rest.create_bucket(bucket, ramQuotaMB=size, proxyPort=info.moxi) else: proxyPort = info.moxi + 500 rest.create_bucket(bucket, ramQuotaMB=size, proxyPort=proxyPort, authType="sasl", saslPassword="password") ready = BucketOperationHelper.wait_for_memcached(server, bucket) self.assertTrue(ready, "wait_for_memcached failed") if not single_node: self.add_nodes_and_rebalance() distribution = {10: 0.2, 20: 0.5, 30: 0.25, 40: 0.05} inserted_keys, rejected_keys = MemcachedClientHelper.load_bucket_and_return_the_keys(servers=[self.master], name=bucket, ram_load_ratio=1, value_size_distribution=distribution, moxi=True, write_only=True, number_of_threads=2) if not single_node: rest = RestConnection(self.master) self.assertTrue(RebalanceHelper.wait_for_replication(rest.get_nodes(), timeout=180), msg="replication did not complete") self.log.info("Sleep {0} seconds after data load".format(delay_after_data_load)) ready = RebalanceHelper.wait_for_persistence(self.master, bucket, bucket_type=self.bucket_type) self.assertTrue(ready, "not all items persisted. see logs") node = RestConnection(self.master).get_nodes_self() if not startup_flag: for server in self.servers: shell = RemoteMachineShellConnection(server) shell.stop_membase() shell.stop_couchbase() shell.disconnect() output, error = self.shell.execute_command(self.perm_command) self.shell.log_command_output(output, error) #now let's back up BackupHelper(self.master, self).backup(bucket, node, self.remote_tmp_folder) if not startup_flag: for server in self.servers: shell = RemoteMachineShellConnection(server) shell.start_membase() shell.start_couchbase() RestHelper(RestConnection(server)).is_ns_server_running() shell.disconnect() BucketOperationHelper.delete_bucket_or_assert(self.master, bucket, self) if bucket == "default": rest.create_bucket(bucket, ramQuotaMB=size, proxyPort=info.moxi) else: proxyPort = info.moxi + 500 rest.create_bucket(bucket, ramQuotaMB=size, proxyPort=proxyPort, authType="sasl", saslPassword="password") BucketOperationHelper.wait_for_memcached(self.master, bucket) if bucket == "default": BackupHelper(self.master, self).restore(backup_location=self.remote_tmp_folder, moxi_port=info.moxi) else: BackupHelper(self.master, self).restore(backup_location=self.remote_tmp_folder, moxi_port=info.moxi, username=bucket, password='password') keys_exist = BucketOperationHelper.keys_exist_or_assert_in_parallel(inserted_keys, self.master, bucket, self, concurrency=4) self.assertTrue(keys_exist, msg="unable to verify keys after restore") def _test_backup_add_restore_bucket_with_expiration_key(self, replica): bucket = "default" rest = RestConnection(self.master) info = rest.get_nodes_self() size = int(info.memoryQuota * 2.0 / 3.0) rest.create_bucket(bucket, ramQuotaMB=size, proxyPort=info.moxi, replicaNumber=replica) BucketOperationHelper.wait_for_memcached(self.master, bucket) client = MemcachedClientHelper.direct_client(self.master, bucket) expiry = 60 test_uuid = uuid.uuid4() keys = ["key_%s_%d" % (test_uuid, i) for i in range(5000)] self.log.info("pushing keys with expiry set to {0}".format(expiry)) for key in keys: try: client.set(key, expiry, 0, key) except mc_bin_client.MemcachedError as error: msg = "unable to push key : {0} to bucket : {1} error : {2}" self.log.error(msg.format(key, client.vbucketId, error.status)) self.fail(msg.format(key, client.vbucketId, error.status)) client.close() self.log.info("inserted {0} keys with expiry set to {1}".format(len(keys), expiry)) ready = RebalanceHelper.wait_for_persistence(self.master, bucket, bucket_type=self.bucket_type) self.assertTrue(ready, "not all items persisted. see logs") node = RestConnection(self.master).get_nodes_self() output, error = self.shell.execute_command(self.perm_command) self.shell.log_command_output(output, error) backupHelper = BackupHelper(self.master, self) backupHelper.backup(bucket, node, self.remote_tmp_folder) BucketOperationHelper.delete_bucket_or_assert(self.master, bucket, self) rest.create_bucket(bucket, ramQuotaMB=size, proxyPort=info.moxi) BucketOperationHelper.wait_for_memcached(self.master, bucket) backupHelper.restore(self.remote_tmp_folder) time.sleep(60) client = MemcachedClientHelper.direct_client(self.master, bucket) self.log.info('verifying that all those keys have expired...') for key in keys: try: client.get(key=key) msg = "expiry was set to {0} but key: {1} did not expire after waiting for {2}+ seconds" self.fail(msg.format(expiry, key, expiry)) except mc_bin_client.MemcachedError as error: self.assertEqual(error.status, 1, msg="expected error code {0} but saw error code {1}".format(1, error.status)) client.close() self.log.info("verified that those keys inserted with expiry set to {0} have expired".format(expiry)) def _test_backup_and_restore_bucket_overwriting_body(self, overwrite_flag=True): bucket = "default" BucketOperationHelper.create_bucket(serverInfo=self.master, test_case=self) BucketOperationHelper.wait_for_memcached(self.master, bucket) self.add_nodes_and_rebalance() client = MemcachedClientHelper.direct_client(self.master, "default") expiry = 2400 test_uuid = uuid.uuid4() keys = ["key_%s_%d" % (test_uuid, i) for i in range(500)] self.log.info("pushing keys with expiry set to {0}".format(expiry)) for key in keys: try: client.set(key, expiry, 0, "1") except mc_bin_client.MemcachedError as error: msg = "unable to push key : {0} to bucket : {1} error : {2}" self.log.error(msg.format(key, client.vbucketId, error.status)) self.fail(msg.format(key, client.vbucketId, error.status)) self.log.info("inserted {0} keys with expiry set to {1}".format(len(keys), expiry)) ready = RebalanceHelper.wait_for_persistence(self.master, bucket, bucket_type=self.bucket_type) self.assertTrue(ready, "not all items persisted. see logs") for server in self.servers: shell = RemoteMachineShellConnection(server) output, error = shell.execute_command(self.perm_command) shell.log_command_output(output, error) node = RestConnection(server).get_nodes_self() BackupHelper(server, self).backup(bucket, node, self.remote_tmp_folder) shell.disconnect() for key in keys: try: client.replace(key, expiry, 0, "2") except mc_bin_client.MemcachedError as error: msg = "unable to replace key : {0} in bucket : {1} error : {2}" self.log.error(msg.format(key, client.vbucketId, error.status)) self.fail(msg.format(key, client.vbucketId, error.status)) self.log.info("replaced {0} keys with expiry set to {1}".format(len(keys), expiry)) for server in self.servers: BackupHelper(server, self).restore(self.remote_tmp_folder, overwrite_flag) time.sleep(10) self.log.info('verifying that all those keys...') for key in keys: if overwrite_flag: self.assertEqual("2", client.get(key=key), key + " should has value = 2") else: self.assertNotEqual("2", client.get(key=key), key + " should not has value = 2") self.log.info("verified that those keys inserted with expiry set to {0} have expired".format(expiry)) def _test_cluster_topology_change_body(self): bucket = "default" BucketOperationHelper.create_bucket(serverInfo=self.master, test_case=self) ready = BucketOperationHelper.wait_for_memcached(self.master, bucket) self.assertTrue(ready, "wait_for_memcached failed") self.add_nodes_and_rebalance() distribution = {10: 0.2, 20: 0.5, 30: 0.25, 40: 0.05} inserted_keys, rejected_keys = MemcachedClientHelper.load_bucket_and_return_the_keys(servers=[self.master], ram_load_ratio=1, value_size_distribution=distribution, moxi=True, write_only=True, number_of_threads=2) self.log.info("Sleep after data load") ready = RebalanceHelper.wait_for_persistence(self.master, bucket, bucket_type=self.bucket_type) self.assertTrue(ready, "not all items persisted. see logs") #let's create a unique folder in the remote location for server in self.servers: shell = RemoteMachineShellConnection(server) output, error = shell.execute_command(self.perm_command) shell.log_command_output(output, error) node = RestConnection(server).get_nodes_self() BackupHelper(server, self).backup(bucket, node, self.remote_tmp_folder) shell.disconnect() ClusterOperationHelper.cleanup_cluster(self.servers) BucketOperationHelper.delete_all_buckets_or_assert(self.servers, self) servers = [] for i in range(0, len(self.servers) - 1): servers.append(self.servers[i]) self.add_node_and_rebalance(servers[0], servers) BucketOperationHelper.delete_bucket_or_assert(self.master, bucket, self) BucketOperationHelper.create_bucket(serverInfo=self.master, test_case=self) ready = BucketOperationHelper.wait_for_memcached(self.master, bucket) self.assertTrue(ready, "wait_for_memcached failed") for server in self.servers: BackupHelper(server, self).restore(self.remote_tmp_folder) time.sleep(10) BucketOperationHelper.verify_data(self.master, inserted_keys, False, False, 11210, self) def _test_delete_key_and_backup_and_restore_body(self): bucket = "default" BucketOperationHelper.create_bucket(serverInfo=self.master, name=bucket, test_case=self) ready = BucketOperationHelper.wait_for_memcached(self.master, bucket) self.assertTrue(ready, "wait_for_memcached failed") self.add_nodes_and_rebalance() client = MemcachedClientHelper.direct_client(self.master, "default") expiry = 2400 test_uuid = uuid.uuid4() keys = ["key_%s_%d" % (test_uuid, i) for i in range(500)] self.log.info("pushing keys with expiry set to {0}".format(expiry)) for key in keys: try: client.set(key, expiry, 0, "1") except mc_bin_client.MemcachedError as error: msg = "unable to push key : {0} to bucket : {1} error : {2}" self.log.error(msg.format(key, client.vbucketId, error.status)) self.fail(msg.format(key, client.vbucketId, error.status)) self.log.info("inserted {0} keys with expiry set to {1}".format(len(keys), expiry)) client.delete(keys[0]) ready = RebalanceHelper.wait_for_persistence(self.master, bucket, bucket_type=self.bucket_type) self.assertTrue(ready, "not all items persisted. see logs") #let's create a unique folder in the remote location for server in self.servers: shell = RemoteMachineShellConnection(server) output, error = shell.execute_command(self.perm_command) shell.log_command_output(output, error) node = RestConnection(server).get_nodes_self() BackupHelper(server, self).backup(bucket, node, self.remote_tmp_folder) shell.disconnect() for server in self.servers: BackupHelper(server, self).restore(self.remote_tmp_folder) time.sleep(10) self.log.info('verifying that all those keys...') missing_keys = [] verify_keys = [] for key in keys: vBucketId = crc32.crc32_hash(key) & 1023 # or & 0x3FF client.vbucketId = vBucketId if key == keys[0]: missing_keys.append(key) else: verify_keys.append(key) self.assertTrue(BucketOperationHelper.keys_dont_exist(self.master, missing_keys, self), "Keys are not empty") self.assertTrue(BucketOperationHelper.verify_data(self.master, verify_keys, False, False, 11210, self), "Missing keys") def _test_backup_and_restore_on_different_port_body(self): bucket_before_backup = "bucket_before_backup" bucket_after_backup = "bucket_after_backup" BucketOperationHelper.create_bucket(serverInfo=self.master, name=bucket_before_backup, port=11212, test_case=self) ready = BucketOperationHelper.wait_for_memcached(self.master, bucket_before_backup) self.assertTrue(ready, "wait_for_memcached failed") self.add_nodes_and_rebalance() distribution = {10: 0.2, 20: 0.5, 30: 0.25, 40: 0.05} inserted_keys, rejected_keys = MemcachedClientHelper.load_bucket_and_return_the_keys(servers=[self.master], name=bucket_before_backup, ram_load_ratio=1, value_size_distribution=distribution, write_only=True, moxi=True, number_of_threads=2) self.log.info("Sleep after data load") ready = RebalanceHelper.wait_for_persistence(self.master, bucket, bucket_type=self.bucket_type) self.assertTrue(ready, "not all items persisted. see logs") for server in self.servers: shell = RemoteMachineShellConnection(server) output, error = shell.execute_command(self.perm_command) shell.log_command_output(output, error) node = RestConnection(server).get_nodes_self() BackupHelper(server, self).backup(bucket_before_backup, node, self.remote_tmp_folder) shell.disconnect() BucketOperationHelper.delete_bucket_or_assert(self.master, bucket_before_backup, self) BucketOperationHelper.create_bucket(serverInfo=self.master, name=bucket_after_backup, port=11213, test_case=self) ready = BucketOperationHelper.wait_for_memcached(self.master, bucket_after_backup) self.assertTrue(ready, "wait_for_memcached failed") for server in self.servers: BackupHelper(server, self).restore(self.remote_tmp_folder, moxi_port=11213) time.sleep(10) self.assertTrue(BucketOperationHelper.verify_data(self.master, inserted_keys, False, False, 11213, debug=False, bucket=bucket_after_backup), "Missing keys") def _test_backup_and_restore_from_to_different_buckets(self): bucket_before_backup = "bucket_before_backup" bucket_after_backup = "bucket_after_backup" BucketOperationHelper.create_bucket(serverInfo=self.master, name=bucket_before_backup, port=11212, test_case=self) ready = BucketOperationHelper.wait_for_memcached(self.master, bucket_before_backup) self.assertTrue(ready, "wait_for_memcached failed") self.add_nodes_and_rebalance() distribution = {10: 0.2, 20: 0.5, 30: 0.25, 40: 0.05} inserted_keys, rejected_keys = MemcachedClientHelper.load_bucket_and_return_the_keys(servers=[self.master], name=bucket_before_backup, ram_load_ratio=20, value_size_distribution=distribution, write_only=True, moxi=True, number_of_threads=2) self.log.info("Sleep after data load") ready = RebalanceHelper.wait_for_persistence(self.master, bucket, bucket_type=self.bucket_type) self.assertTrue(ready, "not all items persisted. see logs") for server in self.servers: shell = RemoteMachineShellConnection(server) output, error = shell.execute_command(self.perm_command) shell.log_command_output(output, error) node = RestConnection(server).get_nodes_self() BackupHelper(server, self).backup(bucket_before_backup, node, self.remote_tmp_folder) shell.disconnect() BucketOperationHelper.delete_bucket_or_assert(self.master, bucket_before_backup, self) BucketOperationHelper.create_bucket(serverInfo=self.master, name=bucket_after_backup, port=11212, test_case=self) ready = BucketOperationHelper.wait_for_memcached(self.master, bucket_after_backup) self.assertTrue(ready, "wait_for_memcached failed") for server in self.servers: BackupHelper(server, self).restore(self.remote_tmp_folder, moxi_port=11212) time.sleep(10) ready = RebalanceHelper.wait_for_stats_on_all(self.master, bucket_after_backup, 'ep_queue_size', 0) self.assertTrue(ready, "wait_for ep_queue_size == 0 failed") ready = RebalanceHelper.wait_for_stats_on_all(self.master, bucket_after_backup, 'ep_flusher_todo', 0) self.assertTrue(ready, "wait_for ep_queue_size == 0 failed") self.assertTrue(BucketOperationHelper.verify_data(self.master, inserted_keys, False, False, 11212, debug=False, bucket=bucket_after_backup), "Missing keys") def test_backup_upgrade_restore_default(self): if len(self.servers) < 2: self.log.error("At least 2 servers required for this test ..") return original_set = copy.copy(self.servers) worker = self.servers[len(self.servers) - 1] self.servers = self.servers[:len(self.servers) - 1] shell = RemoteMachineShellConnection(self.master) o, r = shell.execute_command("cat /opt/couchbase/VERSION.txt") fin = o[0] shell.disconnect() initial_version = self.input.param("initial_version", fin) final_version = self.input.param("final_version", fin) if initial_version == final_version: self.log.error("Same initial and final versions ..") return if not final_version.startswith('2.0'): self.log.error("Upgrade test not set to run from 1.8.1 -> 2.0 ..") return builds, changes = BuildQuery().get_all_builds(version=final_version) product = 'couchbase-server-enterprise' #CASE where the worker isn't a 2.0+ worker_flag = 0 shell = RemoteMachineShellConnection(worker) o, r = shell.execute_command("cat /opt/couchbase/VERSION.txt") temp = o[0] if not temp.startswith('2.0'): worker_flag = 1 if worker_flag == 1: self.log.info("Loading version {0} on worker.. ".format(final_version)) remote = RemoteMachineShellConnection(worker) info = remote.extract_remote_info() older_build = BuildQuery().find_build(builds, product, info.deliverable_type, info.architecture_type, final_version) remote.stop_couchbase() remote.couchbase_uninstall() remote.download_build(older_build) remote.install_server(older_build) remote.disconnect() remote_tmp = "{1}/{0}".format("backup", "/root") perm_comm = "mkdir -p {0}".format(remote_tmp) if not initial_version == fin: for server in self.servers: remote = RemoteMachineShellConnection(server) info = remote.extract_remote_info() self.log.info("Loading version .. {0}".format(initial_version)) older_build = BuildQuery().find_build(builds, product, info.deliverable_type, info.architecture_type, initial_version) remote.stop_couchbase() remote.couchbase_uninstall() remote.download_build(older_build) remote.install_server(older_build) rest = RestConnection(server) RestHelper(rest).is_ns_server_running(testconstants.NS_SERVER_TIMEOUT) rest.init_cluster(server.rest_username, server.rest_password) rest.init_cluster_memoryQuota(memoryQuota=rest.get_nodes_self().mcdMemoryReserved) remote.disconnect() self.common_setUp() bucket = "default" if len(self.servers) > 1: self.add_nodes_and_rebalance() rest = RestConnection(self.master) info = rest.get_nodes_self() size = int(info.memoryQuota * 2.0 / 3.0) rest.create_bucket(bucket, ramQuotaMB=size) ready = BucketOperationHelper.wait_for_memcached(self.master, bucket) self.assertTrue(ready, "wait_for_memcached_failed") distribution = {10: 0.2, 20: 0.5, 30: 0.25, 40: 0.05} inserted_keys, rejected_keys = MemcachedClientHelper.load_bucket_and_return_the_keys(servers=[self.master], name=bucket, ram_load_ratio=0.5, value_size_distribution=distribution, moxi=True, write_only=True, delete_ratio=0.1, number_of_threads=2) if len(self.servers) > 1: rest = RestConnection(self.master) self.assertTrue(RebalanceHelper.wait_for_replication(rest.get_nodes(), timeout=180), msg="replication did not complete") ready = RebalanceHelper.wait_for_stats_on_all(self.master, bucket, 'ep_queue_size', 0) self.assertTrue(ready, "wait_for ep_queue_size == 0 failed") ready = RebalanceHelper.wait_for_stats_on_all(self.master, bucket, 'ep_flusher_todo', 0) self.assertTrue(ready, "wait_for ep_queue_size == 0 failed") node = RestConnection(self.master).get_nodes_self() shell = RemoteMachineShellConnection(worker) o, r = shell.execute_command(perm_comm) shell.log_command_output(o, r) shell.disconnect() #Backup #BackupHelper(self.master, self).backup(bucket, node, remote_tmp) shell = RemoteMachineShellConnection(worker) shell.execute_command("/opt/couchbase/bin/cbbackup http://{0}:{1} {2}".format( self.master.ip, self.master.port, remote_tmp)) shell.disconnect() BucketOperationHelper.delete_bucket_or_assert(self.master, bucket, self) time.sleep(30) #Upgrade for server in self.servers: self.log.info("Upgrading to current version {0}".format(final_version)) remote = RemoteMachineShellConnection(server) info = remote.extract_remote_info() new_build = BuildQuery().find_build(builds, product, info.deliverable_type, info.architecture_type, final_version) remote.stop_couchbase() remote.couchbase_uninstall() remote.download_build(new_build) remote.install_server(new_build) rest = RestConnection(server) RestHelper(rest).is_ns_server_running(testconstants.NS_SERVER_TIMEOUT) rest.init_cluster(server.rest_username, server.rest_password) rest.init_cluster_memoryQuota(memoryQuota=rest.get_nodes_self().mcdMemoryReserved) remote.disconnect() time.sleep(30) #Restore rest = RestConnection(self.master) info = rest.get_nodes_self() size = int(info.memoryQuota * 2.0 / 3.0) rest.create_bucket(bucket, ramQuotaMB=size) ready = BucketOperationHelper.wait_for_memcached(server, bucket) self.assertTrue(ready, "wait_for_memcached_failed") #BackupHelper(self.master, self).restore(backup_location=remote_tmp, moxi_port=info.moxi) shell = RemoteMachineShellConnection(worker) shell.execute_command("/opt/couchbase/bin/cbrestore {2} http://{0}:{1} -b {3}".format( self.master.ip, self.master.port, remote_tmp, bucket)) shell.disconnect() time.sleep(60) keys_exist = BucketOperationHelper.keys_exist_or_assert_in_parallel(inserted_keys, self.master, bucket, self, concurrency=4) self.assertTrue(keys_exist, msg="unable to verify keys after restore") time.sleep(30) BucketOperationHelper.delete_bucket_or_assert(self.master, bucket, self) rest = RestConnection(self.master) helper = RestHelper(rest) nodes = rest.node_statuses() master_id = rest.get_nodes_self().id if len(self.servers) > 1: removed = helper.remove_nodes(knownNodes=[node.id for node in nodes], ejectedNodes=[node.id for node in nodes if node.id != master_id], wait_for_rebalance=True) shell = RemoteMachineShellConnection(worker) shell.remove_directory(remote_tmp) shell.disconnect() self.servers = copy.copy(original_set) if initial_version == fin: builds, changes = BuildQuery().get_all_builds(version=initial_version) for server in self.servers: remote = RemoteMachineShellConnection(server) info = remote.extract_remote_info() self.log.info("Loading version .. {0}".format(initial_version)) older_build = BuildQuery().find_build(builds, product, info.deliverable_type, info.architecture_type, initial_version) remote.stop_couchbase() remote.couchbase_uninstall() remote.download_build(older_build) remote.install_server(older_build) rest = RestConnection(server) RestHelper(rest).is_ns_server_running(testconstants.NS_SERVER_TIMEOUT) rest.init_cluster(server.rest_username, server.rest_password) rest.init_cluster_memoryQuota(memoryQuota=rest.get_nodes_self().mcdMemoryReserved) remote.disconnect() def test_backup_add_restore_default_bucket_started_server(self): self.common_setUp() self._test_backup_add_restore_bucket_body("default", 180, True, True) def test_non_default_bucket(self): self.common_setUp() self._test_backup_add_restore_bucket_body(str(uuid.uuid4()), 60, True, True) def test_default_bucket(self): self.common_setUp() self._test_backup_add_restore_bucket_body("default", 60, True, True) def test_backup_add_restore_non_default_bucket_started_server(self): self.common_setUp() self._test_backup_add_restore_bucket_body("testb", 180, True, True) #self._test_backup_add_restore_bucket_body(bucket="test_bucket") def test_backup_add_restore_default_bucket_non_started_server(self): self.common_setUp() self._test_backup_add_restore_bucket_body("default", 180, False, True) def test_backup_add_restore_non_default_bucket_non_started_server(self): self.common_setUp() self._test_backup_add_restore_bucket_body("testb", 180, False, True) #self._test_backup_add_restore_bucket_body(bucket="test_bucket", startup_flag = False) def test_backup_add_restore_when_ide(self): self.common_setUp() self._test_backup_add_restore_bucket_body("default", 120, True, True) def test_expired_keys_1_replica(self): self.common_setUp() self._test_backup_add_restore_bucket_with_expiration_key(1) def test_expired_keys_2_replica(self): self.common_setUp() self._test_backup_add_restore_bucket_with_expiration_key(2) def test_expired_keys_3_replica(self): self.common_setUp() self._test_backup_add_restore_bucket_with_expiration_key(3) def test_backup_and_restore_bucket_without_overwrite(self): self.common_setUp() self._test_backup_and_restore_bucket_overwriting_body(False) def test_backup_and_restore_bucket_with_overwrite(self): self.common_setUp() self._test_backup_and_restore_bucket_overwriting_body() def test_cluster_topology_change(self): self.common_setUp() self._test_cluster_topology_change_body() def test_delete_key_and_backup_and_restore(self): self.common_setUp() self._test_delete_key_and_backup_and_restore_body() def test_backup_and_restore_on_different_port(self): self.common_setUp() self._test_backup_and_restore_on_different_port_body() def test_backup_and_restore_from_to_different_buckets(self): self.common_setUp() self._test_backup_and_restore_from_to_different_buckets() class BackupHelper(object): def __init__(self, serverInfo, test): self.server = serverInfo self.log = logger.Logger.get_logger() self.test = test #data_file = default-data/default def backup(self, bucket, node, backup_location): mbbackup_path = "{0}/{1}".format("/opt/couchbase/bin", "cbbackup") if self.test.is_membase: mbbackup_path = "{0}/{1}".format("/opt/membase/bin", "mbbackup") data_directory = "{0}/{1}-{2}/{3}".format(node.storage[0].path, bucket, "data", bucket) command = "{0} {1} {2}".format(mbbackup_path, data_directory, backup_location) output, error = self.test.shell.execute_command(command) self.test.shell.log_command_output(output, error) def restore(self, backup_location, moxi_port=None, overwrite_flag=False, username=None, password=None): command = "{0}/{1}".format("/opt/couchbase/bin", "cbrestore") if self.test.is_membase: command = "{0}/{1}".format("/opt/membase/bin", "mbrestore") if not overwrite_flag: command += " -a" if not moxi_port is None: command += " -p {0}".format(moxi_port) if username is not None: command += " -u {0}".format(username) if password is not None: command += " -P {0}".format(password) files = self.test.shell.list_files(backup_location) for file in files: command += " " + file['path'] + "/" + file['file'] command = "{0}".format(command) self.log.info(command) output, error = self.test.shell.execute_command(command) self.test.shell.log_command_output(output, error)
51.436828
150
0.609998
c85f82b7093153bad6ba620351543a2478108a6a
2,165
py
Python
openmdao/docs/_exts/embed_options.py
toddrme2178/OpenMDAO
379cc6216d13d380e11cb3a46f03960981de4660
[ "Apache-2.0" ]
1
2016-05-10T17:01:17.000Z
2016-05-10T17:01:17.000Z
openmdao/docs/_exts/embed_options.py
toddrme2178/OpenMDAO
379cc6216d13d380e11cb3a46f03960981de4660
[ "Apache-2.0" ]
3
2016-05-10T16:55:46.000Z
2018-10-22T23:28:52.000Z
openmdao/docs/_exts/embed_options.py
toddrme2178/OpenMDAO
379cc6216d13d380e11cb3a46f03960981de4660
[ "Apache-2.0" ]
2
2018-04-05T15:53:54.000Z
2018-10-22T22:48:00.000Z
import importlib from six import iteritems from docutils import nodes from docutils.statemachine import ViewList import sphinx from docutils.parsers.rst import Directive from sphinx.util.nodes import nested_parse_with_titles from openmdao.utils.options_dictionary import OptionsDictionary, _undefined class EmbedOptionsDirective(Directive): """ EmbedOptionsDirective is a custom directive to allow an OptionsDictionary to be shown in a nice table form. An example usage would look like this: .. embed-options:: openmdao.solvers.linear.petsc_ksp PETScKrylov options The 3 arguments are the module path, the class name, and name of the options dictionary. What the above will do is replace the directive and its args with a list of options for the desired class. """ required_arguments = 3 optional_arguments = 0 has_content = True def run(self): module_path, class_name, attribute_name = self.arguments mod = importlib.import_module(module_path) klass = getattr(mod, class_name) options = getattr(klass(), attribute_name) if not isinstance(options, OptionsDictionary): raise TypeError("Object '%s' is not an OptionsDictionary." % attribute_name) lines = ViewList() n = 0 for line in options.__rst__(): lines.append(line, "options table", n) n += 1 # Note applicable to System, Solver and Driver 'options', but not to 'recording_options' if attribute_name != 'recording_options': lines.append("", "options table", n+1) # Blank line required after table. # Create a node. node = nodes.section() node.document = self.state.document # Parse the rst. nested_parse_with_titles(self.state, lines, node) # And return the result. return node.children def setup(app): """add custom directive into Sphinx so that it is found during document parsing""" app.add_directive('embed-options', EmbedOptionsDirective) return {'version': sphinx.__display_version__, 'parallel_read_safe': True}
30.069444
96
0.68776
f8d1622ae92d453b9c720704bbb0a9b319763d24
18,476
py
Python
homeassistant/components/xiaomi_aqara/binary_sensor.py
MaxG88/core
827711bcd153279ec56527927eaba4815bcde1d4
[ "Apache-2.0" ]
null
null
null
homeassistant/components/xiaomi_aqara/binary_sensor.py
MaxG88/core
827711bcd153279ec56527927eaba4815bcde1d4
[ "Apache-2.0" ]
null
null
null
homeassistant/components/xiaomi_aqara/binary_sensor.py
MaxG88/core
827711bcd153279ec56527927eaba4815bcde1d4
[ "Apache-2.0" ]
null
null
null
"""Support for Xiaomi aqara binary sensors.""" import logging from homeassistant.components.binary_sensor import ( DEVICE_CLASS_OPENING, BinarySensorEntity, ) from homeassistant.core import callback from homeassistant.helpers.event import async_call_later from . import XiaomiDevice from .const import DOMAIN, GATEWAYS_KEY _LOGGER = logging.getLogger(__name__) NO_CLOSE = "no_close" ATTR_OPEN_SINCE = "Open since" MOTION = "motion" NO_MOTION = "no_motion" ATTR_LAST_ACTION = "last_action" ATTR_NO_MOTION_SINCE = "No motion since" DENSITY = "density" ATTR_DENSITY = "Density" async def async_setup_entry(hass, config_entry, async_add_entities): """Perform the setup for Xiaomi devices.""" entities = [] gateway = hass.data[DOMAIN][GATEWAYS_KEY][config_entry.entry_id] for entity in gateway.devices["binary_sensor"]: model = entity["model"] if model in ["motion", "sensor_motion", "sensor_motion.aq2"]: entities.append(XiaomiMotionSensor(entity, hass, gateway, config_entry)) elif model in ["magnet", "sensor_magnet", "sensor_magnet.aq2"]: entities.append(XiaomiDoorSensor(entity, gateway, config_entry)) elif model == "sensor_wleak.aq1": entities.append(XiaomiWaterLeakSensor(entity, gateway, config_entry)) elif model in ["smoke", "sensor_smoke"]: entities.append(XiaomiSmokeSensor(entity, gateway, config_entry)) elif model in ["natgas", "sensor_natgas"]: entities.append(XiaomiNatgasSensor(entity, gateway, config_entry)) elif model in [ "switch", "sensor_switch", "sensor_switch.aq2", "sensor_switch.aq3", "remote.b1acn01", ]: if "proto" not in entity or int(entity["proto"][0:1]) == 1: data_key = "status" else: data_key = "button_0" entities.append( XiaomiButton(entity, "Switch", data_key, hass, gateway, config_entry) ) elif model in [ "86sw1", "sensor_86sw1", "sensor_86sw1.aq1", "remote.b186acn01", "remote.b186acn02", ]: if "proto" not in entity or int(entity["proto"][0:1]) == 1: data_key = "channel_0" else: data_key = "button_0" entities.append( XiaomiButton( entity, "Wall Switch", data_key, hass, gateway, config_entry ) ) elif model in [ "86sw2", "sensor_86sw2", "sensor_86sw2.aq1", "remote.b286acn01", "remote.b286acn02", ]: if "proto" not in entity or int(entity["proto"][0:1]) == 1: data_key_left = "channel_0" data_key_right = "channel_1" else: data_key_left = "button_0" data_key_right = "button_1" entities.append( XiaomiButton( entity, "Wall Switch (Left)", data_key_left, hass, gateway, config_entry, ) ) entities.append( XiaomiButton( entity, "Wall Switch (Right)", data_key_right, hass, gateway, config_entry, ) ) entities.append( XiaomiButton( entity, "Wall Switch (Both)", "dual_channel", hass, gateway, config_entry, ) ) elif model in ["cube", "sensor_cube", "sensor_cube.aqgl01"]: entities.append(XiaomiCube(entity, hass, gateway, config_entry)) elif model in ["vibration", "vibration.aq1"]: entities.append( XiaomiVibration(entity, "Vibration", "status", gateway, config_entry) ) else: _LOGGER.warning("Unmapped Device Model %s", model) async_add_entities(entities) class XiaomiBinarySensor(XiaomiDevice, BinarySensorEntity): """Representation of a base XiaomiBinarySensor.""" def __init__(self, device, name, xiaomi_hub, data_key, device_class, config_entry): """Initialize the XiaomiSmokeSensor.""" self._data_key = data_key self._device_class = device_class self._should_poll = False self._density = 0 super().__init__(device, name, xiaomi_hub, config_entry) @property def should_poll(self): """Return True if entity has to be polled for state.""" return self._should_poll @property def is_on(self): """Return true if sensor is on.""" return self._state @property def device_class(self): """Return the class of binary sensor.""" return self._device_class def update(self): """Update the sensor state.""" _LOGGER.debug("Updating xiaomi sensor (%s) by polling", self._sid) self._get_from_hub(self._sid) class XiaomiNatgasSensor(XiaomiBinarySensor): """Representation of a XiaomiNatgasSensor.""" def __init__(self, device, xiaomi_hub, config_entry): """Initialize the XiaomiSmokeSensor.""" self._density = None super().__init__( device, "Natgas Sensor", xiaomi_hub, "alarm", "gas", config_entry ) @property def device_state_attributes(self): """Return the state attributes.""" attrs = {ATTR_DENSITY: self._density} attrs.update(super().device_state_attributes) return attrs def parse_data(self, data, raw_data): """Parse data sent by gateway.""" if DENSITY in data: self._density = int(data.get(DENSITY)) value = data.get(self._data_key) if value is None: return False if value in ("1", "2"): if self._state: return False self._state = True return True if value == "0": if self._state: self._state = False return True return False class XiaomiMotionSensor(XiaomiBinarySensor): """Representation of a XiaomiMotionSensor.""" def __init__(self, device, hass, xiaomi_hub, config_entry): """Initialize the XiaomiMotionSensor.""" self._hass = hass self._no_motion_since = 0 self._unsub_set_no_motion = None if "proto" not in device or int(device["proto"][0:1]) == 1: data_key = "status" else: data_key = "motion_status" super().__init__( device, "Motion Sensor", xiaomi_hub, data_key, "motion", config_entry ) @property def device_state_attributes(self): """Return the state attributes.""" attrs = {ATTR_NO_MOTION_SINCE: self._no_motion_since} attrs.update(super().device_state_attributes) return attrs @callback def _async_set_no_motion(self, now): """Set state to False.""" self._unsub_set_no_motion = None self._state = False self.async_write_ha_state() def parse_data(self, data, raw_data): """Parse data sent by gateway. Polling (proto v1, firmware version 1.4.1_159.0143) >> { "cmd":"read","sid":"158..."} << {'model': 'motion', 'sid': '158...', 'short_id': 26331, 'cmd': 'read_ack', 'data': '{"voltage":3005}'} Multicast messages (proto v1, firmware version 1.4.1_159.0143) << {'model': 'motion', 'sid': '158...', 'short_id': 26331, 'cmd': 'report', 'data': '{"status":"motion"}'} << {'model': 'motion', 'sid': '158...', 'short_id': 26331, 'cmd': 'report', 'data': '{"no_motion":"120"}'} << {'model': 'motion', 'sid': '158...', 'short_id': 26331, 'cmd': 'report', 'data': '{"no_motion":"180"}'} << {'model': 'motion', 'sid': '158...', 'short_id': 26331, 'cmd': 'report', 'data': '{"no_motion":"300"}'} << {'model': 'motion', 'sid': '158...', 'short_id': 26331, 'cmd': 'heartbeat', 'data': '{"voltage":3005}'} """ if raw_data["cmd"] == "heartbeat": _LOGGER.debug( "Skipping heartbeat of the motion sensor. " "It can introduce an incorrect state because of a firmware " "bug (https://github.com/home-assistant/home-assistant/pull/" "11631#issuecomment-357507744)" ) return if NO_MOTION in data: self._no_motion_since = data[NO_MOTION] self._state = False return True value = data.get(self._data_key) if value is None: return False if value == MOTION: if self._data_key == "motion_status": if self._unsub_set_no_motion: self._unsub_set_no_motion() self._unsub_set_no_motion = async_call_later( self._hass, 120, self._async_set_no_motion ) if self.entity_id is not None: self._hass.bus.fire( "xiaomi_aqara.motion", {"entity_id": self.entity_id} ) self._no_motion_since = 0 if self._state: return False self._state = True return True class XiaomiDoorSensor(XiaomiBinarySensor): """Representation of a XiaomiDoorSensor.""" def __init__(self, device, xiaomi_hub, config_entry): """Initialize the XiaomiDoorSensor.""" self._open_since = 0 if "proto" not in device or int(device["proto"][0:1]) == 1: data_key = "status" else: data_key = "window_status" super().__init__( device, "Door Window Sensor", xiaomi_hub, data_key, DEVICE_CLASS_OPENING, config_entry, ) @property def device_state_attributes(self): """Return the state attributes.""" attrs = {ATTR_OPEN_SINCE: self._open_since} attrs.update(super().device_state_attributes) return attrs def parse_data(self, data, raw_data): """Parse data sent by gateway.""" self._should_poll = False if NO_CLOSE in data: # handle push from the hub self._open_since = data[NO_CLOSE] return True value = data.get(self._data_key) if value is None: return False if value == "open": self._should_poll = True if self._state: return False self._state = True return True if value == "close": self._open_since = 0 if self._state: self._state = False return True return False class XiaomiWaterLeakSensor(XiaomiBinarySensor): """Representation of a XiaomiWaterLeakSensor.""" def __init__(self, device, xiaomi_hub, config_entry): """Initialize the XiaomiWaterLeakSensor.""" if "proto" not in device or int(device["proto"][0:1]) == 1: data_key = "status" else: data_key = "wleak_status" super().__init__( device, "Water Leak Sensor", xiaomi_hub, data_key, "moisture", config_entry, ) def parse_data(self, data, raw_data): """Parse data sent by gateway.""" self._should_poll = False value = data.get(self._data_key) if value is None: return False if value == "leak": self._should_poll = True if self._state: return False self._state = True return True if value == "no_leak": if self._state: self._state = False return True return False class XiaomiSmokeSensor(XiaomiBinarySensor): """Representation of a XiaomiSmokeSensor.""" def __init__(self, device, xiaomi_hub, config_entry): """Initialize the XiaomiSmokeSensor.""" self._density = 0 super().__init__( device, "Smoke Sensor", xiaomi_hub, "alarm", "smoke", config_entry ) @property def device_state_attributes(self): """Return the state attributes.""" attrs = {ATTR_DENSITY: self._density} attrs.update(super().device_state_attributes) return attrs def parse_data(self, data, raw_data): """Parse data sent by gateway.""" if DENSITY in data: self._density = int(data.get(DENSITY)) value = data.get(self._data_key) if value is None: return False if value in ("1", "2"): if self._state: return False self._state = True return True if value == "0": if self._state: self._state = False return True return False class XiaomiVibration(XiaomiBinarySensor): """Representation of a Xiaomi Vibration Sensor.""" def __init__(self, device, name, data_key, xiaomi_hub, config_entry): """Initialize the XiaomiVibration.""" self._last_action = None super().__init__(device, name, xiaomi_hub, data_key, None, config_entry) @property def device_state_attributes(self): """Return the state attributes.""" attrs = {ATTR_LAST_ACTION: self._last_action} attrs.update(super().device_state_attributes) return attrs def parse_data(self, data, raw_data): """Parse data sent by gateway.""" value = data.get(self._data_key) if value is None: return False if value not in ("vibrate", "tilt", "free_fall", "actively"): _LOGGER.warning("Unsupported movement_type detected: %s", value) return False self.hass.bus.fire( "xiaomi_aqara.movement", {"entity_id": self.entity_id, "movement_type": value}, ) self._last_action = value return True class XiaomiButton(XiaomiBinarySensor): """Representation of a Xiaomi Button.""" def __init__(self, device, name, data_key, hass, xiaomi_hub, config_entry): """Initialize the XiaomiButton.""" self._hass = hass self._last_action = None super().__init__(device, name, xiaomi_hub, data_key, None, config_entry) @property def device_state_attributes(self): """Return the state attributes.""" attrs = {ATTR_LAST_ACTION: self._last_action} attrs.update(super().device_state_attributes) return attrs def parse_data(self, data, raw_data): """Parse data sent by gateway.""" value = data.get(self._data_key) if value is None: return False if value == "long_click_press": self._state = True click_type = "long_click_press" elif value == "long_click_release": self._state = False click_type = "hold" elif value == "click": click_type = "single" elif value == "double_click": click_type = "double" elif value == "both_click": click_type = "both" elif value == "double_both_click": click_type = "double_both" elif value == "shake": click_type = "shake" elif value == "long_click": click_type = "long" elif value == "long_both_click": click_type = "long_both" else: _LOGGER.warning("Unsupported click_type detected: %s", value) return False self._hass.bus.fire( "xiaomi_aqara.click", {"entity_id": self.entity_id, "click_type": click_type}, ) self._last_action = click_type return True class XiaomiCube(XiaomiBinarySensor): """Representation of a Xiaomi Cube.""" def __init__(self, device, hass, xiaomi_hub, config_entry): """Initialize the Xiaomi Cube.""" self._hass = hass self._last_action = None self._state = False if "proto" not in device or int(device["proto"][0:1]) == 1: data_key = "status" else: data_key = "cube_status" super().__init__(device, "Cube", xiaomi_hub, data_key, None, config_entry) @property def device_state_attributes(self): """Return the state attributes.""" attrs = {ATTR_LAST_ACTION: self._last_action} attrs.update(super().device_state_attributes) return attrs def parse_data(self, data, raw_data): """Parse data sent by gateway.""" if self._data_key in data: self._hass.bus.fire( "xiaomi_aqara.cube_action", {"entity_id": self.entity_id, "action_type": data[self._data_key]}, ) self._last_action = data[self._data_key] if "rotate" in data: action_value = float( data["rotate"] if isinstance(data["rotate"], int) else data["rotate"].replace(",", ".") ) self._hass.bus.fire( "xiaomi_aqara.cube_action", { "entity_id": self.entity_id, "action_type": "rotate", "action_value": action_value, }, ) self._last_action = "rotate" if "rotate_degree" in data: action_value = float( data["rotate_degree"] if isinstance(data["rotate_degree"], int) else data["rotate_degree"].replace(",", ".") ) self._hass.bus.fire( "xiaomi_aqara.cube_action", { "entity_id": self.entity_id, "action_type": "rotate", "action_value": action_value, }, ) self._last_action = "rotate" return True
32.471002
87
0.549686
1582d7e4a5fecdf64ea528629b21a276fe0fe927
19,332
py
Python
tests/micro/zephyr/test_zephyr.py
XiaoSong9905/tvm
48940f697e15d5b50fa1f032003e6c700ae1e423
[ "Apache-2.0" ]
90
2021-11-30T11:58:10.000Z
2022-03-31T02:24:04.000Z
tests/micro/zephyr/test_zephyr.py
XiaoSong9905/tvm
48940f697e15d5b50fa1f032003e6c700ae1e423
[ "Apache-2.0" ]
64
2021-11-22T23:58:23.000Z
2022-03-31T03:19:22.000Z
tests/micro/zephyr/test_zephyr.py
XiaoSong9905/tvm
48940f697e15d5b50fa1f032003e6c700ae1e423
[ "Apache-2.0" ]
27
2021-12-09T22:39:27.000Z
2022-03-24T23:21:48.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import logging import os import pathlib import sys import logging import pytest import numpy as np import onnx from PIL import Image import tvm import tvm.relay as relay from tvm.relay.backend import Executor, Runtime from tvm.relay.testing import byoc from tvm.contrib import utils from tvm.micro.testing import check_tune_log import test_utils _LOG = logging.getLogger(__name__) def _make_sess_from_op( temp_dir, model, zephyr_board, west_cmd, op_name, sched, arg_bufs, build_config ): runtime = Runtime("crt", {"system-lib": True}) target = tvm.target.target.micro(model) target = tvm.target.Target(target=target, host=target) with tvm.transform.PassContext(opt_level=3, config={"tir.disable_vectorize": True}): mod = tvm.build(sched, arg_bufs, target=target, runtime=runtime, name=op_name) return _make_session(temp_dir, zephyr_board, west_cmd, mod, build_config) def _make_session(temp_dir, zephyr_board, west_cmd, mod, build_config): config_main_stack_size = None if test_utils.qemu_boards(zephyr_board): config_main_stack_size = 1536 project_options = { "project_type": "host_driven", "west_cmd": west_cmd, "verbose": bool(build_config.get("debug")), "zephyr_board": zephyr_board, } if config_main_stack_size is not None: project_options["config_main_stack_size"] = config_main_stack_size project = tvm.micro.generate_project( str(test_utils.TEMPLATE_PROJECT_DIR), mod, temp_dir / "project", project_options, ) project.build() project.flash() return tvm.micro.Session(project.transport()) def _make_add_sess(temp_dir, model, zephyr_board, west_cmd, build_config, dtype="int8"): A = tvm.te.placeholder((2,), dtype=dtype) B = tvm.te.placeholder((1,), dtype=dtype) C = tvm.te.compute(A.shape, lambda i: A[i] + B[0], name="C") sched = tvm.te.create_schedule(C.op) return _make_sess_from_op( temp_dir, model, zephyr_board, west_cmd, "add", sched, [A, B, C], build_config ) # The same test code can be executed on both the QEMU simulation and on real hardware. @tvm.testing.requires_micro def test_add_uint(temp_dir, board, west_cmd, tvm_debug): """Test compiling the on-device runtime.""" model = test_utils.ZEPHYR_BOARDS[board] build_config = {"debug": tvm_debug} # NOTE: run test in a nested function so cPython will delete arrays before closing the session. def test_basic_add(sess): A_data = tvm.nd.array(np.array([2, 3], dtype="int8"), device=sess.device) assert (A_data.numpy() == np.array([2, 3])).all() B_data = tvm.nd.array(np.array([4], dtype="int8"), device=sess.device) assert (B_data.numpy() == np.array([4])).all() C_data = tvm.nd.array(np.array([0, 0], dtype="int8"), device=sess.device) assert (C_data.numpy() == np.array([0, 0])).all() system_lib = sess.get_system_lib() system_lib.get_function("add")(A_data, B_data, C_data) assert (C_data.numpy() == np.array([6, 7])).all() with _make_add_sess(temp_dir, model, board, west_cmd, build_config) as sess: test_basic_add(sess) # The same test code can be executed on both the QEMU simulation and on real hardware. @tvm.testing.requires_micro def test_add_float(temp_dir, board, west_cmd, tvm_debug): """Test compiling the on-device runtime.""" model = test_utils.ZEPHYR_BOARDS[board] if not test_utils.has_fpu(board): pytest.skip(f"FPU not enabled for {board}") build_config = {"debug": tvm_debug} # NOTE: run test in a nested function so cPython will delete arrays before closing the session. def test_basic_add(sess): A_data = tvm.nd.array(np.array([2.5, 3.5], dtype="float32"), device=sess.device) assert (A_data.numpy() == np.array([2.5, 3.5])).all() B_data = tvm.nd.array(np.array([4.5], dtype="float32"), device=sess.device) assert (B_data.numpy() == np.array([4.5])).all() C_data = tvm.nd.array(np.array([0, 0], dtype="float32"), device=sess.device) assert (C_data.numpy() == np.array([0, 0])).all() system_lib = sess.get_system_lib() system_lib.get_function("add")(A_data, B_data, C_data) assert (C_data.numpy() == np.array([7, 8])).all() with _make_add_sess(temp_dir, model, board, west_cmd, build_config, dtype="float32") as sess: test_basic_add(sess) @tvm.testing.requires_micro def test_platform_timer(temp_dir, board, west_cmd, tvm_debug): """Test compiling the on-device runtime.""" model = test_utils.ZEPHYR_BOARDS[board] build_config = {"debug": tvm_debug} # NOTE: run test in a nested function so cPython will delete arrays before closing the session. def test_basic_add(sess): A_data = tvm.nd.array(np.array([2, 3], dtype="int8"), device=sess.device) assert (A_data.numpy() == np.array([2, 3])).all() B_data = tvm.nd.array(np.array([4], dtype="int8"), device=sess.device) assert (B_data.numpy() == np.array([4])).all() C_data = tvm.nd.array(np.array([0, 0], dtype="int8"), device=sess.device) assert (C_data.numpy() == np.array([0, 0])).all() system_lib = sess.get_system_lib() time_eval_f = system_lib.time_evaluator( "add", sess.device, number=20, repeat=3, min_repeat_ms=40 ) result = time_eval_f(A_data, B_data, C_data) assert (C_data.numpy() == np.array([6, 7])).all() assert result.mean > 0 assert len(result.results) == 3 with _make_add_sess(temp_dir, model, board, west_cmd, build_config) as sess: test_basic_add(sess) @tvm.testing.requires_micro def test_relay(temp_dir, board, west_cmd, tvm_debug): """Testing a simple relay graph""" model = test_utils.ZEPHYR_BOARDS[board] build_config = {"debug": tvm_debug} shape = (10,) dtype = "int8" # Construct Relay program. x = relay.var("x", relay.TensorType(shape=shape, dtype=dtype)) xx = relay.multiply(x, x) z = relay.add(xx, relay.const(np.ones(shape=shape, dtype=dtype))) func = relay.Function([x], z) ir_mod = tvm.IRModule.from_expr(func) runtime = Runtime("crt", {"system-lib": True}) target = tvm.target.target.micro(model) with tvm.transform.PassContext(opt_level=3, config={"tir.disable_vectorize": True}): mod = tvm.relay.build(ir_mod, target=target, runtime=runtime) with _make_session(temp_dir, board, west_cmd, mod, build_config) as session: graph_mod = tvm.micro.create_local_graph_executor( mod.get_graph_json(), session.get_system_lib(), session.device ) graph_mod.set_input(**mod.get_params()) x_in = np.random.randint(10, size=shape[0], dtype=dtype) graph_mod.run(x=x_in) result = graph_mod.get_output(0).numpy() tvm.testing.assert_allclose(graph_mod.get_input(0).numpy(), x_in) tvm.testing.assert_allclose(result, x_in * x_in + 1) @tvm.testing.requires_micro def test_onnx(temp_dir, board, west_cmd, tvm_debug): """Testing a simple ONNX model.""" model = test_utils.ZEPHYR_BOARDS[board] build_config = {"debug": tvm_debug} this_dir = pathlib.Path(os.path.dirname(__file__)) mnist_testdata = this_dir.parent / "testdata" / "mnist" digit_2 = Image.open(mnist_testdata / "digit-2.jpg").resize((28, 28)) digit_2 = np.asarray(digit_2).astype("float32") digit_2 = np.expand_dims(digit_2, axis=0) digit_9 = Image.open(mnist_testdata / "digit-9.jpg").resize((28, 28)) digit_9 = np.asarray(digit_9).astype("float32") digit_9 = np.expand_dims(digit_9, axis=0) # Load ONNX model and convert to Relay. onnx_model = onnx.load(mnist_testdata / "mnist-8.onnx") shape = {"Input3": (1, 1, 28, 28)} relay_mod, params = relay.frontend.from_onnx(onnx_model, shape=shape, freeze_params=True) relay_mod = relay.transform.DynamicToStatic()(relay_mod) # We add the link-params=True option to ensure the model parameters are compiled in. # There is currently a bug preventing the host_driven environment from receiving # the model weights when set using graph_mod.set_input(). # See: https://github.com/apache/tvm/issues/7567 target = tvm.target.target.micro(model) with tvm.transform.PassContext(opt_level=3, config={"tir.disable_vectorize": True}): executor = Executor("graph", {"link-params": True}) runtime = Runtime("crt", {"system-lib": True}) lowered = relay.build(relay_mod, target, params=params, executor=executor, runtime=runtime) graph = lowered.get_graph_json() with _make_session(temp_dir, board, west_cmd, lowered, build_config) as session: graph_mod = tvm.micro.create_local_graph_executor( graph, session.get_system_lib(), session.device ) # Send the digit-2 image and confirm that the correct result is returned. graph_mod.set_input("Input3", tvm.nd.array(digit_2)) graph_mod.run() result = graph_mod.get_output(0).numpy() assert np.argmax(result) == 2 # Send the digit-9 image and confirm that the correct result is returned. graph_mod.set_input("Input3", tvm.nd.array(digit_9)) graph_mod.run() result = graph_mod.get_output(0).numpy() assert np.argmax(result) == 9 def check_result( temp_dir, relay_mod, model, zephyr_board, west_cmd, map_inputs, out_shape, result, build_config ): """Helper function to verify results""" TOL = 1e-5 runtime = Runtime("crt", {"system-lib": True}) target = tvm.target.target.micro(model) with tvm.transform.PassContext(opt_level=3, config={"tir.disable_vectorize": True}): mod = tvm.relay.build(relay_mod, target=target, runtime=runtime) with _make_session(temp_dir, zephyr_board, west_cmd, mod, build_config) as session: rt_mod = tvm.micro.create_local_graph_executor( mod.get_graph_json(), session.get_system_lib(), session.device ) rt_mod.set_input(**mod.get_params()) for name, data in map_inputs.items(): rt_mod.set_input(name, data) rt_mod.set_input(**mod.get_params()) rt_mod.run() out_shapes = out_shape if isinstance(out_shape, list) else [out_shape] results = result if isinstance(result, list) else [result] for idx, shape in enumerate(out_shapes): out = tvm.nd.empty(shape, device=session.device) out = rt_mod.get_output(idx, out) tvm.testing.assert_allclose(out.numpy(), results[idx], rtol=TOL, atol=TOL) @tvm.testing.requires_micro def test_byoc_microtvm(temp_dir, board, west_cmd, tvm_debug): """This is a simple test case to check BYOC capabilities of microTVM""" model = test_utils.ZEPHYR_BOARDS[board] build_config = {"debug": tvm_debug} x = relay.var("x", shape=(10, 10)) w0 = relay.var("w0", shape=(10, 10)) w1 = relay.var("w1", shape=(10, 10)) w2 = relay.var("w2", shape=(10, 10)) w3 = relay.var("w3", shape=(10, 10)) w4 = relay.var("w4", shape=(10, 10)) w5 = relay.var("w5", shape=(10, 10)) w6 = relay.var("w6", shape=(10, 10)) w7 = relay.var("w7", shape=(10, 10)) # C compiler z0 = relay.add(x, w0) p0 = relay.subtract(z0, w1) q0 = relay.multiply(p0, w2) z1 = relay.add(x, w3) p1 = relay.subtract(z1, w4) q1 = relay.multiply(p1, w5) # Other parts on TVM z2 = relay.add(x, w6) q2 = relay.subtract(z2, w7) r = relay.concatenate((q0, q1, q2), axis=0) f = relay.Function([x, w0, w1, w2, w3, w4, w5, w6, w7], r) mod = tvm.IRModule() ann = byoc.CcompilerAnnotator() mod["main"] = ann.visit(f) mod = tvm.relay.transform.PartitionGraph()(mod) mod = tvm.relay.transform.InferType()(mod) x_data = np.random.rand(10, 10).astype("float32") w_data = [] for _ in range(8): w_data.append(np.random.rand(10, 10).astype("float32")) map_inputs = {"w{}".format(i): w_data[i] for i in range(8)} map_inputs["x"] = x_data check_result( temp_dir=temp_dir, relay_mod=mod, map_inputs=map_inputs, out_shape=(30, 10), result=np.concatenate( ( ((x_data + w_data[0]) - w_data[1]) * w_data[2], ((x_data + w_data[3]) - w_data[4]) * w_data[5], x_data + w_data[6] - w_data[7], ), axis=0, ), model=model, zephyr_board=board, west_cmd=west_cmd, build_config=build_config, ) def _make_add_sess_with_shape(temp_dir, model, zephyr_board, west_cmd, shape, build_config): A = tvm.te.placeholder(shape, dtype="int8") C = tvm.te.compute(A.shape, lambda i: A[i] + A[i], name="C") sched = tvm.te.create_schedule(C.op) return _make_sess_from_op( temp_dir, model, zephyr_board, west_cmd, "add", sched, [A, C], build_config ) @pytest.mark.parametrize( "shape,", [ pytest.param((1 * 1024,), id="(1*1024)"), pytest.param((4 * 1024,), id="(4*1024)"), pytest.param((16 * 1024,), id="(16*1024)"), ], ) @tvm.testing.requires_micro def test_rpc_large_array(temp_dir, board, west_cmd, tvm_debug, shape): """Test large RPC array transfer.""" model = test_utils.ZEPHYR_BOARDS[board] build_config = {"debug": tvm_debug} # NOTE: run test in a nested function so cPython will delete arrays before closing the session. def test_tensors(sess): a_np = np.random.randint(low=-128, high=127, size=shape, dtype="int8") A_data = tvm.nd.array(a_np, device=sess.device) assert (A_data.numpy() == a_np).all() C_data = tvm.nd.array(np.zeros(shape, dtype="int8"), device=sess.device) assert (C_data.numpy() == np.zeros(shape)).all() with _make_add_sess_with_shape(temp_dir, model, board, west_cmd, shape, build_config) as sess: test_tensors(sess) @pytest.mark.xfail(strict=False, reason="See https://github.com/apache/tvm/issues/10297") @tvm.testing.requires_micro def test_autotune_conv2d(temp_dir, board, west_cmd, tvm_debug): """Test AutoTune for microTVM Zephyr""" if board != "qemu_x86": pytest.xfail(f"Autotune fails on {board}.") runtime = Runtime("crt", {"system-lib": True}) model = test_utils.ZEPHYR_BOARDS[board] build_config = {"debug": tvm_debug} # Create a Relay model data_shape = (1, 3, 16, 16) weight_shape = (8, 3, 5, 5) data = relay.var("data", relay.TensorType(data_shape, "float32")) weight = relay.var("weight", relay.TensorType(weight_shape, "float32")) y = relay.nn.conv2d( data, weight, padding=(2, 2), kernel_size=(5, 5), kernel_layout="OIHW", out_dtype="float32", ) f = relay.Function([data, weight], y) mod = tvm.IRModule.from_expr(f) mod = relay.transform.InferType()(mod) data_sample = np.random.rand(data_shape[0], data_shape[1], data_shape[2], data_shape[3]).astype( "float32" ) weight_sample = np.random.rand( weight_shape[0], weight_shape[1], weight_shape[2], weight_shape[3] ).astype("float32") params = {mod["main"].params[1].name_hint: weight_sample} target = tvm.target.target.micro(model) pass_context = tvm.transform.PassContext(opt_level=3, config={"tir.disable_vectorize": True}) with pass_context: tasks = tvm.autotvm.task.extract_from_program(mod["main"], {}, target) assert len(tasks) > 0 config_main_stack_size = None if test_utils.qemu_boards(board): config_main_stack_size = 1536 project_options = { "zephyr_board": board, "west_cmd": west_cmd, "verbose": 1, "project_type": "host_driven", } if config_main_stack_size is not None: project_options["config_main_stack_size"] = config_main_stack_size module_loader = tvm.micro.AutoTvmModuleLoader( template_project_dir=test_utils.TEMPLATE_PROJECT_DIR, project_options=project_options, ) timeout = 200 builder = tvm.autotvm.LocalBuilder( timeout=timeout, n_parallel=1, build_kwargs={"build_option": {"tir.disable_vectorize": True}}, do_fork=True, build_func=tvm.micro.autotvm_build_func, runtime=runtime, ) runner = tvm.autotvm.LocalRunner( number=1, repeat=1, timeout=timeout, module_loader=module_loader ) measure_option = tvm.autotvm.measure_option(builder=builder, runner=runner) log_path = pathlib.Path("zephyr_autotune.log") if log_path.exists(): log_path.unlink() n_trial = 10 for task in tasks: tuner = tvm.autotvm.tuner.GATuner(task) tuner.tune( n_trial=n_trial, measure_option=measure_option, callbacks=[ tvm.autotvm.callback.log_to_file(str(log_path)), tvm.autotvm.callback.progress_bar(n_trial, si_prefix="M"), ], si_prefix="M", ) assert tuner.best_flops > 0 check_tune_log(log_path) # Build without tuning with pass_context: lowered = tvm.relay.build(mod, target=target, runtime=runtime, params=params) temp_dir = utils.tempdir() with _make_session(temp_dir, board, west_cmd, lowered, build_config) as session: graph_mod = tvm.micro.create_local_graph_executor( lowered.get_graph_json(), session.get_system_lib(), session.device ) graph_mod.set_input(**lowered.get_params()) graph_mod.run(data=data_sample) expected_output = graph_mod.get_output(0).numpy() del graph_mod # Build using autotune logs with tvm.autotvm.apply_history_best(str(log_path)): with pass_context: lowered_tuned = tvm.relay.build(mod, target=target, runtime=runtime, params=params) temp_dir = utils.tempdir() with _make_session(temp_dir, board, west_cmd, lowered_tuned, build_config) as session: graph_mod = tvm.micro.create_local_graph_executor( lowered_tuned.get_graph_json(), session.get_system_lib(), session.device ) graph_mod.set_input(**lowered_tuned.get_params()) graph_mod.run(data=data_sample) output = graph_mod.get_output(0).numpy() del graph_mod tvm.testing.assert_allclose(output, expected_output, rtol=1e-4, atol=1e-5) if __name__ == "__main__": sys.exit(pytest.main([__file__] + sys.argv[1:]))
38.055118
100
0.661287
8d89ed43b92bb367e8c5815387b57d2c9acb0a75
398
py
Python
packages/python/plotly/plotly/validators/histogram2d/ybins/_start.py
mastermind88/plotly.py
efa70710df1af22958e1be080e105130042f1839
[ "MIT" ]
null
null
null
packages/python/plotly/plotly/validators/histogram2d/ybins/_start.py
mastermind88/plotly.py
efa70710df1af22958e1be080e105130042f1839
[ "MIT" ]
null
null
null
packages/python/plotly/plotly/validators/histogram2d/ybins/_start.py
mastermind88/plotly.py
efa70710df1af22958e1be080e105130042f1839
[ "MIT" ]
null
null
null
import _plotly_utils.basevalidators class StartValidator(_plotly_utils.basevalidators.AnyValidator): def __init__(self, plotly_name="start", parent_name="histogram2d.ybins", **kwargs): super(StartValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), **kwargs, )
33.166667
87
0.670854
36ea7a64e124a7ec50e2bbb436ee507eb9b14dd6
8,149
py
Python
security_scripts/controls/buttons.py
loftwah/security-scripts
eb75b67499d3cb8d87eac114efdc9988a0f56511
[ "MIT" ]
1
2021-12-23T05:02:51.000Z
2021-12-23T05:02:51.000Z
security_scripts/controls/buttons.py
loftwah/security-scripts
eb75b67499d3cb8d87eac114efdc9988a0f56511
[ "MIT" ]
null
null
null
security_scripts/controls/buttons.py
loftwah/security-scripts
eb75b67499d3cb8d87eac114efdc9988a0f56511
[ "MIT" ]
1
2021-12-23T05:02:57.000Z
2021-12-23T05:02:57.000Z
#!/usr/bin/env python """ Make requests to deprivilege a role, stop all ec2 units, or reprivilege a role. Options available via <command> --help """ from security_scripts.information.lib import shlog import logging import boto3 logging.getLogger('boto3').setLevel(logging.CRITICAL) logging.getLogger('botocore').setLevel(logging.CRITICAL) logging.getLogger('nose').setLevel(logging.CRITICAL) logging.getLogger('boto').setLevel(logging.CRITICAL) logging.getLogger('s3transfer').setLevel(logging.CRITICAL) def detacher(args, role): """ Loop through all policies attached to a role and detach them :return: """ # get attached policies and detach them in a loop for policy in role.attached_policies.all(): shlog.normal('Detaching policy ' + policy.arn + ' from role ' + args.role) response = role.detach_policy(PolicyArn=policy.arn) shlog.debug(response) def depriv(args): """ Make a request to deprivilege the target role to no permissions :return: None """ boto3.setup_default_session(profile_name=args.profile) iam = boto3.resource('iam') role = iam.Role(args.role) detacher(args, role) # attach read-only shlog.normal('Attaching ReadOnlyAccess to ' + args.role) response = role.attach_policy(PolicyArn='arn:aws:iam::aws:policy/ReadOnlyAccess') shlog.debug(response) def priv(args): """ Make a request to elevate the target role to ProposedPoweruser :return: None """ boto3.setup_default_session(profile_name=args.profile) iam = boto3.resource('iam') role = iam.Role(args.role) detacher(args, role) # attach read-only shlog.normal('Attaching ProposedPoweruser and RoleManagementWithCondition to ' + args.role) response = role.attach_policy(PolicyArn='arn:aws:iam::' + args.accountid + ':policy/ProposedPoweruser') shlog.debug(response) response = role.attach_policy(PolicyArn='arn:aws:iam::' + args.accountid + ':policy/RoleManagementWithCondition') shlog.debug(response) def ec2stop(args, dryrun=False): """ Make a request to stop all ec2 instances :return: """ from botocore.exceptions import ClientError from security_scripts.information.lib import aws_utils as au # only works in plugin and IDE args.session = boto3.Session(profile_name=args.profile) regions = au.decribe_regions_df(args) # use for deployment # regions = {'RegionName':['us-east-2']} # test mode for region in regions['RegionName']: shlog.normal('Stopping region ' + region) # init connection to region and get instances there client = boto3.client('ec2', region_name=region) response = client.describe_instances()['Reservations'] # go through intance ids for inst in response: # ...and allow termination... instance = inst['Instances'][0]['InstanceId'] shlog.verbose('Allowing API termination for instance ' + instance + ' in region ' + region) response = client.modify_instance_attribute( InstanceId=instance, DisableApiTermination={'Value': False} ) shlog.debug(response) # ...and perform halt shlog.normal('Stopping instance ' + instance + ' in region ' + region) try: response = client.stop_instances( InstanceIds=[instance], DryRun=dryrun, Force=True ) except ClientError as ce: if dryrun: # client error is expected when simulating shlog.normal('Stop simulation succeeded for instance ' + instance) shlog.verbose('Success code: ' + str(ce)) else: # we might actually want to catch real exceptions raise ce pass def control_green_button(args): """Reprivilege target role""" priv(args) def control_red_button(args): """Deprivilege target role and stop all ec2 instances""" depriv(args) ec2stop(args, False) def parser_builder(parent_parser, parser, config, remote=False): """Get a parser and return it with additional options :param parent_parser: top-level parser that will receive a subcommand; can be None if remote=False :param parser: (sub)parser in need of additional arguments :param config: ingested config file in config object format :param remote: whenever we :return: parser with amended options """ target_role = config.get("DEFAULT", "role", fallback="scimma_power_user") accountid = config.get("DOWNLOAD", "accountid", fallback="585193511743") if remote: # green button parser green_parser = parser.add_parser('control_green_button', parents=[parent_parser], description=control_green_button.__doc__) green_parser.set_defaults(func=control_green_button) green_parser.add_argument('--role', '-r', default=target_role, help='AWS role to modify (default: %(default)s)') green_parser.add_argument('--accountid', help='AWS account id (default: %(default)s)', default=accountid) # red button parser red_parser = parser.add_parser('control_red_button', parents=[parent_parser], description=control_red_button.__doc__) red_parser.set_defaults(func=control_red_button) red_parser.add_argument('--role', '-r', default=target_role, help='AWS role to modify (default: %(default)s)') red_parser.add_argument('--accountid', help='AWS account id (default: %(default)s)', default=accountid) else: # augments will be added to local parser parser.add_argument('--role', '-r', default=target_role, help='AWS role to modify (default: %(default)s)') parser.add_argument('--accountid', help='AWS account id (default: %(default)s)', default=accountid) return parser if __name__ == "__main__": import argparse import configparser """ get defaults from configuration system""" from security_scripts.kli import env_control config = configparser.ConfigParser() import os rel_path = "defaults.cfg" cfg_sources = [rel_path, # built-in config for fallback os.path.expanduser(env_control()) # env value ] config.read(cfg_sources) profile = config.get("DEFAULT", "profile", fallback="scimma-uiuc-aws-admin") loglevel = config.get("BUTTONS", "loglevel", fallback="NORMAL") """Create command line arguments""" parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('--profile', '-p', default=profile, help='aws profile to use (default: %(default)s)') parser.add_argument('--loglevel', '-l', help="Level for reporting e.g. NORMAL, VERBOSE, DEBUG (default: %(default)s)", default=loglevel, choices=["NONE", "NORMAL", "DOTS", "WARN", "ERROR", "VERBOSE", "VVERBOSE", "DEBUG"]) # subcommands section parser.set_defaults(func=None) # if none then there are subfunctions subparsers = parser.add_subparsers(title="subcommands", description='valid subcommands', help='additional help') # Subcommand to deprivilege depriv_parser = subparsers.add_parser('depriv', description=depriv.__doc__) depriv_parser.set_defaults(func=depriv) # Subcommand to privilege priv_parser = subparsers.add_parser('priv', description=priv.__doc__) priv_parser.set_defaults(func=priv) # Subcommand to stop ec2 instances ec2_parser = subparsers.add_parser('ec2stop', description=ec2stop.__doc__) ec2_parser.set_defaults(func=ec2stop) parser = parser_builder(None, parser, config, False) args = parser.parse_args() shlog.basicConfig(level=args.loglevel) # args.session = boto3.Session(profile_name=args.profile) if not args.func: # there are no subfunctions parser.print_help() exit(1) args.func(args)
40.745
131
0.665726
52e39bd51853358e3831d48264dfe8796688346b
4,966
py
Python
mailman2/models.py
edinburghhacklab/hackdb
3ec7d66039705aa511dd6559196fa51a53b3a110
[ "MIT" ]
null
null
null
mailman2/models.py
edinburghhacklab/hackdb
3ec7d66039705aa511dd6559196fa51a53b3a110
[ "MIT" ]
null
null
null
mailman2/models.py
edinburghhacklab/hackdb
3ec7d66039705aa511dd6559196fa51a53b3a110
[ "MIT" ]
null
null
null
# SPDX-FileCopyrightText: 2022 Tim Hawes <me@timhawes.com> # # SPDX-License-Identifier: MIT import re from allauth.account.models import EmailAddress from django.contrib.auth import get_user_model from django.contrib.auth.models import Group from django.core.exceptions import ValidationError from django.db import models def find_user_from_address(address): try: emailaddress = EmailAddress.objects.get(email=address, verified=True) return emailaddress.user except EmailAddress.DoesNotExist: return None class MailingList(models.Model): NONE = 0 CONFIRM = 1 REQUIRE_APPROVAL = 2 CONFIRM_AND_APPROVE = 3 SUBSCRIBE_POLICY_CHOICES = [ (NONE, "None"), (CONFIRM, "Confirm"), (REQUIRE_APPROVAL, "Require approval"), (CONFIRM_AND_APPROVE, "Confirm and approve"), ] name = models.CharField(max_length=64, unique=True) description = models.CharField(max_length=255, blank=True) info = models.TextField(blank=True) advertised = models.BooleanField() subscribe_policy = models.SmallIntegerField(choices=SUBSCRIBE_POLICY_CHOICES) archive_private = models.BooleanField() subscribe_auto_approval = models.TextField(blank=True) auto_unsubscribe = models.BooleanField( default=False, help_text="Should non-group members be automatically unsubscribed?", ) def __str__(self): return self.name def check_subscribe_auto_approval(self, address): for pattern in self.subscribe_auto_approval.split("\n"): if pattern.startswith("^"): if re.match(pattern, address): return True elif pattern.lower() == address.lower(): return True return False def user_can_see(self, user): if self.advertised: return True if self.user_can_subscribe(user): return True return False def user_can_subscribe(self, user): if self.subscribe_policy in [self.NONE, self.CONFIRM]: return True for group in user.groups.all(): if self.group_policies.filter(group=group).exists(): return True # if self.check_subscribe_auto_approval(user.email): # return True return False def user_recommend(self, user): for group in user.groups.all(): if self.group_policies.filter( group=group, policy__gte=GroupPolicy.RECOMMEND ).exists(): return True def user_prompt(self, user): for group in user.groups.all(): try: return self.group_policies.get( group=group, policy=GroupPolicy.PROMPT ).prompt except GroupPolicy.DoesNotExist: pass def user_subscribe_policy(self, user): for policy in self.group_policies.order_by("-policy"): if user.groups.contains(policy.group): return policy def address_can_remain(self, address): if not self.auto_unsubscribe: return True if self.check_subscribe_auto_approval(address): return True user = find_user_from_address(address) if user: if self.user_can_subscribe(user): return True return False class Meta: permissions = [("audit_list", "Can audit the subscribers of a mailing list")] class GroupPolicy(models.Model): ALLOW = 0 RECOMMEND = 1 PROMPT = 2 FORCE = 3 POLICY_CHOICES = [ (ALLOW, "Allow"), (RECOMMEND, "Recommend"), (PROMPT, "Prompt"), (FORCE, "Force"), ] mailing_list = models.ForeignKey( MailingList, on_delete=models.CASCADE, related_name="group_policies" ) group = models.ForeignKey( Group, on_delete=models.CASCADE, related_name="mailinglist_policies" ) policy = models.SmallIntegerField(choices=POLICY_CHOICES, default=ALLOW) prompt = models.TextField(blank=True) def __str__(self): return f"{self.mailing_list}:{self.group}:{self.get_policy_display()}" def clean(self): if self.policy == self.PROMPT: if not self.prompt: raise ValidationError("Must supply a message for a prompt policy.") class Meta: verbose_name_plural = "Group policies" unique_together = ("mailing_list", "group") class ChangeOfAddress(models.Model): created = models.DateTimeField(null=False, blank=False, auto_now_add=True) user = models.ForeignKey(get_user_model(), on_delete=models.PROTECT) old_email = models.EmailField() new_email = models.EmailField() class Meta: verbose_name_plural = "Changes of address" class MailmanUser(models.Model): user = models.OneToOneField(get_user_model(), on_delete=models.CASCADE) advanced_mode = models.BooleanField(default=False)
31.630573
85
0.646597
dbc48766a3d16b55567c1c72582b51dbcb86d882
1,321
py
Python
connection_checker/connection_checker.py
igushev/HomeUtils
763f540cfbc22d354ec9497b10652bd83f3f5a5d
[ "MIT" ]
2
2019-07-27T19:10:38.000Z
2019-08-31T11:32:33.000Z
connection_checker/connection_checker.py
igushev/home_tools
763f540cfbc22d354ec9497b10652bd83f3f5a5d
[ "MIT" ]
null
null
null
connection_checker/connection_checker.py
igushev/home_tools
763f540cfbc22d354ec9497b10652bd83f3f5a5d
[ "MIT" ]
null
null
null
from datetime import datetime import os import time class Status(object): Success = 0 Fail = 1 hostnames = ["www.google.com", "www.facebook.com", "www.yandex.ru"] interval = 1 def WriteToLog(message, append_date_time=True, draw_line=True): if append_date_time: message += ' '+str(datetime.now()) message += '\n' if draw_line: message += '-'*80+'\n' log_file=open('log.txt', 'a') log_file.write(message) log_file.close() print(message, end='') def Ping (): ping_failed = False for hostname in hostnames: ping_failed = ping_failed or os.system("ping -n 1 " + hostname) return (Status.Fail if ping_failed else Status.Success) def ConnectionChecker(): prev_status = Status.Success WriteToLog('The program started working at') try: while True: status = Ping() if status != prev_status: if (status == Status.Success): WriteToLog('Connection was established at') else: WriteToLog('Connection was lost at', draw_line=False) prev_status = status time.sleep(interval) except KeyboardInterrupt: WriteToLog('The program finished working at') except Exception: WriteToLog('The program failed at') if __name__ == '__main__': ConnectionChecker()
23.175439
68
0.644209
fee13c8950aba978afea4153ebaab8139f09f78c
6,093
py
Python
tests/integration_tests/conftest.py
7vikpeculiar/superset
800ced5e257d5d83d6dbe4ced0e7318ac40d026f
[ "Apache-2.0" ]
2
2021-12-21T15:57:16.000Z
2022-01-31T02:22:02.000Z
tests/integration_tests/conftest.py
changeiot/superset
299b5dc64448d04abe6b35ee85fbd2b938c781bc
[ "Apache-2.0" ]
19
2022-01-29T03:16:22.000Z
2022-03-25T23:50:16.000Z
tests/integration_tests/conftest.py
changeiot/superset
299b5dc64448d04abe6b35ee85fbd2b938c781bc
[ "Apache-2.0" ]
2
2021-12-21T13:41:18.000Z
2021-12-26T22:16:43.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from __future__ import annotations import functools from typing import Any, Callable, Generator, Optional, TYPE_CHECKING from unittest.mock import patch import pytest from sqlalchemy.engine import Engine from superset import db from superset.extensions import feature_flag_manager from superset.utils.core import json_dumps_w_dates from superset.utils.database import get_example_database, remove_database from tests.integration_tests.test_app import app if TYPE_CHECKING: from superset.connectors.sqla.models import Database CTAS_SCHEMA_NAME = "sqllab_test_db" ADMIN_SCHEMA_NAME = "admin_database" @pytest.fixture def app_context(): with app.app_context(): yield @pytest.fixture(autouse=True, scope="session") def setup_sample_data() -> Any: # TODO(john-bodley): Determine a cleaner way of setting up the sample data without # relying on `tests.integration_tests.test_app.app` leveraging an `app` fixture which is purposely # scoped to the function level to ensure tests remain idempotent. with app.app_context(): setup_presto_if_needed() from superset.cli.test import load_test_users_run load_test_users_run() from superset.examples.css_templates import load_css_templates load_css_templates() yield with app.app_context(): engine = get_example_database().get_sqla_engine() # drop sqlachemy tables db.session.commit() from sqlalchemy.ext import declarative sqla_base = declarative.declarative_base() # uses sorted_tables to drop in proper order without violating foreign constrains for table in sqla_base.metadata.sorted_tables: table.__table__.drop() db.session.commit() def drop_from_schema(engine: Engine, schema_name: str): schemas = engine.execute(f"SHOW SCHEMAS").fetchall() if schema_name not in [s[0] for s in schemas]: # schema doesn't exist return tables_or_views = engine.execute(f"SHOW TABLES in {schema_name}").fetchall() for tv in tables_or_views: engine.execute(f"DROP TABLE IF EXISTS {schema_name}.{tv[0]}") engine.execute(f"DROP VIEW IF EXISTS {schema_name}.{tv[0]}") @pytest.fixture(scope="session") def example_db_provider() -> Callable[[], Database]: # type: ignore class _example_db_provider: _db: Optional[Database] = None def __call__(self) -> Database: with app.app_context(): if self._db is None: self._db = get_example_database() self._load_lazy_data_to_decouple_from_session() return self._db def _load_lazy_data_to_decouple_from_session(self) -> None: self._db.get_sqla_engine() # type: ignore self._db.backend # type: ignore def remove(self) -> None: if self._db: with app.app_context(): remove_database(self._db) _instance = _example_db_provider() yield _instance # TODO - can not use it until referenced objects will be deleted. # _instance.remove() def setup_presto_if_needed(): backend = app.config["SQLALCHEMY_EXAMPLES_URI"].split("://")[0] database = get_example_database() extra = database.get_extra() if backend == "presto": # decrease poll interval for tests extra = { **extra, "engine_params": { "connect_args": {"poll_interval": app.config["PRESTO_POLL_INTERVAL"]} }, } else: # remove `poll_interval` from databases that do not support it extra = {**extra, "engine_params": {}} database.extra = json_dumps_w_dates(extra) db.session.commit() if backend in {"presto", "hive"}: database = get_example_database() engine = database.get_sqla_engine() drop_from_schema(engine, CTAS_SCHEMA_NAME) engine.execute(f"DROP SCHEMA IF EXISTS {CTAS_SCHEMA_NAME}") engine.execute(f"CREATE SCHEMA {CTAS_SCHEMA_NAME}") drop_from_schema(engine, ADMIN_SCHEMA_NAME) engine.execute(f"DROP SCHEMA IF EXISTS {ADMIN_SCHEMA_NAME}") engine.execute(f"CREATE SCHEMA {ADMIN_SCHEMA_NAME}") def with_feature_flags(**mock_feature_flags): """ Use this decorator to mock feature flags in tests.integration_tests. Usage: class TestYourFeature(SupersetTestCase): @with_feature_flags(YOUR_FEATURE=True) def test_your_feature_enabled(self): self.assertEqual(is_feature_enabled("YOUR_FEATURE"), True) @with_feature_flags(YOUR_FEATURE=False) def test_your_feature_disabled(self): self.assertEqual(is_feature_enabled("YOUR_FEATURE"), False) """ def mock_get_feature_flags(): feature_flags = feature_flag_manager._feature_flags or {} return {**feature_flags, **mock_feature_flags} def decorate(test_fn): def wrapper(*args, **kwargs): with patch.object( feature_flag_manager, "get_feature_flags", side_effect=mock_get_feature_flags, ): test_fn(*args, **kwargs) return functools.update_wrapper(wrapper, test_fn) return decorate
33.295082
103
0.682422
033c4f748f3d0e865f123157056e5557ec38e79d
442
py
Python
client.py
Zhiwei5/flask_getting_started
67c6f4a24bd12e5716ad2d384b152be77738a1e4
[ "MIT" ]
null
null
null
client.py
Zhiwei5/flask_getting_started
67c6f4a24bd12e5716ad2d384b152be77738a1e4
[ "MIT" ]
null
null
null
client.py
Zhiwei5/flask_getting_started
67c6f4a24bd12e5716ad2d384b152be77738a1e4
[ "MIT" ]
null
null
null
import requests def main(): r = requests.get("http://vcm-3572.vm.duke.edu:5000/name") name = r.json() print(name) r2 = requests.get("http://vcm-3572.vm.duke.edu:5000/hello/zhiwei") message = r2.json() print(message) r3 = requests.post("http://vcm-3572.vm.duke.edu:5000/distance", json = {"a": [2,3], "b": [3,6]}) distance_result = r3.json() print(distance_result) if __name__ == "__main__": main()
24.555556
100
0.613122
dfbc43195cb30c64703b155147c98d5f77e81b40
1,471
py
Python
nextcloud/views.py
Aytuar/librephotos
1d888fd9f49fcb82cce43412b87f9f9736ad5f47
[ "MIT" ]
1
2021-01-12T16:59:29.000Z
2021-01-12T16:59:29.000Z
nextcloud/views.py
Aytuar/librephotos
1d888fd9f49fcb82cce43412b87f9f9736ad5f47
[ "MIT" ]
4
2021-09-08T03:28:23.000Z
2022-03-12T00:59:15.000Z
nextcloud/views.py
Aytuar/librephotos
1d888fd9f49fcb82cce43412b87f9f9736ad5f47
[ "MIT" ]
null
null
null
from django.shortcuts import render from rest_framework.views import APIView from rest_framework.response import Response from rest_framework.permissions import IsAuthenticated, IsAdminUser, AllowAny from api.models import * import owncloud as nextcloud from api.api_util import get_current_job from nextcloud.directory_watcher import scan_photos from api.util import logger import uuid import datetime class ListDir(APIView): def get(self, request, format=None): path = request.query_params['path'] if request.user.nextcloud_server_address is None: return Response(status=400) nc = nextcloud.Client(request.user.nextcloud_server_address) nc.login(request.user.nextcloud_username, request.user.nextcloud_app_password) try: return Response([{ 'absolute_path': p.path, 'title': p.path.split('/')[-2], 'children': [] } for p in nc.list(path) if p.is_dir()]) except nextcloud.HTTPResponseError: return Response(status=400) # long running jobs class ScanPhotosView(APIView): def get(self, request, format=None): try: job_id = uuid.uuid4() scan_photos(request.user, job_id) return Response({'status': True, 'job_id': job_id}) except BaseException as e: logger.exception("An Error occured") return Response({'status': False})
31.297872
77
0.662814
611a40302dfcb2501b3e552c06f4e4110b0946ad
432
py
Python
sqltemplate/contrib/django/settings.py
marcinn/sqltemplate
e083f5262ae4439843210e32843b9b644604fdf1
[ "BSD-2-Clause" ]
3
2019-12-22T22:44:28.000Z
2021-04-26T04:03:26.000Z
sqltemplate/contrib/django/settings.py
marcinn/sqltemplate
e083f5262ae4439843210e32843b9b644604fdf1
[ "BSD-2-Clause" ]
null
null
null
sqltemplate/contrib/django/settings.py
marcinn/sqltemplate
e083f5262ae4439843210e32843b9b644604fdf1
[ "BSD-2-Clause" ]
null
null
null
from __future__ import absolute_import from django.conf import settings TEMPLATES = getattr(settings, 'SQL_TEMPLATES', [{ 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': False, 'OPTIONS': { 'loaders': [ 'django.template.loaders.filesystem.Loader', 'sqltemplate.contrib.django.loaders.app_directories.Loader', ] }, }])
24
72
0.625
63a4fdab7a7899f0b0d9cfc86fa4fd598fe9c531
9,359
py
Python
environments/particle/particle.py
wx-b/ibc
2c9202e50cfee1abdcd955d3ac1b9d68b5d81e53
[ "Apache-2.0" ]
null
null
null
environments/particle/particle.py
wx-b/ibc
2c9202e50cfee1abdcd955d3ac1b9d68b5d81e53
[ "Apache-2.0" ]
null
null
null
environments/particle/particle.py
wx-b/ibc
2c9202e50cfee1abdcd955d3ac1b9d68b5d81e53
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2021 The Reach ML Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Simple particle environment.""" import collections import copy import os from typing import Union import gin import gym from gym import spaces from gym.envs import registration from ibc.environments.particle import particle_metrics from ibc.environments.particle import particle_viz import matplotlib.pyplot as plt import numpy as np @gin.configurable class ParticleEnv(gym.Env): """Simple particle environment with gym wrapper. The env is configurable but the default is: "go to the green goal, then the blue goal" A key feature of this environment is that it is N-dimensional, i.e. the observation space is: 4N: - position of the agent (N dimensions) - velocity of the agent (N dimensions) - position of the first goal (N dimensions) - position of the second goal (N dimensions) and action space is: N: - position setpoint for the agent (N dimensions) Also configurable instead to: - *wait at the first goal for some time (forces memory) - *randomly go to either the green OR blue goal first (multimodal) - not observe velocity information (can also force more memory usage, since the velocity can be used to infer intent) * = set in the Oracle params, not the env. Key functions: - reset() --> state - step(action) --> state, reward, done, info """ def get_metrics(self, num_episodes): metrics = [ particle_metrics.AverageFirstGoalDistance( self, buffer_size=num_episodes), particle_metrics.AverageSecondGoalDistance( self, buffer_size=num_episodes), particle_metrics.AverageFinalSecondGoalDistance( self, buffer_size=num_episodes), particle_metrics.AverageSuccessMetric( self, buffer_size=num_episodes) ] success_metric = metrics[-1] return metrics, success_metric @gin.configurable def __init__( self, n_steps = 50, n_dim = 2, hide_velocity = False, seed = None, dt = 0.005, # 0.005 = 200 Hz repeat_actions = 10, # 10 makes control 200/10 = 20 Hz k_p = 10., k_v = 5., goal_distance = 0.05 ): """Creates an env instance with options, see options below. Args: n_steps: # of steps until done. n_dim: # of dimensions. hide_velocity: whether or not to hide velocity info from agent. seed: random seed. dt: timestep for internal simulation (not same as control rate) repeat_actions: repeat the action this many times, each for dt. k_p: P gain in PD controller. (p for position) k_v: D gain in PD controller. (v for velocity) goal_distance: Acceptable distances to goals for success. """ self.reset_counter = 0 self.img_save_dir = None self.n_steps = n_steps self.goal_distance = goal_distance self.n_dim = n_dim self.hide_velocity = hide_velocity self._rng = np.random.RandomState(seed=seed) self.dt = dt self.repeat_actions = repeat_actions # Make sure is a multiple. assert int(1/self.dt) % self.repeat_actions == 0 self.k_p = k_p self.k_v = k_v self.action_space = spaces.Box(low=0., high=1., shape=(self.n_dim,), dtype=np.float32) self.observation_space = self._create_observation_space() self.reset() def _create_observation_space(self): obs_dict = collections.OrderedDict( pos_agent=spaces.Box(low=0., high=1., shape=(self.n_dim,), dtype=np.float32), # TODO(peteflorence): is this the actual max for vel_agent? vel_agent=spaces.Box(low=-1e2, high=1e2, shape=(self.n_dim,), dtype=np.float32), pos_first_goal=spaces.Box(low=0., high=1., shape=(self.n_dim,), dtype=np.float32), pos_second_goal=spaces.Box(low=0., high=1., shape=(self.n_dim,), dtype=np.float32) ) if self.hide_velocity: del obs_dict['vel_agent'] return spaces.Dict(obs_dict) def seed(self, seed=None): self._rng = np.random.RandomState(seed=seed) def reset(self): self.reset_counter += 1 self.steps = 0 # self.obs_log and self.act_log hold internal state, # will be useful for plotting. self.obs_log = [] self.act_log = [] self.new_actions = [] obs = dict() obs['pos_agent'] = self._rng.rand(self.n_dim).astype(np.float32) obs['vel_agent'] = np.zeros((self.n_dim)).astype(np.float32) obs['pos_first_goal'] = self._rng.rand(self.n_dim).astype(np.float32) obs['pos_second_goal'] = self._rng.rand(self.n_dim).astype(np.float32) self.obs_log.append(obs) self.min_dist_to_first_goal = np.inf self.min_dist_to_second_goal = np.inf return self._get_state() def _get_state(self): return copy.deepcopy(self.obs_log[-1]) def _internal_step(self, action, new_action): if new_action: self.new_actions.append(len(self.act_log)) self.act_log.append({'pos_setpoint': action}) obs = self.obs_log[-1] # u = k_p (x_{desired} - x) + k_v (xdot_{desired} - xdot) # xdot_{desired} is always (0, 0) --> # u = k_p (x_{desired} - x) - k_v (xdot) u_agent = self.k_p * (action - obs['pos_agent']) - self.k_v * ( obs['vel_agent']) new_xy_agent = obs['pos_agent'] + obs['vel_agent'] * self.dt new_velocity_agent = obs['vel_agent'] + u_agent * self.dt obs = copy.deepcopy(obs) obs['pos_agent'] = new_xy_agent obs['vel_agent'] = new_velocity_agent self.obs_log.append(obs) def dist(self, goal): current_position = self.obs_log[-1]['pos_agent'] return np.linalg.norm(current_position - goal) def _get_reward(self, done): """Reward is 1.0 if agent hits both goals and stays at second.""" # This also statefully updates these values. self.min_dist_to_first_goal = min( self.dist(self.obs_log[0]['pos_first_goal']), self.min_dist_to_first_goal) self.min_dist_to_second_goal = min( self.dist(self.obs_log[0]['pos_second_goal']), self.min_dist_to_second_goal) def _reward(thresh): reward_first = True if self.min_dist_to_first_goal < thresh else False reward_second = True if self.min_dist_to_second_goal < thresh else False return 1.0 if (reward_first and reward_second and done) else 0.0 reward = _reward(self.goal_distance) return reward @property def succeeded(self): thresh = self.goal_distance hit_first = True if self.min_dist_to_first_goal < thresh else False hit_second = True if self.min_dist_to_second_goal < thresh else False # TODO(peteflorence/coreylynch: this doesn't work for multimodal version) current_distance_to_second = self.dist(self.obs_log[0]['pos_second_goal']) still_at_second = True if current_distance_to_second < thresh else False return hit_first and hit_second and still_at_second def step(self, action): self.steps += 1 self._internal_step(action, new_action=True) for _ in range(self.repeat_actions - 1): self._internal_step(action, new_action=False) state = self._get_state() done = True if self.steps >= self.n_steps else False reward = self._get_reward(done) return state, reward, done, {} def render(self, mode='rgb_array'): fig = plt.figure() fig.add_subplot(111) if self.n_dim == 2: fig, _ = particle_viz.visualize_2d(self.obs_log, self.act_log) else: fig, _ = particle_viz.visualize_nd(self.obs_log, self.act_log) fig.canvas.draw() data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8) data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) return data def set_img_save_dir(self, summary_dir): self.img_save_dir = os.path.join(summary_dir, 'imgs') os.makedirs(self.img_save_dir, exist_ok=True) def save_image(self, traj): if traj.is_last(): assert self.img_save_dir is not None if self.n_dim == 2: fig, _ = particle_viz.visualize_2d(self.obs_log, self.act_log) filename = os.path.join(self.img_save_dir, str(self.reset_counter).zfill(6)+'_2d.png') fig.savefig(filename) plt.close(fig) fig, _ = particle_viz.visualize_nd(self.obs_log, self.act_log) filename = os.path.join(self.img_save_dir, str(self.reset_counter).zfill(6)+'_nd.png') fig.savefig(filename) plt.close(fig) # Make sure we only register once to allow us to reload the module in colab for # debugging. if 'Particle-v0' in registration.registry.env_specs: del registration.registry.env_specs['Particle-v0'] registration.register(id='Particle-v0', entry_point=ParticleEnv)
34.791822
79
0.674324
23613ccb0bd19a27ffed1bc3f335ab978be24796
7,659
py
Python
contrib/devtools/update-translations.py
boozioRi/stelo
d29a2041b1a682f7e60d4fd1aac8027fc486743b
[ "MIT" ]
2
2019-11-18T22:06:02.000Z
2020-05-16T19:07:49.000Z
contrib/devtools/update-translations.py
boozioRi/stelo
d29a2041b1a682f7e60d4fd1aac8027fc486743b
[ "MIT" ]
null
null
null
contrib/devtools/update-translations.py
boozioRi/stelo
d29a2041b1a682f7e60d4fd1aac8027fc486743b
[ "MIT" ]
2
2019-01-31T10:41:04.000Z
2020-06-23T21:46:02.000Z
#!/usr/bin/python # Copyright (c) 2014 Wladimir J. van der Laan # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. ''' Run this script from the root of the repository to update all translations from transifex. It will do the following automatically: - fetch all translations using the tx tool - post-process them into valid and committable format - remove invalid control characters - remove location tags (makes diffs less noisy) TODO: - auto-add new translations to the build system according to the translation process ''' from __future__ import division, print_function import subprocess import re import sys import os import io import xml.etree.ElementTree as ET # Name of transifex tool TX = 'tx' # Name of source language file SOURCE_LANG = 'stelo_en.ts' # Directory with locale files LOCALE_DIR = 'src/qt/locale' # Minimum number of messages for translation to be considered at all MIN_NUM_MESSAGES = 10 def check_at_repository_root(): if not os.path.exists('.git'): print('No .git directory found') print('Execute this script at the root of the repository', file=sys.stderr) exit(1) def fetch_all_translations(): if subprocess.call([TX, 'pull', '-f', '-a']): print('Error while fetching translations', file=sys.stderr) exit(1) def find_format_specifiers(s): '''Find all format specifiers in a string.''' pos = 0 specifiers = [] while True: percent = s.find('%', pos) if percent < 0: break try: specifiers.append(s[percent+1]) except: print('Failed to get specifier') pos = percent+2 return specifiers def split_format_specifiers(specifiers): '''Split format specifiers between numeric (Qt) and others (strprintf)''' numeric = [] other = [] for s in specifiers: if s in {'1','2','3','4','5','6','7','8','9'}: numeric.append(s) else: other.append(s) # numeric (Qt) can be present in any order, others (strprintf) must be in specified order return set(numeric),other def sanitize_string(s): '''Sanitize string for printing''' return s.replace('\n',' ') def check_format_specifiers(source, translation, errors, numerus): source_f = split_format_specifiers(find_format_specifiers(source)) # assert that no source messages contain both Qt and strprintf format specifiers # if this fails, go change the source as this is hacky and confusing! #assert(not(source_f[0] and source_f[1])) try: translation_f = split_format_specifiers(find_format_specifiers(translation)) except IndexError: errors.append("Parse error in translation for '%s': '%s'" % (sanitize_string(source), sanitize_string(translation))) return False else: if source_f != translation_f: if numerus and source_f == (set(), ['n']) and translation_f == (set(), []) and translation.find('%') == -1: # Allow numerus translations to omit %n specifier (usually when it only has one possible value) return True errors.append("Mismatch between '%s' and '%s'" % (sanitize_string(source), sanitize_string(translation))) return False return True def all_ts_files(suffix=''): for filename in os.listdir(LOCALE_DIR): # process only language files, and do not process source language if not filename.endswith('.ts'+suffix) or filename == SOURCE_LANG+suffix: continue if suffix: # remove provided suffix filename = filename[0:-len(suffix)] filepath = os.path.join(LOCALE_DIR, filename) yield(filename, filepath) FIX_RE = re.compile(b'[\x00-\x09\x0b\x0c\x0e-\x1f]') def remove_invalid_characters(s): '''Remove invalid characters from translation string''' return FIX_RE.sub(b'', s) # Override cdata escape function to make our output match Qt's (optional, just for cleaner diffs for # comparison, disable by default) _orig_escape_cdata = None def escape_cdata(text): text = _orig_escape_cdata(text) text = text.replace("'", '&apos;') text = text.replace('"', '&quot;') return text def postprocess_translations(reduce_diff_hacks=False): print('Checking and postprocessing...') if reduce_diff_hacks: global _orig_escape_cdata _orig_escape_cdata = ET._escape_cdata ET._escape_cdata = escape_cdata for (filename,filepath) in all_ts_files(): os.rename(filepath, filepath+'.orig') have_errors = False for (filename,filepath) in all_ts_files('.orig'): # pre-fixups to cope with transifex output parser = ET.XMLParser(encoding='utf-8') # need to override encoding because 'utf8' is not understood only 'utf-8' with open(filepath + '.orig', 'rb') as f: data = f.read() # remove control characters; this must be done over the entire file otherwise the XML parser will fail data = remove_invalid_characters(data) tree = ET.parse(io.BytesIO(data), parser=parser) # iterate over all messages in file root = tree.getroot() for context in root.findall('context'): for message in context.findall('message'): numerus = message.get('numerus') == 'yes' source = message.find('source').text translation_node = message.find('translation') # pick all numerusforms if numerus: translations = [i.text for i in translation_node.findall('numerusform')] else: translations = [translation_node.text] for translation in translations: if translation is None: continue errors = [] valid = check_format_specifiers(source, translation, errors, numerus) for error in errors: print('%s: %s' % (filename, error)) if not valid: # set type to unfinished and clear string if invalid translation_node.clear() translation_node.set('type', 'unfinished') have_errors = True # Remove location tags for location in message.findall('location'): message.remove(location) # Remove entire message if it is an unfinished translation if translation_node.get('type') == 'unfinished': context.remove(message) # check if document is (virtually) empty, and remove it if so num_messages = 0 for context in root.findall('context'): for message in context.findall('message'): num_messages += 1 if num_messages < MIN_NUM_MESSAGES: print('Removing %s, as it contains only %i messages' % (filepath, num_messages)) continue # write fixed-up tree # if diff reduction requested, replace some XML to 'sanitize' to qt formatting if reduce_diff_hacks: out = io.BytesIO() tree.write(out, encoding='utf-8') out = out.getvalue() out = out.replace(b' />', b'/>') with open(filepath, 'wb') as f: f.write(out) else: tree.write(filepath, encoding='utf-8') return have_errors if __name__ == '__main__': check_at_repository_root() # fetch_all_translations() postprocess_translations()
37.544118
124
0.629325
1fb70d5625784a3d19acb83a82abce55e9b34a6d
2,630
py
Python
aws_dataclasses/cf_event.py
hypoport/LaWip
30bfe90457a83957d10ec18fe7d61439b5b74280
[ "Apache-2.0" ]
4
2018-10-27T05:38:54.000Z
2021-04-09T14:49:23.000Z
aws_dataclasses/cf_event.py
hypoport/LaWip
30bfe90457a83957d10ec18fe7d61439b5b74280
[ "Apache-2.0" ]
6
2018-10-01T17:11:14.000Z
2019-06-04T07:58:29.000Z
aws_dataclasses/cf_event.py
bweigel/python-aws-dataclasses
8e37d39bc8b7b7b48908d78286c0b6dea7fd90d2
[ "Apache-2.0" ]
3
2018-08-03T21:20:26.000Z
2021-08-12T13:06:15.000Z
from collections import namedtuple from typing import Dict, List, Optional from dataclasses import InitVar, field, dataclass from aws_dataclasses.base import GenericDataClass, EventClass KVPair = namedtuple("KVPair", ['key', 'value']) def _parse_headers(headers) -> Dict[str, List[KVPair]]: out = {} for hdr_name, header_list in headers.items(): out[hdr_name] = [KVPair(header.get("key"), header.get("value")) for header in header_list] return out @dataclass class CloudFrontConfig(GenericDataClass): distribution_id: str = field(init=False) request_id: str = field(init=False) distributionId: InitVar[str] = field(repr=False, default=None) requestId: InitVar[str] = field(repr=False, default=None) def __post_init__(self, distributionId: str, requestId: str): self.request_id = requestId self.distribution_id = distributionId @dataclass class CloudFrontfRequest(GenericDataClass): querystring: str uri: str method: str headers: Dict[str, List[KVPair]] origin: str = field(default=None) client_ip: str = field(init=False) clientIp: InitVar[str] = field(repr=False, default=None) def __post_init__(self, clientIp: str): self.client_ip = clientIp self.headers = _parse_headers(self.headers) @dataclass class CloudFrontResponse(GenericDataClass): status: str status_description: str = field(init=False) headers: Dict[str, List[KVPair]] statusDescription: InitVar[str] = field(repr=False, default=None) def __post_init__(self, statusDescription: str): self.status_description = statusDescription self.headers = _parse_headers(self.headers) @dataclass class CloudFrontRecord(GenericDataClass): config: CloudFrontConfig request: Optional[CloudFrontfRequest] = field(default=None) response: Optional[CloudFrontResponse] = field(default=None) def __post_init__(self): self.config = CloudFrontConfig.from_json(self.config) self.request = CloudFrontfRequest.from_json(self.request) if self.request is not None else self.request self.response = CloudFrontResponse.from_json(self.response) if self.response is not None else self.response @dataclass class CloudFrontEvent(EventClass): records: List[CloudFrontRecord] = field(init=False) first_record: CloudFrontRecord = field(init=False) Records: InitVar[List[Dict]] = field(repr=False, default=[]) def __post_init__(self, Records: List[Dict]): self.records = [CloudFrontRecord.from_json(record["cf"]) for record in Records] self.first_record = self.records[0]
33.717949
115
0.726616
b28947d0b6f97f362c21f680a53eb68056959970
1,215
py
Python
tests_classla/test_tagger.py
IgorTavcar/classla
5a1246b62eb352af631d4f4593f467e9ccbd3777
[ "Apache-2.0" ]
12
2019-11-25T14:51:21.000Z
2021-02-21T16:59:38.000Z
tests_classla/test_tagger.py
IgorTavcar/classla
5a1246b62eb352af631d4f4593f467e9ccbd3777
[ "Apache-2.0" ]
23
2021-03-12T13:17:17.000Z
2022-02-14T08:56:53.000Z
tests_classla/test_tagger.py
IgorTavcar/classla
5a1246b62eb352af631d4f4593f467e9ccbd3777
[ "Apache-2.0" ]
7
2021-04-04T15:04:27.000Z
2022-02-20T17:33:39.000Z
""" Basic testing of part of speech tagging """ import classla from tests_classla import * SL_DOC = "France Prešeren se je rodil v vrbi." SL_DOC_GOLD = """ <Token id=1;words=[<Word id=1;text=France;upos=PROPN;xpos=Npmsn;feats=Case=Nom|Gender=Masc|Number=Sing>]> <Token id=2;words=[<Word id=2;text=Prešeren;upos=PROPN;xpos=Npmsn;feats=Case=Nom|Gender=Masc|Number=Sing>]> <Token id=3;words=[<Word id=3;text=se;upos=PRON;xpos=Px------y;feats=PronType=Prs|Reflex=Yes|Variant=Short>]> <Token id=4;words=[<Word id=4;text=je;upos=AUX;xpos=Va-r3s-n;feats=Mood=Ind|Number=Sing|Person=3|Polarity=Pos|Tense=Pres|VerbForm=Fin>]> <Token id=5;words=[<Word id=5;text=rodil;upos=VERB;xpos=Vmbp-sm;feats=Gender=Masc|Number=Sing|VerbForm=Part>]> <Token id=6;words=[<Word id=6;text=v;upos=ADP;xpos=Sl;feats=Case=Loc>]> <Token id=7;words=[<Word id=7;text=vrbi;upos=NOUN;xpos=Ncfsl;feats=Case=Loc|Gender=Fem|Number=Sing>]> <Token id=8;words=[<Word id=8;text=.;upos=PUNCT;xpos=Z>]> """.strip() def test_part_of_speech(): nlp = classla.Pipeline(**{'processors': 'tokenize,pos', 'dir': TEST_MODELS_DIR, 'lang': 'sl'}) doc = nlp(SL_DOC) assert SL_DOC_GOLD == '\n\n'.join([sent.tokens_string() for sent in doc.sentences])
43.392857
136
0.714403
e3bc99f1cae4ed04beba1ed159ce3a33cd8dbf89
83
py
Python
examen/p4/p4.py
Ale-Torrico/computacion_para_ingenieria
919205e485ddd0a40adcf543a8ef675712354024
[ "Apache-2.0" ]
null
null
null
examen/p4/p4.py
Ale-Torrico/computacion_para_ingenieria
919205e485ddd0a40adcf543a8ef675712354024
[ "Apache-2.0" ]
null
null
null
examen/p4/p4.py
Ale-Torrico/computacion_para_ingenieria
919205e485ddd0a40adcf543a8ef675712354024
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Wed Feb 9 07:44:47 2022 @author: AMD """
10.375
35
0.542169
e8071634d1019c0eeec4cf933fc5a5e335fd85d1
2,140
py
Python
plotjog.py
mostlyuseful/marlin-plotjog
f188a9351b4a4188d92a4865e6b5199b4065adf9
[ "MIT" ]
null
null
null
plotjog.py
mostlyuseful/marlin-plotjog
f188a9351b4a4188d92a4865e6b5199b4065adf9
[ "MIT" ]
null
null
null
plotjog.py
mostlyuseful/marlin-plotjog
f188a9351b4a4188d92a4865e6b5199b4065adf9
[ "MIT" ]
null
null
null
# -*- coding:utf-8 -*- import sys import joystick import serial import threading import numpy as np from rx import Observable from rx.subjects import Subject from rx.concurrency import NewThreadScheduler FEEDRATE = 400 # mm / minute MAX_REACH = 0.2 # mm / feedrate MIN_NORM = 0.2 device_fn = sys.argv[1] if len(sys.argv)>1 else joystick.Joystick.available_sticks()[0] print("Using input device: {0}".format(device_fn)) in_stick = joystick.Joystick(device_fn) tty = serial.Serial('/dev/ttyUSB0',250000) def send_gcode(s): tty.flushInput() tty.write(s + b'\n') return tty.readline().strip() def poll_joystick(_): poll_result = in_stick.poll() x, y = None, None if poll_result.changed_axis is not None: axis = poll_result.changed_axis if axis.number == 0: x = axis.fvalue elif axis.number == 1: y = axis.fvalue return x, y def update_position(accu, update): return tuple( (current if current is not None else previous) for current, previous in zip(update, accu) ) joystick_positions = Observable.interval(1).map(poll_joystick).scan(update_position, (0,0)) cv = threading.Condition() new_position = None def new_position_available(): global new_position return new_position is not None def execute_move(): global cv, new_position while True: with cv: cv.wait_for(new_position_available) dx, dy = new_position new_position = None # Relative positioning send_gcode(b'G91') # Rapid move send_gcode('G1 X{:.3f} Y{:.3f} F{}'.format(dx, -dy, FEEDRATE).encode('ascii')) consumer_thread = threading.Thread(target=execute_move) consumer_thread.daemon = True consumer_thread.start() def move_printer(delta): global cv, new_position if np.linalg.norm(delta) > MIN_NORM: dx, dy = np.array(delta) * MAX_REACH print(dx, dy) with cv: new_position = dx, dy cv.notify() joystick_positions \ .filter(lambda pos: all(val is not None for val in pos)) \ .combine_latest(Observable.interval(20), lambda a,b: a) \ .observe_on(NewThreadScheduler()) \ .subscribe(on_next=move_printer) input("Press any key to exit\n")
24.883721
107
0.705607
fcf82356b52a680b9972850e01df3873afd13ba8
12,980
py
Python
zfit/models/physics.py
kailiu77/zfit
00eed81fb34e0eb2e4bae5ddc9ebf38699e107ca
[ "BSD-3-Clause" ]
1
2022-01-15T13:38:12.000Z
2022-01-15T13:38:12.000Z
zfit/models/physics.py
kailiu77/zfit
00eed81fb34e0eb2e4bae5ddc9ebf38699e107ca
[ "BSD-3-Clause" ]
null
null
null
zfit/models/physics.py
kailiu77/zfit
00eed81fb34e0eb2e4bae5ddc9ebf38699e107ca
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2019 zfit from typing import Type, Any import tensorflow as tf import tensorflow_probability.python.distributions as tfd import numpy as np import zfit from zfit import ztf from ..core.basepdf import BasePDF from ..core.limits import ANY_UPPER, ANY_LOWER, Space from ..settings import ztypes from ..util import ztyping def _powerlaw(x, a, k): return a * tf.pow(x, k) def crystalball_func(x, mu, sigma, alpha, n): t = (x - mu) / sigma * tf.sign(alpha) abs_alpha = tf.abs(alpha) a = tf.pow((n / abs_alpha), n) * tf.exp(-0.5 * tf.square(alpha)) b = (n / abs_alpha) - abs_alpha cond = tf.less(t, -abs_alpha) # func = tf.where(cond, tf.exp(-0.5 * tf.square(t)), _powerlaw(b - t, a, -n)) func = ztf.safe_where(cond, lambda t: _powerlaw(b - t, a, -n), lambda t: tf.exp(-0.5 * tf.square(t)), values=t, value_safer=lambda t: tf.ones_like(t) * (b - 2)) return func def double_crystalball_func(x, mu, sigma, alphal, nl, alphar, nr): cond = tf.less(x, mu) func = tf.compat.v1.where(cond, crystalball_func(x, mu, sigma, alphal, nl), crystalball_func(x, mu, sigma, -alphar, nr)) return func # def _python_crystalball_integral(limits, params): # not working with tf, used for autoconvert # mu = params['mu'] # sigma = params['sigma'] # alpha = params['alpha'] # n = params['n'] # # (lower,), (upper,) = limits.limits # # sqrt_pi_over_two = np.sqrt(np.pi / 2) # sqrt2 = np.sqrt(2) # # result = 0.0 # use_log = tf.abs(n - 1.0) < 1.0e-05 # # abs_sigma = tf.abs(sigma) # abs_alpha = tf.abs(alpha) # # tmin = (lower - mu) / abs_sigma # tmax = (upper - mu) / abs_sigma # # if alpha < 0: # tmin, tmax = -tmax, -tmin # # if tmin >= -abs_alpha: # result += abs_sigma * sqrt_pi_over_two * (tf.erf(tmax / sqrt2) # - tf.erf(tmin / sqrt2)) # # elif tmax <= -abs_alpha: # a = tf.pow(n / abs_alpha, n) * tf.exp(-0.5 * tf.square(abs_alpha)) # # b = n / abs_alpha - abs_alpha # # if use_log: # result += a * abs_sigma * (tf.log(b - tmin) - tf.log(b - tmax)) # else: # result += a * abs_sigma / (1.0 - n) * (1.0 / (tf.pow(b - tmin, n - 1.0)) # - 1.0 / (tf.pow(b - tmax, n - 1.0))) # else: # a = tf.pow(n / abs_alpha, n) * tf.exp(-0.5 * tf.square(abs_alpha)) # b = n / abs_alpha - abs_alpha # # if use_log: # term1 = a * abs_sigma * (tf.log(b - tmin) - tf.log(n / abs_alpha)) # # else: # term1 = a * abs_sigma / (1.0 - n) * (1.0 / (tf.pow(b - tmin, n - 1.0)) # - 1.0 / (tf.pow(n / abs_alpha, n - 1.0))) # # term2 = abs_sigma * sqrt_pi_over_two * (tf.erf(tmax / sqrt2) # - tf.erf(-abs_alpha / sqrt2)) # # result += term1 + term2 # # return result # created with the help of TensorFlow autograph used on python code converted from ShapeCB of RooFit def crystalball_integral(limits, params, model): mu = params['mu'] sigma = params['sigma'] alpha = params['alpha'] n = params['n'] (lower,), (upper,) = limits.limits lower = lower[0] # obs number 0 upper = upper[0] sqrt_pi_over_two = np.sqrt(np.pi / 2) sqrt2 = np.sqrt(2) result = 0.0 use_log = tf.less(tf.abs(n - 1.0), 1e-05) abs_sigma = tf.abs(sigma) abs_alpha = tf.abs(alpha) tmin = (lower - mu) / abs_sigma tmax = (upper - mu) / abs_sigma def if_true(): return tf.negative(tmin), tf.negative(tmax) def if_false(): return tmax, tmin tmax, tmin = tf.cond(pred=tf.less(alpha, 0), true_fn=if_true, false_fn=if_false) def if_true_4(): result_5, = result, result_5 += abs_sigma * sqrt_pi_over_two * (tf.math.erf(tmax / sqrt2) - tf.math.erf(tmin / sqrt2)) return result_5 def if_false_4(): result_6 = result def if_true_3(): result_3 = result_6 a = tf.pow(n / abs_alpha, n) * tf.exp(-0.5 * tf.square(abs_alpha)) b = n / abs_alpha - abs_alpha def if_true_1(): result_1, = result_3, result_1 += a * abs_sigma * (tf.math.log(b - tmin) - tf.math.log(b - tmax)) return result_1 def if_false_1(): result_2, = result_3, result_2 += a * abs_sigma / (1.0 - n) * ( 1.0 / tf.pow(b - tmin, n - 1.0) - 1.0 / tf.pow(b - tmax, n - 1.0)) return result_2 result_3 = tf.cond(pred=use_log, true_fn=if_true_1, false_fn=if_false_1) return result_3 def if_false_3(): result_4, = result_6, a = tf.pow(n / abs_alpha, n) * tf.exp(-0.5 * tf.square(abs_alpha)) b = n / abs_alpha - abs_alpha def if_true_2(): term1 = a * abs_sigma * (tf.math.log(b - tmin) - tf.math.log(n / abs_alpha)) return term1 def if_false_2(): term1 = a * abs_sigma / (1.0 - n) * ( 1.0 / tf.pow(b - tmin, n - 1.0) - 1.0 / tf.pow(n / abs_alpha, n - 1.0)) return term1 term1 = tf.cond(pred=use_log, true_fn=if_true_2, false_fn=if_false_2) term2 = abs_sigma * sqrt_pi_over_two * ( tf.math.erf(tmax / sqrt2) - tf.math.erf(-abs_alpha / sqrt2)) result_4 += term1 + term2 return result_4 result_6 = tf.cond(pred=tf.less_equal(tmax, -abs_alpha), true_fn=if_true_3, false_fn=if_false_3) return result_6 # if_false_4() result = tf.cond(pred=tf.greater_equal(tmin, -abs_alpha), true_fn=if_true_4, false_fn=if_false_4) return result def double_crystalball_integral(limits, params, model): mu = params['mu'] sigma = params['sigma'] (lower,), (upper,) = limits.limits lower = lower[0] # obs number 0 upper = upper[0] limits_left = Space(limits.obs, (lower, mu)) limits_right = Space(limits.obs, (mu, upper)) params_left = dict(mu=mu, sigma=sigma, alpha=params["alphal"], n=params["nl"]) params_right = dict(mu=mu, sigma=sigma, alpha=-params["alphar"], n=params["nr"]) left = tf.cond(pred=tf.less(mu, lower), true_fn=0., false_fn=crystalball_integral(limits_left, params_left)) right = tf.cond(pred=tf.greater(mu, upper), true_fn=0., false_fn=crystalball_integral(limits_right, params_right)) return left + right class CrystalBall(BasePDF): _N_OBS = 1 def __init__(self, mu: ztyping.ParamTypeInput, sigma: ztyping.ParamTypeInput, alpha: ztyping.ParamTypeInput, n: ztyping.ParamTypeInput, obs: ztyping.ObsTypeInput, name: str = "CrystalBall", dtype: Type = ztypes.float): """`Crystal Ball shaped PDF`__. A combination of a Gaussian with an powerlaw tail. The function is defined as follows: .. math:: f(x;\\mu, \\sigma, \\alpha, n) = \\begin{cases} \\exp(- \\frac{(x - \\mu)^2}{2 \\sigma^2}), & \\mbox{for}\\frac{x - \\mu}{\\sigma} \\geqslant -\\alpha \\newline A \\cdot (B - \\frac{x - \\mu}{\\sigma})^{-n}, & \\mbox{for }\\frac{x - \\mu}{\\sigma} < -\\alpha \\end{cases} with .. math:: A = \\left(\\frac{n}{\\left| \\alpha \\right|}\\right)^n \\cdot \\exp\\left(- \\frac {\\left|\\alpha \\right|^2}{2}\\right) B = \\frac{n}{\\left| \\alpha \\right|} - \\left| \\alpha \\right| Args: mu (`zfit.Parameter`): The mean of the gaussian sigma (`zfit.Parameter`): Standard deviation of the gaussian alpha (`zfit.Parameter`): parameter where to switch from a gaussian to the powertail n (`zfit.Parameter`): Exponent of the powertail obs (:py:class:`~zfit.Space`): name (str): dtype (tf.DType): .. _CBShape: https://en.wikipedia.org/wiki/Crystal_Ball_function __CBShape_ """ params = {'mu': mu, 'sigma': sigma, 'alpha': alpha, 'n': n} super().__init__(obs=obs, dtype=dtype, name=name, params=params) def _unnormalized_pdf(self, x): mu = self.params['mu'] sigma = self.params['sigma'] alpha = self.params['alpha'] n = self.params['n'] x = x.unstack_x() return crystalball_func(x=x, mu=mu, sigma=sigma, alpha=alpha, n=n) crystalball_integral_limits = Space.from_axes(axes=(0,), limits=(((ANY_LOWER,),), ((ANY_UPPER,),))) # TODO uncomment, dependency: bug in TF (31.1.19) # 25339 that breaks gradient of resource var in cond # CrystalBall.register_analytic_integral(func=crystalball_integral, limits=crystalball_integral_limits) class DoubleCB(BasePDF): _N_OBS = 1 def __init__(self, mu: ztyping.ParamTypeInput, sigma: ztyping.ParamTypeInput, alphal: ztyping.ParamTypeInput, nl: ztyping.ParamTypeInput, alphar: ztyping.ParamTypeInput, nr: ztyping.ParamTypeInput, obs: ztyping.ObsTypeInput, name: str = "DoubleCB", dtype: Type = ztypes.float): """`Double sided Crystal Ball shaped PDF`__. A combination of two CB using the **mu** (not a frac). on each side. The function is defined as follows: .. math:: f(x;\\mu, \\sigma, \\alpha_{L}, n_{L}, \\alpha_{R}, n_{R}) = \\begin{cases} A_{L} \\cdot (B_{L} - \\frac{x - \\mu}{\\sigma})^{-n}, & \\mbox{for }\\frac{x - \\mu}{\\sigma} < -\\alpha_{L} \\newline \\exp(- \\frac{(x - \\mu)^2}{2 \\sigma^2}), & -\\alpha_{L} \\leqslant \\mbox{for}\\frac{x - \\mu}{\\sigma} \\leqslant \\alpha_{R} \\newline A_{R} \\cdot (B_{R} - \\frac{x - \\mu}{\\sigma})^{-n}, & \\mbox{for }\\frac{x - \\mu}{\\sigma} > \\alpha_{R} \\end{cases} with .. math:: A_{L/R} = \\left(\\frac{n_{L/R}}{\\left| \\alpha_{L/R} \\right|}\\right)^n_{L/R} \\cdot \\exp\\left(- \\frac {\\left|\\alpha_{L/R} \\right|^2}{2}\\right) B_{L/R} = \\frac{n_{L/R}}{\\left| \\alpha_{L/R} \\right|} - \\left| \\alpha_{L/R} \\right| Args: mu (`zfit.Parameter`): The mean of the gaussian sigma (`zfit.Parameter`): Standard deviation of the gaussian alphal (`zfit.Parameter`): parameter where to switch from a gaussian to the powertail on the left side nl (`zfit.Parameter`): Exponent of the powertail on the left side alphar (`zfit.Parameter`): parameter where to switch from a gaussian to the powertail on the right side nr (`zfit.Parameter`): Exponent of the powertail on the right side obs (:py:class:`~zfit.Space`): name (str): dtype (tf.DType): """ params = {'mu': mu, 'sigma': sigma, 'alphal': alphal, 'nl': nl, 'alphar': alphar, 'nr': nr} super().__init__(obs=obs, dtype=dtype, name=name, params=params) def _unnormalized_pdf(self, x): mu = self.params['mu'] sigma = self.params['sigma'] alphal = self.params['alphal'] nl = self.params['nl'] alphar = self.params['alphar'] nr = self.params['nr'] x = x.unstack_x() return double_crystalball_func(x=x, mu=mu, sigma=sigma, alphal=alphal, nl=nl, alphar=alphar, nr=nr) # DoubleCB.register_analytic_integral(func=double_crystalball_integral, limits=crystalball_integral_limits) if __name__ == '__main__': mu = ztf.constant(0) sigma = ztf.constant(0.5) alpha = ztf.constant(3) n = ztf.constant(1) # res = crystalball_func(np.random.random(size=100), mu, sigma, alpha, n) # int1 = crystalball_integral(limits=zfit.Space(obs='obs1', limits=(-3, 5)), # params={'mu': mu, "sigma": sigma, "alpha": alpha, "n": n}) from tensorflow.contrib import autograph import matplotlib.pyplot as plt new_code = autograph.to_code(crystalball_integral) obs = zfit.Space(obs='obs1', limits=(-3, 1)) cb1 = CrystalBall(mu, sigma, alpha, n, obs=obs) res = cb1.pdf(np.random.random(size=100)) int1 = cb1.integrate(limits=(-0.01, 2), norm_range=obs) # tf.add_check_numerics_ops() x = np.linspace(-5, 1, num=1000) vals = cb1.pdf(x=x) y = zfit.run(vals)[0] plt.plot(x, y) plt.show() # print(new_code) print(zfit.run(res)) print(zfit.run(int1))
36.256983
118
0.545455
ca546b8edec8439712e578285a1e1b1750ddc5bc
1,071
py
Python
boto3_type_annotations/boto3_type_annotations/dynamodbstreams/client.py
cowboygneox/boto3_type_annotations
450dce1de4e066b939de7eac2ec560ed1a7ddaa2
[ "MIT" ]
119
2018-12-01T18:20:57.000Z
2022-02-02T10:31:29.000Z
boto3_type_annotations/boto3_type_annotations/dynamodbstreams/client.py
cowboygneox/boto3_type_annotations
450dce1de4e066b939de7eac2ec560ed1a7ddaa2
[ "MIT" ]
15
2018-11-16T00:16:44.000Z
2021-11-13T03:44:18.000Z
boto3_type_annotations/boto3_type_annotations/dynamodbstreams/client.py
cowboygneox/boto3_type_annotations
450dce1de4e066b939de7eac2ec560ed1a7ddaa2
[ "MIT" ]
11
2019-05-06T05:26:51.000Z
2021-09-28T15:27:59.000Z
from typing import Optional from botocore.client import BaseClient from botocore.waiter import Waiter from typing import Union from typing import Dict from botocore.paginate import Paginator class Client(BaseClient): def can_paginate(self, operation_name: str = None): pass def describe_stream(self, StreamArn: str, Limit: int = None, ExclusiveStartShardId: str = None) -> Dict: pass def generate_presigned_url(self, ClientMethod: str = None, Params: Dict = None, ExpiresIn: int = None, HttpMethod: str = None): pass def get_paginator(self, operation_name: str = None) -> Paginator: pass def get_records(self, ShardIterator: str, Limit: int = None) -> Dict: pass def get_shard_iterator(self, StreamArn: str, ShardId: str, ShardIteratorType: str, SequenceNumber: str = None) -> Dict: pass def get_waiter(self, waiter_name: str = None) -> Waiter: pass def list_streams(self, TableName: str = None, Limit: int = None, ExclusiveStartStreamArn: str = None) -> Dict: pass
32.454545
131
0.694678
03d924307bb6a727d3d7b445f200a655a6b3e04d
324
py
Python
Model.py
tuantvk/flask-mongodb-quiz-app
54a0b214332294517cfe759e76e7904e6f2f2e7a
[ "MIT" ]
2
2019-10-03T08:03:33.000Z
2022-03-27T13:30:26.000Z
Model.py
tuantvk/flask-mongodb-quiz-app
54a0b214332294517cfe759e76e7904e6f2f2e7a
[ "MIT" ]
null
null
null
Model.py
tuantvk/flask-mongodb-quiz-app
54a0b214332294517cfe759e76e7904e6f2f2e7a
[ "MIT" ]
null
null
null
#!/usr/bin/env python from pymongo import MongoClient, errors from config import HOST_DB try: client = MongoClient(HOST_DB, serverSelectionTimeoutMS=10) db = client.quizapp except errors.ServerSelectionTimeoutError as err: print("DB error", err) # create db user user_list = db.user # create db room room = db.room
20.25
60
0.765432
c5eaeabcabd4ff96dc4ed7deac7ed457a1d7a351
17,223
py
Python
src/poio/ui/Ui_MainAnalyzerQML.py
cidles/poio-analyzer
64fd7327164d7d67a3615c10b047a95d5f34a2cd
[ "Apache-2.0" ]
3
2017-04-07T08:20:27.000Z
2021-01-07T20:32:24.000Z
src/poio/ui/Ui_MainAnalyzerQML.py
cidles/poio-analyzer
64fd7327164d7d67a3615c10b047a95d5f34a2cd
[ "Apache-2.0" ]
null
null
null
src/poio/ui/Ui_MainAnalyzerQML.py
cidles/poio-analyzer
64fd7327164d7d67a3615c10b047a95d5f34a2cd
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'MainAnalyzerQML.ui' # # Created: Tue May 28 11:30:41 2013 # by: PyQt4 UI code generator 4.9.6 # # WARNING! All changes made in this file will be lost! from PyQt4 import QtCore, QtGui try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: def _fromUtf8(s): return s try: _encoding = QtGui.QApplication.UnicodeUTF8 def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig, _encoding) except AttributeError: def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig) class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName(_fromUtf8("MainWindow")) MainWindow.resize(800, 600) self.centralWidget = QtGui.QWidget(MainWindow) self.centralWidget.setObjectName(_fromUtf8("centralWidget")) self.horizontalLayout = QtGui.QHBoxLayout(self.centralWidget) self.horizontalLayout.setObjectName(_fromUtf8("horizontalLayout")) self.gridLayout = QtGui.QGridLayout() self.gridLayout.setObjectName(_fromUtf8("gridLayout")) self.label_7 = QtGui.QLabel(self.centralWidget) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_7.sizePolicy().hasHeightForWidth()) self.label_7.setSizePolicy(sizePolicy) self.label_7.setSizeIncrement(QtCore.QSize(1, 0)) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.label_7.setFont(font) self.label_7.setObjectName(_fromUtf8("label_7")) self.gridLayout.addWidget(self.label_7, 12, 1, 1, 2) self.line = QtGui.QFrame(self.centralWidget) self.line.setFrameShape(QtGui.QFrame.HLine) self.line.setFrameShadow(QtGui.QFrame.Sunken) self.line.setObjectName(_fromUtf8("line")) self.gridLayout.addWidget(self.line, 11, 1, 1, 7) self.buttonRemoveFiles = QtGui.QPushButton(self.centralWidget) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.MinimumExpanding, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.buttonRemoveFiles.sizePolicy().hasHeightForWidth()) self.buttonRemoveFiles.setSizePolicy(sizePolicy) self.buttonRemoveFiles.setObjectName(_fromUtf8("buttonRemoveFiles")) self.gridLayout.addWidget(self.buttonRemoveFiles, 14, 2, 1, 1) self.listFiles = QtGui.QListView(self.centralWidget) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Expanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.listFiles.sizePolicy().hasHeightForWidth()) self.listFiles.setSizePolicy(sizePolicy) self.listFiles.setSizeIncrement(QtCore.QSize(1, 0)) self.listFiles.setSelectionMode(QtGui.QAbstractItemView.ExtendedSelection) self.listFiles.setObjectName(_fromUtf8("listFiles")) self.gridLayout.addWidget(self.listFiles, 13, 1, 1, 2) self.lineeditQuickSearch = QtGui.QLineEdit(self.centralWidget) self.lineeditQuickSearch.setEnabled(False) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(4) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lineeditQuickSearch.sizePolicy().hasHeightForWidth()) self.lineeditQuickSearch.setSizePolicy(sizePolicy) self.lineeditQuickSearch.setObjectName(_fromUtf8("lineeditQuickSearch")) self.gridLayout.addWidget(self.lineeditQuickSearch, 14, 5, 1, 3) self.buttonSearch = QtGui.QPushButton(self.centralWidget) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(4) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.buttonSearch.sizePolicy().hasHeightForWidth()) self.buttonSearch.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.buttonSearch.setFont(font) self.buttonSearch.setObjectName(_fromUtf8("buttonSearch")) self.gridLayout.addWidget(self.buttonSearch, 3, 5, 1, 3) self.tabWidget = QtGui.QTabWidget(self.centralWidget) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Minimum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.tabWidget.sizePolicy().hasHeightForWidth()) self.tabWidget.setSizePolicy(sizePolicy) self.tabWidget.setLocale(QtCore.QLocale(QtCore.QLocale.English, QtCore.QLocale.UnitedStates)) self.tabWidget.setTabsClosable(False) self.tabWidget.setObjectName(_fromUtf8("tabWidget")) self.tabNewSearch = QtGui.QWidget() self.tabNewSearch.setObjectName(_fromUtf8("tabNewSearch")) self.tabWidget.addTab(self.tabNewSearch, _fromUtf8("")) self.gridLayout.addWidget(self.tabWidget, 2, 1, 1, 7) self.buttonAlignCenter = QtGui.QToolButton(self.centralWidget) self.buttonAlignCenter.setEnabled(False) icon = QtGui.QIcon() icon.addPixmap(QtGui.QPixmap(_fromUtf8(":/images/pixmaps/aligncenter.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.buttonAlignCenter.setIcon(icon) self.buttonAlignCenter.setIconSize(QtCore.QSize(24, 24)) self.buttonAlignCenter.setCheckable(True) self.buttonAlignCenter.setAutoRaise(True) self.buttonAlignCenter.setObjectName(_fromUtf8("buttonAlignCenter")) self.gridLayout.addWidget(self.buttonAlignCenter, 12, 7, 1, 1) self.buttonAlignLeft = QtGui.QToolButton(self.centralWidget) self.buttonAlignLeft.setEnabled(False) self.buttonAlignLeft.setLocale(QtCore.QLocale(QtCore.QLocale.English, QtCore.QLocale.UnitedStates)) icon1 = QtGui.QIcon() icon1.addPixmap(QtGui.QPixmap(_fromUtf8(":/images/pixmaps/alignleft.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.buttonAlignLeft.setIcon(icon1) self.buttonAlignLeft.setIconSize(QtCore.QSize(24, 24)) self.buttonAlignLeft.setCheckable(True) self.buttonAlignLeft.setChecked(True) self.buttonAlignLeft.setAutoRaise(True) self.buttonAlignLeft.setObjectName(_fromUtf8("buttonAlignLeft")) self.gridLayout.addWidget(self.buttonAlignLeft, 12, 6, 1, 1) self.buttonClearThisSearch = QtGui.QPushButton(self.centralWidget) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.MinimumExpanding, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.buttonClearThisSearch.sizePolicy().hasHeightForWidth()) self.buttonClearThisSearch.setSizePolicy(sizePolicy) self.buttonClearThisSearch.setObjectName(_fromUtf8("buttonClearThisSearch")) self.gridLayout.addWidget(self.buttonClearThisSearch, 3, 1, 1, 1) self.declarativeviewResult = QtDeclarative.QDeclarativeView(self.centralWidget) self.declarativeviewResult.setFrameShape(QtGui.QFrame.StyledPanel) self.declarativeviewResult.setVerticalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOff) self.declarativeviewResult.setHorizontalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOff) self.declarativeviewResult.setObjectName(_fromUtf8("declarativeviewResult")) self.gridLayout.addWidget(self.declarativeviewResult, 13, 3, 1, 5) self.buttonCloseThisSearch = QtGui.QPushButton(self.centralWidget) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.MinimumExpanding, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.buttonCloseThisSearch.sizePolicy().hasHeightForWidth()) self.buttonCloseThisSearch.setSizePolicy(sizePolicy) self.buttonCloseThisSearch.setObjectName(_fromUtf8("buttonCloseThisSearch")) self.gridLayout.addWidget(self.buttonCloseThisSearch, 3, 2, 1, 1) self.buttonSaveSearches = QtGui.QPushButton(self.centralWidget) self.buttonSaveSearches.setEnabled(False) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(1) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.buttonSaveSearches.sizePolicy().hasHeightForWidth()) self.buttonSaveSearches.setSizePolicy(sizePolicy) self.buttonSaveSearches.setObjectName(_fromUtf8("buttonSaveSearches")) self.gridLayout.addWidget(self.buttonSaveSearches, 3, 3, 1, 1) self.label_8 = QtGui.QLabel(self.centralWidget) self.label_8.setSizeIncrement(QtCore.QSize(2, 0)) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.label_8.setFont(font) self.label_8.setObjectName(_fromUtf8("label_8")) self.gridLayout.addWidget(self.label_8, 12, 3, 1, 1) self.label_9 = QtGui.QLabel(self.centralWidget) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(1) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_9.sizePolicy().hasHeightForWidth()) self.label_9.setSizePolicy(sizePolicy) self.label_9.setLayoutDirection(QtCore.Qt.RightToLeft) self.label_9.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.label_9.setObjectName(_fromUtf8("label_9")) self.gridLayout.addWidget(self.label_9, 14, 3, 1, 1) self.buttonAddFiles = QtGui.QPushButton(self.centralWidget) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.MinimumExpanding, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.buttonAddFiles.sizePolicy().hasHeightForWidth()) self.buttonAddFiles.setSizePolicy(sizePolicy) self.buttonAddFiles.setObjectName(_fromUtf8("buttonAddFiles")) self.gridLayout.addWidget(self.buttonAddFiles, 14, 1, 1, 1) self.horizontalLayout.addLayout(self.gridLayout) MainWindow.setCentralWidget(self.centralWidget) self.statusBar = QtGui.QStatusBar(MainWindow) self.statusBar.setObjectName(_fromUtf8("statusBar")) MainWindow.setStatusBar(self.statusBar) self.menuBar = QtGui.QMenuBar(MainWindow) self.menuBar.setGeometry(QtCore.QRect(0, 0, 800, 21)) self.menuBar.setObjectName(_fromUtf8("menuBar")) self.menuFiel = QtGui.QMenu(self.menuBar) self.menuFiel.setObjectName(_fromUtf8("menuFiel")) self.menuEdit = QtGui.QMenu(self.menuBar) self.menuEdit.setObjectName(_fromUtf8("menuEdit")) self.menuAbout = QtGui.QMenu(self.menuBar) self.menuAbout.setObjectName(_fromUtf8("menuAbout")) MainWindow.setMenuBar(self.menuBar) self.actionQuit = QtGui.QAction(MainWindow) self.actionQuit.setObjectName(_fromUtf8("actionQuit")) self.actionNewProject = QtGui.QAction(MainWindow) self.actionNewProject.setEnabled(False) self.actionNewProject.setObjectName(_fromUtf8("actionNewProject")) self.actionSaveProject = QtGui.QAction(MainWindow) self.actionSaveProject.setEnabled(False) self.actionSaveProject.setObjectName(_fromUtf8("actionSaveProject")) self.actionSaveProjectAs = QtGui.QAction(MainWindow) self.actionSaveProjectAs.setEnabled(False) self.actionSaveProjectAs.setObjectName(_fromUtf8("actionSaveProjectAs")) self.actionEditWordClasses = QtGui.QAction(MainWindow) self.actionEditWordClasses.setEnabled(False) self.actionEditWordClasses.setObjectName(_fromUtf8("actionEditWordClasses")) self.actionSearches = QtGui.QAction(MainWindow) self.actionSearches.setEnabled(False) self.actionSearches.setObjectName(_fromUtf8("actionSearches")) self.actionAboutPoioAnalyzer = QtGui.QAction(MainWindow) self.actionAboutPoioAnalyzer.setObjectName(_fromUtf8("actionAboutPoioAnalyzer")) self.actionQuickSearch = QtGui.QAction(MainWindow) self.actionQuickSearch.setEnabled(False) self.actionQuickSearch.setObjectName(_fromUtf8("actionQuickSearch")) self.actionExportSearchResult = QtGui.QAction(MainWindow) self.actionExportSearchResult.setObjectName(_fromUtf8("actionExportSearchResult")) self.menuFiel.addAction(self.actionNewProject) self.menuFiel.addAction(self.actionSaveProject) self.menuFiel.addSeparator() self.menuFiel.addAction(self.actionExportSearchResult) self.menuFiel.addSeparator() self.menuFiel.addAction(self.actionSaveProjectAs) self.menuFiel.addAction(self.actionQuit) self.menuEdit.addSeparator() self.menuEdit.addAction(self.actionEditWordClasses) self.menuEdit.addSeparator() self.menuEdit.addAction(self.actionSearches) self.menuEdit.addAction(self.actionQuickSearch) self.menuAbout.addAction(self.actionAboutPoioAnalyzer) self.menuBar.addAction(self.menuFiel.menuAction()) self.menuBar.addAction(self.menuEdit.menuAction()) self.menuBar.addAction(self.menuAbout.menuAction()) self.retranslateUi(MainWindow) self.tabWidget.setCurrentIndex(0) QtCore.QMetaObject.connectSlotsByName(MainWindow) MainWindow.setTabOrder(self.tabWidget, self.buttonClearThisSearch) MainWindow.setTabOrder(self.buttonClearThisSearch, self.buttonSearch) MainWindow.setTabOrder(self.buttonSearch, self.listFiles) MainWindow.setTabOrder(self.listFiles, self.buttonAlignLeft) MainWindow.setTabOrder(self.buttonAlignLeft, self.buttonAlignCenter) MainWindow.setTabOrder(self.buttonAlignCenter, self.buttonAddFiles) MainWindow.setTabOrder(self.buttonAddFiles, self.buttonRemoveFiles) MainWindow.setTabOrder(self.buttonRemoveFiles, self.lineeditQuickSearch) def retranslateUi(self, MainWindow): MainWindow.setWindowTitle(_translate("MainWindow", "PoioAnalyzer", None)) self.label_7.setText(_translate("MainWindow", "Files:", None)) self.buttonRemoveFiles.setText(_translate("MainWindow", "Remove files", None)) self.buttonSearch.setText(_translate("MainWindow", "Search", None)) self.tabWidget.setTabText(self.tabWidget.indexOf(self.tabNewSearch), _translate("MainWindow", "New Search...", None)) self.buttonAlignCenter.setText(_translate("MainWindow", "...", None)) self.buttonAlignLeft.setText(_translate("MainWindow", "...", None)) self.buttonClearThisSearch.setText(_translate("MainWindow", "Clear This Search", None)) self.buttonCloseThisSearch.setText(_translate("MainWindow", "Close This Search", None)) self.buttonSaveSearches.setText(_translate("MainWindow", "Save Searches...", None)) self.label_8.setText(_translate("MainWindow", "Result:", None)) self.label_9.setText(_translate("MainWindow", "Quick Search:", None)) self.buttonAddFiles.setText(_translate("MainWindow", "Add files...", None)) self.menuFiel.setTitle(_translate("MainWindow", "File", None)) self.menuEdit.setTitle(_translate("MainWindow", "Edit", None)) self.menuAbout.setTitle(_translate("MainWindow", "About", None)) self.actionQuit.setText(_translate("MainWindow", "Quit", None)) self.actionQuit.setShortcut(_translate("MainWindow", "Ctrl+Q", None)) self.actionNewProject.setText(_translate("MainWindow", "New Project", None)) self.actionNewProject.setShortcut(_translate("MainWindow", "Ctrl+N", None)) self.actionSaveProject.setText(_translate("MainWindow", "Save Project", None)) self.actionSaveProject.setShortcut(_translate("MainWindow", "Ctrl+S", None)) self.actionSaveProjectAs.setText(_translate("MainWindow", "Save Project As...", None)) self.actionEditWordClasses.setText(_translate("MainWindow", "Edit Word Classes...", None)) self.actionSearches.setText(_translate("MainWindow", "Saved Searches...", None)) self.actionAboutPoioAnalyzer.setText(_translate("MainWindow", "About PoioAnalyzer...", None)) self.actionQuickSearch.setText(_translate("MainWindow", "Quick Search", None)) self.actionQuickSearch.setShortcut(_translate("MainWindow", "Ctrl+F", None)) self.actionExportSearchResult.setText(_translate("MainWindow", "Export Search Result...", None)) self.actionExportSearchResult.setShortcut(_translate("MainWindow", "Ctrl+E", None)) from PyQt4 import QtDeclarative import poioanalyzer_rc
60.010453
125
0.733438
94f53b225ade52d44373bd510ab5dc0c66ca6cd4
4,250
py
Python
newassess.py
Juzhang18/assessmentV1.1
13862450a31cbc34db960c76d5040b8517d90c78
[ "MIT" ]
1
2019-08-15T17:52:33.000Z
2019-08-15T17:52:33.000Z
newassess.py
Juzhang18/assessmentV1.1
13862450a31cbc34db960c76d5040b8517d90c78
[ "MIT" ]
null
null
null
newassess.py
Juzhang18/assessmentV1.1
13862450a31cbc34db960c76d5040b8517d90c78
[ "MIT" ]
null
null
null
import csv import smtplib import flask from flask import Flask, render_template,request, jsonify #-------------CSV functions ported over-------- def csver(myDict): writefile = 'masterDatabase.csv' header = ['name', 'email', 'company', 'emailing', 'messaging', 'calendar', 'video', 'voice', 'secure', 'collab', 'mobile', 'access', 'remotely', 'fit', 'check', 'personalized', 'outside', 'onboarding', 'training', 'self-service', 'hardware', 'resources', 'security'] with open(writefile, 'a', newline='\n') as csvFile: w = csv.writer(csvFile) w.writerow(myDict.values()) def intoDict(filename): #compiles a dictionary with the values in the csv with open(filename, mode='r', newline='') as csv_file: csv_reader = csv.reader(csv_file) counter=0 dictionary={} for row in csv_reader: dictionary[counter] = row counter +=1 return dictionary def locator(dic,term): index=0 for i in dic[0]: #looks through the header for the term if i == term: print(term + " has been found at " + str(index)) break else: index += 1 return index def sort(dic,location): #sorts the items in the dic into a new one by location counter=0 sortedDict = {} for j in dic: if dic[counter][location] not in sortedDict: sortedDict[dic[counter][location]] = [counter] #if list does not exist yet, create new list else: sortedDict[dic[counter][location]].append(counter) #else it appends on an existing one counter+=1 return sortedDict def ultraFind(filename,headerTerm): dictionary=intoDict(filename) location=locator(dictionary,headerTerm) print('---------this is the dictionary we are working with---------- \n') print(dictionary) sortedDict=sort(dictionary,location) del sortedDict[headerTerm] #deletes the header element in the dictionary print('\n ----------this is the dictionary sorted by the header term, ' + headerTerm + ':---------- \n') print(sortedDict) return sortedDict #-----------FLASK APPLICATION--------------- #THIS IS THE APPLICATION OBJECT, ALLOWING USE OF APP app = Flask(__name__) app.config["DEBUG"] = True #DEBUGGER #DECORATORS: THEY LINK FUNCTION TO A URL @app.route('/') def home(): return 'Hello world! Perhaps you were looking for index' #returns hello world @app.route('/index', methods = ['GET', 'POST']) def index(): return render_template('index.HTML') @app.route('/results', methods = ['GET', 'POST']) def results(): if request.method == 'POST': result = request.form categories = ultraFind('assessment.csv','category') resultValues=list(result.values())[4:] index=0 counter=0 for res in resultValues: resultValues[counter] = int(res) counter+=1 for category in categories: catLength=len(categories[category]) percentify=100/(5*catLength) categories[category] = int(sum(resultValues[index:index+catLength])*percentify) index += catLength #categories['Communication'] = (int(result['emailing']) + int(result['messaging']) + int(result['calendar']) + int(result['video']) + int(result['voice'])) *4 #adds all the results up for COM and change it into percent #categories['Collaboration'] = (int(result['secure']) + int(result['collab']) + int(result['mobile']) + int(result['access']) + int(result['remotely'])) *4 #adds all the results up for COM #categories['Employment'] = (int(result['fit']) + int(result['check']) + int(result['personalized']) + int(result['outside']) + int(result['onboarding'])) *4 #adds all the results up for COM #categories['Investment'] = (int(result['training']) + int(result['self-service']) + int(result['hardware']) + int(result['resources']) + int(result['security'])) *4 #adds all the results up for COM csver(result) return render_template('results.HTML', categories = categories, result=result)#returns the results for HTML manipulation app.run()
40.865385
268
0.619294
c1e9b65af41b6d227a7602dd1d81fd2b9b5bbe79
19,226
py
Python
chrome/common/extensions/docs/server2/api_data_source.py
devasia1000/chromium
919a8a666862fb866a6bb7aa7f3ae8c0442b4828
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
2
2019-02-03T05:19:48.000Z
2021-11-15T15:07:21.000Z
chrome/common/extensions/docs/server2/api_data_source.py
devasia1000/chromium
919a8a666862fb866a6bb7aa7f3ae8c0442b4828
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
null
null
null
chrome/common/extensions/docs/server2/api_data_source.py
devasia1000/chromium
919a8a666862fb866a6bb7aa7f3ae8c0442b4828
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import copy import logging import os from collections import defaultdict, Mapping import third_party.json_schema_compiler.json_parse as json_parse import third_party.json_schema_compiler.model as model import third_party.json_schema_compiler.idl_schema as idl_schema import third_party.json_schema_compiler.idl_parser as idl_parser def _RemoveNoDocs(item): if json_parse.IsDict(item): if item.get('nodoc', False): return True for key, value in item.items(): if _RemoveNoDocs(value): del item[key] elif type(item) == list: to_remove = [] for i in item: if _RemoveNoDocs(i): to_remove.append(i) for i in to_remove: item.remove(i) return False def _DetectInlineableTypes(schema): """Look for documents that are only referenced once and mark them as inline. Actual inlining is done by _InlineDocs. """ if not schema.get('types'): return banned = frozenset(('value', 'choices', 'items', 'returns')) refcounts = defaultdict(int) # Use an explicit stack instead of recursion. stack = [schema] while stack: node = stack.pop() if isinstance(node, list): stack.extend(node) elif isinstance(node, Mapping): if '$ref' in node: refcounts[node['$ref']] += 1 stack.extend(v for k, v in node.iteritems() if k not in banned) for type_ in schema['types']: if not 'enum' in type_: if refcounts[type_['id']] == 1: type_['inline_doc'] = True def _InlineDocs(schema): """Replace '$ref's that refer to inline_docs with the json for those docs. """ types = schema.get('types') if types is None: return inline_docs = {} types_without_inline_doc = [] # Gather the types with inline_doc. for type_ in types: if type_.get('inline_doc'): inline_docs[type_['id']] = type_ for k in ('description', 'id', 'inline_doc'): type_.pop(k, None) else: types_without_inline_doc.append(type_) schema['types'] = types_without_inline_doc def apply_inline(node): if isinstance(node, list): for i in node: apply_inline(i) elif isinstance(node, Mapping): ref = node.get('$ref') if ref and ref in inline_docs: node.update(inline_docs[ref]) del node['$ref'] for k, v in node.iteritems(): apply_inline(v) apply_inline(schema) def _CreateId(node, prefix): if node.parent is not None and not isinstance(node.parent, model.Namespace): return '-'.join([prefix, node.parent.simple_name, node.simple_name]) return '-'.join([prefix, node.simple_name]) def _FormatValue(value): """Inserts commas every three digits for integer values. It is magic. """ s = str(value) return ','.join([s[max(0, i - 3):i] for i in range(len(s), 0, -3)][::-1]) class _JSCModel(object): """Uses a Model from the JSON Schema Compiler and generates a dict that a Handlebar template can use for a data source. """ def __init__(self, json, ref_resolver, disable_refs, idl=False): self._ref_resolver = ref_resolver self._disable_refs = disable_refs clean_json = copy.deepcopy(json) if _RemoveNoDocs(clean_json): self._namespace = None else: if idl: _DetectInlineableTypes(clean_json) _InlineDocs(clean_json) self._namespace = model.Namespace(clean_json, clean_json['namespace']) def _FormatDescription(self, description): if self._disable_refs: return description return self._ref_resolver.ResolveAllLinks(description, namespace=self._namespace.name) def _GetLink(self, link): if self._disable_refs: type_name = link.split('.', 1)[-1] return { 'href': '#type-%s' % type_name, 'text': link, 'name': link } return self._ref_resolver.SafeGetLink(link, namespace=self._namespace.name) def ToDict(self): if self._namespace is None: return {} return { 'name': self._namespace.name, 'types': self._GenerateTypes(self._namespace.types.values()), 'functions': self._GenerateFunctions(self._namespace.functions), 'events': self._GenerateEvents(self._namespace.events), 'properties': self._GenerateProperties(self._namespace.properties) } def _GenerateTypes(self, types): return [self._GenerateType(t) for t in types] def _GenerateType(self, type_): type_dict = { 'name': type_.simple_name, 'description': self._FormatDescription(type_.description), 'properties': self._GenerateProperties(type_.properties), 'functions': self._GenerateFunctions(type_.functions), 'events': self._GenerateEvents(type_.events), 'id': _CreateId(type_, 'type') } self._RenderTypeInformation(type_, type_dict) return type_dict def _GenerateFunctions(self, functions): return [self._GenerateFunction(f) for f in functions.values()] def _GenerateFunction(self, function): function_dict = { 'name': function.simple_name, 'description': self._FormatDescription(function.description), 'callback': self._GenerateCallback(function.callback), 'parameters': [], 'returns': None, 'id': _CreateId(function, 'method') } if (function.parent is not None and not isinstance(function.parent, model.Namespace)): function_dict['parent_name'] = function.parent.simple_name if function.returns: function_dict['returns'] = self._GenerateType(function.returns) for param in function.params: function_dict['parameters'].append(self._GenerateProperty(param)) if function.callback is not None: # Show the callback as an extra parameter. function_dict['parameters'].append( self._GenerateCallbackProperty(function.callback)) if len(function_dict['parameters']) > 0: function_dict['parameters'][-1]['last'] = True return function_dict def _GenerateEvents(self, events): return [self._GenerateEvent(e) for e in events.values()] def _GenerateEvent(self, event): event_dict = { 'name': event.simple_name, 'description': self._FormatDescription(event.description), 'parameters': [self._GenerateProperty(p) for p in event.params], 'callback': self._GenerateCallback(event.callback), 'filters': [self._GenerateProperty(f) for f in event.filters], 'conditions': [self._GetLink(condition) for condition in event.conditions], 'actions': [self._GetLink(action) for action in event.actions], 'supportsRules': event.supports_rules, 'id': _CreateId(event, 'event') } if (event.parent is not None and not isinstance(event.parent, model.Namespace)): event_dict['parent_name'] = event.parent.simple_name if event.callback is not None: # Show the callback as an extra parameter. event_dict['parameters'].append( self._GenerateCallbackProperty(event.callback)) if len(event_dict['parameters']) > 0: event_dict['parameters'][-1]['last'] = True return event_dict def _GenerateCallback(self, callback): if not callback: return None callback_dict = { 'name': callback.simple_name, 'simple_type': {'simple_type': 'function'}, 'optional': callback.optional, 'parameters': [] } for param in callback.params: callback_dict['parameters'].append(self._GenerateProperty(param)) if (len(callback_dict['parameters']) > 0): callback_dict['parameters'][-1]['last'] = True return callback_dict def _GenerateProperties(self, properties): return [self._GenerateProperty(v) for v in properties.values()] def _GenerateProperty(self, property_): if not hasattr(property_, 'type_'): for d in dir(property_): if not d.startswith('_'): print ('%s -> %s' % (d, getattr(property_, d))) type_ = property_.type_ # Make sure we generate property info for arrays, too. # TODO(kalman): what about choices? if type_.property_type == model.PropertyType.ARRAY: properties = type_.item_type.properties else: properties = type_.properties property_dict = { 'name': property_.simple_name, 'optional': property_.optional, 'description': self._FormatDescription(property_.description), 'properties': self._GenerateProperties(type_.properties), 'functions': self._GenerateFunctions(type_.functions), 'parameters': [], 'returns': None, 'id': _CreateId(property_, 'property') } if type_.property_type == model.PropertyType.FUNCTION: function = type_.function for param in function.params: property_dict['parameters'].append(self._GenerateProperty(param)) if function.returns: property_dict['returns'] = self._GenerateType(function.returns) if (property_.parent is not None and not isinstance(property_.parent, model.Namespace)): property_dict['parent_name'] = property_.parent.simple_name value = property_.value if value is not None: if isinstance(value, int): property_dict['value'] = _FormatValue(value) else: property_dict['value'] = value else: self._RenderTypeInformation(type_, property_dict) return property_dict def _GenerateCallbackProperty(self, callback): property_dict = { 'name': callback.simple_name, 'description': self._FormatDescription(callback.description), 'optional': callback.optional, 'id': _CreateId(callback, 'property'), 'simple_type': 'function', } if (callback.parent is not None and not isinstance(callback.parent, model.Namespace)): property_dict['parent_name'] = callback.parent.simple_name return property_dict def _RenderTypeInformation(self, type_, dst_dict): dst_dict['is_object'] = type_.property_type == model.PropertyType.OBJECT if type_.property_type == model.PropertyType.CHOICES: dst_dict['choices'] = self._GenerateTypes(type_.choices) # We keep track of which == last for knowing when to add "or" between # choices in templates. if len(dst_dict['choices']) > 0: dst_dict['choices'][-1]['last'] = True elif type_.property_type == model.PropertyType.REF: dst_dict['link'] = self._GetLink(type_.ref_type) elif type_.property_type == model.PropertyType.ARRAY: dst_dict['array'] = self._GenerateType(type_.item_type) elif type_.property_type == model.PropertyType.ENUM: dst_dict['enum_values'] = [] for enum_value in type_.enum_values: dst_dict['enum_values'].append({'name': enum_value}) if len(dst_dict['enum_values']) > 0: dst_dict['enum_values'][-1]['last'] = True elif type_.instance_of is not None: dst_dict['simple_type'] = type_.instance_of.lower() else: dst_dict['simple_type'] = type_.property_type.name.lower() class _LazySamplesGetter(object): """This class is needed so that an extensions API page does not have to fetch the apps samples page and vice versa. """ def __init__(self, api_name, samples): self._api_name = api_name self._samples = samples def get(self, key): return self._samples.FilterSamples(key, self._api_name) class APIDataSource(object): """This class fetches and loads JSON APIs from the FileSystem passed in with |compiled_fs_factory|, so the APIs can be plugged into templates. """ class Factory(object): def __init__(self, compiled_fs_factory, base_path): def create_compiled_fs(fn, category): return compiled_fs_factory.Create(fn, APIDataSource, category=category) self._permissions_cache = create_compiled_fs(self._LoadPermissions, 'permissions') self._json_cache = create_compiled_fs( lambda api_name, api: self._LoadJsonAPI(api, False), 'json') self._idl_cache = create_compiled_fs( lambda api_name, api: self._LoadIdlAPI(api, False), 'idl') # These caches are used if an APIDataSource does not want to resolve the # $refs in an API. This is needed to prevent infinite recursion in # ReferenceResolver. self._json_cache_no_refs = create_compiled_fs( lambda api_name, api: self._LoadJsonAPI(api, True), 'json-no-refs') self._idl_cache_no_refs = create_compiled_fs( lambda api_name, api: self._LoadIdlAPI(api, True), 'idl-no-refs') self._idl_names_cache = create_compiled_fs(self._GetIDLNames, 'idl-names') self._names_cache = create_compiled_fs(self._GetAllNames, 'names') self._base_path = base_path # These must be set later via the SetFooDataSourceFactory methods. self._ref_resolver_factory = None self._samples_data_source_factory = None def SetSamplesDataSourceFactory(self, samples_data_source_factory): self._samples_data_source_factory = samples_data_source_factory def SetReferenceResolverFactory(self, ref_resolver_factory): self._ref_resolver_factory = ref_resolver_factory def Create(self, request, disable_refs=False): """Create an APIDataSource. |disable_refs| specifies whether $ref's in APIs being processed by the |ToDict| method of _JSCModel follows $ref's in the API. This prevents endless recursion in ReferenceResolver. """ if self._samples_data_source_factory is None: # Only error if there is a request, which means this APIDataSource is # actually being used to render a page. if request is not None: logging.error('SamplesDataSource.Factory was never set in ' 'APIDataSource.Factory.') samples = None else: samples = self._samples_data_source_factory.Create(request) if not disable_refs and self._ref_resolver_factory is None: logging.error('ReferenceResolver.Factory was never set in ' 'APIDataSource.Factory.') return APIDataSource(self._permissions_cache, self._json_cache, self._idl_cache, self._json_cache_no_refs, self._idl_cache_no_refs, self._names_cache, self._idl_names_cache, self._base_path, samples, disable_refs) def _LoadPermissions(self, file_name, json_str): return json_parse.Parse(json_str) def _LoadJsonAPI(self, api, disable_refs): return _JSCModel( json_parse.Parse(api)[0], self._ref_resolver_factory.Create() if not disable_refs else None, disable_refs).ToDict() def _LoadIdlAPI(self, api, disable_refs): idl = idl_parser.IDLParser().ParseData(api) return _JSCModel( idl_schema.IDLSchema(idl).process()[0], self._ref_resolver_factory.Create() if not disable_refs else None, disable_refs, idl=True).ToDict() def _GetIDLNames(self, base_dir, apis): return self._GetExtNames(apis, ['idl']) def _GetAllNames(self, base_dir, apis): return self._GetExtNames(apis, ['json', 'idl']) def _GetExtNames(self, apis, exts): return [model.UnixName(os.path.splitext(api)[0]) for api in apis if os.path.splitext(api)[1][1:] in exts] def __init__(self, permissions_cache, json_cache, idl_cache, json_cache_no_refs, idl_cache_no_refs, names_cache, idl_names_cache, base_path, samples, disable_refs): self._base_path = base_path self._permissions_cache = permissions_cache self._json_cache = json_cache self._idl_cache = idl_cache self._json_cache_no_refs = json_cache_no_refs self._idl_cache_no_refs = idl_cache_no_refs self._names_cache = names_cache self._idl_names_cache = idl_names_cache self._samples = samples self._disable_refs = disable_refs def _GetFeatureFile(self, filename): perms = self._permissions_cache.GetFromFile('%s/%s' % (self._base_path, filename)) return dict((model.UnixName(k), v) for k, v in perms.iteritems()) def _GetFeatureData(self, path): # Remove 'experimental_' from path name to match the keys in # _permissions_features.json. path = model.UnixName(path.replace('experimental_', '')) for filename in ['_permission_features.json', '_manifest_features.json']: feature_data = self._GetFeatureFile(filename).get(path, None) if feature_data is not None: break # There are specific cases in which the feature is actually a list of # features where only one needs to match; but currently these are only # used to whitelist features for specific extension IDs. Filter those out. if isinstance(feature_data, list): feature_list = feature_data feature_data = None for single_feature in feature_list: if 'whitelist' in single_feature: continue if feature_data is not None: # Note: if you are seeing the exception below, add more heuristics as # required to form a single feature. raise ValueError('Multiple potential features match %s. I can\'t ' 'decide which one to use. Please help!' % path) feature_data = single_feature if feature_data and feature_data['channel'] in ('trunk', 'dev', 'beta'): feature_data[feature_data['channel']] = True return feature_data def _GenerateHandlebarContext(self, handlebar_dict, path): handlebar_dict['permissions'] = self._GetFeatureData(path) handlebar_dict['samples'] = _LazySamplesGetter(path, self._samples) return handlebar_dict def _GetAsSubdirectory(self, name): if name.startswith('experimental_'): parts = name[len('experimental_'):].split('_', 1) parts[1] = 'experimental_%s' % parts[1] return '/'.join(parts) return name.replace('_', '/', 1) def get(self, key): if key.endswith('.html') or key.endswith('.json') or key.endswith('.idl'): path, ext = os.path.splitext(key) else: path = key unix_name = model.UnixName(path) idl_names = self._idl_names_cache.GetFromFileListing(self._base_path) names = self._names_cache.GetFromFileListing(self._base_path) if unix_name not in names and self._GetAsSubdirectory(unix_name) in names: unix_name = self._GetAsSubdirectory(unix_name) if self._disable_refs: cache, ext = ( (self._idl_cache_no_refs, '.idl') if (unix_name in idl_names) else (self._json_cache_no_refs, '.json')) else: cache, ext = ((self._idl_cache, '.idl') if (unix_name in idl_names) else (self._json_cache, '.json')) return self._GenerateHandlebarContext( cache.GetFromFile('%s/%s%s' % (self._base_path, unix_name, ext)), path)
37.624266
80
0.66899
af0b3fe32ac45a9ad0685fd1434b62d385fd260d
34
py
Python
Rooms/tiger.py
ventin75/house
99c9e34f4f6c03593eb7a95f70877fdbf13b07e7
[ "MIT" ]
null
null
null
Rooms/tiger.py
ventin75/house
99c9e34f4f6c03593eb7a95f70877fdbf13b07e7
[ "MIT" ]
null
null
null
Rooms/tiger.py
ventin75/house
99c9e34f4f6c03593eb7a95f70877fdbf13b07e7
[ "MIT" ]
null
null
null
print("Have a roar-some Year!!!")
17
33
0.647059
1a3e7ee1ee16727dae7eb217f1e43bfa80670912
710
py
Python
dataspace/transform/dataframe.py
Sam-prog-sudo/dataspace
2bab85c4dfa713deb835a46e9214c43a3a674082
[ "MIT" ]
3
2021-06-28T09:45:51.000Z
2022-01-10T15:38:07.000Z
dataspace/transform/dataframe.py
Sam-prog-sudo/dataspace
2bab85c4dfa713deb835a46e9214c43a3a674082
[ "MIT" ]
null
null
null
dataspace/transform/dataframe.py
Sam-prog-sudo/dataspace
2bab85c4dfa713deb835a46e9214c43a3a674082
[ "MIT" ]
1
2021-07-01T08:50:32.000Z
2021-07-01T08:50:32.000Z
import pandas as pd from ..utils.messages import msg_warning, msg_info def _drop(df: pd.DataFrame, *cols) -> pd.DataFrame: try: index = df.columns.values for col in cols: if col not in index: msg_warning("Column", col, "not found. Aborting") return df = df.drop(col, axis=1) except Exception as e: raise ("Can not drop column", e) return df def _rename(df: pd.DataFrame, source_col: str, dest_col: str) -> pd.DataFrame: try: df = df.rename(columns={source_col: dest_col}) except Exception as e: raise ("Can not rename column", e) msg_info("Column", source_col, "renamed") return df
28.4
78
0.601408
5cbdfc7e9e9a67f1053114b3e73f8205d99024be
2,286
py
Python
api/api/tests.py
erik-sn/mako
f64644dacb132b0063805ccafc3f485bdb62595b
[ "MIT" ]
null
null
null
api/api/tests.py
erik-sn/mako
f64644dacb132b0063805ccafc3f485bdb62595b
[ "MIT" ]
12
2020-02-11T23:12:23.000Z
2022-02-26T13:08:40.000Z
api/api/tests.py
erik-sn/mako
f64644dacb132b0063805ccafc3f485bdb62595b
[ "MIT" ]
2
2018-08-10T08:14:31.000Z
2018-10-01T16:46:37.000Z
from django.test import TestCase, Client from django.contrib.auth.models import User from django.core.files.uploadedfile import SimpleUploadedFile from api.models import Software, FileUploadEvent, File class TestRun(TestCase): def setUp(self): user = User.objects.create(username='testuser') user.set_password('testpw') user.save() self.client = Client() self.client.login(username='testuser', password='testpw') def testSoftware(self): #post software response_post = self.client.post('/api/v1/software/', {"name":"test software", "run_command":"python test.py"}) self.assertEqual(response_post.status_code, 201) #get software response_get = self.client.get('/api/v1/software/') self.assertEqual(response_get.status_code, 200) #check creation of software self.assertEqual(Software.objects.all().count(), 1) def testUpload(self): #post software software_post = self.client.post('/api/v1/software/', {"name":"test software", "run_command":"python test.py"}) self.assertEqual(software_post.status_code, 201) #get software software_get = self.client.get('/api/v1/software/') self.assertEqual(software_get.status_code, 200) #check creation of software self.assertEqual(Software.objects.all().count(), 1) software_id = software_get.data[0]['id'] python_file = SimpleUploadedFile('test.py', b'file_content') #post upload event upload_post = self.client.post('/api/v1/file_upload_event/', {"file":python_file, "relative_dir":"./",\ "file_type":"static", "software":software_id}) self.assertEqual(upload_post.status_code, 201) #get upload event upload_get = self.client.get('/api/v1/file_upload_event/') self.assertEqual(upload_get.status_code, 200) #check creation of upload event self.assertEqual(FileUploadEvent.objects.all().count(), 1) #get file file_get = self.client.get('/api/v1/files/') self.assertEqual(file_get.status_code, 200) #check creation of file self.assertEqual(File.objects.all().count(), 1)
44.823529
119
0.646544
bbb45d883d7489e4cf66ef3a6a962c35e12e0a0e
151
py
Python
jp.atcoder/abc136/abc136_a/11409946.py
kagemeka/atcoder-submissions
91d8ad37411ea2ec582b10ba41b1e3cae01d4d6e
[ "MIT" ]
1
2022-02-09T03:06:25.000Z
2022-02-09T03:06:25.000Z
jp.atcoder/abc136/abc136_a/11409946.py
kagemeka/atcoder-submissions
91d8ad37411ea2ec582b10ba41b1e3cae01d4d6e
[ "MIT" ]
1
2022-02-05T22:53:18.000Z
2022-02-09T01:29:30.000Z
jp.atcoder/abc136/abc136_a/11409946.py
kagemeka/atcoder-submissions
91d8ad37411ea2ec582b10ba41b1e3cae01d4d6e
[ "MIT" ]
null
null
null
import sys a, b, c = map(int, sys.stdin.readline().split()) def main(): print(max(0, b + c - a)) if __name__ == '__main__': main()
15.1
49
0.529801
06159a4d350b46ecbbaee7c309b5b8261486c15d
9,300
py
Python
scripts/python/findTADs.py
sergpolly/cworld-dekker
7557bbe873e623e9059482722922faca4e784ad0
[ "Apache-2.0" ]
43
2016-10-28T06:24:47.000Z
2022-03-20T09:39:23.000Z
scripts/python/findTADs.py
sergpolly/cworld-dekker
7557bbe873e623e9059482722922faca4e784ad0
[ "Apache-2.0" ]
13
2017-12-02T20:00:11.000Z
2022-03-18T16:28:34.000Z
scripts/python/findTADs.py
sergpolly/cworld-dekker
7557bbe873e623e9059482722922faca4e784ad0
[ "Apache-2.0" ]
24
2016-12-05T06:03:08.000Z
2021-11-24T12:43:03.000Z
#!/usr/local/bin/python """ *********************************************** - PROGRAM: findTADs.py - CONTACT: Bryan lajoie (bryan.lajoie@umassmed.edu) *********************************************** """ from __future__ import print_function # Built in modules import argparse import os.path import sys import gzip import re import itertools import time import gzip # deprecated from scipy and unusde in the script: # from scipy.stats.stats import nanmean from scipy.spatial.distance import squareform from scipy.cluster.hierarchy import linkage,dendrogram from scipy.cluster.vq import kmeans, vq, whiten import scipy.spatial.distance as dist import numpy as np import scipy as sp import matplotlib matplotlib.use('pdf') import matplotlib.pyplot as plt # For eigenvectors and eigenvalues from scipy import linalg as la from math import cos,log,sin,sqrt # deprecated from scipy and unusde in the script: # from scipy import weave def main(): print("") # Get input options args = check_options() # Store the variables inputMatrix = args.inputMatrix nclust = args.nclust if not os.path.isfile(inputMatrix): sys.exit('invalid input file! (non-existant)') print("inputMatrix",inputMatrix) inputMatrixName=os.path.basename(inputMatrix) inputMatrixName=re.sub(".gz", "", inputMatrixName) inputMatrixName=re.sub(".matrix", "", inputMatrixName) print("inputMatrixName",inputMatrixName) print("") print("loading matrix ... ",end="") if inputMatrix.endswith('.gz'): infh=gzip.open(inputMatrix,'r') else: infh=open(inputMatrix,'r') matrix,header_rows,header_cols = load_matrix((l for l in infh if not l.startswith('#')), hrows=1, hcols=1) # since this returns data, header_rows and header_cols infh.close() print("done") nrows=len(header_rows) ncols=len(header_cols) print("") # enfore symmetrical matrices only enforceSymmetrical(matrix) # get assembly from all headers assembly=getMatrixAssembly(header_rows+header_cols) # find nan rows print("finding nan rows ... ",end="\n") nan_rows=np.sum(np.isnan(matrix),axis=0)==matrix.shape[0] nan_cols=np.sum(np.isnan(matrix),axis=1)==matrix.shape[1] nan_rowcols=nan_rows | nan_cols nans=(np.isnan(matrix)) matrix[nans]=np.nan print("converting all 2D nan to 0 ... ",end="\n") matrix = np.nan_to_num(matrix) #z = linkage(matrix) #codebook, _ = kmeans(matrix,nclust,iter=1) # three clusters #cluster_indices,cluster_distances = vq(matrix, codebook) for i in xrange(nrows): tmp_header=header_rows[i] header_name,header_assembly,header_chr,header_start,header_end=splitHeader(tmp_header) tmp_cluster=cluster_indices[i] tmp_cluster_dist=cluster_distances[i] print(header_chr+"\t"+header_start+"\t"+header_end+"\t"+str(tmp_cluster)) #d = dendrogram(z) #matplotlib.pyplot.gcf() #matplotlib.pyplot.savefig("tmp.pdf") print("") def writeMatrix(header_rows,header_cols,matrix,matrixFile,precision=4): """ write a np matrix with row/col headers - my5C file format - txt formatted gzipped file """ nrows=len(header_rows) ncols=len(header_cols) # interaction matrix output out_fh=gzip.open(matrixFile,"wb") # write matrix col headers header=[str(i) for i in header_cols] print(str(nrows)+"x"+str(ncols)+"\t"+"\t".join(header),file=out_fh) format_func=("{:0."+str(precision)+"f}").format k=0 for i in xrange(nrows): print(header_rows[i]+"\t"+"\t".join(map(format_func,matrix[i,:])),file=out_fh) out_fh.close() def enforceSymmetrical(matrix): nmatrix_rows=matrix.shape[0] nmatrix_cols=matrix.shape[1] if(nmatrix_rows != nmatrix_cols): sys.exit('non-symmetrical matrix!') all((matrix[y,:].T==matrix[y,:]).all() for y in range(matrix.shape[0])) all((matrix[:,x].T==matrix[:,x]).all() for x in range(matrix.shape[1])) def splitHeader(header): m=re.search(r'(\S+)\|(\S+)\|(\S+):(\d+)-(\d+)',header) if m==None: sys.exit('error: incorrect input format!') header_name,header_assembly,header_chr,header_start,header_end=m.groups() return(header_name,header_assembly,header_chr,header_start,header_end) def getMatrixAssembly(headers): assembly=None for i,header in enumerate(headers): m=re.search(r'(\S+)\|(\S+)\|(\S+):(\d+)-(\d+)',header) if m==None: sys.exit('error: incorrect input format!') header_name,header_assembly,header_chr,header_start,header_end=m.groups() if assembly==None: assembly=header_assembly else: if assembly!=header_assembly: sys.exit('assembly/header_assembly is not constant!') assembly=header_assembly print("matrix assembly:",assembly) return(assembly) def load_matrix(fh,hrows=0,hcols=0,np_dtype='float32',row_block_size=1000,numpy_mode=True,max_rows=None,verbose=False,return_all=False,pad=None): """ load a np.array or a list of lists from a text file handle (but works with any iterator) or filename, more memory efficient than numpy.genfromtxt(), headers are returned as lists of strings """ fh_from_filename=False if type(fh)==str: if (fh=='-'): fh=sys.stdin else: fh=open(fh,'r') fh_from_filename=True original_fh=fh # init firstline=fh.next() fh=itertools.chain([firstline],fh) cols=len(firstline.rstrip("\n").split("\t")) rows=row_block_size if (max_rows!=None and max_rows<row_block_size): rows=max_rows if(hcols): cols-=hcols if numpy_mode: data=np.zeros((rows,cols),dtype=np_dtype) else: data=[] header_rows=[[] for i in range(hrows)] for i in range(hrows): header_rows[i]=fh.next().rstrip("\n").split("\t")[hcols:] header_cols=[[] for i in range(hcols)] # fill one line at a time prev_cols=-1 r=0 if (max_rows==None or r<max_rows): for i in fh: line=i.rstrip("\n").split("\t") cols=len(line)-hcols # if(cols==0): # sys.exit('no valid columns in input line '+str(r)) if(prev_cols>-1 and cols!=prev_cols): if(pad and cols<prev_cols): line=line+['']*(prev_cols-cols) cols=len(line)-hcols else: sys.exit('inconsistent number of columns in input line '+str(r)) prev_cols=cols if numpy_mode: not_allowed = ['','NA'] try: # if np_dtype does not except ''or 'NA' as a value np.dtype(np_dtype).type(not_allowed) except ValueError: try: np.dtype(np_dtype).type('nan') line=[('nan' if i in not_allowed else i) for i in line] # '' or 'NA' are replaced with 'nan' except ValueError: pass for j in range(hcols): header_cols[j].append(line[j]) if numpy_mode: data[r,:]=line[hcols:] # enlarge data if needed if(r==(data.shape[0]-1)): data=np.resize(data,(data.shape[0]+row_block_size,cols)) rows=data.shape[0] else: data.append(line[hcols:]) r+=1 if (max_rows!=None and r>=max_rows): break rows=r if numpy_mode: data=np.resize(data,(rows,cols)) if (fh_from_filename): original_fh.close() if (hcols==1): header_cols=header_cols[0] if (hrows==1): header_rows=header_rows[0] if(verbose): sys.stderr.write("loaded matrix with dimensions ("+str(len(data))+","+str(cols)+")\n") nrows=len(header_rows) ncols=len(header_cols) ndata_rows=data.shape[0] ndata_cols=data.shape[1] if(nrows != ndata_rows): sys.exit('header/data mismatch!') if(ncols != ndata_cols): sys.exit('header/data mismatch!') if (return_all or (hrows and hcols)): return data,header_rows,header_cols if(hrows): return data,header_rows if(hcols): return data,header_cols return data def check_options(): ''' Checks the options to the program ''' # Create parser object parser = argparse.ArgumentParser(add_help=True, formatter_class=argparse.RawDescriptionHelpFormatter) # Add arguments parser.add_argument('-i' , metavar='--inputMatrix' , help="*Input matrix file", dest="inputMatrix", type=str, default="") parser.add_argument('-n' , metavar='--nclust' , help="number of clusters", dest="nclust", type=int, default=1) # Parse command line with parse_args and store it in an object args = parser.parse_args() return args if __name__=="__main__": main()
28.012048
193
0.600968
0f21d20edf219f360834c8955d1b46514bc3a892
5,857
py
Python
gaphor/RAAML/fta/ftatoolbox.py
mrmonkington/gaphor
f0fcd4deb90d24b14723840a689fac901f645a43
[ "Apache-2.0" ]
867
2018-01-09T00:19:09.000Z
2022-03-31T02:49:23.000Z
gaphor/RAAML/fta/ftatoolbox.py
mrmonkington/gaphor
f0fcd4deb90d24b14723840a689fac901f645a43
[ "Apache-2.0" ]
790
2018-01-13T23:47:07.000Z
2022-03-31T16:04:27.000Z
gaphor/RAAML/fta/ftatoolbox.py
mrmonkington/gaphor
f0fcd4deb90d24b14723840a689fac901f645a43
[ "Apache-2.0" ]
117
2018-01-09T02:24:49.000Z
2022-03-23T08:07:42.000Z
"""The definition for the FTA section of the RAAML toolbox.""" from gaphor.diagram.diagramtoolbox import ToolDef, ToolSection, namespace_config from gaphor.diagram.diagramtools import new_item_factory from gaphor.i18n import gettext from gaphor.RAAML import diagramitems, raaml from gaphor.UML import diagramitems as uml_items fta = ToolSection( gettext("Fault Tree Analysis"), ( ToolDef( "dependency", gettext("Dependency"), "gaphor-dependency-symbolic", "<Shift>D", new_item_factory(uml_items.DependencyItem), ), ToolDef( "and", gettext("AND Gate"), "gaphor-and-symbolic", "a", new_item_factory( diagramitems.ANDItem, raaml.AND, config_func=namespace_config ), ), ToolDef( "or", gettext("OR Gate"), "gaphor-or-symbolic", "o", new_item_factory( diagramitems.ORItem, raaml.OR, config_func=namespace_config ), ), ToolDef( "not", gettext("NOT Gate"), "gaphor-not-symbolic", "n", new_item_factory( diagramitems.NOTItem, raaml.NOT, config_func=namespace_config ), ), ToolDef( "seq", gettext("Sequence Enforcing (SEQ) Gate"), "gaphor-seq-symbolic", "<Shift>S", new_item_factory( diagramitems.SEQItem, raaml.SEQ, config_func=namespace_config ), ), ToolDef( "xor", gettext("Exclusive OR Gate"), "gaphor-xor-symbolic", "x", new_item_factory( diagramitems.XORItem, raaml.XOR, config_func=namespace_config ), ), ToolDef( "majority_vote", gettext("Majority Vote Gate"), "gaphor-majority_vote-symbolic", "m", new_item_factory( diagramitems.MajorityVoteItem, raaml.MAJORITY_VOTE, config_func=namespace_config, ), ), ToolDef( "inhibit", gettext("Inhibit Gate"), "gaphor-inhibit-symbolic", "i", new_item_factory( diagramitems.InhibitItem, raaml.INHIBIT, config_func=namespace_config ), ), ToolDef( "transfer-in", gettext("Transfer In"), "gaphor-transfer-in-symbolic", "t", new_item_factory( diagramitems.TransferInItem, raaml.TransferIn, config_func=namespace_config, ), ), ToolDef( "transfer-out", gettext("Transfer Out"), "gaphor-transfer-out-symbolic", "<Shift>T", new_item_factory( diagramitems.TransferOutItem, raaml.TransferOut, config_func=namespace_config, ), ), ToolDef( "basic-event", gettext("Basic Event"), "gaphor-basic-event-symbolic", "<Shift>B", new_item_factory( diagramitems.BasicEventItem, raaml.BasicEvent, config_func=namespace_config, ), ), ToolDef( "conditional-event", gettext("Conditional Event"), "gaphor-conditional-event-symbolic", "c", new_item_factory( diagramitems.ConditionalEventItem, raaml.ConditionalEvent, config_func=namespace_config, ), ), ToolDef( "undeveloped-event", gettext("Undeveloped Event"), "gaphor-undeveloped-event-symbolic", "<Shift>U", new_item_factory( diagramitems.UndevelopedEventItem, raaml.Undeveloped, config_func=namespace_config, ), ), ToolDef( "dormant-event", gettext("Dormant Event"), "gaphor-dormant-event-symbolic", "d", new_item_factory( diagramitems.DormantEventItem, raaml.DormantEvent, config_func=namespace_config, ), ), ToolDef( "house-event", gettext("House Event"), "gaphor-house-event-symbolic", "h", new_item_factory( diagramitems.HouseEventItem, raaml.HouseEvent, config_func=namespace_config, ), ), ToolDef( "zero-event", gettext("Zero Event"), "gaphor-zero-event-symbolic", "z", new_item_factory( diagramitems.ZeroEventItem, raaml.ZeroEvent, config_func=namespace_config, ), ), ToolDef( "top-event", gettext("Top Event"), "gaphor-top-event-symbolic", "p", new_item_factory( diagramitems.TopEventItem, raaml.TopEvent, config_func=namespace_config, ), ), ToolDef( "intermediate-event", gettext("Intermediate Event"), "gaphor-intermediate-event-symbolic", "<Shift>I", new_item_factory( diagramitems.IntermediateEventItem, raaml.IntermediateEvent, config_func=namespace_config, ), ), ), )
29.882653
85
0.483695
8a9a21f081f1b210d1c7ce0e3e41eb1ab0a27065
20,162
py
Python
tests/sc/test_organizations.py
39biradar/pyTenable
a055140bc864bb950fd1053ab598ff2da12cf408
[ "MIT" ]
null
null
null
tests/sc/test_organizations.py
39biradar/pyTenable
a055140bc864bb950fd1053ab598ff2da12cf408
[ "MIT" ]
null
null
null
tests/sc/test_organizations.py
39biradar/pyTenable
a055140bc864bb950fd1053ab598ff2da12cf408
[ "MIT" ]
null
null
null
import pytest from ..checker import check from tenable.errors import APIError, UnexpectedValueError from tests.pytenable_log_handler import log_exception def test_organizations_constructor_name_typeerror(sc): with pytest.raises(TypeError): sc.organizations._constructor(name=1) def test_organizations_constructor_description_typeerror(sc): with pytest.raises(TypeError): sc.organizations._constructor(description=1) def test_organizations_constructor_address_typeerror(sc): with pytest.raises(TypeError): sc.organizations._constructor(address=1) def test_organizations_constructor_city_typeerror(sc): with pytest.raises(TypeError): sc.organizations._constructor(city=1) def test_organizations_constructor_state_typeerror(sc): with pytest.raises(TypeError): sc.organizations._constructor(state=1) def test_organizations_constructor_country_typeerror(sc): with pytest.raises(TypeError): sc.organizations._constructor(country=1) def test_organizations_constructor_phone_typeerror(sc): with pytest.raises(TypeError): sc.organizations._constructor(phone=1) def test_organizations_constructor_lce_ids_typeerror(sc): with pytest.raises(TypeError): sc.organizations._constructor(lce_ids=1) def test_organizations_constructor_lce_ids_item_typeerror(sc): with pytest.raises(TypeError): sc.organizations._constructor(lce_ids=['one', ]) def test_organizations_constructor_zone_selection_typeerror(sc): with pytest.raises(TypeError): sc.organizations._constructor(zone_selection=1) def test_organizations_constructor_zone_selection_unexpectedvalueerror(sc): with pytest.raises(UnexpectedValueError): sc.organizations._constructor(zone_selection='something') def test_organizations_constructor_restricted_ips_typeerror(sc): with pytest.raises(TypeError): sc.organizations._constructor(restricted_ips=1) def test_organizations_constructor_restricted_ips_item_typeerror(sc): with pytest.raises(TypeError): sc.organizations._constructor(restricted_ips=[1]) def test_organizations_constructor_repos_typeerror(sc): with pytest.raises(TypeError): sc.organizations._constructor(repos=1) def test_organizations_constructor_repos_item_typeerror(sc): with pytest.raises(TypeError): sc.organizations._constructor(repos=['one']) def test_organizations_constructor_pub_sites_typeerror(sc): with pytest.raises(TypeError): sc.organizations._constructor(pub_sites=1) def test_organizations_constructor_pub_sites_item_typeerror(sc): with pytest.raises(TypeError): sc.organizations._constructor(pub_sites=['one']) def test_organizations_constructor_ldap_ids_typeerror(sc): with pytest.raises(TypeError): sc.organizations._constructor(ldap_ids=1) def test_organizations_constructor_ldap_ids_item_typeerror(sc): with pytest.raises(TypeError): sc.organizations._constructor(ldap_ids=['one']) def test_organizations_constructor_nessus_managers_typeerror(sc): with pytest.raises(TypeError): sc.organizations._constructor(nessus_managers=1) def test_organizations_constructor_nessus_managers_item_typeerror(sc): with pytest.raises(TypeError): sc.organizations._constructor(nessus_managers=['one']) def test_organizations_constructor_info_links_typeerror(sc): with pytest.raises(TypeError): sc.organizations._constructor(info_links=1) def test_organizations_constructor_info_links_item_typeerror(sc): with pytest.raises(TypeError): sc.organizations._constructor(info_links=[1]) def test_organizations_constructor_info_links_item_name_typeerror(sc): with pytest.raises(TypeError): sc.organizations._constructor(info_links=[(1, 'http://site.com/%IP%')]) def test_organizations_constructor_info_links_item_link_typeerror(sc): with pytest.raises(TypeError): sc.organizations._constructor(info_links=[('name', 1)]) def test_organizations_constructor_vuln_score_low_typeerror(sc): with pytest.raises(TypeError): sc.organizations._constructor(vuln_score_low='one') def test_organizations_constructor_vuln_score_medium_typeerror(sc): with pytest.raises(TypeError): sc.organizations._constructor(vuln_score_medium='one') def test_organizations_constructor_vuln_score_high_typeerror(sc): with pytest.raises(TypeError): sc.organizations._constructor(vuln_score_high='one') def test_organizations_constructor_vuln_score_critical_typeerror(sc): with pytest.raises(TypeError): sc.organizations._constructor(vuln_score_critical='one') def test_organizations_constructor_success(sc): organization = sc.organizations._constructor( name='name', description='description', address='123 main street', city='anytown', state='IL', country='USA', phone='999.888.7766', lce_ids=[1, 2, 3], zone_selection='auto_only', restricted_ips=['127.0.0.1', '127.0.0.0/8'], repos=[1, 2, 3], pub_sites=[1, 2, 3], ldap_ids=[1, 2, 3], nessus_managers=[1, 2, 3], info_links=[('link', 'http://url/%IP%')], vuln_score_low=1, vuln_score_medium=5, vuln_score_high=10, vuln_score_critical=40, ) assert organization == { 'name': 'name', 'description': 'description', 'address': '123 main street', 'city': 'anytown', 'state': 'IL', 'country': 'USA', 'phone': '999.888.7766', 'lces': [{'id': 1}, {'id': 2}, {'id': 3}], 'zoneSelection': 'auto_only', 'restrictedIPs': '127.0.0.1,127.0.0.0/8', 'repositories': [{'id': 1}, {'id': 2}, {'id': 3}], 'pubSites': [{'id': 1}, {'id': 2}, {'id': 3}], 'ldaps': [{'id': 1}, {'id': 2}, {'id': 3}], 'nessusManagers': [{'id': 1}, {'id': 2}, {'id': 3}], 'ipInfoLinks': [{'name': 'link', 'link': 'http://url/%IP%'}], 'vulnScoreLow': 1, 'vulnScoreMedium': 5, 'vulnScoreHigh': 10, 'vulnScoreCritical': 40 } @pytest.fixture def org(request, admin, vcr): with vcr.use_cassette('test_organizations_create_success'): organization = admin.organizations.create('New Org') def teardown(): try: with vcr.use_cassette('test_organizations_delete_success'): admin.organizations.delete(int(organization['id'])) except APIError as error: log_exception(error) request.addfinalizer(teardown) return organization @pytest.mark.vcr() def test_organizations_create_success(admin, org): assert isinstance(org, dict) check(org, 'id', str) check(org, 'name', str) check(org, 'description', str) check(org, 'email', str) check(org, 'address', str) check(org, 'city', str) check(org, 'state', str) check(org, 'country', str) check(org, 'phone', str) check(org, 'fax', str) check(org, 'ipInfoLinks', list) for i in org['ipInfoLinks']: check(i, 'name', str) check(i, 'link', str) check(org, 'zoneSelection', str) check(org, 'restrictedIPs', str) check(org, 'vulnScoreLow', str) check(org, 'vulnScoreMedium', str) check(org, 'vulnScoreHigh', str) check(org, 'vulnScoreCritical', str) check(org, 'createdTime', str) check(org, 'modifiedTime', str) check(org, 'userCount', str) check(org, 'lces', list) for lces in org['lces']: check(lces, 'id', str) check(lces, 'name', str) check(lces, 'description', str) check(org, 'repositories', list) for repository in org['repositories']: check(repository, 'id', str) check(repository, 'name', str) check(repository, 'description', str) check(repository, 'type', str) check(repository, 'dataFormat', str) check(repository, 'groupAssign', str) check(org, 'zones', list) for zone in org['zones']: check(zone, 'id', str) check(zone, 'name', str) check(zone, 'description', str) check(org, 'ldaps', list) for ldaps in org['ldaps']: check(ldaps, 'id', str) check(ldaps, 'name', str) check(ldaps, 'description', str) check(org, 'nessusManagers', list) for manager in org['nessusManagers']: check(manager, 'id', str) check(manager, 'name', str) check(manager, 'description', str) check(org, 'pubSites', list) for pub_sites in org['pubSites']: check(pub_sites, 'id', str) check(pub_sites, 'name', str) check(pub_sites, 'description', str) @pytest.mark.vcr() def test_organizations_delete_success(admin, org): admin.organizations.delete(int(org['id'])) @pytest.mark.vcr() def test_organizations_list_success(admin): organizations = admin.organizations.list(fields=['id', 'name', 'description']) assert isinstance(organizations, list) for organization in organizations: check(organization, 'id', str) check(organization, 'name', str) check(organization, 'description', str) @pytest.mark.vcr() def test_organizations_managers_list_success(admin): managers = admin.organizations.managers_list(org_id=1, fields=['id', 'name', 'description']) assert isinstance(managers, list) for manager in managers: check(manager, 'id', str) check(manager, 'name', str) check(manager, 'description', str) @pytest.mark.vcr() def test_organizations_manager_details_success(admin): manager = admin.organizations.manager_details(org_id=1, user_id=1, fields=['id', 'name', 'description']) assert isinstance(manager, dict) check(manager, 'id', str) check(manager, 'name', str) check(manager, 'description', str) @pytest.mark.vcr() def test_organizations_manager_create_edit_delete_success(admin): manager = admin.organizations.manager_create(org_id=1, username='username', password='password', role=1) assert isinstance(manager, dict) check(manager, 'id', str) check(manager, 'name', str) check(manager, 'description', str) manager = admin.organizations.manager_edit(user_id=int(manager['id']), org_id=1, name='new mgr name') assert isinstance(manager, dict) check(manager, 'id', str) check(manager, 'name', str) check(manager, 'description', str) admin.organizations.manager_delete(org_id=1, user_id=1, migrate_to=1) @pytest.mark.vcr() def test_organizations_details_success(admin, org): organization = admin.organizations.details(int(org['id'])) assert isinstance(organization, dict) check(organization, 'id', str) check(organization, 'name', str) check(organization, 'description', str) check(organization, 'email', str) check(organization, 'address', str) check(organization, 'city', str) check(organization, 'state', str) check(organization, 'country', str) check(organization, 'phone', str) check(organization, 'fax', str) check(organization, 'ipInfoLinks', list) for ip_info in organization['ipInfoLinks']: check(ip_info, 'name', str) check(ip_info, 'link', str) check(organization, 'zoneSelection', str) check(organization, 'restrictedIPs', str) check(organization, 'vulnScoreLow', str) check(organization, 'vulnScoreMedium', str) check(organization, 'vulnScoreHigh', str) check(organization, 'vulnScoreCritical', str) check(organization, 'createdTime', str) check(organization, 'modifiedTime', str) check(organization, 'userCount', str) check(organization, 'lces', list) for lces in organization['lces']: check(lces, 'id', str) check(lces, 'name', str) check(lces, 'description', str) check(organization, 'repositories', list) for repository in organization['repositories']: check(repository, 'id', str) check(repository, 'name', str) check(repository, 'description', str) check(repository, 'type', str) check(repository, 'dataFormat', str) check(repository, 'groupAssign', str) check(organization, 'zones', list) for zone in organization['zones']: check(zone, 'id', str) check(zone, 'name', str) check(zone, 'description', str) check(organization, 'ldaps', list) for ldap in organization['ldaps']: check(ldap, 'id', str) check(ldap, 'name', str) check(ldap, 'description', str) check(organization, 'nessusManagers', list) for manager in organization['nessusManagers']: check(manager, 'id', str) check(manager, 'name', str) check(manager, 'description', str) check(organization, 'pubSites', list) for pub_site in organization['pubSites']: check(pub_site, 'id', str) check(pub_site, 'name', str) check(pub_site, 'description', str) @pytest.mark.vcr() def test_organizations_details_success_for_fields(admin, org): organization = admin.organizations.details(int(org['id']), fields=['id', 'name', 'description']) assert isinstance(organization, dict) check(organization, 'id', str) check(organization, 'name', str) check(organization, 'description', str) @pytest.mark.vcr() def test_organizations_edit_success(admin, org): organization = admin.organizations.edit(int(org['id']), name='new org name') assert isinstance(organization, dict) check(organization, 'id', str) check(organization, 'name', str) check(organization, 'description', str) check(organization, 'email', str) check(organization, 'address', str) check(organization, 'city', str) check(organization, 'state', str) check(organization, 'country', str) check(organization, 'phone', str) check(organization, 'fax', str) check(organization, 'ipInfoLinks', list) for ip_info in organization['ipInfoLinks']: check(ip_info, 'name', str) check(ip_info, 'link', str) check(organization, 'zoneSelection', str) check(organization, 'restrictedIPs', str) check(organization, 'vulnScoreLow', str) check(organization, 'vulnScoreMedium', str) check(organization, 'vulnScoreHigh', str) check(organization, 'vulnScoreCritical', str) check(organization, 'createdTime', str) check(organization, 'modifiedTime', str) check(organization, 'userCount', str) check(organization, 'lces', list) for lces in organization['lces']: check(lces, 'id', str) check(lces, 'name', str) check(lces, 'description', str) check(organization, 'repositories', list) for repository in organization['repositories']: check(repository, 'id', str) check(repository, 'name', str) check(repository, 'description', str) check(repository, 'type', str) check(repository, 'dataFormat', str) check(repository, 'groupAssign', str) check(organization, 'zones', list) for zone in organization['zones']: check(zone, 'id', str) check(zone, 'name', str) check(zone, 'description', str) check(organization, 'ldaps', list) for ldap in organization['ldaps']: check(ldap, 'id', str) check(ldap, 'name', str) check(ldap, 'description', str) check(organization, 'nessusManagers', list) for manager in organization['nessusManagers']: check(manager, 'id', str) check(manager, 'name', str) check(manager, 'description', str) check(organization, 'pubSites', list) for pub_site in organization['pubSites']: check(pub_site, 'id', str) check(pub_site, 'name', str) check(pub_site, 'description', str) @pytest.mark.vcr() def test_organizations_accept_risk_rules_id_typeerror(sc): with pytest.raises(TypeError): sc.organizations.accept_risk_rules('one') @pytest.mark.vcr() def test_organizations_accept_risk_rules_repos_typeerror(sc): with pytest.raises(TypeError): sc.organizations.accept_risk_rules(1, repos=1) @pytest.mark.vcr() def test_organizations_accept_risk_rules_repos_item_typeerror(sc): with pytest.raises(TypeError): sc.organizations.accept_risk_rules(1, repos=['one']) @pytest.mark.vcr() def test_organizations_accept_risk_rules_plugin_typeerror(sc): with pytest.raises(TypeError): sc.organizations.accept_risk_rules(1, plugin='one') @pytest.mark.vcr() def test_organizations_accept_risk_rules_port_typeerror(sc): with pytest.raises(TypeError): sc.organizations.accept_risk_rules(1, port='one') @pytest.mark.vcr() def test_organizations_accept_risk_rules_success(admin, org): rules = admin.organizations.accept_risk_rules(int(org['id'])) assert isinstance(rules, list) for rule in rules: check(rule, 'id', str) check(rule, 'hostType', str) check(rule, 'hostValue', str) check(rule, 'port', str) check(rule, 'protocol', str) check(rule, 'expires', str) check(rule, 'status', str) check(rule, 'repository', dict) check(rule['repository'], 'id', str) check(rule['repository'], 'name', str) check(rule['repository'], 'description', str) check(rule, 'organization', dict) check(rule['organization'], 'id', str) check(rule['organization'], 'name', str) check(rule['organization'], 'description', str) check(rule, 'user', dict) check(rule['user'], 'id', str) check(rule['user'], 'username', str) check(rule['user'], 'firstname', str) check(rule['user'], 'lastname', str) check(rule, 'plugin', dict) check(rule['plugin'], 'id', str) check(rule['plugin'], 'name', str) check(rule['plugin'], 'description', str) @pytest.mark.vcr() def test_organizations_recast_risk_rules_id_typeerror(sc): with pytest.raises(TypeError): sc.organizations.recast_risk_rules('one') @pytest.mark.vcr() def test_organizations_recast_risk_rules_repos_typeerror(sc): with pytest.raises(TypeError): sc.organizations.recast_risk_rules(1, repos=1) @pytest.mark.vcr() def test_organizations_recast_risk_rules_repos_item_typeerror(sc): with pytest.raises(TypeError): sc.organizations.recast_risk_rules(1, repos=['one']) @pytest.mark.vcr() def test_organizations_recast_risk_rules_plugin_typeerror(sc): with pytest.raises(TypeError): sc.organizations.recast_risk_rules(1, plugin='one') @pytest.mark.vcr() def test_organizations_recast_risk_rules_port_typeerror(sc): with pytest.raises(TypeError): sc.organizations.recast_risk_rules(1, port='one') @pytest.mark.vcr() def test_organizations_recast_risk_rules_success(admin, org): rules = admin.organizations.recast_risk_rules(int(org['id'])) assert isinstance(rules, list) for rule in rules: check(rule, 'id', str) check(rule, 'hostType', str) check(rule, 'hostValue', str) check(rule, 'port', str) check(rule, 'protocol', str) check(rule, 'status', str) check(rule, 'repository', dict) check(rule['repository'], 'id', str) check(rule['repository'], 'name', str) check(rule['repository'], 'description', str) check(rule, 'organization', dict) check(rule['organization'], 'id', str) check(rule['organization'], 'name', str) check(rule['organization'], 'description', str) check(rule, 'user', dict) check(rule['user'], 'id', str) check(rule['user'], 'username', str) check(rule['user'], 'firstname', str) check(rule['user'], 'lastname', str) check(rule, 'plugin', dict) check(rule['plugin'], 'id', str) check(rule['plugin'], 'name', str) check(rule['plugin'], 'description', str)
34.58319
108
0.664865
ef931fe95d2677068e6c6de9e34da199d71dee70
3,606
py
Python
mturk/models.py
Kyeongan/crowdsource-platform
af34363158ff30ebfdade4a543648bf26a3c9698
[ "MIT" ]
138
2015-04-17T20:07:12.000Z
2017-05-03T17:58:47.000Z
mturk/models.py
cescgie/crowdi
c16ab625f27915919e21f7eec93c45af551d9022
[ "MIT" ]
657
2015-04-19T04:54:51.000Z
2017-06-26T18:07:42.000Z
mturk/models.py
cescgie/crowdi
c16ab625f27915919e21f7eec93c45af551d9022
[ "MIT" ]
311
2015-04-16T19:20:55.000Z
2017-06-13T05:32:01.000Z
from __future__ import unicode_literals from django.contrib.auth.models import User from django.contrib.postgres.fields import JSONField, ArrayField from django.db import models from crowdsourcing.models import Task, TaskWorker class Timed(models.Model): created_at = models.DateTimeField(auto_now_add=True, auto_now=False) updated_at = models.DateTimeField(auto_now_add=False, auto_now=True) class Meta: abstract = True class MTurkHIT(Timed): STATUS_IN_PROGRESS = 1 STATUS_COMPLETED = 2 STATUS_EXPIRED = 3 STATUS_DELETED = 4 STATUS = ( (STATUS_IN_PROGRESS, 'In Progress'), (STATUS_COMPLETED, 'Completed'), (STATUS_EXPIRED, 'Expired'), (STATUS_DELETED, 'Deleted') ) hit_id = models.TextField(max_length=256) hit_type = models.ForeignKey('MTurkHITType') hit_group_id = models.TextField(max_length=128, default='') num_assignments = models.IntegerField(default=1) task = models.OneToOneField(Task, related_name='mturk_hit', on_delete=models.CASCADE) status = models.IntegerField(default=STATUS_IN_PROGRESS, choices=STATUS) class MTurkAssignment(Timed): hit = models.ForeignKey(MTurkHIT, related_name='mturk_assignments') assignment_id = models.TextField(max_length=128) status = models.IntegerField(choices=TaskWorker.STATUS, default=TaskWorker.STATUS_IN_PROGRESS) task_worker = models.ForeignKey(TaskWorker, related_name='mturk_assignments', on_delete=models.CASCADE, null=True) class MTurkNotification(Timed): data = JSONField(null=True) class MTurkAccount(Timed): user = models.OneToOneField(User, related_name='mturk_account') client_id = models.CharField(max_length=64, null=True, blank=True) client_secret = models.CharField(max_length=128, null=True, blank=True) description = models.CharField(max_length=128, null=True, blank=True) is_valid = models.BooleanField(default=True) class MTurkHITType(Timed): string_id = models.CharField(max_length=64, null=True) name = models.CharField(max_length=128) description = models.CharField(max_length=512, blank=True, null=True) price = models.DecimalField(decimal_places=2, max_digits=8) keywords = ArrayField(models.CharField(max_length=128), null=True, default=[]) duration = models.DurationField(null=True) qualifications_mask = models.IntegerField(default=0) boomerang_qualification = models.ForeignKey('MTurkQualification', null=True) boomerang_threshold = models.IntegerField() owner = models.ForeignKey(User, related_name='mturk_hit_types') class MTurkQualification(Timed): name = models.CharField(max_length=64) description = models.CharField(max_length=512) status = models.CharField(max_length=16, default='Active') keywords = ArrayField(models.CharField(max_length=128), null=True, default=[]) auto_granted = models.BooleanField(default=False) auto_granted_value = models.IntegerField(default=1, null=True) type_id = models.CharField(max_length=128) flag = models.IntegerField() owner = models.ForeignKey(User, related_name='mturk_qualifications') lower_bound = models.IntegerField(default=100) upper_bound = models.IntegerField(default=300) is_blacklist = models.BooleanField(default=False) class Meta: unique_together = ('owner', 'flag', 'name') class MTurkWorkerQualification(Timed): qualification = models.ForeignKey(MTurkQualification) worker = models.CharField(max_length=32) score = models.IntegerField(default=1) overwritten = models.BooleanField(default=False)
38.361702
118
0.751248
a9e8d5bdf36e36a3ba9fd8138e7168125ba932d9
23,052
py
Python
bin/cpu_monitor.py
MarbleInc/ros-system-monitor
39d8ca3368c34483e71eb69f38452050d58b865c
[ "BSD-3-Clause" ]
null
null
null
bin/cpu_monitor.py
MarbleInc/ros-system-monitor
39d8ca3368c34483e71eb69f38452050d58b865c
[ "BSD-3-Clause" ]
2
2019-01-16T19:03:34.000Z
2019-09-30T18:57:39.000Z
bin/cpu_monitor.py
MarbleInc/ros-system-monitor
39d8ca3368c34483e71eb69f38452050d58b865c
[ "BSD-3-Clause" ]
1
2019-01-11T21:49:27.000Z
2019-01-11T21:49:27.000Z
#!/usr/bin/env python ############################################################################ # Copyright (C) 2009, Willow Garage, Inc. # # Copyright (C) 2013 by Ralf Kaestner # # ralf.kaestner@gmail.com # # Copyright (C) 2013 by Jerome Maye # # jerome.maye@mavt.ethz.ch # # # # All rights reserved. # # # # Redistribution and use in source and binary forms, with or without # # modification, are permitted provided that the following conditions # # are met: # # # # 1. Redistributions of source code must retain the above copyright # # notice, this list of conditions and the following disclaimer. # # # # 2. Redistributions in binary form must reproduce the above copyright # # notice, this list of conditions and the following disclaimer in # # the documentation and/or other materials provided with the # # distribution. # # # # 3. The name of the copyright holders may be used to endorse or # # promote products derived from this software without specific # # prior written permission. # # # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # # POSSIBILITY OF SUCH DAMAGE. # ############################################################################ from __future__ import with_statement import rospy import traceback import threading from threading import Timer import sys, os, time from time import sleep import subprocess import string import socket from diagnostic_msgs.msg import DiagnosticArray, DiagnosticStatus, KeyValue from marble_structs.diagnostics import Status from mbot_diagnostics import DiagnosticUpdater, GenericDiagnostic cpu_load_warn = 0.9 cpu_load_error = 1.1 cpu_load1_warn = 0.9 cpu_load5_warn = 0.8 cpu_temp_warn = 85.0 cpu_temp_error = 90.0 stat_dict = { 0: 'OK', 1: 'Warning', 2: 'Error' } def update_status_stale(stat, last_update_time): time_since_update = rospy.get_time() - last_update_time stale_status = 'OK' if time_since_update > 20 and time_since_update <= 35: stale_status = 'Lagging' if stat.level == DiagnosticStatus.OK: stat.message = stale_status elif stat.message.find(stale_status) < 0: stat.message = ', '.join([stat.message, stale_status]) stat.level = max(stat.level, DiagnosticStatus.WARN) if time_since_update > 35: stale_status = 'Stale' if stat.level == DiagnosticStatus.OK: stat.message = stale_status elif stat.message.find(stale_status) < 0: stat.message = ', '.join([stat.message, stale_status]) stat.level = max(stat.level, DiagnosticStatus.ERROR) stat.values.pop(0) stat.values.pop(0) stat.values.insert(0, KeyValue(key = 'Update Status', value = stale_status)) stat.values.insert(1, KeyValue(key = 'Time Since Update', value = str(time_since_update))) class CPUMonitor(): def __init__(self, hostname, namespace, diag_hostname): self._diag_updater = DiagnosticUpdater( name=namespace + 'cpu', display_name=diag_hostname + ' CPU', ) self._namespace = namespace self._mutex = threading.Lock() self._check_core_temps = rospy.get_param('~check_core_temps', True) self._cpu_load_warn = rospy.get_param('~cpu_load_warn', cpu_load_warn) self._cpu_load_error = rospy.get_param('~cpu_load_error', cpu_load_error) self._cpu_load1_warn = rospy.get_param('~cpu_load1_warn', cpu_load1_warn) self._cpu_load5_warn = rospy.get_param('~cpu_load5_warn', cpu_load5_warn) self._cpu_temp_warn = rospy.get_param('~cpu_temp_warn', cpu_temp_warn) self._cpu_temp_error = rospy.get_param('~cpu_temp_error', cpu_temp_error) self._num_cores = rospy.get_param('~num_cores', 0) self._temps_timer = None self._usage_timer = None # Get temp_input files self._temp_vals = self.get_core_temp_names() # CPU stats self._temp_stat = DiagnosticStatus() self._temp_stat.name = 'CPU Temperature' self._temp_stat.level = 1 self._temp_stat.hardware_id = hostname self._temp_stat.message = 'No Data' self._temp_stat.values = [ KeyValue(key = 'Update Status', value = 'No Data' ), KeyValue(key = 'Time Since Last Update', value = 'N/A') ] self._temp_diagnostic = GenericDiagnostic('/temp') self._temp_diagnostic.add_to_updater(self._diag_updater) self._usage_stat = DiagnosticStatus() self._usage_stat.name = 'CPU Usage' self._usage_stat.level = 1 self._usage_stat.hardware_id = hostname self._usage_stat.message = 'No Data' self._usage_stat.values = [ KeyValue(key = 'Update Status', value = 'No Data' ), KeyValue(key = 'Time Since Last Update', value = 'N/A') ] self._usage_diagnostic = GenericDiagnostic('/usage') self._usage_diagnostic.add_to_updater(self._diag_updater) self._last_temp_time = 0 self._last_usage_time = 0 self._usage_old = 0 self._has_warned_mpstat = False self._has_error_core_count = False # Start checking everything self.check_temps() self.check_usage() # Restart temperature checking def _restart_temp_check(self): rospy.logerr('Restarting temperature check thread in cpu_monitor. This should not happen') try: with self._mutex: if self._temps_timer: self._temps_timer.cancel() self.check_temps() except Exception, e: rospy.logerr('Unable to restart temp thread. Error: %s' % traceback.format_exc()) ## Must have the lock to cancel everything def cancel_timers(self): if self._temps_timer: self._temps_timer.cancel() if self._usage_timer: self._usage_timer.cancel() ##\brief Check CPU core temps ## ## Use 'find /sys -name temp1_input' to find cores ## Read from every core, divide by 1000 def check_core_temps(self, sys_temp_strings): diag_vals = [] diag_level = 0 diag_msgs = [] for index, temp_str in enumerate(sys_temp_strings): if len(temp_str) < 5: continue cmd = 'cat %s' % temp_str p = subprocess.Popen(cmd, stdout = subprocess.PIPE, stderr = subprocess.PIPE, shell = True) stdout, stderr = p.communicate() retcode = p.returncode if retcode != 0: diag_level = DiagnosticStatus.ERROR diag_msg = [ 'Core Temperature Error' ] diag_vals = [ KeyValue(key = 'Core Temperature Error', value = stderr), KeyValue(key = 'Output', value = stdout) ] return diag_vals, diag_msgs, diag_level tmp = stdout.strip() tmp_label = 'Core %d Temperature' % index cmd = 'cat %s' % temp_str.replace('_input', '_label') p = subprocess.Popen(cmd, stdout = subprocess.PIPE, stderr = subprocess.PIPE, shell = True) stdout, stderr = p.communicate() retcode = p.returncode if retcode == 0 and stdout: tmp_label = stdout.strip() + ' Temperature' else: continue if unicode(tmp).isnumeric(): temp = float(tmp) / 1000 diag_vals.append(KeyValue(key=tmp_label, value=str(temp)+"DegC")) if temp >= self._cpu_temp_warn: diag_level = max(diag_level, DiagnosticStatus.WARN) diag_msgs.append('Warm') elif temp >= self._cpu_temp_error: diag_level = max(diag_level, DiagnosticStatus.ERROR) diag_msgs.append('Hot') else: diag_level = max(diag_level, DiagnosticStatus.ERROR) # Error if not numeric value diag_vals.append(KeyValue(key = 'Core %s Temperature' % index, value = tmp)) return diag_vals, diag_msgs, diag_level ## Checks clock speed from reading from CPU info def check_clock_speed(self): vals = [] msgs = [] lvl = DiagnosticStatus.OK try: p = subprocess.Popen('cat /proc/cpuinfo | grep MHz', stdout = subprocess.PIPE, stderr = subprocess.PIPE, shell = True) stdout, stderr = p.communicate() retcode = p.returncode if retcode != 0: lvl = DiagnosticStatus.ERROR msgs = [ 'Clock speed error' ] vals = [ KeyValue(key = 'Clock speed error', value = stderr), KeyValue(key = 'Output', value = stdout) ] return (vals, msgs, lvl) for index, ln in enumerate(stdout.split('\n')): words = ln.split(':') if len(words) < 2: continue speed = words[1].strip().split('.')[0] # Conversion to float doesn't work with decimal vals.append(KeyValue(key = 'Core %d Clock Speed' % index, value = speed+"MHz")) except Exception, e: rospy.logerr(traceback.format_exc()) lvl = DiagnosticStatus.ERROR msgs.append('Exception') vals.append(KeyValue(key = 'Exception', value = traceback.format_exc())) return vals, msgs, lvl # Add msgs output, too ##\brief Uses 'uptime' to see load average def check_uptime(self): level = DiagnosticStatus.OK vals = [] load_dict = { 0: 'OK', 1: 'High load', 2: 'Very high load' } try: p = subprocess.Popen('uptime', stdout = subprocess.PIPE, stderr = subprocess.PIPE, shell = True) stdout, stderr = p.communicate() retcode = p.returncode if retcode != 0: vals.append(KeyValue(key = 'uptime Failed', value = stderr)) return DiagnosticStatus.ERROR, vals upvals = stdout.split() load1 = float(upvals[-3].rstrip(','))/self._num_cores load5 = float(upvals[-2].rstrip(','))/self._num_cores load15 = float(upvals[-1])/self._num_cores # Give warning if we go over load limit if load1 > self._cpu_load1_warn or load5 > self._cpu_load5_warn: level = DiagnosticStatus.WARN vals.append(KeyValue(key = 'Load Average Status', value = load_dict[level])) vals.append(KeyValue(key = 'Load Average (1min)', value = str(load1*1e2)+"%")) vals.append(KeyValue(key = 'Load Average (5min)', value = str(load5*1e2)+"%")) vals.append(KeyValue(key = 'Load Average (15min)', value = str(load15*1e2)+"%")) except Exception, e: rospy.logerr(traceback.format_exc()) level = DiagnosticStatus.ERROR vals.append(KeyValue(key = 'Load Average Status', value = traceback.format_exc())) diag_msg = load_dict[level] return level, diag_msg, vals ##\brief Use mpstat to find CPU usage ## def check_mpstat(self): vals = [] mp_level = DiagnosticStatus.OK load_dict = { 0: 'OK', 1: 'High load', 2: 'Error' } try: p = subprocess.Popen('mpstat -P ALL 1 1', stdout = subprocess.PIPE, stderr = subprocess.PIPE, shell = True) stdout, stderr = p.communicate() retcode = p.returncode if retcode != 0: if not self._has_warned_mpstat: rospy.logerr("mpstat failed to run for cpu_monitor. Return code %d.", retcode) self._has_warned_mpstat = True mp_level = DiagnosticStatus.ERROR vals.append(KeyValue(key = '\"mpstat\" Call Error', value = str(retcode))) return mp_level, 'Unable to Check CPU Usage', vals # Check which column '%idle' is, #4539 # mpstat output changed between 8.06 and 8.1 rows = stdout.split('\n') col_names = rows[2].split() idle_col = -1 if (len(col_names) > 2 and col_names[-1] == '%idle') else -2 num_cores = 0 cores_loaded = 0 for index, row in enumerate(stdout.split('\n')): if index < 3: continue # Skip row containing 'all' data if row.find('all') > -1: continue lst = row.split() if len(lst) < 8: continue ## Ignore 'Average: ...' data if lst[0].startswith('Average'): continue cpu_name = '%d' % (num_cores) idle = lst[idle_col] user = lst[3] nice = lst[4] system = lst[5] core_level = 0 usage = (float(user)+float(nice))*1e-2 if usage > 10.0: # wrong reading, use old reading instead rospy.logwarn('Read CPU usage of %f percent. Reverting to previous reading of %f percent'%(usage, self._usage_old)) usage = self._usage_old self._usage_old = usage if usage >= self._cpu_load_warn: cores_loaded += 1 core_level = DiagnosticStatus.WARN elif usage >= self._cpu_load_error: core_level = DiagnosticStatus.ERROR vals.append(KeyValue(key = 'Core %s Status' % cpu_name, value = load_dict[core_level])) vals.append(KeyValue(key = 'Core %s User' % cpu_name, value = user+"%")) vals.append(KeyValue(key = 'Core %s Nice' % cpu_name, value = nice+"%")) vals.append(KeyValue(key = 'Core %s System' % cpu_name, value = system+"%")) vals.append(KeyValue(key = 'Core %s Idle' % cpu_name, value = idle+"%")) num_cores += 1 # Warn for high load only if we have <= 2 cores that aren't loaded if num_cores - cores_loaded <= 2 and num_cores > 2: mp_level = DiagnosticStatus.WARN if not self._num_cores: self._num_cores = num_cores # Check the number of cores if self._num_cores > 0, #4850 if self._num_cores != num_cores: mp_level = DiagnosticStatus.ERROR if not self._has_error_core_count: rospy.logerr('Error checking number of cores. Expected %d, got %d. Computer may have not booted properly.', self._num_cores, num_cores) self._has_error_core_count = True return DiagnosticStatus.ERROR, 'Incorrect number of CPU cores', vals except Exception, e: mp_level = DiagnosticStatus.ERROR vals.append(KeyValue(key = 'mpstat Exception', value = str(e))) diag_msg = load_dict[mp_level] return mp_level, diag_msg, vals ## Returns names for core temperature files ## Returns list of names, each name can be read like file def get_core_temp_names(self): temp_vals = [] try: p = subprocess.Popen('find /sys/devices -name \'temp*_input\'', stdout = subprocess.PIPE, stderr = subprocess.PIPE, shell = True) stdout, stderr = p.communicate() retcode = p.returncode if retcode != 0: rospy.logerr('Error find core temp locations: %s' % stderr) return [] for ln in stdout.split('\n'): temp_vals.append(ln.strip()) return temp_vals except: rospy.logerr('Exception finding temp vals: %s' % traceback.format_exc()) return [] ## Call every 10sec at minimum def check_temps(self): if rospy.is_shutdown(): with self._mutex: self.cancel_timers() return diag_vals = [ KeyValue(key = 'Update Status', value = 'OK' ), KeyValue(key = 'Time Since Last Update', value = str(0) ) ] diag_msgs = [] diag_level = 0 if self._check_core_temps: core_vals, core_msgs, core_level = self.check_core_temps(self._temp_vals) diag_vals.extend(core_vals) diag_msgs.extend(core_msgs) diag_level = max(diag_level, core_level) diag_log = set(diag_msgs) if len(diag_log) > 0: message = ', '.join(diag_log) else: message = stat_dict[diag_level] with self._mutex: self._last_temp_time = rospy.get_time() self._temp_stat.level = diag_level self._temp_stat.message = message self._temp_stat.values = diag_vals if not rospy.is_shutdown(): self._temps_timer = threading.Timer(5.0, self.check_temps) self._temps_timer.start() else: self.cancel_timers() def check_usage(self): if rospy.is_shutdown(): with self._mutex: self.cancel_timers() return diag_level = 0 diag_vals = [ KeyValue(key = 'Update Status', value = 'OK' ), KeyValue(key = 'Time Since Last Update', value = 0 )] diag_msgs = [] # Check clock speed clock_vals, clock_msgs, clock_level = self.check_clock_speed() diag_vals.extend(clock_vals) diag_msgs.extend(clock_msgs) diag_level = max(diag_level, clock_level) # Check mpstat mp_level, mp_msg, mp_vals = self.check_mpstat() diag_vals.extend(mp_vals) if mp_level > 0: diag_msgs.append(mp_msg) diag_level = max(diag_level, mp_level) # Check uptime uptime_level, up_msg, up_vals = self.check_uptime() diag_vals.extend(up_vals) if uptime_level > 0: diag_msgs.append(up_msg) diag_level = max(diag_level, uptime_level) if diag_msgs and diag_level > 0: usage_msg = ', '.join(set(diag_msgs)) else: usage_msg = stat_dict[diag_level] # Update status with self._mutex: self._last_usage_time = rospy.get_time() self._usage_stat.level = diag_level self._usage_stat.values = diag_vals self._usage_stat.message = usage_msg if not rospy.is_shutdown(): self._usage_timer = threading.Timer(5.0, self.check_usage) self._usage_timer.start() else: self.cancel_timers() def publish_stats(self): with self._mutex: # Update everything with last update times update_status_stale(self._temp_stat, self._last_temp_time) update_status_stale(self._usage_stat, self._last_usage_time) # Convert from ROS diagnostics to mbot_diagnostics for publishing. self._temp_diagnostic.set_status( Status(self._temp_stat.level), self._temp_stat.message, ) for diag_val in self._temp_stat.values: self._temp_diagnostic.set_metric(diag_val.key, diag_val.value) self._usage_diagnostic.set_status( Status(self._usage_stat.level), self._usage_stat.message, ) for diag_val in self._usage_stat.values: self._usage_diagnostic.set_metric(diag_val.key, diag_val.value) # Restart temperature checking if it goes stale, #4171 # Need to run this without mutex if rospy.get_time() - self._last_temp_time > 90: self._restart_temp_check() if __name__ == '__main__': hostname = socket.gethostname() hostname = hostname.replace('-', '_') import optparse parser = optparse.OptionParser(usage="usage: cpu_monitor.py --diag-hostname=com-X") parser.add_option("--diag-hostname", dest="diag_hostname", help="Computer name in diagnostics output (ex: 'com-1')", metavar="DIAG_HOSTNAME", action="store", default = hostname) options, args = parser.parse_args(rospy.myargv()) try: rospy.init_node('cpu_monitor_%s' % hostname) except rospy.exceptions.ROSInitException: print >> sys.stderr, 'CPU monitor is unable to initialize node. Master may not be running.' sys.exit(0) namespace = rospy.get_namespace() or hostname cpu_node = CPUMonitor(hostname, namespace, options.diag_hostname) rate = rospy.Rate(1.0) try: while not rospy.is_shutdown(): rate.sleep() cpu_node.publish_stats() except KeyboardInterrupt: pass except Exception, e: traceback.print_exc() rospy.logerr(traceback.format_exc()) cpu_node.cancel_timers() sys.exit(0)
39.744828
135
0.556394
8a0207c5553c2fa89c0006390261e3844cc2c2a8
4,964
py
Python
tf_agents/policies/q_policy.py
arryyao/agents
011351f234f0e73eb2dbcbc6d6c5796875ab7b31
[ "Apache-2.0" ]
null
null
null
tf_agents/policies/q_policy.py
arryyao/agents
011351f234f0e73eb2dbcbc6d6c5796875ab7b31
[ "Apache-2.0" ]
null
null
null
tf_agents/policies/q_policy.py
arryyao/agents
011351f234f0e73eb2dbcbc6d6c5796875ab7b31
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2018 The TF-Agents Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Simple Policy for DQN.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import gin import numpy as np import tensorflow as tf from tf_agents.distributions import shifted_categorical from tf_agents.policies import tf_policy from tf_agents.trajectories import policy_step @gin.configurable class QPolicy(tf_policy.Base): """Class to build Q-Policies.""" def __init__(self, time_step_spec, action_spec, q_network, emit_log_probability=False, name=None): """Builds a Q-Policy given a q_network. Args: time_step_spec: A `TimeStep` spec of the expected time_steps. action_spec: A nest of BoundedTensorSpec representing the actions. q_network: An instance of a `tf_agents.network.Network`, callable via `network(observation, step_type) -> (output, final_state)`. emit_log_probability: Whether to emit log-probs in info of `PolicyStep`. name: The name of this policy. All variables in this module will fall under that name. Defaults to the class name. Raises: ValueError: If `q_network.action_spec` exists and is not compatible with `action_spec`. NotImplementedError: If `action_spec` contains more than one `BoundedTensorSpec`. """ network_action_spec = getattr(q_network, 'action_spec', None) if network_action_spec is not None: if not action_spec.is_compatible_with(network_action_spec): raise ValueError( 'action_spec must be compatible with q_network.action_spec; ' 'instead got action_spec=%s, q_network.action_spec=%s' % ( action_spec, network_action_spec)) flat_action_spec = tf.nest.flatten(action_spec) if len(flat_action_spec) > 1: raise NotImplementedError( 'action_spec can only contain a single BoundedTensorSpec.') # We need to maintain the flat action spec for dtype, shape and range. self._flat_action_spec = flat_action_spec[0] self._q_network = q_network super(QPolicy, self).__init__( time_step_spec, action_spec, policy_state_spec=q_network.state_spec, clip=False, emit_log_probability=emit_log_probability, name=name) def _variables(self): return self._q_network.variables def _distribution(self, time_step, policy_state): # In DQN, we always either take a uniformly random action, or the action # with the highest Q-value. However, to support more complicated policies, # we expose all Q-values as a categorical distribution with Q-values as # logits, and apply the GreedyPolicy wrapper in dqn_agent.py to select the # action with the highest Q-value. q_values, policy_state = self._q_network( time_step.observation, time_step.step_type, policy_state) # TODO(b/122314058): Validate and enforce that sampling distributions # created with the q_network logits generate the right action shapes. This # is curretly patching the problem. # If the action spec says each action should be shaped (1,), add another # dimension so the final shape is (B, 1, A), where A is the number of # actions. This will make Categorical emit events shaped (B, 1) rather than # (B,). Using axis -2 to allow for (B, T, 1, A) shaped q_values. if self._flat_action_spec.shape.ndims == 1: q_values = tf.expand_dims(q_values, -2) logits = q_values mask_split_fn = self._q_network.mask_split_fn if mask_split_fn: _, mask = mask_split_fn(time_step.observation) # Expand the mask as needed in the same way as q_values above. if self._flat_action_spec.shape.ndims == 1: mask = tf.expand_dims(mask, -2) # Overwrite the logits for invalid actions to -inf. neg_inf = tf.constant(-np.inf, dtype=logits.dtype) logits = tf.compat.v2.where(tf.cast(mask, tf.bool), logits, neg_inf) # TODO(kbanoop): Handle distributions over nests. distribution = shifted_categorical.ShiftedCategorical( logits=logits, dtype=self._flat_action_spec.dtype, shift=self._flat_action_spec.minimum) distribution = tf.nest.pack_sequence_as(self._action_spec, [distribution]) return policy_step.PolicyStep(distribution, policy_state)
39.396825
80
0.713135
fb7d5311487dbb4b64505992562e185aff671deb
2,804
py
Python
kornia/feature/__init__.py
lferraz/kornia
c30ef6149bd92054d482339a2b0cd18f8272f5f5
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
kornia/feature/__init__.py
lferraz/kornia
c30ef6149bd92054d482339a2b0cd18f8272f5f5
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
kornia/feature/__init__.py
lferraz/kornia
c30ef6149bd92054d482339a2b0cd18f8272f5f5
[ "ECL-2.0", "Apache-2.0" ]
1
2021-05-15T03:22:24.000Z
2021-05-15T03:22:24.000Z
from .responses import (CornerHarris, CornerGFTT, BlobHessian, BlobDoG, harris_response, gftt_response, hessian_response, dog_response) from .nms import (NonMaximaSuppression2d, nms2d, NonMaximaSuppression3d, nms3d) # Backward compatibility from .nms import nms2d as non_maxima_suppression2d from .nms import nms3d as non_maxima_suppression3d from .laf import (extract_patches_from_pyramid, extract_patches_simple, normalize_laf, denormalize_laf, laf_to_boundary_points, ellipse_to_laf, make_upright, scale_laf, get_laf_scale, get_laf_center, get_laf_orientation, set_laf_orientation, raise_error_if_laf_is_not_valid, laf_from_center_scale_ori, laf_is_inside_image, laf_to_three_points, laf_from_three_points) from .siftdesc import SIFTDescriptor from .mkd import MKDDescriptor from .hardnet import HardNet from .tfeat import TFeat from .sosnet import SOSNet from .scale_space_detector import ScaleSpaceDetector, PassLAF from .affine_shape import LAFAffineShapeEstimator, PatchAffineShapeEstimator, LAFAffNetShapeEstimator from .orientation import LAFOrienter, PatchDominantGradientOrientation, OriNet from .matching import match_nn, match_mnn, match_snn, match_smnn __all__ = [ "nms2d", "nms3d", "non_maxima_suppression2d", "non_maxima_suppression3d", "harris_response", "gftt_response", "hessian_response", "dog_response", "NonMaximaSuppression2d", "NonMaximaSuppression3d", "CornerHarris", "CornerGFTT", "BlobHessian", "BlobDoG", "extract_patches_from_pyramid", "extract_patches_simple", "normalize_laf", "denormalize_laf", "laf_to_boundary_points", "ellipse_to_laf", "make_upright", "get_laf_scale", "get_laf_center", "get_laf_orientation", "set_laf_orientation", "scale_laf", "SIFTDescriptor", "MKDDescriptor", "HardNet", "TFeat", "OriNet", "LAFAffNetShapeEstimator", "PassLAF", "ScaleSpaceDetector", "LAFAffineShapeEstimator", "PatchAffineShapeEstimator", "LAFOrienter", "PatchDominantGradientOrientation", "raise_error_if_laf_is_not_valid", "laf_is_inside_image", "laf_from_center_scale_ori", "laf_to_three_points", "laf_from_three_points", "match_nn", "match_mnn", "match_snn", "match_smnn", ]
29.515789
101
0.625892
adbeb796d099684013032a39baa56849ac54a35c
8,354
py
Python
lib/jnpr/healthbot/swagger/models/rule_schema_field.py
minefuto/healthbot-py-client
bb81452c974456af44299aebf32a73abeda8a943
[ "Apache-2.0" ]
null
null
null
lib/jnpr/healthbot/swagger/models/rule_schema_field.py
minefuto/healthbot-py-client
bb81452c974456af44299aebf32a73abeda8a943
[ "Apache-2.0" ]
null
null
null
lib/jnpr/healthbot/swagger/models/rule_schema_field.py
minefuto/healthbot-py-client
bb81452c974456af44299aebf32a73abeda8a943
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Healthbot APIs API interface for Healthbot application # noqa: E501 OpenAPI spec version: 1.0.0 Contact: healthbot-hackers@juniper.net Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class RuleSchemaField(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'constant': 'RuleSchemaConstant', 'description': 'str', 'field_name': 'str', 'formula': 'RuleSchemaFormula', 'reference': 'RuleSchemaReference', 'sensor': 'list[RuleSchemaSensor]', 'type': 'str' } attribute_map = { 'constant': 'constant', 'description': 'description', 'field_name': 'field-name', 'formula': 'formula', 'reference': 'reference', 'sensor': 'sensor', 'type': 'type' } def __init__(self, constant=None, description=None, field_name=None, formula=None, reference=None, sensor=None, type=None): # noqa: E501 """RuleSchemaField - a model defined in Swagger""" # noqa: E501 self._constant = None self._description = None self._field_name = None self._formula = None self._reference = None self._sensor = None self._type = None self.discriminator = None if constant is not None: self.constant = constant if description is not None: self.description = description self.field_name = field_name if formula is not None: self.formula = formula if reference is not None: self.reference = reference if sensor is not None: self.sensor = sensor if type is not None: self.type = type @property def constant(self): """Gets the constant of this RuleSchemaField. # noqa: E501 :return: The constant of this RuleSchemaField. # noqa: E501 :rtype: RuleSchemaConstant """ return self._constant @constant.setter def constant(self, constant): """Sets the constant of this RuleSchemaField. :param constant: The constant of this RuleSchemaField. # noqa: E501 :type: RuleSchemaConstant """ self._constant = constant @property def description(self): """Gets the description of this RuleSchemaField. # noqa: E501 Description about this field # noqa: E501 :return: The description of this RuleSchemaField. # noqa: E501 :rtype: str """ return self._description @description.setter def description(self, description): """Sets the description of this RuleSchemaField. Description about this field # noqa: E501 :param description: The description of this RuleSchemaField. # noqa: E501 :type: str """ self._description = description @property def field_name(self): """Gets the field_name of this RuleSchemaField. # noqa: E501 Name of the field. Should be of pattern [a-z][a-zA-Z0-9_-]* # noqa: E501 :return: The field_name of this RuleSchemaField. # noqa: E501 :rtype: str """ return self._field_name @field_name.setter def field_name(self, field_name): """Sets the field_name of this RuleSchemaField. Name of the field. Should be of pattern [a-z][a-zA-Z0-9_-]* # noqa: E501 :param field_name: The field_name of this RuleSchemaField. # noqa: E501 :type: str """ if field_name is None: raise ValueError("Invalid value for `field_name`, must not be `None`") # noqa: E501 if field_name is not None and len(field_name) > 64: raise ValueError("Invalid value for `field_name`, length must be less than or equal to `64`") # noqa: E501 if field_name is not None and not re.search(r'^[a-z][a-zA-Z0-9_-]*$', field_name): # noqa: E501 raise ValueError(r"Invalid value for `field_name`, must be a follow pattern or equal to `/^[a-z][a-zA-Z0-9_-]*$/`") # noqa: E501 self._field_name = field_name @property def formula(self): """Gets the formula of this RuleSchemaField. # noqa: E501 :return: The formula of this RuleSchemaField. # noqa: E501 :rtype: RuleSchemaFormula """ return self._formula @formula.setter def formula(self, formula): """Sets the formula of this RuleSchemaField. :param formula: The formula of this RuleSchemaField. # noqa: E501 :type: RuleSchemaFormula """ self._formula = formula @property def reference(self): """Gets the reference of this RuleSchemaField. # noqa: E501 :return: The reference of this RuleSchemaField. # noqa: E501 :rtype: RuleSchemaReference """ return self._reference @reference.setter def reference(self, reference): """Sets the reference of this RuleSchemaField. :param reference: The reference of this RuleSchemaField. # noqa: E501 :type: RuleSchemaReference """ self._reference = reference @property def sensor(self): """Gets the sensor of this RuleSchemaField. # noqa: E501 :return: The sensor of this RuleSchemaField. # noqa: E501 :rtype: list[RuleSchemaSensor] """ return self._sensor @sensor.setter def sensor(self, sensor): """Sets the sensor of this RuleSchemaField. :param sensor: The sensor of this RuleSchemaField. # noqa: E501 :type: list[RuleSchemaSensor] """ self._sensor = sensor @property def type(self): """Gets the type of this RuleSchemaField. # noqa: E501 :return: The type of this RuleSchemaField. # noqa: E501 :rtype: str """ return self._type @type.setter def type(self, type): """Sets the type of this RuleSchemaField. :param type: The type of this RuleSchemaField. # noqa: E501 :type: str """ allowed_values = ["string", "integer", "float"] # noqa: E501 if type not in allowed_values: raise ValueError( "Invalid value for `type` ({0}), must be one of {1}" # noqa: E501 .format(type, allowed_values) ) self._type = type def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(RuleSchemaField, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, RuleSchemaField): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
29.108014
141
0.582715
6ec2bc2205e6365abca64285e92e1d386825e17a
834
py
Python
tests/programs/multiprocessing_using/foo/__main__.py
hclivess/Nuitka
9c7ec9696e69a3901b25d5bce720c921d45c931b
[ "Apache-2.0" ]
null
null
null
tests/programs/multiprocessing_using/foo/__main__.py
hclivess/Nuitka
9c7ec9696e69a3901b25d5bce720c921d45c931b
[ "Apache-2.0" ]
1
2019-03-01T11:33:40.000Z
2019-03-01T11:33:40.000Z
tests/programs/multiprocessing_using/foo/__main__.py
hclivess/Nuitka
9c7ec9696e69a3901b25d5bce720c921d45c931b
[ "Apache-2.0" ]
1
2019-03-26T16:56:21.000Z
2019-03-26T16:56:21.000Z
# Copyright 2019, Kay Hayen, mailto:kay.hayen@gmail.com # # Python tests originally created or extracted from other peoples work. The # parts were too small to be protected. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from foo import entry if __name__ == '__main__': entry.main()
36.26087
79
0.714628
e8305b129c5799a86d6b6457b918a7b877794cd8
568
py
Python
services/card/cards/platform.py
prorevizor/noc
37e44b8afc64318b10699c06a1138eee9e7d6a4e
[ "BSD-3-Clause" ]
84
2017-10-22T11:01:39.000Z
2022-02-27T03:43:48.000Z
services/card/cards/platform.py
prorevizor/noc
37e44b8afc64318b10699c06a1138eee9e7d6a4e
[ "BSD-3-Clause" ]
22
2017-12-11T07:21:56.000Z
2021-09-23T02:53:50.000Z
services/card/cards/platform.py
prorevizor/noc
37e44b8afc64318b10699c06a1138eee9e7d6a4e
[ "BSD-3-Clause" ]
23
2017-12-06T06:59:52.000Z
2022-02-24T00:02:25.000Z
# ---------------------------------------------------------------------- # Platform card # ---------------------------------------------------------------------- # Copyright (C) 2007-2020 The NOC Project # See LICENSE for details # ---------------------------------------------------------------------- # NOC modules from noc.inv.models.platform import Platform from .base import BaseCard class PlatformCard(BaseCard): name = "platform" default_template_name = "platform" model = Platform def get_data(self): return {"object": self.object}
28.4
72
0.43838
d76fb73f8daabd3ab785706f13baf94bff025069
9,463
py
Python
baselines/gail/run_mujoco.py
syllogismos/wandb_baselines
c0b0e5d5d9b2db3797e3fddfa07c3299df7523d5
[ "MIT" ]
1
2020-03-06T13:37:05.000Z
2020-03-06T13:37:05.000Z
baselines/gail/run_mujoco.py
cvphelps/wandb_baselines
140011d40570f6f213650ea720cfe9374191786f
[ "MIT" ]
null
null
null
baselines/gail/run_mujoco.py
cvphelps/wandb_baselines
140011d40570f6f213650ea720cfe9374191786f
[ "MIT" ]
1
2018-07-15T03:36:16.000Z
2018-07-15T03:36:16.000Z
''' Disclaimer: this code is highly based on trpo_mpi at @openai/baselines and @openai/imitation ''' import wandb wandb.init() import argparse import os.path as osp import logging from mpi4py import MPI from tqdm import tqdm import numpy as np import gym, roboschool from baselines.gail import mlp_policy from baselines.common import set_global_seeds, tf_util as U from baselines.common.misc_util import boolean_flag from baselines import bench from baselines import logger from baselines.gail.dataset.mujoco_dset import Mujoco_Dset from baselines.gail.adversary import TransitionClassifier def argsparser(): parser = argparse.ArgumentParser("Tensorflow Implementation of GAIL") parser.add_argument('--env_id', help='environment ID', default='Hopper-v2') parser.add_argument('--seed', help='RNG seed', type=int, default=0) parser.add_argument('--expert_path', type=str, default='data/deterministic.trpo.Hopper.0.00.npz') parser.add_argument('--checkpoint_dir', help='the directory to save model', default='checkpoint') parser.add_argument('--log_dir', help='the directory to save log file', default='log') parser.add_argument('--load_model_path', help='if provided, load the model', type=str, default=None) # Task parser.add_argument('--task', type=str, choices=['train', 'evaluate', 'sample'], default='train') # for evaluatation boolean_flag(parser, 'stochastic_policy', default=False, help='use stochastic/deterministic policy to evaluate') boolean_flag(parser, 'save_sample', default=False, help='save the trajectories or not') # Mujoco Dataset Configuration parser.add_argument('--traj_limitation', type=int, default=-1) # Optimization Configuration parser.add_argument('--g_step', help='number of steps to train policy in each epoch', type=int, default=3) parser.add_argument('--d_step', help='number of steps to train discriminator in each epoch', type=int, default=1) # Network Configuration (Using MLP Policy) parser.add_argument('--policy_hidden_size', type=int, default=100) parser.add_argument('--adversary_hidden_size', type=int, default=100) # Algorithms Configuration parser.add_argument('--algo', type=str, choices=['trpo', 'ppo'], default='trpo') parser.add_argument('--max_kl', type=float, default=0.01) parser.add_argument('--policy_entcoeff', help='entropy coefficiency of policy', type=float, default=0) parser.add_argument('--adversary_entcoeff', help='entropy coefficiency of discriminator', type=float, default=1e-3) # Traing Configuration parser.add_argument('--save_per_iter', help='save model every xx iterations', type=int, default=100) parser.add_argument('--num_timesteps', help='number of timesteps per episode', type=int, default=5e6) # Behavior Cloning boolean_flag(parser, 'pretrained', default=False, help='Use BC to pretrain') parser.add_argument('--BC_max_iter', help='Max iteration for training BC', type=int, default=1e4) return parser.parse_args() def get_task_name(args): task_name = args.algo + "_gail." if args.pretrained: task_name += "with_pretrained." if args.traj_limitation != np.inf: task_name += "transition_limitation_%d." % args.traj_limitation task_name += args.env_id.split("-")[0] task_name = task_name + ".g_step_" + str(args.g_step) + ".d_step_" + str(args.d_step) + \ ".policy_entcoeff_" + str(args.policy_entcoeff) + ".adversary_entcoeff_" + str(args.adversary_entcoeff) task_name += ".seed_" + str(args.seed) return task_name def main(args): U.make_session(num_cpu=1).__enter__() set_global_seeds(args.seed) env = gym.make(args.env_id) def policy_fn(name, ob_space, ac_space, reuse=False): return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space, reuse=reuse, hid_size=args.policy_hidden_size, num_hid_layers=2) env = bench.Monitor(env, logger.get_dir() and osp.join(logger.get_dir(), "monitor.json")) env.seed(args.seed) gym.logger.setLevel(logging.WARN) task_name = get_task_name(args) args.checkpoint_dir = osp.join(args.checkpoint_dir, task_name) args.log_dir = osp.join(args.log_dir, task_name) if args.task == 'train': dataset = Mujoco_Dset(expert_path=args.expert_path, traj_limitation=args.traj_limitation) reward_giver = TransitionClassifier(env, args.adversary_hidden_size, entcoeff=args.adversary_entcoeff) train(env, args.seed, policy_fn, reward_giver, dataset, args.algo, args.g_step, args.d_step, args.policy_entcoeff, args.num_timesteps, args.save_per_iter, args.checkpoint_dir, args.log_dir, args.pretrained, args.BC_max_iter, task_name ) elif args.task == 'evaluate': runner(env, policy_fn, args.load_model_path, timesteps_per_batch=1024, number_trajs=10, stochastic_policy=args.stochastic_policy, save=args.save_sample ) else: raise NotImplementedError env.close() def train(env, seed, policy_fn, reward_giver, dataset, algo, g_step, d_step, policy_entcoeff, num_timesteps, save_per_iter, checkpoint_dir, log_dir, pretrained, BC_max_iter, task_name=None): pretrained_weight = None if pretrained and (BC_max_iter > 0): # Pretrain with behavior cloning from baselines.gail import behavior_clone pretrained_weight = behavior_clone.learn(env, policy_fn, dataset, max_iters=BC_max_iter) if algo == 'trpo': from baselines.gail import trpo_mpi # Set up for MPI seed rank = MPI.COMM_WORLD.Get_rank() if rank != 0: logger.set_level(logger.DISABLED) workerseed = seed + 10000 * MPI.COMM_WORLD.Get_rank() set_global_seeds(workerseed) env.seed(workerseed) trpo_mpi.learn(env, policy_fn, reward_giver, dataset, rank, pretrained=pretrained, pretrained_weight=pretrained_weight, g_step=g_step, d_step=d_step, entcoeff=policy_entcoeff, max_timesteps=num_timesteps, ckpt_dir=checkpoint_dir, log_dir=log_dir, save_per_iter=save_per_iter, timesteps_per_batch=1024, max_kl=0.01, cg_iters=10, cg_damping=0.1, gamma=0.995, lam=0.97, vf_iters=5, vf_stepsize=1e-3, task_name=task_name) else: raise NotImplementedError def runner(env, policy_func, load_model_path, timesteps_per_batch, number_trajs, stochastic_policy, save=False, reuse=False): # Setup network # ---------------------------------------- ob_space = env.observation_space ac_space = env.action_space pi = policy_func("pi", ob_space, ac_space, reuse=reuse) U.initialize() # Prepare for rollouts # ---------------------------------------- U.load_state(load_model_path) obs_list = [] acs_list = [] len_list = [] ret_list = [] for _ in tqdm(range(number_trajs)): traj = traj_1_generator(pi, env, timesteps_per_batch, stochastic=stochastic_policy) obs, acs, ep_len, ep_ret = traj['ob'], traj['ac'], traj['ep_len'], traj['ep_ret'] obs_list.append(obs) acs_list.append(acs) len_list.append(ep_len) ret_list.append(ep_ret) if stochastic_policy: print('stochastic policy:') else: print('deterministic policy:') if save: filename = load_model_path.split('/')[-1] + '.' + env.spec.id np.savez(filename, obs=np.array(obs_list), acs=np.array(acs_list), lens=np.array(len_list), rets=np.array(ret_list)) avg_len = sum(len_list)/len(len_list) avg_ret = sum(ret_list)/len(ret_list) print("Average length:", avg_len) print("Average return:", avg_ret) return avg_len, avg_ret # Sample one trajectory (until trajectory end) def traj_1_generator(pi, env, horizon, stochastic): t = 0 ac = env.action_space.sample() # not used, just so we have the datatype new = True # marks if we're on first timestep of an episode ob = env.reset() cur_ep_ret = 0 # return in current episode cur_ep_len = 0 # len of current episode # Initialize history arrays obs = [] rews = [] news = [] acs = [] while True: ac, vpred = pi.act(stochastic, ob) obs.append(ob) news.append(new) acs.append(ac) ob, rew, new, _ = env.step(ac) rews.append(rew) cur_ep_ret += rew cur_ep_len += 1 if new or t >= horizon: break t += 1 obs = np.array(obs) rews = np.array(rews) news = np.array(news) acs = np.array(acs) traj = {"ob": obs, "rew": rews, "new": news, "ac": acs, "ep_ret": cur_ep_ret, "ep_len": cur_ep_len} return traj if __name__ == '__main__': args = argsparser() wandb.config.update(args) # wandb.config.algo = 'gail' main(args)
38.782787
119
0.640283
50db3de9d89a041b272d3a28d84cbffc9cbb298f
2,268
py
Python
examples/paging-predicate/paging_predicate_example.py
tonytheonlypony/hazelcast-python-client
3aafeaf2ebc05aee4f2386c62c079db496a7c81f
[ "Apache-2.0" ]
98
2015-12-08T14:26:27.000Z
2022-03-23T17:44:11.000Z
examples/paging-predicate/paging_predicate_example.py
tonytheonlypony/hazelcast-python-client
3aafeaf2ebc05aee4f2386c62c079db496a7c81f
[ "Apache-2.0" ]
396
2016-02-23T11:07:55.000Z
2022-03-31T14:26:34.000Z
examples/paging-predicate/paging_predicate_example.py
tonytheonlypony/hazelcast-python-client
3aafeaf2ebc05aee4f2386c62c079db496a7c81f
[ "Apache-2.0" ]
62
2015-12-09T11:20:53.000Z
2022-01-28T01:30:54.000Z
import random import hazelcast from hazelcast import predicate from hazelcast.core import HazelcastJsonValue from hazelcast.serialization.api import IdentifiedDataSerializable class AgeComparator(IdentifiedDataSerializable): """ This is just a marker class that identifies which comparator to use on the member. It also carries a boolean flag to determine the order of sorting done on the member side. It must implement the counterpart of the interface implemented by the Java code and have the same class and factory id. """ def __init__(self, reverse=False): self._reverse = reverse def write_data(self, object_data_output): object_data_output.write_boolean(self._reverse) def read_data(self, object_data_input): self._reverse = object_data_input.read_boolean() def get_factory_id(self): return 1 def get_class_id(self): return 1 client = hazelcast.HazelcastClient() students = client.get_map("students").blocking() # Populate the map with some random data. for i in range(42): students.set( i, HazelcastJsonValue( { "student_id": i, "age": random.randrange(8, 24), } ), ) # Use the paging predicate with true predicate # to get all students with the page size of 10. # It also uses the custom comparator we have # written and sorts the values in ascending # order of age. paging_predicate = predicate.paging( predicate=predicate.true(), page_size=10, comparator=AgeComparator(), ) print(students.values(paging_predicate)) # Set up the next page and fetch it. paging_predicate.next_page() print(students.values(paging_predicate)) # This time, we will fetch students with the # student_id between 10 to 40 with the page size # of 5. We will also make use of the custom comparator # and sort the results in descending order of age. paging_predicate = predicate.paging( predicate=predicate.between("student_id", 10, 40), page_size=5, comparator=AgeComparator(reverse=True), ) print(students.values(paging_predicate)) # Set up the next page and fetch it. paging_predicate.next_page() print(students.values(paging_predicate)) client.shutdown()
26.372093
66
0.716931
d8c9910bad542251562209f0596856735d80ea78
2,601
py
Python
python/sdk/client/models/endpoint_status.py
ashwinath/merlin
087a7fa6fb21e4c771d64418bd58873175226ca1
[ "Apache-2.0" ]
null
null
null
python/sdk/client/models/endpoint_status.py
ashwinath/merlin
087a7fa6fb21e4c771d64418bd58873175226ca1
[ "Apache-2.0" ]
null
null
null
python/sdk/client/models/endpoint_status.py
ashwinath/merlin
087a7fa6fb21e4c771d64418bd58873175226ca1
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Merlin API Guide for accessing Merlin's model management, deployment, and serving functionalities # noqa: E501 OpenAPI spec version: 0.7.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class EndpointStatus(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ allowed enum values """ PENDING = "pending" RUNNING = "running" SERVING = "serving" FAILED = "failed" TERMINATED = "terminated" """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { } attribute_map = { } def __init__(self): # noqa: E501 """EndpointStatus - a model defined in Swagger""" # noqa: E501 self.discriminator = None def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(EndpointStatus, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, EndpointStatus): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
26.814433
108
0.55248
5da3cbdde39618ebc9fb57f1847583f4603bb71d
383
py
Python
src/hataraku/migrations/0004_auto_20190614_1323.py
HNJ755329/Hatarako
253d107db7a15caaf63794d9b8a4acc99168fba0
[ "MIT" ]
null
null
null
src/hataraku/migrations/0004_auto_20190614_1323.py
HNJ755329/Hatarako
253d107db7a15caaf63794d9b8a4acc99168fba0
[ "MIT" ]
null
null
null
src/hataraku/migrations/0004_auto_20190614_1323.py
HNJ755329/Hatarako
253d107db7a15caaf63794d9b8a4acc99168fba0
[ "MIT" ]
null
null
null
# Generated by Django 2.0.4 on 2019-06-14 04:23 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('hataraku', '0003_auto_20190614_1319'), ] operations = [ migrations.AlterField( model_name='post', name='color', field=models.CharField(max_length=7), ), ]
20.157895
49
0.5953
37df33e7c099cf9f88b7ee4261db32a420f885b9
1,934
py
Python
assault/cli.py
joseph-mcdaniel/load-testing
159c083cc9c0981837ff9f21b9d9ddaa4df4fe6f
[ "MIT" ]
null
null
null
assault/cli.py
joseph-mcdaniel/load-testing
159c083cc9c0981837ff9f21b9d9ddaa4df4fe6f
[ "MIT" ]
3
2020-03-24T18:26:32.000Z
2021-02-02T22:38:13.000Z
assault/cli.py
joseph-mcdaniel/load-testing
159c083cc9c0981837ff9f21b9d9ddaa4df4fe6f
[ "MIT" ]
null
null
null
import click import sys import json from typing import TextIO from .http import assault from .stats import Results @click.command() @click.option("--requests", "-r", default=500, help="Number of requests") @click.option("--concurrency", "-c", default=1, help="Number of concurrent requests") @click.option("--json-file", "-j", default=None, help="Path to output JSON file") @click.argument("url") def cli(requests, concurrency, json_file, url): output_file = None if json_file: try: output_file = open(json_file, "w") except: print(f"Unable to open file {json_file}") sys.exit(1) total_time, requests_dicts = assault(url, requests, concurrency) results = Results(total_time, requests_dicts) display(results, output_file) def display(results: Results, json_file: TextIO): if json_file: # Write to the file json.dump( { "successful_requests": results.successful_requests(), "slowest": results.slowest(), "fastest": results.fastest(), "total_time": results.total_time, "requests_per_minute": results.requests_per_minute(), "requests_per_second": results.requests_per_second(), }, json_file, ) json_file.close() print(".... Done!") else: # Print to screen print(".... Done!") print("--- Results ---") print(f"Successful requests\t{results.successful_requests()}") print(f"Slowest \t{results.slowest()}") print(f"Fastest \t{results.fastest()}") print(f"Average \t{results.average_time()}") print(f"Total time \t{results.total_time}") print(f"Requests per minute\t{results.requests_per_minute()}") print(f"Requests per second\t{results.requests_per_second()}")
34.535714
85
0.599793
c26ac1a91dabdb0034c28b5241ea7cfad78d438f
3,375
py
Python
jscatter/jscatter_test.py
flekschas/jupyter-scatter
550eceb2311b0394caad83dbb399ed2f29e55af6
[ "Apache-2.0" ]
23
2021-02-03T02:05:47.000Z
2022-03-17T14:53:39.000Z
jscatter/jscatter_test.py
manzt/jupyter-scatter
c38f94abfb655e03f407e7fcec80a883439796b5
[ "Apache-2.0" ]
5
2021-02-04T22:19:35.000Z
2022-03-07T04:49:31.000Z
jscatter/jscatter_test.py
manzt/jupyter-scatter
c38f94abfb655e03f407e7fcec80a883439796b5
[ "Apache-2.0" ]
1
2021-06-15T14:14:47.000Z
2021-06-15T14:14:47.000Z
import numpy as np import pandas as pd from .jscatter import Scatter, component_idx_to_name from .utils import minmax_scale def test_component_idx_to_name(): assert 'valueA' == component_idx_to_name(2) assert 'valueB' == component_idx_to_name(3) assert None == component_idx_to_name(4) assert None == component_idx_to_name(1) assert None == component_idx_to_name(None) def test_scatter_numpy(): x = np.random.rand(500) y = np.random.rand(500) scatter = Scatter(x, y) widget = scatter.widget widget_data = np.asarray(widget.points) assert (500, 4) == widget_data.shape assert np.allclose(minmax_scale(x, (-1,1)), widget_data[:,0]) assert np.allclose(minmax_scale(y, (-1,1)), widget_data[:,1]) assert np.sum(widget_data[:,2:]) == 0 def get_df(): num_groups = 8 data = np.random.rand(500, 7) data[:,2] *= 100 data[:,3] *= 100 data[:,3] = data[:,3].astype(int) data[:,4] = np.round(data[:,4] * (num_groups - 1)).astype(int) data[:,5] = np.repeat(np.arange(100), 5).astype(int) data[:,6] = np.resize(np.arange(5), 500).astype(int) df = pd.DataFrame( data, columns=['a', 'b', 'c', 'd', 'group', 'connect', 'connect_order'] ) df['group'] = df['group'].astype('int').astype('category').map(lambda c: chr(65 + c), na_action=None) df['connect'] = df['connect'].astype('int') df['connect_order'] = df['connect_order'].astype('int') return df def test_scatter_pandas(): df = get_df() scatter = Scatter(data=df, x='a', y='b') widget = scatter.widget widget_data = np.asarray(widget.points) assert (500, 4) == np.asarray(widget.points).shape assert np.allclose(minmax_scale(df['a'].values, (-1,1)), widget_data[:,0]) assert np.allclose(minmax_scale(df['b'].values, (-1,1)), widget_data[:,1]) def test_scatter_point_encoding_updates(): df = get_df() scatter = Scatter(data=df, x='a', y='b') widget = scatter.widget widget_data = np.asarray(widget.points) assert len(scatter._encodings.data) == 0 assert np.sum(widget_data[:,2:]) == 0 scatter.color(by='group') widget_data = np.asarray(widget.points) assert 'color' in scatter._encodings.visual assert 'group' in scatter._encodings.data assert np.sum(widget_data[:,2]) > 0 assert np.sum(widget_data[:,3]) == 0 scatter.opacity(by='c') widget_data = np.asarray(widget.points) assert 'opacity' in scatter._encodings.visual assert 'c' in scatter._encodings.data assert np.sum(widget_data[:,3]) > 0 scatter.size(by='c') widget_data = np.asarray(widget.points) assert 'size' in scatter._encodings.visual assert 'c' in scatter._encodings.data assert np.sum(widget_data[:,3]) > 0 def test_scatter_connection_encoding_updates(): df = get_df() scatter = Scatter(data=df, x='a', y='b') widget = scatter.widget scatter.connect(by='connect') widget_data = np.asarray(widget.points) assert widget_data.shape == (500, 5) assert np.all( df['connect'].values == widget_data[:,4].astype(df['connect'].dtype) ) scatter.connect(order='connect_order') widget_data = np.asarray(widget.points) assert widget_data.shape == (500, 6) assert np.all( df['connect_order'].values == widget_data[:,5].astype(df['connect_order'].dtype) )
31.25
105
0.647704
2af8a1e22dfbc99a5cf33569f3a1a48ef476b490
730
py
Python
weather-station/bme280_sensor.py
jeremyhamm/pi-weather-dashboard
ada4441f72251f7238c1d86f1e5b69af089c7baa
[ "MIT" ]
null
null
null
weather-station/bme280_sensor.py
jeremyhamm/pi-weather-dashboard
ada4441f72251f7238c1d86f1e5b69af089c7baa
[ "MIT" ]
null
null
null
weather-station/bme280_sensor.py
jeremyhamm/pi-weather-dashboard
ada4441f72251f7238c1d86f1e5b69af089c7baa
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import bme280 import smbus2 # RaspberryPi Logic port = 1 address = 0x76 # Adafruit BME280 address. Other BME280s may be different bus = smbus2.SMBus(port) bme280.load_calibration_params(bus,address) def read_all(): bme280_data = bme280.sample(bus,address) humidity = bme280_data.humidity pressure = bme280_data.pressure * 0.029530 celsius_temperature = bme280_data.temperature fahrenheit_temp = ((celsius_temperature * 1.8000) + 32.00) # Print for debug degree = u"\u00b0" # print( str(round(fahrenheit_temp)) + degree + "F" ) # print( str(round(humidity)) + "% humidity" ) # print( str(round(pressure, 2)) + " in" ) return fahrenheit_temp, humidity, pressure # read_all()
26.071429
72
0.716438
809521775abac2ec5b2d1b84ebaa91bd00dc6a93
7,843
py
Python
src/virtual-wan/azext_vwan/vendored_sdks/v2018_08_01/v2018_08_01/operations/__init__.py
Mannan2812/azure-cli-extensions
e2b34efe23795f6db9c59100534a40f0813c3d95
[ "MIT" ]
207
2017-11-29T06:59:41.000Z
2022-03-31T10:00:53.000Z
src/virtual-wan/azext_vwan/vendored_sdks/v2018_08_01/v2018_08_01/operations/__init__.py
Mannan2812/azure-cli-extensions
e2b34efe23795f6db9c59100534a40f0813c3d95
[ "MIT" ]
4,061
2017-10-27T23:19:56.000Z
2022-03-31T23:18:30.000Z
src/virtual-wan/azext_vwan/vendored_sdks/v2018_08_01/v2018_08_01/operations/__init__.py
Mannan2812/azure-cli-extensions
e2b34efe23795f6db9c59100534a40f0813c3d95
[ "MIT" ]
802
2017-10-11T17:36:26.000Z
2022-03-31T22:24:32.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .application_gateways_operations import ApplicationGatewaysOperations from .application_security_groups_operations import ApplicationSecurityGroupsOperations from .available_delegations_operations import AvailableDelegationsOperations from .available_resource_group_delegations_operations import AvailableResourceGroupDelegationsOperations from .azure_firewalls_operations import AzureFirewallsOperations from .azure_firewall_fqdn_tags_operations import AzureFirewallFqdnTagsOperations from .ddos_protection_plans_operations import DdosProtectionPlansOperations from .available_endpoint_services_operations import AvailableEndpointServicesOperations from .express_route_circuit_authorizations_operations import ExpressRouteCircuitAuthorizationsOperations from .express_route_circuit_peerings_operations import ExpressRouteCircuitPeeringsOperations from .express_route_circuit_connections_operations import ExpressRouteCircuitConnectionsOperations from .express_route_circuits_operations import ExpressRouteCircuitsOperations from .express_route_service_providers_operations import ExpressRouteServiceProvidersOperations from .express_route_cross_connections_operations import ExpressRouteCrossConnectionsOperations from .express_route_cross_connection_peerings_operations import ExpressRouteCrossConnectionPeeringsOperations from .express_route_gateways_operations import ExpressRouteGatewaysOperations from .express_route_connections_operations import ExpressRouteConnectionsOperations from .interface_endpoints_operations import InterfaceEndpointsOperations from .load_balancers_operations import LoadBalancersOperations from .load_balancer_backend_address_pools_operations import LoadBalancerBackendAddressPoolsOperations from .load_balancer_frontend_ip_configurations_operations import LoadBalancerFrontendIPConfigurationsOperations from .inbound_nat_rules_operations import InboundNatRulesOperations from .load_balancer_load_balancing_rules_operations import LoadBalancerLoadBalancingRulesOperations from .load_balancer_network_interfaces_operations import LoadBalancerNetworkInterfacesOperations from .load_balancer_probes_operations import LoadBalancerProbesOperations from .network_interfaces_operations import NetworkInterfacesOperations from .network_interface_ip_configurations_operations import NetworkInterfaceIPConfigurationsOperations from .network_interface_load_balancers_operations import NetworkInterfaceLoadBalancersOperations from .network_interface_tap_configurations_operations import NetworkInterfaceTapConfigurationsOperations from .network_profiles_operations import NetworkProfilesOperations from .network_security_groups_operations import NetworkSecurityGroupsOperations from .security_rules_operations import SecurityRulesOperations from .default_security_rules_operations import DefaultSecurityRulesOperations from .network_watchers_operations import NetworkWatchersOperations from .packet_captures_operations import PacketCapturesOperations from .connection_monitors_operations import ConnectionMonitorsOperations from .operations import Operations from .public_ip_addresses_operations import PublicIPAddressesOperations from .public_ip_prefixes_operations import PublicIPPrefixesOperations from .route_filters_operations import RouteFiltersOperations from .route_filter_rules_operations import RouteFilterRulesOperations from .route_tables_operations import RouteTablesOperations from .routes_operations import RoutesOperations from .bgp_service_communities_operations import BgpServiceCommunitiesOperations from .service_endpoint_policies_operations import ServiceEndpointPoliciesOperations from .service_endpoint_policy_definitions_operations import ServiceEndpointPolicyDefinitionsOperations from .usages_operations import UsagesOperations from .virtual_networks_operations import VirtualNetworksOperations from .subnets_operations import SubnetsOperations from .virtual_network_peerings_operations import VirtualNetworkPeeringsOperations from .virtual_network_taps_operations import VirtualNetworkTapsOperations from .virtual_network_gateways_operations import VirtualNetworkGatewaysOperations from .virtual_network_gateway_connections_operations import VirtualNetworkGatewayConnectionsOperations from .local_network_gateways_operations import LocalNetworkGatewaysOperations from .virtual_wans_operations import VirtualWansOperations from .vpn_sites_operations import VpnSitesOperations from .vpn_sites_configuration_operations import VpnSitesConfigurationOperations from .virtual_hubs_operations import VirtualHubsOperations from .hub_virtual_network_connections_operations import HubVirtualNetworkConnectionsOperations from .vpn_gateways_operations import VpnGatewaysOperations from .vpn_connections_operations import VpnConnectionsOperations from .p2s_vpn_server_configurations_operations import P2sVpnServerConfigurationsOperations from .p2s_vpn_gateways_operations import P2sVpnGatewaysOperations __all__ = [ 'ApplicationGatewaysOperations', 'ApplicationSecurityGroupsOperations', 'AvailableDelegationsOperations', 'AvailableResourceGroupDelegationsOperations', 'AzureFirewallsOperations', 'AzureFirewallFqdnTagsOperations', 'DdosProtectionPlansOperations', 'AvailableEndpointServicesOperations', 'ExpressRouteCircuitAuthorizationsOperations', 'ExpressRouteCircuitPeeringsOperations', 'ExpressRouteCircuitConnectionsOperations', 'ExpressRouteCircuitsOperations', 'ExpressRouteServiceProvidersOperations', 'ExpressRouteCrossConnectionsOperations', 'ExpressRouteCrossConnectionPeeringsOperations', 'ExpressRouteGatewaysOperations', 'ExpressRouteConnectionsOperations', 'InterfaceEndpointsOperations', 'LoadBalancersOperations', 'LoadBalancerBackendAddressPoolsOperations', 'LoadBalancerFrontendIPConfigurationsOperations', 'InboundNatRulesOperations', 'LoadBalancerLoadBalancingRulesOperations', 'LoadBalancerNetworkInterfacesOperations', 'LoadBalancerProbesOperations', 'NetworkInterfacesOperations', 'NetworkInterfaceIPConfigurationsOperations', 'NetworkInterfaceLoadBalancersOperations', 'NetworkInterfaceTapConfigurationsOperations', 'NetworkProfilesOperations', 'NetworkSecurityGroupsOperations', 'SecurityRulesOperations', 'DefaultSecurityRulesOperations', 'NetworkWatchersOperations', 'PacketCapturesOperations', 'ConnectionMonitorsOperations', 'Operations', 'PublicIPAddressesOperations', 'PublicIPPrefixesOperations', 'RouteFiltersOperations', 'RouteFilterRulesOperations', 'RouteTablesOperations', 'RoutesOperations', 'BgpServiceCommunitiesOperations', 'ServiceEndpointPoliciesOperations', 'ServiceEndpointPolicyDefinitionsOperations', 'UsagesOperations', 'VirtualNetworksOperations', 'SubnetsOperations', 'VirtualNetworkPeeringsOperations', 'VirtualNetworkTapsOperations', 'VirtualNetworkGatewaysOperations', 'VirtualNetworkGatewayConnectionsOperations', 'LocalNetworkGatewaysOperations', 'VirtualWansOperations', 'VpnSitesOperations', 'VpnSitesConfigurationOperations', 'VirtualHubsOperations', 'HubVirtualNetworkConnectionsOperations', 'VpnGatewaysOperations', 'VpnConnectionsOperations', 'P2sVpnServerConfigurationsOperations', 'P2sVpnGatewaysOperations', ]
55.624113
111
0.865485
5a4a7d0b916bf074e121c3e0ff1cc12975b2bf82
641
py
Python
export_example.py
WorldException/jira2gitlab
bae0d2a5912f1e7e4569a534f1b1f4177eda9449
[ "MIT" ]
null
null
null
export_example.py
WorldException/jira2gitlab
bae0d2a5912f1e7e4569a534f1b1f4177eda9449
[ "MIT" ]
null
null
null
export_example.py
WorldException/jira2gitlab
bae0d2a5912f1e7e4569a534f1b1f4177eda9449
[ "MIT" ]
null
null
null
from jira2gitlab import jira # Example export project to local files (issues database and attachments) # name from url https://{name}.atlassian.net/ # token from https://id.atlassian.com/manage-profile/security/api-tokens jira.configure('name', 'you_mail@gmail.com', 'jira_token') # export all projects jira.export_projects() # export some project jira.export_projects(['AC', 'AB']) # for download export-users.csv # 1. go https://{site}.atlassian.net/jira/people/search and click "Manage users" # 2. click "Export users" jira.save_users(jira.export_users('export-users.csv')) # grab users from tasks jira.save_users(jira.grab_users())
32.05
80
0.75663
5d64c2b2bd29c80c79ed1a24f90b2b2e45a6bb8b
910
py
Python
src/som/primitives/object_primitives.py
SOM-st/RPySOM
2dcfc71786a3bd5be5a842c649645f71d6c35f89
[ "MIT" ]
12
2016-01-07T14:20:57.000Z
2019-10-13T06:56:20.000Z
src/som/primitives/object_primitives.py
SOM-st/RPySOM
2dcfc71786a3bd5be5a842c649645f71d6c35f89
[ "MIT" ]
2
2016-05-26T06:53:33.000Z
2020-09-02T15:58:28.000Z
src/som/primitives/object_primitives.py
SOM-st/RPySOM
2dcfc71786a3bd5be5a842c649645f71d6c35f89
[ "MIT" ]
2
2016-05-25T06:07:52.000Z
2019-10-02T16:52:25.000Z
from rlib.objectmodel import compute_identity_hash from som.primitives.primitives import Primitives from som.vm.globals import trueObject, falseObject from som.vmobjects.primitive import UnaryPrimitive, BinaryPrimitive def _equals(op1, op2): if op1 is op2: return trueObject else: return falseObject def _hashcode(rcvr): from som.vmobjects.integer import Integer return Integer(compute_identity_hash(rcvr)) def _inst_var_at(rcvr, idx): return rcvr.get_field(idx.get_embedded_integer() - 1) class ObjectPrimitivesBase(Primitives): def install_primitives(self): self._install_instance_primitive(BinaryPrimitive("==", self._universe, _equals)) self._install_instance_primitive(UnaryPrimitive("hashcode", self._universe, _hashcode)) self._install_instance_primitive( BinaryPrimitive("instVarAt:", self._universe, _inst_var_at))
29.354839
95
0.759341
c19297d0ca95b632a8b470de953f10811a111927
1,738
py
Python
land_planning_and_allocation/api.py
the-bantoo/Land-Planning-And-Allocation
67a6b57c7c4ddc40a51691f94cacb5e28b1c5cd5
[ "MIT" ]
null
null
null
land_planning_and_allocation/api.py
the-bantoo/Land-Planning-And-Allocation
67a6b57c7c4ddc40a51691f94cacb5e28b1c5cd5
[ "MIT" ]
1
2020-10-05T15:50:33.000Z
2020-10-07T10:28:31.000Z
land_planning_and_allocation/api.py
the-bantoo/Land-Planning-And-Allocation
67a6b57c7c4ddc40a51691f94cacb5e28b1c5cd5
[ "MIT" ]
2
2020-10-29T17:38:08.000Z
2021-09-07T10:59:27.000Z
import frappe from frappe import _ def create_item(plot, method): settings = frappe.get_doc('Land Settings') plot_item = frappe.get_doc({ "doctype": "Item", "item_group": settings.land_for_sale_group, "default_warehouse": settings.sales_land_warehouse, "item_code": "Plot " + str(plot.plot_id), "land": 1, "is_stock_item": 1, "stock_uom": "Nos", "opening_stock": 1, "standard_rate": plot.plot_price, "is_purchase_item": 0, "is_sales_item": 1, "valuation_rate": plot.plot_price, "include_item_in_manufacturing": 0, "description": "Project: " + str(plot.project) + "<br \>" + "Subdivision: " + str(plot.subdivision) + "<br \>" + "Plot ID: " + str(plot.plot_id) + "<br \>" + "Dimensions: " + str(plot.dimensions) + "<br \>" + "Area: " + str(plot.area) + "sqm", }) plot_item.flags.ignore_permission = True plot_item.insert() plot.plot_item = "Plot " + str(plot.plot_id) plot.save() def calculate_plot_details(plot, method): if not plot.area or int(plot.area) <= 0: plot.area = int(plot.width) * int(plot.length) plot.dimensions = str(plot.width) + " x " + str(plot.length) + "m" def project_item(project, method): settings = frappe.get_doc('Land Settings') project_item = frappe.get_doc({ "doctype": "Item", "item_name": project.project_name, "item_group": settings.land_in_bulk_group, "land": 1, "item_code": project.project_name, "is_stock_item": 1, "stock_uom": "Square Meter", "include_item_in_manufacturing": 0, }) project_item.flags.ignore_permission = True project_item.insert()
36.208333
251
0.611047
5ab348c162bd9c449f42f0a2e999c7c6876ec2d5
415
py
Python
thinkpython_allen_downey/exercise_5_3.py
alirkaya/programming-textbook-solutions
7362dce474b8a881d654f95604e09d1d0e76aec2
[ "MIT" ]
null
null
null
thinkpython_allen_downey/exercise_5_3.py
alirkaya/programming-textbook-solutions
7362dce474b8a881d654f95604e09d1d0e76aec2
[ "MIT" ]
null
null
null
thinkpython_allen_downey/exercise_5_3.py
alirkaya/programming-textbook-solutions
7362dce474b8a881d654f95604e09d1d0e76aec2
[ "MIT" ]
null
null
null
def check_fermat(a, b, c, n): if a**n + b**n == c**n: print('Holy smokes, Fermat was wrong!') else: print("No, that doesn't work") def get_input(): a = int(input('Please enter a value for a:')) b = int(input('Please enter a value for b:')) c = int(input('Please enter a value for c:')) n = int(input('Please enter a value for n:')) check_fermat(a, b, c, n) get_input()
27.666667
49
0.573494
ff650ed250f94b07d5e1891a08f9a2fd7c37d4c2
929
py
Python
imagegallery/migrations/0002_post.py
Vincent-Juma/Django-Portfolio
53dd6a811f04b66c99d4985c3cb97d2bc5a86cc5
[ "MIT" ]
1
2021-05-28T14:16:59.000Z
2021-05-28T14:16:59.000Z
imagegallery/migrations/0002_post.py
Vincent-Juma/Django-Portfolio
53dd6a811f04b66c99d4985c3cb97d2bc5a86cc5
[ "MIT" ]
null
null
null
imagegallery/migrations/0002_post.py
Vincent-Juma/Django-Portfolio
53dd6a811f04b66c99d4985c3cb97d2bc5a86cc5
[ "MIT" ]
null
null
null
# Generated by Django 3.1.7 on 2021-04-05 12:58 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('imagegallery', '0001_initial'), ] operations = [ migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=100)), ('content', models.TextField()), ('date_posted', models.DateTimeField(default=django.utils.timezone.now)), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
33.178571
120
0.636168